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Abstract 

Chapter 1 reviews studies of non-covalently bound metal complexes related to the 

structures and reactions of biomolecules in the gas phase, chapter 2 introduces the 

Route 66 method for identifying disulfide linkages in peptides using mass 

spectrometry. Collisional activation of singly charged cationic alkali and alkaline 

earth metal complexes of peptides with disulfide linkages results in highly selective 

elimination of hydrogen disulfide (H2S2). Further activation of the product yields 

amino acid sequence information in the region previously short-circuited by the 

disulfide bond. In chapter 3, we demonstrate applications of this methodology by 

identifying three disulfide linkages in insulin with a peptic digest using the Route 66 

method. In chapters 4 and 5, gas phase reactions triggered by the bimolecular 

collision of a water molecule with collisionally activated anionic and cationic sodiated 

dicarboxylic acid clusters are examined. The water molecule serves as a proton donor 

for a dicarboxylate anion in the cluster and introduces energetically favorable 

dissociation pathways, such as the decomposition of the malonate ion, to yield an 

acetate ion and CO2.  

To further explore the utility of IMS in the identification of organic compounds on 

other planetary bodies, pursuant to NASA objectives, ion mobilities are investigated 

for different classes of biomolecules. Chapters 6 and 7 report the reduced ion 
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mobilities of protonated amino acid cations and deprotoanted carboxylate anions, 

respectively, determined in both N2 and CO2 drift gases. A 12-4 potential model for 

the ion-neutral interaction is used to investigate the high correlation observed between 

masses and mobilities of the ions. Computational analysis employing a 12-4 model 

supports ring conformations for multicarboxylate anions consistent with higher ion 

mobility values than calculated for extended structures. In Chapter 8, the ion 

mobilities of tertiary and quaternary ammonium cations in N2 are reported along with 

their high mass-mobility correlation. We also detail the sensitivity of the collision 

cross sections of molecular ions to the ion-neutral interactions using the classical ion-

neutral collision model and the computational trajectory method. The shape 

asymmetry of the ammonium cations plays an important role in determining the 

observed correlation between mass and mobility. 
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