

Hourly Variation of the Total Insolation

Incident Since Sunrise by Months for

the Northern Hemisphere

Thesis by J. Vern Hales

In Partial Fulfilment of the Requirements

for the Degree of

Master of Science in Meteorology

California Institute of Technology

Pasadena, California

1941

Summary

There has long been a need for data showing the diurnal variation of the total insolation for all latitudes and seasons. These data have been prepared, and are presented here with a brief summary of related previous work, methods of calculation, and of applications of the data to forecasting problems.

To Dr. Irving P. Krick, Dr. H. J. Stewart, and
Dr. Walter M. Elsasser of California Institute of
Technology; Mr. L. H. Daingerfield, and Mr. Joe E.
Fulks of the United States Weather Bureau, I wish
to express my appreciation for the valuable suggest-
ions and help given me.

History:

The first evaluation of solar radiation for meteorological purposes was done by Angot^{4*} who calculated the total amount of heat incident per square centimeter at each 10° parallel of latitude during each month of the year. This work has been very helpful in understanding the general circulation of the atmosphere, and was used by Simpson¹⁹ in his investigations of the problem of mean temperature balance; but it is not applicable to forecasting problems.

Extensive measurements of incident solar radiation have been made by the Smithsonian Institution, by the United States Weather Bureau and various cooperating observatories, and by observatories in several foreign countries. The Smithsonian Institution's observations have been directed primarily toward evaluating the Solar Constant. Their value of 1.94 calories per square centimeter per minute is universally accepted as the best so far obtained.

Radiation observations by the Weather Bureau, on the other hand, have been made for the primary purpose of evaluating the energy available for atmospheric warming. Hence these observations include sky radiation plus that part of the solar beam which reaches the surface. A summary and discussion of these obser-

* Numbers refer to bibliography

vations has been published by Hand⁷. The effect of different air masses is not considered in computing the data published, nor is the variation in local atmospheric pollution. As summarized the observations represent a mean summation of the resultant energy available at each station, and should be very useful for forecasts in the vicinity of the observation stations.* For widespread or general application, some method would have to be worked out for reducing all the observations to some standard, and applying corrections for different types of air mass or local modification.

Work more nearly like the present was done by Lester¹³ as a part of his investigation of the problem of forecasting the dissipation of fog in the San Francisco Bay region. He calculated hourly values for the insolation which would be applicable to stratus dissipation in that region. His contribution will be discussed further.

Need for Data:

Many forecasting problems demand that the forecaster make some commitment which presupposed a good knowledge of the amount of heat that will be applied to the air by a given hour of the day. Some of the more obvious of these problems are: At what time will

* See page 11.

the fog (or stratus) be dissipated? What will the maximum temperature be? At what time will the temperature reach, say, 80?

All of these problems require a knowledge of several quantities besides solar radiation: some have been solved rather well for given localities; but with all of them, it would seem that a general solution would be easier if one value--that is, the amount of solar heat which will have been received by each hour of the day--were known. Once this total incident energy is known, corrections can be made for absorption and reflection of that energy; for the additional heat which will be received from the sky; and for complicating factors such as wind, wetness of the ground, type of air mass, pollution, etc.

As a step toward making such forecasts more accurate, the hourly totals for the solar energy incident since sunrise at the outer limits of the atmosphere has been calculated for the fifteenth of each month through the year, for each 10 degrees of latitude for the northern hemisphere.

Method:

The method for obtaining the values is not difficult.⁸ It can be shown that:

4.

$$Q = \frac{I}{\omega D^2} \left\{ h \sin \phi \sin \delta + \sin h \cos \phi \cos \delta \right\} \Big|_{h_1}^{h_2}$$

where: Q is the amount of heat (cal./cm.²)

which reaches the outer limits of the atmosphere from the sun between the times h_1 and h_2 .

I is the solar constant.

1.94 cal/cm²/ min.

ω is the rate of rotation of the earth.

h is the hour angle. h_0 , the hour angle at sunrise, was obtained by the formula:

$$\cos h_0 = -\tan \phi \tan \delta$$

ϕ is the latitude.

δ is the angle of the sun's declination.

D is the radius vector of the earth (correction for distance to the sun).

All times are apparent solar time.

The insolation values are presented in figures 0 to

9.

Use of Data:

In using the data the forecaster must make modifi-

5.

cations and corrections according to the situation with which he is dealing. One of the most important questions is: How much of this incident radiation can I assume will be spent in modifying the air over my station? Whatever this fraction is, all the data considered must be multiplied by it before being used for the forecast. To facilitate this, a set of scales can be made to measure effective radiation directly from the graphs. Such a scale is shown in figure 10.

Table 1 contains a suggested list of albedoes (reflected fraction of incident radiation).

For some problems a second correction must be applied to account for the heat lost by radiation from the ground, and for heat gained by radiation from the sky. These can be approximated by use of the empirical equations published by Brunt³, and Krick¹²; or for more exact work, by using the radiation chart developed by Elsasser^{5,6}.

Other corrections will have to be made to include the amount and height of cloudiness, evaporation of water, heat contribution or deduction by the ground, advection of warmer or colder air, and perhaps others. The effect of these influences is beyond the scope of this paper, but is considered by Lester¹³ and by Neiberger¹⁵. An approach to the problem using the

6.

methods outlined in their papers should yield satisfactory results.

Perhaps the most direct application of the data given here is to the problem of timing the dissipation of stratus. By using methods developed at California Institute of Technology, Lester was able to predict the time at which stratus at Oakland Airport would break within ten minutes.

As an example of the application of this method to a problem at another station, consider the forecast for dissipation of the fog at San Antonio, Texas in the early morning hours of May 7, 1941. The data available by 0535 EST included:

Radiosonde Observation at San Antonio 01 EST 5-7-41

Elev.	P	T	RH	W
2	989	20	87	13.2
4	967	26	73	15.7
7	930	24	76	15.9
16	845	20	52	9.2
24	765	15	37	5.2
38	644	4	29	2.3

Pilot Balloon Observation at San Antonio 23 EST 5-6-41
Alt. Thsd.

Feet	Direction	Vel. Mph
Surface	120°	5
1	140°	16
2	160°	15
3	200°	5
4	270°	4
5	320°	6
6	320°	11

Hourly Observations at San Antonio May 7, 1941

ZN	0035	EST	C	O	085/70/66	5/979	
ZN	0135	EST	C	O	091/67/65	4/981	
ZN	0235	EST	C	O	091/68/65	5/981	
ZN	0335	EST	C	O	088/68/65	8/980	
ZN	0435	EST	X	10 72 F	085/68/68	6/979/803	50004
ZN	0458	EST	Spl C	30 6 F	088/69/68	8/980	
ZN	0535	EST	N	30 1 F	088/69/68	8/980	

The synoptic map indicated nothing which would complicate the problem.

The first step is to plot the temperature and dew point curves reported by the San Antonio Raob at 01 EST, before the fog formed. This is shown in figure 11. The structure of the lower levels of the air and the fact that the dew point increased from 65° to 68° when fog was first reported indicate that the stratus was caused by turbulence as well as radiation. Since the moisture content is practically constant through the stratus this gives us some indication of its thickness. If a line of equal mixing ratio is drawn through the surface point (14.8 gr/kg.), the top of the fog will be at the height at which the low level increase in mixing ratio will be balanced by the assumed decrease just above.

Once a reasonable value for the top of the fog has been found (in this case 962 mb.), the temperature curve on the chart can be modified to represent the structure of the air during the fog. This is done by assum-

ing a pseudo-adiabatic lapse rate from the surface to the top of the fog, hence a steep inversion to the intersection with the sounding. The top of the stratus when it breaks will be at the intersection of this inversion line and the constant mixing ratio line as shown. From this intersection a dry adiabatic line is drawn to the surface, where it represents the critical breaking temperature for the stratus (72°F).

In order to tell at what time 72° will be reached, the parallelogram ABCD is constructed as shown (AD and BC are adiabats; AB and CD are isobars). This parallelogram represents the amount of heat that is needed to warm each unit area column of air before the stratus will dissipate. It may be evaluated by estimating its area and knowing how many calories of heat the area represents on a particular chart. A new method for evaluating this energy is outlined as an appendix to this thesis. Using this newer method, the amount of heat needed was found to be 19.6 calories per square centimeter. Reference to figure 3a using the 22% scale, and interpolating between curves for April 15 and May 15, we find that the 19.6 calories should be had by 0800 apparent solar time. San Antonio is $98^{\circ} 28'$ West Longitude, so a correction of 1 hour 32 minutes is added to give 0932 EST as the time of breaking, which is verified by the following reports:

Hourly Observations at San Antonio 5-7-41

ZN	0635	EST	Spl	N	5 W ^W m GF-	091/67/66 ↑ 6/981
ZN	0735	EST		N	5 W ^W 2 GF-	091/68/67 ↑ 6/981 THN SPOTS
ZN	0835	EST	Spl	N	7 W ^W 6 GF-	102/69/67 ↑ 8/984 BRKS
ZN	0935	EST		C	70 ^W	095/72/68 ↑ 13/982/50% MVG N
ZN	1035	EST		C	0	105/76/69 ↑ 10/985/105 50094

Application to situations with greater complexity should be made possible by the empirical calculation of corrections to be applied to one or another of the values used.

These data can also be used in making maximum temperature forecasts. As an example, consider a forecast for the maximum temperature at Ely, Nevada May 16, 1941: The data available before sunrise indicates that no clouds would be expected, and that the air mass over the station would not change during the day. The upper air sounding gave the following data:

Radiodonde at Ely Nevada, 01 EST May 16, 1941.

Elev.	P	T	RH	W
19	812	5	58	4.0
20	804	12	55	5.6
32	692	3	42	2.9
44	601	-7	52	1.9
57	507	-11	39	1.3
71	417	-23	37	0.6

This sounding is shown plotted on an adiabatic chart in figure 12.

If one assumes that under such conditions, 70% of

the total insolation will be applied for warming the air, and that the maximum temperature will be reached near 3 p.m. local time, figure 4a (using the 70% scale) shows that 540 calories of heat will be available.

It is possible by calculating the amount of heat needed to raise the temperature to several trial values to bring this amount of heat to 540 calories. In this way it is found that a maximum temperature of 76° F is likely.

The maximum temperature reported was 73° F. The cause for the error (though slight) seems to have been the occurrence of cirro-stratus clouds by mid-morning with a gradual increase to four or five tenths by 1630PST.

If the problem be worked again, assuming an average cloudiness of 2/10 of the sky, and hence the 60% application of the total insolation, the results are much better. This new assumption shows 460 calories of heat available, and a maximum temperature of 74° F--as close as graphical methods justify.

As a check on the calculation, let us see by what time of day the temperature should have reached 66° F, the value reported on the 1030 PST report. This is much easier to calculate than the maximum temperature because there is no need for a trial and error solution.

Drawing an adiabat through the surface pressure at 66° F, we find that 326 calories per square centimeter

are needed to warm the air to this value. Going again to figure 4a and using the 60% scale, we find that this amount of heat should be available by 1035 apparent solar time. This is equivalent to 1015 PST---within a few minutes of the time at which the thermometer should have been read.

Neiberger¹⁵ has applied the Weather Bureau radiation summaries of Hand⁷ to the problem of forecasting maximum temperatures at Chicago and Joliet, Illinois on calm, cloudless days. He recommends the work of Thornthwaite and Holzman¹⁷, of Simpson²⁰, and of Homen¹⁶ as helpful in evaluating the portion of the insolation applicable to his problems. His method of evaluating the number of calories needed to warm the air to an adiabatic lapse rate eliminates the use of trial and error solutions and is otherwise interesting.

The data can also be applied to the solution of more complicated problems. As an example, let us consider a forecast for the time at which cumulus clouds will form over St. Louis, Mo. on the morning of May 12, 1941: The data available by early morning hours included:

Radiosonde Observation at St. Louis, 01 EST, 5-12-41

Elev	P	T	RH	W
2	998	12	65	5.8
3	980	13	62	6.0
14	855	3	51	2.9

St. Louis Radiosonde Cont'd.

Elev.	P	T	RH	W
22	744	-4	72	2.7
31	698	-7	53	1.8
48	556	-20	43	0.7
50	544	-20	44	0.6
56	496	-24	39	0.6

The minimum temperature was 45° F. The sky was cloudless. No change of air mass or frontal action was expected.

The radiosonde observation is plotted on the adiabatic chart shown in figure 13. The curve is modified to show 45° F as the surface value, with the new inversion drawn at a right angle to the temperature curve. Inspection shows that cumulus clouds may be expected by the time the temperature reaches 62° F. The heat needed to raise the surface temperature to 62° F is 136 calories per square centimeter. Figure 4a, with a scale for 70% use of the maximum insolation, shows that cumulus should be observed by 0915 apparent solar time, or 1015 EST (St. Louis is 90 28' West Longitude). A few cumulus were reported at 1035 EST, with rapidly increasing amounts during the next two hours:

LS	0935 EST	C	0	200/60/47 7/011	
LS	1035 EST	C	0	196/63/45 11/011/102	<u>10399</u>
LS	1135 EST	C	45°	193/65/45 10/010	
LS	1235 EST	C	50°	190/66/41 5/009	

It is hoped that in the future the use of these data can be extended to other problems such as the

13.

lake and sea breezes; instability cloudiness, air mass warming, snow melting, rates of evaporation, and perhaps others.

Table 1. A List of Suggested Albedo Values.

Surface	Albedo	Source
Stratus Clouds	0.78	Aldrich ²
Fresh Fallen Snow	0.783	Zollner ¹¹
White Paper	0.700	"
White Sandstone	0.237	"
Clay Marl	0.156	"
Moist Earth	0.079	"
Water	0.021	"
Cloudless Sky	0.17	Simpson ²⁰
0.1 Cloudy	0.22	after Angstrom
0.3 "	0.32	& Aldrich
0.4 "	0.37	"
0.5 "	0.43	"
0.6 "	0.48	"
0.7 "	0.54	"
0.8 "	0.61	"
0.9 "	0.67	"
1.0 "	0.74	"
Water	Angle of Incidence	Albedo
"	0	0.018
"	40	0.022
"	60	0.065
"	80	0.333
"	89.5	0.721

BIBLIOGRAPHY

1. ABETTI, GIORGIO. The Sun. New York, D. Van Nostrand Co., Inc., 1938. 350 pp. Illust. Bibliog.
2. ALDRICH, L. B. "The Reflecting Power of Clouds". Smithsonian Misc. Coll., Vol. 69 #10, Washington D. C., 1919 (Publ. #2530). Also in: Ann. of Astro. Obs. Sm. Inst. Vol LV, P 375, Washington, D. C. 1922.
3. BRUNT, DAVID. Physical and Dynamical Meteorology. New York, The Macmillan Co., 1934. Sections on Radiation.
4. Page 100 contains data from Angot's works originally published: Ann. Bur. Cent. Met., Paris 1883, Part I, pp 136-61.
5. ELSASSER, WALTER M. "An Atmospheric Radiation Chart And Its Use". Quarterly Journal of the Royal Meteorological Society. Vol. LXVI Supplement 1940.
6. ELSASSER, WALTER M. "Radiative Cooling in the Lower Atmosphere". Monthly Weather Review. Vol. 68 1940 (July) pp. 185-188.
7. HAND, IRVING F. "Review of United States Weather Bureau Solar Radiation Investigations". Monthly Weather Review, Vol. 65. Dec. 1937. pp. 415-41. Illust.
8. HUMPHREYS, W. J. Physics of The Air. McGraw-Hill Book Co., Inc., New York. 1929.
9. KIMBALL H. H. "Some Causes of The Variability of Earth Shine". Monthly Weather Review May 1901, P 209. Contains data from:
10. TYNDALL, JOHN. Six Lectures on Light. London 1873, P 17.
11. ZOLLNER, J. C. F. Photometrische Untersuchungen, Leipzig, 1865.
12. KRICK, IRVING P. "Elements of Weather Prediction". California Institute of Technology, Pasadena.

13. LESTER, RAYMOND T. 1st Lieut., A. C. "Forecasting The Dissipation of Fog in The San Francisco Bay Region". Unpublished Thesis, At California Institute of Technology, Pasadena 1940.
14. "Method of Solar Constant Observations". Annals of Smithsonian Astro. Obs. Vol 5. pp 110-120.
15. NEIBERGER, M. "Insolation and The Prediction of Maximum Temperatures". Bull. Am. Meteorol. Soc. Vol 22, March 1941, pp 95-102.
Contains data from:
16. HOMEN, TH. Der Taglische Wärmeumsatz im Boden, Leipzig, 1896.
17. THORNTHWAITE, C. W. and HOLZMAN, B. "The Determination of Evaporation from Land And Water Surfaces." Monthly Weather Review, Vol 67, pp 4-11.
18. Reduction of Observations to The Solar Constant. Annals of Smithsonian Astro. Obs. Vol 2, P 56; Vol 3, P 28.
19. SIMPSON, G. C., C. B., F. R. S., F., R., Met Soc. "Further Studies in Terrestrial Radiation". Mem. R. Met. Soc. Vol 3 #21. London. Edw. Stanford, Ltd., July 1928.
20. SIMPSON, "The Distribution of Terrestrial Radiation". Mem. R. Met. Soc., Vol 3, #23, London, Edw. Stanford, Ltd., April 1929.
(13 figs--15 tables).

Figure 0. Total Insolation Since Sunrise. 0° Latitude.

		Hour of the day									
March	Spring time	7	8	9	10	11	12	13	14	15	16
Mar.		51	125	213	316	426	536	638	746	794	836
Apr.		59	129	221	327	441	555	666	783	823	857
May		60	131	224	332	448	564	671	785	820	852
June		58	127	218	323	435	547	656	763	802	830
July		55	120	205	304	410	517	615	700	765	816
Aug.		53	116	198	293	396	499	593	679	739	781
Sept.		53	117	199	295	391	501	597	679	742	785
Oct.		56	123	209	309	419	527	625	715	781	827
Nov.		59	126	219	324	431	530	636	735	793	835
Dec.		59	129	221	327	441	555	666	783	823	857
Jan.		59	129	221	327	441	555	666	783	823	857
Feb.		56	120	211	310	418	519	618	713	779	839

Unit: Calories per cm.²

Figure 1. Total Insolation Since Sunrise. 10° North Latitude.

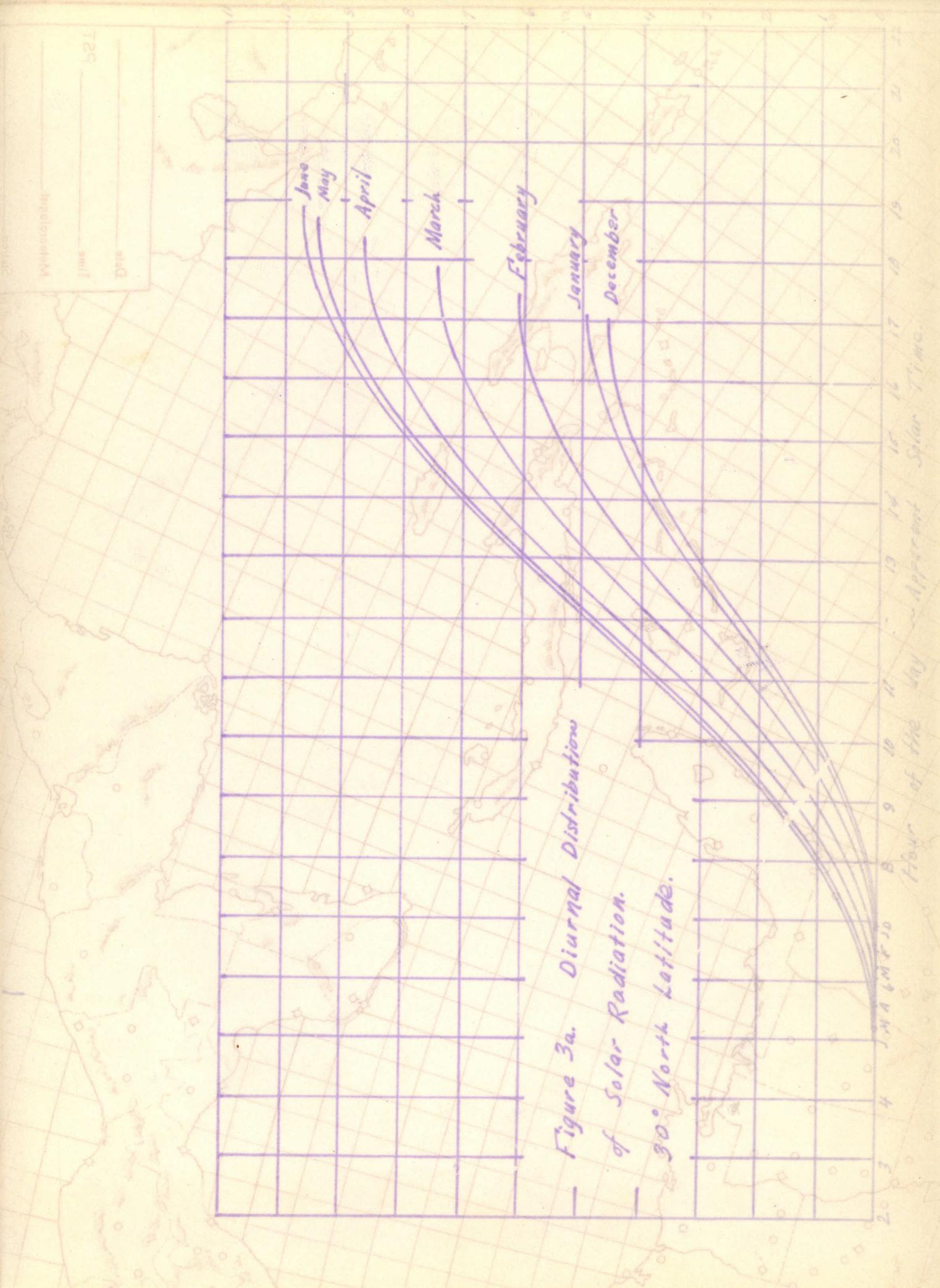
Month	Hour of the day												Date
	6	7	8	9	10	11	12	13	14	15	16	17	18
Jan.	65.6	8	42	101	180	274	375	475	569	640	707	771	840
Feb.	66.0	11	49	113	199	299	407	514	610	700	764	832	893
Mar.	66.2	14	58	127	217	323	436	549	656	746	815	883	922
Apr.	65.3	0	18	64	135	228	334	448	562	665	761	822	896
May	65.6	1	21	67	138	228	331	442	553	652	746	817	884
June	65.8	2	23	69	118	227	328	436	544	646	733	804	870
July	65.4	3	21	68	127	226	327	436	545	646	735	804	871
Aug.	65.5	4	19	65	136	226	330	442	553	658	748	818	883
Sept.	65.5	5	0	16	60	129	220	325	437	550	655	745	815
Oct.	66.0	6	12	52	119	206	308	417	527	628	716	782	852
Nov.	66.4	7	44	105	196	292	394	497	592	663	724	780	842
Dec.	66.7	7	40	93	175	266	365	464	566	633	690	751	811

Units: Calories per min.

Figure 2. Total Insolation Since Sunrise. 20° North Latitude.

Month	Year	Hour of the day											
		6	7	8	9	10	11	12	13	14	15	16	17
Jan.	0633	3	28	76	144	226	316	402	485	553	601	626	649
Feb.	0620	6	38	95	171	262	356	449	540	616	693	705	711
Mar.	0603	13	53	118	204	303	411	518	617	702	768	808	821
Apr.	0546	1	21	68	140	231	337	449	561	667	757	829	876
May	0532	3	28	79	153	245	351	463	575	681	773	846	897
June	0524	5	32	85	159	251	355	466	578	682	775	849	900
July	0517	4	31	82	154	247	352	462	573	683	776	843	894
Aug.	0539	2	25	73	145	236	341	452	564	668	759	831	880
Sept.	0535	0	16	60	127	216	316	424	535	634	721	789	832
Oct.	0512	9	45	105	185	279	380	482	576	664	752	825	873
Nov.	0428	4	31	82	153	237	328	420	504	575	626	653	687
Dec.	0436	2	25	72	138	217	303	389	468	533	580	603	625

Unit: Calories per cm^2


Latitude 45° North. Longitude 90° West.

Insolation since sunrise = $100 \times \frac{\text{value}}{\text{value} + 0.008}$

Insolation since sunset = $100 \times \frac{0.008}{\text{value} + 0.008}$

Figure 3. Total Insolation Since Sunrise. 30° North Latitude.

Month	Hour of the day												
	6	7	8	9	10	11	12	13	14	15	16	17	18
Jan. 0652	0	15	52	106	173	247	320	397	442	478	493	507	521
Feb. 0631	3	28	75	140	214	305	390	468	533	582	606	629	652
Mar. 0605	11	48	107	184	276	374	472	564	641	720	737	746	755
April 0538	2	24	71	144	224	329	436	543	643	731	800	877	910
May 0515	1	37	95	169	261	365	475	575	689	781	855	913	943
June 0502	11	45	101	178	271	375	486	596	702	793	870	925	961
July 0507	9	41	97	172	264	369	477	587	691	783	858	914	945
Aug. 0526	4	30	80	152	241	342	450	558	659	748	819	870	916
Sept. 0553	0	16	57	121	202	297	398	500	595	676	739	790	832
Oct. 0619	6	36	88	158	242	333	423	507	577	630	699	765	818
Nov. 0645	1	19	59	117	188	265	343	413	471	512	531	571	607
Dec. 0657	0	13	47	99	163	231	301	368	430	488	546	604	642

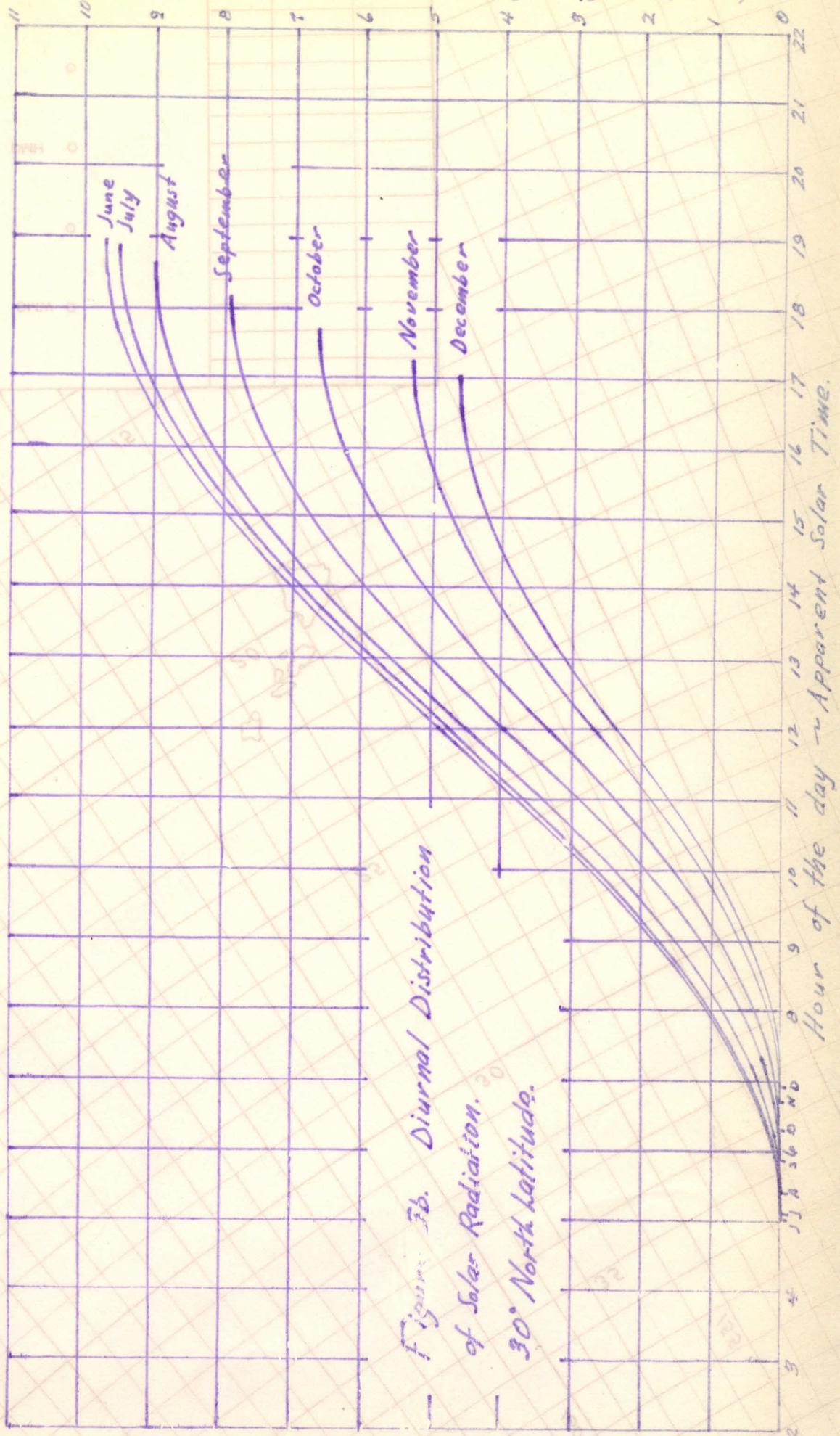


Figure 4. Total Insolation Since Sunrise. 40° North Latitude.

Month	Hour of the day												SST								
	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19						
Jan.	0111					5	29	68	119	175	232	283	322	346		357	1643				
Feb.	0145					12	17	53	106	170	241	311	375	428	464	482	1716				
Mar.	0608					9	41	93	161	241	327	413	493	561	613	645	654	1750			
Apr.	0527					25	69	133	213	304	401	490	578	661	732	776	797	801	1833		
May	0434					0	13	47	102	175	264	363	467	571	670	759	832	887	921	934	1906
June	0435					2	20	59	118	194	286	387	494	600	703	793	870	930	969	989	1925
July	0442					1	17	54	111	186	276	376	482	586	687	777	851	910	946	963	1912
Aug.	0511					1	36	86	155	239	334	435	536	632	731	835	935	964	981	872	1844
Sept.	0549					0	16	53	111	184	269	360	457	556	609	667	704	720	720	1811	
Oct.	0620					3	23	69	128	199	276	352	423	482	524	548			551	1722	
Nov.	0706					9	36	80	135	196	252	311	355	392				391	1654		
Dec.	0725					4	25	61	108	162	216	264	300	321				324	1635		

Unit: Calories per cm.²

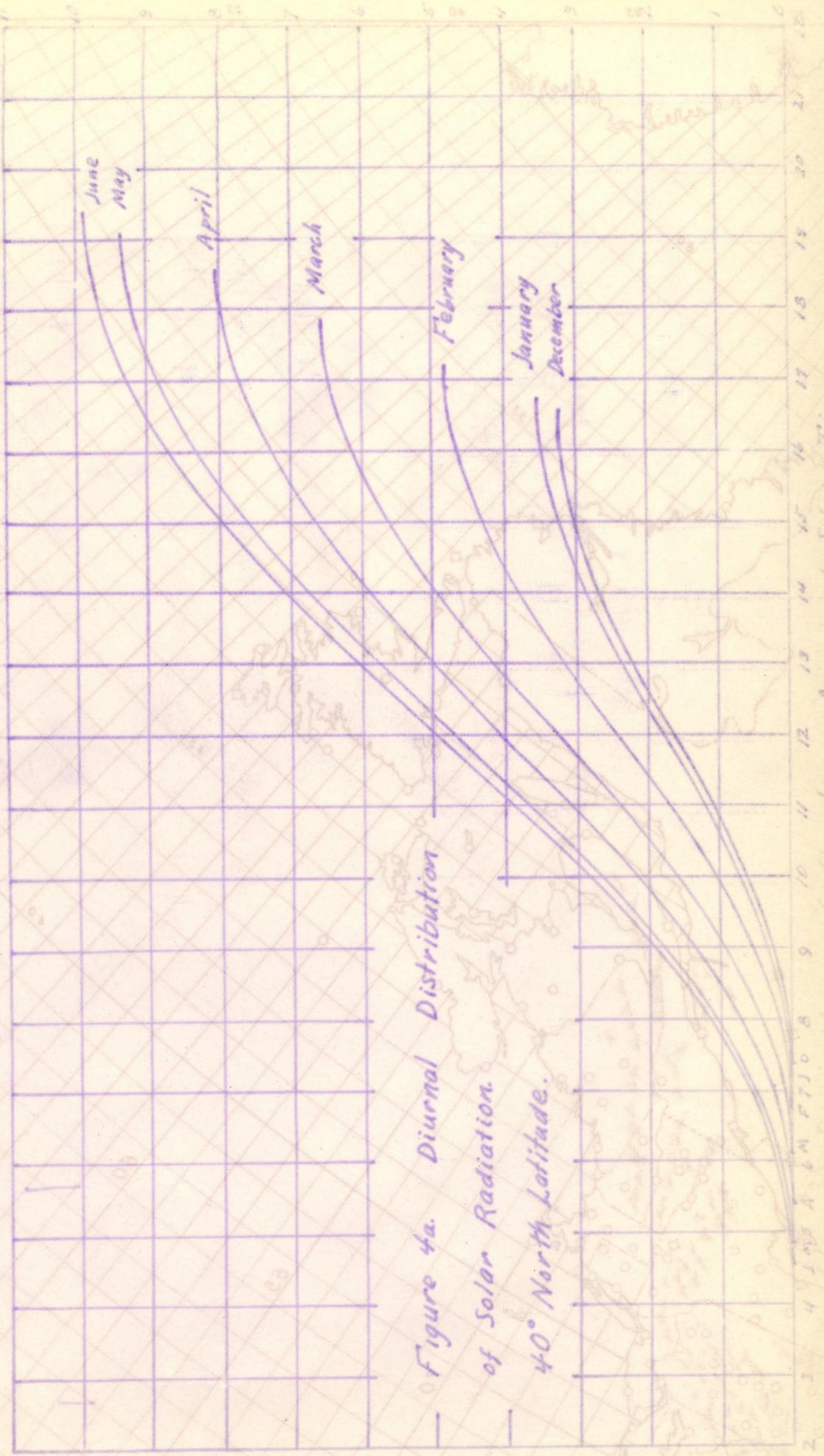


Figure 4a. Diurnal Distribution
of Solar Radiation
40° North Latitude.

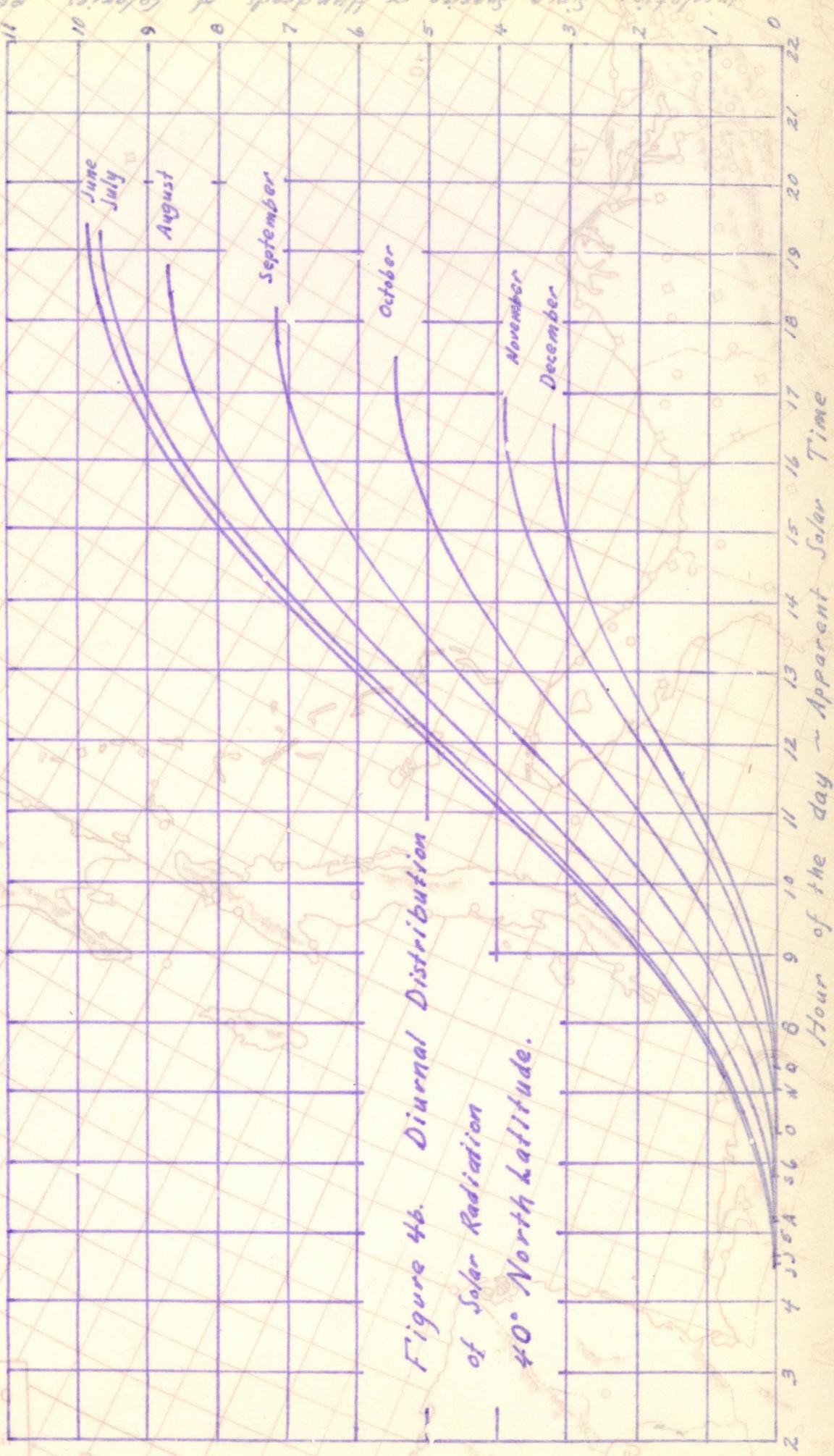


Figure 5. Total Insolation Since Sunrise. 50° North Latitude.

Month	Year	Hour of The Day																						
		4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	
Jan.	1951				0	10	33	66	103	140	173	197	207											
Feb.	1951					8	32	70	108	171	234	272	310	334										
Mar.	1951					8	35	79	137	201	277	350	407	475	519	586								
Apr.	1951					6	30	73	122	204	287	374	461	542	614	674	747	741						
May	1951					3	22	59	113	183	265	342	418	494	573	649	723	792	852	904				
June	1951					0	9	34	77	136	211	290	392	492	592	692	773	840	906	963	975	984		
July	1951					6	29	69	121	189	253	317	472	672	685	738	822	879	920	942				
Aug.	1951					0	12	43	91	155	232	318	409	500	586	663	727	775	825	877				
Sept.	1951					1	15	48	98	161	233	311	389	462	535	594	667	623						
Oct.	1951					1	16	48	94	158	230	310	386	472	549	619	684	749	817	875				
Nov.	1951					2	16	45	82	124	167	204	232	267										
Dec.	1951					7	26	55	89	123	152	179												

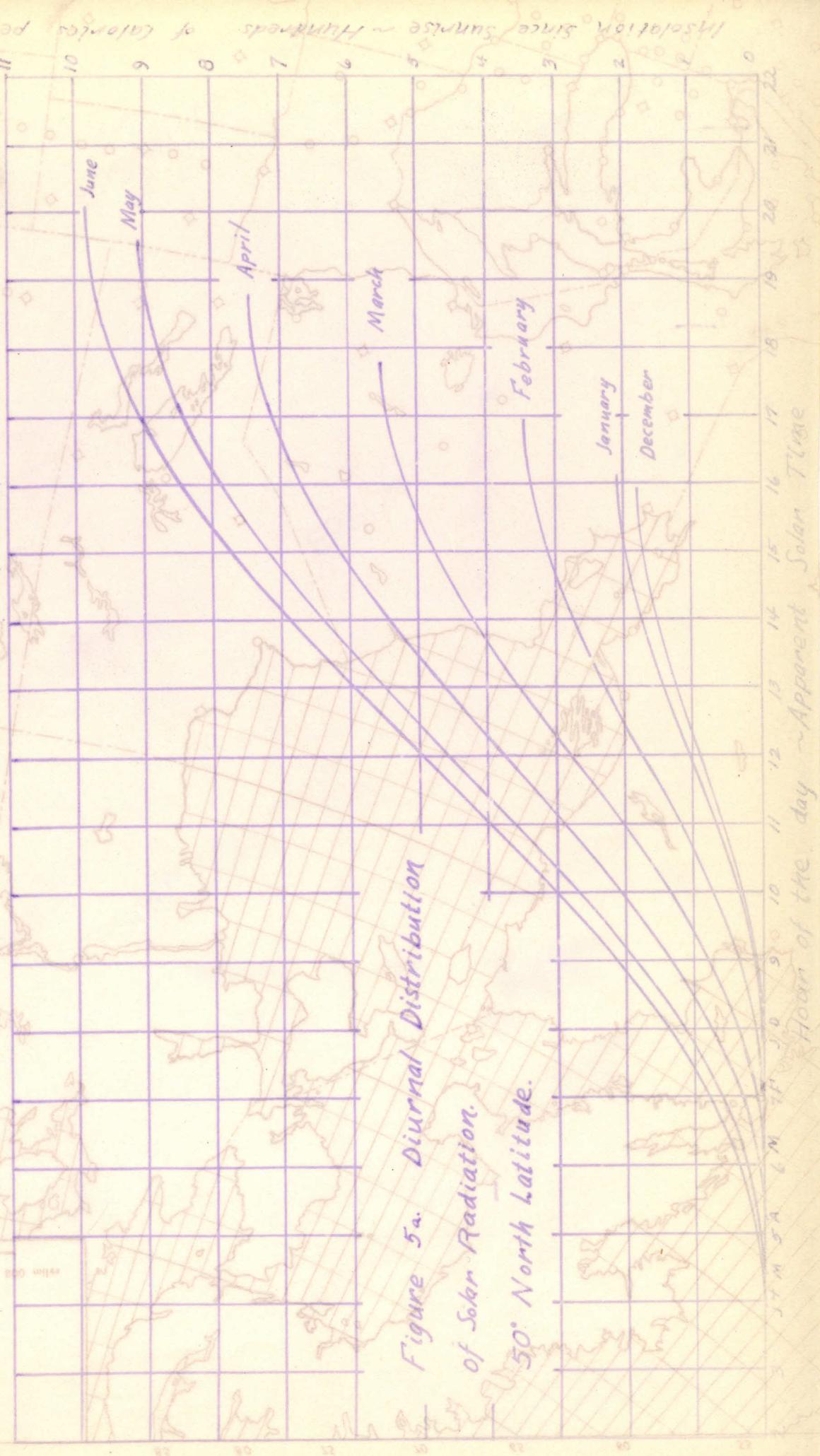


Figure 5a. Diurnal Distribution

of Solar Radiation.
50° North Latitude.

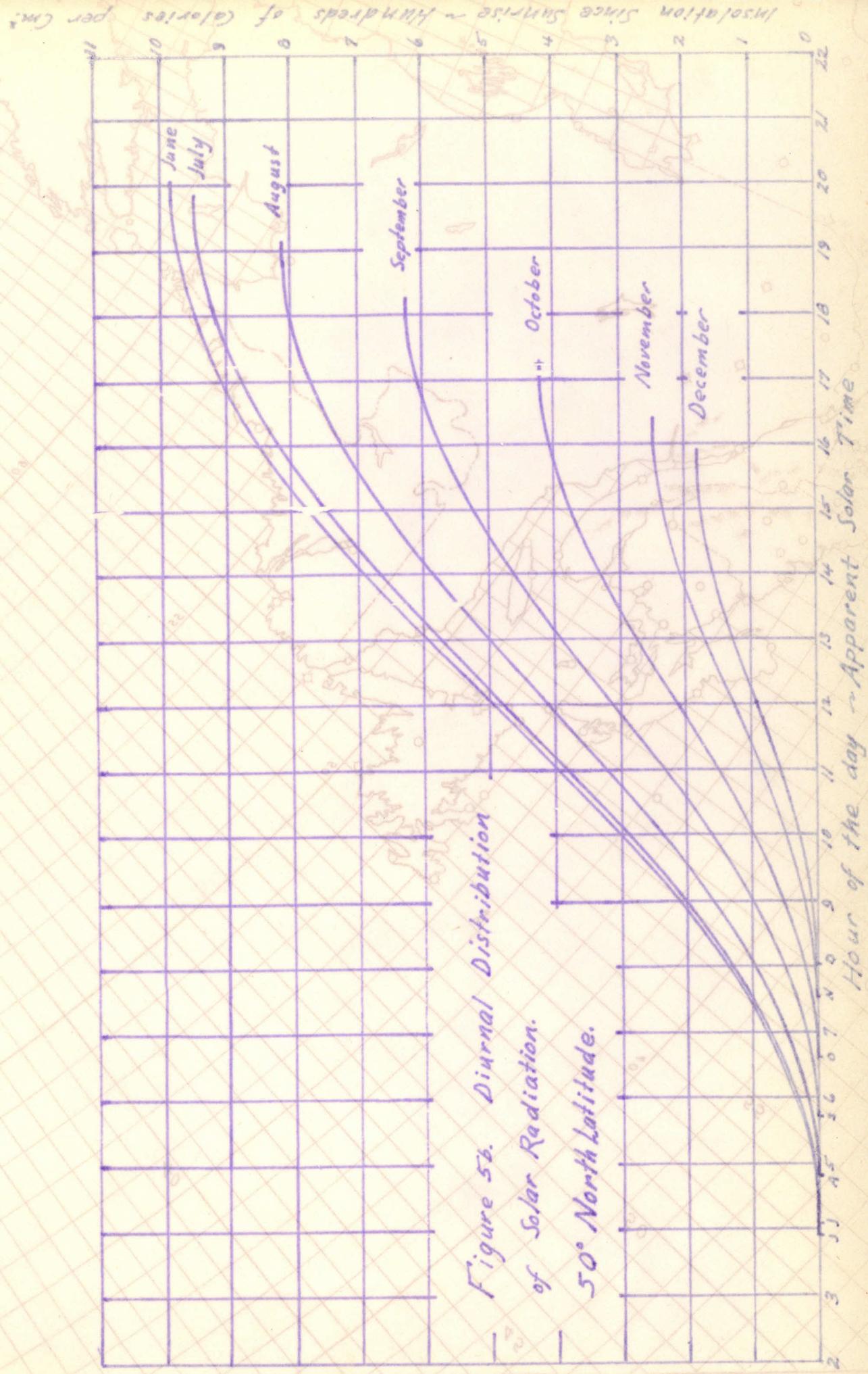


Figure 6. Total Insolation Since Sunrise. 60° North Latitude.

Month	51° 55° 59° 63° 67° 71° 75° 79° 83° 87° 91° 95° 99° 103° 107° 111° 115° 119° 123° 127° 131° 135° 139° 143° 147° 151° 155° 159° 163° 167° 171° 175° 179° 183° 187° 191° 195° 199° 203° 207° 211° 215° 219° 223° 227° 231° 235° 239° 243° 247° 251° 255° 259° 263° 267° 271° 275° 279° 283° 287° 291° 295° 299° 303° 307° 311° 315° 319° 323° 327° 331° 335° 339° 343° 347° 351° 355° 359° 363° 367° 371° 375° 379° 383° 387° 391° 395° 399° 403° 407° 411° 415° 419° 423° 427° 431° 435° 439° 443° 447° 451° 455° 459° 463° 467° 471° 475° 479° 483° 487° 491° 495° 499° 503° 507° 511° 515° 519° 523° 527° 531° 535° 539° 543° 547° 551° 555° 559° 563° 567° 571° 575° 579° 583° 587° 591° 595° 599° 603° 607° 611° 615° 619° 623° 627° 631° 635° 639° 643° 647° 651° 655° 659° 663° 667° 671° 675° 679° 683° 687° 691° 695° 699° 703° 707° 711° 715° 719° 723° 727° 731° 735° 739° 743° 747° 751° 755° 759° 763° 767° 771° 775° 779° 783° 787° 791° 795° 799° 803° 807° 811° 815° 819° 823° 827° 831° 835° 839° 843° 847° 851° 855° 859° 863° 867° 871° 875° 879° 883° 887° 891° 895° 899° 903° 907° 911° 915° 919° 923° 927° 931° 935° 939° 943° 947° 951° 955° 959° 963° 967° 971° 975° 979° 983° 987° 991° 995° 999° 1003° 1007° 1011° 1015° 1019° 1023° 1027° 1031° 1035° 1039° 1043° 1047° 1051° 1055° 1059° 1063° 1067° 1071° 1075° 1079° 1083° 1087° 1091° 1095° 1099° 1103° 1107° 1111° 1115° 1119° 1123° 1127° 1131° 1135° 1139° 1143° 1147° 1151° 1155° 1159° 1163° 1167° 1171° 1175° 1179° 1183° 1187° 1191° 1195° 1199° 1203° 1207° 1211° 1215° 1219° 1223° 1227° 1231° 1235° 1239° 1243° 1247° 1251° 1255° 1259° 1263° 1267° 1271° 1275° 1279° 1283° 1287° 1291° 1295° 1299° 1303° 1307° 1311° 1315° 1319° 1323° 1327° 1331° 1335° 1339° 1343° 1347° 1351° 1355° 1359° 1363° 1367° 1371° 1375° 1379° 1383° 1387° 1391° 1395° 1399° 1403° 1407° 1411° 1415° 1419° 1423° 1427° 1431° 1435° 1439° 1443° 1447° 1451° 1455° 1459° 1463° 1467° 1471° 1475° 1479° 1483° 1487° 1491° 1495° 1499° 1503° 1507° 1511° 1515° 1519° 1523° 1527° 1531° 1535° 1539° 1543° 1547° 1551° 1555° 1559° 1563° 1567° 1571° 1575° 1579° 1583° 1587° 1591° 1595° 1599° 1603° 1607° 1611° 1615° 1619° 1623° 1627° 1631° 1635° 1639° 1643° 1647° 1651° 1655° 1659° 1663° 1667° 1671° 1675° 1679° 1683° 1687° 1691° 1695° 1699° 1703° 1707° 1711° 1715° 1719° 1723° 1727° 1731° 1735° 1739° 1743° 1747° 1751° 1755° 1759° 1763° 1767° 1771° 1775° 1779° 1783° 1787° 1791° 1795° 1799° 1803° 1807° 1811° 1815° 1819° 1823° 1827° 1831° 1835° 1839° 1843° 1847° 1851° 1855° 1859° 1863° 1867° 1871° 1875° 1879° 1883° 1887° 1891° 1895° 1899° 1903° 1907° 1911° 1915° 1919° 1923° 1927° 1931° 1935° 1939° 1943° 1947° 1951° 1955° 1959° 1963° 1967° 1971° 1975° 1979° 1983° 1987° 1991° 1995° 1999° 2003° 2007° 2011° 2015° 2019° 2023° 2027° 2031° 2035° 2039° 2043° 2047° 2051° 2055° 2059° 2063° 2067° 2071° 2075° 2079° 2083° 2087° 2091° 2095° 2099° 2103° 2107° 2111° 2115° 2119° 2123° 2127° 2131° 2135° 2139° 2143° 2147° 2151° 2155° 2159° 2163° 2167° 2171° 2175° 2179° 2183° 2187° 2191° 2195° 2199° 2203° 2207° 2211° 2215° 2219° 2223° 2227° 2231° 2235° 2239° 2243° 2247° 2251° 2255° 2259° 2263° 2267° 2271° 2275° 2279° 2283° 2287° 2291° 2295° 2299° 2303° 2307° 2311° 2315° 2319° 2323° 2327° 2331° 2335° 2339° 2343° 2347° 2351° 2355° 2359° 2363° 2367° 2371° 2375° 2379° 2383° 2387° 2391° 2395° 2399° 2403° 2407° 2411° 2415° 2419° 2423° 2427° 2431° 2435° 2439° 2443° 2447° 2451° 2455° 2459° 2463° 2467° 2471° 2475° 2479° 2483° 2487° 2491° 2495° 2499° 2503° 2507° 2511° 2515° 2519° 2523° 2527° 2531° 2535° 2539° 2543° 2547° 2551° 2555° 2559° 2563° 2567° 2571° 2575° 2579° 2583° 2587° 2591° 2595° 2599° 2603° 2607° 2611° 2615° 2619° 2623° 2627° 2631° 2635° 2639° 2643° 2647° 2651° 2655° 2659° 2663° 2667° 2671° 2675° 2679° 2683° 2687° 2691° 2695° 2699° 2703° 2707° 2711° 2715° 2719° 2723° 2727° 2731° 2735° 2739° 2743° 2747° 2751° 2755° 2759° 2763° 2767° 2771° 2775° 2779° 2783° 2787° 2791° 2795° 2799° 2803° 2807° 2811° 2815° 2819° 2823° 2827° 2831° 2835° 2839° 2843° 2847° 2851° 2855° 2859° 2863° 2867° 2871° 2875° 2879° 2883° 2887° 2891° 2895° 2899° 2903° 2907° 2911° 2915° 2919° 2923° 2927° 2931° 2935° 2939° 2943° 2947° 2951° 2955° 2959° 2963° 2967° 2971° 2975° 2979° 2983° 2987° 2991° 2995° 3003° 3007° 3011° 3015° 3019° 3023° 3027° 3031° 3035° 3039° 3043° 3047° 3051° 3055° 3059° 3063° 3067° 3071° 3075° 3079° 3083° 3087° 3091° 3095° 3099° 3103° 3107° 3111° 3115° 3119° 3123° 3127° 3131° 3135° 3139° 3143° 3147° 3151° 3155° 3159° 3163° 3167° 3171° 3175° 3179° 3183° 3187° 3191° 3195° 3199° 3203° 3207° 3211° 3215° 3219° 3223° 3227° 3231° 3235° 3239° 3243° 3247° 3251° 3255° 3259° 3263° 3267° 3271° 3275° 3279° 3283° 3287° 3291° 3295° 3299° 3303° 3307° 3311° 3315° 3319° 3323° 3327° 3331° 3335° 3339° 3343° 3347° 3351° 3355° 3359° 3363° 3367° 3371° 3375° 3379° 3383° 3387° 3391° 3395° 3399° 3403° 3407° 3411° 3415° 3419° 3423° 3427° 3431° 3435° 3439° 3443° 3447° 3451° 3455° 3459° 3463° 3467° 3471° 3475° 3479° 3483° 3487° 3491° 3495° 3499° 3503° 3507° 3511° 3515° 3519° 3523° 3527° 3531° 3535° 3539° 3543° 3547° 3551° 3555° 3559° 3563° 3567° 3571° 3575° 3579° 3583° 3587° 3591° 3595° 3599° 3603° 3607° 3611° 3615° 3619° 3623° 3627° 3631° 3635° 3639° 3643° 3647° 3651° 3655° 3659° 3663° 3667° 3671° 3675° 3679° 3683° 3687° 3691° 3695° 3699° 3703° 3707° 3711° 3715° 3719° 3723° 3727° 3731° 3735° 3739° 3743° 3747° 3751° 3755° 3759° 3763° 3767° 3771° 3775° 3779° 3783° 3787° 3791° 3795° 3799° 3803° 3807° 3811° 3815° 3819° 3823° 3827° 3831° 3835° 3839° 3843° 3847° 3851° 3855° 3859° 3863° 3867° 3871° 3875° 3879° 3883° 3887° 3891° 3895° 3899° 3903° 3907° 3911° 3915° 3919° 3923° 3927° 3931° 3935° 3939° 3943° 3947° 3951° 3955° 3959° 3963° 3967° 3971° 3975° 3979° 3983° 3987° 3991° 3995° 4003° 4007° 4011° 4015° 4019° 4023° 4027° 4031° 4035° 4039° 4043° 4047° 4051° 4055° 4059° 4063° 4067° 4071° 4075° 4079° 4083° 4087° 4091° 4095° 4099° 4103° 4107° 4111° 4115° 4119° 4123° 4127° 4131° 4135° 4139° 4143° 4147° 4151° 4155° 4159° 4163° 4167° 4171° 4175° 4179° 4183° 4187° 4191° 4195° 4199° 4203° 4207° 4211° 4215° 4219° 4223° 4227° 4231° 4235° 4239° 4243° 4247° 4251° 4255° 4259° 4263° 4267° 4271° 4275° 4279° 4283° 4287° 4291° 4295° 4299° 4303° 4307° 4311° 4315° 4319° 4323° 4327° 4331° 4335° 4339° 4343° 4347° 4351° 4355° 4359° 4363° 4367° 4371° 4375° 4379° 4383° 4387° 4391° 4395° 4399° 4403° 4407° 4411° 4415° 4419° 4423° 4427° 4431° 4435° 4439° 4443° 4447° 4451° 4455° 4459° 4463° 4467° 4471° 4475° 4479° 4483° 4487° 4491° 4495° 4499° 4503° 4507° 4511° 4515° 4519° 4523° 4527° 4531° 4535° 4539° 4543° 4547° 4551° 4555° 4559° 4563° 4567° 4571° 4575° 4579° 4583° 4587° 4591° 4595° 4599° 4603° 4607° 4611° 4615° 4619° 4623° 4627° 4631° 4635° 4639° 4643° 4647° 4651° 4655° 4659° 4663° 4667° 4671° 4675° 4679° 4683° 4687° 4691° 4695° 4699° 4703° 4707° 4711° 4715° 4719° 4723° 4727° 4731° 4735° 4739° 4743° 4747° 4751° 4755° 4759° 4763° 4767° 4771° 4775° 4779° 4783° 4787° 4791° 4795° 4799° 4803° 4807° 4811° 4815° 4819° 4823° 4827° 4831° 4835° 4839° 4843° 4847° 4851° 4855° 4859° 4863° 4867° 4871° 4875° 4879° 4883° 4887° 4891° 4895° 4899° 4903° 4907° 4911° 4915° 4919° 4923° 4927° 4931° 4935° 4939° 4943° 4947° 4951° 4955° 4959° 4963° 4967° 4971° 4975° 4979° 4983° 4987° 4991° 4995° 5003° 5007° 5011° 5015° 5019° 5023° 5027° 5031° 5035° 5039° 5043° 5047° 5051° 5055° 5059° 5063° 5067° 5071° 5075° 5079° 5083° 5087° 5091° 5095° 5099° 5103° 5107° 5111° 5115° 5119° 5123° 5127° 5131° 5135° 5139° 5143° 5147° 5151° 5155° 5159° 5163° 5167° 5171° 5175° 5179° 5183° 5187° 5191° 5195° 5199° 5203° 5207° 5211° 5215° 5219° 5223° 5227° 5231° 5235° 5239° 5243° 5247° 5251° 5255° 5259° 5263° 5267° 5271° 5275° 5279° 5283° 5287° 5291° 5295° 5299° 5303° 5307° 5311° 5315° 5319° 5323° 5327° 5331° 5335° 5339° 5343° 5347° 5351° 5355° 5359° 5363° 5367° 5371° 5375° 5379° 5383° 5387° 5391° 5395° 5399° 5403° 5407° 5411° 5415° 5419° 5423° 5427° 5431° 5435° 5439° 5443° 5447° 5451° 5455° 5459° 5463° 5467° 5471° 5475° 5479° 5483° 5487° 5491° 5495° 5499° 5503° 5507° 5511° 5515° 5519° 5523° 5527° 5531° 5535° 5539° 5543° 5547° 5551° 5555° 5559° 5563° 5567° 5571° 5575° 5579° 5583° 5587° 5591° 5595° 5599° 5603° 5607° 5611° 5615° 5619° 5623° 5627° 5631° 5635° 5639° 5643° 5647° 5651° 5655° 5659° 5663° 5667° 5671° 5675° 5679° 5683° 5687° 5691° 5695° 5699° 5703° 5707° 5711° 5715° 5719° 5723° 5727° 5731° 5735° 5739° 5743° 5747° 5751° 5755° 5759° 5763° 5767° 5771° 5775° 5779° 5783° 5787° 5791° 5795° 5799° 5803° 5807° 5811° 5815° 5819° 5823° 5827° 5831° 5835° 5839° 5843° 5847° 5851° 5855° 5859° 5863° 5867° 5871° 5875° 5879° 5883° 5887° 5891° 5895° 5899° 5903° 5907° 5911° 5915° 5919° 5923° 5927° 5931° 5935° 5939° 5943° 5947° 5951° 5955° 5959° 5963° 5967° 5971° 5975° 5979°<

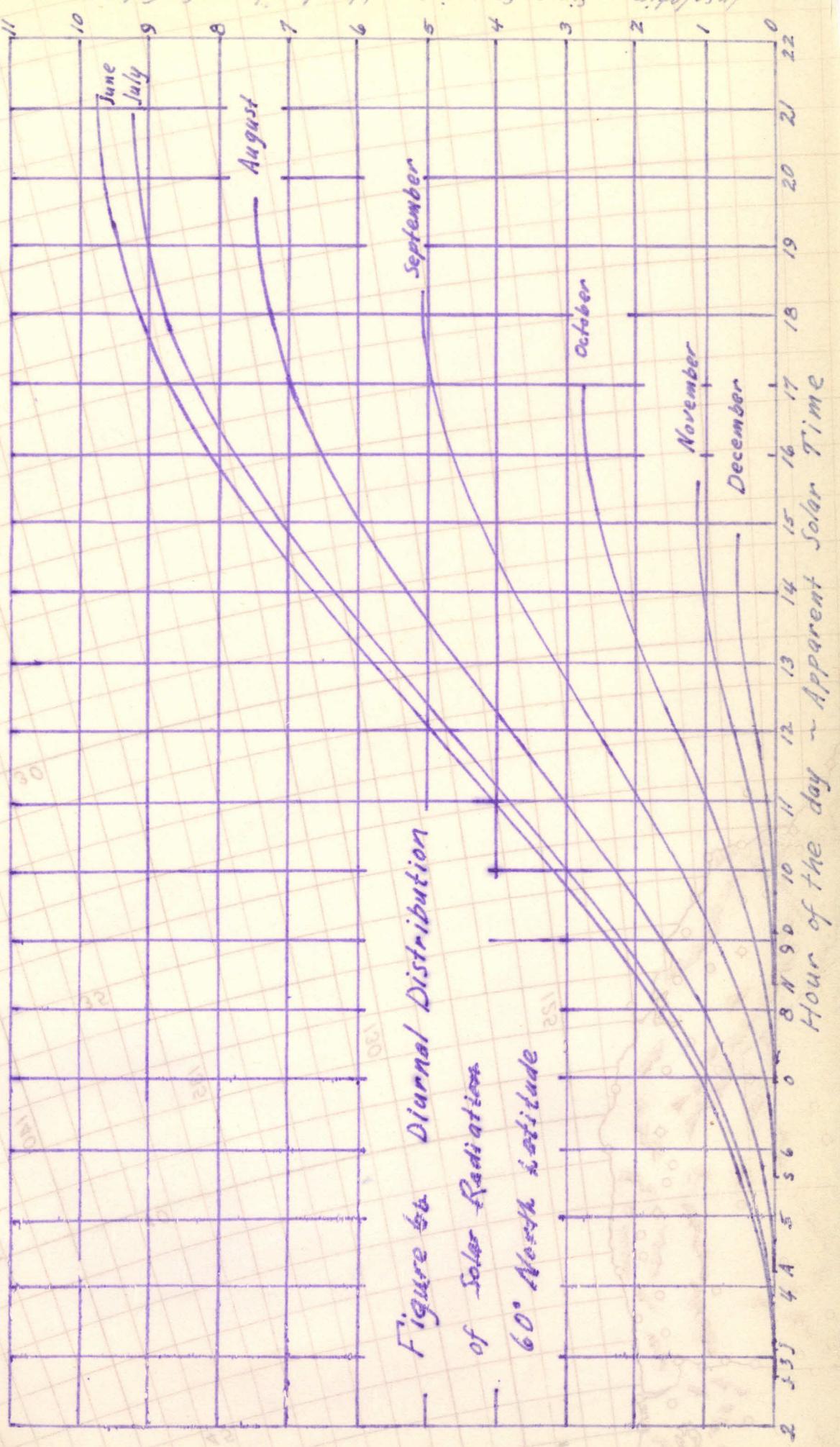


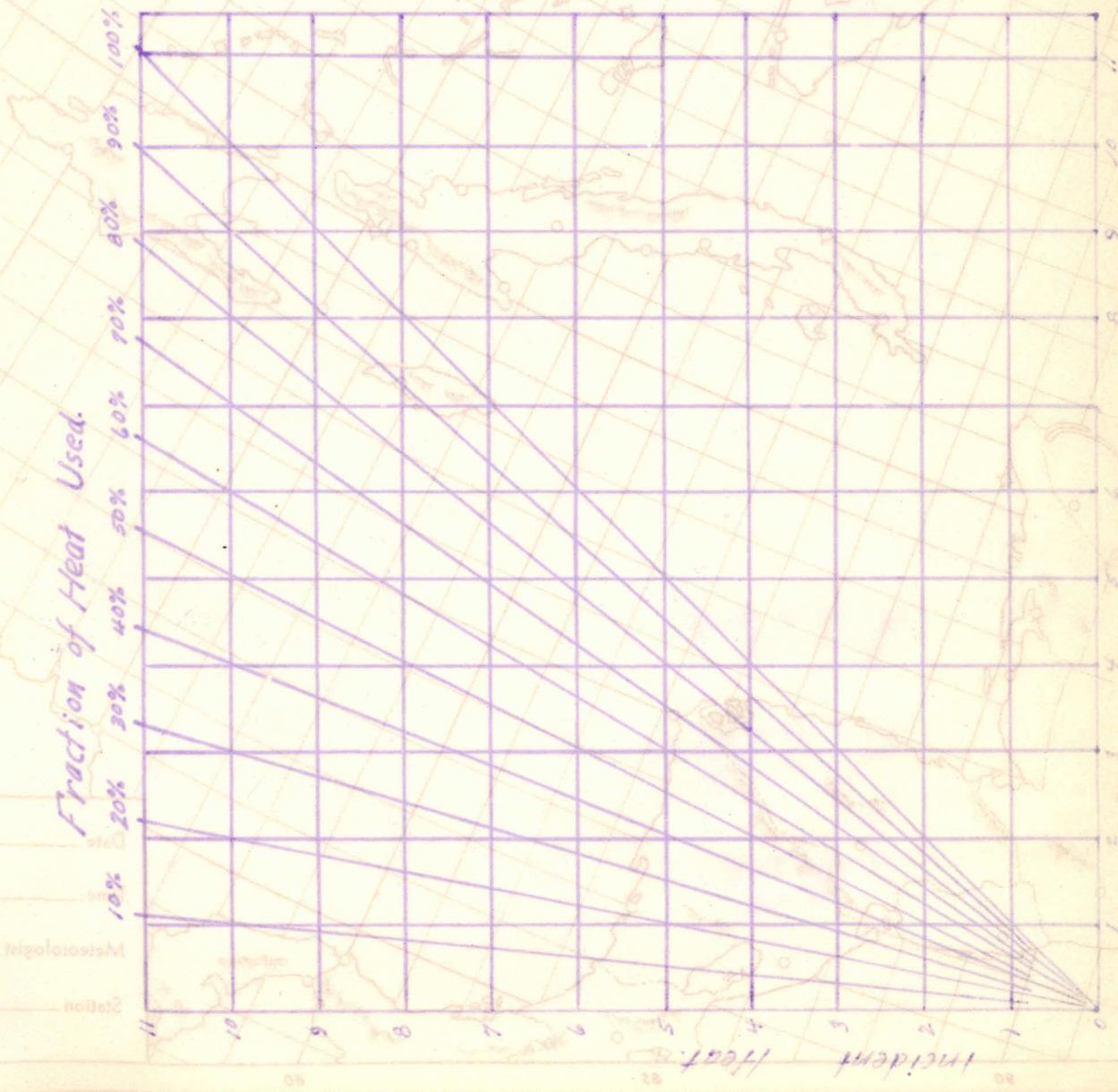
Figure 7. Total Insolation Since Sunrise. 70° North Latitude.

Month	ST	Hour of the day												ST								
		1	2	3	4	5	6	7	8	9	10	11	12									
Jan.	None										0	6	17	31	45	55	61	62	152			
Feb.	0840										2	13	32	60	92	137	162	195	222	242	252	
Mar.	0626										3	16	40	73	116	163	217	274	330	384	434	
Apr.	0409										4	11	34	67	106	154	211	274	344	412	474	
May	0125	0	6	18	38	67	106	154	211	274	344	412	482	550	613	670	737	792	846	894	924	
June	*	7	16	30	50	79	116	162	217	281	350	424	501	577	657	721	784	840	888	923	950	
July	*	4	10	20	37	62	97	140	192	253	320	391	465	539	611	680	738	797	854	868	893	
Aug.	0304	2	14	35	66	106	155	211	272	335	390	458	524	591	653	714	771	821	871	917	951	
Sept.	0524										2	13	34	64	101	143	188	232	275	312	344	377
Oct.	0735										1	9	21	45	68	91	111	127	135	136	141	
Nov.	1035										1	3	35							6	14	
Dec.	None																					

* At sunset.

Unit: Calories per cm²

Figure 8. Total Insolation Since Sunrise. 80° North Latitude.


Month	SST	Hour of the day												T												
		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	
Jan.	None																									
Feb.	None																									
Mar.	0.053	0	3	11	22	36	52	67	81	93	100	104														
Apr.	0.106	1	4	11	22	39	60	87	118	152	189	228	267	304	338	369	396	417	433	444	451	459	465	471	477	
May.	* 0.17	36	57	81	110	141	181	224	271	321	373	427	481	533	583	630	673	712	745	773	797	820	844	871	894	
June.	* 0.26	53	83	115	152	194	239	291	345	403	463	525	586	646	704	750	810	852	897	934	966	996	1024	1050	1075	
July	* 0.23	47	73	103	137	175	219	265	317	372	429	488	546	604	659	710	758	801	839	873	903	929	953	973	987	
Aug.	* 0.19	9	18	31	46	66	91	121	156	195	237	282	328	374	419	462	501	535	565	590	610	626	638	648	656	671
Sept.	0.046																									
Oct.	0.0945																									
Nov.	None																									
Dec.	None																									

* No Sunset.

Unit: Calories per cm²

Figure 9. Total Insolation Since Sunrise. 90° North Latitude

No Sunset.

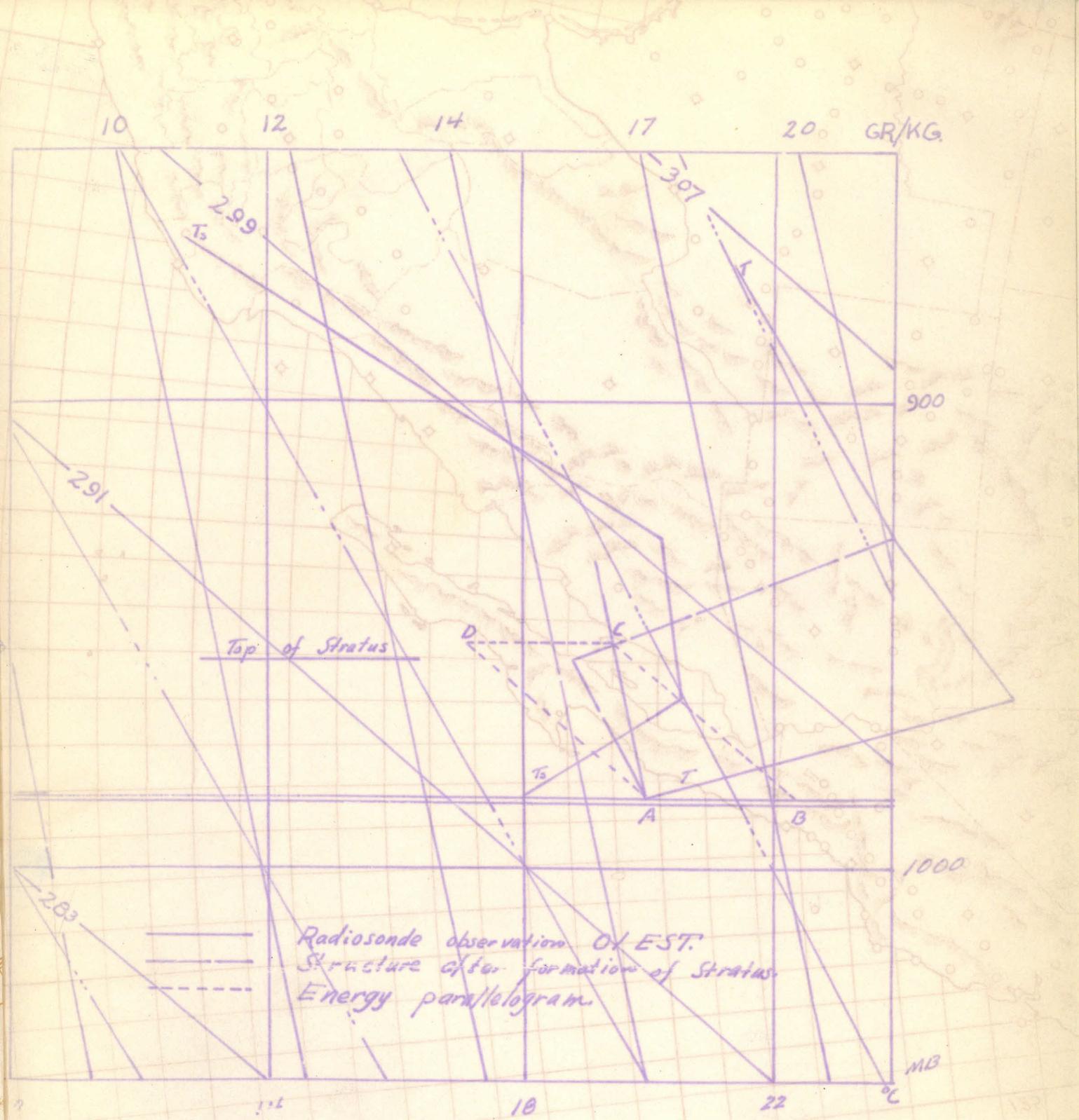


Figure 11. San Antonio, Texas, May 7, 1941.

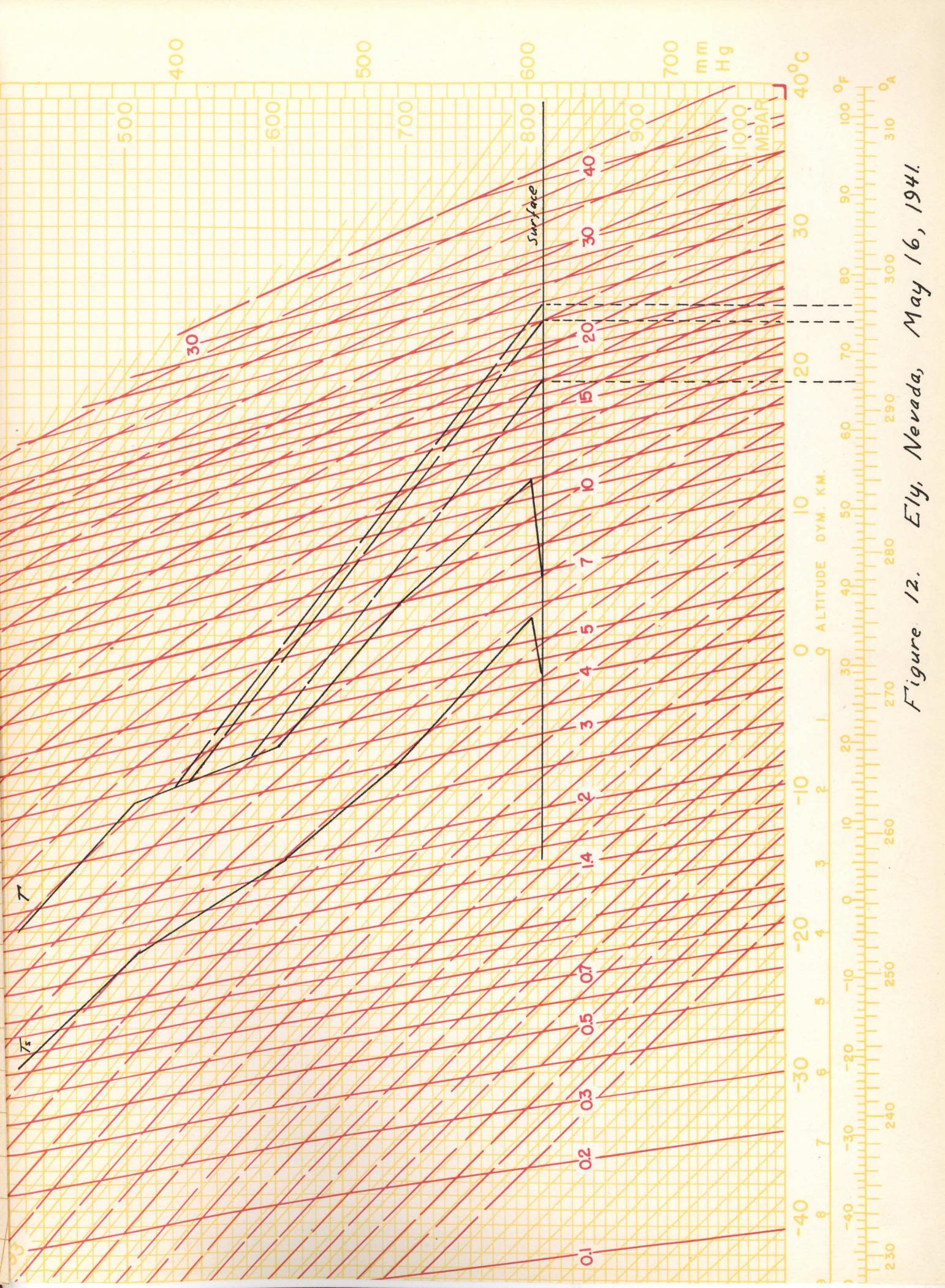
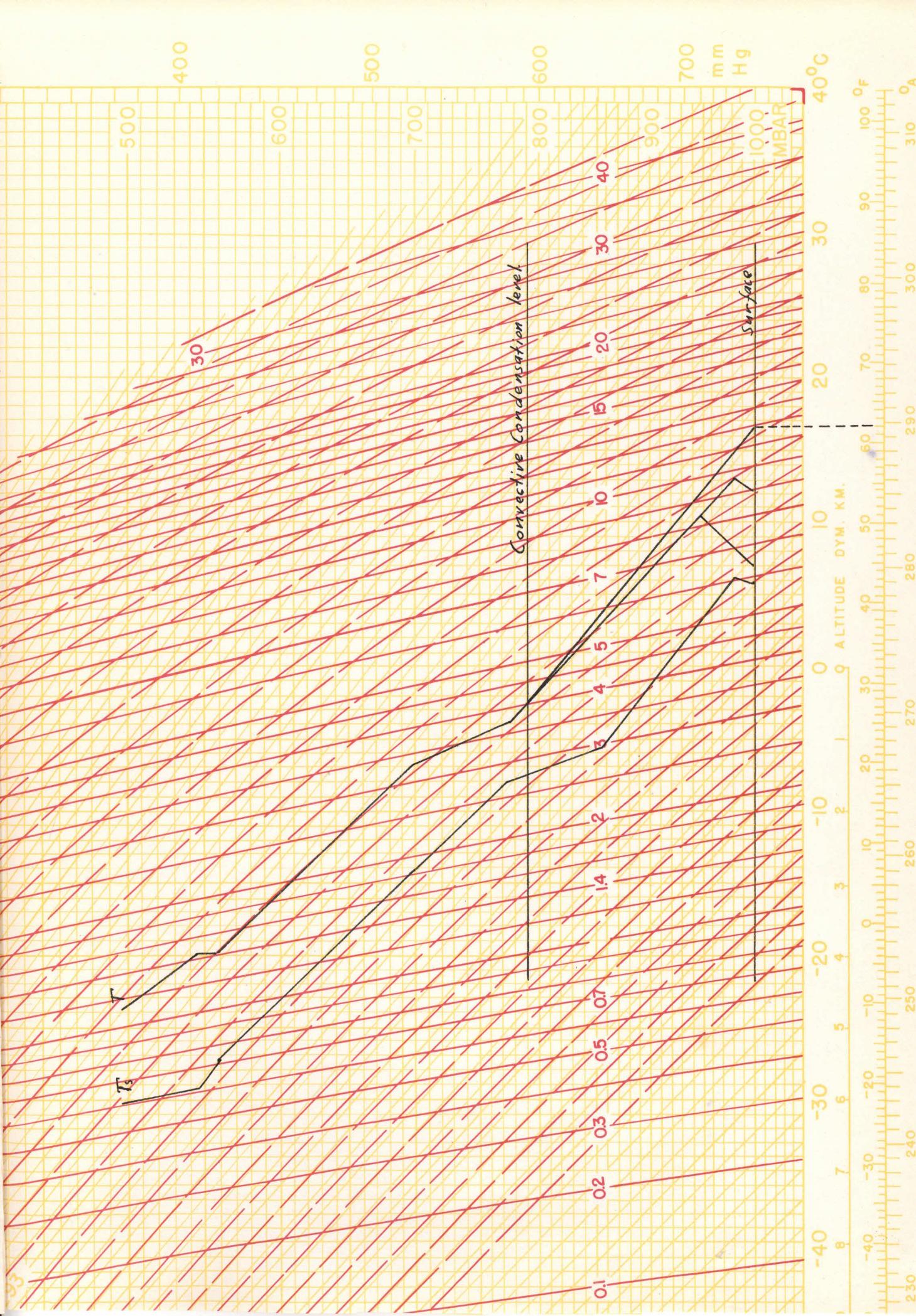



Figure 12. Ely, Nevada, May 16, 1941.

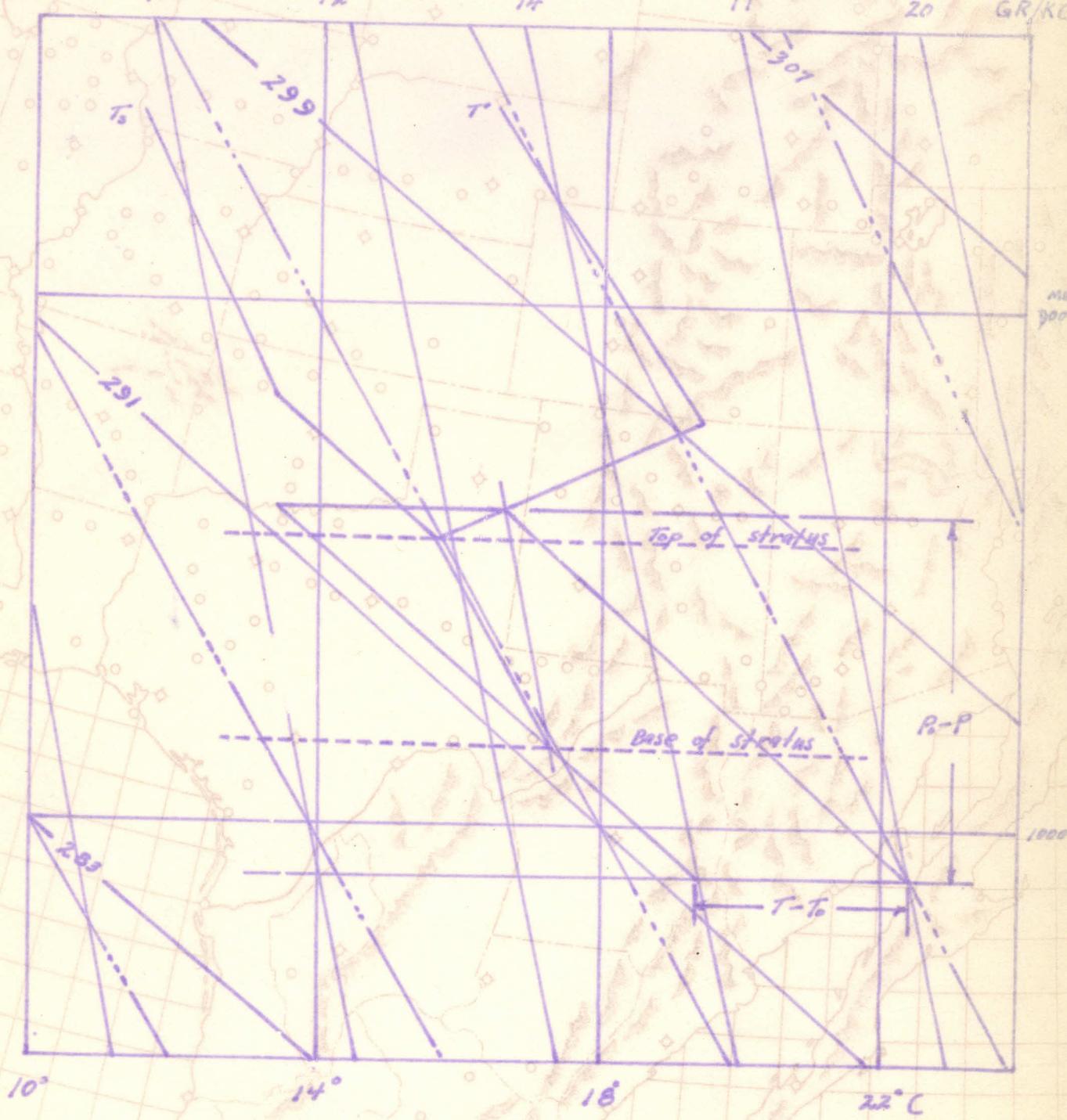


Figure 14. Method of Evaluating Heat
needed to dissipate stratus.

Appendix

If a small amount of heat dQ be added to a parcel of air, the temperature increase dT produced in the air will be given by the equation:

$$dQ = C_p M dT$$

where: C_p is the specific heat of the air at constant pressure.

M is the mass of the air.

If the parcel of air has a cross section area of one square centimeter its mass will be given by:

$$M = \frac{P_0 - P}{g}$$

where P is the pressure at the top of the column, and P_0 at the base.

g is the acceleration due to gravity.

Our equation then becomes:

$$dQ = \frac{C_p}{g} (P_0 - P) dT \text{ calories per cm}^2$$

or if $P_0 - P$ be in millibars, $g = 980 \text{ cm/sec}^2$, and $C_p = .2394$:

$dQ = .244 (P_0 - P) dT$; and by integrating:

$$Q - Q_0 = .244 (P_0 - P)(T - T_0) \text{ calories per cm}^2$$

where T_0 and Q_0 refer to the air before the addition of heat, and T and Q refer to it afterward.

2a.

The quantity $\varphi - \varphi_0$ is the amount of heat we want to know, and can be found if the values of P, P_0, T and T_0 are known. In solving a stratus dissipation problem, the difference between the minimum and critical temperatures is multiplied by the depth of the layer as measured in millibars and by 0.244 to obtain the value needed. The evaluation is exact and takes but a moment on a slide rule.