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Abstract

The problem of this work is to determine whether the
carboxyl group of the fatty acids rotates independently of
the remainder of the molecule when subjected to an alter-
nating electromagnetic field. The dielectric constant and
absorption coefficient of dilute solutions of formic,
acetic, propionic, and butyric acids in dioxane are meas-
ured at a wavelength of 25 centimeters, using Drude's
second method. A method is developed for computing the
effective volume of the rotating portion of the molecule
from th{é data. The computed volumes are found to be
proportional to the molecular volumes, proving that for the

acids investigated, the entire molecule rotates as a unit.
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Introduction

Measurements made by Keutner and Potapenko(1’2>* on the
series: methyl, ethyl, n-propyl and n-butyl alcohol in an
alternating electric field showed that the volume of the portion
of the molecule which oriented itself in the field was independent
of the length of the hydrocarbon chain. They concluded that,
since the permanent electric dipole moment of these molecules
resided chiefly in the O-H group and was oriented perpendicular
to the C-0 bond, the O-H group was rotating about the C-0 bond
independently of the remainder of the molecule.

Keutner and Potapenko also found that for di-ethyl ether
no such independent rotation of the dipolasr group took place,
even though the moment of the group was directed perpendicular
to the long axis of the molecule., This is because the dipolar
group is bound to the two adjacent hydrocarbon chains by bonds
meking an angle with each other, so that independent rotation
of this group would require accompeanying deformations of the
whole molecule.

A necessary condition for the independent rotation of a
polar group within a molecule is thus that the dipole moment of
the group should be directed approximately perpendicular to a
single bond which joins the group to the remainder of the molecule.

o R 20
This condition is satisfied by the carboxyl group R - C %

SB—1

* Superscript numerals refer to the bibliography at the end

of this work. An asterisk will continue to designate a footnote.



for which the dipole moment is approximately perpendicular to
the R-C bond. Therefore it was of interest to discover whether
this phenomenon of independent rotation would actually be ex-
hibited by the carboxyl group. To investigate this; the fatty
acid series was chosen as one providing a simple sequence of
molecules of varying size, containing single carboxyl groups.
The following work was thus undertaken with the purpose of
determining whether the volume of the portion of' the lighter
fatty acid molecules which oriented itself in an alternating
electric field was independent of the size of the whole molecule.
The method of attack was that of studying the dispersion
and absorption of dilute solutions of the liquid acids in non-
polar solvents within the region of anomolous dispersion charac-
terized by the orientation of the permanent dipoles of the acid

molecules.

Method of Measurement

The method adopted was that known as Drude's second method(5),
as modified by Coolidge(A) and Potapenko(5), which consists in
measuring the changes in the resonance curve of a Lecher wire
system on introducing a small condenser containing the dielectric
to be investigated. The measurements had to be made at ultra-high
frequencies for reasons to be explained leter. On account of this,
resonance methods and bridge methods were discarded as inadequate.
Drude's second method was chosen in preference to other transmission
line methods because it requires a very small amount of the sub-
stance to be tested. This is important because the work had to be

carried out &t a frequency where the absorption of the dielectric



is fairly high, so that large amounts of the substance tested
would flatten the resonance curves to the point where they were

no longer measurable.

Apparatus

The apparatus consisted of an ultra-high frequency generator
and a measuring system.

The generator used for most of the measurements was & pos-
itive grid oscillator, employing an FP126 tube (Fig. 1). No ex-
ternal tuned circuit was used, RF chokes being inserted in all the
tube leads. Thus the frequency wes determined solely by the tube
constants and electrode potentials. The filament wes supplied from
three low resistance storage cells, which were trickle charged
during operation in order to maintain constant voltage. The
resistor R1 was a mercury column rheostat used to adjust the filament
current to 5.70 smperes. R, was a 5000 ohm wire-wound resistor in
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Fig. 1. The Generator Circuit



the plate circuit which served to keep the plate slightly negative
with a consequent increase in the output of the tube. The high
voltage for the grid was supplied by & well filtered rectifier
whose output was fed through a degenerative voltage regulator

(Fig 2). Normal operating conditions were:
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Fig. 2. The High Voltage Supply

Operating under these conditions the tube oscillated at & frequency
corresponding to "higher order" oscillations (second order "dwarfs")
(6)

having & wavelength of about 25.6 cm. We also occasionally used

a region of oscillation at Eg = 210 volts which produced third

order "dwarfs" of the same wavelength.



Since the high-frequency circuit was contained almost
entirely within the tube envelope, it was comparatively free
from external disturbances. The electrode potentials were closely
controlled, so that once thermal eguilibrium was established in
the tube, the wavelengths of the oscillations generated did not
vary by more then 0.01 em during the course of a three hour run.

The power output of this generetor was very smell, but was
sufficient to give large deflections in the measuring system with
low coupling between the two.

An additional generator, consisting of a conventional
electron-coupled triode oscillator using a 316A tube was used to
meke some check measurements at a wavelength of about 50 cm.

The meassuring system was composed of a Lecher wire system
having a thermocouple and gelvenometer as detector (Fig 3). This
system was designed by Dr. G. Potapenko, end has been used by him

previously in studying dielectrics.

Galv.
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Fig. 3. The Lecher Wire Systeuw

The Lecher wires were of copper, each 0.20 cm in diameter

end spaced 2.0 cm between centers. They were attached at one end



to weighted levers to mainteain constant tension in the wires.

The working section of the Lecher system was bounded by two
shorting bridges, A and B. Bridge A wee the "fixed" bridge of the
system. It was & copper disc with a radius of 2.5 cm having two
holes in its face through which the Lecher wires ran, with short
lengths of copper tubing soldered to the back of the disc in order
to keep the plane of the disc perpendicular to the wires. It was
supported only by the Lecher wires and could be slid along them by
hand. Bridge B, the "moveble" bridge, was & copper disc with a
redius of 18.0 cm. It was mounted on & rigid carriege, which moved
on tracks. The carriage as a whole was moved along the Lecher
wires by a motor driven worm gear, and its position was determined
by a scale engraved on one of the horizontel members of the car-
riage. This scale could be read to 0.0%1 cm with the aid of a ver-
nier index mounted on the base of the system. In addition, a short
end section of the carriage, including the bridge, could be moved
with respect to the remainder of the carriage through a range of
about one centimeter. This motion was effected by mesns of =
precision worm gear, driven by hand, and the relative position

of the two sections was indicated by a dial extensometer which

was divided to 0.001 cm. The Lecher wires passed through small
holes in the bridge, and good contect between the bridge and the
wires was maintained by the use of small, knife-edged copper plates
set into the plene of the disc and held ageinst the Lecher wires

by small coil springs.
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The measuring condenser C (Fig 4) consisted of & spherical
glass flask 1.0 cm in diameter into which & pair of platinum leads
hed been fused at opposite ends of a diameter. These leads vwere
0.05 cm in diameter and projected about 0.01 cm into the flask.

No condenser plates were used. The

outer ends of the leads were sol-

dered into holes in the Lecher wires

Scale: Full Size
so that the flask was supported with

L- L : Lecher Wires
its center in the plene of the Lecher
wires and midway between them.
Fig. 4. The Condenser
The detector wes & vacuum
thermocouple having a heater resistence of 1000 ohms. It was
mounted in a copper box immediately behind bridge B, and was
inductively coupled into the Lecher system by a small rectengular
loop of wire lying in the plane of the Lecher wires and passing
through holes in the face of the bridge. The thermocouple was
connected through a shielded cable to & galvenometer with a sensi-
tivity of 40 mm/uV in this circuit.

The whole Lecher system was partially shielded against ex-
ternal disturbance by a copper screen surrounding it at a distence
of about 30 cm, but which wus open at the ends.

The Lecher system was excited directly by radiation emitted
by the generator tube. Bridge B being eapprecisbly greater then a
half wavelength in radius, coupling between the working section

end the remainder of the apparstus behind B was negligible. Bridge

A was smaller in order to permit coupling with the generator, which
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weas placed beyond this end of the system, and somewhat ebove the

plene orf the Lecher wires. Coupling was varied simply by changing
the distance between the generator and the measuring system, and

wes made as loose as was consistent with good galveanometer de-

flections.

Theory of the Apparetus

The basic equations used to celculate the dielectric constant

and the absorption coefficient of the dielectric in Drude's second

4)

method are those derived by Coolidge( and extended for the case

of en appreciable absorption by Potapenko(5). They are:

&+ €6 = —% [cojc xa, + cot xaL]
, Sin K&, Sin xa,
-——)i;_ = i—%—/ M ]_’_ ey Sih xa, +°(a"Smo(a,_
- % 4w &d
SIn &« (a,+ a,)

S - %ﬂn—% K

g = 4—rrzzn%‘Ko )
where € end X are respectively the real part of the dielectric
constant, and the absorption coefficient of the dielectric. S is
the distance between the wires of the Lecher system, R is their
radius, and K, and €K are respectively the ballast cepacity ( the
portion of C which does not depend on €') and the working capacity
(the portion of C which is proportional to €’) of the condenser C

2T

in esu. x = &% , and A is the wevelength in centimeters of the

exciting readiation. d¥ is the change in the logarithmic damping

o
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decrement of the system due to the presence of the dielectric, &and

@, and a, are the distances from the condenser to the two voltage

nodes on either side of it when the system is in resonance. q, and a,
are slightly greater than the corresponding distences a end a’

to the two bridges, due to the "bridge shortening"(7) of the system,

so that we may write a,= a+ g, a,= a’+ 3, , and B§,+ B,- B , where

B is the total bridge shortening.

Formula 1 implies the constency of the expression [cof«a,*~cofKGJ
as & function of a,when working at a given wavelength with a given
dielectric. This was found by meany workers to be untrue, the first
of these being Linnitschenko(a). Two attempts have been made to
explain this veriation with condenser position, the first by
Romanoff(g), and a second by Slatis(10).

Romanoff based his derivation on the assumption that the
cause of the variation was the reflection of the electromagnetic
waves from the sir-glass and glass-dielectric interfaces of the
condenser, which resulted in the expression:

k, sincd - VI-kP cos «d

A
& sin«a, sin (a,+d)

S, +€'d =

where d = % ~(a,+a,) and k is a paresmeter which depends slightly
upon €' snd which must be experimentally determined. This can be
more readily compared with the Coolidge equetion (1) if we meke

the substitution k, = cos 2«7 which yields the form:

|+

S+ €4 = —%-[cofoc(a,“ﬂh’cofx(az"7)](l~ sinan_ s« (a+ az"l)}

SN Xa, SINK@,
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Slatis pointed out that the observed variation of the
correction factor with the distance of the condenser from the
plane of the Lecher wires was inverse to that which would be
expected if reflection from the condenser were the cause, and
proposed instead that the effect be attributed to the inductance
of the condenser leads. He considered two contributing ceauses;
firstly, the mutual inductance between eddy currents in the
condenser leads and neighboring portions oi the Lecher system,
which would have the effect of changing the propagation constant
of the Lecher system in the vicinity of the condenser, and secondly,
the effect of the self inductance of the condenser leads, which
would make the potentisl diff'erence across the condenser different
from that eacross the ends of its leads. On the basis of these

assumptions he derived the equations:

5°+ C’CS = _)}. 'Z"S/R cot(‘?*‘x;)

2 /Z‘S/RI
cot P = cot la,-1I) + cot «(a,-V) - Putf
K %}// 1%'57
L,
4 - L., 4 e R

where L, is the mutual inductance between each condenser lead and
its neighboring Lecher wire, L, is the self inductance of the
condenser leads, R' is the radius of the leads, and I is a length
which is less than that of the condenser leads by an amount depend-

ing on R' and the configuration of the condenser. In the case that
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the center of the condenser is coplanar with the Lecher wires, so
that the condenser leuds are very short, as wes true for the
present experiments, then «§ becomes very small with respect to ¢
and the term in { caen therefore be neglected. From the work of

(11)

Mealov , who approaches the problewm in a slightly different
fashion, it can also bhe seen that the effect of potential drop
along the leads due to their self inductance is very small for

leads of the size used in this work. On dropping § , Slatis'

equations simplify tos

5.+ €3 + paf = %[cof « (a,-VY) + cot ac(a;-rf))

RS

L,
L, 44 R

sinot (G,+ @, °71)
2P E LT T2 )

Sin«a, sin«a, <l end sm %q =< ’

In our case we always had
Due to this the final factor in equation 4 could be dropped. The
term 2s¥ in equstion 5, being a constant, could be combined with &,
This would meke equations 4 and 5 identical except for the meaning
of the constants. As a result of this, it was not possible in our
case to distinguish between the two corrections, i.e. it was not
possible to decide which meaning of the constants should be pre-
ferred.

A comparison of the two methods, carried out by Fradkina(12)
with apparatus designed to exaggerate the possible causes of the

deviations led to the conclusion that Slatis' formula was the more

reliable. The Slatis theory has also been checked experimentally

18}
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by Kalinin and Posadskaia(15>, wno came to the conclusion that
a nmeasurable effect due to the inductance of the leads does
exist, but that under ordinary experimental conditions it should
be negligible. On the basis of these results Slatis' form of the
equation and his expression for the constani.19(§) may be assumed
as the correct ones, but since it is extremely difficult to obtain
accurate values of L, and L, from the configuration of the circuit,
¥ is treated as an empirical constant in the rest of this work.

A further correction to the basic equation for the case when
the absorption of the dielectric is very high has been made by

Sosinsky and Dmitriev(14> which leads to the form

(l— m") Tan xa, J

m* + tanlaca,_

S.% g0 = ‘%‘[COt <a, +

before the application of Slatis' correction factor. Here

sSin “A/z_

and A is the width of the resonance curve at the
l+ st xDfo

point 11=-% ;at . The absorption factor in this work was sufficiently
small so that m'< 0.001, in which case, neglecting m", 7 reduces to
1, so this correction need not be considered. Hence equation 5
remains the one which we shall use for the computation of £

The effect which the introduction of Slatis' correction
factor has on Potapenko's equation for the absorption coefficient
(2) was not derived by Slatis in his paper, but since we need this
result we will do so here. In the following derivation, the
initial assumptions are those of Slatis, as also is a part of the

method of attack.



Consider the Lecher wire system (Fig B) bridged by a condenser

of capacity C at z = O and bounded by two perfectly conducting

bridges at z = -a, and z = a

.+ Assume that the effect of eddy

currents in the condenser leads is equivalent to a change of

propagation constant of the Lecher system in the vicinity of the

condenser, and further that this change cen be represented with

1 2 3 4

.
'
'
'
.
'
'

. C :
: |TL :
—_ e - ] -
[% v iy o (94
sl ) | 8 |
1 T T T T
-a, -5 0 +8 +Gy

Fig. 5.

sufficient accurscy by considering that it exists only within the

region |z| <Jd, so that if waves of period T have a wavelength A

for (z] > d , they will have a wavelength N = Mk for |z) < J . Then

the current in any section of the Lecher system can be represented

by

(= - %) (£ +

.. = A e + B e

n n h

where X|= DY WP W XJ: X/@ and

§: -—/Y+2n£

35)

[n=12,354]

where ¥ is the logarithmic damping decrement of the system.

8
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A, and B, are complex constants to be determined from the boundary

conditions. The boundary conditions to be satisfied are:

di,
at Z = "'a' ﬁ =0

. : 2i, i,
at 2= =i ¢ L= L, and 5;-= ?%_.
at 2 = 0: y= by= 1 and _a& = 9is

Jdz dz

at 2= 8§ : (=i and sié: ﬁ
at z = az; .a_:l' = 0

Jdz

where V is the potential difference between the condenser plates
and W is the resistance between the plates. When we neglect the
potential drop along the condenser leads, V is also the potential
difference between the Lecher wires, so that V= 4qc* /n S/R,
where g is the charge per unit length of the Lecher wires, S is
their separation, and R their radius. Substituting this into

equation 10 we have
: s )
[ = 4 bny [C Frail §£7]

and substituting this into the first boundary condition at z =0,

- s

= 4ot w[CEH —‘,%]



In order to eliminate q from this relation, we differentiate

with respect to time and make use of the equation(13> -%} = - g%

giving as a boundary condition to replace {(,- i, = ¢t the

condition
a'.'a. 3"-3 x ._S.[ al‘:} _I_. ..a_b
at Tt - - A R C ot =z T w hj

Substituting equation 8 into the boundary value relations,

and meking the abbreviation

1: 4CZ/L'1%[C.+ {’;\/]

gives us the eight equations:

ﬁ: "5.5-‘
-Ae™ 4+ Be ™ =20
23 - £S5 §dk _ X3k
AneA +B,e %— = Ale - + B e A
22 11 38k . E5k

- Ae? P Be “kA, e > « kB.e Y

“‘Az*’BL = ‘A3+B3
A,_‘*‘ Bl'As'_BJ = /%(AsﬁBs)

sk 5
5 3k -3 i

AJC_ + Be - A e *, Be’

-
n

I

IS

|z

o
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Eliminating A, end B from equctions 12, 13, 14, and solving

the result for the rutio A,/B, gives

A, - e~g_>§£ (.k+‘)ez-_§i +(k—’)el—§b
B. (=1 F e s fewi)e >

Following the seme procedure to eliminate A, and B, from

13, 18, 19. we get

284, 233
A B e T rlk-ne”
B, (k-1)e* +(k+,)e3“§

In order to simplify the work, we make the following

substitutionss:

2%a 280,
eTI _ X+ | . e—;"— _ X+l
= ox-1| J &= y-l
e—;\-— e+l & » S+

3

1

)
!

Then 20 and 2% become

Ay, . Bl kxm -k +x -~
B, S+l kxar -k —x +a
_f& s+l fﬁ!”"'k -+
B, - 5-J ky/r—k % W A

Making the further abbreviations

X — |

% J = Vv

&
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we get
A, _ sku - ku - 5 + |
B, sk + ke + s+
Ay Sv e by p vl
B, ~ skv ~ kv = s+

Adding and subtracting equations 15 and 16 give

N

k
2A, = ZA;+ _%(AJ‘ 83)

2B, = 2B, * L};“’S‘(AJ~B~?)

The ratio of 28 to 29 gives

LIk

and, solving 30 for = we obtain
A _ A
j;k 2 B3 B‘l.

Substituting the values for A;gl and AyB, from equations 26

and 27 into 31 and simplifying gives

L&k - skval _ skw 41
A kv +s kau + s

From equuation 22, x+0)/Ax-1) = e , and therefore

% = (&%&‘-&- |)/(8£§£L l) = =i cot (-ifﬂ

') , and similar expressions

[+
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obtain for y, r, and s, so that

and

g’

43
)

k -

x = -t cot(- L%?j 1

y = -t cot (- 52)
. 6 L
T = =L co’t("g}"—)
§ = =& °°t('i’%a£) N
From 25 and 33
Coxrel w
“o= T =X - cof("L;—J‘)— C°'t<“£§Tal
w = =—i cot [*‘%?(“l'é)]
Sim][arl)/ v o= =t cot["%\s(a,,-é)]

Substituting the values from 33 and 34 into 32 gives

k (- L) cot <‘ L—g)e i) cot [‘ ‘ié(a:-‘ 5):)* | N k(-i,) co'l’(' li/\ﬂ'()ét) co‘f[’%(“r‘ 5)]4 |
k(-0 cot [- L5 (a,- 8)] - i cot (- Lf_j,‘f) kei) eot]-i¥(a8)) - i cot (- 53K)

+ —— e

ot [ a3 oot GE) o] o ot (155

[ ]

But the effect of the leads should be small, so that we

nmay consider §d/A << | . Then expanding the right hand side of 35

in a Maclaurin's series and neglecting powers of ¥3/) higher than

35
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the first, we obtain

!)_f: T [co’t(’;i‘{') + cot (- %«_z_z)] N (,~km){;cotz(~i§f-')+ coij(_is;az)]%_‘r

This can be rewritten in the form

_‘%‘g = ¢ [cat‘c%\&’) + (_o’f(Jia‘)—i{cscz(nz—g—)‘i‘) + csc"(—%‘—')}ﬂ;"{)} - 2§3§\H&)

26
Let us now consider the expression
cot [- L}{a,-&(l-k‘)}] + cot{- £ {a,- S(l—k‘)}}
Since it is also true that (-K)¥8/A << | we can expand this
expression in powers of Q—U);J/A and, neglecting second and
higher powers, obtain
(_ot[—»-i-):g— a,-S(l— kl)}] + cat [-— %‘g{ﬁ;‘ 5("kl)}] =
_ifa, _ifay\ _; :f i£a, of (§ay ga(-«)
cot( )\>+ cof( 5}\—9 ¢ CSC(—%—)+ csc( A) X
XA
Comparing the right hand side of this equation with the
portion of 36 enclosed in square brackets, we find that they are
identical, so that substituting 37 in 36 gives
1 . {_'f L {Li -Si~k‘}__‘2_§_§
£ [eat{ sl o cotl o s0Rl -0l

We define the constant ¥ by the relation S - §(1-k)  so

that 38 becomes

Uz e )] ¢ eot[-H (o)
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Substituting for £ and £ from 9 and 11 into this equation

we obtain

s
_4eCUIk 297 4eThE  [feC iR +4ny] _
A A W A A A

. {cot ;-Z;\'I (a,- )+ %(n,— 1])] + co{'[—z—)\z (a,_—l’) + :1\1 ('a,_—?y)]}

If we expand the right hand side of equation 40 in powers of ¥,
we can neglect powers of ¥ higher than the first provided that
the dielectric in the condenser has low enough losses so that the

damping of the system remains small. In this case we obtain

i + L

A N

?(«;1’) cot 'Ziq(q-'ly) X %\Z(alﬂl) cot -Zj\r—r<al- J)
Sin i)\ﬂ (a, - 1'0) Sin if’ (“;' d) ﬂ

'i{cotg;\z(d«"’o) + coi’%"—(al-zﬂ)}+

Equating real and imeginary parts of 41 separately, and

meking the abbreviation 27/\ = o« gives

s
gmeC Rt Il e d) ¢ cot <(an-t)

ClT . o
1 C a’/& % = 2112/‘* 4W /zn% o—%_g(a'-‘ly)cat o((d,-‘y) . M
A B Sin 2e (a,-Y) sin 2« (4y- 19) 43

With the use of equation 3, and converting from e.m.u. to e.s.u.,

)

equation 42 becomes

3+ &3 +2nd = %[co‘t«(d,-lﬂ) + coto((al—zf)]

o
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which is just Slatis' result.

Taking the ratio of equation 43 to 42 we obtain

¥ & 4'c’-T/£n%

2 W(?rrc‘Cln%+4rrvq)

e 4 (a,— D¢) _— Zx(ﬂ,_—lﬁ) cote(a,- ) + (aL-zﬂ) sin 2u (a,-Y) cafx(a,_—?])
w sin 2u(a,~ ) sin2e(a,- z/)[cwf x (a,- ¥) + cot “(“7_‘1/)]

Simplifying this yields
St'hot(“L’J) S S/"“(‘C'lﬂ)
T {5 ef) I S e~ sine (a-d) © b Sih«(a,- )
5, + '3+ 20d h
CWY (8, +e'd+20d) Sinet (a1 ar- 29)

sinet(a,- V) sinet(a,-Y)
1 ¥ S,+ €5+ 20d [l . x @-) sine (a,-J) +@. )S"*-fx(a;l’)
W C §,+ &8 S;hx(a,+a1~21ﬂ) 44
But
W s Lt ket €k (ks €R)N (- %) (5.+'8) T (1-2)
T 4nok 4rokcrC 4rkeCe’n - Fre'S x C
where ¢ is the conductivity of the dielectric and » is the
absorption coefficient. From this
T _ 4we'd x '
WC = (54 ed)(1-x*) 45
so that, combining 44 end 45, and writing ¢ for ¥ , we obtain
n & (a,-¥) sina(a,-¥)
W _ ﬂ Jof 6‘5-#2771/ l+ 2 (a.-d)%ﬁ(‘(@’,?@ + (41_7/) sin ada,-y) 46
[= x5 4 €'s sth o (a, + a,~ 24) -

Thus equation 46 is the one which the adoption of Slatis'

assumptions requires us to use instead of equation 2 for the
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comiputation of . The result, as we might have expected from the
relation between equations 1 and 5, is that obtained by replacing
a, by a,-J s @, by ag‘a], and d, by g, »2n/ in equation 2

Alternative methods of computation, which are not simply
modifiications of equations 1 and 2 are offered by Abadie(15), and
by Slatis in his second paper(17).

Abedie's original derivation was carried out for apparatus
designed to utilize Drude's original second method, in which the
condenser terminates the Lecher system and there is thus only one
shorting bridge, as compared with Coolidge's modification utilizing
two bridges with the condenser between. However we can attempt to
modify Abadié's work to suit the Coolidge-type apparatus. In order
to do so, we must replace Abadie's assumption concerning the
resistance of the circuit with one appropriate to the changed
circuit. Abadie assumed that the resistance of the circuit exclusive
of the condenser was effectively constant, and could be represented
with sufficient accuracy by a lumped resistance placed in series
with the bridge. For the circuit with two bridges we may assume
either that the total resistance of the circuit may still be rep-
resented as a single lumped resistance placed in series with one
of the bridges, or that it must be divided and represented as
lunped resistances in series with each bridge. The first of these

assumptions leads to the equations

d,+ e'd —;—(co’c «a, + C)

s AD
- 2¢'8 48
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Here C and D are obtained by simultaneous solution of the equations

Cze*+ (ff,+ 2££D'fl)z - Cp?
Clo‘z’- +[Io‘+2{o'D+l)2 - C

2z

= Z: (nﬁ—:) + m

Cz2 - (C*+ Dl—-l)% -C = O

where Z = cot wa, , 2, = cot wy, , Y. is the half-length of &
horizontal chord of the resonance curve and m is the ratio of the
maximum current at resonance to the current in the Lecher system
at points on this chord./o is determined by

l
A CED e

where the primed symbols have the same meanings as the correspondiung
unprimed ones except that they refer to measurements made with the
condenser empty.

An attempt to apply these equations yielded results which
were evidently incorrect. Table I compares the results of a few
calculations made by this method with those obtained from eguations

5 and 46. The &'values obtained with equation 47 are consistently

Solutions of Hcetic Hcid in Benzere

Concentration | Frorm e(/ua/'/ons 5 and 4_:9 From egua."lon: ﬂ'__7 and ﬁ

in mol fractions , " ”

of C%COOH £ T €’ 1= %%

0323 | 312 |0029 | 298 |0316

0618 | 4.18 0.068 4,02 0254
1.000 | 5.64 0.104 BOS 0203

Table I
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lower than those obtained using equation 5, but there is nothing
here to say which is the more correct set. However, the values of
;%%} obtained from equetion 48 ere much too large at the low con-
centration end, and decrease with increasing concentration, which
indicates that our initiel essumption of a single lumped resistance
is unteneble. It is to be expected that an error of this type,
dealing with the location of the energy dissipetion of the circuit,
would have & much greater effect on the absorption coeificient than
on the dielectric constant, as was actually observed to be the case.

The alternative formula obteined by assuming the resistance
of the circuit divided between the two bridges proved to be entirely
too complex for purposes of calculation, in addition to which it
requires a calibration measurement on & substance of known absorption
coefficient, which makes it dependent on some other method.
Therefore Abadie's trestment, elthough quite successful for the
original Second Drude Nethod(18), is not convenient for application
in the modification used in this work.

Slatis' second paper(17) is an ettempt to eliminate the
necessity for teking a full resonance curve for each measurement,
and reduces the necessary date to a single reading of the position
and amplitude of the maximum of the resonance curve. It assumes
constancy of the applied emf, which was not sufficiently true in
our case to apply this method, as the small chenges in eamplitude
of the resonance curves due to solutions of low absorption were
less than those due to the slow changes in output of the oscillator.
Also the use of chord mid-points from a full resonance curve
provides a much better determination of the position of the

meximum in the cases of high sbsorption where the maxims sre flet



end hence difficult to fix exactly by a single reading. Therefore
the full resonance curves were taken and Slatis' earlier expressions

(Eqns. Q,ﬂé) were used, as previously specified.

Calibretion of the Apparsatus

In order to use the above equations (5 and 46), the correction
factors t/andlﬁ and the cepacities d, and d must be experimentally
determined. The bridge shortening [ wes determined before the
condenser was inserted in the system. This was done by measuring
the distance between successive positions of the movable bridge
at resonance, which gave the helf-wavelength, and by messuring
the distance between the two bridges at the shortest resonance
separation. The difference between these two velues gave the
totel bridge shortening. Repeated measurements of this quantity
geve the average value,ﬁ = 0.110 cm. It was assumed that each of
the bridges contributed equally to this, so that /3,::Fﬁ = 0.055 cm.
The assumption 4, = B, is probably notexectly correct, but it is
nearly enough true as to introduce little error, and there is no
simple method of separsting the contributions of the two bridges.
The principal cause of the bridge shortening is the self inductence
of the bridge, and bridge A is large enough so that its self
inductance should approach that of bridge B, the rate of change
of inductance with respect to the redius becoming small as the
redius becomes large.

B having been messured, the condenser was inserted in the
Lecher system, and the distance from the condenser to the zero

position of the vernier scale of the movable bridge was determined.
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This was messured by means of a set of copper gauge blocks and
the vernier scale and precision extensometer of the movable
bridge. These same copper gauge blocks were used throughout the
experimental work to set the position of bridge A with respect

to the condenser. The results of the above measurements gave the
value L, , which is the reading that the vernier scale would have
with the extensometer reading zero if the movable bridge were
coincident with the center line of the condenser. This value wes
L, = 67.567 - 0.0012(t - 20) where t is the temperature in °C.
The values of @, for use in equations 5 and 46 were thus obtained

from the relation

QL = Lo - L + E + ﬁz_ 49

ﬁhere L is the reading of the vernier scale and E is the
extensometer reading when the system is in resonance. Values of
E were obtained by taking resonance curves ( galveanometer
deflection versus extensometer reading), plotting them, and
using the average position of the midpoints of chords spaced
10% of meximum deflection apart, from %0% of maximum deflection
upward.

To obtain 1’, a, was measured as & fuaction of a,for a renge
of values of the latter from about 1 cm to 4.5 cm, the largest
value permitted by the apparstus. The procedure, necessitated by
the limited range of E and the relative inaccuracy of L, was as
follows: a,was obtained for one setting of a,, then « was shifted

by ebout 0.5 cm and a,measured again without shifting L. Then L



wes chenged and the seme resonance curve taken again, and the
whole process was repeated as often as necessary to cover the
desired range. The repetition of resonance curves before and

after changing L, without changing @, made possible the adjustment
of the values of L to meke the series of readings consistent. The
necegsary adjustment was never grester then 0.007 cm, which is
about the limiting accuracy to which L could be read. The adjust-
ments were made in such a fashion that their mean weas zero, and
since there were about ten readings, the resulting values of a,
should be correct to about 0.001 cm. From the resulting pairs of
values of a, and q,the right hand side of equation 5 weas computed
for several trial values of 1’, and by linear interpolation, the
value of o which gave the least mesn square deviation was computéd.
The results of several repetitione of this process, using both air
end benzol as dielectrics in the condenser, gave the value

¥ = 0.011 cm. The effect of this correction factor on the constancy

of d,+€’d can be seen from the exsmple given in Table II.

A= 25.550 cm. Dielectric: Benzene
S,+€'8 i em
a, 1 cm. a, in cm. J-0 H-0011
.180 11.571 0.902 |.696
1.580 11135 1.262 1,700
2.080 10.576 .45} 1.692
2.580 10.009 .564 .715
3.060 9.4944 1.569 1.673
3580 8.870 .63 .688
4.060 8317 L5768 1.647
Table II

d’and S could be determined from the date used to get Jﬂ



but it was desirable to include a greater range of values of ¢’in

the determinetion, and for this purpose the benzol-zcetone mixtures
standardized by Drude(19> were used. The results of twelve series

of celibrstions gave the values J,= 0.562 + 075, §=0.462 .06 cm.
The large random error in §,is due principally to errors in L,

which affect &, more than they do & in this type of run, since L

was kept constant for each run over the range of e

This completed the calibration of the apparatus.

Procedure

For each resonance curve, galvanometer deflections, which
were proportional to the squate of the current in the Lecher
system, were observed as a function of the position of the movable
bridge as measured by the extensometer. The galvanometer was read
with the aid of & telescope and scele, the deflections being
readable to the nearest 0.1 mm and maximum deflections were of the
order of ten centimeters. Points were ordinarily taken for bridge
positions spaced 0.25 mm apart, which gave from 15 to 30 points
per resonance curve, depending on the amount of &absorption in
the system. On some of the curves taken for calibretion purposes
points were taken every 0.10 mm.

The galvanometer deflections were reduced to percent of
maximun deflection for each curve and the resulting resonance
curve was plotted. The maximum was determined by taking the
midpoints of chords, as described above. If the curve was properly
symmetrical these midpoints lay within & range of about 0.02 mm
and the position of the meximum was teken as the center of their

range, to the nearest 0.071 mm.



The velue of the logarithmic demping decrement Y was obtained

for each curve by the use of Bjerknes’ formula(zo)

2 s
/X - —;\TL A,e R:

where Af is the length of a horizontal chord of the resonance
curve and R is the ratio of the current in the Lecher system at
points on this chord to the maximum current at resonance. Three
chords, at positions corresponding to values of R® of 0.40, 0.50,
and 0.60 were measured, and ¥ was computed for each of the three
levels and the results averaged. The value of d¥ used in equation
46 was the difference in the ¥ values of the solution under inves-
tigation and the pure solvent.*

The general procedure for each run was as follows: the
generator was first permitted to run for half an hour or more to
achieve equilibrium. The half-wavelength of the oscillations was
then measured. Then, without further changing the value of L,
resonance curves were taken at the first maximum with substances
in the condenser in the following order: Air, Solvent, 1st Sample,
2nd Semple, Solvent, 3rd Semple, 4th Sample, Solvent, Air. This
sequence was repeated as often as necessary. Data for two or three
resonance curves were taken in immediate succession for each

substance in order to avoid observational errors. Generally in the

* Semple resonence curves, together with illustrations of these
calculations as well as numerical examples for all important

subsequent calculations are given in the Appendix.



course of one run, several samples were tested from each solution.

at the end of' the run, the half-wavelength of the oscillations

was remeasured. The repeated measurements on the pure solvent

and on the empty condenser provided a fairly continuous check

of the constancy of the generator and the reproducibility of the

measuremente. Any variations which were large enough to be

observable in the course of taking the data terminated the run.

Smaller variations were not great enough to invalidate the data.
The repeated measurements on the pure solvent and on the

enpty condenser also served a more important purpose, as they

gave sufficient data for the calibration of the condenser. It

was found impractical to substitute the well calibrated values

of d,and § into equation 3 to obtain aﬁ since in order for the

result to be meaningful to the accuracy desired, each resonance

curve would have had to be retaken meny times with different

resettings of L in order to remove the inaecuracy resulting from

our inability to read this value to as many places as the remainder

of the data. The method adopted was therefore to make the runs with

L kept always constant, and use values of d, and & computed from

data taken during that same run on substances of known ¢’ to compute

the unknown values of € for that run. The justification of this

procedure follows in the next section.

Elimination of Systematic Errors

Let us first consider the effect of any systematic errors
" i
in q and @, on the value of €. If we make the abbreviation

/
&+ 20V = 4§, , equation S can be rewritten in the form
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a;/
e B [etton ) o coteto] - 4

I

and therefore

(&)
-

l

de’ = A da, N da, j
€ % To5 | swa(a-Y) Sntala, )

If', however, we use the method outlined above of computing

i/and 8 frow date from the same run, we have

1"

A;/+ 5'/5 —g- [co't o((dr'lg) + col o((azl~1fjj

a-o’ + &/ 5 % [co't «(a,-ly) + cot o (azz"va)]

501 =) EJIJ = %[cot o« (a,’ 2/) + C.Of d(“zx'zp)}

/ / . . " ) ’ .,
where ¢ and €, are known dielectric constants and & is the value

to be determined. Then eliminating Jgand § and solving for q;gives

&/ [eat « (as, - J) - cau(azl-w)]_ 6‘/[@ « (a5, - V)~ cot «(au-l/i}-
cot w(a,, - U) ~ cot & (“1,"‘/)

M
n

and since we are considering only systematic errors, so that

da, = da, = da, =da, we get

[CO‘LL o((a,_ - ‘l/)- cat.((al ‘I/))[Cof A((d J)~ cot d(a,_ J)JxJaz
cot x(a, -1/)~ c ot «(a, -J) 52

JEJI = (Ezl - 5

It is first to be noticed that this form is independent of a,
and since a,was never disturbed after being set at the beginning
of each run, esny error in setting it must be systematic for the

run, and will therefore to a first approximation have no effect
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on the value of = .
If we substitute sets of typical values into equations

51 and 52 we get the following comparsative results:

From 51 de’ = - 48.7 da, - 42.0 Jal
For ¢ ~ 2.5 -

From 52 : de’ = - 0.002 JQ,_

From 51 ¢ de! = - 48.7 JQ, - 42.5 a(G,L
Ll From 52 : dé'= - 0.104 da,

It is seen that the second method discussed, which is the one
actually adopted for computing £f, results in a considerable
reduction in the error due to any systematic error in a,. This
means that any errors in the determination of A4, and vf, and those
introduced by the inability to read L precisely are largely
nullified by this method of computation. However it does somewhat
increase the possibility of random error, as the constants
involved are based on fewer data than those of the first method.
Next considering the same type of error with regard to
equation 46 forjf%;, there is the question of whether to substitute
the independently measured values of Q'and d, or those obtained
to compute &’for the same run. Neglecting the change of &'with a,,

for constant éland d we get from equation 46

d _L‘1) . dY 3+ £8 sina (2~ ) s~ . o (ap a,-24) y
X 4m &5 [Sm«(a,-l}’) sine(a,+ 2y~ 20) ) sin‘w (a1 sinx(a,+a,-295) & do, F
[Ain o (a,- J) _ « (@~ V) o (a,+0,- 2117) J
Sin 4(0,'79jsvn« (a,ff‘,_"z—Jj sin‘a (a-) % sin‘x (a,+a,-2.4) ety 53
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whereas if @Iand d are considered as functions of a, and awe get,
neglecting [eot ufaq o)+ cotu(ays gl cotu(a-)+ cotule, )] with respect to cscx(a-¥)

&(_%;) N i’_}: M{[s:n«(af‘y) = < (a,-9) + <(a,s a-24) ]o{d’a,—f—

- 4w £'§ sina(a-V) sinx(ara-2¥)  sinx@ V) sin*<(a,+a,-24)
sino(a,-Y) ot (a,-V) «(a,+a,-2V)
L-n«(«z-ﬂ)sw(aﬁax-hf) St G T s al-'z'w} o
oy (5,1—1-5/5) 0{4, X (Sol-r g’zf)o{aL
c‘J(I—u‘)sfnznz («,~1ﬂ) 'S (l— r*) s/n‘a((a,-’l/) 5_4_

Substituting numerical values for a typical case

Bram 53 : d(z) = 133 da, + 1.32 da,
From 5% ! dbEz) = 018 da, « 017 da,

The improvement by the use of the second method is not as
marked in this case, but it nevertheless represents a reduction
in the systematic error. Therefore values of §, and d obtained
during the course of each run will be used in both equation 5
and equation 46.

The general accuracy of the data will not be discussed
until we have considered the forms in which it is to be used.

For this discussion refer to page 47.

Method of Calculating the Radius of the Dipole and Dipole lioment

The molar polarization of substances whose molecules have
a permenent dipole moment, when the substance is subjected to an

alternating electric field of angular frequency w is given by the
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(21)

formule due to Debye

e-1 M I Y
P= 2 p = 73 [““‘* kT 1eiwT

m

Here P is the molar polarization, which in this case is a complex
quantity, and € is the complex dielectric constant, M is the
molecular weight and o is the density of' the fluid. x,is the
distortion polarizability of the molecules, p is their dipole
moment, and T is their relaxation time, i.e. the time required
for a non-rundom distribution of the molecular orientations to
drop to 1/e of its initiel non-random character. N is Avogadro's
number, k is the Boltzmann constant, and T is the absolute
temperature.

The complex dielectric constant € can be relatéd to our
measured quantities € and x , respectively the real dielectric
constant and the absorption coefficient, in the following way. Ve

can write

where €”is the imaginary part of the dielectric constant. The

complex index of refraction is given by

n=1r{-ix) 2L

where r is the real refraction index and ®x the absorption coef-
ficient. But the complex dielectric constant is equal to the
squure of the complex index of refraction, € = n* , so that

substituting from 56 and 37,



£ . e o rr(i- k) = ri(i-x) -zl

Therefore
g = r(1-x)

and £ = 2r'nw = 2¢&x

50 that if we substitute this value for &'into equation 56 we

obtain

. 2e'% . 2%
£ = £~ 1=c = EI(I—‘T;}) 58

If we assume a spherical molecular model, and further assume,
as was done by Debye, that Stokes' law holds for molecular dimen-
sions, then the relaxetion time T is related to the molecular

radius a by the formula(21)

3
= 4‘11'113 §2
kT
where n is the viscosity of the surrounding liquid.
This equation heas been modified by Perrin(22) to take into
account ellipsoidal molecular models. His result can be written

in the form

4nnfaa.z,

T =
kT £0

for the special case that the permanent electric moment of the
molecule lies approximately along the direction of one of the
axes of the ellipsoid. Here a,, a,,3; are the semi-axes of the

ellipsoid and f is a factor which depends on the shape of the



ellipsoid, and which is approximately equal to one for many cases.
Tables of this factor.f have been computed by Budo, Fischer, and
Miyamoto(QE).

Equation 55 was derived with the aid of the Clausius-Mosotti
hypothesis, according to which the force acting upon a molecule
in a polarizable medium equals E + %%Eh i.e., it is larger than
the force E of the applied field. In our case this assumption means
in effect that there must be no interaction between the permanent
dipoles of the fluid. This condition was fulfilled by working with

dilute solutions of polar liquids in non-polar solvents. For a

mixture of two liquids, the first part of equation 55 becomes

B> 1 M: ; F M
- Bf e Rf = bnl MAT A 60
= 5\7.“'2' /0,,_
where
n, v — o
fi = h,+ N, : fi- no+n 61

so that f:f-ji =| . Here n represents number of mols, the subscript
1 refers to the non-polar solvent, the subscript 2 to the polar
solute, and the double subscript to the mixture, and hence ﬁ and_ﬂ
are mol fractions of the solvent and solute respectively. Then
since F is a constant, and at high dilution where there is no
dipolar interaction P, hus a constant value,which we will represent
by Pzw, the expression P,,_ = P.'*(P;P.)f,_ is & linear function of f,_
for small values ofxﬂ. Hence if we plot f, as a function of f;, we
can obtain R from the intercept at_ﬁ==0 and the slope in the
neighborhood of this intercept will give us B_-P and hence R

200 1 200°

Since F, is complex, this process will have to be carried out
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separately for the real and imaginary parts. In order to obtain

. M {
expressions for these in terms of our measured values of €&, and

¥ we substitute P= %ﬁ‘iﬁ: and equation 58 into equation 60.
K — w————

=,

Upon separating real and imeginary parts, and making the abbreviation

|
o
[oN

l—~)L1' —_—

we obtain the results:

Il 7
- X v gl -2+ cnEn Mf,+ MA
R'_L - rzs ’ 4_ N 2
£, + &€, + + €, € /o,,_ '
L 6
P . —— Beati _ Mfir Mf =
- 2 2 ———————
T, {.,'. + 46,1 +4 + ¢t €l {0'1 J

By plotting the values of &”_and &ulthus obtained as functions
of 1, , we can obtain &noand ﬂiuby the process described above.

A number of workers in this field have proposed modifications
of this process of extrapolation to infinite dilution, or have
raised objections to it based on the invalidity of the Clausius-
Mosotti hypothesis. Hedestrand(24), by differentiating equation 60

with respect to;ﬂ and then letting.ﬁ-9 O, obtains the relation

p oo &zl M-AM 3M =6 6l
zos E+2 Vi P (6,4 2)? =

e.'el -~
where «, and B, are the limiting velues of « = ? end A = Lozl
e f.
as)ﬂ-aO. A similar expression was derived by Maybaum(zb).
Fquation 64 represents no theoretical change in relation to
equation 60, but simply a change in calculating practice, involving

the extrapolation of the €,- £ and/qt-}ﬂ curves rather than the

ﬁ;—j{ curves. This avoids the difficulty of computing B, for each
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set of data, but, from equation 60, the linearity of the B, - f,
curve implies the non-linearity of the fn;3ﬁ_curve, end the
extrapoletion of &, is therefore less reliable. For this reason,
this method of computation was not used.

Several attempts have been made to improve equation 55 by
teking the interaction of the dipoles into account. A semi-

(26)

ewpiricsl correction proposed by vanArkel eand Snoek , which
has been well supported by experiment, consists in substituting
(3kT + Cnff) in place of 2kT in the denominator of the right

hand side of equation 55. Here n represents the number of dipoles
per unit volume of the liquid, end C is & constent, the physical
meaning of which has been elucidated by Bottcher(27). Bottcher's
work was based on the theory developed earlier by Onsager(aa) for
treating concentrated solutions, where the Clausius-Mosotti
hypothesis no longer holds. In our case n ie small, since dilute
solutions of polar liquids in non-polar ones were used. Therefore
the correcting term Cnpfis negligible compared to 3kT, and the
equation 55 can be used in its original form.

If B is celculatec using the relation P =8 + E‘%ﬁ and
plotted as a function of f;, then it should be & constant for
small values of ﬁ'if the Clausius-Mosotti hypothesis is correct.
It has been frequently observed that the values of P, thus obteined
increase markedly with decreasing ﬁ_at very small values of’ji.
It is very unlikely that association should be the cause of this,
since the phenomenon occurs at high dilution. In attempting to

explain this, Rodebush and Eddy(29) show that in certain circum-

stances, Onsager's theory should not reduce to the Debye theory at
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high dilution, and develop & semi-empirical formule for application
to dilute solutions. They compare values of dipole moment computed
from their results with those obtained from Debye theory, using
values of dipole moment obtained from measurements on vapors as &
standard. The results differ, but no particular preference is

shown for either method. A more probable explenstion is the one
due to Halverstadt and Kumler(30> who point out that just such

an incresse in F, would be obtained if the dielectric constant of
the solvent used in the solutions were slightly higher than that

of the pure solvent, due to the presence of absorbed water. This
would occur due to the much greater time of exposure to the air

of the solvent used in making up the solutions compared to that
used for the pure solvent measurements. They state that the
phenomenon occurs most frequently in the literature for the most
hygroscopic solvent, dioxane, and least for hexsne, which is the
lesst hygroscopic of the common solvents. Also for the measurements
of Linton(§1) and of Maryott(§2), in which special precautions

to eliminate water have been taken by drying the solutions after
their preparation, the effect is entirely absent, liaryott's# work
being particularly convincing, as his values for the alcohols

agree with those of other workers for moderately small values of

f and differ only in not showing any rise in P, at very high dilution.
The method which Halverstadt and Kumler use to eliminate this, the
lineer extrapolation of the %;“fi curve wnile ignoring the point
obtained with the pure solvent, is inconsistent with their use of
Hedestrand's formula based on the Debye-Clausius-Mosotti theory,

end the more correct method of extrapolatingthe Ez—ji curve



linearly, still ignoring the point obtained with the pure solvent,
would seem to be prefereble. Since the effect is a small one, being
observeble only when the F,- F difference becomes very small, we

do not affect the value of P, greatly by using the extrepolated
rather than the measured value for P, . Therefore in this work
equations 63 will be used without modification, and f  and F  will
be obteined by extrapolating the ﬁnff;f“m-ﬂh‘fi curves linearly,

ignoring the point at_f;= o

We now wish to determine values of 83,3, and f(fTom the values

of %umand ﬁu‘which we have obtained for our poler liquid at infinite

dilution. We will drop the subscripts ,, for convenience, as we are
not concerned in what follows with the fact that these values

were derived from dilute solutions. If we make the abbreviations

_ 4a N
Fos 75 < 65
k3
P, = Zzlhp 66
9kT =
equation 55 assumes the form
| £
P= L * L =
If we let P, be the value of the molar polarizetion for very
low frequencies (wr<<|) we obtain
- 68
o2 B+ B -

and substituting this back into equation 67 to eliminate a\gives

P: &~PI+P:D-——:-—

lvyitw V¥V
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If we write as before P==F}-Cfl and separate real and imaginary

parts, we have the two relations

w"'"t‘l
P= P~ P "=
R o) D |+ wT
P - w T
T D e gtet

Solving these simultaneously for P, end T gives

P;p: P;+<P°— PR)
Po—PR
;. B- K
T 5 ==
w P]:

Alternatively, if we substitute equation 68 into 71 and 72 and

eliminate P, we obtain

R+ (R- R)

1

k

{
w PP,

Equations 59 and 66 taken together with either 71 and 72 or
73 and 74 serve to determine both a@L;;andjx from a single deter-
mination of the complex polarizstion plus a knowledge of either
P or P end the inner friction constant n of the solvent.

If we plot P, and B ae functions of w¥ by using equations
69 and 70, we get the curves shown in Figure 6. As can be seen
from this figure, . is small except in the neighborhood of wr=|.
Since T is the quantity we ere primerily interested in measuring,

and T depends directly on F. (Eqn. 72 or 74), it is necessary to
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Fig. 6.

obtain P velues which ere sufficiently large for accurate calcula-
tion. This means that our measurements must be made at a frequency
near that determined by w? = 1. Since T is of the order of 10"sec. .
for ordinary substances, this requires frequencies of the order of
109 /sec., and it is for this reason that the experiment had to be
carried out at ultra-high frequencies.

The determination of the value of x without meking measure-
ments of the temperature dependence of P always involves the
necessity of knowing en additional constant, which for the methods
most prevalent at present is the atomic polarization P., and for

the method here presented mey be either P, or P, . Equations 71 and
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72 using R are much to be preferred to 73 and 74 using F,,

P values are more reliable, being subject to direct measurement,
whereas F, values are extremely difficult to obtain by direct

measurement, as this requires extremely high frequencies. In

general F, is obteined by extrapolation of the values of the molar

refraction measured in the infra-red region, or, even less reliably

by the extrapolation of the molar refraction measured in the

visible spectrum, neglecting the possibility of anomelous dispersion

in the infre-red. This makes the available F, values less reliable

than P values.

Let us exsmine the relative accuracy of equations 71,72 and

13,74, Teking differentials and solving for the relative error, we

obtain from 71 and 72

dB 2 dF;

PD » l+wz’)’ PI
iz] _ 4R

K P F}

and from 73 and 74

fﬂi} 2w dR .
P} PA ‘+ tol'l’l PI
éz} _ df

L P P‘S:

A

The coefficients involved are &ll of the order of unity or less,
except for the factors PR/(P,- Pr) in equations 75 and PR/(PR— Pa)

in equeations 76. Exeamination of Fig & shows that for small wT,

R df
ﬁ~ F} Pn
1+ Tt - Py ks
PR C(PR
PR‘PA PR

02-'%)<< R, and therefore equations 71 end 72 using P, as a standard
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are very sensitive to errors in R in this region. Conversely,
for large wT,(- Pa) << P, so that in this case equations 73 and
74 using P, as a standard are very sensitive to errors in F.

In our case wt is appreciably less than 1, so that any
preference for equations 71 and 72 due to the greater relisbility
of B, over P, may be outweighed by their sensitivity to errors in K.
e will continue to use both sets of equations in this work
whenever possible, keeping in mind the above diff'erences.

From the viewpoint of the above equations (15,76), the
ideal region in which to meake measurements of this kind would
be in the neighborhood of w~ = 10, since here F. would still be
large enough for accurate determination, so that using P, as our
standard, we would have a very small dependence of P on both P
and P, and small dependance of Y on F . However this would require
wavelengths of less than a centimeter so that the practical

difficulties would be very large.

Accurady of the Results

The discussion of the accuracy of the results can be divided
into two sections, the first section dealing with the Rl values,
which are obtained by direct calculation from the original data,
and the second with the final results, which are computed from the
extrapolations of the P, = f, curves.

The observational data used to compute B, consist of values
of a, as set with the copper gauge blocks, «, and ¥ as taken from

the resonance curves, X, f, and fl s Po 8nd T.

The settings of a, were correct to about 0.01 cm. Since these



settings were never changed during & run, and ordinarily not
disturbed between runs, this represents a systematic error which,
from the discussion on pages 33-36, should have no effect on EZ
and very little effect on c.

The values of a, were reproducible to 0.001 cm over short
time intervals, with a possible systematic error of about 0.01 cm.
Here also the systematic error should have negligible effect, as
discussed on the pages cited above. Over long time interveals the
values of a, sometimes changed by several thousandths of & centimeter
due to changes in A, but since a fairly continuous check on A was
kept by repeated measurements on the empty condenser, this error
was correctible.,

Values of ¥ were only consistent to about 2%. Since at very
low concentrations d¥ wus only about 1% of ¥ we have the possibility
of errors of several hundred percent in the value of d¥ at these low
concentrations. This required considereable repetition of readings
to get results of any validity.

Values of A, f, and f, , and p, were all accurate to at least
0.1% end should thus have negligible effect on the results coumpared
to other errors. The temperature does not enter into the calculation
of R,, but the values of F, are temperature dependent and they were
plotted without making any temperature correction, so it must be
considered. All measurements were carried out at room temperature,
which did not vary more than 0.2 °C during any one run. liost of the
work was performed at 23 °C, and this was the temperature used for
the calculations of the final results. Some of the runs were taken

at temperatures ranging 3 °C either side of the mean. These were
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about equally distributed so that they should saverage out, but
they account for part of the spread of the P, values before the
averaging is done.

The computed values of &' depend primarily on the changes
in the a,values rather than the a,values themselves. Thus an
error of 0.001 cm in q,can produce an error of 1% in the computed
¢ value. Further, since a, was only measured to 0.001 cm, only a
discrete set of values for &’ was possible, so that a perfectly
measured value might be off by 0.5%. This, combined with the
veriations due to temperature differences, accounts for the range
of about 1.5% either side of the mean actually observed for the
£ values.

In computing ¢ , the variations of dY far outweigh any
other sources of error. This produces errors of a single measurement
ranging from several hundred percent at low concentrations to about
25% at f, ~ 0./10, The data obtained show fairly good normel distri-
butions about the mean values so that the results obtained by
stetistical treatment should give a good measure of the reliasbility
of these averages. For examples of the distributions obtained refer
to pg. 73 of the Appendix, where the examples are given for fr,
which is principally dependent upon ¢ (see below).

The dependence of Faland ﬁu_on ¢'and ¢ is indicated in
equations 77 which have been obtained by differentiating equations

63 and substituting typical values.

df de’ dc
2 02 — + 0.001 —

PR."&. ) C’ « ﬂ
CIP:, de’ de
= - 0.15 —27 + .OO =
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We see that &u'is almost directly dependent on £'with very slight
dependence on ¢, while @h_is directly dependent on ¢ with appreci-
able dependence on €'also. We therefore expect the same accuracy

in Fklthat we had in €', and for fr,, about the sawe as for ¢,

since ¢ is much less accurate than & and errors in € will therefore
increase the range of H;Lvalues very little.

The ﬂu_and ﬂn values were averaged for each concentration
before plotting, and the computed probable errors of the means are
indicated on the Rl-'f; curves which show the results of our
measurements ( Figs 9 - 12). The observed ranges of the results
are about what we would expect from our above consideration of the
sources of the errors.

We must now consider the extrapolation of these values to
infinite dilution. The method used was that of finding the straight
line with. the best least square fit in the low concentration raage.
The probable errors of the resulting values of ﬁunare from 2 to 3
percent, and for Biware from 3 to 7 percent. This magnitude of
several percent for the probable error in ﬂlois the basis for our
preference of the results of equations 73, 74 over those of
equations Zl, 72, as will be discussed later.

Finally, substituting typical values into equations 76, we

have
dP g
2. o7 %% 4 12 2
PD Pt PR
T 3 e
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since B, = P?and T «3,3,32,, this shows that we should expect
values for the probable error to be about 1 to 2% for j and
4 to 10% for a,3,3. This is & very high probable error for our
3,3,3;, values, but as will be seen when we consider our results,
this uncertainty is still small enough so that our conclusions

are not affeeteduby it.

Substances Investigated

Measurements were made on solutions of formic, acetic,
propionic, and n-butyric acids in dioxane. Benzene was used for
calibrating purposes.

The acids used were obtained from Baker's of New Jersey,
end were kept in conteiners sealed with wax to exclude moisture.
Thiophene-free benzene and water-free dioxene were obtained from
the California Institute Chemistry department. The dioxane was
also kept in a scaled container, while the bezene was kept weter-
free by having a number of thin flakes of metallic sodium on the
bottom of the container.

To prepare the solutions, the liquids were decanted into
smaller containers from which the solutions were made up volumetri-
cally, using a 0.5 ml pipette. They were made up in test tubes,
which were kept well corked, and they were ordinarily prepared
fresh before each run, during the time that the apparatus was
warming up, so that they were used almost immediastely. Other
pipettes were used for filling and emptying the condenser.

The condenser was cleaned by repeated rinsing with pure

benzene.
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Results

After preliminary measurements, the investigation of dilute
solutions of the lowest members of the fatty acid series in
dioxane was undertaken. Dioxane was chosen as the solvent because
it is the only non-polar liquid in which formic acid, the first
member of the series, will dissolve to any large extent. Benzene
could not be used as the solvent, because formic acid is soluble
in benzene to mol fractions of the order of 0.001 only, and such
a concentration is too small to permit accurate measurements with
the method outlined &bove.

The fact that dioxane is non-polar is to be expected from

the symmetry of its structure (Fig 8), end this has been confirmed

: \
by several investigators(53’54’55’-

H, H,
/////////C'————————— C*\\\\\\\\
O / O
\\\\\\\\\C .

H, H

Fig. 8. The Dioxane Molecule; C,H,0,

For the study of the fatty acids, dioxane has an additional
important advantage over other non-polasr solvents. Fatty acid
molecules in solution in most non-polar solvents exist to a great
extent in the form of polymers, even in very dilute solutions(56’57’5a?
Dioxane exerts & strong dissociating effect(59’40), so that in it
the fatty acide exist as single molecules. Dioxeane's possession
of this dissociating property, which is normelly a characteristic

of polar solvente, may be attributed to the fact that, while the
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dioxane molecule as & whole has no dipole moment, the individual
C - O bond moments within it are feairly large, creating local
fields which are strong enough to disrupt the polymer-forming
hydrogen bonds. Thus the use of dioxane gives us data on the
single molecules without the complication of polymerization.

The results of the measurements on the fatty acid solutions
are shown in Figures 9 - 12, which illustrate the ﬁx-f;curves
for each of the substeances studied. Each of the plotted points
represents the mean of a number of observations, ebout twenty
for points in the region of high dilution, and fewer with increasing
concentretion. The vertical range indicated for each of the plotted
points represents the probable error of the value, as computed from
the statistical fluctuations of the date eversged, rather than from
estimates involving the sources of error.

The dotted straight lines shown on these curves are the lines
which give the best fit for points in the low concentration reange
(not exceeding fi: 0.10) as computed by the method of least squares.
The extrapolated values of P obtained from these lines are listed
in Table III, together with values of F, as determined by Wilson
and Wenzke(L‘LO> from dioxene solutions, and values of F, computed
by extrapolation of the moler refraction from values measured at
optical freguencies.

Also listed in Table III are the values of B and 7, as
computed both from equations 71 and 72 using P, , end from equations
73 and 74 using P, . The results obtained by the two methods differ
widely. Let us exeamine whether this difference indicates a

significent error in our measurements.
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HCOOH |CH,COOH |C,H,COOH |C,H,COOH

B wey| 8842 7395 62.02 | 70.50

2%

e

el 1014 LT 945 12.58

200

R, (c.c) 9052 759‘ 8078

P «o| 856 13.00 | 7.50 | 22.25
T Beo 512 72.6 23.5

zf,nz; | 0.278+1070.224 +10"2.665+ 10"

;"’f’ Peq 812 63.2 46.5 5.5
z;nz:» T | O-17 1 %107 0.260x10"|0,285 1010350+ 10™

Table III

The condition for consistency of the results obtained by
the two methods is gotten by equating the expressions for T given

by equations 72 and 74, which gives
Po' PR

A -+
¥ R @ Pr- Pa

sz = (Po" Pg)(PR- PA) 78

In our discussion of the relative accursacy of equations 71,72

and 7%,74 on pp. 33-36, we showed that for wr </ equetions 71,72
were particularly sensitive to small errors in F . Let us assume
then that our values for K are correct, and calculate from equation
78 the values of %‘which would make our results consistent. The

resultes of these calculations are shown in Table IV.
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PR th CcC. PR tn cC,
Measured From Eqn 18

HCOOH | 88.42 89.24 082

% anference

CHCOOH| T3.95 | 73.62 045

CH.COOH| 62.02 79.33 27.9

Table IV

Thus we see that for the cases of formic and acetic acids,
an error of less than 1% in PR would account for the discrepancy
between the two methods, and as we have seen that the probable
error for our values of F; is several percent, thie deviation of
1% can easily arise from the lack of precision of the method used,
and the discrepancy is not & significant one. In the case of
propionic acid the difference is too large to be accounted for in
this way, and it represents a fundamental inconsistency between
this work and thset of Wilson and VWenzke.

For formic and acetic acids, although the adjustment in Pg
necessary to produce consistency between the two methods is small,
the values of P, end T actually computed differ considerably, and
there remains the question of which ones to adopt. Teking formic
acid as an example, as it exhibits the larger differences, if we
calculate F and © using the edjusted value of F; obteined from
equation 78, we obtain the values P, = 81.9 cc, T = 0.169 = 10 °sec.
using either method. These results differ by about 1% from the
values obtained with equations 73,74, and by a large amount from
those obtained with 71,72. This is in agreement with our prediction
that small changes in F; would affect 71,72 to a much greater extent

then 73,74 in the region wr <| . We came to the conclusion earlier
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thet equetions 71,72, because of their use of B rather then P, as
a basis, are to be preferred to 73,74 when wt is sufficiently
large. In our cese we see that their use is not justified because
the smallness of wr, and hence the smallness of R,—‘% , makes
them unreliable.

We will extend our acceptance of the unreliability of 71,72
to include the case of propionic acid. We do not have the same
check in thie case as for formic and acetic acids, but the value
of T obtained from these equations for propionic acid differs by
& factor of 10 from the order of magnitude of the results for the
other acids, and this difference is so unlikely to be correct that
we will discard equations 71,72 in the case of propionic acid also,
in consistency with our decision for the lighter acids.

In the above discussion we have assumed errors in F; to be
the only source of our observed discrepancies, but an equal error
in P, would have the same effect, as can be seen from the symmetry
of occurrence of P end f} in equations 71,72. In addition errors
of B end P, would have & contributing, but much smaller effect.
Therefore there is no reason to assume that the values of P, and T
obtained with the adjusted values of F; from equation 78 are the
correct ones. Hence the values obtained directly from equetions
13,74 using the experimental data will be the only ones which
will be used as a basis for our further discussion.

Substituting the values of T shown in the last line of
Table III inte equation 52, and using the value n= .34 <P for
(41)

dioxane » we obtain the values of 43,3, listed in the first

(hee Tt §

column of Table V.
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aa,a, w A Ratro:
Sparcmsatul | Stetons | SETae T
HCOOH| 4.12 0.6 0.389
CH,COOH | 626 16. 1 0.389
C.HCOOH| 6.86 19.2 0.357
C,HCOOH| 8.43 235 0.358
rable 7 | Average: 037

Let us compare these results with those obtained from the
accepted structures of the molecules. Figure 13 illustrates models
of the molecules of the four ecids studied, drawn to scale with
the outer envelope determined by the van der Weels radii of the
atoms. The radii, bond lengths and bond angles used for these
models were teken from Pauling(qz). Taking the dimensions of these
molecules along their three principal axes, and computing the
velue of aa,a, for each, we obtain the results given in the second
column of Table V.

We first observe that the experimental results are consist-
ently smaller than those computed from the structure. However the
agreement is as good as we should expect, since equation 59 was
derived for macroscopic phenomena, and it is not to be expected
that it will hold exactly for molecular dimeneions. In particular,
the derivation assumes that there is no slipping between the
rotating body and the immediately adjacent layer of the liquid,
so that the result depends only on the properties of the liquid
itself, whereas for the molecular case, undoubtedly an appreciable

part of the "slipping" takes place between the rotating molecules
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and the adjacent molecules of the liquid, and thus depends on
the interaction forces between the unlike molecules. The effect
of this can be expressed formally by replacing » by a new value
q/which would be a function of both the solvent and the solute.
In our case, for the homologous series of fatty acids,?ﬂ must be
approximately constant for the series in & given solvent, since
the interaction forces will be of the same type for the different
menmbers of the series, depending largely on the forces between
the dipoles of the solute and the solvent molecules. Therefore,
while the absolute magnitudes of our results are of little value,
their relative magnitudes must be significant.

If we examine the ratio of the experimental values of 333
to those computed from the structure (Table V, column 3), we find
that this ratio is approximately constant, with a value of about

0.37%*, Thus the experimentally determined size of the rotating

group is proportianal to the size of the molecule, and this will

only be true if the whole molecule rotates. Therefore we must

conclude that the COOH group does not rotate independently of the

aliphatic chain, at least in the case of the lighter fatty acids

measured, but that the whole molecule rotates as a unit.

The values of the ratio given in the third column of Table V

range about 5% either side of their mean, which is within the

* It is of interest to note that Fischer(457robtained nearly
this same value, sctually ylc 0.367%, for series of ketones and
alkyl chlorides in benzene. He advanced the hypothesis that this

value should hold for all solutions of polar substances in non-

polar solvents.
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range of probable error predicted for the computed values of
a,2,a,. The values of a,a,3; obtained from the structure are equally
likely to be in error, since the molecular dimensions are not
known very precisely, and the method used in obtaining 2,a,3,

is itself very inaccurate. In view of this, the agreement obtained
is very good. The increase of a,3,a, by more than a factor of two

in going from formic to n-butyric acids is much too large to be
attributed to anything but & reel increase in the size of the
rotating group.

If we compare the results obtained by Keutner and Potapenko
for the alcohols, which are given in Table VI, we see that there
is not a constant ratio of experimental to structural values of
3,2,3,. Instead, the experimental values remain approximately
constant, from which they concluded that only the OH group rotated,
gince the volume of the rotating section remains constant for

increasing chain length.

2,3,3, In A3 Ratio:
3,3,4; Exp.
Exp.runnr-fa/ From Structurel 2,3.3;54....
C H,04 9.5 9.5 .00
C,H,0H 1.2 12.0 093
C, H,OH .2 13.8 081
C, H,OH 10.9 16.5 066

Table VI

The fact that the alcohols and fatty acids give different
results in this feshion, even though both series consist in an
aliphatic chain terminated by a group possessing a permanent

moment which is directed at right angles to the axis of the chain,
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may be explained by considering the natures of the polar groups.
The principal forces acting to prevent independent rotation
of the polar groups are, for the alcohols, the repulsion between
the hydrogen atom of the hydroxyl group and the hydrogen atoms of
the neighboring alkyl group; and for the acids, the attractions
between the oxygen atoms of the carboxyl group and the hydrogen
atoms of the neighboring alkyl group. The effective positive
charges of the hydrogen atoms of the alxyl chain is very-small,
as is indicated by the fact that they do not ordinarily form
hydrogen bonds. The local polarization produced by the hydrogen
atomé of the hydroxyl group decreases this effective charge,
while the local polarization produced by the oxygen atoms of the
carboxyl group increases the effective charge. The distances
involved are about the same in either case. Therefore the electro-
static forces will be greater in the acids than in the alcohols.
In addition there are two such forces in the acids, contributed
by the two oxygen atoms in the carboxyl group, while there is only
one rotating hydrogen in the hydroxyl group. Therefore the forces
hindering independent rotation of the carboxyl group must be more

than twice as great as those for the hydroxyl group. This inequality

of the forces hindering the independent rotation of the respective

groups 1s evidently sufficient to mean the difference between

free rotation for the OH group and binding to the rest of the

molecule for the COOH group, as the measurements indicate.

For higher members of the fatty acid series, a rotation about
a C — C bond at some distance along the chain from the carboxyl

group, where the rotational hindrance would be small, is quite possible.



66

A check on our work can be obtained by computing the values
of/4 for the acid molecules, since several good determinations
heve been made of these values by low frequency measurements.

By substituting the values of B, given in Table III into equation
66 we get the values of M given in Table VII, where also are
listed for comparison the results of Zahn<44) from measurements
_— - o (40) . . N .
on the vapors; Wilson and Wenzke from dioxane solutions; and

Pohl, Hobbs, and Gross(45> from benzene solutions.

x (0% Mox L0 " es.w
/u”' e [Zahn] 4[Wilsom chzl;} [Pat,l(;.li:tfs.}
HCOOH .98 L5l 2.07 .82
CH,cooH| 175 173 74 | 168
C.H,COOH| 150 .74 .79 .68
L HEDOH| 158 | == | —— | 185
Table VII

We see that all of our values are in agreement with these
earlier determinations, with the possible exception of propionic
acid, which is low, but still of the correct order of magnitude.
This check renders a good support in favor of the validity of

our results for a,3,3, computed earlier.
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Appendix

Semple Calculations

To illustrate the calculations, we will carry a single
curve from the original data through a complete set of calculations,
bringing in the results of similar calculations on other portions
of the date as we need them.

The data used is from a run teken March 23, 1943 on solutions
of formic acid in dioxane. In the course of this run, four curves
were taken with air in the condenser at L~ 47 cm, eight curves
were taken with air in the condenser at L ~ 60 cm, and sixteen
curves were taken with pure dioxane in the condenser. The average
values of the various constants of these curves were used to
standardize and calibrate the run, giving values of A, 4,8 and ¥,
From these calibrating curves, one of each type has been chosen,
such that the constants for the chosen curves are exactly the same
as for the.average curves of the corresponding types. These curves
are used to illustrate the calculation of the various consteants for
the run, as needed, but it is to be remembered that they are
representative curves, and that ordinarily average values are used
for computing the constants.

The abbreviations used for the column headings on the data
given below are: E for the extensometer reading in centimeters,

G for the galvenometer scale reading in millimeters, and % for
the gealvenometer scale reading reduced to percent of maximum

deflection.
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T = 2%.6 90 a= 4,00 cnm.
Condenser contents: Air Air Dioxane HCOOH
f,= 0146

L : 46.975 59.91 59.91 59.91 cm.

ExIO G| 2| 6 |%]| G| % G| 7

400 20.7| 15.%

425 26.0|19.2 18.2(16.9

450 35.9(26.5 23.0116.7| 25.1|23.2

475 46.8|34.6 31.0]22.5 | 32.8|%0.4

500 61.9]45.7 46.0(32.3 | 48.1[44.5

525 86.2(63.7 63.7|46.2 | 65.3(60.5

550 115.0(85.0 92.8(67.3| 89.4|82.8

575 135.2| 100 122.788.8 | 106.1(98.2

600 124.8192.1| 24,1159 h38.0] 100 | 108.0] 100

625 101.0|74.6| 32.9|21.6[129.2(93.5 | 95.4|88.%

650 89.1 [65.9] 48.2|31.70100.0(72.5| 72.5|67.1

675 70.0|51.7| 67.2|44.2|73.5|53.2 | 53.2|49.2

700 49.2(36.4[100.3(66.0[50.4(36.5 | 33.7/35.8

725 37.1|27.4(133.1(87.5|37.5|27.7 | 30.0|27.8

750 256.0|20.7|152.0| 100|28.1|20.4 | 23.0|21.3

775 19.7]14.61139.0|91.5|22.4 |16.2

800 104.0(68.4

325 78.1(51.4

850 54.9 (36,1

875 40.7 (2648

900 30.1]19.8

From these dataz we plot the resonance curves (% vs E) as
shown on the next page. On these curves, chord midpoints and
chord lengths are marked. The mean midpoint is entered on the

base of the curve as E for the curve.
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e obtain q,and a,from the relations

Q, = a+ﬂ'

az=L°—'L+E+/Bz

and we have

L, = 67567 - +0012{t ~ 80) = &7.55% cm.

so that a, = 4,00 + .055 = 4.055 cu.
Air (L = 46.975):  a,= 67+563 - 46.975 + .589 + .055 = 21.232 cm.
Air (L = 59.91): a,=67.563 = 59.91 + 754 + .055 = 8.462 cu.
Dioxane: a,=67.56% - 59.91 + .603 + ,055 = 8.311 cm.

HCOOH (f,=.0i46): 6,z 67.563 = 59.91 + .590 + .055 = 8.298 cm.
The difference between the a, values obtained from successive

maxima with air in the condenser is >\/2

A

> 12.77 cm,

= L2232 =~ 8.962

1}

«= 20 . . 24601
A
We now use

6 +¢'d < *;\'_ {_-cof «(a,-V) + coi'nc(a,_-vf)]

to compute E. a,-d = 4044 : o (@, J) = .9949

sin«(a,-J) = 8387 : cof x(a,-V) = 6493

Air Dioxane HCOOH (f, =.0116)
a,-V 8.451 8+300 8.278
«(a- V) 2.0790 2.0419 2.0387
cot o (ay-) - .5570 - 5094 - .5053
CO{‘“(Q'-I}) + c°f “(Qt-‘l’) 0092’2 .1599 o1440

s, +¢e'd 1.179 1.787 1.8329
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. . 4 q . - ’
Using air and dioxsne &s stendards to compute &,&and &

s+ & = 1174
§'+ 2.2355 = 1.187
S, = 0.687
d= 0 492
Then for HCOOH ( f, =.0146): 687 + .492 £ = 1.839
E'= 2.342
The formula for ¥ is
2 2
2 == Af 8
¥ A - R*
5, far R*= 0.60 ¥, - 301304,
R*= 0.50 : %, = 2460 (0 4),
R = 040 Ty = 2008(a2),

We now compute ¢ = ,f::t from the formula
)n ) I-'l/
L Seod 4 <o WD ) T
sin o (a,+a,-2)
Dioxane HCOOH (fo= .0146)
(&4, 126 .(35
h) 150 163
49, 80 .200
¥ 0380 0407
¥« L0369 040/
Ty .0362 0% 02
’ .0370 .0403
4% .0033
sin (a,-V) .8925
«(a,+a,-29) 3.0336

sin & (& ,+ a,-24) . 1078
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.8925 8387
%’ 1.837  .0033 L9919 Sg3g7 + 2.0387 a3
s T TaszZ 1zs7i0 T 578

C = .0232

Then we can compute Q'Land R by the formulas

Ty
2 2 X
P = £ll1 + £u,. — 2. + €, &, val + Mlﬁ-
Ry é‘,':' +4e, + 4 + ¢ €,’: /0,,_
63
‘
P - 3 Ci en. lel_*_fjﬁé—
I, T .z
1 Ei F L/&,’b + 4 + C.}_ [ /0,,_

(1:342)" + 2.342 -2 + (0232x2342)  995% x §8.10+.0/%x#6.02

Ry = (2392)7 + Hx2.3%2 + 4 +(.0232x2.392)" l.o36%
B 3x.0232x 2.3%2 .G9SY x §8.10_+ .01FEx 4£.02
> o
o Q.3%2) 4 Yx 2,342 + 4 + (.0232 x2.392) .036Y%
P - 2620 c

at f, = .Ol46
B = 0731 ce

These results are then averaged together with all similar
values obtained for the same concentration, and the probeble
deviation of the mean computed. Tabulations of some of these
sets of results sre given on the following pages, to show the
distribution at some low concentration points. The representation
of all of the results at this point ie given by Figs 9 - 12 in

the main part of this work.
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In the following exemples the values have been rearranged
in order of descending megnitude, so that values of R and P,
w7 2

are not paired according to their position.

I HCOOH fiz 01%6
i ]
PR,L A A qu A Al
26.92 .55 .3025 .731 L3491 L1529
26.92 .55 .3025§ .580 .240 0576
26.%9 .52 .270% S48 .208 0133
26.65 .28 0784 .3491 .0SI .002¢
26.4% ) 012} .353 .013 .oo02
26.23 .14 .0l9¢ 352 012 .000]
26.20 -7 0289 A76 —.164 .0269
26.17 -.20 .0't00 133 —.207 .0Y28
25.%1 —-.56 L3136 o7 -233 .05%3
2547 -.90 .8100 024 —.316 .0999
Sum 263.7Y4 2.1780 3.395 4206
Mean  26.37 2078 390 .0Y¥ 804
£74S
ek wrror of mems S gt g 42 (orees = 0%
o = 2637 £ P = 340t 049
1.
I CH;COQCH ﬁ = 018
T
. A ) B A N |
26.01 .30 .0900 .3SY .170 L0289
26.01 .30 .0900 347 163 .0266
26.00 .29 Nol 4 .309 J2zs L0156
25.92 21 .0%Y 265 .081 .0066
25.8! e .0100 221 037 0014
25.81 .10 .0100 215 .03] 0010
25.78 +.08 .006Y 170 -.014 .0002
25.70 -.0f L000| A4S -.039 .0015
25. 62 -09 L0081 139 % .0020
25.56 -5 .0225 095 -.089 .0079
25.24 -47 .2209 000 ~.18% 0339
2S.07 - 64 H096 -.050 -3 .0548
Sum 308.53 .945% 2.210 1804
Mean 2571 .0830 184 .01503
L6798
Prob. ecror of mean % i Y0836 =.06 3637"175 Voises = .025
R.= 2571+ .06 R = .I84+ 025

kS ta
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I C,H;COOCH f.= .0220
R, A o
21.72 .05 ].1025
27.47 .g0 .6%00
2718 .51 .260]
26.97 .30 .0900
26.84 7 .0289
26.80 a3 .0169
26.€0 A3 .0169
26.15 .08 .006%
26.52 -5 .02258
26.52 —.1S 0225
26.45 -22 Reds
26.38 -29 .084(
26.20 -47 2209
25.92 -5 5625
25.50 =117 1.3689
Mean 26.67 2999
R = 26672 10
2
v C;H,COOH f,
A Ay
27498 .70 2.8900
27.84 .56 2.4336
26.%) .S3 2809
26.60 .32 L1024
26.5S .27 .a729
2¢.51 .23 0529
26.24 -0 .0016
26.22 -.06 .0036
2¢.19 -.09 .008}
26.15 -3 .0169
25.9¢ -32 1ozt
25.8) -4 2209
25.80 - 48 .230%
25.79 - 44 :2110]
25.79 -49 2401
25.72 - 56 3136
25.63 - €S Stazs
25.43 -85 228
Mean 26.28 Hé642
Ez = 26.28 + ||

w

.52S
.52s
4SS
.39%
.380
. 354
.33s
.259
218
196
.082
-.019
-.03%
~-.0%2
- 088

232

318
.299
.299
2
.2SS
.zlo
NEY)
3y
3%
.27
102
{02

-.095
-.13%

L207

YA AT
.293 .0858
.293 .0858
.223 .o%q7
166 0276
148 .0219
Az .0125
.103 0106
Q27 .0007
-.017 .0003
-.036 .0013
-.150 .0228
-.251 0630
-.270 07249
-314 .09%6
~.320 102y
0%3)
232 2 03¢
A A
.279 .0718
210 0%
(8 .0339
40 .019¢6
ol L0102
.082 0067
082 0067
.0S7 .0032
.Q3%8 .0ol4
-.007 .0000
—.058 .003%
-.083 .0069
—-.083 0069
-.090 .008)
-1s 0132
-.1s 0132
—~.262. .06%86
-.35] 1232
L0248
217 + 026



The next step consists in the extrapolation of the Pe=
curves. This was done by fitting a straignt line, B, = o+ bf,
to the points in the low concentration renge. We take HCOOH
as our example. From Fig 9 we observe thet the points &are

roughly linear up through f, = .0814

f. B R £010°  Rfixic'  Bf xi0"
L0146 26.37 .340 213 3850 49.6
.020) 27.15 245 Yoy 5%S7 99.2
.0260 27.18 .390 676 7067 101.9
0376 2118 .567 114 10556 213.2
.0%30 27.%8 369 1249 |;2€§ 4§?Z

777 3906 \ 4
ggﬁ ST L2 ¢70% 2495 719.7

Sum 2857 197.02 3.640 15170 82525 1837,

Too + .28S7h = 197.02

Then for Fy 8.2525

.2857¢ + .0ISI1Tb

whence o= 2S.69 , b= 60.23

R, = 2569 + 60.23f,

w

szm = 85,‘72 cc.

Ta + .28S7b = 3.640
for B
.28S5S7a + .01S172b= _1%837%

whence  a = [IOS < b= 10.03
B = 1105 + 10.03f,

P = 1014 cec.

2a

These are the values listed in Table III. From this point
on the calculations are simple substitutions in equations 71 - 74,
59, and 66 and as all results at eech stage are tabulated in the

body of this work they will not be repeated here.
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