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Summary

It a semi-infinite solid the problem of determination
of the thermal stresses caused by a known initial heat
source throughout the solid and a known time dependent
heat source on the surface is considered, The heat sources
are taken as axially-symmetric, and the physical properties
of the solid are assumed to be constant.

The equation of heat conduction is first integrated
in order to obtain the temperature distribution throughcut
the solid. This result is then used in the eguations of
elastic equilibrium expressed in terms of the displacements,
The latter equations are integrated and integrzl expressions
for the displacements are obtained., Conditions for con-
vergence are discussed, and the integrals are evaluated

for special choices of the initial and boundary heat sources
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Notation

elastic displacement in the 1 direction

unit strein in i direction

unit shearing strain between 1 end J directions
unit normal stress

unit shearing stress

thermal diffusivity, equals kﬁpr where k is the
thermal conductivity, g is the density, and o is the
specific heat,

Young 's Modulus

Poisson's Ratio

modulus of rigidity = E/[2(1+2)]

yE il
(1+2) (1-22)
= % ¥ g,
coefficient of linear thermal expansion

temperature

= «F
1-2v

v%;¥253



AXTALLY SYMMETRIC THERMAL STRESSES IN A SEMI-INFINITE SOLID
I. Introduction,

The problem of determining the elastic stresses and
displacements in a semi~infinite body is historically
associated with the name of Boussinesq, A solution of this
problem -- also known as the Problem of the Plane -- was
first obtained by Lord Kelvin for the fundamental boundary
condition of a load concentrated at a point.[l]1 Boussinesq,
using potentials, succeeded in solwing the problem for more
general boundary conditions.[é] Subsequent writers, partic-
ularly Cerruti, generalized the solution further and devised
new methods of attack.[3] A method of solving the problem,
applicable when the surface loadings possess axial symmetry,
was studied by H. Lamb[4] , and K. Terazawa.[5] This method
can be extended further to obtain a solution when there are
body forces present which can be expressed as gradients of
a potential function, and can be modified, as shown in this
paper, to give a solution to the problem of determining
thermal stresses caused by axially symmetric heat sources.
Since many heat sources are of circular section, the case of
axially symmetric distribution is important physically.

In the present paper it will be assumed that the temper-
ature of the plane surface bounding the solid is known as
an axially symmetric function of time and radius, It will
also be assumed that the initial distribution of temperature
throughout the solid is a known function of the depth and
the radius, and that the initial condition of strain is that

1. Numbers in square brackets refer to the notes at the end

of the paper., ©See page78,



which would be caused by this initial temperature dis-
tribution., Aside from the foregoing initial and boundary
heat distributions, the solid will be taken as free of heat
sources, Finally, the solid will be taken as a homogeneous
and isotropic elastic body, the thermal conductivity, the

density, and the specific heat being constant throughout,

II. The Thermo-Elastic Boundary Value Problem.

Whenever the stresses in an elastic body are caused by
the unequal distribution of heat it is necessary that the
fundamental elastic egquations be modified., In order to
define the notation and have these egquations for ready ref-
erence, we shall restate them here. Since the present
problem is one involving axially symmetric gquantities, the
elastic equations will be given in the form they assume in
cylindrical coordinates,

We shall let V be the displacement vector,

V=Iv+ Tovat IV
where v, , vV, and v; are the displacements in the radial,
angular, and axial directions respectively, and I,, I,, and
I, are the respective fundamental unit vectors, The unit
strains in the respective directions are given by the
equations, [6],

(A) el = ..a..Y.! b4 eg
or

i

HI<

+1dwm , e =20w
r 30 2z

The unit shearing strains between the respective coordinate

directions designated by the subscripts are given by,

(A') e,= €,=1w+3Vai-N €,= = g_v,+ ovi, e, =1 dvp+
T T

rdé or T oz 2

Q\fﬂ)



The respective normal stress components will be designated
by s,, S, and s;, and the shearing stress components
will be designated by s,, = S, 5 S,2= S, , and S;; = S;2,
where s;; is the unit shearing stress in the 1 direction
on a surface whose normal is in the j direction, The
fundamental relations between the stress components and the

strain components are given by Hooke's Law[’?] , which states.

e, = 1[s, - v(s,+ s;4)] ' e, =1 sn
E G
(B) €= _];[Sz -v(s, + 53)] e3 =1 s,
E G
ez=%[sa'v(é:+ Sz)_] eza=_és,3

where E is Young's Modulus, z»is Poisson's ratio, and G is
the modulus of rigidity which is equal to
E

2(1 +9)

Equations (B) can be solved for the stress components in
terms of the strain components, giving
s, =AA + 2Ge,
(BY) S, = A0 + 2Ge,
S; =A0 + 2Ge,
where A = 2E/(1 +v)(1 - 22) ‘and A=¢e + e, + e, =7V,

V being the operator,L,+1,2 + 1,12 + 1,3 .
r or T 26 oz

If s=s, +s, +s; , it follows from (B') that

(c) A= 1-22 8
E

In the case that the displacements are axially symmetric,

v; and the partials with respect to # vanish,



Equations (A) and (A') become [8],

(A") =2V, =%, €=09%, €,=QV%+ oV
or r oz or 22

The equations of elastic equilibrium in terms of the unit

stresses then take the form [9],

(D) 25, + 5, - S + 95,+ W, =0
2r r dz.

ﬁ;‘f‘ aS,3+ S, + W3 =0
0z or T

where W = I, W, + I,W, is the axially symmetric body force,
If equations (A") and (B') are substituted in (D), the
equilibrium egquations in terms of the displacements for
the case of axial symmetry are obtained:

(A+ G)g%+ G(Zevi - %) + W, =0

r
(E) 2
(A+G) A + G2, + W, =0

Boussinesq's problem consists in solving equations (D) o
or (E) for z>0 subject to boundary conditions on the surface
z =0 1in terms of either the stresses or displacements,

For example, we may be given that

0

i

{ S,;= Ge, =R for z

S; AL + 2Ge;, = Z for 2 = 0
where R and Z are functions of r, These conditions together
with (D) or (E) suffice to determine a unigue set of stresses
and displacements throughout the solid z > 0.

When the solid is subjected to heating which results in
a temperature distribution which is a non-linear point
function, the relations (B) for Hooke's Law are no longer

valid, The strains will not only be due to external stressing



but also to temperature changes., If T = T(r,z) is a
point. function giving the value of the temperature, measured:
from some reference level, and &€ is the coefficient of
linear thermal expansion, then the strains due to temperature
variation are [10],

e = €= e,=al,
provided that the magnitude of T is such that the expan-
sion is linear, Since no shearing strains will be caused
by temperature changes in an isotropic solid, the quantities
e;; will be given by their equations in (B). Adding the
above thermal strains to the elastic strains of equations
(B), we get the form of Hooke's Law which holds in thermo-

elastic problems, viz,,

e =1[s - (s, + s;)] +aT Ge,, = Si

B
(2.1)613 %[Sl- vls+ s))] +aT Ge, = 545
e3= %{53 = 7‘,(‘SI + sg )] + «T Ge'l? = 85,

Replacing Hooke's Law (B) by equations (£.1) causes a
modification in the other elastic equations. Solving (2.1)

for the stresses, we find that equations (B') become,

s; = ADL + 2Ge, -gT
(2.2) S, = MDA + 2Ge, -p@T
S; = MO + 2Ge; -pT

where @ = x B

1l - 2v

From (2.2), the thermal form of equation (C) is found
to be

(2.3) A= «(s + 36T)
I



In the case the body forces W are everywhere zero, substitu-
tion of (2.2) and (A") in equations (D) gives for the thermal
equilibrium equations in terms of the displacements:
(A+G) 28 + G(Vgv, - %) -@3T =0
or r or
(2.4)
(A+G) 2 ¥+ Gy, =g =0 .
dZ.
If the surface tractions are everywhere zero, the boundary
condition (F) becomes
e, =0 for z.= 0
AA + 2Ge, =,3T. for 2 =20

(2.5)
~ To solve the thermo-elastic boundary value problem, we must
then solve equations (2.4), for z > 0, subject to the
boundary conditions (2.5) on z = 0, Comparing equations
(2.4) with (E) and (2.5) with (F), we see that the boundary
value problem in thermo-elasticity with no body forces or
surface tractions is the elastic boundary value problem
with body forces W= -/0\—752 and a normal surface tension
of amount &T, The total normal stresses can be found by
using the displacements from equations (2.4) and (2.5) in
equations (2,2). Physically this means adding a uniform
pressure of amount ,eT to the elastic normal stresses,

If T is a known function throughout the solid z > 0 and
on the surface z = 0, the complete problem is contained
in equations (2.4) and (2.5). However, it may be that T
is known only on the surface z = 0, it then becomes necessary
to solve a boundary value problem in heat conduction, 1In
the general case the temperature is not only a function of

position, but also of time, T will then be a solution of



the equation
2

(2.6) V,L =10I ’ 4k a constant,
K 9t

subject to a boundary condition which is usually of the
type T = E(r,t) on z =0, and subject to an initial
condition of the type T = H(r,z) at the time t = O,

The thermo-elastic equations (2.4) were derived under
the assumption that T was a function of position only. In
the case that the temperature is time dependent, it follows
that all of the displacements and stresses will also be
functions of time. The thermo-elastic equations for this

case will take the more general form [11] ,

(A+6) o8 + &(V,% - %) -#L =p 2y

(2.7) . .
(A+G) 28 + G(VZ%) -0 = ,p2Y%

0z 0z.

where /:is the density., In most cases of physical importance

the thermal variation is gradual so that the stress con-

figuration is always in equilibrium with the heat distribution,

The time then enters the equilibrium equations only as a

parameter and the right hand members of equations (2.7)

are zero, It follows that whenever the surface conditions

are such that a temperature-stress equilibrium is maintained,

the complete boundary value problem consists of eguations

(2.6) subject to the conditions,

T = E(r,t) on 2 =0

(2.8)

T = H(r,z) at t =0

together with equations (2.4) subject to the boundary
conditions (2.5). However, Goodier [12] has shown that
the latter equations hold to a good degree of approximation

even in those cases where temperature fluctuations lead

elastic conformation. It must be assumed, however, that the
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initial stresses are those which are in equilibrium with
the initial temperature distribution H(r,z), and that the
elastic quantities E, », G, and &« do not vary with the
temperature. (This can be assumed to hold in most practical
cases, See Goodier loc. cit.) Under these conditions, the
solution of the problem will be unique. For equations (2.8),
(2.8) possess a unique solution [13], which in turn
assures the unigueness of the solution to the elastic
problem (2.4), (2.5). [14].

A fairly complete 1list of references to the literature

on thermo-elasticity is included in the notes, [15]

III., Heat Conduction in a Semi-Infinite Solid,

The solution of the thermal stress problem was seen to
first involve the solution of equation (2.6) together with
the conditions (2.8). In order to derive an expression
which is a solution to this system of equations, it will
be simplest to employ a metinod analogous to that first used
by Minnigerode. [16]

We shall first define a function u = u(r,8,z;p,#,8;t-1?)
as the temperature at the point P = P(r,8,z) in the solid 2¢
at the time t due to an instantaneous point source of heat of
unit strength[i7ﬂ located at the point 7 = w(p,#,¥) gen-
erated at the time v, where T< t ., The solid Z{ is assumed
to be initially at a temperature zero throughout, and the
surface&p of the solid is to be kept at zero temperature,

The function u will be called the Green's function for heat
conduction, It has the property that %im u=0 at all

27
points in I except at the point w. Further, by definition



%
of unit instantaneous heat source, the total guantity
of heat in the neighborhood of 7 as t—stis unity. We

thus have that

(3.1) «'(75 = gu for t > T
0

where W’is the operator QL +18 + ;‘Q:.+,Q: .
or* r or r*oe* ozt

Since Qdu = - 9u , u must also satisfy the equation,

ot gt

(3.2) xVu+ou =0 for t>7

Bt

Next. we shall define the function w = w(r,8,z,t) as the
temperature in the solid 4 at the point P = P(r,8,z) at the
time t.due to an initial temperature h(r,8,z) throughout &/
and a temperature f(r,9,z,t) on ¢/. The function w will

satisfy the equations,

VW = ow ,  £>0
o]
(3.3) w = h(r,8,2) , at t = 0 throughout &

1}

w = f(r,8,z,t) , ong for t> 0
Since eguations (3.3) hold for all t > 0, and since T is
restricted to the interval 0 £ T < t, it follows that the

function w = w(r,e,z,r) will satisfy

xVW = ow , Tt
ot
(3.4) w = h(r,6,2) , att= 0 throughout %

w = f(r,8,z,t) , on¢/ forz> 0
Next, let us form the product of the functions u and w, both
being considered as functions of r, 6, z, and T, then by
equations (2.2) and (3.4), we have

(3.5) od(uw) =udw+wou =~[uV§z-th],

ot ov = o7
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Integrating right and left members over the volume 2 gives,

(3.6) J' (u w) ar = «f (uvk - wvh) dr

where dvy = r dr d6 dz is the differential of wvolume.
By means of Green's theorem [18] the right hand member

can be transformed into a surface integral, giving

(8.7) j gu w) ¥  =k3 % (uow - wou) dor

i an; on;
where SJ. denctes 1ntegration over the surfaceéz-whose
¢

surface differential is dgr, and 3 _  denotes differentia-
on;

tion along the outward drawn normal, In the case that
is the semi-infinite solid z > 0, there will be only one
surface of , namely, the surface z = 0, do will equal

rdr de, and 8 _ =0 = - 08_ .
on a(-z) 0z

Hence, for the solid z > 0, (3.7) reduces to

(2.8) j guwz dy = «I (W_Q_q~—u_6_xg) do
d

0z 8z
If € is an arbitrary small positive qguantity, integrating

(3.8) fromt— 0 tot= t -¢ give%

IJ‘ (u- w} drdr —ij W ou-uaw) do dv
oz

Reversing the order of integration 1n the left member and

proceeding formally,

(2.9) g Wl dr dr= f{[u] Jw] - [u] [v"]}ar =
- t-¢ Tebe T poo

= K g (W 6u—u©v) dordr

‘J 0z

and since u Vdnlbl"e% on (7‘) this last integral is egual to

/(J‘ rw_@_gd«rdr
o

0z
=0 J




Next consider the limit in equation (5.92) as€ — 0. Since
limtu = 0 everywhere except at the point m, the volume
;r;egral over Z{ is equal to a volume integral over an
elemental volume % containing the point w. The function

w may be considered as & constant throughout % with a value
equal to its value at the point 7 at time t = T, Hence
from (3.9), \

= N + K r d
g, nfndor - o ore o o o
Tr=d

where § is the volume integral over the elemental volume
(]
containing the point w, But by the properties of instanten-
eous point sources, [19],
5?13_9‘[%] dr =1
Therefore [we], , the temperature at the point v = 7(p,#,$)
at the time t due to an initial temperature distribution
h(r,e,z) throughout?{and a boundary temperature f(r,e,t)
on z=0, (see equation (3. 2 ), is given by
a0 (34
(8.10) W(/°,¢,I,t) = jjf [u] h(r,8,z) r dr d6 dz +
t o 20 3% SZo'ere 7
+ K f(r,e,v) [@] r dr G€ dt
0z

Tzo =0 630 220
To complete the solution, the Green's function,

1, = u(r,e,z;r,ﬁ,f‘;t- )
for the solid z > O must be determined. For an infinite
solid we have that the Green's function,or the temperature
at P = P(r,6,z) at time t due to an instantaneous heat

source at 7 = 'tr((o,¢, $) at time T, is [20]

u = 1 exp(- R
8[mk(t -1)]7 4K(t -1)
where for cylindrical coordinates

R* = p* +/°t— E.rfcos(e-gt) + (z -¢) = Q* + (z -72)°

13.



If a negative instantaneous unit source is placed at the
point 7' = W'((O,gs,—[), the principle of superposition of
heat sources gives for the temperature at P,

(3.11)

‘&Tﬁrn(% ; ru%{exp(- QIF(E 2 - 3')_) - exp(— QEF(TE(’:})Q')]

But this expression vanishes for all points on the surface

z = 0, 1t is zero everywhere in Qas t—= T except at the
point 7, and its integral cver % is unity [21] » Therefore,
(3.11) is the Green's function u for the solid z > 0,

By differentiation of (8.11) with respect to z, we find that

(®-22) [‘g‘%}z spee ey (" o)

Substituting (3.11) and (3.1g) in (8.,10) and interchanging

the symmetrical quentities 1,8,z with £,@,8, we get as
the temperature at time t at the point (r,8,z) due to an
initial heat distribution h(r,8,z) and a boundary heat

source f(r,6,t),

(8.,14) T(r,6,2,t) = T,(r,8,z,t) + T,(r,8,2,t)
where

0 &0 AT
T o= 1 h( ' [exp (-»- i+ (z- 1‘) — €Xp (- o'+ ( z+I)szr
' 8(17/(5% J J /ﬂ,yf, 4Kt 4 4t
and Lro o0 $:0 -

t oo a2

o ( 2
T, = fé£,¢, z} exp(- g* + pepagaz

821rx)'3/w JJ (B —1)% 4K(t-t
T:0 Pro Pro

where dr = ,ocx{od,ﬂd!

Since we shall restrict ourselves to the case of axial

symmetry, we can take h(r,8,z) = H(r,z)

and f(r,e,t) = F(r,t)
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We may tnen write

T_.}x.ffﬁ((o,l) exp(-r o )[exp(—_(%ﬁgi) -
fro pro exp(- (¢ + z) ] exp (zrp zgfég -~ ¢)}d¢f@od!

r 4KT

But»-f‘exp(acos (8 -—¢))d¢ =‘f1%;p(acos(¢2)dﬁ = 27 I(a)

whereoxxa) is the modified Bessel function of the first

kind of order zero,

Hence,

3,15 T, = L f f H(p,¥) exp(- r’+p’
LR W TAET J 5y (0:) exo(- e )

4Kt

[exp(— ¢ - zf) _ exp( Séékt ;) (%7%) dpdf
and similarly,
(3.16) T, = :[{Io tg‘g—, ; eyp(-— r;;(',-ct»'f?;)
I, (éxﬁiﬁ_ = ) PdpdT

The foregoing method gives the expressions (3.15) and

(3.16) as the formal solutions of the boundary value prob-
lem (£.6), (2.8). For solution of the thermal stress
problem it will be convenient to write these eqguations in
a slightly different form.

By means of the relations [2g]

() _1_ exp (- r’+ p’) I(A,rp) = fwe"‘bzt.f,(br) J,(bp) b db

4Kt 44T

) [l Gat) - oot ) -
“{ é«°¥81n(cf) sin(cz) dec

(1]
(8.15) can be written in the form:

(3.17) ffff_;f_p H(p,!) exp(- #(p*+ ¢*)t)

foprobete g (pr) %(qp) sin(c{) sin(cz) dcdbqodf
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Meking the transformetion t -7*= t', &nd using the
relations (4) and

Q0

- ko't .
(c) z exp (— z? ) =f2kc e sin(cz) dc
b

KL 4KE o T

(3.16) can be written in the form
(38.18) T, = 2/( ffff pb F(p,t- w) exp( k(b +c )t)
t 2o P70 b0 €50

J(br) J(bp) ¢ sin(cz) dc db dp at’
(2.17), (8.18) are the forms of the sclution which lend
themselves readily to tlie solution of the thermo-elastic
equations, In order to determine what restrictions must
be placed on the functions H(r,z) and F(r,t) in order to
satisfy the boundary conditions, we can proceed as follows:

We have as the complete solution of the system (2.6),

(¢.8) T =1+ T,, but T, vanishes identically when t = O,
so we must find under what conditions 1im T, = H(r,z)
as t tends to zero.

From equation (3.15) we have

T O.= . I, - I, where
Ly = 1 PH(0, ri+ o (f-z) o de al
ZKET (WKE) ) ?-a i em( %xt({ é)) ]5(411;‘@) £e
] H(p,{ iy ot (f+z , dp as
e WKT 1. f ,(P ) eXp( ____/? L..l) r ¢ d

Since the temperature reference level can be chosen so that
H is always positive, the integrals I, and I, are > O for
all values of r, z, and t > 0. If we make the transformation

2 2 2
A= (L -2z) in I, and A = ({+2) inI, , we have

4Kt 4KE
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I, _Kmf pr(,o,erzJ_A) exp(- e p') e’ L(—f) de 4A

Nord, poe
and W
- —z+2JKT A h-‘gg‘ = Sre a
74 2/(1 WAJ Jj{oH({O, z+8 ) e}'p( ré: )e Iﬁ(zlrt) d/-’ A
-2 s
ke

If we restrict H to be & bounded function, we then have

< d) - 1.+ P), ;ar d
e i J‘ j pee(- nf) n(Ee) o

where M is a constant but
o0

(D) J‘ O exp (— '+ ‘) 21*.%' do =1 [25]
J &Kt 41(11 I“l r
P30 o
*
Therefore I,< .,f_ e"‘dA, and as t tends to zero, I,
will tend tc zero for all peositive z, Ve also have for
H bounded that 00
A
I, £ MJ' e da by (D)
Jr
Az~
2V¥e

But this integral converges for all t > 0. Therefore I,
is absolutely convergent and the integrations may be per-

formed in any order, Let us then write
o9
I, = J‘ Lt(P) G(F:Z:t) %ﬂ

p=0

where Lt((") = 72% exp(-— %J;_t‘gf) Io(%%)

and G(P,z,t) =

H(p,$) exp (— XL-_QZ) as

4Kt

1
4 (TKT) rj‘
=0

We shall need the following theorem:



Theorem I,

Given a kernel K, (p) 2 O” such that
(1) K is intezrable and j K, (p) dp = 1
(2) Corresponding to anyﬁ”% > Oy

&Ké (p) dp will tend to zero as t tends

to zero, where ® is the portion of the/Oaxis cutside
the interval r-9 <(o< r+d, .

And given a function fTP,t) such that
(3) 0 << M, a constant

(4) F(f,t) is a continuous functicn inpand t, and

(5) M(z,0) = ¢

Then oo
J‘Kt(P) ]"(P,t) df will tend to zero as t— 0,
tO:O
Preoof:
[}
We can write the integral [ as the sum of three int
r-3, r+é, oo Ly
grals, § + § + §
pso reé, r+d,
By (3) we have that
r-4, r-§
P
J 50 Moo ap < u K, ap
= S0
and * : # o0
Kc(ﬁ) r(,o:t) d(o Y MjKt(f) d(o

pEred _ prr+d,
Eut by (2) the right members oi both expressions tend to

zero with t. Further, since [~ is a continuous function of
f>and t, corresponding to a given £€> 0, we can choose a 9,
and a 0,, such that

IF((O,‘C)I <€ for |p-r| <¥ and [t] <Y

18,

e-
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Therefore red, r+d,
Ky (o) [(pst) dp < €f K,() dp
for |t] < § ';i& o r-3,
But. K ip < j K ( = 1
" J. ) 9 ) e ¢) 9
Hence ' o
tlj;xgj Kt((a) r(,o,t) dp = 0 g.e.d,

p=0

As a consequence of equation (D) the function Ltga)
satisfies condition (1) cf Theorem I. Further, the mod-
ified Bessel function I, (x) is bounded Ly ex[ééj, SO we

have the inequalities,

r-§ r-§
R f’f T R, z) °r
p=o 0
and o o
j L*(F) r < J- SWT exp(- ra,:é z) d/o
P=r+J f’”‘ =

Since the right members of these inequalities go to zero
with t, Lng) will satisfy condition (£) of Theorem I,
Next let us take
[(ost) = | G(p,2,t) - G(r,2,0) |
If we restrict H(f,{) to be a continuous function of both
variables, bounded by a constant M, then the above
expression for [ will satisfy conditions (&), (4), end (5)

of Theorem I.

Therefore )
~

33%,/ Lt(F) | G(p,z,t) - G(r,z,0) | dp = 0
Hence by (1), .

":’L'];-gl"{,o Lt((o) G((O:Z:t) df’ = G(r,z,0)

It remains only to evaluate G(r,z,0).
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Since H is a continuous function, for a given € there will
exist a o, such that

[ H({o,f) - H(/o,z) | <Z§ for |-z ] <%

We can write G(p,2,%) = &+ Ayt hy

where 2-8
A = 1 JﬁEK $) exp(— {I-zf) 4 =
BTy J e2 . ZRT
- .
= 1 e” " H(p,z+efAT A) dA
- L P /
g+J St
Ay =__ 1 H(p, ) exp- gf-zf) al,
2 oJ (mk t) Jg i ( 4kt
2.-
and ao
A H(o,{) exp/- gg-zzz af =
B DiWKtsiﬁJ e ( 4Kt
o0
At
= 4 e " H(p,z+edkT A) 4A
Jr L £
Nre

Now, since H is bounded,

Wee N
o, ] < Mf e”” aa
| J. 2

iVie
and there will eXiSb a t, such that

Z.V"— A
f dal < J‘g for 0 <t <t
4M
zﬂ?
Therefore o, < £ for 0<t <ty
4

Similarly, there exists a t; such that

[Aal<§ for 0< 1t <t

Beturnlnc bow to A,,we can write Lt as the sum of two integrals:

“é%;?% J~e79 4kt‘)d§ §W#?€7~[(H(p’[) - “\p,z» exp( j%%%;/d[
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The first term of the right member is equal to

H(p,2 f e'A dA = 2H(p,z [Je’ldx - je'a d?\}
T v ™

° %
2V¥e Wit

Hence, @ 2+8
-X
A, - H( z)l_<_2Mfe al + 1 f]H( ) - H(p,z) |-
it B .
fre 'exo - —z!) al
4Kt
But ther% exists a t, such that
3
‘J‘e”\dh < Jme¢ for 0<t <ty
s 8M

VKE
And since H is continuous,

2+8 .%%

j] H(p,¥) - H(p,2) ] exp )d{ < & fe—xdﬁ <
-8

2mthi

We therefore have

lAz-H((o,z)]<_§ for 0<t<t,
But G(/o,z,t) - H(ps2) = Ay + Ayt A, - H(,o,z) < &

whenever 0 < t { ty where ty 1is the smallest of t,, t,, t,.

Therefore 1lim G(P,z,t) = H(p,2) [c5]
t—»0

We have thus shown that
lim T = H(r,z)
provided that H(r,z) is bounded and continuous in both

variables.

We must next consider the 1limit of T es 2z tends to zero.
Since T wvanishes identically on the bouncary z = 0, we must
find under what conditions %Ef%Ta =F(r,t).

For the discussion of tiiis limit it will be convenient

to establish a theorem similar to the preceeding cne.
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Theorem IT,

Given a kernel, Kz(to,z) > 0, such that
- o

(1) K is integrable and rli Kz((s, A) dedid =1
P.g =0
(&) Corresponding to any o and &, > 0,

I= J~J‘K2(f’2) dp d3 will tend to 0 as z— 0.
Q@
where ® 1is the region outside the strip

r-% < O < r+d,, - ZK < A

..

————————— r

ind given a function G(r,t), such that

(3) 0£G<LKNM

(4) G(r,t) 4is continuous in both r and t, and
(5) G(r,0) =0

Then,

II = JJKl(f,A) G((o,z:;k_;) dp d)

Fo
will approach zero as  —» Q.
Proof':
Break up the integral II into three parts,
IT=A+B+C

where
r-d; oo )
A= Ky G dp 4} +ffK,Gdeh
= H s 20
P:fﬁzv%@ prred, A
B = ; G dp dA



r+8 @
KE G d‘a daA
p=r-& Az 2

W3,
It follows, since G is bounded, that

A + B £ NIfsz(f,))dfda
]

this integral tends to zero with z.

and c =

But by (2), Further,
since G is a continuous function, we Lave by (4) and (5)

that for a given £, we can find a

and o, such that
2 _ < 2
| G((a,ékZN> | <€ for | r P | < %, and _z < Y,

4AA?
but this last inequality is eguivalent to A > z .
RECE)

Therefore in the strip &, it follows that

c <&f [ x,(pM oo ar < 5ff°;<2((o,2) 6p a)
a

p=o As0
Hence by (1) cC < €
Therefore
lim IT = 1lim (A+ B+ C) = © G.€.G.,
2—>»0 2~»0
If in equation (5.16), we set A = z? ,
4k(t - T

Tz becomes

23.

A [l & < ool 20000 g ose e
a2 pe0
ke

Let us define as the kernel of Theorem II,

S (pA = e A e"‘xexp(— 2@ ph) 1,(+_2rzg‘)
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Then

(E) Jf (o,t-z ) Ky(es)) dp dd -

A0 P30
juj— (P,t- 1) Ky(ps2) 65 A

o ps=o
Consider the integral of the kernel over the first guadrant,
l 3
ff e exn( ) (ot +p )) I.o(gzrzg’.)) dp a2
P=0 M=o

The integrand is positive and we may write the integral in
P

the form,
00 . co
P -.2 T 2 ; ) P S A 3
z% . Ae "exp (— Azr. )f{o exp( Azzg) I_a(g.rgzz}\) d/a dA
As0 po
(-]
t - Xp (erp A') dp = _2° 2
Bu fﬁeXp< 2 ) Iﬂ(grztﬂ) P E'%f exp (rz‘h
po
Therefore

P:foj:h ((J,A) d)dp = J"J e'rdﬂ = 1

Hence condition (1) of Theorem II 1s satisfied by the above

choice of K ((0,2). Next consider

L 2
11 _ff4 F g - A+ ot grpld ) do da
s [Jge 3 et g nfogd)

. § X i
Since I,(x) < e” , we may write

r-& 00
ff Ki({o,)) do 42 & 4 j f #_?_‘ e~ exp(- /\_:_(r—p)z) do 4l +
) 5l Y z z
’ﬂ Pao h’. "
+ 4 {g_a_t e” exp(— _}\__z_(r—/o) do dN +
ﬁf’:dn& =0 2 z? ) r
L‘"‘fl f\zj—"m %‘l "
+ 4 ?"A} e~ "exp[- ) (r-/o)) a/o aa
»f-'f;(o:vr_sl JA:O Z (
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If we make the transformations ) = s and r - p=x,
Z

the first integral in the right member becomes

r o
4zf f (r - x) /4’ exp(— (z‘+x‘),u') m dx
v X= 8, J=0

But upon integrating with respect to s, it becomes

"
z J~ (r - x) déx

(z*+x*)pA

x4,
And since this integral is bounded for all z, the product

goes to zero with z.

Setting A =mand r -0 = -x, the second integral in
z

the right member becomes

o0 o0
Alz.,J~ f (r + x) /utexp(- (z"+x‘)/u") dm dx
NT
xz8, pmso
Which, integrating with respect to 4, beccmes
]
Z (r + x) dx
(z3+x*)
i
And since the integrand is 0(1/x2?), the integral exists

and the expression goes to zero with z, Finally, the third

integral becomes

+8 _iveE
4z (r - x) ,«‘exp(- (z"+x"),u7 dudx =

NER
Z=‘8; /4:0 !

5; ! ) ‘iﬁ
s, 1 1) v . -4t

= 8rz M exp(- (z2r+x*)u ) du dx = 4dar | ue dm
N
xX: 0 M0 M=o

But the latter integral is bounded for 211 z, and the ex-
pression tends to zero with z, The above choice of kernel,

therefore, satisfies condition (g£) of Theorem II,



Let us next define the function G of Theorem II as

| F<P:t -t) - F(r,t) |
Clearly, G(r,0) = O and condition (5) is satisfied., If
F(P,r) is a continuous function of both variables and
satisfies the relation 0 { F < M, then all of the

conditions of Theorem II are met., We then have that

1imjwmei(f,a) ] F(,o,t- zz) - F(r,t) | de dd = 0

20 4K)
Az0 p=o
a0 [ )
and since J~ J~ Kl(f,%) qﬂ dy = 1,
00 Aso 030

limJ‘sz(f)ﬂ\) F({o,t-_gf__) dp @) = F(r,t)

bﬁoz:op:a 4K A}

Returning now to equation (E),

=20 R=r0

2 )
e
lim T, = F(r,t) - 1lim f th(p,t-ﬂf‘t) Ky(psA) dp a2
=0 =

Azo  pF

by Theorem IT. But 0 { F { M, therefore

£ o 2
mazf ke A
Flo,t-_z? K())ddager e " dA
f (‘o’ 4/(») z ()’ (o JT
Azo f’a ¢
And the limit of this last expression as z-—0, 1is zero,
We have therefore shown that
iim T = F(r,t)
20
provided that F(r,t) is bounded and is continuous in

both r and t.

26,
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IV, Thermal Stresses in a Semi-Infinite Solid.

It was shown in section II that thie boundary velue
problem in therumo-elasticity for the axially symmetric
case recuces to the solution of equations (2.4) subject
to the boundary conditions (2.5) (page 8), in which the
value of the function T is obtainec from the solution of
equation (2.6) with its boundary conditions (£.8) (page 9).
The solution of the system (2.6), (2.8) was discussed
in section III, so it remains only to solve the system
(2.4), (=.5).

In attacking this system, We shall use a purely
formal method and later investigate the conditions for
the functions H(r,z) and F(r,t) under which the solution
so obtained is valid.

First, let us write equations (2.4) in vector form,
The displacement vector V (page 4) in the case of axial
symmetry is ecual to

v + I;v;
Hence, VYV = V(I,v,) + V'(I,v;) where V' is the
Laplacian operator in cylindrical coordinates (page 11).

But

n

vz(-j.ﬂ v, ) i.(V.:V. - E )
. x=

and

§7113V3) = ia(tzzvb)
Further, & =V (page 5). Hence it is seen that the
first equation of (2.4) is the I, component, and the
second equation of (2.4) is the 3I; component of

(¢.1) (A +0)TFV) + eVUV -p¥T = o



We shall now seek a solution of equation (4.1) for
z > 0 which will satisfy equations (2.5) on the surface
z = 0.

By means of the vector relation

(&) V'V = SV - TV,

equation (4.1) can be written in the form

(a+26) V@V) - «(@xTTV) -pTr = o

Let us now consider the vector V as composed of two parts,

(4.2) V = V& + Uxh
where § is a scalar quantity and 2 is a vector which we

restrict to satisfy the relation,
(B) Vi = 0

We then have for (4.1)

28,

( + 26)T(VE) + T(Fx2) - G[VxV(Td+ T+A]| - pVT =0

But since the curl of the gradient is zero and the divergence

of the curl is zero, the above ecuation becomes simply,
(4.3) (A +20)P(W*® - c@TTE) - VT = o0

If we now take the curl of equation (4.3), again using the

fact that curl grad = 0, we have
(4.4) WAV = 0

But by means of relation (a),
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GO (T T = O[T@TR)] - VGTR) = o

Again, div curl = O, hence, by (&),

V@75 =vVVEn - vi = o
But by (B), (V'A) = 0, therefore,
(4.5) Vi = 0

We can find a soluticn of eqyuation (4.5) by taking

I such that VA =B where VB = 0.
Now

VT = R = VER -VE =-VE =B

by (B). But in cylindrical coordinetes with axial symmetry,

H
-
~n

[—s
H

3

V«¥ = 1 |8 8 o ='Iz(§‘_’a-_@14)=-§
r or (o1S) 0z or 0z
R/ 0 Vs
But B =18 + 1,5, + 1,5, =i,(gy, - av.)
or 0z
Hence the components B, = B; = 0 and
(4.6) B, = 0% - av
or 0z

Therefore §7‘K = I,B,. But we can expand the left member
of this equation as follows:
V'E = V(TL4) + V'(T4) + V(T4) =
= T,V +;[i,;©:g, + 21,04 - i,AZ) + TL,V'A, ¢
r e
+;}[La_?\_1 - 21,04, - LA{l + 1,V%,
T
3ut all partiels with respect to 6 vanish because of axial
symmetry, tuerefore

VE=1[V'4 - %‘] + iz[V"Az - A:] +L,V'a, = 1,B,
r
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Equating components, we have

VA -4 =0
rz
(4.7) Vi - A =B,
rl
2 -

But B was btaken as a solution of the eguation
V'B = 0
Hence, VB = V(1.B))

- i
7.[V'B, - B = 0
rl
The equation W/'B, - B. = O can be solved by ihe method
"ITz "
of separation of variables. Setting B,(r,z) = R(r)-2z(z)

and dividing by RZ, we get

1R + 1dr - 1 + 1dz = o0
R dr* rR dr r Z dz?

Since r and z are independent variables, we may write

% -~ B'E = ¢

dz*
cf_R+ld_R_+(bl—;L_R=O
Lt r dr ™

The general solution is then

b2

C,e'biJ}(br) + C,e’?J,(br) + Cae-éiY,(br) + Cvebi ¥, (br)

But we shall restrict ourselves to solutions which are

finite for all positive z and r, taking

(4.8) B, = C(b) e'b‘J,(br)



Finally, to evaluate the components of x4, we
write, remembering that partials with respect to 6

vanish,

v'xz e —]-_' ié:z - iz (_a__é'z - QA,-') + ia (_Q_A_z + A_l)
0z or 0z or r

Now by (4.3), since V has no I, component,

dh, = 4
or Z
and
(4.9) V*A = - I,8A + ‘12,(@&_1 + A,)
0z or T

Therefore the only component of A which is of interest

is A,, which from (4.7) and (4.8) satisfies the equation
(4.10) V'h, - A = C(b) e 423 (br)
T

Again, we can use the method of separation of variables,

Assume A4, = J(br) z(z), then

14y + 143 - 1 + 1dz =c() e’F

J dr? rJ, dr r* Z daz?
But J"+ 13- 1 = -b

J, r x*
2 -b2
Therefore, Z" - bzZ = C(b) e
And this eguation has the solution
-ba -be
Z = C(b) e - C(b) =z e
2b

Therefore,

(4.11) A, = J(br) e’ (c, +c,z)

31.
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If we set W = curl A, equation (4.2) becomes

where by equations (4.9) and (4.11),

W, = - 84 = J(br) e ¥ [c,(bz-1) + bC],
oz
W, = 0,
. -ba
and W, = DA, + A = DbJ(br) e [C, + C,z]
or r
Hence,
v, = 08 + W, = 088 + J(br) ¢ ’*[c,(bz-1) + bC]
or or .

(472)

v, = + W, = 3§ + bJ or) o [C, + sz]
0z
In order to evaluate the scalar function @ of
equation (4.2),. let us take the divergence of both sides
of equation (4.3). Using the vector relaticn div curl = 0,
we get

(A + 26) V'8 -pV'T = O

But by equation (2.6) we can write

k) Ve = K(A+ 2G) %%

Now the function T is a solution of the equation of
heat conduction. Several forms of T have already been

derived in section III &and will be referred to later.



But for the solution of (4.13) it will be convenient to

consider the funcamental solution of the heat eguetion

which is obtained by the method of separation of variables,
Setting T(r,z,t) = R(r) Z(z) 6(t) in (2.8), we

find that

(c) T = D(b,c) exp(—k(bl+c")t) b J(br) sin(cz)

where D, is a function of b and c¢ which aepends on the
boundary conditions.
Differentiating and substituting expression (C) in

equation (4.13), we get

(4.14) V¥ = D b g(br) sin(cz)
where D = -p(b*+c*)_Dfb,c) exp(—k(b’+c’¥)
A+ B

In order to solve eguation (4.14), 1let us taxe

$ = b 5br) z(z)

Then VvV V'((or) 2(2))] = D 3(br) sin(cz)
And V(g(br)-2(z)) = 230 + 23 + Jzv =
r

= JZ[(Jr + 1+ 2"
T Jy A

(4

But J(br) 1is a solution of the differential equation

o+ 1L = -0
I, r J,

Therefore §7YJjbr) z(z)) = J(or) (2" - v'2)

33,



Hence,

VE= V[a(or)(z" - B2)] = D 3(br) sin(cz)

again V' [g(r)(@n - B 2)] = gor)(zn -p'2)
far + 13 + 2" -van] = gr) [2"- 2v'an + v'g]
T T g, AN

The differential equation for Z(z) thus reduces to
z" - 2p'z" + vYZ = D sin(cz)

Considering first the homogeneous eguation,

w

z" -gpzr + 0’z = 0,

since two pair of roots are egual, we obtain the solution,

-bz

Z = Ce + C, 2 e'“

which remains finite for all 2z > O. To solve the non-

nomogeneous eguation, we assume a solution oi the form

Zz(z) = Ct sin(cz). Hence,
Ct' sin(cz) [cq + 2b'ct + bq} = D sin(cz)
or (D) cr = D
(b* + c*)*

Therefore the complete solution which remains finite in the

solida z > 0, 1is

~ba b2

z(z) = C,e +C,z e° + _D sin(cz)

rBt + cl)t

Hence,

(4.15) & = b J(br) [ c e

b2

+C,ze = +C! sin(cz)]
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But to obtain the values of tThe displacements in equation

(4.12), we must have the components of grad(¢ ).

bz bz

+ C! sin(cz)]

- 1 J(br) [- Cze” " + Cz e

(@] (&)
e

b J(br) [e-h(C,, (1-bz) - Db Ce) + cC! cos(cz)]

O)|O)
2 jion

Substituting these values of the components into eguation

(4.12), we obtain

1

v, J’.(br){ e'b’[z(czb - Cd) +Cb-C, - C;bj - Ctp sin(zc)}

vy Jo(br){e'h[z(czb - C,,bl) + C, b+ Cyb - Cak;] + Ctbe cos(cz)}

But by the transformation,

C,b - Cyb = h,

0k - 6 = 0,8

h,
T
G, b + Cib = Gb* = By,

we can reduce the unknown parameters to three. Hence,
— ) -bez r .

(4,18) v, = J(or){.e [h,z + h,J - C'b 51n(czZ}

(4.17) v, = J(br) {e'h[h,z + h3] + C'be cos(cz)}

In order to satisfy the boundary conditions and evaluate
the unknowns, h,, h,, and h;, we shall have need for
several of the following expeessions involving v, , v,, and
their derivatives., TFirst, from the boundary conacitions

(2.5), we have the equations:

Q@

(4.18) vy + 8y, =0 for z =0
or 0z
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and
(4.19) AN+ 26 5631, = p#T for 2 =0
4

From eqguation (4.17)

oy = - b J,(br){ e'bz(h,z + h;) + Citbe cos(cz)}
or

and from (4.16)

v, = J,(br){ e-b![h, (1-bz) - bh,_] - Cto'c cos(cz)}
0z

-b
vy + %\_r_. = J,(br){ & '[h.(l-;%bZ) - b(h, + h3)] - 2C'ble cos(cz)}
&

And from the boundary condition (4.18), this gives
(4.20) h, - bh, - bh, = 2Ctb’c

From the conditions (£.4), we have

-
il

0, z2>0

or Tt Br

(4.21) (A+G) oA + G(Vzv, - g.) - p2
or

In order to obtain the expressions needed to evaluste (4.21),

let us first cderive a value for A from (4.16) and (4.17).

Now A = VWV = 8v, + v, + 0V
gr r 0z

From (4.16), we have

%;5 = b J.'(br){ " } = (b J(or) - Jlor ){ " }

r



BT

Hence,
v, + v = b;ﬂbr){ e'bwh,z + hz] - Cpt sin(cz)}
ar - 3

From (4.17), we have

oV = J;(br){e'h[h, (1-bz) - th - Ctbe? sin(cz)}
0z

Therefore
(4.22) & = gfor){ e '[h + bh, - bhy] - CrB(b +c?) sin(ez)}
But by equation (C) on page 33
T = Dfb,c) exp(-(b*+c*)t) b J(or) sin(cz)
Hence from (4.22)
(4.23) (A +6G) & -pT = Jbr) {(2+G) e'b‘[h.+ b(h,- hy) +
- (x6) Crb(b*+c?) sin(ez) + (A+2G) Crb(b*+¢) sin(cz)} =
= J,(br){ (A+G) e"”[h,+ b(n,- hy)] + GCrb(b*+c?) sin(cz)}

- . - z
We must next determine the value of the expression Vv, - w
rl

Now, @._(mfﬁy.,) = ow +

—sz,(br){e'Le[h,z + h,J - OF % sin(cz)}

and  8v, = J(br) {e‘b*[-:-zbh,+ P'h,z + b'hy) + €1 b’ sin(cz)}
0z?

Therefore
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(4.24) Vv, - W = -J(or) { e-L'(th.) - C1b? (b*+c?) sin(cz)}
T

pifferentiating (4.83) with respect to r,

(A+G) o -pgL = -3,(br) { (a+6)e **[on, + b*h, - b*h,]+
r r

+ G b (b +c®) C sin(cz)}

Substituting this last eguation and equation (4.84) in

(4.21), we get

I

gor) {6 e (=2bh,) + 6 Cv b (' 4ct) sin(ez)]

= 3(or) { (A+6) & [on,+ b (n,-hy)] + G C1 b (b +e’) sin(ea)}

i.e. -g2bn, ¢ = (A+G) [bh, + b (h,~- hy)] or
(4.25) (A+ 3G) h, + b(A+ G) h, -b (A+C) h,=0 [26]

The remaining boundary condition (4.19) states that

AL+ &G oy = T for 2z =0
0z

Substituting from (4.22) and (C) we get,

J,(br){e"’*;\[h, + bh, - bhy] - AC! b (b'+c?’) sin(cz)} +
+ Jo(br){ e'thG[h,(l-bz) - bhy] - 2G C' be? sin(cz)} =
= gor) { -(A+ 26) C' b(d+c*) sin(ea)}

Hence on the surface z = 0,

A [, + bh, - bh,] + 26[h, - bhy] = 0, or



(4.26) (A + 2G) h, +

Aph, -

c
w0
.

b(A+ £G) h, = O

Ve now have three eguations in the three unxnown

parameters h,, Hyy &80 Hy,

(4.20) h,
(4.25) (A + 36)h,
(4.28) (A + 2G)h,

Vig.,
-bh, ~bh,; = &Ctb'c
+b(A + G)h, -b{(A+ G)h; = 0
+bAh, -b(A + 2G)h,; = O

This system is readily solvable by Cramer's Rule,

For the determinant of coefficients we have

1 -b
Be = |A+36  b(A+G)
A+ 26 9]

The determinant for h,,

o2C1hte -b
Ay = 0 b(A + G)
0 bA

The determinant for h,,

1 2Cthe
8, = | A+ 3G 0
A+ 2G 0

And the determinant for hj,

~B
-b(2 +
-b(A+

“B(A+
-b(A+

-b(A +
-b(x +

G)
2G)

-4 602 + Q)

-4 C' ble a(r+a)

4 Cr pde G(A+2G)
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1 -b 2C'b e
p, = |»+ 3G (A + G) 0 = -4 ¢ pica
3
A+ 2G bA 0

Hence by Cramer's Rule

h, =Aw =C'b'c, hp = fw = -Ctb ], h, = As, = C'be_G
D, TAY: A+G D, A+G

Substituting these values for h,, h,, and h,; into (4.16)

and (4.17), we obtain the following expressions for the

displacements:
(4.27) v = CvJ,(br){bc e'h'foz - 2+2G‘] - b sin(cz)}
A+G
~b
(4.28) v, = Cv;{,(br){bc e e{bz +AfG] + be cos(cz)}

And substituting (4.22), we obtain

-b
(4.29) A = C!Jo(br){-bzc e e2(%] - b(p'+c?) sin(cz)}
A+G
Equations (4.27), (4.28), and (4.29) are the funda-
mental solutions to the boundary walue problem (2.4), (2.5)
wnich were obtained by taking for T the fundamental solution

of the equation of conduction,
(c) Tp = Do exp(-k(b‘+cf)t} b J(br) sin(cz).

In order to transform the fundamental solution given by (C)
into the solutions obtained in section III for the boundary
value problem T = H(r,z), t =0; T = F(r,t), z =0,

we shall take D, as the operator D, + D, where



(4.30) D, = EJJJ‘J\‘PH(‘P,Y) E(bp) sin(c¥) dec db dp as
T
and

¢
(4.31) D, = _2_51‘[ Jy F(p,t) exp(k(b‘ +c‘)l') J(bp) ¢ dec Gb dp de
T

e then have
D,{Tf} = T, as given by (3.17)
and

given by (3.18)

"
‘....
~
o
167]

D, {Tf}

Similarly, in order to transform the fundamental
solutions given by egquations (4.27), (4.28), ana (4.29)
into the solutions which satisfy the boundary value
problem, (2.4), (2.5) in which T = T, + T,, as
defined by equations (3.17) and (£.18), we shall take

C!' ae the operator

C' = D |-gexpl-#(b*+c*)t + D, [-gexp(-x(b*+cY)t
+2G) (br+c A+2G) (bt+c?

where D, and D, are given by (4.30) and (4.31). We thus
obtain as the formal solution of the complete boundary

value problem (2.4), (2.5), (£.58), (2.8),

v, = V,' + V."
(4.32) v, = o+ v
A = AV + AN

wWhere

(4.32a) w1 = §+@_®_ J‘fjfp'ﬂ(p,{) (b‘+c‘)" J(br) J,(op) -
T 2

:Q'P:o bso ¢c=0
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exp(_x(b‘+c‘)t) sin(c!){bc e [hioe - bz| + b‘sin(cz)} dedbdpd?
e

W@© ¥ o

t
(4.32b) W' = 72_"@7 J-fJfPF@; t) gggp_(:kf;b_fjcz fou
T(ATE0 i / (bt+c?
:ay S0 C=0

J(vr) J{bp) ¢ {bc e'“B\IgG - bz] + b sin(cz)} de db dp dz

4,32 vt = -2 ff H(p, $) exp(-/((bz+c‘)t)
( £l I T(A+2G) jJ‘ PR (b*+c?)
Y=o pso bze 220
J(br) J(op) sin(cs) {bc Nl bz] + be cos(cz)} dcdbdpds
A+G

o0 0 ov

t
(4.32d) v = = }‘25% J‘Jﬂ J‘ Jh.pF(f), ¢) exp(-4(0*+c*) (t- z))

2 ¥
T=0 P30 bro CBO (b d )

J(br) I op) c{bc e‘“[%%@_ + bz] + be cos(cz)} dc db dp dr

@ G0 00 ™

(4.32e) A = - ifzel jfffyH(f,t) exp((gf%:-)tc‘)t)

$=0 pzo =0 €70

J’o(br) J,(bﬁ) sin(e¥) {b'c e'“(;aGG) + b(b*+c?) sin(cz)} dedbdpd$
+

t o oo o
(4.32f) An =H§f§c} ffffﬂF(P’t) em(-z«é?lzg;)@—?ﬂ

Tzo probz0c=0

J(br) J bp) c{b‘c e'é‘g_G__) + b(b*+c?) sin(cz)} dc db dp dr
‘ A+G
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We must next verify that the expressions for the
displacements given by the equations (4.%2) actually
do satisfy tue boundary value problem (£.4), (2.5),
where T is determined by (£.6), (2.8). To do this we
must ascertain the conditions on the functions H and F

under which the integrals converge.

We have first the eguations (2.4), viz., for z > O,

(A+6) 88 + G(V'vi-%) -0 = O
. ar r* ar
(A+ G) A + GV@ -p8L = 0
0z ; 0z

Two things must be shown:

(I) That the integrands formally satisfy (2.4)

(II) That the necessary aifferentiations under the integral
signs are valid. This depends on the convergence of the
germane integrals.

In order to establish (I), consider the eguations
(4.27), (4.28), and (4.29), the expressions for the
portions of tane integrands containing r and z. We shall
formally differentiate these expressions and list herewith
all of the eguations with which we shall have occasion to
deal,

From (4.27)

ow = crpgee){ v} = {?t b J(or) - C! J&br)} {'n }

or T
Hence,

(4.,3%a) 9w +v = C' b J(br) {bc e [bz - 7\+2G} - Db sin(cz)}
or r AT



Differentiating (4.23a) with respect to r,

44,

(4.830) Ov + low - w = -C!' b g(br)-

or? r dr r*

-b2 | 2 .
; {bc e {bz- %+2G] - b Sln(cz)}
R

(4.33¢) oy = Ct J(br) {bzc é¢z[23+5G - b% - be cos(czé}

0z A+G
(4.33d) 8w = C' g(br) {bac é$’Fz - 52+4G] + bict sin(cz)}

az? A+-G

Hence, adding (4.33b) and (4.334)

(4.33¢) VW -wm = Ct §br){ v’e & (c2) + o (0*+c?)sin(ca)}
rz
From (4.£8)
-b

(4.33f) oy = - bCr J(br) {'bc e i[‘oz + G ] + be cos(cz)}

or A+G

gy = - b Cr J(br) { " } =

o

1

Hence,

(4.33%g) 0ov, + 1 OW
T

OVe
or or

»

+ be cos(cz)}

Again from (4.28)

0z

(-b‘c' I (br) + 991%&921) { )

= - Db'cr J(br) {bc e'bz[bz + _G

4,33n) vy = C1 Jfbr) {bzc e-bzl A - bz} - bet sin(cz)}
MG
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(4.331) _3_,‘, = G Ja(br){bsc e'bz[bz - 23+G] - be? cos(cz)}
ozt A+G

Hence, adding (4.33g) and (4.251),

pbi(-E) - be(p+e*) cos(czl}

(4.353) V% = Clifpr){pie e
Now from equation (C) (page 32) and (D) (page ©4),

(4.33k) BT = -C‘Jo(br){ (A+2G) b(p'+c?) sin(cz)}

Hence, from (4.29)

(4.331) (A+G)A - pT = C'l(br){ —2Gbe et Gb(bl+c’)sin(cz)}
Differentiating with respect to r,

: ~-b2

(4.37m) (A+G) 94 - BT = -bCt'y(br){ -26b ¢ e”7+
ar or

. :
+ G b(o+c’) 51n(cz)§
and differentiating with respect lo z,

(4.%3n) (A+G)8s - g = C'Jibr){.szac e-b?+ Gbc(5+5)cos(cag

0z

Rl

Adding (4.33m) to the product of G and (4.33e), we get

the left member of the first equation of (£.4), viz,

-b 2 ’
G th(br){-2b30 e P - b (bl+cl)sin(cz)} +

+ G CvJ(br){ —gb’c 74 4 bz(bz+cl)sin(cz)}

But this expression is identically zero, thus satisfying the

first equation.,



Adding (4.33n) to tue product of G and (4.33j), we get
the left member of the second equation oi (£.4):

bz

G C!? @(br){.z e e™"? ¢+ pe (b +ct) cos(cz)} +

bz

G ¢t J(br) {—2b3c e " - be(b +c) cos(cz)}

This expression is also identically zero. Ve have thus
established property (I), that the integrands formally

satisfy equations (2.4).

As to property (II), din order to justify the necessary
differentiations under the integral signs, we must restrict
H(r,z) and F(r,t) to be continuous. This assures that the
integrands will be continuous. We must then find the con-
ditions under which the integrals v', v", v!, v'", together

. . - - S
with their partials o , 8 , 8, 8, 8* , converge

or 08z Or* 0z* drodz

uniformly. [27].
It will not be necessary to get a separate condition
for convergence for each of the above integrals, but will
be sufficient to consider tiie integrals in which the highest
powers of b and c appear., The convergence of these integrals

will assure convergence of integrals involving lower powers

since the appearance of the factor be or Dbsin(cz)
b* +c* b*+ ¢*

in all of the expressions assures convergence near the origin.
The highest powers of b ana c¢ appearing in terms con-
— v -b2 : , . .
taining the function e occur in the expressions (4.33b),

(4.33d), and (4.331).
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we must therefore consider the convergence of the integrals,

P = jfrff H(p,$) exp(—k(b'%—cz)t) g(br) J,(bp) -

!:a.Pgo b=0 ¢=0
. sin(c$) b7e e % dc db dp a4
bho*

t o0 ®» ®

B, = ffff,omf,z) exp(- #(0"+e*) (t-7))  g(br) I(2p)-

%o pio b0 €70

dc db de dr
“perer £

where 1i = O or 1.

The highest powers of b and ¢ appearing in terms involving
the functions sin(cz) and cos(ca) occur in the expressions
(4,33d), (4.33e), (4.333), and (4.3%n). We must then also

consider the convergence of the integrals,
a0 o0 X

B = J‘J\f‘ff) H(p, ) exp( x(p" +c )t) J(br) J,(bp) -

$r0 pro hzo <20
sin(cz)
- dc db dp df

b*+c? |cos(cz)

- sin(c{)

and
t o w o

jJJJ}F@er@(“®+C)®t» J(br) J{op) -

xzo P20 b0 C0
, sin(cz)
., 2B o” dc db dpdw

b*+c* | cos(cz)

where 1 =0 or 1 and n + m = 4 according to the schedule

]
3]

n=1, 2, 3, 4

)
> 1, 0

o1

0

m= &,
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@ 0
Now |B] < JJ p 8] exp(- K(b‘+c')t) be_ ble”’2.
b* +c?
Fr0 p0 620 C20
| gCor) |- [3(op) | - |sin(ed)| dc db ap af
. -b2 - s
s e, €1, &£l |sin(e$)| <1, [3(or)] < 1,

and we can find a constant &, , such that LL(QP)I <

al
op

Hence,
|5l < a.Jfff ] exp (- &(0’ re*)t) b% ac av ap ar = u,

since either the combination b"¢” with n > 1, or b*sin(cz)
appears in each of the various expressiouns occurring in Py

by means of the bound {sin(cz)i L cz, we can use the swme
ineqgualities that were used for P, . Further because of the
symmetry of the exponential function in ¥, , it is immaterial
whetiier we use b or ¢ in the integrand. Therelore, covering

all of the cases,

5l <
00
But JA exp( {e t) de = _J7
20k T)
€=0
)
§h -kb't Y "
and J‘b ab xWe*ax = Fg}@g = &
ha SKATA f Skt ™
where a, 1is a constant.
XQ o0
here I i
Therefore M, £ %% vp o |H(p,$)] ap af
=0 p=0

Hence P, and P, converge absolutely and uniformly in r and z

for all t > 0, provided that the integral,
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©
=) J‘J\ %F iH(P,J)] dp af CONVETEES
$=z0 pT0

Returning to the integral P, , we may write it as

the sum of two integrals by means of the eguality,

¥y 2 - -b2 .6 -b2
be e be b’e - be
b*+ct b* +c*
Namely, P = B, = P,, where

t % ® w
B, = JJJ‘J\ﬁ F(p,%) exp(—/((b%c’)(t-t}) J(or) J(op) -

Yo p0 b3o C=0

. b*e 3 dc dab dp dr

and t @ ¥ o

P, =JJIJP F(p,e) exp/\—k(b1+cl)(t-'f)) J(vr) J,(op)

7]
T=0 PO h20 £=0

C0%e ®® dc ab ap av
b*+c?
00
But Jﬁ exp - k(t- t)c) de = T
24 (k (t-1))
Hence £ o oo |
_ “ 2y, ¥ bz _,, i S
B, ~ %IJ\J}%@XP( kb (t—t)) b e 3(or)J(bp)dbdpdr
Tio P60
and since | exp(-4v’ (t—t)) | € 1, and |J(bx)| < 1,
t o o
gl < jﬁ Fgg_,r; dp dt j b’ & %%ap
B0 pro -t bzo

00

L4 b2 . 5, 5 ; .
But ‘[ P e db converges for all z > 0, therefore

[}

P converges for 2z > O whenever

2,

t o0
-2
(F) J‘J:p |F(p,)| (t-t) dp dr converges.

T=0 L0
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In the integral B, we may write, using the value,

(4
xR
exp[-kc* (t-¥)] dc = Jm exp[kb’ (t-71)] e du
b* + o* b
[-F-] t o0 ® bV::(—tTT—J
B = ﬁj P F(p,%) Jor) J(0p) b‘"e""’f e du db dp de
TR S5 e bVx(E®
Hence, by means of the inequalities,
o
|3(ox) | < 1 f e au <7
2
t @ bVRCEY
1B, < ;g_fjﬁlf‘(ﬁ,r)l dp dv J p¥et? ap
A‘?.'=0ﬁ=0 bso

It follows that P, will also converge whenever condition
(F) holds and z is greater than zero.

In considering the convergence ol the integral P,
t 00 a oo

fj ffp Flps®) eXp("(sz“Cz)(V Z)) J(or) J(op) -

2 s "0 €30 G
e e ) sin(cz)
eb e™ dec db dp dz

Di+c* cos (cz)

let us breax it up as follows,

) =f?ff{ " }dc b dp ar + ffff{ m }de db dp dr

2=t-e
where & > 0.

Now tihne first integral will converge absolutely provided that

(G) fPIF(‘P,t)l dp < M for all ¢

f:d
where M is a constant.
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For we have that,

t-€ o ® ® t-¢8 o o

J\J\JJ‘ m }dc db ap dr < Mjffexp(—i('b‘+c»)(t_t)),
tzo pro bzo C=0 Co 450 ¢330
|sin(cz) |
J3or) |- |3,(bp)| cb ™ dc db dz
b*+ct | |cos(cz)|
< 712_/1 J [ [exp (—x(bz+c’)€) + exp(—k(b’+c’)t)] ‘
keo €50 . . |Isin(cz)|

dc db

, _ch’c
(b*+c*)?||cos(cz) |

But the combination b’ cos(cz) does not occur, so by means

of The inequalities,

|sin(cz)| < ez, |cos(ez)| < 1, b e < 1

we have,
t-~£ ® 00 .
J { "mlar| < u jj [exp(—k(b‘%-c’)f) +
0 bso C=0

+ exp (- k(p*+e™)t)] "7 " dc av

which converges absolutely and uniformly with respect to

r and z. If b does not appear to at least the second
power, we can still avoia the difficulties of convergence
near the origin by using the identity,

be” = be”? - b e
'bQ. +c‘¢l b 7-+CZ.

Before considering the convergence of the second integral,
t w0 » 0o

Jfff{ "} dcdbdp dr,

st-£ pro bzo €70
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let us 1list all of the cases which occur in the eguations

(2.4).

Only tne parameters that vary will be listed below

and the expressions will be simplified wherever possible,

in order to facilitate the initial integration with respect

to

(2)

(3)
(4)

(5)

(7)
(8)

©

(9)

(10)

(11)

3

J

cb®  sin(ez)
bl +c‘l

bc*  cos{cz)
b*+c*

be sin(cz)

e sin(ez)

b?+c?

b'c® cos(cz)

b*c® sin(cz)
b2+c?

b'c sin(ez)

b’c* cos(cz)
b*+ct

be?  sin(ez)
ot

bc! cos(ez)
b*+ct

be’ cos(cz)

J, b cos(cz)

Ji

di

b' cos(cz)

b'c sin(cz)

v’ cos (cz)

be sin(cz)

b cos(cz)
1_*_01
b?  cos(cz)
b*+c?

- 3 _b’c sin(ecz)

b*+et

b”  cos(cz)
o +ct

b’e sin(cz)

bx+cz

I bcos(ecz) +

cos(cz)
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With respect to the variable ¢ only five cifferent forms appear:

QD
oS
(a) exp[-kc®(t-1)] cos(cz) dec
J b*+c?
cx0
%0
(b) exp [-kc? (t-2)] ¢ sin(ez) de
Yo Pr4e®
K
(¢) axp [- ke (t-¥)] cos(cz) dc
C';.OM
(a) exp [- #c* (t-v)] ¢ sin(cz) de
G::n
(e) exp[-xc‘(t—tf] ¢ cos(ecz) dc
cso
Integrating these expressions with respect to c, & -?}=}A
(a) mf‘ Bk 2 [k (n A)]'J"da
a) = exp K (st
(" wm)
~xb*A ; -%
(v) = zilw e exp( zt [x(u+2)] 4R
4 A.a IrEY))
() = dm (W’ eXP(- Z")
2 4xp
"
@ = fF 2" em(- 2t
4 4 kp
¥ e
(e) = dm (k) eXp(- Z‘) - dm 2 ()" exp ( Z‘)
4 4ap 8 4 np
Now, setting t -t= A,
t £ ® ® ™
f{ " }ar = j_[ffﬁ?‘(ﬂ,t—ﬁ) exp(-x(b‘+c‘),u) J(br) J(bp) -
22t Jeno JRE G Sot sin(cz)
cb”c

b*+c*

|

cos(cz)

}dc db dp du



Substituting the expressions (a),..., (e) in the above
integral ana taxing absolute values, we have for the cases

of the highest powers of b which occur in (2.4):

€ %

¢ Yy
o |51« _[JD]F[ e Ma) db dp dm
: /u:eo’:o'b:)
() | § 1< [ [olrl v7e™m) ab ap ax
pt0 po =0

ete,

Since all of the functions appearing in the integrands are
positive, we may integrate in any order., Let us.first
consider the integral (I).

The integral with respect to b is:

[ <]
f o exp(-/(b" (/u+7\)) db
bzo
. -3
which is equal to [k (u+A)]
Hence, assuming that condition (G) holds,
€

" %
(I) < xMw f [k (A +u)] exp(— z* ) éia d
2 W0 heo 4K3)1+/u5 M

- 2

By means of the transformation, s° = Z
4:ki}l+,«5

(1) < 2%k W7 f s e ds ap i =
'y
& Ms0 S0
_f.&_ £
1 &
= ZKWT EJ‘ s* e das + _z° fﬂAexp<— z* \ dpm
z.f 26/('/! 4/{/“
-} JK:O
T ) 0 )
But f s? e ¥ as < f s e ds = BfF for all £
8

o4,
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€

, -
and fﬁ’%xp(— z‘) du = € (98),zexp<- 2 )

4K 4KGE
)(.:0 /A

where 0 < # < 1. We therefore have that

lim (I) = O
¢ —>0

The treatment of the remaining integrals is similar
to the above, and all can be shown to go to zero with €,
It follows then that B, will converge if conditions (F)
and (G) hold. But (¥) reduces to (G). For if (G) holds,
(F) becomes "
Jﬂ M dr = 2wt
X=o G-

which exists for all t.

We may therefore conclude that the expressions (4.32)
satisfy the differential equations (2.4) for z > 0, t > O,

wheneve: conditions (E) and (G) hold.

It remains to investigate the conditions under which
the values of (4.32) satisfy the boundary conditions (4.18)

and (4,19).

First let us consider (4.18), 8v; + 8v, = 0 for z = 0.
or 0z

From (4.3%f) and (4.33c) we have

8y + 0y = A+ A,
or %z
where - B W
4,34 A, = 4 J\ H(p,8) exp(-4(b*+c?)t) -
(#.542) TIASE0T fff PHCH = %)
$20 p=o b0 c=0
ble_ J(br) 5(bp) sin(cd){ e (1-bz) - cos(cz)} de ab dp af
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t ® @ ®©

(£.34b) A, = - ;ﬂ_g;(} fjffp F(p, %) exp <— x(o*+c™) (- t)) .

T=zo p=0 §=0 €30

C_b'c? J(br) @ibp)éje"bz(l—bz) - cos(ch} de db de de

We must find the conditions on H and F under which
lim A, =0 and 1im 4, =0
2—>0 2P0
First let us consider }ip A,. It will be useful to consider
o
this 1limit in two parts:

%ig {-z (const,) Jfffp H exp(-x(b‘+c’)t} bEjgt & Js

+sin(c?) &3¢ ab dp d!} +

+ linl{(const.) J]ff/>H exp(-k(b‘+c‘)p) ‘b'e 4 3,

2—o b* +c?

~sin(c§),[e'b3- cos(cz)] dc db

Qu

p as}

The first integral will converge when the integral P,
converges. Therefore when condition (E) obtains, the
first term will go to zero with z,

The expression [e'b! = cos(cz)] occurs in the

second integral.

-b2

Now, | e - cos(ez) | £ 2

and c—:"bz - cos(ez) = 1 -bz+ ... -1+ (cz) -... =2z £(b,c,2)
2

We may thus take | e-b2 - cos(cz) | < 2z. Using this

inequality, we have in a similar manner, the second integral
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converging when (E) holds, ana the second term going to
zero with z, Therefore 1lim A, = O.
[ X d4
We can treat the integral A, in the same manner as A,.
- t-g
The integrals § {cos(ez), sin(cz), and e'bﬂ}converge
o
absolutely and uniformly with respect to r and 2z and
7
lim ) cos(cz) and sin(cz =0
lin - {eos(cz) (c2) }
provided that condition (G) holds. The treatment of 1lim A4,
can then be applied in the case of A, provided we can show
that the integral of the exponential function also tends to
zero with &, that is
limJ =0

[

where b

I = fff.f;F exp(- #(b+c?) (t-7)) b’c®  g(or) J(bp)-

irc2
teb~€ p3o b2o €70 bie

. e"%%qc b dp ar

Let us write

ez = v’ - _ b’
brrct b*+c*

Then if condition (G) holds,
t © o

1lim !Jl £ 1lim M fff eXP(-k(b"+C")(t—?)) e-bzb3'

€20 €0 &€ b0 €20

kS

ol & = b | dc db de
b*+c*
(2]
But J‘ exp [-4c* (t- v)] de = T
_ 24 (k#(t-v))

cso
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al'ld ) A
b’f expl- ke*(t-%)] dec = bfT exp[sb® (t-7) f e aa
b+ g*
e by
Therefore, t o o
1im |J] < lin Jw Mff ety [expé_kb‘ [B=2)] + bf e dh}db dz
€ —0 E~50 S P T~ 7T
t-¢ beo bVRTET)
t (]
_ L -
Now expl-kb* (t=2)] + b e dl dr =
LIHTEIT T e
€ ©
2 At
= {exp (-kb’/_f_t) + b e Var| dap =
fral S bVig
£ N 00
= 1 J;u"/‘e'“ﬂd/n + & e~k5’€ - be¢ j e”” an
o K 2JK
0 bVke
o0
. -xb’e ) AT .
But since |e | <1 and e” dA < Jm , the limits
bVEE “

of the last two terms as é tencs to zero &are zero, We

therefore neecd only consider

o0 '3
lin fb’ e"’zfﬂ’”e"“/" du ab =
bso ]
a 3 b2 ]
= 1im Je€ (const) f b'e "“exp(-4b'fe) db = 0O
€ —90 I

where 0 < 8 < 1, by the mean value theorem.

The final boundary condition (4.19) states that

7\A+2G_@13-FT=O for z = 0.
0z

From eyuations (4.29), (4.%3h), and (C) we have

2A+2GQYJ-FT=B,+BZ
0z
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where % % % oo
4,35a) B, = 48G J‘J‘ jJ}>H( §) exp(-x(b+c*)t
( ' -77—(_2-5'_2_65- P=o ’uj:a cso ID’ < >
b J(br) J(bp) sin(c!){.sin(cz) -cze'b?dc db dpdf
b*+c*

t 0 o0 o

(4.35p) B, = . }‘ggzgg ffffyF(p,z—) exp (- #(b*+c*) (tyz)).

Tz p=0 bzo €20

- _bic_ J(br) 5, (bp) { sin(cz) - cz e'bi}dc db dp d T
b*+c?

Now (H) | sin(ez) - cz e ®?*| = (cz)| sin(cz) - e °?| < 2ez
(cz)

Since no higher powers of b and c¢ appear in B, and B, than
in the integrals P , P,, P;, E, the treatment of the con-
vergence is the same as for the previous boundary condition.
And by a corresponding use of the inequality (H), B, and B,
can be shown to go to zero with z., We thus have that bound-
ary condition (4.19) is satisfied whenever conditions (E)

and (G) hold,

To summarize the results of section IV:

The displacements v' and v as given by (4.32) are
the solutions to the boundary value problem (2.4), (2.5),
(2.6), (2.8) for t > O whenever H(r,z) is bounded, con-
tinuous in both variables, and the integral (E) con§erges.
The displacements " and V' as given by (4.38) satisfy
equations (2.4) for z > O and the surface conditions at
z = Q whenever F(r,t) i:c bounded, continuous, and the integral

(@) converges and is bounded for all t.
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Ve Examples.

£
ki

To illiustrate the foregoing theory, we shall integ

(D

the ejuations for some specific chioices of the functions
H(r,z) and F(r,t).
Of primary interest physically is the case in which
the initial distribution of heat throughout Tthe solid
is constant,
H(r,z) = H,
Substituting in equation (5.15), we have

7, - ”p (- 22p) nfemg) [ ona(- G2) -

4Kt 4KT

oo gz o o

But by means of the formula,

0 [[osf gat) - el guaar -am [ o

4Kt 4Kt
=0 ¢

and formula (D) on page 17, the above expression reduces to:

e
(5.1) T, = 2M, e aa

:]_

o

The values for this last integral, known as the error function
2 J

have been tabulated. See, for example, Jahnke and Emde,

If the surface temperature F(r,t) = Fo, & constant,

we have
t © v
zF J.j L exp(— r*+ po*
4Kk r-onZ t-T)% 4K(E-7), <u<it T)

exp| - zt dp dr
( 4k(T-7 ) 4



Again by formula (D) on page 17, this integral reduces to

(5.2) T, = _=z FL Jﬂ § t) Fxp( ) dt =
ENICD) o 4K t—
i
= 7_I_*“‘, f e d aa
2
N
Now if H, = F, = A, it is obvious that the temperature

throughout z > 0 will always equal A. 1In fact,

s -
_ _ A S I
T—T,+3;-2A{feaa +fedz}_—_A
¥ 0

2
T0kE

But in this case of constant temperature, there can be
no thermal stresses., Hence for H, =F, = A, we have by

equation (2.2) on page 7 that

s, = AL + 2Ge, - gT = O
S, = AL + 8Ge,- T =0
S; = XA + 2Ge;- gT = O

6l.

Adaing these equations and using the fact that e, + e, + e,= A,

gives

(5.8) (B3A+2G)4 = &¢I, hence A = ZaT
Substituting in the above stress formulae,

(5.4) e=¢e=¢=_g T = af

Therefore {v. = arA
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As an example of & function which represents a con-
centrated surface heat source of short durcetion ana yet
satisfies the conditions of integrability, continuity
and boundedness, consider the function

U
F(r,t) = At exp(— _;L)
4kt
where A 1is a constant, Substituting this velue of F in

equation (3. 16), we have

-£
T, = ff?: exp .,0’) (t-1) * exp(- r*+ 04 z‘) )
JZKWJ . 4KT dx(t-7)
Tz0 F*
. TP de drx
T (4,&’2 - 7:5)‘/0 s

Integrating first with respect todp,

exp(- ‘4 2r dp =
ka ( 4KtZt—r$> I°(4kit-t§> &
pro
= 2¢z(t-7) exp Pl
t 45t (t-1)
Therefore

d‘ﬁim«i J‘ - t) < 4y %-z-t) vexp<_ m%}f)_)

. exp ( r*e ) dg =

AKT (T-72)

AZ (t—t)-% exp(— z* exp(— r?(t-v) ) d>
2t (k) Zx(t-%) 4kt%t—t;

Tso



6d.

‘ r
k3 -% 2
= AZ exp(; r ) (t-7) exp(— z ) dz
ST (KTT) 4x 1, da(t-7
Tzo

But by the transformation, A = z s Wwe obtain

@
(5.5) T, = Bi £ exp(— r’) f e"‘ dA

m 4kt ,
_ 7T ,
Again this last integral can be evaluatec from tebles. The

distribution of heat throughout a semi-infinite solid as
a function of r, z, and t where the initial temperature
is H &and the surface is heated by a source whose value is
-l Y
At exp(— r )
4rt

is given by (5.1) + (5.5).

In order to determine the thermal stresses arising from
the above functions, we must turn to equations (4.32). It
is seen that H(r,z) = H, does not satisfy the convergence
condition (E). However, if the initial distribution is
constant, the temperature scale can be picked so that H,= O,
Further, since no thermal stresses can arise in a solid
possessing uniform temperature distribution, if we assume
an initial stress-temperature equilibrium, the only stresses
which can arise will be due to heat sources impressed on the
surface, Hence we neea only consider v" and v,

Now F= 4t exp(: r‘) satisfies condition (G),
4it

o

For A exp[- »©°]d
T ff p( 4«1:) d
pEe

EKA which is bounded for all t.
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Substituting the function F = A t exp (- r‘)

4kt

in equations (4.38) we have:

G:6) W= e ”ff%é—%} ()

+ J,(br) exp(—/\'(b"+c")r)blc : {e'bzbc (AiéG - bz) +
+c A

+ b sin(cz)} dc db dp dz

(5.7) ,—,—%ﬁ‘q ffffﬂ t-t exp< A—A’ﬁ_——f)

Yo pzo b0 czo
-J(br) exp(-k(b‘+c‘)t) c { e P pe [ @ + bz) +
bt +c? A+G

+ Dbe cos(cz)} dc db dp dr

First, we have that

Q0

(n) J\p J(bp) exp (— i f%:—z) dp = £4(t-1v) exp(-,ebz (t—t))

P70

Hence,

v, = ‘Kl’l e'“t chr){ "’bc /+<, -
;- e f” e o

Tzo b=6 Czo

bz) + Dbt sin(cz)} dc db dr

and

S
0

-4k JJ‘J‘ g ¥E o J;(br){ e btpe (_G_ +
HM-—I“’Gi b’-+c'~ A+G

0 §=0 C=0

+ bz) + be cos(cz)} dc éb dv
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Next consider the integral which arises in the first two

terms of both v' and vj:

ca

-l
(B) f(b1+c‘) exp (-kc*t) c? de =
C=0 00 o0
- : ' -1
= fe “Tie - leA (b*+c*) exp(-kc?t)dc =
=0 cso . 00 3
-A
= T —ﬁbe'dtfe/d/\
oy ZKT;
bl

We are thus led to an integral of the form

t oo )
- Kb - b2 ' e[ -X
jfex " e "I‘(br)i T -d7T b e feadl} db dz
Zao b=0 kb bVar
where m =- 0,1 and n =1, &2,
or
00 t t 00
bt _b v AP
fe“ o (br){ fdr -dT b ek”f b aa dr}db
ok J T
b=o . T=o Tzeo bVat
but J-d‘: = 2yt and, integrating by parts,
TS0 ® ,e
t o 00 :
je"“j etar dr = [e“"“f & dh] + 3 fdt
kY <
. N KbT u J GOk J A
lt - »
I f e ar - 4T o+ 4%
Kb* 2Kb* béK
bVt
Hence (C) becomes
00 -]
-kbt - b
M= _,_[J i "”'J(br) db - 47 fe zn‘J(b)J- " db
mo 2K K
bzo b=0 bVt

We shall employ the notation

00

1
A, (a,b,c) = jé“e'bxx" J(ex) dx
X0
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We can then write (C) as

© .= L A, (kt,z,7) - g; ;[V?A?.,(w‘,z,r) dp

We must also evaluate the The following integral which

occurs in the last term of vi.

t @ oo

: kbt kv 2 . . .
(D) J‘J‘J‘ e e b ¢ J(or) sin(cz) dc db dr

C AN 10 b* +c?
which is egual to
t & o
kbt _xe?
(D7) J‘J\J\ e e e J(or) sin(cz) dc db dr -
T=0 §30 c=o
t kb weh ) i
(pm) J.J\J” gMbE gt 3 J(br) sin(cz) dc db dz
Ts0 bro C0 b*+c
We can immediately write (D') as the product of twoc integrals:
t oo

-4
-kb't ke
j e " J(br) db ff e e sin(cz) dc

b=o T=0 ¢c*=0

The first integral is eqgual to _3_.[1 - exp (— rt )]
r 4kt

ind by formula (C) page 16, the second integral can be

written as

t g0 .
% o 22
zmr |t exp(— z ) dt = 7 e~ da
% z

~n

Vkt
Integrating (D") with respect to 7,

r -xb't
(o) 1 e J(br) c sin(cz) dec db -
K J J bt+ct
bz0 €=O
-
(DS) 1 exp(_x(b‘+c‘)t) J(br) c sin(cz) dc db
I( v -bl +C"

bzo €=0



o

-b
But fc sin(ca) dc = W e ’
czo b3+C" 2
Hence (D) reduces to m_ Aj(xt,z,r)
2K

The integral (D) can be written as

[fr

exp(-— k(b‘-i-c‘)'z') J(br) c sin(cz) dc db

G«

2%) o

T:=t bso €=0
Hence, using the integrals which were used for (D),
00
(pr) = f rjl - exp(- r‘ﬂ.__fi z exp(- g* ) dz
¢ ) [ 4K 2 (KT)% IKT
Tt - -
= z 7 fz:";/'exp<— z*)dr - z 7 J‘r/‘exp( r*+z
4r K% 4Ky 4r K 4kt
::t Tt
Vi 1 ':l‘l'(t _A"
= Jr e=? an - z Jw e " dA
rk J TKd (r*+2%)
]
Hence,
00
A
M = 1)1 - exp(— r;) T \f\ e’ dd - m_ A (at,z,r) +
r 4K K J; 2K
Ve r+ 2t
‘zzﬁt- -At e _}]"-
+ .fif e ak - _zdF ¥ 4y =
rK J ko (T +2t)
o °
= ¥ - [gexp(— r‘) e dd - m_ A («t,z,r)
2rK rK 44T 5 2K
‘l;t -2‘ 2Wke
- z 7 e aa
Tk (r2+z?)
]
Finally, we must evaluate the integral,

L

00 00

- bt
fjj SHE e _c*b  J(br) cos(cz) db dc dz

7=0 b=

br4ct
0 ¢c0
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Integrating first with respect to ¥, we have,

o ®0
-kbE
(') 1 ff &b J(br) cos(ecz) dc éb +
K . b*+ct
bzo ¢=o
0 00
(Em) - 1 ff exp[—x(b’+c‘)t] b J(br) cos(cz) dc db
K z Pt ®
bzo0 =0
> bz
But f cos(cz) dc = @w_ €
J., bi+ct 2b
Therefore (E') becomes
kbt _pz ] ° )
e e " Jf(br) db = A, (kt,z,r)

Ir_
oK

2R

b=o

Now, as before, we can rewrite (E") as

00 0 %

_ fjf exp[-/((b"+c")t] b J(br) cos(cz) dec db

Tzt b0 €0 o0 v
[ -kb?¥
But be J(br) db = _1 exp (— r")
Z{a 2KT iy & 4
~Ke't A
and e cos(cz) de = 1 __ A7 exp(— z )
%:a b4 J( K?:i 4KT

Therefore (E") becomes:

- oF
- 7 % exp(- r‘+z‘) dr = - Jr e aa
4 KA 4KkY I(JZZ‘+I"‘5
v:t )
and
‘&'4-:‘
45t "
() = m_ 4, (xt,z,r) - T J e aa
2K Ké (r*+z?

Substituting from equations (C), (D), and (E) we have,
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(5.8) o= K{2+2G R R S

A+G ' ! 8Tk :

, t4 3t
@ . M;;; .
- A7 exp(— r")J‘ e ar - T_ A+ z e'zdﬁ}
r 4xt/ J, 2K rkd (rr42t) J
Iwe

and
(5.9) vio= K[ G Pl o+ 27,4+ 1 Al +

A+G 2K

T3
R
- d
Ty ) ¢ @
-]
where K = _4K'gh
T(A+2G)
©0
and rl: = g._ A“:(Kt,z,r) - :]’f,fl Au(kpd,z,r) dpm
K

MVE

We have thus expressed the displacements in terms of

tabulated functions and the M"A" functions. It can be
readily verified that eguations (5.8) and (5.9) satisfy

the boundary value problem (8.4), (8.5), (2.6), (£.8).

[=8].

We shall next obtain series representations for the
functions 4.

In order to obtain a series for the integral,
00

2
| ~-aX
A

- bx
o e e J(cx) dx
X0

let us employ an interpolation formula due to Ramanujan.

(30]

I A = E W@ % = A(0) - A@)x + A(=)x"
- 2!



70.
and MG = F (-)’ﬂa)% = M(0) - 4Q)x 4SBT - .
Then, J::OA(X) M(x) x*' ax = "*;fo (-l)”f_'(?sl_!tr_l)_ A(-s-n) m(n) =
= T() A69) 4@ - T(e4) ACL-) w() + [lste) A(-s-2)

u(®) - r'g;,a) A(-8-5) u(@) + ...

. . ~ox* -bx ) .
For A(x) we shall take e e ., Now the generating

function of the Weber-Hermite functions of positive integral

order is
00 .
exp(-z*+ 2zx) = 3T H(x) &’
10 i‘
. . -ay* - by
If we set Jay =2 ani x=- b in e ‘e we get
eda
exp ( -z + 2zx)

Therefore e e—by= g H; (_ b ) a’/’ yi
42 24a i
But Ho(-x) = (=)" H, (%)
-ay® -b o ' H ;
Hence, e e = z -)‘ H;(_b a/z v
e eda il
and AD) = a/‘ H; (D )
CNEY
(- . T s : = o m  om _2m
rFor M(x) we shall take J(ex) = z (=) '™ x




But 1 = 1 = §2m—l}.‘.‘ =
2*m! m! (2m)!! (Em)!! 2m)!! cmyl
= C(m+ . 1
Fr&) m  (Em)!

Therefore J(ex) = :Z?:o (-1)" ™ p(em) _ xM™

szif

71,

where pem) = (Em-D! = [N(mtg
em)t! r(z) m!
Hence Mm(j) = 0 if j is odd
: b ce s
w(@) = (-1I) c” p(d) if j 1is even.

Substituting in the above formula, taking s = 1, we get

J )

-ax® _ bx : Q n -(ntg 5 i
(1) fe e Jfcx) dx = Z, (<) a H_uw)(ﬁo) ¢ p(2n)
Xz0 el

Subs” tituting in the above formula, taking s =2, we get

[~
~ax* - L - 1)
(2) fe e J(ex) x dx = Zz (-1)" (en+l) = ",
=0

o

n o
) Iilzuz)(Tgba) . p(&n)

00

[ ] 2]
M(x) = J(ex)=3 (-1) W oa(emrl) = o3 (2) @M
i Zm+1)! oo @meim (mt+1)l
where  w(2m+l) = ™ (emr)!! = ™Y p(Em+1)

|

We thus have  u(m) 0 when m 1is even

m=l
and M(m) (<)% ¢™ p(m) when m is odd.



Substituting in the interpolation formula and taking s = 1,

we get

(4

—ax* b
(8) fe e J(ecx) dx =

Xz0

a4l = mﬂ)

(=) a

1.a+l

p(2n+1)

18

“

- ( zmz) (7—-)

If in (1) and (2) we set ¢ =0, we have

n°° %0
-ax* -b _at
e e ax = 1 exp ( b‘) ¢ dA
9 Ja 4dg
Q&
t ~ax* - bx
and e e xdx = 1 - _b exp Jﬂ
y 2a Ravs b

Ya

[ 8]

(1) and (8) will satisfy these equations if we take

o0

x? «
BG) = [ ehar = o

X
By means of the recurrence relation for the Weber-Hermite
functions,

H.(x) = 1 Hi&),

en
we will then have
H(x) = _ (="' g™ [q(x)]
27 (n-1)l dx™"
=l -1 m~i)
or H-“ b ) = i—l)ﬂ 1("’ 1 d( [ [-q ( b )] [5]]
2da Th—l)' d b ala

Substituting in the above equations:

(1) becomes

(5.10) b (a,be) = 1 5 (1) M g™ Q( b
'\rc:; M0 Dim nl.n! dbu.} TE a



And (3) Dbecomes

am 4] - (2w #)

-y 3

By setting ¢ = 0 gnd/or b = 0, and using the relations,

1l
A
-

H—(IMH) (O)

H ~{1m) ( O) ng:&,:i,),'_r,
the above formulse can be shown to reduce to their known
values on the boundary.

Since the above series are alternating, we can
approximate the sclution by taking the first n terms,
the error will then be less than the (n+l)st term.
Series for the other integrels A: can be obtained from
(5.10) and (5.11) by differentiating with respect to
b or ¢. The series can also be integrated term by term
to obtain the other terms in rﬂﬁ

The foregoing formulse will allow us to calculate
to any cesired degree of accuracy the temperature, dis-
placements, and siresses in the solid z > 0, at any
position and time. In order to get a physical picture

of the temperature and stress distribution in the solid

z > ¢ due te the surface temperature F = A exp[- r‘)
t 4Kxt)’

let us first consider the behavicr cn the plane =z = O,



74,

Now T = Tr.4) = A exp(-r‘)
4Kkt

At . a fixed point r = r,, the temperature will ke initially

zero, will rise to a maximum, then diminish to zero. To

find the value of t et which This maximum occurs, consider

8T = A exp(— r.‘) r, - ;) = 0
ot 4Kkt 4Kt Py
Hence Cpax = Za and  Tomexy = 44A
4K ery

It is thus seen that the maximum travels out at & rate
. -4 5 . T . -
proportional to t  and its amplitude is proportional to r~%

picfurc
Next, in order to obtain an approximate,of how a

thermal stress varies let us consicer the normel radisl
2

stress s, .

Now S¢ = AL + &G oy - @T
or

Substituting from equations (5.5), (5.8), and (5.2) and

their derivatives, we have:

0 —— 1

(5.12) s, = SGK{EP: - (- r~'rj)_ T+ _m. A°+

2rK eKT
®
- T A+ 4T exp(—- r")f e” dA - JTm =z > | .
2k KTt dKt) Vg K en (Kt
ris
e L
L exp (— r"+z‘) - __z* art e arl} - sk'gac "'7'
T *+z? 4Kt r*(r*+z? )% rr(A+G) ' !



As a first approximation, we teke from equations (5.10) and:

(S8s13),

and A= 1

Substituting in (5.12) we have,

(5.13) s, = 2GK{4K s %}_[q(r zK )] - +

-]
+ A7 exp(—_g_‘e)f e ax + (7 = 1 1
K¢ 4K 2 K 2y (kt) r*+z?
2Vae

V"#!‘

4Kt

»exp(— r."+z") - zt+ frt f
4Kt r* (r*+z: ) J

o

e"‘da] + _()2KgAG 4 [q(_z
+G)V'(kt) dz 2!0:d

On the surface z = 0, we have approximately,

s, = QGK{ w - _m + 7 exp(- )} - AG
' {.BR 2rk 2rK 4Kt “%;T—yt“ +G

At a given time, t =1t, > 0, s, will be a maximum at some
point r =r,,, > 0. In order to find the approximate position

of this maximum, consider

s, = #GK|g2 (1 - exp(— r‘) - 1 exp(— r‘)]
or K |12 4Kte erkt, 4kt,

Equating to zero, we have

exp(- r")[2+ r}-2=0

or approximately, (l- r + ).(l+ r") = 1
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Hence, Tpax = 2Y(KT) . So the maximum stress occurs when the

temperature is maximum and traveis outward at the scme rate as

Tmax « Substituting t = r* in the expression for s, , we have
4K
Sy - = q7GK = 4K£AG &= KETMM
xert er'(A+2G) 2(1-2v)

We thus have that the meximum stress also diminishes as r %,

In the case z > 0, at a fixed point (r.,z,), T will
be & function of time., In order to find the maximum value

ve differentizte with respect to t.

2
T = 2A exp(— r1+z‘> £ + _rt exp(— r‘)f e"* ax +
ot T 4Kt ) 4K o4 4Kt axt) J,
w
:
+ (<1) exp(- r")f e axt = 0
t? 4K
2
2Vt
Thus t,,, occurs when
0
A
z KT exp(- z‘) = J‘ e” daA
44t - r2 4Kkt 2
e
Hence, Twax = £SA _zk 1 exp( r?+z?
Jr k1) &kt = r7) It
Again as a first approximation, we can take St piar a ET
b 2(1-22

And it can be shown that the velocity of T,, in The z dir-

ection 1is also approximately proportional to t/.



T

In summarizing, we conclude that the maximum stress
occurring at & point as a first approximation,is proportionzl
to the maximum temperature at the point., Since we assume
a condition of temperature-stress equilibrium, the max-
imum stress occurs at the same time as the maximum temp-
erature. The stress znd temperature maximums move out from
the origin on an advancing front which is approximately
spherical, The velocity is nearly proportionzl to t'%z
the attenuation varies with direction, being proportional
-ag*

to r™ on the surface z = 0, and proportional to z e

along the axis r = O.
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8l.

Carslaw, loc, cit., p. 171.
Carslaw, p. 149
For Green's Theorem in cylindrical coordinates, see
Webster, Dynamics p. &81.
<0 see 16
see 17
Watson, A Treatise on the Theory of Bessel Functions,

Macmillan 1944, p. $95.

Watson, p. &93
I,(x) = g - ol =1+ x+ __x* + X6 + ...
R YD et 2% 2-2 2¢.6-6
e* = Tx* =1l+x+xX+x+x+ ...
" | 2 6 24

Since these series are both absclutely convergent, we

may compare them term by term; we have that

; Anki < x*e
2 (ni)? Tn) 7!
since (gn)t! > (¢n-1) 31!

(gn)!! (2n)1! > (&n)!
g™ (n!)* > (e2n)!
Therefore I,(x) < e for all x > 0.
Carslaw, 1loc cit p. 31. The function can be shown

to satisfy the boundary conditions for other hypotheses,



8.

26  The other eguation of (2.4), viz.,

(A+C) 88 + GV'v, - gdT = 0
3 (ot

o

leads to the same relation between the hts,

27 See Carslaw, Introduction to the Theory of Fourier's

Series and Integrels. p. £00.

28 In order to verify that equations (5.8) and (5.9)
satisfy the boundary value problem (£2.4), (2.5), (£.6), (2.8),

we must evaluate the following derivatives:

¥ = K G(p* -1 - Poilrt) -
o (dze(re -31) - (I ir) & ¢

o0

+( 1 + l) N exp(— r") e aa -7 A, +

2Kt o Kk 4kt 5 ek

Wt

+ _m_ A - zfm £ ] 1 exp(— r‘+z‘> +

2KT K 24 (kt) r*4zr 4Kt

l+z‘l
YKt _Al

- z*+ 2rt e dh}}

r*(ri+zi)n o
aut + ¥t = K JA+eG ) -zr'3 + 1 7 exp(— r‘).
or T A+G - “ 2xt « 45t

o0

1
f e ar - T A; - z7m 1 1 exp (— r‘+z‘) +
. 2K K o4 (kt) ri+z? dxt
”-—7-; lil
V.’TET _Al

- 3 e dﬁ}

(rr+z )%
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o' = - K{-G [* + -z T ..
oV T
8z {A+C rx rﬁ r1 EK ° K 24 (k)
O
1 exp(— r®+zt - i “( e A dh]}
T4zt 4Kt (r=+zz)wa )
B Ea
A =K &G l—" + 1 7 exp(— r‘)J e dX} =
A+G o ° 2kT. K 4an "
Wee
= Kl &G '+ m_ 1}
{7\+ ,F° e
2 3 2
oyt = xfaxec ([ v, -1+ _Jdm exp<_ I.z_*_zzv) +
9z iy or KA T ZKt
FSET
T .
+ 7 A - A7 z 1 ex — r*+g ) v{ e diﬁ
<K rk | 24 (kt) rr+z? 4iKxt. (r? +4, 2 )2/1 A
- 'r \ 3 ' 2
= 2A+3G (=) r’ +z [ + @ A+ f_ 1 s S
ARG &K S (kt) Tiz*
q4xe 2,'
.exO(- ri+zt) - gy J‘ e déB
T4kt (r*+z¥)%
vl = -KJ] =G rﬁ - Zwr”f - A: - pt

Y 1 ,
r | & (kt) rr*+z?

=
K
4Kt .
.eXp(—rz+z?) - rt ,f . dhl}

or A+G

Hence, the first boundary condition,

owr + ovy = K{-2F) +=2a["] +x & + 21 [ 1
ard —3 £
9z or ' ' Ko k| 2 (kt)



And [ov" + ovy =K{—2§_A:- J’n?f‘At du) + 7 A,
3z or 2K Vi A K
2=0

B [
~
2
(Dl
bar®
g.;
| S—
w
0

LA exp (— o ) -
kr |24 (kt) 4Kt

0
= K {EHIA’,’ (kM32=0,7) du + 2d7 { 1 exp[- rt
k 24

i , kT |&d.(kt) 4kt
Ikt .
-2
- _;L_f e d)]}
r
]
o0
3y?
But A7 (kpy2=0,r) = fx=e'/"‘J,(rx) ax = _xr
X<o

0
. 1% Y . 2
and i exp(- T dw = _Ir j 2 k*A7 o A_t.
4Kt dg 4K K 2Vk
M=E
For if we set. M= _r , then the integral becomes

b
A2iFE

'5.";"'5 X ;]‘Trr?'c' +
2 fk‘ ehdr = g {[Ae'] 4 e d/‘l}
T 4K A K -2 4y A .

r
~IVke ¢
e " da

0

I

= arl]g,__-r exp(- r..") + 1
Kr (T 4 T

Hence substituting in the above eguatien,

ovlt + _a_y,] = 0
3z or L

proving the first boundary condition.
The second boundary condition states that
AL + 8G 0vy -[@T] = 0
0z

=0
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Now AL + 2G 8w - pT = K{?,AG.[—" +_2 A7 exp(— r‘),
0z A+G ' ° Bkt K 4Kt

00

A e ar} - sk s - o
J; © } {A+GF =1 = Zr[zJ(xt)

—

VKt ”L:-,%zgl l
1 exp(— r‘+z‘) - 1 f e dﬂ]} +
T +z? 4Kkt (r +z " )% a
(-4

kS
- 2Ag £ exp( ‘)f e aa
T 4Kt

Setting z = 0, the expression becomes

AT exp(— r‘) - 2AG [ + Gm A, +
A+G 4K 4KT MG ° X
- m(A+86) t”' exp/(- r‘) = K {1(_}_ A:, - 1rG exp( r! )} =
4K 4Kt K Zxt

| - kX' 3
But. 4, = e x J(xr) dax = _1 exp( r
ekt 4Kt
X0
Therefore PA + 2G 0wy —@T_] = 0
(0}4

The equations (£.4) are also satisfied by (5.8) and (5.9).

-a__ g_‘ﬂ + z,ﬂ = %" + l _a_&" it v‘ﬂ =
or |or r or? r or o
0
- 4 Y
= Kyaee (5)["] +=z[, - _p 7 exp(- r‘)j e an +
r 4Kkt Tk Zxt) J,



+ m_ Ay - zwT| —_x e}:p(- r? +z2)\ 3 +

2k K ed (kt) 4kt )\ (r*+2%)?

it ;

+ 1 + 31 J‘ e dA]}

2kt(ri+z?) (ri+zt yh
And
gy = k| -g1-G 3 +zr + 7 A, - AT T 1
oz A+G ° ek K 2y (kt) r*+z2

ré4+2
v 7KE »
: e}:p(- r? 4zt

= - zdm 1

T4k t'») Tr“"T= Tzt A ] K 2y (kt)

. exp(-- pt -!-'z,‘.) B2 - & + sz | e ax
aKt (rt+zi)? exkt(r*+z?) (rt+zl) A

Also

o
A = K| -2G ["3 - T exp(-— r’")J‘ e d%}
or X+G I 4Kk*t* K 4Kt Jz
Vit
and
FT. = K{Jﬂ%hﬁ(ﬂ exn J‘
Skt 4
_V::
and
o0
*
,@@_C[.‘_. = K)m(A+8G) [ -r exp( ) g A d?\}
or 2Kt 2KT 4Kt

A+G

-exp (—~ rtizt -3 - 1 + 3re e d)}
4Kt (r+2)T 2kt(rr+z?) (rr*+zt )%

avp = {E?H—o(}r' -zl‘"“+ r'3-
' i




Substituting in the first equation of system <7 (2.4),

00

G(V'v. - .Z') = GK{ 2("? - o7 exp(— __I_':_)f e dh_}
T} 4 KE? 4Kt —%
3 - e
(A+G) 8 = GK(-2)[", -—K(A+G){ T exp(- _;i) J? e dx}
or 4 k& t? 4Kt Ja_
o 4 é o
-vp@g, = (2\+2G.)K{ T exp(— _g_‘_)f e dh}
GI' ' 4:k' t" 4Kt 2
e

Hence, adding, the right members total zero.

30 "Ramanujan" G.H.Hardy, Camb, Univ, Press 1940, p. 203.

L]

a2 3t
31 Taking H,(x) = exf etax = g(x) , we have

(4
dg = 8xq - 1 Hence, by means of the recurrence relation,
dx

Hu. (x) = 1 HL(X)
an

we can obtain explicit expressions for the Weber-Hermite

functions of negative integral order, viz.,

H, x) = q
H.,(x) = - % [exq - 1]
Ho,(x) = =S [(ex*+ 2)q - ex]
H,(x) = - _1  [(8x®+ 12x)g - 4(x*+ 1)]
2.4.6

B, &) = 1 [(l6x"+ 48x*+ 12)q - 4(8x%+ 5x)]

2.4.6-8 '
HI, () = - 1 [(3ex’+ 160x™+ 120z)q - 4(4x’+ 18x*+ 8)]

2:4:6.8:10



