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NON-PERTURBATIVE EFFECTS IN DENSE QUARK MATTER

Abstract:

Spontaneous symmetry violations in dense quark
matter with QCD interactions are investigated by means of variational
energy minimization procedures and self-consistent field theory. At
least three distinct phases are found to exist, a colour symmetric
baryon phase around nuclear density, a colour s;mmetry violating
diquark condensate at high densities and low temperatures, and a
strictly perturbative phase with all symmetries restored at high
temperatures. Phase transitions associated with heavy quark thresh-
olds and the disappearance of meson condensates are also suspected.
The gap equation for the superconducting diquark phase is solved
explicitly. The critical temperature for its transition to the
perturbative phase is found to be far below the big bang temperature.
Diquark condensates possess numerous Goldstone modes and other

collective excitations with calculable properties.
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1) INTRODUCTION

1.1) Quark Soup--a Dish from the Devil's Kitchen

Nature's menu offers all sort of quark soups, hot and cold,
thick and thin. It comes hot at the big bang, and cold in atomic nuclei,
neutron stars, and stars collapsing to never-never land inside a black
hole, Before ordering, you might care to know the flavour and colour of
the soup, and whether it is a solid, superfluid, or gas. Of this I treat.

Perturbation theory is inadequate to calculate the equation
of state of quark matter. Even though we may agree to put our trust in
QCD, perturbation theory fails in some regimes. The usual bugbears,
strong coupling and infrared devils, are not at fault here. By virtue
of asymptotic freedom, effective couplings are mercifully weak at high

(D

Moreover, a soup can polarize as the vacuum cannot,

(2)

densities.
shielding glue forces, and cutting off infrared divergences. Non-
perturbative effects plague us here instead. Superconductivity,
crystallization, and like horrors threaten to violate the virginal
symmetries of colour, flavour, fermion number, and even momentum
conservation.

Phase transitions mark the onsets of symmetry violations,
and the study of thermodynamic phases is lafgely a matter of determining
what, if any, symmetry violations are favoured in various regimes. Only

the phase with all symmetries intact is correctly described by perturbation

theory. The others require more elaborate variational descriptionms.

1.2) Approaches and Results

The literature on very dense nuclear matter follows two
general lines, either stretching asymptotically free QCD, or squeezing
nuclear physics. Each approach has its pitfalls.

In the limit of infinite density, a quark soup can be
pictured as several degenerate Fermi seas, one per spin-colour-flavour
state., Asymptotic freedom makes the couplings weak, and the perturbative
admixture of excited states is consequently small., Many investigators
falsely assume that weak coupling is sufficient to justify perturbation

theory. Not so; it is necessary but not sufficient. The classic
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counterexample is BCS superconductivity, where any attraction, no matter
how weak, induces non-perturbative pairing. Some authorities have warned
that attractive colour forces in certain channels would cause analogous

(1)

phenomena in quark soups' ’, but other investigators have heedlessly

ground out high orders of probably meaningless, zero temperature perturba-

(3

tion theory. Perturbation theory generates divergent asymptotic

series when the '"pre-vacuum" is unstable.* This difficulty manifests
itself as a complex energy when certain infinite ladders of perturbation
diagrams are summed, but no finite order of the perturbation series
shows any danger signals. (In the BCS problem, for example, the
unpaired Fermi sea of electrons is unstable against the formation of

Cooper pairs, which appear diagramatically as poles in summed ladders.)

Perturbation theory still has its place; it is valid at temperatures
high enough to restore symmetry, but there special finite temperature

Feynman rules must be used to evaluate the diagrams.

Near normal nuclear density, it is reasonable to treat
nucleons as distinct, fundamental objects, rather than as three
correlated quarks. Such a description is sensible provided that the

(4)

nucleons have no significant spatial overlap. In nuclei, the mean
spacing between nucleons is about twice their root-mean-square charge
radius, but the nucleon picture must give way to a quark picture after
a density increase of less than an order of magnitude. The greatest
difficulty in working up from nuclear density is that phenomenological
interaction potentials cannot be reliably extrapolated to higher den-
sities, Their most troublesome feature is the infamous repulsive core,
whose existence is inferred by the following logic: if nucleons are
fundamental particles, and if 2-body interactions predominate, and if
the range of interactions is not significantly affected by shielding
at higher densities, then the saturation of nuclear forces requires

a repulsive core in the 2-nucleon interaction potential. These
assumptions are fictions, but they are all reasonable approximations
at low density, and the conclusion has entered the canon of nuclear
phenomenology. Slightly above nuclear density, it leads to predictions

(5)

of crystallization , and has led some authors to deny the possibility of
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superconductivity, which requires predominantly attractive inter-
actions. An intelligent discussion of these effects would have to be
conducted in quark language, and would have to explain the 3-body

correlation that makes low-density hadronic matter look more like

nucleons than like individual quarks. In this language, the repulsive

(4)

short distance imteractions are interpreted as quark kinetic energy.
Predictions about superconductivity and crystallization are cast in
quite a different light and are dramatically altered.

» The moral of this critique is that we need a quark
language to discuss physics above nuclear density, and that we must
watch out for several non-perturbative effects: diauark pairing
a la BCS, 3-body correlations that bind quarks into nucleons, meson

condensation, amd perhaps even crystallization.

My-quest for such non-perturbative effects has

yielded the following incomplete map of thermodynamic phases:
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The thrust of Chapter 2 is to calculate the proper-
ties of the paired diquark phase in the lower right corner of the
figure, and to locate the transition to the perturbative phase. These
can be done reliably in the limit of infinite density thanks to weak
coupling. The critical temperature of the transition turns out to
be much lower than the temperature of the big bang, but much higher
than stellar temperatures. The phase transition can alternatively
be induced by a critical magnetic field, which turns out to be much
larger than anything one might expect to find in stars.

| Attempts to produce a similarly detailed theory of "
the baryon phase are sabotaged by strong coupling. Chapter 4 presents
the negative result that such a phase does not exist at high densities
(weak couplings), and gives suggestive arguments for the possibility
of baryon correlations at stronger couplings.

Likewise, investigations of meson condensation in
Chapter 5 yield only the negative result that mesons do not condense

at high density.
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1.3) A Unifying Perspectiﬁe on Non-Perturbative Effects

All the non-perturbative effects mentioned above
involve spontaneous symmetry violations.

1) The paired ground state ('"the vacuum") contains an indefinite number
of pairs. Various processes tap the vacuum as a reservoir of pairs, and
fermion number is only conserved modulo two. Moreover, since there is
no way to make a colour singlet diquark pair, colour symmetry is also
violated.

2) The three quark correlation is really a 6-body correlation in dis-
guise, since nucleons are known to pair in heavy nuclei, and

because the vacuum can only be a condensate of bosons. Fermions are
conserved only modulo six, but colour symmetry is preserved,

3) Meson condensation breaks chiral symmetries,

4) Crystallization is the spontaneous breakdown of translation invariance
from R; to 23, i.e. from continuous translations in all directions to
translations in integral multiples of three lattice vectors. This is
equivalent to momentum conservation only modulo reciprocal-lattice
vectors.

In each of these cases, various Green functions
forbidden by symmetry are non-zero. They obey Dyson equations deter-
mined by the topology of the field theory, which possess non-trivial
solutions besides the trivial, perturbative, zero solution. The method
of describing forbidden Green functions by their Dyson equations is
known as self-consistent field theory.

An equivalent but more cumbersome variational approach
consists in parameterizing the ground state by Green functions or
occupation amplitudes and of minimizing its energy with respect to
them. The Euler equations of this variational scheme are precisely the
Dyson self-consistency equations.

The second approach is usually harder, but it is older.
BC&S originally described their paired ground state in terms of an
occupation amplitude function, and minimized its energy.(e) Self-

(7)

consistent field theory was later developed by Nambu.
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Solving such Dyson equations is an art, unlike conven-
tional perturbation theory, which is a mechanical science. Perturbation
theory is a systematic iterative scheme for generating corrections to
bare Green functions, but the symmetry breaking problem lacks even the
starting point of a bare Green function, and the solution must be pulled
out of thin air.* (The closest mathematical analogy to this situation
comes from the theory of integral equations, perturbation theory being
the analogue of the Neumann series solution for inhomogeneous equations
only.)

We will examine suspected symmetry violations by the
following general method:

1) Identify non-vanishing, symmetry-forbidden Green functions. Typically,
one weird Green function is the granddaddy of all other weird Green
functions. ‘

2) Construct its Dyson equation, ordinarily a non-linear integral
equation,

3) Seek non-trivial solutions.

4) Calculate the vacuum energy. This will involve a diagrammatic

expansion in powers of forbidden Green functions. This energy must

bc lower than that of any other thermodynamic phase at the same
conditions, or else the expansion will have all the diseases typical

of perturbation expansions with unstable pre-vacua.

This methed is most successful in calculating the
properties of paired diquarks, but it is plagued by technical diffi-
culties when applied to dibaryon and meson condensates. Even so, it
is useful in constructing proofs that baryons and mesons do mnot
condense at high densities and weak couplings.

The physical interpretation of symmetry breaking is
subtle. One kind, famous from ordinary superconductivity theory, is
fermion non-conservation. It is a useful mathematical fraud; fermions
do not get lost. An illusion of non-conservation is created by the fact

that field theory's zeroth-order state has indefinite particle number;



it is a non-unique ground state of Ho+uN (see section 1.5 for defini-
tions) constructed by analogy with the grand canonical ensemble of
statistical mechanics. It is formally too difficult to constrain
particle number exactly, but the approaches are effectively equivalent
for very large systems. A different, more tangible kind of broken
symmetry prefers certain directions in group space. Colour SU(3) has
three distinct if similar base states in its fundamental representation,
and colour breaking singles one out for special treatment, causing
pairing between two colours but leaving a third Fermi sea degenerate.
Realistically, quark soup would develop domains with different
preferred colours. However, the ground state that we calculate is a
single, infinite domain. Domain boundaries belong to the realm of
excitations. We cannot calculate their surface energies, which
involve highly non-linear excitations. Only linearized excitations

are tractable and are the subject of Chapter 3.



1.4) A Review of Finite Density Perturbation Theory

If it worked, perturbation theory at finite density
would be very similar to perturbation theory in the void. The main
difference would be in the zeroth-order ground state, but the pertur-
bation series would have its familiar form. The vacuum at zero density
is really a Dirac sea with negative-energy states filled. At finite
density, all states with energies up to the '"chemical potential
(denotad by p) fill, formming a Fermi sea.

In calculating the amplitudes of processes taking
place inside a soup, we must include interactions with particles under
the Fermi sea. We need no new Feynman diagrams to take them into
account, It suffices to reinterpret hole lines as holes either in
the Dirac sea (bona fide positrons) or in the Fermi sea. To effect
this reipterpretation aigebraically, we must modify the fermion
propagator, SF(p) = 1/(§p - m - ie), by changing the sign of the ie
to put above-sea particles into the upper half complex Py plane,
and both kinds of hole poles into the lower half plane. In other
words, poles go into the first and third quadrants of the complex
Py-H plane.

What new physics is there in a soup? For one thing,
we lose Lorentz invariance; there is a preferred, "wind still" frame.
For another, fermions cannot scatter into many states already occupied.

Particularly interesting is the shielding of boson
exchange processes. Exchanged bosons Compton scatter off particles
in the Fermi sea. This effect is included in the reinterpreted
vacuum-polarization diagram, and is properly called sea-polarization.
Due to the lack of Lorentz invariance, the timelike (electric) polar-
izations of vector gauge bosons are shielded very differently from
the spacelike (magnetic) polarizations. The propagator for electric
polarizations gets a plasma frequency added to its denominator.

Although this shielding arises from one-loop diagrams, it is really a



-9.
classical effect, and does not vanish in the limit of zero Planck's
constant. Magnetism, however, is unshielded and remains long-range;*
there is no Meissner effect in perturbation theory. (For a calculation

of the shielding length see reference (2).)

Shielding effects make composite hadrons "dissolve"
in a dense soup. When the range of glue forces becomes shorter than
typical hadronic radii, mesons and baryons fall apart. The demise of
meson exchange interaction mechanisms considerably simplifies pertur-
bation theory. Quark-gluon perturbation theory is complete in any case,
but the Bethe-Salpeter ladders that sum to hadron poles lose importance.
(This triumph is short lived, New and different collective modes arise,

as discussed in Chapter 3.)

1.5) A Note on Terminology

It is important to distinguish clearly between
three concepts of "vacuum", which refer to’the ground states of
several variants of the Hamiltonian H. We define Ho to be the
kinetic part of H, bilinear in the fields, and N to be the fermion
number operator. Then
the 'void" is the ground state of Ho 5
the '"pre-vacuum'" is the ground state of Ho+uN ; and

the "vacuum'" is the ground state of H+uN
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2) DIQUARK CONDENSATION
2,1) The Condensate

It is natural to suspect a diquark condensation in
quark soup directly analogous to the dielectron condensation in BCS
superconductivity. The substitution of gluons for phonons as the
origin of the attractive force alters little since the general char-
acter of the phenomenon is insensitive to the details of the inter-
action. We can therefore steal many results of the BCS theory with
impunity.

Cooper devised a sufficient diagnostic test for the
invalidity of perturbation theory in finite density problems.(l)
If it is energetically advantageous to form bound pairs in the empty
states above the Fermi surface, then the degenerate sea is unstable and
perturbation theory must diverge., Clever resummations of infinite
sets of diagrams indicate an absurd, complex ground state energy, and
do not fix the problem,

Cooper's test is satisfied in quark soups. Quarks
come in colour triplets, and can combine in two different colour
representations of diquarks, in one of which gluon exchange forces
are attractive. The rest of the argument is identical to the argument
for the instability of the electron sea.

The resolution of this instability is less obvious.

In the BCS problem, there are only two kinds of electroms, spin up

and down. Since phonon forces are extremely short range, only S-wave
Cooper pairs bind, and Fermi statistics requires the spin wave function
to be antisymmetric, i.e. spin zero. The quantum numbers of the

disease suggest the quantum numbers of the cure. 1In quark soups,
however, there are 3 colours x 2 spins x ever-so-many flavours of

quarks, which can make multitudinous varieties of diquarks, and it is
not obvious which of them will condense., In fact, even triquarks
(baryons), which attract in colour singlet states, might plausibly

bind, pair, and condense. We will discuss this possibility in chapter &4.

BC&S resolve the instability by altering the ground
state. Their Fermi surface is blurred over an energy range called the

gap, and each particle is paired with a partner of exactly opposite
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spatial momentum. One can express this ground state algebraically as
the exponential of a pair creation operator acting on the void, but
this construction is not useful for our purposes; we are more intér;
ested in Green Functioms.

Following this lead, let us simply assume that the
ground state is paired. This may not in fact be the lowest energy
correlation scheme in all regimes, but we shall ignore this unhappy
possibility until we have a chance to compare the energy of this trial
state against the energies of states with otler sorts of correlations.
In the present case, the vacuum is a reservoir of diquarks, which pop
in and out of interaction diagrams, so that fermions are only con-
served modulo two. The granddaddy o3y all fermion non-conserving
Green functions is just the amplitude for a diquark to pop out of

the vacuum expressible also as an effective Lagrangian term:

O ¥36) & loy =1 ., =fdx dy YS(x) A5 Gey) W (y)  (2.1-1)

We must now make some decisions about the character of the colour
wave function expressed by the indices st and the spin wave function
expressed by the spinor indices ab. Since the diquarks that condense
in the vacuum are substantially identical to the Cooper pairs that
formed above the pre-vacuum's unpaired sea, it is safe to assume that
they will be colour anti-triplets, that being the attractive repres-
entation. Their other quantum numbers are restriced by Fermi statistics.
Colour anti-triplets are antisymmetric, and the space-spin-flavour
wave function is consequently totally symmetric. If there is'only one
flavour, then space and spin are either both antisymmetric
(s=0; L=1,3,5...; J=1,3,5...) or both symmetric (S=1; L=0,2,4...;
J=1,2,3,4...). 1In neither case may the diquark be a spinless scalar.
The vacuum is not isotropic. Its properties are painful to calculate.
If there are several flavours, however, the statistics do admit spinlesé,
S-wave diquarks antisymmetric in flavour, and our favourite symmetry has
a fighting chance.

Of course, nature does not share our aesthetic

prejudice that spatial anisotropy is ugly, but that flavour
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antisymmetry is pretty. Nature chooses between these schemes on the
basis of energetic advantage as cold-bloodedly as a corporate accountant
selects investments on the basis of profitability. Here, beauty pays.
Antisymmetric spins are energetically preferable because of chromo-
magnetic interactions. (Remember: the N is lighter than the A.)

S-waves are almost universally preferable to orbitally excited states,
(except in some exotic cases such as He3). Flavour symmetry or anti-
symmetry has no direct energetic implication unless flavour is gauged,
in which case the antisymmetric state is preterred.

\

2.2) The Gap Equation

Now let us set up the self-consistency condition for
the symmetry violating amplitude A. For lack of masochism, I shall
treat only the isotropic case of spinless diquarks.

In setting up the problem, we will have to make a
string of approximations. All are "asymptotically justified," i.e.,
they are accurate in the weak-coupling limit, which coincides with the
limit of infinite density thanks to asymptotic freedom.

The propagation of particles suffers an interesting
alteration in a paired soup. A propagating hole is ambushed by a
diquark that pops out of the vacuum; one member stuffs the hole, and
the other continues on as a particle with the hole's original momentum
and spin. Then the vacuum resorbs the diquark, and the hole is re-
stored. Such adventures dress the hole,.

' Mathematically, the bare hole's propagator is
(p - ﬁ)_l, where the energy Py is measured relative to the chemical
potential p., (We define Y = nY, and assume massless quarks.)
Each flip-flop inserts a factor A (§ - ﬁ)-l A%,

The mixing of particles and holes by these flip-
flops is most conveniently expressed by writing the propagator as a

(2)

matrix.
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+

> <
S-l - p-¥ O 0 A > particles
0 pHl A 0 | <holes
_ -1
= So‘ - % (2.2-1)
To see the physical quasiparticle spectrum, we must locate the poles

of S. These lie where 5°© is null, i.e.

2

det (s1) = p% - + U, 8] - &% =0 (2.2-2)

We can rid this equation of Dirac matrices by multiplying it by a
duplicate factor with opposite sign commutator. Then

2 2 22 2 2
(- -n -4) -4pp =0 ; (2.2-3)

where p denotes the spatial components of p, and p2 = E2 - p

~

A minor rearrangement yields the familiar quasiparticle spectrum
with gap A,

E(p) = (0° + (|p| £ w? LA (2.2-4)
with an extra branch for positrons.

The crucial Dyson equation for the quark propagator
is symbolically

g7l - so'1 - ijPD ¥ ' (2.2-5)

where y and I' are bare and dressed vertices , and D is the glue
propagator. We make the ladder approximation and calculate to lowest
quantum mechanical, one-loop, order. Thus we use y for ', but keep
the shielding in D, since it is a classical effect, loops nonwith-
standing. (This approximation is weakly but innocuously gauge
dependent. The situation is similar to that in the calculation of
the renormalization group's B-function, B(g) = dg()/d(log M)
= bg3 + cg5 + ..., where only the leading coefficient b is gauge
invariant. Likewise, our results are correct to leading perturbative
order regardless of gauge.)

This equation is itself a matrix equation in the
particle-hole basis. Its off-diagonal element is the self-consistency
equation for the gap. Let us isolate it. The inhomogeneous term So-1

contributes nothing.
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4 o. Ta
ap) = -1 | LED_(poiy Y2 A YA (5 5.4
h 2 k -n -A ’[V{)K] 2

(triplet colour indices on A and A have been suppressed.) This has
the form of a Bethe-Salpeter equation for a diquark bound state with
zero energy relative to the chemical potential. We can simplify

the equation by using our knowlédge of the colour wave function.

The equation splits into sextet and anti-triplet moieties. The
sextet Is repulsive and lacks solutions. Restricted to the anti-
triplet portion, the colour index machinery reduces to a Césimir

operator as follows:

; <. ;— a o ) _ i
i Sijk Py = C Sguie 5 C = 2/3 for SUG) . (2.2-7)

The spinor and tensor machinery needs work too.
For this, we must use the specific form of DGT(q), with electric
components shielded but magnetic components long range. Let us
temporarily indulge in the myth that all components are shielded
alike, so that the propagator is Lorentz invariant. This would in
fact be right IF colour forces were short range rather than gauge
forces. We use DGT(q) = 8, / (q2 - Qz) .

The gamma contraction deletes the commutator, giving

4 2 2 .2
ap) = cg” | LEpe- G50 A (2.2-8)
h (k'-n"-A") -4u k

Now, performing the dko integration and surrounding poles in the upper

half complex k. plane, we simplify the integration to a conventional

0]
three-dimensional convolution. (Approximation: We drop a tiny

contribution from positron poles, whose relative importance is as A/p.)
3

2 = cg® [ Sy A8 (2.2-9)
h E(k)
1
B = (k] - w? +a®)F

Only one thing could make this equation nicer--
linearity. This too can be had if we make the approximation of
replacing A(k) in E(k) by Ao, its value near the Fermi surface,

which actually appears as the value of the gap in the quasiparticle
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energy spectrum.

Even after these drastic simplifications, exact
solutions are hard to come by. We will have to settle for limiting
forms valid as g-0, A~0. First we recognize that A/E peaks sharply
at theFermi surface, and has the general character of a delta function

there. The unnormalized shape of A(p) is given in this limit by

nape(P) = jd3k D(p-k) 8C|k| - ) . (2.2-10)

With the eigenfunction of the linear, homogeneous integral equation in

hand, finding the eigenvalue'g2 is easy.

-—ﬂ-D( : Shape(q+Q) / Ashape(Q) 5 5. 4%
E(qHQ) ’

where Q is a perfectly arbitrary momentum,

Now let us evaluate this to obtain g as a function
of Ao. (Approximation: Since A <KD<<u, we ignore the curvature of
the Fermi surface., It is convenient to take Q = pZ, exactly on the

Fermi surface.,) Then

-2 d d 1 A
g = g Loy Sy Shape(q+Q) / ghape(Q) .
3 2 2 2 2 .5 :
h q + G (qZ + Ao )
2 2 .
g-z =C —lf log Bf log—gi (2.2-13)
b Q A

(Approximation: We have also ignored the retardation in D(q), which
adds a small, ignorable constant to the factor log (n/Q) .) This
inverts to the dramatic dependence
2 2 2 2 2,2
8" ~n" exp (<4m [ Cg” log (/) ) (2.2-14)

reminiscent of the BCS result. The gap .is miniscule, but its
philosophical interest is disproportionate to its numerical
magnitude,

We must now repent of the false assumption that

magnetic as well as electric components of the glue propagator
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are shielded with plasma frequency Q, when they are in fact long
range, We will now make the opposite extreme assumption that neither
electric nor magnetic components are shielded. The truth lies
between these extremes.

Since D(0) is now singular, we may no longer use the

estimate of As given by eq.(2.2-10), which diverges logarithmically

hape
at the Fermi surface. A more careful convolution of D © (A/E) shows
that this logarithm is cut off at the Fermi surface give-or-take
roughly Ao’ i.e. very rOUghly»Ashape ~ log p/E . Whereas previously

the only effect of Asha in eq.(2.2-12) was to give o(n) cutoffs,

pe
while remaining constant in the vicinity of the Fermi surface, the new

A varies appreciably there., Recalculating eq.(2.2-12), we get

shape :
at the intermediate stage of the integration
o(p)
2 2m . 1 log (u/(q 2 + 4 HF
g =¢C -3 dqz log E_ ) 7L Z ol
h z (q,” + 8.7 log (1/a)
i 2
= C 2F 2 log (pn/A) (2.2-15)
h3 3 o

This leads to the asymptotic behaviour

Aj ~ B exp (-6%1r / C%g) , (2.2-16)
notable for the odd power of g in the exponent.
An honest calculation should take into account the
fact that the spatial, magnetic components of the gluon dominate by
virtue of their longer range. Such a treatment is tedious and ‘
unenlightening, and produces a result boringly similar to eq.(2.2-16).

. We leave this déja vu excercise to the appendix.
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2.3) The Energy of the Ground State

Three methods exist for calculating the energy

density of the vacuum, One is to find the matrix element of T

J
an unpleasant procedure because the time direction gets speciago
treatment,

A second method consists in calculating vacuum
bubbles.(3) The vacuum energy density is the logarithm of that

obnoxious phase which multiplies all S-matrix elements, the vacuum-
to-vacuum amplitude, divided by the 4-volume of space-time. Dia-
grammatically, it is the sum of linked vacuum bubbles, which

are easily specified in perturbation theory. With non-perturbative

effects, however, diagrammatic specification of bubbles becomes

ambiguous.
A third method is suggested by the following little
theorem.(A) If E(g) is the ground state energy of HO+gH' , then
3
E@ = EO) + [ dele | e’ [y . (2.3-1)

The matrix element of gH' is unambiguous, and is moreover felicitously
simple because gH' vertices are precisely what occur naturally in
vacuum bubbles.

The simplest matrix element of gH' is the bubble

The first term is the obvious perturbative exchange
interaction between like quarks, with minor kinematic corrections due
to the gap in the energy spectrum. The second term is new. It

represents the binding energy of paired- particles. It is the heart
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of this non-perurbative effect, which must be energetically advantageous
to be meaningful. By virtue of the gap equation, it reduces to a

single loop.

(2.3-3)
sy [ Sk, 0 800 () A1)
R et 0k o n® el T, KD
_— e SR STeS)
h4 (kz_pz_Az)z _ 4p253
3 2
- dk A (k) 2,2
= = h3 ZE(k) (2 + O(A /]-1 ))
2 2
- A 2 d3k . shapeck)/ : shape(Q)
° | E(k)
2 2 2 . . -
= -Ao p log (p/Ao) /[ w in short range approximation

= -A02 uz log (u/Ao) / 3W2 in unshielded approximation

This expression must yet undergo a _/-dg/g -
integration to become the energy density, but this does not alter
its form.

The non-perturbative contribution to the energy is
unimpressive. compared to the perturbative energy, but it is large
enough to be important by another standard., It is equal to the energy
density of the critical magnetic field that would cause a transition
from the superconducting to the normal state. This magnetical field

is too large to be attained in reasonable stars.
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2.4 Finite Temperatures

Pairing phenomena disappear at a finite critical
temperature, above which symmetry is restored and perturbation theory
is valid. The value of the gap decreases continuously with increasing
temperature, reaching zero at the critical temperature, which
consequently marks a second-order transition between the paired and
perturbative phases.

A neat formalism exists for finite temperature

field theory.(5 Our Dyson equatlon is altered to read
3 .
s'l = =% _ 132: dp YS(wn+%)PD i p0=wn=1nhT (2.4-1)
o 3 =
h
4
= S.—l 4§ P yS(wn+%)FD coth Bw/2
o 4 .
enclosing coth poles only
-1 4
=s = - i d’'p vYSC w )ID tanh Bw/2
h4 enclosing S(w,p) poles only

The contour at infinity vanishes.

The gap equation becomes simply

3
A(p) = C d—315 D(p-k) i)

h 2E(k)

tanh BE(k)/2 . (2.4-2)

All that is new is the tanh factor. At zero temperature, the tanh

is unity, and the peak of the integrand comes primarily from the
factor 1/E = (k2 + Aoz 5% , which is reminiscent of 1/k with a
cutoff at Ao . At the critical temperature, on the other hand,
AO(TC)=O , and the corresponding integrand factor is (1/k) tanh Bck/Z,
again reminiscent of 1/k with a cutoff at T.- The quantities

T and Ao play similar roles, and a trade-off can be arranged.

It is not surprising that Tc and AO are of the same order., For

the short range case, we can steal the BCS result as is:

T
c

i

.57 AO(T=O) . This number comes from the condition



-20-

dk _ dk tanh Bk/2 5 (2.4-3)
2 2 % B -
(k' +A) k
which can be converted into
log BA/2 = dx ( (x"+1)72 - tanh (x) / x ) . (2.4-4)
0

This result is valid only for the short range case. No accurate
result is available for the unshielded case because the result is
disastrously sensitive to Ashape’ which is only crudely known.

The critical temperature is too low for these phenom-
ena to have been important in the early universe, when the temperature
was about a ﬁhousand times higher than the cube root of the excess
baryon number density. Neutron stars are cool, but stability
conditions limit their central density to a few times normal nuclear
density, hardly enough to justify our assumption of asymptotic
freedom (weak coupling). The low temperature, high density limit
in which these results apply exists in nature only in collapsing stars,

where wise men fear to tread.
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2.A) Appendix: Honest Treatment of Shielding

In calculating the gap with the honest glue

propagator

D00

=-1/(q2-(22), D,. =1/ q2

ii (2.A-1)

°
7

we run into one messy complication. Because DB # gBY D , we lose

the beneficial simplification 0, $] YU = 0 , which deleted the

commutator from eq.(2.2-8) and justified the use of a scalar gap.

We now need a gap with both scalar and commutator parts, which get

mixed by the gap equation.
Accordingly, our new quantities are
. =2
A=A+ A, M, ¥] n , (2.A-2)
2 2 2 ’
by =8y T8 s (2.A-3)
S<> = So A §x> (2.A-4)
2
=2 =1 -
= (8, - 18, DLKk] w kzuzA 2[516]22 ’
(kT-p -A ) -4pk
o
A T YS Q Y o A=
- Al + iAz [ﬁ,ﬁ] u-2 _ -[-( 3 Sscalar +1 Scommutator) D .
Finally, we obtain
— A . R
D 3/2 -3i Al (2.A-6)
i -1/2
1/ A,
as opposed to the y y case with the different matrix
[ 5 ]
(2.A-7)
0 0

- -
The upper eigenvalue of the new matrix is 5/2 versus the previous

value 2

Thus the gap is really the eigemmixture

=2
= (3i+5/2 - 10,80 A g , (2.A-7)

and eq.(2.2-16) is to be multiplied by -the ratio of new to old

eigenvalues.
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3) COLLECTIVE EXCITATIONS

3.1) Survey of Models

Quark soups with spontaneously broken symmetries are
highly prized for their interesing and abundant collective excitations,
especially their Goldstone modes. Quite apart from their astro-
ﬁhysical importance, they are an ideal mathematical laboratory for
studying the properties of these excitations.

Goldstone modes are central to our understanding of
spontaneously broken gauge theories, where the mass of vector gauge
bosons supposedly comes from "eating'" Goldstone excitations.(l)

They are also put forward as models of featherweight mesons, such as
the pion, and elucidate the true meaning of PCAC.

Several models, of varying degrees of realism,
reproduce some or all of these interesting phenomena, and permit
calculation of their properties. Their successes are summarized
in the table below.

The soup models are most successful mathematically--
almost all their properties are readily calculable--but they shed
little light on the obscure problem of the real p=0 world, since a
soup's difermion condensate is not comparable to the p=0 world's
fermion-antifermion condensate, and the collective excitations of
these condensates are in no sense homologous.

The wave functions of ordinary mesons in the p=0
world and of difermion collective excitations differ considerably.
The size of ordinary mesons is largely determined by quark masses
and the infrared end of glue forces. The size of difermion
collective modes is determined by the smallness of the gap; they are

extended objects much larger than the average interparticle distance.
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3.2) Goldstonology

Every spontaneously broken continuous symmetry gives

(5)

rise to a Goldstone excitation. Gauge bosons of a local symmetry
eat their associated Goldstone modes and get fat., Goldstone excit-
ations of global symmetries have arbitrarily small energy, however.

The relevant symmetries of the pre-vacuum are
fermion number conservation U(l)#, colour symmetry SU(M)C, flavour
symmetry SU(N)f, and spatial isotropy SO(S)S. It is convenient to
lump fermion conservation together with the flavour group by replacing
SU with U.

In the BCS problem, U(l)# X SO(3)S breaks to SO(3)S.
One generator of the underlying group fails to leave the vacuum
invariant. The sole corresponding Goldstone mode is eaten by
electromagnetism, causing the Meissner effect.

In the quark soup problem, symmetries suffer the

following fates:

1) SU(2)c X U(l)# b4 SO(3)s breaks to

SU(Z)c X SO(Z)S. There are three Goldstone modes: a scalar
and two polarizations of a vector. Barriﬁg local electromagnetism,

none are eaten.
2) SU(Z)C X U(ZN)f b4 SO(3)S breaks to

SU(2)c X (SU(2)f)N x SO(B)S. There are one bland scalar and
4N2-3N-1 flavour adjoint scalars. Barring local flavour, even these
tasty Goldstone modes are not eaten.

Although a given pair involves the antisymmetric
combination of just two flavours, quarks of every flavour want a

piece of the action. Flavours therefore double up to pair.
3) SU(2)c X U(2N+l)f X SO(3)S breaks to

SU(2)c b4 (SU(Z)f)N be SO(Z)S. The odd flavour forms an anisotropic

condensate as in case (l); the rest condense as in case (2).
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4) SU(3)c be U(l)# x SO(3)S breaks to

SU(2)c X U(l)c-# X SO(Z)S. Colour breaking is laid to the conden-
sation of anti-triplet diquarks, which select a particular direction
in group space. 1In addition to the dull Goldstone modes of case (1),
there are five coloured Goldstone modes, which get eaten by their
corresponding gluons. Only an SU(2) subgroup of colour forces remains

long range. *

5) SU(3)C X U(2)f X SO(3)s breaks to

SU(Z)c X U(l)c_# X SU(2)f x SO(3)S. This case has Goldstone modes
like those of case (2) and fat gluons like those of case (4).

6) SU(3)c X U(2N)f x SO(3)S shatters intricately.

Various doubled-up flavours can select differently oriented subgroups
of colour in which to pair. We must determine the energetically
optimal relative orientation of the SU(2)c subgroups chosen, Let us
suppose that several such subgroups were differently oriented so that
SU(3)c would be fully broken; every gluon would then get fat. As we
have shown, the gap and therefore the non-perturbative interaction
energy are much smaller for finite range forces than for unshilelded
forces. The alternative is to pick all SU(Z)c subgroups parallel,
thereby preserving an SU(Z)C X U(l)C with unshielded gluons. This

latter option is energetically superior.

We have slighted the internal symmetry groups by
ignoring the possibility of chiral structure. If bare quarks are
v massless, then these groups would be doubled to SU(M)cL X SU(M)CR X
U(N)fL bq U(N)fR. This would cause the parity-doubling of all
internal symmetry Goldstone modes; every scalar would have a pseudo-
scalar twin., Local vector gauge bosons would eat only the scalars,
however.

If quarks are light but not quite massless, i.e.,
the underlying chiral symmetry is imperfect even in the pre-vacuum
and not just spontaneously broken, then the pseudoscalar modes would
not be zero energy excitations. This is precisely the situation of

the pion in the real world. The pion would be an exactly massless,
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pointlike particle only in the ideal PCAC limit of perfect underlying
chiral symmetry, spontaneously broken. Instead, it is a featherweight
meson with discernible structure, which can be ascribed to the

imperfection of the chiral symmetry.

3.3) Anatomy of a Goldstone Boson

Group theory predicts the existence of Goldstone modes,
but sheds no light on their structure. Several other approaches fill
this need. '

A diagrammatic demonstration of the existence of
Goldstone modes starts from the observation that the gap equation
has the form of a Bethe-Salpeter bound state equation, which is the
condition for a summed ladder to have a pole. Such an S-matrix pole
signifies a collective excitation mode, One solution, the gap function,
is then the wave function of a bound state of zero momentum and energy
(relative to the chemical potential), which is the endpoint of the
Goldstone excitation spectrum,

A related approach utilizes Ward-Takahashi identities.
These identities hold for all currents of underlying symmetries,

(6)

whether spontaneously broken or not.
o _ a a -1 -1 a ‘
(p-q) T~ =X 8 "(p) -5 (9 A (3.3-1)

In particular, if A% is the generator of a spontaneously broken
symmetry, it will not commute with S. Therefore, as p-q—0, the right -
hand side does not vanish but approaches a constant. We must conclude
that FO contains a pole of the form (p-q)c/(p-q)2 times a residue
representing the amputated Bethe-Salpeter wave function of the Gold-
stone boson. This residue is y = [x,S-l(p)] :

The connection between these approaches becomes
obvious when we verify that y satisfies the Bethe-Salpeter equation.

In ladder approximation, the equation reads

X = ijSXSY (3.3-2)
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Inserting the alleged solution, we get

jDYS[MS'llsv = IDY[S,MY = [, jDYSY] (3.3-3)
1.1

= [n,2] = [N,87 - ] = [x,s'lj , q.e.d.

Qualitatively, we may also describe Goldstone modes
as bound states of various kinds of quasiparticles. For example,
let us classify the five coloured Goldstone modes engendered by the
spontaneous breakdown of SU(3)c to SU(Z)C. Let "red" and "white"
be the base colours of the preserved SU(2), and "blue" be the colour
that does not participate in pairing. R denotes a red particle, and
R a red hole. Swallowing RW pairs from the vacuum mixes R with W
and R with W. Accordingly, there are five incestuously mixed
families, suggestively named after broken generators of SU(3):

4) RB, WB

5) WB, RB
6) RB, WB
7) WB, RB
8) RW, WW, RR, WR . ,

These are the only attractive possibilitiés. Symmetric states repel
and cannot bind as Goldstone bosons.

The pieces of the Bethe-Salpeter wave function
differ slightly for the bluetquasipink and for the diquasipink bosons,
but the ultimate result is the same. The bipedal form of the wave

function (¢p = SxS) is

Sleft leg XamEutée Sright leg
% = Ses A S (3.3-4)
0 = S 0 +A S
~-A O

where S is the matrix form of the propagator, and S>> is its diag-

onal entry. (See eq.(2.2-1).) Specifically,
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]

g = A B - 2% (3.3-5)

Pg

]

0 +01CCHHE) (B-il) -02)
A (B (FhD) -2 0

which are the familiar integrands of the gap equation (2.2-6).

3.4) Taxonomy of Collective Excitations

To illustrate the techniques for analyzing the
collective excitation spectrum, we shall study one example in detail,
the SU(Z)C x_U(Z)f soup, which preserves all but its fermion number
symmetry.

The Bethe-Salpeter equation for all its excitations
resembles the equation for type (8) Goldstone modes discussed above.
Solutions of this equation have a wide variety of Dirac matrix
structures, which are multiplied by various orbital tensors built
of 3-momenta. The number of loose spatial tensor indices determines
the spin. The solutions fall into families:

1) The singlet series:

This series has the simplest possible Dirac structure, namely the
unit matrix. As discussed in appendix (2.A), the unit matrix is
mixed with a commutator term. The lowest member of this series

is our friend the Goldstone mode.

1
So = (1& v (1)
=0 )@
1D2 =( " ) (E,R - trace)
ete.

Because of the chiral symmetry, each of these modes is degenerate

with a chiral twin containing an extra Y5 in its wave functiomn.
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2) The lower triplet series:
A spin index of the Dirac structure is inner-multiplied with the

orbital tensor.

3 o

B,= (& vy (D)

3

D=C " ) (P

etc. and chiral twins

3) The upper triplet series:

The spin index is outer-multiplied with the orbital tensor.

3

S, = (yx ¥ & v yp) (1)
3P2 = ( L4 ) (E) - trace
etc. ] and chiral twins

4) The middle triplet series:

The spin index is cross-multiplied with the orbital tensor.
3y o

etc, and chiral twins

With perfect chiral symmetry, the upper and lower triplet states do
not mix, as they would in a deuteron, because the lower series has
an odd number of y-matrices, whereas the upper series has an even

number,
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3.5) Calculation of Selected Excitations

It is not too difficult to calculate the excitation
energies of singlet series modes in the short-range approximation.
We solve the Bethe-Salpeter equation by an ansatz for the wave function,
It differs from the Goldstone modes' wave functions in several
respects: It has a spherical harmonic angular dependence. 1Its legs
carry unequal 4-momenta, piM/2, where M is the excitation energy.
Finally, its matrix structure is not exactly [O -1] , but it is

1.0

a good aspproximation to use just that.

Accordingly, we take

_[o &
Xg, = [_A o] Y (0 (3.5-1)

o (PH/2,p-1/2) = S(pHM/2) x, S(p-M/2)

and insert them into the Bethe-Salpeter equation (3.3-2). The integ-
rand now has poles at Py = iM/2+E(p) . After performing the yc...YO
contractions and the po-integrations, omitting positron poles as

in eq.(2.2-9), we get

3

x(® = cg [ LE p(pary B (3.5-2)
h E (k)-M A

This equation is gseen to reduce to eq.(2.2-9) as M-0 . The effect
of the angular dependence of yx upon the integral can be extracted as

follows: 2 9.1
o | da, (q,+A )% 2Q-q,) 9
5% 5 4mp A (3.5-3)

q, +Ao - M /4 ;

PL(cos 0)
AL d(cos 9) 5 5 .

2n"(l-cos 0) + Q

AQ) = cg

This can be seen to reproduce the factors of eq.(2.2-13) when L=0 .
The factor AL is always positive but decreases monotonically as L
grows. Meanwhile, N&:QAO , which is, not surprisingly, precisely the
two quasiparticle threshold. The integrand becomes very large near

qz=0, compensating for the reduced A Thus we find an infinite

et M
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number of orbital excitations, leading up to the quasiparticle
spectrum,

No radial excitations are known.

The various triplet series modes may be calcula ted
by the same method, but the algebra is made onerous by all the
complications of non-commutative Dirac algebra.

It would also be interesting to lift the degeneracy
of chiral twins by "manufracturing" the chiral symmetry. Inserting

a mass by hand into the bare propagator changes eq.(2.2-1) to

-1 _ p-¥-m A
A pHf+m

(3.5-4)

This makes the algebra unbearable because terms with even and odd
numbers of Dirac matrices are now mixed, so that most Bethe-
Salpeter wave functions combine four different Dirac structures.
The most controversiél problem is the calculation
of the dispersion law for the energy as a function of non-zero
total 3-momentum., Several calculations in the literature disagree,

and I do not wish to add to the body of incorrect results.
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4) DIBARYON CONDENSATION

4.1) Adapting the 2-body Formalism

The correlation scheme of low density nuclear matter
is known experimentally. Instead of pairing, quarks clump in threes
to form colour singlet baryons. At a higher level, nucleons them-
selves pair and cluster as alpha particles, but these are much weaker
correlations, When, if ever, do these complex correlations give way to
simple quark pairing? We find that they are fragile and survive
only at low densities.

The formalism of self-consistent field theory is
designed'to describe the vacuum expectation values of forbidden Bose
operators only, We cannot readily discuss a baryon sea; we must
discuss a di- or tetra-baryon condensate, even though single baryons
appear to be the physically significant unit at low densities, di-
and tetra-baryon correlations being so weak as to be almost irrelevant.
Consequently, the fundamental, forbidden Green function that we examine
is the amplitude for six or twelve quarks to pop out of the vacuum in
a colour singlet state. Even if there is only one flavour, Fermi
statistics admits spinless clumps, consisting of one particle in each
of the 3 colour x 2 spin states. (We will restrict our attention to
this simple case.) For convenience, we describe the spatial wave
function of six bodies in shell model language; in the simplest

(1) This

conceivable situation, all six quarks occupy the 1S shell.
is not particularly realistic in view of the fact that quarks actually
segregate into two almost independent clumps of three rather than one
great clump of six, but this inaccuracy is excusable since the thrust
of the analysis is not so much to produce a theory of 3-quark cor-
relations as to resolve the clumping versus pairing controversy by

showing that any more-than-two-quark correlations are fragile.
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As in the diquark condensate, the quark spectrum has
a gap. The mechanism for producing this gap is not identical,
however. A hole that swallows a dibaryon turns into a pentaquark,
which in turn reverts to a hole.b The details of pentaquark

propagation are complicated, involving five quark propagators

[ <

b e
> % <
Ay X

<
L ~

and four loops.

P
~

(4.1-1)
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The gap in the quasiparticle spectrum will still be called A , but
it is not so simply related to the wave function A of the clﬁmp.

The derivation of the gap equation carries through
as before. In ladder approximation,

A = ¢ K $8SSSS A 4.1-2)

<

PAS

N

N

A

This equation is just like the pairing equation plus a few.extra legs,
but the effect of these legs on the solution is drastic.

The Bethe-Salpeter form of the gap equation is
elegant but intractable, and its covariance is a dispensable frill
in a non-Lorentz-invariant medium., Moreover, its solution contains
a wealth of useless information about off-shell constituents. We
would be better served by a Scuroedinger version of the same
equation. To convert A="g2 K S6 A to Schroedinger form, we
consider the residue of SSSSSS A at its mass shell pole. All but.
one of the constituents can be on shell simultaneously. The last, off-
shell propagator is a non-trivial factor conventionally absorbed
into the Schroedinger wave function. A cavalier simplification of
(g - Epy) )7

The condensed dibaryons have zero total 4-momentum (measured

the Dirac algebra renders this last propagator as

relative to the chemical potential); therefore po6 = -pOl-...-pO5 .

The last propagator thus becomes -1/ (E +.. +E ) , where

(([pl-u)+A % T, -
. We identify ¢Schroedinger A/ ZE .

The Schroedinger version of the gap equation is
o
Y (22,+q) (22,-q)
=2 p(g) ¢(...pi+q...pj-q...)
0i 0j (4.1-3)

i<j ©i]
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(Capitalized momenta include the chemical potential; they are not

measured relative to it.) Equivalently,

3
2
(ZE) ¥ = Cg [-3—39 D(q) (1 - cos 6,,) ¥(p;tq, Py-q,...) (4.1-4)

It is easy to verify that this equation reduces to the 2-body form
eq.(2.2-9) . There, partners have exactly opposite 3-momenta;
thus cos 6=-1 and ¥E=2E. Only the value of the Casimir operator is
different, (The agreement of factors of order unity should not be
taken too seriously because of our careless simplification of the
spinology.)

The gap equation (ZE) § = g2 K { may also be

profitably reformulated as a variation condition,

ar
0=5 <¢ : w; : (4.1-5)
No full solution has ever been constructed for this

equation. The best that can be done is to invent variational trial
solutions and to determine an approximate relation between the gap
and the coupling strength, The danger in using variational estimates
is that they invariably overestimate the energy by some amount
proportional to our artlessness in inventing a trial wave function.
Here, they tend to overestimate the coupling strength needed to
produce a given gap. While a variational method can prove binding
possible, it can never prove binding impossible because a better

‘trial function might always be found to give a lower energy.

Here, our trial function suggests that 6-body,
colour singlet clumping is possible only at strong coupling. Although
the estimate of the minimum coupling strength (derived in section 4.2)
for such a correlation can certainly be pushed down by better choices
of trial functions, backup arguments exist to show that some finite
minimum coupling strength does exist. By all accounts, it is rather
large, and the phenomenon of clumping is relegated to a zone of

mystery, where nothing can be calculated accurately.

™
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4.,2) The Shell Approximation

The state of the art in multibody bound state physics is slightly
inferior to the Hottentot number system, "1 2 3 ®", 1In bound state
physics, two's tractable; three's a cloud, Problems with very many
degrees of freedom may, however, be successfully treated by the shell
model, where each particle is taken to move in an average field of
all other particles.

) We give specific mathematical content to this
assumption by neglecting angular correlations and assuming a var-
iationsl Hartree form ¢ = f(pl)...f(p6) . This violates one obvious
property of the true gap function, namely ;Ri=0 ; there is a
redundant degree of freedom. The consequent error is mitigated by
the large number of particles in the clump.

From the variational reformulation of the gap
equation (4.1-5), or by manipulation of the gap equation (4.1-4)
itself, we can derive a special equation for f(p). Taking advantage

of the factorizable form, we first split the true gap equation into

3
-1 d g - -
Elfl"’ =2 C ;;; —/rh3 D(q) f(pl+q)...f(pj <) . (4.2-1)

and then eliminate the dependence on Pys-eesPg by multiplying by

* * . : 3
f2 ...f6 and integrating over d pz...d Py Then
1 d3
E, £ =2C [ 52D F(a) £(p;-q) (4.2-2)
11 6 h3 1
where
3 % 3 %
F(q) = d[d-P £ (p)E(q-p) / .[ dp f £ (4.2-3)

This resembles eq.(2.2-9) with the gluon propagator softened by a
form factor F(q), which can be physically interpreted as follows:
In a paired sea, states of opposite momentum are
either both full or both empty. When a quark scatters from a full
into an empty state, its opposite momentum partner is guaranteed to

find an empty destination upon absorbing the recoil. Not so with
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6-body correlations, where five partners divide each opposing
momentum, and there are no exact full-full or empty-empty correl-
ations. The "form factor" represents the probability that a partner
will be available to absorb the recoil.

The modification of the potential by a form factor
can also be understood as a consequence of the shell model in
coordinate space, The potential in a 2-body bound state is
precisely the 2-body interaction, but in a larger bound state,
the shape of the potential well is the 2-body interaction folded
together with the shape of the cloud of partners.

4.3) No Clumping at Weak Coupling

The gap associated with a non-perturbative‘effect
must have one of three possible behaviours as the coupling strength
decreases:

1) The gap can persist out to arbitrarily weak coupling--as does
pairing. AoﬂO as g0 . Or

2) The gap can vanish continuously at some finite coupling strength.
AoﬂO as gﬂgcrit>0 . Or

3) The gap can vanish discontinuously.

In the context of the shell approximation, we can
eliminate the first two possibilities. It is possible to construct
a solution to eq.(4.2-2) in the hypothetical limit AoﬂO . We
solve the equation by the approximate ansatz f~1/E . The full form
factor F(q) can be obtained numerically, but an analytic approx-
imation to its tail fills our needs. For momenta in the range
p > q >> Ao , the form factor behaves like Fefof~ a 1og2 (q/Ao) Ao/q P
with a of order unity.

The analogue of eq.(2.2-12) is

-2 d3qr F 1

3 2 .2 2 2
h g-i-() (qz +Ao)

(4.3-1)
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g ~ Ch " m aglog (4.3-1)

As AoﬂO , g neither vanishes nor approaches a constant, but blows up
pathologically. In fact, it never gets below gzmin% 20 . This
pathology is not subject to the facile interpretation that the six-
body correlation disappears discontinuously--poof--right at &nin’
with a first order phase transition. The shell approximation is
partially responsible for the pathological behaviour, and a better
approximation might .conceivably remove the apparent discontinuity.*
We could imagine an intermediate phase between the experimentally
observed colour-singlet dibaryon condensate at low densities, and
the theoretically sound paired state at high densities. This inter-
mediate state.might involve 6-body correlations, but break colour
symmetry. It is a vain exercise to attempt to calculate the
properties of phése transitions near & in’ since they are deep
inside the strong coupling regime, where diagrammatic methods fail.
The intermediate phase can only be an object of speculation.

This. variational trial proves two things. It
proves that colour singlet clumping can happen. (This is reassuring
since it does happen.) It also shows that the most obvious kind of
6-body correlation cannot persist to arbitrarily weak coupling. It
does not exhaustively eliminate other hypothetical correlations. For

this we must turn to another argument.

4,4) Stability of the Paired State

It can be shown that at sufficiently weak couplings,
the paired state has no secondary Cooper-type instability involving
formation of 3-body colour singlet bound states. The proof does not
rely on difficult comparisons between two and three-body bound states,
but rather on a theorem about the persistence of binding to arbit-
rarily weak coupling in various numbers of spatial dimensions, and on

a property of Goldstone excitations of the paired state,
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Although the world has three spatial dimensions,
and the electrons in practical superconductors are strictly non-
relativistic, the Cooper pairing problem is closely analogous to
relativistic binding in one dimension. The wave function of a
Cooper pair is concentrated at the Fermi surface, which is a two
dimensional locus, only one short of the full number of spatial
dimensions. The relevant density of states is therefore char-
acteristic of a one-dimensional problem. Moreover, the excitation

2
energy is not p /2m but (q+pF)2/2m -E_ = 9V, which is typical

of a relativistic problem with c replazed by Ve .

The hypothetical 3-body Cooper instability would
involve the binding of an unpaired quark to a condensed pair. The
colour group SU(3) breaks to SU(2); let us call the base states of the
surviving SU(2) '"red" and '"white," and the non-participating colour
"blue." Blue quarks are unpaired and are attracted to pink pairs in
total colour singlet states, This may render the paired state
unstable if the attraction is strong enough to cause binding.

The lowest energy pink pairs lie in the neighborhood of zero momentum,
which is just a point, a zero-dimensional locus, and according to the
energy spectrum for Goldstone excitations, their energy increases
linearly with their momentum., This instability is therefore ana-
logous to relativistic binding in three dimensions.

Relativistic binding persists at arbitrarily weak
couplings for Dsl, as we shall show. Non-relativistic binding
persists for D=2.

Consider a potential well of depth —Vo and finite
range R, which we will attempt to fill with a trial wave function
of adjustable width w in coordinate space. The expectation value
of the kinetic energy is Tél/mez non-relativistically or T~l/w
relativistically. The expectation value of the potential energy is
VQ-VO for w<<R but Vlmvo(R/w)D for w>>R. Binding is guaranteed if
T+V<0 since the trial energy always exceeds the true energy. If D<2
non-relativistically or D<1l relativistically, V dominates T as
w-2, and arbitrarily shallow wells can bind particles by having w

sufficiently big. If D> 2 or 1, respectively, T dominates V
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in both limits w=0 and w—, and no such compensation is possible;
there is a critical minimum depth for the well to bind anything.
In the borderline cases, D=2 and D=1, T appears to remain compet-
itive with V, and the variational argument is inconclusive, but it
is possible to improve the trial wave function to prove persistent
binding. We shall use a wave function in momentum space
¥(p) = 1/(T(p)+B), with B adjustable instead of w. Then T~B log B
and VQ—VORB 1og2B as B-0. V dominates. (The choice of this trial
function is motivated by the fact that it is the exact bound state
of a delta function well in one dimension. Any finite-range well
resembles a delta function when compared to a very wide spatial
wave function.)

From this theorem, we conclude that the paired
state is stable against the formation of 3-body and larger clumps
up to some mysterious critical value of the coupling. This supports

the conclusion drawn in the shell approximation.
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5) MESON CONDENSATION

Meson condensation is a familiar phenomenon at
zero chemical potential. Some version of this phenomenon is almost
certainly the mechanism for quark mass generation and flavour sym-
metry breaking. Two principal variants have been proposed: the
vacuum could be a condensate of fundamental Higgs scalars, coupling
to quarks, or it could be a condensate of composite mesons, consisting
of quarks. Imserting the quark masses into the Lagrangian 'by hand"
is generally disdained because it breaks gauge invariance and destroys
renormalizability. Spontaneous symmetry breaking schemes eschew this
vice.

The fate of a Higgs condensate at high chemical

(1

potential has already been investigated. There is little doubt
that this phenomenon can coexist with the pairing and clumping
effects discussed above. Our present interest is in the fate of a
composite meson condensate, however.

A quark mass can be understood as the gap of the
qa condensate's quasiparticle excitation spectrum. As such, it
manifests itself as a density threshold for the appearance of a
heavy flavour, the condition for appearance being that the chemical
potential exceed the gap.

The threshold for each flavour is indirectly
influenced by all the other flavours present, which shield the
forces that bind the condensed QE pairs. Heavy quark thresholds
may therefore be expected to lie lower than any estimate of their
current or constituent masses.

Just above threshold, the qa condensate is minimally
disrupted by the presence of a shallow Fermi sea. Far above threshold,
however, there is a deep sea of quarks not paired with antiquark
partners. A da condensate becomes energetically unfavourable,
because the q is restricted to the empty high-momentum states above
the Fermi surface, and its E partner has an equally high opposing

momentum, The effects of the chemical potential on q and E cancel,
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leaving a huge net energy. The attractive potential energy, small
in any case, becomes even smaller the more of momentum space is

off limits. We may therefore expect the qa condensate to disappear
completely somewhere above threshold, with a continuous phase
transition marking the restoration of chiral symmetry.

Attempts to locate these transitions fail because
the transitions lie in the strong coupling regime. We must content
ourselves with a no-go theorem for weak coupling:

In three dimensions, at zero chemical potential,

a D(q)=1/q2 or V(r)=1/r potential fails to bind massless particles.
This is obvious from the nonsensical zeroc mass limit of the formulas
for hydrogenic bound states as well as from the problem's lack of
scale.

The q& condensation problem in a soup is complicated
by shielding and the exclusion principle, but these do not alter the
result,

Shielding weakens the attractive potential. This
tends to raise the energy of any trial wave function. The no-binding
iresult therefore applies a fortiori even though a scale is present.

Above threshold, the Fermi sea fills a ball in
momentum space, making its states off limits to qa pairs. Only
trial wave functions that do not use these states are permitted.

Any constraint on the wave function necessarily raises the energy.
Again, the no-binding result applies a fortiori.

Strong coupling provides the only known loophole
to this theorem by undercutting the assumption of a simple Coulombic
potential, "Infrared slavery'" strengthens the potential at long

distances and does provide a scale,
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NOTES

1.2)%) One might conjecture that such asymptotic series Borel-
sum to the non-analytic forms in eqs.(2.2-14 & 16). If so, the form
exp (—C/gz) comes from a perturbation series I anan with

- . -n
coefficients growing as a ~n! C

1.3)%) An iterative scheme might still be useful for refining
approximate solu“ions to the Dyson equations. A crude approximation
would be ground through the non-linear integral expression of the
self-consistency equation, and son-of-approximation would emerge.
Whether successive refinements converge is an open question. The
hope for convergence is raised by the example of a related linear
problem, the homogeneous Schroedinger equation, (T-Eo)_lv V=19 .
Repeated applications of the operator (T-Eo)_lv do improve approx-
imate {'s because all its eigenvalues lie between 0 and 1,

provided only that T and -V are both positive definite, and that Eo

is the ground state energy.

1.4)%) It is an oversimplification to classify forces as long
or short range. A trichotomy is widely suspected: short, long, or
confining. Shielding bobs electric forces, but the absence of a
perturbative Meissner effect leaves open the question of whether
magnetism is long or confining. Renormalization group arguments
suggest that magnetism is merely long. The infrared growth of the
effective coupling comes from the glue loop correction to the glue
propagator, which has a logarithmic divergence cut off at the low
end by the gluon's momentum or some fixed mass parameter, whichever
is greater. According to the Appelquist-Carrazone decoupling
theorem, the growth of the coupling from this diagram is arrested
when the momentum is smaller than the mass of the loop constitutents.
The relevant mass parameter is neither the electric inverse shielding

length, Q, nor the magnetic shielding, zero, but the plasma frequency,
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which coincidentally equals Q. This suggests that the best propagator
for the magnetic components of the gluon would be an ordinary long-
range propagator used with a coupling constant renormalized at a
spacelike momentum of order Q. Since Q ~ gp, we may also renormalize

at p without affecting the results to leading order,

2,2)%) A perturbative derivation of Dyson equations even for
forbidden Green functions can be sketched. It relies on the resem-
blance of the Dyson equation to the Bethe-Salpeter equation for a
zero energy and momentum bound state (see section 3.3). Perturbatively,
there is no source of diquarks (or other forbidden objects). The
amplitude to feel a diquark is, however, the strength of its source
times its amplitude to propagate. Since the propagator has a Bethe-
Salpeter pole at zero energy and momentum (which is exactly what
objects lurking in the vacuum must have), the amplitude to be felt
is zero times infinity. The algebra is better defined in a certain
limit., Inserting a small diquark source by hand into the Lagrangian
breaks the symmetry and moves the Bethe-Salpeter pole slightly away
from zero energy. The limit of the product of source and propagator
as we turn off our hand-inserted source is the forbidden amplitude
obeying the Dyson equation.

This derivation is not very enlightening numerically,
but it clears up topological ambiguities in the field theory by
prescribing a simple replacement rule: a self-consistent forbidden

blob for each Bethe-Salpeter ladder.
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3.2)%) The Meissner effect shortens the range of several gluons.
Except in short-range approximation, we must discriminate between
shert and long-range gluons, and we should only use the Casimir
operator for the unbroken SU(2) subgroup of colour. This alters
eq.(2.2-7) to C=3/4

4.3)%) The use of long-range propagators banishes 2, effectively
2

replacing it by Ao in most contexts. Consequently, g approaches

a large constant as Ao shrinks. This signals a continuous phase

transition.
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COMMONLY USED SYMBOLS

= Casimir operator (2.2-7)

= gluon propagator

= quasiparticle energy (2.2-4)

factor of Hartree clump wave function (4.2)

= form factor of Hartree clump (4.2-3)

00 = +h B O O
I

= density dependent coupling constant, renormalized at a
spacelike momentum of order u

= Planck's constant, 2w

= Hamiltonian operator (1.5)

fermion momentum

= Bethe-Salpeter interaction kernel, K...ijfsy...y (4.1-2)

A X @-mo
It

fermion momenta

o

o
lae)
]

= gluon momentum

= momentum on Fermi surface

= particle-hole propagator matrix (2.2-1)
dressed quark-current vertex

= bare quark-gluon vertex, Dirac matrix

= gap function (2.1-1)

> D> < 1 »n O a
]

= gap in quasiparticle energy spectrum (2.2-9 ff,)

o

= antisymmetric symbol

= group generator or representation

= chemical potential, Fermi energy (1.4)

= blob in fermion propagator,(2.2-1); summation
bipedal Bethe-Salpeter wave function (3.3-4)
= amputee Bethe-Salpeter wave function (3.3-2)

= Six-body clump wave function

D= X 8 M E 2 o
1

= inverse shielding length, plasma frequency (1.4)



