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NON-PERTURBATIVE EFFECTS IN DENSE QUARK MATTER 

Abstract: 

Spontaneous symmetry violations in dense ouark 

matter with QCD interactions are investigated by means of variational 

energy minimization procedures and self-consistent field theory. At 

least three distinct phases are found to exist ) a colour symmetric 

baryon phase around nuclear density) a colour SJmmetry violating 

diquark condensate at high densities and low temperatures) and a 

strictly perturbative phase with all symmetries restored at high 

temperatures. Phase transitions associated with heavy quark thresh­

olds and the disappearance of meson condensates are also suspected. 

The gap equation for the superconducting diquark phase is solved 

explicitly. The critical temperature for its transition to the 

perturbative phase is found to be far below the big bang temperature. 

Diquark condensates possess numerous Goldstone modes and other 

collective excitations with calculable properties. 
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1) INTRODUCTION 

1.1) Quark Soup--a Dish from the Devil's Kitchen 

Nature's menu offers all sort of quark soups, hot and cold, 

thick and thin. It comes hot at the big bang, and cold in atomic nuclei, 

neutron stars, and stars collapsing to never-never land inside a black 

hole. Before ordering, you might care to know the flavour and colour of 

the soup, and whether it is a solid, superfluid, or gas. Of this I treat. 

Pertu~bation theory is inadequate to calculate the equation 

of state of quark matter. Even though we may agree to put our trust in 

QCD, perturbation theory fails in some regimes. The usual bugbears, 

strong coupling and infrared devils, are not at fault here. By virtue 

of asymptotic freedom, effective couplings are mercifully weak at high 

densities. (l) Moreover, a soup can polarize as the vacuum cannot, 

shielding glue forces, and cutting off infrared divergences. ( 2) Non­

perturbative effects plague us here instead. Superconductivity, 

crystallization, and like horrors threaten to violate the virginal 

symmetries of colour, flavour, fennion number, and even momentum 

conservation. 

Phase transitions mark the onsets of symmetry violations, 

and the study of thermodynamic phases is largely a matter of detennining 

what, if any, symmetry violations are favoured in various regimes. Only 

the phase with all symmetries intact is correctly described by perturbation 

theory. The others require more elaborate variational descriptions. 

1.2) Approaches and Results 

The literature on very dense nuclear matter follows two 

general lines, either stretching asymptotically free QCD, or squeezing 

nuclear physics. Each approach has its pitfalls. 

In the limit of infinite density, a quark soup can be 

pictured as several degenerate Fermi seas, one per spin-colour-flavour 

state. Asymptotic freedom makes the couplings weak, and the perturbative 

admixture of excited states is consequently small. Many investigators 

falsely assume that weak coupling is sufficient to justify perturbation 

theory. Not so; it is necessary but not sufficient. The classic 
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counterexample is BCS superconductivity, where any attraction, no matter 

how weak, induces non-perturbative pairing. Some authorities have warned 

that attractive colour forces in certain channels would cause analogous 

phenomena in quark soups(l), but other investigators have heedl~ssly 

ground out high orders of probably meaningless, zero temperature perturba­

tion theory. ( 3 ) Perturbation theory generates divergent asymptotic 

series when the "pre-vacuum" is unstable.* This difficulty manifests 

itself as a complex energy when certain infinite ladders of perturbation 

diagrams are summed, but no finite order of the perturbation serie3 

shows any danger signals. (In the BCS problem, for example, the 

unpaired Fermi sea of electrons is unstable against the formation of 

Cooper pairs, which appear diagramatically as poles in summed ladders.) 

Perturbation theory still has its place; it is valid at temperatures 

high enough to restore symmetry, but there special finite temperature 

Feynman rules must be used to evaluate the diagrams. 

Near normal nuclear density, it is reasonable to treat 

nucleons as distinct, fundamental objects, rather than as three 

correlated quarks. Such a description is sensible provided that the 

nucleons have no significant spatial overlap. (4 ) In nuclei: the mean 

spacing between nucleons is about twice their root-mean-square charge 

radius, but the nucleon picture must give way to a quark picture after 

a density increase of less than an order of magnitude. The greatest 

difficulty in working up from nuclear density is that phenomenological 

interaction potentials cannot be reliably extrapolated to higher den­

sities. Their most troublesome feature is the infamous repulsive core, 

whose existence is inferred by the following logic: if nucleons are 

fundamental particles, and if 2-body interactions predominate, and if 

the range of interactions is not significantly affected by shielding 

at higher densities, then the saturation of nuclear forces requires 

a repulsive core in the 2-nucleon interaction potential. These 

assumptions are fictions, but they are all reasonable approximations 

at low density, and the conclusion has entered the canon of nuclear 

phenomenology. Slightly above nuclear density, it leads to predictions 

of crystallization(S), and has led some authors to deny the possibility of 
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superconductivi ty, which requires predominantly attractive inter­

actions. An inte lligent discussion of these effects would have to be 

conducted in quark language, and would have to explain the 3-body 

correlation tha t makes low-density hadronic matter look more like 

nucleons than lik e individual quarks. In this language, the repulsive 

short distance interactions are interpreted as quark kinetic energy. (4 ) 

Predictions abou t superconductivity and crystallization are cast in 

quite a different light and are dramatically altered. 

The moral of this critique is that we need a quark 

language to discuss physics above nuclear density, and that we must 

watch out for several non-perturbative effects: diauark pairing 

a la BCS, 3-body correlations that binG quarks into nucleons, meson 

condensation, and perhaps even crystallization. 

My- auest for such non-perturbative effects has 

yielded the following incomplete map of thermodynamic phases: 
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The thrust of Chapter 2 is to calculate the proper­

ties of the paired diquark phase in the lower right corner of the 

figure, and to locate the transition to the perturbative phase. These 

can be done reliably in the limit of infinite density thanks to weak 

coupling. The critical temperature of the transition turns out to 

be much lower than the temperature of the big bang, but much higher 

than stellar temperatures. The phase transition can alternatively 

be induced by a critical magnetic field, which tun1s out to be much 

larger than anything one might expect to find in stars. 

Attempts to produce a similarly detailed theory of · 

the baryon phase are sabotaged by strong coupling. Chapter 4 presents 

the negative result that such a phase does not exist at high densities 

(weak couplings), and gives suggestive arguments for the possibility 

of baryon correlations at stronger couplings. 

Likewise, investigations of meson condensation in 

Chapter 5 yield only the negative result that mesons do not condense 

at high density. 
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1 . 3) A Unifying Pe rspective on Non-Perturbative Effects 

All the non-perturbative effects mentioned above 

involve spontaneous syrrnnetry violations. 

1) The paired ground state ("the vacuum") contains an indefinite number 

of pairs. Various processes tap the vacuum as a reservoir of pairs, and 

fennion number is only conserved modulo two. Moreover, since there is 

no way to make a colour sing let diquark pair, colour symmetry is also 

violated. 

2) The three quark correlation is really a 6-body correlation in dis-

guise, since nucleons are known to pair in heavy nuclei, and 

because the vacuum can only be a condensate of bosons. Fermions are 

conserved only modulo six, but colour symmetry is preserved. 

3) Meson condensation breaks chiral symmetries. 

4) Crystallization is the spontaneous breakdown of translation invariance 
3 3 

from R to Z, i.e. from continuous translations in all directions to 

translations in integral multiples of three lattice vectors. This is 

equivalent to momentum conservation only modulo reciprocal-lattice 

vectors. 

In each of these cases, various Green functions 

forbidden by symmetry are non-zero. They obey Dyson equations deter­

mined by the topology of the field theory, which possess non-trivial 

solutions besides the trivial, perturbative, zero solution. The method 

of describing forbidden Green functions by their Dyson equations is 

known as self-consistent field theory. 

An equivalent but more cumbersome variational approach 

consists in parameterizing the ground state by Green functions or 

occupation amplitudes and of minimizing its energy with respect to 

them. The Euler equations of this variational scheme are precisely the 

Dyson self-consistency equations. 

The second approach is usually harder, but it is older. 

BC&S originally described their paired ground state in terms 

1 • d f • d • • • d 't (
6 ) occupation amp itu e unction, an minimize is energy. 

consistent field theory was later developed by Nambu. (
7

) 

of an 

Self-
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Solving such Dyson equations is an art, unlike conven­

tional perturbation theory, which is a mechanical science. Perturbation 

theory is a systematic iterative scheme for generating corrections to 

bare Green functions, but the symmetry breaking problem lacks even the 

starting point of a bare Green function, and tre solution must be pulled 

out of thin air.* (The closest mathematical analogy to this situation 

comes from the theory of integral equations, perturbation theory being 

the analogue of the Neumann series solution for inhomogeneous equations 

only.) 

We will examine suspected symmetry violations by th.e 

following general method: 

1) Identify non-vanishing, symmetry-forbidden Green functions. Typically, 

one weird Green function is the granddaddy of all other weird Green 

functions. 

2) Construct its Dyson equation, ordinarily a non-linear integral 

equation. 

3) Seek non-trivial solutions. 

4) Calculate the vacuum ener.gy. This will involve a diagratlli~atic 

expansion in powers of forbidden Green functions. This energy must 

b.:. lower ' than that of any other thermodynamic phase at the same 

conditions, or else the expansion will have all the diseases typical 

of perturbation expansions with unstable pre-vacua. 

This methcd is most successful in calculating the 

properties of paired diquarks, but it is plagued by technical diffi­

culties when applied to dibaryon and meson condensates. Even so, it 

is useful in constructing proofs that baryons and mesons do not 

condense at high densities and weak couplings. 

The physical interpretation of symmetry breaking is 

subtle. One kind, famous from ordinary superconductivity theory, is 

fermion non-conservation. It is a useful mathematical fraud; fermions 

do not get lost. An illusion of non-conservation is created by the fact 

that field theory's zeroth-order state has indefinite particle number; 
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it is a non-unique ground state of H +µN (see section 1.5 for defin i.-
o 

tions) constructed by analogy with the grand canonical ensemble of 

statistical mechanics. It is formally too difficult to constrain 

particle number exactly, but the approaches are effectively equivalent 

for very large systems. A different, more tangible kind of broken 

symmetry prefers certain directions in group space. Colour SU(3) has 

three distinct if similar base states in its fundamental representation, 

and colour breaking singles one out for special treatment, causing 

pairing between two colours but leaving a third Fermi sea degenerate. 

Realistically, quark soup would develop domains with different 

preferred colours. However, the ground state that we calculate is a 

single, infinite domain. Domain boundaries belong to the realm of 

excitations. We cannot calculate their surface energies, which 

involve highly non-linear excitations. Only linearized excitations 

are tractable and are the subject of Chapter 3. 
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1.4) A Review of Finite Density Perturbation Theory 

If it worked, perturbation theory at finite density 

would be very similar to perturbation theory in the void. The main 

difference would be in the zeroth-order ground state, but the pertur­

bation series would have its familiar form. The vacuum at zero density 

is really a Dirac sea with negative-energy states filled. At finite 

density, all srates with energies up to the "chemical potential" 

(denoted byµ) fill) forming a Fermi sea. 

In calculating the amplitudes of processes taking 

place inside a soup, we must include interactions with particles under 

the Fermi sea. We need no new Feynman diagrams to take them into 

account. It suffices to reinterpret hole lines as holes either in 

the Dirac sea (bona fide positrons) or in the Fermi sea. To effect 

this reinterpretation algebraically, we must modify the fermion 

propagator) SF(p) = 1/(~ - m - ie)J by changing the sign of the ie 

to put above-sea particles into the upper half complex p
0 

plane, 

and both kinds of hole poles into the lower half plane. In other 

~ordsJ poles go into the first and third quadrants of the complex 

p
0

-µ plane. 

What new physics is there in a soup? For one thing, 

we lose Lorentz invariance; there is a preferred, "wind still" frame. 

For another, fermions cannot scatter into many states already occupied. 

Particularly interesting is the shielding of boson 

exchange processes. Exchanged bosons Compton scatter off particles 

in the Fermi sea. This effect is included in the reinterpreted 

vacuum-polarization diagram) and is properly called sea-polarization. 

Due to the lack of Lorentz invariance, the timelike (electric) polar­

izations of vector gauge bosons are shielded very differently from 

the spacelike (magnetic) polarizations. The propagator for electric 

polarizations gets a plasma frequency added to its denominator. 

Although this shielding arises from one-loop diagrams, it is really a 
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classical effect, and does not vanish in the limit of zero Planck's 

constant. Magnetism, however, is unshielded and remains long-range;* 

there is no Meissner effect in perturbation theory. (For a calculation 

of the shielding length see reference (2).) 

Shielding effects make composite hadrons "dissolve" 

in a dense soup. When the range of glue forces becomes shorter than 

typical hadronic radii, mesons and baryons fall apart. The demise of 

meson exchange interaction mechanisms considerably simplifies pertur­

bation theory . Quark-gluon perturbation theory is complete in any case, 

but the Bethe-Salpeter ladders that sum to hadron poles lose importance. 

(This triumph is short lived. New and different collective modes arise, 

as discussed in Chapter 3.) 

1.5) A Note on Terminology 

It is important to distinguish clearly between 

three concepts of "vacuum", which refer to the ground states of 

several variants of the Hamiltonian H. We define H to be the 
0 

kinetic part of H, bilinear in the fields, and N to be the fermion 

number operator. Then 

the "void" is the ground state of H ; 
0 

the "pre-vacuum" is the ground state of H +µN ; and 
0 

the "vacuum" is the ground state of H+µN 
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It is natural to suspect a diquark condensation in 

quark soup directly analogous to the dielectron condensation in BCS 

superconductivity. The substitution of gluons for phonons as the 

origin of the attractive force alters little since the general char­

acter of the phenomenon is insensitive to the details of the inter­

action. We can therefore steal many results of the BCS theory with 

impunity. 

Cooper devised a sufficient diagnostic test for the 

, invalidity of perturbation theory in finite density problems. (l) 

If it is energetically advantageous to form bound pairs in the empty 

states above the Fermi surface, then the degenerate sea is unstable and 

perturbation theory must diverge. Clever resummations of infinite 

sets of diagrams indicate an absurd, complex ground state energy, and 

do not fix tre problem. 

Cooper's test is satisfied in quark soups. Quarks 

come in colour triplets, and can combine in two different colour 

representations of diquarks, in one of which gluon exchange forces 

are attractive. The rest of the argument is identical to the argument 

for the instability .of the electron sea. 

The resolution of this instability is less obvious; 

In the BCS problem, there are only two kinds of electrons, spin up 

and down. Since phonon forces are extremely short range, only S-wave 

Cooper pairs bind, and Fermi statistics requires the spin wave function 

to be antisymmetric, i.e. spin zero. The quantum numbers of the 

disease suggest the quantum numbers of the cure. In quark soups, 

however, there are 3 colours x 2 spins x ever-so-many flavours of 

quarks, which can make multitudinous varieties of diquarks, and it is 

not obvious which of them will condense. In fact, even triquarks 

(baryons), which attract in colour singlet states, might plausibly 

bind, pair, and condense. We will discuss this possibility in chapter 4. 

BC&S resolve the instability by altering the ground 

state. Their Fermi surface is blurred over an energy range called the 

gap, and each particle is pai~ed with a partner of .exactly opposite 
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spatial momentum. One can express this ground state algebraically as 

the exponential of a pair creation operator acting on the void, but 

this construction is not useful for our purposes; we are more inter­

ested in Green Functions. 

Following this lead, let us simply assume that the 

ground state is paired. This may not in fact be the lowest energy 

correlation scheme in all regimes, but we shall ignore this unhappy 

possibility until we have a chance to compare the energy of this trial 

state against the energies of states with otl1er sorts of correlations. 

In the present case, the vacuum is a reservoir of diquarks, which pop 

in and out of interaction diagrams, so that fermions are only con­

served modulo two. The granddaddy oi: all fermion non-conserving 

Green functions is just the amplitude for a diquark to pop out of 

the vacuum, expressible also as an effective Lagrangian term: 

(ol ,:<x) ,:(y) lo) ⇒ Leff - Jdx dy w:(x) A:~(x-y) (2.1-1) 

We must now make some decisions about the character of the colour 

wave function expressed by the indices st and the spin wave function 

expressed by the spinor indices ab. Since tre diquarks that condense 

in the vacuum are substantially identical to the Cooper pairs that 

formed above the pre-vacuum's unpaired sea, it is safe to assume that 

they will be colour anti-triplets, that being the attractive repres~ 

entation. Their other quantum numbers are restriced by Fermi statistics. 

Colour anti-triplets are antisymmetric, and the space-spin-flavour 

wave function is consequently totally symmetric. If there is only one 

flavour, then space and spin are either both antisymmetric 

(S=0; L=l,3,5 ... ; J=l,3,5 ... ) or both symmetric (S=l; L=0,2,4 ... ; 

J=l,2,3,4 ... ). In neither case may the diquark be a spinless scalar. 

The vacuum is not isotropic. Its properties are painful to calculate. 

If there are several flavours, however, the statistics do admit spinless, 

S-wave diquarks antisymmetric in flavour, and our favourite symmetry has 

a fighting chance. 

Of course, nature does not share our aesthetic 

prejudice that spatial anisotropy is ugly, but that flavour 
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antisymmetry is pretty. Nature chooses between the se schemes on the 

basis of energetic advantage as cold-bloodedly as a corporate accountant 

selects investments on the basis of profitability. Here, beauty pays. 

Antisymmetric spins are energe tically preferable because of chromo­

magnetic interactions. (Remember: the N is lighter than the A.) 

S-waves are almost universally preferable to orbitally excited states, 

(except in some exotic cases such as He3 ). Flavour symmetry or anti­

symmetry has no direct energetic implication unless flavour is gauged, 

in which case the antisymmetric state is preferred. 

2.2) The Gap Equation 

Now let us set up the self-consistency condition for 

the syrrnnetry violating amplitude A. For lack of masochism, I shall 

treat only the isotropic case of spinless diquarks. 

In setting up the problem, we will have to make a 

string of approximations. All are "asymptotically justified," i.e., 

they are accurate in the weak-coupling limit, which coincides with the 

limit of infinite density thanks to asymptotic freedom. 

The propagation of particles suffers an interesting 

alteration in a paired soup. A propagating hole is ambushed by a 

diquark that pops out of the vacuum; one member stuffs the hole, and 

the other continues on as a particle with the hole's original momentum 

and spin. Then the vacuum resorbs the diquark, and the hole is re­

stored. Such adventures dress the hole. 

Mathematically, the bare hole's propagator is 
-1 (p - ~) , where the energy p

0 
is measured relative to the chemical 

potential µ. (We define iJ._ = µy
0 

and assume massless quarks.) 

Each flip-flop inserts a factor t (p - iJ._)-l t*. 

The mixing of particles and holes by these flip­

flops is most conveniently expressed by writing the propagator as a 

matrix. (2 ) 
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> particles 

< holes 

= (2.2-1) 

To see the physical quasiparticle spectrum, we must locate the poles 
-1 

of S. These lie where S is null, i.e. 

-1 2 2 [ ] 2 det (S ) = p - µ + ~,P - 6 = 0 (2.2-2) 

We can rid this equation of Dirac matrices by multiplying it by a 

duplicate factor with opposite sign commutator . Then 

(p2 _ µ2 _ 62)2 _ 4µ2£2 = O (2.2-3) 

where£ denotes the spatial components of p, and p
2 

= E
2 2 

- £ . 
A minor rearrangement yields the familiar quasiparticle spectrum 

with gap 6, 

ECr_,) = (1:,
2 + cl,el ± µ)

2 
)½ , (2. 2-4) 

with an extra branch for positrons. 

The crucial Dyson equation for tre quark propagator 

is symbolically 

-1 -1 J S = S
0 

- ySfD 

where y and rare bare and 

* 
dressed vertices 

(2.2-5) 

, and Dis the glue 

propagator. We make the ladder approximation and calculate to lowest 

quantum mechanical, one-loop, order. Thus we use y for r, but keep 

the shielding in D, since it is a classical effect, loops nonwith­

standing. (This approximation is weakly but innocuously gauge 

dependent. The situation is similar to that in the calculation of 

the renonnalization group's ~-function, W(g) = dg(M)/d(log M) 
3 5 = bg + cg + ... ,where only the leading coefficient bis gauge 

invariant. Likewise, our results are correct to leading perturbative 

order regardless of gauge.) 

This equation is itself a matrix equation in the 

particle-hole basis. 

equation for the gap. 

contributes nothing. 

Its off-diagonal element is the self-consistency 
-1 

Let us isolate it. The inhomogeneous term S 
0 



-14-

2Ja4k a"-ta ,- a 
= - ig -4 D ( p-k) y __ ..cc6.....,_( k_.),.___ __ Y.l::_ 

h 0"1" 2 2 2 2 [•' ilJ 2 k -µ -6 - 111, I'-

(2.2-6) 

(triplet colour indices on \. and 6 have been suppressed.) This has 

the fonn of a Bethe-Salpeter equation for a diquark bound state with 

zero energy relative to the chemical potential. We can simplify 

the equation by using our knowledge of the colour wave function. 

The equation splits into sex tet and anti-triplet moieties. The 

sextet ~s repul~ive and lacks solutions. Restricted to the anti­

triplet portion, the colour index machinery reduces to a Casimir 

opera to!.· as follows: 

.!.A. c:·. 
2 mi -Ce: 

mnk 
C = 2/3 for SU(3) . (2.2-7) 

The spinor and tensor machinery needs work too. 

For this, we must use the specific fonn of D (q), with electric 
ai-

components shielded but magnetic components long range. Let us 

temporarily indulge in the myth that all components are shielded 

alike, so that the propagator is Lorentz invariant. This would in 

fact be right IF colour forces were short range rather than gauge 

f0rces. We use D (q) = g / (q2 _ o2
) . 

ai- ai- • 

the commutator, giving 

6(p) (2 .2-8) 

Now, perfonning the dk
0 

integration and surrounding poles in the upper 

half complex k
0 

plane, we simplify the integration to a conventional 

three-dimensional convolution. (Approximation: We drop a tiny 

contribution from positron poles, whose relative importance is as 6/µ.) 

6(p) = Cg2 rd:k D(p-k) 6(k) ; (2,2-9) J ~ E(k) 

E(k) = ((!kl - µ)
2 + 6

2 
)½ ~· 

Only one thing could make this equation nicer-­

linearity. This too can be had if we make the approximation of 

replacing 6(k) in E(k) by 6, its value near the Fenni surface, 
0 -

which actually appears as the _value of the gap in the quasiparticle 
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energy spectrum. 

Even after these drastic simplifications, exact 

solutions are hard to come by . We will have to settle for limiting 

forms valid as g--0 , 6--0. First we recognize that 6/E peaks sharply 

at t he Ferrni surface, and has the general character of a delta function 

there. The unnormalized shape_ of !::.(p) is given in this limit by 

6 h (p) = Jd
3

k D(p-k) o( '~k' - µ) (2 .2-10) sap~ 

With the eigen::~_mc tion of the linear, homogeneous 

hand, finding the iigenvalue g
2 

is easy. 

integral equation in 

-2 ft 3 6shape (q+Q) / 6shape(Q) 
g = C ~h3 D ( q) 

E(q+Q) 
, (2 .2-11) 

where Q is a perfectly arbitrary momentum. 

Now let us evaluate this to obtain gas a function 

of 6 . 
0 

(Approximation: Since 6 <<o<<µ, we ignore the curvature of 
0 

the Fermi surface. It is convenient to take Q = µz, exactly on the 

Fermi surface.) Then 

-2 Jd
2 

d 1 6shape(q+Q) / 6shape(Q) g = C qxi: qz 

h3 2 2 
(qz 

2 A 2 )½ q +o + 
0 

(2. 2-12) 

-2 1 
2 o.2 

g = C log L 1087 
4·rr2 c? !::, 

(2.2-13) 

(Approximation: We have also ignored the retardation in D(q), 'which 

adds a small, ignorable constant to the factor log (µ/0) .) This 

inverts to the dramatic dependence 

2 2 2 2 2 2 
6 ~ µ exp (-4TI / Cg log(µ /0) ) 

0 ' 

reminiscent of the BCS result. The gap is miniscule, but its 

philosophical interest is disproportionate to its numerical 

magnitude. 

(2. 2-14) 

We must now repent of the false assumption that 

magnetic as well as electric components of the glue propagator 
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are shielded with plasma frequency O, when they are in , fact long 

range. We will now make the opposite extreme assumption that neither 

electric nor magnetic components are shielded. The truth lies 

between these extremes. 

Since D(O) is now singular, we may no longer use the 

estimate of 6 given by eq.(2,2-10), which diverges logarit~~ically shape 
at the Fermi surface. A more careful convolution of Do (6/E) shows 

that this logarithm is cut off at the Fermi surface give-or-take 

roughly 6, i.e. very roughly 6 h o · s ape log µ/E 

the only effect of 6 ,h in eq.(2.2-12) was to s ape _ 
while rP-maining constant in the vicinity of the 

tishape varies appreciably there. Recalculating 

at the intermediate stage of the integration 

o(µ) 

-2 
C 2TTJd 

1 lo~ log L g = 3 qz 2 6 2)2 h qz (qz + log 
0 

2 
log (µ/6 ) 

0 

This leads to the asymptotic behaviour 
1 1 

ti
0 

~µexp (-62TT / C2 g) , 

notable for the odd power of gin the exponent. 

Whereas previously 

give o(µ) cutoffs, 

Fermi surface, the new 

e q . ( 2 . 2 - 12 ) , we get 

(µ/ (qz 
2 6 2)½) + o--

(µ/ 60) 

(2. 2-15) 

(2.2-16) 

An honest calculation should take into account the 

fact that the spatial, magnetic components of the gluon dominate by 

virtue of their longer range. Such a treatment is tedious and 

unenlightening, and produces a result boringly similar to eq.(2.2-16). 

We leave this d~ja vu excercise to the appendix. 
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2.3) The Energy of the Ground State 

Three methods exist for calculating the energy 

density of the vacuwn. One is to find the matrix element of T
00

, 

an unpleasant procedure because the time direction gets special 

treatment. 

A second method consists in calculating vacuum 

bubbles. (3) The vacuum energy density is the logarithm of that 

obnoxious phase which multiplies all S-matrix elements, the vacuum­

to-vacuum amplitude, divided by the 4-volume of space-time. Dia-

grammatically, it is the sum of linked vacuum bubbles, which 

are easily specified in perturbation theory. With non-perturbativ2 

effects, however, diagrammatic 

ambiguous. 

specification of bubbles becomes 

A third method is suggested by the following little 

theorem. (4 ) If E(g) is the ground state energy of H +gH' , then 
0 

E(li) ~E(O) +J: dg/g (v(g)! gH' !,i,(g)) (2.3-1) 

The matrix element of gH' is unambiguous, and is moreover felicitously 

simple because gH' vertices are precisely what occur naturally in 

vacuum bubbles. 

The simplest matrix element of gH' is the bubble 

(2.3-2) 

= 

The first term is the obvious perturbative exchange 

interaction between like quarks, with minor kinematic corrections due 

to the gap in the energy spectrum. The second term is new. It 

represents the binding energy of paired- particles. It is the heart 
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of this non-perurbative effect, which must be energetically advantageous 

to be meaningful. By virtue of the gap equation, it reduces to a 

single loop. 

(2.3-3) 
== 

== i Ji k Tr --'-:(lc,--..,_li-=-) _6-;:;-(_k);....._ __ -->-:( le=-+..,_µ-::-) _6-=-(_k );....._ __ _ 

h4 2 2 2 [ ] 2 2 2 
(k -µ -6 - µ,le) (k -µ -6 -[µ,i]) 

= J ::k 

= -J ::k 
= _

6 
2 d k shape . shape I 3 6

2 
(k)/ 6

2 
(Q) 

0 h3 
E(k) 

in short range approximation 

in unshielded approximation 

This expression must yet undergo a J dg/g 

integration to become the energy density, but this does not alter 

its form. 

The non-perturbative contribution to the energy is 

unimpressive compared to the perturbative energy, but it is large 

enough to be important by another standard. It is equal to the energy 

density of the critical magnetic field that would cause a transition 

from the superconducting to the normal state. This magnetical field 

is too large to be attained in reasonable stars. 
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2.4 Finite Temperatures 

Pairing phenomena disappear at a finite critical 

temperature) above which symmetry is restored and perturbation theory 

is valid. The value of the gap decreases continuously with increasing 

temperature) reaching zero at the critical temperature) which 

consequently marks a second-order transition between the paired and 

perturbative phases. 

A neat formalism exists for finite temperature 

field theory.CS) Our Dyson equation is altered to read 

T ~ rd: p yS(wn+½)fD ; p0~wn ~inhT (2 .4- 1) nJ_~ 
-1 s -1 s = 

0 

. Jd
4

p yS(UJ ~LJ)fD coth ~w/2 
l. 4 n---rz 

h enclosing coth poles only 

-1 
= s + 

0 

s -1 = 
0 

i (d
4 

p yS( w )rD tanh ~w/2 

J ~4 
enclosing S(w,p) poles only 

The contour at infinity vanishes. 

The gap equation becomes simply 

t,(p) = C rd3k D(p-k) j h3 
ti.(k) tanh ~E(k)/2 

2E(k) 
(2 .4-2) 

All that is new is the tanh factor. At zero temperature) the tanh 

is unity, and the peak 

factor 1/E = (k
2 + ti. 

2 
0 

cutoff at ti. At the 
0 

of the integrand comes primarily from the 
1 

) 2 
J which is reminiscent of 1/k with a 

critical temperature) on the other hand, 

ti. (T )=O ., and the corresponding integrand factor is (1/k) tanh 
0 C 

again reminiscent of 1/k with a cutoff at T. The quantities 
C 

T and ti. play similar roles) and a trade-off can be arranged. 
0 

It is not surprising that T and ti. are of the same order. For 
C 0 

the short range case, we can steal the BCS result as is: 

T = . 5 7 ti. ( T=O) 
C 0 

This number comes from the condition 

~ k/2, 
C 
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~k/2 

This result is valid only for the short range case. 

(2.4-3) 

(2 .4-4) 

No accurate 

result is available for the unshielded case because the result is 

disastrously sensitive to b h , which is only crudely known. s ape 
The critical temperature is too low for these phenom-

ena to have been important in the early universe, when the temperature 

was about a thousand times higher than the cube root of the excess 

baryon number density . Neutron stars are cool, but stability 

conditions limit their central density to a few times normal nuclear 

density, hardly enough to justify our assumption of asymptotic 

freedom (weak coupling). The low temperature, high density limit 

in which these results apply exists in nature only in collapsing stars, 

where wise men fear to tread. 
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2.A) Appendix: Honest Treatment of Shielding 

In calculating the gap with the honest glue 

propagator 

noo = -1 / (q2 - o2) , D .. = 1 / 
11 

2 
q : (2 .A-1) 

we run into one messy complication. Because D~y I g~y D, we lose 

the beneficial simplification y
0 

[µ,p] ycr = 0, which deleted the 

commutator from eq.(2.2-8) and justified the use of a scalar gap. 

We now need a gap with both scalar and commutator parts, which get 

mixed by the gap equation. 

Accordingly, our new quantities are 

6 = 6
1 

+ iA2 [i,i] µ-
2 

, (2 .A-2) 

J (2 .A-3) 

= so ti 5>> (2 .A-4) 

= (61 - iti2 [i,i] µ-
2

) J 

6 =· I ys s<> 
s 

y D 

= 61 + i62 [ii, iJ -2 µ = 

(2 .A-5) 

J ( 3 8scalar + 1 8commutator) D 

Finally~ we obtain 

= g 3 . -C• 2Jd
3

k _Q 
h 2E 

cr 
as opposed to they ... y cr 

(2.A-6) 

case with the different matrix 

(2 .A- 7) 

[ ~ 0 J 
new matrix is The upper eigenvalue of the 5/2 versus the previous 

value 2 . Thus the gap is really the eigenmixture 

6 = (3i + 5/2 - i[µ,p] µ-2) tiscalar 

and eq.(2.2-16) is to be multiplied by -the ratio of new to old 

eigenvalues. 

(2 .A- 7) 
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3) COLLECTIVE EXCITATIONS 

3.1) Survey of Models 

Quark soups with spontaneously broken symmetries are 

highly prized for their interesing and abundant co1lective excitations, 

especially their Goldstone modes. Quite apart from their astro­

physical importance, they are an ideal mathematical laboratory for 

studying the properties of these excitations. 

Goldstone modes are central to our understanding of 

spontaneously broken gauge theories, where the mass of vector gauge 

bosons supposedly comes from "eating" Goldstone excitations. (l) 

They are also put forward as models of featherweight mesons, such as 

the pion, and elucidate the true meaning of PCAC. 

Several models, of varying degrees of realism, 

reproduce some or all of these interesting phenomena, and permit 

calculation of their properties. 

in the table below, 

Their successes are summarized 

The soup models are most successful mathematically--

almost all their properties are readily calculable--but they shed 

little light on the ohscure problem of the real µ=0 world, since a 

soup's difermion condensate is not comparable to the µ=0 world's 

fermion-antifermion condensate, and the collective excitations of 

these condensates are in no sense homologous. 

The wave functions of ordinary mesons in the µ=0 

world and of difermion collective excitations differ considerably. 

The size of ordinary mesons is largely determined by auark masses 

and the infrared end of glue forces. The size of difermion 

collective modes is determined by the smallness of the gap; they are 

extended objects much larger than the average interparticle distance. 



M
OD

EL
 

PR
E-

V
A

CU
U

M
 

VA
CU

UM
 

IN
TE

R
A

C
TI

O
N

 
G

O
LD

ST
O

N
E 

FA
T 

GA
UG

E 
FE

RM
IO

N
 

O
TH

ER
 

M
OD

ES
 

BO
SO

N
 M

A
SS

 
M

AS
S 

GA
P 

C
O

LL
EC

TI
V

E 
M

OD
ES

 

H
IG

G
S

(l
) 

th
e 

v
o

id
 

4 
-

fu
n

d
am

en
ta

l 
c
a
lc

u
la

b
le

 
c
a
lc

u
la

b
le

 
cp

-
cp 

+,
jlc

p'f
 

no
ne

 
co

n
d

en
sa

te
 

in
 

tr
e
e
 

in
 
tr

e
e
 

ap
p

ro
x

. 
ap

p
ro

x
. 

-
NA

MB
U 

&
 

th
e 

v
o

id
 

q
q

-
wo

w 
p

o
in

t l
ik

e
 

n
o

t 
n

o
t 

no
ne

 
JO

N
A

-
co

n
d

en
sa

te
 

co
m

p
o

si
te

 
c
a
lc

u
la

b
le

 
c
a
lc

u
la

b
le

 
L

A
SI

N
IO

(Z
) 

p1
.o

n 

CO
RN

W
AL

L 
&

 
th

e 
v

o
id

 
q

q
-

to
y

 
ga

ug
e 

y
es

, 
b

u
t 

es
ti

m
at

ed
 

;i
ca

le
 u

nk
no

w
n 

Q
E

D
-l

ik
e 

NO
RT

ON
 

(3
) 

co
n

d
en

sa
te

 
fi

e
ld

s 
st

ru
c
tu

re
 

in
 

1
-l

o
o

p
 

d
ep

en
d

s 
on

 I
R

 
bo

un
d 

st
a
te

s 
o

b
sc

u
re

 
ap

p
ro

x
. 

o
n

ly
 
ta

il
 
is

 
c
a
lc

u
la

b
le

 

L
on

do
n(

4
) 

I 

BC
S 

F
er

m
i 

se
a 

e
e
-

ph
on

on
s 

on
e 

(e
a
te

n
) 

c
a
lc

u
la

b
le

 
d

ep
en

d
s 

on
 

N
 w
 

co
n

d
en

sa
te

 
fu

ll
y

 
th

eo
ry

 
d

e
ta

il
s 

o
f 

I 

c
a
lc

u
la

b
le

 
ph

on
on

s 

QU
AR

K 
F

er
m

i 
se

a 
q

q
-

QC
D 

nu
m

er
ou

s 
L

on
do

n 
c
a
lc

u
la

b
le

 
a 

v
e
ri

ta
b

le
 

SO
U

P 
co

n
d

en
sa

te
 

fu
ll

y
 

th
eo

ry
 

zo
o 

c
a
lc

u
la

b
le

 

T
ab

le
 3

.1
-1

: 
F

lo
p

s 
to

 
fl

ip
 o

v
er

 



-24-

3. 2) Golds tono logy 

Every spontaneously broken continuous symmetry gives 

rise to a Goldstone excitation. (S) Gauge bosons of a local symmetry 

eat their associated Goldstone modes and get fat. Goldstone excit­

ations of global symmetries have arbitrarily small energy, however. 

The relevant symmetries of the pre-vacuum are 

fermion number conservation U(l)#' colour symmetry SU(M)c, flavour 

symmetry SU(N)f , and spat~al isotropy S0(3)s. It is convenient to 

lump fennion conservation together with the flavour group by replacing 

SU with U. 

In the BCS problem, U(l)~ x S0(3) breaks to S0(3) . 
'IF s s 

One generator of the underlying group fails to leave the vacuum 

invariant. The sole corresponding Goldstone mode is eaten by 

electromagnetism, causing the Meissner effect. 

In the quark soup problem, symmetries suffer the 

following fates: 

1) SU(2)c x U(l)# x S0(3)s breaks to 

SU(2) x S0(2) . There are three Goldstone modes: a scalar 
C S 

and two polarizations of a vector. Barring local electromagnetism, 

none are eaten. 

2) SU(2)c x U(2N)f x S0(3)s breaks to 

N 
SU(2)c x (SU(2)f) x S0(3)s. There are one bland scalar and 

4N
2

-3N-1 flavour adjoint scalars. Barring local flavour, even these 

tasty Goldstone modes are not eaten. 

Although a given pair involves the antisymmetric 

combination of just two flavours, quarks of every flavour want a 

piece of the action. Flavours therefore double up to pair. 

3) SU(2)c x U(2N+l)f x S0(3)s breaks to 

N 
SU(2)c x (SU(2)f) x S0(2)s. The odd flavour forms an anisotropic 

condensate as in case (l); the rest condense as in case (2). 
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x S0(3) breaks to . s 

SU(2)c x U(l)c-# x S0(2)s. Colour breaking is laid to the conden­

sation of anti-triplet diquarks, which select a particular direction 

in group space. In addition to the dull Goldstone modes of case (1), 

there are five coloured Goldstone modes, which get eaten by their 

corresponding gluons. Only an SU(2) subgroup of colour forces remains 

long range. * 

x S0(3) breaks to 
s 

SU(2)c x U(l)c-f x SU(2)f x S0(3)s. This case has Goldstone modes 

like those of case (2) and fat gluons like those of case (4). 

6) SU(3) x U(2N)f x S0(3) shatters intricately. 
C S 

Various doubled-up flavours can select differently oriented subgroups 

of colour in which to pair. We must determine the energetically 

optimal relative orientation of the SU(2) subgroups chosen. Let us 
C 

suppose that several such subgroups were differently oriented so that 

SU(3) would be fully broken; every gluon would then get fat. As we 
C 

have shown, the gap and therefore the non-perturbative interaction 

energy are much smaller for finite range forces than for unsh~clded 

forces. The alternative is to pick all SU(2) subgroups parallel, 
C 

thereby preserving an SU(2) x U(l) with unshielded gluons. This 
C C 

latter option is energetically superior. 

We have slighted the internal symmetry groups by 

ignoring the possibility of chiral structure. If bare quarks are 

massless, then these groups would be doubled to SU(M) 
1 

x SU(M) Rx 
C . C 

U(N)fL x U(N)fR" This would cause the parity-doubling of all 

internal symmetry Goldstone modes; every scalar would have a pseudo­

scalar twin. Local vector gauge bosons would eat only the scalars, 

however. 

If quarks are light but not quite massless, i.e., 

the underlying chiral symmetry is imperfect even in the pre-vacuum 

and not just spontaneously broken, then the pseudoscalar modes would 

not be zero energy excitations. This is precisely the situation of 

the pion in the real world. The pion would be an e~actly massless, 
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pointlike particle only i.n the ideal PCAC limit of perfect underlying 

chiral symmetry, spontaneously broken. Instead, it is a featherweight 

meson with discernible structure, which can be ascribed to the 

imperfection of the chiral symmetry. 

3.3) Anatomy of a Goldstone Boson 

Group theory predi.cts the existence of Goldstone modes, 

but sheds no light on their structure. Several other approaches fill 

this need. 

A diagrammatic demonstration of the existence of 

Goldstone modes starts from the observation that the gap equation 

has the form of a Bethe-Salpeter bound state equation, which is the 

condition for a summed ladder to have a pole. Such an S-matrix pole 

signifies a collective excitation mode. One solution, the gap function, 

is then the wave function of a bound state of zero momentum and energy 

(relative to the chemical potential), which is the endpoint of the 

Goldstone excitation spectrum. 

A related approach utilizes Ward-Takahashi identities. 

These identities hold for all currents of underlying symmetr~es, 

whether spontaneously broken or not. (
6

) 

(3.3-1) 

In particular, if Aa is the generator of a spontaneously broken 

symmetry, it will not commute with S. Therefore, as p-q-0, the right­

hand side does not vanish but approaches a constant. We must conclude 

that f
0 

contains a pole of the form (p-q)
0

/(p-q)
2 

times a residue 

representing the amputated Bethe-Salpeter wave function of the Gold­

stone boson. This residue is x = [A,S-
1
(p)] 

The connection between these approaches becomes 

obvious when we verify that x satisfies th: Bethe-Salpeter equation. 

In ladder 

X = 

approximation, the equation reads 

JDySxSY (3.3-2) 
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Inserting the alleged solution, we get 

J DyS[A.,S-l]Sy = J Dy[S,A]y = [A, J DySy] 

• [ ] [ -1 -1 [ -1 = A,I: = A,S -S ] = A,S ] , q.e.d. 
0 

(3.3-3) 

Qualitatively, we may also describe Goldstone modes 

as bound states of various kinds of quasiparticles. For example, 

let us classify the five coloured Goldstone modes engendered by the 

spontaneous breakdown of SU(3) to SU(2) . Let "red" and "white" 
C C 

be the base colours of the preserved SU(2), and "blue" be the colour 

that does not participate in pairing. R denotes a red particle, and 

Ra red hole. Swallowing RW pairs from the vacuum mixes R with W 

and R with W. Accordingly, there are five incestuously mixed 

families, suggestively named after broken generators of SU(3): 

4) RB, WB 

5) WB, RB 

6) RB, WB 

7) WB, RB 

8) RW, WW, RR, WR 

These are the only attractive possibilities. Symmetric states repel 

and cannot bind as Goldstone bosons. 

The pieces of the Bethe-Salpeter wave function 

differ slightly for the blue+quasipink and for the diquasipink bosons, 

but the ultimate result is the same. The bipedal form of the wave 

function (cp = SxS) is 

s left leg XamEut~e S . h 
rig t leg 

Cf'4 = s>> 6 s 
0 (3 .3-4) 

Cf8 = s 
[ 

0 +6J s 

-6 0 

where Sis the matrix form of the propagator, and S>> is its diag­

onal entry. (See eq.(2.2-1).) Specifically, 
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(3.3-5) 

which are the familiar integrands of the gap equation (2.2-6). 

3.4) Taxonomy oi Collective Excitations 

To illustrate the techniques for analyzing the 

collective excitation spectrum, we shall study one example in detail, 

the SU(2)c x U(2)f soup, which preserves all but its fermion number 

symmetry. 

The Bethe-Salpeter equation for all its excitations 

resembles the equation for type (8) Goldstone modes discussed above. 

Solutions of this equation have a wide variety of Dirac matrix 

structures, which are multiplied by various orbital tensors built 

of 3-momenta. The number of loose spatial tensor indices determines 

the spin. The solutions fall into families: 

1) The singlet series: 

This series has the simplest possible Dirac structure, namely the 

unit matrix. As discussed in appendix (2.A), the unit matrix is 

mixed with a commutator term. The lowest member of this series 

is our friend the Goldstone mode. 

ls = (1 & Yof) (1) 
0 

lp = ( II ) (p) 
1 ~ 

lD = ( II ) (p p - trace) 
2 ~~ 

etc. 

Because of the chiral symmetry, each of these modes is degenerate 

with a chiral twin containing an extra Y~ in its wave function. 
::, 
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2) The lower triplet series: 

A spin index of the Dirac structure is inner-multiplied with the 

orbital tensor. 

3P = 
0 

3D = 
1 

(i, & y
0

) (1) 

( II )(e) 

etc. and chiral twins 

3) The upper triplet series: 

The spin index is outer-multiplied 
3s = <x xx & Y5yj) (1) 

1 

3P = ( II ) (,e) - trace 
2 

etc. and chiral twins 

4) The middle triplet series: 

wlth the orbital tensor. 

The spin index is cross-multiplied with the orbital tensor. 

3pl = (£, x J., & J.,Y5) (1) 

etc . and chiral twins 

With perfect chiral symmetry, the upper and lower triplet states do 

not mix, as they would in a deuteron, because the lower series has 

an odd number of y-matrices, whereas the upper series has an even 

n•.unber. 
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3.5) Calculation of Selected Excitations 

It is not too difficult to calculate the excitation 

energies of singlet series modes in the short-range approximation. 

We solve the Bethe-Salpeter equation by an ansatz for the wave function. 

It differs from the Goldstone modes' wave functions in several 

respects: It has a spherical harmonic angular dependence. Its legs 

carry unequal 4-momenta, p±M/2, where Mis the excitation energy. 

F • 11 • • • 1 [O -lJ b ·t • ina y, its matrix structure is not exact y , ut i is 

d . . . h 1. 0 a goo approximation to use Just tat. 

Accordingly, we take 

X1 = [ 0 !>.] y ( e) 
-!>. 0 Im 

(3 .5-1) 

~1 (p+M/2,p-M/2) = S(p+M/2) XL S(p-M/2) 

and insert them into the Bethe-Salpeter equation (3.3-2). The integ­

rand now has poles at p
0 

= ±M/2±E(£) . After performing the y
0 

••• y
0 

contractions and the p
0

-integrations, omitting positron poles as 

in eq.(2.2-9), we get 

x(p) = 
2 (d

3
k 

Cg J ~3- D(p-k) 
E(k) x(k) 

E
2 

(k)-M
2 

/4 
(3.5-2) 

This equation is seen to reduce to eq.(2.2-9) as M--0. The effect 

of the angular dependence of X upon the integral can be extracted as 

follows: 

1>.(Q) = Cg 2 Jdqz 
h3 

'\ • J d(cos e) 

(3 .5-3) 

This can be seen to reproduce the factors of eq.(2.2-13) when L=O. 

The factor~ is always positive but decreases monotonically as L 

grows. Meanwhile, ~-2!>.
0

, which is, not surprisingly, precisely the 

two quasiparticle threshold. The integrand becomes very large near 

q =O z J 
compensating for the reduc:~ A

1
. Thus we find an infinite 



-31-

number of orbital excitations, leading up to the quasipa rticle 

spectrum. 

No radial excitations are known. 

The various triplet series modes may be calculated 

by the same method, but the algebra is made onerous by all the 

complications of non-commutative Dirac algebra. 

It would also be interesting to lift the degeneracy 

of chiral twins by "manufracturing" the chiral symmetry. Insertir,g 

a mass by hand into the bare propagator changes eq.(2.2-1) to 

-1 s = [P-~-m P+;+m] 
(3. 5-4) 

This makes the algebra unbearable because terms with even and odd 

numbers of Dirac matrices are now mixed, so that most Bethe­

Salpeter wave functions combine four different Dirac structures. 

The most controversial problem is the calculation 

of the dispersion law for the energy ai a function of non-zero 

total 3-momentum. Several calculations in the literature disagree, 

and I do not wish to add to the body of incorrect results. 
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4) DIBARYON CONDENSATION 

4.1) Adapting the 2-body Fomalism 

The correlation scheme of low density nuclear matter 

is known experimentally. Instead of pairing, quarks clump in threes 

to fom colour singlet baryons. At a higher level, nucleons them­

selves pair and cluster as alpha particles, but these are much weaker 

correlations. When, if ever, do these complex correlations give way to 

~imple quark pairing? 

only at low densities. 

We find that they are fragile and survive 

The fomalism of self-consistent field theory is 

designed to describe the vacuum expectation values of forbidden Bose. 

operators only. We cannot readily discuss a baryon sea; we must 

discuss a di- or tetra-baryon condensate , even though single baryons 

appear to be the physically significant unit at low densities , di-

and tetra-baryon correlations being so weak as to be almost irrelevant. 

Consequently, the fundamental, forbidden Green function that we examine 

is the amplitude for six or twelve quarks to pop out of the vacuum in 

a colour singlet state. Even if there is only one flavour, Femi 

statistics admits spinless clumps, consisting of one particl£ in each 

of the 3 colour x 2 spin states. (We will restrict our attention to 

this simple case.) For convenience, we describe the spatial wave 

function of six bodies in shell model language; in the simplest 

conceivable situation, all six quarks occupy the 1S shell. (l) This 

is not particularly realistic in view of the fact that quarks actually 

segregate into two almost independent clumps of three rather than one 

great clump of six, but this inaccuracy is excusable since the thrust 

of the analysis is not so much to produce a theory of 3-quark cor­

relations as to resolve the clumping versus pairing controversy by 

showing that any more-than-two- .quark correlations are fragile. 
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As in the diquark condensate) the quark spectrum has 

a gap. The mechanism for producing this gap is not identical, 

however. A hole that swallows a dibaryon turns into a pentaquarkJ 

which in turn reverts to a hole. The details of pentaquark 

propagation are complicated, involving five quark propagators 

and four loops. 

,.1 
~ I, < (4.1-1) 

? < > 
~ 

~ 
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The gap in the quasiparticle spectrum will still be called 6 , but 
0 

it is not so simply related to the wave function 6 of the clump. 

The derivation of the gap equation carries through 

as before. In ladder approximation, 

= 

2 
g K SSSSSS t:,. (4.1-2) 

This equation is just like the pairing equation plus a few extra legs, 

but the effect of these legs on the solution is drastic. 

The Bethe-Salpeter form of the gap equation is 

elegant but intractable, and its covariance is a dispensable frill 

in a non-Lorentz-invariant medium. Moreover, its solution contains 

a wealth of useless information about off-shell constituents. We 

would be better served by a Sci.iroedinger version of the same 
2 6 

equation. To convert/:,.= g KS 6 to Schroedinger form, we 

consider the residue of SSSSSS 6 at its mass shell pole. All but . 

one of the constituents can be on shell simultaneously. The last, off-

shell propagator is a non-trivial factor conventionally absorbed 

into the Schroedinger wave function. A cavalier simplification of 
-1 

the Dirac algebra renders this last propagator as (p
06 

- E(4 ) ) . 
The condensed dibaryons have zero total 4-momentum (measured 

relative to the chemical 

The last propagator thus 

E. = ((Ip.I - µ)2 + ~ 2 
1. ~1. 0 

potential); therefore p
06 

= -p01 - ... -pOS · 

bicomes -1 / (E 1+ ... +E6), where 

)2 
We identify •sh d' = t:,. / LE • c roe 1.nger 

The Schroedinger version of the gap equation is 

I fd
3 

a 
(2P.+q) (2P.-q) 

15. = c.. T D(q) 
1. CJ J .( ... p.+q ... p.-q ... ) 

i<j 1.J h 2POi 2POj 
1. J 

(4.1-3) 
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(Capitalized momenta include tfue chemical potential; they are not 

measured relative to it.) Equivalently) 

2 = Cg 

It is easy to verify that this equation reduces to the 2-body form 

eq.(2.2-9) . There) partners have exactly opposite • 3 -momenta; 

thus cos 0=-1 and I:E=2E. Only the value of the Casimir operator is 

different. (The agreement of factors of order unity should not be 

taken too seriously because of our careless simplification of the 

spinology.) 
2 

The gap equation (EE) t = g K t may also be 

profitably reformulated as a variation condition, 

(4.1-5) 

No full solution has ever been constructed for this 

equation. The best that can be done is to invent variational trial 

solutions and to determine an approximate relation between the gap 

and the coupling strength. The danger in using variational estimates 

is that they invariably overestimate the energy by some amourrt 

proportional to our artlessness in inventing a trial wave function. 

Here, they tend to overestimate the coupling strength needed to 

produce a given gap. While a variational method can prove binding 

possible, it can never prove binding impossible because a better 

trial function might always be found to give a lower energy. 

Here, our trial function suggests that 6-body, 

colour singlet clumping is possible only at strong coupling. Although 

the estimate of the minimum coupling strength (derived in section 4.2) 

for such a correlation can certainly be pushed down by better choices 

of trial functions) backup arguments exist to show that some finite 

minimum coupling strength does exist. By all accounts) it is rather 

large) and the phenomenon of clumping is relegated to a zone of 

mystery) where nothing can be calculated accurately. 



-36-

4.2) The Shell Approximation 

The state of the art in multibody bound state physics is slightly 

inferior to the Hottentot number systemJ "1 2 3 0:)". In bound state 

physicsJ two's tractable; three's a cloud. Problems with very many 

degrees of freedom mayJ howeverJ be successfully treated by the shell 

modelJ where each particle is taken to move in an average field of 

all other particles. 

We give specific mathematical content to this 

assumption by neglecting angular correlations and assuming a var­

iational Hartree fonn w = f(p
1

) ... f(p
6

) . This violates one obvious 

property of the true gap functionJ namely ~p.=0 there is a 
~i J 

redundant degree of freedom. The consequent error is mitigated by 

the large number of particles in the clump. 

From the variational reformulation of the gap 

equation (4.1-S)J or by manipulation of the gap equation (4.1-4) 

itself, we can derive a special equation for f(p). Taking advantage 

of the factorizable form, we first split the true gap equation into 

(4.2-1) 

and then eliminate the dependence on p2, ... ,p
6 

by multiplying by 

* * d . . d3 d3 
f2 ••• f6 an integrating over p2 ... p

6 
• Then 

Eli = .!c J~:q D{q) F(q) f(pl-q) ( 4. 2-2) 
6 

where 

I (4 .2-3) 

This resembles eq.(2.2-9) with the gluon propagator softened by a 

form factor F(q), which can be physically interpreted as follows: 

In a paired seaJ states of opposite momentum are 

either both full or both empty. When a quark scatters from a full 

into an empty state, its opposite momentum partner is guaranteed to 

find an empty destination upon absorbing the recoil. Not so with 
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6-body correlations, where five partners divide each opposing 

momentum, and there are no exact full-full or empty-empty correl­

ations. The "fonn factor" represents the probability that a partner 

will be available to absorb the recoil. 

The modification of the potential by a fonn factor 

can also be understood as a consequence of the shell model in 

coordinate space. The potential in a 2-body bound state is 

precisely the 2-body interaction, but in a larger bound state, 

the shape of the potential well is the 2-body interaction folded 

together with the shape of the cloud of partners. 

4.3) No Clumping at Weak Coupling 

The gap associated with a non-perturbative effect 

must have one of three possible behaviours as the coupling strength 

decreases: 

1) The gap can persist out to arbitrarily weak coupling--as does 

pairing. t. --0 as g-0 Or 
0 

2) The gap can vanish continuously at some finite coupling strength. 

t. --0 as g-g .t>O. Or 
o cr1. 

3) The gap can vanish discontinuously. 

In the contex t of the shell approximation, we can 

eliminate the first two possibilities. It is possible to construct 

a solution to eq.(4.2-2) in the hypothetical limit 6 --0 . We 
0 

solve the equation by the approximate ansatz f~ l/E The full fonn 

factor F(q) can be obtained numerically, but an analytic approx­

imation to its tail fills our needs. For momenta in the range 
2 

µ >> q >> t.
0 

, the fonn factor behaves like Fcx:fo f~ a log ( q/ 6
0

) 6
0

/ q , 

with a of order unity. 

The analogue of eq.(2.2-12) is 

! 3 
-2 ~ F 

g ~ C 3 2 2 
h i -tD 

~ cf dqz _ _,,._1_---..-
3 2 2 .b. 

h (q +t. )2_ 
Z 0 

1 

2 6 2 0 
;r a - -log -

0 t. 

(4.3-1) 
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-2 C h-3 2 6 3 O g ~ rr a 
O 

log 6 (4.3-1) 
0 

As 6 --0 , g neither vanishes. nor approaches a constant, but blows up 
0 2 

pathologically. In fact, it never gets below g . ~ 20 This 
min 

pathology is not subject to the facile interpretation that the six-

body correlation disappears discontinuously--poof--right at g . , 
min 

with a first order phase transition. The shell approximation is 

partially responsible for the pathological behaviour, and a better 

approximation might .conceivably remove the apparent discontinuity.* 

We could imagine an intermediate phase between the experimentally 

observed colour-singlet dibaryon condensate at low densities, and 

the theoretically sound paired state at high densities. This inter­

mediate state might involve 6-body correlations; but break colour 

symmetry. It is a vain exercise to attempt to calculate the 

properties of phase transitions near g . , since they are deep 
min 

inside the strong coupling regime, where diagrammatic methods fail. 

The intermediate phase can only be an object of speculation. 

This variational trial proves two things. It 

proves that colour singlet clumping can happen. (This is reassuring 

since it does happen.) It also shows that the most obvious kind of 

6-body correlation cannot persist to arbitrarily weak coupling. It 

does not exhaustively eliminate other hypothetical correlations. For 

this we must turn to another argument. 

4.4) Stability of the Paired State 

It can be shown that at sufficiently weak couplings, 

the paired state has no secondary Cooper-type instability involving 

formation of 3-body colour singlet bound states. The proof does not 

rely on difficult comparisons between two and three-body bound states, 

but rather on a theorem about the persistence of binding to arbit­

rarily weak coupling in various numbers of spatial dimensions, and on 

a property of Goldstone excitations of the paired state. 
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Although the world has three spatial dimensions, 

and the electrons in practical superconductors are strictly non­

relativistic, the Cooper pairing problem is closely analogous to 

relativistic binding in one dimension. The wave function of a 

Cooper pair is concentrated at the Fermi surface, which is a two 

dimensional locus, only one short of the full number of spatial 

dimensions. The relevant density of states is therefore char­

acteristic of a one-dimensional problem. Moreover., the excitation 

energy is not p
2

/2m but (q+pF)
2

/2m - EF = qvF' which is typical 

of a relativistic problem with c replaced by vF. 

The hypothetical 3-body Cooper instability would 

involve the binding of an unpaired quark to a condensed pair. The 

colour group SU(3) breaks to SU(2); let us call the base states of the 

surviving SU(2) "red" and "white," and the non-participating colour 

'~lue.'' Blue quarks are unpaired and are attracted to pink pairs in 

total colour singlet states. This may render the paired state 

unstable if the attraction is strong enough to cause binding. 

The lowest energy pink pairs lie in the neighborhood of zero momentum, 

which is just a point, a zero-dimensional locus, and according to the 

energy spectrum for Goldstone excitations, their energy increases 

linearly with their ffiomentum. This instability is therefore ana­

logous to relativistic binding in three dimensions. 

Relativistic binding persists at arbitrarily weak 

couplings for ~1, as we shall show. Non-relativistic binding 

persists for D~. 

Consider a potential well of depth -V and finite 
0 

range R, which we will attempt to fill with a trial wave function 

of adjustable width win coordinate space. The expectation value 

of the kinetic energy is ~1/2mw
2 

non-relativistically or T~l/w 

relativistically. The expectation value of the potential energy is 

v~-v for w<<R but V~-V (R/w)D for w>>R. Binding is guaranteed if 
0 0 

T+V<O since the trial energy always exceeds the true energy. If D<2 

non-relativistically or D<l relativistically, V dominates T as 

w-c:,, and arbitrarily shallow wells can bind particles by having w 

sufficiently big. If D> 2 o~ 1, respectively, T dominates V 
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in both limits w-•O and w-lXl, and no such compensation is possible; 

there is a critical minimum depth for the well to bind anything. 

In the borderline cases, D=2 and D=l, T appears to remain compet­

itive with V, and the variational argument is inconclusive, but it 

is possible to improve the trial wave function to prove persistent 

binding. We shall use a wave function in momentum space 

~(p) = 1/(T(p)+B), with B adjustable instead of w. Then T~B log B 
2 

and V~-V RB log Bas B-0. V dominates. (The choice of this trial 
0 

function is motivated by the fact that it is the exact bound state 

of a delta function well in one dimension. Any finite-range well 

resembles a delta function when compared to a very wide spatial 

wave function~) 

From this theorem, we conclude that the paired 

state is stable against the formation of 3-body and larger clumps 

up to some mysterious critical value of the coupling. This supports 

the conclusion drawn in the shell approximation. 
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5) MESON CONDENSATION 

Meson condensation is a familiar phenomenon at 

zero chemical potential. Some version of this phenomenon is almost 

certainly the mechanism for quark mass generation and flavour sym­

metry breaking. Two principal variants have been proposed; the 

vacuum could be a condensate of fundamental Higgs scalars, coupling 

to quarks, or it could be a condensate of composite mesons, consisting 

of quarks. Inserting the quark masses into the Lagrangian "by hand" 

is generally disdained because it breaks gauge invariance and destroys 

renormalizability. Spontaneous symmetry breaking schemes eschew this 

vice. 

The fate of a Higgs condensate at high chemical 

potential has already been investigated. (l) There is little doubt 

that this phenomenon can coexist with the pairing and clumping 

effects discussed above. Our present interest is in the fate of a 

composite meson condensate, however. 

A quark mass can be understood as the gap of the 

qq condensate's quasiparticle excitation spectrum. As such, it 

manifests itself as a density threshold fort~ appearance of a 

heavy flavour, the condition for appearance being that the chemical 

potential exceed the gap. 

The threshold for each flavour is indirectly 

influenced by all the other flavours present, which shield the 

forces that bind the condensed qq pairs. Heavy quark thresholds 

may therefore be expected to lie lower than any estimate of their 

current or constituent masses. 

Just above threshold, the qq condensate is minimally 

disrupted by the presence of a shallow Fermi sea. Far above threshold, 

however, there is a deep sea of quarks not paired with antiquark 

partners. A qq c?ndensate becomes energetically unfavourable, 

because the q is restricted to the empty high-momentum states above 

the Fermi surface, and its q partner has an equally high opposing 

momentum. The effects of the chemical potential on q and q cancel, 
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leaving a huge net energy. The attractive potential energy, small 

in any case, becomes even smaller the more of momentum space is 

off limits. We may therefore expect the qq condensa te to disappear 

completely somewhere above threshold, with a continuous phase 

transition marking the restoration of chiral symmetry. 

Attempts to locate these transitions fail because 

the transitions lie in the strong coupling regime. We must content 

ourselves with R no-go theorem for weak coupling; 

In three dimensions, at zero chemical potential, 
2 

a D(q)~l/q or V(r)=l/r potential fails to bind massless particles. 

This is obvious from the nonsensical zero mass limit of the formulas 

for hydrogenic bound states as well as from the problem's lack of 

scale. 

The qq condensation problem in a soup is complicated 

by shielding and the exclusion principle, but these do not alter the 

result, 

Shielding weakens the attractive potential. This 

tends to raise the energy of any trial wave function. The no-binding 

iesult therefore applies a fortiori even though a scale is present. 

Above threshold, the Fermi sea fills a ball in 

momentum space, making its states off limits to qq pairs. Only 

trial wave functions that do not use these states are permitted, 

Any constraint on the wave function necessarily raises the energy. 

Again, the no-binding result applies a fortiori. 

Strong coupling provides the only known loophole 

to this theorem by undercutting the assumption of a simple Coulombic 

potential. "Infrared slavery" strengthens the potential at long 

distances and does provide a scale. 
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NOTES 

1.2)*) One might conjecture that such asymptotic series Borel-

sum to the non-analytic forms in eqs.(2.2-14 & 16). If so, the form 
2 2n 

exp (-C/g) comes from a perturbation series ~ ang with 

coefficients growing as -n 
a ~ n! C n 

1.3)*) An iterative scheme might still be useful for refining 

approxi~ate solu~ions to the Dyson equations. A crude approximation 

would be ground through the non-linear integral expression of the 

self-consistency equation, and son-of-approximation would emerge. 

Whether successive refinements converge is an open question. The 

hope for convergence is raised by the example of a related linear 
-1 

problem, the homogeneous Schroedinger equation, (T-E) V * = v. 
-1 0 

Repeated applications of the operator (T-E) V do improve approx­
o 

imate *'s because all its eigenvalues lie between 0 and 1, 

provided only that T and -V are both positive definite, and that E 

is the ground state energy. 

1.4)*) It is an oversimplification to classify forces as long 

or short range. A trichotomy is widely suspected: short, long, or 

confining. Shielding bobs electric forces, but the absence of a 

perturbative Meissner effect leaves open the question of whether 

magnetism is long or confining. Renormalization group arguments 

suggest that magnetism is merely long. The infrared growth of the 

effective coupling comes from the glue loop correction to the glue 

propagator, which has a logarithmic divergence cut off at the low 

0 

end by the gluon's momentum or some fixed mass parameter, whichever 

is greater. According to the Appelquist-Carrazone decoupling 

theorem, the growth of the coupling from this diagram is arrested 

when the momentum is smaller than the mass of the loop constitutents. 

The relevant mass parameter is neither the electric inverse shielding 

length, O, nor the magnetic shielding, zero, but the plasma frequency, 
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which coincidentally equals 0. This suggests that the best propagator 

for the magnetic components of the gluon would be an ordinary long­

range propagator used with a coupling constant renormalized at a 

spacelike momentum of order O. Since O ~ gµ, we may also renormalize 

atµ without affecting the results to leading order. 

2.2)*) A perturbative derivation of Dyson equations even for 

forbidden Green functions can be sketched. It relies on the resem­

blance of the Dyson equation to the Bethe-Salpeter equation for a 

zero energy and momentum bound state (see section 3.3). Perturbatively, 

there is no source of diquarks (or other forbidden objects). The 

amplitude to feel a diquark is, however, the strength of its source 

times its amplitude to propagate. Since the propagator has a Bethe­

Salpeter pole at zero energy and momentum (which is exactly what 

objects lurking in the vacuum must have), the amplitude to be felt 

is zero times infinity. The algebra is better defined in a certain 

limit. Inserting a small diquark source by hand into the Lagrangian 

breaks the symmetry and moves the Bethe-Salpeter pole slightly away 

from zero energy. The limit of the product of source and prJpagator 

as we turn off our hand-inserted source is the forbidden amplitude 

obeying the Dyson equation. 

This derivation is not very enlightening numerically, 

but it clears up topological ambiguities in the field theory by 

prescribing a simple replacement rule: a self-consistent forbidden 

blob for each Bethe-Salpeter ladder. 
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3.2)*) The Meissner effect shortens the range of several gluons. 

Except in short-range approximation) we must discriminate between 

short and long-range gluonsJ and we should only use the Casimir 

operator for the unbroken SU(2) subgroup of colour . This alters 

eq.(2.2-7) to C=3/4 

4.3)*) The use of long-range propagators banishes OJ effectively 
2 

replacing it by~ in most contex ts. Consequently) g approaches 
0 

a large constant as~ shrinks. This signals a continuous phase 
0 

transition. 
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COMMONLY USED SYMBOLS 

C 

D 

E 

f 

F 

g 

h 

H 

k 

K 

p,P 

q 

Q 

s 
r 
y 

6 

µ 

I: 

cp 

X 

1jr 

0 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

Casimir operator (2.2-7) 

gluon propagator 

quasiparticle energy (2.2-4) 

factor of Hartree clump wave function (4.2) 

form factor of Hartree clump (4.2-3) 

density dependent coupling constant, renormalized at a 

spacelike momentum of orderµ 

Planck's constant, 2TT 

Hamiltonian operator (1.5) 

fermion momentum 

Bethe-Salpeter interaction kernel, K ... ~fny ... y 

fermion momenta 

gluon momentum 

momentum on Fermi surface 

particle-hole propagator matrix (2.2-1) 

dressed quark-current vertex 

bare quark-gluon ver~ex, Dirac matrix 

gap function (2.1-1) 

gap in quasiparticle energy spectrum (2.2-9 ff.) 

antisymmetric symbol 

group generator or representation 

chemical potential, Fermi energy (1.4) 

blob in fermion propagator,(2.2-1); summation 

bipedal Bethe-Salpeter wave function (3.3-4) 

amputee Bethe-Salpeter wave function (3.3-2) 

six-body clump wave function 

inverse shielding length, plasma frequency (1.4) 

(4.1-2) 


