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Summary of Thesis

The thesis consists of two parts. In Section I the
theory of lattices whose elements are nxn matrices with
elements in a principal idesal ring is developed. Here the
main result is a decomposition theorem stating that such
lattices are a direct product of certain well distinguished
sublattices whose elements are "primary" elements. The
results have an immediate application to the theory of linear
form moduls over a principal ideal ring, and in fact the theory
was developed with this in mind. Section II gives a rather
remarkable vroperty of the above mentioned decomposition
theorem when the basis elements of the linear form modul which
the matrix represents are algebraic integers, end is therefore

& contritution to the multiplicative theory of algebreic moduls,



Introduction

It was probably Dedelrind'!s study of algebraic moduls in
developing the theory of algebraic numbers which led him to
introduce and study the abstract algebra called by him a
"Dualzruope, now called a lattice. He showed that the free
mocdular lattice generated by three elements is of order twenty-
eight, and exhibited seté of quadratic moduls which actually
generate it (Dedekind [2] ). However the modular lattice of
submoduls of a linear form modul is not the most general discrete
modular lattice; thus, though the free modular lattice on four‘
generators is infinite, the free lattice generated by any finite
number cf submoduls of a modul of finite order is finite. The
question naturally arises as to what lattice identities besides
the modular identity are satisfied by the lattice of submoduls
of & linear form modul. Though this is as yet an unanswered
question, the results of Section I simplifies the vproblem.

The study of algebraic moduls may be divided into two parts.
In the first the theory is simply that of a linear form modul
over the ring of rational integers, while in the second the
elgebraic character of the besis elements plays an essential
role and leads to the theory of algebraic numbers and ideals.
Section I contains contributions to the former theory, and

Section II to the latter. t was found that both theories could



be treated most easily by employins matrices; indeed the first
section may be considered a study of the lattice theory of
matrices with elements in a vrincipal ideal ring.

The usual v and A notation of lattice theory is used
(cf. Birkhoff [1]). If a, 6, ¢, - - « are elements of a
lattice, @ covers A means (i) @ >4, (ii) a=b, =and (iii)
a>c>h implies aze or ¢=5b . Arrows such as — ond ——~ will
be used to indicate one way and two way implication, respectively.
If & and b are elements of a ring, o divides A will sometimes
be written alb , and @ =nd A relatively prime will be indicated

vy (a,b)=1.



Section I

Let 7/ be a closed associative system with elements 4,
B,C, ... and aunique right and left unit element /. The
closure operation is written as a multiplication and the identity
of two elements # and B of 7/ is indicated by A=B. The set
consisting of the elements of Z/ forms a partially ordered set
O if the ordering relation > 1is defined by

A>B~~ B=/4C, S4B, C e
and. the associated equivalence relation = by

A=B <~ 458,854, 4,8 7.
For /=47 implies # >4 for each element A of 7/, and the
transitivity of the ordering relation may easily be verified to
depend on the associativity of the closure operation of 7.
Since A=/4 it follows />4 for each element 4 of '; thus 7,
the unit element of 77, is also the unit element of 0. or
course there is another partially ordered set l74’ﬁhich the
elements of 2fform with respect to the ordering relation of
right division, i.e.

ArB =+ B=0C4
However & and £ ere abstractly idéntical end we will confine
ocur attention to c.

The set of elements of 27{Which possess inverses forms a

group which will be denoted by 57. @y is not a2 null set since
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] is its own inverse. It is easily seen that 4=8 if and only
if there is en element J of Y such that #=3J.

An element A of 7/ will be called a prime if P=4A im-
vlies that one and only one of 4 or B is an element of J.
It is a simple matter to show that

A covers B —= B=4F, /P a prine.

For 4>8 implies B=47, and 4 #B implies P is not an element
of . Suppose P=QR ; then B=AOR, and 4>4>JQF =B,
Since 4 covers B, either 4=4Y or 49 =4O~ ; hence one am
only one of & or R is in ¢, and X is 2 prime. However the
converse
(1.1) B=zA47FP , Faprine —» 4 covers B
is not in general true without some additional assumption on 7.
I1f B8=4F, P a prime, it does follow that 4 >3 and A#8,
Suppose 4 >C>B; then B=CR ,2= A48, and B=APA. Thus
(1.2 B=40R=4P
If 7] is a semi-group in which left cancellation is permissible
we may conclude O/’f’:' P, and since /7 is a prime, one of »Q or
AR is in & , thus proving (1.1). However left cancellation is
only a sufficient condition for (1.1) to hold, and we shzll see
in our study of matrices that (1.1) may be proved by an argument
on the "norms" of the elements involved without any appecl to the
cancellation law.

If P is a prime and P= &, then & is a prime, i.,e. P a
prime implies each element of the set I is a prime. Also if

A is a prime then each element of the set TP ig a prime, thoagh



P #JP in general, for J in J . Thus there may be associated
a class of primes J2 with each prime 2 of 7/ and each vrime
of /4 is in one and only one of these classes. Supvose the
following condition holdss
é. If an element A4 of 7/(' has one decomposition as the

product of primes belonging to asingle class ‘-g’o.

P a prime, then all decompositions of 4 as a product

of primes has as its prime factors only primes of JP°.

A4 will then be called a primary element with respect

to f/).
é implies the set of primary elements with respect to a fixed
set of primes JP is closed under the closure operation of 7{',
i.e. if 4 and B are primary elements with respect to /7,
then 43 1is also & primary element with respect to !gp. Thus
if (P denotes the set of all primary elements with respect to
JP together with the set J , then P is a closed associative
system with the same unique right and left unit va as 7/[,7. The
elements of (P &lso form a partially ordered set with respect
to left division, which we denote by Q:s .

We will now investigate an importent instance.of the above
theory in which
(i) the partially ordered set J is a lattice,
(ii) each partially ordered set CS,, is a sublattice of j, and

(ii1) the lattice J is a direct product of the sublattices 42.



Henceforth 27 shall denote the set of all non-singular

nyn matrices with elements in the ring R of rational integers.

The determinant of a matrix A will be called its norm and will be
denoted by /N%V. Thus a matrix A is non-singular if and only
if /?4%}¢’0 . The associative closure operation is taken as row
by column matric multiplication, and the unique right and left
unit / is the #7247 matrix with 1's in the principal disgonal
positions and O's elsewhere. Though we are restricting & to be
the ring of rational integers in order to simplify the notation
and avoid circumlocutions regarding associates, many of our main
results hold when 0? is any principal ideal ring.

Matrices which possess inverses, i.e. elements of the group
=9, will be called unimodular, while the term unit matrix will be
reserved for I (cf. MacDuffee [1], p. 30). A matrix is unimodular
if and only if its norm is a unit of & (MacDuffee [1], Theorem
20.1). If A=8Y, where JV is unimoduler, we shall call 4 eand
8 right assoclates or simply associates. Thus 4=58 if and only
if A and B are associates.

Matrices which are neither unimodular nor prime will be
called composite. A composite matrix can be expressed as a
product of at most a finite number of primes (MacDuffee [1],
Theorem 20,3). It is clear that if the norm of a matrix 4 is a
prime of 0;, then 4 is a prime of 27. The converse is a

corollary of the following theorem.
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Theorem 1.1. If the norm of a non-singular matrix A is

divisible by a prime P of W, there exists
a prime matrix P of WZ’ such that
(1) nP)=p,
§i) 4=BP, B an element of 7/
£ course /7(4 70('5”,9 .
In the proof of this theorem we shall apply certain well-
known results concerning matrices in Hermite'!s normal form (see
MacDuffee [1], Theorem 22.1). Let A4, be an an associate of

A which is in Hermite's normal form, Then
A=A47
where J is unimodular, and ﬂ”f is of the form

fa';’ ob* L. a/""\

a’t‘t L. {}}J”

RN
il

c( na
\ J

where all elements below the principal diagonal are O.

Now
nid)= a’a®® . .. x™, end since p divides a4/ , p a
prime, if follows P divides some a5 let a™" ve the «

of smallest superscripts which is divisible by P. Let

(5 g T
Kae
&% .. B e i
= P - ‘ k’-l"
B = 4 i P ;
A Y
4 /




where p occurs in the r'th row and rtth column of P Then
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Let ,6""= o™ , (£ 8N (21,2, .., 7 except when J=r.
Then 4,= 88X, if integers Ao, koo, "~ s ko, end (:7",

g0 G
a8, .8 exist such that

r'_:r[ o),

~A

B ko FBp o,
!‘-1 r- "-2. e
I‘ + (é“( kﬂ.; + P al )

™~

,@"‘/{,‘,"' S + 5 2

B, # 8 ks -+ f3"'f> =
The first equation is solvable for l@"r by hypothesis. Since
( C’(m-’P) = ,6‘;‘., P )=/, (<r , the remaining equations may

I\-l,,

be solved one after the other, the second for f'rr_,,.- and A

l'.z (4

the third for 4.., and B , and finally the r'th
for A, and &"" . Hence

A4 =(BR)J =8BF



where # = BJ and ﬂ</p)=,ﬁ , as was to be shown. That
n/4j =nlB/p follows from the generel theorem that if 4 ena
B are any 7+n matrices, then ﬂ(%ﬁ.)= /754)'7:‘43}.
Corollary 1.1. An element # of 7 is a prime of 7 if
and only if n'P) is a prime of é? If
pP)= p, we sey that P belongs to P .
The following theorem is obtained by an obvious induction
on Theorem 1.1,
Theorem 1.2. Each element of 7/[' has a decomposition as a
product of primes which belong to the prime
factors of the norm of the given matrix.

Theorem 1.3. /4/ covers A if and only if
B=4P,

/Daprime. -If ﬂ{/D/",D we say that 4

n

covers 53 with respect to © .

The sufficiency has already been demonstrated in the general
theory. In proving the necessity agssume we have arrived at
equation (1.2) in the argument. Then
all) ol nR) = nt4 ) piP)

or '
ﬁf‘/(’)}l?//?j = /’7(/ID/‘

which, vith the aid of the corollary above and & property of

primes of A, conpletes the proof of the theorem,



Corollary 1.3. 4 covers 8 if and only if
(1) 4>8,
(i1) n(B) = /7‘:44/,0 , P a prime of A .

The following two theorems follow directly from

Theorems 1.2 and 1.3.

Theorem 1.4. Let 4, B, be non-singular matrices such
that
(1) 4>8, B=4C
(11) MC) = R°R% - - - B, where By p, -, p0
are primes of 01)

Then every prime chain joining 4 and B
contains j&'*’/ elements (both # and B
are included in the chain).

Theorem 1,5. A non-singular matrix has s many distinct
decompositions as a »nroduct of primes as
there are different prime chains joining
the matrix to the unit matrix, where two
decompositions are distinct if not all cor-
responding prime matric factors are equal,
and two chains are different if they are
not identical.

The following theorem holds only when R is the ring of

retional integers.

Theorem 1.6. There are precisely Pq"/. ,6-/ non-associate



vrime nxA matrices belonging to each prime

P of £ The prime matrices are

T A I ; f 10 1
4 P ke, As I , :
> 3 > 5 3
. P ke !
I J \ / \ SEAEAN >
vhere each A, - s t<jsn, (0,2, -, n)

ranges independently through all integer
values from O to p-/.

The proof is omitted since it is simply a matter of enumer-
ating cases and applying the uniqueness of the canonical associ-
ate of a matrix (see MacDuffee (1], Corollary 22.2) If AP
denotes any one of the prime matrices belonging to p enumerated
in the above theorem, then the set \VP of primes referred to in
the general theory is the set of primes given in the 2bove theorem
together with their associates, i.e. j,o is the set of all
primes belonging to 2. By an argument on the norms of the
matrices involved it is clear that condition & is fulfilled, and
that a primary element of 7/‘(/ is an element whose norm is a power,
say 2/ , of aprime of M. 7 will be called the rank of the
primary matrix, and the primary matrix will be sald to belong to
the prime of & of which its norm is a power. Thus a prime is a

primary element of rank 1. The rank of a primary matrix will



& 10
usually be written as a superscript in parenthesis, e.g. /Dw .

Fach pair of elements A g & of & has a greatest commm
left divisor AvB and a least common left multiple A~ 5 .
This was proved by Chatelet [1] when A is the ring of rational
integers. However this can be proved most easily when K is any
ring by epvealing to the theory of linear form moduls of order
7 over a ring A. 1f L is such a linear form modul the sub-
moduls of order » of & form a lattice, in fact a modular
lattice, with respect to union and crosscut. If we think of
the non-singular 7477 matrices with elements in X as representa~
tives of the submoduls of oZD, we can immediately conclude that
these matrices form a modular lattice with respect to the order-
ing relation of left division. (See MacDuffee (1], Theorem 24.1,
Corollary 24.1, and Theorem 24.2). Thus associates exist when
and only when R nes units, and then the represent the same sub-
modul of L.

Before proceeding with the study of the lattice J 1t is
interesting to note that when " is a principal ideal ring the
set of 74N matrices with elements in & satiefy the following
five conditions with respect to matric multiplication:

(i) closure,

(i) associativity,

@ 4=8-— CA=CH,

(iv) 0(4vB)=C4VCB,

(v) 74 =47 =4, 7 the unit matrix.
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Thus metric multiplication is a non-commtative ideal multipli-
cation over the lattice of @42 matrices with elements in &,

Since ‘j is & modular lattice, both Birkhoff covering
conditions are satisfied (Birkhoff [1], page 34). This fact is
used in proving the next theorem.

Theorem 1.7. If 4 znd 8B are elements of & such that

AuvB covers 8 with respect to the prime £,
then 4 covers 428 with respect to p.

By an inductive argment the proof may be reduced to the
case in which Zv8 covers 4 as well as 8, so that 4 and B
cover 473 . Each of these coverings is with respect to primes
of 6?, so that

B=4vB8/ P, 4 =HvBP
4o B = B0 L AaB= A9
where P, Pj O, @/ are primes and we are given f)//);y:p. Since
AaB =4 BYPEG =L BIPEQ!
we have
D))= AP )
where each of 2/F), r'¢), ﬂ:///g/,," , and n/Q" is a prime of &,
Hence if /2(’(,}\,} =Q we may conclude that either
| Pz ena n(G)=p,

or

i 7
nPl=p and #lG'zg.



In the former case the theorem is proved. Assume that the
latter possibility holds. We will show that it follows that
P=9, completing the proof. In order to simplify the proof
we will appeal to the cencellation law, though this is not
necessary. Then

PO = PBEC, say, A
and since ° and /D/ are primes both of which cover C, we have

C=r~Pn P/.

(
Let Pand P be in Hermite's normal form, so that

( /) \
! ]
| T 1 .
. ‘ ,
/D = P k'z"*‘ T A“'H‘l PI= P k’.sﬂ T ks;a
! B )
I 1
» / \ /

where all omitted elements are O's. If r#38 it is clear that
P and P' can not be miltiplied on the right by prime matrices
in Hermitel!s normal form to obtain matrices in Hermitel!s normal

form having the same norm unless p=9 . Assume /=S, and let

4 A r’ Y
[ | -
Q = ? Z"‘"'. Z".h > Q'E ? Z";rm o Zr,n =
g !
. o L !

Then

’ . ) ] . 7
P? PZ’.f¢/+ A,";'r/ P‘?')"ﬂ.* Krpee © Pleat ",.’,

i

Py

i
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Thus P = PQ' if and only if
' /
ploi# boy =Pl vk, modpg C=res, rea, -y,

Hence

/
ko = ke, mod P, e e - o

and P=P/, implying #=7B , contrary to our hypothesis that
A B covers 8. Hence the theorem. |

An obvious induction gives the following result.

Theorem 1.8. If 4 and B are elements of a, then

n'A4)niR) «nldaBn4uB),

The norm is thus a multiplicative type of modular
functional. If nﬁ)r,ff,’,l%e‘—--)%ef the p. primes, the usual ad-
ditive modular functional is ,0/14) = ’5@;, and

P A)+2B) = piAaB) +ol4uB) .

Theorem 1,9, The set of all primary elements of 9] belong-
ing to a fixed prime, say p , together with
the set j of unimodular elements form a
dense modular sublattice of 3 This sub-
lattice will be denoted by 5,.

This follows directly from Theorem 1.8, since nM)’P’ "
./?(B/)r',DJ implies nlAaB)= p1 ' nldcd) = p” , Where rss=utl,

We adopt the convention of calling a unimodnlar element a

primary elemént of rank zero and belonging to e achmrime of &,

©
Thus P denotes a unimodular matrix.
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Theorem 1.10. Let A be an element of D such that
nlA) = pk

where p is a prime of ® ana (PTk)=1,
Then there exists a decomposition of the
form

A= POH
where o is a primary element of rank
7 belonging to p, and this decomposition
is unique in the sense that if also

A= Rk,
where /,Dmis a primary element of rank r
belonging to p, then A “e g, P
shall be called the maximal left primary
factor of A4 with respect to o .

That there exists a decomposition of the form stated in
the theorem is clear from Theorem 1,2, If there are two such
decompositions we have P(ﬂ>4, /),m >4 , and hence /Dm"'[?m?”q’ .
If P /‘?m , then POnE mis a primary element belonging to
p and of renk greater tham 7, a contradiction to (27 AJ</,
Hence the theorem.

By an induction we have the following theorem.

Theorem 1.11. Corresponding to each order of the distinct

prime factors of the norm 0(%) of a non-

singuiar matrix A there exists a unique
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decomposition of A as the product of primaxy
matrices belonging to the prime factors of
(4.

Theorem 1.12, Let 4 be an element of o having the maximal
left primary factor Pl" of .morm p", p a
prime. Then all primary elements which belong
to o end divide 4 slso divide ~ .

For if /?s} is a primary element which belongs to p and
divides 4 but does not divide P we have

B 5 PO, P >4
where the first containing 1is proper. This is in contradiction
to P being the maximal left primery factor of 4 with respect
to p.
A restatement of the above theoreﬁ follows.
Corollary 1.12. The maximal left primary factor of an
elenent of 2 with respe;:t to a prime
P is the meet of the set of 211 its
left primary factors belongzing to .

Two elements < and B of £ will ve called relatively
prime if snd only if their join is an element of ¥, i.e. if and
only if 408:[. Thus two elements of & are relatively prime
if and only if their only common left factors are unimoduler
elements,

Theorem 1.13. Two elements # and B of £ are relatively
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prime if and only if
ni4aB8 = ni4) P/

This 1s a consequence of Theorem 1.8 and the discussion

above.

Theoren 1.14. If 4 and B are elements of C such that
nid) end 7B/ ere rvelatively prime
elements of X', then 5 and .BIare relative-
ly prime elements of 0

For n(4vB) 1is a factor of both 74 ana 73 ; nence

2(4eB) is a2 unit of % and AvB 1s unimodular. The converse
of this theorem is not in general true.

Corollary 1.14., Primary elementsg of 3 belonging to dif-

ferent primes of (/"[7 are relatively prime.

Theorem 1.15. Each element of 5 is equel to the meet of
its maximal left primary factors.

Let 74)=pfR%- P&, where 4 1s en element of & whose

/e ) : @)
maximal left primary factors are i . Ce'), . .,,D belonging to

-

the distinct primes 5, O , - -, /Dé , respectively. Since
(T} 1 = £
b A > /f/ ¢ = ) 2 5 2 3
3 3
we have
/ e y
B [ o B¥ 5 A

By an obvious induction on Corollary 1l.14 and Theorem 1.13,
n(Tn 1 o A B%) o505 ple ).
But if B and C are elements of o such that 8> and

/ﬁ{@}: /7/(1)’, then 8= C ,



- 17 -

Hence

I L - L A
This representation of 4 is unique since the maximal left
primary factors of 4 are unique.

Now let B, Py, = « - TR be some ordering of
the primes of x. Applying the convention mentioned just before
Theorem 1,10, we may write

A = B P s o
where f3@3is the maximal left primary factor of 4 with respect
to the prime £ . We will refer to }?kd as the éomponent of 4
with respect to 2 ; only a finite number of the components of an
element of c9 are not unimodular. Corresponding components of
two elements of o are components belonging to the same prime of
*.
Theorern 1.16. Let A and B be two elements of o « Then

A divides B if and only if the components

of‘ly divide the corresponding components

of B.

The sufficienéy is obvious. Suppose A>8, i.e. B= AC , C
an element of (5, and let /owe a component of A = A EP{”/’( .
A an element of ’. Then B = ﬂ"/(C , and P is a left primary
factor of 8. Hence by Theorem 1.12 fpmjdivides the correspond~
ing meximal left primary factor of A.

An immediate corollary is the following decomposition

theoren.,
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Theorem 1.17. Let
,_{e‘.)
/4-'- /?@'}n/e(edn sms L TF Aoy

B - @AJGQAJA___ o Bl e

be decompositions of the elements 4 and
B of & as the meets of theilr maximal
left priﬁary factors where /?[ed and Q{-’Q‘),
{(=!,2, » « + , are corresponding compon-

ents, Then

JUB = (B (B - (A6,
108 = (B i o (BnG) n-

Thus the modular lattice 0 is the direct
product of the (infinite) set of all 8);‘.
lattices.

In the case 7=/ we have the well-=known theorem that the
lattice of elements of (K with respect to g.c.d. end l.c.m. is
the direct product of chains whose elements are powers of primes .
of . It is only in this case, i.e. 7=/, that the vrimary
elements of (9 are powers of primes of & only; if n»>/ the primary
elements of & are not necessarily powers of primes of o , though
powers of orimes of & are primaries. Also it is only in the
case 7=/ in which 77{ is commtative.

We will sometimes refer to the @; lattices as p,- latices,
the # indicating the matrices of J are 7. The p,-latlices are
thus the fundamental lattice~theoretic structural units of the

modular lattice of non-singular 747 mnetrices. The "top" of the
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Hasse diagrem of the 3,-lattice is shown in Figure 1, as well
as the 2,-lattice which is seen to be a sublattice of the
3,-lattice. In general the Pn - lattice is a sublattice of the
In-lattice if »gm and Ps?. It is conjectured that the lattice
shown in Figure 2 is the lattice of largest order which can be
generated by three elementsq 6 ,¢ of a p,~lattice for n=2 ,
and possivly larger values of 7 . If @.A’ ¢! are generating
elements of a similar lattice, we may form the direct product

of the two lattices. It may easily be verified that the

elements

) \
A <la,b),B=(be) , Colea)

generate the free modular lattice of order twenty-cight (there
are, of course other triples of elements of the direct product
which generate the free modular lattice). The free modular
lattice generated by three elements is thus a subdirect product
of the direct product of the lattice of Figure 2 with itself,
Figure 3 shows some of the elements at the top of the Hasse
diagren of thezg-lattice; each element of the Z,-lattice is the
unit element of such a lattice. It is seen to be a projective
geometry, and in fact each element of a D,-ettice, 7>/, is a

unit element of & projective geometry of rank 74/,






Fig.3



Section II

Let & be a linear form modul of order 72 ‘over the ring
X of rational integefs with basis elements U, iy, * * + , Uy .
Each submodul & & has basis elements of the form at}u.Jfae;uﬁm,-D(}' Un,
where the “’-f are elements of & . If » is a submodul of &

having »{ such basis elements we may write

/ t A
C‘:f, ‘({Y,'d,+(f(,'.((,_+—'+;)(’:'un, g Q/mu’*‘yuut* "'*’i’mun}
or
a ! !
Ky = Ut - thy) X(or) 2] --- V)
oy o o A
!
.\n «” S {y"
\(z{' 1.4\/‘_ ¢t m‘

Thus the matrix (e} represents the submodulf, of X . Every
submodul of o« has & basis of 2 elements, and hence has &
repregentation as an 7r7 matrix. However since we will be deal-
ing with .submoduls of of before the number of basis elements have
been reduced to N, it is well to kﬁow that the norm of an
matrix, and hence of the modul it represents, is the g.c.d. of the
set of all »~.:¢n determinants whose columns are chosen from those
of the given 747 matrix (Dedekind [1]). Since each submodul of
&L may be represented by an A-rowed matrix, and conversely each
Al-rowed matrix with elements in K represents a submodul of <,
we. shell speak of A-rowed matrices rather than submoduls of W
Thus two N-rowed matrices are equal if and only if they represent

the same modul. We are interested in the case in which the basis
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elements of o are /,w, « » » , W™ | where w is the root of an

n'th degree polynomial with coefficients in U znd leading coef-

ficient unity, i.e. @ is an algebraic integer. ZEach pair of

submoduls of of may then be multiplied algebraicly, their

algebraic product being the submodul of & whose basis elements

are obtained by multiplying each palr of basis elements of the

two moduls, This elgebraic multiplication is described in terms

of A-rowed matrices in the following definition.

Definition 2.1. Let 4 and & be f-rowed matrices with

r end S columns, respectively, and let
Q=(/,0y, « « ., 0, ,0) bvea /XN
matrix with elements in U? , the first
element being unity. (@ is called an
integral polynomial of degrees.) Then
the algebraic product of ,4 and B with
respect to the integral polynomizl @,
which we denote by 45 , is an »xersS
matrix whose columns are obtained by
maltiplying each column of 4 with
each colum of 5 in the following manner.

] 1
Let a/,o¥%, « « + ,0 be the elements in

the ¢'th column of <, and £, 8, + + +,8/

the elements in the /j'th column of 5.



FPorm the formal volynomisls

& <IN AT - XA,

B= GBI ST+ SN

2 = X' Qus X% Qa4 =2+ A XF Doy
vwhere X is an indeterminant over <.
The polynomials & and 3 may be
formally multipliedé and reduced modulo
a, _i.e.
R A e R a9} (meda)
Then v, '7,:, ¢ v ow ‘M‘/,Z are the elements
of the column of .43 which is the vroduct
of the /'th column of 4 end the j'th
coiu.mn of B.

The algebraic nroduct of two /-rowed matrices A ena B
will not be confused with row-by-column matric multiplicatipn
discussed in Section I, which, in this section, will be indicated
by 4B To illustrate algebraic multiplication of matrices let
A and B ve quadratic moduls

4 = (2, 1) , B =(3 2+2)
(in Dedekind's notation) where «w is & root of

Qa = w‘;f'w""l'.

Then
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)
AB = (6, 444w, 3,30, 24 FwtIwy,
AR = (b, 4+4w , S+3w, 2w)

This may be reduced to canonical form to obtain
A8 = (2, 1+w).

In matric notation

Je /2 ) -
A tOI/ > B

a=(/,1,]).
In multiplying the columns of A and B only the product of the

second column of /4' with the second colurn of /S need be reduced

modulo @.

Thus
X = Xt
B=2+7
a = X?X*/,
a3 2x% 4xs 3= ax (med ¥5x47 )
Hence

N
SV
[
oS
oN
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We record the following well-known properties of algebraic
multiplication all of which go back to Dedekind, /t . 8 ,8 are
any /{-rowed matrices.

(i) (Closure) 4 A 1is an 7 -rowed matrix.

@) (associativity) (4B)YC=4(BC).

(1#) (Commutativity) 45= 54,
(iv) =8~ 4C=8C.

(v) A(BoC)=A8uvAC.

(iv) and (v) mey be used to deduce .4 >5B —- 47 > BC . An
# -rowed matrix ¢ will be called a ring if 4 >4% An -rowed
natrix 4 will be called an ideal if

(vi) 74 = 4 , where J 1is the unit//-rowed matrix.

The realtion between multiplicative and lattice-theoretic
properties of ideals is strong due mainly to (vi). A study of the
abstract properties of an arbitrary lattice over which a
multiplication satisfying (1) throught (vi) may be defined has
been initiated by Ward and furthered by Ward and Dilworth {1].

If 4 is en ideal, then A4 >48 , :nd this property may be used
to introduce & residuation in the lattice of ideals. However if
4 end B are n-rowed matrices, not ideals, it is not in general
true that 4 >45 . In fact any one of the followins possibiliti es
may occur: 4 )48 , or 4=48 , or 4B >4 , or A mnay not be
related to 4R through containing. It is not difficult to find

. 5 : / = p L
algebraic moduls which satisfy 4=4 , 52/ , while .{/75 4 if



1<r<8; in fact this vroperty of forming a cyclic group of finite
order under algebraic multiplication vprobably holds for all
N-rcwed matrices satisfying .I7¢’lr, i.e. M -rowed matrices which
"generate! the unit matrix. JA4 is always an ideal, where 4
is any /-rowed matrix. For Jf(ih4v = J—ﬁ4 = 2:4 . We say
that 74 is the idesl that & generates. 4 1is an ideal if and
‘only if it generates itself. In this connection the following
interesting but as yet unanswered cuestion may be raised. Suppose
Z is an ideal such that #=B8C where B znd C are non-unit
ideals, and suppose that %ﬂ is an H—rowed‘matrix which generates
,C}' , 1.e, I)-é{/ = 4. Then do there exist n-rowed matrices B, and.
, such that ,4}78/5, where /3, generates 5 and G, generates 7
A few of the peculiarities of the multiplicative properties
of general s/ -rowed matrices are given above to emphasize the
weékness of the relationship between their multiplicative and
lattice theoretic proverties. It is therefore all the more
surprising that there is a certain regnlarity in this respect
based upon the decomposition Theorem 1.17. We will need the
following lemmas
Lemme 2.1. Let 4 be an f-rowed matrix such that all the
elements of a column of 4 have a factor, say
k, in common, and let fZ be the 7-rowed matrix

which 4 becomes on deleting the factor . Then

ﬂilz4/) ’ /(né-/i'//;’.



where the multiplication (e.g. e"‘a, ) is the usual scalar
miltiplication of matrices by elements of 6?, and. the addition
is term for term addition of matrices. Then
AB =(a,b,Gb,, - Qba, Qb -2 Qabay T s WD aba, - b ),
CD =led ,ed - 10.0n,C, - Oy, -Gl Cacda, -1 CaCh ],
where the rmltiplications a;ls,-end (fcdz are the polynomial
multiplications described in Df. 2.1 reduced modulo some fixed
integral polynomial, The remainder of the proof consists in
repeated application of Lemma 2.1. Thus, since
ed, = ¢"'o"ab,
we have
n(QD) | ¢ g™ nlab,,e.de, - - ,Cda ,Codis - - ,Calln).
But
c.d, = €'a"ab, + €'g7 b,
Hence, suhtrécting e"'CP"Ltimes the first column from the second

column, and then applying Lemma 2.1,

aep) | (@) 0" nlab, abgads, - cns s - s Cadnl.

i3,

33
Q,da = él‘,al‘ga: b:"’ é"'@z’aa.bu.“‘ ¢ qQ qibs.
) 3
Hence if we subtract the linear combination é"‘({)"sa.bf 46-"'41’" &, by

of the first two columns from the third colwan, end then epply

Lemma 2.1, we obtain

(DY | @0 ¥ n @b, ab,aby,cds, 6 atidi, - eachn),



The vrocedure should now be clear. TFor example after the first
1 columns have been thus treated we find
n@ed) | € 0" 0™ nlab, Qb -, Qb ,Cd., - ., Coctn, -, Cnd) .
Continuing in this fashion we finelly obtain
n(@) | ©"Ey" - &g ..¢)" n A48).
as was to be shown.
Theoren 2.1. The algebraic product of two primary matrices
belonging to the same prime pis also a
primary matrix belonging to p.
Let P,‘mf 8(3} be primary matrices belonging to the prime p,

and. agsume they are in cenonical form, i.e.

/P'E ot - (l/""\ r‘Ps, (auz L 6!%
L ph - .. @Y
5 I
)?["J = - > Pz s o ?
/DC' " )334’
| b

N
vhere some /; and Sy may be zero, but >r. =1, %5; =3 ., VNow in

the algebraic product the following 7 columns occur

P":*S, D"l 6’»1 Pl:/s’pa .. Pnﬁ'ﬂl
7/
"4 n 32‘!3 R ,D". un
pree P ./
p"!*Sz . pmiaﬂ,n
k. Pf‘.fs,,

where no reduction modulo the fixed polynmomial is necessary.

But the determinent having these /77 columns is a power of p ,

Nt+S

. (P ~(s) ) e . .
i.e. P77, and n{RAY) ¢ivides this determinant. Hence
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II(H/}/B@’) is a power of P, ergo the theoren.

The following theorem states & remarkable multiplicative
property of the decomposition of Theorem 1.15 in addition to the
lattice~theoretic result of Theorem 1.17.

Theoren 2.2. Let A4 and B be non-singular A -rowed

matrices having the decommositions
4 51?@),’ /‘D;{GJ” R = | P
described in Theorem 1.15, Then
I8 = DEGE, g, 0 RS,
i.e. the components of the algebraic
product of Aand 8 are the algebraic
products of corresponding components of
4 end 5.
Since
/:)‘fl&') > A’ .
o > B,
it follows

oot il 1
)3[(&) G{r&) 5 AB .

) ) X
,‘3 04, which is 2 primary matrix belonging to the prime

Thus
by Theorem 2.1 is & left factor of AB. o prove that 9"""&,.("’")
is the maximal left primary factor of AB with respect to pP¢

we need only show that n";48) is not divisible by a larger

power of P; than ﬂ(@ge‘jﬁ::{f‘f}] . Let 4=4 ,B.=8 , where



/f, end. B, are canonical matrices. Then

A= PEC

B, = Q{fa)o,
where n/\p“(eg-)/,: e, r)\@l(ﬂ‘))= ,D;a" , and further (P.-,n(C)) -(P.',n(/))ﬁ/.‘
Therefore by Lemma 2.2

n4B) | In) n(D)]q n (#‘"”@?"“)) R

where p; is not a factor of [O(CJ\’I(D)J/' . Hence if P;K) n (/4'5)
then P;K! n(Ré‘)Q?")) , and. the theorem follows.

An immediete corollary of Theorem 2.2 is the following

theoremn.

Theorem 2.3. A matrix is & ring or ideal if and only if
each of its comvponents is a ring or ideal,
respectively.

Theorem 2.2. and the above theorem indicate that in making

2 further study of the multiplicative properties of algebraic
moduls, rings, and ideals it is sufficient to confine attention
to the Pa-lattices. Thus the P,-lattices are the fundamental
units of structure of algebraic moduls for multiplicative as
well as lattic.e-theoretic purposes.

A curious’corollary of Theorem 2.2 1is the following.

Theorem 2,4. If two relatively prime matrices A and B
are such that ( nl4) , N(B) Y =/ , then
AB is an ideal.

For, since ( 0(4) , n(8) )=/, at least one component of



s B9

each pair of corresponding components of A and B is unimodular.

Hence each component of the product AB  is an ideal, and hence
4B is #1so. Notice that A and B are ini:q_z ntth degree

algebraic number ring. Thus, for example, the product of primary

matrices belongzing to distinct primes is an ideal, alwegys.
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