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A Theory of Projections in Complex Banach Spaces 

Introduction. A Projection is defined as a linear operator P, such that 

P.:z = P. A theory of projections has been developed in complex Banach Spaces, 

which are reflexive. This was done in 1939 by E. R. Lorch~ A complex 

Banach Space is a complex linear vector space in which a norm, with the 

usual properties, has been defined. This paper develops the usual theorems 

concerning projections, which may be found for Hilbert Space in M. H. 

Stoner-~ The method of proof consists essentially in the use of an inter­

space inner product, similar to that of A. D. Michal and D. H. Hyers for 

real Banach SpaCeSi''-iH~ 

If f is an element of a complex Banach Space B, and Fan element of 

the space (B) of all complex valued linear functionals defined on B, then 

(B) can be shown to be a space of the same ty~e as B, the norm of F, II F/1 

being defined a s t he bound of the functional F(f), ( F(f)( ~ /IFlf /If/I. The 

interspace inner product [F ,f] f € B, F E. (B) has certain demonstrable 

properties, see II below. 

The first paragraph is devoted to an existence proof for corn;;ilex 

nwnber valued linear functionals defined on a complex Banach Space. Be­

fore the theory of projections is discussed, t wo par agr aphs discuss some 

of the properties of the inner product and of closed linear manifolds in 

Banach Spaces . The theory of projections developed in the central portion 

of the paper is applied in the last t wo par agraphs; firstly to show that 

* E. R. Lorch. A Calculus of Operators in Reflexive Vector Spaces. 
Trans. A.M.S. 45: 217-234 (1909). 

~ M. H. Stone. Linear Transformations in Hilbert Space. 
-lB* A. D. Michal and D. H. Hyers. General Differential Geometries with 

Coordinat e Interspace Inner Product. The Tohoku Math. Jour. 
46: 309-318 (1940). 
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[F, !~ f, f P.' f] = [F ,Pf], A being a linear operator and P a projection; 
C,,"!./ 

secondly to developing a theory of reducibility of linear operators de­

fined on B. This latter is essentially an examination of the set of 

points in B which a linear operator A leaves invariant. 



I. Linear Functionals 

It is the purpose of this par a.graph to demonstrate the existence and 

to develop certain of the properties of complex valued linear functionals 

defined on a complex Banach Space. 

Let Ebe a complex vector space, that is a linear space with complex 

number multipliers. Let F be a complex number valued functional defined 

on E, which is additive 

F( f + g) = F( f) + F( g) , f, g E E, 

and homogeneous 

F(c:rf) = .,.F(f) , er - a complex number. 

Theorem 1.1. If there exists a functional p(f) on E to the complex num-

bers 

l p(f + g)I ~ lp(f)I + lp( g)I I p (cr f) \ = 16"1 \p ( f )\ 

and if there exists an additive and homogeneous functional G(f) defined 

on a complex linear subset E, c E, such .t hat I G( f ) l ~ I p(f)\ for all f EE,, 

then there exists an additive and homogeneous fw1ctional F(f), such that 

IF(f)I ~ / p(f)I for all fc:E, F(f) = G(f) for all feE 1 • 

Proof. If E, = E t he theorem is trivial. Let f 0 c: E - E,. I f f, , f2 e E 1 , t hen 

\ G ( f 1 ) - G ( fe ) I = I G ( f, - f 2. ) \ ~ I P ( f 1 - f z. ) I 

~ /p(f , + f.)I + IP ( - fz. - f.)/ 

/ (/G(f,)/ - IG(fe)I)/ ~ lp( f , + f.,)\ + IP( - f e. - f~)J 

Then, since 

l ( I G ( f I ) I - I G ( fz. ) I ) I ~ I G ( f I ) I - I G ( f e. ) I ' 

]G(f,)I - IG(f,)\ ~ lp(f , + f 0 )l + \p( - fe. - f 0 )\ 

and 
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Thus there exi st s some complex constant fo, such t hat for all fEE 1 

(1) -I p ( - f- fo)I - IG(f)j ~ ipol !:: l p ( f + f 0 )\ - \G(f)/. 

Consider all elements of the form 

( 2) g==f+O-f0 

where f € E" f 0 ~ E - E 1 , er is complex number, and designate by E0 t he cla s s 

of all such elements. Evidently E 0 is a complex vector space. Let 

( 3) ¢ (g ) = G( f ) + er p. then 

( 3 ') 1¢ (g)j ~ /G(f)/ + fo fol 

Since f 0 EE - E I and f EE 1 , all g 1:. Eo admit ex2.ctly one r epre sentrttion of 

the form ( 2). Thus t he functional 1 ( g) is defined in E O in a unfo,ue 

manner. 

In the inequ ality 

lfol~/ p (f + f .)j - IG(f)I 

write !,. in place of f, t hen 

l«rpol~lp(f +cr- f .)/ - IG( f )/ • 

Substituting thi s in ( 31) 

\¢( g)/ ~ l p (f+6""fo)I =- l p ( g)I 

(4) /9 ( g )[ ~ l p (g)I for gEEo• 

The functional¢ ( g) i s evidently additive and homogeneous. 

When fo = O, the inequality (1) shows that lfol = 0 since p(O) = 0 

is a particula r case. Thus 

( 5) t ( g) = G( g) , g c E 1 • 

Thus ¢(f) i s the r equired functional for the space E0 , (the space E 1 to 

which have been added tho se elements which con sist of a complex number 

times a f ixed element f 0 in E - E1 ). Repeating t he above construction 

f or E - E 0 and a fixed el ement r: EE - E 0 & further extension of G(f) may 
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be obtained. Whence by transfinite induction, the function F(f) exists 

satisfying the condition of the theorem. 

Consicier the class of all complex valued linear functionals defined 

on a complex Banach Space B, f ,g e: B. Then if the norm of F ,ll F II, is the 

bound of F( f), IF( f) I ~ I/ F II l!f //. The class of linear functionals so de­

fined form a Banach Space (B) of the same type as B. 

Theorem 1. 2. Given a linear functional G ( f) defined on a complex vector 

space E c B, there exists a linear functional F(f) defined on B and satis­

fying the conditions 

F( f) = G( f) for f c E and II F II = I G IE:. 

/G/c is the bound of the functional G( f ) on E.* 

Proof. In Theorem 1.1 substitute p (f) = /GIE 1/fll. It evidently satis­

fies the conditions placed on p(f). Then as a consequence of Theorem 1.1 

there exists a functional defined on B such that F(f) = G(f) for all f E..E. 

Since the two functionals are e --1u&l for all f c.. E, their bounds are equal, 

IIFII = IGIE. 

Theorem 1.3. For each fo i::B there exists a linear functional F(f.,) defined 

on B, such that 

IF( f O ) I = II f. II ' II F /( = 1. 

Proof. In Theorem 1. 2 let E be t he set of elements of the form 'T f O, and 

substituting IG(f)I = ITll/f./1; !F(f,:r)I =l'rlllf.11.; l'F( f~)I =Hf.II 

Since by 1'heorem 1.2 II FIi = IGIE; ll'T FIi =IT/ 1:J11d II FIi = 1. 

The above theorem shows that the set. of complex number v&.lued linear 

-r.- Bohnenblust and Sobcyk have given a di f ferent proof of t his gener1-1liz­
ation of the Hahn - Banach Theorem. Bull. A. M. S. 44:91-93 (1938). 
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f1mctionals defined on a complex Banach Space is non-null. 

II. The Inter-Space Inner Product 

Using Theorem 1.3, it is possible to demonstrate the existence of an 

inter-space inner product with the following properties. If Bis a com­

plex Banach Space and (B) the set of complex number valued linear function­

als defined on B to the complex numbers, then for feB, FE.(B) 

(1) [F,f] is bilinear on (B), B to the complex nwnbers, 

( 2) If [F ,f] = 0 for all f then F = o, 

( 3) If [F,f] - 0 for all F then f = o. 

The first two properties are an immediate re sult of the correspondence 

F(f) = [F, f]. 

The third property follows from Theorem 1.3, since we can write for each 

£~ eB 

lrF,fo]I = I/foll 

Thus [F,f] = 0 for all F implies f = O. 

Definition 2.1. An operator is an additive and continuous or linear trans­

formation whose range and d.omain are both in B or both in (B). The letters 

A, B, P, ... ere used to represent linear operators; I Al, IBI, IPI , ... , 

their bounds, if they exist. 

The space (B) is said to be the adjoint or conjugate space to B. 

Definition 2.2. The operator A1 defined in Band the operator Ae defined 

in (B) are s&id to be adjoint, if 

[A2 F,f] = [F,A,f] 

for all f in the dome.in of ci.efinition of A1 , and all F in the domain of 

definition of Ae. The adjoint of an operator A i s written A➔~. 



-7-

III. Linear Manifolds in Complex Banach Spaces 

Definition 3.1. A set of elements M such tha.t for f,gcM, f+gt:.M, pfc.. M 

is said to be a linear manifold . Manifolds contained in B are designated 

by or-t, 3'i., ... those contained in (B) by (~), ( o'<.), 

Definition 3.2. The elements Fe.(B), fe.B are said to be orthogonal if 

[F ,f] = O. 

Definition 3. 3. A linear manifold a]'( is said to be closed if the limit 

point f of any sequence {f"} , f.:dTI (i = 1, ... n, ... ) is also contained in 

lfl!i. In tha t which follows, a clo sed linear manifold will be designated 

by the initials c.l.m. 

Definition 3.4'. The orthogona.l complement of a c.l.m. 10'{ c B is the set of 

all elements FE (B) such tha t [F ,f] = 0 for all f e ~. The orthogonal 

~ ~ ~.L 
complement of irri. is designated Jo\, and the orthogonal complement of on,~. 

It may be shown that the orthogonal complement of a c.l.m. is a c.l.m • 

.1-.L 

Lemma 3.1. 11'{ = ti. , for rt c B • 
.L .L J. 

Proof. Clea rly3"L .::> ri . Assume there exists an fe. ol , f¢ '6i.. Then there 

exists an element Fc(B), such that Fis orthogon.s.l to ti., F1-ri, [F,f] f- O. 

But [F ,f] must e ,1u al zero for F.l.ri. . This contradicts the assu..rnption . 

.L .L 

Therefore t{ = t\ . 
J..L. 

Lemma 3 . 2. (~) = (~) for (tl) c (B). 

Proof. Clearly (rt r .:> ( ~). Assume there exists an FE. (oi. ;\ F ¢ (o'{). Then 

there exists an element f c.. b, f 1( irt.. ) such tha t [F, f] i O. But [F, r] must 

e lJ.UE•l zero for fl(~). This contradicts the as sumption. 
.t..L 

Therefore (6'() = (~) . 

Definition 3.4. Two closed linear manifolds '6o'i. and o't. ((art) anci. (ol)) will 

be said to be disjoint i f there exists a constant lo O (lbO) such that for 

every f e ot1. and every g di ( for every F E ( l!t{) and every G c. (t\)), (\ f+gl\ ~ kUf/1, 

(IIF + G/1? lcllFll). 
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This definition does not ciifferenticcte bet ween the .u1anifolds, since 

!If+ gl/? kl/fl/, i mplies II f + g/li) k11llgl/ , Since Hf+ g/1 H g/I - llf/1 211d it 

is given that II f + gll~ kl!f/1, multiplying the first of these ine,iualities 

by k and adding them, 

( 1 + k) )I f + gll ~ k I/ g II. 

Thus 

(If + gll ?- k
11

tl gll, where k" = k/(k + 1). 

In an entirely am1.logous manner it may be shovm that IIF + GIi~ k'IIFII, 

I Ill I 1/1 '/( / ) im.pl..ies II F + GI ~ k JIG/ , where k = k k + 1 • 

Theorem 5.1. Two clo sed linear manifolds ool. and r( are disjoint if and only 

if they satisfy the following conditions: 

(1) The manifolds have only the zero element in common, 

( 2) The set of all elements of the form f + g, fc m , gt: o'{ is a clo sed 

linear manifold. 

Proof of (1). Let fE 'tr(. rt., then, since if rri and oi are linear manifolds, 

m-rt is a linear manifold, -fc: ~. By Definition 6 . 4 

O = llf - f/1~ kllf/1 

and since k:>O, llfl\ = O, f = O. 

Proof of ( 2). The set of elements of the form f + g, f.e oo1. , g E oi are 

readily shown to be linear. Leth"= fn + g" (n = 1, 2, ... ) , anci let 

h~➔h. Then by the definition of disjointness , 

ru1d since llh" - h.,,il ➔ O, /If., - f..,11 ➔ O. Similarly, since 1/h.., 

Ilg,. - g,,,1\ ..... O. 0iriceITT and iN are clo sed f.- f, g.,- g , thus 

h = f + g 

h..,/1~ 1t11 g., - g ,,,I{, 

and the set of all element s of the form f + g form a closed linear manifold. 
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Proof of the Converse. Since m and o( have only the zero element in 

common, elements of B can be expressed in only one way in the form f + g, 

ft:a-(, gE.ol. 

There exists a tr~msform2.tion A such that, A(f + g) = f, which is dis­

tributive. The conditions h,, = f~ + g,. (n = 1, 2, ... ) , h,,➔ h, f"➔ f, imply 

that g"➔ g e o'( , where h = f + g. Thus A is closed, and a closed distrib­

utive operator is by definition linear. Let k> 0 be a constant such that 

IIAhtl ~ llhll/k, 

then 

l\ A(f + g)II = II f 11 ~ 1/kllf + gll. 

Thus II f + g n ~ k/lfll, which is the definition of disjointne ss, completing 

the proof of the theorem. 

The following theorem may be proved in an entirely analogous manner 

to tha t of Theorem 3.1. 

Theorem 3.2. Two closed linear manifolds (m) and (3"t) are disjoint if 

and only if they satisfy the following conditions: 

(1) They have only the zero element in common. 

( 2) The set of all elements of the form F + G, FE.(~), GE..(~) i s a closed 

linear manifold. 

IV. The Theory of Projections 

Definition 4.1. An additive and continuous, or linear, operator Pis 

called a projection if P~ = P. 

The operations+ and• referred to manifolds will be interpreted a s 

the set sum and set intersection respectively. 

Theore,!!l__jd• If P is any projection in B, and ai c B the set of elements 

f for which Pf = f and 3'1- c B the set of elements g for which Pg = O, then 
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6o1 and ot are di s joint closed linear manifold s such t he.t o3't + 3"i. = B. Con­

ver sely, i f ITT and rt are di s joint closed linear manifo l ds for which 

m + 3"t = B, there exi sts a uni q_ue projection P which satisfies the equ ations 

Pf= f, fc:rrt; Pg= O, ge~. 

Proof. If f,ge.ITT, then it follows from the equations Ppf = pf and 

P(f + g) = f + g, that 3rl is a. linear manifold. Since P is continuous, oat 

is closed . ~imilarly ~ is a c.l. m. 

For f E. B, f = Pf+ (f - Pf). Since Pa = P, Pf1:.rrt, f - Pfc.tt . Thus 

33"\ + ol = B. 

Since II Pfll ~ I Pl tt fll = I Pl II Pf + (f - Pf)/1, and f - Pf = g E. rt, 

Pf= f1:..m, it follows that 

ll f + g II ~ k !If 11. 

This shows that~ and ti. a re disjoint, by Definition 3 .4. 

Proof of the Converse. Let m and o'( be disjoint c.l.m. such tha.t ~ + t( = B. 

Leth c B, h = f + g , fE. m, gd't . Then the operator P for which Ph ·= f is 

distributive and closed, hence linear. This may be proved a s the convers e 

of Theorem 3 .1 was proved. Also, P~h = P(Ph) =Pf= f ;Ph, thus Pe= P. 

This completes the proof of the theorem . 

. Theorem 4.2. If P is a projection, then the adjoint P~- (cf. Definition 2 . 2) 

is also a projection. If 5tf , rt. and (o1'0, (t() are the manifold s a s sociated 

(~ ) 
.I. 

( ot) -oo{J. with P and P* re spectively, then = tt and - . 
Proof. From Definition 2.2 \y➔~F,f] = [F,Pf] and since Pis a projection 

[P➔~F ,Pf] = [F ,Paf] = [F ,Pf]. 

Thus 

[P-r--z. F, f] = [P➔~F,f], 

which shows tha.t pl(-
2 

= ~, and pl(- is thus a projection. 
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Let GE. (m), then [P➔~G,f] = [G,f], but [P➔~G,f] = [G,Pf]. Thus Pf = f 
and fc. m.. If (f➔~G,f] = O, then for GE.. (rrt), [G,f] = O. Then f t:.~ since 

.1. 
Pf = 0 in this ca se. Thus (m).L o(_ or (cWl) c o1.. 

Let G be any element orthogonal to ti , and let f c.B. Then 

[G,f] = [G,Pf + (f - Pf)] = [G,Pf] + [G,f - Pf] 

but f - Pfc. IN. , therefore [G,f - Pf] = 0. Thus 

[G,f] = [P*G,f] 

.1. 

and GE. (3o"l), and it follows that (tl'tt) = tl . 
.1.. 

It may be proved in an entirely analogous manner tha t ( ili) = 6ot. 

Theorem 4. 3. If P1 and P.a a re projections and ~., cft., ; 0Dt2., oi2. t heir a.s soci­

e.ted manifolci s, then 

(1) P, P2. is a projection except if m, and o6'1.2. have only the zero element 

in common. 

( 2) P, + Pe is a projection if and only if P, P~ = O. 

Proof of (1). If m,,3olz= O, then t he operator P, Pe. is t h e null operator 

for all f EB. This will be seen to be a degenerate ca se. Let 

i f ofC• otlz. and B - m,.mz. are disjoint c.l.m; there exists a projection (cf . 

Theorem 4.1) P3 which ha s lftL,-~z.. and B - m,. ~2. a s its associated manifolds. 

It i s thus required to show that m,-~z. and B - m,. me are disjoint 

closed linear manifolds . They are evidently closed and linear. In oreer 

to prove them disjoint' let f C m,. m2. and g C- B - oat., . irrt.L' then since f' g E. B 

\If + gl\ ~ llfll - llgll. 

Operating on both sides of this inequality with P, P2. 
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II P, Pz. (f + g)ll ? I( fU 

Also since P 1 and Pa are by definition bounded 

where k? 0 is the bound of P, Pe. • Thus 

II f + g ~ ?= 1/k Hf JI. 

Then by Definition 3.4 ~,• rn2.. and B - 001 1•$t.e. are disjoint closed linear 

manifolds. 

Since at,· otf.e. = ottz.• 15Ji.. 1 and P, Pz = P3 and P.._ P, = Pa, the projections 

as here defined are necessarily commutative. If 3'lt· ool2.. = 0 then 

Proof of (2). If P, Pz. = P2 P, = O, then 

2 

( P, + Pe ) = P, + P, P ~ + P z. I: + P ~ = P, + P z. , 

thus P1 + Pe.. is a projection. Conversely, if P, + P2. i ::; a projection, 

thus P, Pe. + Pe. P, = O. From this 

P, (Pl Pe. + P2..P,) = pl P2. + P, P2..P, = 0 

(P, Pz. + P,P2.P, )P, = P1 Pz.P, + P,P2 P, = 0 

Thus P, Pe. = Pz. P1 = 0 completing the proof of the theorem. 

Theorem 4.4. If P1 and P2. b.re projections, P1 - P2.. is a projection if 

Proof. If P is a projection, then I - P is also a projection, since 

e . 
(I - P) = I - 2P + P = I - P. 

Thus if P, - P2 is a projection, I - (P, - Pe.) is also a projection. 

I - (P, - Pe.) = (I - P, ) + Pz. 

By Theorem 4.3 the sum of t wo operators is a projection if (I - P, )Pa_ = 0 

or if P2 (I - P, ) = O, thus P1 P2.. = P, or P2 P, = Pe.. 
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Conversely, since by Theorem 4.3 P, Pe. = Pe. implie s P2 P, = P2. and 
2. 

(P, - Pe.) = P, - P, P.a. - P2. P, + P2. = P, - Pe. • 

This completes the proof of the theorem. 

V. Infinite Systems of Projections 

Lemma 5.1. If !Sot and 3"< are disjoint Md if there exists an f(fO) E. B, 

.L. 

ff m + t{ , then there exists an F(fO) E. ~ o't.L. 

ot.L are ciisjoint,rri. + at. = B. 

Conversely, if rn and 

Proof. Let fE. B, ¢- ~ + 'rt ; then there exists an Fe. (B) such that 

[F,f] = O, thus F1- c'Jti. + ot. • 
.1 .L 

Thus F(fO)e~ and Fe.~. 
.L ..L 

Thus FE ooC , f( ~ 

.L .L 
If &l a11d at are disjoint then there exist s no element out si de the 

zero element satisfying the condition [F,f] = O. Then the zero element 

is the only element .L m + ~ • Thus m + rt = B. 

Theorem 5.1. Let fPn} be a sequence of projections for which P"< P,,.. 1 

(i.e. the char acteristic manifold of P.,, m~ is contained in the chara.c­

teristic manifold of P •• 1, ~ 1), IP.,\ ~ k, (n = 1, 2, ..• ) • Let the ao. joint 

of P.., be pt; and let rri", fl.; ( (}o'(t , ( o't)"' denote the manifolds a ssociated 

with P., anci Pt re spec ti vely. -(Si.) = l; ( o't )o<. • Then 

(1) a'i. and o{_ are disjoint; (cITT.) and (1ft.) are disjoint . 

.L .l. .l .l. 

( 2) (m) =if'(, (ot) = aol; ITT= (o'<) , o'i. = (crtt) • 

( 3) ~ + at. = B; (~) + (tt) = (B). 

Proof of (l}. Let fc: m, g E ~ • Then there exi s t elements f.,c. M'C., such 

that f.,--.f. Thus 

II P"' ( f.,, + g) II = II f .,II~ k II f., + g II. Since 

I/ f n + gl/~ 1/k//f.,1/, K f + gij ?-1/kl/fll, 

oo{ and N. are by Definition 3 . 4 disjoint manifolds. 
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The case IP"I = 0 is trivial, it has thus been assumed that k> O. From 

[Pt F,f] = [F,P.,f] it follows that IP-l;;I [F,f] = /P.,\ [F,f]. Thus IPtl =IP.,\~ k. 

Proceeding similarly F.,E. (rrt).,, FE. (ITT), GE.(~), 

II~ (F"' + G) II = II F.,I\ ~ kllF., + G II 

Since F.,--,. .F, and k > o, 

I) F + GIi ~ 1/kllFn. 

Thus (ITT) and (r-t.) are ciisjoint manifolds. 

Proof of ( 2). IJince by Theorem 4. 2 (r-1. )., = m~, ~.L (r-t) c (oi )., . Hence 
00 .L ob 

(tl.)1-~~ =6l'1 or (r{)cat. Let F..Llm., thus Fe.(tt).,, Fe:.lf (ot.).._, 

F 1:.(ai). 
J.. 

Thus (oi.) = rrt, proving the second statement of part (2). 

J...L 1.. ..L. J..L 

Since by Lemma 3.1 ffi = im, from (ol) =ool; (ol) = oft = n't, 

which proves the third statement of part (2). 

Since by Theorem 4. 2 (oot)a.1 of.., ; (oat),, .L o'l (n = l, 2, ... ) since 

o( c al" , ( n = 1, 2, ... ) . Th en 
o<> 

= I. ( ITT) ... l. o(_ ' 
I 

.L J.. 

thus (oot) .:) ~. Let f c (ITTJ , then f ..L (m).,, ft:.. (rt)., , f E ( o'i). Hence 
L ..L..L 

oi = (i53i) . By Lemma 3. 2 (oo'{) = ( m) . 
J. 

Thus rt = (wt) which COIDflletes 

the proof of part ( 2) of the theorem . 

.L .L 
Proof of (3). m ru1d al are disjoint, since by part ( 2) of this theorem 

.L ..L. 

(ITT) = oi and (oi) = ro1. Thus by Lemma 5.1 m + tt = B. Similarly, 

(~'O + (at) = (B). 'l'his completes the proof of the theorem. 

Theorem 5.2. If {P.,\ is a sey_uence of projections for which /P..,l ~ k, 

P.,<P.,.,, (n = 1, 2, ... ), then there exists a projection P having the fol­

lowing properties: 

(1)a1ip = i lfi1i~' rt.p = T[ H .... 

(2) IPI ~ k. 



-15-

(3) For any f e B, ll(P - P,,) fll-o. 

( 4) P;:, Pn (n = 1, 2, ... ) . If Q is a projection such tha t Q;, P., (n = 1, 2, ... ) 

then Q > P. 

(5) If P" is permutable with a linear operator A, then P is permut a ble 

with A. 

Proof of (1). Pis by definition the projection whose associated mani­

folds are mP and N.r. By Theorem 3.1 ~r and oip are disjoint and 

~r+ rtP = B. By Theorem 4.1 Pis uniquely defined. 

Proof of ( 2). Since IP.,I ~ k (n = 1, 2, ... ) , it is evident from the def­

inition of P that lP\ ~ k. 

Proof of (3). If fe.ttpthen Pf= 0 and P,..f = O, thus ll(P - P.,)fll-o. 

If fe. ~P, then Pfc.~pand. there exists a g"1:.m"(n = 1, 2, ... ) such 

that g"-" Pf. 

Now 

Pf - P" f = Pf - g,, + P,,(g" + f - Pf) - P" f 

and 

II Pf - P"fll ~ /I Pf - g.11 + /IP.,( g ., - Pf)/1 ➔ 0 

since I P"I ~ k. 

Proof of ( 4) . That P ;,- P" follows immeciiately f rom its definition and 

the associated manifolds. If Q;,- P,, (n = 1, 2, ..• ) thenma.~~,,_(n = 1, 2, ... ) , 

hence m~::, ~P and similarly f'lQ. c: tlr . Thus P < Q. 

Proof of (5). Since P.,Af = AP 11 f ➔ APf and P,,_ Af➔ PAf , PAf = APf. This 

completes the proof of the theorem. 

VI. The Mean of the Iteration of Linear Operators 

It is the purpose of this paragraph to show that the mean of the 

iteration of a linear operator approaches a linea r 09erator which is a 
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projection. 

Definition 6.1. A sequence l f .. ,1, f, E.B (i = 1, 2, ... ) , is said to be 

sl I , 1,ly convergent towa rd hi:. B if n 0 exists such that 

II f" - h ll <. c , for n ~ n O ( E ) , 

E an arbitrary positive number. 

Definition 6.2. The complex number ;t is said to be a proper value 

for the operator A, if Af =). f f or some f e B. 

Definition 6.3. The operators An are said to be equi-bounded if 

II A.,fll ~ Mllf/1, i = 1, 2, ... , n. 

Lemma 6.1. If 1 is not a. proper value for A, and i f the operators A" 

are equi-bounded , then for any f e B 

Proof. For a fixed element f let 

+ A f j 

then 

Thus 

I n·H 
Ag., - g"' = 1 n (A f - A f) 

and 

II Ag., - g.,11 = 1/n II l't-
1
f - A f II 

and by t he properties of the norm 

Since A" 's are equi-bounded 

II Ag"' - gri II ~ 1/n f Mij fl! + M f!f/1} 
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Thu s i n t he limit, as n --7' o<1 

fl Ag"' - g.,I[ = O 

.Ag., = g l'\ n~ o0. 

But 1 i s not a proper value fo r A, t hus g., =- 0 as n ➔ c,0, and 

1/n { .hf + P.' f + . . . + A" f J ~ 0 as n - oc 

,, 
Theorem 6 .1. I f A is a linear operator on B, and A is equi-bouncieci 

and oTi. t he set of all elements f E. B, such that Af = f, and if P i s the 

pro jection who se characteristic manifold is oot., then 

1/n (Af + p._2 f + ... + .A " f) ~ Pf as n - """ 

Proof . Let 1rr1 be the se t of element s such t hat Af = f, o'f... t he set of 

element s di sj oint to ITT. Then by Theorem 4. 1 ITT+ If( = B anci. P i s the 

projection s uch that Pf = f, f ~ ~ ; Pg = O, g e ti . Since ITT i s the 

set of all f c B such tha t Af - f, for the set of elements 3'i., A doe s 

not have 1 as a proper value. 

Le t f 1 = Pf an6 f 2. = f - Pf, then f. e. rr-< and f z. E. o't . The operator 

A transforms oft into itself since for all f, E. att., Af, = f 1 

" r, Yl t"I 

A f = A f, + A f~ = f, + A f 2 

It has been shovm that a.11 elements f c. B may be represented in the form 

f = f, + fe, f,Eol'\, f2.1::.t'i where ~ and t1. are disjoint c.l.m. (cf. 

Theorem 3 .1). 

By Lemma 6 . 1 since for f 2 E ~ A . a oes not have 1 as a proper 

v &.lue, 

1/n ( Afz. + A
2

f2.+ .•• + l ' f 2 ) - O, a s n _. =. 
Substituting A"f = f, + A~f2 , f, = Pf 

1/n (Af + p.,_2 f + + .A" f ) -+ Pf as n -4 = 
This complete s the proof of the t heorem . 
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VII. Reducibility 

It is the purpose of this paragraph to characterize a linea r oper­

ator in terms of the manifolds which it leaves invariant. 

Definition 7.1. Let A be a bounded linear operator, or( a closed linear 

manifold and P the projection whose characteristic manifold isoo{. Got 

is said to reduce A if A and P are ·permutable in the following sense: 

whenever f is in the domain of A, Pf is also in the domain of A and 

APf = PAf. 

Theorem 7 .1. If the closed linear manifold oO't reduces the linear oper­

ator A, then A leaves ITT invariant in the sense that it carries every 

element common to its domain and the manifold 10'-t into an element of ooi.. 

Proof. Let fE or{ and in the domain of A. Then since Pis the pro­

jection whose cha.racteristic manifold isdft, Pf= f and APf = Af. Since 

do'( reduces A, by Definition 7 .1 

Af = APf = PAf 

Af is some element of B, thus P.Af c. m or PAf = O, the latter is true 

only in the trivial case, A is the null-operator. Thsu A leaves ool 

invs.riant in the sense of the theorem. 

Theorem 7 .2. If of(, and me. are non-intersecting closed linear mani­

folds which both reduce A then ~, + rN.z.. reduces A. 

Proof. Let P1 &nd Pz.. be the projections whose characteristic manifolds 

are oot. 1 and rr{e. respectively. Since m_,. oo/.z.. = O, P, Pe. = 0 and P, + Pe.. 

is a projection ( cf. Theorem 4. 3) . Thus for f e. m, + mt.. and f contained 

in the domain of A. 

(P1 + Pe.)f = f and Af = A(P, + Pa)f = (P, + Pa)Af: 

Thus art.,+ ml- reduces A if both J'o't, and (o'te. reduce A. 
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Theorem 7.3. If m1 andMte. S ()li 1are c.l.m. both of which r educe A, 

then m, - oJi2 reduces A. 

Proof. Let P1 and Pe.. be the projections whose characteri stic manifolds 

are m, andirote.respectively. Since the condition P-1..P, =Pe.of Theorem 

4.4 is satisfied, P, - Pe. is a })ro jection . Thus 

Af = A(P, - Pe.) f = (P, - Pe..)Af 

and since aat , - mt. is the cha r acteristic manifold. of P, - Pe., ooi 1 - m2. 

reduces A. 

Evidently Band null set in B reduce any linear oper a.tor which is 

defined throughout B or the null set. 

Definition 7.2. A bounded linear operator A is said to be irreducible 

if it is reduced by no c.l.m. other than the entire space o r the null 

set. 

Theorem 7. 4. If .1.:. is a bounded linear operator with domain Band A* 

is its adjoint, and d'ot a c.l.m. such that if f e m, AfE~, then oo( 

J_ 

reduces A and (3'M.) reduce s A*, where (oo{) = of. in the notation of 

Theorem 4.2. 

Proof. If A has Bas its domain, then A* has (B) as its domain. Let 

P be the projection whose chare.cteri stic manifold is ITT, and P➔~ it s 

adj oint. 
.).. 

Then by Theorem 4.2 (rrt) = ft is the characteristic manifold 

of P*, for fe. oat, Pf = f and APf = f. Consider the expression 

[ F, APf - PAf] = [F,Af - P.H] = f!,P Af - PeAf] 

for FE.(B), fc. rr-tc:B, thus since P.e. = P 

(! ,APf - PAf] = 0 

and AP f = P Af. By Definition 7 .1 oY'i reduces A. Since 

[F ,APf] = [F ,PAf], 
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by the definition of the B.djoint 

..1. 
Thus for FE (~) :::o'{, F-l~A-l~F == A*F. As a result, if FE(c/o1), A-~FE (Mi); 

if FE:(ol ) then P-)(-A*F == O, and A*F is zero for all F e.(ot) . Thus (oat) 

reduce s A3~, where (oot) == oiJ... 

Theorem 7.5. Let {PJ be a bounded sequence of projections for which 

P., < P. ... 1; let m..,, oot., .. 1 be their associated rncnifolds; and let A be a linear 

operator which is reduced by eol 11 (n == 1, 2, ... ) ; then if ooi == I oJ'1.t., then 
I 

oo/.. reduces A. 
00 

Proof. By Theorem 5.2, there exists a pro jection P such tha,too't p == L oat.., 
I 

ooip the char acteristic manifold of P. For f c oo( .., 

P11 Af == AP,,, f (n == 1, 2, ... ) 

since oo("' ( n == 1, 2, ..• ) reduces A. In order to prove the theorem it is 

necesimry to show thc.t 

PAf == APf • 

Since there is no element f c o51, which is not contained in one of 

OOt,.. (n == 1, 2, ... ) PAf f- APf would mean that for some ft: ?rot wd some 

n == 1, 2, ... 

Thus P.Af == APf completing the proof of the theorem. 
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