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ABSTRACT

External flows over spanwise-homogeneous geometries are ubiquitous in science and
engineering applications (Mittal and Balachandar, 1995; Mittal and Balachandar,
1997; Dong and Karniadakis, 2005; Lehmkuhl et al., 2013). In this thesis, we pro-
pose algorithms to simulate and analyze these flows using the lattice Green’s function
(LGF) approach. The LGF is the analytical inverse of a discrete elliptic operator
that automatically incorporates exact far-field boundary conditions and minimizes
computational expense by allowing snug computational regions encompassing only
vortical flow regions. By combining LGFs with adaptive mesh refinement (AMR)
and immersed boundary (IB) methods, we present two numerical algorithms spe-
cially designed for spanwise periodic incompressible external flows: one to directly
solve the nonlinear equations of motion and one to compute stability and resolvent
analyses.

For these algorithms, the LGFs of the screened Poisson equation must be computed
at runtime. To enable efficient flow simulation and analysis algorithms, we propose
a fast numerical algorithm to tabulate these LGFs. We derive convergence results
for the algorithms and show that they are orders of magnitude faster than existing
algorithms. Armed with the LGF for the screened Poisson equation, we further
develop algorithms to solve the Navier-Stokes equations and associated linearized
eigenvalue problems.

We present two applications of these algorithms. We perform simulations to validate
the starting vortex theory proposed by Pullin and Sader (2021), and we perform
stability analyses of flow past a rotating cylinder with a control cylinder in its wake.
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C h a p t e r 1

INTRODUCTION

In this thesis, we discuss algorithms designed for a specific type of fluid flow:
spanwise periodic incompressible external flow. In its name, there are three main
adjectives: spanwise periodic, incompressible, and external. Incompressibility is a
straightforward word that does not need further introduction and is embedded within
the governing equations. As such, I will discuss the remaining two words and their
mathematical and physical implications in the subsequent paragraphs.

"External" means that the flow we are interested in is situated on an unbounded
domain. Specifically, we have immersed bodies in some unbounded fluid domain.
The flow is generated by the immersed body moving in the said fluid. This un-
bounded domain has two implications: first, the boundary condition is only posed
at infinity; second, the flow is restricted only by the immersed body without the
presence of any other boundaries, so flow structures can exist in a wide range of
scales. These two characteristics pose their corresponding challenges. Tradition-
ally, one can solve these problems using different numerical techniques such as
unstructured meshes (Mittal and Balachandar, 1995; Borrell et al., 2011; Fischer,
Lottes, and Tufo, 2007) and overset methods (Steger, Dougherty, and Benek, 1983;
Tang, Jones, and Sotiropoulos, 2003). Although these methods are compatible with
flexible nodal distribution and grid resolution, they suffer from the requirements
of unbounded computational domains or posing non-trivial boundary conditions
(Mittal and Balachandar, 1996; Lai and Peskin, 2000; Yu, 2021). Moreover, they
are subject to remeshing when the immersed body moves or deforms. By combin-
ing lattice Green’s function method (LGF), adaptive mesh refinement (AMR), and
immersed boundary (IB) method, one can devise efficient numerical frameworks to
simulate external flows (Liska and Colonius, 2017; Yu, 2021; Yu, Dorschner, and
Colonius, 2022).

"Spanwise periodic" means that the fluid flow we are simulating and studying repeats
itself in the spanwise direction. Spanwise periodicity is used to model the flow
past an immersed body with infinite span and constant cross-section. Namely, an
infinitely long cylinder with arbitrary cross-section. This spanwise periodic model
stems from experimental observation (Williamson and Roshko, 1988; Williamson,
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1996; Mittal and Balachandar, 1995; Mittal and Balachandar, 1997). As a result,
one can leverage this property to devise efficient numerical algorithms for flow
analysis and simulations. Indeed, based on different discretizations, the treatment
for spanwise periodicity can vary. Posing spanwise periodic boundary conditions
after discretizing the PDE can lead to a circulant matrix that is diagonalizable
by means of discrete Fourier transform (Borrell et al., 2011). However, in this
thesis, we take a different approach by discretizing the governing equations after the
Fourier transform (Mittal and Balachandar, 1996). By doing so, we can variably
truncate the Fourier series for further computational savings. In addition, we propose
efficient numerical algorithms that can leverage LGF, AMR, and IB methods and
are compatible with the spanwise periodicity nature.

By understanding the challenges and opportunities associated with the properties
of spanwise periodic incompressible external flows, we created corresponding sim-
ulation and analysis algorithms that enable us to efficiently study this particular
type of flow. Enabled by these algorithms, we studied various flows that have
both theoretical and practical importance. Overall, this thesis can be divided into
three components: novel algorithms for computing the LGF of the screened Pois-
son operator and their analysis, simulation and analysis algorithms based on the
LGF techniques, and the study of various flow phenomena using the simulation and
analysis algorithms.

1.1 Fast algorithm for computing LGF of the screened Poisson operator
Given an invertible discrete elliptical operator, its LGF is its inverse in free space.
The LGF of the finite difference Poisson operator is well studied and has readily
available asymptotic expansion formulae for efficient numerical evaluation (Duffin,
1953; Duffin and Shelly, 1958; Martinsson and Rodin, 2002). As a result, this LGF
has been applied to efficiently solve many problems arising from discretizing partial
differential equations (Liska and Colonius, 2014; Liska and Colonius, 2016; Liska
and Colonius, 2017; Dorschner et al., 2020; Yu, 2021; Yu, Dorschner, and Colonius,
2022; Caprace, Gillis, and Chatelain, 2021; Balty, Chatelain, and Gillis, 2023).
However, to simulate spanwise periodic external incompressible flows via Fourier
expansion, instead of the Poisson equation, the screened Poisson equation arises.
As such, we need the corresponding LGF to solve the pressure-Poisson equation in
the Fourier expansion formulation. Yet, efficient algorithms to evaluate this LGF
were not readily available. In Chapter 2, we introduce a set of new algorithms to
efficiently evaluate the LGF of the screened Poisson operator. Correspondingly,
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we present rigorous convergence bounds for these algorithms and computational
complexity analysis in different scenarios. By comparing to existing methods to
evaluate the LGF of the screened Poisson operator, we demonstrate that our methods
show significant improvement in terms of both speed of robustness.

Although our motivation lies in solving numerical partial differential equations
arising from fluid mechanics, the applications of this particular LGF extend to
many other fields of science and engineering. We demonstrate this by showing two
applications of our algorithms: solving a three-dimensional Poisson equation with
one periodic dimension and computing the return probability of a two-dimensional
random walk with killing (Lawler and Limic, 2010).

1.2 Fast flow simulation and analysis algorithms
Equipped with the fast algorithms for tabulating the LGFs of screened Poisson
equations, we are ready to leverage the LGFs to create numerical algorithms to
conduct simulations and flow analyses. In Chapter 3 and Chapter 4, we proposed
two algorithms related to spanwise periodic external incompressible flows.

In Chapter 3, we present an algorithm that leverages the LGFs, AMR, and the
immersed boundary (IB) method to simulate spanwise periodic external incom-
pressible flows efficiently. In this algorithm, we Fourier-expand the velocity and
pressure and time evolve the resulting Fourier coefficients of the velocity and pres-
sure instead of time evolving velocity and pressure directly. Then we adapted an
existing half explicit Runge-Kutta method by Yu (2021). Combining the Fourier
coefficient formulation of the Navier-Stokes equations, AMR, LGF, and the IB
method, we created a fast flow simulation algorithm tailored for spanwise periodic
incompressible external flows. The algorithm is then verified and validated through
a range of numerical simulations and tests.

With the fast numerical simulation algorithm, we hope to leverage its advantages
to create a stability analysis and resolvent analysis algorithm. In Chapter 4, we
combine the same components that enhance the efficiency of the flow solver, i.e.,
LGF, AMR, and the IB method, and devise a computational advantageous form of
the discretized linearized Navier-Stokes equations (LNSE), which is the key to create
efficient linear stability analysis and resolvent analysis. In addition, we leveraged
the fast multipole method (FMM) to further enhance the computational efficiency.
The resulting algorithm is validated by various numerical experiments involving
both canonical and non-canonical examples of resolvent and stability analysis.
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1.3 Applications of the simulation and analysis algorithms
With the aforementioned numerical algorithms, we can solve a wide range of in-
teresting problems. In this part, we present three numerical studies we conducted
using the above algorithms.

In Chapter 5, we first apply the two-dimensional version of the flow solver to study
the early time behavior of the flow field generated by bodies with straight and sharp
trailing edges that are translating and rotating in the viscous fluid. Examples of such
geometries are flat plates and Joukowski airfoils. Using the inviscid flow model,
Pullin and Sader (2021) showed that there are three types of early-time trailing edge
vortex behaviors: a vortex sheet, a vortex roll-up, and a combination of these two.
In addition, the behavior is purely determined by the rate of pitching and translating
of the immersed body. In this chapter, we conducted a series of direct numerical
simulations (DNS) at high Reynolds numbers to show that the theoretical results
derived from the inviscid flow model manifest themselves in the Navier-Stokes
equations where viscosity is present.

Also, in Chapter 6, we conducted a sequence of stability analysis of the flow
past a rotating cylinder with a control cylinder in its wake. As demonstrated by
Strykowski and Sreenivasan (1990), for the flow past a stationary cylinder, putting
a control cylinder in the wake of the main cylinder suppresses the onset of vortex
shedding. Meanwhile, as shown by Pralits, Giannetti, and Brandt (2013), if we
consider the flow past a rotating cylinder, with no control cylinder in the wake, the
rotational motion also has a stabilizing effect when the rotational rate is below a
certain threshold. One question we ask is: If these two stabilizing mechanisms
are combined, can we stabilize the flow even further? To answer this question, we
conducted a set of three-dimensional stability analyses of the flow past a rotating
cylinder with a control cylinder in the wake across a vast parameter space. What
we found is that combining those two stabilizing mechanisms will suppress the
two-dimensional instabilities while slightly exciting three-dimensional instabilities.

1.4 Summary
In this thesis, we will present various numerical techniques and algorithms to inves-
tigate the spanwise periodic external incompressible flows. This thesis is organized
as follows: in Chapter 2, we present novel techniques to compute the LGF of the
screened Poisson equation; in Chapter 3, we present a flow simulation algorithm
combining LGF, AMR, and the IB method; in Chapter 4, we present a stability
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analysis and resolvent analysis framework; in Chapter 5, we present a numerical
study enabled by the algorithm we proposed in Chapter 3; finally, in Chapter 6, we
present an application enabled by the linear stability analysis algorithm proposed in
Chapter 4.
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C h a p t e r 2

FAST AND ROBUST METHOD FOR SCREENED POISSON
LATTICE GREEN’S FUNCTION USING ASYMPTOTIC

EXPANSION AND FAST FOURIER TRANSFORM

This chapter is adapted from Hou and Colonius (2024b). As we mentioned in the
previous chapter, the prerequisite from all subsequent flow simulation and analysis
algorithms is an efficient way to tabulate the lattice Green’s function (LGF) of the
screened Poisson equation. In this chapter, we present three algorithms to com-
pute the entries of this LGF. Specifically, we derive an asymptotic expansion and
a trapezoidal rule approximation of this LGF. In addition, we derive the conver-
gence properties and computational complexities of these approximations and their
accompanying numerical algorithms. We present several numerical experiments
to demonstrate the speedup offered by the proposed algorithms. Even though our
motivation lies in solving the Navier-Stokes equations, we recognize that our algo-
rithms for tabulating the LGF have more extensive applications. We demonstrate
this point by showing two more applications: solving the three-dimensional Poisson
equation with one periodic dimension and computing the return probability of a
two-dimensional random walk with killing.

2.1 Introduction
The discrete screened Poisson equation for a 𝑘-dimensional space with parameter
𝑐2 > 0 is defined as

𝐿𝑐𝑢(𝒏) = 𝑐2𝑢(𝒏)+
𝑘∑︁
𝑗=1

[
−𝛼 𝑗𝑢(𝒏 − 𝒆 𝑗 ) + 2𝛼 𝑗𝑢(𝒏) − 𝛼 𝑗𝑢(𝒏 + 𝒆 𝑗 )

]
= 𝑓 (𝒏) ∀𝒏 ∈ Z𝑘 ,

(2.1)
where 𝒆1, ..., 𝒆𝑘 are the coordinate vectors ofR𝑘 , and 𝛼1,...,𝛼𝑘 > 0 are the anisotropy
coefficients. The 𝑐2 term is sometimes called the screening term (Kazhdan and
Hoppe, 2013). The LGF is the fundamental solution of the equation above. It
plays a role in physics (Kotera, 1962; Katsura and Inawashiro, 1971; Katsura and
Inawashiro, 1973), mathematics (Madras, 1989; Lawler and Limic, 2010), and
engineering (Cserti, 2000; Kazhdan and Hoppe, 2013). Theoretical aspects of the
LGF of the screened Poisson equation have been studied extensively (Morita and
Horiguchi, 1971; Katsura and Inawashiro, 1971; Katsura and Inawashiro, 1973;
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Michta and Slade, 2021; Maassarani, 2000; Duffin, 1953; Duffin and Shelly, 1958).
While the LGF of the Poisson equation has an asymptotic expansion at arbitrary
orders (Duffin, 1953; Duffin and Shelly, 1958; Martinsson and Rodin, 2002), the
LGF of the screened Poisson equation does not (Gabbard and Rees, 2024b).

Existing theoretical analysis of the LGF of the screened Poisson equation suffices
the need for qualitative applications (Kotera, 1962; Katsura and Inawashiro, 1973).
However, accurate computation of this LGF is needed for quantitative applications
(Cserti, 2000; Gillman and Martinsson, 2010; Kazhdan and Hoppe, 2013; Liska and
Colonius, 2017; Caprace, Gillis, and Chatelain, 2021; Gabbard and Rees, 2024b).
Thus, in this chapter, we focus on its computational aspects. After reviewing
previous results (Section 2.2), we find an asymptotic expansion in terms of the
associated value of 𝑐2 and establish the decay rate when 𝑐2 is relatively large (Section
2.3). Next, for small 𝑐2, we derive a one-dimensional integral representation of
the LGF (Section 2.4). The same one-dimensional integral representation is also
applicable to the LGF of the Poisson equation. We then show that, for screened
Poisson equation LGF, the error of a trapezoidal rule approximation can be strictly
bounded and converges exponentially fast (Section 2.5). By exploiting the structure
of the integrand, we propose a Fast Fourier Transform (Cooley and Tukey, 1965)
method for batch evaluation of the LGF (Section 2.7). We show that our algorithm
is robust and highly efficient.

We provide two examples to demonstrate how our algorithm can be used in practice.
The first example (Section 2.8) is to use the LGF of the screened Poisson equation
to solve for the LGF of the three-dimensional Poisson equation with one periodic
dimension. The second example (Section 2.9) is to use the LGF of the screened
Poisson equation to compute the return probability of a two-dimensional random
walk with killing.

2.2 Lattice Green’s function of the two-dimensional screened Poisson equa-
tion

2.2.1 Definition and two-dimensional integral representation
We consider Eq. 2.1 with 𝑘 = 2, denote 𝒏 = (𝑛, 𝑚), and use 𝑢(𝒏) and 𝑢(𝑛, 𝑚)
interchangeably. Since 𝛼1, 𝛼2 > 0, by re-scaling the coefficients, we can make
𝛼1 = 1 or 𝛼2 = 1. Thus, without loss of generality, we assume 0 < 𝛼1 ≤ 1 and
𝛼2 = 1.



8

The LGF, denoted as 𝐵𝑐 (𝒏) = 𝐵𝑐 (𝑛, 𝑚), is the solution of

[𝐿𝑐𝐵𝑐] (𝑛, 𝑚) = 𝛿0𝑛𝛿0𝑚, lim
|𝑛|+|𝑚 |→∞

𝐵𝑐 (𝑛, 𝑚) = 0, (2.2)

where 𝛿𝑖 𝑗 denotes the Kronecker delta. The Fourier transform method allows the
solution to be written as (Katsura and Inawashiro, 1971)

𝐵𝑐 (𝒏) =
1

(2𝜋)2

∫
𝐼2
𝑒−𝑖𝒏·𝝃

1
𝜎(𝝃) + 𝑐2 𝑑𝝃, (2.3)

where 𝐼2 = [−𝜋, 𝜋]2 is the integration domain, and with 𝝃 = (𝜉1, 𝜉2), the function
𝜎(𝝃) is:

𝜎(𝝃) = 2𝛼1 − 2𝛼1 cos(𝜉1) + 2 − 2 cos(𝜉2). (2.4)

From Eq. 2.3, it is clear that 𝐵𝑐 (𝑛, 𝑚) = 𝐵𝑐 ( |𝑛|, |𝑚 |) so it suffices to consider
𝑛, 𝑚 ≥ 0.

For 𝑐 = 0, we recover the standard 2D Poisson equation, and the corresponding LGF
can be represented using an asymptotic expansion valid to arbitrarily high order-of-
accuracy (Martinsson and Rodin, 2002). In practice, one typically precomputes LGF
near-field values and uses these asymptotic expansions for far-field values (Liska and
Colonius, 2014). However, when 𝑐 ≠ 0, a high-order asymptotic expansion does
not exist, and we must rely on numerical integration for all values. Thus, efficient
computation is essential.

2.2.2 Representations using special functions
The values of 𝐵𝑐 can be expressed using Appell’s double hypergeometric functions
(𝐹4):

Theorem 2.2.1. (Katsura and Inawashiro, 1971).The solution of 𝐵𝑐 (𝑛, 𝑚) can be
written as

𝐵𝑐 (𝑛, 𝑚) =
1

2𝑚+𝑛+1
1

𝑎𝑚+𝑛+1
(𝑚 + 𝑛)!
𝑛!𝑚!

1
𝑎

(𝛼1
𝑎

)𝑛 (
1
𝑎

)𝑚
𝐹4

[
(𝑚 + 𝑛 + 1)/2, (𝑚 + 𝑛)/2 + 1, 𝑛 + 1, 𝑚 + 1;

(𝛼1
𝑎

)2
,

(
1
𝑎

)2
]
, (2.5)

where
𝑎 = 1 + 𝛼1 + 𝑐2/2. (2.6)
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Evaluating 𝐵𝑐 using Thm. 2.2.1 requires evaluating Appell’s double hypergeometric
function which is not available in common libraries and contains a doubly infinite
sum. Thus in most numerical applications of the LGF, the Bessel function rep-
resentation (Koster and Slater, 1954; Maradudin, 1960; Katsura and Inawashiro,
1971; Maassarani, 2000; Delves and Joyce, 2001) of 𝐵𝑐 (𝑛, 𝑚) is used to compute
the LGF (Liska and Colonius, 2017; Dorschner et al., 2020; Yu, Dorschner, and
Colonius, 2022; Gabbard and Rees, 2024b). The Bessel function representation is
a way to write 𝐵𝑐 (𝑛, 𝑚) as an improper integral of the Bessel function. The specific
formulation reads

𝐵𝑐 (𝑛, 𝑚) = 𝑖𝑛+𝑚+1 1
2

∫ ∞

0
𝑒−𝑖(2+2𝛼1+𝑐2)𝑡/2𝐽𝑛 (𝛼1𝑡)𝐽𝑚 (𝑡)𝑑𝑡, (2.7)

where 𝐽𝑘 (𝑡) is the Bessel function of the first kind (Abramowitz and Stegun, 1948).
This formulation is hard to integrate numerically because of the highly oscillatory
and slowly decaying integrand. One can further simplify it to a more computationally
advantageous form:

𝐵𝑐 (𝑛, 𝑚) =
∫ ∞

0
𝑒−(2+2𝛼1+𝑐2)𝑡 𝐼𝑛 (2𝛼1𝑡)𝐼𝑚 (2𝑡)𝑑𝑡, (2.8)

where 𝐼𝑘 (𝑡) is the modified Bessel function of the first kind (Abramowitz and Stegun,
1948).

When evaluating the above integral, there are two challenges: effectively evaluating
the function 𝐼𝑛 and accurately approximating the improper integral. In practice,
for the first challenge, one can compute the modified Bessel function using existing
numerical libraries (Schäling, 2011; Virtanen et al., 2020; The mpmath development
team, 2023). However, this function is still defined as an infinite series or integral and
can be computationally expensive. For the second challenge, the improper integral
can either be approximated by integrating up to a large value or be evaluated using
a variable transformation (Doncker, 1978). The former can be computationally
expensive and unstable, and the latter can create a singularity at the origin. Indeed,
it has been reported that numerical evaluation of the LGF of the screened Poisson
equation can fail catastrophically (Gabbard and Rees, 2024b). In the rest of the
chapter, we introduce two methods to efficiently compute the LGF.

2.3 Fast evaluation and compact support at large 𝑐2

In this section, we derive a series expansion for 𝐵𝑐. From the expansion, we can
obtain two unique properties of the LGF of the screened Poisson equation: (a)
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exponential convergence in series expansion, and (b) exponential decay in |𝑚 | + |𝑛|.
We will later show the duality between them. These two properties give a fast
method to evaluate the LGF at relatively large 𝑐2 and a fast way to solve the screened
Poisson equation by applying the LGF.

2.3.1 Series expansion
Recall the LGF, 𝐵𝑐, at an arbitrary point 𝒏 can be written as:

𝐵𝑐 (𝒏) =
1

(2𝜋)2

∫
𝐼2
𝑒−𝑖𝒏·𝝃

1
𝜎(𝝃) + 𝑐2 2𝝃, (2.9)

where the function 𝜎(𝝃) reads

𝜎(𝝃) = 2𝛼1 − 2𝛼1 cos(𝜉1) + 2 − 2 cos(𝜉2). (2.10)

We define
𝜌(𝝃) = 2𝛼1 cos(𝜉1) + 2 cos(𝜉2), 𝜆 = 2 + 2𝛼1. (2.11)

Thus, we can write:
𝜎(𝝃) = 𝜆 − 𝜌(𝝃), (2.12)

and thus we can write Eq. 2.3 as

𝐵𝑐 (𝒏) =
1

(2𝜋)2

∫
𝐼2
𝑒−𝑖𝒏·𝝃

1
𝜆 − 𝜌(𝝃) + 𝑐2 𝑑𝝃 . (2.13)

Now since
𝜌(𝝃) ∈ [−𝜆, 𝜆] ⇒ |𝜌(𝝃) | < 𝜆 + 𝑐2, (2.14)

and 𝑐2 > 0, we can expand the integral formally as

𝐵𝑐 (𝒏) =
1

(2𝜋)2

∫
𝐼2
𝑒−𝑖𝒏·𝝃

1
𝜆 + 𝑐2

1
1 − 𝜌(𝝃)/(𝜆 + 𝑐2)

𝑑𝝃

=
1

(2𝜋)2

∫
𝐼2
𝑒−𝑖𝒏·𝝃

1
𝜆 + 𝑐2

∞∑︁
𝑘=0

(
𝜌(𝝃)
𝜆 + 𝑐2

) 𝑘
𝑑𝝃

=
1

(2𝜋)2
1

𝜆 + 𝑐2

∞∑︁
𝑘=0

(
𝜆

𝜆 + 𝑐2

) 𝑘 ∫
𝐼2
𝑒−𝑖𝒏·𝝃

(
𝜌(𝝃)
𝜆

) 𝑘
𝑑𝝃 .

(2.15)

To show that this series converges, it suffices to show that the dominated convergence
theorem applies. That is, as long as we can find an integrable function that dominates
the sequence of the integrand, the equation above holds, which leads to the following
lemma:
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Lemma 2.3.1. Fix 𝒏 ∈ Z2. Define

𝑓𝑘 (𝝃) = 𝑒−𝑖𝒏·𝝃
1

𝜆 + 𝑐2

𝑘∑︁
𝑙=0

(
𝜌(𝝃)
𝜆 + 𝑐2

) 𝑙
. (2.16)

Then 𝑓𝑘 is dominated by a constant:

| 𝑓𝑘 | ≤
1
𝑐2 . (2.17)

Proof. Consider

| 𝑓𝑘 | =
�����𝑒−𝑖𝒏·𝝃 1

𝜆 + 𝑐2

𝑘∑︁
𝑙=0

(
𝜌(𝝃)
𝜆 + 𝑐2

) 𝑙 �����
≤ |𝑒−𝑖𝒏·𝝃 |

���� 1
𝜆 + 𝑐2

���� ����� 𝑘∑︁
𝑙=0

(
𝜆

𝜆 + 𝑐2

) 𝑙 (
𝜌(𝝃)
𝜆

) 𝑙 �����
≤

���� 1
𝜆 + 𝑐2

���� ����� 𝑘∑︁
𝑙=0

(
𝜆

𝜆 + 𝑐2

) 𝑙 �����
≤

���� 1
𝜆 + 𝑐2

���� 1
1 − 𝜆/(𝜆 + 𝑐2)

=
1
𝑐2 .

(2.18)

Thus, 𝑓𝑘 is dominated by 1/𝑐2. □

Since the integration domain 𝐼2 is finite, 𝑓𝑘 is integrable. As a result, the dominated
convergence theorem applies, so the series expansion of 𝐵𝑐 (𝒏) given in Eq. 2.15
converges to 𝐵𝑐 (𝒏). With Eq. 2.15, we can define an approximation of 𝐵𝑐.

Definition 2.3.1.1. The 𝑁-term approximation of 𝐵𝑐 (𝒏), denoted as 𝐺𝑁 (𝑐, 𝒏), is
defined as

𝐺𝑁 (𝑐, 𝒏) =
1

(2𝜋)2
1

𝜆 + 𝑐2

𝑁−1∑︁
𝑘=0

(
𝜆

𝜆 + 𝑐2

) 𝑘 ∫
𝐼2
𝑒−𝑖𝒏·𝝃

(
𝜌(𝝃)
𝜆

) 𝑘
𝑑𝝃 . (2.19)

We can bound the error of this 𝑁-term approximation with the following theorem.

Theorem 2.3.2. The truncation error from the 𝑁-term approximation of 𝐵𝑐 (𝒏) is
bounded by

|𝜖𝑁 (𝒏) | = |𝐵𝑐 (𝒏) − 𝐺𝑁 (𝑐, 𝒏) | ≤
1
𝑐2

(
𝜆

𝜆 + 𝑐2

)𝑁
∀𝒏 ∈ Z2. (2.20)
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Proof. Fix 𝒏 ∈ Z𝑛, and the truncation error is:

𝜖𝑁 = 𝐵𝑐 (𝒏) − 𝐺𝑁 (𝑐, 𝒏)

=
1

(2𝜋)2
1

𝜆 + 𝑐2

∞∑︁
𝑘=𝑁

(
𝜆

𝜆 + 𝑐2

) 𝑘 ∫
𝐼2
𝑒−𝑖𝒏·𝝃

(
𝜌(𝝃)
𝜆

) 𝑘
𝑑𝝃 .

(2.21)

The error, 𝜖𝑁 , can be bounded by the following:

|𝜖𝑁 | =
����� 1
(2𝜋)2

1
𝜆 + 𝑐2

∞∑︁
𝑘=𝑁

(
𝜆

𝜆 + 𝑐2

) 𝑘 ∫
𝐼2
𝑒−𝑖𝒏·𝝃

(
𝜌(𝝃)
𝜆

) 𝑘+𝑁
𝑑𝝃

�����
≤

����� 1
(2𝜋)2

1
𝜆 + 𝑐2

(
𝜆

𝜆 + 𝑐2

)𝑁 ∞∑︁
𝑘=0

4𝜋2
(

𝜆

𝜆 + 𝑐2

) 𝑘 �����
=

1
𝜆 + 𝑐2

(
𝜆

𝜆 + 𝑐2

)𝑁 1
1 − 𝜆/(𝜆 + 𝑐2)

=
1
𝑐2

(
𝜆

𝜆 + 𝑐2

)𝑁
.

(2.22)

Since this error bound is independent of 𝒏, it is true for all 𝒏. □

2.3.2 Analytical expressions of the 𝑁-term approximation
It turns out that each term in the series representation of 𝐵𝑐 can be analytically
computed as functions of multinomial coefficients. To do so, we define

𝑔𝑘 (𝒏) =
1

4𝜋2

∫
𝐼2
𝑒−𝑖𝒏·𝝃

(
𝜌(𝝃)
𝜆

) 𝑘
𝑑𝝃, (2.23)

so that we can write

𝐺𝑁 (𝑐, 𝒏) =
1

𝜆 + 𝑐2

𝑁−1∑︁
𝑘=0

(
𝜆

𝜆 + 𝑐2

) 𝑘
𝑔𝑘 (𝒏). (2.24)

Now we can focus on those 𝑔𝑘 (𝒏) terms alone. The following theorem gives an
analytical expression of 𝑔𝑘 (𝒏).

Theorem 2.3.3. The function 𝑔𝑘 (𝑛, 𝑚) is nonzero if and only if 𝑘 ≥ |𝑛| + |𝑚 | and
𝑘 − |𝑛| − |𝑚 | is even. In that case,

𝑔𝑘 (𝑛, 𝑚) =
1
𝜆𝑘

(𝑘−𝑛−𝑚)/2∑︁
𝑙=0

𝛼𝑛+2𝑙
1

(
𝑘

𝑙, 𝑛 + 𝑙, (𝑘 − 𝑛 − 2𝑙 − 𝑚)/2, (𝑘 − 𝑛 − 2𝑙 + 𝑚)/2

)
(2.25)

where (
𝑘

𝑎, 𝑏, 𝑐, 𝑑

)
=

𝑘!
𝑎!𝑏!𝑐!𝑑!

(2.26)

is the multinomial coefficient.
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Remark 2.3.3.1. A way to effectively evaluate Eq. 2.25 without numerical overflow is
using the log Gamma function, which is relatively well-behaved. With this result, for
a finite 𝑘 , one can efficiently evaluate 𝑔𝑘 directly using built-in log game functions,
e.g., the lgamma function in C++ or using existing numerical packages such as
Boost (Schäling, 2011) and SciPy (Virtanen et al., 2020).

Remark 2.3.3.2. This theorem completes the entire asymptotic expansion of 𝐵𝑐.
This expression can also be derived from the perspective of a random walk with
killing. Similar results for the LGF on square lattices (𝛼1 = 1) have been derived
using a random walk argument (Michta and Slade, 2021).

Proof of Thm. 2.3.3. We directly expand the integral form of 𝑔𝑘

𝑔𝑘 (𝒏) =
1

4𝜋2

∫
𝐼2
𝑒−𝑖𝒏·𝝃

(
𝜌(𝝃)
𝜆

) 𝑘
𝑑𝝃

=
1

4𝜋2
1
𝜆𝑘

∫
𝐼2
𝑒−𝑖𝒏·𝝃 (2𝛼1 cos(𝜉1) + 2 cos(𝜉2))𝑘 𝑑𝝃

=
1

4𝜋2
1
𝜆𝑘

∫
𝐼2
𝑒−𝑖𝒏·𝝃

𝑘∑︁
𝑙=0

(
𝑘

𝑙

)
(2𝛼1 cos(𝜉1))𝑙 (2 cos(𝜉2))𝑘−𝑙𝑑𝝃

=
1

4𝜋2
1
𝜆𝑘

𝑘∑︁
𝑙=0

(
𝑘

𝑙

)
𝛼𝑙1

∫
𝐼

𝑒−𝑖𝑛1𝜉1 (2 cos(𝜉1))𝑙𝑑𝜉1

∫
𝐼

𝑒−𝑖𝑛2𝜉2 (2 cos(𝜉2))𝑘−𝑙𝑑𝜉2.

(2.27)
A direct calculation shows that

∫
𝐼

𝑒−𝑖𝑛𝜉 (2 cos(𝜉))𝑝𝑑𝜉 =


2𝜋 ©­«

𝑝

(𝑝 − 𝑛)/2
ª®¬ if (𝑝 − 𝑛) ≥ 0 and (𝑝 − 𝑛) is even

0 otherwise.
(2.28)

Plugging this expression into Eq. 2.27, we obtain the desired result. □

In Figure 2.1, we demonstrate the error convergence rate of the LGF approximated
by 𝐺𝑁 at selected values of (𝑛, 𝑚) at 𝛼1 = 0.75 compared with corresponding
error bounds given by Thm. 2.3.2. The error is computed by comparing against
the analytical values computed using the Appell function representation given in
Eq. 2.5. The analytical values are computed to 50 decimal places using the Python
package mpmath (The mpmath development team, 2023). This figure shows that for
a fixed point, the error from the 𝐺𝑁 approximations monotonically decreases as 𝑁
increases. The monotonicity arises from the fact that 𝑔𝑘 is nonnegative.
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Figure 2.1: Error of 𝐺𝑁 for various 𝑐 at 𝛼1 = 0.75. We randomly choose 5 points
within the square [0, 10)2 and evaluate their 𝐺𝑁 approximation using various 𝑁 at
different 𝑐. We compare the resulting 𝐺𝑁 with the solution obtained by evaluating
𝐵𝑐 at those points using Eq. 2.5. We also show the error bounds given by Thm. 2.3.2.

2.3.3 Spatial decay of the lattice Green’s function
Fix 𝑛, 𝑚 ≥ 0. With 𝒏 = (𝑛, 𝑚),

𝐺𝑛+𝑚 (𝑐, 𝒏) =
1

𝜆 + 𝑐2

𝑛+𝑚−1∑︁
𝑘=0

(
𝜆

𝜆 + 𝑐2

) 𝑘
𝑔𝑘 (𝒏). (2.29)

By Thm. 2.3.3, 𝑔𝑘 (𝑛, 𝑚) = 0 for 𝑘 < 𝑛 + 𝑚. As a result, 𝐺𝑛+𝑚 (𝑐, 𝒏) = 0. Thus, by
Thm. 2.3.2, we can write

|𝐵𝑐 (𝒏) | = |𝐵𝑐 (𝒏) − 𝐺𝑛+𝑚 (𝑐, 𝒏) | = |𝜖𝑛+𝑚 | ≤
1
𝑐2

(
𝜆

𝜆 + 𝑐2

) (𝑛+𝑚)
. (2.30)

Thus, 𝐵𝑐 (𝑛, 𝑚) decays exponentially fast as 𝑛 + 𝑚 increases.

Although this result is immediate from Thm. 2.3.2 and Thm. 2.3.3, it has at least
two important implications.

First, when approximating 𝐵𝑐 on a large domain using 𝐺𝑁 , the number of terms
in 𝐺𝑁 we need to evaluate decreases as 𝑚 + 𝑛 increases. By only evaluating those
nonzero terms, we can achieve significant computational savings when evaluating
each term of 𝐵𝑐.

Second, when solving the screened Poisson equation using 𝐵𝑐 to a certain precision,
we need only convolve 𝐵𝑐 within regions where 𝐵𝑐 is larger than the prescribed
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precision. In this way, applying 𝐵𝑐 can be made much more computationally
efficient.

As it is evident from the error estimates in Thm. 2.3.2, when 𝑐2 is large, one can
approximate 𝐵𝑐 to the machine precision using only a few terms, and we only need
to evaluate a small number of 𝐵𝑐 since it decays exponentially fast. As a result,
when 𝑐2 is large, it is favorable to evaluate the LGF using Eq. 2.19.

2.4 Calculation of the lattice Green’s function at arbitrary nonzero 𝑐2

For smaller values of 𝑐2, evaluating 𝐵𝑐 using Eq. 2.5 and Eq. 2.19 becomes more
expensive. To resolve this problem, we introduce a one-dimensional integral for-
mulation of 𝐵𝑐 through the following theorem:

Theorem 2.4.1. The value of 𝐵𝑐 (𝑛, 𝑚) for any 𝑛, 𝑚 ∈ Z and 𝑐 > 0 can be written
as:

𝐵𝑐 (𝑛, 𝑚) =
1

2𝜋

∫ 𝜋

−𝜋

𝑒𝑖𝜃𝑛

𝐾 |𝑚 |
𝑑𝜃

𝐾 − 1/𝐾 (2.31)

where

𝐾 =
𝜙 +

√︁
𝜙2 − 4
2

, 𝜙 = 𝜆 + 𝑐2 − 2𝛼1 cos(𝜃), 𝜆 = 2 + 2𝛼1. (2.32)

Proof. We first rewrite the governing equation (Eq. 2.2 without the far field boundary
condition) as

𝜆𝐵𝑐 (𝑛, 𝑚) − (𝐵𝑐 (𝑛, 𝑚 − 1) + 𝐵𝑐 (𝑛, 𝑚 + 1))
= 𝛼1(𝐵𝑐 (𝑛 − 1, 𝑚) + 𝐵𝑐 (𝑛 + 1, 𝑚)) − 𝑐2𝐵𝑐 (𝑛, 𝑚) + 𝛿0𝑛𝛿0𝑚 . (2.33)

The 𝑁-term discrete Fourier transform in the first coordinate is

𝐵̃𝑁𝑐 (𝑘, 𝑚) =
𝑁/2∑︁

𝑛=1−𝑁/2
𝐵𝑐 (𝑛, 𝑚)𝑒−2𝜋𝑖𝑘𝑛/𝑁 . (2.34)

We first impose that 𝐵𝑐 (𝑛, 𝑚) is periodic in 𝑛 with periodicity 𝑁 (assuming that 𝑁
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is even); we later relax periodicity in the limit 𝑁 → ∞. Consider the following:

𝐵̃𝑁𝑐 (𝑘, 𝑚 − 1) + 𝐵̃𝑁𝑐 (𝑘, 𝑚 + 1) − 𝜆𝐵̃𝑁𝑐 (𝑘, 𝑚)

=

𝑁/2∑︁
𝑛=1−𝑁/2

[
𝐵𝑐 (𝑛, 𝑚 − 1)𝑒−2𝜋𝑖𝑘𝑛/𝑁 + 𝐵𝑐 (𝑛, 𝑚 + 1)𝑒−2𝜋𝑖𝑘𝑛/𝑁 − 𝜆𝐵𝑐 (𝑛, 𝑚)𝑒−2𝜋𝑖𝑘𝑛/𝑁 ]

=

𝑁/2∑︁
𝑛=1−𝑁/2

[𝐵𝑐 (𝑛, 𝑚 − 1) + 𝐵𝑐 (𝑛, 𝑚 + 1) − 𝜆𝐵𝑐 (𝑛, 𝑚)] 𝑒−2𝜋𝑖𝑘𝑛/𝑁

=

𝑁/2∑︁
𝑛=1−𝑁/2

[
𝑐2𝐵𝑐 (𝑛, 𝑚) − 𝛼1𝐵𝑐 (𝑛 − 1, 𝑚) − 𝛼1𝐵𝑐 (𝑛 + 1, 𝑚) − 𝛿0𝑚𝛿0𝑛

]
𝑒−2𝜋𝑖𝑘𝑛/𝑁 .

With the periodicity assumption, we can write

𝑁/2∑︁
𝑛=1−𝑁/2

[
𝑐2𝐵𝑐 (𝑛, 𝑚) − 𝛼1𝐵𝑐 (𝑛 − 1, 𝑚) − 𝛼1𝐵𝑐 (𝑛 + 1, 𝑚)

]
𝑒−2𝜋𝑖𝑘𝑛/𝑁

=

𝑁/2∑︁
𝑛=1−𝑁/2

𝐵𝑐 (𝑛, 𝑚)
[
𝑐2𝑒−2𝜋𝑖𝑘𝑛/𝑁 − 𝛼1𝑒

−2𝜋𝑖𝑘 (𝑛+1)/𝑁 − 𝛼1𝑒
−2𝜋𝑖𝑘 (𝑛−1)/𝑁 ]

=

𝑁/2∑︁
𝑛=1−𝑁/2

𝐵𝑐 (𝑛, 𝑚)𝑒−2𝜋𝑖𝑘𝑛/𝑁 (𝑐2 − 2𝛼1 cos(2𝜋𝑘/𝑁))

=[𝑐2 − 2𝛼1 cos(2𝜋𝑘/𝑁)] 𝐵̃𝑁𝑐 (𝑘, 𝑚)

and
𝑁/2∑︁

𝑛=1−𝑁/2
𝛿0𝑚𝛿0𝑛𝑒

−2𝜋𝑖𝑘𝑛/𝑁 = 𝛿0𝑚 . (2.35)

As a result, we have

𝐵̃𝑁𝑐 (𝑘, 𝑚−1) + 𝐵̃𝑁𝑐 (𝑘, 𝑚 +1) = [𝜆+ 𝑐2 −2𝛼1 cos(2𝜋𝑘/𝑁)] 𝐵̃𝑁𝑐 (𝑘, 𝑚) − 𝛿0𝑚 . (2.36)

On the one hand, if 𝑚 ≠ 0, we have

𝐵̃𝑁𝑐 (𝑘, 𝑚 − 1) + 𝐵̃𝑁𝑐 (𝑘, 𝑚 + 1) + [2𝛼1 cos(2𝜋𝑘/𝑁) − 𝜆 − 𝑐2] 𝐵̃𝑁𝑐 (𝑘, 𝑚) = 0. (2.37)

This type of recurrence relation can be solved by assuming the following ansatz
(Buneman, 1971):

𝐵̃𝑁𝑐 (𝑘, 𝑚) = 𝐵̃𝑁𝑐 (𝑘, 0)/𝐾 |𝑚 | . (2.38)

By directly plugging in our recurrence relation, 𝐾 can be solved using

𝐾 + 1/𝐾 = 𝜆 + 𝑐2 − 2𝛼1 cos(2𝜋𝑘/𝑁) := 𝜙𝑁 . (2.39)
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To enforce the condition that 𝐵𝑐 (𝑛, 𝑚) → 0 as |𝑚 | → ∞, we need |𝐾 | > 1. Thus,
the appropriate quadratic root is

𝐾 =
𝜙𝑁 +

√︃
𝜙2
𝑁
− 4

2
. (2.40)

On the other hand, if 𝑚 = 0, we have

𝐵̃𝑁𝑐 (𝑘,−1) + 𝐵̃𝑁𝑐 (𝑘, 1) + [2𝛼1 cos(2𝜋𝑘/𝑁) − 𝜆 − 𝑐2] 𝐵̃𝑁𝑐 (𝑘, 0) = −1. (2.41)

Substituting the equation of 𝐾 , we obtain the solution of 𝐵̃𝑁𝑐 (𝑘, 0) as

2𝐵̃𝑁𝑐 (𝑘, 0)/𝐾 − 𝜙𝑁 𝐵̃𝑁𝑐 (𝑘, 0) = −1 ⇒ 𝐵̃𝑁𝑐 (𝑘, 0) =
1

𝐾 − 1/𝐾 . (2.42)

Thus, the expression of 𝐵̃𝑁𝑐 (𝑘, 𝑚) comes out to be

𝐵̃𝑁𝑐 (𝑘, 𝑚) =
1

𝐾 − 1/𝐾
1
𝐾 |𝑚 | . (2.43)

With the expression of 𝐵̃𝑁𝑐 (𝑘, 𝑚), we take the inverse discrete Fourier transform to
obtain 𝐵𝑐 (𝑛, 𝑚)

𝐵𝑐 (𝑛, 𝑚) =
1
𝑁

𝑁/2∑︁
𝑘=1−𝑁/2

𝑒2𝜋𝑖𝑘𝑛/𝑁 𝐵̃𝑁𝑐 (𝑘, 𝑚) =
1
𝑁

𝑁/2∑︁
𝑘=1−𝑁/2

𝑒2𝜋𝑖𝑘𝑛/𝑁 1
𝐾 − 1/𝐾

1
𝐾 |𝑚 | .

(2.44)
Now, we are ready to take 𝑁 to infinity. To do so, define

𝜃𝑘 = 2𝜋𝑘/𝑁, Δ𝜃 = 2𝜋/𝑁. (2.45)

The expression of 𝐵𝑐 (𝑛, 𝑚) becomes

𝐵𝑐 (𝑛, 𝑚) = Δ𝜃

𝑁/2∑︁
𝑘=1−𝑁/2

𝑒𝑖𝑛𝜃𝑘
1

𝐾 − 1/𝐾
1
𝐾 |𝑚 | (2.46)

where

𝐾 =
𝜙𝑁 +

√︃
𝜙2
𝑁
− 4

2
, 𝜙𝑁 = 𝜆 + 𝑐2 − 2𝛼1 cos(𝜃𝑘 ). (2.47)

Note that now the summands are composed entirely of 𝜃𝑘 , without direct involvement
of 𝑁 . By taking 𝑁 to infinity, we are creating a Riemann sum. Since the function
defining the summands is bounded and continuous, the Riemann sum converges,
and we write

lim
𝑁→∞

Δ𝜃

𝑁/2∑︁
𝑘=1−𝑁/2

𝑒𝑖𝑛𝜃𝑘
1

𝐾 − 1/𝐾
1
𝐾 |𝑚 | =

1
2𝜋

∫ 𝜋

−𝜋
𝑒𝑖𝑛𝜃

1
𝐾 − 1/𝐾

𝑑𝜃

𝐾 |𝑚 | (2.48)
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where

𝐾 =
𝜙 +

√︁
𝜙2 − 4
2

, 𝜙 = 𝜆 + 𝑐2 − 2𝛼1 cos(𝜃). (2.49)

As a result, can write

𝐵𝑐 (𝑛, 𝑚) =
1

2𝜋

∫ 𝜋

−𝜋

𝑒𝑖𝑛𝜃

𝐾 − 1/𝐾
𝑑𝜃

𝐾 |𝑚 | . (2.50)

Since we have taken𝑁 to infinity, 𝐵𝑐 (𝑛, 𝑚) does not have to be periodic anymore. □

Remark 2.4.1.1. The proof of Eq. 2.4.1 generalizes the techniques presented by
Buneman (1971), where the author only considered the case of 𝑐2 = 0 and 𝛼1 = 1.
In that case, 𝐾 only has one root, so there is no need to identify the correct root.

Using similar techniques, one can show that, when 𝑐2 = 0 and 𝛼1 < 1, the corre-
sponding LGF is

𝐵0(𝑛, 𝑚) − 𝐵0(0, 0) =
1

2𝜋

∫ 𝜋

−𝜋

(
𝑒𝑖𝑛𝜃

𝐾 |𝑚 | − 1
)

𝑑𝜃

𝐾 − 1/𝐾 , (2.51)

where

𝐾 =
𝜙 +

√︁
𝜙2 − 4
2

, 𝜙 = 𝜆 − 2𝛼1 cos(𝜃). (2.52)

The proof follows from the proof of Thm. 2.4.1.

Remark 2.4.1.2. In contrast to Eq. 2.8, the integral in Eq. 2.31 has a finite integration
domain and an integrand consisting of elementary functions only. As a result,
numerical integrating Eq. 2.31 is faster and more stable.

2.5 Convergence rate of the trapezoidal rule approximation
We cannot reduce the one-dimensional integral presentation of 𝐵𝑐 (𝑛, 𝑚) any further.
Thus, we need to evaluate it numerically. It turns out, however, that the trapezoidal
rule approximation yields an exponential convergence rate for this particular integral.
To show this, we first invoke the following general theorem on the convergence rate
of trapezoidal rule approximations (Trefethen and Weideman, 2014):

Theorem 2.5.1. (Trefethen and Weideman, 2014) Let

𝐼 =

∫ 𝜋

−𝜋
𝑣(𝜃)𝑑𝜃. (2.53)

For any positive integer 𝑁 , define the trapezoidal rule approximation:

𝐼𝑁 =
2𝜋
𝑁

𝑁∑︁
𝑘=1

𝑣(𝜃𝑘 ) (2.54)
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where 𝜃𝑘 = 2𝜋𝑘/𝑁 − 𝜋. Suppose 𝑣 is 2𝜋 periodic and analytic and satisfies
|𝑣(𝜃) | < 𝑀 in the strip −𝛾 < ℑ(𝜃) < 𝛾 for some 𝛾 > 0. Then for any 𝑁 ≥ 1,

|𝐼𝑁 − 𝐼 | ≤ 4𝜋𝑀
𝑒𝛾𝑁 − 1

, (2.55)

and the constant 4𝜋 is as small as possible.

Using the above theorem, we can show the following result regarding the convergence
rate of the trapezoidal rule approximation for Eq. 2.31.

Theorem 2.5.2. Let 𝛼1 ∈ (0, 1) and

𝑣(𝜃) = 𝑒𝑖𝜃𝑛

𝐾 |𝑚 |
1

𝐾 − 1/𝐾 , 𝜙 = 𝜆 + 𝑐2 − 2𝛼1 cos(𝜃), 𝐾 =
𝜙 +

√︁
𝜙2 − 4
2

. (2.56)

Let
𝐼 =

∫ 𝜋

−𝜋
𝑣(𝜃)𝑑𝜃 (2.57)

and 𝐼𝑁 be its trapezoidal rule approximation. Then for any positive real number,
𝛾𝑐, satisfying

𝛾𝑐 < log ©­«1 + 𝑐2

2𝛼1
+

√︄(
1 + 𝑐2

2𝛼1

)2
− 1ª®¬ , (2.58)

for any 𝑁 ≥ 1, we have

|𝐼𝑁 − 𝐼 | ≤ 4𝜋𝑀
𝑒𝛾𝑐𝑁 − 1

, (2.59)

where 𝑀 is
𝑀 = sup

|ℑ(𝜃) |<𝛾𝑐

���� 𝑒𝑖𝜃𝑛𝐾 |𝑚 |
1

𝐾 − 1/𝐾

���� . (2.60)

Before proving the above theorem, we first prove the following technical lemma

Lemma 2.5.3. For 𝜃 ∈ C,

|𝛼1 cos(𝜃) | < 𝜆/2 + 𝑐2/2 − 1 ⇒ 𝜙2 − 4 ∉ R<0. (2.61)

Proof of Lemma 2.5.3. We prove this lemma by contradiction. Assume

𝜙2 − 4 = 𝑣 ∈ R<0. (2.62)
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We rewrite this equation as:

(𝜆 + 𝑐2 − 2𝛼1 cos(𝜃))2 = 4 + 𝑣 (2.63)

We solve for 𝛼1 cos(𝜃):

𝛼1 cos(𝜃) = 1
2

[
𝜆 + 𝑐2 ±

√
4 + 𝑣

]
. (2.64)

Since

|𝛼1 cos(𝜃) | =

√︄(
1
2
(𝜆 + 𝑐2) ± 1

2
ℜ(

√
4 + 𝑣)

)2
+

(
1
2
ℑ(

√
4 + 𝑣)

)2
, (2.65)

we have

|𝛼1 cos(𝜃) | ≥ 1
2
(𝜆 + 𝑐2) − 1

2
|ℜ(

√
4 + 𝑣) | > 1

2
(𝜆 + 𝑐2) − 1. (2.66)

Thus, we have a contradiction. □

Proof of Thm. 2.5.2. To use Thm. 2.5.1, we need to find a strip within which our
specific 𝑣(𝜃) is analytic

𝑣(𝜃) = 𝑒𝑖𝜃𝑛

𝐾 |𝑚 |
1

𝐾 − 1/𝐾 , 𝜙 = 𝜆 + 𝑐2 − 2𝛼1 cos(𝜃), 𝐾 =
𝜙 +

√︁
𝜙2 − 4
2

. (2.67)

Inspecting the above expression, we know that 𝑣(𝜃) is analytic in a strip if, in which,
𝐾 − 1/𝐾 ≠ 0 and 𝜙2 − 4 ∉ R<0.

We first find a strip in which 𝐾 − 1/𝐾 ≠ 0. To do so, we only need to pick any finite
𝛾 such that

𝐾 − 1/𝐾 ≠ 0 ∀𝜃 ∈ C : |ℑ(𝜃) | < 𝛾. (2.68)

We have
𝐾 − 1/𝐾 =

√︁
𝜙2 − 4, (2.69)

so
𝐾 − 1/𝐾 = 0 ⇐⇒ 𝜙2 = 4 ⇐⇒ 𝜙 = ±2. (2.70)

Directly plugging in the expression of 𝜙, we obtain:

cos(𝜃) = 1
𝛼1

[
𝜆

2
± 1 + 1

2
𝑐2

]
. (2.71)

To facilitate the discussion, we denote the two possible values on the RHS as:

𝜙+𝑚 =
1
𝛼1

[
𝜆

2
+ 1 + 1

2
𝑐2

]
, 𝜙−𝑚 =

1
𝛼1

[
𝜆

2
− 1 + 1

2
𝑐2

]
. (2.72)
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A necessary condition for Eq. 2.71 to be satisfied is

exp(ℑ(𝜃)) = 𝜙+𝑚 ±
√︁
(𝜙+𝑚)2 − 1 or exp (ℑ(𝜃)) = 𝜙−𝑚 ±

√︁
(𝜙−𝑚)2 − 1 (2.73)

In addition, we notice that

1
𝜙±𝑚 +

√︁
(𝜙±𝑚)2 − 1

=
𝜙±𝑚 −

√︁
(𝜙±𝑚)2 − 1

(𝜙±𝑚 +
√︁
(𝜙±𝑚)2 − 1) (𝜙±𝑚 −

√︁
(𝜙±𝑚)2 − 1)

= 𝜙±𝑚 −
√︁
(𝜙±𝑚)2 − 1.

(2.74)
Consequently,

log(𝜙±𝑚 +
√︁
(𝜙±𝑚)2 − 1) = − log(𝜙±𝑚 −

√︁
(𝜙±𝑚)2 − 1). (2.75)

Since the logarithm function is a monotonically increasing function and that | log(𝜙±𝑚+√︁
(𝜙±𝑚)2 − 1) | = | log(𝜙±𝑚 −

√︁
(𝜙±𝑚)2 − 1) |, to ensure analyticity within the strip, we

need
|ℑ(𝜃) | < 𝛾 := log(𝜙−𝑚 +

√︁
(𝜙−𝑚)2 − 1). (2.76)

We then focus on the second condition regarding 𝐾 , i.e.

𝜙2 − 4 ∉ R<0. (2.77)

Since the function 𝑒𝑥 + 𝑒−𝑥 monotonically increases with 𝑥 when 𝑥 ≥ 0, within the
strip of |ℑ(𝜃) | < 𝛾, we have

| cos(𝜃) | ≤ |𝑒ℑ(𝜃) |/2 + |𝑒−ℑ(𝜃) |/2 <
1
2
(𝑒𝛾 + 𝑒−𝛾)

=
1
2

(
𝜙−𝑚 +

√︁
(𝜙−𝑚)2 − 1 + 𝜙−𝑚 −

√︁
(𝜙−𝑚)2 − 1

)
= 𝜙−𝑚 .

(2.78)

Thus, |𝛼1 cos(𝜃) | < (𝜆/2−1+𝑐2/2), so by Lemma 2.5.3, 𝜙2−4 ∉ R<0. Considering
𝐾 − 1/𝐾 ≠ 0, we know that 𝑣(𝜃) is analytic within the strip. If we pick any 𝛾𝑐 < 𝛾,
we have

|𝑣(𝜃) | ≤ 𝑀 = sup
|ℑ(𝜃) |<𝛾𝑐

���� 𝑒𝑖𝜃𝑛𝐾 |𝑚 |
1

𝐾 − 1/𝐾

���� . (2.79)

We write

𝜙−𝑚 =
1
𝛼1

[
𝜆

2
− 1 + 1

2
𝑐2

]
=

1
𝛼1

[
1 + 𝛼1 − 1 + 1

2
𝑐2

]
= 1 + 𝑐2

2𝛼1
. (2.80)

Thus, we can find 𝛾 to be:

𝛾 = log ©­«1 + 𝑐2

2𝛼1
+

√︄(
1 + 𝑐2

2𝛼1

)2
− 1ª®¬ . (2.81)

And by Thm. 2.5.1, we conclude with the desired result. □
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Remark 2.5.3.1. The essence of Thm. 2.5.2 is to show that the integrand in Eq. 2.31
is analytic with the strip |ℑ(𝜃) | ≤ 𝛾𝑐 for any 𝛾𝑐 satisfying

𝛾𝑐 < 𝛾 = log ©­«1 + 𝑐2

2𝛼1
+

√︄(
1 + 𝑐2

2𝛼1

)2
− 1ª®¬ . (2.82)

In this sense, a more concise version of Thm. 2.5.2 can be stated. However, we
prefer the verbose version due to its central role in developing the algorithms that
will be introduced in the subsequent sections.

Remark 2.5.3.2. Investigating Thm. 2.5.2 further, we can understand the effect of 𝑛
in the error in Eq. 2.60 better. We can write

𝑀 = sup
|ℑ(𝜃) |<𝛾𝑐

���� 𝑒𝑖𝜃𝑛𝐾 |𝑚 |
1

𝐾 − 1/𝐾

���� ≤ 𝑒𝛾𝑐𝑛 [
sup

|ℑ(𝜃) |<𝛾𝑐

���� 1
𝐾 |𝑚 |

1
𝐾 − 1/𝐾

����] . (2.83)

Then the error estimate becomes

|𝐼𝑁 − 𝐼 | ≤ 4𝜋𝑒𝛾𝑐𝑛𝑀
𝑒𝛾𝑐𝑁 − 1

=
4𝜋𝑀

𝑒𝛾𝑐 (𝑁−𝑛) − 𝑒−𝛾𝑐𝑛
≤ 4𝜋𝑀
𝑒𝛾𝑐 (𝑁−𝑛) − 1

(2.84)

where
𝑀 = sup

|ℑ(𝜃) |<𝛾𝑐

���� 1
𝐾 |𝑚 |

1
𝐾 − 1/𝐾

���� . (2.85)

Thus, we only need to increase 𝑁 as fast as 𝑛 to maintain the same accuracy.

Corollary 2.5.3.1. Let 𝜂 ∈ (0, 𝑐2/𝛼1), 𝑁 > 𝑛 ≥ 0. Following the definitions of
Thm.2.5.1, we have

|𝐼𝑁 − 𝐼 | ≤
4𝜋𝑀𝜂

𝑒𝛾𝜂 (𝑁−𝑛) − 𝑒−𝛾𝜂𝑛
, (2.86)

where

𝛾𝜂 = log

(
1 + 𝜂

2
+

√︂(
1 + 𝜂

2

)2
− 1

)
, 𝑀𝜂 =

1
2
√︁
𝑐2/𝛼1 − 𝜂

. (2.87)

Proof of Corollary2.5.3.1. Since 𝜂 ∈ (0, 𝑐2/𝛼1), we have

𝛾𝜂 = log

(
1 + 𝜂

2
+

√︂(
1 + 𝜂

2

)2
− 1

)
< log ©­«1 + 𝑐2

2𝛼1
+

√︄(
1 + 𝑐2

2𝛼1

)2
− 1ª®¬ (2.88)

By Thm. 2.5.2 and Rmk. 2.5.3.2, we have

|𝐼𝑁 − 𝐼 | ≤
4𝜋𝑀′

𝜂

𝑒𝛾𝜂 (𝑁−𝑛) − 𝑒−𝛾𝜂𝑛
(2.89)
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where 𝑀′
𝜂 is

𝑀′
𝜂 = sup

|ℑ(𝜃) |<𝛾𝜂

���� 1
𝐾 |𝑚 |

1
𝐾 − 1/𝐾

���� . (2.90)

We can first put an upper bound on | cos(𝜃) | within the strip |ℑ(𝜃) | < 𝛾𝜂 as

| cos(𝜃) | ≤ |𝑒𝛾𝜂/2| + |𝑒−𝛾𝜂/2| = 1 + 𝜂/2. (2.91)

By Lemma 2.5.3, 𝜙2 − 4 ∉ R<0 within the strip |ℑ(𝜃) | < 𝛾𝜂. Thus, for
√︁
𝜙2 − 4, we

only take the principal branch. That is,√︁
𝜙2 − 4 = |𝜙2 − 4|1/2𝑒𝑖Arg(𝜙2−4)/2. (2.92)

Since Arg(𝜙2 − 4) ∈ (−𝜋, 𝜋), we have

ℜ(
√︁
𝜙2 − 4) > 0. (2.93)

Also,

ℜ(𝜙) ≥ 𝜆+ 𝑐2−2|𝛼1 cos(𝜃) | ≥ 𝜆+ 𝑐2−2𝛼1(1+𝜂/2) = 2+ (𝑐2−𝜂𝛼1) > 2. (2.94)

Combined with the previous result, we obtain a lower bound of |𝐾 |

ℜ(𝜙 +
√︁
𝜙2 − 4) > 2, and |𝐾 | =

�����𝜙 +
√︁
𝜙2 − 4
2

����� > 1. (2.95)

Then we can write

𝑀′
𝜂 = sup

|ℑ(𝜃) |<𝛾𝜂

���� 1
𝐾 |𝑚 |

1
𝐾 − 1/𝐾

���� ≤ sup
|ℑ(𝜃) |<𝛾𝜂

���� 1
𝐾 − 1/𝐾

���� = sup
|ℑ(𝜃) |<𝛾𝛼

����� 1√︁
𝜙2 − 4

����� .
(2.96)

Further, we can put a lower bound on |𝜙2 − 4|, i.e.

|𝜙2 − 4| = |𝜙 − 2| |𝜙 + 2|
= |𝜆 + 𝑐2 − 2𝛼1 cos 𝜃 − 2| |𝜆 + 𝑐2 − 2𝛼1 cos 𝜃 + 2|
≥ |𝜆 − 2 + 𝑐2 − 2𝛼1(1 + 𝜂/2) | |𝜆 + 2 + 𝑐2 − 2𝛼1(1 + 𝜂/2) |
= (𝑐2 − 𝜂𝛼1) (4 + 𝑐2 − 𝜂𝛼1)
> 4(𝑐2 − 𝜂𝛼1).

Thus, we can bound 𝑀′
𝜂 using

𝑀′
𝜂 = sup

|ℑ(𝜃) |<𝛾𝜂

���� 1
𝐾 |𝑚 |

1
𝐾 − 1/𝐾

���� ≤ 1
2
√︁
𝑐2 − 𝜂𝛼1

:= 𝑀𝜂 . (2.97)
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Finally, we conclude with

|𝐼𝑁 − 𝐼 | ≤
4𝜋𝑀′

𝜂

𝑒𝛾𝜂 (𝑁−𝑛) − 𝑒−𝛾𝜂𝑛
≤

4𝜋𝑀𝜂

𝑒𝛾𝜂 (𝑁−𝑛) − 𝑒−𝛾𝜂𝑛
. (2.98)

□

Remark 2.5.3.3. Although the bound in Corollary 2.5.3.1 is looser than the one
given in Thm. 2.5.2, it provides us with an a priori estimation of the error from
the trapezoidal rule approximation of 𝐵𝑐, depending only on 𝑁 − 𝑛 and 𝜂. This
bound will be useful when we introduce the numerical framework to evaluate the
trapezoidal rule approximation in the next section.

2.6 Fast Fourier Transform method for solving the lattice Green’s function
As we have established the convergence rate of the trapezoidal rule approximation
of 𝐵𝑐, we also notice that the specific form of the trapezoidal rule approximation
of Eq. 2.31 is precisely the inverse discrete Fourier transform. As a result, one can
utilize the inverse Fast Fourier Transform (Cooley and Tukey, 1965) to efficiently
evaluate the values of 𝐵𝑐. In this section, we introduce this algorithm.

2.6.1 A priori error estimate
Fix𝑚 ≥ 0. To evaluate 𝐵𝑐 (𝑛, 𝑚) for arbitrary 𝑛, for a prescribed error tolerance 𝜖 , we
need to estimate the size of our trapezoidal rule approximation. Let 𝐵𝑁𝑐 (𝑛, 𝑚) denote
the 𝑁-term trapezoidal rule approximation of 𝐵𝑐 (𝑛, 𝑚). By Corollary 2.5.3.1, for
any 𝜂 ∈ (0, 𝑐2/𝛼1), we can have an error estimate:

|𝐵𝑐 (𝑛, 𝑚) − 𝐵𝑁𝑐 (𝑛, 𝑚) | ≤
2𝑀𝜂

𝑒𝛾𝜂 (𝑁−𝑛) − 𝑒−𝛾𝜂𝑛
≈

2𝑀𝜂

𝑒𝛾𝜂 (𝑁−𝑛)
, (2.99)

where

𝛾𝜂 = log

(
1 + 𝜂

2
+

√︂(
1 + 𝜂

2

)2
− 1

)
, 𝑀𝜂 =

1
2
√︁
𝑐2/𝛼1 − 𝜂

. (2.100)

Without loss of generality, we assume 𝑛 = 0. Theoretically, one can optimize over
both 𝜂 and 𝑁 to use the fewest number of quadrature points, 𝑁𝑜𝑝𝑡 (𝜖), to satisfy the
error tolerance using the trapezoidal rule approximation. Given an error tolerance
𝜖 , to solve for 𝑁𝑜𝑝𝑡 (𝜖), we solve the following optimization problem:

arg min
𝑁,𝜂

𝑁2

subject to log
( 2𝑀𝜂

𝜖𝑒𝛾𝜂𝑁

)
≤ 0

𝜂 ∈
(
0,
𝑐2

𝛼1

)
.

(2.101)
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If we denote the resulting solution as 𝑁̂𝑜𝑝𝑡 (𝜖), then 𝑁𝑜𝑝𝑡 (𝜖) =
⌈
𝑁̂𝑜𝑝𝑡 (𝜖)

⌉
. This

problem can be hard to solve numerically. For example, we found that using MAT-
LAB’s fmincon function with default parameters sometimes diverges. Meanwhile,
extensive parameter tuning is undesirable in applications.

Alternatively, one can approximate 𝑁𝑜𝑝𝑡 (𝜖) using a function 𝑁𝑎𝑝 (𝜖) by fixing a
small parameter 𝛿 > 0 and let 𝜂 = (1 − 𝛿)2𝑐2/𝛼1. The corresponding minimum 𝑁

to satisfy a prescribed error tolerance 𝜖 is

𝑁𝑎𝑝 (𝜖) =
⌈
𝑁̂𝑎𝑝

⌉
, 𝑁̂𝑎𝑝 =

1
𝛾𝜂

log

(
1

𝜖 (𝑐/√𝛼1)
√

2𝛿 − 𝛿2

)
(2.102)

We can bound 𝑁̂𝑎𝑝 (𝜖) using 𝑁̂𝑜𝑝𝑡 (𝜖). Let 𝜂𝑜𝑝𝑡 denote the value of 𝜂 for which
𝑁̂𝑜𝑝𝑡 (𝜖) is obtained, and 𝜂𝑎𝑝 = (1 − 𝛿)2𝑐2/𝛼1. We consider two cases: 𝜂𝑜𝑝𝑡 > 𝜂𝑎𝑝
and 𝜂𝑜𝑝𝑡 ≤ 𝜂𝑎𝑝.

If 𝜂𝑜𝑝𝑡 > 𝜂𝑎𝑝, we have:

𝑁̂𝑜𝑝𝑡 (𝜖) =
1

𝛾𝜂𝑜𝑝𝑡
log

(
1

𝜖
√︁
𝑐2/𝛼1 − 𝜂𝑜𝑝𝑡

)
≥ 1
𝛾𝜂𝑜𝑝𝑡

log

(
1

𝜖
√︁
𝑐2/𝛼1 − 𝜂𝑎𝑝

)
=
𝛾𝜂𝑎𝑝

𝛾𝜂𝑜𝑝𝑡
𝑁̂𝑎𝑝 (𝜖)

(2.103)

Since log(1 + 𝑥) is a concave function, for any 𝑟𝛽 ∈ [0, 1]:

𝑟𝛽 log(1 + 𝑥) =
(
1 − 𝑟𝛽

)
log(1) + 𝑟𝛽 log(1 + 𝑥) ≤ log(1 + 𝑟𝛽𝑥)

⇒ log(1 + 𝑥)
log(1 + 𝑟𝛽𝑥)

≤ 1
𝑟𝛽
.

(2.104)

Since 𝜂𝑎𝑝 < 𝑐2/𝛼1, we have

𝛾𝜂𝑜𝑝𝑡

𝛾𝜂𝑎𝑝
≤
𝛾𝑐2/𝛼1

𝛾𝜂𝑎𝑝
≤

𝑐2/𝛼1
2 +

√︂(
1 + 𝑐2/𝛼1

2

)2
− 1

𝜂𝑎𝑝
2 +

√︃(
1 + 𝜂𝑎𝑝

2
)2 − 1

≤ 1
(1 − 𝛿)2 . (2.105)

Thus, we have
𝑁̂𝑎𝑝 (𝜖) ≤

1
(1 − 𝛿)2 𝑁̂𝑜𝑝𝑡 (𝜖). (2.106)

If 𝜂𝑜𝑝𝑡 ≤ 𝜂𝑎𝑝, we have:

𝑁̂𝑜𝑝𝑡 (𝜖) ≥
1
𝛾𝜂𝑎𝑝

log

(
1

𝜖
√︁
𝑐2/𝛼1

)
=

log
(

1
𝜖
√
𝑐2/𝛼1

)
log

(
1

𝜖
√
𝑐2/𝛼1

)
+ log

(
1√

2𝛿−𝛿2

) 𝑁̂𝑎𝑝 (𝜖). (2.107)
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Figure 2.2: Relative error of 𝑁̂𝑎𝑝 (𝜖), i.e. (𝑁̂𝑎𝑝 (𝜖) − 𝑁̂𝑜𝑝𝑡 (𝜖))/𝑁̂𝑜𝑝𝑡 (𝜖), across a
range of 𝜖 and 𝑐/√𝛼1.

Thus, for this case, we have

𝑁̂𝑎𝑝 (𝜖) ≤
©­­­­«
1 +

log
(

1√
2𝛿−𝛿2

)
log

(
1

𝜖
√
𝑐2/𝛼1

) ª®®®®¬
𝑁̂𝑜𝑝𝑡 (𝜖) (2.108)

As 𝜖
√︁
𝑐2/𝛼1 → 0, the ratio between the two log functions in the above inequality

converges to 0 logarithmically.

In summary, we have obtained that

𝑁̂𝑎𝑝 ≤ 𝑁̂𝑜𝑝𝑡 (𝜖) × max
©­­­­«
1 +

log
(

1√
2𝛿−𝛿2

)
log

(
1

𝜖
√
𝑐2/𝛼1

) , 1
(1 − 𝛿)2

ª®®®®¬
. (2.109)

In practice, 𝑁̂𝑎𝑝 is much closer to 𝑁̂𝑜𝑝𝑡 . We tuned MATLAB’s fmincon function to
obtain 𝑁̂𝑜𝑝𝑡 (𝜖) for a set of parameters and compared them with 𝑁̂𝑎𝑝 (𝜖) at 𝛿 = 0.01.
The resulting relative error is shown in Figure 2.2. The figure shows that the
relative error decreases as 𝜖 decreases and 𝑐/√𝛼1 decreases. Specifically, practical
applications normally require 𝜖 ≤ 10−8. Within this range, the relative error is
within 1%.
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When 𝑐/√𝛼1 becomes small, we can give a straightforward estimate of how 𝑁𝑎𝑝 (𝜖)
changes as 𝑐/√𝛼1 varies. Assuming 𝑐/√𝛼1 ≪ 1, we have

𝛾𝜂 = log

(
1 + 𝜂

2
+

√︂(
1 + 𝜂

2

)2
− 1

)
≈ 𝜂

2
+

√︂(
1 + 𝜂

2

)2
− 1 ≈ √

𝜂. (2.110)

Then we can write

𝑁̂𝑎𝑝 (𝜖) ≈
1

(𝑐/√𝛼1) (1 − 𝛿)

(
log

(
1

𝜖
√

2𝛿 − 𝛿2

)
+ log

(
1

𝑐/√𝛼1

))
. (2.111)

As we can see from the equation above, we have

𝑁̂𝑎𝑝 (𝜖) ∼ 𝑂
(− log(𝑐/√𝛼1)

(𝑐/√𝛼1)

)
, (2.112)

and similarly for 𝑁𝑎𝑝 (𝜖).

2.6.2 Fast Fourier Transform based fast evaluation algorithm
Now, we introduce the algorithm to compute 𝐵𝑐. Suppose we would like to compute
all the values of 𝐵𝑐 (𝑛, 𝑚) for a fixed 𝑚 and a range of 𝑛 ∈ [0, 𝐿] within some error
tolerance 𝜖 . We first define:

𝑓 (𝜃) = 1
𝐾 |𝑚 |

1
𝐾 − 1/𝐾 , 𝜙 = 𝜆 + 𝑐2 − 2𝛼1 cos(𝜃), 𝐾 =

𝜙 +
√︁
𝜙2 − 4
2

. (2.113)

With these, the algorithm to compute that set of 𝐵𝑐 is shown as Algorithm 1.
Since 𝐵𝑐 (𝑛, 𝑚) is real for all 𝑛 and 𝑚, we can utilize the inverse real Fast Fourier

Algorithm 1 FFT-Based LGF Evaluation
1: procedure Trapzoidal Rule with FFT(𝑐, 𝛼1, 𝐿, 𝑚, 𝜖)

2: Compute 𝑁′
𝑝𝑡𝑠 (𝜖) =

⌈
1
2

(
1
𝛾𝛼

log
(

1
𝜖 (𝑐/√𝛼1)

√
2𝛿−𝛿2

)
+ 𝐿

)⌉
3: 𝑁𝑝𝑡𝑠 = max(𝑁′

𝑝𝑡𝑠 (𝜖), 𝐿)
4: Declare 𝒗 ∈ R𝑁𝑝𝑡𝑠

5: for k = 0,1,..., 𝑁𝑝𝑡𝑠 − 1 do
𝒗(𝑘) = 𝑓 (𝜋𝑘/𝑁𝑝𝑡𝑠)

6: end for
7: 𝑩 = irFFT(𝒗, 2𝑁𝑝𝑡𝑠)
8: for k = 0,1,..., 𝑁𝑝𝑡𝑠 − 1 do

𝑩(𝑘) = 𝑩(𝑘) + (−1)𝑘 𝑓 (𝜋)/(2𝑁𝑝𝑡𝑠)
9: end for

10: Return 𝑩
11: end procedure
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Transform (irFFT). Note that to correctly compute 𝐵𝑐 using Algorithm 1, we need
to set the correct number of output in the irFFT function to 2𝑁𝑝𝑡𝑠. Otherwise, the
resulting FFT algorithm is different from the trapezoidal rule approximation, and
the numerical results do not converge to 𝐵𝑐 exponentially. Also, the correction term
in the second for-loop results from comparing the formula of irFFT against the
formula of the trapezoidal rule approximation. The difference, 𝑟 , is

𝑟 =
1

2𝜋
2𝜋

2𝑁𝑝𝑡𝑠
𝑒𝑖𝑘𝜋

𝐾 |𝑚 |
1

𝐾 − 1/𝐾 =
1

2𝑁𝑝𝑡𝑠
(−1)𝑘

𝐾 |𝑚 |
1

𝐾 − 1/𝐾 =
(−1)𝑘
2𝑁𝑝𝑡𝑠

𝑓 (𝜋). (2.114)

We note that for a fixed (𝑛, 𝑚), 𝑛 ≠ 𝐿 and a fixed error tolerance 𝜖 , the resulting
𝐵𝑐 (𝑛, 𝑚) value from Algorithm 1 is different from the values obtained by directly
evaluating the trapezoidal rule. This is because the number of quadrature points used
to evaluate 𝐵(𝑛, 𝑚) using Algorithm 1 is higher than 𝑁𝑎𝑝 (𝜖). The higher number
of quadrature points ensures that 𝐵𝑐 (𝐿, 𝑚) satisfies the required error tolerance.

Algorithm 1 is best applicable when 𝑁𝑎𝑝 ≈ 𝐿. In that case, the average operation
count to evaluate an entry of 𝐵𝑐 is

𝑂𝐶𝑎𝑣𝑔 ∼
𝑂 (𝐿 log(𝑁𝑎𝑝))

𝐿
∼ 𝑂 (log(𝑁𝑎𝑝)). (2.115)

By using FFT, one can take advantage of the ubiquity of the highly optimized
FFT libraries such as FFTW (Frigo and Johnson, 1998) and cuFFT (NVIDIA
Corporation, 2024). Thus, we not only speed up our computation in terms of
reduced computational complexity but also benefit from the optimization in the
software and hardware aspects. In the case that 𝑁𝑎𝑝 ≫ 𝐿, depending on the
computer architecture, it might be more efficient to directly evaluate the trapezoidal
rule approximation term by term. In that case, the average computational complexity
is 𝑂 (𝑁𝑎𝑝).

2.7 Numerical experiments
In this section, we assess the performance of the trapezoidal rule approximation
with FFT (Algorithm 1) and the direct trapezoidal rule approximation (without
FFT) by comparing them to two existing methods: evaluating Appell’s double
hypergeometric function representation in Thm. 2.2.1 and numerically integrating
Eq. 2.8 using Gauss-Kronrod quadrature (Doncker, 1978). All the computations
are done on an Apple Silicon M1 chip. The code used in this section is available
online∗.

∗The code for all the numerical experiments in this section can be found in https://github.
com/WeiHou1996/Fast-Screened-Poisson-LGF.

https://github.com/WeiHou1996/Fast-Screened-Poisson-LGF
https://github.com/WeiHou1996/Fast-Screened-Poisson-LGF
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First of all, we demonstrate the error bound Eq. 2.99 of the trapezoidal rule ap-
proximation. In Figure 2.3, we compare the trapezoidal rule approximation with
the Appell’s double hypergeometric function representation Eq. 2.5 at 𝑐 = 0.3 for a
range of 𝑁𝑝𝑡𝑠 (the number of quadrature points) and 𝛼1. With only 40 quadrature
points in the trapezoidal rule approximation, the error converges to less than 10−7

across all the cases. The small errors establish the validity of the trapezoidal rule
approximation and our implementation. When 𝑐 < 0.3, we cannot evaluate Appell’s
double hypergeometric function within a reasonable amount of time. Thus, in that
case, we use the trapezoidal rule approximation with a sufficiently high number of
quadrature points as the reference value. In Figure 2.4, we demonstrate the error of
the trapezoidal rule approximation at 𝑐/√𝛼1 = 0.01. In two of the subfigures, the
absolute error violates the error bound when 𝑛 is small. However, those errors are
below 10−13, indicating the effects of the finite precision arithmetic.

In the exercise above, we used Python’s mpmath (The mpmath development team,
2023) package to evaluate the Appell’s double hypergeometric function, and we used
NumPy (Harris et al., 2020) to evaluate the direct trapezoidal rule approximation. We
do not directly compare the runtime of these two methods as the underlying numer-
ical packages are implemented using different programming languages. However,
as a point of reference, the time to evaluate 𝐵𝑐 (𝑛, 𝑚) for all (𝑛, 𝑚) ∈ [0, 9]2 at
𝑐 = 0.3 using the Appell’s double Hypergeometric function representation takes
7.22 seconds while evaluating the trapezoidal rule approximation (without FFT) to
an absolute error below 10−10 takes 0.00216 seconds.

We also compare our algorithms with numerically integrating the Bessel function
representation using Eq. 2.8. Specifically, we usedSciPy’sscipy.integrate.quad
function and scipy.special.ive function to numerically integrate Eq. 2.8. Inte-
grals over finite ranges are computed using the Gauss-Kronrod quadrature. Integrals
with infinite ranges are first mapped onto a finite interval and then evaluated using
the Gauss-Kronrod quadrature (Doncker, 1978). We measure the performance of
the trapezoidal rule approximation with and without FFT by defining a speedup
factor compared to evaluating the LGF using the Bessel function representation.
Given a set of values of LGF to compute, the speedup factor for a specific method,
M, is:

Speedup Factor =
Runtime using the Bessel function representation

Runtime using method M . (2.116)
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(a) 𝑁𝑝𝑡𝑠 = 20, and 𝛼1 = 1.
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(b) 𝑁𝑝𝑡𝑠 = 20, and 𝛼1 = 0.64.
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(c) 𝑁𝑝𝑡𝑠 = 40, and 𝛼1 = 1.
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(d) 𝑁𝑝𝑡𝑠 = 40, and 𝛼1 = 0.64.

Figure 2.3: Error of the trapezoidal rule approximation of 𝐵𝑐 (𝑛, 𝑚) with various
𝑁𝑝𝑡𝑠, 𝛼1, 𝑛, and 𝑚. Across all the cases, 𝑐 = 0.3. The error is computed by
referencing the analytical expression using Eq. 2.5. The error bound is computed
using Eq. 2.99.
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(a) 𝑁𝑝𝑡𝑠 = 1000, 𝛼1 = 1.
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(b) 𝑁𝑝𝑡𝑠 = 2000, 𝛼1 = 0.64.
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(c) 𝑁𝑝𝑡𝑠 = 1000, 𝛼1 = 1.
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(d) 𝑁𝑝𝑡𝑠 = 2000, 𝛼1 = 0.64.

Figure 2.4: Error of the trapezoidal rule approximation of 𝐵𝑐 (𝑛, 𝑚) with various
𝑁𝑝𝑡𝑠, 𝛼1, 𝑛, and 𝑚. Across all the cases, 𝑐/√𝛼1 = 0.01. The error is computed by
referencing the trapezoidal rule approximation with 10, 000 quadrature points.
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Figure 2.5: The maximum absolute error and speedup factors of computing 𝐵𝑐 (𝑛, 𝑚)
when 𝑐 = 0.3 and 𝛼1 = 0.5. The error is computed by comparing the numerical
integration results to the trapezoidal rule approximations with 2𝑁𝑎𝑝 (𝜖) quadrature
points.

In Figs. 2.5, 2.6, and 2.7, we compare our algorithms with numerically integrating
the Bessel function representation with a large integration upper bound, presenting
both error and speedup. We set 𝑐 = 0.3, 0.1, 0.01 and 𝛼1 = 0.5 and evaluate
all 𝐵𝑐 (𝑛, 𝑚) for (𝑛, 𝑚) ∈ [0, 99]2 using three methods: numerically integrating
the Bessel function representation with large and varying integration upper bounds
(𝑇𝑚𝑎𝑥), evaluating the trapezoidal rule approximation directly without FFT, and
evaluating the values of the LGF in batch using FFT (Algorithm 1). In all these
methods, the absolute error tolerance is set to 10−10. When 𝑐 = 0.3, the speedup
factor is around 6 for the trapezoidal rule approximation without FFT and around
500 for the trapezoidal rule approximation with FFT. When 𝑐 = 0.1, the advantage
of the trapezoidal rule approximation is more prominent. The speedup factors are
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Figure 2.6: The maximum absolute error and speedup factors of computing 𝐵𝑐 (𝑛, 𝑚)
when 𝑐 = 0.1 and 𝛼1 = 0.5. The error is computed by comparing the numerical
integration results to the trapezoidal rule approximations with 2𝑁𝑎𝑝 (𝜖) quadrature
points.

around 20 and 1650 without and with FFT, respectively. At 𝑐 = 0.01, numerically
integrating the Bessel function representation cannot reach satisfactory accuracy. In
contrast, the trapezoidal rule approximations are able to reach the desired accuracy,
with significant speedup factors. These three cases demonstrate the efficiency and
robustness of the trapezoidal rule approximation and Algorithm 1.

Finally, in Figure 2.8, we present the error and speedup of our algorithm compared
to numerically evaluating the Bessel function by mapping the infinite integration
interval to a finite one (Doncker, 1978). We fix 𝛼1 = 0.5 and vary 𝑐 between 0.001
and 0.2. We evaluate the values of 𝐵𝑐 within the square [0, 99]2 with an absolute
error tolerance of 10−10. When evaluating 𝐵𝑐 using the Bessel function represen-
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Figure 2.7: The maximum absolute error and speedup factors of computing 𝐵𝑐 (𝑛, 𝑚)
when 𝑐 = 0.01 and 𝛼1 = 0.5. The error is computed by comparing the numerical
integration results to the trapezoidal rule approximations with 2𝑁𝑎𝑝 (𝜖) quadrature
points.

tation, the numerical quadrature can diverge when 𝑐 is small. However, this does
not happen with the trapezoidal rule approximation. Also, even when converged,
numerically integrating the Bessel function representation does not always satisfy
the prescribed error tolerance. In contrast, the trapezoidal rule approximations not
only consistently satisfy the error tolerance but also greatly reduce the runtime. The
trapezoidal rule approximation reaches a speedup factor of at least 15 without using
FFT and a speedup factor of at least 1000 when using FFT.

We note that numerically integrating the Bessel function representation struggles
to satisfy the required error tolerance, especially when 𝑐 is small. The reason
is that the integrand in the Bessel function representation, Eq. 2.8, decays at the
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Figure 2.8: The maximum error and speedup factors when computing 𝐵𝑐 (𝑛, 𝑚)
using the trapezoidal rule with FFT, without FFT, and numerically integrating the
Bessel function representation using the transform proposed in (Doncker, 1978).
The maximum absolute error is obtained by comparing the values from evaluating
the trapezoidal rule approximation of 𝐵𝑐 using 2𝑁𝑎𝑝 (𝜖) quadrature points. The stars
and the dashed line in the maximum absolute error plot indicate that some values in
the numerical integration did not converge.

rate of exp(−𝑐2𝑡)/𝑡 and is highly oscillatory (Abramowitz and Stegun, 1948). As
𝑐 becomes small, the integral becomes increasingly pathological and difficult to
evaluate numerically.

2.8 Application 1: lattice Green’s function of the three-dimensional Poisson
equation with one periodic direction

An immediate application of 𝐵𝑐 is solving the discretized three-dimensional Pois-
son equation with one periodic direction. Consider a discretization of the three-
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dimensional Poisson equation with constant spatial resolutions Δ𝑥1, Δ𝑥2, and Δ𝑥3

in each of the three spatial dimensions. The resulting discretized Poisson equation
reads

3∑︁
𝑖=1

(
2

Δ𝑥2
𝑖

𝑢(𝒏) − 1
Δ𝑥2

𝑖

𝑢(𝒏 + 𝒆𝑖) −
1

Δ𝑥2
𝑖

𝑢(𝒏 − 𝒆𝑖)
)
= 𝑓 (𝒏). (2.117)

In addition, we assume that the solution is periodic in the third direction and
unbounded in the first two directions. To solve the Poisson equation, we can find a
corresponding LGF and apply discrete convolution. The LGF satisfies:

3∑︁
𝑖=1

(
2

Δ𝑥2
𝑖

𝐺 (𝒏) − 1
Δ𝑥2

𝑖

𝐺 (𝒏 + 𝒆𝑖) −
1

Δ𝑥2
𝑖

𝐺 (𝒏 − 𝒆𝑖)
)
= 𝛿Z

3 (𝒏) (2.118)

where 𝛿Z𝑑 : Z𝑑 → R is defined as:

𝛿Z
𝑑 (𝒏)


1 if 𝒏 = 0

0 otherwise.
(2.119)

This equation can be readily solved if we can solve the following equation

3∑︁
𝑖=1

(2𝛼𝑖𝐺 (𝒏) − 𝛼𝑖𝐺 (𝒏 + 𝒆𝑖) − 𝛼𝑖𝐺 (𝒏 − 𝒆𝑖)) = 𝛿Z
3 (𝒏) (2.120)

where 𝛼2 = 1, 𝛼1 = Δ𝑥2
2/Δ𝑥

2
1, and 𝛼3 = Δ𝑥2

2/Δ𝑥
2
3.

Suppose the solution is assumed to be 𝑁𝑝 periodic in 𝑛3, with 𝒏 = [𝑛1, 𝑛2, 𝑛3], we
can write

𝐺 (𝒏) = 𝐺 (𝑛1, 𝑛2, 𝑛3) = 𝐺 (𝑛1, 𝑛2, 𝑛3 + 𝑁𝑝). (2.121)

We define the discrete Fourier transform of a 𝑁𝑝 periodic discrete function 𝑓

𝑓𝑘 = F [ 𝑓 ] (𝑘) =
𝑁𝑝−1∑︁
𝑛=0

𝑓 (𝑛)𝑒−𝑖2𝜋𝑘𝑛/𝑁𝑝 (2.122)

and its inverse

𝑓 (𝑛) = F −1 [ 𝑓 ] (𝑛) = 1
𝑁𝑝

𝑁𝑝−1∑︁
𝑘=0

𝑓𝑘𝑒
𝑖2𝜋𝑘𝑛/𝑁𝑝 . (2.123)

Thus, there exists a set of Fourier coefficients {𝐺̃𝑘 }𝑘 such that

𝐺 (𝑛1, 𝑛2, 𝑛3) =
1
𝑁𝑝

𝑁𝑝−1∑︁
𝑘=0

𝐺̃𝑘 (𝑛1, 𝑛2)𝑒𝑖2𝜋𝑘𝑛3/𝑁𝑝 . (2.124)
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And the LHS of Eq. 2.120 can be written as:

1
𝑁𝑝


𝑁𝑝−1∑︁
𝑘=0

𝑒𝑖2𝜋𝑘𝑛3/𝑁𝑝𝐿𝜅(𝑘)𝐺̃𝑘 (𝑛1, 𝑛2)
 (2.125)

where
𝜅(𝑘) =

√︃
2𝛼3 − 2𝛼3 cos(2𝜋𝑘/𝑁𝑝). (2.126)

Applying discrete Fourier transform to both sides of Eq. 2.120 gives

𝐿𝜅(𝑘)𝐺̃𝑘 (𝑛1, 𝑛2) = 𝛿0𝑛1𝛿0𝑛2 . (2.127)

By definition, 𝐺̃𝑘 (𝑛1, 𝑛2) = 𝐵𝜅(𝑘) (𝑛1, 𝑛2). Thus, we find

𝐺 (𝑛1, 𝑛2, 𝑛3) =
1
𝑁𝑝

𝑁𝑝−1∑︁
𝑘=0

𝑒𝑖2𝜋𝑘𝑛3/𝑁𝑝𝐵𝜅(𝑘) (𝑛1, 𝑛2). (2.128)

Using Algorithm 1 and the approximation in Eq. 2.19, one can efficiently compute
the values of 𝐵𝜅(𝑘) and evaluate𝐺 using inverse Fast Fourier Transform. We use this
result to solve a Poisson equation ∇2𝜙 = − 𝑓 with the following analytical solution

𝜙(𝑥, 𝑦, 𝑧) = exp(−64𝑥2 − 4𝑦2)
2 − cos(𝑧) . (2.129)

We obtain the source term 𝑓 by taking−∇2𝜙. The computational domain is [−1, 1]×
[−4, 4] × [0, 2𝜋]. The convergence result is shown in Figure 2.9.

2.9 Application 2: random walks with killing on a two-dimensional rectan-
gular lattice

Consider a random walk with killing on a two-dimensional rectangular lattice
(Madras, 1989; Lawler and Limic, 2010). When the walker is at location (𝑛, 𝑚), it
can behave in five different ways with certain probabilities. It can either move up,
down, left, or right for one step. It can also decide to stay at (𝑛, 𝑚) forever (i.e.
killed). We assume that the probabilities are all strictly positive and defined by:

P((𝑛 + 1, 𝑚)) = P((𝑛 − 1, 𝑚)) = 𝑝1,

P((𝑛, 𝑚 + 1)) = P((𝑛, 𝑚 − 1)) = 𝑝2,

P(stay at (𝑛, 𝑚) forever) = 𝑝𝑘 := 1 − 2𝑝1 − 2𝑝2.

(2.130)

We can compute the probability of a random walk starting at an arbitrary point
(𝑛, 𝑚) and eventually returning to the origin. Let this probability be denoted as
𝜌(𝑛, 𝑚). We can write

𝜌(𝑛, 𝑚) = 𝑝1𝜌(𝑛 + 1, 𝑚) + 𝑝1𝜌(𝑛− 1, 𝑚) + 𝑝2𝜌(𝑛, 𝑚 − 1) + 𝑝2𝜌(𝑛, 𝑚 + 1) (2.131)
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Figure 2.9: Convergence study of solving the Poisson equation using the three-
dimensional Poisson LGF with one periodic direction. The ratio Δ𝑥3/Δ𝑥2 = 2𝜋 is
held constant across all cases. Within each series, the ratio between Δ𝑥1 and Δ𝑥2
is fixed. Different series have different ratios of Δ𝑥2 and Δ𝑥1. The dashed line
indicates the expected second-order convergence rate.

with the terminal condition 𝜌(0, 0) = 1. The above equation is satisfied everywhere
in Z2 except at the origin. At the origin, we have

𝜌(0, 0) = 𝑝1𝜌(1, 0) + 𝑝1𝜌(−1, 0) + 𝑝2𝜌(0,−1) + 𝑝2𝜌(0, 1) + 𝐶 (𝑝1, 𝑝2) (2.132)

where 𝐶 (𝑝1, 𝑝2) is an undetermined function to satisfy the condition 𝜌(0, 0) = 1.

With 𝛼1 = 𝑝1/𝑝2, we can rewrite the governing equation of 𝜌(𝑛, 𝑚) as

𝐿𝜅(𝑝1,𝑝2)𝜌(𝑛, 𝑚) =
1
𝑝2
𝛿0𝑛𝛿0𝑚𝐶 (𝑝1, 𝑝2) (2.133)

where

𝜅(𝑝1, 𝑝2) =

√︄
1 − 2𝑝1 − 2𝑝2

𝑝2
. (2.134)

By definition, we have

𝜌(𝑛, 𝑚) = 1
𝑝2
𝐶 (𝑝1, 𝑝2)𝐵𝜅(𝑝1,𝑝2) (𝑛, 𝑚). (2.135)

To determine 𝐶 (𝑝1, 𝑝2), we use the terminal condition of 𝜌(0, 0) = 1 and Eq. 2.132
to find

𝐶 (𝑝1, 𝑝2) =
1

1 + 2𝑝1
𝑝2
𝐵𝜅(𝑝1,𝑝2) (1, 0) + 2𝐵𝜅(𝑝1,𝑝2) (0, 1)

. (2.136)

In the equation above, we can compute 𝐵𝜅(𝑝1,𝑝2) (1, 0) and 𝐵𝜅(𝑝1,𝑝2) (0, 1) using the
integral in Thm. 2.4.1 through the trapezoidal rule approximation in Eq. 2.54. Then
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we can compute the return probability at all other locations using either direct
trapezoidal rule approximation or Algorithm 1. A sample return probability (with
𝑝1 = 0.2(1 − 𝑝𝑘 ), 𝑝2 = 0.3(1 − 𝑝𝑘 )) with various 𝑝𝑘 is shown in Figure 2.10.

2.10 Conclusion
In this chapter, we studied the two-dimensional lattice Green’s function (LGF) of
the screened Poisson equation on rectangular lattices. In particular, we proposed
two efficient ways to compute the LGF, depending on the 𝑐2 term.

When 𝑐2 is large, we conducted an asymptotic expansion to give an approximation
formula of the LGF. We showed that this approximation exponentially converges
towards the true values of the LGF. Using the approximation formula, we also
established the decay rate of the LGF towards infinity.

Although the asymptotic expansion exponentially converges toward the entries of
the LGF, when 𝑐2 is small, approximating LGF using the asymptotic expansion
becomes prohibitively expensive. To remedy this, we derived a one-dimensional
integral representation of the LGF. In addition, we showed that the trapezoidal rule
approximates this one-dimensional integral exponentially fast. By exploiting the
properties of the integrand and the trapezoidal rule approximation, we devised a
fast algorithm for batch-evaluating the values of the LGF using the Fast Fourier
Transform. To enhance the algorithm’s robustness, we proposed a simple yet accu-
rate estimate of the minimum number of quadrature points needed for a prescribed
error tolerance. Compared to existing formulations such as the Appell’s double
hypergeometric function representation and the Bessel function representation, the
resulting algorithm demonstrates high robustness and efficiency when evaluating
the LGF.

Finally, we demonstrated how our algorithms can be efficiently used to tabulate the
LGF and solve two application problems – the three-dimensional Poisson equation
with two unbounded directions and one periodic direction, and the return probability
of a random walk with killing on a rectangular lattice.
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Figure 2.10: The return probability, 𝑃𝑟𝑒𝑡𝑢𝑟𝑛, at various 𝑛, 𝑚 at different kill proba-
bilities 𝑝𝑘 .
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C h a p t e r 3

AN ADAPTIVE LATTICE GREEN’S FUNCTION METHOD FOR
EXTERNAL FLOWS WITH TWO UNBOUNDED AND ONE

HOMOGENEOUS DIRECTIONS

This chapter is adapted from Hou and Colonius (2024a). In this chapter, we describe
a flow simulation algorithm specially designed for external flows with spanwise
periodicity. We leverage the lattice Green’s function, adaptive mesh refinement,
and immersed boundary method to create an algorithm suitable for handling flows
around complex geometries and resolving a large range of length scales from the
flow structures.

3.1 Introduction
The lattice Green’s function (LGF) is the analytical inverse of a discrete elliptic op-
erator on an unbounded domain (lattice). Due to its value in numerical applications
(Liska and Colonius, 2016; Cserti, 2000), its computation (Buneman, 1971; Mar-
tinsson and Rodin, 2002; Katsura and Inawashiro, 1971) and asymptotic behavior
(Martinsson and Rodin, 2002; Katsura and Inawashiro, 1973) have been studied
thoroughly. In addition, the LGF can be adopted to solve the Poisson equation
with various boundary conditions (Gabbard and Rees, 2024b; Caprace, Gillis, and
Chatelain, 2021; Balty, Chatelain, and Gillis, 2023) and in various dimensions
(Caprace, Gillis, and Chatelain, 2021; Balty, Chatelain, and Gillis, 2023). In par-
ticular, for incompressible flows, the LGF can be combined with the immersed
boundary method (IB) (Peskin, 2002) to create an efficient and parallel algorithm
(Liska and Colonius, 2016). Efficiency can be further enhanced with a multilevel
LGF framework for adaptive mesh refinement (AMR) (Dorschner et al., 2020; Yu,
2021). In these methods, LGF is used to solve the pressure-Poisson equation and/or
vorticity-streamfunction equation. The use of LGF ensures that the solution is
defined everywhere in the free space (without imposition of artificial boundary con-
ditions) yet only a finite set of active cells is needed to time-step the flow. This yields
a snug, adaptive domain that encloses only the evolving vorticity field, truncated at
a small threshold value at the boundary.

However, LGF methods have not been applied to solve the incompressible Naiver-
Stokes equations with spanwise periodicity. In practice, a wide class of interesting
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geometries and flows exhibit such span-wise periodicity. Among these flows are
the flow past bodies with infinite spans and a constant two-dimensional cross-
section, such as circular cylinders and unswept airfoils. Although a wide variety
of other methods have been developed for these flows (e.g. Dong and Karniadakis
(2005), Mittal and Balachandar (1997), and Lehmkuhl et al. (2013)), the multilevel
LGF method promises greater computational efficiency while exactly preserving the
asymptotic structure of the irrotational outer solution.

In this chapter, we extend the multilevel framework that combines LGF, IB, and
AMR (Yu, 2021) to solve fully 3D flows with one homogeneous direction. We
exploit the spanwise periodicity by using a Fourier expansion of the flow vari-
ables (velocity, pressure, and IB forcing) and derive the evolution equations of the
corresponding Fourier coefficients. This formulation enables us to compute the
nonlinear convective term via the (dealiased) Fast Fourier Transform (FFT). We
develop a staggered-grid strategy that hybridizes the second-order finite-volume
discretization for the inhomogenous directions with the Fourier expansion in the ho-
mogeneous one, while maintaining desired discrete conservation and other mimetic
properties associated with the original 3D finite-volume discretization. In addi-
tion, we adaptively truncate Fourier coefficients to make the spanwise resolution
consistent with the finite-volume AMR grid.

With one periodic direction, the pressure is determined by a discrete screened Pois-
son equation for which we derive formulas and algorithms to evaluate the LGF. This
particular LGF poses a unique challenge in two aspects. First, the discrete screened
Poisson equation involves a continuous coefficient such that the corresponding LGF
varies nonlinearly with it. A large number of these LGFs would thus be required,
and it is desirable to have a fast way to evaluate them at runtime. In contrast to the
regular Poisson equation, the existing polyharmonic asymptotic expansion does not
apply to the LGF of the screened Poisson equation (Duffin, 1953; Duffin and Shelly,
1958; Martinsson and Rodin, 2002; Gabbard and Rees, 2024b). Thus, we need
to directly compute the LGF through numerical integration. To address both chal-
lenges, we adapt the spectrally convergent trapezoidal rule approximation presented
in Chapter 2 for fast evaluation of this LGF. Similar challenges are also present in
the handling of the viscous term. Thus, we derive and compute the LGF for the
appropriate integrating factor for the viscous term. In addition, we provide algo-
rithms for LGF of the integrating factor for the viscous Laplacian (the heat equation
kernel), which allows us to employ a half-explicit Runge-Kutta (IF-HERK) method
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for time advancement (Liska and Colonius, 2017).

The chapter is arranged as follows. We introduce the Fourier-transformed Navier-
Stokes equations with IB forcing in Section 3.2. Then, in Section 3.3, we derive a
spatial discretization in terms of corresponding discrete operators. In Section 3.4,
we develop LGFs for the screened Poisson operator and integrating factor. In the next
sections, we adapt several previous algorithms to the spanwise homogenous case,
specifically the time marching method (Section 3.5), multilevel application of the
LGF (Section 3.6), and the domain and mesh adaptation strategies (Section 3.7). The
overall algorithm for the incompressible Navier-Stokes equations is then summarized
in Section 3.8. Subsequently, in Section 3.9, we describe the parallelization strategy
computational efficiency. In Section 3.10, we empirically demonstrate the (overall
first-order) convergence of the scheme. Finally, in Section 3.11, we validate the
algorithm by computing flow past a cylinder at 𝑅𝑒 = 300, and we highlight the
ability of our algorithm to tackle large problems by computing the turbulent flow
past a cylinder at 𝑅𝑒 = 12, 000.

3.2 Governing equations and Fourier expansion
Physically, the problem under consideration is an infinite-span cylinder (axis 𝑧) of
arbitrary cross-section moving (including acceleration) in the 𝑥− 𝑦 plane through an
otherwise quiescent, viscous, incompressible fluid. Invoking homogeneity, we re-
strict 𝑧 to a periodic section of a specified length 𝑐. For real-valued 𝑓 = 𝑓 (𝑥, 𝑦, 𝑧, 𝑡),
we write the truncated Fourier series

𝑓 (𝑥, 𝑦, 𝑧, 𝑡) ≈ 𝒇̃ 0(𝑥, 𝑦, 𝑡) +
𝑁/2∑︁
𝑘=1

[
𝒇̃ 𝑘 (𝑥, 𝑦, 𝑡)𝑒2𝜋𝑖𝑘𝑧/𝑐 + 𝒇̃ 𝑘 (𝑥, 𝑦, 𝑡)𝑒−2𝜋𝑖𝑘𝑧/𝑐

]
, (3.1)

where

𝑓𝑘 (𝑥, 𝑦, 𝑡) = F𝑘 [ 𝑓 ] :=
1
𝑐

∫ 𝑐/2

−𝑐/2
𝑓 (𝑧)𝑒−𝑖𝑧 2𝜋𝑘

𝑐 𝑑𝑧. (3.2)

Let 𝒖 and 𝝎 = ∇ × 𝒖 be the velocity and vorticity, and 𝑝 be the pressure, all
nondimensionalized with respect to a specified velocity scale, length scale, and
density. In physical space, the incompressible Navier-Stokes equations with the IB
formulation are (Liska and Colonius, 2017)
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𝜕𝒖

𝜕𝑡
+ 𝝎 × 𝒖𝑎 = −∇Π + 1

𝑅𝑒
∇2𝒖 +

∫
Γ(𝑡)

𝒇 Γ (𝝃, 𝑡)𝛿(𝑿 (𝝃, 𝑡) − 𝒙)𝑑𝝃,

∇ · 𝒖 = 0,

𝒖Γ (𝝃, 𝑡) =
∫
R3

𝒖(𝒙, 𝑡)𝛿(𝒙 − 𝑿 (𝝃, 𝑡))𝑑𝒙.

(3.3)

Here, 𝒙 and 𝒙𝑎 = 𝒙 − 𝑹(𝑡) denote the coordinates in the inertial reference frame
and those in the non-inertial reference frame, respectively. The non-inertial frame
translates with the trajectory 𝑹(𝑡) and rotates with angular velocity 𝛀(𝑡). 𝒖 is
the velocity vectors in the inertia reference frame. 𝒖𝑎 is the velocity vector with
respect to the non-inertial reference frame. The two velocities are related through
𝒖 = 𝒖𝑎 + 𝒖𝑟 where 𝒖𝑟 = 𝑑𝑹(𝑡)

𝑑𝑡
+𝛀(𝒕) × 𝒙𝑎 := 𝑼(𝑡) +𝛀(𝒕) × 𝒙𝑎. In this equation, 𝜕

𝜕𝑡

is the derivative in 𝑡 with 𝒙𝑎 held constant, and ∇ the gradients with respect to 𝒙𝑎.
Correspondingly, Π = 𝑝 − 1

2 |𝒖𝑟 |
2 − 1

2 |𝒖𝑎 |
2 where 𝑝 is the pressure.

If we denote the immersed boundary points in the non-inertial frame as 𝑿𝑎 (𝝃, 𝑡),
we can rewrite the boundary condition

𝒖Γ,𝑎 (𝝃, 𝑡) +𝑼(𝑡) +𝛀(𝑡) × 𝑿𝑎 (𝝃, 𝑡) =
∫
R3

𝒖(𝒙, 𝑡)𝛿(𝒙 − 𝑿 (𝝃, 𝑡))𝑑𝒙. (3.4)

Note that the convolution integral is taken in the inertial coordinates. The Dirac
delta function uses the relative position between the immersed boundary surface and
the coordinates in the inertial reference frame. Thus, we are only sampling inertial
frame velocity on the immersed boundary and equate the values to the inertial frame
velocity boundary condition, on each single point parameterized by 𝝃 and 𝑡.

In Fourier space, these equations read

𝜕𝒖̃𝑘
𝜕𝑡

+ F𝑘 [𝝎 × 𝒖𝑎] = −∇̃𝑘 Π̃𝑘 +
1
𝑅𝑒

∇̃2
𝑘 𝒖̃𝑘

+
∫
Γ(𝑡)2𝐷

𝒇̃ Γ,𝑘 (𝝃2𝐷 , 𝑡)𝛿2𝐷 (𝑿2𝐷 (𝝃2𝐷 , 𝑡) − 𝒙2𝐷)𝑑𝝃2𝐷 ,

∇̃𝑘 .𝒖̃𝑘 = 0,

𝒖̃Γ,𝑘 (𝝃2𝐷 , 𝑡) =
∫
R2

𝒖̃𝑘 (𝒙2𝐷 , 𝑡)𝛿2𝐷 (𝒙2𝐷 − 𝑿2𝐷 (𝝃2𝐷 , 𝑡))𝑑𝒙2𝐷 ,

(3.5)

where
∇̃𝑘 .𝒖̃𝑘 =

𝜕𝑢̃𝑘

𝜕𝑥
+ 𝜕𝑣̃𝑘
𝜕𝑦

+ 2𝜋𝑖𝑘
𝑐
𝑤̃𝑘 , (3.6)

∇̃𝑘 Π̃𝑘 =

[
𝜕Π̃𝑘

𝜕𝑥
,
𝜕Π̃𝑘

𝜕𝑦
,

2𝜋𝑖𝑘
𝑐

Π̃𝑘

]𝑇
, (3.7)
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Figure 3.1: Variable placement in the 𝑥−𝑦 plane for a Fourier interpolation sampling
point in the 𝑧 direction.

∇̃2
𝑘 𝑢̃𝑘 =

𝜕2𝑢̃𝑘

𝜕𝑥2 + 𝜕
2𝑢̃𝑘

𝜕𝑦2 −
(
2𝜋𝑘
𝑐

)2
𝑢̃𝑘 . (3.8)

Details for the Fourier transform of the IB terms are given in Appendix A.

Since the body and flow are homogeneous in the 𝑧 direction, we simplify the
boundary condition equations to

𝒖Γ (𝝃2𝐷 , 𝑡) =
∫
R2

𝒖̃0(𝒙2𝐷 , 𝑡)𝛿2𝐷 (𝒙2𝐷 − 𝑿2𝐷 (𝝃2𝐷 , 𝑡))𝑑𝒙2𝐷 𝑘 = 0,

0 =

∫
R2

𝒖̃𝑘 (𝒙2𝐷 , 𝑡)𝛿2𝐷 (𝒙2𝐷 − 𝑿2𝐷 (𝝃2𝐷 , 𝑡))𝑑𝒙2𝐷 𝑘 ≠ 0.
(3.9)

We can evaluate the nonlinear term using a de-aliased pseudo-spectral approach
(Orszag, 1971b), i.e. we discretize the inverse transform to the DFT, form the
product in physical space via padded inverse transforms, and transform the product
back to its truncated Fourier coefficients. Padding via the 3/2 rule is sufficient since
the equations involve at most quadratic nonlinearity.

3.3 Spatial discretization
To develop a framework that is best suited for the hybridized discretization, we place
all finite-volume cells with their centers aligned with the evenly-spaced sampling
points for Fourier interpolation. The 𝑥 and 𝑦 components of velocity are placed on
the faces, and the 𝑧 component of velocity is at the cell center. One can visualize
the resulting data field as a collection of evenly-spaced slices that appear as a 2D
finite-volume method depicted in Figure 3.1.

With this staggered mesh, we now define discrete operators and enumerate some of
their properties. In this section, we use boldfaced variables, e.g. 𝒈 = [𝑔1, 𝑔2, 𝑔3]𝑇 ,
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to denote 3-component vector fields and non-boldfaced variables, e.g. 𝑔, to denote
scalar fields. The operators are:

• Divergence on 𝑘 𝑡ℎ Fourier coefficient:

𝐷𝑘 𝒈 = D𝑥𝑔1 + D𝑦𝑔2 + (2𝜋𝑖𝑘/𝑐)𝑔3. (3.10)

• Gradient on 𝑘 𝑡ℎ Fourier coefficient:

𝐺𝑘𝑔 = [−D𝑇
𝑥 𝑔,−D𝑇

𝑦 𝑔, (2𝜋𝑖𝑘/𝑐)𝑔]𝑇 . (3.11)

• Curl on 𝑘 𝑡ℎ Fourier coefficient:

𝐶𝑘 𝒈 = [−D𝑇
𝑦 𝑔3−(2𝜋𝑖𝑘/𝑐)𝑔2, (2𝜋𝑖𝑘/𝑐)𝑔1+D𝑇

𝑥 𝑔3,−D𝑇
𝑥 𝑔2+D𝑇

𝑦 𝑔1]𝑇 . (3.12)

• Laplacian on 𝑘 𝑡ℎ Fourier coefficient:

𝐿𝑘𝑔 = −D𝑇
𝑥 D𝑥𝑔 − D𝑇

𝑦D𝑦𝑔 − (2𝜋𝑘/𝑐)2𝑔. (3.13)

In the equations above, D denotes a forward finite difference derivative, for example,
D𝑥𝑔(𝑖, 𝑗) = [𝑔(𝑖 + 1, 𝑗) − 𝑔(𝑖, 𝑗)]/Δ𝑥. The operators mimic some properties of the
continuous operators, namely 𝐷𝑘 = −𝐺∗

𝑘
and 𝐿𝑘 = −𝐺∗

𝑘
𝐺𝑘 (where the superscript ∗

denotes the conjugate transpose).

Let 𝒖𝑎,𝑛 = [𝑢𝑛, 𝑣𝑛, 𝑤𝑛]𝑇 be the velocity in the non-inertial frame at the 𝑛𝑡ℎ slice and
𝝎𝑛 = [𝜔𝑛,𝑥 , 𝜔𝑛,𝑦, 𝜔𝑛,𝑧]𝑇 be the vorticity on that slice, we discretize the nonlinear ad-
vection terms in rotational form by defining 𝑵𝑛 (𝑖, 𝑗) = [𝑁𝑛,𝑥 (𝑖, 𝑗), 𝑁𝑛,𝑦 (𝑖, 𝑗), 𝑁𝑛,𝑧 (𝑖, 𝑗)]𝑇 ,
and writing

𝑁𝑛,𝑥 (𝑖, 𝑗) =
1
2
𝜔𝑛,𝑦 (𝑖, 𝑗) [𝑤𝑛 (𝑖, 𝑗) + 𝑤𝑛 (𝑖 − 1, 𝑗)]

−1
4
𝜔𝑛,𝑧 (𝑖, 𝑗) [𝑣𝑛 (𝑖, 𝑗) + 𝑣𝑛 (𝑖 − 1, 𝑗)]

−1
4
𝜔𝑛,𝑧 (𝑖, 𝑗 + 1) [𝑣𝑛 (𝑖, 𝑗 + 1) + 𝑣𝑛 (𝑖 − 1, 𝑗 + 1)],

𝑁𝑛,𝑦 (𝑖, 𝑗) =
1
4
𝜔𝑛,𝑧 (𝑖, 𝑗) [𝑢𝑛 (𝑖, 𝑗) + 𝑢𝑛 (𝑖, 𝑗 − 1)]

+1
4
𝜔𝑛,𝑧 (𝑖 + 1, 𝑗) [𝑢𝑛 (𝑖 + 1, 𝑗) + 𝑢𝑛 (𝑖 + 1, 𝑗 − 1)]

−1
2
𝜔𝑛,𝑥 (𝑖, 𝑗) [𝑤𝑛 (𝑖, 𝑗) + 𝑤𝑛 (𝑖, 𝑗 − 1)],

𝑁𝑛,𝑧 (𝑖, 𝑗) =
1
2
[𝜔𝑛,𝑥 (𝑖, 𝑗)𝑣𝑛 (𝑖, 𝑗) + 𝜔𝑛,𝑥 (𝑖, 𝑗 + 1)𝑣𝑛 (𝑖, 𝑗 + 1)]

−1
2
[𝜔𝑛,𝑦 (𝑖, 𝑗)𝑢𝑛 (𝑖, 𝑗) + 𝜔𝑛,𝑦 (𝑖 + 1, 𝑗)𝑢𝑛 (𝑖 + 1, 𝑗)] .

(3.14)
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Let 𝑵(𝝎, 𝒖) be the collection of the nonlinear advection term across all slices,
evaluated using 𝝎, 𝒖 with Eq. 3.14. Inserting the discrete spatial operators in
Eq. 3.5, we obtain a system of (index 2) differential-algebraic equations (DAE)

𝑑𝒖̃𝑘
𝑑𝑡

+ F𝑘 [𝑵(𝝎, 𝒖)] = −𝐺𝑘𝑞𝑘 +
1
𝑅𝑒
𝐿𝑘 𝒖̃𝑘 + 𝑃(𝑡)𝑇 𝒇̃ 𝑘 ,

𝐷𝑘 𝒖̃𝑘 = 0,

𝑃(𝑡)𝒖̃𝑘 = 𝒖̃Γ,𝑘 ,

(3.15)

where 𝑞 is a pressure-like variable. In this equation, the Fourier coefficients of the
nonlinear term are evaluated with the pseudo-spectral approach discussed above.
𝑃(𝑡) is the IB interpolation operator. There are second- and higher-order accurate
discretizations of this operator (Gabbard, Gillis, et al., 2022; Ji, Gabbard, and Rees,
2023; Gabbard and Rees, 2024a; Verzicco, 2023), but considering compatibility
with the exact imposition of the boundary conditions and mimetic properties of the
finite-volume discretization, together with the availability of AMR, we prefer the
first-order-accurate discrete delta function approach (Peskin, 2002). In addition,
when the immersed body is time-invariant, the linear system associated with the
IB forcing possesses the desired Hermitian property (later shown in Section 3.5
and Appendix C). Any discrete delta function can be used in the formulation; the
calculations below utilized a three-point delta function (Roma, Peskin, and Berger,
1999)

𝜙(𝑟) =


1 +

√
−3𝑟2 + 1, |𝑟 | < 0.5,

1
6 (5 − 3|𝑟 | −

√︁
1 − 3(1 − |𝑟 |)2), |𝑟 | ∈ [0.5, 1.5),

0 otherwise.

(3.16)

3.4 Lattice Green’s functions
3.4.1 Lattice Green’s function of 𝐿𝑘
In solving Eq. 3.15, substituting the momentum equation in the divergence-free
constraint gives rise to an inhomogeneous screened Poisson equation, 𝐿𝑘𝑢 = 𝑓 that
must be solved at each time sub-step. We utilize the lattice Green’s function (LGF)
on a formally infinite grid to solve this system. For each 𝑘 , we can find a LGF,
𝐵𝑘 : Z2 → R, of the operator 𝐿𝑘 such that

(𝐿𝑘𝐵𝑘 ) (𝑛, 𝑚) = (Δ𝑥)2𝛿Z(𝑛 − 𝑚), lim
𝑛,𝑚→∞

𝐵𝑘 (𝑛, 𝑚) = 0 (3.17)
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where 𝛿Z : Z → {0, 1} is the Kronecker delta function and defined as:

𝛿Z(𝑛) =


1 if 𝑛 = 0,

0 if 𝑛 ≠ 0.
(3.18)

As a result, we can solve the inhomogeneous screened Poisson equation using this
LGF (Katsura and Inawashiro, 1971; Martinsson and Rodin, 2002):

𝐿𝑘𝑢 = 𝑓 ⇒ 𝑢(𝑛, 𝑚) = (𝐿−1
𝑘 𝑓 ) (𝑛, 𝑚) :=

∑︁
𝑎,𝑏

(Δ𝑥)2𝐵𝑘 (𝑛− 𝑎, 𝑚 − 𝑏) 𝑓 (𝑎, 𝑏). (3.19)

We call the sequence {𝐵𝑘 (𝑛, 𝑚)}𝑛,𝑚 the LGF kernel.

When 𝑘 ≠ 0, we can write the LGF kernel as (Buneman, 1971):

𝐵𝑘 (𝑛, 𝑚) − 𝐵𝑘 (0, 0) =
1

2𝜋

𝜋∫
−𝜋

(
1 − 𝑒𝑖𝜃𝑚

𝐾 |𝑛|

)
𝑑𝜃

𝐾 − 1/𝐾 (3.20)

where

𝐾 =
𝑎 +

√
𝑎2 − 4
2

, (3.21)

and

𝑎 =

(
4 +

(
2𝜋𝑘Δ𝑥
𝑐

)2
− 2 cos(𝜃)

)
. (3.22)

Finally,

𝐵𝑘 (0, 0) =
1

2𝑏 2𝐹1

(
1
2
,

1
2

; 1;
(

2
𝑏

)2
)
, (3.23)

where 𝑏 = 2 + 2
(
𝜋𝑘Δ𝑥
𝑐

)2
. We note that the integral in Eq. 3.20 is increasingly

oscillatory with increasing 𝑚. However, as the integrand is periodic, it can be
approximated with spectral convergence using the trapezoidal rule (Trefethen and
Weideman, 2014). Further, one can show that the number of quadrature points
needed to evaluate this integral at most increases linearly with 𝑚. However, we do
note that the spectral convergence rate of the numerical approximation is dictated
by 𝑎. Specifically, as we show in Chapter 2, the approximation error of an N-point
trapezoidal rule approximation (𝜖𝑁 ) is bounded by

|𝜖𝑁 | ≤
2𝑀

𝑒𝛾𝑐𝑁 − 1
, (3.24)

where 𝛾𝑐 is any positive real number satisfying:

𝛾𝑐 < log ©­«1 + 𝛼
2

2
+

√︄(
1 + 𝛼

2

2

)2
− 1ª®¬ := 𝜅𝑐, 𝛼 =

2𝜋𝑘Δ𝑥
𝑐

, (3.25)
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Figure 3.2: Convergence of 𝐵(𝑛, 𝑚) for 𝑛 = 𝑚 = 1280 and various 𝑛 compared with
the analytical convergence rate.

and 𝑀 is
𝑀 = sup

|ℑ(𝜃) |<𝛾𝑐

����(1 − 𝑒𝑖𝜃𝑚

𝐾 |𝑛| )
1

𝐾 − 1/𝐾

���� . (3.26)

In our implementation, this integral is evaluated for each 𝑘 , 𝑚, and 𝑛 using the
adaptive trapezoidal rule (Schäling, 2011) with relative tolerance of 10−10. This
algorithm halves the integration step size (i.e. double the quadrature points) until
the tolerance is achieved. The convergence of this approximation is empirically
demonstrated in Figure 3.2. The threshold 10−10 is chosen to achieve sufficient
precision in subsequent computations with the LGF without excessive computational
expense or the need to invoke quad-precision arithmetic. Due to the periodicity of
the integrand, the relative error is typically much less than the threshold 10−10, often
reaching the machine epsilon (Schäling, 2011).

To determine the required number of quadrature points for practical computations,
we consider a worst-case scenario. First, consider that 𝐾 monotonically increases
with 𝛼, which also monotonically increases with 𝑘Δ𝑥/𝑐. We thus consider the case
where 𝑘 = 1 and 𝑐/Δ𝑥 = 1200 which provides a conservative estimate for the lowest
value of 𝑘Δ𝑥/𝑐 likely to be encountered in applications. To further simplify the
matter, we observe that 𝐵(𝑛, 𝑚) = 𝐵( |𝑛|, |𝑚 |), so, without loss of generality, we can
assume 𝑛, 𝑚 ≥ 0. In addition, since 𝐾 > 1, the higher the value 𝑛 is, the greater 𝐾 |𝑛|,
and the smaller the oscillatory term in the integrand. Thus, the worst case happens
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Figure 3.3: Spectral convergence of 𝐵(𝑚, 𝑚) for various 𝑚.

Figure 3.4: Convergence of 𝐵(𝑛, 𝑚) for 𝑚 = 1280 and various 𝑛.

when 𝑚 is large and 𝑛 is small. However, since 𝐵(𝑚, 𝑛) = 𝐵(𝑛, 𝑚) (Katsura and
Inawashiro, 1971), we can always write 𝐵(𝑛, 𝑚) = 𝐵(max(𝑛, 𝑚),min(𝑛, 𝑚)). Thus
the oscillation of the integrand is the most severe when 𝑚 = 𝑛 and they are both
large. Computed errors for a range of𝑚 are shown in Figure 3.3. To further illustrate
the point that increasing 𝑛when holding𝑚 constant will not exacerbate the effects of
oscillation during numerical integration, we hold𝑚 = 1280 and vary 𝑛 in Figure 3.4.
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Returning now to the case 𝑘 = 0, the far-field boundary condition imposed on 𝐵𝑘
is not achievable, since the fundamental solution logarithmically diverges in 2D
(Martinsson and Rodin, 2002). However, eliminating this term provides an inverse
that is unique up to a constant. This constant can be absorbed into the pressure and
need never be determined explicitly. However, when we introduce the multilevel
LGFs (Section 3.6), we shall need to impose a compatibility constraint so that the
arbitrary constant is the same regardless of resolution. Let 𝐵𝑙0 denote the kernel
on the 𝑙𝑡ℎ refinement level (0 is the coarsest grid), we can write the compatibility
condition as the following:

𝐵𝑙0(𝒏) = 𝐵
0
0(𝒏) −

𝑙

2𝜋
log(2) ∀𝒏 ∈ Z2. (3.27)

We detail the derivation of this compatibility condition in Appendix B.

With a compact source term, 𝐿−1
𝑘

provides the solution at any point on an infinite
lattice. However, to march the solution (and the source) to the next time, we only
need to evaluate the action of applying 𝐿−1

𝑘
on the support of its source (including a

buffer region to allow the solution to adapt). To ensure the accuracy of the solution
and adapt to the evolving vortical flow region, we adopt the domain adaptation and
“velocity refresh” algorithms developed for the 3D inhomogeneous case (Liska and
Colonius, 2016; Liska and Colonius, 2017). Further details of these techniques will
be provided in Section 3.7.

To accelerate the application of 𝐿−1
𝑘

, we adopt an interpolation-based kernel-
independent fast multipole method on a block-wise decomposed grid (Liska and
Colonius, 2014). This algorithm not only achieves linear complexity but also lends
itself to efficient parallelization.

3.4.2 Integrating factors (𝐸 𝑖
𝑘,𝑛

)
The availability of the LGF provides an opportunity to use an integrating factor
to march the viscous term without an associated time step restriction, enabling the
application of an RK-type explicit DAE solver (Liska and Colonius, 2016). To
implement this in the present method requires finding the LGF for the integrating
factor, 𝐻𝑘 (𝑡), that solves the following linear ODE system on an infinite lattice:

𝑑𝐻𝑘 (𝑡)
𝑑𝑡

=
1
𝑅𝑒
𝐿𝑘𝐻𝑘 (𝑡), 𝐻𝑘 (0) = 𝐼, (3.28)

where 𝐼 is the identity operator.
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We first denote the kernel of 𝐻0(𝑡) as 𝐴0(𝑡), which can be written as(Liska and
Colonius, 2017):

𝐴0(𝑡) (𝒏) =
1

4𝜋2

∫
Π

exp
(
−𝑖𝒏.𝝃 + 𝜎(𝝃)𝑡

𝑅𝑒Δ𝑥2

)
𝑑𝝃

=
∏
𝑞∈𝒏

[
exp

(
−2𝑡
𝑅𝑒Δ𝑥2

)
𝐼𝑞 (

2𝑡
𝑅𝑒Δ𝑥2 )

]
, (3.29)

where 𝜎(𝝃) = 2 cos(𝜉1) + 2 cos(𝜉2) − 4, Π = (−𝜋, 𝜋)2, and 𝐼𝑛 (𝑧) is the modified
Bessel function of the first kind of order 𝑛. For 𝑘 ≠ 0, 𝐻𝑘 can be found in terms of
𝐻0. The resulting expression is

𝐻𝑘 (𝑡) = exp

[
−

(
2𝜋𝑘
𝑐

)2
𝑡

𝑅𝑒

]
𝐻0(𝑡). (3.30)

This solution can be verified as follows. The IC follows by evaluating the expression
at 𝑡 = 0

𝐻𝑘 (0) = exp(0)𝐻0(0) = 𝐼, (3.31)

and Eq. (3.28) follows by

𝑑𝐻𝑘

𝑑𝑡
= exp

[
−

(
2𝜋𝑘
𝑐

)2
𝑡

𝑅𝑒

]
𝑑𝐻0
𝑑𝑡

−
(
2𝜋𝑘
𝑐

)2 1
𝑅𝑒

exp

[
−

(
2𝜋𝑘
𝑐

)2
𝑡

𝑅𝑒

]
𝐻0 (3.32)

= exp

[
−

(
2𝜋𝑘
𝑐

)2
𝑡

𝑅𝑒

]
1
𝑅𝑒
𝐿0𝐻0 −

(
2𝜋𝑘
𝑐

)2 1
𝑅𝑒
𝐻𝑘 (3.33)

=
1
𝑅𝑒
𝐿0𝐻𝑘 −

(
2𝜋𝑘
𝑐

)2 1
𝑅𝑒
𝐻𝑘 (3.34)

=
1
𝑅𝑒

[
𝐿0 −

(
2𝜋𝑘
𝑐

)2
𝐼

]
𝐻𝑘 , (3.35)

≡ 1
𝑅𝑒
𝐿𝑘𝐻𝑘 . (3.36)

Note that the kernel associated with 𝐻𝑘 (𝑡) decays faster than any exponential, which
can be exploited in the fast multipole solution by restricting the source of any target
to its vicinity (Liska and Colonius, 2016).
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3.5 Temporal discretization
To discretize Eq. 3.15 in time, by imposing the integrating factor, we can rewrite the
system by denoting 𝒗̃𝑘 = 𝐻𝑘 (𝑡)𝒖̃𝑘 and 𝑏̃𝑘 = 𝐻𝑘 (𝑡)𝑞𝑘 , so we have:

𝑑 𝒗̃𝑘
𝑑𝑡

+ 𝐻𝑘 (𝑡)F𝑘 [𝑵(𝝎, 𝒖)] = −𝐺𝑘 𝑏̃𝑘 + 𝐻𝑘 (𝑡)𝑃(𝑡)𝑇 𝒇̃ 𝑘 ,

𝐷𝑘 𝒗̃𝑘 = 0,

𝑃(𝑡)𝐻−1
𝑘 (𝑡) 𝒗̃𝑘 = 𝒖̃Γ,𝑘 .

(3.37)

We adopt a half-explicit Runge-Kutta (IF-HERK) method for these DAE (Brasey
and Hairer, 1993; Liska and Colonius, 2017). For the present method, this can be
stated as

1. Initialize: set 𝒖̃0
𝑘,𝑛

= 𝒖̃𝑘,𝑛 and 𝑡0𝑛 = 𝑡𝑛

2. Multistage: for 𝑖 = 1, 2, ..., 𝑠, solve the linear system[
(𝐸 𝑖

𝑘
)−1 (𝑄 (𝑖−1)

𝑘,𝑛
)∗

𝑄𝑖
𝑘,𝑛

0

] [
𝒖̃𝑖
𝑘,𝑛

𝜆̂𝑖
𝑘,𝑛

]
=

[
𝒓𝑖
𝑘,𝑛

𝜁 𝑖
𝑘,𝑛

]
. (3.38)

3. Finalize: set 𝒖̃𝑘,𝑛+1 = 𝒖̃𝑠
𝑘,𝑛

, 𝜆𝑘,𝑛+1 = (𝑎̃𝑠,𝑠Δ𝑡)−1𝜆̂𝑠
𝑘,𝑛

, and 𝑡𝑛+1 = 𝑡𝑠𝑛

where

𝑄𝑖𝑘,𝑛 =

[
𝐺∗
𝑘

𝑃𝑖𝑛

]
, 𝜆̂𝑖𝑘,𝑛 =

[
𝑞𝑖
𝑘,𝑛

𝑓 𝑖
𝑘,𝑛

]
, 𝜁 𝑖𝑘,𝑛 =

[
0

(𝒖̃Γ,𝑘 )𝑖𝑛

]
. (3.39)

The terms appearing in the linear system are

𝒖𝑖−1
𝑛 = F −1({𝒖̃𝑖−1

𝑘,𝑛 }𝑘 ), 𝝎𝑖−1
𝑛 = F −1({𝐶𝑘 𝒖̃𝑖−1

𝑘,𝑛 }𝑘 ) (3.40)

where F −1 is evaluated using (de-aliased) inverse Fast Fourier Transform (iFFT).
Furthermore

𝐸 𝑖𝑘 = 𝐻𝑘

(
(𝑐𝑖 − 𝑐𝑖−1)Δ𝑡
(Δ𝑥)2𝑅𝑒

)
, 𝑔𝑖𝑘,𝑛 = −𝑎̃𝑖,𝑖Δ𝑡F𝑘 [𝑵(𝝎𝑖−1

𝑛 , 𝒖𝑖−1
𝑛 )] (3.41)

where for all 𝑘 , F𝑘 [𝑵(𝝎𝑖−1
𝑛 , 𝒖𝑖−1

𝑛 )] is evaluated using FFT. Then the following are
recursively computed for 𝑖 > 1 and 𝑗 > 𝑖 using:

ℎ𝑖𝑘,𝑛 = 𝐸
𝑖−1
𝑘 ℎ𝑖−1

𝑘,𝑛 , ℎ1
𝑘,𝑛 = 𝒖̃0

𝑘,𝑛 (3.42)

𝑤
𝑖, 𝑗

𝑘,𝑛
= 𝐸 𝑖−1

𝑘 𝑤
𝑖−1, 𝑗
𝑘,𝑛

, 𝑤
𝑖,𝑖

𝑘,𝑛
= (𝑎̃𝑖,𝑖Δ𝑡)−1

(
𝑔𝑖𝑘,𝑛 −𝑄

𝑖−1
𝑘,𝑛 𝜆̂

𝑖
𝑘,𝑛

)
. (3.43)
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0 0 0 0
1/3 1/3 0 0
1 -1 2 0

0 3/4 1/4

Table 3.1: Runge-Kutta scheme Butcher Tableau used in our implementation

And we compute:

𝑟𝑖𝑘,𝑛 = ℎ
𝑖
𝑘,𝑛 + 𝑔

𝑖
𝑘,𝑛 + Δ𝑡

𝑖−1∑︁
𝑗=1
𝑎̃𝑖, 𝑗𝑤

𝑖, 𝑗

𝑘,𝑛
, 𝑡𝑖𝑛 = 𝑡𝑛 + 𝑐𝑖Δ𝑡. (3.44)

With this time discretization, at the 𝑛𝑡ℎ time step in 𝑖𝑡ℎ stage for the 𝑘 𝑡ℎ Fourier
coefficient, we have the following linear system:

𝑀 𝑖
𝑘,𝑛


𝒖̃𝑖
𝑘,𝑛

𝑞𝑖
𝑘,𝑛

𝑓 𝑖
𝑘,𝑛

 =


(𝐸 𝑖

𝑘
)−1 𝐺𝑘 (𝑃(𝑖−1)

𝑛 )𝑇

𝐺∗
𝑘

0 0
𝑃𝑖𝑛 0 0



𝒖̃𝑖
𝑘,𝑛

𝑞𝑖
𝑘,𝑛

𝑓 𝑖
𝑘,𝑛

 =


𝒓𝑖
𝑘,𝑛

0
(𝒖̃Γ,𝑘 )𝑖𝑛

 (3.45)

where 𝑆𝑖
𝑘,𝑛

= 𝑃𝑖𝑛𝐸
𝑖
𝑘
(𝐼 − 𝐺𝑘𝐿

−1
𝑘
𝐷𝑘 ) (𝑃𝑖−1

𝑛 )𝑇 , which we will show, in Appendix C,
that it is Hermitian when 𝑃𝑖𝑛 = 𝑃𝑖−1

𝑛 . 𝐸 𝑖
𝑘

refers to the integrating factor associated
with 𝐿𝑘 . 𝐿−1

𝑘
refers to the lattice Green’s Function (LGF) of 𝐿𝑘 . We will explain

how to apply them in subsequent sections.

We can solve the linear system arising from the IF-HERK method using a block LU
decomposition. As a result, the steps to solve this system are:

𝑞∗𝑘 = −𝐿−1
𝑘 𝐺

∗
𝑘 𝒓
𝑖
𝑘,𝑛,

𝑆𝑖𝑘,𝑛 𝑓
𝑖
𝑘,𝑛 = 𝑃

𝑖
𝑘𝐸

𝑖
𝑘 [𝒓

𝑖
𝑘,𝑛 − 𝐺𝑘𝑞

∗
𝑘 ] − (𝒖̃Γ,𝑘 )𝑖𝑛,

𝑞𝑖𝑘,𝑛 = 𝑞
∗
𝑘 + 𝐿

−1
𝑘 𝐺

∗
𝑘 (𝑃

𝑖
𝑛)𝑇 𝑓 𝑖𝑘,𝑛,

𝒖̃𝑖𝑘,𝑛 = 𝐸
𝑖
𝑘 [𝒓

𝑖
𝑘,𝑛 − 𝐺𝑘𝑞

𝑖
𝑘,𝑛 − (𝑃𝑖−1

𝑛 )𝑇 𝑓 𝑖𝑘,𝑛] .

(3.46)

Note that this block LU decomposition method does not have splitting error due to
the use of the integrating factor (Liska and Colonius, 2017). The advantage is that the
divergence-free constraint and the boundary conditions are satisfied exactly (Taira
and Colonius, 2007; Liska and Colonius, 2017). In our current implementation
of this algorithm, we use a 3rd order scheme with the Butcher Tableau shown in
Table 3.1.

Apart from the second equation of Eq. 3.46, the remaining equations can be solved
directly through the application of LGF and the integrating factor. The second
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equation in Eq. 3.46 corresponds to the projection step to compute the IB forcing
in order to satisfy the boundary condition (Taira and Colonius, 2007; Liska and
Colonius, 2017). In similar algorithms designed for general 3D flows (Liska and
Colonius, 2017; Yu, Dorschner, and Colonius, 2022), the conjugate gradient method
is employed to solve for the IB forcing. In that case, it is estimated that the linear
system associated with IB forcing is a 3𝑁𝐿 by 3𝑁𝐿 dense system where 𝑁𝐿 is
the total number of IB points, and the constant 3 arises from the three velocity
components. In the case of general 3D flows, the number of operations needed
to solve such a linear system is 𝑂 (𝑁3

𝐿
) (Liska and Colonius, 2017). In addition,

due to the sequential nature of matrix factorization and back-substitution (Liska
and Colonius, 2017), directly solving for IB forcing using numerical factorization
becomes less desirable than the conjugate gradient method.

For flows with one homogeneous direction, the immersed body has a uniform 2D
cross-section across the span-wise direction giving 𝑁𝐿 = 𝑁𝑧𝑁2𝐷 , where 𝑁𝑧 is the
number of Fourier coefficients in the truncated Fourier series, and 𝑁2𝐷 is the number
of IB points used to represent the 2D cross-section. To solve for the Fourier coef-
ficients of the IB forcing using the evolution equations of the Fourier coefficients
(Eq. 3.5), we solve for 𝑁𝑧 independent 3𝑁2𝐷 by 3𝑁2𝐷 dense linear systems instead
of one 3𝑁𝐿 by 3𝑁𝐿 dense linear system. Thus, the operation count for using a
direct solver in our scenarios decreases to 𝑂 (𝑁𝑧 (𝑁2𝐷)3) = 𝑂 (𝑁3

𝐿
/𝑁2

𝑧 ). More im-
portantly, due to the independence among those 𝑁𝑧 linear systems, the application of
numerical factorization and back-substitution can be efficiently parallelized. Thus,
unlike the method to solve for IB forcing in the general 3D flow solver algorithm, we
solve the IB forcing using direct LU factorization instead of the conjugate gradient
method. In our implementation, the dense linear system is solved using ScaLA-
PACK(Blackford et al., 1997) wrapper from PETSc(Balay et al., 2022). According
to our numerical experiments, solving for IB forcing directly takes less than 3% of
the total computational time when using the LU factorization.

3.6 Multilevel mesh
To resolve thin boundary layers, particularly with the IB method, adaptive mesh re-
finement is needed (Mittal and Balachandar, 1997; Lehmkuhl et al., 2013; Yu, 2021).
For Cartesian grids, a wide range of adaptive mesh refinement (AMR) algorithms
have been proposed to locally refine the computational mesh (Berger and Oliger,
1984; Berger and Colella, 1989; Popinet, 2003; Burstedde, Wilcox, and Ghattas,
2011; Offermans et al., 2020; Gillis and Van Rees, 2022). These local refinement
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methods focus on refining patches of the computational mesh according to specific
refinement criteria. To enhance the scalability of the mesh refinement process,
octree-based methods have been proposed (Popinet, 2003; Burstedde, Wilcox, and
Ghattas, 2011). Further, these octree-based methods can be combined with wavelet
methods to enable more efficient multiresolution methods (Schneider and Vasilyev,
2010; Gillis and Van Rees, 2022).

For our solver, the main requirement for AMR methods is compatibility with the
application of the LGF. Thus, we adapted an existing adaptive mesh refinement
approach that has proven efficient and accurate when combined with LGF (Yu, 2021).
This AMR approach uses an octree structure (Burstedde, Wilcox, and Ghattas, 2011;
Gillis and Van Rees, 2022) to recursively refine the fully 3D computational mesh.
We implemented a quadtree counterpart of this approach to apply to each 2D slice
in the 𝑥 − 𝑦 plane for each Fourier coefficient. Adaptation of this AMR algorithm
to our hybrid method is detailed in the remainder of this section.

3.6.1 Multilevel mesh on a Cartesian grid
We first review the salient features of the algorithm of Yu (2021). We start by
constructing a composite grid consisting of multiple computational grids with in-
creasing resolutions, {RQ

0 ,R
Q
1 , ...,R

Q
𝑁
}, wherein RQ

𝑘
is generated by evenly dividing

each computational cell inRQ
𝑘−1 into 2𝑑 smaller cells, 𝑑 being the physical dimension

of the problem. The composite grid is the Cartesian product of this series of grids:

RQ =

𝑁⊗
𝑘=0

RQ
𝑘
. (3.47)

Then the AMR grid is defined by partitioning the entire computational domain Ω

into 𝑁 +1 smaller pairwise-disjoint domains {Ω0,Ω1, ...Ω𝑁 }. Define the restriction
functional as:

Γ𝑘 ( 𝑓 ) (𝒏) =

𝑓 (𝒏) if 𝒏 ∈ Ω𝑘 ,

0 if 𝒏 ∉ Ω𝑘

, (3.48)

and the values on the AMR computational grid are defined through the Cartesian
product of these restriction functionals

Γ =

𝑁⊗
𝑘=0

Γ𝑘 . (3.49)

The operator Γ restricts the region we need to compute the numerical solutions to

Ω =

𝑁⊗
𝑘=0

RQ
𝑘
∩Ω𝑘 . (3.50)
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Thus, the solution is defined in the subspace Ω. To communicate the information
across different levels of mesh, we also define interpolation and coarsening operators
from level 𝑙 to level 𝑘 as 𝑃𝑙→𝑘 (interpolation when 𝑙 < 𝑘 and coarsening when 𝑙 > 𝑘).
To estimate the information 𝑓 on level 𝑘 given the information across the AMR grid
𝑓 , we compute:

𝑓𝑘 =

𝑁∑︁
𝑙=0

𝑃𝑙→𝑘 𝑓𝑙 . (3.51)

Then to apply LGF on the AMR mesh from a source term 𝑓 , we use the following
(Yu, 2021):

𝜙(𝒏) = ⊗𝑁𝑗=0

[(
𝑗−1∑︁
𝑖=0

𝑃
𝑄

𝑖→ 𝑗𝐿
−1
0,𝑖 𝑓𝑖

)
+ 𝐿−1

0, 𝑗

(
𝑁∑︁
𝑖= 𝑗

𝑃
𝑄

𝑖→ 𝑗
𝑓𝑖

)]
, (3.52)

where 𝑃𝑄𝑖→ 𝑗 is a commutative projection operator (see Eq. 30-32 in Yu, Dorschner,
and Colonius (2022)). We use 𝐿−1

0,𝑙 to denote the action of applying LGF of Laplacian
on level 𝑙 in the refinement mesh. In this equation, at level 𝑗 , the first term recursively
computes the solution at level 𝑗 induced from the solution at coarser levels. The
second term computes the solution induced by the source on level 𝑗 and the source
interpolated from finer levels. The first term is accumulated when computing the
solution from the base level to the finest level. We can directly use this method to
apply 𝐿−1

𝑘
for each Fourier coefficient. To achieve additional speedup when applying

LGFs, a fast and parallel multilevel elliptic equation solution method is employed
(Dorschner et al., 2020; Ying, Biros, and Zorin, 2004; Liska and Colonius, 2014).

3.6.2 Multilevel in Fourier space
To exploit the multilevel mesh in the 𝑥 − 𝑦 plane, we must also locally truncate the
Fourier series such that the resolution in 𝑧 is comparable to the local resolution in the
𝑥 − 𝑦 plane. Considering the spectral convergence in 𝑧, compared to the low-order
convergence of the finite volume discretization in the 𝑥 − 𝑦 plane, it is expected that
the mesh in the 𝑧 direction needs to be refined, at most, as fast as the rate we refine
the mesh in the 𝑥 − 𝑦 plane.

However, for spanwise homogeneous flows, the flow field is not homogeneous
everywhere in the presence of the immersed body, especially when the boundary
layer is laminar. In the far wake, the length scales tend toward homogeneity, but,
near the immersed body, variation in the 𝑥 − 𝑦 plane can be much more rapid than
that of the 𝑧-direction (Smith, 1986; Williamson, 1996). One example of such
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inhomogeneity is the flow past a circular cylinder. In the shear-layer transition
regime (𝑅𝑒 ∼ 1, 000 − 200, 000), two shear layers are forming from the side of
the cylinder. Those shear layers and the associating Kelvin-Helmholtz instability
are essentially 2D. Thus, to resolve the shear layers, we only need to refine the
computational grid in the 𝑥 − 𝑦 plane. However, downstream of the shear layers,
the flow transitions to three-dimensional turbulence, and comparable resolution is
required in all three directions. To optimally treat these situations, we modify the
spanwise refinement. Far from the body, if there are 𝑙𝑟𝑒 𝑓 refinement levels, on level
𝑙, we retain 𝑁𝑙 = 𝑁0 × 2𝑙 Fourier coefficients, where 𝑁0 is the number for the base
(coarsest) mesh. Near the body, we cap the number of Fourier coefficients, even as
we refine the 𝑥 − 𝑦 grid by an additional 𝑙𝑎𝑑𝑑 levels.

We now elaborate on how we apply the LGF on the multilevel mesh in both Fourier
space and the 𝑥 − 𝑦 plane. For the 𝑘 𝑡ℎ Fourier coefficient, we find an 𝑙 such that
𝑁02𝑙−1 ≤ 𝑘 < 𝑁02𝑙 . We know that computational cells on level 𝑙 − 1 need only
retain the first 𝑁02𝑙−1 Fourier coefficients. That is, we may assume the 𝑘 𝑡ℎ Fourier
coefficient is zero for all computational cells on level 𝑙−1. Similarly, the 𝑘 𝑡ℎ Fourier
coefficient is zero for all computational cells on levels 0 through 𝑙 − 1. Thus, the
𝑘 𝑡ℎ Fourier coefficients and the associating source terms 𝑓 𝑘 are zero on those levels.
We do not need to apply 𝐿−1

𝑘
on levels 0 through 𝑙 − 1, nor need we consider source

terms from those levels since they are to be truncated. With this strategy, we can
simplify the procedure that applies 𝐿−1

𝑘
in Eq. 3.52 so that the index of the first term

begins at 𝑖 = 𝑙 rather than 𝑖 = 0, resulting in significant computational savings.

Conversely, for the 𝑘 𝑡ℎ Fourier coefficient, the corresponding coarsest level that 𝐿−1
𝑘

need be applied is given by:

𝑙 = max
(⌈

log2

(
𝑘 + 1
𝑁0

)⌉
, 0

)
= max

(
𝑙𝑟𝑒 𝑓 −

⌊
log2

(
𝑁0 × 2𝑙𝑟𝑒 𝑓
𝑘 + 1

)⌋
, 0

)
. (3.53)

Similar to applying 𝐿−1
𝑘

, applying discrete operators (divergence, gradient, curl),
interpolation operators, and the integrating factor 𝐸 𝑖

𝑘
follows a similar strategy. For

an operator operating on the 𝑘 𝑡ℎ Fourier coefficient, the coarsest level, 𝑙, the operator
needs to be applied on is also determined by Eq. 3.53. Thus. that operator only
needs to be applied to grid points on levels greater than or equal to 𝑙.

3.7 Adaptation
So far, we have introduced the steps to time integrate the discretized Navier-Stokes
equations using the IF-HERK method and LGF. In addition, the computational grid
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spatially adapts to the vortical region, which we term base-level adaptivity, and
adaptively refines the mesh in a block-wise fashion. For adaptation, we adopt the
strategies developed for the fully inhomogeneous case (Liska and Colonius, 2016;
Yu, 2021); we provide a brief summary of the algorithms here.

3.7.1 Base-level (domain) adaptation
The assumption that allows us to constrain our computational domain to a finite
one is that the vortical region is in general compact (exponentially decaying). The
strategy is to add or delete cells (block-wise) when the vorticity near the boundary
exceeds or falls below a threshold value. However, the surface defining the threshold
value must adapt in time as the vorticity evolves in the boundary layer and wake
regions. Additionally, it is sometimes pertinent to alter the threshold in the far wake
as, for long times, the vorticity decays slowly.

To these ends, we denote the active cell region in the base level

Ω
𝑠𝑢𝑝𝑝

0 =

{
𝒙 ∈ R2 :

∑
𝑖 |𝐷𝑖 𝒓𝑖 (𝒙) |2

max
𝒙

∑
𝑖 |𝐷𝑖 𝒓𝑖 (𝒙) |2

≥ 𝜖0

}
, (3.54)

where 𝒓𝑖 is the nonlinear term (Lamb vector) in the time-discretized equations
(Eq. 3.44) and 𝐷𝑘 the discrete divergence operator for the 𝑘 𝑡ℎ Fourier coefficient. 𝜖0

is some prescribed cutoff threshold. The
∑
𝑖 is the sum across all Fourier coefficients.

Thus, the term
∑
𝑖 |𝐷𝑖 𝒓𝑖 (𝒙) |2 is approximately the magnitude of the source term for

the pressure-Poisson equation at location 𝒙 across all Fourier coefficients. To ensure
that Ω𝑠𝑢𝑝𝑝

0 is captured by our computational domain, we additionally put a region
(Ωbuff) of buffering computational cells aroundΩ𝑠𝑢𝑝𝑝

0 . These additional computation
cells are those at a fixed distance 𝑁𝑏 from 𝜕Ω

𝑠𝑢𝑝𝑝

0 . We periodically update Ω𝑠𝑢𝑝𝑝

0 by
incorporating grid cells from Ωbuff to satisfy Eq. 3.54. The detail of how to choose
𝑁𝑏 is discussed in (Liska and Colonius, 2016).

Each time we incorporate computational cells from Ωbuff into Ω
𝑠𝑢𝑝𝑝

0 , a new 𝜕Ω
𝑠𝑢𝑝𝑝

0
is effectively defined, and we need to compute the velocity field in the newly
incorporated region Ωbuff. To do so, we solve the vorticity-streamfunction equation
to fill in the velocity in Ωbuff. Let 𝒖̃𝑢

𝑘
be the 𝑘 𝑡ℎ Fourier coefficient of velocity before

solving the vorticity-streamfunction equation and 𝒖̃𝑎
𝑘

be the values after, we solve
the velocity within Ωbuff using:

𝝎̃𝑘 = 𝐶𝑘 𝒖̃
𝑢
𝑘 ,

𝒖̃𝑎𝑘 = −𝐶∗
𝑘𝐿

−1
𝑘 1Ω𝑠𝑢𝑝𝑝

0
𝝎̃𝑘 .

(3.55)
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where 1Ω𝑠𝑢𝑝𝑝

0
is the indicator function of the set Ω𝑠𝑢𝑝𝑝

0 . Namely, when fill in the
velocity in the buffering region, we only use the vorticity within Ω

𝑠𝑢𝑝𝑝

0 . We term
the above procedure as velocity padding.

3.7.2 Velocity refresh
When applying the integrating factor 𝐸 𝑖

𝑘
through convolution, the support of the

associating kernel is unbounded. However, we can still accurately evaluate this
convolution with Ω

𝑠𝑢𝑝𝑝

0 using only the values within Ω
𝑠𝑢𝑝𝑝

0 and Ωbuff. To that end,
we use two facts: the integrating factor decays faster than any exponential (Liska
and Colonius, 2016), and velocity in Ω

𝑠𝑢𝑝𝑝

0 can be obtained by solving a vorticity-
streamfunction equation. Thus, we employ a two-step approximation to evaluate the
action of 𝐸 𝑖

𝑘
within Ω

𝑠𝑢𝑝𝑝

0 .

First, we truncate the integrating factor kernel to have a compact support by thresh-
olding the value of the kernel. Due to the fast decay, we can accurately approximate
the action of 𝐸 𝑖

𝑘
by only applying the integrating factor kernel within this compact

region.

Second, near 𝜕Ω𝑠𝑢𝑝𝑝

0 , the source region of the approximated 𝐸 𝑖
𝑘

operator extends
outside of Ω𝑠𝑢𝑝𝑝

0 . We assume that this additional source region is contained in some
ΩIF. Since this region is outside of Ω𝑠𝑢𝑝𝑝

0 , the vorticity within ΩIF is negligible.
Thus, we can compute the velocity in this region using vorticity-streamfunction
equation as in Eq. 3.55. This step is called velocity refresh.

Combining these two steps, we can accurately approximate the action of 𝐸 𝑖
𝑘

within
Ω
𝑠𝑢𝑝𝑝

0 by carefully defining ΩIF and the source region of 𝐸 𝑖
𝑘
. The specific procedure

of properly truncating the integrating factor kernel and defining ΩIF can be found in
(Liska and Colonius, 2016). We note that the vorticity-streamfunction equation only
needs to be solved periodically to ensure accurate simulation. In fact, the frequency
we need to solve the vorticity-streamfunction equation depends on ΩIF.

It is shown that we can overlap ΩIF with the buffering region we defined for velocity
padding (Liska and Colonius, 2016). That is ΩIF = Ωbuff. As a result, we can
compute a corresponding maximum time step 𝑛𝑟 such that we only need to conduct
velocity refresh every 𝑛𝑟 time step.

3.7.3 Adaptive refinement
As the flow develops, the high vorticity and high velocity gradient regions change.
As a result, the computational grid needs to adapt to the evolution of the flow. In our
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algorithm, this step is done by tracking the high vorticity region and locally refining
the mesh accordingly. Recall that the AMR grid decomposes the entire computa-
tional domain into a sequence of pairwise disjoint domains {Ω𝑙}𝑙 . To adaptively
refine the computational mesh, we partition each Ω𝑙 into smaller computational
blocks. As shown in Section 3.6, the adaptive refinement in the spanwise direction
is determined by the adaptive refinement in the 𝑥 − 𝑦 plane. Thus, it is sufficient
to consider the refinement criterion for the 2D plane formed by the inhomogeneous
directions. In this part, the vorticity is used as the criterion for adaptation. We
specify a refinement factor 𝛼 ∈ (0, 1) and a deletion factor 𝛽 ∈ (0, 1). When a
computational block is on level 𝑙, we refine the block if any point 𝒙 in that block
satisfies:

𝑆(𝒙) =
∑︁
𝑘

| |𝝎̃𝑘 (𝒙) | |22 > 𝛼
𝑙𝑚𝑎𝑥−𝑙𝑆𝑚𝑎𝑥 , (3.56)

and coarsen the block if every point 𝒙 in that block satisfies:

𝑆(𝒙) =
∑︁
𝑘

| |𝝎̃𝑘 (𝒙) | |22 < 𝛽𝛼
𝑙𝑚𝑎𝑥−𝑙𝑆𝑚𝑎𝑥 , (3.57)

where | |𝝎̃𝑘 (𝒙) | |2 is the 2-norm of the 𝑘 𝑡ℎ Fourier coefficient of vorticity vector at
point 𝒙. Using Parseval’s identity, we have:

1
𝑐

𝑐/2∫
−𝑐/2

∑︁
𝑖∈{1,2,3}

𝜔2
𝑖 (𝑥, 𝑦, 𝑧)𝑑𝑧

=

∞∑︁
𝑘=−∞

| |𝝎̃𝑘 (𝒙) | |2

≈
𝑁/2∑︁

𝑘=−𝑁/2
| |𝝎̃𝑘 (𝒙) | |2.

(3.58)

Thus, 𝑆(𝒙) approximates the squared 𝐿2 norm of the vorticity at each 𝒙 location.
In addition, we solve the vorticity-streamfunction equations to pad velocity when
new blocks are refined using Eq. 3.55. This is to fill in the Fourier coefficients of
velocities in the newly refined blocks, as those Fourier coefficients were previously
set to zero due to the truncation of the Fourier series from the multilevel nature in
Fourier space.

3.8 Algorithm summary
Algorithm 2 summarizes the required steps to march the solution forward by 𝑁

time steps. Let 𝑛𝑎 be the desired frequency (number of steps) to adapt the domain
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and/or resolution, and let 𝑛𝑟 be the desired frequency (number of steps) to conduct
velocity refresh. When simulating fluid flows with this algorithm, 𝑛𝑎 should be
chosen according to the resolution requirements, and 𝑛𝑟 should be chosen according
to the procedure detailed in (Liska and Colonius, 2017).

Algorithm 2 Time Marching using IF-HERK, IB, and LGF
1: procedure Time Marching(𝒖̃𝑘,0, 𝑡 𝑓 )
2: 𝑛 = 0
3: while 𝑛 < 𝑁 do
4: if 𝑛%𝑛𝑎 = 0 then
5: Perform domain adaptation
6: Perform velocity padding using Eq. 3.55
7: else if 𝑛%𝑛𝑟 = 0 then
8: Perform velocity refresh using Eq. 3.55
9: end if

10: set 𝒖̃0
𝑘,𝑛

= 𝒖̃𝑘,𝑛 and 𝑡0𝑛 = 𝑡𝑛
11: for each stage 𝑖 ∈ {1, 2, 3} do
12: Compute 𝒖𝑖−1

𝑛 and 𝝎𝑖−1
𝑛 using inverse FFT

13: Compute 𝑔𝑖
𝑘,𝑛

, 𝑟𝑖
𝑘,𝑛

according to Eq. 3.41 and Eq. 3.44
14: Solve the system of equations shown by Eq. 3.45 using the block LU

decomposition as detailed in Eq. 3.46
15: end for
16: Setting 𝒖̃𝑘,𝑛+1 = 𝒖̃3

𝑘,𝑛
, 𝜆𝑘,𝑛+1 = (𝑎̃3,3Δ𝑡)−1𝜆̂3

𝑘,𝑛
, and 𝑡𝑛+1 = 𝑡3𝑛

17: 𝑛 = 𝑛 + 1
18: end while
19: end procedure

3.9 Parallelization and performance
We adopted a server-client model for parallelization based on decomposing the
domain into pencils that correspond to blocks in the 𝑥 − 𝑦 plane. That is, all Fourier
coefficients (regardless of the number) are stored on the same processor, which
avoids data transfer to accomplish the FFT. Each block is assigned a computational
load according to their roles during the time-stepping routine, and a load balancing
algorithm distributes those blocks into different processors (Yu, Dorschner, and
Colonius, 2022).

However, since direct solvers are used to solve for IB forcings, we need to devise
a corresponding parallelization strategy. Suppose we are solving systems with 𝑁
Fourier coefficients and 𝑀 parallel client processes. Two separate parallelization
strategies are devised for the case when 𝑁 > 𝑀 and 𝑁 ≤ 𝑀 , respectively.
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• When 𝑁 > 𝑀 , each linear system is only solved using one process, and each
process is tasked with solving one or more linear systems. Specifically, 𝑁%𝑀
processes are allocated to handle ⌈𝑁/𝑀⌉ dense linear systems, and the rest
processes are allocated to handle ⌊𝑁/𝑀⌋ dense linear systems.

• When 𝑁 ≤ 𝑀 , multiple processes are allocated to solve one linear system, and
each process is assigned only one linear system. Specifically, 𝑀%𝑁 linear
systems are each solved by a group of ⌈𝑀/𝑁⌉ processes, while the rest linear
systems are each solved by a group of ⌊𝑀/𝑁⌋ processes.

We report a modest scaling test for a varying number of leaf octants (16000, 31360,
and 64000), spreading across 3 refinement levels (𝑙𝑟𝑒 𝑓 = 1, 𝑙𝑎𝑑𝑑 = 1, 𝑙𝑚𝑎𝑥 =

2). Each octant is a 6 by 6 grid cell. The blocks on the finest level have 16
complex Fourier modes. We define parallel efficiency as the speedup divided by the
number of computational nodes, benchmarked against the runtime obtained using 4
computational nodes. We computed the parallel efficiency by evaluating one RK3
step using various numbers of computational nodes. The resulting parallel efficiency
is shown in Figure 3.5. The strong scaling is consistent with the corresponding fully
inhomogeneous LGF method (Dorschner et al., 2020; Yu, Dorschner, and Colonius,
2022). The simulation size is restricted by the memory required by the algorithm.
Further refinements to the parallelization will be implemented in the future.

As discussed previously (Liska and Colonius, 2014; Yu, Dorschner, and Colonius,
2022), the LGF approach to the Poisson inversion is extremely efficient given the
complex and adaptive domain. On a per-point basis, only purely FFT based algo-
rithms are likely to be more efficient, but the required rectangular domain would
waste many points for the flows we compute.

For the specific case of incompressible flow solver with one Fourier diagonaliz-
able direction, we can make a direct comparison with the Jacobi and block-Jacobi
Preconditioned Conjugate Gradient methods (JPCG and bJPCG) employed in an
unstructured-mesh solver (Borrell et al., 2011). The authors also reported solution
times for a direct Schur-complement based decomposition method (DSD), but we
refrain from comparisons as such a method requires precomputing the Cholesky
factorization and would be prohibitive in an adaptive algorithm. Our method is
compared to JPCG and bJPCG in Table 3.2, where the computational rate for the
Poisson solution is reported∗. For our code, the test is performed in the context of

∗The simulations by the bJPCG and JPCG are done using PowerPC 970MP 2.3GHz CPUs(Borrell
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Figure 3.5: Parallel efficiency for a varying number of computational nodes for com-
putational meshes of various sizes. The parallel efficiency is measured by solving
one RK3 step using different numbers of computational nodes. Each node contains
48 computational cores. The simulations are conducted on TACC Stampede3 su-
percomputer (Stampede3 User Guide n.d.) with Intel Xeon Platinum 8380 2.3GHz
CPUs.

the 𝑅𝑒 = 300 and 𝑅𝑒 = 12, 000 cylinder flows† to be discussed in Section 3.11,
which were computed using 256 CPU cores (2 computational nodes on Bridges-2
supercomputer) and 2000 CPU cores (25 computational nodes on Stampede2 su-
percomputer), respectively. Our algorithm is about an order of magnitude faster for
𝑅𝑒 = 300 case, and 4 times faster for the 𝑅𝑒 = 12, 000 case. The latter case was
impacted by deteriorating parallel performance on the associated large grid of about
400 million cells.

In addition, for the more general case of simulating incompressible external flows

et al., 2011).
†The 𝑅𝑒 = 300 cylinder flow is simulated on the Bridges-2 supercomputer (Brown et al., 2021)

with AMD EPYC 7742 2.25GHz CPUs. The 𝑅𝑒 = 12, 000 cylinder flow is simulated on the
Stampede2 supercomputer (Stanzione et al., 2017) using Intel Xeon Platinum 8380 2.3GHz CPUs.
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Case Computational Rate (cpu ×𝜇s/pts)
JPCG 𝜉 = 0 83.1
bJPCG 𝜉 = 0 79.8
Nek5000 55.6
Present (𝑅𝑒 = 300) 7.1
Present (𝑅𝑒 = 12, 000) 19.4

Table 3.2: Efficiency comparison between methods for the 2D screened Poisson
problems (JPCG and bJPCG (Borrell et al., 2011)) and the 3D Poisson problem
(Nek5000 (Fischer, Lottes, and Tufo, 2007; Hosseini et al., 2016)) in incompressible
flow. The JPCG and bJPCG values are based on those reported (Borrell et al., 2011)
for the 𝜉 = 0 parameter value in their screened Poisson problem, which represents
the worst case. The Nek5000 value is based on the time to run one GMRES iteration
(Hosseini et al., 2016) in their Poisson solver and the expected number of iterations
for the GMRES algorithm to converge, estimated from the number of iterations for
the JPCG method to converge (Borrell et al., 2011).

with one periodic direction, we can compare with the spectral element incompress-
ible flow solver Nek5000 (Fischer, Lottes, and Tufo, 2007) simulating the flow past
a wing section (Hosseini et al., 2016). In (Hosseini et al., 2016), the runtime of one
GMRES (generalized minimal residual method) iteration for their Poisson solver
is reported‡. However, solving the Poisson equation requires many GMRES itera-
tions. As indicated by (Borrell et al., 2011), the number of iterations for the JPCG
method to solve the Poisson equation is 217. In addition, the conjugate gradient
method (used by the JPCG method) has better convergence properties than GMRES
(Trefethen and Bau, 2022). Thus, the number of iterations for the JPCG method to
converge can serve as a lower-bound estimate of the number of iterations required
for the GMRES algorithm to converge. As such, we compare the computational
rate for Nek5000 to compute 217 GMRES iterations to the computational rate of
our method, also in Table 3.2. Our method is roughly 8 times faster than Nek5000
for the 𝑅𝑒 = 300 case and roughly three times faster for the 𝑅𝑒 = 12, 000 case.

The computational efficiency reported here could potentially be further improved
with enhancements to the parallelization strategy and other optimizations, but as
it stands we believe our algorithm is competitive with (and potentially faster than)
other state-of-the-art incompressible flow solvers.

‡The GMRES iteration is computed on the Cray-XC40 computer Beskow at PDC (KTH) using
Intel Xeon E5-2698v3 Haswell 2.3 GHz CPUs (Hosseini et al., 2016).
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3.10 Verification
As discussed above, the flow solver described in this paper is an extension of a fully
3D incompressible flow solver (Liska and Colonius, 2017; Yu, 2021). In these pa-
pers, the authors verified the method by solving the flow past an impulsively starting
sphere. To verify the modified solver for one homogeneous and two unbounded
directions, we provide two examples: flow past an impulsively starting cylinder and
the evolution of an Oseen vortex (Panton, 2024).

We compute the flow past a cylinder with diameter 𝐷 and 𝑅𝑒 = 100 using 16
complex Fourier coefficients (31 terms when evaluating Fourier series) and the
following initial vorticity distributions:

𝜔𝑛,𝑧 = exp(−𝑛2 − |𝑟 |2/𝐷2). (3.59)

We obtain an initial velocity by solving the discrete 2D Poisson equation and the
screened Poisson equations from the vorticity-streamfunction equation. We run the
simulation for 1.024 𝑡𝑈∞/𝐷 and used a uniform grid simulation withΔ𝑥0/𝐷 = 0.005
as the reference solution. We consider cases where the base spatial resolutions
Δ𝑥𝑏𝑎𝑠𝑒 satisfies Δ𝑥𝑏𝑎𝑠𝑒/Δ𝑥0 ∈ {4, 8, 16, 32, 64} and the finest level resolution Δ𝑥 𝑓 𝑖𝑛𝑒

satisfies Δ𝑥 𝑓 𝑖𝑛𝑒/Δ𝑥0 ≥ 4. In each mesh topology, 𝑙𝑚𝑎𝑥 = 𝑙𝑟𝑒 𝑓 = 𝑁𝑙 , 𝑙𝑎𝑑𝑑 = 0. On
𝑙𝑡ℎ level, we refine a squared region centered at the origin with an edge length of
3.84𝐷/2𝑙 . Mathematically, on 𝑙𝑡ℎ level, we refine the region defined by the following
set:

Ω𝑟𝑙 =

{
(𝑥, 𝑦) :

��� 𝑥
𝐷

��� < 1.92
2𝑙

,

��� 𝑦
𝐷

��� < 1.92
2𝑙

}
. (3.60)

The error is shown in Figure 3.6. We normalize 𝐿∞ error by the 𝐿∞ norm of the
reference solution and 𝐿2 error by the 𝐿∞ norm of the reference solution and the size
of the domain. Both 𝐿∞ and 𝐿2 error show a first-order convergence, as expected
for our 2nd-order finite-volume scheme with first-order immersed boundary method
treatment (Tornberg and Engquist, 2004; Mori, 2008; Taira and Colonius, 2007;
Colonius and Taira, 2008).

Second, to verify that our flow solver converges to the solution of the Navier-Stokes
equations, we compare the evolution of an Oseen vortex to the exact solution (Panton,
2024)

𝑢𝜃 (𝑡, 𝑟) =
𝜂2
𝑐 + 2
𝜂2
𝑐𝑟

[
1 − exp

(
𝑟2𝑅𝑒

4𝑡

)]
. (3.61)

To verify our solver, we initialized the velocity profile at 𝑡0 and marched for 𝑡𝑐 time
units. The numerical solution is then compared against the analytical solution to
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Figure 3.6: Error in the streamwise velocity compared to the base solution using
different numbers of refinement levels (0 ≤ 𝑁𝑙 ≤ 3). The solid lines represent the
𝐿2 error, and the dashed lines represent the 𝐿∞ error.

obtain the error. Our specific choice of parameters is:

𝑡0 =
𝑅𝑒

𝜂2
𝑐

, 𝑡𝑐 = 0.5, 𝑅𝑒 = 100, 𝜂𝑐 = 2.24181. (3.62)

The above parameters are chosen such that the maximum velocity is 1, which is
obtained when 𝑡 = 𝑡0 and 𝑟 =

√︁
𝑥2 + 𝑦2 = 1. We hold the mesh topology fixed with

three levels of refinement. Following the notation of the previous example, at level
𝑙, the refinement region is defined as

Ω𝑟𝑙 =

{
(𝑥, 𝑦) : |𝑥 | < 11.2

2𝑙
, |𝑦 | < 11.2

2𝑙

}
. (3.63)

The set of spatial resolution we consider is Δ𝑥𝑏𝑎𝑠𝑒 ∈ {0.08, 0.04, 0.02, 0.01}. The
time-step size is fixed at Δ𝑡 = 0.00625. The 𝐿2 and 𝐿∞ errors of the x-component
velocity are shown in Figure 3.7 and demonstrate the expected second-order con-
vergence.

3.11 Transitional and turbulent flow over a circular cylinder
To demonstrate the new algorithm on transitional and turbulent flows we consider
flow over a circular cylinder at 𝑅𝑒 = 300 and 12,000.
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Figure 3.7: Error convergence of the numerical solution from our solver. The error is
computed by simulating the evolution of an Oseen vortex for 𝑡𝑐 = 0.5 and compared
against the analytical solution.

3.11.1 𝑅𝑒 = 300
Flow over a circular cylinder at 𝑅𝑒 = 300 has been extensively studied numerically
and experimentally (Mittal and Balachandar, 1997; Kravchenko, Moin, and Shariff,
1999; Norberg, 2003). At still lower 𝑅𝑒, the flow undergoes a series of bifurcations
and by 𝑅𝑒 = 300, the most prominent instability is termed mode-B and consists of
vortex shedding modulated by three-dimensional streamwise vortex pairs. These
form horseshoe-shaped vortices downstream that are stretched in the streamwise
direction (Williamson, 1996). Furthermore, the number of horseshoe vortices
decreases downstream due to a subharmonic instability (Mittal and Balachandar,
1997). Previous numerical studies (Mittal and Balachandar, 1995; Mittal and
Balachandar, 1997) determined that sufficient spanwise resolution is imperative to
obtain accurate estimates of the lift and drag coefficients and the Strouhal number
of vortex shedding.

In our simulation, we use a spanwise period of 𝑐 = 12𝐷 where 𝐷 is the diameter of
the cylinder, with 288 Fourier coefficients at the finest refinement level. Three levels
of refinement (𝑙𝑚𝑎𝑥 = 𝑙𝑟𝑒 𝑓 = 3, 𝑙𝑎𝑑𝑑 = 0) are used, and thus the number of Fourier
coefficients for computational cells on the coarsest level is 36. The base resolution is
set to be 𝑥𝑏𝑎𝑠𝑒/𝐷 = 0.08. The mesh at each refinement level is increasingly refined
with a factor of 2. Thus, the resolution on the finest level is Δ𝑥3/𝐷 = 0.01. The
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Figure 3.8: Lift and drag coefficient history of the simulation

adaptive mesh refinement algorithm locally refines and coarsens the computational
domain with a refinement factor of 𝛼 = 0.25 and a deletion factor of 𝛽 = 0.7. The
time step size is chosen as Δ𝑡𝑈∞/Δ𝑥3 = 0.75.

To efficiently simulate this flow, we initialized the simulation by first computing
the flow in 2D. After we reach a temporally periodic solution, we initialize the 3D
simulation using the 2D solution as the zeroth Fourier coefficient. At the beginning
of the 3D simulation, a small (on the scale of 10−5) random vortical perturbation is
introduced, with the expectation that the resulting flow becomes independent of the
specific perturbation (Mittal and Balachandar, 1997). Integrating forward in time
results in the lift𝐶𝐿 and drag𝐶𝐷 coefficients shown in Figure 3.8, where the dashed
line denotes the initiation of the 3D simulation.

The three-dimensional instability is slow to develop, reaching a significant amplitude
only by 𝑡𝑈∞/𝐷 = 175 and saturating thereafter. The flow is (approximately)
stationary after 𝑡𝑈∞/𝐷 = 225. These dynamics are similar to what has been
previously observed (Mittal and Balachandar, 1995; Mittal and Balachandar, 1997).

The vorticity magnitude and streamwise vorticity at 𝑡𝑈∞/𝐷 = 367.5 are shown
in Figures 3.9 and 3.10, respectively. We can clearly observe the three-dimension
mode-B vortices forming in the wake near the cylinder and the elongated horseshoe
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Figure 3.9: Vorticity magnitude at 𝑡𝑈∞/𝐷 = 367.5. The non-dimensionalized
vorticity, 𝝎𝐷/𝑈∞, magnitude ranges from 0 (blue) to 5 (red).

Figure 3.10: Streamwise vorticity contour plot at 𝑡𝑈∞/𝐷 = 367.5 at𝜔𝑥𝐷/𝑈∞ = 0.5
(red) and 𝜔𝑥𝐷/𝑈∞ = −0.5 (blue).

vortices further downstream, with a continual decrease in the number of horseshoe
vortices as the flow progresses. The formation of the horseshoe vortices and the
reduction of the number of horseshoe vortices downstream indicates the subhar-
monic instability of the three-dimensional vortices generated by mode-B instability
(Williamson, 1996; Mittal and Balachandar, 1997; Kravchenko, Moin, and Shariff,
1999).

In addition to these qualitative observations, we computed the average drag coeffi-
cient (𝐶𝐷), root mean squared lift coefficient (𝐶𝐿,𝑟𝑚𝑠), and Strouhal number (𝑆𝑡) of
this simulation. The mean is computed starting at 𝑡𝑈∞/𝐷 = 245.7, which is more
than 12 shedding cycles after the onset of three-dimensional instability. The statis-
tics were accumulated for the next 14 shedding cycles. In Table 3.3, we report those
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Study 𝐶𝐷 𝐶𝐿,𝑟𝑚𝑠 𝑆𝑡

KMS99 (num.) 1.28 0.40 0.203
MB97 (num.) 1.26 0.38 0.203
Experimental 1.22 0.45 0.203
Present 1.25 0.44 0.203

Table 3.3: Comparison of lift and drag statistics with previous studies. Numerical
results from KMS99 - Kravchenko, Moin, and Shariff (1999), MB97 - Mittal and
Balachandar (1997). The experimental results are from Wieselsberger (1922) and
Norberg (2003).

statistics and compare the values to previous numerical and experimental studies.
All quantities are in reasonable agreement with the reference values.

3.11.2 𝑅𝑒 = 12, 000
We now consider the fully turbulent cylinder flow at 𝑅𝑒 = 12, 000. We carried out
the simulation using 128 Fourier coefficients and spanwise periodic length 𝑐 = 3𝐷.
In this simulation, we used a base resolution Δ𝑥𝑏𝑎𝑠𝑒/𝐷 = 0.04 with four levels
of adaptive refinement, yielding the finest resolution of Δ𝑥4/𝐷 = 0.0025. The
refinement factor is 𝛼 = 0.25, and the deletion factor is 𝛽 = 0.7. At 𝑅𝑒 = 3, 900, the
average Kolmogorov scale (𝜂) in the near wake (𝑥/𝐷 < 5) is 𝜂/𝐷 = 0.02 (Lehmkuhl
et al., 2013). According to the 3/4 scaling of the Kolmogorov scale, we estimate
that 𝜂/𝐷 = 0.0086 at 𝑅𝑒 = 12, 000. The ratio of the Kolmogorov scale to the
second finest level is Δ𝑥3/𝜂 = 0.58. Thus, the turbulence is expected to be fully
resolved. The finest level is required to resolve the thin laminar boundary layers on
the cylinder prior to separation and the shear layer attached to the cylinder.

To efficiently reach the fully developed turbulent flow, we adopted a step-wise
strategy. Specifically, we first initialize a 2D simulation of flow past a cylinder at
𝑅𝑒 = 5, 000. After vortex shedding initiates, we use that flow profile as the zeroth
Fourier coefficient to initialize a fully 3D simulation with 64 spanwise Fourier co-
efficients. We perturb this 3D simulation with a small random vortical perturbation
(on the level 10−5) to trigger the spanwise instability. After the flow becomes fully
turbulent (at 𝑡𝑈∞/𝐷 ≈ 25), we increase the Reynolds number to 12,000 and increase
the number of spanwise Fourier coefficients to 128 to continue our simulation. The
simulation is then continued for more than 125𝑡𝑈∞/𝐷. Throughout the simulation,
the time step size is chosen to be Δ𝑡𝑈∞/Δ𝑥 = 0.5. The value is chosen to satisfy the
CFL criterion (Courant, Friedrichs, and Lewy, 1928).

Figure 3.11 shows the isosurface of the Q-criterion at 𝑡𝑈∞/𝐷 = 145.75. We can
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Figure 3.11: Q-criterion isosurface at 𝑄 = 100𝑈∞/𝐷. The isosurface is colored by
the vorticity magnitude from | |𝝎 | |𝐷/𝑈∞ = 20 (blue) to 50 (red). The corresponding
𝑥 − 𝑦 computational mesh is shown in the background. The mesh gets increasingly
fine as the gray darkens. The computational domain is truncated in this figure. The
full computational domain is adaptive and extends to 23D downstream.

clearly observe the rib structures in the wake that are also present in the wake of
the flow past a flat plate (Rai, 2013). We also show the 𝑥 − 𝑦 mesh topology in
the same figure. The computational grid tracks the vortical region of the flow and
adaptively refines in the high vorticity region. We computed statistics using the
data within the time period 𝑡𝑈∞/𝐷 ∈ [105, 145], corresponding to approximately 8
vortex-shedding cycles. When estimating a Strouhal number, we conduct a Fourier
transform of the lift coefficient data in time. The resulting Fourier spectrum is
shown in Figure 3.12. The peak of the Fourier spectrum centers around 𝑆𝑡 = 0.198.

The drag coefficient and lift coefficient time evolution data for 𝑡𝑈∞/𝐷 ∈ [100, 145]
are shown in Figure 3.13. The mean drag and Strouhal number are compared to
experimental data in Table 3.4. The Strouhal number and 𝐶𝐿,𝑟𝑚𝑠 are computed
from an empirical formula obtained from experimental data (Norberg, 2003) when
𝑅𝑒 ∈ [1600, 150000] for 𝑆𝑡 and 𝑅𝑒 ∈ [5400, 220000] for 𝐶𝐿,𝑟𝑚𝑠:

𝑆𝑡 = 0.1853 + 0.0261 × exp(−0.9 × 𝑥2.3), 𝑥 = log(𝑅𝑒/1600), (3.64)

𝐶𝐿,𝑟𝑚𝑠 = 0.52 − 0.06 × 𝑥−2.6, 𝑥 = log(𝑅𝑒/1600). (3.65)

The drag coefficient and Strouhal number agree with the reference values within
uncertainty associated with the empirical formula (see Figures 1 and 2 in (Norberg,
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Figure 3.12: Fourier spectrum of lift coefficient.

Figure 3.13: Drag coefficient and lift coefficient time evolution during 𝑡𝑈∞/𝐷 ∈
[100, 145].
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Study 𝐶𝐷 𝐶𝐿,𝑟𝑚𝑠 𝑆𝑡

Norberg (2003) - 0.435 0.199
Wieselsberger (1922) 1.15 - -
Present 1.12 0.67 0.198

Table 3.4: Drag coefficient, lift coefficient, and Strouhal number comparison be-
tween present numerical method and experimental data for the flow past a cylinder
at 𝑅𝑒 = 12, 000.

2003)). On the other hand, 𝐶𝐿,𝑟𝑚𝑠 is about 50% higher than the formula. As can be
observed in Figure 3.13, there is a more significant variation in the lift from cycle to
cycle, and the discrepancy is likely attributable to the statistic not having converged.

3.12 Summary
We have extended the IB-LGF-AMR approach previously developed for unbounded
three-dimensional flows to solve external flows around cylinders of arbitrary cross-
sections. To this end, we hybridized a mimetic, staggered-mesh finite-volume
discretization for the inhomogeneous directions with a Fourier spectral method
for the homogeneous spanwise direction, using a pseudo-spectral approach for the
nonlinear term. Some innovations include the implementation of AMR on the
Fourier coefficients, a direct LU solution of the system of equations for the IB
forcing, and new algorithms for efficiently tabulating the associated LGFs for the
viscous integrating factor to high precision. The validated algorithm retains the
flexibility, scalability, and accuracy of the IB-LGF-AMR approach, as demonstrated
by computing the fully turbulent flow past a circular cylinder at 𝑅𝑒 = 12, 000.
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C h a p t e r 4

THREE-DIMENSIONAL STABILITY AND RESOLVENT
ANALYSES OF EXTERNAL FLOWS OVER

SPANWISE-HOMOGENEOUS IMMERSED BODIES

This chapter is adapted from Hou and Colonius (2023). In this chapter, we introduce
a numerical framework to conduct stability and resolvent analysis of spanwise peri-
odic flows. This numerical framework leverages lattice Green’s function, adaptive
mesh refinement, and immersed boundary method to create an efficient and versatile
method to conduct stability analysis and resolvent analysis. The focus of this chapter
is to introduce this numerical framework and also show some validating examples.

4.1 Introduction
Stability and resolvent analyses are important flow analysis tools. Stability anal-
ysis is used to study the evolution of disturbances to (typically) steady, laminar
flows and is conducted by analyzing the eigenvalues of the linearized Navier-Stokes
equations (Taira, Brunton, et al., 2017) to determine if an equilibrium is stable.
Recently, numerical methods for stability analysis have been developed to study
more complicated flow configurations (Theofilis, 2011). However, linear stability
analysis fails to predict the onset of instability for many flows, such as Poiseuille
flow (Orszag, 1971a). To remedy this discrepancy, resolvent analysis is developed to
study the transient growth of perturbations to an equilibrium (Trefethen, Trefethen,
et al., 1993). This transient growth is used to explain the flow instability that occurs
even when stability analysis shows that the equilibrium point is stable. Moreover,
resolvent analysis performed around the mean flow profile is useful to study both
laminar and turbulent (mean) flow fields for characterizing coherent structures as
high-gain responses to generic nonlinear forcing (Taira, Brunton, et al., 2017; McK-
eon and Sharma, 2010). In addition, resolvent analysis can also be used to perform
optimization on aerodynamic performance (Yeh and Taira, 2019).

Both analyses require the construction of the linearized Navier-Stokes equation
(LNSE) around an appropriate base flow (Taira, Brunton, et al., 2017). Even though
both analyses are vastly useful, one major challenge that limits their applications
is the construction and LU decomposition of the linear operator arising from dis-
cretizing LNSE (Taira, Brunton, et al., 2017; Barthel, Gomez, and McKeon, 2022).
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Especially for external flows around immersed bodies, the domain required to resolve
the flow is much larger than the characteristic length of the immersed body (Pralits,
Giannetti, and Brandt, 2013; Ribeiro, Yeh, and Taira, 2020). The expansive domain
further exacerbates the computational cost when conducting those analyses. Con-
siderable effort has been put into circumventing this problem using iterative methods
and matrix-free methods (Bagheri et al., 2009; Martini et al., 2021). However, we
tackle this problem head-on by reducing the size of the matrix. This reduction of
matrix size is achieved by leveraging the IBLGF-AMR framework created by Yu
(2021).

Based on the existing method of Liska and Colonius (2017), IBLGF-AMR is a
numerical method developed by Yu (2021) to solve incompressible external flows
around immersed bodies using lattice Green’s function (LGF), adaptive mesh refine-
ment (AMR), and immersed boundary (IB) method. This method is able to solve the
external flows efficiently on multi-resolution meshes that adapt to the solution and
need only have active grid points in vortical flow regions–exact far-field boundary
conditions are applied via the Green’s function.

In this chapter, we extend the IBLGF-AMR framework for flows with one homo-
geneous (periodic) direction and introduce a matrix-based framework to enable
efficient solutions of the corresponding stability and resolvent problems. A key
difficulty that is addressed in this work is how to retain a sparse matrix structure in
the presence of the LGF approach to the Poisson equation arising in incompressible
flows, such that modern multifrontal LU solvers can be efficiently employed to solve
the stability and resolvent problems.

4.2 Problem statement
The flow problems we are interested in are external incompressible flows with one
homogeneous direction, namely the flow over cylinders with arbitrary cross sections.
In general, we can write the spatially discretized Navier-Stokes equation (NSE) as

𝑴
𝑑𝒒

𝑑𝑡
= 𝑭(𝒒), (4.1)

where 𝒒 is a vector of discretized flow variables, 𝑴 is the diagonal matrix with
ones for the entries corresponding to velocity variables and zeros otherwise, and
𝑭(·) is the collection of all the terms in the discrete NSE except the time derivative.
Linearizing this equation (around some base flow 𝒒𝑏) and adding a forcing term 𝒇

yields
𝑴
𝑑𝒒

𝑑𝑡
= 𝑨(𝒒𝑏)𝒒 + 𝒇 . (4.2)
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The 𝑨(𝒒𝑏) operator is also referred as the linearized Navier-Stokes operator (Taira,
Brunton, et al., 2017). For stability analysis, the linearization is about an equilibrium,
𝒒𝑏 = 𝒒𝑠 satifying 𝑭(𝒒𝑠) = 0 and, 𝒇 = 0. The equilibrium solution can be obtained
using the nonlinear code directly (for stable flows) or using Newton’s iterations for
unstable ones

For resolvent analysis, 𝒒𝑏 can be either an equilibrium, in which case 𝒇 ≠ 0 is
some exogenous forcing, or the mean of a turbulent flow, 𝒒𝑏 = 𝒒 in which case
𝒇 comprises the residual nonlinear terms in the full nonlinear discretized Navier-
Stokes equations.

For stability analysis, we solve the generalized eigenvalue problem

𝜆𝑴𝒗 = 𝑨(𝒒𝑠)𝒗, (4.3)

and the fixed point is unstable if there exists at least one eigenvalue with a positive
real part. More generally, we may seek to determine the full spectrum of disturbances
and characterize, for stable systems, the extent of transient growth.

For resolvent analysis, on the other hand, we seek to determine, in the frequency
domain, those forcings that are most amplified by the base flow, namely

𝜎2 = max
< 𝒒̂, 𝒒̂ >

< 𝒇̂ , 𝒇̂ >
, (4.4)

where ˆ(·) refers to the (temporal) Fourier transform and < ·, · > refers to the appro-
priate inner product. For example, this inner product can be induced from Chu’s
energy norm (Kamal, Lakebrink, and Colonius, 2023) or the discrete counterpart of
the continuous 𝐿2 inner product (Towne, Schmidt, and Colonius, 2018). The inputs,
𝒇̂ are related to the outputs, 𝒒̂, through the solution of Eq. (4.2) by the resolvent
operator

𝒒̂ = 𝑹(𝜔) 𝒇̂ , (4.5)

where
𝑹(𝜔) = 𝑪 (𝑖𝜔𝑴 − 𝑨(𝒒))−1𝑩, (4.6)

in which 𝑩 defines the subspace of the feasible forcing 𝒇̂ , and𝑪 defines the subspace
of the output 𝒒̂. The solution to the maximization (Rayleigh quotient) is given by
the singular value decomposition (SVD) of 𝑹, namely 𝜎 is the first (largest) singular
value of 𝑹 and the input and output giving rise to the largest amplification are given
by the corresponding left and right singular vectors. We also call this𝜎 the resolvent
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norm (Symon, 2018) since it coincides with the definition of the operator norm of
the resolvent operator, i.e.,

𝜎 = | |𝑹(𝜔) | |. (4.7)

For spanwise-homogeneous flows, we can carry out a Fourier expansion in that
homogeneous direction. We can transform Eq. 4.2 into the following form for the
𝑘 𝑡ℎ Fourier mode:

𝑴̃
𝑑 𝒒̃𝑘
𝑑𝑡

= 𝑨̃𝑘 (𝒒𝑏) 𝒒̃𝑘 + 𝒇̃ 𝑘 . (4.8)

The corresponding generalized eigenvalue problem for stability analysis is

𝜆𝑴̃𝒗 = 𝑨̃𝑘 (𝒒𝑏)𝒗, (4.9)

and the resolvent analysis becomes the SVD of the Fourier-transformed resolvent
operator 𝑹̃𝑘 (𝜔)

𝑹̃𝑘 (𝜔) = 𝑪 (𝑖𝜔𝑴̃ − 𝑨̃𝑘 (𝒒))−1𝑩. (4.10)

This spanwise-homogeneous formulation is also referred to as BiGlobal (Theofilis,
2011) stability (Eq. 4.9) and resolvent (Eq. 4.10) analysis. As mentioned in the
previous section, the key to an efficient solution of either the stability or resolvent
method is for the corresponding 𝑴 and 𝑨 matrices to be as sparse and structured as
possible, such that modern multifrontal LU solvers achieve their best performance.
Unfortunately, a direct linearization of the IBLGF-AMR solver will result in dense
matrices, since the LGF represents a nonlocal operator. We pursue here an alter-
native strategy of using the LGF to form boundary conditions so that the forward
Laplacian appears in the operators instead of the LGF.

4.3 Derivation and discretization of governing equations
The Navier-Stokes equations with immersed boundary forcing are

𝜕𝒖

𝜕𝑡
+ 𝝎 × 𝒖 = −∇𝑝 − 1

Re
∇ × 𝝎 +

∫
Γ

𝒇 Γ (𝝃, 𝑡)𝛿(𝑿 (𝝃) − 𝒙)𝑑𝝃

∇.𝒖 = 0

𝒖Γ (𝝃, 𝑡) =
∫
R3

𝒖(𝒙, 𝑡)𝛿(𝒙 − 𝑿 (𝝃))𝑑𝒙.

(4.11)

where
𝝎 = ∇ × 𝒖, (4.12)

and the immersed boundary Γ is parameterized by 𝜉. 𝑋 (·) is that parametrization
function to describe the immersed boundary from the parametrizing variable 𝜉. 𝒖Γ
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is the boundary conditions that need to be satisfied on the boundary Γ, and 𝒇 Γ
is the immersed boundary forcing induced by enforcing the boundary conditions.
𝛿(·) represents the Dirac delta distribution and is used here to enforce boundary
conditions and to represent the effect of immersed boundary forcings on the flow
field. Using the immersed boundary, we are able to conduct flow analysis around
arbitrary geometries without changing the underlying discretization.

For a time-invariant solution, 𝒖𝑠 (𝑥, 𝑦) and 𝑝𝑠 (𝑥, 𝑦) the linearization of Eq. 4.11
around this flow is

𝜕𝒖

𝜕𝑡
+ 𝝎 × 𝒖𝑠 + 𝝎𝑠 × 𝒖 = −∇𝑝 − 1

Re
∇ × 𝝎 +

∫
Γ

𝒇 Γ (𝝃)𝛿(𝑿 (𝝃) − 𝒙)𝑑𝝃

∇ · 𝒖 = 0

0 =

∫
R3

𝒖(𝒙, 𝑡)𝛿(𝒙 − 𝑿 (𝝃))𝑑𝒙

(4.13)

Due to the homogeneity of the base flow and the immersed body, the governing
equations can be Fourier expanded in the homogeneous direction. By doing so,
we obtain a set of linear evolution equations for the Fourier coefficients of the state
variables, i.e. 𝒖 and 𝑝. Then for the 𝑘 𝑡ℎ Fourier coefficient (𝒖̃𝑘 and 𝑝𝑘 ), the
equations is

𝜕𝒖̃𝑘
𝜕𝑡

+ 𝝎̃𝑘 × 𝒖𝑠 + 𝝎𝑠 × 𝒖̃𝑘 = −∇̃𝑘 𝑝𝑘 −
1

Re
∇̃𝑘 × 𝝎̃𝑘

+
∫
Γ2𝐷

𝒇̃ Γ,𝑘 (𝝃2𝐷)𝛿2𝐷 (𝑿2𝐷 (𝝃2𝐷) − 𝒙2𝐷)𝑑𝝃2𝐷

∇̃𝑘 · 𝒖̃𝑘 = 0

0 =

∫
R2

𝒖̃𝑘 (𝒙2𝐷 , 𝑡)𝛿2𝐷 (𝒙2𝐷 − 𝑿2𝐷 (𝝃2𝐷))𝑑𝒙2𝐷

(4.14)

where
∇̃𝑘 = [ 𝜕

𝜕𝑥
,
𝜕

𝜕𝑦
, 𝑖2𝜋𝑘]𝑇 , (4.15)

𝝎̃𝑘 = ∇̃𝑘 × 𝒖̃𝑘 . (4.16)

4.3.1 Discretization
Since the evolution equations of the Fourier coefficients are decoupled, they are
inherently 2D. Thus, we design a compatible 2D discretization scheme to solve
these equations. The placement of variables in a Cartesian grid cell is shown in
Figure 4.1. We define discrete operators as the following:
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Figure 4.1: Variable placement of one cell in 𝑘 𝑡ℎ Fourier interpolation sampling
point.

• Divergence on 𝑘 𝑡ℎ Fourier coefficient

𝑫𝑘 𝒈 = D𝑥𝑔1 + D𝑦𝑔2 + (2𝜋𝑖𝑘/𝑐)𝑔3, (4.17)

• Gradient on 𝑘 𝑡ℎ Fourier coefficient

𝑮𝑘𝑔 = [−D𝑇
𝑥 𝑔,−D𝑇

𝑦 𝑔, (2𝜋𝑖𝑘/𝑐)𝑔]𝑇 , (4.18)

• Curl on 𝑘 𝑡ℎ Fourier coefficient

𝑪𝑘 𝒈 = [D𝑦𝑔3 − (2𝜋𝑖𝑘/𝑐)𝑔2, (2𝜋𝑖𝑘/𝑐)𝑔1 − D𝑥𝑔3, 𝐷𝑥𝑔2 − D𝑦𝑔1]𝑇 , (4.19)

• Laplacian on 𝑘 𝑡ℎ Fourier coefficient

𝑳𝑘𝑔 = −D𝑇
𝑥 D𝑥𝑔 − D𝑇

𝑦D𝑦𝑔 − (2𝜋𝑘/𝑐)2𝑔, (4.20)

Here, the boldfaced variables, e.g. 𝒈 = [𝑔1, 𝑔2, 𝑔3]𝑇 , to denote a 3-component
vector field and non-boldfaced variables, e.g. 𝑔, to denote a scalar field. D
denotes the finite difference derivative and the subscript denotes the direction that
the derivative is taken. For example, D𝑥𝑔(𝑖, 𝑗) = [𝑔(𝑖 + 1, 𝑗) − 𝑔(𝑖, 𝑗)]/Δ𝑥. The
resulting discretized version of linearized Navier-Stokes equation is

𝑑𝒖̃𝑘
𝑑𝑡

+ 𝝎̃𝑘 × 𝒖𝑠 + 𝝎𝑠 × 𝒖̃𝑘 = −𝑮𝑘 𝑝𝑘 −
1

Re
𝑪∗
𝑘𝝎̃𝑘 + 𝑷𝑇 𝒇̃ Γ,𝑘

𝑫𝑘 𝒖̃𝑘 = 0

𝑷𝒖̃𝑘 = 0

𝑪𝑘 𝒖̃𝑘 = 𝝎̃𝑘

(4.21)
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where 𝑷 is the projection operator from the entire computational domain to the set
of IB points. Thus, in matrix form, we can write

𝑑

𝑑𝑡


𝑰 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0



𝒖̃𝑘

𝑝𝑘

𝝎̃𝑘

𝑓𝑘


=


−(𝝎𝑠×) −𝑮𝑘 − 1

Re𝑪
𝑇
𝑘 + 𝒖𝑠× 𝑷𝑇

𝑫𝑘 0 0 0
𝑪𝑘 0 −𝑰 0
𝑷 0 0 0



𝒖̃𝑘

𝑝𝑘

𝝎̃𝑘

𝑓𝑘


(4.22)

or in a more compact form

𝑴
𝑑𝒒𝑘
𝑑𝑡

= 𝑨𝑘𝒒𝑘 , (4.23)

where

𝒒𝑘 =


𝒖̃𝑘

𝑝𝑘

𝝎̃𝑘

𝑓𝑘


(4.24)

𝑴 =


𝑰 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


(4.25)

and

𝑨𝑘 =


−(𝝎𝑠×) −𝑮𝑘 − 1

Re𝑪
∗
𝑘 + 𝒖𝑠× 𝑷𝑇

𝑫𝑘 0 0 0
𝑪𝑘 0 −𝑰 0
𝑷 0 0 0


. (4.26)

4.3.2 Multi-resolution considerations
To construct the above operators on a multi-resolution mesh, we use the same
technique employed by Yu (2021). We briefly summarize this approach.

Suppose we have a series of Cartesian grids with different resolutions {R𝑖}, 𝑖 ∈
Z ∩ [0, 𝑁𝑙] containing 𝑁𝑙 + 1 increasingly refined unbounded meshes. 𝑖 refers to
the refinement level. R0 has the coarsest spatial resolution, denoted as Δ𝑥0. Then,
R𝑘 has spatial resolution of Δ𝑥𝑘 = Δ𝑥0/2𝑘 . Then we define a partition of R2 using
𝑁𝑙 + 1 disjoint domains, denoted as {Ω𝑖}, 𝑖 ∈ Z ∩ [0, 𝑁𝑙]. Each Ω𝑖 denotes the
active region in which operators on R𝑖 are active. This procedure is defined using
the indicator functional ΓΩ𝑖

defined as

(ΓΩ𝑖
𝑓 ) (𝒙) =


𝑓 (𝒙) 𝒙 ∈ Ω𝑖

0 𝒙 ∉ Ω𝑖

. (4.27)
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Then if 𝑨𝑖 is the a linear operator defined on mesh R𝑖, the multi-resolution version
of this operator is defined as

𝑨 =

𝑁𝑙∑︁
𝑖=0

ΓΩ𝑖
𝑨𝑖 (4.28)

and the active AMR grid is defined as

R𝐴𝑀𝑅 =

𝑁𝑙⋃
𝑖=0

R𝑖 ∩Ω𝑖 . (4.29)

Then, for each point in R𝑖\Ω𝑖 ∀𝑖, the value can be obtained using interpolation. In
our approach, coarse-to-fine mapping is via the 5th-order Lagrange interpolation,
and fine-to-coarse mapping is via cell-centered averaging, which is equivalent to
linear interpolation in our case. Thus, the values of the state vector that we need to
keep are values associated with grid points in R𝐴𝑀𝑅 and those immediately next to
R𝐴𝑀𝑅. To facilitate discussion in the next section, we use 𝑷→0 to denote the series
of averaging operations to obtain values on all of R0

4.3.3 Compactness assumptions and boundary conditions
Operators and algorithms defined above are valid for unbounded computational
meshes. To restrict our computational mesh to a finite one, our algorithm assumes
that the vorticity field is compactly supported in a domain Ω. In practice, we
designate a cut-off magnitude for vorticity and only retain the part of the domain with
a vorticity magnitude higher than this value. The consequences of this truncation
have been assessed in detail by Liska and Colonius (2017), and it is possible to define
thresholds that have a minor impact on the flow while, at the same time, resulting
in snug computational domains. Combined with our formulation of linearized
Navier-Stokes equations, we have the following compactness assumption

|𝝎𝑠 (𝒙) | = |𝝎̃𝑘 (𝒙) | = 0 if 𝒙 ∉ Ω. (4.30)

Thus, we only need to pose a boundary condition on 𝒖̃𝑘 and 𝑝𝑘 . We obtain the
boundary condition of 𝒖̃𝑘 by solving

−𝑳𝑘 𝒔̃𝑘 = 𝝎̃𝑘 , 𝒖̃𝑘 = 𝑪∗
𝑘 𝒔̃𝑘 , (4.31)

and the boundary condition of 𝑝𝑘 by solving

−𝑳𝑘 𝑝𝑘 = 𝑫𝑘 (𝝎̃𝑘 × 𝒖̃𝑘 ). (4.32)
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To solve these, we use Lattice Green’s Function (LGF) to obtain the boundary
condition. Specifically, the LGF (𝑳−1

𝑘
) is the analytical inverse of the 𝑳𝑘 operator

in free space. It is defined as the following in the unbounded domain

𝑳𝑘𝑢 = 𝑓 ⇒ 𝑢 = 𝑳−1
𝑘 𝑓 . (4.33)

Here 𝑳−1
𝑘

is a discrete convolution operator and each entry in its kernel can be
computed using a 1-D integral. We will not explain the specific derivations in detail
but refer readers to (Buneman, 1971; Martinsson and Rodin, 2002).

4.3.4 Applying boundary condition through one-side fast multipole method
(O-FMM)

Since the operator 𝑳−1
𝑘

is a discrete convolution operator, it is a dense operator if
applied directly. In numerical simulations, we can use FFT-based convolution and
fast multipole method (FMM) to apply this operator in linear time (Ying, Biros, and
Zorin, 2004; Liska and Colonius, 2014; Liska and Colonius, 2017). However, in the
context of the stability and resolvent analysis, we need to explicitly construct this
operator. Thus, FFT becomes infeasible. Instead, we can adapt FMM to sparsify
this operator.

4.3.4.1 Interpolation-based kernel independent fast multipole method

In this section, we briefly introduce the FMM method created by Liska and Colonius
((Liska and Colonius, 2014)), which we later adapt to sparsify the LGF operator.

Suppose we have a kernel 𝐾 (𝑥, 𝑦) and would like to apply it on a discrete source
field 𝑓 in some domain Ω. Directly convolution gives the following

𝑢(𝑥𝑖) =
∑︁
𝑦 𝑗∈Ω

𝐾 (𝑥𝑖, 𝑦 𝑗 ) 𝑓 (𝑦 𝑗 ). (4.34)

Applying this formula to all points in Ω yields 𝑂 (𝑁2) complexity, given 𝑁 as the
number of points in Ω.

Now, suppose we have a set of interpolation functions [𝜙]

[𝜙] = [𝜙0, 𝜙1, ..., 𝜙𝑛−1], (4.35)

then we can approximate 𝐾 (𝑥, 𝑦) using the following

𝐾 (𝑥, 𝑦) ≈ 𝐾𝑛 (𝑥, 𝑦) =
𝑛−1∑︁
𝑖=0

𝑛−1∑︁
𝑗=0

𝜙𝑖 (𝑥)𝐾 (𝑥𝑖, 𝑦 𝑗 )𝜙 𝑗 (𝑦). (4.36)
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Using this formula, a possibly infinite-dimensional kernel 𝐾 (𝑥, 𝑦) is approximated,
or "compressed", using a set of finite sampling points: {𝐾 (𝑥𝑖, 𝑦 𝑗 ) | 𝑖, 𝑗 ∈ [0, 𝑛 −
1] ∩ Z}. This step is termed "kernel compression". Plugging in this approximation
to the direction convolution formula gives

𝑢(𝑥𝑖) =
∑︁
𝑦 𝑗∈Ω

𝐾 (𝑥𝑖, 𝑦 𝑗 ) 𝑓 (𝑦 𝑗 )

≈
∑︁
𝑦 𝑗∈Ω

𝐾𝑛 (𝑥𝑖, 𝑦 𝑗 ) 𝑓 (𝑦 𝑗 )

=
∑︁
𝑦 𝑗∈Ω

𝑛−1∑︁
𝑙=0

𝑛−1∑︁
𝑘=0

𝜙𝑙 (𝑥𝑖)𝐾 (𝑥𝑙 , 𝑦𝑘 )𝜙𝑘 (𝑦 𝑗 ) 𝑓 (𝑦 𝑗 ).

(4.37)

Use this formula, we can simplify the application of 𝐾 (𝑥, 𝑦) using the following
procedure

• Compute effective source distribution

𝑓 (𝑦𝑘 ) =
∑︁
𝑦 𝑗∈Ω

𝜙𝑘 (𝑦 𝑗 ) 𝑓 (𝑦 𝑗 ), (4.38)

• Apply compressed kernel

𝑢̃(𝑥𝑙) =
𝑛−1∑︁
𝑘=0

𝐾 (𝑥𝑙 , 𝑦𝑘 ) 𝑓 (𝑦𝑘 ), (4.39)

• Interpolate to get the solution

𝑢(𝑥𝑖) ≈
𝑛−1∑︁
𝑙=0

𝜙𝑙 (𝑥𝑖)𝑢̃(𝑥𝑙). (4.40)

We can use this formula to approximate the application of LGF by partitioning the
domain into smaller blocks and applying the above formula recursively for blocks
with different distances. Specifically, a tree structure is used by Liska and Colonius
(2014) and its multi-resolution counterpart by Dorschner et al. (2020). Using the
tree structure with 𝑙𝑚𝑎𝑥 +1 levels, ranging from level −𝑙𝑚𝑎𝑥 to 0, Liska and Colonius
(2014) proposed the following procedure:

• Upward pass
Recursively computing, from level 0 to level−𝑙𝑚𝑎𝑥 , 𝑓𝑙 (𝑦𝑘 ) =

∑
𝑦 𝑗∈Ω

𝜙𝑘 (𝑦 𝑗 ) 𝑓𝑙+1(𝑦 𝑗 )

with 𝑓0(𝑦𝑘 ) = 𝑓 (𝑦𝑘 ),
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• Level interaction
On each level, applying 𝑢̃𝑙 (𝑥𝑚) =

∑
𝑦𝑘∈S0 (𝑥𝑚,𝑙)

𝐾 (𝑥𝑚, 𝑦𝑘 ) 𝑓𝑙 (𝑦𝑘 ),

• Downward pass
Interpolating and accumulating to get results, from level −𝑙𝑚𝑎𝑥 to level 0,

𝑢𝑙 (𝑥𝑖) ≈ 𝑢̃𝑙 (𝑥𝑖) +
𝑛−1∑
𝑘=0

𝜙𝑘 (𝑥𝑖)𝑢𝑙+1(𝑥𝑘 ).

where S0(𝑥𝑚, 𝑙) is the set of source points to be applied on level 𝑙 to point 𝑥𝑚
according to the tree structure.

4.3.4.2 One-side FMM

In our case, however, we do not need to obtain the solution everywhere in the domain.
Instead, only the values on the boundary are needed. That means we can modify the
above procedure to obtain the boundary conditions more efficiently and accurately.
Specifically, we compress the kernel using only one set of interpolations, i.e.

𝐾 (𝑥, 𝑦) ≈ 𝐾̃𝑛 (𝑥, 𝑦) =
𝑛−1∑︁
𝑗=0
𝐾 (𝑥, 𝑦 𝑗 )𝜙 𝑗 (𝑦). (4.41)

Then the solution at an arbitrary point, 𝑥𝑖, (retaining the same notation as the previous
section) is

𝑢(𝑥𝑖) =
∑︁
𝑦 𝑗∈Ω

𝐾 (𝑥𝑖, 𝑦 𝑗 ) 𝑓 (𝑦 𝑗 ) ≈
∑︁
𝑦 𝑗∈Ω

𝐾̃𝑛 (𝑥𝑖, 𝑦 𝑗 ) 𝑓 (𝑦 𝑗 ) =
∑︁
𝑦 𝑗∈Ω

𝑛−1∑︁
𝑘=0

𝐾 (𝑥𝑖, 𝑦𝑘 )𝜙𝑘 (𝑦 𝑗 ) 𝑓 (𝑦 𝑗 ).

(4.42)
Similar to the FMM method used by Liska and Colonius (2014), a tree structure is
also used to compute the coarse representations of the source field. The difference
is that we no longer need to compute the downward pass. Instead, we compute
the direct interaction between source points on each level in the tree and the target
points on the boundary. So the procedure becomes

• Upward pass
Recursively computing 𝑓𝑙 (𝑦𝑘 ) =

∑
𝑦 𝑗∈Ω

𝜙𝑘 (𝑦 𝑗 ) 𝑓𝑙+1(𝑦 𝑗 ) with 𝑓0(𝑦𝑘 ) = 𝑓 (𝑦𝑘 ),

• Inter-level interaction
On level 0, applying 𝑢(𝑥𝑖) ≈

−𝑙𝑚𝑎𝑥∑
𝑙=0

∑
𝑦𝑘∈S(𝑥𝑖 ,𝑙)

𝐾 (𝑥𝑖, 𝑦𝑘 ) 𝑓𝑙 (𝑦𝑘 ),
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where S(𝑥𝑖, 𝑙) is the set of source points to be applied on level 𝑙 to point 𝑥𝑖 according
to the tree structure Then, we can integrate this into a matrix form using a set of
constraining operators

0

0

...

0

0

0



=



Φ𝑇 −𝑰 0 ... 0 0 0

0 Φ𝑇 −𝑰 ... 0 0 0

... ... ... ... ... ... ...

0 0 0 ... −𝑰 0 0

0 0 0 ... Φ𝑇 −𝑰 0

𝑨0 𝑨−1 𝑨−2 ... 𝑨−𝑙𝑚𝑎𝑥+1 𝑨−𝑙𝑚𝑎𝑥
−𝑰





𝑓0

𝑓−1

𝑓−2

...

𝑓−𝑙+1

𝑓−𝑙

𝑢𝐵𝐶


, (4.43)

where Φ is the matrix representation of the interpolation operators, and 𝐴𝑙 is the
operator to apply the compressed kernel on level 𝑙. Together, we can write the entire
linearized and discretized Navier-Stokes equations as

𝑑
𝑑𝑡



𝒖̃𝑘

0
0
0
0
0
0
0
0
0



=



−(𝝎𝑠×) −𝑮𝑘 − 1
Re𝑪

∗
𝑘 + 𝒖𝑠× 𝑷𝑇 0 0 𝑴1 0 0 𝑴2

𝑫𝑘 0 0 0 0 0 0 0 0 𝑫𝑘,𝐵𝐶

𝑪𝑘 0 −𝑰 0 0 0 0 0 0 𝑪𝑘,𝐵𝐶

𝑷 0 0 0 0 0 0 0 0 0
−𝑷→0𝑫𝑘 (𝝎𝑠×) 0 𝑷→0𝑫𝑘 (𝒖𝑠×) 0 −𝑰 0 0 0 0 0

0 0 0 0 Φ𝑇
𝑒 𝑻𝑴 0 0 0 0

0 0 0 0 −𝑳−1
0 −𝑳−1

𝑐 −𝑰 0 0 0
0 0 𝑷→0 0 0 0 0 −𝑰 0 0
0 0 0 0 0 0 0 Φ𝑇

𝑒 𝑻𝑴 0
0 0 0 0 0 0 0 −𝑪∗

𝑘𝑳
−1
0 −𝑪∗

𝑘𝑳
−1
𝑐 −𝑰





𝒖̃𝑘

𝑝𝑘

𝝎̃𝑘

𝑓𝑘

𝑔̃0

𝑔̃𝑐

𝑝𝐵𝐶

𝑚̃0

𝑚̃𝑐

𝑢𝐵𝐶


(4.44)

where
Φ𝑇
𝑒 = [Φ, 0, ..., 0]𝑇 (4.45)

,

𝑻𝑴 =



Φ𝑇 −𝑰 0 ... 0 0
0 Φ𝑇 −𝑰 ... 0 0
... ... ... ... ... ...

0 0 0 ... −𝑰 0
0 0 0 ... Φ𝑇 −𝑰


, (4.46)

and 𝑴1, 𝑴2, 𝑫𝑘,𝐵𝐶 , 𝑪𝑘,𝐵𝐶 are appropriate boundary condition matrices. 𝑳−1
𝑐 is the

matrix arising from applying LGF using One-side FMM. Explicitly, it is written as

𝑳−1
𝑐 = [𝑳−1

−1, ..., 𝑳
−1
−𝑙𝑚𝑎𝑥

] . (4.47)
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With these sparse matrices, we can readily conduct stability and resolvent analysis.
We will present some validating results using this formulation in the subsequent
sections.

4.3.4.3 A note on scalability

The aforementioned LNSE operator can be partitioned using the block-structured
mesh employed by Yu (2021). Thus, the construction of LNSE operator and subse-
quent operations on this operator (e.g. LU decomposition, eigenvalue computations)
can be parallelized according to the same block structure and are compatible with
existing parallel solvers such as MUMPS (Amestoy et al., 2001) and SLEPc (Her-
nandez, Roman, and Vidal, 2005). Thus, the scalability of the algorithms associated
with the aforementioned LNSE operator is implied.

4.4 Results
4.4.1 Flow past a rotating cylinder
In this section, we validate our method by conducting the stability analysis of the flow
past a rotating cylinder. The stability of this particular type of flow has been studied
both experimentally (Barnes, 2000) and numerically (Stojković, Breuer, and Durst,
2002; Pralits, Giannetti, and Brandt, 2013). Here, we define a non-dimensional
rotation rate as

𝛼 =
Ω𝐷

2𝑈∞
, (4.48)

and a non-dimensionalized span-wise wavenumber

𝜆 =
2𝜋𝑘
𝑐
. (4.49)

As shown by Pralits, Giannetti, and Brandt (2013), the rotational motion of the
cylinder has a stabilizing effect. However, as the rotational rate further increases,
unstable modes emerge again. To validate our solver, we choose two cases as detailed
below.

We first apply our linear stability solver to the case of 𝑅𝑒 = 40, 𝛼 = 5.5. For these
conditions, according to the study of Pralits, Giannetti, and Brandt (2013), there
are no 2D unstable modes but only 3D unstable modes. In this case, we used the
computational mesh shown in Figure 4.2a and the 2D fixed point base flow shown
in Figure 4.2b. Using our 3D stability analysis solver, we find an unstable mode at
𝜆 = 1.0, and the corresponding unstable mode is shown in Figure 4.3.
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(a) Mesh topology of the case at 𝑅𝑒 = 40, 𝛼 = 5.5, 𝜆 = 1.0

(b) Spanwise vorticity distribution of the fixed point at 𝑅𝑒 = 40, 𝛼 = 5.5, 𝜆 = 1.0

Figure 4.2: Fixed point and mesh topology used to conduct stability analysis for the
case of 𝑅𝑒 = 40, 𝛼 = 5.5, 𝜆 = 1.0.

Then, we apply our algorithm to the case of 𝑅𝑒 = 100, 𝛼 = 1.0. As shown by
Pralits, Giannetti, and Brandt (2013), although the most unstable mode appears at
𝜆 = 0, i.e. a 2D mode, there is a spectrum of less unstable 3D modes. The largest
𝜆 with an unstable 3D mode appears near 𝜆 = 0.92. We used the computational
mesh shown in Figure 4.4a and the fixed point shown in Figure 4.4b to compute
the marginally stable mode shown at 𝜆 = 0.915. The vorticity components of this
marginally stable mode are shown in Figure 4.5.

By conducting the stability analyses of the flow past a rotating cylinder at two
different configurations, we demonstrated the validity of our formulation of LNSE
and the O-FMM approximation on the boundary conditions.
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(a) Streamwise vorticity distribution 𝜔𝑥 .

(b) Transverse vorticity distribution 𝜔𝑦 .

(c) Transverse vorticity distribution 𝜔𝑧 .

Figure 4.3: Vorticity distribution of the most unstable mode at 𝑅𝑒 = 40, 𝛼 =

5.5, 𝜆 = 1.0.
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(a) Mesh topology of the case at 𝑅𝑒 = 100, 𝛼 = 1.0, 𝜆 = 0.915

(b) Spanwise vorticity distribution of the fixed point at 𝑅𝑒 = 100, 𝛼 = 1.0, 𝜆 = 0.915

Figure 4.4: Fixed point and mesh topology used to conduct stability analysis for the
case of 𝑅𝑒 = 100, 𝛼 = 1.0, 𝜆 = 0.915.

4.4.2 Resolvent analysis
Even in linearly stable flows, disturbances can be amplified by transient growth. Such
transient growth is due to the non-normality of the LNSE. In these scenarios, we
can use resolvent analysis to identify the linear amplification mechanisms to deduce
the instability mechanisms (Trefethen, Trefethen, et al., 1993). For unsteady flows,
resolvent analysis around mean flows can be used to construct lower dimensional
models that faithfully replicate the full flow dynamics (Symon, 2018). In this section,
we demonstrate that the LNSE operator, induced from IBLGF-AMR and detailed
in previous sections, can be used to conduct resolvent analysis. In particular, we
estimated the resolvent norm and computed the most energetic resolvent mode for
the flow past a cylinder at 𝑅𝑒 = 100.
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(a) Streamwise vorticity distribution 𝜔𝑥 .

(b) Transverse vorticity distribution 𝜔𝑦 .

(c) Spanwise vorticity distribution 𝜔𝑧 .

Figure 4.5: Vorticity distribution of the most unstable mode at 𝑅𝑒 = 100, 𝛼 =

1.0, 𝜆 = 0.915.

First, we conducted the same resolvent analysis calculation on two different meshes
(shown in Figure 4.6) to demonstrate that the resolvent calculation is independent
of mesh topology. The resulting resolvent norms are shown in Figure 4.7. The
figure shows that two meshes produce identical resolvent norms across a range
of frequencies 𝜔, demonstrating that the resolvent analysis calculation is mesh
independent.

Next, we simulated this particular flow for 375 convective time units (375𝑡𝑈∞/𝑐)
and used the flow data of the last 68 convective time units to construct a time average
mean flow, i.e. 𝒒̄ in Eq. 4.6. We constructed the linearized Navier-Stokes operator
around that mean flow (𝑨(𝒒̄)) and computed the resolvent norm over a range of
frequencies from 𝜔 = 0.5 to 𝜔 = 1.5. The resulting resolvent norm is shown in
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(a) Mesh 1 used to conduct resolvent analysis

(b) Mesh 2 used to conduct resolvent analysis

Figure 4.6: Two different meshes used to show the independence of mesh topology.
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Figure 4.7: Comparison of the resolvent norm between two meshes.

Fig 4.8. In this plot, the resolvent norm peaks at 𝜔 = 1.0452, which is consistent
with the observations of a previous study on the same flow (Symon, 2018). In
addition, we also display the velocity of the most energetic mode obtained from
the resolvent analysis. The streamwise component of the forcing mode is shown
in Figure 4.9, and the streamwise component of the response mode is shown in
Figure 4.10. The mode shapes are consistent with the ones found by Jin et al. (Jin,
Symon, and Illingworth, 2021).

4.4.3 Stability of the flow past a cylinder with a control cylinder in the wake
Strykowski and Sreenivasan (1990) showed that by placing a small cylinder (called
the control cylinder) behind the main cylinder, vortex shedding can be suppressed.
The stabilization associated with the control cylinder was explained by Giannetti
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Figure 4.8: Resolvent norm | |𝑅(𝜔) | | of flow past a circle at Re = 100 over a range
of 𝜔 from 0.0 to 1.5

Figure 4.9: Streamwise component of optimal forcing mode at 𝜔 = 1.0452

Figure 4.10: Streamwise component of optimal response mode at 𝜔 = 1.0452

and Luchini (2007) by introducing the concept of structural sensitivity, i.e. finding
those points in the flow where the eigenvalues are most sensitive to perturbations.
In our case, we compute the stability of the flow, including the control cylinder
directly, as a numerical challenge for our solver.

The main computational challenge, in this case, is that there is a wide range of
length scales (the main cylinder’s diameter, 𝐷, and the control cylinder’s diameter,
𝑑, differ by a factor of 10). An AMR grid resolving both cylinders is obtained
by starting with a uniform resolution base mesh with Δ𝑥𝑏𝑎𝑠𝑒 = 0.04𝐷. The base
mesh is then increasingly and adaptively refined (by factors of 2) based on flow
simulations. We find good convergence with three levels of refinement, yielding the
finest resolution as Δ𝑥 𝑓 𝑖𝑛𝑒 = 0.005𝐷. The equilibrium solution and AMR grid for
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Figure 4.11: Base flow for flow past two cylinders used in the structural stability
analysis. The main cylinder (large black circle) is centered around the origin, and the
control cylinder (small black circle) is centered around 𝑥𝑐/𝐷 = 1.2, and 𝑦𝑐/𝐷 = 0.7
with 𝑑/𝐷 = 0.1. The flow around the control cylinder is magnified.

Figure 4.12: Computational mesh for the stability analysis of the flow past a cylinder
with a control cylinder in the wake.

one of the configurations we study (𝑥𝑐/𝐷 = 1.2, 𝑦𝑐/𝐷 = 0.7, 𝑅𝑒 = 63) are shown
in Figs. 4.11 and 4.12, respectively.

The resulting matrix form of LNSE has dimension 3× 106 by 3× 106. We compute
the equilibrium using Newton iteration and the eigenvalues using an Arnoldi-type
method from SLEPc library (Hernandez, Roman, and Vidal, 2005) coupled with
MUMPS solver (Amestoy et al., 2001). For each case, the entire process took around
5 hours using a total of 96 cores. We also give the example of an unstable mode
found given 𝑥𝑐/𝐷 = 1.2, 𝑦𝑐/𝐷 = 0.7, and 𝑅𝑒 = 63 (Figure 4.13). The vortical
structures downstream of the cylinders illustrate the importance of using LGF to
create a compact domain to conduct the linear stability analysis.

We apply our linear stability solver to compute the eigenvalue spectra associated
with a variety of control cylinder positions. Specifically, we fix 𝑅𝑒 = 63 and the
x-coordinate of the center of the control cylinder at 𝑥𝑐 = 1.2𝐷 and vary the y-
coordinate, 𝑦𝑐, from 0.5𝐷 to 1.0𝐷 with 0.1𝐷 increments. The resulting eigenvalue
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Figure 4.13: Unstable mode computed using the linear stability analysis.
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Figure 4.14: Distribution of eigenvalues of LNSE for various control cylinder
locations at 𝑥𝑐 = 1.2𝐷 and 𝑦𝑐 ∈ {0.5𝐷, 0.6𝐷, 0.7𝐷, 0.8𝐷, 0.9𝐷, 𝐷}. Because the
LNSE is a purely real system in this case and all eigenvalues will appear in complex
conjugate pairs, we only show the eigenvalues with positive imaginary parts.

spectra are shown in Figure 4.14. In this figure, the vertical axis is the real part of
the eigenvalues, indicating how fast a particular perturbation (i.e. a particular eigen-
vector) grows or decays. A positive real part indicates a growing perturbation, thus
an unstable equilibrium. If, on the contrary, all eigenvalues have negative real parts
for a particular equilibrium, all the perturbations will decay, and that equilibrium
is stable. From the eigenvalue spectra, we see that for 𝑦𝑐 ∈ {0.5𝐷, 0.6𝐷, 0.7𝐷},
eigenvalues with positive real parts exist, and the equilibria in those cases are not
stable, thus resulting in vortex shedding. In contrast, at 𝑦𝑐 ∈ {0.8𝐷, 0.9𝐷, 𝐷}, all
eigenvalues have negative real parts, indicating stable equilibria, and thus, the vortex
shedding is suppressed in those cases. The stability properties of those flows are
corroborated by interpolating the results from Strykowski and Sreenivasan (1990).
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Figure 4.15: Comparison of flow perturbation growth rates between estimates
from linear stability analysis and those from experimental data (Strykowski and
Sreenivasan, 1990) for 𝑅𝑒 = 63, fixed streamwise location of the control cylinder
𝑥𝑐/𝐷 = 1.2, and varying horizontal location of the control cylinder. The growth
rates obtained from linear stability analysis agree with the experimentally measured
values.

According to their experimental measurements, at 𝑅𝑒 = 63 with the control cylinder
positioned at 𝑥𝑐 = 1.2𝐷, 𝑦𝑐 = 0.75𝐷, the flow is marginally stable. Moving the
control cylinder up will stabilize the flow and suppress the vortex shedding while
moving the control cylinder down will have the opposite effect. This dichotomy of
the stabilizing and destabilizing effects from the horizontal locations of the control
cylinder confirms the results of our linear stability analysis.

For a specific equilibrium, the growth rate of flow perturbations can be estimated
by the largest real part among all the real parts of eigenvalues associated with that
equilibrium. To compare our growth rate estimates with the experimental results
of Strykowski and Sreenivasan (1990), we non-dimensionalize all the eigenvalues
with 𝐷2/𝜈 and overlay the estimates of flow perturbation growth rates obtained from
our linear stability analysis to those obtained from the experimental measurements
(Strykowski and Sreenivasan, 1990) in Figure 4.15. This figure shows that the
estimated flow perturbation growth rates from the stability analyses agree with
those obtained from experimental measurements. Thus, the eigenvalues from linear
stability analysis accurately estimate the flow perturbation growth rates.

By investigating the relationship between the position of the control cylinder and the
onset of vortex shedding, this specific computational study highlights the efficiency
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of the AMR components in this algorithm when analyzing flows with a wide range
of scales and also the necessity of using LGF to obtain a compact computational
domain while maintaining accurate boundary conditions.

4.5 Conclusions
In this chapter, we introduced a fast algorithm for stability and resolvent analysis by
combining LGF, AMR, and FMM. This method conducts flow analysis by explicitly
constructing the spatially discretized linearized Navier-Stokes operator as a sparse
matrix. Using LGF, we were able to conduct such flow analysis on an infinite
domain while using a finite computational mesh; using FMM, we sparsified the
dense block of the LGF operator; using AMR, we can resolve all relevant scales
while maintaining computational efficiency.

To verify our algorithm, we investigated the stability of the flow past a rotating
cylinder. We were able to replicate results from the literature, namely one marginally
stable mode and one unstable mode in different flow configurations. We also
presented 2D resolvent analysis results for flow past a circle at Re = 100. The
corresponding resolvent norm, optimal input mode, and optimal response mode are
consistent with previous studies (Symon, 2018; Jin, Symon, and Illingworth, 2021).
Furthermore, we examined the suppression of vortex shedding on a cylinder via
the placement of a small control cylinder in its wake. We accurately resolved all
length scales posed by the problem and computed the growth rates that matched the
experimental measurements (Strykowski and Sreenivasan, 1990). The successful
application of IBLGF-AMR and O-FMM to stability and resolvent analysis yields
an efficient and scalable algorithm for flow analysis and opens up the possibility for
future work with more complex flows.
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C h a p t e r 5

THE STARTING VORTICES GENERATED BY BODIES WITH
SHARP AND STRAIGHT EDGES IN A VISCOUS FLUID

This chapter is adapted from Sader et al. (2024). This is the first application of the
algorithm presented in Chapter 3. In this chapter, we use the numerical simulations
to validate the starting vortex theorem proposed by Pullin and Sader (2021).

5.1 Introduction
The flow generated by a thin airfoil that suddenly moves at finite angle-of-attack
has been widely studied over the last century (Prandtl, 1924; Wagner, 1924; Kaden,
1931; Anton, 1939; Anton, 1956; Rott, 1956; Wedemeyer, 1961; Blendermann,
1967; Pullin, 1978). A key characteristic of this flow is the generation of a ‘starting
vortex’ that is localized to the sharp trailing edge of the airfoil, immediately after
the plate starts to move. Proximity to the trailing edge causes the starting vortex
to exhibit self-similar behavior in time. This property has been utilized in its
calculation, based on inviscid theory, leading to the widely recognized rolled-up
vortex that moves approximately normal to the airfoil for small time (Kaden, 1931;
Anton, 1956; Pullin, 1978). This starting vortex has been confirmed using direct
numerical simulations (DNS) of the Navier-Stokes equations (Koumoutsakos and
Shiels, 1996; Krasny, 1991; Luchini and Tognaccini, 2002; Jones, 2003; Eldredge,
2007; Michelin and Llewellyn Smith, 2009; Nitsche and Xu, 2014; Xu and Nitsche,
2015; Luchini and Tognaccini, 2017; Xu, Nitsche, and Krasny, 2017) and physical
experiments (Pierce, 1961; Pullin and Perry, 1980; Auerbach, 1987).

Pullin and Sader (2021), henceforth denoted PS21, recently calculated the starting
vortex generated at the trailing edge of a flat plate that suddenly, and simultaneously,
translates and rotates; see Figure 5.1(a). This was achieved using an inviscid vortex
sheet formulation that invokes the Kutta condition at its trailing edge. The motion
of the flat plate was specified by two independent power-laws in time, 𝑚 and 𝑝, such
that,

𝑈 (𝑇) = 𝑈0𝑇
𝑚, Ω(𝑇) = Ω0𝑇

𝑝, (5.1)

where 𝑈 (𝑇) and Ω(𝑇) are the translational and angular velocities of the plate, as
shown in Figure 5.1(a), 𝑈0 and Ω0 are the (constant and dimensional) translational
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Figure 5.1: Starting vortex generated by a flat plate that moves suddenly. (a)
Schematic showing the flat plate with its translational and angular velocities. The
𝑥 and 𝑦-components of the Cartesian frame are always parallel and perpendicular
to the plate, respectively; the origin is at the plate center (this differs from PS21).
(b) Phase plane for the starting vortices generated at the trailing (right) edge of the
plate for zero initial angle-of-attack, 𝛼0 = 0, where 𝑚 and 𝑝 are the translational
and rotational power-laws in (5.1), respectively. Plate rotation is away from the
three-quarter-chord position, i.e., 𝑑 ≠ 1/2. The critical line (solid and diagonal blue
line) is (5.6). Nominal shapes of Type I, II and III vortices are illustrated (dashed
lines). Type I and II vortices are independent of 𝛽 ≡ Ω0𝑎/𝑈0, defined in (5.4),
whereas Type-III vortices are swept further downstream with decreasing 𝛽.

and angular velocity scales, respectively, and the dimensionless convective time is

𝑇 ≡ 𝑡𝑈0
𝑎
. (5.2)

Here, 𝑡 is the dimensional time, and 𝑎 is the half-chord of the plate. The rotational
pivot position lies in the plane of the plate and is denoted by

𝑑 ≡ 𝑥0
𝑎
, (5.3)

where 𝑥0 is its dimensional 𝑥-coordinate whose origin is at the plate center. Thus,
𝑑 = 0, −1/2, and 1/2 correspond to rotation about the plate center, quarter-chord,
and three-quarter-chord positions, respectively. Importantly, the starting vortex is
derived in the small convective time limit, i.e., 𝑇 → 0+. The finite-time interval
over which it holds is addressed in this study.

In addition to the rolled-up vortex sheet whose center moves approximately normal
to the plate, designated a Type-I vortex by PS21, this recent study showed that two
additional vortex sheet types can arise at the trailing edge. The precise vortex type
depends on the relative values of the power laws, 𝑚 and 𝑝. The first additional type
was termed a Type-II vortex sheet. It does not roll up, i.e., there is no vortex center,
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but moves strictly parallel to the plate while being convected downstream. That
is, the vortex sheet rotates synchronously with the plate; convection off the plate
surface dominates vortex self-induction. The second additional type was termed a
Type-III vortex and combines the features of Type I and II vortices. It exhibits the
competing effects of convection and vortex-sheet roll up, yet unlike Types I and II,
its shape depends on the relative magnitude of the angular and translational speeds
through the dimensionless ‘rotation parameter’,

𝛽 ≡ Ω0𝑎

𝑈0
. (5.4)

The shape of a Type-III vortex approaches that of Type II and I vortices as 𝛽 → 0
and ∞, respectively, i.e., when the respective plate motion is translation and rotation
dominated. The angle-of-attack of the plate can be expressed in terms of 𝛽,

𝛼(𝑇) = 𝛼0 +
𝛽

1 + 𝑝𝑇
1+𝑝, (5.5)

where 𝛼0 is the initial angle of attack. Figure 5.1(b) summarizes the key finding
of PS21 for the trailing-edge vortex of a flat plate with zero initial angle-of-attack,
i.e., 𝛼0 = 0. This shows that the vortex shape changes discontinuously as a critical
line in the (𝑚, 𝑝)-phase plane is transversed. Type-III vortices constitute singular
solutions in the (𝑚, 𝑝)-phase plane, that occur on the critical line,

𝑚 =
1
3
(2𝑝 − 1), (5.6)

provided plate rotation is away from the three-quarter-chord position. For rotation
at this singular position, the critical line is 𝑚 = 1 + 2𝑝.

Hinton et al. (2024) generalized the study of PS21, enabling calculation of the
starting vortex at any ‘sharp and straight edge’ of an arbitrary solid body. A ‘sharp
and straight edge’ is one whose neighboring upper and lower surfaces are tangent to
one another at the edge, e.g., a flat plate has two such edges. Several findings were
reported:

1. The three vortex sheet types found for the trailing edge of a flat plate in PS21,
apply to the sharp and straight edges of an arbitrary body.

2. The phase diagram for the leading-edge vortex of a flat plate is identical to
Figure 5.1(b), except that (1) Type-II vortices do not exist, i.e., no vortex is
shed, and (2) the critical line is 𝑚 = 1 + 2𝑝 for rotation about the plate’s
quarter-chord position.
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3. Translation of the sharp and straight edge of an arbitrary body, parallel and
normal to the neighboring surfaces of this edge, is the physical mechanism
that drives the starting vortex. For example, rotation of a flat plate about a
pivot position is a motion that generates the requisite edge translation.

4. Rotation of a flat plate can produce starting vortices of different types at
its leading and trailing edges (provided rotation occurs at either its quarter or
three-quarter-chord positions). This is not possible with pure plate translation.
This highlights a distinction between global motion of the solid body and local
translation of the edge under consideration.

5. The implication of point (ii), sub-point (1), is that the leading-edge vortex of a
flat plate can be naturally suppressed through control of the plate’s dynamics.
The relevance of this finding to low-speed aircraft that predominantly use thin
airfoils of low curvature, was discussed.

6. Explicit formulas for the lift experienced by a flat plate that is undergoing
simultaneous translation and rotation were derived. This required a new
treatment of the Bernoulli equation in a rotating frame.

7. The general theory was applied to Joukowski airfoils, highlighting its appli-
cability to bodies of arbitrary shape.

Here, we examine the existence of Type I, II, and III starting vortices in a viscous
fluid, for (1) a flat plate that is simultaneously translating and rotating, and (2) two
symmetric Joukowski airfoils that are translating in two orthogonal directions. This
is achieved using high-fidelity DNS of the Navier-Stokes equations in two spatial
dimensions, employing a lattice Green’s function (LGF) method that discretizes the
flow in the regions of finite vorticity only. This approach enables access to start-up
flows at high Reynolds number, i.e.,

Re ≡ 𝑐𝑈0
𝜈

≫ 1, (5.7)

where the viscous boundary layer and starting vortex are only resolved in the im-
mediate vicinity of the solid body; 𝜈 is the kinematic viscosity and 𝑐 is the chord
of the body. This study primarily focuses on the flat plate where a comprehensive
analysis of vortex formation is reported. Of particular interest is the change in shape
of the starting vortices as the power laws of the plate motion, 𝑚 and 𝑝, are varied.
We include a brief section on Joukowski airfoils to illustrate the utility of the theory
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reported by Hinton et al. (2024) in predicting the starting vortices of bodies with
more complicated shapes.

The chapter is organized as follows. We begin in Section 5.2 by outlining the
LGF/immersed boundary methodology used to numerically solve the Navier-Stokes
equations for a flat plate and the two Joukowski airfoils. A comprehensive analysis
of the vortices formed at the edges of a translating and rotating flat plate then follows.
This includes analytical formulas of the maximal time for the existence of its starting
vortices, which are derived in Section 5.3. These formulas are based on the inviscid
theory, which was first reported for the trailing edge of a flat plate in PS21 and later
extended to an arbitrary body with any number of edges by Hinton et al. (2024). This
collective theory is henceforth termed the ‘starting vortex inviscid theory’, which is
abbreviated to ‘SVT’. In Section 5.4, a detailed comparison of SVT and DNS for the
leading and trailing-edge vortices of a flat plate is reported. This employs the above-
mentioned maximal time for the existence of a starting vortex. This comparison
confirms the theoretical prediction of Hinton et al. (2024) that the leading-edge
vortex of a flat plate can be suppressed dynamically. Finally, the vortices formed
at the trailing edges of two symmetric Joukowski airfoils are briefly examined in
Section 5.5. This illustrates the utility of SVT in predicting the starting vortices of
bodies with more complex shapes. We conclude in Section 5.6 by summarizing the
key findings of this study with details of the calculations relegated to Appendix D.

5.2 Numerical method for solving the Navier-Stokes equations
The starting vortices generated by a flat plate and two Joukowski airfoils, immersed
in an incompressible and unbounded viscous fluid, are calculated using DNS of the
two-dimensional Navier-Stokes equations,

𝜌

(
𝜕u
𝜕𝑡

+ u · ∇u
)
= −∇𝑃 + 𝜇∇2u, ∇ · u = 0, (5.8)

where 𝜌 and 𝜇 are the fluid density and shear viscosity, respectively, u is the
velocity field, and 𝑃 is pressure. Eq. (5.8) is solved using an immersed boundary
method, combining (i) an LGF approach that tracks regions of finite vorticity, and
(ii) a uniform mesh with spatial computational domain adaptation. The immersed
boundary method enforces no-slip at the body’s surface, and the domain adaptation is
performed at each time step. Simulations, and hence discretizations, are performed
in the non-inertial frame of the moving body. The details of this algorithm can be
found in Chapter 3. This combined numerical method enables accurate simulation
of external and unbounded incompressible flows, by requiring discretizations in the
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Figure 5.2: Sample computational mesh (grey region) of the DNS for a flat plate
showing vorticity distribution (red and blue colors); 𝑚 = 2, 𝑝 = 0, 𝑑 = 0 (rotation
about plate center), 𝛽 = 3.175, Re ≡ 𝑐𝑈0/𝜈 = 5,040, where 𝜈 and 𝑐 are the
kinematic viscosity and plate chord, respectively, with uniform spatial discretization
Δ𝑥 = 2.5 × 10−4𝑐. (a) Snapshot of the entire computational domain for 𝑇 = 0.060.
(b) Time evolution of the mesh near the trailing edge of the plate. The computational
mesh spatially adapts to discretize regions of finite vorticity only. The scale bar
applies to all plots. Further details are provided in Section 5.2.

regions of finite vorticity only. This involves a user-chosen vorticity threshold which
is varied until convergence is achieved, as discussed below.

An example of the computational mesh for a flat plate and its evolution in time
is given in Figure 5.2, showing it is confined to the immediate vicinity of the
plate. The flow in the undiscretized region can be computed analytically using
results from the discretized region, if needed. This is not required here, because
we are only interested in regions of finite vorticity. This numerical approach results
in a dramatic improvement in computational efficiency relative to other methods
that require complete discretization of the flow domain. Consequently, the present
methodology is ideally suited to start-up problems, where vorticity generation occurs
at the solid surfaces.

We focus on assessing the validity of SVT. Thus, the simulation parameters are
chosen using the following procedure. First, we compute the flow for a relatively
low Reynolds number, Re ≈ 1,000. The Reynolds number is then systematically
increased until viscous diffusion is small enough to study the vortical structures,
given available computational resources. Spatial discretization is simultaneously
increased to minimize numerical diffusion and ensure negligible numerical artifacts.
The time step-size is chosen to maintain linear stability of the time marching. The
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chosen vorticity cut-off threshold for meshing is 0.001% of the maximum vorticity;
this is varied to ensure convergence. This threshold value is in accord with Liska
and Colonius (2017) that showed it is sufficiently small for accurate flow simulation.

For further details of the numerical algorithm used in this study, the reader is referred
to Liska and Colonius (2017), Yu, Dorschner, and Colonius (2022), and Hou and
Colonius (2024a).

5.3 Maximal time for the existence of the starting vortices generated by a flat
plate

Next, we use SVT to calculate the maximal time that vortices conforming to the
Type I, II, and III description can exist at the trailing and leading edges of a flat plate.
An initial angle-of-attack of 𝛼0 = 0, and plate rotation away from its quarter-chord
and three-quarter-chord positions, i.e., 𝑑 ≠ ±1/2, are assumed. A similar analysis
can be performed for 𝛼0 ≠ 0 and 𝑑 = ±1/2 (not shown).

We first analyze the vortex sheet at the trailing edge, which is given by

𝑥𝑣 + 𝑖𝑦𝑣 = 𝑎 𝑇𝑞𝑍 (𝜆), (5.9)

where 𝑥𝑣 and 𝑦𝑣 are (dimensional) Cartesian coordinates referenced to the trailing
edge, 𝑞 is the vortex power-law defined in Table 1 of PS21, 𝑖 is the imaginary unit,
with the governing equation for the self-similar vortex shape, 𝑍 (𝜆), being

𝑇𝑞−1
(
𝑞𝑍̄ +

(𝑞
2
+ 𝑝

)
(1 − 𝜆) 𝑑𝑍̄

𝑑𝜆

)
= 𝑇𝑚 − 𝑖𝛽 𝑇 𝑝−

𝑞

2
1 + 𝑀 (𝑍)
(2𝑍) 1

2
, (5.10)

where

𝛽 ≡ 𝛽

(
1
2
− 𝑑

)
, 𝑀 (𝑍) ≡

−
∫ 1

0

(
1

𝑍
1
2 − 𝑍′1

2
− 1
𝑍

1
2 + 𝑍̄′1

2

)
d𝜆′∫ 1

0

(
1
𝑍′

1
2
+ 1
𝑍̄′

1
2

)
d𝜆′

, (5.11)

and 𝑍′ ≡ 𝑍 (𝜆′); all other symbols are identical to those in PS21. Eq. (5.10) is
obtained by substituting (3.1) into the Birkhoff-Rott equation that defines the vortex
sheet emanating from the sharp edge that is required to enforce the Kutta condition.
It is obtained from equations (4.1), (4.4), (5.1), (5.2), and (5.4) of PS21, where
𝜆 is the similarity variable that varies monotonically from 0 to 1 along the vortex
sheet. Type I, II, and III vortices arise when the left-hand side of (5.10) balances
the second, first, and both terms on its right-hand side, respectively, as 𝑇 → 0+.
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In arriving at (5.10), a small-time expansion of the trigonometric functions in
Eq. (4.4) of PS21 is performed, which is valid provided

𝛽

1 + 𝑝𝑇
1+𝑝 ≪ 1. (5.12)

Specifying a multiplicative factor, 0 < 𝛿 ≪ 1, for (5.12) to hold, gives the maximal
time,

𝑇
(1)
max ≈

(
𝛿
[ 1

2 − 𝑑
]

𝛽

) 1
1+𝑝

, (5.13)

for which (5.10) is valid; where we have used the approximation, (1 + 𝑝)1/(1+𝑝) ≈ 1
for all 𝑝 ≥ 0. Because Type-III vortices arise when both terms in the right-hand
side of (5.10) balance, (5.13) sets the maximal time for which this vortex type
exists; the constraint in (5.13) also applies to all vortex types. This is provided
the vortex remains close to the plate’s sharp and straight trailing edge, which is an
overriding assumption of the theory; this spatial condition applies to any solid body
with sharp and straight edges. Note that all starting vortices obey the self-similar
form described by (5.9).

Type I and II vortices arise when one term on the right-hand side of (5.10) dominates
the other, as discussed above. This provides an additional constraint on the maximal
time for which Type I and II vortices exist (derived in Appendix D),

𝑇
(2)
max ≈

(
𝛽

2
3 sgn(𝜖)𝛿

) 1
| 𝜖 |
, (5.14)

where
𝜖 ≡ 𝑚 − 2𝑝 − 1

3
, (5.15)

with Type I and II vortices corresponding to 𝜖 ≠ 0. Combining (5.13) and (5.14)
gives the overall maximal time for a starting-vortex type to exist at the trailing edge
of a flat plate,

𝑇max ≈


min

{(
𝛿[ 1

2−𝑑]
𝛽

) 1
1+𝑝
,

(
𝛽

2
3 sgn(𝜖)𝛿

) 1
| 𝜖 |

}
, Type I and II vortices(

𝛿[ 1
2−𝑑]
𝛽

) 1
1+𝑝
, Type-III vortices

, (5.16)

provided the vortex remains spatially close to the edge. The corresponding expres-
sion for the leading-edge vortex is obtained by replacing 1/2−𝑑 → 1/2+𝑑 in (5.16)
and in the definition of 𝛽 in (5.11). This is because their governing equations are of
identical form (Hinton et al., 2024).



106

0

0.5

1

1.5

2

2.5

3

3.5

p

0 0.5 1 1.5 2

m

0

0.5

1

1.5

2

2.5

3

3.5

p

β = 0.5
^

β = 2
^

Type III Type III

Type III

Type-II
I li

ke

Type-II
I li

ke

Type-II
I li

ke

Type-II
I li

ke
Type-II

I li
ke

Type-II
I li

ke

Tobs = 0.01

Tobs = 0.1

Type II

Type I

Type II

Type II

Type I

Type I

Type II

Type I

Type III

Type-II
I li

ke

Type-II
I li

ke

0 0.5 1 1.5 2

m

Type-I like

Figure 5.3: Regions of the (𝑚, 𝑝)-phase plane where Type I, II and III vortices of a
flat plate exist for 0 < 𝑇 ≤ 𝑇obs, using two choices of 𝑇obs = 0.01 (first row) and 0.1
(second row); left column (𝛽 = 0.5) and right column (𝛽 = 2). The shaded (green)
regions correspond to parameter values, (𝑚, 𝑝), where the (small time) starting
vortices—obeying the self-similar form described by (5.9)—are expected to hold at
the given observation time, 𝑇obs. Results given for rotation about the plate center,
𝑑 = 0, and a nominal multiplicative factor of 𝛿 = 0.1(≪ 1) in (5.16). Type-I like
and Type-III like vortices are not self-similar, but have shapes resembling those of
Type I and III vortices, respectively.

To illustrate the utility of (5.16), we use it to determine regions of the (𝑚, 𝑝)-phase
plane where each vortex type exists, over an observation time, 0 < 𝑇 ≤ 𝑇obs.
This requires 𝑇obs ≤ 𝑇max, where 𝑇max is defined in (5.16). Figure 5.3 gives these
regions for plate rotation about its center, 𝑑 = 0, observation times of 𝑇obs = 0.01
and 0.1, and rotation parameters of 𝛽 = 0.5 and 2, using a nominal value of
𝛿 = 0.1(≪ 1). The diagonal (green) boundaries—within which Type I and II
vortices exist (specified by (5.14))—approach the critical (red) line, 𝜖 = 0, as 𝑇obs

is reduced. Thus, Figure 5.3 shows that in any finite-time simulation or physical
measurement, Type I and II vortices can only be observed away from this critical
line, 𝜖 = 0. The horizontal (green) boundary in the bottom right-hand plot of
Figure 5.3 is due to (5.13), and specifies the limit where the governing equation,
(5.10), applies. Type-III vortices always occur on the critical (red) line, 𝜖 = 0,
for the chosen values of 𝑇obs; increasing 𝑇obs further can and does eliminate this
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finding. Type-III like (non-similarity) vortices exist in the (white) regions between
the diagonal green boundaries, because the first and second terms in the right-hand
side of (5.10) are comparable in those regions. Type-I like (non-similarity) vortices
exist in the white region below the horizontal green boundary.

These findings and (5.16) are used in the next section to guide a quantitative com-
parison of SVT with the DNS.

5.4 Direct numerical simulations of a flat plate
High-fidelity DNS are performed to resolve the starting vortices generated at the
edges of a flat plate at their required small times, i.e., 𝑇 ≲ 𝑇max, where possible.
Results are reported for Reynolds numbers ranging from Re = 5,040 to 45,255. The
maximal values of the Reynolds numbers are limited by available computational
resources, and are used in the comparison with SVT. We focus on a zero initial
angle-of-attack, 𝛼0 = 0, for which SVT predicts that all three vortex types can
exist. The majority of results are reported for rotation about the plate center, i.e.,
𝑑 = 0. Two sets of results are reported for rotation about the quarter-chord and
three-quarter-chord positions of the plate, i.e., 𝑑 = −1/2 and +1/2, respectively.
The latter cases explore the theoretical prediction of SVT that vortices of different
types can occur at the leading and trailing edges (Hinton et al., 2024).

All plots are presented in the frame of the flat plate. In all cases, vortices from
SVT are plotted in their similarity scale, i.e., they do not appear to change size with
increasing time. Instead, the corresponding spatial scale bar, referenced to the plate
chord, 𝑐, varies with time and is reported in each figure. Table 5.1 summarizes the
plate and DNS parameters used.

5.4.1 Type-I vortices
We first explore two cases for which SVT predicts Type-I vortices.

5.4.1.1 𝑚 = 2, 𝑝 = 0, 𝑑 = 0

Figure 5.4 provides a comparison of the DNS with the predictions of SVT, for the
time power-laws, 𝑚 = 2 and 𝑝 = 0, and rotation about the plate center, 𝑑 = 0. This
corresponds to the plate undergoing a smooth accelerating translation from rest,
with its rotational velocity starting abruptly at 𝑇 = 0+. SVT predicts that the time
evolution of Type-I vortices depends explicitly on the rescaled time, 𝛽𝑇—rather
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Vortex type 𝑚 𝑝 𝑑 Re Δ𝑥/𝑐

I 2 0 0 5,040 2.5 ×
10−4

I 0 0 0 8,000 2.5 ×
10−4

II 0 2 0 32,000 1.25 ×
10−4

III 0 0.5 0 32,000 1.25 ×
10−4

III 1 2 0 45,255 1.25 ×
10−4

III-II 1 2 0.5 45,255 1.25 ×
10−4

None-III 1 2 −0.5 45,255 1.25 ×
10−4

Table 5.1: DNS parameters used for the flat plate. Starting-vortex type, as predicted
by SVT, is in the first column. For 𝑑 = ±0.5, vortices generated at the leading
edge (LE) and trailing edge (TE) are specified using the format: LE-TE. Reynolds
number, Re, and spatial discretization, Δ𝑥/𝑐, used in each simulation are listed. The
two symmetric Joukowski airfoils employ Δ𝑥/𝑐 = 2.5 × 10−4 and Re = 8,000.

than 𝑇 alone—which from (5.2) and (5.4) gives

𝛽𝑇 = Ω0

(
1
2 − 𝑑

)
𝑡. (5.17)

That is, the evolution of Type-I starting vortices depends only on the plate rotation
(not its translation). This feature is evident in Figure 5.4, because (1) the vortices
predicted by SVT are precisely antisymmetric (by construction), and (2) the level of
agreement between the SVT and DNS is identical at the leading and trailing edges.
This finding is expected for rotation-dominated motion about the plate center.

For the smallest rescaled time of 𝛽𝑇 = 0.012—see top row of Figure 5.4—agreement
between the SVT and DNS is observed. This is despite the DNS vortices diffusing
to a greater extent with decreasing 𝛽 and increasing time, 𝑇 , as expected. However,
the level of agreement decreases with increasing 𝛽𝑇 ; see middle and bottom rows of
Figure 5.4. This is due to deterioration of the approximation in (5.12) that underlies
the governing equation in (5.10). Indeed, for 𝑚 = 2, 𝑝 = 0 with 𝛿 = 0.1 (as chosen
in Section 5.3), (5.16) gives 𝛽𝑇max = 𝛽𝑇

(1)
max ≈ 0.05, which is similar to 𝛽𝑇 = 0.048

in the bottom row of Figure 5.4. This establishes that SVT is near the limit of its
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Figure 5.4: Flat plate. Type-I vortex: 𝑚 = 2, 𝑝 = 0, and 𝑑 = 0 for Re = 5,040.
Comparison of DNS (colored vorticity plots) with SVT (solid black lines), showing
leading (left) and trailing (right) edges. The leading and trailing edges are at the
ends of the green horizontal lines. The central section of the plate is not shown. Red
and blue colors denote DNS vorticity regions of opposite sign. The color thresholds
to white when the vorticity magnitude is less than 1% of the maximum value; this
applies to all figures in this study. Scale bars of one-tenth of a chord length, i.e.,
0.1𝑐, are given.

𝑇 = 0.015 𝑇 = 0.030 𝑇 = 0.060

𝛽𝑇 =

0.012 (0.66, 0.70) (0.32, 0.35) (0.16, 0.17)

𝛽𝑇 =

0.024 (1.7, 1.8) (0.83, 0.88) (0.41, 0.44)

𝛽𝑇 =

0.048 (4.2, 4.4) (2.1, 2.2) (1.0, 1.1)

Table 5.2: Flat plate. Type-I vortex: 𝑚 = 2, 𝑝 = 0, and 𝑑 = 0 for Re = 5,040.
Total dimensionless circulation, Γ0 ≡ Γ0/(𝑈0𝑎), in the trailing-edge vortex for the
plots reported in Figure 5.4. Comparison of results for Γ0 obtained by integrating
the DNS vorticity distributions (first entry in parentheses) to the predictions of SVT
(second entry in parentheses).
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Figure 5.5: Flat plate. Type-I vortex: 𝑚 = 2, 𝑝 = 0, and 𝑑 = 0 for Re =

5,040. DNS vorticity distribution in the trailing-edge wake region for 𝛽𝑇 = 0.048
and 𝑇 = 0.015, also plotted in the lower left-hand corner of Figure 5.4. (a) Three-
dimensional perspective plot of vorticity distribution showing the trailing-edge wake
and the vorticity distribution along the plate. Vorticity data is smoothed using a
3-point moving average across neighboring grid points in the direction parallel to
the plate. (b) Segmentation of the wake region into two distinct spatial regions
described in the text. The mesh boundary indicated is automatically generated by
the LGF procedure; see Figure 5.2.

validity when 𝛽𝑇 = 0.048, which causes a departure from the self-similar structure
of the starting vortex.

Table 5.2 reports the total circulation, Γ0, in the trailing-edge vortex for all plots
in Figure 5.4. Results obtained from SVT (using equations (2.13) and (2.17) of
Hinton et al. (2024)) and those obtained by numerically integrating the vorticity
distributions of the DNS are reported. This integration is performed by segmenting
the wake region into two regions: (1) the half space to the right of the plate’s trailing
edge, and (2) the spatial region to the left of this half space that omits the shear
layer adjacent to the plate and the leading edge vortex. Figure 5.5 gives an example
of this segmentation. There is an integrable singularity in the vorticity distribution
at the plate’s edge due to the sudden change in boundary condition from no-slip to
free flow. This singularity does not significantly contribute to the total circulation.
Agreement between SVT and DNS is observed throughout. Similar agreement is
observed for the leading-edge vortex, as may be expected by symmetry (data not
shown).
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The results in Figure 5.4 and Table 5.2 collectively demonstrate the robustness of
SVT in accurately predicting both the qualitative (shape) and quantitative (total
circulation) features of the starting vortex.

5.4.1.2 𝑚 = 0, 𝑝 = 0, 𝑑 = 0

Figure 5.6 gives results for the trailing-edge vortex when 𝑚 = 𝑝 = 0. In contrast
to Section 5.4.1.1, the plate undergoes an abrupt translational motion (in addition
to an abrupt rotational motion) at 𝑇 = 0+. SVT also predicts a Type-I vortex to
exist. However, the comparison in Figure 5.6 shows poor agreement in the vortex
shapes between SVT and the DNS, even for the smallest time of 𝑇 = 0.018. This
is in contrast to the results in Figure 5.4, for 𝑚 = 2 and 𝑝 = 0, where agreement is
observed for much longer times.

This difference is due to proximity of 𝑚 = 𝑝 = 0 to the critical line, 𝜖 = 0, in the
(𝑚, 𝑝)-phase plane; as detailed in Section 5.3. For the parameters considered here,
(5.16) gives 𝑇max = 𝑇

(2)
max ≈ 2.5×10−4. The computed times, 𝑇 , in Figure 5.6 exceed

this value by 2 to 3 orders of magnitude. This establishes that Type-I vortices are not
expected in the DNS at the times shown, and indeed are not observed. This feature
is due to strong competition between the two terms on the right-hand side of (5.10),
which leads to simultaneous roll-up and convection of the starting vortex. The
(observed) DNS vortex is not self similar but is a Type-III like vortex, as defined in
Section 5.3. It is not possible to resolve the starting vortex for𝑇 < 𝑇max ≈ 2.5×10−4

with our available computational resources. Despite these differences in vortex
shape, the total circulation in the trailing-edge vortex is well predicted by SVT,
except for the largest time of 𝑇 = 0.192; see Table 5.3.

In contrast to the trailing-edge vortex, the leading-edge vortex exhibits a Kelvin-
Helmholtz instability (data not shown). Thus, by replacing the smooth plate ac-
celeration in Section 5.4.1.1 (𝑚 = 2) with an abrupt one here (𝑚 = 0), fore-aft
antisymmetry in the DNS breaks. This is despite SVT predicting antisymmetry in
the leading and trailing-edge vortices for 𝑇 < 𝑇max, as in Section 5.4.1.1. We refrain
from comparing the leading-edge vortex to SVT, because this theory is outside its
regime of validity, as detailed above.

5.4.2 Type-II vortices
Next, we switch the time power-laws of 𝑚 and 𝑝 used in Section 5.4.1.1. That is,
we now choose 𝑚 = 0 and 𝑝 = 2, for which Table 1 of PS21 predicts a Type-II
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Figure 5.6: Flat plate. Type-I vortex: 𝑚 = 0, 𝑝 = 0, 𝑑 = 0, 𝛽 = 1, and Re = 8,000.
Description as for Figure 5.4.

𝑇 = 0.018 𝑇 = 0.048 𝑇 = 0.096 𝑇 = 0.192

(0.93, 1.0) (1.3, 1.4) (1.8, 1.8) (2.7, 2.2)

Table 5.3: Flat plate. Type-I vortex: 𝑚 = 0, 𝑝 = 0, 𝑑 = 0, 𝛽 = 1, and Re = 8,000.
Total dimensionless circulation, Γ0 ≡ Γ0/(𝑈0𝑎), in the trailing-edge vortex for the
plots reported in Figure 5.6. Description as per Table 5.2.

trailing-edge vortex sheet, i.e., it does not roll up. Hinton et al. (2024) predicts no
starting vortex to occur at the leading edge. A Type-II vortex is yet to be observed
in a (real) viscous fluid, whether it be DNS or physical experiment.

5.4.2.1 𝑚 = 0, 𝑝 = 2, 𝑑 = 0

Figure 5.7 gives DNS viscous flows generated at the leading and trailing edges, for
𝑚 = 0, 𝑝 = 2, 𝑑 = 0, with Re = 32,000. A higher Reynolds number is possible here
because vorticity is tightly confined to the plane of the flat plate; the LGF method
discretizes the regions of finite vorticity only. Agreement is observed between SVT
and the DNS. As predicted by SVT, the trailing-edge vortex moves downstream
and parallel to the plate at small time, 𝑇 = 0.096. The spatial extent of the DNS
trailing-edge vortex precisely matches that of SVT. Also as predicted by SVT, no
starting vortex is observed at the leading edge. Instead, flow at the leading edge
resembles a classical Blasius boundary layer with downstream thickening.

Increasing time beyond 𝑇 = 0.096, produces some discrepancy between SVT and
the DNS. The greatest difference occurs in the right-hand column of Figure 5.7, for
the largest value of 𝛽 = 0.25. A plate rotation of 𝛼 = 0.54◦ exists here, which is
incommensurately small relative to the observed vertical displacement of the wake.
This does not explain the observed deviation. Instead, (5.16) predicts a maximal
time of 𝑇max = 𝑇

(2)
max ≈ 0.25 for 𝛽 = 0.25, which is smaller than the observation time

of 𝑇 = 0.384. Thus, SVT is outside of its regime of validity, and a Type-III-like
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Figure 5.7: Flat plate. Type-II vortex: 𝑚 = 0, 𝑝 = 2, and 𝑑 = 0 for Re = 32,000.
Description as for Figure 5.4.

vortex is expected as per Section 5.3; consistent with the observed discrepancy.

Note that 𝑇max = 𝑇
(2)
max ≈ 0.4 and 0.63 for 𝛽 = 0.125 and 0.0625, respectively. Thus,

SVT is on the edge of validity for 𝛽 = 0.125 (𝑇max ≈ 𝑇 = 0.384), whereas it is
valid for 𝛽 = 0.0625 (𝑇 < 𝑇max). This is also consistent with the observed level of
agreement in the right-hand column of Figure 5.7.

5.4.2.2 Vorticity distribution in the trailing-edge wake

We note from Figure 5.7 that the DNS vorticity distributions in the trailing-edge
wake consist of two distinct spatial regions. These contain apparently antisymmet-
ric vorticity distributions (of opposite sign); generated by shear layers on opposite
sides of the flat plate being swept downstream. However, SVT predicts a distinct
asymmetry in the singular vorticity distribution, i.e., a nonzero velocity jump oc-
curs across the vortex sheet. Figure 5.8(a) explores this prediction by plotting the
vorticity distribution, 𝜔, across the DNS trailing-edge wake; for the smallest time
and rotational parameter reported in Figure 5.7. The magnitude of the vorticity
decreases in the streamwise direction, as expected. SVT in (5.18) predicts that the
wake will terminate at 𝑥 = 0.548𝑐, and this is clear in Figure 5.8(a). The data also
shows that the vorticity distribution is not precisely antisymmetric about the plane
of the plate, 𝑦 = 0; a slight asymmetry about the vertical axis is evident.

To make a quantitative comparison with SVT, the DNS vorticity distributions (as
in Figure 5.8(a)) are numerically integrated across the wake, i.e., in the 𝑦-direction.
This produces the velocity jump across the wake, 𝛾, which is reported in Figure 5.8(b)
together with the prediction of SVT for 𝑚 = 0 and 𝑝 = 2,

𝛾

𝑈0
=

8
√

2
3
𝛽𝑇

3
2

(
1 − 2𝑥 − 1

𝑇

) 3
2

,
1
2
≤ 𝑥 ≤ 1

2
(1 + 𝑇), (5.18)
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Figure 5.8: Flat plate. Type-II vortex: 𝑚 = 0, 𝑝 = 2, and 𝑑 = 0 for Re =

32,000; for 𝑇 = 0.096 and 𝛽 = 0.0625 (top left-hand entry of Figure 5.7). (a)
Dimensionless vorticity distribution, 𝑐𝜔/𝑈0, plotted across the trailing-edge wake
at the spatial positions, 𝑥/𝑐 = 0.51, 0.52, 0.53, 0.54, 0.548; the last position is the
end of the trailing-edge vortex as per (5.18), and the trailing edge is at 𝑥/𝑐 = 0.5; see
Figure 5.1. (b) Dimensionless velocity jump, 𝛾/𝑈0, across the trailing-edge vortex.
DNS is evaluated by numerically integrating the vorticity distribution, 𝜔, across the
wake. SVT for 𝛾/𝑈0 is (5.18). Note that the chord length, 𝑐 = 2𝑎.

where 𝑥 ≡ 𝑥/𝑐 is dimensionless. This formula is obtained from equations (2.33)
and (3.4) of Hinton et al. (2024); 𝑥 = 0 and 𝑥 = 1/2 correspond to the center
and trailing-edge of the plate, respectively. Agreement of (5.18) with the DNS is
observed, in spite of a very slight vorticity asymmetry; see Figure 5.8(b). Similar
agreement is obtained for all cases reported in Figure 5.7, with the discrepancy
in the velocity jump, 𝛾, increasing slightly with increasing time (data not shown).
Interestingly, the level of agreement is independent of 𝛽 for fixed time, 𝑇 , indicating
that the rotational characteristics of the plate motion are decoupled from those of its
translation. Integrating (5.18) over the spatial extent of the trailing-edge wake gives
its total circulation,

Γ0
𝑈0𝑎

=
16
√

2
15

𝛽𝑇
5
2 , (5.19)

which is compared to the DNS in Table 5.4, for all cases reported in Figure 5.7.
Agreement is again observed. Eq. (5.19) is also recovered from Eq. (2.31) of Hinton
et al. (2024).

These results provide evidence for the robustness and accuracy of SVT. It not only
predicts the vortex shapes, but also the detailed quantitative characteristics of the
flow. We remind the reader that SVT calculates the flow dynamics without any
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𝑇 = 0.096 𝑇 = 0.192 𝑇 = 0.384

𝛽 = 0.0625 (2.6, 2.7)×10−4 (1.6, 1.5)×10−3 (9.6, 8.6)×10−3

𝛽 = 0.125 (5.3, 5.4)×10−4 (3.1, 3.0)×10−3 (1.9, 1.7)×10−2

𝛽 = 0.25 (1.1, 1.1)×10−3 (6.2, 6.1)×10−3 (3.9, 3.4)×10−2

Table 5.4: Flat plate. Type-II vortex: 𝑚 = 0, 𝑝 = 2, and 𝑑 = 0 for Re = 32,000.
Total dimensionless circulation, Γ0 ≡ Γ0/(𝑈0𝑎), in the trailing-edge vortex for the
plots reported in Figure 5.7. Description as per Table 5.2.

reference to viscosity. Even so, the requisite properties of the vorticity distribution
are accurately captured.

5.4.3 Type-III vortices
Finally, we explore another starting-vortex sheet type that was reported in PS21.
The Type-III vortex sheet combines the features of Type I and II vortices, with roll
up and convection downstream. Unlike the other vortex types, the shape of Type-III
vortices depends on the rotation parameter, 𝛽, as discussed above.

5.4.3.1 𝑚 = 0, 𝑝 = 0.5, 𝑑 = 0

Figure 5.9 shows results for 𝑚 = 0, 𝑝 = 0.5, 𝑑 = 0 at Re = 32,000. SVT predicts
Type-III vortices at both leading and trailing-edges of the plate. Agreement with
SVT is observed in Figure 5.9 for the trailing-edge vortex at the smallest time,
𝑇 = 0.048. Eq. (5.16) gives 𝑇max = 𝑇

(1)
max ≈ 0.68, 0.43, 0.27 for 𝛽 = 0.177, 0.354,

0.707, respectively; these values also apply to the leading-edge vortex (which is
explored below). Thus, we find that 𝑇 ≲ 𝑇max for all cases in Figure 5.9, though
results in the middle and bottom rows of the right-hand column are closest to
SVT’s limit of validity. Again, this is precisely where the greatest discrepancies
are observed. Note that these vortices are no longer near the trailing edge. This
further limits the validity of SVT, which is consistent with an increase in the level of
disagreement. Table 5.5 reports results for the total circulation in the trailing-edge
vortex, obtained from the SVT and DNS. The level of agreement is commensurate
with the above discussion.

The leading-edge vortex, in contrast, exhibits the opposite trend, with the level
of agreement increasing with increasing time, 𝑇 . The reason for this seemingly
counter-intuitive trend appears connected to the observation that the leading-edge
vortex interacts strongly with the shear layer at the plate surface. The thickness
of the shear layer is easily discerned from Figure 5.9; see the region downstream
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Figure 5.9: Flat plate. Type-III vortex: 𝑚 = 0, 𝑝 = 0.5, and 𝑑 = 0 for Re = 32,000.
Description as for Figure 5.4.

Figure 5.10: Flat plate. Zoomed-in version of leading-edge vortex in bottom right-
hand plot of Figure 5.9; 𝑚 = 0, 𝑝 = 0.5, 𝑑 = 0 at Re = 32,000.

𝑇 = 0.048 𝑇 = 0.096 𝑇 = 0.195

𝛽 = 0.177 (1.9, 1, 9)×10−2 (4.0, 3.8)×10−2 (8.9, 7.7)×10−2

𝛽 = 0.354 (4.0, 3.9) × 10−2 (8.3, 7.7)×10−2 (1.8, 1.6)×10−1

𝛽 = 0.707 (8.5, 8.2) × 10−2 (1.8, 1.6)×10−1 (4.1, 3.3)×10−1

Table 5.5: Flat plate. Type-III vortex: 𝑚 = 0, 𝑝 = 0.5, and 𝑑 = 0 for Re = 32,000.
Total dimensionless circulation, Γ0 ≡ Γ0/(𝑈0𝑎), in the trailing-edge vortex for the
plots reported in Figure 5.9. Description as per Table 5.2.

from the leading-edge vortex. This interaction distorts the leading-edge vortex and
appears to sweep it downstream—producing an elongated vortex relative to SVT
and a secondary separation; see Figure 5.10. As time evolves, the leading-edge
vortex also moves perpendicular to the plate. This weakens its interaction with the
shear layer at the plate. The vortex is then observed to approach what is expected
from SVT. Unlike the trailing-edge vortex, the leading-edge vortex remains close
to its edge for all reported times, enabling a greater level of agreement with SVT
at larger times. The Reynolds number of Re = 32,000 used in these simulations is
evidently not sufficiently high to restrict interaction of the leading-edge vortex with
the shear layer at the plate, at the smaller times. Available computational resources
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Figure 5.11: Flat plate. Type-III vortex: 𝑚 = 1, 𝑝 = 2, and 𝑑 = 0 for Re = 45,255.
Description as for Figure 5.4.

𝑇 = 0.318 𝑇 = 0.451 𝑇 = 0.636

𝛽 = 0.177 (7.9, 7.7)×10−3 (2.4, 2.2)×10−2 (7.3, 6.2)×10−2

𝛽 = 0.354 (1.7, 1.9)×10−2 (5.0, 5.5)×10−2 (1.6, 1.6)×10−1

𝛽 = 0.707 (3.8, 4.9)×10−2 (1.2, 1.4)×10−1 (3.8, 3.9)×10−1

Table 5.6: Flat plate. Type-III vortex: 𝑚 = 1, 𝑝 = 2, and 𝑑 = 0 for Re = 45,255.
Total dimensionless circulation, Γ0 ≡ Γ0/(𝑈0𝑎), in the trailing-edge vortex for the
plots reported in Figure 5.11. Description as per Table 5.2.

do not permit simulations at higher Re. We refrain from reporting results for the
total circulation in the leading-edge vortex due to its strong overlap with the plate’s
shear layer. This complicates the numerical separation of vorticity contributions
from the leading-edge vortex and the plate’s shear layer, e.g., using the procedure
illustrated in Figure 5.5 or a variant.

5.4.3.2 𝑚 = 1, 𝑝 = 2, 𝑑 = 0

Figure 5.11 gives a similar comparison for 𝑚 = 1, 𝑝 = 2, 𝑑 = 0 at Re = 45,255,
for which SVT also predicts Type-III vortices. In this case, (5.16) gives 𝑇max =

𝑇
(1)
max ≈ 0.82, 0.66, 0.52 for 𝛽 = 0.177, 0.354, 0.707, respectively, for both leading

and trailing edges. Thus, again we have 𝑇 ≲ 𝑇max for all results in Figure 5.11. This
indicates that SVT holds throughout, provided the vortex stays close to the edge in
question. Agreement is observed for the trailing-edge vortices in Figure 5.11, except
for the longest time, 𝑇 = 0.636, which coincides with these vortices not being near
the plate (spatial proximity to the edge is required for SVT to hold).

Interestingly, the discrepancy between SVT and the DNS for the leading-edge vor-
tices is smaller than that observed in Section 5.4.3.1. The leading-edge vortices in
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Figure 5.12: Flat plate. Different vortex types at leading and trailing edges: 𝑚 = 1,
𝑝 = 2, 𝛽 = 0.707, and 𝑑 = ±1/2 for Re = 45,255. Results for 𝑑 = 0 correspond
to 𝛽 = 𝛽/2 = 0.354 and are given in the middle row of Figure 5.11. Remainder of
description as for Figure 5.4.

Figure 5.11 are further from the plate relative to Figure 5.9, which decreases their
interaction with the plate’s shear layer. This is consistent with the better level of
agreement between SVT and DNS relative to Section 5.4.3.1.

Table 5.6 gives corresponding results for the total circulation in the trailing-edge
vortex. Agreement between SVT and DNS is again observed, except for 𝛽 = 0.707
and𝑇 = 0.318. This is not expected at first sight because it occurs at the smallest time
studied, where SVT is predicted to be valid; see above. However, the corresponding
DNS trailing-edge vortex in the bottom left-hand plot of Figure 5.11 does not exhibit
the significant vortex core present at larger times, and it displays a strong level of
diffusion. In contrast, SVT predicts the vortex to have the same shape at all times.
The observed diffusion in the DNS vortex may contribute to this difference in total
circulation. Resolved DNS at higher Reynolds numbers are limited by available
computational resources.

5.4.3.3 𝑚 = 1, 𝑝 = 2, 𝑑 = ±1/2

Using SVT, Hinton et al. (2024) predicted that plate rotation about either its quarter-
chord and three-quarter-chord positions, i.e., 𝑑 = ±1/2, can produce vortices of
different types at the leading and trailing edges. Figure 5.12 shows a comparison of
this inviscid prediction to the DNS.

In line with Hinton et al. (2024), plate rotation about the three-quarter-chord posi-
tion, 𝑑 = 1/2, produces Type III and II vortices at the leading and trailing edges,
respectively. Moreover, the level of agreement between SVT and the DNS as time
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𝑇 = 0.318 𝑇 = 0.636

𝑑 = 1
2 (7.9, 8.2)×10−4 (2.2, 2.6)×10−2

𝑑 = −1
2 (3.6, 4.9)×10−2 (3.3, 3.9)×10−1

Table 5.7: Flat plate. Total dimensionless circulation, Γ0 ≡ Γ0/(𝑈0𝑎), in the
trailing-edge vortex for the plots reported in Figure 5.12. Description as per Ta-
ble 5.2.

evolves, is commensurate with the discussion in the previous sections. Note that the
theory in Section 5.3 for 𝑇max does not apply to cases where 𝑑 = ±1/2, as discussed.

Plate rotation about the quarter-chord position, 𝑑 = −1/2, completely suppresses
the leading-edge vortex at the smaller time of 𝑇 = 0.318 in Figure 5.12. This again
agrees with the prediction of SVT. Doubling the measurement time to 𝑇 = 0.636
produces a small separation bubble at the leading edge. This corresponds to an
instantaneous angle-of-attack of 𝛼 ≈ 3.5◦, which further highlights the robustness
of SVT and the utility of calculating the starting vortices. The trailing edge generates
a Type-III vortex, again in agreement with SVT; the agreement is superior for the
smaller time, as expected. Note that the SVT trailing-edge vortices for 𝑑 = −1/2
(bottom row of Figure 5.12) are identical to those reported in the bottom row of
Figure 5.11; the corresponding DNS trailing-edge vortices are also similar in form.
This validation of SVT reinforces its implications to the airfoil design of low-speed
aircraft, such as MAVs and UAVs, which were discussed in Hinton et al. (2024).
Dynamic suppression of the leading-edge vortex can also affect thrust generation in
flapping wings (Alben, 2010; Fang et al., 2017; Heydari and Kanso, 2021).

The corresponding total circulations in the trailing-edge vortices are reported in
Table 5.7. Agreement is again observed, with a larger discrepancy in the bottom
left-hand entry of Table 5.7. This again coincides with significant diffusion in
the DNS trailing-edge vortex in the bottom-left-hand entry of Figure 5.12; see
previous paragraph and the corresponding discussion at end of Section 5.4.3.2 for
an explanation of this discrepancy.

5.5 Joukowski airfoil
We conclude our study by considering the Joukowski airfoil which was studied in
Section 3.5 of Hinton et al. (2024). The purpose is to assess the utility of SVT to
an airfoil of more complex shape. Two symmetric Joukowski airfoils of different
thickness are considered. The first is relatively thin with a Joukowski parameter



120

R = 1.5R = 1.1

Figure 5.13: The two symmetric Joukowski airfoils considered in this study. Each
has a sharp and straight trailing edge, which is evident by their upper and lower
surfaces being tangent at the trailing edge. The Joukowski parameter, 𝑅, is defined
in Eq. (3.29) of Hinton et al. (2024) and specifies the airfoil thickness.

of 𝑅 = 1.1, and is streamlined. The second is deliberately chosen to be bluff
in its cross-section, with 𝑅 = 1.5. Illustrations of these two airfoils are given in
Figure 5.13.

5.5.1 Starting vortex inviscid theory
In line with Section 3.5 of Hinton et al. (2024), the airfoil does not rotate but
instead translates in two orthogonal directions with independent power-laws in time.
Specifically, each airfoil moves with the following velocity components,

𝑈 (𝑇) = 𝑈0V𝑇𝑚, 𝑉 (𝑇) = 𝑈0W𝑇𝑛, (5.20)

where𝑈 and𝑉 are the velocity components parallel and perpendicular to the airfoil’s
symmetric axis, respectively, 𝑈0 is the dimensional velocity scale, V and W are
dimensionless positive constants that control the relative magnitudes of the velocity
components, and the translational power-laws are 𝑚, 𝑛 ≥ 0.

We focus on the case of 𝑚 = 0 and 𝑛 = 2 reported in Section 3.5.1 of Hinton et al.
(2024). SVT predicts that Type-II vortices form at the trailing-edge. Analytical
formulas for the spatial extent of the trailing-edge vortex, the velocity jump across
the trailing-edge vortex, and its total circulation are given by

𝛾

𝑈0
=

8
√

2
3

(
1 − 𝑥

𝑥max

) 3
2
√︂

R
𝑉
W𝑇

3
2 , 0 ≤ 𝑥 ≤ 𝑥max, (5.21a)

Γ0
𝑈0𝑎

=
16
√

2
15

√︂
V
𝑅
W 𝑇

5
2 , (5.21b)

where the (dimensional) spatial extent of the wake is

𝑥max =
V𝑇
𝑅
𝑎, (5.22)

and 𝑎 is the half-chord of a Joukowski airfoil with 𝑅 = 1; 𝑥 = 0 corresponds to the
trailing edge of the Joukowski airfoil (this differs from the origin of the flat plate
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R = 1.1

R = 1.5

0.1 c 0.1 c 0.1 c

T = 0.097 T = 0.194 T = 0.388

T = 0.108 T = 0.216 T = 0.432

Figure 5.14: Joukowski airfoils. Type-II vortex: 𝑚 = 0, 𝑛 = 2, V = 1, W = 0.25,
for Re = 8,000; here 𝑐 is the chord of the airfoil. Leading (left) and trailing (right)
edges of the airfoils are shown. Description as for Figure 5.4.

Γ0 ≡ Γ0/(𝑈0𝑎)

𝑅 = 1.1 (8.1, 10.3) ×
10−4 (5.0, 5.8)×10−3 (3.0, 3.3)×10−2

𝑅 = 1.5 (8.9, 9.3)×10−4 (5.2, 5.3)×10−3 (3.0, 3.0)×10−2

Table 5.8: Joukowski airfoil. Total dimensionless circulation, Γ0 ≡ Γ0/(𝑈0𝑎), in
the trailing-edge vortex for the respective plots reported in Figure 5.14; where 𝑎 is
the half-chord of a Joukowski airfoil for 𝑅 = 1. The entry positions in this table (and
corresponding times, 𝑇) coincide with Figure 5.14. Description as per Table 5.2.

above). Note that the chord length of the symmetric Joukwoski airfoil defined in
Eq. (3.29) of Hinton et al. (2024) is

𝑐 =
2𝑅2

2𝑅 − 1
𝑎. (5.23)

The dimensionless time, 𝑇 , is as defined in (5.2).

5.5.2 Direct numerical simulations
Figure 5.14 shows a comparison of the trailing-edge vortex calculated using SVT
with the DNS; simulation parameters are reported in the caption of Table 5.1.
Agreement in the spatial extent of this vortex is observed especially for 𝑅 = 1.1.
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Some discrepancy emerges when the airfoil’s finite thickness (upstream from its
trailing edge) becomes visible in the plots. In these cases, the wake’s spatial extent
exceeds that of the straight trailing-edge and the vortex cannot be considered close
to a ‘sharp and straight edge’ (see definition in Section 5.1). This is a fundamental
constraint of SVT and is consistent with the discrepancies observed in the second
row of Figure 5.14. Increasing the Reynolds above Re = 8,000 results in separation
upstream of the trailing edge for 𝑅 = 1.5 (near the maximum width of the airfoil),
which complicates further numerical investigation.

Table 5.8 reports the total circulation in the trailing-edge wake, computed by SVT
and DNS. The level of agreement is similar to that in Table 5.4 for Type-II vortices
generated by a flat plate (for a much higher Reynolds number, Re = 32,000). Some
discrepancy exists for 𝑅 = 1.1 with SVT overestimating the total wake circulation,
especially for the smallest time. This appears to correlate with a wide and short
wake, for which a vortex sheet description may exhibit some error. The wake’s
aspect ratio (width over length) decreases with increasing time, which is seen to
align with improved agreement between SVT and the DNS. Results for 𝑅 = 1.5 in
Table 5.8 display enhanced agreement relative to 𝑅 = 1.1, with a similar trend for
increasing time, despite the elongated wake of the DNS relative to SVT; see second
row of Figure 5.14. This is consistent with the vorticity generating mechanism
(the airfoil’s no-slip condition) being decoupled from downstream effects where
the flow accelerates (not included in SVT). These collective results for the total
wake circulation align with those for the velocity jump distribution across the wake
in Figure 5.15. Agreement between SVT and DNS again improves slightly with
increasing time (data not shown).

5.6 Conclusions
Starting vortex inviscid theory (SVT) predicts that three distinct types of starting
vortex sheets—Types I, II, and III—can be generated by an arbitrary body with
sharp and straight edges that suddenly moves. This study investigated the existence
of these vortices in a viscous fluid for a flat plate and two symmetric Joukowski
airfoils.

The motion of a translating and rotating flat plate is characterized by two respective
power-laws in time, 𝑚 and 𝑝, which select the vortex type. An abrupt transition
between the starting-vortex types is predicted to occur in the (𝑚, 𝑝)-phase plane;
see Figure 5.1. Type-I vortex sheets had been previously reported, while PS21
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Figure 5.15: Joukouski airfoil. Type-II vortex: 𝑚 = 0, 𝑛 = 2, for Re = 8,000. Di-
mensionless velocity jump, 𝛾/𝑈0, across the trailing-edge vortex. DNS is evaluated
by numerically integrating the vorticity distribution across the wake. SVT for 𝛾/𝑈0
is (5.21a). (a) Thinner airfoil, 𝑅 = 1.1. (b) Thicker airfoil, 𝑅 = 1.5, where DNS data
is shown to the spatial extent predicted by SVT; DNS data extends slightly further
downstream. These plots correspond to trailing-edge wakes shown in the central
column of Figure 5.14.

introduced Types II and III to the literature and were yet to be observed in a (real)
viscous fluid. Hinton et al. (2024) extended these findings using inviscid theory to
an arbitrary body with sharp and straight edges.

In this study, we reported a detailed assessment of these inviscid predictions using
high-fidelity DNS of the Navier-Stokes equations. We also used SVT to calculate
the time interval over which each starting-vortex type exists. It was found that
for finite-time observations of a flat plate, there is a smooth (rather than abrupt)
transition between the vortex types, as 𝑚 and 𝑝 are varied. This is because the time
interval over which Type I and II vortices exist, becomes vanishingly small as the
critical (𝑚, 𝑝)-phase plane line for Type-III vortices is approached. We compared
SVT to the DNS for values of 𝑚 and 𝑝 that span all vortex types. Agreement was
observed when SVT was predicted to be valid. This included the velocity jump
across a Type-II vortex sheet and the total circulation in the wake of all vortex types.
Moreover, different vortex types at the leading and trailing edges of a flat plate were
observed in the DNS, for plate rotation about its quarter-chord and three-quarter-
chord positions. Dynamic suppression of the leading-edge vortex for plate rotation
about its quarter-chord position was confirmed. This position coincides with the
aerodynamic centre of the airfoil and is relevant to the airfoil design of low-speed
aircraft, such as MAVs and UAVs.
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The predictions of SVT for two symmetric Joukwoski airfoils that translate in two
orthogonal directions were also compared to DNS. Agreement was again observed
for Type-II vortices when their spatial extent does not exceed that of its sharp and
straight edge—an overarching assumption of SVT. When this does occur, SVT was
found to (1) underestimate the spatial extent of the wake, due to an accelerating flow
downstream of the trailing edge, but (2) accurately predict both the velocity jump
across the wake and its total circulation. These comparisons highlight the utility of
SVT for bodies of arbitrary shape.

This study confirms the existence of Type II and III vortices in a viscous fluid,
and validates the accuracy of SVT. We emphasize that SVT is predictive with no
adjustable parameters. The inviscid theory reported by PS21, and its generalization
by Hinton et al. (2024) for an arbitrary body—collectively referred to as the SVT—
can therefore be used with confidence to calculate starting vortices in a viscous fluid.
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C h a p t e r 6

STABILITY ANALYSIS OF THE FLOW PAST A ROTATING
CYLINDER WITH A CONTROL CYLINDER IN THE WAKE

In this chapter, we demonstrate the algorithms described in Chapter 4. Specifically,
we investigate an interesting flow phenomenon generated by combining the two
stabilizing effects of the flow past a cylinder: the rotational motion of the main
cylinder and putting a small control cylinder in the wake of the main cylinder.

6.1 Introduction
In previous chapters, we discussed two interesting phenomena involving the flow
past a cylinder. The first phenomenon is the flow past a cylinder with a small control
cylinder in the wake. By placing a small control cylinder in the wake of the main
cylinder, we can suppress the onset of vortex shedding. The second phenomenon
is the flow past a rotating cylinder. Below a certain rotational rate, we can also
suppress the onset of vortex shedding. From a linear perspective, combining these
two methods, i.e. placing the control cylinder in the wake of a rotating cylinder, may
suppress the onset of vortex shedding at an even higher Reynolds number compared
to using only one of these two methods. In this chapter, we will show that this
linear perspective is not accurate: combining both methods might induce three-
dimensional instability mechanisms that are stable without the control cylinder.

6.2 Problem Setting
We consider the flow past a rotating cylinder with a smaller control cylinder in its
wake. We denote the diameter of the main cylinder as 𝐷 and the diameter of the
control cylinder as 𝑑. The ratio between the two cylinders is fixed at 𝐷/𝑑 = 10.
The Reynolds number is defined in terms of the main cylinder and fixed at 𝑅𝑒 = 60
throughout this chapter:

𝑅𝑒 =
𝑈∞𝐷

𝜈
(6.1)

where 𝑈∞ is the freestream velocity and 𝜈 the kinematic viscosity. We defined the
non-dimensional rotational rate as

𝛼 =
Ω𝐷

2𝑈∞
(6.2)
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Figure 6.1: Flow past a rotating cylinder with a control cylinder in its wake.

where Ω is the angular velocity of the rotational motion. A demonstration of the
problem we are studying is shown in Figure 6.1. We let the center of the main
cylinder be the origin. We denote the center of the control cylinder as (𝑥𝑐, 𝑦𝑐). For
the subsequent stability analysis, we fix 𝑥𝑐/𝐷 = 𝑦𝑐/𝐷 = 1.

6.3 Background Problems
In this section, we briefly summarize the two background problems that appeared
in earlier chapters.

Stability analysis of the flow past a cylinder with a control cylinder in its wake
For the flow past a stationary cylinder, if we put a small control cylinder in the wake
of the main cylinder, we can suppress the onset of vortex shedding. Specifically, for
Reynolds number below 63, if we put the control cylinder in the wake of the main
cylinder, we can suppress the onset of vortex shedding. This is shown by Strykowski
and Sreenivasan (1990) and also demonstrated in Figure 6.2.

Stability analysis of the flow past a rotating cylinder In Chapter 4, one of the
validating cases we used was the flow past a rotating cylinder. As studied by Pralits,
Giannetti, and Brandt (2013), at Reynolds number of 60, rotating the cylinder will
suppress the onset of vortex shedding if the rotational rate is below 4. Specifically, if
the rotational rate 𝛼 ∈ [1.5, 4] ∪ [5.5, 6], the flow remains steady and time-invariant
at 𝑅𝑒 = 60. Specifically, one can map out the parameter space for which the flow is
unstable, as shown in Figure 6.3. Notably, Figure 6.3 presents two distinct instability
mechanisms: one at lower rotational rate and one at high rotational rate. Those two
instability mechanisms are termed mode I (low rotational rate) and mode II (high
rotational rate) instability, respectively (Pralits, Brandt, and Giannetti, 2010).
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Figure 6.2: Perturbation of growth rates for variable vertical control cylinder loca-
tions with a fixed horizontal location at 𝑥𝑐/𝐷 = 1.2. Previously shown in Chapter 4.

Figure 6.3: Parameters space for which the flow past a rotating cylinder is unstable
at 𝑅𝑒 = 60. The contours are isocontours of perturbation growth rate. Contours are
in increments of 0.02.
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6.4 Stability Analysis
As discussed in the previous section, for the flow past a cylinder at 𝑅𝑒 = 60, both
rotating the main cylinder and putting a small control cylinder can result in the
suppression of vortex shedding. In this section, we will introduce the steps we used
to conduct three-dimensional stability analysis.

Recall from Chapter 4 that the mathematical problem we solve is the eigenvalue
problem of the linearized three-dimensional Navier-Stokes equations around some
two-dimensional equilibrium. We then Fourier-expand the linearized Navier-Stokes
equations along the span-wise direction. In its abstract form, we can write the
dynamics of a Fourier coefficient with span-wise wavenumber 𝜅 linearized around
some two-dimensional equilibrium 𝒒𝑠 as the following:

𝑑𝒒

𝑑𝑡
= 𝐴(𝒒𝑠, 𝜅)𝒒 (6.3)

where 𝐴(𝒒𝑠, 𝜅) is the discretized and linearized (around 𝒒𝑠) Navier-Stokes operator.
Due to the large ratio between the diameter of the main cylinder and that of the
control cylinder, we can leverage the multi-resolution property of the algorithm
presented in Chapter 4 to efficiently solve the problem. One of the examples of
a computational grid is shown in Figure 6.4. It shows the significant length-scale
difference between the small control cylinder and the large main cylinder. By only
refining the computational grids around the small control cylinder and the boundary
layer of the main cylinder, we can save a significant amount of computational
resources. Then for a sequence of spanwise wavenumbers {𝜅𝑖}, we compute the
corresponding eigenvalue spectrums. If there exists an eigenvalue with a positive
real part, exciting the flow using the corresponding eigenvector and wavenumber
will induce instability. Otherwise, the flow is linearly stable for that particular
wavenumber. In particular, for 𝜅 = 0, the corresponding perturbations are two-
dimensional, i.e. constant in the span-wise direction.

To conduct the stability analysis for a fixed rotational rate 𝛼, we follow a two-step
process:

1. Compute the equilibrium using Newton iterations;

2. Compute the eigenvalue spectrums for a set of wavenumbers from 0 to 6 with
0.1 increments.

By collecting the results from the second step, we can find if perturbing the flow
with the corresponding wavenumber will lead to instability.
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Figure 6.4: Computational grid used to solve one of the eigenvalue problems. The
grid density increases as a factor of 4 as the color darkens.

6.5 Results
Similar to the study we did in Chapter 4, we compute the stability problem across
a range of parameters within the range 𝛼 ∈ [0, 6.0] with increments of 0.1. We
compute the equilibrium solution via the Newton iterations. Then, we computed the
stability problem for the wavenumbers 𝜅 ∈ [0.0, 6.0] with increments of 0.1. We
plot the region with positive perturbation growth rates in Figure 6.5.

We can directly compare the stability characteristics of this flow to the one without a
control cylinder by comparing Figure 6.5 and 6.3. At low rotational rates, the mode
I instability is suppressed entirely with the presence of the control cylinder. This is
consistent with the observation by Strykowski and Sreenivasan (1990). However,
at high rotational rates (𝛼 ≥ 4.4), mode II instability is slightly excited by placing
a control cylinder in the wake of the main cylinder. To see this more clearly, we
compare the perturbation growth rate for different wavenumbers at rotational rates
𝛼 = 4.4 and 5.0. The comparison is shown in Figure 6.6. At 𝛼 = 4.4, when
there is no control cylinder, the flow is linearly stable and all the growth rates are
negative across. However, when we place a small control cylinder in the wake,
we see positive perturbation growth for a range of wavenumbers, indicating small
unstable three-dimensional modes. At 𝛼 = 5.0, placing a small control cylinder
suppresses the mode II instability but the flow is still unstable. In summary, placing
a small control cylinder (in the location we have chosen) in the wake of the flow
past a rotating cylinder suppresses the mode I instability mechanism but slightly
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Figure 6.5: Parameters space for which the flow past a rotating cylinder is unstable
at 𝑅𝑒 = 60 when there is a small control cylinder in the wake. The contours are
isocontours of perturbation growth rate. Contours are in increments of 0.1.

(a) 𝛼 = 4.4. (b) 𝛼 = 5.0.

Figure 6.6: Comparison of the perturbation growth rate ℜ(𝜆) for the flow past a
rotating cylinder at 𝑅𝑒 = 60 between with and without a small control cylinder in
the wake.

excites the mode II instability mechanism. At an even higher rotational rate of
𝛼 ≥ 5.2, we see a different type of instability that has a much higher perturbation
growth rate and larger wavenumber than the instability at 𝛼 < 5.2. The perturbation
growth rate across a range of wavenumbers is shown in Figure 6.7. In the regime,
the perturbation growth rate increases as the rotational rate increases, exhibiting a
different type of instability than both mode I and mode II instability.
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(a) 𝛼 = 5.2. (b) 𝛼 = 6.0.

Figure 6.7: Comparison of the perturbation growth rate ℜ(𝜆) for the flow past a
rotating cylinder at 𝑅𝑒 = 60 between with and without a small control cylinder in
the wake at higher rotational rates.

6.6 Concluding Remarks
In this section, we investigated the stability criterion of the flow past a rotating
cylinder with a small control cylinder in the wake of the main cylinder. We conducted
a series of stability analyses to demonstrate the algorithm presented in Chapter 4.
By leveraging the multi-resolution capability of this algorithm, we are able to cover
a large parameter space to map out the stability characteristics of the flow. By
doing so, we discovered that placing a small control cylinder in the wake (in the
position we chose) suppresses the mode I instability but slightly excites the mode II
instability. For rotational rates higher than 5.2, we also see the rise of another type
of instability that becomes increasingly unstable as the rotational rate increases.

We note that there are further investigations that can be done to further understand
the effects of placing a small control cylinder on the stability characteristics of the
flow past a cylinder. To understand this phenomenon further, we need to vary the
location of the control cylinder to give a more comprehensive understanding of
how the small control cylinder affects the stability characteristics of the flow past a
rotating cylinder.
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C h a p t e r 7

CONCLUDING REMARKS AND FUTURE WORK

In this thesis, we discussed two algorithms combining the immersed boundary (IB)
method, lattice Green’s function (LGF) approach, and adaptive mesh refinement
(AMR) to create fast numerical algorithms for simulating and analyzing spanwise
periodic external incompressible flows. We demonstrated those algorithms through
various flow simulation and analysis studies.

For these algorithms to be fast, efficiently tabulating the LGF of the screened
Poisson equation is a prerequisite. Thus, we first derived algorithms for tabulating
these LGFs in Chapter 2. In this chapter, we extended existing techniques to tabulate
the LGF for the Poisson operator to compute the entries of the LGFs of the screened
Poisson operators. Through numerical analysis, asymptotic expansion, and FFT, we
proposed a set of new algorithms to compute entries of the LGFs for the screened
Poisson equation and provided convergence rate guarantees. We demonstrated
that the resulting algorithms are significantly faster than existing methods. The
algorithms derived in this chapter serve as a building block to create the subsequent
flow simulation algorithm and analysis algorithm using the LGFs.

Utilizing the algorithms derived in Chapter 2, we propose an algorithm to simulate
spanwise periodic external incompressible flows in Chapter 3. In this algorithm, we
leveraged the spanwise periodicity by Fourier-expanding the velocity and pressure
variables. Through the incompressible Navier-Stokes equations, we derived the
evolution equations of the corresponding Fourier coefficients while incorporating
the immersed boundary formulation. With this formulation, we are able to adapt
an existing algorithm that simulates the fully 3D incompressible external flow using
LGF, AMR, and the IB method by Yu (2021). In addition, we specialized this
algorithm to better leverage the spanwise periodicity by introducing a parallel version
of the direct IB forcing solver. The resulting algorithm is demonstrated to be both
accurate and efficient when simulating spanwise periodic external incompressible
flows.

In addition to the flow simulation algorithm, we also proposed an algorithm to
analyze external flows via linear stability analysis and resolvent analysis. The
mathematical formulations of these analyses are well-established in previous works
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(Taira and Colonius, 2007). Mathematically, they are some forms of continuous
operator eigenvalue problems. However, the challenge to conduct such analyses in
external flow systems resides in efficiently discretizing and numerically computing
the resulting eigenvalue problems. In Chapter 4, we propose an algorithm to
efficiently discretize and formulate the eigenvalue problems. By leveraging the
advantages of the flow solver we presented in Chapter 3, we developed a boundary
integral formulation to solve the operator eigenvalue problems. In addition, using the
fast multipole method (FMM), we greatly reduced the computational complexity of
the eigenvalue problems. We validated the resulting algorithms using a wide range
of interesting flow cases.

Using the flow simulation algorithm we presented in Chapter 3, we studied the
starting vortices generated by translating and rotating bodies with sharp and straight
edges in a viscous fluid. Leveraging the flow simulation algorithm, we can ef-
ficiently simulate the early time behavior of the starting vortices. We conducted
direct numerical simulations (DNS) of various flow configurations. By analyzing
the resulting vorticity distribution and comparing it to the starting vortex inviscid
theory (SVT) by Pullin and Sader (2021), we verified that SVT still manifests in
incompressible flow, even in the presence of viscosity. As a result, we confirm the
validity and accuracy of SVT in predicting the early time behavior of the flow gen-
erated by translating and rotating bodies with sharp and straight edges in a viscous
fluid.

To demonstrate the stability analysis algorithm we proposed in Chapter 4, we applied
it to study the flow past a rotating cylinder with a control cylinder in its wake. In this
chapter, we fixed the location of the control cylinder and varied the rotational rate of
the main cylinder. We found that while placing a control cylinder in the wake stabi-
lizes the two-dimensional mode I instability, it slightly excites the three-dimensional
mode II instability. In addition, we observe the formation of a different type of in-
stability mechanisms appearing at rotational rates above 5.2. To further examine
this phenomenon, we can also vary the location of the control cylinder to understand
the physical mechanisms underlying the change in the stability characteristics.

The potential of the LGF method combined with the IB method and AMR shows
great promise in solving a wide range of computational problems in fluid mechanics,
as demonstrated in this thesis. However, there is still much work can be done to
further leverage the benefits these methods can offer. For external incompressible
flows that are spanwise periodic, turbulence models can be implemented to facilitate
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a broader range of applications of the flow simulation algorithm proposed in this
thesis. In addition, from a computational perspective, further optimization can be
conducted to enhance the parallel efficiency of the flow simulation algorithm.

For the flow analysis algorithms, one can leverage the flexibility of the IB method
to study flows around more complicated geometries, those that are much more com-
plicated than the ones demonstrated in this thesis. Although only briefly mentioned
in this thesis, the linear analysis algorithms are readily applicable to solve resolvent
analysis problems. The accuracy and efficiency brought by the flow analysis algo-
rithm proposed in this thesis can also be used to study the turbulent flows generated
around immersed bodies at high Reynolds numbers.
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A p p e n d i x A

IB TERMS FOR FOURIER COEFFICIENTS

In this part, we provide a few details regarding the Fourier transform of Eq. 3.3
leading to Eq. 3.5. The only terms that are nontrivial are the Fourier transforms of
the IB forcing term and the no-slip boundary condition.

We first show the derivations of the IB forcing term. Consider the immersed
boundary defined, Γ(𝑡). The geometry of the immersed boundary is assumed to
be the extrusion of a two-dimensional boundary. Thus, we can denote that said
two-dimensional boundary as Γ2𝐷 (𝑡). With this, we can write:

Γ(𝑡) = Γ2𝐷 (𝑡) × [−𝑐/2, 𝑐/2] . (A.1)

Consequently, we can find some 𝝃2𝐷 that parameterizes Γ2𝐷 (𝑡) for all 𝑡. Correspond-
ingly, the parameterization at time 𝑡 is defined as 𝑿2𝐷 (𝝃2𝐷 , 𝑡). Thus, following the
notation of Eq. 3.5, we can write

𝑿 (𝝃, 𝑡) = (𝑿2𝐷 (𝝃2𝐷 , 𝑡), 𝑍), 𝝃 = (𝝃2𝐷 , 𝑍). (A.2)

Then with 𝒙 = (𝒙2𝐷 , 𝑧), we can write the IB forcing term at 𝒙 as:∫
Γ(𝑡)

𝒇 Γ (𝝃, 𝑡)𝛿(𝑿 (𝝃, 𝑡) − 𝒙)𝑑𝝃

=

∫ 𝑐/2

−𝑐/2

∫
Γ2𝐷 (𝑡)

𝒇 Γ (𝝃2𝐷 , 𝑍, 𝑡)𝛿2𝐷 (𝑿2𝐷 (𝝃, 𝑡) − 𝒙2𝐷)𝛿1𝐷 (𝑧 − 𝑍)𝑑𝝃2𝐷𝑑𝑍

where 𝛿1𝐷 and 𝛿2𝐷 denote the Delta functions in 1D spaces and 2D spaces, respec-
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tively. With the above notation, we write:

F𝑘
[∫

Γ(𝑡)
𝒇 Γ (𝝃, 𝑡)𝛿(𝑿 (𝝃, 𝑡) − 𝒙)𝑑𝝃

]
=

1
𝑐

∫ 𝑐/2

−𝑐/2
𝑒−𝑖𝑧

2𝜋𝑘
𝑐

∫
Γ(𝑡)

𝒇 Γ (𝝃, 𝑡)𝛿(𝑿 (𝝃, 𝑡) − 𝒙)𝑑𝝃𝑑𝑧

=
1
𝑐

∫
Γ(𝑡)

∫ 𝑐/2

−𝑐/2
𝑒−𝑖𝑧

2𝜋𝑘
𝑐 𝒇 Γ (𝝃, 𝑡)𝛿(𝑿 (𝝃, 𝑡) − 𝒙)𝑑𝑧𝑑𝝃

=
1
𝑐

∫
Γ2𝐷 (𝑡)

∫ 𝑐/2

−𝑐/2

∫ 𝑐/2

−𝑐/2
𝑒−𝑖𝑧

2𝜋𝑘
𝑐 𝒇 Γ (𝝃2𝐷 , 𝑍, 𝑡)𝛿2𝐷 (𝑿2𝐷 (𝝃2𝐷 , 𝑡) − 𝒙2𝐷)𝛿1𝐷 (𝑧 − 𝑍)𝑑𝑍𝑑𝑧𝑑𝝃2𝐷

=
1
𝑐

∫
Γ2𝐷 (𝑡)

∫ 𝑐/2

−𝑐/2
𝑒−𝑖𝑧

2𝜋𝑘
𝑐 𝒇 Γ (𝝃2𝐷 , 𝑧, 𝑡)𝛿2𝐷 (𝑿2𝐷 (𝝃2𝐷 , 𝑡) − 𝒙2𝐷)𝑑𝑧𝑑𝝃2𝐷

=

∫
Γ2𝐷 (𝑡)

𝒇̃ Γ,𝑘 (𝝃2𝐷 , 𝑡)𝛿2𝐷 (𝑿2𝐷 (𝝃2𝐷 , 𝑡) − 𝒙2𝐷)𝑑𝝃2𝐷 ,

(A.3)
where 𝑓Γ,𝑘 is the 𝑘 𝑡ℎ Fourier coefficient of the IB forcing 𝑓Γ.

For the boundary condition, we apply F𝑘 directly. The LHS, by definition, is:

F𝑘 [𝒖Γ (𝝃, 𝑡)]

=
1
𝑐

∫ 𝑐/2

−𝑐/2
𝑒−𝑖𝑍

2𝜋𝑘
𝑐 𝒖Γ (𝝃, 𝑡)𝑑𝑍

=
1
𝑐

∫ 𝑐/2

−𝑐/2
𝑒−𝑖𝑍

2𝜋𝑘
𝑐 𝒖Γ (𝝃2𝐷 , 𝑍, 𝑡)𝑑𝑍

=𝒖̃Γ,𝑘 (𝝃2𝐷 , 𝑡).

(A.4)
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The RHS is:

F𝑘
[∫

R3
𝒖(𝒙, 𝑡)𝛿(𝒙 − 𝑿 (𝝃, 𝑡))𝑑𝒙

]
=

1
𝑐

∫ 𝑐/2

−𝑐/2
𝑒−𝑖𝑍

2𝜋𝑘
𝑐

∫
R3

𝒖(𝒙, 𝑡)𝛿(𝒙 − 𝑿 (𝝃, 𝑡))𝑑𝒙𝑑𝑍

=
1
𝑐

∫ 𝑐/2

−𝑐/2
𝑒−𝑖𝑍

2𝜋𝑘
𝑐

∫
R

∫
R2

𝒖(𝒙2𝐷 , 𝑧, 𝑡)𝛿2𝐷 (𝒙2𝐷 − 𝑿2𝐷 (𝝃2𝐷 , 𝑡))𝛿1𝐷 (𝑧 − 𝑍)𝑑𝒙2𝐷𝑑𝑧𝑑𝑍

=
1
𝑐

∫ 𝑐/2

−𝑐/2
𝑒−𝑖𝑍

2𝜋𝑘
𝑐

∫
R2

∫
R
𝒖(𝒙2𝐷 , 𝑧, 𝑡)𝛿2𝐷 (𝒙2𝐷 − 𝑿2𝐷 (𝝃2𝐷 , 𝑡))𝛿1𝐷 (𝑧 − 𝑍)𝑑𝑧𝑑𝒙2𝐷𝑑𝑍

=
1
𝑐

∫ 𝑐/2

−𝑐/2
𝑒−𝑖𝑍

2𝜋𝑘
𝑐

∫
R2

𝒖(𝒙2𝐷 , 𝑍, 𝑡)𝛿2𝐷 (𝒙2𝐷 − 𝑿2𝐷 (𝝃2𝐷 , 𝑡))𝑑𝒙2𝐷𝑑𝑍

=

∫
R2

[
1
𝑐

∫ 𝑐/2

−𝑐/2
𝑒−𝑖𝑍

2𝜋𝑘
𝑐 𝒖(𝒙2𝐷 , 𝑍, 𝑡)𝑑𝑍

]
𝛿2𝐷 (𝒙2𝐷 − 𝑿2𝐷 (𝝃2𝐷 , 𝑡))𝑑𝒙2𝐷

=

∫
R2

𝒖̃𝑘 (𝒙2𝐷 , 𝑡)𝛿2𝐷 (𝒙2𝐷 − 𝑿2𝐷 (𝝃2𝐷 , 𝑡))𝑑𝒙2𝐷 .

(A.5)
Then, the boundary condition becomes:

𝒖̃Γ,𝑘 (𝝃2𝐷 , 𝑡) =
∫
R2

𝒖̃𝑘 (𝒙2𝐷 , 𝑡)𝛿2𝐷 (𝒙2𝐷 − 𝑿2𝐷 (𝝃2𝐷 , 𝑡))𝑑𝒙2𝐷 . (A.6)
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A p p e n d i x B

COMPATIBILITY CONDITION ON 𝐿−1
0 IN A MULTILEVEL

MESH

Consider two different uniform Cartesian meshes with different resolutions Δ𝑥1 and
Δ𝑥2 and are governed by the relationship Δ𝑥1 = 𝑁Δ𝑥2, where 𝑁 a positive integer.
Denote the 𝐵0 kernel for the two grid as 𝐵1

0 and 𝐵2
0. The compatibility condition we

impose is:
lim

|𝒏|→∞
(𝐵1

0(𝒏) − 𝐵
2
0(𝒏𝑁)) = 0. (B.1)

Since 𝒏Δ𝑥1 = 𝒏𝑁Δ𝑥2, this condition means that, if 𝐵1
0 and 𝐵2

0 are two different
discrete solutions of a discretized 2D Poisson equation induced by the Dirac delta
function, both solutions should match at infinity in the physical space.

Using the asymptotic expansion of LGF (Martinsson and Rodin, 2002), we can
write:

𝐵0(𝒏) =
1

2𝜋
log( |𝒏|) + 𝐶 +𝑂 (1/|𝒏|2). (B.2)

Thus, by plugging in this expansion to Eq. B.1, we get:

0 = lim
|𝒏|→∞

(𝐵1
0(𝒏) − 𝐵

2
0(𝒏𝑁))

= lim
|𝒏|→∞

( 1
2𝜋

log( |𝒏|) + 𝐶1 +𝑂 (1/|𝒏|2) − 1
2𝜋

log(𝑁 |𝒏|) − 𝐶2 −𝑂 (1/|𝑁𝒏|2))

= lim
|𝒏|→∞

(− 1
2𝜋

log(𝑁) + 𝐶1 − 𝐶2 +𝑂 (1/|𝒏|2))

= − 1
2𝜋

log(𝑁) + 𝐶1 − 𝐶2.

(B.3)
Thus, we obtain

𝐶1 − 𝐶2 =
1

2𝜋
log(𝑁). (B.4)

That is:
𝐵1

0(𝒏) = 𝐵
2
0(𝒏) +

1
2𝜋

log(𝑁). (B.5)

In the context of our algorithm, we have 𝑁 = 2𝑙 for some non-negative integer 𝑙. As
a result, we have:

𝐵1
0(𝒏) = 𝐵

2
0(𝒏) +

𝑙

2𝜋
log(2). (B.6)
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A p p e n d i x C

𝑆𝑖
𝑘,𝑛

IS HERMITIAN WHEN 𝑃𝑖𝑛 = 𝑃
𝑖−1
𝑛

Here we show that (𝑆𝑖
𝑘,𝑛
)∗ = 𝑆𝑖

𝑘,𝑛
under the assumption of 𝑃𝑖𝑛 = 𝑃𝑖−1

𝑛 = 𝑃𝑛. In this
case, we have 𝑆𝑖

𝑘,𝑛
= 𝑃𝑛𝐸

𝑖
𝑘
(𝐼 − 𝐺𝑘𝐿

−1
𝑘
𝐷𝑘 )𝑃𝑇𝑛 . Since 𝐸 𝑖

𝑘,𝑛
commutes with all the

discrete operators and 𝐿−1
𝑘

, we have:

(𝑆𝑖𝑘,𝑛)
∗ =

[
𝑃𝑛𝐸

𝑖
𝑘 (𝐼 − 𝐺𝑘𝐿

−1
𝑘 𝐷𝑘 )𝑃𝑇𝑛

]∗
= (𝑃𝑇𝑛 )∗(𝐸 𝑖𝑘 )

∗(𝐼 − 𝐺𝑘𝐿
−1
𝑘 𝐷𝑘 )∗𝑃∗

𝑛.
(C.1)

Since 𝑃𝑛 is purely real, 𝑃∗
𝑛 = 𝑃

𝑇
𝑛 . In addition, we know that (𝐸 𝑖

𝑘
)∗ = 𝐸 𝑖

𝑘
, (𝐿−1

𝑘
)∗ =

𝐿−1
𝑘

. As a result, we can write the equation above as:

(𝑃𝑇𝑛 )∗(𝐸 𝑖𝑘 )
∗(𝐼 − 𝐺𝑘𝐿

−1
𝑘 𝐷𝑘 )∗𝑃∗

𝑛 = 𝑃𝑛𝐸
𝑖
𝑘 (𝐼 − 𝐷

∗
𝑘𝐿

−1
𝑘 𝐺

∗
𝑘 )𝑃

𝑇
𝑛 . (C.2)

Now we recall the mimetic property 𝐷∗
𝑘
= −𝐺𝑘 , and we obtain that:

𝑃𝑛𝐸
𝑖
𝑘 (𝐼 − 𝐷

∗
𝑘𝐿

−1
𝑘 𝐺

∗
𝑘 )𝑃

𝑇
𝑛 = 𝑃𝑛𝐸

𝑖
𝑘 (𝐼 − 𝐺𝑘𝐿

−1
𝑘 𝐷𝑘 )𝑃𝑇𝑛 . (C.3)

Combing all the steps together, we have shown that:

(𝑆𝑖𝑘,𝑛)
∗ =

[
𝑃𝑛𝐸

𝑖
𝑘 (𝐼 − 𝐺𝑘𝐿

−1
𝑘 𝐷𝑘 )𝑃𝑇𝑛

]∗
= (𝑃𝑇𝑛 )∗(𝐸 𝑖𝑘 )

∗(𝐼 − 𝐺𝑘𝐿
−1
𝑘 𝐷𝑘 )∗𝑃∗

𝑛

= 𝑃𝑛𝐸
𝑖
𝑘 (𝐼 − 𝐷

∗
𝑘𝐿

−1
𝑘 𝐺

∗
𝑘 )𝑃

𝑇
𝑛

= 𝑃𝑛𝐸
𝑖
𝑘 (𝐼 − 𝐺𝑘𝐿

−1
𝑘 𝐷𝑘 )𝑃𝑇𝑛

= 𝑆𝑖𝑘,𝑛.

(C.4)

Thus, we conclude that 𝑆𝑖
𝑘,𝑛

is Hermitian.
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A p p e n d i x D

ADDITIONAL TIME CONSTRAINT FOR THE EXISTENCE OF
TYPE I AND II VORTICES GENERATED BY A FLAT PLATE

In this appendix, we derive the maximal time for Type I and II vortices of a flat plate
to exist, which supplements the time constraint in (5.13).

For Type-I vortices, the second term on the right-hand side of (5.10) must dominate
the first, i.e.,

𝑖𝛽 𝑇 𝑝−
𝑞

2
1 + 𝑀 (𝑍)
(2𝑍) 1

2
≫ 𝑇𝑚, (D.1)

where 𝑞 = 2(𝑝 + 1)/3, as per Table 1 of PS21. Balancing the left and right-hand
sides of (5.10), gives 𝑍 = 𝑂 (𝛽 2

3 ), and the inequality in (D.1) becomes

𝑇 𝜖 ≪ 𝛽
2
3 , (D.2)

where
𝜖 ≡ 𝑚 − 2𝑝 − 1

3
, (D.3)

which is strictly positive for a Type-I vortex, i.e., 𝜖 > 0; see (5.6) and Figure 5.1.

Type-II vortices occur in the opposite regime, i.e.,

𝑖𝛽 𝑇 𝑝−
𝑞

2
1 + 𝑀 (𝑍)
(2𝑍) 1

2
≪ 𝑇𝑚, (D.4)

where 𝑞 = 1 + 𝑚. Balancing the left and right-hand sides of (5.10), shows that
𝑍 = 𝑂 (1), from which (D.4) becomes

𝑇− 3
2 𝜖 ≪ 𝛽−1, (D.5)

where 𝜖 < 0 for Type-II vortices.

Combining (D.2) and (D.5) produces

𝑇 |𝜖 | ≪ 𝛽
2
3 sgn(𝜖) , (D.6)

where 𝜖 ≠ 0; note that 𝜖 = 0 corresponds to a Type-III vortex sheet, which is not
considered in this appendix. The time constraint in (D.6) is in addition to (5.12),
and the overarching spatial constraint that the vortex remains close to the trailing
edge.
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Choosing the same multiplicative factor as (5.13) for the inequality in (D.6) to hold,
i.e., 0 < 𝛿 ≪ 1, gives the additional maximal time for existence of Type I and II
vortices,

𝑇
(2)
max ≈

(
𝛽

2
3 sgn(𝜖)𝛿

) 1
| 𝜖 |
, (D.7)

where it is understood that 𝛽 is finite and the parenthesized term is less than unity.
This shows that Type I and II vortices, corresponding to 𝜖 > 0 and 𝜖 < 0, respec-
tively, are more easily observed for large and small, 𝛽, respectively. In Section 5.3,
we combine (D.7) with (5.13) to give the overall maximal time for existence of any
starting vortex.
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