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ABSTRACT

The inaccuracy of rockets arises primarily from the failure of the axis
of the jet to pass through the center of mass of the projectile. This causes
the rocket to rotate, during burning, about a transverse axis through the
center of mass, with the result that the direction of thrust of the motor is
altered from its initial direction as determined by the projector.

A theoreticel analysis of the forces acting on a rocket during its
accelerating period leads to the following conclusions concerning the ef-
fects of melalignment, burning time, fin size and projector length on the
accuracy of rockets with velocities less than 800 ft/secs

(1) The deflection of the rocket is directly proportional to the mal-
alignment of the jet.

(ii) For projector lengths less than one-fifth the burning distance
the deflection of a rocket increases rapidly with the burning time until
the burning time equals the period of oscillation of the projectile <in free
flight, or until the burning distesnce equals half the yaw oscillation dis-
tance in free flight. Further increases in burning time produce no signifi-
cant change in the deflection.

(iii) In the same rangé of projector lengths, increasing the fin size
from that required to meke the projectile barely stable in free flight to
that which reduces the period of oscillation to the burning time diminishes
the deflection by a factor of about 0.7. Still further reduction in the
period by increasing the fin size decreases the deflection roughly propor-
tionally to the period attained.

(iv) When the ratio of projector length to burning distance is in the
range between 0,01 and 0.50, the deflection decreases roughly linearly with

the logarithm of this ratio.
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On the basis of certain simplifying assumptions, formulas are derived
for the effect of wind §n the motion of rockets with velocities less than
800 ft/sec. The effect of the wind is to deflect the UP into the wind
during burning and down wind after burning, the relative effects of each
depending mainly upon the burning time. The formulas developed apply to
the mean deflection for a given set of firings of a sufficient number of

r'ana/oﬁn
rounds so that malalignment and other suchAeffects average out.
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Preface

In this thesis, the theory of non-rotating rockets is studied, quite
apart from any considerations regarding particulsr applications of rockets.
Its immediate application, of course, is in the development of rockets for
purposes of the successful prosecution of the war; but it is hoped that the
results herein attained will in time find application to rockets in scienti-
fic and peace time pursuits.

The references to the litersture are quite meager, since the develop-
ments in rocket ballistics are vefy recent, and there is practically no
published material on the subject. Most of the material contained herein
has already appeared in the form of CIT and NDRC reports; for example,
Chapter III is merely an smplification of "Effects of Burning Time, Fin Size
end Projector Length on the Accuracy of Rockets" by I. S. Bowen, L. Davis, Jr.
and Leon Blitzer.

I wish to thank Prof. I. S. Bowen who suggested most of the problems
and under whose.encouraging supervision this work was done., To Dr. Leverett
Davis, Jr., I am grateful for considersble practical help in dealing with
the problems, to which specific acknowledgment is frequently made in the
text. I am also indebted to the many members of the research staff of the
NDRC project at Kellogg Laboratory, especially Dr. 0. C. Wilson, kir. S. Rubin
and Dr. G. Kron of the Accuracy Committee, who aided with the experimental

data.
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Symbols Frequently Used

(The use of certain symbols for more than one quantity is sometimes
unavoidable., However, there is little chance for ambiguity, as the text
generally makes the meaning of the symbols clear.)

c Deceleration coefficient of the rocket

F Force on the rocket (F = mG)

G Linear acceleration of the rocket duriﬁg burning

T Moment of inertia of the rocket about a transverse axis through

the center of mass (I = i)
k Radius of gyration of the rocket (k° = I/m)
K Moment coefficient of the fins; the aerodynamic restoring torque
is X v .
L(t) Melalignment of the jet; that is, the distance between the axis of
thrust and the center of mass

L, DMalaligoment of the jet in the case of constant malalignment

m Mass of the rocket

D Effective projector length; that is, the distance the rocket moves

before the constraint of the projector is removed

s Distance along the trajectory

t (generally) Time from start of burning

tb Time at which burning ceases
tp Time when rocket leaves the projector
T Period of yaw oscillation (for the velocity wvy)

T, Total flight time of the rocket
v Velocity of the rocket (During burning, v - Gt.)
vy, Velocity of the rocket at the end of burning

v Vector velocity of the rocket relative to the moving air (wind)
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Vector welocity of the wind

Cross-range component of the wind velocity W

Down-range component of the wind velocity w

Horizontal distance of rocket travel

Range

Vertical height of the rocket

In the D-B theory, z is the dimensionless parameter 2ca x

In the theory of yaw and deflection, z is the dimensionless quantity
fere/r t

Average of 1/cos © in the D-B theory

Lateral defiection of rocket on range

liean lateral up-wind deflection produced by the wind during the

burning period

Mean lateral down;wind deflection produced by the wind after the

burning period

Yaw of the rocket in the plane of yaw ( § c =08, -6;)

Damping coefficient; damping moment is ;/(ﬁc '

Angle between the axis of the rocket and the initial direction on

the projector in the plane of yaw

Angle between trajectory and initial direction (8, is the deflection

in the plane of yaw.)

Quadrsnt angle of the projector
Distance traversed by the rocket in free flight while the yaw

oscillates through one full cycle ( 0¥ = vy T)



I. Artillery Projectiles and Rockets

A. Introduction:

It was known to the ancients that hot gases (especially steam) were
capable of expansion and doing work. Archimedesl) supposedly had a gun
operated by high-pressure steam instead of by powder. The principle of
jet propulsion must have been known to Hero of Alexandrial) (120 B.C.)
who built the first prototype of modern jet propulsion devices. The roc-
ket, too, depends for its action on the principle of jet propulsion, or,
in other words, the principle of conservation of momentum; for the release
of hot gases at extremely high velocities as the products of combustion in
the rocket motor result in the rocket taking up an equal and opposite
momentum and thus being propelled.

Among the types of rockets which one may encounter are the following:

1. War Rockets.- For a long time military engineers have sought to
develop rockets as combat weapons; but very little progress was made until
Congreve's workZ) in England early in the 19th century. His rockets were
very much like the present-day ones and were used on sea (His boats were
fitted for firing salvos of rockets.) and on land during the Napoleonic
wars, However, the use of such rockets ended with the development of high-
precision gunnery toward the latter part of the 19th century.

2. Signal Rockets.- These are rockets containing flares for signalling

purposes,

3. Life-saving Rockets.— These are line-carrying rockets for establish-

ing breeches-buoys from ship to shore or from ship to ship.

4. Sounding Rockets.- These are for meteorological purposes to travel

into the upper atmosphere to obtain data as to its composition and condition.
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5. Auxiliary Propulsive Rockets for Airplanes.-— These are rockets

attached to planes for aiding them in quick take-offs from smell landing
fields.

The types of rockets mentioned in this peper are all war rockets.
However, the theory developed herein should be quite applicable to all
similar rockets.

Note:s It is common practice to refer to finned rockets which do not rotate

as UP's (unrotating projectiles), and since we are concerned only with such

projectiles we shall use the terms rocket and UP interchangeably.

B. Characteristics of Artillery Projectiles and Rockets:

Since the introduction of gun-powder in Europe the common form of
hurling large missiles has been from guns and cannon; that is, the explosion
of a charge of powder to the rear of the shell releases hot gases whose
pressure forces the projectile out of the gun barrel at high speed. Be-
cause of the conservation of momentum, as the fast-moving shell leaves the
barrel, the gun suffers a "kick" or recoil, the magnitude of which depends
upon the mass and velocity of the projectile. To reduce this recoil motion
of the gun is not an easy problem; in addition to having heavy mounts, can-
non are generally equipped with complicated recoil mechanisms. With the
invention of the rifled bore, streamlined elongated projectiles replaced
the former cannon-balls, and the accuracy of artillery fire was very greatly
improved.

Once the projectile leaves the gun barrel propulsion ceases, the re-
maining action being that of gravity and aerodynamic forces. The spin im-
parted to the shell by the rifling serves to introduce gyroscopic forces

which prevent the body from tumbling, as it would normally do because of
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the aerodynamic destabilizing moment (Sec. C, below). The very great
advantage of standard artillery over rockets is its unequalled great
accuracy.

Compared to the ordinary gun, the rocket projector is simplicity it-
self; for, the backward momentum being taken up by the burnt gases which
expand into the atmosphere, there is no need for a heavy gun or mount or
recoil mechanism., All that is necessary is‘a tube or a set of rails or
some similar guide for the rocket during the first few feet of its motion.
However, even after the rocket leaves the projector it continues to be
accelerated forward by the jet-propulsive action, often for a considerable
distance; and it is during this period that practically all of the devia-
tions in range and deflection are introduced. In order that the UP be
stable in flight (cf. Sec. C, below) fins are attached at its rear. Be-
cause of the unguided burning period off the rails the accuracy of rocket
fire is so poor compared to standard artillery fire that more approximste

methods of treating the ballistics problem are justified on this account.

C. The Force System Acting on a Yawing Projectiles

Consider a projectile moving through the air (Fig. 1) with its axis
making an angle Sw(angle of yaw) with the direction of motion. It will
be acted upon by gravity and by an air force, ¥, depending upon the charac-
teristics of the projectile and of the air and also upon the velocity and
yaw., The gravitational force being constant in all practical cases, it is
not necessary to consider it further for the moment. From mechanics we
know that the whole of the forces acting on a rigid body are always reduc-
ible to a single force, acting at a given point and a couple. In a pro-

jectile this true couple is negligible;B) while the point of application
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Direction of Motion
with respect to air

A

Center of Pressure
Without Fins

Center of Pressure
With Fins — (P L(8) = A sin 8 Gro;irﬁind

F(J) —— Resultant Force

YD

Drag (Component of F(d) along
direction of motion.)

Fig. 1

of the total force on the body under a fixed angle of yaw is called the

center of pressure (C. P.). In general, an artillery projectile has its

C. P. ahead of its center of gravity (C. G.); consequently the air forces
tend to cause such a projectile to tumble, because of the overturning

moment of the force F about the C. G. The existence of this destabiliz-
ing moment is an intrinsic property of elongated bodies moving end—on.é)
For stable flight, therefore, a projectile either must be given a fast
spin about its longitudinal axis (for gyroscopic effect), or else it must

hsve fins located at the tail (as in airplane bombs and rockets) to bring

the C. P. back of the C. G., so that the aerodynamic torque is a restoring
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one instead of a destabilizing one. In addition, since the yaw varies
with time, there exists a damping couple because of the air resistance to
angular motion,

The component of the total force, F, along the direction of motion is
called the drag or head resistance, D; while the component perpendicular
to the direction of motion is called the cross-wind force, L. By dimen-
sional reasoning one can easily arrive at the following expressions for
the drag, cross-wind force and the moment M of F about the C. G.

Kpf & (1)

L= ,\sing :KL/dezvzsing ()

D

= Ky 0 & v sin § (3)

wherelp is the density of the air; d is some characteristic linear dimen-
sion of the projectile; and Kp, Ky and KM are dimensionless coefficients
which are functions of />vd/b“ (Reynolds number), v/a (ilach number) and g 3
while (” and a are the coefficient of viscosity of the air and the velocity
of sound in the air, respectively. Since L and M vanish as Q—ao, the fac-
tor sinS’ has been included in equations (2) and (3).

Little is known about the dependence of the K's on Reynolds numbers;
but various determinations of the variations of the coefficients with v/a
have been made in this countryB) (at the Aberdeen Proving Gounds) and else-
where (e.g. the experimental studies conducted by the Gavre Commission in
France)., It has been found that no simple function represents the depen-
dence of KD, K;, or Ky on velocity. However, from the lowest velocities
used in artillery up to about v/a = 0.8 the K's are approximately constant;
while as v/a increases the coefficients increase extremely rapidlj)approach—
ing a maximum at roughly v/a = 1 and then decreasing somewhat. In general

the forms of the curves are different for different projectile shapes.
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Another way of stating the above is that up to a velocity of about 800 ft/sec

the forces on the projectile vary as the square of the velocitye.

As for the dependence of the coefficients on the yaw, experiments in-
dicateS) that Kp is a linear function of gz-(KD =0y + G, 8’ 2); while, for

small yaws, Kp and K are approximately independent of g .
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II. Trajectories of Low-Velocity Projectiles

A. Exterior Ballisticss

The object of this section is to deal with some simple problems of
exterior ballistics and to investigate whether such theory is applicable
to rocket projectiles, For this purpose we consider the motion of a rigid
body through the air acted upon by gravity and by air resistance or drag.
Assuming negligible yaw, we may represent the air drag by a force acting
in the direction opposite to the velocity of the projectile and of magnitude
D = -mc £(v)

where m is the mass of projectile;

c is a constant of proportionality depending on the size, shape and

surface of the projectile; it is also called the deceleration coef-

ficient, for the deceleration due to air drag is c¢ f(v);
and f(v) is a function depending upon the velocity, v.

Choosing a coordinate system as in Fig. 2, we have

' ,

Fig. 2

% The following material follows mainly from Cranz, Lehrbuch der Ballistik xf/z
wherein a complete description plus computing tables may be found.
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for the equations of motion

g%z = —c f£(v) cos © , (4)
av:

Sl = i ”

3E ¢ £(v) sin 8 —g (5)

where vy = v cos © ; = v sin 8.

Ty
The accelerations tangential and normal to the path are given by

dv .
3% = ~C f(v) -g sin © (6)
de dae
and v 22 = v %2 _ 5 cos 8 - 7.
dt ds - (7)

where v = g% s S being the distance slong the path.

Eliminating dt from (4) and (7), we have
g d(v cos 8) = cv £(v) d® , (8)

which is often referred to as the principal ballistic equation. From (7),

we also arrive at the following differential expressions:

Time, g dt = -v sec 6 de (9)
Horizontal Distance, g dx = -v© d@ (10)

Height, g dy = ~v° tan 8 d®@  (11)
Path length, g ds = v~ sec 8 d8  (12)

The integration of equations (4) to (12) constitutes the essential
problem of so-called exterior ballistics. For c = O the above set of equa-
tions reduces to the simple equations for the vacuum trajectory, which can
be readily integrated. For the more general case many methods of solution*
have been proposed, all of which are more or less approximations; for the
resistance function f£(v) is not in general a simple function of the velocity.

Where one is not interested in very great accuracy the quadratic resistance

¥ These are discussed in Cranz and other treatises on exterior ballistics
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law (cf. eg. (1)) may be used. However, it is known that this law definitely
breaks down at higher velocities (also at very low velocities) for as the
velocity of the projectile approaches the velocity of sound the drag in-
creases much faster than v2. For those special cases, though, in which

the velocity of the projectile is less than about 800 ft/sec the gquadratic

resistance law holds quite well.

B. The Didion-Bernoulli Approximation for the Trajectory:

The object being to apply standard exterior ballistics methods to UP's
in free flight (i.e. after the burning period) we shall assume a quadratic
resistance law, since the velocities of most rockets developed thus far at
CIT are definitely less than 800 ft/sec. Also, to arrive at a solution
which can be used with ease we make use of the so-called Didion-Bernoulli

6) The advantage of this method is that it is straightforward

approximation.
and the results can be applied easily;7) also, it gives sufficient accuracy
for most rockets at present.

From equations (8) and (10) we have

v cos 8 d(v cos 8) ) (13)
c £f(v) cos 8

A = =

The mathematical approximation is to replace f(v) by f(x v cos &) and one
cos 8 (in the denominator) by 1/x , where the constant A is an appropriate
average of 1/cos 8. Also, letting u = & v cos O, equation (13) reduces to

X = = === = : 14
X ¢ f(U) b4 ( )
which can now be integrated for suitable values of f(u). In the special

case of the quadratic resistance law, f(v) = v 3

ax = - du_ 2 (15)
X cu
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As an illustration of the simplicity of the method, let us calculate
the time of flight corresponding to any horizontal distance x. Integrat-

ing (15) )

-C
X-_-o(vcose .

u=K1e

Now making use of the initial conditions that v = Vs 8 = § vhen x = O,
we get

v cos 8 = v, cos f e Cx X .

Eliminating d8 from equations (9) and (10) and substituting for cos &

from the above,
cA X

6t = B, @ .
v, cos
Integrating and applying the condition that x = O for t = 0, we get
1 eC T X]

Vg COS @ ’ %

t=

In terms of the dimensionless quantity z - 2cex, we have, finally, for

the time corresponding to any value of x,

bo X Dz (16)
v, cos §
R

where D(z) = E—Z-{-::-L- . (162)

z/2

Similarly, one can derive the following expressions for the elements

of the trajectory:

Height along path, y=xtan f - —LX___ B(2) »(17)
2 V02 cos?
7
where B(z) = 9.22::1 ; (172)
z</2
Tengent to orbit, tan 6 = tan @ - ——8%5___ J(z) ,  (18)
Vg cos?
e?=]
where J(2) = === 3 (18a)
z

Horizontal component of velocity,

v_ cos @ «V(z) (19)

v cos © &

where V(z) = e~2/2 . (192)
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For ¢ = O, it is easy to see that the correction factors D(z) = B(z) =
J(z) = V(z) = 1; that is, (16), (17), (18), (19) simply reduce them to the
elements of the vacuum trajectory. The above D-B method gives a very good
approximation to the trajectory for low angles of fire (of very close to
unity); but it can also be applied at larger angles if not very great ac-

curacy is desired.

C. Application of Didion-Bernoulli Method to Rocket Trajectories (CIQ/JPC 1):

In April 1942 a study was made of the free-flight (i.e., post-burning)
trajectories of a group of CWG rockets. Since the velocities were of the
order of 500 ft/sec and the quadrant angle of fire only 6°, the D-B approxi-
mation is applicable and this investigation should afford a good test of the
applicability of standard exterior ballistics methods to rockets.

Data

The UP's whose trajectories were studied in this investigation were
part of a group of 50 CWG (double-web powder) projectiles (Cf. CIT,NMC
1.,22-23 (7)) which, as far as possible, were identical in all respects.

The firings took place at MAAR on March 28, 1942; and, to secure sufficient
photographic data for determining the actual behavior of the UP's in flight,
three cameras were placed at different points along the trajectory. These
included:

(a) The "CIT" camera, for determining acceleration, velocity, burning
distance, and burning time. In the field of view were also two posts (here-
after referred to as My and M, ) situated 25 ft and 50 ft along the range
and slightly to one side, whigh had accurately marked reference points and
stripes for determining the heights and angles of yaw of the UP's at these
points.

(b) A camera 400 ft along the range for determining the angle of yaw
and height at this point (again from a post on range, as in (a)).

(c) A camera 1000 ft along the range for measuring the velocity at this
point.,

Measurements were made in the usual manner, and, whenever necessary,
corrections were msde to allow for the fact that the UP and points of refer-
ence for measurement (e.g. M; and M,) were not in the same plane but yet
were seen in the same plane of projéction by the cameras. Only corrected
values are given in the accompanying table.
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Method

The D-B theory gives the following equation, (17), for the path of

the projectiles

2
Yy =X tan ¢ - --—-—g)_s_._._... B(Z) 3 (17)
2v & cos? §
from which x = YQ%E&E..%@ + _92...8..}1_1_8% 2 = 22_392.9953_'@ o (20)
2g B(z) 2g B(z) g B(z)

Fig. 3 shows schematically the path of the UP. In general, the UP
burned for a short distance (on the average 5.8 ft) beyond the first marker
My. On the assumption that @ does not change measurably over this distance,
we use equation (17) for determining @. (That this assumption was valid is
borne out by the fact that there is no correlation between @ and burning

distance; nor are there any systematic differences between observed and

computed (from @) ranges as a function of burning distance.)

Thus tan @ = 3; + ———ilfi——— B(z) (202)
X 2v02 cos? ¢

where y' is the difference in the heights of the UP at the two markers and
x' is the horizontal distance between the markers. In the last term
B(z) 2 1.0015; and since @<6°, cos® # = 0.99. Therefore,

1 ]
tan @ = 2; PR - " (20Db)

x' 2% (0.99)
from which the values in Table 1 were computed. From the measured values
of velocities at the end of burning, v,, and velocities at 1000 ft along
range, vinon» L. Davis has computed the deceleration coefficients, c,
(ef. eq. (L), CIT/MTC 3), which sre given in column 6. In subsequent com-
putations the mean value of ¢ was used throughout.

The "vertical yaws"™ are in all cases the angles between the axis of
the UP projected on to the vertical plane and the tangent to the trajectory,

where ©, the angle of the trajectory, is given by
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cos ©® =cos g (1 - Zgy/voz)% (20¢)
Equation (20c) holds strictly only for the vacuum trajectory, but in the cases
considered here it is practically the same as for the actual path. The heights
at 400 ft slong range were computed from (17) both for the D-B path and for the
vacuum path (with ¢ = 0). Similarly, the "ranges", R, were computed from (20).
In all cases R is the ltotal horizontel distence of free-flight.
Results — It is at once apparent (cfe column 1 of tzble 1) that the departure
angles for free flight, @, are in all cases less than the angle (6°) at which
the projector was set. The average f is 5° 11' with a random scatter in @
about this value. L. Davis has computed (from formulae in CIT/MTC 2) that the
maximum chenge in trajectory angle during burning to be expected for this set
of UP's (acceleration g 160g; Vo < 480 ft sec; burning distance & 24 ft; burn-
ing time z 0.10 sec) is approximately -0.2C°, of Which about -0.22° is due té
the curvature in the trajectory produced by gravity, and the remaining -0.08°
is due to the tipping-off produced by the draggipg of the tail of the UP on
the projector, if this effect is present. The fact that the observed average
change is -0.82° indicates that other causes are mainly responsible for this
large deviation., The observed angles of vertical yaw at li; are too small to
be reliable; however, if we compare the angles of yaw at M2 (which is on the
average 23 ft beyond the start of free flight) with the values of g (cf. Fig.4)
we note a decided correlation: The greater the angle of yaw the gresater the
change in departure angle. This is not unexpected, for any mislaunching or
misalignment would produce both vertical deviation (change in #) and vertical
yaw in the same direction. From the data, there is no evidence that @ is a
function of either the burning distance or the burning time.

The most striking result in the table is the unigue correspondence between

the observed ranges and those computed from the DB theory, and between the ob-

served snd computed heights at 400 ft. The mean observed range (1289) is prac-

tically the same as the mean D-B range (1286 ft), while the differences between
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the observed and DB ranges plainly indicate a random distribution, with 6 posi-
tive values and 6 negative. The mean deviation is + 28 ft, corresponding to a
percentage deviation of + 2%.

Summery - l. A large unexplained change in the trajectory angle has been found
to be introduced during the burning. For the projector set at 6° the average
change was found to be 0,87,

2. The Didion-Bernoulli approximetion for the free-flight trajectory is
found to hold very well for the CWG projectile having only slight yaw ( < 4°).
Consequently, the post-burning trajectory is identical with that of a shell
under the same initial conditions and with the same deceleration coefficient.
It follows from (2) that,

3. For the CWG's (with only slight yaw in flight) all effects governing
the motion, range, etc. are introduced during burning; and also that the tra-

jectory after burning is sensibly straight, i.e. lies in a vertical plane,

D. Conclusions:

It is reasonable to assume from the above analysis of CWG trajectories
that the following deductions may be drawn concerning rockets in general.

1. For rockets having negligible yaw it is quite proper to apply standard
nethods of exterior ballistics for the post-burning trajectory.

2. All effects governing the motion, range, deflection, etc. of rockets

are introduced during the burning period.*

% Wind and other extraneous effects are neglected.
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III. Yaw and Deflection Developed During Burning of Rockets
(CIT/JPC 3 4 NDRC, A-164)

A, Casuses of inaccuracy of Rockets:

As was shown above, practically all effects governing the range and
deflection of rockets are introduced during the burning period. The fac-
tors influencing the motion of a UP during this period are meny, and it is
quite impossible to take them into account all at once., Consequently it
will be necessary to limit the problem here to the effect of maelalignment
alone, the most important of the following factors.

1, Malalignment of the jet. - This is the principle cause of the in-

accuracy of rockets; for the failure of the axis of the jet to pass through
the center of mass of the projectile causes the UP to rotate during burning
about a transverse axis through the center of mass with the result that the
direction of thrust of the motor is altered from its initial direction as
determined by the projector.

2. Mal-launching. - Improper leunching may result in the rocket acquir-

ing an angular velocity as it leaves the rails. The affect of this has been

discussed in a paper by L. Davis.s)

3. Effects of Gravity. -

a. If the rocket is launched from a projector without an overhead
guide, it is free to tip off the end of the projector once the center of
gravity of the UP has passed that point. This problem has also been treated
by L. Davis.g)

b. If the UP were launched without a projector the trajectory
during burning would be a straight line. However, the velocity would not
be Gt but would be diminished by the amount gt sin 6,, approximetely. Since,

generally, g<<G, this change in velocity is quite negligible. In the usual
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case of launching from a projector the effect upon the velocity is about the
same. However, the trajectory in this case is no longer straight but has a

curvature in the vertical plane.

Lo Asymmetry of Projectile Shape. — If the fins, for example, are

asymnetrical, they exert a rudder effect upon the UP, thus introducing a
yvaw and altering the direction of thrust of the rocket motor,

5. Wind. - (This will be discussed in Ch. IV.)

B. Bguations of Motion:

Wie shall assume that the rocket is perfectly symmetrical in shape and
is launched properly in a uniform atmosphere free from wind. It will be
convenient, too, to neglect the curvature of the trajectory due to gravity
during the period of burning. Any errors introduced thereby should be
roughly systematic; though one can avoid such difficulties completely by
applying the results to yaw and deflection in a plane perpendicular to the
vertical, wherein gravity plays a negligible role.

The remaining forces then are the thrust of the malaligned jet and
the aserodynamic forces and torques. The air drag will decrease the velocity
of the rocket roughly by the amount <1V‘:‘/pcv2 at - % c Vb2 ty,e Since
cEix 102 TS for practically all UP's at CIT, and vy tp, =2 x 102 ft,
the loss in velocity due to drag is of the order of less than one percent.
The cross-wind force has the effect of displacing the UP normal to the tra-
jectory. However, the(malaligned)jet also has a component of force perpen-
dicular to the trajectory. Assuming, as a first approximation for small
yaw, that the cross-wind force is given by L = DS}, the ratio of the cross-

wind force to the component of the thrust perpendicular to the trajectory is

L mc vzg:

oGS myvp/ty

5cvbtb‘:.'.01 o
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Conéequently, the cross-wind force, as well as the drag, may be neglected
during the period of burning.%
For the aerodynamic restoring torgue of our finned rocket, we have,
from eq. (3),
M—Krcd 2 sing ckR S ,

where K has been substltuted for Ky £ d3 and Sl for sin g

For the resistance to angular Aotlon we assume a damping couple,
j/“'ﬁc’ proportional to the angular velocity. Though the damping coeffi-
cient, ¢ , is some function of velocity, we shall not consider this depen-

2
dence, since our only concern is with the order of magnitude of the damping.
All we assume 1is tha?/k femains constant st some fixed velocity.

The effect of the jet is conveniently resolved into two parts: a
resultant force F which accelerates the center of mass, and a torque which
produces a rotation about the center of mass. We express this torgue as
F L(t), where L, the malalignment is the distance that the center of mass
must be from F if the force F and the lever arm L are to nroduce the required
torque.

Under the above restrictions, the motion of the UP is in the "plane of

yaw" determined by the projector and the direction of the axis of the jet.

path

y

Fige 5

stse /f

¥ Ue have neglected the fact that the malalignment,of the jet introduces an
additional component to the force normal to the trajectory. This, however,
is quite unpredictable from round to round. The evidence is that this ef-
fect is unimportant.
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The angles in this plane (cf. Fig. 5) are designated with the subscript "c®
to distinguish the symbols from their usual meanings.
The complete eqguation for the rotation of the projectile is then
I';a’c=FL(t)-Kv2§071ch . (21)
The curvature of the trajectory is caused by the component of F per-

pendicular to the trajectory. Equating the centrifugal force to this gives

m b =TS, . (22)
Also @, = 9, + gc 3 (23)
where ¢c = angle between axis of UP and initial direction on vrojector

in plane of yaw

©c = angle between tengent to trajectory and initial direction
(8c = deflection in plane of yaw)

?c = P, - 8, = yaw of projectile

m = mass of projectile

k = radius of gyration about transverse axis through the CG
I = mk® = moment of inertia about transverse axis through CG

L(t) = malalignment of jet. If the malalignment is considered
independent of time, this becomes L .

G = linear acceleration of rocket during burning
F

mG = force propelling rocket

t = time from start of burning

<4
]

Gt = velocity of rocket

moment coefficient of fins; restoring torque = K ve §<:

~
L]

damping coefficient; damping moment f//‘ﬁc

X

During the post-burning period, F = o and v = vy, = const.; thus £1)
and @) reduce to

I$c=—KVb2§c-/¢c (24)

an egu ation for damped oscillation with period
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T = (25)
2

Ky -
I LT

W=

The damping coefficient/u is given by

=L fn A (26)
AET
where A' and A" are two successive amplitude crests on the yaw curve

LﬁrlAﬁ/A" = logarithmic decrement). Thus//ﬂ can be determined from the

period and shape of the observed yaw curves; and K, from (4), is given by

2 2
L™ 1 M

K = 2
w2 12 R \&7)

In general, the yaws are too smell to be able to determin?//x. How-

~ ever, for the Chemical Warfare Grenade (CWG) with a built-in melalignment
(to produce large yaws; see CIT/MTC 7Z/u wes found to be 1.1° at a velocity
of 325 ft/sec. With this value of>/(, the second term on the right-hand
side of (27) is about 10™2 times the first term. For the slower-moving pro-
jectiles (such as the ASPC lk. projectile or Beach Barrage Rocket ik. 1),
even if;« is as much as ten times that for the CWG, the second term in (27)
is about lO"2 times’the first end so is again negligible. Thus we can write

| e (28)

from which formula X was actually determined. (For variation of K with fin
size, see the experimental results for the CWG at the end of this report.)

It is more convenient to express the effect of the fins in terms of the
distance ¢ traversed by the focket in free flight while the yaw oscillates
through one full cycle. Thus, from (28),

¢ =T = 27 e . (29)
K

¥ Except where specified, sbsolute fps units are used throughout.
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Since, as indicated above, the damping moment ://(éc is considerably
smaller than the serodynamic torque -széfc (and also to facilitate a solu-
tion of the equations) we neglect this term in equation (21). Rewriting

(21), (22) and (23), we then have

g, = GL(;) - ‘*”2‘3‘2;2& (30)
k o

8, = §, (31)

¢c = ec * 8; (32)

G)

In writing v = Gt, we assumed that the acceleration of the projectile,Ais
constant during burning (that is, G = vb/tb), which, though a rash assump-

tion in some cases, should nevertheless yield approximetely the same results.*

The boundary conditions on this set of equations are that at t

'

the ti
tp (the time

Q.

that the rocket leaves the projector), Sc = SC = B, = %c

Co Solution of Equations and Generel Conclusionss

As is pointed out in appendix 1, results from the yew machine indicate
that the melalignment of the Jet is far from constant during burning, but
rather may vary considerably. (In the appendix the torque produced by the
jet is expressed in terms of the side force acting at the nozzle instead of
the malalignment of the resultant jet force, but the two descriptions of
the torque are, of course, equivalent.)

Since a solution with a malalignment which is an arbitrary function

of time can only be given in the form of & definite integrel, we will con-

% In CIT/ITC 2, L. Davis has shown thet the dispersions in vacuo are essen-
tially the same for various types of burning.
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sider three simple special cases. By solving equations (30), (31) and (32)
for these forms of L(t) we should get a satisfactory understsnding of the
behavior of the projectile in general,
Case I: L(t) = Ly

Here we assume constant maelalignment during burning (that is, constant

upsetting torque). The solutions are conveniently expressed in terms of

the dimensionless quantity z=|276/ 4 R
, TVp

S s

We have
gc=5§:§%'i— (go"’Algl*Az?z) (333)
¢c = g:i;?{% (¢° + A ¢1 + A2¢2 * A3) (33Db)
o = fe - S:c (33c)

where
Bo(a) = 2 |8y 2() + 8, %) | (342)
#1(z) = -Jr's(z//7) (34D)
fo(2) = [7 c(=//7) (34e)
Fol2) = 1(2)-51(2) + By(2) 5 (2) (344)
§ 1(2) = cos /3 (32e)
{ o(2) = sin 7%/, (345)
A = - ¢l (Zp) (34g)

* The author is greatly indebted to Dr. Leverett Davis for this solution
and for indicating the method of solution for Cases II and IIX. (See
appendix 2.)

#* Developed by Dr. Morgan Ward.
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by == (zp) (34h)
g, (zp) (341)

Zp = V27)’G/0" o tp = J 4z p/t is the value of z when t = tp,

and p is the effective projector length; that is, the distance the rocket

=
11

moves before the constreint of the rails is removed.

The functions C(z/y7 ) and S(2/)7 ) are the Fresnel Integrals.
Ll
Cage IT: L(t) = —2-¢ .
tp

Here we assume that the melalignment (or upsetting torque) increases

linesrly with time. The solutions are

o~ L' 1 '
gc = 5}"1';52; ° ; (1 + Blgl + B2 gz) (353)
a’ L'o ,
g = i, B S
O =fe-§o - (35¢)

where §1)§2 $ ¢l and 552 are the same as in case I,

B = -y (2) (350)
By = -, (2) (35¢)
By = §o (2p) (35£)

and zp and Z, are the values of z when t - tp and v = tb, respectively.

Case III: L(t) = L'  (1- -%) )

Here we assume that the malalignment (or upsetting torque) decreases

linearly from a meximum value'L'0 at t = 0 to zero at t = ty. IThis approxi-

mation to L(t) fits most closely the preliminary data yielded by the vaw

machine.



The solutions are

oL 1 '
b= e E s Sa v gy oo
g~ L'
¢C = 5—-’;;5 = (Zb’do + alﬁl + a2¢2 + 8»3) (36D)
Zp
O = ch “S:c (26e

where @o, B1, fo, ;O, gl’ (0j2 are the same as in Case I,

ap = ¥ (2) - 2y (z)

as = 5 (zp) - 205 (zp)
ag = 218, (zp) - 8:0 (zp)

and zp and 2y, are the values of z when t = tp and t = %y, respectively.

In the following analysis it will be assumed that the malalignment of
the jet is constent @uring burning (Case I). Though this condition can
hardly be expected to prevail, nevertheless the three types of malslignment
discussed above yield essentially the same yaws and deflections.

of GC/LO for t = t}, is a measure of the deflection to be expected, since

under our hypotheses 8, remains constant after burning.
If we take as the "plane of yaw" the

plane passing through the projector, and per-

pendicular to the vertical plane through the g0-¢, _|

projector, and if 8, is the guadrant angle of

the projector, then the lateral deflection on

N ¢
range,/g , is given by \\\\\\\\\

* This is taken as the plane of yaw mainly
because we can easily compare predicted
dispersions in this plane with the observed
lateral dispersions on range.

(36d)
(36e)
(36f)

The value



tan ﬂ = E%E_g.q‘

or, since 4 and O, are small,

f ec
A= : (37)
cos ©p
(i) Fig. 7 is a graph of k° §/¢-L, as a function of Z//27 (= /G/r t).

These curves may therefore be used to give the angle between the rails and
the trajectory at any point during the burning period. If one is interested
in the deviation of the final trajectory after the completion of burning,
the expression for this may be obteined by substituting the burning time ty
for 1, since the slope of the curve at this time determines the final direc-
tion of the projectile; Z[/Ei;'therefore becones Zb//gi; =‘/62;7~tb. Since
G = vb/tb, this may further be simplified to rvbtb/ﬁ‘. Furthermore, since
6‘“/vb = T, the period of oscillation in free flight, Z//é;;?may also be
expressed as t/yE;; and Zb//g;;’as ty/T. The upper scale in Fig. 7 indi-
cates the value of JG/0 +t and holds at all times; while the lower scale
gives the value of vbtbﬂr' = tb/T, and in this form refers only to the end
of burning. The upper scale is therefore used when considering the varia-
tion of Q/Lo with time when the acceleration G is fixed. The lower scale
will be more convenient for determining the value.at the end of burning of
Q/L0 as a function of burning time when the finel velocity of the rocket
remains constants
From these curves it is evicent that the accuracy is only slightly

dependent on the burning time ty if this time exceeds T, the period of
oscillation of the projectile in free flight; or, in other words, if the
burning distence vyt exceeds 3 O~

(ii) In Fig. & the results of the same solution (Egs. (332), (33b), and
(33¢)) are plotted so as to show more clearly the conditions under which

fin size is of importance. In this figure the sbscissa is again the
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ratio tb/T. The ordinate is the ratio of the dispersion for the given value
of tb/T to the dispersion that would have been attained if T were infinite —
that is, if only enough fin surface were present to give the rocket neutral
stability in free flight. Curves are given for several projector lengths.
While T depends on I, the moment of inertia of the projectile, the latter
factor is ordinarily fixed by other considerations of design. Consequently,
the only practical method for varyiﬁg‘z is to change the size or position of
the fins. The second set of abscissas is given to show the variation with
K, the fin coefficient. In cases in which p/vyty < 0.10 —— that is, in
which the projector length is less than one-fifth of the burning distance —-
the results in Fig. 8 may be roughly summerized as follows.

Fins of such size as to make the period of vibration equal to the
burning time decrease the dispersion to about 70 percent of the dispersion
with no fins or, more rigorously, with fins just large enough to give the
rocket neutral stability. For fins of greater size the dispersion is roughly
proportional to the period of oscillation in free flight produced by the fins.

(iii) In Fig. 9 the effects of projector length on dispersion are similarly
shown. The abscissa is the ratio of effective projector length p to vptyp,
where vpty is twice the burning distance. The ordinate is the ratio of
dispersion for the given velue of p/vbtb to the dispersion for zero projec-
tor length. Curves are given for various values of tb/T. For projector
lengths between 0.01 and 0.50 times the burning distance, the decrease in
dispersion is roughly linear with the logarithm of the effective projector
length.

From Table 2 which lists the constants of a number of projectiles that
have been developed on this project, it is evident that fins of a size

found practical for use yield a value of about 200 to 300 ft for ¢“and a
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value of ZOO/vb to 300/vb sec for T. Hence, for projectiles such as the
mousetrap and the barrage rocket, whose speeds are less than about 500 ft/sec,
tb'<"T5 and therefore the burning time is the importent factor in deter-
mining dispersion whereas fin size has very little effect. On the other
~hand, for projectiles with higher velocities, iy, >>T, and therefore the fin
size has a large effect on accuracy while the burning time does not play an

appreciable role.

D, Limitations of the Theory:

It should be emphasized that L(t) is the distance from the axis of
thrust of the gas jet to the center of mass of the rocket and that this is
not necessarily the same as the distence from the geometric axis of the
nozzle to the center of mass. Because of dissymmetry in the burning of the
powder or irregularities along the path of the jet that may introduce tur-
bulence or shock waves into the flow of the gas, the axis of this flow may
deviate from the geometric axis of the nozzle. Indeed, a considerable
body of evidence has developed that indicates that such deviations may be
as large as or larger than the geometric malalignment of the nozzle. Fur-
thermore, deviations of this type may vary rapidly during the burning period
rather than remain constent, as was assumed in the foregoing solution. All
of this means that the absolute values of the dispersions calculated on the
basis of Fig. 7 and the measured geometric malalignments can be relied on
only as to order of magunitude,

While these uncerteinties may affect the estimated, absolute values of
the dispersion, they should not appreciably change the relative dispersions
to be expected when fin size or burning time is varied for a given projec-
tile. If anything, the dispersion should vary somewhat more rapidly with

projector length than is indicated by Fig. 9, since such evidence as is
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Fig. g
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available suggests that the malalignment of the gas jet is greater near the
start of burning that it is at later times.

In setting up the equations of motion it was assumed that the restoring
force of the fins is proportional to the square of the velocity. This law
seems to be applicable until the velocity of the rocket approaches the ve-
locity of sound, but definitely breaks down for higher wvelocities. For
these higher velocities the restoring force is, if anything, larger than
that given by the v* law, If, therefore, the projectile has reached the
flat portion of the curve in Fig. 7 by the time a velocity of 800 ft/sec is
reached, we may assume that these curves are correct for any final velocity,
since, according to the law of force assumed, the force is already large
enough to prevent further appreciable deviation. In other words, if the
distence required to attain a velocity of 800 ft/sec exceeds % ¢, where 0~
is the distance covered in one period of free flight, the curves are approxi-
mately valid for any velocity. In this case the value of ¢~ for the projec-
tile should be determined for a speed less than 800 ft/sec.

In addition, the restrictions on gravity, cross-wind, drag, etc. put
further limits on the theory, though these latier effects are second-order
compared to the effect of malalignment. Dr. Bowen has recently pointed out
that during‘burning the gas jet sucks a considerable amount of air past the
fins)and therefore the air velocity immediately adjacent to the fins is
greater than the velocity of the rocket. Exactly what the effect of this

is is not known at present, but it might be significant.

E. Comparison Between Observed and Predicted Results:

ilost of the experimental study on the development of yaw during burn-
ing has been mede with the CWG (Chemical Warfare Grenade), and consequently

this projectile is used for the following detailed analysis.
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Flight tests of the CWG have been made with four different sizes of
fins, The values of K and (¢~ for these sets of fins are given in Table 3.
Fig. 10, in which K is plotted as a function of the area of the fins, seem-
ingly indicates that the moment coefficient is about proportional to the
fin area. Though this might not be unexpected for the three smaller fins,
for which only the widths are different, it is probably a coincidence, be-
cause of the particular dimensions of the large finé?tiiey too seem to fit
the linear relation. We also note (for the standard fins) that X does not
seen to depend upon the velocity of the projectile in the range of veloci-
ties considered.

To illustrate the shapes of yaw and deflection curves, in Fig. 11
gc/LO and 8¢/L, are plotted as functions of time for the single-web CWG
with standard size fins, on the assumption of constant malalignment, L(t)=Lg.
The curves are continued beyond the usual burning time merely to illustrate
the effects of prolonged burning. The plotted circles (taken from CIT/MTC 5)
in the figure are values of the yaw observed when an abnormelly large mal-
alignment was introduced. The scale of the yaw has been adjusted to give a
fit with the theoretical curve near the start of burning. If it were pos-
sible to determine the functional form of L(t) in any case, one could get a
value for the melalignment constant Ly by fitting the observed yaw curve to
the theoretical curve. In any event, by fitting the initial portions of
the curves it 1s possible to determine Lo in this region. This then gives
an estimate of the initial malalignment or the initial side force at the
nozzle throat. (See Table 3 for values.) In Fig. 11 6,/L, (dashed curve)
is also plotted for the multi-web CWG. Since for a given malalignment the
overturning moment FL(t) is proportional to the acceleration G, we note as

expected that the multi-web veers off at a greater rate than the single-web.
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The 1leveling off at the different values of QC/Lo is due to the fact that
slightly different effective projector lengths were taken in the two cases.

In Fig. 12 the deflections GO/LO are plotted as a function of X for
both low (400 ft/sec) and high (800 fi/sec) velocities, and also for two
different burning times at the higher velocity. As expected, the effect
of fins on accuracy is much greater at 800 ft/sec than at 400 ft/sec, and
in fact the deflection at the lower velocity does not depend much on X at
all. It is important to note, too, that where fins do play an appreciable
role (800 ft/sec) the dependence of €, on K is greater the longer the burn—
ing time,

Except for yaw studies in which abnormally large geometrical malalign-
ments were introduced, the only range tests with other than stendard fins
were made with the large fins. In Table 4 we have some data on the ob-
served and predicted dispersions for identical firings, in which only the
fin sizes were different. If we assume that the average malalignments were
the same in the two cases, we find that the ratio of dispersions (small fins
to large fins) is observed to be 1.8, while the predicted value is 2.4, of
the same order of magnitude.

To illustrate the observed effect of burning time on accuracy, some
recent field-test determinations of GC/LO for the 4.5 in. BR (Barrage Rocket)
are shown in Fig. 13. (From Fig. 6, CIT/IBC 23) FEach point represents one
test, the number of rounds differing for each. The theoretical curve was
calculated by means of the master curves in Fig. 7 using the data for this
orojectile as given in Table 2. In spite of the fact that the points repre-
sent a heterogeneous collection (cf. CIT/IBC 23. There were often changes
in design of nozzle, etc. from one test to the next.) The agreement between

the observed and predicted values seems rather good.
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m (1b) I Ty, T (sec) O(ft) K [pal £t/
(in.) (1b-£t2) (ft/sec) (£t/sec)?/
rad ] |
Small 4x5/8 2.70 0.93 764 278 213 0.82x107
Stendard  4x15/16  2.74 0.95 326 49 160  1.51x1073
n " n " 754, 235 177 1.23%107°
n " n " 71 .222 172 1.33x107
Medium 42 2.86 1.03 720 .153 110 3.36x107°
n n n " 758 157 119 2.93x1073
Large 6x2}  3.06 1.23 662 139 91  5.92x107>
Average initial malalignment (from yaw curves) % .055 in.
Average initial side force (from yaw curves) < 41 pdls
Table 4
Comparison of Dispersion for Different Fins
Date Type of Fins No. of Obs. ty, (sec) p Predictedj
Rounds Dispersion (ft/sec) 8c/L,
42-04-18  Stendard 4L SW  26.4 mils .21 750 2.4
W I Large 7SW  1hd <21 750 1.0

~32~

Table 3

Sumnary of Fin Coefficients for the CWG

Size

Observed Ratio of Dispersions = 1.8

Predicted Ratio of Dispersions = 2.4
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Perhaps the most beautiful demonstrafion of the correlation between
deflection and malalignment is the result of a recent set of firings of
Le5 in. BR's, in which the motors had excessively large geometrical mal-
alignments. Fig. 14 is a plot of the observed lateral deflections against
the corresponding maelalignment. The straight line is the theoretically

expected slope, on the basis of geometrical malalignment alone, which fits

the observed points remarkably well. This correletion between deflection
end malalignment is much better than is usually obtained, the reason being
that the "gas" malalignments in this case are much smaller than the (abnor-
melly large) geometrical malalignments. In the usual case, however, the
gas malalignments are as large as, and quite often larger than, the geo-
metrical malalignments; so that the predicted deflections are considerably
altered. The important point, though, is that the effect of the "gas"
malalignment is relatively much greater when the geometrical malalignments
are small than when they are large. The presence of this "gas" malalign-
ment effectively establishes a lower limit to the accuracy of rocket fire,
F. Conclusionss

Because of the many simplifying assumptions made in setting up the
equations of motion, it is not to be expected that the theory will predict
deflections to any high degree of accuracy. It is difficult even to esti-
mate probable error, for this depends to a very great extent upon the rela-
tive magnitudes of the geometrical malalignment and the "gas" malalignment.
In the usual case a 20-25% probable error might perhaps be representative.

The most useful purpose of the theory is for predicting the relative
effects of varying burning time, projector length or fin size on accuracy;
and it is in this connection that the theory is most reliable, for the ef-
fects of "gas" malalignment should be more or less the same as tp, 4~ , or

p are varied.
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IV. Effect of Wind on the lMean Deflection of Rockets

A, Introduction:

In calculating the dispersion of rockets in range or in deflection for
eny set of firings, one should correct for the deflection of the mean of
the pattern due to the influence of the wind on the motion of the projec-
tiles., The purpose of this report is to develop formulas applicable to
rockets with velocities up to about 800 ft/sec.”

The effects of wind on the motion of a rocket can be resolved into two
parts: (i) effects during burning, and (ii) effects after burning.

(1) During the burning period the action of the wind on the fins will
tend to turn the nose of the rocket into the wind, thus altering the direc-
tion of thrust of the motor from its initial direction on the rails. This
rotation of the thrust axis will result in the deflection of the projectile
into the wind, which will continue throughout the burning period.

(ii) During the post-burning period the rocket will be displaced down-
wind, that is, in the direction the wind is blowing. The down-wind drift
of the rocket is not due to the action of the cross-wind force on the pro-
jectile, but rather to the action of the down-wind component of the drag.
The reason for this is thet the period of oscillation of the projectile is
small compared to the total time of flight, and since the yaw oscillations
are about the position in which the yaw and cross-wind force are zero, the

. ] %
aversge cross-wind force is zero.

% Leverett Davis, Jr.,lo) in CIT/MTC 6 has already developed formulas

based upon assumptions which are sufficiently valid for low-velocity pro-

jectiles., His procedure is here followed in setting up the coordinate
systems and the initiel equations of motion.

¢ Strictly speaking, this is not so, since the yaw will be slowly damped
out. The positive and negative crois-wind forces will thus not be equal
and the average will not be zero.ll



B. Effect of VWind cduring Burning:

We assume a sufficient number of rounds so that the average deflection
due to melaligmment and other random effects is zero. Therefore we neglect
the malalignment in discussing the deflection of the "average" rocket. Also,
we consider the same aerodynamic force system acting on the yawing projectile
as was done in Ch. III. If we neglect the effects of gravity, drag and
cross-wind force during burning, and sssume that the restoring torque of
the fins is proportional to the squa:e of the velocity and to the first -

power of the yaw, the equation for the rotation of the rocket is

°s _ 2
J A Bl (38)

where (See Figs. 15 and 16)

vector velocity of the rocket relative to the
moving air (wind),

)
1

and

angle of yaw of the rocket with respect to the
air velocity Ga .

1t

Flg 15Motion of Rocket in Plane of Yaw
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Since we have neglected gravitational effects during burning, the motion

is in the plene determined by the projector and the wind velocity vector w;

that is, the plane of Fig. 15. If v be the vector velocity of the projectile

relative to the ground, and P the angle between the direction of the wind
and the projector, then from Fig. 15we get the following relations between

velocities and angles:

v.2 = v? 4+ W - 2vw cos (¥ +9)

a e

re

§ - (6 - 9)

w _ Va

sin (8 - 8) sin (¢ + ©)

Assuming that (w/v)2<3:l, and that 6, 65, g g <</, we reduce the
? a b

above to the approximate expressions
v, =% {1~ g cos F)

§a

Substituting in (38) for v

1

g..'.‘.“'_ Sin/)(,__.g_?.‘f sin? (1 + ¥ cos?) .
v, v v

5 and S’a’ and again neglecting second-

order terms, we getl
. 2 2
7 - 7 v win Y@ -Ecos?) - 27 v gﬁ.(39)
0,2 v g

In (39) we neglect, further, theterm (w/v) cos¥ compared to unity. As
will be seen later, (w/v) cos-¥ represents a small correction to the first

term which depends upon the down-range component of W, end which, for

practical purposes, is negligible,
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Writing Gt for v in (39), and letting

2
B ZATE 2 t w sin),

Qg = 0, 2
we have
o ! 2
¥ % r?

Now equating the centrifugal force on the projectile to the component
of the jet force perpendicular to the trajectory, we have
v8 =0 ? 3 (41)
and, from Fig. 1, g=0+ Sj . (42)
It will be noted that Equations (40), (41) and (42) are identical with
Equations (30), (31) and (32), Case II, of Ch. III. As applied to the

present problem the solutions may be written as

b oI v ony. A

Qf/%—”fgwsin'f’-f

o=g- f-g_’ifb wsin ¥« @ (43)
where A:% (1-1»B1§l +B2§2)

f:B1¢l+B2¢2 -rB3

C=-¢-A (44)

z:g{—ﬁ t .

and S:l’ ;2, $15 @55 Bys B, and By are given by equations (33) and (35).
The value of & at the end of burning (t = tb) is then the deflection

of the trajectory in the plene of yaw from the initiel direction, and, from
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Eq. (41) is the final direction of flight of the rocket. (The effect of
wind after burning will be discussed later.) In order to determine what

lateral and vertical deflections on range the above leads to, consider Fig. 16.

- Ranye Line

Fig. 16.Deflection of Rockel

If A8, is the increase in departure angle at end of burning and /3 o is the
lateral deflection of the plane of the trajectory, it can be easily demon-

strated that

:2 - 8 sin X
[P ° " cos 8, sin¥
and Ag, - © _s.il_l.s_gg.ﬁe.s.ﬁ

where &« is the angle between the range line and the direction in which the
wind is blowing, measured clockwise from the range line. Letting

w sin &«

1]
1

W, cross-range component of wind velocity,

W, =w cos A = down-range component of wind velocity,

y =

and substituting for © from equation (43), we have finally



ﬂo/“h Jert, € (45)

Ao/, =J2Z%% . sine, . O (46)
7V

where @ is given by (44).

Egs. (45) and (46) give the deflections produced by the wind during
the burning period of the rocket. In Fig. 17 are plotted the solutions of
Equations (45) and (46) which give values of gzgo/w* ) vy, CcOS 6, as a
function of X%gh for several velues of p/¢”. By.the use of these curves
one cen get values of /20/WL for any desired combination of values of Vps by

0", p and 6,. One can also derive the values of A8y/W, , for (A6y/W, ) =

(/go/WL ) sin 6 cos 8g.

C., Effect of Wind after Burnings

For the purpose of calculating the down-wind drift of the rocket we
shall assume that the effects of cross-wind due to yaw average out to zero
during the flight, as mentioned previously. Also, since we are interested
here only in the lateral deflection, we consider only the cross-range com-
ponent W, of the wind, since the sole effect of W, is to modify the range.
The drag, however, acts in the negative direction of the velocity of the
projectile relative to the air (-ﬁa = —v°'+ W); consequently, there is always
a component of drag in the direction of the wind w. By considering the
motion of the projectile relative to a coordinate system moving with the
air, the problem can be treated in the same manner as the wind deflection
for shells.lZ) Consider two systems of coordinates, one moving with the
velocity of the air and the other fixed relative to the ground, with the
x-axis pointing slong the range and with both systems coinciding at the end

of burning at the point where the rocket begins its post-burning flight.
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If ¥ be the angle between the plane of the trajectory relative to the
moving coordinates and the plane of the trajectory relative to the fixed

coordinates, it is very nearly equal to

T
| A

T VpeCOS 6y

Therefore, in the range X the total lateral deviation of the ghell

reletive to the air is - W E Y S However, in the time of flight Ty the

Vi COs 6
moving origin has moved through the distence W, T, . Thus the net linear
drift during the flight is
We X

W, T, - —*2

Vp cos €

and the total engular down-wind drift of the projectile is

B/, = :-)L‘g [ Tl‘ - -———2-‘--——] U

Ty i i DLE
1 V}, COs Oy (2)
Z/2
where (%) = e~ -1
z/2

In this expression, Z = 2c « X, where

¢ = deceleration coefficient of the projectile,
and & = average of 1/cos @ in the Didion-Bernoulli method.
‘Thus, for the final form of the angular down-wind drift we may write

/gl/vu p—— -1] . (48)
Vy COs 6y

D. Limitations of Theory:

l. In setting up the above equations we assumed that (w/v)2 is negli-

gible compared to unity. We shall examine this for three rockets having
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different velocities. In Table 5 are given the values of (W/v)2 at v = 5

(the velocity of the rocket as it leaves the rails), at v = vy (the burnt
velocity), and also the average value of (W/v)2 during the burning period.
In all of the cases, w = 15 mph = 22 ft/sec. Except for the ASPC, the errors
introduced by neglecting (w/v)2 are quite negligible., Of course, as the wind

velocity increases the error increases as W=

Table 5

UP ¥, tb ¥p (w/ vp) : (w/ Vb)2 (w/v) 2avv
(ft/sec) (sec) (ft/sec)

ASPC 170 .35 66 11 .016 042
4.5 BR 360 +35 85 .067 .0037 .016
CUB 720 50 152 .021 .0009 .0044,

2. A far more serious error was introduced by neglecting (w/v) cos ¥

compered to unity in Eg. (39). Now (see Fig. 16)

cos P = cos A cos 8,

(w/v) cos ¥ = (W,/v) cos 8,

Let us investigate the validity of this assumption for the ASPC,
4.5 BR, and CWB. TFor a down range component of wind, W, , equal to 15 mph
(22 ft/sec), table 6 gives the values of (¥,/v) cos 8 at the instant the
rocket leaves the rails and at the time burning ceases, as well as the
average value during the burning period. In general, the accuracy does
not warrant taking this effect into account. But if such is not the case,
one can get a rough approximation to the correct result by modifying equa-

tions (45) and (46) to read



el

t
F2°/W* /Véggggqggg‘é‘ 1“1 - (W, /v),, cos 9°—i] O (45a)

AGO/W,, f]_r_ib sin @ [l = (Wn/v)av cos e, ] @ (46a)

Table 6
P &% v, Y (Wﬁ/ﬁp)cos 8o (Wu/vp)cos 85 (W,/v) yc08 8o
ASB 45° 170 66 2 .091 14
4.5 BR 45° 360 85 .18 2045 .082
CWB 459 720 152 «10 «022 «043

3. It has been assumed throughoﬁt that the aerodynamic forces on the
projectile follow the v2 law. Since the v° law is valid only up to velo-
cities of 800 ft/sec, the above equations are valid only under the same
restriction. Also, it has been assumed that the wind is constant for all
the rounds of a set and that it is not a function of altitude.,

Lo It must be remembered, too, that the above equations apply to the
mean deflection of a given set of firings only when a sufficient number of
rounds have been fired so that malalignment and other random effects average

oute

L. Observational Data:

Since most range firing tests have been made with little or no wind
prevailing, very little experimental data for comparison with theory is
available, In the accompanying plot are shown the observed and predicted
mean deflections for the ASB for a number of tests (Data from CIT/IBC 10).

Though very few rounds mske up the means, there seems to be a general



~4B=

qualitative egreenment between the observed and predicted deflections. One
would expect low temperature (i.e., long burhing time) rounds to be deflected
up-wind, since then the effect cduring burning is greatest. On the other
hand, at high temperatures (i.e., short burning time) one would expect the
rockets to be deflected down-wind, since then the effect during burning is
slight compared to the down-wind drift during free flight. This is borne out
in a general way by the above data, for the mean of gll tests gives the fol-

lowing (negative values correspond to deflections up-wind):

Temperature Mean Deflections (all winds)
o° F '~ 8.0 mils
70° F 4 0.4 mils

125° F + 5.5 mils
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Appendix 1. Studies of "Gas" Malalignment by lMeans

of the Yaw Machine (CIT/PMC 1.39)

In order fo learn something about the nature of the so-called ®gas"
malalignment aﬁd its effect upon accuracy of rockets, Prof. Bowen had built
a "yaw machine" (See CIT/PMC 1.39.) by means of which it is possible to
measure the angular acceleration of a motor during burning and determine
from that the torque or the equivalent side force at the nozzle which pro-
duced this acceleration. Since the instrument gives a record only of the
side force as a function of time it is necessary to interpret the data in
such a way as to predict its performance in actual flight. For expressing
the performance of a given motor in terms of freedom from yaw and deflection

in flight the following index of dispersion has been adopted.

If a projectile without fins experiences an anguler impulse LAt at
time 7, the UP will rotate with angular velocity @ given by (See Fig. 5.)
I§ =LAt (1)
where I is the moment of inertia of the UP about its center of gravity.

The equations of motion of the UP from then on are:

¥X-Gecos g =G (2)

F=Gsinfgzcf (3)
Integrating (1),

L At

g=LAt (5o 4)) (4)
Substituting into (3) and integrating,

s _GLAY 2

= GLAt (g .y 5
y 51 ( l) . (5)

From (2),

=Gt
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Thus the deflection of the trajectory at any time t>t; is given by

9 255 2 «
@t 0 =L J‘ét (t ttl) (6)

and at the end of burning, t = ty ,

- 2
As, = Lﬁt (tb t’l) ) (7)
tp

We heve then that the deflection to be expected due to a given impulse
B — L)%
L At at time t is proportional to E—b-z~»z— s Which we call the weighting
b
factor for each value of the side force (which is proportional to the impulse)

as registered by the yaw machine. The integrated deflection for any motor

is then
t=1, Z
LAt (t, - t)° L (tp - t)?
e = Upobl . [EEB=3la @
21 tp 21 ty
=ty 1
where tp is the time the UP leaves the projector and t, is the time at

which burning ceases.
We can replace the torque L by FS 1 where Fs is the side force acting

at a distance 1 from the center of gravity. The quantity

1=%

D Fe (- 02,y
Ly t

t=4,

is called the index of dispersion, which is a measure of the dispersion to

be expected from a rocket with no fins.

The weighting factor due to fin action would tend to reduce the "IDW.
However, this weighting factor involves complicated integrals and so will
not be included here. In any case, the effect of fins would be more or less
the same on each UP. Thus on a relative scale, the index of dispersion
should be a rather good measure of the relative dispersions to be expected

on the range from various motors with different nozzles.
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One such curve of F as a function of time is shown in Fig. 1§¥. The
striking feature is the reversal in the side force, which represents a
violent change in the direction of the malalignment. This phenomenon is
what has been associated with the term "gas" malalignment, and its presence
can now no longer be doubted. One gets rid of the mechanicel (or geometri-

in *he computstions
cal) malalignment by taking the average velue of the index of dispersion
from the mean of a number of similar tests with the same motor and nozzle.

If the constants of the CWG are substituted into equation (8), it is
found that the deflections due to the random "gas" malalignment are of the
order of two to three times the deflections due to 0,010 inch mechanical
malalignment. Herein lies the explanation of the large discrepancy between

the observed and predicted (on thé basis of geometrical malalignment alone)

deflections for this rocket. (cf. CIT/JPC 3.)
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Appendix 2. liethod of Solution of Equations for Yaw and Deflection*

The equations of motion of & rocket during the burning period were given

in Ch. III as

5 _GLy) Artee §c

¢ 2 e (30)
t 8¢ = §c (31)
B = 8¢ + gc | (32)
For a malalignment of the form
L{t) =46 -B (33)°

The method of solution is briefly as follows:

tti -[27G
Letting z = t
" e
and 0 | = Cb [T |g
27 kR | 270G
(e A

FL_BI27E, ,_2a
T A
/
Z@: A
and @/: (9 +A)

where the primes indicate differentiation with respect to z. From these one

obtains without difficulty the following equations in P ana A

3% Method of L. Davis, Jr.
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2P - P3P _x

8
ZZAIJ-Z Al (L - 24) A = K 22 + 2°
where K-_-g e -
A

Solution of & equation

2w/ —’
b4 é - f + 23 @ - K
In terms of Y = @ ’
. 14 / 3
this becomes 2zy -y + 27y = K .

Assuming a series solution of the form

y:anzn ,'.'

we find that

2 2 5 9
1)2 Lé.l%l %5 Z n i.z_.l?.l - K(z— 22 _ __27___.
Z() 2 ()(an)/ (== 55~ 5500
n=o
" 2 270 _Klg - 2 _ __ ) _ ...
or, P = by cos z /2 + b, sin z /2 - X(z Pl o )
Integrating,
4,n+2
o( + b, J7S( ¥ (=1)7 + b
B = by 17 C/1F) + by 7S5/ /) ;Z I e
where
Z A
Vs 5 Ve
clz/f7 ) = /-/-;; ' 3(2— dx :/ cos {—7-9 du = C(u)
and } 7
z <

Ve /)
/ /

s(z/17 ) =/-;%‘;—/ sin -’i?‘dx =/ ;Z—;- du = S(u)
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are the Fresnel integrals familiar in optical diffraction theory. Dr. Morgan
Ward, has shown that it is also possible to express the third term in the
above solution for @ in terms of the Fresnel integrals, namely

o
(-1)° _ghne2 _r 2 + 2 (2
Z 1e3¢50¢(4nel) (4ne2) 2 {S (2/17 ) = ¢ ( /,;)}

M= p

The complete solution for & is then

B =T /7 ) ol S ) - T K} SP(2/17 ) + Pla/f7 ))? +by .

Solution of A equation
/
2A vz - (1-24) A = K z° + 2>

Again assuming a series solution of the form

A=) =

D‘--/ ' — N+ 99,
8 Z (1 (2227, 2o N7 () (2/2)"™ 1 zsz’
2 (Rn)! 2 (2n+l)/! z 2

M= p M=,

we find
(-1)" 22
L1e3e5000(4ne3)

Leverett Davis has shown that the last term coﬁ.ld be written es

§ (-1) 2 Ln+3 ' , | .
Z 1-8+Benslln 3) sin (25/2) I7 c(z/)7 ) = cos(z</2)IF sz/7)

wheng,the complete A solution is

1 ( 2 . ‘
A o {alcos(z/z)-pagsm(z/z)+1~K5f0} .

The boundary conditions upon these equations is that at the time the UP

leaves the projector, both the yaw and deflection and their angular velocities

are zero; i.e. Sc gczgc-_—90=¢c=é§c=0 N
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Hence, at z = zp, it follows that

A=A=-P=p-

Inserting these initial conditions into the solutions for & and A ,

and substituting back to our original variable we have finally

gc f— 21ra)3/2 "( 1*0( ; Fﬁg >

8c = & - gc
where B (z) = - /—\S(Z/ﬂ; )
By (2) = [T o(2//7)

do (2) = 3 [2(0) + 3,200)
Sl (z) = cos z°/2
SZ (Z) = sin 22/2

Fo ol = ¥ oled = Bl bl * galeld

x1=2 |28 gy(ap) - fy(ay)
*'é;’:-" -

oy =t //-}-9 Balzg) = & 5(2p)

o3 =2 [H2 fi(a) + b olsy)

2T g Bt s 4 ,
where Zp :y:;;:1 tp = Yi&ﬂjvﬁ' is the value of z when t = tp
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Applications of solution

(1) For A:Lg,/tb s B=0

the above equations give the solutions for Case II in Ch. III.

(ii) For A =-Ly/t, , B=-Ly ,

The equations give the solutions for Case III in Ch. III.

(iii) For A= (4N2/¢2) X° w sin¥ , end B=0
The above results give the solutions for the wind equations

in Ch. IV.
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Appendix 3. Forward Firing of Rockets From Airplanes

or Moving Projectors

The theory of yaw and deflection developed in Ch. III can jugt as well
be used for predicting accuracy when the rocket is fired forward (or back-
ward, if vy « vb) from a plane or from any vehicle which itself has an air
velocity vp. We shall consider two coordinates system: one at rest rela-
tive to the ground with the origin at the projector at the moment of fire
and the other moving with the constant velocity vaof the projector. Primed
quantities will refer to the coordinate system fixed with respect to the
ground and unprimed quantities to the ﬁoving system,

The air velocity of the UP i§ithen v' = vy, + Gt, if the acceleration

(G = vb/tb) is assumed constant, and the equations of motion become (cf Ch.III).
Be = ~=8 - *° (vp + Gt) c

= TR 0_/2
(VA + Gt) éc G gc

¢c'—'ec*§c o

]

In terms of the new time t' = %% + t , the above equations are identical
with equations (30), (31), (32); end therefore the solutions given in Ch. III
are applicable in this case.

Hence, if the primed quantities

b =G

V:VAfth=VA+Vb

- ‘/t 2
¢ 1 1 b
=2Gt'<=// —
P =3 D ('P + Va "

are used in connection with Figs. 7, 8 and 9 ( ¢~ should be used in place of
T, since (~ is constant while T veries with the velocity), one gets the pre-

dicted deflection for this type of firing.
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