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ABSTRACT

In the mammalian visual system, photons captured by the retina are transformed into meaningful
internal percepts of surroundings through a hierarchy of interconnected visual areas.
Understanding the representation of visual information at each node of the hierarchy has been a
central quest of visual systems neuroscience over the past 50 years. The primate visual system,
with its over two dozen distinct areas broadly organized into a dorsal stream for visuo-motor
transformations and a ventral stream for object recognition, has served as the gold standard for
studying the organization of the visual system. Recent advances in artificial neural networks
modeled on the primate visual system for object recognition have prompted the question, is
hierarchical representation necessary, and if so, can we observe it across all highly visual
mammalian species? Hierarchical organization appears to be a key architectural principle of both
artificial and biological networks, enabling stepwise construction of a structured and compact
representation from raw sensory input. Here we present a series of efforts to determine the cortical
organization and connectivity of the tree shrew visual system and directly compare to that of the
primate. This cross-species study sheds light on the evolution and mechanisms of vision in a
close relative of primates. Using high-density Neuropixels recordings, we demonstrate that the
tree shrew ventral visual pathway exhibits primate-like hierarchical processing, with progressively
larger receptive fields, increasing response latencies, and enhanced selectivity for complex stimuli
along the visual pathway. Area V2 in the tree shrew performs key functions similar to those of the
primate inferotemporal (IT) cortex. Specifically, V2 contains strongly face-selective cells, supports
a complete representation of high-level object space, and achieves the most accurate object
identity decoding and reconstruction among all tree shrew visual areas. Yet we also found
significant differences from the canonical template for hierarchical organization observed in the
primate, including maintenance of relatively small, focal receptive fields throughout the hierarchy,
and better decoding of latent variables in late deep neural network (DNN) layers by area V2
compared to other areas.

The hierarchical organization of the visual system describes the arrangement of areas but does
not reveal how information flows between them. Understanding the type of processing carried out
at each node raised the next question of whether information that is transmitted across nodes is
differentiated between feedforward and feedback connections. To explore this, we combined
electrical microstimulation and extracellular recordings to identify the directionality of projections
which is applicable in various species. We used this technique to first study the connections
between the first two nodes of the tree shrew cortical hierarchy, V1 and V2. We found that V2
feedback neurons carry a full visual representation on par to other V2 cells. These feedback
neurons were distinct with regards to their spatial features, including distinct locations and sizes
of their receptive fields. We also found that both feedforward and feedback V2 neurons were
modulated by perceptual conflict arising when distinct textures were presented to each eye,
suggesting they could refine V1 processing to perceptual inconsistencies.

These studies provide insights into how the tree shrew visual system generates object
representations through a hierarchy of interconnected nodes, employing strategies adapted to its
cortical constraints. In addition, by combining electrical microstimulation with electrophysiology
we set the foundation for cross-species studies to determine the role of feedforward and feedback
processing along the visual hierarchy. Together, this work reveals conserved principles of visual
processing across species while showcasing unique adaptations in the tree shrew, offering
insights into the evolutionary origins and functional organization of the primate visual system.
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Chapter |
INTRODUCTION

Motivation

Long before written language, humans sought to make sense of their surroundings by transferring
what they saw into lines etched on cave walls. Drawing is one of humanity’s most primal acts as
a way to engage with and understand the world through vision, a means of distilling the
complexities of the visual world into its simplest, most meaningful forms. This act of simplification
resonates with a fundamental aspect of how the brain processes visual information. Just as an
artist reduces the infinite variations of light and shadow into a few strokes of charcoal, the brain
abstracts and interprets sensory input into something comprehensible. Vision, however, is not
passive reception but an active process, a continuous negotiation between what the eye
perceives and what the mind internally constructs.

How does the visual system construct an object percept? This ability underpins how we interact
with the world, guiding essential functions like navigation and social behaviors. Both biological
and artificial neural networks demonstrate the capacity for object recognition'?, potentially
achieving it through diverse mechanisms or converging on similar, efficient solutions. Studying
how evolution has shaped the visual abilities of different organisms, and comparing them with
manmade artificial architectures, can offer a unique perspective to uncover common core
principles for object vision.

Principles of hierarchical organization for form vision

In mammals, the cortical visual system is hierarchically organized, composed of a series of
interconnected areas that transforms simple pixels into detectable objects®#. This cortical
functional architecture has been most extensively studied in the primate visual system. Beginning
with the retina, visual information passes through successive stages of processing in the brain,
where increasingly abstract features are extracted. The primate visual system exemplifies this
hierarchy, with distinct areas such as V1, V2, and the inferotemporal (IT) cortex specializing in
different aspects of perception, from the detection of simple edges to the recognition of complex
objects and faces®®. This deeply layered structure has long been regarded as a pinnacle of
evolutionary adaptation, enabling the high visual acuity and object recognition that primates rely
on for survival.

Understanding what gives rise to visual perception requires uncovering the progressive visual
transformation at each stage in the hierarchy. The receptive field is a key concept central to visual
processing, defined as the spatial region where a stimulus triggers a neuron's response®. An
individual neuron’s receptive field properties are shaped by the type, number, and arrangement
of its inputs. The receptive field conveys information about visual space (i.e. the location within
the visual field) as well as a particular feature within that space (e.g. motion, color, shape), with
increasing complexity at each stage of the hierarchy. Early in the primate visual pathway, such
as in primary visual cortex (V1), neurons have small, precise receptive fields, enabling them to
detect localized, fine details like edges and orientations. As information flows through the visual
hierarchy, neurons with small receptive fields tuned to simple features are combined to form
neurons with larger receptive fields that encode more complex and abstract features?!. At later
stages of the primate visual hierarchy, receptive fields become very large and spatially-invariant
to support critical visual functions, such as the ability to recognize objects regardless of variations
in size, position, or orientation?. This hierarchical building of representations is the cornerstone
for the primate visual system which is highly adapted for sophisticated object recognition.



At the pinnacle of the primate ventral visual stream lies an area, the inferotemporal cortex (IT),
that constitutes the apex of specialized object processing!®. Within IT, topographically organized
regions contain cells specialized in identifying specific object categories. The most well-known
example is the face patch system, a series of interconnected regions that contains almost entirely
face-selective cells'*. Collectively, the activity of these neurons forms a generative model of faces,
enabling reconstruction of an individual face with remarkable precision using signals from just a
small number of neurons®®. Importantly, this encoding strategy extends beyond face recognition
and generalizes to the broader IT cortex, where similar computational principles apply to other
object categories. As information progresses beyond IT, the level of abstraction increases,
enabling representations that encode object familiarity and begin to blur the line between object
perception and object memory.

The concept of hierarchy has profoundly shaped our understanding of the architecture of the
mammalian visual system for over 50 years, serving as a foundational principle for the
development of advanced multi-layered computational networks®4. Artificial neural networks
(ANNSs), particularly deep learning (DL) models, draw inspiration from this biological architecture,
mimicking the hierarchical and modular organization of the brain26. These artificial systems are
designed to emulate the stepwise abstraction observed in the brain, with early layers detecting
basic features such as edges or textures and deeper layers capturing complex patterns and
relationships. This principle, rooted in biological vision, has driven remarkable advancements in
machine vision and pattern recognition, enabling tasks such as object detection, face recognition,
and even artistic image synthesis. While DL models serve as powerful tools for understanding
perception and cognition, they also act as computational frameworks for modeling brain activity.
However, the relationship between artificial systems and biological brains raises important
guestions. Do these models accurately reflect the underlying neural mechanisms, or are their
representations simply convergent solutions to shared computational problems? That is, do
similarities between artificial and biological representations reveal insights about the brain itself,
or do they primarily teach us about the multidimensional space that both systems are designed
to navigate?

Probing the flow of visual information along the hierarchy

The unique neural computations performed by neurons are largely shaped by their inputs that
convey information about the outside world. Previous advances in neuroscience techniques have
established a foundation for recording neural activity from large population of neurons in the visual
system?7-1°, However, they lack the important ability of establishing directionality of neural signals.
This is important since the physiological response properties of visual neurons are not only
inherited from feedforward inputs but are also shaped by their feedback connections. Numerically,
there are as many feedback connections as feedforward along the many stages of the hierarchy?°-
22, The function of these neurons based on their projection targets has predominately eluded most
studies as it is difficult to identity the directionality of surveyed neurons using electrophysiological
recordings.

Traditionally, experimentally challenging methods were employed to identify projection neurons,
including leveraging the use of electrical microstimulation to unambiguously determine the
directionality of the axons?3. However, these techniques were limited by the fact that antidromic
identification of neurons that satisfies the standard criterion of passing a collision test (i.e.
transmission failure due to action potential collision!®) produces very low yields?*25. Thus, these
techniques were not often used, leaving a potential gap in knowledge about the function of
neurons in the visual cortex based on their reciprocal connectivity. However, with the recent
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advent of high-density silicon probes, such as Neuropixels, this now offers a significant advantage
by allowing for simultaneous recordings of many hundreds of neurons which can be combined
with electrical microstimulation to identify large numbers of projection cells.

Electrical microstimulation is a well-established technique that is useful for probing the functional
circuitry that offers to advantage of broad applicability across species. This combined technique
has been able to measure neuronal interactions in real time among rodents, birds and non-human
primates. By affecting neural activity via the voltage gradient that neurons maintain across their
membranes; a current passed outside of cells can change this voltage and trigger neuronal
responses?%2’, Electrical microstimulation offers improved biological compatibility as opposed to
photostimulation, because it does not require artificially expressing proteins on the neural
membrane (i.e., channelrhodopsin?®) to excite the cell. Rather, electrical stimulation exploits the
existing electrical properties of neurons and does not require the introduction of foreign proteins,
a process that greatly increases the experimental time and may produce unintended biological
effects. In addition to speeding up the experimental set-up, electrical microstimulation is not
constrained by areas of viral expression, so the site of electrical microstimulation can be moved
easily between brain areas during the same experiment. Finally, recent advances in genetic and
viral tools allow for mapping and monitoring neurons based on their projection targets, such as
phototagging and calcium imaging?®. While this has been widely available in rodent models, it is
much less feasible in other species such as tree shrews and primates in which the tools are still
in the early phases of implementation®°.

Advantages of electrical microstimulation notwithstanding, some challenges that need to be
overcome include electrical artifacts that often overwhelm the recording setup during electrical
microstimulation, causing a spatiotemporal “blur’ of the neural activity3'32. Microstimulation
artifacts can occur because of capacitive crosstalk between electrodes or because of large
electric fields from the stimulation site reaching the recording site. Because the extracellular
voltage signals associated with action potentials are several orders of magnitude weaker than the
pulses required for successful stimulation, these fields can easily overwhelm the recording
amplifiers and result in long-lasting oscillations in the recording circuitry, which make it impossible
to record neuronal activity for tens of milliseconds after the stimulus. To overcome this, some
recording designs have implemented analog switches that are disabled during stimulation to
prevent these large voltages from reaching the amplifier. However, the current generation of
silicon probes does not allow for this method, thus promoting the need to design optimal solutions.

Overcoming these technical challenges and employing these techniques in species such as tree
shrews and primates will open possibilities to understand and dissect at a circuit level the
contributions of different projection neurons to signal processing along the visual hierarchy.
Notably, applications include elucidating the functional role of feedback connections in visual
processing, which has continued to remain a fundamental mystery in vision science. In the visual
cortex, there have been many suggested roles for top-down feedback connections, including
regulating spatial properties (i.e. receptive fields) or providing specialized feature-specific signals.
Prior work has suggested that these connections could either be suppressing or facilitating
depending on the location of inputs and the cell types that they synapse onto. Anatomical tracing
experiments have shown excitatory feedback connections can project to either excitatory or
inhibitory neurons®3. Also, recent findings in the mouse visual cortex has shown that based on
whether the source of the feedback is aligned or offset from the target in visual space, it will result
in excitation or suppression in V1 respectively3435, This raises additional questions such as ‘what
types of visual information is sent back to earlier areas and how do they contribute to visual
perception?’. One hypothesis is that they function to conflict or ambiguity in visual stimuli®6-38.
Feedback connections from higher areas are also thought to enhance visual processing by
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modulating and contextualizing responses at earlier stages, such as due to global changes in
arousal and attention. Overall, this bidirectional flow of information offers additional challenges to
understanding how vision works by greatly increasing the complexity of computations performed
at each node since they must be considered in the framework of the complexities of a recurrent
dynamical system.

An evolutionary perspective: using new animal models for vision

The act of seeing is shaped by the evolutionary imperative to navigate, recognize, and interact
with the environment. A functional visual system must detect and parse light, discern edges and
movement, and interpret shapes and forms. These tasks require neural circuits finely tuned to the
demands of the organism’s environment, reflecting a balance between computational efficiency
and ecological necessity. But this raises an intriguing question: do all mammals with complex
visual behavior rely on deep hierarchies? Or can evolution arrive at alternative solutions?

Historically, most vision studies have been performed in humans, macague monkeys, and cats.
In the last 15 years, there has been a growing interest in using rodents as a model organism to
parse the mechanisms underlying visual processing 3%4°. While mice have relatively poor visual
acuity 10 times lower than primates, they offer significant advantages in terms of applications for
labeling and manipulating defined cell types. This has prompted a new wave of interest in
identifying a model species that can combine the genetic tractability of mice with the visual acuity
that more closely resembles the primate. For those reasons, tree shrews have become
increasingly used in visual neuroscience to advance towards the goal of understanding how vision
works.

Tree shrews are highly visual, diurnal mammals. Whether they should be classified as primates,
insectivores, or, as has eventually become established, scandentia, has garnered some debate.
Like most mammals, they are dichromats*!. Not only are they diurnal, but their visual systems are
highly adapted to diurnal life including an overrepresentation of cones comprised of ~95% of the
total photoreceptors*’. In humans, cones mediate high-spatial acuity and thus also likely
contribute to the high visual acuity of tree shrews. The anatomy and physiology of the tree shrew
visual system has therefore attracted much attention. Anatomical tracing studies have suggested
the existence of a greatly expanded visual cortex with regions thought to be akin to many
corresponding regions in the primate. However, there has been an overall lack in studies to
systematically determine whether these regions are only ostensible analogs due to matching
anatomical structure or actual functional homologs and whether they conform to the primate-like
hierarchical organization. If so, this would place tree shrews as an ideal species for studying the
evolution of form vision.

Evolutionarily positioned between rodents and primates, comparative studies of the tree shrew
visual systems stand to provide new insights into core concepts for complex visual processing.
Investigating homologies and evolutionary relationship between the visual system of diverse
animals offers to teach us fundamental principles of biological systems and how they are built.
Vision has evolved independently across countless lineages, from the compound eyes of insects
to the pinhole eyes of mollusks, and the camera-like eyes of mammals. The eye itself provides
insights into the evolutionary change across species that selects for characteristics optimal for
various ethological niches. A clear example lies in the regional differences in retinal ganglion cell
distributions typically corresponding to where in visual space high detail vision is needed, such
as the differential specializations in aerial versus ground dwelling organisms. Certain
computational challenges remain universal. Many building blocks (i.e. photoreceptors, retinal
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ganglion cells) and neural computations (i.e. motion, color, orientation) are largely preserved as
they support similar functions to guide perception and interactions with the outside world.

Outline

This thesis explores how the brains of different visual species that are widely different in size and
have adapted for different environments can take in photons and reconstruct a stable visual
percept of an object essential for survival. By comparing across different neural networks, can we
uncover core principles that are conserved across evolution and across species that emerge from
simple interactions among interconnected areas?

In Chapter II, we explore this question by performing a comparative analysis of visual systems
across mammals and artificial neural networks. Using electrophysiological recording with
Neuropixels probes, we examined the visual responses in many tree shrew brain areas to a large
stimulus set. We showed that cells in area V2 exhibit selectivity for complex objects that is
generally not found in area V2 of the primate. This study revealed that animals with fewer visual
brain areas have processing networks that are compressed and potentially exhibit more
recurrency than feed-forward processing.

Chapter Ill presents the technical advancements we achieved to combine the use of Neuropixels
recordings with electrical stimulation to identify neurons based on their projections. By
overcoming challenges associated with electrical artifacts, we applied this technique to probe the
role of feedforward and feedback processing in tree shrews’ primary visual cortex (V1) and
secondary visual cortex (V2). We identified distinct classes of V2 neurons based on the
directionality of their projections. We observed that 1) feedback neurons in V2 convey similar
visual information compared to other V2 neurons. 2) Feedback exhibits distinct features such as
smaller receptive fields and spatial offsets relative to V1 inputs. 3) Finally, both feedforward and
feedback neurons encode information about perceptual conflict, such as when distinct images are
presented to each eye. These results highlight the role of feedback in refining V2 processing to
resolve perceptual inconsistencies.

Finally in Chapter IV we introduce future direction about how feedforward and feedback
connections in the compressed hierarchy in the tree shrew compares to the multi-stage
processing in primates to achieve object recognition. We offer insights into this by investigating
this question in the primate face patch system that contains extensive feedforward and feedback
connections. Using electrical microstimulation and Neuropixels recordings, we investigated the
role of these connections by stimulating two face patches at opposite ends of the hierarchy. Our
observations point to a role in feedback in potentially refining representations under uncertain
conditions. Future work exploring cross-species comparisons for the distinct role of feedforward
and feedback in form vision offers to advance our understanding of visual perception.

space.
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Abstract:

Our knowledge of brain processes governing vision is largely derived from studying primates,
whose hierarchically stratified visual system? inspired the architecture of deep neural networks?.
This raises questions about the evolutionary origins and universality of such hierarchical
structures. Here, we examined the large-scale functional organization for vision in one of the
closest living relatives to primates, the tree shrew. We performed Neuropixels recordings®# across
multiple cortical and thalamic areas spanning the tree shrew ventral visual system while
presenting a large battery of visual stimuli in awake tree shrews. We found an increase in
receptive field size, response latency, and selectivity for naturalistic textures compared to
spectrally-matched noise® moving anteriorly along the tree shrew visual pathway, consistent with
a primate-like hierarchical organization®?. Surprisingly however, we found that tree shrew area
V2 already harbored a high-level representation of complex objects. First, V2 carried a complete
representation of a high-level object space®. Second, V2 activity supported the most accurate
object reconstruction among all tree shrew visual areas. Finally, starting in area V2, we found
strongly face-selective cells akin to those reported in primate inferotemporal cortex® which could
support face identity decoding. Overall, the results shed new light on the origins of the primate
visual system, showing how core computational principles of visual form processing are
conserved, yet hierarchically compressed, by evolution in a small but highly visual mammal.

INTRODUCTION

The ability to recognize objects is fundamental to the survival of visual animals. The primate
ventral stream has provided a cornerstone for studying how objects are processed in the brain%1,
A hallmark of the primate ventral stream is hierarchical organization??, which is strikingly mirrored
by deep neural networks (DNNSs) trained on object recognition 813, This raises the question: Is
hierarchical representation necessary, and if so, can we observe it across all highly visual
mammalian species? Do the brains of cats, tree shrews, diurnal bats, and other highly visual
mammals all possess object recognition pathways following the same hierarchical architecture
and functional properties as the primate brain? Investigating visual processing across different
mammalian species promises to provide a deeper understanding of general principles for object
vision expressed across evolution.
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Over a decade ago, the mouse visual system began to attract strong interest, driven by the wealth
of tools available for mouse neural circuit dissection'**>. However, the mouse’s low visual acuity
and limited cortical territory dedicated to vision'® make it a non-ideal organism for studying
hierarchical brain mechanisms underlying object recognition. The tree shrew has attracted
growing interest as a model to study visual processing'’ due to its high visual acuity (>10x that of
rodents)!®, greatly expanded visual cortex!®, and excellent ability to perform visually-guided
behavioral tasks compared to the mouse?®?t. The tree shrew visual system is differentiated into
at least nine distinct anatomical visual cortical areas °. Tree shrews also possess a high degree
of functional specialization within primary visual area (V1), with an orderly arrangement of
orientation selective columns??>2% and a prominent second visual area (V2), albeit with a large-
scale topographic organization that differs from that of the primate?*. Lesion studies suggest a
rough correspondence between tree shrew extrastriate areas anterior to V2 and primate IT cortex:
ablations of large portions of extrastriate cortex in the temporal lobe of the tree shrew produce
deficits in pattern discrimination and object vision similar to the effect of IT lesions in
primates'®2526, However, to our knowledge there have been no electrophysiological studies of
functional properties of extrastriate visual areas beyond V2 in the tree shrew.

Here, we aim to identify the cortical organization and coding principles underlying visual object
representation across the entire tree shrew ventral stream. We performed large-scale
electrophysiological recordings using multiple Neuropixels probes along five tree shrew ventral
visual areas as well as the pulvinar. We confirmed hallmarks of hierarchical organization found in
primates including increased receptive field size and response latency?’ as well as increased
selectivity for naturalistic textures compared to spectrally matched noise® moving anteriorly along
the tree shrew visual pathway. However, unexpectedly, we found that tree shrew area V2 already
harbored a highly sophisticated representation of complex objects, comparable to that of
macaque IT cortex. V2 cells carried a full representation of a high-level object space and axis
tuning to features of this space. Furthermore, tree shrew area V2 supported the best stimulus
reconstruction among all tree shrew visual areas, matching the performance obtained by pooling
activity across all visual areas. Remarkably, among cells selective for different sectors of a deep
network—derived object space, we found strongly face-selective cells that could support identity
decoding. These cells were found throughout the tree shrew visual pathway starting in area V2.
This is remarkable because tree shrews are not social animals, living in isolated monogamous
pairs?®; the finding of face cells in this species challenges the prevailing view that face cells
evolved under pressures of social communication 230, Overall, the results suggest a compressed,
multi-stage hierarchy in the tree shrew in which representations previously observed in the
primate are realized at a much earlier stage of visual processing.

RESULTS

We selected a set of areas that span the tree shrew ventral stream to target for the investigation
of hierarchical visual processing (Fig. 1a). We chose primary (V1) and secondary (V2) visual
areas as architectonically distinct regions that participate in early visual processing and are
mutually connected3':32, We further selected the temporal posterior area (TP) as an intermediate
step along the ventral visual processing stream. This region, located immediately anterior to V2,
receives dense projections from V1, V2, and temporal anterior (TA) and temporal dorsal (TD)
areas which have visuo-motor functions. Importantly, unlike TA and TD, TP does not project to
primary motor cortex, and thus is considered a more purely visual area'®. Finally, at the anterior
end of the tree shrew ventral stream, we surveyed three subregions that may be homologous to
macaque inferior temporal cortex based on anatomical location: temporal-inferior (TI), temporal
intermediate (ITi), and inferotemporal rostral (ITr) areas. Lesions to Tl and ITi cause drastic
impairments in visual form detection?®. ITr is known to receive inputs from both visual and auditory
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cortex!?, but its visual functional properties have never been explored. Due to difficulty in
distinguishing the border between Tl and ITi, we grouped results for these two regions and refer
to them as “TI-ITi.” Since many temporal areas receive direct thalamic input33, we also recorded
in the dorsal visual portion of the pulvinar (Pulv). We performed retrograde tracing experiments
to guide target location for electrophysiological recording (Extended Data Fig. 1a, b).

To characterize the visual responses of neurons across V1, V2, TP, TI-ITi, ITr, and Pulv, we
performed electrophysiological recordings using Neuropixels probes in awake tree shrews (Fig
1b). In all experiments, animals were head-fixed and restrained in front of a monitor while we
presented a battery of visual stimuli, including local sparse noise, static gratings, naturalistic
textures and noise, and images of faces and other objects. At the end of experiments, probe
locations were marked with Dil and targeting was confirmed with histology (Fig. 1c). We labeled
a cell as visually responsive if it responded to any of the classes of visual stimuli we tested
(Methods). We found many well-isolated single units in each area (Fig. 1d), with some inter-area
differences in the fractions of cells that responded to visual stimuli (ANOVA, Fs17 = 4.0, p <0.014;
Fig. 1le). In particular, relatively fewer TI-ITi cells were visually responsive compared to V2 cells.

We first mapped the receptive fields of neurons along the tree shrew ventral pathway using a
locally sparse noise stimulus (Methods). We measured receptive fields of single neurons by fitting
a gaussian distribution to the two-dimensional matrix of spike counts at each location of the visual
field; ON and OFF receptive fields were computed separately using responses to white and black
squares, respectively. Cells with ON and/or OFF receptive fields were clearly present in all areas
except TP (Fig. 1f). Surprisingly, this included the two most anterior areas TI-ITi and ITr; in
contrast, corresponding areas in the anterior primate temporal lobe show largely spatially invariant
responses3+3,

Within individual recordings, receptive field positions were concentrated in a small portion of the
screen, corresponding to our electrode penetration of the cortical surface. Fig. 1g shows receptive
fields of all cells recorded in one example session for each area. Surprisingly, clustering of
receptive fields was apparent in all areas studied, suggesting that even TI-ITi and ITr, though
located at the anterior end of the tree shrew ventral stream, maintain retinotopic organization.

To assess the hierarchical relationships between the recorded areas, we first examined two
classic metrics of hierarchical level: receptive field size and the latency of visually-evoked spikes.
We found that the receptive field size systematically increased from posterior to anterior (Fig. 1h).
We also calculated the half-peak latencies for each unit in each area and found that latencies
increased from V1 to V2 to ITr (Fig. 1i, Methods). The hierarchy predicted by the increase in
receptive field sizes was broadly consistent with the hierarchy predicted by the increase in
latencies (Fig. 1j).

In the primate visual cortex, early visual areas are strongly tuned to low-level features such as
orientation and spatial frequency, while later areas are tuned to more complex object features’-36-
38, We therefore examined tuning to orientation and spatial frequency across the tree shrew
ventral visual pathway using static gratings (Fig. 2a). We found that the proportion of visually-
responsive neurons (cf. Fig. 1e) that specifically responded to gratings was the highest in V1 and
V2 (-55% and ~65% respectively) and lowest in TI-ITi (Fig. 2b). Tuning to orientation, spatial
frequency, and spatial phase of example cells from V2 and ITr illustrates the different types of
tuning we observed to these variables across tree shrew visual areas (Fig. 2c). Overall,
orientation tuning was most prevalent in V1 and V2 (Tukey analysis after ANOVA, Fs 1099 = 25.9,
p < 10724, Fig. 2d), while spatial frequency tuning was also prevalent in ITr (Tukey analysis
ANOVA, Fs1099 = 19.4, p < 107/, Fig. 2e). These findings are roughly consistent with those found
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in the primate ventral stream, where orientation tuning is especially prominent in early visual
areas®®.

So far, V2 responses appeared largely similar to V1 responses, raising the question of whether
V2 performs any unique function distinct from that of V1. Previous studies in the macaque have
identified sensitivity to higher-order statistical dependencies in naturalistic textures as a unique
signature of area V25 We therefore asked if tree shrew extrastriate areas show a similar
specialization for naturalistic texture. To address this, we recorded from all six areas while
presenting naturalistic textures and spectrally matched synthetic noise images (Fig. 2f, Methods).
Among all areas recorded, V2 had the largest proportion of cells responding to the texture and/or
noise stimuli (Fig. 2g). Examination of the time course of population responses revealed the
strongest difference between responses to naturalistic textures versus spectrally matched noise
in area V2, followed by V1, ITr, and TI-ITi, while no or only slight differences were found in the
remaining areas (Fig. 2h). In V2, the difference persisted for the duration of the stimulus.
Interestingly, although responses in V1 commenced well before those in V2 (cf. Fig. 1i), the
modulation between texture versus noise occurred later in V1 (at 90 ms) than in V2 (at 45 ms),
suggesting that the modulation in V1 may be a result of feedback from V2. This idea is further
supported by the observation that activity in V2 encoded texture family identity earlier than that in
V1 (Fig. 2i).

A central purpose of the visual hierarchy is to recognize and categorize objects to guide vital
behaviors like navigation, foraging, or mating. To understand the mechanisms for high-level object
representation in the tree shrew ventral stream, we presented a rich stimulus set consisting of
1593 images of animals, body parts, faces, and everyday objects (Methods); this stimulus set was
previously used to characterize tuning in macaque IT cortex, enabling a direct comparison to
object recognition mechanisms in primates®. Stimuli were adjusted to match the receptive field
location of neurons recorded (Methods). As we show below, responses to these complex object
stimuli suggest a very different picture from that so far, where the tree shrew appears to harbor a
primate-like hierarchy with increasing receptive field size and latency (Fig. 1) and decreasing
prominence of orientation tuning (Fig. 2) moving anteriorly. Instead, the key conclusion from the
next set of results derived from the complex object stimuli is the unique role of area V2 in
representing high-level object features.

Response rasters of example cells vividly showcase the diversity in object selectivity throughout
the tree shrew ventral stream (Fig. 3a). Among the six areas we recorded from, a similar
proportion of visually-responsive cells responded to the object stimuli across V2, TP, TI-ITi, and
Pulv (Fig. 3b), with a much larger proportion of visually-responsive cells in TI-ITi responding to
object stimuli compared to gratings (cf. Fig. 2b). This increased responsiveness to complex
objects compared to simple gratings is consistent with temporal areas being situated at a higher
stage in the tree shrew ventral pathway. For each cell, we quantified the “explainable variance”
as the part of the variance in response that could be attributed to the identity of the visual stimuli
presented (rather than to stochastic trial-to-trial variation) (Methods). After V2, the explainable
variance in responses to these complex object stimuli decreased dramatically (Fig. 3c). Overall,
these results suggest that even though anterior tree shrew areas were relatively more responsive
to complex objects than to gratings, their responses to these complex object stimuli were not
highly reproducible from trial-to-trial. When controlling for low-level features, we did not observe
a large fraction of the variance explained was due to these features including luminance, contrast,
and spatial frequency (Fig 3c and Extended Data Fig. 2).

To better understand the nature of the neural code used by each area, we modeled neural
responses using AlexNet*°, an 8-layered DNN trained on object recognition (Fig. 3d). Single IT
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neurons in the macaque monkey have been found to be optimally explained by an axis model,
wherein each cell linearly projects incoming stimuli onto a preferred axis in an DNN-derived
feature space®*3. In primates, the preferred axes of the cell population span a relatively low-
dimensional basis for the feature space (e.g., in face patches, just 50 dimensions can yield
veridical reconstructions*!). To test whether this principle also holds in the tree shrew, we
calculated the preferred axis of each neuron in the six areas, using the first 50 principal
components (PCs) from AlexNet layer FC6. We focused on FC6 in order to delve into the question
of whether tree shrew cortex represents a high-level object space, as in macaque IT cortex®. We
found that visual cells in all areas of the tree shrew ventral stream showed ramp-shaped tuning
along their preferred axes (Fig. 3e, Methods). Moreover, cells showed flat tuning along their
principal orthogonal axis (i.e., longest axis orthogonal to the preferred axis; Fig. 3f, Methods).

Previous studies in primates revealed that early layers of AlexNet and other DNNs explain
neuronal activity in early retinotopic visual areas better, whereas late DNN layers explain
inferotemporal responses better®3. We investigated whether a similar pattern holds for the tree
shrew ventral stream. We regressed firing rates of single cells to 50 feature dimensions of a given
AlexNet layer (Methods) and asked which layer of AlexNet best explained the variance in neuronal
responses. For one representative cell in V2, AlexNet layer Conv4 best explained its responses
(Fig. 4a). Across the V2 population, the middle layers of AlexNet (Conv4, Conv5) had more
explanatory power for cells’ responses than either the early or late layers (Fig. 4b).

To compare explanatory power of different AlexNet layers across brain areas, we calculated the
sum across cells within each area of the variance explained by the various AlexNet layers, and
normalized these sums by the sum across cells of their explainable variance (Methods). This
analysis revealed that early visual areas V1 and V2 were best explained by early layers Conv3 to
Convbs, whereas TI-ITi and ITr were best explained by FC6 (Fig. 4c). However, the absolute
explanatory power of AlexNet was lower for the higher cortical areas (Extended Data Fig. 3a, b),
consistent with the lower explained variance by image identity in anterior areas (cf. Fig. 3c). This
could suggest that AlexNet may not be expressive enough to capture the response properties of
tree shrew IT as they have been suggested to be multimodal®®

To explore which feature axes encoded the most variance in neural responses in each area, we
plotted how much variance was explained by individual feature PCs from AlexNet layer FC6. We
found that in general, earlier PCs explained more variance in neural responses, with some
variability across areas (Fig. 4d). Conversely, we also analyzed how well specific features of
AlexNet FC6 could be decoded from population activity in different tree shrew visual areas (Fig.
4e). Again, we found that early PCs were most strongly represented in the tree shrew visual
hierarchy, with substantially better decoding of FC6 features from V2 activity than any other area.
This is consistent with the fact that FC6 explained more of the variance of V2 activity than of other
areas (Extended Data Fig. 3c). Thus, even though V2 was best explained byConv4 and Conv5
features, while TI-ITi and ITr were best explained by FC6 features, nevertheless FC6 features
were better represented in V2 than in these more anterior areas. Additionally, we measured
whether low-level features correlate with FC6 PCs and found that they were very small (Extended
Data Fig. 3d, e).

Given the high performance for decoding AlexNet FC6 features using V2 activity, we asked
whether activity in V2 might be sufficient to reconstruct objects using small neural populations, as
has previously been shown in monkey IT cortex®. To this end, we took a large auxiliary dataset
comprising 15901 images and passed them through AlexNet. Whichever image yielded
activations in FC6 closest to the reconstructed activation from a given area of the tree shrew brain
was considered the reconstructed image (Extended Data Fig. 3f). We performed reconstructions
using 100 randomly selected cells from each area, to control for cell number. Consistent with our
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results on parameter decoding (Fig. 4e), which were optimal in V2, we found that images
reconstructed from V2 closely resembled the original images, while images reconstructed from
V1 or TI-ITi were less close (Fig. 4f). To quantitatively compare reconstruction accuracy across
areas, we calculated the distance between FC6 activations reconstructed based on neural
responses to each image in each area and the actual FC6 response to that image, normalized to
the theoretical best decoding distance (Methods). We found that these normalized decoding
distances were significantly smaller, on average, in V2 than in other areas, and matched the
performance obtained using all neurons pooled across all areas (Tukey analysis after ANOVA,
Fs9s52 = 235.2; Fig. 4Q).

The primate IT cortex is organized into subregions containing cells that respond maximally to
images from specific categories, e.g., faces. Moreover, these cells are clustered into discrete
anatomical regions by image category 4>-*4. Such category-selective regions can be explained by
a normative account in which IT cortex represents a general “object space” defined as the span
of the first two PCs of the AlexNet FC6 representation of the 1593 object images 4. Specific
sectors in this space correspond to distinct categories of objects, such as images of faces, fruits,
and animals (Fig. 5a).

Does the tree shrew visual cortex, like primate IT cortex, contain regions specialized for
representing distinct sector(s) of object space? To address this question, we projected the
preferred axes of all recorded cells down onto the same 2D object space (Fig. 5b). We found that
preferred axes of cells in area V2 spanned all four quadrants, whereas preferred axes of cells in
other areas largely fell into quadrants | and Ill. Given the localization of different categories to
different sectors of this object space, one prediction is that individual tree shrew cells should be
selective for distinct categories. This prediction was confirmed by analysis of response rasters of
individual cells. Cells with preferred axes in the face quadrant were indeed strongly face selective
(Fig. 5¢). Some face cells also responded to other round shapes, while others showed strong
selectivity only for faces. We also found cells selective for spiky, elongated objects (quadrant 1),
round inanimate objects (quadrant Il), and spiky animate objects (quadrant IV; Fig. 5d and
Extended Data Fig. 4a, b).

We next sought to compare how each area at the population level responds to the images
corresponding the different quadrants of object space. Extended Data Fig. 4c shows the
projection of all 1593 images onto the 2D object space, with the 100 most preferred images for
each area indicated by colored dots. The majority of the top-100 preferred images of TI-ITi fell in
the quadrant that contains faces (quadrant IIl), while none of the top-100 preferred images of V1
and V2 fell in this quadrant. To address whether cells selective for different categories are spatially
clustered within individual tree shrew visual areas, we replotted the preferred axes of cells using
color coding to represent each cell’s depth along the Neuropixels probe (Extended Data Fig. 4d).
This revealed no obvious topographical organization within any area for visual preference.

Faces—particularly human faces, which all our face stimuli were composed of—are not known to
have special behavioral importance to tree shrews?8. Thus, we performed additional analyses to
confirm that the cells really were face selective. We introduced a quantitative face selectivity
index, defined as the difference between responses to faces and all other objects, for each
individual cell (Methods). This confirmed small populations of highly face-selective cells (t-score
> 15) in most areas starting in area V2, with the highest percentage in TI-ITi and pulvinar (Fig.
5e).

The primate IT cortex is specialized for object recognition and has remained the cornerstone for
studying form processing. To facilitate direct comparisons with our tree shrew dataset, we
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performed large-scale recordings using NHP Neuropixels probes in macaque monkeys. We
presented the same 1593 object stimuli while recording from V2, posterior IT (ITpost), and anterior
IT (ITant) from two monkeys per area (Fig. 6a-c). We found the explainable variance in responses
to complex object stimuli increased from primate V2 to ITant (Fig. 6d), whereas they peaked in
tree shrew V2 (c.f. Fig. 3c). Image reconstruction performance also increased along the primate
hierarchy (c.f. Fig. 49), whereas it was most optimal in tree shrew V2 (Fig. 6€). In contrast to tree
shrews (c.f. Fig. 5e), we did not observe strongly face-selective cells in primate V2 (Fig. 6f). As
expected, the number of face cells in primate ITpost and ITant were much higher. Of note in one
of the recordings from ITpost, the probe was partially targeted one of the defined face patches
resulting in a higher proportion of face cells.

Lastly, we tested whether the primate and tree shrew cell populations could decode individual
face identity or object identity. To this end, we trained a classifier to decode the individual identity
either of 200 faces, or of 200 general objects, using the neural activity of randomly sampled
subpopulations of cells from a given area (Fig. 6g, Methods). In tree shrews, all areas yielded
above-chance decoding for both faces and objects except area TP. When we selectively used
only face cells, decoding performance of face identity increased dramatically, especially in
temporal areas. Most strikingly, decoding performance in tree shrew area V2 was much better
than in all other areas for both face and object decoding. Strikingly, we found the decoding
performance of object identity from the primate V2 was far lower than that from the tree shrew V2
(Fig. 6f). In fact, tree shrew V2 was similar to that of primate posterior IT. As expected, the primate
anterior IT that sits at the apex of the primate ventral visual stream outperformed all other areas.

A hallmark of the primate ventral stream is increasing invariance moving anteriorly along the
temporal lobe®3445, We used responses to the 1593 objects across different tree shrew visual
areas to ask whether invariance increases along the tree shrew ventral pathway as well (even
though this image set was not designed to test view invariance directly). Here, we leveraged the
power of deep network models trained on large image sets to predict responses of visual
neurons*’48, We first confirmed that in the macaque, a deep network-based model of V2 and IT
cells trained on neuronal responses to the 1593 images effectively predicted responses of the
same cells to a second image set consisting of 51 objects presented at 24 different views
(Extended Data Fig. 5a, b, c;). We then used these predicted responses to objects at different
views to compute a predicted invariance index for each macaque cell (Methods). This analysis
revealed a strong correlation between predicted and actual invariance indices, with the predicted
overestimating and corresponding to the upper bound of the actual (Extended Data Fig. 5e).
Thus, this confirmed that responses to the 1593 image set were sufficient to capture view
invariance of cells in the macaque. We then applied this approach to compute predicted
invariance indices across different tree shrew areas. In the tree shrew, the distributions of
invariance indices from different areas were highly overlapping (Extended Data Fig. 5f) Thus,
unlike in the macaque, increasing view invariance was not observed for predicted invariance in
the tree shrew. As has been previously shown in macaque (Doris XXX) and rats (XXX), direct
testing within each area is needed to determine whether view invariance is a hallmark of the tree
shrew visual pathway (Fig. 6h).

DISCUSSION

Hierarchical processing is a central principle of object representation in artificial neural networks
and in the primate visual system. Here, we sought to determine the extent to which the ventral
visual pathway of the tree shrew, a highly visual mammal that is one of the closest existing
relatives to the primate*?, is also organized hierarchically. To this end, we performed large-scale
simultaneous electrophysiological recordings spanning six nodes of the tree shrew visual pathway
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starting from early visual cortex and culminating in the presumed homolog to primate
inferotemporal cortex (Fig. 1). In support of hierarchical organization, we found that higher-level
areas in the tree shrew ventral visual stream showed an increase in receptive field size, response
latency, selectivity for naturalistic textures compared to spectrally matched noise, and proportions
of single cells selective for faces.

However, what was most striking were the deviations of tree shrew visual system organization
from the canonical template for hierarchical organization observed in the primate. While receptive
field sizes were the largest in TI-ITi and ITr, they were comparatively small (mean = 5.6° and 6.1°
respectively) relative to the many large spatially-invariant receptive fields of primate anterior IT
cells (spanning on average 10-20°%%) ). Further, decoding of latent variables of late AlexNet layers
(which in the primate most closely match IT) was best using activity from tree shrew area V2 (Fig.
5f). Indeed, by decoding FC6 features from area V2, we could obtain reasonable reconstructions
of objects using only small cell populations (Fig. 4f). Area V2 harbored a full representation of a
high-level object space previously shown to be represented by primate IT cortex® (Fig. 5b). In
particular, area V2 contained a population of highly face-selective cells that represented the face
guadrant of this object space and supported face identity decoding better than any other area
(Fig. 5f). Finally, DNN-predicted indices of view invariance were as high in tree shrew area V2 as
in more anterior areas (Extended Data Fig. 4), with the caveat that this needs to be confirmed
with direct measurement of view invariance in future studies. Overall, these results suggest a
substantially shallower visual hierarchy in the tree shrew compared to the primate, with tree shrew
area V2 performing many of the functions of primate IT cortex. An open question for future
research is: to what extent does tree shrew area V2 encompass all of the functions of primate IT
cortex? For example, in object recognition tasks, can task performance be entirely explained by
activity of V2 cells?

As a direct comparison, we performed the same experiments across three homologous regions
in the macaque, including V2, IT anterior and IT posterior. Strikingly, this comparison further
supports our finding that the tree shrew contains a compressed hierarchy that performs many of
the functions akin to primate IT in tree shrew V2, and importantly, primate V2 does not show these
characteristics. Our stimulus set was originally tailored for primate object recognition and,
therefore, facilitated direct comparisons to primates. However, future work is needed to expand
these findings with additional stimulus sets such as those that include ethologically relevant
objects, view invariance, binocular disparity and multimodal stimuli. In fact, studies in rats using
highly controlled visual morphed objects designed to match luminosity across transformations led
to the discovery of properties of object processing in the rat visual area LL and TO including view
invariance. Such comparisons in the tree shrew would further shed light into evolutionarily
conserved properties for object vision that places this species functionally between the primates
and rodents.

Our findings challenge the current focus on modeling mechanisms for high-level vision almost
exclusively with deep networks®%51, Computationally, deep networks aid in the challenge of
sequentially disentangling image features that are important for discrimination from orthogonal
features such as orientation and size*®52, However, it is possible that V2 itself harbors a deep
network implemented through local circuits, e.g., via a recurrent network that, when temporally
unrolled, can be identified with a multi-layer feedforward network but would require less neurons
to implement®3. Future work may investigate this possibility by analyzing local dynamics of feature
selectivity within V2.

We did not find any striking, qualitative difference in the complexity of visual processing between
area V2 and more anterior areas in the tree ventral stream (TP, TI-ITi, and ITr). This raises the
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guestion, what is functionally distinct about these more anterior areas? One possibility is that
these areas are involved in multi-sensory integration, consistent with the existence of anatomical
connection with the pulvinar and other higher order auditory cortical areas'®. Thus, these more
anterior areas may inherit their visual tuning from V2 without extensive further processing, and
their primary function may be to integrate this visual tuning with tuning for other sensory features.

The finding of face cells in the tree shrew was particularly surprising. The existence of face cells
in primates has long been thought to be related to the importance of faces for primate social
communication®. However, recent evidence argues that such specializations may arise from
more fundamental principles concerning how IT cortex represents a general object space®4°55:56,
Facial communication is not known to be of ethological importance to tree shrews (which live in
isolated monogamous pairs, with social recognition mediated by olfactory cues?®). Thus the
finding of face cells in tree shrew visual cortex supports the view that such cells can readily
emerge from encoding of general dimensions of image variation, even in the absence of
evolutionary pressures related to face-based social communication.

The tree shrew offers exciting advantages as a model organism for studying high-level vision
given its tractability for genetic and viral-mediated circuit approaches and its highly developed
visual system. In particular, the tree shrew visual system appears to be more sophisticated than
that of the mouse, evinced by preferential responses to naturalistic textures, face-selective
responses, and the existence of five distinct visual cortical areas (V1, V2, TP, TI-ITi, ITr) with
increasing receptive field size and latency. Our study provides a new roadmap for exploring visual
circuits in this non-traditional species and illuminates how evolution adapted brains of different
sizes for effective representation of the visual world.
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METHODS

EXPERIMENTAL MODEL AND SUBJECT DETAILS

All experimental procedures were approved by the Caltech Institutional Animal Care and Use
Committee and conformed to local and US National Institutes of Health guidelines, including the
US National Institutes of Health Guide for Care and Use of Laboratory Animals. Tree shrews
(Tupaia Belangeri) used in this study (n=5), both male and female, were 6 months to 2.5 years
old and weighted between 150 to 300 g. Animals were singly housed in a 12-hour light/dark cycle
in the animal room. Their food and water aliquots were given ad libitum.

No statistical methods were used to predetermine sample size. The experiments were not
randomized, and investigators were not blinded to allocation during experiments and outcome
assessment.

EXPERIMENT

Surgeries

Tree shrews were injected with a preoperative dose of dexamethasone (5 mg/kg, subcutaneously
(s.c.)) and mannitol (1 mg/kg, s.c.) to reduce swelling. Animals were anesthetized with a cocktail
of fentanyl, midazolam, and dexdomitor (FMD, fentanyl 0.05 mg/kg, midazolam 5.0 mg/kg,
dexdomitor 0.25 mg/kg, s.c.), shaved and positioned into a stereotaxic frame. Topical lidocaine
gel (2%) was applied on the head and ears to prevent discomfort from ear-bars and eye lubricant
was used to maintain hydration and clarity of eyes during surgical procedures. Levels of
anesthesia, breathing, Sp0O2, and heart rate were monitored throughout the entire procedure and
body temperature was maintained with a heating pad at 37.5° C. An incision on the scalp was
performed and both skin and muscles were retracted. The exposed skull was levelled using the
stereotaxic device with respect to bregma and lambda (pitch, roll, and yaw). After alignment,
locations of the craniotomies for electrophysiological recordings were marked on the skull and a
custom stainless steel headplate was secured to the skull using clear C&B Metabond (Parkell). A
layer of Kwik-Cast (World Precision Instruments) was added on top the skull and a 3D printed
custom cap was secured to the headplate to protect the brain and keep debris out. The anesthesia
was reversed with an injection of atipamezole-flumazenil (atipamezole 1.25 mg/kg, flumazenil
0.25 mg/kg, s.c.) and the animal was recovered for at least 3 days before following procedures
and recordings. One day before electrophysiological recordings in a new brain location, tree
shrews were once again anesthetized and monitored as described above. Using the marked
locations on the skull, small (up to 1.5mm of diameter) craniotomies were drilled and durotomy
was performed. Through a small hole situated anterior of bregma, a 32 AWG chlorinated silver
wire (A-M system) with a pre-soldered gold pin was implanted just above the brain surface and
cemented to the skull to provide chronic grounding. A drop of silicone oil (30,000 cSt, Aldrich) was
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added over the holes to prevent the brain from drying, a new layer of Kwik-Cast was applied on
top of it, and the 3D printed custom cap secured to the headplate. Anesthesia was reversed and
the animal was recovered as previously described.

Electrophysiological recordings

All electrophysiological recordings were made using high channel-count, silicon, “Neuropixels 1.0”
probes configured to always acquire from the first 384 electrodes closest to the tip, providing a
3.84 mm of tissue coverage. The reference and the ground contacts on the Neuropixels probes
were permanently soldered together. Recordings were made using an external reference
configuration achieved by connecting the probe reference to the chronically implanted silver wire
on the skull; conductivity was routinely checked before recording with a multimeter. Each
Neuropixels was mounted on a 3-axis micromanipulator (New Scale Technologies) that was in
turn mounted on the underside of a semicircular platform, allowing simultaneous insertion of up
to four probes at different angles. Before the first insertion of a probe in a new location, Dil (1 mM
in ethanol) was used to coat the shank, allowing subsequent probe track localization during ex
vivo imaging. Neural signals were acquired at 30 kHz using Open Ephys software 5. After the tip
of each probe touched the surface of the brain, they were lowered to target at an average speed
of 100 ym/min to avoid damage and let them settle for 15 minutes after reaching the target depth.
Cameras were used to monitor animals during experiments and ensure a continuative viewing of
the visual stimuli presented during neural signals acquisition. After each recording experiment,
probes were slowly retracted and immersed in 1% Tergazyme solution to remove tissue and
silicone oil residues.

Injections
To trace the inputs to TP and ITr, intracranial injections were performed as described in the

surgical procedure as above. The retrograde tracer cholera toxin subunit  was injected into TP
(CTB-488) and into ITr (CTB-594) using a pulled glass capillary (World Precision Instruments) and
a pressure injector (Micro4 controller, World Precision Instruments), at a flow rate of 50 nl/ min.
The tracer was delivered at two depths, -- mm below the cortical surface, to ensure adequate
spreading. Stereotaxic injection coordinates were based on the Zhou and Ni Tree Shrew brain
atlas®® (TP, anterior—posterior: —=6.43 mm, medial-lateral: 8 mm, dorsal-ventral: =5.5 mm; ITr,
anterior—posterior: —=1.54 mm, medial-lateral: £8 mm, dorsal—ventral: =5 mm relative to Bregma).
Perfusions and histology were performed seven days following injections.

Histology
After electrophysiological recordings or tracer expression, histological verification was performed

for all tree shrews. Tree shrews were given Ketamine + Xylazine and perfused transcardially with
0.9% saline, followed by 4% paraformaldehyde (PFA) in 1X PBS. Brains were extracted and post-
fixed overnight in 4% PFA at 4°C. The brains were then transferred to 30% sucrose for
cryoprotection and sectioned coronally at 100 um on a cryostat (Leica Biosystems). Sections were
washed with 1xPBS and then incubated for 30 minutes at room temperature in in DAPI/PBS (0.5
pug/ml) for counterstaining. Sections were then mounted on slides and imaged with an
epifluorescence microscope (Olympus VS120).

VISUAL STIMULATION

Visual stimuli presentation

Visual stimuli were generated and presented using custom Python scripts. Head-fixed tree shrews
passively viewed a battery of visual stimuli displayed using a ViewSonic monitor (70x39 cm, 60
Hz refresh rate, 1,920 x 1,080 pixels). The monitor was centered in front of the animals at 25 cm
distance. Stimuli were presented at 3 Hz, 167 ms of image presentation interleaved with 167 ms
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of a grey screen. Three classes of visual stimuli were used in each experiment: static gratings,
naturalistic textures and noise, and 1593 objects. In addition, “local sparse noise” stimuli were
used to map neurons’ receptive fields.

Local Sparse Noise

The screen was divided into a grid of 4x3 squares. In consecutive frames (100 ms), sparse white
or black dots (5 degrees square) were presented, one dot in each grid square. The locations of
the dots within each rectangle were pseudo-randomly distributed to avoid spurious correlation
between distant parts of the visual field?’. To avoid interference between reconstruction of “On”
and “Off” RFs, each presented stimulus frame comprised either all black or all white dots on a
grey field. A reduced version of this stimulus (with fewer frames) was used at the beginning of
each experiment and analyzed immediately to allow placement of “faces and objects” stimuli in
the centroid of the receptive fields for that recording session.

Before the main recording session, a shorter block of local sparse noise stimuli was presented to
the animal and results were analyzed to find the approximate centroid of the receptive field of
recordable neurons, to serve as the location for subsequent presentation of faces and objects
stimuli.

Static Gratings
We presented full field sinusoidal gratings, varying in orientation (6 evenly spread angles), spatial

frequency (5 values between 0.1 and 1.6 cycles/degree), and phase (4 positions), for a total of
120 different stimulus conditions. Each image was presented 5 times.

Naturalistic textures and noise

We presented images from two subclasses: naturalistic textures and a control set comprising
spectrally matched noise. The naturalistic texture images were organized as 15 families of 5
similar images. Texture images reproduced the statistical dependencies found in natural texture
scenes!. Each of the 150 images in the stimulus set was presented 5 times. We used two types
of visual stimuli similar to ones previously used in primate studies: one set consisted of 15 families
of texture images, each comprising 5 closely related image samples of the same texture. These
images reproduced statistical dependencies found in natural texture scenes®>%°. A control set
consisted of noise images spectrally matched to each of the texture families.

Faces and objects

We presented images from two subclasses: 1,392 objects and animals from www.freepngs.com,
and 201 faces from the FEI database?, for a total of 1,593 images. Each image was presented 10
times. Images were presented at the previously determined center of the receptive field of
recordable cells and sized to cover 20 degrees of the visual field, which covered the majority of
the recorded neurons’ receptive fields.

DATA ANALYSIS

Preprocessing and Spike sorting

Neural signals from electrophysiological recordings were preprocessed by subtracting the median
calculated within each group of 24 channels from the data to eliminate common-mode noise. The
median subtracted data was sent to Kilosort2 which in addition to the group median subtraction
applied a high-pass filter (150-Hz), followed by whitening in blocks of 32 channels. All spike data
were sorted using the off-line spike sorting algorithm Kilosort2%°. The cluster automatically labelled
by Kilosort algorithm as “good” was in turn manually curated by hand and further analyzed with
Phy2.
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Visually responsive cells

A cell was deemed responsive to a particular class of stimuli (either gratings, textures, and noise,
or faces and objects) if its average firing rate in the 100 ms following stimuli of that class exceeded
the expectation value based on a Poisson model trained on the firing rate in the 50 ms before all
the stimuli of that class. To be included in the “responsive fraction” in figures 3b, 4b, and 5b, a
cell’'s average response had to exceed the baseline by at least 5 standard deviations. For the
“faces and objects,” the total time elapsed between the first and the last of the 10 blocks of visual
presentations was so long that stability of responses was a concern. Accordingly, we additionally
preprocessed these data to analyze only those blocks in which the responses were stable for a
given cell. For each block, we extracted the average waveform of all the spikes from the given
cell and calculated its peak-to-peak amplitude. We then picked the third largest amplitude among
the blocks and set an amplitude threshold at 0.6x this value. We counted for each block the
number of individual spikes with amplitudes exceeding this threshold. We calculated the mean
and standard deviation of these counts among blocks, and excluded from analysis any block in
which the count was over two standard deviations below the mean. In all cases except figure 1e,
results are expressed as a percentage of visually responsive cells, i.e., of cells that respond to
any of the stimulus classes.

Receptive field analysis

The receptive field size, amplitude, and quality was obtained by first calculating a 2D histogram
of spike counts at each of 576 locations on the monitor (32 x 18 matrix). We modeled these
histograms as a 2D Gaussian peak on top of a constant baseline. To prevent overfitting, the shape
of the Gaussian was forced to be circular rather than elliptic. A cell was considered to possess an
(“ON” or “OFF”) receptive field if the number of spikes within the Gaussian peak exceeded
expectation from a null model. Specifically, we calculated the expected number of spikes that
would be elicited by (“ON” or “OFF”) stimuli within a 10-degree radius from the center of the
Gaussian under the null model of the baseline as well as the actual number of spikes elicited by
stimuli within that same area. The number of standard deviations by which the actual number of
spikes exceeded the null expectation was considered the “quality” of the RF. Only cells with RF
quality greater than 5 were considered to possess an RF.

Half-peak latency

For each neuron, we calculated the average response to all the gratings and texture/noise stimuli
as a function of latency after stimulus onset. We found the peak value in this peristimulus time
histogram (PSTH) and kept only cells in which the peak exceeded the 99.75%™ percentile of the
Poisson distribution predicted from baseline firing. The “half-peak latency” of a cell was defined
as the latency at which its response first exceeded a threshold set halfway between its baseline
firing rate and the peak.

Preferred orientation and spatial frequency

We analyzed responses to gratings in terms of orientation and spatial frequency of the gratings.
First, we grouped trials by orientation and fitted a modified Von Mises distribution to the response
data for each neuron, where the orientation space of 0° to 180° was treated as the full period for
the purpose of the distribution. The preferred orientation of a cell was the centroid of the fitted
distribution. Separately, we grouped trials by spatial frequency. We fitted a Gaussian distribution
to the responses in log-frequency space. The preferred spatial frequency of a cell was the center
of the fitted distribution. In both figures 3e and f, only cells were included in the count where the
amplitude of the (Von Mises or Gaussian) peak was at least 0.5 times the average firing rate
during all gratings responses of the given cell.

27



Percentage variance explained

In Figs. 3g, 3h, 4d, 4i, and 5c, we plot the percentage of variance in neuronal activity that is
explained by various discrete or categorical variables. (We treat orientation and spatial frequency
as discrete variables here.) First, we calculate the total variance (Viota)) in Neuronal activity across
trials for a given neuron. Then we regress the activity onto the categorical variable (k — 1 additional
degrees of freedom, where k is the number of values the variable can attain) and calculate the
residual variance (Viesiaua)). By definition, the explained variance is the difference between total
and residual variance, and the plotted percentage is: 100% X (Viotal — Vresidual) / Viotal. In fig. 4d, 4i,
and 5c, we separately add up the total and residual variances for all the neurons in an area before
normalizing. (That is, we plot the percentage of all the variance in the area that is explained by
the variable, rather than the average across cells of the explained variance for each cell.)

Explainable variance

To derive an upper bound on the maximum fraction of variance that could theoretically be
explained by the DNN, we calculated the "explainable variance” of the neuronal responses as the
split-half reliability of those responses using the Spearman-Brown formula 2p / (1+ p) applied to
the correlation between the responses to the same image in one half of the trials to the other half®.

Preferred axis (AlexNet)

We extracted the activations of the 4096 units in layer FC6 of AlexNet in response to each of the
1593 images and performed principal component analysis to reduce the 4096-dimensional space
down to 50 dimensions. For each cell, we calculated which axis in this space captured the largest
fraction of the variance in its responses to all but 10% of the images. We then calculated the
projection onto the found axis of the remaining images. We repeated this process 10 times, each
time keeping a different set of images as a test set. This yielded projection values for every image
in the data set. The average of the 10 axes found is the cell's overall “preferred axis.” We defined
bins over the projection values and calculated the average response of the cell to all the images
in that bin. Each pixel in the matrices in Fig. 5e represents one such average.

Principal orthogonal axis (AlexNet)

As a control, we took the first principal component of the AlexNet responses and, for each cell,
projected it down to the hyperplane orthogonal to that cell’'s preferred axis. This we call the
“principal orthogonal axis” for that cell.

Decoding AlexNet activation from neural activity
We repeatedly selected 100 cells at random from a given area, calculated PCs from their
responses to image stimuli, and used those to regress the individual PCs of AlexNet. After
repeated sampling, we calculated the average fraction of the AlexNet PC’s variance that was
explained by the neural data from a given area.

Object reconstruction and normalized decoding distance

Image reconstructions were performed as previously described®®l. To generate images that
reflect the features encoded in the neural responses, we passed into AlexNet images from an
auxiliary database comprising a much larger set of 15901 images, none of which was previously
shown to the animal. For each stimulus image presented to the animal, the feature vector decoded
from the neural activity was compared to the feature vectors of the larger auxiliary stimulus set.
We defined the “reconstructed image” as the image in the auxiliary dataset with the smallest
Euclidean distance to the decoded feature vector of the original image.

Given that the auxiliary images used for reconstruction did not include any of the objects shown
to the animals (limiting how good the reconstruction can be), we computed a ‘normalized decoding
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distance’ to quantify the reconstruction accuracy for each object. We first used the Moore—
Penrose pseudoinverse to transform the predicted features from neuronal data back into the
space of AlexNet layer FC6 activations. Next, we calculated the Euclidean distance between
these pseudoinverted predicted features and the actual AlexNet FC6 activations deriving from the
presented images. We normalized this distance by the theoretical best decoding distance, i.e. the
distance between the actual AlexNet FC6 activation and the back projection of the 50D PCA
output of AlexNet FC6 (again using the Moore—Penrose pseudoinverse). Thus, the normalized
decoding distance for an image is:

|V;ﬂecon - Voriginal |

Normalized decoding distance =
|Vbestpossiblerecon - Voriginall

where Viecon IS the feature vector reconstructed from neuronal responses, Vorginal IS the feature
vector of the image presented to the animal, and Vyest possible recon IS the feature vector of the best
possible reconstruction. A normalized distance of one means that the reconstruction has found
the best solution possible.

Face selectivity

For every cell we quantified its selectivity to faces by calculating the t-score between its responses
to faces, and its responses to the rest of the images. In all areas an unexpectedly large number
of cells had t-scores far beyond the expected null distribution.

In Extended Data Fig 4b, we sorted cells in both macaque IT targets by face selectivity index
calculated as FSI = (mean responsesace - Mean reSPONSEnon face objects) / (MeaN resSpoNnSetce + mean
respoNSenon face objects)-

Face and object identity decoding

We trained Gaussian Naive Bayes classifiers to extract object or face identities from sets of 200
images based on the activity of variously sized subsets of neurons from a given area, using 9 out
of 10 repeated presentations of each image for training, and the remaining presentations for
testing. We calculated the significance of the decoding accuracy over chance by Monte Carlo
resampling both over repeated presentations of the same image, and over random subsamplings
of neurons from the population of each given area. We calculated the average performance of
each sample of neurons across different selections of training sets.

Invariance index

The Invariance Index was calculated as the mean of the Pearson correlation coefficients between
the frontal view and 23 other non-frontal views, averaged across identities. This index reflects
the consistency of the neuronal response to the same stimulus presented under different
conditions.
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Figure 1: High-throughput electrophysiological recordings along the tree shrew visual
pathway reveal a functional hierarchy. (a) Schematic of a tree shrew brain. Color key for
recorded areas applies to all figures. (b) Schematic of tree shrew head-fixed electrophysiological
recording with Neuropixels probes. (c) Coronal sections showing electrode traces marked with
Dil (red) in each targeted area (white outlined boxes). Numbers indicate rostrocaudal position
relative to Bregma (see inset). (d) Number of recordings per area and the total number of units
identified across all recordings in each area. (e) Percentage of visually responsive cells in each
area, i.e., cells that responded with elevated average firing rates to at least one of the visual
stimuli we tested (static gratings, naturalistic textures and noise, and object stimuli). Dots indicate
individual recordings, bars indicate averages across recordings. Letters indicate Tukey grouping.
Tukey analysis (a = 0.05) after ANOVA, Fs17 = 4.0, p < 0.014). (f) Percentage of visually
responsive units (cf. Fig 1e) exhibiting receptive fields (RFs) for each of the six recorded areas.
Left (lighter, ON), center (darker, OFF) and right (ON/OFF) bars for each area. Dots represent
results from individual recording sessions. (g) Distribution of RF locations across the visual field.
Top row: RF maps for example units, one per area. Middle and bottom rows: position and sizes
of all ON and OFF RFs (respectively) in a representative recording from each area. Shading
indicates RF quality (Methods). Each white box represents +54° horizontally and £38° vertically.
Scale bar: 15°. Top left: one frame of sparse noise stimulus used to map RFs. (h) Distribution of
ON (left, lighter) and OFF (right, darker) RF sizes for each area. Letters indicate Tukey grouping.
Tukey analysis (a = 0.05) after ANOVA, F4,1532 = 36.7, p < 10-28; TP was excluded from this
analysis because of the very low number of cells with receptive fields in this area. (i) Histogram
of the latencies to half-peak response in visually responsive cells in each area. Tukey analysis (a
= 0.05) after ANOVA Fs1145 = 20.2, p < 10728, (j) Comparison of the hierarchy inferred from RF
size (y-axis) with that inferred from response latency (x-axis). Each dot represents the median of
the data for a given area (hue), with ON and OFF RFs represented by light and dark dots
respectively.
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Figure 2: Orientation and spatial frequency of static gratings are first encoded in V1 while
textures and noise stimuli are first differentiated in V2. (a) Example frames of static grating
stimuli. Stimuli were varied in orientation, spatial frequency (SF), and phase, and were interleaved
with gray frames. (b) Percentage of visually responsive cells (cf. Fig 1e) that responded to static
gratings in individual recording sessions (dots) and averaged across recording sessions (bars).
(c) Responses of a representative V2 and ITr cell to static gratings differing in orientation
(represented circumferentially), SF (represented radially; cycles/®), and phase (four small
guadrants). Each dot represents a single trial; color intensity represents responses strength. (d)
Percentage of variance of individual cells’ responses explained by orientation of the stimulus.
Boxes represent 25, 501" and 75™ percentile; whiskers 5" and 95™. Letters indicate Tukey
grouping. Tukey analysis (a = 0.05) after ANOVA, Fs 1099 = 25.9, p < 10724, (e) Same for spatial
frequency. Tukey analysis (a = 0.05) after ANOVA, Fs1099 = 19.4, p < 1077, (f) Example frames
of naturalistic texture (top) and spectrally matched noise (bottom). (g) Percentage of visually
responsive cells (cf. Fig 1e) that responded to naturalistic texture or spectrally matched noise
stimuli in individual recording sessions (dots) and averaged across recording sessions (bars). (h)
Time courses of population responses in each area to naturalistic texture (darker lines) and
spectrally matched noise (lighter lines). Black arrows indicate the latency at which the two curves
first significantly differed from each other (Two-tailed t-test, p < 0.01). Shaded areas are standard
errors of averages across cells. (i) Percentage of variance in neural activity explained by texture
image family (15 classes, cf. (f)).
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Figure 3: Objects are encoded across all visual areas through axis coding. (a) Spike raster
plots for representative visually-active cells from each of the areas in response to six groups of
object stimuli, each optimal for one of the cells (stimuli shown on the left). Each dot represents an
action potential in one of up to 10 presentations of the stimulus; red line indicates stimulus onset.
Scale bar: 50 ms. (b) Percentage of visually responsive cells (cf. Fig 1e) that responded to object
stimuli in individual recording sessions (dots) and averaged across recording sessions (bars). (c)
Percentage of variance of neural responses explained by object stimulus identity in each area
(left bars) and the amount of variance that can be explained by low level feature image indices
(right bars). (d) Schematic illustrating the processing of visual stimuli in layers of the artificial
neural network AlexNet (top) and in areas of the tree shrew ventral visual pathway (bottom). (e)
Normalized neural responses to object images for 100 randomly selected cells in each of the six
areas as a function of position of that image along the given neuron’s preferred axis in AlexNet
FC6 space (“object space”). The x-axis is rescaled so that the range [-1,1] covers 98% of the
stimuli. Inset: Preferred axis (green arrow, Methods) of a representative cell (area V2) in object
space. The coordinate axes represent the three AlexNet principal components (PCs) that most
align with the cell’s preferred axis. Each dot represents an image, color coded by the strength of
the cell's response to that image (blue: low, red: high). (f) Responses as a function of normalized
position along each cell’s principal orthogonal axis, i.e., the axis in object space orthogonal to the
neuron’s preferred axis that captured the most variance in AlexNet activations (Methods).
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Figure 4: Neural representation of object stimuli in tree shrew ventral areas reveals optimal
feature decoding in area V2. (a) Variance of the responses of a representative V2 cell explained
by individual AlexNet layers. Blue line: explainable variance of the cell. (b) Histograms of
explained variance by different layers of AlexNet for responses of responsive cells (n = 602) in
area V2. Blue triangles mark values for the cell from (a). (c) Normalized explained variance by
AlexNet layers for each tree shrew visual area (Methods). (d) Variance of encoded neural activity
in different areas explained by individual AlexNet FC6 principal components (PCs) as a
percentage of explainable variance in that area. (e) Percentage of variance of AlexNet FC6
features that can be explained by decoding from the neural responses in different areas. (f) Ten
examples of original images presented to the tree shrew and the images reconstructed from V2,
V1 and TI-ITi, i.e., closest images to the predicted responses from AlexNet FC6 from an auxiliary
database of images that were not shown to the animal (Methods). (g) Average decoding distance
for each tree shrew visual area between AlexNet FC6 activations predicted from neural activity
and actual activations for each image, normalized by theoretical best decoding distance
(Methods).
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Figure 5: Single cells across the tree shrew ventral stream show selectivity for different
sectors of object space including faces. (a) Projections of 1593 object images onto object
space (the first two PCs from AlexNet layer FC6) with images from several categories (faces,
animals, fruits) indicated. (b) Projections of the preferred axes of all cells onto object space. (c)
Raster plots of several representative face-selective cells (circled in (b)) responding to face and
object stimuli. The 10 most preferred images for each cell are shown to the left of each raster.
Arrowheads mark responses to those images. Red line: stimulus onset. Scale bar: 5 ms. (d)
Raster plots of three representative V2 cells (arrowheads in (b)) with preferred axes in quadrants
I, I, and IV. Twenty stimuli from each quadrant were randomly chosen to generate raster plots.
Scale bar: 50 ms. Right: Top five preferred images for each cell. (e) Histograms of t-scores for
face selectivity across areas.
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Figure 6: Comparison of object responses between primate and tree shrew ventral stream
(a) Schematic of recordings in primate. (b) Simultaneous Neuropixels recordings from three
nodes in macaque monkey cortex. Neuropixels NHP 1.0 probes were inserted into V2, posterior
IT and anterior IT cortex.: (¢c) Responses of 330, 320 and 260 cells in V2, posterior IT and anterior
IT, respectively (rows), to 96 stimuli composed of faces and objects (columns). Only visually
responsive cells were included (t-test, p<0.05). (d) Percentage of variance of neural responses
explained by object stimulus identity in each area. (h) Average decoding distance for each visual
area between AlexNet FC6 activations predicted from neural activity and actual FC6 activations
for each image, normalized by theoretical best decoding distance (Methods). (f) Histograms of t-
scores for face selectivity across areas. (g) Decoding performance for individual object identity
(dashed lines) or face identity (solid lines) as a function of number of cells used by the classifier.
Note the overlap of the two lines for TI-ITi. Black lines indicate decoding performance for face
identity using only face cells (t-score greater than 5). Dashed gray lines: chance level for object
decoding. (h) Schematic comparing macaque, tree shrew, and rodent visual systems.
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Extended Data Figure 1: Anatomical inputs to intermediate (TP) anterior (ITr) nodes of the
tree shrew ventral pathway. (a) Schematic of injections of retrograde tracer CTp-488 (green)
into TP and CTB-594 (red) into ITr. (b)Two coronal histological sections showing retrogradely
labeled cells projecting to TP (green) and ITr (red) and counterstained with DAPI (grey). Scale
bars: 1 mm /0.5 mm (insets).
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Extended Data Figure 2: Object responses are largely not accounted by low-level features
(a) Histogram indicating the average fraction of variance in the firing rate explained by various
low-level image feature indices. (b) Examples of the 3 images with the lowest (left) and highest
(right) value for horizontality, internal contrast, circularity and area. (c¢) Schematic of quantification
of luminance and contrast impinging on each receptive field. We computed the average luminance
and contrast (second derivative of luminance) falling inside by the ON and OFF receptive fields
of each cell, and average across the two. (d) Percentage of variance of neural responses
explained by object stimulus identity in each area. Dark bars correspond to the part of the variance
accounted for by luminance impinging each receptive field. (e) Same, but dark bars correspond
to contrast. (f) Representative objects with increasing high spatial frequency content from low
(leftmost column) to high (rightmost column). (g) Power spectrum across groups of images in (a).
(h) Percentage of variance of neural responses explained by object stimulus identity in each area,
separated into categories based on spatial frequency.

50



Extended Data Fig. 3
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Extended Data Figure 3: Representation of different sectors of object space by cells in
each tree shrew visual area. (a) Aggregate explanatory power of the AlexNet layer that best
explained each given area. (b) Fraction of variance in the firing rates of individual cells (dots)
explained by different AlexNet layers plotted against the fraction of the total explainable variance
in that cell (Methods). (c) Aggregate explanatory power of AlexNet layer FC6 over different areas.
(d) Absolute correlation between image indexes and the first 10 PCs of AlexNet FC6. (e) Scatter
plot between the percentage of explained variance by a given feature in V2 neural responses and
the absolute correlation of that feature with FC6 PC1 activations in AlexNet. (f) Schematic of
image reconstruction.
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Extended Data Figure 4: Cells selective to different sectors of object space with no obvious
topographical organization in object space for each area. (a) Projections of each TI-ITi cell’s
preferred axis onto the first two PCs of object space (replicated from Fig. 5b). Right: Raster plots
of three representative TI-ITi cells from quadrants I, 1l, and IV indicated by letters; twenty stimuli
from each quadrant were randomly chosen to generate raster plots. Scale bar: 50 ms. Top five
preferred images for each cell. (b) Same for ITr. (c) All 1593 images projected onto the first two
PCs of object space. Colored dots: the 100 images that elicited the strongest responses overall
in each area. (d) Selectivity of cells in each area as a function of recording depth along the
Neuropixels probe. In each of the six plots, each dot represents one cell, the color of the dots
indicates the depth at which the cell was recorded (inset, right), and the position of the dot
indicates the mean projection of the 10 most preferred images onto the first two PCs of object
space.
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Extended Data Figure 5: DNN-predicted indices of view invariance are equally high across
all tree shrew visual areas. (a) Schematic showing workflow for predicting neuron responses for
a new set of stimuli. 1593 images were passed through AlexNet (top). Activations in AlexNet layer
FC6 were used to linearly predict neural responses evoked by each image when shown to the
animal. This yields a weight matrix W that optimally predicts a neuron’s response based on the
image features F. Next, the weight matrix is used to predict neuron responses to 1224 images
consisting of 51 objects at 24 views that were not shown to the tree shrew (bottom). (b)
Correlations of the ground truth and predicted invariance across cells for primate area V2,
posterior IT, and anterior IT. (¢) Histograms of invariance indices (Methods) of macaque posterior
and anterior IT neurons, calculated from actual responses (top) and predicted responses
(bottom). Shading indicates bootstrap resampling; vertical lines indicate medians. (d) Histograms
of invariance indices of predicted responses across all tree shrew areas.
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Chapter Il

Probing feedforward and feedback pathways in the tree shrew visual cortex with
electrical microstimulation

Abstract:

Visual processing occurs along hierarchically organized areas that are reciprocally connected,
with both feedforward and feedback circuits. These interactions allow higher-order areas to
modulate and refine sensory input while enabling lower-order areas to influence complex visual
representations. To investigate the functional properties and connectivity of feedback and
feedforward neurons, we combined high-density electrophysiological recordings with electrical
microstimulation in the tree shrew visual cortex. By selectively stimulating primary visual cortex
(V1) and recording from secondary visual cortex (V2), we identified distinct classes of V2 neurons,
including feedforward and feedback neurons, based on the directionality of their projections and
studied their response properties. Our preliminary functional analyses did not reveal any clear
distinction between feedforward and feedback neurons. Contrary to the idea that feedback
neurons transmit specialized feature-specific signals—*, we found that V2 feedback neurons carry
diverse visual information on par with other V2 neurons. Furthermore, both feedforward and
feedback cells also carry information about perceptual conflict that arises when distinct images
are presented to each eye. However, feedback neurons did exhibit few distinct properties,
including smaller receptive fields and spatial offsets relative to their V1 inputs, potentially enabling
precise and localized modulation of V1 activity. Overall, these results establish electrical
stimulation combined with Neuropixels probe recordings as a useful method for distinguishing cell
classes.

INTRODUCTION

The unique neural computations performed by visual neurons are largely shaped by their inputs
that convey information about the outside world®. These inputs are received, processed, and
relayed through neural projections that influence their downstream targets. Much work has
focused on how information flows along the visual hierarchy in a feedforward direction to construct
representations of shapes, color, and formé. However, understanding the computations performed
along each node in the hierarchy must be considered in the context of its interactions with other
nodes, not just its individual processing.

Tree shrew area V2 is thought to play a major role in form vision as it sits at the gateway to the
ventral visual stream’. Previous studies have characterized some of the functional properties of
cells in this area, including sensitivity to orientation, binocularity, texture, and form&1°, However,
how the cells recorded in these studies fit into the broader hierarchical network remains unclear,
especially since the directionality of their projections, whether they provide feedback to earlier
areas (such as V1) or feedforward input to later areas, was not explicitly measured.

In tree shrew and other highly visual mammals, area V2 receives most of its cortical input from
V1, while also sending strong feedback projections back to V1. Investigating the visual processes
arising from the interactions between these two areas is challenging, as extracellular recordings
from a single area cannot determine the target of projection neurons. Feedback connections at
many stages of the visual hierarchy vastly outnumber their feedforward connections''-13, yet their
functions remain poorly understood, especially in relation to the feedforward projections. Several
theories have been proposed to explain the role of feedback in the visual system, including its
involvement in contextual modulation, error correction, and the integration of information across
spatial and temporal domains®4. Central to distinguishing between these theories is the question
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whether feedback projections convey functionally specific signals that refine particular aspects of
visual processing or whether they carry more generalized signals that mirror the diversity of
feedforward information.

Here, we address this question by systematically examining the response properties of V2 cells
based on the directionality of their connection with V1 in the tree shrew visual system. Using a
combination of electrical stimulation and functional characterization, we identified and recorded
from neurons in V2 that receive inputs from V1 (i.e. feedforward recipient) or project to V1 (i.e.
feedback). We then compared the responses across the different classes of V2 cells to visual
stimuli, including static gratings and naturalistic textures. We found that feedback neurons
exhibited response properties similar to that of other V2 neurons. This finding suggests that
feedback neurons appear to carry the same diverse visual information processed by other
neurons in V2. V2 feedback cells did differ with respect to their spatial properties, including smaller
receptive field sizes and their offset relative to V1. When presenting conflicting naturalistic
textures to each eye, most V2 cells including feedforward and feedback reduced their responses
relative to non-conflict conditions. This may suggest that through feedback connections V2 they
could adjust its V1 inputs in conditions relevant for binocular disparity or visual field mismatch,
potentially aiding in error correction.

RESULTS

Identification of feedforward and feedback neurons in the tree shrew visual cortex

To understand vision, it is not only critical to know what signals V1 sends to V2, but also how that
information is transformed and sent back to modify V1. To address this, we sought to functionally
classify neurons in V2 based on their connections with V1. Combining high—channel count
Neuropixels probes!® with bipolar electrical microstimulation in the tree shrew visual cortex
(Supplemental Figure 1) allowed for selective stimulation of individual neurons extracellularly to
identify and characterize the functional properties of V2 neurons and the directionality of their
axonal projections. We electrically stimulated the primary visual cortex (V1) while simultaneously
recording in the secondary visual area (V2) to disentangle neurons sending feedback signals (i.e.
antidromic) from those receiving feedforward signals (i.e. orthodromic; Figure 1A). Electrodes
were anatomically mapped at the end of each experiment to confirm the location of both the
stimulation site in V1 and the Neuropixels recording site in V2 (Figure 1B). Where electrical
microstimulation induced an electrical artifact that interfered with V2 recordings, this artifact was
removed ex post using the SALPA algorithm?'® (Supplemental Figure 2; Methods).

To characterize neurons as antidromic (i.e. providing feedback connections to V1), we relied on
several metrics to determine the direction of the axonal projection for recorded V2 cells'"*8. We
first performed a ramp test by delivering biphasic pulses of increasing current amplitude. Based
on the ramp test, the antidromic responses were identified using two defining features: (1) the
temporal jitter of the responses was below 150 ps (Figure 1C, top right inset), well below the
timing precision of synaptic transmission; and (2) responses to pulses near the activation
threshold were bimodal, i.e., in each individual trial, the response was either fully present and
equal to the response at higher currents, or entirely absent (Figure 1C, bottom right inset), in
opposition to electrical artifacts, which would be expected to scale with stimulus current and be
present equally in all trials in which the same current was applied.

The second test we performed to determine the directionality of V2 projection cells was a collision
test!®. With this test, the antidromic nature of a response could be confirmed by the occasional
occurrence of transmission failure due to action potential collision (Figure 1D, Methods). If cells
met all of our defined criteria in both the ramp and collision test, they were defined as “confirmed
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antidromic” for all further analyses. For cells not identified as antidromic, we classified cells as
orthodromic (i.e. receiving feedforward signals from V1) if the responses adhered to a timing
precision of better than 2.5 ms that occurred in at least 20% of trials, on par with the timing of one
synaptic transmission.

While this criterion was suitable for cells that had a sufficiently high spontaneous firing rate in
which the potential for a collision is highly likely, it could limit the classification of true antidromic
cells with low firing rates. To facilitate the classification of these cells, we applied a free split/merge
expectation maximization (FSMEM) algorithm that fits a mixture of gaussian onto the responses
of a neuron to electrical stimulation (Figure 1E). Based on latency and width of all peaks obtained
using the FSMEM algorithm classification, we found that antidromic and orthodromic neurons
distinctly clustered into two separate groups (Figure 1F). Orthodromic neurons exhibited spikes
with latencies and widths typical of feedforward processing, while antidromic neurons showed
distinct characteristics consistent with feedback signaling. Notably, the cells that qualified as
potential antidromic based on the above metrics except that they did not have a confirmed
collision test (i.e. “putative antidromic”) clustered together with the confirmed antidromic cells.
These putative antidromic cells are low firing and, therefore, may not have an observable collision
nor do they fail the collision test. The clustering of both confirmed and putative antidromic cells
further indicate that these are feedback cell projecting back from V2 to V1. In total, our sample
comprised of 397 orthodromic and 64 antidromic neurons across ten separate recordings (Figure
1G). Further, we characterized the spike waveforms to ensure that all classified cells were indeed
V2 cells and not recorded V1 axons located in the V2 (Supplemental Figure 2F).

Feedback cells have small receptive field sizes and fast response latencies

Having characterized the directionality of a subset of V2 cells as antidromic and orthodromic, we
asked about the characteristics of the unclassified remaining cells. Do these cells exhibit
differential responses to electrical microstimulation that may suggest they form functional classes
within the canonical V2 cortical circuity? We identified two additional classes, one that increased
(i.e. excited) and the other that decreased their firing rate following microstimulation at a latency
suggestive of multi-synaptic connections (i.e. inhibited). Altogether, we identified four classes of
V2 cells: antidromic, orthodromic, excited, and inhibited (Figure 2A-B). These classes were
located in two distinct spatial location along the depth of the probe; the antidromic and inhibited
were shallower while the excited and orthodromic were located deeper in the cortex (Figure 2C).

We next asked how these identified classes of cells responded to visually stimuli in the absence
of microstimulation. All classes, except for the inhibited cells, were visually driven as they
displayed a significant increase in their firing rate to visual stimuli as compared to darkness (i.e.
spontaneous; Figure 2D). To be able to compare V2 responses to that of their V1 inputs, we
recorded multiunit activity from the V1 electrode when it was not used for microstimulation. This
allowed us to characterize population-level responses of V1 neurons at the site of stimulation by
calculating the instantaneous energy (Methods) in V1 to visual stimuli (for e.g. static gratings;
Figure 2E). This confirmed significant visually driven responses.

We next asked whether the V2 feedback neurons represent a functionally distinct population that
differs in their visual response properties from the rest of the V2 population. Do they have
distinctive receptive field properties, and how do they map spatially to their V1 inputs? In the
absence of electrical stimulation, we mapped the receptive fields of the V1 multiunit activity and
V2 neurons in by presenting a locally sparse noise stimulus (Methods; Figure 2F). We measured
receptive fields of single neurons by fitting a gaussian distribution to the two-dimensional matrix
of spike counts at each location of the visual field; ON and OFF receptive fields were computed
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separately using responses to white and black squares, respectively. We mapped the V2 neurons
receptive field locations relative to the location of the receptive field of V1 multiunit activity (shown
in Figure 2E). The V2 receptive fields for all classes, including the antidromic, were not completely
overlapping with the V1 receptive field. Rather, they were offset relative to the V1 receptive field
(examples in Figure 2G) as would be expected from previous work?%:21,

A modest majority of visually responsive cells had clear receptive fields. Orthodromic and excited
cells were more likely to have RFs than did inhibited cells. Of the antidromic cells, fewer than half
had measurable receptive fields (Figure 2H). Surprisingly, for antidromic cells that did have
receptive fields, those receptive fields were smaller than those of any other class of V2 cells
(Figure 2I). This result may suggest that feedback cells are likely more similar to that of V1 which
may be important for modulating their activity in a highly spatially restricted manner.

Cell class defined by responses to electrical stimulation is predictive of responses to
binocular conflict stimuli

Binocularity is an important feature of V2 cells across species??-?5, This information is thought to
arise both from feedforward V1 binocular neurons and other cortical inputs. We therefore asked
whether our four classes of cells differ in their binocularity. The tree shrew visual cortex is
topographically organized with the binocular zone corresponding to the central visual field?>.
Therefore, we targeted our recording sites to this region as determined by the location of receptive
fields in the center of the screen (c.f. Figures 2F-G). We then presented images including static
grating and textures through custom-made anaglyph goggles that allowed for the independent
control of visual input to each eye (Figure 3A).

In response to gratings or textures presented to both eyes, we did not observe strong difference
in the variance explained across the different classes of V2 cells, with the exception of the
inhibited group which was consistently lower (Figure 3B-C). This suggests that overall, there was
no observable difference in their feature-selectivity. When gratings were presented to only one
eye at a time, the vast majority of cells of all cell types responded nearly equally whether those
stimuli were presented to the ipsilateral (ipsi) or the contralateral (contra) eye (Figure 3D, left
“G”). In contrast, when texture stimuli were presented in the same way, the preference for
ipsilateral or contralateral presentation was more varied, and was biased toward ipsilateral in all
types except the “inhibited” cells (Figure 3D, right “T”). Given that V1 is generally biased toward
contralateral inputs, this may be interpreted that the more complex texture stimuli require more
V2 processing.

We calculated a binocular preference index by comparing binocular responses to the sum of the
ipsi and contra monocular responses. Overall, a large majority of cells in all classes, except
inhibited, predominately had binocular responses, that is their responses was greater than the
preferred eye (Figure 3E, F; more than 50%, congruent binocular preference). However, only the
orthodromic cell class contained a subpopulation of cells the exhibited “strongly binocular’
responses, that is, their binocular response was great than the sum of the monocular responses
(Figure 3F; more than 100%). This is consistent with previous findings in macaque suggesting
that V1->V2 projecting cells are more strongly binocular than those that receive feedback from
V226,

Of note, the V2 location we recorded from had a disproportionately high number of ipsilateral
preferring cells while the V1 area we stimulated predominately consisted of contralateral cells.
The tree shrew visual cortex includes a representation of ipsilateral visual field that is highly
compressed relative to that of the contralateral?’28. Our data using microstimulation to map V1-
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V2 connections therefore suggests that the contralateral V1 sends and receives connections with
the ipsilateral V2. Since we observed in V2 a strong ipsilateral bias, this suggests that in addition
to our observed V1 contralateral inputs these cells must converge additional sources of inputs
about the ipsilateral eye.

A potential hypothesis for the function of feedback projections is that they may provide information
to upstream regions under conditions of conflicting signals?°. Thus, binocular responsive neurons
in V2 that converges information from both eyes may function in resolving conflict when different
types of stimuli are presented to each eye. Using the anaglyph googles, we next presented
conflicting stimuli with different visual stimuli to each eye: either static gratings or textures. We
compared the responses under conditions with conflict binocular presentations to that of coherent
binocular presentations. No strong difference was observed for gratings under conflict (Figure
3E, F offset from the diagonal). Surprisingly, many cells across all classes, except inhibited, were
suppressed by conflict for texture (Figure 3G).

DISCUSSION

Our data demonstrate that V2 neurons in the tree shrew visual cortex can be classified into distinct
anatomical and functional subtypes based on their responses to V1 stimulation. These findings
highlight the complexity of visual information processing across feedforward and feedback
pathways, shedding light on the interplay between local computations in V2 and their influence
on V128, The structure and organization of the cortical hierarchy must be understood within the
framework of feedforward and feedback circuitry in the visual system?!3. At each stage, visual
processing involves increasing abstraction and integration of information. Theories about
feedback connections propose that feedback neurons might carry unique, feature-specific
information computed in downstream areas to refine feedforward processing'!4. Adding to this
body of work, our results show that V2 feedback neurons exhibit functional properties that align
closely with other V2 neurons across a battery of visual stimuli. This suggests that the information
conveyed back to V1 represents the diversity of visual information processed in V2 rather than a
subset of specific features. In this sense, V2 feedback neurons may contribute to maintaining a
holistic representation of V2 activity within V1 rather than transmitting specialized signals.

Despite their functional similarities, V2 feedback neurons exhibited distinct spatial properties
compared to feedforward neurons. The receptive field properties of a neuron arise from the type,
number and location of its inputs®. This is apparent along the visual hierarchy as small receptive
fields tuned to simpler stimuli are combined along successive stages to form larger receptive
fields tuned to more complex stimuli3t. However, our findings indicate that V2 feedback neurons
have smaller receptive fields than their V2 counterparts and rather more closely match their V1
inputs. This suggests that they contain higher-resolution information and can exert a spatially
restricted influence on V1. Our data agree with the numerosity of these feedback projections as
they densely tile visual space and visual features. We also found that the location of this feedback
receptive field is offset relative to its V1 feedforward input, likely corresponding to the surround
as has been shown in previous studies?’. Through this organization, V2 excitatory neurons can
suppress or potentially facilitate the responses of V1 neurons®?,

The visual cortex contains binocular fields that function to construct three-dimensional
representations by aligning the features from the two eyes and computing visual depth through
stereopsis®3. The matching process first emerges in V1 and is further elaborated in V226:34:35,
However, presenting different stimuli to each eye prevents this matching and results in an
alternating visual perception between the two competing stimuli known as binocular rivalry®6.
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When presented with conflicting texture stimuli across the two eyes, tree shrew V2 neurons,
including feedback cells, were suppressed. The suppressive effect may be computed at the level
of V2 or could arise in V2 from top-down processing. This V2 conflict-induced suppression can
directly influence V1 processing via V2 feedback neurons, possibly contributing to error correction
or top-down resolution of visual conflict.

Notably, V2 cells were predominately ipsilaterally dominant (i.e. higher responses to ipsilateral
visual stimuli than contralateral). In contrast, the connected V1 stimulation site was contralaterally
dominant. This suggests that visual information in these V2 neurons is not solely inherited from
these V1 inputs but is likely also derived from other cortical or subcortical sources. Our findings
suggest a unique role for V2 neurons to modulate the opposite eye representation in cases with
contradictory visual inputs. Whether this feedback contributes to the suppression of conflicting
binocular representations as has been observed in cases of strabismus3®’38 requires further
investigation. While our findings reveal new insights into the functional diversity of V2 neurons
and their interactions with V1, they also raise questions about the specific mechanisms by which
feedback influences are integrated into the broader visual processing hierarchy. Future studies
should investigate the role of V2 feedback in the resolution of perceptual conflict, exploring how
these neurons contribute to the coherence and stability of visual experience.
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METHODS

EXPERIMENTAL MODEL AND SUBJECT DETAILS

All experimental procedures were approved by the Caltech Institutional Animal Care and Use
Committee and conformed to local and US National Institutes of Health guidelines, including the
US National Institutes of Health Guide for Care and Use of Laboratory Animals. Tree shrews
(Tupaia Belangeri) used in this study (n=3), both male and female, were 6 months to 2.5 years
old and weighted between 150 to 300 g. Animals were singly housed in a 12-hour light/dark cycle
in the animal room. Their food and water aliquots were given ad libitum.

No statistical methods were used to predetermine sample size. The experiments were not
randomized, and investigators were not blinded to allocation during experiments and outcome
assessment.

EXPERIMENT

Surgeries

Tree shrews were injected with a preoperative dose of dexamethasone (5 mg/kg, subcutaneously
(s.c.)) and mannitol (1 mg/kg, s.c.) to reduce swelling. Animals were anesthetized with a cocktail
of fentanyl, midazolam, and dexdomitor (FMD, fentanyl 0.05 mg/kg, midazolam 5.0 mg/kg,
dexdomitor 0.25 mg/kg, s.c.), shaved, and positioned into a stereotaxic frame. Topical lidocaine
gel (2%) was applied on the head and ears to prevent discomfort from ear-bars and eye lubricant
was used to maintain hydration and clarity of eyes during surgical procedures. Levels of
anesthesia, breathing, SpO2, and heart rate were monitored throughout the entire procedure and
body temperature was maintained with a heating pad at 37.5° C. An incision on the scalp was
performed and both skin and muscles were retracted. The exposed skull was levelled using the
stereotaxic device with respect to bregma and lambda (pitch, roll, and yaw). After alignment,
locations of the craniotomies for electrophysiological recordings were marked on the skull and a
custom stainless steel headplate was secured to the skull using clear C&B Metabond (Parkell). A
layer of Kwik-Cast (World Precision Instruments) was added on top the skull and a 3D printed
custom cap was secured to the headplate to protect the brain and keep debris out. The anesthesia
was reversed with an injection of atipamezole-flumazenil (atipamezole 1.25 mg/kg, flumazenil
0.25 mg/kg, s.c.) and the animal was recovered for at least 3 days before following procedures
and recordings. One day before electrophysiological recordings in a new brain location, tree
shrews were once again anesthetized and monitored as described above. Using the marked
locations on the skull, small (up to 1.5mm of diameter) craniotomies were drilled and durotomy
was performed. Through a small hole situated anterior of bregma, a 32 AWG chlorinated silver
wire (A-M system) with a pre-soldered gold pin was implanted just above the brain surface and
cemented to the skull to provide chronic grounding. A drop of silicone oil (30,000 cSt, Aldrich) was
added over the holes to prevent the brain from drying, a new layer of Kwik-Cast was applied on
top of it, and the 3D printed custom cap secured to the headplate. Anesthesia was reversed and
the animal was recovered as previously described.

Electrophysiological recordings

All electrophysiological recordings were made using high channel-count, silicon, “Neuropixels 1.0”
probes configured to always acquire from the first 384 electrodes closest to the tip, providing a
3.84 mm of tissue coverage. The reference and the ground contacts on the Neuropixels probes
were permanently soldered together. Recordings were made using an external reference
configuration achieved by connecting the probe reference to the chronically implanted silver wire
on the skull which conductivity was routinely checked before recording with a multimeter. Each
Neuropixels was mounted on a 3-axis micromanipulator (New Scale Technologies) that was in
turn mounted on the underside of a semicircular platform, allowing simultaneous insertion of up
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to four probes at different angles. Before the first insertion of a probe in a new location, Dil (1 mM
in ethanol) was used to coat the shank, allowing subsequent probe track localization during ex
vivo imaging. Neural signals were acquired at 30 kHz using Open Ephys software 3. After the tip
of each probe touched the surface of the brain, they were lowered to target at an average speed
of 100 um/min to avoid damage and let them settle for 15 minutes after reaching the target depth.
Cameras were used to monitor animals during experiments and to ensure a continuative viewing
of the visual stimuli presented during neural signals acquisition. After each recording experiment,
probes were slowly retracted and immersed in 1% Tergazyme solution to remove tissue and
silicone oil residues.

Histology
After electrophysiological recordings or tracer expression, histological verification was performed

for all tree shrews. Tree shrews were given Ketamine + Xylazine and perfused transcardially with
0.9% saline, followed by 4% paraformaldehyde (PFA) in 1X PBS. Brains were extracted and post-
fixed overnight in 4% PFA at 4°C. The brains were then transferred to 30% sucrose for
cryoprotection and sectioned coronally at 100 um on a cryostat (Leica Biosystems). Sections were
washed with 1xPBS and then incubated for 30 minutes at room temperature in in DAPI/PBS (0.5
pgg/ml) for counterstaining. Sections were then mounted on slides and imaged with an
epifluorescence microscope (Olympus VS120).

VISUAL STIMULATION

Visual stimuli presentation

Visual stimuli were generated and presented using custom Python scripts. Head-fixed tree shrews
passively viewed a battery of visual stimuli displayed using a ViewSonic monitor (70x39 cm, 60
Hz refresh rate, 1,920 x 1,080 pixels). The monitor was centered in front of the animals at 25 cm
distance. Stimuli were presented at 3 Hz, 167 ms of image presentation interleaved with 167 ms
of a grey screen. Three classes of visual stimuli were used in each experiment: static gratings,
naturalistic textures and noise, and 1593 objects. In addition, “local sparse noise” stimuli were
used to map neurons’ receptive fields.

Local Sparse Noise

The screen was divided into a grid of 4x3 squares. In consecutive frames (100 ms), sparse white
or black dots (5 degrees square) were presented, one dot in each grid square. The locations of
the dots within each rectangle were pseudo-randomly distributed to avoid spurious correlation
between distant parts of the visual field*°. To avoid interference between reconstruction of “On”
and “Off” RFs, each presented stimulus frame comprised either all black or all white dots on a
grey field. A reduced version of this stimulus (with fewer frames) was used at the beginning of
each experiment and analyzed immediately to allow placement of “faces and objects” stimuli in
the centroid of the receptive fields for that recording session.

Static Gratings
We presented full field sinusoidal gratings, varying in orientation (6 evenly spread angles), spatial

frequency (5 values between 0.1 and 1.6 cycles/degree), and phase (4 positions), for a total of
120 different stimulus conditions. Each image was presented 5 times.

Naturalistic textures

We presented images from two subclasses: naturalistic textures and a control set comprising
spectrally matched noise. The naturalistic textures images were organized as 15 families of 5
similar images. Texture images reproduced the statistical dependencies found in natural texture
scenes!. Each of the 150 images in the stimulus set was presented 5 times. We used two types
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of visual stimuli similar to ones previously used in primate studies: one set consisted of 15 families
of texture images each comprising 5 closely related image samples of the same texture. These
images reproduced statistical dependencies found in natural texture scenes*42. A control set
consisted of noise images spectrally matched to each of the texture families.

ELECTRICAL STIMULATION

Electrical stimulation experiment

A bipolar platinum/iridium electrode (100 kQ, blunted tip, Microprobes for Life Science,
Gaithersburg, MD) was inserted into V1 to electrically stimulate both V1 neurons orthodromically
and V2 neurons antidromically. Neural activity was simultaneously recorded in V2 with a
Neuropixels probe. To electrically excite regions around the electrode, biphasic pulses (200 us
duration per phase, 50 to 450 yA) were delivered using a custom-built isolated pulse stimulator
(manuscript in preparation).

Artifact removal

The electrical artifact arising during electrical stimulation and simultaneous recording of signals
from a silicon probe was removed offline using the SALPA algorithm?®. Together with a careful
choice of stimulation waveforms, this nonlinear digital filter enabled the detection of spikes as
early as 1 ms after stimulation.

DATA ANALYSIS

Preprocessing and Spike sorting

Neural signals from electrophysiological recordings were preprocessed by subtracting the median
calculated within each group of 24 channels from the data to eliminate common-mode noise. The
median subtracted data was sent to Kilosort2 which in addition to the group median subtraction
applied a high-pass filter (150-Hz), followed by whitening in blocks of 32 channels. All spike data
were sorted using the off-line spike sorting algorithm Kilosort243. The cluster automatically labelled
by Kilosort algorithm as “good” were in turn manually curated by hand and further analyzed with
Phy2.

Visually responsive cells

A cell was deemed responsive to a particular class of stimuli (either gratings, textures, and noise,
or faces and objects) if its average firing rate in the 100 ms following stimuli of that class exceeded
the expectation value based on a Poisson model trained on the firing rate in the 50 ms before all
the stimuli of that class. To be included in the “responsive fraction” in figures 3b, 4b, and 5b, a
cell’'s average response had to exceed the baseline by at least 5 standard deviations. For the
“faces and objects,” the total time elapsed between the first and the last of the 10 blocks of visual
presentations was so long that stability of responses was a concern. Accordingly, we additionally
preprocessed these data to analyze only those blocks in which the responses were stable for a
given cell. For each block, we extracted the average waveform of all the spikes from the given
cell and calculated its peak-to-peak amplitude. We then picked the third largest amplitude among
the blocks and set an amplitude threshold at 0.6x this value. We counted for each block the
number of individual spikes with amplitudes exceeding this threshold. We calculated the mean
and standard deviation of these counts among blocks, and excluded from analysis any block in
which the count was over two standard deviations below the mean. In all cases except Figure 1le,
results are expressed as a percentage of visually responsive cells, i.e., of cells that respond to
any of the stimulus classes.

Receptive field analysis
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The receptive field size, amplitude, and quality was obtained by first calculating a 2D histogram
of spike counts at each of 576 locations on the monitor (32 x 18 matrix). We modeled these
histograms as a 2D Gaussian peak on top of a constant baseline. To prevent overfitting, the shape
of the Gaussian was forced to be circular rather than elliptic. A cell was considered to possess an
(“ON” or “OFF”) receptive field if the number of spikes within the Gaussian peak exceeded
expectation from a null model. Specifically, we calculated the expected number of spikes that
would be elicited by (“ON” or “OFF”) stimuli within a 10-degree radius from the center of the
Gaussian under the null model of the baseline as well as the actual number of spikes elicited by
stimuli within that same area. The number of standard deviations by which the actual number of
spikes exceeded the null expectation was considered the “quality” of the RF. Only cells with RF
quality greater than 5 were considered to possess an RF.
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Figure 1: Combining Neuropixels recording with bipolar electrode stimulation enables
identifying feedforward and feedback neurons.

(A) Schematic of circuit under study in the tree shrew visual cortex. Electrical stimulation with Pl/Ir
bipolar electrodes in primary visual cortex V1. Recording with Neuropixels probe in secondary
visual area V2. The blue V2 cell receives feedforward signals from V1; the pink V2 cell sends
feedback signals to V1.

(B) Coronal section illustrating placement of stimulating and recording electrodes in V1 and V2
respectively, marked with Dil (red). Scale bar: 1 mm.

(C) Ramp test for an example V2 neuron. Raster plot of responses of a representative cell to
biphasic pulses of increasing current amplitude. High-current pulses (above the threshold
necessary to evoke an action potential) activate the cell 100% of the time (top right inset). Near-
threshold pulses activate the cell unreliably (i.e., only in a fraction of trials; bottom right inset).
Scale bars: 2 ms.

(D) Collision test for an example V2 neuron. Electrically evoked spikes occurred, on average, at
+At (blue bar) relative to the electrical pulse (yellow bar). A subset of trials is plotted in which the
cell fired spontaneously around the time of the pulse. (Trials are sorted in order of time of
occurrence of spontaneous spikes.) When a spontaneous action potential occurs in the interval
[-At, +At] (shaded region) it collides with the electrically evoked action potential in the axon, which
then does not reach the soma, resulting in the absence of a recorded spike at +At.

(E) Example of a V2 orthodromic cell (top) and a V2 antidromic cell (bottom), classified using
FSMEM [an algorithm that fits a mixture of gaussian onto the responses of a neuron to electrical
stimulation] (see STAR Methods). Dots: recorded spikes; shading: fitted mixture of gaussians.
(F) Scatter plot of the latency and width of all peaks obtained using FSMEM. Blue: putative
orthodromic neurons. Red: antidromic cells with confirmed collision test. Pink: putative antidromic
cells with spontaneous firing rate too low for applying the collision test.

(G) Number of orthodromic and antidromic cell identified across 10 recordings.
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Figure 2: Feedback cells have the smallest receptive fields of all classes of V2 cells.

(A) Recorded cells can be classified into several categories based on their responses to electrical
stimulation: Orthodromic (blue) and antidromic (red) as in Fig. 1; excited (green) are non-
orthodromic cells in which neuronal activity increased after electrical pulses; inhibited (yellow) are
cells in which neural activity decreased after electrical pulses.

(B) Experimental configuration: Presentation of a battery of visual stimuli to a head-fixed tree
shrew with a Neuropixels probe in V2 and a Pt/Ir stimulation electrode in V1.

(C) Range of spontaneous and visually evoked firing rates for each class of cells. Boxes
represents 25", 50, and 75™ percentiles; whiskers 5" and 95" (also in G and H).

(D) When not actively used for stimulation, the V1 electrode can be used to record multiunit activity
from V1. Schematic illustrating electrophysiological recording from the electrode in V1 and actual
instantaneous energy in V1 for gratings presentations. Scale bar: 10 ms.

(E) Example receptive field (RF) of V1 multiunit activity (grayscale map) with sizes and positions
of V2 RFs overlaid. Colors represent V2 cell classes as in A and C. Scale bar: 20 degrees.

(F) Percentage of cells within each class that had a defined RF.

(G) RF size distribution within each class.

(H) Distance of the RF center for each cell from the V1 center of mass in the same experiment.
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Figure 3: Cell class defined by responses to electrical stimulation is predictive of
responses to binocular conflict stimuli.

(A) Experimental configuration: Presentation of static grating or naturalistic texture stimuli to a
head-fixed tree shrew with anaglyph googles while recording in V2 and stimulating in V1.

(B) Percentage of variance of individual cells’ responses explained by orientation of gratings.

(C) Same, but for naturalistic texture stimuli.

(D) Laterality of individual cell’s responses for stimuli presented to the contralateral versus
ipsilateral eye.

(E) Responses to static gratings presented to both eye that were either matching (congruent
binocular preferring) or not (conflict binocular preferring).

(F) Same, but for naturalistic texture stimuli.

(G) Relative response to conflict compared to that in congruent conditions.

(H) Summary schematic of findings.
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Figure S1: High current electrical microstimulator.

(A) Schematic illustrating the simultaneous electrical stimulation and Neuropixels recording setup.
(B) Simplified schematic of our stimulator: A Teensy microcontroller is used to independently set
the current through a bipolar pair of Pt/Ir microelectrodes.

(C) Detail of transimpedance amplification. The voltage from the DAC is mirrored across R1,
setting the current through the electrode. The instantaneous electrode voltage and current is
monitored at VELC and IELC respectively. A digital switch (S1) reduces noise coupling when the
stimulator is not delivering current pulses.
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Figure S2: Oscilloscope traces.

(A) Oscilloscope traces of electrode voltages and currents in each of the paired electrodes during
a bipolar monophasic current pulse in saline.

(B) Same for a biphasic stimulus.

(C) Results of a current pulse delivered to a pair of 100-kOhm resistors rather than Pt/Ir
electrodes.

(D) Same, but using 1-nF capacitors. (The triangular current pulse on the right is not delivered to
the electrode, but results in the monitor circuit from opening switch S1.)

(E) Examples of electrode traces before (top) and after (bottom) electrical artifact suppression
with SALPA.

(F) Traces for somatic (left) and axonal (right) action potentials recorded with Neuropixels probe.
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Chapter IV
FUTURE DIRECTIONS

We have shown that the tree shrew carries a compressed hierarchy for form processing compared
to primates, in which key functions of primate posterior IT cortex are already carried out by area
V2. Future studies are needed to understand the processing of these object responsive cells in
tree shrew V2 with regards to its connections with lower and higher areas in the hierarchy!-3.
What areas does V2 send outputs to? Is V2 able to directly control downstream motor areas in
the tree shrew? Furthermore, while we did not find prominent object selectivity in areas anterior
to V2 in the tree shrew, this begs the question, what is the function of these areas? Are they
involved in multi-modal processing?? Future studies exploring tuning in these areas in naturalistic,
multi-modal environments may shed new light on these areas.

We found that combining electrical microstimulation and high-density Neuropixels probes is an
effective method for identifying the directionality of projections within a surveyed area. Given the
broad applicability of these tools#, it can be applied across species in tree shrews and primates.
This opens the way to directly test the role of feedforward and feedback in both species for the
for construction of visual percepts. For example, theories of conscious perception posit that
feedback is necessary to resolve ambiguity®>8. The method we have developed now allows us to
address the specific representation carried by feedback neurons, to directly test this hypothesis.

Zooming out, we have identified one interesting new point in the evolution of the primate visual
system. It would be very useful to have additional points. For example, what is the functional
organization of the ventral stream in mouse lemurs”:2, a prosimian species more closely related
to macaques evolutionarily? Furthermore, how do the visual processing capabilities of each
species support the behaviors necessary for each species’ ecological niche? In this thesis,
experiments were all done under passive fixation, but relating neural circuits to behavior would
be a major next step. Through such a program, we can gain a much deeper understanding of the
evolution of form vision.
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