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ABSTRACT 
 
In the mammalian visual system, photons captured by the retina are transformed into meaningful 
internal percepts of surroundings through a hierarchy of interconnected visual areas. 
Understanding the representation of visual information at each node of the hierarchy has been a 
central quest of visual systems neuroscience over the past 50 years. The primate visual system, 
with its over two dozen distinct areas broadly organized into a dorsal stream for visuo-motor 
transformations and a ventral stream for object recognition, has served as the gold standard for 
studying the organization of the visual system. Recent advances in artificial neural networks 
modeled on the primate visual system for object recognition have prompted the question, is 
hierarchical representation necessary, and if so, can we observe it across all highly visual 
mammalian species? Hierarchical organization appears to be a key architectural principle of both 
artificial and biological networks, enabling stepwise construction of a structured and compact 
representation from raw sensory input. Here we present a series of efforts to determine the cortical 
organization and connectivity of the tree shrew visual system and directly compare to that of the 
primate. This cross-species study sheds light on the evolution and mechanisms of vision in a 
close relative of primates. Using high-density Neuropixels recordings, we demonstrate that the 
tree shrew ventral visual pathway exhibits primate-like hierarchical processing, with progressively 
larger receptive fields, increasing response latencies, and enhanced selectivity for complex stimuli 
along the visual pathway. Area V2 in the tree shrew performs key functions similar to those of the 
primate inferotemporal (IT) cortex. Specifically, V2 contains strongly face-selective cells, supports 
a complete representation of high-level object space, and achieves the most accurate object 
identity decoding and reconstruction among all tree shrew visual areas. Yet we also found 
significant differences from the canonical template for hierarchical organization observed in the 
primate, including maintenance of relatively small, focal receptive fields throughout the hierarchy, 
and better decoding of latent variables in late deep neural network (DNN) layers by area V2 
compared to other areas.  
 
The hierarchical organization of the visual system describes the arrangement of areas but does 
not reveal how information flows between them. Understanding the type of processing carried out 
at each node raised the next question of whether information that is transmitted across nodes is 
differentiated between feedforward and feedback connections. To explore this, we combined 
electrical microstimulation and extracellular recordings to identify the directionality of projections 
which is applicable in various species. We used this technique to first study the connections 
between the first two nodes of the tree shrew cortical hierarchy, V1 and V2. We found that V2 
feedback neurons carry a full visual representation on par to other V2 cells. These feedback 
neurons were distinct with regards to their spatial features, including distinct locations and sizes 
of their receptive fields. We also found that both feedforward and feedback V2 neurons were 
modulated by perceptual conflict arising when distinct textures were presented to each eye, 
suggesting they could refine V1 processing to perceptual inconsistencies. 
 
These studies provide insights into how the tree shrew visual system generates object 
representations through a hierarchy of interconnected nodes, employing strategies adapted to its 
cortical constraints. In addition, by combining electrical microstimulation with electrophysiology 
we set the foundation for cross-species studies to determine the role of feedforward and feedback 
processing along the visual hierarchy. Together, this work reveals conserved principles of visual 
processing across species while showcasing unique adaptations in the tree shrew, offering 
insights into the evolutionary origins and functional organization of the primate visual system. 
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Chapter I 
 

INTRODUCTION 
 

Motivation 
Long before written language, humans sought to make sense of their surroundings by transferring 
what they saw into lines etched on cave walls. Drawing is one of humanity’s most primal acts as 
a way to engage with and understand the world through vision, a means of distilling the 
complexities of the visual world into its simplest, most meaningful forms. This act of simplification 
resonates with a fundamental aspect of how the brain processes visual information. Just as an 
artist reduces the infinite variations of light and shadow into a few strokes of charcoal, the brain 
abstracts and interprets sensory input into something comprehensible. Vision, however, is not 
passive reception but an active process, a continuous negotiation between what the eye 
perceives and what the mind internally constructs. 
 
How does the visual system construct an object percept? This ability underpins how we interact 
with the world, guiding essential functions like navigation and social behaviors. Both biological 
and artificial neural networks demonstrate the capacity for object recognition1,2, potentially 
achieving it through diverse mechanisms or converging on similar, efficient solutions. Studying 
how evolution has shaped the visual abilities of different organisms, and comparing them with 
manmade artificial architectures, can offer a unique perspective to uncover common core 
principles for object vision. 
 
 
Principles of hierarchical organization for form vision 
In mammals, the cortical visual system is hierarchically organized, composed of a series of 
interconnected areas that transforms simple pixels into detectable objects3,4. This cortical 
functional architecture has been most extensively studied in the primate visual system. Beginning 
with the retina, visual information passes through successive stages of processing in the brain, 
where increasingly abstract features are extracted. The primate visual system exemplifies this 
hierarchy, with distinct areas such as V1, V2, and the inferotemporal (IT) cortex specializing in 
different aspects of perception, from the detection of simple edges to the recognition of complex 
objects and faces5–8. This deeply layered structure has long been regarded as a pinnacle of 
evolutionary adaptation, enabling the high visual acuity and object recognition that primates rely 
on for survival.  
 
Understanding what gives rise to visual perception requires uncovering the progressive visual 
transformation at each stage in the hierarchy. The receptive field is a key concept central to visual 
processing, defined as the spatial region where a stimulus triggers a neuron's response9. An 
individual neuron’s receptive field properties are shaped by the type, number, and arrangement 
of its inputs. The receptive field conveys information about visual space (i.e. the location within 
the visual field) as well as a particular feature within that space (e.g. motion, color, shape), with 
increasing complexity at each stage of the hierarchy. Early in the primate visual pathway, such 
as in primary visual cortex (V1), neurons have small, precise receptive fields, enabling them to 
detect localized, fine details like edges and orientations. As information flows through the visual 
hierarchy, neurons with small receptive fields tuned to simple features are combined to form 
neurons with larger receptive fields that encode more complex and abstract features10,11. At later 
stages of the primate visual hierarchy, receptive fields become very large and spatially-invariant 
to support critical visual functions, such as the ability to recognize objects regardless of variations 
in size, position, or orientation12. This hierarchical building of representations is the cornerstone 
for the primate visual system which is highly adapted for sophisticated object recognition.  
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At the pinnacle of the primate ventral visual stream lies an area, the inferotemporal cortex (IT), 
that constitutes the apex of specialized object processing13. Within IT, topographically organized 
regions contain cells specialized in identifying specific object categories. The most well-known 
example is the face patch system, a series of interconnected regions that contains almost entirely 
face-selective cells14. Collectively, the activity of these neurons forms a generative model of faces, 
enabling reconstruction of an individual face with remarkable precision using signals from just a 
small number of neurons15. Importantly, this encoding strategy extends beyond face recognition 
and generalizes to the broader IT cortex, where similar computational principles apply to other 
object categories. As information progresses beyond IT, the level of abstraction increases, 
enabling representations that encode object familiarity and begin to blur the line between object 
perception and object memory. 
 
The concept of hierarchy has profoundly shaped our understanding of the architecture of the 
mammalian visual system for over 50 years, serving as a foundational principle for the 
development of advanced multi-layered computational networks3,4. Artificial neural networks 
(ANNs), particularly deep learning (DL) models, draw inspiration from this biological architecture, 
mimicking the hierarchical and modular organization of the brain2,16. These artificial systems are 
designed to emulate the stepwise abstraction observed in the brain, with early layers detecting 
basic features such as edges or textures and deeper layers capturing complex patterns and 
relationships. This principle, rooted in biological vision, has driven remarkable advancements in 
machine vision and pattern recognition, enabling tasks such as object detection, face recognition, 
and even artistic image synthesis. While DL models serve as powerful tools for understanding 
perception and cognition, they also act as computational frameworks for modeling brain activity. 
However, the relationship between artificial systems and biological brains raises important 
questions. Do these models accurately reflect the underlying neural mechanisms, or are their 
representations simply convergent solutions to shared computational problems? That is, do 
similarities between artificial and biological representations reveal insights about the brain itself, 
or do they primarily teach us about the multidimensional space that both systems are designed 
to navigate? 
 
 
Probing the flow of visual information along the hierarchy 
The unique neural computations performed by neurons are largely shaped by their inputs that 
convey information about the outside world. Previous advances in neuroscience techniques have 
established a foundation for recording neural activity from large population of neurons in the visual 
system17–19. However, they lack the important ability of establishing directionality of neural signals. 
This is important since the physiological response properties of visual neurons are not only 
inherited from feedforward inputs but are also shaped by their feedback connections. Numerically, 
there are as many feedback connections as feedforward along the many stages of the hierarchy20–

22. The function of these neurons based on their projection targets has predominately eluded most 
studies as it is difficult to identity the directionality of surveyed neurons using electrophysiological 
recordings. 
 
Traditionally, experimentally challenging methods were employed to identify projection neurons, 
including leveraging the use of electrical microstimulation to unambiguously determine the 
directionality of the axons23. However, these techniques were limited by the fact that antidromic 
identification of neurons that satisfies the standard criterion of passing a collision test (i.e. 
transmission failure due to action potential collision19) produces very low yields24,25. Thus, these 
techniques were not often used, leaving a potential gap in knowledge about the function of 
neurons in the visual cortex based on their reciprocal connectivity. However, with the recent 
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advent of high-density silicon probes, such as Neuropixels, this now offers a significant advantage 
by allowing for simultaneous recordings of many hundreds of neurons which can be combined 
with electrical microstimulation to identify large numbers of projection cells. 
 
Electrical microstimulation is a well-established technique that is useful for probing the functional 
circuitry that offers to advantage of broad applicability across species. This combined technique 
has been able to measure neuronal interactions in real time among rodents, birds and non-human 
primates. By affecting neural activity via the voltage gradient that neurons maintain across their 
membranes; a current passed outside of cells can change this voltage and trigger neuronal 
responses26,27. Electrical microstimulation offers improved biological compatibility as opposed to 
photostimulation, because it does not require artificially expressing proteins on the neural 
membrane (i.e., channelrhodopsin28) to excite the cell. Rather, electrical stimulation exploits the 
existing electrical properties of neurons and does not require the introduction of foreign proteins, 
a process that greatly increases the experimental time and may produce unintended biological 
effects. In addition to speeding up the experimental set-up, electrical microstimulation is not 
constrained by areas of viral expression, so the site of electrical microstimulation can be moved 
easily between brain areas during the same experiment. Finally, recent advances in genetic and 
viral tools allow for mapping and monitoring neurons based on their projection targets, such as 
phototagging and calcium imaging29. While this has been widely available in rodent models, it is 
much less feasible in other species such as tree shrews and primates in which the tools are still 
in the early phases of implementation30. 
 
Advantages of electrical microstimulation notwithstanding, some challenges that need to be 
overcome include electrical artifacts that often overwhelm the recording setup during electrical 
microstimulation, causing a spatiotemporal “blur” of the neural activity31,32. Microstimulation 
artifacts can occur because of capacitive crosstalk between electrodes or because of large 
electric fields from the stimulation site reaching the recording site. Because the extracellular 
voltage signals associated with action potentials are several orders of magnitude weaker than the 
pulses required for successful stimulation, these fields can easily overwhelm the recording 
amplifiers and result in long-lasting oscillations in the recording circuitry, which make it impossible 
to record neuronal activity for tens of milliseconds after the stimulus. To overcome this, some 
recording designs have implemented analog switches that are disabled during stimulation to 
prevent these large voltages from reaching the amplifier. However, the current generation of 
silicon probes does not allow for this method, thus promoting the need to design optimal solutions. 
 
Overcoming these technical challenges and employing these techniques in species such as tree 
shrews and primates will open possibilities to understand and dissect at a circuit level the 
contributions of different projection neurons to signal processing along the visual hierarchy. 
Notably, applications include elucidating the functional role of feedback connections in visual 
processing, which has continued to remain a fundamental mystery in vision science. In the visual 
cortex, there have been many suggested roles for top-down feedback connections, including 
regulating spatial properties (i.e. receptive fields) or providing specialized feature-specific signals. 
Prior work has suggested that these connections could either be suppressing or facilitating 
depending on the location of inputs and the cell types that they synapse onto. Anatomical tracing 
experiments have shown excitatory feedback connections can project to either excitatory or 
inhibitory neurons33. Also, recent findings in the mouse visual cortex has shown that based on 
whether the source of the feedback is aligned or offset from the target in visual space, it will result 
in excitation or suppression in V1 respectively34,35. This raises additional questions such as ‘what 
types of visual information is sent back to earlier areas and how do they contribute to visual 
perception?’. One hypothesis is that they function to conflict or ambiguity in visual stimuli36–38. 
Feedback connections from higher areas are also thought to enhance visual processing by 
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modulating and contextualizing responses at earlier stages, such as due to global changes in 
arousal and attention. Overall, this bidirectional flow of information offers additional challenges to 
understanding how vision works by greatly increasing the complexity of computations performed 
at each node since they must be considered in the framework of the complexities of a recurrent 
dynamical system. 
 
 
An evolutionary perspective: using new animal models for vision 
The act of seeing is shaped by the evolutionary imperative to navigate, recognize, and interact 
with the environment. A functional visual system must detect and parse light, discern edges and 
movement, and interpret shapes and forms. These tasks require neural circuits finely tuned to the 
demands of the organism’s environment, reflecting a balance between computational efficiency 
and ecological necessity. But this raises an intriguing question: do all mammals with complex 
visual behavior rely on deep hierarchies? Or can evolution arrive at alternative solutions? 
 
Historically, most vision studies have been performed in humans, macaque monkeys, and cats. 
In the last 15 years, there has been a growing interest in using rodents as a model organism to 
parse the mechanisms underlying visual processing 39,40. While mice have relatively poor visual 
acuity 10 times lower than primates, they offer significant advantages in terms of applications for 
labeling and manipulating defined cell types. This has prompted a new wave of interest in 
identifying a model species that can combine the genetic tractability of mice with the visual acuity 
that more closely resembles the primate. For those reasons, tree shrews have become 
increasingly used in visual neuroscience to advance towards the goal of understanding how vision 
works. 
 
Tree shrews are highly visual, diurnal mammals. Whether they should be classified as primates, 
insectivores, or, as has eventually become established, scandentia, has garnered some debate. 
Like most mammals, they are dichromats41. Not only are they diurnal, but their visual systems are 
highly adapted to diurnal life including an overrepresentation of cones comprised of ~95% of the 
total photoreceptors41. In humans, cones mediate high-spatial acuity and thus also likely 
contribute to the high visual acuity of tree shrews. The anatomy and physiology of the tree shrew 
visual system has therefore attracted much attention. Anatomical tracing studies have suggested 
the existence of a greatly expanded visual cortex with regions thought to be akin to many 
corresponding regions in the primate. However, there has been an overall lack in studies to 
systematically determine whether these regions are only ostensible analogs due to matching 
anatomical structure or actual functional homologs and whether they conform to the primate-like 
hierarchical organization. If so, this would place tree shrews as an ideal species for studying the 
evolution of form vision.  
 
Evolutionarily positioned between rodents and primates, comparative studies of the tree shrew 
visual systems stand to provide new insights into core concepts for complex visual processing.  
Investigating homologies and evolutionary relationship between the visual system of diverse 
animals offers to teach us fundamental principles of biological systems and how they are built. 
Vision has evolved independently across countless lineages, from the compound eyes of insects 
to the pinhole eyes of mollusks, and the camera-like eyes of mammals. The eye itself provides 
insights into the evolutionary change across species that selects for characteristics optimal for 
various ethological niches. A clear example lies in the regional differences in retinal ganglion cell 
distributions typically corresponding to where in visual space high detail vision is needed, such 
as the differential specializations in aerial versus ground dwelling organisms. Certain 
computational challenges remain universal. Many building blocks (i.e. photoreceptors, retinal 
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ganglion cells) and neural computations (i.e. motion, color, orientation) are largely preserved as 
they support similar functions to guide perception and interactions with the outside world. 
 
 
Outline 
This thesis explores how the brains of different visual species that are widely different in size and 
have adapted for different environments can take in photons and reconstruct a stable visual 
percept of an object essential for survival. By comparing across different neural networks, can we 
uncover core principles that are conserved across evolution and across species that emerge from 
simple interactions among interconnected areas?  
 
In Chapter II, we explore this question by performing a comparative analysis of visual systems 
across mammals and artificial neural networks. Using electrophysiological recording with 
Neuropixels probes, we examined the visual responses in many tree shrew brain areas to a large 
stimulus set. We showed that cells in area V2 exhibit selectivity for complex objects that is 
generally not found in area V2 of the primate. This study revealed that animals with fewer visual 
brain areas have processing networks that are compressed and potentially exhibit more 
recurrency than feed-forward processing.  
 
Chapter III presents the technical advancements we achieved to combine the use of Neuropixels 
recordings with electrical stimulation to identify neurons based on their projections.  By 
overcoming challenges associated with electrical artifacts, we applied this technique to probe the 
role of feedforward and feedback processing in tree shrews’ primary visual cortex (V1) and 
secondary visual cortex (V2). We identified distinct classes of V2 neurons based on the 
directionality of their projections. We observed that 1) feedback neurons in V2 convey similar 
visual information compared to other V2 neurons. 2) Feedback exhibits distinct features such as 
smaller receptive fields and spatial offsets relative to V1 inputs. 3) Finally, both feedforward and 
feedback neurons encode information about perceptual conflict, such as when distinct images are 
presented to each eye. These results highlight the role of feedback in refining V2 processing to 
resolve perceptual inconsistencies. 
 
Finally in Chapter IV we introduce future direction about how feedforward and feedback 
connections in the compressed hierarchy in the tree shrew compares to the multi-stage 
processing in primates to achieve object recognition. We offer insights into this by investigating 
this question in the primate face patch system that contains extensive feedforward and feedback 
connections. Using electrical microstimulation and Neuropixels recordings, we investigated the 
role of these connections by stimulating two face patches at opposite ends of the hierarchy. Our 
observations point to a role in feedback in potentially refining representations under uncertain 
conditions. Future work exploring cross-species comparisons for the distinct role of feedforward 
and feedback in form vision offers to advance our understanding of visual perception. 
space.  
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Abstract: 
Our knowledge of brain processes governing vision is largely derived from studying primates, 
whose hierarchically stratified visual system1 inspired the architecture of deep neural networks2. 
This raises questions about the evolutionary origins and universality of such hierarchical 
structures. Here, we examined the large-scale functional organization for vision in one of the 
closest living relatives to primates, the tree shrew. We performed Neuropixels recordings3,4 across 
multiple cortical and thalamic areas spanning the tree shrew ventral visual system while 
presenting a large battery of visual stimuli in awake tree shrews. We found an increase in 
receptive field size, response latency, and selectivity for naturalistic textures compared to 
spectrally-matched noise5 moving anteriorly along the tree shrew visual pathway, consistent with 
a primate-like hierarchical organization6,7. Surprisingly however, we found that tree shrew area 
V2 already harbored a high-level representation of complex objects. First, V2 carried a complete 
representation of a high-level object space8. Second, V2 activity supported the most accurate 
object reconstruction among all tree shrew visual areas. Finally, starting in area V2, we found 
strongly face-selective cells akin to those reported in primate inferotemporal cortex9 which could 
support face identity decoding. Overall, the results shed new light on the origins of the primate 
visual system, showing how core computational principles of visual form processing are 
conserved, yet hierarchically compressed, by evolution in a small but highly visual mammal. 
 
INTRODUCTION 
The ability to recognize objects is fundamental to the survival of visual animals. The primate 
ventral stream has provided a cornerstone for studying how objects are processed in the brain10,11. 
A hallmark of the primate ventral stream is hierarchical organization12, which is strikingly mirrored 
by deep neural networks (DNNs) trained on object recognition 8,13. This raises the question: Is 
hierarchical representation necessary, and if so, can we observe it across all highly visual 
mammalian species? Do the brains of cats, tree shrews, diurnal bats, and other highly visual 
mammals all possess object recognition pathways following the same hierarchical architecture 
and functional properties as the primate brain? Investigating visual processing across different 
mammalian species promises to provide a deeper understanding of general principles for object 
vision expressed across evolution. 
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Over a decade ago, the mouse visual system began to attract strong interest, driven by the wealth 
of tools available for mouse neural circuit dissection14,15. However, the mouse’s low visual acuity 
and limited cortical territory dedicated to vision16 make it a non-ideal organism for studying 
hierarchical brain mechanisms underlying object recognition. The tree shrew has attracted 
growing interest as a model to study visual processing17 due to its high visual acuity (>10x that of 
rodents)18, greatly expanded visual cortex19, and excellent ability to perform visually-guided 
behavioral tasks compared to the mouse20,21. The tree shrew visual system is differentiated into 
at least nine distinct anatomical visual cortical areas 19. Tree shrews also possess a high degree 
of functional specialization within primary visual area (V1), with an orderly arrangement of 
orientation selective columns22,23 and a prominent second visual area (V2), albeit with a large-
scale topographic organization that differs from that of the primate24. Lesion studies suggest a 
rough correspondence between tree shrew extrastriate areas anterior to V2 and primate IT cortex: 
ablations of large portions of extrastriate cortex in the temporal lobe of the tree shrew produce 
deficits in pattern discrimination and object vision similar to the effect of IT lesions in 
primates19,25,26. However, to our knowledge there have been no electrophysiological studies of 
functional properties of extrastriate visual areas beyond V2 in the tree shrew. 
 
Here, we aim to identify the cortical organization and coding principles underlying visual object 
representation across the entire tree shrew ventral stream. We performed large-scale 
electrophysiological recordings using multiple Neuropixels probes along five tree shrew ventral 
visual areas as well as the pulvinar. We confirmed hallmarks of hierarchical organization found in 
primates including increased receptive field size and response latency27 as well as increased 
selectivity for naturalistic textures compared to spectrally matched noise5 moving anteriorly along 
the tree shrew visual pathway. However, unexpectedly, we found that tree shrew area V2 already 
harbored a highly sophisticated representation of complex objects, comparable to that of 
macaque IT cortex. V2 cells carried a full representation of a high-level object space and axis 
tuning to features of this space. Furthermore, tree shrew area V2 supported the best stimulus 
reconstruction among all tree shrew visual areas, matching the performance obtained by pooling 
activity across all visual areas. Remarkably, among cells selective for different sectors of a deep 
network–derived object space, we found strongly face-selective cells that could support identity 
decoding. These cells were found throughout the tree shrew visual pathway starting in area V2. 
This is remarkable because tree shrews are not social animals, living in isolated monogamous 
pairs28; the finding of face cells in this species challenges the prevailing view that face cells 
evolved under pressures of social communication 29,30. Overall, the results suggest a compressed, 
multi-stage hierarchy in the tree shrew in which representations previously observed in the 
primate are realized at a much earlier stage of visual processing.   
 
 
RESULTS 
We selected a set of areas that span the tree shrew ventral stream to target for the investigation 
of hierarchical visual processing (Fig. 1a). We chose primary (V1) and secondary (V2) visual 
areas as architectonically distinct regions that participate in early visual processing and are 
mutually connected31,32. We further selected the temporal posterior area (TP) as an intermediate 
step along the ventral visual processing stream. This region, located immediately anterior to V2, 
receives dense projections from V1, V2, and temporal anterior (TA) and temporal dorsal (TD) 
areas which have visuo-motor functions. Importantly, unlike TA and TD, TP does not project to 
primary motor cortex, and thus is considered a more purely visual area19. Finally, at the anterior 
end of the tree shrew ventral stream, we surveyed three subregions that may be homologous to 
macaque inferior temporal cortex based on anatomical location: temporal-inferior (TI), temporal 
intermediate (ITi), and inferotemporal rostral (ITr) areas. Lesions to TI and ITi cause drastic 
impairments in visual form detection25. ITr is known to receive inputs from both visual and auditory 
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cortex19, but its visual functional properties have never been explored. Due to difficulty in 
distinguishing the border between TI and ITi, we grouped results for these two regions and refer 
to them as “TI-ITi.” Since many temporal areas receive direct thalamic input33, we also recorded 
in the dorsal visual portion of the pulvinar (Pulv). We performed retrograde tracing experiments 
to guide target location for electrophysiological recording (Extended Data Fig. 1a, b).  
 
To characterize the visual responses of neurons across V1, V2, TP, TI-ITi, ITr, and Pulv, we 
performed electrophysiological recordings using Neuropixels probes in awake tree shrews (Fig 
1b). In all experiments, animals were head-fixed and restrained in front of a monitor while we 
presented a battery of visual stimuli, including local sparse noise, static gratings, naturalistic 
textures and noise, and images of faces and other objects. At the end of experiments, probe 
locations were marked with DiI and targeting was confirmed with histology (Fig. 1c). We labeled 
a cell as visually responsive if it responded to any of the classes of visual stimuli we tested 
(Methods). We found many well-isolated single units in each area (Fig. 1d), with some inter-area 
differences in the fractions of cells that responded to visual stimuli (ANOVA, F5,17 = 4.0, p < 0.014; 
Fig. 1e). In particular, relatively fewer TI-ITi cells were visually responsive compared to V2 cells. 
 
We first mapped the receptive fields of neurons along the tree shrew ventral pathway using a 
locally sparse noise stimulus (Methods). We measured receptive fields of single neurons by fitting 
a gaussian distribution to the two-dimensional matrix of spike counts at each location of the visual 
field; ON and OFF receptive fields were computed separately using responses to white and black 
squares, respectively. Cells with ON and/or OFF receptive fields were clearly present in all areas 
except TP (Fig. 1f). Surprisingly, this included the two most anterior areas TI-ITi and ITr; in 
contrast, corresponding areas in the anterior primate temporal lobe show largely spatially invariant 
responses34,35.  
 
Within individual recordings, receptive field positions were concentrated in a small portion of the 
screen, corresponding to our electrode penetration of the cortical surface. Fig. 1g shows receptive 
fields of all cells recorded in one example session for each area. Surprisingly, clustering of 
receptive fields was apparent in all areas studied, suggesting that even TI-ITi and ITr, though 
located at the anterior end of the tree shrew ventral stream, maintain retinotopic organization. 
 
To assess the hierarchical relationships between the recorded areas, we first examined two 
classic metrics of hierarchical level: receptive field size and the latency of visually-evoked spikes. 
We found that the receptive field size systematically increased from posterior to anterior (Fig. 1h). 
We also calculated the half-peak latencies for each unit in each area and found that latencies 
increased from V1 to V2 to ITr (Fig. 1i, Methods). The hierarchy predicted by the increase in 
receptive field sizes was broadly consistent with the hierarchy predicted by the increase in 
latencies (Fig. 1j). 
 
In the primate visual cortex, early visual areas are strongly tuned to low-level features such as 
orientation and spatial frequency, while later areas are tuned to more complex object features7,36–

38. We therefore examined tuning to orientation and spatial frequency across the tree shrew 
ventral visual pathway using static gratings (Fig. 2a). We found that the proportion of visually-
responsive neurons (cf. Fig. 1e) that specifically responded to gratings was the highest in V1 and 
V2 (~55% and ~65% respectively) and lowest in TI-ITi (Fig. 2b). Tuning to orientation, spatial 
frequency, and spatial phase of example cells from V2 and ITr illustrates the different types of 
tuning we observed to these variables across tree shrew visual areas (Fig. 2c). Overall, 
orientation tuning was most prevalent in V1 and V2 (Tukey analysis after ANOVA, F5,1099 = 25.9, 
p < 10−24, Fig. 2d), while spatial frequency tuning was also prevalent in ITr (Tukey analysis 
ANOVA, F5,1099 = 19.4, p < 10−17, Fig. 2e). These findings are roughly consistent with those found 
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in the primate ventral stream, where orientation tuning is especially prominent in early visual 
areas39. 
 
So far, V2 responses appeared largely similar to V1 responses, raising the question of whether 
V2 performs any unique function distinct from that of V1. Previous studies in the macaque have 
identified sensitivity to higher-order statistical dependencies in naturalistic textures as a unique 
signature of area V25. We therefore asked if tree shrew extrastriate areas show a similar 
specialization for naturalistic texture. To address this, we recorded from all six areas while 
presenting naturalistic textures and spectrally matched synthetic noise images (Fig. 2f, Methods). 
Among all areas recorded, V2 had the largest proportion of cells responding to the texture and/or 
noise stimuli (Fig. 2g). Examination of the time course of population responses revealed the 
strongest difference between responses to naturalistic textures versus spectrally matched noise 
in area V2, followed by V1, ITr, and TI-ITi, while no or only slight differences were found in the 
remaining areas (Fig. 2h). In V2, the difference persisted for the duration of the stimulus. 
Interestingly, although responses in V1 commenced well before those in V2 (cf. Fig. 1i), the 
modulation between texture versus noise occurred later in V1 (at 90 ms) than in V2 (at 45 ms), 
suggesting that the modulation in V1 may be a result of feedback from V2. This idea is further 
supported by the observation that activity in V2 encoded texture family identity earlier than that in 
V1 (Fig. 2i). 
 
A central purpose of the visual hierarchy is to recognize and categorize objects to guide vital 
behaviors like navigation, foraging, or mating. To understand the mechanisms for high-level object 
representation in the tree shrew ventral stream, we presented a rich stimulus set consisting of 
1593 images of animals, body parts, faces, and everyday objects (Methods); this stimulus set was 
previously used to characterize tuning in macaque IT cortex, enabling a direct comparison to 
object recognition mechanisms in primates8. Stimuli were adjusted to match the receptive field 
location of neurons recorded (Methods). As we show below, responses to these complex object 
stimuli suggest a very different picture from that so far, where the tree shrew appears to harbor a 
primate-like hierarchy with increasing receptive field size and latency (Fig. 1) and decreasing 
prominence of orientation tuning (Fig. 2) moving anteriorly. Instead, the key conclusion from the 
next set of results derived from the complex object stimuli is the unique role of area V2 in 
representing high-level object features.   
 
Response rasters of example cells vividly showcase the diversity in object selectivity throughout 
the tree shrew ventral stream (Fig. 3a). Among the six areas we recorded from, a similar 
proportion of visually-responsive cells responded to the object stimuli across V2, TP, TI-ITi, and 
Pulv (Fig. 3b), with a much larger proportion of visually-responsive cells in TI-ITi responding to 
object stimuli compared to gratings (cf. Fig. 2b). This increased responsiveness to complex 
objects compared to simple gratings is consistent with temporal areas being situated at a higher 
stage in the tree shrew ventral pathway. For each cell, we quantified the “explainable variance” 
as the part of the variance in response that could be attributed to the identity of the visual stimuli 
presented (rather than to stochastic trial-to-trial variation) (Methods). After V2, the explainable 
variance in responses to these complex object stimuli decreased dramatically (Fig. 3c). Overall, 
these results suggest that even though anterior tree shrew areas were relatively more responsive 
to complex objects than to gratings, their responses to these complex object stimuli were not 
highly reproducible from trial-to-trial. When controlling for low-level features, we did not observe 
a large fraction of the variance explained was due to these features including luminance, contrast, 
and spatial frequency (Fig 3c and Extended Data Fig. 2). 
 
To better understand the nature of the neural code used by each area, we modeled neural 
responses using AlexNet40, an 8-layered DNN trained on object recognition (Fig. 3d). Single IT 
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neurons in the macaque monkey have been found to be optimally explained by an axis model, 
wherein each cell linearly projects incoming stimuli onto a preferred axis in an DNN-derived 
feature space8,13. In primates, the preferred axes of the cell population span a relatively low-
dimensional basis for the feature space (e.g., in face patches, just 50 dimensions can yield 
veridical reconstructions41). To test whether this principle also holds in the tree shrew, we 
calculated the preferred axis of each neuron in the six areas, using the first 50 principal 
components (PCs) from AlexNet layer FC6. We focused on FC6 in order to delve into the question 
of whether tree shrew cortex represents a high-level object space, as in macaque IT cortex8. We 
found that visual cells in all areas of the tree shrew ventral stream showed ramp-shaped tuning 
along their preferred axes (Fig. 3e, Methods). Moreover, cells showed flat tuning along their 
principal orthogonal axis (i.e., longest axis orthogonal to the preferred axis; Fig. 3f, Methods). 
 
Previous studies in primates revealed that early layers of AlexNet and other DNNs explain 
neuronal activity in early retinotopic visual areas better, whereas late DNN layers explain 
inferotemporal responses better8,13. We investigated whether a similar pattern holds for the tree 
shrew ventral stream. We regressed firing rates of single cells to 50 feature dimensions of a given 
AlexNet layer (Methods) and asked which layer of AlexNet best explained the variance in neuronal 
responses. For one representative cell in V2, AlexNet layer Conv4 best explained its responses 
(Fig. 4a). Across the V2 population, the middle layers of AlexNet (Conv4, Conv5) had more 
explanatory power for cells’ responses than either the early or late layers (Fig. 4b). 
 
To compare explanatory power of different AlexNet layers across brain areas, we calculated the 
sum across cells within each area of the variance explained by the various AlexNet layers, and 
normalized these sums by the sum across cells of their explainable variance (Methods). This 
analysis revealed that early visual areas V1 and V2 were best explained by early layers Conv3 to 
Conv5, whereas TI-ITi and ITr were best explained by FC6 (Fig. 4c). However, the absolute 
explanatory power of AlexNet was lower for the higher cortical areas (Extended Data Fig. 3a, b), 
consistent with the lower explained variance by image identity in anterior areas (cf. Fig. 3c). This 
could suggest that AlexNet may not be expressive enough to capture the response properties of 
tree shrew IT as they have been suggested to be multimodal19  
 
To explore which feature axes encoded the most variance in neural responses in each area, we 
plotted how much variance was explained by individual feature PCs from AlexNet layer FC6. We 
found that in general, earlier PCs explained more variance in neural responses, with some 
variability across areas (Fig. 4d). Conversely, we also analyzed how well specific features of 
AlexNet FC6 could be decoded from population activity in different tree shrew visual areas (Fig. 
4e). Again, we found that early PCs were most strongly represented in the tree shrew visual 
hierarchy, with substantially better decoding of FC6 features from V2 activity than any other area. 
This is consistent with the fact that FC6 explained more of the variance of V2 activity than of other 
areas (Extended Data Fig. 3c). Thus, even though V2 was best explained byConv4 and Conv5 
features, while TI-ITi and ITr were best explained by FC6 features, nevertheless FC6 features 
were better represented in V2 than in these more anterior areas. Additionally, we measured 
whether low-level features correlate with FC6 PCs and found that they were very small (Extended 
Data Fig. 3d, e). 
Given the high performance for decoding AlexNet FC6 features using V2 activity, we asked 
whether activity in V2 might be sufficient to reconstruct objects using small neural populations, as 
has previously been shown in monkey IT cortex8. To this end, we took a large auxiliary dataset 
comprising 15901 images and passed them through AlexNet. Whichever image yielded 
activations in FC6 closest to the reconstructed activation from a given area of the tree shrew brain 
was considered the reconstructed image (Extended Data Fig. 3f). We performed reconstructions 
using 100 randomly selected cells from each area, to control for cell number. Consistent with our 
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results on parameter decoding (Fig. 4e), which were optimal in V2, we found that images 
reconstructed from V2 closely resembled the original images, while images reconstructed from 
V1 or TI-ITi were less close (Fig. 4f). To quantitatively compare reconstruction accuracy across 
areas, we calculated the distance between FC6 activations reconstructed based on neural 
responses to each image in each area and the actual FC6 response to that image, normalized to 
the theoretical best decoding distance (Methods). We found that these normalized decoding 
distances were significantly smaller, on average, in V2 than in other areas, and matched the 
performance obtained using all neurons pooled across all areas (Tukey analysis after ANOVA, 
F5,9552 = 235.2; Fig. 4g).  
 
The primate IT cortex is organized into subregions containing cells that respond maximally to 
images from specific categories, e.g., faces. Moreover, these cells are clustered into discrete 
anatomical regions by image category 42–44. Such category-selective regions can be explained by 
a normative account in which IT cortex represents a general “object space” defined as the span 
of the first two PCs of the AlexNet FC6 representation of the 1593 object images 8,45. Specific 
sectors in this space correspond to distinct categories of objects, such as images of faces, fruits, 
and animals (Fig. 5a). 
 
Does the tree shrew visual cortex, like primate IT cortex, contain regions specialized for 
representing distinct sector(s) of object space? To address this question, we projected the 
preferred axes of all recorded cells down onto the same 2D object space (Fig. 5b). We found that 
preferred axes of cells in area V2 spanned all four quadrants, whereas preferred axes of cells in 
other areas largely fell into quadrants I and III. Given the localization of different categories to 
different sectors of this object space, one prediction is that individual tree shrew cells should be 
selective for distinct categories. This prediction was confirmed by analysis of response rasters of 
individual cells. Cells with preferred axes in the face quadrant were indeed strongly face selective 
(Fig. 5c). Some face cells also responded to other round shapes, while others showed strong 
selectivity only for faces. We also found cells selective for spiky, elongated objects (quadrant I), 
round inanimate objects (quadrant II), and spiky animate objects (quadrant IV; Fig. 5d and 
Extended Data Fig. 4a, b).  
 
We next sought to compare how each area at the population level responds to the images 
corresponding the different quadrants of object space. Extended Data Fig. 4c shows the 
projection of all 1593 images onto the 2D object space, with the 100 most preferred images for 
each area indicated by colored dots. The majority of the top-100 preferred images of TI-ITi fell in 
the quadrant that contains faces (quadrant III), while none of the top-100 preferred images of V1 
and V2 fell in this quadrant. To address whether cells selective for different categories are spatially 
clustered within individual tree shrew visual areas, we replotted the preferred axes of cells using 
color coding to represent each cell’s depth along the Neuropixels probe (Extended Data Fig. 4d). 
This revealed no obvious topographical organization within any area for visual preference. 
 
Faces—particularly human faces, which all our face stimuli were composed of—are not known to 
have special behavioral importance to tree shrews28. Thus, we performed additional analyses to 
confirm that the cells really were face selective. We introduced a quantitative face selectivity 
index, defined as the difference between responses to faces and all other objects, for each 
individual cell (Methods). This confirmed small populations of highly face-selective cells (t-score 
≥ 15) in most areas starting in area V2, with the highest percentage in TI-ITi and pulvinar (Fig. 
5e).  
 
The primate IT cortex is specialized for object recognition and has remained the cornerstone for 
studying form processing. To facilitate direct comparisons with our tree shrew dataset, we 
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performed large-scale recordings using NHP Neuropixels probes in macaque monkeys. We 
presented the same 1593 object stimuli while recording from V2, posterior IT (ITpost), and anterior 
IT (ITant) from two monkeys per area (Fig. 6a-c). We found the explainable variance in responses 
to complex object stimuli increased from primate V2 to ITant (Fig. 6d), whereas they peaked in 
tree shrew  V2 (c.f. Fig. 3c). Image reconstruction performance also increased along the primate 
hierarchy (c.f. Fig. 4g), whereas it was most optimal in tree shrew V2 (Fig. 6e). In contrast to tree 
shrews (c.f. Fig. 5e), we did not observe strongly face-selective cells in primate V2 (Fig. 6f). As 
expected, the number of face cells in primate ITpost and ITant were much higher. Of note in one 
of the recordings from ITpost, the probe was partially targeted one of the defined face patches 
resulting in a higher proportion of face cells.  
 
Lastly, we tested whether the primate and tree shrew cell populations could decode individual 
face identity or object identity. To this end, we trained a classifier to decode the individual identity 
either of 200 faces, or of 200 general objects, using the neural activity of randomly sampled 
subpopulations of cells from a given area (Fig. 6g, Methods). In tree shrews, all areas yielded 
above-chance decoding for both faces and objects except area TP. When we selectively used 
only face cells, decoding performance of face identity increased dramatically, especially in 
temporal areas. Most strikingly, decoding performance in tree shrew area V2 was much better 
than in all other areas for both face and object decoding. Strikingly, we found the decoding 
performance of object identity from the primate V2 was far lower than that from the tree shrew V2 
(Fig. 6f). In fact, tree shrew V2 was similar to that of primate posterior IT. As expected, the primate 
anterior IT that sits at the apex of the primate ventral visual stream outperformed all other areas.  
 
A hallmark of the primate ventral stream is increasing invariance moving anteriorly along the 
temporal lobe8,34,46. We used responses to the 1593 objects across different tree shrew visual 
areas to ask whether invariance increases along the tree shrew ventral pathway as well (even 
though this image set was not designed to test view invariance directly). Here, we leveraged the 
power of deep network models trained on large image sets to predict responses of visual 
neurons47,48. We first confirmed that in the macaque, a deep network-based model of V2 and IT 
cells trained on neuronal responses to the 1593 images effectively predicted responses of the 
same cells to a second image set consisting of 51 objects presented at 24 different views 
(Extended Data Fig. 5a, b, c;). We then used these predicted responses to objects at different 
views to compute a predicted invariance index for each macaque cell (Methods). This analysis 
revealed a strong correlation between predicted and actual invariance indices, with the predicted 
overestimating and corresponding to the upper bound of the actual (Extended Data Fig. 5e). 
Thus, this confirmed that responses to the 1593 image set were sufficient to capture view 
invariance of cells in the macaque. We then applied this approach to compute predicted 
invariance indices across different tree shrew areas. In the tree shrew, the distributions of 
invariance indices from different areas were highly overlapping (Extended Data Fig. 5f) Thus, 
unlike in the macaque, increasing view invariance was not observed for predicted invariance in 
the tree shrew. As has been previously shown in macaque (Doris XXX) and rats (XXX), direct 
testing within each area is needed to determine whether view invariance is a hallmark of the tree 
shrew visual pathway (Fig. 6h). 
 
 
DISCUSSION 
Hierarchical processing is a central principle of object representation in artificial neural networks 
and in the primate visual system. Here, we sought to determine the extent to which the ventral 
visual pathway of the tree shrew, a highly visual mammal that is one of the closest existing 
relatives to the primate49, is also organized hierarchically. To this end, we performed large-scale 
simultaneous electrophysiological recordings spanning six nodes of the tree shrew visual pathway 
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starting from early visual cortex and culminating in the presumed homolog to primate 
inferotemporal cortex (Fig. 1). In support of hierarchical organization, we found that higher-level 
areas in the tree shrew ventral visual stream showed an increase in receptive field size, response 
latency, selectivity for naturalistic textures compared to spectrally matched noise, and proportions 
of single cells selective for faces. 
 
However, what was most striking were the deviations of tree shrew visual system organization 
from the canonical template for hierarchical organization observed in the primate. While receptive 

field sizes were the largest in TI-ITi and ITr, they were comparatively small (mean = 5.6 and 6.1 
respectively) relative to the many large spatially-invariant receptive fields of primate anterior IT 

cells (spanning on average 10-2034)  ). Further, decoding of latent variables of late AlexNet layers 
(which in the primate most closely match IT) was best using activity from tree shrew area V2 (Fig. 
5f). Indeed, by decoding FC6 features from area V2, we could obtain reasonable reconstructions 
of objects using only small cell populations (Fig. 4f). Area V2 harbored a full representation of a 
high-level object space previously shown to be represented by primate IT cortex8 (Fig. 5b). In 
particular, area V2 contained a population of highly face-selective cells that represented the face 
quadrant of this object space and supported face identity decoding better than any other area 
(Fig. 5f). Finally, DNN-predicted indices of view invariance were as high in tree shrew area V2 as 
in more anterior areas (Extended Data Fig. 4), with the caveat that this needs to be confirmed 
with direct measurement of view invariance in future studies. Overall, these results suggest a 
substantially shallower visual hierarchy in the tree shrew compared to the primate, with tree shrew 
area V2 performing many of the functions of primate IT cortex. An open question for future 
research is: to what extent does tree shrew area V2 encompass all of the functions of primate IT 
cortex? For example, in object recognition tasks, can task performance be entirely explained by 
activity of V2 cells?  
 
As a direct comparison, we performed the same experiments across three homologous regions 
in the macaque, including V2, IT anterior and IT posterior. Strikingly, this comparison further 
supports our finding that the tree shrew contains a compressed hierarchy that performs many of 
the functions akin to primate IT in tree shrew V2, and importantly, primate V2 does not show these 
characteristics. Our stimulus set was originally tailored for primate object recognition and, 
therefore, facilitated direct comparisons to primates. However, future work is needed to expand 
these findings with additional stimulus sets such as those that include ethologically relevant 
objects, view invariance, binocular disparity and multimodal stimuli. In fact, studies in rats using 
highly controlled visual morphed objects designed to match luminosity across transformations led 
to the discovery of properties of object processing in the rat visual area LL and TO including view 
invariance. Such comparisons in the tree shrew would further shed light into evolutionarily 
conserved properties for object vision that places this species functionally between the primates 
and rodents. 
 
Our findings challenge the current focus on modeling mechanisms for high-level vision almost 
exclusively with deep networks50,51.  Computationally, deep networks aid in the challenge of 
sequentially disentangling image features that are important for discrimination from orthogonal 
features such as orientation and size46,52. However, it is possible that V2 itself harbors a deep 
network implemented through local circuits, e.g., via a recurrent network that, when temporally 
unrolled, can be identified with a multi-layer feedforward network but would require less neurons 
to implement53. Future work may investigate this possibility by analyzing local dynamics of feature 
selectivity within V2. 
 
We did not find any striking, qualitative difference in the complexity of visual processing between 
area V2 and more anterior areas in the tree ventral stream (TP, TI-ITi, and ITr). This raises the 
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question, what is functionally distinct about these more anterior areas? One possibility is that 
these areas are involved in multi-sensory integration, consistent with the existence of anatomical 
connection with the pulvinar and other higher order auditory cortical areas19. Thus, these more 
anterior areas may inherit their visual tuning from V2 without extensive further processing, and 
their primary function may be to integrate this visual tuning with tuning for other sensory features. 
 
The finding of face cells in the tree shrew was particularly surprising. The existence of face cells 
in primates has long been thought to be related to the importance of faces for primate social 
communication54. However, recent evidence argues that such specializations may arise from 
more fundamental principles concerning how IT cortex represents a general object space8,45,55,56. 
Facial communication is not known to be of ethological importance to tree shrews (which live in 
isolated monogamous pairs, with social recognition mediated by olfactory cues28). Thus the 
finding of face cells in tree shrew visual cortex supports the view that such cells can readily 
emerge from encoding of general dimensions of image variation, even in the absence of 
evolutionary pressures related to face-based social communication. 
 
The tree shrew offers exciting advantages as a model organism for studying high-level vision 
given its tractability for genetic and viral-mediated circuit approaches and its highly developed 
visual system. In particular, the tree shrew visual system appears to be more sophisticated than 
that of the mouse, evinced by preferential responses to naturalistic textures, face-selective 
responses, and the existence of five distinct visual cortical areas (V1, V2, TP, TI-ITi, ITr) with 
increasing receptive field size and latency. Our study provides a new roadmap for exploring visual 
circuits in this non-traditional species and illuminates how evolution adapted brains of different 
sizes for effective representation of the visual world. 
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METHODS 
EXPERIMENTAL MODEL AND SUBJECT DETAILS 
All experimental procedures were approved by the Caltech Institutional Animal Care and Use 
Committee and conformed to local and US National Institutes of Health guidelines, including the 
US National Institutes of Health Guide for Care and Use of Laboratory Animals. Tree shrews 
(Tupaia Belangeri) used in this study (n=5), both male and female, were 6 months to 2.5 years 
old and weighted between 150 to 300 g. Animals were singly housed in a 12-hour light/dark cycle 
in the animal room. Their food and water aliquots were given ad libitum. 
 
No statistical methods were used to predetermine sample size. The experiments were not 
randomized, and investigators were not blinded to allocation during experiments and outcome 
assessment. 
 
 
EXPERIMENT 
Surgeries  
Tree shrews were injected with a preoperative dose of dexamethasone (5 mg/kg, subcutaneously 
(s.c.)) and mannitol (1 mg/kg, s.c.) to reduce swelling. Animals were anesthetized with a cocktail 
of fentanyl, midazolam, and dexdomitor (FMD, fentanyl 0.05 mg/kg, midazolam 5.0 mg/kg, 
dexdomitor 0.25 mg/kg, s.c.), shaved and positioned into a stereotaxic frame. Topical lidocaine 
gel (2%) was applied on the head and ears to prevent discomfort from ear-bars and eye lubricant 
was used to maintain hydration and clarity of eyes during surgical procedures. Levels of 
anesthesia, breathing, SpO2, and heart rate were monitored throughout the entire procedure and 
body temperature was maintained with a heating pad at 37.5° C. An incision on the scalp was 
performed and both skin and muscles were retracted. The exposed skull was levelled using the 
stereotaxic device with respect to bregma and lambda (pitch, roll, and yaw). After alignment, 
locations of the craniotomies for electrophysiological recordings were marked on the skull and a 
custom stainless steel headplate was secured to the skull using clear C&B Metabond (Parkell). A 
layer of Kwik-Cast (World Precision Instruments) was added on top the skull and a 3D printed 
custom cap was secured to the headplate to protect the brain and keep debris out. The anesthesia 
was reversed with an injection of atipamezole-flumazenil (atipamezole 1.25 mg/kg, flumazenil 
0.25 mg/kg, s.c.) and the animal was recovered for at least 3 days before following procedures 
and recordings. One day before electrophysiological recordings in a new brain location, tree 
shrews were once again anesthetized and monitored as described above. Using the marked 
locations on the skull, small (up to 1.5mm of diameter) craniotomies were drilled and durotomy 
was performed. Through a small hole situated anterior of bregma, a 32 AWG chlorinated silver 
wire (A-M system) with a pre-soldered gold pin was implanted just above the brain surface and 
cemented to the skull to provide chronic grounding. A drop of silicone oil (30,000 cSt, Aldrich) was 
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added over the holes to prevent the brain from drying, a new layer of Kwik-Cast was applied on 
top of it, and the 3D printed custom cap secured to the headplate. Anesthesia was reversed and 
the animal was recovered as previously described. 
 
Electrophysiological recordings  
All electrophysiological recordings were made using high channel-count, silicon, “Neuropixels 1.0” 
probes configured to always acquire from the first 384 electrodes closest to the tip, providing a 
3.84 mm of tissue coverage. The reference and the ground contacts on the Neuropixels probes 
were permanently soldered together. Recordings were made using an external reference 
configuration achieved by connecting the probe reference to the chronically implanted silver wire 
on the skull; conductivity was routinely checked before recording with a multimeter. Each 
Neuropixels was mounted on a 3-axis micromanipulator (New Scale Technologies) that was in 
turn mounted on the underside of a semicircular platform, allowing simultaneous insertion of up 
to four probes at different angles. Before the first insertion of a probe in a new location, DiI (1 mM 
in ethanol) was used to coat the shank, allowing subsequent probe track localization during ex 
vivo imaging. Neural signals were acquired at 30 kHz using Open Ephys software 57. After the tip 
of each probe touched the surface of the brain, they were lowered to target at an average speed 
of 100 μm/min to avoid damage and let them settle for 15 minutes after reaching the target depth. 
Cameras were used to monitor animals during experiments and ensure a continuative viewing of 
the visual stimuli presented during neural signals acquisition. After each recording experiment, 
probes were slowly retracted and immersed in 1% Tergazyme solution to remove tissue and 
silicone oil residues. 
 
Injections  
To trace the inputs to TP and ITr, intracranial injections were performed as described in the 
surgical procedure as above. The retrograde tracer cholera toxin subunit β was injected into TP 
(CTβ-488) and into ITr (CTβ-594) using a pulled glass capillary (World Precision Instruments) and 
a pressure injector (Micro4 controller, World Precision Instruments), at a flow rate of 50 nl/ min. 
The tracer was delivered at two depths, -- mm below the cortical surface, to ensure adequate 
spreading. Stereotaxic injection coordinates were based on the Zhou and Ni Tree Shrew brain 
atlas58 (TP, anterior–posterior: −6.43 mm, medial–lateral: ±8 mm, dorsal–ventral: −5.5 mm; ITr, 
anterior–posterior: −1.54 mm, medial–lateral: ±8 mm, dorsal–ventral: −5 mm relative to Bregma). 
Perfusions and histology were performed seven days following injections.     
 
Histology 
After electrophysiological recordings or tracer expression, histological verification was performed 
for all tree shrews. Tree shrews were given Ketamine + Xylazine and perfused transcardially with 
0.9% saline, followed by 4% paraformaldehyde (PFA) in 1X PBS. Brains were extracted and post-
fixed overnight in 4% PFA at 4°C. The brains were then transferred to 30% sucrose for 
cryoprotection and sectioned coronally at 100 μm on a cryostat (Leica Biosystems). Sections were 
washed with 1xPBS and then incubated for 30 minutes at room temperature in in DAPI/PBS (0.5 
μg/ml) for counterstaining. Sections were then mounted on slides and imaged with an 
epifluorescence microscope (Olympus VS120). 
 
 
VISUAL STIMULATION 
Visual stimuli presentation 
Visual stimuli were generated and presented using custom Python scripts. Head-fixed tree shrews 
passively viewed a battery of visual stimuli displayed using a ViewSonic monitor (70x39 cm, 60 
Hz refresh rate, 1,920 × 1,080 pixels). The monitor was centered in front of the animals at 25 cm 
distance. Stimuli were presented at 3 Hz, 167 ms of image presentation interleaved with 167 ms 
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of a grey screen. Three classes of visual stimuli were used in each experiment: static gratings, 
naturalistic textures and noise, and 1593 objects. In addition, “local sparse noise” stimuli were 
used to map neurons’ receptive fields. 
 
Local Sparse Noise  
The screen was divided into a grid of 4x3 squares. In consecutive frames (100 ms), sparse white 
or black dots (5 degrees square) were presented, one dot in each grid square. The locations of 
the dots within each rectangle were pseudo-randomly distributed to avoid spurious correlation 
between distant parts of the visual field27. To avoid interference between reconstruction of “On” 
and “Off” RFs, each presented stimulus frame comprised either all black or all white dots on a 
grey field. A reduced version of this stimulus (with fewer frames) was used at the beginning of 
each experiment and analyzed immediately to allow placement of “faces and objects” stimuli in 
the centroid of the receptive fields for that recording session. 
 
Before the main recording session, a shorter block of local sparse noise stimuli was presented to 
the animal and results were analyzed to find the approximate centroid of the receptive field of 
recordable neurons, to serve as the location for subsequent presentation of faces and objects 
stimuli.  
 
Static Gratings  
We presented full field sinusoidal gratings, varying in orientation (6 evenly spread angles), spatial 
frequency (5 values between 0.1 and 1.6 cycles/degree), and phase (4 positions), for a total of 
120 different stimulus conditions. Each image was presented 5 times. 
 
Naturalistic textures and noise  
We presented images from two subclasses: naturalistic textures and a control set comprising 
spectrally matched noise. The naturalistic texture images were organized as 15 families of 5 
similar images. Texture images reproduced the statistical dependencies found in natural texture 
scenes1. Each of the 150 images in the stimulus set was presented 5 times. We used two types 
of visual stimuli similar to ones previously used in primate studies: one set consisted of 15 families 
of texture images, each comprising 5 closely related image samples of the same texture. These 
images reproduced statistical dependencies found in natural texture scenes5,59. A control set 
consisted of noise images spectrally matched to each of the texture families. 
 
Faces and objects  
We presented images from two subclasses: 1,392 objects and animals from www.freepngs.com, 
and 201 faces from the FEI database8, for a total of 1,593 images. Each image was presented 10 
times. Images were presented at the previously determined center of the receptive field of 
recordable cells and sized to cover 20 degrees of the visual field, which covered the majority of 
the recorded neurons’ receptive fields. 
 
 
DATA ANALYSIS 
Preprocessing and Spike sorting 
Neural signals from electrophysiological recordings were preprocessed by subtracting the median 
calculated within each group of 24 channels from the data to eliminate common-mode noise. The 
median subtracted data was sent to Kilosort2 which in addition to the group median subtraction 
applied a high-pass filter (150-Hz), followed by whitening in blocks of 32 channels. All spike data 
were sorted using the off-line spike sorting algorithm Kilosort260. The cluster automatically labelled 
by Kilosort algorithm as “good” was in turn manually curated by hand and further analyzed with 
Phy2. 

http://www.freepngs.com/
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Visually responsive cells 
A cell was deemed responsive to a particular class of stimuli (either gratings, textures, and noise, 
or faces and objects) if its average firing rate in the 100 ms following stimuli of that class exceeded 
the expectation value based on a Poisson model trained on the firing rate in the 50 ms before all 
the stimuli of that class. To be included in the “responsive fraction” in figures 3b, 4b, and 5b, a 
cell’s average response had to exceed the baseline by at least 5 standard deviations. For the 
“faces and objects,” the total time elapsed between the first and the last of the 10 blocks of visual 
presentations was so long that stability of responses was a concern. Accordingly, we additionally 
preprocessed these data to analyze only those blocks in which the responses were stable for a 
given cell. For each block, we extracted the average waveform of all the spikes from the given 
cell and calculated its peak-to-peak amplitude. We then picked the third largest amplitude among 
the blocks and set an amplitude threshold at 0.6x this value. We counted for each block the 
number of individual spikes with amplitudes exceeding this threshold. We calculated the mean 
and standard deviation of these counts among blocks, and excluded from analysis any block in 
which the count was over two standard deviations below the mean. In all cases except figure 1e, 
results are expressed as a percentage of visually responsive cells, i.e., of cells that respond to 
any of the stimulus classes. 
 
Receptive field analysis 
The receptive field size, amplitude, and quality was obtained by first calculating a 2D histogram 
of spike counts at each of 576 locations on the monitor (32 x 18 matrix). We modeled these 
histograms as a 2D Gaussian peak on top of a constant baseline. To prevent overfitting, the shape 
of the Gaussian was forced to be circular rather than elliptic. A cell was considered to possess an 
(“ON” or “OFF”) receptive field if the number of spikes within the Gaussian peak exceeded 
expectation from a null model. Specifically, we calculated the expected number of spikes that 
would be elicited by (“ON” or “OFF”) stimuli within a 10-degree radius from the center of the 
Gaussian under the null model of the baseline as well as the actual number of spikes elicited by 
stimuli within that same area. The number of standard deviations by which the actual number of 
spikes exceeded the null expectation was considered the “quality” of the RF. Only cells with RF 
quality greater than 5 were considered to possess an RF. 
 
Half-peak latency 
For each neuron, we calculated the average response to all the gratings and texture/noise stimuli 
as a function of latency after stimulus onset. We found the peak value in this peristimulus time 
histogram (PSTH) and kept only cells in which the peak exceeded the 99.75%th percentile of the 
Poisson distribution predicted from baseline firing. The “half-peak latency” of a cell was defined 
as the latency at which its response first exceeded a threshold set halfway between its baseline 
firing rate and the peak. 
 
Preferred orientation and spatial frequency 
We analyzed responses to gratings in terms of orientation and spatial frequency of the gratings. 
First, we grouped trials by orientation and fitted a modified Von Mises distribution to the response 
data for each neuron, where the orientation space of 0° to 180° was treated as the full period for 
the purpose of the distribution. The preferred orientation of a cell was the centroid of the fitted 
distribution. Separately, we grouped trials by spatial frequency. We fitted a Gaussian distribution 
to the responses in log-frequency space. The preferred spatial frequency of a cell was the center 
of the fitted distribution. In both figures 3e and f, only cells were included in the count where the 
amplitude of the (Von Mises or Gaussian) peak was at least 0.5 times the average firing rate 
during all gratings responses of the given cell. 
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Percentage variance explained 
In Figs. 3g, 3h, 4d, 4i, and 5c, we plot the percentage of variance in neuronal activity that is 
explained by various discrete or categorical variables. (We treat orientation and spatial frequency 
as discrete variables here.) First, we calculate the total variance (Vtotal) in neuronal activity across 
trials for a given neuron. Then we regress the activity onto the categorical variable (k – 1 additional 
degrees of freedom, where k is the number of values the variable can attain) and calculate the 
residual variance (Vresidual). By definition, the explained variance is the difference between total 
and residual variance, and the plotted percentage is: 100% × (Vtotal – Vresidual) / Vtotal. In fig. 4d, 4i, 
and 5c, we separately add up the total and residual variances for all the neurons in an area before 
normalizing. (That is, we plot the percentage of all the variance in the area that is explained by 
the variable, rather than the average across cells of the explained variance for each cell.)  
 
Explainable variance 
To derive an upper bound on the maximum fraction of variance that could theoretically be 
explained by the DNN, we calculated the "explainable variance” of the neuronal responses as the 
split-half reliability of those responses using the Spearman-Brown formula 2ρ / (1+ ρ) applied to 
the correlation between the responses to the same image in one half of the trials to the other half8.  
 
Preferred axis (AlexNet)  
We extracted the activations of the 4096 units in layer FC6 of AlexNet in response to each of the 
1593 images and performed principal component analysis to reduce the 4096-dimensional space 
down to 50 dimensions. For each cell, we calculated which axis in this space captured the largest 
fraction of the variance in its responses to all but 10% of the images. We then calculated the 
projection onto the found axis of the remaining images. We repeated this process 10 times, each 
time keeping a different set of images as a test set. This yielded projection values for every image 
in the data set. The average of the 10 axes found is the cell’s overall “preferred axis.” We defined 
bins over the projection values and calculated the average response of the cell to all the images 
in that bin. Each pixel in the matrices in Fig. 5e represents one such average. 
 
Principal orthogonal axis (AlexNet) 
As a control, we took the first principal component of the AlexNet responses and, for each cell, 
projected it down to the hyperplane orthogonal to that cell’s preferred axis. This we call the 
“principal orthogonal axis” for that cell. 
 
Decoding AlexNet activation from neural activity 
We repeatedly selected 100 cells at random from a given area, calculated PCs from their 
responses to image stimuli, and used those to regress the individual PCs of AlexNet. After 
repeated sampling, we calculated the average fraction of the AlexNet PC’s variance that was 
explained by the neural data from a given area. 
 
Object reconstruction and normalized decoding distance 
Image reconstructions were performed as previously described8,61. To generate images that 
reflect the features encoded in the neural responses, we passed into AlexNet images from an 
auxiliary database comprising a much larger set of 15901 images, none of which was previously 
shown to the animal. For each stimulus image presented to the animal, the feature vector decoded 
from the neural activity was compared to the feature vectors of the larger auxiliary stimulus set. 
We defined the “reconstructed image” as the image in the auxiliary dataset with the smallest 
Euclidean distance to the decoded feature vector of the original image. 
 
Given that the auxiliary images used for reconstruction did not include any of the objects shown 
to the animals (limiting how good the reconstruction can be), we computed a ‘normalized decoding 
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distance’ to quantify the reconstruction accuracy for each object. We first used the Moore–
Penrose pseudoinverse to transform the predicted features from neuronal data back into the 
space of AlexNet layer FC6 activations. Next, we calculated the Euclidean distance between 
these pseudoinverted predicted features and the actual AlexNet FC6 activations deriving from the 
presented images. We normalized this distance by the theoretical best decoding distance, i.e. the 
distance between the actual AlexNet FC6 activation and the back projection of the 50D PCA 
output of AlexNet FC6 (again using the Moore–Penrose pseudoinverse). Thus, the normalized 
decoding distance for an image is: 
 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑑𝑒𝑐𝑜𝑑𝑖𝑛𝑔 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =
|𝑉𝑟𝑒𝑐𝑜𝑛 −  𝑉𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙|

|𝑉𝑏𝑒𝑠𝑡𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒𝑟𝑒𝑐𝑜𝑛 −  𝑉𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙|
 

 
where vrecon is the feature vector reconstructed from neuronal responses, voriginal is the feature 
vector of the image presented to the animal, and vbest possible recon is the feature vector of the best 
possible reconstruction. A normalized distance of one means that the reconstruction has found 
the best solution possible. 
Face selectivity 
For every cell we quantified its selectivity to faces by calculating the t-score between its responses 
to faces, and its responses to the rest of the images. In all areas an unexpectedly large number 
of cells had t-scores far beyond the expected null distribution.  
In Extended Data Fig 4b, we sorted cells in both macaque IT targets by face selectivity index 
calculated as FSI = (mean responseface - mean responsenon face objects) / (mean responseface + mean 
responsenon face objects). 
 
Face and object identity decoding 
We trained Gaussian Naïve Bayes classifiers to extract object or face identities from sets of 200 
images based on the activity of variously sized subsets of neurons from a given area, using 9 out 
of 10 repeated presentations of each image for training, and the remaining presentations for 
testing. We calculated the significance of the decoding accuracy over chance by Monte Carlo 
resampling both over repeated presentations of the same image, and over random subsamplings 
of neurons from the population of each given area. We calculated the average performance of 
each sample of neurons across different selections of training sets. 
 
Invariance index 
The Invariance Index was calculated as the mean of the Pearson correlation coefficients between 

the frontal view and 23 other non-frontal views, averaged across identities. This index reflects 
the consistency of the neuronal response to the same stimulus presented under different 
conditions.  
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Figure 1: High-throughput electrophysiological recordings along the tree shrew visual 
pathway reveal a functional hierarchy. (a) Schematic of a tree shrew brain. Color key for 
recorded areas applies to all figures. (b) Schematic of tree shrew head-fixed electrophysiological 
recording with Neuropixels probes. (c) Coronal sections showing electrode traces marked with 
DiI (red) in each targeted area (white outlined boxes). Numbers indicate rostrocaudal position 
relative to Bregma (see inset). (d) Number of recordings per area and the total number of units 
identified across all recordings in each area. (e) Percentage of visually responsive cells in each 
area, i.e., cells that responded with elevated average firing rates to at least one of the visual 
stimuli we tested (static gratings, naturalistic textures and noise, and object stimuli). Dots indicate 
individual recordings, bars indicate averages across recordings. Letters indicate Tukey grouping. 
Tukey analysis (α = 0.05) after ANOVA, F5,17 = 4.0, p < 0.014). (f) Percentage of visually 
responsive units (cf. Fig 1e) exhibiting receptive fields (RFs) for each of the six recorded areas. 
Left (lighter, ON), center (darker, OFF) and right (ON/OFF) bars for each area. Dots represent 
results from individual recording sessions. (g) Distribution of RF locations across the visual field. 
Top row: RF maps for example units, one per area. Middle and bottom rows: position and sizes 
of all ON and OFF RFs (respectively) in a representative recording from each area. Shading 

indicates RF quality (Methods). Each white box represents ±54 horizontally and ±38 vertically. 

Scale bar: 15. Top left: one frame of sparse noise stimulus used to map RFs. (h) Distribution of 
ON (left, lighter) and OFF (right, darker) RF sizes for each area. Letters indicate Tukey grouping. 
Tukey analysis (α = 0.05) after ANOVA, F4,1532 = 36.7, p < 10−28; TP was excluded from this 
analysis because of the very low number of cells with receptive fields in this area. (i) Histogram 
of the latencies to half-peak response in visually responsive cells in each area. Tukey analysis (α 
= 0.05) after ANOVA F5,1145 = 20.2, p < 10−18. (j) Comparison of the hierarchy inferred from RF 
size (y-axis) with that inferred from response latency (x-axis). Each dot represents the median of 
the data for a given area (hue), with ON and OFF RFs represented by light and dark dots 
respectively.  
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Figure 2: Orientation and spatial frequency of static gratings are first encoded in V1 while 
textures and noise stimuli are first differentiated in V2. (a) Example frames of static grating 
stimuli. Stimuli were varied in orientation, spatial frequency (SF), and phase, and were interleaved 
with gray frames. (b) Percentage of visually responsive cells (cf. Fig 1e) that responded to static 
gratings in individual recording sessions (dots) and averaged across recording sessions (bars). 
(c) Responses of a representative V2 and ITr cell to static gratings differing in orientation 

(represented circumferentially), SF (represented radially; cycles/), and phase (four small 
quadrants). Each dot represents a single trial; color intensity represents responses strength. (d) 
Percentage of variance of individual cells’ responses explained by orientation of the stimulus. 
Boxes represent 25th, 50th and 75th percentile; whiskers 5th and 95th. Letters indicate Tukey 
grouping. Tukey analysis (α = 0.05) after ANOVA, F5,1099 = 25.9, p < 10−24. (e) Same for spatial 
frequency. Tukey analysis (α = 0.05) after ANOVA, F5,1099 = 19.4, p < 10−17. (f) Example frames 
of naturalistic texture (top) and spectrally matched noise (bottom). (g) Percentage of visually 
responsive cells (cf. Fig 1e) that responded to naturalistic texture or spectrally matched noise 
stimuli in individual recording sessions (dots) and averaged across recording sessions (bars). (h) 
Time courses of population responses in each area to naturalistic texture (darker lines) and 
spectrally matched noise (lighter lines). Black arrows indicate the latency at which the two curves 
first significantly differed from each other (Two-tailed t-test, p < 0.01). Shaded areas are standard 
errors of averages across cells. (i) Percentage of variance in neural activity explained by texture 
image family (15 classes, cf. (f)).  



39 
 

  



40 
 

Figure 3: Objects are encoded across all visual areas through axis coding. (a) Spike raster 
plots for representative visually-active cells from each of the areas in response to six groups of 
object stimuli, each optimal for one of the cells (stimuli shown on the left). Each dot represents an 
action potential in one of up to 10 presentations of the stimulus; red line indicates stimulus onset. 
Scale bar: 50 ms. (b) Percentage of visually responsive cells (cf. Fig 1e) that responded to object 
stimuli in individual recording sessions (dots) and averaged across recording sessions (bars). (c) 
Percentage of variance of neural responses explained by object stimulus identity in each area 
(left bars) and the amount of variance that can be explained by low level feature image indices 
(right bars). (d) Schematic illustrating the processing of visual stimuli in layers of the artificial 
neural network AlexNet (top) and in areas of the tree shrew ventral visual pathway (bottom). (e) 
Normalized neural responses to object images for 100 randomly selected cells in each of the six 
areas as a function of position of that image along the given neuron’s preferred axis in AlexNet 
FC6 space (“object space”). The x-axis is rescaled so that the range [–1,1] covers 98% of the 
stimuli. Inset: Preferred axis (green arrow, Methods) of a representative cell (area V2) in object 
space. The coordinate axes represent the three AlexNet principal components (PCs) that most 
align with the cell’s preferred axis. Each dot represents an image, color coded by the strength of 
the cell’s response to that image (blue: low, red: high). (f) Responses as a function of normalized 
position along each cell’s principal orthogonal axis, i.e., the axis in object space orthogonal to the 
neuron’s preferred axis that captured the most variance in AlexNet activations (Methods).  
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Figure 4: Neural representation of object stimuli in tree shrew ventral areas reveals optimal 
feature decoding in area V2. (a) Variance of the responses of a representative V2 cell explained 
by individual AlexNet layers. Blue line: explainable variance of the cell. (b) Histograms of 
explained variance by different layers of AlexNet for responses of responsive cells (n = 602) in 
area V2. Blue triangles mark values for the cell from (a). (c) Normalized explained variance by 
AlexNet layers for each tree shrew visual area (Methods). (d) Variance of encoded neural activity 
in different areas explained by individual AlexNet FC6 principal components (PCs) as a 
percentage of explainable variance in that area. (e) Percentage of variance of AlexNet FC6 
features that can be explained by decoding from the neural responses in different areas. (f) Ten 
examples of original images presented to the tree shrew and the images reconstructed from V2, 
V1 and TI-ITi, i.e., closest images to the predicted responses from AlexNet FC6 from an auxiliary 
database of images that were not shown to the animal (Methods). (g) Average decoding distance 
for each tree shrew visual area between AlexNet FC6 activations predicted from neural activity 
and actual activations for each image, normalized by theoretical best decoding distance 
(Methods).  
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Figure 5: Single cells across the tree shrew ventral stream show selectivity for different 
sectors of object space including faces. (a) Projections of 1593 object images onto object 
space (the first two PCs from AlexNet layer FC6) with images from several categories (faces, 
animals, fruits) indicated. (b) Projections of the preferred axes of all cells onto object space. (c) 
Raster plots of several representative face-selective cells (circled in (b)) responding to face and 
object stimuli. The 10 most preferred images for each cell are shown to the left of each raster. 
Arrowheads mark responses to those images. Red line: stimulus onset. Scale bar: 5 ms. (d) 
Raster plots of three representative V2 cells (arrowheads in (b)) with preferred axes in quadrants 
I, II, and IV. Twenty stimuli from each quadrant were randomly chosen to generate raster plots. 
Scale bar: 50 ms. Right: Top five preferred images for each cell. (e) Histograms of t-scores for 
face selectivity across areas.   
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Figure 6: Comparison of object responses between primate and tree shrew ventral stream 
(a) Schematic of recordings in primate. (b) Simultaneous Neuropixels recordings from three 
nodes in macaque monkey cortex. Neuropixels NHP 1.0 probes were inserted into V2, posterior 
IT and anterior IT cortex.: (c) Responses of 330, 320 and 260 cells in V2, posterior IT and anterior 
IT, respectively (rows), to 96 stimuli composed of faces and objects (columns). Only visually 
responsive cells were included (t-test, p<0.05). (d) Percentage of variance of neural responses 
explained by object stimulus identity in each area. (h) Average decoding distance for each visual 
area between AlexNet FC6 activations predicted from neural activity and actual FC6 activations 
for each image, normalized by theoretical best decoding distance (Methods). (f) Histograms of t-
scores for face selectivity across areas. (g) Decoding performance for individual object identity 
(dashed lines) or face identity (solid lines) as a function of number of cells used by the classifier. 
Note the overlap of the two lines for TI-ITi. Black lines indicate decoding performance for face 
identity using only face cells (t-score greater than 5). Dashed gray lines: chance level for object 
decoding. (h) Schematic comparing macaque, tree shrew, and rodent visual systems. 
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Extended Data Figure 1: Anatomical inputs to intermediate (TP) anterior (ITr) nodes of the 
tree shrew ventral pathway. (a) Schematic of injections of retrograde tracer CTβ-488 (green) 
into TP and CTβ-594 (red) into ITr. (b)Two coronal histological sections showing retrogradely 
labeled cells projecting to TP (green) and ITr (red) and counterstained with DAPI (grey). Scale 
bars: 1 mm / 0.5 mm (insets).  
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Extended Data Figure 2: Object responses are largely not accounted by low-level features 
(a) Histogram indicating the average fraction of variance in the firing rate explained by various 
low-level image feature indices. (b) Examples of the 3 images with the lowest (left) and highest 
(right) value for horizontality, internal contrast, circularity and area. (c) Schematic of quantification 
of luminance and contrast impinging on each receptive field. We computed the average luminance 
and contrast (second derivative of luminance) falling inside by the ON and OFF receptive fields 
of each cell, and average across the two. (d) Percentage of variance of neural responses 
explained by object stimulus identity in each area. Dark bars correspond to the part of the variance 
accounted for by luminance impinging each receptive field. (e) Same, but dark bars correspond 
to contrast. (f) Representative objects with increasing high spatial frequency content from low 
(leftmost column) to high (rightmost column). (g) Power spectrum across groups of images in (a). 
(h) Percentage of variance of neural responses explained by object stimulus identity in each area, 
separated into categories based on spatial frequency.  
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Extended Data Figure 3: Representation of different sectors of object space by cells in 
each tree shrew visual area. (a) Aggregate explanatory power of the AlexNet layer that best 
explained each given area. (b) Fraction of variance in the firing rates of individual cells (dots) 
explained by different AlexNet layers plotted against the fraction of the total explainable variance 
in that cell (Methods). (c) Aggregate explanatory power of AlexNet layer FC6 over different areas. 
(d) Absolute correlation between image indexes and the first 10 PCs of AlexNet FC6. (e) Scatter 
plot between the percentage of explained variance by a given feature in V2 neural responses and 
the absolute correlation of that feature with FC6 PC1 activations in AlexNet. (f) Schematic of 
image reconstruction.  
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Extended Data Figure 4: Cells selective to different sectors of object space with no obvious 
topographical organization in object space for each area. (a) Projections of each TI-ITi cell’s 
preferred axis onto the first two PCs of object space (replicated from Fig. 5b). Right: Raster plots 
of three representative TI-ITi cells from quadrants I, II, and IV indicated by letters; twenty stimuli 
from each quadrant were randomly chosen to generate raster plots. Scale bar: 50 ms. Top five 
preferred images for each cell. (b) Same for ITr. (c) All 1593 images projected onto the first two 
PCs of object space. Colored dots: the 100 images that elicited the strongest responses overall 
in each area. (d) Selectivity of cells in each area as a function of recording depth along the 
Neuropixels probe. In each of the six plots, each dot represents one cell, the color of the dots 
indicates the depth at which the cell was recorded (inset, right), and the position of the dot 
indicates the mean projection of the 10 most preferred images onto the first two PCs of object 
space.   
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Extended Data Figure 5: DNN-predicted indices of view invariance are equally high across 
all tree shrew visual areas. (a) Schematic showing workflow for predicting neuron responses for 
a new set of stimuli. 1593 images were passed through AlexNet (top). Activations in AlexNet layer 
FC6 were used to linearly predict neural responses evoked by each image when shown to the 
animal. This yields a weight matrix W that optimally predicts a neuron’s response based on the 
image features F. Next, the weight matrix is used to predict neuron responses to 1224 images 
consisting of 51 objects at 24 views that were not shown to the tree shrew (bottom).  (b) 
Correlations of the ground truth and predicted invariance across cells for primate area V2, 
posterior IT, and anterior IT. (c) Histograms of invariance indices (Methods) of macaque posterior 
and anterior IT neurons, calculated from actual responses (top) and predicted responses 
(bottom). Shading indicates bootstrap resampling; vertical lines indicate medians. (d) Histograms 
of invariance indices of predicted responses across all tree shrew areas. 
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Chapter III 
 

Probing feedforward and feedback pathways in the tree shrew visual cortex with 
electrical microstimulation 

 
Abstract: 
Visual processing occurs along hierarchically organized areas that are reciprocally connected, 
with both feedforward and feedback circuits. These interactions allow higher-order areas to 
modulate and refine sensory input while enabling lower-order areas to influence complex visual 
representations. To investigate the functional properties and connectivity of feedback and 
feedforward neurons, we combined high-density electrophysiological recordings with electrical 
microstimulation in the tree shrew visual cortex. By selectively stimulating primary visual cortex 
(V1) and recording from secondary visual cortex (V2), we identified distinct classes of V2 neurons, 
including feedforward and feedback neurons, based on the directionality of their projections and 
studied their response properties. Our preliminary functional analyses did not reveal any clear 
distinction between feedforward and feedback neurons. Contrary to the idea that feedback 
neurons transmit specialized feature-specific signals1–4, we found that V2 feedback neurons carry 
diverse visual information on par with other V2 neurons. Furthermore, both feedforward and 
feedback cells also carry information about perceptual conflict that arises when distinct images 
are presented to each eye. However, feedback neurons did exhibit few distinct properties, 
including smaller receptive fields and spatial offsets relative to their V1 inputs, potentially enabling 
precise and localized modulation of V1 activity. Overall, these results establish electrical 
stimulation combined with Neuropixels probe recordings as a useful method for distinguishing cell 
classes.   
 
 
INTRODUCTION 
The unique neural computations performed by visual neurons are largely shaped by their inputs 
that convey information about the outside world5. These inputs are received, processed, and 
relayed through neural projections that influence their downstream targets. Much work has 
focused on how information flows along the visual hierarchy in a feedforward direction to construct 
representations of shapes, color, and form6. However, understanding the computations performed 
along each node in the hierarchy must be considered in the context of its interactions with other 
nodes, not just its individual processing. 
 
Tree shrew area V2 is thought to play a major role in form vision as it sits at the gateway to the 
ventral visual stream7. Previous studies have characterized some of the functional properties of 
cells in this area, including sensitivity to orientation, binocularity, texture, and form8–10. However, 
how the cells recorded in these studies fit into the broader hierarchical network remains unclear, 
especially since the directionality of their projections, whether they provide feedback to earlier 
areas (such as V1) or feedforward input to later areas, was not explicitly measured. 
 
In tree shrew and other highly visual mammals, area V2 receives most of its cortical input from 
V1, while also sending strong feedback projections back to V1. Investigating the visual processes 
arising from the interactions between these two areas is challenging, as extracellular recordings 
from a single area cannot determine the target of projection neurons. Feedback connections at 
many stages of the visual hierarchy vastly outnumber their feedforward connections11–13, yet their 
functions remain poorly understood, especially in relation to the feedforward projections. Several 
theories have been proposed to explain the role of feedback in the visual system, including its 
involvement in contextual modulation, error correction, and the integration of information across 
spatial and temporal domains14. Central to distinguishing between these theories is the question 



 

58 
 

whether feedback projections convey functionally specific signals that refine particular aspects of 
visual processing or whether they carry more generalized signals that mirror the diversity of 
feedforward information.  
 
Here, we address this question by systematically examining the response properties of V2 cells 
based on the directionality of their connection with V1 in the tree shrew visual system. Using a 
combination of electrical stimulation and functional characterization, we identified and recorded 
from neurons in V2 that receive inputs from V1 (i.e. feedforward recipient) or project to V1 (i.e. 
feedback). We then compared the responses across the different classes of V2 cells to visual 
stimuli, including static gratings and naturalistic textures. We found that feedback neurons 
exhibited response properties similar to that of other V2 neurons. This finding suggests that 
feedback neurons appear to carry the same diverse visual information processed by other 
neurons in V2. V2 feedback cells did differ with respect to their spatial properties, including smaller 
receptive field sizes and their offset relative to V1. When presenting conflicting naturalistic 
textures to each eye, most V2 cells including feedforward and feedback reduced their responses 
relative to non-conflict conditions. This may suggest that through feedback connections V2 they 
could adjust its V1 inputs in conditions relevant for binocular disparity or visual field mismatch, 
potentially aiding in error correction.  
 
 
RESULTS 
Identification of feedforward and feedback neurons in the tree shrew visual cortex 
To understand vision, it is not only critical to know what signals V1 sends to V2, but also how that 
information is transformed and sent back to modify V1. To address this, we sought to functionally 
classify neurons in V2 based on their connections with V1. Combining high–channel count 
Neuropixels probes15 with bipolar electrical microstimulation in the tree shrew visual cortex 
(Supplemental Figure 1) allowed for selective stimulation of individual neurons extracellularly to 
identify and characterize the functional properties of V2 neurons and the directionality of their 
axonal projections. We electrically stimulated the primary visual cortex (V1) while simultaneously 
recording in the secondary visual area (V2) to disentangle neurons sending feedback signals (i.e. 
antidromic) from those receiving feedforward signals (i.e. orthodromic; Figure 1A). Electrodes 
were anatomically mapped at the end of each experiment to confirm the location of both the 
stimulation site in V1 and the Neuropixels recording site in V2 (Figure 1B). Where electrical 
microstimulation induced an electrical artifact that interfered with V2 recordings, this artifact was 
removed ex post using the SALPA algorithm16 (Supplemental Figure 2; Methods). 
 
To characterize neurons as antidromic (i.e. providing feedback connections to V1), we relied on 
several metrics to determine the direction of the axonal projection for recorded V2 cells17,18. We 
first performed a ramp test by delivering biphasic pulses of increasing current amplitude. Based 
on the ramp test, the antidromic responses were identified using two defining features: (1) the 
temporal jitter of the responses was below 150 μs (Figure 1C, top right inset), well below the 
timing precision of synaptic transmission; and (2) responses to pulses near the activation 
threshold were bimodal, i.e., in each individual trial, the response was either fully present and 
equal to the response at higher currents, or entirely absent (Figure 1C, bottom right inset), in 
opposition to electrical artifacts, which would be expected to scale with stimulus current and be 
present equally in all trials in which the same current was applied. 
 
The second test we performed to determine the directionality of V2 projection cells was a collision 
test19. With this test, the antidromic nature of a response could be confirmed by the occasional 
occurrence of transmission failure due to action potential collision (Figure 1D, Methods). If cells 
met all of our defined criteria in both the ramp and collision test, they were defined as “confirmed 
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antidromic” for all further analyses. For cells not identified as antidromic, we classified cells as 
orthodromic (i.e. receiving feedforward signals from V1) if the responses adhered to a timing 
precision of better than 2.5 ms that occurred in at least 20% of trials, on par with the timing of one 
synaptic transmission.  
  
While this criterion was suitable for cells that had a sufficiently high spontaneous firing rate in 
which the potential for a collision is highly likely, it could limit the classification of true antidromic 
cells with low firing rates. To facilitate the classification of these cells, we applied a free split/merge 
expectation maximization (FSMEM) algorithm that fits a mixture of gaussian onto the responses 
of a neuron to electrical stimulation (Figure 1E). Based on latency and width of all peaks obtained 
using the FSMEM algorithm classification, we found that antidromic and orthodromic neurons 
distinctly clustered into two separate groups (Figure 1F). Orthodromic neurons exhibited spikes 
with latencies and widths typical of feedforward processing, while antidromic neurons showed 
distinct characteristics consistent with feedback signaling. Notably, the cells that qualified as 
potential antidromic based on the above metrics except that they did not have a confirmed 
collision test (i.e. “putative antidromic”) clustered together with the confirmed antidromic cells. 
These putative antidromic cells are low firing and, therefore, may not have an observable collision 
nor do they fail the collision test. The clustering of both confirmed and putative antidromic cells 
further indicate that these are feedback cell projecting back from V2 to V1. In total, our sample 
comprised of 397 orthodromic and 64 antidromic neurons across ten separate recordings (Figure 
1G). Further, we characterized the spike waveforms to ensure that all classified cells were indeed 
V2 cells and not recorded V1 axons located in the V2 (Supplemental Figure 2F). 
 
 
Feedback cells have small receptive field sizes and fast response latencies 
Having characterized the directionality of a subset of V2 cells as antidromic and orthodromic, we 
asked about the characteristics of the unclassified remaining cells. Do these cells exhibit 
differential responses to electrical microstimulation that may suggest they form functional classes 
within the canonical V2 cortical circuity? We identified two additional classes, one that increased 
(i.e. excited) and the other that decreased their firing rate following microstimulation at a latency 
suggestive of multi-synaptic connections (i.e. inhibited). Altogether, we identified four classes of 
V2 cells: antidromic, orthodromic, excited, and inhibited (Figure 2A-B). These classes were 
located in two distinct spatial location along the depth of the probe; the antidromic and inhibited 
were shallower while the excited and orthodromic were located deeper in the cortex (Figure 2C).  
 
We next asked how these identified classes of cells responded to visually stimuli in the absence 
of microstimulation. All classes, except for the inhibited cells, were visually driven as they 
displayed a significant increase in their firing rate to visual stimuli as compared to darkness (i.e. 
spontaneous; Figure 2D). To be able to compare V2 responses to that of their V1 inputs, we 
recorded multiunit activity from the V1 electrode when it was not used for microstimulation. This 
allowed us to characterize population-level responses of V1 neurons at the site of stimulation by 
calculating the instantaneous energy (Methods) in V1 to visual stimuli (for e.g. static gratings; 
Figure 2E). This confirmed significant visually driven responses.  
 
We next asked whether the V2 feedback neurons represent a functionally distinct population that 
differs in their visual response properties from the rest of the V2 population. Do they have 
distinctive receptive field properties, and how do they map spatially to their V1 inputs? In the 
absence of electrical stimulation, we mapped the receptive fields of the V1 multiunit activity and 
V2 neurons in by presenting a locally sparse noise stimulus (Methods; Figure 2F). We measured 
receptive fields of single neurons by fitting a gaussian distribution to the two-dimensional matrix 
of spike counts at each location of the visual field; ON and OFF receptive fields were computed 
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separately using responses to white and black squares, respectively. We mapped the V2 neurons 
receptive field locations relative to the location of the receptive field of V1 multiunit activity (shown 
in Figure 2E). The V2 receptive fields for all classes, including the antidromic, were not completely 
overlapping with the V1 receptive field. Rather, they were offset relative to the V1 receptive field 
(examples in Figure 2G) as would be expected from previous work20,21.  
 
A modest majority of visually responsive cells had clear receptive fields. Orthodromic and excited 
cells were more likely to have RFs than did inhibited cells. Of the antidromic cells, fewer than half 
had measurable receptive fields (Figure 2H). Surprisingly, for antidromic cells that did have 
receptive fields, those receptive fields were smaller than those of any other class of V2 cells 
(Figure 2I). This result may suggest that feedback cells are likely more similar to that of V1 which 
may be important for modulating their activity in a highly spatially restricted manner. 
 
 
Cell class defined by responses to electrical stimulation is predictive of responses to 
binocular conflict stimuli 
Binocularity is an important feature of V2 cells across species22–25. This information is thought to 
arise both from feedforward V1 binocular neurons and other cortical inputs. We therefore asked 
whether our four classes of cells differ in their binocularity. The tree shrew visual cortex is 
topographically organized with the binocular zone corresponding to the central visual field25. 
Therefore, we targeted our recording sites to this region as determined by the location of receptive 
fields in the center of the screen (c.f. Figures 2F-G). We then presented images including static 
grating and textures through custom-made anaglyph goggles that allowed for the independent 
control of visual input to each eye (Figure 3A). 
 
In response to gratings or textures presented to both eyes, we did not observe strong difference 
in the variance explained across the different classes of V2 cells, with the exception of the 
inhibited group which was consistently lower (Figure 3B-C). This suggests that overall, there was 
no observable difference in their feature-selectivity. When gratings were presented to only one 
eye at a time, the vast majority of cells of all cell types responded nearly equally whether those 
stimuli were presented to the ipsilateral (ipsi) or the contralateral (contra) eye (Figure 3D, left 
“G”). In contrast, when texture stimuli were presented in the same way, the preference for 
ipsilateral or contralateral presentation was more varied, and was biased toward ipsilateral in all 
types except the “inhibited” cells (Figure 3D, right “T”). Given that V1 is generally biased toward 
contralateral inputs, this may be interpreted that the more complex texture stimuli require more 
V2 processing.  
 
We calculated a binocular preference index by comparing binocular responses to the sum of the 
ipsi and contra monocular responses. Overall, a large majority of cells in all classes, except 
inhibited, predominately had binocular responses, that is their responses was greater than the 
preferred eye (Figure 3E, F; more than 50%, congruent binocular preference). However, only the 
orthodromic cell class contained a subpopulation of cells the exhibited “strongly binocular” 
responses, that is, their binocular response was great than the sum of the monocular responses 
(Figure 3F; more than 100%). This is consistent with previous findings in macaque suggesting 
that V1->V2 projecting cells are more strongly binocular than those that receive feedback from 
V226.  
 
Of note, the V2 location we recorded from had a disproportionately high number of ipsilateral 
preferring cells while the V1 area we stimulated predominately consisted of contralateral cells. 
The tree shrew visual cortex includes a representation of ipsilateral visual field that is highly 
compressed relative to that of the contralateral27,28. Our data using microstimulation to map V1-
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V2 connections therefore suggests that the contralateral V1 sends and receives connections with 
the ipsilateral V2. Since we observed in V2 a strong ipsilateral bias, this suggests that in addition 
to our observed V1 contralateral inputs these cells must converge additional sources of inputs 
about the ipsilateral eye.  
 
A potential hypothesis for the function of feedback projections is that they may provide information 
to upstream regions under conditions of conflicting signals29. Thus, binocular responsive neurons 
in V2 that converges information from both eyes may function in resolving conflict when different 
types of stimuli are presented to each eye. Using the anaglyph googles, we next presented 
conflicting stimuli with different visual stimuli to each eye: either static gratings or textures. We 
compared the responses under conditions with conflict binocular presentations to that of coherent 
binocular presentations. No strong difference was observed for gratings under conflict (Figure 
3E, F offset from the diagonal). Surprisingly, many cells across all classes, except inhibited, were 
suppressed by conflict for texture (Figure 3G).  
 
 
 
DISCUSSION 
Our data demonstrate that V2 neurons in the tree shrew visual cortex can be classified into distinct 
anatomical and functional subtypes based on their responses to V1 stimulation. These findings 
highlight the complexity of visual information processing across feedforward and feedback 
pathways, shedding light on the interplay between local computations in V2 and their influence 
on V126. The structure and organization of the cortical hierarchy must be understood within the 
framework of feedforward and feedback circuitry in the visual system13. At each stage, visual 
processing involves increasing abstraction and integration of information. Theories about 
feedback connections propose that feedback neurons might carry unique, feature-specific 
information computed in downstream areas to refine feedforward processing11,14. Adding to this 
body of work, our results show that V2 feedback neurons exhibit functional properties that align 
closely with other V2 neurons across a battery of visual stimuli. This suggests that the information 
conveyed back to V1 represents the diversity of visual information processed in V2 rather than a 
subset of specific features. In this sense, V2 feedback neurons may contribute to maintaining a 
holistic representation of V2 activity within V1 rather than transmitting specialized signals. 
 
Despite their functional similarities, V2 feedback neurons exhibited distinct spatial properties 
compared to feedforward neurons. The receptive field properties of a neuron arise from the type, 
number and location of its inputs30. This is apparent along the visual hierarchy as small receptive 
fields tuned to simpler stimuli are combined along successive stages to form larger receptive 
fields tuned to more complex stimuli31. However, our findings indicate that V2 feedback neurons 
have smaller receptive fields than their V2 counterparts and rather more closely match their V1 
inputs. This suggests that they contain higher-resolution information and can exert a spatially 
restricted influence on V1. Our data agree with the numerosity of these feedback projections as 
they densely tile visual space and visual features. We also found that the location of this feedback 
receptive field is offset relative to its V1 feedforward input, likely corresponding to the surround 
as has been shown in previous studies20. Through this organization, V2 excitatory neurons can 
suppress or potentially facilitate the responses of V1 neurons32. 
 
The visual cortex contains binocular fields that function to construct three-dimensional 
representations by aligning the features from the two eyes and computing visual depth through 
stereopsis33. The matching process first emerges in V1 and is further elaborated in V226,34,35. 
However, presenting different stimuli to each eye prevents this matching and results in an 
alternating visual perception between the two competing stimuli known as binocular rivalry36. 
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When presented with conflicting texture stimuli across the two eyes, tree shrew V2 neurons, 
including feedback cells, were suppressed. The suppressive effect may be computed at the level 
of V2 or could arise in V2 from top-down processing. This V2 conflict-induced suppression can 
directly influence V1 processing via V2 feedback neurons, possibly contributing to error correction 
or top-down resolution of visual conflict.  
 
Notably, V2 cells were predominately ipsilaterally dominant (i.e. higher responses to ipsilateral 
visual stimuli than contralateral). In contrast, the connected V1 stimulation site was contralaterally 
dominant. This suggests that visual information in these V2 neurons is not solely inherited from 
these V1 inputs but is likely also derived from other cortical or subcortical sources. Our findings 
suggest a unique role for V2 neurons to modulate the opposite eye representation in cases with 
contradictory visual inputs. Whether this feedback contributes to the suppression of conflicting 
binocular representations as has been observed in cases of strabismus37,38 requires further 
investigation.  While our findings reveal new insights into the functional diversity of V2 neurons 
and their interactions with V1, they also raise questions about the specific mechanisms by which 
feedback influences are integrated into the broader visual processing hierarchy. Future studies 
should investigate the role of V2 feedback in the resolution of perceptual conflict, exploring how 
these neurons contribute to the coherence and stability of visual experience.  
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METHODS 
EXPERIMENTAL MODEL AND SUBJECT DETAILS 
All experimental procedures were approved by the Caltech Institutional Animal Care and Use 
Committee and conformed to local and US National Institutes of Health guidelines, including the 
US National Institutes of Health Guide for Care and Use of Laboratory Animals. Tree shrews 
(Tupaia Belangeri) used in this study (n=3), both male and female, were 6 months to 2.5 years 
old and weighted between 150 to 300 g. Animals were singly housed in a 12-hour light/dark cycle 
in the animal room. Their food and water aliquots were given ad libitum. 
 
No statistical methods were used to predetermine sample size. The experiments were not 
randomized, and investigators were not blinded to allocation during experiments and outcome 
assessment. 
 
 
EXPERIMENT 
Surgeries  
Tree shrews were injected with a preoperative dose of dexamethasone (5 mg/kg, subcutaneously 
(s.c.)) and mannitol (1 mg/kg, s.c.) to reduce swelling. Animals were anesthetized with a cocktail 
of fentanyl, midazolam, and dexdomitor (FMD, fentanyl 0.05 mg/kg, midazolam 5.0 mg/kg, 
dexdomitor 0.25 mg/kg, s.c.), shaved, and positioned into a stereotaxic frame. Topical lidocaine 
gel (2%) was applied on the head and ears to prevent discomfort from ear-bars and eye lubricant 
was used to maintain hydration and clarity of eyes during surgical procedures. Levels of 
anesthesia, breathing, SpO2, and heart rate were monitored throughout the entire procedure and 
body temperature was maintained with a heating pad at 37.5° C. An incision on the scalp was 
performed and both skin and muscles were retracted. The exposed skull was levelled using the 
stereotaxic device with respect to bregma and lambda (pitch, roll, and yaw). After alignment, 
locations of the craniotomies for electrophysiological recordings were marked on the skull and a 
custom stainless steel headplate was secured to the skull using clear C&B Metabond (Parkell). A 
layer of Kwik-Cast (World Precision Instruments) was added on top the skull and a 3D printed 
custom cap was secured to the headplate to protect the brain and keep debris out. The anesthesia 
was reversed with an injection of atipamezole-flumazenil (atipamezole 1.25 mg/kg, flumazenil 
0.25 mg/kg, s.c.) and the animal was recovered for at least 3 days before following procedures 
and recordings. One day before electrophysiological recordings in a new brain location, tree 
shrews were once again anesthetized and monitored as described above. Using the marked 
locations on the skull, small (up to 1.5mm of diameter) craniotomies were drilled and durotomy 
was performed. Through a small hole situated anterior of bregma, a 32 AWG chlorinated silver 
wire (A-M system) with a pre-soldered gold pin was implanted just above the brain surface and 
cemented to the skull to provide chronic grounding. A drop of silicone oil (30,000 cSt, Aldrich) was 
added over the holes to prevent the brain from drying, a new layer of Kwik-Cast was applied on 
top of it, and the 3D printed custom cap secured to the headplate. Anesthesia was reversed and 
the animal was recovered as previously described. 
 
Electrophysiological recordings  
All electrophysiological recordings were made using high channel-count, silicon, “Neuropixels 1.0” 
probes configured to always acquire from the first 384 electrodes closest to the tip, providing a 
3.84 mm of tissue coverage. The reference and the ground contacts on the Neuropixels probes 
were permanently soldered together. Recordings were made using an external reference 
configuration achieved by connecting the probe reference to the chronically implanted silver wire 
on the skull which conductivity was routinely checked before recording with a multimeter. Each 
Neuropixels was mounted on a 3-axis micromanipulator (New Scale Technologies) that was in 
turn mounted on the underside of a semicircular platform, allowing simultaneous insertion of up 
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to four probes at different angles. Before the first insertion of a probe in a new location, DiI (1 mM 
in ethanol) was used to coat the shank, allowing subsequent probe track localization during ex 
vivo imaging. Neural signals were acquired at 30 kHz using Open Ephys software 39. After the tip 
of each probe touched the surface of the brain, they were lowered to target at an average speed 
of 100 μm/min to avoid damage and let them settle for 15 minutes after reaching the target depth. 
Cameras were used to monitor animals during experiments and to ensure a continuative viewing 
of the visual stimuli presented during neural signals acquisition. After each recording experiment, 
probes were slowly retracted and immersed in 1% Tergazyme solution to remove tissue and 
silicone oil residues. 
 
Histology 
After electrophysiological recordings or tracer expression, histological verification was performed 
for all tree shrews. Tree shrews were given Ketamine + Xylazine and perfused transcardially with 
0.9% saline, followed by 4% paraformaldehyde (PFA) in 1X PBS. Brains were extracted and post-
fixed overnight in 4% PFA at 4°C. The brains were then transferred to 30% sucrose for 
cryoprotection and sectioned coronally at 100 μm on a cryostat (Leica Biosystems). Sections were 
washed with 1xPBS and then incubated for 30 minutes at room temperature in in DAPI/PBS (0.5 
μg/ml) for counterstaining. Sections were then mounted on slides and imaged with an 
epifluorescence microscope (Olympus VS120). 
 
 
VISUAL STIMULATION 
Visual stimuli presentation 
Visual stimuli were generated and presented using custom Python scripts. Head-fixed tree shrews 
passively viewed a battery of visual stimuli displayed using a ViewSonic monitor (70x39 cm, 60 
Hz refresh rate, 1,920 × 1,080 pixels). The monitor was centered in front of the animals at 25 cm 
distance. Stimuli were presented at 3 Hz, 167 ms of image presentation interleaved with 167 ms 
of a grey screen. Three classes of visual stimuli were used in each experiment: static gratings, 
naturalistic textures and noise, and 1593 objects. In addition, “local sparse noise” stimuli were 
used to map neurons’ receptive fields. 
 
Local Sparse Noise  
The screen was divided into a grid of 4x3 squares. In consecutive frames (100 ms), sparse white 
or black dots (5 degrees square) were presented, one dot in each grid square. The locations of 
the dots within each rectangle were pseudo-randomly distributed to avoid spurious correlation 
between distant parts of the visual field40. To avoid interference between reconstruction of “On” 
and “Off” RFs, each presented stimulus frame comprised either all black or all white dots on a 
grey field. A reduced version of this stimulus (with fewer frames) was used at the beginning of 
each experiment and analyzed immediately to allow placement of “faces and objects” stimuli in 
the centroid of the receptive fields for that recording session. 
 
Static Gratings  
We presented full field sinusoidal gratings, varying in orientation (6 evenly spread angles), spatial 
frequency (5 values between 0.1 and 1.6 cycles/degree), and phase (4 positions), for a total of 
120 different stimulus conditions. Each image was presented 5 times. 
 
Naturalistic textures 
We presented images from two subclasses: naturalistic textures and a control set comprising 
spectrally matched noise. The naturalistic textures images were organized as 15 families of 5 
similar images. Texture images reproduced the statistical dependencies found in natural texture 
scenes1. Each of the 150 images in the stimulus set was presented 5 times. We used two types 
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of visual stimuli similar to ones previously used in primate studies: one set consisted of 15 families 
of texture images each comprising 5 closely related image samples of the same texture. These 
images reproduced statistical dependencies found in natural texture scenes41,42. A control set 
consisted of noise images spectrally matched to each of the texture families. 
 
 
ELECTRICAL STIMULATION 
Electrical stimulation experiment 
A bipolar platinum/iridium electrode (100 kΩ, blunted tip, Microprobes for Life Science, 
Gaithersburg, MD) was inserted into V1 to electrically stimulate both V1 neurons orthodromically 
and V2 neurons antidromically. Neural activity was simultaneously recorded in V2 with a 
Neuropixels probe. To electrically excite regions around the electrode, biphasic pulses (200 μs 
duration per phase, 50 to 450 μA) were delivered using a custom-built isolated pulse stimulator 
(manuscript in preparation). 
 
Artifact removal 
The electrical artifact arising during electrical stimulation and simultaneous recording of signals 
from a silicon probe was removed offline using the SALPA algorithm16. Together with a careful 
choice of stimulation waveforms, this nonlinear digital filter enabled the detection of spikes as 
early as 1 ms after stimulation. 
 
 
DATA ANALYSIS 
Preprocessing and Spike sorting 
Neural signals from electrophysiological recordings were preprocessed by subtracting the median 
calculated within each group of 24 channels from the data to eliminate common-mode noise. The 
median subtracted data was sent to Kilosort2 which in addition to the group median subtraction 
applied a high-pass filter (150-Hz), followed by whitening in blocks of 32 channels. All spike data 
were sorted using the off-line spike sorting algorithm Kilosort243. The cluster automatically labelled 
by Kilosort algorithm as “good” were in turn manually curated by hand and further analyzed with 
Phy2. 
 
Visually responsive cells 
A cell was deemed responsive to a particular class of stimuli (either gratings, textures, and noise, 
or faces and objects) if its average firing rate in the 100 ms following stimuli of that class exceeded 
the expectation value based on a Poisson model trained on the firing rate in the 50 ms before all 
the stimuli of that class. To be included in the “responsive fraction” in figures 3b, 4b, and 5b, a 
cell’s average response had to exceed the baseline by at least 5 standard deviations. For the 
“faces and objects,” the total time elapsed between the first and the last of the 10 blocks of visual 
presentations was so long that stability of responses was a concern. Accordingly, we additionally 
preprocessed these data to analyze only those blocks in which the responses were stable for a 
given cell. For each block, we extracted the average waveform of all the spikes from the given 
cell and calculated its peak-to-peak amplitude. We then picked the third largest amplitude among 
the blocks and set an amplitude threshold at 0.6x this value. We counted for each block the 
number of individual spikes with amplitudes exceeding this threshold. We calculated the mean 
and standard deviation of these counts among blocks, and excluded from analysis any block in 
which the count was over two standard deviations below the mean. In all cases except Figure 1e, 
results are expressed as a percentage of visually responsive cells, i.e., of cells that respond to 
any of the stimulus classes. 
 
Receptive field analysis 



 

66 
 

The receptive field size, amplitude, and quality was obtained by first calculating a 2D histogram 
of spike counts at each of 576 locations on the monitor (32 x 18 matrix). We modeled these 
histograms as a 2D Gaussian peak on top of a constant baseline. To prevent overfitting, the shape 
of the Gaussian was forced to be circular rather than elliptic. A cell was considered to possess an 
(“ON” or “OFF”) receptive field if the number of spikes within the Gaussian peak exceeded 
expectation from a null model. Specifically, we calculated the expected number of spikes that 
would be elicited by (“ON” or “OFF”) stimuli within a 10-degree radius from the center of the 
Gaussian under the null model of the baseline as well as the actual number of spikes elicited by 
stimuli within that same area. The number of standard deviations by which the actual number of 
spikes exceeded the null expectation was considered the “quality” of the RF. Only cells with RF 
quality greater than 5 were considered to possess an RF.  
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Figure 1: Combining Neuropixels recording with bipolar electrode stimulation enables 
identifying feedforward and feedback neurons.  
(A) Schematic of circuit under study in the tree shrew visual cortex. Electrical stimulation with Pl/Ir 
bipolar electrodes in primary visual cortex V1. Recording with Neuropixels probe in secondary 
visual area V2. The blue V2 cell receives feedforward signals from V1; the pink V2 cell sends 
feedback signals to V1. 
(B) Coronal section illustrating placement of stimulating and recording electrodes in V1 and V2 
respectively, marked with DiI (red). Scale bar: 1 mm.  
(C) Ramp test for an example V2 neuron. Raster plot of responses of a representative cell to 
biphasic pulses of increasing current amplitude. High-current pulses (above the threshold 
necessary to evoke an action potential) activate the cell 100% of the time (top right inset). Near-
threshold pulses activate the cell unreliably (i.e., only in a fraction of trials; bottom right inset). 
Scale bars: 2 ms.  
(D) Collision test for an example V2 neuron. Electrically evoked spikes occurred, on average, at 
+Δt (blue bar) relative to the electrical pulse (yellow bar). A subset of trials is plotted in which the 
cell fired spontaneously around the time of the pulse. (Trials are sorted in order of time of 
occurrence of spontaneous spikes.) When a spontaneous action potential occurs in the interval 
[−Δt, +Δt] (shaded region) it collides with the electrically evoked action potential in the axon, which 
then does not reach the soma, resulting in the absence of a recorded spike at +Δt.  
(E) Example of a V2 orthodromic cell (top) and a V2 antidromic cell (bottom), classified using 
FSMEM [an algorithm that fits a mixture of gaussian onto the responses of a neuron to electrical 
stimulation] (see STAR Methods). Dots: recorded spikes; shading: fitted mixture of gaussians. 
(F) Scatter plot of the latency and width of all peaks obtained using FSMEM. Blue: putative 
orthodromic neurons. Red: antidromic cells with confirmed collision test. Pink: putative antidromic 
cells with spontaneous firing rate too low for applying the collision test. 
(G) Number of orthodromic and antidromic cell identified across 10 recordings.  
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Figure 2: Feedback cells have the smallest receptive fields of all classes of V2 cells. 
(A) Recorded cells can be classified into several categories based on their responses to electrical 
stimulation: Orthodromic (blue) and antidromic (red) as in Fig. 1; excited (green) are non-
orthodromic cells in which neuronal activity increased after electrical pulses; inhibited (yellow) are 
cells in which neural activity decreased after electrical pulses. 
(B) Experimental configuration: Presentation of a battery of visual stimuli to a head-fixed tree 
shrew with a Neuropixels probe in V2 and a Pt/Ir stimulation electrode in V1. 
(C) Range of spontaneous and visually evoked firing rates for each class of cells. Boxes 
represents 25th, 50th, and 75th percentiles; whiskers 5th and 95th (also in G and H).  
(D) When not actively used for stimulation, the V1 electrode can be used to record multiunit activity 
from V1. Schematic illustrating electrophysiological recording from the electrode in V1 and actual 
instantaneous energy in V1 for gratings presentations. Scale bar: 10 ms.   
(E) Example receptive field (RF) of V1 multiunit activity (grayscale map) with sizes and positions 
of V2 RFs overlaid. Colors represent V2 cell classes as in A and C. Scale bar: 20 degrees.  
(F) Percentage of cells within each class that had a defined RF.  
(G) RF size distribution within each class.  
(H) Distance of the RF center for each cell from the V1 center of mass in the same experiment.  
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Figure 3: Cell class defined by responses to electrical stimulation is predictive of 
responses to binocular conflict stimuli. 
(A) Experimental configuration: Presentation of static grating or naturalistic texture stimuli to a 
head-fixed tree shrew with anaglyph googles while recording in V2 and stimulating in V1.   
(B) Percentage of variance of individual cells’ responses explained by orientation of gratings.  
(C) Same, but for naturalistic texture stimuli. 
(D) Laterality of individual cell’s responses for stimuli presented to the contralateral versus 
ipsilateral eye. 
(E) Responses to static gratings presented to both eye that were either matching (congruent 
binocular preferring) or not (conflict binocular preferring). 
(F) Same, but for naturalistic texture stimuli.  
(G)  Relative response to conflict compared to that in congruent conditions.   
(H) Summary schematic of findings.  
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Figure S1: High current electrical microstimulator. 
(A) Schematic illustrating the simultaneous electrical stimulation and Neuropixels recording setup.  
(B) Simplified schematic of our stimulator: A Teensy microcontroller is used to independently set 
the current through a bipolar pair of Pt/Ir microelectrodes. 
(C) Detail of transimpedance amplification. The voltage from the DAC is mirrored across R1, 
setting the current through the electrode.  The instantaneous electrode voltage and current is 
monitored at VELC and IELC respectively. A digital switch (S1) reduces noise coupling when the 
stimulator is not delivering current pulses.  
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Figure S2: Oscilloscope traces. 
(A) Oscilloscope traces of electrode voltages and currents in each of the paired electrodes during 
a bipolar monophasic current pulse in saline. 
(B) Same for a biphasic stimulus. 
(C) Results of a current pulse delivered to a pair of 100-kOhm resistors rather than Pt/Ir 
electrodes. 
(D) Same, but using 1-nF capacitors. (The triangular current pulse on the right is not delivered to 
the electrode, but results in the monitor circuit from opening switch S1.) 
(E) Examples of electrode traces before (top) and after (bottom) electrical artifact suppression 
with SALPA.  
(F) Traces for somatic (left) and axonal (right) action potentials recorded with Neuropixels probe. 
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Chapter IV 
 

FUTURE DIRECTIONS 
 

We have shown that the tree shrew carries a compressed hierarchy for form processing compared 
to primates, in which key functions of primate posterior IT cortex are already carried out by area 
V2. Future studies are needed to understand the processing of these object responsive cells in 
tree shrew V2 with regards to its connections with lower and higher areas in the hierarchy1–3. 
What areas does V2 send outputs to? Is V2 able to directly control downstream motor areas in 
the tree shrew? Furthermore, while we did not find prominent object selectivity in areas anterior 
to V2 in the tree shrew, this begs the question, what is the function of these areas? Are they 
involved in multi-modal processing1? Future studies exploring tuning in these areas in naturalistic, 
multi-modal environments may shed new light on these areas.  
 
We found that combining electrical microstimulation and high-density Neuropixels probes is an 
effective method for identifying the directionality of projections within a surveyed area. Given the 
broad applicability of these tools4, it can be applied across species in tree shrews and primates. 
This opens the way to directly test the role of feedforward and feedback in both species for the 
for construction of visual percepts. For example, theories of conscious perception posit that 
feedback is necessary to resolve ambiguity5,6. The method we have developed now allows us to 
address the specific representation carried by feedback neurons, to directly test this hypothesis.  
 
Zooming out, we have identified one interesting new point in the evolution of the primate visual 
system. It would be very useful to have additional points. For example, what is the functional 
organization of the ventral stream in mouse lemurs7,8, a prosimian species more closely related 
to macaques evolutionarily? Furthermore, how do the visual processing capabilities of each 
species support the behaviors necessary for each species’ ecological niche? In this thesis, 
experiments were all done under passive fixation, but relating neural circuits to behavior would 
be a major next step. Through such a program, we can gain a much deeper understanding of the 
evolution of form vision.  
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