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ABSTRACT 

The inaccuracy of rockets arises primarily from the failure of the axis 

of the jet to pass through the center of mass of the projectile . This causes 

the rocket to rotate, during burning, about a transverse axis through the 

center of mass, with the result that the direction of thrust of the motor is 

altered from its initial direction as determined q:y the projector. 

A theoretical analysis of the forces acting on a rocket during its 

accelerating period leads to the following conclusions concerning the ef­

fects of meialignment, burning time, fin size and projector length on the 

accuracy of rockets with velocities less than 800 ft/sec : 

(i) The deflection of the rocket is directly proportional to t he mal­

alignment of the jet. 

(ii) For projector lengths less than one-fifth the burning distance 

the deflection of a rocket increases rapidly with the burning time until 

the burning time equals the period of oscillation of the projectile 'in free 

flight, or until the burning distance equals half t he yaw oscillation dis­

tance in free flight . Further increases in burning time produce no s i gnifi­

cant change in the deflection. 

(iii) In the same range of projector lengths, increasing the fin size 

from that required to make the projecti le barely stable in free flight to 

that which reduces the period of oscillation to the burning time diminishes 

t he deflection by a factor of about 0 . 7. Still further reduction in the 

per iod by increasing the fin size decreases the deflection roughly propor­

tionally to the period attained . 

(iv) When the ratio of projector length to burning distance is i n the 

range between 0 . 01 and 0 . 50, the deflection decreases roughly linearly with 

the logarithm of this r atio . 
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On the basis of certain simplifying assumptions, formulas are derived 

for the effect of wind on the motion of rockets with velocities less then 

800 ft/sec . The effect of the wind is to deflect the UP into the wind 

during burning and down wind after burning, the relative effects of each 

depending mainly upon the burning time. The formulas developed apply to 

the mean deflection for a given set of firings of a sufficient number of 
r.>td'()iJt 

rounds so that malalignment and other such effects average out . 
A 
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Preface 

In this thesis, the theory of non-rotating rockets is studied, quite 

apart from any considerations regarding particular applications of rockets. 

Its immediate application, of course, is in the development of rockets for 

purposes of the successful prosecution of the war; but it is hoped that the 

results herein attained will in time find application to rockets in scienti­

fic and peace time pursuits. 

The references to the literature are quite meager, since the develop­

ments in rocket ballistics are very recent, and there is practically no 

published material on the subject. Most of the material contained herein 

has already appeared in the form of CIT and NDRC reports; for example, 

Chapter III is merely an amplification of "Effects of Burning Time, Fin Size 

and Projector Length on the Accuracy of Rockets 11 by I. S. Bowen, L. Davis, Jr. 

and Leon Blitzer. 

I wish to thank Prof. I. S. Bowen who suggested most of the problems 

and under whose encouraging supervision this work was done. To Dr. Leverett 

Davis, Jr., I am grateful for considerable practical help in dealing with 

the problems, to which specific aclmowledgment is frequently made in the 

·text. I am also indebted to the many members of the research staff of the 

NDRC project at Kellogg Laboratory, especially Dr. O. C. Wilson, Mr. S. Rubin 

and Dr. G. Kron of the Accuracy Committee, who aided with the experimental 

data. 
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Symbols Frequently Used 

(The use of certain symbols for more than one quantity is sometimes 

unavoidable. However, there is little chance for ambiguity, as the text 

generally makes the meaning of the symbols clear.) 

c Deceleration coefficient of the rocket 

F Force on the rocket (F = mG) 

G Linear acceleration of the rocket during burning 

I Moment of inertia of the rocket about a transverse axis through 

the center of mass (I= mk2 ) 

k Radius of gyration of the rocket (Ic2 = I/m) 

K Moment coefficient of the fins; the aerodynamic restori ng torque 

is -K v2 . 

L(t) Malalignment of the jet; that is, the distance between the axis of 

thrust and the center of mass 

10 Malalignment of the jet in the case of constant malali gnment 

m Mass of the rocket 

p Effective projector length; that is, the distance the rocket moves 

before the constraint of the projector is removed 

s Distance along the trajectory 

t (generally) Time from start of burning 

tb Time at which burning ceases 

tp Time when rocket leaves the projector 

T Period of yaw oscillation (for the velocity vb) 

T1 Total flight time of the rocket 

v Velocity of the rocket (During burning, v = Gt.) 

vb Velocity of the rocket at the end of burning 

Va Vector velocity of the rocket relative to the moving air (wind) 
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w Vector ~locity of the wind 

W~ Cross-range component of the wind velocity w 

W,, Down-range component of the wind velocity w 
x Horizontal distance of rocket travel 

X Range 

y Vertical height of the rocket 

z In the D-B theory, z is the dimensionless para.meter 2c~x 

z In the theory of yaw and deflection, z is the dimensionless quantity 

{2 TT G/ ,r , t 

o( Average of 1/ cos e in the D-B theory 

(5 Lateral deflection of rocket on range 

(3 6 Mean lateral up-wind deflection produced by the wind during the 

burning period 

f 
I 

Mean lateral down-wind deflection produced by the wind after the 

burning period 

Yaw of the rocket in the plane of yaw ( r e= ¢c - 6c) 

Damping coefficient; damping moment is ~ %c 

Angle between the axis of the rocket and the initial direction on 

the projector in the plane of yaw 

6c Angle between trajectory and initial direction (ec is the deflection 

in the ola.ne of yaw.) 

60 Quadrant angle of the projector 

()-" Distance traversed by the rocket in free flight while the yaw 

oscillates through one full cycle ( (]--' = vb T) 



I. Artiller-<J Projectiles and Rockets 

A. Introduction: 

It was knovm to the ancients that hot gases (especially steam) were 

capable of expansion and doing work . Archimedes1) supposedly had a gun 

operated by high-pressure steam instead of by powder . The principle of 

jet propulsion must have been known to Hero of Alexandria1) (120 B.C. ) 

who built the first prototype of modern jet propulsion devices. The roc­

ket, too, depends for its action on the principle of jet propulsion, or, 

in other words, the principle of conservation of momentum; for the release 

of hot gases at extremely high velocities as the products of combustion in 

the rocket motor result in the rocket taking up an equal and opposite 

momentum and thus being propelled . 

Among the types of rockets which one may encounter are t he following: 

1 . War Rockets . - For a long time mil itary engineers have sought to 

develop rockets as combat weapons; but very little progress was made until 

Congreve ' s work?) in England early in the 19th century. His rockets were 

very much like the present-day ones and were used on sea (His boats were 

fitted for firing salvos of rockets . ) and on land during the Napoleonic 

wars . However , the use of such rockets ended with the development of high­

precision gunnery toward the latter part of the 19th century. 

2 . Signal Rockets . - These are rockets containing flares for signalling 

purposes . 

J . Life- saving Rockets .- These are line-carrying rockets for establish-

ing breeches-buoys from ship t o shore or from ship to ship . 

4. Sounding Rockets . - These are for meteorological purposes to travel 

into the upper atmosphere to obtain data as to its composition and condition . 
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5. Auxiliary Propulsive Rocketp for Airplanes.- These are rockets 

attached to planes for aiding them in quick take-offs from small landing 

fields. 

The types of rockets mentioned in this paper are all war rockets . 

However, the theory developed herein should be quite applicable to all 

similar rockets. 

~: It is common practice to refer to finned rockets which do not rotate 

as UP 1s (unrotating projectiles), and since we are concerned only with such 

projectiles we shall use the terms rocket and UP interchangeably. 

B. Characteristics of .Ar~illery Projectiles and Rockets: 

Since the introduction of gun-powder in Europe the common form of 

hurling large missiles has been from guns and cannon; that is, the explosion 

of a charge of powder to the rear of the shell releases hot gases whose 

pressure forces the projectile out of the gun ba~rel at high speed. Be­

cause of the conservation of momentum, as the f ast-moving shell leaves the 

barrel , the gun suffers a "kick" or recoil, the magnitude of which depends 

upon the mass and velocity of the projectile . To reduce this recoil motion 

of the gun is not an easy problem; in addition to having heaV'J mounts , can­

non are generally equipped with complicated recoil mechanisms . With the 

invention of the rifled bore, streamlined elongated projectiles replaced 

the former cannon-balls , and the accuracy of artillery fire was very greatly 

improved. 

Once the projectile leaves the gun barrel propulsion ceases , the re­

maining action being that of gravity and aerodynamic forces . The spin im­

parted to the shell by the rifling serves to introduce gyroscopic forces 

which prevent the body from tumbling, as it would normally do because of 
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the aerodyn~m.c destabilizing moment (Sec. c, below). The very great 

advantage of standard artillery over rockets is its unequalled great 

accuracy. 

Compared to the ordinary gun, the rocket projector is simplicity it­

self; for, the back-ward momentum being taken up by the burnt gases which 

expand into the atmosphere, there is no need for a heavy gun or mount or 

recoil mechanism. All that is necessary is a tube or a set of rails or 

some similar guide for the rocket during the first few feet of its motion. 

However, even after the rocket leaves the projector it continues to be 

accelerated forward by the jet-propulsive action, often for a considerable 

distance; and it is during this period that practically all of the devia­

tions in range and deflection are introduced. In order that the UP be 

stable in flight (cf. Sec. C, below) fins are attached at its rear. Be­

cause of the unguided burning period off the rails the accuracy of rocket 

fire is so poor compared to standard artillery fire that more approximate 

methods of treating the ballistics problem are justified on this account . 

C. The Force System Acting on a Yawing Projectile: 

Consider a projectile moving through the air (Fig. 1) with its axis 

making an angle f (angle of yaw) with the direction of motion. It will 

be acted upon by gravity and by an air force, F, depending upon the charac­

teristics of the projectile and of the air and also upon the velocity and 

yaw. The gravitational force being constant in all practical cases, it is 

not necessary to consider it further for the moment. From mechanics we 

lmow that the whole of the forces acting on a rigid body are always reduc­

ible to a single force, acting at a given point and a couple. In a pro­

jectile this true couple is negligible; 3) while the point of application 



Center of Pressure 
Without Fins 

Center of Pressure 
With Fins -

Fins 

-4-

Direction .of Motion 
with respect to air 

,., w· d L(d)- = ). sin ~ __..,ross ,q.n 
Force 

F(o)~Resultant Force 

D 

Drag (Component of F(o) along 
direction of motion.) 

Fig. 1 

of the total force on the body under a fixed angle of yaw is called. the 

center of press~ (C. P.). In general, an artillery projectile has its 

C. P. ahead of its center of gravity (C. G.); consequently the air forces 

tend to cause such a projectile to tumble, because of the overturning 

moment of the force F about the C. G. The existence of this destabiliz­

ing moment is an intrinsic property of elongated bodies moving end-on. 4) 

For stable flight, therefore, a projectile either must be given a fast 

spin about its longitudinal axis (for gyroscopic effect), or else it must 

have fins located at the tail (as in airplane bombs and rockets) to bring 

the C. P. back of the C. G., so that the aerodynamic torque is a restoring 
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one instead of a destabilizing one. In addition, since the yaw varies 

with time, there exists a damping couple because of the air resistance to 

angular motion. 

The component of the total force, F, along the direction of motion is 

called the drag or head resistance, D; while the component perpendicular 

to the direction of motion is called the cross-wind force, L. By dimen­

sional reasoning one can easily arrive at the following ex,_pressions for 

the drag, cross-wind force and the moment M of F about the C. G. 

D=Knf d2 v2- (1) 

L = ,A sin ~ = K1 f d2 v2- sin ~ (2) 

M = KM { d'J v2, sin f (3) 

where f is the density of the air; dis some characteristic linear dimen­

sion of the projectile; and Kn, KL and KM are dimensionless coefficients 

which are functions of f vd/(J'"' (Reynolds number), v/a (Mach number) and f ; 
while v" and~ are the coefficient of viscosity of the air and the velocity 

of sound in the air, respectively. Since Land M vanish as f_.,. o, the fac­

tor sin} has been included in equations (2) and (J). 

Little is knoYm about the dependence of the K's on Reynolds number; 

but various determinations of the variations of the coefficients with v/a 

have been made in this country3) (at the Aberdeen Proving Gounds) and else-
A. 

where (e.g. the experimental studies conducted by the Gavre Commission in 

France). It has been found that no simple function represents the depen­

dence of KD' K1 or KM on velocity. However, from the lowest velocities 

used in artillery up to about v/a = 0.8 the K's are approximately constant; 

while as v/a increases the coefficients increase extremely rapidly approach-
> 

ing a maximum at roughly v/a = 1 and then decreasing somewhat. In general 

the forms of the curves are different for different projectile shapes. 



- 6-

Another way of stating the above is that up to a velocity of about 800 ft/sec 

the forces on the projectile vs:ry as the square of the velocity. 

As f or the dependence of the coefficients on the yaw, experiments in­

dicate5) that Kn is a linear function of f 2 -(KD = c1 + c2 f 
2); while , for 

small yaws , KL and KM are approximately independent of f . 
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II . Trajectories of Low- Velocity Projectiles 

A. Exterior Ballistics: 

The object of this section is to deal with some simple problems of 

exterior ballistics and to investigate whether such theory is applicable 

to rocket projectiles . For t his purpose we consider the motion of a rigid 

body through the air acted upon by gravity and by air resistance or drag . 

Assuming negligible yaw, we may represent the air drag by a force acting 

in the direction opposite to the velocity of the projectile and of magnitude 

D::: - me f(v) 

where mis the mass of pr~jectile; 

c is a constant of proportionality depending on the size , shape and 

surface of the projectile ; it is also called the deceleration coef­

ficient , for the deceleration due to air drag is c f(v); 

and f(v) is a function depending upon the velocity, v . 

Choosing a coordinate system as in Fig. 2, we have 

J 

X 

Fig .. 2 

-* The following material follows mainly from Cranz, Lehrbuch der Ballistik ¼/. .z 
wherein a complete description plus computing tables may be found . > > 



for the equations of motion 

~!~ = -c f(v) cos e 
dt 

~l = -c f(v) sin 9 -g 
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where Vx = V cos e; Vy= V sine. 

(4) 

(5) 

The accelerations tangential and normal to the path are given by 

dv 
dt = -c f{v) -g sine ( 6) 

and v ~~ = v2 de= -g cos 6 
dt ds 

(7) 

ds 
where v = dt , s being the distance along the path. 

Eliminating dt from (4) and (7), we have 

g d(v cos e): CV f(v) d9 , (8) 

which is often referred to as the ;erincipal ballistic equation . From (7), 

we also arrive at the following differential ex-pressions: 

~' g dt = -v sec e de (9) 

Horizontal Distance, g dx = -v2 d0 (10) 

Height, g dy = -v2 tan e d0 (11) 

Path length, g ds = -v2 sec e d6 (12) 

The integration of equations (4) to (12) constitutes the essential 

problem of so- called exterior ballistics. For c = 0 the above set of equa­

tions reduces to the simple equations for the vacuum tra jectory, which can 

be readily integrated . * For the more general case many methods of solution 

have been proposed, all of which are more or less approximations; for the 

resistance function f(v) is not in general a simple function of the velocity. 

Where one is not interested in very great accuracy the quadratic resistance 

* These are discussed in Cranz and other treatises on exterior ballistics 
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law (cf. eq. (1)) may be used. However, it is known that this law definitely 

breaks down at higher velocities (also at very low velocities) for as the 

velocity of the projectile approaches the velocity of sound the drag in­

creases much faster than v2 • For those special cases, though, in which 

the velocity of the projectile is less than about 800 ft/sec the quadratic 

resistance law holds quite well. 

B. The Didion-Bernoulli Approximation for the Trajectory: 

The object being to apply standard exterior ballistics methods to UP 1s 

in free flight (i . e. after the burning period) we shall assume a quadratic 

resistance law, since the velocities of most rockets developed thus far at 

CIT are definitely less than 800 ft/sec. Also, to arrive at a solution 

which can be used with ease we make use of the so-called Didion-Bernoulli 

approximation . 6) The advantage of this method is that it is straightforward 

and the results can be applied easily;?) also, it gives sufficient accuracy 

for most rockets at present. 

From equations (8) and (10) we have 

dx _ - !-~~~-~--~{!_~~~-~l 
C f(v) COS O 

(13) 

The mathematical approximation is to replace f(v) by f(O(v cos e) and one 

cos e (in the denominator) by 1/o(, where the constant t:?( is an appropriate 

average of 1/cos e. Also, letting u = 0( v cos e, equation (13) reduces to 

, (14) 

which can now be integrated for suitable values of f(u) . In the special 

2 case of the quadratic resistance law, f(v) = v 

dx = - _£!L 
0( cu 

(15) 
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As an illustration of the simplicity of the method, let us calculate 

the time of flight corresponding to any hori2,ontal distance x. Integrat­

. ing (15), 

-c o< x 
e - 0( V COS Er • 

Now making use of the initial conditions that v = v
0

, e =¢when x = o, 

we get 

V COS 6 - V COS d e-C.o( X - 0 p 

Eliminating de from equations (9) and (10) and substituting for cos e 

from the above, 

Integrating and applying the condition that x = 0 fort= O, we get 

1 ec "' x_l 
t - -------. -------

- Vo COS ¢ C o( 

In terms of the dimensionless quantity z - 2c o< x, we have , finally, for 

the time corresponding to any value of x, 

, (16) 

where (16a) 

Similarly, one can derive the following expressions for the eleme4ts 

of the trajectory: 

Height along_ uath, ---
g x2 __ _ 

y = x tan¢ - B(z) ,(17) 
2 vJ cos 2 ¢ 

where B(z) = 
z e -z --1 

z2/2 
; 

Tan~ent to orbit, tan e =tan¢ - ----~~-- J(z) 
v0

2 cos2 ¢ 

; 

Horizontal component of velocity, 

V cos e = v0 cos fl} • V(z) 

where V(z) = e-z/2. 

(17a) 

(18) 

(18a) 

(19) 

(19a) 
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For c = o, it is easy to see that the correction factors D(z) = B(z) = 

J(z) = V(z) = l; that is , (16), (17), (18), (19) simply reduce then to the 

elements of the vacuum trajectory. The above D- B method gives a very good 

approximation to the trajectory for low angles of fire ( o( very close to 

unity); but it can also be applied at larger angles if not very great ac­

curacy is desired. 

C. Application of Didion- Bernoulli Method to Rocket Trajectories (crriJPC 1): 

In April 1942 a study was made of the free-flight (i.e., post-burning) 

trajectories of a group of CWG rockets . Since the velocities were of the 

order of 500 ft/sec and the qua,drant angle of fire only 6°, the D-B approxi­

mation is applicable,and this investigation should afford a good test of the 

applicability of standard exterior ballistics methods to rockets. 

The UP 1 s whose trajectories were studied in this invest:igation were 
part of a group of 50 CWG (double-web powder) projectiles (Cf . CIT,NMC 
1 .22-23 (7)) which, as far as possible , were identical in all respects . 
The firings took place at MA.AR on March 28, 1942; and, to secure sufficient 
photographic data for determining the actual behavior of the UP 1 s in flight, 
three cameras were placed at different points along the trajectory. These 
included: 

(a) The "CIT" camera, for determining acceleration , velocity, burning 
distance, and burning time . In the field of view were also t wo posts (here­
after referred to as M and M) situated 25 ft and 50 ft along the range 
and slightly to one siAe , whi6h had accuratel;y marked reference points and 
stripes for determining the heights and angles of yaw of the UP 1 s at these 
points . 

(b) A camera 400 ft along the range for determining the angle of yaw 
and height at this point (again from a post on range, as in (a)). 

(c) A camera 1000 ft along the range for measuring the velocity at this 
point . 

Measurements were made in the usual manner, and, whenever necessary, 
corrections were made to allow for the fact that the UP and points of refer­
ence for measurement(~ M1 and M2) were not in the same plane but yet 
were seen in the same plane of projection by the cameras . Only corrected 
values are given in the accompanying table . 
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Method 

The D-B theory gives the following equation, (17), for the path of 

the projectile: 

y = x tan¢ - ____ gx.
2 

-- B(z) 
2vcf cos 2 ¢ 

va2sin 2¢ from which X -= -------- + 
2g B(z) 

; (17) 

(20) 

Fig . 3 shows schematically the path of the UP. In general, the UP 

burned for a short distance (on the average 5.8 ft) beyond the first marker 

M1 . On the assumption that¢ does not change measurably over this distance, 

we use equation (17) for determining¢. (That this assumption was valid is 

borne out by the fact that there is no correlation between¢ and burning 

distance; nor are there any systematic differences between observed and 

computed (from¢) ranges as a function of burning distance.) 

' )(., 
Thus tan¢= 1"1 + ---J---- - B(z) (20a) 

x 2va2 cos2 ¢ 

where y ' is the difference in the heights of the UP at the two markers and 

x' is the horizontal distance between the markers. In the last term 

B(z) ~ 1.0015; and since ¢<6°, cos2 ¢ ::::: 0 .99. Therefore, 
yl gxl 

tan ¢ = -- + -- ----­
x' 2v0

2 (0.99) ' (20b) 

from which the values in Table l were computed. From the measured values 

of velocities at the end of burning , v0, and velocities at 1000 ft along 

range, v1000 , L. Davis has computed the deceleration coefficients, c , 

(cf. eq . (L), CIT/MTC 3), which are given in column 6 . In subsequent com­

putations the mean value of c was used throughout . 

The 11vertical yaws" are in all cases the angles between the axis of 

the UP projected on to the vertical plane and the tangent to the trajectory, 

where e, the angle of the trajectory, is given by 



Gro 

i 
· I 

11, 

- 12a -

! . ! 

----t·-_-+---+----t--t-

1 

" _., 
-- ·--· 5 ·30.t--- -+-----+--+-----+------,-+--+--'--' +-----+------,'---, --+--1---,..;__-4--__;_--1-_,..;__+-...c!--, --. +--+---+--+--:-t-.c:-'. ·- ---

• ·· ••···· 

' · ·· ··t·:: .· 

_O ., 
: --~-- ---~·-~-~-:--~~ ~-~~ _:_~. ~:: 

I 

-------··•··• ··· •···· ·•·····•--: ....... . 

i 
.L .. .. : . . : 

~-:- : -- - ••• - ~ . - ~ :·· -- ! . i ··: -~~:~;--:-·-· :t 
-~,--, ·-~'f.-50---+---+1 --+---'--+-----+--+----+---f--.; ----•···· 1-··---·-•-·-•· ••l-......;..---1--;...........-1---....;_-+-__;_.....;.....i~_;__-+--+ i -+-:--:-:-1~+-:-:-:-t-,--:-

••.... '~ . - . ' .. : . '-•····· ···+-------t---t 

' : 



-13-

(20c) 

Equation (20c) holds strictly only for the vacuum trajectory, but in the cases 

considered here it is practically the same as for the actual path . 'l'he heights 

at 400 ft along range were computed from (17) both for the D-B path and for the 

vacuum path (with c = 0). Similarly, the "ranges", R, were computed from (20). 

In all cases R is the total horizontal distance of free-flight. 

Results - _It is at once apparent (cf. column 1 of table 1) that the departure 

angles for free flight,¢, a.re in all cases less than the angle (6°) at which 

the projector was set. The average¢ is 5° 11 1 with a random scatter in¢ 

about this value . L. Davis has computed (from formuiae in CIT/MTC 2) that the 

maximum change in trajectory angle during burning to be expected for this set 

of UP ' s (acceleration;;; 160g; v
0 

-a 480 ft sec; burning distance :::;- 2/4. ft; burn-
.~ -~ . 
' ing time;:: 0.10 sec) is approximately -0.,30°, of which aoout -0.22° is due to 

the curvature in the trajectory produced by gravity, and the remaining -0.08° 

is due to the tipping- off produced by the dragging of the tail of the UP on 

the projector, if this effect is present . The fact that the observed average 

change is -0.82° indicates that other causes are mainly responsible for this 

large deviation. The observed angles of vertical yaw at M1 are too small to 

be reliable; however, if we compare the angles of yaw at M2 (which is on the 

average 23 ft beyond the start of free flight) with the values of¢ (cf . Fig. 4) 

we note a decided correlation: The greater the angle of yaw the greater the 

change in departure angle . This is not unexpected, for any mislaunching or 

misalignment would produce both vertical deviation (change in¢) and vertical 

yaw in the same direction. F~om the data, there is no evidence that¢ is a 

function of either the burning distance or the burning time. 

The most striking result in the table is the unique correspondence between 

the observed ranges and those computed from the DB theory, and between the ob­

served a~d computed heights at 400 ft. The mean observed range (1289) is prac­

tically the same as the mean D-B range (1286 ft), while the differences between 
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the observed and DB ranges plainly indicate a random distribution, with 6 posi­

tive values and 6 negative. The mean deviation is± 28 ft, corresponding to a 

percentage deviation of.± 2%. 

Summary_ - 1. A large unexplained change in the trajectory angle has been found 

to be introduced during the burning. For the projector set at 6° the average 

0 change was found to be -0.8. 

2. The Didion-Bernoulli approximation for the free-flight trajectory is 

found to hold very well for the CWG projectile having only slight yaw ( <. 4°). 

Consequently, the post-burning trajectory is identical with that of a shell 

under the same initial conditions and with the same deceleration coefficient. 

It follows from (2) that, 

3. For the CWG's (with only slight yaw in flight) all effects governing 

the motion, range, etc. are introduced during burning; and al.so that the tra­

jectory after burning is sensibly straight, i.e. lies in a vertical plane. 

D. Conclusions: 

It is reasonable to assume from the above analysis of CWG trajectories 

that the following deductions may be drawn concerning rockets in general. 

1. For rockets having negligible yaw it is quite proper to apply standard 

methods of exterior ballistics for the post-burning trajectory. 

2. All effects governing the motion, range, deflection, etc. of rockets 

are introduced during the burning period.* 

-x- Wind and other extraneous effects are neglected. 
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III . Yaw and Deflection Developed During Burning of Rockets 
(CIT/JPC 3 _; NDRC, A-164) 

A. Causes of inaccuracy of Rockets: 

As was sho~m above, practically all effects governing the range and 

deflection of rockets are introduced during the burning period. The fac­

tors influencing the motion of a UP during this period are me-:1y, and it is 

quite impossible to take them into account all at once. Consequently it 

will be necessary to limit the problem here to the effect of malalignment 

alone, the most important of the following factors. 

1. Malalignnent of the jet. - This is the principle cause of the in-

accuracy of rockets; for the failure of the axis of the jet to pass through 

the center of mass of the projectile causes the UP to rotate during burning 

about a transverse axis through the center of mass with the result that the 

direction of thrust of the motor is altered from its initial direction as 

determined by the projector . 

2. Mal-launching . - I mproper launching may result in the rocket acquir-

ing an angular velocity as it leaves the rails. The affect of this has been 

discussed in a paper by L. Davis . 8) 

J . Effects of Gravit~. -

a . If the rocket is launched from a projector without an overhead 

guide, it is free to tip off the end of the projector once the center of 

gravity of the UP has passed that point . This problem has also been treated 

b L D 
. 9) 

y . avis . 

b . If the UP were launched without a projector the trajectory 

during burning would be a straight line. However, the velocity would not 

be Gt but would be diminished by the amount gt sin Et0 , approximately. Since , 

generally, g <::< G, this change in velocity is quite negligible . In the usual 



case of launching from a projector the effect upon the velocity is about the 

same . However, the trajectorJ in this case is no longer straight but has a 

curvature in the vertical plane . 

4. Asymmetry of Projectile Shape . - If the fins, for example, are 

asymmetrical, they exert a rudder effect upon the UP, thus introducing a 

yaw and altering the direction of thrust of the rocket motor . 

5. Wind . - (This will be discussed in Ch. IV.) 

B. Equations of Motion: 

We shall assume that the rocket is perfectly symmetrical in shape and 

is launched properly in a uniform atmosphere free from wind . It will be 

convenient, too, to neglect the curvature of the trajectory due to gravity 

during the period of burning • .Any errors introduced thereby should be 

roughly systematic; though one can avoid such difficulties completely by 

applying the results to yaw and deflection in a plane perpendicular to the 

vertical, wherein gravity plays a negligible role . 

The remaining forces then are the thrust of the malaligned jet and 

the aerodynamic forces and torques. The air drag will decrease the velocity 

of the rocket roughly by the amount 4. v = f cv2 dt = ½ c vb 2 tb. Since 

c ::::; 5 x 10-5 ft-l for practically all UP 1 s at CIT, and vb tb ::; 2 x 102 ft , 

the loss in velocity due to drag is of the order of less than one percent . 

The cross-wind force has the effect of displacing the UP normal to the tra­

jectory. However , the{malaligned)jet also has a component of force perpen­

dicular to the trajectory . Assuming, as a first approximation for small 

yaw, that the cross-wind force is given by L = nf, the ratio of the cross­

wind force to the component of the thrust perpendicular to the trajectory is 

L, 

mG ~ 
• 
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Consequently, the cross-wind force, as well as the d:rag, may be neglected 

during the period of burning.-ii-

For the aerodynamic restoring torque of om~ finned rocket, we have, 

from eq . (3), 

M = KM f dJ -0- sin ~ : K v2- f , 
where K has been substituted for KM / d3 and f for sin 

For the resistance to angular motion we assume a da..~ping couple, 

-/ ~c' proportional to the angular velocity. Though the damping coeffi­

cient1/ , is some function of velocity, we shall not consider this depen­

dence, since our only concern is with the order of magnitude of the damping . 

All we assume is tha1/ remains constant a. t some fixed velocity. 

The effect of the jet is conveniently resolved into two parts: a 

resultant force F which accelerates the center of mass, and a torque which 

produces a rotation about the center of mass. We express this torque as 

F L(t), where L, the malalignment is the distance that the center of mass 

must be from F if the force F and the lever arm Lare to produce the required 

torque. 

Under the above restrictions, the motion of the UP is in the 11 plane of 

yaw" determined by the projector and the direction of the axis of the jet. 

Fig. 5 

i-fse /f-
* We have neglected the fact that the malalignment11 of the jet introduces an 

additional component to the force normal to the trajectory . This, however, 
is quite unpredictable from round t o round . The evidence i s that this ef­
fect is unimportant . 
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The angles in this plane (cf. Fig. 5) are designated with the subscript "c" 

to distinguish the symbols from their usual meanings. 

The complete equation for the rotation of the projectile is then 

I ~c = F L( t) - K 0 ~ c 1/ ~c (21) 

The curvature of the trajectory is caused by the component of F per­

pendicular to the trajectory. Equating the centrifugal force to this gives 

where 

mv 0c = F ~ c 

Also ¢c = ec + ~ c ; 

(22) 

(23) 

a..rigle between axis of UP and initial direction on projector 
in plane of yaw 

8c = angle between tangent to trajectory and initial direction 
(gc = deflection in plane of yaw) 

f c = ¢c - ec = yaw of projectile 

m = mass of projectile 

k = radius of gyration about transverse axis through the CG 

I = mk:2 = moment of inertia about transverse axis through CG 

L(t) = malalignment of jet. If the malalignment is considered 
independent of time, this becomes L0 . 

G = linear acceleration of rocket during burning 

F = mG = force propelling rocket 

t = time from start of burning 

v =Gt= velocity of rocket 

K = moment coefficient of fins; restori ng torque = K v2- ~ c 

/ = damping coefficient; damping moment 1/ 0c 

During the post-burning period, F = o and v =vb= canst.; thus~) 

and~) reduce to 

I } c = -Kvb 2 f c (24) 

an equation for damped oscillation with period 



The damping coefficient/ is 

= 2I J.n ,A 1 

T A" 
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(25) 

given by 

(26) 

where A1 and A" are two successive amplitude crests on the yaw curve 

(f n A1/A" = logarithmic decrement). Thus _/ can be determined from the 

period and shape of the observed yaw curves; and K, from (4), is given by 

K = ~!!3-!_ +~-~- (27) 
vb2 T2 4vb2I 

In general, the yaws a.re too small to be able to determin1/. I;Iow­

ever, for the Chemical Warfare Grenade (CWG) with a built-in malalignment 

(to produce large yaws; see CIT/MTG 71/ was found to be 1.1➔~ at a velocity 

of 325 ft/sec. With t:bis value oy, the second term on the right-hand 

side of (27) is a.bout 10-3 times the first term. For the slower-moving pro­

jectiles (such as the ASPC Nik. projectile or Beach Barrage Rocket Mk. 1), 

even i1/ is as much as ten times that for the CWG, .. the second term in ( 27) 

is about 10-2 times the first end so is again negligible. Thus we can write 

47T 2 I K = ----- (28) 
V 2T2 

b 

from which fornru.la K was actually determined. (For variation of K with fin 

size, see the experimental results for the CWG at the end of this report.) 

rt is more convenient to ex-press the effect of the fins in terms of the 

distance <r' traversed by the rocket in free flight while the yaw oscillates 

through one full cycle. Thus, from (28), 

(f-' = vbT = 2 77' r ~ 1 

(29) 

* Except where specified, absolute fps units are used throughout. 
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Since, a.s indicated above, the damping 

smaller than the aerodynamic torque -Kv2 S c 

moment -,/ ~c is considerably 

(and also to facilitate a solu-

tion of the equations) we neglect t his term in equation (21). Rewriting 

(21), (22) and (23), we then have 

•• ~~i~l _ 4172G2t2f. 
¢c = 

_________ c 

2 (r' 2 k 
(30) 

. 
fc tee = (31) 

¢c = Ge 4- f c (32) 

G, 
In writing v = Gt, we asswned that the acceleration of the projectile, is ,. 

constant during burning (that i s, G = vt/tb), which, though a rash a.ssump-

tion in some cases, should nevertheless yield approximately the same results . 

The boundary conditions on this set of equations are that at t - tp (the time -. 
tha.t the rocket leaves the projector), s C = ~ c = ¢c = ~c = o. 

C. Solution of Equations and General Conclusions: 

As is pointed out in appendix 1, results from the yaw machine indicate 

that the malalignment of the jet is far from constont dm·ing burning, but 

rather may vary considerably. (In the appendix the torque .produced by the 

jet is expressed in terms of the side force acting at the nozzle instead of 

the malalignment of the resultant jet force, but the two descriptions of 

the torque are, of course, equivalent . ) 

Since a solution with a malalignment which is an arbitrary function 

of time can only be given in the form of a definite integral, we will con-

* In CIT/ITC 2, L. Davis has shown that the dispersions in vacuo are essen­
tially the same for various types of burning. 

* 
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sider three simple special cases. By sol ving equations (30) , (31) and (32) 

for these forms of L(t) we shouJ.d get a satisfactory understandi ng of the 

behavior of the projectile in general. 

Here we assume constant malalignment during burning (that is, constant 

upsetting torque) . The solutions are conveniently expressed in terms of 

the dimensionless quantity 2 =- Y ~ 7T C /o--
1 

i > 

en-- z = !~ t =/ 4 7f s/o--' . 

We have 

where 

0V 1 0 r1. ¢ = - ---- (¢ + Al Pl+ A2¢2 + A3) c 2 7r k2 O 

¢o(z); ½ [¢1 2(z) + ¢2 2(z8 ~ 

¢1 (z) = - '{i?s(z/ /ir ) 

¢2(z) = (ir C(z/ /n ) 

~ 0 ( z) = ¢1 ( z) J 1 ( z) + ¢2 ( z) • ~ 2 ( z) 

(33a) 

(33b) 

(33c) 

(34a) 

(34b) 

(34c) 

(34d) 

(34e) 

(34f) 

(34g) 

* The author is greatly indebted to Dr. Leverett Davis for this solution 
and for indicating the method of solution for Cases II and III . (See 
appendix 2 . ) 

➔H~ Developed by Dr . Morgan Ward . 
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(34h) 

A3 - ¢0 (zp) __ __, (34i) 

zp = f 2'i>' G/a! • tp = ( 41, p/; is the value of z when t = tp, 

and pis the effective projector length; that is, the distance the rocket 

moves before the constra.int of the rails is removed . 

The functions C(z/fi- ) and S(z/(if ) are the Fresnel Integrals. 

Case II: 

Here we assume that the malalignment ( or upsetting torque) incree.ses 

linearly with time. The solutions are 

f c - ~-~~Q- • ~z ( 1 + Bl r 1 + B2 ~ 2) 
- 21ik2zb 

where ~ 1 >~ 2 , ,1\ and ¢2 are the same as in case I, 

(z) p 

(35a) 

(35b) 

(35c) 

(35d) 

(35e) 

(35f) 

and zp and zb are the values of z when t - tp and t =~,respectively. 

Case III: I t 
L(t) =L O (1- t~) 

Here we assume that the malalignment (or upsetting torque) decreases 

linearly from a maximum value L
1

0 
at t = 0 to zero at t = tb. This approxi­

mation to L(t) fits most closely the preliminary data yielded by the yaw 

machine. 
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The solutions are 

~c = _q:_~;Q_ • ~ (zb ~o + a1 f1 + a2 f'2 
-1) (36a) 

2 '!Tk zb 

a- L' 
¢c = -----9- (zJo + a1¢1 + a2¢2 + a3) 

2 ll'k2zb 

6 c = ¢c -f c 

(36b) 

(36c) 

where ¢0, ¢1, ¢2, f 
0

, r 1, ~ 2 are the sarne as in Case I, 

al = f 1 

a2 = ~ 2 

a3 = zb¢'o 

(zp) - zJ1 (zp) 

(zp) - z,J2 (zp) 

(zp) - ~ o (zp) 

(36d) 

(36e) 

(36f) 

and zp and zb are the values of z when t = tp and t = tb, respectively. 

In the following analysis it will be assumed that the malalignment of 

the jet is constant during burning (Case I). Though this condition can 

hardly be expected to prevail, nevertheless the three types of malalignment 

discussed above rield essentially the same yaws and deflections. The value 

of 0c/10 fort= tb is a measure of the deflection to be expected, since 

under our hypotheses ec remains consta.nt after burning. 

If we take as the 11 plane of yaw"* the 

plane passing through the projector, and per­

pendicular to the vertical plane through the 

projector, and if e0 is the quadrant angle of 

the projector, then the lateral deflection on 

range, ~ , is given by 

* This is taken as the plane of yaw mainly 
because we can easily compare predicted 
dispersions in this plane with the observed 
lateral dispersions on range. Fig. 6 
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or, since i and 9c are small , 

8c a = ---- --1- cos 80 
(37) 

( i) Fig . 7 is a graph of k2 ~/ o- L
0 

as a function of Z/ fiJi ( = /GJ;' t) . 

These curves may therefore be used to give the angle between the rails and 

the trajectory at any point during the burning period. If one is interested 

in the deviation of the final trajectory after the completion of burning , 

the expression for this may be obtained by substituting the burning time tb 

for 1, since the slope of the curve at this time determines the final direc­

tion of the projectile; z/fiir' therefore becomes Z✓f27r = /G/r• tb• Since 

G = vt/tb , this may further be simplified to (vbttf o--'. Furthermore, since 

ff"' /vb = T, the period of oscillation in free flight , z//iir may also be 

expressed as t/~ and ztf/iir as f ttfT: The upper scale in Fig . 7 indi­

cates the value of / G/ r/ • t and holds at all times; while the lower scale 

gives the value of vbttfo- = ttfT , and in this form refers only to the end 

of burning . The upper scale is therefore used when considering the varia­

t ion of ~/1
0 

with t i me when the acceleration g_ is fixed . The lower scale 

will be more convenient for determining the value at the end of burning of 

~/10 as a function of burning time when the final velocity of the rocket 

remains constant . 

From these curves it is evident that the accuracy is only slightly 

dependent on the burning time tb if this time exceeds .1, the period of 

oscillation of the projectile in free flight; or, in other words , if the 

burning distance ½vbtb exceeds ½tr. 

(ii) In Fig. 8 the results of the same solution (Eqs . (33a) , (33b) , and 

(33c)) are plotted so as to show more clearly the conditions under which 

fin size is of importance 4 In this figure the abscissa is again the 
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ratio tb/T . The ordinate is the ratio of the dispersion for the given value 

of tvT to the dispersion that would have been attained if 1. were infinite -

that is, if only enough fin surface were present to give the rocket neutral 

stability in free flight . Curves are given for several projector lengths. 

While T depends on 1, the moment of inertia of the projectile, the latter 

factor is ordinarily fixed by other considerations of design . Consequently, 

the only practical method for varying 1. is to change the size or position of 

the fins. The second set of abscissas is given to show the variation with 

K, the fin coefficient . In cases in which p/vbtb< 0.10 that is , in 

which the projector length is less than one-fifth of the burning distance 

the results in Fig . 8 may be roughly summarized as follows . 

Fins of such size as to make the period of vibration equal to the 

burning time decrease the dispersion to about 70 percent of the dispersion 

with no fins or , more rigorously, with fins just large enough to give the 

rocket neutral stability . For fins of greater size the dispersion is roughly 

proportional to the period of oscillation in free flight produced by the fins . 

In Fig . 9 the effects of projector length on dispersion are similerly 

shown . The abscissa is the ratio of effective projector length E to vbtb, 

where vbtb is twice the burning distance . The ordinate is the ratio of 

dispersion for the given value of p/vbtb to the dispersion for zero projec­

tor lengths Curves are given for various values of t-t/T . For projector 

lengths between 0 . 01 and 0 . 50 times the burning distance , the decrease in 

dispersion is roughly linear with the logarithm of the effective projector 

length . 

From Table 2 which lists the constants of a number of projectiles that 

have been developed on this project, it is evident that fins of a size 

found practical for use yield a value of about 200 to 300 ft for rr'and a 
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value of 200/vb to .300/vb sec for 1• Hence, for projectiles such as the 

mousetrap and the barrage rocket, whose speeds ar.e less than about 500 ft/sec, 

tb<::.4 T; and therefore the burning time is the important factor in deter­

mining dispersion whereas fin size has very little effect. On the other 

hand, for projectiles with higher velocities, tb ~)T, and therefore the fin 

size has a large effect on accuracy while the burning time does not play an 

appreciable role. 

D. Limitations of the Theory: 

It should be emphasized that L(t) is the distance from the axis of 

thrust of the gas jet to the center of mass of the rocket and that this is 

not necessarily the same as the distance from the geometric axis of the 

nozzle to the center of mass. Because of dissymmetry in the burning of the 

powder or irregularities along the path of the jet that may introduce tur­

bulence or shock waves into the flow of the gas, the axis of this flow may 

deviate from the geometric axis of the nozzle. Indeed, a considerable 

body of evidence has developed that indicates that such deviations may be 

as large as or larger than the geometric malalignment of the nozzle . Fur­

thermore, deviations of this type may vary rapidly during the burning period 

rather than remain constant, as was assumed in the foregoing solution. All 

of this means that the absolute values of the dispersions calculated on the 

basis of Fig. 7 and the measured geometric malalignments can be relied on 

only as to order of magnitude. 

While these uncerta.inties may affect the estimated, absolute values of 

the dispersion, they should not appreciably change the relative dispersions 

to be expected when fin size or burning time is varied for a given projec­

tile. If anytld_ng, the dispersion should ve:ry somewhat more rapidly with 

projector length than is indicated by Fig . 9, since such evidence as is 
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available suggests that the malalignment of the gas jet is greater near the 

start of burning that it is at later times. 

In setting up the equations of motion .it was assumed t..~at the restoring 

force of the fins is proportional to the square of the velocity. This law 

seems to be applicable until the velocity of the rocket approaches the ve­

locity of sound, but definitely breaks down for higher velocities. For 

these higher velocities the restoring force is, if anything, larger than 

that given by the v2 law. If, therefore, the projectile has reached the 

flat portion of the curve in Fig . 7 by the time a velocity of 800 ft/sec is 

reached, we may assume that these curves are correct for an;t final velocity, 

since, according to the law of force assumed, the force is already large 

enough to prevent further appreciable deviation. In other words, if the 

distance required to attain a velocity of 800 ft/sec exceeds 16'"', where a---

is the distance covered in one period of free flight, the curves are approxi­

mately valid for any velocity . In this case the value of ~ for the projec­

tile should be determined for a speed less than 800 ft/sec. 

In addition, the restrictions on gravity, cross-wind , drag, etc . put 

further limits on the theory, though these latter effects are second-order 

compared to the effect of malalignment . Dr . Bowen has recently pointed out 

that during burning the gas jet sucks a considerable amount of air past the 

fins>and therefore the air velocity immediately adjacent to the fins is 

greater than the velocity of the rocket. Exactly what the effect of this 

is is not lmown at present, but it might be significant . 

E. Comparison Between Observed and Predicted Results: 

Most of the experimental study on the development of yaw during burn­

ing has been made with the CWG (Chemical Warfare Grenade), and consequently 

this projectile is used for the following detailed analysis. 
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Flight tests of the CWG have been made with four different sizes of 

fins. The values of K and a-' for these sets of fins are given in Table J. 

Fig. 10, in which K is plotted as a function of the area of the fins, seem­

ingly indicates that the moment coefficient is about proportional to the 

fin area. Though this might not be unexpected for the three smaller fins, 

for which only the widths are different, it is probably a coincidence, be-
-tLd 

cause of the particular dimensions of the large fins, they too seem to fit ,.. 
the linear relation. We also note (for the standard fins) that K does not 

seem to depend upon the velocity of the projectile in the range of veloci­

ties considered. 

To illustrate the shapes of yaw and deflection curves, in Fig. 11 

~ c/1
0 

and &c/1
0 

are plotted as functions of time for the single-:-web CWG 

with standard size fins, on the ·assumption of constant malalignment, L(t):10 • 

The curves are continued beyond the usual burning time merely to illustrate 

the effects of prolonged burning. The plotted circles (taken from CIT/MTG 5) 

in the figure are values of the yaw observed when an abnormally large mal­

alignment was introduced. The scale of the yaw has been adjusted to give a. 

fit with the theoretical curve near the start of burning. If it v,ere pos­

sible to determine the functional form of L(t) in any case, one could get. a 

value for the malalignment constant 10 by fitting the observed yaw curve to 

the theoretical curve. In any event, by fitting the initial portions of 

the curves it is possible to determine L in this region. This then gives 
0 

an estimate of the initial malalignment or the initial side force at the 

nozzle throat. (See Table 3 for values.) In Fig. 11 0-c/10 (dashed curve) 

is also plotted for the multi-web CWG. Since for a given malalignment the 

overturning moment FL(t) is proportional to the acceleration G, we note as 

expected that the multi-web veers off at a greater rate than the single-web. 
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The leveling off at the different values of 9c/L
0 

is due to the fact that 

slightly different effective projector lengths were taken in the two cases. 

In Fig. 12 the deflections Sc/L0 are plotted as a functi~n of K for 

both low (400 ft/sec) and high {800 ft/sec) velocities, and also for two 

different burning times at the higher velocity. As expected, the effect 

of fins on accuracy is much greater at 800 ft/sec than at 400 ft/sec, and 

in fact the deflection at the lower velocity does not depend much on Kat 

all. It is important to note, too, that where fins do play an appreciable 

role {800 ft/sec) the dependence of Sc on K is greater the longer the burn-

ing time. 

Except for yaw studies in which abnormally large geometrical malalign­

ments were introduced, the only range tests with other than sta11dard fins 

were made with the large fins. In Table 4 we have some data on the ob­

served and predicted dispersions for identical firings, in which only the 

fin sizes were different. If we assume that the average malalignments were 

the same in the two cases, we find that the ratio of dispersions (small fins 

to large fins) is observed to be 1.8, while the predicted value is 2.4, of 

the same order of magnitude. 

To illustrate the observed effect of burning time on accuracy some 
) 

recent field-test determinations of 9c/L0 for the 4.5 in. BR (Barrage Rocket) 

are sho'W!l in Fig. 13. (From Fig. 6, CIT/IBC 2~) Each point represents one 

test, the number of rounds differing for each. The theoretical c1.,1.rve was 

calculated by means of the master curves in Fig. 7 using the data for this 

projectile as given in Table 2. In spite of the fact that the points repre­

sent a heterogeneous collection (cf. CIT/IBC 23. There were often changes 

in design of nozzle, etc. from one test to the next.) The agreement between 

the observed and predicted values seems rather good. 
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Table 3 

Summary of Fin Coefficients for the CWG 

--r ,-

cr'(rt) I 
---- . - 1 

Fins Size m (lb) I vb T (sec) K [pdl ft/ ! 
(in. ) (lb-ft2) (ft/sec) (ft/sec)2/ 

rad] 

4x5/8 o. s2x10- 3 ' Small 2. 70 0.93 764 . 278 213 
' 

Standard 4xl5/16 2. 74 0.95 326 . 49 160 1.51x10- 3 

ti 

II 

Medium 

II 

Large 

r--·-------

Date 

42-04-18 

42- 04-18 

II ti ti 754 . 235 177 1 . 23x10- 3 

II II II 774 . 222 172 1.33x10-3 

4x2 2. 86 1.03 720 .153 llO 3. 36x10-3 

II I! II 758 .157 ll9 2.93xlo-3 

6x2½ 3. 06 1.23 662 .139 91 5.92x10- 3 
' - • - -- ·- ·---·- ---··----------· ----·------ --- -·------ -- - --- - ------- -+------- ' ------

Average initial malalignment (from yaw curves) 
__, 

. 055 in . .... 
Average initial side force (from yaw curves) :::;- 4l pdls 

Table 4 

Comparison of Dispersion for Different Fins 

Type of Fins No . of Obs . 

Standard 

Large 

Rounds Dispersion 

4 SW 

7 SW 14.4 

.21 

. 21 

Observed Ratio of Dispersions = 1 . 8 

Predicted Ratio of Dispersions= 2.4 

vb 
(ft/sec) 

750 

750 

-·--1 
Predicted! 

9c/Lo i 

1 .0 
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Perhaps the most beautiful demonstration of the correlation between 

deflection and malalignment is the result of a recent set of firings of 

4.5 in. BR's, in which the motors had excessively large geometrical mal­

alignments. Fig. 14 is a plot of the observed lateral deflections against 

the corresponding malalignment. The straight lj.ne is the theoretically 

expected slope, on the basis of geometrical malalignment alone, which fits 

the observed points remarkably well. This correlation between deflection 

and malalignment is much better than is usually obtained, the reason being 

that the "gas" malalignments in this case are much smaller than the (abnor­

mally large) geometrical malalignments. In the usual case, however, tbe 

gas malalignments are as large as, , and quite often larger than, the geo­

metrical malalignments; so that the predicted deflections are considerably 

altered. The important point, though, is that the effect of the "gas" 

malalignment is relatively much greater when the geometrical malalignments 

are small than when they are large. The presence of this "gas" malalign­

ment effectively establishes a lower limit to the accuracy of rocket fire. 

F. Conclusions: 

Because of the many simplifying assumptions made in setting up the 

equations of motion, it is not to be expected that the theory will predict 

deflections to any high degree of accuracy. It is difficult even to esti­

mate probable error, for this depends to a very great extent upon the rela­

tive magnitudes of the geometrical malalignment and the "gas" malalignment. 

In the usual case a 20-25% probable error might perhaps be representative. 

The most useful purpose of the theory is for predicting the relative 

effects of varying burning time, projector length or fin size on accuracy; 

and it is in this connection that the theory is most reliable, for the ef­

fects of "gas" malalignment should be more or less the same as tb, tr', or 

pare varied. 
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IV. Effect of Wind on the Mean Deflection of Rockets 

A. Introduction: 

In calculating the dispersion of rockets in range or in deflection for 

any set of firings, one should correct for the deflection of the mean of 

the pattern due to the influence of the wind on the motion of the projec­

tiles. The purpose of this report is to develop formulas applicable to 

rockets with velocities up to about 800 ft/sec.➔~ 

The effects of wind on the motion of a rocket can be resolved into two 

parts: (i) effects during burning, and (ii) effects after burning. 

(i) During the burning period the action of the wind on the fins will 

tend to turn the nose of the rocket into the wind, thus altering the direc­

tion of thrust of the motor from its initial direction on the rails. This 

rotation of the thrust axis will result in the deflection of the projectile 

~ the wind, which will continue throughout the burning period. 

(ii) During the post-burning period the rocket will be displaced down­

wind, that is, in the direction the wind is blowing. The down-wind drift 

of the rocket is not due to the action of the cross-wind force on the pro­

jectile, but rather to the action of the down-wind component of the drag. 

The reason for this is that the period of oscillation of the projectile is 

small compared to the total time of flight, and since the yaw oscillations 

are about the position in which the yaw and cross-wind force are zero, the 

~ average cross-wind force is zero. 

* 

➔Ht-

Leverett Davis, Jr.,io) in CIT/MTC 6 has already developed formulas 
based upon assumptions which are sufficiently valid for low-velocity pro­
jectiles. His procedure is here followed in setting up the coordinate 
systems and the initial equations of motion. 

Strictly speaking, this is not so, since the yaw will be slowiy damped 
out. The positive and negative cro~s-wind forces will thus not be equal 
and the average will not be zero.llJ 
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B. Effect of WinsL during Burning: 

We assume a sufficient number of rounds so that the average deflection 

due to malalignment and other random effects is zero. Therefore we neglect 

the malalignment in discussing the deflection of the 11 average 11 rocket . .Also, 

we consider the same aerodynamic force system acting on the yawing projectile 

as wa.s done in Ch. III. If we neglect the effects of gravity, drag end 

cross-wind force during burning, and p_ssume that the restoring torque of 

the fins is proportional to the squae of the velocity and to the first 

power of the yaw, the equation for the rotation of the rocket is 

(38) 

where (See Figs. 15 and 16) 

Va = vector velocity of the rocket relative to the 
moving air (wind), 

and fa = angle of yaw of the rocket with respect to the 
air velocity Va . 

\N 

p 
0 
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Since we have neglected gravitational effects du.ring burning, the motion 

is in the plane determined by the projector and the wind velocity vector w; 

that is, the plane of Fig. 15 . If v be the vector velocity of the projectile 

relative to the ground, and"/-' the angle between the direction of the wind 

and the projector, then from Fig. lfwe get the following relations between 

velocities and angles: 

w 
sin (ea - e) 

Assuming that (w/v)
2 ~< 1, and, that e, ea, f , f a <<-1r, we reduce the 

above to the approximate expressions 

(1 - !! cos T) 
V 

f a = f -··.J'_ sin ~= f - ~ sin ~ (1 + ~ cos ;f ) 
Va 

Substituting in (38) for va and r a' and again neglecting second­

order terms, we get 

4 /T 2 
w cos 1-' ) - ----
v rr 2 

v2 f. (39) 

In (39) we neglect, fuxther, the-rerm (w/v) cos "/ compared to unity. As 

will be seen later, (w/v) cos "'f' represents a small correction to the first 

term which depends upon the down-range component of w, and which, for 

practical purposes, is negligible . 
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Writing Gt for v in (39), and letting 

we have 

(40) 

Now equating the centrifugal force on the projectile to the component 

of the jet force perpendicular to the trajectory, we have 

and, from Fig. 1, 

(41) 

(42) 

It will be noted that Equations (40), (41) and (42) are identical with 

Equations (30), (31) and (32), Case'. II, of Ch. III. As applied to the 

present problem the solutions may be written as 

(43) 

where 

G = <P - Ll (44) 

z -t-!'~? t - av , 

and ~ 1 , f 2 , ¢1' ¢2, Bl' B2 and B3 are given by equations (33) and (35). 

The value of eat the end of burning (t = tb) is then the deflection 

of the trajectory in the -plane of yaw from the initial direction, and, from 



-38-

Eq. (41) is the final direction of flight of the rocket. (The effect of 

wind after burning will be discussed later.) In order to determine what 

latera,l and vertical deflections on range the above leads to, consider Fig. 16. 

Range Line 

Fiq. 16. De flee tio n of RocKet 

If A 60 is the increase in departure angle at end of burning and (6 
0 

is the 

lateral deflection of the plane of the trajectory, it can be easily demon­

strated that 

and 

= __ e_sin 0( -­

cos eo sin? 

where O{ is the angle between the rru1ge line and the direction in which the 

wind is blowing, measured clockwise from the range line. Letting 

W.L = w sin t?( = cross-range component of wind velocity, 

W,1 = w cos o< = down-range component of wind velocity, 

and substituting fore from equation (43), we have finally 
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(45) 

LJ.e.,!W,, =~'rl· • sin 0o • e) (46) 

where(:) is given by (44). 

Eqs. (45) and (46) give the deflections produced by the wind during 

the burning period of the rocket. In Fig. 17 are plotted the solutions of 

Equations (45) and (46) which give values of (/30 /V!.L ) vb cos eo as a 

function of ~b for several values of p/<r. By . the use of these curves 

one can get values of f]ofw~ for any desired combination of values of vb, tb, 

(j"' , p and 90 • One can also derive the values of Lieofw,, , for ( A e0/ W,, ) = 

( /3ofw.J...) sin e0 cos e0 • 

C. Effect of Wind after Burning: 

For the purpose of calculating the down-wind drift of the rocket we 

shall assume that the effects of cross-wind due to yaw average out to zero 

during the flight, as mentioned previously. Also, since we are interested 

here only in the lateral deflection, we consider only the cross-range com­

ponent WL of the wind, since the sole effect of W II is to modify the range. 

The drag, however, acts in the negative direction of the velocity of the 

projectile relative to the air (-va = -v·+ w); consequently, there is always 

a component of drag in the direction of the wind w. By considering the 

motion of the projectile relative to a coordinate system movi ng with the 

air, the problem can be treated in the same manner as the wind deflection 

for shells .12) Consider two systems of coordinates, one moving with the 

velocity of the air and the other fixed relative to the ground, with the 

x-axis pointing along the range and with both systems coinciding at the end 

of burning at the point where the rocket begins its post-burning flight . 



1,000 

6'00 

0 

-;9a­

Fig. 17 

M&\N WIND DBFLECTION DURING BURNING 

/j= Deflection of trajectory into the wind (mils) 
w~= Cross-range component of wind velocity (ft/sec) 
Vb: Velocity of rocket at end of burning (ft/sec) 
tb: Time at which burning ceases (sec) 
O"': Wave-length of yaw oscillation (ft) 
p = lf'fective projector length (ft) 
8: Quadrant angle of projector .01 

2.0 
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If 't be the angle between the plane of the trajectory relative to the 

moving coordinates and the plane of the trajectory relative to the fixed 

coordinates , it is very nearly equal to 

Therefore, in the range X the total lateral deviation of the shell 

relative to the a.ir is W.i. X 
vb cos eb 

However, in the time of flight T1 the 

moving origin has moved through the distance W .i. T, . Thus the net linear 

drift during the flight is 

W.1. X 
> 

and the total angular down-wind drift of the projectile is .. , 

f.;, ; w-'- = !. f t 1~ - ----~---- l (47) 
X , vb cos eb J 

For T1 we shall use the Didion-Bernoulli expression (See Eq. (16), Ch . II) . 

where 

Tl= ____ X ____ D(Z) 
vb cos 6b 

eZ/2 -1 
D(Z) .. = -------

'?/2 

In this expression, Z = 2c t:>< X, where 

c = deceleration coefficient of the projectile , 

and o( = average of 1/cos e in the Didion-Bernoulli method . 

Thus , for the final form of the angular down-wind drift we may write 

_ l -- [ D(Z) -1] . 
vb cos~ 

D. Limitations of Theory: 

1 . In setting up the above equations we assumed that (w/v)2 is negli­

gible compared to unity . We shall examine this for three rockets having 
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different velocities. In Table 5 are given the values of (w/v)2 at v = vp 

(the velocity of the rocket as it leaves the rails), at v = vb (the burnt 

velocity), and also the average value of (w/v) 2 during the burning period. 

In all of the cases, w = 15 mph= 22 ft/sec. Except for the ASPC, the errors 

introduced by neglecting (w/v) 2 are quite negligible. Of course, as the wind 

velocity increases the error increases as w2 . 

Table 5 
- -- ------ -1-- - -- - --1· --- ---- •• .. , ---- - -7 

2 
(w/vb)2 2 UP vb tb VP (w/vp) (w/v) av 

(ft/sec) (sec) (ft/sec) 

ASPC 170 .35 66 .111 .016 .042 

4.5 BR 360 .35 
., 

85 ~ .067 .0037 .016 

CWB 720 .50 152 ' .021 .0009 .0044 

2. A far more serious error was introduced by neglecting (w/v) cos-,_. 

compared to unity in Eq. (39) . Now (see Fig. 16) 

cos 1-' = cos q cos eo 

(w/v) cos 'f' = (W,jv) cos Et0 

Let us investigate the validity of this assumption for the ASPC, 

4.5 BR, and CWB. For a down range component of wind, W,,, equal to 15 mph 

(22 ft/sec), table 6 gives the values of (W,,/v) cos &
0
at the instant the 

rocket leaves the rails and at the time burning ceases, as well as the 

average value during the burning period. In general, the accuracy does 

not warrant taking this effect into account. But if such is not the case, 

one can get a rough approxirration to the correct result cy modifying equa­

tions (45) and (46) to read 
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- (W,,/v) cos eo l · e av (45a) 

(46a) 

Table 6 

r- - ~ - --- -- r -- i -- - - -1 
I 

(W,,/vp)cos (W,,/vb)cos UP 80 vb VP So eo (W,, /v)avCOS 80 

: ASB 45° 170 66 .24 .091 .14 

4. 5 BR L~5° 360 85 .18 . 045 . 082 

cvm 45° 720 152 .10 .022 .043 
- -- - ---

- .... .,,._ 

3. It has been assumed throughout that the aerodynaraic forces on the 

projectile follow the v2 law. Since the v2 law is valid only up to velo­

cities of 800 ft/sec, the above equations are valid only under the same 

restriction . Also, it has been assumed that the wind is constant for all 

the rounds of a set and that it is not a function of altitude. 

4. It must be remembered, too, that the above equations apply to the 

~ deflection of a given set of firings only when a sufficient number of 

rounds have been fired so that malalignment and other random effects average 

out. 

E. Observational Data: 

Since most range firing tests have been made with little or no wind 

prevailing, very little experimental data for comparison with theory is 

available. In the accompanying plot are shown the observed and predicted -­

~ deflections for the ASB for a number of tests (Data from CIT/IBC 10) . 

Though very few rounds make up the means, there seems to be a general 
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qualitative agreement between the observed and predicted deflections. One 

would expect low temperature (i.e., long burning time) rounds to be deflected 

up-wind, since then the effect during burning is greatest . On the other 

hand, at high temperatures (i.e ., short burning t ime) one would expect the 

rockets to be deflected down-wind, since then the effect during burning is 

slight compared to the dovm-wind drift during free flight . This is borne out 

in a general v;ay by t he above data, for the mean of .ill_ tests gives the fol­

lowing (negative values correspond to deflections up-wind): 

·Temperature 

o° F 

70° F 

125° F 

Mean Deflections (all winds) 

- 8.0 mils 

+ 0.4 mils 

+ 5. 5 mils 



mil ' 
-t-30 

+10 

0 

-10 

-40 

-50 

-60 

-70 

-80 

I 

--,- :::, u.--

Mean Wind Deflections of ASBJ, 

')( cold ASB I s , 
) 

0 > .ambient , 
A , hot 

J 

Observed vs Predicted 

(Numbers indicate the number 
o sin each mean 

X 10 

-60 -50 -40 -30 
/3 (Predicted) 

Q h 

-20 -10 0 +10 
mils 
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Appendix 1. Studies of 11Gas 11 Malaligrunent by Means 

of the Yaw Machine (CIT/PMC 1.39) 

In order to learn something about the nature of the so-called ngas" 

malalignment and its effect upon accuracy of rockets, Prof. Bowen had built 

a "yaw machine" (See CIT/PMC 1.39.) by means of which it is possible to 

measure the angular acceleration of a motor during burning and determine 

from that the torque or the equivalent side force at the nozzle which pro­

duced this acceleration. Since the instrument gives a record only of the 

side force as a function of time it is necessary t o interpret the data in 

such a way as to predict its performance in actual flight. For expressing 

the performance of a given motor 1/1 terms of freedom from yaw and deflection 

in flight the following index of disuersion has been adopted. 

If a projectile without fins experiences an angular impulse L .t.. t at 

time t1, the UP will rotate with angular velocity~ given by (See Fig. 5.) 

(1) 

where I is the moment of inertia of the UP about its center of gravity . 

The equations of motion of the UP from then on are: 

3c = G cos ¢ ~ G 

y = G sin¢~ G ¢ 

Integrating (1), 

¢ = ~1~ (t - tl) 

Substituting into (3) and integrating, 

From (2), 

i =Gt 

(2) 

(3) 

(4) 

(5) 
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Thus the deflection of the trajectory at any time t> t 1 is given by 

e r::: tan e - i.. - x 

and at the end of burning, t = tb, 

21 t 
(6) 

(7) 

We have then that the deflection to be expected due to a given impulse 
(t - t)2 

L At at time t is proportional to __ ];2_ ___ __ , which we call the weighting 
tb 

factor for each value of the side force (which is proportional to the impulse) 

as registered by the yaw machine. The integrated deflection for any motor 

is then 

61) = LAt (tp - ' t) 2 _ 

2I tb 
(8) 

where tp is the time the UP leaves the projector and tb is the time at 

which burning ceases. 

We can replace the torque L by F 1 where F is the side force acting s s 

at a distance 1 from the center of gravity. The quantity 
i = t , 
~ !~_i!~_:_!2~ Lit 
L._. tb 
t=ip 

is called the index of dispersion, which is a measure of the dispersion to 

be expected from a rocket with no fins. 

The weighting factor due to fin action would tend to reduce the 11ID11 • 

However, this weighting factor involves complicated integrals and so will 

not be included here . In any case, the effect of fins would be more or less 

the same on each UP. Thus on a relative scale, the index of dispersion 

should be a rather good measure of the relative dispersions to be expected 

on the range from various motors with different nozzles. 
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One such curve of Fs as a function of time is shown in Fig. le;'. The 

striking feature is the reversal in the side force, which represents a 

violent change in the direction of the malalignment. This phenomenon is 

what has been associated with the term 11gas 11 malalignment, and its presence 

can now no longer be doubted. One gets rid of the mechanicai (or geometri-
'"' f-he. c o -. p«f;;, f ,"0 ,,.5 

cal) malalignmentAby taking the average value of the index of dispersion 

from the mean of a number of similar tests with the same motor and nozzle. 

If the constants of the CWG are substituted into equation (8), it is 

found that the deflections due to the random 11 gas" malalignment are of the 

order of two to three times the deflections due to 0.010 .inch mechanical 

malaligrunent. Herein lies the explanation of the large discrepancy between 

the observed and predicted (on the basis of geometrical malalignment alone) 

deflections for this rocket. (er: CIT/JPC J.) 
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Appendix 2. Method of Solution of Equations for Yaw and 'Deflection* 

The equations of motion of a rocket during the burning period were given 

in Ch. III as 

For a malalignment of the form 

The method of 

Letting 

and 

L (t) = At - B 

solution is briefly as follows: 

z =r~?g ... t 
¢c 

equations (30), (31), (32) become 

and 

p '~-~ @ +z-z2Ll A I --;;-

e + L1 
) 

(31) 

(32) 

(33)' 

where the primes indicate 'differentiation with respect to z. From these one 

obtains without difficulty the following equations in ffe and A . 

* Method of L. Davis, Jr. 
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,, ' 3 
z2 A ~ Z .6.. - (1 - z4) A = -K z2 + z 

where K = i /2? , • 
Solution of P equation 

/ 

In terms of 

this becomes 
II I 3 

zy - y + z y: K 

Assuming a series solution of the form 

, , 

we find that 

Integrating, 

Where 
l: -

G(z/fii ) =? f c~s f dx =/ cos ~l du~ G(u) 

() 

and 
2- .A.( 

S(z/fjj ) 1 f . x2 / • ff u2 ( ) = --- sin -- dx = Sill --- du= Su 
G 2 2 

0 0 
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are the Fresnel integrals familiar in optical diffraction theory. Dr. Morgan 

Ward, has shown that i t is also possible to express the third term in the 

above solution for p in terms of the Fresnel integrals, namely 
,:,.I> 

Z I 11n -/411-t-2 ;f' { 2 ----~=- ---~-------- = -- S ( z/,;; ) 
l •3 • 5 .. • (,4n-,.1)(4n-,.2) 2 

M ::: o 

The complete solution for P is then 

Solution of b. equation 

2 II I · 1 2 3 
z /1 + z 11 - (1-zH:) A = -K z + z 

, 

Again assuming a series solution of the form 

we find 

Leverett Davis has shown that the last term could be written as 

whe~ the complete A solution is 

The boundary conditions upon these equations is that at the time the UP 

' 

leaves the projector, both the yaw and deflection ru1d their angular velocities 

are zero; i.e. ~c = ~ c = gc = ec = ¢c = ¢c = 0 • 



Hence, at z = z, it follows that p 
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Inserting these initial conditions into the solutions for P and L1 , 

and substituting back t o our original variable we have finally 

where ¢1 ( z) = - fir S( z/ /if- ) 

¢2 (z) = /i C(z/ /jf ) 

¢0 (z) = ½ f ¢12(z) + ¢22( ~ 

~ 1 (z) = cos z2/2 

~ 2 (z) = sin z2/2 

f O ( z) = ~ 1 ( z) • ¢1 ( z) + f 2 ( z) • ¢2 ( z) 

is the value of z when t = tp 
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Applications of solution 

(i) For , B = 0 , 

the above equations give the solutions for Case II in Ch. III. 

(ii) For 

(iii) For 

' 
the equations give the solutions for Case III in Ch . III . 

, 

the above results give the solutions for the wind equations 

in Ch . IV. 
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Appendix 3. Forward Firing of Rockets From Airplanes 

or Moving Projectors 

The theory of yaw and deflection developed in Ch. III can just as well 

be used for predicting accuracy when t..½e rocket is fired forward (or · back­

ward, if vA 4 vb) from a plane or from any vehicle which itself has· an air 

velocity vA • We shall consider two coordinates system: one at rest rela­

tive to the ground with the origin at the projector at the moment of fire 

and the other moving with the constant velocity vA of the projector. Primed 

quantities .will refer to .the eoordinate system fixed with respect to the 

ground and unprimed quantities to the ioving system. 

The air velocity of the UP is then v 1 = vA + Gt, if the acceleration 
- 4'~,.,. 

(G = vlitb) is assumed constant,_ and the equations of motion become ( cf Ch.III). 

•• GL 411 2 
+ Gt) 2 ~ ¢c = -i~ - --- (vA 

~ 2 C 

(vA + Gt) (\ = G r e 

¢c = 9c + ~ C • 

In terms of the new time t' = ~ + t, the above equations are identical 

with equations (30), (31), (32); and therefore the solutions given in Ch . III 

are applicable in this case . 

Hence, if the primed quantities 

tb' - ~a~ tb - ~A-±-~£ tb 
- G vb 

I 

vb= VA + G tb =VA+ vb 

p ': j, G t;
2 =(fP+ vA~)

2 

are used in connection with Figs. 7, 8 and 9 ( &" should be used in place of 

T, since 6" is constant . while T varies with the velocity), one gets the pre­

uicted deflection for this type of firing. 
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