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TENPERATURE PERTURBATIONS AND THEIR EFFECT

ON THE TEVPERATURE MAXINA AND MINIMA IN THE INTERIOR OF THE EARTH

Abstract

This thesis investigates the effect of temperature perturbations
in the earth on the chénge of position of local temperature mexima and
minima prevailing in the earth's interior. The final solutions (mathe-
matical) give the position and the velocity of the point of maximum
temperature as a function of time. The solutions indicate that for
certain limits (discussed) the position of the point of maximum tempera-
ture and its velocity increase exponentially with time. A: method ofv
correlating the rate of energy transfer in a given direction with the
velocity of the point of meximum temperature in that direction is out-
lined. Suggestions dealing with the application of these solutions to geo-

logical problems are given.

Introduction

The problem was investigated in order to answer the following
questions:
(1) Vhat effect do temperature perturbations surréunding temperature
maxima and minima in the earth have on their position, direction of motion,
and velocity?
(2) What effect do temperature perturbations have on the rate of energy
trénsfer from hot to cold regicns in the earth?

(3) Applications of results from items one and two for interpretation

of geological facts.
The problem was analyzed as a one dimensional one. The principal

of the results can be applied to higher dimensional problems with slight



corrections.

Analysis

Consider the equation for heat flow in dimension X
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Wihere:
Vo= Temperature as F04¢)

= Specific heat

X = Linear coordinate
t = Time

a*= £5

/° = Density

C

K

conductivity

H

A solution for equation (1) can be obtained as follows:

Let

Ve = \/(xzﬁ'zbtf-c,x +C .

L] ® ® ® L 2
Substituting this solution in equation (1), we get
BZ\/(x) g o
e _ e Vi) €%
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If we can find a function V(x) to satisfy equation (3) then equa-

tion (2) will be a satisfactory solution for the fundamental differential
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equation (1). This follows, since if the solution given by equation (2)
is satisfactory, it establishes the existence of eguaticn (3). Thereforé,
if -we find a solution for equation (3), the soluticn will satisfy equa~
tion (1); and, thereforé, solution (2) would be satisfactory.

Let

Vi) = Awv Sywvzmva X + Bn CoS 2 a X
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This shows that equation (4) is a soluticn to equation (3). Ve

shall investigate the flow of heat in a rod with the following tempera-

ture perturbations:
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Boundary Conditions

t=0 , V'ex) = Vi + _V‘;:_Z'le_g Hm SIng NITX
/( N=E

X=0 , Vv'=V,
X :’e 2 v':' \/2.__

L L 3 L] L L3 L3 * 5

For 04)(4/( we get & maximum which is represented by the Sine
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Series. By inspection it is clear that the boundary conditions are
satisfied.

Referring to equation (2) it follows from the analysis thus far

- » )
that: V' = S AN SInZr@X + B Cos Zr ce X
=1

+_C|X + C~
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must equal equation Number (5) which satisfies the boundary condifions,
as chosen.

By setting X=0 + X =22 and by equating Ca= V. since they
are both independent of (x ), I get the following identities between the
terms on the right and left hand sides of equation Number (6):

By inspection:
When

X=0 , Bn=0 WM=Co

X —> oo trigonometric terms are negligible cocmpared to terms
linear in (X) -
Therefore:

Which also implies that

Zna = N7
A

14
Therefore returning to our original solution for Vtet) as e

funecticn of position and time, we get:

¢ OO —ﬂ—,Z-:-——t
Vixe) = \/l+-( -V X,_ S AnCHA RS\ ITTX o o o v o 0 o T
A=t A

Since the exponential terms decrease with the second power of &y,



it will be a plausible approximation to neglect terms in the Series for A/>/.

Rewriting equation Number (7) for

' 7
\V, X t) _::27_——— PP 2
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B taking the gradient of V' in equation Number (8) and setting it
equal to zero, we shall find the point of maximum temperature, i.e.:
point of zero heat flow.

It is essentially the behavior of the surface of zero heat flow
in relation to types of temperature perturbations already discussed, that
this thesis is trying to investigate. By taking the gradient and
equating it to zero, we have identified this point of maximum temperature
mathematically and we may proceed to study'its dynamic cha:aeteristics.

Taking the gradient of V' in equetion (8) we get:

v: ——gzll"
e ar_g>
P = VY wae S0 2
/e ® L] L] . . vg
Where c;(, is maximum amplitude of the superimposed temperature
perturbation,
Let

d V;X:tl__

IR

Therefore

__VL
Vi-Vo = s7e¢ e %722605 ’—E—?e‘—
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Equation (11) gives the position of the point of meximum tempera-
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ture at a given time. In order to understand the menner in which "X" changes

| Vap ZZE.
with time I shall rewrite "X" in terms of the arc cosine series of Y25<1f?

4
IF 7 = COS—/X the expansion of the (S X series is given by the

following:
cosk =(ZL —[(x+X2 +/3X5 , 13.5x7
- 23 ras Tiges t )

NOTE, THE ODDH POWERS o©F ‘X°

V-
Since VL >V, it is clear that the term (\/l =€ "‘«”’) in

equation (11) which corresponds to the "X" term in the series expansion,
is always negative. Since all the powers of "X" in the series are odd,

it is e¢lear that the

arc. COS. V:—\/Lﬁ.m_,p.
7T

series will increase exponentially with time. It is also clear from
equation (11) that “X" is directly proportional to the difference in
temperature {\4—-\4,)and is inversely proportional to the maximum
temperature of the superposed Sine perturbation denoted by thec<: term.
Even/ziguigriodicity of the arc cos term is of general importance; it
is not important in this specifie problem since the problem itself is
limited to only one cycle. The purpose of the series expansion was simply
to determine the trend of variation of the position of the point of
meximum temperature with time.

I shall next calculate the rate of motion of the point of maximum

temperature. Differentiating equation (10) with respect to time, we

obtain the following:
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2 T
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Therefore:
Ix _ xrlVe-v )T
It T La = O s/~ 7z

By using equation (10) and substituting

in order to eliminate "X" in the right side of the equaticn we get:

X _ /7'/%.~V)€L7"
dt g~ g/rx—{vi-\V.) e ZE .12

By inspecting equation (12) carefully it is possible to judge the trend

in the variation of velccity with time., It is clear that the solution

given by equation 12 becomes imeginary when:®
‘2/7't‘
7= (V- \4) e =

In order to find out if such a condition of & physically meaningless
solution could arise in the present problem, I shall introduce sorme
boundry condition and study equation (12). _ '
When €=O the solution is real, since by definition o< > (V/ -
Thé solution does become imaginary for "t" sufficiently large. From
the econtinuity of the phenomena of the problem there must exist values
for mg" Por which equation (12) is real. In this range of time it is
clear from equation (12) that the velocity increaseé exponentially with
time. The next thing to be done is to determine the range in "X"

corresponding to the range in time (t) for whieh equation (12) is real.
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The points along the rod for which equation (12) becomes imeginary are the
two points which are maintained at temperatures'bﬂ.L.L/L:. This can be

proven by substituting respectively o & 1 for "X" in equation (10).

I get:
7

3 ('\4 “\/z.) fi{;;%;; = [74X

e & e o° o o o 10'

Equation (10') proves that equation'(lz)_becomes imaginary at © +«4f
since equation (10*) is the same equation that is obtained from the
denominator of equation (12) when it becomes imeginary. This is a proof
that X=0 + X=—4 15 a sufficient condition. The proof tht it
is a necessary condition)can be found by reversing the line of reasoning.
This result is of utmost importance, for it permits us to draw the follow-
ing eonclpsions.

The veleoclity of the point of maximum or minimnm.temperaturé inereases
exponentially with time for the interval X=0. )(:,1?. .

Eciuation (12) also shows that:

(1) The velocity of the point of maximum temperature is directly pro-
portional to the temperature differential

(2) The velocity of "X" is inversely proportional to “1“f-the distance
between the points mainfained at temperatures \/;d-VQ, .

of on?standing importance is the fact that the veloeity of the

point of maximum temperature increases exponentially with time.



In order to illustrate an application of our final soluticn, let

us calculate a specific case in the earth in c.g.s. units:

//9 _ 3 density of Granite

C = .2 specific heat

K = .00/ conductivity

5x/0% - _€ ' Centimeters - diameter of a Batholith
Vo-V} = 200° Centigrade
Ve =< = 2000 ° Centigrade - temperature of Batholith

With these parameters the solution for %2% is apprcximately
J/ €/7- per day after 5 years. As time inereases, the velocity will
increase exponentially with it as shown by equation Number (12).

Next, I will show a correlation between the motion of this point
and the energy transfer in both directions from which the net energy
transfer in either direction may be czlculated. The procedure foR.
calculating energy transfer in terms of the point of maximum temperature
is as follows:

The energy stored in a rod maintained at a temperature "T. ™ is

7 1
given by
2t
£.=C // 7, ok JE
e te 13
ihere

09’(.
/é‘ _ time /4A€)

C specific heat

dimension along rod

I

|
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In this case we are interested in knowing the amounts of energy
stored in the red . on either side of the point of maximum temperature
along the rod, which is a function of both position and time. Ve can
carry out the integration by setting the upper limit for X in the
integral as is determined by equation Number (lO).for a given time, ”t"l.

On one side of the point, the integration will be from @O ¢o X_, AND onN

OTHER SIDE THE INTEGCRATION Wred BE FRor? . A-X , 70 £ <. .
L€

£L=c//7§.o’5(a/t‘ A P

£-x to
I have hereby attempted to establish a mathematical correlation

between the velocity of the surface and the energy transfer. A more
direct procedure would be to solve equations Number (7) and (10)
simultanuously. This would automatically give "V" as a function of
(Xit) of the point of maximum temperature., We are primarily interested
in the difference in energy transfer, i.e.: E,—E . =A4F . It
is 8lso clear by inspection that this energy transfer is proportional
to the velocity of the point of maximum temperature along the rod.a
This is true since the energy stored in an element of rod "dx" is
directly proportional to dx which is directly proportionallto the velocity
of the point of maximum temperaturez, on one side of the maximum, and
inversely proportional on its other sids.

If we consider the difference in energy transfered from the point
of maximum temperature to both sides of the rod, we can calculate qualitativ-
ely how.the energy difference will change with time assuming other factors

to remain constant with veloecity.

1. Substitute this "X" into temperature distribution function.
Be  PROOF, witt Fotiow
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Since on one side of the point of maximum temperature "X" increases
with velocity and on the other side it decreases inversely to it, we may

write

E,~E. =AE=(xV, _£>= KVEWe. . ... .15
Vi Vi

Where kK] & Ko are independent of velocity, This equation shows that the

difference in energy transfer (E;-Eg) as defined increases with veloecity.

Geological Application of the Analysis

(1) Periodic Volcanism, i.e., rejuvenated volecanos

(2) Local metamorphosis of country rock.

(3) Clarification of the Pocket Hypothesis and its possibilities.

(4) Local Thermal Ore deposites. Daly points out that the pocket
hypothesis is inconsistent with the theory of Cooling of the earth
and Volcanism active, dormant, and extinguished.

The results of the analysis can be applied to the problem of the
source region for magma. From field and laboratory observations, it
appears the subcooling of natural magmas occur primarily at the surface,
where rapid radiation gives the vitreous state represented by the Obsi-
dian and the Trachylite. The hypothesis that each region acting as a
heat source is a local one rather than a continuous earth shell of Basalt
feeding the distributed channelsof megma, seems inconsistant with the
theory of a cooling earth. The pocket hypothesis is not in agreement with

8OTH

the occurance oflgctive and inactive volcanos.

The analytical solution that we have obtained indicates that both
hopotheses are plausible under adverse circumstances. In case there is

an isotropic cooling condition which would exist were the temperature



distribution of the rock surrounding the magma the same, the pocket hypoth-
esis would seem reasonable. Otherwise, the pocket hypothesis seems un-
likely. We may reason that since temperature perturbations are known to
exist, the pocket magma hypothesis is unreascnable as a result of the
theoretical coneclusion of the thesis. This line of reasoning is consis-
tant with the earth®s Cooling hypothesis. The pocket magma hypothesis is
inconsistant with the earth's Cooling hypothesis and is also inconsistant

with the theory of this thesis, if cooling is anisgtropic.

Conclusion

() When the boundaries of a temperature maximum or minimum are main-
tained at more or less ccnstant but different teumperatures, the velocity
of the point or surface of waximui temperature will increase exponentially
with time.

(b) The velocity of the point of maximum temperature in a given direction
is proportional to the energy transfer in that direction.

(¢) The velocity of points of maxima and minima of temperatures in tﬁe
earth are directly proportional to the difference in the temperatures
maintained at'its boundaries., The rate of motion of this surface is
inversely proportional to the magnitude of the maximum temperature.

(d) According to Chapman, in the deeper layers of the earth the Electric
conductivity is high. It follows from the Franz-Veideman relationshipl
that the thermal conductivity is also high in such layers. Where the
conductivity is high, the rate of motion of the point of maximum tempera-
ture is 1arge.

(e) Ve should expect the points or surfaces of maxima to shift most
rapidly in the deeper layers of the earth, when other favorable circum-
stances exist.

(f) Economic geological theories pertaining to thermal deposits can be

1z,
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interpreted more clearly and accurately with the results indicated by the

analysis.

1. The Franz-Weideman relationship has been verified only in metals which
does imply that it may be applied to rock.
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APPENDIX

Thus far it was assumed that the temperatures Vi & Vg remain constant
throughout the time of motion of the point of maximum temperature. This
assumption would be valid were the conductivity at the points of tempera-
ture V] & Vg infinite. Since my assumption, i.e., boundry conditions
deviate from the actual boundry condition, I shall give a method of better

approximation to true conditions.

Proeedure
The principal mathematical procedures and solutions used in the
thesis thus far will remain unaltered. The primary modification will

W2 - VX

rest in the Sine function that was superimposed on’ the term

inéd®.(5) -
Instead of superimposing & simple Sine funection, I can use an odd

Fourier series, of the form

|
Aa = N%(‘/)NY/N/ZN:Q’TX B 1

which will represent the following physical conditions.

FUNCTION REFRESENTED BY £&. G ") _
IMULTIL/ED BY 7HE FACTOR <X
<

|
]
!. |

4

I
I
!
X £ X X
<dow CRADIENT REGION ., & LOW CRADIENT RECION .

LU CRAIENT .

l '

Y




Here "1" again represents the distance between the points corresponding
to Vi & Vg. In this case assume that at t=0 M. & X are points along the
rod maintained at temperatuer Vg' & Vy' respectively. The boundry con-
ditions are the same at O and 1 as they were originally. In order to
investigate the changes in temperatures V, & Vg with time, a Fourier
geries will give a much better approximation than would a Sine function.

For this problem an odd Fourier series of the form

<
"3 = = (~1)"Sin l2ner)iTX

EXe -/C
is appropriate. It gives a maxima at x-1 and all of its harmonics also
have their maxima at x=1. Since the ser?es is a diverging series the
approximation of the fiist few terms will have to suffice. I could con-
struect a convergance factor but physically it would not improve the analy-
sis. Note that in using the Fourier series we have two regions, both of
a low temperature gradient, i.e., from O to x{, from x,' to 1. By using‘

the Fourier series as given by the equation in equation (16) I eventually

obtained the following equation:

This equation corresponds to equation Number 10 in the previous analysis
where only the Sine perturbation was used. In equation Number (6)
cKL — lMeximum temperature of the superimposed Fourier perturbation
W

it
= The sum of the series to the W ™term for xal

2
The solution given by equation (17) can be obtained by substituting

T= % Z(“//N.S‘/N Gartl) 77X . .. into equation Number (6),
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taking its gradient and equating it to zero. Handling this equation will
involve great difficulty. In order to solve for values of Xy & % for which
Vg-V; constant, I would suggest the following procedure:

(1) Let Vp-Vy= constant

(2) Plot this constant on a graph for %=0

(3) Let "t". constant and by varying x on the same graph, we obtain A~
intersecticn with the Vé-Vi constant eurve. This process can be

repeated for various values of "t", In order to check the validity of the
original assumption made in this thesis concerning a constant value for Vg-Vy
we can observe by the suggested graphical solution how Vg-V; deviate from
its initial value at t= 0. The actual graphical solution of this problem

will be left for the future.




