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Summary 

In a semi-infinite . solid the problem of determination 

of the thermal stresses caused by a known initial heat 

source throughout the solid and a known time dependent 

heat source on the surfa ce is considered. The heat sources 

are taken as axially-symmetric, and the physical properties 

of the solid are assumed to be constant. 

The equation of heat conduction is first integrated 

in order to obtain the temperature distribution throughout 

the solid. This result is then us ed in the equations of 

elastic eg_uilibrium ex9ressed in terms of the displacements. 

The latter equations are integrated and integra l expr es sions 

for the displacements are obta ined. Conditions for con­

vergence are discussed, and the integrals are evaluated 

1. 

for special choices of the initial and boundary heat sources. 



Notation 

v,, elastic displacement in the i d irection 

ei unit strain in i direction 

eiJ unit shearing stra in between i a nd j directions 

Si unit normal stress 

s,j unit shea ring stress 

J< thermal diffusivity, equals k/ f<r ·where k is the 

thermal conductivity, JJ is the density, and tr is the 

specific heat. 

E Young's Modulus 

v Poisson's Ratio 

G modulus of rigidity = E/ [2(l+v)] 

~ 

T 

f] 

= 

= 
coefficient of linear thermal expansion 

temperature 

= °' E 
1-22' 

K = 41<1
~ To 

1r(J\+2G) 



AXIALLY SYMMETRIC THERMAL STRESSES IN A SEMI-INFil'HTE SOLID 

I. Introduction. 

The problem of determining the elastic stresses and 

displacements in a semi~infinite body is historically 

associated with the name of Boussinesq. A solution of this 

problem -- also known as the Problem of the Plane -- was 

first obtained by Lord Kelvin for the fundamental boundary 
1 

condition of a load concentrated at a point.[1] Boussinesq, 

using potentials, succeeded in solving the problem for more 

general boundary conditions.[2] Subsequent writers, partic­

ularly Cerruti, generalized the solution further and dev.ised 

new methods of attack. [ 3] A method of solving the problem, 

applicable when the surface loadings possess axial symmetry, 

was studied by H. Lambf 4], and K. Terazawa. {5] This method 

can be extended further to obtain a solution when there are 

body forces present which can be expressed as gradients of 

a potential function, and can be modified, as shown in this 

paper, to give a solution to the problem of determining 

thermal stresses caused by axially symmetric heat sources. 

Since many heat sources are of circular section, the case of 

axially symmetric distribution is important physically. 

In the present paper it will be assumed that the temper­

ature of the plane surface bounding the solid is known as 

an axially symmetric function of time and radius. It will 

also be assumed that the initial distribution of temperature 

throughout the solid is a known function of the depth and 

the radius, and that the initial condition of strain is that 

1.. Numbers in square brackets refer to the notes at the end 

of the paper. See page78. 



. which would be caused by this initial temperature dis­

tribution. Aside from the foregoing initial and boundary 

heat distributions, the solid will be taken as free of heat, 

sources. Finally, the solid will be taken as a homogeneous 

and isotropic elastic body, the thermal conductivity, the 

density, and the specific heat being constant throughout. 

Ir: The Thermo-Elastic Boundary Value Problem. 

Whenever the stresses in an elastic body are caused by 

the unequal distribution of heat- it is necessary that the 

fundamental elastic equations be modified. In order to 

define the notation and have these equations for ready ref­

erence, we shall restate them here. Since the present 

problem is one involving axially symmetric quantities, the 

elastic equations will be given in the form they assume in 

cylindrical coordinates. 

We shall let-V be the displacement vector, 

V :: I, v, + I2 v, + I., v, 

where v,, v1 , and v1 are the displacements in the radial, 

angular, and axial directions respectively, and 'I,, I~, andc 

1 3 are the respective fundamental unit vectors. The unit 

strains in the respective directions are given by the 

equations, [6], 

(A) 

The unit shearing strains between the respective coordinate 

directions designated by the subscripts are given by, 



The respective normal stress components will be designated 

bys,, Sz, and s3 , and the shearing stress components 

will be designated by s, 2 = s 21 , s,; = sJ, , and s1.1 = S,z, 

where Stj is the unit- shearing stress in the i direction 

on a surface whose normal is in the j directi~n. The 

fundamental relations between the stress components and the 

strain components are giv.en by Hooke's Law [7], which states :-. 

e, = l [ s, - 21 ( s, + s.,)] e, 1 = l S,a 
E G 

(B) ea = 1 [Si - v (s, + s., )] e,1 = l s,a 
E G 

eJ = l [s3 - v ( s, + s 2 ~ 
E 

e13 = 1 
G 

SzJ 

where E is Young,ls Modulus, vis Poisson •s ratio, and G is 

the modulus of rigidity which is equal to 

Equations (B) can be solved for the stress components in 

terms of the strain components, giving 

s, = i\6 + 2Ge, 

S 1 = ~ 6 + 2Ge1 

s., = ;\ 6 + 2.Ge3 

where A = vE/(1 + v) (1 - 2v) and 6 = e, + e-i + e 3 = V•V..1 

~ being the operator,.L.+t, L + IJ 1 L + 13 L . 
r 3r r ~9 ~z_ 

If S = s, + s1 + s3 , it-follows from (B•) that 

(C) A = 1 - 2V S 
E 

In the case that the displacements are axially symmetric, 

v2 and the partials with respect to f} vanish. 

5. 



Equations (A) and (A•) ·become [8], 

(A") 

The equations of elastic equilibrium in terms of the unit. 

stresses then take the form [9], 

(D) 

where 

[ 

C,S1 + S, - St +, .~~.,+ W1 = 0 
ar.. r ~z-, 

h., + o s,1+ ~ + Wj = 0 
oz . ~r. r 

W = i,W, + i.,W3 is the axially symmetric body force. 

If equations (A") and (B•) are substituted in (D), the 

equilibrium equations in terms of the displacements for 

the case of axial symmetry are obtained: 

(E) 

( :.\ + G) o 6 + G ( V.!Vi - !! ) + W, = O 
Fr r' 

( :X + G) ~6 + GQ;v3 + Wj = 0 
c)z,; 

where "2! is the operator rl + 1 a + ?l 
~r.~ r ar az~ • 

Boussinesq •s problem consists in solving equations (D) <->,· 

or (E) for z>O subject to boundary conditions on the surface 

z = 0 in terms of either the stresses or displacements. 

For example, we may be giv.en that 

{ 

s ,3 = Ge,3 == R 

. s 3 = A 6 + 2Ge3 = Z 
(F) 

for z = 0 

!or z = 0 

where Rand z_are functions of r. These conditions together 

with (D) or (E) suffice to determine a unique set of stresses 

and displacements throughout the solid z > o. 
When the solid is subjected to heating which results in 

a temperature distribution which is a non-linear point 

function, the relations (B) for Hooke's Law are no longer 

valid. The strains will not only be due to external stressing 

6. 



but also to temperature changes. Lf T- = T(r,z) is a 

point.. function giving the value of the temperature, measuredc~. 

from some reference level, and CC is the coefficient of 

linear thermal expansion, then the strains due to temperature 

variation are [10} , 

provided that the magnitude of Tis such that the expan­

sion is linear. Since no shearing strains will be caused 

by temperature changes in an isotropic solid, the quantities 

eij will be given by their equations in (B). Adding the 

above thermal strains to the elastic strains of equations 

(B), we get the form of Hooke•s Law which holds in thermo-

elastic problems, viz., 

e, = 1 fs, - 11(s~ + S1 )] + aT Ge,t = S11 
E 

8z = l [s, - v(s3 + s / )] +dT Ge,1 = S13 
(2.1) E,. 

e3 = l [5.J - v(s, + s2 )J + c( '] G~1 = s 1J 
E 

Replacing_ Hooke's Law (B) by equations (2.1) causes a 

modification in the other elastic equations. Solving (2.1) 

for the stresses, we find that equations (B•) become~ 

(2.2) 

to be 

(2:.3) 

s, = ~ li + 2Ge, - f3T 

S1 = :\ li + 2Ge1. - fJ '] 

S3 = ").,(j. + 2G.eJ --p '.D. 

where 19 = «E 
1 - 2 .V 

Erom (2 .• 2), the thermal form of equation (C) is found 

li = ~(S +. 3fJT) 
f3 



In the case the body forces w· are everywhere zero, substitu­

tion of (2.2) and (A") in equations (D) gives for the thermal 

equilibrium equations in terms of the displacements: 

( A + G) 'ab. + G(v.:v, - Y• ) - p ll = O 
~r ra br 

rr the surface tractions are everywhere zero, the boundary 

condition (F.) becomes 

(2.5) 
for 

for 

z:;=O 

z . = 0 

T.o solve t ,he thermo-elastic boundary value problem, we must. 

then solve equations (2 .• 4.), for z > o, subject to the 

boundary conditions (2.5) on z , = o. Comparing equations 

(2.4) with (E) and (2.5) with (F), we see that., the boundary 

value problem in thermo-elasticity with no body forces or 

surface tractions is the elastic boundary value problem 

with body forces w = -,vt and a normal surface tension 

of amount ~T-. The total normal stresses can be found by 

using . the displacements from equations (2.4) and (2. 5) in 

equations (2.2). Physically this means adding a uniform 

pressure of amount /J T to the elastic normal stresses. 

rr. 'll is a known function throughout.. the solid z > O and 

on the surface z = o, the complete problem is contained 

in equations (2 .. 4) and (2.5). However, it. may be that T 

is known only on the surface z = o, it then becomes necessary 

to solve a boundary value problem in heat conduction. In 

the general case the temperature is not only a function of 

position, but also of time. ~ will then be a solution of 

a. 



the equation 

(2.6) 
a 

"T. = l aT. v., - -Kot-
k a constant, 

subject to a boundary condition which is usually of the 

type T. = R(r,t) on z = o, and subject to an initial 

condition of the type T = H(r,z) at the time t = o. 
The thermo-elastic equations (2.4) were derived under 

the assumption that Twas a function of position only. In 

the case that the temperature is time dependent, it follows 

that all of the displacements and stresses will also be 

functions of time. The thermo-elastic equations for this 

case will take the more general form [11] , 

(A+ G) a,ev.;v, - :Y! ) 
& 

at. +. - p fJT = f' av;, 
or ra ar St:' 

(2. 7) 
(A+ G,} G{~;~) i 06 + - -fJo'X = 

Fz" az .. fa~ 
where f is the density. In most cases of physical importance 

the thermal variation is gradual so that the stress con­

figuration is always in equilibrium with the heat distribution. 

The time then enters the equilibrium equations only as a 

parameter and the right hand members of equations (2.7) 

are zero. Dt follows that. whenever the surface conditions 

are such that a temperature-stress equilibrium is maintained, 

the complete boundary value problem consists of equations 

(2.6) subject to the conditions, 

{: = E(r,t) on z = 0 
(2.8) 

= H(r,z) at t = 0 

together with equations (2.4) subject to the boundary 

conditions (2. 5). However, Goodier. f 12] has shown that 

the latter equations hold to a good degree of approximation 

even in those cases where temperature fluctuations lead 

elastic conformation. It- must be assumed, however, that the 

9. 



initial stresses are those which are in equilibrium with 

the initial temperature distribution H(r,z), and that the 

elastic quantities E, z;), G., and ~ do not vary with the 

temperature. (This can be assumed to hold in most practical 

cases. See Goodier loc. cit.) Under these conditions, the 

solution of the problem will be unique. For equations (2.6), 

(2.8) possess a unique solution [13], which in turn 

assures the uniqueness of the solution to the elastic 

problem (2.4), (2.5). (14]. 

A fairly complete list of references to the literature 

on thermo-elasticity is included in the notes. [15] 

IIL. Heat Conduction in a Semi-Infinite Solid. 

The solution of the thermal stress problem was seen to 

first involve the solution of equation (2.6) together with 

the conditions (2.8). In order to derive an expression 

which is a solution to this system of equations, it will 

be simplest to employ a method analogous to that first used 

by Minnigerode. (16] 

We shall first define a function u = u(r, 9,z;f,;,!;t- t) 

as the temperature at the point P = P(r,e,z) in the solid Z{ 

at the time t due to an instantaneous point source of heat of 

unit strength[17] located at the point 1r .= 1r(f,¢,1) gen­

erated at the time 't, where t< t . The solid 2{ is assumed 

to be initially at a temperature zero throughout, and the 

surface r:-JJ of the solid is to be kept at zero temperature. 

The function u will be called the Green's function for heat 

conduction. It has the property that 

poi~ts inU except at the point rr. 

lim u = 0 at all 
i ➔~ 

Further, by definition 

10. 



of unit instantaneous heat source, the tota l quantity 

of heat in the neighborhood of TT as t~t: is unity. We 

thus have that. 

(3.1) 
l.. for t.>1: "'y'u = au 

at 

where \/2is the operator al + 1 L + 1 (/· + aJ. • 
ari. r ar rJ. ae' aza. 

Since au= - au, u must also satisfy the equation, 
at . a 1: 

1 
xvu + au = 0 

~ 
(3.2.) for t > "?' 

Next. we shall define the function w = w(r,e,z,t) as the 

temperature in the solid Z( at the point - P =: P(r,e,z) at the 

time t . due to an initial temperature h(r,e,z) throughout Z( 
and a temperature f(r,e,z,t) on r:/. The function w. will 

satisfy the equations, 
1 

-tVw = aw , t > 0 
at 

(3 .3') w = h(r,a,z) , at t = 0 throughout U. 

w. = f(r,e,z,t) , onJ fort> 0 

Since equations (3.3) hold for all t > o, and since Lis 

restricted to the interval O ~ ~ ~ t~ it follows tha t the 

function w = w(r,e,z,r) will satisfy 
i 

I{ 'v w = aw 
a1: 

(3 .4) w = h(r,e,z) 

w = f(r,e,z,i-) 

, 

, a t.r= 0 throughout U 

, on rJ for?'> O 

Next, let us form the product of the functions u and w, both 

being considered as functions of r, e, z, and~, then by 

equations (3.2) and (3.4), we have 

a(u-w) = : u aw + w au = ~ [u 'v~, - w. '7h] 
a 't o't' • a~ 

11. 



rntegrating right and left members over the volume t( gives, 

(3.6) f a(u•w) d Y = IC J (u V~ - wVu) dy 
Ju at 

where d Y = r dr d6 dz is the differential of volume. 

By means of Green's theorem [18] the right hand member 

can be transformed into a surface integral, giving 

J a ( u . w) d Y = ,q: S ( u aw - w au ) 
at " ~i an, ani. 

t.{ 

where SJ. denotes integration over the surface~ whose 
' 

surface differential is doz- , and Q_ denotes diff erentia-
an, 

tion along the outward drawn normal. In the case that 

is the semi-infinite solid z > O, there will be only one 

surface J , namely, the surface z = O, d tr will equal 

r dr de, and Q_ = a 
an ----6-( --z ...... ) 

Hence, for the solid z > o, 
(3. 8) I a(u-w) 

a~ 
'tl 

dy 

• 

(3.7) reduces to 

= ,t L ("g~ - u aw) 
az 

do-

If tis an arbitrary small positive quantity, integrating 

(3.8) from -c= O to 't= 

J'l a(~~wl 
't'-:o 'U 

t - <; gives 
t.-, 

dYd't =l(J I (w g~ - u g~) do- d-r 

'(:O 'J 
Reversing the order of integration in the left member and 

proceeding formally, 
t·E 

(3.9) J·Ja(u•l") d't dY= f{[u] •[w] - [u] •[w] }ctr = 
o"t Ji t'•t·E t•t·E ho f:o 

l,{ \'::o s'•Ie u =· K • (w g~ - u g:J c1rdt-

t':o 'J 0 
and since u vanishes on r-:J this la.st integral is equal to 

t. ·t 

K I I w g~ do-d " 

t':o .j 

12. 



Next consider the limit in equation (3.9) as€~ o. Since 

lim u = O everywhere except at the point 1T, the v.olume 
"t'..,..t 
integral over Z( is equal to a volume integral over an 

elemental volume'[ containing the point 1r. The function 

w may be considered as a constant throughout 1, with a value 

equal to its value at the point 1r at time t = 1:. Hence 

from (3.9), 
t 

[w,,.] S lim [u,,.J dy = S [w] (uJ d1 + 1<f f w ~uz dcrd t: 
?:t f 't'➔ t ~ t:o t':o j Jo v 

T::O g> 
where Sis the volume integral over the elemental volume 

1t 
containing the point 1r. But by the properties of instantan-

eous point sources, [19] , 

S lim [ tJ,,] d'Y = 1 
t 't➔ t 

Therefore [we]i, the temperature at the point 1T = 1r(f,¢,f) 

at the time t due to an initial temperature distribution 

h(r,e,z) throughout "I{ and a boundary temperature f(r,e,t) 

on z=O, (see equation (3.4} ), is given by 
co , ur 

(3.10) w(t0,tj;,l, t..) = f J f [uJ=o h(r,e,z) r dr de dz + 

+ Hf rr f(~:e;~r1g~ 1_ r dr d8 d t: 

t::o J':• S=o i-" 
To complete the solution, the Green's function, 

u = u(r,9,z;,,,'J,l;t-t) 

for the solid z > O must be determined. For an infinite 

solid we have that the Green's function,or the temperature 

at P = P(r,e,z) at time t due to an instantaneous heat 

source at 1r = 1r(f, <), r) at time t, is [20] 

u = 1 
8 ( 1r K( t - r) ]>lz 

where for cylindrical coordinates 

exp (- __,..,--._R_
2 

__, ) 
4 }(( t - i-) 

R1 = r 1. + f 1. - '2:r f' cos ( e - ¢) + (z - I)' = Q 2. + (z - l ) 1 



If a negative instantaneous unit source is placed at the 

point 1r' = rr'(f,fJ,-(), tbe principle of su1;erposition of 

heat sources gives for the temperature at P, 

- exp(-

But this expression vanishes for all points on the surface 

z = o, it is zero everywhere inlt,as t➔ t' except at the 

point 1T, and its integral over 1/. is unity [ 21] . 'l'herefore, 

(3.11) i5 the Green's function u for the solid z > o. 
By differentiation of (3.11) with respect to z, we find that 

(3.12) 
[
~uz] = t exp(- g" + (l ) 
V -87r-J/_,.z.,,...[I(.;;;.,,.{ t - -?]-¾ 4 tf ( t - ~1--

l: O 

Substituting (3.11) and (3.12) in (3.10) and interchanging 

the symmetrical quantities r,e,z with f,¢,s, we get as 

the temperature at time tat the point (r,9,z) due to an 

initial heat distribution h(r,e,z) and a boundary heat 

source f(r,e,t), 

(3.14) T(r,e,z,t) = T, (r,e,z,t) + T2 (r,9,z,t) 

Since we shall restrict ourselves to the case of axial 

symmetry, we can take h(r,e,z) = H(r,z) 

and f(r,e,t) = F'(r,t) 

14. 



kind of order zero. 

Hence, 

(3.15) T, = 1 
411tJCixtJ 

[ exp(-

and similarly, t Of) 

(3.16) J J c{<~ ·:~'7, exp(- r:;rr~{j-) 
1:'::0 r=o 

10 ( 2r p ) f' d f d ~ 
4~(t - -r) 

The foregoing method gives the expressions (3.15) and 

(3.16) as the formal solutions of the bcundary value prob­

lem (2.6), (2.s). For solution of the thermal stress 

problem it will be convenient to write these ec1uations in 

a slightly different form. 

By means of the relations 

(A) 

and 

(B) exp(- (~~~>}] = 
00 f e-1<c~sin(cr) sin(cz) de 

c::o 
(3 .15) 

(3.17) 

can be written in the form: 

1'1 = rr {f~ H(p,{) exp(- A'(b'+ c')t) 
l:.o f:o ~~o 11•11 

15. 



Making the transformation t- t' = t 1 , a.nd using the 

relations (A) and a> 

exp(_ z
2 

) = f 2rrl(c 
\ 4Kt 

(C) 
C:o 

can be written in the form 
t eo °" a. 

• l(C't 
e sin(cz) de 

16. 

(3 .16) 

(3 .18) T, = 2,{ J f ff ,ob F(f', t-t'.) exp - k(b +c )t · ( 
a a '} 

t'=o p:o 6:o c :zo 

J/br) J~(bf') c sin(cz) de db df dt' 

(3.17), (3.18) are the forms of the solution which lend 

themselves readily to the solution of the thermo-ela ::-; tic 

equations. In order to determine what restrictions must 

be placed on the functions H(r,z) and F(r,t) in order to 

sa tisf::r the boundary conditions, vve can proceed as follows: 

We have as the complete solution of the system (2.6), 

(2. 8) 'I' = T, + T1 , but Tz vanishes identically when t = 0, 

so we must find under v1hat conditions lim 'I'1 = H(r,z) 

as t tends to zero. 

From equation (3.15) we have 

T = 1 oo oo 
Ii I2 where 

I, = 1 fr fH(f,f) exp (- r z. + 1:l-+ ~ '} ~(ffi) df df 
41<.t✓ (1r xt) '4Kt -

1:o r=o 

rrfH(f,() ( 
2 2 l) 

~(~) df dt Iz = 1 exp - r +p+ (.s':+z) 
4KtJ (1r1<t) 14~t 

(=o p=o 

Since the temperature reference level can be chosen so that 

His always positive, the integrals I, and I 2 are 2. O for 

all values of r, z, and t 2. O. If we make the transformation 

'),.'2. = (( - z}z in I, and 'l = (( + zla. in I 2 , we have 
4Xt 4Kt 



Cl) 00 

I, =- 1 f f fH(f ,z+2J ~t A) 
2J(t.frr 

A::.!.. {'-=o 
av« and 

17. 

00 00 

Ia= 1 J ffH(f,-Z+2JKtA) exp(- ra.+p
1
) e_').1.,:/?,r) o/-' d~ 

2kt.l'rr 4Xt ,l4 t 
~:: l f:o 

«ft 
If we r es trict H to be a bounded function, 

where 

(D) 

M J:·-'' cLl 5; exp(- r
1 

+ (l T(lli:e.) 
2 Kt/"1r 4kt / "'ti 4~t 

>.• ...1.. p=o 
in. 

Mis a constant, but 

exp (- r
1 

+ p') 
41<-C-. 

we then have 

Therefore 

00 

¾.i MI e_J1.d~, and a.s t. tends to zero, ~ 
fi ! 

::- lift 
will tend to zero for all positive z. We also have for 

H bounded that 

f
oo _;\,. 

Ij i }# e d-' by (D) 

11=-.-!.. 
2m 

But this integral converges for all t 2_ O. Therefore I, 

is absolutely convergent and the integrations may be per­

formed in any order. Let us then write 

°" 
I, = f L~ Cf) G(f,z, t) di° 

fl:O 

where Lt Cp) = 
~

- exp(- r
2
+ Pj ~(¼¼) . 4k't • 

00 

and G'(p,z, t) = 
2J (~Kt) f H(f' () exp (- ct-z)z) d! 

4Kt 
f=o 

We shall need the following theorem: 



Theorem L 

Given a kernel Kt(f) LO such that 

(1) K is integrable and J~ K6(f) df = 1 
p•o 

(2) Corresponding to any o, > o, 

S K
6 
(f) fy, will tend to zero as t tends 

~ 

to z.ero, where ~ is the portion of the f axis outside 

the interval r-o, < f < r+o, . 

And given a function r(p,t) such that 

(3) 0 .5. r .5_ M, a constant 

(4) r(f,t) is a continuous function inf and t, a.nd 

( 5) re r , 0) = 0 

Then 

Proof: 

00 

f K~(f) r(f,t) df vdll tend to zero as t~o. 
e=o 

18. 

We can write the integral S~ as the sum of three inte-
r-S, t-+-&, oo 

grals, S + S + S 
t°'=O ,.,, t-1-I, 

to=o 

By (3) we have that 

and 

zero with t. Further, since r is a continuous function of 

f and t, corre~ponding to a given £ > 0, we can choose a o, 

and a o, , such that 

I rcf,t) I < C for If - rl < o, and ltl < Oz. 



Therefore 

f\, (p) r(f, t_) df° < fr\ ,Cf) df 

Hence 

i--1, ,-.s 
1' ♦ 0, 00 I 

J K, Y') df .s_ f K .Cf) '1f = 1 
~-&, 0 

0, 

t:;~ f K,(f) r<f,t) "l = o q.e.a. 
f'':0 

As a consequence of equation (D) the function L 6 (,.o) 

satisfies condition (1) of 'I'heorem I. Further, the iiiod­

ified Bessel function ~ (x) is bounded by e" [24], so we 

have 

and 

the inequalitie~, 
r-$ 

J Lt({') df 
f'=O 

00 

6f .s. f 2Ct 
t=J-+4 

exp(- (r - ft) df 
4kt'. 

Since the risht members of these inequalities go to zero 

with t, Lt(f) will satisfy condition (f) of' Theorem I. 

Next let us take 

rcf,t) =· I G(p,z,t) - G(r,z,o) I 

If we restrict H(f,() to be a continuous function of both 

variables, bounded by a constant :M, then the above 

expression for r will satisfy conditions (:s), (4), and (5) 

of Theorem I. 

Therefore c» 

l.!rg f L.(f) I G(p,z,t) - G(r,z,o) I '1/' = o 

Hence by (1), i"='~ 

;.;g1 J Lt (f) G(f ,z, t) df = G (r ,z, 0) 
1'"0 

It remains only to evalua.te G(r,z,o). 

19. 
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Since His a continuous function, for a given e there will 

exist a&, such that 

for It - z I < D 

where 

and 

Now, 

and there will exist at, such that 
-L 

Jim _Ji'L _ 
e o.:\ < 

- c 
i.Vif 

Therefore IA, I < e for 0 < t < 
4 

Similarly, there exists a t 1 such that 

IAJI < £ for 0 < t < 
4 

Returning now to .A. 2 , vrn can write it as the 
Ho HI 

~~ f exp (- (l -ztldr + 1 J( H(f, !) 
2JTirrt) S 4kt / 2J{1r1<tj 

l- i· G 

for 

t, 

t3 

sum of two integrals: 

- H(f,z)) exp(- (r-z)
2
)d[ 

4/<t -J 
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The first term of the right □ember is equal to 

f~ 1 JOO l 

H(PJ~tl e-~ dA = 2H,);:,z) [ e· ~ d~ 
---rr;;-- _'_L ,,,. 0 

~ 
!+8 Hence, 

+ 1 JI H(p,r) - - H(,,o,z) , • 
::!J(m< t) 

1-S 

But there exists a tz such that 
00 

(" e -~' d~ < ,Irr e 
J J, BM 
2V'#f 

And since His continuous, 
1+1' 

for 

• exp (- (l -z)
1
) dl 

41(t 

1 J I H(f', n - H(p,z) I exp(- (l-z)
2
1d{ 

2./(rr kt.J ~ 4Kt / 
i- 11 

We therefore have 

I Az - H({',z) I < i. e 
for 

But G(p,z,t) - H(f,z) = A, + A 3 + A 2 - H(f,z) < e 

< E 
4 

whenever O <ti t 9 where t.s, is the smallest oft,, t 2 , t.,. 

Therefore lim G(f,z, t) = H(f,z) [25] 
t➔O 

\Ve have thus shovm that 

lim T = H(r,z) 
-t➔ O 

provided that H(r,z) is bounded and continuous in both 

variables. 

We must next consider t he limit of T a s z tends to zero. 

Since T vanishes identically on the boundary z = o, we must 

find under vvhat conditions lim T2 =F(r,t). 
i➔ O 

For the di::,cus s ion of this limit it will be convenient 

to establish a theorem similar to the pr eceeding one. 
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Theorem II. 

Given a kernel, K=(f,)) > o, such t hat 

K i s integrable and f f~Ki(f,~) df d~ = 1 
p•O {,., 

Corresponding to any o, and Oz> o, 
(l) 

(2) 

I =ff Ki(f,A) dp d~ ·will tend to O as z ~ o. 
~ 

where~ is the region outside the strip 

z 
2J (K D,) 

1.. 
2V'R'l; 

And given a function G(r,t), such tha t 

(3) 

(4) 

(5) 

Then, 

0 < G < M - -
G(r,t) is continuous i n both r and t., and 

G(r,o) = o 

00 C/1 

II = ,f. [. K1 (f,~) G(f, 
4
;~J df d .:l 

will approach zero as ~--. O. 

Proof: 

where 

Break up the integral II into three parts, 

II= A+ B + C 



and C 

It follows, since G 

... s. <XI 

= J I K. G df d~ 
f'= t'-lz i\ : ,!. 2.,.., 
is bounded, that 

A + B i MI f K/f,l) 6f d;\ 

al. 
But by (2), this integral tends to zero with z. Further, 

since G is a continuous function, we have by (4) and (5) 

that for a given e, we can find a o, and &~ such that 

I G (" ,_£_) I 
I 41< '}\' 

for I r - p I < ol and 

but this last inequality is equivalent to i\ > 

Therefore in the strip Ot, it follows that 
114 011 

c < elf Ki cf, J) af d A i e ff K 1 Cf, A) a f d ~ 
Ol p=o ~=o 

Hence by (1) C < € 

Therefore 

< b, 

• 

lim II = lim (A+ B + C) = 0 q.e.d. 
~~o il~o 

If in equation (o.16), 2. 
we set ~ = z2 , 

-4-K( .... t---7: J-

T2 becomes 

4 foof:(p,t-~) 
fi 4K~1 

A=.-!- f':O 

Z'(fi 
Let us define as the kernel of Theorem II, 

= U l....1 e_ '),1. exp (- .L_(r1 + /)) 
Jvl ~' z' / 

I (2r,0A1.) 
o 'z" 
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Then 

(E) 

Consider the integral of the kernel over the first quadrant, 
co tlO 

ff J!P ;: e- ;' exp(- ~:(r'+ />} 
p=o )l':o 

The integrand is positive and we may write the integral in 

the form, 

4 
z1 J"i 

l (2r,0 ;)1.) df d ;) 
o lzi J 

But I (2r1.> ~1.) 
0 'z 1. 

Therefore 

= 1 

Hence condition (1) of Theorem II is satisfied by the above 

choice of K (f,A). Next consider 

lim ff _.ie ;\1. e-'>-i. exp (- L(r 1 + f 1
) I 

~➔0 ./Tr' z1 zl / 

~ 
Since I~(x) < ex, we may write 

24. 



II we make the transformations ,, ,2i = f' and 
z 

r - p = x, 

· the first integral in the right member becomes 
.. a, 

J'.;3 J f (r - x) f'1 
exp(- (z'+x'),"') d)' dx 

x=li t-=o 

But upon integrating with respect to f', it becomes 
r 

z f 
,c: 61 

~r - x~ dx zi-+xi. >7a 

And since this integral is bounded for all z, the product 

goes to zero with z. 

Setting d = _f(. and r - f = -x, the second integral in 
z 

the right member becomes 

J;z r J00

(r + x) )'-
1 

exp(- (z'+x ')/'') d)< dx 
)': s, }A= 0 

Which, integrating with respect to)'-, becomes 

And since the 

zf 
cfL 

integrand is O(l/x2), the integral exists 

and the expression goes to zero with z. Finally, the third 

integral becomes 
~ ...l-+ o, 'lffl,' 

J'.;3 f J (r x) )<
1 

exp( - (z '+x' )f''} d)< dx 

~=-&,. ,µ.=o t I . 

= 

25. 

= J~z f 'Jiil;:J''exp(- (z '+x ')p) df' dx = J~ 
,/4L!L 

4zr ;< e - d_,µ 

x: O l":o )':O 

But the latter integral is bounded for all z, and the ex-

pression tends to zero with z. The above choice of kernel, 

therefore, satisfies condition (2) of Theorem II. 



Let us next define the function G of theorem II as 

I F(p,t - ~) - F(r,t) 

Clearly, G(r,O) = O and condition (5) is satisfied. If 

F(p,'t') is a continuous function of both variables and 

satisfies the relation O i F < M, then all of the 

conditions of 'I'heorem II are met. We then have that 

F(r,t) 

= F (r, t) 

Returning now to equation (E), 
__!_ 00 

~~ T, = F(r,t) ,~": £'"t
0
F(p,t-4;i.J K,(r,~) d/' d~ 

by Theorem II. But 
...!. oO 

rw J F (p, t-4;~, ~ 
~:O ('"=O 

0 i F < M, therefore 

And the limit of this last expression as z -.a, is zero. 

We have therefore shown that 

lim T = F(r,t) 
i➔O 

provided that F(r,t) is bounded and is continuous in 

both r and t. 
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IV!~ Thermal Stresses in a Semi-Infinite Solid. 

It was shown in section II that the boundary value 

problem in thermo-elasticity for the axially sy1nmetric 

case reduces to the solution of equations (2.4) subject 

to the boundary conditions (2.5) (page 8), in which the 

value of the function Tis obtained from the solution of 

equation (2.6) with its boundary conditions (2.8) (page 9). 

The solution of the system (2.6), (2.8) was discussed 

in section III, so it remains only to solve the system 

(2.4), (2.5). 

In attacking this system, We shall use a purely 

formal method and later investigate the conditions for 

the functions H(r,z) and F(r,t) under which the solution 

so obtained is valid. 

First, let us write equations (2.4) in vector form. 

The displacement vector V (page 4) in the case of axial 

symmetry is equal to 

i, v, + ! 3 v'3 

Hence, V'V = v"ti, v, ) + ~r1(i3 v 3 ) where '\71 is the 

Laplacian operator in cylindrical coordinates (page 11). 

But 

and 
\i(i3 V3) = 13 ('v.,~ V3) 

Further, t::. = 'v·V (page 5). Hence it is seen triat the 

first eQuation of (2.4) is the i, component, and the 

second equation of (2.4) is the i 3 component of 

(4.1) (A+ G) y'('v7•V) + G\}V -f3~T = 0 
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We shall now seek a solution of equation (4.1) for 

z > O which will satisfy equations (2.5) on the surface 

z = o. 

By means of the vector relation 

(A) '\fv = V (v'• V) - '\Jx':::;'xv, 

equation (4.1) can be written in the form 

Let us now consider the vector Va~ composed of t wo parts, · 

(4.2) 

where I is a scalar quantity and A is a vector which we 

restrict to satisfy the relation, 

(B) 

We then have for (4.1) 

28. 

But since the curl of the gradient is zero and the divergence 

of the curl is zero, the above equation becomes simply, 

(4.3) 

If we now take t he curl of equation (4.3), again using the 

fact that curl grad= o, we have 

(4.4) 

But by means of relation (A), 
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y'x\Jx(fJ" VxA) = V[V·(v'•V"A)] - \i(VxV-"A) = o 

A.gain, div curl= O, hence, by (A), 

if cv" v1" A? = v'lv cv-1)] vi = o 

But by (B), ('v•A) = O, therefore, 

(4.5) v"I = o 

We can find a solution of et.lu.at ion (4 .5) by t aking 

A such that 1- -'1 A = B vvhere 

Now 

by (B). But in cylindrical coordin&tes with axial symmetry, 

- 'i2r 'i3 1., 

'v" V = 1 6 a a = -i:z ( OV3 - av,J = -B - ar ae r az ar az 

V, 0 VJ 

But B = I, B1 + I2 Ba + i,B, = 'I2 (OV3 av,) 
ar az 

Hence the com1)onents B, = B 3 = 0 and 

(4.6) B2 = OV3 av, 
ar az 

Therefore But we can ex1:;and the left member 

of this eq_uation a s follows: 

v1 
A = Vl('I, A, ) + \li (i2 Ai) + y71.(I3 Aa) = 

:z 
+ 1 ~I, cf'A, i,AJ 

a = ~'\7 A, + 2iz oA, + r,v A2 + 
r2 ae' ae 

+ 1 r¼ a"A" - 2!1 0A1. - i 2 Aj + i3 \JA3 
r1 ae 1 as 

3ut all partials with r espec t toe vanish because of axial 

symmetry, t i. ieref ore 



Equating components, we have 

'\72.A, A, = 0 
ri 

(4. 7) 'J2, 
A1. = Bz Jtz 
r1. 

\}1A3 = 0 

But B was taken as a solution of the equ2..tion 

= 

Hence, = 0 

The equation 0 can be solved by the method 

of separ ation of variables. Setting B~(r,z) = R(r)·Z(z) 

and dividing by RZ, we ge t 

I 

1 dR + 
R dri 

1 dR 
rR dr 

0 

Since r and z are indevendent variables, vie may vvrite 

' dR + 1 dR + = 0 
dr1 r dr 

The general solution is then 

But we shall restrict ourselves to solutions which are 

finite for all positive z and r, taking 

(4. 8) 
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Finally, to evaluate the components of vx A, we 

write, remembering that partials with respect to e 
vanish, 

vxX = -i, 0A1. - Iz ( BA3 M•) + I 1 (aAi. + ~1) oz ar az ar 

(4.3), - Ia Now by since V has no component, 

BA3 = oA1 

ar az 

and 

(4.9) y'x A = - I, 0A1. + I., (aA,., + :1.) az ar 

Therefore the only component of A which is of interest 

is A,., which from (4.7) and (4.8) satisfies the equation 

(4.10) 

Again, we can use the method of segaration of variables. 

Assume A2 = ~(br) Z(z), then 

i 
1 dJ, 1 dJ, + 

J; dr1. r.J, dr 

But J,fl + 1 J,1 l 
J, r .r, rZ 

Therefore, Z" b
1

Z = 

And this equation has the solution 

z = 

Therefore, 

(4.11) 

l + 1 d3z 
r' Z dz1. 

= -b' 

C(b) 
-hi 

e 

llQ.)_ 
2b 

= C (b) 

- 61: 
z e 

-In 
e 
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If we set w = curl A, equation (4.2) becomes 

V - · v'~ + w 

where by equations (4.9) and (4.11), 

w, = aA1. = J;(br) e • bi [ C2 • (bz-1) + bC,], 
az 

and 

Hence, 

V1 = .Qj_ + w, = .Q.f. + J,(br) e-b, [ C
2

• (bz-1) + bCJ 
or or l 

( '1.12) 

Bi .§1 bJibr) -h [ + C1 z] v, = + w = + e C, a 
az oz 

In order to eva luate the sca lar functi on f of 

equation (4.2), . let us t ake the divergence of both sides 

of equation (4.3). Using the vector r elation div curl= o, 
we get 

But by equation (2.6) we can write 

(4 .13) 

Now the function T is a solution of the equation of 

heat conduction. Several forms of T have already been 

derived in section III and will be r eferred to later. 

32. 



But for the solution of (4.13) it will be convenient to 

consider the funci amental solution of t he heat equa tion 

which i s obta ined by the method of separa tion of variables. 

Setting T(r,z,t) = R(r) Z(z) e(t) in (2 .6), we 

find that 

(C) 

where D0 is a functi on of b and c which c.iepends on t he 

boundary conditions. 

Diff erentiating and substituting expression (C) i n 

equation (4.13), we get 

(4.14) 

where 

In order to solve equation (4.14), let us t a~e 

~ = b ¼,(br)·Z(z) 

Then \t(V\JaCbr)•Z(z))] = D J0 (br) sin(cz) 

And 
i V ( J_,( br) • Z ( z) ) = Z Jj' + z ~• + J0 z n = 

r 

= 

But Jibr) i s a solution of the differential 1:h i. ua tion 

= 

Therefore 

33. 



Hence, 

'v"i = v7 2 [J0(br)·(Z 11 - b1. z)] = D J.,(br) sin(cz) 

Again vz. (~(br )-(Z" - b1. z)] = Jibr) (Z" -b,. Z) • 

[
J.11 + 1 Jof + z"' b1. Z"] = ,Yo(br) [ z'v - S>b

1 
7 TI + b.,.Z] Iv l.j . ~ r Jo .:i:, z11 - b1. Z 

The differential equation for Z(z) t hus reo.uces to 

ZIV - 2b1 
zn + b" Z = D sin(cz) 

Considering first the homogeneous equation, 

since two pair of roots are equal, we obtain the solution, 

z = C 
-ba -h. 

3 e + c.,. z e 

which remains finite for all z > O. To solve the non-

homogeneous equation, we assume a solution of the form 

Z(z) = er sin(cz). Hence, 

or (D) 

Therefore the complete solution which remains finite in the 

solid z > O, is 

z(z) 

Hence, 

( 4.15) 

= D sin(cz) 
(b"' + c')1. 
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But to obtain the values of the displacements in equation 

(4.12), we must have the comr-lonents of grad(f ). 

Bi 
ar 

= 

1. ( ) [ - h - h ( )] b J1 br C3 e + C" z e + C' sin cz 

substituting these values of the com.)onents into e(d_uation 

(4.12), we obtain 

But by the transformation, 
2. 

C2 b C,,.b = h, 

C,b - C2 
~ 

h2. C3 b = 

C, b + C" b C b1. 
'3 = h3, 

we can reduce the unknown parameters to three. Hence, 

C 'bi. sin ( cz )} 

35. 

In order to satisfy the boundary conditions and evaluate 

the unknowns, h 1 , h 2 , and h 3, we shall have need for 

several of the following exp:eessions involving v1 , v 3 , and 

their derivatives. First, from the boundary conci.itions 

(2.5), we have the equations: 

(4.18) av3 + av, = o for z = O 
or oz 



and 

(4.19) A 6. + 2G 6V3 = 13T 
az 

From equation (4.17) 

f or z = 0 

av., = - b J,(br)f e-b
1
(h,z + h 3 ) + C 1bc cos(cz)} 

ar 

and from (4.16) 

av, = J,(br){ e-h [ h, (l-bz) - bh2.] - C•b
1

c cos(cz)j 
az 

Hence, 

And from the boundary condition (4.18), t his gives 

(4.20) 

From t he conditions (:2 .4), we have 

(4 .21) 

36. 

In order to obtain the expressions needed to eva lua t e (4. 21), 

let us fir s t derive a value for 6. from (4 .16) and (4.17). 

Now 6. = V· V = av, + Y, + av;, 
or r az 

From (4.16), we have 
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Hence, 

av, + Yi = bJ/br)f e-h[h,z + h 2] - c11,
1 s in(cz)} 

er r 

From (4.17), ,ve have 

Therefore 

But by e~uation (C) on page 33 

Hence from (4 .22) 

(4.23) (A+ G) 6 - t3T = Jo(br) [ (?i+G) e-btfh,+ b(h1 - h 7 ) + 

(~+G) Ctb(b~+c 2
) sin(cz) + (A+2G) C1b(b~+J) sin(czij = 

= Jibr)f (A+G) e·h[h,+ b(h,- h 3 )] + GC 1b(b'+c 2
) sin(cz)J 

We must nex t deter mine the value of the exj)res s ion 
2 

Vv, - v, 
r' 

' Now, .fL (av,+ Yi} = av, + l av, v, = 
ar ar r ar' r ar r' 

= -b
2
J.('or) f e-h[h,z + h,] - C' b 1. sin(cz)} 

and 
2 

J,(br) f e -hi[-2bh, + 
1. 

b 
2 
hJ + C ' b 

1 
c z sin (cz)} av,= b h,z + 

azz 

Therefore 



(4.24) sin( cz)} 

Differentiating (4.23) with respect tor, 

(.~+G) a6 - 130T = -J,(br) { (?l+G)e-h[bh,+ b
1

h 2 - b
1

h 3]+ 
ar ar 

substituting tnis last equation anQ equation (4.24) in 

(4.21), we get 

f -h 1 1 :i. 
~(br) Ge (-2bh 1) + G Cf b (b +c) sin(cz)] = 

i.e. 

(4.25) 

The remaining boundary condition (4.19) states that 

I\ 6 + 2G 6V3 = fT 
az 

for z = 0 

Substituting from (4.22) and (C) we get, 

+ Jibr) { e·h 2G[h, (1-bz) - bh3] - 2G C' bc 2 sin(cz)J = 

= J/br) { -C:\ + 2G) Cf b(b2.+c2.) sin(cz)} 

Hence on the surface z = O, 

38. 



(4.26) 

we now have three ec1ua tions in the t hr ee un£cnovm 

parameters h,, h 1 , ~nd h 3 , viz., 

(4.20) 

(4.25) 

(4.26) 

h, 

( /\ + 3G)h, 

( ~ + 2G)h, 

This system is readily solvable by Cramer's Rule. 

For the determinant of coefficients we have 

1 -b -b 

39. 

6.c - A+ 3G b(?\ + G) -b()i + G) = -4Gb-i(.:\+G) 

/I+ 2G bA -b()\ + 2G) 

The determinant for h,, 

2c•b1
c -b -b 

61i b(11 + G) -l>( /\ + G) 
~ = 0 = - -1 CI b c G(A+G) , 

0 bA -b ( A + 2G) 

The determinant for h2, 

1 2C'b:i.c -b 

61i = i\ + 3G 0 -b( A + G) = 4 Cl b3 c G (;\+2G) 
l 

A+ 2G 0 -b(.:\ + r~G) 

And the determinant for h3, 



1 -b 

6~3 = /\ +: 3G; b ( ?i + 

A + 2G b~ 

Hence by Cramer's Rule 

l =C•b c, 

2C 1b1.c 

G) 0 = - 4 er b3 c G,. 

0 

Substituting these values for h 1 , h 21 and h. into (4.16) 

and (4.17), we obtain the following expressions for the 

displacements: 

And substituting (4.22), we obtain 

(4.29) 

40. 

Equations (4.27), (4.28), and (4.29) are the funda­

mental solutions to the boundary 'lralue problem (2.4), (2.5) 

which were obtained by taldng for T the fundamental solution 

of the equation of conduction, 

(C) = b ~(br) sin( cz). 

In order to transform the fundamental solution given by (C) 

into the solutions obtained in section III for the boundary 

value problem T = H(r,z), t = O; T = F(r,t), , z = o, 
we shall take D0 as the operator D, + D.t where 
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and 
t oO 09 dll 

(4.31) D2 = ;Ji f J J f ,P F(p, t) exp(,c(b' +c')r) J;,(b.f) c de db d_p dr 
t.:o/:o ~:• c:o 

we then have 

and 

rr -, as given by (3.17) 

D2 [T;} = T1 as given by (3.18) 

Similarly, in order to transform the fundamental 

solutions given by equations (4.27), (4. 28), anu (4.29) 

into the solutions ·which satisfy the boundary va lue 

problem, (2 .4), (2. 5) in which T ,,, 
... i, as 

defined by equa tions (3.17) and (3.18), we shall take 

C1 a• the operator 

where D, and D2 are given by (4.30) and (4.31). We thus 

obtain as the formal solution of the complete boundary 

value problem (2.4), (2.5), (2 .6), (2 . 8), 

(4.32) 

where 

(4.32a) 

Vi = v,1 + v,11 

6, = 6,1 + f::,11 
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exp(-K(b \ +c 
1
) t) 

( 4 .32b) VJ' = 

(4.32c) 

(4.32d) 

6' = 2p . f'-J
00

f
00

f;H(.p,!') exp~-,t(b')°')J 
~(~+2G) b~+c~ 

f=o J'=o 6-=o c=o 

(4.32e) 

J/br) J"(b .f) sin( c .r) [ b 'c e -bi({~G) + b (b 1 +c 
1

) s in ( cz) J dcdbqpdf 

(4. 32f) 



we rnust next verify that the expressions for the 

displacements given by the equations (4. 32) actually 

do satisfy ti1e boundary value problem (2.4), (2.5), 

where T is determineo. by (2 . 6), (2 . !) . To do t his we 

must ascertain the conditions on t he functions Hand F 

under v.rhich the integrals converge. 

We have first the ec1uations (2 .4), viz., for z 

( ~ + G) a6 + G( 'y.J. v, - V, ) - f3 oT = 0 
ar r~ ar 

c, + G) 56 1 
- (3 aT 0 + G'v v. = i oz az 

Two things must be shown: 

(I) That the integrands formally satisfy (2 .4) 

> o, 

(II) That the necessary ciiff,.::rentiations under the integral 

signs are valid. This depends on the convergence of the 

germane integrals. 

In order to establish (I), consider the equations 

(4.27), (4.28), and (4.29), the exi)ressions for the 

portions of t 11e integrands containing r and z. We shall 

formally differentiate these expressions and list herewith 

all of the equa ti'.ons with which we shall have occasion to 

deal. 

From (4.27) 

g: = C' b J,
1

(br) [ II } = [ct b J.,(br) 

Hence, 

(4.33a) = 

43. 
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Differentiating (4 . o3a) VIith r espect to r, 

(4. 33b ) 
2 

av, + 1 ov, 
ar1. r ar 

(4.33c) 

(4.33d) 

Hence, add ing (4.33b) and (4. 33d) 

From (4.28) 

(4.33f) [ -bi[ ] ov3 = - bC ' J1(br) be e bz + G 
ar ~+G 

+ be cos (cz)} 

= ti } 

Hence, 

'l 

av.1 + 1 av., = 
ar1 r ar 

+ be cos(cz)} 

Again from (4.28) 

( 4. 33h) 



(4.,33i) 
f 3 -bi[ c• 3c,(br) lb c e bz 

Hence, adding (4.33g) and (4. 33i), 

45. 

bc3 cos ( cz)} 

Now from equation (C) (page ;32) and (D) CJage 34), 

(4.33k) f T = 

Hence, from (4.29) 

Differentiating with respect tor, 

(4.3cm) (,:\+G) a6. -130T = -bC 1J,(br)[ -2Gbi C e-h+ 
ar ar 

and differentiating with respect to z, 

(4.33n) (;\+G)o6. 
az 

Adding (4.33m) to the product of G and (4.33e), we get 

the left member of the first equation of (2.4), viz, 

But this expression is id.entically zero, thus satisfying the 

first equation. 



46. 

,Adding (4 . 33n) t o t he product of G and (4 . 63j.), we get 

the l eft member of t he second equat ion of (;.~.4): 

G C' J.(br) [ 2 b
3 c e-ba + bc(b 1 +ci) cos(cz)] + 

G C' J
0
(br) i-2b 3 c e-bz - bc(bz+c") cos(cz)J 

This expression i s a lso identica lly zero. We have t hus 

established property (I), tha t t he i ntegrand s f ormally 

satisfy equations (2.4). 

As to property (II), in ord er to justify t he necessary 

. differentiations under the inte;; r a l s i gns, we must restrict 

H(r,z) and F(r,t) to be continuous. Thi s a ssures t hat t he 

integ rands v!ill be cont inuous. We must t hen find t he con­

ditions under which t he integr a ls v', vn, v', v 11 , together 

with their partials a ~ A l ~\ ~1 
_, _,.1_, _u_, _u_, ~, converge 
or az art az~ araz 

unifo rmly. [27] . 
It will not be ne ces sary to ge t a s epar a te condition 

for convergence f or each of the above integrals, but vdll 

be sufficient to cons ider t he integr a l s i n which the hi ghes t 

powers of b and c a ppear. The converg ence of thes e i ntegrals 

will assure conver gence of integrals involving l ower powers 

since t he a ppear ance of t he f a ct or be 
b'+c1. 

or bsin(cz2 
b~+ ci. 

in all of the e~pres sions a ssures convergence near the origin. 

The highest powers of b ana. c appearing in t er ms con­

t a ining the function e-b? occur i n t he expr essions (4 . 33b), 

(4. 33d), and (4. 30i). 



<We must therefore consider the conver~ence of the integrals, 

P, 

and 

p :: 
z 

where i = 0 or 1. 

, sin(cf) 

b f 2 -Jt 
C e 

b1.+c' 

• If -h1-
b C e de db d,p df 
b'+c' 

de db d/ d~ 

The highest powers of band c appearing in terms involving 

the functions sin(c.z) and cos(cz) occur in the expressions 

(4.33d), (4.33e), (4.33j), and (4.33n). vVe must then also 

consider the convergence of the integrals, 
ClOl}IOOD.0 

P3 = If ff .P H(p, .t) exp(-1<(b' +c' )t) J;(br) J,(b_p) • 
i•o p:6 6=o c:o 

and 
t~,oco 

• Sin ( C j) b 1I C "71 f sin ( C z )] d C db df d S 
b 1 +c 1 cos(cz) 

P, = J J J f p F (j>, ~) exp (- <(b' +c') (t-t)) J;(br) J./..bp) • 

'ho J):O l,:o C :o 

{
sin(cz)} ,, "' c ·b c 

bi.+c1.- cos ( cz) 
de db c!fdt 

where i = O or 1 and n + m = 4 according to the schedule 

n = 1, 2, 3, 4 

m = 3, 2, 1, O 

47. 



Now be 
ba.+c 1 

48. 

bl - /n e . 

But be < 1, 
b&.+c1 

jsin(ct)j < 1, j~(br) j < l, 

and we can find a c onstant a, , such that jJ
0
(b_p) I i a, 

Jb,P 

Hence, 

IP,l .5. aJ J JI lj IHI exp(-((b'+c')t) b¼ de db a,p df = M, 

• ' . ·o~c~ ur1"t1'1 n > 1, Since either t:C1e combina-cion .. 

appears in each of the various expressions occurring in~, 

by means of the bound l sin(cz) I .5, cz, we can u se the s".me 

inequalities t hat were used for P, • Further because of the 

symmetry of' the exponential function in M, , it is immaterial 

whether we use b or c in the inte,:;; rand. 'i'l1eref ore, covering 

all of the cases, 

l~I 
Cl) 

But J exp( -xc 1 t) 
c:o 

and 

where az is a constant. 

< M, 

de = 

co OIi 

fi 
~ 

= r(¼) 
~ 

= 

Therefore IvI, < .& JI Ip IH(p,r) I dp dt 
t"/f 

f:o p-:1 

Hence P, and P_, converge absolute ly and uniformly in r and z 

for all t > O, provided that the integral, 



ao CIJ 

f f ff I H (J'' t) I dp dt converges 

t=o ,p-=o 

Returning to the integral P2 , we may v1ri te it as 

the sum of two L'ltegrals by means of the equality, 

Namely, P. = D z ... ,.,, p 1,1 where 

and t °" ao Q) 

p~l = I f I I .P F (p' t) 
t'•o p~o .... c :o 

- ' -h lJ e de db dp d t' 
b 1 +c 1 

But f"" exp(-k(t-t)c') de , 
c..-o 

and since exp(-kb
1 
(t- t')) I < 1, and I tT/bx) I S. 1, 

t Cl1 OIi 

l~,,I < .[ii L[: m:~l dj> d t: J " -Dl b e db 
- 2JK 

b=o 
co 

]-.:)·ut J ,'I .t,z. •• b f .,J > 0 o e a converges er a.1. _ z , 
0 

therefore 

P
21

, converges for z > 0 v:henever 

(F) j (p JF(p, t) I converges. 

t'=o J' :.o 

49. 



In the integral P,,2 we may v1rite , using the va lue, 
a, 

exp[<b' (t-t)] f e-r•d.,.. 

00 

S exp [- KC 1. ( t-1')J de = Iii 
b 1 + c~ b 

<!:o t 00 a, bV1<Ct•1:J 

P,,, ~ .r,; f 5 I.I' F (JJ, ") J.(br) 
t"~o p:o b:o 

J,(bp) b~ e-h• J"' e- J<' dr db dJ' d < 

bVktH·) 

Hence, by means of the inequalities, 
00 

!J;(bx)j i l J e - f', df< -5_ f 

< 

b '(/(lt·"J 
00 

" ' f b 0 e-l>i a"b al a 't' 

b=O 

It follovvs t ha t P will also conver 0;:,- e whenever condition '1,,1 

(F) holds a nd z is gret.ter than zero. 

In consider in~ ·che convergence oi' the integral P.,, 

let us brea:.c it up as follows, 

II } de db d,,o dn ff f ff 11 / de db dj> d~ 
't = t· e 

where e > o. 

50. 

Now the first integral will converge absolutely provided that 
00 

(G) J p I F (p'.) I dp < M for all 1:" 

JO-=" 
where Mis a constant. 
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For we have t ha t, 
t·e o- °" 

< M J ff exp{-,(b'+c•)(t-<))· 
e':1 /,:, C -..o 

db d t: 

00 ctl 

< : f J [ exp(-K(b'+c')e) + 

J,:o ,:::o 

de db 

But the combination b'fcos(cz) doe s not occur, so by mea ns 

of the inequalities, 

jsin(cz)I < cz, 

we have, 
t·t 

J f II I d~ 
'l:''-0 

jcos(cz)l < 1, 

(X) 00 . 

< ~ f J [ exp(- X(b' +c' )£) + 
b-=o c:o 

+ exp (- k(b'l.+c t) t)] b .,..z c ,,,,_, de db 

which converg es absolutely and uniformly with respect to 

rand z. If b does not appear to at least the second 

power, we can still avoid. the difficulties of convergence 

near the origin by using the identity, 

be 
-fr-2 

Before considering the convergence of the se cond integral, 

} de db dp d 1:: , 



let us list all of the cases which occur in the equations 

(2 .4). Only t:C1;:-: parameters th.at ve .. ry will be listed below 

and the expressions will be ::;implified v:herever possible, 

in order to facilitate the initial integration with respect 

to c. 

sin(cz) 

(2) J
0 

bc2. co~cz) = J
0 

b cos (cz) 
b 1 +c" 

(3) ~ be sin(cz) 

(4) J0 b3 c sin(cz) 
b 1 +ct 

(5) J, b1 c 2 cos(cz) = J, b2 cos(cz) 
bi. +c' 

cos ( cz) 

~ b~ cos(cz) 
bi+ci 

52. 

(6) ~ b,.c 3 sin(cz) = ~ b 2 c sin(cz) 
b"+c' 

J, b~c sin(cz) 
b 1 +c2 

( 9) J0 b C J S in (CZ) = J0 b c sin ( CZ) sin(cz) 
b2.+ct 

(10) J
0 

cos(cz) = J., bc2. cos (cz) ,:t b.1cos(cz) + 

(11) J., 
1 

be cos(cz) 
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With respect to t he variable c only five c.ifferent forms a ppear: 

(a) 

(b) 

(c) 

(d) 

(e) 

co 

I exp[-xci(t--r)] cos(cz2 de 
b1.+c1. 

c:o 

f°" exp [-1ee 1 (t-1:)] c sin(czl 
b1.+c1. 

c::o 

f~ exp [- •c' (t- ,)] cos ( cz) de 
e,o 

f
oO 

exp [- JCc 1 (t-~)J c sin(cz) 
c.:o 

00 f exp (- xct (t- i-)J c cos (cz) 
c.:o 

de 

de 

de 

Integrating these expressions with respect to c, (t - 1:)= .f-
00 

(a) = K"'rr e exp - z,. r= I -I< b~~ ( ) 

2 -:o 4l<V'+il) 

(b) t- JPO -1(.i/) ( 1.· ) = z1<"' H e exp - -,--z-,--~ 
--;r- ~ .. 

0 
4t((µ+A) 

' 
(e) = .[rr < J<)A.ri exp (- L.) 

2 4/(JA 

(d) 
. l. 

= ,[rr z(1<,,u) :r. exp (- ~) 
4 4Xff 

(e) 
.l .£ 

= .r; (kJA,f 1. exp (- ~) Irr z 2 (k;<) 
1 

exp~- L) 4 4A'ff 8 41(,M 

setting t - t' = .I', 
e co .:o oo 

11 J d 't' = J J ff .,e F(_f, t-}I) exp (-.\'(b' +c' )j<) J;(br) J0 (bJ), 

J4-=o _p:01,;o c-=o l sin ( cz) 1 
, eb~c~ de db dj d.,,c< 

b,.+e~ cos(cz) 



Substit-,.1ti:ng the 2xpr ess tons (a), ... , (e) in the above 

integral and ta>,: ing absolute va lues, we have f or the cases 

of the hi~hr::; s t powers of b which occur in (2 . 4) : 

£ r /J~iFI G - 1< b!'( ) (I) s i b e a db d..P dµ 
0 

p,:O~.,, 1,:0 

e e ,,,. oo 

b 3/ e -1<b~(b) db (II) s < ff f~IFI d.P d_µ 
0 

,14•0.f'' J,:o 

etc. 

Since all of the functions a1)1)ear ing in the integrands are 

positive, we ma~r integra te in any order. Let us first 

consider the integral (I). 

The integral with respect to · b is: 
co 

f b& exp (-xbz. (,« +)i)) db 
J,sO 

-J 
which is equal to [K(µ+A)] 

Hence, assuming that condition (G) holds, 

t ~ ½ 

i }( M.fii J J [kc~ +_µ)T 
72 

exp (_ Z 1. ) d/l dft 
2 \ 4K(A+.t.c) 

.14:~ )i:o I 

(I) 

By means of the transformation, 

(I) < = 

= ef K Mfi 
-., .. 

e ds 
z~ 

But J
2~ 

s., 

0() 

~I - ,f,. 
s" e ds = for all £ 

0 0 

54. 



and 

where O < 0 < 1. We therefore have that 

lim ( I) = 0 
f-tO 

The treatment of the remainini; integrals is similar 

to the above, and all can be .shown to go to zero with£. 

It follows then that P.,, will converge if conditions (F) 

and (G) hold. But (F) reduces to (G). For if (G) holds, 

(F) becomes 

ft M d -r: = 2Mr/t 
(t- t )½ 

'(~O 

which exists for all t. 

We may therefore conclude that the expressions (4. 32) 

satisfy the differential equations (2.4) for z > o, t > o, 
whenever· conditions (E) and (G) hold. 

It remains to investigate the conditions under which 

the values of (4.32) satisfy the bound&ry conditions (4.18) 

and (4.19). 
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First let us consider (4.18), av, + av, = o for z = o. 
or az 

From (4.32:Jf) and (4.33c) we have 

av., + av, = A, + Ai 
ar az 

·where 

(4.34a) 

cos(cz)} de db d.f dt 
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and t c:li) "° Q() 

(4 .34b) f J J f}' F(J, t) exr(- K(b'+c•) (t-t)) • 
~ .. o., =o o -:O c:o 

We must find the conditions on H and F under ¥.rhich 

lim ~ = 0 and lim A1 = 0 
~-"'o 'l-ei 

First let us consider lim A,. It will be useful to consider 
:z ---,o 

this limit in two parts: 

t~T [-z (canst.) Jfff; H exp(-t(bt+c 1 )t} 

( ") -bi, b ,..] •sin c~ e ac d dj> d~ + 

• sin(ct) [ e-br_ cos(cz)] de db d.f ctt} 

The first integral will conver ge 1vhen the integra l P, 

converges. Therefore when condition (E) obtains, the 

first term will go to zero with z. 

Th • [e- b1: e expression cos(cz)] 

second integral. 

Now, e - h - cos ( cz) I < 2 

and cos(cz) = 1 - bz + ... 

occurs in the 

1 + i£tl 
2 

- ... 
We may thus take e-br._ cos(cz) j .5.2z. Using this 

= z f(b,c,~J 

ineq_ua lity, we have in a simi lar ma nner, the second integral 



converging when (E) holds, anci the second term going to 

zero with z. Therefore lim A, = 0. 
f: ➔P 

We can treat the integral A2 in the same manner as A,. 

St-ef () ( ) .61] The integrals cos cz, sin cz, and e converge 
0 

absolutely and unif ormly with res1Ject to r and z and 

lim St {cos(cz) and sin(cz)} = O 
£➔0 t·l 

provided that condition (G) holds. The treatment of lim A, 

can then be applied in the case of A-a. provided we can show 

that the integral of the exponential function also tends to 

zero with E, that is 

Let us write 

lim J = 0 
t➔ ci 

Then if condition (G) holds, 

}~~ jJj < }!~ Ml{t exp(-k(b'+c')(t-~)) 
_Lt 3 

e" b , 

. I 1 - bi. de db df' 
b'\.+c" 

Ge) 

But f exp (-J(c"- (t- i-)] 

c:o 

de = 
2J c,iff--c,, 

57. 
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and ~ 

exp[- Jcc 1 (t- 't')] 
b1.+ c 1 

de = b[ii expf,b' (t- <)] f e-~• d,1 

Therefore, 

lim I J
1
1 < 

£~0 -

Now 

But since I -1rl/c I e < l 
00 

and J 
brtt. 

< 

= 

fi 
2 ' 

bVJcH·tJ 

= 

the limits 

of the last two terms as e tend ::; to zero are zero. We 

there.fore need only consider 

= lim 
~~o 

00 € 

lim J b~ e-h JJ!.·½.e -1e b I' df' db = 
E ➔o 

b:o O 
00 

Fi (const) J b
3
e-/,texp(-xb1ee) db 

1,:0 

where O < 0 < l, by the mean v2:.lue theorem. 

= 0 

The final boundary conditinn (4.19) states that 

/\ ~ + 2G OV3 - f T = 0 
oz 

for z = o. 

From eu,.uations (,l.29), (4.33h), and (C) we have 

2G av, - f T 
az 

= + 



where 

(4.35a) B, = 

and 

(4.35b) 

Now (H) I sin(cz) - cz e- b;a I = (cz) I sin(cz) 
(cz) 

Since no higher powers of band c appear in B, and I,1 t han 

in the integrals p ,, p 
.. , ., 1 , the treatment of the con-

vergence is the same as for the previous boundary condition. 

And by a corresponding use of the inequality (H), B, and B1 

can be shown to go to zero with z. We thus have that bound­

ary condition (4.19) is satisfied whenever conditions (E) 

and (G) hold. 

To summarize the results of section IV: 

The displacements v: 1 and v 1 as given by (4.32) are 

the solutions to the boundary value problem (2.4), (2.5), 

(2.6), (2. 8) for t > O whenever H(r,z) i.s bounded, con­

tinuous in both variables, and the integral (E) converges. 

'I'he displacements v;" and v}' as given by (4 . 32) satisfy 

equations (2.4) for z > 0 and the surfa ce conditions at 

59. 

z = 0 1Hhenever F(r,t) i s bounded, continuous, &.nd the integral 

(G) converges and i s bounded for all t. 



V~ Examples. 

To ill ustrate the forego ing theor ~r , we shall integr a te 

the e~ua tions for some specifi c choices of the funct i ons 

H(r, z ) and F (r,t). 

Of primary interes t ~ohysical l y i s tlle ca se i n which 

the initial distr i bution of heat t hroughout the solid 

is constant, 

Substituting in equat i on (3 .15), we have 
oo CD 

H~ f ff> exp(- r
2
+ Pi.) -r;,,/£i£.P..

4
2rJ<p \ [ exp(- (t

4
:zt. t) 

...,.4J_rr____,· c-l'(..,..t~}V1 4 "t, \ ti ., 
f:o jJ-:.o 

exp (- (t +z/)] dp dt 
4«"t-· 

But by means of the formula , 

(A) exp (- (,t+z)~)l cU 
4J<t )J 

60. 

and formula (D) on page 17, the above expression reduces to: 

(5~1) I
~ 

2I-~ e-i dJ\ 

ho 

The values for this last integr al, known as t he error function, 

have been tabulated. See, f or example, Jahnke and Emde. 

If the surface temperature F(r,t) ~ F, a constant, 

we have 

zF0 
41( J 7T/( 

t co 

L $..c ~1:),.,• 

• exp (- z.2. ) 
4J<(t-?-) 

dp dt' 



Again by formula (D) on page 17, this integral reduces to 
t 

(5.2) f -¾ ( 
T2 = z Fo (t- t) exp - z

1 

) 
d~ = 

2J ( 1TK) 4K(t-'?') 
~=o 

lao l' 
= J~ Ji e- d~ 

tv'if{ 

Now if H. = F. = A, it is obvious that the t emperature 

throughout z 2. 0 will always equal A. In fact, 

T = T, + ~ = 2A [ Je·~'a~ + f ~ e·)'d~} : A 
Tii o i 

~ 

But in this case of constant temperature, there can be 

no thermal stresses. Hence for H = F = A . . , 
equation (2.2) on page 7 that 

s, = ';\ 6. + 2Ge, - ~T = 0 

s, = /\ 6. + 2Ge1 - fJT = 0 

s J = ~ 6. + 2 Ge J - f8 T = 0 

we have by 

61. 

Adding these equations and using the fact that e,+ ei+ e1 = 6., 

gives 

(5.3) (3~+2G)6. = 3fT, hence 6. = 3aT 

Substituting in the above stress fornru.lae, 

(5.4) 

Therefore 

e, = e1 = e1 = ,g T = « T 
3ft'+2G 

arA 

a.zA 



As an example of a function which represents a con­

cent r a ted surface heat sourc e of short dur .s.tion a nd ye t 

s atisfies the conditions of integrab i l ity, continuity 

and boundedness, consider t he function 

F(r,t) = 

where A is a cons t ant. Substituting this va lue of Fin 

equation (3.16), we have 
t co 

Az J f 7:·
1 
exp (-

41<J (1or) . 
't::o j)=o 

·I ( 2r.P ).P dp d1: 
0 4k( t- i-) 

Integrating first with respect to .,P, 

R 1. t.. ) I ( 2r P ~ 
41<~(t- r) 0 4K(t-?-)j 

d.f> = 

exp ( r1.-r ) 
4/(t ( t- i-) 

Therefore t 

T = f (t-t"f.J/2 exp(- z 2 ) 'exu ( r 1 ) 
4 ( t- t-) ,. - 4k( t- ~ • 

t; 

• exp ( r 1 ~ ) 
4J(t ( t- -c) 

= J 

62. 



= Az 
2tJ (,or) 

But by the transf onna tion, 

(5.5) 2A 
T1i 

/1'1. = z I. , 
41(( t--i-) 

Q> J e-l' d~ 

_!_ 
1.ITT 

d t' 

we obtain 

Again this last integral can be evaluated from tables. The 

distribution of heat throughout a se~i-infinite solid as 

a function of r, z, and t where the initial temperature 

is H and the surface i s heated by a source whose va lue is 

A t-' exp(- r,.) 
41<t 

is given by (5.1) + (5.5). 
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In order to determine the thermal stresses arising from 

the above functions, we must turn to equations (4.32). It 

is seen that H(r,z); H0 does not satisfy the convergence 

condition (E). However, if the initial distribution is 

constant, the temperc~ture scale can be picked so that H0 = O. 

Further, since no thermal stresses can ari se in a solid 

possessing uniform temperature distribution, if we assume 

an initial stress-temperature equilibrium, the only stresses 

which can arise will be due to heat sources impres sed on the 

surface. Hence we neea only consider v." I and 'Y.j'. 

For 

Now F = A t-' exp (- r 1 
) 

\ 4«t . 
oO 

~ f .P exp t 
4
~:) d_p = 2~A 

if> :a 

satisfies condition (G), 

which is bounded for all t. 



Substituting the function 
. , 

F = A t exp (- L) 
41<t 

in equations (4. 32) we have : 

(5.6) = 2keA 
1T (A'+2G) 

exp (- ,l) 
1 ) 

l 4Kt£- r) • 

• J,(br) [ 
-h1 ( e be A+2G -
~ 

+ • b 
1 

sin(cz)} de db d_p d 1: 

(5. 7) v:'' 3 = -2kBA 
1r(~1+2G) 

+ 

• J,(br) exp(-~(b' +c• )'o/ b' ~e' [ e • h be ( ~~G + bz) + 

+ be cos(cz)} de db d.,P d~ 

First, we have that 
ao 

(A) f p J,(bp) exp (- PL ) 
4K~t- t) 

dp = 2 ..r(t-t) 

.p-=o 

Hence, 
t oll 00 

V, 11 4Kt~ A fff 
- '< b1.t -Kc'-r: 

e Jjbr) { e•hbe ( ~!~G ; > = e e 
1r(~+2G) b '-+c 1. 

-Z::o b:o c =o 

bz) + b' s1n(ez)} de db d~ 

and 
f; 00 00 

v:" -4k1 13A fff 
-1<1/t -Jtc"i:; c J0(br) l e - bt be ( _(1_ + = e e 

J 
1T (71-t12G) b1.+c"- ;>i+G 

t'::o •=o c=o 

+ bz) + be cos (cz)} de db d'l:' 
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Next consider the integral which arises in the first t wo 

terms of both v,11 and vJ': 

(B) 

We are thus led to an integral of' the form 
t 00 

(C) JI -Kb~ 11 -bl ( ) l '-e b e J br ~~ 
111 2J (,n:) 

t~o b=o 

where m =~0,1 and n = 1, 2. 

or 

Jt k,l.-rJOC:, -A~ 
- .[ii- b e e d~ 

-r:o ov:tt 

but and, integrating by parts, 

t 

J dt 
J; 

D 

Hence (C) becomes 

= 

= 

QC) DO 
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- I; f e"b\•·• J.,(br) J e·~• d;\ db 

We shall employ the notation 
00 

J -«X
1 

- blC " = e e x 

'}(:0 

b=o o'lfi 

J.,..(cx) dx 



we can then write (C) as 

(C) 1L. 
21( 

1H 
A,.,(/(t,z,r) Ii 

Elie 

00 J A: ( K)/, z, r) 
)A'=l/t 

dp 

We must also evalua.te the ~ following integral which 

occurs in the last t erm of v.". 

(D) J,(br) sin(cz) de db d~ 

which is equal to 
t 0, 00 

(D t) JJJ .1<1/t -KC' t' 
J1(br) sin( cz.) cic db di: e e C 

~::o ,,o c:=o 

(D") sts•r .,d't -1<<:'t 
CJ J,(br) sin(cz) de db d1: e e 

b,.+c-a. 
i-.. ;,, c:11 
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We can immediately write (D•) a s the product of two integrals: 
t 00 

-Kb,.t ( ) J J -ICC~t' e J, br db • e C sin(cz) de 
r=ci c:o 

The first integral is equal to ~ [i - exp (-
4

~~)] 

And by formula (C) pag e 16, t he second integral can be 

written as 

dt = fi 
I( t 

2Vi(f 

Integrating (nn) with respect to -r, 
00 QQ 

ff -1<b
1 t 

J1(br) c sin{cz2 1 e 
I( bL +c 1. 

l,;o c::o 

ca oo 

(Dn) 
l 

l JI exp(-K(b1.+c1 )t) J 1(br) 
/( 

a::o C'IO 

de db 

C sin(cz} de db 
b'' +ci 
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But sin(cz} 
b1+c L 

Hence (Dr) reduces to 

de ::;; 1!. 
2 

The integral (Dl1) can be written as 
00 CO 01> ff f exp(- x(b 1 +c 1 )1:') J,(br) c sin(cz) de db 

r:t; J,:o c:o 

Hence, using the integrals which were used for (D'), 

Hence, 

(D) = 

+ 

= 

exp(-~)] 
4K"t' 

::;; z ,[ii-
4 r 1<.J/i 

= .fi 
rl( 

~ [ l exp(-

J~ -J/ e dA fi 
rK 

0 

....1L 
2r.J( 

z Ji 

Finally, we must evaluate the integr a l, 
t 00 .. 

exp(-~) 
4k'?' 

ri +zl,) 
4Kt 

w A~(Kt,z,r) + 
2K 

• J, br cos cz db de dr (E) II f e-Kb'te-Kc'r c'b ( ) ( ) 
· b' +ci 

t::O o:0 C :0 

dt 



I ntegra ting fir st with respect t o -i;, we have, 

But 

- 1 
/( 

cos(ezl de db 
b&+c .. 

f' f exp{ - K( b' +c') t] b J,(br) 
l,:q c:o 

r 
c::o 

eos(ez) 
b1 +c 1 

de = Tr 
2b 

-h 
e 

+ 

cos(ez ) 
b&+e' 

de db 

Therefore (E ') bec omes 

Tr f"' e-1<1lt e -bi JoCbr) db 
2J< b:o 

Now, a s before, we can rewrite (E") as 

But . 

and 

00 00 OC) 

f J J exp[-K(b1.+e-i.)-r:] b Jibr) 

<•• '" ,,, f'b e-••\;,(br) db = 
,-:a 

r ,<c'-i: 
e· cos(ez) de = 

C:O 

Ther efore (E") becomes: 

and 

(E) = 

rl+z1.) d, 
4K't' 

eos(ez) de db 

l 
2K'C 

1 .r; 
2 J (x~) 

Irr 

exp f- L) 
\. 4K~ 

0 

f
f~~:' ~ 

e-1' d~ 

0 

Substituting from equations (C), (D), and (E) we have, 
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(5. 8) 

and 

(5. 9) 

where 

and 

v,n = 

exp (- --1:.:.J 
41<t 

vn 
3 

K 

= 

= 41<:i.~ A 
1r(:\+2G) 

r: ... , 
= 1T A. (K t,z,r) 

21( 

co 

f f A:(l(,..ci,z,r) - dp 

_µ:Vt 

We have thus expressed the displacements in terms of 

tabulated functions and the "A" functions. It can be 

readily verified that eQuations (5.8) a nd (5.9) satisfy 

69. 

the boundary value problem (2.4), (2.5), {2.6), (2 .8). [2s]. 

We shall next obtain series representations -for the 

functions 
.,. 

A,,.. In order to obtain a series for the integral, 
00 

A 1 = J -ctX
1 

- bx J ( ) 
0 

e e 
0

cx dx 
l(;O 

let us employ an interpolation formula due to Ramanujan. [3o] 

If j\.(x) A(O) - A(l)x + A(2)x1 

-2! ••• 
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and M(x) 

'I'hen, 

oO J A(x) M(x) 
,c: 0 

.r-, 
x dx GO " = L (-1) r( s+n) 

<tl'::O n! 
~ (-s-n) ,,u. (n) = 

= r(s) ~(-s) p(O) r(s+l) A(-1-s)_,.u(l) + C(s+2) A (-s-2)· 
2! 

·)L(2) - rcs+3) A (-3-s) )l-(3) 
3! 

+ . . . 

For A(x) we shal1 take 
-<AAJ. -bK 

e e . Now t he genera ting 

function of the Weber-Hermite functions of 1Josi tive integral 

order is 
00 

- - E 
i=o 

If we set .fay= z and x b 
2Ja 

exp ( -z 1 + 2zx ) 

Therefore 
-•y~ - by oa 

e e = L ,=o 

But H,,(-x) = (-)11 H-n(x) 

Hence, 

and 

For M(x) we shall t ake J.(cx) 

·"Y~ - l,y 
in e e we get . 

~ . 
a z'­

• I l. 
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But 1 = 1 f 2m-l)!! = 
(2m) ! ! (~:m) !! (2m !! (2m)! • 

= ~(m+t) 1 r ½) · m ! • (2m) ! 

Ther efore = ~ (-1)"' c2 '"p(2m) x 1
,... 

111:0 (2m)! 

where p (2m) = 2m-l !! 
2m !! 

Hence }'(j) = O i f j is odd 

.,u(j) = (J-l)J cJ p(j) if j is even. 

Subs tituting in t he a bove formula , t aking s = 1, we get 
Of> 

(1) 
f 

-""' -OK ( ) e e J
0 

ex dx 
x::o 

Substituting in t he a bove formula , t aking s = 2, we get 
IIO 

(2 ) f -CK~ -bJC 
e e ~(ex) x dx 

Cl0 

= L (-1)" (2n+l) 
11:0 

0 

• H ( b ) -{lfl-t1J 2Ja p(2n) 

00 

I -0.11'~ - bx 
To eva luate the integra l e e J 1(cx) dx , we t ake 

)(:O 

M(x) = 00 'Ill 

J,( ex)= f:o (-1) 11" +I ( ) 
X fl. 2m+l 

(2m+l)! 

v;here _µ.(2m+l) 
1-/)!<+I = c 2m+l !! 

2"' ml 2m+2) 
= l,1t!f,f ( ) c p

1 
2m+l 

We t hus have .,.u(m) = 0 when m is even 

a nd p(m) = (-)¥ c"" p
1
(m) when m i s odd . 



Substituting in t he interpola tion f ormula and t a king s= 1, 

we get 

°" 
(3) J -ax1 -bx 

e e J,(cx) dx 

r=o 

If in (1) and (2) we set c = O, we hav.e 
oO 00 

J -Q.t,. -bx 
1 (~-) I - ~ l ~ 

e e dx = exp e d 
0 

.fa 
OD ~ co 

f .'IX,. - /,,: 

exp ( ~:) J. 
-f· 

and e e x.. dx = 1 b e d;) 
2a 2a.VJ 

0 

~ 

(1) and (2 ) will satisfy the se equa tions if we t ake 
00 

-'l 
H.1(x) 

xi I, q(x) - -- e e d;\ = 

By means of the recurrence r elation for the vVe ber-Hermi te 

functions, 

H (x) - - _1 H! (x) , ... , ~ 

2n 

we will then have 

= 

or 

Substituting in the a bove equa tions: 

(1) becomes 

(5.10) 
q ( b ) 

2Ja 



.And (3) becomes 

(5.11) 

By setting c = O and/or h = o, and using the relations, 

= ,Irr 1 
2 4"" n! 

= __,.,..._1, 
2"' (2n-1JT! 

the above formulae can be shown to reo.uce to their known 

values on the boundary. 

Since the a.bove series are alternating, we can 

approximate the solutj_on by taidng the first n terms, 

the error will then be less than the (n+l)st term. 

Series for the other integrals A~ can be obtained from .,,. 

(5.10) and (5.11) by different i a ting with resDect to 

b or c. The series can a lso be integr a ted term by term 

to obtain the other terms in r,,,,: 

'I'he foreg oing for mulae will allow us to calculate 

to any desired degree of accuracy the temperature, dis­

placements, and stresses in the solid :z > o, at any 

position and time. In order to get a physical picture 

of the temperature and s tr ess distribution in the solid 

z > O due to the surface temperature F = A exp(- r1.) 
t 4/(t ' 

let us first consider the behavior on the plane z = O. 
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Now T = T.(r,t) = t~
1 

Ji. exp( -r" ) 
\ 4 i<t 

At . a f i xed point r = r 0 , the temper ~ ture wi ll be i n i tially 

zero , wi ll ri.:,e to a maximu , t hen d i mi nish to z ·ro. To 

f i nd the va lue of t at which thi s max i mum occur s ., cons i der 

Hence t = 
11AJ 

aT. 
at 

= A exp/- r • .,, ) ( r; -
\ "-1kt 4 xt' 

and 4 kA· 
eri. • 

= 0 

It is thu s seen tha t the 111.aximum travels out a t a r a te 

proportional to t • li a nd its ampli tu.de i s proportional to r-i.. 

pie f,,,.~ 

Next , in order to obtai n an a ~pr ox i mate" of h ow a 

thermal stre s s va r i es , let us consicier t he norma l r a d i al 

stress s 1 • 

Now s 1 = :;\ ei + 2 G av,'1 - fl T 
ar 

Sub ::; tituting from equations (5. 5), (5 . 8), and ( 5 . 9) and 

their der ivatives , we have: 

(5.12) s , = 

A~ fi exp(-1T + 
2/( ~rl 

1 exp (- r 1 +zi) 
r "+i~ 41ct., 

+ 

00 
-~\. 

4~~) f. .Fir z [ e d~ -
/( 

tm w 
z~+. 2r 1 f 9 

e·~' dA]} 
ra. (r t +z .,, )'/1 

0 

1T 
2 J<r 

1 

Ao+ 
I 

2J (Kt) 

- · 8.X
1
f!_AG r 1 

r1r(1'+G) 1 
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As a first approximation, we t ake from equations (5.10) and•:. 

(5.11), 

and 

Substituting in (5.12) 

1 
J (xt) 

we have, 

d 
d..z 

(5.13) s, = : 2GK( rr d [a( z )] 
4.X.J (Kt) dz - 2./ (!< t) 

On the surface z = o, we have approximately, 

rr 
2~k 

s1 ::..: 2GK { rr - rr 
~ . 2r~K 

+ 7f 
2r'I( 

exp(- r
1 

)} -
4l(t 

+ 

1 

At a given time, t = t 0 > O, s, will be a maximum at some 

point r = r~4 K > O. In order to find the approximate position 

of this maximum, consider 

as, 
ar = rrGK [ 2 . ( 1 -

K r3 

Equating to zero, we have 

exp (- r" ) [2 
4~t0 

or approximately, 
I 

exp (- .L_ )) -
41<t. 

2 = 0 

= 1 
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Hence, r191 ~.IC = 2V(1<t) . So the max imum stres s oc curs when the 

temperature is maximum and trave l s outwa rd a t t he s &me r a te as 

T 111 ii,,--. Substituting t = r,. in the expression for s1 , we have 

s, fN4~ = nGK 
xer1 

4k 

=- 4xpAG. 
er'(?t+2G) 

We thus have that the maximum stress also diminishes a s 

In the case z > o, at a fixed point (ro,z.), Twill 

be a function of time. In order to find the maximum va lue 

v;e differentiate with res pect to t. 

Thus t:,.,4 .r occurs when 

f i 

Z -~, J Kt~ exp(- ..£..) = e-A d~ 
4.,tt. - ri 4kt i 

zvtt: 

Hence, T"111Clr = 2A ZI< 1 exp(..: r
2 +z->) · 

7ii~ (4kt - ri) 4Xt 

Again as a first approximation, we can take 

And it can be shown that the velocity of 'r_~ in the z dir­
-V& ection is also a pproximately proportional tot. 

+ 



In summarizing, we conclude tha t the maximum s tres s 

occurring at a point, as a f irst approxirnation,is proportional 

to the maximum temp er ature at the point. Since we assume 

a condition of tempe:eature-stress equilibrium, the max-

imum stress occurs at the same time as the maximum temp­

erature. The stress and tempera ture waximums move out from 

the origin on an advancing. front which is approxima t ely 

spherical. - 1/1. The v,.eloci ty is nearly proportional to t , 

the attenuation varies with direction, being proportional 

to r-1 on the surface z = o, 

along the axis r = O. 

and proportional to - ct l" z e 
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24 I 0 (x) = = 1 + x' + x" 
2l 

-z---
2"T• 2--2 

+ ~--,,:.x-'.,,,.. + ••• 
26 • 6·6 

25 

••• 

Since these series are both absolutely convergent, we 

may compare them term by term; we have t hat 

since 

21."' (nfJi 

(2n)JJ > 

< Xi.,._ 

(2n) ! 

(2n-l)JJ 

(2n) ! ! (2n) ! ! > (2n) ! 

2 i1tt (n!)-i > (2n) ! 

Therefore I 0 (x) < e" for all x 2.. O. 

Carslaw, loc cit p. 31. The function can be shown 

to satisfy the boundary conditions for other hypotheses. 



26 The other equation of (2.4), viz., 

0 

leads to the same relation between the h's. 

27 See Carslaw, Introduction to the Theory of Fourier's 

Series and Integrals . p . 200. 

28 In order to verify that e~uations (5.8) a nd (5.9) 

satisfy the boundary value problem (2.4), (2. 5), (2.6), (2.8), 

we must evaluate the following deriva tives: 

av," - K { ~+2G_,(r' - 1 r) -~( r: - ; 1,1

) 
- 1T + 

ar ~+G o r . ' 2r 1K 

+ ( l ;,) + 
· 2 JCt 

+ 1T A' -
2~r-

I 

zl.+ 2r:1 
r.,1. (r 2. +z 1 )lJa 

vn 
.:J 
r 

fi expt- L) r -~' A' e d~ - TT + 0 
I< 4.J<t 2 1C 

J... 
lVit 

z.fi 
[ 2J {Kt) 

1 exp(- ri. +z 1
) + 

/( rl+z_~ 4Kt 

F e·A' d~} 
0 

z rl + 
0 

l fi exp (- rl ) 
2l<t I< 4Kt • 

- 1L 
21( 

A' -
0 z.rii f 1 

K L-2J ...... ( K-,.t~J 
1 



= 

1 exp (- r 1 +z1:) 
4J<t. / f'{W ~ ]'1 e-~ d~ ~ 

0 

00 

+ 2;t '; exp t 4~~) L e-<' d~} 

..Q.Yill 
az. __ 

+ 7f 
2K 

A' -I 

= K 2A+3G { (-) r 'll 

~+G 

r-i. 

(ri.+z'j1/1 

-z_ri-JL_A: 
I 21< 

l~::· 
0 

r:i. 
(r 2 +z_:i. )-'lz 

Hence, the fir::,t boundary condition, 

r:i-
r 1 +z:i. 

= 

exp(- r 1 +z 1) 
4Kt 

2.\'tt 

,Fii [ 
rK 

1 
2J (,cfY 

8,-,· u . 

= 



CP 

And 
[
av," + avJ'] - - K [-2 (][_ A' - ,[ii f A~ d;<) + 7f A: I 

7i -az ar 21< I( 

!:O J'='u 

Ji~ 1. 1 
2/rr [ 1 exp(-~) - 1 e-'A d;\] = 
l(r • 2~ (l(t) 41<t. r -

0 

= exp/- -L) + 
\ 4Kt 

But 

and 

00 

= J x 2 e-~
2

x'J,(rx) dx 
)C:O 

exp (- r' \ dj4 - -
41<f'£J 

For if we set .)'= 
' 

then the integral becomes 

.J:._ 

l_.t.. J2rie 
2 { [ :.\ e-~ ]

2
'" + .L e -~i. dA} 

~ -2 0 2 0 

+ 

Hence substituting_ in the above equ.ation, 

proving the first boundary condition. 

The second boundary condition states that 

2G av1 
az 

= 

84. 
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- - 2GK {_L r 2 

~+G o 

,0 

Setting z = o, the expre s s ion becomes 

K 
{ 

24Ch r 2 

~+G o 

1r (~ +Bill. 
4k'I. 

A' But, - -
0 

+. 

t~' 

A1T exp (- __r_:_} 
~ 4/<t 

exp(-~)} -
4/(t 

ot 

1 
21( 

L -ICX't 
~(xr.J dx e X 

Therefore [11 t::,, + 2G . av, - (-iTl az t=o 

2A Gi r 1 I - +: G1r A0 + 
~+G o K 

K [ ~G, A'~ 7TG exp (-
4

~~)} 0 
2K'£. 

exp(-±) - 1 
2Kt 4Xt 

- 0 

The equations (2.4) are also s atisfied by (5 .. 8) a nd (5 .. 9). 

-
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+ 

And 

- fi [ 1 K -2J ..... (.,..K-,..t ..... ) 
1 

Also 

and 
OD 

J, 
zm 

and 

00 

pg~ = K { "'~~.t2G} ( B~t) exp(-
4

~~) i e-~' da} 

2m 

- - z r", + r3_ 7r 
I I 2K 



Substituting in the first equation of system cf (2.4)", 

exp/-~) (

0 

\ 4Kt Ji 
2@ 

Hence, adding, the right members total zero. 

30 "Ramanujan" G.H.Hardy, Camb. Univ .. Press 1940, p. 203. 
00 

ex\J 
,. 

31 Taking It1 (x) - ·· e-~ d;\ ~ q(x) , we hav.e 
,c 

dg = · 2xq - l Hence, by means of the recurrence relation, 
dx 

H~. 1 (x) = l H! (x) 
2n 

we can obtain explicit expressions for the Weber-Hermite 

functions of negative integral order, viz., 

H.~, (x) 

H_
1

(x) 

H_,, (x) 

H_, (x) 

- - q 

= - 1 [2xq - 1] 
2 

- ..l.... [(4x1 + 2)q - 2x] 
2•4 

1 [(8x3+ 12x}q - 4(x1 + 1)] 
2•4•6 

- l [ (16x "+ 48x1 + 12)q - 4 (2x1 + 5x)] 
2•4•6•8 

- - - l [ (32xr + l60x 1+ l20x)q - 4(4x" + l8.x 1 + s)] 
2•4·6•8•10 · 


