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L Theory of Projections in Complex Banach Spaces

Introduction. A Projection is defined as a linear operator P, such that

P° =P, A theory of projections has been developed in complex Banach Spaces,
which are reflexive. This was done in 1939 by E. R. Lorch¥ A complex
Banach Space is a complex linear vector space in which a norm, with the
usual properties, has been defined. This paper develops the usual theorems
concerning projections, which may be found for Hilbert Space in M. H.

Stone¥* The method of proof consists essentially in the use of an inter-
space inner product, similar to that of A. D. Michal and D. H. Hyers for
real Banach Spacesi*

If £ is an element of a complex Banach Space B, and F an element of
the space (B) of all complex valued linear functionals defined on B, then
(B) can be shown to be & space of the ssme type as B, the norm of F, [| F||
being defined as the bound of the functional F(f), (F(L)l < IFN Ifll. The
interspace innex: oroduct [F,f] feB, Fe(B) has certain demonstrable
properties, see II below.

The first paragraph is devoted to an existence proof for comnlex
number valued linear functionals defined on a complex Banach Space. Be-
fore the theory of projections is discussed, two paragraphs discuss some
of the properties of the inner product and of closed linear manifolds in
Banach Spaces. The theory of projections developed in the central portion

of the paper is applied in the last two paragraphs; firstly to show that

% E, R. Lorch. A Calculus of Operators in Reflexive Vector Spaces.
Trans. A.M.S. 45:217-234 (1939).
¢ M. H. Stone. Linear Transformations in Hilbert Space.
%% A, D. Michal and D. H. Hyers. General Differential Geometries with
Coordinate Interspace Inner Product. The TGhoku Math., Jour,
463 309-318 (1940).
~1-



D

[F, boe £ 3 1] = [F,pf], A being a linear operator and P a projection;
ey

secondly to developing a theory of redueibility of linear operators de-

fined on B, This latter is essentially an examination of the set of

points in B which e linear operator A leaves invariant.



I. Linear Functionals

It is the purpose of this paragraph to demonstrate the existence znd
to develop certain of the properties of complex valued linear functionals
defined on a complex Banach Space,

Let E be a complex vector space, that is a linear space with complex
number multipliers. Let F be a complex number valued functional defined
on E, which is additive

F(f + g) = F(f) + F(g), f,gek,
end homogeneous
F(sf) = F(f) , o" - a complex number.
Theorem 1.1. If there exists a functional p(f) on E to the complex num-
bers
Ip(f + &)l < Ip(£)] + |p(g)] Ip(e£)\ =1sl1p(D)
and if there exists en additive end homogeneous functional G(f) defined
on a complex linear subset E,C E, such that [G(f)] ¢ [p(f)| for &ll feE,,
then there exists an additive end homogeneous functional F(f), such that
[F(£)] < | p(£f)| for 21l feE, F(f) = G(f) for all feE,.
Proof. If E, = E the theorem is trivial. Let f,eL - E,. If f,, f,ek,, then
(G(£,) = G(£)[ = |G(f, - £2)| < [p(£, - £2)l
slp(e, + £ + |p (- £, - £)]
FUGEND] - 1G(£) )] € Ip(E, + £)] + |p( = £o - £4)]
Then, since
[dG(e )l - [a(e)) ] 2 6(£)] - 16(£)] ,

(£ ) - 16(£) ¢ Jp(f, + £)] + \p( = £ - £.)|

"'Ip( - fa - fo)l - ‘G(fa), < ,P(f: + fﬂ)l = IG(f,),.
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Thus there exists some complex constent Po s such that for all feE,
(1) -Ip( = £ = £) = [G(E)] s lpot s [p(£ + £,)] - 1G(D)].

Consicer all elements of the form
(2) g=f+01,
where felk,, f,eE - E,, 0 is complex number, and designate by E, the class
of all such elements. Evidently E, is a complex vector space. Let
(3) ¢ (g) = G(f) + op, then
(31) 16 (e)] < [G(E)] + 1o pol
Since f,eE - E, and feE;, all geE, admit exactly one representation of
the form (2). Thus the functional ¢ (g) is defined in E, in a uniyue
msnner,

In the ineguality

lpal slp(f + £o)] = |G(D)]
write £ in place of f, then
lompol < [p(f +o )l - [G(£)].
Substituting this in (3')
|6 ()] ¢ [p(f +05,)] = |[p(g)]

(4) (¢ (&) < [p(g)| for gekE,.
The functional ¢ (g) is evidently additive and homogeneous.

When f, = 0, the inequality (1) shows that Ipol = O since p(0) =0
is a particular case. Thus
(5) $ (g) = G(g), geE,.
Thus ¢(f) is the required functional for the space E,, (the space E, to
which have been added those elements which consist of a complex number
times a fixed element f, in E - E,). Repeating the above construction

for E - E, and a fixed element f, €E - E, & further extension of G(f) may
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be obtezined. Whence by transfinite induction, the function F(I) exists
satisfying the condition of the theorem.

Consiaer the class of all complex valued linear functionals defined
on & complex Banach Space B, f,geB. Then if the norm of F,IFll, is the
bound of F(f), |F(f)| s [FIl Ifll. The class of linear functionals so de-
fined form a Banach Space (B) of the same type as B.

Theorem 1.2. Given a linesr functional G(f) defined on a complex vector
space Ec B, there exists a linear functional F(f) defined on B and satis-
fying the conditions

F(f) = G(f) for £eE and IFl| = [Gls.
|Gl is the bound of the functional G(f) on E.*
Proof. In Theorem 1.1 substitute p(f) = (Gl lIfll. It evidently satis-
fies the conditions placed on p(f). Then as a conseguence of Theorem 1.1
there exists & functional defined on B such that F(f) = G(f) for all f eE.
Since the two functionals are eyuel for all fe &, their bounds are egual,
IFN = (Glg .
Theorem 1.3. For each f,eB there exists a linear functional F(f.) defined
on B, such that

[F(£.)] = £, IFN = 1.
Proof. In Theorem 1.2 let E be the set of elements of the form T f,, and
substituting |G(£)| = (TH LM 3 [F(EM)| =Tl 5 [F(L ) = £
Since by theorem 1.2 Il Fll =’1GL;H7'F" =Tl and IFI = 1.

The above theorem shows that the set of complex number valued linear

% Bohnenblust and Sobcyk have given a different proof of this generaliz-
ation of the Hahn - Banach Theorem. Bull. A.M.S. 44:91-93 (1938).
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functionals defined on a complex Banach Space is non-null,
II. The Inter-Space Inner Product
Using Theorem 1.3, it 1s possible to demonstrate the existence of an
inter-space inner product with the following properties. If B is a com-
plex Benach Space and (B) the set of complex number velued linear function-
als defined on B to the complex numbers, then for feB, F &(B)

(1) [(F,f] is bilinear on (B), B to the complex numbers,

(2) 1f (F,f]

(8) If [F,f]

0 for all f then F = O,

0 for all F then f Da

1
1

The first two properties are an immediate result of the correspondence
F(f) = [F,f].
The third property follows irom Theorem 1.3, since we can write for each
f eB
([, .11 = I £l
Thus [F,f] = 0 for &ll F implies f = O.

Definition 2.1. An operator is an additive and continuous or linear trans-

formation whose range and domain are both in B or both in (B). The letters
A, B, P,... are used to represent linear operators; (L], |Bl, |Pl,yece,
their bounds, if they exist.

The space (B) is said to be the adjoint or conjugate space to B.

Definition 2.2. The operator A, defined in B and the operator 4, defined

in (B) are s&id to be adjoint, if
(4, F,f] = [F,A, £]
for &ll f in the domein of aefinition of A,, end &ll F in the domain of

definition of A,. The adjoint of azn operator A is written Ak,



. »
III. Linear Manifolds in Complex Banach Spaces

Definition 3.1. A set of elements M such thet for f,gell, f+gell, pfel

is said to be a linear manifold. Manifolds contained in B are designated

by ®(,¥, ... those contsined in (B) by (®(), (&), ...

Definition 3.2. The elements F e(B), f eB are said to be orthogonal if
[F,£] = 0.

Definition 3.3. A linear menifold ¥( is said to be cloged if the limit

point f of any sequence {f.} , fie®{(i =1, ...n,...) is also contained in
W, In that which follows, a closed linear manifold will be designated
by the initials c.l.m.

Definition 5.4. The orthogonal complement of a c.l.m. WL < B is the set of

ell elements F & (B) such thet [F,f] = 0 for all fe®(. The orthogonal

complement of W is d.esignatedml, end the orthogonsl complement of &7 ,me'
It may be snown thet the orthogonal complement of a c.l.m, is a c.l.m,

Lemma 5.1, = 8t , for ¥l c B,

Proof. Clearly?f‘(u-?ﬁ . Assume there exists an fe¥(", £# ¥. Then there

exists an element Fe&(B), such thet F is orthogonal to ¥ , FL¥1, [F,f] # 0.

But [F,f] must equal zero for FLM . This contredicts the essumption.

Therefore I = ¥ .

Lemz 3.2. (8) = () for (8) c(B).

Proof. Clearly (rtffs (¥). Lissume there exists an.E‘e(rth,:Fé(J%). Then

there exists an element fe&b, fL(#) such that [F,f] # O. But [F,f] must

equal zero for fL(™M). This contradicts the assumption. Therefore (0“()“ = ).

Definition 3.4. Two closed linear manifolds W1 and 8 ((9) ena (¥)) will

be said to be aisjoint if there exists a constant k>0 (¥70) such that for
every fe¥ anc every gel¥l (for every Fe (&) and every Ge (0)), (f+gl = kfll,

(\F + allz KIFN) .
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This definition does not differenticte between the manifolds, since

If + gll2 kifll, implies If + gl KWz, Since I f + gfl 20gll - £l end it
is given thet £ + gll> kUfll, multiplying the first of these ineyualities
by k and aading them,

(L+k)If+ gl2Xkign.
Thus

If + gll> x“1gn, where k" = k/(k + 1).
In an entirely snalogous manner it mey be shovm that IIF + Gl > KIFI,

"

implies IIF + Gll > X IGll, where k" = ¥/(k'+ 1).

Theorem 3.1l. Two closed linear menifolds 0l anc ¥ are disjoint if and only
if they satisfy the following conditions:

(1) The menifolcs have only the zero element in common,

(2) The set of all elements of the form f + g, fe®W , ged is a closed

linear manifold.

Proof of (1). Let feX(- ¥, then, since if ®{ and ¥ sare linear manifolds,

W{-¥ is a linear manifold, -fe¥{., By Definition 5.4
0= If - £ll= k£l
end since k>0, lIIfl = 0, £ = Q.

Proof of (2). The set of elements of the form f + g, fe®Wl, ge & ure

readily shown to be linear. Let hn= fa + g, (n =1, 2, ...), and let
h,»h. Then by the definition of disjointness,
hh, - hull= I (£, + gn) = (£, + gl 2 klIf, - £.0,
and since |h, - h.~0, If, - f.f»0. Similarly, since Ih, - hal2 K I g, - gml,
lg, - gd—=0. ©ince® and M are closed f,— f, g,—» g, thus
h=f+g

and the set of all elements of the form f + g form & closed linear manifold.
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Proof of the Converse. Since W and ¥ have only the zero element in

common, elements of B can be expressed in only one way in the form f + g,
fedl, geldt,

There exists a trensformetion A such that, A(f + g) = f, which is dis-
tributive. The conditions h, = f. + g.(n =1, 2,...), heoh, f,»f, imply
that g-ge¥ , where h = £ + g, Thus & is closed, snd a closed distrib-
utive operator is by definition linesr. Let k>0 be a constant such that

&bl < 4hil/k,
then

fACE + gl = N£l<1/%IE + gl
Thus Nf + gl? k(Ifll, which is the definition of disjointness, completing
the proof of the theorem.

The following theorem msy be proved in an entirely snalogous manner
to that of Theorem 3.1,

Theorem 5.2. Two closed linear menifolds (#1) and (M) are disjoint if
and only if they satisfy the following conditions:
(1) They have only the zero element in common.
(2) The set of all elements of the form F + G, Fe (W), Ge(¥1) is & closed
linear menifold,
IV. The Theory of Projections

Definition 4.1. An additive and continuous, or linear, operator P is

called = projection if P* = P,

The operations + and « referred to menifolds will be interpreted as
the set sum and set intersection respectively.
Theorem 4.1. If P is any projection in B, and®( ¢ B the set of elements

f for which Pf = f and® ¢ B the set of elements g for which Pg = O, then
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®{ end ¥ are disjoint closed linear menifolds such thet @1 + ¥ = B, Con-
versely, if 1 and ™M are disjoint closed linear menifolds for which
Y+ = B, there exists a unigue projection P which satisfies the equations
Pf = f, fe® ; pg =0, gedtl.
Proof. If f,ge®!, then it follows from the equations Ppf = pf and
P(f + g) = £+ g, that W is e linesr menifold. Since P is continuous, §1
is closed. vimilerly ™ is a c.l.m.

For f&eB, f = Pf + (f - Pf). Since P®* = P, Pfe®, f - Pfe¥( . Thus
M+ ¥l = B,

Since WP S |\PINEH = |PIIPE + (£ - PE)|, and £ — Pf = ge¥l,
Pf = fe®Wl, it follows thet

Nt + ghz klfll.

This shows that ¥ and ¥l are disjoint, by Definition 3.4.

Proof of the Converse. Let ¥ and 81 be disjoint c.l.m. such thet ¥ +8( = B,

Let heB, h = f + g, fe®, ge¥ . Then the operator P for which Ph = f is

distributive and closed, hence linear. This may be proved as the converse

of Theorem 3.1 was proved. Also, P°h = P(Ph) = Pf = f=Ph, thus P® = P,

This completes the proof of the theorem.

Theorem 4.2. If P is a projection, then the adjoint P¥ (cf. Definition 2.2)

is also a projection. If@{ ,™ and (W), (#l) sre the menifolds associated
L

with P and P¥ respectively, then () = 85U and (#1) = ot

Proof. From Definition 2.2 [P*F,f] = [F,Pf] end since P is a projection

I

[pxr,pf] = [F,P°f] = [F,Pf].
Thus

[P F,f] = [pxF,f],

1

which shows thet P*° = P¥*, and P* is thus a projection,
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Let Ge (®™), then [PxG,f] = [G,f], but [P*G,f] = [G,Pf]. Thus Pf = f
end feWl. If [P*G,f] = 0, then for Ge (W), [G,f] = 0. Then fe ¥ since
Pf = 0 in this case. Thus (M)L¥ or (W) c F;

Let G be any element orthogonal to ¥l , and let feB. Then

l6,£] = [G,pf + (£ - P£)] = [G,P£] + [G,f - Pf]
but £ - Pfe¥{ , therefore [G,f - Pf] = 0. Thus
[G,f] = [PxG,f]
end Ge (), end it follows that (W) =",

It mey be proved in an entirely esnalogous meuner that (M) = ml_
Theorem 4.3. If P, and P, are projections znd ¥,,¥t, ; & , ¥ their essoci-
eted manifolas, then
(1) P,P, is a projection except if #t, snd 8, have only the zero element
in common.

(2) P, + P, is a projection if and only if P,P, = O.

Proof of (1). If o ®™,= O, then the operator P, P, is the null operator

for a1l feB. This will be seen to be a degenerate case. Let
fe W m.# 0, then P,P,f = £, and for all ge B - M ¥, PP, g = 0. Thus
if 00 W, and B - W,-W, are disjoint c.l.m; there exists a projection (cf.
Theorem 4.1) P; which has W ®(, and B — &, ®{, as its associeted manifolds.
It is thus required to show that ¥, ®, and B - W, W, are disjoint
closed linear manifolds. They are evidently closed and lineer. In oré@er
to prove them disjoint, let fe 8.0, and ge B - ®,-®,, then since f,geB
Nt + gl z £ - dgh,
Operating on both sides of this inequality with P, P,
IP.P. (£ + gl Ip P £l - 1P P, gl

since ge B - W, W, and f & WL, UL,
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I, B (£ + gl 2U£l
Also since P, and P, sre by definition bounded

NP, P, (f + g)l € kiIf + gl
where k> 0 is the bound of P, P, . Thus

I £+ ghz1/kIfI.
Then by Definition 3.4 1{.¥{, and B —M‘(,-Zﬂ‘(?_ are disjoint closed linear
menifolds.

Since 8 W, = Bl W and P, P, = P, and B, P, = B, the projections

as here defined zre necessarily commutative. If 0 (.= O then
PP =PP =0.

Proof of (2). If PP, =P P =0, then

(P, +Pa)e=P, + B8 +BE +8 =P + P,
thus P, + P, is a projection. Conversely, if P, + P, is a projection,
P, + PP +PP +P, =P +P,
thus P, P, + P, = 0. From this
P, (PP, +BP ) =P P + B,BPE =0
(2,8 +PBE )P =P RP +BPRPE =0
Thus PR, = F, P, = 0 completing the proof of the theorem.

Theorem 4.4, If P, and P, ere projections, P, - P, is a projection if

and only if P,P; =P, or B,F, = F, »

Proof. If P is & projection, then I - P is slso a projection, since
(I—P)E=I—2P-+P=I—P.

Thus if P, - P, is a projection, I - (P, - P,) is also & projection.
I-(p -B)=(I-P)+P,

By Theorem 4.3 the sum of two operetors is a projection if (I - P, )B, = 0O

or if P,(I - P, ) =0, thus PP, =P, or P,P, = PF,.
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Conversely, since by Theorem 4.3 P, P, = P, implies P, = P, and

(P, —Pa)2= P, -P,P, -BP +P =P -B.
This completes the proof of the theorem.
V. Infinite Systems of Projections

Lemms 5.1, If & and 3 are disjoint and if there exists en f(#0) € B,
f¢ W +¥( , then there exists an F(#0)e®(: (. Conversely, if & and
¥(" are disjoint, ¥ +¥( = B,
Proof. Let fe B,# Wl +¥ ; then there exists an Fe (B) such thet
[F,f] = 0, thus FL®(+ ¥ . Thus F(#0)e®( and Fedr(. Thus Fe &85

Tf: e and 5 are disjoint then there exists no element outside the
zero element satisfying the condition (:F,f] = 0. Then the zero element
is the only element L¥( +¥( , Thus W +¥ = B,
Theorem 5.,1. Let {P. be a sequence of projections for which B,< B,.,,
(i.e. the chasracteristic manifold of P, , ¥, is contained in the charac-
teristic manifold of B,, ®l..), |P,l ¢k, (n =1, 2, ...). Let the adjoint
of P, be P¥; and let w,,5,; (810, , (d(), denote the menifolds associated
with P, ana P¥ respectively. Let @{ = i W, ;¥ =ﬁ_5‘&; () = i(é’d"()_( ;

(&)

=T

(¥()« Then
(1) 301 and 81 are disjoint; (M) and (01) are disjoint.
(2) @) =, (r) =w0(; M
(5) W+ = B; () + (80

(R, 0 = () .
(B).

Proof of (1). Let fe®(, ge¥( . Then there exist elements f,€ W, such

that f~»f. Thus
| Pa(fn + )l = I £als klfa + gl. Since
£, + gllz /K0, k£ + gl 2 1/kUfH,

W and ¥ are by Definition 3.4 disjoint manifolds.
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The case |P,] = O is trivial, it has thus been assumed that k> 0. From

[p% F,£] = [F,P, £] it follows that [P%| [ F,£] = |P,| [F,f]. Thus |P%| = [P

Proceeding similarly E,e (%), , FE(M(), G (¥(),
Ipg (F, + G) = IF.M S kIF, + Gl

Since F,— ¥, and k>0,
IF+ Gl = 1/klIFN.

Thus (%) and (1) are aisjoint msnifolds.

. L
Proof of (2). ©ince by Theorem 4.2 (M™M), = mn,mni-(ﬂ)c (), . Hence

(POLE W =90 or (N)cWt. Let FLw, thus Fe(rl), , Fell (F).,

Fe(®). Thus (¥) = mL, proving the second statement of part (2).

Since by Lemma 3.1 s M, from (M) :mL; (™ )J' = Pt = e,
which proves the third statement of part (2).

Since by Theorem 4.2 (W)L &, ; (@), L™ (n =1, 2, ...) since
Mcsln, (n=1, 2, ...). Then

@) = ¥ (9,19,

thus (M) D5, Let £z (@) , then £L(WM),, fe(¥l),, f(/M). Hence
M = (JB“()L . By Lemma 3.2 (O'J‘L)J_L= (). Thus = (0%) which completes
the proof of part (2) of the theorem.

Proof of (3). " and M are disjoint, since by part (2) of this theorem

@) =" end () =0T, Thus by Lemma 5.1 000 + 8 = B, Similarly,

@) + (M) = (B). Lhis completes the proof of the theorem.

Theorem 5.2. If {PJ is a sequence of projections for which |B. € k,
B,<B, , (n =1, 2, ...), then there exists a projection P having the fol-
lowing properties:

(1), = °§ Wi, ¥, :T'f 5

(2) 1P & ks

<

=

k.
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(3) For any feB, lI(P - P,) fil=0.
(4) P>P, (n=1, 2, «..). If Q is a projection such that Q> P, (n = 1,2,...)
then ¢ > P.
(5) If P, is permuteble with a linear operator A, then P is permutable
with A,

Proof of (1). P is by definition the projection whose associated mani-

folds are W, and ¥,. by Theorem 3.1 ®{, and ¥, are disjoint and
Wi+ ¥, = B. By Theorem 4.1 P is uniguely defined.

Proof of (2). Since IPl<k (n =1, 2, «s.), it is evident from the aef-

inition of P that |P| ¢k.

Proof of (3). If fe¥l, then Pf = 0 and P.f = 0, thus (P - B, ) fll—0.

1

If fe W,, then Pfe W,and there exists a g ,e¥l,(n =1, 2, ...) such
that g,—Pf.
Now
Pf - P,£f =Pf - g+ Pu(gn + £ = Pf) = P, f
end
Il Pf - P, £l <IPf - gall + Pu(ga - PE)I—0
since [P.l < k.

Proof of (4). That P> P, follows immediately from its definition and

the associated manifolds. If ¢>B,(n =1, 2, ...) thenMo &, (n =1, 2, ...),
nence Mg> ¥, and similarly Mac¥p. Thus P< Q.

Proof of (5). Since P,Af = AP,f—>APf and B, Af—+» PAf, PAf = APf, This

completes the proof of the theoren.
VI. The Mean of the Iteration of Linear Operators
It is the purpose of this paragraph to show that the mean of the

iteration of a linear operator approaches a linear operator which is a
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projection.

Definition 6.1. A sequence {f.}, fieB (i =1, 2, ...), is said to be

stressdty convergent toward heB if n, exists such that

| f. - hli<e, for n2n.(€),
€ an arbitrary positive number,

Definition 6.2. The complex number A is said to be a proper value

for the operator L, if Af = Af for some f & B.

Definition 6.3. The operators 1" are said to be egui-bounded if

(A" el iEl; 2 = 1; B «usy Hs
Lemmg 6,1, If 1 is not & proper value for A, end if the operators A"
are equi-bounded, then for any feDB
1/n(Af + A+ vae + A"fl-—+ 0 asn —>eco.
Proof. For & fixed element f let

g=1/m{Af+ A E+ .. +5F]

then

Ag, = 1/n {A°f + A2f+ ..o+ AT EL
Thus

Agn - 8n = 1/n (&7'F - & £)
anad

A+t

Il Agy - gull= 1/n l2"7'f - & £l
end by the properties of the norm

Lgan - gnll sl/n{r( AR+ A £ “E
Since £"'s are equi-bounded

I4gn - gall $1/n{uhen + unsl |
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Thus in the limit, as n — o9

| hgn - gall= 0O

Agn = gn N —> 0.
But 1 is not a proper value for A, thus g,=0 as n >, and

I/n{ef + A°F+ ...+ A f}—>0 asn — oo
Theorem 6.1. If A is a linear operator on B, and A" is egui-pbounded
and ¥¥ the set of &ll elements fe B, such that Af = £, and if P is the
projection whose characteristic menifold is ¥(, then

1/n (Af + °f 4+ oo+ A" f)—> Pf asn —>e
Proof. Let ¥ be the set of elements such that Af = f, ¥ the set of
elements disjoint to . Then by Theorem 4.1 ®¥{+ ¥ = B ana P is the
projection such that Pf = £, fe®{; Pg = 0, ge¥( . Since MM is the
set of all feB such that Af = f, for the set of elements 1, A does
not have 1 as a proper value.

Let £, = Pf and f, = £ - Pf, then £, and f,e ¥, The operator

A transforms M into itself since for &ll f,e I, Af, = f,

A'f = £'f +A"f, = £, + A"F,
It has been shown that 211 elements f & B may be represented in the form
f=f +f,, e, f,e¥1 where MM and ¥"( are disjoint c.l.m. (cf.
Theorem 3.1).

By Lemma 6.1 since for f,e¥ A~ ocoes not have 1 as a proper

velue,

1/n (&f, + A°f,+ oo + £ £,) — 0, as n — o=.
Substituting A"f = f, + A"f,, f, = Pf

1/n (Af + &5 + ... + £"F) > Pf as n — oo,

This completes the proof of the theorem.
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VII. Eeducibility
It is the purpose of this paragraph to characterize a linesr oper-
ator in terms of the manifolds which it leaves invariant.

Definition 7.,1. Let A be a bounded linear operator, W{ & closed linear

manifold and P the projection whose characteristic manifold is &, &M
is said to reduce A if A and P are permutable in the following senses
whenever f is in the domain of A, Pf is also in the domain of A and
APf = PAf,
Theorem 7.1. If the closed linear menifold ¥ reduces the linear oper-
ator A, then A leaves Il invariant in the sense that it carries every
element common to its domain and the manifold W1 into en element of &1,
Proof. Let fe ¥ and in the domain of £, Then since P is the pro-
jection whose cheracteristic manifold is®{ , Pf = £ and APf = Af. Since
W{ reduces A, by Definition 7.1

Af = APf = PAT
Lf is some element of B, thus PAfe ¥ or PAf = 0, the latter is true
only in the trivial case, & i1s the null-operator. Thsu A leaves AR
inveriant in the sense of the theorem.
Theorem 7.2. If 0, and ", are non-intersecting closed linesr mani-
folds which both reduce £ then ¥, + T, reduces 4.
Proof. Let P, and P, be the projections whose characteristic manifolds
are W, and W, respectively. Since W0 -¥{,= 0, P,P, = 0 and P, + P,
is & projection (cf. Theorem 4.3). Thus for fe ¥W{ +#{, end £ contained
in the domain of &,

(P, + P)f=¢f and Af = A(P, + B, )f = (P, + B, )Af:

Thus &1, + ¥, reduces £ if both XY, and W', reduce L.
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Theorem 7.3. If W1, and M, S W are c.l.m. both of which reduce &,
then N, - W, reduces A.

Proof. Let P, and P, be the projections whose characteristic menifolds

are W, and W(, respectively. Since the condition B, P, = P, of Theorem
4.4 is satisfied, P, - P, is a projection. Thus

Af = A(P, - P,)f = (P, = Pp)Af
ena since W(, - ¥, is the characteristic manifold of P, - P, , &1, - M.
reduces A.
Evidently B end null set in B reduce any linear operator which is
aefined throughout B or the null set.

Definition 7.2. A bounded linear operator A is said to be irreducible

if it is reduced by no c.l.m. other than the entire space or the null
set.
Theorem 7.4. If # is a bounded linear operator with domain B ana A%
is its adjoint, end & & c.l.m. such that if fe®Y{ , Afed(, then Y
reduces A and (1) reduces A%, where (J0) =" in the notation of
Theorem 4.2.
Proof. If A has B as its domein, then A¥* has (B) as its domain., Let
P be the projection whose charccteristic manifold is ¥, end P* its
adjoint, Then by Theorem 4.2 (1) = ™M is the characteristic manifold
of P¥, for fe¥W!l, Pf = £ and APf = f. Consider the expression
[7,6pT - Paf] = [F,af - PAf] = [F,PAf - PPAF]
for Fe (B), fe ®(cB, thus since P° = p
[F,4Pf - PAT] = 0 |
and APf = PAf. By Definition 7.1 reduces A. Since

[F,arf] = [F,PAf],
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by the definition of the adjoint

(PP, £] = [axp*F,f].
Thus for Fe (W) =", PraxF = &%F. As a result, if Fe (i), A*Fe (00);
if F &(s() then P¥AXF = 0, and A¥F is zero for all F& (¥). Thus (1)
reduces A%, where (W) = 1%
Theorem 7.5. Let {P} be & bounded sequence of projections for which
P,<B.; letW. ,W. . be their associated menifolds; and let A be a linear
operator which is reduced by 01, (n = 1, 2, ...); then if 0 = zm, then
W1 reduces A.
Proof. By Theorem 5.2, there exists a projection P such that&ﬂp==§§ B,
¥1, the characteristic manifold of P. For fe Wi,

P AT = BB, F (n=1, 8 oos)
Since&Nﬂ(n_= 1, 2, +..) Teduces A, In order to prove the theorem it is
necessgary to show thet

PAT = APT .
Since there is no element fe®l, which is not contained in one of
Ma(n =1, 2, «o.) PAFf # APf would mean that for some f& ¥ znd some
n=ly € sas

By Af # AP.f.

Thus PAf = APf completing the proof of the theorem,
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