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Summary

Thig thesis is a study of finite parallel displacement of
a contravariant vector according to Levi-Civita's differential
definition. The interesting features of such displacerment
are shown to depend upon the matrizant function,_ILgthéf .
The precise dependence of the matrizant, and hence the dis-
placed vectors, upon the coefficients of connection of the
space and upon the directrix of displacement is studied by
means of the Fréchet differentials of the matrizant. This
is done both by warping the space, and by varying the
directrix.

S8ince parallel displacement is a geometric phenomenon
it is not surprising that the matrizant turns out to be a
two point tensor. However, the Fréchet differentials of
the matrizent are two point tensors only under rather
special conditions. A second surprising result is that
only for flat spaces do the Fréchet differentials of any
varticular order produced by varying the directrix vanish
for arbitrary directrices and variations.

The interesting case of a closed directrix is discussed
in some detail. In particular the "fixed" vectors are exam-
ined, where "fixed" vectors are those which return to their
original direction after displacement about the directrix.

The theory is shown to generalize immediately to tensors

of any order and of any type.
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T Introduction

The problem of parallelism has fascinated geometers through-
out the history of mathematics. Euclid faced it in his famous
fifth postulate, and Euclidean parallelism remained the standard
until the nineteenth century. With the development of Riemannian
geometry as a generalization of Euclidean geometry it soon became
evident that no generalization of the notion of parallelism could
be devised which had all the properties of Euclidean parallelisml;
This thesis will be concerned with that generalization proposed
by T. Levi-Civita.

Levi-Civitazsuggested a differential definition of a gener-
alized parallelism with the property that if a vector is displaced
parallel to itself along a geodesic of the space, it makes a con-
stant angle with the geodesic. However, such vectors do not have
constant components. The change in the components depends in
general upon the coefficients of connection (Christoffel symbols)
of the space, and on the directrix curve followed in displacing
the vector. We shall examine this dependence of the displaced
vector on the connection of the space and on the directrix in some
detall by means of the theory of Fréchet diffecrentials in Banach
spaces.

A substantial amount of study has already been made of Levi-

3
Civita parallelism. Pérés found the change produced by displacing

l. TFor a discussion of several types of generalized parallelism,
see Whittaker (1)

2. Levi-Civita (1) or see any text on Riemannian geometry

3. Péres, J. (1)



a vector about an infinitesimal closed curve. Dienes has inte-
grated the differential equations essentially by the Liouville-
Neumann5 method of successive substitutions to obtain the change
produced in a vector by displacement over a finite distance. He
determines the change produced in the displaced vector by changing
the directrix an infinitesimal amount. Applying his result to a
closed curve, he obtains the Péres formula. Appel6 quotes Dienes
and determines the Péres formula on taking the first terms of the
Liouville-Neumenn series. Eisenhact7 and Thomas8 find the change
produced by displacement about an infinitesimal parallelogram by
considering infinitesimal vectors for the sides of the parallelogram.
Duscheck—Mayet‘9 also integrate the differential equations by the
Liouville-Neumann series.

The contributions of these authors can be summarized in two
statements. First they have indicated the solution to the equations
of parallel displacement. Second they have displayed the local
dependence of the displaced vector on the space by integrating the
equations about an infinitesimal closed directrix. They have dis-
played the local dependence upon the directeix by making infinitesimal
changes in the directrix. The difficulty of treating a function ex-
pressed as a system of series of iterated integrals has probably

inhibited more thorough treatment of the vector displaced over a

finite distance.

4. Dienes, Paul (1)

5. Whittaker & Watson (1)

6. Appel, Paul (1)

7. FEisenhart, L.P. (1) pp. 65-67
8. Thomas, T.Y. (1) pp. 38-42

9. Duschek-Mayer (1)



Much of this difficulty can be simplified by regarding the
system of differential equations of parallel displacement as a
single matric equation. The solution can then be expressed by
means of the matrizant functionlo. This techniqgue is used in
chapter III. ©Some of the earlier results are developed and a
tensor expression for the displaced vector is given.

A discussion of the Fréchet differential properties of the
mateizant as a function over a Banach ring is given in chapter IV.
By means of these properties of the matrizant, the change in the
displaced vector as the underlying space is warped is discussed
with examples in chapter V. |

A similar change as the directrix curve is varied, the space
remaining the same, is discussed in chapter VI. The existence of
the Fréchet differentials of the matrizant as a function of the
directrix with the change in the directrix as increment is proven,
and their generating formula is derived.

The tensor nature of the matrizant and its differentials is
discussed in chapter VII.

In chapter VIII spaces are classified according to their de-
gree, where degree is defined in a manner comparable to the degree
of a plane curve. The surprising result is obtained that spaces
are of zero or infinite degree as they are flat or not.

Vectors which return to their original position after parallel
displacement about a closed directrix are discussed in chapter IX.

The theory is extended to mixed tensors of any order in chapter X,

10. Frazer, Duncan and Collar (1)



II. Notations, Conventions, and Elementary Theorems.

In this chapter are listed the general conventions which are
followed in this thesis, and the elementary theorems on Fréchet
differentials which will be used.

IT.A.Coordinate Systems.

xé  ¢=1,--,m  are generic coordinates in the n dimensional
Riemannian space. Where no ambiguity results, the index i will
frequently be omitted, as in "the coordinates x" or "A, a point
function, is a function of x".

IT.B.Summation Convention.

When an index appears twiée in the same term, once as a
superscript and once as a subscript, that term represents the sum
of n terms obtained by giving'the index successively the values
1, 2, ¢coy, n. Parameter values, on the other hand, are not summed.
It is usually clear from the context when a symbol is an index
end when it is a parameter value. A note is made wherever there
is danger of confusion.

II.C.Iensor-Matric Notation.

The matric notation is used to reduce the number of explicite-
1y expressed indeces. The quantity with n° components, B
may be represented by the matric symbol 8 . In the matrix
the component BZ appears in the cth row and in the cth column.
The product of two matric terms A,B is the matric product,
ie (AB): = A%, BY . The contravariant vector Al is represented
by the column matrix Ao Similarly if a mixed quantity has more

than n° components it is represented by a matric term with indeces,



for example, the coefficients of connection fl; are written T
Where ambiguity may result from the matric notztion, the indeces
are inserted. The term is then said to be expressed in "component™"
notation.

II.D. Fundamental Theorems on Fréchet Differentials.

An ordinary differential exists for numerically valued
functions of a numerical variable. The Fréchet differentisl is a
generalization of the ordinary differential to functions with
values and arguments in normed linear spaces. The Fréchet differ-
ential is defined as follows.

Definition 1. Fréchet Differential.

Let F[Al be a function on the normed linear space B, to a
normed linear space B, . Then if for A=A, a function J F[A.0]
exists which is linear in 6??3: D in some neighborhood of the
origin of B, , end—if
(2.1) F [As+p]— FLAd = 8'F Lao5] = [IDU- £ LA D]
and if I € LA.;D)l=0as DI~0 then J'FlA.;n)is the first Fedchet differ-
ential of FLAl at A, with increment D . Higher order Fréchétt

differentials are successive first Fréchet differentials.

Theorem 2.1. If the Fréchet differential of F exists, it is given

by the Gateaux differential
(2.2) XL FLA;D] = LA"M

20

FLAG*-/\DE-F[AQJ
(=
Formula (2.2) is frequently used to compute & F[A:3D] ., The

existence of the Frébhet differential is often proved by showing
that the Gateaux differential exists linear in D and satisfies

(2.1) for D in some neighborhood of the origin of B, . This proof,



of course, also furnishes the formula for the Frechet differential
JIF=LF,
The following elementary theorems on the Frééhet differ-
il
entials are listed without proof .

Theorem 2.2 If the Fréchet diffecential of a function FIA] exists,

it is unique.

Theorem 2.3 A finite linear combination of functions Frechet

differentiable at A, is itself Frechet differentiable at A, .

Theorem 2.4 Chain Rule. If B, B2, B3 are three normed linear

spaces, if Sy, S, are open sets in By, By, If Fral 1is a Frechet

differentiable function on S; to S, with differential J'F [A;D]

and if N[+l is a Fréchet differentiable function on s, o B,

with Fréchet differential §'M[T;s] , then & [Al on g to B,

defined by 21Al =R LFcal] is Fréchet differentiable with differential
(2.3) 5 & [A;D) = 38 LFral 58 F [AyD]]
Definition 2. Multilinear Function.

A function F[A,-,Ap] of p variables A,-y A, on By,..., By
to B where Bl’ sevy Bp, B are normed linear spaces is called a
multilinear function if F is additive in each variable and if a
real number M exists such that [[F LA, ATl € MIALTA LAl

Theorem 2.5 A multilinear function F [A,,A,] possesses a Frébhet

differential with increments D, Dp given by

(2'4) 5|F[A')“')AP3'DAS“)-D,9_] = P[D'JAx;“)AP]"' F[AUDH“')AP]*.“'-P

+ F LA, AL)"')DP:l ‘

11. Michal, A.D. (1)



Notation for the Frechet Differential.

The first Frechet differential of a function F of a variable
A with increment D, which depends parametrically on the para-
meters t,N is written & FLA;DIgn] , The ith Frechet diffecr-
ential with 1 increments Dy, Dy, ... Di is written
5£F[A3Q3myﬁDM§Jﬂ. When all the increments are equal to D, the
ith differential may be written SYFLAD SN . When no ambiguity
results, the parameters 3,q and sometimes even A and D will be

omitted, writing the ith differential simply as 4 F



ITI. Integration of the Eguations of Levi-Civita Parallel

Displacement.

II1.A.The Equations of Parallel Displacement of a Contravariant

Vector as a_ System of Ordinary Differential Equations.

Let us consider a general Riemennisan space with generic
coordinates x. Let a new system of generic coordinates X be de-
fined by the equations

Z= 2™
where the functions X(x) possess first order derivatives and
the inverse functions x= x(X) also possess first order deriv-
atives. A set of n point funcfions %C(ﬂ,i=bwn are said to de-
fine a contravarient vector at the point x if the functions

in the two coordinate systems are related by

Y@ = N 92N
s

The functions %%ﬁ may be defined at a point only, along a curve
or over any other suitable domain of definition.

A set of such vectors defined one at each point of a directrix
curve z°= %Qg) are said to be Levi-Civita parallel if their

components, Aa(w , satisfy the system of differential equations

(3.1) %’ = — P A g S

A%leare the components of the vector 2t the point x ()

L(s) is the point with coordinates xi(g )

x3=x3@) are the parametric equations of the directrix
with real numerical parameter, ¥ .

.7 are the derivatives of the parametric equations,{=l-n

83



Igi [x(%)] are the Christoffel symbols of the space. They
are also called the "coefficients of connection” of the
space, and are symmetric in 4, %.

In a general, non-Riemannian, space, the coefficients of
connection, fg% , need not be symmetric in %, j. In such cases
two different definitions of Levi-Civita parallelism are possible
as one writes 62ﬂ“ %ﬁ; or ﬁﬁalk&;ﬁf in (3.1). The theories
of the two definitions are completely similar, and when ﬁﬁe
1s symmetric they are identical. We shall consider only the
one definition, (3.1), in what follows, and shall assume sym-
metry. Many of the theorems generalize immediately to the more
general non-symmetric case. However, since we do not pursue the
non-symmetric theory, there will be no distinction made between
those theorems which are valid only for the symmetric case and
those which hold more generally.

/ﬂ;n and AL are functions of the parameter T by

virtue of the directrix equations. For example
. L

It is sometimes convenient to think of a set of parallel
vectors as being generated by an initial vector which moves
parallel to itself along the directrix, rather than of the set
of vectors as a whole. Such a vector is said to be displaced
parallel to itself. The set as a whole is said to be generated
by parallel displacement of the initisl vector. This viewpoint
will be generally followed in this discussion. We seek now to
integrate equations (3.1) so that, given an initisl vector,

ALx @1 , we can determine the vectors, ALx(t)l | which are
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parallel to it at different points x(t) along the directrix.

The solution of equations (3.1) has been given by many
authorslz. In order that this discussion may be self contained
we also give the Liouville-Neumann series solution to (3.1).

Theorem 3.1. Let 2 contravariant vector, A , be displaced

parsllel to itself along the directrix z‘= 2(s). Let A‘@ be

a_set of predetermined constants, the initisl values of the com-

ponents of A at xéwJ . Then_the values_of )\‘(t) s the com-

ponents of A at =z (t) are given in_the region of convergence

by
(3:2) )\i' (t): /\i(m)— f: /}t;e’ [x(s)] Zlf’—g—}a d,'g AJ(A,)

t ! [ g L éﬁ__m’él, /\J("*)
FIE o gt ds (5t rmenn 7

P

where F%n[}(iﬂ are the coefficients of connection of the space

evaluated along the directrix.

Proof: (3.2) is the Liouville-Neumann series solution for the

defining equations (3.1)

IITI.B. The Eguations of Parallel Displacement of a Contravarisnt

Vector as a Single Matric FEqusation.

We may consider (3.1) as & single matric valued equation

N
(3.3) s = F'?’IE A

where A 1is the column matrix of the components of the

vector being displaced.

12, See introduction.



1l

Iin is the square n x n matrix of the components HSE « The
suppressed lower index indicates the column position and the sup-
pressed upper index indicates the row position of the term /?Z
in the matrix (= . Note that it takes n matrices, k=1,..., n
to 1list all the coefficients of connection.

Me 4% is the sum of n matrices, each of which is the square
matric product of a square matrix, /% , by a scalar point function,

éﬁg . On the other hand, [, A is the column matric product of
a square matrix, Fé , multiplied on the right by a column matrix,
N . We note that it makes no difference whether A or &5

As
is first multiplied by /k . That is

R - k
(3.8) (P = (ML
The solution to (3.3) leads to

Theorem 3.2. Let a contravariant vector A__be displaced parallel

to itself along the directrix z°=%°(3). Let A(¢) be a column

natrix of predetermined constants, the initisl values of the com-

ponents of AN at z(2) . Then the column matrix of components

of A, Ay, at x(t) are given in_the region of convergence by

(3.5) A@W= -0 [T %’a 5] A

where the matrizant function _ILZ of an n x n matrix A(g) itself

g function of the parameter 5 is given by

-0 ot ram=1 P15 A s + fEA® ds ff Ay o+

where I 1s the unit matrix with one's on_ the main diagonal and

zeros_elsewhere.
Proof: (3.5) is the rewriting of (3.2) in matric form, and hence
is the solution of (3.3). The theorem follows from theorem 3.1.
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IIT.C. Illustration. Parallel Displacement on_a Sphere in

Ordinary Three Dimensional FEuclidean Space.

ITI.C.1. Displacement Along a Parallel of Longitude.

Theorem 3.3. Let coordinates =z’ 2% be chosen on a sphere in three
P=ttaly === )

gimensiohal Fuclidean space with %' the colatitude end x>

the longitude. Let a vector A Dbe displaced by Levi-Civita par-

allel displacement along yﬁ-::constant from 2z'=a 1o =1 .

Then A(a) and A (t) the values of A at z'=a,t respectively, are

related by
(3.7) ! O
A\ (D)= @
o - eE
L t

Proof. If r is the radius of the sphere, the metric on the

sphere is i .
2 - ,'L+ LA«‘:‘V?-X/I 2
13
By direct computation, the two matrices of Christoffel symbols
are
0 ey
®) 9] F ,a,i/w)tl
fi= coa)! 27\ e 2 0or 2! o
Cotx

We may take 7' to be the parameter 1 along the directrix. Then

(3.10) dxt = e Jf' where
Ly M
§%  1is Kronecker's delta =1, k=] =0 k& ¥I

Computing the matrizant from (3.6)

13. For formulas for computing the Christoffel symbols when the
coordinate lines are orthogonal, see Michal,(2) page 98 or

Eisenhart, (1) page 44.
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j FLx)J"”*'

Ot Erdli] =T AL e e [T A+

(3.11) T ) s
{ o . 2

4
S \
o)

[ o [ o
— ¥ — Ao
’<0 w%%“?> <° ‘m“t>
Substituting (3.11) in (3.5) gives the theorem.
In component notation, (3.7) is written

(3.12) Np=N® \ee) = x_ﬁ A%

14
The computestion can be checked by means of the theorems that

parallel displacement along a geodesic changes neither the length
of the vector nor the angle the vector makes with the geodesic.
If | Al is the iength of the vector, and if © is the angle it
makes with the geodesic, then since a parallel of longitude is a

geodesic on a sphere
(3.13) [Awl"= ~" i,X(M + bin e A(a)}
A = nr [N+ ATEX Wi

= g N + AT et K@= | hwl®

A (o)
| M
M) - N @~ e 8@

—

e M = Tl @)

(3.14) Lt 0@ =

IIY. C.2. Displacement Along a Parallel of Latitude.

Theorem 3.4. Let coordinates ' »* be chosen on a sphere in_three

dimensional Euclidesn space with x' the colatitude and x%

14. see Eisenhart, (1) cit., page 64.
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the longitude. Let a vector A be displaced by Levi-Civita
parallel displacement along %’ = constant from z%=a to z*=t .
Then A(a) and A(t) the values of A at x=a,t respectively, are

related by ‘ ; !
oo [(t-a)ese 2] — pam ' pin [(ta) esex' ]

(3.15)
A(T) = aon Llt-a) cot x']

Ao 2!

eat [(t-a) con ' ]

2

Proof: We may take x° to be the parameter along the directrix.

Then

0{4—,L_ M/Z._é-)ﬁ

Ay T A F

Computing the matrizant, using (3.9) and (3.8)

1 9 MVL 5 0
Mo [-TR p v ] =T - (t-a) esa x'

(3.18)

__/J.Zm.x’ (t-a) coax’

Aene ! ©
L (t) sy o
+ Z! % C -
(3.17) o, L) aet X
o =
o [(t-a) conx'] — gy pom [(t-0) cov k! ]

Py [(t-k) Cot )C/j

]

boa [(ta) coax’]

A X

Substituting (3.17) in (3.5) gives the theorem.

III.D. A Tensor Expression for the Integral of Equations (3.3)

Parallel displacement is essentially a geometric phenomenon.
Therefore the results should be expressible in tensor form. We

shall do this by means of normal coordinate theory15 for spaces

15. For normal coordinates see Thomas (1), chapter 5, or Veblen (1)
chapter 8.
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for which Fm can be expended in a Taylor series about ¥ ()

°

Theorem 3.5. If a contravariant vector, indicated by the column

matrix \ is displaced by Levi-Civita parallel displecement along

a directrix x‘:ﬂ%%g) from t=a to =1 , if the coefficients

of connection ['p can be expanded about x(«) in a Taylor series,

and if Aw), A(t) are the values of A at z(s), x(t) respectively,

then
. & ,
At) = {I"f:[Am g + Arjuy’nay'pa v ] %ﬁf i e
S b I Lt
+j [AR\S%LX]*’ ']3 r AE A"g‘f [Amnlj (x1+ ]5_'_'_\_1'5' %A}l

‘}/\ca)

where I is the unit matrix, A~ﬂj 6,Aﬁdl— , are the matric ex-
1

pressions for the nocmal tensors of the space evaluated at

x(a) and BALG are the functions of « defining the transform-

ation 552 ﬂs[q from generic to normal coordinates with origin
x(a) 53[g1 are functions of ¥ by reason of the directrix

equations 2t= xi(g).

Proof: From (3.5) and (3.6)

(3.19) t

A (t):{I-fwtﬂa%ﬁg+//}a§‘1§k,{gfﬂw%ﬂ4r— o Aw
We may now transform to normal coordinates 5L with center at
x(a) o We place a prime ! over teems which are evaluated in the
normal coordinates. % , of course, remains unchanged. (3.19) be-

comes

t ;
(3.20) XN®y= {I-["r Ll +f;r,e%’“ Lg [ 2" oo} A

16, see Thomas,(l) pp. 102-105.
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Now we assume that the coefficients of connection, f%, 3

can be expanded in a series about the origin of the normal co-
ordinates

/ /‘> v 2 Vs s
(3.21) ,4{?‘: f’,a/(o) + j_ﬁ;g_() 5J+ ZL! 3 [7/2'(0) ljﬂﬁd 2
3

wheve Fé (o) and the different derivatives are all evaluated at

the origin. But at the origin of normal coordinates,
[ (o) =0
22 7 ’
D2r) a~———'.?‘ = Ak
Ay‘/
/
LEE..L:ARJL
53ﬂ35
where Ap; ,ArsL , ... are the nocrmal tensors of the space

written in matric form. Hence we may write (3.20)

/ t / . / .
M) = {I ~d LARj yi +Areng ytyden Affolg
T

t_ 3 ST R

(3.23) +{ [Aeyy + Areq s %+~-J%:s§_4§
! n / noP m
xf[Amng +AMM0551+~]§% Ar
B }Aw)
The law of formation of terms is readily seen. If in (3.23) we
t g e /

represent_L,A‘~ W=y %%w& where A ... has m indeces by the number

m , and integral composition by indicated product,

(3.23) mey be written
(3.23) )= {I-[a+3+#+~~]+ [o+3+4+ ] [2+3+4+-] +

— 243+ 4+ J243+4+ J[2+3+4+ ]+
+ [2+3+] [2+3+-1 [2+3+J[2+3+:+T— " } A ()
On changing back to generic coordinates, (3.23) becomes the

conclusion of the theorem



L7

t i - ; "
A() = EI— J'a [_:‘\n& W ixl + ‘\RL\\ lél)”_xl‘gr_x] +'“j§%?*r, %’{Ag

% W S él?éﬁng 3 5 N 3 A
(3.18) + [, [ y'pa+] 0¥ dx LL mn § DIY Jﬁm;x«

e 1 } A (a)

where the 5L are given as functions of Z by the equations trans-
forming the generic into normal coordinates. We note that the
normal tensors are constants with respect to the integrations and
could be written outside the integral sign if desired.

Further, since ‘%f%% = dp at 2@ , A=Ak .

In general the functions Z (x) in a transformation of co-
ordinates are scalar functions of % . However under a transform-
ation z = x (¥ , the normal coordinate functions Y(x) undergo
Jj%?;@g where the partial derivatives
%%;@J are evaluated at Z (%) . Hence the integrands of (3.18)

a linear transformation § =4

are mixed tensors of rank two evaluated at x(«) , the origin of
the normel coordinates. The tensor indeces, of course, are sup-
pressed in the matric notation.

Theorem 3.5 shows that the tensor expression for A(t) may
be quite complicated. Hence it is worthwhile to seek some re-
arrangement of the result (3.18) which may make a more usable ex-
pression for AE) Such a rearrangement will now be given as

Theorem 3.6. If a contravariant vector, indicated by the column

matrix A is displaced by Levi-Civita parallel displacement along

g directrix ,z“:_ x“(z) from T=a to 7=t , if /% [xz)jcan be

expanded in a Taylor series about z(«) and if A(a) and A ¢)
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are the values of A at ¢=a , 2nd g=t crespectively, then

(3.25) A= {z T} A@

where the matric teem T 1is homogeneous of degree r in the

functions u‘[x] . T. are given by the table

T = T
(3.26) T = O
T, = - b [y 35 2 s
T, = —Arey ffajm %QEXJ%%:W j’lﬁpiz
T = Amdkf,ugmg [ Y “ra1 98"1x Mﬂig

orr dz

-t- '
+ ‘ J R, P ™
AejAcn [, 4 w%ﬁ% Ag,ff,ﬁ/bmj”i% ds,
[ oK %

Tr "homogeneous of degree r in the functions 13L£)<J n
means that multiplying each 4°[x} in Th by a constant <« is
equivalent to multiplying T, by «" 3 ie,

3>
TaLeyiial = & T Ly Lal

As in (3.24), the law of formation of the terms may be expressed

T, = -2 Te= -8 +2.3+32
(3.27) 1 =-3 T= Sbradrasc i me
L] 3 —
—ﬂ} - ——4"'2'1_
and in general Ty = sum of all possible permutations of all

integers > 2. such that the sum of the numbers in each permutation
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o
is n, and each permutation is multiplied by (-1) , Where ¢ is
the number of numbers in the permutation.

The numbers, m, in the right members of (3.27) stand for

terms of the mth degree in %Lu] as follows

(3.28) e At P W wbpag 29700 defy
m ARL'A‘L,ﬁ £x] Y= ix1 32P y e 3

where there are m indeces Rﬁ;u,d o Multiplication in the right
member of (3.27) is integral composition. For example
(3.29)

T Y S
Ss% L A f, 4 0 a“f,-? iﬁg, g,j: qrpay dxt ds, =

where the quantities in the first integrand are functions of para-
meter T, and those in the second are functions of parametér E R
Proof of theorem 3.6: From the absolute convergence of the Taylor
series and the matrizant function (3.6), (3.18) is absolutely con-
vergent. Hence (3.18) may be rearranged term by term to give
Theorem 3.6.

The results of theorems 3.5 and 3.6 show that the tensor re-
presentation of A(t) can be quite complicated. A different approach
to the problem will be taken in chapter VII which will supplement
these results.

IIT.E. The Special Case of a Closed Directrix.

Of all directrices, the closed directrix is the most inter-
esting. Of the known theorems on Levi-Civita parallel displacement,
one of the earliest and most fundamental is that of Pérés, giving
the results on displacing a vector about an infinitesimal closed
curve. It will now be shown that this formula is but a special
approximation to (3.25).
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Theorem 3.7. If a contravariant vector, indicated by the column

materix A is_displaced by Levi-Civita parsllel displacement

completely about a closed directrix %a: x%y, where t goes from

§=a to 5= in one circuit, if [}, [« can_be expsnded in a

Taylor series, and if A() , and A (+) are the values of A Dbe-

fore and after the circuit, then to terms of second degree in Y [x]
- N
(3:30) |}y - fT+ + Ry §, u'on é_?c_ d" de 3 A

where T is the identity matrix, Tr; is the mateix of the
17 .
Riemann curvature tensor evaluated at x(a) , %’[x] is the

es '
function of x which transforms to normal coordinatien 3“ in trans-

forming to normal coordinates with center at x(a) .

Proof: From theorem 3.6, to terms of second degree in y([x1,

(3-31) A= §T A  f, 5mc>ts
dxf A%
Integrating the integral in (3.31) by parts, since

' . g - '
(3R} g, 8 e = gy L~ Lyt A
Z

o

FAg } M)
ﬁ”;o};

x” 43 dg

¥

Since the curve is closed, 33[X(AJ] = 35Er(003 , so the first
teem on the right in (3.32) vanishes. Taking half of (3.32), inter-

changing the dummy indeces gives for (3.31)
_ - R r
(3.33) NOERE + ( Aﬁm"A&5>-% J; S dy 4£ dz § A@)

axf
Noting that
(3.34) Age-Mrs = R

completes the proof of the theorem.

17. See Eisenhart (1) pp. 19-22, or any text on Riemannian geo-
metey. Some authors differ in sign from the definition as
given by Eisenhart.
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We note that Rpe; = mateix (R ;) , where R¢ g;are the

components of the Riemann curvature tensor.

Corollary 3.7.1. Pé}és formula. To terms of the second degree

in 2 (3) , the generic coordinates of the curve,

oo
(3.35) AW ={I+zRe [ = %is 3A)

Proof: The transformeztion equations from generic to noermzl co-
ordinates sre
(3.36) 5509 = 2°(3) —2°@) + terms of degree two or more in x.
Hence

sxf At T ds T U3
to first degree terms in x. Further f x mo‘M; ds-0since the

directrix is closed. Hence to second degree terms in x,
«37) f y’ o(g J‘., {x(z ’(a)}a— J'p x (E) Ag

Substituting (3.37) into (3.30) gives corollary (3.7.1.)

It is easy to show that if the directrix is a parallelogram
(3.35) reduces to the forms given by Eisenhart and Thomas in
their discussions of displacement about a particular infinitesimal
parallelogram. For the full significance of this result we need
the theory of the matrizant as an analytic function on a Banach

space.
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Iv. The Matrizant as a Function on a Banach Ring.

IV.A. Definition of a Banach Ring. The Ring of Square Matrices.

18
A Banach ring is a complete normed linear space, or Banach

space, with a multiplication defined. There may or may not be a
multiplicative unit.

A set of elements y form a normed linear space N if the
following conditions are satisfied.

(1) A function of two variables called addition exists on
NN to N, and is written + . In symbols, if y,e N and 4,.&N then
Wt+Y4. = Y3 5 4 N

(2) Multiplying any element y,enN on the left by a real
number « yields another element oy, = YN,

(3) A function,called,norm, on N to the real numbers exists
and is written l 4yl

(4) 4+ (4arys) =(Yi+42) +4s

(5) Yy, +Y, = Y, t4,

(6) o« (4+42) =ttty ,

(7) (f+ea) y = % y+<y s

(8) y+ = =W, y,w €N has a unique solution z &N
(9) Neylp = I<Flsl « any real number

(10) nyl yo for all Yy &N

(1) gyu =0 if and only if 4 =0

(12) g, + 4 Il N4+ i 4l (teiangle law) for all 4, 4, &N

18. Banach, S. (1)
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A normed linear space is a Banach space, B, if in addition
to the above 12 conditions, the Cauchy convergence criteria is
satisfied in the norm. That is, every sequence <{%Z}of elements
of B converges if for any €& there exists an N such that
for all M, L2 N , Il Fu-%4ll<¢

A multiplication is a function of two variables on BB to B
which is
(4.1) (a) associative (xy)z = x(yz)

(b) distributive with respect to addition

(Xty) 2 = x2+y4y= z(xty)= zxrt 2]

(c) modular lleyll & MItl-lsll  where M is a fixed constant
independent of 2 and 5 . The least such constant is called the
"modulus" of the product %Y .

As an illustration, consider the set of all square matrices
of order n whose elements are real numbers. These matrices form
a normed linear space if the norm is taken as the maximum of the
absolute value of any element in the matrixlg. In symbols, if A is
a matrix whose element in the rth row and cth column is A%
(4.2) A= mag [Ae]l me=hoon
Further, these matrices form a ring with ordinary matric multipli-

cation as the ring multiplication. For, in component notation

19. Such matrices form a normed linear space with other norms
also, such as the square root of the sum of the square of
the elements. However we shall consider only the one norm,
since it is easy to work with, and is used many places in
this thesis.
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(A 5)2 = Ar:n 13”"(,“

(apye = A(pey = (ABE)T= AL BT CL

(At = (Am+BL)e™ = AL C + B¢t = AC+BL
e (Ae 4872 ) = L A+ B = CAtLEB

(=

\!

¢ (A+B)
A Bl
Clearly matric multiplication satisfies conditions (4.1) with

| A% B2 = n LAl 1B

1l

modulus M=n, the order of the matrices.

Now let us consider two auxiliary Banach spaces with values
in the Banach ring of square matrices. Let Bl be the set of all
square matrices of order n whose elements are continuous, real,
numerical, functions of a single real numerical variable I in the
range «<g< b . Let B2 be the set of all square matrices of order
n whose elements are continuous real, numerical functions of two
real numerical variables T, in the range a<s3s,n<l- . Then

it ”N be the norm (4.2), and if =z (%) be an element in B, and

W(§,n) an element in B, , we may take as the norms
|2 @\ = map Z(E)HN at ¥ Ll

With the norms defined in (4.3) the sets By and B, are easily
seen to form Banach spaces.

Now the matrizant
o) O Emsi= T+ Pl A@ds o+
considered as a functional apart from its geomgtric role is a
function of two real variables, 4,t . It is clear that n% Al

is a functional on Bl to B2.
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IV. B. The Differential Properties_of the Matrizant.

20
Professor A.D. Michal Thas proved the following theorems
about the matrizant, considered as a function of the metrix A
in Byto the Banach space By .

Theorem 4.l. The matrizant function (4.4) on the Banach space

B1 to_the Banach spsce Bp satisfies the differentisl system in

Frééhet differentiels
t + T
(4.5) §t [AseAl = S g SA) LA ds

n¥1ey = L

where §'nf {A5A] is_the first Fréchet differential of _ix[Al

with increment dJA , ([0] is the matrizant of the zero element

of By , L 1is the unit of the ring, in this case the unit matrix.

Theorem 4.2« The higher order Fré&het differentials of the ma-

trizant with equal increments §SA are given by
(4.6) ST NErAeAl = kU ST N5 Al SAG) g, £705 SA (5.)dg,
Jnfres:_Q;:—z[A] TA(5,) —Q{RAS,L

Theorem 4.3.21 The entire analytic22 series (4.4) giving the

matrizant function can be differentiated termwise to give

20. Michal, A.D. éBg

21. Michal, A.D. (4

22. An entire analytic series iR a Banach space is defined as
follows. A homogeneous polynomial of degree n on a Banach
space possesses the modular property, !l pa Uil €M, xu™ My, is
the modulus of the homogeneous polynomial, /.(x) , A series
of homogeneous polynomials Z () is said to be an entire
analytic series if the real numerical series T M:A° converges
for all values of A . While it requires more than the modular
property for a function to be a homogeneous polynomial, it
is easy to show that the series (4.4) is an entire analytic
series in the sense of this footnote. For a more extended
discussion of polynomials, see Martin (1).
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.
(4.7) §'0f tayem =L SADdy 4

o0

Feo
-+ 2 [-_jmt;A(FJAEI fﬂ?lA(Y'—)‘{?z“' .f)x A (Y,‘)Af,‘ t+
t=2

V)

o
fmt A (Y,)A-El j,n,‘ JA (Ei—)dgl ‘j"' ' A <§.'Z)A.§4+ .

JE A AL LT A s dn o L5 oA ) dss

We note that (4.7) can also be obtained by substituting (4.4) in
(4+5)

Theorem 4.4- The following generalized Taylor Series FExpansion

holds for the matrizant for all continuous matrices A(y) and SAR) .

ot

(4.8) _N° [A+sA1g]) = Jlj’[A]*- E/-h JQJLZ LAy SA)

= al A rfng m Al midg

+3 g0 A
iz o

jf'jf'g [A] SA(5,)d5,

n

£ Fe- &
S5 A E) 0T,

Theorem 4.5. If A(g)-Ap)=Aw-Ag) for all real 5, in

a & 3))75 6— 9 then

+
(4.9) _ﬂ.:i_ A= & J/\, A (%) ’{E

where 4, <, ¢+ t(- 2and where

(4.10) &f:A (5)d3 is the matric exponential of ffA(g)o(g

The matric exponential of a matrix T 1s defined as the series

(4.11) 6‘?: I+T+_£7ITIZ+"‘+—L ,7—.0'4_,..

where 7T'“ is the matric product of | equal matrices T .

The above theorems are assumed without proof in this thesis.



V. The Change in a Set of Parallel Vectors Produced by Warping

the Space.

In this chapter we discuss the effects of warping the space
on a set of parallel vectors defined along a directrix. By a
warping we mean such a transformation that the coordinates of all
points remain unchanged, but the coefficients of connection are
changed. Alternatively, a warping may be regarded as changing
the coefficients, 3;5 s of the metric of the space, with the
resulting change in % .

Under a warping, the equations of curves, and in particular
the equations of the directrix curve, remain unchanged. The set
of parallel vectors, however, changes in general. Since any
veétor of the set is given by assigning a particular value to t©
in theorem 3.2, it suffices to consider the change in A (t) given
by (3.5). The result is

Theorem 5.1. Let a contravariant vector, indicated by the column

matrix A Dbe displaced by Levi-Civita parallel displacement along

the directeix curve 74"=x" () from F=¢ to =T . Let A (a) and

A(r) be the values of A at g=« and p-t crespectively. If the

space is warped in such a way that the coefficients of connection

e Lxce)] @are given an increment J/,L=z(5)], 1f A 1is displaced

as_before with the same initial value (o) and if now A= )\ (¢)

at ¥=t then : .
s e k
>\ (t)'—A(t) = i— ‘fg,t"n‘z, [-FR‘ Ex('g)_] %J JF,& [X(/'?'I)] %;

(5.1) A Ul [x(p)] _iig"] Ao, +
t t I R 4, A

" Mf Ay -y
Fr’i(&)ﬁz'ﬁ—a— [P ‘iﬁgjﬂz_“" } A (@)
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Proof: From (3.5)
R
(5:2)  A@=NZ MR 1o

Y=k [~ %"-Jf‘n {f{] Ao

Forming the difference, using (4.8) gives the theorem on identi-

fying - I, %" with A and —d Ty %" with JA in (4.8).

(5.1) is obtained by regarding (L. as a function of — Ik 43{ .
Since in warping only % changes, our interpretation of (5.1) can
be sharpened on consicdering .413, as a function of [k alone. TIn

this context

(5.3) 0% tre]= N5 LAl = QL [-e %_‘l

R
Now A(Me) = - ﬂa%% is a linear function of = . Hence it pos-
sesses Fréchet differentials of all orders with increments

given by |
{ h_ L . _ )
(5.4) gA[ﬂm;Jﬂ/a]:fJFm% , $A LTy and=0 i>

Using the composition theorem for Fréchet differentisls of functions
of linear functions, (5.3), (5.4)
(5.5) 8"_0_1 [FR_)JFR.]: JL_D_Z [A>J‘A(FR)J
R L A o A
-_—_é,ﬂ_o,[FRAg, ) R'AEJ

Using (5.5), (4.8) we have

Theorem 5.2. Under_the conditions_of theorem 5,1, (5.1)csn_be
written

(5.6) Fw- =3 &L LN TAw

J
;L

My

o~
11
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V. B. Example. Warping the Plane into a Sphere.

As an example of a warping, consider the plane with polar
coordinates L s & . Regarding it as the equatorial plane of a
unit sphere with center at the origin, we map it onto the unit
sphere by projection from the south pole. Hence the center of
the plane maps into the north pole, the
unit circle maps into the equator, etc.
We assume that the points retain their

old coordinates, P> © , under the map-

ping.

We see from the geometry that the
colatitude, ¢ , is related to the co-
ordinate P by Figure 1.
(5.7) ¢=2Tnp
Using this relation, and the fact that on the unit sphere in

spherical polar coordinates the metric is

(5.8) dat= dgT+ il o dLe”

We obtain
(5.9) on the plane do” = dp*+ ptde
kN z
B d "-f-ﬁ/i.ldO
on the sphere 4o o a (7 23
By direct computation of the Christoffel symbols |,
o o _
(5.10)on the plane T :< '> m = <O' ﬁ)
0 5 ; 5
.1l1)on the sphere -
G-t PRETE L (22 o _p )
! H'fl kR 2 2 1t~
Ll i o0
- (1+0%) P (1P o

23 See note 13 on page 12.
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&

where F , © are considered the z' , x* coordinates respectively.

Hence " 4 s
~2p 20
(5.12) 1+ p% _ 2.
ST = P JrEE L+p
o 2P ~zp. o0
1+pL 1+p™

To fix our ideas, let a contravariant vector A be displaced

along the particular directrix with equations

(5.13) o= @ =0 ')dg =0

6=7% t =T g =1

This directrix is half the unit circle on the plane, and half the

equator on the sphere. For this directrix, from (5.10), (5.12)
(5.14) 00 -
on the plane I = (57) N ;)
-l 0 6 o
on the syhere T = oo) [ -% ( o o)

(he) sn= (5

\

I

§h

Hence, in the plane, using (4.9)

T . g __(o—l) (’t—ﬂ«)
— A o
(5.15) ﬁL_-tn. [—r‘ﬂ %R_] = g fm | °) H = & :

Then \
oI o AT - o
s “(LO)ﬂ/ =
(5°16) —ﬂ-o = £ = - pine T cos [ T o -l

and the successive Frébhet differentials with increments

(5.17) st - (o)

—| ©

are from (4.6)
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v =(57)r-¥) e e .
(5.18) 3'n" = 17 (_, o) € bz =(° ;)w
k e"(ot-;l) CE"()(@ l) e‘_(?—;)nJJ‘l

- 0

il
o
[ )
|
N—
—~
D
%54
—
Lo
(-7
~——"
—
url
[,
[+]

(5.19) é‘ﬁf:

EI:—‘I P) gf=0 ) g3 = *l, £€=0, £=¢ L >4

Hence the generalized Taylor series expansion for
k
ov -, M = &1 o‘q is

5,20 o . o
| )Jff cen-eng= (0 ) ()5 ()

This result checks exactly with the result by direct compu-

tation, which is easier in this instance.
(5-21) 0% [-(o7)-(2y] =l L(ea)] = T = ()
Hence from (5.2), (5.16), (5.20)
(5.22) on the plane A(w)::_ﬂz A (o) = ';O> Ao)
on the sphere A(fr) = 0] Mo = (:”L;) A

This is checked by direct readings. In plane polar coordi-

nates the components of two parallel vectors at opposite ends of
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a diameter through the origin are exact negatives of each other.
Further, the equator is a geodesic on the sphere, hence parallel

displacement along it does not change the components of A .
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VI. The Change in Parallel Vectors Produced by Changing the

Directrix.

In this chapter we consider two parallel vectors whose base
points are connected by the directrix defining the parallelism.
We discuss what happens to the second vector if the first vector
is held fixed and the directrix is changed. The space, of course,
is left unchanged. We shall assume that the new directrix is
subject only to the condition that its end points be the same as
the end points of the original directrix, the base points of the
two vectors, and that the matrizant function Jl.&-ﬂz%ﬁ?]
exist computed along the new directrix.

We first give a tensor matric result related to (3.18) of
theorem (3.5).

Theorem 6.1. Let the contravariant vector indicated by the column

matrix )\ be displaced by Levi-Civita parsllel displacement along

a directrix x‘= x‘(s) from = o T=( with A@ , A()

the values of A at ¥=a 2and ¥=1{( respectively. If A is dis-

placed along a new directrix with the same end points_as the old,

2= 2 (g = 2+, 2@=o sma, 0

[ %
and if A*(@ is _the wvalue of )\ after displacement along xé(g)

then (6.1)
- * - i J L : R
Nw-x= 0 (T 05 DArg 50 # Ak o yica v 7 94"k dalip )

, dxF 4%
R (Ao L Tors ) iy — 7 eais1 g
d3 A3z
N W m xn %kMk“M o
+Amnh 33y %—s o )

- { t
(J_—vrjm{”u YRR %;%ﬁ‘“{*”' )43 T A+
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(6.1) AW = A) = (term on page 33) +
{.f (T - f [ARry &+ Apayyybee] —1 5 Fdg +- )
(Amn.{%ns)§g' .EL }+Awmk 14 ‘;Sh'ilil‘z'L "*5k*dj [Ra )Aj
. - w
Jl(l—jﬁ[A;wg m)+~1&§ XAAgiﬁfgf fﬁ%% 1+
8 g
(T- jw[Agugw)‘r ]_”\_‘L dp +- al't‘},\(a)
+ oo

where Ajx.., are the normal tensors of the space evaluated at
x‘e) , YR are the transformation functions giving the normal
coordinates with center at %" () in terms of the generic co-
ordinates.

Proof: From (3.5) )
¥ k.
(6.2) Aw-ra@= (O ER L I-NICRE 13N

where _Xf: is the matrizant computed along the varied directrix
x*°(3) . From (4.8)

0 i 3 3
(6.3) .,ﬂ__*—_ﬂ_=z %!J_JL[—FQ% ;—JF’Q%J

i=o0
where —4§ T, ME— e M" T A';a*'? the increment in the kernel of the

a3 A% Az
matrizant . to yield _N* . For clarity we write out the first

two terms.

- A‘f- ¥ » L
(6.4) §'0% =0 05 -n % {F,ag)aloc pm(s)%,e} Q2 [ 42 v ] ds
(6.5)552,&&', f _D_ i ’ﬂa— 1 i p,m& ~F (3) 3&5
3 43 iy ™ Lt L% wn N
ja. ’Qr[ MH]I(.FWZ;“IW%‘ S——Q-au [Ff'ﬂj

As in theorem 3.5, we transform to normal coordinates with origin
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at 'xﬁu . We expand FQ about the origin and transform back into
generic coordinates. Using (3.21) and (3.22)

6.6) I, M _ p¥ 4™ i ’ : 3

€0 T e = e 2 = he (Yo bt - 4" oo 4 )

3 3

| ; ' R )
+5 e (g gt du® 67"y et
A% AE

where Apy.. ) are the normal tensors evaluated at z{(n) , 33353£xnd]
are the parametric equations of the original directrix and

%3: 5*31x*t@] are the equations of the varied directrix in

normal coordinates transformed to generic coordinates. Using

(3.6), (3.21) and (3.22)

. T : .
(6.7) Nt - %] = I =, LAp; wipg + Agpe 'raylig +128% %‘PA&
dxP

+;.

Hence using (6.6) and (6.7) in (6.3) and (6.2) proves theorem 6.1.

VI.BR. Two Lemmas for the Fxistence of Fréchet Differentials
¢
(gb'n—-‘» L-Te %‘g .)Elg—]

The theorems of chapter IV permit us to compute the Freéchet

differentials of the matrizant 5i_Q,LA3gw|g]with increments JA
Osually, however, we do not think of a displaced vector as a
function of—szééf but as a function of the space, or of the di-
rectrix. In chapter V we discussed the Fréchet differentials with
increments JT% produced by warping the space. We shall now prove
two theorems which will guarantee the existence of the differ-

entials with increment Za(g);produced by changing the directrix.

Theorem 6.2. If the function-¢£(g) is a function on the real
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numbers a<g<(- to the vector space £, of sets of n continuous

functions differentiable almost everywhere, and if z%f is regarded

43
as_a function of x on £, to E, , a_second vector space, and if
the norms of E, and £, are respectively
(6.8) 2l = mee {1253, | é}gﬁ)l jatgsb ezl

I 5L(§)”E = Mmay i lgi(g)lz ascgsel s 0= on
\ z 7
then M) possesses a ficrst Frechet differential with increment

—_—

43
z(g) for any x and =z in £, given by

(6.9)

Slﬂftxﬂiil“ A 2 ()
S3 dE

Proof: The Frébhet differential is given by the Gateaux differ-
ential provided the Gateaux differential is additive and con-
tinuous in z and provides the principal part of the first differ-

ence. The Gatesux differential is

k6.10) o5 M - L M - iljﬁ — d=
A POV B . A<
A

which is obviously additive in % . Since the first difference

A%l :%E , the differential is obviously the whole of the first
X 3

gdifference. Since it is additive it will be continuous in z if it
is continuous in % near the origin of E. .

But from (6.8), if M2l <& where & is arbitrarily small,
then l|§§n42.. Hence %; is continuous in z and the Frechet
differential exists. ’

ML
It is necessary to include ’gg) in (6.8) to allow for path-

ological curves 2(3) for which Izl is small but \%i | is very
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large. This guarantees the continuity of %é' in = , which
otherwise would not exist. For if /[zlly were just max ll%@)),
then given any M no matter how large and € no matter how small
it would be easy to find a curve 2“(¥) such that lxl<e but

Il 4¢£Mgﬂ >M and %%f would not be continuous in #* .

Theorem 6.3. The function Hgégf on the n Banach spaces By
k3

of sguare matrices of order n and the n vector spaces E, 1o the

Banach space B possesses_a_first Frégget differential with

increment z 1in E, given by
(6.11)

R
§'Te P ix5a1 = Ok L Ae®, 1 42
o(g Jxt A< AE
Proof': Since [ is an analytic function of the coordinates x
JlﬂzLx3z] exists and is the ordinary differential, %ﬁ% zt By
x
]
] _&/Z % i s i d’%’a -

theorem 6.2 4§ =~ [xy2] exists and is given by‘-IE Hence
since ﬂaﬁﬁf is a sum of multilinear functionsthe theorem fol-

lows from the formula for Fréchet differentials of multilinear

functions.

VI.C. The First Fréchet Differential J ALxjz U]

We now use theorem 6.3 to prove

Theorem 6.4. Let a contravariant vector, indicated by the column

matrix A be displeced by Levi-Civita parallel displacement along

the directrix z‘= x‘lcg) from T=a 1o =l . Let A, Aw)

be the yalues of A 2t y=«,- respectively, and related by

A) = Jlﬁ'A@J where 0% is the matrizant function. If the

directrix is chaenged to a new directeix with the same end points
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with equations lf::x*?g :gﬁ(gyrzéog then A(+) possesses a first

Frébhet differential with increment =z given by
(6.12)  F'ADxgz/b]=Jy o L= 22 13;] Ry, 2 (/.,,)0‘4"

_(LA; L‘&———]""‘J

Proof: From theorems 4.1 and 6.2 we know that the Frechet differ-
ential of Jlt[;nlééﬁz with increment & i'ﬂaéﬁfj exists, and
that 5'[ﬂaé€13%] exists. We may regard Jlf' as a function on
Eq to Bz , that is, a function of x defined by.JLZ[}]: Jlﬁ CACx1]
Then by the composition theorem on Fréchet differentials,
gljlkltxsij exists and is given by
(6.13) 5(jL: Ixy2] = SLAL [A53'ALx;21]

= §'ar - f’nc%; - J’Q%:J

= cip b dgre _ oM omdad /"1_0(*—
J”Q‘“Lﬂﬂagﬁ axm s dg ]

By theorem 6.1, (6.13) is

7 7 £
(6.14) §'0g %32 =S, _(LA,[”—”SX( j&j di” ’Li—i)

,9
as [’FP%’(Wj Ao

The right member of (6.14) can be broken into two parts by dis-
tributing the middle factor. Tsking the second term and inte-
grating by parts,

gt e

jff ARG il do
Ao

PP R A s s Ao
+fﬂz axw d,-g
+j Jl,a) nl; zl—é__. a’L(/
o M
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Now since the varied directrix has the same initial and end points
as the initiel directrix, Z(a)=2z(+)=0. Hence the non-integral

term on the right of (6.15) vanishes. Further

(6.16) 4 0e _ A [, frp dn T TE
— =L Jo g ds e fmﬂ,aa'zi—g‘o&ej/L ﬁid_jﬁézhw.}

k. b k. {
'; ﬂn%"f» F&(F)Zdi’ Afle;(’a')% *

b- _ 7 olf-z 0!4418(4)
St g I~1 i 15 ] Ffa(t)ﬁ

and

(6.17) 4N

s

i

L
f—: [1——L,A’ F,?_jil‘.k Ag + f F/a Ag f FEME olg ]
= I, () 44-'&(@) + I, () J«’a(a)f [20\4/0(37_

- _ deie) Ny, b
= e L) e — N. L /Q,AE 1% ]
Substituting in (6.15) gives
-
(6.18) — [ /0% redet af ko

J'_Q {dﬂm&ﬂ ke ont;é Iy Z/Q/’,ai'efé%f}-ﬂfm

Using (6.18) in (6.14)

(6.19) d'l_n_r_[x‘,z] :_{‘J’JLI {é_p.’_z.. LS Tﬂgﬂre*ﬁﬂn,e}?:ﬂale _fl_:'pl.o
oxt  gxk 44

But the matrix foerm of the Riemann curveture tensor with one contra-

variant and three covarient indeces in generic coordinates is

(6.20) By = dMr _ a1y F Mg~ Trle

xR Jxke
Using (6.20) and (6.19) gives the theorem, since
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(6.21) &' A = 5'Nd A

because g'A(a) =0

VI.D. The Second Frechet Differential J A (x5 zlt]

Theorem 6.4 has given us the expression for the first Fré&het
differentisl of A . We now seek the second Fréchet differential
of A with equal increments % . We begin with a lemma.

Theorem 6.5. Under the conditions of theorem 6.4

1T T
(6.22) ALy [x52] = fn _{'?_1 R-o(,o(L Aﬁ 2 % __r)_’:z/ Ao

Ir—
+ {ly F',e ™) z/a(n) — Iy (m 2% —ﬂ-:{

-Proof: Following exactly the same line of reasoning as in theorem

6., we have

(6.23) §' 0 mixyzl= [ L% (-2Tk 2L dyk ;1 daky o @
3 fLn s /y(axi%éﬁ,“ﬁkﬁ)ﬂ’z@

Integrating the second term of the right member of (6.23) by parts
r T R g YRR
(ro
+ STA L Meefatde + 700 el 0l

r dx* Ao
+Ja A5 szkd—%ﬁﬁ’h

Evaluating the non-integral teerms on the right in (6.24)

PRSP = r B " 2la JL'P
(6.25) — [‘Q.tu Fre% Ly ]’l o "q‘” FR (H) 2 () F’e( ) ) n
since_ﬂ_:, = T , the unit matrix, when s =r.

Using (6.20), (6.24) and (6.25) in (6.23) gives theorem 6.5
Using theorem 6.5 we now consider

Theorem 6.6. Under_the conditions_of_ theorem 6,4, A(¢) possesses
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4
a_second Frechet differential with equal increments =z given by

(6.26)

L~
§EAx;232] =Ua, N5 Ry 4% 5 N2 Lo+
Fry

- b «) L,
v 2l SRR 2% ey (SR, bt g e
: 2

(A - ol oL A
+ j ,n_/.v Po(, 0(,_0(3 A_ﬁ_‘ 2-,0(7' Z Bﬂw ”LU
» Ao

where

(6.27) Py, oy = é;i‘o_'é‘_e + f"da Rty — R, [

Proof: Since A(a) is independent of the directrix,
(6.28)  §*\[x3252] = 32 { NS ]} = FLOZ [xyzyzIh @)
Further

(6:29) gty = 518" NIY = 6" [Tl Req 2 2 N

=
Now {L,, R4«, ave elements in the Banach spaces B, By of square
matrices. %f? and 2% are elements in the vector spaces E2 and
[,_
El respectively. Clearly éd_ﬂﬂ, is a sum of multilinear functions
on By By E2 Eq B2 to B2 . Hence if the various factors have Fréchet
differentials with increment z, then the Fréchet differential of
§'nY with increment z exists.
L
But theorems 6.5, and 6.2 guarantee the existence of J N [x)z]
Y 'z =0 and & IR
and L Ixy2] 6 2 =0 and § Ry, = 4o 5% since Ra«
M Xy Sx % % 1 4o
is an analytic point function whose Fréchet differential is the
ordinary differential. Hence by the theorem on the Fré&het differ-

ential of a multilinear function
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- [ :
(6.30) 51—-”—1; Lx; 2= ja, Jn.L [x;2] R« «, Zj z—.d"_Q__:joLd,.f (1)

ok
L ARty dpt w s gt

h el AR N €)

L% Rae, A2 e alide + -
- b Axti “L¢JLQ2]jv o

Jo Lw R T 2 %2 (4)

For convenience, the four terms on the right in (6.30) are
numbered (1) - (4)

Using theorem 6.5, terms (1) and (4) together become

- P
(6.31) fw [N_p_; Rs, 5, %ﬂ/.%ﬁlﬂiﬂltdtdl i(i:ﬂ A (1)

B oA o 8
fo ALi Rawe 2% do fUNT Rap 270 0l e (11)

- - ody ¥ _ o 4
$ e e m,x,_% 2% 0 dot (1i1)

. - [ o ;
Joak Raq, %' 2% [y, 2L A (i1i1)

where the terms in (6.31) are numbered (i) - (iiii) for convenience.
The terms with o indeces are functions with parameter 4 . Those
with pB 1indeces have parameter T .

Interchanging the order of integration and certain dummy in-
deces in (i) shows (i)= (1i). Combining (iii), (iiii) with (2)
of (6.30), we may write (6.30) as
(6.32) 57'_0_: Ixte] =

A A
2! J.wb-—n’/: R“(:'(z_ Ofﬁ." £°(L0'L¢/ a /—Q/‘LL R/sl/_;?_%ﬂl E/Bl—llilol&z"'
>

1

e . b R
+ J’y_(]_m [ c)()i,:;- + f’o(3 R““‘*—R“'“LF‘*J%’E“Zz“—afﬁu*'

b LNE Redz sl Ao
e
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Hence on using (6.32), (6.28) and (6.27), we have theorem 6.6.

VI.E. Dagger Differentiation.

On comparing the expressions for équzlxgaland JZJ1I[x3zJ
we see that élJLtis almost but not quite obtained by formally
differentiating the expression for s'nY with respect to an arbi-
trary parameter. We shall now define a formal notation, called
"dagger differentiation™, and symbolized by Y whose rules will
give § L from J'[L by formal operations.

Theorem 6.7. Dagger Diffecentiation. If the operation called

denoted
"Dagger Differentiation®.by the symbol ¥ ¥ U has the following

properties .
T ¥,
(6.33) J\_: v = fn N m«.d,,% ad’—_[z_rf’ziﬁ/

V4
R&' e = Pot, oLy Z %3
L %F _ dal

do e

2¥ =0

and if the ordinary formulas for the derivatives of products and

sums hold for dagger differentiation, then
b K

5'.—Q-Z [¥,g] = —D—au

Ly

STOY pxy2] =

Proof: Setting %=q %=b in (1) of (6.33) gives (6.12). By (6.33)
b ' £

(6:34) {0, 0L Ruw " 5% ¥ o} =

jb- sl o oLy A A
P | ﬁd,o{z%‘%z'_f)_k 01444- (l)



4ty

- 14 1, 1

Jl _.ﬂ-i: Rt d, %' 2 —Q-:’pl&"' (2)

2

- o« oy 2

Lok R, % T, At (3)
I

L-ﬂ: ﬁwzéélﬁﬁeﬂfd¢+ (4)

A o (5)

Jwb'_flr E“‘:"‘L 7’@ Zc(L_._O_a, Aq/
whose terms are numbered (1) - (5) for convenience. Numbers (1)

and (5) from (6.34) are

Fop b b o«
(6:35) LSS0 Ruw, 2025 00 o, 50 25 L0 ne e,

i

. —

de,

/]

o
A o “ b
\J'w Jz'ﬂ/ fe“t"(l. 7—4/ z* ”La‘l faz "‘O—/‘LL /e’ﬁl/!"— % Zﬂlh—[).::LalA’L

2

Note that terms with « indeces are functions of parameter
4, @and those with A indeces are functions of parameter <, .
On interchanging the order of integration in the first of (6.35))
teems (1) and (5) add together to give

(6:30) 21 £7 04, Ru, A lae da, [, Ry s S g Ede,
Further, term (4) vanishes. We identify (6.36) with the first

term in (6.32); terms (2) and (3) with the second end third terms
of (6.32) to give the theorem.

VI.F. The n®™® Fréchet Differential J A [xj2 ;25 5% 1L

Having found the first and second Fréﬁhet differentials we
seek a recurrence formula for the ™ Fedchet differentials
ST N Ix; 2 4] with equel increments z . As a preliminary

we define the sequence of P functions
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(6.37) P“icl?— 0(3 = ab—‘R M'Q"z + r’d R c(lo( - afa ol r'a(
d x*3 ’ : o

= A Pa( o, «(
Po(,e(,_0<5°(q i o -+ Fa(,( Pt\(,ol,_da '— /Dc.(, o(,_o(3 Fd,_/

O x4
o) P o A g 2
X

The first in this sequence of P functions has slready been de-
fined in (6.27). We extend the properties of dagger differentiation

defined in (6.33) to include

(6.38) ¥
F. A = Po(l.-. L o s 7;0(7"“
4= _p
AL

With this extension we have

th

Theorem 6.8. Under the conditions of theorem 6.4, the m Frechet

differential 5““) [xyzll] with equal increments z exists and is

given by the recurrence formula

gk

v

where 5% ™% is the m™ gagger differential of 1. defined in

(6.33) and (6.38)

Proof: As in (6.28), since \A(a) is independent of the directrix,

(6.40) S™MA () = gm_ﬂ: [x;zl/\(a)

We shall now show that

(6.41)  §™nf =-nL”
The proof of (6.41) is by induction. Theorem 6.7 shows (6.41)

clmye

to be true form =1, 2. We assume it true for m-1 and prove it

true for m.
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By considering the defining rules (6.33) and (6.38) of
dagger differentiation, it is clear that the formulzs for the m-1
dagger derivative of _- is not a simple one. However -(Lu ° wLiige=l
is the sum of terms each of which is homogeneous and of degree m-1
in z. A typical term is

6.42 , g \ 20
( b ) f ‘D'/“‘: P°( éf"d‘ L - Z % fa, "Q-A—a;. P"(J'ﬂ' " Polm 4 7_.““, 1"‘4‘@. m_n—m "'L“
: GLA'L

The term with the most integrals is

(6.43)

. » M“' oy Ay 4 p")‘/”; ﬁLJ—M,"'
sa, ,Q_,a_‘ R"h“‘z.;; z7% de, Jﬂw —Q—Av Rﬁ,ﬂz - Z

! 2

Am-2 -z A
J‘ —QA,., va 2% () ™ Mo,

Mo,

We shall show that the Frechet differentials of (6.42) and
(6.43) with increments z are indeed given by the dagger derivative.
Further the method ié general and applies to any other term in the
expansion for JLZKH‘Mﬂ}“ﬂ

Consider (6.42)__Q_:) Pi...« are elements in the Banach spaces
By, By of square matrices of order n of chapter IV. zd is also
an element of the vector space E; while -%fi and éI; are in the
vector space E5, . Clearly (6.42) is a multilinear function on
Bo By E5 Ey By By E5 E; By to B, . Hence the Fréchet differential
of (6.42) exists if the Fréchet differential exists for each factor.
Since ﬁywaj is a differentiable function of x, J'Hn“.dj [x; 2]

exists given by the ordinary differentisl

(6:4) 5" 33 = L g%
){,J*’l
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(T
Theorems 6.5 and 6.2 give the formula for 5-0-11 Lx; 2] and
1y o [« ’AZ"(
' = J e :0
5% [x;21, 0 2 S /
Let us write 5'(6.42) for the first Frechet differential
with increment z of the expression given by equation (6.42).

4
Then by the formula for the Frechet differential of a multilinear

function

(6.45) §'(L4z) =

(1) J.:A_IJLX. Pyt é”‘—d'z“'f‘- 2% e, J":’—Qil Py s v W d 25 29 zd”‘_ﬁ_izﬁla +
i, 2 % A'z. 2

() .k %%A %' ST N ) N a%ijfd‘_*' sl 2t it At

O %@ e g Pl P o dzhu izﬂ R A Yo P

2

S+
1 >4

b , 4, 4, &
(4) fa/ —‘Q’Al ‘?:(‘--. O(J %‘ »ZO(L-‘ ZD(J A‘d’ j«, J_/—Q/d-v d)ﬁl o d% da = %a'(j*z'," i%"ﬂ:}‘l‘ﬂ?‘—f

b b o ol Yt gp Bo 2t 0 e
(5) J:z, -—QA, Pu(lu‘ol' o P oy fa, Lo, il L . dz>t g 2 *

ol a RO

Y] JaT >
- A 2y . A
(6) fw—fl—: Pe("-. °S MJ. ‘;50(7:., Z"‘S 01"": fw ,‘—(Ld.v éé(i"_’__li’—:‘- d/xd‘”' Zd‘;*'z"” z"(’"a—ﬂa,LJ«z_

—_—

: Jx¥ o
where the terms have been numbered (1) - (6) for convenience.

We wish to compare these results with the dagger derivatives.
Hence we compute (6.42)‘( omitting all terms involving 2% or
%::“l since these terms vanish. The terms are numbered (1)/ - (6)¢
to compare with terms numbered (1) - (6) in (6.45). The obvious
indeces have been omitted for clarity.

(6.48)  (6.42)° =

- ¥
OF LR P e de [ rdra e s

(2)¢ fwtrﬂp"f% %---é#\f:’ﬁ P;% 2.2 (Lde+
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(6.46) continued.

(3)¢ fﬂpgz---%ﬂjﬂp%zm%ﬂh+

@) fa P s s fatedr g ader

(5 S Pty zde f0 prds 5.z o de
/2

O ENT o[ PdE oz o0 tde

On comparison, (3) = (3)¢ . From theorem 6.5, (1) will have
two terms, one involving J'J_n_‘; R, %"" z%_n_jl At . This
term is identical with (1)“ on using (6.33). The other term of
(1) involving + 'y 2¥ we will combine with (2).

Further from theorem 6.5 (4) will consist of three terms.

The one involving ‘£:741?'R~ﬁ*1%f? Zdz_fLil dt  is identical
with (4)¢‘ . The term involving —/', =¥ is combined with term (2).
The third term involving + /% 2% is combined with (5).

Similarly (6) consists of two terms, one identical with (6)
and one which is combined with (5).

But the three terms (2), the original (2) plus the extra term
from (1) and the extra term from (4), add together to give (2)¢ "
The three terms (5), the original (5) plus the extra term from (4)
and the extra term from (6), add together to give (6)z . Hence
(6.45) = (6.46).

The method is clearly perfectly general. For example (6.43)
5 El... B2
to Bo, with the Fré&het differential computed by the product rule.

is a sum of multilinear functions on B2 Bl E2 El B2 Bl E

Fvery term involving JJéff[xsiJ is the same as the corresponding
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term involving %f;“ . Fach term involving JJRqML 1s combined with
~a term involving Fyéff from the §.1, the differential of the

matrizant appearing Just to the left of MR«4, in (6.43) and with
| a term involving-—Fxéé; from the differential of the matrizant
on the right to give l%ﬁ}z . The remaining terms of the differ-
entials of the metrizants L are N° |

This method can be applied to any term. We note that the

equality 5‘(6.42) = (6.42) - required a regrouping of the terms
resulting from 5'(6.42), but that it required no regrouping of |
terms arising from any other term in 5™ N. . This quality is
always true, so for each term T of J“mijLZ we have

(6.47) §'raT®
Hence
(6.48) Jlgm_lﬂf _ (ém—I_QZ )»4: (_()_:: ¢...(m-‘)...¢)¢: _(la,b‘ gofm)o k
which completes the induction.
Corollary 6.8.1. Under the conditions_of theorem 6.4 the vector

A(V> possesses the generalized Taylor series expansion

Al = iI+f %, JL_/L,,'Z Ixy2] | A @

Proof: The proof is immediate from theorems 4.4 and 6.8.

VI.G. The Fxplicit Formulae for 5?Jlt[y31]/ 5’J1:'U3£1
and 5T Ixz]

It is clear from the recurrsion formula (6.39) that successive
Fréchet differentials of —Q:: with equal increments z will be more
and more complicated. However, it will be of interest to compute

-
5?41& and ijlw for future reference. Further the recurrsion
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formula is simplified by the fect that the original and varied
directrices have the same end points. The first Frechet differ-
ential for the more general case where the original and varied
directrices have different end points was given in theorem 6.5.
It will be of interest to compute the second as well. We give

the first result as

Theorem 6.9. Under the conditions of theorem 6.4 the third and

fourth Frechet differentials of N Y g with equal increments gz

are giveh by

(6.49) 8200 [xs2l =2 [, Mo P gor RN P Y

- I o "
+ Sa/ dL . Po(.ot,_o(ao(., %’ 247'E'(5Z;°(7_Qw do +

’d/ /0., —!‘/3I 2
~I’3.J1 b-—O—/ir R"“’(L d""d'adl A& L, —IL'QL K@ﬁp% EﬁLﬂ: du +

__ s

31, N Ry A2 5 4y 8500 Rep M‘f N

l

A2
+35w-ﬂ-a R e, ot 0\"“' 2, 5 e, Fa. ﬁsﬁ_a' =2, Ay

Az
+3J’(p".—rl,¢, P°(l°(2_°(3 %‘Zdl 2“3014,} __{Z-,Q;_ /E/Jl/.%_&-’ ﬂ"-ﬂw &L“—L

+3.lja/‘r~n—: r[)-ul.“(v. %“lfdlﬂ[‘“lf ’—QQ R?’//g 41—3 gL"u ‘Sw “Q"QS

1
and

- - dad oy s o o
(6.50) sT0 0 szl = 3. o Pudasyoty Zc% 2262 N de+t

I 4, B 4 b5 g =
L’Iaﬂi‘ R/od‘d,)_”l%' ‘e Ja, f N4, Rﬁ,/a dz == PR I 77

—

- o " 4, A 01,2/3/ Bs B3 47'&[41'
§ S L Ra & 2 e, f, s Popps e 2 e st

2

- o LTI} 4, L,
g SWV’[L 2, Po(l"(:-"(& éé = “2 ?:‘G(J 0(4‘1 ya/ ‘—/2-/41// ﬁfsl/g” % l‘_ﬂl "[)"a/ ’Ld’?. *
s 2

{
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(6.50) cont'd.

o b o 4 3
+ b fw M p, R, %'E“L"L"’l J’wﬂtfﬁ’ﬂ‘ £s b '3 Pz _O_:Zhl_*'

A

L
é d’l &S o 4 4;
R Py S 0L R et s

1
P2

- & of - O
fa‘ __n.A. Pdl‘;_ 0(3“11 a(é_ %l%-ﬁ_ £°(3 2"(({ Enlh ___[l_a‘ 4[4/ +
{

- - o A4,
"fj‘a,-ﬂ-ﬂ-,fiu(,dv_{lﬁ‘.‘i*:_ aLd,ja__Q,d.b Ig 1/3/"4“ ﬂa ﬁ;i/.?q_[z-fz.ﬁ{d"—*

Lf _S' JLA, PG( o aely oly i’; Z 'Za(j -(‘Iﬂ[" fwdl—n‘/&v Rﬁ/’z_ - "QfLﬂu'L-i_

j2 fr 0% Rua, """ 2 M fﬁ'ﬂﬂpﬂﬁ,ﬁz ”"‘3 24 o‘af e

i Lﬁ(
o Ay 4
I?-J‘wb——n-: R“t"’- %, E“L J&I J’a— "QA" R/slﬂ?-ati’ LA" .S’ “‘[)—/4,3 R &X A‘“ ; LJL«,ZAQJ"'

?4

l?'}‘ __{Z"Ql R “LA;;‘(I dlA“i jajll—ﬂ— R,d, /4‘,_4&- ﬂ"aua J _D_ RY)’ j/::r' 3’:_’0.4344 +
3

#J Rd,’(zhl @, J'w e, e fﬁa_fLA;“m%x'JLAAa
./ —{L ¢ s 0’4‘ h 8 L, 3
Proof: The formulas (6.49) and (é. 50) follow immediately from
the dagger differentiation laws.
It is noticed that many of the terms resulting from the
dagger differentiestion are identical. Combining these like terms
gives the peculiar arrangement of coefficients in (6.50). For

example we note
(6.52) fﬂa, Rui & a5 du [ 050 R Salte e a, 1 R”M'z’hﬁi%f

S Ny, Ras, A"“ 2 0% Rﬂ,ﬁ;——’ S P nndt's ulﬁ%f

)

Ao A ¥ 5wy R _
fl':()‘ﬂ Rd 41%12‘*1-&4 fAI ” R £ 32 9_1'2(-& 2/3"4}" .Sw ‘ﬁ'ﬂ-a RX.XL% tx —[1@3}43_

5w, Al
f,ﬂ%IR444¢'d%4j Jl' #eL &;’ﬂ‘#zj ,ﬂAngxiL ALY BTN

3

Ra-yA % ?L__{l d‘-d..‘
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For the first of (6.52) is ( not writing the curvature tensor terms

or the terms summed against it)

- / l 2 2z
(6.53) [.7f, 0y Q% ded L0 de 87000 02 e,

Interchanging the order of integration with respect to t and with

respect to 4, gives

{ Il Az PR
(6.54) 1 0% ax fF 0 o [0 000 dan ST000 000 ey

which on renumbering the dummy parameters and inserting the curva-
ture tensor terms gives the same result as the last of (6.52).
Similarly for the other two terms of (6.52).

The second result listed at the beginning of this chapter is

Theorem 6.10. Under_the conditions of theorem 6.4, the second

Frechet differential ST [xt 2] is given by
(6.55)

5t 0, xsel =
T T o oLy 2y A ; °3
2 jn N, R, %,( 2% o, fw Nog, 4’\’/3,/31% 2B L " day +

r /
Jnr—ﬂ—/b R“u"LL%(Zdlﬂ-q'pr +
(N o A
JQ,JLA, Pq|«1x3 dp™ 24 %3 0, A
s

—2 (M 2% Jnl 0y R«,al %/ 2 Ny e +

T T o
+ 2 j‘h ﬂﬂ, Ri‘dz %'%dlﬂ:da /_13,(11) _er(n) +

4 v
M 28m g
dx?

4. Iy (’f‘) 2.0( (,T') F/A ™ 28(?') "n-:
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(6.55) cont'd.
- T [yilv) 2% -0—: f'p ) Zﬂ(n)‘*
T o A
Ly oy zim) Meo 2m +

+ g ) 5 Gy 2P
2v”

Proof: From theorem 6.5
(6.56) 5?.—_(]-1‘1 L] = Jliglﬂ}:’;} _
t)-/
5'”,{—(1: Ra(.o(,_%' 2 F do+ Ly Tamyztop+

— T (r) 2% Ny

Clearly (JLQE;L%*J is the sum of multilinear functionals on B, B
E1 Eo to By. All the factors possess Fréchet differentials, so
the right member of (6é.56) is given by the formula for the deriva-
tive of a sum of multilinear functions. By direct computation the

right member is

Zf: ﬁ—:, R a; %‘l" 2% la, J‘:’—QZ Rﬁ.ﬂ,_%&%ﬂL—-(L:ZAL + (1)

(657 T AT Py 44 100 fde + (2)
+J':_(L; R, A2 R Reg (3)
_.f:'Fxcﬂ'zﬁr)Jll:fﬁkaéE? 2% () Ny da )
AL e A e :
+J:ﬁ—: Ra, d, df; 2405 b )2 ) (6)

(7)

T
fﬂn My () z () la () 2 P(n)

I O ER I M A ERT) (8)
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(6.57) cont'd.

— My (1) 27w j;_n_}; fCuss %ﬁl = Ny de (9)
@ 2@ Mm et 0k (10)
_/LVQZ“M)ILgfuM)EﬁM) (11)
N M %E:—ﬂ@ 2% (n) 2" () (12)
- RN CELIC (13)

where the different terms are numbered (1) - (13) for convenience.
In the computation of (1), (2) and (3), the contributions due to
the parameters s in Jli.and.llq'are included in (2), but the
contributions due to parameters ¥ and 7 are given in (4) and
(5). The remaining terms are stmightforward. Adding all terms

(1) - (13) gives (6.55), the theorem.

VI.H. Applications to a Closed Directrix.

By means of theorems 4.4, 6.5 and 6.6 a shorter and more
meaningful proof of corollary 3.7.1 is possible. We give a lemma

first.

Theorem 6.11. If a vector, indicated by the column matrix A

2

is displaced by Levi-Civita parallel displacement about a closed

directrix, z‘:.x?(g) s if in meking the circuit ¥ goes from 3=«

to 3= , and if = x°(3)-2@) then the first and second Frechet

differentials of Arxi-] with inceement v exist and are given by

(6.58)

S'ALxyvitl=o0

- oy J¥1
55 '[X')V'Hr] = R"(."(wa ¥ ZKE: A% re)
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where Ry, , the Riemann curvature tensor is evaluated at the

point rte) .

Proof: Consider a closed directrix z"zj,c"(g) through the point
’Lé(ﬁ) = x(r) , parameterized so that x goes from a to b as the
parameter traverses the directrix. Then give the directrix
such an increment zL that /bb"l(g)-f-i."'(g)zxi(g). Then from theorems
6.5 and 6.6.

- “
(6.59)  S'atwsand=f g Rty 3% ) 2 da A

b_
S¥Acwyz el :L,—ﬂ-: Roz,dz_ ééf'a“lﬂffala_ A @)+
M

-
) 0 P, ’f;—’f’ 22 0t Ao @) +

- o A 4,
v, g R, 2 e sy, ﬂf;ﬂﬂ,p;f

t Le, 202 e, M)

2z

We now sheink the original directrix Mi(i) to the point uf'(o«) .
This implies that || w' ) —uwll=o . Hence ZL(E)"’ Vi(E),

Raa, [X(513 >R, x(0)]e In the limit 05 =T, % =0 , zt=v*
The only non-vanishing term of (6.59) is the first of J° )\ whieh is

51)\[x3_u*llr] = R a4, f‘r a

L 4

'UdLAg

which proves the theorem.

Theorem 6,12. If a vector )\ is_displaced by Levi-Civita parallel

displacement about a closed directrix =z“=x‘y) , and if <t goes

from a to |- as _the parameter point traverses the directrix, and

if Awy , A(r) are the values of A at x‘(ay before and after

displacement, then the principal term of the generalized Taylor

series expansion for the difference A(v)-N(2) is + 51)‘“”_} and




56

(6.60) AW)-A®) = {5 Ruw, [ a7yt dg v JA@

Proofs Corollary 6.8.1 gives the generalized Taylor series ex-
b
pansion. Since the directrix is closed, j;bv“lég“'dg ==LD§§9£“A}
z
Using (6.58) gives the theorem.

Corollary 6,12.1 Pérds Formula. If the directrix is an in-

finitesimal curve in the sense that /+*¢ll is infinitesimal, then

(6.60) gives the change A(v)-A@) . The change is the second

Frechet differential of ) with increment + .

Proof: From the definition of the generalized Taylor secies
expansion, each term is of higher degree in 2z than the preceed-
ing terms. Hence if [z[ = |vll is infinitesimal, the only con-
tributing term is the first non-identically vanishing term given
by (6.60). (6.60) is the equation usually discussed in texts

like Eisenhart and Thomes under "Psrallel Displacement About an
Infinitesimal Closed Curve®, although frequently a parallelogram
rather than a general curve is taken. It is a matter of simple
quadrature to reduce (6.60) for the parallelogram to the foem given
by these authors.,
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VII. The Tensor Chacactec of (L snd §°NL .

Parallel displacement is essentially a geometric phenomenon,
and is independent of the coordinate system. If the contravariant
vector A is displaced along a given directrix, the value of A at
any point of the directrix is independent of the coordinate system.
That is, the components of A in one coordinate system are related

to those in another system by the ordinary contravariant tensor

transformation law

(T el) _X {x) = ANLx(s)1= B(v) A Lx(s)] oF

(7.2) /\(3) = A(E)T(E)

Where A(), B(s) are the matrices of the partial derivatives

(7.3) A (%)= é%") : 2E ™
)= B =
o dx¢ - ‘B <ﬂx°)

where the direct and inverse transformations are given by

(7.4) Z = Z (%) , x=2x(¥)

It is seen, that as written, B(s)= 8[*!5]1and A(s)=ALZI¥]

23 R4
are functions on the vector space E, to B; . Of course (7.1) is

—

regarded as defining A Lx (3)] and might more fully be expressed as
(7.5) A LE®) = BIxLE(®IT A LrtE®]]

and (7.2) as

(7.6) \NIx)y = A Lx{x(e]) ALZ Lx(5)1]

Now since A (V) and A&) are related by theorem 3.2 as

(7.7) A= 07 Aw@

23. See theorem 6.2.

2o See section IV.A.
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it is worth while to enguire into the tensor characteristics of
,fLi . We seek the relation between _fl;:EKIZ.Jl: E‘“&éﬁ?;g]
and _fL;ftil :Jli't~fk€%%{1gj . One approach from a different
point of view has already been made in theorem 3.5.

Theorem 7.1. If a vector )\ 1is displaced by Levi-Civita parallel

displacement along a directrix x‘::xf(g.frog -g:a_vgg t=( and

if A@) », A(v the values of A .at §=a,l respectively are related

by the equation A()= NY X¢a) then the materizant function _N Y

is a two point tensor with base points %(4) , x(t) , contravariant

.of order one at x(l-) and covariant of order one at i)«

Proot? The following equations hold in the x and X coordinate

systems.
(7.8) A= QL 01 A

(7.9) A= L rRIAN@W

where the bared terms are the functions computed in the bar co-

ordinates. Using (7.5) in (7.9) gives
(7.10) B (W AW = N, L] B A)
on multiplying on the left by A()= B7'()

(7.11)  AlY) = AL NUrRIB@ A

Since (7.11), (7.8) must hold for arbitrary vectors A («)

(7.12) Al = AlY) S IXD B

But (7.12) are the defining equations for a two point tensor, base
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points x(a) , ¥ () , contravariant of order one at xz(l) » covariant
of order one at X (a), which proves the theorem.

It is clear that the parameter limits may be anything in the
range of definition for ¥ . Hence we have by the same proof

Theorem 7.2. If a contravariant vector A is displaced by Levi-

Civite parallel displacement along a directrix 1":;"(5) from F=a

to g=t and if A (n) , A+) are the values of A at f=y and

=7 respectively, are related by A(™)=_) A(x) , then 0¥t forms

a_two point tensor field with base points xz(n) , x(+) contravariant

at x(r) , covariant at x(y) for all 7x,~ such that a<y, +<( .That is

(7.13) 1= A 3 CE] By
Note that the theorem is valid even if =% or #%n>7 , since
Ql=T and _af aX=I & ol =(ar)’

However, Si_n_: [x,z] does not have such general tensor pro-
perties, as is shown by the following theorems.

Theorem 7.3. Let a contravariant vector A be displaced by Levi-

Civita parallel displacement along z‘= x¢(3) from F=4 to $=( .

Let _n r be the matrizant function relating the values of A t

—a and = b /\Ur)?-_ﬂ:: A@. Let the directrix be varied to a
b3 and 3= by

nex directrix with the same end points %(«) , x(&) and with egua-

tions z=x*(g)=%x(s)+=2(¥) . Let genr Lx;z] be_the ith Frechet dif-

ferential of _nY with equal increments _z. Then dJ“[l. [x,2]lis a

two point tensor with base points x(), X(k) for all z in E, contra-

variant of ordecr one at x(t) and covariant of order one at =z(«) if

and only if the transformation o = X (¥ is_lineac.
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Proof: The theorem will be proved by induction on the order of

the Fré%het differential. The right member of
b= ol W
(7.14) L, 0x1 =AWy L] B

is a trilinear function on By By By to B, , where By is the above
defined Banach space of square matrices of order n whose elements
are continuous real numerical functions of one real numerical
variable, and B2 is the Banach space of square matrices of order

n whose elements are real numerical continuous functions of two
real numerical variables. Hence if A , 8 , JQJWRJ each have
Frdchet differentials, the differential &' [x;2] will be given
by the formula for the derivative of a trilinear function. But
A,B are matrices whose elements are differentiable functions of

X and x, hence their Fré@het differentials are the ordinary differ-
entials. Hence § ALx3Z] and J'BLx;z] exist. But since %Ia%=Z(H=0,
because of the end point conditions on the directrices,

S'ALE;2 /1= §'B Lx;21=0. Fucther since ¥ (&) is a differentiable
function of x, 'z W exists and is given by the ordinary differ-

ential, in matric notation

(s . =
(7.15) &5 LR ¥~ Sl

Hence using the composition theorem for Fréchet differentials
(7.16) ' nkixye1 = AW 5' 7o [R5 'F (652)] B @)

= AW J' LS LXK Bz] Be)
But Bz=% if and only if the transformation is linear. For if we

expand - %z (¥t %) we obtain
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= - 3 % q L= /a
(7.17) X (xtz)= XZ(x) +Bz +higher order terms involving 9 X 28.¥

D xPIx ¥
X +Z by definition.
Hence
(7.18) 2 = Ba ¥ higher order terms involving QiEf 2827
&P k¥
Hence

(7.19) =2 =B=
if and only if the higher order terms vanish, ie, the transformation
equations be linear.
Hence, if and only if the transformation is linear, then
(7.20) J'0L 1xy21 = AW AL LR 2] Beey

Clearly, if the transformation is linear, and if we make
the induction hypothesis, then in equations (7.14), (7.16), (7.20)
we can replace ,Q.Z by 5i_tili and J' LY by E , and all
equations will be valid. Hence JéJlﬁixﬁ]is a two point tensor.
This completes the induction.

Conversely, let us assume that S%Jlt is a two point tensor,
without assuming that SN is a two point tensor. Then we can
weite

(7.21) 5' 0L [x,2] =A F' L L EIB+ A Q) [K 41 B
where %==5’flﬁd%1‘ Z . Then

- - -, .
(7.22) 0N e z,q A S LS LEGEE]BY 2AS" N, X32341 6

A SRS 17y 8T (xa)] B+ AdRl(Edyixel B
‘+A55&f[23533] B
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: -
Hence since a”“_a,,, Lryz52d is a tensor, the last four

terms of (7.22) must sum to zero. Of these four terms, the second,
(7.23) Ags' nLx;d'zx2]]B

is homogeneous of second degree in z, and the others are)if not
identically zero, of at least third degree in z. Hence the
second term is linearly independent of the other two, and must
vanish independently for all z. But (7.23) vanishes only when
5'1 [xy2] wvanishes. But this implies that = Dbe independent
of x, or that the transformation be linear.

Hence, if St tx;z32] 1s to be a tensor, the transform-
ation x= %(x) must be linear. An identical type of argument
holds if a'i'_{)_: is & tensor. This completes the proof of
theorem 7.3.

Similarly, if and only if the transformation Z=%(x) is
linear, then JL_Q: [x;z] 1s a two point tensor. For differ-
entiating the results of theorem 7.2

(7.24) d' Ny txzl = §'Axyz 6110, LR1 Bog+

Al L1 L3) 8 B ezl +

Alr) 5' A% LX;0'Z Layzl Bin)
If i‘L\:icu)is linear, then J'A=86B=0 since A and B are
matrices of constants, and further, gif[xsq_,_‘( =Ba=%2 . If the

transformation is not linear, then 5’A(f,\-)1¥0 unless T=( ,

J'Buk0 unless Y =a .
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In a manner similar to that used in theorem 7.3 it is then easy
to show

Theorem 7.4. Under the conditions of theorem 7.3, the Fréchet

differentisls of the matrizant JLJL: [x,z] are two point tensor

fields if and only if the transformation of coordinates %« =%z (x)

is linesr.
The situation is entirely different when the change in
the parallel vectors is caused by warping the space as in chapter

V. In this case we have

Theorem 7.5. Under the conditions of theorem 5.2 éLJlZ LM d Ml

is_a_two point tensor field, contravariant of order one at =z (t)

and covarisnt of order one at x(&) .

Proof: I , the coefficients of connection in the bar co-
ocrdinates are Fréﬁhet differentisble functions of /= with incre-
ment Jdl, . For, the equations of transformation of the co-

efficients of connection are, in component notation

Floapt 9x™ et dxT 0% ox*
(7.25) Tse mr TS Yz dxt VoiE  dxb

/ L=
Clearly the Frechet differentials d I [My3d /%] exist and

are given in matric notation by

(7.26) J’f% Ll 6M 3= B s, A f%g'

1.2y Sl Telmehil=0 L

and

(7.28) Falls FMI=Telrl =8 Tp= B ASE = 5T [ry07]
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Now differentiating the equation corresponding to (7.12),
and using the composition theorem for Frechet differentials

(7.29) N el =AW NLLF] Bw

== & I I = . "
(7.30) d'L Lryerl= A s AFLA &' FLryar]] B

= AWSALLAyTF]Bw@

Since A, B are independent of [, , the differentials g'A ;
5'B both vanish, hence no terms in?olving §'A or &8 occur
in (7.30). However, (7.30) is the defining equation of a two
point tensor, contravariant of order one at %(t) and covariant
of order one at x(a) . This proves the statement of theorem 7.5
for the first Fré&het differentials. The proof for 211 differ-

entials is by induction, using a step by step proof which is

entirely similar to that used for the first Frééhet differential.



VIII. The Classification of Riemannian Spaces by Their Degree.

VIII.A. The Concept of the Degree of a Space.

It is a common and useful practice to classify plane
curves by their degree. The degree of a curve, when it is
expressed parametrically, may be defined as the order of the
lowest order derivative which vanishes for each coordinate
equation and each parameter valueza. Plane curves may be of
finite or infinite degree. Similarly we seek to classify
Riemannian spaces by means of the Fréchet differentials of
parallel displaced vectors with changes in the directrix as
increment. Spaces of zero degree are spaces for which the
first (and hence all higher order) Frechet differential of an
arbitrary vector vanishes for any and all directrices and
variations. Spaces of degree one are spaces for which the first
Fréchet differential of some vector for some directrix and some
variation does not vanish, but for which the second (and hence
all higher order) Fréchet differential does vsnish for any and
all vectors, directrices and variations.

In general, a space of degree m is one for which the mth
Frébhet differential does not vanish for some vector directrix
and variation, snd the (m + 1)st Frechet differential vanishes
for arbitrary vectors, directrices and variations. A space of
infinite degree is one for which no Fré&het differential vanishes

for arbitrary vectors, directrices and variations.

24. O0Of course the parametrization must be in terms of an essential
parameter. y=t3, x=t3>-§ is only a first degree curve,
even though the second and third derivatives do not vanish

for this parametrization.
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Because of the dependence of the displaced vector on
the matrizant function, this problem is equivalent to classi-
fying spaces according to the vanishing of the Fréchet differ-
entials of the matrizant. We now seek these conditions.

VIII.B. The Conditions for the Vanishing of the Frichet

Differentials Jijlz Lxyz]

Theorem &.1l. Under the conditions of theorem 6.4, the neces-

sary and sufficient condition for the vanishing of 5'JLZ Lxyz]

for 211 directrices =z‘==x'(3) and varistions z‘=2(s) in

an open region D of the space of definition is that
/3n5= O

at all points in D. R,i= 1",

Proof: From 6.19
(8:1) §'0% cxsal = SFNL Ruw, &2 02 do

Clearly, if Ry «, vanishes,, so does (8.1). On the other hand,
if (8.1) vanishes for all directrices and variations, it
vanishes in particuler for the directrix and variztion

(8.2)‘x£(g)arbitrary except in the neighborhocd of Z (%)
%é(E)': 2 (5) i =4 Rl Ry n 5 FlE 28
2R(gy = x2R(5)+(3-5) Rwnipes I5-5.] €2¢
2b i3m0 | Ealyes ot 4o m
23(5) =0 T 4 Fomg oL E>E+2€

e+ E-%, T-£ £ 5 ¢ ¥,
=g ¥.5F £ 5.t
= Ft2E-% FHE S FTE BEHZE



We illustrate (8.2) in Figure 8.1 a, b, c

| = 2%
Fig. 8.1 a
<
Eo-z'ﬁ‘ Eo | §0+Z£
Fig. 8.1 b

-25: ij(g)

l Joee %o Er2e
Fig. 8.1 ¢

With these directrices and varistions,

1 r ) ok S.r2e b L
(8.3) 4 L, tx32] fgo—e Lo R“M‘L % ‘Z'—dL_O__t de

_ e StE [ :
=)l dleRej 27 N7 Ao

(not summed on 4 )

If we expand the matric terms in a Taylor series about %,

we have

(-
(8.4) Jﬁle [x52] =L Rni(gg.lli°-2,gl4. O (&?)

67
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where O(€®) represents terms of degree 3 and higher in €
Since we may take & as small as we please,

(8.5) Ny Rpj(n)n =0

But -IL§;and N.%° have inverses Jlf and 41;: respectively,
since -JL;:Jli°=17. (This result follows since Ny, -N3° 18
the matrizant describing the displacement of & vector from
<, to - and back to ¥, , which leaves the vector un-
changed.)

Hence,

(8.6) RpjIxlzi=0

But %(%.) is an arbitrary point. Hence an vanishes every-
where. The openness of domain D guarantees the existence of
the curves in Figure 8.1 in D for sufficiently small & .
This proves the theorem, since R4 can have any values 1,

O..’ n.

Theorem 8.2. Under the conditions of theorem 6.4, the neces-

sary and sufficient condition for the vanishing of the second

Frechet differential, S5°_NL [x;2] for all directrices x%s)

and varietions z%(s) in_an open region D is that

(807) R‘RJ':O

everywhere in D for A= 1, ,n 5 4= Lyw.

Proof: If Rp; =0 everywhere, then from theorem 8.1
5f11£'txgaj vanishes and hence so must éJLQi'ExgaJ « The proof
of the necessity of the condition is similer to the proof for
theorem 8.1. The two special functions for 2 (gz) will be



sketched only in Figure 8.2 and not described analytically.

-]
] Ng)
3,,—'5 é’., | 5+2¢

Fig. 8.2
Let the directrix be given by (8.2), and let
(8.8) z' = ;”og)
2t =4 (%)
Z> = o
w2 D

=z

Then from theorem 6.7

s o
(5.9) 520 Dagay = L0 Rue 4w e+

+ L J).A, 12,u da%{’;“‘z"@ﬂi& o3

e Rut 2 day o Ml Rﬂ,ﬁa— 2P e,

7_

We expand the matric terms in Taylor series, obtaining
(8.10) 3%t [xiz] =

X §°+£ ° 4 / 4 0o
ﬂfoﬂ”'_n‘a«f‘go (%%_i%)o[’a—-{— *
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(8.10) cont'd.

I~ - Faté
-+ J)"fo Pn oly g —-(Li

L
fo-é % % 3d4+”' r
T, t2E

L
[ 3.
+2! Ny R, Rrg, 12 “rf.:ﬁ

fed o 4

Use is made of the skew symmetry of ,thL in , j«, in the
first term.

We consider the integrals of the first terms of the three
series in the right member of (8.10). We are interested only

in order of magnitude with respect to &€ . The first integral

is of order ¢£° , the second of order &

order €' . This can be verified by direct computation or by

3 and the third is of

noting that the order is unchanged by changing the curves
slightly as long 2s a term is not dropped or made infinite.
Hence in the integrals in the second and third terms of (8.10)
the functions gii' may be replaced by the step function
z'(y)=0 I “<F.
28(%)= & €, & §<5.tE
A T E,re< 8
The third integral of (8.10) is then of the same order as

q

T 1& A &
and the second is of the same order as

> 3
(8.12) j; il

o
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and the first, with no approximation, is

(8.13) f§§°+&—£ol4_ ~ _ gt

All the deleted terms will be of larger degree in
than the first term in the series in which they occur. Clearly
then the lowest degree in & appearing is the second. Since we
may take & as small as we choose, the coefficient of £° in

(8.10) must vanish, to wit,
b A
(8.14) Ny R (x)0Z=0

L
Hence as in (8.5), (8.6), since T, is arbitrary and {ly |,

_fLE’ have inverses,
(8.15) R,.=0 everywhere.

But the variation could have been chosen similerly, but
differently to give any permutation of the subscripts on Qwudl .

Hence
(8.16) Rpy =0 everywhere

for 21l values of k, j. This completes the proof of theorem 8.2.

Theorem 8.3. TIhe necessary and sufficient condition for the

vanishing of 53_ﬂ_: for all directrices xécg) and varigtions

'13(5) in an open region D of a Riemannien space is f?ﬁ3==0

for 2ll k,J =1, .o, n and all points in D.
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The proof of theorem 8.3, while along the same lines as
the proof for theorems 8.1 and 8.2, is rather more difficult.

We define for future use as values of % the curves

(8.18)
I
| /\# &
Eg'& fa éo"‘ZE_
2
E{ /\j (s)
) go-g- go . ée*'zé
1
1 J\j "
6 3. Rt
Note that each function £%x),c =L, 1is the same as every
other function except in the range t.2 3 ¢ 35.+¢ and in this

range, 4 (%)= . The procedure will be to choose

(5-3.)°
gt
particular varied directrices so that z“(s)= {’e(s) or zero.
The matric terms in the differential will be expanded and
factored out of the integrand. We particularly note at this

ﬁ 0
stage those integrals involving é_{__éilb[’(g)which are summed
4%
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against a term which is skew symmetric in k and J because of
the skew symmetry of Re; in k, j. For such integrals any
contribution of égﬂ*i) f‘}g) will cancel that of é;tﬁﬁ) 21’6
over the region =, +& ¢ % £ §,+t2¢ . But from the dagzer differ-
entiation formules (6.33) and (6.37) for the different Fréchet
differentiels, the only place %” appears is when summed
against the first index of Rn\; or some term in the P,ad...ﬂ
series. The other indeces are always summed agalinst a term
dz”
i

ol

Z. . Hence only appears in an expression

("L%d B_42°2%) since Rag s Pup... y are all skew symmetric
in o(ﬁ . Igf 2 / (g) and 2" —/ (g) the parenthesis term
vanishes over TJq+& £ % ¢ 1,+2¢ as noted above.

These functions, {"(g) all different, are so chosen that
the degree in € of any single or iterated integral of any com-

bination of them can be computed at a glance. For example

(8.29) p2otE yligdy = et Q=
*3

|
™

= Se" L=2

= (711—+¢*'|i> S

7 §
and hence is of order ¢ for each ¢ . Similarly,
2&8+%, { : L
OL 3 o e =
(8.20) f_wo L £ () { i)y =35 6

ds

and hence is of order £° for all ¢ . Further

2E+E, i 5, ]
(8.21) [ q f s L1 495y dy,
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is of order €% as is easily seen by direct computation, or by
changing the curves by letting the portion in the range

3 +6£%=5,+2¢ approach perpendicularity. This does not change
the degree of the integral in ¢ , but makes it easy to inte-
grate at sight. The rule for computing the degree in & of

an integral is given by

Lemma 8.3.1. In the proof of theorem 8.3, an iterated integral

consisting of « integrations, g functions zng)defined in

(8.18) and y derived functions £ with limits o, on the
= 4 =

last performed integration will be of degree o«+g8 1in & .

Proof': chm the above discussion, if the integral does not
involve %—éb we may vary the {A(Tg) so the curve 2("63) drops
perpendicularly from & to zero at F,+& and is zero for 2all
larger ¥ . This does not change the degree of the integral

in &€ , since the integrands are all positive. Then it is clear
that each fﬁ introduces a term which on the final evaluation

of the limits is of order &£° . But each fi is divided by aéﬁ,
so the net contribution to the degree by each fi(g)is one, in-

dependent of i. Fach integration similarly increases the degree

by one.
;
When #f (8) occurs in a term, the net contribution to the
A% .
degree over §,& % £ f,+¢ will be zero, since 44 %) is of degree

. dg
one less that f‘(g) . From an above argument, in the region

L HEL TEET2E the contribution will cancel that from another
term. This proves lemma 8.3.1l.
(=
From (6.49) we now consider 83N ixz] for the particular

directrix given by (8.2) and variations 2° chosen from (8.18).
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We expand the matric tecms in (6.49) about ¥ =%, obtaining

. - s
(8.22) ¢ Paady N5 =ALg Pawoy ()05 +
lr °
+ g, R dyoy (Eo)f)-cf 0‘7’/‘:“' (3-3.) +

%
g
. R yu .
b g, Py oy (5 L —i—;—; (5-5) +

L8 P g (5) A Y L v
e g (30) 1 TE T (3-3,) +

4 e

L
(8423) Mg Py wwuyuy Nlp =
b— ©
Ly, P, oty oty ety (5)La +-

We consider a sample term in an iterated integral in

some detail, since it is more complicated. We discuss the term

which may be written

-p% b «
(8.24) [ [ g R (5) 115 R p, (5.) N %'z“?s,)%ﬂ’ 2"ty ds.ds,

Now we expand the matric function of ¥, about %, .

(8:25) 0§ Ruw(5) 05, Rp s, (5,) o™ =

- 3
"ﬂ—S, m":"; (EI) ‘Q 5o {Rﬁlﬂ'—(F") + IDﬂ/ﬂ"’/j3 Af-ﬁz (I") (EL-.Eo) 4
k]

z

Bs | @
4L Pasn,p, 2P e\
21 (5 Y Afz, TEL (—gx §0> +

2 B 2
+L, a s &2 (5,-TY -
Agb
jar

+..‘



Similarly, expanding the mateic functions of 3, in (8.25)

about 3, we get

(8.26) ,ﬂ_;‘ R, (3 Mg Rp . (%) el

.ﬂ;a R Kol (Eo) Qﬂtﬂz (Ea) _[)_fo +

I
+ :2.';0 R"(l °<z. ('.E") P/o‘//gz—ﬂﬂ Cfu) —Q-fc i¢§ ’ (g'n:g") +

A

5o
+,Q_%: P, oy %5 (50) R /3 (5.) Nz i—f—: (S-T)F

+ e o o
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The matric terms are all expanded in a similar way about

¥, » giving for the expansion of 53_Q,,,l”[x;a]

- oplb f 20 o o
(8.27) §P0L Lxsel= g, Putody 07 fTAE 22 dg 4

- s s f g o
+ g, Pudatsay ok f A2yt S T (g ) dr +
° ds 4%

I’ o ' s> 2
b A B A 2 I r )y

o
J‘lral.% '%""- in(a Juzx"‘/

2
2 e o (3-%) dz+

b o
+—é—'_(l_sb th"'d‘f-ﬂa’

—+

ol o,

(™ -
g, Py gy A S G a2 s

b oL o of
4 —Q;’ R o L. %' 2222 "j.”‘;f(s-f,)df +

[ Fo ("9!,4"(1 oy %3 440\4"("%“‘ e b &
+?'!D_§° sty g’ s Latetz o 4 (3-%.) 45

- o L-ch"(l o, o3 ey d_?'x’(‘f _ L
+2"'!‘n‘§° P"(."""f L, ,ra. Z[EE & E Agz (%-5.) Jg*‘

4+ -

(1)
(2)
(3)
(4)

(5)
(6)
(7)
(8)



(8.27) cont'd.

- A ' X ol, td= ﬂ?_
+4 3y R Roa, L5 {0 27 1 71? ds.t (9)

- oL, oz '§‘ ﬁl A
*Ja % 2y, [ AR ey, T

-
b 5o N § A,
+ 3—0-30 R*t*z P/st/}z. B3 —Q& if& =7 AE il;:‘?_l ﬁ 3; E)AEL(]—O)
lroLin g E’Mﬂ‘ /')"-"L)‘ 4 4
+ o ;{E, z AY, jw EZ z ;gl (§1—§°> .gz_ } +
- 5o b-d./,ﬁo(‘ 0(2_0[74015 4 EIA';_A{ Ba le ¥
+3’Q'S‘, Pd‘d"‘(J Rﬁ,/gz ’Q'fv {fa, 'Z?— z ‘IE-_ (E“Eo) ‘Elfa’ d—:—-g‘ z g,‘ (ll)

L2t b ds, [Sdef Ay 14
Az 2T 22 (5,-%,) ot "z Frdy
& 3%, 45, e A%, -

+.-n

a

, LA
4+ 3_[)_; R"‘n“z Pplﬁlﬂg_f)_i J’m %'1“"1’5.}‘5%'8’ Eﬁlz/j3d§z_+ (12)

b.
+ 3"0' R“‘A“’L P /i —Qio A«‘ “L /3’ ﬁa @
ga ﬂ ﬂq f 5{ f A”L h ‘/(EL‘EG)AEZ'+(13)
[i2
+ 3l Fu oy Po,p, 8, g"fw j’;' Ko™ ’(E. Eo)algf aL)l LA e (1)
ST

by
- 5o A"l oL, 3 18
++ 307 Paaty Rog,ap §, L2z ds, [T’ A
50T TR e dy, J A¥s 4%, (15)

’otz. BN E’ol%/a’ B2
+3ﬁ—§ oy R/s,/%,_—n-a.. fw ;r— z Tf, (5.-%.) gl'ﬁ'}‘gbi dyg, + (16)

| z ! 8 2
'*'3‘[15' Pucty 45 73, 8, 85 fdﬂ 2 4y F"’ io;’ /JMB(EL fu)ds + (17)

teoo

77
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(8.27) cont'd.

- el ¥
++ 3[ -ﬂ-f. Rdl °L?- Rﬁ«ﬁzRﬂYz’Qf ja, é{;li‘(z AE' .J‘a.’% AZAELJ aﬁf' Fl‘lf‘*(lg)

43100 Pty R R A,
Mg, Bty Ry, 28 [ i’; 2% A,:s(g E)Agf A«ﬂ, ﬁLAIJ.M‘ s + (19)
S ody Bi By P
31.(15 Rat, P py R, Q5 J‘ A¢ Sy j’ w 8 A,L 5 (E go)dg,_J' éi 2 dy + fon)
31&“"(“ Rap, Peyoy, Q20 l’éjf‘z‘g J" ’Ap 2P 4% f‘w. L A
+9°% “Lg, 2 ML TN Y o ), 43, N el A (%5~ 3,) 4%; + (21)

Foee

Note that (8.27) is the sum of several series; Fach series
is started with a double plus sign, and the first few explicitly
written terms of lowest order in £ are written with a single
plus sign.

Since d>Ml. (x;z] is to vanish for all directrices and
variations ié , it vanishes for the directrix (8.2) and
variations taken from (8.18). We compute all the integrals in
(8.27) and collect terms of the same degree in £ . Since ¢
is arbitrary, the coefficient of £° &zu-,eﬁ'n must vanish,

In particular we see that term (1) is the only term of
degree three, and that no terms of lower degree exist. Hence
(1) must vanish. We write (1) in detail
(8.28) __ﬂ_go Pey . ot (z)_ﬂ_F"f "—l—g-' 2 dy

on expanding the summations in (8.28), the terms fall naturally
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into groups where the indeces ,4.,«; have the values 1,2,3;
1,2,43 +++3 D=2, n-1, n. There are (%) such mutually exclusive
groups. Without loss of generality we may discuss the first

group only. Expanding the summation, this group in (8.28) be-

comes
b '
(8.29) S’ﬁ‘;o P, _D_agf 3 %—E 2223 dx+ ()
(- > %o L-A ll ZZ 2;1 d.g +
S Sy, Proa o E (B)
- )
. dz! 223" A +
oy, R AL g B ()
b /
¥ Az _ 2-454- (D)

[y P 8L G 2R

¢l p, o f4Ee s "
where Af stands for the sum of all terms obtained by giving
the indeces 1, 2, 3 all possible (six) permutations. The tecrms
have been lettered A - E for convenience.

Now because of the skew symmetry of P, ,. in al , terms
D and E vanish. If we choose variations z%=0 , terms A vanish
and [ is only over [,z . We choose four sets of variations

2f) .=,z from the f ™ of (8.18) as follows:

(8.30) , , 7
E = ) {.3) f ) f ?
. & " 11
35 = f y f 7o f
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With these choices the statement that (1) of (8.27) or (8.29)
&anishes for these four variestions yields four homogeneous
linear matric equations in four unknowns with non-venishing
determinant. Hence each matric term .Ilgo Pisz Mg

__Q_; P, > ,IL; P, JLE s JL? Pri» 3 must

vanish. Since Jl: has an inverse, this implies
(8.31) Rk{ﬁ =0

when any two of the three indeces k, J, 1 are the same, for
|, 2z might have been any pair of indeces.

We now assume 2z 30 , but 220 for ¢ ¥3 . Then since
we have shown terms B, C, D, and E of (8.29) to vanish, we con-
sider term A, which must also vanish.

We evaluate the integrals for the three choices of 2 yL=12,3

.Z' %I ) f& ) %7—
(8.32) 2?. {7- %3 f?&
3 Y ’ s

z? =4 4 f

)
Recalling that the integrals from F,+¢ to §.+2&¢ all cancel,

i

il

the integrals in (8.29) are, for these three cases,

i ii iii
f é—_ g{‘g = 53/(, 63/3 ‘53/3
Az
“dz 22dy = e 53@ €%
%
ran i s o Thse
aE
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Equating (8.29) to zero for these three variations gives three
homogeneous linear matric equations in three unknowns with non-
vanishing determinant. Hence each matric term vanishes.

Since ,Q_g has an inverse, we conclude that
(8.33) Rest Pz, =0

From (8.31), (8.33) and since we could perform the same
analysis with any other triplet of components, and since FPrjL
is skew symmetric in R4 , [rel is skew symmetric in all three
indeces. For adding

Pipsg+Piap =0
Porz + 231 =0
which are valid from (8.33) gives
f3z +Pys, =0
which shows skew symmetry in R £ of /fkji . Hence
(8.34) I,y 1is skew symmetric in each pair of indeces Ry, ki, ;L .

Now since I%JL is completely skew symmetric, for g1l
values of x, T in the space, all derivatives of -fl;‘FLMLdsJQE
are completely skew symmetric in %, &.o; . Hence any term

involving FRy.. which is summed against an expression

N

oLy o3

2 must vanish. Hence all the terms in the series (1),

(2), (3), (4), oo of (8.27), and in the series (5), (6), (7),

%

(8), ... vanish giving no new necessary conditions.
The term of lowest degree in € remaining is (9), which

is of degree four. (9) is the sum of two terms which involve
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different iterated integrals. In the first term, %% appears
in the first of two iterated integrals, and in the second term %é
appears in the second. By choosing the directrix as in (8.2)

then choosing a similar directrix slightly differently paramater-~
ized, (9) will be the sum of two terms with different coefficients
for the two cases. Since (9) must vanish for each case, we con-
clude that each term in (9) vanishes sepafately. We write the
first term in detail.

ko 5 8
b 5. oL, ! d_ ! B,
(8.35) 3 _ng Rd,o(,_ R(a,‘,gl. -n—a. fw ;FE_,‘ = (Ts',) ’{El fa, ;t—:' = (EL)A.EL:O

As in treating P«Aij s we choose different sets of 2 such
that, for a particular 2% , we obtain from (8.35) 27 linear
homogeneous matric equations in 27 matric unknowns with non-

vanishing determinant. Hence each matric term vanishes and
- (8.36) s Rym =0

for 211 values of kj, 1lm.
Condition (8.36), however, implies that

(8.37) R =0

For writing (8.36) in component notation for 1 = k, j =m, (not

summed on k, j) gives

2

(8.38)  RL g Ry py =0

That is, the matrix Agj must be nilpotent of order two.
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Let us now choose coordinates which at x(s.) are orthogonal.
This is always possible, since picking n mutually orthogonal
directions at a point is equivalent to picking a self polar
tetrahedron with respect to the quadric 9§ 5‘3J in an n-1 dimen-
sional projective space. In general, these coordinates will
not be mutually orthogonal everywhere in the space.

In this coordinate system, at x(s.),
. o T
(8.39) Gy = Sxe g and %L° = 3°chi then
(8.40) Rp;= R'e ry = 3" Rncr; (not summed on r.)

Since /3n¢m3 is skew symmetric in r,c, so is /E% ky o Then

(8.38) may be written
o m m n ™ , Z
(8.4,1)“‘2_ R*m}ajfta*aj:“g:/<Rm'ﬁJ>:0
m=1

for those terms for which ¢ = r.

But if the sum of squares of real terms vanishes, the

terms themselves vanish. Hence

|
S

(8.42) R, . =

at X(%) . But %(%.,) can be teken as any point of D. Hence
(8.42) holds at every point of D, and is a necessary condition
for the venishing of J3M, Lx32l,

But linﬁ;mj::o for all points is the necessary and suf-

ficient condition for the vanishing of 611L5[J3%j, which is s
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=
sufficient condition for the vanishing of 33J)-a, [x;2], Hence
the necessary and sufficient condition for the venishing of

s3nYx2] for all directrices and variations is

(8.43) RIEJ =

at all points of D. This completes the proof of theorem 8.3.

In general, the same condition will hold for the mth
Fréchet differentisl. For, from the dagger differentiation law,
and the same type of argument as in theorem 8.3, at least one
necessary condition for the vanishing of the mth Ft'e/chet dif-

ferential for all directrices and varietions is of the form

(8044) /Ep_J' Road =+ '?cf =0

where there are [ =-] factors in (8.44). [m;'] is the great-

m+l

est integer conteined in —- . In particular (8.44) holds

for FK=¢ = oo =¢€3 J=d = ...=F and R is nilpotent of

mtl
2

/
2P [™'7125%" | 1f Re; s nilpotent of order [”H] it is

nilpotent of ocder 2°" . Then, if q=2F , let

order [ . Now there exists an integer ¢ such that

o(’o__,,'

(8.45) Beri= Ru oy R, ns ' Reaj and
(8.46) A7 R » ry =0 ( not summed on k, J).

On choosing orthogonal coordinates at %(s,) U:,zj is sym-

)

metric in n« . Hence (8.46) can be written,
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(8.47) Z J:\f("m jj:nj =0
For ¢ = ¢ (8.47) reduces to

(8.48) 2 (bzns)?‘:O
A
and hence

(8.49) B Xr; =0

(8.49) and (8.45) imply that Rg; is nilpotent of order 2.
Continuing the process leads to the conclusion that

(8.50) Ry =0

Hence we have proved, since sufficiency is obvious from theorem

g.1,

Theorem 8.4. The necessary and sufficient condition_ that

SNV [x32] given by (6.39) of theorem 6.8 vanish for all

directrices ‘(%) and variations Z}(E) in an_open region D of

the_space of definition of =%,z is

(8.51)  Mpy=10

everywhere in D for all k, J =1, ¢ce, n and allm=1, 2, ...

VIII.C. The Classification of Riemannian Spaces by Their Degree.
From theorem 8.4 and the fact that

(8.52) S Alx;=)l] = 8L Lxpel A @)
we have

Theorem_8.5. Every flat Riemannian space_is of degree zero and

all other Riemannisn spaces are of infinite degree.
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IX. Applications of Matrix Theorems to Displacement About

a Closed Directrix.

When the directrix is a closed curve, the displaced

vector
-

(9.1) AR = g A
is located at the same point as the original. Hence_JL: has
the effect of a rotation of A into A(Y) . This geometric
fact leads to
Theorem 9.1. If, in a n-dimensional Riemannian space, a

contravariant vector, indicated by the column matrix A\

g I

displaced about a closed directrix, z¢ =x‘(s) from T=a

t=t , x‘@s=x‘) and if the values of Acw), A(v) acre related

by (9.1) , then the determinant of the matrizant function is

plus one. In symbols,
(9.2) | gl )=+l
Proof': Since the length of an arbitrary vector is unchanged
under parallel displacement, in component notation, the square
of the length is .
(9.3)  qog N0 X = g5 AL e R M Ao
= 4 rg M) M)
Hence
(9.4) 95 —Qalf;i N f = Jre
Taking the determinant of both sides of (9.4)
(9.5) lal-12l1* = /3] and
(9.6) laslt =1
(9.7) | S ] =%

hence
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But parallel displacement does not change the angle
between two displaced vectors. Hence, an orthogonal ennuple,
or set of n mutually orthogonal vectors, displaces into a new
set with the same orientation. Hence the plus sign only holds
in (9.7) which proves theorem 9.1.

We seek next the vectors which have the same direction to
within sign before and after displacement.

Theorem 9.2. Let a contravariant vector A be displaced by

parvallel displacement about a closed divectrix x¢=x‘(%) »

Then if n, the dimension of the Riemann space, is odd, there

are exactly 1,3,5,..., n=-2 or n linearly independent vectors

which have the_same direction, to within sign, before and_after

displacement. If n is even, there are exactly 0, 2, «¢ce, N=2,

n such linearly independent vectors.

Proof': We regard the components AL as the n coordinates of

a point in n-1 dimensional projective space. The matrizent
N2 1in (9.1) describes a linear trensformation or collineation
in the space. A fixed point, As , will be a solution of the n

linear homogeneous equations in n unknowns,

b G- 2 o
(9.8) pAs = Ll A,

The necessary end sufficient condition for the existence
of such points is that the determinant of the coefficients
vanish.

(9.9) lpT--nc|=0

where L is the unit matrix. This condition is an equation of
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degree M in P s hence has n roots, real and complex. Since
complex roots occur in pairs, there are exactly 1,3,..., n-2
or 0,2,4y.030=2, n real roots as n is odd or even. Every root,
i« » on substitutionin(9.8) gives a vector A« which displaces
into the wvector ﬁlkq o Since parallel displacement preserves
length, fx must be * | , or complex. Further, since angles
are preserved, the elementary divisorsz5 of the matrix must all
be linear. Hence each real root of (9.9) yields a distinct
nfixed" vector A. , and r distinct real roots yield r linearly
- independent vectors. Since complex roots occur in pairs, this
completes the proof of theorem 9.2.
That linearity of the elementary divisors follows from

the preservation of the angles between two displaced vectors is
proved by the following contrediction. If there is an elementary
divisor which is not linear, there will be fewer than n linearly
independent vectors which assume their original directions.
These, say n-m, vectors determine an n-m dimension space, S,_» ,
and by subtraction determine an m dimensional space, S» . All
of the vectors of S, are orthogonal to Sy.m . Since angles are
preserved, each of the vectors V, in S, displace into a
vector which is in S, . Similarly for the vectors Vw-» in Syuom.,
Hence the transformetion determined by the matrizant function
must be the direct sum of two transformations, one in the space
Sn-m and the other in the orthogonal space Sm . Since every

collinestion has at least one fixed point, the collineation

25, Bocher, M. (1)
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in Sm has at least one fixed vector. But this contradicts the
statement that there were only n-m fixed vectors, end hence
contradicts the sssumption that at least one of the elementary
divisors was not linear.

Theorem 9.3. Under the_conditions of theorem 9.1, there are

an even number of the vectors of theorem 9.2 which return to

their original direction but opposite sense.

Proof: It is shown in theorem 9.1 that I-l&1=+ , Let the
coordinate system be so chosen that the real vectors of theorem
9.2 lie on some of the coordinate axes. The relation (9.1) may

then be written

(9.10) AL = Alce)

(V) = }\L (o)

et

N =2 (@)

)\L:“'J‘(b,) = - ,\‘:“(a.)

s L‘+_).'£‘{ re . ) NE o
+y+l - = Ly I
)L J (_l/)" w } LA.) r > J

\
¢

n k
>\'nf ([,): L(),t /\(_A.)

where the first i vectors are those returning to their initisl
direction and sense, and have components 0,6, ,0 3 01,00~ 03 ete.
The .j vectors returning to their initisl direction but opposite
sense have components o,-, 6,1, 0,»,0 etec. The n-i-; linearly

independent real vectors which span the remaining space do not



\
]
O

return to their original direction. However the M-t -3 rowed
determinant |wl= +I from the same type of reasoning as in
theorem 9.1l. Since
(9.11) 105 ]=end 60" lwl=+l
j must be even. This completes the proof of theorem 9.3.

On using theorem 9.2 and 9.3, there follows immediately

Theorem 9.4. Let_a_contravarisnt vector A Dbe displaced about

a_closed directrix by parallel displacement in a Riemannisn

space. Then there are exactly 1,3,5, ceey D=2, N OF 0,2,hyecs,

n-2, yectors which return to their original value as n is odd

or_even.

Clearly if two or more vectors return to their original
direction and sense, any linear combination of them also does.
Similarly any linear combination of vectors which retuern to
thelr original direction but opposite sense also returns to its
original direction and opposite sense. The two groups of vectors
are quite distinct, for

Theorem 9.5. The vectors_of theorem 9.2 which return to their

original direction_and sense are orthogonal to those which re-

turn to their original direction but opposite sense.

Proof': Let A Dbe a vector which returns to its original
direction and sense and A, be a vector which returns to its
original direction but opposite sense. Then, since the angle
between A, and A, 1is unchanged by parallel displacement,
(9:12)  qus AL AN W) =~ gig MW AE (@)= Gej At @ AL &

But this implies
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(9013) 6"5 )\I; (a) >\°2_ (_‘a) =)

and hence A, and X, are orthogonal.
If such "fixed" vectors exist at & point of & directrix,
they exist all along the directrix. In fact

Theorem 9.6. If A is a contravarisnt vector which returns

to its original direction either with or without the same sense

after parallel displecement ebout a closed directrix in Riemann-

isn space, then every vector parallel to A\ on being displaced

about_the directrix returns to its original direction with or

without_its original sense, respectively.

Proof: If A(®) 1is parallel to A at some point %(®
then

(9.14) Ae) = LD N

If A) is displaced once about the directrix and the curve
parameter ¥ goes from ¢ to 4, then

(9.15) M@y = 0% A = 0% 0S Aw= AL A@

_ ot ot aw=t 05 A=t A

where the positive sign occurs if A@) returns with the same
sense, and the minus sign occurs if A@) returns with the op-
posite sense after being displaced about the directrix.

Use 1s made of the fact that

(5.16) ¢ =%
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KXo Extension of the Theory to Tensors of Types Other Than

Contravarient Vectors.

The entire theory of the previous chapters clearly extends
immedistely to tensors of types other ﬁhn contravariant vectors.
For the sake of completeness we indicate how this is done and
prove some of the theorems corresponding to earlier theorems.

Theorem 10.1. If the contravarisnt tensor 'tés_ of rank two

is displaced by Levi-Civita parallel displacement along a

=

directrix x‘=z‘(s) from =« %o v=& and if £“Yw) and £

are the values of t% at y=-« and s=-( respectively, then

(10.1) t (W= i m [‘Fedie]_ﬂa, [ 451 27 )

(not summed on a,b)

where (10.1) is written in component notation, ie _qug’[—ﬂQ%EQJ

is the component in the rth row and cth column of the matrix

b~ e

Proof: The equations of parallel displacement for a contra-

variant tensor of rank two are
L3 l R m : ./Z
10.2) <t - _ gL AT ™ ARy

We may now integrate equations (10.2) by successive approxim-
ations in exactly the same way as equations (3.1) were integrated.
The verification of the result (10.1) involves interchanging
orders of integration and certain theorems in combinatorial

enalysis. The proof, while simple, is tricky, and becomes rather
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complicated when extended to tensors of order greater than
two.

A different proof proceeds as follows. Consider the
particular tensor
(10.3) T = 2
the direct product of AQ&) » Af(g) two éontravariant vectors.
On displacing e along the directrix %C:mx%g)we have that
T must satisfy

(10:4)  gpd AN 5y a8 dud

Az A dz
. K "
= —Pur 22 A"~ T ”—i"— A
A¥
C R N R e
s oy B g™ oy S &
mp dg [ Fn/g A}'

which is the same differential equation as (10.2). But from
(3.5), (10.4) has the unique solution at T =(

¥ j [ 2
(10.5) T “w)= A 2 B it 75 (not summed on a, b)

Since t%Y  satisfies the same differential equations as T 3
the theorem is immediste.
In an entirely similar way,

Theorem 10.2. If 2 contravarient tensor of order p, 48R

b

is displaced by Levi-Civita parallel displscement along a

directrix 2¢= x‘(3) from t=a 30 T =(, then

(10.6) ¢ R g % -Qal::,_ﬂ_,ff: t“‘(‘;)ﬁ (not summed on a,b)

where there are p indeces L 4

e /Z)'d‘)x)"‘ 3
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Now clearly, ¢“%" * [1.F] considered as a function
of the matrizant -4 is & multilinear functicn on the Banach
space Bp of square matrices of order n whose elements are real
continuous numerical functions of two real numerical variables
to a new Banach space whose elements are sets of elements from
B,. Hence by the composition theorem for Fré%het differentials,
Theorem 10.3. The Fréchet differentisls of sny order of t‘*“f;)

given in theorem 10.2 exist and are given by the appropriate

formulae by means of (10.6) and the theorems on Frééhet differ-

entials of a multilinear function and the composition theorem.

Theorem 10.3 is clearly valid for both the Fré%het dif-
ferentials resulting from warping the space and from varying
the directrix.

The details for covariant and mixed tensors are only
slightly different from those for the contravariant tensors.
For & covariant vector, , , the equations of parallel dis-

placement are
dug _ R OMP
10.7 g2 = [ 22 Me
(10.7) 4~
which can be written in the mateix form
10.8)  due — 0 [T dw?
( as ag

Equation (10.8) differs from (3.3) only in sign and order of

matric factors. Therefore, if

(10.9) TZT“PE: nrk [G’%%gj transposed

we have
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Theorem 10.4. If a2 covarisnt vector, represented by the row

mateix M is displaced by Levi-Civita parallel displacement

in a Riemannian space along the directrix 74"‘:)4"(5) from 3=a

to 3=t , and 1f s ) , y(r) 2re the values of 4 at §=q, -

respectively, then

(10.10) UK) = Y () LT

where 7;”0- is_the transpose of the matrix JLE [ e ‘if:]. Further
Theorem 10.5. All the theorems on the Fre/chet diffecentisls

of a contravariant vector under parallel displacement have their

counterparts in theorems for a covariant vector oo These

theorems_are obtained by interchenging —/k for 1% trans-

posing all matrices in the theorems for A and replacing A

bY K
We state the further theorem

Theorem_10.6. If a mixed tensor t;i is displaced by

Levi-Civita parallel displacement along the directrix 242 x(%)

from t=a to §=( , then if 2779 (), £, () ,are the

values st t=a and =0 respectively, then

\“‘ . b_L' (r’J‘ m..,P b‘; ll‘n_
(10.11) % (0= Aen Dl bg n WU G Uay

and all_the Frechet differentials of tf?',',',j'z (+-) exist _and are

given by their obviocus formulss.
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