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ABSTRACT

Computers have revolutionized almost every facet of modern society, and as we ap-
proach the physical limits of digital electronics, it becomes imperative to investigate
alternative computing hardware paradigms to enable the next generation of faster
and more energy-efficient computers. This thesis embarks on building the foun-
dation for a new kind of computer, based on ultrafast nonlinear photonics, aiming
to overcome some of the limitations plaguing current computers. In particular, we
primarily focus on the clock rate, which has stagnated at ∼ 5 GHz for conventional
microprocessors over the past two decades.

We begin by identifying single nonlinear devices in lithium niobate nanophotonics
that can act as essential building blocks for computers, showing a variety of nonlin-
ear functions with operational speeds > 13 THz for artificial intelligence computing
workloads. Then, we progress to small-scale photonic computing circuits combin-
ing both strong nonlinearity and memory feedback in a physical reservoir computer
for temporal information processing with ∼ 10 GHz clock rates. Additionally, we
explore unconventional computer architectures such as Cellular Automata, which
reveals key system-level considerations that maximize the benefits of ultrafast non-
linear photonics in large-scale computers. This culminates in the demonstration
of truly end-to-end and all-optical computing with > 100 GHz clock rates, which
represents over an order-of-magnitude advancement compared to existing electronic
computers. Finally, we prove mathematically how coupled nonlinear optical res-
onators are Turing-complete computers.

Overall, this work builds on the recent advances in nonlinear photonics and high-
lights a path for a new class of ultrafast photonic computers that can surpass the clock
rate and latency limits of electronic computers, hence enabling nascent applications
requiring real-time control or information processing at picosecond timescales.
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C h a p t e r 1

INTRODUCTION

“It would appear that we have reached the limits of what it is possible to
achieve with computer technology, although one should be careful with
such statements, as they tend to sound pretty silly in five years.”

— John von Neumann (ca. 1949)

1.1 Overview
The invention of general-purpose programmable computers during the 20th century
propelled humanity into the current Information Age. Indeed, computers have rev-
olutionized almost every facet of modern society, including the ways in which we
work, communicate, travel, educate, and entertain, among countless other impacts
on our everyday lives. This is evidenced by the world’s insatiable demand for in-
formation technologies, which has driven a never-ending quest for faster computer
hardware — beginning with early mechanical computers such as the Z1 [1], then pro-
gressing to electronic computers constructed from vacuum tubes such as ENIAC [2],
and finally maturing into today’s central processing units (CPUs) [3] consisting of
billions of integrated silicon transistors. Each dramatic increase in computing speed
throughout history has yielded innumerable new applications and innovations which
were previously computationally infeasible. Now, in the 21st century, we continue
to witness the widespread adoption of personal computers and smart devices such
as smartphones, proliferation of the Internet and cloud computing, and advent of
artificial intelligence (AI) [4]. As we approach the fundamental physical limits of
digital electronics, it becomes imperative to investigate alternative paradigms to
enable the next generation of faster and more energy-efficient computers. This will
require a radical departure from the status quo to ensure that computers continue to
impact positive change for society long into the future.

This thesis embarks on an ambitious journey to develop an entirely new kind of
computer from the ground up based on ultrafast nonlinear optics and photonics,
which can overcome some of the limitations plaguing current electronic comput-
ers. The results presented in this thesis span the entire gamut of computer science
and engineering; starting from applying the physics of nonlinear optics to enable
single devices that act as building blocks for photonic computers, then assembling
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these photonic devices into small-scale computing circuits, followed by building
unconventional system-level computer architectures that maximize the benefits of
nonlinear photonics, enabling nascent ultrafast computing applications, and finally
proving fundamental limits associated with large-scale nonlinear photonic comput-
ers. The remainder of this thesis is organized as outlined below.

In Chapter 1, some key computational trends over recent decades are explained,
which provides the impetus for the remainder of this thesis. In particular, this thesis
is primarily concerned with the computational clock rate, which is an important
hardware metric that ultimately determines the minimum time between sequential
operations or instructions in a computer. The key takeaway is that despite expo-
nential advances in electronic computer performance owing to Moore’s Law and
increasingly parallel system architectures, computer clock rates have remained stag-
nant at ∼ 5 GHz for almost two decades, which highlights a unique opportunity
for a new class of ultrafast photonic computers. Additionally, the applications of
time-multiplexing and parametric nonlinear photonics to computing are reviewed
since they are essential concepts that will feature heavily in the following chapters.

Chapter 2 describes how an optical parametric amplifier can act as the elusive and
previously absent nonlinear optical element for photonic computers, akin to how the
transistor serves as the fundamental nonlinear element in digital electronic comput-
ers. Although optics and photonics excels at linear operations, most special-purpose
photonic processors lack nonlinearity, which is an essential ingredient for general
computation. Recent advances in thin-film lithium niobate nanophotonics, ultrafast
𝜒(2) nonlinear optics, and ultrashort laser pulses are exploited to demonstrate the
example application of nonlinear activation functions for deep learning. A record-
breaking energy-time product of ∼ 1.2 × 10−27 J · s per activation with > 13.3 THz
operational clock rate is achieved, which is a staggering three orders-of-magnitude
improvement over electronic counterparts. This enables the exciting possibility of
truly end-to-end and all-optical neural networks for emerging AI applications.

Chapter 3 continues the theme of ultrafast 𝜒(2) nonlinear optics in thin-film lithium
niobate nanophotonics by moving from single photonic devices to small-scale com-
puting circuits. An optical parametric oscillator combines the strong nonlinearity of
optical parametric amplifiers introduced in the previous chapter with optical cavity
feedback for memory, which is another essential ingredient for general computation.
It is shown how the nanophotonic optical parametric oscillator acts as an on-chip
and resource-efficient reservoir for time-multiplexed reservoir computers, which are
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a special type of random recurrent neural network. Important applications to time-
series forecasting and optical signal processing are demonstrated with ∼ 10 GHz
clock rates and sub-nanosecond latencies, which exceeds the speed of existing digi-
tal electronic computers. This represents a significant milestone towards large-scale
integrated photonic neural networks with both ultrafast nonlinearity and memory
capabilities.

Chapter 4 initiates a foray into unconventional computer architectures that can
maximize the benefits of photonic computers and minimize potential drawbacks by
taking into account fundamental system-level differences between digital electron-
ics and analog photonics. A time-multiplexed optical fiber network, as opposed
to small-scale photonic integrated circuits in previous chapters, is used for rapid
prototyping of large-scale computing systems. Cellular automata, which is a class
of computational models based on simple rules and local interactions, are imple-
mented directly in the special-purpose photonic computer for simulating complex
phenomena such as fractals, chaos, and solitons. Howevever, this approach is only
a stepping stone towards the ultimate goal of an ultrafast all-optical computer since
it still utilizes a hybrid optoelectronic nonlinearity and memory. Nonetheless, it
demonstrates the crucial first step of how photonic computers utilizing ultrashort
laser pulses can achieve universal computation.

Chapter 5 improves upon the results of the previous chapter by replacing the op-
toelectronic nonlinearity with an ultrafast 𝜒(2) optical nonlinearity. The cellular
automata concept is combined with modern deep learning techniques to create a
photonic implementation of neural cellular automata. This novel approach alleviates
some difficulties associated with previous photonic neural networks by delivering
robust, reliable, and parameter-efficient information processing. It performs image
classification tasks, achieving a total image inference time as low as ∼ 1.3 𝜇s, which
is over an order-of-magnitude faster than current state-of-the-art graphics processing
units (GPUs). These results further highlight the need for unconventional architec-
tures and system-level considerations in next-generation photonic computers.

Chapter 6 showcases the first truly end-to-end and all-optical computer with ultrafast
clock rates > 100 GHz. This represents the culmination of all the experimental
work presented in this thesis and combines lessons learned from all the previous
chapters. It utilizes a time-multiplexed network of ultrashort laser pulses with
linear optical operations, 𝜒(2) nonlinear optical activations functions, and memory
feedback implemented directly in the optical domain. The end result is an all-
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optical recurrent neural network with no electronic bottleneck, operating at clock
rates over an order-of-magnitude faster than any existing digital electronic computer.
This new ultrafast computer based on nonlinear photonics can therefore serve as a
key enabling technology for a myriad of nascent applications requiring information
processing and control at picosecond timescales, which was previously impossible
for electronic computers. It is the first in a new class of large-scale, all-optical and
ultrafast computers that will irrevocably change the ways in which we compute.

Finally, Chapter 7 explores the theoretical limits of nonlinear photonic comput-
ing. Techniques from computability theory are applied to mathematically prove
that networks of coupled nonlinear optical resonators are Turing-complete, which
endows them with much greater computational power than previously realized.
Moreover, the minimum threshold of photonic hardware complexity needed for
Turing-completeness is surprisingly low, requiring as few as 𝑁 = 12 optical pulses.
This poses interesting problems of undecidability in the study of coupled nonlinear
optical resonators and ultrafast optical science more broadly. The valuable insights
developed can serve as a theoretical foundation for future ultrafast computers based
on nonlinear photonics.

1.2 Recent Computational Trends
The most important and reliable trend governing the semiconductor industry over
the past half-century is Moore’s Law. In 1965, Gordon Moore made the empirical
observation that the number of transistors integrated on a computer microprocessor
chip doubled every year [5]. This doubling rate was later revised to once every
roughly two years, and has held remarkably steadfast since 1975. Therefore, simply
by waiting a few years, one can expect exponential increases in computer perfor-
mance owing to increasingly higher transistor density counts. Moore’s Law has
become a self-fulfilling prophecy that heavily informs the design of new CPUs.

For example, Table. 1.1 shows the forecasts made by the 2003 International Tech-
nology Roadmap for Semiconductors (ITRS) [6] around the turn of the century. It
was expected that the physical gate length of transistors would continue to shrink
and the number of transistors would continue to increase exponentially with each
new generation as per Moore’s Law. Simultaneously, a commensurate increase in
the CPU clock rate and power dissipation was also expected. For the most part,
the predictions made by ITRS have been accurate, with the notable exception of the
CPU clock rate.
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Year Gate
Length (nm)

Clock Rate
(GHz)

Maximum
Power (W)

Transistors
per chip (×106)

2003 45 2.976 149 153
2004 37 4.171 158 193
2005 32 5.204 167 243
2006 28 6.783 180 307
2007 25 9.285 189 386
2008 22 10.972 200 487
2009 20 12.369 210 614
2010 18 15.079 218 773
2012 14 20.065 240 1227
2013 13 22.980 251 1546
2015 10 33.403 270 2454
2016 9 39.683 288 3092
2018 7 53.207 300 4908

Table 1.1: 2003 ITRS forecasts for chip power dissipation and speed in high-
performance logic. Data adapted from Ref. [6].

This is highlighted in Fig. 1.1, which shows the actual CPU clock rate trends over the
past few decades [7]. It can be seen that CPU clock rates increased exponentially and
commensurately with Moore’s Law up until 2005. However, since 2005, CPU clock
rates have only increased incrementally. Indeed, modern CPUs have stagnated at
∼ 5 GHz clock rates despite continued increases in transistor counts. There are two
main reasons contributing to the stagnating CPU clock rates. First, the breakdown
of Dennard scaling at the single-transistor level, which roughly states that the power
density scales with transistor size. Dennard scaling implies that the number of
transistors and clock rate can be increased whilst keeping the chip power density
constant, and hence did not require complete overhauls of transistor design from
generation to generation. Unfortunately, the breakdown of Dennard scaling around
2005 forced CPU designers to abandon further increases in CPU clock rate in order
to keep heat power dissipation manageable.

Second, the increasing prevalence of the von Neumann bottleneck at the system-
level, which arises due to the separation of the CPU and memory that are connected
by a shared data bus in the widely used von Neumann computer architecture [3]. It
was found that many modern computing applications are bandwidth-limited due to
the input/output data rates imposed by the von Neumann bottleneck, which means
that they cannot fully utilize higher CPU clock rates even if available. This problem
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Figure 1.1: CPU clock rate trends. Each point indicates the clock rate and testing
date for a different type of commercially-available CPU. The color corresponds
to the entity that designed the CPU, with some prominent CPU designers listed
in the legend. Red circle and text bottom insets represent increasingly advanced
semiconductor process nodes and when they were introduced. Adapted from [7]

is especially apparent in recent AI computing workloads, which has prompted the
development of application-specific integrated circuits (ASICs) such as graphics
processing units (GPUs) [8]. These ASICs can achieve much higher throughput
and energy-efficiency for specific operations compared to general-purpose CPUs
by harnessing many parallel computing cores and high-bandwidth memory. In
fact, GPUs typically operate at far lower clock rates compared to CPUs in favor
of increased parallelism. The trend of increasing parallelism instead of clock rate
has spilled over into recent CPUs, with the introduction of multi-core and multi-
threaded general-purpose processors. This is shown in Fig. 1.2, which shows the
proportion of new and different CPU designs each year over the past few decades,
separated according to the number of CPU cores. We can see that share of single-
core CPUs has steadily fallen since around 2000. Now, in 2025, we see that new
CPUs that feature single-core architectures are virtually nonexistent. Most CPUs
in recent years have between 2-8 cores. These recent trends suggest that ultrafast
nonlinear photonics has a unique opportunity to enable single-threaded computers
with exceptionally high clock rates exceeding the limitations of digital electronics.
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cores

Figure 1.2: CPU core count trends. Proportion of new and different CPUs designed
over the past 29 years, separated according to the number of cores.

1.3 Review of Time-Multiplexed Photonic Computing
Photonic computers, which process information using light, are receiving renewed
attention as a means to overcome the limitations of digital electronic computers [9].
It has long been appreciated how communications can benefit from the enormous
bandwidth of optics compared to electronics for transmitting/receiving information.
However, the same principles and methods originally developed for communica-
tions have recently been extended to the realm of computing to unlock superior
information processing capabilities. In particular, time-multiplexing has featured
as an indispensable technique for many state-of-the-art optical computing demon-
strations [10]. The ability to process information directly in the optical domain by
exploiting the time degree-of-freedom is an exciting frontier poised to redefine the
landscape of computing. We review some notable recent developments in time-
multiplexed optical computers for applications that have traditionally been difficult
for digital electronic computers.

Coherent Ising machines
Ising machines are special-purpose physical hardware solvers for combinatorial op-
timization problems [11]. The Ising Hamiltonian is a well-known model originally
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developed in statistical physics for studying spin glasses. It is stated in Eq. 1.1:

𝐻 = −
𝑁∑︁

𝑖, 𝑗=1
𝐽𝑖 𝑗𝜎𝑖𝜎𝑗 −

𝑁∑︁
𝑖=1

ℎ𝑖𝜎𝑖 , (1.1)

where 𝜎𝑖 ∈ {−1, 1} for 𝑖 = 1, 2, . . . , 𝑁 are binary spin states, 𝑁 is the number
of spins, 𝐽𝑖 𝑗 ∈ R is the coupling strength between spins 𝑖 and 𝑗 , and ℎ𝑖 ∈ R

is an optional on-site interaction field strength for spin 𝑖. In general, the Ising
optimization problem of finding the ground-state energy, which minimizes the Ising
Hamiltonian 𝐻, is NP-hard. This falls in the most difficult class of combinatorial
optimization problems, and possesses a time complexity that grows exponentially
with the problem size 𝑁 . Alternatively, the Ising decision problem, which is a
question with a yes or no answer about the ground state energy of 𝐻, is known
to be NP-complete. This implies that any other problem in the NP-complete class
can be efficiently mapped to the Ising decision problem using only polynomial
resources [12]. Thus, solving the Ising problem unlocks the solution to a large
number of other important combinatorial optimization problems. Examples include
the Travelling Salesman Problem, Boolean Satisfiability Problem, and MaxCut
problems. These types of NP-complete problems are often encountered in real-
world applications including planning and scheduling, portfolio management, and
drug discovery [11]. Therefore, there is significant interest in solving the Ising
problem.

It is currently unknown whether there exists an algorithm that can efficiently solve
NP-complete problems, which is the subject of the famous open problem 𝑃 𝑣𝑠. 𝑁𝑃.
However, Ising machines have been developed as a method for obtaining approx-
imate or heuristic solutions, which have been demonstrated to be at or close to
the optimal solution in many practical scenarios [11]. The main idea is to map
the solution to the Ising problem onto the fixed-point or steady-state solution of a
dynamical system. These dynamical systems often possess natural or more efficient
implementations in physical systems compared to digital computers. In this context,
analog optical implementations of Ising machines based on networks of degenerate
optical parametric oscillators (DOPOs), also known as Coherent Ising Machines
(CIMs), have emerged as a promising option [13]. DOPOs are a kind of nonlin-
ear optical resonator utilizing either spontaneous parametric down-conversion or
four-wave mixing processes in which the degenerate signal fields have two possible
phases, 0 or 𝜋, when operated above threshold. The phase 0 and 𝜋 of the signal
fields are used to represent the binary spin states 𝜎𝑖 = ±1. A network of 𝑁 coupled



9

DOPOs can be modeled using a simplified classical dynamical system according to
Eq. 1.2:

𝑑𝑥𝑖

𝑑𝑡
= 𝛼𝑥𝑖 − 𝑥3

𝑖 +
𝑁∑︁
𝑗=1

𝐽𝑖 𝑗𝑥 𝑗 , (1.2)

where 𝑥𝑖 ∈ R is an analog amplitude representing the 𝑖th spin state, 𝑡 is the time, 𝛼 is
the gain parameter, and 𝐽𝑖 𝑗 represent the coupling weights for the Ising Hamiltonian.
The element-wise nonlinearity 𝛼𝑥𝑖−𝑥3

𝑖
represents a parametric gain from a nonlinear

optical process, and has the normal form of a supercritical pitchfork bifurcation. An
uncoupled DOPO has only one stable trivial solution 𝑥 = 0 when 𝛼 < 0, and bistable
solutions 𝑥 = ±

√
𝛼 when 𝛼 > 0. The solution to the Ising problem is taken to be

the sign of the corresponding analog amplitude, 𝜎𝑖 = sign(𝑥𝑖) once the dynamical
system reaches steady-state.

One way to interpret the network of DOPOs finding the solution to the Ising prob-
lem is that each DOPO undergoes spontaneous symmetry breaking when the gain
transitions from below threshold (𝛼 < 0) to above threshold (𝛼 > 0) such that the
lowest-loss eigenmode of the system will be the first to oscillate. Another way to
interpret the solution-finding process is by interpreting Eq. 1.2 as a gradient-descent
system 𝑑𝑥𝑖/𝑑𝑡 = −𝜕𝑉/𝜕𝑥𝑖 where𝑉 = −1/2𝛼𝑥2

𝑖
+ 1/4𝑥4

𝑖
−∑

𝑖, 𝑗 𝐽𝑖 𝑗𝑥𝑖𝑥 𝑗 is a Lyapunov
function that guarantees local asymptotic convergence. The solution is only approx-
imate since the exact mapping to the Ising problem requires amplitude homogeneity
|𝑥𝑖 | = 𝑥 for all 𝑖 = 1, 2, . . . , 𝑁 . However, amplitude homogeneity is almost always
violated due to the analog nature of the DOPO amplitudes, and results in sub-optimal
solutions by getting stuck in local minima [13].

The first demonstration of time-multiplexed DOPOs was by Marandi et al. [14] using
a free-space optics platform. A network of 𝑁 = 4 DOPOs was represented using
pulses of light produced by a femtosecond mode-locked laser with repetition rate of
250 MHz. Each pulse occupies a time bin specified by the repetition rate of the laser
and acts an independent DOPO assuming that the time bin length is much shorter than
the roundtrip time of the bow-tie cavity. The coupling interactions between pulses
are implemented using a set of optical delay lines. The nonlinear gain mechanism
here is spontaneous parametric down conversion from a periodically-poled lithium
niobate (PPLN) crystal. The relative phases of signal pulses can be determined
using an interference measurement of successive pulses. Therefore, there is only
one physical cavity, but a network of 𝑁 = 4 time-multiplexed DOPOs exists within
the cavity. This is possible because the 𝜒(2) optical nonlinearity of the PPLN crystal
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is ultrafast and effectively instantaneous compared to the time length of each pulse,
which eliminates cross-talk between pulses due to memory effects in the nonlinear
crystal. The only coupling between pulses are the linear couplings from the optical
delay lines, which specifies the desired Ising problem. A single cavity roundtrip
corresponds to a single iteration of the linear couplings and nonlinear gain for all
pulses. Takata et al. [15] extended the network size to 𝑁 = 16 and 1 GHz repetition
rate, but only had a limited connectivity for the Ising couplings.

The use of bulky free-space cavities and optical delay lines quickly becomes im-
practical for larger 𝑁 since both the cavity length and number of delay lines increase
linearly with 𝑁 . Therefore, subsequent demonstrations of time-multiplexed DOPO
networks were performed in fiber-optical platforms since they are easier to scale up
to larger 𝑁 . Inagaki et al. [16] demonstrated a fiber-based system with 𝑁 = 10000
and 2 GHz repetition rate. It utilized four-wave mixing in a highly nonlinear fiber
as the nonlinear gain mechanism. These systems consisted of a main cavity fiber
loop and multiple optical delay lines similar to in free-space optical architectures.
However, the number of pulses 𝑁 circulating in the main cavity is much easier to
increase simply by increasing the fiber length. For example, the fiber length in [16]
was 1 km. A drawback is that all-optical approaches with optical delay lines can
only implement limited connectivity such as nearest-neighbour coupling. This is
because the signal fields are tapped off from the main cavity, amplified using sim-
ilar nonlinear optical gain as in the main cavity, split into individually modulated
delay lines, then recombined to interfere coherently with main cavity pulses. The
number of delay lines is constrained by the total available gain before splitting and
the dynamic range of the desired coupling weights 𝐽𝑖 𝑗 .

One method to overcome the limited connectivity and optical delay lines is to use a
measurement-feedback scheme. In this approach, the optical delay lines are replaced
with homodyne detection of the signal pulse amplitudes, a field-programmable gate
array (FPGA) that computes the cumulative coupling terms based on the measured
signal amplitudes in real-time, and electro-optic feedback of the desired coupling
pulse to interfere coherently with the appropriate main cavity pulse. This allows for
arbitrary connectivity and large 𝑁 so long as the FPGA can compute the coupling
terms sufficiently fast to keep up with the main cavity pulses. McMahon et al. [17]
demonstrated a time-multiplexed network of 𝑁 = 100 DOPOs with repetition rate
of 100 MHz and all-to-all connectivity using a measurement-feedback scheme.
Inagaki et al. [18] later extended this design to 𝑁 = 2000 with 1 GHz repetition
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rate, and Honjo et al. [19] further extended the system to 𝑁 = 100000 with 5 GHz
repetition rate. These measurement-feedback schemes all used periodically poled
lithium niobate crystals as the nonlinear gain mechanism.

Finally, there have also been efforts to utilize optoelectronic nonlinearities in time-
multiplexed networks of oscillators to implement Ising machines. This is because
nonlinear optical interactions in 𝜒(2) or 𝜒(3) crystals have stringent phase-matching
requirements that are not readily accessible under general conditions, and optoelec-
tronics may provide more practical flexibility in its implementation. The operating
principles of optoelectronic Ising machines are analogous to networks of DOPOs,
however, the nonlinear optical gain mechanism is replaced with an optoelectronic
mechanism. For example, Cen et al. [20] demonstrated a time-multiplexed network
of 𝑁 = 25600 pulses with 250 MHz repetition rate that used an optoelectronic mi-
crowave oscillator as the nonlinearity. The pulses travelling in the main fiber cavity
were still in the optical domain. Bohm et al. [21] and Mwamsojo et al. [22] replaced
the parametric gain function with a sinusoidal nonlinearity based on the transfer
function of a Mach-Zehnder configuration of an electro-optic intensity modulator.

Overall, time-multiplexed networks of optical or optoelectronic oscillators continue
to be among the most scalable platforms for implementing Ising machines. More
work needs to be done on understanding algorithmic pitfalls in networks of DOPOs
and similar networks in order to escape local minima or add error-correction methods
for more optimal solutions to the Ising problem [23]. Similar computational princi-
ples and optical hardware for solving the Ising problem can also be applied to find
the ground state of XY spin-glass models [24, 25], which may provide more efficient
mappings for some combinatorial optimization problems. Current trends suggest
the move towards larger network sizes 𝑁 , all-to-all connectivity, lower latency, and
higher repetition rates/clock rates. A promising path towards this direction is fur-
ther miniaturization of time-multiplexed oscillator networks by utilizing photonic
integrated circuits for performing all-to-all couplings [26] or extremely broadband
nonlinear optical gain elements [27].

Photonic neural networks
Machine learning and artificial intelligence models have experienced exponential
growth over the past decade. They have revolutionized countless applications includ-
ing computer vision, natural language processing, drug discovery, and generative
art. The largest drivers behind this growth have been deep learning models [28]. For
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example, consider a fully-connected layer in a feed-forward deep neural network.
The layer’s effect can be described as in Eqs. 1.3:

y(𝑘) = 𝑊 (𝑘)z(𝑘−1) , (1.3a)

z(𝑘) = 𝑓 (y(𝑘)) , (1.3b)

where z(𝑘) ∈ R𝑚𝑘 is a vector of neuron activations in the 𝑘 th layer containing 𝑚𝑘

neurons, y(𝑘) is the result of synaptic connections given by matrix-vector multipli-
cation between the synaptic weights of the 𝑘 th layer𝑊 ∈ R𝑚𝑘×𝑚𝑘−1 and the previous
layer’s activations z(𝑘−1) ∈ R𝑚𝑘−1 , and 𝑓 : R → R is an element-wise nonlinear
activation function such as the rectified linear unit (ReLU) function. The bulk of
the computational workload comes from the matrix multiplication, which can be
decomposed into elementary operations called multiply-accumulate (MAC) opera-
tions. A matrix-vector multiplication between a matrix of size 𝑁 × 𝑁 and a vector
of size 𝑁 × 1 requires 𝑁2 MAC operations. Whereas, the number of operations
performed for nonlinear activations in a layer of size 𝑁 is O(𝑁). Therefore, the
number of MAC operations can grow quickly as the size of the neural network
increases. Convolutional Neural Networks (CNNs) are a popular neural network
architecture for computer vision applications, which use a series of convolutional
layers as a way to efficiently extract salient image features. For simplicity, consider
the discrete 1D convolution operation or sliding filter ∗ between two vectors 𝑎 and
𝑏 in Eq. 1.4:

(𝑎 ∗ 𝑏) (𝑛) =
∞∑︁

𝑚=−∞
𝑎(𝑚) · 𝑏(𝑛 − 𝑚) . (1.4)

The convolution operation can also be decomposed into MAC operations, and can
always be recast as a matrix multiplication.

The enormous computational demand for deep learning has rapidly outgrown
general-purpose digital computers such as central processing units (CPUs), which
has necessitated the use of more efficient hardware accelerators that can enable
further advances [8]. For example, Graphics Processing Units (GPUs) and later
application-specific integrated circuits called Tensor Processing Units (TPUs) were
designed to efficiently perform matrix multiplication and MAC operations in paral-
lel. Recently, there has been interest in harnessing analog optics for MAC operations
since many linear operations such as matrix multiplication and convolution can be
naturally mapped onto the physics of light propagation in various optical systems.
The enormous bandwidth and parallelism inherent to optical systems presents an
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exciting opportunity to accelerate deep learning beyond the limitations of digi-
tal electronics. There have been various optical neural networks exploiting time-
multiplexing (often in combination with other multiplexing techniques) to perform
MAC operations faster and more energy-efficiently.

Hamerly et al. [29] proposed the use of a photoelectric multiplication scheme in a
free-space optics platform that combines time-multiplexing and spatial-multiplexing
with coherent homodyne detection to perform matrix-vector multiplication. The
input vector x is encoded in time onto an optical field amplitude such that each
time bin represents a different input neuron activation 𝑥𝑖, and then fanned out into
different spatial channels. Each spatial channel computes the result of a different
neuron’s synaptic connections. The weights in each row of the weight matrix 𝐴

are also encoded in time onto an optical field amplitude such that each time bin
represents a different weight, and coherently interfere with the input activations in
the corresponding spatial channel. Each spatial channel is terminated by an optical
homodyne detector. During each time step, the detector in each channel measures
an optical amplitude proportional to the desired product 𝐴𝑖 𝑗𝑥 𝑗 . The photoelectric
charge accumulates over the duration of the optical signal to produce an electrical
current that computes the desired MAC operation or dot product

∑
𝑗 𝐴𝑖 𝑗𝑥 𝑗 giving the

output neuron values after synaptic connections. It is claimed that a network layer
with size 𝑁 = 1000 can achieve an energy consumption as low as 100 zJ/MAC,
which approaches the standard quantum limit, and can be operated at clock rates
exceeding 1 GHz. However, there is a trade-off between the energy/MAC and the
simulated accuracy for image classification tasks.

Xu et al. [30] demonstrated a photonic convolutional accelerator for optical neural
networks in a fiber optical platform. The convolutional kernel weights are encoded
using wavelength multiplexing onto different spectral lines produced by a micro-
resonator frequency comb. The input signal is encoded in time onto an optical field
amplitude using an electro-optic modulator such that each value of the input vector
occupies a different time bin. The time bins are made to interact using dispersion in
a 13 km long single-mode optical fiber, which causes different wavelength channels
to propagate at different speeds. The length of fiber is chosen such that the dispersive
delay between successive wavelength channels equals the time bin length of the input
signal. Therefore, this system performs time-wavelength interleaving that effectively
computes a convolution or sliding filter operation upon photodetection at the fiber
output. Input signals up to 𝑁 = 250000 were convolved with maximum kernel
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size of 𝑚 = 90, achieving a maximum throughput speed of 5.6 × 1012 MAC/s with
an input signal clock rate of 62.9 GHz. A potential downside is the demonstrated
accuracy of 88% for classification of MNIST handwritten digit images, which
is far below the > 99% accuracy achieved by digital computers. This suggests
that, despite impressive device-level performance, further improvements are needed
at the system-level to improve the overall accuracy of time-multiplexed photonic
processors for practical deep learning tasks.

The optical neural networks of Hamerly et al. [29] and Xu et al. [30] show the great
potential of linear optics to accelerate linear operations such as matrix multiplication
and convolution for deep learning. However, they still rely on electronics for per-
forming the neuron nonlinear activations, which imposes a significant bottleneck on
the maximum achievable computational clock rates and speeds due to the need for
optoelectronic and electro-optic conversions between neural network layers. Over-
coming this optoelectronic bottleneck requires moving towards all-optical neural
networks. Time-multiplexing can play a central role in this regard since it allows
information to be encoded onto the amplitude of ultrashort laser pulses. This can
enable computational clock rates > 1 THz, which greatly exceeds electronic proces-
sors that are typically restricted to < 10 GHz clock rates. Furthermore, ultrashort
laser pulses have a high peak power that enhances nonlinear optical processes. For
example, Li et al. [31] demonstrated an all-optical implementation of the ReLU
nonlinear activation function ReLU(𝑥) = max(0, 𝑥). It exploits the strong 𝜒(2) op-
tical nonlinearity in a thin-film lithium niobate integrated nanophotonic waveguide
platform. The all-optical approach achieved a maximum clock rate of 13.3 THz with
energy consumption of 16 fJ per activation, which combines for a record energy-
time product of 1.2 × 10−27 J · s per activation. The simulated accuracy for MNIST
handwritten digit image classification is 98.8%.

An exciting future direction is the possibility to construct time-multiplexed optical
systems containing both linear operations and nonlinear activations for an end-to-
end all-optical neural network with orders of magnitude greater speed and energy
efficiency compared to digital electronics [7, 32]. A limitation of current optical
neural networks is that they can only efficiently perform forward inferences on
trained deep neural networks. Optical neural networks cannot directly perform
training of deep neural networks because there is no general method of calculating
gradients in the optical domain, which are needed for the backwards pass of the
backpropagation training algorithm. Therefore, current optical neural networks still
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rely heavily on electronics for performing all or part of the neural network training.
Finding methods for optical gradient calculation [33] or modified training algorithms
for optical neural networks [34] can further advance the practical applicability of
time-multiplexed optical neural networks.

Finally, there has been growing interest recently to develop biologically-plausible
neural networks that more closely resemble the spiking neuron dynamics observed
in biological brains. These spiking neural networks (SNNs) encode and process
information entirely differently compared to other artificial neural networks. The
main motivation is to produce more robust and efficient neural network models [35].
Spiking neuron dynamics is extremely costly to accurately simulate using digi-
tal computers, which has spurred the search for physical hardware systems with
comparable spiking dynamics. Makinwa et al. [36] implemented a SNN as a time-
multiplexed network of 512 DOPOs, similar to the measurement-feedback Ising
machine schemes reviewed above. Each pair of coupled DOPOs acts as a single
spiking neuron, which gives an effective network size of 𝑁 = 256 spiking neurons.
Characteristic collective dynamical behaviour of SNNs such as spiking neuron syn-
chronization and chimera states can be readily observed with spiking frequencies
up to 10 kHz. Note that the repetition rate of the physical DOPO pulses is 1 GHz,
but this is not directly correlated with the information processing capabilities of the
spiking dynamics, which occurs at a much slower rate [37]. Therefore, it is unclear
whether or not the high computational clock rates of time-multiplexed optical com-
puters has any advantage for SNNs. More work is needed to better understand the
spiking dynamics of optical neurons.

Time-delay reservoir computers
Reservoir computers are a type of random recurrent neural network that are well-
suited for temporal information processing tasks such as time-series prediction
and sequence classification [38]. A popular architecture is called the Echo State
Network (ESN) [39]. It contains an input layer with random weights, a reservoir
layer containing random recurrent connections, and a linear output layer. The ESN
follows the driven discrete-time dynamical system in Eqs. 1.5:

x(𝑡 + 1) = 𝑓
(
𝑊𝑟x(𝑡) +𝑊 𝑖s(𝑡)

)
, (1.5a)

y(𝑡) = 𝑊𝑜x(𝑡) , (1.5b)

where 𝑡 is the discrete time step, 𝑓 : R → R is an element-wise nonlinear activation
function such as the sigmoid function, s ∈ R𝑚 is the 𝑚-dimensional input signal,



16

x ∈ R𝑁 are the activations for the 𝑁 reservoir neurons, y ∈ R𝑛 is the 𝑛-dimensional
output, 𝑊 𝑖 ∈ R𝑁×𝑚 are the input layer weights, 𝑊𝑟 ∈ R𝑁×𝑁 are the reservoir
layer weights, and 𝑊𝑜 ∈ R𝑛×𝑁 are the output layer weights. Typically, the input
weights 𝑊 𝑖 and reservoir weights 𝑊𝑟 are sampled from i.i.d Gaussian or Uniform
distributions, and chosen such that the echo-state property is satisfied. The echo-
state property guarantees that the ESN has a kind of in-built memory of past events,
which is needed for temporal information processing. The appealing feature of the
reservoir computing approach is that only the output layer weights 𝑊𝑜 are trained,
while 𝑊 𝑖 and 𝑊𝑟 are fixed after initialization. The use of random weights relaxes
the need for full programmability of couplings, which is often a limiting factor for
other types of optical computers. Furthermore, the optimal output weights 𝑊𝑜 can
be found using a simple linear regression or ridge regression algorithm that is easy
to perform and only requires the reservoir computer to see each independent sample
once during training. It avoids the full complexity and difficulties associated with
the backpropagation-through-time training algorithm for recurrent neural networks
that also seek to train recurrent weights.

It has been recognized that the complex nonlinear dynamics often encountered in
physical systems can be used as a useful resource for physical reservoir comput-
ing [38]. In particular, time-multiplexed photonic and optoelectronic networks have
been studied extensively as promising candidates for efficient physical reservoir
computers. This is most commonly achieved by using a reduced reservoir scheme
based on a single nonlinear node with delayed feedback [40]. Instead of 𝑁 physically
distinct nonlinear nodes comprising the reservoir layer, a single nonlinear node is
time-multiplexed to produce 𝑁 virtual nodes. In this case, the equations describing
the recurrent evolution become delay differential or dynamical equations. Coupling
between nodes can be achieved using either optical delay lines as described above,
or by an input masking procedure in which the same input is reinjected multiple
times but with different scaling factors. Therefore, time-delay photonic reservoir
computers are rapidly scalable and easy-to-implement systems for fast signal pro-
cessing.

An early example of a time-delay photonic reservoir computer is by Larger et
al. [41]. The electrical input signal modulates a laser light amplitude. It is also
subject to optoelectronic time-delay feedback through a 4.2 km long optical fiber
loop. The single nonlinear node that is time-multiplexed is a Mach-Zehnder electro-
optical modulator, which possesses a sinusoidal transfer function. A network with
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𝑁 = 400 and computational clock rate of 19.2 MHz is demonstrated for spoken
digit classification and chaotic time-series prediction. A similar approach based on
a time-delayed electro-optic modulator nonlinear node was used by Paquot et al. [42]
with network size of 𝑁 = 50 and clock rate of 5.9 MHz for the NARMA10 time-
series prediction task, nonlinear channel equalization, and spoken digit recognition.
Larger et al. [43] later improved the performance of the system by using high-speed
electro-optic phase modulators with a system size 𝑁 = 1113 and clock rate of
17.6 GHz.

Alternative optoelectronic components were also considered for use as nonlinear
nodes. For example, Duport et al. [44] proposed the use of a time-delay photonic
reservoir computer with saturable semiconductor optical amplifier as the nonlinear
node. It achieves 𝑁 = 50 reservoir nodes with clock rate of 6.4 MHz. Similarly,
Brunner et al. [45] used an injection current modulated semiconductor laser as the
nonlinear node. It contains 𝑁 = 388 reservoir nodes with an input clock rate of
5 GHz.

Most physical reservoir computer demonstrations only implemented the reservoir
layer in hardware, and instead resorted to using digital electronics for the linear
output layer readout step. This is because the reservoir layer comprises the bulk of
the computation and poses the most difficulty for conventional digital computers due
to complex nonlinear dynamical behaviors. Nonetheless, the need for analog-to-
digital conversions limits the overall latency and clock-rate of the system since the
electronic bandwidth is much less than the bandwidth of optical or optoelectronic
components. Therefore, it is desirable to have an end-to-end photonic reservoir
computer that directly implements all layers including the output layer. Duport et
al. [46] showed a first step towards this goal by having fully analog input, reservoir,
and output layers in a time-delay photonic reservoir computer. It operates with
𝑁 = 47 reservoir nodes at a clock rate of 200 MHz. The analog output layer
requires the addition of another electro-optic modulator for encoding output layer
weights, balanced photodiode, and low-pass RLC filter. The system performs well
on real-time nonlinear channel equalization and radar signal forecasting.

Recent efforts have concentrated on miniaturizing time-delay photonic reservoir
computers onto chip-scale integrated platforms. This reduces the overall latency
and increases the potential efficiency of the system. For example, Nakajima et
al. [47] demonstrates the use of micro-scale silica waveguides in a platform called a
planar lightwave circuit. The linear input layer consists of a series on delay lines with
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programmable couplings by integrated thermo-optic phase shifters. The reservoir
layer consists of a series of optical cavities with programmable attenuation and
phases. This architecture uses coherent light processes that take advantage of the
full complex amplitude of light, however, there is no nonlinearity in the reservoir
layer. The output layer is performed digitally. The reservoir layer contains a total
of 𝑁 = 512 virtual neuron nodes at a clock rate of 3.75 GHz. It was trained
to perform image classification for MNIST handwritten digits and fashionMNIST
image datasets. A related approach by Wang et al. [48] uses silicon photonic
integrated circuits with 𝑁 = 8 and a clock rate of 60 GHz. Another chip-scale time-
delay photonic reservoir computer by Borghi et al. [49] uses a silicon microring.
Unlike previous approaches, it contains a nonlinear input layer that generates free
carriers in the silicon via a strong pump beam, and then imprints this nonlinear
behaviour via free carrier dispersion onto a weak continuous-wave probe beam.
It achieves network size 𝑁 = 50 with a clock rate of 20 MHz and performs iris
species recognition. The slow speed despite the small size is due to the slow free
carrier dynamics. This can be significantly improved by using faster absorption or
nonlinear optical mechanisms for the reservoir dynamics.

Finally, the time-delay photonic reservoir computer architecture has also recently
been extended to include multiple reservoir layers to produce deep reservoir com-
puters. Although a single reservoir layer is sufficient in theory, it has been found that
using multiple deep layers can improve performance and accuracy in practice. Shen
et al. [50] demonstrate an optical fiber based system with four deep reservoir layers,
each containing 80 neurons, giving a total of 𝑁 = 320 hidden reservoir neurons. The
nonlinear dynamics are produced by a series of cascaded Fabry-Perot semiconductor
lasers that are optical injection-locked to a master laser. The output is calculated
digitally by sampling reservoir neurons from all four layers, and is trained to perform
real-time nonlinear channel equalization with a clock rate of 20 GHz. More work is
needed to understand the optimal deep reservoir computer architecture for practical
signal processing tasks.

Current trends show that the field is moving towards smaller, faster, and more ef-
ficient physical reservoir layers. Promising unexplored options include integrated
optical parametric oscillators [51] exploiting ultrafast nonlinear optical processes.
Another challenge is the limited connectivity schemes of current time-delay lines,
typically only providing few-nearest neighbour connections through complicated
input-masking schemes. More flexible and single-shot input operation can be
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achieved by the use of intra-cavity optical delay lines. An all-optical output read-
out layer, which is fully programmable and has all-to-all optical connections with
reservoir neurons, is thus far absent and ultimately constrains the overall latency of
current photonic reservoir computers relying on digital electronics for the output
layer. Solving all of these aforementioned problems will enable the development of
an all-optical and highly-scalable time-multiplexed photonic reservoir computer.

Cellular automata
Cellular automata are a class of simple computational models based on local inter-
action rules and algorithms. They consist of a lattice of cells with states that follow
an update rule, which defines how the state of a cell evolves over time based on the
states of its neighboring cells [52]. The microscopic local interactions between cells
governed by the update rule produces complex phenomena and emergent patterns
at the macroscopic global scale that are commonly encountered in biological and
natural systems. It has been shown that even very simple rules are capable of pro-
ducing Turing-universal computation [53]. Popular examples of cellular automata
include von Neumann’s Universal Constructor and Conway’s Game of Life [54].

Consider the simplest cellular automata called elementary cellular automata [52],
which are defined over a 1D lattice of cells with binary states that update according
to nearest-neighbour interactions as in Eq. 1.6:

𝑥𝑖 (𝑡 + 1) = 𝑓 (𝑥𝑖−1(𝑡), 𝑥𝑖 (𝑡), 𝑥𝑖+1(𝑡)) , (1.6)

where 𝑡 is the discrete time step, 𝑥𝑖 ∈ {0, 1} is the binary state for the 𝑖th cell, and
𝑓 : {0, 1}3 → {0, 1} is the update rule. We take the lattice to extend infinitely in
both left and right directions.

The rule can be depicted pictorially as a truth table with 8 entries, giving 256
possible elementary rules. The top row of the truth table entry shows the local
3-cell neighbourhood, and the bottom row shows the updated cell state during the
next iteration. Iterating the rule repeatedly for all cells in the lattice produces a
space-time diagram, which exhibits complex and emergent phenomena.

Li et al. [55] implement elementary cellular automata using a time-multiplexed
photonic network. The cells are represented using pulses of light produced by a
mode-locked laser. Interactions between cells are achieved by coherent interference
using a series of optical delay lines with variable delays and weights to encode the
desired local update rule. In this case, the nonlinearity is electronic thresholding to
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enforce the binary cell states. Optoelectronic feedback is used to reinject cell states
for subsequent iterations. A network with size up to 𝑁 = 1000 cells with a clock
rate of 250 MHz is used to demonstrate complex phenomena including fractals,
chaos, and solitons. The system can implement any elementary cellular automata
rule, including those capable of Turing-universal computation. This is, to the best
of our knowledge, the first demonstration of a universal time-multiplexed optical
computer.

Time-multiplexing is well-suited to implementing cellular automata rules since
it only requires local interactions, not all-to-all connections. This reduces the
hardware complexity for having many optical delay lines and permits an all-optical
implementation for many rules. Furthermore, the same local update rule is applied
to all cells. This means real-time weight updates are not required, which further
simplifies the implementation of programmable couplings. Extending the cell lattice
size is straightforward since the time-multiplexing concept allows the use of a single
nonlinear element.

Li et al. [56] extended the photonic elementary cellular automata architecture by
combining modern deep learning concepts to implement a neural cellular automata.
The binary cell states are replaced with continuous-valued states so that the time-
evolution rule becomes fully differentiable. Therefore, deep learning techniques
including backpropagation training can be applied to learn update rules for spe-
cific tasks. The system additionally uses a nonlinear optical function based on a
periodically-poled lithium niobate waveguide to perform nonlinear activations. It
performs self-organized image classification of fashionMNIST images and shows
superior parameter-efficiency and noise-robustness compared to the conventional
deep learning architectures described above.

Photonic implementations of cellular automata is a nascent field with great potential
as an unconventional optical computing methodology. Future work can explore
different rules, cell neighbourhoods, and complex phenomena. The possibility of
universal computation is an interesting feature absent in other optical computers.
Time-multiplexing is a key technique to enable large-scale photonic cellular au-
tomata. Combining time-multiplexing with the reduced complexity of encoding
local update rules compared to global couplings means that further integration to
produce chip-scale photonic cellular automata is a practical near-term possibility.
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1.4 Review of Parametric Nonlinear Photonic Computing
Light wave propagation described by Maxwell’s equations in a vacuum is a purely
linear phenomenon. This means that light waves can interfere constructively and
destructively according to the principle of superposition, but otherwise do not inter-
act. However, in the presence of intense electric fields enabled by lasers, it becomes
possible to observe nonlinear optical interactions in some materials [58]. The most
well-studied nonlinear optical interactions are ultrafast parametric processes that
result from higher-order terms in the expansion of the electric polarization shown
in Eq. 1.7,

P = 𝜀0

(
𝜒(1) · E + 𝜒(2) : EE + 𝜒(3) ...EEE + · · ·

)
(1.7)

where 𝜒( 𝑗) is the 𝑗 th order optical susceptibility tensor of rank 𝑗+1. The higher order
terms in the polarization are treated as a perturbation to the first-order linear term.
The microscopic origins of the nonlinear optical susceptibilities are the anharmonic
motion of bound electronics in the presence of intense electric fields E. For mate-
rials with a centrosymmetric structure, even-order terms in the polarization vanish,
and the lowest-order nonlinear polarization term is of third-order. These paramet-
ric nonlinear optical processes are ordinarily very weak, however, can be greatly
enhanced under strict phase-matching conditions. In this context, nanophotonics
has provided a key avenue for dispersion engineering and enhanced electric field
modal confinement that can allow efficient and intense nonlinear optical interac-
tions [27]. Here we review some notable integrated platforms and implementations
of parametric nonlinear photonics for computing applications.

Ultrafast nonlinear photonics has been used to address several intractable problems
facing modern digital computers. Firstly, the von Neumann bottleneck, which
arises due to the limited bandwidth of the shared data bus between the memory
and processor in digital computers, greatly limits emerging data-heavy applications
such as artificial intelligence (AI). To overcome this, Xu et al. [30, 59] exploited
the enormous optical bandwidth and dense wavelength-division multiplexing of a
𝜒(3) Kerr soliton crystal microcomb in silica to accelerate convolution and matrix
operations, which form the bulk of computations for deep learning [28]. The comb
lines can be individually modulated to yield many parallel channels (∼ 100). This
is similar to the concept of microcomb-based communication systems, however, the
computation is also performed directly in the optical domain. An impressive total
throughput of up to 1.1× 1013 operations/s was demonstrated, which is comparable
to modern graphics processing units (GPUs) that are the current workhorse hardware
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for AI [60]. The integrated ultrafast microcomb was essential due to its stability,
ease of generation, overall conversion efficiency, and high pulse repetition rate
compared to other conventional laser sources. Similar approaches based on a 𝜒(3)

dissipative Kerr soliton microcomb in silicon nitride [61] and a 𝜒(3) Kerr dark soliton
microcomb in AlGaAs [62] were also demonstrated. The enormous bandwidth and
large number of parallel channels afforded by ultrafast microcombs has also been
applied to random number generation through chaotic microcombs [63] and video
signal processing [64].

Secondly, digital computers are ultimately limited by the maximum computational
clock rate (∼ 5 GHz), which is constrained by how fast transistors can reasonably
switch due to heat dissipation limits. In fact, the photonic convolutional accel-
erators [30, 59, 61, 62] described above were still limited in clock rate due to
optoelectronic conversions needed to perform nonlinear activation functions digi-
tally. Beyond this, the speed of electronic computers is ultimately determined by
the fundamental response time of semiconductor physics. This limitation can also
be addressed using ultrafast nonlinear photonics by directly performing nonlinear
functions in the optical domain. Parametric nonlinear optical interations of the ul-
trafast variety occur at near-instantaneous (attosecond) timescales, which is orders
of magnitude faster than electronic nonlinearities. For example, Li et al. [31] im-
plemented the rectified linear unit (ReLU) function, which is the most widely used
nonlinear activation function for deep learning [28], by engineering the interplay
between 𝜒(2) second-harmonic generation (SHG) and degenerate optical parametric
amplification (DOPA) processes in a thin-film lithium niobate (TFLN) nanopho-
tonic waveguide platform. A record-breaking maximum clock rate of 13.3 THz was
demonstrated, which is an absolute speed-up of more than 3 orders of magnitude over
digital computers. A similar 𝜒(2) engineering approach was also used to demon-
strate ultrafast switching [65] at terahertz clock rates. These unprecedented ultrafast
computational clock rates are enabled by the ultrabroadband phase-matching and re-
markable conversion efficiency of nanophotonic PPLNs, which is otherwise absent
in weakly-guiding or free-space PPLNs.

So far, research in optical computing benefiting from integrated ultrafast nonlin-
ear photonics has been focused on the single component or device level, e.g., a
microcomb or PPLN. A significant portion of the computation in the demonstra-
tions described above were performed electronically or off-chip. The main future
challenge will be to achieve truly end-to-end and all-optical computers capable of
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ultra-high throughput and ultrafast clock rates [7]. This will require the integration
(monolithic, heterogeneous, or otherwise) of many ultrafast nonlinear photonic com-
ponents to build a scalable and complete system-on-chip. System-level requirements
for important computing applications, such as AI, present new conceptual and algo-
rithmic challenges that are absent when considering only single components at the
device-level. Further work into developing large-scale integrated ultrafast comput-
ers based on nonlinear photonics may also enable novel unconventional computing
architectures such as physical Ising solvers for NP-hard combinatorial optimiza-
tion [66] and reversible computing for ultra-low energy consumption [67], which
are not possible in digital electronic computers.

Ref. Application Process Platform Clock Rate
(GHz)

[31] ReLU nonlinear
function

𝜒(2) SHG
and DOPA TFLN 13300

[65] switching and
modulation

𝜒(2) SHG
and DOPA TFLN 20800

[57] recurrent
neural network 𝜒(2) DOPA TFLN 9.46

[30] convolutional
neural network

𝜒(3) Kerr
soliton crystal silica 62.9

[59] single perceptron 𝜒(3) Kerr
soliton crystal silica 11.9

[61] convolution 𝜒(3) Kerr
dissipative soliton Si3N4 13.5

[66] Ising
machine

𝜒(3) FWM
DOPO Si3N4 4 × 10−4

[62] convolutional
neural network

𝜒(3) dark
soliton

AlGaAs +
silicon 17

[63] random number
generation

𝜒(3) chaotic
comb AlGaAs 20

[64] video and image
signal processing

𝜒(3) Kerr
soliton crystal silica 64

Table 1.3: Comparison of integrated parametric nonlinear photonic computing.
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C h a p t e r 2

ALL-OPTICAL ULTRAFAST RELU FUNCTION FOR
ENERGY-EFFICIENT NANOPHOTONIC DEEP LEARNING

Gordon H.Y. Li∗, Ryoto Sekine∗, Rajveer Nehra∗, Robert M. Gray∗, Luis Ledezma,
Qiushi Guo, and Alireza Marandi. All-optical ultrafast ReLU function for energy-
efficient nanophotonic deep learning. Nanophotonics, 12(5):847–855, 2023.
doi:10.1515/nanoph-2022-0137.
G.H.Y.L. conceived the project, developed the theory, executed the numerical
simulations, designed the experiments, participated in the experimental measure-
ments, analyzed the data, and wrote the manuscript.
* denotes equal contributions.

2.1 Abstract
In recent years, the computational demands of deep learning applications have ne-
cessitated the introduction of energy-efficient hardware accelerators. Optical neural
networks are a promising option; however, thus far they have been largely limited
by the lack of energy-efficient nonlinear optical functions. Here, we experimentally
demonstrate an all-optical Rectified Linear Unit (ReLU), which is the most widely
used nonlinear activation function for deep learning, using a periodically-poled
thin-film lithium niobate nanophotonic waveguide and achieve ultra-low energies
in the regime of femtojoules per activation with near-instantaneous operation. Our
results provide a clear and practical path towards truly all-optical, energy-efficient
nanophotonic deep learning.

2.2 Introduction
Over the past decade, deep learning has revolutionized many important applications
including computer vision, speech recognition, and natural language processing [1].
However, the explosive growth of modern deep learning models has quickly out-
paced improvements in conventional von Neumann computing architectures and
ushered in the use of dedicated hardware accelerators. The quest for ever-faster
and more energy-efficient hardware for deep learning began with exploiting the
graphics processing unit (GPU), then application-specific integrated circuits such
as Google’s tensor processing unit (TPU), and more recently the development of
non-von Neumann analog architectures [2, 3]. Naturally, photonics has attracted

https://doi.org/10.1515/nanoph-2022-0137
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attention as a promising candidate due to its potential for massive parallelism and
ultrafast operation [4]. Indeed, optical neural networks (ONNs) have been experi-
mentally demonstrated in a variety of platforms including free-space optics [5–11],
optical fiber [12–17], and photonic integrated circuits [18–22].

In general, deep neural networks require two major types of computations: (1) linear
operations in the form of matrix multiplications and convolutions, which represent
the synaptic connections of the network, and (2) nonlinear activation functions,
which represent the neuron activations. ONNs excel at performing energy-efficient
linear operations in the optical domain, which forms the bulk of computations for
deep learning. However, a major remaining roadblock is achieving scalable energy-
efficient nonlinear activation functions, which comprises a smaller but essential part
of the deep learning workload. Thus, the majority of ONN implementations still opt
to utilize digital electronics to perform the nonlinear activation functions. In doing
so, the optoelectronic and analog-to-digital conversion typically imposes significant
speed and energy limitations. On the other hand, the demonstrated all-optical
approaches based on various processes [7, 13, 17, 19, 23–25] are still too energy-
intensive and/or slow compared to electronics. This is because photon-photon
interactions are typically weak and require either high light intensities or high-Q
resonant cavities, both of which are undesirable for scalable computing purposes.
An all-optical, ultrafast, and energy-efficient nonlinear activation function is yet to
be demonstrated to unlock the full capabilities of ONNs. Such a function should also
be compact, highly scalable, and compatible with existing deep learning models.

In this work, we propose and experimentally demonstrate the first photonic device,
to the best of our knowledge, that satisfies all the aforementioned criteria for an
all-optical nonlinear activation function. It implements the Rectified Linear Unit
(ReLU) function, defined as ReLU(𝑥) = max(0, 𝑥), which is one of the most widely
used nonlinear activation functions for deep learning. The widespread adoption of
the ReLU function was essential in sparking the deep learning revolution due to its
favorable properties for backpropagation training and simple implementation in dig-
ital electronics [1]. However, its optical implementation has remained challenging
and posed a major hurdle for the real-world applicability of ONNs.
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2.3 Method
Principle of operation
The operating principle of our device is illustrated in Fig. 2.1. We encode the
signal information into the coherent optical field of pulses centered at frequency
2𝜔, with positive values represented by 𝜙2𝜔 = +𝜋/2 phase states, and negative
values represented by 𝜙2𝜔 = −𝜋/2 phase states. By co-propagating the signal
pulses with bias pulses centered at frequency 𝜔, with fixed input power and phase
at 𝜙𝜔 = +𝜋/2, we can induce different nonlinear optical effects for the two possible
𝜙2𝜔 signal phases depending on the value of the phase relationship 2𝜙𝜔 − 𝜙2𝜔.
For the positive signal values with phase 𝜙2𝜔 = +𝜋/2, the phase relationship yields
2𝜙𝜔−𝜙2𝜔 = +𝜋/2. This induces second harmonic generation (SHG), which is a 𝜒(2)

nonlinear optical process that converts two photons of frequency 𝜔 into a photon of
frequency 2𝜔, hence depleting 𝜔 and amplifying 2𝜔. Conversely, for the negative
signal values with phase 𝜙2𝜔 = −𝜋/2, the phase relationship yields 2𝜙𝜔 − 𝜙2𝜔 =

3𝜋/2 → −𝜋/2. This induces degenerate optical parametric amplification (DOPA),

A

B

Negative input (DOPA)

2𝜔𝜔
𝜔𝜔

𝜔𝜔
𝜙𝜙𝜔𝜔 = 𝜋𝜋/2

𝜙𝜙2𝜔𝜔 = −𝜋𝜋/2

2𝜙𝜙𝜔𝜔 − 𝜙𝜙2𝜔𝜔 = −𝜋𝜋/2

2𝜔𝜔
(signal)

𝜔𝜔
(bias)

Positive input (SHG)

2𝜔𝜔
𝜔𝜔

𝜔𝜔

2𝜙𝜙𝜔𝜔 − 𝜙𝜙2𝜔𝜔 = 𝜋𝜋/2

𝜙𝜙2𝜔𝜔 = 𝜋𝜋/2
𝜙𝜙𝜔𝜔 = 𝜋𝜋/2𝑥𝑥

ReLU 𝑥𝑥

𝑥𝑥

ReLU 𝑥𝑥

𝜔𝜔
(bias)

2𝜔𝜔
(signal)

Figure 2.1: Operating principle of the all-optical ReLU function using a non-
linear photonic waveguide. (A) For positive inputs with phase of 𝜙2𝜔 = +𝜋/2, the
phase relationship between the signal and bias is 2𝜙𝜔 − 𝜙2𝜔 = 𝜋/2, which causes
SHG that depletes 𝜔 and amplifies 2𝜔. (B) For negative inputs, 𝜙2𝜔 = −𝜋/2, the
phase relationship 2𝜙𝜔 − 𝜙2𝜔 = 3𝜋/2 → −𝜋/2 causes DOPA that amplifies 𝜔 and
depletes 2𝜔.
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which is the inverse process of SHG that converts a photon of frequency 2𝜔 into
two photons of frequency 𝜔, hence depleting 2𝜔 and amplifying 𝜔. By judiciously
choosing the length and bias power, we can achieve the desired shape of the ReLU
function. We emphasize that our approach utilizes coherent parametric processes
which allows us to implement both positive and negative values (i.e., the information
is encoded in the field amplitude), unlike previous optical [7, 13, 17, 19, 23–25]
and optoelectronic methods [11, 14–16, 21, 26–29] based on incoherent absorption
processes that can only implement positive values (i.e., the information is encoded
in the optical power).

Device design
To implement the 𝜒(2)-based ReLU function, we use a periodically poled thin-film
lithium niobate (PPLN) nanophotonic waveguide that exploits the strong and instan-
taneous 𝜒(2) optical nonlinearity of lithium niobate and tight spatial confinement of
the waveguide modes to enhance the nonlinearity [30]. Additionally, careful qausi-
phase matching and dispersion engineering enables ultra-broadband and low-energy
interactions over mm-long propagation lengths, further enhancing the nonlinear op-
tical processes using femtosecond laser pulses [31–33]. Images of the device are
shown in Fig. 2.2. The PPLN nanophotonic waveguide is 𝐿 = 2.5 mm long and was
fabricated on a 700-nm thick X-cut MgO-doped lithium niobate thin-film on 2-𝜇m
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Figure 2.2: Images of the PPLN nanophotonic waveguide. (A) Scanning electron
microscope image of the ridge waveguide. (B) Two-photon absorption microscope
image of the PPLN ferroelectric domains with poling period of 5 𝜇m. (C) Simulated
electric field distributions of the fundamental TE modes at 1045 nm (2𝜔) and
2090 nm (𝜔).
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thick SiO2 with lithium niobate substrate by dry etching with Ar+ plasma, achieving
smooth ridge side-walls with slant angle of 𝜃 ≈ 60◦ as shown in Fig. 2.2A. The
waveguide was electrically poled with a period of 5.17 𝜇m, as shown in Fig. 2.2B,
to ensure efficient SHG and DOPA. Dispersion engineering of the fundamental TE
mode of the ridge waveguide, shown in Fig. 2.2C, allows for negligible group veloc-
ity mismatch and group velocity dispersion of 𝜔 and 2𝜔 pulses centered at 1045 nm
and 2090 nm, respectively. This enforces good temporal overlap of the pulses over
the entire PPLN propagation length. The ideal parameters found from simulation
were a ridge top width of 𝑤 = 1700 nm and etch-depth of ℎ = 350 nm. See [33] for
further details about fabrication and dispersion engineering of PPLN nanophotonic
waveguides.

2.4 Results
Femtojoule ReLU function
The measured response of the all-optical ReLU is shown in Fig. 2.3. The nonlinear
function given by the PPLN was measured using a free-space chip characterization
setup. The source at 1045 nm (signal) was a Yb:fiber mode-locked laser producing
75-fs long pulses at a 250-MHz repetition rate (Menlo Systems Orange). The same
laser pumped a homemade degenerate optical parametric oscillator to generate the
pulses at 2090 nm (bias). The 2𝜔 and 𝜔 pulses were coupled into and out of
the PPLN using reflective objectives focused on the waveguide facets. Finally, the
relative phase of the 2𝜔 signal and 𝜔 bias was set using a delay arm, and the power
varied using a tunable attenuator. See Supplementary Section 1 for further details
about the experimental setup.

Our experimental results show good agreement with the ideal ReLU function
(𝑅2 = 0.9895), and demonstrates energy-efficient signal pulse energies in the regime
of femtojoules per activation. Note that the important feature of the function is its
nonlinear shape, since scaling/shifting the horizontal/vertical directions can be ac-
complished with linear optical transformations. In theory, the ideal ReLU function
requires an arbitrarily long PPLN and low bias pulse energy. However, in prac-
tice we must choose the bias pulse energy so as to best approximate the ReLU
function given our fixed device length. Thus, there are small discrepancies around
𝐸2𝜔 (0) = 0, since neither the SHG nor DOPA processes sufficiently saturate at the
ultra-low energies. The maximum cutoff pulse energy is determined by the onset of
supercontinuum generation from strong back-conversion processes, which undesir-
ably degrades the pulse shape. To verify that the expected device response matches
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Figure 2.3: Output signal pulse energy versus input signal pulse energy for both
negative and positive inputs. There is good agreement between the ideal ReLU
function (dashed black line), simulation (dashed blue line) and experimental results
(red circles) for a bias pulse energy of 𝐸𝜔 (0) = 270 fJ, and signal pulse energies of
femtojoules per activation.

our physical picture of the operating principle, we also performed nonlinear pulse
propagation simulations of the PPLN nanophotonic waveguide. See Supplementary
Section 3 for more details about the simulation methods.

Remarkably, we show that the PPLN nanophotonic waveguide can also approximate
other commonly used variants of the ReLU function, simply by tuning the bias pulse
energy. For example, the Exponential Linear Unit (ELU) defined as ELU(𝑥) = 𝑥

if 𝑥 > 0 and ELU(𝑥) = exp (𝑥) − 1 if 𝑥 < 0, which has been shown to outperform
the ReLU function in certain cases [34], is achieved using a bias pulse energy
of 𝐸𝜔 (0) = 450 fJ as shown in Fig. 2.4A. In addition, we also implement the
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A B

Figure 2.4: Other variants of the ReLU function can be approximated by tuning
the bias pulse energy. For example, the (A) ELU function using bias pulse energy of
𝐸𝜔 (0) = 450 fJ and (B) GELU function using bias pulse energy of 𝐸𝜔 (0) = 910 fJ.
Ideal function curves are shown by the dashed black lines, and experimental results
with red circles.

Gaussian Error Linear Unit (GELU) defined as GELU(𝑥) = 𝑥Φ(𝑥) where Φ(𝑥) is
the Gaussian cumulative distribution using a bias pulse energy of 𝐸𝜔 (0) = 910 fJ
as shown in Fig. 2.4B. The GELU function is used extensively in Transformer
networks for natural language processing, which are regularly amongst the largest
deep learning models [35]. Thus, our all-optical PPLN nanophotonic waveguide
implementation gains greater real-world applicability by being compatible with a
wide range of existing deep learning models, especially the largest models where
energy efficiency is paramount. Indeed, compatibility has been problematic in
previous implementations of optical [7, 17, 23–25] and optoelectronic [11, 14, 15,
26, 29] nonlinear activation functions, which do not reflect the most commonly
used functions in digital electronic neural networks. By alleviating this problem,
we expand the potential functionality of ONNs by avoiding the need to train new
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specialized models.

Ultrafast time response
Ideally, the time per activation should be near-instantaneous due to the ultrafast 𝜒(2)

nonlinearity in lithium niobate. However, in practice, the response time is limited by
the finite phase-matching bandwidth as well as non-zero group velocity mismatch,
group velocity dispersion, and higher-order dispersion terms. To determine the
response time of the device, we used the pump-probe technique commonly used to
characterize all-optical switches [32, 36, 37] (see Supplementary for more details).
In this case, the pump pulse is the 𝜔 pulse and the probe pulse is the 2𝜔 pulse. We
measured the ultrafast ReLU dynamics by varying the time delay between the 𝜔

Figure 2.5: Pump-probe ultrafast timing measurements of the ReLU dynamics.
The autocorrelation (yellow circles shifted vertically for clarity) of the input𝜔 pulse
is well-explained by a Gaussian profile (purple line) with FWHM of (56.4± 1.5) fs.
The pump-probe signal obtained at a fixed pulse energy (blue circles) is fit (orange
line) by convolving the input autocorrelation with exponential growth and decay for
positive and negative time delays, respectively. The best fit yields a rise time of
(18.9 ± 1.9) fs and a fall time of (28.4 ± 1.1) fs.
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and 2𝜔 pulses at a fixed pulse energy. Fig. 2.5 shows the intensity envelope of the
pump-probe signal as the time delay is varied as well as the autocorrelation of the
input 𝜔 pulse.

The input autocorrelation is well-explained by a Gaussian profile with FWHM of
(56.4± 1.5) fs. We extract the characteristic rise and fall times by fitting the pump-
probe signal with exponential growth and decay functions for positive and negative
time delays, respectively, convolved with the input autocorrelation. The best fit
yields a rise time of (18.9 ± 1.9) fs and a fall time of (28.4 ± 1.1) fs. This implies
that the characteristic response time of the ReLU dynamics is (47.3 ± 3.0) fs,
thus verifying that the ultrafast optical nonlinearity is responsible for the ReLU
response, and ruling out the possibility of any slower optical nonlinearities such as
photorefractive or thermo-optic effects. Therefore, we can reasonably regard the 2𝜔
signal pulse length of ∼ 75 fs as the time per activation for the all-optical ReLU. We
note that better dispersion engineering can lead to even faster activation times.

Simulated deep learning performance
One distinct advantage of our approach is that, unlike previous all-optical [19]
and optoelectronic [21] nonlinear activation functions, it can faithfully reproduce
the ideal ReLU function, which uses both positive and negative values. There-
fore, we can leverage the large number of existing pretrained deep learning models
that use the ReLU function (or its variants) for nonlinear activations. Although
ONNs have been demonstrated that accurately reproduce linear operations such
as matrix multiplication and convolution, the use of atypical nonlinear activation
functions in the optical domain has required the training of new custom deep learn-
ing models [38, 39]. To improve upon this, we simulated the performance of the
all-optical ReLU function when used as part of a pretrained convolutional neural
network (CNN) for the prototypical task of MNIST handwritten digits image clas-
sification [40]. The MNIST dataset contains 28 × 28 pixels gray-scale images of
handwritten digits with 50000 training samples and 10000 test samples. We used a
standard CNN architecture (see Supplementary Section 5 for full details) containing
convolutional layers and ideal ReLU layers followed by a fully-connected layer and
softmax classification output. The pretrained CNN achieved an ideal test accuracy
of 99.13%. Next, the ideal ReLU layers were replaced with custom layers repre-
senting the experimentally measured ReLU response (after proper shifting/scaling)
without changing any of the other layers. This caused a slight drop in test accuracy
to 98.8% due to the slight deviations between the experimentally measured and
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ideal ReLU functions. To remedy this, the CNN was then fine-tuned by training
for only 2 epochs (the CNN sees each sample once per epoch) to regain the ideal
pretrained model accuracy of 99.13% as shown in Fig. 2.6. Fine-tuning is necessary
for any analog hardware implementation due to unavoidable fabrication errors, noise
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Figure 2.6: Simulated deep learning performance of the experimentally mea-
sured all-optical ReLU function for MNIST handwritten digits image classifi-
cation. (A) A pretrained CNN was used where the ideal ReLU layers are replaced
with custom layers representing the experimentally measured ReLU response (af-
ter shifting/scaling) then fine-tuned by training for 2 epochs (batch size of 128) to
improve the test accuracy (blue line) back to the ideal pretrained model accuracy
(dashed black line). (B) Confusion matrix on the MNIST task for the final network,
which achieved 99.13% test accuracy.
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and other non-idealities encountered [41]. Note that this method requires far less
time compared to previous proposals for training new custom ONN models, which
required > 25 training epochs [38, 39]. Therefore, our all-optical ReLU provides
the missing link to allow ONNs to take advantage of existing pretrained models.
We note that the softmax classification layer is yet to be faithfully implemented in
an ONN which accounts for a small portion of the computation compared to the
convolutions, matrix multiplications and ReLU nonlinear activations.

2.5 Discussion
Comparison of energy and time per activation
In this section, we compare the PPLN nanophotonic waveguide to other optical [13,
17, 19, 23], optoelectronic [11, 14–16, 21, 26–29], analog electronic [42–44], and
digital electronic [45] nonlinear activation functions to demonstrate the state-of-
the-art performance of our device. In this case, the appropriate figure of merit is
the energy-time product, which properly accounts for both the energy consumed
and time taken per activation. To quantify the energy per activation, we follow the
convention in [39], as being the energy needed to generate a 50% change in the
power transmission with respect to the transmission with null input. In this case, our
device has an energy per activation of ∼ 16 fJ. The bias pulse energy is not included
since it is not destroyed and can, at least theoretically, be reused for many signal
pulses. This is because the bias pulse is not dissipated as heat, unlike the case often
encountered for absorption-based processes. Assuming perfect phase-matching and
that positive/negative values occur equally likely, then the bias pulse should be
amplified/deamplified equally likely by the processes of DOPA/SHG, respectively.
The time per activation is given by the signal pulse width of ∼ 75 fs, owing to the
near-instantaneous 𝜒(2) nonlinearity of lithium niobate as explained in Section 3.2.
Therefore, we achieve an energy-time product of 1.2 × 10−27 J · s. The energy and
time per activation of our device is compared to other experimental demonstrations in
Fig. 2.7. We attempted to consider device-level metrics wherever possible to provide
a fair comparison, however, we acknowledge that this was not always possible for
nonlinear activations as part of complete networks since fan-out and cascadability
constraints impose additional energy and time costs. Despite this, the outstanding
metrics of our device represents a significant breakthrough for optical nonlinear
activation functions. For state-of-the-art digital electronics, such as the NVIDIA
A100 Tensor Core GPU [46] based on 7-nm process node [47], we generously
assume that the ReLU function consumes ∼ 1 fJ per activation, and occurs in a



45

Figure 2.7: Comparison of energy and time per activation of this work (red star)
to previous all-optical (red circle), optoelectronic (blue square), analog electronic
(green diamond), and digital electronic (magenta triangle) nonlinear activation func-
tions. The numeric labels show reference numbers and dashed black lines show the
energy-time product contours.

single 1 GHz clock cycle. We see that, although our device still has an order of
magnitude greater energy per activation, the time per activation is four orders of
magnitude faster. Hence, we achieve an energy-time product that is three orders of
magnitude better than state-of-the-art digital electronics. Our numerical simulations
(Supplementary Section 3) predict that the PPLN nanophotonic waveguide can
realistically achieve a ReLU-like response with sub-femtojoule energy per activation.
This would even surpass the energy efficiency of state-of-the-art digital electronics.
We attribute the discrepancy between our experimental results and the theoretically
predicted limits for the energy scale to the imperfect phase-matching and fabrication
error of our device. It is worth mentioning how these device-level metrics potentially
translate to those of complete neural networks. In this case, additional system-level
energy costs such as laser wall-plug efficiency and transport losses can significantly
increase the effective activation energy. However, we note that the same is also true
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in digital electronics such as GPUs where electrical data movement energy costs
can exceed the actual switching energy by several orders of magnitude [48].

Potential network architectures
So far, we have demonstrated how PPLN nanophotonic waveguides can implement
all-optical, ultrafast, energy-efficient nonlinear activation functions, which forms
only one building block of a full neuron. In this section, we briefly discuss how our
device can be integrated into a complete ONN architecture. Interestingly, DOPA and
SHG are theoretically noiseless amplification/deamplification processes. Therefore,
the all-optical ReLU function should not contribute additional noise to a photonic
neural network. In principle, the all-optical ReLU is compatible with most existing
ONN architectures that can accurately implement linear operations such as matrix
multiplication and convolutions. However, in practice, the speed bottleneck will
likely be the encoding of information into the required coherent optical amplitudes.
In this case, PPLN nanophotonic waveguides can be monolithically integrated with
high-speed electro-optic modulators in thin-film lithium niobate, demonstrated to
achieve bandwidths beyond 100 GHz [49]. Furthermore, the light sources can
also be integrated on-chip using thin-film lithium niobate optical parametric oscilla-
tors [50]. Therefore, all the fundamental building blocks needed for a complete ONN
in thin-film lithium niobate already exist. Given the rapid increases in scalability
of thin-film lithium niobate photonics, we are confident that a complete ONN can
be demonstrated in the near-future. One potential approach is to use Mach-Zehnder
interferometer meshes [18] or photonic tensor cores with waveguide cross-bar ar-
rays [20] to implement the linear matrix multiplications, then cascaded into PPLN
nanophotonic waveguides to perform nonlinear activations. Another promising
method is to use a time-multiplexed architecture similar to ones demonstrated for
coherent Ising machines [51] or photonic reservoir computers [14, 15]. See Sup-
plementary Section 6 for more detailed descriptions and schematics of potential
integrated lithium niobate nanophotonic neural networks for deep learning.

A valid concern is harnessing the full capabilities of the all-optical ReLU function. It
is challenging to fully exploit the ultrafast time response of the nonlinear optical pro-
cesses since current interfacing electronics is currently limited to GHz bandwidths
[48]. However, this should not automatically preclude the use of ultrafast nonlinear
optics for optical computing. For example, coherent Ising machines [51] and optical
signal processing [52], which require optical input and optical output, are prime
candidates for near-term applications. In the future, all-optical computing hardware
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using such parametric ultrafast nonlinear activation functions may operate with
THz clock rates. Crucially, the all-optical ReLU is cascadable since DOPA/SHG
are inherently energy-conserving, i.e., the output is sufficiently energetic to serve
as the input trigger for at least one other neuron. If multiple outputs are desired,
i.e., fan-out, then intermediate amplification is needed, which can be provided by
the same type of PPLNs demonstrated. Therefore, in principle, the bottleneck of
optoelectronic conversion and analog-to-digital conversion can be bypassed.

2.6 Conclusion
In conclusion, we have demonstrated an all-optical ultrafast ReLU function using
a PPLN nanophotonic waveguide. It has an energy per activation of ∼ 16 fJ and
time per activation of ∼ 75 fs, thus achieving a state-of-the-art energy-time product
of 1.2 × 10−27 J · s. Furthermore, we demonstrated how the same device can be
used to implement other common variants of the ReLU function, and showed how
it can exploit existing pretrained deep learning models to greatly reduce training
time. Given the simplicity of our device, and the rapid improvements in scalability
of thin-film lithium niobate photonics, we envisage that it will be able to replace
periphery digital electronic circuits for calculating nonlinear activations in ONNs.
Therefore, we have presented a clear and practical path towards truly all-optical,
energy-efficient photonic deep learning.

2.7 Supplementary Information
Experimental setup
The experimental setup for the optical ReLU measurements is depicted in Fig. 2.8.
The pump laser is a mode-locked Yb-fiber laser which provides 70 fs pulses at 1045
nm with up to 1 W average power at a 250 MHz repetition rate (Menlo Systems
Orange A). The laser output is then split into two paths. The first path is sent to a
synchronously pumped degenerate optical parametric (SPDOPO) oscillator based
on periodically-poled lithium niobate (PPLN) which is used to efficiently generate
pulses at 2090 nm [53]. The OPO is locked using a "dither and lock" scheme,
facilitated by the Lock-In + PID application for Red Pitaya [54, 55]. A variable
ND filter is added to the output of the OPO to control the 2090 nm power sent to
the device. The second 1045 nm path is sent to a delay stage. Course adjustment
of the delay is done through manual tuning of the stage position and micrometer
arm while fine adjustment is performed using a piezoelectric actuator. This delay
enables temporal overlap of the two paths, and fine adjustment is used to change
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Figure 2.8: Experimental Schematic for all-optical ReLU measurements. The
pump laser at 1045 nm is first split into two paths. One beam is used to pump
our SPDOPO above threshold generating signal at centered at 2090 nm. The other
beam is guided to a delay stage and further overlaps with the 2090 nm OPO signal
at a dichroic mirror. Both beams are then coupled in and out from the chip using
high NA reflective objectives. Next, the waveguide output is filtered with a short
pass filter for filtering out the 2090 nm followed by splitting 1045 nm into two
paths. Both of the 1045 nm beams are coupled into multimode fibers; one beam
is measured by the OSA while the other beam is used to lock the delay stage.
PBS: Polarizing beamsplitter, HWP: Half-wave plate, DM: Dichroic mirror, Obj.:
Reflective objective, VND: Variable neutral-density filter, LPF: Long-pass filter,
SPF: Short-pass filter, FC: Fiber Coupler, OSA: Optical spectrum analyzer, PD:
Photodetector, OPO: Optical parametric oscillator.

the relative phase of the fundamental and second harmonic for the OPA process.
Like the other path, a variable ND filter is also placed along this path for adjusting
the 1045 nm power. The two paths are recombined at a dichroic mirror with high
transmission at 1045 nm and high reflectivity at 2090 nm before going to the device.

Focusing to and coupling from the device is done using a reflective objective (New-
port 50102-02). Temperature tuning of the device for fine adjustment of the quasi-
phase matching condition is done using a thermoelectric cooling stage (TEC). The
output of the chip is short-pass filtered around 1700 nm to remove all remaining
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signal at 2090 nm and then split into two paths. The signal on one path is measured
with a detector and used for feedback to the delay stage. A "dither and lock" scheme,
similar to that used for the OPO, is employed here to lock the relative phases of the
two inputs to switch between amplification and deamplification in the OPA process
[54, 55]. The second path is coupled to fiber and sent to an optical spectrum analyzer
(OSA) for measuring the output power and spectrum (Yokogawa AQ6370D).

Device fabrication and characterization
For our devices, a wafer with 700 nm of X-cut MgO-doped LN on top of 2 𝜇m of
SiO2 was used. 15 nm of Cr underneath 55 nm of Au were then e-beam evaporated
and patterned via e-beam lithography to form poling electrodes. 300V pulses
were used to pole the chip, and the quality was confirmed using second harmonic
microscopy. Waveguides were subsequently patterned on the chip using hydrogen
silsesquioxane (HSQ) as the e-beam resist and 15 nm of Ti as an adhesion layer.
They were dry etched with Ar+ plasma in an inductively-coupled plasma reactive-
ion etcher (ICP-RIE), and the remaining resists and side-wall re-deposition were
removed using Buffered oxide etchant (BOE) and RCA-1. Finally, the waveguide
facets were mechanically polished.

In Fig. 2.9, we display the measured spectrums of 2𝜔, 𝜔 and their non-linear
interaction in the waveguide. (a) and (b) show the input spectrums of 2𝜔 and 𝜔,
respectively, and (c) shows the evolution of 2𝜔 pulse as the phase difference is
modulated. We can see that for the positive signal values corresponding to the
phase relationship 2𝜙𝜔 − 𝜙2𝜔 = 𝜋/2, the 2𝜔 signal grows due to SHG process while
depleting the 𝜔 pulse. On the other hand, for the phase relationship 2𝜙𝜔 − 𝜙2𝜔 =

−𝜋/2, the 𝜔 pulse grows due to optical parametric amplification, thereby depleting
the 2𝜔 as evident from the dip in the spectrum.

We now estimate the input and output coupling efficiencies of our device. A detailed
discussion is provided in previous work on optical parametric generation (OPG) and
amplification (OPA) [33, 56]; here we outline the main steps. For a degenerate OPG
process in the high parametric gain regime, the generated average photon-number
in an ideal case is given by

⟨𝑁⟩ ≈ 1
4
𝑒2𝐿

√
𝜂𝑃, (2.1)

where 𝑃, 𝐿 and 𝜂 are pump power, interaction length, and non-linear interaction
efficiency. In the presence of experimental imperfections such as off-chip coupling,
coupling to optical fibers, and detection inefficiencies, the average photon-number
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Figure 2.9: Measured spectrums of 𝜔 and 2𝜔. In (a) and (b) correspond to the
waveguide input 2𝜔 and 𝜔, respectively. (c) shows the evolution of the waveguide
output 2𝜔 as the phase difference between 2𝜔 and 𝜔 is modulated.
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Figure 2.10: Number of signal photons as the input pump power is varied. The
red points are experimentally measured data for several values of pump power and
the black curve shows the exponential fit used for estimating the output coupling
efficiency, i.e., the 𝜂1 parameter in Eq. 2.2.

is given as

⟨𝑁⟩ ≈ 𝜂1
4
𝑒2𝐿

√
𝜂2𝑃, (2.2)

where all optical losses on the OPG signal are combined in 𝜂1 parameter and 𝜂2

quantifies the non-linear interaction strength and the input coupling efficiency of our
second harmonic signal. From our measured data for OPG power, we determine the
average photon number for various values of the second harmonic pump. By fitting
the data, we can extract the 𝜂1 and 𝜂2 parameters. In Fig. 2.10, the measured average
number of photons are displayed with respect to the input pump power. From the
fit, we extract 𝜂1 ≈ 0.20, i.e., the estimated output coupling loss is about 7 dB,
which shows a good agreement with our previous paper [33, 56]. Given the total
coupling loss measured at low power, we then determine the input coupling loss as
the difference between total and output coupling losses. We note that coupling losses
< 1 dB per facet have been reported for thin-film lithium niobate photonics [57],
which is promising for large-scale circuits.
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Simulation method
We numerically solved an analytical nonlinear envelope equation (NEE) in the
frequency domain using a split-step Fourier technique to simulate the pulse prop-
agation and nonlinear dynamics in the waveguide. The nonlinear step was imple-
mented using fourth-order Runge-Kutta method. We obtained the NEE by ignoring
counter-propagating modes, which are usually phase mismatched, and assuming
a constant nonlinear coefficient across the entire simulation bandwidth. The fun-
damental and second harmonic pulses were assumed to have a transform-limited,
hyperbolic-secant profile. The NEE is given by:

𝜕𝐴

𝜕𝑧
= −𝑖

[
𝛽(𝜔) − 𝛽0 −

Ω

𝑣𝑟𝑒 𝑓
− 𝑖 𝛼

2

]
𝐴 (2.3)

−𝑖𝜔𝜀0𝑋0
8

𝑑 (𝑧)FΩ

{
𝑎2(𝑧, 𝑡)𝑒 𝑗𝜙(𝑧,𝑡) + 2𝑎(𝑧, 𝑡)𝑎∗(𝑧, 𝑡)𝑒− 𝑗𝜙(𝑧,𝑡)

}
where 𝐴(𝑧, 𝜔) is the complex amplitude of the field during propagation, 𝑎(𝑧, 𝑡) is
the time domain representation of 𝐴(𝑧,Ω), 𝜙(𝑧, 𝑡) = 𝜔0𝑡 − (𝛽0 − 𝜔0/𝑣𝑟𝑒 𝑓 )𝑧, 𝛽0 is
the waveguide propagation constant at frequency 𝜔0, Ω = 𝜔 − 𝜔0 is the envelope
frequency, 𝜔 is the optical frequency, 𝛼 is the attenuation constant, 𝑑 (𝑧) = ±1 is the
instantaneous sign of the nonlinear coefficient due to quasi-phase matching, FΩ is
the Fourier transform in Ω, and 𝑋0 is the effective nonlinear coefficient.

To simulate the ReLU response of our experimental device, shown in Fig. 3 in
the main text, we assumed 𝛼 ≈ 0.1 dB/cm and used the following waveguide
geometry obtained from atomic force microscope measurements: waveguide top
width of 1768 nm, ridge height (etch depth) of 377 nm, and a total lithium niobate
thin-film thickness (before etching) of 713 nm. We use the effective nonlinear
coefficient as a fitting parameter to match the experimental data and inferred a value
of 𝑋0 ≈ 0.36 × 10−12 V2, which is about ∼ 1/3 of its ideal value.

Given the fabrication error and imperfect phase-matching of our device, we could
only experimentally achieve an energy of ∼ 16 fJ per activation. However, Fig. 2.11
shows the simulated ideal performance of a PPLN with length 𝐿 = 2.5 mm, ridge
top width of 𝑤 = 1700 nm, etch-depth of ℎ = 350 nm, and bias pulse energy of
𝐸𝜔 (0) = 10 fJ. We see that it can achieve a ReLU-like function with sub-femtojoule
energy per activation.
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Figure 2.11: Simulated ReLU-like nonlinear activation function with sub-
femtojoule energies achieved using bias pulse energy of 𝐸𝜔 (0) = 10 fJ and ideal
PPLN parameters.

Fitting of pump-probe signal
The input autocorrelation was fit using a Gaussian profile:

𝐺 (𝑡) = 1
𝜎
√

2𝜋
𝑒

−𝑡2
2𝜎2 , (2.4)

where𝜎 is related to the FWHM by 𝐹𝑊𝐻𝑀 = 2𝜎
√

2 ln 2. The exponential function
with characteristic decay time of 𝜏 = 1/𝜆 is defined as:

𝐹 (𝑡) = 𝑒−𝜆𝑡 . (2.5)

The convolution between 𝐺 (𝑡) and 𝐹 (𝑡) is defined as:

𝐼 (𝑡′) = 𝐹 (𝑡) ∗ 𝐺 (𝑡) = 1
𝜎
√

2𝜋

∫ ∞

0
𝑒−𝜆𝑡𝑒

−
(𝑡′ − 𝑡)2

2𝜎2 𝑑𝑡 . (2.6)

We fit the pump-probe signal with exponential growth and decay functions for posi-
tive and negative time delays, respectively, convolved with the input autocorrelation
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by using the analytical formula for Eq. 2.6:

𝐼 (𝑡′) = 1
2
𝑒−𝜆(𝑡′−𝜎2𝜆/2)

[
1 + erf

(
𝑡′ − 𝜎2𝜆
√

2𝜎

)]
, (2.7)

where erf (𝑥) = 2
√
𝜋

∫ 𝑥
0 𝑒−𝑧

2
𝑑𝑧 is the error function.

Convolutional neural network architecture
The pretrained convolutional neural network (CNN) architecture is shown in Fig. 2.12.
The CNN was trained on the MNIST handwritten digits image classification [40]
using stochastic gradient descent with momentum (SGDM) with initial learn rate of
0.01 and batch size of 128. For fine-tuning after the ideal ReLU layers were replaced
with custom layers representing the experimentally measured ReLU response, the
initial learn rate was decreased to 0.001.

Figure 2.12: Pretrained convolutional neural network architecture.

Potential integrated photonic neural networks
A promising approach to integrating the all-optical ultrafast ReLU into a complete
ONN is to monolithically integrate it with high-speed electro-optic modulators in
thin-film lithium niobate nanophotonic circuits. Fig. 2.13 shows two examples of
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(a)

(b)

Figure 2.13: Potential integrated photonic neural networks using the all-optical
ultrafast ReLU function. (a) Spatially-multiplexed design based on a mesh of
Mach-Zehnder interferometers performing linear operations, directly cascaded into
an array of PPLNs performing the ReLU activations. (b) Time-multiplexed design
based on feedback-modulated delay loops performing linear operations and the
PPLN performing ReLU activations, acting as the single photonic neuron folded in
time.

how this can be accomplished. One method, shown in Fig. 2.13(a), uses a spatially-
multiplexed approach. It consists of a mesh of Mach-Zehnder inteferometers, akin to
those demonstrated in silicon photonics [18], to perform linear operations, directly
followed by an array of PPLNs to perform the ReLU activations. Therefore, in this
approach, each neuron represents a separate PPLN and the entire neural network
layer is computed in a constant time step. Subsequent layers are identical in structure
and can be directly cascaded following the array of PPLNs. The bias pulse can be
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directly fed to each PPLN using out-of-plane couplers as shown in Fig. 2.13(a), or
by using in-plane photonic crossbar switches. The bias and signal pulses can be
decoupled using wavelength-division multiplexing (WDM) filters either on-chip or
off-chip.

The second method, shown in Fig. 2.13(b), uses a time-multiplexed approach based
on a single photonic neuron folded in time with feedback-modulated delay loops [58].
In this architecture, each delay loop at each time step represents a different synaptic
connection in the neural network layer. By properly updating the feedback modula-
tors at each time step, the required linear operations can be achieved. Therefore, only
one PPLN performing ReLU activations is needed to represent all neurons, but the
number of delay loops and time steps to compute each neural network layer equals
the number of synapses for each neuron. This architecture may be advantageous
in that it relaxes the experimental constraints for fabricating and controlling a large
number of PPLNs like in the spatially-multiplexed method.

Given the relatively long (∼mm) length of the PPLN, but ultrafast response time,
it is desirable to employ a time-multiplexed approach for scalability. Furthermore,
although we show the use of free-space coupling here, this can be eliminated
through the monolithic integration of thin-film lithium niobate lasers [59], and
integrated detectors [60]. This is substantially more complicated than any previously
demonstrated thin-film lithium niobate photonic circuit [32, 33, 61, 62], but rapid
improvements in fabrication quality/tolerance in thin-film lithium niobate photonics
promise a path toward a monolithically integrated photonic neural network in the
near future.

References

[1] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT
press, 2016.

[2] Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S. Emer. Efficient
processing of deep neural networks: A tutorial and survey. Proceedings of the
IEEE, 105(12):2295–2329, 2017.

[3] Yann LeCun. Deep learning hardware: Past, present, and future. In 2019
IEEE International Solid-State Circuits Conference-(ISSCC), pages 12–19.
IEEE, 2019.

[4] Gordon Wetzstein, Aydogan Ozcan, Sylvain Gigan, Shanhui Fan, Dirk En-
glund, Marin Soljačić, Cornelia Denz, David A.B. Miller, and Demetri Psaltis.



57

Inference in artificial intelligence with deep optics and photonics. Nature, 588
(7836):39–47, 2020.

[5] Xing Lin, Yair Rivenson, Nezih T. Yardimci, Muhammed Veli, Yi Luo, Mona
Jarrahi, and Aydogan Ozcan. All-optical machine learning using diffractive
deep neural networks. Science, 361(6406):1004–1008, 2018.

[6] Tiankuang Zhou, Xing Lin, Jiamin Wu, Yitong Chen, Hao Xie, Yipeng Li,
Jingtao Fan, Huaqiang Wu, Lu Fang, and Qionghai Dai. Large-scale neuro-
morphic optoelectronic computing with a reconfigurable diffractive processing
unit. Nature Photonics, 15(5):367–373, 2021.

[7] Ying Zuo, Bohan Li, Yujun Zhao, Yue Jiang, You-Chiuan Chen, Peng Chen,
Gyu-Boong Jo, Junwei Liu, and Shengwang Du. All-optical neural network
with nonlinear activation functions. Optica, 6(9):1132–1137, 2019.

[8] Tianyu Wang, Shi-Yuan Ma, Logan G. Wright, Tatsuhiro Onodera, Brian
Richard, and Peter L McMahon. An optical neural network using less than 1
photon per multiplication. arXiv preprint arXiv:2104.13467, 2021.

[9] Ziyu Gu, Yesheng Gao, and Xingzhao Liu. Optronic convolutional neural
networks of multi-layers with different functions executed in optics for image
classification. Optics Express, 29(4):5877–5889, 2021.

[10] Mario Miscuglio, Zibo Hu, Shurui Li, Jonathan K. George, Roberto Capanna,
Hamed Dalir, Philippe M. Bardet, Puneet Gupta, and Volker J. Sorger. Mas-
sively parallel amplitude-only fourier neural network. Optica, 7(12):1812–
1819, 2020.

[11] Xavier Porte, Anas Skalli, Nasibeh Haghighi, Stephan Reitzenstein, James A.
Lott, and Daniel Brunner. A complete, parallel and autonomous photonic
neural network in a semiconductor multimode laser. Journal of Physics:
Photonics, 3(2):024017, 2021.

[12] Xingyuan Xu, Mengxi Tan, Bill Corcoran, Jiayang Wu, Andreas Boes,
Thach G. Nguyen, Sai T. Chu, Brent E. Little, Damien G. Hicks, Roberto
Morandotti, et al. 11 tops photonic convolutional accelerator for optical neural
networks. Nature, 589(7840):44–51, 2021.

[13] George Mourgias-Alexandris, Apostolos Tsakyridis, Nikolaos Passalis, Anas-
tasios Tefas, Konstantinos Vyrsokinos, and Nikolaos Pleros. An all-optical
neuron with sigmoid activation function. Optics Express, 27(7):9620–9630,
2019.

[14] François Duport, Bendix Schneider, Anteo Smerieri, Marc Haelterman, and
Serge Massar. All-optical reservoir computing. Optics Express, 20(20):22783–
22795, 2012.



58

[15] François Duport, Anteo Smerieri, Akram Akrout, Marc Haelterman, and Serge
Massar. Fully analogue photonic reservoir computer. Scientific Reports, 6(1):
1–12, 2016.

[16] Bhavin J. Shastri, Mitchell A. Nahmias, Alexander N. Tait, Alejandro W.
Rodriguez, Ben Wu, and Paul R. Prucnal. Spike processing with a graphene
excitable laser. Scientific Reports, 6(1):1–12, 2016.

[17] Antoine Dejonckheere, François Duport, Anteo Smerieri, Li Fang, Jean-Louis
Oudar, Marc Haelterman, and Serge Massar. All-optical reservoir computer
based on saturation of absorption. Optics Express, 22(9):10868–10881, 2014.

[18] Yichen Shen, Nicholas C. Harris, Scott Skirlo, Mihika Prabhu, Tom Baehr-
Jones, Michael Hochberg, Xin Sun, Shijie Zhao, Hugo Larochelle, Dirk En-
glund, et al. Deep learning with coherent nanophotonic circuits. Nature
Photonics, 11(7):441–446, 2017.

[19] Johannes Feldmann, Nathan Youngblood, C. David Wright, Harish Bhaskaran,
and Wolfram H.P. Pernice. All-optical spiking neurosynaptic networks with
self-learning capabilities. Nature, 569(7755):208–214, 2019.

[20] Johannes Feldmann, Nathan Youngblood, Maxim Karpov, Helge Gehring,
Xuan Li, Maik Stappers, Manuel Le Gallo, Xin Fu, Anton Lukashchuk, Ar-
slan Sajid Raja, et al. Parallel convolutional processing using an integrated
photonic tensor core. Nature, 589(7840):52–58, 2021.

[21] Farshid Ashtiani, Alexander J. Geers, and Firooz Aflatouni. Single-chip pho-
tonic deep neural network for instantaneous image classification. arXiv preprint
arXiv:2106.11747, 2021.

[22] Shaofu Xu, Jing Wang, Haowen Shu, Zhike Zhang, Sicheng Yi, Bowen
Bai, Xingjun Wang, Jianguo Liu, and Weiwen Zou. Optical coherent dot-
product chip for sophisticated deep learning regression. arXiv preprint
arXiv:2105.12122, 2021.

[23] Bin Shi, Nicola Calabretta, and Ripalta Stabile. Inp photonic integrated multi-
layer neural networks: Architecture and performance analysis. APL Photonics,
2021.

[24] Mario Miscuglio, Armin Mehrabian, Zibo Hu, Shaimaa I. Azzam, Jonathan
George, Alexander V. Kildishev, Matthew Pelton, and Volker J. Sorger. All-
optical nonlinear activation function for photonic neural networks. Optical
Materials Express, 8(12):3851–3863, 2018.

[25] Aashu Jha, Chaoran Huang, and Paul R. Prucnal. Reconfigurable all-optical
nonlinear activation functions for neuromorphic photonics. Optics Letters, 45
(17):4819–4822, 2020.



59

[26] Alexander N. Tait, Thomas Ferreira De Lima, Ellen Zhou, Allie X. Wu,
Mitchell A. Nahmias, Bhavin J. Shastri, and Paul R. Prucnal. Neuromorphic
photonic networks using silicon photonic weight banks. Scientific Reports, 7
(1):1–10, 2017.

[27] Jasna Crnjanski, Marko Krstić, Angelina Totović, Nikos Pleros, and Dejan
Gvozdić. Adaptive sigmoid-like and prelu activation functions for all-optical
perceptron. Optics Letters, 46(9):2003–2006, 2021.

[28] Rubab Amin, Jonathan K. George, Shuai Sun, Thomas Ferreira de Lima,
Alexander N. Tait, Jacob B. Khurgin, Mario Miscuglio, Bhavin J. Shastri,
Paul R. Prucnal, Tarek El-Ghazawi, et al. ITO-based electro-absorption mod-
ulator for photonic neural activation function. APL Materials, 7(8):081112,
2019.

[29] Charis Mesaritakis, Alexandros Kapsalis, Adonis Bogris, and Dimitris
Syvridis. Artificial neuron based on integrated semiconductor quantum dot
mode-locked lasers. Scientific Reports, 6(1):1–10, 2016.

[30] Cheng Wang, Carsten Langrock, Alireza Marandi, Marc Jankowski, Mian
Zhang, Boris Desiatov, Martin M. Fejer, and Marko Lončar. Ultrahigh-
efficiency wavelength conversion in nanophotonic periodically poled lithium
niobate waveguides. Optica, 5(11):1438–1441, 2018.

[31] Marc Jankowski, Carsten Langrock, Boris Desiatov, Alireza Marandi, Cheng
Wang, Mian Zhang, Christopher R Phillips, Marko Lončar, and Martin M.
Fejer. Ultrabroadband nonlinear optics in nanophotonic periodically poled
lithium niobate waveguides. Optica, 7(1):40–46, 2020.

[32] Qiushi Guo, Ryoto Sekine, Luis Ledezma, Rajveer Nehra, Devin J. Dean,
Arkadev Roy, Robert M Gray, Saman Jahani, and Alireza Marandi. Femtojoule,
femtosecond all-optical switching in lithium niobate nanophotonics. arXiv
preprint arXiv:2107.09906, 2021.

[33] Luis Ledezma, Ryoto Sekine, Qiushi Guo, Rajveer Nehra, Saman Jahani,
and Alireza Marandi. Intense optical parametric amplification in disper-
sion engineered nanophotonic lithium niobate waveguides. arXiv preprint
arXiv:2104.08262, 2021.

[34] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and ac-
curate deep network learning by exponential linear units (elus). arXiv preprint
arXiv:1511.07289, 2015.

[35] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Ka-
plan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry,
Amanda Askell, et al. Language models are few-shot learners. arXiv preprint
arXiv:2005.14165, 2020.



60

[36] Masaaki Ono, Masanori Hata, Masato Tsunekawa, Kengo Nozaki, Hisashi
Sumikura, Hisashi Chiba, and Masaya Notomi. Ultrafast and energy-efficient
all-optical switching with graphene-loaded deep-subwavelength plasmonic
waveguides. Nature Photonics, 14(1):37–43, 2020.

[37] Gustavo Grinblat, Michael P. Nielsen, Paul Dichtl, Yi Li, Rupert F. Oulton, and
Stefan A. Maier. Ultrafast sub–30-fs all-optical switching based on gallium
phosphide. Science Advances, 5(6):eaaw3262, 2019.

[38] Xianxin Guo, Thomas D. Barrett, Zhiming M Wang, and Alexander I. Lvovsky.
Backpropagation through nonlinear units for the all-optical training of neural
networks. Photonics Research, 9(3):B71–B80, 2021.

[39] Ian A.D. Williamson, Tyler W. Hughes, Momchil Minkov, Ben Bartlett, Sunil
Pai, and Shanhui Fan. Reprogrammable electro-optic nonlinear activation
functions for optical neural networks. IEEE Journal of Selected Topics in
Quantum Electronics, 26(1):1–12, 2019.

[40] Li Deng. The mnist database of handwritten digit images for machine learning
research. IEEE Signal Processing Magazine, 29(6):141–142, 2012.

[41] Saumil Bandyopadhyay, Ryan Hamerly, and Dirk Englund. Hardware error
correction for programmable photonics. Optica, 8(10):1247–1255, Oct 2021.

[42] Sangheon Oh, Yuhan Shi, Javier Del Valle, Pavel Salev, Yichen Lu, Zhisheng
Huang, Yoav Kalcheim, Ivan K. Schuller, and Duygu Kuzum. Energy-efficient
mott activation neuron for full-hardware implementation of neural networks.
Nature Nanotechnology, 16(6):680–687, 2021.

[43] Olga Krestinskaya, Khaled Nabil Salama, and Alex Pappachen James. Learn-
ing in memristive neural network architectures using analog backpropagation
circuits. IEEE Transactions on Circuits and Systems I: Regular Papers, 66(2):
719–732, 2018.

[44] Yucong Huang, Zhitao Yang, Jianghan Zhu, and Terry Tao Ye. Analog circuit
implementation of neurons with multiply-accumulate and relu functions. In
Proceedings of the 2020 on Great Lakes Symposium on VLSI, pages 493–498,
2020.

[45] Massimo Giordano, Giorgio Cristiano, Koji Ishibashi, Stefano Ambrogio,
Hsinyu Tsai, Geoffrey W Burr, and Pritish Narayanan. Analog-to-digital con-
version with reconfigurable function mapping for neural networks activation
function acceleration. IEEE Journal on Emerging and Selected Topics in
Circuits and Systems, 9(2):367–376, 2019.

[46] Jack Choquette, Wishwesh Gandhi, Olivier Giroux, Nick Stam, and Ronny
Krashinsky. Nvidia a100 tensor core gpu: Performance and innovation. IEEE
Micro, 41(2):29–35, 2021.



61

[47] Qing Xie, Xue Lin, Yanzhi Wang, Shuang Chen, Mohammad Javad Dousti,
and Massoud Pedram. Performance comparisons between 7-nm finfet and
conventional bulk cmos standard cell libraries. IEEE Transactions on Circuits
and Systems II: Express Briefs, 62(8):761–765, 2015.

[48] Chris Cole. Optical and electrical programmable computing energy use com-
parison. Optics Express, 29(9):13153–13170, 2021.

[49] Mian Zhang, Cheng Wang, Prashanta Kharel, Di Zhu, and Marko Lončar.
Integrated lithium niobate electro-optic modulators: When performance meets
scalability. Optica, 8(5):652–667, 2021.

[50] Juanjuan Lu, Ayed Al Sayem, Zheng Gong, Joshua B Surya, Chang-Ling
Zou, and Hong X Tang. Ultralow-threshold thin-film lithium niobate optical
parametric oscillator. Optica, 8(4):539–544, 2021.

[51] Yoshihisa Yamamoto, Kazuyuki Aihara, Timothee Leleu, Ken-ichi
Kawarabayashi, Satoshi Kako, Martin M. Fejer, Kyo Inoue, and Hiroki Take-
sue. Coherent ising machines—optical neural networks operating at the quan-
tum limit. npj Quantum Information, 3(1):1–15, 2017.

[52] Stefan Wabnitz and Benjamin J. Eggleton. All-optical signal processing.
Springer Series in Optical Sciences, 194, 2015.

[53] Marc Jankowski, Alireza Marandi, Christopher R. Phillips, Ryan Hamerly,
Kirk A. Ingold, Robert L. Byer, and Martin M. Fejer. Temporal simultons
in optical parametric oscillators. Physical Review Letters, 120:053904, Feb
2018.

[54] Alireza Marandi, Nick C. Leindecker, Vladimir Pervak, Robert L. Byer, and
Konstantin L. Vodopyanov. Coherence properties of a broadband femtosecond
mid-ir optical parametric oscillator operating at degeneracy. Optics Express,
20:7255–7262, 2012.

[55] Marcelo Alejandro Luda, Martin Drechsler, Christian Tom’as Schmiegelow,
and Jorge Codnia. Compact embedded device for lock-in measurements and
experiment active control. Review of Scientific Instruments, 90:023106, 2019.

[56] Luis Ledezma, Ryoto Sekine, Qiushi Guo, Rajveer Nehra, Saman Jahani, and
Alireza Marandi. 100 db/cm broadband optical parametric amplification in
dispersion engineered nanophotonic lithium niobate waveguides. In CLEO:
Science and Innovations, pages SF1C–7. Optical Society of America, 2021.

[57] Changran Hu, An Pan, Tingan Li, Xuanhao Wang, Yuheng Liu, Shiqi Tao,
Cheng Zeng, and Jinsong Xia. High-efficient coupler for thin-film lithium
niobate waveguide devices. Optics Express, 29(4):5397–5406, 2021.



62

[58] Florian Stelzer, André Röhm, Raul Vicente, Ingo Fischer, and Serhiy Yanchuk.
Deep neural networks using a single neuron: Folded-in-time architecture using
feedback-modulated delay loops. Nature Communications, 12(1):1–10, 2021.

[59] Xiangmin Liu, Xiongshuo Yan, Hao Li, Yuping Chen, Xianfeng Chen, et al.
Tunable single-mode laser on thin film lithium niobate. Optics Letters, 46(21):
5505–5508, 2021.

[60] Ayed Al Sayem, Risheng Cheng, Sihao Wang, and Hong X Tang. Lithium-
niobate-on-insulator waveguide-integrated superconducting nanowire single-
photon detectors. Applied Physics Letters, 116(15):151102, 2020.

[61] Luis Ledezma, Arkadev Roy, Luis Costa, Ryoto Sekine, Robert Gray, Qiushi
Guo, Ryan M. Briggs, and Alireza Marandi. Widely-tunable optical parametric
oscillator in lithium niobate nanophotonics. arXiv preprint arXiv:2203.11482,
2022.

[62] Rajveer Nehra, Ryoto Sekine, Luis Ledezma, Qiushi Guo, Robert M Gray,
Arkadev Roy, and Alireza Marandi. Few-cycle vacuum squeezing in nanopho-
tonics. arXiv preprint arXiv:2201.06768, 2022.



63

C h a p t e r 3

ULTRAFAST NEUROMORPHIC COMPUTING WITH
NANOPHOTONIC OPTICAL PARAMETRIC OSCILLATORS

Midya Parto∗, Gordon H.Y. Li∗, Ryoto Sekine, Robert M. Gray, Luis L. Ledezma,
James Williams, Arkadev Roy, and Alireza Marandi. Ultrafast neuromorphic
computing with nanophotonic optical parametric oscillators. arXiv preprint
arXiv:2501.16604, 2025. doi:10.48550/arXiv.2501.16604.
G.H.Y.L. conceived the project, participated in developing the theory, executed
initial numerical simulations, participated in the design of the experiments, and
participated in the writing of the manuscript.
* denotes equal contributions.

3.1 Abstract
Over the past decade, artificial intelligence (AI) has led to disruptive advancements in
fundamental sciences and everyday technologies. Among various machine learning
algorithms, deep neural networks [1] have become instrumental in revealing complex
patterns in large datasets with key applications in computer vision, natural language
processing, and predictive analytics. With the increasing prevalence and adoption
of deep learning, the quest for hardware solutions that can efficiently process data
in real time with high speeds and low latencies has come to the forefront of research
in many fields. On-chip photonic neural networks offer a promising platform that
leverage high bandwidths and low propagation losses associated with optical signals
to perform analog computations for deep learning [2–6]. However, nanophotonic
circuits are yet to achieve the required linear and nonlinear operations simultaneously
in an all-optical and ultrafast fashion. Here, we report an ultrafast nanophotonic
neuromorphic processor using an optical parametric oscillator (OPO) fabricated on
thin-film lithium niobate (TFLN). The input data is used to modulate the optical
pulses synchronously pumping the OPO. The consequent signal pulses generated
by the OPO are coupled to one another via the nonlinear delayed dynamics of the
OPO, thus forming the internal nodes of a deep recurrent neural network. We
use such a nonlinearly coupled OPO network for chaotic time series prediction,
nonlinear error correction in a noisy communication channel, as well as noisy
waveform classification and achieve accuracies exceeding 93% at an operating clock
rate of ∼ 10 GHz. Our OPO network is capable of achieving sub-nanosecond
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latencies, a timescale comparable to a single clock cycle in state-of-the-art digital
electronic processors. By circumventing the need for optical-electronic-optical
(OEO) conversions, our ultrafast nanophotonic neural network paves the way for
the next generation of compact all-optical neuromorphic processors with ultralow
latencies and high energy efficiencies.

3.2 Introduction
Deep neural networks (DNNs) have revolutionized modern data processing with
transformative results across numerous fields ranging from fundamental sciences
to automotive and healthcare industries to generative art [7–9]. As deep learning
algorithms become more prominent, traditional computing hardware proves to be
increasingly less suitable for their implementation. This incompatibility poses a
formidable challenge for the future of AI and originates from several characteristics
of current computing architectures. The substantial growth of the compute required
by recent deep learning models far surpasses the current trend in the advancement
of digital electronic processors [10]. The resulting gap becomes even more acute in
many practical scenarios that require real-time processing where ultralow latencies
are critical. In addition, as algorithms become more complex and datasets grow
larger, the energy required to perform computations surges, resulting in serious
financial and environmental consequences. Providing viable solutions to these chal-
lenges has brought the quest for efficient and high-speed computing hardware to the
forefront of research across various disciplines to drive disruptive AI technologies.

Against this backdrop, photonic neural networks (PNNs) have recently emerged as
promising candidates that can harness high bandwidths offered by optical systems
to provide ultrafast operation while maintaining high energy efficiencies facilitated
by the low-loss propagation of light [5, 6, 11]. In particular, recent advances
in nanofabrication and photonic integrated circuits (PICs) have provided a fertile
ground for implementing light-based AI architectures on compact chip-scale devices
[12]. DNNs consist of many layers of linear operations such as matrix multiplications
or convolutions interleaved by nonlinear activation functions. Existing integrated
PNNs utilize various architectures such as Mach-Zehnder inteferometers [13] as
well as microring resonator arrays to accelerate the linear operations necessary for
deep learning [2, 4, 14]. Typically, opto-electronic components provide the nonlinear
activation functions in PNNs. Alternatively, one can realize the nonlinear operations
by using all-optical nonlinearities [15] such as phase change materials [16–18] or
optical parametric processes [19, 20]. This latter approach can therefore eliminate
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the need for successive optical-electronic-optical (OEO) conversions and provide a
route for true all-optical integrated neural networks with ultrashort latencies beyond
those attainable by hybrid optoelectronic architectures. Yet, despite significant
progress in PNNs [21], achieving a unifying platform that simultaneously provides
both linear multiply-accumulate (MAC) operations and ultrafast nonlinear activation
functions in nanophotonic circuits has remained elusive.

In this work, we address this challenge and demonstrate an integrated photonic neural
network that harnesses coherent optical pulse propagation in conjunction with ultra-
fast parametric nonlinear processes [22, 23] to achieve ultralow-latency operations.
To this end, we use a nanophotonic optical parametric oscillator (OPO) fabricated on
a TFLN chip to implement a deep recurrent neural network which we dub OPONN.
In our scheme, as shown in Fig. 3.1, masked sequential data is used to modulate the
optical pulses of an electro-optic (EO) frequency comb used to synchronously pump
the OPO. In response, the nanophotonic OPO, which operates at degeneracy [24],
generates signal pulses at the half-harmonic of the input pump. The optical feedback
provided by the cavity on one hand and the parametric amplification on the other
hand act upon the generated signal fields creating dynamics akin to those associated
with neurons in a recurrent neural network. We utilize our OPONN for machine
learning on three different tasks: (i) ultrafast chaotic time series prediction involving
the archetypal Lorenz and Mackey-Glass systems of equations, (ii) compensating
nonlinear distortions in a noisy communication channel, and (iii) waveform classi-
fication on noisy signals that are randomly chosen from three different classes of
sinusoidal, rectangular, and sawtooth functions. In all cases, the OPONN achieved
accuracies exceeding 93% while operating at ∼ 10 GHz clock rates. Remarkably,
this clock rate is only limited by the electronic sources responsible for generating the
input pump pulses, and is not an inherent limit of our OPO-based neural network,
which is operable with femtosecond pulses. By realizing the linear MAC operations
as well as the nonlinear activation functions in the optical domain, our implemen-
tation also eliminates the need for OEO conversions that are typically required in
state-of-the-art PNN architectures.

Figure 3.1 illustrates the OPO-based neurmorphic processor. At the heart of the
processor is an on-chip OPO which is fabricated on an x-cut TFLN wafer with a silica
buffer layer. It consists of a dispersion-engineered periodically-poled lithium niobate
(PPLN) section that provides broadband quasi phase matching (QPM) between the
pump at 1045 nm and the generated signal and idler waves. The cavity is formed by
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Figure 3.1: Nanophotonic OPO-based neuromorphic processor. Schematic view
of the nanophotonic OPO utilized in our experiements for neuromorphic computing.
The top panel depicts the microscope image of the device (more information about
the chip design can be found in [25]). The central part of the racetrack resonator is
removed for clarity. The structure is designed in such a way that only the degenerate
signal/idler resonate inside the cavity. At the input, the optical pump generated from
an EO comb at 𝑓rep ≈ 10 GHz and a center wavelength of ∼ 1045 nm is modulated
by an EOM. The modulating signal is generated by an AWG that applies discrete data
𝑋 (𝑛) at ∼ 10 GSa/s. This data represents a time series that is obtained by sampling
an arbitrary function 𝑓 (𝑡) in time, followed by masking with a randomized set of
input weights Win, thus forming the input layer of our OPO neural network. The
inset depicts a two-photon microscope image of the periodically poled region in the
OPO cavity necessary for quasi phase matching (QPM). Within this poled region, the
generated signal pulses from previous roundtrips nonlinearly couple to the incoming
pump pulses, collectively acting as a nonlinear recurrent network that connects the
input layer to the output (the inset schematically displays this nonlinear coupling).
At the output, the signal pulses at ∼ 2090 nm are separated from the pump using
a fiber-based WDM filter and sent to a fast photodetector. The output layer of our
OPONN is then set up by forming a weighted average of these detected pulses.

two input/output adiabatic couplers which are designed to only allow the signal/idler
modes to resonate within the cavity [24]. Throughout our experiments, the OPO
is operated in the degenerate regime. We synchronously pump the OPO using
transform-limited pulses with a duration of ∼ 2 ps generated by an EO comb with a
repetition rate of ∼ 10 GHz matching the cavity free spectral range (FSR). The input
layer of the neural network is formed by using an electro-optic modulator (EOM)
driven by an arbitrary waveform generator (AWG) operating at∼ 10 GSa/s to prepare
the masked sequential data fed into the OPO as the pump pulses. During successive
cycles defined by the roundtrip time of the OPO cavity, the input pump pulse and
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the signal pulse traveling in the cavity overlap in the PPLN region. The signal pulse
carries information from the previous signals due to the feedback provided by the
cavity. In this respect, the resonator serves as an optical memory. Followed by this
coherent interference between the signal and pump pulses, the PPLN element acts
as a nonlinear neuron that generates a signal pulse which is a nonlinear function of
its inputs, i.e., the current pump pulse and the previous signal pulse. In this respect,
the nanophotonic OPO provides an all-optical implementation of a deep recurrent
neural network. Finally, the weighted average of the signal pulse intensities resolved
by a fast detector forms the output layer of the OPONN (Fig. 3.1).

Low latency time domain signal processing using OPONN
We employed the OPONN to perform machine learning on a variety of benchmark
tasks that involve time-domain signals. The first task is to predict the evolution of a
chaotic time series generated by the Lorenz63 model proposed by Lorenz in 1963
[26] to describe atmospheric convection. This is governed by a three-dimensional
system of coupled nonlinear differential equations ¤𝑥 = 10(𝑦 − 𝑥), ¤𝑦 = 𝑥(28 − 𝑧) −
𝑦, ¤𝑧 = 𝑥𝑦 − 8𝑧/3, where 𝑥, 𝑦 and 𝑧 denote physical observables associated with
the convective current and the temperature variations in different spatial directions.
For the set of parameters and the initial conditions chosen here, the Lorenz system
exhibits deterministic chaos that is manifested by an aperiodic trajectory in the
phase space known as a strange attractor. Under such conditions, the evolution of
the observables show a dramatic sensitivity to the initial conditions, hence defying
conventional methods of prediction. Our goal here is to train the OPONN to forecast
the next time step of the signal 𝑥(𝑡) based on its past history. To achieve this, we
first sample the input data at a sampling rate of ∼ 10 GHz to obtain the discrete
signal 𝑢(𝑛). We then configure the network with 𝑁in = 3 and 𝑁out = 10 nodes in the
input and the output layers, respectively. The input weights defined by the vector
Win are chosen randomly. We split the entire span of the available data into two
equal periods of training and testing. Training is performed in silico by singular
value decomposition to obtain the optimal output weight matrix Wout that results
in the least estimation error during the training phase. In contrast to other types
of deep neural networks that typically require computationally intensive training
techniques such as backpropagation, our neural network can be trained considerably
simpler with minimal computation requirements. Figure 3.2a shows measurement
results obtained from experiments, where both the target and the predicted signals
are displayed. To quantify the performance of the OPONN for this forecasting task,
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Figure 3.2: Chaotic time series prediction using OPONN. a, Numerically cal-
culated values of the 𝑥(𝑡) signal associated with the Lorenz63 model (target) and
the experimentally measured signal at the output of our OPONN (predicted). As
shown in the figure, the entire span of the signal with a ∼ 500 ns duration is split
into two equal sections for training (the shaded area) and testing. As evident, the
predictions of the OPONN closely matches the target values. b, Similar results for
the Mackey-Glass system of equations in the chaotic regime.

we calculate the normalized mean square error (NMSE) between the target and the
predicted time series given as 0.07 ± 0.017 for this task.

As a second example, we consider another benchmark time series prediction task
associated with the Mackey-Glass system (MGS), which was originally developed
in the study of physiological control mechanisms that are known to exhibit a host
of complex behaviors [27]. The model is described by a class of nonlinear delay
differential equations exhibiting dynamics that critically depend on the system pa-
rameters. Of particular interest is the scenario when the solutions become chaotic,
signaling an abnormal physiological behavior associated with pathological cases.
Here, we use our OPO network to forecast the future instances of the resulting
chaotic time series. Figure 3.2b depicts the target MGS solution together with
predicted values obtained by measuring the OPONN output, indicating a prediction
error of NMSE = 0.06 ± 0.017.

To demonstrate the versatility of our ultrafast nanophotonic processor, we next ex-
ploit it to compensate for nonlinear distortions that typically occur in a wireless com-
munication channel. We assume that the input message to be transmitted contains
a random stream of symbols 𝑀 (𝑛) of the four-level-pulse-amplitude-modulation
(PAM4) format. This modulation scheme is of practical interest in data centers
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and is implemented for instance in state-of-the-art 800G transceivers. Upon en-
tering the communication channel, the message is subjected to multiple adverse
effects that degrade the fidelity of the received signal 𝑆(𝑛) at the end of the channel.
First, the presence of scatterers located around the path between the source and
the receiver result in multipath fading that causes intersymbol interference among
adjacent symbols. In addition, to overcome the losses that are incurred through
the signal propagation, it is desirable to maximize the power of the transmitted
signal by increasing the gain from the power amplifier in the output stage of the
transmitter. This increase in the power is accompanied by nonlinear effects that
distort the message. Additionally, the signal to noise ratio (SNR) is diminished by
various noise sources, including thermal fluctuations and the noise introduced by
amplifiers. Previous studies have shown the potential of recurrent neural networks
in correcting for these cumulative distortions [28–30]. Our objective is to perform
this error correction task by exploiting the OPONN. Here, 𝑁in = 5 and 𝑁out = 21
nodes are used in the input and output layers, respectively. To assess the success of
our approach, we calculate the symbol error rate (SER) defined as the percentage
of the symbols detected incorrectly at the receiver end. Simulation results predict
that the OPONN can effectively correct these errors and significantly improve the
SER (Fig. 3.3a). Our experiments corroborate this and show that a direct detection
of the corrupted signal at the channel output results in a high SER of 19% ± 1.6%
(Fig. 3.3b). In contrast, once trained, the OPONN is able to improve this result
to SER = 7% ± 2.3%. In order to confirm the role of the nonlinear processing
performed by the OPO in error compensation, we also considered a purely linear
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Figure 3.3: Nonlinear channel equalization of PAM4 signals using ultrafast
nonlinear response of the OPO network. a, Simulated SERs obtained using
direct detection versus those achieved after OPONN equalization for various SNR
levels. b, Experimentally obtained eye diagrams without (left) and with (right)
OPONN equalization.
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equalization applied directly to the input pump, for which a SER = 11%±1.8% was
measured. Given the fact that the measured SNR of the OPO output was lower than
that associated with the input pump (please see Supplementary section 1), this latter
comparison clearly indicates the efficacy of the OPO network to harness ultrafast
photonic nonlinear processes to perform this equalization task.

One of the key applications in time domain signal processing involves the classifica-
tion of various waveforms, with numerous applications ranging from bioinformatics
[31, 32] to seismology [33]. In order to showcase the generality of our approach, we
next utilized the OPO neural network to distinguish among three classes of different
waveforms randomly chosen from sinusoidal, square, and sawtooth signals that are
contaminated with noise (Fig. 3.4a). Each waveform contains 𝑁 = 50 samples
constituting two consecutive cycles. For this experiment, the OPONN is set up
with 𝑁in = 5 nodes at the input. At the output of the chip, the sub-harmonic signal
generated by the OPO is sampled at three equidistant points, forming 𝐾 = 3 output
neurons (Fig. 3.4a). The output layer of the neural network consists of a fully
connected layer with 𝑁out = 3 nodes. During the training period, the linear weights
associated with this output layer Wout are optimized according to a winner-takes-all
approach. We use a training set of 300 waveforms (100 from every class) and a
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Figure 3.4: Noisy waveform classification task. a, We use the AWG to encode
samples representing two cycles of periodic waveforms randomly chosen from three
different classes of sawtooth, sinusoid and square signals with additive noise on the
input pump (left). The measured signals at the output of the OPO associated with
these waveforms are shown on the right. The output signals are sampled at three
equally distant instances corresponding to three different nodes. The output layer
of the OPO network is then set up by forming a fully-connected layer between these
nodes and the output nodes that are activated based on a winner-takes-all approach.
b, Using this simple architecture, we achieved 100% accuracy for this classification
task.
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different set of equal size for testing. In all cases, the OPONN was able to success-
fully classify all waveforms with 100% accuracy, despite the presence of significant
noise levels at the input (Fig. 3.4b).

Discussion
In conclusion, we have demonstrated an ultrafast photonic neuromorphic processor
based on a nanophotonic OPO chip operating at 10 GHz clock rates. Our approach
leverages coherent optical pulse propagation in conjunction with ultrafast parametric
nonlinear processes available in TFLN to perform both the linear MAC operations
and nonlinear activation functions in the optical domain. Operating at ∼ 10 GHz
clock rates, our OPO neural network is capable of achieving sub-nanosecond la-
tencies, a timescale comparable to a single clock cycle in state-of-the-art digital
electronic processors. We showcased the power of OPONN in performing a va-
riety of machine learning tasks that involve time series signals including chaotic
time series prediction, nonlinear channel equalization, as well as noisy waveform
classification. In all cases, the OPONN achieved success rates exceeding 93%. By
eliminating successive slow and energy-intensive OEO conversions, our OPONN
represents a significant leap towards realizing integrated all-optical neuromorphic
processors operating at unprecedented high speeds while maintaining low energy
consumptions.

3.3 Supplementary Information
Experimental setup
Figure 3.5 shows a detailed schematic of our experimental setup. We use an electro-
optic (EO) comb to generate optical pulses at 10 GHz repetition rate and center
wavelength of 1045 nm with a pulsewidth of ∼ 2𝑝s to synchronously pump the
nanophotonic OPO. These pulses are passed through a booster optical amplifier
(BOA), wave shaper, and Ytterbium-doped fiber amplifier (YDFA) for amplification
and dispersion compensation. The sequential data at the input layer is prepared
by modulating the pump pulses using an intensity modulator (IM) driven by an
arbitrary waveform generator (AWG) operating at 10 GSa/s. The modulated pump
pulses are further amplified using a second YDFA before being coupled into the chip.
Lensed fibers are used to couple the pump into the chip and to collect the emitted
signal at the output. Our on-chip OPO is fabricated on an x-cut, 700-nm-thick
thin-film lithium niobate (TFLN) wafer with a silica buffer layer. It comprises two
input/output adiabatic couplers before and after the periodically poled section which
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Figure 3.5: Schematic diagram of the OPONN experimental setup.

Figure 3.6: Different SNR levels associated with the measured pump and signal
pulses. Example measurement traces involving the pump pulses @ 1045 nm (left)
and the emitted signal pulses @ 2090 nm by the OPO (right).

are designed to only allow the degenerate signal/idler modes to resonate within the
cavity. The emitted signal pulses at 2090 nm are resolved using a fast biased detector
(with 12 GHz bandwidth) and form the output layer of the OPONN. As evident from
experimental measurements presented in Fig. 3.6, the signal-to-noise ratio (SNR)
of the detected pump pulses were significantly higher than that associated with the
signal pulses.

Comparison to other physical reservoir computers
The concept of the OPONN is closely related to physical reservoir computing [34],
which exploits complex nonlinear dynamics in analog physical systems. In this
section, we compare our OPONN with other experimentally demonstrated physical
reservoir computers in different platforms based on various physical mechanisms
including optoelectronic, magnetic, electrical, mechanical, chemical, atomic, and
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Figure 3.7: Comparison of computational clock rates. Bars show the rough
order-of-magnitude ranges for clock rates in experimentally demonstrated physical
reservoir computers based on different types of physical mechanisms. The marker
point in each bar shows a representative state-of-the-art example for that category,
numbers in brackets correspond to the reference numbers in Table 1.

biological. The unique advantage of the OPONN is its exceptionally high computa-
tional clock rate, whereas other physical reservoir computers usually prioritize low
power consumption. Here, we restrict our attention to experimentally demonstrated
results. Although the types of computational operations and network architectures
can vary greatly between physical reservoir computers, we consider the maximum
effective computational clock rate (even if the implementation does not have a lit-
eral hardware clock as part of the design) to be given by the fastest reported input
update rate or minimum time between successive operations in the physical recur-
rent/reservoir layer. The maximum clock rate therefore relates to the theoretical
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Ref. Type Platform Tasks Clock Rate

This
Work Optical Nanophotonic optical

parametric oscillator

Chaotic time series forecasting,
nonlinear error correction,

waveform classification
9.47 GHz

[35] Optoelectronic Semiconductor fiber laser Spoken digit recognition,
chaotic time-series forecasting 5 GHz

[36] Magnetic Spin-torque
nano-oscillator

Spoken digit recognition,
waveform classification 500 MHz

[37] Electrical Ferroelectric field-effect
transistor

Boolean logic,
nonlinear time series forecasting 50 MHz

[38] Mechanical Miura-ori origami
Nonlinear filter emulation,

Volterra series,
nonlinear limit cycles

480 Hz

[39] Chemical Organic electro-chemical
transistor Heartbeat classification 200 Hz

[40] Atomic Boron dopants in silicon Boolean logic,
MNIST image classification 40 Hz

[41] Biological Dissociated rat E18
cortical neurons

Spike timing,
random music classification 10 Hz

Table 3.1: Comparison of state-of-the-art experimentally reported physical
reservoir computers based on different types of physical mechanisms.

minimum latency or fastest input signal time scales that the physical reservoir com-
puter was demonstrated to respond to in real-time. The rough order-of-magnitude
ranges for different categories of experimentally demonstrated physical reservoir
computers and a corresponding state-of-the-art example for each category are shown
in Fig. 3.7. A comparison of the representative state-of-the-art examples for each
category of physical mechanisms of the physical reservoir computer is shown in
Table 3.1.

All-optical output layer
In the main text experiments, we focused on demonstrating the ultrafast nonlinear
recurrent layer of the OPONN, which comprises the bulk of the computation and
primary bottleneck of neuromorphic processors. We chose to perform the linear
output layer during post-processing on a conventional digital electronic computer
for simplicity since many previous works have shown how to accelerate linear
operations using optics. In this section, we propose a simple implementation for an
end-to-end all-optical OPONN that does not rely on electronics for executing the
linear output layer.
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Figure 3.8: An end-to-end all-optical OPONN. Both the reservoir and linear
output layers can be implemented directly in the same thin-film lithium niobate
nanophotonic platform.

In the context of physical reservoir computers, the reservoir layer acts as a recurrent
layer with highly nonlinear and complex dynamics, and the linear output layer
contains fixed weights trained by linear regression. In the OPONN, the linear
output layer can be implemented in the same thin-film lithium niobate nanophotonic
platform as the reservoir layer. For example, Fig. 3.8 shows a multi-arm Mach-
Zehnder interferometer that can perform a linear dot product for a single-channel
output (e.g., for time series forecasting tasks) directly in the optical domain. The
relative delays in each arm encode for the corresponding time-delayed reservoir
variables, which are represented by the coherent amplitudes of ultrashort laser
pulses. The electro-optical amplitude modulators in each arm encode the fixed
weights of the linear output layer. Therefore, the reservoir variables can be measured
during the training phase, then the optimal output layer weights can be determined
using linear regression (usually on a digital computer), and finally used to set the
bias voltages for the electro-optic amplitude modulators in the output layer. Once
the output layer weights are determined, the computation can be performed entirely
in the optical domain during testing or inference stages.
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C h a p t e r 4

PHOTONIC ELEMENTARY CELLULAR AUTOMATA FOR
SIMULATION OF COMPLEX PHENOMENA

Gordon H.Y. Li, Christian R. Leefmans, James Williams, and Alireza Marandi.
Photonic elementary cellular automata for simulation of complex phenomena.
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9.
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ulations, designed the experiments, participated in building the experimental
setup, performed the experimental measurements, analyzed the data, and wrote
the manuscript.

4.1 Abstract
Cellular automata are a class of computational models based on simple rules and
algorithms that can simulate a wide range of complex phenomena. However, when
using conventional computers, these ‘simple’ rules are only encapsulated at the level
of software. This can be taken one step further by simplifying the underlying physical
hardware. Here, we propose and implement a simple photonic hardware platform
for simulating complex phenomena based on cellular automata. Using this special-
purpose computer, we experimentally demonstrate complex phenomena including
fractals, chaos, and solitons, which are typically associated with much more complex
physical systems. The flexibility and programmability of our photonic computer
presents new opportunities to simulate and harness complexity for efficient, robust,
and decentralized information processing using light.

4.2 Introduction
Modern digital electronic computers, which are based on the von Neumann architec-
ture, exhibit extreme hardware complexity in their construction and are composed
of billions of transistors engineered in a hierarchical and highly structured manner.
Unlike the von Neumann architecture, nature is abound with emergent phenomena
and complex systems containing many interacting components following simple
rules with no hierarchical control. For example, social insects like ants with only
limited local information can collectively self-organize to form global structures [1].
This suggests that an alternative, and potentially more efficient, way to simulate such

https://doi.org/10.1038/s41377-023-01180-9
https://doi.org/10.1038/s41377-023-01180-9
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phenomena is to harness simple and decentralized physical hardware that directly
emulates the underlying rules of a complex system.

One class of computational models that can benefit from simple and decentralized
physical hardware are Cellular Automata (CA), which exhibit complex behaviour
emerging from the local interactions of cells arranged on a regular lattice [2]. CA
were introduced in the 1940s to study how self-replication and evolution can emerge
in artificial life [3], and was later popularized in Conway’s Game of Life [4], which
exhibits self-organizing patterns reminiscent of biological systems. Subsequent
landmark studies revealed that CA are also capable of replicating other complex
behaviour such as fractals [5], chaos [6], self-organized criticality [7], synchroniza-
tion [8], and universal computation [9]. Consequently, CA have found utility in
modelling a wide range of natural phenomena in physics [10, 11], chemistry [12–
14], and biology [15]. Furthermore, CA have important applications in real-world
computational problems such as cryptography [16], data compression [17], error-
correction [18], simulating traffic flow [19], and developing more robust artificial
intelligence [20]. Owing to their simple formulations, certain CA of interest are com-
putationally irreducible [21], i.e., there are no analytical shortcuts to evaluate their
state after an arbitrary time without resorting to executing the sequential simulation
in its entirety. On the other hand, most CA are only implemented as high-level soft-
ware on conventional computers, resulting in unnecessary overhead. Therefore, it is
desirable to seek out physical hardware that better encapsulates the computational
principles of CA to enable more efficient simulation. Notable previous attempts to
implement physical systems tailored to perform CA include self-assembling DNA
molecules [22], arrays of nanomagnets [23], memristor networks [24], and living
slime moulds [25].

In this work, we propose and experimentally implement a photonic computational
platform capable of simulating complex phenomena using CA. Compared to other
approaches, our photonic platform offers several distinct advantages: (1) the inher-
ently high-bandwidth endowed by computing using light offers potentially orders-
of-magnitude speed-up in clock rate over the simulation of CA on conventional von
Neumann computers, (2) rapid reconfigurability for easy programming of a variety
of CA rules enables many different complex phenomena to be observed in the same
physical system, and (3) the kind of sparse, local, and shift-invariant connections
required for CA are well-suited for this platform. We will demonstrate how even
simple photonic hardware can host a wide range of complex emergent phenomena
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and is capable of sophisticated (or even universal) computation. By exploiting
this complexity, we reveal a path towards the next generation of more efficient or
robust photonic hardware accelerators for reservoir computing [26, 27] and deep
learning [20, 28].

4.3 Results
We focus on the simplest types of CA called Elementary Cellular Automata (ECA) [5].
These are discrete-time dynamical systems defined on a 1D lattice of cells with bi-
nary states that evolve according to Eq. 4.1:

𝑥𝑖 (𝑡 + 1) = 𝑓 (𝑥𝑖−1(𝑡), 𝑥𝑖 (𝑡), 𝑥𝑖+1(𝑡)) , (4.1)

where 𝑥𝑖 (𝑡) ∈ Z2 is the state (i.e., dead or live) of the 𝑖th cell at time step 𝑡, and
𝑓 : (Z2)3 → Z2 is the update rule. Crucially, the rules specifying interactions
amongst cells are computed using only local nearest-neighbour information without
reference to the global pattern. Remarkably, not only can the underlying rules be
simple, but the initial conditions can also be simple — consisting, for example, of
just a single live cell — and yet the collective behaviour produced can still be highly
complex [5]. The 256 possible ECA rules encapsulate a wide range of complex
phenomena and are representative of the four universality classes of increasing
complexity introduced by Wolfram [29].

Here, we experimentally implement ECA in a time-multiplexed photonic system as
shown in Fig. 4.1(a). Cell states are represented using pulses of light produced by
a mode-locked laser (MLL) with a fixed repetition rate 𝑇𝑅. The presence of a pulse
indicates a live cell; the absence, a dead cell. In this way, the complete pulse train
from the MLL represents a synthetic 1D lattice [30], where each site in the lattice
is encoded as a time bin of width 𝑇𝑅 in the pulse train. The pulse amplitude/phase
representing the initial cell state is encoded using an electro-optic modulator (EOM),
and the pulse is then split between three optical delay lines. These delay lines, which
are labeled 0𝑇𝑅 and ±1𝑇𝑅 in Fig. 4.1(a), are chosen such that the +(−)1𝑇𝑅 delay
line is one pulse repetition period longer (shorter) than the 0𝑇𝑅 delay line. With this
choice of lengths, light in the 0𝑇𝑅 delay line coherently interferes with its nearest-
neighbor time slots in the temporal synthetic lattice. The coherent interference
is followed by optoelectronic thresholding to enforce the binary constraint for the
updated cell state in the ECA. Finally, the optoelectronic signal is stored on a field-
programmable gate array (FPGA), which feeds back the measured cell states by
driving the input EOM for the next iteration. By repeating this process for many
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Figure 4.1: Photonic platform for simulating complex phenomena using Ele-
mentary Cellular Automata. (a) Schematic of the experimental setup. Cells are
represented by pulses of light produced by a mode-locked laser (MLL) with a repe-
tition rate of 𝑇𝑅. The cell states are encoded by an electro-optic modulator (EOM)
and are split into optical fiber delay lines (blue lines) to induce local interactions
of neighbouring light pulses. Specific ECA rules are programmed by tuning the
variable optical attenuator (VOA) in each delay line. Optoelectronic thresholding is
performed following the coherent interference of light pulses, with the resultant cell
states stored on a field-programmable gate array (FPGA) and reinjected (black lines)
to drive the input EOM for the next iteration. (b) Truth table showing the uniform
and synchronous update for ECA Rule 90 with the top row in each case representing
the current states of the 3-cell neighbourhood and the bottom row showing the cell
state during the next iteration. (c) Block diagram showing the different stages of
computation and flow of information in the photonic ECA implementation.
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cycles, we observe the emergence of complex phenomena in the cell states of the
ECA. The desired ECA update rule, such as ECA Rule 90 (following the Wolfram
naming convention) shown in Fig. 4.1(b), is programmed by tuning the thresholding
value and variable optical attentuator (VOA) in each delay line, which represents
constant amplitude/phase weights. As shown in Fig. 4.1(c), this rule encoding
can be interpreted as an optical dot product followed by a nonlinear thresholding
function, which is akin to a single perceptron in the context of artificial neural
networks [31]. Therefore, the dynamics of the abstract ECA rule is exactly mapped
to the physical time-evolution of the photonic simulator. We note that similar time-
multiplexing techniques with delay dynamics have been used for photonic reservoir
computing [32], coherent Ising machines [33], simulating topological lattices [34],
and optoelectronic oscillators with time-delayed feedback [35]. Analogous results
can also be obtained using other multiplexing methods such as frequency or spatial
multiplexing [30].

Firstly, one of the most striking patterns that emerge in CA are fractals, which are
often self-similar geometric shapes that appear the same at any scale. Fractals are
ubiquitous in nature and occur in a diverse range of physical phenomena including
the rings of Saturn [36], snowflakes [37], and fault geology [38]. ECA Rule 90,
defined in Fig. 4.1(b), provides a simple model for fractal formation and self-
replication. The local update rule can be expressed succinctly in terms of Boolean
algebra as 𝑥𝑖 (𝑡 + 1) = 𝑥𝑖−1(𝑡)

⊕
𝑥𝑖+1(𝑡), where

⊕
denotes the exclusive-or (XOR)

logical operation. Thus, for this specific rule, the iterated cell state depends only
on the states of its two neighbours. The fractal pattern is an emergent property of
the nonlinear dynamics in the photonic computer, rather than being imposed on the
system by an external ordering influence such as explicit geometric constructions in
previous studies of photonic fractals [39–42]. We show the experimentally measured
space-time equivalent diagram of ECA Rule 90, starting from a single live cell, in
Fig. 4.2(a). The position of a cell in space (left-to-right) is represented by the pulse
number in the synthetic temporal dimension, and the discrete-time step (top-to-
bottom) is defined according to Eq. 4.1. The color of each cell is determined by
the normalized peak pulse intensity before thresholding. We see that the space-time
diagram is in the shape of the well-known Sierpinski Triangle. This fractal can
be constructed by recursively subdividing an equilateral triangle into four smaller
equilateral triangles and removing the central triangle. It is characterized by a non-
integer Hausdorff or fractal dimension of log 3/log 2 ≈ 1.585. The self-similarity of
the fractal shape persists down to the cellular scale as shown in Fig. 4.2(b) and can be
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Figure 4.2: Experimental result of ECA Rule 90 on the photonic hardware
starting from a single live cell. (a) Zoomed-out equivalent space-time diagram
showing emergence of the Sierpinski Triangle fractal. (b) Zoomed-in view showing
the fractal self-similarity down to the cellular scale. (c) Time traces (vertically
separated for easier viewing) of the individual light pulses representing each cell
separated by 4 ns.

seen in the time traces shown in Fig. 4.2(c), where individual light pulses represent
each live cell. In this case, the middle optical delay line (0 𝑇𝑅 in Fig. 4.1(a))
can be ignored since the iterated cell state does not depend on its current state.
Experimentally, this allows us to achieve an excellent extinction ratio between pulse
peaks for live and dead cells and indicates that the ECA Rule 90 is implemented as
intended.

Next we investigate ECA Rule 30, defined in Fig. 4.3(a), which is categorized as a
member of class 3 CA according to Wolfram’s universal complexity classes. These
are CA that produce chaotic and seemingly random patterns, although some small-
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Figure 4.3: Chaotic patterns produced by ECA Rule 30 on the time-multiplexed
photonic hardware. (a) Truth table showing the update for ECA Rule 30. (b) Space-
time diagram of ECA Rule 30 starting from a random initial condition showing
chaotic dynamics. (c) Inverting a single cell state in the initial condition produces
a pattern with differences that grow linearly to the right and asymptotically linearly
to the left (regions that are different to (b) are highlighted, and regions that are
identical are displayed as partially transparent), hence demonstrating sensitivity to
initial conditions.

scale structures are present [29]. Remarkably, ECA Rule 30 is one of the simplest
known systems to exhibit chaos [6]. We experimentally demonstrate such a chaotic
behaviour of ECA Rule 30 on the same simple photonic hardware in Fig. 4.3(b)
starting from a random initial condition. In this case, there is greater variability in
the peak pulse intensities compared to Rule 90 due to the lower interference visibility
between three optical delay lines. However, the optoelectronic thresholding is still
adequate to ensure the intended operation of ECA Rule 30. A necessary (but not
sufficient) condition for chaos is sensitivity to initial conditions. Fig. 4.3(c) shows
the space-time diagram starting from the same initial condition as Fig. 4.3(b), but
with one cell inverted. The region of differences between the two patterns grows
linearly to the right with Lyapunov exponent 𝜆𝑅 = 1 and asymptotically linearly
to the left with Lyapunov exponent 𝜆𝐿 ≈ 0.24, hence implying an exponential
divergence in the cell configurations over time and sensitivity to initial conditions.
Other necessary conditions for chaos such as non-periodicity and topological mixing
have also been verified empirically [6].

Due to the simplicity of ECA Rule 30, it can be used as an efficient pseudo-random
number generator. This can be accomplished, for example, by taking the sequence
defined by the states of the central cell as it evolves in time, i.e., the middle column
of the space-time diagram. Therefore, the initial condition acts as the seed. Impor-
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tantly, ECA Rule 30 is highly nonlinear and computationally irreducible, unlike ECA
Rule 90, which is linear (modulo 2) and amenable to algebraic analysis [43]. Indeed,
detailed statistical analysis of the sequences produced by ECA Rule 30 shows that
it is both a fast and safe random number generator [6]. Unlike previous photonic
random number generators [44–46] relying on quantum processes or other continu-
ous fluctuations, our system is pseudo-random, which means it is deterministic and
repeatable given the initial seed. This is often useful in practice to reliably reproduce
results in applications such as Monte Carlo simulations [47], stream ciphers [48],
and generative adversarial networks [49]. We note that ECA Rule 30 was previously
demonstrated using free-space optics [50], however, this implementation encoded
cells on pixels of 2D liquid-crystal screens, which introduced some redundancy.
In contrast, our approach more faithfully implements the 1D lattice for ECA, can
be easily extended to an arbitrary number of cells, and is easily programmable to
implement more than just a single rule.

Finally, we study class 4 CA, which involve a mixture of order and randomness, with
localized structures that move and interact in complicated ways [51]. A well-studied
example of this is ECA Rule 54, defined in Fig. 4.4(a), which can be interpreted
as a discrete analogue of excitations in an active nonlinear medium with mutual
inhibition [52]. In this case, the mobile self-localizations called gliders appear on
a stable periodic background called the ether. Gliders behave like solitons in many
regards [53]. However, while optical solitons usually arise due to a balance between
nonlinear and linear dispersive effects [54], we have demonstrated optical soliton-
like behaviour in a synthetic temporal lattice with only simple binary rules. Despite
its simplicity, our system captures physically relevant features since a reversible
extension of ECA Rule 54 has produced insightful results in non-equilibrium sta-
tistical mechanics and generalized hydrodynamics [55]. By properly programming
ECA Rule 54 in our photonic simulator, we experimentally demonstrated a glider
collision, shown in Fig. 4.4(b), whereby gliders emerge after the collision with the
same shape and velocity but with a phase shift, which is characteristic of soliton
collisions [56]. Such glider collisions can be used to construct logic gates [57] and
Universal Turing Machines [9] for unconventional computing. Furthermore, we also
observed a glider gun, shown in Fig. 4.4(c), in which a higher-order localization
produces lower-order gliders akin to the process of soliton fission [58]. Conversely,
a glider black hole, shown in Fig. 4.4(d), looks like the process of soliton fusion.
Therefore, we have demonstrated a diverse range of glider and soliton interactions
in our simple photonic computational platform, which can help unlock new methods
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Figure 4.4: Soliton-like and glider interactions produced by ECA Rule 54 in the
photonic hardware. (a) Truth table showing the update for ECA Rule 54. Space-
time diagrams of ECA Rule 54 with periodic background filtered out, showing (b)
glider collision, (c) glider gun, and (d) black hole.

of optical information processing.

4.4 Discussion
In our current experiments, we performed the weighted linear summations in the
optical domain, and applied nonlinearity digitally for convenience in demonstrating
the photonic ECA concept. However, this incurs additional overhead due to the
optoelectronic and digital-to-analog conversions performed. This overhead can be
reduced by using fully analog electrical circuits, but the photodetector bandwidth
still ultimately bottlenecks the clock speed of CA. To overcome these electronic
limitations, we propose an integrated all-optical implementation of photonic CA so
that the self-evolution of the CA occurs entirely in the optical domain. An example
on-chip implementation of photonic CA is shown in Fig. 4.5. This implementation
is based on the same time-multiplexed architecture as our current experiment, but it
utilizes a monolithic thin-film lithium niobate platform [59] to increase computation
speed and energy efficiency by potentially orders of magnitude. As a measure of



89

thin-film lithium niobate
silica

silicon
gold
periodically poled domains

Figure 4.5: Lithium niobate nanophotonic cellular automata. The simplicity
of the photonic hardware components for simulating complexity can be maximized
by on-chip integration with lithium niobate nanophotonic circuits. For example,
integrated EOMs offer greater performance and a periodically-poled nonlinear
waveguide can enable efficient all-optical thresholding and feedback. This sim-
ple nanophotonic circuit can yield orders of magnitude improvement in the speed
and energy-efficiency for simulating complexity in CA.

these speed and energy enhancements, we consider the energy-time product, which
captures both the energy and speed of the device operation. All-optical rectification
and switching operations [60, 61] can be performed using nonlinear waveguides
in thin-film lithium niobate with energy-time products on the order of 10−27 J · s,
which is more than three orders of magnitude better than the kind of optoelectronic
thresholding performed in the current experiments. This can be followed by an
optical feedback loop to enable terahertz clock rates (Supplementary Information
Section 4) that are unattainable by digital electronics. Moreover, the VOAs of our
current implementation can be replaced by static integrated EOMs to provide greater
control and reproducibility in setting amplitude weights for specific rules. Similarly,
other photonic components in our system can be replaced by their simpler and higher
performance integrated counterparts.

In summary, we have demonstrated a special-purpose photonic computational plat-
form utilizing a synthetic temporal dimension and simple hardware components
capable of simulating a wide range of complex phenomena. Simple rules based on
local shift-invariant interactions are used to effectively implement different ECA.
Our decentralized and non-von Neumann photonic computer can be programmed
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to represent different rules and initial conditions for the light pulses due to the
flexibility and rapid reconfigurability afforded by our hardware system. A range
of important complex phenomena including fractals, chaos, and solitons are shown
on the same hardware. We focused only on 3 ECA rules (90, 30, and 54) that
exhibit some representative complex phenomena. However, a slight modification
to the present photonic hardware mapping can allow for implementation of all 256
possible ECA rules (see Supplementary Information Table IV). Future work can
involve generalizing the time-multiplexed photonic network to exploit spatial or fre-
quency multiplexing techniques [30] for greater synchronous parallel cell updates
or implementing other types of CA including filter CA [62], reversible CA [55],
and stochastic CA [63]. This can enable the study of experimentally-challenging
complex dynamics in kinetic critical phenomena [64], Ising models [65], and lattice
Boltzmann models [10]. Furthermore, achieving complexity from simple photonic
hardware is an important first step towards harnessing this complexity for efficient
and robust artificial intelligence, for example in reservoir computing [26, 27] and
deep learning [20, 28]. Our results can inspire a path for special-purpose photonic
computers enabling ultrafast low-power operation for critical real-time and edge-
computing applications, and new information processing strategies using light.

4.5 Materials and Methods
Experimental Setup
For a more detailed picture of our experimental setup, please see Supplementary
Information Fig. 1. A mode-locked laser (MLL) is used that outputs femtosecond
optical pulses with a center wavelength of 1550 nm and a repetition period of
𝑇R = 4 ns. Then, the pulses are stretched to ∼5 ps with a 200 GHz Channel 34 filter
to reduce the effects of dispersion. After the pulses are stretched, 10% of the power
is tapped with a 90:10 optical fiber splitter and sent directly to a 600 MHz-bandwidth
photodetector. The RF output of the detector passes through a 300 MHz low pass
filter, which isolates the 250 MHz component of the signal. This signal acts as
a clock for the FPGA (Zynq UltraScale+ RFSoC), which generates the modulator
driving signals for the EOM in the experiment. Deriving the FPGA’s clock directly
from the optical pulse train eliminates any timing drift between the optical path
and electronic signals. The 90% of the optical power that is not used to clock the
FPGA is instead sent through two consecutive intensity modulators (IMs). The first
IM, converts the uniform input pulse train to a binary string that contains either
an initial condition or the previous state of the ECA under study. The second IM,
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helps to achieve a better extinction ratio for the zeros in these binary strings. After
exiting the modulators, the binary pulse train passes through an erbium-doped fiber
amplifer (EDFA) and another 200 GHz Channel 34 filter. Then, pulses are first split
between two paths at a 50:50 spliter. One of these paths leads to a second 50:50
splitter, where the pulses are again divided between another two paths. The paths
after the second 50:50 splitter are labeled the ±1𝑇R delay lines. The lengths of these
lines are chosen to delay advance the pulse train by one repetition period relative to
the 0𝑇R delay line, which is the other line after the first 50:50 splitter. The result
of delaying and advancing the pulse train in this manner is coherent interference of
nearest-neighbour pulses once the delay lines are recombined. To detect the state,
the output pulse train passes through another EDFA and 200 GHz Channel 34 filter.
The pulses are split at a final 50:50 splitter and the signal is then measured on both
a fast 5 GHz photodetector and a slow kHz photodetector. The RF output of the
slow detector is sent to the stabilization electronics for the delay lines, whilst the
RF output of the fast detector is recorded on an oscilloscope. The optoelectronic
signal is thresholded electronically to produce binary states, which are then sent to
and stored on the FPGA, which uses a digital-to-analog converter (DAC) to convert
the array into an RF pulse pattern for the next ECA iteration.

Experimental Procedure
Setting the desired ECA rule involves adjusting both the relative intensities and
phases between the three delay lines. VOAs are used to adjust the intensities in
the lines by detuning the coupling in the free space delays shown in Supplementary
Information Fig. 1, and the relative phases are set to either 0 or 𝜋 by changing
the feedback signals from the PIDs used to stabilize the ±1𝑇R delay lines. A
relative phase of 0 represents constructive interference between two delay lines, and
conversely a relative phase of 𝜋 represents destructive interference. Therefore, the
result of the ±1𝑇𝑅 delay lines, tuning the VOAs, and setting relative phases can be
summarized as:

𝑦𝑖 (𝑡) = 𝑎−1𝑥𝑖−1(𝑡) + 𝑎0𝑥𝑖 (𝑡) + 𝑎1𝑥𝑖+1(𝑡) , (4.2)

where 𝑥𝑖 (𝑡) ∈ Z2 is the amplitude of the 𝑖𝑡ℎ light pulse in the 𝑡𝑡ℎ iteration before being
split into the delay lines, 𝑦𝑖 (𝑡) is the amplitude of the light pulse after recombining
delay lines, and {𝑎−1, 𝑎0, 𝑎1} ∈ [−1, 1] are the losses set by the VOAs and phases
representing constant linear weights. The light pulse amplitude 𝑦𝑖 (𝑡) is converted to
an intensity |𝑦𝑖 (𝑡) |2 after passing through the photodetector and then optoelectronic
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thresholding performs the function:

𝑥𝑖 (𝑡 + 1) = 𝐻
(
|𝑦𝑖 (𝑡) |2 − 𝑏

)
, (4.3)

where 𝐻 (𝑥) is the Heaviside step function, 𝑏 ∈ R is the thresholding value, and
𝑥𝑖 (𝑡 + 1) is the output result to be reinjected as the light pulse amplitude for the
next iteration. Therefore, any light intensity |𝑦𝑖 (𝑡) |2 < 𝑏 represents a dead cell,
and conversely any light intensity |𝑦𝑖 (𝑡) |2 > 𝑏 represents a live cell. The particular
mappings for each ECA rule studied in the Results section is given in Supplementary
Information Section 3.

In the present experiments, we considered effectively infinite lattices by padding
both sides of the initial conditions with large numbers of zeros that exceeded the
number of measured iterations for each experiment. It is also possible to implement
other types of boundary conditions such as closed boundaries by imposing constant
boundary cell states that do not update, or periodic boundary conditions by turning
the 1D lattice into a ring geometry.

4.6 Supplementary Information
Experimental Setup
In Fig. 4.6, we present a detailed schematic of the experiment setup used to realize
photonic elementary cellular automata (ECA). The setup may be divided into two
segments: the optical segment and the electronic segment. The optical segment is
essentially a multimode interferometer that takes a pulse train as its input and that
outputs the interference between each pulse and its nearest neighbors. The electronic
segment sets and stabilizes the relative phases interferometer arms, which helps us
to implement different rules with the same hardware. It also converts the output of
the interferometer to a binary signal and uses this binary signal to update the pulse
train input into the interferometer.

The optical segment of our experimental setup begins at the mode-locked laser
(MLL) shown in Fig. 4.6. The MLL outputs femtosecond optical pulses with a
center wavelength of 1550 nm and a repetition period of 𝑇R = 4 ns. We stretch the
pulses to ∼5 ps with a 200 GHz Channel 34 filter to reduce the effects of dispersion.

After stretching the pulses, we tap 10% of the power with a 90:10 splitter and send
it directly to a 600 MHz detector. We pass the RF output of the detector through a
300 MHz low pass filter, which isolates the 250 MHz component of the signal. This
signal acts as a clock for our system’s FPGA, which, as we shall explain shortly,
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Figure 4.6: Detailed Schematic of Experimental Setup.

generates the modulator driving signals for our experiment. Deriving the FPGA’s
clock directly from the optical pulse train eliminates any timing drift between our
optical path and our electronic signals.

The 90% of the optical power that is not used to clock the FPGA is instead sent
through two consecutive intensity modulators (IMs). The first IM, IM00, converts
the uniform input pulse train to a binary string that contains either an initial condition
or the previous state of the ECA under study. The second IM, IM01, helps us to
achieve a better extinction ratio for the zeros in these binary strings.

After exiting the modulators, the binary pulse train passes through an erbium-doped
fiber amplifer (EDFA) and another 200 GHz Channel 34 filter before finally reaching
the interferometer. The pulses are first split between two paths at a 50:50 spliter.
One of these paths leads to a second 50:50 splitter, where the pulses are again
divided between another two paths. The paths after the second 50:50 splitter are
labeled the ±1𝑇R delay lines. The lengths of these lines are chosen to delay advance
the pulse train by one repetition period relative to the 0𝑇R delay line, which is the
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other line after the first 50:50 splitter. The result of delaying and advancing the
pulse train in this manner is that we interfere each pulse in the 0𝑇R delay line with
its nearest-neighbor pulses once we recombine all of the paths.

The interferometer implements the rule for a particular ECA, so the output of the
interferometer is the updated state of the ECA under study. To detect this state, we
pass the output pulse train through another EDFA and 200 GHz Channel 34 filter.
We then split the pulse train at a final 50:50 splitter and detect the signal on both a
fast 5 GHz detector and a slow kHz detector. We send the RF output of the slow
detector to the stabilization electronics for the interferometer arms, and we record
the RF output of the 5 GHz detector on an oscilloscope. We then transfer the raw
data trace from the oscilloscope to our lab computer.

We perform the thresholding operation electronically based on the peak voltage for
each pulse time bin, which is necessary to prepare the next input to our ECA. After
thresholding, we pass the binary values to the FPGA, which uses a digital-to-analog
converter (DAC) to convert the array into an RF pulse pattern. This pulse pattern is
amplified and sent to IM00 and IM01, where it modulates the pulses from the MLL
to produce the next input to the interferometer.

It is important to note that, while it was convenient for our proof-of-concept experi-
ments, a digital computer is not necessary to perform the threshold function for our
ECA. Indeed, one could imagine using a carefully calibrated comparator or another
analog logic circuit to convert the output of our 5 GHz detector into a binary pulse
train that can be fed back to the IMs before the interferometer.

The final components of our setup are the stabilization electronics. We utilize
a Pound-Drever-Hall locking scheme [66] to lock the phases of the ±1𝑇R delay
lines to the phase of the 0𝑇R delay line. The RF output of our kHz detector is
sent to two Red Pitaya STEMLabs, which contain built-in proportional-integral-
derivative (PID) controllers. These devices output dither and control signals, which
we combine and amplify with a custom printed circuit boards (PCBs). We send the
outputs of these PCBs to fiber phase shifters in the ±1𝑇R delay lines to stabilize the
phases of the lines.

A key benefit of using PDH locking for our photonic ECA experiments is that it
enables us to independently lock each delay line in-phase or out-of-phase with the
0𝑇R delay line. This ability allows us to either add or subtract the fields in the ±1𝑇R

delay lines to or from the field in the 0𝑇R delay line, and it is essential to enabling
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us to implement multiple ECA rules with the same photonic hardware.

Experimental Procedure
We begin our experiments by configuring the lines of our interferometer to produce
the correct rule for the ECA that we would like to study. Generating these rules
involves adjusting both the relative intensities and phases between the three lines.
We adjust the intensities in the lines by detuning the coupling in the free space
delays shown in Fig. 4.6, and we set the relative phases to either 0 or 𝜋 by changing
the feedback signals from the PIDs used to stabilize the ±1𝑇R delay lines. In
Supplementary Sec. 3, we discuss the particular mapping between each ECA studied
in the main text and our photonic hardware.

After programming a particular rule into the interferometer, we program our FPGA
to launch an initial condition into the system. We detect the response of the interfer-
ometer to this initial condition and average over five repetitions of this measurement.
We then perform the threshold operation on the averaged data trace. As discussed
above, the array of binary values that results from the threshold operation is the input
to the next iteration of the ECA. We pass this array to our FPGA, which produces
RF pulses to drive IM00 and IM01 in Fig. 4.6. In turn, these IMs to write the binary
string onto the pulse train from our mode-locked laser, and this string corresponds
to the updated state of our ECA. We repeat this process of performing the threshold
operation on the averaged interferometer output and reinjecting the result of the
threshold operation into the interferometer until we have iterated the ECA for the
desired number of iterations.

To ensure that the phases of our delay lines are stable during our experiment, we
track the output of our interferometer with a real-time simulation of the ECA rule.
If the binary array produced by our threshold operation differs from what we would
expect in our simulation - even by just a single cell - we rerun that iteration of the
ECA until the iteration succeeds. Without this form of error-correction, the system
would behave as stochastic ECA. In practice, the number of failed iterations depends
on the particular ECA rule being implemented, but the iteration success rate is high
for each of the experiments presented in the main text. The success rates are∼ 100%
for Rule 90, > 81% for Rule 30. . . , and > 90% for Rule 54. The iteration success
rates for Rule 30 and Rule 54 appear lower than ideal because of a lower interference
visibility compared to Rule 90. Note that the individual cell-wise bit error rate is
< 10−3 for each of the rules, indicating good cell-wise fidelity. The failures that do



96

occur are due to instability in the delay line phases; power drift in the input pulse
train, which can causes pulses that are close to one side of the threshold to cross to
the other side; or insufficient averaging over the fluctuations in the recorded traces,
which can cause some pulses to fluctuate across the threshold. While this last cause
can be alleviated by averaging over additional traces, there is a trade-off between
the likelihood that an iteration will fail and the time it takes to run our experiments.
The longer we run our experiment, the more susceptible it is to fail because of drift
in the input power.

Mapping ECA Rules to Photonic Hardware
Here, we provide an explicit mapping between each of the ECA rules studied in the
main text and the paramters of our photonic platform. Setting the desired ECA rule
involves adjusting both the relative intensities and phases between the three delay
lines. We adjust the intensities in the lines by detuning the coupling in the free space
delays shown in Supplementary Information Fig. 1, and we set the relative phases
to either 0 or 𝜋 by changing the feedback signals from the PIDs used to stabilize
the ±1𝑇R delay lines. A relative phase of 0 produces constructive interference
between two delay lines, and conversely a relative phase of 𝜋 produces destructive
interference. Therefore, the result of the ±1𝑇𝑅 delay lines, tuning the VOAs, and
setting relative phases can be summarized as:

𝑦𝑖 (𝑡) = 𝑎−1𝑥𝑖−1(𝑡) + 𝑎0𝑥𝑖 (𝑡) + 𝑎1𝑥𝑖+1(𝑡) , (4.4)

where 𝑥𝑖 (𝑡) ∈ Z2 is the amplitude of the 𝑖𝑡ℎ light pulse in the 𝑡𝑡ℎ iteration before being
split into the delay lines, 𝑦𝑖 (𝑡) is the amplitude of the light pulse after recombining
delay lines, and {𝑎−1, 𝑎0, 𝑎1} ∈ [−1, 1] represent the relative strengths and phases of
the different delay lines. The light pulse amplitude 𝑦𝑖 (𝑡) is converted to an intensity
|𝑦𝑖 (𝑡) |2 after passing through the photodetector and then optoelectronic thresholding
performs the function:

𝑥𝑖 (𝑡 + 1) = 𝐻
(
|𝑦𝑖 (𝑡) |2 − 𝑏

)
, (4.5)

where 𝐻 (𝑥) is the Heaviside step function, 𝑏 ∈ R is the thresholding value, and
𝑥𝑖 (𝑡 + 1) is the output result to be reinjected as the light pulse amplitude in the next
iteration. As a result of thresholding, any light intensity |𝑦𝑖 (𝑡) |2 < 𝑏 represents
a dead cell, and conversely any light intensity |𝑦𝑖 (𝑡) |2 > 𝑏 represents a live cell.
Examples of possible mappings for each ECA rule are listed below. Note that the set
of parameters {𝑎−1, 𝑎0, 𝑎1, 𝑏} implementing a particular rule in our photonic system
are not unique, many different sets of parameters can yield the same rule.
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Rule 90

The truth table for ECA Rule 90 is shown in the main text Fig. 1(b). Its equivalent
Boolean form is:

𝑥𝑖 (𝑡 + 1) = 𝑥𝑖−1(𝑡) ⊕ 𝑥𝑖+1(𝑡) . (4.6)

The table below shows how this rule can be reconstructed using the linear interfer-
ence, photodetection and thresholding in our photonic system.

𝑥𝑖−1 𝑥𝑖 𝑥𝑖+1 𝑦𝑖 = −1𝑥𝑖−1 + 0𝑥𝑖 + 1𝑥𝑖+1 |𝑦𝑖 |2 𝐻 ( |𝑦𝑖 |2 − 0.5) xi−1 ⊕ xi+1
0 0 0 0 0 0 0
0 0 1 1 1 1 1
0 1 0 0 0 0 0
0 1 1 1 1 1 1
1 0 0 -1 1 1 1
1 0 1 0 0 0 0
1 1 0 -1 1 1 1
1 1 1 0 0 0 0

Table 4.1: Truth table and explicit mapping of ECA Rule 90 to photonic hard-
ware.

𝑥𝑖(𝑡)

𝑥𝑖(𝑡 + 1)

1 1 11 1 01 0 11 0 00 1 10 1 00 0 10 0 0

1 1 0 1 11 1 1 1 01 0 0 0 11 0 1 0 00 1 1 1 10 1 0 1 00 0 1 0 10 0 0 0 0

Figure 4.7: Experimentally computing the truth table for ECA Rule 90.
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Fig. 4.7 shows an experimentally obtained time trace for a single iteration that
explicitly computes the truth table for ECA Rule 90 given the 8 possible initial
conditions for a 3-cell neighborhood. The initial condition 𝑥𝑖 (𝑡) is shown is blue
(vertically separated for easier viewing), and the resultant cell state 𝑥𝑖 (𝑡 + 1) is
shown below in red. The voltage represents the detected optoelectronic signal
|𝑦𝑖 |2. The dotted red line indicates the electronic thresholding value that will
binarize the peak voltages in each time bin, which shows that the output value
𝑥𝑖 (𝑡 + 1) = 𝑥𝑖−1(𝑡) ⊕ 𝑥𝑖+1(𝑡) is implemented as intended.

Rule 30

The truth table for ECA Rule 30 is shown in the main text Fig. 3(a). Its equivalent
Boolean form is:

𝑥𝑖 (𝑡 + 1) = 𝑥𝑖−1(𝑡) ⊕ (𝑥𝑖 (𝑡) ∨ 𝑥𝑖+1(𝑡)) . (4.7)

The table below shows how this rule can be reconstructed using the linear interfer-
ence, photodetection and thresholding in our photonic system.

𝑥𝑖−1 𝑥𝑖 𝑥𝑖+1 𝑦𝑖 = 1𝑥𝑖−1 |𝑦𝑖 |2 𝐻 ( |𝑦𝑖 |2 − 0.4) xi−1
−0.66𝑥𝑖 ⊕
−0.66𝑥𝑖+1 (xi ∨ xi+1)

0 0 0 0 0 0 0
0 0 1 -0.66 ∼ 0.44 1 1
0 1 0 -0.66 ∼ 0.44 1 1
0 1 1 -1.32 ∼ 1.74 1 1
1 0 0 1 1 1 1
1 0 1 0.34 ∼ 0.12 0 0
1 1 0 0.34 ∼ 0.12 0 0
1 1 1 -0.32 ∼ 0.10 0 0

Table 4.2: Truth table and explicit mapping of ECA Rule 30 to photonic hard-
ware.

Rule 54
The truth table for ECA Rule 54 is shown in the main text Fig. 4(a). Its equivalent
Boolean form is:

𝑥𝑖 (𝑡 + 1) = (𝑥𝑖−1(𝑡) ∨ 𝑥𝑖+1(𝑡)) ⊕ 𝑥𝑖 (𝑡) . (4.8)

The table below shows how this rule can be reconstructed using the linear interfer-
ence, photodetection and thresholding in our photonic system.
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𝑥𝑖−1 𝑥𝑖 𝑥𝑖+1 𝑦𝑖 = −0.66𝑥𝑖−1 |𝑦𝑖 |2 𝐻 ( |𝑦𝑖 |2 − 0.4) (xi−1 ∨ xi+1)
+1𝑥𝑖 ⊕

−0.66𝑥𝑖+1 xi
0 0 0 0 0 0 0
0 0 1 -0.66 ∼ 0.44 1 1
0 1 0 1 1 1 1
0 1 1 0.34 ∼ 0.12 0 0
1 0 0 -0.66 ∼ 0.44 1 1
1 0 1 -1.32 ∼ 1.74 1 1
1 1 0 0.34 ∼ 0.12 0 0
1 1 1 -0.32 ∼ 0.10 0 0

Table 4.3: Truth table and explicit mapping of ECA Rule 54 to photonic hard-
ware.

We focused only on 3 ECA rules that exhibited some representative complex phe-
nomena, however, this kind of photonic computer can be used to implement all
256 possible ECA rules. To show this more clearly, we give examples of explicit
photonic hardware mappings for all 256 ECA rules in Table. 4.4. Note that the
photonic hardware mappings are not unique, there exist many possible mappings
for each rule. Only the 88 inequivalent ECA rules are listed since some rules are
equivalent up to reflection or complementing (equivalent rules in parenthesis). We
slightly modify Eq. 4.4 to allow for the possible addition of a constant bias term
𝑑 ∈ [−1, 1], which corresponds to an extra interference path with a constant input:

𝑦𝑖 (𝑡) = 𝑎−1𝑥𝑖−1(𝑡) + 𝑎0𝑥𝑖 (𝑡) + 𝑎1𝑥𝑖+1(𝑡) + 𝑑 , (4.9)

and introduce an upper thresholding value 𝑐 ∈ R such that:

𝑥𝑖 (𝑡 + 1) =


1, if 𝑏 ≤ |𝑦𝑖 (𝑡) |2 ≤ 𝑐

0, otherwise
. (4.10)

The Heaviside step function 𝐻 (𝑥) used in Eq. 4.5 is just a special case of Eq. 4.10
with 𝑐 = ∞. An upper threshold is needed to implement odd-numbered ECA
rules, which will have update rules satisfying 𝑓 (0, 0, 0) = 1. Alternatively, a single
threshold value can be used like in Eq. 4.5 if the linear weights are allowed to be
complex, 𝑎𝑖 ∈ C, by controlling the full complex amplitude of light.
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Rule(s) 𝑎−1 𝑎0 𝑎1 𝑏 𝑐 𝑑

0 (255) 0 0 0 0 0 0
1 (127) 1 1 1 0 0.9 0

2 (16, 191, 247) 1 1 0.9 0.1 0.9 0
3 (17, 63, 119) 1 1 0.9 0 0.9 0

4 (223) 1 0.9 1 0.1 0.9 0
5 (95) 1 0.9 1 0 0.9 0

6 (20, 159, 215) 1 0.9 0.9 0.1 0.9 0
7 (21, 31, 87) 1 0.9 0.9 0 0.9 0

8 (64, 239, 253) 1 0.9 0.9 1.1 3.6 0
9 (65, 111, 125) 1 0.9 -0.5 0 0.2 0
10 (80, 175, 245) 1 0.9 -0.4 0.1 0.3 0
11 (47, 81, 117) 1 0.9 -0.1 0 0.8 0
12 (68, 207, 221) 1 0.9 0 0.1 0.9 0
13 (69, 79, 93) 1 0.4 -0.5 0 0.2 0

14 (84, 143, 213) 1 0.5 0.4 0.1 0.9 0
15 (85) 1 0.9 0 0 0.9 0
18 (183) 1 0.9 1 0.9 3.6 0
19 (55) 0.9 1 0.9 0 0.9 0
22 (151) 1 1 1 0.1 3.9 0

23 1 1 1 0 3.9 0
24 (66, 189, 231) 1 0.9 0.9 0.9 3.6 0
25 (61, 67, 103) 0.4 1 -0.9 0 0.2 0
26 (82, 167, 181) 1 0.8 0.9 0.7 3.2 0
27 (39, 53, 83) 1 0.8 0.9 0.1 1.6 -0.5

28 (70, 157, 199) 1 0.9 0.8 0.7 3.2 0
29 (71) 1 0.9 0.8 0.1 1.6 -0.5

30 (86, 135, 149) 1 0.9 0.9 0.1 3.6 0
32 (251) 1 0.9 1 3.7 5 0
33 (123) 1 0.6 -1 0 0.1 0

34 (48, 187, 243) 1 0.9 -0.5 0.2 0.8 0
35 (49, 59, 115) 0.9 1 -0.1 0 0.8 0

36 (219) 1 0.9 -0.1 0.7 0.9 0
37 (91) 1 0.4 -0.9 0 0.2 0

38 (52, 155, 211) 1 0.9 -0.5 0.2 0.9 0
40 (96, 235, 249) 1 1 0.9 1.1 3.9 0
41 (97, 107, 121) 1 1 -0.6 0 0.3 0
42 (112, 171, 241) 1 1 -0.4 0.1 0.9 0

43 (113) 1 1 -0.1 0 0.9 0
Continued on next page. . .
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Rule(s) 𝑎−1 𝑎0 𝑎1 𝑏 𝑐 𝑑

44 (100, 203, 217) 1 0.9 -0.1 0.1 0.9 0
45 (75, 89, 101) 1 0.8 -0.9 0 0.8 0

46 (116, 139, 209) 1 0.9 -0.4 0.1 0.9 0
50 (179) 0.5 1 0.4 0.1 0.9 0

51 0.9 1 0 0 0.9 0
54 (147) 1 0.9 -0.5 0.2 1.9 0

56 (98, 185, 227) 1 0.9 0.8 0.9 3.6 0
57 (99) 0.8 1 -0.9 0 0.8 0

58 (114, 163, 177) 0.9 1 -0.4 0.1 0.9 0
60 (102, 153, 195) 1 1 0.9 0.9 3.9 0
62 (118, 131, 145) 1 1 0.9 0.1 3.9 0

72 (237) 1 0.9 1 1.1 3.9 0
73 (109) 1 -0.6 1 0 0.3 0

74 (88, 173, 229) 1 -0.1 0.9 0.1 0.9 0
76 (205) 1 -0.4 1 0.1 0.9 0

77 1 -0.1 1 0 0.9 0
78 (92, 141, 197) 1 -0.4 0.9 0.1 0.9 0

90 (165) 1 0.9 1 0.9 3.9 0
94 (133) 1 0.9 1 0.1 3.9 0
104 (233) 1 1 1 1.1 5 0

105 1 1 1 0.1 5 -0.7
106 (120, 169, 225) 1 -0.1 -0.5 0.2 0.9 0

108 (201) 1 -0.4 -0.3 0.1 0.9 0
110 (124, 137, 193) 1 -0.4 -0.4 0.1 0.9 0

122 (161) 1 0.9 1 0.9 5 0
126 (129) 1 1 1 0.1 5 0
128 (254) 1 1 0.2 4.1 5 0

130 (144, 190, 246) 1 0.8 -0.9 0.7 0.9 0
132 (222) 1 0.9 -1 0.1 0.9 0

134 (148, 158, 214) 1 0.8 -0.9 0.1 0.9 0
136 (192, 238, 252) 1 0.4 -0.9 0.2 0.8 0
138 (174, 208, 244) 1 0.4 -0.9 0.2 0.9 0
140 (196, 206, 220) 1 0.6 -1 0.1 0.9 0

142 (212) 1 0.5 -0.9 0.1 0.9 0
146 (182) 1 0.8 -0.9 0.7 3.2 0

150 1 1 -0.6 0.2 3.9 0
152 (188, 194, 230) 1 0.8 -0.7 0.1 0.3 -0.6
154 (166, 180, 210) 1 0.4 -0.9 0.2 1.9 0

Continued on next page. . .
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Rule(s) 𝑎−1 𝑎0 𝑎1 𝑏 𝑐 𝑑

156 (198) 1 -0.6 0.1 0.2 1.2 0
160 (250) 1 0.5 0.7 2.3 5 0

162 (176, 186, 242) 1 0.4 -0.5 0.2 0.9 0
164 (218) 1 0.8 -0.9 0 0.2 -0.5

168 (224, 234, 248) 1 0.1 -0.6 0.1 0.3 0
170 (240) 1 0.2 -0.6 0.1 0.9 0

172 (202, 216, 228) 1 0.1 -0.9 0.1 0.3 0.3
178 1 0.4 -0.5 0.2 1.9 0

184 (226) 1 0.9 -0.8 0.1 0.3 -0.6
200 (236) 1 -0.3 -0.1 0.1 0.8 0

204 1 -0.4 0 0.1 0.9 0
232 1 1 0.2 1.1 5 0

Table 4.4: Example mappings of all 256 possible ECA rules (equivalent rules are
listed in parenthesis if they exist).

Scaling to Terahertz Clock Rates
The pulse repetition rate can be increased to achieve potentially terahertz clock rates
by using a similar time-multiplexing delay-line technique as in the current exper-
iments. However, instead of interacting neighbouring pulses in the ECA, we can
interleave pulses to effectively increase the repetition rate. For example, suppose
we want to achieve a 1 THz pulse repetition rate. Then, we can utilize a setup as
shown in Fig. 4.8. In the left part of the figure, we illustrate time-multiplexed input

electro-optic modulator

computation
to 
detectors

laser 
pulses in

switching 
pulses in RF input data

thin-film lithium niobatesilicasilicon gold periodically poled domains

all-optical switch
delay line

1xN splitter

Figure 4.8: Time-multiplexing method for achieving terahertz pulse repetition
rates.
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encoding for the initial condition. Consider a 100 GHz repetition rate femtosec-
ond laser source, but integrated electro-optic modulators (EOMs) that only have
100 GHz bandwidth [67]. We can split the input pulse train into 𝑁 = 10 delay
lines, each offset by a relative delay of 10 ps and then individually modulate each
of these delay lines with a 100 GHz EOM. Then, upon recombination, we have
effectively produced a pulse train with a 1 THz repetition rate. This initial condition
can then be used as the input to our proposed all-optical ECA in which the nonlinear
waveguides for all-optical thresholding have optical bandwidth > 10 THz. On the
other hand, electronic thresholding and feedback is limited to the electronic band-
width of < 10 GHz, which cannot support the ultrafast repetition rates attainable by
all-optical methods. In the right part of the figure, we present a scheme to measure
this 1 THz repetition rate pulse train for outputs by selectively switching the pulse
train into 10 sets of 100 GHz repetition rate pulse trains using a set of 10 all-optical
switches [61]. These 100 GHz repetition rate channels are then amenable to direct
photodetection. Therefore, we see that the repetition rate of the laser source is
not the limiting factor since we can always employ time-multiplexing methods to
achieve any desired pulse repetition rate.

Rule 54 space-time diagrams without filtering
We applied tiling theory to filter out the periodic background, i.e., the ether, from
the space-time diagrams of ECA Rule 54 shown in the main text Fig. 4. For com-
pleteness, we also show the same space-time diagrams below but without filtering.
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(a) (b) (c)

(d)

Figure 4.9: Soliton-like and glider interactions produced by ECA Rule 54 in the
photonic hardware. (a) Truth table showing the update for ECA Rule 54. Space-
time diagrams of ECA Rule 54 without periodic background filtered out, showing
(b) glider collision, (c) glider gun, and (d) black hole.
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C h a p t e r 5

DEEP LEARNING WITH PHOTONIC NEURAL CELLULAR
AUTOMATA

Gordon H.Y. Li, Christian R. Leefmans, James Williams, Robert M. Gray, Midya
Parto, and Alireza Marandi. Deep learning with photonic neural cellular automata.
Light: Science & Applications, 13(1):283, 2024. doi:10.1038/s41377-024-01651-
7.
G.H.Y.L. conceived the project, developed the theory, executed numerical sim-
ulations, designed the experiments, built the experimental setup, performed the
experimental measurements, analyzed the data, and wrote the manuscript.

5.1 Abstract
Rapid advancements in deep learning over the past decade have fueled an insatiable
demand for efficient and scalable hardware. Photonics offers a promising solution
by leveraging the unique properties of light. However, conventional neural network
architectures, which typically require dense programmable connections, pose sev-
eral practical challenges for photonic realizations. To overcome these limitations,
we propose and experimentally demonstrate Photonic Neural Cellular Automata
(PNCA) for photonic deep learning with sparse connectivity. PNCA harnesses
the speed and interconnectivity of photonics, as well as the self-organizing nature
of cellular automata through local interactions to achieve robust, reliable, and ef-
ficient processing. We utilize linear light interference and parametric nonlinear
optics for all-optical computations in a time-multiplexed photonic network to ex-
perimentally perform self-organized image classification. We demonstrate binary
(two-class) classification of images using as few as 3 programmable photonic pa-
rameters, achieving high experimental accuracy with the ability to also recognize
out-of-distribution data. The proposed PNCA approach can be adapted to a wide
range of existing photonic hardware and provides a compelling alternative to con-
ventional photonic neural networks by maximizing the advantages of light-based
computing whilst mitigating their practical challenges. Our results showcase the
potential of PNCA in advancing photonic deep learning and highlights a path for
next-generation photonic computers.

https://doi.org/10.1038/s41377-024-01651-7
https://doi.org/10.1038/s41377-024-01651-7
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5.2 Introduction
Deep learning models have demonstrated remarkable capabilities in numerous do-
mains, ranging from computer vision to natural language processing, scientific
discovery, and generative art [1–4]. However, as the complexity and scale of these
models continue to surge, a critical challenge emerges: the need for efficient and
scalable hardware solutions to handle the ever-increasing computational demands.
For example, recent trends show that the compute requirements for deep learning
models are doubling approximately every 5-6 months [5]. This is far outpacing
improvements in conventional digital electronic computers, which has spurred the
use of application-specific hardware accelerators such as Graphics Processing Units
and Tensor Processing Units [6]. In this context, the convergence of deep learning
with photonics has emerged as a promising frontier, poised to redefine the landscape
of neural network computation. By leveraging the distinct characteristics of light,
photonic hardware can unlock unprecedented processing speeds, parallelism, and
energy efficiencies that surpass the capabilities of traditional electronic architec-
tures [7, 8]. To enable this new paradigm of photonic deep learning, much of the
focus so far has been on developing the fundamental devices needed for crucial
neural network operations. Indeed, there have been impressive demonstrations of
photonics for linear operations such as matrix multiplication and convolutions [9–
11], as well as nonlinear activation functions such as rectified linear unit [12–14].
These photonic building blocks are now comparable to or surpass their electronic
counterparts in certain important computing metrics.

However, studying system-level architectures for photonic neural networks (PNNs)
beyond single devices is also of vital importance. This is crucial since photonics and
electronics operate in entirely different regimes [15]. The computational advantages
of photonic building blocks can quickly diminish when used to implement conven-
tional neural network architectures that were optimized for digital electronics [16].
Advancing photonic deep learning towards end-to-end and scalable photonic sys-
tems requires properly considering neural network architectures that can benefit
from implementation with specific photonic hardware. One important hurdle is that
conventional deep learning architectures such as Multi-layer Perceptrons (MLPs)
and Convolutional Neural Networks (CNNs), which have so far been mainstays for
PNNs, require densely-connected layers with large numbers of parameters, which
are challenging to realize in typical photonic platforms and current demonstrations
of PNNs. For example, integrated PNNs can possess fast input update rates (> 1
GHz) but feature a small number of programmable parameters (< 103) [9, 10, 14],
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whereas free-space PNNs can contain a large number of parameters (> 106) but
have slow input update rates (< 10 kHz) [17–19]. Finally, PNNs are usually oper-
ated with fixed weights that cannot be rapidly updated in real-time. This constraint
makes it difficult for PNNs to efficiently implement the complex structures of mod-
ern deep learning models, and also poses reliability concerns when generalizing to
out-of-distribution data.

To overcome these apparent disparities between photonics capabilities and conven-
tional neural network architectures, we propose and experimentally demonstrate a
novel type of PNN based on Neural Cellular Automata (NCA) [20]. Cellular au-
tomata (CA) are computational models composed of a lattice of cells with states that
follow an update rule, which defines how the state of a cell evolves over time based on
the states of its neighboring cells (Fig. 5.1a) [21, 22]. Inspired by biological systems,
the local interactions between cells governed by the update rule gives rise to complex
phenomena and emergent patterns at the global-scale [23] (Supplementary Informa-
tion Section I). Unlike conventional human-designed update rules, NCA (Fig. 5.1b)
harness the complex dynamics of cellular automata by using modern deep learning
techniques to learn the local update rules needed to perform specific tasks such as
regenerating patterns [20], self-classifying images [24], and texture generation [25].
Our Photonic Neural Cellular Automata (PNCA) combines the advantages of pho-
tonic hardware with NCA to achieve self-organized image classification (Fig. 5.1c).
The PNCA leverages a completely different methodology for computer vision tasks
compared to previous PNNs based on MLPs or CNNs. This enables noise-robust
processing, as well as convenient measures of uncertainty for identifying anomalies
and out-of-distribution data. Furthermore, PNCA achieves parameter-efficient so-
lutions since the photonic hardware can operate with fixed weights and only needs
to encode the parameters for local update rules instead of global network weights.
The proposed PNCA approach can be generalized to suit a wide variety of existing
photonic hardware, which can potentially greatly increase the functionality of PNNs
and addresses several important challenges facing photonic deep learning.

5.3 Results
PNCA architecture
The key concepts of the general PNCA architecture are shown in Fig. 5.1, which can
be adapted to suit a wide range of different photonic hardware platforms (e.g., see
Supplementary Information Section II). For computer vision tasks, each pixel in the
input image corresponds to a cell in the PNCA. Cells are designated as either alive
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Figure 5.1: Introduction to PNCA. (a) Cellular Automata (CA) consist of com-
putational units called cells, which update states according to interactions with
neighboring cells. These microscopic local cell interactions can lead to emergent
phenomena such as self-organization at the macroscopic scale, and even a global
state agreement. (b) Neural Cellular Automata (NCA) encode the local update
rules for CA using artificial neural networks and can be trained using modern deep
learning techniques to perform tasks, such as image classification through collec-
tive agreement of cells. (c) Photonic Neural Cellular Automata (PNCA) directly
implement NCA in physical systems by harnessing the speed and interconnectivity
of analog photonic hardware, which includes linear operations via light interference
and nonlinear activations via nonlinear optics. This endows photonic neural net-
works with the robust, reliable, and efficient information processing capabilities of
NCA, hence overcoming several practical challenges facing light-based computing.

or dead through an alive masking procedure. This can be done by setting a threshold
for the initial pixel value, below which the cell is considered dead. Only alive cells
are actively updated by the PNCA, whereas dead cells can influence the updates of
alive cells but are otherwise quiescent. The cell state updates according to a rule that
depends on the cells in a local𝑚-cell neighborhood. For example, Fig. 5.1a shows the
prototypical Moore neighborhood composed of the cell and the 8 cells that surround
it. Other types of local cell neighborhoods are also possible. In the PNCA, the optical
field corresponding to each cell is split into 𝑚 optical paths to define the desired
𝑚-cell neighborhood for the local update rule. The local update rule for the PNCA
is encoded by the photonic hardware (Fig. 5.1c), which accepts the 𝑚 inputs given
by the 𝑚-cell neighborhood and outputs the next cell state. Although Fig. 5.1a only
shows each cell state having a single channel, this can also be extended to multiple
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channels (e.g., RGB color image channels) by increasing the inputs and outputs
accordingly. In general, the programmable photonic hardware contains feed-forward
layers with linear operations which can be implemented through meshes of Mach-
Zehnder interferometers [9], photonic cross-bar arrays [10], micro-ring resonator
weight banks [26], or other linear photonic devices [11, 14]. In addition, there must
also be layers performing nonlinear activations such as photonic devices based on
optoelectronic measurement-feedback [14, 27] or nonlinear-optical crystals [12, 13].
This kind of feed-forward programmable photonic hardware specifying a single
input-output function has been used in previous PNNs. However, for PNCA, the
key difference is that the photonic hardware only needs sparse connections and
enough parameters to encode for the local update rule, which is usually orders-of-
magnitude fewer than the number of parameters needed to encode global network
weights in fully-connected layers for MLPs or CNNs. In other words, the parameter-
efficient PNCA architecture can enable existing PNN hardware with relatively few
parameters to perform larger and more complicated tasks than otherwise possible in
conventional neural network architectures. Furthermore, this local update rule can
more easily tolerate the use of fixed-weights after training since every cell follows the
same update rule. Note that the weights/parameters encoding the local update rule
for cells do not vary across cell index or time step iteration, which avoids the need
for costly parameter updates in photonic hardware. Finally, the output is recurrently
fed back to update the cell state for the next iteration. This can be accomplished
by photodetection and electro-optic feedback or by using all-optical feedback lines
(e.g., see Supplementary Information Section IV).

Unlike conventional CA with discrete cell states [21], NCA use cell states that
are continuous-valued [20], which allows the model to be end-to-end differentiable
and compatible with gradient-descent based learning algorithms. In this work, we
consider the task of self-organized image classification. The target output after
the final iteration is to have every alive cell in the state that corresponds to the
class label for the input image. The alive cells must form this collective agreement
through only the local interactions defined by repeated iteration of the update rule.
This can be interpreted as a kind of recurrent neural network, which can be trained
(Fig. S3) using the standard backpropagation-though-time algorithm [28]. Using a
cell-wise 𝐿2 loss was found to give better performance compared to cross-entropy
loss of labels, which is more commonly used for image classification tasks [20]. The
training can either be done in situ by performing the forward pass in PNCA to more
accurately capture the physics, or completely digitally by simulating the photonic
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hardware with noise [29, 30].

Experimental realization of PNCA
We used a time-multiplexed scheme and commercially-available optical-fiber com-
ponents to experimentally demonstrate proof-of-concept for a simple version of
PNCA as shown in Fig. 5.2. Each cell state is given by the amplitude of a laser
light pulse generated by a mode-locked laser with a fixed repetition rate such that
the cells are inputted one at a time in a flattened 1D lattice by raster scanning across
the 2D image. In this way, each cell occupies a time-bin site in a synthetic temporal
dimension [31]. Therefore, distances in a real-space lattice correspond to time-
differences in the temporal dimension and cells at different lattice sites can be made
to interact by using temporal delay lines. The pulse amplitude/phase representing
the cell state is set using an electro-optic modulator (EOM), and the pulse is then
split between 3 temporal optical delay lines with relative delays 𝑇1 and 𝑇2 chosen
to enforce the desired 3-cell local neighborhood shown in Fig. 5.2b. In this simple
example, the local update rule is encoded by a single perceptron neuron shown in
Fig. 5.2c, which consists of a linear dot product followed by a nonlinear activation
function. The dot product is achieved by coherent interference of the optical delay
lines, each equipped with a variable optical attenuator (VOA) to program the desired
weights, which can be either positive (in-phase/constructive interference) or nega-
tive (out-of-phase/destructive interference). The nonlinear activation is performed
using pump-depleted second harmonic generation (see Supplementary Information
Section VI) in a reverse-proton exchange periodically-poled lithium niobate waveg-
uide [32]. This produces a sigmoid-like function as shown in Fig. 5.2d. Thus,
the computations in the local update rule are achieved all-optically. Overall, the
local update rule contains only 3 programmable parameters, but can still perform
complex tasks. Finally, the cell state is measured using a photodetector, stored on
a field-programmable gate array (FPGA), and electro-optically re-injected for the
next iteration after alive-cell masking.
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Figure 5.2: Experimental setup for PNCA. (a) Schematic of the experimental
setup. Pulses of light produced by a mode-locked laser pass through an electro-
optic modulator (EOM) and are split into optical fiber delay lines (blue lines) with
relative delays 𝑇1 and 𝑇2. Linear dot product weights are programmed by tuning
the variable optical attenuator (VOA) in each delay line. Nonlinear activation using
a periodically-poled lithium niobate (PPLN) waveguide is performed following the
coherent interference of light pulses, with the resultant amplitudes stored on a field-
programmable gate array (FPGA) and reinjected (black lines) to drive the input
EOM for the next iteration. (b) Local 3-cell neighborhood enforced by relative
delays 𝑇1 and 𝑇2. (c) The local update rule is encoded by a single perceptron with
3 programmable parameters. (d) PPLN nonlinear activation function. (e) Cells
representing pixels of an image are encoded by the amplitude of light pulses with
repetition period 𝑇𝑅 in a synthetic temporal dimension. For example, pulses can be
coupled using optical delay lines with 𝑇1 = +1𝑇𝑅 and 𝑇2 = +28𝑇𝑅 to implement the
local 3-cell neighborhood shown in (b) for fashion-MNIST images.
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Figure 5.3: Measurements of noise and errors in PNCA operations. Expected
vs. measured light amplitude for (a) input cell state by EOM, (b) linear dot product
by coherent interference and (c) nonlinear activation by PPLN. Each scatter point
represents an alive cell from the 200 images tested. The top right insets show the
histograms for the error (expected amplitude — measured amplitude) in each case
and the bottom right shows the mean and standard deviation, respectively.

A crucial aspect of photonic hardware is that it is analog and noisy. A key advantage
of the PNCA architecture is that it is robust to noise due to the self-organizing nature
of the cell states. We rigorously characterized the noise and errors in our PNCA
implementation, which arises from three main operations: (1) the input cell state
due to thermal and electronic noise in the EOM, (2) the linear dot product due
to phase noise and imperfect pulse temporal overlap in the coherent interference,
and (3) the nonlinear activation due to thermal noise and photorefractive effects in
the PPLN. We characterized these errors using 200 test images. The expected vs.
measured amplitudes of alive cells in these images are shown in Fig. 5.3. The mean
and standard deviation of the errors (expected amplitude — measured amplitude)
achieved in our system are typical of photonic hardware, and we show that this is
tolerable for the PNCA architecture due to its noise-robustness.

Self-organized image classification
We trained the experimental PNCA to perform binary image classification using the
fashion-MNIST dataset consisting of 28 × 28 pixel gray-scale images of clothing
items [33]. For example, Fig. 5.4a shows how the PNCA can classify images of
sneakers and trousers. The alive cell masking is performed by designating any pixel
with initial value 𝛼 > 0.1 as an alive cell, and all other pixels as dead cells with
constant value of zero. Each input image was iterated for 𝑡 = 21 time steps in the
PNCA, which was sufficient for the cells to reach an approximate global agreement.
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Figure 5.4: Experimental results for fashion-MNIST binary image classifica-
tion. (a) Information flow for the PNCA trained to classify images of sneakers and
trousers, beginning with alive cell masking, followed by 𝑡 = 21 iterations of the
trained PNCA. The predicted image label is obtained by global average pooling and
softmax classification of the final self-organized alive cells. Confusion matrices for
(b) idealized simulation model, (c) noisy simulation model, and (d) experiment.

The alive cells self-organize to have state values close to zero (unity) for images of
sneakers (trousers). Finally, the predicted image label is obtained in postprocessing
(see Supplementary Information Section III) by performing global average pooling
of the final alive cell states followed by softmax classification. In this case, a global
average closer to zero (unity) indicates that the predicted image label is sneaker
(trouser).

The training procedure was performed digitally using an idealized simulation model
of the PNCA that had no noise. The confusion matrix for the idealized model is
shown in Fig. 5.4b, which yielded a final test accuracy of 99.4%. Next, the trained
model parameters were frozen, and the model was tested again but with additional
simulated Gaussian noise for each operation, matching the noise characteristics
shown in Fig. 5.3. The confusion matrix for the noisy model is shown in Fig. 5.4c,
which has a slightly lower final test accuracy of 97.7%. The trained model pa-
rameters were implemented in the experimental PNCA by appropriately tuning the
VOAs. The confusion matrix for the experimental result tested on the same 200
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images (100 for each class) used to characterize the noise in Fig. 5.3 is shown in
Fig. 5.4d and has a final test accuracy of 98.0%. This experimental test accuracy
is in close agreement with the simulated noisy model, which shows that the PNCA
operates as desired and can successfully tolerate the use of noisy photonic hardware.
No special training or noise regularization techniques were used for the PNCA. We
emphasize that the robustness emerges through the local interactions between cells
forming a global agreement. Therefore, even if one cell fails, the collective state
can still persist (Supplementary Information Section VII).

Out-of-distribution data
Furthermore, conventional neural networks are prone to making overconfident pre-
dictions and failing to generalize to out-of-distribution data [34]. This lack of
reliability is especially problematic for photonic deep learning in which the weights
are fixed and online learning is not practical. The NCA approach addresses this
shortcoming by using the average state value of all alive cells as a built-in measure
of uncertainty. We experimentally demonstrated this for PNCA by using the same
network as before that was trained on images of sneakers and trousers. Now, we test
the PNCA on images of bags, which is an out-of-distribution class that the PNCA
was not exposed to during training. The distributions for the alive cell averages of
the sneaker, trouser, and bag classes are shown for the initial test images in Fig. 5.5a.
It clearly shows that the initial distributions for alive cell averages closely overlap

a b

Figure 5.5: Recognizing out-of-distribution data. Histograms of alive cell aver-
ages for (a) initial condition and (b) final iteration of test images of sneakers (blue),
trousers (red), and out-of-distribution bags (yellow).
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between all classes. Upon iteration of the local update rule that was learned during
training, the PNCA is able to successfully separate the distributions for sneaker and
trouser, with final alive cell averages of 0.1743 and 0.8742, respectively, as shown
in Fig. 5.5b. In this case, the difference between the final alive cell average and
zero/one indicates the uncertainty in the prediction. However, the final alive cell
average for out-of-distribution test images of bags is 0.5682, which is close to 0.5
and means that the cells did not reach a global agreement. This shows that the
PNCA can use the alive cell average as a proxy for uncertainty and to detect out-
of-distribution data. Unlike for conventional neural network architectures, neither
special training/inference techniques nor additional training data is required.

Simulated benchmarks
In the current experimental implementation of PNCA, we represented the local
update rule using only a single neuron with 3 parameters. However, the PNCA
architecture can also be used with more advanced PNN hardware that can represent
the local update rule using a greater number of neurons/parameters. In general, a
greater number of neurons/parameters can allow for more complicated tasks and
higher classification accuracy while the hardware complexity remains far less de-
manding than other neural network architectures. Tab. 5.1 shows the simulated
binary classification accuracy of the proposed PNCA with different numbers of neu-
rons/parameters encoding the local update rule (see Methods). The simulated PNCA
was tested on different classes within the fashionMNIST dataset, as well as other
similar benchmark datasets including EMNIST (28 × 28 grayscale images of hand-
written letters) [35], MNIST (28 × 28 grayscale images of handwritten digits) [36],
and CIFAR10 (32×32 RGB images of animals and vehicles) [37]. The correspond-
ing classification accuracies for conventional multi-layer perceptrons (MLPs) with
different numbers of hidden neurons/parameters are also shown for reference. It
can be seen that the PNCA requires far fewer parameters and achieves comparable
(or sometimes even better) classification accuracy to MLPs across a wide variety of
examples. Therefore, the PNCA architecture may provide an efficient way for PNNs
with only few parameters [14] to increase their task performance with minimal
changes to existing hardware.
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5.4 Discussion
We note that CA with simple rules and only nearest-neighbour connections are
known to be Turing-universal models of computation [38]. This means that CA can,
at least in principle, compute any function that a fully-connected network (neural
or otherwise) can compute. There is no fundamental loss of computational power
or information processing ability imposed by the sparsity. Therefore, given enough
time, the PNCA approach (albeit with more advanced input encoding schemes) must
be able to achieve at least the same accuracy as conventional neural networks such as
MLPs. However, in practice, the time steps are truncated to be finite, which means
the classification accuracy may not always be the same as MLPs. It is difficult
to determine a priori on which examples the PNCA will perform better/worse
compared to MLPs.

In the proposed PNCA architecture, the maximum throughput is ultimately limited
by the speed of the nonlinear activation function. We chose to utilize ultrafast
nonlinear optics since it can be orders of magnitude faster than digital electronics
for performing nonlinear activations. The reverse-proton exchange PPLN waveg-
uide [32] used in the experiment utilizes strong 𝜒(2) optical nonlinearity and has a
phase-matching bandwidth of ∼ 100 GHz, which determines the maximum possible
computational clock rate. This is an important step towards achieving end-to-end
PNNs since it is much faster than other nonlinear activation methods utilizing op-
toelectronics [14], slower optical nonlinearities [39, 40], or spectral shaping [41].
Note that in our experiment, we used optoelectronic conversions after the PPLN
nonlinear activation to perform feedback between iterations, however, this was not
a fundamental limitation and can in principle be replaced by an all-optical feedback
loop in the form of a sufficiently long optical fiber (see Supplementary Information
Section IV). The scalability and performance can be further improved by using
nanophotonic PPLN waveguides, which were recently demonstrated to achieve a
maximum speed > 10 THz and energy of ∼ 10 fJ per nonlinear activation [13].

In summary, we have proposed and experimentally demonstrated a novel approach to
photonic deep learning based on PNCA. It addresses several system-level challenges
in previous photonic neural networks, and can serve as a general architecture for a
wide variety of photonic hardware platforms. In particular, we showed that PNCA
enables noise-robust image classification through local interactions between cells
with an inherent measure of uncertainty based on alive cell averages. Moreover,
the efficient PNCA model encoding requires orders of magnitude fewer parameters
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compared to MLPs or CNNs. Our single perceptron neuron rule encoding can be
straightforwardly extended to a shallow neural network with a greater number of
programmable parameters to perform more complicated and larger-scale computer
vision tasks. For example, we focused on binary image classification for simplicity,
but it is possible to perform image classification with more classes (e.g., the full
10-class MNIST image classification) if the number of output neuron channels is
increased (e.g., see Supplementary Information Section II). Furthermore, we only
used standard backpropagation training and did not employ any special training or
regularization techniques. More advanced noise-aware or physics-aware training
schemes [29] are also compatible with the PNCA architecture and may further
increase performance. We used a time-multiplexed photonic network based on a
synthetic temporal dimension, however, it is also possible to use an analogous PNCA
approach based on other synthetic dimensions such as frequency dimensions [40,
42]. In addition to robustness to noise, it has also been previously shown that
NCA are generally robust against sudden changes or failures in the underlying cell
states [20, 24]. This fault-tolerance property has not yet been explored for optical
implementations and can be an interesting avenue for future work on PNCA. Our
work therefore highlights a clear path to advancing photonic deep learning based on
PNCA and paves the way for next-generation photonic computers.

5.5 Materials and Methods
Experimental Setup
A more detailed schematic of the experimental setup is shown in Fig. S1. A fem-
tosecond laser source (MenloSystems FC1500-250-WG) produces pulses of light at
a fixed repetition rate of ∼ 250 MHz. The light pulses are filtered using a 200 GHz
band-pass filter with center wavelength ∼ 1550 nm to stretch the pulse length to
∼ 5 ps and reduce the effects of dispersion. The light pulses are photodetected (Men-
loSystems FPD610-FC-NIR) as a reference clock signal for the FPGA (Xilinx Zynq
UltraScale+ RFSoC) to eliminate timing drift between the optical and electronic
signals. The FPGA drives an electro-optic modulator (IXblue MXAN-LN-10) that
is used to modulate the amplitude of the light pulses. The light pulses are split into
a 3-path interferometer by cascading 50:50 optical fiber splitters. Two paths of the
interferometer have delays +1𝑇𝑅 and +28𝑇𝑅, respectively, relative to the shortest
path, where 𝑇𝑅 is the repetition period of the light pulses. The relative delays in
each arm are set using a combination of optical fiber patch cords and free-space
delay stages. Tuning the free-space coupling efficiency also acts a variable opti-
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cal attenuator to set the relative amplitude weight in each arm. The output of the
3-arm interferometer is tapped using a 90:10 optical fiber splitter. The 10% tap is
photodetected (Newport New Focus Model 2053) and used as an electronic locking
signal input to a proportional-integral derivative controller (Red Pitaya). The elec-
tronic locking signal output is amplified (Thorlabs Piezo Controller MDT693B) and
drives fiber phase-shifters (General Photonics FPS-002-L) that stabilize the relative
phases of each delay arm. The 90% output of the 3-arm interferometer is amplified
using an erbium-doped fiber amplifier (Thorlabs Fiber Amplifier 1550nm PM) and
filtered using a 200 GHz band-pass filter to reduce the amplified spontaneous emis-
sion noise. The amplified light pulses pass through a 40 mm long reverse-proton
exchange PPLN waveguide [32] that is heated to ∼ 52◦C with a thermocouple con-
troller. The PPLN waveguide contains a wavelength division multiplexer on the
output to separate the fundamental harmonic centered at ∼ 1550 nm and the second
harmonic centered at ∼ 775 nm. The second harmonic output is dumped and the
fundamental harmonic is photodetected (Thorlabs DET08CFC). The final photode-
tected signal is read as a time trace using an oscilloscope (Tektronix MSO6B) and
light pulse amplitude values are stored on the FPGA to be electro-optically rein-
jected.nA single photodetector can be used for tasks only requiring positive-valued
inputs/outputs, such as the image classification tasks considered in this work. How-
ever, the electro-optic feedback scheme can also handle negative-valued outputs by
instead using a local-oscillator with balanced photodetector. All optical fiber paths
are single-mode polarization-maintaining (PM).

Photonic Neural Cellular Automata Model
The Neural Cellular Automata (NCA) comprises a lattice of cells indexed by lattice
site numbers 𝑖 ∈ N with states xi ∈ C𝑑 , where 𝑑 is the number of channels for each
cell. Each cell interacts locally in an 𝑚-cell neighborhood M𝑖 according to a fixed
update rule. We consider discrete-time synchronous updates 𝑡 ∈ N for cells:

xi(𝑡 + 1) = 𝑓𝜃 (xmi1 (𝑡), xmi2 (𝑡), xmi3 (𝑡), · · · ) , (5.1)

where 𝑚𝑖1, 𝑚𝑖2, 𝑚𝑖3, · · · ∈ M𝑖 are the lattice sites in the local neighborhood of the
𝑖th cell and 𝑓𝜃 :

(
C𝑑

)𝑚 → C𝑑 is the local update rule. The local update rule is
parameterized by {𝜃} and is differentiable so that it can be trained using modern
deep learning techniques. For example, 𝑓𝜃 can represent a neural network. The key
aspect is that the update rule 𝑓𝜃 is the same for all cells and all time steps.

We experimentally demonstrated a simple version of NCA implemented directly
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on analog photonic hardware, which we call Photonic Neural Cellular Automata
(PNCA). In PNCA, lattice sites are represented by laser light pulses in time bins
of a synthetic temporal dimension with a fixed repetition period 𝑇𝑅 and cell states
are represented by the complex amplitude of the light pulses. For simplicity, we
consider a single image channel 𝑑 = 1 and the local update rule 𝑓𝜃 encoded by
a single perceptron neuron with an 𝑚 = 3 neighborhood as shown in Fig. 5.2b,c.
The temporal delay lines 𝑇1 = +1𝑇𝑅 and 𝑇2 = +28𝑇𝑅 set the desired local cell
neighborhood and the VOAs in each arm of the 3-arm interferometer set the desired
weights {𝑤0, 𝑤1, 𝑤2} ∈ [−1, +1]. The PIDs are used to enforce a relative phase of
0 for constructive interference, or conversely a relative phase of 𝜋 for destructive
interference. Therefore, at the output of the 3-arm interferometer, the combined
result of the delay lines, VOAs, and phases can be summarized as a linear dot
product or sliding convolutional filter:

𝑦𝑖 (𝑡) = 𝑤0𝑥𝑖 (𝑡) + 𝑤1𝑥𝑖+𝑇1 (𝑡) + 𝑤2𝑥𝑖+𝑇2 (𝑡) , (5.2)

where the result of the linear operation 𝑦𝑖 (𝑡) is fed into a PPLN to perform a nonlinear
activation function:

𝑥𝑖 (𝑡 + 1) = 𝑔(𝑦𝑖 (𝑡)) , (5.3)

where 𝑔 is the sigmoid-like function shown in Fig. 5.2d. The PNCA approach is very
general and Eq. 5.1 can be implemented using more complicated photonic hardware
platforms with different cells neighborhoods, more neurons, deeper layers, and more
programmable parameters (see Supplementary Information Section II).

Experimental Procedure
The input modulator was calibrated by using a sequence of 200 consecutive light
pulses and performing a linear voltage sweep of the input EOM, which was DC
biased open. The peak pulse amplitude or maximum value in each time bin (i.e.,
pulse repetition period) of the measured time trace was used to construct a look-
up table for the voltage-to-light amplitude conversion. To input a specific 28 × 28
fashion-MNIST image, the 2D pixel map was unrolled column-wise to form a 784×1
vector of input cell values. Alive masking was applied such that any initial pixel
value < 0.1 was designated as a dead cell. The accuracy of the input operation
was checked by measuring the difference between the measured input cell states
and the expected value, such as shown in Fig. S2. The aggregate results are shown
in Fig. 5.2a. Each desired weight in the linear dot product was set by tuning the
coupling efficiency of a free-space section contained within each VOA in the 3-arm
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interferometer. Note that the VOAs were completely passive and did not consume
any power. The optical power was directly measured in each arm to roughly tune the
attenuation factor, and then fine-tuning of the weight was performed by checking
the result of the linear interference matched the expected value like in Fig. S2.
A standard Pound-Drever-Hall locking scheme was used to stabilize the relative
phases in each delay arm to either 0 or 𝜋 to ensure coherent interference. It is also
possible to make use of the full complex amplitude of light, although we restricted
our attention to only real values. The relative delays in each temporal delay line was
set roughly using optical fiber patch cords, then fine-tuned using free-space delay
stages to ensure maximal temporal overlap between interfering light pulses. The
aggregate results of the linear dot product or convolution operation are shown in
Fig. 5.2b. The temperature of the PPLN was fine-tuned around 52◦C until maximal
average power was measured on the output second-harmonic given a small input
fundamental harmonic average power ∼ 1 mW. The PPLN nonlinear activation
function shown in Fig. 5.2d was measured using a sequence of consecutive light
pulses with linearly increasing input amplitude. To ensure stable operation over
long-periods of time (> 12 hours) throughout the experiment, we regularly check
that the calibrated PPLN nonlinear activation function remains the same and does not
change significantly due to photo-refractive or thermal effects. The measured values
for PPLN nonlinear activations were also compared against the expected simulated
values as shown in Fig. S2. The aggregate results of the PPLN nonlinear activation
operation are shown in Fig. 5.2c. To perform self-organized image classification
using the experimental PNCA, the input modulator was first calibrated. Then, the
PPLN nonlinear activation function was measured, and a simulated digital model
of the PNCA was trained (see Model Training) to determine the optimal weights to
be set in the temporal delay lines. The light pulse amplitudes were stored digitally
on the FPGA in between iterations, however, the iteration feedback can also be
performed all-optically using an optical fiber cavity (Supplementary Information
Section IV).

Model Training
The PNCA can be trained using the standard backpropagation-through-time algo-
rithm (Fig. S3) for recurrent neural networks if a differentiable model of the update
rule 𝑓𝜃 is known. The goal is to learn the parameters {𝜃} for a particular task such
as self-organized image classification. We consider a cell-wise 𝐿2 loss at each time
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step:

𝐿 =
1
𝑇

𝑇∑︁
𝑡=1

1
𝑁

𝑁∑︁
𝑖=1

| |xi(𝑡) − zi | |2 , (5.4)

where zi is the target state for the 𝑖th cell. The parameter values are updated using
stochastic gradient descent:

𝜃 [𝑙+1] = 𝜃 [𝑙] − 𝛼∇𝐿 (𝜃 [𝑙]) , (5.5)

where 𝑙 is the epoch number and 𝛼 > 0 is the learning rate. The gradient ∇𝐿 is
calculated by unrolling the network in time for 𝑇 time steps and applying the chain
rule or automatic differentiation. More complicated gradient-based optimization
such as stochastic gradient descent with momentum or adaptive moment estimation
can also be used to perform parameter updates. We trained a PNCA to perform
binary image classification of sneakers and trousers classes from the fashion-MNIST
dataset using 5000 training and 420 validation images for each class, learning rate
of 𝛼 = 0.002, and 200 training epochs. An example of a training curve is shown in
Fig. S4.

Simulation Procedure
For the simulated benchmarks, we considered PNCA using the classic Moore neigh-
borhood (composed of the current cell plus its 8 neighboring cells in a square lat-
tice). The local update rule 𝑓𝜃 was encoded by a 2-layer fully-connected network
9 → 𝑁 → 1, where 𝑁 is the number of hidden neurons. The simulation parameters
are shown below in Tab. 5.2. For the CIFAR10 dataset examples, we applied the
same local update rule channel-wise to each RGB input channel for the images, then
averaged over the channels for the final classification.

For the simulated Multi-Layer Perceptrons (MLPs) used for comparison, we used
a 2-layer fully-connected network 784 → 𝑁 → 1, where 𝑁 is the number of
hidden neurons. We used clipped ReLU nonlinear activation function 𝑓 (𝑥) =

min(1,max(0, 𝑥)) to ensure that the final output probability is in range [0, 1].
Each MLP was trained using binary cross-entropy loss, the same number of train-
ing/validation/test images as for the corresponding PNCA, learning rate of 0.0001,
and 500 epochs. The images were flattened column-wise to form the input to the
MLPs and we resampled the images to be 28 × 28 grayscale for CIFAR10 since
MLPs can only accept inputs with a fixed dimension, whereas PNCA can handle
arbitrary image input sizes.
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5.6 Supplementary Information

BPF 50:50
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FSD FPS

FSD FPS 50:50

50:50

laser

EDFA PPLNBPF

90:10

PID

TCC

IM

FPGA PDPD
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0𝑇𝑅

+1𝑇𝑅

+28𝑇𝑅

OSC

Figure 5.6: Detailed schematic of experimental setup. BPF: band-pass filter,
IM: intensity modulator, FSD: free-space delay stage, FPS: fiber phase-shifter,
EDFA: erbium-doped fiber amplifier, PD: photodetector, PPLN: periodically-poled
lithium niobate, TCC: thermocouple controller, PID: proportional integral derivative
controller, OSC: oscilloscope, FPGA: field programmable gate array. Blue lines
represent single-mode polarization-maintaining optical fiber paths and black lines
represent electronic connections.
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Figure 5.7: Example of experimentally-obtained time traces in photonic neural
cellular automata. Oscilloscope time traces for a portion of one iteration of one
image in the photonic neural cellular automata showing the results of the input cell
states (red line), linear convolution (blue line), and nonlinear activation (green line)
compared against the expected values based on digital simulations (black lines).
The peak or maximum amplitudes of each light pulse, which occupy a specific time
bin in the synthetic temporal lattice, agrees well with the expected cell state values
and shows that the calibration was accurate. The time traces for each operation are
shifted vertically and corresponding cell lattice sites are aligned horizontally in time
for clarity.
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Figure 5.8: Training method for photonic neural cellular automata. (a) A single
iteration of PNCA consists of alive cells that are encoded into an optical signal, 𝑚
optical paths encoding a local 𝑚-cell neighborhood and perception vector for each
cell, updating the state of each cell according to a local update rule represented
by a neural network, and alive cell masking. (b) Photonic hardware encodes the
local update rule, which includes linear operations implemented physically via light
interference, and nonlinear operations implemented physically via nonlinear optics.
(c) Backpropagation-through-time algorithm for training PNCA to learn a local
update rule, which upon repeated iteration causes self-organization of cells for an
image classification task. A cell-wise 𝐿2 loss is used for optimizing the photonic
neural network parameters.
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Figure 5.9: Training progress for photonic neural cellular automata. Cell-wise
𝐿2 loss (blue line) and classification accuracy (orange line) for training PNCA to
perform binary image classification of sneakers and trousers classes from fashion-
MNIST dataset.

Introduction to Neural Cellular Automata
In this section, we introduce the principles of Neural Cellular Automata (NCA) and
how it differs from conventional neural network architectures. Cellular Automata
(CA) are computational models composed of a lattice of cells with states that update
over time according to simple rules. Crucially, these rules only depend on the
local information of neighboring cell states and every cell follows the same local
update rule. For example, consider the simple example of a CA known as Elementary
Cellular Automata Rule 90. It is a discrete-time CA defined over a 1D lattice of cells
with binary states, which we denote by 𝑥𝑖 (𝑡) ∈ {0, 1} where 𝑖 ∈ Z is the cell index or
lattice site and 𝑡 ∈ N is the discrete time step. The lattice extends infinitely in both
directions. Rule 90 follows the simple local update rule: 𝑥𝑖 (𝑡+1) = 𝑥𝑖−1(𝑡) ⊕𝑥𝑖+1(𝑡),
i.e., a cell’s next state is given by the logical XOR of its neighboring cell states. This
local update rule can also be depicted visually in a truth table as shown in Fig. 5.10a.
The top row shows the local 3-cell neighborhood cell states for all 8 possible cases,
and the bottom row shows the updated cell state. This local update is applied
uniformly and simultaneously to all cells in the 1D lattice. The global effect of this
local update rule can be visualized using a space-time diagram with the horizontal
axis representing cell lattice sites and the vertical axis representing successive time
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Figure 5.10: Elementary Cellular Automata Rule 90. (a) Truth table for local
update rule. (b) Space-time diagram for Rule 90 starting from a single live cell.

steps. An example is shown in Fig. 5.10b for an initial condition in which only a
single cell is live (has state 1) and all other cells are dead (has state 0). In this case,
the space-time diagram is in the shape of a Sierpinski Triangle fractal. A common
theme for CA is that even very simple local update rules can lead to global complex
or emergent phenomena such as fractals, chaos, synchronization, self-organization,
and solitons [21]. It has also been proven that even simple elementary rules are
capable of Turing-universal computation [38].

However, although CA are capable of universal computation, it is not always obvious
how to harness the complex dynamics in CA to perform useful computational tasks.
Indeed, much of the early work in CA focused on studying human-designed or
bespoke local update rules. In general, we can consider a lattice of cells indexed by
lattice site numbers 𝑖 ∈ N with states xi ∈ C𝑑 , where 𝑑 is the number of channels for
each cell (i.e., each cell state is given by a 𝑑-dimensional vector). Each cell interacts
locally in an 𝑚-cell neighborhood M𝑖 according to a fixed update rule. We consider
discrete-time synchronous updates 𝑡 ∈ N for cells:

xi(𝑡 + 1) = 𝑓 (xmi1 (𝑡), xmi2 (𝑡), xmi3 (𝑡), · · · ) , (5.6)

where 𝑚𝑖1, 𝑚𝑖2, 𝑚𝑖3, · · · ∈ M𝑖 are the lattice sites in the local neighborhood of the 𝑖th

cell and 𝑓 :
(
C𝑑

)𝑚 → C𝑑 is the local update rule.
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Figure 5.11: Network Topology. Examples of Neural Cellular Automata (NCA)
encoding the local update rule for Cellular Automata (CA) using (a) single perceptron
neuron or (b) a deep neural network. (c) Conventional artificial neural networks are
feed-forward networks requiring fully-connected layers with global information.

The key innovation of the Neural Cellular Automata (NCA) approach is to use
modern deep learning techniques to discover local update rules 𝑓 that can perform
specific tasks [24]. To do this, the cell states are continuous and the local update
rule is encoded by a neural network 𝑓𝜃 with parameters 𝜃 to be trained. The input
to the neural network is a vector composed of the local 𝑚-cell neighborhood. For
example, Fig. 5.11a shows the simplest possible example in which the local update
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rule is encoded by a single perceptron neuron, which is parameterized by its linear
input weights. The output of the neuron represents the updated cell state, which
undergoes recurrent feedback for the next time step iteration. Therefore, NCA
is a special kind of recurrent neural network. We showed in our experimental
implementation of NCA using photonics that a local update rule encoded by just
a single neuron with 3 parameters can still perform surprisingly complex tasks.
Fig. 5.11b shows the more general case in which the local update rule is encoded by
a deeper neural network with more parameters. In order to perform tasks such as
image classification, ancillary steps such as alive cell masking and global averaging
for label prediction are required (e.g., see Supplementary Section III for more
details). The NCA can be trained using the standard backpropagation-through-time
algorithm (Fig. 5.8). It is also common to consider NCA with stochastic updates
in which cell states only update with a given probability during each time step.
For simplicity, we consider only deterministic NCA in our work. In contrast, the
typical network topology of a conventional artificial neural network such as Multi-
Layer Perceptron (MLP) is shown in Fig. 5.11c. It contains an input layer, hidden
layer/s, and an output layer arranged in a purely feed-forward network. The layers
are fully-connected and require global information. Therefore, NCA can be very
parameter-efficient compared to MLPs since the number of parameters needed to
encode local update rules is generally far fewer than the number of parameters needed
to encode network layers with global information. The process of self-organization
through local interactions in NCA for image classification is fundamentally different
to the process by which MLPs classify images.

Examples of how to implement PNCA
In this section, we give more examples of how PNCA may be implemented using
existing photonic neural network hardware. We focus on time-multiplexed photonic
networks, however, we note that analogous results can be obtained using spatial
or wavelength multiplexing [42]. The general architecture for PNCA is shown
in Fig. 5.12a. Each iteration consists of an input optical encoding (e.g., setting
initial conditions or alive cell masking using electro-optic modulators) followed by
photonic hardware encoding the update rule for cells in a local neighborhood. The
key principle of CA is that cells update according to rules that only depend on
local information. Therefore, in PNCA the photonic hardware only encodes for the
local update rule, not the global network weights. The local neighbourhood may be
encoded, for example, using temporal delay lines to specify which cells will interact
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Figure 5.12: PNCA architecture. (a) The general architecture for PNCA using
time-multiplexing includes input encoding of optical cells, temporal delay lines
to encode the local cell neighborhood, and photonic hardware to encode the local
update rule. (b) The photonic hardware for the local update rule can be implemented
using many different methods including free space optics, optical fiber, and photonic
integrated circuits.

in the photonic local update rule. The photonic hardware for the local update rule can
be implemented using a myriad of different methods. Notably, it requires minimal
or no changes to existing photonic neural network hardware. For example, PNCA
can accommodate any combination of: free space optical neural networks such
as coherent [18] or incoherent [43] diffractive neural networks and bulk nonlinear
crystals [29]; fiber-based optical networks such as based on time-delay dynamics [22]
or wavelength-time interleaving [11], and integrated photonic neural networks such
as Mach-Zehnder interferometer meshes [9], cross-bar arrays [10] and nanophotonic
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nonlinear waveguides [13]. These examples are not an exhaustive list, but rather
intended to show how switching to the PNCA architecture can potentially expand
the functionality of existing photonic neural network hardware.

Step-by-step explanation of data processing procedure
In this section, we give a detailed overview of the steps used to perform self-
organized image classification using the experimentally implemented PNCA. For
each input image, we performed the following steps:

1. Pre-processing: prepare the data to be acceptable as input to the PNCA. This
step is performed on an external control computer.

a) Concatenate the columns of the 28 × 28 input image to flatten it into a
784 × 1 vector.
This is necessary because our experimental implementation of PNCA
only accepts a 1D input sequence. However, this step can be skipped if
the PNCA can accept 2D imputs.

b) Calculate alive cell mask: any pixel with initial value ≥ 0.1 is labelled
as alive and any pixel with initial value < 0.1 is labelled as dead.

2. Neural Cellular Automata: iterate the local update rule for cells. This step is
performed in the photonic hardware. For each iteration 𝑡 = 1, 2, · · · , 21:

a) Alive cell masking: cell values represented by the 784 × 1 vector are
modulated onto the amplitude of light pulses. Additionally, the ampli-
tude of any light pulse corresponding to a dead cell is set to 0.

b) Update cell values: propagate light pulses through the photonic neural
network encoding the local update rule. For example, in this case, it is
a single photonic neuron consisting of a multi-arm interferometer and
nonlinear PPLN waveguide.

c) Feed back cell values: return light pulses back to the start of the network
for the next iteration.
In our experiment, this was done optoelectronically by photodetecting
the light pulse after the network and then reinjecting it electro-optically.
However, the feedback can also be performed all-optically using a suffi-
ciently long optical delay line.
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3. Prediction: assign the output image classification label. This step is performed
on an external control computer.

a) Alive cell average: calculate the average cell value of alive cells (i.e., do
not include dead cells) after the final iteration.
Although this step can also be done in photonic hardware, it is not
necessary to perform it fast in real-time since it is only computed once
after all cell update iterations are completed.

b) Output label: the averaged alive cell value gives the probability of the
input image belonging to class 1. If the value is closer to zero, then
the label is class 0 (e.g., sneaker), otherwise the label is class 1 (e.g.,
trouser).
In this experiment, we only performed binary (2-class) classification.
However, a more general PNCA classifying more than 2 classes can use
the standard softmax activation to assign probabilities and class labels.

Optoelectronic vs. All-Optical Feedback
In this section, we describe possible implementations of the memory in PNCA.
Recurrent feedback is needed to input cell states between iterations of the lo-
cal update rule. The first case is an optoelectronic memory making use of a
measurement-feedback scheme. Fig. 5.13a shows a possible implementation using
a time-multiplexed network. Input cell states and alive masking are performed using
an amplitude modulator, e.g., an electro-optic modulator, to set the amplitude of light
pulses representing cells. Time-delayed copies of the pulses are used to implement
the local 𝑚-cell neighborhood, which comprises the perception vector that is input
to the local update rule. For example, in our experimental setup (see Experimental
realization of PNCA), the local update rule is encoded by a single neuron with
linear weights set by variable optical attenuators and nonlinear activation performed
by a periodically-poled lithium niobate (PPLN) waveguide. Other photonic neural
network hardware with more neurons and parameters can also be used to encode
the local update rule (e.g., see Supplementary Section II). The updated cell states
are photodetected and stored on an electronic memory (e.g., FPGA), which are then
electro-optically reinjected for the next iteration of the PNCA. The measurement-
feedback scheme is a simple and convenient method for cell state feedback, however,
its speed is ultimately limited by the bandwidth of the optoelectronic conversions.
The second case overcomes this issue by using an all-optical memory. Fig. 5.13b
shows a possible implementation using a time-multiplexed network. Input cell states
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Figure 5.13: Photonic Neural Cellular Automata Memory. Example of an imple-
mentation using: (a) optoelectronic conversion, electronic memory and amplitude
modulator (AM); and (b) all-optical memory and AM.

and alive masking are performed using an amplitude modulator (AM) to set the ini-
tial amplitude of light pulses representing cells. This initial AM is used to set the
initial conditions (i.e., image pixel values) and is not active beyond the initial 𝑡 = 0
iteration. The PNCA computation based on local 𝑚-cell neighborhood and local
update rule proceeds similarly as before. The updated cell state pulse passes through
an optical memory comprised of an optical delay line with time delay 𝑇𝑁 , where 𝑁
is the number of cells in the network, and an optical amplifier (e.g., erbium-doped
fiber amplifier or optical parametric amplifier) to compensate the optical loss. A
second AM is needed in this case to perform the alive masking between each itera-
tion in the optical feedback line, which inputs the pulses for the next iteration. Note
that the AMs can also be implemented using previously demonstrated all-optical
switches based on ultrafast nonlinear optics [44] so that it is not limited by electronic
bandwidths. Therefore, the entire PNCA can be implemented all-optically without
any electronic bottleneck. This all-optical method requires a long delay line with
delay +𝑇𝑁 to ensure that cells in each iteration do not undesirably interfere with
cells in subsequent iterations. The network size 𝑁 is only limited by the length of
available optical fiber.
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Comparison to other optical neural networks
In this section, we compare the experimentally demonstrated PNCA to other state-
of-the-art optical neural networks performing image classification. We consider
system-level demonstrations of images with size at least 14 × 14 since anything
smaller is not representative. We compare only the best value for experimentally
reported hardware and not theoretically proposed or future devices. We consider the
image inference time, which is the minimum time needed to classify one image, to
be a key figure of merit for photonic hardware accelerators. This can be calculated
from considering the number of input updates and weight updates needed for each
image. For example, in the case of our PNCA, the number of input updates required
per image (assuming 𝑡 = 20 iterations of the local update rule) is 784× 20 = 15680.
The input update rate is limited by the bandwidth of our electro-optic modulator,
which is 12 GHz. One of the crucial points about PNCA is that there is no weight
updates required, so this does not contribute to the inference time. We ignore the
light propagation time since it is almost always negligible compared to the time
taken for input/weight updates. Therefore, the image inference time is 15680/12
GHz = 1.307𝜇s. Another key consideration is how the linear/nonlinear operations
are implemented since using electronics for parts of the computation will add sig-
nificant time and overhead, which is usually not reported. The experimental PNCA
implements both linear and nonlinear operations in the optical domain so there is
minimal overhead. Besides the equipment control electronics, optoelectronics was
used in storing and reinjecting the cell states between iterations, but this does not af-
fect the speed of the computation since the time needed to reinject a single cell state
is much less than the time taken for a complete iteration. Similarly, the time taken to
output classification labels electronically in the last step is much less than the time
taken to complete all iterations. During each iteration, each cell experiences 1 alive
masking operation, 3 MAC operations, and 1 nonlinear activation, hence giving a
total of 7 operations per cell (assuming 1 MAC = 2 OPs). Therefore, the current
operation speed is 7 OPs ×12 GHz = 84 GOPs/s. The average optical power was 15
mW, so we can estimate the optical energy consumption for the computation as (84
GOPs/s)/15 mW = 5.6 TOPs/J. However, we note that the power consumption of the
control electronics is much higher than the optical power, which means the overall
wall-plug energy efficiency is likely much worse than implied by just the optical en-
ergy consumed during the computation. Interestingly, we see that a higher claimed
operation speed does not directly translate into a faster inference time. The claimed
operation speeds often assume full utilization of the photonic hardware, which ig-
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nores important system-level constraints such as input and/or weight updates that
can drastically slow the system when performing a useful image classification task.
Our PNCA experimental implementation is the only end-to-end photonic neural
network combining linear optical operations, nonlinear optical operations, fast input
update speeds, static weights, and no electronic bottleneck.

𝜒(2) Nonlinear Optical Activation Functions
In this section, we describe the equations governing the pump-depleted second har-
monic generation (SHG) in the periodically-poled lithium niobate (PPLN) waveg-
uide used for nonlinear activations in the main text experiments. SHG arises due to
the second-order (𝜒(2)) parametric processes in non-centrosymmetric crystals such
as lithium niobate. This 𝜒(2) nonlinearity is of the ultrafast variety with an effectively
instantaneous response time, which is only limited in practice by the phase-matching
bandwidth of the device. Unlike other slower optical nonlinearities [12, 14] that are
incoherent, the PPLN waveguide can correctly handle both positive and negative
valued input light amplitudes and is a completely travelling-wave process (no res-
onator required). In its simplest form, the SHG process is governed by the nonlinear
coupled-mode equations [47] in Eq. 5.7:

𝑑

𝑑𝑧
𝐴(𝑧) = −𝑖𝜅∗𝐴∗(𝑧)𝐵(𝑧) exp(−𝑖2Δ𝑧) , (5.7a)

𝑑

𝑑𝑧
𝐵(𝑧) = −𝑖𝜅 [𝐴(𝑧)]2 exp(𝑖2Δ𝑧) , (5.7b)

where 𝐴(𝑧) is the amplitude of the fundamental harmonic light of frequency𝜔, 𝐵(𝑧)
is the amplitude of the second harmonic light of frequency 2𝜔, 𝜅 is the nonlinear
coupling coefficient, Δ is the phase-mismatch parameter between the 𝜔 and 2𝜔
light waves, and 𝑧 is the propagation distance along the waveguide’s longitudinal
direction. In the case of our experiments, the input value is encoded onto the coherent
light amplitude of the fundamental harmonic wave and we restrict our attention to
only real-valued inputs. Solving the initial value problem Eq. 5.7 with 𝐴(0) = 𝐴0

and 𝐵(0) = 0 for a waveguide of length 𝐿 gives the nonlinear activation function,
𝑔 : R → R, as the output fundamental harmonic light amplitude 𝐴(𝐿) = 𝑔(𝐴0).
Suppose that [𝐴+(𝑧), 𝐵+(𝑧)] with 𝐴+(0) = 𝐴0 and 𝐵+(0) = 0 is a solution to
Eq. 5.7 with initial values 𝐴+(0) = 𝐴0 and 𝐵+(0) = 0. Then, by direct substitution,
we see that [𝐴−(𝑧) = −𝐴+(𝑧), 𝐵−(𝑧) = 𝐵+(𝑧)] is also a solution with initial values
𝐴−(0) = −𝐴0 and 𝐵−(0) = 0. Therefore, the nonlinear activation function 𝑔(·) is
an anti-symmetric (odd) function, i.e., 𝑔(−𝑥) = −𝑔(𝑥) for 𝑥 ∈ R. For example, in
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the simplified case of continuous-wave light and perfect phase-matching (Δ = 0),
the exact analytical solution to the initial value problem Eq. 5.7 with 𝐴(0) = 𝐴0 and
𝐵(0) = 0 is:

𝐴(𝑧) = 𝐴0sech(𝜅𝐴0𝑧), 𝐵(𝑧) = −𝑖𝐴0tanh(𝜅𝐴0𝑧) . (5.8)

Clearly, the nonlinear activation function 𝐴(𝐿) = 𝑔(𝐴0) is anti-symmetric (odd)
for this simple case. Alternatively, we could also use the second harmonic out-
put 𝐵(𝐿) = 𝑓 (𝐴0) if we desire a symmetric (even) nonlinear activation function,
however, the output would be at a different frequency to the input. The case for
short laser pulses is more complicated and can only be solved numerically, e.g., see
Ref. [13].

Signal-to-Noise Ratio
In this section, we elaborate on the signal-to-noise (SNR) of the PNCA and the
maximum noise tolerance. A key point for PNCA is that the information (e.g.,
image class label) is encoded in the global or collective cell states, and not necessarily
reliant on any individual cell. Therefore, we can assign the alive cell average as
the relevant “signal” and track its evolution across iterations for a specific image
class. The noise can then be considered as the standard deviation of the alive cell
average distribution. For example, Fig. 5.14(a) shows the SNR at different iterations
of the experimentally demonstrated PNCA (see main text Fig. 4) for fashionMNIST
trouser images. Initially, the SNR is low since the alive cell states are the same
as the input image pixel values and have a large variance. Interestingly, the SNR
increases during the first few iterations before decreasing and eventually plateauing.
This is because the most rapid changes due to the self-organizing behaviour occur
in the first few iterations.

We can also study how the noise from specific optical operations impacts the clas-
sification accuracy. In our experimental implementation of PNCA, we carefully
characterized the noise (see main text Fig. 3), which can be considered typical of
photonic hardware. We showed that PNCA was robust to this level of noise. To
determine the maximum degree of noise robustness, we now simulate the PNCA
classification accuracy for the same task of binary image classification of fashionM-
NIST sneaker and trouser images as the noise is increased. For simplicity, we vary
only the standard deviation 𝜎 of the noise of the linear operations (convolutions)
since it is the dominant noise source, and keep the input and nonlinear activation
noise fixed (as shown in main text Fig. 3). The accuracy for different levels of noise
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a b

Figure 5.14: Noise Properties of PNCA. (a) Signal-to-noise ratio at each iteration
of the experimentally demonstrated PNCA tested on fashionMNIST trouser images.
(b) Simulated PNCA accuracy for binary image classification of fashionMNIST
sneaker and trouser images when the convolution noise standard deviation is varied.

𝜎 is shown in Fig. 9(b). The PNCA maintains near-perfect binary classification
accuracy up to 𝜎 ≈ 0.1, which is > 3 times the actual experimental noise level of
𝜎 = 0.0327. The PNCA maintains > 90% accuracy up to > 5 times the experi-
mental noise level. The PNCA doesn’t completely fail until 𝜎 ≈ 0.35, which is
> 10 times the experimental noise level. This emphasizes the fact that the noise
properties of specific operations acting on individual cells are not straightforwardly
correlated with the emergent global properties of the alive cell averages.
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6.1 Abstract
A computer’s clock rate ultimately determines the minimum time between sequential
operations or instructions. Despite exponential advances in electronic computer
performance owing to Moore’s Law and increasingly parallel system architectures,
computer clock rates have remained stagnant at ∼ 5 GHz for almost two decades.
This poses an intractable problem for applications requiring real-time processing or
control of ultrafast information systems. Here we break this barrier by proposing
and experimentally demonstrating computing based on an end-to-end and all-optical
recurrent neural network harnessing the ultrafast nature of linear and nonlinear
optical operations while avoiding electronic operations. The all-optical computer
realizes linear operations, nonlinear functions, and memory entirely in the optical
domain with > 100 GHz clock rates. We experimentally demonstrate a prototypical
task of noisy waveform classification as well as perform ultrafast in-situ analysis of
the soliton states from integrated optical microresonators. We further illustrate the
application of the architecture for generative artificial intelligence based on quantum
fluctuations to generate images even in the absence of input optical signals. Our
results highlight the potential of all-optical computing beyond what can be achieved
with digital electronics by utilizing ultrafast linear, nonlinear, and memory functions
and quantum fluctuations.

https://doi.org/10.48550/arXiv.2501.05756
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6.2 Introduction
The clock rate ultimately determines the minimum time between sequential opera-
tions or instructions in a computer [1], and a computer cannot effectively process
information or respond to input signals occurring on timescales faster than a single
clock cycle. The evolution of computer hardware has been characterized by many
major technological shifts: starting from early mechanical computers such as the
Z1 [2] with a clock rate of 1 Hz, then progressing to general purpose electronic
computers constructed from vacuum tubes such as ENIAC [3] with a clock rate
of 100 kHz, and finally maturing into today’s central processing units (CPUs) [1]
consisting of billions of integrated silicon transistors with GHz clock rates. Each
dramatic increase in clock rate throughout history has yielded countless new appli-
cations and innovations which were previously computationally infeasible.

Modern CPU clock rates have stagnated at ∼ 5 GHz since circa 2005 as shown in
Fig. 6.1. Prior to 2005, CPU clock rates increased commensurately with Moore’s
Law [4]. This abrupt change is mainly due to the breakdown of Dennard scaling [5]
for transistors at the device level and the increasing prevalence of the von-Neumann
bottleneck [6] at the system level, which prompted CPU designers to abandon further
significant increases in clock rate. Indeed, recent gains in computer performance
can be largely attributed to the introduction of multi-core and other highly parallel
computer architectures. Although the clock rate is not a directly comparable measure
of computing speed between different families of computer processors since the
instruction sets and operations during each clock cycle may differ, it remains clear
that the limited clock rates of electronic computers preclude real-time processing or
control of emerging ultrafast information systems at picosecond or faster timescales.
This highlights a unique opportunity for optical computing, particularly where all the
computational operations, i.e., linear and nonlinear functions, as well as the memory,
are realized in the optical domain. Such an all-optical computing platform has been
challenging to implement in a scalable and programmable fashion especially because
of the limitations with the nonlinear functions and all-optical memory [7].

Optical computers have experienced a resurgence in recent years as application-
specific hardware for both linear operations [8–10] and nonlinear functions [11–13]
in deep learning [14–16], neuromorphic computing [17–19], and combinatorial
optimization [20–22] workloads. However, previous approaches mainly prioritized
energy-efficient, high-throughput, or parallel processing and still relied on digital
processors or optoelectronics to perform intermediate steps of the computation,
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nonlinear optics?

Figure 6.1: CPU clock rates over the past 29 years. Each point indicates the clock
rate and testing date for a different type of commercially-available CPU. The colour
corresponds to the entity that designed the CPU, with some prominent CPU design-
ers listed in the legend. Red circle and text bottom insets represent increasingly
advanced semiconductor process nodes and approximately when they were intro-
duced. Prior to 2005, clock rates increased exponentially and commensurately with
Moore’s Law. However, clock rates have stagnated and only increased incrementally
since 2005.

hence were ultimately bottlenecked by electronic response times. Additionally,
several of the previous all-optical approaches [20, 23–27] suffered from one or a
combination of (i) lacking crucial operations such as nonlinearity and/or memory,
(ii) lack of programmability, and (iii) utilization of slow nonlinearities.

An all-optical and programmable computer that can exceed the clock rates of cur-
rent electronic computers is lacking. In this work, we propose and experimentally
demonstrate all-optical computing at high clock rates beyond the limitations of elec-
tronic computers by combining ultrafast nonlinear optics for nonlinear operations,
interference for linear operations, and active cavities for optical memories. Ul-
trafast nonlinear optics provides two unique advantages over previous approaches:
(i) the near-instantaneous response time of the parametric 𝜒(2) optical nonlinear-
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ity is orders-of-magnitude faster than electronic nonlinearities, and (ii) the ability
to generate ultrashort laser pulses, which allows for time-multiplexing and higher
single-channel data-encoding rates compared to electronics or continuous-wave
light. We provide several experimental examples of computing tasks including
noisy waveform classification with clock rates > 100 GHz, in-situ processing of
native ultrafast optical input signals, time-series forecasting, and all-optical image
generation seeded from quantum noise.

6.3 Results
All-optical computer architecture
The optical computer architecture is based on a recurrent neural network (RNN)
as shown in Fig. 6.2a. An RNN contains an input layer, hidden recurrent layer,
and output layer [28]. Unlike purely feed-forward architectures, this kind of driven
dynamical system is well-suited for temporal or sequential information processing
due to the inherent memory endowed by recurrent neuron states that are propagated
between successive time steps. We also note that RNNs are Turing-complete [29].
Compared to digital or von-Neumann computer architectures, the RNN architecture
lends itself more naturally to ultrafast optics since it is inherently analog and utilizes
a dynamical memory instead of non-volatile memory elements. We construct an
experimental proof-of-concept for an all-optical recurrent neural network (AO-
RNN) using off-the-shelf optical fibre components, with operating wavelength of
𝜆 ≈ 1.55 𝜇m, as shown in Fig. 6.2b. The AO-RNN is based on a time-multiplexed
photonic network [20, 30, 31] in which information and input data sequences {𝑠𝑡}
are encoded onto the coherent amplitude of ultrashort laser pulses. Therefore,
the effective clock rate of the AO-RNN is equivalent to the laser pulse repetition
rate 𝑓𝑐. We utilized different kinds of optical frequency combs [32] including
mode-locked lasers, electro-optic frequency combs, and optical microcombs to
generate input signals for different tasks. Recurrent connections between time steps
are performed using an active optical cavity, which acts as an optical feedback
loop. The optical cavity also contains intra-cavity linear couplings implemented
using a multi-arm Mach-Zehnder interferometer in which the coupling weights
are encoded using electro-optic amplitude modulators in each arm. The specific
network topology of the recurrent layer is determined by the lengths of the optical
delay lines in each arm, so the temporal delays 𝑇𝑚 should be an integer multiple of
the clock period 1/ 𝑓𝑐. In-line nonlinear activation functions are performed using a
reverse-proton exchange periodically-poled lithium niobate (PPLN) waveguide [33].
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Figure 6.2: All-optical computer architecture. (a) A general recurrent neural
network (RNN) consists of an input layer, hidden layer with recurrent connections,
and output layer. (b) Schematic of the end-to-end all-optical recurrent neural net-
work (AO-RNN) architecture based on a time-multiplexed photonic network with
(c) ultrafast optical inputs undergoing optical feedback and recurrent connections,
nonlinear optical activations, and linear optical operations to produce optical out-
puts.

The PPLN enables strong 𝜒(2) nonlinear optical processes such as pump-depleted
second-harmonic generation at low pulse energies, which results in a sigmoid-like
input-output function for the pulse amplitude at the fundamental harmonic [34].
Finally, the linear output layer is performed using another multi-arm Mach-Zehnder
interferometer with weights encoded by electro-optic modulators and connections
determined by temporal delay lines. Therefore, the AO-RNN is an end-to-end
and fully-analog optical computer that accepts ultrafast optical inputs and produces
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optical outputs through a combination of linear operations, nonlinear activations,
and memory feedback entirely in the optical domain.

Noisy waveform classification
To test the maximum possible clock rate 𝑓𝑐 of the experimental AO-RNN, we trained
it (see Materials and Methods) to perform the prototypical task of noisy waveform
classification. We consider four classes of temporal waveforms: sawtooth, triangle,
square, and sine. The waveforms have the same period and duration, but are also
corrupted by some random noise as shown in Fig. 6.3a. The waveform samples
are fed sequentially as a single-channel input into the AO-RNN, and the task is
to classify each waveform into the correct class. Therefore, this task is inherently
single-threaded and cannot necessarily be accelerated through parallel processing.
The AO-RNN produces a single-channel optical output pulse for each optical input
pulse. To assign a single class label for verification purposes, the output pulses
are photodetected, which effectively acts as a low-pass filter performing temporal
global average pooling. The average optical output is compared against threshold
decision boundaries (Materials and Methods) in digital postprocessing to assign
a final class label. Alternatively, if multiple output channels are available, then
a conventional softmax classification can also be applied. Note that the digital
postprocessing required to assign class labels in this case only occurs after the entire
duration of the waveform sequence, hence it only needs to be performed at a much
lower rate compared to the clock rate 𝑓𝑐 of the AO-RNN and does not bottleneck the
computation. In principle, the output optical pulses containing information about
the classification result could be used as the input to a second optical computer stage
for further optical processing if desired.

The classification accuracy of the AO-RNN generally decreases as the clock rate
𝑓𝑐 increases as shown in Fig. 6.3b. It achieves a peak classification accuracy of
97.5% at a clock rate of 𝑓𝑐 = 10 GHz (Fig. 6.3c), which exceeds the clock rate
of commercially-available CPUs. The classification accuracy decreases to 92%
at a clock rate of 𝑓𝑐 = 50 GHz (Fig. 6.3d) as the AO-RNN begins to confuse
some sine/triangle waveforms. The classification accuracy further decreases to
58% at a clock rate of 𝑓𝑐 = 100 GHz (Fig. 6.3e) as the AO-RNN also confuses
square/sine and triangle/sawtooth waveforms. Even at the maximum tested clock
rate of 𝑓𝑐 = 120 GHz, the AO-RNN still achieves a classification accuracy signifi-
cantly higher than random guessing. Repeating the same task using a purely linear
model (i.e., without nonlinear activation function) with 𝑓𝑐 = 10 GHz achieves a
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Figure 6.3: All-optical noisy waveform classification. (a) Temporal seqeunces of
sawtooth, triangle, square, and sine waves corrupted with noise are classified by the
AO-RNN. (b) The measured classification accuracy (blue dots) generally decreases
as the clock rate 𝑓𝑐 increases. The bottom horizontal dashed line corresponds to
random guessing accuracy of 25%, the upper horizontal dashed line corresponds
to the accuracy of a purely linear model, and the vertical dashed line indicates
the maximum achievable clock rates by digital electronic computers. Therefore, a
nonlinear optical computational advantage is achieved in the green-shaded region.
The (column-normalized) confusion matrices are shown for clock rates of (c) 𝑓𝑐 =
10 GHz, (d) 𝑓𝑐 = 50 GHz, and (e) 𝑓𝑐 = 100 GHz.

classification accuracy of only 62%, which confirms that the PPLN optical nonlin-
earity is important for achieving a high classification accuracy. We designate an
AO-RNN with both a clock rate higher than any electronic CPU and classification
accuracy higher than a linear model as exhibiting a “nonlinear optical advantage”.

We have identified several reasons explaining why the classification accuracy de-
creases as the clock rate 𝑓𝑐 increases. First, for testing purposes, we generated
the input signals electro-optically using optical time-interleaving techniques (Sup-
plementary Information Section V), which becomes increasingly more difficult as
𝑓𝑐 increases. The AO-RNN relies on coherent interference for performing linear
operations and memory feedback, hence the relative phase and temporal separa-
tion of coherent laser pulses is critically important. Therefore, the computation
fidelity decreases as the phase noise and timing jitter in the input signal increases.
Second, although the 𝜒(2) optical nonlinearity is of the ultrafast variety and near-
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instantaneous, the PPLN possesses a finite phase-matching bandwidth ∼ 100 GHz.
Therefore, the effectiveness of the nonlinear activation function , and hence classifi-
cation accuracy, begins to degrade when 𝑓𝑐 exceeds the phase-matching bandwidth.
Finally, neighbouring pulses begin to overlap temporally and experience undesirable
cross-talk when the clock period 1/ 𝑓𝑐 becomes comparable to the pulse duration.

Native ultrafast optical signals
Many of the above-mentioned issues can be avoided entirely if the input data occurs
natively in the optical domain, thus not requiring electro-optic or optoelectronic
conversions for generating input signals. Fortunately, the study of ultrafast optical
science is rife with examples of optical signals that possess a high degree of coher-
ence and occur on timescales that are too fast for real-time processing or control by
electronic computers. Here we introduce the AO-RNN as an in-situ tool for ultrafast
optical science, which can potentially enable new functionalities that are infeasible
using existing experimental techniques.

For example, Fig. 6.4a shows ultra-low-loss Si3N4 integrated coupled microres-

a

c

Ring A
Ring B

Pump

s
in

g
le

time

𝐼 𝑡

𝑇𝑟𝑒𝑝

𝜏

d
o
u
b
le

tr
ip

le

b

d

nonlinear optical 

advantage

Figure 6.4: Microcomb bipartite soliton state classification. (a) Micrograph of
a Si3N4 integrated coupled microresonator (white scale bar: 1 mm). (b) Bipartite
bright soliton states with single, double, or triple pulse pairs. (c) Classification
accuracy of soliton states with different AO-RNN processing times. Inset: confusion
matrix for a processing time of 100 ns. (d) Histogram and decision boundaries for
measured optical output averages with a processing time of 100 ns.
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onators [35]. This configuration can be operated as an optical frequency comb or
“microcomb" through the balance of 𝜒(3) optical nonlinearity and dispersion, giving
rise to bipartite bright-soliton states. Microcombs have attracted immense research
interest due to their technological importance in a wide range of applications in-
cluding optical computing, LIDAR, dual-comb spectroscopy, low-noise microwave
synthesis, optical metrology, and astrocombs [9, 10, 36]. The Si3N4 microcomb can
produce different soliton states including a single soliton pulse pair, double soliton
pulse pair, or triple soliton pulse pair (Supplementary Information Fig. S6). The
output optical signal in the time-domain is a periodic waveform composed of sub-
picosecond pulses with repetition rate of 𝑓𝑟𝑒𝑝 ≈ 19.97 GHz as shown in Fig. 6.4b.
We consider the task of classifying bipartite soliton states (single, double, or triple)
given that the optical waveforms have the same average power, repetition rate, centre
wavelength, polarization, and spectral bandwidth. This is challenging to do in real-
time since the optical waveforms are too fast for direct photodetection. Moreover,
conventional optical measurement techniques using spectrometers or autocorrela-
tion often require scanning elements at millisecond or slower timescales. Other
ultrafast characterization methods such as time-stretching [37–39] struggle with the
combination of both high-repetition rate and high-duty cycle, which is needed to
distinguish the bipartite soliton states. Existing single-shot [40] or few-shot [41]
methods suffer from low frame update rates and/or require extensive postprocessing
algorithms to extract the useful information. Additionally, our all-optical computing
architecture can be realized as a feedback mechanism for controlling the soliton state
generation and/or ultrafast sensing schemes based on similar soliton dynamics [42].

The AO-RNN can classify bipartite soliton states with varying amounts of process-
ing time given by the length of the input optical waveform as shown in Fig. 6.4c. The
final class label is assigned in the same way as for noisy waveform classification.
The AO-RNN achieves a high classification accuracy of 95.6% for processing times
shorter than 100 ns. The minimum processing time or latency is limited by the
main cavity roundtrip light propagation time in the AO-RNN, which is ∼ 24 ns.
We observe that multiple cavity roundtrips are necessary to ensure high classifica-
tion accuracy. This latency is a consequence of using relatively long optical-fibre
components/connectors, and can be drastically reduced by direct splicing or instead
using a corresponding integrated photonic platform with sub-nanosecond roundtrip
times. Therefore, it is possible to use the AO-RNN as an in-situ tool for near-real-
time and few-shot classification of optical soliton states, which can enable faster
measurement and feedback control loops.
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Time-series forecasting
The previous two example tasks were classification tasks. We further show that
the AO-RNN can also be trained to perform regression tasks such as time-series
forecasting with a high clock rate. It is desirable to have faster regression methods to
make real-time decisions in many applications including quantitative finance [43],
experimental particle physics [44], and optical signal processing [45]. In this task,
samples of a time-series are encoded onto the coherent amplitude of optical pulses
and inputted one at a time into the AO-RNN. The task is to predict the next value
in the time-series given the current input value and past inputted values. The
corresponding output pulse should have an amplitude representing the predicted
value of the next time step sample.

We show two examples of time-series forecasting for triangle and sine waveforms
in Fig. 6.5. The AO-RNN predictions show close agreement with the target values
for these simple waveforms, and achieves normalized mean square error (NMSE)
as low as 0.0144 and 0.0094, respectively, up to a clock rate of 𝑓𝑐 = 10 GHz.
Unlike for classification tasks in which the speed of the output measurement can be
amortized over the entire duration of the time-series, regression tasks require single-
shot and rapid output measurements. In this case, our ability to test and verify the
output predictions is limited by the maximum bandwidth of our photodetector that
is ∼ 25 GHz. Although the AO-RNN can operate with far higher clock rates, as
evidenced by the noisy waveform classification task, we were experimentally limited
in accurately measuring the real-time pulse-to-pulse output values beyond a clock
rate of 𝑓𝑐 = 10 GHz. This may be improved by using a faster photodetector up to
∼ 100 GHz and better data acquisition tools. Nevertheless, this is not a fundamental
limitation of the AO-RNN, but rather a constraint of our current output measurement

a b

Figure 6.5: Temporal waveform prediction. Predicted (dots) one-step-ahead
values for target (dashed lines) (a) triangle and (b) sine input time-series.
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techniques. If an output remaining in the optical domain is sufficient, then the clock
rate may be much higher since the optical outputs can in principle directly serve as
optical inputs for another optical computer or actuator.

Image generation seeded from quantum fluctuations
Finally, we demonstrate an example of a generative task in which the AO-RNN
can use quantum fluctuations as the seed to generate images in the absence of any
input optical signals [46, 47]. The central problem for generative models is to
learn a complicated unknown target distribution from which samples (e.g., images)
are available, and then to use the model to efficiently generate new samples from
the target distribution. We take inspiration from recent advances in generative
artificial intelligence based on diffusion [48] and flow-based [49] models. In this
case, a simple known distribution (typically a standard Gaussian distribution) is
continuously perturbed to match the unknown target distribution. Then, the learned
mapping can be applied to an initial random sample from the simple distribution to
generate a new sample from the target distribution.

We trained the AO-RNN using the MNIST handwritten digits dataset [50] to generate
28 × 28 greyscale images of the class “seven” as shown in Fig. 6.6a. For this task,
we ignore the input and output layers of the AO-RNN and only directly utilize
the recurrent layer. The main cavity contains an optical amplifier that acts as a
programmable gain/loss mechanism. The optical amplifier also supplies quantum
noise in the form of spontaneous emission, which approximately follows a Gaussian
distribution (Supplementary Information Fig. S9). Therefore, the AO-RNN can be
interpreted as a highly nonlinear laser cavity. In conventional lasers, spontaneous
emission in the gain medium serves as the spark to initiate stimulated emission,
whereupon population inversion and gain-clamping after the laser threshold (i.e.,
gain equals loss) is exceeded will lead to a steady-state laser emission [51]. Here
we modulate the gain and intra-cavity connection weights at a clock rate 𝑓𝑐 that is
much faster compared to the cavity roundtrip time. Therefore, the lasing dynamics
are also highly non-equilibrium. We define cavity modes by virtually splitting the
cavity into equally-spaced time bins. Each time bin corresponds to a different pixel
location in the image and the average power contained in each time bin encodes
for the pixel greyscale intensity. Upon initially turning on, the AO-RNN starts
from spontaneous emission in the optical amplifier and then gradually generates a
macroscopic image after 𝑇 = 100 cavity roundtrips by effectively controlling which
cavity modes temporarily go above/below lasing threshold.
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Figure 6.6: Quantum all-optical image generation. (a) An all-optical image gener-
ator maps a quantum noise distribution from spontaneous emission into an unknown
target image distribution of MNIST handwritten digits using highly non-equilibrium
laser cavity dynamics. (b) Example images after every 10 cavity roundtrips and (c)
measured cavity output time trace up to𝑇 = 100 roundtrips representing a generated
training sample of a seven.

An example time trace of the cavity dynamics and resultant image generated of a
sample during the training process is shown in Fig. 6.6b, c. Examples of new images
(i.e., not part of the original MNIST dataset) of sevens generated after the training
process and seeded by quantum noise are shown in Supplementary Information
Fig. S10. We note that our simple generative AO-RNN lacks model expressiveness
and struggled to generate high-quality images of multiple different digit classes
or learn more complicated image distributions beyond the MNIST dataset. We
believe that the quality and diversity of generated sevens from this simple proof-
of-concept model is promising, and better model expressiveness can be achieved
through exploring more complicated AO-RNN architectures.

6.4 Discussion
There are a few key timescales limiting the maximum allowable clock rate of the AO-
RNN. We opted to use off-the-shelf optical fibre components for simplicity, however,
this was not ideal for optimal computer performance. For example, the PPLN used
for nonlinear activations based on a weakly-guiding reverse-proton exchange waveg-
uide [33] has a relatively small phase-matching bandwidth of ∼ 100 GHz. How-
ever, we previously demonstrated higher-performance nonlinear activation func-
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tions using thin-film lithium niobate (TFLN) with maximum allowable clock rates
> 13 THz [11]. Therefore, the AO-RNN could greatly benefit from on-chip inte-
gration using TFLN. Furthermore, other devices demonstrated in TFLN, such as
high-speed electro-optic modulators with > 100 GHz bandwidth [52] or all-optical
switches with speeds > 10 THz [12] can enable faster real-time updating of weights.
The longest duration laser pulse width used in our experiments was ∼ 5 ps, which
limits the maximum allowable clock rates since pulses will begin overlapping in
time and suffering from undesirable cross-talk beyond ∼ 200 GHz clock rates. This
issue can be overcome by using even shorter laser pulses, for example, few-cycle
pulses generated using nonlinear optical pulse compression [53] in TFLN. Finally,
implementing the main cavity in the AO-RNN using an integrated optical parametric
oscillator [54–56] in TFLN could also drastically reduce the overall latency given
by the light propagation time through the network.

The conventional definition of clock rate may not be directly applicable to some kinds
of asynchronous or clock-less analog computers [15, 57]. Here we use the concept
of clock period more generally to mean the minimum time between successive
computer operations. This concept can thus still apply to clock-less processors since
there is a characteristic physical timescale associated with each nonlinear device
(electronic, optoelectronic, optical, or otherwise). The key advantage of the AO-
RNN is that it implements all linear operations, nonlinear activations, and memory
feedback directly in the optical domain so that all operations can simultaneously
benefit from exceptionally high clock rates without an electronic bottleneck for
some parts of the computation. During each clock period, the experimental AO-
RNN performs a maximum of 8 operations (1 nonlinear activation and 7 multiply-
accumulate operations). This number can be further increased by including more
optical delay lines and modulators, as well as utilizing wavelength and/or spatial
multiplexing techniques [31]. We believe that the most useful near-term applications
for this kind of ultrafast optical computer will be those in which the input signal
occurs natively in the optical domain, hence bypassing the need for electro-optic
input signal generation. Some prime examples include in-situ analysis of ultrafast
imaging and spectroscopy data [58, 59], optical signal processing for high-speed
coherent telecommunications systems [45, 60], and precision ranging or LIDAR
using femtosecond lasers [61, 62].

In conclusion, we have harnessed ultrafast nonlinear optics to build a new kind of
end-to-end optical computer that can surpass the limited clock rates of existing digital
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electronic computers. The proof-of-concept experimental results for a combination
of classification, regression, and generative computational tasks demonstrate that
the AO-RNN can achieve clock rates > 100 GHz, which is more than an order-
of-magnitude improvement over current digital computers. This work highlights a
new regime for ultrafast optical computing, enabling nascent applications requiring
real-time information processing and feedback control at picosecond timescales.

6.5 Materials and Methods
Experimental setup
A detailed schematic of the experimental setup for the AO-RNN is shown in Supple-
mentary Information Fig. S1. Wherever possible, we used commercially-available,
single-mode polarization-maintaining (PM) optical fibre components with centre
operating wavelength of 𝜆 ≈ 1.55 𝜇m. The recurrent layer consists of a main cav-
ity and contains an intra-cavity Mach-Zehnder interferometer with two arms. The
relative temporal delay 𝑇0 between the arms of the Mach-Zehnder interferometer
determines the connection topology, and is a hyper-parameter of the AO-RNN to
be chosen depending on the task. For proper operation, 𝑇0 is chosen to be an
integer multiple of the clock period 1/ 𝑓𝑐. The relative delay is fine-tuned using
a homemade free-space delay stage since it is difficult to cut/splice optical fibers
to precisely match the desired length. The approximate temporal delay is set by
propagating a single reference laser pulse and manually moving the stage. Then,
fine-tuning is done by a high-precision linear micrometer stage to maximize the
pulse temporal overlap by observing the coherent interference fringe visibility. The
weights are set using electro-optic amplitude modulators (IXBlue MXAN-LN-10)
in each arm of the Mach-Zehnder interferometer. Each modulator accepts a con-
stant bias voltage input to set the operating point, and also a high-speed RF voltage
input to rapidly modulate the amplitude of optical signals. Bias voltages are con-
trolled using a ADC/DAC (National Instruments 782258) and RF waveforms up to
12 GSa/s are generated using an arbitrary waveform generator (Keysight M8190A).
The voltages are the learnable weight parameters of the AO-RNN. We only trained
the bias voltages for the noisy waveform classification, optical soliton classifica-
tion, and time-series forecasting tasks. We set the bias point to “closed” for the
image generation task and trained the RF voltages at a 10 GSa/s update rate. The
main cavity additionally contains a fibre-coupled PPLN waveguide [33] with a
wavelength-division multiplexer on both the input/output to separate the fundamen-
tal harmonic (𝜆 ≈ 1.55 𝜇m) and second harmonic (𝜆 ≈ 0.775 𝜇m). The second
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harmonic signal is only used to monitor the phase-matching of the PPLN, and is
not used as part of the AO-RNN computation. The phase-matching of the PPLN
is adjusted using a heater stage and thermocouple controller (Omega CSC32), with
an optimal operating temperature around ∼ 51.5◦C. The maximum average optical
power in the main cavity must be < 100 mW to avoid photo-induced damage to
the PPLN. The PPLN was bypassed for the noisy waveform classification task us-
ing a purely linear model. A booster optical amplifier (Thorlabs S9FC1004P) was
used to set the overall gain/loss in the main cavity for the image generation task.
The amplifier was bypassed for the noisy waveform classification, optical soliton
classification, and time-series forecasting tasks since we desired to have a fading
memory property for these tasks. The main cavity roundtrip light propagation time
was ∼ 24 ns for the noisy waveform classification, optical soliton classification,
and time-series forecasting tasks. The main cavity roundtrip light propagation time
was ∼ 453 ns for the image generation task since we required more time bins for a
sufficient number of pixels to generate MNIST images. For the image generation
task, the output of the recurrent layer was directly detected since the output layer
is not used. For the other tasks requiring an output layer, the optical output of
the recurrent layer is amplified using an erbium-doped fibre amplifier (Thorlabs
EDFA100S) and filtered through a 200 GHz band-pass filter to minimize the am-
plified spontaneous emission noise before entering the output layer. The output
layer consists of a four-arm Mach-Zehnder interferometer of similar construction
as the one in the recurrent layer. Three arms encode the output layer weights, and
the fourth arm is used as an optional constant optical bias. The relative delays,
𝑇1 ≈ 0.3 ns and 𝑇2 ≈ 1.6 ns, are hyper-parameters of the AO-RNN to be chosen de-
pending on the task. Only the constant bias voltages were trained for the output layer
modulators due to the limited number of available high-speed arbitrary waveform
generator channels. Optical outputs are detected using a high-speed photodetector
(Newport 1414) and stored on a real-time oscilloscope (Keysight MSOV334A) for
post-processing if necessary. The high-speed RF and optical inputs are synchronized
using a low-noise 10 MHz reference clock. The relative delay between generated
RF and measured optical signal is calibrated using the sample marker output from
the arbitrary waveform generator. We use a backwards-propagating locking refer-
ence, which is tapped from the unmodulated input laser source, to perform active
phase-stabilization of the temporal delay lines. The recurrent layer and output layer
each contain independent backwards-propagating optical locking loops based on a
Pound-Drever-Hall scheme [63]. Slow photodetctors (Newport 2053) are used to
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measure the backwards-propagating locking signals. The electronic locking signals
are input to proportional-integral derivative controllers (Red Pitaya STEMlab 125-
14) and outputs are amplified (Thorlabs MDT693B) to drive fibre phase-shifters
(General Photonics FPS-002-L) that actively stabilize the relative phase in each
optical delay line.

Input signals
We used a variety of different optical frequency combs to generate optical input
signals for the experimental tasks. External optical signals input to the AO-RNN
are gated using an electro-optic amplitude modulator, which is biased closed so
that signals only enter the AO-RNN when desired to mark the start of a com-
putation. For noisy waveform classification, the input waveforms were generated
electro-optically using a high-speed arbitrary waveform generator and electro-optic
amplitude modulators. The laser source for clock rates 𝑓𝑐 ∈ [250 MHz, 5 GHz] was
a fibre mode-locked laser (MenloSystems FC1500-250-WG) and the laser source for
clock rates 𝑓𝑐 ∈ [10 GHz, 120 GHz] was a homemade electro-optic frequency comb
(Supplementary Information Section III). We can perform real-time input generation
up to clock rates of 𝑓𝑐 ≈ 48 GHz using optical time-interleaving (Supplementary
Information Section V), and offline (i.e., prepared ahead-of-time) input generation
up to clock rates of 𝑓𝑐 ≈ 200 GHz using an asynchronously-pumped cavity. Each
noisy waveform (sawtooth, triangle, square, and sine) was 120 periods in duration
with a total of 5120 equally-spaced samples. The period for all noisy waveform
classes was the same, and sawtooth/square waves had a duty cycle of 1/2. The
ideal noiseless waveforms had normalized amplitudes in the range [-1,1] and the
measured optical noise for the waveforms is approximately given by an additive
Gaussian distribution with zero mean and standard deviation of ∼ 0.158 as shown
in Supplementary Information Fig. S2. The Si3N4 coupled optical microresonators
used to generate bipartite soliton states is of the same design as in Ref. [35]. We
maintained the average input optical power to the AO-RNN at ∼ 5.3 mW for all
bipartite-soliton states by monitoring on a slow thermal power metre (Thorlabs
PM20). We carefully characterized the single, double, and triple pulse pairs by
separately measuring the optical spectrum (Yokogawa AQ6370C), autocorrelation
(Femtochrome FR-103XL), and RF beat-note (Rhode & Schwarz FSW85) of each
state as shown in Supplementary Information Fig. S4. The input signals used for the
time-series forecasting task were also generated electro-optically in the same way as
for the noisy waveform classification. The triangle wave had 44 samples per period
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with a duty cycle of 1/2. The sine wave had the same sample time-spacing as the
triangle wave but double the period.

RNN model
The general RNN architecture is given by Eq. 6.1:
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where 𝑡 ∈ N is the discrete-time step (one time-step represents one clock period),
h ∈ R𝑁 is the 𝑁-dimensional hidden recurrent layer activation, s ∈ R𝑚 is the 𝑚-
dimensional input sequence, o ∈ R𝑛 is the 𝑛-dimensional output value, Wr ∈ R𝑁×𝑁

is the matrix of recurrent layer weights, Win ∈ R𝑁×𝑚 is the matrix of input layer
weights, Wout ∈ R𝑛×𝑁 is the matrix of output layer weights, and 𝑓𝑖 : R → R is
an element-wise activation function for 𝑖 = 1, 2, . . . , 𝑁 and 𝑘 = 1, 2, . . . , 𝑛. We
give a simplified model of the AO-RNN, which is similar to the rotating neuron
architecture proposed in Ref. [64], by dividing the main cavity into equally-spaced
time bins containing pulses. The hidden recurrent layer has a cyclic structure with
weights:

𝑊𝑟
𝑖 𝑗 =


𝛼𝑖 (𝑡), if 𝑖 − 𝑗 ≡ 1 (mod 𝑁)

𝛽 𝑗 (𝑡), if 𝑖 = 𝑖𝑟 and 𝑗 ∈ 𝑇𝑟

0, otherwise

(6.2)

where {𝛼𝑖 (𝑡)} are weights representing the loss/gain factor for the pulse propagating
from time bin 𝑖 to time bin (𝑖 + 1) mod 𝑁 . The weights {𝛽 𝑗 (𝑡)} represent the
intra-cavity couplings between time bin 𝑖𝑟 and other time bins in 𝑇𝑟 . The set 𝑇𝑟

of time bin indices represents the choice of optical delay lines in the intra-cavity
Mach-Zehnder interferometer. In our experimental AO-RNN, 𝑇𝑟 = { 𝑗𝑟} represents
a single connection since we used a two-arm Mach-Zehnder interferometer. This
cyclic structure is a special case of the fully-connected RNN model and is still
Turing-complete, however, in practice may lead to reduced model expressiveness for
some tasks. We used constant weights for the noisy waveform classification, optical
soliton classification, and time-series forecasting tasks, and time-varying weights
for the image generation task. Our AO-RNN has single-channel input/outputs,
𝑚 = 𝑛 = 1, due to experimental constraints. In this case, the input weights are
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given by Win = 𝜀e𝑖0 where e𝑘 is the 𝑘 th unit vector, 𝑖0 is the index of the time bin
coupled to the input line, and 𝜀 is the input coupling factor. We treat the input
scaling 𝜀 as a hyper-parameter that is not trained. However, it is also possible
to employ more complicated input masking techniques, such as in previous time-
multiplexed photonic reservoir computers [25, 26]. The output weights are given
by 𝑊𝑜𝑢𝑡

1𝑙 = 𝛾𝑙 (𝑡) if 𝑙 ∈ 𝑇𝑜𝑢𝑡 , and 0 otherwise, where {𝛾𝑙 (𝑡)} are determined by
the output layer modulators and 𝑇𝑜𝑢𝑡 is the set of time bin indices representing the
choice of optical delay lines in the output layer Mach-Zehnder interferometer. For
the noisy waveform and optical soliton classification tasks, we additionally perform
temporal global average pooling of the optical power to yield a single output value
𝑦 = ⟨|𝑜(𝑡) |2⟩0<𝑡≤𝐿 , over the entire input sequence of length 𝐿, and normalize the
output averages {𝑦} to the range [0, 1]. The predicted class label is assigned by
comparing 𝑦 against threshold decision boundaries Z𝑞/𝑞 where 𝑞 is the number
of classes, such that 𝑦 belongs to class 𝑝 ∈ Z𝑞 if (𝑦 ≥ 𝑝/𝑞) ∧ (𝑦 < (𝑝 + 1)/𝑞).
Alternatively, the more conventional softmax classification can be used if the number
of output channels in the AO-RNN equals the number of classes. For the image
generation task, only the recurrent layer is used. The input sequence can be replaced
by an additive noise term (Supplementary Information Fig. S9), representing the
amplified spontaneous emission from the optical amplifier, and the output samples
are then equivalent to sampling from a single point in the cavity. Strictly speaking,
the nonlinear laser cavity becomes a continuous-field distribution so the concept
of discrete time bins is not well-defined. However, we discretize the cavity field
based on the fast output measurement sampling time 𝜏. Then, during each cavity
roundtrip, we assign the value 𝑝𝑣 for pixel 𝑣 ∈ Z𝑉 in an image sequence with 𝑉
pixels by coarse-graining the fast output samples into slower time bins with period
𝑡′ such that 𝑝𝑣 = ⟨|𝑜(𝜏) |2⟩𝑣𝑡′≤𝜏<(𝑣+1)𝑡′ . Pixel values are rescaled to be in the range
[−1, 1] for each cavity roundtrip. We used a time bin period of 𝑡′ = 0.4 ns and
applied symmetric zero-padding for unused pixels in each roundtrip (∼ 453 ns)
since MNIST images only contain 784 pixels.

Training procedure
We use a model-agnostic forward-only training algorithm based on the method
proposed in Ref. [16]. For each training iteration, we perform the following steps:

1. Choose a random direction vector Δ ∈ {+𝛿,−𝛿}𝑑 where 𝑑 is the number of train-
able model parameters, the elements of Δ are sampled from a Bernoulli distribution
Δ𝑖 ∼ 𝐵(1/2) for 𝑖 = 1, 2, . . . , 𝑑, and 𝛿 is the step size.
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2. Perturb the model parameters Θ ∈ R𝑑 by Δ and perform a forward-pass through
the model to evaluate the loss function L(Θ + Δ).

3. Perturb the model parameters Θ in the opposite direction −Δ and perform a
forward-pass through the model to evaluate the loss function L(Θ − Δ).

4. Estimate the directional derivative of the loss as:

∇ΔL(Θ) ≈ L(Θ + Δ) − L(Θ − Δ)
2∥Δ∥ . (6.3)

5. Update the model parameters: Θ → Θ−𝜂∇ΔL(Θ)Δ where 𝜂 is the learning rate.

For the experimental AO-RNN, the forward-pass steps are performed directly in the
optical hardware, but the other training steps are performed on a digital computer.
During testing, the trained parameters are frozen and so the forward-pass inference
is all-optical. The model paramters in our experimental AO-RNN correspond to
electro-optic modulator voltages (both DC and RF). The half-wave voltages are
𝑉𝜋 ≈ 6 V and we found that a perturbation step-size of 𝛿 = 0.02 V with learning
rate of 𝜂 = 2 × 10−3 was adequate for all our experimental tasks. For the noisy
waveform and optical soliton classification tasks, we used a mean squared error
loss L = ⟨(𝑦 − 𝑧)2⟩ where 𝑧 = (2𝑝 + 1)/(2𝑞) is the midpoint of the decision
boundaries for the true class label. For the time-series forecasting task, we used a
mean squared error loss L = ⟨[𝑜(𝑡) − 𝑠(𝑡 + 1)]2⟩𝑡 for the one-step-ahead prediction.
For each training sample in the image generation task, we used a diffusion process
to generate intermediate target values during each cavity roundtrip 𝑇 :

z𝑇−1 =
√︁

1 − 𝜎𝑇 · z𝑇 +
√
𝜎𝑇 · 𝜖 (6.4)

where 𝜖 ∼ N(0, I) is standard Gaussian noise, z100 is the ideal target from the
image dataset, and 𝜎𝑇 is a noise-variance schedule that increases linearly each from
𝜎100 = 0.001 to 𝜎1 = 0.02. We used a mean-squared error loss L = ⟨[x𝑇 − z𝑇 ]2⟩𝑡′,𝑇
taken over all roundtrips and time bins for each sample where x𝑇 are the measured
pixel values for each roundtrip 𝑇 . The training and testing sample sizes for each
task are shown in Table. 6.1.

CPU clock rates
Each scatter point in Fig. 6.1 represents the clock rate and testing date for a differ-
ent commericially-available CPU. The data was collected from a variety of online
CPU benchmarking sources [65, 66] and press/product release information from
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task batch size iterations testing size
noisy waveform classification 4 200 800
optical soliton classification 10 150 1500

time-series forecasting 460 200 9200
all-optical image generation 12 1200 -

Table 6.1: Sample sizes for experimental AO-RNN tasks.

prominent CPU designers. We consider CPUs with the same architecture design but
different generations, performance tiers, or optimizations as different processors.
For each processor, we show the maximum reported clock rate, including possible
turbo clock rates. For processors containing multiple cores operating at different
clock rates, we show the clock rate of the fastest core. We restrict our attention to
general purpose CPUs designed for desktops, laptops, servers, tablets, smartphones,
wearable devices, etc; however, we exclude application-specific hardware accelera-
tors such as graphics or tensor processing units, which typically have far lower clock
rates compared to CPUs. The maximum CPU clock rate used for the dashed vertical
line in Fig. 6.2b is based on the current (as of 14 March 2024) CPU-Z overclocking
world-record of 9117.75 MHz [67].

6.6 Supplementary Information
Experimental setup
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Figure 6.7: Detailed schematic of AO-RNN experimental setup.

Noisy waveforms
Electro-optic frequency comb
The physical configuration of the electro-optic frequency comb system is illustrated
in Fig. 6.9. A continuous-wave, single-frequency laser is phase-modulated by three
cascaded modulators, generating a series of sidebands that form a frequency comb,
as shown in Fig. 6.10(a). The spacing between adjacent comb lines is determined by
the radio-frequency (RF) signal driving the phase modulators, which is set to 10 GHz
in our experiment. To maximize the number of comb lines, the RF signals driving
the individual modulators are amplified and phase-shifted to ensure effective in-
phase modulation. Following phase modulation, an additional intensity modulation
stage is introduced to flatten the comb spectrum. The intensity modulator (IM)
is biased at the half-power point of its transmission curve, and the modulation
signal frequency matches that of the phase modulators. The modulation strength is
controlled using a variable RF attenuator. Subsequently, the comb is amplified using
an erbium-doped fiber amplifier (EDFA) to facilitate further operations with enough
power. To generate optical pulses in the time domain, the phase of each comb line is
adjusted using a programmable waveshaper, which applies second-order dispersion
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Figure 6.8: Noise distribution for noisy waveform input signals. The histogram
shows the statistics for the deviation between the ideal noiseless waveform samples
and the measured optical input signal values (amplitudes normalized to [-1,1])
for 8000 input waveform sample points. It is well-approximated by a Gaussian
distribution (dashed black line) with zero mean and standard deviation of ∼ 0.158.

compensation to the frequency comb. After phase compensation, the time-domain
field becomes a series of optical pulses, characterized by an autocorrelator, as
shown in Fig. 6.10(b). The dispersion applied by the waveshaper is optimized by
minimizing the pulse width measured through autocorrelation.

Soliton microcomb
The coupled-ring device is fabricated using an ultra-low-loss Si3N4 platform [68].
It consists of two partially coupled racetrack resonators with slightly different free-
spectral ranges (FSRs), which provide anomalous dispersion required for bright
soliton generation. The laser output is modulated by a fast single-sideband modulator
(QPSK) and subsequently amplified by an erbium-doped fiber amplifier (EDFA).

Figure 6.9: Experimental setup for Electro-optic frequency comb. Abbrevia-
tions: PM, phase modulator; IM, intensity modulator; EDFA, erbium-doped fiber
amplifier; WS, waveshaper.
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a b

Figure 6.10: Electro-optic frequency comb characterization. (a) Optical spec-
trum and (b) autocorrelation for the electro-optic frequency comb operating with a
repetition rate of 10 GHz.

95/5 90/10

50
/5

0
Couple Ring

PD

PC

Figure 6.11: Experimental setup for generating the multi-soliton state in
coupled-ring resonators. Abbreviations: ECDL, external cavity diode laser;
QPSK, quadrature phase shift keying; EDFA, erbium-doped fiber amplifier; FBG,
fiber Bragg grating; PC, polarization controller; PD, photodetector; OSA, opti-
cal spectrum analyzer; ESA, electrical spectrum analyzer; WS, waveshaper; OSC,
oscilloscope; A.C., autocorrelator.

The QPSK modulator facilitates the rapid frequency sweeping of the pump laser in
order to avoid thermal effect during the soliton locking process [69]. Lens fibers (not
shown in Fig. 6.11) are used to couple light in and out of the coupled-ring system.
The through-port output is filtered using a fiber Bragg grating (FBG) to separate
the comb and pump signals. The filtered signal is then split into multiple beams
for different purposes. One beam is directed to a photodetector, which measures
the comb power that are used for stabilizing the pump-resonance detuning. Another
beam is sent to an optical spectrum analyzer (OSA) and an electrical spectrum
analyzer (ESA) for characterizing soliton spectrum and RF beat-note signal. The
remaining beam, carrying the main comb power, is amplified by an EDFA and then
passed through a waveshaper to compensate the fiber dispersion. The amplified
soliton is then directed to the AO-RNN (all-optical recurrent neural network) setup.
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single

double

triple

optical spectrum autocorrelation RF beat-note

Figure 6.12: Bipartite-soliton pulse pair state characterization. The optical
spectrum (left column), autocorrelation (middle column), and RF beat-note (right
column) for the single (top row), double (middle row), and triple (bottom row)
bipartite-soliton pulse states.

When single, double, or triple soliton pulse pairs are formed in the resonator, the
measured total comb power varies accordingly. By selectively stabilizing specific
comb power levels, different stable soliton states can be reliably and individually
locked for classification experiments, as shown in Fig. 6.12. For comparative
analysis, the multi-soliton states are further characterized and validated using optical
spectrum measurements and autocorrelation signals. These characterization results
provide a detailed basis for the classification experiments conducted with the AO-
RNN setup. The soliton spectrum and autocorrelation traces for different pulse
numbers are shown in Fig. 6.12. The soliton spectrum exhibits an approximately
𝑠𝑒𝑐ℎ2 envelope shape, with dispersive waves [70] appearing at frequencies where
the mode and comb frequencies coincide, leading to resonant power enhancement.
The soliton repetition rate, measured using the ESA, is approximately 19.97 GHz
with a resolution bandwidth of 1 kHz. The autocorrelation of the generated periodic
soliton pulse train is measured using an autocorrelator, and the result is shown in
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Fig. 6.12. For single, double, and triple soliton states, the autocorrelation traces
display 1, 3, and 5 peaks, respectively. As an additional note, the formation location
of solitons within the resonator is a random process and is not actively controlled
during the experiment (only the number of solitons is controlled). The data presented
in Fig. 6.12 are selected as representative results.

Ultrafast optical input time-multiplexing
The signal information in the AO-RNN is encoded onto the coherent amplitude
of ultrashort laser pulses. One unique advantage of this approach over using
continuous-wave light is that it allows for optical time-interleaving techniques to
multiply the effective repetition rate and input sampling rate. For the task of noisy
waveform classification, we can use two different time-multiplexing techniques to
generate equivalent ultrafast optical input signals beyond the limited sampling rate
of our arbitrary waveform generator. The first technique allows for real-time input
generation as shown conceptually in Fig. 6.13. Consider an input laser pulse train
with repetition period 𝑇 . Suppose we wish to increase the effective input sampling
rate by a factor of 4. Then, to do this, we use a Mach-Zehnder interferometer with
4 arms. Each arm is delayed by 𝑇/4 relative to the previous arm and contains an
intensity modulator with sampling period of 𝑇 . Upon recombining at the output, the
optical input signal effectively has an input sampling period of 𝑇/4. This method
exploits the fact that the pulse length of the laser pulse 𝜏 is much less than the RF
sampling period 𝑇 . The maximum allowable number of arms in the Mach-Zehnder
interferometer to upconvert the sampling rate is ∼ 𝑇/𝜏 before the output optical
pulses begin to undesirably overlap temporally.

In practice, we are limited by the number of available modulators and channels on
our arbitrary waveform generator. The scope of this work is to demonstrate ultrafast
optical computing, and not to design new ultrafast optical transceivers. Therefore, to
reach even higher effective input sampling rates for very high clock rate computing,
we use another time-multiplexing technique based on an asynchronously-pumped
optical cavity. As opposed to real-time input generation, we call this technique
“offline” input generation since the input signals must be prepared ahead-of-time
before beginning the AO-RNN computation. The concept for offline input generation
is shown in Fig. 6.14. Suppose that we have an input laser pulse train with repetition
period 𝑇 and we can generate RF samples with period 𝑇 , but desire to have an input
optical signal with sample period of 𝑇/𝑚 where 𝑚 > 1. A synchronously-pumped
optical cavity has a roundtrip time 𝑁𝑇 where 𝑁 is an integer so that each input laser
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Figure 6.13: Real-time time-multiplexed optical input generation. A multi-arm
Mach-Zehnder interferometer in which each arm is delayed by an integer fraction of
𝑇 relative to the other arms and contains an intensity modulator (IM) with sampling
period of 𝑇 can generate an optical input signal with effective sampling period that
is an integer fraction of 𝑇 .
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Figure 6.14: Offline time-multiplexed optical input generation. The desired op-
tical input signal is gradually built-up over many roundtrips of an asynchronously-
pumped optical cavity. IM: intensity modulator, EDFA: erbium doped fibre ampli-
fier, BPF: band-pass filter, FSD: free-space delay.

pulse will overlap temporally with a laser pulse in the cavity. We detune the cavity
by adjusting a free-space delay stage such that the roundtrip time is reduced by 𝑇/𝑚,
so that the rountrip time of the asynchronously-pumped optical cavity is 𝑁𝑇 −𝑇/𝑚.
During the first cavity roundtrip we modulate the input laser pulses with every 𝑚th

waveform sample (i.e., sample 1, 𝑚 + 1, 2𝑚 + 1, . . .). Then, during the next cavity
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roundtrip we modulate the input laser pulses with every 𝑚th waveform sample offset
by 1 sample (i.e., sample 2, 𝑚 + 2, 2𝑚 + 2, . . .). The cavity pulses from the first
roundtrip will be displaced forwards by 𝑇/𝑚 relative to the input laser pulses for the
second roundtrip. We repeat this procedure until we have completed modulation
of all waveform samples. In this way, we gradually build-up the desired optical
waveform with sampling period 𝑇/𝑚 over multiple cavity roundtrips using only a
single input modulator and RF channel with sampling period 𝑇 . The cavity contains
an EDFA that is tuned to compensate the roundtrip loss so that many (typically > 20)
cavity roundtrips are possible without exponential signal degradation from the cavity
out-coupling and propagation loss. Amplitude scaling factors to account for loss
variations between roundtrips can be calibrated by sending a single laser pulse into
the cavity and measuring its amplitude decay after each roundtrip. Using this offline
input generation method, the cavity roundtrip time must be at least > 𝑛𝑇/𝑚 where
𝑛 is the total number of waveform samples. The maximum upconversion rate factor
is limited by 𝜏 ≈ 𝑇/𝑚 where 𝜏 is the input laser pulse length. If the cavity detuning
𝑇/𝑚 is comparable to the pulse length 𝜏, then pulses will overlap from roundtrip to
roundtrip, which will result in undesirable sample cross-talk. The gating modulator
controlling inputs into the AO-RNN is synchronized to the offline input generation
such that it only allows the final desired cavity roundtrip to be transmitted, which
prevents input signal artifacts from the previous roundtrips.

All-optical image generation

Figure 6.15: Quantum noise distribution. The histogram shows the statistics for
the initial pixel values sampled from amplified spontaneous emission (ASE) for
∼ 35000 sample points. It is well-approximated by a Gaussian distribution (dashed
black line) with zero mean and standard deviation of ∼ 0.322.
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Figure 6.16: 25 generated images of “seven” using the AO-RNN.
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C h a p t e r 7

TURING-COMPLETENESS AND UNDECIDABILITY IN
COUPLED NONLINEAR OPTICAL RESONATORS

Gordon H.Y. Li and Alireza Marandi. Turing-completeness and undecidability
in coupled nonlinear optical resonators. arXiv preprint arXiv:2501.06966, 2025.
doi:10.48550/arXiv.2501.06966.
G.H.Y.L. conceived the project, developed the theory, and wrote the manuscript.

7.1 Abstract
Networks of coupled nonlinear optical resonators have emerged as an important
class of systems in ultrafast optical science, enabling richer and more complex
nonlinear dynamics compared to their single-resonator or travelling-wave counter-
parts. In recent years, these coupled nonlinear optical resonators have been applied
as application-specific hardware accelerators for computing applications including
combinatorial optimization and artificial intelligence. In this work, we rigorously
prove a fundamental result showing that coupled nonlinear optical resonators are
Turing-complete computers, which endows them with much greater computational
power than previously thought. Furthermore, we show that the minimum threshold
of hardware complexity needed for Turing-completeness is surprisingly low, which
has profound physical consequences. In particular, we show that several problems
of interest in the study of coupled nonlinear optical resonators are formally undecid-
able. These theoretical findings can serve as the foundation for better understanding
the promise of next-generation, ultrafast all-optical computers.

7.2 Introduction
Networks of coupled nonlinear optical resonators (CNORs) are a general class
of optical systems combining nonlinear optical interactions, resonator or cavity
feedback mechanisms, and linear couplings between resonators. CNORs have been
well-studied in a variety of experimental platforms including pairs or dimers of
coupled cavities [1–3], time-multiplexed cavities with time-delayed couplings [4],
spatially-multiplexed arrays of cavities [5–7], and wavelength-multiplexed cavities
with a synthetic frequency dimension [8]. They offer richer dynamics compared to
their linear, traveling-wave, or single-cavity counterparts and have served as a fertile

https://doi.org/10.48550/arXiv.2501.06966
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ground for exploring complex nonlinear dynamics such as solitons [9–11], phase
transitions [12], topological phenomena [13–15], and non-Hermitian physics [16].
Furthermore, CNORs have technologically-important applications such as low-noise
microwave generation [17, 18], optical switching [19, 20], optical isolators [21, 22],
and quantum state generation [23–25].

Here we are interested in better understanding the computational properties of
CNORs. At an abstract level, CNORs can possess both strong nonlinearity and mem-
ory, which are the essential ingredients for computation. Indeed, CNORs have been
demonstrated as physical Ising solvers for combinatorial optimization [4, 26, 27],
as well as efficient hardware accelerators for deep learning [28] and neuromor-
phic computing [29, 30]. However, previous experimental works treated CNORs
as special-purpose or application-specific optical processors performing a single
kind of computational task. In this work, we rigorously prove that CNORs are
Turing-complete (see Theorem 1), which means that they can be used to com-
pute any computable function, and thus possess much greater computational power
than previously considered. This result is not obvious since CNORs are described
by continuous-valued or analog field amplitudes instead of discrete-valued states,
and have a completely dynamical memory instead of the static memory elements
typically associated with Turing Machines.

Turing-completeness also immediately implies that several properties of CNORs
such as the existence of a steady-state or periodic oscillation are formally unde-
cidable, i.e., there is no algorithm that can always correctly answer the associated
decision problem (either in the affirmative or negative). This stems directly from
the undecidability of the Entscheidungsproblem (or Halting Problem) [31], which
we now interpret in the context of CNORs. Therefore, we may add CNORs to the
rapidly growing list of physical theories that exhibit undecidable properties, e.g.,
classical mechanical systems [32–34], fluid dynamics [35, 36], quantum many-body
systems [37–39], quantum field theory [40, 41], and quantum gravity [42].

The general strategy for our mathematical proof is to show by explicit construction
how any Turing Machine can be exactly simulated by an associated CNOR. This
explicit construction also allows us to conveniently place an upper bound on the
minimum hardware complexity needed for Turing-completeness in CNORs. If the
minimum complexity needed for Turing-complete CNORs is high, then we could
just simply agree to avoid such niche situations and hence also avoid vexing issues
of undecidability. On the other hand, if the minimum complexity is low, then we



185

should expect the study of CNORs (and ultrafast optical science more broadly) to be
rife with examples of undecidable problems. Interestingly, we show that the latter is
true and that the minimum complexity needed for Turing-complete CNORs is well-
within current experimental capabilities. Therefore, we cannot easily dismiss issues
of undecidability and must seriously confront what can and cannot be logically
reasoned regarding CNORs.

7.3 Results
Computational models
We begin by defining our computational models, then give a detailed proof of
the main Turing-completeness result, and point out some interesting physical conse-
quences for the study of CNORs. Finally, we discuss the limitations and practicalities
associated with our results.

We follow the definition of a (one-tape) Turing machine given by Minsky [43] as
shown conceptually in Fig. 7.1a. Other equivalent definitions of Turing machines
and their generalizations are also possible.

Definition 1 (Turing Machine) A Turing Machine (TM) is a finite-state machine
with access to a linear tape that extends infinitely in both left and right directions.
The tape consists of a sequence of cells each printed with a single symbol from a
finite tape alphabet 𝑆 = {𝑠1, . . . , 𝑠𝑛}. A movable head is situated on some cell and
can read/write symbols on that cell. The current symbol read by the head is the
input symbol to the finite-state machine with internal states 𝑄 = {𝑞1, . . . , 𝑞𝑚}. The
TM is described by three (partial) functions 𝐺 : 𝑄 × 𝑆 ↛ 𝑄, 𝐹 : 𝑄 × 𝑆 ↛ 𝑆, and
𝐷 : 𝑄 × 𝑆 ↛ {0, 1}, denoting the updated state, new symbol to write, and direction
to move the head, respectively. We take ‘0’ to mean ‘move left’ and ‘1’ to mean
‘move right’. At each time step, the machine starts in some state 𝑞𝑖, reads the symbol
𝑠 𝑗 written on the cell under the head, prints there the new symbol 𝐹 (𝑞𝑖, 𝑠 𝑗 ), moves
one cell to the left or right according to 𝐷 (𝑞𝑖, 𝑠 𝑗 ), and then enters the new state
𝐺 (𝑞𝑖, 𝑠 𝑗 ).

□
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Figure 7.1: Computational models. (a) A Turing Machine (TM) consists of a bi-
infinite tape of symbols, a head that can read/write symbols and move left/right, and
a finite state control. A degenerate optical parametric oscillator network (DOPON)
can be implemented using time-multiplexing in which short laser pulses act as
independent nonlinear resonators that interact via either (b) intra-cavity time-delayed
couplings or (c) coupled cavities.
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Without loss of generality, henceforth we consider just a binary tape alphabet
𝑆 = {0, 1} where ‘0’ is the special blank tape symbol. Importantly, the starting
configuration of the tape can only contain a finite number of non-blank symbols. In
the following, we consider a type of CNOR based on networks of time-multiplexed
degenerate optical parametric oscillators with dissipitive couplings. These are the
most well-studied and relevant class of CNORs for computing applications and
have a wide range of possible experimental platforms including free-space optical
systems [4], optical fiber networks [27], and photonic integrated circuits [44].

Definition 2 (Degenerate Optical Parametric Oscillator Network) A Degenerate
Optical Parametric Oscillator Network (DOPON) is described by 𝑁 optical pulses
with amplitudes 𝑥𝑖 ∈ R for 𝑖 = 1, 2, . . . , 𝑁 that evolve in time according to the
dynamical system in Eq. 7.1

𝑥𝑖 (𝑡 + 1) = 𝜌 [𝑥𝑖 (𝑡)] +
𝑁∑︁
𝑗=1

𝐽𝑖 𝑗 (𝑡) · 𝑥 𝑗 (𝑡) (7.1)

where 𝑡 is the discrete time step, 𝐽𝑖 𝑗 (𝑡) is the coupling weight between the 𝑖th and
𝑗 th pulses at time step 𝑡, and 𝜌 : R → R is an anti-symmetric (odd) function
𝜌(−𝑥) = −𝜌(𝑥) representing saturable parametric gain (i.e., linear for small signal
values, and saturated for large signal values) in each optical resonator as shown in
Eq. 7.2

𝜌(𝑥) =


1 , if 𝑥 ≥ 1

𝑔(𝑥) , if 3/4 < 𝑥 < 1

𝑥 , if 0 ≤ 𝑥 ≤ 3/4

(7.2)

where 𝑔(𝑥) is any continuous monotonically-increasing function defined over the
domain 𝑥 ∈ [3/4, 1].

□

We consider two possible designs for DOPONs, which can both be operated in a
way that obeys Eq. 7.1. The first implementation, shown schematically in Fig. 7.1b
is based on a single main cavity containing multiple short laser pulses. Each pulse
occupies one of equally-spaced time bins that act as independent optical resonators
experiencing the nonlinear optical parametric gain mechanism (e.g., provided by
periodically-poled lithium niobate waveguides [45]). The pulses can be coupled
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using intra-cavity optical delay lines with delays matching the temporal separation
of pulses, shown as a multi-arm Mach-Zehnder interferometer in which coupling
weights are set using amplitude modulators (e.g., electro-optic modulators [46]). In
this configuration, all-to-all coupling can be achieved for a main cavity containing 𝑁
pulses if there are 𝑁 optical delay lines in the intra-cavity interferometer. Therefore,
the discrete time step 𝑡 represents the main cavity roundtrip number, as all pulses
can be coupled after a single roundtrip.

The second implementation, shown schematically in Fig. 7.1c is based on a main
cavity containing 𝑁 equally-spaced pulses that is coupled to a second cavity con-
taining 𝑁 + 1 pulses (with the same pulse spacing as the main cavity), which we
call the memory cavity. The programmable couplers between the main and memory
cavities allow the coupling between pulses to occur according to Eq. 7.1. To do
this, the memory cavity is operated with a purely linear gain that compensates the
roundtrip loss and the main cavity has a saturable gain as before. Coupling terms
are accumulated one at a time with intermediate values stored in the memory cavity.
Memory cavity pulses are only allowed to interfere with main cavity pulses after
all coupling terms are accumulated. Therefore, in this configuration with all-to-all
coupling, the discrete-time step 𝑡 represents 𝑁 + 1 roundtrips of the main cavity.
Compared to the first implementation, the second implementation achieves a con-
stant O(1) number of modulators and delay lines at the expense of more cavity
roundtrips O(𝑁) to achieve all-to-all coupling.

Some remarks about Definition 2: (1) Previous studies [26] of DOPONs considered
continuous-time dynamical systems. However, our use of discrete time in terms
of the resonator roundtrip number is more realistic since the gain and couplings
are experimentally implemented as lumped elements at fixed locations, and are not
continuously distributed throughout the resonator. (2) A single degenerate optical
parametric oscillator without couplings is described by 𝑥(𝑡 + 1) = 𝜌[𝑥(𝑡)] and has
the normal form of a supercritical pitchfork bifurcation 𝑥(𝑡 + 1) = 𝛼 · 𝑥(𝑡) − 𝑥3. For
𝛼 < 1, we say that the oscillator is below threshold and the only stable fixed-point
is the trivial solution 𝑥 = 0. For 𝛼 > 1, the oscillator is above threshold and has two
stable fixed-point solutions 𝑥 = ±

√
𝛼 − 1. Previous studies of DOPONs considered

only the normal form of the nonlinearity, however the inclusion of a saturable gain
is more physical and ensures that the pulse amplitudes remain bounded. (3) Strictly
speaking, there should be additional Langevin noise operators in Eq. 7.1 when
operating DOPONs below threshold, however for simplicity, we ignore small noise
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perturbations since we consider only above threshold DOPONs. Therefore, the
trajectory of the DOPON is deterministic and completely specified by the coupling
weights {𝐽𝑖 𝑗 (𝑡)} and initial conditions 𝑥𝑖 (0) for 𝑖 = 1, 2, . . . , 𝑁 . We require that the
couplings {𝐽𝑖 𝑗 (𝑡)} be known a priori, i.e., they cannot depend on the result of any
intermediate step of the time-evolution.

Turing-completeness proof

Theorem 1 For every Turing Machine T , there exists a Degenerate Optical Para-
metric Oscillator Network NT with 𝑁 = 12 optical pulses that simulates T .

Proof : We will show by explicit construction how a DOPON NT with just 𝑁 = 12
optical pulses can be used to simulate any TM. We denote these pulse amplitudes
in order as {𝑞, 𝑟, 𝑙, 1, 𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5, 𝑎6, 𝑎7, 𝑎8} and begin by describing how the
TM is encoded in NT . Suppose that T has states𝑄 = {𝑞1, . . . , 𝑞𝑚}, where we index
the states from 1 to 𝑚. If T is in state 𝑞𝑖 ∈ 𝑄 after step 𝑇 of the TM operation, then
we define U : 𝑄 → R and require

𝑞(8𝑚𝑇) = U(𝑞𝑖) :=
𝑖∑︁
𝑘=1

(−1)𝑘+1

2𝑘
. (7.3)

In other words, the TM state is represented using a unary-like encoding scheme U
for the optical pulse amplitude 𝑞 in NT . The idea is to choose the dynamics of NT

such that the states are decoded one at a time, checking one state every 8 time steps
and performing the appropriate state update.

Next, we describe how the TM tape is encoded in NT . Consider the tape after step
𝑇 as a sequence of binary symbols . . . 𝑠−2𝑠−1 𝑠0 𝑠1𝑠2 . . . where the boxed symbol
𝑠0 denotes the current symbol being read by the head. We represent the tape in NT

using two optical pulse amplitudes 𝑟 and 𝑙, which encode the right/left sequences
𝑠0 𝑠1𝑠2 . . . and 𝑠−1𝑠−2 . . ., respectively, and define C± : N → R such that

𝑟 (8𝑚𝑇) = C+(𝑠0𝑠1𝑠2 . . .) :=
∞∑︁
𝑘=0

(−1)𝑘 2𝑠𝑘 + 1
4𝑘+1 (7.4a)

𝑙 (8𝑚𝑇) = C−(𝑠−1𝑠−2 . . .) :=
∞∑︁
𝑘=1

(−1)𝑘+1 2𝑠−𝑘 + 1
4𝑘

. (7.4b)

This particular Cantor-like encoding scheme C± in base 4 (similar to in Ref. [47])
is chosen instead of a simpler unary or binary encoding for two main reasons.
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Turing Machine T Degenerate Optical Parametric
Oscillator Network NT

State Optical pulse amplitude with unary-like encoding
𝑞𝑖 ∈ 𝑄 𝑞 = U(𝑞𝑖) =

∑𝑖
𝑘=1

(−1)𝑘+1

2𝑘

Tape Optical pulse amplitudes with Cantor-like encoding
. . . 𝑠−2𝑠−1 𝑠0 𝑠1𝑠2 . . . 𝑟 = C+(𝑠0𝑠1𝑠2 . . .) =

∑∞
𝑘=0(−1)𝑘 2𝑠𝑘+1

4𝑘+1

𝑙 = C−(𝑠−1𝑠−2 . . .) =
∑∞
𝑘=1(−1)𝑘+1 2𝑠−𝑘+1

4𝑘

Time Steps Optical resonator roundtrips
𝑇 : N → N 𝑡 = 8𝑚𝑇

Table 7.1: Encoding of Turing Machine T in Degenerate Optical Parametric Oscil-
lator Network NT .

Firstly, it ensures that the necessary amplitudes are bounded despite a potentially
unbounded TM tape length, which avoids the unphysical scenario of an optical
pulse with unbounded amplitude and energy. Secondly, consider the two numbers
0.1000 . . . and 0.0111 . . . using a binary encoding. This runs into the difficulty
that distinguishing the two numbers requires traversing the entire sequence of bits,
which may be potentially unbounded if representing a TM tape. To overcome this
difficulty, the Cantor-like encoding C± introduces ‘gaps’ into the unit interval, as
shown in Fig. 7.2, such that the most-significant bit can be determined in O(1) time.
For example, using the nonlinearity available in NT as a decision threshold, we have
that 𝜌(8𝑟 − 3) = 1 if 𝑠0 = 1, and 𝜌(8𝑟 − 3) = −1 if 𝑠0 = 0.

The pulse amplitude 1 is used as a constant bias or reference amplitude, and does
not change from resonator roundtrip to roundtrip. Finally, the remaining pulses
𝑎1, 𝑎2, . . . , 𝑎8 are used as ancillary variables to help store intermediate results of the
computation. The encoding of T in NT is summarized in Table 7.1.

Now, we give the full construction for the simulation of T by NT according to the
encoding scheme defined in Table 7.1. The objective is to find the set of coupling
weights {𝐽𝑖 𝑗 (𝑡)} for 𝑖, 𝑗 = 1, 2, . . . , 12 and 𝑡 ∈ N, and the initial optical pulse
amplitudes {𝑞(0), 𝑟 (0), 𝑙 (0), 1(0), 𝑎1(0), 𝑎2(0), . . . , 𝑎8(0)} that ensure the time-
evolution of NT exactly reproduces the operation of T . The initial conditions are
easy, we simply let 𝑞(0), 𝑟 (0), and 𝑙 (0) be as defined in Table 7.1 for the initial
configuration of T . The bias pulse satisfies 1(𝑡) = 1 for all 𝑡 ∈ N, and let 𝑎 𝑗 (0) = 0
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0 1/4 1/2 3/4 1

𝑠0 𝑠1 …

𝑠0 𝑠1 𝑠2 …

𝑠0 …

… …

Figure 7.2: Cantor-like tape encoding. The Cantor-like encoding in base 4 intro-
duces gaps into the unit interval such that the most-significant bit of the tape can be
read in constant O(1) time without traversing the entire tape sequence.

for 𝑗 = 1, 2, . . . , 8. The ancillary variables begin and end with zero amplitude
during each step of T . For the coupling weights 𝐽𝑖 𝑗 (𝑡), the general strategy is to find
a set of time-periodic weights that encode the behaviour of T . During each step
of T , the current state is decoded in NT by iterating through all states, one state at
a time. We can perform this process using 8 time steps per state, hence requiring
8𝑚 time steps per step of T . Therefore, the coupling weights 𝐽𝑖 𝑗 (𝑡) repeat with a
period of 8𝑚. During each 8-cycle in NT , the current symbol 𝑠0 is also read, and the
appropriate updates (if any) to 𝑞, 𝑟, and 𝑙 are performed. We show the construction
for one 8-cycle, and the rest follows analogously.

The first step is to check the current state. During the first 8-cycle, we check if
𝑞 = U(𝑞1), otherwise move on to the next state. This is done by reading the
most-significant bit of 𝑞, then storing the result in 𝑎3 through the steps:

𝑞(1) = 𝜌(𝑞) − 3𝑞 + 1 (7.5a)

𝑎3(2) = 𝜌(𝑎3) − 4𝑞 (7.5b)

𝑎3(3) = 𝜌(𝑎3) + 1 (7.5c)

where we henceforth suppress the time step 𝑡 for optical pulse amplitudes on the
right-hand side of equations since it is always one less than on the left-hand side.
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We use the fact that 𝜌(𝑞) = 𝑞 since 1/4 ≤ 𝑞 ≤ 1/2 so that Eq. 7.5a performs the
action 𝑞 → −2𝑞 + 1, which has the effect of subtracting the most-significant bit
of 𝑞 and shifting all remaining bits to the left. After this action, 𝑎3 performs a
decision threshold such that 𝑎3(3) = 1 if 𝑞 = 0 and 𝑎3(3) = 0 otherwise. Therefore,
we will only have 𝑎3(3) = 1 if 𝑞(0) = U(𝑞1), i.e., 𝑞 encoded for the state 𝑞1

being checked during the first 8-cycle. Iterating through all states by repeating this
procedure 𝑚 times guarantees that 𝑎3(3) = 1 during exactly one 8-cycle, which
allows the current state to be effectively decoded. In parallel, we also decode the
most-significant bits of 𝑟 and 𝑙, which represent the current symbol 𝑠0 read by the
head and the left-adjacent symbol 𝑠−1, respectively:

𝑎1(1) = 𝜌(𝑎1) + 8𝑟 − 31 (7.6a)

𝑎1(2) = 𝜌(𝑎1) (7.6b)

𝑎1(3) = 𝜌(𝑎1) −
1
2
𝑎1 +

1
2

1 (7.6c)

𝑎2(1) = 𝜌(𝑎2) + 8𝑙 − 31 (7.6d)

𝑎2(2) = 𝜌(𝑎2) (7.6e)

𝑎2(3) = 𝜌(𝑎2) −
1
2
𝑎2 +

1
2

1 . (7.6f)

Therefore, we have that 𝑎1(3) = 𝑠0 and similarly 𝑎2(3) = 𝑠−1. Next, we consider
the product 𝑎3(3)𝑎1(3), which is needed to represent the domain 𝑄 × 𝑆 over which
the TM (partial) functions 𝐺, 𝐹, and 𝐷 are defined. We have that 𝑎3(3)𝑎1(3) = 1
if 𝑞(0) = U(𝑞1) and 𝑠0 = 1. Similarly, 𝑎3(3) (1 − 𝑎1(3)) = 1 if 𝑞(0) = U(𝑞1) and
𝑠0 = 0. To construct the product pairs using only linear couplings, we make use of
the identity 𝑎 · 𝑏 = 𝜌(𝑎 + 𝑏 − 2) + 1 for 𝑎, 𝑏 ∈ {0, 1}. We store these product pairs
in 𝑎5 and 𝑎6, respectively. We also store a copy of 𝑎3(3) in 𝑎7 for later use:

𝑎5(4) = 𝜌(𝑎5) + 𝑎1 + 𝑎3 − 21 (7.7a)

𝑎5(5) = 𝜌(𝑎5) + 1 (7.7b)

𝑎6(4) = 𝜌(𝑎6) − 𝑎1 + 𝑎3 − 1 (7.7c)

𝑎6(5) = 𝜌(𝑎6) + 1 (7.7d)

𝑎7(5) = 𝜌(𝑎7) + 𝑎3 . (7.7e)

Note that if 𝑎5(5) = 1, then 𝑎6(5) = 0, and vice versa. After reading the current
state and symbol, we perform state, tape, and head updates (if any) defined by T .
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First, consider the tape and head updates. Suppose that T is defined such that
𝐹 (𝑞1, 𝑠0) = 𝑠′. If 𝐷 (𝑞1, 𝑠0) = 0 (move head left), then the tape updates from
. . . 𝑠−2𝑠−1 𝑠0 𝑠1𝑠2 . . . to . . . 𝑠−2 𝑠−1 𝑠

′𝑠1𝑠2 . . . where the head is now reading symbol
𝑠−1 . To represent this tape change in NT , the desired actions are:

𝑙 → C−(𝑠−2𝑠−3 . . .) = −4𝑙 + (2𝑠−1 + 1) (7.8a)

𝑟 → C+(𝑠−1𝑠
′𝑠2 . . .) = − 𝑟

4 + 2𝑠−1+1
4

+2𝑠0+1
42 − 2𝑠′+1

42 . (7.8b)

On the other hand, if 𝐷 (𝑞1, 𝑠0) = 1 (move head right), then the tape updates from
. . . 𝑠−2𝑠−1 𝑠0 𝑠1𝑠2 . . . to . . . 𝑠−2𝑠−1𝑠

′ 𝑠1 𝑠2 . . . where the head is now reading symbol
𝑠1 . To represent this tape change in NT , the desired actions are:

𝑙 → C−(𝑠′𝑠−1𝑠−2 . . .) = − 𝑙
4
+ 2𝑠′ + 1

4
(7.9a)

𝑟 → C+(𝑠1𝑠2 . . .) = −4𝑟 + (2𝑠0 + 1) . (7.9b)

Consider the required update for 𝑙. We use the fact that 𝜌(𝑙) = 𝑙 since 𝑙 ∈ [0, 3/4],
so the eventual desired update can be expressed as:

𝑙 (8) = 𝜌(𝑙) + 4𝑎5(5)
[
(1 − 𝐷 (𝑞1, 1)) −5𝑙+2𝑎2 (3)+1

4

+𝐷 (𝑞1,1)
4

−5𝑙+2𝐹 (𝑞1,1)+1
4 )

]
+ 4𝑎6(5)

[
(1 − 𝐷 (𝑞1, 0))

−5𝑙+2𝑎2 (3)+1
4 + 𝐷 (𝑞1,0)

4
−5𝑙+2𝐹 (𝑞1,0)+1

4

]
. (7.10)

Recall that if 𝑎5(5) = 1, then 𝑎6(5) = 0, and vice versa. Thus only one of the
coupling terms involving box brackets in Eq. 7.10 can be non-zero. To re-write
Eq. 7.10 using only linear coupling terms allowed in NT , we use the identity
𝑎 · 𝑥 = 𝜌(𝑥 +2𝑎−2) +1−𝑎 for 𝑎 ∈ {0, 1} and 𝑥 ∈ [−3/4, 3/4]. We compute the two
terms involving box brackets in Eq. 7.10 separately, and store them in 𝑎3 (recycling
an ancillary variable) and 𝑎4:

𝑎3(6) = 𝜌(𝑎3) − 𝑎3 +
[
−5(1−𝐷 (𝑞1,1))

4 − 5𝐷 (𝑞1,1)
16

]
𝑙

+1−𝐷 (𝑞1,1)
2 𝑎2 + 2𝑎5 +

[
1−𝐷 (𝑞1,1)

4 (7.11a)

+𝐷 (𝑞1,1)𝐹 (𝑞1,1)
8 + 𝐷 (𝑞1,1)

16 − 2
]

1

𝑎3(7) = 𝜌(𝑎3) − 𝑎5 + 1 (7.11b)
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𝑎4(6) = 𝜌(𝑎4) +
[
−5(1−𝐷 (𝑞1,0))

4 − 5𝐷 (𝑞1,0)
16

]
𝑙

+1−𝐷 (𝑞1,0)
2 𝑎2 + 2𝑎6 +

[
1−𝐷 (𝑞1,0)

4 (7.11c)

+𝐷 (𝑞1,0)𝐹 (𝑞1,0)
8 + 𝐷 (𝑞1,0)

16 − 2
]

1

𝑎4(7) = 𝜌(𝑎4) − 𝑎6 + 1 . (7.11d)

Therefore, the desired update for 𝑙 using only linear couplings is:

𝑙 (8) = 𝜌(𝑙) + 4𝑎3 + 4𝑎4 . (7.12)

Now, consider the required update for 𝑟. We use the fact that 𝜌(𝑟) = 𝑟 since
𝑟 ∈ [0, 3/4], so the eventual desired update can be expressed as:

𝑟 (8) = 𝜌(𝑟) + 4𝑎5(5)
[

1−𝐷 (𝑞1,1)
4

(
−5𝑟
4 + 2𝑎1 (3)+1

16

−2𝐹 (𝑞1,1)+1
16 + 2𝑎2 (3)+1

4

)
+ 𝐷 (𝑞1, 1) −5𝑟+2𝑎1 (3)+1

4

]
+4𝑎6(5)

[
1−𝐷 (𝑞1,0)

4

(
−5𝑟
4 + 2𝑎1 (3)+1

16 − 2𝐹 (𝑞1,0)+1
16

+2𝑎2 (3)+1
4

)
+ 𝐷 (𝑞1, 0) −5𝑟+2𝑎1 (3)+1

4

]
. (7.13)

Similar to above for 𝑙, we compute the two terms involving box brackets in Eq. 7.13
separately, and store them in 𝑎1 and 𝑎2 (recycling ancillary variables):

𝑎1(6) = 𝜌(𝑎1) +
(
−5(1−𝐷 (𝑞1,1))

16 − 5𝐷 (𝑞1,1)
4

)
𝑟 (7.14a)

+
(

1−𝐷 (𝑞1,1)
32 + 𝐷 (𝑞1,1)

2 − 1
)
𝑎1 + 1−𝐷 (𝑞1,1)

8 𝑎2 + 2𝑎5

+
(

1−𝐷 (𝑞1,1)
16 − (1−𝐷 (𝑞1,1))𝐹 (𝑞1,1)

32 + 𝐷 (𝑞1,1)
4 − 2

)
1

𝑎1(7) = 𝜌(𝑎1) − 𝑎5 + 1 , (7.14b)

𝑎2(6) = 𝜌(𝑎2) +
(
−5(1−𝐷 (𝑞1,0))

16 − 5𝐷 (𝑞1,0)
4

)
𝑟 (7.14c)

+
(

1−𝐷 (𝑞1,0)
32 + 𝐷 (𝑞1,0)

2

)
𝑎1 +

(
1−𝐷 (𝑞1,0)

8 − 1
)
𝑎2 + 2𝑎6

+
(

1−𝐷 (𝑞1,0)
16 − (1−𝐷 (𝑞1,0))𝐹 (𝑞1,0)

32 + 𝐷 (𝑞1,0)
4 − 2

)
1

𝑎2(7) = 𝜌(𝑎2) − 𝑎6 + 1 . (7.14d)

Therefore, the desired update for 𝑟 using only linear couplings is:

𝑟 (8) = 𝜌(𝑟) + 4𝑎1 + 4𝑎2 . (7.15)
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Next, consider the state update for 𝑞. During the first 8-cycle, if 𝑞(0) = U(𝑞1), then
the desired action 𝑞 → U(𝐺 (𝑞1, 𝑠0)). Otherwise, we simply move on to decoding
for the next state 𝑞2. This can be implemented in NT as:

𝑞(8) = 𝜌(𝑞) − 𝑎3(3)𝑞 (7.16)

+
[∑𝑚−1

𝑘=1
(−1)𝑘+1

2𝑘 + (−1)𝑚
2𝑚−1 U(𝐺 (𝑞1, 1))

]
𝑎5

+
[∑𝑚−1

𝑘=1
(−1)𝑘+1

2𝑘 + (−1)𝑚
2𝑚−1 U(𝐺 (𝑞1, 0))

]
𝑎6 .

The optical pulse amplitude 𝑞 will correctly encode the next state 𝐺 (𝑞1, 𝑠0) after
repeating the analogous 8-cycle another 𝑚 − 1 times. An additional 𝑚 − 1 dummy
ones are added to the front of 𝑞 since the most-significant bit is deleted during each
8-cycle. We use the same identity as above to express the product 𝑎3(3)𝑞 in terms
of linear couplings stored in ancillary variable 𝑎8:

𝑎8(6) = 𝜌(𝑎8) + 𝑞 + 2𝑎7 − 21 (7.17a)

𝑎8(7) = 𝜌(𝑎8) − 𝑎7 + 1 . (7.17b)

Therefore, the desired update for 𝑞 using only linear couplings is:

𝑞(8) = 𝜌(𝑞) − 𝑎8 (7.18)

+
[∑𝑚−1

𝑘=1
(−1)𝑘+1

2𝑘 + (−1)𝑚
2𝑚−1 U(𝐺 (𝑞1, 1))

]
𝑎5

+
[∑𝑚−1

𝑘=1
(−1)𝑘+1

2𝑘 + (−1)𝑚
2𝑚−1 U(𝐺 (𝑞1, 0))

]
𝑎6 .

More generally, during the 𝑖th 8-cycle corresponding to the first step of T , if 𝑞(0) =
U(𝑞𝑖), then we have:

𝑞(8𝑖) = 𝜌(𝑞) − 𝑎8 (7.19)

+
[∑𝑚−𝑖

𝑘=1
(−1)𝑘+1

2𝑘 + (−1)𝑚−𝑖+1

2𝑚−𝑖 U(𝐺 (𝑞𝑖, 1))
]
𝑎5

+
[∑𝑚−𝑖

𝑘=1
(−1)𝑘+1

2𝑘 + (−1)𝑚−𝑖+1

2𝑚−𝑖 U(𝐺 (𝑞𝑖, 0))
]
𝑎6 .

Finally, the last step is to reset the ancillary variables during each 8-cycle:

𝑎 𝑗 (8) = 𝜌(𝑎 𝑗 ) − 𝑎 𝑗 for 𝑗 = 1, 2, . . . , 8 . (7.20)

The construction is complete. The coupling weights for the proceeding 8-cycles
follows analogously to the first 8-cycle with just minor modifications to the coupling
weights according to the definition of T via the (partial) functions 𝐺, 𝐹, and 𝐷. A
visual summary of the construction showing the pulses actively involved during the
time steps of each 8-cycle is shown in Fig. 7.3.
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Figure 7.3: Turing Machine simulation steps. Network connectivity for a DOPON
simulating a TM where red pulses represent the time-multiplexed laser pulses in the
DOPON during each time step 𝑡 ≡ 0, 1, 2, . . . , 7 (mod 8) and blue lines show the
active pulse couplings 𝐽𝑖 𝑗 (𝑡) ≠ 0 during each 8-cycle. The 8-cycle repeats 𝑚 times
per step of the TM where𝑚 is the number of TM finite control states, so the coupling
weights 𝐽𝑖 𝑗 (𝑡) repeat with a period of 8𝑚 to exactly simulate the TM.

□

Physical consequences
The Turing-completeness of DOPONs has many physical implications that result
from the undecidability of the Entscheidungsproblem (the problem of determining
whether an arbitrary program and input will either finish running or continue to
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run forever) [31]. Together with Theorem 1, this implies that the problem of
determining if a DOPON (or CNOR more generally), with arbitrary couplings
and initial conditions, will eventually reach a steady-state or periodic oscillation
is undecidable. This is because we can construct a DOPON that simulates a
Universal Turing Machine according to the scheme used to prove Theorem. 1.
Therefore, halting in the TM corresponds to a steady-state/periodic oscillation in
the corresponding DOPON.

In fact, any decision problem that can ultimately be reduced to the existence of
a steady-state/periodic oscillation in DOPONs is also undecidable. For example,
DOPONs have been used extensively as physical Ising solvers for combinatorial
optimization [26]. Previous numerical studies [48] have used a time-to-solution to
quantify the problem run-time. Notably, this usually involves ad hoc disregarding
any instance in which the DOPON exceeds some finite cut-off time to reach a
steady-state representing the solution to the combinatorial optimization problem.
Imposing such a finite cut-off is of course necessary for practical reasons. However,
the existence of long-running DOPONs is not just a numerical artifact or bug, but
rather it is a feature of their Turing-completeness and moreover the time-to-solution
in DOPONs is uncomputable. Suppose that there exists a finite time-to-solution
𝑇 for any DOPON N . Then we can say that N will be in a steady-state/periodic
oscillation after a time of 𝑇 . But, this implies that the Halting Problem for N is
decidable. This is a contradiction, as discussed above. Therefore, there does not
exist any procedure to always find such a finite 𝑇 .

A related problem is determining if a DOPON will find a local minimum solution
or if it will find the desired global minimum solution to an optimization problem.
There have been efforts to develop heuristics and scaling laws based on analyses
of DOPONs with small 𝑁 that are tractable, then extrapolating the results to better
understand problems with large 𝑁 [49]. However, this strategy is not prudent
because our results imply that there exists a finite 𝑁 below which the DOPON
dynamics are decidable, but above which the DOPON dynamics are undecidable.
Therefore, there is no way to decide if heuristics developed for small 𝑁 will also be
valid for large 𝑁 . In fact, in our DOPON model, this threshold is as low as 𝑁 = 12.
A caveat is that the heuristics are often not seeking to guarantee optimal solutions,
and it may still be possible to develop heuristics that yield near-optimal solutions
within some error range of the optimal solution.
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7.4 Discussion
Since undecidability is not often discussed in the context of optics, we emphasize that
undecidability is a property regarding infinite classes of functions. Specific instances
of a problem class are of course solvable. In addition, the simpler the system under
consideration, the more powerful the result since adding complexity generally only
increases the computational power of a system. Therefore, we consider a simple class
of CNORs based on DOPONs so that our results are as widely-applicable as possible.
We showed that a DOPON with as few as 𝑁 = 12 pulses is already sufficient for
Turing-completeness. This is well-within current experimental capabilities, which
means our results have practical consequences. However, we do not claim that our
construction is optimal. This naturally begs the question: what is the minimum 𝑁

needed for Turing-completeness?

There are several obvious methods to further reduce the necessary 𝑁 . Our con-
struction uses a DOPON that efficiently simulates a TM since the number of time
steps is linear O(𝑇). But, using a less efficient TM simulation with an exponential
slowdown, e.g., based on Minsky Register Machines [43], can allow one to decrease
𝑁 at the expense of a worse time-complexity. Another way to reduce 𝑁 is to use
more complicated dynamics. For example, the coupled cavities implementation of
DOPONs shown in Fig. 7.1c actually allows more general dynamics than stated in
Eq. 7.1. It can be shown that a coupled cavity design with a main cavity containing
𝑁 = 6 pulses and memory cavity containing 𝑁 + 1 = 7 pulses is Turing-complete.
The present construction can also be modified for DOPONs with nonlinear function
𝜌 different to the simple saturable gain [50]. It may also be interesting to investigate
the effects of different constraints on the computational power of CNORs. For exam-
ple, many experimental CNORs utilize conservative, static, and nearest-neighbour
couplings. In contrast, our construction uses dissipative, time-varying, and all-to-all
couplings. We expect that the minimum 𝑁 needed for Turing-completeness will
increase greatly if conservative, static, or nearest-neighbour coupling constraints are
imposed.

In any Turing-complete model of computation, there is always the issue of infinity
due to the potentially unbounded length of the TM tape, which may be considered
unphysical. In our DOPON model, the number of physical components, e.g.,
waveguides and modulators, is constant. Moreover, the number of pulses 𝑁 is
constant and the pulse amplitudes are bounded. The hidden infinity in our DOPON
model is therefore the potentially unbounded precision needed for specifying the
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pulse amplitudes 𝑙 and 𝑟 that represent the TM tape. Interestingly, there is nothing
obvious in classical optics that fundamentally forbids this potentially unbounded
precision. Furthermore, in our construction, the coupling weights 𝐽𝑖 𝑗 (𝑡) are purely
rational numbers and have a finite maximum precision. The need for potentially
unbounded precision in Turing-complete DOPONs should not be confused with
chaos, which results from a sensitivity to initial conditions. Our results show that
even with perfect knowledge of the initial conditions, the dynamics of DOPONs is
still unpredictable.

On the other hand, in quantum optics, it is well-known that DOPONs have quantum-
noise dynamics, which is often cited as a computational resource for escaping local
minima [51]. In this case, there are quantum limits to the maximum precision
and signal-to-noise ratio when measuring optical pulse amplitudes. Our simple
model for DOPONs operating deterministically above threshold breaks down when
considering DOPONs operating stochastically with quantum noise below threshold,
or in the case of transitioning stochastically from below to above threshold. It
may be interesting to investigate the computational power of stochastic DOPONs
in the context of non-deterministic or probabilistic TMs. We leave it as an open
problem to study the computational power of DOPONs with finite precision in the
context of finite automata, with the ultimate goal of establishing a hierarchy for the
computational power of DOPONs given a certain size 𝑁 and/or finite amount of
precision.

In summary, we have shown that coupled nonlinear optical resonators can be used
as universal computers. Our proof is based on an explicit construction using a
degenerate optical parametric oscillator network, which shows that as few as only
𝑁 = 12 pulses is needed for Turing-completeness. This has profound consequences
for both experiments and applications because any physical property reducible to the
existence of a steady-state or periodic oscillation is logically undecidable. We hope
that our findings will stimulate further inquiry into the computational properties of
coupled nonlinear optical resonators and inform their use as part of next-generation
optical computing systems.
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