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TEMPERATURE PERTURBATIONS AND THEIR EFFECT 

ON THE T.EV1PERAT"LJRE lY.LAXIlflA. AND MINIMA. IN THE IN'I'ERIOR OF THE EARTH 

Abstract 

This thesis inves.tigates the effect of temperature perturbations 

in the earth on the change of position of local temperature maxima and 

minima prevailing in the earth's interior. The final solutions (mathe­

matical] give the position and the velocity of the point of maxim1illll 

temperature as a function of time. The solutions indicate that for 

certain limits (discussed) the position of the point of maximum tempera~ 

ture a:nd its velocity increase exponentially with time. A; . method of 

correlating the rate of energy transfer in a given direction with the 

velocity of the point of maximum temperature in that direction is out­

lined. Suggestions dealing with the application of these solutions to geo­

logical problems are given. 

Introduction 

The problem was investigated in order to answer the following 

questions: 

(ll What effe.ct do temperature. perturbations surrounding temperature 

maxima and minima in the earth have on their position, direction of motion, 

and velocity'i 

(2) What effect do temperature perturbations have on the rate of energy 

tramsfer from hot to cold regions in the e.arth? 

(3) Applica.tions of results from items one and two for interpret§;tion 

of geological facts. 

The problem was analyzed as a one dimensional one. The principal 

of the results can be applied to higher dimensional problems with slight 



corrections. 

Consider the e.quation for heat i'low in dimension X 

Where ~. 

\I C.X,,t)-;. Temperature as f(X, -t ) 

X - Linear coordinate 

t = Time 

a,.=- ~ 
I< 

/ .::: Density 

C. = Specific heat 

1< ::;: conductivity 

. . . . . . . . . . . . . . 1 

A solution for equation (1) can be obtained as follows: 

Let 

• • • • • 2 

Substituting this solution in equation (1) , we get 

• • • • • • • • • 3 

If we can find a tanction V(x) to satisfy equa tion (3) then equa-
. . . 

2. 

tion ( 2) will be a satisfa ctory solution for the :f\mdamental differential 



equation (1). This follows, since if the solution given by equat i on (2) 

is satisfactory, it establishes the existence of equation (3). Therefore, 

if -we find a solution for equation (3), the solution will satisfy equa­

tion (l); a.rid, therefore, solution (2) would be satisfactory. 

Let -

• • • • • • • 4 

This shows that equation (4) is a solution to equation (3) • . We 

shall inve.stigate the flow of heat in a rod with the following tempera­

ture perturbations: 

V t 

D 
)( -

·Boundary Conditions 

t=o 
J 

X=o., V'-=-V, 

)( :::....RI, V ':=. \IL.. 
. . . • . . • 5 

For OL..X~ _f' we get a maximum wh1°ch • is represented by the Sine 



Series. By inspection it is clear that the boundary conditions are 

satisfied. 

Referring to equation (2) it follows from the analysis thus far 

that: V' _,o 
fxJ = 2.AN UHZ,.,,ax + BN Cos z,., Cc.)<. 

ff=I 
• • • • • • • 6 

must equal equation Number (5) which satisfies the boundary conditions, 

as chosen. 

By setting X=O +- X =--o and by equating c~=- V, since they 

are both independent of ( >C.) , I get the following iden ti ti es between the 

terms on the right and left hand sides of equation Number (6): 

~ inspection: 

When 

X :::0 , BN=O 

x, ~ o0 trigonometric terms are negligible compared to terms 

linear in {X) .. 

Therefore: 

Which also implies that 

ZNO: = NIT -x-
Therefore returning to our original solution for V (X,-t-} as a 

function of position and time, we get: 

• • • • • • ? 

Since the exponential terms decrease with the second power of N, 



it will be a plausible approximation to neglect terms in the Series for l<,/7 /. 

Rewriting equation Number (7) for 

• • • • • • 8 

iv, taking the gradient of V' in equation Number (8) and setting it' 

equal to zero, we shall find the point or maximum temperature, i.e.: 

point of zero heat flow. 

It is essentially the behavior of the surface of zero heat flow 

in relation to types of temperature perturbations already discussed, that 

this thesis is trying to investigate. By taking the gradient and 

aqua.ting it to zero, we have identified this point of maximum temperature 

mathematically and we may proceed to study its dynamic characteristics. 

Ta.king the gradient or V' in equation (8) we get: 

• • • • • • 9 

Where d..,., is maximum amplitude or the superimposed temperature 

perturbation. 

Let 

d Vtx,v 
~ )(. 

0 
Therefore 

V -n--z...c V, - 2.... :=:;- ffc;,(_ e ec.'--e.._ co.s 

cosnx_ -y- ..... . 10 

L~ o/ £I:.!:::!;"~ J' )( =- aA..-e.- COS (v;_~.,e_. a1_,e 1. -;:;: .,, "" ,, •••••• 11 

Equation (11) gives the position of the point of maximum tempera-



6. 

ture at a given time. In order to understand the manner in which "X" changes 
n"-"'t:") 

with time I shall rewrite "X" in terms of the arc cosine series of ( ~:~e ~ ... :::, ...... 
-r / r, - ✓ ~ f "j = CLJS - X the expansion of the ,J?S X series is gi van . by the 

following: 

cos-x =(.IL_ / ~ +x 3 -1-/.3xs-+/-3-Sx7 ) 
L I ' .2.3 S- ---- -1- • • - •••• --

2 ·1/• ,2.4.,. 7 

/.JOT£~ THE OLJLJ POWE/<S OF "x'· 

V ( V,-V"Leu:.!::r ) Since 2.. ;;, \I, it is clear that the term 7r;;l.. ct -......!''-

equation (11} wh.ich corresponds to the "X" term in the series expansion, 

is always negative. Since all the powers of "X" in the series are odd, 

it is ~lear that. the 

series will increase exponentially with time. It is also clear from 

equation {11) that nxn is directly proportional to the difference in 

temperature ( V, - \/1.. J and is inversely proportional to the maximum 

temperature of' the superposed Sine perturbation denoted by thee-<( term. 
though 

Even/the periodicity of the arc cos term is of general importance; it 

in 

is not important in this specific problem since the problem itself is 

limited to only one cycle. The purpose of the series expansion was simply 

to determine the trend of variation of' the position of the point of 

maximum temperature with time. 

I shall next calculate the rate of motion of the point of maximum 

temperature. Differentiating equation (10) with respect to time, we 

obtain the following: 



Therefore: 

_/ /, '7'l-T 
.!i.!S = X7T t K-!!l_, e_a. --e,-
dt: °'- a.., L S/N ffX. 

. ~ 
By using equation (10) and sub.stitilting 

in order to eliminate "X" in the right side. of the equation we get: 

....•• 12 

By inspecting equation (12) carefully it is possible to judge the trend 

in the variation of velocity with time. It is clear that the solution 

given by equation 12 becomes imaginary when~ 
2-n-ze 

IT o<' 'l-= ( V, - v~) ~ °" ~:e---

In order to find out if such a condition of a physically meaningless 

solution could arise in the present problem, I shall introduce sorre­

boundry condition and study equation (12}. 

When t:,=O the solution is real, since by definition Hu( "l-> (~ - V.._) l-­

The solution does become imaginaryfb.r 11t" sufficiently large. From 

the continuity of t he phenomena of' the problem there must exist values 

for "t" for wbich equation (12) is real. In this range of time it is 

clear from equation (12) that the velocity increases exponentially with 

time. The next thing to be done is to determine the range in "X" 

corresponding to the range in time (t) for vb.ieh equation (12} is real. 



The points along the rod for which equation (12) becomes imaginary are the 

two points which are maintained at temperatures V, ./-- L/ 2 .. >• This can be 

proTen by substi tu.ting respectively o & 1 f'or "X" in equation (10). 

_n2.~ 

V, -V2... 77o< e o:.~~-

StNCc ~ cos~ - -r // ,c-o~ X=O, +- x=-e 

,·. (v.~v2-)e~~ 
. . . . . . . 10' 

Equation (10') proves that equation (12} becomes imaginary at o ,t~ 

since eq•ation (10') is the same equation that is obtained f'ran tre 

denominator of equation (12) when it becomes imaginary. This is a proof 

that X=O ~ x=L is a sufficient condition. The proof that it 

is a necessary condition can be found by reversing the line of reasoning. 
I 

This result is of utmost importance, f'or it permits us to draw the follow­

ing conclusions. 

The velecity of the point of maximum or minimum temperature increases 

exponentially with time for the interval X=O.,, x=..R • 
Equation (12} also shows that: 

(1) The velocity of the point of' maximum temperatu~e is directly pro­

portional to the temperature differential 

t2) The velocity of "X" is inversely proportional to 8 1"--the distance 

between the points maintained at tanperatures \/, t V~ , 
Of outstanding importance is the fact that the velocity of the 

point of maximum temperature increases exponentially with time. 



In order to illustrate an application of our final solution, let 

us calculate a specific case in the earth in c.g.s. units: 

3 

C. .2-

I< - .OOL/ 

S-X/0 ": ~ 

V:2.-V, = 2 00° 

v,.,, = o( = 2000 ° 

density of Granite 

specific heat 

conductivity 

Centimeters - diameter of a Batholith 

Centigrade 

Centigrade - temperature of Batholith 

With these parameters the solution for~ is approximately 

/CM. per day after 5 years. As time increases, the Telocity will 

increase exponentially with it a s shown by equation Number (12). 

Next, I will show a correlation between the motion of this point 

and the energy transfer in both directions from which the net energy 

transfer in either direction may be calculated. The procedure to,rt , 

calculating energy transfer in terms of the point of maximlilm temperature 

is as follows: 

The energy stored in a rod maintained at a temperature "T"1~ is 

given by 

J1 t: 

C /IT, ,Ix ✓t: 
O ~o 

. . . . . • 13 

Where 

r/,x.· - dimension along rod 

/t;-
time /'A-t ) -

C specific heat -



In this case we are interested in knowing the amounts of energy 

stored in the rod . on either side of the point of maximum temperature 

along the rod, which is a function of both position and time. We can 

carry out the integration by setting the upper limit for X in the 

-'-V• 

integral as is determined by equation Number (10) for a given time, "t"1 • 

On one side of the point, the integration will be from O to X. ./ ANO 

OTHE.R, .HOE THE /NTctr/lATION w,u... BE FROM " --f-x .I To ..-( ...i,.,.Jl. 

1 -C 

E,_ = cf/ Ti.. tlxdt 
...i'-x t o 

. . . . . . 14 

I have hereby attempted to establish a mathematical correlation 

between the velocity of the surface and the energy transfer. A more 

direct procedure wo,uld be to solve equations Number ( 7) anq. ·c10} 

simultanuously. This would automatically give nyn as a function of 

(X,. t} of the point of maximum temperature. We are primarily interested 

in the difference in • energy transfer, i.e. : £,-£ ~ = LJE It 

is· also clear by inspection that this energy transfer is proportional 

to the velocity of the point of maximum temperature along the rod. 2 

This is true since the energy stored in an element of rod "dx" is 

O N 

directly proportional to dx which is directly proportional to the velocity 

2 of the point of maximmn temperature, on one side of the maximum, and 

inversely proportional on its other side. 

If we consider the difference in energy transfered from the point 

of maximum temperature to both sides of the rod, we can calculate qualitativ­

ely how the energy difference will change with time assuming other factors 

to remain constant with velocity. 

1. Substitute this "X" into temperature distribution function. 
2 • PRoo,c, W /LL FoLL061V 
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Since on one side of the point of maximum temperature "X'' increases 

with velocity and on the other side it decreases inversely to it, we may 

write 

£, -E.2.. = L1£={t<, V, - \(,._) = \<,V.~ \<'-• ....• 15 

. V, V, 
Where Ki & K2 are independent of velocity. 'fhis equation shows that the 

difference in energy transfer (E.1-E2) as defined increases with velocity. 

Geological Anplication of the Analysis 

(1) Periodic Volcanism, i.e., rejuvenat.ed volcanos 

(2) Local metamorphosis of country rock. 

(3) Clarification of the ,ocket Hypothesis and its possibilities. 

(4} Local Thermal Ore deposites. Daly points out that the pocket 

hypothesis is inconsistent with the theory of Cooling of the earth 

and Volcanism active, dormant, and extinguished. 

The results o'J: the analysis can be applied to the problem of tm 

source region for magma. From field and laboratory observa:tions, it 

appears _the subcooling of natural magmas occur primarily at the surface, 

where rapid radiation gives the vitreous state represented by the Obsi­

dian and the Trachylite. The hypothesis that each region acting as a 

heat source is a local one rather than a continuous earth shell of Basalt 

feeding the distributed channelsof magma, seems inconsistant with the 

theory of a cooling earth. The pocket hypothesis is not in agreement with 
/J/)f/1 

the occurance of active and inactive volcanos. 
/\ 

The analytical solution that we have obtained indicates that both 

hopotheses are plausible under adverse circumstances. In case there is 

an isotropic cooling condition which would exist were the temperature 



distribution of the rock surrounding the magma the same, the pocket hypoth­

esis would seem reasonable. Otherwi se, the pocket ~ypothesis seems un­

likely. We may reason that since temperature perturbations are known to 

exist, the pocket magma hypothesis is unreasonable as a result of the 

theoretical conclusion of the thesis. 1his line of reasoning is consis­

tant with the earth's Cooling hypothesis. The pocket magma hypothesis is 

inconsistant with the earth's Cooling hypothesis and is also inconsistant 

with the theory of this thesis, if cooling is anisotropic. 

Conclusion 

(a) When the boundaries of a temperature maximum or minimum are main­

tained at more or less constant but different t emperat ure s , the velocity 

of the point or surf ace of rnaxi mmn t empera tu.re will i ncrease exponentially 

with time. 

(b) The velocity of the point of maximum temperature in a given direction 

is proportional to the energy transfer in that direction. 

(c) The velocity of points of maxima and minima of temperatures in the 

earth are directly proportional to the difference in the temperatures 

maintained at its bo1.1ndaries. The rate of motion of this surfa.ce is 

inversely proportional to the magnitude of the maximum temperature. 

(d) According to Chapman, in the deeper layers of the earth the Electric 

conductivity is high. It follows from the Franz.Weideman relationship1 

that the thermal conductivity is also high in such layers. Where the 

conductivity is high, the rate of motion of the point of maximum tempera­

ture is large. 

(e) We should expe.ct the points or surfaces of maxima to shift most 

rapidly in the deeper layers of the earth, when other favorable circum­

stances exist. 

(f) Economic geological theories pertaining to thermal deposits can be 

12. 
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interpreted more clearly and accurately with the results indicated by the 

analysis. 

1. 'I'he Franz-Weideman relationship has been verified only in metals which 
does imply that it may be applied to rock. 
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V2. 

.APPENDIX 

Thus far it was assumed that the temperatures v1 & V2 remain constant 

throughout the time of motion of the point of maximum temperature. 'l'his 

assumption would be valid were the conductivity at the points of tempera­

ture V1 & V2 infinite. Since my assumption, i.e., boundry conditions 

deviate from the actual boundry condition, I shall give. a method of better 

approximation to true conditions. 

Procedure 

The principal mathematical procedures and solutions used in the 

thesis thus far will remain unaltered. 'l'he primary modification will 

rest in the Sine function that was superimposed on the(\/2.;}/,)X term 

in£~. (SJ. 

Instead of superimposing a simple Sine function, I can use an odd 

Fourier series.of the form 

. . • • . . • . . 15 

which will represent the following physical conditions. 

FVNCTION l?EP/?ESENTELJ ,ey EQ. (It:,} _ 
MVL.T//¥./£.b Br ,HE FACTO~ o< 

\< 

l 
I 

( I 

V/ ,. 

1· • 
)(~ J X.' J< 

<.,t()w &R/1,tJ/E,vT ;{1,E~l.P.LL7 

~l«Hf &&YltD,IT 



Here "l" again represents the distance, between the points corresponding 

to v1 & v2 . In this case assume that at t .:o.O ~ ' 4- x._ are points al ong the 

rod maintained at temperatuer V2' & v1 i respectively. The boundry con­

ditions are the same at O and 1 as they were originally. I n order to 

investigate the changes in temperatures v1 & V2 with time, a Fourier 

series will give a much better a pproximation than would a Sine function. 

For this problem aw odd Fourier series of the form 

I< N 

:E_ { - /} SIN (2NJ#I )ITX 

-{ 

is apprppriate. It gives a maxima at x .,l and all of its harmonics also 
2 

have their maxima at X:]. Since the series is a diverging series the 
2 

approximation of the first few terms will have to suffice. I could con-

struct a convergance factor but physically it would not improve the analy­

sis. Note that in using the Fourier series we have two regions, both of 

a low temperature gradient, i.e., from Oto xf, from x2 ' to 1. By using 

the Fourier series as given by the equation in equation (16) I eventually 

obtained the following equation~ 

This equation corresponds to equation Number 10 in the previous analysis 

where only the Sine perturbation was used. In equation Number (6) 

ol._ J,ilaximum temperature of the superimposed Fourier perturbation 

= 
w The sum of the series to the l< term for x=.l_ 

2 
The solution given by equation (17) can be obtained by substituting 

T= into equation Number (6), 
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taking its gradient and equating it to zero. Handling this equation will 

i nvolve great difficulty. In order to solve for values of x1 & t for whi ch 

V2-V1 constant, I would suggest the following procedure: 

(1) Let v2-V1 =- constant 

(2) Plot this constant on a graph for t =O 

(3) Let "t" =- constant and by varying x on the same graph, we obtain AN 

intersection wi th the V 2-v1 constant curve. 'I'his process can be 

repeated for various values of ttt". In order to check the validity of the 

original a ssumption made in this thesis concerning a constant value for v~v1 

we can observe by the suggested graphical solution how V2-V1 deviate from 

its initial value at t =. 0. The actual graphical solution of this problem 

will be left for the future. 


