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.ABSTRACT 

The inherent difficulties in obtaining the solution 

for the flow about arbitrary bodies of revolution near a 

wall usually precludes an exact evaluation of the effect 

of ·wall proximity on the pressure distributions. However, 

many bodies of revolution may be replaced with good approx­

imation by an ovary ellipsoid. For this purpose, an 

approximate solution for the velocity potential is obtained 

for the flov1 about an ellipsoid near a plane wall which 

annroaches the exact solution in an infinite stream as the 
.I.: -

ellipsoid recedes from the wall. 

The evaluation of the image potentials and rectifying 

images is accomplished by an expansion in associated Le­

gendre polynomials. A first approximation, which results 

in a symmetric distribution on the ellipsoid, is essential­

ly an expansion in associated Legendre polynomials of zero 

order. A second approximation, which correctly predicts 

differences of pressure on opposite sides of the ellipsoid, 

is carried out by an exact evaluation of the effects of the 

image potentials while evaluating the rectifyi~g images by 

the same method as followed for the first approximation. 

The solutions are obtained in closed form with resulting 

expressions for the velocity and pressure distributions that 

are especially convenient for application to specific cases. 

The solutions are compared with pressure distributions 

measured on two ellipsoid models placed near a plate, simu-



lating a wall, in the free surface flume of the Hydro­

dynamics Laboratory. The first approximation shows good 

agreement along the meridian parallel to the wall but 

rather large deviations at other points of the ellipsoids. 

This approximation is probably most useful only for esti­

mates of the change in pressure distribution for varying 

separations, and where a high degree of precision in act­

ual values is not required. 

The second approximation, on the other hand, shows 

very good agreement for distances even as small as one 

diameter from the center of the ellipsoid to the wall. 

For smaller distances this approximation shows large devia­

tions at the minimum pressure point of the half-meridian 

closest to the wall with increasing accuracy for points on 

the ellipsoid that are farther from the wall. 
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.AN AS'YMPTO'ITC SOLU'l'ION FOR THE FLOVf 
ABOUT Al-J ELLIPSOID NEAR A PLAl'lE WALL 

Introduction 

1rhe variable-pressure water tunnel (1) {2) (3) {4)* 

has for some years been an important facility in hydro­

dynamical research for application to the design and 

performance of ships' propellers and water turbine im­

pellers under cavitating as well as non-cavitating 

conditions. For more fu.~damental investigations of the 

mechanics of the cavitation phenomenon, it has been found 

fruitful to study the behavior of cavitating flows result­

ing from the flow about bodies of revolution (5) (6). In 

this connection, as well as for more general studies in 

the water tunnel or open flwn.e of the flow about bodies of 

revolution, the influence of proximate tunnel walls on the 

pressure distributions is of i nportance. These effects 

also form one of the major considerations in the selection 

of proportions in the design of towing basins for tests of 

both surface and submerg ed models. Other engineering appli­

cations in ·which the influence of 11·walls 11 on water flows are 

of interest include the rn.ovem0nt of vessels in shallow 

channels and narrow canals. 

11he effects of wall interf erence on the flow about 

lifting systems have been investigated in rather thorough 

Numbers in parentheses indicate references on page 35. 
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detail in connection with wind tunnel research (see e.g. 

( 7) (8)), and somevJ'hat less extensively for non-lifting 

systems (7)(9)(10). The corrections available from these 

solutions, hov.rever, must be obtained by rather laborious 

surnrn.a tions in series vJi th resultant loss of appeal for 

more or less rapid checks on interference effects and for 

preliminary design pur11oses. As a result, it v.rould be of 

convenience to have the solution for a body of revolution 

which can be used easily as an approxi1n.ation to the actual 

form considered, and for vvhich the resulting exnressions are 

not too unwieldy. 

For this purpose, it is proposed to use an ellipsoid 

of revolution. Many bodies of revolution may be replaced 

by an ellipsoid vli th good a~oproximation by holding constant 

the lengths and displacements, provided the nose and tail 

curvatures of these bodies do not vary too rapidly. For 

the effect on the wall, the approximation may be exi.) ected 

to be even better, provided the body is of the order of 

one or two diameters from the wall. In the case of ships 

near a shallovJ bottom, the hull of the vessel might be re­

nlaced by the lower half of an ellipsoid, in which case the 

water surface of the canal must be treated as a plane of 

syrnm.etry. In the latter case, it would probably be more 

accurate to hold constant the draft and the d.is}':ilacement. 

Although the problem treated hereafter applies only 

to the case of an ellipsoid near a single, plane vvall, it 



-3-

can be used to give approximately the first order effect 

of each v;all singly in such applications as a rectangular 

water tunnel or model basin and of the bounding image planes 

in the case of a vessel in a shallow channel. 

The solution as obtained in this paper is in closed 

form with expressions tha t are q_ui te easily applied to 

specific cases. 1ne accuracy of the solution was tested by 

measurements of the pressure distributions on two ellipsoid 

models. Compa risons of the calculated and measured values 

for the models at various distances from a single wall are 

included. 

OVA.RY EI.J.,IPSOIDAL COORDINATES .A.ND THE 
CORRESPONDING EQ,UATION OF CON'ITNUITY 

It is convenient for most treatments of potential 

flows about completely submerged bodies to employ a coord­

inate system in which one of the constant coordinate lines 

or surfaces coincides with the particular form under study. 

Ifor the pr esent problem, the so-called ovary ellipsoidal 

or semi-ellip tic coordinates are applicable (11)(12). 

The origin of coordinates is chosen to coincide with the 

center of the ellipsoid having foci in cartesian coordin­

ates placed at x=±c, y=z=O, (lower half of Figure 1). 

Planes through any meridian section of the ellipsoid make 

an angle tJwi th the x-y plane. The ellipsoidal coordinates, 

µ, ~ w are then defined by the set of equations 
I J ) ) ; 
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X ::: C? ~ 

y == cy (1-J,lzJ(~2-1)' 
lJ = w 

It is clear that y is the distance :per-_pendicular to the 

x-direction in the plane tJ= constant, and that the car­

t esian coordinate y = y cos w. From [1], the surfaces 

~=constant are represented by the relation 

x2. 5i = I 
C2 "f;:"2. + 2( 2 ) -, C ~ -I 

and the surfaces /'=constant are given by 

Eq_uation [2] renresents a set of elli]) soida l surfaces 

confocal vii th the elli~9soid and having semi-major axes 

[Z.] 

[3] 

equal to c 'l:; and semi-minor axes eq_ual to c ~ 1';
2
-/: Equation 

[3] represents a set of confocal hyperboloids with foci at 

x =±c a.rid semi-axes er, and ci/1? 2 ~ 
Elements of arc length ds in the direction of increas­

ing/'- , ~ , and tJ are readily shovm to be 

W, ds =c d~ E; 
[4] 
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From the definition of the v elocity potentia l <;I> as 

the integral of the scalar product of t he leng th of line 

element and the velocity vector, the velocity components 

in the directions of increasing )A , E: , and w are* 

Replacing thes e velocity components in the eQuation of 

continuity for an incompressible fluid 

by their appropriate definition [5] gives the Laplace 

eQuation of continuity in these coordinates 

The potential vvhich satisfie s the boUi.'1.dary conditions 

of the problem and i s a solution of [6] ·will give the 

correct flow configuration. 

(5] 

To avoid confusion bet ween the Dresent results and the ref­
erences cited, Lamb's (11) sign·· convention is used through­
out in the definition of the velocity in irrotational 
motion as the gradient of a potential. 
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'11IIE SOLUTION FOR AN" OVARY ELLIPSOID 
IN AN INFINITE S'rREA.l\1 

The solution for the flow about an ovary ellipsoid 

moving p a rallel to its ma jor axis, vrhich forms the start­

ing point of the present investigation, is g iven by Lamb 

(11). In general, the solutions of equation [6] for the 

case of symmetry are 

4> = Pn (fA) Pn (~) 

<I> = Ri (f<J Q" (s) 
[7] 

wh e re the Pn (f') and Pn (s) are the so-called zonal surface 

ha rmonics of the first kind or Legendre coefficients, and 

the Q,"(!;) are zonal ha r monics of the second kind (13). 'lne 

zonal harmonics which are applicable to the case in which 

the flov.r pattern is identical in every meridianal plane 

corres9 ond to integral values of n in the formula (14) 

f?() I dn(i.<2-J)n [8] 
" fl . =- znn! d_rn / 

and the corresponding expression for Pn (~). T'ne Q,n (~) 

are g iven by (11) 

For a single ellipsoid moving vli th velocity U in a 

fluid otherwise at rest, the boundary condition at the sur­

face ~:~= ~
0

, where e.,is the eccentricity of the ellip soid, 

is 
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0 r ' using r 11 ' 

With this condition and the conditions that the fluid be 

stationary at infinity, the solution as shown by Lamb is 

where 

Uc 

In this case, the flow patt ern is symmetric with 

respect to any axis of the ellipsoid so that a stream 

function also can be sho\'m to exist. However, since no 

corresponding stream function exists for the ellipsoid 

near a vmll, a discussion of this function is omitted 

here. 

:FOifoIULA'rION OF THE PROBLEM OF li'LOl;V 
ABOU'r AN ELLIPSOID NEAR A PLANE Vl.lU,L 

[,o] 

It is clear that the solution of the problem or flovv 

about an ellipsoid near a plane ·wall is known if the solu­

tion is lmown for the flow about two ellipse ids of the same 

size moving abreast at the same speed. Here, the plane of 

symmetry halfway b etween the tvvo forms is a stream surface 

and may be rep laced by a solid nwall" without disturbing 

the motion. This type of solution requires the determina-
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tion of the source distributions in the ellipsoid and 

its image which leave tllese stream surfaces Tu"ldeformed. 

Another type of solution is based on an appropriate dis­

tribution of sources which, in a uniform stream, form the 

wall and the solid body, but are loca t ed only within the 

ellipsoid and outside the field of flow about the ellip­

soid. 1rhe latter p rocedure reduces to finding Green's 

function* for the boundary conditions that the ellipsoidal 

surface and the wall be stream surfaces. 

The solution obtained herein is based on the first 

method outlined above. If the solution is known for the 

translatory motion of a single body in an infinite strerun, 

this solution may be used as the starting uoint for the 

case of t vm such bodies. The :9otential of' the single form 

will then induce a potential on the other which results in 

a cross flow violating the condition that this surface be 

a strea.m surface. To restore the ori gina l shape of this 

second body, a distribution within the body of, in general, 

sources, sinks, and doublets must be found that produce 

velocity corn.pon ents that just cancel the effects of the 

original potential. This distribution constitutes the image 

of the original potential. However, the image potential, 

thus found, in turn deforms the first body which must be 

A number of exanples of the application of Green's function 
to certain boundary value problems are wo rked out in Refer-
ence { 15). -
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restored by a simila r proc edure. 11his nroc ess is then 

carried through until the eff e c t s of all the i mages are 

rectified. To comp l e te the solution, the proc e ss is re­

p ea ted starting with the infinite stream potential of the 

second body. Although this method of obtaining a solution 

is, -in principl e , quite cl ear, the exact eva luation of the 

streng ths and po s j_ tions of successive j_mage s in specific 

cases may be extremely l aborious if not al so difficult. 

It i s shovm in the subsequ ent discussion tha t this situa­

tion occurs in the c a se of flo\v a bout t wo ellip soids. As 

a result, the p res ent s olution is obta ined fro m an app rox­

i mat e evalua tion of the i mage streng ths and type s required 

to cancel the induced potentia ls on the "real" ellip soid 

due to th e presence of the i mage ellip soid. 

The mo del u s ed for the computation is s hovm in Fig ur e 

1, i,vherein the prime d ellipsoidal coordina te system r e f ers 

to the i mag e. The ellipsoids, which have s emi-ma jor dia ­

me ters a an d. s emi-minor di ame t ers b, are a ssw:ne d to be 

separ a t ed by a di s t ance 211. J!, rom equa tion [l] and the tri­

an a le OO'P in li'i aure 1 it is s een tha t the t wo coordinate 
~ 0 ' 

syst ems a r e r elated by 

[1'1 

and 
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The velocity potential virhich is a solution of equa­

• tion [61 for this problem will be of the form 

<P = cp + cp' 

where <:p is the potential of the real ellipsoid and <p' 

the potential of the image. In order that the model be 

undeformed, there m.ust be no cross-flow through the sur­

faces of the tvlO ellipsoids. 111is requirement and the 

boundary condition [10] impose the boundary conditions 

on the real ellipsoid, S = l;
0
= ~, 

0 

and 

and, on the image el lip so id, 5~ F;,,' = ~ , 
0 

anc/ 

Since this case is not one of symmetry in the sense 

of the single ellipsoid in an infinite stream, the solu­

tions will no longer be of the form [7], but will be of 

the types 

and 

Where the Ph ... ~), P; (5) and Q. ~ (s}, the so-called asso­

ciated Legendre polynomials (16), are defined by 

[14-] 

[IS] 
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rn 

~n,~) = (1-;,< 2J Z 

and 

1I1he exact solution of the present problem can be 

accomplished by an expansion of <Pin the associated Le­

gendre polynmnials [18]. The first term in the expansion 

is obviously equation [11]. The first step in such a 

procedure then consists of' evaluating q> over the i rr..age 

ellipsoid by the expansion 

n,m 
and then determining the coefficients Bttm in the expansion 

for the first image in the imag e ellipsoid 

CJ?'= - ~ B P-rn( :} n '"(~~ s.') 
I ~ nnt r, r '-'(n o 

n,'" 
so that the boundary condition (16] is satisfied. 'l'he 

effects and the rectification of the successive images are 

then evaluated by a similar process. 

Al though this method will lead to an exact solution, 

the extreme complexity of only the first term [11], 
I , 

after writing j<- and s as functions of /'- and ~ , is a 

most convincing deterrent to proceeding with even the ex­

pansion [19]. Furthermore, the resulting expressions would 
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defeat the purpose, stated in the foregoing, of' obtaining 

formulas that may be rapidly applied in engineering appli­

cations. As a result, the procedure that has been adopted 

leads to an approximate solution which approaches the exact 

solution in the limit as the ellipsoid recedes from the 

wall. This approximation is essentially an evaluation in 

a povrnr series in the types [19] and [20] but with n=l 

and m=O. A second app roximation is also carried out based 

on an exact evaluation of image potentials in the neighbor­

hood of the real ellipsoid but using only the first approx­

irna tion in the rectification of these potentials. 

1.llIE .APPROXDvIA;l'E EDLU'l'ION 

Starting with the solution of the flow about an 

ellipsoid in an infinite stream, equations [11] and [12], 

the potential function <J) in the neighborhood of the image, 

assuming for the moment that the imag e is at rest, is, 

with the aid of [11] , 

(7) = A )A ''f;'{J... k- _t; ___ +_I - I} 
'-Y, ~ 2. s'-1 [ZI] 

Instead of evaluating CJ), over the surface of the image, 

assume, instead., that the image lies entirely on a portion 

of the ellipsoidal surface confocal with the real ellipsoid* 

This method of approximation is somewhat analogous to 
the first steps in the solution given in Lamb's "Hydro­
dynamics" for the flow about two spheres. However, to 
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and vvhich passe s through the center of the image. 'l1he 

semi-minor diameter of this surfa ce is cv~2:...., ·= 2h, so 

that , sine e c = a e0 , 

[zz] 

Therefore, the induced velocity potential due to the real 

ellipsoid is, approximately, 

m =Ai ~' ~' {-' L 11 +, - _,} 
'r, 1/ 2 1-1 "'I 

This potential p roduces a normal velocity on the surface 

of the imag e proportional to 

It is easily verified that the term [24] is cancelled by 

addition of the potential, 

and that (P.'satisfies the equation of continuity (6). 
I 

the san1e degree of approximation, the present solution 
might be expected to give better comparative results, 
since the image ellipsoid "fits" the ellipsoida l surface 
confocal vd th the real ellipsoid better than the i mage 
sphere on the spherical surface concentric with the real 
sphere. Of course, a.s e approaches zero, this advantage 
disappears. 
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Equation [ 25 ] represents the potential of the first source 

image in the imag e ellipsoid. 

Using the assumption [ 22] , the pot ential <P,' , in the 

neighborhood of the real ellipsoid, takes on the value 

which, in turn is rectified by the potential 

The law of formation of the successive images is now 

clear. Remembering that an exactly simi l a r urocess must 

[21] 

be carried through starting with the image el lipsoid and 

holding the real ellipsoid at rest, the potential function 

for the entire flow, after evaluating all the images in the 

above mann er is approximately 

The infinite power series in equation ( 28] conver ges ab­

solutely if 

< 1 

Since, from [ 22] ; '(~ 1 for all values of h/a, and O ~ e
0
~ l , 
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this condition requires that 

For the inequality (29] to be valid, it is suff icient to 

require only that 1/1 < e0 , or 

I+ tz(~}2) e2 
0 

so that the series converges absolutely for all values 

Furthermore, with this requirement, the solution [281 con­

verges everyvvhere on all ellipsoids O £ e0 ~ 1 and everywhere 

in the field. 

Finally, by using the formula for the surn of an abso­

lutely convergent geometric series, and putting in the 

value of the constant, A, from equation [12], the solution 

may be written in closed form as 

4'=-Uc 

'l1HE J!'IRST APPROXIlvlA'.l.1ION TO T"tlE PRESSURE 
DISTRIBUTION ON AN ELLIPSOID NEAR A WALL 

Superposing a uniform velocity potential to transform 

the motion to one of flow past a stationary ellipsoid, the 

potential [31}, to the same degree of approximation as the 

en tire calcu19. tion so far, is 
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where 

The velocity components in the neighborhood of the 

real ellipsoid are, from [ 5) 

[34] 

The fact that this approximation gives a symmetric velocity 

field is a direct result of expansion in a series of 

P,y,l)Q,
1
( ~ ), and, thus, cannot be expec ted to predict a diff­

erence in velocity distributions between points on opposite 

sides of the ellipsoid. Nevertheless, these velocities 

may be expected to give an approximately correct average 

distribution over the entire surface. Since the images 

are evaluated at the center of the ellipsoid, neglecting 

the variations between this point and points on the ellip­

soidal surface, and these values then applied to every 

point on the surface, this solution ·will evidently under­

estimate the effects near the center and overestimate 
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tovmrd the two ends. From another point of view, that 

this is the case can be seen from the fact that the ex­

pansion of the images by approximations of the type [ 23] 

is equivalent to a rectilinear flow, which evidently give 

velocities that are too low at the center and too high at 

the leading and trailing ends. In general, it might be 

expected that equations ( 34) will most closely approximate 

the velocity distribution along the meridian parallel to 

the wall. 

Evaluating equations [ 34 ] on the surface of the ellip­

soid, ~= l/e0 ; and putting f =x/c ~= x/a, only the tangential 

component remains: 

To this degree of approximation, then, the pressure distri­

bution, in non-dimensional form, is 

2 

where pis the pressure at the surface of the ellipsoid, 

pis the pressure in the undisturbed stream, and 
Cl) 

f is the mass density of the fluid. 

From the geometry of the ellipsoid, it is readily 

shown that 
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1-(¾)2 . 2 

1 _ ~,2 (~)'' = sin e 
where e is the angle betvrnen the normal to the ·surface 

of the elli:9soid and the direction of motion. As 7--.00 , 

eq_uation [35] reduces to the familiar result for an ellip­

soid in an infinite stream: 

[36] 

The pressure distributions for ellipsoids with ratios 

of a/b = 4 and a/b =- 6 at various distances h/2b from the 

wall are shovm in Figures 2 and 3. It is seen that for 

these forms the wall effect may be neglected for distances 

greater than about three diameters(i.e. for h/2b greater 

than 3). By rewriting equation [ 35] in the form 

P-P,,,, - I - C sin 2 0 
~fU~ 

and plotting C as a function of h/2b, with a/b as para­

meter, }Figure 4, the distances beyond which the wall effect 

may be neglected can be quickly estimated. 

A SECOND APPROXIM.ATION '11() lliE PRESSURE DISTHIBU'I'ION 

For reasons already pointed out in the foregoing, 

the above approximation cannot be used for applications in 

which it is desired to obtain a measure of the difference 

in pressures on opposite sides of the model. To obviate 

this shortcoming, the solution ( 31] will be evaluated 
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in a more exact manner than the approximation [ 32] . 

Al though the follovJing evaluation is not completely 

justified on the basis of the approximations used in the 

calculation of equation [ 31] , nevertheless, the result 

will be correct to at least the sar:1e order as the first 

part of the exact expansion suggested in equations [ 19 1 

and [ 20 ] . This proposal consists essentially of an exact 

evaluation in equation [31] of the image potentials of 

the imag e ellipsoid in the neighborhood of the real ellip­

soid while evaluating the successive rectifying images by 

the approximation tf'= 7, ?-'=~ ~/>?· 

:!!,or this purpose, as well as for computations of 

pressures in the surrounding fluid, it v-iill be more con­

venient to express ~ , equation [ 31] , in cartesian coordin­

ates. Re-writing equation [ 2 ] as a quadratic in s\ t his 

equation becomes 

[37] 

_z 2 2. a 1 . f -e2. since y = y -t- z ; ana, so ving or e:, , 

where the positive sign has been taken before the radical 

to exclude the imaginary ellipsoids between :t c. 1l'he value 

of ~ in cartesian coordinates is, thus, 
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since 1f takes on only positive values. 

Simi l arly, from equations ( 3] and (13], and putting 
I 

y in terms of y and z, ~ expressed in cartesian coordinates 

is 

The expressions for jJ- and?' are obtained directly from 

equations [1'], [39] and [40]. 

Let 

CX:= 1+(~)z+(l}tf2}z 

~=yo(~ 4(f}'\ 

¥=0(+ 4({)1--1# 

-c:=V ~z_ +r~J2· 

Vii th this notation, 

and the equation of the potential becomes 

[ 4/] 

[42] 

[45] 

'l'he velocity components in the directions of increas­
ing x, y and z are, then, 
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~--U ~~=-1- ~r ik(f1)(P-f)-(t) 2

~+~~~-(~+ ~j} [48J 

;t=-; !!'= ~(4{{(~(1;•-s)fi (:-2 2)[ (,"°(!;"'~~3J'} [49] 

~•=-(] ~~=~W(t){[f(!;"~sf~[s(1;'3-1;JT'} [sol 

The p ressure at any point is then 

(sr] 

'11a calculate the pressure distribution on any ellip­

soidal surface confoc a l "I.Vi th the real ellipsoid, it is 

only necessary to replace ~ by 1/e where e is the eccen­

tri c ity of the confoca l ellipsoid. In addition, the values 

of 0( and (3 reduce to 

and 

Otherwise, the substitutions (41] through (44] must be 

used. For any point on the wall , put y=h, '/=ot, ~=f , s=s' , 

in the formulas [ 481 through [ 50 1 , so that, on the wall, 

[52] 
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'l1he pressure distributions on three half-meridians 

of an ellipsoid with a ratio a/b=4 at a distance of one 

diameter from the ·wall are shovm in Figure 5. It is seen 

that the solution correctly 11 redicts a difference of pres­

sure on opposite sides of the ellipsoid, and that the first 

approximation represents most closely the pressure dis­

tribution on the meridian parallel to the wall. 'l1he most 

interesting results a re the p rediction, near the leading 

and trailing ends, of a pressure increase over t hat of the 

single ellipsoid in a fluid of infinite extent, and the 

prediction, nea r these ends, of pressures on the meridian 

closest to the wall that are higher than those on the 

meridian farthest from the vmll. * It is also of interest 

that for this case this solution shows a difference as 

hig h as 15 per cent b et ween the minimum pres sures on the 

meridians closest and farthest from the wall. A compari­

son of the tvm approximations on the circumference of t wo 

stations on the ellipsoid at a distance of one diruae ter 

from the vmll is shov.n.1 in Figure 6. 

To che ck the accuracy of the solution, p ressure dis­

tributions corresponding to the computations of Figures 

2, 3, and 5 were measured on two elli-osoid models. rrhese 

The solution also predicts the displa cement of the stag­
nation points. However, this chang e is so small as to be 
indiscernable on a graph, and, as a matter of fact, was 
well within the exoerimental error of the t ests conducted 
to check the solution. 
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exp eriments are discussed in succeeding sections. 

THE EXJ?ERir✓I.ENTAL ARRAl\JGErvIEI.'J T, MODELS, 
AND TECI-IlUQ,UE OF LIBASUREM.ENT 

To facilitate the experimental work, it was decided 

to construct models, which, though they deviated at the 

center sections by very slight amounts fro m true ellip­

soids, could easily be adapted to equipment standard in 

the Hydrodyn2Jllics Laboratory. This necessitated the use 

of a straight cylindrical middlebody over ?.5 per cent 

of the 4:1 ellipsoid and 5 per c ent of the 6:1 ellipsoid. 

rl'he principal dimensions and the location of the p iezo­

meters for the models are shovm in :Figure ? • 'l1he lengths 

of the mod els were adjusted so tha t the coor dina t e s would 

match the dimen s ions of the middlebody at t h e s t a tions 

of contact. Although the fineness r a tios a re increa s ed 

by negligible amounts, the disadvantag e of the cons truct­

ion wa s the introduction of discontinuities in the slop es 

and curvatures of the surface at the points of contact. 

Al though this condition gave r esulting local deviations 

in the p r e ssure measurement s , it appar ently had little 

or no effect on the pressure distribution as a whole. 

A photogr aph of the mo dels illustra ting the me tho d 

of as s embly for the t e st s i s shovm in li' i gure 8 . The nose 

and aft erbody s ections, which vrnr e s ecured to the middle­

body v1i t h an i n t er nal stud, could be ro ta t ed about the 
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major axis, and the entire assembly rotated about the 

vertical minor axis on a spindle v,i thin the shield. 'I'he 

me thod of communicating pressures from the piezometers 

through rubber and then brass tubing of v ery small dia­

meter up through t he spindle is standard in the Hydro­

dyne1i1ics Laboratory. 

The experiments ·were conducted in the free surface 

flume (4) in this laboratory. A photograph of the exper­

i mental arrangement is shovvn in l 11 i gure 9 and, the various 

components are identified in Figure 10. 11he pressure leads 

are carried out through the shield and fairwater to a mani­

fold communicating with a wa t er manometer open to the 

atmosphere. 11he use of the vacuum pump and overhead reser­

voir in bleeding the manometric system and in accelerating 

the change in level of the fluid in the mano me t er when 

seeking equilibrium (a device necessitated by the small 

internal dirun.eters of the pressure leads) are clear. 

To simulate the effect of the vvall, a plate was in­

stalled belm,,; the model on a strut constructed in sections 

so that the dista.i"'1.ce from. the surface of the plate to the 

horizontal meridian of' the model could be varied. Although 

the width of the plate was limited to avoid damage to the 

lucite \Valls of the f l ume, the ratio of vddth of :plate to 

model diameter was larg e enough so that the effects of 

"leakag e" through the gap could be safely neglected. In 
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addition, the model was supported well do vimstr eam from 

the leading edg e of the plate to insure the establisbment 

of the \Vall effect; neverthele s s, the di s tortion of the 

para llel flow due to g rowth of the boundary laye r on the 

pla te was insignificant for this distance . 

A measure of the v elocity hea d wa s obtained on a 

simila r open manometer from a point on the upstrear1 ris er 

of the flume. Referring to Figure 10, it is clea r that 

the nressure coefficient is 

·where ho 

hp 

h., 

is the 

is the 

P-P«, _ hp - ho 
ifU' h .. - ho 

depth of wat er in 

indicated pressure 

referr ed to the floor of 

the flw.ne, 

head at a 

the flume, 

is the indicated total head* at the 

ferr ed to the floor of the flume. 

piezometer 

and 

model re-

PrelLninary exp eriments to detern1ine the accuracy 

of the measurements an d the eff ect of the cylindrical 

middle body vrnre ma de with the 4: 1 ellip soid model without 

the effects of the plate. 1I1he source of the large st errors 

lies in th e method of' alignment of the model in yaw. '11his 

alignment was accomplished by measur e1nents from the side 

of the channel to the leading and trailing ends of the 

In the actual experiment, the diff e rence h.,- h 0 was cali­
brated against the correct velocity head at the model. 
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model, with the resultant errors in angular setting due 

to the short distance between the points of measurement. 

To deterrnine the effect of this error, pressure distribu­

tions were taken over the model with three indenendent 

setting s of the zero yaw position. Al though no pressure 

measurements could be tal~en along the half-meridian farth­

est from the bottom of the channel because of the effect 

of the shield, readings were taken along the half-meridian 

closest to the channel floor and on the horizontal meridian 

of the model. The latter measurements were first made on 

one side of the model; the model was then rotated , 180 de­

grees about its major axis and the readings repeated on 

this opposite side without altering the setting in yaw. 

This exp eriment also s erved as an indication of the shield 

effect at this position. 

11he results of the preliminary experiments are shown 

in Figure 11. It is seen that the pressure distribution 

along the half-meridian closest to the channel bottom was 

unaffected by the small errors in the angle of yaw. On the 

other hand, the measurements along the horizontal meridian 

show a rather larg e deviation from those along the vertical 

half-meridian. However, the arithi.uetic averages of the 

measurements along the horizontal half-meridian fall quite 

nicely on those along the v ertical meridian for the errors 

in yaw ·within ·which the model could be set. As a result, 
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this technique of rotating the model and averaging the 

reading s on the horizontal half-meridians was used through­

out the remaining program. That these average readings 

evidently gave the correct pressure distribution indicates 

that the shield had no measureable effect as far avvay as 

the horizontal meridian. It may also be seen that press­

ures in the vicinity of the cylindrical middle section 

shovv somewhat more scatter than the other data, indicating 

a local reg ion of sen aration and, consequently, unstable 

flow. 

RESULTS OF TH.E PRESSURE lviliASURcivIENTS 

All tests were made at a Reynolds number, 

Re-= U~2b) -= 2.5 X ,os 

where y is the kinematic viscosity. Although this Reynolds 

number is slightly less than the Reynolds number (defined 

on the same basis) required for transition in the boundary 

layer on forms of similar shape and fineness ratio (see 

e.g. (17)), the effects of laminar separation and transition 

on the pressure distribution are confined to a small region 

of the after end. As a result, the measured and theoretical 

pressure distributions should be in good agreement over at 

least 75 per cent of the length with the major defect occur­

ring near the very end of the model. Consequently, the dev­

iation of the data from the theoretical curve for the ellip-
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soid vii thout wall effect, Figure 11, is probably due to 

other sources. 11b.e accuracy of construction of the models 

was such as to exclude deviations as l arge as those shown. 

However, in reducing the data by the formula [ 53], no 

corrections were made for any pressure excess that might 

have been present at the position of the model due to 

residual curvature of the stream induced in leaving the 

nozzle. An idea of how small the curvature (or how large 

the radius of curvature) can be in order to make the meas­

ured and theoretical data coincide at the point of minimum 

pressure can be obtained from a short computation. The 

pressure gradient in the direction of increasing pressure is 

or, approximately, 

dP LJ. 2 

-=f-or r 

.t1P 
2 

R 
ffU 2 

- r 

where r is the radius of curvature and R is the distance 

of the model below the water surface. The difference in 

pressure coefficient req_uired for coincidence at the mini­

mum point is 0.005, so that for the model at a depth of 9 

inches, the radius of curvature would be 300 feet - large 

enough so that it could not be detected from measurements 

of the free surface level. Hoviever, for purposes of com­

parison with the theoretical computations, and since the 
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presence of the plate would tend to reduce this correction, 

it was considered sufficient to use the data directly as 

obtained from formula [53). 

The data for the 6:1 ellipsoid taken without the 

presence of the plate show the same trends, but with some­

what more sea tter in the vicinity of the middlebody, (Fig­

ure 17). 

The majority of the measurements vrnre made with the 

4:1 ellipsoid model. In addition to the tests ~~thout the 

plate, runs were made v·.rith the model at distances from 

centerline to plate surface of 3.0, 2.0, 1.5, 1.0, and 

0.75 diameters. Since it vms anticipated that the differ­

ences between the pressures on the half-meridian closest 

to the plate and the meridian parallel to the plate would 

be small for distances of 3.0, 2.0, and 1.5 diameters, the 

pressure distributions for these cases were measured only 

along the closest half-meridian. At the remaining tvi10 

distances, the pressures were measured along both of these 

lines. :Measurements on the 6:1 ellipsoid were made only 

without the plate and at a distance of one diameter from 

the plate. 

The results of the exp eriments are shovm on ]'igures 

11 through 18 in the order outlined above. In all cases, 

the distributions are very nearly symmetric with respect 

to the transverse vertical plane through the center of the 
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model excent near the trailing ends where the effects of 

separation result in the pressure defect. 

From Figure 12, it is seen that the measured pressure 

distribution lies very close to that calculated from the 

first approximation for h/2b=3.0. Since, from Figure 2, the 

pressure distribution at this distance coincides with that 

for an infinite stream (for the scale of ordinates used), 

the agreement of data indicates that the presence of the 

plate does tend to reduce the curvature of the stream and, 

therefore, the pressure excess at the position of the model. 

The rather large scatter of the data obta~ned near 

the middlebody, for both models at the shorter separations 

from the plate, is probahly due to the discontinuities in 

slopes and curvatures mentioned above. However, for pur­

poses of comparison with the theoretical values, this 

shortcoming is not serious, since the minimum points could 

evidently be determined with sufficient accuracy by careful 

fairing of the data on either side of this position. 

CONJPARISON O]' ':J.111E r✓IBASURED AI'JD 
CALCULATED PRESSURE DISTRIBU17IONS 

For purposes of comparison, the pressure distributions 

computed by the first approximation are plotted together with 

the measured data on E'igures 12 through 18. The conclusion 

reached in the foregoing that, for this approxirr~tion, the 

computed values would be underestimated near the center of 

the model and overestimated at the leading and trailing ends 
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is clearly borne out in all cases. The computations and 

the measured values begin to shov··1 fairly large deviations 

at the distance of tvJo diameters. In this case, the dev­

iation at the point of minimum pressure is approximately 

4 per cent for the distribution along the half-meridian 

close st to the plate. For smaller separations of model 

and plate, the deviation increases rapidly viith an error 

of about 14. 6 per cent at the distance of one diameter and 

25 per cent at 0.75 diameter (1/4 diameter separation). 

Although these errors a re larg e for the half-meridian clos­

est to the wall, this app roxirn.a tion will be somewhat better 

for positions on the ell ipso id farther from the wall. 

For the 6:1 ellip soid, the deviation of the first 

approxi m.a tion fro m the minimum value on the meridian clo s­

est to the v,,rall for a distance of one diameter is also 

about 15 per cent, with somewha t better agreement along the 

horizontal meridian. 

'J:he data for the 4:1 ellipsoid at a distance of one 

diameter fro m the plate are compared in J? i gure 19 with the 

corresponding pressure distributions obtained from the 

second appro xi raa tion. Except for the anomalous data near 

the center of the model, the computed and measured values 

along the horizontal meridian show excellent agreement. 

On the other hand, the deviation of the calculations from 

the f a ired curve for the minimum noint on the vertical mer-
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i di an is about 6 per cent . 

Since the l a r gest errors may be expected to occur at 

the noint of minimum pressure on the meridian closest to 

the wall, the computed and measured data are conma r ed on 

this basis; the results are tabulated in Table I (pag e 33) 

for all the measurements. The percentage deviations of the 

first approximation appear to vary consistently. However, 

for the ~nall differences of measured values and data com­

puted by the second approximation, the error is larg ely 

dependent on the method of fairing . The fact that the dir­

ection of the error change s for the t v,ro larger separations 

indicates tha t these p ercentages are too high and tha t the 

deviations shown for the &t1aller sep e r a tions are p robably 

somewhat too low. The deviation for the 6:1 ellipsoid for 

the one case compared is of the same order as that for the 

4:1 ellipsoid. 

CONCLUDING REIY".l.ARKS ON THE ACCURACY 
AND APPLICABILITY OF THE TNO APPROXIMATIONS 

In general, the a greement between measured data and 

that corrr_puted by the second a})proxirn.ation is better than 

mi ght have been expected. This result indicates that the 

successive i mage s in an exact solution lessen in strength 

q_ui te rapidly beyond the first image. 'l'he exnansion devel­

oped herein, equation (28 ] , also exhibits this property for 

larg e value s of the eccentricity, e., , so that the solution 
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TABLE I 

COMP ARI SON OF MEA.SURED .AND COivil?UTED V .ALUES 
OE THE MINIMUM PRESSlftlE CO EFFICIENTS (x/a=0) 

ON THE flALF-MERIDL-U\J" CLO SEST TO THE WALL 

Ellipsoid Distance From Measured ]first Approximation 
Model Wall in (Faired) Equation [ 35] 

Diameters Values 

h/2b P-P ... P-R.. Percent 
½ puz ½pu2 Deviation 

0.75 -0.295 -0 .221 -25 

1.0 -0.233 -0.199 -14.6 
4:1 

1.5 -0.201 -0.181 - 9 

2.0 -0.182 -0.175 - 4 

co -0.1707 

6:1 1.0 -0.145 -0.123 -15 

Ellipsoid Distance From Measured Second Approximation 
Model Wall in (Faired) Equation [51] 

Diameters Values 

h/2b P-P.,., P-Poo Percent 
i fU 2 -i fU2 Deviation 

0.75 -0. 29 5 -0.264 -10.5 

1.0 -0.233 -0.219 - 6 
4:1 

1.5 -0.201 -0.207 + 3 

2.0 -0.182 -0.178 + 2.2 

Q::> -0.170? 

6:1 1.0 -0.145 -0.137 - 5.5 
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can -be eAi:,ected to g ive even better results for fineness 

ratios larg er than those of the ellipsoids tested. (The 

latter result vms anticipated in the formulation of the 

approximation used.) 

From the results of Table I, it appears that the 

second ap:9 roxim.a tion, eq_ua tion [511 , may be used ·with good 

accuracy for ellipsoids even as close as one diameter from 

its center to the wall. The largest error will occur at 

the Doint of minimum pressure on the meridian closest to 

the ·wall with errors small er than those show.a in 'I1able I 

for other points of the surface. On the other hand, the 

usefulness of the first approximation is apparently limited 

to checks of the type shovm in Figure 4 on the existence 

of wall effect and to calculations of nressure distribu-

tions along the meridian that is par all el to the wall. 'l"he 

simplicity of this a:~Yproxima tion, eq_ua tion ( 35 ], especially 

recommends it ·where a rapid calculation is wanted of the 

change in pressure distribution for varying separations, 

and where a hi gh degree of precision in actual values is 

not required. For points near the center of the meridian 

parallel to the v1all, hovrever, the first approximation a­

pproaches in accuracy the results of the second approximation. 

]'or convenience in use the more important results are 

summarized in the Appendix. 
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.APPN\J"DIX 

SUM11ARY OF FO illiIULAS 

a - semi-major axis of the ellipsoid 

b - semi-minor axis of the ellipsoid 

C - :x:-coordinate of the focus of the ellipsoid 

e - eccentricity of a confocal elli:p so idal surface 

e - eccentricity of the ellipsoid 
0 

h - distance from center of the ellipsoid to the 

p - pressure at a point in the field 

p - pressure in the undisturbed fluid 
00 

f - mass density of the fluid 

8 - angle between normal to the ellipsoid and the 
direction of motion 

U - velocity of the undisturbed fluid 

u - tangential component of velocity along an 
~ ellipsoidal surface in any meridianal plane 

wall 

normal component of velocity along an ellipsoidal 
surface 

uw- tangential component of velocity along an ellip­
soidal surface perpendicular to any meridianal 
plane 

¾:,liy,uz - velocity components in the direction of 
the cartesian coordinates 

x, y' z - cartesian coordinates in coordinate system 
of the real ellipsoid 

ovary ellipsoidal coordinates in coordinate 
system of the real ellipsoid 

ovary ellipsoidal coordinates in coordinate 
system of the imag e ellipsoid 
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o(= I+ (6)'+({)2+(~)2 [ 4/] 

~~Vo(~ 4(:/ [ 42] 

o'=o(+ ~c f)2-- "'f- ~{ [43] 

r=1;t7:_4({/ [44] 

f?; ~ 1 °"z+ {3' (45] 

1;'=1/ !';~· [ 4,] 

7= 4 (~z I+ e.,2 7i [47] 

Pressure Distribution on an Ellipsoid in an Infinite Stre~u: 

where 

Pressure Distribution on an Ellipsoid J\fear a Plane Wall -­
First Apnroximation: 
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where 

and 
. 2 /- (-g)z 

s,n B = z{;x)-z. 1-e -
0 a. 

Pressure Distribution at Any Pos_ition in the .l!'ield -­
Second Approximation: 

Pre ssur e Distributiop on Any Ellipsoidal Surface -­
Second Approximation: 

[48] 

[49] 

[so] 

[.33] 

[s•J 

In formulas [ 48 ) , [49) , ( 50] , and [51] above, put 

I 
i;= e . 
O(= ;~ + (;.)2. 
f= ;2-~(:)' 

Pressure Dj_stribution at Any Point on the Wall : 

<Ax= - 1- B{h 1;.+I _--3:._ (-5)2-~} 
U C S - / (1,;3 C S 

Uy .::;o 
u 

[sz] 

~-z_ = z ~ (~) (-~) [ f ( E;~~)J-, 










































