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ABSTRACT
Let L(fixq;r), Alfingr) be the mesn values of a fumction F(0y) of
two real vepiables on the perimeter and on the interior, respectively, of a

cirele of center (ny) and radius ' . The limits

2 N : — 3
1‘_.),? Llfm%:l Foua) _ £'0%y) Q1)
\ A 4 * — {2
lr-:;no (f)ll‘h';)l .3 __‘1) :{;[11'1) (2)

are called Mean Value Derivatives of T(x 7) . This paper is concerned with

the investigatidn of functions with mean value derivatives. These derivatives

are essentislly generalizations of LaPazce's operator, and , as such, were
investigated by Blaschke and Priveloff. In additéon Zaremba has investigated

another form of generalized LaPlacian,and Plancherel has investigated a

generalization of Beltrami's parameter. Many of the results obsained for these

last two operators hold true for mean value derivatives.
Chepter I contains some results relating to the mean value derivative

as given by eqn. (1) while Chapterﬁ.s a similar treatment of eqn.(». Most of

the results given in these two chapters are known for at least one of the four

operators, i.e., those of Blaschke,Privaloff, Zaremba, and Plancherel. Chapter

IITI discusses briefly uniform mean valuederivatives. Chapter IV is devoted to

the use of potentiel theory in the subject and Chapter V to higher derivatives,

Chapter VI is concernkd with further problems on the subject and Chapter VII

contains a summary of the results of the authors mentioned above. The princivle

nwwresults obtained are as follows:

(1))If filv1) exists then so does §%4). This is a generalization of a result
due to Kozakiewicz, who assumed continuity of T . This assumption is not
necessary.

t2) Ir (i)fw1)is continuous,(ii) f'04)exists and is bounded, (iii) I9)=o almost
everywhere on a domain X , then fi®y) is harmonic on A ,

(3) If ﬁ’m) is a logarithmic potential function for which the density of the mass
distribution exists at a point P then f(?) exists.

(4) Expansions in powers of (™ are obtained for the means L(fixyir) Al §0edn
which the coefficients involve the higher mean value derivatives of

in a manner analogous to Taylor's Theorem,



Chapter I
FUNCTIONS WITH MEAN VALUE DERIVATIVES

1.1 Introduction: Let f(x,y) be a function of two real variables.
Consider the mean value
2T
L(F;x,g;r) :2—'1—1_— J; -F(1+r(059)tj+r5|'n6)d6
of fy) round a circle of radius r . The limit

lim LIfixg:e)— fl0y)

r—vo r

= -r,(x)‘j)

may exist. We propose to investigate the class of functions for
which this 1limit does exist.
Note: Integration will be in the Lebesgue sense, ¢nd in all
ensuing discudsion we shall assume that F(xy) 1is summable
two dimensionally. In this chapter we shall further assume that
f(xYy) is summable along &ll circles used.
1.2 Notation: Let P be the point (®x.4).
ClP;r)= C(Zyy;r) is the perimeter of a circle of radius r
and center P,
D (Pir) = D(0Y;r) is the interior of a circle of radius r
and center P . D(P.r) is the closure of D(Pr),

2T
L{£:Pir)= L({}X,'j;r)=3%—r- S‘-F()(—rrrose,tj-f-rs-‘ne)dﬁ :;—1'?; f{:[?)dSP

© CCpir)
We shall use the notations in terms of P and of (20Y) inter-
changeably.

1.2 Preliminary definitions: We define the Mean Value Derivative

of F(P) at P to be

lien L(¥f:Poir) —+(w) — ‘FI(?o)
r--o IF2

if the limit exists. If the limit does exist F(P) will be said



to be MV _differentiable at P .

144 Preliminary theorems:

1.41 Theorem: If F(® and 3(?) are MV differentiable at % then

£(P)+9(P) is MV differentizble at % and has the mean valu deri-

vative {(Ps)+ q'(P)

Proof: This clearly follows from the definition.

1.42 Theorem: If f(P) has continuous second partial derivatives

fxx, fyy at P(xy), then F(P) is MV differentiable atP. Further
£10p)= & (fax + Fyy)

{seeiWebster (7.13),Plancherel (7.31) )

Proof: We have

limg L(fiPin)—fCR)
Fing r2 r->o 2T rz

27
L {F(x+r(ose,q+rs»‘m49)—4(113)‘3d9
et

Applying the rule of L'HOSpltal we get

P ﬁzv{( )(ose+( )s|n63d9

r~o 4Tr

.h
2%

2f 2
where (52). p (ay>, are the values of x> respectively, evaluated
at  (x+ reosd Yy+rsing).

Applying the rule a second time we have

';M Lﬂr’{ ;_1;\(_2 cos20 +(3“!‘> sin2g + 2 (azay) s fose}c’e

ro 41

2
e B (bx‘)TT*(a%) ! = £
o = = L6x + fyy) = £(7)
1.43 Theorem:If (i) F(P) is continuous on a domain &, (ii) §(p)
is MV differg@tiable everywhere on & , (iii) f(P)=o  everywhere
on O, then f(?) is harmonic on 4, (see Zaremba 7.22, Plancherel
7.2%, Blaschke 7.41)

Proof: Consider a circle C(m;r) lying in ) . Let

e(P)=& [F(P)—h(P)] 4+« DP—P12— r2]



where € has the values +l and —| , k 1s an arbitrary positive
number, h(?) is the harmonic function such that h(P)=f(P) on
C(Posr) . Clearly e(P)=0 on C(Pjr) . Now
e'(P)= e [ £'»)—w(P] +{k L(x-x)?~+ (4-ds)>—r2] ] ’

where 4 '3’ denotes the process of taking the mean value deri-
vative. Applying Theorem 1.42 we see that h'(P)=o and

{uDip-vr-ra]] ‘=t
Further, by hypothesis, f’'(P)=¢ | Thus

e'(P)=k (1)
Now ©(®)20 for all P in D(®;r) , For if wax €(P)=9>0
then there exists a point B in D(P;r) such that e(R)=93 .

Hence for p suffigiently small

Ce(p)-¢(P)] dsp2 ©
(s p)

and thus ©'(R)<o . But this contradicts eguation (1), hence
e(P)<o for all P in D(Psr) . For €=1 we have
F(P)—h(P) 2 =k {17-Po1? =17
For &= we have
fp)4n(P) 2 —n{1p=Pelr -]
Hence 1£CP)—h(P ]2 k |1P-Poi>—r2|
But we can take « as small as we: please. Therefore +(P)= h(?P)
within the circle D(Psr). We can cover 4 by overlapping circles
and hence f(?) is harmonic on & .
Note: Continuity is essentiel in this theorem as is shown by the

following example:
{(1) 9 ) = | X >0

= | X £0
=0 A =0
Clearly f'‘xy)=0 everywhere, but f(ty) is not continuous on

the line x=| . This theorem and its proof are a two dimensional



analogue of a theorem of Schwarz concerning his generalized second
derivative for functions of one real variable.(H.A.Schwarz:
Gesammelte Mathematische Abhandlungen,vol.II,pp 340-3).

1.44 Theorem: If {(?) is continuous and MV differentiable on

vﬁ(?o)f') then L(f)Posr)— f(Po)
r?.

is bounded by the upper and lower bounds of f(P on D(P;v),
(See Plancherel 7.38)

Proof: Consider the function
L (£5Posr) — F (P

)
AP = £ —h () + L (Fibosr) = F) = ————— |P=Pol*
where h(P) is the harmonic function such that h(P)=F(?) on
¢ (w;r) . Clearly A(Pl=o  on C(Pr)., Further
A(R) = F(BY— h(P) +L(F Pir) = F(h) = LEFPoyrd = h(Pe)
But |

mwr
CCPosrd CCPojr)

h(P) = 2""’“ Jk(?)C‘Sp ::T‘FF f(pPycsp = L(f5 Pojsr)
Therefore A( Ps)=o . Thus the function A(?) has both a maximum
and a minimum value on D(®;r), Now if B is a maximum point of

A then A'(P)<£o | for

: | _ , &
Jem) = lim S JEam-acmyds, <o

pree clmyp)
But we have
APy = £Uw)— WP — L(f;%:)—z‘(?o) =iy’
By Theorem 1.4%2 W(P)=o , {1 P-Pl2} = | .
Therefore
NPy = 40Py — L(f5 Posr) — F(Ps)

r#

But 2'(P) <o , therefore
L(f;, Poyr)— f ()
,-1

fi(n) =

Similarly if P. is a minimum point of 2(P on D(P;r) we have

L(£; Po')f)— f'(Po)
r<

f'(m) 2




Note: This theorem and its proof are & two dimensional analogue

of a theorem of Lebesgue relating to Schwarz's second derivative.
(Lecons sur les series_trigonométrioues, by Henri Lebesgue, pp 5-7.)
1.45 Theorem: If (i) () is continuous on & domain O ,(ii) £/(p)
exists and is zero eve.ywhere on L save at points of & denumerable

set of , (iii) for points on ¢

lim L(fiPpo)=Ff®
r->o r

then £(?) is harmonic on L .
Proof: Let % be & point in 4 not in . Consider = circle CC(Rjr)
lying in 4 . Let h(?) be the harmonic function such that f(P)=h(P)
on C(Pr). Suppose f(P)-h(P) has a positive value p at some
point B in D(Ps;r) . Consider the function

B(P;x) = F£(P)= h(P)+ K IP-To)* where k > o
On  C(®yr) B(P,w)=wr> ., Also

Z(Piv)=p + k| B —P|*

We pick v« so that Z(Pyw) >kt*
1.e. Kri 2 p 4+ KA P —Tol> , K L= IR=RP] <P

or K < s = K
r2—|p-pl?*

#(p;k) thus attains its maximum value on D (P, Let % be &

maximum point of #(P;v) . Then if B is not in o we have

L(Z,Psr)—2(p) _

' (p.n)= l'_;’; =

But for points of D(%;r) not in o
B(Pik) = £'CP) —h'(P) +n =K >0

Hence P, must be in J.

L P L(¢fkw)—¢(h): lion [ L(FiPesr)—T0P:) KfLUVWM%?ﬁﬁ‘VW%R%
+ EE———
r>o r roo r r
But 2
Lt?p-Pe1?) Po.r) —_-3‘? So {(7(-2¢,+r‘(ose)1+(tj—\jo +r5fn9)2j da

= (AH=e)* + (Yy—Yo)* + r*



- r

Hence l‘-m L (¢)?1)l’)“‘ ¢(-P1> _ llM {L({)—P21r)_ ‘F(?z) —\—kr} =

r-o ™ rvo

by hypothesis (iii). But
l

27
linse L(¢)?1';")—¢(?;)= | e s ( E¢(1,-1~ r(ose;‘-jy-f'rsfhe)— ¢/7(z)‘h)] dQ}
r>o r r>o se

277

= lim 21rr j [¢(71;+r6059,‘1;*"'5”’9) ¢(11;‘11)1C’9+ Jntﬁ[h*”o?@/#z*r"“’@)
F7a — é(xyle]dQ}

But the two integrals are negative for &ll small r since P is

a maximum point of @(P;x) . Hence

lipg ad— f{;é(;(z-krrose,tj,-i— rsme)—‘¢12’z)"jz)1}d9 o
>0

But __,L_ f-“{¢(ji+r(056)‘4’2'1’7‘5""6)“‘¢[13)‘41.)3 C'B

2Tr

—QFJ {‘F(Xz +rcos9) Y, trsing)- f0x2,42 )-— h(7{1+r(°59)‘12+FS)n6)+h[)/l}Lj)_)

KT (Xp o+ 050 + (dy=do+rsind)?] = W L[(Fa=70)% + (42 =90) *] e

= 21"_ f {{{7{1+r‘(059)\47_+r$-n6)—-{(Xz)‘fz ﬁdQ-F-— y {2{2{;_ Yo)FcosO

: 2ydeg+ L (7
2(42=Yo)rsind +rj e L {h()(;,tjlj~k{1;_+r(osequ+ rs:‘ng)ﬁ do

-
= El;r L {{(h+ reese ) qr+rsing)— f(x:, 427 do + %‘i (Yo-Ys) + ki

@,, Frosp o+ reino +otr)|dp
o [T e () J

olry being uniform in &, the subscript denoting the values at (7:,45)
And so,

[,m i f {-F(I;-H*(axa,%,-!-r‘s'ne) {/9/2)‘1 )Zjde"zk (uf -Yo) -_n_ {

rve 2Tr
Thus for each point P there is a unique value k. Since every
hed and e/ is denumerable, there exists only a countable
number of vclues of k for which €(Pix) assumes & maximum value
on D (Pyr)

;3 but this contradicts the fact that k& can be chosen

arbitrarily <K , and ¢(P;») does assume a maximum value on D(Pur)



Hence the assumption that f(?)-h(P) has a positive value is untrue.
Similarly for negative values. Therefore f(P)=h(P) on D(Psr),

We can cover & by overlapping circles and hence ¥(P) is harmonic
on .

Noté: This theorem is a two dimensional analogue of & theorem

of Hobson on Schwabtz's derivative.(E.W.Hobson, The Theory of

Functions of & Real Variable, vol.I,p 278.)

1.46 Theorem: If (i) f(?) vanishes on C(®ir) , (ii) f(P)=0 ,
(11i) (?) 1is continuous on D (myr) , (iv) F7P) exists and is

continuous on D (P;r), then there exists a point @ in D(Per)
such that f%76¢)=0 . (i.e. an analogue of Rolle's theorem)

Proof: By Theorem 1.44
L (45 Psyr)— £0Ps)

r2_

is bounded above and below by the upper and lower bounds, respec-
tively, of f®) aon D(Py). But L (FiPsr)— f(R)=0 , Hence,
since f¥) is continuous there is & point ¢ in D(Po;r) such
that F'(¢)=0 .
1.47 Theorem: If (i) £(¥ is continuous one:D(Poyr), (2i)F(P)nexists
and is continuous on D(Psr) , then there exists a point @ in
D(Poyr) such that

L(£5Poyr) =4 () + 12 {'(0)
(see Blaschke 7.4%)

Proof: We apply Theorem 1.46 to the function

AP = £(P) = h(P) L.("f'/—P:';r)—TC['Po> [‘rz

where h(P)=1(P) on C(Pjr), h(P) being harmonic on D(Peir) .

]




Chapter II
MEAN VALUES OVER CIRCULAR AREAS

2.1 Introduction: In investigating the properties of functions
which are MV differentiable it has turned out to be advantageous
to consider a mean value derivative of a slightly different type
than that defined in Chapéer I. This second type involves the mean
value of the function in guestion over the ares of a circle rather

than around the perimeter. Accordingly we make further definitions.

2.2 Mean value derivative (on D): Let
A({;'P;r): %‘:z ff{(@)d@

DCP)
be the mean value of a function f®) over a circle of center F

and radius r. The mean value derivative (on D) of ) at Po

is then defined to be the limit
'in A(‘F}‘Po)r)_{[?‘ﬁ = -F-/D (?o)

r>o re
if it exists. We say that the function is MV(D) differentiable

at F.

2.3 A theorem of Tonelli: In the ensuing discussion we employ
a result due to Tonelli:

If A(fiPr)=A(bryr)  exists, then
| r (2T ‘ ’ o 'L(F' .
ACFfsa,4or) = e -So L F(X—»Prasé);tj-kps:na){)d&cp=-_r_i g ;J;%,P)FJF

Note:See S.Saks,Theorie de 1l'integrale,p 75

2.4 Relation between the MV derivative and the MV(D) defivativésble

2.41 Theorem: If +f(P) is MV differentiable , then it is MV(D)
differentiable. Further {)/(P)= L {'(P)
(See Kozakiewicz 7.62,7.63)
Proff:s L (f:P;r) exists for small r, and further
L(€5P;r) — f(pY=r2 L) +w(Pir)]

where VY>>0 as r—>o . Thus we have



] r
AP )= 50 S[”&)d@ -5 { L{fiPigede
Dp;r) <

Ang hence A (fiPin)—f(»)_ 2_LrL~(f,?;P)PaF__rl{(?>
4 = -

- 3 : ’

- F*{zj‘E{“ﬂ+wi{(ﬂ-+rv‘%r)]ﬁdp—rdffPﬁ

= 4 {¥Fﬂ-2*’-+¥T?)+2£f.+z~[rsyci =L g+ 2, [[prod
Ft % p g FPEp=1r j:‘; P+ Fe ), f P

The last term is easily shown to approuach zero, since ¢>o as

>0 . Thus L
¥ limn A PD= D 1 frepy

r-o r

In view of this theorem when discussing functions for which
the mean véiae derivative as defined in 1.1 exists, we shall be
able to utilize expressions involving both A (§iP;r) and L(FiPir) .
2.5 Theorems on MV(D) differentiable functions:

2.51 Theorem: If f(® has continuous second partial derivatives

fir » T4y at P, then f» is MV(D) differentiable at P. Further
£1= L (fa + fyy)

(See Webster 7.11, Privaloff 7.51)

Proof: The proof is similar to that of Theorem 1.42.

2.52 Theorem: If (i) f(?) is continuous and MV(D) differentiable

everywhere on a domain O , (ii) f»(M=o everywhere on 4,

then f(P) is harmonic on O . (See Privaloff 7.5%2)

Proof: The proof is similar to that of‘Theorem 1.43.

2.53 Theorem: If f(?) is continuous and MV(D) differentiable on

D (Poyr) then

Al(§iPojr) — TCP)

r~

is bounded by the upper and lower bounds of 5 on D (Psr),



Proof: L(fi Pssp) exists for almost all p<r . Consider the

function LCEiPoyg)— FCR)

)«(P):{(?)—k(?)+|_({,‘1>o;,»)— £0P) ~ — 7,

where h(?) is harmonic and h(P)= f(?) on C(Pyp) and LIf57F;p)
exists. By an argucment similar to that employed in Theorem 1.44

we can show that

; Po) —-\C[?o)
—— L(F ¢) % 3
‘)1

where M, m are the upper and lower bounds, respectively, of

£5(?) on D (®jr), Thus

& r F r
= J;ngadp =3 2;-2 JOL({iTo)()FC'p*%; Jo ‘f(?ojp)dpf —2'-;7_ jo,?/*/l‘ﬁclp

ra
And hence mr2 e A(F;Porr)— F(P)= Mr2

2.54 Theorem: If (i) f(P) is continuous in a domain O,(ii) f5(?)
exists and is zero everywhere on L save at points of & denum-

erable set o/ , (1ii) for points in o

lima Ay Por) —F02
rY=>0 r=
then (¥ is harmonic on & . -

Proof: The proof is similar to that of Theorem 1.45.

2.55 Theorem: If (i) £(P) is continuous on D (Po,r) , (ii) f5(?P)
exists and is contiuous on D (Pr), then there exists a point

® € D(pPesr) such that AlfiPesr)=H+(R)+ L r2 £70)

(See Blaschke 7.42)

‘_l?_;-_gp_f_: The proof is similar to that of Theorem 1.47.

2.56 Theorem: If (i) F(P) is continuous on a domain £ , (ii) ¥ 5(?)
exists everywhere and is bounded on £ , (iii) F 3 (P)=o

almost everywhere on O , then F(?) 1is hsrmonic on 4.

Proof: Consider

2T

r
g(n4) = A (finyr) = _nl_r, jo , —§(1+pzose,»j +P5?na),pd9d(>

Algiy; RY - 9(09) ; R 27
_.~._Nm_i22‘______ == —ﬂ—; L j{%‘(_x.{. srosﬂ)tj-rssfn;t) —3(1)%)3 sclgds



\ R (2T | rop2m
= TR+ J J [—n"nLJ J {f/1+5f03¢+f7(459)u]+5s\‘.-\¢ 1—[)5”-,9
0 o 6 6

131

- {(x-i-prfse)q—kpsfnb)} pcloc’P] sdads

_ | r 2r d | R (2T
= o= SO Jb pd® F}—R‘L SO J {{(X-f-srosd-\—()féfaj"jfsSl‘nﬁ'—{—FSI‘nQ
(8]

— (x+ pecos 9)11+Psfwo)j
— 7%3 £: T%d&dp- A({;1+Pau9)y+psrnajk)—~¥fx+Pasa;q+psrn@j
[} RZ
] A—-f
Now —- | 26 as R—~>o almost everywhere. Further,
y— £
by hypothesis (ii1i) and Theorem £.53 é*g; j is bounded

on 8 . Hence by the Lebesgue theorem of bounded convergence

(see Titchmarshi Theory of Functions , p337 ) we have

IH’V\ A(ﬁ)l)“l/g)— 3{1)"1)_0
R~>o R2

And so by Theorem 2.52 4(wy) is a harmonic function on 49.

But since f(P) 1is bounded on <Y , by Theorem £.53
A3 Pir) = FLPD

r=

is uniformly bounded on 4 . And so Alf:P58) = £CP) uniformly.
Applying Harnack's First Convergence Theorem we see that {(P)
is harmonic.

Note: Harmack's First Convergenee Theorem: If a seguence of
functions harmonic in a region R converges uniformly on the
boundary of R, then it converges uniformly within R and its

limit is harmonic in R .(See Kellogg, Foundations of Potential

Theory, p £48.)

sdgds

RL



Chapter III
UNIFORMLY MV DIFFERENTIABLE FUNCTIONS

%Z.1 Definition: If {(P) &s MV differentiable on & bounded closed

domain O , and if given any €70 there exists n»o such that
L(£mir) = $CP) = {{(?) 42}

where Iwvl<e , for all r<h , &t 1independent of the choice

of P in 4 , then we say that §(P) is uniformly MV _differentiable

on O . A similar definition serves for a function which is
upiformly MV(D) differentiable on O .

3.2 Theorem: If F(?) is unifprmly MV differentiable on 4 , then
it is uniformly MV(D) differentiable on & .

Proof': A CHrr= & [T L Pip)ede

: r 2 r

.
=Hwl+ L ¥+ 4 fé v p3dp
If r<n then
2 v
\ ijo ﬂf}d?

3.3 Theorem: If F(P) is uniformly MV differentiable on O , and

& e

5
2 =
< = & j@ f3c/P e

if f(?) is bounded on & , then P , {(?) are continuous on Y.

Proof: Let M be the upper bound of If(P)| on 4O . Now

AfPir)y=+(P)+ LF £(P) +r2w
where w0 uniformly as r2o . Thus, given any €>o therenexists
n>o such that , for r<h

|A(Fipir)—Fem| 2 B M+rie
Therefore A(f;P;r)— f(» uniformly as r»oc . But A(fi®r) is
continuous for all rr»o . Therefore f(P) is continuous. Further,
for all r=¥

AC£f;Pir)— £(?) '

¥
S L gy i (py| =€

1z



13

Thus ¥YTO is also the limit of & uniformly convergent sequence
of continuous functions and hence is &lso continuous.
5.4 Theorem: If f(P) is uniformly MV differentiable on 4 , and
if {0 is bounded on O , then %) hes continuous first partial
derivatives on O .
Proof: We shall employ the following notation:
.41 AY(HPirdy= ACEHPr)
A £y = L= gj A (fiqir) dg

wre
(P;r)
Consider the second mean beix

. r 27 ren
A(z)({jP}r>:ﬁ%—Fﬂ j j f J'b §(1+F,ow+g(og¢;ﬁjfpsn‘h9+ssfh¢){3sdﬁclsd@dF
6 [} 0

Since f(®) is uniformly MV differentisble and f(?P) is bounded,
it follows from Theorem 3.3 that A®(P;r) has continuous

second vartial derivatives. In fact

DA™ il Al
= | J g J Flx+reose tscwsg)y+rsingtssing)coso s g clsdp
X Tmr3 6 6 4

2 Af) T (2T
b_.Alz__L JZ £(x Y rios@+rcesd)d+rsing+rsing) cos® cosg cdlzdo
T mwere Jo 6

Herce 2w (2T
v2 A= TTLT""— 5 j C(a+rcosptrcasd ftrsin0+rsing)ces(0-8)dgdd
6 6
By a transformation of variable (see Appendix I for details)
we have

() = = er T ( ing) P2t pupe 4 (Lo )
2 = $0,4+psin . LI FP;
¥ A il [ 0 ‘F rpee )‘j F 4r2-_?7: cllSCP T L .

pi-2r2

d

Ay p2
But L(FPp)= §(P)+p2 {/(P) +0(p?)

where o(p2)>o uniformly with respect to P . Further

j'l'" 2.2r2 T
A Py elp = Jo (4r1""7¢"'1r1)d¢:0

2% . 2 o ~
) il adp= [ E(4risinig —2r2simg ) Ar2dg = it

® Vare—r> P
Hence 4 20 b3z
v2A®) = 44°(F) + T, f’;r?—~f:: By &g

(We note that er doitis 9

—~ |dp is finite.)
o Warep-
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Therefore lim VZ2A®) - 4 {'(?) the approach being uniform with
r—>o

respect to P.
For every r»o , A®({?;r) satisfies the relation

Alz)(()P}r): ?,'TI'E',_ JOK jOZTTAh)({)J(‘FP(ajQ)Lj—fps"HD’,r‘)p C’DCJP

2T
_ zlwgz Iok jo (K’*’anp _ R_Z;__‘_f’—>vz,q/z> (£53+peese, Yrpsind jr)pdecp
(Courant and Hilbe#t:Methoden der Mathemetischen Physik,Vol.II

p 250)
Now A@R), f(1) and VA= 4¥(1) uyniformly as r»c . Thus
, .
‘F()(;V): #7’ 56,2 jo WCIX‘f‘Pfo! )4+ psin ) pc[OdP

2. p / %
=2 [ R]T (Rtog B = RS0 ) ' (xrpeeso,yrpsine) pelodp

But this last expression can be differentiated with respect to
x or y since §¢v4) is continuous. In fact by the four step
method we obtain:
1T
%:# jc -’;(lﬁ'Q(ose)bjﬂ-@SinB)(OSGdG
2
— 2[RIt pecsoygapern ) (R2=p) cosn do el p

with a similar expressioanOWrgg .(See Appendix II for details

of the differentation.)
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Chapter IV
USE OF POTENTIAL THEQRY

4.1 Introduction: Functions with mean value derivatives are

closely related to logarithmic potential functiohs. In fact
there is a large group of functions which are common to both
classes. We establish the relations by the following theorems.
4.2 Theorem: If v(P) is continuous at a point P , then the
logarithmic potential function

u(Pp) = U\og_', F(Q)dR
is MV differentiable at % .(w is the entire plane of P.) Further

w!(R)=- T o(R)

Proof: ; | |
L usbyr) = — Smw)c\s@ 0 el fdsw H'oaﬁ r(PdP
<oy ) C (Po, r) w
- _ | A
- Sj((?)d? 2'1_“_; gf l"3»pq><15°
Now w CCRir)
- |
e g log Ldisy = log b PP
C(Po}r) )
= log = PP, ST
So

L (uiPojr) = Ucr(v)dP log L+ SIO’(‘P)d’P-Iog_BL_;

D (Pur) W8

where w-D is the complement of D (®;r). Hence

| fusharl = Ss CCP)dP- logd 4 ”o-(?)cw. tof,;';o - U«rma?.l%;'g

DlPosr) w DPos 1)
= M(?o) =+ ng'(‘P){Iog—}, el loj?'?o )]C‘—P
—D('Po',r)
Thus L(usPo)r)—ul®)
R T =4 Sfo*(?){log—": -(og?.';o} dp
D(Po',f')

But o¢(¥) is continuous at R , hence ¢ (P) = (®) +0¢°)
on D(r) where o(r®) denotes a guantity which approaches

Zero as r approaches zero. So



S

P - 3 '
L0 0T g ] ecnf e - tog 5 47
r —D(Vo,r)

+ —‘F" ”’ o(r°){|oﬁ—{_ - “"5—?!‘;;3 d?P
D (Poy1)

Bat % ff (lgtotoadi J o™ = [ sk creg f edecr
D (P6r)

2 x
= an ["(log L-tog L )pdp= 2L Doy k- 5+ [plespte]

_ AT rt \ r2 __.!'.i]:—-f\_
___2[3103—‘;4—130:” 4 5

Hence L (u; Posr) —ulPs)

(im
r-yo r*

== L o (n)

Note: If o(p) is continuous the second derivatives of u(P) do

not necessarily exist, but this theorem shows that the generalized
Laplacian, namely 4u'(P), does exists.

4.3 Theorem: If (P) is continuous and MV differemntiable on a
domain A and if 1¢®) is continuous on O , then F(p) is a

logarithmic potential function. In fact

T L. g
() = = i/flogj-);{{@)d@—}-h(?)

where h(?) is harmonic on 4 .

Proof: This follows from Theorem 4.2 and Theorem 1.43.
4,4 Theorem: The logarithmic potential function

| u(P) = i}logi#; r(e)d@

is MV(D) differentiable almost everywhere provided that
loe(p)1* is summable.

Proof:

\ -1 ” . J g
A Rin)= o= JJucde=o ) de j log o TCPIAP
D(R;v) D(r;r) W

.

- - L= | A [ 'J‘ L
f[ecmar L U log - @ )O‘(P)clP T P | oa s dsg
w Drir) a Clr;p)
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ClRr;p) )R
=log =+ PR =
9 5 v
So
I l r r
Alu;R;r) = f o—(ﬂd?‘m—rz fozvplogg—ic@* U'wrp)dp-{,,‘—,l f”t""j—dﬁ jzvrplo;P dp
WP D(&;1) a
yJO‘(P)d'P L y.?rrplmj L. dpt J-jw(?)d? ———~' (valog—L—sziog——)df’
Lo D(R,r) R
2 2
=ut Jrmar 2 € f e £ L]
Dig;r) PR
- | _ (PR)?
< ey [] oemar (1o b= e +4 - T
D(R;r
Hence, letting Rg():b”
4.41 (W, Ry r) —ulR) _ | f . Ll 1 _ (PR
A 2L — L | omdP{legd —iog o 4 L — OR)
D(Rir)
- 2" 2
= % }( [ 0-(1+P(059/L]+P5;H9) {IOer— lo,-)’a =+ —’1 — 2-[-:_—53 FdOJF'"-"'
ki
But Tl—‘z srr r()[+‘)(059,\j+f>sin9)€logl,;—!oﬁ LP +,11" jf%jpd“’dP‘*' 1’4" 6(2y)
6 o
4.42

7 ()Z
__‘L frj1%wu+ewwm*?“"w‘fuﬂﬁ{“ﬁ%;*i“ﬂlﬁPd@df,
- r2 Jo Je

2 si P> =" L}
4.42 since L‘”(loq_f;-ki— _273)‘,0{9 = L (109 Tﬁ)PdP“' %

8r2
= Ioﬁ_,—— &1]r+£_ :..Zw_ ‘—2+ rz_.._r_?::._, rs
=% Fle "3 Tz =7t T3 -

By Schwarz's inequality the expression 4.42 is bounded by
z" 2w - Yy
[FIL . IU“(J(-»‘-P(ose;"j*'FsmG) O"(%z‘l)lz()d@d’? 1‘-,:1 )o fo(log §_+£ — tl—rz) Pdod'o]

The first integral is 0G°) almost everywhere.(See Appendix IV).

The second can be evaluated. Letting i?:z , dp=rdz, we have

r 2 \
%—T_Ifo (‘oa‘ﬁr 3’5{%) pdp= irﬂ: L' (logz +4 ’Zzz/zrz rdz

N,

I
:;zTrSO((w}Z _f:)zdz

which is finite and independent of r. Hence the expression 4.42
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is o(re) almost everywhere and the result follows.
4.44 Theorem: If ¢(P) is such tha

P

o (P) dSp :U-(Po) +0(ro)
C(Po;r)

for almost all small r, then u(P)= U og~— ree)da
is MV(D) d@ifferentiable at .

Proof: From 4.41

A (u;Poyr)—ulPs) _
re -

2
LI’ f j G'/Xo‘}Pfogéycjtr&Ps}n&){)og_C_.;_Ji - }f—FZEFdQC,'o

2w ()

(" réi) +o(r)=— T
r’)_.

7 () +o(r2)

—:;L jor[zrr 0‘(%)—&—0(()")}{!03 ﬁr —1-2 - X }Pclf‘

using 4.43. Hence u/pC—Po):—-}O‘C’Po)

4.5 Theorem: If u(P) is a logarithmic potential functlon

where p 1s a mass dlstrloutlon, and if the density exists
P i
at 3 l.€. ';M _,’_1 jdy(?):a(‘%)
r>o 7
-.D(?o,'l")

exists, then

ulC?) is MV differentiable at P and
Proof:

w(h)==T ac®n)
L (w3 Posr) = S

P MT)C{SP:;"{; dsp . log ,
CC?U';V‘)

du (@)
(Poyr) Fe
= d N |
ug MO j( Oj Q -
. ow U lo I o
A AT S(‘(vo-ﬁr)?q) “r = log R Best
= log %: Pog <1
Hence L (u; Pojr) = fdr( (o)-loa)—‘;. + f du(@)-leg 4)I
D(Po}r) w—"D
S f du(®): logq + f’{fog -~ oj }d{“(@) =ul(h)+ f{log T Ojf’e{_érjd"‘(@)
D(Po;‘")
Therefore

D(?o,r)
L (u;Poyr) —ulPs)

_ | J [
- =% f{”’??"°35535°"“(‘”

D(To}r)
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Since the integrand on the right depends only on the distance

of © from % we can write

L(u, P,r)—ul¥) I fr | | _
= e 2 —leg L d
= L) {legd =g £ § dAce>

where g Cp) = j;p(0>
D(To}?)
Integrating by parts we have

r

L(u;P,,;r)——u(Po) Y - ] . Jk_ 4
== JF;- [('og";—— log F)P(F) P ) F‘(F) ‘%ﬁ

rz g

But F{F) - jdp(a)z—n-(ﬂ a(?o)—%o((ﬂ}
D ?o,'F)

Hence
[_(u)‘Po'/r) ——u(?o>

r d R
b Tl % - (Lo gy

r

Thus  W(B)=- T a(®)
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Cheapter V
HIGHER DERIVATIVES

5.1 Introduction: Suppose the MV derivative fP) of a function

{(?) is itself MV differentiable. The MV derivative of f®) could
be considered as a second MV derivative of (P . The process
could be car: ied out to n th order derivatives. Accordingly
definitions are made.

5.2 Definitions: The n th mean value derivative of f(p) at h

is defined &s
fn=t) X . (n=1)
£(%,) = lim L(F 3 PeiT) f CPa)

r->o r=

if the limit exists.
The n th mean value derivative (on D) of (P) at P is defined as

5 %oy = £ ()
‘F(Y’) ) = IIM A (‘{D ) ) o
» (%) r~o r2

if the limit exists.

5.% Theorem: If f™(?) exists at » then so does # (P , and further
2 (p) = ':i'" 422 )

Proof: This follows from the definitions and Theorem £.41.

5.4 Theorem: If +(uy) is such that all partisl derivatives of

order 2s+| exist at (y), then

(i) Fluy) has MV derivatives at (uy) up to order s.

4 5. L I 2u + oy fy 2w €
(ll) 1((")(1)‘,’) = Z« U5 -+ pre aq) = 2% ¥ ‘F(z;y) or w=0,L<°"°,5,

£(5,9)

(1ii) L(fixvynr)= I S M% 4 o(re)

5
(w)
(1v) Alfizmg;r) = oo 000D vn
o (k1)? 2K+
Proof: (i),(ii). Since f(uy) has partial derivatives of order
2s+| ,all partial derivatives of order =2s are continuous. Hence

f(x,4) has continuous second partial derivatives, and thus, by

Theorem 1.42 ' (uy) = ; v2{iny)



Now f(nuY) has continuous fourth partial derivatives, and hence

{'(xy) has continuous second partial derivatives. Thus

{n{)()(,’):_i_vzf’()()‘j) _—_—Li v4 -F/X)‘j)

2
Proceeding by induction we have
*?(“)/17)~~v1"¥(>w) w=0,12,---,5.
(iii) By Taylor's Theorem we have
mtn=2sg
. g " sin®)  +o(r2s)
-F(I-i—r(ogo)tj-i—r‘érne):-z,n AM,V‘(T‘COSB) " si@
=0
_ am"'n‘F )
Whel‘e AM'V‘ = er\’ ( )(”"’3‘3 7;‘1
and o(r**) is uniform in 6.
m+n=2g 2T
S0 L(fingir)= 2o Awmn 77735 )o s 0 @4l + aff?%)

mn=o

it c-0mpe-nmy-nn]  P(mH o (nx!)

2 r—»(Vh'i‘V) +')
Thus mEN=2s Fmtn m‘H) r( y)+|)

2s
N P4 €™ g i g
L({,)(,%,r)"vgf:oA""" 4 TR timeb =1 ]P(Tfﬂ) éOKrK

where

wem 2 Bz L cima ]

2
Now J‘o cos™MP sinpcdlh =

i § Pt
(s +1)

gl ) (=t
o Aqu m ]:|+< nw |+ (- ,)m 2 -
Ea 4m ][ ] P(% -H)

If v« is odd then dw=0 . Also the terms in the sum vanish for

m odd. Thus
K

L Azm;lk-zm
- Z _—
D = ™
m=s

Plm+d) [ (k=m+])

rk+1)

bo)

and L (fi,9;r) = ézl Gy F2N

Now - ) L)

o G = e Floy) = finy)
= 1)n 2 L 3 ¥ £ 2
o= TDTE) b PGIPU) 2L _ 1 gy,
N EIINED) 1 Tr(2) P(3) ox* 4

Also v2qgy.,=4kra;x - Thus, by induction

G = Y2 A2k-2 _ _'; V¥ F ) & ’(m(iﬂj)

21
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= §09(0y)

n (15
e T oann +0olr™s)

and L (fixny;r) =

(iv) since A(fingr) =% j;L(T(JXI%F)PdP
we have

)
j(‘(k’( > r —F(“)( r2u
Alfixyr)= % 7, L.t j PP dp +olrs) = Z L |

4 o(r“)
k=o  (Kkl)* o = (K!)? 2kt

5.5 Theorem: If (i) F(P) 1is continuous on a domain <& , (ii) {'(P)
exists on & , and (iii) If®1* is summeble on <& , then
A(§P;r)= F(P)+ gf Fl0P) + fl_;l t'CP)+ o(rt)
on O.
Proof: Consider u(P)=- 2 ff 103 £06)d g

From hypothesis (iii) it follows that u(P) is gontinuous.(See
Appendix III). By Theorem 4.44, since

5.1 o rerdsg = A1ry wr PPy +o(ry)

cirr)

u(P) has the MV(D) derivative < {(P). Hence +(?)-u(P) has the
MV(D) derivative zero. Thus, by Theorem £.52, f(P)-u(P) is a

harmonic function , say h(?) . So F(?)=ul(?) +h(P) and hence

5.52 A ({;Pr)= A(WSPr)+ Alh) Pir)
By 4.41 we have :
s S _ 2 ) , Pe 1 _ (Pa)*
5.53 AP =uP =2 ([ £eede {109 PL + L ra)
DY)
= — 2 r {/(0 C’
uie) - = L { 1og fF i = lrljd[’ ['(?;p)) o

Using 5.51 we have | pi
Ali; Piry=ul(P)- 4 1 (7’)5 {‘0% & S T 1r1-3 PP

I bJ
_4F|I(P)j {logj {.l = Lif)3c_'(.)"4j6 '{/Oq# +‘%-—ip—r'}_so(f’z)PC/F
The first integral, by 4.43, has the value —SL" . For the second
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{
2
we have };{loa_‘@%r—i — ;;3 ()56’? :r‘(j log z + Sodd_ jZ5C]Z
ol 24 737 . Lo
:r"rtjo Zifoﬁfc{Zﬂ—é——.(Li:‘:r‘%{[z— log 7 — TZ]o_f—Z‘f}_ =
Thus A(H,p,r):UCP)—” Llf F/(‘P)‘T“I%‘-‘- {”(?)—*PO(Y”“)
Also A(h;?P;v)=h(P)

, and so
AL§ Pr)=alPy+ L2

F”(?y+—$; £F'0P) +olrt) +h(?P)

R+ T fepdy+ T ey 4o0r)

5.54 Theorem: If f(?) is continuous,=h%P) exists, and /f/™|"is
summable on adomain O , then

/ r4 1"
LFPir) = £(P)+rz £7(P)+ = £'Cp) + o(r?)
for every P in < for almost all small Fr.
Proof: By Theorem 2.3

F Cp.
AthPin = 2 JTLU6 P pep
2 A 4 ("Les, P
2h _ oz Lifimn - L [ ippde
for almost all small r. By Theorem 5.5

Hence

ACSPiv) = £C®)+ EF £/(p) +

L= F09) + ord)
2.
Hence

oA

L= 0+ By p) + o(r)

for almost all small r ., And so

2

LOGPir)= A [T 0f; pp)pdp=r77) +

r3
solving for L (f,p,;r) we have

FPCP) +olrs) |

LGimn = [ TLifiPippdpr L £(P) + LF

L fup) +olrd)
- AP0+ §

TSR+ L2 puepy o)

FOP)+r24'CP) + &2 pucp)+0cra)
for almost all small r .

It is to be noted that the set of values
of r for which the relation is true depends upon F.
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5.6 Theorem: If (i) f(P) is continuous on a domain &, (ii) F'(P)

£P) , - -, 1P are continuous on £, (Lii) U (P)|1* 1s summable

on & , (iv) F™(P) exists on &, then for P in &

(D Arppin = 70 £ an
oo R feen rf + o(r:n)

all small r,
- s 24
(2) L{fip,r)= /. f m[zz-rl“—ro(r"j

K=o (k!)z

almost all small r.
Proof: The proof is by induction. The Theorem is true for n=2.

(Theorems 5.5 and 5.54). We assume it true for n=nN . Thus

N
S fler(
LC#0) = 2 "P‘)F“w(q’z”)

K = (l"'!):Z

for almost all small . But from 4.41

Alfipir)=F(P— % fér{“’??*é - jdpj“@dﬁ«e
(P/f’)

=fm -4 ) {lea L d — BT 000

Hence

r (x1)
AlEPr =% -4 fo { log _f; S ff,jéw P "dp +o(r2vr)

AT (x))*

But J’“{ 3 N : 2Kt
i _ J ¥4 2413
10‘1 + l %’-j p dfs pETL L{zz“ log 2+ — - 2_’,_:: }C‘/Z

— p2ut2 [2“”2 logz _ z2"*2 g 2KT2 gantg 7l

- 2k Geer ¥ 20n+2) 5—(2K—+5f)]

_ ru(-tz(— | _ _rEetzn
_(k+l)l (et 1) (K+7—)j - 4(K+:) (+2)

5 i
AP = P+ 30 £00(y)

P2k +2
Y+ 1 T2 (wt2)

e B 2 ET2 )

k=o
= £(P) + 37 £90P)
= -+ 2K
&5 Gl fen r -+ O(ruw»z)

for all small r . By the method of Theorem 5.54

Y]

A N-: FO(P)

k=1 (1) ()

S

‘—‘% {L(F ?,r)——/‘\({,?,rﬂ)' (zw)rz*‘“'+o(r2~+l)
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and
N+l +H
f”)[?> £ (k)[’P)
£5P5r)= P T 2% a)r*® ppocravta) o 2x 2
L (#i®r)= AlfiPsr) +§ (k!)z(er)W FELT kZ":o (n!)? % +olr ~+z)

for almost all small r.



Chapter VL
FPURTHER PROBLEMS CONCEENING MV DERIVATIVES

6.1 Introduction: In this chapter some unsolved problems
concerning MV derivatives are discussed. Also some ideas on
further developement of the theory of MV derivatives are
proposed. It may be that some of these topics are of sufficient
interest to merit further investigation.

6.2 Ihe nature of the discopntipuities of an MV differentiasble
function: Continuity is neither a necessary nor a sufficient
condition for F'(P) to exist. A few examples will show this:

Let f(2,y)=1I1x1 ., This function is continous, and
27
. ey =
L(F)X)ij,r)—- prgat fc I X+ rcose| db
If x»o, L{f;xy;r)=>x for r sufficiently small, and hence
f'=0 . Similarly if x<o . But

2T

L(F}O)j'»r):;,},? Ircos®|db= 2T
o m

Therefore f'(oy) does not exist.

Again consider f(ljy): iij for =x2+4Y*7#0, fro,0)=0
x 2

This function is discontinuos at the origin. At any point
*f 4

other than the origin 32 / Frp exist and are continous.
Hence f'(2,4) exists everywhere save possibly at the origin.

On the other hand we have

2m 21
) rzsimfcos®
Lif00r)= Lo J————————/dgz_/_ _

][’ 1051) 2T Jo r2sin?@+ rxcos*¢ 21 OSMQ il nl = g

Therefore f{'ro,0)=o0  .Hence '¥%1;j) exists everywhere.

The guestion arises as to just what is the nature of the

26
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discontinuities of & function which has an MV derivative.
Clearly the existence of {'tuy) at a point does not imply
continuity at a point. In fact the existence of {'fxy) almost
everywhere does not imply any sort of continuity. For consider
the function:

fiuy) =0 % or 4 irrational

=] 2 and 4y rational.

This function is discontinuous everywhere, but £'00y) exlsts

for all irrational points, i.e. points at which x« or y is

irrational. For clearly L (fixy;rl=o and hence if X
or 4y 1s irrational then f'txy)=0 . Another interesting
example: £1xr4) = | A 7o

= | XA <o

= 0 xX=0
For =x<o f(2,4) is harmonic, and hence f 7 y)=o "
Similarly for =X >o . Further for ==o , Ltf0y;,r)=0 .
Hence f'(04)=o0 . Thus f'Cuy)=0  everywhere for this

function which has a set of discontinuities of positive linear
measure.

Suppose & function does have an MV derivative everywhere
in & domain. Can it have discontinuities on a set of positive
measure (two dimensional), or can it have discontinuities on an
everywhere dense set ? Little headway has been made on these gu
questions. Attempts to construct a function with an MV derivative
everywhere but possessing discontinuities on an everywhere dense

set by the method of Cantor (see Hobson: Theory of Functions of

a_Real Variable ,vol.II,pp 389-4£1 ) have failed. The existence

of f'(P) of course implies that A({;P;r) —> 4CP) as r—o
Since A(§,P;r) is continuous in P we see that F(P) is of

the first class of Baire, and hence its discontinuities form a



set of the first category.

Note: If 'WXM):‘k;; fa () and falny) 1is continuous for
all n on a perfect set P , then f(xy) 1is pointwise discontin¥
uous on P . (Baire). A function is pointwise discéntinuous on
if, given any small o0 , the set of points for which its var-

iation wz¢ 1is non-dense on P . Thus the set of points of

discontinuity is a set of the first category.

A(f;,Pyr) — fcpd
r>

A condition on the ratio will imply

continuity on a domain & . In fact, if this ratio ®s bounded on
then we have
MEZ} < B on @
rz
Therefore IACE pr) —fCP) 1< 2B on .

Hence f(P) 1is the limit of =& uniformly convergent secuence of

continuous functions, and thus is continuous everywhere on FoR
L(f)pPr) —FCP

r>

If we replace the ratio in the preceeding by
the result still follows. For we have L(fiP,r)= f(»)+r*n(P)

where Im(P)I<B on O . Thus

A (F;’P;r): _—;_LJ;L[-F; P/(’)PC’P: 'F[P)*’“ %; fo ,)'([P,P) (’BC’P

Therefore At Piry—~Fced

- J 2 . r
( = IL W['PJ(’)PgdP‘ < FtuBr 2 = %

r=<

6.3 Sequences of functions with MV derivatives: If & seguence

of functions {4@(?)}, each member of which has an MV derivative,
converges uniformly to a function +(P) it does not follow that

f(?) is MV differentiable. Consider fnlmy) = L log ces h nx

28

Clearly +, has an MV derivative,for %g%..: g& (_; log cash hx>::fonh Bt
and 2 = h sechlny = —t

o (enAy p-n2)¥ —> o as n—> o=,
But i [, = I£ v leg cash nx

N> s0 N> o2 = =Ix]

which has no MV derivative at x=o .
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On the other hand suppose f« (%94)—> f0uy) uniformly and
oo
(n)
that L{fuynmy,r) = Z’ \CL (r4) "y

h=6 (n!)?

(see Thebrvem 5.6).Then

L bty r) — fulag) - i 7! h(")i)/;q)

}’\"Vl

Ifm liva —
>0 K> rz r>o0 U262 W=) (n))?
3=
N (n\
= lim {lfm 'Fk/()(l‘{>+ [Pvn E Fu [7"1> rzn_zj
r>o K> 02 K>00 n=2 (nl)?2

=)
" " s GulArv ran-e
1f lim B ug)=g9.0049)  exists, all n and J. v T
k=>wo n=_2 (n!)z_

is convergent, then

lima 15w L(Fk',J()‘iJr)— (:K(X/"i): livn liwn 1(u/bl/q)_; 15 von ’C/k/»Y/‘j)
r~>o k00 r2 r>op k>0 K> o2
{‘/(110’): I von ‘fi(()()‘j)
=

provided this last limit exists. A more thorough examination of
this subject seems indicated.
6.4 Partial mean velue derivatives:

Let T
L (Fingir) = g5 |, FOxrcosoq)ds

207 6

) .
Ly (£524;r) = o= L Lexyy+rsing) dB

We could then define partial MV derivatives

£ (0y) = livm Lal f5204,r) — INEITD)
“ 26 re

JF; (ny) = lim Lyl fiu Yy ) — fouy)

r>o s

ir 4/b1) has continuous second partial derivatives, it is clear

from Theorem l.4%2 that

£l /1/‘1):)7 faoe gu/g(J//V):Z}"C‘Jj

Hence F'(x)w) - (; /1/7) 4 {; /Z;j) (l)

The cuestion arises as to whelher this formula would hold true

for all functions which have MV derivatives. It is, of course,



not necessarily so that the existence of {’ implies the

existence of fy , {é. On the other hand, it would seem likely

that the existence of 4}/, @/'would imply the existence of f:
Would this also imply equation (1) ? The advantage to be gained

in using partial MV derivatives lies in the fact that then the
problem is essentslly reduced to an investigation of functions

of one varizble.There has been guite a bit of work done on the

one variable problem with generalized derivatives of various sorts.
Note: See, for instance

(1) A.Khintchine:Recherches sur Za structure des fonctions

measurables. Fund.Math.9(1927)21g-279.

(2) J.C.Burkhill and U.S.Haslem-Jones:The derivates and aspproximate

derivates of measurable functions. Proc.London Math.Soc.22

(19%1) 346-355.

(3) W.L.C.Sargent:The Borel Derivatives of a function. Proc.

London Math.Soc. 38(1934-5)180-96.

(4) J.Marcinkiewicz and A.Zygmund:0n the differentiability of

functions end summability of trigonometrical series. Fund.
Math.26(1936)1-43.

6.5 Generalized second MV derivative: A generalized second MV

derivative could be obtained by using the second mean

2T 2T
L (finyir)= 2, 5 Jﬂ F (A trcos @ Agraosg, 4t rsmorsing )dodg
[+ o

: =y ) ; ——2L[F'7(/(4))’)-+F/J()»j>
and defining ‘Fz (1,\7)': {.I_:/' L— F 1/‘1/"') - J
o

The relationships between f. and f"could then be investigated,
i.e. does the existence of one imply the existence of the other ?
When are the two equal ? One would suspect that f: is related

=l . « " . 5
to ¥ in a fashion similar to the relations of the Schwarz second
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derivative to the ordinary first and second derivatives of
functions of one variable.(See Marcinkiewicz and Zygmond, ibid.)

6.6 Applications to functions of a complex variable: If Fiuy)=+Hz)9(Z)

where f(2)19(z) are analytic functions of z:7¢+ij and 7 =x-1ly
respectively, then TF(xy) can be shown th have mean value
derivatives of all orders:

LIFyny,r)= z_‘{r— LZ"S?(z.Jrre"&) G(z +re "0) dp

By Teylor's Theorem .
_F(v\)(z) rne Tn @

Ms

flz+re’d) =
h=o nl
et = w 1w
G(F +re-®) = 5 30N(Z)rme 1€
m=o .m!
Thus " : B
(wn) (W) jp— " Sy
F(Z+r€fe)3(2?kre“f°)::ZZZ Fx)g THZ) rrtm e )Q<:;Zj Sy R
Mn=20 n ml
where
Z 1“")(1)6“‘ V\)(i)fz‘(ZVI—K)Q
nt(k-n)l
Hence sy 28 = 2
LOF oy r) = 2 L Zskr“de = 7 e (4 L skde)
k=0
| LT F(h)(z) a(w n)(i.) 2T
g Sy cl & ¢(2h~k)
2T fo w Z n, (K‘—n)’ lﬂ Jc € d6
But o
ELT? Jo e (0 5=0 for 2n#k
:' 1(0)» 2= K
\ 2T | 17 _ F(“)[z)a(”)(z)
And so 2t 5; Sake1 O =0, 33 JO S, de = W__.
Therefore =
L (Fny;r)= D F(2)9M(z)
ke=e (wl)>
and

L(Fix,qy,r)—Fluy)
r -

7 i) g M)
k=t k)

We thus see that F“"(x)tj) = £ (z) g (F)

r-ZK—Z

—> fi=)q'(z)

and further

S FO(y 4D rak
LA moggse) = 2, L 12T
K=o (k‘)l

The results would still hold if Fluy)= Z. fm(2) G (Z)
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where the series is uniformly convergent.
Consider the "differential equation" F'(x,4) = &S(F)

where FE(x,94)= f(z)4(Z) . We have
F(x4) _

BE),
= \ n
Suppose that FE) = > an F

h=o
(272
Then Z: QV\F"FI:‘.‘
n=o

But

[ = frrtgnt o [T f"df 7"*’)‘1"9’—2/ =(n+1)2 FPF’
Cj l. dz dZ

Hence "integrating" we have

'—0—2 Gn Fn+]
R e

(n+1)Z

—x7 + HOuy)
h=o6 —Z‘i; Un +1
where H(wv) 1s harmonic. Denoting 2. msm: F""' by 4 IF) and
n=o
2z +t by w we have «(F)=w and hence, by Lagranges'

Theorem (Whittaker and Watson,Modern Analysis ,pl32)

oo
51 (w—woe)" dn-i n
F:Fo+2_1 nl ;“;-,(W(F)b JF:F‘

n=i

E—Fo
i (F = —_— =
where f(F) oy and wo == o ( Fo)

Suppose F (xy)= f=)9(Z) where
o 9 —
Flo)=ao+ 77 (antn+baZ™") | g(2) =co + 22 (cnE" +dn Z )
h=1{

n=1|

Thewn

I G T l f” f . b
) ; e b o -10 e M [a —~+ wrNeind o
L(f;0,05r) e L{(H’ )9 (re )do s ) o o anrmemb 1 —rl" " 7»»19)]
e [>==)
But —)_L-n_ /;zﬂ‘en\adQ‘—’O, Wik & PSS L(""'“Z:-.’(cﬂr"f""a’*“:T,,,C’"e)]dg
Therefore
27 - e

L(F; 0,(),'7‘):_| f Tas s +Z (an(wrln—i—}i"_c_'?)]d@ =Gy Co +Z (GnCn 2N éiﬁl_")

2T Jo n=1 Y = rn
Thus, if we define F(oo0)l=asc, , then

: . co o2
L(F)0,0,f’)—-F(OID) -_—_—Z\ a“Cnrzn_z_*_Z bhcl\q
r~ n=i n=j rint=

Hence F (00) does not exist unless bndv=o , &1l n. If bndn=o,

then  F'/ (o) =a,c,
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Chapter VII

HISTORY OF MEAN VALUL DERIVATIVES
7.0 Introduction: Some work has been done on generalized Laplace
operators which is closely related to the subject of mean value
derivatives. In fact several of the results given in previous
chapters have been published by various authors using generalizations
of Laplace's operator which are more or less similar to the
mean value derivatives.In most cases the results were given for
functions of three variables. This chapter is devoted to a short
review of the various papers related to the subject.
7.1 A.G.Webster,Dynamics,Leipzig(1985)344-347.
By expanding V(x,4,2z) 1in a Taylor's series it is shown that,
if V is the mean value of V in a sphere of radius R and center (2640, 25
7.11 then  lm Tol o1 goy,
"Hence the excess of the mean value of V throughout the volume
of a small sphere over the value at the center is proportional
to the value of V*V at the center and is of second order of
small quantities. This interpretation is due to Stokes. From this
point of view Maxwell called —V?*V  the @oncentration of vV,
7.12 Also v?v= 3 ;;; si.e. V*V  is three times the mean of
the directional second derivative for all directions. This

interpretation is due to Boussinesqg."

7.13 It is also shown that if Y is the mean of V on the surface

of a sphere, then liva ViV _ 1 g2y,
R>o0 R> G

7.2 S.Zaremba,Contribution a la theorie d'une eguation fonctionelle

de ls physigue. Rend.Circ.Palermo,19(1905)140-150. The author

considers the following generalization of Lapdace's operator.

Let AlHh)= 1\?{ Ftniyyz) + fla—mpz) fl,y+h,2)+ FC009— hyz)
T €Oy, zn) HHDYZ=R) — 6 £y, 2) ]
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Then Zaremba's generalized Laplacian is Z(+)='u;4 Al h) .
o

The author then proves the following:

7.21 If ® ny2)=F (p) = } e(e) d& where ¢ is
®) s
continuous, then z2(F)-_ 4m¢
7.22 If u is continuous in a domain ¢ and Z/w) =o in O

then u is hatmonic in 9.

7.28 If  X(u)= £(P) where f 1is continuous in a domain <9,
= u( A CL‘L s s viyp) = .
then Y(?)=u P)T4VAL£“” s satisfies #(P)=06 . From

this it follows that u(P) has continuous first partial
derivatives.
7.284 If Z(u)=4(P) is continuous in £ and if

)C(?)’la?-i”— +b% +c% + pu
where ab o p are functions of P with continuous first
derivatives, then v?u exists and V= Y(u) .
The author remarks that his results hold for n dimensions and
states the following: For the solution of the Fredholm integral
eguation fcp) : £ G(Py6)Ple)do6,
where G 1is a Green'égéunction or the Hilbert generalization
of this function, one can replace the assumption of the existence
and continuity of fx,fy, fxx, fauy, fyy by the existenace and
continuity of f(P) and Z(¥f) .

7.3 Michel Plancherel,Les Problems de Cantor et de du Bois-Reymond,

Annales Scientifiques Ecole Normale(3)31(1914)223-262. This paper
is a more complete discussion of a previous paper of the author's.
(Compte Rendus,155(1912)897-900.)Consider a unit sphere. Let F (g 9)

be a function of points on the sphere. Let

Az El ok = Lo fF(cz’,@')ds’—-F(d,&)
2Wsin h /
C(¢10)h)

where C is a small circle on the sphere with center at (¢$9)



and spherical radius h. 27 sn h is the perimeter of the circle.

The author then defines the generalized Beltraml parameter as

A% F(g,8) = lim 22FC%h 1h)
h-> o0 stnzr h
2

The name comes from the fact that if F(%06) has a total differential

of the second order then

the right hand side being the second parameter of Beltrami. In
Chapter II of the paper the author proves the following:

7.3l At each point (#6) where F(#,0) has a total differential
of second order NS E(2,0)= A, F(& D)
7.32 If F(#6) is continuous on a simply connected spherical
domain O and if AYF is bounded in & sleee m< Bs F(0) <M

then at each point of 4 for h sufficiently small

™M Ny FCOZ) 00 W M

cos h sinz h cos h

7.323 If F(#,0) is continuous on a spherical domain L and

AF Beo on & then A:F(#6)=0 on D, i.e. F(g,8) is
fharmonic" on 2. |

7.34 If F(z0) is continuous on the whole sphere and if A4y F=o
everywhere on the sphere then F is & constant (since it is the
potential on the surface).
The author employs the generalized Beltrami parameter in discussing
a problem of Cantor and a problem of du Bois-Reymond , both
concerning orthe-normal functions. The application is in connection
with Legendre functions.

7.4 Papers of W.Blaschke.

7.41 Ein Mittelwertsatz und eine Kenngeichnende Eigenschaft des

logarithmischen Potentials.Berichte,Gesellschaft der Wissenschaften

35
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zu Leipzig,68(1918) 3-7. We quote here the review given in the
Fortschritte as the original paper was not available.

"Der Verf. beweist mittels potential theoretischer Hilfsmittel
einige Mittelwertsatze, fur die er spater eine elementarere
Herleitung gegeben hat. Ferner wird ein zweidimensionales Analogen
des folgenden fundamentalen Satzes von Schwarz bewiesen: Jede

stetige Funktion {&) fur welche
lima Flttn)+f0i—n) =2 fox)
h>o ht
uberall im Intervalle a<2<b versshwindet, ist dort eine ganze

lineare Funktion."

7.42 Mittelwertsatze der Potentialtheorie, Deutsche Math.

Vereiningung 27(1918)157-160. The zuthor uses the results given
in Webster's Dymamics (see 7.11,7.13). The author proves that
if f(P) is continuous in gdomain O and has continuous second

partiel derivatives, then for a sphere D (Poyr) there are points

B s P, in D such that L(\C)T’O'/:)* Sy :% 72 {(?.)
r
A[F; Po')r) - YC(P‘)) . o
- =L v={(p.)

where L, A are the mean values of ¥ on and within , respectively

a sphere of radius r and center b .

7.5 T.Privaloff,Sur les functions harmonigue,Moskowskij Matiemat.
Sbornik,32(1924-1925)464-469. Let F(P)= f(xi302, -~ ,Xn) be a
one-valued function in an open domain 4 and summable in 2
Let D(P;r) be a sphere of center P, radius r, and volume V.

Let

A FCP) = “z*’) J'[#fo)’F(P)]dcp
rzy

D['P,'r)
The author then defines his generalized Laplacians as

lim &Ar £CP) = B* £03)
o

im Ay £CP) = 2% F07)

r—>o



If & §(P)= A*£(® the common value is writtemn A% f(P) .The author
proves that:
7.51 If ¥ has a total differential of second order then A f=waf
The proof is by Taylor's Theorem.
7.52 If + is continuous and &*f <0 2 A" F 4n & domain 49, then
£ is harmonic on &,
7.58 If u(?):JﬁVQ)iég- where 0(¢) 1is continuous at P ,then
w

AU (P)=- 4T 0 CP)
7.6 Waclaw Kozakiewicz,Un theoreme sur-les operateurs_et son

application a la theorie des Laplacians generalises. Towarzystwa

Naukowego Warzawskiego £6(1933)part III,18-24. The author defines

an operator axiomatically, of which the operators of Zaremba,fi(ﬁ)])

Blaschke, [B(f)], and Privaloff, [b*({[k are special cases. He
then proves that:

7.61 If f 1s continuous and Z(f) exists and is continuous at
P, then Z(£)=B(f)=v*($) at B,

7.62 If + is continuous and B(f) exists and is continuous at
%, then V *(f)exists and B(f)=V*(f) ,

7.63 If f is contionuous and V*(f) exists and is continuous at
P, then B(f) exists and B(f)=7v*(f)

7.7 S.8aks,0n the operators of Blasckke and Privaloff for

subharmonic functions. Rec.Math.(Mat.Sbornik)N.S.(51)9(1941)

451-456. According to previous results of Blaschke and of Privaloff

if u is subharmonic then

liea O [HLABDZMR [,y i ,O[A/umw—um]

r>o re r>o

The author improves upon these results by showing that for every
subharmonic function # the limits, for r-o , exist and are egual

almost everywhere. He also shows that if ¢(E) is the non-negative

37



mass distribution in terms of which U can be expressed (aecording
to F.Riesz ) as a potential plus a harmonic function, then the
limits exist and are equal to the symmetric derivative of G6CE)

at every point where this derivative exists.

7.8 Papers of I.Il.Privaloff.

7.81 On & theorem of S.Saks Rec.Math.(Mat.Sbornik)N.S. 9(51) (1941)

457-4680. Using the notation of 7.7 let u be subharmonic. Let

5 F denote the lower and upper symmetric derivatives, respectively
of o(e) . The author proves that P < a*u £ a*u<p everywhere

in domain 4] , and obtains in this manner a new proof of the

results of Saks given previously. (Math.Reviews)

7.82 Sur la definition d'une fonction harmonigue,C.R.(Doklady)

Acad.Sci. URSS (N.S.) 21(1941)102-103. The author proves the
following results:
7.821 If wu(%) 1is continuous in a domain G and if &*uzo a.e.
in G , and if &a*ur-w (save possibly for a closed set of zero
capacity)then uw is subharmonic in G . The proof runs as follows:
Suppose u(¢) 1is not subharmonic in the domain G . There exists
a domain» , T <¢@ and T(¢) harmonic in D and continuous
in D , such that

uce) = UCo) (1)
on the boundary " of D , while in D there exists a domain d
wnere

uee) > Ule) | (2)
Construct & non-negative set function pte) as follows. Enclose
the set E (on which A*u is not known to be 2o .) in a denumerable

tha +
system of domains & , such,the sum of the volumes is <€ , then
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domains g, such that the sum <¢€, , etc. where €t€.+--- is con-
vergent. Take pm(e) equal to the sum of the volumes &, g, - -
and their portions belonging to e . The set function m(e€) has
at each point of E the symmetric derivative +« . Form now the
subharmonic function
F(@):—f g(P; p) dple)

which satisfies the followiﬁgz
a) &% f(¢)=+00 at points of E
b) A"frg)=0o in D
(hence $(6) is subharmonic.) Consider a point ®, of d not in !
the set E, of zero capacity on which it is not know that A&A¥u>-oo
where (@) is finite. Consider the function F(s)=uca)+eFfrs6)
and choose € so that at @

F(e) < WU (o) (3)
This is possible because of (2). On M ,by virtue of (1), F(6)< Urs)
where for points on [' we take for F(®) the limit superior of
its values as N is approached from within D . But F(®) is
upper semi-continuous in P . And A* F(6)zo for ¢ not in E
since A* u(&)zo ., For ¢ in E not in E; , A*¥ulé)>-vo
A* feé)=+w, therefore A% F(6)>0, Hence A% F(o) 2o, in D save
perhaps on E, . Thus F(®) is subharmonic by a result of Brelot
(1934). This contradicts (3)and the result follows.
7.822 Let u be continuous in G . Suppose that (i) a¥ u <0< A" u
a.e. in G, (ii) &% ur—c0 | 2*u<+o>  in G(save possibly for a
closed set of zero capacity.) Then u is harmonic in G. This
result clearly follows from the previous one.

7.8% Quelques applications de l'operateur generalise de Laplace,

C.R.Acad.Sci.URSS.(N.S.)31(1941)162-105. This paper contains



n
restatements of and corollaries to results givena.previous papers/

For example: Let u(#) and v(¢) be subharmonic in G . Suppose
that (1) a*u <+ | A*v<+00 eyerywhere in G, and (g8) &f u=2a*v
a.e. in Q. Then u-Vv is harmonic in G .(Math.Reviews)

7.84 Sur la definition d'une fonction subharmonicue Bull.Acad.

Sci.URSS.Ser.Math.(Izvestia Akad.Nauk SSSR)5(1941)281-£84. Let

E, be & bounded closed set of capacity zero in a p dimensional
Euclidean space. Let 4*u be the upper generalized Laplacian of u.
The author proves that, if u 1is bounded above and upper semi-
continuous in & neighborhood of E, , and if in this neighborhood
D¥u(q) > —-oo everywhere and A*uce)>o almost everywhere, then

u is subharmonic in a domain containing E. . (Math.Reviews)

7.85 Quelcues applications de l'operateur generalise de Laplace.
Rec.Math.(Mat.Sbornik)N.S. 11(53) (1942)149-154. The author deduces
two important results on subharmonic functions and their gener%

p dimensional space (p>g) he

L

alized Leaplace operators. In

defines the operator by

5 Lo B [' (ucp)d o )J l_'(Bz)(P*’z)
“u =5 V1 = w — o e
- ° h—> o " —nPi CP—l)h’L

where the integration is taken over a sphere of center §,, @
radius h and volume w . The main result is the following: If

(1) 4« and v are subharmonic in QHomain G and A uwp)<oe,
AvV(G)<wo for all ¢eG , and (2) & ucae) = av(e) for almost
all @€ G , then uc¢)=v (&) th(e) , where h/&) is harmonic
in G.Another theorem shows that, if E is & closed and bounded
set of measure zero, and 4 1s subharmonic and bounded from abowe
in a neighborhood of E and upper semi-continuous at the points

of E, then u(®) will be subharmonic in a domain containing E
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if R ule) 7-2° everywhere in E except at points of a set of

zero capacity. These results yield obviously important corollaries
for harmonic functions. The proofs, based on some modern results
of the theory of functions of real vaeiables are straight forward.

(Math.Reviews)



Appendix I

Deteils of the transformation employved in 3.4.

Consider the integral
27 2T
[o L Flx+rcos@+rosd,ytrsin@trsing)cosco-&)dgddo
The region of integration is a circle of radius 2r and center
To every point (a+pcosw,q+psinw)

in this region there corresponds

two sets of values of (%6) as is

shown in Figure 1. Thus the region \\\.////

of integration is traversed twice

in the above integral. Consider
first the set (#%,6) corresponding Figure 1

to a point (x+pcosw,y+psimw) ., We have (see Figure 2)

_ _ r . (2 ~0\)
cos (w—-01) = 5, —ces 5
= B . reet L
2 2r
&) — O &\ + Oy
w = & + =
- 2
Hence #i= o+ cos-t £
ol
O = w— cos™! P
ar
And
2e _, 26 _
'5'&) =) dw I)
o¢r | | - 26 _ _8& !
ol _ N T . j = -
o |— £ wad N4vr2— pz aly o d Varz-p=
Thus ik
| = I
| [atnig| e g
ow,2p ) l N Vara—p=
i Lo abs
Further
& —6 P2 P"_er
ot — 2 — —
cosl—60)=2acos? ( % ) | = -] =

25® 2r=

(J(Jj)
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And hence for the first set (#£,8:) we have

2y 2T o MR
[—:. { I {{1+prosw,tj+ps"ﬂw) _P__._itl cluwdp
r=1le Jo 4r2—pt

For the second set (&,6:)we have

B2 =w— COS—'"g'r , &2 = w+ cos | :g—r
and we obtain similarly the same integrel as before.
get

2 2r (2T
_1:1 S ‘F(x+pfosw,tj+ps-‘nw)
(4]

[} Vﬂr?_._Pz_

()2—~ 2r

dwdp

LAdding, we

T3



41

Appendix II
Details of the differentiation in43.4

(1) Consider the function

g(0q) = Sr Jznflx+prose,«1+p5|‘v\9)pl"”d@dr)
o6 Jo

= [I{lgn)[Y§—xP+(n—W7"d§dn

D Ouy;r) |
where ¥(L1> is continuous. We form the increment Ag=9(x+ax1y)—9(1s4)
- Atax + Jre-(m-9)* A+ Ar=()+
= S d”'{} [(s-x= a0t O01=42)] " gm)dg — | [E-0+=4*]" £(5,7)d5
Y=r 7(-\—A)(—-mz_ EW oo
Yr Z+ 2+ {r=M-9* XAVt
= jd’l'{ {(E{g—x)’“{‘h‘l"ﬂz]ner\AJ('(?")())g‘(g,n)dg— U?—X)‘ﬂn-“))z]"%(?)h)d%
4-r At oA -{r- ) 2 —{r—0rg)2
Ytr eat ey L= [P
- g d"'{ f[{?-xwM-ﬂ)‘]”wclé‘ﬂz)d? +j Ls—0r+n=41*]" f(5,7)d53
4T A +8X={ P = (m-q)* X +AX+ = )

(s-x) f(gm)ds | D
Y t+ax -\t

neglecting terms 6(sx) . The first integral is the integration

bt [T ma)- _
—2naX

of [(3-x t=9*]"f(sm) over the shaded
area in the figure. The equation of C(?%sr)

using Piuy) as the origin of a polar

coordinate system is

pt—2pAX Cos X 4 2=

o PRACAT TR . AX
Thus L 2vax 2r
and ():r-{—L\i(‘oSe't‘OKAx)

Setting this integral up in polar coordinates we have

9\ r+AX(U$9
5‘ S —F(i+()(oge)tf+()srn@)Pzn-rldpdg
- B r

Applying the Mean Value Theorem



4§

jede fe 6,4 +trsind) g (o prrt JTTAX 56
) o, X+4ncos,Yytnsin ] Pzn-fldr,— GcfQ. F[:Y+n(050/q+r,51n9)[2n+2

(o]
— 5 Fix+ r,roso,tj—kr‘sma)\'““ A cos@clb
— O

where r<rn <r+sxcoss, As ox>0, Q> I, n—>7p
Fix +ncosOyrrising)—> f(A+rcesy, y+rsing) and thus , upon division
by &X the above integral approaches
2t gE«F(}(-{—rcos@,q-\-r‘s;‘n&)COstB
T

Similarly the second integral in (1) leads to the integral
3m
pant) y g L(xxrrceso) 4 trsing) cosodb
g

Adding we getz

2T
rantl So —F(ifrcose)v’—f—r*s.IWS)(OS@dG

Now the third integral in (1) is

Y+vr Ltox + Vr—-M*
-—QnAX_S dy- g (x-x) £(5m)ds
4=r It tax Vi -y

Dividing by & and letting aAxX>o we have
y+r A=z
-andn~ (900H§pﬂd§='znj I}¥7+pms®4+pwnwp cosocodp
R S P
Adding this to the previous result we have

o3

2T r oren
2 = r2nt ( F—(I-tr‘cosé)u}+rsfn9>cof@d9‘2v\ ( I 'F/l‘f‘Pfﬂsp)‘f"’PSf"D)PZ(oslﬂdgdf
o Jo o Jo

(2) Consider now
q(X/‘j> ~Y {0 J;(.éfpfo§9)1+[?$ln@) 103 -—"adgdp

2

.

) log ————— ded
IRy S——
D(xy;r)

where f(x4) is continuous. We form the increment A§=9(Xtn%4)-900Y)

Y+tr A+ax+ = A bn®
— L { g IO LI dg — . Hsm)d
~2 gﬁdn | 199 g maxr O] HE A rmrorsy e
Y—-ir

A+ AT — rL..(n_‘s)l 7“5“"‘1"(’7‘_‘4)2
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r2_

] | = logrz — lo Lﬁ—?—%)z‘t-(‘n—v))z—la:(/§~><) -\-—(A)()z]
We have ©9 (5 =2~ AX)?+ (M-4)? 3 A

= log r>—lo9q [Zg_)()?-_,.m_q)xj + 2AX(E-20)

“+ o (ax)
E-=0*+(n-Y)*
and hence e YV v Lt X H V= ()
1t 2a%X (-2
_ r2 _ rt _ 'F{fﬂ'))d; +0(sx)
A3=3 Jdn 4 [ losgmerpar 1695 — ot FEmds + | fcenztord
4- T g S
r ;(—er(n-wz X—m o +AX— {re—(m-y)
But for the first integral we have
XA +2AH ‘,L_’_'[y’l:”z 1+Ax—km
A 2 log r*— log [(s-)2+(n-91] JHE
g \ocj (g_}‘m(n_hl)xﬂ‘;m)cl; < wmax| | 5{ o‘j_-”‘ C)[ }
R x x
o JEETE =)

HEAN AN ri—(n—y)2

5
o BV e

=]
= vaaxl D?""){ﬂ*loc’rl—lmjﬂg—x)‘ﬂn—«;)lﬁ—2{w,-q)ban

)2 (¢ T e 2Vt (-
Tl | 2000 + &X ‘063 rr— (X% r’-—("q—q)l-) \OC) \_(AX'T Jrt={({m-Y) ) k”ﬂ
= m &x J

- 8 4\ri-(m-4)?
a2 =

—— |oq Ft —2 (7)“‘1) beun -+ 2(n-4) fan™! Vri(-9)> x
+m—q)"- 9

n—9
= max |l | 24y + 28X logr*— (ax + Jr’—(n—-'j)‘)(\wirz“" );?;_( == h’l“df)‘% o (sX)
(ri-(n- ax _ {r=n)2
' AR o) e 2 () bt S
4 Jr— (-4 logrt— 2(n-) be "=y )\t‘it_;(_a:;{: =4
= vnow B \2A)L-— ZA’L(_. E:rl—h\—vj)‘l’z—'ﬁ——ri M-N* +o(ax) = pAL)
= r

Similarly the second integral is o(sx). Thus neglecting terms ol(asx)
L« AL T =)

‘11’)" S_X
Ag =AX y dn- |\ HEN) GGt dg
i A+aX =\ ri-(m-q)t

Hence —
Yt r 7(+A3(+Jr"—(‘""‘”)-
- X 4

A s

~_—?—- = d'y‘ {-Lfly\) (?‘1)2+()’_‘1)1 i‘

e 94-r A+ DX — S ()
and

X Ve

.(,j‘{-Y" zg “X - d B 3 o
X =( d"'g “‘S‘ngmwl 5=
=0 JA=Jrn-y?

277

Fx tpcos®,ftps nB)cos® dodp

D

o

I

o



(3) Consider now
fxy)= TR2 f J FOUtpeosoytpsing)pdedp

f (R‘Hoq RL‘PI)F(J(+p(ch,"j+psmc9)Pd(9dl’>

TR* )o

g I gR gurf [1+P(os6),bj+Psfn8)PdodP
&)

—2 (R (Tioq & f'Cx tpeosorg+painb) pdodp

=T
JR fo F'(J-(—()Case,q+Ps‘|‘n0)()d@dP

]

L
t

TTR‘—f f F'x+pceso, y+ PTIWB)P5d0d,0

We apply the results of (1) to the first, third , and fourth

integrals and apply the results of (2) to the second integral.

Thus
of

£ §\ £ (xtrcoso ﬂ+TanG)<osS~dB

‘ T
__2—_ S'OR gl -F’[X'(-{)(_OSQ)L‘—‘-PS,‘HQ) (OS@C]Q(JP

(&)

+ & F’(1+r(os<9)“l+'"‘r“Q)COSQde
n 0

__E_ {\7—”€I[1+rroso)v_t.r<fr\0)(cs@dQ
-n [5)

. + 5:»'18)Pl('059d0df>

LM
= _——T[(_R —F(l-(-r(ose;l-j+F‘5’\*\(9)C°5&C“9
[6)

. fR i - ( R2— p2
- = j {‘(14-p(ose)q+ps'n0) R2—p3) coso dodp
6 o
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Appendix ITII
Consider
o2 2T
u(z,q):u(ﬁi‘)‘f J[loq ?}Q’_ rcp)dpP = j J (oqi .(;-(,H-Prosb,y-f-pqu‘n())'oclé)d()
O o) F

w
l
Let ¢ (o) = [L log + P> S
I
4

log L «1 — _% Pes
o 2T
Let us(Q).:_ SO L R(r)(f'(;(-'—?(‘afo)L»]‘i-PS)\P\D)Pd@dP
Now J_ 0o (2T dod
luta)-ug(a)l “‘ L L {log-‘P - Qg(p)}U'P o (’,

% 2 2
= P
H ), Aesh-esk -4+ Bl f""'”("

§ ;2T
27 2 2 \)
= fsj { g - L+ 4(§)] pdodr Jo §, iz pdode
o Jo g
using Schwarz'!s inequality in the last.

$
But SSLMT{ loﬂ%*%‘,‘*‘é (S)’-j’l—Pd@dP: ZTTL {‘0%%—3* { (€)23 pdp

0

|
e S AL TS L ¢ a canstank

(In the last we made the change of variable %—= £, )

Therefore e
luce)-ug(6)| < CS\/L JO lrlzpdgdr

and hence, if 71" is summable , then H;(6)~> u(&) uniformly
as S$»o , But the functions Us(®) are continuous for all $>o,

Therefore u(¢) is continuous.
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Appendix IV

Consider | {" 2
% r‘)- 0

lu-(x+p(ose,=1+|os:»\0)—o-(:uq)lz pdodp (1)
(o]

where ©1* is summable. Let ®= (0uby) , then this expression
can be written

. ” | o(?)- 0(@) |2l :JFz If{lr(P)lz —20(Mole) +bra)*yd P
D(6;r)

-RIG',)’)
B %L K{IW{p)pCIP "%féﬁ) J[ oc(PdP + TIlUcall*
2.
DC6ir) i Breed
But
P (g)= U toCp)l*e P @‘2(5): ffo(p)dP
E E

are completely additive functions of sets. Thus

DHF(6) = lim o ” loCPY 2 P = | 0°¢6)12 clmest all G .
"7 Beein

DX F,(6) = lim L [ 0CP)dP = 6°C6) almes - all g,
rea Dcs; )

(See McShane,Integration} p 382, especially Theorem 73.5 )

Hence

O lo(p)-0C6)’dP=T l0(&@)|?— 2T 0(&)0(a) +1076)|* =0
rl

r->o D A‘}r)

for almost all ¢ . Thus the integral (1) is

o(re) , for  almost
all .



