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SUMMARY

The main purpose of this thesis has been to investigate
to what extent some of the thecrems in the study of linear
topological spaces are actually dependent on the real number
multipliers. This has been done by replacing the real number
system by a valued-ring, and, since such a ring may have
a discrete topology, the results that we obtain depend only
on the algebraic properties of our generalized number system.

In Chapter 2 there is developed a characterization
of a topological space in a form which is convenient for
the purposes of this paper. Chapters 1 and & are tesken
up with the introduction of the definition of thé.type of
space with which we shall deal. 1In these chapters the
author was guided by Hyers'! definition of a pseudo-normed
linear spaggl_and lichal's definition of a topological
abelianxww'In Chapter 4 a generalized study of linear
functions is considered. Here we obtain results which
reduce to known results in the case of Banach spaces.

Chapter 5 deals with the concept of a differential and a
relationship between this differential and an Ml-differentia12
is established. In Chapter 6 we strengthen our postulates
somewhat and carry on the study of linear functions and
differentials.

In sone respects we have accomplished the purpose of
the thesis, though the author feéls that much more can be done
and hopes that this thesis may prove to be a basis for

further work,

1 gee L‘j . 2 gee [0] .
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BASIC DEFINITIONS

It is, of course, impossible to state here all the defi-
nitions to which we shall wish to refer; but, for the sake of
being definite and as a matter of convenience to the reader,
we shall list those definitions and theorems which are funda-
mental to this thesis and are not contained in the body of the
paper. L!1 and (2] are references in algebra and topology
which are well suited to the needs of this paper.

The concept of a set shall be assumed to be known, and
we shall consider a set S to be defined when glven any object
p it can be determined whether p is or 1s not contained in S5;
l.e, either pe s or pe S. We are also assuming that for each
set there is defined a fundawmental equivalence relation which
we shall call equality and shall write as "=", Two elements
p and g of a set S will be sald to be distinct if p # q. All
the sets that we shall consider will be assumed to contain at
least two distinct elements. Our equality is also toReuch that,
if p = q, then any '"statement!" that we shall make about p
can also be made about g. This means that though we do not
require our equality to be identity, we do require that elements
which are equal have certain properties in common. These certain
properties are any of those which happen to arise in our postu-
lates, since thzse properties are the onlyones which interest
us. For instance, if in I(g) below we have x = y, then we

can state that (-x) + vy = 8, Ve also are able to prove certain



theorems about our equality, such as in I(h) and I(i). The
concept of a function and an operation which we shall adopt
will be the same as that in [1] pPr. 2-4, though it is to be

remembered that uniqueness is now in terms of our equality.

I Groups. A set G of elements X,y,z,°*-+ is called a group
with respect to an operation "+"(written additively) if the
following conditions are satisfied:

a. X +ye G for every x,y€ G;

be x+(y+2=(x+y)+ 2z for all x,y,z € G;

Cc. there exists an eleunient 8 € G such that x + @ = x

for all x€ G; © 1is called the zero element of Gj;

de given x€ G there exists an eleument -xe G such
that x + (-x) = 6.
. If, in addition,
e. x+y=y +x for all x,ye G,

the group is sald to be abelian.

Then it follows from the above postulates that :

f. ® + x = x for each xe G;

g. (-x) + x = © for each x€ G;

h. the zero element © is unique, i.e. if @' is any
other element of G satisfying (c), then 8 = 61}

i. the inverse -x of each x € G is unique;

jo =(=x) = x.



IT Rings. A set A of elements Q,B,¥, ... is said to be a
ring if A is an additive abelian group such that a second
operation(written as multiplication) is defined such that:
a. ageA for all a,B€ Aj
b. a(pY) = (ap)Y for ali a,B,Ye A;
c. a(P+Y) =aB+ ayand (a +8)Y = a¥ + BY for
all a,p,YeA.

A ring A is said to have a unity element if there exists
an element 1 in A such that la =al = a for each aé¢ A, 1 is
then unique.

It can be shown that for any two elements a,B € A that:

de Oa= a0 = O, where O is the zero element of Aj;
e. (-a)g =a(-B) = -(aB);
£. (-a)(-g) = ag.

A division ring ( or quasi-field) is an additive abelian

group whosé non-zero elements form a multiplicative group
such that II(c) is satisfied.

IIT Integral domains. An integral domain A is a commutative

ring (i.e. a@ =B a for each a,B€A ) with a unity element and

no divisors of zero(i.e. a@ = 0O implies that a = 0 or 8 = 0.

IV Fields. A field A is an additive abelian group whose non-
zero elements form a multiplicative abelian group such that
a(p+Y) =ap+ a¥ for all a,B,Y€ Al

V Linear sets over rings. An additive abelian group G of

elements X,¥yZy... is called a (left) linear set over a ring




A of elements a,B,¥y... 1if there exists an operation ox on
AG to G such that:
a. a(px) = (aB)x ;

b. (o +B)x = aox +Px 3}

c. alx +y) ax + ay

for all a,Be A and x,y € G.

If A has a unity element, we shall also require that 1x = x
for each xe€ G,

VI Strongly partially ordered sets.(Directed systems.) A

set D of elements d,e,... 1is said to be a gtrongly partially

ordered set if there exists an order "> " defined between some

of the elements of D such that:
a. 1if e) d, then it is not true that d)> e ;
b. (transitivity) if ey d and d) ¢ , then ed c ;
c. given e and d from D, there exists a c&€ D such
that c) e and c2 d.
A set D and an order "s" satisfying (a) and (b) is

said to be partially ordered.

N.B. It is not required that the order ", " exist
between each pair of elements of D. e?.d does not necessarily
imply that dze.

If B and D are fwo strongly partially ordered sets, then
it may easily be proved that the product space

ED = [(e,d); e€ B, de D]
is also a strongly partially ordered set with (eq,dq)2 (ez,dg)




: : > >
if and only if e, = e, and dl =dg for dl,d2€ D and
e1y eg€ B . (ep,dq) = ég,dz) if and only if ej = ey and
dl = d2.
Hence, if D is a strongly partially ordered set and Rt

is the set of all positive real numbers with ordering as usual,

then
+
E=RD =[- rd; r> 0, de€ D]
is a strongly partially ordered set with (ei = ryd;€ E )
= = 2 o . -
e = ey if r; =ry and dl = dg. e = eg it rl =rg
and dj = d2 . Define 1d = d and rl(rgd) =(rlr2)d.

VII Topological spaces. A set T of elements Xy¥yZyees 1S

said to be a topological space if:

a. To each set M of elements of T there corresponds
a set M which is called the closure of I.
b. For every x€T , X = x.

ce If M and N are any two subsets of T, then

MoN = Mul .
de iﬁ= i for every subset McT.
The elements of T are called points.

VIII Limit points. A point x of a topological space T is

called a limit point of a subset Mc T 1if x€el = x .

IX Open and closed sets. A set M of a topological space T

is said to be closed if M =M . A set Mc T is said to be

open if the complement of i, Ci = T » ¥ , is closed.



X Complete system of "neighborhoods". A system X of open

sets of a topological space T 1s called a complete system of

"neighborhoods" of T if every open set of T can be obtained as

a sum of open séts belonging to Z . Every open set of Z

containing a point xeT 1is said to be a "neighborhood" of

Xe
N.B. This notion of a neighborhood is stronger than we

shall wish to use. ©Oee Chapter 2.

XTI Limit of a sequence of points. Let {Xn} be a sequence

of elements of a topological space T . The sequence ‘{Xn}

i1s said to have a limit if there exists an element xe T

such that for each open set U,c T , xeU there exists

X 2

a positive integer m =.m(UX) such that x € U, for all
n>m . We shall denote this by 1lim X, = X

XII Continuous functions (mappings) on a topological space

T to a topological space T' . A function(mapping) f(x) on

a topological space T to a topological space T!' 1is said to
be continuous on T to T' if for every set McT
f(i)c Q) .

XIITI Topological groups. A group G 1s said to be a topo-

logical group if G is a topological space such that the group

operations x +y and -x are continuous in G.



CHAPTER 1
LINEAR SETS OVER VALUED RINGS. VECTOR SPACES.

1.1 Linear sets over rings with a unity element. V-gpaces.

DEFINITION 1.11. A linear setl T over a ring2 A with a

unity element will be called a vector space with respect to

A 4, or briefly, a V-space w. r._t. A .

We see immediately that a V-space is a generalization of
Banach's linear (vector) space3, where the real number multi-
pliers have been replaced by multipliers taken from an abstract
ring. We shall now proceed to investigate some of the elemen-

tary properties of V-spaces.

THEOREM 1.11. If T is a V-gpace w. r. t. A , then for
all x T and o A

/1.11) ox=68,

(1.12) (-a)x = a(-x) = -(ox) ,

(1.13) a8 =@ .
4

If A is a division ring

[EeC,

s then

o

1 See V. Roman numerals refer to the sections of basic
definitionse.

£ gee II.

z
A=

oee [31 + Numbers in brackets refer to the bibliography
at the end of the paper.

4 See 11,



Proof: By V(b) ax = (0 + a)x = Ox + ax, and since T 1is a
group Ox = 8 , and (1.11) has been proved. By (1.11) and
V(b) ©=0x = (e - a)x = ax + (-a)x , and hence (-a)x = -(ax) .
It then follows from V(d) that (-1)x = -(1x) = -x , and from
V(a) and II(e) it follows that a(-x) = a(-1x) = (-a)x. There-
fore (1.12) has been proved. (1.13) follows from V(c) and
(1.12) in the following manner: a® = a{x - x) = ax + a(-x) =
ax - (ax) = @ . In order to pfove (1.14) let us assume that

A is a division ring and that ox =8 , o # 0 . Then there
exists an a~te A such that a'l(ax) = (a~ta)x = x = @,
Hence, if we assume that ax =6 , a #0 , and x # © , we

obtain a contradiction, and (l.4) is proved.

DEFINITION 1.12., For @€ A and S , S 5 Sg jyese Subsets of

T, a5, -S, and S, + S, are defined respectively by

2
as = [ axy X€ S ] ’
-5 = =15

and

.S + 82 = [:x + ¥ XfESl ’ yeESé] .

;

e

THEOREM 1.12. For all x , yeT ; 2all a ,B€ A ; and all

st

S, S 82 e T 3

l 3
(1.15.) S+ 6 =258,

(1.16.) 5, + 8, = 5,

(1.17.) s+ (s5; +85) = (5+8)) +5

1l
N
+

h%
.

5 3
(1.18)) 18 =8, (-a)s= (a)(-8) = =(ad) ;
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[ \ = 4
{ 1adSa) a(Sl + 82) aSl + aSg 3

(1.110.:2* a(B S) = (ap)s ;
(1.111.) (a +p)S = aS +B S ;

[ \ '
(1.112.) If Slc Sg s then oSy < aS, ;
(1.133.) If x - ye S, then xey + S, and ,

conversely, if xey + S , then x - y€sS .

Proof: (1.15)-(1.17) and (1.13) follow directly from definition
1.12 and the fact that T 1is an additive abelian group.
(1.18) - (1.112) follow from the fact that T is a V-

space and definition 1l.12.

DEFINITION 1.13. Define for each S<T , a ,Be€A , 3 # 0,
a/p 8 = [ X 38x¢€ aS] .

N.B. It is clear that if A 1is a division ring, then

a/ﬁ S ='a§~'8 .

THEOREM 1.13. For all a ,@,Y, a; € A ; € #0,Y#0 ;
and S cT:

(1.114) a/1 8 = as 3

(1.115.) a/p (e8) = a,a/g 8 ;

*2{\‘1.116.‘} a/(}, sc (Ya)/(YB) s ;

{1.117.3 (a/p 8) C as

%&1-118-}' if S c a/@ § , then 88 < aS , and conversely

S caS implies that S c a/@ S .
If ox = @ 1mplies that a =0 or x =60 , then

(1.119)) (Ya)/(¥B) &

a/@S.
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Proof: (1.114) is clearly true.

(1.115): Let x eal/ﬁ (a8) 3 i.e. x = a3y , where
y=oaz, z€8 . Then px = al(az) = @1a)z , and hence
a1/p (a8) C (ala)/P S . Conversely, if xe(ala)/ﬁ S , then
px = @ia)z , where 2z €85 , and B = al(az) . Then
(ala)4@ s ¢ al/@ﬁ(as) s and hence (ala)43 g = al/@ (asS) .

(1.116): If xe€a/p §, then BxeaS , and by (1.112)
of theorem 1.12 Y¥x € YaS . Hence xé¢ (Ya)/(YB) S , and
g sc (ya)/(¥p) S .

(1.,117): If xe¢ a/p S , then BxeasS , and hence
@(a/(g S) < as .

(1.118): This follows almost by definition.

(1.119): If xe(ya)/(¥Yp) S, then YBx =Yaz , zcS .
Hence Y (B x N @z) = @ . Since ¥ # 0 , we have by hypothesis
az y or (Yya)/(¥p) Sc a/@ S . By (1.11e)
and the above a/p 8 = (x’a)/(xp ) S . This completes the

that p x

proof of theorem 1.13.

l1.2. Valued rings. The next step in our generalization is
to introduce the "number system" which is to replace the real
number multipliers in the study of linear topological spaces.
Such a "number system" will be called a valued ring and is

defined as follows.

DEFINITION 1l.21. If A 1is a ring with a unity element such



A

that there is defined on A a real-valued function

/a/ such thats
(1.21) /o/ 20 for all ach ;
(1.223 /ap/ E /o/ /p/ for 2ll a sBE A
(1.25.) /a +/;1/ £ /o) + //3/ for all a ,3€ A ;
(1.24.) /-1/=1;
(1.25.‘) /o/ > 1 for some Q€A , AKFO

1174

1
then A 1is said to be a valued ring. /a/ is called the

valuation of a .

N.B. Throughout the remainder of the paper A ghall

be used to denote a valued ring with elements a sB Y e

and with /ao/ the valustion function. Later in the paper

we shall put additional restrictions on .A .

THEOREM 1.21. If A is a valued ring with /o/ the

valuation function, then
(1.26) /1/ =1,
{\1.2’7.) /—a/ = /a/ for all a€A ,
(1.28.) /0/ # 0 implies that /a/ = 1 for all

aEA .
Proof: /[ao/.= /lo/ € /1/ /a/ for all a€é A , and hence
1€ /1/ . Mso /1/ = /(-1)(-1)/ &€ /-1/ /-1/ = 1 . Therefore
/i/ =1. [/-o/ £ /-1/ /of = /o/ . Similarly, /a/
/-1/ ./-a/ = /-a/ , and hence /Jao/ = /-a/ . /O/ = /Oa/ &
/0/ /a/ for all a€hA , and if /O/ # 0 , then 1 £ /a/
for all ac¢A .

1 " ) .
It is always possible,without any loss of generality, to

defire /0/ = 0, and throughout this paper we shall sssume
that /O/ has been so defined.



Examples of valued rings.

(1) Valued fields. If A is a field which is a

valued ring such that /ap/ = /ao/ //9/ then A is said

to be a valued field. The concept of a vzlued field was

introduced by Kﬁrschékl, and the conditions under which the
derived field of such a field be isomorphic with either

the field of complex numbers or the field of real numbers
are well known. Examples of such fields, and hence examples
of valued rings are the field of real numbers, the field

of coumplex numbers, and p-adic number fields.

(2) An example of a division ring that is a valued
ring is the field of quaternionsg, though here again we have
fap [ =1o/ [B ]

(3) One of the more interesting instances of valued
rings are the "linear normed rings" considered by liichal
and Martin in [/2] . There is given in that paper an ex-
ample of a linear normed ring of infinite dimension for
which /ap /# /a/ /P / for soume elements.

(4) An example of an integral domain that is also a
valued ring is, of course, the integral domain of all integers,
the valuation function being the absolute value.

(5) Let us now construct an example of a valued ring

which is such that /af/ = /of //3 / for all o sBE A .

see [11 , and also L' Chapters XI and XII
see L[, p. 172.
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Let Q with elements p , 9, Ss; .. be a ring with a unity
element, and let
a = (po, Dys e« sPps soo )
be a seguence of elements of Q . Let A Dbe the set of all
sequences of elements of ( which contain only a finite
nucber of non-zero elements of § . I.e., if a€A, ﬁ € A
then
q = (po, Dys +e+ 5P50505 o0 )
and
/B = (qo, Ays o+e 5850505 +ut )
Define a +f = (po+ q s Py + Qyy eee )
and
a/Q = (8.5 Sys ove s S, 4 2005 eve )
where s, =j§k=i (quk) . « ={Q if and only if py = q
for k=0, 1, 85, «os
Then it may be easily verified that A 1is a ring with
a unity element where
0= (0, Oy son J

and

1= 41 0; Q5 cus Js
il = (—po, “Pys e ) .
If a€h , a# 0, then a last non-zero element p
of the sequence exists. Define /a/ =n + 1, and /0/ = 0,
Clearly /a/ =0 for all a€4 , /-1/ =1, /a +f/ = max(

/o/ /p / ), and there exist a €A such that /a/> 1.



If /a/=n+l>0,,/ﬁ/=m+l>0,then /a/;l/=
n+m+ 1, Hence /aﬁ/é/a/'//é/ s and Jap/ = /ja/ /B/
implies either /o/ = 4& /=1, 0r /ao/=0 or 4ﬂ /=0 ,

Hence we see that the set A of all formal Qplynomialsl

with coefficients in a ring @ with a unity element is

a valued ring, with the valuation as defined above.

(6) It is also possible to value the field R of
real numbers in such a manner that /r/ dis zero or an
integer, and also such that there'exist Tyy Togé R with
/rlrg/ < /ry/ /ry/ . lioreover, there will exist no real
number p > O such that /r/ = p|r| for all TéR . |r|
is the absolute value of r .

Given ré R there exists an integer m such that
m<r =m+1., Define /fr/ =m + 1 . Hence /r/ 20 >
/1) =1, [ry+rg/ S [ry) + [ro/ , Jrive/ S [ri/ [ro/
and there exist ré¢ R with the property that /r/ > 1
/(1/2)(3/2)/ = 1 , whereas /(1/2)/ /(3/2)/ =2 , and
hence R 1s valued as stated above,

(7) It should be noted that we have not assumed that
the riné A shall have no divisors of zero, and a simple
example of a valued ring with divisors of zero is the ring
of integers mod 4 . The ring of integers mod 2 is,
however, not a valued ring due to postulates (1.24) and

(1.25).

% goe L1 pp. 17, 18.
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These examples of valued rings should indicate the
extreme generality of our number system A , and examples
(4) and (7) show, in particular, that A is not necessarily
a topological space with a non-discrete topology generatad

by the valuation.

1.3 Vl" paces.
DEFINITION 1l.31. A linear set T over a valued ring A

will be said to be a vector space of type one with respect

to A or briefly a Vj-space w.r.t. A .

A Vl—space wer.te. A 1is then a special case of a
V-space, and the set operations defined for V-spaces in
definition l.l2 will be applied also to Vj-spaces and will,

of course, have the same properties as before,

N.B. It is evident that every additive abelian group is
a Vi-space w.r.t. the integral domain of all integers,

where the valuation is the absolute value.



CHAPTER 2
NEIGHBORHOOD TOPOLOGIES. N-SPACES.

From now on the spaces that will be considered in this
thesis will be topological spaces.l lie shall not begin by
postulating that these spaces are topological, and the aim
of this chapter is to develop a new characterization of
topological spaces by means of which we can more easily
verify that our spaces are topological. This new charac-
terization will also enable us later on to express certain
of the topological concepts in a form which will prove
to be convenient in what is to follow., The equivalent
definition of a topologicali%ﬁgt we shall give will be
stated in terms of the properties of a special system of
subsets of a set, these subsets will be called neighborhoods,
though we shall not require that these neighborhoods be
open sets, as is done by Frethet,? Hausdorff,” and Pontr—
jagin.3 However, our neighborhood systems will be equi-

valent to a complete neighborhood system4

of the topological
space., Then in chapter 3 we shall obtain from this
characterization a second one based upon a generalization

of Hyers'? pseudo-norm.5 In this manner we show that a

generalization of the idea of a norm can be made a basis

See VII.

See [Is] , pp. 33-39.

see LWl p. 30, theorem 3,

See X.

See LG » Lsd y OF [9] .

(SIS CNRAV I o
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for the study of topological spaces.

2ele N-spaces.
DEFINITION 2.11. Let T be a set of elements X , ¥ 5, Z5 eesy

and let ¥ be a system of subsets of T , the subsets shall
be called neighborhoods, such that:

2.11.) There 1s associated with each element

x€T a non-null subset X, of subsets U, , called

neighborhoods of x , of ¥ such that for each Uy€3Z,

X €Uy &
(2.12) If y # x , there exists a Uyé€ I
such that ye U, .
(2.18.) If U €=, and V,eS_, there exists
a Wge Z, such that W, C er\VX .

(2.14.) Given x€ T and U eX_, there exists

% 3
a Vxe Zy such that if yeaVX there exists a

W e¥ such that W_c U, . (Note that this implies
A y X

that Vyc< U o)

The set T will then be called a space with a neighborhood

system or simply an N-space wW.r.t. Z .

/
Postulates (2.11) - (2.13) are those of Frechet,
whereas, postulate (2.14) is weaker than Fré%het's fourth
postulate. Fréchet requires that, if y e Uy, then there

exists a Uyé Zy such that Uy o Ux « Pontrajagin's



conditions are even stronger, as he considers a system
2 such that if UeZ and xeU , then U 1is a neighborhood
of x ., Hence (2.14) is automatically satisfied,

An example of such a neighborhood system I in which
the neighborhoods are not necessarily open sets would
evidently be furnished by taking as neighborhoods in a

Banach spacel the closed"spheres" generated by the norm.

THEOREM 2,11. If T 4is a group (written additively)

such that there exists a system of subsets 11==5t]2,

&

UCT, satisfying the following,postulates:d

(2.15.) the intersection of all UelU is 6 ;

(2.16.,) given UecU and VeU there exists

a Wel such that W< UNV ;

(2.1’7.) given Ue€ U there exists a VeU such

that if ye V there exists a WeéU such that y + WcC U ;

then T is an N-space with 2x=[x+U;Ueu] ,
and = = [Zx;xeT] .
Proof: 1In order to prove this we shall show that X as
defined above satisfies (2.11) - (2.14).

(2.11): Since for every U€e€U , ©€U , we have that
x € x+U for each Uel .,

(2.12): If x#y , then by (2.15) there exists a
UelU such that -x + y€U . Then yéx +U and (2.12)

is satisfied by X .

1 gee 37 5 Ps B3,
R We shall call such a group an N-group ﬂ.;.g‘\k.
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(2.13): This follows immediately from (2.16).

(2.14): Given UelU and xe€T , we have by (2.17)
that there exists a VeéU such that if -x +yeV , i.e.,
y € x + V , there exists a WeU such that -x +y + WcCU
or y+WcCx+U, Hence (2.14) is satisfied by £ , and

T 1is an N-space,

2.2. EBguivalence of N-spaces and topological spaces.

DEFINITION 2.21. If S 1is any subset of an N-space T
w.r.t £ , the closure of S , denoted by S , is defined
as follows:
x€ S if and only if for each Uy €2, ,
1
ST, # 0°

LEMMA 2.21. Every N-space T w.r.t. 2 1is a topological

space with closure defined gs in definition 2.21.

Proof: Our proof consists in showing that this operation
of closure satisfies VII(a) - VII(d).
(ViI(a)): Follows by the definition of S .
(VII(b))i Follows from (2.12) of definition 2.11.
(Vii(c))s: Let S; and Sz be any two subsets of
T , and assume that x€5;VS; . Then, for each Uy€e3x, ,

Uy intersects Sltisg s Since each Ux intersects Sl

or Sp . Hence xe 5jU8; and 5V S;c§; V5, .

- Throughout this paper "0°" will denote the null set.



To prove the converse assume that xe Slu 52 . Then,
given U ez, Un(su 82);6 0° ; i.e., either U.N 8 # 0°
e o
or U.N 8, # 0° , or both UXﬂ Sy # 0° and Uxﬂ 82 £ 0% ,
Now assume that there exists a subset {Ux} of subsets
contained in Ty such that for every UX E:{Ux} Uyn sy = 0°
and UN Sy # 0° ., Similarly assume the existence of a
such that for every Vx € {VX}

X

subset {VX} c Z
V,nSp #0° and V,nS,=0°. Given U ¢ ] UX} and

vz €4 VX} , we have by (2.13) of definition 2.11 that there

exists a er :x such that ch: an Vx . Now Wx either

2 L]
This contradicts our assumption of the existence of {Ui}

intersects S; or 82 s Or intersects both Sy and S

and QVX} s Since Wx is contained in both U, and
VX . Hence every Uxe ZX gither intersects Sl or inter-
sects Sg , or intersects both S; and 5o . Then
x€ §ju Sy , and therefore SjuSgc SjvSy . Since we also
have shown that 5ju Eéc: Sjusy , Squ gy = Sqv 8z s
and VII(c) is satisfied by our closure.

(VII(d)): From our definition of closure and (2.11)
of definition 2.11, we have that S c S for each ScT.
Hence Sc S < § « 4T xe-S-: s then every Uxé ZX inter-
sects S . Now by definition 2.11, postulate (2.14), there
exists, corresponding to each Uxe ZX s a VXG%ZX such
that,if y eV, , there exists a W &€ Zy such that Wyc: Uy o

y

Since we are assuming that xe 8 , V. also intersects



S , and, for yev_n s, W, intersects S and Wy <TUy .

Then U, dintersects S and xe¢§S . Hence S§c§ and

=S ., This completes the proof of the theorem.

(2]

N.B. Throughout the remainder of the paper when we speak
of topological concepts in an N-space T , we shall mean
that T 1is a topological space, closure being that of

definition 2.1

THEOREM 2.281. A necessary and sufficient condition that

3

a subset S of an N-space T w.r.t. Z Dbe open is that

for each xe S there existsa U, €2, such that Uy < S .

Proof:s Sufficiency: If xe S , we have by our sufficiency
hypothesis that thefe exist a Uxe 2, such that Uy < S,
and hence by definition 2.21 xé€CS s Which is equivalent
to saying that S nCS = 0° , ©Since CS8S< CS , it then
follows that CS = CS . Therefore by definition CS is
closed and S is open.l

Necessity: Let S be an open set, i.e., CO is closed,
Then, if xe¢ S., xeCS = CS . Suppose that there does
not exist a UyxeZy such that Uy <8 . Then UynCS # O°
for each Uyge 3y , and by definition 2,81 x€CS . This

is a contradiction, and the necessity is proved.

DEFINITION 2.22 If T dis an N-space we.r.t. X and also

Welote 2'2, then the two neighborhood systems X and X!

- See IX.

4V]

More gener=lly, this definition shall apply if & and
! satiefy (2.11).



will be said to be egquivalent, if for each xeT. 3%y and
Z} have the property that given Uxe Zx there correspond

Ux'e Zx' such that ka < Uk s and conversely.

N.B. It may easily be verified that, if T 1is an N-space
w.r.t X and also we.r.t. X' , then the equivalence of
> and X' dimplies that X and X' give rise to the

same operation of closure.

THEOREM 2.22. If T is an N-space wer.t. % , then X

is equivalent to a complete systeml ' of neighborhoods

of T.

Proof: It follows from (R.14) that given U,e X there
exist Vy,€e ¥, such that, if ye VX s there exist Wye Zy
such that W, < U. . Then, if yeV, , we see that

y
ye CUy Hence ye C(CUy), and v, < C(CUyx) , which is an
open set. Since CU_ < CU, , then C(CUx) € U, . Therefore,
given U,e€ Zx s there corresponds an open set containing
x and contained in Uy . The converse follows immediately
by theorem 2.21 . The set of all open sets is a complete

neighborhood system of T , an open set, being a neighbor-

hood of a point x if x€ S , and the theorem is proved.

COROLLARY 2.21. If T is an N-space w.r.t. = and at

the same time an N-space w.r.t. X' , then a necessary

and sufficient that Z and X' give rise to the same

1l gee X. It is to be remembered that in this case the
setg Ue X! are open and that if xeU then U is said
to be a neighborhood of x 3 i.e. Z.! =[:U s Uext xe'ﬁ] .



operation of closure is that X and X' Dbe eguivalent.

Proof: The sufficiency has been umentioned before, and

the necessity follows from theorem 2.22 upon noting that
the equivalence of neighborhood systems is an "equivalence
relation"l and that complete neighborhood systems are

equivalent.

As iskhown in UH1 , pe 29, section D , every complete
system .3 of neighborhoods of a topblogical space satisfies
(2.,12) and (2.13) . An open set U is now to be considered
a neighborhood of a point x 1if xe U, and therefore
(2.11) and (2.14) are also satisfied by £ . T is then
an N-space w.r.t. X , and we may summarize our results

in the following theorem.

THEOREM 2.23. Lvery N-space T w.r

—.-—.

ot
L

Y 1s a topological

space with closure defined as in definition 2.12, and

¥ 1is equivalent to the set of 21l open sets in T . Con-

versely, every topological space _T 1is an N-gspace w.r.t.

any system % equivalient to g complete neighborhood system

of T.

N.B. It might be pointed out here that if T is an
N-space we.r.t. 2 and if each Ue€e X 1is an open set,
then ¥ 1is a complete system of neighborhoods of T ,

This follows immediately from theorem 3, p. 30, in LW] .

See [i] s P.5. Here we make use of the transitivity of
the eguivalence relation.



THEOREM 2.24. A necessary and sufficient condition that
a function f(x) on an N-space T w.r.t. = to any N-

space TI' w.r.t. 2 pg,continuou§l is that for each
x €T and Uf(x) € Zé(x) there correspond 'Qxé b3

X
!
such that f£(U;) < Up(y) -

Proof: This theorem follows immediately from theorem

2,23 above and theorem 4 of ‘ s Pe &4,

DEFINITION 2.25. A function f(x) on an open set S, ,

X € SX s of an N-gpace T w.r.t. X to any N-space T!

wero te X' will be said to be continuous at a point

. ! 1 .
ye Sx 1if given Ur(y) € Zf(y) there exist Uye€Zy ,
Uy < 8 , such that £(Uy) € Up(y).

N.B. It then follows from theorem 2,24 that, if f(x)
is a function on an N-space T to an N-space T' , then
f(x) is continuous on T to T!' if and only if f(x)

is continuous at each point xe€¢ T .

We saw in theorem 2.11 that every N-group is an N-
space, and now we wish to consider the case in which a
group T 1is an N-space w.r.t. X and at the same time
an N-group we.r.t. 2@ « The question then arises as to
whether the two neighborhood systems, X and X' =

[x +Ug s x€T , Ug € Z@:], are equivalent or, what

1 gee XII.



is the same thing, whether the operations of closure that
are defined in terms of the two neighborhood systems are
the same. By theorem 2,11 and definition 2.23 we may

state the following corollary,

COROLLARY 2.21. If a group T is an N-space w.r.t.

et

¥ and if T 4is alsc an N-group w.r.t. Zg , then a

necessary and sufficient condition that X and

= [x+U@; xeT, U@eZ@], where E;(=[x+U9 3
Ugp€Se |, be equivalent is that:

given xe¢T , x +y 1s continuous in y at

y =0 and -x +y is continuous in y at y =x .

If T 1is a topological group, the conditions of
corollary 2.21 are satisfied, and hence in this case we
are justified in always taking our neighborhood system to
be generated by the neighborhoods of the origin in the

manner above,

THEOREM 2.25, A necessary and sufficient condition that

 §
lim x, = x , where ‘fxng is a seguence of elements of
an N-space T w.r.t. Z , 1s that given UXE-ZX there
exists an integer m = m(UX) such that n)>m implies
that x, € UX o
Proof': The theorem is an immediate consequence of theorem

.28 o

1 See XI,
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2ede ﬂl—spaces.

We shall now introduce our generzlization of a linear
topological space. As in the development of the study of
linear topological spaces,l we shall first define the
space in terms of a neighborhood system and later consider
an equivalent characterization in terms of the existence
of a special real-velued function, which we shall call

a pseudo-norm.

DEFINITION 2.31. Let T be a Vl—spa092 with respect to
A such that there exists a system U of subsets Uc T
satisfying the following postulates:
(2.31.) the intersection of all U eU is © ;
(2.52.) given Ue U and V€U there exists
a Wel such that Wec UNV
(2.55.) given a €A and UelU there exists
a Vel such that pVc U for all /p/ £ /a/ 3
(2.54.) given U €U there exists a Ve U such
that V+VcU;
(2.55.) given x€T and UelU there exists an

a€ A such that xecaU .

We shall call such a space T an N-space of type 1 with

respect to A, U or simply an N;-space w.r.t. A,U.

1 gee L[] .
See definition 1l.31l.
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THEOREM 2.31.  Every Nj-space T w.r.t A, U is an

PV =S

N-group w.r.t. U and is, in particular, a topological

abelian group.

Proof: It follows from (2.31), (2.32), and (2.34) that

T 1is an N-group w.r.t. U , By theorem 2,11 and theorem
2.283 T 1is a topological space. T 1is by definition an
abelian group. By theorem £.l11 and theorem 2.24 we have
that (2.33) and (2.34) imply the continuity of the opera-
tions x +y and -x . In using (2.33) in the above

we take o = p =-1 , Hence T 1is a topological abelian

group, and the theorem is proved.

A further study of this type of space will be carried
out in the next chapters when we consider the equivalent

characterization of Nl—spaces.




CHAPTER 3
PSEUDO-NORMED SPACES. P-SPACES.

Hyersl has shown thet the notion of a pseudo-norm, i.
€.y a non-negative real-valued function defined for each
element of a space and each element of a strongly partially

ordered set,2

is sufficient to characterize linear topo-
logical spaces. In this chapter we wish to go further

and show that a generalization of the form of Hyers! pseudo-
norm is fundamental to the study of topological spaces.

The pseudo-norm in some cases may seem to be trivial,

since it may be only another notation for set inclusion,
though the value of our characterization lies in the fact
that it takes as the basic concept in topology the exten-
sion of a notion which is a very familiar one, namely, that
of a norm. This new postulational basis for topological
spaces is also in a form which is very convenient for the
purposes of this paper, and some of the topological proper-
ties imply interesting conditions on the pseudo-norm, as

has already been demonstrated in the case of linear topo-

logical spaces.3

3.1. P-gspaces. Eguivalence of N-spaces and P-spaces.

DEFINITION 3.113. Let T and D be sets with elements

1 See Lel

® Bee VI.
3 See for instance L6l , L[$0 [ or L49L
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X g 92,5 0ee and d , @ 4 ¢ 4 e respectively.

lioreover, D will be assumed to be partially ordered.l

The set T will be said to be a pseudo-normed space with

respect to D , or briefly a P-space w.r.t. D , if there
exists a non-negative real-valued function Jx,d/ on
TD such that @
(5.11.) there correspond to each xe¢T a non-
null subset Dx of elements of D such that Dy
is a strongly partially ordered setl with the same
ordering as D , and /k,dxﬂ £ 1 for each d_€ Dy 3
(3.12.) /y,d/ £ 1 for all d,eD, implies that
y =X
KS.IS.) given x€ T and dxéDX there exists
an ey € Dx such that for each y with the property

that IW)exV & 1 there corresponds a dyény such

X
(38.14.) d £ e implies that /fx,e/ £/x, 4/

for all xeT ,

that d_ 2 d, ;

/x,d/ will be called the pseudo-norm of x with respect

to d .

DEFINITION 3.12. If T 1is a P-space w.r.t. D , we
shall défine
U(d)

[x; xeT ,//x,'d//é]_] B

s [tﬂd); deI)],

Il

1 gee VI.



and

Z, = [ U(dy) 5 d,€ ij] .

¥ will be called the neighborhood system generated by the

pseudo-norm, If T is also a P-space w.r.t. D! , then

the pseudo-norms fx,d/ and fx,d¥/' will be said to
be equivalent if they generate equivalentlneighborhood

systems,

N.B. A sufficient condition for the equivalence of two

pseudo-norms is that given dxe DX there correspond

! !
dy €Dy such that [y, £ /y,d /! for all yeT,
and conversely. Later we shall show that in a special

case this condition is both necessary and sufficient.

THEOREM 3.11. Every P-space T _w.r.t. D 1is an N-space

—_—a

W.r.t. X , where 32 1is the neighborhood system generated

by the pseudo-norm. Conversely, every N-space W.r.t %

[N

S a P-space we.r.t. Z .

l

g

roof: Let T be a P-space w.r.t. D , and let I and

T, be as in definition 3.1% . Then (.11)and (2.12) of
definition 2.11 follow respectively from (3.11) and (3.12)
of definition 3.11. (3.11), (3.14) and VI(ec) imply (2.13).
(2.14) is a direct consequence of (3.13) and (3.14).

Hence the first part of the theorem has been proved. Now

let T be an N-space w.r.t. X , and we shall show that

See definition 2.22.



(3.11) - (3.14) follow from (2.11) - (2.14) . First,
it is evident that we can define an order for X satis-
fying VI(a) and VI(b) by taking U=V if U<V , and
U>V if U is properly contsined in V , where U,Vex .
Then for each x€T and U€X define

Jx, W% 1, if xeU ,

and

/x, U/ 52, if xE€U .
X is a strongly partially ordered space by virtue of
(2,13) , and therefore (3.11) is satisfied. (3.12) follows
from the definition of /x,U/ and (2.12). (2.14) evi-
dently implies (3.13). (3.14) is clearly satisfied, and

the theorem has been proved.

3.2, Topological properties of P-spaces.

follows
It then/from the above theorem and theorem 2.23 that

every P-space T w.r.t D 1s a topological space, and

conversely.,

COROLLARY 3.21. Every P-space T w.r.t. D is a topo-

logical space with closure defined as follows:

if S is any subset of T , then xeS , the

closure of 5 , if and only if for eaci dxe DX there

exist y€ S such that /y,d/ 21, i.e., yeU(dx) .



e

s0 X , the neighborhood system generated by the pseudo-

norm, is equivalent to the set of all open sets of T ,

:

Conversely, every topological space T can be pseudo-

normed w.r.t. a complete neighborhood system of T or

w.r.t. any systewm of subsets eguivalent to a complete neigh-

borhood systen.

Proof: This corollary is an immediate result of theorem

3s11 and theorem 2.23.

COROLLARY 3.22. A necessary and sufficient condition that

a subset S of a P-space T w.r.t. D be open is that

to each x€5 there corresponds a d, €Dy such that
VeaLvs £1 implies ye€§ , i.e. U(d,) < s .
Proof: That this follows is clear from theorem 3.1l and

theorem 2.21.

COROLLARY 3.23. A necessary and sufficient condition

that a function f(x) on zmopen set Sy s ye;Sy s of

a P-space T w.r.t. D to a P-space T' w.r.t. D!

! !
be continuous at x =7y 1is that given dr(y) € Dr(y)

1
there exists a dye Dy such that ,/f(X),df(y)‘y'é 1
for all ,ﬂx,dyl £1.,

Proof: This result is a consequence of theorem 3.1l and

definition 2.23,.

COROLLARY 3.24. A necessary and sufficient condition
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that an element x of a P-space T w.r.t. D Dbe the

limit of a seguence ixﬁ\ of elements of T is that

given d,€ D, there exists an integer m = m(dy) such

that for all ndnm /x ,d./ £ 3 ,
Proof: -The proof of the corollary depends upon theorem

3.1l and theorem 2.25,

1
3.3.  P-groups.

The pseudo-normed spaces that we will be dealing with
later on will be groups, and we shall now introduce the
concept of P-group which shall correspond to an N-group
in the same manner that a P-space corresponds to an N-

space.

DEFINITION 3.31. Let T be an additive group with elements
X 5 Yy Zy eee y and let D Dbe a strongly partially ordered
set of elements d , & , ¢ 4, «oe « We shall say that

T 1is a pseudo-normed group with respect to D , or simply

a P-group w,r.t. D , if there exists a non-negative,
real-valued function defined on TD satisfying the
following postulates:

(;5.31.) J0,d/ & 1 for all dé&D ;
(3.32.) #x,4// €1 for all deD implies

x =0 , where © 1is the zero element of T ;

{5.55.) given d €D there exists an eéD

1 : . i .
For the relation between P-groups and topologicsl abelizn
groups see section 4.2.




such that if fy,d/ & 1 , then there exists a
c = c(y) €D with the property that /fy + x,e/ ¢ 1
for all fx,c/ &1 ;

(3.34.) e 2 d implies that Jx,a/ & /x,e/
for all x€T.,

THEOREM 3,31. Every P-group w.r.t. D 1is an N-group

weret. U , where U(d) = );x 3 X€ET , fx,d/ & l]

and Y = [U(d) s 4€ D] . Conversely, every N-group

w.r.t. 7/ can be pseudo-pormed w.r.t. U .

Proof: The verification of this theorem is quite similar

to that of theorem 3.11, and the proof will be omitted.

LEMMA 3.31. Let T be a P-group

=

.r.t. D, and given

x€T and deD define U, (d) = [y 3 V€T , /-x +y,d) & l] .
(We shall always write Ug(d) simply as U(d) . ) Then

x + U(d) = Ug(d) &

Proof: Let yéx + U(d) . Then -x + yeU(d) and

/-x +y,4// €1 . Hence y€Ug(d) and x + U(d) c Ux(d) :
Conversely, if yeé U,(d) , then f-x +y,df €1 and

-x + yeU(d) . Therefore yex + U(d) . Hence

Ux(d) c x + U(d) and the lemma is proved.

From now on in this thesis we shall be dealing with
P-groups, and hence it will be useful to suumarize in the

following corollary the characterization of certain topo-



logical notions in terms of the pseudo-norm of a P-group.

COROLLARY 3.31. (a) [Every P-group T w.r.t. D is

a topological space with closure defined as follows:

if S 4is any subset of T , then x€ S , the

closure of S , if and only if for each de€ D there

exists _a y€S such that /-x +y,d/ £ 1 .

1 .
Also I = [ U (d) ; x€T, deD] is equivalent to the

set of zll open sets of T .

(b) A necessary and sufficient condition that a

subset S €T be open is that given x €S there exists

a deD guch that /-x + y,d/ & 1 implies yeé S or

what is equivalent Uk(d) cS.

(¢) A necessary and sufficient condition that a
function f(x) on an open set Sy cT,vy éSy s to a

P-group T!' w.r.t. D! Dbe continuous at x =y is that

given d'e D' there corresponds a d€D with the property
that /-y + x ,d4/ < 1 implies that / -f(y) + £(x),a/'« 1 .

(d) A necessary and sufficient condition that gn

element xe&T be the limit of g seguence '{Xn.} of elements

of T is that given dé€D there exists an integer m = m(d)

such that /-x +x,,d/ €1 for all nd>m .
Proof: This corollary follows frowm theorem 3,31, lemma
3431, theorem 2,11, theorem 2.21l, theorem 2.23, definition

2.25, and theorem 2.25.

1 This neighborhood system will be said to be the neighbor-

hood system generated by the pseudo-norm. This is snalogous
to definition 3.1%.
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As an example of a P-group, consider any valued ring
A for which the valuation satisfies the additional property
that /a/ = 0 implies that o =0 . Then A can be pseudo-
normed w.r.t. the set of all positive real numbers, Rt .
This can evidently be done by defining

Ao,/ =1 [of

for each o€ A and reR' . As we have mentioned before,
it is interesting to note that we can find exanples of valued
rings in which the topology generated by the vaiuvation is
trivial in that it is discrete; whereas, the valuation
itself, from a more general point of view, is by no means

trivial, For instance see examples (4) and (5) of $ 1.2.

3.4, Bl—_ggggg.

In this section of the paper we will define what we
shall call a Pj-space and shall show the equivalence of
P{-spaces and Nl--spaces.l Pl-spaces will be related to
Nl—spaces in much the same manner that pseudo-normed linear

<

2 . . : 4
spaces” are related to linear topological spaces.

DEFINITION 3.41. A vl-space5  woiok, A4 w11 be suid

to be a pseudo-normed space of type 1 with respect to A,D,

or briefly a Pj-space w.r.t. A,D if T is a P—group4

See § 2.3.
€ see T&T .

£z

© See definition 1.31.
4 gee definition 3.31.



w.r.t D such that the pseudo-norm, /x,d/ , satisfies
the following additional postulates:
(3.41.) fax,d/ & Jof Jx,d/ for all de€D ,
achA and xeT ;
(3.42.) given deD there exists an eeD such
that fx,e// €1 and Jy,e/ € 1 implies that
Jx + 3,80 =15
“ \8.45.) given r)0 , x€T , and dé D there
corresponds an @€ A and a ye€ T such that x = ay ,
Wyyol &1, and [of - fx, 8/ £ 5
‘\5.4.4.}1 given a€e A and dé D there exists

an e€D such that /x,e/ & 1 implies that
AJpx, a4 € 1 for all /[o/ & /a/f .

N.B. The postulates which are necessary to determine the
properties of the pseudo-norm are then (2.32), (3.34),

and (3.41)-(3.44), since (3.41) implies (3.31) and (3.42)
implies (3.33).

THEOREM 3.41. if T is @ Pj-space w.r.t. 4, D , then :
\3.45 ) /-x%,38/ =//x,d/ for all de D and
xET

\B+46) /8,4 =0 for all de€D ;

1 i postulate is a stronger form of (Z.33).

£ This postulate then makes it unnecessary to assume that
1x = x for each xe€T , Given x€ T , x = ay for some
ccA and yeT . Hence by V(a) 1x = 1i(ay) = ay = x .
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i;5.47/" given a€A and deD there exist
e€D such that /x,e/ &1 and fy,e/ €1 implies
that /pix + py,d/ €1 for all /p,/ % /o/ and
/es/ & [of .
Proof: (3.45): By (3.41), (1.12) and (1.24)
H-xy8/ & /-1 Nz, 8/ =[x, 4/
Similarly,
Nxsdff & /-1 f-x,8/ = f/-x, 8/ .
Hence /f-x,4/ =/x,4/ .
(3.46): This follows from (3.41) and the fact that

1
we are assuming that /0/ =0 .

(3.47): By (3.42) we have that given d€ D there
exists an e;€ D such that /x,e;/ € 1 and //y,el//’-‘- 1
implies that /x + y,d/ €1 . Now by (3.43) we have that
given el6 D and ae A there exists an e €D such that
Hxsef £ 1 implies that /px,e;f/ & 1 for all /p/ & /o/f
Hence fxy,e/f/ €1 and Jy,ef =1 implies that
ﬂblx,exy €1 and ,ﬂpgy,exy £ 1 for all /pl/ € fa/

“and /pg/ € /ao/ , which in turn implies that
/p1x + poysdff €1 . This completes the proof of theorem
3.41.

3.5. The equivalence of P;-spaces and N;-spaces.

e

2
THEOREM 3,.51. Every Pl—space T wer.t. A,D is an

1 see footnote (1) Pell «

® Compare with theorem 1 of L6J
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Ni-space w.r.t. A, U , where 7/ is defined as in theorem

| i e s mmasnr

3¢3l, (i.e.y, 7{ is defined to be the neighborhood system

generated by the pseudo-norm.). Conversely every ﬂl-~pace

welete A, 2/ can be pseudo-normed with respect to a

strongly partially ordered set D in such a manner that

the neighborhood system generated by the pseuvdo-norm is

equivalent to 2[ .

Proof': The proof of the first part of the theorem is
almost immediate. Let T Dbe a Pl—space wer.te A, D
and define U = IjU(d); déI)] , Where
U(d) = [x; Nx, a4 & l] .

(2.31): (2.31) follows from (3.32) and (3.46)

(2.32): Use (5.34) and the fact that D is a strongly
partially ordered set.

(2.33): This is immediate from (3.44).

(2.34): Follows from (3.42).

(2.35)t A direct result of (3.43).
Hence T is an Nj-space w.r.t. A, U and the first state-
ment of the theorem has been proved. |

Conversely, let T be an Nl—space Welete A,Yl .
Given U ¢ U define U= Lax; xeU, /a/ & l] and
U= [U*; U e’d} . Glven U e W'we vee thak T U,
Also given U e U we have by postulate (2.33) of definition
2.31 that there exists a V € Ul such that Ve u s and
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*
nence U 1is egquivalent to ’u . From this equivalence
#*
it follows immediately that | satisfies (2.31) -
(2.35) of definition 2.31l, and also satisfies:
\ % # % *
(3.51) aU*c U” for Jo/ €1 and each U ell ;
\ *
(\5.52) given a €A and U¥ e’ there exists
* *
a Ve U™ such that PV + p2v““c U~ for all
/oy/ £ /o and [o ) < [of

For let us suppose that xe aU* where /o/ €1 ; i.e.

X =ay where y=9pz , /p/ €1 and z€U . Then

apz and by (l.22) /Jap/ = /a/ /p/ € 1 , and hence

*
XEU . Therefore (3.51) is satisfied by U . (2.34) of

X

-
definition 2.3l states that given U e U there exists

*
AR u*. Now by (2.33) of
definition 2.31 we have that given o€ A there exists a
>
1

* * *
PV + pV €V + V] < U” for [py/ % /o/ and [py/ %

b *
a V€U’ such that V

2
v *e u* such that pV < V for /p/ & /a/ . Therefore

/o/ . Hence (3.52) is satisfied by ¥/~ . (It is clear that

(3.52) holds also for /™ , since we made use of only those

properties of {[* that are also properties of UL .)
Define //x,U%// £ g.lb, [/a/ 3. xeaU ] . This lower

>*
pound exists by (£.35) for each x€T and U e W ,
and //x,U*// ishnon-negative real-valued function defined
*x *

on TU .« U is clearly a strongly partially ordered
. . a W * . o o

set with Ug 2 U;” if U, c U; . This follows by (2.32)

of definition 2,31.



.*
In order to show that /x,U/ , as defined above,
: *
is a pseudo-norm, we must show that /x,U )/ satisfies
(8.32)y (B3.34) and (3.41)-(3.44).
¥
(3.32): By definition /x,U/ =0 for all x€T
N _
and U¥e W . Let us assume that //x,U*// €1 for
% *
all Uure W . Then, given Ute u and a €A , we have
ey o i * *
by (2.33) of definition 2.31 that there exists a V> ¢ U
*
such that pV'c U~ for all /p/ %= /o/ . Pick /Jo/ > 1 %
which is possible by postulate (1.25) of definition 1.21.,
; *, 4 :
Then, since /x,V/ € 1 , we have that there exist pe€A
such that xe pV” s /p/</a/ . Hence xepV*c: U*,
. * % *
i.esy, x€U for every U e W . It then follows from
(2.31) of definition 2.31 that x = 0 , and (3.32) of defi-
*
nition 3.31 is satisfied by /x,U /.
*
(3,41): If x€pU™, then axé€apl , and since
/ap/%é fa/ /8/ , we obtain from the definition of the function
x * by
N/x, U/ that fax,U/ & /o/ /x,0 /4 .
(3.42): We have from (3.52), by choosing a €A and
/o/ > 1 , that given U e W' there exists a v* € UX
such that //X,V7 23, //y,V*// £ 1 implies that x éplv*
and .y € pzv*, where /p,/ £ /o/ and /po/ < Jof ,
X
and /x +y,U/ £ 1 . Hence (3.42) is satisfied by
*
NxsU [/
the
(3.43): It follows immediately by/definition of



4z

*
Jx,U ) and (2.35) of definition 2.31 that fx,U//
satisfies this postulate,
: *
(3.,44): Given a€4 , cu” e UY , there exists
.*
a v¥e W such that pV'c U™ , for all /p/ £ /of .
This is by postulate (2.33) of definition 2.31. Let
¥ *
a, be such that /e,/ > 1 . Then there exists a v.el
*
such that p V_ C v™ for all /e, & /a,/ o If
>
A%,V & 1 , there then exists a pe& A such that
XE€ pOV:(’, /p,/ < /o,/ « Hence xe pOV"; c V™ and
* * < . * U
pxepV c U, /p/ & /a/. I.e., given aelA and U €
there exists a Vo*e U" such that //x,Vo*// £ 1 implies
>
that fex,U/ €1 for all /p/ ¢ /o/ . Hence (3.44)
of definition 3.41 is satisfied by Jx,Uf .

* 2 > R >*
(3.84): 1If U ¢ U, and ?ce al; , then xeal, ,
and hence U, =2 U_ implies /x,U. / = /x,U,/ for all
1 2 1 e

e T .

Therefore we have shown that an Nl—space T can be
pseudo-normed W.Tre.te. u* in such a manner that T 1is
a Pl-space Welote A, u*.

It remains to show that the set of all

u(u”) = [x; //X,U*// & l:l

is equivalent to u . Given U(U*) it follows immediately
from the definition of //x,U’?/ and the definition of

U(U*) that U C U(U'?) . Conversely, given U e L



we have by (2.33) of definition 2.31 that given a €A
there exists a 'V*G’L[* such that pV*C:II* for
/o/ &€ /a/ . Pick a such that /fa/> 1 . If

,/X,Vﬁy £ 1, then there exists a pé€A such that

% & pV* and /p/ < /a/ . Therefore x€U” . Hence
U(V*) ¢ U™ and the neighborhood system generated by
,/x,Ui? is equivalent to l[ s Since we have already
shown that 11*.is equivalent to W . This completes
the proof of the theorem.

An important example of a P_-space is the "topologi-

1
cal abelian group" considered by liichal in ciol .
We shall discuss this example in detail later in the

paper.,

also wer.t. A, D! , then a necessary and sufficient

condition that the two pseudo-norms be eguivalentl is

that given de D there exists a d'€ D' such that

Nx, 4/ & fx,dY/' and conversely.

Proof: The sufficiency is evident. The necessity follows
from (3.41) of definition 3.4l1l. Suppose that the pseudo-
norms do generate equivalent topologies, i.e., given

i€ D there exists a d'€ D' such that fx,df/ €1 for

all fx,d'/'* 1, Then, given r >0, x€T , and

1
See definition 3.12, p. 29.



44

dt€ D' , there exists an a€¢A and yeé T such that
x=qay , /aof -/x,dY/t & r and //y,d’//"—- 1 . Hence
Nxs dkh = ffay,al & [a/lys0// & /ef = fx,0W + ¢, ,

where r, & r . Therefore fx,d/ & /x,dy/' for all

x€T , The converse is proved similarly,

We are now able to show that we can start with a
weaker set of postulates than those of definition 3.41
and yet retain the possibility of defining a pseudo-norm

which will satisfy definition 3.41.

COROLLARY 3.51. If T is a Xl~*pace Werete A and

D 1is a strongly partially ordered set, and if a real-

valued function /x,d/ is defined on TD such that

/x,d4 / satisfies postulates (5.31), (3.32), (3.34),

(3.42), (3.44) and

(5.51} given x¢é¢ T and déD there exists

an a€A and y&€T gsuch that x =0y , Jy,d/ €1,

then T may be pseudo-normed w.r.t. D 1n such a manner

preriet

that T is a P -space W.r. A,D and the new pseudo-

t.

p, -
norm /x,4// is equivalent to /x,d/f .
[x; Ax, a4 € ]J and
U_ = [U(d) 3 4 D] s, the above properties of /fx,d/

are sufficient to prove that T 1s an Nl—space A,l[ .

Proof: If we define TU(d)

This corollary then follows directly from theorem 3.51.



CHAPTER 4
@ -LINEAR FUNCTIONS ON Pq-SPACES TO K-SPACES

In theorem 3.52 we showed the equivalence of Pl—
spaces and Nl~spaces with the pseudo-norm generating the
neighborhood system. Hence we can study such spaces either
as characterized in terms of a neighborhood system of the
origin or in terms of a pseudo-norm, The pseudo-norm is,
of course, a generalization of the norm, and for this reason
we shall find it more sﬁggestive and also more convenient
to work out our theory in terms of the pseudo-norm,

It was shown in theorem Z.31 that every Nl~space is
a topological abelian group, and hence by theorem 35.52

every P.-space is a topological abelian group. Corollary

1
331 will be of importance to us here as it gives the
statement of topological concepts in the language of the
pseudo-norm,

The purpose of this chapter is to introduce the concept
of a linear function which possesses a sort of generalized
homogeneity. We know that in the case of Banach spaces
that every linear function (i.e., a function which is both
additive and ¢ontinuous) is homogeneous of degree one.l
Banachts proof of this can also be extended to the case of

)

. Bk & % ¢ &
linear functions in linear topological spaces. Here we

shall postulate a generalization of this homogeneity for

)

& See LSY ’ p.SG, theorem 2. The proof is for a space (F).
2 see [Q] . N '
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our linear functions and shall choose this homogeneity
to be suchh that we shall be able to obtain properties
corresponding to the known properties of linear functions

in linear topological spaces.

4.1.'§ ~Linear functions.

Throughout this section of the paper, unless otherwise
stated, T willl represent a Py-space w.r.t. 4, D, T!
a P;-space w.r.t. A', D' , and ® (a) will denote a function

on A to A' such that /@ (a)/'e /a/ for all a€aA .

X
DEFINITION 4,11l. 4An additive function f(x) on T to T!

will be said to be homogeneous with respect to a function

$(a) on A to Ar if f(ox) = @ (a)f(x) for all aca
and xeT . We shall say briefly that f(x) is & -
additive.

DEFINITION 4,12. A function f(x) on T to T! will
be said to be ® -linear if f(x) is ¢ -additive and

continuous,

DEFINITION 4.13. A @ -additive function f(x) on T
to T! will be said to be bounded if given dte D' there
exists a d = d(d')e D such that /f&x),aW'&e /x,d/

for all xe T .

1 4 function f£(x) is said to be additive if f(x + y) =
£f(x) + £(y) for all x,yeT.
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N.B. Let f(x) be a ¢ -linear function on T to TT,
Then evidently
(4.11) B (@) = uf(x) for all integers m
and all xeT,
(e22) 8@ +p)26) = (B (@) + @ (BN )
for all a,(jé A and xeT,
(2.13) @ (ap)f(x) = & (a) ¢ ()£ (x) for all
a,(bé A and xéT,
and
(4.14) P (@a)f(x) = B (am)f(x) =
md(a)f(x) .

If we assume that T'!' 1is such that atly! =0 im-
plies that at =0 or y! = 8' , then if f(x) #,{l n
A represents the null function,

(4.15) bm) =n,

(418) Ba+p) = B (o) +E(p) ,
(4.17)  Blap) = 3(a) 3 (o) ,

( 4,18) ®(am) = ¢ (ma) = m@(a) ,

for all a,3€ A and m any integer.

THEOREM 4.11. A necessary and sufficient condition that

a (@ -additive function f(x) be @ -linear is that f(x)

be bounded.

Proof': The sufficiency follows immediately from Corollary
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3.31(c), since f(x) is additive.
In order to prove the necessity let us assume that
f(x) is a ¢ -linear. Then f(ax) = & (a)f(x) ,
/®(a)/t ¢ /a/ and given d'e D' there exists a d = d(at)
such that /f(x),dW/' €1 for /Jx,4/ <« 1 . The latter

—

statement follows frowm corollary 3.31(c). Hence

Ay,d/f =1 implies that /f(ay),d¥/'¢ /& (a)/t & /a/ ,
applying (3.41) of definition 3.41l. By (3.43) of definition
3.41 we have that given déD , xeT , and r > 0 there
exist €A and ye T such that x=ay , fy,d/ €1

and /Ja/ - fx,d4/ <« r . Then Jf(x),ay = /ff(ay),day &
/af =/ffx,df + 1o, where T,> T . BSince this holds for

any x€T and v 0 , we have that ff(x),dY/' € /x,4/

for all xeT . This completes the proof of the theorem,

This theorem is then a generalization of Banach's
theorem that any linear functional on a Banach space has

a modulus.

DEFINITION 4,14, A set S < T will be said to be
bounded if for each de D the set [//x,d// 3 X€E S] of

real numbers is bounded,

N.B. If S, and S, are bounded subsets of T , then

k8 2

it is clear that Slu 82 and Sln 82 are also bounded

 subsets of T . It follows from (3.41) of definition 3.41

Lgee [27 . miso Liel ana  [97 .
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that for any a@e¢ A and S a bounded subset of T that
a5 1s a bounded set, Clearly any set with only a finite

number of elements is bounded.

COROLLARY 4,11. A ® -linear function F(x) on T

to T' maps bounded sets into bounded sets.

Proof: This follows immediately from theorem 4.1l.

THEOREM 4.12. A necessary and sufficient condition that

a set  S< T be bounded is that given an open set U

containing the zero element there corresponds a real number

r =r(U) > O such that given xe& S there exists an a€ A

such that x€alU , /ao/ €r .

Proof: Sufficiency: Assume that the condition is satis-

fied, Then given d€&D we have by corollary 3.31(a)
that there exists an open set containing the zero element
and contained in U(d). Let U denote this open set.
Hence given x€¢ S there exists an a€ A such that
/Ja/ € r(U) and xeaUc al(d) . I.e., x = ay where
Hysdf =1 . Hence [fx,d/f € fay,d/ £ /a/ by (3.41)
of definition 3.41. Therefore for any x€S , [fx,d/ & r(U)
and the sufficiency is proved.

Necessity: Let S Dbe a bounded set and U be an open

set containing 6 . Then by corollary 3.31(a) there exists

1 Compare with the discussion on boundedness in [ﬁj &
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a U(d)c U . By (3.43) of definition 3.4l we have that
given xeS and r > 0 there exists an ae¢ A and a

ye¢T such that x=ay , /y,d/ %1 and /Jao/ -/fx,4/ & .
But now, since xé¢S and S 1is bounded, /fx,4/ £ r (d) .
Hence /a/ £ ro(d) + r . Therefore given xe€ S ,

xeaU(d) = oU , where Ja/ €r_ (d) +r for any r> 0 ,

and this proves the necessity of the condition.

Let F‘§ represent the set of all §5-linear functions
on T to T' . Then if f, , f26 Fg , we define

fy = £, + f5 to be the function fg(x) = fl(x) + fg(x) "

3 1
With this definition of addition we can prove the following

theorem.

THEOREM 4.13. The set Fgy of all ¢ -linear functions

—

on T to T' 1is a topological abelian group.

Proof: It is evident that the sum of two ® -sdditive
functions is § -additive, since T!' is a linear set over
A' , Also it follows immediately from corollary 3.31(c)
and (3.42) of definition 3.41 that the sum of two contin-
uous functions is a continuous function, and hence

£

+ fgoeFg for every f, , 56 Fg . The commutative

1
and the associative laws of addition follow from the

commutativity and associativity of addition in Tt .



The null function ~Q (x) = 8 for all xeT is contained
in Fg and f +-l=f for all feFgz. If feFg,
then -f , the function -f(x) , is in Fg , and f + -f = 0,
Therefore Fg 1s an additive abelian group.
We wish now to show that Fg 1is a topological group
and we shall do this as follows. Let By Dbe the set of
all bounded sets contained in T . BT is clearly a

strongly partially ordered set with S 2 So if 8, 28, .

1
(81 » S, €By .) Define W to be the set of all ordered
pairs w = (d',5) , dteD! and S€Bp . Since Bp and
D' are strongly partially ordered sets, W is evidently
a strongly partially ordered set? with wy = W, if

1, B 5 sss )

a1 > dy and 8 28, . (w, = (4;,8;) 1

Define
M(f,w) = l.u.b. [//f(x),d'//’; X € s:[ .
where w = (d',8)eW and féeFg. By corollary 4.11
M(f,w) is defined for each f€ Fg and weW . M(f,w)
then has the following properties:
(4.19) M(f,w) = 0 for every weW and feFg ;
u(f,w) € 1 for all weW implies that f = ~Q ;
(4.110) given weW there exist veW such that
M(fy,v) €1 and M(fy,v) £1 implies that
M(fy + fg,w) =1 ; _
(4.111) u(atf,w) £ /ar/? M(f,w) for each weW

. See VI,



and each a'felg;

(4.112) given a'ec A' and welW there exists

a veW such that Wu(f,v) £ 1 implies that u(p'f,w) £ 1

for all /p!'/' & /a'/' and p'f €Fg;

(2118 ) w; = w, implies that u(f,w;) = M(f,w,)

for each fEFgE .

These properties of M(f,w) follow from the definition
of M(f,w) and the properties of ;ff(x),duy' 5

M(f,w) as defined above clearly satisfies (3.31) -
(3.34) of definition 3.31 and hence Fg is a P-group
w.r.t.e W , By corollary 3.31(a) Fg is a topological
space. It then follows from corollary 3.31l(c) and (4.110)
that the‘openation of addition is continuous. Since
1f = f and -1f = -f€Fg , it follows from (4.111) and
(1.24) that Iﬂ(;f,ww) = M(f,w) for all féFg and welW .
Hence by corollary 3.31(c) the inverse operation is con-

tinuous and F g is a topological abelian group.

&

Later on in the paper we shall return to the study of
such a space Fg and w;th stronger conditions on A!
we shall be .able to show that Fé- is a P2—space % 9
A'y W , In preparation for this we shall now show that
if A' is a commutative ring, then F§ is a Vl—space

Welete A
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THEOREM 4l4. If Fgz 1s the set of all ¢ -linear functions
Q_Q 5 Pl“ Qace T EOI;o_t_o A 5 D LQ. _a_ Pl"' Qace T' ‘_N_or_nr_-
A', D' where A! is a commutativel ring, then the topologi-

cal abelian group F$— is a Vl-gpace with respect to A' ,

Proof: We have shown in theorem 4.13 that Fgz is a topo-
logical abelian group. For ate A' and fe&Fgz we define
a'f to be the function a'f(x) . Since A!' is commuta-
tive, it follows that aifl(x) + aéfg(x) is @ -additive

for each ai 9 aéke A' and fl, f,éFg . It follows from

2
(3.47) of theorem 3.41 and corollary 3.31(c) that
aifl(x) + aéfg(x) is continuous in x. In using (3.47)

t ' '
pick at' to be a, or al according as /ai/ 2 /az/

1 2
t ! ? ? ? t
or /al/<f/a2/ . Hence alfl + a2f2§£F§ for any ap, a5€ A!

One may then go on and easily verify that F‘é is a

Vl- space.

4,2, Sequences of @ -linear functions.

The first theorem of this section depends only upon
T being a P-abelian group which satisfies, in addition,
the stronger form of postulate (3.33), namely, (3.42) of
definition 3.41, and the following postulate:
(4.81 >' to each d&D there corresponds an

llﬁq aﬁ=ﬁa.mrau.a,ﬁéA.
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eé D such that fx,e/ £ 1 implies that f-x,4/ €1 .
It can be shown by use of corollary 3.31 that this is an
equivalent form for the definition of a topological abelian
group. This equivalence is wmade clear by §168 and §17

of LiHI , pp. 52 -57.

THEOREM 4.21., Let T be a topological abelian group.

If —gxn} and 6jyn} are sequences of elements of T,

it follows that:

(a) if 1im x ~ exists , then the limit is
unigue;

(b) 1lim x =X and 1lim y, =y implies that
1lim (xn + yn) =x+y .

If T _jé_ _a._ gl"' Qace _“_'ozog_o A, D 9

i

(¢) 1lim X =x implies that for any aéA

1im ax = X .
Proof: As we mentioned above, every topological abelian
group.can be characterized in terms of the pseﬁdo-norm.
We shall give the proof of this theorem using the pseudo-
norn.

(a): Let us assume that lim x, = x and lim X, = 2 .
Then by (3.42) and (4.21) we have that given de€ D there
exists an ee D such that fx - y,d/ €1 for all //;c,e// — )
and fysef &1 . By corollary 3.231(d) there exists a

positive integer m = m(e) such that for ndm(e)
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Jx - X, e/ £1 and [x, - z,e// € 1 . Hence

Jx - z4 df/= 1 for all d€&D . Therefore, by (3.32)

of definition 6.4l x - z =8 , or X = z , and the unique-
ness has been proved.

(b): Assume that lim x, =x and lmy =y .

Then, ss in the proof of (a), we have that given de D
there exists an ee€ D such that fx,ef € 1 and Jfy, e/ ¢ 1
implies that /x - y,d/ €1 . Then by our hypothesis

and corollary %.21(d) there exists a positive integer

m = m(d) such that /x, - x, e/ <1 and [y, - y,e/f ¢1
for all n > m . Hence Jx, + ¥, - % - ¥s8/ €1 for

all n > m . By corcllary 3.21(d) this completes the proof
of (b).

(¢): By hypothesis and corollary 3.21(d) we have that
given ee D there exists an m(e) such that n;> m
implies that //x - x,,ef €1 . By (3.44) of definition
3.41 we have that given o €A anc"g d €D there exists
an e€&D such that //xn - x,e/ €1 implies ~
foax, - ox,df €1 . Hence for n >m(e) = m(e(a,d)) we
have that Jfox - ax,,d/ € 1 , and by corollary 3.21(d)

lim ax, = ax « Thus (c) has been proved.

COROLLARY 4,21, ;g lin f =f, feFg gnd fefg,
then 1lim £ (x) = £(x) for all xeT.

Proof: As we mentioned at the beginning of this section;
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every topological abelian group is a special type of P-
group. Hence by theorem 4.13 and corollary 3.31(d) we
have that given we W there exists a positive integer
m = m(w) such that M(fn - f,w) €1 for all n >m , t
Since given x¢ T there exists an S €Bp such that

X€E S , we see by the definition of M(f,w) that given
dte D' there exists an integer m = m(w) , w= (da1,s8) ,
such that n> m implies that /f, (x) - f(x),dy/'¢1 .
Hence by corollary 2.21(d) 1lim f, (x) = f(x) for each

xeT °

THEOREM 4.22. If 1lim fn(x) = f(x) for each xeT,

fo(x)€Fg , and if given d'eD' there exists a deD
and g positive integer s = s(d',d) such that

//fs(x) - f(x),d_'//"—' 1 for all fx,d/ =1 , then f(x)

e

is ®-linear, i.e., feFg .

Proof: Since 1lim f, (x) = £(x) , it follows from theorem

4,13 and theorem 4.21  that f(x) is @ -additive.

By 3.41 of definition %.41 we have that given dte D!
there exists an e'¢ D! such that /f(x),6¥/t =<1 for
//fn(x) - f(x),e/r €1 and Jf,(x),e/! €1 . Pick
n=s = s(e',e) as in our hypothesis. Then, since fé(x)

is in F‘§ s we have by theorem 4,41 that given e'é D!

1 W ana M(f,w) are defined in theorem 4,13,



there exists an e, & D such that Hfg(x),e¥) €1 for

all /x,e1/ <1 . Now by hypothesis //fs(x) - f(x),eV/1&
for [fx,ef &1 . Pick d = e, e - Then /f(x),dt/r £
for all //x,d/ €1 . By corollary 3.3Ll(c) f£(x) 1is

continuous, We have already shown that f(x) is @ -

additive and hence f(x) is @ -linear.

k |
1



CHAPTER 5

§ DIFFERENTIALS OF FUNCTIONS WITH ARGUMENTS AND VALUES IN
P, -SPACES.

A
Throughout this chapter T , Tt and T't will
represent P;-spaces w.r.t. A,D 3 A', D' and A'!,D"?
respectively, unless otherwise stated. @ () will denote
a function on A to A' such that /@ (a)/! £ /a/ for
all a€elh .,

Dede § -approximation functions.
DEFINITION 5,11, Let F(x) be a function defined on an

opeﬁ set Sg< T 5 €8y . Then F(x) will be said to

ve a & -approximation function on Sgc T to T' if
there exists an e eD such that given dt'é D' there
corresponds a d = d(d')e D for whichs _
(5.11) Nxsef €1 and fx,8/ €1 implies that
HE(x) a1 & 1 ;
and
(5.12) fox,ef/ =1 and fx,d/ £ 1 inmplies
that / @ (a)F(x),at /1< 1 .

N.B. We have by corollary 3.321(a) that there exists a
U(d;) € Sg » and it is implied in definition 5.11 that
e =d; , as we can only speak of (5.11) and (5.12) being

satisfied for such xe& T for which F(x) is defined,
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LEMMA 5.11, If F(x) is both a ¢ -additive functiorn

and a Q§-approximation function on T %o T!' , then
F(x) =6 for all xeT.
Proof': By hypothesis we have that there exists an eeD
such that given dte D' there exists a d = d(d?')€ED
such thats

(5.13) #F(ay),a¥t = /& (F(G),a0 <

for all foy,ef/ €1 and Jy,d/ €1 .

In addition, we have by (3.43) of definition 3.41 that
given xeT and de€eD there exist yeT and a€A
such that x = ay and Jfy,d/ €1 . Hence, if /fx,e/f &
we have from (5.13) that |

(5.14) /F@),ay/r €1 for all dte Dt .
Hence by (3.32) of definition 3,31 F(x) = € for all
NJx,ef/ &1 . Then by use of (3,43) of definition 3.41
we have that given Xx€T there exist a€ A and yeT
such that fy,e/ €1 and x = ay . Therefore, since
F(x) is @ -additive, F(x) = O (a)F(y) = 8 for each

x¢€ T 4, and the lemma is proved.

DEFINITION 5,12, Given a valued ring A define
A° = [a;aeA, ap = pa for each pC—Aj

We see that given any integer m that m = mle€A°® .

1 g = a+ ... (m summands) .. + 0 ., A° can easily
be shown to be the largest subring of A which is commu-
tative.
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We are not in genéral interested in the open set on
which a @ -approximation function F(x) 1is defined and
so we shall not specify the open set but say only that
F(x) is a @ -approximation function defined on T to
T! , though it is to be remembered that F(x) may only

be defined on an open set Sgc T , @ €5y .

pet—st

LEMMA 5.12. If Fl(x) and Fz(x) are @ -approximation
functions on T to T! , then F(x) = aiEﬁx) + alFs (x)

is a @ -approximation on T to T!' for all

o) , age(ar)e .
Proof': Pick a!' to be either ai or aé depending on
whether /ai/' =2 /aé/' or /aé/' > /a{/' . Then we have
by (3.47) of theorem 3,41 that given die D! there exist
dte Dt such that JF(x),dj//t €1 for //Fl(x),dr//'é 1
and //'F.‘g(x),d'//'é 1. Since Fy(x) and Fz(x) satisfy
(5.11), we see that the;gi e;€ D such that given d'eD !
there correspond die D such that

AF; (x),a/1¥¢ 1 for all //x,ei// £1 and

Hxs/ &1 , 1 =1,28 » Hence picking 4 Q'dl, d, and

2
'
e = e}, €5 we have that given d; € D!
JF(x),a/'e 1 for all fx,ef €1 and fx,df € 1.
?
Since 03'- » G, are in (at)e , ©® (a)F(x) = a]'. @(a)Fl(x)
+ aé @(Q)Fg(x) . Then in a manner similar to the above it

can be shown that
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//'()E(Q)F(x),d]'//' £ 1 for-all faxysef €1 and

Jx,4/ &1 . (It is fo be noted that e and d may
have to be rechosen in order to hold forlﬁoth this equation
and the one above, This is possible since D 1is a strongly
partially ordered set.) Therefore F(x) satisfies (5.11)
and (5.22). If F, (x) is defined on sic T, QEE
and i =1, 2 , then F(x) is defined on an open set |
Sg C S;NSy, , ©€8y ; since by corollary 3.31(a) such
an open set does exisﬁ. Hence F(x) is a @ —-approximation

function on T to T!' ,

LEMMA 5.13. If F(x) is a @ -azpproximation function

!
is a * @ -linear function on

——

on T te T' and g(x')

Tt to T!t , then G(x) = g(F(x)) is a ¥ -approximation
function on T o T'' , where ¥ (o) = & (&(a)) .
Proof: Since g(x') is a ®' -linear function, we have
by theorem 4,11 that given d!'t'e D'! there exists a dt'e D!
such that

(5.15) JG(x),arynt £ fF(x),ayr .
Because of the fact that F(x) is a @ -approximation
function, (5.,11) is evidentiy satisfied by G(x).

By the @r—linearity of g(x')

(5.16) P (a)e(x) = g(P ()F(x)).
Now &(x) satisfies (5.15) and hence

(8.17) #P ()6 ,ary1t £/ F(QF(),ay .



G(x) then satisfies (5.12) by virtue of the fact that
F(x) does, Clearly / P(a)/tt =/&(a)/t' = /a/ . Hence
G(x) is a }P -approximration function on T +to Tttt | |
where G(x) is defined on the same open set in T on which

F(x) is defined.

SeRe ;‘Z -differentiable functions.

DEFINITION 5.21. Let f£(x) be a function on an open

set Syc; T to Tt , yéSy . If there exists a |

¢ -linear function f(y3;dx) of ¥ on T to T! such

that , |
£5.21) F(SX) = f(y + 3x) - £(y) - £(y;dx)

is a i—approximation function of &x on an open set

SgcT, @€ to T' , then f(x) will be said to be

@ g
¢ -differentiable at x =y and f(y3dx) will be called

a @ -differential of f(x) at x =y with increment &x .

N.B. There exists by corollary 3.31(a), corollary 3.31(b),
and lemma 3.2l an open set Sgc T , 0¢85 , such that

Yy + 85 <S8y . F(dx) 1is then a function on Sg €T to T!.

THEOREM 5.21. If a2 function f(x) on an open set Sy c T,
ye.’:‘»y s to T' is @ -differentiable at x =y with

o=

f(y;dx) a @ -differential of f(x) , then f(y;dx) is

. .

unigue.



Proof: Let us assume that fl(y;ﬁx) and  fg(y;dx)
are both (§ -differentials of f£(x) at x =y . Define
G(ox) = £ (y38x) - falysdx) .
Since |
G(dx) = (£(y + &x) - £(y) - £,(y30x) ) -
(£ + o) - £G7) - £3G7300) ) ,
we then have by hypothesis thaﬁ G(dx) is the difference
of two é_—approximation functions. Hence by lemma 5,12
G(dx) 1is itself a @ -approximation function. G(dx)
is also the difference of two ¢ -linear functions on T
to T' and by theorem 4,13 G(dx) is a @ -linear function
on T to T!' ., It then follows by lemma 5.11 that G(dx) = ©
for all oxeT , and thus the‘uniqueness of the"¢>-differen-

tial has been proved,

THEOREM 5.22. If f(x) is a -differentisble function

at . x =y , then f(x) is continuous at x =y .

Proof:s By (3.42) of definition %.41 we have that given
dt € D' there exists an e'e D' such that

HEQy + ox) - £(y),day/r €1
for all f/f(y + dx) - £(y) - f(y;dx),e/t €1 and
NE(ys;dx),etft €1, Since f(y + &) - £(y) - £(y3dx)
is a Ai'-approximation function and f(y;box) is a O -

linear function, it follows that there does exist a de D

such that fx,d/ € 1 implies that
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Hi(y + 8x) - £(y),dayr &1,
Therefore by corollary 3.31(c) f(x) is continuous at

X =y , and the theorem 1is proved.

LEMMA 5.21. If f(x) on an open set Syc T ta I,

yes, , is & -Qifferentisble at x =y , and if H(x!)

1 s 3 . t
is a2 ©® -approximation function on an open set og < Tt

[

to T'' , ®€8y, then G(dx) = H(f(y + 8x) - £(y)) is

a U -approximation function on an open set S@ cT to
—_

Tt , 8€ 8y , where P (a) = Q(®(a)) .

" ! . " .
Proof': Since H(x') is a @ -gpproximation function on

TV to Tt , we have by (5.11) of definition 5.1l that
there exists an et € D' such that given dt''e D'!' there
corresponds a dfe D' such that
/G (dx) a1yt & 1
for all
HEG + dx) - £(y),e/r €1
and
/E(y + bx) - £(y),aWr £ 1 .
By theorem 5,21 and corollary 3.31(c) there exists an
e € D and dleD such that
/@y + dx) - £(y),dayfr €1 for foxdy <1

and

HEly + d3x) - £(y),eyft &1 for //Bx,el// «1.



Hence G(dx) satisfies condition (5.,11) of definition
5.11.
By (5.12) we have that there exist e'e D! such that
given dtte D't there correspond d'e D! such that
(5.22) /¥ (a)a(ox),dry/rt €1
for J/O(a)ely + ox) - £(y)),e/'4 1 and
JE(y + dox) - £(y),dayr £ 1 . ’
By theorem 5,12 and corollary 3.31(c) there exist
d;€ D such that
' (5.28) /5y + bx) - £(y), Y1 €1 for fox,dyf &1 .
Define F(dx) = f(y + ox) - £(y) - f(y3dx) . By hypothesis
F(dx) 1is a ‘ @ -approximation function. It then follows
from (3.42) of definition 3.41 that given et'e D' there
exist ei(: D' such that
(5.24‘) //g-é(a)(f(y + 0x) - £(y)),e/rt &1
for //@(G)F(ﬁx),e]'.//' £1 and //@_(a)f(y;&x),ei//' £1.
Due to the fact that F(dx) is a @ -approximation
function, we have by postulate (5.12) of definition 5.11
that there exists an eze D such that given e'é Dt

1

there corresponds a dzé D such that

(5.25) / $(a)F(ox),eyf? &1
for //a(bx),ez// €1 and //8x,d2// €1,

Since, by hypothesis, f(yj;éx) is ¢ -linear, we have

that there exists an ese D such that
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(5.26) /7§ (@ (ysbx),elf = /2(ysabx),eyft & 1
for fadx,e £1 .
Hence by (5.22) - (5.26) we have for e, =
that given d'te D!'!' <there corresponds d
such that
Q5.27) /U (a)G(ox),arifrr &1
for //abx,e!/ £ 1 and //bx,d4// 1.

Therefore for e = e and d = 4d we have that
4

17 %
G(dx) satisfies definition 5.11 , and G(dx) is a

q—_’—approximation function on S®C T to Tw S® is

an open set such that y + S®C Sy . As we have shown

before, such a set does exist., Clearly

/E(a)/tr € [ @(a)/r & Jof

" This completes the proof of the theoremn,

THEOREM 5.23. If f(x) and g(x) are function on open

sets Slc: T and 82c T respectively, yeSl & 82 y

to T' , and if f(x) and g(x) are @ -differentiable

at x =y , then h(x) = aif(x) + aég(x) is ¢ -differen-
tiable at x =y for any 01:'L 3 az'éA'? with

n(y3bx) = oyf(y;30x) + ane(yshx) .

Proof: By lemuia 5.12 h(y + 8x) - h(y) -a]'_f(y;ﬁx) - aég(y;&x)
is a @—apprjoximation function, As in theorem 4.14,

“h(y;dx) = a]"f(y;bx) + aég(y;bx) is a @5 -linear function

and the theorem is proved.



THEOREM 5.24. If f£(x) on an oven set Sy € T , y €Sy ,
to T' is & -differentiable at x = y and if g(x1)

on an open set 'S%(y) C Tt to Tit, f(y)é'S%(y) s 1is
|
® -differentiable at x' = £(y) , then h(x) = g(f(x))

on SycT to Trt is ¥ -differentiable at x =7y ,

—_ 1
where W (a) = ¢ (P (e)) and hiyzdx) = g(f(y);f(ysox)) .
Proof: Define

G(dx) = nly + ) - n(y) - g(f(y);f(y;_5X))

Then
(5.28) (o) = elelv + %)) ~ g ®))
| - g(f(y);f(y + 8x) - £(y))
+ g(£(y);2(y + 3x) - £(y) - £(y;dx))
because, by hypothesis, g(y';dx!) is additive. Here
y!' = £(y) . Since g(x?) 15 {E'-differentiable at xt! =y,
we have that
H(dxt) = gy + ') - gly') - g(yr;dx?)
is a @,uapproxima’cion function on T!' to T'V' o Then
by lemma 5.21 H(f(y + ox) - f(y)) is a ¥ -approximation
function in o on T to T'' , It follows from lemma
5.13 that g(f(y)sf(y + ¥x) = £(y) ~ £(y3dx)) is a
g?—approximationxggwkbx on T to T!' ., Since
G(dx) = H(f(y + ®x) - £(y))
+g(f(y)f(y + ) - £(y) - £(y;dx)) ,
‘it then follows that G(dx) is the sum of two ¥ -approxi-

mation functions. Hence by lemma 5.12 G(dx) 1is a
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J -approximation function on T to T!t , It follows
almost immediately from theorem 4,11 that

h(ysdx) = g(f(y);£(y;9%))
is a ‘?'-linear function on T Vto Trt , and the theorem

is proved.

5eds §§ -differentials in Michal's "topological abelian
i S

groups."
A, D. Michal has considered the notion of a differential

for functions on an open set of a'"topological abelian

group" to a "topological abelian group." We wish in this

section of the paper to show that the "topological sbelian

group" which Michal considered 1is a P1—space and that

every function which is Ml—differenti;blel is differentiable

in the sense of this chapter, the two differentials being

equal.

By a "opological abelian group"(t.a.g.) is meant a

topological abelian group2 T which satisfies the follow-
ing additional postulate:
5.3%1 given xe¢ T and any open set Uc:T',
©e€U , there exists a positive integer n such that
% enU . We shall always refer to such a topological abelian

group as a t.a.g.

1 See DOZ
% gee XIII.



THEOREM 5.31, Every t.a.g. T is an Hl—ggace with respect

to 4, u s where A is the integral domain of all integers

with the absolute value as the valuation and Ql== {{]}
is the set of all open sets U of T containing € . Con-

S e TG e Semewes

versely every N;-space with respect to A, WU , where

is the absolute-valued integral domain of all integers,

e

a t.a.g.
Proof: It is evident that a t.a.g. T 15 a V1~space with

respect to the integral domain of all positive integers
with /m/ = |m| . Also it follows from the definition
of a t.a.g. s theorem 2,23 and theorem 2.24 that:
(5.32) the intersection of all UelU is © ;
(5.35) given Ue U and Vel there exists
a Wel such that Wc UaV ;
(5.54) given Ue U there exists a Ve U
" such that -V U j |
(5.55) given U € U there exists a V elL
such that V + Vc U ;
(5.56> given xeT and Ue W there exists
a positive integer m such that xemU ;
where QL is the set of all open sets of T containing
® . Hence (2.31), (2.32), (2.34) and (2.35) of definition
‘2,31 are satisfied by U .
Now we have by (5.%4) that given U ¢ UL there exists
a Vel such that =-VC U or what is equivalent V& -U ,



By (5.33) there exists a W e U such that Wc VnUc
~-UnU , Hence WcU, -Wc U, Then by the above and
(5.35) we have that given U € U there exist Ve W
such that V+Vc U, V-VCU and -V-VcU.,
Hence given UelUl and m any integer there exists a
%eu_wthtj%j.uﬂ%mmmd.“t%cU
and 2% = |m| . Hence for |m | & |u| £ 2% mV cU.,
Thervefore (2.33) of definition 2,31 is satisfied by U ,
and the first part of the theorem has been proved,

The converse is an immediate result of theorem 2,31

ana theorem 2.24,

It then follows from theorem 3.51 that:

COROLLARY 5.31.  Every Pl- pace T with respect to A,

Ql,, where A is the absolute-valued integral domain of

all integers, is a t.a.g. Conversely every t.a.g. T

Q

ai

s}

be pseudo-normed with respect to a strongly partially

set D 1in such a manner that the pseudo-norm generates

a2 neighborhood system egquivalent to a complete neighborhood

system of the zero element, and T 1is a Bl—space with

respect to A, D .

N.B. It follows from (3.43) of definition 3,41 that
the pseudo-norm which may be defined for a t.a.g. T (as

in theorem 3,51) is integral-valued and that /x,d/ = O
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for any de¢ D implies that x = 8 ., By the above corollary
all the theory that we have developed for Pl-spaces is

applicable to Nichalt's "topological abelian groups."

Example.,

We shall now show by an exawmple that every Pl—space
Werete Ay D is not a t.a.g. We know that if T is a
Pl—space wWerot. A, D\, then T 1is a topological abelian
group, snd though it is true that given xeT and U(d)e U
there exist @ €A such that xeaU(d) s this does not
imply that there exists an integer me A with the above
property.

Let Rp be a p-adic number field.l Then given
reRy the valuation of r , /r/ , is defined as follows

/r/ = p° , where O <p <1l and o is
the order of r .
This valuation can be.shown tc be a non-~trivisl, non-
archimedean valuation of R , the field of rational numbers,
I.e., for each r, rié Rp sy 1= 0,1,8,604
(5.57) /o/ =03, /r/> O , r#0;
(8.88) /ryr /= /ry/ [ry/ s
( 5.39 ) /rl + rg/ £ max( /rl/ and /r2/ ) -
(5.310) /r/ # 0, 1 for some r eR ;
(5.511) /n/ & 1 for all integers n .

1 gee [A1 , pp. 289-292, for the definition of R and
all the properties of p-adic number fields referred %o here,
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Rp is clearly a valued ring, and we shall show that R

is a Pj~space w.r.t. Rp, RY s Where Rt

P
is the set of

positive @ Peal numbers, Evidently Rp is a Vl-space

with respect to R, , and Rt is a strongly partially ordered

p
set with ordering as usual. Define

H/rsdf = b /r/ for each réRp and & > 0 ,
It follows immediately from (5.27)-(5.210) that Jr,d/
satisfies (3.21), (3.32), (3.34), (3.42) and (3.44) .
From (5.38) and (5.210) it follows that given £ > 0
there exist re R such that /r/ >¢ . Given XER
and r<’=Rp s T #.O s x = r(r‘lx),. Then from the above
we can pick for any given beR_"— and xC-Rp an réRp
such that fr-ix, %/ €1, i.e., /vr/ =/x,5/ . Hence
Jr,d/ satisfies (3.51) of corollary 3.51. Therefore
by cerollary 3.51 Rp is a Pl—space L% o Rp, RT .
It fellows also, since the valuation of Rp is non-archi-
medean(i.e., /r/ satisfies (5.211)), that there exist
X E Rp and 56Rf such that there exists no integer
ne Rp with the property that x =ny and /fy,d/ €1 .
For if we pick x and © to have the property that
Az, 8/ > 1, then 1Az, 0/ = [fnay, o/ = /o/ fys, o/ .
Now 0{//7, 5/ ¢ 1 requires that /n/> 1 . But by

(5.211) no such integer exists.

Therefore we see that we have proved the following
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theoren.

THEOREM 5.32. Let Rp be any p-adic number field and

et R be the set of positive reasl numpers. Then R

p
is 2 Pj-spece w.r.t. Ry, RY and R, is not a f.z.e.

in the sense of Michal.

!

THEOREM 5.3, Every addailtive ana continuous function

O

on a teg.ge T to0 a tez.g. T' is a @ -linear function

=

T to T! where é(n) =n for any integer n .

Proof: The proof of this is clear.

In what follows T, T' and T!'' will be t.2.g£.'s ,
and we shall deal with them as Py~-spaces pseudo-normed
with respect to D, D!, and D't , The definition of an
Mludifferentiallwhich follows is that of Michal translated

in terms of the pseudo-norm,

DEFINITION 5.31. Let f(x) be a function on an open set

8, CT f6 T, y€8, . If

y
(5.512) there exists a function f(y;&x) which

is sdditive and continuous in 9x on T to T

9e

(5.315) there exists a function € (y,x;,%,)
with arguments in T and values in T!' such that

(a) € (y40,x) = 6 for all x€T ;

s See L'DI .
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(b) there exists a dé D such that

5(y,xlﬂm2)==ny5(y,xl,x2) for all positive

integers m , /xy,4d/ & 1 and all X €T 3

(¢) there exists an eeD such that
given dte D' there exist deD such that
//E(Y:xl,xg),d'//' £1 for //ng ef €1
and //xl,d// £1;
(5.314) there exists an open set Sgc T , @¢€8g ,

such that

f(y + &x) - f(y) - £(y;dx) = £(y,dx,5x)

9e

for all ®xe€ S®

then f(x) is said to be M,-differentiable at x =7 .

f(y3bx) 1is said to be an Mj-differential of f(x) at

s

x = y with increment ox .

THEOREM 5.34. If f(x) is a function on an open set

S, c T to T' and if £(x) 1is My-differentiable at

x =y , then f(x) is § -differentiable_in the sense of

definition 5.21 , where O (m) = m for each integer m .

In this case we have alsc that the two differentials are

equal.

Proof: In order to prove this theorem we need only show
that F(dx) = € (y,dx,%x) is a é-approximaticn function
with ® (m) = m . This follows since we know by theorem

5.23 that an M;-differential f(ysdx) is ¢ -lirear

in ox .
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We have by (5.213(c)) that there exists an eé€D
such that given dt'e Dt there exist d&D such that
JF(dx),ayft £ 1 for fdx,ef/ €1 and fdx,df ¢€1 .
therefore F(dx) satisfies (5.11) of definition 5,11.
By 6.212(b)) |

S (5x),a WY = J € (y,x, u] bx),d9)"

for all fdx,d/ €1 and m any integer.  Hence by
(5.313(e))

| JoF (dx),dy/r £ 1 for f|m|dx,ef = /mx,ef & 1
and fox,d/ £ 1, and (5.21) of definition 5.11 is
satisfied by F(&x). Therefore éf(y;Bx,bk) is a
@:-approximation funetion. Since we have already shown the
uniqueness of the @ -differential, the M;-differential,
if it exists, must equal the @ -differential. This completes

the proof of this theoremn.
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CHAPTER 6
PSEUDO-NORMED LINEAR SETS OVER VALUED DIVISION
RINGS. P,-SPACES.

Bels 22—§paces.
DEFINITION 6,11, A Vl—space T wer.te A will be said

to be a y_z-space wer.t. A if A 1is a valued division ring.l

DEFINITION 6.12. Let E Dbe a strongly partially ordered
set with positive real numbers associatedgand T a V2-

space Werete A o Then T will be sald to be pseudo-normed

with respect to E 1if there exists a real-valued function
J/x,e// on TE which satisfies the following postulatess:
(6.11)  fx,e// 20 for all xeT and eeckh ;
Jxs,ef/ =0 for all eeE implies that x = @ ;
(6.,12) Hox,elf = [of f/x,e/ for all aeA ,
x €T and e ¢E ; [fxyref/=r ffx,e/ for all xeT
and re¢E (i.eey, r >0 and eeD or eecE ) ;
16.13] given e €E there exist deE such
that fx + ysef S/x,8/ + fy,a/4 3
(6.14) e 2 d implies that /fx,e/f 2 fx,d/
for a1l xeT ,

We shall say briefly that T 1is a Po-space Ww.r.t. A , D,

1 See II.

 gee VI. Also [81 anda [9] .
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LEMMA 6.11. A necessary and sufficient condition that

/a{%/ = /o /B3/ for all o, 3 in a valued division ring

A is that /ao/ /o~l/ =1 for all non-gzero elements aecA .

Proof: The necessity is immediate since /ag/ = /of /(3/
imblies that Jao/ Jo~Y/ = faa~l/ = /1/ =1 .

Sufficiency: Assume that /a/ /a~l/ = 1 for all
a # 0 , By hypothesis /a(g/é-/a/ /@/ for all a,3¢ A .
Hence

/ol = fap/ &Y = Jap/ /@07t

and

[l & 10l [0 = Ja/ Jo/™h
Therefore

[o/ 1B/ & [aB/*/ol [RNTHE [afi/
and

fapl =/ /5] -

THEOREM 6.11. Every,El-space T w.r.t. A,D , where

A is g valued division ring such that /o F/ = faf /(3/

for all o, 3C€A, is a P -space W.I.t. to 4, E = rR'D .
Conversely, every EQ-SQace Wer.t. A, E 1is a El-space
we.r.t. A, E with /0(8/ = fa/ /Fg/ for all ay 3CA ,

and the new pseudo-norm /x, e//* ig equivalent to fx, e/ .

Proof: For the first part of the theorem we have by
hypothesis that /a(B/ = Ja/ //5/ and hence by lemms
6.11 /Jo/ Ja~l/ =1 for all a # 0 ., Then by (3.41) of



definition 3.41
Vax,af & Jof Wx,af
and
| Hxydf & [fa~L/ fax,ay
-

/of #xs8 ) = flax, a4
Therefore fax,d/ = /of [/x,d/ for all a€hA , xeT

I}
(&)
®

and d&D , since the equality evidently holds for o
Define
E=RD= [rd;ded,r>0] ,
and
Axxéff = v x4/ .
Then E 1is a strongly partially ordered set with e 2 es
e; =ryd; (1 =1,8) , if Nxsef é/fx,eg// ; and ey = e,
it fxsef =//x,e2// for all xe¢T . Hence 1d =4 , and
rl(rgd) = (rlrg)d for all d&D and 1, Tg> 0.
It should then be clear by the definition of fx, e/
for e¢E that fx,e/ satisfies (6.‘11), 6.12) and (6.14)
of definition 6.12. Therefore in order to verify the first
part of the theorem we need only show that /fx,e/ satisfies
(6.13).
By (3.42) of definition 3.41 we have that given deD
there exists a d; €D such that //x,dl// £ 1 and //y,dl// & 1

implies that f/x +y,d/ £ 1 . Assume that fx,d4/ 2 N 53/
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and //x,dl// # 0 . Then by (3.43) of definition $.41 'we
have that given r > 0 there exist ae¢ A such that

0 £ /a/ - fx,8/ £ r ., Thus

i = //X d:{/ . & A' [
Ja X’dl// //x,c’il// ray 1, r ST

and

Jaty,al €1 .
Hence //a-l(x +y),d//e1 or fx +y,d%& Ja/ ‘—'//x,dl// +r
for any x, ye¢T and any r >0 ., Therefore

Jx + y,d/ & Max(//x,dll s 4584/ )

é/}c,dl// +//y,d1// .

Given e = rd E we have that fx + y,e/ é//x,rdl// + /vy riff
for rdlg—E , and the proof of the first part of the’ theorem
has been completed.

Conversely let T be a P_-space wWer.t. A, E . It

2
is evident that /x,e/ satisfies (3.34), (8.41), and (3.42)
of definition 3.31 and definition 3.41. In order to show
that T 1is a Pl—space we have by corollary 3.51 that we
need only show that /fx,e/ satisfies (3.32), (3.44) and
(B.51) «

(3.32)s If fx,ef/f €1 for all eeE , then
Jx,vef &1 or [fx,ef = r1 for a1l r > O . Hence
Jxye /=0 for all eeE and by (6.11) of definition 8.11
x =80,

(3.51): Given xeT and eel there exist acA ¥

a # 0, such that /a/ 2 fx,e/f . Pick y = a~*x . Then



Ny, el € /a/al//x,e// €1, x = ay, and (3.51) is satisfied.

(3.,44): Given ach , and ecE we can pick r > fa/ .
Hence if /fx,ref/€ 1, then [fx,e/f & r1 ana |
/Bxsel = r'l/@/ =1 for all /P/ £ fa/ . Thus
(3.44) of definition 3.41 is satisfied by fx,ef .
It then follows by corollary .51 that T may be pseudo-
normed wer.t. D 1in such a manner that T 1is s Pl-space
wer.t. A, E and the new pseudo-norm Jfx,e/ s equi-
valent to /fxsef .

By (6.12) of definition 6.11

Hxself = Jaf /a"l/ Jx,e/ for all xeT

and e €BE ., If x # 8 , there exist /fx,ef > 0 . This
follows from (6.11) . Hence /Jaof /u"l/ =1 for all
aeh , o #0 . By lemma 6.1 /a(B/ = faf /fg/ for all

a,8€ A, and this completes the proof of the theorem.

N.B. Hence we see by theorem 6.1l that every Pg-space

1 in the same manner that a

is equivalent to an N,-space
P,-space is equivalent to an Nj-space.(See theorem 3.51.)

We might also note that since A 1is a division ring that

(2.33) of definition%ggplies that given U e ‘U there

exists a Vel such that oV o (SU for all /Jao/ & /@/ .

We could consider here a generalization of a normed linear
space, The type of definition that we might take is illustrated

by theorem 1 and 2 of [8] .

1 "
An N_-space w.r.t. A, is defined to be an N;~-space
wer.t.” A, 4L where A 1is a valued division ring such

that /a/ /(3/ = /a(3/ for all a,(Se A .



6.2 Linear functionsgg,ggprpaces.'

If £(x) 1is a @—linéar function on a Py-space T
w.tete Ay, E to a Pz—épace w.T«te. Aly, BY , then
/ ®(a)/t & /fa/ 5 and if £(x) is not the null ¢ -linear
function then it follows that @(a) ‘satisfies (4.15)-€.18) .
Hence @Xa—l) = ((@(a))’l , and one may easily verify that
b(a) is = division subring of A' ., It is clear
that @(a) is an isomorphic mappingl of A on @(A) C A%,
Hence we see that the existence of a .§—linear
function on T to T' requires that A'. contain a division
subring isomorphic to A . We shall now introduce a more
general concept of a linear function,
E;ﬁ. Throughout the remainder of the chapter T, T!' and
Tttt will represent Pg—spaces welste A, E 3 A'y, E' and
Art, Ett respectively., We shall in view of theorem 6,11

consider our pseudo-norms to be the pseudo-norms with

respect to which the spaces are also Pl-spaces.

DEFINITION 6.21. An additive function f(x) on T to
Tt will be said to be 1inean? if given et€ E' there
corresponds an e €E such that /x,e/ £ 1 implies

Jf(ax) eyt £ Ja/ for all ach .

It follows immediately from theorem 4.l11 that every

1 gee (14] , p. 9, definition 5.

o

® Tnis definition could also have been given for P ~-Spaces,

though it does not seem to follow in Py-spaces that the
sum of two such linear functions is a Iinear function.
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Q-linear function on T to T' is a linear function on

T to T' .

Definition 6.22. An adaitive function f(x) on T to
Tt will be said to be bounded if given et!'e€ E' there
correspond e €E such that

NE(x) eV & f/x,e/ for all xeT .

condition
THEOREM 6.21. A necessary and sufficient/that an additive

function f(x) on T 1o T! be linear is that f(x)

be bounded. |

Proof: ‘The proof is quite similar to that of theorem 4,11,
since we are considering our Pg-spaces to be pseudo-normed
in such a manner that they are also Pl—spaces. The proof

will be left to the reader.

It is then clear by virtue of theorem 6.21 that a

linear function maps bounded sets into bounded sets.

THEOREM 6.22. A necessary and sufficient condition that

a set 5 CT be bounded is that given an open gset U

containing the zero element there corresponds an a €A

such that S c alU .
Proof': The sufficiency follows from theorem 4.12, since
T 1is also a Pl—space.

Necessity: Since [//x,e// 3 X GSJ is bounded



for each e ¢E , we have that S CaU(e) for some acAh .,
This can be shown in the following manner. There exist

/a/ > 1 and since /fa(3/ = /a/ /(3/ , it is then trtie that
given r > 0 we can find an ac¢A such that /o/ > 1 .
Given e €E there exists an a ¢ A such that fx,e/ & /of
for all x €S . Hence by (6.12) foalx,ef £ 1, i.e.,

1g CU(e) or S aU(e) . Now given an open set U ,

.
® €U , there exists by corollary 3.31(a) a U(e)= U ,

and the necessity of the conditon follows from the above.

Let F be the set of all linear functions on
a Pg-space T w.r.t. A, E to a Pg—space we.r.t. A' , E!' ,
Then M(f,w) can be defined as in theorew 4.13 for all.
f€F and w ¢ W , and the following theorem can then be

proved,

THEOREM 6.23. IThe set F of all linear functionson

T to T!' can be pseudo-normed with respect to the strongly

partially ordered set W in such a manner that F is

a Po-space with respect to A', W . Mu(f,w) is the pseudo-

norim,
Proof: It follows from theorem 6.12 and (6.13) of definition
] f
+
6.12 that for any Gy Oy 19
aifl + aéfg € F , It can then be easily verified that F

a, € At and T fgeF that
is a Vg-space with respect to A' . Define rw = (re',S)

and hence



W(E,rw) = TU(f,w) . (r > 0) .
It can then easily be verified; using the properties of
Af(x),et/t and the definition of li(f,w) (see theorem
4,13) , that F is a P,-space w.r.t. At , R'W . In this

case BW=W .

663 @-differentials of functions with arguments and

values in Po-spaces.

THEOREM 6.31, A necessary and sufficient condition that

a function F(x) on SyC T to T' bea $-approximation

function is that there exists an e €E such that given

a dte E' there corresponds a deE such that
//F(X):d'//' L-//x.v e/
for all /x,d/ €1 .

Proof: The sufficiency is clear since )

A O (@)F(x),ar /1 & Jaf fx,e ) = fax,ef
for all fx,d44/ € 1 . Hence Jfaxyef €1 and [fx,d/f ¢ 1
implies éhat

# P(a)F(x),ay/t & 1 .

Let us assume that F(x) is a @—approximation funetion.
Then given xe¢T , /x,d/ €1, v ) O and e eE there
exists achA , a #90 , and yeT such that x =ay ,

Nyse/ €1 and /Ja/ - fx,ef £ r . Hence
f O HFE),ar fr =1,
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since //cz'lx,e// =fysef/ €1 and fx, 4/ £1 .
Therefore, due to the fact that @(a‘l) - (i@(a))-l,‘

AEE),afr & / B(a)/ & Jaf & fx, e/ + v
for fx,d/ = 1. This holds for any r > O , and hence the

theorem 1is proved.,

With the aid of theorem 6,31 we can state the following

corollary.

COROLLARY 6.31. A necessary and sufficient condition thaﬁ

a function f(x) _on an open set Sy(: T,y eSy , to Tt

be (P-differentiable at x =y is that there existsa

[

- ¢ -linear function f(y3dx) of &x on T to T' with

‘the property that there exist an e €¢E and 1o each d'e E!?

there corresponds a de¢E for which

//F(&X)sd'//’é Hxsef
or all /x,4/ = 1 , where -

Hy

F(ox) = £(y + ¥x) - £(y) - £(y;dx) .
Then f£(y3;dx) is the §-differential of f(x) atx =y .

THEOREM 8,32, If {Xn} is a sequence of elements of T ,

then a necessary and sufficient condition that lim X, =X

is that 1lim f/x_ - x,e// =0 for each e¢E .
N e n

oof: The sufficiency is clear from corollary 3.31(d).

¥

In order to prove the necessity we have by corollary 3.31(d)

that given e ¢E there exists an integer m = m(e) such
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that n 3 m(e) implies that /x - x,se/ &1 . Hence
given r > 0 we have that for n » m(r~le) x - X,9e/ £t .

Therefore Z%i_)m Jx - xn,e// = 0 for all e eE .

COROLLARY 6.32. A necessary and sufficient conditionthat

lim x, = x 1s that there exist an r > O jsuch that given

e ¢E there corresponds an m = m(e) such that n »n(e)

n.,e//":I' "

Proof': Follows from theorem 6,32, since r-le ¢E for all

implies that /x - x

r >0 ,

DEFINITION 6.31. If f(a,y) is a function on T! defined
for some element vye¢T and all 0 ( /a/f € v(y) , then
we shall say that
lim f(a,y) = g(¥)
a->0
if given etg B! there exists a positive real number
r, (e?') such that 0 ¢ /ao/ ¢ r_(e') implies that |
Jta,y) - g(y),eyt 51 .

N.B. We see by corollary 6.22 that if 1im f(a,y) = z(y) ,
Q-0
then for any sequence {an‘l}e A such that @, #0 (n=1,2500.)
and %}g /an/ = 0 we have that
lin f(a ,v) = &(v) .

Hence 1lim f(a,y) has the same properties as the limit

= It can be shown that this is equivalent to

lim /f(a,y) - g(y)seW/' = 0 for all ete¢ B' .
/a/=0

See theorem 4.21.



87

of a sequence of elements of Tt ,

THEOREM 6.33. If F(x) on an open set Sgc T, 8€8

to Tt satisfies the condition of theorem 6.31, then

1im ((§(a))"*F(ax)) = & for each xeT .
Q=0

Proof: By hypothesis there exists an e e¢E such fhat
given dt'e¢ E!' there correspond d{(d!')¢ E such that
AF(ax) ,ayfr & fax,ef
for all //x,d(a')/€ 1 . For a given yeT pick r_(d')
such that r (d*) > 0 and
(co@NT2 fy,a(ear)/
where r > f/x,e/ . Hence for 0 ¢ Jao/ ¢ r (ar)
Hay,d(rdt)/ <« 1
and
/¥ (ay) ,rat /% fay el
stnee /($(a) 7/ = /§a)/ = /o/7L
/(8 (@) Flay),at < 1
for all o ¢ /a/ < r_(d') . y 4is an arbitrsry element of

T and this completes the proof of the theorem,

THEOREM 6.34. If a function f(x) on an open set §,C T
to Tt is ¢ -differentiable at x =y , then

Lin (0(a) sy +4tx) - £()))
exists and is equal to f{y;dx} .
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F(dx) = £(y + x) - £(y) - £(y;dx)
is a @—approximation fuhction; and hence by theorem
6.21 and theorem €.22

lim ((§(a)) 'F(atx)) = 6
for 811 dx €T ?¢o
Now
Fladx) = £(y + adx) - £(y) - ®(a)f(y;dx)
and for o # 0

(B () F(atx) = (F(a) (el + adx)
- £@) - £G5he) .

This last equation combined with the above completes the

proof of the theorem,
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