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ABSTRACT

Architected solids, comprising discrete or continuous materials and structures, are
purposefully designed to achieve specific functional objectives, such as tailored
mechanical properties or enhanced performance. The integration of architectural
features and material science has revolutionized design and functionality across
multiple length scales. However, experimental exploration of architected solids is
often constrained by physical, financial, or technological limitations. To address
these challenges, this study leverages computational models as powerful tools for
validating and probing the behaviors of architected solids through three distinct case

studies spanning different length scales.

The first case study focuses on capturing the seismic performance of multiblock con-
crete structures at CERN for radiation shielding. The Level Set Discrete Element
Method (LS-DEM), combined with Monte Carlo sampling of material properties,
is employed to benchmark the displacement profiles of four concrete configurations
against experimental data. In the second case study, a bonded LS-DEM model is
utilized to investigate the bending response of a woven topological interlocking ma-
terial (TIM). After validation against experimental results, the model is employed
to explore how friction and contact area influence the bending resistance of the TIM
system. The third case study introduces a 3D translational tensegrity structure mod-
eled using the Finite Element Method (FEM). This model captures the deformation
responses of single cells, monolayers, and multicellular spheroids under various
loading conditions. Additionally, a data-driven (DD) framework with multiscale
analysis is implemented, offering accurate results with enhanced computational ef-
ficiency. Through these three case studies, this research illustrates the evolution of
computational models from tools for validating known behaviors to frameworks for

exploring new phenomena.
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Chapter 1

INTRODUCTION

1.1 Research Objective

Architected solids are collections of materials or structures that are purposefully
designed and constructed to achieve specific functional objectives, such as tailored
mechanical properties or enhanced performances. The integration of architectural
features and material science has revolutionized design and functionality across
multiple length scales [51], from large-scale deployable structures [92, 164], high-
performance reinforcement materials [113, 115], to mechanical/electrochemical
actuators [65, 174] and nanophotonic devices [71, 109]. However, despite their
vast potential, designing, understanding and optimizing architected solids across
varying length scales present significant challenges, especially when experimental

exploration is often constrained by physical, financial, or technological limitations.

By definition, the design process requires iterative exploration of possibilities to
refine and optimize outcomes. However, physical experimentation for iteration
is often prohibitively costly in terms of time, money, and labor. Computational
modeling offers a compelling alternative, providing significant time and financial
efficiencies while uncovering critical insights that experiments alone cannot reveal.
This necessitates the development of reliable computational tools that combine
speed and accuracy, enabling full-scale and reduced-scale models with applicable

scaling laws, as well as multiscale models to comprehensively study the systems.

On the other hand, certain complex systems, such as biological structures, are too
intricate to be fully understood even with advanced computational models. In these
cases, engineering analogies play a crucial role. By developing appropriate models
as analogs, researchers can probe and better understand the behaviors of these

systems, shedding light on phenomena that would otherwise remain inaccessible.

This thesis leverages efficient computational models to predict and analyze the
mechanical responses of architected solids. Specifically, the objectives of this thesis

are:

* Develop and benchmark efficient computational models for architected solids

at various length scales.
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* Explore the role of design parameters, such as assembly configuration, con-
stituent geometry, material property, and prestress, in determining system

behaviors.

* Employ the validated computational models to explore and better understand

complex systems.

1.2 Approach

We develop accurate and efficient numerical models to investigate the physics and
mechanics of architected solids across three distinct case studies, each at a different
length scale (Figure 1.1). The first two case studies examine discrete, contact-
driven systems where component interactions dominate. We model these systems
using discrete methods. The third case study focuses on pin-connected cable-truss
structures, for which we employ 1D Finite Element Method (FEM) to capture their

responses.

m cm pm

Figure 1.1: Architected structures across scales. (a) Multiblock structure at CERN
[180]; (b) Woven topological interlocking materials [97]; (c) Cytoskeleton [10].

We begin this investigation at the meter scale, employing a macroscopic approach
to study a discrete system governed by contact-driven behaviors. The first case
study focuses on the seismic performance of meter-scale multiblock structures.
The European Organization for Nuclear Research (CERN) uses concrete multiblock
structures for radiation shielding from particle colliders. Due to the impracticality of

testing every possible structural configuration on a shake table, especially given that
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some of these structures span hundreds of meters, we instead conduct a numerical
study benchmarked by shake table tests on four simplified structures. The resulting
kinematic profiles from these tests are used to validate computational models, with
the goal of using these models to predict the seismic response of larger, more
complex block assemblies that are beyond the reach of experimental testing. Due
to the discrete nature of the multiblock structures, we employ and compare two
different discrete models to capture the contact-driven behaviors of the blocks.
The first model is the Level Set Discrete Element Method (LS-DEM), which is a
variant of the traditional Discrete Element Method (DEM) that accounts for arbitrary
block shapes. The second model is the Logiciel de Mécanique Gérant le Contact
(LMGC90), which uses nonsmooth implicit contact scheme. Theories of the two
models are thoroughly explained and compared, followed by model calibration and
benchmark against the kinematic profile obtained in the shake table tests using

material properties prepared by Monte Carlo sampling.

Next, we transition from a fully discrete system to a partially connected discrete sys-
tem at the centimeter scale. The second case study focuses on the bending response
of centimeter-scale topological interlocking materials (TIMs) with adjustable exter-
nal confinement. The mentioned TIM system is comprised of truncated tetrahedral
particles interconnected via tensioned wires. The fabrication process involves weav-
ing nylon wires through 3D printed truncated tetrahedrons that have longitudinal
and latitudinal through-holes. By varying the tension applied to the wires, one can
systematically control the overall bending stiffness of the TIM system. We change
the surface friction and the contact angle between adjacent particles at a fixed wire
tension, to study experimentally how they affect the system’s bending response. We
further inform experiments with LS-DEM simulations, to correlate surface friction

and contact area with the system’s bending modulus.

The tensile wires and compressive blocks in the TIM system are reminiscent of the
tension-compression interactions in the tensegrity structure. In the third case study,
we further downscale the application, focusing on the tensegrity structure and its
role in modeling micrometer-scale cell mechanics. The cytoskeleton (CSK) plays an
important role in many cell functions. Given the similarities between the mechanical
behavior of tensegrity structures and the CSK, many studies have proposed different
tensegrity-based models for simulating cell mechanics. However, the low symmetry
of most tensegrity units has hindered the analysis of realistic 3D structures. As

a result, tensegrity-based modeling in cell mechanics has been mainly focused on
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single cells or monolayers. In this study, we propose a 3D tensegrity model based
on FEM for simulating 3D cell mechanics. We use the proposed model to capture
the responses of a single cell in indentation test, a monolayer in stretch test, and a
multicellular spheroid (MCS) under osmotic pressure. Furthermore, we implement

a multiscale data-driven (DD) framework to optimize the computation.

In these three case studies, efficient computational models are developed and vali-
dated against experiments, yet their roles differ across scales. In the first two case
studies, computational models complement experiments by extrapolating behaviors
to other configurations or constituent designs within the same physical context. In
the third case study, the model goes beyond complementing experiments — it serves
as an exploratory tool, bridging the gap between observable experimental results

and the underlying, unobservable mechanics.

Through these case studies, our focus shifts from benchmarking computational mod-
els against experimental results, to bridging micro-scale mechanics to macro-scale
responses, and ultimately, to using models as biophysical analogies to investigate
and understand the complex behaviors in biological systems. This shift mirrors
a progression in both physical scale, from meter-scale multiblock structures to
micrometer-scale cellular systems, and conceptual focus, from validation of known

behaviors to exploration of new phenomenon.

1.3 Thesis Structure

This thesis is organized as follows:

* Chapter 2 reviews the background information relevant to the mentioned topics
of architected solids and their previous modeling efforts, followed by a general

overview of the numerical method used in each case study.

* Chapter 3 investigates the seismic response of multiblock structures at CERN,
through calibrating and benchmarking LS-DEM and LMGC90 using experi-
ment data obtained from four specific concrete block structures. Theories of
the two models are first compared. A review of experiments is conducted.
Random material properties are generated using Monte Carlo sampling. Fi-
nally, two models are calibrated and benchmarked, followed by a discussion

of principle results and the significance of this benchmark study.

* Chapter 4 explores the mechanics of a specific TIM design made of truncated

tetrahedral particles connected by tensioned nylon wires. Experiments are



5

complemented by LS-DEM simulations, which help identify how surface

friction and contact area affect the overall bending modulus.

* Chapter 5 develops a 3D tensegrity structure to study the mechanics of the
CSK. The modeling framework is first presented. The model is then used to
simulate cell responses in various loading conditions. Finally, a multiscale
data-driven framework is implemented for simulations at small-deformation

scale to address computational efficiency.

» Chapter 6 concludes this thesis and provides a future outlook.



Chapter 2

BACKGROUND

We categorize the three topics of architected solids into two groups: discrete contact-
driven systems and pin-connected cable-truss systems. Within each category, we
first provide a general overview of the topics and their previous modeling approaches.
We then introduce our modeling framework along with the necessary background

review.

2.1 Discrete Contact-Driven Systems

Rigid Body Structures

Thousands of years ago, ancient Greeks and Romans constructed structures made of
stone, brick and concrete for civil, political and religious purposes. Some of these
structures are composed of rigid members without mortar, exhibiting exceptional
engineering performance such that they remain standing today [145]. In recent
years, the idea of rigid bodies standing upright with only gravity and friction has
found new applications in modern engineering, such as gravity energy storage [3]

and radiation shielding in physics laboratories [139].

In energy storage applications, the concept involves constructing towers using dis-
crete blocks to store energy as gravitational potential energy. As part of a compre-
hensive effort combining experimental and numerical characterization to study the
seismic performance of these tower structures, researchers constructed two reduced-
scale physical models and their corresponding numerical models using the Level Set
Discrete Element Method (LS-DEM) [3, 53, 126]. By applying a scaling law [127],
they successfully benchmarked the physical and numerical results, demonstrating
the robustness of the developed scaling law and the effectiveness of rigid block-based

discrete modeling in simulating the seismic response of multiblock structures.

At CERN, stacked concrete blocks are employed as shieldings to protect against
radiation produced during the operation of particle accelerators. Sironi et al. [139]
tested four full-scale concrete block configurations on shake tables to understand
their seismic response. Their experiments provide critical kinematic profiles that
inform and validate computational models, which can later be used to analyze larger,

more complex block assemblies.
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Various analytical models have been proposed in the literature to predict the dynamic
response of individual rigid blocks or simple piles during earthquakes [4, 5, 25, 64,
91, 136, 138, 142, 147, 154]. However, these models are typically developed under
simplified settings, limiting their applicability to more complex configurations.

Analyzing large, complex block assemblies necessitates the use of numerical models.

There are mainly two popular methods — the continuous model where all ele-
ment interfaces are smeared out in a homogeneous continuum, and the block-based
discontinuous model [95, 131]. The former assumes all elements are perfectly con-
nected as a continuous deformable body subject to appropriate constitutive laws
[9, 96, 118], allowing analysis of detailed in-plane structural responses. The lat-
ter simulates the motion of each distinct block using the Finite Element Method
(FEM) or Discrete Element Method (DEM) for deformable or rigid bodies accord-
ingly [85, 111, 112, 141]. This discontinuous approach makes possible to study

out-of-plane behaviors when the blocks disengage.

Topological Interlocking Materials

Segmentation into constituents with diverse shapes and morphologies enables high
flexibility, adaptability, and multifunctionality [38]. Building on this concept,
topological interlocking (T1) is a design strategy where specially shaped elements
(blocks) are arranged such that the entire structure is stabilized by a global peripheral
constraint, while local stability is achieved through kinematic constraints imposed
by the shape and mutual arrangement of the neighboring elements [31, 33, 34].
Segmentation facilitates the design of hybrid materials by combining blocks made
from different materials to achieve desired functionalities. TI designs also provide
enhanced structural stability. The ability of individual blocks to undergo small
internal movements within the limits of kinematic constraints allows for energy
dissipation, thereby improving vibration resistance. Cracks that form within an in-
dividual block are arrested at its interfaces with neighboring blocks, thus confining
local failures and preserving the structure’s overall integrity [32]. Numerous studies
have demonstrated that topological interlocking materials (TIMs) outperform their
monolithic counterparts in mechanical performance, including enhanced strength
and toughness [43, 78, 104], bendability [84], failure resistance [8], and sound
absorption [14].

TIMs are typically constructed from two main families of building block geome-

tries [39, 40]. The first family consists of Platonic solids (tetrahedrons, cubes,
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octahedrons, etc.) and their truncated variants [33]. The second family includes
osteomorphic blocks, which are non-Platonic geometries with matching concavo-

convex contact surfaces [26, 32].

While some TI patterns have been identified, the design space for block geometries
and their possible assemblies is effectively infinite. Structure—property relationships
for TIMs remain poorly understood. This gap in knowledge makes it challenging to
predict how a given TI design will perform mechanically across the vast space of

possible configurations.

To address this challenge, researchers have adopted computational modeling to
simulate and analyze the mechanical behavior of TIMs. FEM has been widely used
to compute detailed stress and deformation fields of each element under external
loads, yielding good agreement with experimental and analytical results [80, 124,
130, 172]. However, FEM modeling of TIMs with a large number of blocks can be

computationally expensive [23].

An alternative approach is the DEM, which naturally accommodates the discrete,
non-adhesive nature of the TI blocks [11, 12, 30]. Its extended version, LS-DEM,
provides greater geometric versatility, enabling the modeling of arbitrarily shaped
blocks. LS-DEM has been used to study various TIM designs and investigate their
structural responses [41, 75, 170].

LS-DEM and its Variant

For the discrete, contact-driven systems in the first two case studies, we adopt
element-based discrete approaches. In the first case study, we employ and compare
two different discrete modeling methods, LS-DEM and LMGC90 (Logiciel de
Mécanique Gérant le Contact), to simulate the seismic performance of multiblock
structures. In the second case study, we use a variant of LS-DEM, the bonded
LS-DEM, to study the system. For a detailed description of the LMGC90 method,

readers are encouraged to refer to [29].

The Level-Set Discrete Element Method (LS-DEM) is a variant of the traditional
Discrete Element Method (DEM) capable of capturing arbitrary shapes [76]. LS-
DEM has been applied to similar multiblock structures as in the energy storage
towers. Harmon et al. demonstrated that, with appropriate scaling of ground
motion input, LS-DEM can produce accurate yet computationally efficient results
when compared to reduced-scale physical models [53]. The efficiency of LS-

DEM stems from its rigid body assumption, which simplifies contact and motion



calculations while maintaining accuracy.

In LS-DEM, each particle (block) is characterized by a level set function, ¢, which
represents the absolute distance from any given point to the nearest particle surface.
By convention, ¢ is negative inside the particle and positive outside, with the particle
surface defined by ¢ = 0.

Each particle is also assigned a set of uniformly distributed surface nodes. Contact
detection is performed by evaluating the level set value of one particle at the loca-
tion of a surface node from another particle. A negative level set value indicates
contact and also quantifies penetration depth. Normal forces are then computed
using Hooke’s law, while shear forces are calculated incrementally due to history
dependence and capped via a selected friction law such as the Coulomb’s friction
law. The system’s kinematics are updated using the Newton-Euler equations of

motion within an explicit time-stepping scheme.

For multiblock structures composed of discrete concrete blocks without direct con-
nections, LS-DEM is a well-suited approach. Its rigid body assumption enables
efficient modeling, making it particularly advantageous for simulating both a large
number of concrete assemblies and those with many interacting blocks. This com-
putational efficiency is also desirable when simulating TIMs. In a previous study
using a block-based FEM method, Dalaq et al. limited the number of blocks in
simulations to five due to the high computational cost of larger quantities [23].
However, for the specific TIM design proposed in Chapter 4, each block has nylon
wires woven through it. Since LS-DEM is inherently formulated for completely dis-
crete elements, it requires adaptation to account for the effects of these connecting

elements.

As aresult, we construct a bonded LS-DEM model with springs connecting neigh-
boring blocks, as illustrated in Figure 4.2c. The neutral positions of the springs are
established once the blocks are equilibrated by the boundary forces. These springs
can only sustain tensile forces, effectively mimicking the role of nylon wires in

resisting block separation.

The detailed formulations of LS-DEM and its variant method are provided in Chap-
ter 3.2 and Chapter 4.6.
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2.2 Pin-Connected Cable-Truss Systems

Tensegrity Structures

The term tensegrity (tensional integrity), introduced by B. Fuller, refers to "an
assembly of tension and compression components arranged in a discontinuous com-
pression system" [48]. Tensegrity is a self-stable statically indeterminate assembly
consisting of continuous tensile elements (tendons) and discontinuous compressive
elements (bars). Tendons and bars are pin-connected in force equilibrium, setting

the tensegrity structure in a tensile prestressed state.

Tensegrity structures are widely recognized for their deployability and tunability,
making them valuable in civil engineering applications[49]. The introduction of
prestress can potentially enhance the structural stiffness, enabling better load resis-
tance with fewer materials [177]. Practical applications include tensegrity domes
[44, 86, 121], tensegrity robots [13, 94, 119], and deployable structures [152, 162].

Beyond engineering, tensegrity principles have also inspired developments in bio-
engineering. Researchers have noted striking similarities between tensegrity struc-
tures and the CSK in cells. Ingber and others have provided extensive evidence
of these similarities and proposed tensegrity-based models for cellular mechanics
[17, 62, 63, 128, 167].

Traditional approaches in modeling tensegrity structures often rely on simplified
assumptions, such as treating bars as linear elastic members that carry either ten-
sile or compressive loads [140]. For large deformation static/dynamic analysis,
more sophisticated approaches such as FEM-based Lagrangian [99] or co-rotational
[178] formulations have been developed to address these cases. Additionally, dis-
crete reduced-order models that explicitly account for the deformation of individual
tensegrity members have been proposed as a computationally efficient alternative to
FEM-based approaches [125].

1D Finite Element Analysis
To model the tensegrity structures, we adapt from the framework by Ma et al. [99].
We assume that all structural elements are axially loaded and pin-connected without

rotation. Upon external loading, we assume the structure behaves quasi-statically.

The equilibrium of the structure is governed by the force balance at each node. The
prestress in the structure is determined by solving a self-equilibrated force system,

ensuring mechanical stability before external loads are applied.
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The numerical implementation follows an incremental loading approach, where the
external force is discretized into small increments. After each increment, the internal
forces and nodal displacements are iteratively updated until equilibrium is reached.
This iterative procedure accounts for nonlinearities arising from large deformations

and geometric changes.

The detailed formulations of this approach are provided in Chapter 5.2.

Data-Driven Framework with Multiscale Analysis

If we represent a single tensegrity unit as a fundamental structural cell, simulating
large-scale biological structures would require assembling millions of such units.
This approach is computationally prohibitive, even when using 1D FEM. To over-

come this challenge, we adopt a data-driven (DD) framework.

In the classical FEM approach, stress and strain are determined by satisfying equilib-
rium and compatibility equations, with constitutive laws providing a closure relation
between the stress and strain. However, in the DD framework, instead of relying on
an empirical closure relation, the problem is reformulated as a minimum-distance
search. The algorithm identifies the material (training) data points that best sat-
isfy the equilibrium and compatibility constraints, avoiding the need for an explicit

constitutive model.

The DD framework has been successfully applied in various contexts, including
dynamics [82], fracture mechanics [15], finite deformations [114], and micromor-
phic continua [159]. Its multiscale capabilities have been demonstrated in modeling
history-dependent materials [74] and breakage mechanics [158], yielding results
that closely match physics-based models. Additionally, DD methods have been
used to compute the mechanical response of the human brain based on in situ and

in vivo imaging data [129].

To construct the material dataset for our study, we sample representative volume
elements (RVEs) of tensegrity structures. A full description of the DD framework
and its implementation is provided in Chapter 5.4.
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Chapter 3

DISCRETE STRUCTURAL SYSTEMS MODELING:
BENCHMARKING OF LS-DEM AND LMGC90 WITH SEISMIC
EXPERIMENTS

Z. Zhou, M. Andreini, L. Sironi, P. Lestuzzi, E. Ando, F. Dubois, D. Bolognini, F.
Dacarro, and J. E. Andrade. Discrete structural systems modeling: Benchmarking
of LS-DEM and LMGC90 with seismic experiments. Journal of Engineering
Mechanics, 149(12):04023097, 2023. doi: 10.1061/JENMDT.EMENG-7036.

3.1 Introduction

The European Organization for Nuclear Research, abbreviated CERN, operates the
world’s largest particle physics lab. Their everyday operation, including the use of
particle accelerators etc., produces radiation, from which personnel and high-tech
equipment need to be shielded. The most usual approach is to use concrete structures
of significant mass [70]. CERN uses assemblies of large independent concrete
blocks that allow rapid re-configuring for different implementations. However,
structures formed from those blocks do not have any joint connecting systems or
other protective metal braces between blocks to resist the lateral forces that might
be induced in case of earthquakes. Therefore, on top of radiation shielding, CERN

needs to guarantee the structural safety of all concrete configurations.

Researches on seismic analysis of rigid bodies without connections date back to
decades ago. Monumental Articulated Ancient Greek and Roman (MAGR) struc-
tures consist of members excellently fitting each other without mortar and standing
upright only because of gravity and friction. For safety and restoration purposes of
those MAGR structures, various researchers have provided valuable insights into the
motions of single or multiple rigid bodies under ground excitation and established
highly nonlinear governing equation of motions [83, 137]. However, those equa-
tions are not only derived with overly idealized assumptions, but are also limited
to specific rigid body configurations and ground excitation patterns. Furthermore,
the equation of motion can be made complicated considering energy dissipation
happening at the impacting surfaces. Many have shown that the presence of friction
may lead to different impact dynamics, as sticking and reverse slipping can happen

[61, 148]. Therefore, for this study, reliable numerical models with simplified con-
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tact mechanics are needed in order to assess the seismic performance of CERN’s

many concrete structures.

While analytical solution is undesirable, and it is impossible to bring every large
complicated CERN configuration onto a shake table for seismic analysis, simple
concrete configurations can be tested for benchmarking purposes against numerical
models. With calibrated numerical models in hand, CERN can confidently simulate
current or future concrete-block configurations with various ground excitations and
material parameters to probe their seismic performance. With this purpose in mind,
in 2019, CERN conducted a test campaign at Eucentre Foundation, Italy. The
dynamic response of four different concrete-block configurations was investigated
through seismic tests [139]. In this chapter, experimental results from the test
campaign have been used to calibrate the two discrete-system-model: LS-DEM &
LMGC90.

Cundall and Strack [22] introduced the 3D DEM in 1988, and since then this method
has been used extensively for simulations of discrete particles. Traditionally, DEM
deals with spherical shaped particles, hence making it inappropriate for applications
with non-spherical particles. In 2016, Kawamoto et al. [76] introduced a variant
of DEM, referred to as the Level Set Discrete Element Method (LS-DEM), and
successfully pushed the boundary of the traditional DEM by making LS-DEM
suitable for simulations of any arbitrary shaped particles. So far, LS-DEM has
been used extensively in simulating the mechanics of granular media [72, 77, 100],
metamaterials [170], and seismic performance analysis [3]. In [3], LS-DEM was
used to assess the seismic stability of multiblock structures and the results were
compared to shake table tests. This was the first attempt ever to use LS-DEM for

seismic analysis.

Jean-Jacques Moreau introduced the Contact Dynamics (CD) method in 1984 [110].
The method uses a formulation of unilateral contact, shock laws, Coulomb’s friction,
inspired by Convex Analysis. These laws account roughly for the main features of
contact and friction, and are relevant in multi-body collections where sophisticated
laws cannot be captured exactly. This method was extended to deformable bodies
by Michel Jean [66] and entitled Non Smooth Contact Dynamics (NSCD). See [29]
for more advanced discussions on this method.

In this chapter, we present the benchmarking (including calibration) of the above
state-of-the-art discrete-system-models, LS-DEM and LMGC90, with experiments.

The structure of this chapter is as follows: First, we will explain and compare the
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theories of both models. Then the test campaign conducted in Eucentre will be
briefly described. Finally, results from the two calibrated models will be presented
and compared with experiments, followed by discussions of similarities and differ-
ences. We show that the two models after calibration show remarkable resemblance
to the experiments, indicating that both models are suitable for future simulations

of large complicated concrete structures that cannot be tested on shake tables.

3.2 Model Methods and Comparison

LS-DEM

LS-DEM is a variant of the traditional DEM capable of simulating the kinematics
and mechanics of a system of particles with arbitrary shapes, made possible by
the usage of level set functions as a geometric basis [76]. For any random-shaped
particles, a level set function, ¢(x), calculates the distance, d, between an arbitrary

point, x, in the space to the nearest surface of the particle (Figure 3.1 left).
d(x) =+d. (3.1)

If this point is taken inside the particle, the level set value would be negative.
Vice versa, the value would be positive. The surface of the particle can simply be
reconstructed using ¢(x) = 0. In this chapter, all particles are blocks of same size

with a chamfer of 2 cm along the edges.

Figure 3.1: The left picture shows the level set representation of a slice of the block,
with ¢(x) = 0 being highlighted using a black dashed contour. The right picture
shows a 3D representation of the block’s ¢(x) = 0 surface and the surface nodes,
with a zoom on the chamfer.

Together with the level set values, a set of surface point discretization is made to
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detect particle-to-particle contact (Figure 3.1 right). In this study, the level set grid
had an equal spacing of 0.02 m. The surface node had a spacing of roughly 0.2 m.

All surface points p of a particle is checked against the level set values of the
other particle. If a point p; has contact, force in normal direction is subsequently

calculated using

Fy = ¢(pkatt — ya (0™ - )R (if ¢(p;) <0), (3.2)

where k, is the normal stiffness of the block, 7 is the surface normal calculated at
Pi, ¥n 18 the critical normal damping coefficient calculated from the coefficient of
restitution Cieg at the contacting surface point [53], and v™ is the relative velocity

of this particle with respect to the other particle.

Many researchers have proposed different formulas in applying damping to contact-
ing points. For example, Chatzis and Smyth adopted a method in relating damping
coefficient to the modulus and density of the contacting medium [16]. LS-DEM uses
a formula initially proposed by Tsuji el al., incorporating coefficient of restitution

directly into a critically damped mass-spring system [155] by

“InC
o = 2y e (3.3)

V72 + In Cres?

where m is the mass of the colliding object.

Due to history dependence, shear force is calculated incrementally using
AF, = kAt (v™ — o™ | (3.4)

where kg is the shear stiffness of the block and Af is the integrating time step.
The ultimate shear force is updated by the smaller value between the build up
of incremental shearing force and the critical limit for sliding as proposed by the
selection of friction law. In this version of LS-DEM, Coulomb friction law is
implemented. Hence, the critical limit for sliding to happen is a fraction of the
normal force. The calculation of the updated shearing force at each time step can

be represented using the below equation,
dated .
| ELP) = min(ul| Fall, [ ED) - (3.5)

Both the shear force and the normal force contribute to the moment of the block by

crossing with the relative distance with respect to the center of mass of the block,

mCIID



16

M = (pi — Tem) X (Fy + Fy) . (3.6)

With all forces and moments calculated, particles are then updated using Newton-
Euler equations in explicit scheme with a constant time step that guarantees stability
[156]. In this study, the time step of LS-DEM was 0.00001 s.

LMGC90

In Non Smooth Contact Dynamics (NSCD), the contact laws are managed as non-
differentiable steep laws using a nonsmooth dynamics formalism. They are inte-
grated with an implicit scheme, leading to a non-linear system which is solved using
a Non-Linear Gauss—Seidel algorithm (NLGS) at each time step. The method uses
large time steps (larger than smooth DEM), but each time step is computationally
involved due to integration scheme. So in contrast to the above smooth and explicit
DEM, the CD method is a nonsmooth and implicit method. Since “rigid” contacts
are used, no damping has to be introduced. Note that implicit methods enable the
correct computation of equilibrium states, which is not always the case with explicit
methods. NSCD can also conserve, with a suitable choice of parameters, the total

energy of the system in discrete time.

Concerning the modelling of structures made of regular blocks, several approaches
are possible. One can consider rigid blocks with frictional contact [19], or de-
formable blocks with cohesive frictional contact [161], or any mix of bulk and
contacting models. From a technical point of view, depending on the bulk model,
the contact conditions are not treated in the same way. For rigid blocks, a common
plane approach is used [22], leading to a maximum of 4 contact points (marked by
red in Figure 3.2). Contact surfaces between blocks (marked by green in Figure 3.2),
delimited by the four contact points, are shrunk to introduce a kind of safety coeffi-
cient. Rigid convex objects are described by a surface mesh. The contact detection
algorithm is independent of the mesh as the algorithm looks for overlapping parts
of surfaces. For deformable or rigid non convex objects, additional surface nodes
are added to the skin mesh to detect contact with other objects in a way similar to

LS-DEM. Contact conditions are verified at those surface nodes.

In this study, LMGC90 simulations were done both with rigid and deformable
(elastic and visco-elastic) blocks with frictional contact and no restitution. The

mesh size was 0.2 m. The time step chosen was 0.001 s.
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™

Figure 3.2: Stack of 3 polyhedra on a rigid foundation. Contact surfaces between
polyhedra (denoted by green color), as delimited by contact points (denoted by red
color), are shown as an example. Three polyhedra are shown in surface mesh of
different density, yet the area of contact surfaces between them is the same, showing
that contact detection is independent of the mesh.

Comparison

Both aforementioned models solve Newton-Euler equations. LS-DEM uses a
smooth explicit time integration scheme with a fixed time step. Due to the pres-
ence of interpenetration in cases of collision, penalty terms like normal stiffness
kn and shear stiffness kg are required. The normal force F;, is a function of the
interpenetration distance d,. When the distance is positive, normal force is zero;
when the distance is negative, indicating there is a contact, F; is a linear function
of the normal stiffness k, with respect to |d,|. The Coulomb’s friction law adopted
in LS-DEM has finite steepness. In case of static friction, i.e., ksds < puFy, Fs is
a linear function of k¢ and ds. Figure 3.3 shows a graphical representation of the
calculation of F, and Fj.

Since the current version of LS-DEM models rigid-body motions, for a fair compar-
ison, only the dynamics of rigid bodies of LMGC90 will be discussed. LMGC90
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Figure 3.4: Comparison of normal and shear contact force calculations in rigid-body
LMGC90.

uses nonsmooth implicit scheme with the equations of motions expressed in differ-
ential inclusions [28]. Unlike LS-DEM, no elastic modulus is required. The term
“nonsmoothness” is an accurate representation of the infinite steepness presented by
the inelastic shock law and Coulomb’s law, as in Figure 3.4. When d, is positive,
the normal force F;, is zero. What’s different from LS-DEM is that when d, < 0,
the Signorini condition ensures that F;, is positive or null. Similarly, the graph of
Coulomb friction law exhibits an infinite steep around ds = 0. Because LMGC90
uses implicit scheme, the choice of time step can be large. At each time step, NLGS
is run until convergence, hence each time step can be very time consuming. As a
benefit of the implicit scheme, often times energy conservation and numeric stability

can be achieved without the use of damping.
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3.3 Case Study: Rocking Tests

The dynamic response and the stability of four different configurations of stacked
concrete blocks were investigated within an experimental campaign consisting of
seismic tests. Four different specimens, whose height varied from 4.8 m to about
7.6 m, consisted of a maximum of 9 blocks were constructed (Figure 3.5). A wall
of three and four stacked blocks, respectively, characterized the first and the second
configuration. The third and the fourth one is consisted of two walls of four stacked
blocks, with a block at the top; in the fourth specimen, a extra system of steel beams

supported the top block.

The specimens were assembled on the steel platform of an unidirectional shake table
at the Eucentre Foundation (Pavia, Italy). A base concrete slab, whose translation
was restrained by two steel profiles fixed to the platform of the shaking table, simply
supported the specimens. Steel stoppers at the base and retaining steel systems
provided along the height of the specimens were used to prevent unsafe effects due
to unexpected large displacements or rotations. Both the stoppers and the retaining

systems were designed not to interfere with the test results.

(a) (b) © ()

Figure 3.5: Different configurations of stacked blocks tested on the shake table.
(a) Configuration 1: 4.8 m-height three-blocks specimen; (b) Configuration 2: 6.4
m-height four-blocks specimen; (c) Configuration 3: 7.2 m-height nine-blocks two-
walls specimen; (d) Configuration 4: 7.4 m-height nine-blocks two-walls specimen
with the top block supported by steel beams.

Accelerations were applied at the base of the specimens. Two different acceleration
time-histories, each called Alkion and Basso Tirreno [2], were used. They were
chosen because they represent an upper bound for a standard acceleration time-

history representing the Geneva Area, according to the SIA norms [150]. The
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acceleration time-histories and their characteristics can be found in Figure 3.6 and
Table 3.1.
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Figure 3.6: Acceleration time-histories: Alkion (top) and Basso Tirreno (bottom).

Table 3.1: Characteristics of the ground motions.

Earthquake Date Magnitude [Mw] Distance [km] PGA [m/s?]
Alkion Feb 25, 1981 6.3 25 1.176
Basso Tirreno April 15, 1978 6 18 1.585

For each specimen, the first test was performed at a scaled acceleration intensity of
50%. Then a series of successive tests with acceleration amplitude increment of
about 25% were performed, until a potential occurrence of structural collapse. At
each intensity level, the relative position of each block was checked and, in case of
large misalignment, the specimen was restored to its initial configuration. Additional
low-intensity constant-amplitude tests with sinusoidal waves were performed at the
beginning of the campaign or between two tests with the aim of assessing the

dynamic properties and the state of damage of the specimens.

The assessment of the dynamic properties and of the seismic response of the spec-
imens were based on the spatial components of accelerations and displacements
measured at different levels along the height of the specimens. The specimens were
equipped with up to 21 acceleration transducers, 4 displacement transducers and

101 retro-reflective optical markers, belonging to two different acquisition systems.
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Further data regarding force, accelerations, velocities and displacements of the shak-
ing table was obtainable from the control system. The measurement frequencies
were 512 Hz and 200 Hz for accelerations and displacements, respectively. The
acceleration signals were later filtered with a 50 Hz low-pass filter. An example of
the layout of the instrumentation is depicted in Figures 3.7 and 3.8 for Configuration

3. For more details of the experiments, please refer to [139].
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Figure 3.7: Layout of the accelerometers of Configuration 3. (a) Front view of the
two walls; (b) Wall “A” from the observer view; (c) Wall “B” from the observer
view.

3.4 Results and Discussion

Model Calibration

To calibrate both models with respect to experiment results of Eucentre’s test cam-
paign, mechanical properties of concrete and steel are required. While most of the
distribution parameters of these properties (e.g., mean, standard deviation, or coefli-
cient of variation) can be found in literature, concrete-to-concrete friction coefficient
could not be determined due to its large variation present in literature. Therefore, a

semi-probabilistic approach using Monte Carlo sampling was adopted.

With most of the distribution parameters of concrete and steel properties taken
from literature [67, 68], the mean of concrete-to-concrete friction coefficient was
randomly sampled from 0.3 to 0.8. Log-normal distributions were then created
for each of the material properties and were later inputted into a procedure based

on correlation controlled Latin Hypercube Sampling (LHS) technique, developed
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Figure 3.8: Layout of the retro-reflective markers of Configuration 3. (a) Front view
of the two walls; (b) Layout from the observer view; (c) Image of the specimen taken
at Eucentre.

by Vofechovsky and Novék [163], to sample from multivariate distributions. This
method is efficient for small sample sizes and can lead to accurate estimates of real
behaviors with low variability. In total of 50 sample vectors were produced from
this procedure, with each of the sample vectors assembled by sampled properties
of concrete and steel (e.g., friction coefficients, density, and modulus of elasticity).
Then, 50 sets of simulations (one for each sample vector) were performed in both
LS-DEM and LMGC90 in order to determine whether the displacement envelope
created by all samples contain the actual experiment data. This process was repeated
multiple times to obtain the most optimal value of the mean of concrete-to-concrete
friction coefficient. Eventually, a final set of distribution parameters was chosen to
be used for future simulations for seismic risk assessment of concrete configurations
at CERN.

The optimal values for the distribution parameters of concrete and steel properties
are reported in Table 3.2. For each variable, the histogram of the samples obtained
by the LHS technique is presented in Figure 3.9.

While variables like friction coefficient 4 and density p are straight forward and
universal, there are a couple of parameters that need to be translated or calibrated
uniquely in LS-DEM. Normal stiffness k, and shear stiffness ks are penalty pa-
rameters unique to the DEM. Methods like the Hertzian Contact Theory directly
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Table 3.2: Distribution models and parameters used in the simulations.

Variable Distribution Model Mean SD C.o.V.
Friction Concrete/Concrete [-] Log-normal 0.75 0.075 0.1
Friction Concrete/Foundation [-] Log-normal 0.75 0.075 0.1
Friction Steel/Concrete [-] Log-normal 0.3 0.03 0.1
Concrete Density [kg/m3] Log-normal 2400 96 0.04
Concrete Young’s Modulus [Pa] Log-normal 345E+10 S5.175E+09 0.15
Concrete Viscous Modulus [Pa]  Log-normal 1.5E+08  2.25E+07 0.15
Steel Density [kg/m3] Log-normal 7700 77 0.01
Steel Young’s Modulus [Pa] Log-normal 0.21E+12  6.3E+09 0.03
Steel Viscous Modulus [Pa] Log-normal 0.21E+10 6.3E+07 0.03
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Figure 3.9: Histograms of the samples obtained by the LHS technique.

correlates the elastic modulus of a material to the stiffnesses required in the DEM.
However, the Hertzian Contact model does not apply for contacts between blocks.
Therefore, a different method has to be developed in order to approximate stiffness

from real material properties like modulus of elasticity.

Harmon et al. [53] presented a novel way of determining k, and k. In reality, when
a stack of concrete block assembly is excited by ground acceleration, the motion of
blocks is set off via the propagation of stress waves. There is no way to model stress
waves in LS-DEM, yet delayed responses of higher blocks are observed due to the
presence of contact elasticity. As a result, normal stiffness and shear stiffness can

be tuned such that the speed of propagation of motion, referred to as the “effective
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wave speed,” in the simulation is the same as the speed of stress wave propagation

in reality.

The speed of stress waves can be calculated as
cp=+VE/p (3.7)

for pressure waves and
cs=vVG/p (3.8)

for shear waves, where E is the Young’s modulus of the material, G is the shear
modulus and p is the density. To match with above speeds, a tower of stacked
concrete blocks is set up in the simulation. A unit step of velocity is then given to
the ground in LS-DEM in both horizontal and vertical direction, respectively. The
resulted displacement of the blocks is plotted against time, as shown in Figure 3.10.
The effective wave speed is calculated after all the blocks have reached a similar
velocity, which is indicated by a near-identical slope in Figure 3.10. The effective

wave speed can then be obtained by Ah/At.

By calculating the effective wave speed and matching it to the actual stress wave
propagation speed in Eq. 3.7 and 3.8, one can approximate k, and k. The resulting
histograms of such parameters are shown in Figure 3.11. We see that the distributions
of k, and kg not necessarily follow those of E and G because the effective wave
speed is also affected by block mass. With heavier blocks, larger stiffness is required

for the contact to overcome the inertial force and respond to the ground excitation.

Other than the variables listed in Table 3.2, LS-DEM is taking the coefficient of
restitution Cyes into the calculation of normal forces (Eq. 3.2). After tuning the
model, it is found that a moderate amount of normal damping with Cies = 0.5 is
needed in order to compensate for the large k, obtained due to the significant mass
of the blocks. The coefficient of restitution adopted in this chapter is within the

range reported from [53].

In order to examine both methods’ abilities to capture the seismic performance of the
concrete structures, tests with the largest ground accelerations were chosen among
all the experiments. Displacement readings were taken from the optical marker
located at the face center of the side of the base concrete slab. Velocities were then

calculated from the displacements and fed into the program as ground input.

Results are shown in Figures 3.12-3.15. In these figures, the displacement time-

history of mass center of the concrete block is plotted against optical readings taken
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Figure 3.10: Displacement time-histories of the blocks after the unit step velocity
(left) and the tower of four concrete blocks (right). After all the blocks have reached
a similar velocity, the effective wave speed can then be obtained.

Count
Count

Figure 3.11: Histograms of normal stiffness k, (left) and shear stiffness kg (right)
approximated using method described.

from the face center on the side of the same specimen. The grey shaded area is
the overlapping of the lines representing the displacement time-histories of all 50
sample sets, with the red line highlighting the maximum and minimum values along

the time axis. The black dashed lines indicate the actual experiment results taken
from Eucentre.
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LS-DEM Results

In Configurations 2, 3, and 4, the displacement envelope of the top block is thicker
compared to that of Configuration 1. This is inevitable as a result of different model
parameters tested. Since kinematics of higher blocks are calculated based on that
of the lower ones, as the number of blocks increases, the displacement envelope
naturally propagates upward and becomes thicker. Moreover, the onset of rocking
or slide-rocking is related to the height-to-width ratio of the assembly [134]. Since
Configuration 1 has the least number of concrete blocks and shortest height, the
occurrences of rocking and/or slide-rocking is the fewest among all configurations
tested. Configurations 3 and 4 are higher in levels and also are more complicated in
structures, so naturally, rocking and/or slide-rocking behavior is more likely to be
observed. As those dynamic events happen, the behavior of the blocks can heavily
depend on parameters like friction coeflicient, density and stiffnesses, thus giving
explanation to thicker envelopes for Configurations 2, 3, and 4. Similarly, as seen in
the LS-DEM result from Figure 3.15, the displacement envelope is thicker for the
top block compared to that of Configuration 3, potentially due to the inclusion of

four supporting steel beams.
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Figure 3.12: Displacement time-histories for Configuration 1.
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Figure 3.14: Displacement time-histories for Configuration 3.

LMGC90 Results
In LMGC90, three different mechanical behaviors have been analyzed: rigid, elastic,
and visco-elastic. The visco-elastic block model described the real seismic behavior

of the four configurations the best. The elastic block model described the real
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Figure 3.15: Displacement time-histories for Configuration 4.

behavior in a satisfactory way for Configurations 1 and 2. For Configurations 3
and 4, the simulated results are not ideal and is showing large deviations between
tests due to more complicated concrete structures. The rigid block model behaved
satisfactory for all four configurations. Within the same model (rigid, elastic, and
visco-elastic), similar responses from LS-DEM were observed: more oscillations

and thicker envelope towards more complicated concrete structures.

Comparison and Discussion

Given that the blocks in LS-DEM do not deform, it is natural to compare LS-DEM
model with the rigid model of LMGC90. Since the contact surfaces in LS-DEM
are visco-elastic due to the presence of springs and dampers, we also included the

elastic and visco-elastic behaviors from LMGC90 for references.

From both models, the resemblance between simulation results and experiments is
remarkable. Some oscillations and variations in residual displacements can still be
observed from certain simulations. However, since the exact values of the input
variables from reality are unknown, the experiment data can only be taken as a
reference. The stochastic nature of the system is accounted for in the simulations,
but the experiment is only one realization of a stochastic system itself. Indeed, the
experiments only provided one set of data for each configuration at each earthquake

intensity level, while the adopted LHS technique, as any Monte Carlo method, leads
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to provide multiple realizations for each model at each intensity level.

Given that only absolute displacements are compared, it would be ideal to benchmark
the rotational behaviors of the blocks as well. Although such data can be easily
extracted from the simulations, rotation angles cannot be easily extracted from the

experimental data due to the presence of noise given small block rotations.

3.5 Conclusion

The main objective of this study is to validate and benchmark two discrete-system-
models (i.e., LS-DEM and LMGC90) against experiments done in Eucentre. After
analyzing simulation results from both LS-DEM and LMGC90 calibrated models,
we can conclude that the seismic performance coming from LS-DEM is similar to
that from LMGC90, and both show remarkable resemblance to the actual exper-
imental result obtained in Eucentre. Given that discrete objects in LS-DEM are
rigid with visco-elastic contact, results from rigid model and visco-elastic model
of LMGC90 are used for comparison. More rocking and/or sliding is observed
from the models for complicated configurations like Configurations 3 and 4. Larger
deviation in residual displacements is also observed, especially for Configuration 4
due to the inclusion of four supporting steel bars. It is important to point out that
one experimental result is merely a single realization of a stochastic system. Due
to time, resource constraints and the almost impossibility of recreating identical
initial samples, it is impractical to repeat the experiments as many times as in the
simulations. On the other hand, using numerical models as virtual experiments, a
large number of realizations can be obtained (using multiple random parameters),
generating a wealth of data and deeper insights that are difficult or impossible to
obtain experimentally (e.g., force distribution, damage, kinematic fields, etc.). It is
apparent that numerical virtual experiments offer a window into stochastic systems

such as those studied herein.

Additionally, the study clearly shows that both numerical models can independently
reproduce the experimental results. This finding gives us confidence that, since the
experimental results at Eucentre can be replicated accurately, other perhaps more
complex configurations can be reproduced. Indeed, the concrete specimens tested
in experiments are simplified configurations utilized for benchmarking purposes
only. The actual concrete configurations used at CERN for radiation shielding are
more complex and involve a much larger number of blocks. Such complex and large

systems are impractical for physical modeling. Instead, validated numerical models
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can and should be deployed to investigate the seismic performance of such complex
and large structural systems. Perhaps even more importantly, one can use such
validated numerical models to design more seismic resistant concrete assemblies

for a variety of purposes.

With the method proposed in [163], one can run Monte Carlo type simulations
on discrete systems efficiently to obtain stable estimates with low variability. This
study presented a detailed procedure for tuning the two discrete-system-models for
simulating the dynamic response of radiation shielding concrete configurations.
However, the same procedure can be replicated for any discrete systems, given user-
defined margins and correlation structures. This study merely presented one family
of numerical models for discrete concrete structures, yet the approach is amenable
to any other numerical model, thereby proposing a new framework for modeling

discrete structural systems.
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Chapter 4

ROLE OF FRICTION AND GEOMETRY IN TUNING THE
BENDING STIFFNESS OF TOPOLOGICALLY INTERLOCKING
MATERIALS

T. Lu*, Z. Zhou*, P. Bordeenithikasem, N. Chung, D. F. Franco, J. E. Andrade,
and C. Daraio. Role of friction and geometry in tuning the bending stiffness of

topologically interlocking materials. Extreme Mechanics Letters, 71:102212,2024.
doi: 10.1016/j.eml1.2024.102212.

4.1 Introduction

The demand for materials with adjustable physical properties and the ability to
respond rapidly to environmental stimuli has been growing [146]. In particular,
fabrics with adaptable or tunable stiffness are applicable for use in soft robotics,
shape morphing structures, and wearable devices [107, 133, 170]. For example,
tunable fabrics can find use in wearable medical devices, like exoskeletons, haptic
systems, and reconfigurable medical supports [101, 123, 175]. At larger scales, ap-
plications of tunable fabrics include transportable and reconfigurable architectures,
which transition from a compact and flexible state to a deployed and rigid state
[1, 116].

Incorporating interlocking particles in fabrics opens up the possibility to incorpo-
rate added structural support and adjustable mechanical properties [6, 31, 40, 79].
The mechanical behavior of such structured fabrics or topologically interlocking
materials (TIMs) is determined by the characteristics of their constituents and the
topology of their arrangement [40, 105, 135? ]. In most architected materials and
woven fabrics, these mechanical behaviors are determined during the design process
and remain fixed after the components are fabricated. However, in some realiza-
tions, the fabric properties can be adjusted through actuation [79, 106]. Wang, et al.
demonstrated architected fabrics consisting of chain mail layers with interconnected
particles, which demonstrate the ability to reversibly and gradually switch between
soft and rigid states [106, 135, 170]. The control of the fabrics’ stiffness is achieved
by applying pressure at the boundary that jams the particles via vacuum suction,
in a system similar to other structured fabrics [116, 133, 170]. While this example

demonstrates the ability to create architected fabrics with tunable properties, the use



32

of vacuum actuation is not practical, because it requires bulky and energy intensive
pumping systems. Using tensioned fibers or artificial muscles could be a more

compact and power-efficient solution [166].

In this chapter, we study the response of a particular TIM system, consisting of
truncated tetrahedral particles connected by woven tension wires [79, 1352 ].
Unlike the TIM system that is held solely by geometric interlocking and external in-
plane constraint, which exhibits a softening stage before the TIM collapses [79], our
fabric-TIM system shows a stiffening response during the indentation tests due to the
gradual increment of anti-separation forces provided by the wires. The connecting
wires facilitate the tunability of the bending modulus in response to adjustable
applied tension, as demonstrated in Figures 4.1c—d [106, 135]. Additionally, they
enable the formation of various flexible shapes while keeping the TIM structure
intact. To better understand the fundamental mechanisms governing the tunability
of the TIM system’s apparent bending stiffness, we explore the role of contact angle
and contact friction at a fixed applied wire tension, using experiments and numerical

simulations.

4.2 Design and Fabrication of the Topologically Interlocking Materials

There are various designs of TIMs. Dyskin et al. [31] used tetrahedral solids to
form layer-like structures that are interlocked topologically. Molotnikov et al. [106]
constructed TIM systems made of osteomorphic blocks embedded with shape mem-
ory alloy wires that can alter the TIM’s flexural stiffness when activated. Siegmund
etal. [135] created TIM systems using truncated tetrahedron blocks integrated with
internal constraint fibers or woven tow material, demonstrating interlocking systems

confined by passive elements.

Tetrahedrons are the simplest platonic solid, and all platonic solids can be arranged
into layer-like structures in which they are interlocked topologically [33]. Addition-
ally, trapezoidal particles are known for their substantial contact surfaces [6] and
have extensive applications in architected materials to enhance mechanical perfor-
mance [171]. Drawing inspiration from the previous references, we study a classic
system of a TIM assembled with truncated tetrahedron particles as the basic build-
ing blocks (Figure 4.1a). Using truncated tetrahedrons, as opposed to osteomorphic
blocks, allows us to systematically change a single parameter, such as dihedral angle,
to dictate the amount of interlocking. Moreover, since truncated tetrahedrons do

not completely fit into each other, the relaxed state is more flexible and similar to a
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fabric. Inspired by Siegmund et al. [135], we design the particles with longitudinal
and latitudinal through-holes. We use nylon wires to weave through each discrete
particle and interconnect them, as depicted in Figure 4.1b. To actuate the fabrics, we
apply different levels of tension to the wires and thereby jam the particles with their
neighbors to form an interlocked state (Figures 4.1c—d). The combined outer sur-
face of the truncated tetrahedrons upon post-tensioning is a flat plane. The resulting

assemblies possess geometric contact and interlocking periodicity.

Figure 4.1: Schematic and physical samples of the TIMs. (a) Schematic of a
basic building block (particle) in the shape of a truncated tetrahedron [31], with
dihedral angle, 8, between the truncating surface and the side surface of particle;
(b) Schematic of particles inter-connected by post-tensioned wires; (¢) Unactuated,
soft state of the sample; (d) Actuated, stiff state of the sample; (e-f) Samples made
by particles with 8 = 60°, 70° and 90°; Samples shown in (e) are made by Vero
White, with a measured friction coefficient of 0.2; samples shown in (f) are made
by Nylon Polyamide 12, with a measured friction coefficient of 0.6.

A series of TIMs were produced by varying two different particle parameters: the
particle’s dihedral angles, 8 (Figure 4.1a) and their surface friction. The particles
were fabricated with three different dihedral angles, 60°, 70°, and 90°, where the
latter is simply a prism geometry with no geometric interlocking. To vary the surface
friction, we 3D-printed the particles using two different materials of similar stiffness:
Vero White (VW) using an Objet Stratasys Connex 500, and Nylon Polyamide 12
(PA12) using a Sintratec SLS 3D printer. Particles were cleaned by removing the
outer support material. The Vero White particles were additionally cleaned in a 2
percent aqueous solution of NaOH to remove the remaining support material. The
coefficients of friction were determined experimentally after the particles had been
cleaned, using sliding friction tests. The resulting surface friction coefficients were
measured to be 0.2 and 0.6, respectively. The particles were then woven together

with 0.3 mm diameter nylon wire. The system is subsequently actuated with a
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small motor (28BYJ-48 Stepper Motor) that controls the amount of wire tension
and therefore jamming the particles. A custom-designed fixture was 3D-printed for
the motor housing and tensioning mechanism with sufficient clearance space for the
tension meter (Checkline ETB-2000). The tension should attain the predetermined
threshold, ensuring that the wire remains within the elastic range during the testing
phase. The tension meter was used to gauge the tension and determine whether to
incrementally increase the tension by spinning the motor. Once the desired average
tension was achieved in the wires, the tension was secured with clamp beads to hold
the wire in place. Then the woven sample was removed from the fixture with the

motor.

4.3 Simulations

For a more systematic analysis of the TIM fabrics’ behavior as a function of particle’s
geometry and constituent material properties, a reliable and validated numerical
model is necessary. Level Set Discrete Element Method (LS-DEM) is used to
model the physical experiment. LS-DEM is a variant of the traditional DEM
allowing arbitrary object shapes. Originally developed for granular applications
[76, 100], LS-DEM has recently been adapted to study the structural behaviors
of multi-block structures [53, 180], and the structural analysis of TIM, showing
satisfactory results in capturing the slip-governed failure [41, 42] and the deflection
limit [157] of the slab-like TIM. LS-DEM uses level set functions as the geometric
basis, which calculates the signed distance ¢ from any arbitrary point in the space
to the nearest surface of the grain. For example, in this work, a cross-sectional
slice of a basic building block, which is the shape of a truncated tetrahedron, is
a trapezoid in 2D, as shown in Figure 4.2a. The surface of the building block,
or particle, can be reconstructed by ¢ = 0. We impose a set of surface nodes
with uniform discretization size onto each particle (Figure 4.2b). When checking
potential particle contact, we take the position of each surface node @ of one particle
and check the corresponding level set value from another neighboring particle. If

¢(x) < 0, then contact exists between this pair of particles.

Given the discrete nature of the woven-connected particles, LS-DEM is capable
of extracting particle-scale information at micro-mechanical level, thus providing
insight into how friction and contacts between particles affect the macroscopic
property such as sample bending stiffness. Furthermore, the use of level set function
provides flexibility in particle shape control, allowing us to easily simulate different

particle shapes and investigate the combined geometric shape effects to the sample’s
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overall behavior. The use of LS-DEM is also computationally efficient compared to
other simulation methods such as FEM for potential simulations of large ensembles

of particles [23].
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Figure 4.2: Numerical model setup. (a) Illustration of the level set matrix of a
slice of the truncated tetrahedron; (b) The particle is reconstructed by surfaces with
¢ = 0; the imposed surface nodes are shown in blue dots; (c) Illustration of a
pair of neighboring particles, connected by a massless spring with stiffness k and
elongation d; (d) Illustration of the sample under post-tensioning force Tgc.

We use point forces acting on the boundary particles 7Tg¢ to model the post-tensioning
effect of the wires (Figure 4.2d). On top of that, we use massless springs connecting
the face center of the side of each particle to the face center of the side of its
neighbors (Figure 4.2c). The neutral position of the spring is at a distance d = 0.
The springs connecting neighboring particles can only exert tensile forces on the
connected particles. When two neighboring particles are separated, the wire force

Twire 18 calculated as
Tyire = ]Ed_, (41)

where k is the stiffness of the spring and is calibrated to match the experimental

result of an uniaxial tension test carried out on a single woven wire.

4.4 Mechanical Characterizations

In order to experimentally investigate the macroscopic properties of the sample
under various particle geometries and material properties, displacement-controlled
three-point bending tests were performed with an Instron E3000 Mechanical Testing

Machine (Figure 4.3a). The indenter had a set loading rate of 0.5 mm s~!. To ensure
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that the TIM systems deform within their components’ elastic limits, we imposed a
maximum indentation depth of 5 mm. This indentation depth was determined by
performing three-point bending tests on 3D-printed slabs of the same material with
the same fabric sample dimensions. Tests show no yielding behavior within 5 mm.
This indentation depth also guarantees that the wire remains within its elastic limit,
confirmed by independent tensile tests on the wire, aligning with the assumption

made in Equation 4.1.

To compare the bending performance of the different fabrics, we define an apparent

elastic bending modulus, E*, as [170]:

KL3
Ef=—. 4.2
4bh3 42)
Here, K is the stiffness of the initial linear regime of the force-displacement plot
obtained from the test machine, L is the support span, b is the width of the sample,

and £ is the thickness of the sample before testing.

We study the role of friction and particle’s shape on the overall fabric’s behavior,
comparing the apparent bending moduli values extracted from the experiments.
Figure 4.3b shows an overview of the bending modulus calculated from Figures 4.3¢c—
d using Equation 4.2. Both increasing surface irregularities (i.e., friction between
particles) and geometric interlocking have a positive correlation with the bending
modulus. Samples made with PA12, resulting in a higher surface friction coefficient
(1 = 0.6) than those made with Vero White (VW) (u = 0.2), exhibit almost twice as
much bending modulus as VW samples of the same particle geometry. Figures 4.3c—
d show the force-displacement plot for VW samples and PA12 samples accordingly.
The force-displacement curves obtained from the three-point bending tests show
an initially linear regime at small indentation depths, primarily due to the elastic
response of the wire while the particles spread out. However, as the displacement
increases, a nonlinear response is observed, most likely because of frictional sliding
and local rearrangement of the particles within the system. Comparing the force-
displacement plot within samples of the same material (Figures 4.3c—d), we see that
particles with smaller dihedral angle 6, which result in higher interlocking upon
post-tensioning, show higher stiffness. If we compare samples of same particle
geometry but made with different materials, samples with higher surface friction

show higher stiffness.

To construct the numerical model, we first construct the particles using level set

functions and surface nodes (Figures 4.2a-b). We then arrange and post-tension
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Figure 4.3: Experiment setup and results. (a) The three-point bending test setup
with sample; (b) Apparent bending modulus of the different samples, fabricated
with 2 different constitutive materials (Vero White and PA12) and three different
dihedral angles (6 = 60°, 70° and 90°); (c) Force-displacement plots of the Vero
White samples; (d) Force-displacement plot of the PA12 samples. In (c) and (d),
for each sample, a total of five experiments are performed. The solid lines represent
the average force-displacement behavior, and the shaded regions show the standard
deviation over five experiments.

the particles (Figures 4.2c—d), as described in Chapter 4.3. To simulate the testing
setup, we construct a 1:1 model of the experiment apparatus using the same level set
technique (see Supplementary Information). We then move the indenter downward
at a constant loading rate. In the experiments, though the fabrics samples are
prepared and post-tensioned according to the same procedure, there is no way to
explicitly measure the slack of wires introduced during fabrication, and consequently
it is not possible to know the exact tensile forces, Tgc, exerted by the wires on all
particles. Therefore, we adjust the boundary force 7Tgc in the bending simulation

of the 70° VW sample until the simulated apparent bending modulus E* matches
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with that of the corresponding experiment. To ensure consistency and uniformity,
we then apply the same calibrated boundary force to the remaining five simulations
(60° and 90° VW samples, as well as 60°, 70° and 90° PA12 samples).
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Figure 4.4: Comparison of experiments and simulations. (a) Simulated bending
modulus of samples consisted of particles with 8 = 60°, 70° and 90° across different
friction coefficient, from 0.2 to 0.9. For each particle shape at each friction coeffi-
cient, five simulations are run. For each run, noise is introduced to the initial particle
position, particle orientation and boundary force Tgc. The solid line represents the
average modulus, while the shaded regions show the standard deviation across five
runs. Experiment results obtained from VW (u = 0.2) and PA12 (u = 0.6) samples
are marked by green and orange, respectively; (b) Simulated bending modulus vs.
normalized contact area in horizontal projection with particles from 6 = 45° to
6 = 90° with 5° increments. The projected contact area is calculated based on
the initial configuration of the particle orientation, and is normalized by the area
of the 45° particle. Inset: simulated bending modulus vs. 6. Similar to (a), five
simulations are run for each particle shape and noise is introduced in the initial state
of each simulation. Experiment results from PA12 are marked in orange.

As depicted in Figure 4.4, the resulting calibrated numerical model exhibits good
agreement with experimental data regarding the apparent bending modulus E*. In
Figure 4.4a, we show that as the friction coefficient reaches larger values (>~0.3),
the bending modulus of the samples does not increase as much, particularly for
the samples with the least geometric interlocking (rectangular prism particles).
As expected, in samples with more interlocked particles, the modulus increases
more rapidly with increasing friction coefficient. For the 90° prism particles, the
interwoven wire and friction between neighboring particles are the main factors

that counteract out-of-plane deflection. With more interlocked particles (60° prism
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particles), however, not only friction and the wire, but also geometric constraints

are collectively counteracting the out-of-plane deflection.

In order to analyze how geometry affects the modulus, we simulate the bending tests
of samples made by 7 other particles of different degrees of geometric interlocking.
Wang et al. [170] reported a quadratic law relating average particle contact number
to the apparent bending modulus. In this work, since all particles are generated
with surface nodes of uniform discretization size, the contact number per particle
upon contact directly translates to contact area between the contacting neighboring
particles. Since we are assuming a small indentation depth, we estimate the contact
area to be the maximum area of the side surface of a truncated tetrahedron in contact
with its neighbor at initial configuration before indentation, which is one trapezoid
overlapped with a flipped trapezoid, or a hexagon. We plot the bending modulus
against the normalized contact area projected onto the horizontal plane. Since the
horizontal plane is directly perpendicular to the indenting direction, the projected
horizontal contact area acts as the effective contact area for the solid material
to counteract the indentation force. From Figure 4.4b, we see that the bending
modulus scales almost linearly with the horizontally projected contact area. The
dihedral angle 6 scales inverse-linearly with the bending modulus, due to the fact
that particles with larger 8 have smaller horizontal projected contact areas. From
Figure 4.4b and the additional inset figure, we see that particle geometry is a crucial

factor in contributing to the bending modulus.

In contrast to [170], which exhibited a power law relationship, we find an approxi-
mately linear scaling between the projected horizontal contact area and the bending
stiffness in our samples. We attribute this difference to the presence of the woven
wires, which make the samples with less geometric interlocking rely more on elastic
wire forces. During indentation, the wires in samples made from the rectangular
prism particles are expected to be stretched more compared to samples made from
the 45°-particles. This indicates that the wires may exert increased anti-separation
forces within the 90°-particle TIMs in contrast to the other particles that can rely on

greater geometric interlocking.

4.5 Conclusion
In this chapter, we study the role of particles’ geometry and inter-particle friction in
the bending response of TIM systems consisting of truncated tetrahedron particles

woven together with nylon wires. We fabricate samples with particles of varying
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interlocking contact angles and surface friction. In post-tensioned state, we find
that both high friction and large horizontally projected contact area between the
neighboring particles contribute positively to the resulting sample bending resis-
tance. The positive effect of friction to bending stiffness diminishes as friction
coefficient increases. The projected horizontal contact area positively contributes

to the bending modulus at a linear rate.

The TIM is a complex system with many factors at play. Besides the friction and
geometric interlocking, sample thickness and external post-stress also have profound
effects on bending response. In order to isolate the effect of friction and geometry,
we keep the sample thickness and post-stress consistent throughout all experiments
and simulations. More comprehensive study on the combined effect of all factors

should be investigated in future work.

4.6 Supplementary Information

Numerical Model Setup

Truncated tetrahedron particles are characterized by a level set grid of 2 mm/voxel.
The surface nodes are discretized with a surface density of 230 points/cm?. The
contact mechanism of a pair of penetrating neighboring particles are estimated by
visco-elastic models composed of linear springs and viscous dampers. The linear
springs have normal and shear stiffnesses k, and ks. The choice of these parameters
takes into account factors considering material modulus and TIM arrangements,
ensuring no excessive overlap between contacting particles [42]. We assume the
stiffnesses of the particles made of two materials are comparable. The viscous
dampers have normal damping coefficient y, estimated based on coefficient of
restitution Cies [155] by

—InC
Yn = 2N mky mores “4.3)

V2 +1In Cpeg?

where m is the mass of the particles. LS-DEM uses an explicit time integration

scheme. The critical time-step is estimated by [156]

2m
At =0.4,—. 4.4
\/ Sk, 4.4)

The wire stiffness k is calibrated to match the experimental result of a single
woven wire in an uniaxial tension test. The set of parameters used in this work is

documented in Table 4.1.
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Table 4.1: Model parameters.

Parameter Value Units
Normal particle stiffness k, 2 MN/m
Shear particle stiffness kg 2 MN/m
Wire stiffness & 720 N/m
Friction coefficient u {0.2,0.3,...,09} -
Time-step At 5.6e-7 S

Coeflicient of restitution Cres 0.5 -

We construct a 1:1 numerical model for the testing apparatus (Figure 4.5) with the
same level set grid density and surface discretization density. The indenter and the
two supports have the same dimension as the actual experimental test machine. The
two supports are placed 6 cm apart, same as the experiment. After the numerical
TIM sample has been post-tensioned, we allow the sample to settle onto the supports
by gravity. We then move the indenter downward at a constant speed. Since we
have a small time-step of At = 5.6 x 1077 s for numerical stability, we apply a global
damping parameter of 1 x 107 /At s~! to ensure quasi-static conditions and to avoid

excessive computation time [76].

Indenter
- TIM sample

~

Supports

Figure 4.5: Numerical test apparatus.
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Chapter 5

TENSEGRITY STRUCTURES AND DATA-DRIVEN ANALYSIS
FOR 3D CELL MECHANICS

Z. Zhou, J. Ulloa, G. Ravichandran, and J. E. Andrade. Tensegrity structures and
data-driven analysis for 3D cell mechanics. Submitted to: Computer Methods in
Applied Mechanics and Engineering.

5.1 Introduction

Living cells constantly experience complex interactions of mechanical forces [173].
The ability of cells to sense and respond to such mechanical stimuli along with
other biochemical cues is critical to cellular functionality [36, 52, 181]. These
functions are mediated through changes in the cytoskeleton (CSK), which provides
a structural basis for the mechanical and morphological behavior of cells [58, 62, 63,
149, 167]. The CSK comprises a dynamic network of proteins, mainly consisting
of microtubules, intermediate filaments, and microfilaments. Through receptor
proteins, the CSK senses and transmits forces to interact with the adjacent cells and
microenvironment, in turn orchestrating cell shape changes, polarity, and motility
[7]. An equilibrium in forces is maintained at the cellular level, balancing internal
mechanical forces exerted by the contractile actin filaments, resisting microtubules
in compression, and external forces from the extracellular matrix (ECM) [128].
This state of pre-existing stress in the CSK is referred to as prestress. Multiple
studies have reported the central role of prestress in cellular mechanotransduction
and mechanobiology [20, 59, 60, 143]. Altogether, changes to the mechanical
properties of the CSK can lead to both cell development and disease [47].

Traditional computational efforts for simulating cell mechanics using the continuum
approach describe the cell as an elastic, viscous, or viscoelastic medium, assuming
the cell is composed of materials with certain continuum material properties. For
example, the cortical shell-liquid core model assumes single or several layers of
cortex with surface tension, with the cell interior modeled as Newtonian fluid with
certain viscosity [69, 176]. Other continuum models simulate the whole cell as
a homogeneous solid [103, 132]. For a complete review, readers are referred to

[89]. Such continuum models are good approximations for a range of experimental
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observations. However, as experimental conditions become complex, constitutive
models require additional parameters that are essentially empirical and often lack
physical meaning. Moreover, it is difficult to consider subcellular processes, such

as protein level activities, into such frameworks, except in an averaged sense [45].

In individual cell-based approaches, most models can be grouped into two subsets:
lattice-based models and off-lattice models [102]. The former tracks cells along rigid
grids, with examples being the fixed-lattice Cellular Automata and the Cellular Potts
model [45]. The latter has no grid restrictions and the cells are tracked via centers
of mass, as in the off-lattice center dynamics model [117], or their boundaries,
as in the vertex dynamics models [46]. In vertex dynamics models, additional
biochemical rules can be employed to study more advanced cell behaviors such as

cell rearrangements and oscillations [45, 90].

Most of the aforementioned modeling frameworks either cannot account for cellular
prestress, despite its crucial role in determining cell behaviors, or lack physical
insight in doing so. Models that account for the cell’s internal structure or the
CSK are still relatively scarce [117]. Moreover, it is difficult for the aforementioned
models to directly link mechanical forces to specific load-bearing structures and
molecules inside living cells, although such links are rather ubiquitous. For instance,
Harris et al. [55] reported that depolymerizing actin CSK can result in a decrease in
the stiffness of a monolayer by 50%. It is therefore crucial for a model to incorporate
not only prestress but also subcellular processes, such as distributing changes to
specific groups of cell members, in order to further understand the mechanics of

cells.

Complementing these frameworks, computational models based on micro/nanostructural
approaches offer a different perspective, focusing on the deformation of the CSK
[120, 128, 144]. Among these, one category embraces the concept of tensegrity
(tensional integrity), a structural principle originated in architecture by Buckmin-
ster Fuller [48]. Tensegrity is a self-stable assembly consisting of continuous tensile
elements (tendons) and discontinuous compressive elements (bars). Tendons and
bars are pin-connected in force equilibrium, setting the tensegrity structure in a
tensile prestressed state, reminiscent of the force balance between contractile actin
filaments and compression-supporting structures such as microtubules [63]. Fur-
thermore, studies have shown that cell stiffness scales with the CSK prestress, as
predicted by tensegrity models [168, 169]. These factors make the tensegrity model

a conceptually simple idea for simulating cell mechanics.
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In this context, Sun et al. [149] combined the CSK-based tensegrity model with a
biochemical mechanism to simulate more realistic cellular-level processes. Their
study, however, is largely focused on the biochemomechanical processes of a single
cell. The collective response of tensegrity structures as an assembly of multiple
cells is not investigated. Liu et al. [93] proposed a tensegrity model combined with
the vertex dynamics method to explain the stiffness difference between a single cell
and a monolayer. Moreover, Wang et al. [165] proposed a multiscale model to
investigate the static and dynamic response of cell monolayers. Due to the presence
of torsion components in most tensegrity structures, application of multicellular
tensegrity in cell mechanics has mostly been limited to 2D [125]; see, for instance,
[93] and [165].

In this chapter, we propose a 3D multicellular tensegrity model capable of simulating
cells in one-, two-, and three-dimensions, and investigate the response of such
structure under different loading conditions. The tensegrity modeling framework
is based on the Finite Element Method (FEM) in the finite (large) deformation
setting and allows controlling initial prestress [98, 99]. As with any FEM model,
the computational cost becomes exceedingly expensive as the number of elements
increases, especially for our proposed use in cell mechanics. Therefore, to reduce
the computational cost, we further perform simulations using a multiscale data-
driven (DD) approach in concert with homogenization techniques. DD enables
calculations directly from a material dataset while satisfying pertinent constraints
and conservation laws, thus bypassing the empirical material modeling step in the
conventional FEM [81]. The material (training) dataset can be extracted from

lower-scale computations or experimental observations.

The structure of this chapter is as follows. In Section 5.2 and 5.3, we present a
brief overview of the tensegrity formulation, followed by simulations of a single
cell, a monolayer, and a multicellular spheroid, each compared with published
experimental work. In Section 5.4, we briefly outline the DD framework, followed
by 2D monolayer simulations, employing material data extracted from representative
volumes of tensegrity structures. The DD solutions are then benchmarked against

the tensegrity-based direct numerical simulations.
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5.2 Tensegrity Structures

Modeling Framework

The tensegrity model is composed of pin-connected tensile and compressive ele-
ments. In the present work, we mostly adopt the modeling framework of Ma et

al. [99], briefly summarized below.

Representing the Cartesian coordinates of each node as n; = [x; y; z,-]T, with
i = 1,2,...,N indexing the node number, the global nodal coordinate matrix
N e R3X¥ can be constructed as

N =[n;ny..nyj. 5.1
In a single-vector formulation, the nodal coordinate matrix can be represented as

n = [n? ng ...n%]T. (5.2)

The connectivity matrix C' € RM XN represents the topology of the entire tensegrity
structure, which consists of My compressive bars and M; tensile strings. For each
element efj, (k =1,2,...,M, M = My, + M) connecting node n; and n;, its
corresponding kth row /th column entry Cy; satisfies
1 ifl=i,
Cu=4 -1 ifl=7j, (5.3)

0 otherwise.

Each element el].‘j has a length [, calculated as
Iy = |ln; —n;ll. (5.4)

Accordingly, the global structure length vector I € RM can be represented as

T

lL=[hb..lu] . (5.5)

Similarly, we define the global area vector A € R and modulus vector E € RM,
given by

A=[A Ay ... Ay]", (5.6)

E=[E E,..Ey]". (5.7)

In each element &, the (axial) stress increment do can be calculated in terms of the

(axial) strain increment dey as

dO'k = Ekdék . (5.8)
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The general tensegrity framework is equipped to handle elastic or plastic materials.
In this study, we assume members are elastic and have constant cross-sections.

Hence, the internal force vector t € RM can be calculated as
t=[t1tr...ty]" = diag(E) diag(A) diag(ly") (I - ly), (5.9)

where [y is the rest length vector before the application of prestress. Thus, by
adjusting Iy and I, we can achieve different levels of prestress in the structure.

Finally, the force density vector g € RM is assembled as

qa=1q1q ... qu]" = diag(l™") t = diag(E) diag(A) (I;' =" .  (5.10)

The tensegrity dynamics in the Lagrangian setting can be formulated as
Mn+Dn+Kn=fu—f, (5.11)

where M is the global structure mass matrix, D is the damping matrix, K is the
stiffness matrix, fex is the external force vector, and f, is the body force vector (such
as gravitational force). The stiffness matrix K € R3*" X3V can be constructed from

the force density vector and the connectivity matrix as
K = (C" diag(q) C)® 1, (5.12)

where 1 is the identity matrix.

Due to the nature of the problems under study, we ignore the gravitational effects
on the elements. We also focus on the static response, hence eliminating the mass

and damping matrix. Equation 5.11 can then be simplified to
Kn = fe. (5.13)
Accordingly, the linearized dynamics can be written as
d(Kn) =dfe. (5.14)

Since K is dependent on nodal coordinates 72, Equation 5.14 can be rewritten using
the chain rule as
(Kg + Kg)dn = dfex, (5.15)

where
Kg = (Cldiag(q) C)® 1, (5.16)
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Kg = A diag(E) diag(A) diag(l) A, (5.17)

Agq = (CT ® 1) blkdiag(NCT). (5.18)

Here, K is the geometric stiffness matrix, governed by the structure’s topology
and member force density; Kg is the material stiffness matrix, governed by the
elements’ axial stiffness; and Aeq € RINXM ig the equilibrium matrix. For details
of the general tensegrity FEM framework and derivations, readers are referred to
[99].

Designing self-stress

Similar to Equation 5.13, the equilibrium equation can also be written as

Aeqq = fex> (5.19)

except that Equation 5.19 is a linear form with respect to force density g. With
equilibrium written in this form, one can design initial self-stress as follows. We

first apply singular value decomposition (SVD) to Aeq:

From [122], we know the independent states of self-stress can be calculated from
the null space of Aq. For Aeq € R3NXM with rank r, the number of independent

self-stress modes s can be calculated as
s=M-r. (5.21)

When s = 0, the structure is statically determinate and has a unique solution for any
given load fox. When s > 0, there is an s-dimensional infinity of solutions. In this

case, V' in Equation 5.20 can be expressed as

V = [’Ul V..U W Wy ... ws] , (5.22)
where w; (i = 1,2,...,s) are s independent self-stress modes that satisfy Equa-
tion 5.19. Letting

Vi=[vv;..v], (5.23)
‘/2 = [w1 wy ... ws] , (524)

we can calculate the self-stabilizing q( given initial fj as

qQ = Ay fo+Vaz, (5.25)
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where AJ, is the pseudo-inverse of A and z € R’ is the self-stress coefficient.

In Section 5.2, we will introduce a type of tensegrity structure based on truncated
octahedrons. The given structure has only one self-stress mode, i.e., s = 1. In this

case, V> € RM X1 and z is a scalar.

Suppose we wish to specify the member forces in bars as f;,. Then, the self-stress

coefficient can be calculated as [98]

B %1Mb - IbA;qfO (5.26)
°7 IV, ’ '

where [, is the bar length, 1y, € RMs X1 is a vector of 1 with a size of the number

of bar elements and I, € RM» XM g a4 matrix to select bar elements,

1 if ¢! is a bar element,
Iy = (5.27)

0 otherwise.

Accordingly, the self-stabilizing member forces can be calculated by plugging z into
Equation 5.25:
to = qo diag(l) . (5.28)

3D tessellation

Tensegrity structures remain in self-equilibrium, which requires special arrange-
ments of the elements. There is a vast literature on the form-finding of eligible
self-stabilizing tensegrity configurations [87, 88, 151]. However, constructing 3-
dimensional tensegrity lattices has been difficult due to the low symmetry in common
elementary tensegrity cells [125]. For our purpose of modeling 3D cell mechanics,
we adopt the 3-dimensional tensegrity lattices from truncated octahedron elementary

cells [88, 125] due to their ability to achieve space-tiling translational symmetry.

Each elementary unit is constructed from 12 compressive elements (bars, in black)
and 36 tensile elements (tendons, in red), shown in Figure 5.1. The unit as it is
right now is not 3D-translational or even 2D-translational due to the presence of
twisted truncated surfaces (outlined in Figure 5.1 right). For the structure to be
translational in R? and R3, the unit cell needs to be reflected with respect to any of
the side surfaces for the twist to be aligned (Figure 5.2 left). Any elementary unit
cell must be paired up with reflected cells to make a connection, and no single pair
of neighboring cells is identical (Figure 5.2 right). By alternating reflected cells in
x, y, and/or z directions, the 4-cell system forms a building block that is translational
in 2D (Figure 5.3a), and an 8-cell system forms a building block that is translational
in 3D (Figure 5.3b) [125].
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Top View

Figure 5.1: A tensegrity structure based on truncated octahedron elementary cell.
Six side faces are filled with color for better viewing clarity. Side faces are twisted,
as highlighted in darker contours in the top view.

irrored

Original structure Mirrored structure

Figure 5.2: Schematic showing how to connect neighboring cells.

Extracting stresses and strains

We are primarily concerned with stress and strain information representative of
the global tensegrity structures. Given a tensegrity assembly of volume V with a
total number of elements M, the average stress tensor can be calculated using the

Christophersen relation [21],

o =

<I-
M=

Il
—_

sym (t, ®1,), (5.29)

e

where t, is the internal force of element e and [, is the corresponding length vector.
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Figure 5.3: Pseudo-2D (a) and 3D (b) translational building blocks.

Furthermore, the average strain can be calculated as [57]

1
=y Z sym (u; ® 7;) , (5.30)
i€edJ
where d/J is the set of joint indices (node indices) on the boundary of the represen-
tative volume element (RVE), u = [u, u, uZ]T is the displacement of a node, and 72

is the outward surface normal on the nodes contained in dJ.

5.3 Modeling Cell Mechanics

In the cell CSK, the tensile actin filaments and compressive microtubules are rem-
iniscent of tensegrity structures [62, 63]. In this section, we simulate and capture
the mechanics of a single cell, a monolayer, and a multicellular spheroid using the

proposed 3D tensegrity structure.

Single cell

Harris et al. [54] experimentally measured the force-displacement response of ep-
ithelial cells using combined AFM-confocal microscopy, which provides a good
benchmark to calibrate the parameters used in our tensegrity model. We start by
constructing a single elementary unit tensegrity cell, as depicted in Figure 5.1.
The height of this elementary unit is set to match the height of a single epithelial
cell used in the aforementioned experiment. The tendons are used as simplified
representations of the actin cortex and stress fibers, and bars as representations of

the microtubules and stiffened cross-linked actin bundles [149]. The bottom nodes
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are fixed to mimic the experimental environment. Model parameters are listed in
Table 5.1.

An indentation force of up to 3 nN is applied to the top nodes, as shown in Fig-
ure 5.5. From the resulting force-displacement plot shown in Figure 5.4, we see
that a single elementary unit using the proposed tensegrity structure captures the
force-displacement profile of an epithelial cell in an indentation test. As the inden-
tation force increases, the rate of change in indentation displacement slows down,
demonstrating nonlinearity in the cell response. This benchmark also serves as a
calibration for the model parameters, which will be consistently used in subsequent

multi-cellular tests.

Table 5.1: Parameters used in indentation simulation.

Parameter Value Units Reference
Axial stiffness in bars Ej, 1.2 GPa [50]
Axial stiffness in tendons E 10 MPa  Assumed
Diameter of bars 0.1 um Assumed
Diameter of tendons 1 pum [63]
Applied force F 3 nN [54]
Cell height h 10 um [54]
3 A

—=— Simulation
v Experiment

25¢

- ‘
ERN )
I,

1 L

o5 7
A —————
0 I I I I
0 0.5 1 1.5 2 2.5
§ [pm]

Figure 5.4: Force-displacement plot of a simulated single-cell indentation test.
Experimental data is adapted from [54].
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Figure 5.5: Single cell before and after the indentation test.

Monolayer

Harris et al. [55] reported the mechanical behavior of a freely suspended epithelial
cell monolayer under uniaxial stretch and observed that the modulus of a monolayer
is about two orders of magnitude larger than that of an isolated cell reported in
[54]. To capture this distinction, we construct a tensegrity monolayer made of
60x30 2D building blocks (Figure 5.3a) with the same model parameters as Section
5.3 (Table 5.1). A monolayer of 60x30 in size is tested to be large enough to
reach a representative response under uniaxial stretch. To replicate the experimental
condition, we fix all the nodes on the bottom side of the monolayer and prescribe a

25% strain on the top side.

The resulting stress-strain plot is shown in Figure 5.6. We see that the simulated
response of 25% stretch matches well with the reported experimental data. Up
to 25% strain, we observe a nonlinear region where the rate of change of stress
increases slowly. Since we assume the bars and tendons are linear elastic, this
onset of nonlinearity below 25% can only come from the geometric stiffness of the
structure. Upon loading, members of the tensegrity structure geometrically realign
in the loading direction, therefore kinematically stiffening the structural response
[63].

The simulated response above 25% falls out of the experimental envelope (data not
shown). Harris et al. [55] reported the region where stress increases linearly to be

within a 25%-50% strain range. Mechanical failure of the monolayer is reported
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to occur at a strain value over 70%. We suspect the reason behind the discrepancy
between our simulation and the experiment above 25% strain could be related to
the model’s simplified geometry and assumptions, making it suboptimal to capture
the complex cellular-level mechanics occurring at large strains, such as intercellular

adhesion rupture.

3 ‘
—s— Simulation
Experiment

0 0.05 0.1 0.15 0.2 0.25

Figure 5.6: Stress-strain plot of the simulated monolayer uniaxial stretch up to 25%
strain. Experimental data is adapted from [55]. The envelope shows the maximum
and minimum stress values taken from the experiment at a given strain.

Using our model, we can easily extract the stress and strain field information from the
tensegrity monolayer. In Figure 5.8, we plot the €y, €y, and €, strain components
of the tensegrity monolayer at the end of the 25% stretch. From the histograms,
we see that the normal strain €y, is centered around 0.25, showing a quasi-uniform
strain field in the y direction. On the other hand, the shear strain €, is centered
around 0. Most of the €, strain is centered around 0, with a few values around —0.1.
From the visualization (Figure 5.7), we see that the tensegrity cells near the left and
right edge of the monolayer curve inwards, which is often the case for the geometry
of this shape. These results have also been reported in [55], showing an overall good

agreement between our simulation and the published experimental data.

So far, we have demonstrated that our proposed tensegrity model can capture the
nonlinear behavior of a single cell in an indentation test and of a monolayer in a
uniaxial tension test at low (but not necessarily infinitesimal) strain. In the next

subsection, we will show that our model can also be constructed to capture 3D cell
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Figure 5.7: Monolayer before and after the tensegrity monolayer uniaxial stretch.

0.24

_— —
03 0.02 '
0.28
= 0
8
-0.02 l
o2zl R,

20.26

1500 1000

1000
500

500

0 0 0
-0.2 0 0.2 0.4 -0.2 0 0.2 0.4 -0.2 0 0.2 0.4

() (b) (c)

Figure 5.8: Visualization of the strain fields and histogram plots of €,,, €,,, and €,
at 25% strain of the monolayer stretch test.

structures, a capability not previously documented in the literature for applications
in cell mechanics simulations. We will provide an example illustrating how this 3D

structure can be used to capture the mechanics of a multicellular spheroid.

Multicellular spheroid
Studies show that tumor growth under constrained conditions decreases cell pro-

liferation and induces apoptosis in a non-uniform manner [18, 24, 56]. Spherical
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aggregates of cells mimicking a tumor, or multicellular spheroids (MCSs), are re-
ported to exhibit a two- to six-fold increase in cell density near their geometric
center [160]. This heightened crowding in the subcellular environment can result in
a decrease in cellular rearrangement liberty, which in turn correlates to hampered

proliferation [27].

To understand such cellular phenotypic heterogeneity, Dolega et al. [27] experimen-
tally studied the stress distribution inside MCSs of malignant murine colon cancer
cells under osmotic pressure, mimicking a growth-constrained environment. Their
study shows non-trivial stress patterns within the MCS, with a pressure rise towards
the core, thus suggesting a direct link to the lack of proliferation near the spheroid’s

center.

To capture such a heterogeneous stress distribution, we construct a 3D tensegrity
model with non-uniform prestress to replicate the results observed in [27], and to
relate to the non-uniform cell proliferation reported in [108]. In our 3D tensegrity
model, we prescribe cellular prestress to mimic the crowding-induced stiffening
effect [179] near the MCS core.

Figure 5.9: A spheroid constructed using 3D tensegrity building blocks. The
left image shows a gray voxelated sphere. This representation illustrates how the
spheroid is initially constructed. Each individual block in this voxelated sphere is
then replaced with a 3D tensegrity building block to create the final structure shown
on the right.

We initiate a voxelated sphere-like aggregate as shown in Figure 5.9. Each cube from
the left blocky sphere represents a 3D translational building block in Figure 5.3b.

To simulate more cellular stiffening towards the core, we assume increasing com-
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pressive forces in bar elements for each building block as a function of the radial
position of the block within the MCS (Figure 5.10). The balancing forces in the rest
of the elements are calculated via procedures explained in Section 5.2. This non-
uniform assignment of initial forcing in each building block consequently changes

the stiffness across the MCS according to Equations 5.15 and 5.16.

We then prescribe an isotropic stress to the MCS and plot the normalized radial
stress profile 0, with respect to the normalized radial position 7. As seen in
Figure 5.11a, upon an assumed initial bar force specification fi, and corresponding
member forces calculated using Equations 5.28 and 5.34, the resulting rate of
change of &, is in good alignment with the experimental result. In Figure 5.11b,
we visualize the normalized radial stress of the middle slice of the MCS and overlay
it with an experimental image from [108], where Ki-67 (a proliferation marker) is
immunostained. We observe that the regions of high radial stress near the center
of the numerical MCS overlap well with the low proliferation regions within the
experimentally tested cell, visually highlighting the clear correlation between stress
and cell proliferation. This result suggests that our model can be used to simulate the
stress distribution within a 3D MCS, showcasing its potential as a tool for studying

the correlative effects of mechanical behavior on cellular functionalities.

Discussion

Overall, we observe good agreement between our simulated results and published
experimental data using the proposed tensegrity model, particularly at low (but not
infinitesimal) strain values. However, at high strain values, such as those exceeding
25% in the uniaxial tension test, the simulated results fall out of the experimental
envelope. There could be multiple factors contributing to this discrepancy. One
factor is that our model could be oversimplified and based on limiting assumptions.
For example, we assume the bars and tendons are linearly elastic, whereas, in reality,
actin filaments and microtubules are reported to exhibit nonlinear material behaviors
[63]. Additionally, the present model cannot simulate the complex cellular-level
mechanics occurring at high strain values, such as detachment of focal adhesion,

cell rupture etc.

Since we use pin-pin connections between neighboring tensegrity cells, our model
must be constructed in an orderly manner, which prevents anisotropic orientation in
the initiation of the cells. Additionally, the shape of the elementary tensegrity unit

needs to be carefully designed to ensure that its members reach equilibrium. This is
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Figure 5.10: Normalized initial bar force vs. normalized radial position. Bar forces
are normalized with respect to the maximal bar force, which is at the center of
the MCS. Radial positions are normalized by the radius of the MCS. We assume
an exponential relation of the initial bar force, based on the exponential decay of
distribution of cells within spheroids [160].
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Figure 5.11: Comparison of simulated results with experimental data. (a) Normal-
ized radial stress vs. normalized radial position. o, is normalized with respect to
the maximum value. Experimental data is adapted from [27] and scaled to match
with the simulated data. (b) Visualization of the normalized radial stress at the
middle slice of the MCS. The top right image shows cellular proliferation along the
radius in a spheroid grown under constraint, with Ki-67 immunostained [108].
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a disadvantage shared by all tensegrity-based cell models. However, by relating the
cell CSK to bars and tendons, we can individually assign different stiffnesses, cross-
sectional areas, or even prestress levels to each tensegrity cell. This approach allows
us to study the overall response of tissues while locally modulating the properties
of the cell CSK.

5.4 Multiscale Data-Driven Computing with Tensegrity

Living organisms are made of millions of cells [35]. Even the monolayer used in [55]
was cultured using 25000 cells. If we were to represent each cell using any abstract
discrete model, be it tensegrity or others, the computational cost would increase
exponentially as we increase the scale of the problem. Direct numerical simulations
at full resolution can potentially pose a significant computational burden, especially
considering (large) nonlinear stiffness matrices, often requiring many iterations to
converge. Such limitation sets back the simplicity in simulating cell mechanics

using abstract models such as the proposed tensegrity structures.

Aiming to address this problem, we adopt the data-driven (DD) computing paradigm
proposed by Kirchdoerfer and Ortiz [81], which serves as a multiscale analysis
tool [74] in the general context of solid mechanics. This paradigm bypasses the
definition of a constitutive relation, for instance, relating stress to strain given
empirical material properties. Given existing material datasets, the DD problem
is formulated as a minimal distance search subject to the fundamental equilibrium
and compatibility constraints. The material data can come from either simulation
or experiments, rendering the DD framework free of constitutive relations, efficient

in computation, and versatile in application.

In order to tackle the heavy computational burden of simulating large-scale cell
mechanics using tensegrity structures, we perform a multiscale DD analysis on a
monolayer with data extracted from lower-scale simulations of discrete tensegrity
FEM models. Due to the limited capacity of the tensegrity model to accurately
capture large deformations in cells, as discussed in Section 5.3, the present section

is restricted to small deformations.

Modeling framework

We briefly summarize the infinitesimal deformation DD framework as follows.
Given a body in RY discretized into N nodes and M material points, subject to
external nodal forces f; € R (i=1,2,...,N), and exhibiting nodal displacements

u; € RY (i = 1,2,...,N), the internal state is characterized by stress-strain pairs
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(0., €.) at each material point e, e = 1,2,..., M. Each stress-strain pair is referred
to as a local phase-space coordinate z, € Z,, where the global phase space reads
=71 XZyX - XZy.

Within the FEM setting, the internal state at any specific time #; is constrained by

the following equilibrium and compatibility equations:

e=But e=1,2,.... M, (5.31)
M
> weBlof = f*, (5.32)
e=1

which define the constrain set E; containing the mechanical solution at t:

Ex={z€Z|(531)and (5.32)}. (5.33)

Instead of relating o, to €, locally using a constitutive relation, DD introduces the
global minimization problem between the constraint set £ and an existing material
dataset D C Z containing the material solution. The distance metric can be written

as

M )
Izl = (Z wenzenz) , (5.34)
e=1

with the local distance
1

1 1 _
1zl = (zee 1Cei€tz0: c;! :a'e) : (5.35)

Here, w, is the weight associated with each material point, and C, is a symmetric
matrix serving as a purely numerical operator. The time-discrete DD problem can
then be written as
inf inf ||y — 2||* = inf inf [y - 2|*. 5.36

jof inf ly - =l Jnf inf ly - =l (5.36)
This problem can be solved using fixed-point iterations, i.e., by iteratively finding
the closest point projection (o, €,) onto the hyperplane that satisfies Equations 5.31
and 5.32, and then finding the closest material data point (o7, €;;). The closest point
projection can be resolved using a nodal set of Lagrange multipliers 7. Then, the
FEM equations of the DD problem take the form

M

M
weBeTCeBe) w= > w.B/Cce, (5.37)
e=1

e=1
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M M
(Z weB[C.B.|n=f- ) w.Blo;, (5.38)
e=1 e=1
N
0. =0, +Co ) Buimi. (5.39)

i=1
Readers are referred to, e.g., [74, 81] for further details.

Monolayer tests
We proceed to use the DD framework explained above to capture the monolayer cell
mechanics from Section 5.3. Noting the small-deformation scale, we consider in

this section the monolayer tests up to 5% strain.

To generate a dataset, we first determine the size of the pseudo-2D RVE at which
energy convergence is observed. Since the tensegrity system has a finite length
along the out-of-plane (z) direction, the response of a single unit cell does not
suffice. Therefore, we construct 2D models up to 6x6 cells and measure the strain
energy vs. the cell size in log-log scale to test the convergence. We then select a
pseudo-2D RVE of size 3x3 and perform several p-g loading paths to generate a
material dataset D (Figures 5.12a-b) from the homogenized response, considering

periodic boundary conditions.

+
Te —eny
»y — 7.,

Figure 5.12: p—q paths performed on the RVE.

We conduct a monolayer uniaxial stretch of 5% (Figure 5.13a) and compare the

hydrostatic pressure p = —(1/3)tr(o) predicted by the DD framework, considering
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) (b)

(a

Figure 5.13: Schematic of tests performed on the tensegrity monolayer. (a) 5%
strain tension test; (b) 5% strain shear test.

both the material solution and the mechanical solution, to the actual tensegrity
response from the direct numerical simulation. In the tensegrity assembly, in order
to be consistent with the selection of the RVE size, we take a window size of 3x3
to compute a moving average hydrostatic stress in the monolayer. The stress is then
visualized with respect to the original nodal positions of the tensegrity cells. In the
DD solutions, we employ a mesh with 10x20 elements, each with four nodes and

four Gauss integration points.

Figure 5.14 shows a comparison of the DD material solution, the DD mechanical
solution, the tensegrity solution, and the percent error map between the DD mechan-
ical solution and the tensegrity solution. We see that the DD solutions qualitatively
capture the hydrostatic pressure of the monolayer. From the error map, we see a
higher percent error around the edge of the map. This is attributed to the fact that
the data employed in the DD calculations was generated from RVEs with periodic
boundary conditions, not fully representative of the actual boundary condition used
in the direct tensegrity simulation. Other than the errors around the edges, we see an
overall good agreement between the DD solution and the tensegrity solution. Fig-
ure 5.15 further shows the corresponding force-displacement curves, which reveals

that the global non-linear response is captured well.

To assess the dependence of the DD simulations on the number of data points, we
plot, for different dataset sizes, the relative error between the hydrostatic pressure
from the DD solution and the reference hydrostatic pressure from the direct numer-
ical simulation. The outermost boundary cells are excluded from this calculation.

To obtain different dataset sizes, we shuffle and randomly sample varying numbers
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Figure 5.14: Hydrostatic pressure field of (a) DD material solution, (b) DD me-
chanical solution, (c) tensegrity solution, and (d) relative error.
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Figure 5.15: Force vs. displacement obtained on the top edge of the monolayer.

of data points. For each dataset size, we compute the average error over five trials.
In Figure 5.16a, we observe that the accuracy increases with dataset size, with the

final relative errors below 15% for both material and mechanical solutions.

We also calculate the distance between the material solution y,,c and the mechan-
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ical solution Ymec using Equations 5.34 and 5.35, normalized with the norm of
mechanical solution. We then take the average among five trials and plot the re-
sult for different dataset sizes in Figure 5.16b. We observe that as the dataset size
increases, the normalized distance between the DD solutions decreases to a final
value of ~0.07. As a reference, we also plot the normalized distance obtained using
self-consistent DD, where we sample directly from the reference tensegrity response
(direct numerical simulation) at the same location. The general DD solution yields
an error value only 2% higher than this benchmark, highlighting the reliability of
the data sampled from the RVEs.

o
O
o
3

——Regular DD
—-—-Self-consistent DD

e o o
o w IS

Normalized distance

(=]
—

0 L L 0 L L
10° 10? 10* 109 10° 10? 10* 109
Dataset size Dataset size

(@) (b)

Figure 5.16: Effect of dataset size on resulting error in tension test. (a) Relative
error between pg and pg, vs. dataset size. The relative error is calculated as
(Po — Pusg) [ Pisg- The O subscript represents either the DD material or mechanical
solution. The value is averaged among five trials. Boundary cells are excluded from
the calculation. (b) Normalized distance vs. dataset size. The normalized distance
is calculated as (||Ymat — Ymec||)/||¥mec||- The error values are averaged among five
trials. The dotted line shows the benchmark distance calculated using self-consistent
DD.

Similarly, we conduct a monolayer simple shear test of 5% strain (Figure 5.13b)
and compute the average effective stress g = \/(3/2)73:3, with the stress deviator,
s = o + pl. The results of the DD simulation are shown in Figure 5.17 and
compared to the reference tensegrity response. Other than the large error along the
edges, again due to the discrepancy in the periodic boundary conditions applied to
the RVEs, the DD solutions show good agreement with the tensegrity response from

the direct numerical simulation.

Furthermore, Figure 5.18a shows the relative error between the DD solutions and
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the direct numerical simulation in terms of ¢, for different dataset sizes, while
Figure 5.18b shows the normalized distance between Ymy and Ymee. Again, we
observe that both the relative error and the normalized distance decrease as the
dataset size increases. The normalized distance is 6% higher than the benchmark
calculated using self-consistent DD, indicating that the material data sampled from
the RVEs covers most of the phase-space region spanned by the tensegrity structure,

although less accurately than in the stretch test.
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Figure 5.17: Deviatoric stress field of (a) DD material solution, (b) DD mechanical
solution, (c) tensegrity solution, and (d) relative error.

()

Discussion

The accuracy of the DD algorithm depends on how well the sampled material data
spans the desired phase-space region. We suspect several reasons for the observed
differences between the DD mechanical solution, the DD material solution, and the

direct tensegrity response.

First, we consider the potential mismatch introduced by the boundary conditions
and the dimensionality of the problem. In the DD framework, we use a simplified
2D plane-stress formulation. However, the proposed tensegrity structure is 3D.
Although the thickness of the tensegrity monolayer is less than 4% compared to the
width of the sample, this discrepancy could still introduce some error. Additionally,
the material dataset is sampled from RVEs under periodic boundary conditions,

which do not accurately represent the boundary conditions of the tensegrity mono-
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Figure 5.18: Effect of dataset size on resulting error in shear test. (a) Averaged
relative error between g and gysg vs. dataset size. (b) Normalized distance vs. dataset
size. Benchmark norm distance calculated using self-consistent DD is shown in
dotted line.

layer. Although we exclude the outermost boundary cells when calculating the

errors, the boundary effect cannot be entirely eliminated.

Second, we suspect that non-simple mechanisms, such as those described by mi-
cromorphic or micropolar theories [37], are significant in the proposed tensegrity
structure. As the structure deforms, the angle of the twisted side faces varies,
which cannot be captured by the 2D, isotropic, Cauchy continua-based data-driven
framework. In fact, in Figure 5.16b and Figure 5.18b, we observe around a 10%
normalized distance between yYma and yYmee in the stretch and shear tests using
self-consistent DD. This indicates that even when sampling directly from the actual
tensegrity response, the material solution still presents a 10% difference from the
mechanical solution based on an equilibrated Cauchy stress. This result suggests
that the proposed tensegrity structure exhibits nontrivial kinematics and kinetics,

not captured by standard Cauchy continua.

5.5 Conclusion

In this chapter, we propose a 3D multicellular tensegrity structure for simulating
cell mechanics. We demonstrate that this model can capture the response of single
cells and multicellular monolayers. Moreover, we describe the 3D heterogeneous
stress distribution within an MCS by assigning non-uniform initial prestress to the
tensegrity building blocks. This capability positions the model as a potential tool for

studying more advanced cellular processes, such as mechanotransduction [59, 153].
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The synergistic interplay of the CSK is indispensable for cellular functionalities.
The ability of the tensegrity model to link mechanical forces to specific load-bearing
members in 3D can potentially shed new light on the CSK rearrangements and their
effects on cellular physiological functions, potentially bridging an important step

toward understanding tissue mechanics and its fundamental role in health and disease
[7, 36].

We also introduce a DD framework for continuum cell mechanics simulations in
small deformations. Overall, DD solutions are in good agreement with the tenseg-
rity solution. In general, the material dataset D can be populated using lower-scale
simulations as shown in Section 5.4, or even extracted from existing numerical solu-
tions or experimental data. In this way, DD bypasses the need for a parameter-based
continuum model, directly formulating the macroscopic cell mechanics problem
based on material data. Combined with homogenization techniques, DD computing
may yield accurate results from multiscale analysis while ensuring computational
efficiency. However, given the non-standard mechanics suspected to be present in
the tensegrity structures, recent extensions of the DD framework to generalized
continua [73, 159] could be applied in future work. This new DD-based frame-
work could pave the path for studying the mechanobiology of large scale cellular

structures, including organs.
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Chapter 6

CONCLUSION AND FUTURE OUTLOOK

6.1 Conclusion
This thesis developed accurate and efficient computational models for three distinct
case studies, advancing the role of computational modeling from a validation tool

to an exploratory framework.

In Chapter 3, LS-DEM and LMGC90 demonstrated good agreement in capturing the
kinematic profiles of discrete multiblock structures when compared with experimen-
tal results. Among the four tested concrete configurations, taller and more complex
configurations, such as Configurations 3 and 4, exhibited more pronounced rocking
and/or sliding behaviors, consistent with experimental observations. This study
introduced an efficient framework for running Monte Carlo simulations on discrete
systems, yielding stable estimates with low variability. The proposed framework
enables researchers to benchmark known behaviors of discrete structures and predict

the responses of configurations beyond the practical limits of experimental testing.

In Chapter 4, an actuatable TIM system composed of woven truncated tetrahedron
particles was introduced. Experimental and numerical investigations revealed that
both high friction and large contact area between neighboring particles positively
influence the system’s bending resistance. The effect of friction on bending stiffness
diminishes as the friction coefficient increases, whereas the projected horizontal
contact area enhances the bending modulus in a linear manner. By employing
validated computational models, this study bridged micro-scale mechanics to macro-

scale structural responses.

In Chapter 5, a 3D multicellular tensegrity structure was developed to simulate cell
mechanics. This structure effectively captured the deformation responses of single
cells in indentation tests, monolayers in stretch tests, and the heterogeneous stress
distribution of MCSs under osmotic pressure. Additionally, a DD framework with
multiscale analysis was implemented for efficient simulations at small deforma-
tions. The DD framework produced accurate results while circumventing the need
for parameter-dependent continuum models, directly formulating macroscopic cell
mechanics problems based on material data. By integrating the tensegrity model

and the DD framework, this study leveraged predictive modeling to elucidate the
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complex behaviors of biological systems.

Collectively, these case studies highlight the power of predictive modeling in ex-
panding our understanding of architected solids beyond experimental constraints.
The models developed in this thesis have demonstrated their ability to overcome
experimental limitations by simulating configurations and design spaces that are
impractical or impossible to test physically. Whether predicting the seismic re-
sponse of multiblock structures, capturing the mechanics of TIMs, or modeling
multicellular tensegrity systems, these models provide critical insights where phys-

ical experimentation alone is insufficient.

Beyond replicating known behaviors, these computational models have also played
a crucial role in uncovering fundamental structure-property relationships. By an-
alyzing geometry, material properties, and macroscopic responses, this work has
revealed key mechanisms governing mechanical behavior that were not readily acces-
sible through experiments alone. In particular, simulations of woven TIMs identified
how friction and contact area influence bending stiffness, while tensegrity-based cell
mechanics models provided insights into cell proliferation through simulating stress
distributions across biological structures. These findings offer valuable guidance

for designing and understanding materials and systems.

Spanning multiple length scales, the predictive models developed in this thesis offer
a robust foundation for studying architected solids and can be further applied across

a broad spectrum of engineering and scientific applications.

6.2 Outlook

The research presented in this thesis paves the way for numerous opportunities to
deepen our understanding and control of architected solids. These studies demon-
strated remarkable capabilities of numerical modeling to accurately capture the
behaviors of discrete multiblock structures, TIMs, and complex biological systems.
With these predictive tools, novel shapes and arrangements of architected struc-
tures can be designed and systematically explored to understand how variations in

geometry and constituent configurations influence macroscopic properties.

For instance, the numerical models developed in Chapter 3 could offer insights
into how the shapes and arrangements of individual concrete blocks impact the
structure’s resistance to seismic perturbations. In Chapter 4, computational tools
could guide the design of TIM systems to achieve specific performance objectives,

such as enhancing bending stiffness or optimizing energy dissipation. The models in
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Chapter 5 could be extended to large-scale biological systems, leveraging tensegrity
structures to investigate how internal properties — such as polymer stiffness —

affect cellular processes in mechanotransduction and mechanobiology.

Additionally, advances in machine learning and data-driven computing offer new
avenues to accelerate and enhance physics-based modeling. Thus far, our model-
ing framework has primarily been one-directional: given a particular structure or
material, we can simulate its properties and responses, but using these results to
inform design remains challenging. By integrating machine learning approaches
with physics-based models, we can transition from a purely predictive framework
to a more iterative and exploratory design process. Key features within the design
space can be identified and leveraged to automate the generation of novel shapes

and arrangements.

For instance, with a sufficiently large dataset of TIM designs, a Variational Autoen-
coder (VAE) could extract critical design features through latent space encoding.
These features could then be decoded to reconstruct existing shapes or generate
entirely new designs. Additionally, neural networks (NN) could learn from this en-
coded information to uncover hidden relationships, directly linking design features

to macroscopic mechanical properties.

Overall, these advancements underscore the transformative potential of computa-
tional modeling as a cornerstone for the design, analysis, and discovery of architected

solids across diverse engineering and scientific fields.
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