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Summary of Thesis 

This thesis is concerned with the problem of eXi~ibiting all 

the rational integer solutions satisfying certain diophantine eq­

uations. The thesis consists of two sections. The first section 

indicates how some types of diophantine equations completely red­

ucible in a single quadratic field may he solved completely, and 

also the complete solution is obtained for an interesting class of 

cubic diophnntine equations. In the past there have been many is­

olated investigations on the separate equations of the class considered 

here and at most only partial integral solutions have been given. 

In this thesis the complete solutions for these equat ions are de-

duced from a single multiplicative equation in a quadratic field. 

In the second section Diophantine equations completely red­

ucible in t wo or more different quadratic fields are considered. 

These equations are solved by operating on multiplicative equations 

in· biquadratic fields. 

The success of our method depends fundamentally upon the 

complete solution of the simple mul tipli ca ti ve equation ry= zw . 
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ON SOME CUBIC DIOPHA.'r<J'l7INJ£ :ID;;/.UATIONS. 



ON SOME CUBIC DIOPHANTINE EQUATIONS.* 

By E. ROSENTIT ,\LL. 

1. In this paper we shall adhere to the following notation: large capital 
letters .4, B, • • • (with or without subscripts) will represent integers of the 
quadratic number field Ra (p) where p = ½ (- 1 + i\,/3) ; the letter f will 
be reserved for the units of this field. Small latin letters a, b, • • • represent 
rational integers, and the conjugate of a number X is denoted by X. The 
s_rn1bol (A,B, C',· ···)signifies the g.c.d. of A,B,C,· ··;A.IE means A 
cliYides B, and ( A., B) = 1 denotes that A and B are coprime. 

The integers of the field Ra (p) are of the form c + dp, or of the form 
i ( 11 + -V- 3b) with a and b of the same parity; also ii= 1. 

2. In this paper we solve completely in integers of Ra(p) a multi­
plicative equation of the form 
(2. 1) wWfV = nNN 

and deduce from this the complete rational integer solution of certain in­
teresting cubic diophantine equations. The method of proof will indicate 
how some types of diophantine equations reducible in a quadratic field may 
be solved completely. 

Since the integers of Ra (p) obey the fundamental law of arithmetic, 
namely unique decomposition into prime factors, multiplicative equations m . 
this field can be solved completely in parametric form by the method of 
reciprocal arrays. 1 

To solve (2. 1) we require the following fundamental lemma. 

LEMMA l. 1 A lZ integral solutions of 

XY =Zl,V 

are given by X = US, Y = VT, Z = UT, lV =VS; and it suffices to take 
(S.T)=l. 

This lemma (as stated in the paper referred to) is for non-zero integers 
X , Y, Z, W. However the solution given includes all the possible zero solu-

* Received August 19, 1942; Revised February 19, 1943. 
1 E. T. Bell, " Polynomial diophantine systems," Transactions of the America11 

Mathematical Society, vol. 35 (1933), pp. 909-910. Also E.T. Bell," Reciprocal arrays 
and diophantine analysis," A.merican Journal o.f Mathematics, vol. 35 ( l 933), pp. 50-66. 
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tions without violating the conditions on S and T. For example, the solution 
,r· = Z = W = 0 is obtained by taking U = 8 = 0, T = 1, and 8, T are 
coprime. 

3. We now solve equation (2.1). 

'l'HEOREJ.I 1. The complete solution in integers w, W, n, N satisfying 

equation (2. 1) is git:en by 

(3.1) W-'-8UL, w=tV-V, N-SUV, n=tLL 

and it suffices lo lake (UL , UTl) = (YV,LE) = 1. 

Proof. By Lemma 1 all required values of w, W, n, N are of the form 

(3.2) 

W=RAF 

lV=SBG 

w=TCH 

N=RBil 

fif=SCF 

n=TAG 

with the g. c. d. conditions 

( 3. 3) (W, N) = R, (lV, N) = 8, (w, n) = T. 

From (3. 3) it follows that R = d]; substituting this in (3. 2) we see 
thAt the parameters must be restrieted to satisfy 

(3.4) d. F = If G and E B H = CF. 

Hence ( 3. 2) becomes 

(3. 5) 
W=,~BG 
w=TCJI 

N=SC-P 

n=TAG 

with conditions (3. 4). By Lemma 1 all .-1, F, B, G satisfying 
given by 

B = A1B1, G = C1D1, E:1 = A,D1, F=C,B1, 

Then (3. 4) 2 becomes E,1,H = 6(\ and so 

Substituting these values in ( 3. 5) we have 

lV = ES.12C2(B2B,) (B2D,), N = cf:;A2C2D2(B2B,) 

(3.4) 1 are 

w = T.J.2O2(D2D2) , n = Tif2C2(B2D1) (BJJ,). 
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Since the integers B2, B, , 1J1 a1'rays occur as factors of the produds B2B, , BJ), 
we can put B2B1 = I( and B2D 1 = L; we also make the reversible substitution 

D2 = tV and replace d~ by the parameter S. Then we have 

(3. 6) W = S (1f 2C2K)L, w =(T.T 2G2)VV, N = S(A 2G2R) V , n ==(T,f,C,) Ll, 

where TA 2C2 must be restricted to be a rational integer. Thus (:3. 6) is a 
complete parametric representation for the indeterminates satisfying (2. 1). 

However if we put lCC2K = U, T A2G2 = t then all numbers in (3. 6) 
are included in (3. 1). But by direct substitution we see that all the number~ 
(3. 1) are solutions of (2.1). R enee (3.1) is the complete solution of (2.1) 
"·here S, U, L. V are arbitrary intrgers in Ra (p), and t is any ra tional integer. 

4. From Theorem 1 we can deduce the complete rational integer solutio11 
of x3 + y3 = z3 + w~. This equation can be put in the form (2. 1), viz., 

(4. 1) (X + .Y )X.Y = (Y + Y)YY 

"·here X=½[(.r+y)+ V- 3 (:i: -y)], Y=½[(z+w)+ v'-3(z -1c)] 
are integers of Ra (p). If x = y, we have the trivial solutions with x = z. 

In 6 ,re prove the following theorem. 

THEOREl\f 2. The set of all integers X, Y ( with X =I= Y) satisfying 
( 4. 1) is given by 

(4. 2) X= (\l-3z1/8q)( e +fp)LU, Y= (y'-3p/ 0q)( e +fp)Cv 

where e + fp =UV· VV- rJL • LL, and 0 is 1 unless y'-31 (e + fp) and 
lhen 0 = 3; it suffices to talce q = (e, f) and (LU, UV)= ( V V , LL)= 1. 

5. To obtain the solution of ( 4. 1) in the form ( 4. 2) we require the 
following three lemmrrs. 

LEllLMA 2. If the product XY is pure imaginary and if X = aA wh ere 

A is not divisible by a rational integer then Y = V- 3b.A/0 where 8 is 1, 
or 3 if y'- 3 I A. 

Proof. Put X=aA=a(m+np) and Y=b(s+tp) where (m,n) 
= (s, t) = 1. Then since XY is pure imaginary we must have 

ns + mt - nt = 2 ( ms - nt) 

from which it follows that m(2s-i) =n(s+t); and since (m,n) =1 
we have 2s-t = lm, s + t = km. Hences= lc(n + m) / 3, t = k(2m -n) /3 
and since (s,t) =1 we can write 
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s=(n+m)/0, t = (2m-n)/0, 

whic:h gives Y=b{(rn+n) + (2m-n)p} / 0=by-3!L/0. 

LEMMA 3. If D = (l + mp) is a g. c. d. of a+ bp and c + dp, then 

(a , b, c, d) = (Z, m). 

Proof. vVe know that if a rational integer l divides a + bp then t divides 
both a and b. 

Therefore if q = (l, m), then q I lJ and q is a divisor of a and b, c and d; 

ancl if s = (a, b, c, d) then q Is. Also s divides a+ bp, c + dp, and therefore 
sjD. Then sjl and sim, and therefore siq. Hence sjq, qls and so s~q, 

(a , b,c,d) = (l,rn). 

LEMMA 4. If the matrix of the coefficients is of rank 2, then all integral 

solutions of the simultaneous equations 

AX+ BY+ CZ= 0, 
are given by 

where E is an arbitrary integer and it suffices to take IJ = (BC 1 -B1C, 

A1C-A.C1, AB1 -A 1B). 
For, solving algebraically, X, Y, Z are certainly given by 

where a is in the field; writing a in lowest terms E/D, D must be a divisor 
of B01 - EiC, etc. Hence, multiplying up by a suitable factor, it suffices 
to take D as stated, and E is arbitrary. 

The case where the matrix is of rank O or 1 will be considered in the 
application to which the lemma is put. 

6. We now prove Theorem 2. Considering each element of ( 4. 1) as 
independent, then by Theorem 1 all X, Y satisfying ( 4. 1) are of the form 

(6.1) X=SUL, x+x=tVV, Y=SUV, Y+Y=tLL 

with (UL, C1r) = ( Yli', LL) = 1 and the parameters must be restricted to 
satisfy 

SUL+ sDL- tV1r = 0, SUV+ §UV-tLL =0. 

Considering this system in the indeterminates S, S, t and taking the matrix 
of the coefficients to be of rank 2, then by Lemma 4 all S, S are given by 
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S= (l;'/D)(e+fp) , 

,dwre E is arbitrary and it suffices to take D = ( e + f p, e + fp2). From the 
(•:q>ressions for S am1 S we get ED+ RD= 0, and hence ED is pure imagi-
1111 ry; thus hy Lemma 2 we can put 

E = Y-3 pK/ 0 with q = (k, Z), 

1111t1 0=1 unless Y--3IK, that is Y-3!(e+fp) and then 0=3; from 
J ,cmma :l it follo,r:,; that q = ( e, f). Hence 

B/D = V- 3 p/0q 

where q = ( e, f) , and Theorem 2 is proved for the case considered. 
1f the matrix of the coefficients is of rank l then £V =EL= (J or U = 0 

gi Ii ng in ( 6. l) the trivial solution X = Y; and if the matrix is of rank 0 
11p [!et X = Y = 0, a solution which is included in ( 4. 2). 

7. From 'l'hcorem 2 we deduce the following result. 

THEOREM 3. All sets of rational integral values :i:, y, z, w ( except x = z) 
sa 1-isf ying the equation 

( 7. 1 ) x3 + y3 = z3 + w3 

arc given by 

;c = p(a-2b)/ 0q, y = - p(a + b)/Oq, z = p(c-2d)/0q, w = -p(c+d)/0q 

'Wl1ere 1i+bp=UL(e+fp), c+dp=VV(e+fp), and q, 0, e+fp, are 
as defined in Theorem 2. 

For from Theorem· 2 we have 

½[(x+y) + Y-3(x-y)] = (Y-3p/0q)(a+bp), 

½[(z + w) + V--3(z--w)] = (Y-3p/0q)(c+ dp). 

Equating real a1Hl imaginary parts and solving for x, y, z, w yields the 
required results. Further it suffices to take (UL, UV) = ( VV, LL) = 1. 

8. The complete solution of the equation 1nM M = nNN also yields the 
complete rational integral solution 2 of 

(8.1) x' + y3 + z3 
- 3xyz = u:• + v3 + w3 

- 3uvw, 

"R. D. CarmichrLel, Diophantine Analysis, New York, 1915, pp. 63-65, discusse8 
this equation and gives a four parameter rational solution. 
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m=x+y+ z, 111= (x -z) +p(y-z), n=u+ v +w, 
N= (u-w) +p(v -w) . 

Then from (3. l) all rational integers satisfying (8. 1) are obtainable f:rorn 

x + y + z = tl'T' =a, u+v+ w=ILL=a, , 

(u-w) + p( v--w )= SDv - b, + c, p, 

and it suflkcs to take (LL, FY)= (l!L, Cf')= 1. Solving (8. 2) for 
:r, y , z, u, v, w gires 

(8.3) 
1·=J(a + 2b--c), y=½(a-b+2c), z=½(a - b -c ) 

u =½(a,+ 2b1-c1), v = ;\(a,-b, + 2c1), w = ½(ii, -b, -c, ) 

for the complete rational i11tegral solution of ( 8. 1). 

It is desirable to know how the parameters f, U, L, V are to be selected 
so that (8. 3) always gives integers. 'l'hese expressions are integers if 
a+2b-c=O(mod3) and a1 +2b 1 -c1 =0(mod3). This implies 

fVTr +SUL+ /:!(]l, == 0 (mod 3) 

fl,L + SOv +SUV= o (mod 3). 
(8.4) 

If both ll L and UV are prime to 3, then it suffices to take 8 satisfying 
the linear congruence AS-:- B (mod 3), where UL· UV- OL ·UV= A, and 
-t(VvtJv-LL·UL)=B. This congruence is solvabl e if (3 , A)jB. 
Si11ce A is clivisible by V- 3, B will have to c011tnin the Ja dor V -- 3 ill' 

(V-3) 2 If it happens that U, L, V are selected so that (VV • UV 
- UL · LL) does not contain this factor th en it rnffices to select l = 0 ( mod 3) ; 
otherwise t is arbitrary. 

If one of ll L, tJf' ( say UL) is not prime to 3, then it suffices to take 
Dv prime to 3 ; whence U must be prime to 3. Thus L must be divisible b_v 
V- 3, arnl it follows therefore that LL= 0 (mod 3) and SUL+ SOL = 0 
(mod 3). H ence (8. 4) becomes 

( 8. 5) tVv _ O (mod 3), SOv +SUV=== o (mod 3). 

From (8. 5) 1 we have t = O (mod 3) since Vv, LL are coprirne ; an cl 
(8.5)2 holds if: and ouly if y-3 divides SUV, whence V-3 divides S 
since tJv is prime to :-3. Summing up, we have, in thi s case, tha t (8. ~l) yield ,; 
integers if and only if S , L (or V) is divisible by V-3, arnl t = O (mod3). 
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9. As a furth er illustration of the method used here for solving dio­
phant.ine equatio11f', we now solre completely in rational intPgers the equation 3 

(9. 1) 

For thi~ purpose we require the following lemmas. 

LE:11nu 5. If ilt e product XYl is a rational integer then all values of 
X , Y , Z are giren. b!J 

Proof. Precisely as in Lemma 2 it follows that if the product RS is a 
rntional integer then all R, S are giYen by R = aK, 8 = pK. Hence since 
T(YZ) 1s rational we can put X = aK, Yl = µR ; whence by Lemma 1, 
we have 

Y=FG, Z=llJ, p=FJ, K=IlG. 

Again, since PJ is rational it snfficPs to take F = bC, J = cC; make the 
change in parameters ll - B, G - 1I, and the lemma is lH·o,·ecl. 

We note that it suffices to take A, cC coprirne (J,Pmma 1); further auy 
factor common to a and c can be absorbed into th e 13 and so we can take 
(a , c) = 1. These facts will be required in 10. 

L E::IDL\ 6. Th e complete set of integer values X , Y satisfying XX= YY 
1s given by T = EST, Y = 81', and it suffices lo take T divisible by no 
rational inll'ger. 

Proof. This equation XX'= Y.f' can be considered as a particular case of 
Theorem 1 hy placing w = n = 1, from which it follows in (3. 1) that/= 1, 
Y = E1 , J, = Ee- On making the re,·e rsible rnh~titution r· = "i.1T. "i.1E2 = £ we 
obtain th e n•quirell result. 

Li::::11.M .-\ 7. All integers :r, z satisf.1Ji11g X.f' = z~ are giren by X = Ear", 
z = aTi'. 

For, from Lemma fi all required 1·, z are given by X = EST, z = Si', 
\\"here 81' must be a rational integer; then we can put S = aT, since T is 
divisible by no rational integer. 

Lemmas 6 and 7 furnish the complete rational integral solutions of each 
of the equations 4 :r2 + mf = z" + mw2 and x 2 + my2 = u2 for those m in 

3 L. E. Dickson, ll-ist ory of the 'l'heory of Numbern, vol. 2, pp. GiS-i,81 gh·es an 
account of the innstigations on ( 9. 1). 

• If m = I ( 4) replace form u" + m v' by u' +ti t> + ¼ ( I - 111) v' . 
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which the integers of the quadratic fielll Ra( \I- in) are uniqueh decom­
posable iuto prime factors. 'l'he romplete solutions of these equa1io11~ for any 

value of m are readily obtained by other methods,'' but for ou1· purpose the 

form of solutio11 giYen here is desirable since it on·urs in multiplil·atire form. 

10. We now return to equation (9.1). Defining the integPr X a~ in 4, 

th is equation takes the form 

( 10. 1) (X + X-)X.t =: • ;; • 1. 

'l'hen from (:l. 1) it follows that all X, .X + .f, z ol' ( 10. 1) art> gm·11 by 

(10.2) X=SUL, X+T=ll'1'7 , z=8C'V, 

where t ancl L must satisfy tLl = 1. Thus t = l (~in(·(• Li',> O). / , = £; 

and with the reYersible substitution U = 'i.K, l' = d', ( I 0. ~) h(•co111P~ 

X = SK, X + X~ = PI', z = SRP, 

and it suffices to take /1 diYisible by 110 ratioual iutegrr (it can l>l' ab~orbed 

into 8). 

Siner Sf<l' must be a rntio11al integer, then 

S = a.111, 11. = .TU, ]' = cBC: 

ancl it sufficl'S here to haYe c prime to a arnl A (sec remarks at the rnd of 

Lemma 5), and we ha Ye 

( 10. 3) X=(uFR, x+ :f=c"RR, z=ac.LfHR 

in which, sinee B aml C' ahraYs occur as the product BG, we haYe put JJi..~ = R. 
Further, the panm1dt>r~ of ( 10. :l) mu~t sati~fy c"RR - cut" H - a.PR 

= 0 \Yhil'h i~ equivalent to 

(r:"H---- 1/.l'')(c"R-rd") = (a.Lf)". 

Put c"R - rd"= Il, th rn ( 10. a) becomes 

(10. 4) Y = F (H + iuf") • a. c" ' -(II+ a.F) (H +c_
0
aA

2

) z=ac.·LI , c-

where (nA.T)" = JIH. Whence, by Lemma 1, 

( 10. 5) H = £bT\ aAX = bT'l'. 

Solving (10. 5), by Theorem 1 we finally get 

5 L. E. Dickson, Introduction to the 'l'heory of Numbers, pp. 40-41; also see 
Ex. 5, p. 43. 
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( 10. 6) H = £mGG(MPE)Z, a= mEE, A= MFG. 

Again, since R is an integer we must have c2 dividing H + a . .P, that is 
it must di,·icle mGP2E(£Glll2R + E 1I['.!(}). Sinee c is prime to a and A, 
then w~ have c~ prime io each of m, )<J, P, G, M. Hence c2 must divide 
(EiI 2G + €R}f"G). 

Substituting (10. H) m (10. 4) we har(' 

z = c ( mPP) a (F:G)" (Ef]) 2M. Jf ( E A1
2G t £11'.lFG) ( RM.

2
G :/E .M

2G). 

Put 111PP = k and EG = K, and we get 

X = l:2J(2J?ilP c(J]Z ~ d{JP) 

(10.7) 
Z = £CF'(El() 2JJJJ (K)°:JZ; £KJl2), 

and it suffices to have c prime to each of K, JI allll k. 

All the integer solutions of (10.1), and hence of (9. 1), are given by 
(10. 7), and in order to obtain all the integers in (10. 7) we can take c, le 

arbitrary and M any integer prime to c and then select the coordinates of K 

t • l (K },[Z + £KM
2

) • t l 'I'] • • ] • th f 11 • o ma <e c2 m egra . . • 11s 1s cone m e o owmg way. 

Put J{ = u + rp, an<l let M 2 
= m + np, (whence m, 11, c2 arc coprime). 

Then if we take£= 1, p. p" in sue('ession the congruence .KR 2 + d(Jl£2=0 
( mod c2

) becomes 

u(2m - 11) = (rn + n)v (mod c2
), u(m -2n) = (2m-n)v (mod c2), 

u(m + n) === (2n-m)v (mod c2
) 

respccti,·cl:r; and for £ = - l, --- p, - l respectively we ~et the congruences 

un= r(11- m) (mod c2), um,=rn (mod c2), u(n-m) =vm (mod c2). 

Since c2 is prime to at least one of the coordinates m or n it follows that in 
the last three congruences either the coefficient of u or of v ( at least) must be 
prime to c2

• If this coefficient is the coefficient of u, then select v arbitrary 
and solve the congruence for the unique u, and similarly solve for the unique v 
with arbitrary u if the coefficient of v is prime to c2

• 

In the first three congruences, alflo one of the coefficients ( that is, of u 

or v) must be prime to c2, and so we can always find a unique it or v. For 
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example, ( considering th e first congruence) , suppose that 2m - n, m + n, c2 

lrnYe the factor p :¢, 3 .in common . Then p I 3m arnl hence <liYi<les m, n, c\ 
whi eh is impossible sin e:e c2, J1[ 2 are coprime. 

Also if 3 is a factor of c~ then 21n - 11 ( all d hence rn + 11) is prime to 3, 

for otherwise J/ 2 = l (2m - - n + v' - 311) woulrl be diYisible by V- 3, and 
,:o .:1£2 would ham a fa ctor in common with c2

• 

Thus in all cases either the coeffi cir nt of i i. or 1· is prime to c2, and K 

can be found. 

11. The equat ions whi ch we haYe soh·e(I completely in rational integers, 
Yiz. ( 7'. 1), ( 8. 1) , and ( 9. 1) are merel_\· particular cases of the equation 

(2 . l ) . By suitably selecting the indeterminates w, W, n , N in (2.1) the 

complete solution to many other interesting equat ions can be obtained; for 

example any of the equations x3 + y3 + z" - 3J:yz = u 2, u 2 + 3v2, u 3 + ·r 3
; 

or (x3 + y3) (u" + v~) = (w3 + z3
). 1\IoreoYer 'l'heorern l holds in any 

normal algrbrai c fi eld whose integers can be decomposed un !qu ely into prime 
:fnc.tors. 

McG1u. l: s IY Ell S TTY , 

1'fONTl!L\I., CAXADA, 
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DIOPHANTINE EQUATIONS REDUCIBLE IN BIQUADRATIC FIELDS 

BYE. ROSENTHALL 

1. Introduction. In an earlier paper [2] the complete rational integer solution 
was obtained for certain Diophantine equations reducible in a single quadratic 
fi eld. In this paper we deduce the complete solution in rational integers of some 
Diophantine equations by operating on multiplicative equations of the form • 
uN(X) = vN(Y) in certain biquadratic fi elds (for notation see §3). These 
equations are solved by an extension of the method used earlier [2], and it will 
be seen from these examples how this method can be used to solve completely 
Diophantine equations reducible in two or more quadratic fields. The idea is 
to operate in the field which has as its subfields those fields in which the equation 
is factorable. Thus, to solve the equation x3 + y3 = u2 + v2 we use the field 
Ra(i, 3½). This field is an example of the so-called special Dirichlet biquadratic 
fields which we use in this paper. 

2. The special Dirichlet biquadratic fields [l; 47- 52]. These are the fields 
Ra(i, m½) obtained by adjoining i = (-1)½ and m½ to the field of rational num­
bers, where mis a positive square-free rational integer different from ± l. The 
numbers of Ra(i, m½) are 

X = a + ib + m½c + im½d, 

where a, b, c, dare rational, and the integers [l; 25- 26] of the field are of the form 

X = ½(r +is+ m½t + im½u), 

where r = u, s = t (mod 2) if m = 3 (mod 4), r = t, s = u (mod 2) if m = I 
(mod 4), r, s are even and t = u (mod 2) if m = 2 (mod 4). 

The conjugates of X are the numbers X 1 , X 2 , X 3 , respectively, obtained 
by changing in X the sign of i, the sign of ml, the signs of both i and m½; it follows 
then for each type of conjugate that the conjugate of a product is equal to the 
product of the conjugates of each factor. We also observe that the products 
XX 1 , XX 2 , XX 3 are numbers in the quadratic subfields Ra(m½), Ra(i), Ra(im½), 
respectively. The norm N(X) of a bi-quadratic number X is defined by 
XX,X2X 3 , but if Xis a quadratic integer, then N 0 (X) is the norm in the quad­
ratic field (that is, N 0 (X) = XX 1 or XX2). If N(X) = ±1, then Xis called a 
unit of the field. 

3. Notations. Hereafter we shall adhel'e to the following notations. The 
letters a, • • • , g, s, t, • • • , z will represent rational integers, while the remaining 
italic letters h, j, • · • , r (except m) will denote integers of Ra(i). The capital 
letters A, B, • • • will represent integers of the field Ra(i, m½); the Greek letters 
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E, 0 will be reserved for the units of this field, and all other Greek letters will 
denote the integers of the quadratic subfield Ra(im½) unless specified otherwise. 
For each equation in which it appears X 1 will represent any definite one of the 
conjugates X 1 , X2 , X 3 of X. The symbol (R, S) = 1 means that R and S 
are coprime. 

Also all fields mentioned are those in which the integers possess the property 
of unique decomposition into primes. The integer parameters given in the 
solution of the equations are arbitrary unless stated otherwise. 

4. Lemmas. The success of our method depends on lemmas of types l and 
6. The remaining lemmas (which are proved by application of Lemmas 1, 6) 
are required for the particular examples we have selected to illustrate our 
method. 

LEMMA 1. All 1:nteger solutions of XY = ZW are given by X = AB, Y = CD, 
Z = AD, W = CB; and it suffices to take (B, D) = 1. 

LEMMA 2. All integer solutions of XX1 = YY1 are X = ST, Y = EST1 , 
where Eis a unit such that EE1 = I, and it suffices to take (T, T 1) = 1. 

LEMMA 3. All integer solutions of KXX1 = MYY1 are K = TLL1 , X = SUV, 
M = TVV1 , Y = SU1L1 . It suffices to take (UV, U1L 1) = (LL1 , VV1) = 1. 

LEMMA 4. All integral solutions of hh 1 = ab are h = ckl, a = ckk1 , b = cll 1 • 

The proofs for these four lemmas are exactly as given in the earlier paper, 
where the indeterminates are integers of a unique factorization quadratic field. 

LEMMA 5. All integers K, X, Y satisfying 

(4. 1) KXX1 = YY1 

are given by K = LL1 , X = SU, Y = SU1L1 . 

Proof. In Lemma 3 we must restrict the parameters so that TVV1 . = 1. 
Hence T and V are units. Put T = E, V = O; then E001 = 1 and all solutions 
of ( 4.1) are given by 

/( = ELL1 , X = suo, y = SU1L1 . 

Make the reversible substitution L = OL, U 1 = o-j1 U I and we have the required 
result. It suffices to take (U, U1L1) = 1. 

LEMMA 6. If the product XY is in Ra(im½), then all X and Y are given by 

X = 71A, Y = vA a . 

Proof. The following proof applies when m = 3 (mod 4). In this case the 
integers are of the form ½(a + ib + m½c + im½d), where a = d, b = c (mod 2). 
Hence we can put 

X = a+ i{3, Y = 'Y + io. 
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Then XY = (a'Y - {30) + i(f3'Y + oa), and since XY is to be in Ra(im½) we must 
have 

f3'Y = - oa. 

Hence, by Lemma 1, 

and therefore 

Putµ+ it = A; thenµ -it = A3 and we have the required result. 
Simili;i,rly we have 

LEMMA 7. If the product X Y is in Ra( i), then all X and Y are given by X = hA, 
Y = kA2; and if the product is in Ra(m½), then we must have X = if;A, Y = i,oA1, 

where if;, i,o are integers of Ra(m'). 

LEMMA 8. If aA is in Ra(i), then a = a{3, A = h/31 . 

5. Equations of the form uN(X) = vN(Y). The complete solutions of these 
equations in integers of Ra(i, m') yield the complete rational integral solution 
of some interesting Diophantine equations. 

THEOREM 1. All integers a, A, a satisfying the multiplicative equation 

(5.1) 

are given by 

(5.2) - A= uML, 

Proof. The given equation (5.1) can be written as 

(aAA 3 )(aAA 3 )i = aa 1 , 

whence, by Lemma 2, 

(5.3) aAAa = f3'Y, a = E/3"'{1 

and it suffices to take ('Y, 'Yi) = 1, and Eis a unit of Ra(im½). Solving the first 
equation of (5.3) by Lemma 1 we get 

Since the product if;1r must be a rational integer, then [2] (much as in Lemma 6) 
we must have 

if; = CA, 1r = dX1. 

Hence 
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and it remains only to solve the equation 

From Lemma 1 it follows that 

A= BC, ~=BE, f = DC, 

where the parameters must be restricted so that thP products BE, DC are in 
Ra(im½). Hence, by Le1:1ma 6, 

B = TF, D = 'PG, 

Thus, A = TvFG
3 

, A
3 

= <pµGF
3

, from which it follows that Tv = <pµ and so we 
must have 

T = Wp, I' = 7JK, ({) = WK, µ = 1/P· 

Hence all solutions of (5.1) are given by (5.2) where we have put cd = g, w7J = u, 
pF = EM, KG3 = E1L, since these parameters always occur in these product forms. 

Remark. When m = 3, then in (5.2) it suffices to take E = ± 1. Also since 
('Y, 'Y,) = 1 then the g.c.d. of the coordinates of a+ aA,A 2 = X,(/31 + E/3) is 
equal to the g.c.d. of the coordinates of g(± XuLL 3 + X1u1L 1L2). (The coordi­
nates of a quadratic integer are the coefficients of the basis elements.) This 
remark will be required in the proof of Theorem 4. 

Similarly we have 

THEOREM 2. All integers a, h, X satisfying a2N(X) = N 0 (h) are given by 
a = grr, , h = Egr2kk1LL2M 1M 3 , X = kML, where Eis a unit of Ra(i) . 

COROLLARY I. All X, h satisfying N(X) = N 0 (h) are X = kML, h 
Ekk,LL2M1M3 . 

THEOREM 3. All integers X, Y satisfying 

(5.4) N(X) = N(Y) 

are given by 

(5.5) X = OKPQR, 

This result can be deduced from Theorem 2 and the following lemma. 

LEMMA 9. All integral 0, V and primitive r satisfying Orr, = VV2 are included 
in the solutions 0 = #2 'r = ESS2UU2' V = V!ss3uu, 'where YI, E are units of 
Ra(i, m½), Ra(i), respectively. 

Proof. By Lemma 1 we have 

Or= AB, V = AD, (B, D) = 1. 

Then (r, V) = A, (r, V2) = A 2 and so BI A2; similarly DI C2 . Put A2 = KB, 
C2 = LD and it follows from the expressions for V, V2 that K = L2 . Thus 
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and from the expression for Or we must have Lin Ra(i) and so L = L2 • Hence 
L2 = E1 , a unit, since r is primitive. It remains only that the parameters must 
satisfy OD 1D 3 = ±BB2 , and from Lemma 5 it follows that 

0 = ±#2' 1/; = a unit of Ra(i, m½). 

Replacing 1/; by Elf and noting that ± / = 1 we have the required result. 
We can now give the proof of Theorem 3. By the corollary to Theorem 2, 

all X, Y satisfying (5.4) must satisfy 

X = kML, YY2 = (Okk,)(LM1)(LM1)2. 

Therefore, by Lemma 5, 

Y = SUF, 

and thus, by Lemma 9, 

0 = #2' 

From LM1 = SU2 we have 

L = CD, 

Thus all X, Y satisfying (5.4) are 

(5.6) 

S = CF, 

Put ,/;ABC = K, F 1A 2 = P, D = Q, B 2E 1 = Rand all numbers of (5.6) are 
included in (5.5), but all numbers of (5.5) are solutions of (5.4) and hence (5.5) 
gives all solutions of (5.4). 

6. Complete rational integer solution of two interesting equations. In the 
following theorem p denotes the integer ½( -1 + 3½i). 

THEOREM 4. All rational integers x, y , u, v satisfying 

(6.1) x3 + y3 = i/ + v2 

are given by 

(6.2) 

where 

(6.3) 

u + iv = c2nr(rr,) (-rr-rri)2 KK2001 , 

x + p(x - y) = c(rr1)(1r1r1)1rKK30, 

and 0 = l, 3½i according as the + or - sign is taken. 

R emark. To obtain all the integers in (6.3) we can select K, n, r arbitr~iily. 
Then if KKa = a + bp and if we put -rr = s + tp, (6.3) becomes (taking the + 
sign) ,: ; ,, 
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s(2a - b) - t(a + b) = cnn1 . 

Selecting c so that (2a - b, a + b) I cnn1 we can solve (6.4) for s, t and hence 
obtain 71'; similarly for the - sign. 

Proof. Equation (6.1) can be put in the form 

(6.5) 

where a = x + p(x - y) and h = u + iv. The class number for Ra(i, 3½) is 1, 
see [l; 51]. Then all a and h satisfying (6.5) must also satisfy 

a= SU, 

by Lemma 5; and we must make LL, rational and have SU, SU1L 1 integers of 
Ra(3li) Ra(i) respectively. Since SU is in Ra(3½i) we can put S = {3A, U = -yA 3 , 

and then the expression for h becomes h = {3AA 2-y 1L 1 from which it follows, 
since AA2 is in Ra(i), that /3-y 1L 1 must be in Ra(i). Hence we have 

(6.6) 

by Lemma 8; and it suffices to take (8, 81) = 1. 
From the first equation in (6.6) we get /3 = b-y8 since from U, U1L1 being 

coprime it follows that 'Y, 8,-y, are coprime; hence we have 

a= b8BB
3

, 

where we have put the product -yA = B. Finally the parameters must satisfy 
(kk1)881 - (bBB3 )8 - (bB 1B2)8 1 = 0, which is equivalent to 

(kk
1

8 - bB
1

B
2
)(kk

1
8, - bBB

3

) = b2 BB
1
B

2
B

3 

• 

(If k = 0, we get the solution u = v = 0, which is included in (6.2).) Put 
kk 18 - bB1B 2 = if;; then 8 = (if;+ bB,B2) / kk 1 (whence it suffices to select the 
parameters so that kk 1 is the g.c.d. of the coordinates of if; + bB,B2 , since we 
can have the coordinate of 8 coprime) and we have 

(6.7) 

where # 1 = b2 N(B); then by Theorem 1 the last equation yields 

(6.8) B = uMK 

and the g.c.d. of the coordinates of if; + bB 1B 2 is the g.c.d. of the coordinates of 
g(">--1u1K1K2 ± ">-.uKK3 ). Substituting (6.8) in (6.7) we get 

(6.9) 

with 

(6.10) 
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in which the products Au, MM2 have been replaced by the single parameters 1r, l. 
From (6.10) we get 

k = cnp, 

by Lemma 4; and writing these values in (6.9) and putting pl = r we have the 
required result. 

THEOREM 5. All sets of rational integers x, y, u, v satisfying 

(6.11) x4 + y4 = u2 + v2 

are given by 

x = as - bt - dz - (c + 2d)w, y = cs - t(c + 2d) + z(a - b) - 2wb, 

where we first select arbitrary k, M giving kM = ½(2a + i·2b + 2½c + 21i(c + 2d)) 
and then solve for the indeterminates s, t, w, z of L = ½(2s + i • 2t + 2tz + 
2½i(z + 2w)) from the homogeneous linear equations 

bs + at + (d + c)z + wc = 0, 

ds + (c - d)t + bz + (a - b)w = 0. 

Proof. Equation (6.11) can be written as 

(6.12) N(X) = No(h), 

where X = x + ½(2½y + 21yi), h = u + iv. 
Therefore, by Theorem 2, all X, hare given by 

X = kML, 

where M, Lare integers of Ra(i, 21) and we must restrict the product kML to 
have the form x + ½(21y + 2½iy). To do this we may put 

kM = ½(2a + 2bi + 21c + 21i(c + 2d)), L = ½(2s + i • 2t + 2½z + 21i(w + 2z)) 

since kM, Lare integers of Ra(i, 2½). If we select arbitrary k, M, then a, b, c, d 
are known and on equating the corresponding coordinates of kM L and X we 
have the required result. 

7. Other equations. Using Lemma 3 we can deduce that all integers X, Y 
satisfying 

(7.1) 

are given by 

(7.2) 
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where S = UV · VV 2 - U 2L2 • LL2 = ½(Z + 3½ij) and it suffices to take q = (l , j); 
0 is l or 3 if 3½i I S. The proof is similar to that given in [2]; here however we 
operate in the field Ra(i, 3½) instead of the quadratic field Ra(3½i). 

If we put 2X = (h + k) + 3½i(h - k), 2Y = (r + n) + 3\(r - n), then 
(7.1) becomes h3 + e = r3 + n 3, and we obtain from (7.2) an explicit represen­
tation for all Gaussian integers satisfying this equation. 

Also by operating in the biquadratic field Ra(a½, b½) we can obtain all integral 
solutions of x 2 

- ay2 = 2
2 

- bw2 in all cases in which these fields have unique 
factorization. For, proceeding much as in Lemma 9, we obtain the complete 
solu t ion 

where Y is an integer of Ra(a!, b½) and Y, , Y 2 are respectively obtained from 
Y by changing sign of a½, b\ t and 0 are units of Ra(a!) and Ra (b½) , respectively. 
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