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Summary of Thesis

This thesis is concerned with the problem of exhibiting all

the rational integer solutions satisfying certain diorhantine eq-
vations. The thesis consists of two sections. The first section
indicates how some types of diophantine equations completely red-
ucible in a single quadratic field may be solved comrletely, and

also the complete solution is obtained for an interesting class of
cubic diorhentine equations., In the past there have been many is-
olated investigations on the separate equations of the class considered
here and at most only partial integral solutions have been given.

In this thesis the complete solutions for these equations are de=-

duced from & single multiplicative equation in a quadratic field,

In the second section Diophantine equations completely red-
ucible in two or more different quadratic fields are considered.
These equations are solved by operating on multiplicative equations

in biquadratiec fields,

The success of our method depends fundamentally uron the

complete solution of the simple multiplicative equation xy= zw .
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ON SOME CUBIC DIOPHANTINE EQUATIONS.*

By E. ROSENTITALL.

1. 1In this paper we shall adhere to the following notation: large capital
letters A, B,- - - (with or without subscripts) will represent integers of the
quadratic number field Ra(p) where p=3(—1+ iV3) ; the letter e will
be reserved for the units of this field. Small latin letters a, b, - - represent
rational integers, and the conjugate of a number X is denoted by X. The
symbol (4, B,C,- - - ) signifies the g.c.d. of 4,B,C, - - ; A|B means A
divides B, and (4, B) =1 denotes that A and B are coprime,

The integers of the field Ra(p) are of the form ¢ -} dp, or of the form
3(a+ \/:.éb) with @ and b of the same parity; also ee= 1.

2. In this paper we solve completely in integers of Ra(p) a multi-

plicative equation of the form
(2.1) wWW = nNN

and deduce from this the complete rational integer solution of certain in-
teresting cubic diophantine equations. The method of proof will indicate
how some types of diophantine equations reducible in a quadratic field may
be solved completely.

Since the integers of Ra(p) obey the fundamental law of arithmetic,
namely unique decomposition into prime factors, multiplicative equations in.
this field can be solved completely in parametric form by the method of
reciprocal arrays.

To solve (R.1) we require the following fundamental lemma.

LeMMa 1.0 All integral solulions of
XY =7ZW

are giwven by X =US, Y =VT, Z=UT, W=1VS8; and 1t suffices to take
(S.T) =1.

This lemma (as stated in the paper referred to) is for non-zero integers
X.Y,Z, W. However the solution given includes all the possible zero solu-

* Received August 19, 1942; Revised February 19, 1943.

*E. T. Bell, “Polynomial diophantine systems,” Transactions of the American
Mathematical Society, vol. 35 (1933), pp. 909-910. Also E. T. Bell, “ Reciprocal arrays
and diophantine analysis,” American Journal of Mathematics, vol. 35 (1933), pp. 50-66.
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664 E. ROSENTHALL.

tions without violating the conditions on § and 7. For example, the solution
X=7Z=W=0 is obhtained by taking U=S=0, T'=1, and S, T are
coprime,

3. We now solve equation (2.1).

THrOREM 1. The complete solution in integers w, W, n, N satisfying
equation (2.1) 1s given by
(3.1) W=S8SUL, w=tVV, N=SUV, n=tLL
and it suffices to take (UL, UV) = (VV,LL) =1.

Proof. By Lemma 1 all required values of w, W, n, N are of the form

W=RAF N=RBH
(3.2) W=SEBG N=S8SCF
w=TCH . n=T4G

with the g.ec.d. conditions
(3.3) (W,N) =R, (W,N)=5, (w,n)="T.

From (3.3) it follows that B = eS; substituting this in (3.2) we sce
that the parameters must be restricted to satisfy

(3.4) ¢eAF=BG and ¢BH=CTF.
Hence (3.2) becomes

W=SBG N—=S§CF

(3.5)
w=TCH n=TAG

with conditions (3.4). By Lemma 1 all 4, F, B, G satisfying (3.4), are
given by

B=A,B,, G=0.D,, el=4A,D,, F=C,B,.

Then (3.4), becomes eI, H = CC, and so
ed, = A;B,, H=0.D;, C= A,D,, Ci=C,B,.

Substituting these values in (3.5) we have

W = eS4,C,(B.B,) (B.D,), N — 54,C,D,(B.B,)
w=TA,0,(D.D.), n=TA,C,(B.D,) (B.D:).
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Since the integers B, B,, D, always occur as factors of the products B.B,, B.D,
we can put B.B, = K and B.D, = L; we also make the reversible substitution
D, =V and replace S by the parameter S. Then we have
(3.6) W=S8(4:.0.K)L, w=(TA.0.)VV,N=8(4,0,R)V, n==(T1.C.)LL,
where T4,C, must be restricted to be a rational integer. Thus (3.6) is a
complete parametric representation for the indeterminates satisfying (2.1).
However if we put 4,0,K = U, T4,C, =t then all numbers in (3.6)
are included in (3.1). But by direct substitution we see that all the numbers

(3. 1) are solutions of (2.1). Hence (3.1) is the complete solution of (2.1)
where S, U, L, V are arbitrary integers in Ra(p), and ¢ is any rational integer.

4. From Theorem 1 we can deduce the complete rational integer solution
of * + y* =2* + w®. This equation can be put in the form (2.1), viz,,
(+.1) (X4+0)XY = (Y +7)YY
where X —=4[(z+y)+ V—3(@—y)], Y=3[(z+w)+ V—3(z—w)]
are integers of Ra(p). If 2=y, we have the trivial solutions with r=z.

In 6 we prove the following theorem.

THEOREM 2. The set of all integers X, ¥ (with X < Y) satisfying
(4. 1) 1s given by
(+.2) X = (V—38p/0g) (¢ + fp) LU, Y — (V—3p/0g) (¢ + fp)TV
where e + fp=UV - VV — UL LL, and 6 is 1 unless V— 3| (¢ + fp) and
then 0 = 3; 1t suffices to take ¢ = (e, f) and (LU, UV) = (VV,LL) = 1.

5. To obtain the solution of (4.1) in the form (4.2) we require the

following three lemmas.

LemMa 2. If the product XY is pure imaginary and if X = ad where
A s not divisible by a rational integer then ¥ = \/— 3bA /0 where 8 is 1,
or 3 if V—3|4.

Proof. Put X =ad =a(m -+ np) and Y =10(s+ ¢p) where (m,n)
= (s,t) = 1. Then since X'} is pure imaginary we must have

ns + mt — nt = 2 (ms — nt)

from which it follows that m(2s—i¢) =n(s-+t); and since (m,n) =1
we have 2s—1t=Fkn, s+ t=>Fkm. Hence s=Fk(n-+m)/3, t=k(2m—n)/3
and since (s,t) =1 we can write

10



666 E., ROSENTHALL.
s=(n-+4+m)/0, = Rm—n)/0,
which gives ¥ =b{(m +n) + (2m —n)p}/0 =0bV—34/80.

LemMa 3. If D= (I+4 mp) is a g.c.d. of a+ bp and ¢+ dp, then
((1, b; 6 d) = (Z, m)

Proof. We know that if a rational integer ¢ divides a + bp then ¢ divides
both @ and b.

Therefore if ¢ = (I, m), then ¢|D and ¢ is a divisor of ¢ and b, ¢ and d;
and if s = (a,b, ¢, d) then g¢|s. Also s divides a 4 bp, ¢ 4 dp, and therefore
s|D. Then s|! and s|m, and therefore s|q. Hence s|g, ¢|s and so s =g,
(a,b,¢c,d) = (I, m).

Leyma 4. If the matriz of the coefficients is of rank 2, then all integral
solutions of the simultaneous equations

AX 4+ BY + CZ =0, AX+BY+CZ=0

are given by
X=(E/D)(BC,—B,C),Y =(E/D) (4,0 —AC,),Z=(E/D)(AB,—A,B)
where E 1s an arbitrary integer and it suffices to take D = (BC,— B,C,
.’1[6’ — ‘4.01: IiB] — ..4.1B) .

For, solving algebraically, X, ¥, Z are certainly given by

X =o0o(BC,—B,0), Y=0a(A.C—AC,), Z=a(AB,— A,B)
where « is in the fleld; writing « in lowest terms E/D, D must be a divisor
of BC,— B,C, etc. Hence, multiplying up by a suitable factor, it suffices
to take D as stated, and E is arbitrary.

The case where the matrix is of rank 0 or 1 will be considered in the
application to which the lemma is put.

6. We now prove Theorem 2. Considering each element of (4.1) as
independent, then by Theorem 1 all X, ¥ satisfying (4.1) are of the form

(6.1) X=SUL X+X=tVV, Y=80V, Y+ P—=1LL

with (UL, CV) = (VV,LL) =1 and the parameters must be restricted to
satisfy
SUL 4+ SUL —tVV =0, SUV 4+ 8SUV —tLL=0.

Considering this system in the indeterminates S, 8, ¢ and taking the matrix
of the coefficients to be of rank 2, then by Lemma 4 all S, S are given by
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S = (E/DY(e+fp).  §=— (B/D)(e+fp")

where F is arbitrary and it suffices to take D = (e + fp, ¢ -+ fp?). From the
expressions for S and S we get D + 2 = 0, and hence ED is pure imagi-
nary; thus by Lemma 2 we can put

D= (k+1p) =qK, E—V—3pK/8 with ¢— (k,1),

and @ =1 unless V/— 3| K, that is V— 3| (¢ - fp) and then = 3; from
Lemma 3 it follows that g = (e, f). Hence

E/D= v —3p/bq

where g = (e, f), and Theorem 2 is proved for the case considered.

If the matrix of the coefficients is of rank 1 then €V =eL = U or U =10
giving in (6.1) the trivial solution X' = ¥; and if the matrix is of rank 0
we get X' =¥ = 0, a solution which is included in (4.%).

7. From Theorem 2 we deduce the following result.

THueoreM 3. All sets of rational integral values x, y, z, w (except T = z)
sutisfying the equalion
(7.1) 24y =72+ wd
are gwen by
w=p(a—2b)/0q, y=—p(a+1b)/6g, 2=p(c—Rd)/6q, w=—p(ct+d)/bq

where a4 bp=UL(e+ fp), ¢+ dp=TUV (e + fp), and q, 6, e+ fp, are
as defined wn Theorem 2.

For from Theorem' 2 we have
e +y) + V=3(—y] = (V—3p/bg) (¢ +bp),
3z +w) + V—3(z—w)] = (V—38p/8g) (¢ + dp).
[iquating real and imaginary parts and solving for z, y, 2z, w yields the
required results. Further it suffices to take (UL, UV) = (VV,LL) = 1.
8. The complete solution of the equation mM i = nNN also yields the

complete rational integral solution * of

(8.1) * 4+ y® 4 2° — Bayz = u* -+ v* 4 wd — Suwvw,

*R. D. Carmichael, Diophantine Analysis, New York, 1915, pp. 63-65, discusses
this equation and gives a four parameter rational solution.
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where
me=z+y+z, M= (v—2)Fp(y—2), n=utrv+tu,
N=(u—w) + p(v—w).

Then from (3.1) all rational integers satisfying (8.1) are obtainable from

T+ + 2=tV ¥ =g, ut v+ w=tLL=a,,

8.2 =
(8.2) (e—2)+p(y—2)=SUL=b+4cp, (u—w)+p(v-——w)=80V="0,+ cp,
and it suffices to take (LL, VV) = (UL, CV)=1. Solving (8.2) for
T, Y, 20U, U, W gives

r=4%(a+20—c), y=3%(a—b+2), z=3%(a—b—c)
1

(8.3
(8.3) 3(a, + by —c), v=3%(a,—b+2c), w=3%(t,—b —c)

for the complete rational integral solution of (8.1).

It is desirable to know how the parameters {, U, L, V are to be selected
so that (8.3) always gives integers. These expressions are integers if
a+2b—c=0 (mod 3) and a; + 2b,—¢;=0 (mod 3). This implies

tVV - SUL + SOL=0 (mod 3)

(8.4)
tLL + 80V 4+ SUV =0 (mod 3).

If both UL and UV are prime to 3, then it suffices to take S satisfying
the linear congruence 48 = B (mod 3), where UL- UV — UL - UV = 4, and
—U(VV UV —LL-UL) = B. This congruence is solvable if (3,4)|B.
Since A is divisible by \/—3 B will have to contain the factor v-——3 or
(V—3)* It it happens that U, L, V are selected so that (VV-UV
—UL- LL) does not contain this factor then it suffices to select t =0 (mod 3) ;
otherwise ¢ is arbitrary.

If one of UL, UV (say UL) is not prime to 3, then it suffices to take
UV prime to 3; whence U7 must he prime to 3. Thus L must be divisible by
V— 3, and it follows therefore that LL =0 (mod 3) and SUL + SUL=0
(mod 8). THence (8.4) becomes

(8.5) tVV =0 (mod 3), SGV 4 SUV =0 (mod 3).

From (8.5), we have t==0 (mod 3) since VV, LL are coprime; and
(8.5); holds if and only if VV—3 divides SUV, whence \/—3 divides S
since UV is prime to 3. Summing up, we have, in this case, that (8.3) yields
integers if and only if §, L (or V) is divisible by V—3, and #==0 (mod 3).
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9. As a further illustration of the method used here for solving dio-
phantine equations, we now solve completely in rational integers the equation *

(9.1) a4yt =2~

For this purpose we require the following lemmas.

Lemya 5. If the product XY7Z is a rational integer then all values of
X, Y, Z are given by

X —=adB, Y =>0biC, Z=cBC.

Proof. Precisely as in Lemma 2 it follows that if the product RS is a
rational integer then all R, S are given by R =aK, S = pK. Hence since
N(YZ) is rational we can put X =«K. YZ = pK; whence by Lemma 1,
we have

Vo0, Touilll, p—=PFF E==HG

Again, since FJ is rational it suffices to take F = bC, J = ¢C'; make the
change in parameters H — ]-3-, G — 4, and the lemma is proved.

We note that it suffices to take A, ¢C coprime (Liemma 1) ; further any
factor common to @ and ¢ can be absorbed into the B and so we can take
(a,c) = 1. These facts will be required in 10. -

LeMMA 6. The complete set of integer values X, Y satisfying XX =YY
is given by X =eST, ¥ = ST, and it suffices to take T divisible by no
ralional inleger. '

Proof. This equation X.¥ = Y'¥" can be considered as a particular case of
Theorem 1 by placing w = n =1, from which it follows in (3.1) that { =1,
TV =¢, L =¢€. On making the reversible substitution " =7¢,T. €e; =€ we
obtain the required result.

LemMa 7. All integers X, z satisfying XX = 2* are given by X = eaT?,
z=aTT.

For. from Lemma 6 all required X, z are given by X = 37, z = 87,
where ST must be a rational integer; then we can put § = a7, since T is
divisible by no rational integer.

Lemmas 6 and 7 furnish the complete rational integral solutions of each
of the equations* u* 4 my® = 2> + mw? and 2* 4+ my* = u* for those m in

3 L. E. Dickson, History of the Theory of Numbers, vol. 2, pp. 578-381 gives an
account of the investigations on (9.1).
*1f m = 1(4) replace form u® + mv® by u® 4 wv + ¥4 (1 — m )=
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which the integers of the quadratic field Ra(V—m) are uniquely decom-
posable into prime factors. The complete solutions of these equations for any

value of m are readily obtained by other methods,® but for our purpose the
form of solution given here is desirable since it occurs in multiplicative form.

10. We now return to equation (9.1). Defining the integer A" as in 4,

this equation takes the form

(10.1) (X +5)X 0 =z-2-1
Then from (3.1) it follows that all X, X 4 .¥, z ol (10.1) are given by
(10.2) N=8UL, X+X=!(I'V, =57V,

where ¢ and L must satisfy tLL=1. Thus { =1 (since LL > 0). L =¢;
and with the reversible substitution U =¢K, V =¢€/’, (10.2) becomes

X —=8K, X+X=PP, z=_8KP,
and it suffices to take A divisible by no rational integer (it can be absorbed
into S).

Since SKI” must be a rational integer, then

S—=qdB, K==A0, P=¢BC

and it suffices here to have ¢ prime to a and A (sce remarks at the end of

Lemma 5), and we have

(10.3) X=uad*R, X+ T =c*RR, z=—uacAIRR

in which, since B and €' always oceur as the product BC, we have put BC = R.
Further, the pavameters of (10.3) must satisfy ¢*RR —aA*R —ad*R
= 0 which ix equivalent to

(2R — Ay (R —ud?) = («Ad)2

Put ¢*R—ad? =1, then (10.3) becomes
A? - A\ A 5
(10.4) X =aA® (M>, z=uwacAA (H —}—‘“u ! ) (1 —}:aA )

c- c- c*

where (ad.1)*= I H. Whence, by Lemma 1,
(10.5) H=eT? aAd=>TT.

Solving (10.5). by Theorem 1 we finally get

® L. E. Dickson, Introduction to the Theory of Numbers, pp. 40-41; also see
Ex. 5, p. 43.
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(10. 6) H=—emGG(MFE)?, a=mEE, A= MFG.

Again, since R is an integer we must have ¢ dividing H 4 a4?, that is
it must divide mGF2E(eGM?F + EII*G). Since ¢ is prime to a and A4,
then wo have ¢* prime {o each of m, L, F, G, M. Hence ¢ must divide
(EM*G 4 eEM*G).

Substituting (10.6) in (10.4) we have

BTG + 517:;112(;>
T s b

62

X = (mFR)(EG) (EG))? (

2 — c(mFF) (EG)*(EG)M iT (EWG + eBIG ) (E’M"'G + ?EWG) :

c? c*

Put mFF — k and EG = K, and we get
R+ eKM'-’)

ot

X = KK *? (
(10.7)

>

2 — ek® (KR):M 0T (K_““’ - j i )

and it suffices to have ¢ prime to each of K, M and k.

All the integer solutions of (10.1), and hence of (9.1), are given by
(10.7), and in order to obtain all the integers in (10.7) we can take c, &
arbitrary and M any integer prime to ¢ and then select the cobrdinates of K
to make ({(—ﬂ{_—i—dﬂ[—

Put K = u + vp, and let M* = m -+ np, (whence m, n, ¢* arve coprime).
Then if we take e =1, p. p* in succession the congruence K2 4 eKM*=
(mod ¢*) becomes

) integral. This is done in the following way.

wu(Zm—n)= (m -+ n)e (mod ¢*), u(m—2qn)= (m—n)v (mod ¢?),
u(m~+ n) = (n—m)v (mod ¢*)
respectively; and for e =-——1, -——p, — p” respectively we gét the congruences
un==r(n—m) (mod ¢?), um==1rn (mod ¢*), u(n—m)=vm (mod c?).
Since ¢? is prime to at least one of the cobrdinates m or n it follows that in
the last three congruences either the coefficient of u or of v (at least) must be
prime to ¢ If this coefficient is the coefficient of u, then select v arbitrary
and solve the congruence for the unique %, and similarly solve for the unique v
with arbitrary u if the coefficient of v is prime to ¢
In the first three congruences, also one of the coefficients (that is, of u
or v) must be prime to ¢2, and so we can always find a unique u or v. For
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example, (considering the first congruence), suppose that 2m —n, m 4 n, ¢*
have the factor p£3 in common. Then ];|3m and hence divides m, n, ¢
which is impossible since ¢, A are coprime.

Also if 3 is a factor of ¢* then 2m —n (and hence m -+ n) is prime to 3,
for otherwise M2 = 3 (2m —- n + V— 3n) would be divisible by V— 8, and
20 M? would have a factor in common with ¢*.

Thus in all cases either the coefficient of w or v is prime to ¢, and A
can be found.

11. The cquations which we have solved completely in rational integers,
viz. (7.1), (8.1), and (9.1) are merely particular cases of the equation
(2.1). By suitably selecting the indeterminates w, W, n, N in (R.1) the
complete solution to many other interesting equations can be obtained; for
example any of the equations a® 4+ 4 4 2° — Bayz = w®, u® 4 3v%, w® + ¢*;
or (2*4-9*) (u* + v%) = (w*+2*). DMoreover Theorem 1 holds in any
normal algebraic field whose integers can be decomposed uniquely into prime
factors.

McGinn UNIVERSITY,
MONTREAT, CANADA.
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DIOPHANTINE EQUATIONS REDUCIBLE IN BIQUADRATIC FIELDS
By E. ROSENTHALL

1. Introduction. In an earlier paper [2] the complete rational integer solution
was obtained for certain Diophantine equations reducible in a single quadratic
field. In this paper we deduce the complete solution in rational integers of some
Diophantine equations by operating on multiplicative equations of the form
uN(X) = vN(Y) in certain biquadratic fields (for notation see §3). These
equations are solved by an extension of the method used earlier [2], and it will
be seen from these examples how this method can be used to solve completely
Diophantine equations reducible in two or more quadratic fields. The idea is
to operate in the field which has as its subfields those fields in which the equation
is factorable. Thus, to solve the equation z° + y* = u* + »* we use the field
Ra(i, 3Y). This field is an example of the so-called special Dirichlet biquadratic
fields which we use in this paper.

2. The special Dirichlet biquadratic fields [1; 47-52]. These are the fields
Ra(i, m*) obtained by adjoining 7 = (—1)* and m! to the field of rational num-
bers, where m is a positive square-free rational integer different from 41. The
numbers of Ra(Z, m!) are

X = a + ib + mc + imld,
where a, b, ¢, d are rational, and the integers [1; 25-26] of the field are of the form
X = i(r 4+ is + mht + imtu),

where r = u, s = t (mod 2) if m = 3 (mod 4),r = ¢ s = u (mod 2) if m = 1
(mod 4), r, s are even and ¢t = « (mod 2) if m = 2 (mod 4).

The conjugates of X are the numbers X, , X, , X3 , respectively, obtained
by changing in X the sign of 7, the sign of m?, the signs of both 7 and m!; it follows
then for each type of conjugate that the conjugate of a product is equal to the
product of the conjugates of each factor. We also observe that the products
XX,, XX,, XX, are numbers in the quadratic subfields Ra(m}), Ra(i), Ra(im?),
respectively. The norm N(X) of a bi-quadratic number X is defined by
XX,X,X,, but if X is a quadratic integer, then No(X) is the norm in the quad-
ratic field (that is, No(X) = XX, or XX,). If N(X) = +£1, then X is called a
unit of the field.

3. Notations. Hereafter we shall adhere to the following notations. The
lettersa, - -+, ¢, s, ¢, - -+ , z will represent rational integers, while the remaining
italic letters h, j, - -+, r (except m) will denote integers of Ra(z). The capital
letters 4, B, - - - will represent integers of the field Ra(s, m?); the Greek letters

Received March 15, 1943.
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¢, 8 will be reserved for the units of this field, and all other Greek letters will
denote the integers of the quadratic subfield Ra(im!) unless specified otherwise.
For each equation in which it appears X, will represent any definite one of the
conjugates X, , X, , X; of X. The symbol (R, S) = 1 means that R and S
are coprime.

Also all fields mentioned are those in which the integers possess the property
of unique decomposition into primes. The integer parameters given in the
solution of the equations are arbitrary unless stated otherwise.

4. Lemmas. The success of our method depends on lemmas of types 1 and
6. The remaining lemmas (which are proved by application of Lemmas 1, 6)
are required for the particular examples we have selected to illustrate our
method.

Lemma 1. Al integer solutions of XY = ZW are given by X = AB, Y = CD,
Z = AD, W = CB; and 1t suffices to take (B, D) = 1.

LeEmMa 2. Al integer solutions of XX, = YY,are X = ST, Y = ST, ,
where € s a unit such that e, = 1, and it suffices to take (T, T,) = 1.

Lemma 3. All integer solutions of KXX; = MYY,are K = TLL,,X = SUV,
M =TVV,,Y = SU,L,. It suffices to take (UV, U,L;) = (LL,, VV,) = 1.

LeEmMmaA 4. All integral solutions of hh, = ab are h = ckl, a = ckk, ,b = cll, .

The proofs for these four lemmas are exactly as given in the earlier paper,
where the indeterminates are integers of a unique factorization quadratic field.

Lemma 5. All integers K, X, Y satisfying
are gven by K = LL, , X = SU,Y = SU,L, .

Proof. In Lemma 3 we must restrict the parameters so that TVV, = 1.
Hence 7' and V are units. Put 7 = ¢, V = 6; then €086, = 1 and all solutions
of (4.1) are given by

K = eLL,, X = SUs, Y = SU(L, .

Make the reversible substitution L = 6L, U, = 6;'U, and we have the required
result. It suffices to take (U, U,L;) = 1.

LeEmMA 6. If the product XY is in Ra(im?), then all X and Y are given by
X = 14, Y =v4;.

Proof. The following proof applies when m = 3 (mod 4). In this case the
integers are of the form 1(a + b + mlc + im*d), where a = d, b = ¢ (mod 2).
Hence we can put

X = o+ 16 Y =~ + 46,
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Then XY = (ay — 86) + i(8y + da), and since XY is to be in Ra(im}) we must
have
By = —oba.

Hence, by Lemma 1,

6 == ETI: Y = uy, 0= _£V7 x = un,
and therefore
X=nw+w®, Y=vp-—1).

Put p + ¢¢ = A; then u —i¢ = A; and we have the required result.
Similarly we have

LemMA 7. If the product XY isin Ra(z), then all X and Y are given by X = hA,
Y = kA, ; and if the product is in Ra(m?), then we must have X = yA, Y = oA, ,
where ¥, ¢ are integers of Ra(m?).

LeEmMA 8. If aA is in Ra(z), then a = aB, A = kB, .
5. Equations of the form u N(X) = v N(Y). The complete solutions of these

equations in integers of Ra(i, m?) yield the complete rational integral solution
of some interesting Diophantine equations.

TaEOREM 1. All integers a, A, a satisfying the multiplicative equation

(5.1) a’N(A) = No()
are given by
(5.2)- a = gA\\, A = oML, a = egoo N°M M,LL; .

Proof. The given equation (5.1) can be written as
(adA;3)(adAy), = aa, ,
whence, by Lemma 2, '
(5.3) aAA; = B, a = 8y,

and it suffices to take (v, v,) = 1, and € is a unit of Ra(im?). Solving the first
equation of (5.3) by Lemma 1 we get

a=yr, Ad;=1E&, B=¥ v=ir

Since the product ¢yr must be a rational integer, then [2] (much as in Lemma 6)
we must have
Ip = CA, mw = dxl .
Hence
a=cd\\,, a=ed\lt;, AAd;=§
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and it remains only to solve the equation
AAd; = &.
From Lemma 1 it follows that
A=BC, 4,=DE, &t=BE ¢=DC,
where lthe parameters must be restricted so that the products BE, DC are in
Ra(im®). Hence, by Lemma 6,
B = 7F, E = uF,, D = G, C =G, .

Thus, A = wFG; , A; = uGF, , from which it follows that 7v = ¢u and so we
must have

T=wp, V=K, @ = @K, = 1p.

Hence all solutions of (5.1) are given by (5.2) where we have put ¢d = ¢, wyg = o,
plF = €M, kGs = ¢ L, since these parameters always occur in these product forms.

Remark. When m = 3, then in (5.2) it suffices to take e = =4=1. Also since
(v, v1) = 1 then the g.c.d. of the coérdinates of o + ad A, = M8, + €B) is
equal to the g.c.d. of the coérdinates of g(4= AeLLs + N\o,L,L,). (The coérdi-
nates of a quadratic integer are the coefficients of the basis elements.) This
remark will be required in the proof of Theorem 4.

Similarly we have

THEOREM 2. All integers a, h, X satisfying a’N(X) = N,o(h) are given by
a = grry, h = egr’kk, LL,M M, , X = kML, where ¢ is a unit of Ra(3).

CoroLLarY 1. All X, h satisfying N(X) = No(h) are X = kML, h =
ekky LL.M M .

THEOREM 3. All integers X, Y satisfying
(5.4) N(X) = N(Y)
are given by
(5.5) X = 0KPQR, Y = KP,Q,R; .
This result can be deduced from Theorem 2 and the following lemma.

Lemma 9. All integral 8, V and primitive r satisfying 0rry = V'V, are included
in the solutions 6 = Y, , r = eSS, UU, , V = ySS;UU, , where ¥, € are units of
Ra(i, m"), Ra(3), respectively.

Proof. By Lemma 1 we have
6r = AB, r = CD, V = AD, V, = CB; (B, D) = 1.

Then (r, V) = A4, (r, V,) = A,and so B | 4, ; similarly D | C,. Put 4, = KB,
C, = LD and it follows from the expressions for V, V, that K = L, . Thus

6r = LBB,, r = I,DD,, V = LB,D
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and from the expression for 6r we must have L in Ra(7) and so L = L,. Hence
L, = €, a unit, since r is primitive. It remains only that the parameters must
satisfy 6D,D; = BB, , and from Lemma 5 it follows that

0 =4y,, D=2S8U,, B==8Uxg:; ¢ = aunitofRa(s,m}.

Replacing ¢ by e and noting that ¢’ = 1 we have the required result.
We can now give the proof of Theorem 3. By the corollary to Theorem 2,
all X, Y satisfying (5.4) must satisfy

X = kML, YY, = (6kk,)(LM,)(LM,), .
Therefore, by Lemma 5,
Y = SUV, 0kk, = VV,, LM, = 8SU,
and thus, by Lemma 9,
0=, , k = eABA,B,, V = yABA;B, .
From LM, = SU, we have
L = CD, M, = LF, S = CF, U, = ED.
Thus all X, Y satisfying (5.4) are
(5.6) X = ¢«(ABC)(F,A,)DE,B, , Y = ¢(ABC)(F,4,),D.(E\B,); .

Put yABC = K, F\A, = P, D = @, B,E, = R and all numbers of (5.6) are
included in (5.5), but all numbers of (5.5) are solutions of (5.4) and hence (5.5)
gives all solutions of (5.4).

6. Complete rational integer solution of two interesting equations. In the
following theorem p denotes the integer 2(—1 + 3%).

TueorEM 4.  All rational integers x, y, u, v satisfying
(6.1) 2+yP =3+
are gien by

u + 9w = nr(rr) (rm) K K,00, |

(6.2)

z 4+ p(x — y) = c(rry) (wm)wKK,0,
where
(6.3) TlKlKQ + TKK;; = Cnn,@,

and 6 = 1, 3% according as the + or — sign s taken.

Remark. To obtain all the integers in (6.3) we can select K, n, r arbitrarily.
Then if KK; = a + bp and if we put 7 = s + tp, (6.3) becomes (taking the +
sign) wi i B
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(6.4) $(2a — b) — t(a + b) = cnn, .

Selecting ¢ so that (2a — b, a + b) | cnn, we can solve (6.4) for s, { and hence
obtain =; similarly for the — sign.
Proof. Equation (6.1) can be put in the form

(6.5) (¢ + ay)ae, = hh,y,

where @« =  + p(x — y) and h = u + . The class number for Ra(z, 3%) is 1,
see [1; 51]. Then all « and h satisfying (6.5) must also satisfy

a+a =LL,, a=8U, h=SUL,

by Lemma 5; and we must make LL, rational and have SU, SU,L, integers of
Ra(3%) Ra(3) respectively. Since SU isin Ra(3%) we can put S = 84, U = v4, ,
and then the expression for h becomes h = AAyy,L, from which it follows,
since AA, is in Ra(7), that 8y,L, must be in Ra(z). Hence we have

(6.6) By, = as, L, = ks, ,

by Lemma 8; and it suffices to take (4, §,) = 1.
From the first equation in (6.6) we get 3 = by since from U, U,L, being
coprime it follows that v, 8,7, are coprime; hence we have

a+ a; = kk,éé, , a = béBB; , h = bkés,BB, ,

where we have put the product yA = B. Finally the parameters must satisfy
(kk,)86, — (bBB;)6 — (bB,B,)8, = 0, which is equivalent to

(kk6 — bB,B.)(kk,8, — bBB;) = b’BB,B,B, .

(If £ = 0, we get the solution v = » = 0, which is included in (6.2).) Put
kk,6 — bB,B, = y; then 6 = (¢ + bB,B,)/kk, (whence it suffices to select the
parameters so that kk, is the g.c.d. of the cosrdinates of ¢ 4+ bB,B; , since we
can have the coordinate of § coprime) and we have

¥ + bB.B, ¥+ beBa>(‘l/x - bBBa)
kk, ke, Kk, ’

where y¢, = b’N(B); then by Theorem 1 the last equation yields

6.7 a= bBB3< ), h = kaB2<

(6.8) ¥ = +goo MM, M,KK; , b=g\,, B=eMK

and the g.c.d. of the cosrdinates of ¢ + bB,B; is the g.c.d. of the coordinates of
g\ K, K, + A\eKK,). Substituting (6.8) in (6.7) we get

(6.9) h = kgl'LKK,(x7.)*00,, o = g(ll,)KK.r'm,6
with
(6.10) okk, = g(mK,K, &= vKK,)
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in which the products Ae, MM, have been replaced by the single parameters , I.
From (6.10) we get

k = cnp, g = cpp, , ™K K, + 7nKK; = 6enn, ,

by Lemma 4; and writing these values in (6.9) and putting p! = r we have the
required result.

TueoreM 5. All sets of rational integers x, y, u, v satisfying
(6.11) 4yt =ut 4

are given by
u~+ w = ekk,M M,;LL,

x=as — bt —dz — (c + 2d)w, y =cs — tlc+ 2d) + z(a — b) — 2wd,

where we first select arbitrary k, M giving kM = %(2a + 1-2b + 2¢ + 2% (c + 2d))
and then solve for the indeterminates s, ¢, w, z of L = $(2s + -2t + 2z +
2%z + 2w)) from the homogeneous linear equations

bs + at + (d + ¢)z + wec = 0,
ds + (c — d)t + bz + (a — b)w = 0.
Proof. Equation (6.11) can be written as
(6.12) N(X) = No(h),

where X = z + 3(2'y + 2%i), h = u + v
Therefore, by Theorem 2, all X, h are given by

X =EkML, h = ekk,LL,M M, ,

where M, L are integers of Ra(s, 2}) and we must restrict the product kML to
have the form z 4+ 1(2'y + 2%y). To do this we may put

kM = 3(2a + 2bi + 2% + 2Y(c + 2d)), L = 1(2s+ -2t + 2% + 2%(w + 22))

since kM, L are integers of Ra(i, 2}). If we select arbitrary k, M, then a, b, ¢, d
are known and on equating the corresponding coordinates of kML and X we
have the required result.

7. Other equations. Using Lemma 3 we can deduce that all integers X, Y
satisfying
(7.1) X + X)XX, = (Y + 1,)YY,
are given by

(7.2) X = 34pSUL/8q, Y = 3%pSU,V./6q,
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where S = UV-VV, — U,L,-LL, = (I + 3%j) and it suffices to take ¢ = (I, );
0 is 1 or 3 if 3% | S. The proof is similar to that given in [2]; here however we
operate in the field Ra(i, 3!) instead of the quadratic field Ra(3%).

If we put 2X = (h + k) + 3%(h — k), 2Y = (r + n) + 3%(r — n), then
(7.1) becomes h* + k* = r* + »’, and we obtain from (7.2) an explicit represen-
tation for all Gaussian integers satisfying this equation.

Also by operating in the biquadratic field Ra(a}, b*) we can obtain all integral
solutions of z° — ay® = 2° — bw’ in all cases in which these fields have unique
factorization. For, proceeding much as in Lemma 9, we obtain the complete
solution

T+ a%y =.eYY,, z + blw = 6cYY, ,

where Y is an integer of Ra(a}, b*) and Y, , Y, are respectively obtained from
Y by changing sign of a*, b*; e and 8 are units of Ra(a') and Ra(b}), respectively.
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