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ABSTRACT 

Let Ll f, :x,<j; r )J A( t ~, 'f;r) be the mean values of a tunction f( 1.J'J) of 

two real vimiables on the perimeter and on the interior, respectively, of a 

circle of center (:Xi') and radius r • The limits 

liWI L.. l f; x, '1; Y") - fr.x, 1) _ f ,1 ) (I) 

r ➔ o 
,...,__ - x,'1 

l,'W"'\ /tlfj1,'1;r-) - HXJ".l) 
-CO {~(-t,'1) {2) 

r➔ o ,.. ,_ 

are called Mean Value Derivatives of -ft:1,1). Tb.is paper 1s concerned with 

the investigatimn of functions with mean value derivatives. These derivatives 

are essentially generalizations of La:Place's operator, and, as such, were 

investigated by Blaschke and Frivaloff. In addit~on Zaremba has investigated 

another form of generalized La:Placian 1 and Plancherel has investigated a 

generalization of Beltrami's parameter. Many of the results ob:IJ.ained for these 

last two operators hold true for mean value derivatives. 

Chapter I contains some results relating to the mean value derivative 
rr 

as given by eqn. (1) while Chal)ter.,_is a similar treatment of eqn.(2.). Most o:f.' 

the results given in these tm:r chapters are known for at least one of the four 

operator s, i.e. those of Blaschke,Privaloff, Zaremba, and Plancherel. Chapter 

III discusses briefly uniform mean valu~derivatives. Chapter IV is devoted to 

the use of potential theory in the subject and Chapter V to higher derivatives. 

Chapter VI is concerned with further problems on the subject and Chapter VII 

contains a summary of the results of the authors mentioned above. The principle 

nwwresults obtained are as follows: 

(1i }If f"(.x,1) exists then so does n:f11). This is a generalization of a result 

due to Kozakiewicz, ~no asstnned continuity of f . Tb.is assumption is not 

necessary. 

t2) If (i)f(1,1)is continuous, (ii) f'ri,~) exists and is bounded, (iii) -f't;r11J.=o almost 

everywhere on a domain ,J) , then fr,,r) is hannonic on f) • 

(3) If f(1,1) is a logarithmic :potential function for which the density of the mass 

distribution exists at a point 'P then f'O>) exists. 

(4) Expansions in :powers of r-i. are obtained for the means L(-f;i,r,r)J A(f;.x>',;'j.n 

which the coefficients involve the higher mean value derivatives of 

in a manner analogous to Taylor's Theorem. 



Chapter I 

FUNCTIONS WITH MEAN VALUE DERIVATIVES 

1.1 Introduction: Let f(x1y) be a function of two real variables. 

Consider the mean value 

L ( f; x 1 '1 ; r) = ~ ~ {,.i. f ( .x + r r o s e 1 <j + r s ,· ,,, 13 ) d 0 

of fh<1tj) round a circle of radius r . The limit 

may exist. We propose to investigate the class of functions for 

which this limit does exist. 

Note: Integration will be in the Lebesgue sense, and in all 

ensuing discussion we shall assume that -f(x ,'j) is summable 

two dimensionally. In this chapter we shall further assume th~t 

-f (x1 'j) is summable along all circles used. 

1.2 Notation: Let -P be the point (A'.J'j). 

is the perimeter of a circle of radius r 

and center -P. 

is the interior of a circle of r ~dius r 

and center -P . D (-p; r) is the closure of "D (Pi r). 

:2.1r 

L (f;-Pir)= L(·fix,~jrJ= ::i.~ [+rx-trrose,1+r~•ne)dfl = .,.~r f f {l')d5r' 

C(p;r) 

We shall use the notations in terms of -P and of (:x, 'j) inter­

changeably . 

1.3 Preliminary definitions: We define the Mean Value Derivative 

of fC-P) at P,., to be 

lirYt L ( f; Po;.--) - + (p.,) = --f '(1'o) 
r➔o r.t. 

if the limit exists. If the limit does exist f(-P) will be said 
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to be "MV differentiable at 'Po . 

l ~:4 Preliminary theorems: 

1. 41 Theorem: If .ftP) and jC"P) are MV differentiable at 7'o then 

{CP) -t-<jCP) is MV differentia.ble at l'o and has the mean valu deri­

vative 

Proof: This clearly follows from the definition. 

1.42 Theorem: If f(~) has continuous second partial der ivatives 

at -P(:x11), then -ftp) is MV differentiable at -P. Further 

f'(i>)-== ~ ( fx;,c + f'j'j) 

Rseef Webster (7.13),Plancherel (7.31) ) 

Proof: We have 

lim L(fi "P;r)- -f(p) = liwi 

r➔ o r :2. r➔ o 

f: { f ( x + rr o s a 1 'j + r s i "' 6 ) - f r X1 'j ) 1 d 0 

;;i --rr r:l-

Applying the rule of L'Hospital we get 

Ii m (
2 

ir { (%{Ji l'o s e + ( * )1 s ,·" e J d {) 

where (~! ), ; (!;). are the values of ~;; ~f respectively, evaluated 

at ( :t. + r r o s eJ '1 +rs i.,, 8). 

Applying the rule a second time we have 

LV>1 fo 2

.r { (ft2 ~ cos 2e +( %), s,~lf) + ;l (-!it;) s,'~6 rose J de 

4TI 

1.43 Theorem: If (i) f(1') is continuous on a domain £J , (ii) f(-p) 

is MV differ~tiable everywhere on ,'.9 , (iii) f '( P) = o everywhere 

on I) , then f(1') is harmonic on ,f) . (see Zaremba 7.22, Plancherel 

7.33, Blaschke 7.41) 

Proof: Consider a circle C (-Po; r) lying in J) . Let 



where E has the values +I and - 1 , k is an arbitrary positive 

number, h C-P) is the harmonic function such tpa t h{P) = f ( p) on 

C (Pojr) • Clearly 'P( --P)==o on cCPo;.r). Now 
/ 

~'C-p ):::- E [ f'{-p ) - \,,'(-p)] +- { k [(::t-:;i(o)2+ (i;-'10) 2- - r:']} 

where { ~ / denotes the process of taking the mean v&lue deri-

vative. Applying Theorem 1.42 we see that h ' {1>)=0 and 

{ K [ I -P- 1>o 12 - r2J 1 ' -::::: k' 

Further, by hypothesis, .f' ( P)==o . Thus 

<e'(i>)=K (1) 

Now <e(?)~o for all -P in 1) ( -Poi r) . For if vYl i,. >< 'f( ,> ) = 1>0 

then there exists a point ~ in 1)(-Poir) such that ceCP,)-= :3 

Hence for f suffiniently small 

1 [!f(-p)- 0C-P,)]dsp-£ o 
C( -P,i f) 

and thus 0' C -P, ) £ o • But tru:s contradicts equa tion (1), hence 

for all -P in -:D(Po.i r) • For e.= I we have 

For c=-\ we have 

-f ( -p ) + i-i( l' ) ~ - k { tP -l>o)•-rlj 

Hence 

But we can take K as small as we ,splease. Therefore f(p) = h( l') 

within the circle D(~~0. We can cover ~ by overlapping circles 

and hence ftp) is harmonic on I) . 

Note: Continuity is essentia l in this theorem as is s hown by the 

following example: 
f(:X1'i)= 

-= - I 

= o 

:x > 0 

Clearly f'rx,'1)-=o everywhere, but ff.x1'1 ) is not continuous on 

the line ::(= I . This theorem and its proof are a t wo dimens ional 
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analogue of a theorem of Schwarz concerning his generalized second 

derivative for functions of one real variable.(H.A.Schwarz: 

Gesammelte Mathematische Abhandlungen,vol.II,pp 340-3). 

1.44 Theorem: If f(~) is continuous and MV differentiable on 

D (-Poj r) then 

is bounded by the upper and lower bounds of -f 'Cp) on D (--Poj r). 

(See Plancherel 7.32) 

Proof: Consider the function 

where h(P) is the harmonic function such tha t on 

C (-Po:,r) • Cl.early ~CP)=o on C(Po~r). Further 

)i{-p
0
)c= F{-p0 )- l,,{l'o)+UL Pl>;r)-f(l'o ) = L(Lr'oir) - h ( l'o) 

But h(-Po)= ~'- I hCr>)dsp -==-'-ff(-p)c/sp = L(fi "Po;r) 
~ rrr J ~nr 

C(l'o~r) CCJ>ojr) 

Therefore "Ji( l'o)==o • Thus the function .:::l(l') has both a maximum 

and a minimum value on 1)(-Po;rJ. Now if ~ is a maximum point of 

A(1) then A' (1'1) ~ o , for 

But we have 

By Theorem 1.42 

Therefore 

But A' CJ>,) ~ o , therefore 
L ( fj -Po j r) - f { l'o) 

f '(-P,) ~ 

Similarly if l'.2 is a minimum point of ~C-P) on 1) (Poir) we have 
L ( -fj Po·i r) - f( 'Po J 

.f, (P:i.) 2-
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Note: This t heorem and its proof a re a t wo dimensiona l ana logue 

of a theorem of Lebesgue rela ttng to Schwa rz' s second der iva tive. 

(Lecon s sur les series trigonometriques, by Henri Le bes gue, pp 5-7.) 

1.45 Theorem: If (i) -ftp) is continuous on a ciomain [) , (ii) -f'{-p) 

exists and is zero eve _;_ywhere on I) save at points of a denumerable 

set e/ , (i i i) for points on e/ 
liWl L(fi-P~r)- f { p) 

=o 

then f(-P) is harmonic on I) . 

Proof: Let --Pb be a point in J!) not in d. Con sider a circle C (P6 Jr) 

l ying in /) . Let h(-P) be t he ha rmonic function such that f ( P)=- J,, ( -p) 

on CC--Po.ir). Suppose f(P) - h{-P ) has a positive va lue pat some 

poin t ~ in --P (--Po..i r) . Consider the function 

¢(-P; K ) = f(-p)- 1-i ( "P)+ K IP - Pol ;z, where k > o 

On 

We pick K so tha t 

i • e • k r .2. L p + k \ -P, - l'o 1 >- J K Cr ,._ - I p, - Po 1~] ~ to 

or 

¢ {-p; K) thus atta ins its maxi mum va lue on D(1'o;,r). Let '11 be a 

maximum point of ¢ (7>; 1-r) Then i f ~ is no t in ~ we have 

¢ , ( B ~ K ) = I, vvi L- ( pi -p,, j r ) - ¢ ( 7" ) 
r➔ o , z. 

But for poin ts of D(Vojr) not in .-e/ 
¢ 1(-pjK) = -f 1(--p) - h 1( -p) + K -= K > 0 

Hence 1'2 must be in cl . 

Now I LC¢iP~ir) - ¢C-p.,,) 
1'VY1 

r---'>o r 

/,'vvi [ L(f;--P,; r ) - f(-p~) + ~[1-(\-P-l"o12.i ""P~:i r )-I-P --Po l2]j 
r---}o ·l r r 

But 



Hence I , L ( ¢ i 1)2 i r) - ¢ ( P:,. ) 
ll'Y) 

r---,o r 

by hypothesis (iii). But 
li w, L( ¢i-P2 i r)- ¢(1'~) - l, VV? { - '- r llTc~r:(. -t r , o 5fJJ'j ,+r s ine) - ¢ (;y'2; '-j2)] d11 } 
r--'>o r - r ➔ o .21Tr 16 

2 1T 

= /; V'Vl { _J_ l 1f[¢ (-.)l -t rco seJ~.l~rs ,',i B)-¢(~l J~•>J d e+- 1-f [ ¢ fa1.. + r,os lJ1 'ji.+r J: 1' -,[J) 
.nrr 2 irr TT 

r➔ o O 
- ¢ { ;;ri 1 tf ,_)] d 0 J 

But the t wo integra ls a re negative for all small r- since -P:2. is 

a maximum point of ,0(P; 1<) • Hence 

l,·n1 _!_ [.,,..{r1>rx1.+r r oseJ 'f #+rs,ne) -¢ /;y' J1 YJ ) ~d e= o 
r➔ o ;; rrr o 

== .2~r fo,r{ f(-xl + rros e1 'h +rs,,,,())- f[Xi,t:11.)- h(.X1. + r(os e1~i. +rs,.., e) + h(X,1 "ii.) 

-t K L ( x 1 -Xo + r cos e )2 -t ( Y-i.- 'j 6 +rs,"' B )2] - K [f :;(i. - ~o) 
2 + ( <j :,. - '1 0) 

2
] ] c/ 0 

= _L. 
.21Tr 

ofr) being uniform in e, the subscript denoting the values at ( =?',; tj:,) 

And so, 

liwi _i_ f,r-{ fLt:i. + rcoi 61 'ti+ rs' "' f> )-ffJ121'-/ . ) ~de= ~ ('f - ':Jo) _J_ ( ~ \ 
r~◊ ~Tr Jo n 2, IT o~ )L 

Thus for each point "F;i there is a unique value K. Since every 

and e/ is denumera ble, there exists only a count c.ble 

number of values of K for which f?{ P;~) a ssumes a maximum va lue 

on --:J> (1'o'Jr) ; but this contradicts the fact tha t K can be ch os en 

arbitra rily <K , and Cf{Jil-f ) does assume a maximum va lue on 1) {P6.; r-) 



Hence the as sumption tha t { (~) - h(~ ) has a positive value is untrue. 

Simila rly for nega tive va l ues. The ref ore f C J>)= h {-p) 

We can cover /) by overlapping circles a nd hence f t p) is harmonic 

on .() . 

N.ot@ : This theorem is a two dimensiona l ana logue of a theor em 

of Hobson on Schwa:bz's deriva.tive.( E . W.Hobs on, The Theory of 

Functions of a Rea l Va riable, vol.I,p 278.) 

1. 46 Theorem: If (i) f(P) vanishes on C'Clhi r) , (ii) f ( 1'0 )= o , 
(iii) -ft'P) is continuous on l) (l'oi r) , (iv) -f 'f l') exists and is 

con t inuous on 1> ( 11,,r) , then t her e ex ists a point Cr in 1)( -p,,:, r) 

such that f '{ 41) = o • (i.e. an ana logue of Roller s theorem) 

Proof: By Theorem 1.44 
L ( { j -Po, r) - f ( -pd ) 

r .,__ 

is bounded above and below by the upper a nd lowe r bound s , r espec­

tively , of f'(--p) dm l) ( P0 ir) . But L( -fi""P"i r)- -f(-p,., )=o . Hence, 

since f'(-p) is continuous t here is a point q in D ('J>o;r) such 

that f'{<i>)z::o . 

1. 47 Theorem: If (i) -ffl') is continuous dJh erD. (:P&itc) ,-~.t i ~1tl1(P )Lnexists 

and is continuous on D(Tuir) , then ~here exists a point~ in 

1>CPoir) such tha t 

L { -f i -Po:, r ) -= -f ( --Po ) + r 2 f 
1 

{ 4'.> ) 

(see Blaschke 7.42 ) 

Proof: We apply Theorem 1. 46 t o the f unction 
L ( f > 1' o ;. r) - f [ t'o ) [ ,. 

A (1>)-= f {-f ) - h {1> ) + - ----- r -
i-- 2. 

where hC1') = f ( 7>) on C(l>oj r) , h(f) being harmonic on 7){ Po;;-) • 
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Chapter II 

ME.AN VALUES OVER CIRCULAR .ARE.AS 

~.l Introduction: In investiga ting the properties of functions 

which are MV differentiable it ha s turned out to be advantageous 

to consider a mean value derivative of a slightly different type 

than that defined in Chapeer I. This second t yp e involves the mean 

value of the function in question over the ar ea of a circle rather 

than a round the perimeter. Accordingly we make further definitions. 

2 .2 Mean value derivative (on D): Let 

A(fi--Pir-)= ~r,. Jf ·HCi>)d~ 
"D ( 1>;,r) 

be t he mean value of a function ·H'P) over a circle of center -P 

and r adius r. The mean value der iva tive (on D) of ff-p) at Po 

is then defined to be the limit 
I iwi A ( fi 'Po'1 r) - -f ( l'o ) -= -r; (-p0) 

if it exists. We say that the function is MV(D) differentiable 

at r'o . 

2.3 A theorem of Tonelli: In the ensuing discussion we employ 

a result due to Tonelli: 

If A(fil'ir)::::-A(LA',<Jir) exists, then 

8 

A ( {j :t I 'j ~ r ) = ~ r .,_ t r Io 2 1ff ( X -+- p ro s t9 J J + p s l .,,.. l) ) p cl f) cl p = ~ .__ J: r;_ ( F; JI J 'j ~ f) f d F 

~:See S.Saks,Theorie de l'integrale,p 75 

2.4 Relation between the MV derivative and the MV(D) deffvaeliJ.ve~ble 

2.41 Theorem: If f (~) is MV differentiable, then it is MV(D) 

differ entiable. Further -ft/ C-p ) .::: { { '(r ) 

(See Kozakiewicz 7.62, 7.63) 

Pro~f: L ( fj -P ; r) exists for small r, and further 

L(fi-Pjr) - f(--p) = r 2 [{'( -p ) +11{1';r-JJ 

where -v ➔ o as r ➔ .o . Thus we have 



== 
2 f / L ( f )1> ~ p) r d p - r ,._ fr 1' ) 

t4 

The last term is easily shown t o approa ch zero, since 'ti ➔ o as 

. Thus 
);Wl A {+; -p;r)- f(-p) = 1 -f'(l') 
r➔ o p .. 

In view of this the orem when discussing functions for which 

the mean viiliae derivative as defined in 1.1 exists, we shall be 

able to utilize expressions involving both A ( LJ>; r) and L(fi,>;r) . 

2.5 Theorems on MV(D) differentiable functions: 

2.51 Theorem: If ftp) has continuous second partial derivatives 

+ix , f'1j at ·p, then f C-1') is MV(D) differentiable at 1'. Further 

t ~ = ~ ( +u -t +11) 

(See Webster 7.11, Priva loff 7.51) 

Proof: The proof is similar to that of Theorem 1.42. 

2.52 Theorem: If (i) f(l>) is continuous and MV(D) differentiable 

everywhere on a domain [) , (ii) -f ~ C-1') = o everywhere on f) , 

then f{-p) is harmonic on 1) . (See Pri valoff 7. 52) 

Proof: The proof is similar to tha t of Theorem 1.43. 

2.53 Theorem: If f(l) is continuous and MV(D) differentia ble on 

is bounded by the upper and lower bounds of .f. ~ t P) on D { P0 ~ r) . 
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Proof: L(fi -Po :,p ) exists for a lmost all p~ r- • Consider the 

where hCV) is harmonic and hCP) = f(f') on C CPo i F) and L / f I Jo i p) 

exists. By an arguement similar to that employed in Theorem 1.44 

we can show that 
L { f; -Poi f) - f Cl'o ) 

~ 2 t1 
r 2. 

where M , W) a re the upper and lower bounds, respectively , of 

-f 1
p ( 1') on b (Po .i r). Thus 

~. r, ""p ' Jr "- ~. r LI f;l'o; t) pelf - ;, f-rr~,; f) d p ;e ~- f 2 M p'dF 

.And hence rn r:i. ~ A(fj-Po ir)- f(-Po)~ Mr:i.. 

2. 54 Theorem: If (i) f c-p) is continuous in a doma in l) , (ii) -f p (1) 

exists and is zero everywhere on n save at points of a denum­

erable set J, (iii) for points in --e/ 

/jvv, A(-fjp;r)-frn=O 

r➔ o r--

then t {l') is harmonic on ,I) • 

Proof: The proof is similar to that of Theorem 1.45. 

2. 55 Theorem: If (i) ftp) is continuous on 15 (-Po~ r) , ( ii) f '-i,(p) 

exists and is contiuous on 'D (1'01r), then there exists a point 

Q€l>( "Pt,ir) such tha t A(fi-Poir)=-+{-Po)+{ r 2 f'rQ ) 

(See Blaschke 7.42) 

Proof: The proof is similar to that of Theorem 1. 47. 

2. 56 Theorem: If ( i) f ( -P) is con tinuous on a domain I) , (ii) -f 'x, { :p ) 

exists everywhere and is bounded on LJ , (iii) + ~ { -p) = o 

almost everywhere on l) , then f(-p) is ho.rmonic on f) . 

Proof: Consider 

1r~)'f) -== A (fix,~;r) = ;r-:, f/ { 2
f(A+p ro561 "f+p-s;n$ )pdodp 



I 
,n-2. 

Novi [A;/ 1 ➔ o as ·R ➔ o almost everywhere. Further, 

by hypothesis (iii) and Theorem 2.53 { 8;t j is bounded 

on .0 . Hence by the Lebesgue theorem of bounded convergenee 

( see Ti tch_rnar shi Theory of Functions , p337 ) ·we have 

1,wi 
R➔ o 

And so by Theorem 2.52 5rA,~) is a ha rmonic function on /) . 

But since f 1C-P) is bounded on /J , by Theorem 2 . 53 

A{-f i -p; r) - f C-p) ! 
r, 

is uniformly bounded on ,,!) • And so A(f;J>ir) ➔ f(--P) uniformly. 

Applying Harnack' s First Convergence Theorem we see that --f C-p) 

is harmonic. 

Note: Harnack 1 s First Convergenee Theorem: If a sequence of 

functions ha rmonic in a region 1( converges uniformly on the 

boundary of 'R , then it converges uniformly within "R. and its 

limit is harmonic in~ .(See Kellogg, Foundations of Potential 

Theory, p 248 .-) 



Chapter III 

UNIFORMLY MV DIFFERENTIABLE FUNCTION S 

3 .1 Definition: If .ftp) ms MV differentiable on a bounded closed 

domain !) , and if given any E 70 there exists r, '?o such tha t 

where 1-tJ I < E- , for all i--.;:. Ii , r, independent of the choice 

of ~ in 1) , then we say tha t fC-p) is uniformly IIJIV diff erentiable 

on 1) . A similar definition serves for a function which is 

uniformly MV(D) differentiable on ,() . 

3. 2 Theorem: If -f{ l') is unif vrmly MV differ en tia ble on .!) , then 

it is uniformly MV(D) differentiable on j) . 

Proof: A (fi7> ; r) == ~ jt L. (fi 1' ; r) pdf 
r >- o 

If then 

~J/ --v p3c!p 1 ~ {:-2- f J6r f 3dp = 

3. 3 Theorem: If -f (1>) is unifo rmly MV differentiable on l) , and 

if -f' ( -p) is bounded on .J9 , then f(P) , f '(1') are continuous on /) . 

Proof: Let M be the upper bound of If '{ p) I on l) . Now 

A(fir' ;r) := f ( -p)-r !.:.' f'{1') + 1" 2 ZI 
2 

where 1)70 uniformly as '" ➔ o • Thus, given a ny f->o therenexists 

t 1 ') o such that I f or r ..::: t'i 

I A ( t-i 1>; r) - f C-p) I ~ : ,. M + ri E 

Therefore A(fi-P;r) ➔ f(1) uniformly as r- ➔ o. But A{fi"F';r) is 

continuous ·for all r.>o • The r efore f tp) is continuous. Further , 

for all r ..c. r, 

1 2, 



Thus -f 'Cl') is also the limit of a uniformly convergent sequence 

of continuous functions and hence is a lso cont inuous. 

3. 4 Theorem: If ftP) is uniformly MV differentiable on I) , and 

if -f'C-p) is bounded on ,/) , then ftp) has continuous first pa r t i a l 

derivatives on J) • 

Proof: We shall employ the following notation: 

3. 41 A ( I} ( {) 7> j r) -== A ( L l> i r ) 

Afnl ( f/P;r ) :::. { r=~ ) f f\ (11-,)(fj 4j r) d Cy 

1)(-p;r) 
Consider the second mean 

Since f (f ) is uniformly MV differentiable and f r 1) is bounded, 

it follows from Theorem 3.3 that A' 2
>(fi-Pir) has continuous 

second partial derivatives. In f act 

0 A (

2

) - _L J 2, "ff ( I J 1

\ [ ~ T r{() 5 & t $ Cu 5¢ J '1 + r .5 1'.., 0 + 5 s ,- " ¢) c o s{) ~ cl ¢ cl s cl e 
a:x - -rr r 3 o )6 () 

HE:ace J 2- ,r j i ,r v 2 A P-) ::::: _L F ( A' + ;-- n, s o + r ro s ¢ 1 '1 -t n ,- n D +- r,; r"' ~ ) ,c, s( () - ¢) d? d 9 
,ft-2-- 6 C, 

By a transformation of variable (see Appendix I for deta ils) 

we have 

i3 

2 J2,-J2ir p2. - .2 r 7-. )2r p2.-2 r 2. 
v 2 Af

2
) = rri.- 1 f (1 -1- pro5D 1'j +p s i l'l f) );::_-=.-=--=--=---=- d1Jclp= _1_ L/f;,>jp) ;::.=== - dr 

' 6 o Y..qr2.- p-z... ,rr 'I o {4 r2 -p2 

But L ( -f i l> i P ) = ff -P) + f 2 -f1 (-p) + 0 ( r1.) 

where o ( pi ) ➔ o uniformly with respect tor' . Further 
(2r pi.- 2 ,..1.. J" 
Jo ::====:-.dp= 

0
..1.(4r1..s1.,?d.-2r• ) clr;J-:::=o 

~"IP--p'- 'f' 



T f II·~~ v 2 Ah)_-4f'(..,, ) t f ·t here ore ,.. r he approach being uni orm wi h 

respect to ~ . 

For every r >o , f-\'>)(f1"Pir-) satisfies the relation 

A{l) ( {i-Pjr) = .;R.
4 

J/ J/,,. Af:>) ({_;x+posGJ<j+ps r..,o~r) p cltJclp 

I f R. J 2-n ( R R2.- 1.) .. ) ( . ~2. 
0 0 

R'-l~p - ~ v i.. Af f:i~-+pco.sb; '1-+P~',,,8jr)pciOcfp 

(Courant and Hilbe~t:Methoden der Mathematischen Physik,Vol.II 

p 250) 

Now Af-:1. )--} fO) and v 2 Al lJ"""? 1 f'{l) unif orrnly as r ➔ o . Thus 

ffx1'1)= _I_ (~ J2
1ff/X-tp,-(,_s €J , '1 -t-ps1'11S) pcl~d p 

nR2. )6 6 

But this last expression can be differentiated with respect to 

-.:x or 'j since f 1
(:\'11) is continuous. In fact by the four step 

method we obtain: 

o-t - I f i. ,r ) & d & =ax- lrR 6 f{;_-t-R_cos(;)J'-j+\Rsi"ll cos 

- _£__ JR J i ,r { '( .;¥-t- pcc..s Q; ~ -tp 5,., !)) ( -p_ 2.- p 2) cos 0 cl &:J cJ p 
-rr R2.. o o 

with a similar expression . {ciIDr ~t .(See Appendix II for details 

of the differentation.) 

.14 



Chapter IV 

USE OF POTENTIAL THEORY 

4 .1 Introduction: Functions with mean value deriva tives a re 

clo sely rela ted to logarithmic potential functi ons. In f act 

t here is a l a r ge group of functions which are common to both 

clas ses. We establish the rela tions by the fo llowi ng theor ems. 

4. 2 Theorem: If tr(-P) is continuous at a point -Po , then the 

logarithmic potential function 

U(-P)-= ff,o~)q <r(Q)dQ 
IN 

is MV differentiable at l'o • (w is the entire plane of -P.) Further 

So 

- lo~ _!_ 
r-

L( u;-Poir ) =ff tr CP )cl-P -lo3f + J[ (J ( -P)d-P· lo1 i:,~" 

J) ( Pui r) w - D 

where w-1) is the complement of 1) (-p"~ r ) . Hence 

Lcu~l\ ,r) =- )f crC-P)d--P- lo j f_ t ff o-Ci>) d-P- lo :, ./,.
0 

- j f 0-C i:>)d-P-lo <j ;,,
0 

l)CJ>o ; r) w '"D(-Poi r> 

Thus 

But a-(-P) is con tinuous at ~ , hence 

on 1) (Po; r) wher e o(r•) denote s a quantity whi:.cb approaches 

zero a s r appr oache.s zero. So 

15 



-t t 2 ff o(r 0
) { lo-3 { - lo~~ J d-P 

1) (-Po; r) 

But ~:, r f {to<J}-101 ~-Po Jd-P ==+--tr L2

,r{ to1t -loj ~J pd0dp 

JlCl'o,r) 

Hence 

Note: If a-(-p) is continuous the second deri va ti ves of IA <-P) do 

not necessarily exist, but this theorem shows that the generalized 

Laplacian, namely 41.,.1'(1>), does exists. 

4.3 Theorem: If{(~) is continuous and MV differ:antiable on a 

domain I) and if -f'tr) is continuous on ,IJ , then -f(--p) is a 

logarithmic potential function. In fact 

f(1>)-=- ~ ff 101-1 f'/Q)dQ+hCP) 
-rr -PQ 

w 

where h("P) is harmonic on E . 

Proof: This follows from Theorem 4.2 and Theorem 1.43. 

4.4 Theorem: The logarithmic potential function 

uCP)-= f J 16<3 ~1- a-r0) d Q 
w "PQ 

is MV(D) differentiable almost everywhere provided that 

I a-C-1-) 1
2 is summable. 

Proof: 

A{
_ n-r)- _I_ 1 1 u(<v)dQ=-1- fjd<v· ff ioq-1- o(-p)dT' 

u, "' - irr 2 )) irr2 J-pq 
1>(R;r) D(R;r) w 

16 



Now 

-= I 013 J_ 
p 

::: U ( R) -f f J (T { -p) cl l' • { IO j } - / O'j 7>,R + ½ 

Hence, letting 
1>(1<;r) 

"R.=:(-::tJ1) 

4.41 A /u;K~; __ )-i,dR) = j:-
2 

rr o-(-P)d-P-{loq f_ -1 03 ~R -t-{- r::r-j 
1) ("R; r) 

= ~,.f- [ 2

:rx+pro}91'1-t-P5;.,,e){101+-lo11 +1;2. - 2~:Jpd~dp·-/-

But I ~, r: C', {x+p'-' o,1 +f'; no) f loj -)c -I, l-/, + :l_ - f,~ J pd< d p-+ -:r o(r,~)\ 

4.42 \ l. r· (l.~IJ{X+oro~e,<1+r~·..,D) -O- (A,j)){lo1 ~-+ { - :r:1 pcl~dpl 
== r 2 Jo Jo -l ' 

~.43 since f
0
r(101{ +{- ;_r\)pdp == Lr (1°'J ~)pdp-t- ~~- ;r: 

By Schwarz's inequality the expression 4.42 is bounded by 

The first integral is o~~ almost everywhere.(See Appendix IV). 

The second can be evaluated. Letting ~ -=X. , elf-==- r d:z J we have 

2
,._~ f:(1°~ ~t-{-/,.:J2rdp= 2r, J,' {loCj~-t-{ - 't.2-

2
/·rt rdL 

r,. 

\ I l. '2 
=.;2,r )

0
(1ocii.-t ,-;_) xcl:t. 

which is finite and independent of r. Hence the expression 4.42 

1. 7 



is olr0) almost everywhere and the result follows. 

4. 44 Theorem: If CJ(P) is such that 

.:z~r ) o-CP) dsp :=1J ( -p0) +o ( r0) 
C'C'Po;r ) 

for almost all small r, then u( l' ) =ff /01 ~~ 1, ( Q ) dQ 

vv 
is MV(D) iaifferentia ble at l'o. 

Proof: From 4.41 

using 4.43. Hence 

4.5 Theorem: If ~c~) is a logarithmic potential function 

uCP)-= ) lu°J _\_ df-" Cw) 
w 1' (i> 

where~ is a mass distribution, and if the density exists 

at --Po , i . e . 

exists, then u(l') is MV differentiable at --Po and u' ( r>t> ) =-- I ~{ r>o ) 

Proof: 

_ (_ 

.:nn· 
( lo ') ~ q d sp = lo j _ l _ 
l ·r 11°; r) Pc,Q 

=- I 0 13 i= 

Hence 
L(u·1 l>ojr) = f d~ (w)- 101 { -t f drA 4,) -lo~; "Po 

l)(Po; r) w-1) 

= ) 
w 

Therefore 

== ;:i. f { l01 t -103 P~ Cv] d r' (Q ) 

1> (P.;r) 

18 



Since the integrand on the right depends only on t he distance 

of Q from -Po we can write 

== 

where p (f) == [ c1t.d Q) 
1Yl'oi p) 

Integrating by parts we 

L ( U; Poi r) - U ( t'o J 
r2. 

have 

But 
fA {f} === \ d p ( Q ) = ,r (< ~ C-J> b ) + 0 ( f 2.) 

1>(-Po; p) 

Hence 

.1 9 



Chapter V 

HIGHER DERIVATIVES 

5 .1 Introduction: Suppose the MV deri va ti ve f 'C-P) of a function 

f{7') is itself MV diffe r entiable. The MV derivative of f 'C-p) could 

be considered as a second MV deriva tive of fCP). The process 

could be car~ied out t o n th order deriva tives. Accordingly 

definitions are made. 

5. 2 Definitions: Then th mean value derivative of f ( 1) at ~o 

is defined a s 

f (..,l ( t"o) = / i VVI 

r ➔ o 

if the limit exists. 

The n th mean . va lue derivative (on D) of tCl') at -Po is defined as 

if the limit exists . 

f (n >( ) " r /">(1>') 5.3 Theorem: If l' exists at ro then so does -i-v 1 , and further 

f ~) ( ?>o) = in f ( n) ( Po) 

Proof: This follows from the definitions and Theorem 2 . 41. 

5.4 Theorem: If ~~1 i) is such tha t all partial derivatives of 

order 2 S i- I exist at tx,1) , then 

5 

(iv) A ( f·, /4 , tj jl'"),::: ~ 
l(=o 

Proof: (i), (ii). Since +rx,~) has partial deriva tives of order 

JS ti ,all partia l derivatives of order ~2 s a re continuous . Hence 

-tf ;.1 j) ha s continuous second partial derivatives, and thus , by 

Theorem 1. 42 

20 



Now trx,'j) has continuous fourth partial derivatives, and hence 

f'(x,<j) has continuous s e cond partia l derivatives. Thus 

{ "()( J'-1) = ~ v 2 f 1
h J'1) = ~7.. y4 tfX)j) 

Proceeding by induction we have 

"t (I,<} ( "KJ 'j) ::: ~ 1< 'i7 2 k f ( ~)'f ) 

(iii) By Taylor's Theorem we have 
l'Y1 -t rlc: .::ls 

.f(.x+ rcos Di <-j -tr s, .,,0)= L A ,,.,,.,
1

vi ( r co s e) ""(r s ,' -, &JYI -+-Ofr 25
) 

r>? ,"" = 0 

where A M , YJ = ~'-"'· ( :::::.,) 
:X; '1 

and oCr,,;) is uniform in 0. 

So 
,.,.,+..., c=;i 5 

L {f; X)lj; r-) == T Av» ,., 
t\? 1 >1-= 0 

z -ir 

r ,.,.., +,., - 1- ) , 0 <; WJ 0 ~•in.,, e cJ e ,- a r r 2 s) 
;2. TT 0 

Now 
r (rn! ' ) r ( n:') 

Thus ,,., +111-=2 s 

L({jJ(i'j;r)== L A.,.,, ,>1 
Vli1 ,'1:::o 

where 
K A Vl-1 1 K - YV'I 

0. K -:= L, 
4-rr M-=-0 

K 

= z: A,,.,,,K-M 

M -=O -4 TI 

If K is odd then . Also the terms in the sum vanish for 

l'Y\ odd. Thus 

A r{vn+\) r (u- '_.,,+~) 
21'>1) 2K-;2.¥Y! -

,, r(x+1) 
s 

and L ( f ; ~, 'j ; r ) = E, C<.i I,< r 2 
K 

k'-= 0 

Now 

Also 

a.i i,,; == v2 chK -2. = I 

4 k2. -f K 

v2.1<Flx1 <1) -::: fr"1(x.1 '-j) 

C I-< ! F c Ii" t )2. 

:z 1. 



(iv) Since 

we have 

5. 5 Theorem: If (i) fCP) is continuous on a domain j) , (ii) f"( -P ) 

exists on I) , and (iii) I f'(-P )lz is summable on /) , then 

A(f;Pjr)=- f(-p)+ rL f' ( -P)+ ~ f."(-p)-,-o ( , 1 ) 
~ I~ 

on l) . 

Proof: Consider 

From hypothesis (iii) it follows that u(p) is eontinuous. (See 

Appendix III). By Theorem 4.44, since 

5.51 _(_ r t 1( (il ) cl5tr -=: { 1( 1') +r2- f" ( "F' )--t-O(r~ 
.rnr J 

C{P;r) 

()C-P) has the MV(D) derivative ! {'( P) . Hence -f(J> )-u CP) has the 

MV(D) derivative zero. Thus, by The~rem 2.52, f( 1)- u{ 1') is a 

harmonic function , say h CP ) • So fCr>) == u Cl') -+ h Cp) and hence 

5.52 A ({jPir)= A (u; --P;r ) -t A Chi Pir ) 

By 4.41 we have 

5.53 A (u ·1 -Pir)=U{l')-~ ff f'(l¥) d ~ • 1 loCj -P[r- + ~ - (::22
] 

l)(l)j r) 

= u(-p) - ~ I r{ lo « f_ -,--1 -
1T )0 J r 2 

Using 5.51 we have pi.. 
2 

d 
A {u j-P,r)::=u C P)- 4-f 1CP)f/{lo1 fr+{ - I71-J PP 

- 4 r' '( l' ) S/ 1 l 0 CJ ~ +-± - :;2- J p3 clp - 4 f/ {loq r + 1 - :/,. 3 O( p9 f clp 

The first integral, by 4.43, has t he value - r 4 
• For the second 

B 
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we have 

- 1 1 I ] { [ ,t4 - ;c4] I + -I ~ - - r4 
==- r 4 L o 'J. 3 Io j 'f d t. --t- e -l -=- r 4 -:q- I o1 ':f TI o 2. -"f J - 4 e 

Thus 

, and so 

A {ft-P;r)-==-t-dl')--t- ~2- F'{ -P)-t- r;: f'' { -r>) +ofr+) + h{"P ) 

:= f(1') -t i--2. f'(p ) -t- ...ti f''{?) +o(r4) 
;2,_ / 2.. 

5.54 Theorem: If -fC-P) is continuous, E,.fi&'P) exists, and lffV /1... is 

summable on ¥1omain /) , then 
r4 

L-.(fj-Pjr)-==- f:('P) + r.z f'{"J')+ ~ f ''( p) t- o(r 1 ) 

for every -P in ,19 for almost all small r . 

Proof: By Theorem 2.3 

A { fj -p j r ) = ~1. j: L / f i T> j p) pd p 

Ha.ace 
z L (f ·"·r) - j_ f rt... t fil'i p) pcl p - r J / / r 3 0 

for almost all sm~ll ,. By Theorem 5.5 

H1mce 

for almost all small r . .And so 

~ L ( L 'P; r-) - :~ J/ ... L { f; -P; p)p clp = , [l{-p) --t- ~
3 F 11 ( -p ) -t- ofr3) i 

solving for L { f; P;r) we have 

L (-fiP;r)-:: ~ Jr J....ff;-Pip)pclp+ ..L: f 1( -P)+ ;.of f'1( -P) -ro(,-4) 
r.2. 0 :2. b 

= A ( f i -Pi r) + ; 
1 

t ' C--p ) -+- ~ 4 f 11 ( -p ) + o ( r 4) 

= -i={ --p)-tr-i.-f'( --p) -t- ~
1 

f"(1")-t-o { r4 ) 

for almost all small r. It is to be noted that the set of values 

of r for which the rela tion is true depends upon -P. 

23 
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5. 6 Theorem: If (i) f CP) is continuous on a domain /) , (ii) f '( 7') 

-f"(P), · - - , p ~-i){-P)are continuous on .I) , (iii)lf(V\-,)(-p)\ 2 is summable 

on f) , (iv) f (,l)(P) exists on JJ , then for ~ in .I) 
n 

(1) A {f'i"P;r) = Z: t {K) ( 1) ) 
r2.K -t O( rl n) 

1(-:: 0 {k !)2 (K+I) 

all small r , 
n 

(2) L (fi-Pjr-)= L f (11')(p) 

r2K-t-o(r2"1) 
I(= 0 (K l)'--

almost all small r. 

Proof: The proof is by induction. The Theorem is true for n=~. 

(Theorems 5.5 and 5.54). We assume it true for n~N • Thus 
N f(K-t-1)( -p) 

l(f 1j'P;p)= 7-: ---p1.K+o(/()2N) 
l<:=o (1< 1)2- I 

for almost all small 

Hence 

So 

~ 2Kt 2._ ';z' 2K ·f-2. 

(21< +2.) L + :2(.21{ +2) 

rl.Ki 2. _ 

= - L- -'- I 1-- (1<+/ ) 2. + (k+ I) 

N 

A < f i 'P j r) =: f c -P) + r 
1<-=o l(k+t)J12 (K-t-l) 

N-t-1 

-::::- fCP) + £ fll<l { -p) r.2K-+ o( r- 2 N-t- ::tJ 
K-= I ( K I )2- ( 1-r-t J) 

for all small r. By the method of Theorem 5.54 

o A 
or-

- 2 
r 

---
2 
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and 

for almost all small r . 



Chapter VL 

FURTHER PROBLEMS CON CERN I NG MV DERIVAT_IVES 

£.1 Introduction: In this chapter some unsolved problems 

concerning MV derivatives are discus sed. Also some ideas on 

further developement of the theory of MV derivative s are 

proposed. It may be that some of these topics a re of suff icient 

interest to merit further investigation. 

6. 2 The natur_e_ . .Qf the di sconti rmi ti es of an MV ~di ffe r enti§.ble 

.function..;_ Continuity is neither a neces sary nor a suf ficient 

condition for f'(p) to exist. A few examples will show this: 

. This function is continous, and 

L ( f j xJ tj j r) J
.2 lf 

0 

I x -t- r ro s e I d 8 

If ;x "?o) L ( f i :x.. , '-j , Y) == x for r sufficiently small, and hence 

-f '=o • Similarly if x~o • But 

Therefore -{
1
(0)1) does not exist. 

Again consider f ( x,, '1) = :x. ~ for 
x ;'.l.+ 'j :2-

This function is discontinuos at 
0 2+- o:,_+ 

other than the origin Jx1 ; Jtj2--

the origin. At any point 

exist and are continous. 

Hence -f 1 
( X J 1) exists everywhere save pos s ibly at the or i gin. 

On the other hand we have 

Therefore f 1 
( 0 ,1 D )= 0 .Hence f{ :x..1'.J ) exists ever ywhere. 

The question arises a s to just what is the na ture of the 



discontinuities of a function which has an MV derivative. 

Clearly the existence of f'/ ~1 t_j) at a point does not imply 

continuity at a point. In fact the existence of { 1
fJ11'1) almost 

everywhere does not imply any sort of continuity. For consider 

the function: 

tl:X.1'-j) --= O ~ or j irrational 

=I :{ and j rational. 

This function is discontinuous everywhere, but f'()(1'j) exists 

for all irrational points, i.e. points at which ~ or 'j is 

irrational. For clearl~ 

or j is irrational then 

and hence if ~ 

f' r )(' '1) = o • Another interesting 

example: 

For ?f. < l) 

Similarly for 

Hence t I ( ()/ '1 ) = 0 

= 0 

is harmonic, and hence 

. Further for A= D , 

. Thus f 1 
( -x., 'f ) -= 0 everywhere for this 

function which has a set of discontinuities of positive linear 

measure. 

Suppose a function does have an MV derivative everywhere 

in a domain. Can it have discontinuities on a set of positive 

measure (two dimensional), or can it have discontinuities on an 

everywhere dense set? Little headway has been made on these qu 

questions. Attempts to construct a function with an MV derivative 

everywhere but pos sessing discont inuities on an everywhere dense 

set by the method of Cantor (see Hobson: Theory of Functions of 

a Real Variable ,vol.II,pp 389-421) have failed. The existence 

of f • 1· t t A (-f,· ,.,1. r) ➔ -f ( -p) o course imp 1es ha r as r-;)o 

Since A(fi"Pir) is continuous in -P we see that f(-p) is of 

the first class of Baire, and hence, its discontinuities form a 



set of the first category. 

Note: If and is continuous for 

all 11 on a perfect set 1? , then f rx ,1 ) is pointwise discontin~ 

uous on t-> . (Baire). A function is pointwi s e discdmtinuous on 

if, given any small ~>o , the set of points for which its var­

iation w z <r is non-dense on ~ . Thus the set of points of 

discontinuity is a set of the first category. 

A condition on the ratio 
A (fi--Pir ) - -U -r ) 

r- ,._ will imply 

continuity on a domain 1) . In fact, if t his r a tio ms bounded on 

then we have 
A c f i 1> i r) - f ( -p ) 

0 V\ £J 
r z.. 

Therefore on f) . 

Hence f'CP) is the limit of a uniformly convergent seq_uence of 

continuous functions, and thus is continuous everywher e on B . 

If we replace the ratio in the preceeding by L(f) Pi r ) - f( ~) 

the result still follows. For we have 

where h1 CP) I<' B on E) • Thus 

A ( f;"Pir ) = : 1.-J:Llf; Pi f)pdp= f{ -P ) --t-- : ,, J ,r?!.(P~ p) f 3 dp 

Therefore ( Af{iPir) -fO ) I J. I rr· I ;2. r-4 
r.z.. ~ r"'I J o 'l(P; p)p 3dp ~ ~4·8 · 1 - ~ 

6.3 Sequences of functions with MV derivatives: If a sequence 

of functions { {"' ( p) j , each member of which has an MV der i va ti ve, 

converges uniformly t o a function f Cp) it does not f ollow that 

f ( l') is WI differentia ble. Consider 

Clearly + 't\ has an WI derivative,for 

4 V1 

tn fJ1 1'-f ) ::::. ~ lo'1 , e:, s h n..::( 

8 f 11 
-::: ~ ( -t I oq r or )., .,, >() = ~o " h ri)( 

(7" J( d X , . 

--;:,,o as vi ➔ o-o. and 

But ( ,, vv, 

n7.:,a n-.,.,.o 11. =I x ! 
which has no WI derivative at 



that 

On the other hand suppose 
00 

L ( f I< ·, X I '1 ~ Y--) -= L ti.< (n) {)/ I ~) 

n=c, (n !F 

(see The©vem 5.6).Then 

/ ; vvi l; lNl L rf .. i~1'1ir) - fl,( (~, .-, ) = /ivvi /,-,,,_,., 

Y- ➔o 1-<->-;p0 r 2. r➔ o l-l:-'7t>O 

t,O 

= I i' VV1 1 I ,- ......, +..,' r :x , 1) -r I , vvi L> 
r➔ o l l< --";,OO l< ➔ t>O n= .l 

If exit ts, all n 

is convergent, then 

I L ( f k ;· ){1 lj j Y') - f),( ( ){1 '1 J i' vvi l,'vvi _________ = 
r~o k-">C>O r 2. 

oO 

and 
''h(::( 1'1) r;>ll-Z. 

(n .') L 

provided t his last limit exists. A more thorough examination of 

t his subject seems indicated. 

6.4 Partial mean value derivatives: 

Let 

We could then define partial MV derivatives 

f ; ( ~, "1) -= I ' vV1 L JI ( L h '1 ~ r) - f. ( JI; "i) 
Y---;;,o r i__ 

.f ~ {~ 111 ) = {,-.,.,, L':l { f;A'; 'J~r) - fr~1v ) 
Y--';> 0 rL 

If ➔ fx,1) has continuous second partial derivatives, it is clear 

from Theorem 1.42 that 
I r 11 ( J - ) t t ~ /-XI '1 ) = 4 T:,t >( I J '1 J/1 '1 - ~ 'j ':J 

Hence (1) 

The q_uestion arises as to whe t her t his formula would hold true 

for all functions which have MV deriva tives. It is, of course, 

2-9 



-f I 
not necessarily so that the existence of implies the 

existence of r; , f~. On the other hand, it would seem likely 
r I r I 1 

that the existence of tx , i-'i would imply the existence of f. 

Would this also imply equation (1) ? The advantage to be gained 

in using partial MV derivatives lies in the f a ct tha t then the 

problem is essentally reduced to an investigation of functions 

of one variable.There has been quite a bit of work done on the 

one variable problem with generalized derivatives of various sorts. 

Note: See, for instance 

(1) A.Khintchine:Recherches sur ta structure des fonctions 

measurables. Fund.Math.9(1927)212-279. 

(2) J.C.Burkhill and O.S.Haslem-Jones:The derivates and approximate 

derivates of measurable functions. Proc.London Math.Soc.32 

(1931)346-355. 

(3) W.L.C.Sargent:The Borel Derivatives of a function. Proc. 

London Math.Soc. 38(1934-5)180-96. 

(4) J.Marcinkiewicz and A.Zygmund:On the differentiability of 

functions and summability of trigonometrical series. Fund. 

Math.26(1936)1-43. 

6. 5 Generalized second MV deri va ti ve ~ A generalized second IvlV 

deriva tive could be obtained by using the second mean 

f_{i)(f· X t-4 • r)=: _/_ 
f/)JJ "'l1T2. 

I L' ' >(f; A'. i';fi•) - :i.L{ fjJ/11.j~r)-+ FIXJ--J) 
and defining +2 r ::{' i)-= ' VYl -

r70 r-4 

The relationships between t 2 and f''could then be investigated, 

i.e. does the existence of one imply the existence of the other? 

When are the two equal? One would suspect that ½ is related 

to f " in a fashion similar to the relations of the Schwarz second 



derivative to the ordinary first and second derivatives of 

functions of one variable.(See Marcinkiewicz and Zygmond, i bid.) 

6.6 Apolications to functions of a complex variable: If F f-? 1'1) -==-ftz ) '1{z) 

where are analytic functions of z = ;;(_ -t- i' J and '2 = x - i 'j 

respectively , then F( x,1 ) can be shovm th have mean value 

derivat ives of all orders: 

L- ( F J )(1 '/ ·, r) = _\_ J z TT t { l- T r e 1' $) er ( Z + Y- e - i ' & } c{ /) 
2- lT D 

By Taylor's Theorem oa 

t(-i:--t-re 1' &) = L. 
IP 

9C z +re-" 0 ) =- / , 
~-=o 

Thus 

f c "'J ( Z.) 1 11 e i' n I} 

n l_ 

'3 r.,.,,J ( z) r wi e - i' ""' [) 

Vl'1 I 

f ( t -t- r e 1' & ) 5 ( l + r e - l , 0) = i ~ f r"') C ;,:. ) 'J r-,,,,,) ( z) r ,... + w-, e ', c n - .,,,, > {) 

.,_,, .,,-=O v,! WJ I 

where 

Hence 

But 
-.il-rr t2~i'C211-1<)0d9==o 

== I 

And so 

Therefore 

_J_ 
:rrr 

(' 2. Ti 
J

6 
S:i.1< -r I c l 6) = 0 J 

o,c> 

L ( t-i x1 ~ j r) = / : 

and 

We thus see that 

and further 

I 
.21T 

c;,D 

L { 1-; )(,ii r) = 2: 
K=o 

J 
2 1T 

o S'u,d{) 

F <"' >(.~ 1'1 ) r.-i~ 

f { ld(z) Cj (~) ( '%) 

( k)) z... 

( k ! )2 oo 

The results would still hold if F (.x1'1) = L 
V\1 = I 



where the series is uniformly convergent. 

Consider the "differential equat ion" 

where F (X. 1'1)= fcz>q {z) . We have 

Suppose that 

Then 

But 

F 'r x. 1'1 ) = I 
¢ ( F)ca 

£ a ..... FI') 

11 -= <) 

Hence "integrating11 we have 
c;P On F n+l 

-== x.. ~ + 1-1 ( )/1 'f) z (Yl -1-1)2.. 
i,-:::.o 

where 1-1- {J/pf) is harmonic. Denoting 
G'° z ~ ~+I 

(11-t/)2 f 
ri =o 

by d ( F) 

X z -t l+ by w we have d( F) =w and hence, by Lagr2.nges' 

Theorem (Whittaker and Watson,Modern Analysis Dl32"' , " y; 

where 1f ( F) = I= - Fo 
ci( F )- \ND 

and wo--= d( Fo ) 

and 

But _ \_ (2.TI , /9 
2 TI Jo -e 1

"' d 0 =o 1 

- ,.c, 

'I-, LC o-t- ~ (c..,r~e-inc> +d;,,, ei'"' e)] Jo 
\o'l-::.I 

Therefore 

Thus, if we define F (D, o) =~o c,, , then 

L ( f=° ) o 1 0 j f') - F ( C> 1 O ) = }~, 
r-L l'l=I 

oO 

Ov, C.., r:i.1"1-2. + L, 
n=, 

Hence F'(o,o) does not exist unless hd11-=o, alll"l. If b.,,dl"l==O; 

then 



Chapter VII 

HISTORY OF MEA.1""4 VALUE DERIVATIVES 

7.0 Introduction: Some work has been done on generalized Laplace 

operators which is closely related to the subject of mean value 

derivatives. In fact several of the results given in previous 

chapters have been published by various authors using generalizations 

of Laplace's operator which are more or less similar to the 

mean value derivatives.In most cases the results were given for 

functions of three variables. This chapter is devoted to a short 

review of the various papers related to the subject. 

7.1 A.G.Webster,Dynamics,Leipzig(l925)344-347. 

By expanding V{i,~ 1 ~) in a Taylor's series it is shown that, 

if V is the mean value of V in a sphere of radius R and center (10, '1()1 70) 

7.11 then 
R--"J o 

v -110 = l " 2. v 
R2. lo o 

"Hence the excess of the mean value of V throughout the volume 

of a small sphere over the value at the center is proportional 

to the value of V2 V at the center and is of second order of 

small quantities. This interpretation is due to Stokes. From this 

point of view Maxwell called -v i V the 6oncentration of V . 

,i.e. v2..v is three times the mean of 

the directional second derivative for all directions. This 

interpretation is due to Boussinesq." 

7 .13 It is also shm1in that if V. is the mean of V on the surface 

of a sphere, then li' VVJ 11,-vo - , " zv 
r'< --> o ~ - ~ o 

7.2 S.Zaremba~Contribution a la theorie d'une equation fonctionelle 

de la physique. Rend.Circ.Palermo,19(1905)140-150. The author 

considers the following generalization of Laplace's opera tor. 

Let ~ (fi h) =- ~2. { f ( ~ -t~> !.1 1't. )--t t h t-h1 LJ i :z ) --t f(;(1<-J -+ hi -z) -t f (:x1'1-h 1-z:) 

-t f {x , '1 1 't- -t h) -t fr::r 1'1 1 't. - h) - b tf ){J '11Z)j 



Then Zaremba 's generalized Lapl acian is 

The author then proves the following: 

7.21 If ~ (x , ~,t)= ~ {p) = 1 'e(Q) dq; 
(£)) PC\' 

where r is 

continuous, then X. C ~) == - 4 -rr Cf 

7.22 If u is continuous in a domain 6J and ~/u)= o in ,f) 

then u is hatmonic in ,,{) . 

7 .23 If ;t (u)-= f ( p') where f is continuous in a domain ,{)J 

then '\f'CP)::. vCp)-rJ_ [f(4' ) ~ satisfies v 1.1ffr)::::o. From 
41T (£> ) -Pq 

this it follows that uC~) has continuous first partial 

derivatives. 

7.24 If is continuous in f) and if 

f CP) -::. Q ;, l,f + b OU + C ;, " -t- /? IA 
~~ •1 ~~ . 

where 0 1 b1 c , r are functions of -P with continuous first 

derivatives, then V 1
1A exists and v 2u -= 1<1,4) 

The author remarks that his results hold for n dimensions and 

states the 

equation 

where G 

following: For the solution of the Fredholm integral 

-tCP)-::: ( GC t>i &)lf{Q)d6); 
Jes) 

is a Green's function or the Hilbert generalization 

of this function, one can replace the assumption of the existence 

by the existe,ce and 

continuity of t ( 1') and :Z: ( f) . 

7.3 Michel Plancherel,Les Problems de Cantor et de du Bois-Reymond, 

Annales Scientifiques Ecole Normale~3)31(1914)223-262. This paper 

is a more complete discussion of a previous paper of the author's. 

(Compte Rendus,155(1912)897-900.)Consider a unit s phere. Let FC¢1&) 

be a function of points on the sphere. Let 

--'-- h J F ( rt '; (!) /) d. s I - F ( <t) l)) 
2 JT s,"' 

C ( </, (), n ) 

where C:. is a small circle on the sphere with center at ( ¢1 0) 

3t 



and s pherical radmus h. .:1.r s ,-.,, h is the perimeter of the circle. 

The author then defines the generalized Beltrami parameter as 

.6: F( r;J; g) = /,·VY) b 2 F( ?J 01 i-1) 
n ~ o '5 ,-.,. 7__ .b. 

2.., 

The name comes from t he fact that if F {~~) has a total differential 

of the second order then 
a ( _ El F ) - 1 0

1 
F 

Di F (¢1 f>)= b2F(¢;0)== s',-"'¢ o:;,5 ~ •-r1ft;;;: +~ Je2. 

the right hand side being the second parameter of Beltrami. In 

Chapter II of the paper t he author proves the following: 

7.31 At each point C~e) where FC ¢1e ) has a total differential 

of second order 

7. 32 If FC¢', 9) is continuous on a simply connected sphersecal 

domain f) and if L:,..j F is bounded in i) ,i.e. M ~ /J; F (ft, FJ) ~ M 

then at each point of L9 for h sufficiently small 

M 

7 .33 If F ( ¢, 9) is continuous on a spherical domain J) and 

on £J then Lh F { ¢,, fJ J = o 

i' harmonic" on 

on .f) , i . e • F C ¢,, 0) is 

7 .34 If F C¢:1 tt) is continuous on the whole sphere and if Ll2;1( F=o 

everywhere on the sphere then F is a constant (since it is the 

potential on the surface). 

The author employs the generalized Beltrami parameter in discus sing 

a problem of Cantor and a problem of du Bois-Reymond, both 

concerning orthe-normal functions. The application is in coni~ection 

with Le gendre functions. 

7.4 Papers of W. Blaschke. 

7.41 Ein Mittelwert satz und eine Kennzeichnende Eigenschaft des 

logarithmischen Potentials.Berichte,Gesellschaft der Wis senschaften 



zu Leipzig,68(1916) 3-7. We quote here the review given in the 

Fortschritte as the original paper was not available. 

"Der Verf. beweist mittels potential theoretischer Hilfsmittel 

einige Mittelwertsatze, fur die er spater eine elementarere 

Herleitung gegeben hat. Ferner wird ein zweidimensionales Analogen 

des folgenden fundamentalen Satzes von Schwarz bewiesen: Jede 

stetige Funktion .f rx) fur welche 
t1· 1Nl ~()l-ti,,)--t-f{:,t-h)-2 fr~ ) 
h70 1,i2. 

uberall im Intervalle a ~ '..l'. ~ b versshwindet, ist dart eine ganze 

lineare Funktion. 11 

7.42 Mittelwertsatze der Potentialtheorie, Deutsche Math. 

Vereiningung 27(1918)157-160. The author uses the results given 

in Webster's Dymamics (see 7.Il,7.13). The author proves that 

if fCP) is continuous in a/j.omain J) and has continuous second 

partial derivatives, then for a spher e ~ { ~j ~ there are points 

1l , P2 in "D such that 

where LI I~ are the mean values of f on and within , respectively 

a sphere of radius r and center ~ . 

7.5 I.Privaloff,Sur les functions harmoni que,Moskowskij Matiemat. 

Sbornik,32(1924-1925)464-469. Let fCP)-= t lX ,1)(21 • • ·) x.,,,) be a 

one-valued function in an open domain ./J and summabl e in -!J . 
Let 1> ( -P; r) be a sphere of center -P , radius r , and volume V 

Let ~rf { -p ) -::: -2.(Yl +:2 ) / [-f { ~)- f{ -P )]d ey 
r2 v ) ...... 

D f -P;r) 

The author then defines his generalized Lapla cians as 

li vYI Llr t C-P) = b.-1( f ( --p ) 
t""➔ o 

/.·Y'V/ b.r- f{-p) := D."" f( -p ) 
r➔o 



If E~ -f (1>) =- t:/' f-0) the common value is written b* f'r p) . The author 

proves tha t: 

7. 51 If f has a total differentia l of second order then .6~ f-= v 2+ 

The proof is by Taylor's Theorem. 

7. 52 If f- is continuous and /;jl(. f ~ o :5 Ej( f <in a domain j) , then 

-f is harmonic on I) . 

7.53 If iACP)-=:.f a-rQ) d~ where rT{(r) is continuous at~ ,then 
lN l'(i> 

D,.l(. lA ( l'; = - 4 1T 0-- ( -p ) 
7.6 Waclaw Kozakiewicz,Un theoreme sur - les operateurs et son 

aoplication a la theorie des Laplacians generalises. Towarzystwa 

Naukowego Warzawskiego 26(1933~part III,18-24. The author defines 

an operator axiomatically, of which the operators of Zaremba, [ :t U)]J 

Blaschke, [B ( f ) ] , and Pri val off, [v if Cf J] J are special cases. He 

then proves that: 

7.61 If + is continuous and 1{f) exists and is continuous at 

"Po , then 1 ( f ) -:= B ( f ) = V ~ Cf) at l'c • 

7.62 If + is continuous and J3{f) exists and is continuous at 

1'D, then v~ (f) exists and BCf )= v ~(f) . 

7. 63 If f is contionuous and 'i7 ~( f) ei:ists and is continuous at 

'Po, then B(f) exists and BCf )::::v> ?f(f) • 

7.7 S.Saks,Qn the operators of Blascme and Privaloff for 

subharmonic f unctions. Rec. Ma th.(Mat.Sbornik) N. S.(51)9(1941) 

451-456. According to previous results of Blaschke and of Privaloff 

if u is subharmonic then 

The author improves upon thes e results by showing tha~ for every 

subharmonic function t,i the limits, for r➔ o , exist and are equal 

almost everywhere. He also shows that if ~C E) is the non-negative 

37 



mass distribution in terms of which 4 can be expressed (aecording 

to F.Riesz) as a potential plus a harmonic function, then the 

limits exist and are equal to the s ymmetric derivative of ~C E) 

at every point where this derivative exists. 

7.8 Paners of I.I.Privaloff. 

7.81 On a theorem of S.Saks Rec.Math.(Mat.Sbornik)N.S. 9(51) (1941) 

457-460. Using the notation of 7.7 let u be subharmonic. Let 

38 

f, f denote the lower and upper s~etric derivatives, res pectively 

of o-(E) • The author proves tha t f ~ 6" v1 ~ b." u~ p everywhere 

in domain ..zJ , and obtains in this manner a new proof of the 

results of Saks given previously. (Math.Reviews) 

7.82 Sur la definition d'une fonction harmonigue,C.R.(Doklady) 

Acad.Sci. URSS (N.S~) 3101941)102-103. The author proves the 

following results: 

7.821 If u(~) is continuous in a domain G and if .tS"uz.. o a.e. 

in G , and if 6~ 1.,1;, -uc (save possibly for a closed set of zero 

capacity) then I.A is subharmonic in G . The proof runs as follows: 

Suppose u(41) is not subharmonic in the domain G • There exists 

a domain 1> , D c G and vr ~) harmonic in D and continuous 

in D , such that 

(1) 

on the boundary I' of 1) , while in 1> there exists a domain d 

where 

(2) 

Construct a non-negative set function ~re) as follows. Enclose 

the set E ( on which Zi">(. l), is not known to be 2.. o . ) in a denume rable 
Ho.+-

system of domains~, suchAthe sum of the volumes is ~~, then 



domains r-, , such tha t the sum .::: E2. , etc. where ~d Ei.-+ - • • is con­

vergent. Take ~ 1 e) equal to the sum of the volume s of. , ~ , 

and their portions belonging toe. The set functi on r,-. ce ) has 

at each point of E the symmetric deri va ti ve + v0 • Form now the 

subharmonic function 

f f w) = - l g(-p;fJ)c/p(e) 
1) 

which satisfies the following: 

a) 6-;< {{<ii)=--t/;>C at points of E 

b) c/· f.r 4i )~ o in 1) 

(hence +r4>) is subharmonic.) Consider a point <+>1 of d not in 1 

the set r;, of zero capacity on which it is not know that .3.--< u 7 - oo 

where t-{(il,) is finite. Consider the function F((ii)-= u<4) -rt=--F f Q) 

and choose G so that at Q , 

(3) 

39 

This is possible because of (2) . On I' , by virtue of (1), F' ( q;) ~ vr tP ) 

where for points on r we take for F ( <ii) the limit superior of 

its values as r is approached from within D . But F C4') is 

upper semi-continuous in D . And b." F <ti> ) 2..o for CF not in E 

since 6,t U{4' ).2'.o. For <P in E not in E 1 , b."v.f~)>-Vo, 

D.y.. tr4' )= -ttA , therefore b~ r-= r w)?o. Hence LJK F r &) 2:..o in 1> save 

perhaps on f:, . Thus F ( a>) is subharmonic by a result of Brelot 

(1934). This contradicts (3)and the result follows. 

7 .822 Let L\ be continuous in G . Suppose that (i) ~ J<.. (.,4 ~ o ~ Zi"' u 

a.e. in <:i" , (ii) E"u>-e,.o , e,(u<-+(.>O in G (save possibly for a 

closed set of zero capacity.) Then u is harmonic in G . This 

result clearly follows from the previous one. 

7.83 Quelques applications de l'operateur generalise de Laplace, 

C.R.Acad.Sci.URSS.(N.S.) 31(1941)19@-105. This paper contains 



i l'1 
restatements of and corollaries to results given~previous papers/ 

For example: Let u.( &) and vr~) be subharmonic in G . Suppose 

tha t (l) ~)'. 1,1 <: -t- v0 , 0! v < -t /,>Q everywhere in c;, and (2) LlN u = 6 " v 

a.e. in Ci . The n u-v is harmonic in G. (Ma th.Reviews) 

7.84 Sur la definition d 1 une fonction subharmonia ue Bull.Acad. 

Sci.URSS.Ser.Math.(Izvestia Akad.Nauk SSSR)5(1941) 281-284. Let 

E, be a bounden closed set of capacity zero in a p dimensional 

Euclidean space. Let b" u be the up per genera lized Laplacian of u 

The author proves that, if u is bounded above and upper semi­

continuous i n a neighborhood of E, , and if in this neighborhood 

everywhere and zs~ u r ~ J z o almost everywhere, then 

u is subharmonic in a domain conta ining E, • (Math.Reviews) 

7.85 Queloues applications de 1 1 operateur generalise de Laplace. 

Rec.Math.(Mat.Sbornik)N.S. 11(53)(1942)149-154. The author deduc es 

two important r e sults on subharmonic functions and t heir gener~ 

alized Laplace operators. In p dimensional space (p > 2) he 

defines the operator by 

b. 1.,i'(4> 0 ) = liVYl 
1-i~o 

where t he integration is taken over a s phere of center 4h, r ,, 

radius vi and volume w . The main result is the following: If 

(1) u and v are subharmonic in apomain G and c::,. ulQ) <- oo , 

6 v (~ ) ,e_c,o for all ~ E- 6 , and ( 2) L-1 u(u) = c, v(fJ;) for almost 

all ~ ~ G , then 1...1 r 4, ) -::: v ( 4> ) --t h ( 4>) , where hf~) is harmonic 

in G.Another theorem shows that, if E is & closed .and bounded 

set of measure zero, and ~ is subharmonic and bounded from above 

i n a neighborhood of E and upper semi-continuous at the poi nts 

of E, then uC Q) will be subharmonic in a domain containing E 



if 6. u{4' ) > - v,e, everywhere in E except at points of a set of 

zero capacity. These results yield obviously i mpor t ant corolla ries 

for harmonic functions. The proofs, based on some modern results 

of the theory of functions of real vaeiables are s t r a i ght f orward. 

(Ma th.Reviews) 



Appendix I 

Details of the transformation employed i n 3.4. 

Consid~r the integral 

r2..11[.21T 
Jo 

O 
+ rx+ rcos O+rro~¢)'-j-t-·rS • Y><!J +r51Yl¢)ros(G --¢)d (ldf) 

The region of integration is a circle of radius ~rand center (~j) 

To every point ( )_ + p ca ~ w 1 'j -t- p s ,· r1 w) 

in this region there corresponds 

two sets of values of ( tie) as is 

shown in Figure 1. Thus the region 

of inte~ration is traversed t wice 

in the above integral. Consider 

first the set C ¢,JO,) corresponding Figure 1 

to a point ( ~-tprosWJlf-t-r st ,.,w). We have (see Figure 2) 

And 

Thus 

Figure 2 

D <t, 
0 (-' 

Further 

_j 

_ I_ 

V.:1,rLp1.. 

¢ ,-
:2. 

l).JC::: 

Hence 

a bs. 

19, 

&, 

cos - 1 £_ - ::i. r 

+ 
es , -01 01 -t- &!1 

:2.. 2, 

¢,-==w+ cos -1_!_ 
.2 r 

Q1 --= w - c os-I J_ 

::i.r 

2 



And hence for the first set C fl,ifJ,) we have 

For the second set C<t2.1 (h.) we have 

p 
:z. r-

and we obtain similarly the same integra l as before. ~Adding, we 

get 
2. 
r ... 



Appendix II 

Details of the differentiation fu~43.4 

(1) Consider the function 
\ r f 2 TT ) H'l t-1 d d 

~(X1~) = Jc, 
0 

f{~-tpcos &,<j+ps- f >1.() p fJ (-' 

-= j [ ff~1'1) [{;;:-xJ 2 +h1-~l1j"d~d1/ 
D (x,i,;r) 

41 

where fu.,1) is continuous. We form the increment LJ.°)=Cj{)(-f-A':11'1)-9(-r11) 

;{-tAX -t .Jr2.-{'fl-'1)'- f ::(-t frL-(">')-•/)L J 
~ ri~~ { I [(r-,i-L»)'-t-(>J-~)•JJ"-flr,~)d)i- [(5-,)~t-("J-<j)']" Ur,>JJdr 

'1 ?1-t-AX- fr 1
- ('tf-•1).,_ :x-fri._ r-,,-'1) i... 

-:,i_+Lv{;-fr'--(11-·nl. Jx--th-1.-c.,,--<iiL ~ 
- (~:~. { (( [cr-x)i.-t-l"lJ-'1) 2 ] I'? _;.2,,-. 11 :x. ·C~-.x.))ns,n)ds- [<r-.xf-t-t1-'1lz] n f{~i '1 )d~ 

Jlj-r JXt-t.>Jl-fr1-('l'l"""JJ "'- :X-{ri--r"l!::;;)"l 

+AX--rhL-(Yl--YlL- 1 ;(-~r'-()i-'i)'" 

[
[rf-XlL+ ,11-'1)l.r'-fc~) 71 ) d f + cu;-X)'"+1-ri-"'i~r' f(ri ""I') )clJ 

x + fr'- f""l-~ ::< +-"-X.-~ ri-r,,-yJ'- . lx +t.X+ fr'--- fn-YlL j 
-J.n,t:,.X. (5-"-x) f(~ 1)))d~ 

l t- L,;,{ - fr>- ("Y!-·11 L 

neglecting terms 6(hx). The first integral is the integration 

of [(5-Xl 1 t-(">J-'1l2-]"'fc~>'1) over the shaded 

area in the figure. The equation of cc1~r) 

using "P/:x,..,) as the origin of a polar 

coordinate system is 

p 2 - 2 {'A)( C o S ::( + { AX) 2. = r L 

Thus 

and 

Setting this integral up in polar coordinates we have 

f f ( 'j__ +- p C O ., e J l.f -t p -s ,· "'- 6l ) r 2 
"-t I d r cl 9 

8, ) r + DX C v S 0 

-e, r 

Applying the Mean Value Theorem 

(1) 



- S E> 

1 

f ( ;(. + r
1 

, o ~ o 1 'j --t- r, s i Y\ 9 ) r l. n + 1 1::, >< r o ~ () cl 0 
- 01 

by ~x the above integral approaches 

r2nt1 )_ ;f- ( x + r c o s ~> Lj ---t-r s 1·"' fy) c o d> dfi 

"2. 

Similarly the second integral in (1) leads to the integral 
3n 

r 2 
" t-

1 f TJ~ { ( x +- r < o s & 1 ~ -t- r s 1 "'-- & ) co s t.9 cl 0 
l.. 

Adding we get 

Now the third integral in (1) is 
Y+r ( -::( -t .6 :i. -+ ,J r'--/>i-'11 ... 

- .:m DX) d~- ) (_~-x) f('5>'1) cl~ 
Y-r :;x.--t~X - ✓ r'- f")J-'j)L 

Dividing by L:v. and letting hX.~o we have 

y +r- r~ ·dr>--fyt-112. 

-2. h \ d-ri- (1f;-.Jl) flf1'1)d~ = -).V) Jr r~~-::rt-p r o<_;/:)1 '1 +p~; ..,, &) p~cose c/1:) cl f 

~-r x-Jr'-(n-"l) z.. o Jo 
Adding this to the previous result we have 

(2) Consider now 

9(X1'j) = Lr r:~( J -tp c oc;e11+ps1>'10) l05 ~-f c/()d p 



We have 

,mo x If I \ u>:/ + ,,, loq, ' - ( AY + J c'-1'1-'ll')( l"J <' + 
2
:;' ✓ r'- !'1-,I') + o (AX) 

-I ~-(1r'1) 1. b:(_ -I ~ r->-(-n--<1)21 

--t .,Jr2..- h1 - •il"- l09 ,.-1..- -;2.( -n -'-j) b-c,."' 71-J - .2('>)-'1)1-t r'-/ '>i-'ilz + 2(?J -~) 1:a.. "1-'j 
l lt-<i l" 

I= O(t:.X ) 

Similarly the second integral is o fox) . Thus neglecting terms 0 ( ,1::,:x) 

Hence 

and 

\-;I_+ f:. X ~ ~ r•-( ~-::~• 

J fl3°J Y1) CJ° - ;( )"-t (i1--<1l 1. d~ 

X-tc.X - ✓ r,.-r., -,oL 



(3) Consider now 

fi x <A':=. _J_ fRf2- rr {{x.-r--fros <0 i14--t-p s iY1&)pd€idp 
>-1 1 irR-i. o o 

We apply the results of (1) t o the f irst, third , and f ourth 

i ntegrals and apply the results of (2) to the second integr al. 

Thus 

= _!_ (1.. 1T-ffx. +r (o ~ e 1t.j+,s 1·..,_1.9)co s(;) d$ 
llR )6 
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Appendix III 

Consider 

Let 

Now I u (Ct) - u, Ca ) I == \ [ o0 t 2. ,r { [0 ~ ~ - ~b ( p) J 0-P d 9 d P I 

~ I r r-·~ lo'j;, - '''it -:i + £. Jrrrd•dp \ 
~-------c C{ lo'j ~ - l + u 1 rr pdodp J [: J,27.--,, pdoclp .c.. 

using Schwarz's inequality in the last. 

But t~ J: { loi, 1-, - \ -t 1 ( ~ r j ~ p cl 6) d p = 2 n L ~ { I 0 1 ~ - -l -+ l ( f )2 J p cl I 

== 2 TT F L 1 1 i r 2. -¾_ - Io ci r f rd r = C' 
2 ~ ' 

C a.. 

(In the last we made the change of variable 

Therefore 

and hence, if Io- I ""l.. is surnma ble , then !,{~ ( w) ➔ u ( G) uniformly 

as b ➔ 0 • But the functions Uj,{~) are continuous for all ~)o. 

Therefore ~c~) is continuous. 



Appendix IV 

Consider 

where w 1:z. is summable. Let <:p = {)u '-f) , then this expression 

can be written 

But 

'r,_ ff ltr(l>)- <,(<ii)l2cl-P 

DC~;r) 

= + 2. If { f ~ ( p) I 2 
- .l. a-{ p) c,( 4i ) + YT{ <i-) / '2,] cl ,-, 

1:rG,r) 

= r l- ) , ) I a-C P > 1 2 cl P - .2 a-~ ~ ) f f er ( P) clp --t 1T I V-{ a: ) I )_ 

l) ( 6i; r) J){ ,;,; r) 

P, { E ) :::. rr I cr-C p )l"l.cl p ) <F.2 ( G.) =- Jr 0-(P)dP 
E E 

are completely additive functions of sets. Thus 

(1) 

c./Y>\os f-- o) / Q . 

D~ ~2.{Q) = l,'vv. -ri-r 1--JJ o-CP) d -p -= r;-{ w) 
r ➔ o D(~;r) 

(See McShane,Integration; p 382, especially Theorem 73.5) 

Hence 
It' wi -t,,_ f ( I n 1') - ere w) I ) ct p = ,r I a-r w ) I 2 

- i. 1r o-r °' f o-( u) -+- I tTf rs, J I 2- = o 

r➔o D~{,,r) 

for almost all ep . Thus the integral (1) is o( r0) , t-or al~ os +-

Cl ll Q. 
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