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ABSTRACT

External flows over spanwise-homogeneous geometries are ubiquitous in science and
engineering applications (Mittal and Balachandar, 1995; Mittal and Balachandar,
1997; Dong and Karniadakis, 2005; Lehmkuhl et al., 2013). In this thesis, we pro-
pose algorithms to simulate and analyze these flows using the lattice Green’s function
(LGF) approach. The LGF is the analytical inverse of a discrete elliptic operator
that automatically incorporates exact far-field boundary conditions and minimizes
computational expense by allowing snug computational regions encompassing only
vortical flow regions. By combining LGFs with adaptive mesh refinement (AMR)
and immersed boundary (IB) methods, we present two numerical algorithms spe-
cially designed for spanwise periodic incompressible external flows: one to directly
solve the nonlinear equations of motion and one to compute stability and resolvent

analyses.

For these algorithms, the LGFs of the screened Poisson equation must be computed
at runtime. To enable efficient flow simulation and analysis algorithms, we propose
a fast numerical algorithm to tabulate these LGFs. We derive convergence results
for the algorithms and show that they are orders of magnitude faster than existing
algorithms. Armed with the LGF for the screened Poisson equation, we further
develop algorithms to solve the Navier-Stokes equations and associated linearized

eigenvalue problems.

We present two applications of these algorithms. We perform simulations to validate
the starting vortex theory proposed by Pullin and Sader (2021), and we perform

stability analyses of flow past a rotating cylinder with a control cylinder in its wake.
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Flat plate. Type-II vortex: m = 0, p = 2, and d = 0 for Re =
32,000. Total dimensionless circulation, fo = I'o/(Upa), in the

trailing-edge vortex for the plots reported in Figure 5.7. Description

asperTable 5.2. . . . . . ...

Flat plate. Type-III vortex: m = 0, p = 0.5, and d = O for Re =
32,000. Total dimensionless circulation, Ty = I'v/(Upa), in the

trailing-edge vortex for the plots reported in Figure 5.9. Description

asperTable 5.2. . . . . . . . .. ... ...

Flat plate. Type-III vortex: m = 1, p = 2, and d = 0 for Re =
45255. Total dimensionless circulation, Iy = T'o/(Upa), in the

trailing-edge vortex for the plots reported in Figure 5.11. Description

asperTable 5.2. . . . . . .. .. ...

Flat plate. Total dimensionless circulation, I'g = I'o/(Upa), in the

trailing-edge vortex for the plots reported in Figure 5.12. Description

asperTable 5.2. . . . . . . . ... ...

Joukowski airfoil. Total dimensionless circulation, Ty = [/ (Upa),
in the trailing-edge vortex for the respective plots reported in Fig-
ure 5.14; where a is the half-chord of a Joukowski airfoil for R = 1.

The entry positions in this table (and corresponding times, 7') coin-

cide with Figure 5.14. Description as per Table 5.2. . . . . . . . ..

XVi



Chapter 1

INTRODUCTION

In this thesis, we discuss algorithms designed for a specific type of fluid flow:
spanwise periodic incompressible external flow. In its name, there are three main
adjectives: spanwise periodic, incompressible, and external. Incompressibility is a
straightforward word that does not need further introduction and is embedded within
the governing equations. As such, I will discuss the remaining two words and their

mathematical and physical implications in the subsequent paragraphs.

"External" means that the flow we are interested in is situated on an unbounded
domain. Specifically, we have immersed bodies in some unbounded fluid domain.
The flow is generated by the immersed body moving in the said fluid. This un-
bounded domain has two implications: first, the boundary condition is only posed
at infinity; second, the flow is restricted only by the immersed body without the
presence of any other boundaries, so flow structures can exist in a wide range of
scales. These two characteristics pose their corresponding challenges. Tradition-
ally, one can solve these problems using different numerical techniques such as
unstructured meshes (Mittal and Balachandar, 1995; Borrell et al., 2011; Fischer,
Lottes, and Tufo, 2007) and overset methods (Steger, Dougherty, and Benek, 1983;
Tang, Jones, and Sotiropoulos, 2003). Although these methods are compatible with
flexible nodal distribution and grid resolution, they suffer from the requirements
of unbounded computational domains or posing non-trivial boundary conditions
(Mittal and Balachandar, 1996; Lai and Peskin, 2000; Yu, 2021). Moreover, they
are subject to remeshing when the immersed body moves or deforms. By combin-
ing lattice Green’s function method (LGF), adaptive mesh refinement (AMR), and
immersed boundary (IB) method, one can devise efficient numerical frameworks to
simulate external flows (Liska and Colonius, 2017; Yu, 2021; Yu, Dorschner, and
Colonius, 2022).

"Spanwise periodic" means that the fluid flow we are simulating and studying repeats
itself in the spanwise direction. Spanwise periodicity is used to model the flow
past an immersed body with infinite span and constant cross-section. Namely, an
infinitely long cylinder with arbitrary cross-section. This spanwise periodic model

stems from experimental observation (Williamson and Roshko, 1988; Williamson,
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1996; Mittal and Balachandar, 1995; Mittal and Balachandar, 1997). As a result,

one can leverage this property to devise efficient numerical algorithms for flow
analysis and simulations. Indeed, based on different discretizations, the treatment
for spanwise periodicity can vary. Posing spanwise periodic boundary conditions
after discretizing the PDE can lead to a circulant matrix that is diagonalizable
by means of discrete Fourier transform (Borrell et al., 2011). However, in this
thesis, we take a different approach by discretizing the governing equations after the
Fourier transform (Mittal and Balachandar, 1996). By doing so, we can variably
truncate the Fourier series for further computational savings. In addition, we propose
efficient numerical algorithms that can leverage LGF, AMR, and IB methods and

are compatible with the spanwise periodicity nature.

By understanding the challenges and opportunities associated with the properties
of spanwise periodic incompressible external flows, we created corresponding sim-
ulation and analysis algorithms that enable us to efficiently study this particular
type of flow. Enabled by these algorithms, we studied various flows that have
both theoretical and practical importance. Overall, this thesis can be divided into
three components: novel algorithms for computing the LGF of the screened Pois-
son operator and their analysis, simulation and analysis algorithms based on the
LGF techniques, and the study of various flow phenomena using the simulation and

analysis algorithms.

1.1 Fast algorithm for computing LGF of the screened Poisson operator

Given an invertible discrete elliptical operator, its LGF is its inverse in free space.
The LGF of the finite difference Poisson operator is well studied and has readily
available asymptotic expansion formulae for efficient numerical evaluation (Duffin,
1953; Duffin and Shelly, 1958; Martinsson and Rodin, 2002). As a result, this LGF
has been applied to efficiently solve many problems arising from discretizing partial
differential equations (Liska and Colonius, 2014; Liska and Colonius, 2016; Liska
and Colonius, 2017; Dorschner et al., 2020; Yu, 2021; Yu, Dorschner, and Colonius,
2022; Caprace, Gillis, and Chatelain, 2021; Balty, Chatelain, and Gillis, 2023).
However, to simulate spanwise periodic external incompressible flows via Fourier
expansion, instead of the Poisson equation, the screened Poisson equation arises.
As such, we need the corresponding LGF to solve the pressure-Poisson equation in
the Fourier expansion formulation. Yet, efficient algorithms to evaluate this LGF
were not readily available. In Chapter 2, we introduce a set of new algorithms to

efficiently evaluate the LGF of the screened Poisson operator. Correspondingly,
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we present rigorous convergence bounds for these algorithms and computational
complexity analysis in different scenarios. By comparing to existing methods to
evaluate the LGF of the screened Poisson operator, we demonstrate that our methods

show significant improvement in terms of both speed of robustness.

Although our motivation lies in solving numerical partial differential equations
arising from fluid mechanics, the applications of this particular LGF extend to
many other fields of science and engineering. We demonstrate this by showing two
applications of our algorithms: solving a three-dimensional Poisson equation with
one periodic dimension and computing the return probability of a two-dimensional

random walk with killing (Lawler and Limic, 2010).

1.2 Fast flow simulation and analysis algorithms

Equipped with the fast algorithms for tabulating the LGFs of screened Poisson
equations, we are ready to leverage the LGFs to create numerical algorithms to
conduct simulations and flow analyses. In Chapter 3 and Chapter 4, we proposed

two algorithms related to spanwise periodic external incompressible flows.

In Chapter 3, we present an algorithm that leverages the LGFs, AMR, and the
immersed boundary (IB) method to simulate spanwise periodic external incom-
pressible flows efficiently. In this algorithm, we Fourier-expand the velocity and
pressure and time evolve the resulting Fourier coefficients of the velocity and pres-
sure instead of time evolving velocity and pressure directly. Then we adapted an
existing half explicit Runge-Kutta method by Yu (2021). Combining the Fourier
coeflicient formulation of the Navier-Stokes equations, AMR, LGF, and the 1B
method, we created a fast flow simulation algorithm tailored for spanwise periodic
incompressible external flows. The algorithm is then verified and validated through

a range of numerical simulations and tests.

With the fast numerical simulation algorithm, we hope to leverage its advantages
to create a stability analysis and resolvent analysis algorithm. In Chapter 4, we
combine the same components that enhance the efficiency of the flow solver, i.e.,
LGF, AMR, and the IB method, and devise a computational advantageous form of
the discretized linearized Navier-Stokes equations (LNSE), which is the key to create
efficient linear stability analysis and resolvent analysis. In addition, we leveraged
the fast multipole method (FMM) to further enhance the computational efficiency.
The resulting algorithm is validated by various numerical experiments involving

both canonical and non-canonical examples of resolvent and stability analysis.



1.3 Applications of the simulation and analysis algorithms

With the aforementioned numerical algorithms, we can solve a wide range of in-
teresting problems. In this part, we present three numerical studies we conducted
using the above algorithms.

In Chapter 5, we first apply the two-dimensional version of the flow solver to study
the early time behavior of the flow field generated by bodies with straight and sharp
trailing edges that are translating and rotating in the viscous fluid. Examples of such
geometries are flat plates and Joukowski airfoils. Using the inviscid flow model,
Pullin and Sader (2021) showed that there are three types of early-time trailing edge
vortex behaviors: a vortex sheet, a vortex roll-up, and a combination of these two.
In addition, the behavior is purely determined by the rate of pitching and translating
of the immersed body. In this chapter, we conducted a series of direct numerical
simulations (DNS) at high Reynolds numbers to show that the theoretical results
derived from the inviscid flow model manifest themselves in the Navier-Stokes

equations where viscosity is present.

Also, in Chapter 6, we conducted a sequence of stability analysis of the flow
past a rotating cylinder with a control cylinder in its wake. As demonstrated by
Strykowski and Sreenivasan (1990), for the flow past a stationary cylinder, putting
a control cylinder in the wake of the main cylinder suppresses the onset of vortex
shedding. Meanwhile, as shown by Pralits, Giannetti, and Brandt (2013), if we
consider the flow past a rotating cylinder, with no control cylinder in the wake, the
rotational motion also has a stabilizing effect when the rotational rate is below a
certain threshold. One question we ask is: If these two stabilizing mechanisms
are combined, can we stabilize the flow even further? To answer this question, we
conducted a set of three-dimensional stability analyses of the flow past a rotating
cylinder with a control cylinder in the wake across a vast parameter space. What
we found is that combining those two stabilizing mechanisms will suppress the

two-dimensional instabilities while slightly exciting three-dimensional instabilities.

1.4 Summary

In this thesis, we will present various numerical techniques and algorithms to inves-
tigate the spanwise periodic external incompressible flows. This thesis is organized
as follows: in Chapter 2, we present novel techniques to compute the LGF of the
screened Poisson equation; in Chapter 3, we present a flow simulation algorithm
combining LGF, AMR, and the IB method; in Chapter 4, we present a stability
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analysis and resolvent analysis framework; in Chapter 5, we present a numerical
study enabled by the algorithm we proposed in Chapter 3; finally, in Chapter 6, we
present an application enabled by the linear stability analysis algorithm proposed in
Chapter 4.



Chapter 2

FAST AND ROBUST METHOD FOR SCREENED POISSON
LATTICE GREEN’S FUNCTION USING ASYMPTOTIC
EXPANSION AND FAST FOURIER TRANSFORM

This chapter is adapted from Hou and Colonius (2024b). As we mentioned in the
previous chapter, the prerequisite from all subsequent flow simulation and analysis
algorithms is an efficient way to tabulate the lattice Green’s function (LGF) of the
screened Poisson equation. In this chapter, we present three algorithms to com-
pute the entries of this LGF. Specifically, we derive an asymptotic expansion and
a trapezoidal rule approximation of this LGF. In addition, we derive the conver-
gence properties and computational complexities of these approximations and their
accompanying numerical algorithms. We present several numerical experiments
to demonstrate the speedup offered by the proposed algorithms. Even though our
motivation lies in solving the Navier-Stokes equations, we recognize that our algo-
rithms for tabulating the LGF have more extensive applications. We demonstrate
this point by showing two more applications: solving the three-dimensional Poisson
equation with one periodic dimension and computing the return probability of a

two-dimensional random walk with killing.

2.1 Introduction

The discrete screened Poisson equation for a k-dimensional space with parameter
c? > 0 is defined as

k

Leu(n) = czu(n)+z [-aju(n - e)) +2a,u(n) —aju(n +e,)] = f(n) VneZt,

= @.1)
where ey, ..., e are the coordinate vectors of R¥, and ay,...,ax > 0 are the anisotropy
coefficients. The ¢? term is sometimes called the screening term (Kazhdan and
Hoppe, 2013). The LGF is the fundamental solution of the equation above. It
plays a role in physics (Kotera, 1962; Katsura and Inawashiro, 1971; Katsura and
Inawashiro, 1973), mathematics (Madras, 1989; Lawler and Limic, 2010), and
engineering (Cserti, 2000; Kazhdan and Hoppe, 2013). Theoretical aspects of the
LGF of the screened Poisson equation have been studied extensively (Morita and

Horiguchi, 1971; Katsura and Inawashiro, 1971; Katsura and Inawashiro, 1973;
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Michta and Slade, 2021; Maassarani, 2000; Duffin, 1953; Duffin and Shelly, 1958).

While the LGF of the Poisson equation has an asymptotic expansion at arbitrary
orders (Duffin, 1953; Duffin and Shelly, 1958; Martinsson and Rodin, 2002), the
LGF of the screened Poisson equation does not (Gabbard and Rees, 2024b).

Existing theoretical analysis of the LGF of the screened Poisson equation suffices
the need for qualitative applications (Kotera, 1962; Katsura and Inawashiro, 1973).
However, accurate computation of this LGF is needed for quantitative applications
(Cserti, 2000; Gillman and Martinsson, 2010; Kazhdan and Hoppe, 2013; Liska and
Colonius, 2017; Caprace, Gillis, and Chatelain, 2021; Gabbard and Rees, 2024b).
Thus, in this chapter, we focus on its computational aspects. After reviewing
previous results (Section 2.2), we find an asymptotic expansion in terms of the
associated value of ¢2 and establish the decay rate when ¢ is relatively large (Section
2.3). Next, for small ¢?, we derive a one-dimensional integral representation of
the LGF (Section 2.4). The same one-dimensional integral representation is also
applicable to the LGF of the Poisson equation. We then show that, for screened
Poisson equation LGF, the error of a trapezoidal rule approximation can be strictly
bounded and converges exponentially fast (Section 2.5). By exploiting the structure
of the integrand, we propose a Fast Fourier Transform (Cooley and Tukey, 1965)
method for batch evaluation of the LGF (Section 2.7). We show that our algorithm
is robust and highly efficient.

We provide two examples to demonstrate how our algorithm can be used in practice.
The first example (Section 2.8) is to use the LGF of the screened Poisson equation
to solve for the LGF of the three-dimensional Poisson equation with one periodic
dimension. The second example (Section 2.9) is to use the LGF of the screened
Poisson equation to compute the return probability of a two-dimensional random

walk with killing.

2.2 Lattice Green’s function of the two-dimensional screened Poisson equa-
tion

2.2.1 Definition and two-dimensional integral representation

We consider Eq. 2.1 with k = 2, denote n = (n,m), and use u(n) and u(n,m)

interchangeably. Since a,a; > 0, by re-scaling the coefficients, we can make

a1 = 1 or ap = 1. Thus, without loss of generality, we assume 0 < @; < 1 and

02:1.



The LGF, denoted as B.(n) = B.(n, m), is the solution of

[LCBC] (na m) = 60n50m, hm BC(n9 m) = 09 (22)

|n+|m|—c0

where 6;; denotes the Kronecker delta. The Fourier transform method allows the

solution to be written as (Katsura and Inawashiro, 1971)

o me 1
B.(n) = e /12 s (§)+Czdg, 2.3)

where I? = [-x, 71]? is the integration domain, and with & = (&1, &), the function

o (&) is:

o (&) =2a; — 2y cos(&1) +2 —2cos(&r). 2.4)

From Eq. 2.3, it is clear that B.(n,m) = B.(|n|,|m|) so it suffices to consider

n,m > 0.

For ¢ = 0, we recover the standard 2D Poisson equation, and the corresponding LGF
can be represented using an asymptotic expansion valid to arbitrarily high order-of-
accuracy (Martinsson and Rodin, 2002). In practice, one typically precomputes LGF
near-field values and uses these asymptotic expansions for far-field values (Liska and
Colonius, 2014). However, when ¢ # 0, a high-order asymptotic expansion does
not exist, and we must rely on numerical integration for all values. Thus, efficient

computation is essential.

2.2.2 Representations using special functions

The values of B, can be expressed using Appell’s double hypergeometric functions
(Fa):

Theorem 2.2.1. (Katsura and Inawashiro, 1971).The solution of B.(n, m) can be

written as
1 1 (m+n)!1 jap\n(1\"
BC(n’m)_2m+n+1am+n+1 nlm! ;(;) (Z)
2
i 2 1
Fy (m+n+1)/2,(m+n)/2+1,n+1,m+1;(—) A-11, 253
a a
where

a=1+a+c*/2. (2.6)
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Evaluating B, using Thm. 2.2.1 requires evaluating Appell’s double hypergeometric
function which is not available in common libraries and contains a doubly infinite
sum. Thus in most numerical applications of the LGF, the Bessel function rep-
resentation (Koster and Slater, 1954; Maradudin, 1960; Katsura and Inawashiro,
1971; Maassarani, 2000; Delves and Joyce, 2001) of B.(n,m) is used to compute
the LGF (Liska and Colonius, 2017; Dorschner et al., 2020; Yu, Dorschner, and
Colonius, 2022; Gabbard and Rees, 2024b). The Bessel function representation is
a way to write B.(n,m) as an improper integral of the Bessel function. The specific

formulation reads

1 [
B.(n,m) = i"+m+1§ / eI X2y (o) T (1) d, (2.7)
0

where Ji (¢) is the Bessel function of the first kind (Abramowitz and Stegun, 1948).
This formulation is hard to integrate numerically because of the highly oscillatory
and slowly decaying integrand. One can further simplify it to a more computationally

advantageous form:
B.(n,m) = / @2 00 T (1), 2.8)
0

where [ () is the modified Bessel function of the first kind (Abramowitz and Stegun,
1948).

When evaluating the above integral, there are two challenges: effectively evaluating
the function 7, and accurately approximating the improper integral. In practice,
for the first challenge, one can compute the modified Bessel function using existing
numerical libraries (Schiling, 2011; Virtanen et al., 2020; The mpmath development
team, 2023). However, this function is still defined as an infinite series or integral and
can be computationally expensive. For the second challenge, the improper integral
can either be approximated by integrating up to a large value or be evaluated using
a variable transformation (Doncker, 1978). The former can be computationally
expensive and unstable, and the latter can create a singularity at the origin. Indeed,
it has been reported that numerical evaluation of the LGF of the screened Poisson
equation can fail catastrophically (Gabbard and Rees, 2024b). In the rest of the

chapter, we introduce two methods to efficiently compute the LGF.

2.3 Fast evaluation and compact support at large ¢>
In this section, we derive a series expansion for B.. From the expansion, we can

obtain two unique properties of the LGF of the screened Poisson equation: (a)
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exponential convergence in series expansion, and (b) exponential decay in |m| + |n|.

We will later show the duality between them. These two properties give a fast

method to evaluate the LGF at relatively large ¢ and a fast way to solve the screened

Poisson equation by applying the LGF.

2.3.1 Series expansion

Recall the LGF, B,, at an arbitrary point n can be written as:

where the function o (€) reads

We define

Thus, we can write:

_ —in-§ 1
Be(m) = (27r)2 /,2 T 29)
o (&) =2a; —2ay cos(é1) +2 —2cos(&7). (2.10)
p(€) =2ajcos(é1) +2cos(é7), A=2+2a. (2.11)
o(§) =1-p(&), (2.12)

and thus we can write Eq. 2.3 as

1 . 1
B = — L P — | 2.13
= 2 L GET &13
Now since
p(&) € [-4,2] = |p(é)] < 1+ 2, (2.14)
and c> > 0, we can expand the integral formally as
1 . 1 1
B.(n) = e d
=G T @) ¢
_ 1 —in-& p(‘f)
- (2n)2 ‘/12 /l+c2 Z (/l+c2 (2.15)

pminé &‘f))k
(27T)2/I+CZZ(/1+C) /12 ( A d.

To show that this series converges, it suffices to show that the dominated convergence

theorem applies. Thatis, as long as we can find an integrable function that dominates

the sequence of the integrand, the equation above holds, which leads to the following

lemma:
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Lemma 2.3.1. Fix n € Z>. Define

e L0 (2&)
_ in-é
fi(§) = e mE s ;‘( ) (2.16)

A+c2

Then f is dominated by a constant:
1
Al < = 2.17)
c

Proof. Consider

k !
1 p(€)
_ in-&
fil = e /l+czlzz():(/l+c2
k 1 !
ezl )
= 2 2 1
A+c — A+c 2.18)
1 Z": 1y
T+ || A+
AR 1 1
TA+c1-a/(A+c?) 2
Thus, f; is dominated by 1/¢?. O

Since the integration domain / 2 is finite, fx is integrable. As a result, the dominated
convergence theorem applies, so the series expansion of B.(n) given in Eq. 2.15

converges to B.(n). With Eq. 2.15, we can define an approximation of B..

Definition 2.3.1.1. The N-term approximation of B.(n), denoted as Gy(c, n), is
defined as

N-1 k
Gy(c,n) = (271)2/1+c ; (“C) /pe (T de. (2.19)

We can bound the error of this N-term approximation with the following theorem.

Theorem 2.3.2. The truncation error from the N-term approximation of B.(n) is
bounded by

A
A+ c?

N
ley(n)| = |B.(n) — Gn(c,n)| < Ciz ( ) Vn € 72, (2.20)
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Proof. Fix n € Z", and the truncation error is:

ey = B, (I’l) - GN(C I’l)

. @)k (2.21)
(2n)2/l+czz(/l+cz) ‘/Ize ( Pl as.

The error, €y, can be bounded by the following:

—in- p(f) N
(277)2/l+c22(/1+c2) /,ze f(T) d&

I a0\ 1\
< 4
(2m)2 A+ 2 (/l+cz) Z a (/1+c2)

len| =

k=0 (2.22)
o a\" 1
A+ (/l+c2) 1-2/(1+c?)
S foa )\
T2 (/l + cz) '
Since this error bound is independent of n, it is true for all n. O

2.3.2 Analytical expressions of the N-term approximation
It turns out that each term in the series representation of B, can be analytically

computed as functions of multinomial coefficients. To do so, we define

1 _ine (P(£) ¢
= — — 2.2
gr(n) 47T2/12€ ( | 9% (2.23)
so that we can write
= 1\
Gy(c,n) = . 2.24
wien) = —— ;:0 (“62) gi(n) (2.24)

Now we can focus on those gi(n) terms alone. The following theorem gives an

analytical expression of g (n).

Theorem 2.3.3. The function gi(n, m) is nonzero if and only if k > |n| + |m| and

— |n| — |m| is even. In that case,

(k—n—m)/2 k
nm)=— a,n+21

gi(n.m) = 2 ; Voln+l (k=n=20=m)/2, (k—n—21+m)/2

(2.25)
where
k k!

__® 22

(a,b,c, d) alblcld! (2:26)

is the multinomial coefficient.
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Remark 2.3.3.1. A way to effectively evaluate Eq. 2.25 without numerical overflow is
using the log Gamma function, which is relatively well-behaved. With this result, for
a finite k, one can efficiently evaluate gy directly using built-in log game functions,
e.g., the 1gamma function in C++ or using existing numerical packages such as
Boost (Schdling, 2011) and SciPy (Virtanen et al., 2020).

Remark 2.3.3.2. This theorem completes the entire asymptotic expansion of B..
This expression can also be derived from the perspective of a random walk with
killing. Similar results for the LGF on square lattices (a1 = 1) have been derived

using a random walk argument (Michta and Slade, 2021).

Proof of Thm. 2.3.3. We directly expand the integral form of g

1 ' k
i =2 [ [£2) s

1 1 .
= Tk p e i€ (2ay cos(&y) +2 cos(.fz))k dé
. i “| 2o cos(é)y! 2 cos(&))
47T2 /lk 12 =y l
1 1

N k —in —in -
= 4 2K L (l)ai /Ie 11(2 cos(é1))' dé /Ie 22 cos(&)) ' dés.
(2.27)

A direct calculation shows that

p 2n if (p—n) >0and (p —n)iseven
[er@es@nrae={"\ w2
0 otherwise.
(2.28)
Plugging this expression into Eq. 2.27, we obtain the desired result. O

In Figure 2.1, we demonstrate the error convergence rate of the LGF approximated
by Gy at selected values of (n,m) at @; = 0.75 compared with corresponding
error bounds given by Thm. 2.3.2. The error is computed by comparing against
the analytical values computed using the Appell function representation given in
Eq. 2.5. The analytical values are computed to 50 decimal places using the Python
package mpmath (The mpmath development team, 2023). This figure shows that for
a fixed point, the error from the Gy approximations monotonically decreases as N

increases. The monotonicity arises from the fact that g is nonnegative.
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Figure 2.1: Error of Gy for various ¢ at @y = 0.75. We randomly choose 5 points
within the square [0, 10)? and evaluate their Gy approximation using various N at
different c. We compare the resulting Gy with the solution obtained by evaluating
B, at those points using Eq. 2.5. We also show the error bounds given by Thm. 2.3.2.

2.3.3 Spatial decay of the lattice Green’s function
Fix n,m > 0. Withn = (n,m),

1 n+m—1 1 k
Gn+m(c,n):/l+cz kZO (/1+C2) gk(n)' (229)

By Thm. 2.3.3, gx(n,m) =0 for k < n+m. As aresult, G,4,,(c,n) = 0. Thus, by

Thm. 2.3.2, we can write

1 1 (n+m)
|Bc<n>|:|Bc(n>—Gn+m<c,n>|=|en+m|sc—z(ﬂcz) S @)

Thus, B.(n, m) decays exponentially fast as n + m increases.

Although this result is immediate from Thm. 2.3.2 and Thm. 2.3.3, it has at least

two important implications.

First, when approximating B, on a large domain using Gy, the number of terms
in Gy we need to evaluate decreases as m + n increases. By only evaluating those
nonzero terms, we can achieve significant computational savings when evaluating

each term of B,..

Second, when solving the screened Poisson equation using B, to a certain precision,

we need only convolve B, within regions where B, is larger than the prescribed
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precision. In this way, applying B, can be made much more computationally

efficient.

As it is evident from the error estimates in Thm. 2.3.2, when ¢?2 is large, one can
approximate B, to the machine precision using only a few terms, and we only need
to evaluate a small number of B, since it decays exponentially fast. As a result,

when ¢? is large, it is favorable to evaluate the LGF using Eq. 2.19.

2.4 Calculation of the lattice Green’s function at arbitrary nonzero c>

For smaller values of ¢2, evaluating B, using Eq. 2.5 and Eq. 2.19 becomes more
expensive. To resolve this problem, we introduce a one-dimensional integral for-

mulation of B, through the following theorem:

Theorem 2.4.1. The value of B.(n, m) for any n,m € Z and ¢ > 0 can be written

1 n eien do
Bo(nm)=— | ——2 231
(n.m) = 5 L KK —1/K 23D

as:

where

:¢+\/¢2—4

K
2 b

¢ =A+c*>—2a1cos(d), A=2+2a. (2.32)

Proof. We firstrewrite the governing equation (Eq. 2.2 without the far field boundary

condition) as

AB.(n,m) — (B.(n,m — 1) + B.(n,m + 1))
=a;(Bc(n—1,m) + Be(n+1,m)) — ¢?B.(n,m) + SonSom. (2.33)

The N-term discrete Fourier transform in the first coordinate is

N/2
BY (k,m) = Z B.(n, m)e 27iknIN (2.34)
n=1-N/2

We first impose that B.(n, m) is periodic in n with periodicity N (assuming that N
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is even); we later relax periodicity in the limit N — oco. Consider the following:

BY(k,m - 1)+ BY (k,m + 1) — ABY (k, m)
N/2
= Z [Be(n,m — 1)e N 4 B (n,m +1)e 2™ k1IN _ 3B (n, m)e 2mkn/N |
n=1-N/2
N/2
= Z [Be(n,m — 1) + Be(n,m + 1) — AB.(n, m)] e~ 2%kn/N
n=1-N/2
N/2
= Z [CZBc(n,m) —a1B.(n—1,m) —a1B.(n+1,m) — 50m50n] o~ 2mikn/N
n=1-N/2

With the periodicity assumption, we can write

NJ2
Z [CZBC(I’Z, m) —a1B.(n—1,m) — a;B.(n + Lm)] p—2nikn/N
n=1-N/2
NJ2
= Z Be(n,m) [c2e2mknIN _ g =2mik(neDIN _ o p=2nik(n=D/N|
n=1-N/2
NJ2
= Z Be(n, m)e 1IN (2 _ 20 cos(2nk /N))
n=1-N/2

=[c? - 2y cos(27rk/N)]l§]CV(k, m)

and
N/2

Z SomOone 2TknIN — 5. (2.35)
n=1-N/2

As a result, we have

BY(k,m—1)+BY (k,m+1) = [A+c* = 2a) cos(2nk/N)|BY (k, m) = 6o,n. (2.36)
On the one hand, if m # 0, we have

BN (k,m = 1)+ BY(k,m + 1) + [2a cos(2nk /N) — A = ¢*|BY (k,m) = 0. (2.37)

This type of recurrence relation can be solved by assuming the following ansatz
(Buneman, 1971):
BN (k,m) = BY (k,0)/K™. (2.38)

By directly plugging in our recurrence relation, K can be solved using

K+1/K =2+ ¢ =2 cos(2nk/N) := ¢n. (2.39)
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To enforce the condition that B.(n,m) — 0 as |m| — oo, we need |K| > 1. Thus,

PN+ [Py —4

2

the appropriate quadratic root is

K= (2.40)
On the other hand, if m = 0, we have

BY (k,-1) + BY (k, 1) + [2a) cos(2nk/N) — A = *|BY (k,0) = —=1.  (2.41)

Substituting the equation of K, we obtain the solution of BY (k, 0) as
1

2BY (k,0)/K — ¢pnBY (k,0) = -1 = BY (k,0) = XUk (2.42)
Thus, the expression of B’ZCV (k, m) comes out to be
BY(k,m) = _t (2.43)
T K —1/K KIml '

With the expression of B?’ (k, m), we take the inverse discrete Fourier transform to

obtain B.(n,m)

T T | |
Bc(n,m) - Z eZﬂikn/NB‘éV(k’m) - Z eZm'kn/N —.
N k=1-N/2 N k=1-N/2 K - 1/K Kl
(2.44)
Now, we are ready to take N to infinity. To do so, define
0y =2nk/N, A6 =2r/N. (2.45)
The expression of B.(n, m) becomes
N/2 | |
B.(n,m) = A8 Z P — (2.46)
k=1-N/2 K- 1/K Kkl
where
ON + /Oy — 4 )
K= — dN = A+ c” —2a; cos(by). (2.47)

Note that now the summands are composed entirely of 6, without direct involvement

of N. By taking N to infinity, we are creating a Riemann sum. Since the function

defining the summands is bounded and continuous, the Riemann sum converges,
and we write

N/2 x

lim Af Z Mk ! ! ! ng__1 do

- O @ @ = e - .
N—oo k=N K-1/KKlml 27 J_, K — 1/K K!ml

(2.48)
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where
+4/¢p% — 4
K = %, ¢ =A+c?—2a cos(h). (2.49)
As a result, can write
1 T ein6’ d@
B.(n,m) = — _— 2.50
c(nm) =52 LT K — 1/K Kl (2:50)

Since we have taken N to infinity, B, (n, m) does not have to be periodic anymore. O

Remark 2.4.1.1. The proof of Eq. 2.4.1 generalizes the techniques presented by
Buneman (1971), where the author only considered the case of ¢> = 0 and ay = 1.

In that case, K only has one root, so there is no need to identify the correct root.

Using similar techniques, one can show that, when c¢? = 0and a; < 1, the corre-

sponding LGF is

1 T ein@ do
B()(n, m) - B()(O, 0) = ﬂ [ﬂ' (W - 1) m, (251)
where
Jp2 _
k= 2PN A 0, cos(6). (2.52)

2 b
The proof follows from the proof of Thm. 2.4.1.
Remark 2.4.1.2. In contrastto Eq. 2.8, the integral in Eq. 2.3 1 has a finite integration

domain and an integrand consisting of elementary functions only. As a result,

numerical integrating Eq. 2.31 is faster and more stable.

2.5 Convergence rate of the trapezoidal rule approximation

We cannot reduce the one-dimensional integral presentation of B, (n, m) any further.
Thus, we need to evaluate it numerically. It turns out, however, that the trapezoidal
rule approximation yields an exponential convergence rate for this particular integral.
To show this, we first invoke the following general theorem on the convergence rate

of trapezoidal rule approximations (Trefethen and Weideman, 2014):

Theorem 2.5.1. (Trefethen and Weideman, 2014) Let

T
1= / v(0)do. (2.53)
/s
For any positive integer N, define the trapezoidal rule approximation:
N
2n
Iy = N v(6x) (2.54)

k=1
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where 0y = 2nk/N — n. Suppose v is 2n periodic and analytic and satisfies
[v(0)| < M in the strip —y < 3(0) < 7y for some y > 0. Then for any N > 1,

daM

—I <
v =1l < —5—

(2.55)

and the constant 4 is as small as possible.

Using the above theorem, we can show the following result regarding the convergence

rate of the trapezoidal rule approximation for Eq. 2.31.

Theorem 2.5.2. Let a € (0, 1) and

ion 1 ++/02 — 4
¢=A+c*—2acos(0), K= % (2.56)

e

O = k=K

Let

1= / nv(e)dQ (2.57)

T

and Iy be its trapezoidal rule approximation. Then for any positive real number,

Ve, satisfying
c? 2 \?
Ve <log| 1+ —+1[|{1+—| 1], (2.58)
2&1 20/1

forany N > 1, we have

drM
v =11 =57 (2.59)
where M is .
el@n 1
M= sup |———=|. (2.60)
15(0)|<y. |KIM K = 1/K

Before proving the above theorem, we first prove the following technical lemma

Lemma 2.5.3. For 0 € C,

la1cos(0)| < 1/2+c?/2 -1 = ¢> —4 ¢ Ryy. (2.61)

Proof of Lemma 2.5.3. We prove this lemma by contradiction. Assume

¢* —4=v € Roy. (2.62)
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We rewrite this equation as:

(A+c?=2a;cos(6)> =4 +v (2.63)
We solve for a cos(6):
1
a1 cos(6) = 5 [a + VAt v] . (2.64)

Since

2
’

2
| cos(6)] = \/(%(/1 +c2) %‘R(V4+ v)) + (%5(\/4 + v))

(2.65)

we have
lay cos(6)| > %(4 +c%) - %m(«/zﬁm > %(/1 +cA) -1, (2.66)
Thus, we have a contradiction. O

Proof of Thm. 2.5.2. To use Thm. 2.5.1, we need to find a strip within which our
specific v(0) is analytic
oion 1
KK —1/K’

2 _
¢ =A+c>—2acos(d), K= ¢+—¢4. (2.67)

V() = :

Inspecting the above expression, we know that v(6) is analytic in a strip if, in which,
K —1/K # 0and ¢*> — 4 ¢ R.y.

We first find a strip in which K — 1/K # 0. To do so, we only need to pick any finite

v such that
K-—1/K+0 VOeC:|3(0)<vy. (2.68)
We have
K—-1/K =+¢? -4, (2.69)
SO

K-1/K=0 e ¢*’=4 < ¢ ==2. (2.70)

Directly plugging in the expression of ¢, we obtain:

1 [ 1
cos() = — [= £ 1+ =¢?]. (2.71)
aq 2 2

To facilitate the discussion, we denote the two possible values on the RHS as:

ot = — : (2.72)

aq

b 1 1 [a 1
ZH1+=c?, ¢, =—|=-1+=¢?
2 20} Om 01[2 2¢
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A necessary condition for Eq. 2.71 to be satisfied is

exp(3(0)) = ¢y, = V(¢5)* — Lor exp (3(0) =, £V(gn)* -1 (273)

In addition, we notice that

1 G — V(D)2 — 1
_ i PR 7o
G+ N(@n)? =1 (dim +V(n)? = D (o = V(#i)? = 1)

Consequently,

(2.74)

log (¢, + V(¢im)? — 1) = —log(¢;,, — V(dm)* — 1). (2.75)

Since the logarithm function is a monotonically increasing function and that | log( ¢+

V(@E)2 = 1)| = [log(¢E — v/(¢%)% — 1)], to ensure analyticity within the strip, we

need
13(0)] <y :=1log(¢, + V(dm)* = 1). (2.76)

We then focus on the second condition regarding K, i.e.
¢> — 4 ¢ Reo. 2.77)

Since the function e* + ¢~ monotonically increases with x when x > 0, within the

strip of |J(0)| < y, we have
|cos(0)] < €7 @|/2+ e %@ /2 < % (e” +e7)
1
=5 (¢n + V7 =1+ 07 - V(@) = 1) = 5.

Thus, |a; cos(8)| < (1/2—1+c?/2), soby Lemma2.5.3, > —4 ¢ R.(. Considering
K - 1/K # 0, we know that v(0) is analytic within the strip. If we pick any y,. < v,

(2.78)

we have .

ezen 1 579
) <M= _— . .
lv(6)] IS(891)1&% KM K—1/K (2.79)
We write
1[2 1 1 1 c?

= — |1+ =—|l+a -1+ =1+ —. 2.80
o= [2 2¢ ] o 2¢ ] 21 (2.80)

Thus, we can find y to be:

2 2 \?
y=log| 14— +1/[1+—] —1]. 2.81)
2(}’1 20’1

And by Thm. 2.5.1, we conclude with the desired result. O
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Remark 2.5.3.1. The essence of Thm. 2.5.2 is to show that the integrand in Eq. 2.31
is analytic with the strip |3(0)| < vy, for any . satisfying

c? 2 \?
Ye <y=log|l+ —+[[{1+—| —-1]. (2.82)
2a/1 20’1

In this sense, a more concise version of Thm. 2.5.2 can be stated. However, we

prefer the verbose version due to its central role in developing the algorithms that

will be introduced in the subsequent sections.

Remark 2.5.3.2. Investigating Thm. 2.5.2 further, we can understand the effect of n

in the error in Eq. 2.60 better. We can write

eiel’l 1 1 1
M= sup ——‘ < e’ sup ——' : (2.83)
I3(0)I<e K"K - 1/K RIGISZ Kim K - 1/K
Then the error estimate becomes
dre?"M 4nM drM
Iy — 1| < T = S — e S e T (2.84)
where
M S 1 1 (2.85)
= u I —— .
|5<e>|2yc Kim K —1/K

Thus, we only need to increase N as fast as n to maintain the same accuracy.

Corollary 2.5.3.1. Let n € (0,c?/ay), N > n > 0. Following the definitions of
Thm.2.5.1, we have

dnM,
Iy =11 < — e o (2.86)
where
2 1
vy =log |1+ + (1+g) —1), My=——— (2.87)
2vyc?/ar —n

Proof of Corollary2.5.3.1. Since 17 € (0, ¢?/ay), we have

2
7 A% c? c?
’)/nzlog(l-i-z'l' (1+§) —1)<10g 1+TQI+J(1+T‘/1) —1) (288)

By Thm. 2.5.2 and Rmk. 2.5.3.2, we have

47rM,’7

Iy —1| <
| N | - eYI](N_n) — e Il

(2.89)
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where M,’7 is

1 1
M) = sup ——' . (2.90)
T s@l<y, |KMK - 1/K
We can first put an upper bound on | cos(6)| within the strip [3(0)| < v, as
|cos(@)] < e /2| + e ¥/2| =1+n/2. (2.91)

By Lemma 2.5.3, ¢* — 4 ¢ R_( within the strip |J(6)| < ¥y- Thus, for y/¢? — 4, we
only take the principal branch. That is,

Vo2 — 4= |92 — 4] A -9)2, (2.92)
Since Arg(¢> — 4) € (—x, 1), we have
R(Ve2 - 4) > 0. (2.93)
Also,
R($) > A+ =2]|aicos(0)| = A+c*=2a1(1+n/2) =2+ (2 —nay) > 2. (2.94)

Combined with the previous result, we obtain a lower bound of |K|

+4/¢% — 4
R(p+Ve2—4)>2, and |K|= % > 1. (2.95)
Then we can write
» 1 ‘ 3 1 ' 1
= Sup —m— < Sup _— = Sup .
T 190 <y | KM K = K| ™ 50) 1<y, 1K = VK] 150)1<y0 | @2 — 4
(2.96)

Further, we can put a lower bound on |¢? — 4|, i.e.

197 4l = ¢~ 2[lp +2]
= |+ c? = 2a1co80 = 2||1 + ¢® = 2a; cos O + 2|
> =2+ =21 (1+7/D)12+2+ ¢ =201 (1 +17/2)]
= (¢* —na)(4+c* —nay)
> 4(c* - nay).

Thus, we can bound M,’7 using

1
Km K —1/K

1
' < = M, (2.97)
2

Ve? = na;

My = sup
13(0)<yy




24

Finally, we conclude with
4n M, - 4n M,
6717 (N_n) — 6_77771 - eyﬂ(N_n) — 6_777” )

Iy - 1| < (2.98)

O

Remark 2.5.3.3. Although the bound in Corollary 2.5.3.1 is looser than the one
given in Thm. 2.5.2, it provides us with an a priori estimation of the error from
the trapezoidal rule approximation of B., depending only on N — n and n. This
bound will be useful when we introduce the numerical framework to evaluate the

trapezoidal rule approximation in the next section.

2.6 Fast Fourier Transform method for solving the lattice Green’s function
As we have established the convergence rate of the trapezoidal rule approximation
of B., we also notice that the specific form of the trapezoidal rule approximation
of Eq. 2.31 is precisely the inverse discrete Fourier transform. As a result, one can
utilize the inverse Fast Fourier Transform (Cooley and Tukey, 1965) to efficiently
evaluate the values of B.. In this section, we introduce this algorithm.

2.6.1 A priori error estimate

Fixm > 0. To evaluate B.(n, m) for arbitrary n, for a prescribed error tolerance €, we
need to estimate the size of our trapezoidal rule approximation. Let BY (n, m) denote
the N-term trapezoidal rule approximation of B.(n,m). By Corollary 2.5.3.1, for

any 17 € (0, c?/a), we can have an error estimate:

2M, 2M
— BN n ~ n
|BC(na m) Bc (n9 m)| S eyn(N_”) _ e_,ynn e,yn(N_n) B (299)
where
yp=log[1+2+ (1+9)2—1 My —— (2.100)
2 2 2ye*far -7

Without loss of generality, we assume n = 0. Theoretically, one can optimize over
both 7 and N to use the fewest number of quadrature points, N, (€), to satisfy the
error tolerance using the trapezoidal rule approximation. Given an error tolerance
€, to solve for N, (€), we solve the following optimization problem:

argmin N2
N,

. 2M,
subject to  log ~v| <0 (2.101)



25

If we denote the resulting solution as Nopt(e), then Ny, (€) = |—]\70p,(e)]. This
problem can be hard to solve numerically. For example, we found that using MAT-
LAB’s fmincon function with default parameters sometimes diverges. Meanwhile,

extensive parameter tuning is undesirable in applications.

Alternatively, one can approximate N, (€) using a function Ny, (€) by fixing a
small parameter 6 > 0 and let 7 = (1 — §)?c?/a;. The corresponding minimum N

to satisfy a prescribed error tolerance € is

N N 1 1
N, =(Ngpl, Ngp=—1 2.102
p(€) { p] r=y, og (e(c/\/a_l)\/m) ( )

We can bound Nap(e) using Nop,(e). Let 1,,; denote the value of 1 for which
Z\Aiopt(e) is obtained, and 17, = (1 - 8)2c?/ay. We consider two cases: Nopt > Nap

and 1opr < Nap-

If 7opt > Nap, wWe have:

N 1 1
Nopl(e) = 10g ( 5 )
Nopt ey /ar — Nopr (2.103)
1 1 ap A
> log = Y Nap(€)
YVitopt eve?/ar —ngp Vitopt

Since log(1 +x) is a concave function, for any r3 € [0, 1]:

rglog(1+x) = (1 —rg)log(1) + rglog(1+x) < log(1 + rgx)
log(1 +x) < 1 (2.104)
log(Ll+rpx) = rg

Since 17,4, < c?/ay, we have

SEVN T
’y770p[ < ’)/Cz/a’] < 2 +J + 2 < 1

< < < . (2.105)
—5)2
y’]up ynap n;l’ + (1 + 77;17)2 _ 1 (1 6)
Thus, we have |
Nap(€) < mﬁop[(f). (2106)

If 7op: < Nap, we have:

. 1 .
Nopi(€) = — log Nap(e). (2.107)

Nap

1
( v 1 ) B i (fch/aI)
evet/a +log
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Relative Error

1073 102 1071 10°

Figure 2.2: Relative error of Nap(e), ie. (Nap(e) — Nop,(e))/Nop,(e), across a
range of € and c/+/ay.

Thus, for this case, we have

ot (7

1
log (E\/Cz/a'l )

As ev/c2/a; — 0, the ratio between the two log functions in the above inequality

Ngp(e) < |1+ Nopi(€) (2.108)

converges to 0 logarithmically.

In summary, we have obtained that

1
log (\/26—62) 1
> (1 _ S)2
log 1 (1-9)
eV /a

In practice, N, p 1s much closer to N, pt- We tuned MATLAB’s fmincon function to

(2.109)

Nap < 1\70,,,(6) xmax| 1+

obtain N, pi(€) for a set of parameters and compared them with N, p(€)ato =0.01.
The resulting relative error is shown in Figure 2.2. The figure shows that the
relative error decreases as € decreases and ¢/+/a; decreases. Specifically, practical
applications normally require € < 1073, Within this range, the relative error is

within 1%.
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When c/+/a1 becomes small, we can give a straightforward estimate of how N, (€)

changes as ¢/+/a; varies. Assuming c¢/+/a] < 1, we have

n n\2 ., 17\?
yn:log(1+§+ (1+§)—1) T+ (1+§)—1z\/ﬁ. (2.110)

Then we can write

1 1 1
(c/yan(1-6) (l°g (ﬁ) +log (c/@)) - @b

As we can see from the equation above, we have

- log(C/\/a_l))
(c/var) [

Nap(€) »

Nay(€) ~O0 ( (2.112)

and similarly for N, (€).

2.6.2 Fast Fourier Transform based fast evaluation algorithm

Now, we introduce the algorithm to compute B,.. Suppose we would like to compute
all the values of B.(n, m) for a fixed m and a range of n € [0, L] within some error
tolerance €. We first define:

1 ¢ +pr—4

— — 2 —
f(0) = KI'"IK K’ ¢ =A+c"—2a;cos(h), K—#. (2.113)

With these, the algorithm to compute that set of B, is shown as Algorithm 1.

Since B.(n,m) is real for all n and m, we can utilize the inverse real Fast Fourier

Algorithm 1 FFT-Based LGF Evaluation
1: procedure TrarzoipaL RuLe witH FFT(c, a1, L, m, €)

2: Compute ptS‘(E) = ’V— ()’_n og (W) + L)“
: Npts - maX( p[y(6)9 L)
: Declare v € RVprs
5: fork=0,1,..., Ny —1do
v(k) = f(mk/Nps)
6: end for
B = irFFT(v, 2Np)
fork=0,1,.., Ny —1do
B(k) = B(k) + (=D)* f () / (2N psy)
o: end for
10: Return B
11: end procedure
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Transform (irFFT). Note that to correctly compute B, using Algorithm 1, we need
to set the correct number of output in the irFFT function to 2N ;. Otherwise, the
resulting FFT algorithm is different from the trapezoidal rule approximation, and
the numerical results do not converge to B, exponentially. Also, the correction term
in the second for-loop results from comparing the formula of irFFT against the
formula of the trapezoidal rule approximation. The difference, r, is
1 27 ek 1 1 (-DF 1 (-1)k
" T 22N, KM K —1/K  2Nps KMl K—1/K  2Nps

f(r).  (2.114)

We note that for a fixed (n,m), n # L and a fixed error tolerance e, the resulting
B.(n,m) value from Algorithm 1 is different from the values obtained by directly
evaluating the trapezoidal rule. This is because the number of quadrature points used
to evaluate B(n, m) using Algorithm 1 is higher than N,,(€). The higher number

of quadrature points ensures that B.(L, m) satisfies the required error tolerance.

Algorithm 1 is best applicable when N, ~ L. In that case, the average operation

count to evaluate an entry of B, is

O(Llog(Nay))
L

OCuyg ~ ~ O(log(Ngp)). (2.115)

By using FFT, one can take advantage of the ubiquity of the highly optimized
FFT libraries such as FFTW (Frigo and Johnson, 1998) and cuFFT (NVIDIA
Corporation, 2024). Thus, we not only speed up our computation in terms of
reduced computational complexity but also benefit from the optimization in the
software and hardware aspects. In the case that N,, > L, depending on the
computer architecture, it might be more efficient to directly evaluate the trapezoidal
rule approximation term by term. In that case, the average computational complexity
is O(Ngp).

2.7 Numerical experiments

In this section, we assess the performance of the trapezoidal rule approximation
with FFT (Algorithm 1) and the direct trapezoidal rule approximation (without
FFT) by comparing them to two existing methods: evaluating Appell’s double
hypergeometric function representation in Thm. 2.2.1 and numerically integrating
Eq. 2.8 using Gauss-Kronrod quadrature (Doncker, 1978). All the computations
are done on an Apple Silicon M1 chip. The code used in this section is available

online*,

*The code for all the numerical experiments in this section can be found in https://github.
com/WeiHoul996/Fast-Screened-Poisson-LGF.


https://github.com/WeiHou1996/Fast-Screened-Poisson-LGF
https://github.com/WeiHou1996/Fast-Screened-Poisson-LGF
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First of all, we demonstrate the error bound Eq. 2.99 of the trapezoidal rule ap-
proximation. In Figure 2.3, we compare the trapezoidal rule approximation with
the Appell’s double hypergeometric function representation Eq. 2.5 at ¢ = 0.3 for a
range of N, (the number of quadrature points) and a;. With only 40 quadrature
points in the trapezoidal rule approximation, the error converges to less than 1077
across all the cases. The small errors establish the validity of the trapezoidal rule
approximation and our implementation. When ¢ < 0.3, we cannot evaluate Appell’s
double hypergeometric function within a reasonable amount of time. Thus, in that
case, we use the trapezoidal rule approximation with a sufficiently high number of
quadrature points as the reference value. In Figure 2.4, we demonstrate the error of
the trapezoidal rule approximation at c¢/+4/a; = 0.01. In two of the subfigures, the
absolute error violates the error bound when 7 is small. However, those errors are

below 10713, indicating the effects of the finite precision arithmetic.

In the exercise above, we used Python’s mpmath (The mpmath development team,
2023) package to evaluate the Appell’s double hypergeometric function, and we used
NumPy (Harris et al., 2020) to evaluate the direct trapezoidal rule approximation. We
do not directly compare the runtime of these two methods as the underlying numer-
ical packages are implemented using different programming languages. However,
as a point of reference, the time to evaluate B.(n,m) for all (n,m) € [0,9]? at
¢ = 0.3 using the Appell’s double Hypergeometric function representation takes
7.22 seconds while evaluating the trapezoidal rule approximation (without FFT) to

an absolute error below 10710 takes 0.00216 seconds.

We also compare our algorithms with numerically integrating the Bessel function
representation using Eq. 2.8. Specifically, we used SciPy’s scipy.integrate.quad
function and scipy.special.ive function to numerically integrate Eq. 2.8. Inte-
grals over finite ranges are computed using the Gauss-Kronrod quadrature. Integrals
with infinite ranges are first mapped onto a finite interval and then evaluated using
the Gauss-Kronrod quadrature (Doncker, 1978). We measure the performance of
the trapezoidal rule approximation with and without FFT by defining a speedup
factor compared to evaluating the LGF using the Bessel function representation.
Given a set of values of LGF to compute, the speedup factor for a specific method,

M, is:

Runtime using the Bessel function representation

Speedup Factor = (2.116)

Runtime using method M
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Figure 2.3: Error of the trapezoidal rule approximation of B.(n,m) with various
Npis, a1, n, and m. Across all the cases, ¢ = 0.3. The error is computed by
referencing the analytical expression using Eq. 2.5. The error bound is computed

using Eq. 2.99.
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referencing the trapezoidal rule approximation with 10, 000 quadrature points.
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Figure 2.5: The maximum absolute error and speedup factors of computing B, (n, m)
when ¢ = 0.3 and @1 = 0.5. The error is computed by comparing the numerical
integration results to the trapezoidal rule approximations with 2N, (€) quadrature
points.

In Figs. 2.5, 2.6, and 2.7, we compare our algorithms with numerically integrating
the Bessel function representation with a large integration upper bound, presenting
both error and speedup. We set ¢ = 0.3,0.1,0.01 and @; = 0.5 and evaluate
all B.(n,m) for (n,m) € [0,99]% using three methods: numerically integrating
the Bessel function representation with large and varying integration upper bounds
(Tmax), evaluating the trapezoidal rule approximation directly without FFT, and
evaluating the values of the LGF in batch using FFT (Algorithm 1). In all these
methods, the absolute error tolerance is set to 107!°. When ¢ = 0.3, the speedup
factor is around 6 for the trapezoidal rule approximation without FFT and around
500 for the trapezoidal rule approximation with FFT. When ¢ = 0.1, the advantage

of the trapezoidal rule approximation is more prominent. The speedup factors are
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Figure 2.6: The maximum absolute error and speedup factors of computing B, (n, m)
when ¢ = 0.1 and @1 = 0.5. The error is computed by comparing the numerical
integration results to the trapezoidal rule approximations with 2N, (€) quadrature
points.

around 20 and 1650 without and with FFT, respectively. At ¢ = 0.01, numerically
integrating the Bessel function representation cannot reach satisfactory accuracy. In
contrast, the trapezoidal rule approximations are able to reach the desired accuracy,
with significant speedup factors. These three cases demonstrate the efficiency and

robustness of the trapezoidal rule approximation and Algorithm 1.

Finally, in Figure 2.8, we present the error and speedup of our algorithm compared
to numerically evaluating the Bessel function by mapping the infinite integration
interval to a finite one (Doncker, 1978). We fix @1 = 0.5 and vary ¢ between 0.001
and 0.2. We evaluate the values of B, within the square [0,99]? with an absolute

error tolerance of 107!, When evaluating B, using the Bessel function represen-



34

o 107 4 —8— Bessel function representation
8 —— Trapezoidal rule approximation w/o FFT
Lﬁ 1076 4 —=—=- Trapezoidal rule approximation w/ FFT
(]
]
S 1078 -
]
3
< 10710 4
s
s 10712 -
50000 100000 150000 200000 250000 300000
Tmax
(a) Maximum absolute error.
1700 A
1600 -
5 1500 A
451400 1 —8— Trapezoidal rule approximation w/ FFT
1300 5
|.(I_U P | | | | "~
209" T
o
S5 194
© i
O 18
Q 174
Q 6 . —
) 1 —8— Trapezoidal rule approximation w/o FFT
50000 100000 150000 200000 250000 300000
Tmax
(b) Runtime speedup.

Figure 2.7: The maximum absolute error and speedup factors of computing B (n, m)
when ¢ = 0.01 and a; = 0.5. The error is computed by comparing the numerical
integration results to the trapezoidal rule approximations with 2N, (€) quadrature
points.

tation, the numerical quadrature can diverge when c is small. However, this does
not happen with the trapezoidal rule approximation. Also, even when converged,
numerically integrating the Bessel function representation does not always satisfy
the prescribed error tolerance. In contrast, the trapezoidal rule approximations not
only consistently satisfy the error tolerance but also greatly reduce the runtime. The
trapezoidal rule approximation reaches a speedup factor of at least 15 without using
FFT and a speedup factor of at least 1000 when using FFT.

We note that numerically integrating the Bessel function representation struggles
to satisfy the required error tolerance, especially when ¢ is small. The reason

is that the integrand in the Bessel function representation, Eq. 2.8, decays at the
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Figure 2.8: The maximum error and speedup factors when computing B, (n, m)
using the trapezoidal rule with FFT, without FFT, and numerically integrating the
Bessel function representation using the transform proposed in (Doncker, 1978).
The maximum absolute error is obtained by comparing the values from evaluating
the trapezoidal rule approximation of B, using 2N, (€) quadrature points. The stars
and the dashed line in the maximum absolute error plot indicate that some values in
the numerical integration did not converge.

rate of exp(—c?t)/t and is highly oscillatory (Abramowitz and Stegun, 1948). As
¢ becomes small, the integral becomes increasingly pathological and difficult to

evaluate numerically.

2.8 Application 1: lattice Green’s function of the three-dimensional Poisson
equation with one periodic direction
An immediate application of B, is solving the discretized three-dimensional Pois-

son equation with one periodic direction. Consider a discretization of the three-
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dimensional Poisson equation with constant spatial resolutions Axj, Ax,, and Ax3
in each of the three spatial dimensions. The resulting discretized Poisson equation

reads

3
Z( u()—AxLu(nH)—Axiu(n ,-)):f(n). 2.117)

i i i

In addition, we assume that the solution is periodic in the third direction and
unbounded in the first two directions. To solve the Poisson equation, we can find a

corresponding LGF and apply discrete convolution. The LGF satisfies:
>3
=1

where 6Z° - 74 — R is defined as:

1 b 3 = 57
G(n) v G(n+e) AxG(n e,)) 0~ (n) (2.118)

i 1

1 ifn=0
Z (n) . (2.119)
0 otherwise.

This equation can be readily solved if we can solve the following equation
3 3
Z (20:G(n) — ;G (n + e;) — ;G (n — €;)) = 6% (n) (2.120)
i=1
where ap = 1, a1 = Ax%/sz, and a3 = Ax%/Ax%

Suppose the solution is assumed to be N, periodic in n3, with n = [ny, n2, n3], we
can write
G(n) = G(ny,n2,n3) = G(ny,n2,n3 + Np). (2.121)

We define the discrete Fourier transform of a N, periodic discrete function f

N,-1
fe=FLAAR) = Y Flmye>rhr/Ny (2.122)
n=0
and its inverse
f(n) = fl(n) = :E: fioet2mkn/Np. (2.123)
Np k=0

Thus, there exists a set of Fourier coefficients {G } such that

-1

1
G (n1,m, n3) = Z G (my, np)ekms/Ny. (2.124)
Np k=0
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And the LHS of Eq. 2.120 can be written as:

Np-1
1 S : ~
— Z elznkm/N”LK(k)Gk(nl,l’lz) (2.125)
Np k=0
where
k(k) = \/2(13 — 2a3cos(21k/N,). (2.126)

Applying discrete Fourier transform to both sides of Eq. 2.120 gives
Ly(yGi(n1,12) = Son, S0n, - (2.127)

By definition, Gk(nl, ny) = BK(k) (n1,n3). Thus, we find

N,-1
I S
Glni.ny.n3) = <= > €PN By (n1,ma). (2.128)
P k=0

Using Algorithm 1 and the approximation in Eq. 2.19, one can efficiently compute
the values of B, ;) and evaluate G using inverse Fast Fourier Transform. We use this

result to solve a Poisson equation V2¢ = — f with the following analytical solution

_exp(—64x? — 4y?)

Bry.0) = = (2.129)

We obtain the source term f by taking —V2¢. The computational domainis [—1, 1]x
[—4,4] x [0,27x]. The convergence result is shown in Figure 2.9.

2.9 Application 2: random walks with Kkilling on a two-dimensional rectan-
gular lattice

Consider a random walk with killing on a two-dimensional rectangular lattice

(Madras, 1989; Lawler and Limic, 2010). When the walker is at location (n, m), it

can behave in five different ways with certain probabilities. It can either move up,

down, left, or right for one step. It can also decide to stay at (n,m) forever (i.e.

killed). We assume that the probabilities are all strictly positive and defined by:
P((n+1,m)) =P((n—1,m)) = p1,
P((n,m+1)) =P((n,m —1)) = po, (2.130)
P(stay at (n, m) forever) = py :=1—-2p| —2p».

We can compute the probability of a random walk starting at an arbitrary point
(n,m) and eventually returning to the origin. Let this probability be denoted as

p(n,m). We can write

p(n,m)=pipn+1,m)+pip(n—1,m)+prp(n,m—1)+prp(n,m+1) (2.131)
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Figure 2.9: Convergence study of solving the Poisson equation using the three-
dimensional Poisson LGF with one periodic direction. The ratio Ax3z/Ax; = 27 is
held constant across all cases. Within each series, the ratio between Ax; and Ax,
is fixed. Different series have different ratios of Ax, and Ax;. The dashed line
indicates the expected second-order convergence rate.

with the terminal condition p(0,0) = 1. The above equation is satisfied everywhere

in Z? except at the origin. At the origin, we have

p(0,0) = p1p(1,0) + p1p(=1,0) + p2p(0, =1) + p2p(0, 1) + C(p1, p2) (2.132)
where C(p1, p2) is an undetermined function to satisfy the condition p(0,0) = 1.

With a; = p/p2, we can rewrite the governing equation of p(n,m) as

1
Lip.ppyp(n,m) = p—25on50mC(p1,pz) (2.133)
where
1-2p; =2
k(p1,p2) = \/%. (2.134)

By definition, we have

1
p(n’ m) = p_zc(pl’pZ)BK(pl,pz)(n’ m) (2135)

To determine C(p1, p2), we use the terminal condition of p(0,0) = 1 and Eq. 2.132

to find
1

2 .
I+ %Bk(p"m)(l’ 0) +2By(p1.p (0, 1)

C(pi,p2) = (2.136)

In the equation above, we can compute By(,,.p,)(1,0) and By(p, ,) (0, 1) using the

integral in Thm. 2.4.1 through the trapezoidal rule approximation in Eq. 2.54. Then
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we can compute the return probability at all other locations using either direct
trapezoidal rule approximation or Algorithm 1. A sample return probability (with

p1=0.2(1 - px), p2 = 0.3(1 — py)) with various py is shown in Figure 2.10.

2.10 Conclusion
In this chapter, we studied the two-dimensional lattice Green’s function (LGF) of
the screened Poisson equation on rectangular lattices. In particular, we proposed

two efficient ways to compute the LGF, depending on the ¢? term.

When ¢? is large, we conducted an asymptotic expansion to give an approximation
formula of the LGF. We showed that this approximation exponentially converges
towards the true values of the LGF. Using the approximation formula, we also
established the decay rate of the LGF towards infinity.

Although the asymptotic expansion exponentially converges toward the entries of
the LGF, when ¢? is small, approximating LGF using the asymptotic expansion
becomes prohibitively expensive. To remedy this, we derived a one-dimensional
integral representation of the LGF. In addition, we showed that the trapezoidal rule
approximates this one-dimensional integral exponentially fast. By exploiting the
properties of the integrand and the trapezoidal rule approximation, we devised a
fast algorithm for batch-evaluating the values of the LGF using the Fast Fourier
Transform. To enhance the algorithm’s robustness, we proposed a simple yet accu-
rate estimate of the minimum number of quadrature points needed for a prescribed
error tolerance. Compared to existing formulations such as the Appell’s double
hypergeometric function representation and the Bessel function representation, the
resulting algorithm demonstrates high robustness and efficiency when evaluating
the LGF.

Finally, we demonstrated how our algorithms can be efficiently used to tabulate the
LGF and solve two application problems — the three-dimensional Poisson equation
with two unbounded directions and one periodic direction, and the return probability

of a random walk with killing on a rectangular lattice.
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Chapter 3

AN ADAPTIVE LATTICE GREEN’S FUNCTION METHOD FOR
EXTERNAL FLOWS WITH TWO UNBOUNDED AND ONE
HOMOGENEOUS DIRECTIONS

This chapter is adapted from Hou and Colonius (2024a). In this chapter, we describe
a flow simulation algorithm specially designed for external flows with spanwise
periodicity. We leverage the lattice Green’s function, adaptive mesh refinement,
and immersed boundary method to create an algorithm suitable for handling flows
around complex geometries and resolving a large range of length scales from the

flow structures.

3.1 Introduction

The lattice Green’s function (LGF) is the analytical inverse of a discrete elliptic op-
erator on an unbounded domain (lattice). Due to its value in numerical applications
(Liska and Colonius, 2016; Cserti, 2000), its computation (Buneman, 1971; Mar-
tinsson and Rodin, 2002; Katsura and Inawashiro, 1971) and asymptotic behavior
(Martinsson and Rodin, 2002; Katsura and Inawashiro, 1973) have been studied
thoroughly. In addition, the LGF can be adopted to solve the Poisson equation
with various boundary conditions (Gabbard and Rees, 2024b; Caprace, Gillis, and
Chatelain, 2021; Balty, Chatelain, and Gillis, 2023) and in various dimensions
(Caprace, Gillis, and Chatelain, 2021; Balty, Chatelain, and Gillis, 2023). In par-
ticular, for incompressible flows, the LGF can be combined with the immersed
boundary method (IB) (Peskin, 2002) to create an efficient and parallel algorithm
(Liska and Colonius, 2016). Efficiency can be further enhanced with a multilevel
LGF framework for adaptive mesh refinement (AMR) (Dorschner et al., 2020; Yu,
2021). In these methods, LGF is used to solve the pressure-Poisson equation and/or
vorticity-streamfunction equation. The use of LGF ensures that the solution is
defined everywhere in the free space (without imposition of artificial boundary con-
ditions) yet only a finite set of active cells is needed to time-step the flow. This yields
a snug, adaptive domain that encloses only the evolving vorticity field, truncated at

a small threshold value at the boundary.

However, LGF methods have not been applied to solve the incompressible Naiver-

Stokes equations with spanwise periodicity. In practice, a wide class of interesting
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geometries and flows exhibit such span-wise periodicity. Among these flows are
the flow past bodies with infinite spans and a constant two-dimensional cross-
section, such as circular cylinders and unswept airfoils. Although a wide variety
of other methods have been developed for these flows (e.g. Dong and Karniadakis
(2005), Mittal and Balachandar (1997), and Lehmkuhl et al. (2013)), the multilevel
LGF method promises greater computational efficiency while exactly preserving the

asymptotic structure of the irrotational outer solution.

In this chapter, we extend the multilevel framework that combines LGF, 1B, and
AMR (Yu, 2021) to solve fully 3D flows with one homogeneous direction. We
exploit the spanwise periodicity by using a Fourier expansion of the flow vari-
ables (velocity, pressure, and 1B forcing) and derive the evolution equations of the
corresponding Fourier coeflicients. This formulation enables us to compute the
nonlinear convective term via the (dealiased) Fast Fourier Transform (FFT). We
develop a staggered-grid strategy that hybridizes the second-order finite-volume
discretization for the inhomogenous directions with the Fourier expansion in the ho-
mogeneous one, while maintaining desired discrete conservation and other mimetic
properties associated with the original 3D finite-volume discretization. In addi-
tion, we adaptively truncate Fourier coefficients to make the spanwise resolution

consistent with the finite-volume AMR grid.

With one periodic direction, the pressure is determined by a discrete screened Pois-
son equation for which we derive formulas and algorithms to evaluate the LGF. This
particular LGF poses a unique challenge in two aspects. First, the discrete screened
Poisson equation involves a continuous coefficient such that the corresponding LGF
varies nonlinearly with it. A large number of these LGFs would thus be required,
and it is desirable to have a fast way to evaluate them at runtime. In contrast to the
regular Poisson equation, the existing polyharmonic asymptotic expansion does not
apply to the LGF of the screened Poisson equation (Duffin, 1953; Duffin and Shelly,
1958; Martinsson and Rodin, 2002; Gabbard and Rees, 2024b). Thus, we need
to directly compute the LGF through numerical integration. To address both chal-
lenges, we adapt the spectrally convergent trapezoidal rule approximation presented
in Chapter 2 for fast evaluation of this LGF. Similar challenges are also present in
the handling of the viscous term. Thus, we derive and compute the LGF for the
appropriate integrating factor for the viscous term. In addition, we provide algo-
rithms for LGF of the integrating factor for the viscous Laplacian (the heat equation

kernel), which allows us to employ a half-explicit Runge-Kutta (IF-HERK) method
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for time advancement (Liska and Colonius, 2017).

The chapter is arranged as follows. We introduce the Fourier-transformed Navier-
Stokes equations with IB forcing in Section 3.2. Then, in Section 3.3, we derive a
spatial discretization in terms of corresponding discrete operators. In Section 3.4,
we develop LGFs for the screened Poisson operator and integrating factor. In the next
sections, we adapt several previous algorithms to the spanwise homogenous case,
specifically the time marching method (Section 3.5), multilevel application of the
LGF (Section 3.6), and the domain and mesh adaptation strategies (Section 3.7). The
overall algorithm for the incompressible Navier-Stokes equations is then summarized
in Section 3.8. Subsequently, in Section 3.9, we describe the parallelization strategy
computational efficiency. In Section 3.10, we empirically demonstrate the (overall
first-order) convergence of the scheme. Finally, in Section 3.11, we validate the
algorithm by computing flow past a cylinder at Re = 300, and we highlight the
ability of our algorithm to tackle large problems by computing the turbulent flow
past a cylinder at Re = 12, 000.

3.2 Governing equations and Fourier expansion

Physically, the problem under consideration is an infinite-span cylinder (axis z) of
arbitrary cross-section moving (including acceleration) in the x — y plane through an
otherwise quiescent, viscous, incompressible fluid. Invoking homogeneity, we re-
strict z to a periodic section of a specified length c. For real-valued f = f(x,y, z,1),

we write the truncated Fourier series

N/2 .
f(x,y,z,1) = fo(x,y, )+ Z []"k(x,y, t)eZm'kz/c + o,y t)e—kaz/C ER
k=1
where
5 1 c/2 _jglak
feGe,y,t) = Fr[f] = c f(z)e e dz. (3.2)
—c/2

Let u and w = V X u be the velocity and vorticity, and p be the pressure, all
nondimensionalized with respect to a specified velocity scale, length scale, and
density. In physical space, the incompressible Navier-Stokes equations with the 1B

formulation are (Liska and Colonius, 2017)
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ou

V4 _v2 _
E+wxua_ VH+ReV u+/r(t)fr(§,t)6(X(§,t) x)dé,

V-u=0, (3.3)

ur(é,t) = /RS u(x,t)6(x — X(&,1))dx.

Here, x and x, = x — R(¢) denote the coordinates in the inertial reference frame
and those in the non-inertial reference frame, respectively. The non-inertial frame
translates with the trajectory R(¢) and rotates with angular velocity Q(7). u is
the velocity vectors in the inertia reference frame. u, is the velocity vector with

respect to the non-inertial reference frame. The two velocities are related through
dléy) +Q(t) xx, :=U(t) + Q(t) X x,. In this equation, %
is the derivative in ¢ with x, held constant, and V the gradients with respect to x,.

| 2

u=u,+u, whereu, =

Correspondingly, IT = p — %lu,l2 - %lua where p is the pressure.

If we denote the immersed boundary points in the non-inertial frame as X,(£,1),

we can rewrite the boundary condition

urq(&,1) +U((1) + Q1) x X, (€, 1) = /

u(x,t)o(x — X(&,1))dx. (3.4)
R3
Note that the convolution integral is taken in the inertial coordinates. The Dirac
delta function uses the relative position between the immersed boundary surface and
the coordinates in the inertial reference frame. Thus, we are only sampling inertial
frame velocity on the immersed boundary and equate the values to the inertial frame

velocity boundary condition, on each single point parameterized by £ and t.

In Fourier space, these equations read

o ~ 1 =
% + ﬂ[w X ua] = —Vka + Evzkﬂk
+ Fri(éxp, 020 (Xap(€xps 1) — X2p)dé,p,
T(1)2p (3.5)
Vi =0,
uri(€2p,1) = /2 iy (x2p,1)02p (x2p — Xop(€5p,1))dx2p,
R
where s 55 —_—
Vidip = 2k Tk SRS (3.6)
ox  0dy c
- - T
-~ - oll, oIl 2mik -
Vit = |25, 25 2| 3.7)
ox dy ¢
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Figure 3.1: Variable placement in the x —y plane for a Fourier interpolation sampling
point in the z direction.

V%ﬁk =

0%, 0%, (2nmk\?
+ — iy . 3.8
a2 oy ( ) Uk (3.8)

Details for the Fourier transform of the IB terms are given in Appendix A.

c

Since the body and flow are homogeneous in the z direction, we simplify the

boundary condition equations to

ur(ép,t) = / ito(x2p,1)02p(x2p — Xop(€p,1))dxp k=0,
B2 (3.9)

0= /2 i (x2p,1)02p(x2p — Xop(€ap.1))dxap  k #0.
R

We can evaluate the nonlinear term using a de-aliased pseudo-spectral approach
(Orszag, 1971b), i.e. we discretize the inverse transform to the DFT, form the
product in physical space via padded inverse transforms, and transform the product
back to its truncated Fourier coefficients. Padding via the 3/2 rule is sufficient since

the equations involve at most quadratic nonlinearity.

3.3 Spatial discretization

To develop a framework that is best suited for the hybridized discretization, we place
all finite-volume cells with their centers aligned with the evenly-spaced sampling
points for Fourier interpolation. The x and y components of velocity are placed on
the faces, and the z component of velocity is at the cell center. One can visualize
the resulting data field as a collection of evenly-spaced slices that appear as a 2D

finite-volume method depicted in Figure 3.1.

With this staggered mesh, we now define discrete operators and enumerate some of

their properties. In this section, we use boldfaced variables, e.g. g = [g1, 22,831,
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to denote 3-component vector fields and non-boldfaced variables, e.g. g, to denote

scalar fields. The operators are:

« Divergence on k'" Fourier coefficient:

Dig = D,g1+ Dygr + (2mik/c)gs. (3.10)

Gradient on k' Fourier coefficient:

Geg = [-DJg.~Dyg. 2nik/c)g]". (3.11)

Curl on k™ Fourier coefficient:

Crg = [-D; g3—(2nik/c)ga, (27ik/c)g1+ D] g3, — Dy g2+ D) g1]". (3.12)

Laplacian on k' Fourier coefficient:

Lig = -DIDg - DI Dyg - (2nk/c)’g. (3.13)

In the equations above, D denotes a forward finite difference derivative, for example,
Dg(i,j)=[gli+1,j)—g(i,j)]/Ax. The operators mimic some properties of the
continuous operators, namely Dy = =G, and Ly = =G, G (where the superscript *

denotes the conjugate transpose).

Letug, = [un, v, wy]! be the velocity in the non-inertial frame at the n'" slice and
Wy, = [Wnx, Wy, wn,Z]T be the vorticity on that slice, we discretize the nonlinear ad-
vection terms in rotational form by defining N,, (i, j) = [Ny x (i, j), Nu,y (i, j), Ny (i, DI,

and writing
Nn,X(l’ .]) :Ewn,y(la ])[Wn(l’ .]) +Wn(l - 1’ ])]

_iwn’z(i,]‘) [Vali, ) +vali = 1, /)]

1 . . . .
_an,z(la] + 1)[Vn(la] + 1) +V}’l(l - 19.] + 1)]’

1
Nn,y(i’ J) :an,z(ia .]) [Ltn(i, .]) + un(iaj - 1)] (3 14)

1
+an,z(i+ L)) [ui+1,7)+u,(i+1,7—1)]

1 . . .
_Ewn,X(l’ .])[Wn(l’ ]) + Wn(l’.] - 1)]’
Nn,z(l’]) :E [wn,x(l’])vn(lv]) +(Un,x(l’] + 1)Vn(l’] +1)]
1
2

[U)n,y(i’j)un(i’j) + wn,y(i +1, Pu,(i+1, )]
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Let N(w,u) be the collection of the nonlinear advection term across all slices,
evaluated using w,u with Eq. 3.14. Inserting the discrete spatial operators in

Eq. 3.5, we obtain a system of (index 2) differential-algebraic equations (DAE)

dii . 1 . ~
L L F[N(w,u)] = =G + —Liiig + P fy,
dt Re
Dyiig = 0, (3.15)
P(t)iy =urg,

where ¢ is a pressure-like variable. In this equation, the Fourier coefficients of the
nonlinear term are evaluated with the pseudo-spectral approach discussed above.
P(¢) is the IB interpolation operator. There are second- and higher-order accurate
discretizations of this operator (Gabbard, Gillis, et al., 2022; Ji, Gabbard, and Rees,
2023; Gabbard and Rees, 2024a; Verzicco, 2023), but considering compatibility
with the exact imposition of the boundary conditions and mimetic properties of the
finite-volume discretization, together with the availability of AMR, we prefer the
first-order-accurate discrete delta function approach (Peskin, 2002). In addition,
when the immersed body is time-invariant, the linear system associated with the
IB forcing possesses the desired Hermitian property (later shown in Section 3.5
and Appendix C). Any discrete delta function can be used in the formulation; the
calculations below utilized a three-point delta function (Roma, Peskin, and Berger,
1999)

1+V=-3r2+1,|r| <0.5,
¢(r) =145 =3|r| =1 =3(1 = [r)?), || € [0.5,1.5), (3.16)

0 otherwise.

3.4 Lattice Green’s functions

3.4.1 Lattice Green’s function of L

In solving Eq. 3.15, substituting the momentum equation in the divergence-free
constraint gives rise to an inhomogeneous screened Poisson equation, Liu = f that
must be solved at each time sub-step. We utilize the lattice Green’s function (LGF)
on a formally infinite grid to solve this system. For each k, we can find a LGF,
By : Z* — R, of the operator Lj such that

(LyBy)(n,m) = (Ax)*6%(n — m), nylr}IE)loo Bi(n,m) =0 (3.17)
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where 6 : Z — {0, 1} is the Kronecker delta function and defined as:

- 1 ifn=0,
6°(n) = (3.18)
0 ifn#0.

As a result, we can solve the inhomogeneous screened Poisson equation using this
LGF (Katsura and Inawashiro, 1971; Martinsson and Rodin, 2002):

Liu=f = u(n,m) = (L' f)(n,m) = Z(Ax)sz(n—a,m ~b)f(a,b). (3.19)
a,b

We call the sequence { By (n, m)}, , the LGF kernel.

When k # 0, we can write the LGF kernel as (Buneman, 1971):

L[ efm\ 49
Bi(n.m) — B;(0,0) = — | [1- 3.20
k(n,m) — B;(0,0) zﬂ/( Klﬂl)K—l/K (3.20)
—7T
where
2_4
g=4rYe-% (3.21)
2
and )
2k Ax
a:(4+( dl ) —2005(9)). (3.22)
C
Finally,
1 11 (2)\?
By (0,0) = —Fi|=,=;1;| = , 3.23
k()2b2122 (b)) (3.23)

where b = 2+ 2 (%)2 We note that the integral in Eq. 3.20 is increasingly
oscillatory with increasing m. However, as the integrand is periodic, it can be
approximated with spectral convergence using the trapezoidal rule (Trefethen and
Weideman, 2014). Further, one can show that the number of quadrature points
needed to evaluate this integral at most increases linearly with m. However, we do
note that the spectral convergence rate of the numerical approximation is dictated
by a. Specifically, as we show in Chapter 2, the approximation error of an N-point
trapezoidal rule approximation (e€y) is bounded by

2M

< -7
lenl < — 7

(3.24)

where vy, is any positive real number satisfying:

2 2)\? 2mkAx
y. < log 1+%+ (1+%) 1=k, a= ”c , (3.25)
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Figure 3.2: Convergence of B(n, m) for n = m = 1280 and various n compared with
the analytical convergence rate.

and M is _
ewnz 1

M = sup (1 )K——I/I( .

_¢ (3.26)
15(6) | <ye Kl

In our implementation, this integral is evaluated for each k, m, and n using the
adaptive trapezoidal rule (Schiling, 2011) with relative tolerance of 107!, This
algorithm halves the integration step size (i.e. double the quadrature points) until
the tolerance is achieved. The convergence of this approximation is empirically
demonstrated in Figure 3.2. The threshold 10710 is chosen to achieve sufficient
precision in subsequent computations with the LGF without excessive computational
expense or the need to invoke quad-precision arithmetic. Due to the periodicity of
the integrand, the relative error is typically much less than the threshold 10~'°, often
reaching the machine epsilon (Schiling, 2011).

To determine the required number of quadrature points for practical computations,
we consider a worst-case scenario. First, consider that K monotonically increases
with @, which also monotonically increases with kAx/c. We thus consider the case
where k = 1 and ¢/Ax = 1200 which provides a conservative estimate for the lowest
value of kAx/c likely to be encountered in applications. To further simplify the
matter, we observe that B(n, m) = B(|n|, |m|), so, without loss of generality, we can
assume n, m > 0. In addition, since K > 1, the higher the value n is, the greater K Inl

and the smaller the oscillatory term in the integrand. Thus, the worst case happens
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Figure 3.3: Spectral convergence of B(m,m) for various m.
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Figure 3.4: Convergence of B(n,m) for m = 1280 and various n.

when m is large and n is small. However, since B(m,n) = B(n,m) (Katsura and
Inawashiro, 1971), we can always write B(n,m) = B(max(n, m), min(n, m)). Thus
the oscillation of the integrand is the most severe when m = n and they are both
large. Computed errors for a range of m are shown in Figure 3.3. To further illustrate
the point that increasing n when holding m constant will not exacerbate the effects of

oscillation during numerical integration, we hold m = 1280 and vary 7 in Figure 3.4.
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Returning now to the case k = 0, the far-field boundary condition imposed on By
is not achievable, since the fundamental solution logarithmically diverges in 2D
(Martinsson and Rodin, 2002). However, eliminating this term provides an inverse
that is unique up to a constant. This constant can be absorbed into the pressure and
need never be determined explicitly. However, when we introduce the multilevel
LGFs (Section 3.6), we shall need to impose a compatibility constraint so that the
arbitrary constant is the same regardless of resolution. Let B(’) denote the kernel
on the I'" refinement level (0 is the coarsest grid), we can write the compatibility

condition as the following:
[
Bl(n) = B)(n) - > log(2)  Vn eZ2 (3.27)
T

We detail the derivation of this compatibility condition in Appendix B.

With a compact source term, L;l provides the solution at any point on an infinite
lattice. However, to march the solution (and the source) to the next time, we only
need to evaluate the action of applying L;l on the support of its source (including a
buffer region to allow the solution to adapt). To ensure the accuracy of the solution
and adapt to the evolving vortical flow region, we adopt the domain adaptation and
“velocity refresh” algorithms developed for the 3D inhomogeneous case (Liska and
Colonius, 2016; Liska and Colonius, 2017). Further details of these techniques will

be provided in Section 3.7.

To accelerate the application of L;!, we adopt an interpolation-based kernel-
independent fast multipole method on a block-wise decomposed grid (Liska and
Colonius, 2014). This algorithm not only achieves linear complexity but also lends

itself to efficient parallelization.

3.4.2 Integrating factors (E} )

The availability of the LGF provides an opportunity to use an integrating factor
to march the viscous term without an associated time step restriction, enabling the
application of an RK-type explicit DAE solver (Liska and Colonius, 2016). To
implement this in the present method requires finding the LGF for the integrating

factor, Hy (t), that solves the following linear ODE system on an infinite lattice:

dHi(t) _ 1 _
T = ReLka(t), Hk(()) =1, (3.28)

where [ is the identity operator.
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We first denote the kernel of Hy(¢) as Ag(z), which can be written as(Liska and
Colonius, 2017):

Ap(t)(n) = 1 / exp (—in.«f + (£ ) dé

472 ReAx?
I
-2t 2t
= 1 , 3.29
Dl [exp (Resz) q(Resz)] ( )

where o (€) = 2cos(&)) +2cos(&) — 4, I1 = (—m, m)%, and I,,(z) is the modified
Bessel function of the first kind of order n. For k # 0, Hj can be found in terms of
Hy. The resulting expression is

2
H (1) = exp [— (#) S Ho(1). (3.30)

Re

This solution can be verified as follows. The IC follows by evaluating the expression
atr =0

H; (0) = exp(0)Ho(0) = 1, (3.31)
and Eq. (3.28) follows by
dH | (27k\? ¢ | dHy  (27k)\? 1 2k \* t
T oexp |- [ — | 222 (2] —exp |- =) —|Hy (332
ar P ( c ) Re | dt ( c ) Re P c Re| ™ (332)
[ (ork\ e |1 2k \? 1
= —|— | —|=—LoHy-|—| —H 3.33
°xp (C)ReReOO(C)Rek ( )
2
1 2k 1
=—LgH, - |—| —H 3.34
Ro Lok ( - ) Ro 1k (3.34)
1 2k \’
_ L LO_(L) 1| H,. (3.35)
Re c
= LH (3.36)
= Re k. .

Note that the kernel associated with Hy (¢) decays faster than any exponential, which
can be exploited in the fast multipole solution by restricting the source of any target
to its vicinity (Liska and Colonius, 2016).
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3.5 Temporal discretization
To discretize Eq. 3.15 in time, by imposing the integrating factor, we can rewrite the
system by denoting ¥, = Hy (¢)i1; and by = Hj (t)Gx, so we have:

dav k ~ ~
— Tt H()Fr[N(w,u)] = -G by + H () P(1) £y,
D, =0, (3.37)
P()H ' (t)Vy = tr .

We adopt a half-explicit Runge-Kutta (IF-HERK) method for these DAE (Brasey
and Hairer, 1993; Liska and Colonius, 2017). For the present method, this can be
stated as

1. Initialize: set ﬁg’n =iy, and tg =1,

2. Multistage: fori = 1,2, ..., s, solve the linear system

ﬁlk’"] = [rl’w} . (3.38)

i i
/lk,n gk,n

(ED~' ")
’ 0

i
k,n

3. Finalize: set fly 41 = ﬁi,n’ Aknsl = (ds,sAt)_'/ii’n, and 1,41 =1,

where
%
Gy

On = | pi
> P;z

NV | 0
, /l’k,”:[qf"”], g,’m:[ ] (3.39)

Fin (urp),
The terms appearing in the linear system are
i1 _ =1 (mi-1 i-1 _ -1 i1
w, =F (@), o, =F {Celt,}x) (3.40)

where 7! is evaluated using (de-aliased) inverse Fast Fourier Transform (iFFT).

Furthermore

El = Hy ((5i - 55-1)A1)’ ;

(Ax)2Re 8 = —AiiATk [N(wi7t uish)] (3.41)

where for all k, 7% [N(w!~!, ui~1)] is evaluated using FFT. Then the following are

n *>"n

recursively computed for i > 1 and j > i using:
We,=E 'Ry, by, =iy, (3.42)

i.j _ pi-1 i-1j i _ o x oAn-Ll (o _ ni-1ji
wil = ECWi ol = @™ (gh, - 00, (3.43)
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0 [0 0 0
13|13 0 0
1 [-1 2 0

10 34 1/4

Table 3.1: Runge-Kutta scheme Butcher Tableau used in our implementation

And we compute:

i—1
i i i N i -
Tim = hk’n +8nt At E i jW s t, =ty + CiAt. (3.44)
j=1

With this time discretization, at the n’" time step in i’ stage for the k" Fourier

coefficient, we have the following linear system:

i

] [EDT Ge @ [aL] T
M,’(’n c]’kﬂ = GZ 0 0 c]‘km = 0 (3.45)
fen Py, 0 0 fin (wri)y,

where S’,'C’n = P;E;{(l — GkLlek)(Pf[l)T, which we will show, in Appendix C,
that it is Hermitian when P! = Pi~1, E, refers to the integrating factor associated
with Ly. L;l refers to the lattice Green’s Function (LGF) of L;. We will explain

how to apply them in subsequent sections.

We can solve the linear system arising from the IF-HERK method using a block LU

decomposition. As a result, the steps to solve this system are:
~k -1 0
Gy =L Gy
Sintin =PrEr , — Grdy] — (Uri)ps
~i ~ -1 (\T Fi
qlk,n = qz + Lk GZ(Pln) flé,n’
. . p T 5
iy = Eplry, = Gl = (P) " fi ol

(3.46)

Note that this block LU decomposition method does not have splitting error due to
the use of the integrating factor (Liska and Colonius, 2017). The advantage is that the
divergence-free constraint and the boundary conditions are satisfied exactly (Taira
and Colonius, 2007; Liska and Colonius, 2017). In our current implementation
of this algorithm, we use a 3rd order scheme with the Butcher Tableau shown in
Table 3.1.

Apart from the second equation of Eq. 3.46, the remaining equations can be solved

directly through the application of LGF and the integrating factor. The second
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equation in Eq. 3.46 corresponds to the projection step to compute the IB forcing
in order to satisfy the boundary condition (Taira and Colonius, 2007; Liska and
Colonius, 2017). In similar algorithms designed for general 3D flows (Liska and
Colonius, 2017; Yu, Dorschner, and Colonius, 2022), the conjugate gradient method
is employed to solve for the IB forcing. In that case, it is estimated that the linear
system associated with IB forcing is a 3Ny by 3N, dense system where Ny is
the total number of IB points, and the constant 3 arises from the three velocity
components. In the case of general 3D flows, the number of operations needed
to solve such a linear system is O(Nz) (Liska and Colonius, 2017). In addition,
due to the sequential nature of matrix factorization and back-substitution (Liska
and Colonius, 2017), directly solving for IB forcing using numerical factorization

becomes less desirable than the conjugate gradient method.

For flows with one homogeneous direction, the immersed body has a uniform 2D
cross-section across the span-wise direction giving Ny = N_N»p, where N, is the
number of Fourier coeflicients in the truncated Fourier series, and N»p is the number
of IB points used to represent the 2D cross-section. To solve for the Fourier coef-
ficients of the IB forcing using the evolution equations of the Fourier coeflicients
(Eq. 3.5), we solve for N, independent 3N;p by 3N;p dense linear systems instead
of one 3N by 3N dense linear system. Thus, the operation count for using a
direct solver in our scenarios decreases to O(N,(N2p)?) = O(Nz /Nf). More im-
portantly, due to the independence among those N, linear systems, the application of
numerical factorization and back-substitution can be efficiently parallelized. Thus,
unlike the method to solve for IB forcing in the general 3D flow solver algorithm, we
solve the IB forcing using direct LU factorization instead of the conjugate gradient
method. In our implementation, the dense linear system is solved using ScalLA-
PACK(Blackford et al., 1997) wrapper from PETSc(Balay et al., 2022). According
to our numerical experiments, solving for IB forcing directly takes less than 3% of

the total computational time when using the LU factorization.

3.6 Multilevel mesh

To resolve thin boundary layers, particularly with the IB method, adaptive mesh re-
finement is needed (Mittal and Balachandar, 1997; Lehmkuhl et al., 2013; Yu, 2021).
For Cartesian grids, a wide range of adaptive mesh refinement (AMR) algorithms
have been proposed to locally refine the computational mesh (Berger and Oliger,
1984; Berger and Colella, 1989; Popinet, 2003; Burstedde, Wilcox, and Ghattas,
2011; Offermans et al., 2020; Gillis and Van Rees, 2022). These local refinement



56

methods focus on refining patches of the computational mesh according to specific
refinement criteria. To enhance the scalability of the mesh refinement process,
octree-based methods have been proposed (Popinet, 2003; Burstedde, Wilcox, and
Ghattas, 2011). Further, these octree-based methods can be combined with wavelet
methods to enable more efficient multiresolution methods (Schneider and Vasilyeyv,
2010; Gillis and Van Rees, 2022).

For our solver, the main requirement for AMR methods is compatibility with the
application of the LGF. Thus, we adapted an existing adaptive mesh refinement
approach that has proven efficient and accurate when combined with LGF (Yu, 2021).
This AMR approach uses an octree structure (Burstedde, Wilcox, and Ghattas, 2011;
Gillis and Van Rees, 2022) to recursively refine the fully 3D computational mesh.
We implemented a quadtree counterpart of this approach to apply to each 2D slice
in the x — y plane for each Fourier coefficient. Adaptation of this AMR algorithm
to our hybrid method is detailed in the remainder of this section.

3.6.1 Multilevel mesh on a Cartesian grid

We first review the salient features of the algorithm of Yu (2021). We start by
constructing a composite grid consisting of multiple computational grids with in-
creasing resolutions, {RQ, R?, e Rg}, wherein Rf is generated by evenly dividing
each computational cell in Rf_l into 2¢ smaller cells, d being the physical dimension

of the problem. The composite grid is the Cartesian product of this series of grids:

N
RQ = (X)RY. (3.47)
k=0

Then the AMR grid is defined by partitioning the entire computational domain €
into N + 1 smaller pairwise-disjoint domains {€g, Q1, ...Qy}. Define the restriction

functional as:

Le(m = {7 e (3.48)
0 ifn ¢ Qy

and the values on the AMR computational grid are defined through the Cartesian

product of these restriction functionals

N
T= @ . (3.49)
k=0

The operator I restricts the region we need to compute the numerical solutions to

N
Q= ®R§ N Q. (3.50)
k=0
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Thus, the solution is defined in the subspace Q. To communicate the information
across different levels of mesh, we also define interpolation and coarsening operators
fromlevel [ to level k as P, (interpolation when ! < k and coarsening when ! > k).
To estimate the information f on level k given the information across the AMR grid

A

f, we compute:

N
fr = Z Pioifi. (3.51)
1=0

Then to apply LGF on the AMR mesh from a source term f, we use the following
(Yu, 2021):

¢(”) = ®§V:0

j-1 N
_Q _ A _ A
(Z Pi—v‘Lo}fi) + Ly (Z PiQ_’J'fi)]’ (3.52)
i=0 i=J

where ﬁiQ_> ; 1s a commutative projection operator (see Eq. 30-32 in Yu, Dorschner,
and Colonius (2022)). We use L(;,} to denote the action of applying LGF of Laplacian
on level / in the refinement mesh. In this equation, at level j, the first term recursively
computes the solution at level j induced from the solution at coarser levels. The
second term computes the solution induced by the source on level j and the source
interpolated from finer levels. The first term is accumulated when computing the
solution from the base level to the finest level. We can directly use this method to
apply L;l for each Fourier coefficient. To achieve additional speedup when applying
LGFs, a fast and parallel multilevel elliptic equation solution method is employed
(Dorschner et al., 2020; Ying, Biros, and Zorin, 2004; Liska and Colonius, 2014).

3.6.2 Multilevel in Fourier space

To exploit the multilevel mesh in the x — y plane, we must also locally truncate the
Fourier series such that the resolution in z is comparable to the local resolution in the
x — y plane. Considering the spectral convergence in z, compared to the low-order
convergence of the finite volume discretization in the x — y plane, it is expected that
the mesh in the z direction needs to be refined, at most, as fast as the rate we refine

the mesh in the x — y plane.

However, for spanwise homogeneous flows, the flow field is not homogeneous
everywhere in the presence of the immersed body, especially when the boundary
layer is laminar. In the far wake, the length scales tend toward homogeneity, but,
near the immersed body, variation in the x — y plane can be much more rapid than
that of the z-direction (Smith, 1986; Williamson, 1996). One example of such
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inhomogeneity is the flow past a circular cylinder. In the shear-layer transition
regime (Re ~ 1,000 — 200, 000), two shear layers are forming from the side of
the cylinder. Those shear layers and the associating Kelvin-Helmholtz instability
are essentially 2D. Thus, to resolve the shear layers, we only need to refine the
computational grid in the x — y plane. However, downstream of the shear layers,
the flow transitions to three-dimensional turbulence, and comparable resolution is
required in all three directions. To optimally treat these situations, we modify the
spanwise refinement. Far from the body, if there are /,. ; refinement levels, on level
1, we retain N; = Ny x 2! Fourier coefficients, where Ny is the number for the base
(coarsest) mesh. Near the body, we cap the number of Fourier coefficients, even as
we refine the x — y grid by an additional [, 4, levels.

We now elaborate on how we apply the LGF on the multilevel mesh in both Fourier
space and the x — y plane. For the k" Fourier coefficient, we find an / such that
No2!=! < k < Np2!. We know that computational cells on level / — 1 need only
retain the first Ny2/~! Fourier coefficients. That is, we may assume the k'™ Fourier
coefficient is zero for all computational cells on level / — 1. Similarly, the k' Fourier
coeflicient is zero for all computational cells on levels O through / — 1. Thus, the
k" Fourier coefficients and the associating source terms f* are zero on those levels.
We do not need to apply L;l on levels 0 through / — 1, nor need we consider source
terms from those levels since they are to be truncated. With this strategy, we can
simplify the procedure that applies L;l in Eq. 3.52 so that the index of the first term

begins at i = [ rather than i = 0, resulting in significant computational savings.

Conversely, for the k" Fourier coefficient, the corresponding coarsest level that L,:'
need be applied is given by:

k+1 No x 2lrer
l:max({logz( AJ; ) ,O):max (lref—{logz ((’]:(THO) (3.53)
0

Similar to applying L;!, applying discrete operators (divergence, gradient, curl),

interpolation operators, and the integrating factor £ ;{ follows a similar strategy. For
an operator operating on the k’" Fourier coefficient, the coarsest level, /, the operator
needs to be applied on is also determined by Eq. 3.53. Thus. that operator only

needs to be applied to grid points on levels greater than or equal to /.

3.7 Adaptation
So far, we have introduced the steps to time integrate the discretized Navier-Stokes

equations using the IF-HERK method and LGF. In addition, the computational grid
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spatially adapts to the vortical region, which we term base-level adaptivity, and
adaptively refines the mesh in a block-wise fashion. For adaptation, we adopt the
strategies developed for the fully inhomogeneous case (Liska and Colonius, 2016;

Yu, 2021); we provide a brief summary of the algorithms here.

3.7.1 Base-level (domain) adaptation

The assumption that allows us to constrain our computational domain to a finite
one is that the vortical region is in general compact (exponentially decaying). The
strategy is to add or delete cells (block-wise) when the vorticity near the boundary
exceeds or falls below a threshold value. However, the surface defining the threshold
value must adapt in time as the vorticity evolves in the boundary layer and wake
regions. Additionally, it is sometimes pertinent to alter the threshold in the far wake

as, for long times, the vorticity decays slowly.

To these ends, we denote the active cell region in the base level

|Diri(x)]?
QPP = Iy e R?: Zil > €y, 3.54
0 {x max Y,; |D;ri(x)|? € ( )

X

where r; is the nonlinear term (Lamb vector) in the time-discretized equations
(Eq. 3.44) and Dy the discrete divergence operator for the k' Fourier coefficient. ¢
is some prescribed cutoff threshold. The }; is the sum across all Fourier coefficients.
Thus, the term Y, |D;r;(x)|? is approximately the magnitude of the source term for
the pressure-Poisson equation at location x across all Fourier coefficients. To ensure
that Q""" is captured by our computational domain, we additionally put a region
(Qputr) of buffering computational cells around ,””. These additional computation
cells are those at a fixed distance N, from 398”” P We periodically update Q(s)”p P by
incorporating grid cells from Qp,g to satisfy Eq. 3.54. The detail of how to choose
Ny, is discussed in (Liska and Colonius, 2016).

supp supp
0 0

is effectively defined, and we need to compute the velocity field in the newly

Each time we incorporate computational cells from Qg into Q""", a new 0
incorporated region Q. To do so, we solve the vorticity-streamfunction equation
to fill in the velocity in Qpyf. Let &} be the k'" Fourier coefficient of velocity before
solving the vorticity-streamfunction equation and & be the values after, we solve
the velocity within Qg using:

@y = Cyiit,
(3.55)

- -1 ~
uz —CZLk ]lQ(S)MPP(A)k.
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where 1gourr is the indicator function of the set Q,""". Namely, when fill in the
velocity in the buffering region, we only use the vorticity within Qg"p P We term

the above procedure as velocity padding.

3.7.2 Velocity refresh

When applying the integrating factor E ;{ through convolution, the support of the
associating kernel is unbounded. However, we can still accurately evaluate this
convolution with Q;“”” using only the values within Q*"” and Quyg. To that end,

we use two facts: the integrating factor decays faster than any exponential (Liska

supp
0

streamfunction equation. Thus, we employ a two-step approximation to evaluate the

action of E ;( within Q‘S’”’ P,

and Colonius, 2016), and velocity in € can be obtained by solving a vorticity-

First, we truncate the integrating factor kernel to have a compact support by thresh-
olding the value of the kernel. Due to the fast decay, we can accurately approximate
the action of E ;( by only applying the integrating factor kernel within this compact

region.

Second, near dQ,"”, the source region of the approximated E/ operator extends

outside of Q(s)“p P We assume that this additional source region is contained in some

supp
0

Thus, we can compute the velocity in this region using vorticity-streamfunction

Qir. Since this region is outside of €, the vorticity within Qi is negligible.

equation as in Eq. 3.55. This step is called velocity refresh.

Combining these two steps, we can accurately approximate the action of E}C within

supp
Q

of properly truncating the integrating factor kernel and defining Qr can be found in

by carefully defining Qr and the source region of E }C The specific procedure

(Liska and Colonius, 2016). We note that the vorticity-streamfunction equation only
needs to be solved periodically to ensure accurate simulation. In fact, the frequency

we need to solve the vorticity-streamfunction equation depends on Q.

It is shown that we can overlap Qr with the buffering region we defined for velocity
padding (Liska and Colonius, 2016). That is Qi = Quug. As a result, we can
compute a corresponding maximum time step n, such that we only need to conduct

velocity refresh every n, time step.

3.7.3 Adaptive refinement
As the flow develops, the high vorticity and high velocity gradient regions change.
As aresult, the computational grid needs to adapt to the evolution of the flow. In our
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algorithm, this step is done by tracking the high vorticity region and locally refining
the mesh accordingly. Recall that the AMR grid decomposes the entire computa-
tional domain into a sequence of pairwise disjoint domains {€;};. To adaptively
refine the computational mesh, we partition each €; into smaller computational
blocks. As shown in Section 3.6, the adaptive refinement in the spanwise direction
is determined by the adaptive refinement in the x — y plane. Thus, it is sufficient
to consider the refinement criterion for the 2D plane formed by the inhomogeneous
directions. In this part, the vorticity is used as the criterion for adaptation. We
specify a refinement factor @ € (0, 1) and a deletion factor 8 € (0,1). When a
computational block is on level /, we refine the block if any point x in that block

satisfies:
Sx) = > Nk @)} > o Spar, (3.56)
k

and coarsen the block if every point x in that block satisfies:

S@) = ) Now®I < B Span, (3.57)
k

where ||@ (x)||2 is the 2-norm of the k" Fourier coefficient of vorticity vector at

point x. Using Parseval’s identity, we have:

c/2
1
E/ Z w?(x,y,2)dz
) i€{1,2,3}
= > k)| (3.58)
k=—00
N/2
~ > eIl
k=—N/2

Thus, S(x) approximates the squared L, norm of the vorticity at each x location.
In addition, we solve the vorticity-streamfunction equations to pad velocity when
new blocks are refined using Eq. 3.55. This is to fill in the Fourier coefficients of
velocities in the newly refined blocks, as those Fourier coeflicients were previously
set to zero due to the truncation of the Fourier series from the multilevel nature in

Fourier space.

3.8 Algorithm summary
Algorithm 2 summarizes the required steps to march the solution forward by N

time steps. Let n, be the desired frequency (number of steps) to adapt the domain
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and/or resolution, and let n, be the desired frequency (number of steps) to conduct
velocity refresh. When simulating fluid flows with this algorithm, n, should be
chosen according to the resolution requirements, and n, should be chosen according
to the procedure detailed in (Liska and Colonius, 2017).

Algorithm 2 Time Marching using IF-HERK, IB, and LGF

1: procedure TiME MARCHING(iL k0, 1)

2 n=0

3 while n < N do

4 if n%n, = 0 then

5: Perform domain adaptation

6 Perform velocity padding using Eq. 3.55
7 else if n%n, = 0 then

8 Perform velocity refresh using Eq. 3.55
9

: end if
10: set ﬁg,n =y, and t,? =1,
11: for each stage i € {1,2,3} do
12: Compute u'! and w'! using inverse FFT
13: Compute g, , 7}, according to Eq. 3.41 and Eq. 3.44
14: Solve the system of equations shown by Eq. 3.45 using the block LU
decomposition as detailed in Eq. 3.46
15: end for
16: Setting Uk pel = fli’n, Akps1 = (673,3Al‘)_1/ii’n, and t,.] = tﬁ
17: n=n+1
18: end while

19: end procedure

3.9 Parallelization and performance

We adopted a server-client model for parallelization based on decomposing the
domain into pencils that correspond to blocks in the x — y plane. That is, all Fourier
coeflicients (regardless of the number) are stored on the same processor, which
avoids data transfer to accomplish the FFT. Each block is assigned a computational
load according to their roles during the time-stepping routine, and a load balancing
algorithm distributes those blocks into different processors (Yu, Dorschner, and
Colonius, 2022).

However, since direct solvers are used to solve for IB forcings, we need to devise
a corresponding parallelization strategy. Suppose we are solving systems with N
Fourier coeflicients and M parallel client processes. Two separate parallelization

strategies are devised for the case when N > M and N < M, respectively.
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* When N > M, each linear system is only solved using one process, and each
process is tasked with solving one or more linear systems. Specifically, N%M
processes are allocated to handle [N/M| dense linear systems, and the rest

processes are allocated to handle | N/M | dense linear systems.

* When N < M, multiple processes are allocated to solve one linear system, and
each process is assigned only one linear system. Specifically, M%N linear
systems are each solved by a group of [M /N processes, while the rest linear

systems are each solved by a group of | M /N | processes.

We report a modest scaling test for a varying number of leaf octants (16000, 31360,
and 64000), spreading across 3 refinement levels (lor = 1, lygy = 1, Lpax =
2). Each octant is a 6 by 6 grid cell. The blocks on the finest level have 16
complex Fourier modes. We define parallel efficiency as the speedup divided by the
number of computational nodes, benchmarked against the runtime obtained using 4
computational nodes. We computed the parallel efficiency by evaluating one RK3
step using various numbers of computational nodes. The resulting parallel efficiency
1s shown in Figure 3.5. The strong scaling is consistent with the corresponding fully
inhomogeneous LGF method (Dorschner et al., 2020; Yu, Dorschner, and Colonius,
2022). The simulation size is restricted by the memory required by the algorithm.

Further refinements to the parallelization will be implemented in the future.

As discussed previously (Liska and Colonius, 2014; Yu, Dorschner, and Colonius,
2022), the LGF approach to the Poisson inversion is extremely efficient given the
complex and adaptive domain. On a per-point basis, only purely FFT based algo-
rithms are likely to be more efficient, but the required rectangular domain would

waste many points for the flows we compute.

For the specific case of incompressible flow solver with one Fourier diagonaliz-
able direction, we can make a direct comparison with the Jacobi and block-Jacobi
Preconditioned Conjugate Gradient methods (JPCG and bJPCG) employed in an
unstructured-mesh solver (Borrell et al., 2011). The authors also reported solution
times for a direct Schur-complement based decomposition method (DSD), but we
refrain from comparisons as such a method requires precomputing the Cholesky
factorization and would be prohibitive in an adaptive algorithm. Our method is
compared to JPCG and bJPCG in Table 3.2, where the computational rate for the

Poisson solution is reported®. For our code, the test is performed in the context of

*The simulations by the bJPCG and JPCG are done using PowerPC 970MP 2.3GHz CPUs(Borrell
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Figure 3.5: Parallel efficiency for a varying number of computational nodes for com-
putational meshes of various sizes. The parallel efficiency is measured by solving
one RK3 step using different numbers of computational nodes. Each node contains
48 computational cores. The simulations are conducted on TACC Stampede3 su-
percomputer (Stampede3 User Guide n.d.) with Intel Xeon Platinum 8380 2.3GHz
CPUs.

the Re = 300 and Re = 12,000 cylinder flows’ to be discussed in Section 3.11,
which were computed using 256 CPU cores (2 computational nodes on Bridges-2
supercomputer) and 2000 CPU cores (25 computational nodes on Stampede2 su-
percomputer), respectively. Our algorithm is about an order of magnitude faster for
Re = 300 case, and 4 times faster for the Re = 12,000 case. The latter case was

impacted by deteriorating parallel performance on the associated large grid of about
400 million cells.

In addition, for the more general case of simulating incompressible external flows

etal., 2011).

"The Re = 300 cylinder flow is simulated on the Bridges-2 supercomputer (Brown et al., 2021)
with AMD EPYC 7742 2.25GHz CPUs. The Re = 12,000 cylinder flow is simulated on the
Stampede?2 supercomputer (Stanzione et al., 2017) using Intel Xeon Platinum 8380 2.3GHz CPUs.



65

Case Computational Rate (cpu Xus/pts)
JPCG ¢ =0 83.1
bJPCG ¢ =0 79.8
Nek5000 55.6

Present (Re = 300) 7.1
Present (Re = 12,000) | 19.4

Table 3.2: Efficiency comparison between methods for the 2D screened Poisson
problems (JPCG and bJPCG (Borrell et al., 2011)) and the 3D Poisson problem
(Nek5000 (Fischer, Lottes, and Tufo, 2007; Hosseini et al., 2016)) in incompressible
flow. The JPCG and bJPCG values are based on those reported (Borrell et al., 2011)
for the £ = 0 parameter value in their screened Poisson problem, which represents
the worst case. The Nek5000 value is based on the time to run one GMRES iteration
(Hosseini et al., 2016) in their Poisson solver and the expected number of iterations
for the GMRES algorithm to converge, estimated from the number of iterations for
the JPCG method to converge (Borrell et al., 2011).

with one periodic direction, we can compare with the spectral element incompress-
ible flow solver Nek5000 (Fischer, Lottes, and Tufo, 2007) simulating the flow past
a wing section (Hosseini et al., 2016). In (Hosseini et al., 2016), the runtime of one
GMRES (generalized minimal residual method) iteration for their Poisson solver
is reported*. However, solving the Poisson equation requires many GMRES itera-
tions. As indicated by (Borrell et al., 2011), the number of iterations for the JPCG
method to solve the Poisson equation is 217. In addition, the conjugate gradient
method (used by the JPCG method) has better convergence properties than GMRES
(Trefethen and Bau, 2022). Thus, the number of iterations for the JPCG method to
converge can serve as a lower-bound estimate of the number of iterations required
for the GMRES algorithm to converge. As such, we compare the computational
rate for Nek5000 to compute 217 GMRES iterations to the computational rate of
our method, also in Table 3.2. Our method is roughly 8 times faster than Nek5000
for the Re = 300 case and roughly three times faster for the Re = 12, 000 case.

The computational efficiency reported here could potentially be further improved
with enhancements to the parallelization strategy and other optimizations, but as
it stands we believe our algorithm is competitive with (and potentially faster than)

other state-of-the-art incompressible flow solvers.

#The GMRES iteration is computed on the Cray-XC40 computer Beskow at PDC (KTH) using
Intel Xeon E5-2698v3 Haswell 2.3 GHz CPUs (Hosseini et al., 2016).
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3.10 Verification

As discussed above, the flow solver described in this paper is an extension of a fully
3D incompressible flow solver (Liska and Colonius, 2017; Yu, 2021). In these pa-
pers, the authors verified the method by solving the flow past an impulsively starting
sphere. To verify the modified solver for one homogeneous and two unbounded
directions, we provide two examples: flow past an impulsively starting cylinder and

the evolution of an Oseen vortex (Panton, 2024).

We compute the flow past a cylinder with diameter D and Re = 100 using 16
complex Fourier coeflicients (31 terms when evaluating Fourier series) and the

following initial vorticity distributions:
wn,; = exp(—n* — |r|*/D?). (3.59)

We obtain an initial velocity by solving the discrete 2D Poisson equation and the
screened Poisson equations from the vorticity-streamfunction equation. We run the
simulation for 1.024 tU., / D and used a uniform grid simulation with Axy/D = 0.005
as the reference solution. We consider cases where the base spatial resolutions
Axpase satisfies Axpqge /Axo € {4,8,16,32, 64} and the finest level resolution Ax f;,,
satisfies Ax ¢ine/Axo > 4. In each mesh topology, luax = lref = Ni, laga = 0. On
I'" level, we refine a squared region centered at the origin with an edge length of
3.84D/ 2L, Mathematically, on [’ h level, we refine the region defined by the following

set:
1.92

207

1.92
%‘ < 7} (3.60)

Q) = {(x,y) : )%‘ <
The error is shown in Figure 3.6. We normalize L, error by the L, norm of the
reference solution and L, error by the L., norm of the reference solution and the size
of the domain. Both L, and L, error show a first-order convergence, as expected
for our 2nd-order finite-volume scheme with first-order immersed boundary method
treatment (Tornberg and Engquist, 2004; Mori, 2008; Taira and Colonius, 2007;

Colonius and Taira, 2008).

Second, to verify that our flow solver converges to the solution of the Navier-Stokes

equations, we compare the evolution of an Oseen vortex to the exact solution (Panton,

2024)
n%+2 r’Re
ug(t,r) = ‘2 [1 —exp( y» )] . (3.61)

To verify our solver, we initialized the velocity profile at ¢y and marched for 7, time

units. The numerical solution is then compared against the analytical solution to
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Figure 3.6: Error in the streamwise velocity compared to the base solution using
different numbers of refinement levels (0 < N; < 3). The solid lines represent the
L, error, and the dashed lines represent the L, error.

obtain the error. Our specific choice of parameters is:

R
fo= 5. =05 Re=100, 7 =2.2418L. (3.62)
e
The above parameters are chosen such that the maximum velocity is 1, which is
obtained when ¢ = ¢y and r = y/x2 + y2 = 1. We hold the mesh topology fixed with
three levels of refinement. Following the notation of the previous example, at level

[, the refinement region is defined as

(3.63)

11.2 11.2
207

9 = {(x,y> bl < vl <
The set of spatial resolution we consider is Axp,s. € {0.08,0.04,0.02,0.01}. The
time-step size is fixed at Ar = 0.00625. The L, and L errors of the x-component
velocity are shown in Figure 3.7 and demonstrate the expected second-order con-

vergence.

3.11 Transitional and turbulent flow over a circular cylinder
To demonstrate the new algorithm on transitional and turbulent flows we consider

flow over a circular cylinder at Re = 300 and 12,000.
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Figure 3.7: Error convergence of the numerical solution from our solver. The error is
computed by simulating the evolution of an Oseen vortex for 7, = 0.5 and compared
against the analytical solution.

3.11.1 Re =300

Flow over a circular cylinder at Re = 300 has been extensively studied numerically
and experimentally (Mittal and Balachandar, 1997; Kravchenko, Moin, and Shariff,
1999; Norberg, 2003). At still lower Re, the flow undergoes a series of bifurcations
and by Re = 300, the most prominent instability is termed mode-B and consists of
vortex shedding modulated by three-dimensional streamwise vortex pairs. These
form horseshoe-shaped vortices downstream that are stretched in the streamwise
direction (Williamson, 1996). Furthermore, the number of horseshoe vortices
decreases downstream due to a subharmonic instability (Mittal and Balachandar,
1997). Previous numerical studies (Mittal and Balachandar, 1995; Mittal and
Balachandar, 1997) determined that sufficient spanwise resolution is imperative to
obtain accurate estimates of the lift and drag coefficients and the Strouhal number

of vortex shedding.

In our simulation, we use a spanwise period of ¢ = 12D where D is the diameter of
the cylinder, with 288 Fourier coefficients at the finest refinement level. Three levels
of refinement (/,,4x = lref = 3, laaa = 0) are used, and thus the number of Fourier
coeflicients for computational cells on the coarsest level is 36. The base resolution is
set to be xpq5e/D = 0.08. The mesh at each refinement level is increasingly refined
with a factor of 2. Thus, the resolution on the finest level is Ax3/D = 0.01. The
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Figure 3.8: Lift and drag coeflicient history of the simulation

adaptive mesh refinement algorithm locally refines and coarsens the computational
domain with a refinement factor of @ = 0.25 and a deletion factor of 8 = 0.7. The

time step size is chosen as AtUs /Axz = 0.75.

To efficiently simulate this flow, we initialized the simulation by first computing
the flow in 2D. After we reach a temporally periodic solution, we initialize the 3D
simulation using the 2D solution as the zeroth Fourier coefficient. At the beginning
of the 3D simulation, a small (on the scale of 10~°) random vortical perturbation is
introduced, with the expectation that the resulting flow becomes independent of the
specific perturbation (Mittal and Balachandar, 1997). Integrating forward in time
results in the lift C; and drag Cp coeflicients shown in Figure 3.8, where the dashed

line denotes the initiation of the 3D simulation.

The three-dimensional instability is slow to develop, reaching a significant amplitude
only by tUs/D = 175 and saturating thereafter. The flow is (approximately)
stationary after tUs /D = 225. These dynamics are similar to what has been
previously observed (Mittal and Balachandar, 1995; Mittal and Balachandar, 1997).

The vorticity magnitude and streamwise vorticity at tUs/D = 367.5 are shown
in Figures 3.9 and 3.10, respectively. We can clearly observe the three-dimension

mode-B vortices forming in the wake near the cylinder and the elongated horseshoe
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Figure 3.9: Vorticity magnitude at tUs/D = 367.5. The non-dimensionalized
vorticity, wD /U, magnitude ranges from 0 (blue) to 5 (red).

Figure 3.10: Streamwise vorticity contour plot at tUs /D = 367.5 at w,D /Us = 0.5
(red) and w,D /Uy = —0.5 (blue).

vortices further downstream, with a continual decrease in the number of horseshoe
vortices as the flow progresses. The formation of the horseshoe vortices and the
reduction of the number of horseshoe vortices downstream indicates the subhar-
monic instability of the three-dimensional vortices generated by mode-B instability
(Williamson, 1996; Mittal and Balachandar, 1997; Kravchenko, Moin, and Shariff,
1999).

In addition to these qualitative observations, we computed the average drag coeffi-
cient (6), root mean squared lift coefficient (Cy, ,,5), and Strouhal number (S7) of
this simulation. The mean is computed starting at tUs,/D = 245.7, which is more
than 12 shedding cycles after the onset of three-dimensional instability. The statis-

tics were accumulated for the next 14 shedding cycles. In Table 3.3, we report those
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Study a CrLrms | St

KMS99 (num.) | 1.28 | 0.40 0.203
MB97 (num.) 1.26 | 0.38 0.203
Experimental 1.22 | 0.45 0.203
Present 1.25 | 0.44 0.203

Table 3.3: Comparison of lift and drag statistics with previous studies. Numerical
results from KMS99 - Kravchenko, Moin, and Shariff (1999), MB97 - Mittal and
Balachandar (1997). The experimental results are from Wieselsberger (1922) and
Norberg (2003).

statistics and compare the values to previous numerical and experimental studies.

All quantities are in reasonable agreement with the reference values.

3.11.2 Re =12,000

We now consider the fully turbulent cylinder flow at Re = 12,000. We carried out
the simulation using 128 Fourier coefficients and spanwise periodic length ¢ = 3D.
In this simulation, we used a base resolution Axp.s./D = 0.04 with four levels
of adaptive refinement, yielding the finest resolution of Ax4/D = 0.0025. The
refinement factor is @ = 0.25, and the deletion factor is 8 = 0.7. At Re = 3,900, the
average Kolmogorov scale (77) in the near wake (x/D < 5)is77/D = 0.02 (Lehmkuhl
et al., 2013). According to the 3/4 scaling of the Kolmogorov scale, we estimate
that 7/D = 0.0086 at Re = 12,000. The ratio of the Kolmogorov scale to the
second finest level is Ax3/7 = 0.58. Thus, the turbulence is expected to be fully
resolved. The finest level is required to resolve the thin laminar boundary layers on

the cylinder prior to separation and the shear layer attached to the cylinder.

To efficiently reach the fully developed turbulent flow, we adopted a step-wise
strategy. Specifically, we first initialize a 2D simulation of flow past a cylinder at
Re = 5,000. After vortex shedding initiates, we use that flow profile as the zeroth
Fourier coefficient to initialize a fully 3D simulation with 64 spanwise Fourier co-
efficients. We perturb this 3D simulation with a small random vortical perturbation
(on the level 1079) to trigger the spanwise instability. After the flow becomes fully
turbulent (at tUs /D = 25), we increase the Reynolds number to 12,000 and increase
the number of spanwise Fourier coefficients to 128 to continue our simulation. The
simulation is then continued for more than 125¢U.,/D. Throughout the simulation,
the time step size is chosen to be AtU/Ax = 0.5. The value is chosen to satisfy the
CFL criterion (Courant, Friedrichs, and Lewy, 1928).

Figure 3.11 shows the isosurface of the Q-criterion at tUs/D = 145.75. We can
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Figure 3.11: Q-criterion isosurface at Q = 100U /D. The isosurface is colored by
the vorticity magnitude from ||w||D /U = 20 (blue) to 50 (red). The corresponding
x — y computational mesh is shown in the background. The mesh gets increasingly
fine as the gray darkens. The computational domain is truncated in this figure. The
full computational domain is adaptive and extends to 23D downstream.

clearly observe the rib structures in the wake that are also present in the wake of
the flow past a flat plate (Rai, 2013). We also show the x — y mesh topology in
the same figure. The computational grid tracks the vortical region of the flow and
adaptively refines in the high vorticity region. We computed statistics using the
data within the time period tU, /D € [105, 145], corresponding to approximately 8
vortex-shedding cycles. When estimating a Strouhal number, we conduct a Fourier
transform of the lift coefficient data in time. The resulting Fourier spectrum is

shown in Figure 3.12. The peak of the Fourier spectrum centers around St = 0.198.

The drag coefficient and lift coefficient time evolution data for tU., /D € [100, 145]
are shown in Figure 3.13. The mean drag and Strouhal number are compared to
experimental data in Table 3.4. The Strouhal number and Cr ;s are computed
from an empirical formula obtained from experimental data (Norberg, 2003) when
Re € [1600, 150000] for St and Re € [5400,220000] for Cy, ps:

St =0.1853 +0.0261 x exp(—0.9 x x>3),  x =log(Re/1600), (3.64)

CLyms =0.52-0.06 xx 20, x =1log(Re/1600). (3.65)

The drag coeflicient and Strouhal number agree with the reference values within

uncertainty associated with the empirical formula (see Figures 1 and 2 in (Norberg,
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Study Cp | CrLoms | St
Norberg (2003) - 0.435 | 0.199
Wieselsberger (1922) | 1.15 | - -
Present 1.12 | 0.67 0.198

Table 3.4: Drag coeflicient, lift coefficient, and Strouhal number comparison be-
tween present numerical method and experimental data for the flow past a cylinder
at Re = 12, 000.

2003)). On the other hand, Cy, ;5 1s about 50% higher than the formula. As can be
observed in Figure 3.13, there is a more significant variation in the lift from cycle to

cycle, and the discrepancy is likely attributable to the statistic not having converged.

3.12 Summary

We have extended the IB-LGF-AMR approach previously developed for unbounded
three-dimensional flows to solve external flows around cylinders of arbitrary cross-
sections. To this end, we hybridized a mimetic, staggered-mesh finite-volume
discretization for the inhomogeneous directions with a Fourier spectral method
for the homogeneous spanwise direction, using a pseudo-spectral approach for the
nonlinear term. Some innovations include the implementation of AMR on the
Fourier coeflicients, a direct LU solution of the system of equations for the 1B
forcing, and new algorithms for efficiently tabulating the associated LGFs for the
viscous integrating factor to high precision. The validated algorithm retains the
flexibility, scalability, and accuracy of the IB-LGF-AMR approach, as demonstrated
by computing the fully turbulent flow past a circular cylinder at Re = 12, 000.
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Chapter 4

THREE-DIMENSIONAL STABILITY AND RESOLVENT
ANALYSES OF EXTERNAL FLOWS OVER
SPANWISE-HOMOGENEOUS IMMERSED BODIES

This chapter is adapted from Hou and Colonius (2023). In this chapter, we introduce
a numerical framework to conduct stability and resolvent analysis of spanwise peri-
odic flows. This numerical framework leverages lattice Green’s function, adaptive
mesh refinement, and immersed boundary method to create an efficient and versatile
method to conduct stability analysis and resolvent analysis. The focus of this chapter

is to introduce this numerical framework and also show some validating examples.

4.1 Introduction

Stability and resolvent analyses are important flow analysis tools. Stability anal-
ysis is used to study the evolution of disturbances to (typically) steady, laminar
flows and is conducted by analyzing the eigenvalues of the linearized Navier-Stokes
equations (Taira, Brunton, et al., 2017) to determine if an equilibrium is stable.
Recently, numerical methods for stability analysis have been developed to study
more complicated flow configurations (Theofilis, 2011). However, linear stability
analysis fails to predict the onset of instability for many flows, such as Poiseuille
flow (Orszag, 1971a). To remedy this discrepancy, resolvent analysis is developed to
study the transient growth of perturbations to an equilibrium (Trefethen, Trefethen,
etal., 1993). This transient growth is used to explain the flow instability that occurs
even when stability analysis shows that the equilibrium point is stable. Moreover,
resolvent analysis performed around the mean flow profile is useful to study both
laminar and turbulent (mean) flow fields for characterizing coherent structures as
high-gain responses to generic nonlinear forcing (Taira, Brunton, et al., 2017; McK-
eon and Sharma, 2010). In addition, resolvent analysis can also be used to perform

optimization on aerodynamic performance (Yeh and Taira, 2019).

Both analyses require the construction of the linearized Navier-Stokes equation
(LNSE) around an appropriate base flow (Taira, Brunton, et al., 2017). Even though
both analyses are vastly useful, one major challenge that limits their applications
is the construction and LU decomposition of the linear operator arising from dis-
cretizing LNSE (Taira, Brunton, et al., 2017; Barthel, Gomez, and McKeon, 2022).
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Especially for external flows around immersed bodies, the domain required to resolve
the flow is much larger than the characteristic length of the immersed body (Pralits,
Giannetti, and Brandt, 2013; Ribeiro, Yeh, and Taira, 2020). The expansive domain
further exacerbates the computational cost when conducting those analyses. Con-
siderable effort has been put into circumventing this problem using iterative methods
and matrix-free methods (Bagheri et al., 2009; Martini et al., 2021). However, we
tackle this problem head-on by reducing the size of the matrix. This reduction of
matrix size is achieved by leveraging the IBLGF-AMR framework created by Yu
(2021).

Based on the existing method of Liska and Colonius (2017), IBLGF-AMR is a
numerical method developed by Yu (2021) to solve incompressible external flows
around immersed bodies using lattice Green’s function (LGF), adaptive mesh refine-
ment (AMR), and immersed boundary (IB) method. This method is able to solve the
external flows efficiently on multi-resolution meshes that adapt to the solution and
need only have active grid points in vortical flow regions—exact far-field boundary

conditions are applied via the Green’s function.

In this chapter, we extend the IBLGF-AMR framework for flows with one homo-
geneous (periodic) direction and introduce a matrix-based framework to enable
efficient solutions of the corresponding stability and resolvent problems. A key
difficulty that is addressed in this work is how to retain a sparse matrix structure in
the presence of the LGF approach to the Poisson equation arising in incompressible
flows, such that modern multifrontal LU solvers can be efficiently employed to solve

the stability and resolvent problems.

4.2 Problem statement
The flow problems we are interested in are external incompressible flows with one
homogeneous direction, namely the flow over cylinders with arbitrary cross sections.

In general, we can write the spatially discretized Navier-Stokes equation (NSE) as

dq
ME =F(q), 4.1)

where ¢ is a vector of discretized flow variables, M is the diagonal matrix with
ones for the entries corresponding to velocity variables and zeros otherwise, and
F (+) is the collection of all the terms in the discrete NSE except the time derivative.
Linearizing this equation (around some base flow ¢,) and adding a forcing term f

yields

d
ML= Ag)q+f. (42)
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The A(q,) operator is also referred as the linearized Navier-Stokes operator (Taira,
Brunton, etal., 2017). For stability analysis, the linearization is about an equilibrium,
q;, = q, satifying F(q,) = 0 and, f = 0. The equilibrium solution can be obtained
using the nonlinear code directly (for stable flows) or using Newton’s iterations for

unstable ones

For resolvent analysis, g, can be either an equilibrium, in which case f # 0 is
some exogenous forcing, or the mean of a turbulent flow, g, = ¢ in which case
J comprises the residual nonlinear terms in the full nonlinear discretized Navier-

Stokes equations.

For stability analysis, we solve the generalized eigenvalue problem
AMv = A(q,)v, 4.3)

and the fixed point is unstable if there exists at least one eigenvalue with a positive
real part. More generally, we may seek to determine the full spectrum of disturbances

and characterize, for stable systems, the extent of transient growth.

For resolvent analysis, on the other hand, we seek to determine, in the frequency
domain, those forcings that are most amplified by the base flow, namely

<q,q >

o = max—24 7 (4.4)

<f.f
where (*) refers to the (temporal) Fourier transform and < -, - > refers to the appro-
priate inner product. For example, this inner product can be induced from Chu’s
energy norm (Kamal, Lakebrink, and Colonius, 2023) or the discrete counterpart of
the continuous L, inner product (Towne, Schmidt, and Colonius, 2018). The inputs,
f are related to the outputs, ¢, through the solution of Eq. (4.2) by the resolvent

operator
§d=Rw)f, (4.5)

where
R(w) = C(ioM — A(q))"'B, (4.6)

in which B defines the subspace of the feasible forcing f, and C defines the subspace
of the output g. The solution to the maximization (Rayleigh quotient) is given by
the singular value decomposition (SVD) of R, namely o is the first (largest) singular
value of R and the input and output giving rise to the largest amplification are given

by the corresponding left and right singular vectors. We also call this o the resolvent
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norm (Symon, 2018) since it coincides with the definition of the operator norm of
the resolvent operator, i.¢e.,
o = |[R(w)]]. 4.7)

For spanwise-homogeneous flows, we can carry out a Fourier expansion in that
homogeneous direction. We can transform Eq. 4.2 into the following form for the
k" Fourier mode:

dqy

M—~% = Ai(q,)d + e (4.8)

The corresponding generalized eigenvalue problem for stability analysis is
AMy = Ay(q,)v, (4.9)

and the resolvent analysis becomes the SVD of the Fourier-transformed resolvent
operator R (w)
Ri(w) = C(ioM - A (q))"'B. (4.10)

This spanwise-homogeneous formulation is also referred to as BiGlobal (Theofilis,
2011) stability (Eq. 4.9) and resolvent (Eq. 4.10) analysis. As mentioned in the
previous section, the key to an efficient solution of either the stability or resolvent
method is for the corresponding M and A matrices to be as sparse and structured as
possible, such that modern multifrontal LU solvers achieve their best performance.
Unfortunately, a direct linearization of the IBLGF-AMR solver will result in dense
matrices, since the LGF represents a nonlocal operator. We pursue here an alter-
native strategy of using the LGF to form boundary conditions so that the forward

Laplacian appears in the operators instead of the LGF.

4.3 Derivation and discretization of governing equations

The Navier-Stokes equations with immersed boundary forcing are

0
Grroxu=-Yp- g Vxo+ [ frEnsX(E) - g

Vau=0 4.11)
ur(&,t) = /R3 u(x,t)6(x — X(¢))dx.

where
w=VXu, 4.12)

and the immersed boundary I' is parameterized by &£. X(-) is that parametrization

function to describe the immersed boundary from the parametrizing variable &. ur
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is the boundary conditions that need to be satisfied on the boundary I', and f
is the immersed boundary forcing induced by enforcing the boundary conditions.
0(-) represents the Dirac delta distribution and is used here to enforce boundary
conditions and to represent the effect of immersed boundary forcings on the flow
field. Using the immersed boundary, we are able to conduct flow analysis around

arbitrary geometries without changing the underlying discretization.

For a time-invariant solution, u(x,y) and p,(x,y) the linearization of Eq. 4.11
around this flow is
ou 1
—twXus;+w;Xu=-Vp—-—Vxow+ [ fr(£)o(X(§)—x)dé
ot Re r
V-u=0 (4.13)

0= /R3 u(x,1)o(x — X(€))dx

Due to the homogeneity of the base flow and the immersed body, the governing
equations can be Fourier expanded in the homogeneous direction. By doing so,
we obtain a set of linear evolution equations for the Fourier coefficients of the state
variables, i.e. u and p. Then for the k" Fourier coefficient (@i, and py), the

equations is

di — —
%+J)k XUg+ws XUy =-Vipr— @Vk X D
+/ Fri(€:p)02p(Xop(€:p) —x2p)désp
Top (4.14)
Vi ity =0
0= /2 i (x2p,1)02p(x2p — Xop(€2p))dxap
R
where P
Vi = [—, —,i27k]", 4.15
k [ax P i2rk] (4.15)
O = Vi X 1. (4.16)

4.3.1 Discretization

Since the evolution equations of the Fourier coefficients are decoupled, they are
inherently 2D. Thus, we design a compatible 2D discretization scheme to solve
these equations. The placement of variables in a Cartesian grid cell is shown in

Figure 4.1. We define discrete operators as the following:
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Wk

W,z ‘ Uk

Figure 4.1: Variable placement of one cell in k" Fourier interpolation sampling
point.

« Divergence on k'" Fourier coefficient

D;g=D.g1 +Dyg + (2nik/c)gs, 4.17)

Gradient on k" Fourier coefficient

Gig = [-Dlg,-Dl'g, (2mik/c)g]", (4.18)

Curl on k™ Fourier coefficient

Cig = [Dyg3 — (2nik/c)g2, 2mik/c)g1 — Dig3, Drga — Dyg1l”, (4.19)

Laplacian on k'" Fourier coefficient
Lig =-D]D,g - DI Dyg - (2mk/c)’g, (4.20)

Here, the boldfaced variables, e.g. g = [g1,82,83]7, to denote a 3-component
vector field and non-boldfaced variables, e.g. g, to denote a scalar field. D
denotes the finite difference derivative and the subscript denotes the direction that
the derivative is taken. For example, Dyg(i,j) = [g(i + 1,)) — g(i,j)]/Ax. The

resulting discretized version of linearized Navier-Stokes equation is

du 1 ~
d_tk'*'d)kxus'*'wsXﬁk:_Gkﬁk_R_Czd)k"'PTka
e )

Da, =0
=0

Pii;,
Criy =

4.21)
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where P is the projection operator from the entire computational domain to the set

of IB points. Thus, in matrix form, we can write

I 0 0 0| |y —(wsX) -Gy —mCi +ugx P |
d {0 0 0 O|pk| | D« 0 0 01 |Px
di |0 0 0 0| |@x Ci 0 -1 0| |k
0 0 0 O] fx P 0 0 01| fx
or in a more compact form
M%:Akq
dt ke
where
i
P
9 = | .
2%
Jx
I 000
00O0O0
M =
0 00O
0 00O
and
—(wsX) -Gy -5Ci+ux P’
D, 0 0 0
Ay =
Cx 0 -1 0
P 0 0 0

4.3.2 Multi-resolution considerations

(4.22)

(4.23)

(4.24)

(4.25)

(4.26)

To construct the above operators on a multi-resolution mesh, we use the same

technique employed by Yu (2021). We briefly summarize this approach.

Suppose we have a series of Cartesian grids with different resolutions {R;}, i €

Z N [0, N;] containing N; + 1 increasingly refined unbounded meshes. i refers to

the refinement level. Ry has the coarsest spatial resolution, denoted as Axg. Then,

R has spatial resolution of Ax; = Axg/ 2k Then we define a partition of R2 using
N; + 1 disjoint domains, denoted as {Q;}, i € Z N [0, N;]. Each €; denotes the

active region in which operators on R; are active. This procedure is defined using

the indicator functional I'q, defined as

f(x) x e

(T, f)(x) = :
X ¢ Qi

4.27)
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Then if A; is the a linear operator defined on mesh R;, the multi-resolution version

of this operator is defined as

N
A= ToA (4.28)
=
and the active AMR grid is defined as
N
Ramr = |_JRiN Q. (4.29)
i=0

Then, for each point in R;\Q; Vi, the value can be obtained using interpolation. In
our approach, coarse-to-fine mapping is via the Sth-order Lagrange interpolation,
and fine-to-coarse mapping is via cell-centered averaging, which is equivalent to
linear interpolation in our case. Thus, the values of the state vector that we need to
keep are values associated with grid points in R 437 and those immediately next to
Ramr. To facilitate discussion in the next section, we use P_,q to denote the series

of averaging operations to obtain values on all of Ry

4.3.3 Compactness assumptions and boundary conditions

Operators and algorithms defined above are valid for unbounded computational
meshes. To restrict our computational mesh to a finite one, our algorithm assumes
that the vorticity field is compactly supported in a domain Q. In practice, we
designate a cut-off magnitude for vorticity and only retain the part of the domain with
a vorticity magnitude higher than this value. The consequences of this truncation
have been assessed in detail by Liska and Colonius (2017), and it is possible to define
thresholds that have a minor impact on the flow while, at the same time, resulting
in snug computational domains. Combined with our formulation of linearized

Navier-Stokes equations, we have the following compactness assumption
lws(x)] = |@r(x)| =0if x ¢ Q. (4.30)

Thus, we only need to pose a boundary condition on i@ and p;. We obtain the

boundary condition of @ by solving
—Li§ = @, dig = Ci 3k, (4.31)
and the boundary condition of pj by solving

—Lipr =Dy(@p Xiiy). 4.32)
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To solve these, we use Lattice Green’s Function (LGF) to obtain the boundary
condition. Specifically, the LGF (L;l) is the analytical inverse of the L operator

in free space. It is defined as the following in the unbounded domain
Liu=f=u=L_f. (4.33)

Here L;l is a discrete convolution operator and each entry in its kernel can be
computed using a 1-D integral. We will not explain the specific derivations in detail

but refer readers to (Buneman, 1971; Martinsson and Rodin, 2002).

4.3.4 Applying boundary condition through one-side fast multipole method
(O-FMM)
Since the operator L;l is a discrete convolution operator, it is a dense operator if
applied directly. In numerical simulations, we can use FFT-based convolution and
fast multipole method (FMM) to apply this operator in linear time (Ying, Biros, and
Zorin, 2004; Liska and Colonius, 2014; Liska and Colonius, 2017). However, in the
context of the stability and resolvent analysis, we need to explicitly construct this
operator. Thus, FFT becomes infeasible. Instead, we can adapt FMM to sparsify

this operator.

4.3.4.1 Interpolation-based kernel independent fast multipole method

In this section, we briefly introduce the FMM method created by Liska and Colonius
((Liska and Colonius, 2014)), which we later adapt to sparsify the LGF operator.

Suppose we have a kernel K (x, y) and would like to apply it on a discrete source

field f in some domain Q. Directly convolution gives the following

u(x) = > K(xiy) (). (4.34)

yJGQ

Applying this formula to all points in Q yields O(N?) complexity, given N as the

number of points in Q.

Now, suppose we have a set of interpolation functions [¢]

[¢] = [#0, P15 -, Pu-1], (4.35)
then we can approximate K (x, y) using the following
n—1 n—-1
K(x,y) ~ K"(6,5) = > > ¢i(0)K (xi, y))¢, (). (4.36)

i=0 j=0
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Using this formula, a possibly infinite-dimensional kernel K (x, y) is approximated,
or "compressed", using a set of finite sampling points: {K(x;,y;) |i,j € [0,n —
1] N Z}. This step is termed "kernel compression”. Plugging in this approximation

to the direction convolution formula gives

u(x) = > K(xiy)f ()

ijQ

~ Y K" (i y) ()

o (4.37)

n—1 n-1

= 2, D 2 Ky by ) (3).

y;€Q 1=0 k=0

Use this formula, we can simplify the application of K(x,y) using the following

procedure

* Compute effective source distribution

Fo =D NG, (4.38)

ijQ

* Apply compressed kernel
n—1
i(x) = > K, yo) f (o), (4.39)
k=0
* Interpolate to get the solution
n—1
u(x) ~ ) ¢ (x)i(x). (4.40)
1=0

We can use this formula to approximate the application of LGF by partitioning the
domain into smaller blocks and applying the above formula recursively for blocks
with different distances. Specifically, a tree structure is used by Liska and Colonius
(2014) and its multi-resolution counterpart by Dorschner et al. (2020). Using the
tree structure with /,,,,, + 1 levels, ranging from level —/,,,, to 0, Liska and Colonius

(2014) proposed the following procedure:

» Upward pass
Recursively computing, from level O to level —ax, fi(vi) = 3 éx(y ;) fie1 (y i)

) y;jEQ
with fo(yx) = f(yi),
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¢ Level interaction

On each level, applying ii; (x,,) = S Ko yi) filye)s
k€S0 (Xm,l)

* Downward pass

Interpolating and accumulating to get results, from level —/,,, to level 0,

) = @) + %, B (e ()

where Sy (x,,,1) is the set of source points to be applied on level / to point x,,

according to the tree structure.

4.3.4.2 One-side FMM

In our case, however, we do not need to obtain the solution everywhere in the domain.
Instead, only the values on the boundary are needed. That means we can modify the
above procedure to obtain the boundary conditions more efficiently and accurately.

Specifically, we compress the kernel using only one set of interpolations, i.e.

n—1
K(x,y) ~ K"(x,y) = ) K(x,3)8,(3). (4.41)
J=0

Then the solution at an arbitrary point, x;, (retaining the same notation as the previous

section) is

n—1
()= D KGy)fo) = D K@y f) = >0 D K@ y)ee(3)f ().

yj€eQ yi€Q y;€Q k=0
(4.42)

Similar to the FMM method used by Liska and Colonius (2014), a tree structure is
also used to compute the coarse representations of the source field. The difference
is that we no longer need to compute the downward pass. Instead, we compute
the direct interaction between source points on each level in the tree and the target

points on the boundary. So the procedure becomes

» Upward pass
Recursively computing f;(yx) = ZQ ¢ () fra1(y;) with fo(ye) = £ (i),
Yi€

¢ Inter-level interaction

_lmax

On level 0, applying u(x;) ~ ), D K(xi,yk)ﬁ(yk),
1=0 yreS(x;,l)
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where S(x;, [) is the set of source points to be applied on level / to point x; according

to the tree structure Then, we can integrate this into a matrix form using a set of

constraining operators

0 o -1 0 0
0 0 & -I 0
0 0 0 -
0 0 0 @7
0 Ay A1 A Ay, 41

0 0| » 1
Jo
0 0| fa
i
e | (4.43)
0 0 f—l+1
-1 o]~
Upc
_lmax _I )

where @ is the matrix representation of the interpolation operators, and A; is the

operator to apply the compressed kernel on level /. Together, we can write the entire

linearized and discretized Navier-Stokes equations as

™
~

—(wsX)
Dy
Cy
P
—P_ oDy (wsx)

SIS
S O O © O o o o O

S o o o <o

where

_Gk

0
0
0
0
0
0
0
0
0

™ =

-aCi+u;x P70
0 0 0

-1 0 0

0 0 0
PH()Dk(uSX) 0 -1
0 0 o
0 0 -L;'
P_, 0 0

0 0 0

0 0 0

T

D, =[D,0,

o -1 0

0 o -I

0O 0 O

0 0 0

0 M, 0 0 M, 7y
0 0 0 0 Disc| | pr
0 0 0 0 Crpc| | @k
0 0 0 0 0 fi
0 0 0 0 0 g0
™ 0 0 0 0 &
-L' -1 0 0 0 PBC
0 0 -1 0 0 g
0 0 o7 ™ 0 e
0 0 -CiLy' -CiL;' -I ||upc
(4.44)
T
,0] (4.45)
0 O
0 O
) (4.46)
-1 0
LI

and M|, M», Dy pc, Ck pc are appropriate boundary condition matrices. L;l is the

matrix arising from applying LGF using One-side FMM. Explicitly, it is written as

L' =[L7],.. L

-1

_lmax

1.

(4.47)
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With these sparse matrices, we can readily conduct stability and resolvent analysis.
We will present some validating results using this formulation in the subsequent

sections.

4.3.4.3 A note on scalability

The aforementioned LNSE operator can be partitioned using the block-structured
mesh employed by Yu (2021). Thus, the construction of LNSE operator and subse-
quent operations on this operator (e.g. LU decomposition, eigenvalue computations)
can be parallelized according to the same block structure and are compatible with
existing parallel solvers such as MUMPS (Amestoy et al., 2001) and SLEPc (Her-
nandez, Roman, and Vidal, 2005). Thus, the scalability of the algorithms associated

with the aforementioned LNSE operator is implied.

4.4 Results

4.4.1 Flow past a rotating cylinder

In this section, we validate our method by conducting the stability analysis of the flow
past a rotating cylinder. The stability of this particular type of flow has been studied
both experimentally (Barnes, 2000) and numerically (Stojkovi¢, Breuer, and Durst,
2002; Pralits, Giannetti, and Brandt, 2013). Here, we define a non-dimensional

rotation rate as

QD
= — 4.48
@= S (4.48)
and a non-dimensionalized span-wise wavenumber
2k
1= (4.49)
c

As shown by Pralits, Giannetti, and Brandt (2013), the rotational motion of the
cylinder has a stabilizing effect. However, as the rotational rate further increases,
unstable modes emerge again. To validate our solver, we choose two cases as detailed

below.

We first apply our linear stability solver to the case of Re = 40, @ = 5.5. For these
conditions, according to the study of Pralits, Giannetti, and Brandt (2013), there
are no 2D unstable modes but only 3D unstable modes. In this case, we used the
computational mesh shown in Figure 4.2a and the 2D fixed point base flow shown
in Figure 4.2b. Using our 3D stability analysis solver, we find an unstable mode at

A = 1.0, and the corresponding unstable mode is shown in Figure 4.3.



88

(a) Mesh topology of the case at Re =40, @ =5.5, 1 =1.0

(b) Spanwise vorticity distribution of the fixed point at Re = 40, @ = 5.5, 1 =1.0

Figure 4.2: Fixed point and mesh topology used to conduct stability analysis for the
case of Re =40, « =5.5, 1 =1.0.

Then, we apply our algorithm to the case of Re = 100, @ = 1.0. As shown by
Pralits, Giannetti, and Brandt (2013), although the most unstable mode appears at
A =0, i.e. a2D mode, there is a spectrum of less unstable 3D modes. The largest
A with an unstable 3D mode appears near 4 = 0.92. We used the computational
mesh shown in Figure 4.4a and the fixed point shown in Figure 4.4b to compute
the marginally stable mode shown at 4 = 0.915. The vorticity components of this

marginally stable mode are shown in Figure 4.5.

By conducting the stability analyses of the flow past a rotating cylinder at two
different configurations, we demonstrated the validity of our formulation of LNSE

and the O-FMM approximation on the boundary conditions.
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(b) Transverse vorticity distribution wy,.

(c) Transverse vorticity distribution w,.

Figure 4.3: Vorticity distribution of the most unstable mode at Re = 40, a =
5.5, 1=1.0.
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(a) Mesh topology of the case at Re = 100, @ = 1.0, 1 =0.915

(b) Spanwise vorticity distribution of the fixed point at Re = 100, @ = 1.0, 1 = 0.915

Figure 4.4: Fixed point and mesh topology used to conduct stability analysis for the
case of Re =100, « = 1.0, 4 =0.915.

4.4.2 Resolvent analysis

Even in linearly stable flows, disturbances can be amplified by transient growth. Such
transient growth is due to the non-normality of the LNSE. In these scenarios, we
can use resolvent analysis to identify the linear amplification mechanisms to deduce
the instability mechanisms (Trefethen, Trefethen, et al., 1993). For unsteady flows,
resolvent analysis around mean flows can be used to construct lower dimensional
models that faithfully replicate the full flow dynamics (Symon, 2018). In this section,
we demonstrate that the LNSE operator, induced from IBLGF-AMR and detailed
in previous sections, can be used to conduct resolvent analysis. In particular, we
estimated the resolvent norm and computed the most energetic resolvent mode for

the flow past a cylinder at Re = 100.
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(a) Streamwise vorticity distribution wy.

Transverse Vorticity

(b) Transverse vorticity distribution wy.

— 18603
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Spanwise Vorticity

— 00015
— 1803

(c) Spanwise vorticity distribution w,.

Figure 4.5: Vorticity distribution of the most unstable mode at Re = 100, @ =
1.0, 1 =0.915.

First, we conducted the same resolvent analysis calculation on two different meshes
(shown in Figure 4.6) to demonstrate that the resolvent calculation is independent
of mesh topology. The resulting resolvent norms are shown in Figure 4.7. The
figure shows that two meshes produce identical resolvent norms across a range
of frequencies w, demonstrating that the resolvent analysis calculation is mesh
independent.

Next, we simulated this particular flow for 375 convective time units (375tUs/c)
and used the flow data of the last 68 convective time units to construct a time average
mean flow, i.e. ¢ in Eq. 4.6. We constructed the linearized Navier-Stokes operator
around that mean flow (A(g)) and computed the resolvent norm over a range of

frequencies from w = 0.5 to w = 1.5. The resulting resolvent norm is shown in
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(a) Mesh 1 used to conduct resolvent analysis

(b) Mesh 2 used to conduct resolvent analysis

Figure 4.6: Two different meshes used to show the independence of mesh topology.

' ® meshl
10% 4 8 © mesh2

[IR(w)]]

Figure 4.7: Comparison of the resolvent norm between two meshes.

Fig 4.8. In this plot, the resolvent norm peaks at w = 1.0452, which is consistent
with the observations of a previous study on the same flow (Symon, 2018). In
addition, we also display the velocity of the most energetic mode obtained from
the resolvent analysis. The streamwise component of the forcing mode is shown
in Figure 4.9, and the streamwise component of the response mode is shown in
Figure 4.10. The mode shapes are consistent with the ones found by Jin et al. (Jin,
Symon, and Illingworth, 2021).

4.4.3 Stability of the flow past a cylinder with a control cylinder in the wake
Strykowski and Sreenivasan (1990) showed that by placing a small cylinder (called
the control cylinder) behind the main cylinder, vortex shedding can be suppressed.

The stabilization associated with the control cylinder was explained by Giannetti
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Figure 4.8: Resolvent norm ||R(w)|| of flow past a circle at Re = 100 over a range
of w from 0.0 to 1.5

Figure 4.9: Streamwise component of optimal forcing mode at w = 1.0452

Figure 4.10: Streamwise component of optimal response mode at w = 1.0452

and Luchini (2007) by introducing the concept of structural sensitivity, i.e. finding
those points in the flow where the eigenvalues are most sensitive to perturbations.
In our case, we compute the stability of the flow, including the control cylinder

directly, as a numerical challenge for our solver.

The main computational challenge, in this case, is that there is a wide range of
length scales (the main cylinder’s diameter, D, and the control cylinder’s diameter,
d, differ by a factor of 10). An AMR grid resolving both cylinders is obtained
by starting with a uniform resolution base mesh with Ax,,5, = 0.04D. The base
mesh is then increasingly and adaptively refined (by factors of 2) based on flow
simulations. We find good convergence with three levels of refinement, yielding the

finest resolution as Axf;,e = 0.005D. The equilibrium solution and AMR grid for



Spanwise Vorticity

Figure 4.11: Base flow for flow past two cylinders used in the structural stability
analysis. The main cylinder (large black circle) is centered around the origin, and the
control cylinder (small black circle) is centered around x./D = 1.2,and y./D = 0.7
with d/D = 0.1. The flow around the control cylinder is magnified.

Figure 4.12: Computational mesh for the stability analysis of the flow past a cylinder
with a control cylinder in the wake.

one of the configurations we study (x./D = 1.2, y./D = 0.7, Re = 63) are shown
in Figs. 4.11 and 4.12, respectively.

The resulting matrix form of LNSE has dimension 3 x 10° by 3 x 10%. We compute
the equilibrium using Newton iteration and the eigenvalues using an Arnoldi-type
method from SLEPc library (Hernandez, Roman, and Vidal, 2005) coupled with
MUMPS solver (Amestoy et al., 2001). For each case, the entire process took around
5 hours using a total of 96 cores. We also give the example of an unstable mode
found given x./D = 1.2, y./D = 0.7, and Re = 63 (Figure 4.13). The vortical
structures downstream of the cylinders illustrate the importance of using LGF to

create a compact domain to conduct the linear stability analysis.

We apply our linear stability solver to compute the eigenvalue spectra associated
with a variety of control cylinder positions. Specifically, we fix Re = 63 and the
x-coordinate of the center of the control cylinder at x, = 1.2D and vary the y-

coordinate, y., from 0.5D to 1.0D with 0.1D increments. The resulting eigenvalue



Figure 4.13: Unstable mode computed using the linear stability analysis.
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Figure 4.14: Distribution of eigenvalues of LNSE for various control cylinder
locations at x, = 1.2D and y. € {0.5D,0.6D,0.7D,0.8D,0.9D, D}. Because the
LNSE is a purely real system in this case and all eigenvalues will appear in complex
conjugate pairs, we only show the eigenvalues with positive imaginary parts.

spectra are shown in Figure 4.14. In this figure, the vertical axis is the real part of
the eigenvalues, indicating how fast a particular perturbation (i.e. a particular eigen-
vector) grows or decays. A positive real part indicates a growing perturbation, thus
an unstable equilibrium. If, on the contrary, all eigenvalues have negative real parts
for a particular equilibrium, all the perturbations will decay, and that equilibrium
is stable. From the eigenvalue spectra, we see that for y. € {0.5D,0.6D,0.7D},
eigenvalues with positive real parts exist, and the equilibria in those cases are not
stable, thus resulting in vortex shedding. In contrast, at y. € {0.8D,0.9D, D}, all
eigenvalues have negative real parts, indicating stable equilibria, and thus, the vortex
shedding is suppressed in those cases. The stability properties of those flows are

corroborated by interpolating the results from Strykowski and Sreenivasan (1990).
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Figure 4.15: Comparison of flow perturbation growth rates between estimates
from linear stability analysis and those from experimental data (Strykowski and
Sreenivasan, 1990) for Re = 63, fixed streamwise location of the control cylinder
x./D = 1.2, and varying horizontal location of the control cylinder. The growth
rates obtained from linear stability analysis agree with the experimentally measured
values.

According to their experimental measurements, at Re = 63 with the control cylinder
positioned at x, = 1.2D, y. = 0.75D, the flow is marginally stable. Moving the
control cylinder up will stabilize the flow and suppress the vortex shedding while
moving the control cylinder down will have the opposite effect. This dichotomy of
the stabilizing and destabilizing effects from the horizontal locations of the control

cylinder confirms the results of our linear stability analysis.

For a specific equilibrium, the growth rate of flow perturbations can be estimated
by the largest real part among all the real parts of eigenvalues associated with that
equilibrium. To compare our growth rate estimates with the experimental results
of Strykowski and Sreenivasan (1990), we non-dimensionalize all the eigenvalues
with D?/v and overlay the estimates of flow perturbation growth rates obtained from
our linear stability analysis to those obtained from the experimental measurements
(Strykowski and Sreenivasan, 1990) in Figure 4.15. This figure shows that the
estimated flow perturbation growth rates from the stability analyses agree with
those obtained from experimental measurements. Thus, the eigenvalues from linear

stability analysis accurately estimate the flow perturbation growth rates.

By investigating the relationship between the position of the control cylinder and the

onset of vortex shedding, this specific computational study highlights the efficiency
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of the AMR components in this algorithm when analyzing flows with a wide range
of scales and also the necessity of using LGF to obtain a compact computational

domain while maintaining accurate boundary conditions.

4.5 Conclusions

In this chapter, we introduced a fast algorithm for stability and resolvent analysis by
combining LGF, AMR, and FMM. This method conducts flow analysis by explicitly
constructing the spatially discretized linearized Navier-Stokes operator as a sparse
matrix. Using LGF, we were able to conduct such flow analysis on an infinite
domain while using a finite computational mesh; using FMM, we sparsified the
dense block of the LGF operator; using AMR, we can resolve all relevant scales

while maintaining computational efficiency.

To verify our algorithm, we investigated the stability of the flow past a rotating
cylinder. We were able to replicate results from the literature, namely one marginally
stable mode and one unstable mode in different flow configurations. We also
presented 2D resolvent analysis results for flow past a circle at Re = 100. The
corresponding resolvent norm, optimal input mode, and optimal response mode are
consistent with previous studies (Symon, 2018; Jin, Symon, and Illingworth, 2021).
Furthermore, we examined the suppression of vortex shedding on a cylinder via
the placement of a small control cylinder in its wake. We accurately resolved all
length scales posed by the problem and computed the growth rates that matched the
experimental measurements (Strykowski and Sreenivasan, 1990). The successful
application of IBLGF-AMR and O-FMM to stability and resolvent analysis yields
an efficient and scalable algorithm for flow analysis and opens up the possibility for

future work with more complex flows.
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Chapter 5

THE STARTING VORTICES GENERATED BY BODIES WITH
SHARP AND STRAIGHT EDGES IN A VISCOUS FLUID

This chapter is adapted from Sader et al. (2024). This is the first application of the
algorithm presented in Chapter 3. In this chapter, we use the numerical simulations
to validate the starting vortex theorem proposed by Pullin and Sader (2021).

5.1 Introduction

The flow generated by a thin airfoil that suddenly moves at finite angle-of-attack
has been widely studied over the last century (Prandtl, 1924; Wagner, 1924; Kaden,
1931; Anton, 1939; Anton, 1956; Rott, 1956; Wedemeyer, 1961; Blendermann,
1967; Pullin, 1978). A key characteristic of this flow is the generation of a ‘starting
vortex’ that is localized to the sharp trailing edge of the airfoil, immediately after
the plate starts to move. Proximity to the trailing edge causes the starting vortex
to exhibit self-similar behavior in time. This property has been utilized in its
calculation, based on inviscid theory, leading to the widely recognized rolled-up
vortex that moves approximately normal to the airfoil for small time (Kaden, 1931;
Anton, 1956; Pullin, 1978). This starting vortex has been confirmed using direct
numerical simulations (DNS) of the Navier-Stokes equations (Koumoutsakos and
Shiels, 1996; Krasny, 1991; Luchini and Tognaccini, 2002; Jones, 2003; Eldredge,
2007; Michelin and Llewellyn Smith, 2009; Nitsche and Xu, 2014; Xu and Nitsche,
2015; Luchini and Tognaccini, 2017; Xu, Nitsche, and Krasny, 2017) and physical
experiments (Pierce, 1961; Pullin and Perry, 1980; Auerbach, 1987).

Pullin and Sader (2021), henceforth denoted PS21, recently calculated the starting
vortex generated at the trailing edge of a flat plate that suddenly, and simultaneously,
translates and rotates; see Figure 5.1(a). This was achieved using an inviscid vortex
sheet formulation that invokes the Kutta condition at its trailing edge. The motion
of the flat plate was specified by two independent power-laws in time, m and p, such
that,

U(T) = UpT™, Q(T) = QoT?, 5.1

where U(T) and Q(T) are the translational and angular velocities of the plate, as

shown in Figure 5.1(a), Uy and € are the (constant and dimensional) translational
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Figure 5.1: Starting vortex generated by a flat plate that moves suddenly. (a)
Schematic showing the flat plate with its translational and angular velocities. The
x and y-components of the Cartesian frame are always parallel and perpendicular
to the plate, respectively; the origin is at the plate center (this differs from PS21).
(b) Phase plane for the starting vortices generated at the trailing (right) edge of the
plate for zero initial angle-of-attack, ap = 0, where m and p are the translational
and rotational power-laws in (5.1), respectively. Plate rotation is away from the
three-quarter-chord position, i.e., d # 1/2. The critical line (solid and diagonal blue
line) is (5.6). Nominal shapes of Type I, II and III vortices are illustrated (dashed
lines). Type I and II vortices are independent of 8 = Qpa /Uy, defined in (5.4),
whereas Type-III vortices are swept further downstream with decreasing £.

and angular velocity scales, respectively, and the dimensionless convective time is

r="Y (5.2)
a

Here, ¢ is the dimensional time, and a is the half-chord of the plate. The rotational

pivot position lies in the plane of the plate and is denoted by
X0

d ) (5.3)
a

where x( is its dimensional x-coordinate whose origin is at the plate center. Thus,
d =0, -1/2, and 1/2 correspond to rotation about the plate center, quarter-chord,
and three-quarter-chord positions, respectively. Importantly, the starting vortex is
derived in the small convective time limit, i.e., T — 0". The finite-time interval

over which it holds is addressed in this study.

In addition to the rolled-up vortex sheet whose center moves approximately normal
to the plate, designated a Type-I vortex by PS21, this recent study showed that two
additional vortex sheet types can arise at the trailing edge. The precise vortex type
depends on the relative values of the power laws, m and p. The first additional type

was termed a Type-II vortex sheet. It does not roll up, i.e., there is no vortex center,
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but moves strictly parallel to the plate while being convected downstream. That
is, the vortex sheet rotates synchronously with the plate; convection off the plate
surface dominates vortex self-induction. The second additional type was termed a
Type-III vortex and combines the features of Type I and II vortices. It exhibits the
competing effects of convection and vortex-sheet roll up, yet unlike Types I and II,
its shape depends on the relative magnitude of the angular and translational speeds
through the dimensionless ‘rotation parameter’,

= —. 5.4)

The shape of a Type-III vortex approaches that of Type II and I vortices as § — 0
and oo, respectively, i.e., when the respective plate motion is translation and rotation

dominated. The angle-of-attack of the plate can be expressed in terms of 3,
_ ﬁ 1+p
a(T) =ag+——T"7P, (5.5
1+p

where g is the initial angle of attack. Figure 5.1(b) summarizes the key finding
of PS21 for the trailing-edge vortex of a flat plate with zero initial angle-of-attack,
1.e., &g = 0. This shows that the vortex shape changes discontinuously as a critical
line in the (m, p)-phase plane is transversed. Type-III vortices constitute singular

solutions in the (m, p)-phase plane, that occur on the critical line,
1
m= 5(21? - 1), (5.6)

provided plate rotation is away from the three-quarter-chord position. For rotation
at this singular position, the critical line is m = 1 + 2p.

Hinton et al. (2024) generalized the study of PS21, enabling calculation of the
starting vortex at any ‘sharp and straight edge’ of an arbitrary solid body. A ‘sharp
and straight edge’ is one whose neighboring upper and lower surfaces are tangent to
one another at the edge, e.g., a flat plate has two such edges. Several findings were

reported:

1. The three vortex sheet types found for the trailing edge of a flat plate in PS21,
apply to the sharp and straight edges of an arbitrary body.

2. The phase diagram for the leading-edge vortex of a flat plate is identical to
Figure 5.1(b), except that (1) Type-II vortices do not exist, i.e., no vortex is
shed, and (2) the critical line is m = 1 + 2p for rotation about the plate’s

quarter-chord position.
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3. Translation of the sharp and straight edge of an arbitrary body, parallel and
normal to the neighboring surfaces of this edge, is the physical mechanism
that drives the starting vortex. For example, rotation of a flat plate about a

pivot position is a motion that generates the requisite edge translation.

4. Rotation of a flat plate can produce starting vortices of different types at
its leading and trailing edges (provided rotation occurs at either its quarter or
three-quarter-chord positions). This is not possible with pure plate translation.
This highlights a distinction between global motion of the solid body and local
translation of the edge under consideration.

5. The implication of point (ii), sub-point (1), is that the leading-edge vortex of a
flat plate can be naturally suppressed through control of the plate’s dynamics.
The relevance of this finding to low-speed aircraft that predominantly use thin

airfoils of low curvature, was discussed.

6. Explicit formulas for the lift experienced by a flat plate that is undergoing
simultaneous translation and rotation were derived. This required a new

treatment of the Bernoulli equation in a rotating frame.

7. The general theory was applied to Joukowski airfoils, highlighting its appli-
cability to bodies of arbitrary shape.

Here, we examine the existence of Type I, II, and III starting vortices in a viscous
fluid, for (1) a flat plate that is simultaneously translating and rotating, and (2) two
symmetric Joukowski airfoils that are translating in two orthogonal directions. This
is achieved using high-fidelity DNS of the Navier-Stokes equations in two spatial
dimensions, employing a lattice Green’s function (LGF) method that discretizes the
flow in the regions of finite vorticity only. This approach enables access to start-up

flows at high Reynolds number, i.e.,

U,
Re= S0 5 1, (5.7)
Vv

where the viscous boundary layer and starting vortex are only resolved in the im-
mediate vicinity of the solid body; v is the kinematic viscosity and c is the chord
of the body. This study primarily focuses on the flat plate where a comprehensive
analysis of vortex formation is reported. Of particular interest is the change in shape
of the starting vortices as the power laws of the plate motion, m and p, are varied.

We include a brief section on Joukowski airfoils to illustrate the utility of the theory
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reported by Hinton et al. (2024) in predicting the starting vortices of bodies with

more complicated shapes.

The chapter is organized as follows. We begin in Section 5.2 by outlining the
LGF/immersed boundary methodology used to numerically solve the Navier-Stokes
equations for a flat plate and the two Joukowski airfoils. A comprehensive analysis
of the vortices formed at the edges of a translating and rotating flat plate then follows.
This includes analytical formulas of the maximal time for the existence of its starting
vortices, which are derived in Section 5.3. These formulas are based on the inviscid
theory, which was first reported for the trailing edge of a flat plate in PS21 and later
extended to an arbitrary body with any number of edges by Hinton et al. (2024). This
collective theory is henceforth termed the ‘starting vortex inviscid theory’, which is
abbreviated to ‘SVT’. In Section 5.4, a detailed comparison of SVT and DNS for the
leading and trailing-edge vortices of a flat plate is reported. This employs the above-
mentioned maximal time for the existence of a starting vortex. This comparison
confirms the theoretical prediction of Hinton et al. (2024) that the leading-edge
vortex of a flat plate can be suppressed dynamically. Finally, the vortices formed
at the trailing edges of two symmetric Joukowski airfoils are briefly examined in
Section 5.5. This illustrates the utility of SVT in predicting the starting vortices of
bodies with more complex shapes. We conclude in Section 5.6 by summarizing the

key findings of this study with details of the calculations relegated to Appendix D.

5.2 Numerical method for solving the Navier-Stokes equations

The starting vortices generated by a flat plate and two Joukowski airfoils, immersed
in an incompressible and unbounded viscous fluid, are calculated using DNS of the
two-dimensional Navier-Stokes equations,

P
p(a—ltl+u-Vu):—VP+,uV2u, V.u=0, (5.8)

where p and u are the fluid density and shear viscosity, respectively, u is the
velocity field, and P is pressure. Eq. (5.8) is solved using an immersed boundary
method, combining (i) an LGF approach that tracks regions of finite vorticity, and
(i1) a uniform mesh with spatial computational domain adaptation. The immersed
boundary method enforces no-slip at the body’s surface, and the domain adaptation is
performed at each time step. Simulations, and hence discretizations, are performed
in the non-inertial frame of the moving body. The details of this algorithm can be
found in Chapter 3. This combined numerical method enables accurate simulation

of external and unbounded incompressible flows, by requiring discretizations in the
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Figure 5.2: Sample computational mesh (grey region) of the DNS for a flat plate
showing vorticity distribution (red and blue colors); m = 2, p = 0, d = 0 (rotation
about plate center), 8 = 3.175, Re = cUy/v = 5,040, where v and c are the
kinematic viscosity and plate chord, respectively, with uniform spatial discretization
Ax = 2.5 x 107*¢. (a) Snapshot of the entire computational domain for T = 0.060.
(b) Time evolution of the mesh near the trailing edge of the plate. The computational
mesh spatially adapts to discretize regions of finite vorticity only. The scale bar
applies to all plots. Further details are provided in Section 5.2.

regions of finite vorticity only. This involves a user-chosen vorticity threshold which

is varied until convergence is achieved, as discussed below.

An example of the computational mesh for a flat plate and its evolution in time
is given in Figure 5.2, showing it is confined to the immediate vicinity of the
plate. The flow in the undiscretized region can be computed analytically using
results from the discretized region, if needed. This is not required here, because
we are only interested in regions of finite vorticity. This numerical approach results
in a dramatic improvement in computational efficiency relative to other methods
that require complete discretization of the flow domain. Consequently, the present
methodology is ideally suited to start-up problems, where vorticity generation occurs

at the solid surfaces.

We focus on assessing the validity of SVT. Thus, the simulation parameters are
chosen using the following procedure. First, we compute the flow for a relatively
low Reynolds number, Re ~ 1,000. The Reynolds number is then systematically
increased until viscous diffusion is small enough to study the vortical structures,
given available computational resources. Spatial discretization is simultaneously
increased to minimize numerical diffusion and ensure negligible numerical artifacts.

The time step-size is chosen to maintain linear stability of the time marching. The



104

chosen vorticity cut-off threshold for meshing is 0.001% of the maximum vorticity;
this is varied to ensure convergence. This threshold value is in accord with Liska

and Colonius (2017) that showed it is sufficiently small for accurate flow simulation.

For further details of the numerical algorithm used in this study, the reader is referred
to Liska and Colonius (2017), Yu, Dorschner, and Colonius (2022), and Hou and
Colonius (2024a).

5.3 Maximal time for the existence of the starting vortices generated by a flat
plate

Next, we use SVT to calculate the maximal time that vortices conforming to the

Type I, II, and III description can exist at the trailing and leading edges of a flat plate.

An initial angle-of-attack of @y = 0, and plate rotation away from its quarter-chord

and three-quarter-chord positions, i.e., d # +1/2, are assumed. A similar analysis

can be performed for @g # 0 and d = +1/2 (not shown).

We first analyze the vortex sheet at the trailing edge, which is given by
Xy +iy, =aTiZ(Q), (5.9)

where x, and y, are (dimensional) Cartesian coordinates referenced to the trailing
edge, g is the vortex power-law defined in Table 1 of PS21, i is the imaginary unit,

with the governing equation for the self-similar vortex shape, Z(1), being

_ dz 5 1+M(Z
Ta-1 (qz+ (2 +p) (1 —/1)—) =T7" —i,BTp_%+—(l), (5.10)
2 da (22)2
where
1
1 1
R 1 ][(zl 7t 7 Z’l)dﬂ/
ﬁzﬁ(i‘d)’ M(z) = 2—fm bt At (5

i 1
1 + —-,1 /l
0 VAR AL

and Z’ = Z(A’); all other symbols are identical to those in PS21. Eq. (5.10) is
obtained by substituting (3.1) into the Birkhoff-Rott equation that defines the vortex
sheet emanating from the sharp edge that is required to enforce the Kutta condition.
It is obtained from equations (4.1), (4.4), (5.1), (5.2), and (5.4) of PS21, where
A is the similarity variable that varies monotonically from O to 1 along the vortex
sheet. Type I, II, and III vortices arise when the left-hand side of (5.10) balances

the second, first, and both terms on its right-hand side, respectively, as T — 07.



105

In arriving at (5.10), a small-time expansion of the trigonometric functions in
Eq. (4.4) of PS21 is performed, which is valid provided

B g . (5.12)

1+p

Specifying a multiplicative factor, 0 < 6 < 1, for (5.12) to hold, gives the maximal

sli—da T+p
Tk ~ (%) : (5.13)

for which (5.10) is valid; where we have used the approximation, (1 + p)"/(+P) ~ |

time,

for all p > 0. Because Type-III vortices arise when both terms in the right-hand
side of (5.10) balance, (5.13) sets the maximal time for which this vortex type
exists; the constraint in (5.13) also applies to all vortex types. This is provided
the vortex remains close to the plate’s sharp and straight trailing edge, which is an
overriding assumption of the theory; this spatial condition applies to any solid body
with sharp and straight edges. Note that all starting vortices obey the self-similar
form described by (5.9).

Type I and II vortices arise when one term on the right-hand side of (5.10) dominates
the other, as discussed above. This provides an additional constraint on the maximal
time for which Type I and II vortices exist (derived in Appendix D),

L

T2 ~ ( Bgsgn@&) o (5.14)

where
2p—1

3 b
with Type I and II vortices corresponding to € # 0. Combining (5.13) and (5.14)

(5.15)

E=mM—

gives the overall maximal time for a starting-vortex type to exist at the trailing edge

of a flat plate,

1
1_\™r /. &
min{(é[zﬁ ] ) , (B%Sg“(f)é) . } , Type I and I vortices
e ;
1+p

1_
( % ) , Type-III vortices

(5.16)

provided the vortex remains spatially close to the edge. The corresponding expres-
sion for the leading-edge vortex is obtained by replacing 1/2—d — 1/2+d in (5.16)
and in the definition of 3 in (5.11). This is because their governing equations are of
identical form (Hinton et al., 2024).
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Figure 5.3: Regions of the (m, p)-phase plane where Type I, IT and III vortices of a
flat plate exist for 0 < T" < Topg, using two choices of Tops = 0.01 (first row) and 0.1
(second row); left column (,3 = 0.5) and right column (,@ = 2). The shaded (green)
regions correspond to parameter values, (m, p), where the (small time) starting
vortices—obeying the self-similar form described by (5.9)—are expected to hold at
the given observation time, T,,s. Results given for rotation about the plate center,
d = 0, and a nominal multiplicative factor of 6 = 0.1(< 1) in (5.16). Type-I like
and Type-III like vortices are not self-similar, but have shapes resembling those of
Type I and III vortices, respectively.

To illustrate the utility of (5.16), we use it to determine regions of the (m, p)-phase
plane where each vortex type exists, over an observation time, 0 < T < Tops.
This requires Tops < Tmax, Where T,y is defined in (5.16). Figure 5.3 gives these
regions for plate rotation about its center, d = 0, observation times of Typs = 0.01
and 0.1, and rotation parameters of 8 = 0.5 and 2, using a nominal value of
6 = 0.1(x 1). The diagonal (green) boundaries—within which Type I and II
vortices exist (specified by (5.14))—approach the critical (red) line, € = 0, as Tops
is reduced. Thus, Figure 5.3 shows that in any finite-time simulation or physical
measurement, Type I and II vortices can only be observed away from this critical
line, ¢ = 0. The horizontal (green) boundary in the bottom right-hand plot of
Figure 5.3 is due to (5.13), and specifies the limit where the governing equation,
(5.10), applies. Type-III vortices always occur on the critical (red) line, € = 0,

for the chosen values of Tqyg; increasing Tops further can and does eliminate this
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finding. Type-III like (non-similarity) vortices exist in the (white) regions between
the diagonal green boundaries, because the first and second terms in the right-hand
side of (5.10) are comparable in those regions. Type-I like (non-similarity) vortices

exist in the white region below the horizontal green boundary.

These findings and (5.16) are used in the next section to guide a quantitative com-
parison of SVT with the DNS.

5.4 Direct numerical simulations of a flat plate

High-fidelity DNS are performed to resolve the starting vortices generated at the
edges of a flat plate at their required small times, i.e., T < Tiax, Where possible.
Results are reported for Reynolds numbers ranging from Re = 5,040 to 45,255. The
maximal values of the Reynolds numbers are limited by available computational
resources, and are used in the comparison with SVT. We focus on a zero initial
angle-of-attack, ag = 0, for which SVT predicts that all three vortex types can
exist. The majority of results are reported for rotation about the plate center, i.e.,
d = 0. Two sets of results are reported for rotation about the quarter-chord and
three-quarter-chord positions of the plate, i.e., d = —1/2 and +1/2, respectively.
The latter cases explore the theoretical prediction of SVT that vortices of different

types can occur at the leading and trailing edges (Hinton et al., 2024).

All plots are presented in the frame of the flat plate. In all cases, vortices from
SVT are plotted in their similarity scale, i.e., they do not appear to change size with
increasing time. Instead, the corresponding spatial scale bar, referenced to the plate
chord, c, varies with time and is reported in each figure. Table 5.1 summarizes the

plate and DNS parameters used.

5.4.1 Type-I vortices

We first explore two cases for which SVT predicts Type-I vortices.

5411 m=2,p=0,d=0

Figure 5.4 provides a comparison of the DNS with the predictions of SVT, for the
time power-laws, m = 2 and p = 0, and rotation about the plate center, d = 0. This
corresponds to the plate undergoing a smooth accelerating translation from rest,
with its rotational velocity starting abruptly at 7 = 0. SVT predicts that the time

evolution of Type-I vortices depends explicitly on the rescaled time, 8 T—rather
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Vortex type m p d Re Ax/c

I 2 0 0 5,040 ?65—4 X
I 0 0 0 8,000 %(')5_4 %
1 0 2 0 32,000 }62-54 X
I 0 05 0 32,000 162—54 X
T 1 2 0 45,255 }(')2_3 %
TI-1T 1 2 0.5 45255 isz X
None-lI 1 2 0.5 45255 162—54 %

Table 5.1: DNS parameters used for the flat plate. Starting-vortex type, as predicted
by SVT, is in the first column. For d = +0.5, vortices generated at the leading
edge (LE) and trailing edge (TE) are specified using the format: LE-TE. Reynolds
number, Re, and spatial discretization, Ax/c, used in each simulation are listed. The
two symmetric Joukowski airfoils employ Ax/c = 2.5 x 107 and Re = 8,000.

than 7" alone—which from (5.2) and (5.4) gives
BT = Q[ - d)r. (5.17)

That is, the evolution of Type-I starting vortices depends only on the plate rotation
(not its translation). This feature is evident in Figure 5.4, because (1) the vortices
predicted by SVT are precisely antisymmetric (by construction), and (2) the level of
agreement between the SVT and DNS is identical at the leading and trailing edges.

This finding is expected for rotation-dominated motion about the plate center.

For the smallest rescaled time of 8T = 0.012—see top row of Figure 5.4—agreement
between the SVT and DNS is observed. This is despite the DNS vortices diffusing
to a greater extent with decreasing 8 and increasing time, T, as expected. However,
the level of agreement decreases with increasing 3 T'; see middle and bottom rows of
Figure 5.4. This is due to deterioration of the approximation in (5.12) that underlies
the governing equation in (5.10). Indeed, for m = 2, p = 0 with 6 = 0.1 (as chosen
in Section 5.3), (5.16) gives f Tmax = AT Y ~ 0.05, which is similar to AT = 0.048
in the bottom row of Figure 5.4. This establishes that SVT is near the limit of its
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T=0.015 T=0.030 T=10.060

BT=0012 F—#—Q 6_,,_;@) 6_”_2 0.¢
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Figure 5.4: Flat plate. Type-I vortex: m = 2, p = 0, and d = 0 for Re = 5,040.
Comparison of DNS (colored vorticity plots) with SVT (solid black lines), showing
leading (left) and trailing (right) edges. The leading and trailing edges are at the
ends of the green horizontal lines. The central section of the plate is not shown. Red
and blue colors denote DNS vorticity regions of opposite sign. The color thresholds
to white when the vorticity magnitude is less than 1% of the maximum value; this
applies to all figures in this study. Scale bars of one-tenth of a chord length, i.e.,
0.1c, are given.

T=0.015 T=0030 T=0.060

BT =

0.012 (0.66,0.70) (0.32,0.35) (0.16,0.17)
BT = (17.18)  (083.088) (0.41,0.44)
0.024 S 83, 0. 41,0.
BT =

0.048 (4.2,44)  (2.1,2.2) (1.0, 1.1)

Table 5.2: Flat plate. Type-I vortex: m = 2, p = 0, and d = 0 for Re = 5,040.
Total dimensionless circulation, Ty = T'g/(Upa), in the trailing-edge vortex for the
plots reported in Figure 5.4. Comparison of results for I'y obtained by integrating
the DNS vorticity distributions (first entry in parentheses) to the predictions of SVT
(second entry in parentheses).
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. . LGF mesh boundary
second spatial region

first spatial region

flat plate

Figure 5.5: Flat plate. Type-I vortex: m = 2, p = 0, and d = O for Re =
5,040. DNS vorticity distribution in the trailing-edge wake region for T = 0.048
and T = 0.015, also plotted in the lower left-hand corner of Figure 5.4. (a) Three-
dimensional perspective plot of vorticity distribution showing the trailing-edge wake
and the vorticity distribution along the plate. Vorticity data is smoothed using a
3-point moving average across neighboring grid points in the direction parallel to
the plate. (b) Segmentation of the wake region into two distinct spatial regions
described in the text. The mesh boundary indicated is automatically generated by
the LGF procedure; see Figure 5.2.

validity when BT = 0.048, which causes a departure from the self-similar structure

of the starting vortex.

Table 5.2 reports the total circulation, I'g, in the trailing-edge vortex for all plots
in Figure 5.4. Results obtained from SVT (using equations (2.13) and (2.17) of
Hinton et al. (2024)) and those obtained by numerically integrating the vorticity
distributions of the DNS are reported. This integration is performed by segmenting
the wake region into two regions: (1) the half space to the right of the plate’s trailing
edge, and (2) the spatial region to the left of this half space that omits the shear
layer adjacent to the plate and the leading edge vortex. Figure 5.5 gives an example
of this segmentation. There is an integrable singularity in the vorticity distribution
at the plate’s edge due to the sudden change in boundary condition from no-slip to
free flow. This singularity does not significantly contribute to the total circulation.
Agreement between SVT and DNS is observed throughout. Similar agreement is
observed for the leading-edge vortex, as may be expected by symmetry (data not

shown).



111

The results in Figure 5.4 and Table 5.2 collectively demonstrate the robustness of
SVT in accurately predicting both the qualitative (shape) and quantitative (total

circulation) features of the starting vortex.

5412 m=0,p=0,d=0

Figure 5.6 gives results for the trailing-edge vortex when m = p = 0. In contrast
to Section 5.4.1.1, the plate undergoes an abrupt translational motion (in addition
to an abrupt rotational motion) at 7 = 0. SVT also predicts a Type-I vortex to
exist. However, the comparison in Figure 5.6 shows poor agreement in the vortex
shapes between SVT and the DNS, even for the smallest time of 7 = 0.018. This
is in contrast to the results in Figure 5.4, for m = 2 and p = 0, where agreement is

observed for much longer times.

This difference is due to proximity of m = p = 0 to the critical line, € = 0, in the
(m, p)-phase plane; as detailed in Section 5.3. For the parameters considered here,
(5.16) gives Thax = Tn%)x ~2.5x%107*. The computed times, 7', in Figure 5.6 exceed
this value by 2 to 3 orders of magnitude. This establishes that Type-I vortices are not
expected in the DNS at the times shown, and indeed are not observed. This feature
is due to strong competition between the two terms on the right-hand side of (5.10),
which leads to simultaneous roll-up and convection of the starting vortex. The
(observed) DNS vortex is not self similar but is a Type-III like vortex, as defined in
Section 5.3. Itis not possible to resolve the starting vortex for T < Tipx = 2.5 X 10~
with our available computational resources. Despite these differences in vortex
shape, the total circulation in the trailing-edge vortex is well predicted by SVT,
except for the largest time of 7 = 0.192; see Table 5.3.

In contrast to the trailing-edge vortex, the leading-edge vortex exhibits a Kelvin-
Helmholtz instability (data not shown). Thus, by replacing the smooth plate ac-
celeration in Section 5.4.1.1 (m = 2) with an abrupt one here (m = 0), fore-aft
antisymmetry in the DNS breaks. This is despite SVT predicting antisymmetry in
the leading and trailing-edge vortices for T < Ty, as in Section 5.4.1.1. We refrain
from comparing the leading-edge vortex to SVT, because this theory is outside its

regime of validity, as detailed above.

5.4.2 Type-II vortices
Next, we switch the time power-laws of m and p used in Section 5.4.1.1. That is,

we now choose m = 0 and p = 2, for which Table 1 of PS21 predicts a Type-II
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T=0.018 T=0.048 T=0.096 T=0.192
0.1c 0.1¢ 0.1¢ 0.1¢

Figure 5.6: Flat plate. Type-I vortex: m =0, p =0,d =0, 8 = 1, and Re = 8,000.
Description as for Figure 5.4.

T=0018 T=0048 T=0.096 T=0.192
(0.93,1.0) (1.3,1.4)  (1.8,1.8)  (2.7,2.2)

Table 5.3: Flat plate. Type-I vortex: m = 0,p=0,d=0, ,é =1, and Re = 8,000.
Total dimensionless circulation, I'y = I'g/(Upa), in the trailing-edge vortex for the
plots reported in Figure 5.6. Description as per Table 5.2.

trailing-edge vortex sheet, 1.e., it does not roll up. Hinton et al. (2024) predicts no
starting vortex to occur at the leading edge. A Type-II vortex is yet to be observed

in a (real) viscous fluid, whether it be DNS or physical experiment.

5421 m=0,p=2,d=0

Figure 5.7 gives DNS viscous flows generated at the leading and trailing edges, for
m =0, p=2,d=0, with Re =32,000. A higher Reynolds number is possible here
because vorticity is tightly confined to the plane of the flat plate; the LGF method
discretizes the regions of finite vorticity only. Agreement is observed between SVT
and the DNS. As predicted by SVT, the trailing-edge vortex moves downstream
and parallel to the plate at small time, T = 0.096. The spatial extent of the DNS
trailing-edge vortex precisely matches that of SVT. Also as predicted by SVT, no
starting vortex is observed at the leading edge. Instead, flow at the leading edge

resembles a classical Blasius boundary layer with downstream thickening.

Increasing time beyond 7' = 0.096, produces some discrepancy between SVT and
the DNS. The greatest difference occurs in the right-hand column of Figure 5.7, for
the largest value of 3 = 0.25. A plate rotation of @ = 0.54° exists here, which is
incommensurately small relative to the observed vertical displacement of the wake.
This does not explain the observed deviation. Instead, (5.16) predicts a maximal
time of Tinax = Télza)x ~ 0.25 for B = 0.25, which is smaller than the observation time

of T = 0.384. Thus, SVT is outside of its regime of validity, and a Type-III-like
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Figure 5.7: Flat plate. Type-II vortex: m = 0, p = 2, and d = 0 for Re = 32,000.
Description as for Figure 5.4.

vortex is expected as per Section 5.3; consistent with the observed discrepancy.

Note that Tpax = T2 ~ 0.4 and 0.63 for 4 = 0.125 and 0.0625, respectively. Thus,
SVT is on the edge of validity for ,@ = 0.125 (Thhax = T = 0.384), whereas it is
valid for ,3 = 0.0625 (T < Tax). This is also consistent with the observed level of
agreement in the right-hand column of Figure 5.7.

5.4.2.2 Vorticity distribution in the trailing-edge wake

We note from Figure 5.7 that the DNS vorticity distributions in the trailing-edge
wake consist of two distinct spatial regions. These contain apparently antisymmet-
ric vorticity distributions (of opposite sign); generated by shear layers on opposite
sides of the flat plate being swept downstream. However, SVT predicts a distinct
asymmetry in the singular vorticity distribution, i.e., a nonzero velocity jump oc-
curs across the vortex sheet. Figure 5.8(a) explores this prediction by plotting the
vorticity distribution, w, across the DNS trailing-edge wake; for the smallest time
and rotational parameter reported in Figure 5.7. The magnitude of the vorticity
decreases in the streamwise direction, as expected. SVT in (5.18) predicts that the
wake will terminate at x = 0.548c¢, and this is clear in Figure 5.8(a). The data also
shows that the vorticity distribution is not precisely antisymmetric about the plane

of the plate, y = 0; a slight asymmetry about the vertical axis is evident.

To make a quantitative comparison with SVT, the DNS vorticity distributions (as
in Figure 5.8(a)) are numerically integrated across the wake, i.e., in the y-direction.
This produces the velocity jump across the wake, y, which is reported in Figure 5.8(b)

together with the prediction of SVT form =0 and p =2,

<x<

y _8V2, Z)ET_l)7 (1+7), (5.18)

3
L =227 (1 -
TR

N —

1
’ 2



114

Vorticity distribution 0.006
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Figure 5.8: Flat plate. Type-II vortex: m = 0, p = 2, and d = O for Re =
32,000; for T = 0.096 and 3 = 0.0625 (top left-hand entry of Figure 5.7). (a)
Dimensionless vorticity distribution, cw/U), plotted across the trailing-edge wake
at the spatial positions, x/c = 0.51, 0.52, 0.53, 0.54, 0.548; the last position is the
end of the trailing-edge vortex as per (5.18), and the trailing edge is at x /¢ = 0.5; see
Figure 5.1. (b) Dimensionless velocity jump, y /Uy, across the trailing-edge vortex.
DNS is evaluated by numerically integrating the vorticity distribution, w, across the
wake. SVT for y /Uy is (5.18). Note that the chord length, ¢ = 2a.

where X = x/c is dimensionless. This formula is obtained from equations (2.33)
and (3.4) of Hinton et al. (2024); x = 0 and ¥ = 1/2 correspond to the center
and trailing-edge of the plate, respectively. Agreement of (5.18) with the DNS is
observed, in spite of a very slight vorticity asymmetry; see Figure 5.8(b). Similar
agreement is obtained for all cases reported in Figure 5.7, with the discrepancy
in the velocity jump, vy, increasing slightly with increasing time (data not shown).
Interestingly, the level of agreement is independent of 3 for fixed time, T, indicating
that the rotational characteristics of the plate motion are decoupled from those of its
translation. Integrating (5.18) over the spatial extent of the trailing-edge wake gives

its total circulation,

I 16V2 ,_ s

— = ——BT2, 5.19

an 15 lB ( )
which is compared to the DNS in Table 5.4, for all cases reported in Figure 5.7.
Agreement is again observed. Eq. (5.19) is also recovered from Eq. (2.31) of Hinton

et al. (2024).

These results provide evidence for the robustness and accuracy of SVT. It not only
predicts the vortex shapes, but also the detailed quantitative characteristics of the

flow. We remind the reader that SVT calculates the flow dynamics without any
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T =0.096 T=0.192 T =0.384

B=00625 (2.6,2.7)x10™* (1.6,1.5)x1073 (9.6,8.6)x1073
B=0.125 (5.3,5.4)x107* (3.1,3.00x1073 (1.9,1.7)x1072
B=0.25 (1.1,1.1)x1073  (6.2,6.1)x1073  (3.9,3.4)x1072

Table 5.4: Flat plate. Type-II vortex: m = 0, p = 2, and d = 0 for Re = 32,000.
Total dimensionless circulation, I'g = I'y/(Upa), in the trailing-edge vortex for the
plots reported in Figure 5.7. Description as per Table 5.2.

reference to viscosity. Even so, the requisite properties of the vorticity distribution

are accurately captured.

5.4.3 Type-III vortices

Finally, we explore another starting-vortex sheet type that was reported in PS21.
The Type-III vortex sheet combines the features of Type I and II vortices, with roll
up and convection downstream. Unlike the other vortex types, the shape of Type-III

vortices depends on the rotation parameter, S, as discussed above.

5431 m=0,p=05,d=0

Figure 5.9 shows results for m = 0, p = 0.5, d = 0 at Re = 32,000. SVT predicts
Type-1II vortices at both leading and trailing-edges of the plate. Agreement with
SVT is observed in Figure 5.9 for the trailing-edge vortex at the smallest time,
T =0.048. Eq. (5.16) gives Thax = TI;L)X ~ 0.68, 0.43, 0.27 for B = 0.177, 0.354,
0.707, respectively; these values also apply to the leading-edge vortex (which is
explored below). Thus, we find that T < Tpax for all cases in Figure 5.9, though
results in the middle and bottom rows of the right-hand column are closest to
SVT’s limit of validity. Again, this is precisely where the greatest discrepancies
are observed. Note that these vortices are no longer near the trailing edge. This
further limits the validity of SVT, which is consistent with an increase in the level of
disagreement. Table 5.5 reports results for the total circulation in the trailing-edge
vortex, obtained from the SVT and DNS. The level of agreement is commensurate

with the above discussion.

The leading-edge vortex, in contrast, exhibits the opposite trend, with the level
of agreement increasing with increasing time, 7. The reason for this seemingly
counter-intuitive trend appears connected to the observation that the leading-edge
vortex interacts strongly with the shear layer at the plate surface. The thickness

of the shear layer is easily discerned from Figure 5.9; see the region downstream
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Figure 5.9: Flat plate. Type-III vortex: m =0, p = 0.5, and d = 0 for Re = 32,000.
Description as for Figure 5.4.

0.025¢

_—

T=0.195
B =0.707

Figure 5.10: Flat plate. Zoomed-in version of leading-edge vortex in bottom right-
hand plot of Figure 5.9; m =0, p = 0.5, d = 0 at Re = 32,000.

T =0.048 T =0.096 T =0.195

B=0177 (1.9,1,9)x1072 (4.0,3.8)x1072 (8.9,7.7)x1072
B=0.354 (4.0,3.9)x1072 (8.3,7.7)x1072 (1.8,1.6)x107!
B=0.707 (8.5,82)x107% (1.8,1.6)x107" (4.1,3.3)x107!

Table 5.5: Flat plate. Type-III vortex: m =0, p = 0.5, and d = 0 for Re = 32,000.
Total dimensionless circulation, I'y = I'g/(Upa), in the trailing-edge vortex for the
plots reported in Figure 5.9. Description as per Table 5.2.

from the leading-edge vortex. This interaction distorts the leading-edge vortex and
appears to sweep it downstream—producing an elongated vortex relative to SVT
and a secondary separation; see Figure 5.10. As time evolves, the leading-edge
vortex also moves perpendicular to the plate. This weakens its interaction with the
shear layer at the plate. The vortex is then observed to approach what is expected
from SVT. Unlike the trailing-edge vortex, the leading-edge vortex remains close
to its edge for all reported times, enabling a greater level of agreement with SVT
at larger times. The Reynolds number of Re = 32,000 used in these simulations is
evidently not sufficiently high to restrict interaction of the leading-edge vortex with

the shear layer at the plate, at the smaller times. Available computational resources
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Figure 5.11: Flat plate. Type-IlI vortex: m =1, p = 2, and d = 0 for Re = 45,255.
Description as for Figure 5.4.

T=0.318 T =0.451 T =0.636

B=0177 (79,7.7)x1073 (2.4,2.2)x107> (7.3,6.2)x1072
B=0354 (1.7,1.9)x1072 (5.0,5.5)x107> (1.6,1.6)x107!
B=0.707 (3.8,49)x1072 (1.2,1.4)x107" (3.8,3.9)x107!

Table 5.6: Flat plate. Type-III vortex: m = 1, p = 2, and d = 0 for Re = 45,255.
Total dimensionless circulation, I'y = I'yg/(Upa), in the trailing-edge vortex for the
plots reported in Figure 5.11. Description as per Table 5.2.

do not permit simulations at higher Re. We refrain from reporting results for the
total circulation in the leading-edge vortex due to its strong overlap with the plate’s
shear layer. This complicates the numerical separation of vorticity contributions
from the leading-edge vortex and the plate’s shear layer, e.g., using the procedure

illustrated in Figure 5.5 or a variant.

5432 m=1,p=2,d=0

Figure 5.11 gives a similar comparison for m = 1, p = 2, d = 0 at Re = 45,255,
for which SVT also predicts Type-III vortices. In this case, (5.16) gives Tax =
7D~ 0.82,0.66, 0.52 for A = 0.177, 0.354, 0.707, respectively, for both leading
and trailing edges. Thus, again we have T < Tpax for all results in Figure 5.11. This
indicates that SVT holds throughout, provided the vortex stays close to the edge in
question. Agreement is observed for the trailing-edge vortices in Figure 5.11, except
for the longest time, 7 = 0.636, which coincides with these vortices not being near

the plate (spatial proximity to the edge is required for SVT to hold).

Interestingly, the discrepancy between SVT and the DNS for the leading-edge vor-

tices is smaller than that observed in Section 5.4.3.1. The leading-edge vortices in
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Figure 5.12: Flat plate. Different vortex types at leading and trailing edges: m = 1,
p =2,68=0.707, and d = +1/2 for Re = 45,255. Results for d = 0 correspond
to 8 = /2 = 0.354 and are given in the middle row of Figure 5.11. Remainder of
description as for Figure 5.4.

Figure 5.11 are further from the plate relative to Figure 5.9, which decreases their
interaction with the plate’s shear layer. This is consistent with the better level of

agreement between SVT and DNS relative to Section 5.4.3.1.

Table 5.6 gives corresponding results for the total circulation in the trailing-edge
vortex. Agreement between SVT and DNS is again observed, except for 8 = 0.707
and 7 = 0.318. Thisis not expected at first sight because it occurs at the smallest time
studied, where SVT is predicted to be valid; see above. However, the corresponding
DNS trailing-edge vortex in the bottom left-hand plot of Figure 5.11 does not exhibit
the significant vortex core present at larger times, and it displays a strong level of
diffusion. In contrast, SVT predicts the vortex to have the same shape at all times.
The observed diffusion in the DNS vortex may contribute to this difference in total
circulation. Resolved DNS at higher Reynolds numbers are limited by available

computational resources.

5433 m=1,p=2,d==1/2

Using SVT, Hinton et al. (2024) predicted that plate rotation about either its quarter-
chord and three-quarter-chord positions, i.e., d = +1/2, can produce vortices of
different types at the leading and trailing edges. Figure 5.12 shows a comparison of

this inviscid prediction to the DNS.

In line with Hinton et al. (2024), plate rotation about the three-quarter-chord posi-
tion, d = 1/2, produces Type III and II vortices at the leading and trailing edges,
respectively. Moreover, the level of agreement between SVT and the DNS as time
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T =0.318 T =0.636

d=3 (7.9,8.2)x10™*  (2.2,2.6)x1072
d (3.6,4.9)x1072  (3.3,3.9)x107!

Table 5.7: Flat plate. Total dimensionless circulation, Ty = T'y/(Upa), in the
trailing-edge vortex for the plots reported in Figure 5.12. Description as per Ta-
ble 5.2.

evolves, is commensurate with the discussion in the previous sections. Note that the

theory in Section 5.3 for Tiax does not apply to cases where d = +1/2, as discussed.

Plate rotation about the quarter-chord position, d = —1/2, completely suppresses
the leading-edge vortex at the smaller time of 7 = 0.318 in Figure 5.12. This again
agrees with the prediction of SVT. Doubling the measurement time to 7 = 0.636
produces a small separation bubble at the leading edge. This corresponds to an
instantaneous angle-of-attack of @ =~ 3.5°, which further highlights the robustness
of SVT and the utility of calculating the starting vortices. The trailing edge generates
a Type-III vortex, again in agreement with SVT, the agreement is superior for the
smaller time, as expected. Note that the SVT trailing-edge vortices for d = —1/2
(bottom row of Figure 5.12) are identical to those reported in the bottom row of
Figure 5.11; the corresponding DNS trailing-edge vortices are also similar in form.
This validation of SVT reinforces its implications to the airfoil design of low-speed
aircraft, such as MAVs and UAVs, which were discussed in Hinton et al. (2024).
Dynamic suppression of the leading-edge vortex can also affect thrust generation in
flapping wings (Alben, 2010; Fang et al., 2017; Heydari and Kanso, 2021).

The corresponding total circulations in the trailing-edge vortices are reported in
Table 5.7. Agreement is again observed, with a larger discrepancy in the bottom
left-hand entry of Table 5.7. This again coincides with significant diffusion in
the DNS trailing-edge vortex in the bottom-left-hand entry of Figure 5.12; see
previous paragraph and the corresponding discussion at end of Section 5.4.3.2 for

an explanation of this discrepancy.

5.5 Joukowski airfoil

We conclude our study by considering the Joukowski airfoil which was studied in
Section 3.5 of Hinton et al. (2024). The purpose is to assess the utility of SVT to
an airfoil of more complex shape. Two symmetric Joukowski airfoils of different

thickness are considered. The first is relatively thin with a Joukowski parameter
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Figure 5.13: The two symmetric Joukowski airfoils considered in this study. Each
has a sharp and straight trailing edge, which is evident by their upper and lower
surfaces being tangent at the trailing edge. The Joukowski parameter, R, is defined
in Eq. (3.29) of Hinton et al. (2024) and specifies the airfoil thickness.

of R = 1.1, and is streamlined. The second is deliberately chosen to be bluff
in its cross-section, with R = 1.5. Illustrations of these two airfoils are given in
Figure 5.13.

5.5.1 Starting vortex inviscid theory
In line with Section 3.5 of Hinton et al. (2024), the airfoil does not rotate but
instead translates in two orthogonal directions with independent power-laws in time.

Specifically, each airfoil moves with the following velocity components,
U(T) = UyVT™, V(T) = UyWT", (5.20)

where U and V are the velocity components parallel and perpendicular to the airfoil’s
symmetric axis, respectively, Uy is the dimensional velocity scale, V and ‘W are
dimensionless positive constants that control the relative magnitudes of the velocity

components, and the translational power-laws are m,n > 0.

We focus on the case of m = 0 and n = 2 reported in Section 3.5.1 of Hinton et al.
(2024). SVT predicts that Type-II vortices form at the trailing-edge. Analytical
formulas for the spatial extent of the trailing-edge vortex, the velocity jump across

the trailing-edge vortex, and its total circulation are given by

3
y 82 x 2 R 3
— =—111- —WTz2, 0<x< Xs 5.21
Uo 3 ( xmax) % X = Xma ( a)
I 16V2 5
To _16V2 [V 05 (5.21b)
Upa 15 R
where the (dimensional) spatial extent of the wake is
VT
Xmax = 7(1, (5.22)

and a is the half-chord of a Joukowski airfoil with R = 1; x = 0 corresponds to the

trailing edge of the Joukowski airfoil (this differs from the origin of the flat plate
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Figure 5.14: Joukowski airfoils. Type-II vortex: m =0, n =2,V =1, W = 0.25,
for Re = 8,000; here c is the chord of the airfoil. Leading (left) and trailing (right)
edges of the airfoils are shown. Description as for Figure 5.4.

Ty = I/ (Uoa)

53_1‘;10.3) X (5.0,5.8)x10%  (3.0,3.3)x102

R=15 (8.9,93)x107* (5.2,5.3)x107® (3.0,3.0)x1072

R=1.1

Table 5.8: Joukowski airfoil. Total dimensionless circulation, Iy = I /(Upa), in
the trailing-edge vortex for the respective plots reported in Figure 5.14; where a is
the half-chord of a Joukowski airfoil for R = 1. The entry positions in this table (and
corresponding times, 7') coincide with Figure 5.14. Description as per Table 5.2.

above). Note that the chord length of the symmetric Joukwoski airfoil defined in
Eq. (3.29) of Hinton et al. (2024) is

_2R?
Cc = 2R_1a.

(5.23)

The dimensionless time, 7', is as defined in (5.2).

5.5.2 Direct numerical simulations
Figure 5.14 shows a comparison of the trailing-edge vortex calculated using SVT
with the DNS; simulation parameters are reported in the caption of Table 5.1.

Agreement in the spatial extent of this vortex is observed especially for R = 1.1.
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Some discrepancy emerges when the airfoil’s finite thickness (upstream from its
trailing edge) becomes visible in the plots. In these cases, the wake’s spatial extent
exceeds that of the straight trailing-edge and the vortex cannot be considered close
to a ‘sharp and straight edge’ (see definition in Section 5.1). This is a fundamental
constraint of SVT and is consistent with the discrepancies observed in the second
row of Figure 5.14. Increasing the Reynolds above Re = 8,000 results in separation
upstream of the trailing edge for R = 1.5 (near the maximum width of the airfoil),

which complicates further numerical investigation.

Table 5.8 reports the total circulation in the trailing-edge wake, computed by SVT
and DNS. The level of agreement is similar to that in Table 5.4 for Type-II vortices
generated by a flat plate (for a much higher Reynolds number, Re = 32,000). Some
discrepancy exists for R = 1.1 with SVT overestimating the total wake circulation,
especially for the smallest time. This appears to correlate with a wide and short
wake, for which a vortex sheet description may exhibit some error. The wake’s
aspect ratio (width over length) decreases with increasing time, which is seen to
align with improved agreement between SVT and the DNS. Results for R = 1.5 in
Table 5.8 display enhanced agreement relative to R = 1.1, with a similar trend for
increasing time, despite the elongated wake of the DNS relative to SVT; see second
row of Figure 5.14. This is consistent with the vorticity generating mechanism
(the airfoil’s no-slip condition) being decoupled from downstream effects where
the flow accelerates (not included in SVT). These collective results for the total
wake circulation align with those for the velocity jump distribution across the wake
in Figure 5.15. Agreement between SVT and DNS again improves slightly with

increasing time (data not shown).

5.6 Conclusions

Starting vortex inviscid theory (SVT) predicts that three distinct types of starting
vortex sheets—Types I, II, and IlI—can be generated by an arbitrary body with
sharp and straight edges that suddenly moves. This study investigated the existence
of these vortices in a viscous fluid for a flat plate and two symmetric Joukowski

airfoils.

The motion of a translating and rotating flat plate is characterized by two respective
power-laws in time, m and p, which select the vortex type. An abrupt transition
between the starting-vortex types is predicted to occur in the (m, p)-phase plane;

see Figure 5.1. Type-I vortex sheets had been previously reported, while PS21



123

0.08

0.06
0.06

0.04
0.04

0.02

x

0 0 e, X
0 002 004 006 008 € 0 0.02 0.04 006 ¢

Figure 5.15: Joukouski airfoil. Type-II vortex: m = 0, n = 2, for Re = 8,000. Di-
mensionless velocity jump, v /Uy, across the trailing-edge vortex. DNS is evaluated
by numerically integrating the vorticity distribution across the wake. SVT for y/Uj
is (5.21a). (a) Thinner airfoil, R = 1.1. (b) Thicker airfoil, R = 1.5, where DNS data
is shown to the spatial extent predicted by SVT; DNS data extends slightly further
downstream. These plots correspond to trailing-edge wakes shown in the central
column of Figure 5.14.

introduced Types II and III to the literature and were yet to be observed in a (real)
viscous fluid. Hinton et al. (2024) extended these findings using inviscid theory to

an arbitrary body with sharp and straight edges.

In this study, we reported a detailed assessment of these inviscid predictions using
high-fidelity DNS of the Navier-Stokes equations. We also used SVT to calculate
the time interval over which each starting-vortex type exists. It was found that
for finite-time observations of a flat plate, there is a smooth (rather than abrupt)
transition between the vortex types, as m and p are varied. This is because the time
interval over which Type I and II vortices exist, becomes vanishingly small as the
critical (m, p)-phase plane line for Type-III vortices is approached. We compared
SVT to the DNS for values of m and p that span all vortex types. Agreement was
observed when SVT was predicted to be valid. This included the velocity jump
across a Type-II vortex sheet and the total circulation in the wake of all vortex types.
Moreover, different vortex types at the leading and trailing edges of a flat plate were
observed in the DNS, for plate rotation about its quarter-chord and three-quarter-
chord positions. Dynamic suppression of the leading-edge vortex for plate rotation
about its quarter-chord position was confirmed. This position coincides with the
aerodynamic centre of the airfoil and is relevant to the airfoil design of low-speed
aircraft, such as MAVs and UAVs.
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The predictions of SVT for two symmetric Joukwoski airfoils that translate in two
orthogonal directions were also compared to DNS. Agreement was again observed
for Type-II vortices when their spatial extent does not exceed that of its sharp and
straight edge—an overarching assumption of SVT. When this does occur, SVT was
found to (1) underestimate the spatial extent of the wake, due to an accelerating flow
downstream of the trailing edge, but (2) accurately predict both the velocity jump
across the wake and its total circulation. These comparisons highlight the utility of
SVT for bodies of arbitrary shape.

This study confirms the existence of Type II and III vortices in a viscous fluid,
and validates the accuracy of SVT. We emphasize that SVT is predictive with no
adjustable parameters. The inviscid theory reported by PS21, and its generalization
by Hinton et al. (2024) for an arbitrary body—collectively referred to as the SVT—
can therefore be used with confidence to calculate starting vortices in a viscous fluid.
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Chapter 6

STABILITY ANALYSIS OF THE FLOW PAST A ROTATING
CYLINDER WITH A CONTROL CYLINDER IN THE WAKE

In this chapter, we demonstrate the algorithms described in Chapter 4. Specifically,
we investigate an interesting flow phenomenon generated by combining the two
stabilizing effects of the flow past a cylinder: the rotational motion of the main

cylinder and putting a small control cylinder in the wake of the main cylinder.

6.1 Introduction

In previous chapters, we discussed two interesting phenomena involving the flow
past a cylinder. The first phenomenon is the flow past a cylinder with a small control
cylinder in the wake. By placing a small control cylinder in the wake of the main
cylinder, we can suppress the onset of vortex shedding. The second phenomenon
is the flow past a rotating cylinder. Below a certain rotational rate, we can also
suppress the onset of vortex shedding. From a linear perspective, combining these
two methods, i.e. placing the control cylinder in the wake of a rotating cylinder, may
suppress the onset of vortex shedding at an even higher Reynolds number compared
to using only one of these two methods. In this chapter, we will show that this
linear perspective is not accurate: combining both methods might induce three-

dimensional instability mechanisms that are stable without the control cylinder.

6.2 Problem Setting

We consider the flow past a rotating cylinder with a smaller control cylinder in its
wake. We denote the diameter of the main cylinder as D and the diameter of the
control cylinder as d. The ratio between the two cylinders is fixed at D/d = 10.
The Reynolds number is defined in terms of the main cylinder and fixed at Re = 60

throughout this chapter:
UsxD

v

Re = (6.1)

where U is the freestream velocity and v the kinematic viscosity. We defined the

non-dimensional rotational rate as

QD

(01
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Figure 6.1: Flow past a rotating cylinder with a control cylinder in its wake.

where Q is the angular velocity of the rotational motion. A demonstration of the
problem we are studying is shown in Figure 6.1. We let the center of the main
cylinder be the origin. We denote the center of the control cylinder as (x., y.). For

the subsequent stability analysis, we fix x./D = y./D = 1.

6.3 Background Problems
In this section, we briefly summarize the two background problems that appeared

in earlier chapters.

Stability analysis of the flow past a cylinder with a control cylinder in its wake
For the flow past a stationary cylinder, if we put a small control cylinder in the wake
of the main cylinder, we can suppress the onset of vortex shedding. Specifically, for
Reynolds number below 63, if we put the control cylinder in the wake of the main
cylinder, we can suppress the onset of vortex shedding. This is shown by Strykowski

and Sreenivasan (1990) and also demonstrated in Figure 6.2.

Stability analysis of the flow past a rotating cylinder In Chapter 4, one of the
validating cases we used was the flow past a rotating cylinder. As studied by Pralits,
Giannetti, and Brandt (2013), at Reynolds number of 60, rotating the cylinder will
suppress the onset of vortex shedding if the rotational rate is below 4. Specifically, if
the rotational rate @ € [1.5,4] U [5.5, 6], the flow remains steady and time-invariant
at Re = 60. Specifically, one can map out the parameter space for which the flow is
unstable, as shown in Figure 6.3. Notably, Figure 6.3 presents two distinct instability
mechanisms: one at lower rotational rate and one at high rotational rate. Those two
instability mechanisms are termed mode I (low rotational rate) and mode II (high

rotational rate) instability, respectively (Pralits, Brandt, and Giannetti, 2010).
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Figure 6.2: Perturbation of growth rates for variable vertical control cylinder loca-
tions with a fixed horizontal location at x. /D = 1.2. Previously shown in Chapter 4.
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Figure 6.3: Parameters space for which the flow past a rotating cylinder is unstable
at Re = 60. The contours are isocontours of perturbation growth rate. Contours are
in increments of 0.02.
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6.4 Stability Analysis

As discussed in the previous section, for the flow past a cylinder at Re = 60, both
rotating the main cylinder and putting a small control cylinder can result in the
suppression of vortex shedding. In this section, we will introduce the steps we used

to conduct three-dimensional stability analysis.

Recall from Chapter 4 that the mathematical problem we solve is the eigenvalue
problem of the linearized three-dimensional Navier-Stokes equations around some
two-dimensional equilibrium. We then Fourier-expand the linearized Navier-Stokes
equations along the span-wise direction. In its abstract form, we can write the
dynamics of a Fourier coefficient with span-wise wavenumber « linearized around
some two-dimensional equilibrium ¢, as the following:

dq

I = A(q,. K)q (6.3)

where A(q, k) is the discretized and linearized (around ¢ ) Navier-Stokes operator.
Due to the large ratio between the diameter of the main cylinder and that of the
control cylinder, we can leverage the multi-resolution property of the algorithm
presented in Chapter 4 to efficiently solve the problem. One of the examples of
a computational grid is shown in Figure 6.4. It shows the significant length-scale
difference between the small control cylinder and the large main cylinder. By only
refining the computational grids around the small control cylinder and the boundary
layer of the main cylinder, we can save a significant amount of computational
resources. Then for a sequence of spanwise wavenumbers {k;}, we compute the
corresponding eigenvalue spectrums. If there exists an eigenvalue with a positive
real part, exciting the flow using the corresponding eigenvector and wavenumber
will induce instability. Otherwise, the flow is linearly stable for that particular
wavenumber. In particular, for k = 0, the corresponding perturbations are two-

dimensional, i.e. constant in the span-wise direction.
To conduct the stability analysis for a fixed rotational rate @, we follow a two-step
process:

1. Compute the equilibrium using Newton iterations;

2. Compute the eigenvalue spectrums for a set of wavenumbers from 0 to 6 with

0.1 increments.

By collecting the results from the second step, we can find if perturbing the flow

with the corresponding wavenumber will lead to instability.
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L

Figure 6.4: Computational grid used to solve one of the eigenvalue problems. The
grid density increases as a factor of 4 as the color darkens.

6.5 Results

Similar to the study we did in Chapter 4, we compute the stability problem across
a range of parameters within the range @ € [0, 6.0] with increments of 0.1. We
compute the equilibrium solution via the Newton iterations. Then, we computed the
stability problem for the wavenumbers x € [0.0,6.0] with increments of 0.1. We

plot the region with positive perturbation growth rates in Figure 6.5.

We can directly compare the stability characteristics of this flow to the one without a
control cylinder by comparing Figure 6.5 and 6.3. At low rotational rates, the mode
I instability is suppressed entirely with the presence of the control cylinder. This is
consistent with the observation by Strykowski and Sreenivasan (1990). However,
at high rotational rates (@ > 4.4), mode II instability is slightly excited by placing
a control cylinder in the wake of the main cylinder. To see this more clearly, we
compare the perturbation growth rate for different wavenumbers at rotational rates
a = 4.4 and 5.0. The comparison is shown in Figure 6.6. At @ = 4.4, when
there is no control cylinder, the flow is linearly stable and all the growth rates are
negative across. However, when we place a small control cylinder in the wake,
we see positive perturbation growth for a range of wavenumbers, indicating small
unstable three-dimensional modes. At @ = 5.0, placing a small control cylinder
suppresses the mode I instability but the flow is still unstable. In summary, placing
a small control cylinder (in the location we have chosen) in the wake of the flow

past a rotating cylinder suppresses the mode I instability mechanism but slightly
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Figure 6.5: Parameters space for which the flow past a rotating cylinder is unstable
at Re = 60 when there is a small control cylinder in the wake. The contours are
isocontours of perturbation growth rate. Contours are in increments of 0.1.
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Figure 6.6: Comparison of the perturbation growth rate R (1) for the flow past a
rotating cylinder at Re = 60 between with and without a small control cylinder in
the wake.

excites the mode II instability mechanism. At an even higher rotational rate of
a > 5.2, we see a different type of instability that has a much higher perturbation
growth rate and larger wavenumber than the instability at @ < 5.2. The perturbation
growth rate across a range of wavenumbers is shown in Figure 6.7. In the regime,
the perturbation growth rate increases as the rotational rate increases, exhibiting a
different type of instability than both mode I and mode II instability.
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Figure 6.7: Comparison of the perturbation growth rate R (1) for the flow past a
rotating cylinder at Re = 60 between with and without a small control cylinder in
the wake at higher rotational rates.

6.6 Concluding Remarks

In this section, we investigated the stability criterion of the flow past a rotating
cylinder with a small control cylinder in the wake of the main cylinder. We conducted
a series of stability analyses to demonstrate the algorithm presented in Chapter 4.
By leveraging the multi-resolution capability of this algorithm, we are able to cover
a large parameter space to map out the stability characteristics of the flow. By
doing so, we discovered that placing a small control cylinder in the wake (in the
position we chose) suppresses the mode I instability but slightly excites the mode 11
instability. For rotational rates higher than 5.2, we also see the rise of another type

of instability that becomes increasingly unstable as the rotational rate increases.

We note that there are further investigations that can be done to further understand
the effects of placing a small control cylinder on the stability characteristics of the
flow past a cylinder. To understand this phenomenon further, we need to vary the
location of the control cylinder to give a more comprehensive understanding of
how the small control cylinder affects the stability characteristics of the flow past a

rotating cylinder.
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Chapter 7

CONCLUDING REMARKS AND FUTURE WORK

In this thesis, we discussed two algorithms combining the immersed boundary (IB)
method, lattice Green’s function (LGF) approach, and adaptive mesh refinement
(AMR) to create fast numerical algorithms for simulating and analyzing spanwise
periodic external incompressible flows. We demonstrated those algorithms through

various flow simulation and analysis studies.

For these algorithms to be fast, efficiently tabulating the LGF of the screened
Poisson equation is a prerequisite. Thus, we first derived algorithms for tabulating
these LGFs in Chapter 2. In this chapter, we extended existing techniques to tabulate
the LGF for the Poisson operator to compute the entries of the LGFs of the screened
Poisson operators. Through numerical analysis, asymptotic expansion, and FFT, we
proposed a set of new algorithms to compute entries of the LGFs for the screened
Poisson equation and provided convergence rate guarantees. We demonstrated
that the resulting algorithms are significantly faster than existing methods. The
algorithms derived in this chapter serve as a building block to create the subsequent

flow simulation algorithm and analysis algorithm using the LGFs.

Utilizing the algorithms derived in Chapter 2, we propose an algorithm to simulate
spanwise periodic external incompressible flows in Chapter 3. In this algorithm, we
leveraged the spanwise periodicity by Fourier-expanding the velocity and pressure
variables. Through the incompressible Navier-Stokes equations, we derived the
evolution equations of the corresponding Fourier coeflicients while incorporating
the immersed boundary formulation. With this formulation, we are able to adapt
an existing algorithm that simulates the fully 3D incompressible external flow using
LGF, AMR, and the IB method by Yu (2021). In addition, we specialized this
algorithm to better leverage the spanwise periodicity by introducing a parallel version
of the direct IB forcing solver. The resulting algorithm is demonstrated to be both
accurate and efficient when simulating spanwise periodic external incompressible

flows.

In addition to the flow simulation algorithm, we also proposed an algorithm to
analyze external flows via linear stability analysis and resolvent analysis. The

mathematical formulations of these analyses are well-established in previous works
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(Taira and Colonius, 2007). Mathematically, they are some forms of continuous
operator eigenvalue problems. However, the challenge to conduct such analyses in
external flow systems resides in efficiently discretizing and numerically computing
the resulting eigenvalue problems. In Chapter 4, we propose an algorithm to
efficiently discretize and formulate the eigenvalue problems. By leveraging the
advantages of the flow solver we presented in Chapter 3, we developed a boundary
integral formulation to solve the operator eigenvalue problems. In addition, using the
fast multipole method (FMM), we greatly reduced the computational complexity of
the eigenvalue problems. We validated the resulting algorithms using a wide range

of interesting flow cases.

Using the flow simulation algorithm we presented in Chapter 3, we studied the
starting vortices generated by translating and rotating bodies with sharp and straight
edges in a viscous fluid. Leveraging the flow simulation algorithm, we can ef-
ficiently simulate the early time behavior of the starting vortices. We conducted
direct numerical simulations (DNS) of various flow configurations. By analyzing
the resulting vorticity distribution and comparing it to the starting vortex inviscid
theory (SVT) by Pullin and Sader (2021), we verified that SVT still manifests in
incompressible flow, even in the presence of viscosity. As a result, we confirm the
validity and accuracy of SVT in predicting the early time behavior of the flow gen-
erated by translating and rotating bodies with sharp and straight edges in a viscous
fluid.

To demonstrate the stability analysis algorithm we proposed in Chapter 4, we applied
it to study the flow past a rotating cylinder with a control cylinder in its wake. In this
chapter, we fixed the location of the control cylinder and varied the rotational rate of
the main cylinder. We found that while placing a control cylinder in the wake stabi-
lizes the two-dimensional mode I instability, it slightly excites the three-dimensional
mode II instability. In addition, we observe the formation of a different type of in-
stability mechanisms appearing at rotational rates above 5.2. To further examine
this phenomenon, we can also vary the location of the control cylinder to understand

the physical mechanisms underlying the change in the stability characteristics.

The potential of the LGF method combined with the IB method and AMR shows
great promise in solving a wide range of computational problems in fluid mechanics,
as demonstrated in this thesis. However, there is still much work can be done to
further leverage the benefits these methods can offer. For external incompressible

flows that are spanwise periodic, turbulence models can be implemented to facilitate
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a broader range of applications of the flow simulation algorithm proposed in this
thesis. In addition, from a computational perspective, further optimization can be

conducted to enhance the parallel efficiency of the flow simulation algorithm.

For the flow analysis algorithms, one can leverage the flexibility of the IB method
to study flows around more complicated geometries, those that are much more com-
plicated than the ones demonstrated in this thesis. Although only briefly mentioned
in this thesis, the linear analysis algorithms are readily applicable to solve resolvent
analysis problems. The accuracy and efficiency brought by the flow analysis algo-
rithm proposed in this thesis can also be used to study the turbulent flows generated

around immersed bodies at high Reynolds numbers.
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Appendix A
IB TERMS FOR FOURIER COEFFICIENTS

In this part, we provide a few details regarding the Fourier transform of Eq. 3.3
leading to Eq. 3.5. The only terms that are nontrivial are the Fourier transforms of

the IB forcing term and the no-slip boundary condition.

We first show the derivations of the IB forcing term. Consider the immersed
boundary defined, I'(z). The geometry of the immersed boundary is assumed to
be the extrusion of a two-dimensional boundary. Thus, we can denote that said

two-dimensional boundary as I';p (7). With this, we can write:
['(t) =Tap (1) X [-¢c/2,¢/2]. (A.1)

Consequently, we can find some &, j, that parameterizes [, (¢) for all . Correspond-
ingly, the parameterization at time ¢ is defined as Xop(&5p, #). Thus, following the

notation of Eq. 3.5, we can write

X (1) = (Xap(§aps1).Z), & =(&2p.2). (A.2)

Then with x = (x2p, z), we can write the IB forcing term at x as:

/ FrENS(X(E.1) - x)dE
I'(r)

c/2
:/ /1“ ()fr(§ZD,Z,t)62D(X2D(§,t) —x2p)01p(z — Z)dé,pdZ

c/2

where 01p and d,p denote the Delta functions in 1D spaces and 2D spaces, respec-
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tively. With the above notation, we write:

ﬁ[ Sfr(€,06(X(£,1) —x)d§

I'(r)
1 /2 zzm
- /_C/2 / Fré.n6(X(£.1) - x)dEd:

1 —iz2zk _
- /r i / L I E 00X €0 —x)dzde

1 C/2 c/ ~ ﬂ
__/ / / 5 fr(€apy Z.1)02p(Xop (€9ps 1) — X2p)01p (2 — Z)dZdzd€,
op (1) /= —c/2

c/2

C/Z 2nk
/ / e ¢ fr(éxp. 27,0020 (Xap (€xp, 1) — X2p)dzdé, )
Dop(t) J -

c/2

= ka(fZD’t)62D(X2D(§2D,t) x2p)désps

Do (1)
(A.3)
where fr; is the k' Fourier coefficient of the IB forcing fr.
For the boundary condition, we apply ¥ directly. The LHS, by definition, is:
Fi lur(§,1)]
1 [ o
:—/ e"Zszur(f, 1)dZ
cJ-
2 (A.4)

1 /2 om
:E/ n €_lZ c ur(f,’ZD,Z,t)dZ
—C

=ur i (&yp,1)-
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The RHS is:

Fr [/ u(x,)o(x — X(&, t))dx]
I !
_E [c/Z

1 c/2 ank
= // —iZ= //2u(xzD,Z, 1)02p (x2p — X2D(§2D’t))5lD(Z_Z)deDdZdZ
—/2 R JR

u(x, Ho(x — X(&,1)dxdZ

c
1 6/2 gk
. . u(x2p,z,1)620(x20 = X2p(§op,1))01p(2 — Z)dzdx2pdZ

—c/Z R JR

21/6/2 —iz2mk
CJ-c)2
2k
/ // e u(xap, Z, t)dz] 02p(x2p — Xop (€p,1))dx2p
—c/2

2/2 i (x2p,1)62p(x2p — Xop(€2p.1))dxap.
R

u(xzz), Z,t)02p(x2p — Xop(€,p,1))dxopdZ

(A.S)

Then, the boundary condition becomes:

uri(§p,t) = /R2 ity (x2p,1)02p(x2p — Xop(&€rp,1))dxap. (A.6)
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Appendix B

COMPATIBILITY CONDITION ON L, 'IN A MULTILEVEL
MESH

Consider two different uniform Cartesian meshes with different resolutions Ax; and
Ax, and are governed by the relationship Ax; = NAx,, where N a positive integer.
Denote the By kernel for the two grid as B(l) and Bg. The compatibility condition we
impose is:

| 1|im (Bj(n) — B3(nN)) = 0. (B.1)

Since nAx; = nNAx,, this condition means that, if B(l) and B(z) are two different
discrete solutions of a discretized 2D Poisson equation induced by the Dirac delta

function, both solutions should match at infinity in the physical space.

Using the asymptotic expansion of LGF (Martinsson and Rodin, 2002), we can
write: |
Bo(n) = glog(|n|)+C+O(1/|n|2). (B.2)
Thus, by plugging in this expansion to Eq. B.1, we get:
0= | 1|im (By(n) — Bi(nN))
n|—oo

. 1 1
= lim (=—log(|n|) + C1 + O(1/|n|?) — — log(N|n|) — C» — O(1/|Nn|?))
|n|—co 27 2

= lim (—%log(N) +C1 = C2+0(1/|n]?))

In|—c0

1
=——1og(N) + C; — C,.
2

(B.3)
Thus, we obtain
Ci—-C= i log(N). (B.4)
2r
That is:
Bj(n) = B}(n) + % log(N). (B.5)

In the context of our algorithm, we have N = 2/ for some non-negative integer I. As
a result, we have: ]
Bj(n) = B3(n) + > log(2). (B.6)
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Si

IS HERMITIAN WHEN P, = Pi!
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Here we show that (S° )* = S under the assumption of P}, = Pi7! = P,,. In this
case, we have SZ L= PnE;;(I — GkLZIDk)P,{. Since E;C , commutes with all the

discrete operators and L', we have:

($i,)" = [PuEL(I - G, L' D)PL]
= (PD)*(E})* (I - GkL;'Dy)*Py.

(C.1)

Since P, is purely real, P; = P1. In addition, we know that (E})* = Ef, (L;!)* =

L;l. As a result, we can write the equation above as:

(PDY*(EL)*(I = G¢L;'Dy)* P, = P,EL(I - D{L;'G})PL.

Now we recall the mimetic property D), = —Gy, and we obtain that:
P,EL(I - D{L;'G})PL = P,EL(I - G, L' Dy)PL.
Combing all the steps together, we have shown that:
(S%.)" = |PaEL(I - G L' D)PY]
= (P)"(EQ)"(I - GiLy ' Di)'P;
| R e Wl
= P,Ei(I - D;L;'G;)P}
= P,EL(I - G L' Dy)PL

_
— Sk,n'

Thus, we conclude that S;; i is Hermitian.

(C2)

(C.3)

(C4)
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Appendix D

ADDITIONAL TIME CONSTRAINT FOR THE EXISTENCE OF
TYPE I AND II VORTICES GENERATED BY A FLAT PLATE

In this appendix, we derive the maximal time for Type I and II vortices of a flat plate

to exist, which supplements the time constraint in (5.13).

For Type-I vortices, the second term on the right-hand side of (5.10) must dominate
the first, i.e.,

>T", (D.1)

where g = 2(p + 1)/3, as per Table 1 of PS21. Balancing the left and right-hand
sides of (5.10), gives Z = 0(,3%), and the inequality in (D.1) becomes

T¢ <« f3
53, (D.2)

where
2p—1

3 9
which is strictly positive for a Type-I vortex, i.e., € > 0; see (5.6) and Figure 5.1.

€e=m-— (D.3)

Type-II vortices occur in the opposite regime, i.e.,

1+ M(Z
ipr-$ 1ML (D.4)
(22)

where ¢ = 1+ m. Balancing the left and right-hand sides of (5.10), shows that
Z = 0O(1), from which (D.4) becomes

T72¢ < g1, (D.5)
where € < 0 for Type-II vortices.
Combining (D.2) and (D.5) produces
Tlel « pisen@ (D.6)

where € # 0; note that € = 0 corresponds to a Type-III vortex sheet, which is not
considered in this appendix. The time constraint in (D.6) is in addition to (5.12),
and the overarching spatial constraint that the vortex remains close to the trailing

edge.
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Choosing the same multiplicative factor as (5.13) for the inequality in (D.6) to hold,
ie., 0 < 0 < 1, gives the additional maximal time for existence of Type I and II

vortices,

1
Trgl%:l)x ~ (ﬁ%sgn(e)d) el ’ (D.7)
where it is understood that £ is finite and the parenthesized term is less than unity.
This shows that Type I and II vortices, corresponding to € > 0 and € < 0, respec-
tively, are more easily observed for large and small, 3, respectively. In Section 5.3,
we combine (D.7) with (5.13) to give the overall maximal time for existence of any

starting vortex.
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