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ABSTRACT

Advancements in additive manufacturing and material synthesis with highly con-
trolled geometries have enabled the creation of structured media, engineered materi-
als with patterned micro- and meso-scale geometries that impart unique mechanical
properties. By fine-tuning these architectures, structured materials can achieve
properties beyond those of their base materials. A subcategory, structured fabrics,
consists of discrete granular particles rather than continuous fibers. Their mechani-
cal behavior is governed by jamming, a transition driven by geometric constraints,
allowing them to switch between flexible and rigid states. By leveraging the interac-
tions of the building blocks, structured fabrics enable tunable stiffness, global shape
change, and adaptive functionalities, making them ideal for wearable, deployable,
and morphing structures.

The first structured fabric study explores a topologically interlocking material (TIM)
system with adjustable bending stiffness controlled by external pre-stress. The
system consists of truncated tetrahedral particles connected by tensioned nylon
wires, allowing stiffness to be tuned by varying wire tension. Experiments examine
the effects of surface friction and interlocking angle on bending response, guided
by Level Set Discrete Element Method (LS-DEM) simulations. The second design
presents deployable 3D structures that fold without rigid mechanisms, offering
compact storage and stable deployment. The design consists of computationally
generated rigid tiles adhered to a pre-stretched elastic sheet, which transforms from
a flat state and jams into a predetermined 3D shape when released. Although
the designs exhibited unique mechanical properties, experimentally understanding
their internal mechanics was challenging due to limited visibility of the concealed
membrane upon jamming. To optimize future designs, simulations were conducted
to analyze the effects of various pattern designs and folding on membrane behavior.
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C h a p t e r 1

INTRODUCTION

1.1 Thesis Objectives and Outline
This thesis aims to advance the understanding and design of structured fabrics, a
subcategory of structured media characterized by discrete components that can tran-
sition between flexible and rigid states. By investigating their tunable mechanical
properties and deployable capabilities, this work aims to unlock new possibilities
for adaptive, shape-morphing structured fabrics. More specifically, the chapters
are outlined as follows: The first chapter explores the motivation behind designing
new metamaterials using modern additive manufacturing and material synthesis
technologies, which have led to the development of structured media and struc-
tured fabrics. Given our interest in multifunctional materials that integrate tunable
stiffness and shape transformation, we also examine the challenges associated with
morphing flat surfaces into three-dimensional structures and how these principles
can be applied to structured fabrics. Additionally, we highlight key applications of
these designs, demonstrating their potential across various fields.

The second chapter investigates the tunable stiffness in a topologically interlocking
material (TIM) inspired structured fabric design. This involves examining the role
of particle geometry, inter-particle friction, and applied tension in governing the
bending response of TIM-based structured fabrics. By conducting both experimental
and numerical analyses, the study aims to determine how contact angle and surface
friction influence the stiffness and overall mechanical behavior of these materials.
Additionally, the research explores the function of woven tension wires in enabling
tunable stiffness, allowing the system to alternate between flexible and rigid states.
Understanding these interactions provide insights into how structured fabrics can
achieve programmable mechanical properties, making them suitable for a wide range
of applications. Finally, investigating how these designs could transition between
different initial and final configurations to achieve a target shape upon stiffening
served as a key inspiration for the next phase of this thesis.

The third chapter focuses on developing deployable 3D structures that transition from
compact, stowable states to stable, load-bearing forms without relying on traditional
hinges or rigid mechanisms. A framework is established to design and fabricate these
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structures, leveraging pre-stretched elastic membranes as actuation mechanisms for
controlled shape transformation. This computational design methodology uniquely
combines the compressive contact characteristics of the structured fabric, boundary-
first conformal mapping, and folding of thick materials to enable deployment and
compaction of 3D surfaces. This approach enables the application of origami
patterns to stable 3D forms, which are traditionally designed for 2D surfaces.

In the fourth chapter, finite element simulations of a hyperelastic sheet with rigid
components is utilized to gain deeper insights into the strain and stress distribu-
tion within the structured fabric’s membrane, based on the previous experimental
and computational design work. Since direct observation of internal mechanics is
challenging, simulations provide a means to analyze the effects of the boundary
constraints, tile density, spacing, and folding geometries on structural integrity. By
understanding these parameters, the study seeks to minimize stress concentrations,
enhance long-term durability, and improve the overall mechanical response of elas-
tic sheet based deployable structures and other systems involving a combination of
rigid and hyperelastic components.

Finally, the fifth chapter summarizes the key contributions of this thesis, while
the appendix provides comprehensive details on the various background theory,
experiments, and simulations discussed in the preceding chapters.

1.2 Motivation
Throughout history, the discovery of new material properties has profoundly trans-
formed human civilization, shaping technological progress and enhancing living
standards. These breakthroughs have propelled advancements across diverse fields,
including infrastructure, transportation, and aerospace. Traditionally, the focus of
material and structural design was on understanding the inherent mechanical prop-
erties of materials, such as ductility and strength, rather than engineering those
properties for specific applications. Traditional manufacturing that makes struc-
tures and machines we are familiar with, uses subtractive processes where those
materials are systematically removed from a larger block or mass to create the de-
sired final product or a mold of the final product. However, modern developments
in fabrication and computational design have shifted this paradigm, allowing for the
intentional design of materials with tailored mechanical behaviors.

Engineering innovation is now moving beyond conventional structural and machine
design approaches, which rely on rigid mechanisms and discrete joints. This shift
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is driven by the growing demand for adaptable, lightweight, and multifunctional
materials. Applications such as wearable devices [1], deployable structures [2], [3],
and integrated soft robotics [4]–[8] require materials with tunable mechanical prop-
erties that can transition efficiently between different configurations while reducing
part counts in complex assemblies. In such systems, traditional rigid components
are increasingly being replaced by compliant elements [9] that can shape change
and dynamically adapt to stimuli, enabling new functionalities. Some examples
are shown in Fig. 1.1 . A common challenge in shape morphing design arises
from the challenge of morphing flat designs into three-dimensional structures has
been explored for centuries by artists, and more recently by mathematicians and
engineers [9]–[11]. In fabrication, flat materials are favored for their ease of man-
ufacturing, as well as for their efficiency in stacking and transport [12]. However,
many applications, such as tunable mirrors and parabolic antennas [13]–[15], re-
quire surfaces with dynamically changing curvatures. Morphing between flat and
curved geometries thus demands control over localized deformations.

Achieving non-zero Gaussian curvature from initially flat structures requires cou-
pling bending with in-plane stretching, as dictated by Theorema Egregium [16].
Several strategies have been developed to accomplish this transformation. For in-
stance, auxetic and kirigami structures utilize voids and patterned cuts to facilitate
controlled out-of-plane deformations [17]–[19]. More recently, kinematic frustra-
tion has emerged as a powerful tool for inducing curvature changes in flat shells [20],
[21]. While these approaches are effective for lightweight structures, they often re-
quire external mechanical stimuli, such as manual manipulation, boundary loading,
or the release of pre-stretched materials, to achieve their final three-dimensional
shape.

It has long been understood that a material’s microstructure influences its overall
properties, a principle that has been extensively applied in composite materials,
sandwich structures, and cellular materials [22]–[24]. However, recent advance-
ments in manufacturing and synthesis technologies have granted engineers unprece-
dented control over micro- and mesoscale architectures, allowing for the creation
of materials with highly specific mechanical behaviors [25]–[27]. By carefully
designing these internal geometries, materials can achieve new properties, such as
high stiffness-to-weight ratios [28] and bistable auxeticity [29]. This capability has
dramatically expanded the design space for deployable structures and shape-shifting
materials. Mesoscale design, in particular, has been leveraged to introduce com-
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pliant features that replace conventional hinges and flexures, enabling structures
whose mechanical behaviors can be precisely tuned by adjusting geometric patterns
[30]–[32].

This has enabled the development of what we term structured media, materials in
which kinematic behavior is derived from geometric patterns embedded at micro-
or mesostructural length scales [33]. These structured materials feature intricate
architectures that are far smaller than both the overall dimensions of the object
and the scale of global deformations. This distinct separation of length scales al-
lows structured media to exhibit extraordinary mechanical properties that go beyond
those of their original bulk constitutive properties [28]. By precisely designing
mesoscale geometries, these materials can be optimized to achieve specific stiffness
characteristics or energetically favor targeted modes of deformation. As a result,
structured media offer efficient, lightweight, and dexterous solutions to engineer-
ing challenges, unlocking new capabilities that were previously unattainable with
conventional materials.

Going beyond simply replacing rigid joints with compliant counterparts, advance-
ments in materials synthesis and additive manufacturing have enabled the creation
of structures whose kinematic behaviors are derived from geometric patterns em-
bedded at micro- or mesostructural length scales. These structures, often referred
to as structured media, feature intricate geometric designs that are much smaller
than both the overall dimensions of the object and the size of global deformation
features. This separation of length scales allows structured media to exhibit unique
mechanical behaviors, making them efficient, lightweight, and dexterous, solving
problems outside the scope of traditional materials.
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a) b)

c)
d)

Figure 1.1: Examples of the design, synthesis, and integration of adaptive materials
that can change stiffness and/or shape [34]: (a) a shape memory polymer based
robotic gripper [35]. (b) soft robotic crawler [36]. (c) a thermally responsive Miura
origami deployment [37]. (d) Individual fingers of a traditional robotic hand are
replaced by a single mass of granular material that, when pressed onto a target
object, flows around it and conforms to its shape. Upon application of a vacuum the
granular material contracts and hardens quickly to pinch and hold the object without
requiring sensory feedback [38].

1.3 Structured Fabrics
A subcategory of structured media is structured fabrics, which also derive their
properties from a combination of the constitutive materials and their geometry [39],
[40]. Unlike traditional fabrics that are woven or knitted from continuous materials
such as fibers or wires, structured fabrics are composed of discrete, granular particles
as their fundamental building blocks. These granular assemblies exhibit tunable
mechanical properties through a phenomenon known as jamming, a phase transition
driven by local geometric constraints. The jamming transition allows these systems
to reversibly switch between fluid-like plasticity and solid-like rigidity, accompanied
by changes in packing density.
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Jamming has been widely utilized to develop adaptive materials with tunable stiff-
ness, including soft robotic grippers [38], impact-absorbing materials [41], and
reconfigurable structures [42]. However, conventional granular materials often re-
quire dense, bulky volumes to achieve sufficient mechanical stiffness when jammed
[43], and assemblies of convex particles lack the ability to sustain tensile forces,
limiting their bending stiffness and tensile strength [44]. These drawbacks make
traditional granular systems unsuitable for applications such as wearable fabrics.

Structured fabrics, on the other hand, can leverage design principles from topo-
logically interlocking systems to achieve desirable properties, such as global shape
change and tunable stiffness, while maintaining a flexible, fabric-like state. By
computationally designing the geometry of their granular components, structured
fabrics can overcome the limitations of conventional granular materials, enabling
novel functionalities for wearable, adaptive, or deployable applications.

a) b)

c) d)

Figure 1.2: Examples of structured media: (a) Periodic and stochastic 3D lattice
with energy absorption properties [45]. (b) Architected sheets with non-periodic cut
patterns capable of shape-morphing; scale bar, 12 mm [33]. (c) Elastic 3D printed
shells with membranes capable of temporally shape-changing; scale bar 3cm [46].
(d) 3D printed chainmail with geometrically interlocking particles [47].
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Applications of Structured Fabrics
Structured fabrics have the potential to be wearable materials and could be embedded
with sensors that sense and respond to environmental stimuli [48], offering applica-
tions in medical monitoring [49], wearable computing [50], energy harvesting [51],
and more [52]. Fabrics with tunable mechanical properties provide new opportuni-
ties, such as mechanical feedback, joint assistance, support, and haptic perception
[53]. Architected fabrics, such as chain mail layers with designed particles [47], can
reversibly switch between soft and rigid states, making them promising for applica-
tions in soft robotics, shape-morphing structures, and wearable medical devices like
exoskeletons and reconfigurable supports. On larger scales, tunable fabrics can be
used for transportable and reconfigurable architectures, transitioning from flexible
to rigid states for deployment. Their design can target desirable characteristics, such
as high impact resistance, thermal regulation, or electrical conductivity, however
the ones in this thesis focus on stiffness change and global shape-change.

a) b) e)

f)

c)

d)

Figure 1.3: Potential structured fabric applications: (a) Possible applications of
the reconfigurable fabrics at different length scales, ranging from wearable medical
supports and exoskeletons (bottom) to transportable, reconfigurable architectures
(top). The two inset images show the fabrics in the soft state, printed with two dif-
ferent materials: nylon plastic (left) and aluminum (right) [47]. Wearable structured
fabrics for haptic feedback on the (b) hand and (c) finger or wrist. (d) Sensors and
feedback embedded in structured fabrics could be used in virtual reality systems or
other systems for communication, therapy, or entertainment. (e) A reconfigurable
architecture example is a deployable antennae. (f) A structured fabric-like robotic
grasper [54].
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C h a p t e r 2

ROLE OF FRICTION AND GEOMETRY IN TUNING THE
BENDING STIFFNESS OF TOPOLOGICALLY INTERLOCKING

MATERIALS

[1] T. Lu, Z. Zhou, P. Bordeenithikasem, et al., “Role of friction and geometry in
tuning the bending stiffness of topologically interlocking materials,” Extreme
Mechanics Letters, vol. 71, p. 102 212, Sep. 1, 2024, issn: 2352-4316. doi:
10.1016/j.eml.2024.102212. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S2352431624000920.

2.1 Introduction
The demand for materials with adjustable physical properties and the ability to
respond rapidly to environmental stimuli has been growing [1]. In particular,
fabrics with adaptable or tunable stiffness are applicable for use in soft robotics,
shape morphing structures, and wearable devices [2]–[4]. For example, tunable
fabrics can find use in wearable medical devices, like exoskeletons, haptic systems,
and reconfigurable medical supports [5]–[7]. At larger scales, applications of tunable
fabrics include transportable and reconfigurable architectures, which transition from
a compact and flexible state to a deployed and rigid state [8], [9].

Incorporating interlocking particles in fabrics opens up the possibility to incorporate
added structural support and adjustable mechanical properties [10]–[13]. The me-
chanical behavior of such structured fabrics or topologically interlocking materials
(TIM) is determined by the characteristics of their constituents and the topology of
their arrangement [11], [14]–[16]. In most architected materials and woven fabrics,
these mechanical behaviors are determined during the design process and remain
fixed after the components are fabricated. However, in some realizations, the fabric
properties can be adjusted through actuation [13], [17]. Wang, et al. demonstrated
architected fabrics consisting of chain mail layers with interconnected particles,
which demonstrate the ability to reversibly and gradually switch between soft and
rigid states [2], [16], [17]. The control of the fabrics’ stiffness is achieved by apply-
ing pressure at the boundary that jams the particles via vacuum suction, in a system
similar to other structured fabrics [2], [4], [8]. While this example demonstrates
the ability to create architected fabrics with tunable properties, the use of vacuum
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actuation is not practical, because it requires bulky and energy intensive pumping
systems. Using tensioned fibers or artificial muscles could be a more compact and
power-efficient solution [18].

In this paper, we study the response of a particular TIM system, consisting of
truncated tetrahedral particles connected by woven tension wires [13], [15], [16].
Unlike the TIM system that is held solely by geometric interlocking and external in-
plane constraint, which exhibits a softening stage before the TIM collapses [13], our
fabric-TIM system shows a stiffening response during the indentation tests due to the
gradual increment of anti-separation forces provided by the wires. The connecting
wires facilitate the tunability of the bending modulus in response to adjustable
applied tension, as demonstrated in Fig. 2.4c and d [16], [17]. Additionally, they
enable the formation of various flexible shapes while keeping the TIM structure
intact. To better understand the fundamental mechanisms governing the tunability
of the TIM system’s apparent bending stiffness, we explore the role of contact angle
and contact friction at a fixed applied wire tension, using experiments and numerical
simulations.

2.2 Design and Fabrication of the Topologically Interlocking Material Struc-
tured Fabric

There are various designs of TIMs. For example, Dyskin, et al. [10] used tetra-
hedral solids to form layer-like structures that are interlocked topologically. TIM
systems can be used for architectural designs and other global surfaces as shown in
Fig. 2.1. Molotnikov, et al. [17] constructed TIM systems made of osteomorphic
blocks embedded with shape memory alloy wires that can alter the TIM’s flexural
stiffness when activated. Siegmund et al. [16] created TIM systems using truncated
tetrahedron blocks integrated with internal constraint fibers or woven tow material,
demonstrating interlocking systems confined by passive elements.

The tetrahedron was selected for its relevance in topological interlocking, a design
principle where blocks are held together without physical or adhesive joining. Topo-
logical interlocking relies on geometric and kinematic constraints, with the structure
maintained by a global peripheral constraint and an arrangement of specially shaped
elements. Unlike conventional interlocking, it avoids keys or connectors, which
prevents crack propagation across blocks, but more importantly allows for modifica-
tions to make the structure more adaptable. This approach combines the flexibility
and damage tolerance of fragmented materials with the overall structural integrity of
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Figure 2.1: (a) An example of the stability of interlocked truncated tetrahedra in
architecture [11]. (b) An example of other stable shapes that can be achieved with
topological interlocking [19].

a unified system, and its scale-independent nature makes it applicable across various
sizes.

The architecture of interlocking assemblies can be understood by examining the
evolution of planar cross-sections of a layer-like arrangement of tetrahedra as the
plane moves in the normal direction [20]. Starting with the middle section, which
is a pattern of tiled squares, the pattern transforms into rectangles and ultimately
degenerates into lines (edges of the tetrahedra) as the plane moves upward. A
similar transformation occurs when moving downward, with rectangles rotated by
90°. Interlocking is achieved because a reference block is obstructed by adjacent
blocks in all directions—upward, downward, and sideways—due to the inclined
faces of its neighbors. This ensures the reference block cannot be removed through
any combination of displacements or rotations.

Using this principle, interlocking assemblies can also be constructed with other
platonic solids, as demonstrated in Fig. 2.3. Solids with hexagonal cross-sections,
such as cubes, octahedra, and dodecahedra, can form interlocked arrangements
using a honeycomb pattern. In these assemblies, the reference element is locked
topologically by its shape and the arrangement of its neighbors, preventing movement
through the channels formed by adjacent elements. This principle of translational
interlocking can be rigorously described by the degeneration of polygonal cross-
sections into segments or points as the plane shifts.

Certain truncations of these solids can be applied without compromising their inter-
locking properties. However, increasing the degree of truncation to a point where
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Figure 2.2: Layer-like assembly of interlocked tetrahedra. (a) Overview of assembly.
(b) Evolution of the planar section through the assembly. Magenta lines indicate
a fragment of the middle section, shaded blue rectangles correspond to the section
moved from the middle section half way up, and black and brown lines indicate the
sections that have degenerated into the upper edges (seen when one looks on the
assembly from the top). Bold lines delineate sections of a reference block [20].

the interlocking is partially affected can be advantageous for enhancing the flexibil-
ity of the structure. This is particularly beneficial in the systems of our samples,
where structural stability relies less on interlocking alone, as the supporting wires
integrated into the design for actuation also provide stabilization.

Additionally, tetrahedrons have a trapezoidal cross section, and trapezoidal particles
are known for their substantial contact surfaces [12] and have extensive applications
in architected materials to enhance mechanical performance [21]. Drawing inspi-
ration from the previous references, we study a classic system of a TIM assembled
with truncated tetrahedron particles as the basic building blocks (Fig. 2.4a). Using
truncated tetrahedrons, as opposed to osteomorphic blocks, allows us to systemat-
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Figure 2.3: Example planar topologically interlocking assemblies described in
[Dyskin et al. 2003 [20]] composed of (a) tetrahedrons, (b) cubes, and (c) oc-
tahedrons. Image from [19].

ically change a single parameter, such as dihedral angle, to dictate the amount of
interlocking. Moreover, since truncated tetrahedrons don’t completely fit into each
other, the relaxed state is more flexible and similar to a fabric. Inspired by Siegmund
et al. [16], we design the particles with longitudinal and latitudinal through-holes.
We use nylon wires to weave through each discrete particle and interconnect them,
as depicted in Fig. 2.4b. To actuate the fabrics, we apply different levels of tension
to the wires and thereby jam the particles with their neighbors to form an interlocked
state (Fig. 2.4c–d). The combined outer surface of the truncated tetrahedrons upon
post-tensioning is a flat plane. The resulting assemblies possess geometric contact
and interlocking periodicity.

A series of TIMs were produced by varying two different particle parameters: the
particle’s dihedral angles, 𝜃 (Fig. 2.4a) and their surface friction. The particles were
fabricated with three different dihedral angles, 60◦, 70◦ and 90◦, where the latter
is simply a prism geometry with no geometric interlocking (Fig. 2.5). To vary the
surface friction, we 3D-printed the particles using two different materials of similar
stiffness: Vero White (VW) using an Objet Stratasys Connex 500 (Fig. 2.5a),
and Nylon Polyamide 12 (PA12) using a Sintratec SLS 3D printer (Fig. 2.5b).
Particles were cleaned by removing the outer support material. The Vero White
particles were additionally cleaned in a 2-percent aqueous solution of NaOH to
remove the remaining support material. The coefficients of friction were determined
experimentally after the particles had been cleaned, using sliding friction tests. The
resulting surface friction coefficients were measured to be 0.2 and 0.6, respectively.
The particles were then woven together with 0.3 mm diameter nylon wire. The
system is subsequently actuated with a small motor (28BYJ-48 Stepper Motor) that
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Figure 2.4: (a) Schematic of a basic building block (particle) in the shape of a
truncated tetrahedron [10], with dihedral angle, 𝜃, between the truncating surface
and the side surface of particle; (b) Schematic of particles inter-connected by post-
tensioned wires; (c) Unactuated, soft state of the sample; (d) Actuated, stiff state of
the sample.

controls the amount of wire tension and therefore jamming the particles. A custom-
designed fixture was 3D-printed for the motor housing and tensioning mechanism
with sufficient clearance space for the tension meter (Checkline ETB-2000). The
tension should attain the predetermined threshold, ensuring that the wire remains
within the elastic range during the testing phase. The tension meter was used to
gauge the tension and determine whether to incrementally increase the tension by
spinning the motor. Once the desired average tension was achieved in the wires, the
tension was secured with clamp beads to hold the wire in place. Then the woven
sample was removed from the fixture with the motor.
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Figure 2.5: Samples made by particles with 𝜃 = 60◦, 70◦, and 90◦; Samples shown
in (a) are made by Vero White, with a measured friction coefficient of 0.2; samples
shown in (b) are made by Nylon Polyamide 12, with a measured friction coefficient
of 0.6.

2.3 Simulations
For a more systematic analysis of the TIM fabrics’ behavior as a function of particle’s
geometry and constituent material properties, a reliable and validated numerical
model is necessary. Level Set Discrete Element Method (LS-DEM) is used to
model the physical experiment. LS-DEM is a variant of the traditional Discrete
Element Method (DEM) allowing arbitrary object shapes. Originally developed for
granular applications [22], [23], LS-DEM has recently been adapted to study the
structural behaviors of multi-block structures [24], [25], and the structural analysis
of TIM, showing satisfactory results in capturing the slip-governed failure [26], [27]
and the deflection limit [28] of the slab-like TIM. LS-DEM uses level set functions
as the geometric basis, which calculates the signed distance 𝜙 from any arbitrary
point in the space to the nearest surface of the grain. For example, in this work,
a cross-sectional slice of a basic building block, which is the shape of a truncated
tetrahedron, is a trapezoid in 2D, as shown in Fig. 2.6a. The surface of the building
block, or particle, can be reconstructed by 𝜙 = 0. We impose a set of surface nodes
with uniform discretization size onto each particle (Fig. 2.6b). When checking
potential particle contact, we take the position of each surface node x of one particle
and check the corresponding level set value from another neighboring particle. If
𝜙(x) ≤ 0, then contact exists between this pair of particles.
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Given the discrete nature of the woven-connected particles, LS-DEM is capable
of extracting particle-scale information at micro-mechanical level, thus providing
insight into how friction and contacts between particles affect the macroscopic
property such as sample bending stiffness. Furthermore, the use of level set function
provides flexibility in particle shape control, allowing us to easily simulate different
particle shapes and investigate the combined geometric shape effects to the sample’s
overall behavior. The use of LS-DEM is also computationally efficient compared
to other simulation methods such as Finite Element Method (FEM) for potential
simulations of large ensembles of particles [29].

Fig  2

(a)
(b)

d̄

Twire = k̄d̄

(c)

TBC

(d)

Figure 2.6: (a) Illustration of the level set matrix of a slice of the truncated tetrahe-
dron; (b) The particle is reconstructed by surfaces with 𝜙 = 0; the imposed surface
nodes are shown in blue dots; (c) Illustration of a pair of neighboring particles,
connected by a massless spring with stiffness 𝑘̄ and elongation 𝑑; (d) Illustration of
the sample under post-tensioning force 𝑇BC.

We use point forces acting on the boundary particles𝑇BC to model the post-tensioning
effect of the wires (Fig. 2.6d). On top of that, we use massless springs connecting
the face center of the side of each particle to the face center of the side of its
neighbors (Fig. 2.6c). The neutral position of the spring is at a distance 𝑑 = 0.
The springs connecting neighboring particles can only exert tensile forces on the
connected particles. When two neighboring particles are separated, the wire force
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𝑇wire is calculated as:
𝑇wire = 𝑘̄𝑑 (2.1)

where 𝑘̄ is the stiffness of the spring and is calibrated to match the experimental
result of an uniaxial tension test carried out on a single woven wire.

2.4 Mechanical Characterizations
In order to experimentally investigate the macroscopic properties of the sample
under various particle geometries and material properties, displacement-controlled
three-point bending tests were performed with an Instron E3000 Mechanical Testing
Machine (Fig. 2.7a). The indenter had a set loading rate of 0.5 mm s−1. To ensure
that the TIM systems deform within their components’ elastic limits, we imposed a
maximum indentation depth of 5 mm. This indentation depth was determined by
performing three-point bending tests on 3D-printed slabs of the same material with
the same fabric sample dimensions. Tests show no yielding behavior within 5 mm.
This indentation depth also guarantees that the wire remains within its elastic limit,
confirmed by independent tensile tests on the wire, aligning with the assumption
made in Eqn. 2.1.

To compare the bending performance of the different fabrics, we define an apparent
elastic bending modulus, 𝐸∗, as [2]:

𝐸∗ =
𝐾𝐿3

4𝑏ℎ3 . (2.2)

Here, 𝐾 is the stiffness of the initial linear regime of the force-displacement plot
obtained from the test machine, 𝐿 is the support span, 𝑏 is the width of the sample,
and ℎ is the thickness of the sample before testing.

We study the role of friction and particle’s shape on the overall fabric’s behavior,
comparing the apparent bending moduli values extracted from the experiments.
Fig. 2.7b shows an overview of the bending modulus calculated from Fig. 2.7c–
d using Eqn. 2.2. Both increasing surface irregularities (i.e., friction between
particles) and geometric interlocking have a positive correlation with the bending
modulus. Samples made with PA12, resulting in a higher surface friction coefficient
(𝜇 = 0.6) than those made with Vero White (VW) (𝜇 = 0.2), exhibit almost twice as
much bending modulus as VW samples of the same particle geometry. Fig. 2.7c–d
show the force-displacement plot for VW samples and PA12 samples accordingly.
The force-displacement curves obtained from the three-point bending tests show
an initially linear regime at small indentation depths, primarily due to the elastic
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Figure 2.7: (a) The three-point bending test setup with sample; (b) Apparent bending
modulus of the different samples, fabricated with 2 different constitutive materials
(Vero White and PA12) and three different dihedral angles (𝜃 = 60◦, 70◦ and 90◦);
(c) Force-displacement plots of the Vero White samples; (d) Force-displacement
plot of the PA12 samples. In (c) and (d), for each sample, a total of five experiments
are performed. The solid lines represent the average force-displacement behavior,
and the shaded regions show the standard deviation over five experiments.

response of the wire while the particles spread out. However, as the displacement
increases, a nonlinear response is observed, most likely because of frictional sliding
and local rearrangement of the particles within the system. Comparing the force-
displacement plot within samples of the same material (Fig. 2.7c–d), we see that
particles with smaller dihedral angle 𝜃, which result in higher interlocking upon
post-tensioning, show higher stiffness. If we compare samples of same particle
geometry but made with different materials, samples with higher surface friction
show higher stiffness.

For comparison, particles with zero interlocking were fabricated, which were
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Figure 2.8: Sample with zero interlocking (spherical particles) and its truncated
tetrahedral counterparts.

spheres, as shown in Fig. 2.8 with their truncated tetrahedral counterparts. Fig. 2.9a
shows the bending torque test setup performed on them. The test samples are at-
tached to a motor to vary the amount of tension in the wires. Two types of particles
are tested, the truncated tetrahedron and uniform spheres, each in two different wire
tensions, one at 40N and one at 20N. In the test, we bend a test sample from 𝜃 = 0°
to 50°.

Truncated Tetrahedron 40 N
Truncated Tetrahedron �t 40N
Truncated Tetrahedron 20N
Truncated Tetrahedron �t 20N
Spheres 40N
Spheres �t 40N
Spheres 20N
Spheres �t 20N

Bending Force vs Bending Degree 

Figure 2.9: (a) Bending torque test setup with sample; (b) Plot of results for the
truncated tetrahedron (TT) and spheres at two different wire tensions.

The lever arm is 20 cm. Based on the measured bending force, the bending stiffness
(with varying amounts of tension and therefore jamming) of a sample can be roughly
calculated as: torque = 0.2𝐹𝑐𝑜𝑠(𝜃) Nm, where 𝐹 is the measured bending force
from a digital 5N force gauge. From the resulting plot in Fig. 2.9b, we can see that
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as more bending occurs, due to the increased degree of bending, the bending force
increases. The truncated tetrahedrons are capable of geometric interlocking, so
they become harder to bend as the degree of bending increases, unlike the spherical
particles which have zero geometric interlocking. Additionally, higher tensions
require greater bending force due to increased jamming. However, with spherical
particles, the geometry does not effectively support the increased tension, making
the rise in bending force almost entirely attributable to the stiffer wire. In contrast,
with truncated tetrahedrons, the increased wire stiffness also contributed to enhanced
geometric interlocking.

2.5 Numerical Simulations
To construct the numerical model, we first construct the particles using level set
functions and surface nodes (Figure 2.6a–b). We then arrange and post-tension the
particles (Figure 2.6c–d), as described in the Simulations section. To simulate the
testing setup, we construct a 1:1 model of the experiment apparatus using the same
level set technique. We then move the indenter downward at a constant loading rate.
In the experiments, though the fabrics samples are prepared and post-tensioned
according to the same procedure, there is no way to explicitly measure the slack
of wires introduced during fabrication, and consequently it is not possible to know
the exact tensile forces, 𝑇BC, exerted by the wires on all particles. Therefore, we
adjust the boundary force 𝑇BC in the bending simulation of the 70◦ VW sample until
the simulated apparent bending modulus 𝐸∗ matches with that of the corresponding
experiment. To ensure consistency and uniformity, we then apply the same calibrated
boundary force to the remaining five simulations (60◦ and 90◦ VW samples, as well
as 60◦, 70◦, and 90◦ PA12 samples).

As depicted in Fig. 2.10, the resulting calibrated numerical model exhibits good
agreement with experimental data regarding the apparent bending modulus 𝐸∗. In
Fig. 2.10a, we show that as the friction coefficient reaches larger values (>∼0.3),
the bending modulus of the samples does not increase as much, particularly for
the samples with the least geometric interlocking (rectangular prism particles).
As expected, in samples with more interlocked particles, the modulus increases
more rapidly with increasing friction coefficient. For the 90◦ prism particles, the
interwoven wire and friction between neighboring particles are the main factors
that counteract out-of-plane deflection. With more interlocked particles (60◦ prism
particles), however, not only friction and the wire, but also geometric constraints
are collectively counteracting the out-of-plane deflection.
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Fig 4

Figure 2.10: Comparison of experiments and numerical simulations. (a) Simulated
bending modulus of samples consisted of particles with 𝜃 = 60◦, 70◦, and 90◦
across different friction coefficient, from 0.2 to 0.9. For each particle shape at each
friction coefficient, five simulations are run. For each run, noise is introduced to
the initial particle position, particle orientation and boundary force 𝑇BC. The solid
line represents the average modulus, while the shaded regions show the standard
deviation across five runs. Experiment results obtained from VW (𝜇 = 0.2) and
PA12 (𝜇 = 0.6) samples are marked by green and orange respectively; (b) Simulated
bending modulus vs. normalized contact area in horizontal projection with particles
from 𝜃 = 45◦ to 𝜃 = 90◦ with 5◦ increments. The projected contact area is calculated
based on the initial configuration of the particle orientation, and is normalized by
the area of the 45◦ particle.

Inset: simulated bending modulus vs. 𝜃. Similar to (a), five simulations are run for
each particle shape and noise is introduced in the initial state of each simulation.

Experiment results from PA12 are marked in orange.

In order to analyze how geometry affects the modulus, we simulate the bending tests
of samples made by 7 other particles of different degrees of geometric interlocking.
Wang et al. [2] reported a quadratic law relating average particle contact number
to the apparent bending modulus. In this work, since all particles are generated
with surface nodes of uniform discretization size, the contact number per particle
upon contact directly translates to contact area between the contacting neighboring
particles. Since we are assuming a small indentation depth, we estimate the contact
area to be the maximum area of the side surface of a truncated tetrahedron in
contact with its neighbor at initial configuration before indentation, which is one
trapezoid overlapped with a flipped trapezoid, or a hexagon. We plot the bending
modulus against the normalized contact area projected onto the horizontal plane.
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Since the horizontal plane is directly perpendicular to the indenting direction, the
projected horizontal contact area acts as the effective contact area for the solid
material to counteract the indentation force. From Fig. 2.10b, we see that the
bending modulus scales almost linearly with the horizontally projected contact area.
The dihedral angle 𝜃 scales inverse-linearly with the bending modulus, due to the
fact that particles with larger 𝜃 have smaller horizontal projected contact areas.
From Fig. 2.10b and the additional inset figure, we see that particle geometry is a
crucial factor in contributing to the bending modulus.

In contrast to [2], which exhibited a power law relationship, we find an approximately
linear scaling between the projected horizontal contact area and the bending stiffness
in our samples. We attribute this difference to the presence of the woven wires, which
make the samples with less geometric interlocking rely more on elastic wire forces.
During indentation, the wires in samples made from the rectangular prism particles
are expected to be stretched more compared to samples made from the 45◦-particles.
This indicates that the wires may exert increased anti-separation forces within the
90◦-particle TIMs in contrast to the other particles that can rely on greater geometric
interlocking.

2.6 Conclusion
In this paper, we study the role of particles’ geometry and inter-particle friction in
the bending response of TIM systems consisting of truncated tetrahedron particles
woven together with nylon wires. We fabricate samples with particles of varying
interlocking contact angles and surface friction. Using LS-DEM simulations, we
extended our analysis to investigate how the combined influence of multiple param-
eters, rather than their individual effects, impacts the apparent bending modulus.
In the post-tensioned state, we find that both high friction and large horizontally
projected contact area between the neighboring particles contribute positively to
the resulting sample’s bending resistance. The positive effect of friction to bend-
ing stiffness diminishes as friction coefficient increases. The projected horizontal
contact area positively contributes to the bending modulus at a linear rate.

The TIM is a complex system with many factors at play. Besides the friction and
geometric interlocking, sample thickness and external post-stress also have profound
effects on bending response. In order to isolate the effect of friction and geometry,
we keep the sample thickness and post-stress consistent throughout all experiments
and simulations. More comprehensive studies on the combined effect of all factors
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should be investigated in future work. Future studies could explore how varying
tension across different regions of the structured fabric can be used to achieve
localized stiffness variations within a single structure. In addition, other platonic
solids used as particle geometries should be explored, and other particle shapes
outside of topological interlocking should also be explored. A brief exploration of
this is demonstrated below in Fig. 2.11.

Figure 2.11: Recreating the samples with a different particle design that induces
shape change; (a) The sample starts relaxed and in a flat plane; (b) As the small motor
increases tension in the wires, the global structure gradually develops curvature as
neighboring particles jam at predetermined angles, enabling shape transformation.;
(c) The tension in the wires is further increased resulting in more curvature; (d)
The sample has achieved its maximum curvature, as neighboring particle pairs have
reached their limit of contact. Further increasing the wire tension will not result in
additional shape transformation.

Exploring particle geometries without topological interlocking, but instead leverag-
ing edge collisions at specific angles, enables the formation of other global shapes
and introduces additional pathways for shape and stiffness modulation [30]. This
concept was investigated in Fig. 2.11, where the fabrication and assembly methods
remained consistent, but the particle design was modified so that, upon lateral jam-
ming with neighboring particles, an obtuse angle was formed. In this configuration,
the sample initially lies relaxed in a flat plane Fig. 2.11a. As a small motor incremen-
tally increases tension in the wires, the global structure gradually develops curvature
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as neighboring particles jam at predetermined angles, facilitating controlled shape
transformation (Fig. 2.11b). Further tensioning amplifies this curvature (Fig. 2.11c)
until the system reaches its maximum curvature, at which point particle pairs achieve
their maximum contact. Beyond this point, additional wire tension does not result
in further shape change (Fig. 2.11d). This demonstration highlights how geomet-
ric tuning of particle interactions, can enable programmable shape morphing and
stiffness variation in the structure. These concepts were the inspiration for the next
chapter, in which they are further developed.
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C h a p t e r 3

A STRUCTURED FABRIC DESIGN FOR FOLDING AND
DEPLOYING 3D SURFACES

T. Lu, P. Bordeenithikasem, C. McMahan, R. T. Watkins, and C. Daraio, “A struc-
tured fabric design for folding and deploying 3D surfaces,” American Society of
Mechanical Engineers Journal of Mechanisms and Robotics (in review).

3.1 Introduction
Self-transforming structures have inspired researchers across disciplines to develop
novel materials, fabrication techniques, and programmable properties. Designing
such deployable structures is a computational challenge that requires physically re-
alizable configurations that meet functional constraints while managing numerous
degrees of freedom. In addition, the ability to fold deployable 3D solid surfaces
without relying on rigid mechanisms and hinges allows for tight compaction, making
it particularly useful for applications such as soft robotics [1], kinetic architectures
[2], solar panels [3], or antenna deployment [4]. For example, current deployable
antennas are typically restricted to lower frequency bands because their rigid mech-
anisms are only compatible with mesh surfaces, rather than solid surfaces [5]. Mesh
reflectors do not readily scale above Ka-bands (27-40 GHz) due to mesh leakage and
surface tolerance issues. Other antennaes such as Reflectarrays have very narrow
bandwidth and will require stiffening structures to maintain surface tolerances to
extend to above Ka-band. [6]. There is also ongoing work on trusses for foldable
W-band (higher frequency of 75 to 110 GHz) antennas but the complexity of the
truss having to open in one attempt to acheive a desirable surface is limiting [7]. A
self-transforming structure with fabric-like qualities that can fold while remaining
structurally stable would be beneficial for designing future deployable antennas with
solid surfaces, enabling them to achieve higher frequencies beyond the constraints
of current mesh designs [8]–[10].

In this study, we create deployable structures that are compacted by folding along
prescribed fold patterns and morph into desired 3D shapes upon the release of a
flattening or folding force. The structures achieve stability by leveraging conformal
mapping and the compressive contact properties of the structured fabric design,
while accommodating fold patterns that can remain independent of the target 3D
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surface, allowing stowage of the same structure into different shape containers. Our
prototypes highlight how the design and fabrication methods can be extended to
other shapes and fold patterns of interest.

The ability of structured fabrics to alternate between stiff and flexible states makes
them advantageous for deployable applications, offering benefits such as compact
stowage, on-demand structural integrity, versatility, and weight efficiency [11]. This
capability has been demonstrated in woven topologically interlocking materials [12],
[13], which utilize 3D printed blocks interwoven with various wires, including nylon,
carbon fiber, and Shape Memory Alloy [14], [15], as well as in woven active fabrics
[16]. These approaches have been useful for applications starting from planar
and flat configurations, but are less suitable for foldable structures and assemblies
that require tension from multiple directions for stability and deployment. Wires
tend to tangle or overlap and do not tension uniformly when folded multiple times
(Appendix 2).

These challenges can be overcome by using pre-stretched elastic sheets that behave as
uniform, multidirectional transformation mechanisms. This approach was demon-
strated by Guseinov et al. [17], where flat initial configurations of disconnected
rigid tiles are first sandwiched between two elastic sheets, then collide and jam into
desired 3D shapes when the pre-stretch is released. Other studies have shown shape
morphing driven by pre-stretched elastic sheets using non-periodic tessellations of
contractile unit cells that soften in water to form the new shape [18]. Similarly, we
design systems that sandwich a pre-stretched elastic sheet between tiles of different
shapes, which collide when the stretch is released to form curved structures with
a continuous surface [18]. However, we also select the tiles’ geometry to enable
predetermined folding patterns for stowage.

The freedom to fold structures along desired creases enables achieving target com-
paction volumes or shapes. While studies on origami of non-zero thickness ma-
terials [19]–[21] provide guidelines for folding deployable surfaces, most origami
fold patterns are based on a flat surface orientation. Because we seek to fold curved
3D surfaces, we require the additional steps of conformally mapping a deployed
geometry’s mid-surfaces to a flat mesh, then overlaying the 2D fold pattern. This
guarantees both the foldability of the structure and that the extruded tiles will collide
in a manner that induces deployment into pre-programmed 3D surfaces.
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Overview
We explore a method of compacting and deploying tile-based assemblies into stable
3D configurations without rigid mechanisms or manual assembly. There is freedom
in the assignment of crease patterns to the structure so they can be folded to achieve
desired compact storage geometries. Our assembly, which we call a structured
fabric, is composed of flat, rigid tiles that sandwich a solid active surface (an
elastic sheet that stores the energy required to drive the morphing process). Starting
from a flat initial configuration, the fabric achieves compaction via folding and
an approximation of a desired three-dimensional shape upon releasing its binding
mechanism, the elastic sheet. In addition, the elastic sheet is essential for reaching
non-zero Gaussian curvatures from initially flat shells, where bending must be
coupled to in-plane stretches, according to Gauss’ Theorema Egregium [22].

Figure 3.1: Overview of our workflow using an example of a paraboloid surface:
the input design (a) is decimated to a coarser triangular mesh (b). After conformal
flattening, a fold pattern is overlaid on the flattened mesh and the intersected triangles
are split into derivative polygons (c). Each mesh element is separated via an isotropic
rigid body translation and extruded on each side so that they will yield the dihedral
angles of the target surface mesh (d). The fabricated structured fabric result is shown
being folded along the crease pattern in (f), and after deployment in (e). Scale bars,
3cm.

Algorithm 1 summarizes the computational design approach of the structured fab-
rics. The distribution of tiles it creates accounts for the fold lines and enables
achieving a targeted 3D surface upon actuation. When the pre-tensioned elastic
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Algorithm 1: Summary of Algorithm
Mesh:=decimated mesh
Data: Mesh.vertices, Mesh.face, Mesh.face.neighbors, Mesh.face.normal
Function FlattenMesh(Mesh)

Conformally flatten the decimated mesh such that Eq. 1 is satisfied
return FlatMesh.vertices, FlatMesh.faces

Function CutFoldLines(lineSegments, FlatMesh.vertices, FlatMesh.faces)
foreach 𝑙𝑖𝑛𝑒 in 𝑙𝑖𝑛𝑒𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑠 do

foreach 𝑓 𝑎𝑐𝑒 in 𝐹𝑙𝑎𝑡𝑀𝑒𝑠ℎ do
if 𝑙𝑖𝑛𝑒 crosses at least 1 𝑓 𝑎𝑐𝑒.𝑒𝑑𝑔𝑒 then

newVertices:= FindIntersect(𝑙𝑖𝑛𝑒, 𝑓 𝑎𝑐𝑒.𝑒𝑑𝑔𝑒)
Find Case:
A: 1 vertex and 1 edge are crossed, with internal point
B: 2 edges are crossed, with internal point
C: 2 vertices are crossed, with internal point
D: 1 vertex and 1 edge are crossed
E: 1 vertex and 1 edge are crossed
based on the identified case, store new mesh vertices and faces

else
return CutMesh.vertices, CutMesh.faces

Function ExtrudeTiles(CutMesh.vertices, CutMesh.faces, thickness)
solve Eq.3
return BottomVertices

Function Spacing(CutMesh.vertices, CutMesh.faces, BottomVertices)
spread out the tiles such that the extruded tiles do not intersect
return FinalMesh.vertices,FinalBottomVertices

Result: script of coordinates of each tile as OpenScad Polyhedron

sheet is released, contractile forces cause the tiles to collide at prescribed dihedral
angles, generating local curvatures that control the structure’s global shape. The
prestretched elastic sheet applies uniform contraction forces to jam the pieces to-
gether. This actuation method was selected over the tensioned wires used in the
previous chapter, because the wires produced only uniaxial forces, and weaving them
to achieve uniformity across the area proved impractical. The antenna-resembling
paraboloid shown in Fig. 3.1 demonstrates the application of the algorithm. The
first step is to input a 3D model for the target surface (Fig. 3.1a) and a crease pattern
along which the paraboloid is folded (Fig. 3.1b). The 3D description of the target
surface is meshed and reduced (Fig. 3.1c) so that there are fewer triangular faces,
resulting in lower fabrication complexity as each triangle in the resulting mesh will
become a tile. Next, the simplified mesh is conformally flattened with a bijective
mapping of the 3D to 2D mesh, (Fig. 3.1d) and faces that intersect the crease pattern
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are split to accommodate the fold pattern. To generate the extruded tile geome-
tries, the polygonal mesh faces are spread isotropically and extruded to display the
dihedral angles required by the deployed geometry (Fig. 3.1d). The tiles are then
split along their mid-plane into top and bottom halves. The fabricated tiles are then
glued to both sides of a pre-stretched elastic sheet in their pre-determined locations
and orientations. Upon releasing the pre-stretch, the sheet contracts to form the
targeted 3D structure (Fig. 3.1f), but it can be folded along the fold pattern shown
in (Fig. 3.1e)., or crumpled like a fabric (Fig. 3.2).

Figure 3.2: Demonstrating the flexibility of a structured fabric that deploys into a
paraboloid.

While the original inspiration of the designs was an antennae so parabolic target
shapes were chosen, other target surfaces of different curvatures were explored as
well. The other shapes were chosen to demonstrate a diversity of the Gaussian
curvatures, as defined below [23].

In terms of curves traveling along the surface, let 𝑋 be a unit tangent direction at
some distinguished point on the surface, and consider a plane containing both 𝑑𝑓 (𝑋)
and the corresponding normal 𝑁 . This plane intersects the surface in a curve, and
the curvature 𝜅𝑛 of this curve is called the normal curvature in the direction 𝑋 .

The normal curvature along 𝑋 by extracting the tangential part of 𝑑𝑁:

𝜅𝑛 (𝑋) =
𝑑𝑓 (𝑋) · 𝑑𝑁 (𝑋)

|𝑑𝑓 (𝑋) |2
(3.1)

where the factor |𝑑𝑓 (𝑋) |2 normalizes any stretching that occurs as we map from the
2D domain into the 3D domain [24].

At any given point the directions that the surface bends the most along can be
found. The principal directions are the unit vectors 𝑋1 and 𝑋2 along which we find
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Figure 3.3: 𝑋1 and 𝑋2 are the unit vectors along which the maximum and minimum
normal curvatures 𝜅1 and 𝜅2 are found [23]; (a) The visual representation of 𝑋2
with its corresponding normal vector 𝑁 and 𝜅2; (b) The location of where the
vectors are relative to the entire surface; (c) The visual representation of 𝑋1 and its
corresponding normal vector 𝑁 .

the maximum and minimum normal curvatures 𝜅1 and 𝜅2. The curvatures 𝜅𝑖 are
called the principal curvatures. The Gaussian curvature is an intrinsic measure of
curvature, independent of the coordinate system used to describe it, representing an
average of the two principal curvatures [23]:

𝐾 = 𝜅1𝜅2. (3.2)

Surfaces with zero Gaussian curvature are called developable surfaces because they
can be flattened out into the plane without any stretching or tearing. For instance in
Fig. 3.4a, any piece of a cylinder is developable since one of the principal curvatures
is zero. Designs of this target geometry can be achieved with angled collisions
between tiles aligned in the direction of non-zero principal curvature. An example
of a surface with positive curvature is Fig. 3.4b, where the principal curvatures
are in the same direction and therefore have the same sign. Surfaces with zero
mean curvature are called minimal surfaces because they minimize surface area
(with respect to certain constraints). Minimal surfaces tend to be saddle-like since
principal curvatures have equal magnitude but opposite sign, as shown in Fig. 3.4c.
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Figure 3.4: Surfaces with different Gaussian Curvatures [25]: (a) Zero Gaussian
Curvature. (b) Positive Gaussian Curvature. (c) Negative Gaussian Curvature.

3.2 3D Model Generation
Mesh Flattening
The first input to our design algorithm is a triangular mesh that describes the struc-
ture’s target 3D shape. Because a physical tile will be associated with each triangular
mesh element, this target surface mesh is decimated to minimize fabrication com-
plexities. Triangular meshes reduce the number of edge contacts per tile relative to
other polygonal meshes, but our design approach could be readily applied to other
mesh topologies. Because fabrication and assembly occur on a flat 2D surface, the
3D surface must be mapped to a planar configuration. Conformal flattening [26]
achieves this while minimizing shearing, which can introduce tile edge misalignment
and shape inaccuracies during the elastic sheet’s contraction.

Conformal maps are functions that preserve the angles between curves [27]. More
precisely, suppose 𝑋 (𝑧) is differentiable at 𝑧0 = (𝑢, 𝑣) and 𝛾(𝑡) is a smooth curve
through 𝑧0 and 𝛾 (𝑡0) = 𝑧0. The function maps the point 𝑧0 to 𝑤0 = 𝑓 (𝑧0) and the
curve 𝛾 to

𝛾̃(𝑡) = 𝑋 (𝛾(𝑡)).

Under this map, the tangent vector 𝛾′ (𝑡0) at 𝑧0 is mapped to the tangent vector

𝛾̃′ (𝑡0) = (𝑋 ◦ 𝛾)′ (𝑡0)

at 𝑤0. Using the notations above, the definition is as follows: The function 𝑋 (𝑧) is
conformal at 𝑧0 if there is an angle 𝜙 and a scale 𝑎 > 0 such that for any smooth
curve 𝛾(𝑡) through 𝑧0 the map 𝑋 rotates the tangent vector at 𝑧0 by 𝜙 and scales it
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by 𝑎. That is, for any 𝛾, the tangent vector (𝑋 ◦ 𝛾)′ (𝑡0) is found by rotating 𝛾′ (𝑡0)
by 𝜙 and scaling it by 𝑎. If 𝑋 (𝑧) is defined on a region 𝐴, it is a conformal map on
𝐴 if it is conformal at each point 𝑧 in 𝐴. In addition, the scale factor 𝑎 and rotation
angle 𝜙 depends on the point 𝑧, but not on any of the curves through 𝑧 [28].

A visual representation is shown in (Fig. 3.5a), where the local angles of the mesh
are preserved such that N(u,v) is the cross product of du and dv and

𝑁 (𝑢, 𝑣) × 𝑑𝑋

𝑑𝑢
(𝑢, 𝑣) = 𝑑𝑋

𝑑𝑣
(𝑢, 𝑣). (3.3)

Prescribing the boundary geometry of the flattened mesh ensures compatibility
with the desired folding patterns that are needed to attain the target compacted
configuration. This motivates performing conformal flattening using The Boundary
First Flattening (BFF) tool, as described in Sawhney et. al [26]. This tool not only
minimizes distortion during the initial flattening but also allows for the introduction
of cone singularities, which can dramatically reduce area distortion. Furthermore,
BFF enables boundary adjustments of the flattened domain, allowing the fold pattern
to better overlay the tiled design and minimize mesh element splitting. We discuss
folding in the next subsection.

Figure 3.5: Local angles are preserved during mesh flattening.

Fold Pattern Overlay
One of the features of this fabric structuring approach is that it enables folding
along predetermined lines to achieve a desired compaction shape and size. Since
the rigid tiles are compressed into contact by the elastic sheet, the structure can only
be folded along tile boundaries. Therefore, mesh elements that intersect an overlay
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of the desired crease pattern mesh must be split to enable the required local bending
mode. This is shown in Fig. 3.6.

Figure 3.6: Examples of tile cuts required by fold patterns overlaid on the flattened
mesh.

The fold lines are defined by their endpoint coordinates. The mesh-splitting algo-
rithm first determines which triangular facet contains each endpoint. An endpoint
is contained within a facet if all components of its barycentric coordinates are
non-negative. Starting from one endpoint of the fold line segment and progressing
toward the other, the algorithm determines the location where it intersects the trian-
gle boundary and determines the next mesh facet that will contain a line segment.
Finally, mesh elements are divided along lines connecting the intersection points.
This process is repeated for each fold line.

Tile Extrusion
The edges of the initially planar tiles should collide at the dihedral angles required
to form the desired global 3D shape. Therefore, the 2D triangles derived from
the flattened mesh should not be extruded perpendicularly into prisms but rather at
specified frustrum angles. This is illustrated in Fig. 3.7. The extrusion angle for
each edge is determined by finding the half-angle between the normal vectors of
adjacent faces. The facet edges are then projected to a parallel plane at a distance 𝑡
(the prescribed tile thickness) while enforcing the calculated dihedral angles.

We also evaluate the normal vectors of two adjacent tiles to determine whether
these vectors converge or diverge based on the sign of the estimated local curvature:
positive curvature indicates they point towards each other, while negative curvature
indicates they point away from each other.

( ®𝑛2 − ®𝑛1) ·
𝑣2 − 𝑣1

∥𝑣2 − 𝑣1∥2 (3.4)
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Figure 3.7: (a) A diagram with notation labeling a tile where 𝐸𝑎𝑏 is the edge vector
from vertex 𝑎 to vertex 𝑏, 𝜃𝑎𝑏 is the half-angle between the normal vectors of the
current face and adjacent face for the tile edge of 𝐸𝑎𝑏, 𝐿𝑎𝑏 is the projected distance
perpendicular to 𝐸𝑎𝑏 that is extended from the original vertex. (b) Two neighboring
faces and their normal vectors on the reduced input mesh, (c) a side view of how the
tiles collide when the structure is deployed. The blue line indicates where they are
split to adhere to the membrane.

If Eq. 3.4 is positive, the tiles should form a concave shape and the tile is extruded to
be progressively wider away from its extrusion plane. If Eq. 3.4 is negative, the tiles
should form convex shape and the angle extrudes the tile in the opposite direction.

The coordinates of the tile vertices on the projection plane are given by:

𝑣∗0 = 𝑣0 − (𝐿20 · ®𝐸01) + (𝐿01 · ®𝐸20) + ®𝑡
𝑣∗1 = 𝑣1 + (𝐿12 · ®𝐸01) − (𝐿01 · ®𝐸12) + ®𝑡
𝑣∗2 = 𝑣2 + (𝐿20 · ®𝐸12) − (𝐿12 · ®𝐸20) + ®𝑡

(3.5)

where 𝐿𝑎𝑏 is the projected distance perpendicular to 𝐸𝑎𝑏 that is extended from the
original vertex, and 𝐸𝑎𝑏 is the edge vector from vertex 𝑎 to vertex 𝑏, and 𝑎 and 𝑏
are 0, 1, or 2.
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®𝑡 =
[
0 0 𝑡

]
𝐿01 = 𝑡 · tan(𝜃01)
𝐿12 = 𝑡 · tan(𝜃12)
𝐿20 = 𝑡 · tan(𝜃20)

(3.6)

The tiles are then split along their mid-thickness plane into top and bottom halves
which will sandwich the elastic membrane.

Spacing
The tiles are assumed to be rigid and in the algorithm are spaced apart to prevent
overlap following the angled extrusions described in the previous section. The
elastic membrane will need to be pre-stretched sufficiently to drive tile collisions,
but the chosen stretch should not be greater than what is minimally needed. This
minimizes the stress the elastic membrane is subjected to and eases fabrication. The
spacing is done by scaling the centroids of faces about the structure’s center of mass
in the flat configuration, then translating each tile to its new centroid via rigid body
motion. The residual stresses present in the elastic membrane after tiles collide
stiffen the deployed configuration of the structure. Then the pre-stretch applied to
the elastic membrane during fabrication is based on the stretch factor chosen in the
algorithm during triangle spacing, which is discussed in the next section.

3.3 Fabrication
After generating the STL files for the top (Fig. 3.8a) and bottom halves (Fig. 3.8b)
of the tiles, the tiles were manufactured using Stereolithography 3D printing on
a 3D Systems SLA ProJet7000 machine with Accura ClearVue, a polycarbonate-
like plastic. The tiles were printed attached to a plate with support structures to
maintain their predetermined positions and orientations relative to neighboring tiles.
The plate and support material were only removed after adhering the tiles to the
pre-stretched sheet, to ensure the positions and orientations were preserved during
fabrication.

To adhere the tiles to the stretched elastic sheet, double-sided tape was cut with
a Cricut Explore Air into shapes corresponding to the cross-section of the tiles at
their mid-thickness plane. The corresponding cross-sectional shapes were reduced
to 75% of their area to allow the elastic sheet additional contraction room, ensuring
that the tiles would jam together. Each double-sided tape piece was then adhered to
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Figure 3.8: Paraboloid with two fold lines. (a) Left: The 3D-printed top halves of
the tiles. (b) Right: The 3D-printed bottom halves of the tiles.

the respective tile for both the top and bottom halves.

To achieve uniform stretching of the rubber sheets, we utilize a stretching frame with
evenly spaced teeth that provide sufficient friction to maintain the sheet’s tension
without additional fixation [17]. To attain the desired equiaxial stretching factor, we
place markers on the sheet and manually stretch it until the markers are coincident
with the tooth tips on the stretching device. The elastic sheet was stretched to the
factor used in the generation code which finds the minimum to avoid tile overlap from
the angled extrusion, with an additional 0.3x stretch to account for stress relaxation
during fabrication. The elastic sheet, a 0.008" 40A Rubber Sheet was cleaned to
remove residual particles and dust before adhering the tiles to each side. The second
layer was then aligned to match the tiles on the other side and adhered to the elastic
sheet with the same method as the previous layer of tiles.

The plate with its attached support material was removed from both the top and
bottom halves, using a Dremel tool with a cutting wheel (Fig. 3.9b). The result of
the removal is shown in Fig. 3.9c while the assembly remains stretched. Finally, the
fabricated assembly was unhooked from the stretching frame, allowing the tiles to
jam into the target 3D shape in Fig. 3.9d. The dimensionality of the shape is more
clearly shown outside of its fabrication environment in Fig. 3.1f. The structure can
then be folded along the fold lines and bound to maintain the folded shape. When
there are no forces holding the folds in place or stretching the sheet, the structured
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a) b)

c) d)

Figure 3.9: (a) Precision-cut, double-sided tape is adhered to each tile. (b) The
support structure is removed and a plate holds the positions and orientations of the
the tiles after adhesion to the elastic sheet. (c) The top and bottom halves after
adhesion and removal from the support. (d) Releasing the sheet from the stretching
frame.

fabric pops into its target 3D shape.

The fabrication process could be enhanced by aligning the placement of the stickers
to the centroids of each tile, using an image projection of the isotropically reduced
area of the original tile for precise positioning. Additionally, the removal of sup-
port structures could be further refined using an abrasive blast chamber to achieve
smoother results. While there is a clear, but more labor-intensive, pathway to im-
prove repeatability, the primary goal of this work was to demonstrate the feasibility
of the process.
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3.4 Results
The results present deployable structures that fold along set patterns for compact
storage and transform into desired 3D shapes when released. Stability is achieved
through conformal mapping and the compressive properties of the structured fabric,
allowing fold patterns to remain independent of the target 3D surface. The proto-
types show how these design and fabrication methods can be applied to different
shapes and fold patterns. While the fabric can be randomly collapsed (Fig. 3.2),
applications requiring control over the sequence of unfolding or the compacted con-
figuration would benefit from the ability to fold along predefined lines. Furthermore,
the randomness inherent in crumpling may introduce unintended folds, potentially
leading to damage, such as an edge of a tile inadvertently tearing the membrane due
to improper alignment during folding.

Figure 3.10: Paraboloid with flasher fold pattern. (a) Left: the 3D-printed top halves
of the tiles; (b) Right: the 3D-printed bottom halves of the tiles.

In Figs. 3.11-3.13, the pictures from top left to top right to bottom left to bottom
right display the target surfaces, overlaid fold patterns, deployed fabricated structured
fabrics, and folded structured fabrics. In the Fig. 3.11, a paraboloid target surface
was selected, based on our antennae application inspiration. It can be folded into a
cylindrical shape via an origami flasher fold pattern [29], which has been used in
other deployable space structures [30]. Traditionally, origami flashers are used on
flat round panels [31]; however, we overlaid the flasher pattern onto the paraboloid
3D surface using the methods we have described. A zip tie holds the structure in
place to prevent natural deployment into its 3D shape. Upon cutting the zip tie, the
structured fabric unfolds into the discretized approximation of the target surface.
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Figure 3.11: Paraboloid with an origami flasher fold pattern. For each section: (a)
top left: input design, (b) top right: overlaid fold pattern, (c) bottom left: actuated
deployed configuration, (d) bottom right: folded configuration. The valley folds are
indicated with red, mountain folds are indicated with blue, supplementary bends are
indicated with gray. Scale bar, 3cm.

The compaction ratio of the structured fabric was approximately 2:1 by volumetric
shrinkage of an enclosing box. We also show the deployment and packing of a saddle
in Fig. 3.12, highlighting that our method can be used for structures that display
both positive and negative principal curvatures. The selected fold pattern was a
simple quadrant fold, compacting the shape into a prism-like form. The compaction
ratio of the structured fabric was approximately 3:1 by volumetric shrinkage of an
enclosing box. The final example (Fig. 3.13) showcases the flexibility of compacted
geometries that can be achieved with our approach to stowage and deployment: we
demonstrate a structured fabric that deploys into a shape inspired by the Lilium Tower
and can be folded into a paper airplane configuration. To reduce the additional area
distortion due to the sharper curvature around the corners, cone singularity points
were placed on corners during mesh flattening.

To determine deployment shape-accuracy, a Zeiss Comet L3D-5MP3D Scanner was
used to scan a physical prototype of the saddle and generate a textured 3D mesh
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Figure 3.12: Saddle with a quadrant fold pattern. For each section: (a) top left:
input design, (b) top right: overlaid fold pattern, (c) bottom left: actuated deployed
configuration, (d) bottom right: folded configuration. The valley folds are indicated
with red, mountain folds are indicated with blue, supplementary bends are indicated
with gray. Scale bar, 3cm.

in STL format. Then the scanned mesh was compared to the actual mesh using
the 3D Systems Geomagic software. As shown in Fig. 3.14, the 3D scan and
analysis reveals a maximum deviation of the physical model from the target surface
is 5.1% of the bounding box diagonal with a max deviation of about 4.1mm. The
overall shape is a good approximation of the target 3D surface, however due to
unavoidable inconsistencies in the fabrication process, mesh coarseness, and area
distortion during the conformal flattening, there is more surface deviation in sections
of the structure that display large curvature.

The structure is currently limited to a single deployed shape, capable of achieving
either positive or negative Gaussian curvature. However, more complex geometries
and reduced deviation error could be achieved by reducing the size of the tiles and
increasing the dimensions of the overall structure. As illustrated in the crumpled
versus folded example, the structures can adopt different compacted configurations,
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Figure 3.13: Lilium with a paper airplane fold pattern. For each section: (a) top left:
input design, (b) top right: overlaid fold pattern, (c) bottom left: actuated deployed
configuration, (d) bottom right: folded configuration. The valley folds are indicated
with red, mountain folds are indicated with blue, supplementary bends are indicated
with gray. Scale bar, 3cm.

particularly if multiple fold line options are incorporated into the tile pattern. While
the fabrication could be improved with more resources and labor, the acceptable
deviation depends on usage of the designs for deployables and other soft robotics.

Figure 3.14: A 3D scanned comparison of the saddle model with error.
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3.5 Conclusion
This computational design methodology uniquely combines the compressive con-
tact characteristics of the structured fabric, boundary-first conformal mapping, and
folding of thick materials to enable deployment and compaction of 3D surfaces.
The resulting 3D surfaces become load-bearing structures, warranting further in-
vestigation into their load capacity. As with other morphing structure approaches
that leverage conformal mappings, our methods are less effective for surfaces with
regions of large curvature. In these cases, the surface accuracy declines as a result
of area distortion from conformal mapping. To improve deployment accuracy and
stability, connectors or 3D printed micro-velcro [32] could be added to the edges
of the tiles so they lock together upon contact. Other ways of actuating the tiles
besides elastic sheets should also be explored, such as with shape memory alloy
or other actuators that provide equiaxial forces. Additionally, incorporating curved
tiles instead of flat ones could enable the formation of more complex geometries,
though this would introduce tiles with variable thickness and added complexities to
the design process.

The maturation of this method for structured fabric design would benefit from fu-
ture efforts that incorporate analyses into the effects of fold patterns on elastic sheet
strain energy, and from methods to optimize fold patterns. This would enable achiev-
ing improved compaction ratios while minimizing strain energy, thereby reducing
unnecessary stretching and potential for sheet degradation.
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C h a p t e r 4

ANALYSIS OF ELASTIC MEMBRANES WITH RIGID
COMPONENTS

4.1 Introduction
While the structured fabric design presented in the previous chapter demonstrated
unique mechanical properties and capabilities, a better understanding of the inter-
nal mechanics, particularly the strain and stress distribution within the membrane,
remained limited. This limitation primarily arises from the experimental challenges
in evaluating strain within the membrane, especially when the tiles are fully engaged
and conceal the membrane during jamming. This lack of direct observation hinders
the ability to assess critical factors such as localized stress concentrations, excessive
stretching, and potential failure points within the membrane. Gaining insight into
these internal mechanics is essential for future design optimizations, including the
refinement of fold patterns, minimization of unnecessary strain, and the reduction
of long-term risks such as material fatigue and degradation.

For deployable applications that demand repeatability, durability, and adaptabil-
ity, understanding the interactions between the membrane and the attached tiles is
crucial [1]. Repeated folding and unfolding cycles can introduce localized stress
concentrations, increasing the likelihood of membrane tearing or permanent defor-
mation [2]. Therefore, optimizing the structural layout to mitigate these risks is
important for ensuring the longevity and functional reliability of the system.

Beyond the specific scope of the structured fabric examined, this line of investigation
has broader implications in fields that integrate hyperelastic components with rigid
components, such as in soft robotics, where elastic skins are often combined with
rigid frames and rigid components [3] are connected by flexible components [4],
[5], or in compliant mechanisms [6], where controlled flexibility is used to achieve
complex motions. In these systems, the interaction between rigid and flexible
elements significantly influences performance, and improper stress distribution can
compromise both function and lifespan. Incorporating these findings into future
structured fabric designs will not only improve the current system but will also inform
the development of other hybrid systems that combine elastic and rigid components
[7]. Understanding the nuanced effects of tile patterns, folding dynamics, and
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membrane deformation is essential for advancing the design of adaptive, durable,
and efficient materials across a wide range of engineering applications [8]–[10].

Numerical simulations offer a powerful tool to bridge the current experimental
gaps, allowing for a detailed exploration of the membrane’s behavior under various
configurations. By systematically varying parameters such as pre-stretch levels, tile
spacing, tile density, and folding geometries, simulations can reveal how these factors
influence strain localization, stress distribution, and overall mechanical response.
This information can guide design strategies to optimize mechanical performance
while minimizing the risk of damage.

The finite element method can be used to solve problems involving shape changes
from deformations [11]. COMSOL Multiphysics is a finite element analyzer, solver,
and simulation software that was used to perform these computations [12]. The
membrane in the deployable structured fabric was modeled as a Neo-Hookean
material, a type of hyperelastic material model used to describe rubber-like, soft,
and biological materials under finite deformations, and is more accurate than linear
elasticity for materials that can undergo large elastic deformations [13]. A series of
tile pattern configurations and membrane simulations were conducted to evaluate the
influence of tile density, tile spacing, and structured fabric folding on the membrane’s
internal mechanics, strain behavior, and stress distribution.

4.2 Neo-Hookean Hyperelastic Materials
Hyperelastic constitutive laws are designed to model materials that exhibit elastic
behavior even under very large strains, capturing both nonlinear material responses
and significant shape changes. These models are particularly suited for materials like
rubbers and polymeric foams, which can undergo large, reversible deformations [14].
In this analysis, the structured fabric incorporates a rubber membrane, making the
hyperelastic framework especially relevant for representing the rubber-like behavior
of the polymeric material [15].

Several key characteristics of solid rubber are relevant to our setup and analysis
[13]. The material behaves as an ideal elastic solid, where, under constant temper-
ature, stress depends solely on the current strain, independent of loading history or
rate. The deformation is fully reversible, with the material returning to its original
shape upon unloading. The material exhibits a strong resistance to volume changes,
characterized by a high bulk modulus, which relates volumetric strain to hydrostatic
stress. It is highly compliant in shear, with a shear modulus significantly lower, by
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Figure 4.1: An example of a hyperelastic material’s stress strain curve compared to
that of a linear-elastic material [16].

several orders of magnitude, than that of typical metals. The material is isotropic,
meaning its stress-strain response remains consistent regardless of orientation. This
combination of properties makes hyperelastic models ideal for capturing the me-
chanical behavior of the rubber membrane within our structured fabric of interest.

All hyperelastic models are constructed in the following way. The stress-strain
relationship is defined by specifying a strain energy density 𝑊 as a function of the
deformation gradient tensor 𝐹 to ensure the material is perfectly elastic, which also
simplifies the analysis by working with a scalar function. The form of𝑊 incorporates
material-specific properties that can be adjusted to model different materials. The
undeformed material is usually assumed to be isotropic i.e the behavior of the
material is independent of the initial orientation of the material with respect to
the loading. Formulas for stress in terms of strain are calculated by differentiating
the strain energy density. The strain energy in terms of the deformation gradient
𝐹𝑖 𝑗 = 𝛿𝑖 𝑗 + 𝜕𝑢𝑖

𝜕𝑥 𝑗
is

𝜎𝑖 𝑗 =
1
𝐽
𝐹𝑖𝑘

𝜕𝑊

𝜕𝐹𝑘 𝑗
. (4.1)

Generalized Neo-Hookean solid

The specific form of strain energy density for a generalized Neo-Hookean solid is
[17]:

𝑈̄ =
𝜇1
2

(
trace(𝐹𝐹𝑇 )

𝐽2/3 − 3
)
+ 𝐾1

2
(𝐽 − 1)2 (4.2)
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where 𝐽 is the Jacobian of the Deformation, 𝜇1 and 𝐾1 are material properties
and are the shear modulus and bulk modulus of the solid, respectively, and the
bulk modulus can be calculated from the Lamé parameters by 𝜅 = 𝜆 + 2𝜇/3. The
material value of 𝜇1 can be determined based on the number of polymer chains
per unit volume, the Boltzmann constant, and the temperature, which we assume
to be constant. This rubber elasticity model is used with rubbers with very limited
compressibility, and should be used with 𝐾1 << 𝜇1. The stress-strain relation
follows as (with 𝐵 = 𝐹𝐹𝑇 ):

𝜎𝑖 𝑗 =
𝜇1

𝐽5/3

(
𝐵𝑖 𝑗 −

1
3
𝐵𝑘𝑘𝛿𝑖 𝑗

)
+ 𝐾1(𝐽 − 1)𝛿𝑖 𝑗 . (4.3)

Finite Element Method for Large Deformations: Hyperelastic Materials
Summary of Governing Equations

The following parameters are given to begin the finite element study [13]:

• The shape of the sheet in its unloaded condition 𝑅0 ,the stress free reference
configuration. In our simulation this is membrane without stretching or
adhered rigid components.

• A body force distribution 𝑏 acting on the solid, a body force distribution acting
on the solid, in force per unit mass. In the first study step of the simulation, this
is the prestrain applied to the body of the membrane. In the second study step
of the simulation, the prestrain is released from the body of the membrane,
and a light foundation spring is attached to the tile in the center to prevent
rigid body motion.

• Boundary conditions, specifying displacements 𝑢∗(𝑥) on a portion 𝜕1𝑅 or
tractions 𝑡∗(𝑥) on a portion 𝜕2𝑅 of the boundary of the deformed solid where
tractions are specified as force per unit deformed area. In the first study step
of the simulation, the prestrain applied is held in place by a fixed boundary
condition on the boundary of the membrane, in addition to the rigid tiles
being placed in this prestretched configuration. In the second study step of the
simulation, the rigid tiles remain adhered but the fixed boundary condition is
removed.

• The material constants 𝜇1 and 𝐾1 from the previous section describing the
Neo-Hookean constitutive law. In our simulation, the values can be found in
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Appendix 3.

• The mass density of the solid in its reference configuration, 𝜌 which in the
simulations remains constant throughout and across each of them. In our
simulation, the values can be found in Appendix 3.

Then the displacements 𝜇𝑖, deformation gradient tensor 𝐹𝑖 𝑗 and Cauchy stresses
𝜎𝑖 𝑗 are calculated such that the governing equations and boundary conditions are
satisfied:

𝑦𝑖 = 𝑥𝑖 + 𝑢𝑖 (𝑥𝑘 ) (4.4)

Deformation Gradient: 𝐹𝑖 𝑗 = 𝛿𝑖 𝑗 +
𝜕𝜇𝑖

𝜕𝑥 𝑗
(4.5)

Jacobian of the Deformation: 𝐽 = 𝑑𝑒𝑡 (𝐹) (4.6)

Left Cauchy-Green Tensor: 𝐵𝑖 𝑗 = 𝐹𝑖𝑘𝐹𝑗 𝑘 (4.7)

Equilibrium of Stresses:
𝜕𝜎𝑖 𝑗

𝜕𝑦𝑖
+ 𝜌𝑏 𝑗 = 0 (4.8)

Prescribed Displacements: 𝜇𝑖 = 𝜇∗𝑖 on 𝜕𝑅1 (4.9)

Prescribed Tractions: 𝜎𝑖 𝑗𝑛𝑖 = 𝑡∗𝑗 on 𝜕2𝑅 (4.10)

with 𝜎𝑖 𝑗 , Cauchy stress, related to the left Cauchy-Green tensor through the Neo-
Hookean constitutive law:

𝜎𝑖 𝑗 =
𝜇1

𝐽5/3 (𝐵𝑖 𝑗 −
1
3
𝐵𝑘𝑘𝛿𝑖 𝑗 ) + 𝐾1(𝐽 − 1)𝛿𝑖 𝑗 . (4.11)

Principle of Virtual Work and Finite Element Equations

The stress equilibrium equation is replaced by the equivalent principle of virtual
work. The nonlinear virtual work equation is [13]:∫

𝑅𝑜

𝜏𝑖 𝑗𝛿𝐿𝑖 𝑗𝑑𝑉0 −
∫
𝑅𝑜

𝜌𝑏𝑖𝛿𝑣𝑖𝑑𝑉0 −
∫
𝜕𝑅

𝑡∗𝑖 𝛿𝑣𝑖𝑑𝐴 = 0 (4.12)

for all virtual velocity fields 𝛿𝑣𝑖 (𝑥𝑖) and virtual velocity gradients 𝛿𝐿𝑖 𝑗 = 𝜕𝑣𝑖
𝜕𝑦 𝑗

that
satisfy 𝛿𝑣𝑖 = 0 on 𝜕1𝑅, and 𝜏𝑖 𝑗 = 𝐽𝜎𝑖 𝑗 is the Kirchhoff stress.

The displacement field is discretized, by choosing to calculate the displacement
field at a set of 𝑛 nodes. The coordinates of these special points are denoted in
the reference configuration by 𝑥𝑎

𝑖
, where the superscript 𝑎 ranges from 1 to 𝑛. The

unknown displacement vector at each nodal point is 𝑢𝑎
𝑖
.
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The displacement field and virtual velocity field at an arbitrary point within the solid
is again specified by interpolating between nodal values.

𝑢𝑖 (x) =
𝑛∑︁
𝑎=1

𝑁𝑎 (x)𝑢𝑎𝑖 (4.13)

𝛿𝑣𝑖 (x) =
𝑛∑︁
𝑎=1

𝑁𝑎 (x)𝛿𝑣𝑎𝑖 (4.14)

where 𝑥 denotes the coordinates of an arbitrary point in the reference configuration.

And we can compute the deformation corresponding to a given displacement field
with:

𝐹𝑖 𝑗 = 𝛿𝑖 𝑗 +
𝜕𝑢𝑖

𝜕𝑥 𝑗
= 𝛿𝑖 𝑗 +

𝑛∑︁
𝑎=1

𝜕𝑣𝑎

𝜕𝑥 𝑗
𝑢𝑎𝑖 . (4.15)

Then positions within the element can be interpolated as:

𝑥𝑖 =

𝑁𝑘∑︁
𝑎=1

𝑁𝑎
(
𝜉 𝑗
)
𝑥𝑎𝑖 (4.16)

where 𝑁𝑎 (𝜉𝑖) are the shape functions in terms of local element coordinates 𝜉𝑖.

To solve the nonlinear virtual work equation using Newton-Raphson iterations, an
initial guess for 𝑢𝑎

𝑖
is made and denoted as 𝑤𝑎

𝑖
. Then, an attempt to correct 𝑤𝑎

𝑖
in

a direction closer to the solution is done by setting 𝑤𝑎
𝑖
−→ 𝑤𝑎

𝑖
+ 𝑑𝑤𝑎

𝑖
. Ideally the

correction would satisfy:∫
𝑉0

𝜏𝑖 𝑗

[
𝐹𝑝𝑞

(
𝑤𝑏𝑘 + 𝑑𝑤

𝑏
𝑘

)] 𝜕𝑉𝑎
𝜕𝑥𝑚

(𝐹+𝑑𝐹)−1
𝑚 𝑗𝑑𝑉0−

∫
𝑉0

𝐹0𝑏𝑖𝑁
𝑎𝑑𝑉0−

∫
𝜕2𝑉0

𝑡∗𝑖 𝑁
𝑎 (𝜂+𝑑𝜂)𝑑𝐴0 = 0

(4.17)
where 𝐹+𝑑𝐹 denotes the deformation gradient for the updated solution. In addition,
the boundary traction integrals are evaluated.

4.3 Numerical Simulation
To replicate the fabrication process of the structured fabrics, in the first step of
the study, the prestretch in the membrane defines the body force distribution. In
COMSOL Multiphysics, this is done by applying an external strain on the membrane
domain, and fixed constraint boundary condition to the hyperelastic membrane edge.
The tile geometry is generated from the meshes used in the previous chapter, with
filleted corners to decrease the likelihood of stress singularities occurring at the
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boundaries of the hyperelastic and rigid materials. The tiles in this step are located in
their original tile pattern, as if they were being adhered to the prestretched membrane
in Chapter 3. In the second step of the study, the fixed constraint boundary condition
applied to the membrane boundary is removed. Additionally, to inhibit the entire
material from rigid body translating due the forces it undergoes in this step, a light
spring of only 100 N/m is applied to two points within a central tile of the tile
pattern.

The mesh size remained constant across all simulations within the same study type,
ensuring consistency in the analysis. They were largely determined by accommo-
dating the smallest geometric element, the modified tile corners after filleting. To
find the adequacy of the mesh resolution, an analysis was conducted by varying the
mesh size until the results reached a plateau. This plateau indicated that further
refinement would not significantly affect the outcomes, confirming that convergence
was achieved independently of element size reduction. The final mesh size was
selected to balance accuracy and computational efficiency, enabling reliable results
without excessively increasing run time. Extensive details about the simulation
setup can be found in Appendix 3.

4.4 Tile Density Effects
In the previous project, the amount of discretization and consequently, the number
of tiles, was determined by the mesh size used when converting the 3D target surface
into a mesh. This mesh was then flattened, and its individual faces were transformed
into tiles that formed the structured fabric. While employing a finer mesh with a
higher number of faces would have resulted in a smoother and less discretized
surface, several practical limitations restricted this approach.

Increasing the tile density directly leads to more fabrication complexity. More
tiles require greater precision and transfer of adhesive components during assembly,
significantly increasing fabrication time and the likelihood of errors. Additionally,
the risk of failure during initial trials grows, leading to repeated fabrication attempts.
As a result, the previous designs prioritized fabrication feasibility over surface
smooth, since they were primarily demonstrating the design process and method.

However, with sufficient resources, especially time, it would be useful to explore
the internal mechanics of the membrane when subjected to increased tile densities.
Understanding how the membrane behaves under these conditions could inform how
different generated meshes behave. They could also inform strategies to optimize
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structural integrity, reduce unwanted strain concentrations, and improve overall
performance. Having a deeper understanding of the membrane’s behavior would
enable the design of non-uniform tile distributions, where smaller, denser tiles could
be strategically placed in regions requiring greater flexibility or surface smoothness,
while larger tiles could be used in less critical areas to simplify fabrication. This
adaptive tiling approach could lead to more efficient and versatile structured fabrics,
better tailored to complex geometries and specific mechanical demands.

To systematically investigate the impact of tile density on the system’s behavior,
a tile density factor was introduced, as shown in Fig. 4.2, allowing for controlled
variations in discretization while maintaining a constant total area. The same amount
of tile spacing was applied to each pattern. Ideally, observed changes are due to the
increased number of tiles rather than differences in overall size.

N = 5 N = 10 N = 20

L

L

Figure 4.2: The tile pattern set up used to analyze the tile density is shown before
a constant spacing is applied. The variable 𝑁 denotes the number of lengthwise
subdivisions applied along each edge of the original surface. The edge length 𝐿 of
the outer dimensions is kept constant across each of the surfaces.

The variable 𝑁 denotes the number of lengthwise subdivisions applied along each
edge of the original surface. Following this subdivision, each resulting square
is further divided into two triangular right tiles by cutting along its diagonal, as
illustrated in Fig. 4.2, ensuring uniform tile shapes while progressively refining
the mesh. As 𝑁 increases, the total number of tiles grows proportionally to 𝑁2,
leading to a denser discretization within the same area. As shown in the design
method of the previous chapter, the tiles are then spaced apart by the same spacing
factor of 1.2 as shown in Fig. 4.3 and filleted by an amount proportional to their
tile size. It is important to note that the system is a hybrid structure, combining
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a hyperelastic membrane with extremely rigid tiles that feature sharp corners. In
a numerical simulation, these sharp geometric and material transitions naturally
induce stress singularities, which can distort simulation results. To mitigate these
singularities, filleting was applied to the tile corners. The final fillet proportion was
chosen to mitigate stress singularities that permit the use of larger mesh elements
for computational efficiency. At the same time, it was kept minimal to better reflect
the actual fabrication process, in an attempt to balance numerical stability and
experimental accuracy. More details can be found in Appendix 3.

N = 5 N = 10 N = 20

Figure 4.3: The original tile pattern mesh of Fig. 4.2 is distributed to a constant
spacing factor of 1.2, to account for the membrane prestretch during fabrication, as
explained in the previous chapter.

By maintaining a constant tile density while progressively increasing the mem-
brane’s prestretch, it becomes evident that the strain energy within the membrane is
unevenly distributed and influenced by kinematic frustrations. Rather than spreading
uniformly, the strain energy concentrates in “web-like” patterns, primarily forming
along the regions that directly connect neighboring tiles, as shown in Fig. 4.4. The
most pronounced strain concentrations occur between each tile and its nearest neigh-
boring tile and nearest neighboring tile with less edge length aligned. Additionally,
weaker regions emerge between tiles and their slightly more distant neighbors,
though these regions experience comparatively lower strain energy. As the level
of membrane prestretch increases, these strain concentrations become even more
pronounced, with the highest energy accumulation occurring within the primary
connecting webs. This localized build-up of strain highlights critical areas of stress.
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Figure 4.4: An enlarged view of where "webs" occur, where strain energy concen-
trates, with greater concentrations occurring between a tile and its nearest neighbor-
ing tile with less edge length aligned.

As the level of membrane prestretch increases, these strain concentrations become
even more pronounced, with the highest energy accumulation occurring within
the primary connecting webs, as shown in Fig. 4.5. While the total amount of
strain energy in the system increases, the increases are primarily happening in those
specific regions.

By maintaining a constant prestretch while increasing the tile density, as shown
in Fig. 4.6, it is observed that the stress concentration regions, or webs, become
progressively thinner and more localized. As the tile size decreases, the regions
through which stress is transmitted are confined to smaller areas, leading to a higher
stress intensity within these webs. This is likely a consequence of the strain energy
being distributed over a reduced area, causing an amplification of local stresses
as the membrane accommodates the same global deformation through finer, more
densely packed tiles.

A summary of the data for varying tile densities across different membrane pre-
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stretches is presented in Fig. 4.7 and Fig. 4.8.

Elastic Strain 
Energy 
Density

Constant Tile Density N =5

Prestretch = 1.2 Prestretch = 1.35

Prestretch = 1.85Prestretch = 1.6

Figure 4.5: Surface plots of strain energy density are shown for a tile pattern of N=
5 after being released from varying prestretch factors.

In Fig. 4.7, increasing the tile density factor leads to a rise in strain energy density.
This increase occurs because higher tile densities result in more stress accumulating
webs, which become thinner and more concentrated as the tile size decreases. For
each level of membrane prestretch, the left plot displays the strain energy density
as a percentage change relative to the baseline case with a tile density factor of 2
at the same prestretch level. This normalization highlights the relative impact of
increasing tile density within each prestretch scenario. The plot on the right side
presents the absolute values of strain energy density, allowing for direct comparison
of the magnitude of changes between different prestretch levels. Due to significant
differences in scale across prestretch conditions, the percentage change plots on the
left provide clearer insight into the internal trends for each case.

Similarly, Fig. 4.8 illustrates how the maximum stress evolves with increasing tile
density. While the overall trend mirrors that of the strain energy density, showing
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Constant Prestretch =1.2

Maximum 
von Mises 
Stress

N = 2 N = 5

N = 20N  = 10

Figure 4.6: Surface plots of the maximum von Mises stresses are shown after
releasing the membranes from a prestretch of 1.2 for varying tile densities.

an increase in stress with higher tile densities, the rate of increase differs due to
the nonlinear relationship between stress and strain. The right plot highlights the
scale of stress values across different prestretches, while the plot on the left side
focuses on the percentage change within each prestretch level, allowing for a clearer
comparison of relative effects. The increase in prestrain of the material amplifies
localized effects, as shown in the plot on the left.

To mitigate stress singularities in the evaluation of maximum values, filleting was
applied to the tile corners, as previously discussed, along with mesh optimization
to smooth extreme gradients and enhance numerical stability. Despite these refine-
ments, residual numerical artifacts persist, leading to minor irregularities in certain
regions of the graphs. Together, these figures reveal how both strain energy den-
sity and stress are influenced by the interplay between tile density and membrane
prestretch.



68

Figure 4.7: For an increasing tile density, the left plot normalizes strain energy
density as a percentage change relative to a baseline tile density factor of 2, while
the right plot displays absolute values for direct comparison of magnitudes across
prestretch levels.

Figure 4.8: For an increasing tile density, the left plot normalizes maximum von
Mises Stress as a percentage change relative to a baseline tile density factor of 2,
while the right plot displays absolute values for direct comparison of magnitudes
across prestretch levels.

4.5 Tile Spacing Effects
The spacing between tiles can also be systematically varied to explore its impact
on the overall structure. The tile pattern utilized in this analysis is consistent with
the design from the previous chapter’s paraboloid structure, where tiles of identical
shape, size, and relative orientation were maintained as shown in Fig. 4.9. The
variation lies in the adjustment of spacing, achieved through an isotropic rigid body



69

translation of each tile. This approach ensures that while the fundamental geometry
of the tile pattern remains unchanged, the inter-tile gaps can be controlled to study
their influence on the membrane’s mechanical behavior and strain distribution.

Sf = 1.25 Sf = 1.5 Sf = 1.75

Figure 4.9: Tile spacing is varied while maintaining the same pattern and design as
the previous chapter’s paraboloid structure. 𝑠 𝑓 is the spacing factor of those tiles.

The variable 𝑠 𝑓 represents the scaling factor applied to adjust the spacing between
tiles, based on the expansion of the original pattern. To achieve this, the centroids
of the expanded tiles serve as reference points, allowing the tiles to be isotropically
distributed while maintaining their original size, orientation, and relative arrange-
ment. Like the previous section using identical triangles, we can observe webs
between a tile and its neighbor, with smaller tiles and closer neighbors resulting in
more concentrated strains and therefore stresses. As the prestretch increases, those
particular regions become more pronounced.

Analyzing the effects of tile spacing, we can first observe that the outer rim undergoes
significant contraction, as it is not constrained by neighboring tiles that would
otherwise resist the release of prestretch. Consequently, the frustrations near the
outer rim experience a greater impact from this contraction compared to the interior
tiles, which are more effectively buffered by their surrounding neighbors. This effect
can be seen in Fig. 4.11, where the whole structure undergoes compression, but
with greater intensity observed further from the center. Kinematic frustrations could
be quantified in these displacement plots by comparing the amount of displacement
occurring in a released membrane with versus without a tile pattern.

As the spacing between tiles increases, the tiles become less affected by neighboring
constraints, making them more susceptible to prestretch release effects in the rim.
This phenomenon is particularly pronounced near the outer rim, where the tiles are
more isolated, leading to a greater overall contraction effect.
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Elastic Strain 
Energy 
Density

Constant Spacing = 1.3
prestretch = 1.2 prestretch = 1.35

prestretch = 1.6 prestretch = 1.85

Figure 4.10: Surface plots of strain energy density are shown for a paraboloid tile
pattern of constant spacing sf = 1.3, across different prestretches it is released from.

In the tile pattern used, smaller tiles are positioned near the center of the structure.
The resulting stress distributions reveal a distinct trend where for small spacing
factors 𝑠 𝑓 , stress concentrations are higher in the center. For large spacing factors,
the stress shifts toward the outer rim. This shift in stress localization can be attributed
to at least two factors. As the spacing increases, the characteristic web lengths
begin to align more closely with the larger tiles near the outer region, reducing the
dominance of stress concentrations in the center. In addition, the outermost tiles
become increasingly isolated as spacing increases, making them less buffered from
the prestretch-induced contraction of the outer rim. Since these tiles experience
fewer kinematic constraints, the release of prestretch results in heightened stress
accumulation in these regions.

As the spacing factor increases, a larger portion of the system undergoes kinematic
frustration, resulting in a higher buildup of strain strain energy. This occurs because
the tile pattern expands, while individual tile sizes remain unchanged, leading to
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Figure 4.11: Contour displacement plots of the tile patterns at two different spacings.

elevated strain energy density and enhanced stress localization. To elucidate these
effects, in Fig. 4.13, the left-hand plot displays percentage changes relative to a
baseline tile density factor of 1.2, highlighting relative trends within each prestretch
level. In contrast, the right-hand plot presents the absolute values, allowing for a
direct comparison of magnitude differences across various prestretch conditions.

The relationship between tile spacing and stress follows a similar trend to strain
energy density, though the rate of increase varies due to the nonlinear stress-strain
response of the hyperelastic membrane. Higher prestrain amplifies localized effects,
as illustrated in the percentage change plots.

Since the system consists of rigid tiles embedded in a hyperelastic membrane,
sharp geometric transitions naturally introduce stress singularities in simulations.
To reduce these effects, filleting of tile corners and mesh optimization were also
applied to improve numerical stability. However, some residual artifacts remain.
Overall, the figures illustrate how strain energy density and stress distributions are
shaped by the interplay between tile spacing and membrane prestretch, providing
critical insights for optimizing structured fabric designs.
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Maximum 
von Mises 
Stress

Constant Prestretch = 1.2
sf = 1.2 sf = 1.5

sf = 1.6 sf = 1.7

Figure 4.12: Surface plots of maximum von Mises stress are shown after releasing
the membrane’s prestretch for a paraboloid tile pattern of constant prestretch of 1.2,
across increasing spacing factors.
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Figure 4.13: For an increasing tile density, the left plot normalizes strain energy
density as a percentage change relative to a baseline spacing factor of 1.2, while
the right plot displays absolute values for direct comparison of magnitudes across
prestretch levels.

Figure 4.14: For an increasing tile density, the left plot normalizes maximum von
Mises Stress as a percentage change relative to a baseline spacing factor of 1.2,
while the right plot displays absolute values for direct comparison of magnitudes
across prestretch levels.
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4.6 Folding
In the previous chapter, we discussed how folding plays a crucial role in structured
fabrics, enabling the design to compact along predetermined fold lines inspired by
origami, allowing for compact and efficient folding patterns. However, fabrication
and experimental observations revealed that failure most commonly occurred in
these folding regions, where the membrane undergoes a combination of bending and
stretching. The behavior of the folding is primarily determined by the geometry of
the tiles, with thickness being the greatest factor. Directly modeling the adhesion of
tiles on both the top and bottom of the membrane, along with the contact interactions
between rigid elements, would be very computationally expensive. In addition, the
membrane was modeled as a 2D cross-section of the full membrane with the plane-
strain assumptions.

To address this, the folding behavior was instead simulated using geometric boundary
conditions, which effectively capture the constraints imposed by tile interactions,
as illustrated in Fig. 4.15. Observations during fabrication and experimentation
showed that the bottom tiles collide, causing the membrane to hinge around the
bottom two corners, marked by the red dot. Upon collision, the central portion of
the membrane begins to stretch, allowing both ends to rotate about the hinge point.

The folding process continues until the tile edges make full contact, at which point
the membrane takes on a U-shaped bend. Theoretically, the adhesive area beneath
each tile, which is slightly smaller than the tile itself, remains fixed and unable
to stretch, as it is bonded to a rigid surface. The adhesives create a small gap of
untouched membrane, which is represented by 2𝐿𝑥 . This also results in localized
bending near the tile corners, while the middle portion of the membrane undergoes
stretching, potentially leading to necking between the bending regions.

Simulation results illustrate the final membrane configuration for varying tile thick-
nesses. As tile thickness increases, stress concentrations become more pronounced,
particularly in the central region, where visible necking occurs due to intensified
strain. While the overall deformation profile remains similar, the middle section
elongates, becoming more stretched and thinner, while the corners also begin to thin,
though to a lesser extent. As the tile thickness and collision effects increase, the
stretching in the middle intensifies, leading to higher localized stress, as indicated
by the increasing red regions in the simulation.

The relationship between tile thickness and von Mises stress behavior is expected
due to the nonlinear nature of the material. When combined with bending effects
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t = membrane 
thicknesss

v = tile 
thickness

X
-Z

2

Prescribed Displacement
(Left Side)

Prescribed Displacement
(Right Side)

Figure 4.15: The prescribed displacement equations shown are applied to both halves
in the yellow region, defining the boundary conditions. The red dot marks the hinge
point, around which the rubber bends due to the tile interaction. The diagram
beneath the equations illustrates the initial configuration before deformation. The
bottom left image captures an intermediate stage of the folding process, while the
bottom right image depicts the final folded state, showing the progression of the
structure as it deforms.

Tile thickness = 1mm Tile thickness = 1.5mm Tile thickness = 2.5mm Von Mises 
Stress

Figure 4.16: Simulation results of the final membrane configuration are shown for
varying tile thicknesses.

at the tile corners, this results in an exponential stress profile. By placing probes
at different locations, specifically in the middle and at a single corner (leveraging
symmetry), we confirm that the majority of deformation occurs in the central region.
Furthermore, as tile thickness increases, stress in this central area escalates at a
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significantly faster rate compared to the corners, highlighting the concentration of
strain in the middle of the membrane.

�ap 
corner

middle

( )

Figure 4.17: On the left, a plot of the final deformation is shown, where probes were
placed in the middle and at the corner. For increasing tile thicknesses, the maximum
von Mises stress recorded at those locations was recorded in the plot on the right.

4.7 Conclusion
This chapter provided a deeper understanding of the internal mechanics of the de-
ployable 3D structure introduced in the previous chapter, focusing on strain and
stress distribution within the membrane. Finite element simulations using a hypere-
lastic Neo-Hookean model were employed to replicate the behavior of the structured
fabric upon the release of prestress, mirroring the fabrication process. By system-
atically varying parameters such as prestretch levels, tile spacing, tile density, and
folding geometries, these simulations revealed how different factors influence strain
energy distribution, stress localization, and overall mechanical response.

These insights offer guidance for optimizing design strategies to enhance mechani-
cal performance while minimizing structural weaknesses. The study demonstrated
how careful placement of fold lines can prevent excessive strain energy accumula-
tion, reducing the risk of material failure. If overlapping folds are unavoidable, they
can be accounted for by considering the previously folded segment as an effective
increase in tile thickness. While further exploration of parameter interactions could
provide additional refinements, such an approach would be computationally inten-
sive. Nonetheless, the findings can be further integrated into the existing tile pattern
generation framework to optimize fold lines and tile arrangements for improved
structural efficiency.
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C h a p t e r 5

CONCLUSION

This research advances the understanding and development of structured fabrics
by exploring their tunable mechanical properties and deployable capabilities. This
thesis begins with a structured fabric design inspired by structured media and chain-
mail, utilizing topological interlocking to transition between flexible and rigid states.
The effects of particle parameters on the global structure were studied both experi-
mentally and computationally. The ability to control stiffness of a structured fabric
through tensioned wires highlights the potential for designing adaptable materi-
als that can transition between soft and rigid states, making them applicable for
wearable devices and soft robotics. Initially, these structures maintained flat-plane
global geometries. However, the concept was later explored for its potential to
induce shape change in addition to stiffness transitions, leading to considerations of
how structured fabrics could be improved for deployable applications. The actuation
mechanism was modified to a prestretched membrane, with a focus on computation-
ally designing the building blocks to enable shape transformation, preprogrammed
compaction, and increased stiffness. This resulted in the ability to apply origami
folding patterns which are traditionally made for 2D surfaces, on to 3D surfaces that
are stable and load bearing, without any rigid mechanisms. While these demonstra-
tions showcased the design methodology’s ability to achieve these unique properties,
further investigation was conducted to better understand the internal mechanics of
the structures. Finite element analysis was employed to examine kinematic frus-
trations and stress distributions under varying conditions, such as tile density, tile
spacing, and folding. These simulations inform future design optimizations for en-
hanced structural stability, durability, and efficiency. Through this research, novel
structured fabrics were designed and analyzed to push the future capabilities of
adaptive, shape-changing structured media.

The findings of this research have broader implications for the design of adaptive and
programmable materials, offering potential innovations in soft robotics, aerospace
structures, deployable antennas, and kinetic architecture. By developing a deeper
understanding of structured fabric mechanics and deployment strategies, this work
lays the foundation for future advancements in energy-efficient, reconfigurable, and
high-performance materials.
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Future Work
Future work should explore the redesign of the structured fabrics but with alternative
actuation mechanisms, such as shape memory alloys, novel weaving patterns, and
different types of elastic sheets, combined with localized mechanical locking, to
further enhance the functionality and scalability of these materials across various
engineering applications. A more comprehensive investigation into the combined
effects of key factors influencing performance is necessary, including the exploration
of alternative particle geometries beyond topological interlocking.

Like other morphing structure approaches that leverage conformal mapping, our
methods are less effective for surfaces with regions of high curvature, where surface
accuracy declines due to area distortion. Tile optimization can be investigated to
minimize shape deviation for higher curvature target surfaces. To improve deploy-
ment accuracy and stability, additional strategies such as integrating connectors or
3D-printed micro-velcro at the tile edges could help lock components together upon
contact.

Advancing structured fabric design will require further analysis of how fold patterns
influence elastic sheet strain energy and the development of optimization strategies
for fold patterns. Integrating these insights into the existing tile pattern genera-
tion framework could help refine fold lines and tile arrangements, improving both
structural efficiency and deployment reliability.
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C h a p t e r 6

APPENDIX

6.1 Appendix 1
Numerical model setup
Truncated tetrahedron particles are characterized by a level set grid of 2 mm/voxel.
The surface nodes are discretized with a surface density of 230 points/cm2. The
contact mechanism of a pair of penetrating neighboring particles are estimated by
visco-elastic models composed of linear springs and viscous dampers. The linear
springs have normal and shear stiffnesses 𝑘n and 𝑘s. The choice of these parameters
takes into account factors considering material modulus and TIM arrangements,
ensuring no excessive overlap between contacting particles [1]. We assume the
stiffnesses of the particles made of two materials are comparable. The viscous
dampers have normal damping coefficient 𝛾𝑛 estimated based on coefficient of
restitution 𝐶res [2] by

𝛾𝑛 = 2
√︁
𝑚𝑘n

− ln𝐶res√︁
𝜋2 + ln𝐶res

2
(6.1)

where 𝑚 is the mass of the particles. LS-DEM uses an explicit time integration
scheme. The critical time-step is estimated by [3]

Δ𝑡 = 0.4
√︂

2𝑚
5𝑘s

. (6.2)

The wire stiffness 𝑘̄ is calibrated to match the experimental result of a single
woven wire in an uniaxial tension test. The set of parameters used in this work is
documented in Table 6.1.

Table 6.1: Model parameters

Parameter Value Units
Normal particle stiffness 𝑘n 2 MN/m
Shear particle stiffness 𝑘s 2 MN/m
Wire stiffness 𝑘̄ 720 N/m
Friction coefficient 𝜇 {0.2,0.3,. . . ,0.9} -
Time-step Δ𝑡 5.6e-7 s
Coefficient of restitution 𝐶res 0.5 -
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We construct a 1:1 numerical model for the testing apparatus (Fig. 6.1) with the
same level set grid density and surface discretization density. The indenter and the
two supports have the same dimension as the actual experimental test machine. The
two supports are placed 6 cm apart, same as the experiment. After the numerical
TIM sample has been post-tensioned, we allow the sample to settle onto the supports
by gravity. We then move the indenter downward at a constant speed. Since we
have a small time-step of Δ𝑡 = 5.6×10−7 s for numerical stability, we apply a global
damping parameter of 1×10−4/Δ𝑡 s−1 to ensure quasi-static conditions and to avoid
excessive computation time [4].

Supports

Indenter

TIM sample

Figure 6.1: Numerical test apparatus.

Fabrication Details and 3D Printing
The Selective laser sinter printing was done with a Sintratec Kit 3D Printer. Selective
laser sintering (SLS) [5] is an additive manufacturing technique that uses a laser
as the power and heat source to sinter powdered material (in our case Nylon 12),
aiming the laser automatically at points in space defined by a 3D model, binding
the material together to create a solid structure. This was useful for the particles
designed, since they had through holes passing through the each of the edge faces.
Since the powder acts as a natural support for the printed geometry, additional
support structures were not required.
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Figure 6.2: Assembly sequence and components of the frame (top) and the print
chamber (bottom) [6].
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Figure 6.3: Print chamber and print bed during the printing. The temperatures
inside the chamber go as high as 150°C, while the sintering area that is exposed to
the laser gets as hot as 210°C [6].
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Multi-material jetting photopolymer 3D printing technology that quickly creates
precise parts using photopolymers, UV light, and inkjet heads [7]. It achieves
accuracy by layering resins to form digital materials. Drops of photopolymer are
jetted onto the build platform, then cured with UV lamps to bond layers. Support
materials are dissolved or manually removed for the finished PolyJet model. This
was useful for the particles designed, since they had through holes passing through
the each of the edge faces. The support material inside the hole pathways needed to
be drilled out and dissolved, and the support material on the outside needed to be
scrapped off and dissolved.

Figure 6.4: The Stratasys Object500 Connex 3 Polyjet printer used to print the Vero
White photopolymer samples.
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Figure 6.5: An example of how a print comes out of the printer before removing
and dissolving support material [8].

Figure 6.6: A friction sliding test fabricated to confirm the friction coefficients of
the particles.
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Figure 6.7: Prototypes and tests of how the structured fabrics could be integrated as
potential wearables. Left: A rubber cylinder with a similar durometer to that have
human skin simulates a finger or wrist with a pressure sensor mounted underneath
it. Right: The structured fabric is woven into an elbow sleeve to influence joint
movement and function.
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6.2 Appendix 2
Initial Concept of a Structured Fabric Deployable
Before deciding on using a prestretched membrane to actuate the structured fabric,
shown in Fig. 6.8 the initial prototype also used weaving of discrete particles,
similar to the method of Chapter 2 [9]. However, the wires would tangle and
the weaving was limited and very difficult to fabricate. This led us to changing
the actuation mechanisms to the prestretched membrane which provides uniform,
multidirectional tension, as shown in Fig. 6.10. Points were measured and marked
on the membrane, then stretched along the hoop corners based on the marked points
to obtain a corresponding prestretch factor.

Figure 6.8: Prototype of polymeric antenna structure and sequence of deployments:
A) low tension in wires (flexible state) that can be folded compactly for launch; B)
slightly more tension in the wires to prepare for full deployment; C) higher tension
in the wires for the deployed antenna, with adjustable shape depending on how the
tension is allocated among the different wires.

Membrane Stretching
A custom laser cut hoop was designed so that the membrane could be accurately
stretched to a predetermined prestretch factor based on measured markings without
tearing at the corners.
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Figure 6.9: The stretching hoop was made from a laser cut wooden board.

Figure 6.10: Points were measured and marked on the membrane, then stretched
along the hoop corners based on the marked points to obtain a corresponding
prestretch factor.

Origami Flasher
One origami mechanism that has received considerable attention over the years is
the pattern called a “flasher,” which was introduced and explored in the origami
world by Palmer and Shafer [10]; they developed their concept from the twist-fold
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forms of Kawasaki [11]. They have been useful in previous deployable designs
where flat panels were stowed and deployed efficiently[12]. The equations used to

Figure 6.11: Right: Photo of the inside of the 3D Systems SLA ProJet7000 machine.
Left: the printed part in the curing procedure in a UV light machine.

calculate the fold line segment points are below:

p𝑖, 𝑗 ,𝑘 = R(𝑘)·
[
1
2

(
cot

𝜋

𝑚
, 1
)
+
{

(𝑖 + 1)u
(
𝜋
2 + 2𝜋

𝑚

)
+ ( 𝑗) tan 𝜋

𝑚
u
(

2𝜋
𝑚

)
if 𝑖 + 1 ≥ 𝑗

( 𝑗)u
(
𝜋
2
)
− (𝑖 + 1) tan

(
𝜋
𝑚

)
u(0) otherwise

]
(6.3)

p′
𝑖, 𝑗 ,𝑘 = R′(𝑘 + rot(𝑖, 𝑗)) ·

[
1
2

(
cot

𝜋

𝑚
, 1, 0

)
+
(
0, 0, ht(𝑖, 𝑗) tan

𝜋

𝑚

)]
. (6.4)

Fabrication with SLA machine
Stereolithography, also known as vat photopolymerization or resin 3D printing, is an
additive manufacturing process where a light source cures liquid resin into hardened
plastic [13].
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Figure 6.12: Right: Photo of the inside of the 3D Systems SLA ProJet7000 machine.
Left: The printed part in the curing procedure in a UV light machine.

This type of 3D printing was necessary for the geometric designs generated, where
the tiles need to be held in place relative to each other and attached to a plate,
but separate from each other and with the ability to easily detach. The residual
powder of SLS printing would interfere with the adhesion to the membrane, and the
support material of the polyjet printing would be difficult to remove while keeping
the support trees in tact. These issues are shown in Fig. 6.17. Therefore, SLA
printing was chosen as the printing method of choice.
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Figure 6.13: The SLA prints attached plate and support trees with Accura ClearVue
before the remaining fabrication process of the design in Fig. 3.12.
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Figure 6.14: The original designs were attempted in the polyjet printer. However
the tiles were difficult to clean and retain in their predetermined configurations.
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Further Discretization
The structured fabric designs could be made smoother by increasing the discretiza-
tion which is determine upon converting the 3D surface to a mesh. While this would
make this surface closer to the original input 3D surface, this greatly increases the
fabrication complexity. An attempt at this level is shown below in Fig. 6.15.

Figure 6.15: Surface conversion to mesh then flattening of mesh for a refined
paraboloid.

As shown below in Fig. 6.16, the fabrication of these designs with tiny tiles did not
succeed due to the following reasons. The tiles were difficult to align on the top and
bottom halves of the membrane. Adhesion by precision cut tape would be too labor
intensive, so glue was used. These issues could be mitigated by using an image
projector to indicate where the tiles should align when performing the adhesion
on that side. Additional hands could help with the massive increase of labor of
switching to precision cut tape. However, with the increase of smaller tiles, they
become more difficult to handle, especially since their corresponding double-sided
tape is even smaller, and due to the increase in quantity, there are more opportunities
for tiles to misalign with their top or bottom counterparts.
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Figure 6.16: Fabrication of the printed parts. Due to the increased number of tiles
and decrease in each of their sizes, the fabrication was unable to work without more
resources.

6.3 Appendix 3
6.4 Tile Density and Spacing Factor Studies
Below is a table or parameters used in the COMSOL simulation of the tile density
and spacing factor studies.
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Table 6.2: Simulation Parameters for Tile Density and Spacing Factor Studies

Variable Name Expression
𝐸𝑡𝑖𝑙𝑒𝑠 Young’s Modulus of Tiles 1e9[ Pa]
𝑣𝑡𝑖𝑙𝑒𝑠 Poisson’s ratio of tiles 0.35
𝑝𝑡𝑖𝑙𝑒𝑠 density of tiles 1.2e3 [ kg/m∧3]
𝜆𝑚 first Lamé parameter 1.7e6[ Pa]
𝜇𝑚 second Lamé parameter 1e6[ Pa]
𝑝𝑚 membrane density 950 [ kg/m∧3]
𝑒𝑙𝑒𝑠𝑖𝑧𝑒 mesh element size 0.05

Filleting Radii
The corners of the tiles needed to be rounded or filleted to reduce stress singularities
occurring during the simulations. Since the studies are highly sensitive to the mem-
brane’s surface area, parameters are adjusted to maintain a constant total membrane
area. This ensures that any observed changes are solely attributable to the altered
variables and due to changes in membrane area or other inconsistencies.

Rounding the corners of the tiles reduces the amount of rigid tile material but
increases the amount of hyperelastic membrane material. In addition, each file has
a different tile size and different number of tiles.

At each corner of each right triangle with leg length 𝑠, applying a fillet radius 𝑟
removes a small circular segment.

For the 90◦ vertex (right angle): The interior angle is 𝜃 = 𝜋
2 . Area of the circular

segment removed:

𝐴90◦ segment =
1
2
𝑟2

(𝜋
2
− sin

(𝜋
2

))
=
𝜋𝑟2

4
− 𝑟

2

2
.

For each 45◦ vertex: The interior angle is 𝜃 = 𝜋
4 . Area of the circular segment

removed:
𝐴45◦ segment =

1
2
𝑟2

(𝜋
4
− sin

(𝜋
4

))
.

Simplified, this is:

𝐴45◦ segment =
𝜋𝑟2

8
−
√

2𝑟2

4
.

The total area removed due to the fillet is:

𝐴removed = 𝐴90◦ segment + 2 · 𝐴45◦ segment

Percent Change =
𝐴removed
𝐴original

× 100.
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Substituting 𝐴original = 1
2 𝑠

2 and 𝐴removed :

Percent Change =
(𝜋 − 1 −

√
2)𝑟2

𝑠2 × 100

To keep the percent change and therefore membrane area consistent, a constant fillet
factor, 𝑟𝑜 was multiplied by other parameters:

𝑟 = 𝑟𝑜 ∗
√︂

current tile size
constant tile size

(6.5)

so that the fillet radius calculated, 𝑟 adjusts the tile fillet in a way that maintains a
proportional relationship to the edge length across all tile sizes.

To find an appropriate element size, the element size was incrementally varied until
the results of the simulation study converged. An example is shown below, where
element factor varies inversely with the mesh size.

element factor

Finding Element Size

Figure 6.17: As the element factor increases, the mesh size decreases and the
maximum recorded von Mises stress converges.

6.5 Folding
The parameters for the folding simulations and analysis are listed in the table below.
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Table 6.3: Simulation Parameters for Folding Studies

Variable Name Expression
𝑇 tile thickness range(.001,.009/90,.01)[ m]
w width .011[ m]
d depth .2[ m]
ramp ramp increment range(0,1/(𝑁𝑟𝑎𝑚𝑝 − 1),1)
𝜆𝑚 first Lamé parameter 1.7E6[ Pa]
𝜇𝑚 second Lamé parameter 1E6[ Pa]
𝑝𝑚 membrane density 1E3 [ kg/m∧3]
t membrane thickness 2.032E − 4[ m]
𝑁𝑟𝑎𝑚𝑝 end of ramp 30
𝐿𝑥 sticker gap 4E − 4[ m]
𝑒𝑙𝑒𝑠𝑖𝑧𝑒 mesh element size t/5∗.8
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