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Summary of Thesis 

The thesis consists of two parts. In Section I the 

theory of lattices \mose elements are mm matrices Yd th 

elements in a principal ideal ring is developed. Here the 

main result is a decompo s ition theorem stating that such 

lattices are a direct product of certain well distinguished 

sublattices whose elements a.re 11primary11 elements. The 

results have an immediate application to the theory of linear 

form moduls over a principal ideal ring, and in fact the theory 

was developed with this in mind. Section II gives a rather 

remarkable property of the above mentioned decomposition 

theorem when the basis elements of the linear form modul which 

the matrix represents are alt;ebra ic integers, and is therefore 

a contri"bution to the multiplicative theory of alt;ebraic moduls. 



Introduction 

It was p robably Dedekind• s study of algebraic moduls in 

developing the theory of algebraic numbers which led him to 

introduce and. study the abstract al gebra. called by him a 

11Dualg ruppe11 , now celled a lat t i c e. He showed t hat the f ree 

moclu lar lattice generated by three elements is of order t wenty­

eight, and exhibited set s of quadra tic mo cluls which actually 

genera te it (D edekind (2] ). However the modul ar lattice of 

submoduls of a linear form modul i s not the most general discrete 

mo dular l attice ; thus, thoug.~ the free mo dular lattice on f our 

generators is inf inite , the free lattice genera ted by any f inite 

numb er of su bmodul s of a moclul of f inite ord.e r is finite. The 

ques t ion naturaJ.ly a ri ses as to what l a ttice i dentiti es oes i des 

the mo dul a r i dentity are satisfied by t he lattice of submod.uls 

of a linea r form modul. Though this is as yet an unanswered 

question, the resu lt s of Section I si~lifies the p roblem. 

The study of al gebraic modul s may be divicled into t wo pa rts. 

In the first t he t heory i s simpl y thc:.t of a linear form E1odul 

over the ring of rational integers, i7hil e in the second the 

al gebra ic character of t he b~s i s elements p l e.;y-s an ess ential 

role and leads to the theory of algebraic numbers and. i deals . 

Section I conta ins cont ributions to the former theory, and 

Section II to t h e l a tte r . It was fo uncl_ tha t both theories could 



be treated most easily by employing matrices; indeed the first 

section mey be considered a study of the lattice theory of 

matrices with element s in a pr incipal i deal ring. 

Th~ usual -v and" notation of lattice theory is usecl 

(c f . Birkhoff ll1). If a,, I:, , C , • • • are elements of a 

lattice, a, covers h means (i) a.,>i, (ii) a~/J, and (iii) 

Q >c>b implies a :::e or c-== b . Arrows such as -- and --- will 

be used to indicate one ,vey and. two way implica tion, respectively. 

If A and. b are elements of a ring, a divides b rrill sometimes 

be written aJ .6 and ct ,:nd D relatively prime will be incl.icated 

by {a.,.t>),::: / . 



Section I 

Let 1'! be a closed associative system with elements ,4, 

13., C.) • and a unique right and left unit element /. The 

closure operation is written as a multiplication and the identity 

of two elements ,4 and l3 of 1/'( is indicated by A=E. The set 

consisting of the elements of ?ft forms a partiaJ.ly ordered set 

tl if the ordering relation > is defined by 

A> 13 ---►- B =/IC,, 

and the associated equivalence relation ~ by 

4,,..3 ---- - A>B.,8>4., 

For 4 == 41 implies A' >4 for ea.ch element A of JJ( , and the 

transitivity of the ordering relation may easily be verified to 

depend on the associativity of the closure operation of 7;;'J. 

Since A== J,4 it follows .f ;;,4 for each element ,4 of !) ; thus I, 

the unit element of ?!Z, is also the unit element of t) Of 

course there is another partially ordered set t}.,, which the 

elements of ?.q'-' form with respect to the ordering relation of 

right division, i.e. 

4 1 B ----- B = C.4. 

However [) and ff are abstractly identical end we will confine 

our attention to tJ. 

The set of elements of ~ which possess inverses forms a 

group which will be denoted by !I. JI is not a null set since 
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J is its own inverse . I t is easily seen tha t A~/3 if and on.ly 

if there is an el ement J of .1 such tha t 17 :::BJ. 

An element P of ?Jt will be cal.lea. a p rime i f P~48 i m­

plies that one and only one of A or l3 is an el ement of Y. 

I t i s a simple matter to show that 

A covers B - 1-3 = ,4 P, P a p rime . 

For A >f3 i mplies lJ = ..4P , and A :t=B implies P is not an element 

of ,f . Suppose P .:3 t,)R; then 8 ;:4QR, and 4:> A O>AQR=B. 

Since 4 covers 23, either ,4-=A~ or A (} -:,,1/t;)f?; hence one an:l 

only one of Q or R is in 1 , and P is a p rime . However the 

converse 

(1.1) 8 :i AP , Pa p rime - >- A covers f3 

i s not in general· true without some additional assumption on ?n 

If o==.1/P, P a p rime, it does follow that ,4 >8 and 4~8 . 

Suppose 4 >C>B ; then B = C-R, C ::c AQ, and B :: 4()R. Thus 

(1. 2) B = AQR =' AP 

If 'lft.1 is a semi- group in which left cancellation is permissible 

we may conclude QR= P, and since P i s a p rime, one of '9 or 

R is in §, thus p roving (1.1). However left cancellat ion is 

only a suff icient condition for (1.1) to hold , and we shall see 

in our study of matrices tha t (1.1) mey be p roved by an a r gument 

on the 11 norms 11 of the elements involved without any app ee.l to the 

cancellation law. 

I f P is a p rime and P=.?, then Q i s a p rime, i. e . Pa 

p rime i mplies ea ch element of the set Pf is a p rime . Also if 

P is a p rime then eac..h. element of the set J!P is a p rime, thru gh 
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p ,,t JP in general, for J in .1 . Thus there mey- be associated 

a clas s of primes JP with each prime P of ?I/. and each prime 

of J,r is in one and only one of these classes. Suppose the 

following condition holds: 

,; . If an element ;!/ of '1lt has one decomposition as the 

product of primes belonging to a single class JJP. 

Pa prime, then all decompositions of A as a product 

of primes has as its prime factors only primes of J'P. 

A will then be called a primary element with respect 

to 1'P. 

~ implies the set of primary elements with resp ect to a fixed 

set of primes ,jp is closed under the closure operation of /;?, 

i.e. if 4 and l3 are primary elements with respect to !P, 

then AB is also a primary element with respect to JP. Thus 

if tP denotes the set of all primary elements with respect to 

.1P together with the set .sJ, then <Pis a closed associative 

system with the same unique right and left unit I as If. The 

elements of (}J aJ.so form a partially ordered set with respect 

to left division, which we denote by ~ . 

We will now investigate an important instance-of the above 

theory in which 

(i) the partially ordered set~ is a lattice, 

(ii) each partially ordered set G6~ is a sublattice of J. and 

(ill) the lattice !) is a direct product of the sublnttices ~. 
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Henceforth 'J?t shall denote the set of all non-singular 

n,rn matrices with elements in the ring It of rational integers. 

The determinant of a matrix A will be called its norm and will be 

denoted by n(A) . Thus a matrix A is non-singular if and only 

i I 
if n r;4; ~ 0 . The associative closure operation is taken as row 

by column matric nru.ltiplication, and the unique right and left 

unit / is the n..r17 matrix with 1 1 s in the principal diagonal 

positions and 0 1 s elsewhere. Though we are restricting Ir to be 

the ring of rational integers in order to simplify the notation 

and avoid circumlocutions regarding associates, many of our main 

results hold_ when ~ is any principal ideal ring. 

Matrices which possess inverses, i.e. element s of the group 

j, will be called unimodular, while the term unit matrix will be 

reserved for I (cf. MacDuffee [l], p. 30). A matrix is unimodular 

if and only if its norm is a unit of ft (MacDu.ffee LlJ , Theorem 

20.1). If A= BJ, where J is unimodular, we shall call A and 

8 right associates or simply associates. Thus A=B if and only 

if A and 8 are associates. 

Matrices which are neither unimod.ular nor prime will be 

called composite. A composite matrix can be expressed as a 

product of at most a finite rnunber of primes (MacDuffee (ll , 

Theorem 20.3). It is clear thGt if the norm of a matrix 4 is a 

prime of Or, then A is a prime of Jil.. The converse is a 

corollary of the following theorem. 
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Theorem 1.1. If the norm of a non-singular matrix A is 

divisible by a prime p of (R, there exists 

a prime matrix P of 7/! such that 

(i) n <P) :::p, 

Ci) A 'ii BP, 8 an element of i/1( 

Of course fi(A) =- 17(8 ) ? . 

In the p roof of this theorem we shall apply certain well­

known results concerning matrices in Hermite's normal form (see 

MacDuffee [l] , Theorem 22.1). Let A, be an an associ a te of 

A which is in Hermite 1 s normal form. Then 

where J is unimodular, and /4 is of the form 

where all elements below the p rincipal diagonal are O. Now 

nW,)-=- rX 1
'
14'~'2 • •• cx'v7 , and since p divides n (/4 J , p a 

p rime, if follows p divides some 4-'~~i ; let «"·" be the 0( 

of smallest superscripts which is divisible by p. Let 

~ ,,, /3 r,:L . - . f3"'" '1 ,,,, 

(?,'- - . (2,'l'"' 
~ ... 

8 P, ~ 
k,.,,,, 
p 

I 

%'" , I 
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where p occurs in the r' th row and r• th column of P,. Then 

f3r.r? 

\ 

Let 

Then 4, = B t:::, if integers k,j,. "k.,,., ., k,...,,, and 

.... I',(' 
f3 , , f3 exist such that 

The first equation is solvable for (3~" by hypothesis. Since 

( /u~,·,p) "' ( t",' ) ~ - f3' , p ~ 1 , l .-< r , the remaining equations may 

be solved one afte r the other, the seco~d for ./r,._,_,. and /3,...,,, , 

the third for .4,. .. , r , and finally the r' th 

for k,,r and f3 '," . Hence 
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where P := P,J and n(P):::p, as was to be shown. That 

I? (4) == n4'3} p follows from the generaJ. theorem that if 4 and 

l3 are any IU/l matrices, then a/48) = n (A) n(BJ. 

Corollary 1. 1. An element P of Ji(_ is a prime of ll;' if 

and only if n (P) is a prime of rf?. If 

nfP) ~ p , we say that ,D belongs to p . 

The following theorem is obtained by an obvious induction 

on Theorem 1.1. 

Theorem 1. 2. Each element of 1')[ has a decomposition as a 

product of primes ,•.rhich belong to the prime 

factors of the norm of the given matrix. 

Theorem 1. 3. ✓4 covers 8 if and. only if 

B=4P) 

P a prime. If a(P) :- p we say that 4 

covers 8 with respect to P . 

The suf f iciency has already been demonstrated in the general 

tlieory. In p roving the necessity assume we have arrived at 

equation (1.2) in the argument. Then 

rt f4 ) n (() l F? (/f) == n(4) 1/P) 

or 

/J/Q ) n(/1) 

which , ,i. th the aid of the corollary above and a prop erty of 

p rimes of (if , conplete s the proof of the theorem. 
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Corolla ry 1. 3. 4 covers 8 if and only if 

(i) A>B> 

{ ii ) 17 (8) ::: l'1 (,4) p , P a prime of 6f . 

The following t wo theorems follow directly from 

Theorems 1.2 and 1.3. 

Theorem 1. 4 . Let A, B , C be non-singular matrices such 

that 

c i) 4 > B , B = A'C , 

{ii) !V(c ) -::: P,e'j{4. . • . Ptet , where p ,; ?~ J - •• , ?~ 

e.re p rimes of O? . 

Then every p rime cha in joining .4 and B 

contains ::f e. f-/ elements (both 4 and 8 
I 

are included in the chain). 

Theorem 1. 5 . A non-singular matrix has a s many distinct 

decompositions as a :9 roduct of primes as 

there are different p rime chains joining 

the matrix to the unit matrix, where t wo 

decompositions are distinct i f not all cor­

responding p rime matric factors are equal, 

and two chains are different if t hey are 

no t identical. 

The following theorem holds only when (fr is the ring of 

r a tionaJ. integers. 

Theorem 1.6. There are p recisely p"-1,/ p-/ non-associate 
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prime 11.(f'l matrices belonging to each prime 

p of If. The prime matrices are 

"\ 

I I 

) . . . , 

I 

\'V'here each k-,"v· s t<_; ~ll, (/,,.1,:2.,. •·, nJ 

ranges independently through all integer 

values from D to p-1 . 

p 

The proof is omitted since it is simply a matter of enUJner­

ating cases and applying the uniqueness of the canonical associ­

ate of a matrix (see MacDuffee (11, Corollary 22.2) If P 

denotes any one of the prime matrices belonging top enumerated 

in the above theorem, then the set ..,g P of primes referred to in 

the general -theory is the set of primes given in the above theorem 

together with their associates, i.e . .ffp is the set of all 

primes belonging top. By an argument on the norms of the 

matrices involved it is clear that condition ~ is fulfillecl, and 

that a primary element of ?;1( is an element whose norm is a power,, 

say ,.~ / , of a p rime of c,1 . r will be called the rank of the 

primary matrix, and the primary matrix will be said to belong to 

the prime of {f( of which its norm is a power. Thus a prime is a 

primary element of rank 1. The rank of a primary matrh will 
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irl 
usually be written as a superscript in parenthesis, e.g. P . 

Each pair of elements A and 8 of 6 has a greatest commcn 

left divisor Au B and a least common left multiple A,., B . 

This was proved by Ohatelet 111 when cf is the ring of rational 

integers. However this can be proved most easily when df j_ s any 

ring by ap9eaJ.inc to the theory of linear form moduls of order 

11. over a ring rJ?. If ;tis such a linear form modul the sub-

moduls bf o rd.er 11 of £ form a lattice, in fact a modular 

lattice, with respect to union and crosscut. If we think of 

the non-singular 17-trl matrices with elements in <Jc as representa.­

tives of the submoduls of of, we can immecliately conclude that 

these matrices form a modular latti.ce with respect t o the orde!'­

ing relation of left division. ( See MacDuff ee [l] , Theorem 24.1, 

Corollary 24.1, e~d Theorem 24.2). Thus associates exist when 

ana_ only when tR has units, and then they- represent the same sub­

modul of ~. 

Before proceeding with the study of the lattice tJ it is 

interesting to note that when f? is a principal ideal ring the 

set of l?-tf/ matrices with elements in <Ji. satisfy the following 

five conditions with respect to matric multiplication: 

( i) closure, 

(i~ as so cia ti vi ty, 

(lit) A -:: B - -a.- C!A -: CB , 

( iv) Cl4vB) = CA'vCB > 

(v) I,4 -: ,4 I-:A1 I the unit matrix. 
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Thus matric multiplication is a non-commutative ideai multipli­

cation over the lattice of l'IV'l matrices with elements in rfr. 

Since !} is a modular lat t ice, both Birkhoff covering 

conditions are satisfied (Birkb.off 111, page 34). This fact is 

used in proving the next theorem. 

Theorem 1.7. If A and 8 are elements of !) such that 

A vB covers 8 with respect to the prime F' , 

then 4 covers 4,,,,8 with respect to p . 

By an inductive argument the proof mey be reduced to the 

case in which A u8 covers 4 a s well as 8 , so that A and B 

cover A'18. Each of thes e coverings i s with resp ect to primes 

of W, so that 

a : (Av B) P, A ~ U v B J P ', 

Ari 13 ~ 8 O . A '""I B = AO 
1 

• 

where ?, P : 0 , Q 
I 
are p rimes and we are given ,/P) = p . Since 

we have 

where each of r;(P), n
1
()) , n//)IJ , and n(Q'./ is a p rime of Or. 

Hence if /?({;) "' 9 we mey conclude that either 

n (P ~,I-.::? and 11( c? J-= p , 

or 
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In the former case the theorem is proved. Assume that the 

latter po s s ibility holds. We will show that 1t follows that 

p= '!, completing the proof. In order to simplify the p roof 

we will appeaJ. to the cancellation law, though this is not 

necessary. Then 

P Q ~ PbE C, say, 

and since P and P 1 
are primes both of \vhich cover C, we have 

C-= p,,,-, p~ 

Let Pand P' be in Hermite's normal form, so that 

k
l 

·p ,,:s,., 

where aJ.l omitted elements are O•s. If f;t:.S it is clear that 

P and P
I 

can not be multiplied on the right by prime matrices 

in Hermite's normal form to obtain matrices in Hermite's normal 

form havine the same norm unless p=9 . Assume r-=s, and let 

, 
7' 

Q 9 /,..,.,.., •• . l,,,, Q'-= 'l l ,.,jr,., • - , ~ ,., 

I I 
Then 

P't 
I 

p2,.,,.+l+ kr.r+• •• • 
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Thus P <;) -== P
1
Q 

I 
if and only if 

Hence 

and P=P
1

, inr_plying Jf~B, contrary to our hypothesis that 

4. c P F' '.J covers . .> • Hence the theorem. 

An obvious induction gives the following result. 

Theorem 1.8. If A and 8 are elements of CJ, then 

r?f4} n (8 ) e n(4.,, B) n (4uB}. 

The norm is thus a multiplicative type of modular 

functional. If n t4):- r{'fl .. -··PJ-~ the p, primes, the usuaJ. ad­

ditive modular functional is p t4),,. $e .. , and 

l 4) +-(J(B) • p 1A r1B) +p(.4/ uB) • 

Theorem 1. 9. The set of all primary elements of 8 belong­

ing to a fixed prime, sey p , together with 

the set sf of unimodular elements form a 

dense modular sublattice of&. This sub­

lattice will be denoted by 0,. 
This follows directly from Theo rem 1. 8, since ,,,(4).., pr , 

.,z (B)=-p" implies 11 (A,,8) -=p4. , n(4t.:?.)"l: p ., , where N:s,,,uiv. 

We adopt the convention of caJ.ling a unimodular element a 

primary element of rank zero and belonging to each p:-j.me of (fj'. 

P ~J 
Thus denotes a unimodular matrix. 
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Theorem l. 10. Let A be an element of U such 'that 

where p is a prime of d? and ( P7 k):: I 

Then there exists a decomposition of the 

form 

P l') 

where is a primary element of rank 

r belonging to p, and this decomposition 

is unique in the sense that if also 

A ,:: F/'')(, 

P (,1 

where , is a primary element of rank f' 

P fr) P,''' belonging to ?, then = , . 

shall be called the maximal left primary 

factor of A with respect to p . 

That there exists a decomposition of the form stated in 

the theorem is clear from Theorem 1. 2. If there are two such 

(r1 n P. (rJ A (,.) n<t-, /; 
decompositions we have P >,,., , , > , and hence P "', ---, ? ,,., • 

P ,,.) - P,("J p(r> P'"' If - , then .,., , is a primary element belonging to 

p and of rank greeter than r, a contradiction to <p~ I-<):: I. 

Hence the theorem. 

:Sy an induction we have the following theorem. 

Theorem 1.11. Corresponding to each order of the distinct 

prime factors of the norm l'J(A) of a non­

singular matrix A there exists a unique 
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decomposition of A as the p roduct of p rima~, 

matrices belong ing .to the prime factors of 

11.(A). 

Theorem 1.12 . Let A be an element of b having the ma.~imal 

P
,,., 

left primary factor of .norm p,., p a 

p rime. Then all primary elements which belong 

P
{,.) 

top and divide I/ also divide 

psJ 
For if , is a primary element which belong s to p and 

. A P~ 
divides but does not d.ivide we have 

pr,, ;, p(r;,, p/3) > 4 

where the first containing is proper. This is in contradiction 

P~' 4 to being the maximal left :p rimary factor of with respect 

top. 

A restatement of the above theorem follows. 

Corollary 1.12 . The maximal left p rimary factor of an 

el ement of [) with respect to a prime 

pis the meet of the set of all its 

left primary factors belonging to p . 

·Two elements 4 and /3 of tr will be called relatively 

prime if and only if their join is an element of 1, i.e. if and 

only if Au 8 = f. Thus two elements of O are relatively prime 

if and only if their only common left factors are unimodula.r 

elements. 

Theorem 1. 1 3 . Two elements 4 and B of Oare relatively 
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prime if and only if 

ri (A~ B) '=' 11/4) n(BJ. 

This is a consequence of Theorem 1.8 e.nd the discussion 

C'; 

Theorem 1.14 . If 4 and 8 are elements of U such that 

nf4) and n(f> ) a.re relatively prime 

elements of {~J , then )/ and .B are relative­

ly prime elements of t). 

For 17 (,4 vB) is a factor of both r11/I-J ano_ ni/ 3) ; hence 

/) 

is a unit of //'( and ,4 ,._:(3 is u.nimodular. The converse 

of this theorem is not in general true. 

Corollary 1.14. Primary elements of U belonging to dif­

ferent primes of Ot1 
are relatively prime. 

Theorem 1.15. Each element of !} is equcl to the meet of 

i ts ,.maximal left primary factors. 

i,il e e. e,, 1 1 [} Let il!A/ -=-P, 'p. -·· ?~ , where n is an element of whose 

P.re.1 I?.~ di-,,) 
maximal left primary factors are , , t. . , , •• , , r belonging to 

the distinct primes ?,, • • Di 

' I " 
respectively. Since 

P i'e.:J /,1 
C > /-1 , 

we have 

By an obvious ina:uction on Corollary 1.14 and Theor em 1.13, 

fl (rj~/,,., !!,~,., -- · r1 f{e+') ~ff'J..e .... p/c ~ 11 (4 ). 

But if 8 and C are elements of tJ such that 13> C. and 
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Hence 

This representation of 4 is unique since the maximaJ. left 

primary factors of A are unique. 

Now let p, , p,. , . . . , P.· , • • • be some ordering of 

the primes of c?. Applying the convention mentioned just before 

Theorem 1.10, we mey write 

A P.(e,J de..; . . . ~ /!,. eJ ~ . . . 
-:: I r)lt.. rl 

h Jryei:J • the ----~ 1 1 ft i f t· f // ith t w ere - L. 1s m<:VJ.ma e pr mary ac or o rJ w respec 

'e) /I 
to the prime ?,: . We will refer to /?,. as the component of ,4 

with respect to A· ; only a finite number of the components of an 

element of () are not unimod.ular. Corresponding components of 

two elements of {) are components belonging to the same prime of 

Theorem 1.16. Let A and 8 be two elements of I) . Then 

A divides B if and only if the components 

of A divide the corresponding components 

of B. 

A >8 n = AC C The sufficiency is obvious. Suppose ~ , i.e. u , 

an element of U, and let P''\e a component of A , A = plrJ f( , 

.v A B .-./rJ)( r' p(r/ 
11 an element of V. Then ~ P . '--- , and is a left primary 

factor of B . 
(1') 

Hence by Theorem 1.12 P divides the correspond-

ing maximal left primary factor of 8 . 

.A:n imrr.ediate corollary is the following decomposition 

theorem. 
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be decompositions of the elements ,4 and 

8 of 8 as the meets of their ma.·-dmaJ. 

... n{e<J a A te) lex t primary f actors where r.· an . ~ , 

(= ! , '?. , • • • , a.re co rrespond_ing compon-

Thus the modular lattice f) is the direct 

product of the ( infinite) set of all f}A· 

lattices. 

In the case n=1 we have the well-known theorem that the 

lattice of elements of rf? with respect to g.c.d. and l.c.m. is 

the direct product of chains whose elements are powers of p rimes . 

of o?. It is only in this case, i.e.()-:-/, that the p rimary 

elements of {) are powers of primes of b only; if n7 I the p rimary 

elements of !) a.re not necessarily powers of primes of b, though 

powers of primes of {)- are primaries. Also it is only in the 

case tl=t in which 1'}(_ is commutative. 

We will sometimes refer to the 4.: lattices as Pn- latices, 

the 1 indicating the matrices of!) are n~n. The p~-lat~ces are 

thus the fund-a.mental lattice-theoretic structural uni ts of the 

modular lat t ice of non-singular l?Ul me.trices. The 11 top 11 of the 



- 19 -

Hasse diagr am of the 3i. -lattice is shovm in Figure 1, as well 

a s the 21 -lattice which is seen to be a sublat ti ce of the 

3,_ - lat t ice . In genereJ. the p,,_ - lattice is a su.blattice of the 

9"1-lattice if 1J~h? and P~9. It is conjectured that the lattice 

shown in Figure 2 is the lat t ice of largest order which can be 

generated by three elements Q, b , c. of a Ptt -lattice for n-= 2. , 

and poss i bly l a r ge r values of f7 • If a'. 6 1,c. 1 are generating 

elements of a similar lattic e , we may form the direct product 

of the t wo lattices. It may easily be verified. that the 

elements 

A I I I 8 - I 1 I I f' - (C' Q I \ ,:- i Q, l:) J , - I.. D, C j J '- - , ,) 

generate the free modular lattice of order twenty- e i ght (there 

a r e, of course other triples of elements of the direct product 

which generate the free modular lattice). The free modular 

lat t ice generated by three elements is thus a su.bdirect p roduct 

o:f the direct p roduct of the lattice of Figure 2 with itself. 

Figure 3 shows some of the elements at the top of the Hasse 

diagram of the2
3
-lattice; each element of the 2~-lattice is the 

unit element of such a lattice. It i s seen to be a p rojective 

geometl"'J, and in fact each element of a ,o~~ttice, O>I, is a 

unit element of a p rojective geometry of rank n~,. 



......:: 





Section II 

Let ct be a linear form modul of order 17 over the ring 

Ci? of rational integers with basis elements d, , UL , • • • , U,, . 

Each submodul cf £ has basis elements of the form ex} u.-1-a~Ui.+ -~ t- Cl(; ll.,i, 

,· ro 
1.vhere the lt; are elements of V{ • If £; is a submodul of ~ 

having fll such basis elements we may write 

"'"', • .., f .-., '· I +' v t.l( + + •v"u . 
... ~ l\..,,'{,L{' t..--\..1 t.. -· ;,..,{ ' ..,, 

or 

.c 
(u, Ct' ; I I 

C\.1 -= u"" U,i) .\" ()I t. iY.., 

{Y ~ o-: LX ";... 

Thus the matrix { OI / J represents the submodul £, of £ . Every 

submo d.ul of £ has a basis of n elements , and h ence has a 

representation as an Ila?. matrix. However since we will be deal­

ing with ·submoduls of £ before the number of basis elements have 

been reduced to n., it is well to know that the norm of an 

matrix, and hence of the modul it represents, is the g .c.d. of the 

set of all 17tl2 determinants whose columns are chosen from those 

of the given 17 xrrt matrix (Dedekind [lJ). Since each submodul of 

..p 
"'-- may be represented by an rt-rowed matrix, and conversely each 

11.-rowed matrix ,7i th elements in <R rep resents a submodul of £ , 

we she.11 speak of It-rowed matrices rather than sub:nocJ:uls of £: . 

Thus two /l.-rowed matrices are equal if and only if they represent 

the same roo dul. We are interested in the case in which the basis 
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elements of ,:t are , , (.(J, • 
~-I . . , w , where w is the root of an 

rz.tth degree polynomial with co ef f icients in Ot and leadinG coef­

ficient unity , i. e . w is on algebraic integer. Each pair of 

submoduls of ,;e mey then be mu.l ti plied algebraicly, their 

algebraic pro duct being the submodul of£ whose basis elements 

are obtained by multiplying each pair of basis elements of the 

two moduls. This aigehraic multiplication is described in terms 

of fl-rowed matrices in the following definition. 

Definition 2.1. Let ,4 and /3 be rl-rowed. matrices with 

f' and S colmnns, respectively, and let 

I 
'a., ) be a / x (nH) 

matrix with elements in(}(, the first 

element being unity. (a.. is called an 

integral polynomial of degree fl.) Then 

the algebraic pro duct of A and !3 with 

respect to the integral polynomia14, 

which we denote by 4B , is an ,nrs 

matrix whose columns are obtained by 

multiplying each column of A with 

each column of B in the following manner. 

Let 
'I 

• , c:'.Y,· be the elements in 

the i I th cola..."ll!l of 4, and 8)'., (BJ~, • , tf 

the elements in the j 'th column of B. 
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Fonn the formal polynomials 

where X i s an indeterminan t over (i(. 

The polynomials lf and 
1
8 may be 

formally nru.ltip lied a nd reduced modulo 

a.., i.e. 

,,,,_, c, n-tn-1. ~ ~ 0' im!)d~ i rx {:> -=:: 71< x -1- -1 x x J - • • -1- ; I< K +- ):: ( , ; 

h 
/ 1/ n ~ r.

1
'7 

T en 1><., 11< , • • • , K are the elements 

of the column of ,.:1,5 which is the :p roduct 

of the ;_ 1th column of A and thej • th 

column of ,8. 

The algebraic :p ro duct of two 11-rowed. matrices A and B 

will not be confused ':rith row-by-column ma tric multiplication 

discussed. in Section I, which, in this section, will be indicated 

by 4 -rB. To illustrate algebraic mu.l tiplication of matrices let 

A and 8 be quadratic moduls 

4 ,,. ( '2., l+W) > B =- ( 3~ 2+.:zc.u) 

{in Dedekind's notation) where~ is a root of 

1, 

a., -.: u.> -t- W+ J. 

Then 
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This mcy be reduced to canonical form to obtain 

In matric notation 

, 8 _!3Z)\ ' 
- l O 2. 

In nru.l tiplying the columns of 4 and .B only the product of the 

second column of .4 with the second column of B need be reduced_ 

modulo 4. 

Thus 

( \:'. '=' X+--/ 

f3 :- Z(-1- 1 ) 

ll-::X+x+/ 
,) 

Hence 

AB ::, ( e:, 4 3 0 \ 
~ ( , 4 3 '2._ / , 

48 -:, I '2. I ) . \. C I 



- 26 -

i'te recorcl the following well-known p roperties of algebraic 

multiplication all of which go back to Dedekind. . /l , ,B , C are 

any /{-rowef:1 matrices. 

(i) (Closure) .4B is an~ -rowed matrix. 

(±1.) (Associativity) ( JI- B ) (!, =-JI ( BC). 

(iii.) ( Connrru. ta ti vi ty) I/ 8--= /34. 

( iv) ,// ::: B _ _ .,.... 4 C' .., 13 C . 

(v) /-1(8 uC) -:;; ,4B t_·,4C. 

(iv) and (v) mey be used. to deduce ,4 .>8->-·/-/C > BC . An 

~ 
fl -rowed matrix / J will be called a ring if A ,-,4 . An -rowed 

matrix ,4 will be called_ an ideal if 

(vi) I 4 = 4 , where I is the unit,1-rowed matrix. 

The real tion between multip licative and. lattice-tl~eoretic 

p rop erties of ideals is strong due mainly to (vi). A study of the 

abstract p roperties of an arbitra r y lattice over which a 

multiplication satisfying ( i) through t (vi) may be defined has 

been initia t ed by Ward. a nd furthered by Ward and Dilworth 11]. 

If A is an ideal, t hen A :> 4/3 , ,end this p roperty may be used 

to intro duce a residuation in the lattice of i o.eals . However if 

/J ancl B are /[-rowed matrices, not ideals, it is not in general 

true th.at A ;> 4B . In fact any one of the following possibilities 

may occur: A) ,48 , or 4:::/1-B , or AB ?// , or JI mey not be 

related to 413 through containing. It is not difficult to find 
~ L}p 

algebraic mo duls which sa tisfy ,4-:;; A , s ~ I , while ,4 ;J- , • if 
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J <rd; in fact this prop erty of forming a cyclic g rou_p of finite 

orcler under al gebraic multiplica tion p robably hold s for all 

n-rowed matrices s a tisfying I4':# I, i.e. r'l.-ro,ved matrices which 

11 gene rate 11 the U11it ma trix. FA is always an ideal, whe r e // 

For -t-lI / JI - j- L4 "" T/J is any ;z-rowed matrix. ..1.. c HJ - , -,-'"'T We s ay 

tha t T4 is the id_eaJ. that A generates. 
;' 

/-} is an i d. eal if and 

only if it generates its elf. In this connection the following 

interestinc but as ye t unan swered question may be r a ised. Suppose 

A is an i deal such that h= BC where B crid C a re non-unit 

ideal s , and su.-ppose that ,/4 is an n-rowed matrix which generates 

i '.' • I" /.I /--I, i. e . /I,:::- • Then do there exist 11-rowea_ matrices B, and 

Cr such that /4-::: B 1 C, v;here E3, generates 8 and C, generates C ? 

A few of the peculiarities of the multiplica tive p rop erties 

of general,1-rovred matrices a re given above to emphasize the 

weakness of the relationship b e tween their multiplicative and 

lattice theoretic properties. It is therefore all the more 

surprising that there is a certain r ogi__i_lari t:t in thi s resp ect 

based .. upon the decomposition Theorem 1.17. We wHl need the 

following lemmas 

Lemma 2.1. Let ,4 be on 11-rowed matrix such that all the 

elements of a column of A have a factor, say 

k, in connnon, and let ,4, be the 17-rowed matrix 

which 4 becomes on deleting the factor . Then 

,/A) I kn l4,J. 
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where the multi-plication (e. g . t 1
'

1
Q, ) is the usual scalar 

multiplication of matrices by elements of u?, and_ the ad.di tion 

is term f or term addition of matrices. Then 

48 -=-ca,6,,a,&, ... ,a,6,,;at.6,J •.. ,a,.b,,, • •• ;a.,"D,,a.,,b.., • ·· ;a,,Li.) 5 

C.D = (c.,d., eda ~.: .. j C, d,, J c..,_d, J - • • ,c;cl,, J ••• ,C!n d,. c,,d ... , ••• ) c,,,d,,), 

where the nml tiplications a~~·end d:d1 are the polynomial 

multiplications described in Df. 2.1 reduced modulo some fixed 

integral polynomial. The reI:Iainder of the p roof consists in 

repeated application of Lemma 2. 1. Thus, since 

we have 

n(c_DJ I ~,,1C'/'' n(a,b,,e,d, .. · .. ,c,d.,,c..'l.d .•• •· ;c11d"). 

But 

• , 1,1 trf11.. , , 
Hence, subtracting (: y,- times the first column from the second 

column, and then applying Lemma 2.1, 

But 

e,d
3 

~ e1
'

1C:1
'
3a., b, + f 1,14>,a~.6 .. + f

1
'
1

<P?,'
3a,b5. 

f i 
. L,,11,3 b' ,.,/(,t,3 1 Hence i we subtract the 1 ne ::i.r combination c cp a, , ·h::

1
..,.. a,01 

of the f irst two columns f rom t he third column, end then apply 

Lermna 2.1, we obtain 

n (tD) l (e1'
1)\p111 cif'1ev3

~ 0 (o.,b.,a,h./t,~.C.c.\-1-, · • .,Gd., .,l!,_d, .... ,ct\d'l). 
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'!'he p rocedure should. now be clear . For exampl e after the f irst 

n columns have been thus trea ted we find 

Continu ing in th i s fash ion we finally ob t a in 

h (CD) I l~·~'l (61':J'1-· · lt:"·~/'(cp '•'epi,i_ .. (f·, 0 n (,4 B) . 

as was to be shoYm . 

Theo r em 2 .1. The algebr a i c p roduct of t wo pr i mary matrices 

belonging to the same p rime pis also a 

pri mary matrix belonging top . 

P0 2~ . . Let 1 , .i be p rimary matrices belonging to the prime p , 

and. as sume they a re in canonical form, i. e . 

p,.· CYi,i. ' .,, PS, ,3 1,1.. (X ' 
l 

Pr'" (Y1., '1 p3z. 

P(i'J ::: 
') P. (3)= 

I - 1. -

p r,, ,,, 
p 

wh ere some I',; and. ~- may be zero , bu t 
/J 

2 r - - I' , 4 - ,, 
Now in 

the algebra i c p ro duct the followi ng fl columns occur 

pr. .; ~, p"'• {31,'l.. pr:;s •·'!. - . p l';/,'1 

p ".+ ::.1,. p"'(3°2.,3 Pr-'(3~,., 

pli+::S. 3 P "'l33," 

p 'i t-S,, 

where no reduction modulo the f ixed polynomial is nec essa ry . 

But the det erminant having these /7 columns is a power of p , 

• ,,..."ifs d n 1P.("' ;..")is J; ' 1 . e . ,~ , an \.. , / 2. a. ivides this determinant . Hence 
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II ( P,"1P,(s;) is a p owe r of p , erco the theorem. 

The follon i ng theorem s t a t e s a r emarkabl e nnil tip lica t i ve 

prop erty of t h e decomp os ition of Theo rem 1.15 in adci. i tion to the 

laftice-theo retic result of Theor em 1.17. 

Theoren .2 . 2. Let A and B be non- s i nt,u l a r 11 - rowed 

matrices having the d eco ln_9ositions 

Since 

i t f ollows 

A - [) ~,) ,.-, _Dif-'t,) ,-, ... .-, ,o,_f!r) /l - • - l 
- I J • I 3, t:;e 

described in Theor em 1.15. Then 

48 = 1~tJQf'J,, 1Y/•1{J._t..J-4 .. .., R.~c.:fA-J,, ... . 

i . e . the components of the algeb r a ic 

p ro duc t of 4 and 8 a r e the a l gebra i c 

p ro duc ts of corresponcUng components of 

4 and 8. 

P.(eJ I! 
f ) I-#, 

QfJ > B, 

n{e.-J .,(fJ 
Thus It ' 4-i, wh i ch i s a p rimary ~a trix belonging to the p rime 

b y Theorem 2.1 is a left f acto r of AB. To p rov e that ffedc,C
1
,~ 

is the maxi mal left p rimary f a ctor of /+B with r espect to p ,· 

we nee d only show that n (AB ) i s not divis i ble by a l arger 

f 0 th f7l1A·1e,:J,,-: , .. m.-JJ' p ower o r : an '--' Let 4, "'A , 23, =-B , where 
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A, .snd 8, are canonical matrices. Then 

Therefo re by Lemma 2. 2 

n C4B) I r 11 tJ n(D) J1 fl cr?d Qft:)) , 

where p; is not a factor of [n(C)11(D)]
11 

• Hence if p/l n (4B) 

then rp/' I n CR~dQfftdJ , and the theorem follows . 

.An immediate corollary of Theo rer:i 2. 2 is the following 

theorem. 

Theorem 2. 3. A matrix is a ring or ideal if and only if 

each of its components is a ring or ideal, 

respectively. 

Theorem 2.2. and the above theorem indicate that in making 

a further study of the multiplicative properties of algebra ic 

moduls, rings , and i deals it is sufficient to conf ine attention 

to the ?n-lattices. Thus the .Rt-lattices are the fundamental 

units of structure of algebraic moduls for multiplicative as 

\'fell as lattice-theoretic purposes. 

A curious corollary of Theorem 2.2 . is t he following . 

Theorem 2.4. If t wo relatively prime matrices A and 8 

are such that ( '7 (A) , 11 {8) ) -=- / , then 

,48 is an ideal. 

For, since ( n{,4) , II (8) )" /, a t least one component of 
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each pair of correspond. ing component s of A and B is unimodula r. 

Hence each component of the p:i:od.uct AB is an i deal , a nd hence 

48 is also. Notice tha t A and B are in any n' th decree -
algebraic number ring. Thus, for exainple, the product o:f primary 

matrices belonging to distinct p rimes is an idecl, alweys. 
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