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SUMMARY 

The main purpose of this thesis has been to investigate 

to what extent some of the theorems in the study of linear 

topological spaces are actually dependent on tbe real number 

multipliers. This has been done by replacing the real number 

system by a valued- ring, and, since such a ring may have 

a discrete topology, the results that we obtain depend only 

on the algebraic properties of our generalized number system .. 

In Chapter 2 there is developed a characterization 

of a topological space in a form which is convenient for 

the purposes of this paper. Chapters 1 and 3 are taken 

up with the introduction of the definition of the type of 

space with which we shall deal. In these chapters the 

author was guided by Hyert' definition of a pseudo-normed 

linear s pace1 and Michal's definition of a topological 
:t 

ft-ri1Af. 
abelianA In Chapter 4 a generalized study of linear 

functions is considered. Here we obtain results which 

reduce to knovm results in the case of Banach spaces. 

Chapter 5 deals with the concept of a differential and a 

relationship between this differential and an M1-differential2 

is established. In Chapter 6 we strengthen our postulates 

somewhat and carry on the study of linear functions and 

differentials. 

In some respects we have accomplished the purpose of 

the thesis, though the author feels that much more can be done 

and hopes that this thesis may prove to be a basis for 

further work. 

• 
2 See [lo] • 
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BASIC DEFINITIONS 

It is, of course, imposs ible to state here all the defi­

nitions to which we shall wish to refer; but, for the sake of 

being definite and as a matter of convenience to the reader, 

we shall list those definitions and theorems which are funda­

mental to this thesis and are not contained in the body of the 

paper. LI l and ll] are references in algebra and topology 

which are well suited to the needs of this paper. 

The concept of a set shall be as smo.ed to be known, and 

we shall consider a set S to be defined when given any object 

pit can be determined whether pis or is not contained in S; 

i.e. either p e. S or p E S. We are also assuming that for each 

set there is defined a fundamental equivalence relation which 

we shall call equality and shall write as n= 11 • Two elements 

p and q of a set Swill be said to be distinct if p / q. All 

the sets that we shall consider will be assumed to contain at 

least two distinct elements. 
be. Our equality is also to/\such that, 

if p = q, then any Hstatement" that vve shall make a bout p 

can also be made about q. This means that though we do not 

require our equality to be identity, we do require that elements 

which are equal have certain properties in collilllon. These certain 

properties are 3.ny of those which happen to arise in our postu­

lates, since these properties are the only oms which interes t 

us. For instance, if in I(g ) below .we have x = y, then we 

can state that (-x) + y = a. We also are able to prove certain 



theorems about our equality, such as in I(h) and I(i). The 

concept of a function and an operation which we shall adopt 

will be the same as that in C 1] pp . '.J - 4 , though it is to be 

remembered that uniqueness is now in terms of our equality. 

I Groups. A set G of elements x,y,z;••• is called a group 

with respect to an operation 11 +1:(written additively) if the 

following conditions are satisfied: 

a. x + yE G for every x,ye G; 

b. x + (y + z)= (x + y) + z for all x,y,zE.G; 

c. there exists an element 6 E G such that x + 8 = x 

for all X € G; 8 is called the ~ element of G· , 
d • given X€G t here exists an element -x c G such 

that X + (-x) = El. 

If, in addition, 

e. X + y = y + X for all x,y €: G, 

the group is said to be abelian. 

Then it follows from the above postulates that . . 
f. El + X = x for each x ~ G; 

g. (-x) + X = e for each xE G· , 
h. the zero element e is unique, i.e. if 8 ' is any 

other element of G satisfying (c), then 6 = El '; 

i. the inverse -x of each x E G is unique; 

j. -(-x) = x. 



II Rings. A set A of elements a,~,,, ... is said to be a 

ring if A is an additive abelian group such that a second 

operation(written as multiplication) is defined such that: 

a. a ~ ~ A for all a,~ E A; 

b. ~(~'() = (af)'( for all a,~,Yc A; 

c . a ( ~ + ¥ ) = a ~ + a l and ( a +~ ) Y = a r + (3 r for 

all a,13, 1EA. 

A ring A is said to have a unity element if there exists 

an element 1 in A such that la =al= a for each aE A. 1 is 

then unique. 

It can be shovm that for any two elements a,(3 EA that: 

d. Oa= aO = o, where O is the zero element of A; 

e. (-a)~= a(-~) = -(a~); 

f. (-a)(-~)= a~. 

A division ring ( or quasi-field) is an additive abelian 

group whose non-zero elements form a multiplicative group 

such that II(c) is satisfied. 

III Integral domains. An integral domain A is a commutative 

ring (i.e. a~=~ a for each a.,~eA ) with a unity element and 

no divisors of zero(i.e. a~= 0 implies that a = 0 or~ = O. 

IV Fields. A field A is an additive abelian group whose non­

zero elements form a multiplicative abelian group such that . 
a ( ~ + '( ) = a~ + a¥ for all a,~,¥€ A. 

V Linear sets™- rings. An additive abelian group G of 

elements x,y,z, ... is called a (left) linear set™~ ring 



A of elements a,~,1,••• if there exists an operation ax on 

AG to G such that: 

a. a(~ x) = (a~ )x ; 

b. (a + ~ )x = ax + ~ x ; 

c. a(x + y) =ax+ ay 

for all a,~ e A and x,y e G. 

If A has a unity element, we shall also require that lx = x 

for each x E: G. 

VI Strongly partially ordered sets.(Directed systems.) A 

set D of elements d,e, ... is said to be a strongly partially 

ordered set if there exists an order 11 / 11 defined between some 

of the elements of D such that: 

a. if e) d, then it is not true that d) e ; 

b. (transitivity) if e) d and d) c , then e > C • , 
c. given e and d from D, there exists a cc D such 

that C >- e and C ~ d. 

A set D and an order n > 11 satisfying (a) and (b) is 

said to be partially ordered. 

N .B. It is not required that the order 11 > 11 exist 

between each pair of elements of D. e/d does not necessarily 

imply that d~ e. 

If E and D ~ two strongly partially ordered~,~ 

it~ easily~ proved .:thai ~ product space 

ED = [ ( e, d) ; e E E, d E nJ 
is illQ a strongly partially ordered set with (e1 ,d1)~ (e2,d2) 



if and only if e1 ~ e2 
e1, e 2 f E . (e1 ,d1 ) = 

dl = d2• 

5 

> and dl = d2 for d1 ,d2 E D and 

~2,d2) if and only if e1 = e2 and 

Hence, if Dis a strongly partially ordered set and R+ 

is the set of all positive real numbers with ordering as usual, 

then 

is a strongly partially ordered set with (ei = ri di E: E ) 

~ if > and > 
d2• if el e2 rl = r2 dl = el= e2 rl = r2 

and di.= d2 • Define ld = d and r 1 (r2d) = (r1 r 2) d. 

VII Topological s12aces. A set T of elements x,y,z, ... is 

said to be a topological space if: 

a. To each set M of elements of T t here corresponds 

a set M which is called the closure of M. 

b. For every x E T , x = x. 

c. If M and N are any two subsets of T, then 

MuN= :M uN. 

d. M = M for every subset Mc T. 

The elements of Tare called points. 

VIII Limit points. A point x of a topological space Tis 

called a limit point of a subset Mc: T if x 6 M T x . 

IX Open and closed sets. A set M of a topological s pace T 

is said to be closed if M = M . A set Mc T is said to be 

open if the complement of M, CM = TT M , is closed. 
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X Complete system of 11 neighborhoods 11 • A system E of open 

sets of a topological space T is called a complete system of 

Hneighborhoods 11 of T if every open set of T can be obtained as 

a sum of open sets belonging to E. Every open set of E 

containing a point x E:. T is said to be a 11neighborhood II of 

x. 

N.B. This notion of a neighborhood is stronger t han we 

shall wish to use. See Chapter 2 . 

XI Limit of~ sequence of points. Let fxn1 be a sequenc e 

of elements of a topological space T • The sequence { xn1 

is said to have a limit if there exists an element x E: T 

such tha t for each open set Uxc T , x E. Ux , t here exists 

a positive integer m = m(Ux) such t hat xnE Ux for all 

n> m. We shall denote this by lim xn = x. 

XII Continuous functions (mappings) Q!l a topological space 

T to~ topological space T' . A function(mapping) f(x) on 

a topological space T to a topological space T' is said to 

be continuous on T to T' if f or every set lVi c T 

f (M)c f (M) • 

XIII Topological groups. A group G is said to be a tono­

logical group if G is a topological space such that the group 

operations x + y and -x are continuous in G. 



CHAPTER l 

LINEAR SETS OVER VALUED RINGS. VECTOR SPACES. 

1.1 Linear sets™ rings with~ unity element . Y- §paces. 

DEFINITION l.ll. A linear setl T over a ring2 A with a 

unity element will be called a vector s2ace with respect to 

A, or briefly, a V-space w. r.-1_. A. 

We see i mmediately that a V-space is a generalization of 

Banach's linear (vector) space3 , where the real number multi­

pliers have been replaced by multipliers taken from an abstract 

ring. We shall now proceed to investigate some of the elemen-

tarJr properties of V-spaces. 

THEOREM 1.1.1. If T is ~ V-snace w. £.• 1_. A , then for 

all X T and a A 

(1.11.) Ox = e , 
(1.12.) (-a)x = a(-x) = -(ax) , 
(l.J,3 .) ae = e • 

If A is ~ division ring4, then 

( l.14.) ax= e i mQlies a= 0 Q£. X = e • 

l See V. Roman numerals refer to the sections of basic 
definitions. 

2 See II. 
3 See [ 31 ... Numbers in brackets refer to the bibliography 
at the end of the paper. 

4 See II. 
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Proof: By V(b) ax = (0 + a)x = Ox + ax, and since T is a 

group Ox = 8 ' and (l.11) has been proved. By (1.11) and 

V(b) e = Ox= (a - o)x = ax+ (-a)x, and hence (-a)x = -(ax) 

It then follows from V(d) that (-l)x = -(lx) = -x, and from 

V(a) and II(e) it follows that a.(-x) = a(-lx) = (-a)x. There-

fore (l.12) has been proved. (1.13) follows from V(c) and 

(l.12) in the following manner: a8 = a(x - x) =ax+ a(-x) = 

ax - (ax)= e. In order to prove (1.14) let us assume that 

A is a division ring and that ax= 8, a# 0. Then there 

exists an a-l E A such that a-1 (ax) = (a-1a)x = x = 8. 

Hence, if we assume that ax= e, a# 0, and x # e, we 

obtain a contradiction, and (1.4) is proved. 

DEFI NITION 1.12 . For a E A and S, s1 , 82 , ... subsets of 

T , a5 , -S , and Sl + S2 are defined respectively by 

as = [ ax; Xf S J , 
-S = -lS , 

and 

s + s = [x + y . x E s1 , y E:: s2] 
1 2 

, • 

THEOREM 1.12. For all x , y '= T ; all a , (3 6 A ; and all 

S
2 

c T : 

( 1.15.) 

(1 .16 .) 

( 1.17.) 

(1.1s.) 

s+e=s, 

sl + s2 = s2 + sl; 

S + (sl + S2) = (S + S1) + s2 ~ 

18 = s, (-a)S = (a)(-s) = -(0s) , 

• 



( 1.19.) 

(1 .110 .) 

a(S1 + s
2

) = as
1 

+ aS
2

; 

a(? S) = (a(3 )S; 

( 1.111.) 

(1.112.) If 

(1.113. ) 

(a + (' ) s = as + ~ s ; 

If x - y € S, then x E y + S , and , 

conversely, if XG y + S , then x - y E S • 

Proof: (1.15)-(1.17) and (1.13) follow directly from definition 

1.12 and the fact that T is an additive abelian group. 

(1.18) - (l.112) follow from the fact that T is av~ 

space and definition 1.12. 

DEFINITION 1.13. Define for each S c T , a , ~ € A , (3 "f O , 

a/~ s = [ x ; _ ~ x E as J . 
N.B. It is clear that if A is a division ring, then 

-I 
a/~ S = a~ S • 

THEOREM 1.13. For all a , \3 , 1 , a1 E. A ; ~ -/: 0 , '{ -/: 0 ; 

and s CT: 

( l.114 ~ 

( 1 .115 .) 

\l.ll6.) 

(l.ll7 .) 

( l.ll8.) 

a/l S = aS ; 

al/(3 (as) = a.
1 

a/(? S ; 

a/~ S c. ( "{ a)/ ( '( ~ ) S ; 

~ (a,/~ s) c as 

if Sc a/~ S, then~ Sc as, and conversely 

(3 S c as implies that S c a/13 S . 

If ax= e implies that a= O or x = e, then 

(1.119 ~ ( '( a)/ ( Y ~ ) S = a/(?, S . 



Proof: (1.114) is cl early true. 

(1.115): Let xfa1/~ (as); i..e. 

y = az , z €: S . Then p x = a1 (az) = ~la) z , and hence 

a1 /{3 (aS) c (a1a)/i3 S . Conversely, if x e (a1a)/~ S , then 

f x = ~1q)z , where z ~ S , and t3 x = a1 (az) . Then 

(a1a)/p S c a
1

/ tL (aS) , and hence (a1a)/~ S = a1/~ (a:S) • 

(l.116): If x E a/r3 S , then f x ~ as , and by (1.112 ) 

of theorem 1.12 )fx f '( aS . Hence x €: (~ a)/(Yf) S , and 

0/(3 8 C (ya)/('(~) S • 

(l.117): If x ta/~ S , then (:3 x ~as , and hence 

~ (aliB s) c as • 

(1.118): This f ollows aln:ost by definit i on. 

(1.119) : If x e ( y o) / ( Y p ) S , then Y, (6 x = (' a:z , z '- S . 

Hence '( ( ~ x - az) = 8 . Since t :/ 0 , we have by hypothesis 

that ~ x = az , or ( d' a)/ ( t <9 ) S c a/ f-; S . By (1.116) 

and the a bove aJ f S = ( Ya)/ ( '( (3 ) S . This completes the 

proof of theorem 1.13. 

1.2. Valued rings. The next step in our generalizati on is 

to introduce the "number system" which is to repl a ce the rea l 

number multipliers in the study_ of linear ·top9l6gical _s paces. 

Such a 11 number system!! will be called a va lued ring and is 

defined as follows. 

DEFINITION 1.21. If A is a ring with a unity element such 
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that there is defined on A a real-valued function 

/a/ such that: 

( 1.21.) /a/~ 0 for all at A ; 

l l-22 .) I a~ I ~ I a/ If I for all a,~~ A; 

( l.23.) I a + f3 I f I a/ + Ip I for all a ,~e-A . , 
( l.24 .) /-l/ = l; 
( 1.25 .) /a/> 1 for some a€: A , d... * 0 

1 
then A is said to be a valued ring. /a/ is called the 

valuation of a. 

N.J1. Throughout the remainder of the paper A shall 

be used to denote g_ valued rigg_ with elements a , (3 , ;r ... 

and with /a/ the valuation function. Later in the paper 

~ shall put additional restrictions Q1l .A. 

THEOREM l.21. 

valuation function, then 

( 1.26 .) 

(1.27.) 

l l.28.) 

a e A • 

/l/ =- l , 

/-a/ = / a/ for all a t= A , 

> /0/ f O implies that /a/= 1 for all _ 

Proof: I a/.= /la/ ~ /1/ / a/ for all fl €: A , and hence 

l f /1/. Also /1/ = /(-1)(-1)/ ~ /-l/ /-1/ = l. Therefore 

/1/ = 1. /-a/§ /-l/ /a/ =/a/. Similarly, /a/~ 

/-1/ / -a/= /-a/, and hence /a/= /-a/. /0/ = /Oa/ ~ 

/0/ /a/ for all a e A , and if /0/ f 0 , then 1 &: /a/ 

for all a tE: A • 

1 
I t i s a lways possib l e,without 8ny loss of general i t½ to 

def i ne / 0/ = O, and thr oughou t thi s paper we shall assume 
that /0/ has been so def i ned . 
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Examples of valued rings. 

(l) Valued fields. If A is a field which is a 

valued ring such that / a (3 / = / a/ I !3 / then A is said 

to be a valued f i eld. The concept of a valued field was 

introduced by Kiirschak1 , and the conditions under which t he 

der ived field of such a f ield be isomorphic with either 

the field of complex numbers or the field of real numbers 

are well known. Examples of such fields,and hence examples 

of valued rings are the field of real numbers, the field 

of cori.1p lex numbers, and p-adic number fields. 

(2) An example of a division ring that is a valued 

ring is the field of quaternions 2, t hough here again we have 

/af /=/a//~ I. 
(3) One of the more interesting instances of valued 

rings are t he 11 linear normed rings 11 considered by Michal 

and Martin in [1 ~J • There is given in t hat paper an ex­

ample of a linear normed ring of infinite dimension for 

which / a(J / /: / a/ / f3 / for some elements. 

(4) An example of an integral domain t ha t is also a 

valued ring is, of course, the integral domain of all integers, 

the valuation function being t he absolute value. 

(5) Let us now construct an example of a valued ring 

which is such that / a ;9 / =/=; / a/ I 13 / for all a , f G A • 

l 

2 

See [ 7] , and also 

See [ IJ.-(], p. 172. 

Chapters XI and XII 
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Let Q with elements p, q, s, ... be a ring with a unity 

element, and let 

a = (po' Pi, • • • ,Pn, • • • ) 

be a sequence of elements of Q. Let A be the set of all 

sequences of elements of Q which contain only a finite 

nurrober of non-zero elements of Q • I.e., if a r: A , f €, A 

then 

and 

Define 

and 

a= (p , P1, . • . , p , 0, 0, . • • ) o n 

(qo, ql, ••• ,qn,o,o, ••• 

= (p + q 'P1 + ql, .•• ) 
0 0 

) . 

af = (s
0

, s1 , ... , sn + m,o,o, ... ) 
where si =jTu=i (pjqk) • a= (3 if and only if pk= qk 

for k = o, 1, 2, ... • 

Then it may be easily verified that A is a ring with 

a unity element where 

o = (o, o, ... ) 

and 

1 = (1, o, o, ... ). 
-a = (-p , 

0 -pl, . . . ) . 
If afA , a 1- 0 , then a last non-zero element pn 

of the sequence exists. Define /a/ = n + 1 , and /0/ = 

Clearly /a/ = 0 for alJ. a l A , /-1/ = 1 , /a +(3 / = max ( 

/a/, If/ ) , and there exist a€:: A such that /a/) 1. 

o. 



If / a/ = n + 1 > 0 , / p / = m + 1 > 0 , then / a f / = 

n + m + 1. Hence /a// ~ /a// f / , and /ap / = /a/ / /3 / 

implies either /a/=~~/= 1, or /a/ = 0 or 1(3 / = 0. 

Hence~§.§.§. that the set A of all formal polynornials1 

with coefficients in~ ring Q with~ unity element is 

a valued ring, with the valuation@ defined above. 

(6) It is also possible to value t he field R of 

real numbers in such a manner that /r/ is zero or an 

integer, and also such that t here exist r 1 , . r 2 f R with 

/r1r 2/ ~ /r1/ /r2/. Moreover, there will exist no real 

number p ) 0 such that /r / = p I r I for all r e R • \ r I 
is the absolute value of r . 

Given r €. R there exists an integer m such that 

m < r ~ m + 1. Define /r/ = m + 1. Hence /r/ ~ 0, 

/-1/ = 1 , /r1 + r 2/ ·J /r1/ + /r2/ , /r1r2/ ~ /r1/ /r2/ , 

and there exist r c R with t he property that /r / > 1 

/(1/2)(3/2)/ = 1, whereas /(1/2)/ /(3/2)/ = 2, and 

hence R is valued as stated above. 

(7) It should be noted that we have not assumed that 

the ring A shall have no divisors of zero, and a simple 

example of a valued ring with divisors of zero is the ring 

of integers mod 4. The ring of integers mod 2 is, 

however, not a valued ring due to postulates (1. 24) and 

(1.25). 

1 See [ 1] pp. 17, 18. 



These examples of valued rings should indicate the 

extreme generality of our number system A, and examples 

15 

(4) and (7) show, in particular, that A is not necessarily 

a topological space with a non-discrete topology generated 

by the valuation. 

1.3 v1- spaces. 

DEFINITION l.31. A linear set T over a valued ring A 

will be said to be a vector spac~ of~™ with respect 

to A or briefly a Vi-space ~-~•1• A. 

A v1-space w.r.t. A is then a special case of a 

V-space, and the set operations defined for V-spaces in 

definition 1.12 will be applied also to Vi-spaces and will, 

of course, have the same properties as before. 

N.B. It is evident that every additive abelian group is 

a Vi-space w.r.t. the i ntegral domain of all integers, 

where the valuation is the absolute value. 



CHAPTER 2 

NEI GHBORHOOD TOPOLOGI ES. N-SPACES. 

From now on the spaces that will be considered in this 

thesis will be topological spaces.1 We shall not begin by . 
postulating tha t t hese spaces are topological, and the aim 

of this chapter is to develop a new characterization of 

topological spaces by means of which we can more easily 

verify that our spaces are topological. This new charac­

terization will also enable us later on to express certain 

of the topological cone ept·s i n a form which will prove 

to be conveni ent in what is to follow. The equivalent 
s r.o.c. e 

definition of a topological ~t hat we shall give will be 

stated in terms of the properties of a s pecial system of 

subsets of a set, these subsets will be called neighborhoods, 

though we shall not require tha t t hese neighborhoods be 

open. sets, as is done by Frechet,2 Hausdorff, 2 and Pontr-­

jagin.3 However, our neighborhood systems will be equi­

valent to a complete neighborhood system4 of the topological 

space. Then in chapter 3 we shall obtain from this 

characterization a second one based upon a generaliza tion 

of Hyers' pseudo-norm. 5 In this manner we show that a 

generalization of t he idea of a norm can be made a basis 

1 
See VII. 

2 See [ 15"] , pp. 33-39. 
3 See llyJ p. 30, theorem 3 . 
4 See x. 
5 See l (, 1 l~J , or [ q] , • 



l'7 

for the study of topological spaces. 

2.1. N-spaces. 

DEFINITION 2.ll. Let T be a set of elements x, y, z, •~•, 

and let L be a system of subsets of T, the subsets shall 

be called neighborhoods, such that: 

(2.11.) There is associated with each element 

x E T a non-null subset Lx of subsets Ux , called 

neighborhoods of x , of Z such that for each Ux E Zx 

XE UX • 

( 2 .12 .) If y # x , there exists a Ux E Zx 

such that y E. Ux • 

(2.13.) and If UxE Zx 

such that WX C UX n VX • 

Given x E T and U E Z , there exists 
X X 

a VxE i:x such that if y <:: Vx there exists a 

WY f. Zy such that WY c Ux . (Note that this implies 

that V x C Ux • ) 

The set T will then be called a space with a neighborhood 

system or simply an N-space w.r.t. Z. 

I 
Postulates (2.11) - (2.13) are those of Frechet, 

whereas, postulate (2.14) is weaker than Frichetts fourth 

postulate. Frechet requires that, if y E ux, then there 

exists a U £ L y y such that Uy c Ux. Pontrajagin's 



conditions are even stronger, as he considers a system 

L such that if U E- I and x G:: U , thet'I U is a neighborhood 

of x. Hence (2.14) is automatically satisfied. 

An example of such a neighborhood system L in which 

the neighborhoods are not necessarily open sets would 

evidently be furnished by t aking . as neighborhoods in a 

Banach space1 the closednspheres 11 generated by the norm. 

THEOREM 2.11. If T is~ group (written additively) 

such that there exists a system of subsets 1). = f U f , 

Uc T, satisfying the following postulates: 2 

( 2.15.) the intersection of all U E 'U is e ; 

( 2.16.) g_iven U~ 11 and V tlt there exists 

g_ W E ll such that W c U n V ; 

( 2.17.) given U EU there exists a VE. it such 

that if y E. V there exists a WE 11 such that y + W c U ; 

then T is an N-space with Lx = [ x + U ; U E u.J , 
and L = [ Lx ; . x E T J . 
Proof: In order to prove this we shall show that r as 

defined above satisfies (2.11) - (2.14). 

(2 .11): Since for every U f. 1/. , e 6 U , we have ·· that 

x E x + U for each U E 11 • 

(2.12): If x ~ y, then by (2.15) there exists a 

U EU such that -x + y ~ U • 

is satisfied by L. 

1 See ( 31 , p. 53. 

-Then Ye x + U and 

2 We shall call such a group an N-grou2 ~-~-t <"\.A.. 

(2 .12) 



19 

(2.13): This follows i mmediately from (2.16). 

(2 .14): Given U <=: ll and x e T , we have by (2 .17) 

that there exists a Ve U such that if -x + y6 V , i.e., 

y E. x + V, there exists a W€U. such that -x + y + W CU 

or y + W c x + U. Hence (2.14) is satisfied by Z, and 

T is an N-space. 

2.2. Equivalence of N-spaces and topological spaces. 

DEFINITION 2.21. If S is any subset of an N-space T 

w.r.t Z, the closure of S, denoted by S, is defined 

as follows: 

x € S if and only if for each . UxE Zx , 

s () ux ~ oo • 1 

LEMMA 2.21. Every N-space T w.~.t . Z is~ topological 

space with closure defined as in definition 2.21. 

Proof: Our proof consists in showing that this operation 

of closure satisfies VII(a) - VII(d). 

T , 
ux 

or 

(VII(a)): Follows by the definition of S . 

(VII(b)): Follows from (2.12) of definition 2.11. 

(VII(c)): Let s1 and 82 be any two subsets of 

and assume that x c S1 U S2 • Then, for each Uxc Zx , 

intersects S1 V s2 , since each ux intersects Sl 

S2 • Hence xE. s1 u s2 and s1 \J 82 c. s1 V s2 • 

1 Throughout this paper 11 0°n will denote the null set. 



To prove the converse assume that X 6' s1 u 82 . Then, 

given UxE Lx , Ux n (s1 u s2) :/- 0° ; 

or Ux() s2 :/- 0° , or both Ux() 81 :/-

i .. e., either Uxn s1 -:/- 0° 

0° and Ux{I s
2 

-:/- 0° • 

Now assume that there exists a subset {ux] of subsets 

contained in Lx such that for every Ux e:. { Ux J Ux {I 81 = 0 ° 

and uxn s2 :f. 0° • Similarly assume the existence of a 

subset { vx) C LX such that for every vx t: { vx} 

Vx f' S1 1 0° and Vx n s2 
= oo • Given UXE 1 ux} and 

Vx 6 1 vx} , we have by (2.13) of definition 2.11 that there 

exists a w E: z X X such that w cuxnv. 
X X 

Now w 
X 

either 

intersects s1 or s2 , or intersects both s1 and s2 . 

This contradicts our assumption of the existence of 1 Ux ~ 

and and lvx} , since w is contained in both ux X 

vx • Hence every ux E. zx 

sects S2, or intersects 

ei ther intersects 

both Sl and s 2 

Sl 

• 

or inter­

Then 

XE 81 U 
- -

82, and therefore s1 u 82 c s1 u S2 • Since we also 
- -have shown that s

1
u S

2 
C s1 u S2 , s1 u s2 = s1 u S2 , 

and VII(c) is satisfied by our closure. 

(VII (d)): From our definition of closure and (2 .11) 

of definition 2.11, we have that Sc S for each Sc T. 

Hence 

sects 

exists, 

that, if 

S c. S c S . If x E S , then every U E Z inter­x X 

S. Now by definition 2.11, postulate (2.14), there 

corresponding to each u CL 
X X 

, a V e L 
X X such 

y E. vx , there exists a W E z such that w C ux y y y 

Since we are assuming that XE 8 , V also intersects 
X 

• 



S, and, for 

Then Ux intersects S 

intersects S 

x e S . Hence 

and WY c Ux. 

Sc S and 

S = S. Tnis completes the proof of the theorem. 

N.B. Throughout the remainder of the paper when we speak 

of topological concepts in an N-space T, we shall mean 

that T is a topological space, closure being that of 

definition 2.21.. 

THEOREM 2.21. A necessary and sufficient condition that 

a subset S of@ N-space T Y!•£.-t. L be open is that 

for each xe S t here exists a Ux E. ~x such that Ux c S . 

Proof: Sufficiency: If x E S , we have by our sufficiency 

hypothesis tha t there exist a Uxe Lx such that Ux c S, 

and hence by definition 2.21 x ~ CS , which is equivalent 

to saying that Sn CS= 0° . Since CS c. CS, it then 

follows that CS= CS. Therefore by definition CS is 
1 

closed and Sis open. 

Necessity: Let S be an open set, i.e., CS is closed. 

Then, if x E S , x E CS = CS . Suppose that there does 

not exist a Ux e Ex such that Ux c S • Then Ux " CS f. 0° 

for each Ux G Lx, and by definition 2.21 xECS. This 

is a contradiction, and t he necessity is proved. 

DEFINITION 2.22 If T is an N-space w.r.t. Land also 

w.r.t. L, 2
, then the two neighborhood systems ~ and L' 

1 

2 

See IX. 

More generally, this definition shall apply if r and 
~ 1 sat i sfy (2 .11). 



will be said to be eguiy~lent, if for each x E T - • Lx and 

L¾ have the property that given Ux € Lx there correspond 

Ux' e Lx' such that Ux' c Ux , and conversely. 

li. B. It may easiiy be verified that, if T is an N-space 

w.r.t L and also w.r.t. L1 , then the equivalence of 

E and E' implies that E and r • give rise to the 

same operation of closure. 

THEOREM 2.22. If T is a11 IT-spacg_ ~.;r_ • .t,. t: , then r 
l is equiva.ient tq_ g_ complete system r' of nej_ghborhoods 

of T. 

Proof : It follows from (2.14) that given U ~ r 
X X there 

such tha t Wye Ux. Then, if 

y E CUx Hence y E C(CUx), and 

y tE V x , we see that 

Vx c:: C(CUx) , which is an 

open set. Since CUx c CUx , then C(CUx) c: Ux . Therefore, 

given Uxe: rx, there corresponds an open set containing 

x and contained in Ux. The converse follows i mmediately 

by theorem 2.21. The set of all open sets is a com~lete 
s 

neighborhood system of T, an open setAbeing a neighbor-

hood of a point x i f x E. S , and the theorem is proved. 

COROLLARY 2.21. 2'. and at 

the same time an N-§J)ace w. r.t. r• , then§:. necessary 

and sufficient that L and r• give rise to the~ 

1 See X. It is to be remembered t hat in this case the 
sets U e i:' are open and t hat if x £ U then U is said J 
to be a neighborhood of x ; i.e. Ex' = [ U ,; U e I:' , x E: U • 



1 

operation of closure is that L and L1 be equivalent. 

Proof: The sufficiency has been mentioned before, and 

the necessity follows from theorem 2.22 upon noting that 

the equivalence of neighborhood systems is an ttequivalence 

relation 111 and that complete neighborhood systems are 

equivalent. 

As is/shovm in [,11-(1 , p. 29, section D , every complete 

system .L of neighborhoods of a topological space satisfies 

(2 .1.2) and (2 .13) . An open set U is now to be considered 

a neighborhood of a point x if x E U, and therefore 

(2.11) and (2.14) are also satisfied by L. T is then 

an N-s:pace w.r.t. L, and we may summarize our results 

in the following theorem. 

THEOREM 2.23. Every N-space T ~.r.t. L is~ to2ological 

space with closure defined as in definition 2.12, and 

L is equivalent to thg_ set of all opep sets in T. Con-

versely, every topological space _T is an N-space 1!.;t.t. 

a.ny system L equivalent to~ complete neighborhood system 

of T. 

N.B. It might be pointed out here that if T is an 

N-space w.r.t. L and if each UE L is an open set, 

then L is a complete system of neighborhoods of T. 

This follows immediately from theorem 3, p. 30, in (IJ{ ] • 

See [ 1) , p.5. Here we make use of t he t r ansitivity of 
the equivalence rela tion. 
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THEOREM 2.24. A necessar~ and sufficient condition that 

a function f(x) Q!1@ N-space T Yi• r_. :t_. L j;;o an;y_ N-

wace Tt Yi.•!:.• t. L' be continuous1 ll tha~ fQI:.. ~ 
xcT and Uf (x) E ' Lf (x) there correspond UXE LX 

f(Ux) ' such that C uf(x) • ---
Proof: This theorem follows immediately from theorem 

2.23 above and theorem 4 of , p. 34. 

DEFINITION 2.23. A function f(x) on an open set Sx, 

x E Sx , of an N-space T w.r.t. L to any N-space T' 

w.r .. t. Z 1 will be said to be continuous at§:. noint 

y G Sx if given u;(y) E ~t(y) there exist Uy E Ly , 

Uy C Sx ' such that f(Uy) C Uf(y). 

N.B. It then follows from theorem 2.24 that, if f(x) 

is a function on an N-space T to an N-space T' , then 

f(x) is continuous on T to T' if and only if f(x) 

is continuous at each point x € T . 

We saw in theorem 2.1.1 that every N-group is an N­

space, and now we wish to consider the case in which a 

group T is an N-space w.r.t. Z and at the same time 

an N-group w.r.t. }.:e. The question then arises as to 

whether the two neighborhood systems, :E and z, = 

[ x + U9 ; x ET , Ue E ~~ J, are equiva].ent or., what 

l See XII. 



is the same thing, whether the operations of closure that 

are defined in terms of the two neighborhood systems are 

the same. By theorem 2.11 and definition 2.23 we may 

state the following corollary. 

COROLLARY 2.21. 

t and if T is also an :N-grolill, Yi•!:.• i• re , illfill §;_ 

necessary and sufficient condition that t and 

t' - [ X + Ue • XE T , , ue E ~e J ' where L~ = [x + Ue ; 

UeE ~eJ, be equivalent is that: 

given xET , X + y is continuous in y at 

y = e and -x + y is continuous ~n y at y = x. 

If T is a topological group, the conditions of 

corollary 2.21 are satisfied, and hence in this case we 

are justified in always taking our neighborhood system to 

be generated by the neighborhoods of the origin in the 

manner above. 

THEOREM 2.25. A necessary and sufficient condition that 

lim xn = x 
1

, where j xn I is a seauence of elements of 

an N-s~ace T ~.r.1. L, is that given U Et there 
X X 

exists @ integer m = m(Ux) such that n) m implies 

that xn E: Ux • 

Proof: The theorem is an immediate consequence of theorem 

2.23. 

l See XI. 
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We shall now introduce our generaliza tion of a linear 

topological space. As in the deYelopment of the study of 
1 

linear topological spaces, we shall first define the 

space in terms of a neighborhood system and later consider 

an equivalent characterization in terms of the existence 

of a special real-valued function, which we shall call 

a pseudo-norm. 

DEFINITION 2.31. Let T be a v1-space2 with respect to 

A such that there exists a system U of subsets U c T 

satisfying the following postulates: 

( 2 . 31.) the intersection of all U E 11 is e ; 
( 2.32.) given u ~ 11 and VE ll t here exists 

a WE-U. such that W c U AV . , 
( 2.33 . ) given a EA and u £ 1(_ there exists 

a V ~ 11 such that pV Cu for all /p/ f. /a/ ; 

( 2.34 . ) given u E- 11. there exists a VE ll such 

that V+Vc u . , 
( 2.35.) given XET and u 611 there exists an 

a.EA such· that x Eau • 

We shall call such a space T an N-s pac~ of ~ 1 with 

r es :gec t to A, u or simply an N.1 - s pace Y!.•!:.•i• A, 'U • 

2 
See definition 1.31. 
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THEOREM 2.31. Every N1.-space T ~-r.-1 A, U is fill 

N-group ~-!:.•1• 11. and is, in particular,~ topological 
. 1 

abelian gJ'.Q1H2.• 

Proof: It follows from (2.31), (2.32), and (2.34) that 

T is an N-group w.r.t. U. . By theorem 2.11 and theorem 

2. 23 T is a topological space. T is by definition an 

abelian group. By theorem 2.11 and theorem 2 . 24 we have 

that (2.33) and (2 .34) imply the continuity of t he opera­

tions x + y and -x. In using (2.33) in the above 

we take a= p = -1. Hence T is a topological abelian 

group, and the theorem is proved. · 

A further study of this type of s pace will be carried 

out in the next chapters when we consider the equivalent 

characterization of N1-spaces. 



CHAPTER 3 

PSEUDO-NORMED SPACES. P-SPACES. 

1 Hyers has shown that the notion of a. pseudo-norm, i. 

e., a non-negative real-valued function defined for each 

element of a space and each element of a. strongly partially 

ordered set,2 is sufficient to characterize linear topo­

logical spaces. In this chapter we wish to go further 

and show that a generalization of the form of Hyers' pseudo­

norm is fundamental to the study of topological spaces. 

The pseudo-norm in some cases may seem to be trivial, 

since it may be only another notation for set inclusion, 

though the value of our characterization lies in the fact 

that it takes as the basic concept in topology the exten­

sion of a notion which is a very familiar one, namely, that 

of a norm. This new postulational basis for topological 

spaces is also in a form which is very convenient for the 

purposes of this paper, and some of the topological proper­

ties imply interesting conditions on the pseudo-norm, as 

has already been demonstrated in the case of linear topo­

logical spaces. 3 

3.1. P-spaces . Equival ence of N-spaces and E-spaces . 

DEFINITI ON 3.11, Let T and D be sets with elements 

l 
2 
3 

See • 
See VI. 
See for instance , , or • 



x, y, z, ••• and d, e, c, ... respectively. 

Moreover, D will be assumed to be partiall y ordered. 1 

The set T will be said to be a pseudo-normed spac~ with 

respect to D, or briefly a P-space w.r_.t. D, if there 

exists a non-negative real-valued function /Ix, di/ on 

TD such that . • 

( 3.11.) there correspond to each X E. T a non-

null subset DX of elements of D such that DX 

is a strongly partially ordered set1 with the same 

ordering as D , a.nd //x,d.j/ ~ 1 for each dxE Dx ; 

//y ,d I/ ~ 1 for all d E; D implies t hat (3.12.) X.1 X X 

y = X ; 

given x E T and d E D ther e exists 
X X 

an ex~ Dx such that for each y with t he property 

that //y ,e.jl ~ 1 there corresponds a dye Dy such 

d ~ d • y X , 

{3.14. ) d ·~ e implies that /Ix, el/ ~ /Ix, d// 

that 

for all x E: T • 

/Ix, d // will be called the I2_seudo-nonm of x with respect 

to d. 

DEFINITION 3.12. 

shall define 

If T is a P-space w.r.t. D, we 

1. See VI. 

U(d) = [ x; x E T , /Ix; di/ § 1 J , 
~ = [ U (d) ; d.c D J , 



6 U 

and 

Lx = L U ( dx) ; dx E Dx J • 
L will be called the neighborhood system generated gy_ the 

pseudo-norm. If Tis also a P-space w.r.t . D1 , then 

the pseudo-norms /Ix, di/ and //x,d 1//' will be said to 

be equivalent if they generate equivalent
1
neighborhood 

systems. 

N.B. A sufficient condition for the equivalence of t wo 

pseudo-norms is that given dxE Dx there correspond 
1 

' Lo r dx e Dx such that //y ,d.j/ = //y ,d;(/' for all y E- T , 

and conversely. Later we shall show that in a special 

case this condition is both necessary and sufficient. 

THEOREM 3.11. Every P-snace T ~-£.•i• D is fill N-space 

Y!•£.•i• L, where L is t he neighborhood system gene-rated 

m:: the pseudo-norm. Conversely, every N-space ~-~•i• 6 

Proof: Let T be a P-space w.r.t. D, and let 6 and 

Lx be as in definition 3.12. Then (2 .ll)and (2.12) of 

definition 2.11 follow respectively from (3.11) and (3.12) 

of definition 3.11. (3.11), (3.14) and VI(c) imply (2.13). 

(2.14) is a direct consequence of (3.13) and (3.14). 

Hence the first part of the theorem has been proved. Now 

let T be an N-space w.r.t. L , and we shall show that 

1 
See definition 2.22. 



(3.11) - (3.14) follow from (2~11) - (2.14) . Firs t, 

it is evident that we can define an order for t satis­

fying VI(a) and VI(b) by taking U S V if U c V, and 

U > V if U is properly contained in V , where U, V E t . 

Then for each x E T and U E 2:: define 

1/x,lW'~ l, if xcU , 
and 

/Ix, U// ~ 2 , if x E U • 

~x is a strongly partially ordered space by virtue of 

6 .l 

(2.13) , and therefore (3.11) is satisfied. (3.12) follows 

from the definition of //x, U// and (2.12). (2.14) evi­

dently implies (3.13). (3.14) is clearly satisfied, and 

the theorem has been proved. 

3.2. Topological properties of P- s paces. 

follows 
It then/from the above theorem and t heorem 2 . 23 that 

every P-space T w.r.t D is a topological space, and 

conversely. 

COROLLARY 3.21. Every P-space T w.r.t. 

logical space with closure defined as follows: 

if S is any subset of T , then x t:: S , the 

closure of S, if and only if for each d E: D t here 
X X 

exist yes such that //y,d.j/~l, :!:_.e., ycU(dx). 



.Also L, the neighborhood system generated by the pseudo­

norm, is equivalent to the set of all open sets of T. 

Conversely, every topological space T can be pseudo-

normed w.~•i• ~ complete neighborhood system of T or 

w.~.t. any system of subsets equivalent tog_ comnlete neigh­

borhood system. 

Proof: This corollary is an i mmediate result of theorem 

3.11 and theorem 2.23. 

COROLLARY 3.22. A necessary and sufficient condition that 

g_ subset S of g_ E-space T w.r.t. D be open is that 

to each x E S there corresponds a dx e Dx such that 

//y,d/f L 1 imnlies yE S, ;i_.§_. U(dx) c S. 

Proof: That this follows is clear from theorem 3.11 and 

theorem 2.21. 

COROLLARY 3.23. A necessary and sufficient condition 

that~ function f(x) 

be continuous at x = y 

there exists a 

for all //x,d./1 

y ES , y 

' ' is that given df(y) E Dr(y) 

- ' '£. such tnat //f(x),dr(y) // = 1 

of 

Proof: This result is a consequence of theorem 3.11 and 

definition 2.23. 

COROLLARY 3.24. £. necessary and sufficient condition 



that@ element x of a P-suace T ~.I'._.t. D be the 

limit of a sequence {xn'\ of elements of T is that 

given dxE Dx there exists an integer m = m(dx) such 

that fO.£. all n) m //xn, dx// f: l . 

Proof: The proof of the corollary depends upon theorem 

3.11 and theorem 2.25. 

1 
3. 3. P- groups. 

33 

The pseudo-normed spaces that we will be dealing with 

later on will be groups, and we shall now introduce the 

concept of P-group which shall correspond to. an N-group 

in the same manner that a P-space corresponds to an N­

space. 

DEFINITION 3.31. Let T be an additive group with elements 

x y z and let D be a stron0;.,·ly p· artially ordered ,., , ... ,. 
set of elements d , e , c , . . . . We shall say that 

T is a pseudo-normed group with re.spect to D , or simply 

a P-group w.r.t. D, if there exists a non-negative, 

real-valued function defined on TD satisfying the 

following postulates: 

(3.31 .) //8,d// f: 1 for all de D ; 

( 3.32.) /Ix , 41/ ~ 1 for all d 6 D implies 

x = e, where 8 is the zero element of T • , 
( 3.33.) given d ED there exists an e (;- D 

- ---··-----------~- --· 
1 For the rela tion between P-grour s and topologic al abelian 

groups see section 4.2. 



such that if //y, di/ f: l , then there exists a 

c = c(y) E- D with the property that //y + x, el/ ~ 1 

for all /Ix, c // !:: l ; 

(3.34.) e ~ d implies that /Ix, di/ ~ /Ix, el/ 

for all x E: T • 

THEOREM 3.31. Every P-group yy_.r.t. D is an N-group 

yy_.:r_. 1,. U 1 where U (d) = [ x ; x t T , //x, d // ~ l] 

and V, = [ U(d) ; d E DJ . Conversely, ever y [-groun 

m be nseudo-normed Y[_.r .1,. 71 . 

3 4 

Proof : The verification of this theorem is quite similar 

to tha t of theorem 3.ll, and t he pr oof will be omitted. 

LEMMA 3. 31. !&_i T be§!. !:-group YY.•!:.•1.• D, and given 

x E T and d e- D define Ux (d) = [ y ; y e T , //-x + y, di/ !: 1 J . 
(We shall always write u8 (d) simply as U(d) . ) Th.fill 

x + U(d) = Ux(d) • 

Proof : Let y €. x + U(d) • Then -x + y l:: U(d) and 

//-x + y, d // f: l • Hence ye Ux(d) and x + U(d) c. Ux(d) • 

Conversely, if y e Ux(d) , then //-x + y, di/ f: 1 and 

-x + y E U (d) • Therefore y E. x + U.(d) • Hence 

Ux (d) c x + U(d) and the lemma is proved. 

From now on in this thesis we shall be dealing with 

P-groups, and hence it will be useful to surnmarize in the 

following corollary t he characterization of certain topo-



logical notions in terms of the pseudo-norm of a P-group. 

COROLLARY 3.31. (a) Every P-group T w.~.i- D is 

§:. topological space with closure defined as follows: 

if S is any subset of T , then x f S , the 

closure of S , if and on:L;y: if for each d E D there 

exists _g_ y € S such that //-x + y, di/ ~ 1 • 

Also L = [ Ux (d) ; x ~ T , d {=DJ 1. is equivalent to the 

set of all onen sets of T. 

(b) A necessary and sufficient condition that a 

subset S c T be open is that given x c S there exists 

§:. d ED such that //-x + y, di/ = 1 implies ye S Q.!:. 

what is equivalent Ux (d) c S • 

(c) A necessary and sufficient condition that a 

function f (x) 911 fill open set SY c T , y 6 SY , to a 

P-group Tt Y!.•~•i• Dt be continuous at x = y is that 

given d'E D' there corresponds a df:D with the property 

that //-y + x , di/= 1 implies that // -f(y) + f(x),d'// ' ~ 1 . 

(d) A necessary and sufficient condition that an 

element x f: T be the limit of a sequence ) xn l of elements 

of T is that given d E. D there exists fill integer m = m (d) 

such that //-x + xn, di/ ~ 1 for all n > m . 

Proof: This corollary follows from theorem 3.31, lemma 

3.31, theorem 2.11, theorem 2 . 21, theorem 2.23, definition 

2.23, and theorem 2.25. 

1 This neighborhood system will be said to be the ne i ghbor­
hood system generateci QY. the pseudo-nor_[_ . This is 3na logous 
to definition 3.12. 



As an example of a P-group, consider any valued ring 

A for which the va.luation satisfies the additional property 

t hat /a/= 0 implies that a= 0. Then A can be pseudo­

normed w.r.t. the set of all positive real numbers, R+. 

This can evidently be done by defining 

/I a, r // = r / a/ 

for each a € A and + r e R . As we have mentioned before, 

it is interes t ing to note that we can find examples of valued 

rings in which the topology generated by the va.luation is 

trivial in t hat it i s discrete; whereas, the valuat ion 

itself, from a more general point of view, is by no means 

trivial. For instance see examples (4) and (5) of § 1.2. 

3.4. P1-spaces. 

In this section of the paper we will define vvhat we 

shall call a Pi -space and shall show the equi va.lence of 
1 P1-spaces and N1-spaces . P1-spaces will be related to 

N1-spaces in much the same manner that pseudo-normed linear 
2 , 

spaces are related to linear topological spaces. 

DEFINITION 3.41. 3 A v1-space T w.r.t. A will be said 

to be a pseudo- normed £Q~ of~ l wi th r espect to A,D, 

D J..f T • P 4 
or briefly a ~1- s pace ~-~•!• A, is a -group 

1 
See § ') 3-~. . 

2 See [.~1 • 
3 See definition 1.31. 
4 See definiti on 3.31. 



w .r. t D such that the pseudo-norm, /Ix, di/ , satisfies 

the following additional postulates: 

l 3.41.) /lax, di/ f:: /a/ /Ix, di/ for all d f D , 

a c- A and x c T ; 

( 3.42. ) given d ED there exists an e f: D such 

that /Ix, el/ ~ 1 
l /Ix + y, di/ !:::: 1 ; 

and //y, el/ ~ 1 implies that 

(3.43.) given r) 0 , xE: T, and df D there 

corresponds an aE A and a y <E T 

2 //y, d// f:: 1 , and /a/ - /Ix, di/ ~ r • , 
such that x = ay, 

( 3.44.J giv:en a.EA and d~ D there exists 

an e E: D such that /Ix, el/ S 1 implies that 

1/px, di/ f: 1 for all /p/ f=: /a/ . 

N.B. The postulates which are necessary to determine the 

properties of the pseudo-norm are then (3.32), (3.34), 

and (3.41)-(3.44), since (3.41) implies (3.31) and (3.42) 

implies (3.33). 

THEOREM 3.41. 

\3.45 ) 1/-x, di/ = /Ix, di/ for all dE D and 

X ~ T ; 

\ 3.46 ) /16, di/ = 0 for all dE: D ; 

1 This :postulate is a stronger form of (3.33). 
2 This postulate then makes it unnecessary to assume that 
lx = x for each x f; T • Given x f= T , x = ay for some 
afc.A and yE. T. Hence by V(a) lx = l(ay) = ay = x. 
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( 3 .47 } given a €. A and d e D there exist 

e f D such that /Ix, el/ f:: 1 and //y, el/ ~ l implies 

that //p1x + p
2
y, di/ ~ 1 for all /p

1
/ ~ /a/ and 

/p2/ f:: /a/• 

Proof: (3.45): By (3.41), (1.12) and (1.24) 

/1-x, di/ ~ /-1/ /Ix, di/ = /Ix, di/ . 

Similarly, 

/Ix, di/ f: /-1/ /1-x, di/ = /1-x, di/ . 

Hence /1-x, di/ = /Ix, di/ • 

(3.46): This follows from (3.41) and the fact that 

we are assuming that /0/ = O .
1 

(3.47): By (3.42) we have that given dE D there 

exists an e1 €. D such that //x,e1// ~ 1 and //y ,e1;f f:: 1 

implies that /Ix + y, d // f: 1 . Now by (3.43) we have that 

given e1 E D and a e; A there exists an e ED such that 

//x,e// f:: 1 implies that //px,e1//f:: 1 for all /p/ f: /a/. 

Hence /Ix, e // f:: 1 and //y, e // ~ 1 implies that 

//p1x,ef/ ~ 1 and //p2y,e-jl f: 1 for all /p1/ ~ /a/ 

• and /p2/ f:: /a/, which in turn implies that 

// p1x + p2y, di/ f:. 1 • This completes t he proof of theorem 

3.41. 

3.5. The equivalence of f1-spaces and N1-spaces. 
2. 

THEOREM 3.5J.. Every P1-space_ T Y[.r_.t. A,D is fill 

1 See footnote (1), p. I l • 
2 Compare with theorem 1 of [6] • 
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N1-space w •!:.• t. A, U , where U is defined as in theorem 

3.31, (i.~., 7i is defined to be the neighborhood system 

generated QZ the pseudo-norm.). Conversely every N.1-space 

w •!:.•i• A, U m be pseudo-normed with respect to g_ 

strongly gartially ordered set D in such a manner that 

the neighborhood system generated~ ,the pseu.do-llQ.ffil is 

equivalent to 7l . 
Proof: The proof of the first part of the theorem is 

almost immediate. Let T be a P
1

-space w.r.t. A, D 

and define ?J. = [ U (d); d f DJ , where 

U (d) = [ x; /Ix, di/ ~ 1 J . 
(2.31): (2. 31) follows from (3.32) and (3.46) 

(2.32): Use (3.34) and the fact that D is a strongly 

partially ordered set. 

(2 .33): This is irr,mediate from (3.44). 

(2 .34): Follows from (3.42). 

(2.35): A direct result of (3.43). 

Hence T is an N1-space w.r.t. A, 7.1 and the first state­

ment of the theorem has been proved. 

Conversely, let T be an N1-space w.r.t. A, U . 
u 0 lL * [ ax; :k E U, / a/ f: 1] Given define u = and 

ii 1r = [u~; u EV J ~ 711' u " • Given U € we see that uc • 

Also given U ~ U we have by postulate (2 . 33 ) of definition 

2.31 that there exists a V € 11 such that * V C u ' and 



4 U 

* hence U is equivalent to 1J. . From this equivalence 

l/. * it follows immediately that satisfies (2.31) -

(2 .35) of definition 2.3i, and also satisfies: 

) 
1' * 1 1* ( 3.5i au*c U for /a/ f; i and each U E u. ; 

( ) 

~ "}} -jt 
3.52 given a. c A and U 6. u. there exists 

--y-- -¥ * such that Pi V + p2V C U for all 

and /p
2

/ ~/a/ • 

For let us suppose that XE- aU ... where /a/ f: 1; i.e. 

x = ay where y = pz , Ip/ ~ i and z e U • Then 

x = apz and by (i.22 ) /ap/ = /a/ /p/ ~ 1, and hence 

)( € U ,:. Therefore (3.5i) is satisfied by 71*. (2 .34) of 

definition 2 .31 states that given U * £ U * there exists 

"" U* * * -)(-a Vi 6 such that v1 + v
1 

c U • Now by (2 . 33) of 

definition 2 . 31 we have t hat given _ a€ A there ex ists a 
-;4 'I J* -",c- 7' 

V E: u_ s uch that pV c v1 for /p/ = /a/ . Therefore 

* ~ ~ ~ * 
PiV + P2V c. vl + vl c U for /p1/ f: /a/ and /p2/ 6 

/a/. Hence (3.52 ) is satisfied by Uk. (It is clear that 

(3.52 ) holds also for 7} ~ 1 since we made use of only those 

properties of Ll ~ that are al so properties of 11 . ) 
Define //x,U-JI:// f: g.1.b. [!a/; . x t aU J . This lower 

* * bound exists by (2 . 35) for eaGh. x e: T and U € 1l , 

and 1/..x,u*// is~non-negative real-valued function defined 
,. '1 J ~ 

on T 11 . u. is clearly a strongly partially ordered 

set with u; ~ u11 if u2 c u; . This follows by (2 . 32 ) 

of definition 2 .31. 
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-:ll-

In order to show that #x,U # , as defined above, 

* is a pseudo-norm, we must show that #x,U '// satisfies 

(3.32), (3.34) and (3 .41)-(3.44). 

(3.32): By definition #x,U~ ~ 0 for all x {:; T 

and u* t= 11* . Let us as sume that #x,U// ~ 1 for 

all u* ~ 11* . x U * Then, given U E and a EA , we have 

by (2 . 33 ) of definition 2 .31 that there exists a v* €- U ~ 

~ * such that pV c U for all /p/ ~ /a/ . Pick /a/> 1 , 

which is possible by postulate (1. 25) of definition 1. 21. 

Then, since #x, v*§ .f l , we -have that there exist p EA 

such that 
7' 

X f pV , /p/ < /a/ • Hence * ~ x e pV c U , 

* ~ li-,t i. e., x E U for every U E • It then follows fr om 

(2 .31) of definition 2 . 31 that x = e , and (3 . 32 ) of defi­

* nition 3. 31 is satisfied by #x,U #. 

(3.41): * -ft' If x €: pU , t hen ax t: apU , and since 

/ap/f /a/ /p/, we obtain from the definition of the function 

~ * ~ #x,U '// that #ax,U // f: /a/ #x,U # . 
(3.42): We have from (3 .52 ), by choosing at. A and 

/a/ ) 1 , that given UTE. u ;1t there exists a v1t € U * 

*I/ L ~ * such that #x, V 'fl - l , §y, V "// f 1 i mplies that x c- pl V 

and .yE p
2
v*, where /p1 / Z. /o/ and /p2/ .( /a/, 

and #x + y,U) ~ 1. Hence (3. 42 ) is satisfied by 

* #x,u '// . 
the 

(3.43): It follows i mmediately by/definition of 



~ . * 
//x,u II and (2.35) of definit-ion 2.3l that //x,U '// 

satisfies this postulate. 

(3.44): Given a e A , • U.,x 6 U * , there exists 

a V~ Ell* such that pV~C u* , for all /p/ ~/a/. 

This is by postulate (2.33) of definition 2 .31. Let 

a be such that /a 0 / ) 1 . Then ii' 11* t here exists a V E 
0 0 

* v-r.. /po/ ~ /ao/ • such that p V C for all If 
0 0 

* L /Ix, V// - 1, there then exists a p ~ A 
0 

such that 

* /po/< /a 0 / Hence x6p-i/cv* XE PoVo , • and 
0 0 

px £ pV* c: u* , /p/ ~ /a/. I.e., given aEA and * 11* U c 
* ,, ~ 7f 

there exists a V
O 

E u.. such that /Ix, V0// ~ 1 implies 

* that //px,U'// ~ 1 for all /p/ ~/a/. Hence (3.44) 

* is satisfied by /Ix, U /,/ • of definition 3.41 

* (3.34): If * ~ -}Ir Ul C U
2 

and x €. aU1 , then x ~ au
2 

, 

and hence Ul ~ u2 implies //x,u1 // ~ //x,u2 // for all 

xfT • 

Therefore we have shown that an N1-space T can be 

pseudo-normed w.r.t. 11 * in such a manner that T is 

a P1-space w.r.t. A, 1.1*. 
It remains to show that the set of all 

u(u*) = [ x; 1/x,ui; ~ 1) 
is equivalent to 11 . Given U(U;it-) it follows immediately 

from the definition of //x,ut and the definition of 

u(u*) that Uc U(U~) • Conversely, given U E:- 'lL 



we have by (2 .33 ) of definition 2 . 31 that given a c: A 

there exists a v¥~ 1c~ such that * pV C u* for 

/p/ f /a/ • Pick a such that /a/) 1 • If 

* /Ix, V // f: 1 , then there exists a p c A such that 
f.: 

/p/ ~ /a/ Therefore * xt: pV and • xeU • Hence 

u(v*) c u* and the neighborhood system generated by 

//x,U~ is equivalent to U , since we have already 

shown that U* is equivalent to U . This completes 

the proof of the theorem. 
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An important example of a P
1

-space is the "topologi­

cal abelian group 11 considered by Michal in C CO] • 

We shall discuss this example in detail later in the 

paper. 

THEOREM 3.52. 

also ~-~•i• A, D1 , then£ necessarz and sufficient 

condition that the t wo pseudo-norms be equivalent1 is 

that given df= D there exists£ d'E- Dt such that 

/Ix, d // f //x,d '//' and conversely. 

Proof: The sufficiency is evident. The necessity follows 

from (3.41) of definition 3.41. Suppose that the pseudo­

norms do generate equivalent topologies, i.e., given 

d c D there exists a d' €:: D' such that /Ix, di/ f 1 for 

all /Ix, d' // 1{:- 1 . Then, given r > 0 , x ET , and 

1 
See definition 3.12 , p . 29 . 



d' E D' , there exists an a f. A and y €: T such tha t 

x = ay , /a/ - //x,d '// 1 f: r and //y ,d f// 1 
!::. 1 . Hence 

//x,d/1 =//ay,d// f:/a.///y,d// f: /a./ =//x 1 d1//' + r
0

, 

where L 
ro - r . Therefore /Ix, d // f //x,d '//' for all 

x c T . The converse is proved similarly. 
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We are now able to shovv tha t we can start with a 

weaker set of postulates than those of definition 3.41 

and yet retain the possibility of defining a pseudo-norm 

which will satisfy definition 3.41. 

COROLLARY 3.51. If T is g_ v1 -space }!.r_ • .t. A and 

D is£ ·stronglx_ partially ordered set, and if a real­

valued function /Ix, di/ is defined on TD §Jd..Ch that 

//x,d// satisf ies postulates (3 . 31), (3 . 32 ), (3. 34), 

(3.42) , (3.44) and 

(3. 51 ) giveIJ. xt- T and d ED there exists 

an a E A and y t. T such that x = ay , 1/y, d // f:- 1 , 

theIJ. T may be pseudo-normed w.r.t. D in such~ manner 

that T is~ i;,-space ~-~•1• A,D and the new pseudo­

~ 1/x,d// 1 is equivalent to /Ix, d // . 

Proof: If we define U(d) = [ x; /Ix, di/ f: D and 

U = [ U(d) ; de D] , the above properties of /Ix, di/ 

are sufficient to prove that T is an N1- space A, U . 

This corollar y then follows directly from theorem 3.51. 
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CHAPTER 4 

~ -LINEAR FUNCTIONS ON P1-SPACES TO ~-SPACES 

In theorem 3.52 we showed t he equivalence of P1-

spaces and N1- spaces with the pseudo-norm generating the 

neighborhood system. Hence we can study such spaces either 

as characterized in terms of a neighborhood system of the 

origin or in terms of a pseudo-norm. The pseudo-norm is, 

of course, a generalization of the norm, and for this reason 

we shall find it more sugge s tive and also more convenient 

to work out our theory in terms of the pseudo-norm. 

It was shown in theorem 2 . 31 tha t ever y N1-space is 

a topological abelian group, and hence by theorem 3 .52 

every P1- space is a topological abe l i an group . Corollary 

3.31 will be of importance to us here as it gives t he 

statement of topological concepts in t he language of the 

pseudo-norm. 

The purpose of this chapter is to i ntroduce t he concept 

of a linear f unction which posses s es a sor t of generalized 

homogeneity . We know t hat in t he case of Bana ch s paces 

that every linear f uncti on (i.e., a f uncti on whi ch is both 
1 

additive and continuous) is homogeneous of degree one. 

Banach's proof of t his can also be ex tended to the ca se of 

linear functions in linear topologica l spaces~ Here we 

shall postulate a generalization of t hi s homo geneity fo r 

6 

1 

2 
See l 3J , p.36 , theorem 2. 

See [ 9] . 
The pr oof i s f or a space (F ) . 
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our linear functions and shall choose this homogeneity 

to be such tha t we shall be able to obtain properties 

corresponding to the known properties of linear functions 

in linear topological spaces. 

4.1. l - Linear functions. 

Throughout this section of t he paper , unle ss otherwis e 

stated, T will represent a P1-space w.r .t. A, D, T' 

-a P1-space w.r.t. A', Dt , and ~ (a) will denote a function 

on A to A' such that / i} (a)/tf: /a/ for all ac: A • 

1 
DEFINITION 4.11. An additive func tion f(x) on T to Tl 

will be said to be homogeneous with respect to a function 

p (a) on A to At if f(ax) = ~ (a)f(x) for all aE A 

and x E:: T 

additive . 

• We shall say briefly t hat f(x) is ~ 

DEFINITION 4.12. A function f(x) on T to TJ will 

be said to be ~ - linear if f(x) is p -additive and 

continuous. 

DEFINITION 4.13. A i -additive function f(x ) on T 

to Tl will be said to be bounded if given d'c D' there 

exists a d = d(dt)E D such that //f(x),dl// 1~ //x,d// 

for all xe T • 

1 A function 
f(x) + f(y) 

f(x) is said to be additive if 
for all x,y E T . 

f(x + y) = 
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N.~. Let f(x) be a i -linear function on T to T'. 

Then evidently 

and 

( 4.11 ) 'p (m)f(x) = mf(x) for all integers m 

and all x €: T , 

~(a +f )f(x) = (~(a) + cf (f))f(x) 

for all a, f e A and x ~ T , 

(4.13 ) f (a p )f (x) = cf (a) ~ (f )f (x) for all 

a, ~ E- A and x 6 T , 

~ (ma)f (x) = ~ (am)f (x) = 
m~(a)f(x) . 

If we assume that T' is such that a'y' = 0 im­

plies that at= 0 or yt = 0 1 , then if f(x) # ~, 

~ represents the null function, 

( 1.15 ) 

( 4.16 ) 

( 4.17 ) 

( 4.18 ) 

f (m) = m , 

~ ( a + f ) ::: ~ (a) + {Cf) , 

~(a f) = c£ (a) I (f) , 

~ (am) = cp (ma) = m ~ (a) , 

for all a, (3 6- A and m any integer. 

THEOREM 4.11. A necessary and sufficient condition t hat 

a ~ -additive function f (x) be ~ -linear is that f (x) 

.Q.§_ bounded. 

Proof: The sufficiency follows immediately from Corollary 



3.3l(c), since f(x) is additive. 

In order to prove the necessity let us assume that 

f(x) is a i -linear. Then f(ax) = ~ (a)f(x) , 
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/ I (a)/t ~ /a/ and given d' €:: D' there exists a d = d(dt) 

such that //f(x),dt//t 6 1 for /Ix, di/~ l . The latter 

statement follows from corollary 3.3l(c). Hence 

//y,d// ~ 1 implies that //f(ay),dt//tf= /f(a)/t ~/a/, 

applying (3.41) of definition 3.41. By (3.43) of definition 

3.41 we have that given dG D , x e T , and r ) 0 there 

exist a f A and y €:: T such that x = ay , 1/y, d // 6 1 

and /a/ -//x,d//< r. Then //f(x),dt//t =//f(ay),d'//' L 

/a/ = /Ix, di/ + ro, where r 0 > r . Since this holds for 

any x € T. and r > 0 , we have that /If (.x) ,d '// 1 -f: //x, di/ 

for all x f:- T • This completes the proof of the theorem. 

This theorem is then a generalization of Banach's 

theorem that any linear functional on a Banach space has 
1 

a modulus. 

DEFINITION 4.14. A set S c T will be said to be 

bounded if for each d G D the set [ /Ix, di/ ; x t::: S] of 

real numbers is bounded. 

N.B. If Sl and s2 are bounded subsets of T , then 

it is clear that s1 u S2 and s1" s2 are also bounded 

subsets of T • It follows from (3 .41) of definition 3.41 

1 See • Also and 
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that for any a{:. A and S a bounded subset of T t hat 

aS is a bounded set. Clearly any set with only a finite 

number of elements is bounded. 

COROLLARY 4.11. A I -linear function F(x) QD. T 

to Tt maps bounded sets into bounded sets. 

Proof: This follows immediately from theorem 4.11. 

THEOREM 4.12. A necessary and sufficient conditlon that 

g_ set Sc T be bounded is that given an Q.Q.fill set U 

containing the zero element there corresponds~ real number 

r = r (U) > 0 such that given x 6 S there exists an a E A 

such that x 6 aU , I a/ -f: r . 

Proof: Sufficiency: Assume that t he condition is satis­

fied. Then given d€-D we have by corol1ary 3.3l(a) 

that there exists an open set containing the zero element 

and contained in U(d). Let U denote this open set. 

Hence given x E S there exists an a <SA such that 

/a/~ r(U) and 

//y,d// = 1. 

x e au c aU(d) . I.e., x = ay where 

Hence /Ix, di/ ~ /lay, di/ f: /a/ by (3.41) 

of definition 3.41. Therefore for any x GS, //x,d// ~ r(U) 

and the sufficiency is proved. 

Necessity: Let S be a bounded set and Ube an open 

set containing 8. Then by corollary 3.3l(a) there exists 

l Compare with the discussion on boundedness i n L~J • 
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a U(d) CU. By (3.43) of definition 3 .4l we have that 

given x € S and r ) 0 there exists an ae- A and a 

y f: T such that x = ay , 1/y, d // f 1 and / a/ - /Ix, d // f r . 

But now, since x t!: S and S is bounded, /Ix, di/ ~ r O (d) . 

Hence /a/ I:- ro(d) + r. Therefore given x e S, 

x ~ aU(d) c aU, where /a/ f! r
0

(d) + r for any r> 0 , 

and this proves the necessity of the condition. 

Let Ff represent the set of all p -linear functions 

on T to Tt • Then if fl , f 2 E Fi , we define 

f3 = fl+ f2 to be the function • f 3 (x) = f 1 (x) + f 2 (x) • 

With this definition of addition we can prove the following 

theorem. 

THEOREM 4.13. The set F £ of all ~ -linear functions 

Q.ll T to Tt is a topological abelian group. 

Proof: It is evident that the sUJIL of t wo f -additive 

functions is ~ -additive, since T' is a linear set over 

A' . Also it f ollows immediately from corollary 3.31(c) 

and (3.42) of definition 3. ·41 that the sum of t wo contin­

uous functions is a continuous function ., and hence 

f 1 + f 2 E F cf for every f 1 , f 2 E F ~ . The commutative 

and the associative laws of addition follow from the 

commutativity and associativity of addition in T' . 
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The null function ,& (x) = 8 for all x ~ T is contained 

in Ff and f + ,.jL = f • for all f E. F ~ • If f 6 F !f, 

then -f, the function -f(x) , is in F~, and f + -f = ~. 
Therefore F ! is an additive abelian group. 

We wish now to show that F ! is a topological group 

and we shall do this as follows. Let BT be the set of 

all bounded sets contained in T • BT is clearly a 

strongly partially ordered set with s ~ 
1 S2 if Sl ::> s2 

(Si , s2 E: BT • ) Define W to be the set of all ordered 

pairs w = (d•,s), dteDt and S6BT. Since BT and 

Dt are strongly partially ordered sets, w is evidently 

a strongly partially ordered set1 with wl ~ w2 if 
r d' d1 ~ 2 and Sl ~ 82 • ( (d~,s1 ) i = w. = 

J. 
l, 2 , • • • 

Define 

M(f.,w) = l.u .. b. [#f(x),dt/11; xt s] , 
where w = (d' ,s) E W and f e F ?E • By corollary 4.11 

M(f,w) is defined for each fc F'! and wcW. M(f,w) 

then has the following properties: 

) 

M(f,w) =: 0 for every WEW and f E F~ 

for all W'=: W implies that f = ,.&. , 

• 

. , (4.19 ) 

M(f,w) !fl 

(4.110 ) 

M(f1,v) f 1 

given Wf: W there exist VE; W such that 

and IvI(f2 ,v) 6: 1 implies that 

M(f1 + f 2 ,w) ~ l; 

( 4.lll) M(atf,w) I.. /at/r M(f ,w) for each wE W 

l See VI. 
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and each a'f'= F~; 

(4.112 ) given o.'e A
1 and w (:; w .there exists 

a Vf::: W such that M(f.,v) f l implies that IvI(plf ,w) 

and p 'f !: F~; for all /pt/t ~ /at/t 

( 4 .113 ) w l ~ w 2 

for each f e: Fi . 

implies that M(r,w1 ) ~ M(f,w2 ) 

These properties of M(f,w) follow from the definition 

of M(f,w) and the properties of //f(x),d'//' • 

M(f,w) as defined above clearly satisfies (3.31) -

(3.34) of definition 3.31 and hence F ~ is a P- group 

w.r.t. W • By corollary 3.3l(a) F~ is a topological 

space. It then follows from corollary ~.3l(c) and (4.110) 

that the operation of addition is continuous. Since 

lf = f and -lf = - f E: F~ , it follows from ( 4 .111) and 

(1.24) that M(-f ,w) = M(f ,w) for all f €: F ~ and w 6 W • 

Hence by corollary 3.31.(c) the inverse operation is con­

tinuous and Ff is a topological abelian group. 

Later on in the paper we shall return to the study of 

such a space FI. and w~ th stronger conditions on At 

we shall be.able to show that FI is a P2-space w.r .t. 

A', W. In preparation for this we shall now show that 

if At is a commutative ring, then FI is a v
1
-space 

w.r.t. A' • 

I.. 1 
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THEOREM 4J.4. If F~ is the set of all f -linear functions 

Q.ll ~ P1- space T ~.r.1. A, D to~ P1- space Tt ~-~•1• 
A', Dt where Al is a commuta tive1 ring, then the topologi­

cal abelian group Ff is ~ v1-space with respect to A' . 

Proof: We have shown in theorem 4 .13 that FI is a topo­

logical abelian group. For a'€:A 1 and fcF~ we define 

atf to be the function atf(x) . Since A' is commuta­

t-ive, it follows that a{f
1

(x) + a~f2 (x) is f -additive 
t l I for each a1 1 a

2

. €: A and f 

1

, f 
2 

€ Fi . It follows from 

(3.47) of theorem 3.41 and corollary 3. 3l(c) that 
I I 

a1f 1 (x) + a2r2 (x) is continuous in Xe In using (3.47) 

pick al to be 
f f 

according as /a1/ ~ /a
2

/ or 

f • ' or /a1/ < /a2/ • Hence 

and fl , f 2 c. F cf • 

One may then go on and easily verify that F f is a 

v1- space. 

4.2. Sequences of ~ -linear functions. 

The first theorem of this section depends only upon 

T being a P-abelian group which satisfies, in addition, 

the stronger form of postulate (3 . 33 ), namely, (3. -42) of 

definition 3.41, and the following postulate: 

( 4.21 ) to each d E- D there corresponds an 

e 

1 
I.e.~ a p = f a for all a, /3 € A • 



et D such that /Ix, el/ 6: l implies that /1-x, di/ f: 1 . 

It can be shown by use of corollary 3.31 that this is an 

equivalent form for the definition of a topological abelian 

group. This equivalence is made clear by § 16 and § 17 

of l 1 ~ 1 , pp.. 52 -57. 

THEOREM 4.21. Let T be a topological abelian grou~. 

ll 1 xn} and 1 Y n} are sequences of elements of T, 

it follows that: 

(a) if lim x 
n 

exists, then the limit is 

unique; 

(b) lim xn =x and lim Yn = y im:glies .:the.:t. 

lim (x + y) = x + y. n n 

If Tis a P1-space ~-~·1• A, D, 

(c) lim x = x implies that for any a 6 A n 
lim ax =ax . n 

Proof: As we mentioned above, every topological abelian 

group can be characterized in terms of the pseudo-norm. 

We shall give. the proof of this theorem using the pseudo-

norm. 

(a): Let us assume that lim Xn = x and lim x = z. n 

Then by (3.4.2) and (4.21) we have that given dE D there 

exists an eG: D such that /Ix - y, di/ ~ l for all //x, el/ L.. 1 

a.nd //y, el/ f:: l .. By corollary 3.3l(d) there exists a 

positive integer m = m(e) such that for n) m(e) 
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/Ix - xn., el/!: 1 and //xn - z,e// ~ 1. Hence 

/Ix - z, di/'= 1 for all d 6 D • Therefore., by (3.32 ) 

of definition 3.3l x - z = e., or x = z., and the unique­

ness has been proved. 

(b): Assume that lim x = x and limy = y _. n n 
Then, as in the proof of (a), we have that given dE D 

there exists an eE D such t ha t //x,e// f: land //y,e// ~ 1 

implies that /Ix - y, di/ ~ 1 . Then by our hypothesis 

and corollary 3.3l(d) there exists a positive integer 

ID= m(d) such that//¾_ - x, e//f: 1 and //Yn - y,e// ~ 1 

for all n> m. Hence //Xn + Yn - x - y,d// ~ l for 

all n) ID. By corollary 3.3l(d) this completes the proof 

of (b). 

(c): By hypothesis and corollary 3.cl(d) we have that 

given e e D there exists an m(e) such that n) m 

implies that /Ix - xn., el/ .:f 1 . By (3 .4.4) of definition 

3.41 we have that given at: A and d €:: D there exists 

an e €:: D such that //xn - x, e // f:.- l implies 

//axn - ox, di/ f: 1 . Hence for n )ID(e) = m(e (a.,d)) we 

have that 1/a.x - axn, d // f:- 1 , a.nd by corollary 3.31(d) 

liID °'Xn = ax • Thus (c) has been proved. 

COROLLARY 4.21. If lim f = f , fn€.F'£ §.nd f€F§, n 

then lim f n(x) = f(x) for all X ET • 

Proof: As we mentioned at the beginning of this section., 



every topological abelian group is a special type of P­

group. Hence by theorem 4.13 and corollary 3.31(d) we 

have that given w € W there exists a positive integer 
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m = m(w) such that M(f - f,w) ~ l for all n) m. 1 n 
Since given xf:T there exists an SEBT such that 

x (; S , we see by the definition of M (f, w) that given 

d'€ D' there exists an integer m = m(w) , w = (d',S) , 

such that n) m implies that #'fn(x) - f(x),dtfft6- 1 . 

Hence by corollary 3.3l(d) lim fn(x) = f(x) for each 

X f T • 

THEOREM 4.22. If lim fn (x) = f (x) for each x e T , 

fn (x) €: F~ , and if given d' c.. D' there exists g_ d c D 

§!ill. g_ positive integer s = s(d',d) such that 

g'f5 (x) - f(x),d.t§tf: 1 for cl-11 #'x,d#' ~l, !hen f(x) 

is f -linear, i-~•, f c Fi . 

Proof: Since lim fn(x) 1= f(x) , it follows from theorem 

4.,13 and theorem 4.21 that f (x) is f -additive. 

By 3.41 of definition 3.41 we have that given d'6 D' 

there exists an e'€Dt such that #'f(x).,dtfft ~l for 

#'fn(x) - f(x),e'#' -f=- l and #fn(x),e'#'' f:- 1 . Pick 

n = s = s(e•,e) as in our hypothesis. Then, since f (x) 
s 

is in F ~ , we have by theorem 4.,41 that given e' €: D' 

l 
W and M(f,w) are defined in theorem 4.13. 
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there exists an e
1 
~ D such that /If 5 (x) ,e 1// ~ 1 for 

all 

for 

for 

/Ix, e1// = 1 .. 

/Ix, e /I ~ l . 

all /Ix, di/ f. l 

Now by hypothesis //f
5

(x) - f(x),e'#'~ 1 

Pick d ~ e, e
1 

., Then //f(x),d'//' ~ 1 

. By corollary 3.,3l(c) ·r(x) is 

continuous. We have already shown that f(x) is P­
additive and hence f(x) is i -linear. 
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CHAPTER 5 

f -DIFFERENTIALS OF FUNCTIONS WITH ARGUMENTS AND VALUES IN 
P1:-SPACES. 

Throughout this chapter T, Tt and T'' will 

represent P1-spaces wer.t. A,D ; A', D1 and A'' ,D'' 

respectively, unless otherwise sta.ted. .P (a) will denote 

a function on A to A' such that /~(a)/' ~ /a/ for 

all a EA • 

5.1., ~ - approximation functions. 

DEFINITION 5.11., Let F(x) be a function defineq on an 

open set s8 c T , e ~ s8 • Then F (x) will be said to 

be a ~ -ru;rnroximation function 2n s8 c T to T' if 

there exists an e e D such that given d t ~ D' there 

corresponds a d = d(dt)£ D for which: 

and 

( 5 .11 ) /Ix, e /I f: 1 and //x,d// f: 1 implies that 

//F(x) 1 d t//t f: 1 ; 

( 5 .12 ) /lax, e II f:. 1 and /Ix, d // "- 1 implies 

that // ~ (a) F (x) 1 d ' // t = l ., 

N.B. We have by corollary 3.3l(a) that there exists a 

U(d1 ) c s8 , and it is implied in definition 5.11 that 

e ~ d1 , as we can only speak of (5 .. 11) and (5.12) being 

satisfied for such x €: T for which F(x) is defined. 
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LEMMA 5.11, 1f. F(x) is both §:, ~ -filigitive function 

an9- §:. ~ -approximation function Q!l T iQ. T' , then 

F (x) = 8 fQ.!:. all X 6 T • 

By hypothesis we have that there exists an et: D 

such that given d'E D' there exists a d = d(ctr)c D 

such that: 

( 5 • ]_3 ) /IF ( ay) , d '// ' = // I (a) F (y) , d ti/ ~ l 

for all /lay, e/1 b l and /ly, d/1 f:-- l • 

In addition, we have by (3.43) of definition 3.41 that 

given ;x ~ T and d € D there exist y E- T and a(:; A 

such that x = ay and /ly, d/1 ~ l • Hence, if /Ix, e /I ~ l , 

we have from (5.13) that 

( 5 .14 ) /IF(x),d'#' ~ l for all dtE Dt • 

Hence by {3.32) of definition 3.31 F(x) = 8 for all 

#x, e# f: 1 c Then by use of (3.43) of definition 3.41 

we have that given x €. T there exist a 6 A and ye T 

such that #y, e/1 ~ 1 and x = ay • Therefore, since 

F(x) is ~ -additive., F(x) = m (a)F(y) = 8 for each 

xe T, and the lemma is proved. 

DEFINITION 5.12. Given a valued ring A define 

Ao= [a;ac.A, ap = pa for each p eAJ 

We see that given any integer m that m= ml e A0 ., 

l ma=~+ ••• (m su..rnmanas) e•• +a. A0 can easily 

• 

1 

be shown to be the largest subring of A which is commu­
tative. 
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We are not in general interested iri the open set on 

which a ~ - approximation function F(x) is defined and 

so we shall not specify the open set but say onl y that 

F(x) is a f - approximation function defined on T to 

T' , though it is to be remembered that F(x) may only 

be defined on an open set s9 c T , e eS8 • 

LEMMA 5.12. 

is~ l - approximation on T to TY 

' ' ' al, a2E(A1)0 • 

Proof: Pick at to be either ai 

whether /a{/ t ~ /a;/' or /a~/' > 
by (3.47) of theorem 3.41 tha t given 

d' E Dt such that //F(x),d{//t ~ 1 

and §F2 (x), d t// 1
f= 1 . Since F1 (x) 

for all 

' or a2 depending on 

' / a1/' . Then we have 

' d1 c D1 there exist 
I 

for /IF l (x) ,d '// f l 

and F2 (x) satisfy 
exist 

(5 .11), we see that there A ei e D such that given d' ~ D ' 

there correspond d. c D such that 
J. 

//Fi(x),dt//t :f- 1 for all 1/x,e/ f: 1 and 

//x,d/f f:: 1 , i = 1,2 . Hence picking d ~ d1 , d2 and 

' e ~ e1 , e2 we have that given d1 t:. D• 

/IF (x) ,dl_// •f: 1 for all /Ix, el/ f: 1 and /Ix, di/ ~ 1 . 

Since a{, a~ are in (At) 0
, Q? (a)F(x) = a{ ili (a)F1 (x) 

+ a.~ cp(a)F2 (x) • Then in a manner sin~ilar to the above it 

can be shown that 
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/I f (a)F(x),d{//'_ b 1 for all //ax, e// ~ 1 and 

/Ix, d// f: 1 . (It is to be noted that e and d may 

have to be rechosen in order to hold for both this equation 

and the one above. This is possible since D is a strongly 

partially ordered set.) Therefore F(x) satisfies (5.11) 

and (5.22). If F. (x) is defined on S. C T , 86S
1 1 l. 

and i = 1, 2 , then F(x) is def·ined on an open set 

Se C s1 n s2 8 e s8 • since by corollary 3.3l(a) such , , 
an open set does exist. Hence F(x) is a i -approximation 

function on T to T' • 

LEMMA 5.13. If F(x) is~ ~ -,approximation function 
I 

2!l T to T' and g (x t) is ~ p -linear function Qil 

Tt to Ttl , then G(x) = g(F(x)) is a p -approximation 

function Q!1 T to T 1 ' , where .p (a) = f ( ~ (a)) • 

Proof: Since g(xt) is a ~, -linear function, we have 

by theorem 4.11 that given d'' E D'' there exists a d 1 e D' 

such that 

( 5.15 ) //G(x) ,d' '//' t ~ #F(x) ,a t,f t • 

Because pf the fact that F(x) is a ~ -approximation 

function, (5.11) is evidently satisfd.ed by G(x) .. 

By the if -linearity of g (x') 

( 5.16 ) 'f (a)G(x) = g ( rp (a)F(x)) . 

Now G(x) satisfies (5.15) and hence 

( 5.17 ) # P (a)G(x),d"#" b ,fp(a)F(x),d'#'. 



G(x) t hen satisfies (5.12) by virtue of the fact that 

F(x) does. Clearly I P (a)/" = / ! (a)/t = /a/ . Hence 

G(x) is a f - approximation function on T to T t ' , 
where G(x) is defined on the same open set in T on which 

F(x) is defined. 

5,.2. ~ -differentiable f unctions .. 

DEFINITION 5.21. Let f(x) be a ·function on an open 

set Sy c T to Tl , y e Sy . If there exists a 

f -linear function f (y; ox) of ox on T .•• to TJ such 

that 

( 5.21) F(ox) = f(y + ox) - f (y) - f(y;ox) 

i s a f -approximation function of ox on an open set 

Se c T , e e. s 8 , to T' , then f (x) will be said to be 

¢ - di fferenti aQk at x = y and f(y;ox) will be called 

a ~ -different ial of f(x) at x = y with increment ox* 

N .. B. There exists by corollary 3.3l(a), coroll ary 3.3l(b), 

and lemma 3. 31 an open set s8 c T , e f-' s8 , such that 

y + s6 c Sy • F(ox) i s then a function on s
8 

c T. to T-' • 

THEOREM 5., 21. If g_ function f (x) on §.!1 open set S c T , 
y 

y f S , to T' is ~ -differentiable at x = y with_ y 

f(y;ox) ~ ~ - differential of f(x) , then f(y;ox) is 

uliligue e 
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froof: Let us assume that f 1 (y;ox) and r2 (y;&x) 

are both i -differentials of f(x) at x = y. Define 

G(ox) = r1 (y;ox) - f2(y;ox) • 

Since 

G(ox) = ( f(y + ox) - f(y) - f 2 (y;ox) ) -

( f(y + ox) - f(y) - f1(y;ox) ) , 

we then have by hypothesis that G(ox) is the difference 

of two f -approximation functions. Hence by lemma 5.12 

G(ox) is itself a ~ -approximation function. G(ox) 

is also the difference of two ~ -linear functions on T 

to Tt and by theorem 4.13 G(ox) is a ~ -linear function 

on T to Tt . It then follows by lemma 5.11 that G(ox) = e 

for all ox E. T , and thus the uniqueness of the g5 -diff eren­

tial has been proved. 

THEOREM 5.22. If f(x) is~ i-differentiable function 

at _ x = y , theu f (x) · is continuous at x = y , .. 

Proof: By (3.42) of definition 3.41 we have that given 

d t f: D' there exists an e 'E D' such that 

//f(y + ox) - f (y) ,d t//t ~ l 

for all //f(y + ox) - f(y) - f(y;ox),et§t ~ 1 and 

//f(y;ox) ,et§t = 1 • Since f(y + ox) - f(y) - f(y;ox) 

is a p_ -approximation function and f(y;ox) is a 4) -
linear function, it follows that there does exist a d~ D 

such that #x, d# ~ 1 implies that 



II f (y + ox) - f (y) , d 'II ' .(: l . 

Therefore by corollary 3.3l(c) f(x) is continuous at 

x = y, and the theorem is proved. 

LEMM.A 5.21.. If f (x) QQ an oDen set S c: T y 

64 

y ~ Sy , is ~ -differentiable at x = y , §Pd if H (x') 

is§:. ~ ' -approximation function on an open set S~ c T' 

to Ttt 1 e~s~, then G(ox) =H(f(y + Qx) - f(y)) is 

g_ (J! -approximation function on an open set s8 c: T to 

T• t , e e s8 , where 'f (a) = ~ 1( t (a)) • 

Proof: Since H(xt) is a ~ ' -approximation function on 

T' to T1' , we have by (5.11) of definition 5.11 that 

there exists an et€ Dt such that given d 11 E D1 ' there 

corresponds a d'£ Dt such that 

II G (bx) , d , '// t t f: 1 

for all 

// f (y + bx) - f (y) , e '// ' L 1 

and 

// f (y + ox) - f (y) , d ti/ ' ~ 1 . 

By theorem 5e21 and corollary 3.3l(c) there exists an 

e1 E. D and d1 G: D such that 

//f(y + ox) - f(y),dt//t ~ 1 

and 

for //'6x,e/ ~ 1 . 



Hence G(ox) satisfies condition (5.11) of definition 

5.11. 
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By (5.12) we have that there exist e•~ Dt such that 

given dtte D'' there correspond d'~ D' such tha~ 

(5.22 ) // Y (a)G(ox) ,d' 1// 11 f: I 

for //f(a)f(y + ox) - f(y)),et//rf: 1 and 

// f (y + ox) - f (y) , d t§ ' ~ 1 a 

By theorem 5.12 and corollary 3.31(c) there exist 

ct1 E: D such that 

(5.23 ) //f(y + ox) - f(y),dt// ,t ~ 1 for //ox,df/ ~ 1. 

Define F(ox) ~ f(y + ox) - f(y) - f(y;ox) . By hypothesis 

F(ox) is a , ~ -approximation function. It then follows 

from (3.42) of definition 3.41 that given e'E D' there 

' exist e
1

f Dt such that 

( 5.24 ) //~(a)(f(y + ox) - f(y)),e'//' f: 1 

for //~(a)F(ox),el_//' ~ 1 q.11d //~(a)f(y;ox),e{//' f= 1. 

Due to the fact that F(ox) is a ~-approximation 

function, we have by postulate (5.12) of definition 5.11 

that there exists an e ED such that given 
2 

there corresponds a d
2

f D such that 

\ 5.25 ) // f(a)F(ox).,el' ~ 1 

for //a(ox) ,eif f:: 1 and //ox,d.j/ ~ l . 

I 
e t D1 

1 

Since, by hypothesis, f(y;ox) is ~ -linear, we have 

that there exists an e
3

c D such that 
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( 5 .. 26 ) 11 ~ ca)f(y;ox),e:f' = 11r(y;aoxt,eE' f:, 1 

for 1/aox,e.j/ !::: 1 • 

Hence by (5.22) - (5.26) we have for e ~ e , e
3 

ED 
4 2 

that given d t t E. D" there corresponds d
4 

2 d
1

, d
2 

E D 

such that 

\ 5.27 ) // p (a)G(ox) ,d t ti/'' ~ 1 

for 1/aox,e / ~ 1 and //ox,dif ~ 1 . 

Therefore for d = d we have that 
4 

G(ox) satisfies definition 5.11 , and G(ox) is a 

~ -approximation function on s8 CT to T t ' • S8 is 

an open set such that y + S8 C s • As we have shown 
y 

before, such a set does exist. Clearly 

/ P (a)/" ~ / p (a)/t I:= /a/ . 

This completes the proof of the theorem. 

THEOREM 5.23. If f (x) and g (x) ~ function on open 

sets s1 c T and s
2 

c T 

to T' , and if f(x) and 

respectively, ye s
1 

, s
2 

, 

g(x) are ~ -differentiable 

at X = 

tiable 

h(y;ox) 

Proof: 

t t -
y, then h(x) = a

1
f(x) + a2g(x) is ~ -differen-

t ' at ~ = y for any a1 , a2 c A''? with 
f f = a1f(y;ox) + a2g(y;ox) . 

' f ) By lemma 5.12 h(y + ox) - h(y) -a1f(y;ox) - a2g(y;ox 

is a ~ -approximation function. As in theorem 4.14, 
t t if: . h (y; ox) = a1 f (y; &x) + a2g (y; ox) is a :±: -linear function 

and the theorem is proved. 
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THEOREM 5.24. If f (x) Q.!!. .fill open set Sy c T , y €; Sy , 

to Tt is Zf5 -differentiable at x = y and if g(xt) 

Q!1 an open set s} (y) c T v to T' ' , f (y) € sf: (y) , is 
I f -differentiable at x' = f(y) , then h(x) = g(f(x)) 

QJl aye T to Tt' is ]! -differentiable at x = y , 

where 1!" (a) = !' (<J2 (a)) and h(y;bx) = g(f(y);f(y;ox)) . 

Proof: Define 

G(ox) = h(y + ox) - h(y) - g (f(y);f(y;ox)) 

Then 

\ 5.28 ) G(ox) = g(f(y + ox)) - g(f(y)) 

- g(f(y);f(y + ox) - f(y)) 

+ g(f(y);f(y + ox) - f(y) - f(y;ox)) 

because, by hypothesis, g(y•;ox•) is additive. Here 

y' = f(y) • Since g(xt) is f 1
-differentiable at x' = yt , 

we have that 

H ( ox ' ) = g (y t + ox t ) - g (y t ) - g (y t ; ox ') 

is a f ' -approximation function on Tt to Tt t • Then 

by lemma 5.2l H(f(y + ox) - f (y)) is a o/ -approximation 

function in ox on T to Ttt . It follows from lemma 

5.13 that g(f(y);f(y + ox) - f(y) - f (y;ox)) is a 
TTr 1~',\tH....,.._ 
~ -approximation~in ox on T to Ttt . Since 

G(ox) = H(f(y + ox) - f(y)) 

+ g(f(y);f(y + ox) - f(y) - f(y;ox)) , 

it then follows that G(ox) is the sum of two 1£ -approxi­

mation functions. Hence by lemma 5.12 G(ox) is a 



68 

~ -approximation function on T to T'' . It follows 

almost immediately from theorem 4.11 that 

h(y;ox) = g(f(y);f(y;ox)) 

is a -P -linear function on T to T'' , and .the theorem 

is proved. 

5.3. ~ - differentials in Michal's "topological abelian 
1 g__roups . 11 

A. D. Michal has considered the notion of a differential 

for functions on an open set of a tttopological abelian 

groupn to a "topological abelian group." We wish in this 

section of the paper to show that the 11 topological abelian 

groupn which Michal considered is a P -space and that 
l 

every function which is M1-differentiable1 is differentiable 

in the sense of this chapter, the two differentials being 

equal. 

By a 1~opological abelian gro@"(i.~•&•) is meant a 

topological abelian group2 T which satisfies the follow­

ing additional postulate: 

5.3t given x~ T and any open set Uc T , 

8E:U , there exists a positive integer n such that 

lt 6 nU . We shall always refer to such a topological abelian 

group as a t.a.g. 

1 See [j DJ • 
2 See XIII. 



THEOREM 5.31. Every i•~•K• T is fill N
1
-space with respect 

iQ. A, 11 , where A is the integral domain of all j.ntegers 

with the absolute value .§:..§.. the valuation and 11 = f-u f 

is the set of all ooen sets U of T containing 8. Con­

versely every N1-space with respect to A, 11, where 

A is the absolute-valued integral domain of all integers, 

Proof: It is evident that a t.a.g. T is a v1-space with 

respect to the integral domain of all positive integers 

with /m/ = jml • Also it follows from the definition 

of a t.a.g. , theorem 2.23 and theorem 2.24 that: 

the intersection of al:l U E 1L is 8 ; 

given U € 1l and V €- 11 there exists 

a W E- U such that W c U " V ; 

given U € 11 there exists a V E ti. 
such that -V c U j 

given u E-11._ there exists a V ell 
such that V +Ve u ; 

given Xc;T and UE'U there exists 

a positive integer m such that . x t mu ; 

where 11 is the set of all open sets of T containing 

e. Hence (2.31), (2.32), (2.34) and (2.35) of definition 

2. 31 are satisfied by U . 
Novi we have by (5.34) that given U t lL there exists 

a V E-1.l such that -V C U or what is equivalent V C -U .. 



By (5.33) there exists a w €:: u such that W c V n U c 

-U n U • Hence wcu, -WC U .• Then by the above and 

(5.35) we have that given U El/._ there exist VE: -u._ 

such that V +Ve u , V -VCU and -V - V C U . 

Hence given UGll and m any integer there exists a 

Vn €- 11 such that ±Vn ± ... (a" summands) •.. ±Vn c U 

and 2n ~ / m / • Hence for \ m1 \ ~ j m \ 6: 2n; m1 Vn c U . 

Therefore (2.33) of definition 2.31 is satisfied by 1l, 
and the first part of the theorem has been proved. 

The converse is an immediate result of theorem 2.31 

and theorem 2.24. 

It then follows from theorem 3.51 that: 

COROLLARY 5.31. Every P1-space T with respect to A, 

11, where A is the absolute-valued integral domain of 

all iptegers, is~ t.~•K• Conversely every t.~.~- ~ 

£.fill be pseudo-normed with respect to~ strongly partially 

set D in such~ manner that the pseudo-norm generates 

~ neighborhood system equivalent to~ complete neighborhood 

system of the zero element, and T is~ P1-space with 

respect tg A, D. 

N.~. It follows from (3.43) of definition 3e41 that 

the pseudo-norm which may be defined for a t.a.g. T (as 

in theorem 3. 51) is integral-valued and that /Ix, di/ = O 
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for any d f D implies that x = e . By the above corollary 

all the theory that we have developed for P1-spaces is 

applicable to Michalts "topological abelian groups." • 

Example~ 

We shall now show by an exa~ple that every P1-space 

w3r.t .. A, D is not a t.a.eg~ We know that if T is a 

P1-space w.r .. t. .. A, D 11 then T is a topological abelian 

group, a.nd though it is true that given x E T and U(d) ~ U 
there exist a. 6 A such that x ~ aU (d) , this does not 

imply that t:bere exists an integer m €: A with the above 

property. 

Let R be a p-adic number field.
1 

·Then given 
p 

r €: Rp the valuation of r , /r/ , is defined as follows 

/r/ = pw , where O <.. p c._ 1 and w is 

the order of r . 

This valuation can be.shown to be a non-trivial., non­

archimedean valuation of R , tl1e field of rational numbers. 

I.e .. , fer each r, r e: R ' i = 0,1,2, ... 

( 5.37 ) 
i p 

/0/ = 0 . /r/) 0 r t 0 . ,, , , 
( 5.,38 ) /rlr2/ = /r1/ /r2/ • , 
( 5.39 ) /rl + r2/ f:: max( /r1/ and /r2/) . , 
( 5.310) /r /to, 1 for some r ER . 

0 0 
, 

( 5.311) /n/ ~ l for all integers n • 

1 See li} , pp" 289-292 P for the definition of R and 
all tbe properties of p-adic number fields referred ¥0 here., 



Rp is clearly a valued ring., and we 

R, R+, where 
p 

shall show that R 

is the set of 
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p 

positive :r_eal numbers. Evidently R is a v1-space 
p 

with respect to RP, and R+ is a strongly''partially ordered 

set with ordering as usual. Define 

/Ir, '6/1 = o /r/ for each r E RP and o > 0 • 

It follows irnmedia.tely from (5.37)-(5.310) that /Ir, '6// 

satisfies (3.31), (3.32), (3.34), (3.42) and (3.44) . 

From (5.38) and (5.310) it follows that given E> 0 

there exist such that /r/ > f • Given 
' 

x c R p 

and r e R , r # 0 , x = r (r-lx) . Then from the above p ' 

we can pick for any given '6 €:. R+ and x E-R an re R 
p p 

such that //r-1x, o// ~ 1 , i.e., /r/ ~ /Ix, o/1 . Hence 

//r,d// satisfies (3.51) of corollary 3.51. Therefore 

b;r corollary 3 .51 RP is a P1-space w.r.t. + Rp, R ,. 

It follows also, since the valuation of R is non-archi-
p 

medean(i.e., /r/ satisfies (5.311)), that there exist 

x E RP and o c R+ such that there exists no integer 

n E: RP with the ·property that x = ny and //y, '6// ~ 1 . 

For if we pick x and '6 to have the ~roperty that 

/Ix, '6/1 > 1 , then 1 < /Ix, '6// = 1/ny, '6// = /n/ //y, "6// • 

Now O < #y, bf f: 1 requires that /n/) l .. But by 

(5.311) no such integer exists. 

Therefore we see that we have proved the following 



theorem. 

THEOREM 5.32. Let RP be any Q-adic number field and 

le.t_ R + be the se.t. of QQ.§..il_i ve real rn.1mb.~u. Th.fill R p 

in the sense of Michal. 

THEOREM 5.23e Every additive an<l continuous function 

Qll a i•~•K• T to~ i•a•K• T1 is a ~ -linear function 

Qll T to T1 where ~ (n) = n for anx_ integer n . 

Proof: The proof of this is clear. 
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In what follows T, Tt and T'' will be tsa.g. 1s, 

and we shall deal with them as P1-spaces pseudo-normed 

with respect to D, D', and Dtt • The definition of an 
1 

Mi-differential which follows is that of Michal translated 

in terms of the pseudo-norm. 

DEFINITION 5.31. Let f(x) be a function on an open set 

Sy c T to T' , y €: S • If y 

l 5.312 ) there exists a function f(y;ox) 

is additive and continuous in ox on T to 

which 

there exists a function €(y,x1,x2) 

with arguments in T and values in T' such that 

(a) £ (y,e.,x) = e for all x ET ; 

1 See • 



then 

(b) there exists a d E D such that 

l (y,x1;nx2 ) = m £ (y,x1 ,x2 ) for all positive 

integers m , //x1 , di/ f: 1 and all x2 € T ; 

(c) there exists an e €: D such that 

given d' e- D• there exist d G D such that 

//£ (y ,x1,x2) ,d '//' !:= l for //x2 , e II f: 1 

and //x1 , d // f- 1 ; 
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there exists an open set s8 c T , e G S8 , 

such that 

f(x) 

f(y + ox) - f(y) - f(y;ox) = £(y,ox,&x) 

for all ox £ s8 ; 

is said to be M1-differentiable at X = y • 

f (y; ox) is said to be an M1-differential of f(x) at 

x = y with increment ox • 

THEOREM 5.34. If f(x) is~ function Q!1@ open set 

Sy c T to Tt and if f (x) is M1-differe:ntiable at 

x = y , then f <x) is ~ -differentiable in the_ sense of 

definition 5 . 21, where ~ (m) = m for each integer m. 

In this case we have also that the two differentials~ 

Proof: In order to prove this theorem we need only show 

that F(ox) = s (y' ox, ox) is a {f -approximation function 

with f (m) = m • This follows since we know by theorem 

5.33 that an M1-differentia.l f (y; ox) is 4?_ -linear 

in ox .. 



We have by (5.313 (c)) that there exists an e I!: D 

such that given d' {;; D' there exist de:: D such that 

#F('6x) ,d '#' f:- 1 for //bx, e II ~ 1 and 1/&x, d# ~ 1 .. 

therefore F(ox) satisfies (5.11) of definition 5.11. 

By (5 ,.313 (b)) 

#mF(ox) ,d tg' 1 = # E_: (y ,ox, /ml ox) ,d '# t 

for all //bx, d# f:- 1 and m any integer. 

(5.313(c)) 

• Hence by 
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//mF ( ox) ,d ti/ t f: 1 for // \ml ox, el/= #mx, el/'=· 1 

and //·'6x,d// I: 1 , and (5.21) of definition 5.11 is 

satisfied by F(ox). Therefore [ (y, ox, ox) is a 

f -approximation funct'ion. Since we have already shown the 

uniqueness of the I-differential, the M1-differentia.l, 

if it exists, must equal the § -differential. This completes 

the proof of this theoreme 



76 

CHAPTER 6 

PSEUDO-NORMED LINEAR SETS OVER VALUED DIVISION 

RINGS. P2 -SPACES. 

6.,1. P2-!rn_aces. 

DEFINITION 6.11. A v1-space T w.r.t. A will be said 

to be a ~ - spac~ ~-~•1• A if A is a valued division ring. 1 

DEFINITION 6.12. Let E be a strongly partially ordered 

set with positive real numbers associated2 and T a V2-

space w.r.t. A • Then T will be said to be pseudo- normed 

with respect to E if there exists a real-valued function 

/Ix, e /I on TE which satisfies the following postulates: 

( 6.11) /Ix, el/ J 0 for all x~T and e E: E 

//x,e/1 = 0 for all e E: E implies that X = (,:;I • 

V ' 

(6.12} 1/a:x., el/ = /a/ /Ix, el/ for all a E:. A, 

x E T and e ~ E ; //x,re// = r /Ix, e /I for all X E:, T 

and re E: E (i.e., r > o and e e; D or e E. E ) . , 
{6 .13J given e E- E there exist d E E such 

that /Ix + y, e // f: /Ix, d // + //y, d // ; 

(6.14) e ~ d implies that /Ix, el/ ~ /Ix, di/ 

for all X E:. T • 

. , 

We shall say briefly t hat T is a ~-space ]!.!:,.t. A, D. 

1 See II. 

2 See VI . Also and • 
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LEMMA,6.11 .. A necessary and sufficient condition that 

la ~I = lal I (3 I for all a, (3 ill g_ valued division ring 

A is that la/ la-l.l = 1 for all llim_-~ elements a f A • 

Proof: The necessity is immediate since la(3/ = lal /~/ 

implies that lal la.-l/ = laa-l/ = /11 = l. 
Sufficiency .: Assume that /al la-11 = l for all 

a-/- 0 • By hypothesis /a ~ If: /al / pl for all a., (3 E: A • 

Hence 

and 

Therefore 

and 

THEOREM 6.11.. Every Pl-soace T ~•£.•i• A.,D, where 

A is fa. valued division ring such that /a f l = /al / ~ / 

for all a, (3 E. A , i~ a ~-s12ace Y!•:£.•i• to A, E = R+D • 

Conversely, every E2-space ~.r_.t. A, E is g_ f
1

-§J1ace 

yy_.r_.t. A, E with /a. ~/ = /a/ I <3 / for all a, (3 0 A , 

and the ~ pseudo-!12.r!!l /Ix, e /I it is egui valent to /Ix, e /I . 

Proo_f_: For the first part of the theorem we have by 

hypothesis that /a (3 / = la/ I [61 and hence by lemma. 

6.11 /a/ /a-11 = l for all a i O. Then by (3.41) of 



definition 3.41 

//ax, d // L /a/ /Ix, di/ , 

and 

/Ix, di/ f:: /a-1/ //ax, di/ 

or 

/a/ /Ix, d // -!:: /lax!! d // • 

Therefore /lax, di/ = /a/ /Ix, di/ for all a E:. A , x E T 

and d E: D , since the equality evidently holds for a = 0 • 

Define 

E = R+D = l rd; d E D , r > 0 ] 

and 

//x,rd// = r /Ix, d // • 

Then E is a strongly partially ordered set with 

e 1 = ridi (i = 1,2) , if 1/x,ef! ~/lx,eif, 

if 1/x,e{I = 1/x,e/ for all x (:; T . Hence 

and 

ld = d, and 

r 1 (r2d) = (r1r
2

)d for all d GD and r
1

, r 2 '> 0 • 

It should then be clear by the definition of /Ix, e /I 

for e E. E that /Ix, el/ satisfies (6.11), 6.12) and (6.14) 

of definition 6 .. 12. Therefore in order to verify the first 

part of the theorem we need only show that /Ix, e /I satisfies 

(6.,13). 

By (3,.42) of definition 3.41 we have that given d E:. D 

there exists a a1 ~ D such that //x,d-j/ f l and //y ,d/ b. 1 

implies that /Ix + y, di/ f:. 1 . Assume that //x,d-j/ .~ //y ,d-j/ 
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and /Ix,~// IO. Then by (3.43) of definition a.41 we 

have that given r > 0 there exist a E A such that 

0 ~ /a/ 

and 
-l L //a y ,dfl - l • 

r f: r , 
0 

Hence //a-1 (:x + y) ,d// f 1 or /Ix + y, d f: /a/ ~ 1/x,d-JI + r 

for any x, y i:: T and any r > 0 • Therefore 

/Ix + y, di/ f Max ( //x,d/ , //y ,d-f/ ) 

I:. //x,d/ + //y ,d{/ . 
Given e = rd E we have that /Ix + y, el/ f //x,rdf/ + //y,rd{/ 

for rd1 ~ E, and the proof of the first part of the·theorem 

has been completed. 

Conversely let T be a P2-space w.r.t. A, E. It 

is evident that //x,e// satisfies (3.34), (3.41), and (3.42) 

of definition 3.31 and definition 3.41. IL order to show 

that T is a P
1

-space we have by corollary 3 ~51 tnat we 

need only show that /Ix, e // satisfies (3.32), (3 .. 44) and 

(3.51) • 

(3 .32): If /Ix, el/ f: l for all e E: E , then 

//x,re/ b 1 or /Ix, e // ~ r-1 for all r > 0 . Hence 

/Ix, e I= 0 for all e f E and by (6 .. 11) of definition 6 .11 

X = 8 • 

(3.51): Given x 6 T and e EE there exist a G:-A , 

a -/; O , such that /a/ ~ /Ix, e // . Then 



-l //y, el/~ /a/ /Ix, el/ ~ 1, x = ay, and (3.51) is satisfied. 

(3.44): Given a E: A , ~nd e E-. E we can pick r > /a/ . 

Hence if //x,re// ~ 1, then /Ix, e /I f: r-l and 

//(3x,e/l = r-l /fl= 1 for all / p; f: /a/ . Thus 

(3 .44) of definition 3 .41 is satisfied by /Ix, e /I . 

It then follows by corollary 3.51 that T may be pseudo­

normed w.r.t. D in such a manner that T is a P1-space 

w.r.t., A, E and the new pseudo-norm /Ix, el/* is equi­

valent to /Ix, e // • 

By (6.12) of definition 6.ll 

/Ix, el/ = /a/ /a-1/ /Ix, el/ for all x ET 

and e EE ., If x ~ 8 , there exist /Ix, e // > 0 • This 

follows from (6$11) . Hence 
, 

/a/ /a-i/ = 1 for all 

a €: A , a ~ 0 • By lemma 6 .1 /a (31 = /a/ / (9 / for all 

a,~ f. A , and this completes the proof of the theorem. 

N.B. Hence we see by theorem 6.ll that every P - space 
2 

is equivalent to an N2-space1 in the same manner that a 

P1-space is equivalent to an N1-space.(See theorem 3 .5le) 

We might also note t hat since A is a division ring that 
11 '3 l 

(2.33) of definition .. ;implies that given U E:. 'U. there 

exists a VE. 'll such that aV c:: fU for all /a/ f: / (3/ . 

We could consider here ~a generalization of a_nOrmed li~~ar 

space. The type of definition that we might take is illustrated 

by theorem 1 and 2 of [81 • 

1 
An N2-space w.r.t. A,_ is defined to be an N1- spa.c e 

w. r. t. !\ . 'U. where A is a va.lued di vision ring such 
that la/' I pl = lo. f l for all a, ~ ·GA . 



6.2. Linear fu.nctioraon f 2~spaces. 

If f(x) is a ~ -linear function on a P2-space T 

w.r.t. • A, E to a P2-space w.r.t. A', E' , then 

/ tp (a)/ 1 L /a/ ; and if f (x) is not the null ~ -linear 

function then it follows that p(a) 'satisfies (4.15)-€1:.1~) • 

Hence cp(a-1 ) = (~(a) )-1 , and one may easily verify that 

~ (A) is a di vision subring of A' • It is cle 2r 

that (p(a) is an isomorphic mapping1 of A on ~ (A) C A'. 

Hence we see that the existence of a ~-linear 

function on T to T' requi res that A' contain a division 

subring isomorphic to A. We shall now introduce a more · 

general concept of a linear function. 

li•li• Throughout the remainder of the chapter T, T' and 

T'' will represent P2-spaces w.r.t. A, E; A', E' and 

A'', E'' respectively. We shall in view of theorem 6.11 

consider our pseudo-norms to be the pseudo-norms with 

respect to which the spaces are also P1-spaces. 

DEFINITION 6.21. An additive function f(x) on T to 

T' will be said to be linear 2 if given e' E: E' there 

corresponds an e E: E such that /Ix, e /I f 1 impJ.ies 

//f(ax),e'//' f: /a/ for all a EA. 

It follows immediately from theorem 4.11 that every 

1 See [14] , p. 9, definition 5. 

2 This definition could also have been given for P1-spaces, 
though it does not seem to follow in Pl-spaces that the 
sum of two such linear functions is a inear function. 
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q>-linear function on T to T• is a linear function on 

T to T' • 

Definiti on 6.22. An adaitLve function f(x) on T to 

T, will be said to be bounded if gi ven e' E: E' there 

correspond e E- E such that 

/If (x) ,e •II f: /Ix, e II for all x ET • 

condition 
THEOREM 6.21. A necessary and sufficient/that an additive 

function f(x) QQ. T t o T• be linear is that f(x) 

be bounded. 

Proof: The proof is quite similar to that of theorem 4.11, 

since we are considering our P2-spaces to be pseudo-normed 

in such a manner that they are also P1-spaces. The proof 

will be left to the reader. 

It is then clear by virtue of theorem 6.21 that a 

linear function maps bounded sets into bounded sets. 

THEOREM 6.22. A necessary and sufficient condition that 

g_ set S C T be bounded is that given an open set U 

containing the zero element there corresponds an a ~A 

such that S c au. 

Proof: The sufficiency follows from theorem 4.12, since 

T is also a P1-space. 

Necessity: Since [ /Ix, e /I ; x E- S] is bounded 
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for each e E: E , we have that S c aU(e) for some a EA • 

This can be shown in the follovdng manner. There exist 

/a/ ) 1 and since /a 01 = /a/ I ~ I , it is then true that 

given r > 0 we can find an a E-A such that /a/ > r . 

Given • e C:.E there exists an a EA such that /Ix, e// f: /a/ 

for all x E:S • Hence by (6.12) /la-½, el/~ 1 , i.e., 

a -

1s C U(e) or s c:. U( ) N • t u a e • row given an open se , 

e E-U , there exists by corollary 3.3l(a) a U(e)c. U , 

and the necessity of the conditon follows from the above. 

Let F be the set of all linear functions on 

a P2-space T w.r.t. A, E to a P2-space w.r.t. A' , E' . 

Then M(f , w) can be defined as in theorem 4.13 for alh 

f E F and w E- W , and the following theorem can then be 

proved. 

THEOREM 6 .• 23., The set F of all linear functions Q.U 

T to Tt m be pseudo-normed with resp ect to the stronglx 

partially ordered set W in such g_ manner t hat F is 

g_ ;E.2-space with respect to A', W 

lli2.!:IQ.. 

• M(f,w) is the pseudo-

Proof: It follows from theorem 6.12 and (6.13) of definition 

6.12 that for any ' ' a1 , a
2 

E At and fl , f 2 E: F t hat 

' t a1f 1 + a2r2 E F. It can then be easily verified that F 

is a v2-space with respect to A' . Define rw = (re',S) 

and hence 



M(f,rw) = rM(f,w) . (r > o) . 

It can then easily be verifie~using tne properties of 

//f(x),e'//' and the definition of M(f ,w) (see theorem 

4.13) , that F is a Pn-space w.rat. At , R+W. In this 
t:, 

case R+W = W. 

6.3. ~ - differentials of functions with arguments and 

values in P2-spaces. 

THEOREM 6~3ls A necessary and suff icient condition that 

§:. function F(x) on Sy c T to Tt be g_ ~ -approximation 

function is that_ there exists an e E: E such that given 

~ d t E:: Et there corresponds §:. d '=- E such that 

//F(x) ,d'//' f: /Ix, el/ 

for all /Ix, di/ f: 1 • 

Proof: The sufficiency is clear since 

//~(a)F(x),dt //' f: /a.///x,e// =//ax,e// 

for all //x,d// f: 1. Hence /lax,e/1 f: 1 and //x,d// L 1 

implies that 

/I p(a)F(x) ,d'//' f: 1 . 

Let us assume that F(x) is a {j?-approximation function. 

Then given x E. T , /Ix, di/ f: 1 , r > 0 and e E-E there 

exists a E A , a I- 0 , .and y ET such that x =ay $ 

1/y, el/ f: 1 and /a/ - /Ix, el/ £: r . 

/I p(a-1)F(x),dt //' = 1 

Hence 

, 
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since //a-1x, e // = //y, e /I f: 1 and /Ix, di/ f 1 . 

Therefore, due to the fact that ip(a-l) = (<:p(a))-1,. 

//F(x),dt//t f: /p(a)/ ~ /a/ f://x, el/+ r 

for /Ix, d // f: 1. This holds for any r > 0 , and hence the 

theorem is proved. 

With the aid of theorem 6.31 we can state the following 

corollary. 

COROLLARY 6.31. A necessary and sufficient c~ndition that 

~ function f (x) on §!l open set Sy c T , y <= Sy , to Tt 

be _p-differentiable at x = y is t hat there exists a 
,. 

p-linear function f(y;ox) of ox on T to T' with 

· the property that there exist an e ~E and to each d' Ee Et 

there corresponds g_ d C: E for which 

#F ( ox) ,d 

1

// 1 f:. /Ix, e II 
for all /Ix, di/ f: 1 , where 

F(ox) = f(y + ox) - f(y) - f(y;ox) . 

Then f(y;ox) is the ~-differential of f(x ) at x = y. 

THEOREM 6.32. If ~xn) is a sequence of elements of T, 

then g_ necessary and sufficient condition that lim xn = x 

is that lim /Ix - x, el/ = 0 for each e E- E . 
I'\~«> n 

Proof: The sufficiency is clear from coroll ary 3.3l(d). 

In order to prove the necessity we have by corollary 3.31(d) 

that given e f. E there exists an integer m = m(e) such 
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that n ) m (e) implies that /Ix - xn., e // f: 1 ., Hence 

given r ) 0 we have that for n > m(r-1 e) /Ix - ~, el/ f: r . 

T"nerefore lim /Ix - xn, e II = 0 for all e f; E • ,, ~.,.. 

COROLLARY 6e32. A necessary and sufficient conditinnthat 

lim xn ~ x is that there exist an r > 0 such that given 

e E: E there corresponds an m = m(e) such that n > m(e) 

implies that /Ix - x ., el/ !: r ., n 
Proof: Follows from theorem 6., 32, since r-1 e E:. E for all 

DEFINITION 6.31. If f(a,y) is a function on TY defined 

for some element y E T and all O <. / a/ f: r (y) , then 

we shall say that 
l 

lim f(a,y) = g(y) 
a ➔ D 

if given et 6E9 there exists a positive real number 

such that 0 < I a/ L.. r ( e ' ) 
0 

implies that 

II f (a, y) - g (y) , e '// t f:: 1 , 

N.B. We see by corollary 6.32 that if lim f(a,y) = g(y) , 
a ➔ o 

then for any sequence ~an) E; A such that an :IO (n=l,:2, ... ) 

and lim /an/ = 0 we have that 
11--,> o6 

lim f(a ,y) = g(y) e n 2 
Hence lim f(a,y) has the same properties as the limit 

1 

2 

a ➔ O 

It can be shown that this is equivalent to 

lim //f(a,y) - g(y),e'//' = 0 for all e' E- E' . 
/a/➔ o 

See theorem 4.21. 
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of a sequence of elements of Tf • 

♦ 

THEOREM 6. 33 e If F (x) .Qll fill open set Se c:. T , 8 E S 
8 

, 

to Tt satisfies the condition of theorem 6s3l, then 

lim ( (~(a) )-lF(ax)) = 8 for llil9h x <:- T .. 
Q; ➔ O 

Proof: By hypothesis there exists an e E::. E such that 

given dtG-Et there correspond d(dt)E-E such that 

#F(ax) 1 d tf t f: //ax,e// 

for all //x,d(d't)//f: 1 c For a given 

such that r
0

(dt) > 0 and 

y E. T pick r (dt) 
0 

~ 
(r 0 (dt)) ~#y,d(rdt)f 

where r > #x, e# . Hence for O l /a/ ~ r (dt) 

//ay,d(rdt)ff: l 

and 
, I 

#F(ay) ,rd' YI~ /lay ,el/ . 

Since /( tp (a))-
1

/ = /(p(a-1)/ = /a/-1, 

1/( cp (a))-½,(ay),d'//' < 1 

0 

for all o '-/a/<. r
0

(d') . y is an arbitrary element of 

T and this completes the proof of the theorem. 

THEOREM 6.34 .. If a functi(m f(x) ~m fill g_pen se1 

to T' is p -differentiable at x = y , thgg 

lim ( ~(a))-1 (i(y +~bx) - f(y)) ) 
a , o 

exists fillQ !§ ~qual to f(y;Dx). 

By hypothesis 

S C T y 
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"F(ox) = f(y + ox) - f(y) - f(y;ox) 

is a (Q -approxiruation fur1ction., and hence by theorem 

6 .. 31 a.nd theorem 6.33 

lim ( ( f (a) )-1
F (aox)) = 8 

0, ➔ o 

for a.11 ox ET • 

Now 

F(aox) = f(y + aox) - f(y) - ~ (a)f(y;ox) 

and for a "I 0 

- f(y)) - f(y;ox) • 

This last equation combined with the above completes the 

proof of the theoreme 
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