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ABSTRACT

The inherent difficulties in obtaining the solution
for the flow about arbitrary bodies of revolution near a
wall usually precludes an exact evaluation of the effect
of wall proximity on the pressure distributions. However,
many bodies of revolution may be replaced with good approx-
imation by an ovary ellipsoid. ZFor this purpose, an
approximate solution for the velocity potential is obtained
for the flow about an ellipsoid near a piane wall which
approaches the exact solution in an infinite stream as the
ellipsoid recedes from the wall.

The evaluation of the image votentials and rectifying
images is accomplished by an expansion in associlated Le-
gendre polynomials. A first approximation, which results
in a symmetric distribution on the ellipsoid, is essential-
ly an expansion in associated Legendre polynomials of zero
order. A second approximation, which correctly predicts
differences of pressure on opposite sides of the ellipsoid,
is carried out by an exact evaluation of the effects of the
image potentials while evaluating the rectifying images by
the same method as followed for the first approximation.
The solutions are obtained in closed form with resulting
expressions for the velocity and pressure digtributions that
are especially convenient for apvlication to specific cases.

The solutions are compared with pressure distributions

measured on two ellipsoid models placed near a plate, simu-



lating a wall, in the free surface flume of the Hydro-
dynemics Laboratory. The first approximation shows good
agreement along the meridian parallel to the wall but
rather large deviations at other points of the ellipsoids.
This approximation is probably most useful only for esti-
mates of the change in pressure distribution for varying
separations, and where a high degree of precision in act-
ual values is not reguired.

The second approximation, on the other hand, shows
very good agreement for distances even as small as one
diameter from the center of the ellipsoid to the wall.,

For smaller distances this approximation shows large devia-
tions at the minimum pressure point of the half-meridian
closest to the wall with increasing accuracy for points on

the ellipsoid that are farther from the wall.,
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AN ASYMPTOTIC SOLUTION FOR THE FLOW
ABOUT AN ELLIPSOID NEAR A PLANE WALL

Introduction

The variable-pressure water tunnel (1)(2)(3)(4)*
has for some years been an important facility in hydro-
dynamical research for application to the design and
performance of ships' propellers and water turbine im-
pellers under cavitating as well as non-cavitating
conditions. For more fundamental investigations of the
mechanics of the cavitation phenomenon, it has been found
fruitful to study the behavior of cavitating flows result-
ing from‘the flow about bodies of revolution (5)(8). In
this connection, as well as for more general studles in
the water tunnel or open flume of the flow about bodies of
revolution, the influence of proximate tunnel walls on the
pressure distributions 1s of importance., These effects
also form one of the major considerations in the selection
of proportions in the design of towing basins for tests of
both surface and submerged models, Other engineering appli-
cations in which the influence of "walls" on water flows are
of interest include the movement of vessels in shallow
channels and narrow canals.

The effects of wall interference on the flow about

lifting systems have been investigated in rather thorough

=
Numbers in parentheses indicate references on page 35,
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detail in connection with Wind tunnel research (see e.g.
(7)(8)), and somewhat less extensively for non-lifting
systems (7)(9)(10). The corrections available from these
solutions, however, must be obtained by rather laborious
summations in series with resultant loss of appeal for
more or less rapid checks on interference effects and for
preliminary design purposes. As a result, it would be of
convenience to have the solution for a body of revolution
which can be used easlly as an approximation to the actual
form considered, and for which the resulting expressions are
not too unwieldy.

For this purvose, it 1s oroposed to use an ellipsoid
of revolution. HMany bodies of revolution may be replaced
by an ellipnsoid with good epvroximation by holding constant
the lengths and displacements, provided the nose and tail
curvatures of these bodies do not vary too rapidly. For
the effect on the wall, the aporoximation may be expected
to be even better, provided the body is of the order of
one or two diameters from the wall, In the case of ships
near a shallow bottom, the hull of the vessel might be re-
nlaced by the lower half of an ellipsold, in which case the
water surface of the canal must be treated ag a plane of
symmetry. In the latter case, it would probably be more

accurate to hold constant the draft and the displacement.

Although the problem treated hereafter applies only

to the case of an ellipsoid near a single, plane wall, it
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can be used to give approximately the first order effect

of each wall singly in such applications as a rectangular
water tunnel or model basin and of the bounding image planes
in the case of a vessel in 2 shallow channel,

The solution as obtained in this paper is in closed
form with expressions that are quite easily applied to
specific cases. The accuracy of the solution was tested by
measurements of the pressure distributions on two ellipsoid
models. Comparisons of the calculated and measured values
for the models at various distances from a single wall are
included.

OVARY ELLIPSOIDAL COORDINATES AND THE
CORRESPONDING EQUATION OF CONTINUITY

It is convenient for most treatments of potential
flows about completely submerged bodies to employ a coord-
inate system in which one of the constant coordinate lines
or surfaces coincides with the particular form under study.
For the present problen, the.so-called ovary ellipsoidal
or semi-elliptic coordinates are applicable (11)(12).

The origin of coordinates is chosen to coincide with the
center of the ellivnsoid having foci in cartesian coordin-
ates placed at x=*c, y=2z=0, (lower half of Figure 1).
Planes through any meridian section of the ellipsoid make
an angle®with the x-y plane. The ellipsoidal coordinates,

/Anga%‘are then defined by the set of equations



x =cmE
v =Y (rpa(§*) L]
W =W

1t is clear that ¥ is the distance pervendicular to the
x-direction in the plane «=constant, and that the car-
tesian coordinate y = ycos « . From [1], the surfaces

& = constant are represented by the relation

xX* Y
= 2
CZEZ + CZ(EZ_/) ’ [ ]
and the surfaces /»‘:constant are given by
X2 [3]

I
cjuz CZ(/~7M9
Equation [2] represents a set of ellipsoidal surfaces
confocal with the ellinsoid and having semi-major axes
. . 2 - .
equal to ¢ & and semi-minor axes equal to CVE—/. hguation

[3] represents a set of confocal hyperboloids with foci at

x =*c and semi-axes cmu and c]f/-4%

Zlements of arc length ds in the direction of increas-

ing/u , § , and « are readily showm to be

‘V ga_/uz

d‘;“ =C —7 d/&
EZ__ 2

c‘/-S‘g =C|/ _sT_/L dg f 4]

a’sw=c1/(/7u7(5z"/\ d e
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From the definition of the velocity potential P as
the integrsl of the scalar product of the length of line
element and the veloclty vector, the velocity components

in the directions of increasing m, &, and« are*

u-_2®__2@3u__/)[/Z 2&
M7 23T IS, CfmrmE m

Yoo 2P__2D 28 __ /8y od > 5]
§T 95, 9% 35, clf gt 2F
20  23d o _ / 29

Up=—

s, 90 'asw--j;V(7j%47t’E@4)' 20

Replacing these velocity components in the equation of

continuity for an incompressible fluid
X7 (45“) Us, u&,) =0

by their appropriate definition [5] gives the Lapnlace

equation of continuity in these coordinates

Y Y- €L u* &
a0 3]+ [0 32 |+ sy BReo 1

The potential which satisfies the boundary conditions
of the problem and is a solution of [6] will give the

correct flow configuration.

To avoid confusion between the present results and the ref-
erences cited, Lamb's (11) sign convention is used through-
out in the definition of the velocity in irrotational
motion as the gradient of a potential.
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THE SOLUTION FOR AN OVARY ELLIPSOID
IN AN INFINITE STREAM

The solution for the flow about an ovary ellipsoid
moving parallel to 1ts major axis, which forms the start-
ing point of the present investigation, 1s given by Lamb
(11). 1In general, the solutions of equation [6] for the

case of symmetry are

@=R (W R(E)
=R (M) Qn(E)

7]

where the PHSM) and Pn(§) are the so-called zonal surface
harmonics of the first kind or Legendre coefficients, and
the Qn.(§) are zonal harmonics of the Sesomd ind (13). The
zonal harmonics which are applicable to the case in which
the flow pattern 1s identical in every meridianal plane

correspond to integral values of n in the formula (14)

R ()= g g (A i2

and the corresponding expression for P, (§). The Q,(¥)

are given by (11)

) - dE
Q. (%) FR(E)Z T [¢]

For a single ellipsoid moving with velocity U in a

fluid otherwise at rest, the boundary condition at the sur-

[ o s e & . .
face §=§=5; where ¢is the eccentricity of the ellipsoid,
L4
is



or, using [1],

od X _
52 ="Use =—Ucu Leel

With this condition and the conditions that the fluid be

stationary at infinity, the solution as shown by Lamb is

D-AR(WQ(D)=Ap {54 St -] (]

where

A: UC : ﬁz]

Co _ 4 | + 6,
-z 2 I— %

In this case, the flow pattern is symmetric with
respect to any axis of the ellipsoid so that a stream
function also can be shown to exist. However, since no
corresponding stream function exists for the ellipsoid
near a wall, a discussion of this function 1s omitted
here,

FORMULATION OF THE PROBLEM OF ILOW
ABOUT AN ELLIPSOID NEAR A PLANE WALL

It is clear that the solution of the problem of flow
about an ellinsoid near a plane wall is known if the solu-
tion is known for the flow about two ellipsoids of the same
size moving abreast at the same speed. IHere, the plane of
symmetry halfway between the two forms 1s a stream surface
and may be replaced by a solid "wall"™ without disturbing

the motion. This type of solution requires the determina-
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tion of the source distributions in the ellipsoid and

its image which leave these stream surfaces undeformed.
Another type of solution is based on an aporopriate dis-
tribution of sources which, in a uniform stream, form the
wall and the solid body, but are located only within the
ellipsoid and outside the field of flow about the ellip-
soid., The latter procedure reduces to finding Green's
function™ for the boundary conditions that the ellipsoidal
surface and the wall be stream surfaces.

The solution obtained herein is based on the first
method outlined above. If the solution is knovn for the
translatory motion of a single body in an infinite stream,
this solution may be used as the starting ooint for the
case of two such bodies. The potential of the single form
will then induce a potential on the other which results in
a cross flow violating the condition that this surface be
a stream surface. To restore the original shape of this
second body, a distribution within the body of, in general,
sources, sinks, and doublets must be found that produce
velocity components that just cancel the effects of the
original potential. This distribution constitutes the image
of the original potential. IHowever, the image potential,

thus found, in turn deforms the Tirst body which must be

b3

A number of examples of the apvlication of Green's function
to certain boundary value problems are worked out 1in Refer-
ence (15).
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restored by a similar procedure. This process is then
‘carried through until the effects of all the images are
rectified. To complete the solution, the process is re-
pegted starting with the infinite stream potential of the
second body. Although this method of obtaining a solution
is, «in principle, quite clear, the exact evaluation of the
strengths and positions of successive images in gpecific
cases may be extremely laborious if not also difficult.
It is shown in the subsequent discussion that this situa-
tion occurs in the case of flow about two ellipsoids. As
a result, the present solution is obtained from an approx-
imate evaluation of the image strengths and types required
to cancel the induced potentials on the "real" ellipsoid
due to the presence of the image ellipsoid.

The model used for the computation is shown in Figure
1, wherein the primed ellipsoidal coordinate system refers
to the image. The ellipsoids, which have semi-major dia-
meters a and seml-minor diameters b, are assumed to be
separated by a distance 2h. From equation [1] and the tri-
angle OO'P in Figure 1, it is seen that the two coordinate

systems are related by

x=cmg=c'g"’ R

and

Y= I+ 4k —4hy cos @ bi=]
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The velocity potential which is a solution of equa-

“tion [6]1 for this problem will be of the form

P = P+ @’ (14]
where @ is the potential of the real ellipsoid and @’
the potential of the image. In order that the model be
undeformed, there must be no cross-flow through the sur-
faces of the two ellipsoids. This requirement and the

boundary condition [10] impose the boundary conditions

on the real ellipsoid, E=§,‘-‘9L»

oY " 29’
5e " UC/u and > =0 s

and, on the image ellivsoid, §= 5:’—

a¢~ o and

a $/ a UC}L(I [16]

Since this case is not one of symmetry in the sense
of the single ellipsoid in an infinite stream, the solu-
tions will no longer be of the form [7], but will be of

the types

R™(#) P(5) sor fme
and & (1]
R™(M @, (8) Sotm }

J
Where the P:‘gu), P, (£) and Q. (%), the so-called asso-

ciated Legendre polynomials (16), are defined by



., .

2 A"R(W
R™ 9% 4R
/*> S0P =g

and > L8]

Jm{e (&)
F,?'-'(g) }:(gg_’)%q‘ Cn(E)
Q" (8)

dE™

/
The exact solution of the present problem can be
accomplished by an expansion of ® in the associated Le-
gendre polynomials [18]. The first term in the expansion
is obviously ecuation [11]. The first step in such a
procedure then consists of evaluating @ over the image

ellipsoild by the expansion

P= > AR [/«gu,%’ =) orlsws-s] ol

2
and then determining the coefficients B,,. in the expansion

for the first image in the image ellipsoid

9'=->, 8, () Q (2= <)) el

so that the boundary condition ([16] is satisfied. The
effects and the rectification of the successive images are
then evaluated by a similar process.

Although this method will lead to an exact solution,
the extreme complexity of only the first term [111,
after writing/u end ¥ as functions of m' and €' is a
most convincing deterrent to proceeding with even the ex-

pansion [19]1. Furthermore, the resulting expressions would
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defeat the purpose, stated in the foregoing, of obtaining
formulas that may be rapidly applied in engineering appli-
cations. As a result, the procedure that has been adopted
leads to an aponroximate solution which apprdaches the exact
solution in the limit as the ellipsoid recedes from the
wall., This approximation is essentially an evaluation in

a power series in the types [19] and [20] but with n=1

and m=0, A second approximation is also carried out based
on an exact evaluation of image pnotentials in the neighbor-
hood of the real ellipsoid but using only the first approx-

imation in the rectification of these potentials.

THE APPROXIMATE SOLUTION

Starting with the solution of the flow about an
ellipsoid in an infinite stream, equations [11] and [12],
the potential function (¥ in the neighborhood of the image,
assuming for the moment that the image 1s at rest, 1is,

with the aia of [1'],

P- A/"f{ IyN &’*'-.} s

Instead of evaluating qp, over the surface of the image,
assume, instead, that the image lies entirely on a portion

of the ellipsoidal surface confocal with the real ellipsoid*®

e

This method of approximation is somewhat analogous to
the first steps in the solution given in Lamb's "Hydro-
dynamics" for the flow about two spheres. However, %o
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and which passes through the center of the image. The
semi-minor diameter of this surface is oVﬁ?; =2h, so

that, since c=ase,,

g'zv, + %z(_i_l)zj: ‘7 (say) [22]

Therefore, the induced velocity potential due to the real

ellipsoid 1s, approximately,
Al g 21 23]

This potential produces a normal velocity on the surface

of the image proportional to
I 7+
asl A/IA { ,En. -I 7} [24]

It is easily verified that the term [24] is cancelled by

addition of the potential,

/ﬁl ‘7 | sft'/
:—A/,( _/Zn /+t£ e {ZE/&L ‘S‘i" —I} [25]

/-6 /-e?

and that (P'satisfies the equation of continuity (6].

the same degree of approximation, the present solution
might be expected to give better comparative results,
since the image ellipsoid "fits" the ellipsoidal surface
confocal with the real ellipsoid better thean the image
sphere on the spherical surface concentric with the real
sphere. Of course, as e epproaches zero, this advantage
disappears.
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Equation [25] represents the potential of the first source
image in the image ellipsoid.
Using the assumption [22], the potential q? , in the
neighborhood of the real ellivnsoid, takes on the value
a3}
n-r 1

@=—,4/45{ )@n”&— eo}

= - &

126]

which, in turn 1s rectified by the potential

,En 7+l__l_ 2 e
= +1
=AY . ;Ze.l_ &, { w"—_'} el
I-€ [-6F
The law of formation of the successive images is now

clear. Remembering that an exactly similar process must

be carried through starting with the image ellipsoid and
holding the real ellipsoid at rest, the potential function
for the entire flow, after evaluating all the images in the

above manner is approximately

o0
[
/ $+I £ ;\Z'ﬂ'w-/ 7
=P+P=A ( g/ ) ( l&. ‘) =l
cﬁcp(PﬂE' YA g ():/+€° e
A=0O
The infinite power series in equation [28] converges ab-

solutely if

N+1 !
_42)\7] I '7_
<|{
_//&n I+&% &
2 =& I—eoz

Since, from [22],722:1 for all values of h/a, and 0<g<=1,
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this condition requires that
L(d . 2% 4
’3(7) ()4— ( L |<| e+ 3 g2 e+ [29]

For the inequality [29] to be valid, it is sufficient to

require only that 1/71 <e,, Or
4 (hy\ |
l+-1§2(75) >';;a
so that the series converges absolutely for all values

hoo LA eF (30]

Furthermore, with this requirement, the solution [28] con-
verges everywhere on all ellipsoids O%e,< 1 and everywhere
in the field.

Finally, by using the formula for the sum of an'abso;
lutely convergent geometric series; and putting in the
value of the constant, A, from equaﬁion [12], the solution

may be written in closed form as
/P‘( Eign /)'* (; E%n 55_

?j"( I)( e) (—e’ 7)

THE FIRST APPROXIMATION TO THE PRESSURE
DISTRIBUTION ON AN ELLIPSOID NEAR A WALL

Bd

P$=-Uc

Superposing a uniform velocity potential to transform
the motion to one of flow past a stationary ellipsoid, the
potential [31}, to the same degree of approximation as the

entire calcula tion so far, is
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A e v (R G 7) S

where

r A (BED-Ge3] oo

The velocity components in the neighborhood of the

real ellipsoid are, from [5]

Y [ bl (03]
- FE | B (G5 )] |
-%"”-'o

The fact that this approximation gives a symmetric velocity
field is a direct result of expansion in a geries of
RSM)QKE), and, thus, cannot be expected to predict a diff-
erence in velocity distributions between points on opposgite
sides of the ellipsoid. IWevertheless, these velocities

may be expected to give an approximately correct average
distribution over the entire surface. ©Since the images

are evaluated at the center of the ellipsoild, neglecting
the variations between this point and points on the ellip-
soidal surface, and these values then applied to every
point on the surface, this solution will evidently under-

estimate the effects near the center and overestimate
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toward the two ends. From another point of view, that
this 1gs the case can be seen from the fact that the ex-
pansion of the images by approximations of the type [23]
is equivalent to a rectilinear flow, which evidently give
velocities that are too low at the center and too high at
the leading and trailing ends. In general, it might be
expected that equations [34] will most closely aporoximate
the velocity distribution along the meridian parallel to
the wall.,

Evaluating equations [34] on the surface of the ellip-
soid, § = 1/e, , and putting /A=X/C §=X/a, only the tangential

component remains:

[34]

To this degree of approximation, then, the pressure distri-

bution, in non-dimensional form, is

2

. e
" . | — (a-) /—'eoz
T - Z 2

U |- ek ) (D )

where p 1s the pressure at the surface of the ellipsoild,

[35]

Qwis the pressure in the undisturbed stream, and
£ is the mass density of the fluid.
From the geometry of the ellipsoid, it i1s readily

shown that
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- (£)*
°\a

where 8 1s the angle between the normal to the surface

of the ellipnsoid and the direction of motion. As7-—>a5
equation [35] reduces to the familiar result for an ellip-
soid in an infinite stream:

P-R _ _ Asin®6( &Y
2 PU* viar  \1-e?

EX)!

The pressure distributions for ellipsoids with ratios
of a/b=4 and a/b=6 at various distances h/2b from the
wall are shown in figures 2 and 3. 1t is seen that for
these forms the wall effect may be neglected for distances
greater than about three diameters(i.e. for h/2b greater
than 3). By rewriting equation [35) in the form
?F% = |- C sin*6 [35']
zfU
and plotting C as a function of h/2b, with a/b as para-
meter, Figure 4, the distances beyond which the wall effect

may be neglected can be quickly estimated.

A SECOND APPROXIMATION TO0 THE PRESSURE DISTRIBUTION

For reasons already pointed out in the foregoing,
the above approximation cannot be used for applications in
which it is desired to obtain a measure of the difference
in pressures on opposite sides of the model. To obviate

this shortcoming, the solution [31] will be evaluated
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in a more exact manner than the approximation (32].
Although the following evaluation is not completely
justified on the basis of the approximations used in the
calculation of equation [31], nevertheless, the result
will be correct to at least the same order as the first
part of the exact expansion suggested in equations [19]
and [20]. This proposal consists essentially of an exact
evaluation in equation [31] of the image potentials of
the image ellipsoid in the neighborhood of the real ellip-
soid while evaluating the successive rectifying images by
the approximation §= 7:/"l=/“ &/

For this purpose, as well as for computations of
pressures in the surrounding fluid, it will be more con-
venient to express P, equation [31], in cartesian coordin-
ates. Rewriting equation [2] as a quadratic in g‘, this

equation becomes
st e (& (Y (2] ()0 =
since F=y% z*; and, solving for €7,
et [+ @[ R ET- 4 e

where the positive sign has been taken before the radical

to exclude the imaginary ellipsoids between *c. 'The value

of & in cartesian coordinates is, thus,

ol O e K (R ER R I R A




=20-

since & takes on only pogitive values.
Similarly, from equations [3] and [13], and putting

—_— o / 03 . ]
¥ in terms of y and z, §expressed in cartesian coordinates

%’1[ ’()f(”) GERILE 'V@ Fe (4 (@) 4(4)2 AY] (x) (o]

The expressions for/u.anQ/A'are obtained directly from

cquations [17], [35] ena [40].
o= 1+(5)+ (3 &) [+1]
=Yz 47 [42]
y=oc+ 4 (8- 44 [43]
s+ [+4
Wih tte aotation,
£= i;—ﬁ [+5]

%._V r+5s [4¢]

and the equation of the potential becomés

/7
X} s+l ‘%'-H) /.,
= [Jx+BU&{= = — 47
%= Un+BUe J"(s-l)(si/ T F [+7]
The velocity components in the directions of increas-
ing x, y and z are, then,

Let
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%’=—é$——<) tee=e)+F-2gle@sI]; oot
e -+ 32-8(2)2) [eE- E)] [s¢s-=)] [50]

The pressure at any point is then

e (-8

To calculate the pressure distribution on sny ellip-

soidal surface confocal with the real ellipsoid, it is
only necessary to replace E'by 1/e where e is the eccen-

tricity of the confocal ellipsoid. In addition, the values

of X and @ reduce to

and / )
é%"? (
Otherwise, the substitutions [41] through [44] must Dbe

used. Yor any point on the wall, put y=h, Y=o ,q=€ &= g
in the formulas [48] through [501, so that, on the wall,

l—-—{—jn g+‘. éés (7:"()1_ ?}

=0 > [52]
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The pressure distributions on three half-meridians
of an ellipsoid with a ratio a/b=4 at a distance of one
diameter from the wall are shown in Figure 5. It is seen
that the solution correctly nredicts a difference of pres-
sure on opposite sides of the ellipsoid, and that the first
approximation represents most closely the pressure dis-
tribution on the meridian parallel to the wall. The most
interesting results are the prediction, near the leading
and trailing ends, of a pressure increase over that of the
single ellipsoid in a fluid of infinite extent, and the
prediction, near these ends, of pressures on the meridian
closest to the wall that are higher than those on the
meridian farthest from the wall.* It is also of interest
that for this case this solution shows a difference as
high as 15 per cent between the minimum pressures on the
meridians closest and farthest from the wall. A compari-
son of the two approximations on the circumference of two
stations on the ellipsoid at a distance of one diameter
from the wall is shown in Figure 6.

To check the accuracy of the solution, pressure dis-
tributibns corresponding to the computations of Figures

2, 3, and 5 were measured on two ellipsoid models, These

5

The solution also predicts the displacement of the stag-
nation points. However, this change is so small as to be
indiscernable on a graph, and, as a matter of fact, was
well within the experimental error of the tests conducted
to check the solution.
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experiments are discussed in succeeding sections.
THE EXPERTMENTAL, ARRANGEMENT, LODELS,
AND TECHNIQUE OF IMEASURELENT

To facilitate the experimental work, 1t was decided
to construct models, which, though they deviated at the
center sections by very slight amounts from true ellip-
soids, could easily be adapted to equipment standard in
the Hydrodynamics Laboratory. This necessitated the use
of a straight cylindrical middlebody over 7.5 per cent
of the 4:1 ellipsoid and 5 per cent of the 6:1 ellipsoid.
The principal dimensions and the location of the piezo-
mneters for the models are shown in Figure 7. The lengths
of the models were adjusted so that the coordinates would
matceh the dimensions of the middlebody at the stations
of contact. Although the fineness ratios are increased
by negligible amounts, the disadvantage of the construct-
ion wag the introduction of discontinuities in the slopes
and curvatures of the surface at the points of contact.
Although this condition gave result ing local deviations
in the pressure measurenents, it apparently had little
or no effect on the pressure distribution as a whole.

A photograph of the models illustrating the method
of assemblyrfor the tests is shown in Figure 8. The nose
and afterbody sections, which were secured to the middle-

body with an internal stud, could be rotated about the
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major axis, and the entire assembly rotated about the
vertical minor axis on a spindle within the shield. The
method of cormmunicating pressures from the piezometers
through rubber and then brass tubing of very small dia-
meter up through the spindle is standard in the Hydro-
dynamics Laboratory.

The experiments were conducted in the free surface
flume (4) in this laboratory. A photograph of the exper-
imental arrangement is shown in I'igure 9 and, the various
components are identified in I'igure 10. The pressure leads
are carried out through the shield and fairwater to a mani-
fold communicating with a water manometer open to the
atmosohere. The use of the vacuum pump and overhead reser-
voir in bleeding the manometric system and in accelerating
the change in level of the fluid in the manometer when
seeking equilibrium (a device necessitated by the small
internal diemeters of the pressure leads) are clear.

To simulate the effect of the wall, a plate was in-
stalled below the model on a strut constructed in sections
so that the distance from the surface of the plate to the
horizontal meridian of the model could be varied. Although
the width of the plate was limited to avoid damage to the
lucite walls of the flume, the ratio of width of plate to
model diameter was large enough so that the effects of

"leakage" through the gap could be safely neglected. In
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addition, the model was supported well downstream from
the leading edge of the plate to insure the establishment
of the wall effect; nevertheless, the distortion of the
parallel flow due to growth of the boundary layer on the
plate was insignificant for this distance.

A measure of the velocity head was obtaihed on a
similar open manometer from a point on the upstream riser
of the flume, Referrinz to Figure 10, it is clear that
the pressure coefficient is

Pfa _ h, — h. (53]
spU* h,o—h,

where h, is the dépth of water in the flume,

h, is the indicated pressure head at a piezometer
referred to the floor of the flume, and
h, is the indicated total head®™ at the model re-
ferred to the floor of the Tlume.
Preliminary experiments to determine the accuracy
of the measurements and the effect of the cylindrical
middlebody were made with the 4:1 ellipsoid model without
the effects of the plate. The source of the largest errors
lies in the method of alignment of the model in yaw. This
alignment was accomplished by measurements from the side

of the channel to the leading and trailing ends of the

X

In the actual experiment, the difference h,-h, was cali-
brated against the correct velocity head at the model.
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model, with the resultant errors in angular setting due

to the short distance between the points of measurement.
To determine the effect of this error, pressure distribu-
tions were taken over the model with three independent
settings of the zero yaw position. Although no pressure
measurements could be taken along the half-meridian farth-
est from the bottom of the channel because of the effect
of the shield, readings were taken along the half-neridian
closest to the channel floor and on the horizontal meridian
of the model. The latter measurements were first made on
one side of the model; the model was then rotated.l80 de-
grees about its najor axis and the readings repeated on
this opposite side without altering the setting in yaw.
This experiment also served as an indication of the shield
effect at this position.

The results of the preliminary experiments are shown
in figure 11l. It is seen that the pressure distribution
along the half-meridian closest to the channel bottom was
unaffected by the small errors in the angle of yaw. On the
other hand, the measurements along the horizontal meridian
show a rather large deviation from those along the vertical
half-meridian. However, the arithmetic averages of the
measurements along the horizontal half-meridian fall quite
.nicely on those along the vertical meridian for the errors

in yaw within which the model could be set. As a result,
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this technigue of rotating the model and averaging the
readings on the horizontal half-meridians was used through-
out the remaining program. That these average readings
evidently gave the correct pressure distribution indicates
that the shield had no measureable effect as far away as
the horizontal meridian. It may also be seen that press-
ures in the vicinity of the cylindrical middle section

show somewhat more scatter than the other date, indiceting
a local region of separation and, consequently, unstable

flow.

RESULTS OF THE PRESSURE LEASURMMENTS

All tests were made at a Reynolds number,

EQ‘: #)--—' 2.5x/05

where ) is the kinematic viscosity. Although this Reynolds
number is slightly less than the Reynolds number (defined

on the same basis) required for transition in the boundary
layer on forms of similar shape and fineness ratio (see

e.g. (17)), the effects of laminar separation and transition
on the pressure disgtribution are confined to a small region
of the after end. As a result, the measured and theoretical
pressure distributions should be in good agreement over at
least 75 per cent of the length with the major defect occur-

ring near the very end of the model. Consequently, the dev-

iation of the data from the theoretical curve for the ellip-
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soid without wall effect, Figure 11, is probably due to
other sources. The accuracy of construction of the models
was such as to exclude deviations as large as those shown,
However, in reducing the data by the formula [53], no
corrections were made for any pressure excess that might
have been present at the position of the model due to
residual curvature of the stream induced in leaving the
nozzle. An idea of how small the curvature (or'how large
the radius of curvaturé) can be in order to make the meas-
ured and theoretical data coincide at the point of minimum
pressure can be obtained from a short computation. The

pressure gradient in the direction of increasing pressure is

oP u’
o = F
or, approximately,
AP _ LR
— = 2=
ZrU r

where r 1s the radius of curvature and R is the distance
of the model below the water surface. The difference in
pressure coefficient required for coincidence at the mini-
mum point is 0.005, so that for the model at a depth of 9
inches, the radius of curvature would be 300 feet - large
enough so that it could not be detected from measurements
of the free surface level. However, for purposes of com-

parison with the theoretical computations, and since the
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presence of the plate would tend to reduce this correction,
it was considered sufficient to use the data directly as
obtained from formula [53].

The data for the 6:1 ellipsoid taken without the
presence of the plate show the same trends, but with some-
what more scatter in the vicinity of the middlebody, (Fig-
ure 17).

The majority of the measurements were made with the
4:1 ellipsoid model. In addition to the tests without the
plete, runs were made with the model at distances from
centerline to plate surface of 3.0, 2.0, 1.5, 1.0, and
0.75 diameters. ©Since 1t was anticipated that the differ-
ences between the pregsures on the half-meridian closest
to the plate and the meridian parallel to the plate would
be small for distances of 3.0, 2.0, and 1.5 diameters, the
pressure distributions for these cases were measured only
along the closest half-meridian. At the remaining two
distances, the pressures were measured along both of these
lines. Ilieasurements on the 6:1 ellipsoid were made only
without the plate and at a distance of one diameter from
the plate.

The results of the experiments are shown on figures
11 through 18 in the ordér outlined above. In all cases,
the distributions are very nearly symmetric with respect

to the transverse vertical plane through the center of the



=30=

model excent near the trailing ends where the effects of
separation result in the pressure defect.

From Figure 12, it is seen that the measured pressure
distribution lies very close to that calculated from the
first approximation for h/2b=3.0. Since, from Figure 2, the
pressure distribution at this distence coincides with that
for an infinite stream (for the scale of ordinates used),
the agreement of data indicates that the presence of the
plate does tend to reduce the curvature of the stream and,
therefore, the pressure excess at the position of the model.

The rather large scatter of the data obtained near
the middlebody, for both models at the shorter separations
from the plate, is probably due to the discontinuities in
slopes and curvatures mentioned above. However, for pur-
poses of comparison with the theoretical values, this
shortcoming is not serious, since the minimum points could
evidently be determined with sufficient accuracy by careful
fairing of the data on either side of this position.
COMPARISON OF THE LEASURED AND
CALCULATED PRESSURE DISTRIBUTIONS

For purposes of comparison, the pressure distributions
computed by the first approximation are plotted together with
the measured data on Figures 12 through 18. The conclusion
reached in the foregoing that, for this approximation, the
computed values would be underestimated near the center of

the model and overestimated at the leading and trailing ends



Y

is clearly borne out in all cases. The computations and
the measured vslues begin to show fairly large deviations
at the distance of two diameters. In this case, the dev-
iation at the point of minimum pressure is approximately

4 per cent for the distribution along the half-meridian
closest to the plate. Ior smaller separations of model

and plate, the deviation increases rapldly with an error
of about 14.6 per cent at the distance of one diameter and
25 per cent at 0.75 diameter (1/4 diameter separation).
Although these errors are large for the half-meridian clos-
est to the wall, this approximation will be somewhat better
for positions on the ellipsoid farther from the wall.

For the 6:1 ellipsoid, the deviation of the first
approximation from the minimum value on the meridian clos-
est to the wall for a distance of one diameter is also
about 15 per cent, with somewhat better agreement along the
horizontael meridian.

The data for the 4:1 ellipsoid at a distance of one
diameter from the plate are compared in Figure 19 with the
corresponding pressure distributions obtained from the
second approximation. Except for the anomalous data near
the center of the model, the computed and measured values
along the horizontal meridian show excellent agreement.

On the other hand, the deviation of the calculations from

the faired curve for the minimum point on the vertical mer-



idian 1s about 6 per cent.

Since the largest errors may be expected to occur at
the point of minimum pressure on the meridian closest to
the wall, the computed and measured data are compared on
this basis; the results are tabulated in Table I (page 33)
for all the measurements. The percentage deviations of the
first approximation appear to vary consistently. However,
for the small differences of measured values and data comn-
puted by the second approximation, the error is largely
dependent on the method of falring. The fact that the dir-
ection of the error changes for the two larger separations
indicates that these percentages are too high and that the
deviations shown for the smaller separations are probably
somewhat too low. The deviation for the 6:1 ellipsoid for
the one case compared 1s of the same order as that for the
4:1 ellipsoid.

CONCLUDING REMARKS ON THE ACCURACY
AND APPLICABILITY OF THE TWO APPROXIMATIONS

In general, the agreement between measured data and
might have been expected. This result indicates that the
successive images in an exact solution lessen in strength
guite rapidly beyond the first image. The expansion devel-
oped herein, equation [287, also exhibits this property for

large values of the eccentricity, €,, so that the solution
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TABLE I

COMPARISON OF MEASURED AND COMPUTED VALUES
OF THE MINIMUM PRESSURE COEFFICIENTS (x/a=0)
ON THE HALF-MERIDIAN CLOSEST TO THE WALL

Ellipsoid Distance From HMeasured First Approximation
Model Wall in (Faired) Equation [35]
Diameters Values
h/2b P-F P-R  Percent
r é f)UZ % FU’- Deviation
00,75 -00295 "00221 "25
1.0 -0.233 -0.,199 -14,6
4:1
@ - -0,1707 -
6:1 1.0 -0.145 -0.,123 -15
Ellipsoid Distance From Measured  Second Approximation
Model Wall in (Faired) Eguation [51)]
Diameters Values
h/2b P—Ps P- P Percent
- 7 PU* % £U* Deviation
0075 -Oo 295 -00264: "10.5
loo —00255 "00219 L 6
4:1
1:5 -0.201 -0,207 + B
00 . -0.1707 -
Gsl 1+ -0.145 -0,137 - 5.5
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can ‘be expected to give even better results for fineness
ratios larger than those of the ellipsoids tested. (The
latter result was anticipated in the formulation of the
approximation used.)

From the results of Table I, it appears that the
second aporoxination, equation 1511, may be used with good
accuracy for ellipsolds even as close as one diameter from
its center to the wall. The largest error will occur at
the voint of minimum pressure on the meridian closest to
the wall with errors smaller than those shown in Table 1
for other points of the surface. On the other hand, the
usefulness of the first approximation is apparently limited
to checks of the type shown in Figure 4 on the existence
of wall effect and to calculations of pressure distribu-
tions along the meridian that is parallel to the wall. The
simplicity of this apvroximation, equation [351, especially
recommends it where a rapid calculation is wanted of the
change in pressure distribution for varying separations,
and where a high degree of precision in actual values is
not required. For points near the center of the meridian
parallel to the wall, however, the first epproximation a-
pproaches in accuracy the results of the second approximation,

For convenience in use the more important results are

summarized in the Appendix.
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APPENDIX
SULMIIARY OF FORMULAS

Notation
a - semi-major axis of the ellipsoid
b - semi-minor axis of the ellipsoild
¢ - x-coordinate of the focus of the ellipsoid
e - eccentricity of a confocal ellipsoidal surface
e, - eccentricity of the ellipsoid '
h - distance from center of the ellipsoid to the wall
p - pressure at a point in the field
p - pressure in the undisturbed fluid
(- 4
f - mass density of the fluid
© - angle between normal to the ellipsoid and the
direction of motion
U - velocity of the undisturbed fluid
u, - tangential component of velocity along an
~ ellipsoidal surface in any meridianal plane
U, - normal component of velocity along an ellipsoidal
surface
u,- tangential component of velocity along an ellip-
soidal surface perpendicular to any meridianal
plane
Uy, Uy, U, = velocity components in the direction of
the carteslian coordinates
X, ¥, 2 = cartesian coordinates in coordinate system
of the real ellipsoid
Mo £,W -~ ovary ellipsoidal coordinates in coordinate
system of the real ellipsoid
/A;E'JDI - ovary ellinsoidel coordinates in coordinate

system of the image ellipsoid



= H- _'_(y) (.Z) [41]
6=]oc= (2" (2]
y=oc+ +(L)~ 4 & [+3]

Y4 4]

& T [45]

g= X+¢ [4¢]
7=1/'+ 20 (47

Pressure Distribution on an Ellipsoid in an Infinite Stream:

PR _,_ Alsin®ef &°)*
U
where A= . [12]

/ o

Presgsure Distribution on an Llllpso;d Near a Plane ¥Wall --
First Apovroximation:

Z;’Z“‘z— 1-Csiné [35’]
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where eZ

Cj ? i 62
2o (i )(i2e) - (Fez &)

and sin’@ = o (E

Pregsure Distribution at Any Posgition in the Field --

7 {ﬂ"(gﬂ)(g*') & G ,g,s)—(-g'-J,.gf_,)}
$-alc Dl
%-2((3 {[(3(%‘ g) #[q(gﬁﬁ_s)]ﬂ}

where B=—c [+ b (35)(128)- (%))

ez - {8+ (57}

Preggsure Digtribution on Any Ellipsoidal Surface --

oecond Approximation:

(44
fas]
[sq]
(53]
(5]

In formulas [48], [49], (50], and [51] above, put

]

Es s
=43+ (&)
B= = = (&)

Pressure Distribution at Any Point on the VWall:

_ ——{,Zn EH__2 (_X)l__z_} |
@53 g =
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Figure 8. Photograph of the 4:1 and 6:1 Ellipsoid
lModels.

The 6:1 ellipsoid model is shown preparatory to
assembly with the middlebody.



Figure 9. Photograph of the 4:1 Ellipsoid liodel kounted
in the Free Surface Flume of the California
Institute of Technology.

distance of one

The model in this photograph is at a S
eed was 15.2 feet per

diameter from the plate. The water sp
second. Flow is from right to left.
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