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Summary 

This thesis is a study of finite parallel displacement of 

a contravaria,nt vector according to Levi-Ci vi ta' s di f ferenti al 

definition. The interesting featu~es of such displacement 

are shown to depend upon the matriza,nt function, ...D...~ [-f1~ ~ie.J . 
J. i 

The precise dependence of the matrizant, and hence the dis-

placed vectors, upon the coefficients of connection of the 

space and upon the directrix of displacement is studied by 

means of the Frechet differentials of the matrizant. This 

is done both by warping the space, and by varying the 

directrix. 

Since parallel displacement is a geometric phenomenon 

it is not surprising that the ma.triza.nt turns out to be a 

two point tensor. However, the Fr~chet differentia.ls of 

the matrizant are two point tensors only under rather 

special conditions. A second surprising result is that 

only for flat spaces do the Fr~chet differentials of any 

particular order produced by varying the directrix vanish 

for arbitrary directrices and variations. 

The interesting case of a closed directrix is discussed 

in some detail. In particula,r the 11 fixed 11 vectors are exam­

ined, where "fixed" vectors are those which return to their 

original direction a.fter displacement about the directrix. 

The theory is shown to generalize immediately to tensors 

of any order and of any type. 
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I. Introduction 

The problem of parallelism has fascinated geometers through­

out the history of mathematics. Euclid faced it in his famous 

fifth postulate, and Euclidean par-allelism remained the standard 

until the nineteenth century. With the development of Riemannian 

geometry as a generalization of Euclidean geometry it soon became 

evident that no generalization of the notion of parallelism could 
l · 

be devised which had all the properties of Euclidean parallelism. 

This thesis will be concerned with that generalization proposed 

by T. Levi-Civita. 
2 

Levi-Civita suggested a differential definition of a gener-

alized parallelism with the property that if a vector is displaced 

parallel to itself a.long a geodesic of the space, it makes a con­

stant angle with the geodesic. However, such vectors do not have 

constant components. The change in the components depends in 

general upon the coefficients of connection (Christoffel symbols) 

of the space, and on the directrix curve followed in displacing 

the vector. We shall examine this dependence of the displaced 

vector on the connection of the space and on the directrix in some 

detail by means of the theory of Fre'chet differentials in Banach 

spaces. 

A substantial amount of study has already been made of Levi­
/ ' 3 Civita parallelism. Peres found the change produced by displacing 

1. For a discussion of several types of generalized parallelism, 
see Whittaker (1) 

2. Levi-Civita (1) or see any text on Riemannian geometry 
J. Peres, J. (1) 
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4 
a vector about an infinitesimal closed curve. Dienes has inte-

grated the differential equations essentially by the Liouville-
5 

Neumann method of successive substitutions to obtain the change 

produced in a vector by displacement over a finite distance. He 

determines the change produced in the displaced vector by changing 

the directrix an infinitesimal amount. Applying his result to a 
6 / \ 

closed curve, he obtains the Peres formula. Appel quotes Dienes 
/ ' and determines the Peres formula on taking the first terms of the 

7 8 
Liouville-Neumann series. Eisenhart and Thomas find the change 

produced by displacement about an infinitesimal parallelogram by 

considering infinib~simal vectors for the sides of the parallelogram. 
9 

Duscheck-Mayer also integrate the differential equations by the 

Liouville-Neumann series. 

The contributions of these authors can be summarized in two 

statements. First they have indicated the solution to the equat~ons 

of parallel displacement. Second they have displayed the local 

dependence of the displaced vector on the space by integrating the 

equations about an infinitesimal closed directrix. They have dis­

played the local dependence upon the directrix by making infinitesimal 

changes in the directrix. The difficulty of treating a function ex­

pressed as a system of series of iterated integrals has probably 

inhibited more thorough treatment of the vector displaced over a 

finite distance. 

4. Dienes, Paul (1) 
5. Whittaker & Watson (1) 
6. Appel, Paul (1) 
7. Eisenhart, L.P. (1) pp. 65-67 
8. Thomas, T.Y. (1) pp. 38-42 
9. Duschek-Mayer (1) 
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Much of this difficulty can be simplified by regarding the 

system of differential equations of parallel displacement as .a 

single matric equation. The solution can then be expressed by 
10 

means of the matrizant function . This technique is used in 

chapter III. Some of the earlier results are developed and a 

tensor expression for the displaced vector is given. 

A discussion of the Frechet differential properties of the 

matrizant as a function over a Banach ring is given in chapter IV. 

By means of these properties of the matrizant, the change in the 

displaced vector as the underlying space is warped is discussed 

with examples in chapter V. 

A similar change as the directrix curve is varied, the space 

remaining the same, is discussed in chapter VI. The existence of 

the Fre'chet differentials of the matrizant as a function of the 

directrix with the change in the directrix as increment is proven, 

and their generating for:-mula is derived. 

The tensor nature of the matr:-izant and its differentials is 

discussed in chapter VII. 

In chapter VIII spaces are classified according to their de­

gree, where degree is defined in a manner comparable to the degree 

of a plane curve. The surprising result is obtained that spaces 

ar:-e of zero or infinite degree as they ar:-e flat or not. 

Vectors which return to their original position after parallel 

displacement about a closed directrix are discussed in chapter IX. 

The theory is extended to mixed tensors of any order in chapter X. 

10 . Fr-azer, Duncan and Collar (1) 
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II. Notations, Conventio!ls, and Elementa.£.r_Theorems. 

In this chapter are listed the general conventions which are 

followed in this thesis, and the elementary theorems on Frechet 

differentials which will be used. 

II.A.Coordinate sistems. 

are generic coordinates in then dimensional 

Riemannian space. Where no ambiguity results, the index i will 

frequently be omitted, as in "the coordinates x" or "A, a point 

function, is a function of x". 

II.B.Summation Convention. 

When an index appears twice in the same term, once as a 

superscript and once as a subscript, that term represents the sum 

of n terms obtained by giving the index successively the values 

1, 2, ... , n. Parameter values, on the other hand, are not summed. 

It is usually clear from the context when a symbol is an index 

and when it is a parameter value. A note is made wherever there 

is danger of confusion. 

II.C.Tensor-Matric Notation. 

The matric notation is used to reduce the number of explicite­

ly expressed indeces. The quantity with n2. components, B ~ 

may be represented by the matric symbol B . In the matrix 

the component B~ appears in the rth row and in the cth column. 

The product of two matric terms A,B is the matric product, 
I 

( )
n.- A'\, r.i..,., \I. ie AB ~ :::. ')t1, '-'t • The contravariant vector A is represented 

by the column matrix A . Similarly if a mixed quantity has more 

than ni components it is represented by a matric term with indeces, 
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foe- example, the coefficients of connection re,: are Wt'i tten rte. 

Where ambiguity may result from the matric notation, the indeces 

are inserted. The term is then said to be expressed in "componentTT 

notation. 
I II.D. Fundamental Theorems on Frechet Differential~ . 

.An ordinary differential exists for numerically valued 

functions of a numerical variable. The Frichet differential is a 

generalization of the ordinary differential to functions with 

values and arguments in normed linear spaces. 

ential is defined as follows. 

/ The Frechet differ-

Definition 1. 

Let P (AJ be a function on the normed linear space £3, to a 

normed linear space Bz. • Then if for A=Ao a function cJ
1

F'[Ao•JDJ 
a:n.d. l-f 

exists which is linear in D~for Din some neighborhood of the 

origin of B 
1 

, and H 

(2.1) p [Ao-tD]- F'[A 0J- 5 1 P [Ao'>DJ = /1D1/ • E.[A.) DJ 

and if // c. lAo > DJll➔O as II 011 ➔ 0 then J'F[A.>o]is the first Fre'chet differ­

ential of P LA] at Ao with increment D . Higher order Fre'chet 

differentials are successive first Frechet differentials . 

Theorem 2.1. If the Fre'chet differential of F existh_i! is_given 

bJ:: the Gateaux_differential 
F l Ao +- >- D} - F [ A.,] 1-

( 2. 2) X F'fA.~DJ = L,·'-\ t .:.._::__-:-\--- J 
). ➔ 0 /\ 

Formula (2. 2) is frequently used to compute J' F' [A 0 ; DJ . The 

existence of the Fre'chet differential is often proved by showing 

that the Gateaux differential exists linear in D and satisfies 

(2.1) for Din some neighborhood of the origin of B1 • This proof, 
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/ 

of course, also furnishes the formula for the Frechet differential 

cf'F= I F . 

The fo l lowing elementary t heorems on the Fre'chet differ-
11 

entials are listed without proof 

Theorem 2.2 

I 
If the Frechet differential of a function F[AJ exists, 

it is unique. 

Theorem 2.,2, A finite linear combination of functi~ Fre'chet 

differentiable at A O is itself Frlchet differentiable at Ao 

Theorem 2.4 Chain Rule. Ir B1 , B2, B3 are three normed linear 

• 

/ 
s12aces, if s

1

, s
2 

are 02en......§_et§. in B
1

, B
2

, !! Pl AJ is a Frechet 

differentiable function on s1 to s2 with differential J ' F' [ A 'i DJ 

and if ,tl [T] is a Frechet differentiable function_on s to {3 
2. - 3 

/ 

with Frechet differential & 'jj [T; s] , then ~ [AJ .Q!1 5
1 

to 13
3 

defined by ! LA; =- ,t [FCAJ] is Frechet differentiable with differential 

(2.3) 

Definition 2. Multilinear Function. 

A function P [A, 1 ... > A p] of p variables A,> " 'J AP on B1 , ... , BP 

to B where B1 , ... , BP' Bare normed linear spaces is called a 

multilinear function if Fis additive in each variable and if a 

real number M exists such that //FLA,> , .. ; Ar11I {:; M-JIA,11 : llA,.ll· .. 11/.\rll 

_!heorem 2. 5 A mul tilinear function P [ A, 1 • • 1 Ap] ,12_0s sesses a Fre"chet 

differential with increments D,) ... ) Dr:i given by 

\ I F [ A, • ' ' A • 1) • • • 1) J = 0 ) J I' ) I) ) f' F'[ D A ... A ]-t- F[A D ... A,,]+ .. ,+ ' > .. , ) (' IJ '- J ) ,-

11. Michal, A.D. (1) 
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Notation for the Frechet Differential. 

The first Frechet differential of a function F of a vat'iable 

A with increment D, which depends pat"ametrically on the para­

meters 5 , 11. is wt"i tten J' Fe"'; DI s,1] , The i th Frechet differ­

ential with i inct'ements D1, D2, ... Di is Wt"itten 

rF [Aio,; D2- i"•jDi, /s,~] . When all the increments are equal to D, the 

ith differential may be written o L f[.AjD.i s >tJ When no ambiguity 

t'esults, the parameters :S ,l'\. and sometimes even A and D will be 

omitted, writing the ith differen t ial simply as J iF . 



III . Integration of the Equations of Levi-C_!.vita Parallel 

Displacem~nt. 

III.A.The E,91!?,tions of Parallel Displacement of a Contravariant 

Vector as a System of Ordinary Dif ferential_~guations. 

Let us consider a general Riemannian space with generic 

coordinates x. Let a new system of generic coordinates x be de­

fined by the equations 

J-, = ,£ (,:,) 

where the functions x(x) possess first order derivatives and 

the inverse functions x = x(x) also possess first order deriv­

atives. A set of n point functions ),/ o:) > i.-=-1/",n are said to de­

fine a contrava.r-iant vector at the point x if the functions 

in the two coordinate systems 3,re related by 

\~Cx) = A\x.> d x-l,_<x) 

~ t,..l 

The functions '>-" (x.) may be defined at a point only, along a curve 

or over any other suitable domain of definition. 

8 

A set of such vectors defined one at each point of a directrix 

curve -,:./::. ,/c5) are said to be Levi-Ci vi ta parallel if their 

components, )..'\x) , . satisfy the system of differential equations 

J, >,i __ r.1., ,.\j &..Je. whe"'e 
.;.-- - J~ Cl L 

, J, 5 s 
I, 

A [ ,c.C~)J are the components of the vector at the point x ( 5 ) 

(3.1) 

,i (5) is the point with coordinates x1 ( 5 ) 
' ' 

y/ == x.~(~) are the parametric equations of the directrix 

with real numerical parameter, 5 . 
~ are the derivatives of the par·ametric equations, .r :: I, ··) it. 
tls 
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are the Christoffel symbols of the space. They 

are also called the "coefficients of connection" of the 

space, and are symmetric in j,Je.. 

In a gener-al, non-Riemannian, space, the coefficients of 

connection, ri i.l'l , need not be symmetric in il, j. In such cases 

two different definitions of Levi-Civita parallelism are possible 

·as one writes ~~ ,\J 
J.,,,I?. or r l A 1e, ~ · in (3 .1) . The theories Ts J /2. dg 

of the two definitions are completely similar, and when rd.lie 

is symmetric they are identical. We shall consider only the 

one definition, (3.1), in what follows, and shall assume sym­

metry. Many of the theorems generalize immediately to the more 

general non-symmetric case. However, since we do not pursue the 

non-symmetric theory, there will be no distinction made between 

those theorems which are valid only for the symmetric case and 

those which hold more generally. 

and A~ are functions of the parameter 5 by 

virtue of the directrix equations. For example 
ll::: ~ hJ. 
ls a,}; ; Ti 

It is sometimes convenient to think of a set of parallel 

vectot"s as being generated by an initial vector which moves 

parallel to itself along the directrix, rather than of the set 

of vectors as a whole. Such a vector is said to be displaced 

parallel to itself. The set as a whole is said to be generated 

by parallel displacement of the initial vector. This viewpoint 

will be generally followed in this discussion. We seek now to 

integrate equations (3.1) so that, given an initial vector, 

·~ [_ )(. (Cl.. lJ , we can determine the vectors, ).. L>< tt)J , which are 



parallel to it at different points ~(t) along the directrix. 

The solution of equations (3.1) has been given by many 
12 

authors . In order that this discussion may be self contained 

we also give the Liouville-Neumann series solution to (3.1). 

Theorem~ Let a contravariant vector, A , be disElaced 

10 

' 1.' ' 

par-allel to it§.elf alpng th.§ direc.:t;rix ,x,'-::: J:. (5) . ~ ,\tc11.) ~ 

a set of predetermined constants.i_ the ini tia.1 va.lues of the.-.£Qm­

ponents of t\ at ;ti(a-) • Then th~~lues of >..' (t) , the ~.Q!!!­

ponent§ of ,,\ at :r, (t) are given i!L.!:h§_region of convergrn 

by 

(3 :2) 

- ... 

where f ~-1c, [x ('s)] are the coefficients of connection of the space 

eval:lli!~d along the directrix. 

Proof: (3.2) is the Liouville-Neumann series solution for the 

defining equations (3.1) 

III.B. The Eguations of Parallel Displa.c_§ment of a Contravariant 

Vector as a §ingle Matric Equation. 

We may consider (3.1) as a single matric valued equation 

vl>- === - r re b-1e Ji 
tL"5 .Ls 

where }. is the column matrix of the components of the 

vector being displaced. 

12. See introduction. 
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f .-n, is the square n x n matrix of the components f~~ • The 

suppressed lower index indicates the column position and the sup­

pressed upper index indicates the row position of the term fe~ 

in the matrix fn.. • Note that it takes n matrices, k-=l, ... , n 

to list all the coefficients of connection. 

r ~/?. 
re J..~ 

is the sum of n matrices, each of which is the square 

matric product of a square matrix, f-1e 'by a scala.r point function, 
&,_n. On the other hand, r,e ~ is the column matric product of ti 1 

• 

·a square matrix, f ,e_ , multi plied on the right by a column 

A . We note that it makes no difference whether /\ or 

is first multiplied by f~. That is 

(3. 4) (rri i\/?_)A = ( rfl A )*It 

The solution to (3.3) leads to 

matrix, 
~le. 

d:g 

Toeorem 3 .2. Let_.a contravariant vector A be dis£laced paralle+ 

1-Q_!tself along the direptr1,~ -;:,;, :::: ,/cs). Let }.. ("--) be a column - ---- -
matrix of predetermined constants, the initial values QLlhe £.Q!11-

~,Q!!fil!ts of ~ at ~(~) . Then the column ma~rix of_sQmponents 

Qf. A , A ( t) , ·at ,:: lt) are ,given in the ~onvergence bI 

(3. 5) A (t)-= _n_~ [ _:_ rtl 1/· , sJ A (IL) 

where the matri·zant functi.Q!l ..IL! of an n x n matrix A (5) itself 

-a function of the pare.m~t~ ? is given by 

(3.6) t ' l'tA l rs A( ) .:1, +•·· _n_!, [Als1= 1 +Jo., Acs)t1-5 -+-J/}., ('5) s Ja.. ~ 

where I is the unit matrix with one's on the m,2-in diagonal arul 

zeros elsewhere. 

Proof: (.3.5) is the rewriting of (3.2) in matric form, and hence 

is the solution of (3.3). The theorem follows f rom theorem 3.1. 



III.C. 1llustra~.!.9n. Parallel Displacement on a Sphere in 

Ordinary Three Dimensional Euclidean Space. 

III.C .l. ~cement Along a Parallel of Longitude. 

12 

Theo.rem 2•2.• Let coordinates J:,- 1
} x.2. be chosen on a sphere in three 

dimensional Eu~J:Jdean space with -r.,' the colatitude ~ ;t.z... 

the longitude. Let a vector A be displaced by Levi-Civ,! ta _par-

allel dj.§p~:?£.§ment alsmg 'J-2. == constant from ~'=-a.. M ,:,'-=- -t . 

Then ). (o..) and ),., (t) the values of )... fil z1 = ct) t resp_e_gti~l!.J_~re 

related by 

(3.7) 0 

Proof. If r is the radius of the sphere, the metric on the 

sphere is 

(3 .8) 
""l.. 1.. ' 'Z. I ,I.,~ 2... 

JA, i. = n, '- h' + it., ~ f- IJVr 

13 
By direct computation, the two matrices of Christoffel symbols 

are 

We may take -xi to be the parameter 1 along the directrix. Then 

(3 .10) cl:y,~ - ~l'c..:: [~ where - J.,r,t I,, 

J.5 
6~ 

I, is Kronecker's delta =I> k=-1)==-o k:¾-l 

Computing the matrizant from (J.6) 

13. For formulas for computing the Christoffel symbols when the 
coordinate lines are orthogonal, see Michal,(2) page 98 or 
Eisenhart,(l) page 44. 



Substituting (3.11) in (3.5) gives the theorem. 

In component notc.tion, (.3. 7) is written 

(3.12) X Ct)= X (a.) >.2 ( t) =- ~ Cc ,,\ z. (c,_) 
~"t 

14 
The computation can be checked by means of the theorems that 

13 

parallel displacement along a .geodesic changes neither the length 

of the vector nor the angle the vector makes with the geodesic. 

If I Al is the length of the vector, and if e is the angle it 

makes with the geodesic, then since a parallel of longitude is a 

geodesic 

(3 .13) 

(3 .14) ~ 0(o...) = '/,. I (o..) -----j>,o.i 

Al (t) :::. 
• >--' (o..) ::; ~ 8(0..) 

C)}1., 8(t) -::. - I >- co..)\ I ,,\ (t) I 

III. C.2. Displacement Along a Parallel of Latitude. 

Theorfil!L_.l.:.4. Let coordinates f' ,?~ be ~hosen on a sppere in three 

dimensional Euclidean spa.ce with y.,' the colatitude~ y.,2-

14. see Eisenhart, (1) cit., page 64. 
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the longitude. Let a vector~ be displaced by Levi-Civita 

parallel displacement along 'l-
1 = constant from '2-

2~ a.. to 'X-2.=t • 

Then A (ci..) and A (t) the values of >. at ,x 1= a., t respectively, are 

related by 
ChO..., [ ( t-tl) ~ x.'J 

(3.15) 

~ [(t -o...) U-12., 1:.' 1 

Proof: We may take ~z to be the parameter along the directrix. 

Then 

(3.16) 

Computing the matrizant, using (3.9) and (3.6) 

n t [- r1 i:4- n.. ' l.J = T ( o , 
_.ll-o., R.. ~t.. -,. - (t-a.) {!..(rl,,,')<. 

~x' 

(

• - ( t-tL) 1.. C,.b/4., .. ..,_, 

+ 2. ( 

0 (3.17) 

- .,iv...x' ~ [(t-u..) w-,i., X- ' J - ( C,.6/4- [(t-u_.) U-4.X 'J 

- ~ [(t-"-) ~ ic'J 
~ )[./ 

Substituting (3.17) in (3.5) gives the theorem. 

III.D. A Tensor Expression for the Integral of Equations (3.3) 

Parallel displacement is essentially a geometric phenomenon. 

Therefore the results should be expressible in tensor form. We 

sha.11 do this by means of normal coordinate theory15 for spaces 

15. For normal coordinates see Thomas (1), chapter 5, or Veblen (1) 
chapter 6. 
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for which r~ can be expanded in a Taylor series about~ <~> • 

Theorem 3.,2. If a contravariant_yector, indicated_py the column 

matrix /1. is dj.§_placed by Levi-Civita para.l_!el displacement alo!)g 

a directrix y, i ==- ~ \ "'5 ) from 5 =a.. to 5 = t , if the coefficients 

of connection r fl can be expanded abo!tl_ ,:, (a.) in a Tailor serie.§, 

and if A(.i.\ A Ct) are the values of .A at :t.("--); -x:. Ct) respectively, 

then 

(J.18) 

where I is the unit matrix, A.Jr, j , AY?.i L 
16 

, are the matric ex-

Rressions for the normal t ensors of they:Qace evaluated at 

)'., (o...) and ~ J [xJ are the funct;i.ons of y., defining the transfQ..!m:: 

~tion ~_;= :\~ i:.-'(J from generic to normal coordinates with Q_!:igin 

lj J [x.J are functions of s by reason of the directrix 

Proof: From (3. 5) and (3. 6) 

(3.19) A (t)= [ r-1 t rre ck\tg +l ~,e, k1cA sJ r ~ J./"J-r - . •• } ,,\("--) 
a., iJ.r "' d5 ~ J-r 

We may now transform to normal coordinates ~l with center at 

x(a.) • We place a prime I over terms which are evaluated in the 

normal coordinates. 5 , of course, remains unchanged. (3.19) be-

comes 

(3.20) /(t)= ~I-Jtr; b_f\L5 + J t:r ' h fl 15 J1r:._ c½""1-r -· ·• };\<a..) 
L O; J. -g a.. ti Ti° a.. d../J-' 

16. see Thomas,(1} pp. 102-105. 
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Now we assume that the coefficients of connection, r~ 
can be expanded in a series about the origin of the normal co­

ordinates 

(3 .21) 

, 

where r~ (o) and the different det'ivatives are all evaluated at 

the origin. But at the origin of normal coordinates, 
I 

f-1e (o)::: 0 

(3. 22) 

where Aie, j are the normal tensors of the space 

(3. 23) 

- o . 0 

The. law of formation of terms is readily seen. If in (3.23) we 
~ t / ' • ~ - / 

represent J(µ A .. • ~ ••• ':) Xi" J5 where A • • · has 1n, indeces by the number 

11'v , and integral composition by indicated product, 

(3.23) may be written 

( 3 . 24) '/ ( t) :::: [ I - [ 2. + 3 + 4 + • .. J + [ 2.. + '3 + 1./ + • .. J [ 2. + 3 + 4 + .. • J +-

- L,_2.-t3 + 4 -+ .. ·J [ Z. + 3+'{+ , .. J [ 2 +3 +tf+ .. · J-1--

+ [2..+ 3 -t · ·· J [ 2. +3-+··J [ z. + 3+ ... J [z. -t3+ • .. .J- , .. } 11 <o...) 

On changing back to generic coordinates, (3.23) becomes the 

conclusion of the theorem 
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(3.18) 

where the ~ 1., are given as functions of "J,, by the equations trans­

forming the generic into normal coordinates. We note that the 

normal tensors are constants with respect to the integrations and 

could be 

Further, 

written outside the 
. ' 

since ~ :: J~ at 
J y.. te 

integral sign if desired. 

--,:.,i(a) , A'reJ·=A1ej. 

In general the functions -;t, (x) in a transformation of co­

ordinates are scalar functions of 1, . However under a transform-

a tion £ =- ;£ (x) , the normal coordinate functions ~ CX) undergo 

a linear transformation iii= u; J 1- .\().,) where the partial derivatives 
J J cl ~J 

~ i~ (o.-) 
c);. J 

are evaluated at ~(~) . Hence the integrands of (3.18) 

are mixed tensors of rank two evaluated at )'., (a..) , the origin of 

the normal coordinates. The tensor indeces, of course, are sup­

pressed in the matric notation. 

Theorem 3.; shows that the tensor expression for A{t) ma.y 

be quite complicated. Hence it is worthwhile to seek some re­

ar~angement of the result (3.18) which may make a more usable ex-

pression for A (t) Such a rearrangement will now be given as 

Theorem 3 ._§.. If a contrav9.:riant vector 2 _ _:i:,ndicated b;y: the column 

matrix ~ is dis2laced by Levi-Civita 2arallel di§_£lacement along 

a directrix to I= -t , if f11e Exes)] can be 

expanded in ~a Ta~lQ_r series @out r,(a.) and if ,.\ (a.) :fil.!Q ,,\ (-1::) 
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are the values of }I at g ca., , and 5 -=-"t- res2ecti vely, thEfil 

(3.25) 

where the matric term 'T1 "-- is homogeneous of degree r in th~ 

functions l;'.i~ [}:] 'T,,__ ~ given bx the table 

To - I -

(3.26) 'T, - 0 -
t tt ~r 

T .. = - Are,· J ~jcx-J q___i_ LX.J 11 
.I /µ ~ 1-f' is 

S
t ' Q d le c:4,P 

rr3 
::: - A t'lt j· ~ J [ X] ~ [ x] ~ [ x] - J_ 5 

~ 0 ,- f d, 5 

rr-: ' Jt j ' f Ii, cl l'2 h, f J. - - A f?, ~ j h,, a, ~ [.x ] ~ Lt ] ~ [ x] ~ [ xJ - - 5 
J 1.J' d5 

• 

' Tt' "homogeneous of degree r in the functions ~ [x] n 

means that multiplying each ~ 1. [xJ in '111'\, by a constant o<. is 

equivalent to multiplying Tn., by o<.l\., ; ie, 

In., L ol '.)Ltx11 ::::. ol.l'l.,.. rrn,.. L'J iL~JJ 

As in (3.24), the law of formation of the terms may be expressed 

T2- == - 2. Ts = -s +2.·3 + 3 ·2... 

(3.27) 
1h = - t, + 2 · ~ + 3, 3 + 'f- 2. - 2- · 2. • 2.... 

and in general Tn = sum of all possible permutations of all 

integers ~ z.. such that the sum of the numbers in each permutation 
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u 
i-S n, and each permutation is multiplied by (-1) , where <J""" is 

the number of numbers in the permutation. 

The numbers, m, in the right members of (3.27) stand for 

terms of the mth degree in ~ 1- [x.J as follows 

(3.28) 

where there are m indeces R.,1,···,~ • Multiplication in the right 

member of (3.27) is integral composition. For example 

(3 .29) 

where the quantities in the first integrand are f unctions of para­

meter 5, and those in the second are functions of parameter s 2.. • 

Proof of theorem 3.6: From the absolute convergence of the Taylor 

series and the matrizant function (J.6), (3.18) is absolutely con­

vergent. Hence (3.18) may be rearranged term by term to give 

Theorem 3.6. 

The results of theorems J.5 and 3.6 show that the tensor re­

presentation of ,.\ (t) can be quite complicated. A different approach 

to the problem will be taken in chapter VII which will supplement 

these results. 

III.E. ~he S2~cial Case of a Closed Directrix. 

Of all directrices, the closed directrix is the most inter­

esting. Of the known theorems on Levi-Civita parallel displacement, 

f / \ one o the earliest and most fundamental is that of Peres, giving 

the results on displacing a vector about an infinitesimal closed 

curve. It will now be shown that this formula is but a special 

approximation to (3.25). 
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If a,_contravariant vector, indicateg~the column 

matrix ,X is displaced by Levi-Ci.Yi ta parallel displacement 
' 1 

completely about a cl9§.ed directrix 7,"-= ~"Cs), where :s g_Qes from 

5 = a., 1Q 5 = Ir in one_~ircui t, if r',e [>r.] can be expanded in a 

Taylor series, and if )... (Cl..) , and >- (t,) are the values of A be-

fore and after the circy1t, then to terms of second degree in ~ [xJ 

(3.30) 

where I is the identity matrix, ff re.j is the matrix of the 
17 

Riemann curvature tensor evaluated at J,(a.,) , 'j J, UJ is the 
es 

function of x which transforms to normal coordinat:i:-89- lj,., in trans-

forming to normal coordinates with cen!.§.r at ~ co..) • 

Proof: From theorem ,3.6, to terms of second degree in ~[xJ , 

(3 .,31) Ir • 12. f' 

\(tr)== LI - Alli ftµ ~jc~J ~ h:_ J.s } )...ca_) 
o .,_f .:ls 

Integrating the integral in (.3.31) by parts, since 
Ir fr ' 

(3 • .32) 1/r ~ j ~ J_ 5 ~ 1/ j le J c,, - Ja, j Ir,~ J_ 5 
(); t.( s .:) 

Since the curve is closed, ~_; [:x lo..)] = jj [){ (t-)J , so the first 

term on the right in (3 . .32) vanishes. Taking half of (3.32), inter-

changing 

(3.33) 

the dummy indeces gives for (.3.31) 

A(lr)= s .1 -t- ( Aitc,-Ati ..i ) 1- 11,. ~.; bk. h.f' J.g J ,A(ll-) 
L V 2. a; J ·;:.f d.J 

Noting that 

(3.34) 

completes the proof of the theorem. 

17. See Eisenhart (1) pp. 19-22, or any text on Riemannian geo­
metry. Som€ authors differ in sign from the definition as 
given by Eisenhart. 



We note that li.rej = matrix (tc.~ n..i) , where tc~,e_; are the 

components of the Riemann curvature tensor. 
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Corollary 3.7.1 . I \ 
Peres formula . To terms of the second d~_r.ee 

in X ("s) , the generic coordinates of the curve, 

Proof: The transformation equations from generic to normal co-

ordinates are 

( 3 . .3 6) ~ ·\ "'i ) =- :t J. < s) - i, j ca..) + terms of degree two or more in x. 

Hence 

to first degree terms in x. 
Ir ' • n.. 

Further fa... J:. \ot.) t d5=Dsince the 

directrix is closed. Hence to second degree terms in x, 

Substituting (J.37) into (J.30) gives corollary (J.7.1.) 

It is easy to show that if the directrix is a parallelogram 

(3.35) reduces to the forms given by Eisenhart and Thomas in 

their discussions of displacement about a particular infini tesima.l 

parallelogram. For the full significance of this result we need 

the theory of the matrizant as an analytic function on a Banach 

spa.ce. 
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IV. The Matrizant as a Function on a Banach Ring. 

IV.A. Definition of a Banach Ring. The Ring of Sguare Matrices. 
18 

A Banach ring is a complete normed linear space, or Banach 

space, with a multiplication defined . There may or may not be a 

multiplicative unit. 

A.set of elements y form a normed linear space N if the 

following conditions are satisfied. 

(1) A function of two variables called addition exists on 

NN to N, and is written + • In symbols, if 'j, €:. N and ~ z. & N then 

-LI >113€:::f'/ 
~I+ 111- - -J'3 

(2) Multiplying any element ~, f:. N on the left by a real 

number d... yields another element O(.~,-= ~..,_ '- N. 

(3) A function,called,norm, on N to the real numbers exists 

and is written II l;1) I\ • 

(4) '1,+ (~1-t' ~.) ~(1:),-t- l11-) + ½3 

(5) ~,+\h :::: ~ .. -+'1, 

(6) o(, (~,+~1-)=ollj,+ol~-z... , 
(7) (o(, + o(l.) J ::. o(I 'j + ~2.. 1j , 
(8) 11 + -i: :=:W\ ~iW e- N has a unique solution r.. t= N 

(9) II o{ t:\ ll = 1°(1:/l'jll o( any real number 

(10) . //<jll ~O for all ~ E: N 

(11) /l~ll ==0 if and only if ~ =- D 

(12) ll1j 1 +y.,_II ~ II 'j, ii -t // 'j .,_, // (triangle law) for all 'j,/hb/J 

18. Banach, S. (1) 
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A normed linear space is a Banach space, B, if in addition 

to the above 12 conditions, the Cauchy convergence criteria is 

satisfied in the norm. That is, every sequence {x.Z1 of elements 

of B converges if for any E there exists an N such that 

for all -m... 5 .t -? N I II 1'.-1>1- X, 1, /I< f 

A multiplication is a function of two variables on BB to B 

which is 

(4.1) (a) associative (~<;)z:-=: ;:t(~'c) 

(b) distributive with respect to addition 

(X+~) =t:.-=- X 'r. f~'e-. . e ( X+~) = ~ X- -t- 'r.~ 

(c) modular /[ ~ ~II fc M •~ i l/ II ')II where M is a fixed constant 

independent of ;t and ~ The least such constant is called the 

"modulus" of the product 1- j • 

As an illustration, consider the set of all square matri.ces 

of order n whose elements are real numbers. These matrices form 

a normed linear space if the norm is taken as the maximum of the 
19 

absolute value of any element in the matrix . In symbols , if A is 

a matrix whose element in the c-th row and cth column is A~ 

Further, these matrices form a ring with ordinary matric multipli­

cation as the ring multiplication. For, in component notation 

19. Such matrices form a normed linear space with other norms 
also, such as the square root of the sum of the square of 
t he elements . However we shall consider only the one norm, 
~ince it is easy to work with, and is used many places in 
t his .the~is. 



(A ~),,__ A:. 13 1'>\.tt'-- A ( B (!_ ) = '..) e (. -=-- .. ~ .. L.. <:., 

( rt C3 n. ) 1>1 An.. """' n >t 7'\ A ri i3 c.. ( A-t B) ~ =- A '™ + .,,, t ~ :::. -m C, c.. + u 11-t ~ ~ ::: ~+I 

t ( A t B) =- t : ( A -r;_ -t t3 ~ ) -= l ~ A ~ -+ ( :, f3 ~ ==- {!., A -t- ~ 13 

II A f311 -::; /I A ';.. P.i :'. II ~ n II A J/ . II 13 I/ 

Clearly matric multiplication satisfies conditions (4.1) with 

modulus M-= n, the order of the mate-ices. 
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Now let us consider two auxiliary Banach spaces with values 

in the Banach ring of squat'e matrices. Let B1 be the set of all 

square matrices of order n whose elements are continuous, real~ 

numerical, functions of a single real numerical variable 5 in the 

range ct. ~ 5 = Ir • Let B2 be the set of all square matrices of order 

n whose elements are continuous real, numerical functions of two 

real numerical variables 5 1 
'{ in the range a..:: 1 J 'I = Ir • Then 

if {I /IN be the norm (4.2), and if * C~) be an element in B1 and 

~ (~ 111) an element in B2 , we may take as the norms 

11 ~ l~)\\ =- ;n.~ It t.(1 )IIN a.,~ 5 ~fr 

( 4. 3) 11 ~ l 5 I rt) II = ln,0/j, j) ~ ls, >t) II N C(, f= S; 'l ~ Ir 

With the norms defined in (4.3) the sets B1 and B2 are easily 

seen to form Banach spaces. 

Now the mat ri·zan t 

(4.4) _n_: [AlsJ == T + s: Acs) J.5 + ... 

considered as a functional. apart from its geometric role is a 

function of two real variables, -<i, it • It is clear that .Jl.~ LAJ 

is a functional on B1 to B2 . 
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IV. B. The Diffe rential Pro12erties of the Matr-izant. 

20 
Professor A.D. Michal has proved the following theorems 

about the ma.trizant, considered as a function of the ma.trix A 

in B1to the Banach space B2 . 

Theorem :4.-.1· The matrizant function (4-.4) on the Banach spa.£J?. 

B1 to the _Banach S.:2§~ B2 satisfies the differential system in 
r Frechet differ-entials 

(4. 5) f JL : [ A > o A] ] ,.,
17 

J2. ; J A (s) J2.;, cl 1 

.n.! LoJ = T 

where 6 1..12.";, lA '> J"A] is the first Fr,chet differential of _Jl: lA] 

r::i th inc rem en t aA , .1)..: [o] 1s the matrizant of the zero element 

of B1 , I is the unit of the ring.2 in t his case the unit matri~ . 

Theorem 4.2. The higher order Frechet dif ferentials of the ma-

trizant with equal increments SA are given by 

(4. 6) J n -11.! LA :, oAJ =- k ! J,: ..n.;, [AJ cf A c~J J s, J ,!• -11;~ J" A (-s,_) Jr .. · .. 

J 's,z _, ...J2. sn. -1 [Ai cJ A Cs ) Jl. J",a d. "t: 
n, fn. J rt ,..._ ;,re., 

21 22 Iheorem 4.3. The entire analytic series (4.4) giving the 

matrizant function can be differentiated termwise_to give 

20. 
21. 
22. 

Michal, A.D. (3) 
Michal, A.D. (4) 
An entire analytic series i a a Banach space is defined as 
follows. A homogeneous polynomial of degree non a Banach 
space possesses the modular property, 11 P-ttt l<>II f M>t u i: 11 ..... M11 is 
the modulus of the homogeneous polynomial, -P~t~) . A series 
of homogeneous polynomials 2 -Pi <x) is said to be an ~nti re 
analytic series if the real numerical s e ries 2 Mc A~ converges 
for all values of ;.. . While it requires more than the modular 
property f or a function to be a homogeneous polynomial, it 
is easy to show that the series (4.4) is an entire analytic 
series in the sense of thifi footnote. For a more extended 
discussion of polynomials, see Martin (1) . 
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(4.7) f__n_! lA·> JA}-:: ]"'1: JA (~) cl! -t 

r r • + -f [_ J: ir-A-(-r,)clr, J"' 'An .. )d.'f,_ ... J"- ~-,A ls,)J-s, + 
i::; 2. 

I:" , J S;-, A ( ' J,,,t- A c~,)cl~, f :· cJ A (s._') o..'5 1. .. . "' s/) cq·< + .. • + 

J /\,t A ls, ) J.. 3, J !' A t 'h) As 1- • -- Jr\.,

3
,; _, o A l 1.: > cl s ~ 

We note that (4.7) can also be obtained by substituting (4.4) in 

(4.5) 

Theorem 4.4. The following generalized Taylor Series Expansion 

holds for the matri·zant for all continuous matrices A (5) !!!Q i A(5) . 

(4.8) 

Theorem 4.5,. 

where a., ~ )l, 1=. t !::_ fr 

(4.10) Jrv-t: A Cs)Js 
e-

o<> 

j :, _n!'s .. [ AJ cl A ( L ') J s.,. 

j 5.:-, .Jl_ -~/_-, [ A] J A Cs,) J)_
3
~ J. St.' 

It, .)~ 

and where 
-t 

is the matric exuonential of J~ A(5)d5 
The matric exponential of a matrix 'T is defined as the series 

(4.11) 'T' 
E-

where rp 1., is the matric product of i _fillual matrices 'T1 . 

The above theorems are assumed without proof in this thesis. 



27 

v. The Change in a Set of Parallel Vectors Produced by Warping 

_1he Space. 

In this chapter we discuss the effects of warping the space 

on a set of parallel vectors defined along a directrix. By a 

warping we mean such a transformation that the coordinates of all 

points remain unchanged, but the coefficients of connection are 

changed. Alternatively, a warping may be regarded as changing 

the coefficients, SiJ , of the metric of the space, with the 

resulting change in rll • 

Under a warping, the equations of curves, and in particular 

the e.quations of the directrix curve, remain unchanged . The set 

of parallel vectors, however, changes in general. Since any 

vector of the set is given by assigning a particular value tot 

in theorem 3.2, it suffices to consider the change in A(t) given 

by (3.5). The result is 

Theorem 5.1. ~et a contravariant vec~or, indic_ated by the column 

matrg A ~isplaced by Levi-Civita parallel displacement along 

the directrix curve :i/-= X-i. (5) from J ::. ii- iQ. 5 -=-"t • 1tl }. ( tl.) and 

"(Ir) J2,e the Y.alue.§_Qf ). ,il 5 =o.. and J ::: -t respectively. If the 

space is warped in such aw~ that the coefficients of connection 

{7 f?.. [ X n )j are given an increment O 'k [ X ('5)J , if ). is displaced 

a:s before with the same initial value ACa.) fil!£Lif..l!Q!! ~ = ). Ct) 

at ! -= t then 
I (t) -,A(t) = f - J°"'r JL!,, c-rf2, cxcs >J %,tJ srl'e, [x c4 ,)J :Z:~ 
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Proof: From (3.5) 

( ) t J.1-lt 
5.2 \ (t)== Jl.o-- [-rtt---x-:g J 11ca.) 

11 (t) == n;, [- rte #tt - J r12 b_fl. J A("-) 
P-5 .ls 

Forming the difference, using (4.8) gives the theorem on identi­

fying - rtt ~ with A and - J'r1re. ~,e_ with JA in (L; .• 8). 
As Jg 

( ) Jl~ ,-, b:..k_ 5 .1 is obtained by regarding ~ as a function of - , re d-g • 

Since in warping only r1e, changes, our interpretation of (5.1) can 

be sharpened on considering _n__~ as a function of P,e, alone. In 

this context 

(5.3) 

Now A ( rre. 1 ;:: - rl'l J..,,j,
12 

is a linear function of f',e .ls Hence it pos-
/ 

sesses Frechet differentials of all orders with increments 

given by 

Using the composition theorem for Frechet differentia.ls of functions 

of linear functions , (5.3), (5.4) 

( 5 • 5) ~ ~ Jl: [ r ~ ~ J r I?. J = J " Jl: c A > J ' A < r R ) J 

_ <; "Jl. i- [- r~ ~ •, - J rre. .&::.n. J 
- d o., tl\- 5 '1-5 

Using (5.5), (4.8) we have 

Theorem 5.2. 

wri.ttfil 

(5. 6) 

Under the conditions of theorem_5,l, (5.l)can bf 
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V. B. Example . WarJ2!ng the Plane into a QQhere. 

As a,"1: example of a warping, consider the plane with polar 

coordinates f , e . Regarding it as the equatorial plane of a 

unit sphere with center at the origin, we map it onto the unit 

sphere by projection from the south pole. Hence the center of 

the plane maps into the north pole, the 

unit circle maps into the equator, etc. 

We assume that the points retain their 

old coordinates, f, e , under the map­

ping. 

We see from the geometry that the 

colatitude, 4 , is related to the co­

ordinate f by Figure 1. 

(5.7) ~ = 2_ ~ -I f 

Using this relation, and the fact that on the unit sphere in 

spherical polar coordinates the metric is 

(5 .8) 

We obtain 
2.. d. "2.. 1-)_0'-

(5. 9) on the plane ~ = t + f 

• i. 4 J .. k .. d a1.. 
on the sphere k = 1--;:-) ... f -t 111- ')1-

,J. "f/ I-'. /' 23 
By direct computation of the Christoffel symbols , 

(5.lO)on the plane r, :c (: :) I'• = ( : -n 
(5.ll)on the sphere - t- (t-i )) 

Jt~ l.. 

0 

23. See note 13 on page 12 . 
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where f , e are considered the l--
1 

, ;x,z. coordinates re spec ti vely. 

Hence 

(5.12) 
- -4: 0 0 ~ I+ fz. 

J r2. = t -t-f 1... 

() ~ _ -y_ 0 
- I +f z. l+f"I-

To fix our ideas, let a contravariant vector A be displaced 

along the particular directrix with equations 

(5.13) a.., = 0 

-t = 11 

This directrix is half the unit circle on the plane, and half the 

equator on the sphere. For this directrix, from (5.10), (5.12) 

(5.14) 
on the plane r, = ( ~ ~ ) 

rl 
-- (-o/ 

0o) on the sphere 

d r, =: ( -~~I) 

Hence, in the plane, using (~--9) 

rz_ = ( ~ -~) 

rz. . = ( 
0

o 
0

o) 

c) rz. := ( ~I ~) 

(5.15) n. -J-r ( o- ,)~h - ( ~-~) (-t- fl,) 
SL+,,_ L- rtt ~ J =- e "' i o :, ==- e 

Then 

( 5 .16) 
~ 1( ) - (-' 0) 
~'tr' - 0 -/ 

/ 
and the successive Frechet differentials vri th increments 

(5.17) 5 rre.~k. = ( o ') 
~$ -, 0 

are from (4 .. 6) 
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where 
i. i - 4 

E. = E., t, > '-I 

Hence the generalized Taylor series expansion for 

Ji: c-rR ;:-/ - er rre, 7/1 is 

(5.20) 
1r o -1 ) ( 0 I ) J _ __Q_o [ - ( I O - -1 O -

-/ Cl) (0 -I) 1( l. (Io) 
( o -I + 1( I o + 2. / 0 I 

11 3 ( o I ) + T( 'I ( I o) + , .. 
+ - , -I O If ( D I . 

3, 

- (- U;-v1r 

~ 'iY 

This result checks exactly with the result by direct compu­

tation, which is easier in this instance. 

Hence from (5.2), (5.16), (5.20) 

(5.22) on the plane A(1't')= _n: ,\(o)= c:~) Al
0

) 

on the sphere ~(fr)= ...Jl;A(o)= (~~JA(o) 

This is checked by direct readings. In plane polar coordi­

nates the components of tvvo parallel vectors at opposite ends of 
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-a diameter through the origin are exact negatives of each other. 

Further, the equator is a geodesic on the sphere, hence parallel 

displacement along it does not change the components of A • 
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Directrix. 

In this chapter we consider two parallel vectors whose base 

points are connected by the directrix defining the parallelism. 

We discuss what happens to the second vector if the first vector 

is held fixed and the directrix is changed. The space, of course, 

is left unchanged. We shall assume that the new directrix is 

subject only to the condition that its end points be the same as 

the end points of the original directrix, the base points of the 

t wo vectors, and that the matrizant function .il.. [.- rtt ~n..J 

exist computed along the new directrix. 

We first give a tensor matric result related to (3.18) of 

theorem (3.5). 

Theorem__hl. Let the contravariant vector indicated by the column 

!!!.?-~!!Jf A be displaced b:y Levi-Ci vi ta parallel displacement along_ 

a direcm~ J;"= ,:,i(5) from 1::: a.. t o 5 =-tr fil.1h i,. ((l,,) , ,,\(tr) 

the val ues of A at J =-a.. and 1 = Ir r espec t i ve l y. If A is di s­

plac~g alQng a new directrix with the same end points as the old, 

x/-= :r-·* c,s) = ;r,.: (5)+ 1:.i(s) > "l. i(s)=o ;s-=a.,) lr 

l * and if )-/'' (lt) is the value of },. after displacement along ;l'.. Cs) 

then (6.1) 
If f]lr ( I J /,.. [ A J, L • It 

). (lr)->,(tr)::: La, - 3 nj~[K] +A1e1j~ [ X]!:/[-<J+-" · ] d <j cx1 k. f ,l.-g .. .. ,) 
())(. f ,A~ 

(6 1) ( r ?J J. -r. ,\' ?! -1 )f-ni } 
• A 'l'>I ~ L ~ [ >C /3] ~[xJ - <j [ x * 13] ""':1_ ( xi<-J + 

d 3 d 3 

5' '>1 h., ,L,, ?>! ,)(-'1 "" h., ~)('-7'! ) 
+ A1t1 11.h. l 1:1 16 ~ - ~ '1 T } + " , 

A 3 ~ 

(1.- J0_3 L A( j<jj-+Ah ~ j\/+··J -1;~7")(i-r-l11.+ " · ) J 3} ~(«.)+ 
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where Ail<--· t. are the normal tensors of the space evaluated at 

, ljieCxJ are the transformation functions giving the normal 

coordinates with center at x.' (a.) in terms of the generic co­

ordinates. 

Proof: From (3.5) 
(6.:2.) >-*<1r)->-C1r) = 1.d: l- r; 7; 1tJ-..IL: c-r,t ~ 1} >. (a.) 

where .st;:: is the matri·zant oomputed along the varied directrix 

• From (4. 8) 

where - cf rte c½R. = r h te.. -r~ ch,*!? the increment in the kernel of the 
tl-5 le <1-5 re ,,lg 

matrizant -5l. to yield _[)__~ . For clarity we write out the first 

two terms. 

, ( 6. 5) .!.. J" 2. .Jl: 
2.! 

As in theorem 3.5, we transform to nor-mal coordinates with origin 
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at -XL(o..) • We expand rte. about the origin and transform back into 

generic coordinates. Osing (3.21) and (3.22) 

* k * k • J. re • R. r rt. j./4., ::: A te j ( ~ J [ x (s ) J ~ [ Xt i >J - j * J()(l\s )] ½lf- [ X~(r )]) + 
J. i tl-5 

(6.6) 

+ l ! A R-j'l ( 'JJ. ~l 6-.~ - 1j * ,; lj x-t -6: ~) 
J-.s "'s 

whet'e A l'l,i ... .L are the normal tensors evaluated at -;i; i( a . .) , ~,; == ~ ,; [ x ( r )J 

are the parametric equations of the original directrix and 

~ .i ::: Lj .:H- \ x* l 's )J are the equations of the varied directrix in 

normal coordinates transformed to generic coordinates. Using 

(3.6), (3.21) and (3.22) 

( 6. 7) 

Hence using (6.6) and (6.7) in (6.J) and (6.2) proves theorem 6.1. 

I 
VI.B. Two Lemmas for the Existence of Frechet Di~ferentials 

,;, "1r r r J-,,.,n. I J o ....I (... (),., ► - rt rs ♦, * s 

The theorems of chapter IV permit us to compute the Frlchet 

differentials of the matrizant J L.JL [ A ·) JA 1~J with increments cf A 

Usually, however, we do not think of a displaced vector as a 

function of -rre. ~k. but as a. function of the space, or of the di­

rectrix. In chapter V we discussed the Frlchet differentials with 

increments cfr~ produced by warping the space. we shall now prove 

two theorems which will guarantee the existence of the differ­

entials with increment ~i (5) produced by changing the directrix. 

Theorem 6.2. If the function ? I., ( 5 ) is a function on the real 
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numbers a. '=. 3 s lr to the vec,tor space 1=~ of sets of n continuous 

functions differentiable almost everywhere, and if ~ is regarded 
d. 5 

as a function of x .Qll f"
1 

to E'z.. , a second vector space, and if 

the norms of E1 and £ '2.. are respectively 

(6.8) /I )'., ~( ~) /Ir::: "'YYl¥ l \ 'JL."(s)j I ¼ ,:Cs )j 1 0--:::-gf:: lr ~ l =l1 • " 1 7v 
Cl J ~ j 

11 <j L ( s ) I) ~ =- li'l0 [ I ~ i (s ) l J a_ ~ s !: Ir- j L'-::; I ) ' • '1 I\, 

L / 

¼ i. (5) possesses a first Frechet differential with increment 
Ts 
for any .x and ~ 1!1 £, given by 

(6.9) 

Proof: The Frichet differential is given by the Gateaux differ-

ential provided the Gateaux differential is additive and con­

tinuous in :c and provides the principal part of the first differ­

ence. The Gateaux differential is 

(6.10) 

which is obviously additive in ~ Since the first difference 

1:, D :: J...'-b , the differential is obviously the whole of the first 
J-g vt'3 

difference. Since it is additive it will be continuous in~ if it 

is continuous in =t near the origin of £, 

But from (6.8), if . /f=r:11 t.... E. where E.. is arbitrarily small, 

then ll !; II t.... £. • Hence 1; is continuous in z and the Fr/chet 

differential exists. 

It is necessary to include 

ological curves 'z: t 3) for which 

I 
4 l 1~5 ) in (6.8) to allow for path-

l 'l> I is small but \ clb I is very 
°' s 
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large. 
J., 'l: 

This guarantees the continuity of d--g in =r.... , which 

otherwise would not exist. For if 1/x.JIE, were just max /1-'(s)J , 

then given any M no matter how large and c no matter how small 

it would be easy to find a curve JC-" ts) such that //~.:II ~ E. but 

and would not be continuous in ,::, . 

Theorem 6.!.2. The function rl'l '7ifl on the n Banach spaces B1 

of sp.uare matrices of order n and then vector spaces E2 to the 

Banach SQ.§£..f. B1 possespes a first Fr~chet differential with 

increment c. in E2 given by 

(6.11) 

Proof: Since r~ is an analytic function of the coordinates x 

J'r/?.,L><it-1 

theorem 6.2 

since rri t; 

exists and is the ordinary differential, Jrn.. ~.l • By 
J xt. 

I j., le_ cl 1-z. 
f ½ [x, Cb] exists and is given by 1; . Hence 

is a sum of multilinear function s the theorem fol-

lows from the formula for Frechet differentials of multilinear 

functions. 

vr.c. The Fi rst __ Frtchet Differential J' ,..\ [ x > c I lrJ 

V..Te now use theorem 6.J to prove 

Theorem 6_-..it.• Let a contravariant vector, indicated by the column 

matrix ~ be displaced 12.Y_Levi-Civi ta parallel displa£ement a.long 

the directrix z,"== ~,. c5) from 5 -=.A. to s=- fr • Let ),. C6...) , )... (tr) 

be the values of A at 1 = "-i lr respectively, and related__£X 

,),(Ir)= _n_:; }.(~) where Jl.~ is the matrizant function . ILthe 

directrix is changed to a new directrix with the same end ooints 
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with equations i. *._ i. :z = x Cs) = ;t (s)-t- ?: L (~) then A (tr-) posses_ses a first 
/ 

Frechet differential with increment r.. given by 

( 6 .12) J' A C><:/c 11r J = J.,.,1r n:, c-r1e Jy---cl?. n,J rc,o{ c1. r. c,(Lc4 > ho(1 
~.) I 1.. d-v 

_n_-:, [- ri 7-s~ J Jt; 

Proof: From theorems 4.1 and 6.2 we know that the Frechet differ-

ential of .Jl.~ [- r,e, J,,t:RJ 
J..5 

with increment A r-r,e J,y.k.7,, exists, and 
cl s J 

that o'[r,ehte. ''l:] exists. 
~ ) 

we may regard JJ...:; as a function on 

E1 to B2, that is, a function of x defined by _n_: [xJ = ...IL; CA c-rJJ 

I 
Then by the composition theorem on Frechet differentials, 

I Ir J _n_<I,., c><,"r-J exists and is given by 

(6.1.3) J'Jl.~ [)<'>~] J
1
.Jl.: [A> J'A ["':,~JJ 

- 5
1 ...11..1r c- r ~1e. • - cr'r h. ,e J 

- 0., re.o\.5) -tol:s 

= J'..1)_ lr-[_-r ~n... _ cJP-!::_ -::z::.?'h-&~- f1.e. ~] 
w (e, A 5 ) ox.= d..J J:s 

By theorem 6.1, (6 .1.3) is 

(6.14) I Ir J Ir ('\ 1,- [-rt hk.1-sJ (- ~ ~-n<.,4£. - /7,L ,?(. e.-£.J J1L., [ x:itJ :::: o..., JL./.lJ re d.3 Jx?><- cJ..,..d,, )A., 

_(l.~ [- f (° ;:;,~ 1 J.v 

The right member of (6.14) can be broken into two parts by dis­

tributing the middle factor. Taking the second term and inte­

grating by parts, 

( 6 .15) - ]a., Ir_[)_: r ~ ~ .Jl_ ~ 14 ::: - { Jl_: ft_ r. L JL: j : 
t.,.. 

J Ir )_ _fL 4 {1~ r. l _IL-:: )4.; 
-t- a., 

pl.A.., ,4.... 

j ir- .Jl '.: J 11,e .h:. .,..__ "r.,L JLp., k 
-+- (I., o;,:= d..5 

+ J/#1r ....n..t rt ~ 1. J... ;::-4., h 
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Now since the varied directrix has the same initial and end points 

as the initial directrix, t:Ut.) = ~(1,-) =-0 . Hence the non-integral 

term on the right of (6.15) vanishes. Further 

(6.16) 

and 

(6.17) 

(,­

d.. _[)_4 

J./4.., 

- f1. L~ ) J-y_kc~J _iL-4., [-[l-l-J.,,,J. lsJ 
te. ~ ~ A s 

Substituting in (6.15) gives 

( 6 .1s) - J 1r _Q l,- r 1e. J.-1: k. JL!' ~ 
a., ./4- ~ 

Ir 1 _n_: [ d f1" h-2 
l: le..+ Pl. J..f.f- f11e. 2 If. _f1fl r. t?. 1 k~ l ..Jl! k 

11, h:.e au µ__, ~ J 

Using (6.18) in (6 .14) 

( 6.19) o'Jl.:: cx,1-J =]4,1,--11..t {arn._ or.( -tr'tf1a -Pt?.r-e}:z:.te.b_{ ...!)_: if..u 
h.1- oi 1e .:A. .4, 

But the matrix fot>m of the Riemann curvature tensor with one contra­

variant and three covaria.nt indeces in generic coordinates is 

( 6. 20) o o r .\ r 
11... £,/'t::: _It - v_.{ ;- r.e. f1,e - rR r .t o x,e_ d):le 

Using (6.20) and (6 .19) gives the theorem, since 
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I I lr A ) (6.21) l >.(1r)::: J _n_a. ca. 

because J' >. (a.) ~ 0 

VI .D. The Second Fre{chet Diffe_rential cf 2.),. [ x:, ~ I &J 

Theorem 6.4 has gi-ven us the expression for the first Fre'chet 

differential of A . We now seek the second Ft'e'chet differential 

of A with equal inc rem en ts 1: • We begin with a lemma. 

Theorem 6.5. Under the conditions of theorem 6.4 

(6.22) eo{t. Jl.. .v Jv 
?/ 

r I?, ( 1") z: le <-r) _n_; 

· Proof: Following exactly the same line of reasoning as i n theorem 

6.4 we have 

( 6. 2.3) J I Jl ; L x ~ :q ::: J 'r JL: ( - J f7 k 1/- 3::1!: le._ f1 d. r: k ) _()_ /4,, J..u 
n. ~ xl cd_,4,, te., ,Lu 'l , 

Integrating the second term of the right member of (6.2.3) by parts 

( 6 . 24) - j 'Y n r r1 cl r: 1e. 4, [ n 'l"' r te- n ,tJ ] ,,, 
?{ --1 L ;J., / ',e, _ .-fln, ok, =. - -1L ,Q,J te, c -1 L n_ i'( 

k 
+ J ,r ~ _r,__,,. fl ~ k.. ..1l 4.- k + Jr cl r re Je k l -1LA-> ~ 

11. ~ .. ,v le. }t ?t.-'c - }t, 
l1'A- dx,L ,,;...v 

+Jt' ..il 't- r1 'i;k._e!.__Q4-c4_, 
11. /4->fe_ IM,, 11. 

Evaluating the non-integral terms on the right in (6 .24) 

,,., 
since _J)_ ,4, = ..L the unit matrix, when s = 1"· 

) 

Using (6 .20), (6 .24) and (6.25) in (6.2.3) gives theorem 6.5 

Using theorem 6.5 we now consider . 

Theorem 6.6. Under the conditions of theorem 6~, A (tr) p_ossesse;, 
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I 
a second Frechet differential witq egual i!!~r§ments 'l. give,n by 

(6.27) 

Proof: 

(6.28) 

Since Ac~) is independent of the directrix, 

61..~[ X>i:>~]-::. cl z. [_fl__: ,).(tt.JJ-.:: cf1.._IL;;_ [.><'.i ~ '.>~J.\Ca..) 

Further 

(6.29) J2...JL~ ==- ; ' £ s 'Jl: 1 ::: d 11 lr_JL~ rcd.,"- 2.. u o(' r. o(L_n_:::;- k 
0., J-L, 

Ir 
Now Jl.. 4,, .R.cJ..

1 
c(z.. are elements in the Banach spaces B2 )B1 of square 

matrices. W and 
04,, 

E1 respectively. 

ol.. 
~ are elements in the vector spaces E2 and 

J
, (\ lr . 

Clearly ~L~ is a sum of multilinear functions 

on B2 B1 E2 E1 B2 to B2 . Hence if the various factors have Frtchet 

differentials with increment z, then the Fre'chet differential of 

J '__n_t with increment z exists. 
I l,-

BUt theorems 6. 5, and 6.2 guarantee the existence of cf _Jl/42., [x: , :e] 

and J" 
1 'Z, "< [.x; '2:] • 

is an analytic point function 

J' i:. = 0 • ,, o J re o(, and o ,~ c( _, -= -1, ol t_ = 3 since R. a1. d.. 
,~ 2.. - -- ~ IL 

() X. o(3 

whose Fre"chet differential is the 

ordinary differential. 
/ 

Hence by the theorem on the Frechet diffe r-

ential of a multilinear function 



J 
Ir- Ir 

_j)_,4) 
a, 

P1,.-__n_1,­
J ti.) ,4.., 

For convenience, the four terms on the right in (6.JO) are 

numbered (1) - (4) 

Using theorem 6.5, terms (1) and (4) together become 

J 1,-f Ir Ir 
( 6. 31) Jl_ t R. /1, A hA '.1 ;9z.. .JL t ).1- (c d. o( J.,c,°'1 C: o<z.. _[)_ ~ )-4..J + 

Cv IV ri ;- 1.- ):t- -.: ,,a., , 1.. )4 cu 

(1) 

. (.2) 

(3) 

(4) 

(i) 

(ii) 

(iii) 

(iiii) 

42 

where the terms in (6.31) are numbered (i) - (iiii) for convenience. 

The terms with ~ indeces are functions with parameter /4.I. Those 

with ~ indeces have parameter~ . 

Interchanging the order of integration and certain dummy in­

deces in (i) shows (i)= (ii). Combining (iii), (iiii) with (2) 

of (6.30), we may write (6.J0) as 

(6.32) ?... V-J _fl_(µ [x:, t]-= 

/ J Ir Ir R_ ~.<.I o(z_ J.4_ J 4.1 .JL 4, {?_ J-,t,f3, /31- 4.t. 2..' a, _fL.IJ., o(, ,(?.. - l:. I a,, _A..,_, ;a,/32. - ~ -__Jl_A, ,M.,2.. + 
µ, µz_ 

+ J...,lr _1l ~ [ c) 1 :,~~ -t- [I <t 3 /Ce.<,«., - /c cl.,o<,_ r "'3] to(' 1= .Cz.~ o(3 __n_:-t4 + 
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Hence on using (6.32), (6.28) and (6.27), we have theorem 6.6. 

VI.E. Dagger Differentiation. 
,1Jl1r "l.. Ir On comparing the expressions for c, a.. cx,-lJ and cf Jl..a.. [x, ~J 

\' 2. fr we see that o _QI)., is almost but not quite obtained by formally 

differentiating the expression for 0 1-11.t with respect to an arbi­

trary parameter. We shall now define a formal notation, called 

"dagger differentiation", and symbolized by "- whose rules will 

give S"...Q from J'_n_ by formal operations. 

Theorem 6.7. Dagger Differ-entiation. If the operation called 
de.noted 

''Dagger Differentiation"" by the symbol 11 J " has the following 

properties 

( 6 • 33) .Jl_: i ::: J )1,1' _n_; R, ~, ct_<- t I ct_ o{z_ _fl_~ r,4_, 

i-
1:. 

::. pd. q ol. :::z. o(3 
I z_ J L 

- 0 

and if the ordinary formulas for the derivatives of products and 

sums hold for dagger differentiation, then 
• I lr 1,- j(_ 

J JL 0-, [ )() ~} -:::.. _n_~ 

Ir -..11..t,.i~ 
~1..Jla.. [)('.>1:] - (), 

Proof: Setting ,i=a,, t= Ir in (1) of (6.33) gives (6.12). By (6.33) 

(6.34) f J tr ..n.. 1r O ko(' o( 4,, '·} ~ ~ ,4., 'l-o(,o<i. d.,4.1 c t. --11.1,1., p..,(l_., :::= 

11,- Ir J,( J _o( , c,(2. ,4.., 
ti, _fL ,4, ((, r/. Io(. 2. (,,vy.,_ ~ _j)_,,_, ~ + 

(fa, 
(1) 
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1
1,- Ir ~ ~o(I 

1:: 0( i_ __J)_-:; )a, -t 
a., _fL,a., R. o(, oi 2. µ.,, (2) 

t 

1
1,- Ir-

Ro{, .J.1... 
4rx, ~c/.7-._n: ,,4, + 

tJ.; Jl,4-' 
c/,.4.., (3) 

1 
lr Ir 

p.; -11/3, 
(4) 

(5) 

whose terms are numbered (1) - (5) for convenience. Numbers (1) 

and (5) from (6 .34) a r e 

Note that terms with ~ indeces are functions of parameter 

,4;-1 and those with ~ indeces are functions of parameter ,4,L. 

On interchanging the order of integration in the first of (6.35) 

terms (1) and (5) add together to give 

(6.36) 1 
lr Ir 

2.. ! 11, JL A-1 Ro(,~1... %.,{/ ~ o{z_ k, JQ.-4,/_fl~',., R.A;9.,_, )-y.~, :z: ;Sz.JL1t.kL 
I tl4z.,, 

vanishes. We identify (6.36) with the first 

) 

Further, term (4) 

term in (6.32); terms (2) and (3) with the second and third terms 

of (6 .32) to give the theorem. 

vr.F. The mth_Frichet_Differential 

Having found the first and second Fre'cb.et differentials we 

seek a. recurrence formula for the m th Fre'chet differentials 

with equal increments~. As a preliminary 

we define the sequence of P functions 
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(6.37) 

The first in this sequence of P functions has a.lready been de-

fined in (6.27). We extend the properties of dagger differentiation 

defined in (6.33) to include 

(6.38) IJ 
<><'m-1-1 Po( , ... o<~ p - o<, "' c<-,,, c/. nt+I r::. 

A'c°"t - 0 
~ 

-

With this extension we have 

Theorem~. Under the conditions of theorem 6.4, the mth Frechet 

differential 61'11., ~ [x) -:z: I Ir] with equal increments l: exists and is 

given by the recurrence formula 
'I, .. . (M..)" • t 

(6.39) J™'>. [X'.>'cj/,-J-=: _n_'.::, ).(tt.) 

h 
Ir'{, ... (nt,)•·· ~ 

w ere .n.;, is the m th dagger differential of _!Lj;" defined in 

(6.33) and (6.38) 

Proof: As in (6.28), since ~ (a__) is independent of the directrix, 

Om~ (1,.)::: s-r-i___n_; [l<'.,l] ,A (4-) 

We shall now show that 

The proof of (6.-4,l) is by induction. Theorem 6.7 shows (6.41) 

to be true form= 1, 2. We assume it true for m-1 and prove it 

true form. 



By considering the defining rules (6.33) and (6.38) of 

dagger differentiation, it is clear that the formula for the m-1 
I,- lr lf · · •( rt,. -1), .. p, 

dagger deri va ti ve of .Jl...., is not a simple one. However ..Jla.., 

is the sum of terms each of which is homogeneous and of degree m-1 

in z. A typical term is 

(6.42) fL-J)_~ P o1. ... o1. • hot1 l;. ~1: . . l; "- ~; J 4.1 n:• Po< , . .. o J,1::~' t1 o1-,•+1. ol1>1n4,'-)4 
~ t-1 , J of4 tJ..o --' L ,_.,_ J + I 'ol. nv - - 't. •·· ~ ....l l- tJ..o 'Z.. 

I d.A, l... 

The term with the most integrals is 

I 

We shall show that the Frechet differentials of (6.42) and 

(6.43) with increments z are indeed given by the dagger derivative. 

Further the method is general and applies to any other term in the 
l,- ,t . .. (m -1) -- - 11-

expansion for .Jl~ . 

Consider ( 6. 42) . SL ~> Po< 1 , .. _o(~ are elements in the Banach spaces 

B2, B1 of square matrices of order n of chapter IV. ~~ is also 

~o< d t{ 'e:-< an element of the vector space E1 while d. ;zd.., an j,L, are in the 

vector space E2 . Clearly (6.42) is a multilinear function on 

B2 :s1 E2 E1 Bz B1 E2 E1 B2 to B2 . Hence the Frefchet diffe renti·al 

of (6.42) exists if the Fre'chet differential exists for each factor. 

Since Pc<i-- •"'i is a differentiable function of x, J I 
P«, ... ot J [ x ; e] 

exists given by the ordinary differential 



Theorems 6.5 and 6.2 give the formula for 

d dv;i, ~ [x • ~ J 5 1 
:z:. o(. = <f' J e o< = D 

~ ) • J.--4.., 

Let us write S' (6.42) for the first Fre'chet differential 

with increment z of the expression given by equation (6.42). 
I 
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Then by the formula for the Frechet differential of a multilinear 

function 

J'(t.,,,'-12.)= 

( 6) (' Ir Ir- D J✓,r_.J, a{ ol.. 1/4.' f) 4-, 
Jp,, __IL,o._l f o(1 •·• ~ ~I t 7° .. ~ _; µ, «; Jt,,,4 ~ 

Jfa(, • --d. L 8itJ 
HI ""- ••.q. 

J .t li' t4'L. 

where the terms have been numbered (1) - (6) for c onveni enc e. 

We wish to compare these results with the dagger derivatives. 

Hence 
d,ri 
{}-/4; 

~ ~ 
we compute (6.42) omitting all terms involving ~ or 

since these terms vanish. The terms are numbered (1) 
11 

- (6) l.? 

to compare with terms numbered (1) - (6) in (6.45). The obvious 

indeces have been omitted for clarity. 
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(6.46) continued. 

(3)' ]JL p J.=t:- 't.··· ~ )A.,jJL pcl.'b O"'-: JL .14 + 
~ ~ 

( 4) t J .JL p Z, Cl . . . ~ A- J .JL" p t t • • z: JL k + 

'J J.-.,t 1} p 11
J.:e't··c-..JLh-+ (5) -11.. p ()4., '2, ... 'le p<.4.,, .Jl. ,:).A_, 

I i, k 
It- J I ., I . J J)_ p ~ Z:: • .. ~ _fl_. (6) _Q f_r;,,-r, c• " l: ,:;<-<I., dA-, 

tu, 

t, 
On comparison, (3) = (3) . From theorem 6. 5, (1) will have 

i 1 . J (r Ir j .,«, o( t; two terms, one nvo ving ..a JL.,.. Ro1 o( ~ ~ ,_ _n_, clt . This 
I t., I l.. ,:1-:r _,,., 

term is identical with (l)~ on using (6.33). The other term of 

(1) involving + r~ 1='6 we will combine with (2). 

Further from theorem 6.5 (4) will consist of three terms. 

1 j 4-, A-, a 4~1 d. t l+-The one invo ving 4 z. -1lt J'\..,ot, o1.z. # '2:: z. .Jl. 4 -z.. ~ is identical 

with (4) '- . The term involving -rr ~ 'i is combined with term (2). 

The third term involving+ r~zt is combined with (5). 

Similarly (6) consists of two terms, one identical with (6) 

and one which is combined with (5). 

But the three terms (2), the original (2) plus the extra term 

from (1) and the extra. term from (4), add together to give (2) ~ . 

The three terms (5), the original (5) plus the extra term from (4) 

and the extra term from (6), add together to give (6) i . Hence 

The method is clearly perfectly general. For example (6.43) 

is a sum of multilinear functions on B2 B1 E2 E1 B2 B1 E2 E1 ... B2 
to B2, with the Fre'chet differential computed by the product rule. 

,, 1._o(, 

Every term involving o VV¥-_ [x,~] is the same as the corresponding 
1M, 
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term involving 4"" i- • Each term involving J 1 l?.a. o(L is combined with 
~ I • 

a. term involving r)' hr from the J 1.Jl. , the differ-ential of the 
IM., 

matrizant appearing just to the left of f'lot.,d..z.. in (6.43) and with 

a ter-m involving - f\ h-,.. from the differential of the matrizant 
M.lk!.' 

on the right to give ~~.~L • The remaining terms of the differ-

entials of the matrizants .Jl... are _()_t- • 

This method can be applied to any ter-m. we note that the 

equality ~' (6 . 42) = (6.42) t required a regrouping of the terms 

resulting from S1 (6.42), but that it requir-ed no regrouping of 
-m-1 Ir 

terms arising from any other term in J Jl.a.- . This quality is 
• -m-t Ir 

always true, so for each term T of J" JL a.- we have 

Hence 

( 6 • 48) J / 6ni-l __n_;- -= ( J1n -I _a_~ ) 1' --=- ( Jl~ Jt'· • (rn-1) ••• o/,) i = _n_;- '- .. ,~)· • • ~ 

which completes the induction . 

CorolJ_ary 6.8.1. Under the conditions of theorem 6.4 the vector 

A (ir) possesses the generalize9: Taylor series ex12ansion 
oO • 

A (lr) = £ .L -ti ·-z, JL At [x> 1,]} /I (et.) 
l::: I ' 

Proof: The proof is irnmediate from theorems 4.4 and 6.8. 

VI.G. ,3nlr V f,... 
The E~licit Fot'm!J_lae for o ..--JLo.., [x~z:.] 

1 
J --17...a., LxJia.J 

and 'L 1' S Jl.1-l Lx>~J 

It is clear from the recurrsion formula (6.39) that successive 

Fre"chet differentials of __o_:, with equal increments z will be more 

and more complicated. However, it will be of interest to compute 

J~_J)._t and Jv.Jl: for futur-e reference. Further the recurrsion 
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formula is simplified by the fact that the original and varied 

directrices have the same end points. The first Frechet differ­

ential for the more general case where the original and varied 

directrices have different end points was given in theorem 6.5. 

It will be of interest to compute the second as well. We give 

the first result as 

Theorem 6.,2_. Under the conditions of theorem 6.4 the third and 

fourth Frechet differenti.§:1S of JL: [)(J with equal increments z 

are given by 

( ) 
<;' 3 l,- _ ? J Ir r\ Ir O I <><, « ,J., I. 6.49 o _fLa.., [><~'i:] - c.... o., -11.....,,o_., ro(,o<2,c(

3
~~ t: i.r:.-<3 J2. a., t:Mv-+ 

J Ir f'l 1,- 0 J -o(I o< ,/. « 11 4.., I 
+ (), _JL ~ ro(,o(1.o(a"'I !!2::_ i:. i.t. 3~ 'l-11.....()., t:i4..- + 

d,A., 

+ 3 Jcvlr-_fl~ le o<, d.1. c¼~J 'c J.2. ~, t,,-4, JL:~ R. A!3 -,_ t:2../3, t= /31.. _f)_:2. J-w?... + 
JA, 

and 

(6.50) 
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( 6 .. 5 O) cont ' d . 

+ 

If 

[ ~ l,- 1,- h""1 
rJ. I. f Jl.2.Jl.. ~ R h Ii; ft I. 11 .-a3 A:z. ,,, l..lf 

, J1., _{/_,4., {( J., -<2. "J:i_ i!, 2. /1-"l I Ja., "2-2., A/3:z. J • 'c. • ~, )4, :JLA3 II.. r, Y2. ~ J ~ ~,. µ,3 
1 .4. -2. U3 

/I J A.J J. s A. <f 
Ja.,:JL.-4.,,, tr.J.Jz. h 'i ~Ao- h'f 

µ'( 

Proof: The formulas (6.49) and (6.50) follow immediately from 

the dagger differentiation laws. 

It is noticed that many of the terms resulting from the 

dagger differentiation are identical. Combining these like terms 

gives the peculiar arrangement of coefficients in (6.50). For 
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For the first of (6.52) is ( not writing the curvature tensor terms 

or the terms summed against it) 

( ) r 1.,- J Ir Ir t I µ_ J A., A., I. j A.2, )2.2.. /43 J. 
6 • 5-3 J a., A , Jl. t ..I/... A. ' o,.;t ' a., ..fl. ,a ., ti'-<1- " a, .J2. A 3 _fl_ a.., Cl'-(!, .3 

Interchanging the order of integration with respect tot and with 

respect to A-1 gives 

( ) 
Ir (r t "t ),o._ J ~, A-1 # J,4.'-_f)_.42.. fi-3 1. 6.54 ]a., Jlt µ 1~ Jl_A, I a., JL,4,2.. 2. a_ ,,-4,..3 _n_a.., ""'"4--3 

which on renumbering the dummy parameters and inserting the curva­

ture tensor terms gives the same result as the last of (6.52). 

Similarly for the other two terms of (6.52). 

The second result listed at the beginning of this chapter is 

_!~em 6.10. Under the conditions of theorem 6.4, the second 
I ,z.. 'r' Frechet differential e _fLx. [x, ~] 

(6.55) 

+ 

d I~ (r) 7:, o(. l'r) z:fa(r) .JL; 
0 ~ ,8 

l'o{ ('I'") 1:."" ( t) r /6 Cr) z. 1.3 ( t) ..fl. ; 

is given by 
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(6.55) cont'd. 

- 2. r ~ (T) loo( (r) _(L; r/3 ('1) "2: ,.s (l\) + 

+- ..Jl.; rc1. Cl\) ctC>t) r13(ll) 'l:.,a(11l + 

+ .JL; cl r,d't) z: olC'J-\) ~/3(ll..) 

J-y_,13 

Proof: From theorem 6.5 

(6.56) o'".Jl: cx>'r.J - J' 1 r.Jl:1 = 
S' [Jr JL 1' R.cJ. o( ht-"'' z:. <J.L JL ,a., k + _/2_; ~ Cti) i: o(c,t)+ 

't ,<), I '- .,L.4.- )t 

- T'r:J. (r) :c~(r) Jt; 5 

I t" 
Clearly J Jl.ri lx> t] is the sum of mul tilinear functionals on B

2 
B

1 
I E1 E2 to B2. All the factors possess Frechet differentials, so 

the right member of (6.56) is given by the formula for the deriva­

tive of a sum of multilinear functions . By direct computation the 

t'ight member is 
2. J,,,t Jl.: fL.,c(,

2 
4..L, l:.-'-1.. k, J Jl'.JL;' fr;,, f.l .LJs, /31.. n A-z.h + (l) 

'I I J. ?'/ L /"1 / JL""'!-_ ~ JL...?t Z. 
v-v-, {),i.~ 

( 6. 57) +Jr- .J1.,: Pol,~2- "'-3 t4-o1, ~ <><._ r -<3 _n_: k +- (2) 
1\ J;.., 

1" 'l"' R_ J.-t-o<, ~1.. n ~ I ( 3) 
-t J 1/ _IL R, o<, o( 2. µ_, t:-- ....J L )t 1/-..4.-

(4) 

(5) 

(6) 

(7) 

(8) 
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(9) 

(10) 

(11) 

+ _fl__ ; J r<( c >t) =t: o( ( 11 ) ~ f\ 1l ) 
0 X, (3 (12) 

c) f1o1. 1= "" er) i!: /3 ('J-) ..Jl. ; 
()"X, ;3 (13) 

where the different terms are numbered (1) - (13) for convenience. 

In the computation of (1), (2) and (3), the contributions due to 
r 4/ 

the para.meters s in .JL.,4, and ..Jl?t a.re incl uded in (2), but the 

contr-ibutions due to parameters 't-' and I'{ are given in (4) and 

(5). The remaining terms are straightforward. Adding all terms 

(1) - (13) gives (6.55), the theorem. 

VI.H. Applications to a Closed Directrix. 

By means of theorems 4.4, 6.5 and 6.6 a shorter and more 

meaningful proof of corollary 3.7.1 is possible. we give a lemma 

first. 

Theorem 6.11. If a vector 1 indicated__gy the column matrix )\. , 

is displaced _ _QY Levi-Civi ta Qarallel. displacement §:bogt J! closed 

directrix, z " =- ~ •-' (1s) , if in making_ the circuit 5 g__oes frQJl! s = t<­

to j -= Ir , and if v L = ,x ~ (s )- x'ca.) then_ttie first and second Fre'chet 

differentials of A[ " tlr-J with increment v exist and at'e given gx 

(6 . 58) 



where R o(,o(?.. , the Riemann curyature tensor is evaluated at the 

point ~.:(a..) • 

Proof: Consider a closed dil'.'ectrix ~i·=µic5) through the point 

1- i:(it.) =- x." (Ir) , parameterized so that 5 goes from a to b as the 

parameter traverses the directrix. Then give the directrix 
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l • i such an increment 1:.L that ,M, ( 5)+e\-s)=XCs). Then from theorems 

6.5 and 6.6. 

(6.59) 

We now shrink the original directrix ).,t.,iti ) to the point u., L(a.) • 

This implies that II u} c~) - u.,: (a.,) 11~ 0 • Hence 'l. i ( ~) ➔ 1r 'cs) , 
• Ir k., q • • 

~d..,rJ..2. Lxc~l,3 ➔ de °'-,c(i 1/(<1.)J. In the lim1 t -D..,.a., -=- I , - = 0 , .z::_ 1.--= v '- . 
.14 

The only non-va...~ishing term of (6.59) is the fi rst of Jz.. A which is 

J°1..A [x:>v- llr] :=. R.. ot ,o{z.. f Ir d.v"'' 1Fo1LJ.,: 

(µ d.5 ..) 
which proves the theorem. 

Theorem 6.12. If a vector ~ is displaced by Levi-Civita parallel 

displacement about a closed directrix -,:.,; =- ~«:ls> , and if 5 goes 

f.!:.Qm ~ to Ir as th~_p_g_rameter ·12oint traverses the directrix, anq 

are the values of .A at ~'Co..) before and afte_!: 

gj,_sJ2_lacement, then the n,rigcipal t.fil:m of the~eralized Taylor 

series e::irn,ansiog for the difference )..(1r)- .>-. (~) • I z.. 
ll 1: cf A[x;,rJ 
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Proof: Corollary 6.8.1 gives the generalized Taylor series ex­

pa.:r1sion. Since the directrix is closed, J,,_, lr ,r"'z. ~"• J 3 -= la-1,. ~"'-,x,,,,.J..r. . 
.:1-s v<s .) 

Using (6.58) gives the theorem. 

Corollar~ 6.12.1 / ' Peres Formula. If the directrix is an in-

fini tesimal curve in the sense that If '\l" i II is infinitesimal, then 

_(6.60l gives the change ,\ (1r)- .>.(o...) • The chang_g is the second 

Frechet diffE;.J:fill!i§;l of ;\ with inc_rement ir • 

Proof: From the definition of the generalized Taylor series 

expansion, each term is of higher degree in z than the preceed-

ing terms. Hence if 1/ zll = I/ vii is infinitesimal, the only con­

tributing term is the first non-identically vanishing term given 

by (6.60). (6.60) is the equation usually discussed in texts 

like Eisenhart and Thomas under "Parallel Displacement About an 

Infinitesimal Closed Curve", although frequently a parallelogram 

rather than a general curve is taken. It is a matter of simple 

quadrature to reduce (6.60) for the parallelogram to the form given 

by these authors. 
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Parallel displacement is essentially a geometric phenomenon, 

and is independent of the coordinate system. If the contravariant 

vector A is displaced along a given directrix, the value of A at 

any point of the directrix is independent of the coordinate system. 

That is, the components of A in one co.ordinate system are related 

to those in another system by the ordinary contravariant tensor 

transformation law 

(7.1) A ls) :::: >:Lxl -i; l]= B (5) ), [X ("s)j or 

(7. 2) .-\ c-s) =A(~ )I(~) 

'1.1\fhere A Cs> , 13 Cs) are the matrices of the partial derivatives 

(7.3) 
( 

c))lrL) B <s) == ( a ;x; A.) A ( s)= ~=;:c. ) 
c) ')('..c 

where the direct and inverse transformations are given by 

) 

It is seen, that as written, 8cs)= B[~tJJ and A(s)= A [xl}J 
23 24 

are functions on the vector space E2 to B1 . Of course (7.1) is 

regarded as defining AL£ (3 )J and might more fully be expressed as 

(7.5) 

and (7.2) as 

(7. 6) 

Now since ), ( Ir) and ~ (a.) are related by theorem 3. 2 as 

(7. 7) A (tr):: __n_t >. (o..) 

23. See theorem 6.2. 

24. See section IV.A. 
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it is worth while to enquire into the tensor characteristics of 

.J)_ 'r. . We seek the r-ela tion between _fl ~ [ .1<} =- _n_: [- f1o1.. kol... I 5] 
"'s (,.. Ir - .1.--;- tC and __fL 11,, [ £] :::: Jl(,l., [ - ri:c. ~ 1 6 J . One approach from a different 

point of view has already been made in theorem J.5. 

Theorem 7.1. If a vector ~ is displaced by Levi-Civita_parallel 

displacement algn.g a directrix 1/· -:: ;ic: ' ,( s) from "s =-<!t. to s -= lr and 

if A(o..) , ,\ (1r) the values of ).. .at 1 -=- o.. > Ir respective1_y are_related 

12.Y_the equation ,\ (t,-)::::- ..n..~ ~ ( 11. ) then the matrizant fµncti2:9. _n__~ 

is a ~int tensor with base pQints '1- ( A-) , X. (&-) , contravariant 

of order one at • x.( lr-) and covariant of order one at -x. ( a..) . 

Proof: 

systems. 

(7. 8) 

(7.9) 

The following equations hold in the x and x coordinate 

where the bared t e rms ar-e the functions computed in the bar co­

ordinates. Using (7.5) in (7.9) gives 

- lr 
(7.10) B (tr) ),. (tr) = _[)_°" LxJ B (a.) >. c"- ) 

On multiplying on the left by A(lr) == 8-
1
(1,-) 

(7.11) 

Since (7 .11), (7 .8) must hold for arbitrary vectors }. ( o..) 

(7.12) n lr [ - A l t,-) JL.tr- [ x ] f3 cc.. ) 
-' l.. o.., )( j - -

But (7.12) are the defining equations for a two point tensor, base 
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,points )c. ( o_. ) , 1G Ctr) , contravariant of order one at X(lr) , covariant 

of order one at X(A) , which proves the theorem. 

It is clear that the parameter limits may be anything in the 

range of definition for J . Hence we have by the same proof 

Theorem 7.2. If a contravariant. vector ), is displaced by Levi-
I ' Civita 2arallel dis:Qlacement along a directrix --:K. t= ~'c r) from ! = a... 

!2 5 ;::.lr and if A (~) , A Ct ) are the values of ).. at 1 = Jt and 

res12ecti vely, are related by A (1"') =- -1L~ ).. ( >t ) , then _fl_.~ for1~ 

a two ;2oint tensor fieJ:d with base point_s ;z. Ci-t. ) , 'J.. ( t-) contravariant 

at ¼( t') , coy_ariant at ~ Clt ) for al__1 77. /1.J such that a. ~ }1
1 

t- '=- lr .That is 

(7.13) 

Note that the theorem is valid even if ,t =.,... or 1'( > r , since 
~ . ,,_. >t. ) -/ '11 / ~ -::- _l_- I (-,1 .JL 11. ::: I and _JL 7t ...J2... 7-' ~ u... __[)_ n. = -' 1.. ?-

r- i.. '}-' However, 0 -1l 11. [x ~ =cJ does not have such general tensor pro-

perties, as is shown by the following theorems. 

Theorem 7.J. Let a contravariant vector A be dis:2laced by _1,evi-

Ci vita parallel displacement along x '·-= x. i. (s) from 1 = CL to ~-:. Ir- • 

,1tl -n__t be the matrizant function relating the values of ~ at 
Ir 

-g -=. o... and s -=-lr .l2l 1-llr-)=- _n_a... .-\Cit). Let the directrix be varied to a 

nex directrix with the same end t?Oints 1-,(a.,) , ;c (tr) and with egua-

fet'ential of JL~ with equal incr-ements .. z. 
two point tensor with base points ')'.. (tt) , X( lr-) fot' all z in E1 contra­

variant of order one at --y, ( t,..) and covat'iant of ot'der one at x C"-- ) if 

and onl;[ if the tt'ansformation -£ = f" (>) is li~-
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Proof: The theorem will be proved by induction on the order of 

the Frlchet differential. The right member of 

(7 .14) 
l,- -1.,-

.Jl_~[)(.] = A(tr)_f)_a., rx:J Bea.) 

is a trilinear function on B1 B2 B1 to B2 , where B1 is the above 

defined Banach space of square ma.trices of order n whose elements 

are continuous real numerical functions of one real numerical 

variable, and B2 is the Banach space of square matrices of order 

n whose elements are real numerical continuous functions of two 

real numeC'ical variables. Hence if A , 6 , _fl_}: nu each have 

Fre'chet diffet"entials, the differential a' JL/: [ x; 'e] will be given 

by the formula for the derivative of a trilinear function. But 

A,B are matrices whose elements are differentiable functions of 
I x and x, hence theiC' Frechet differentials are the ordinary differ-

entials. Hence cf 1A [ i';i) and J'
1

r3 Lx;:eJ exist. But since Z=(A-)= "t.(1r)=O, 

because of the end point conditions on the di r ectrices, 

<f 1 A[.i>i/lr] = J'B [x>=e:/.t.J=O. Further since -:i (x.) is a differentiable 

function of x, 0
1
£ (rj exists and is given by the ordinary differ­

ential, in matric notation 

(7.15) 

Hence using the composition theorem for Fr~chet differentials 

) 
, I Ir ) I - /r ( ] (7.16 a -1la., Lx·i:z:J = A (tr- rJ .JL~ LX- .iJ i c~ ; -6 ) 13(a.) 

=- A (tr) J I Ji t [ X j B i': J B(o.) 

But T3i =i if and only if the transformation is linear. For if we 

expand · :i ( 'tt ~) we obtain 



61 

(7 .17) x (x-i-~) == x ( ,:) -t-/3-2 + higher order terms involving d 1..xo<. z::.~'c, i 
cl ):.f3Jx. 'll' 

by definition. 

Hence 

(7.18) ib B ~ + c) '- - .( higher order terms involving~ ~~~¥ 
Jxf1c))(¥ 

Hence 

(7.19) 

if and only if the higher order terms vanish, ie, the transformation 

equations be linear. 

Hence, if and only if the transformation is linear, then 

( 7 • 2 0) CJ t ..Jl. !: t )( j z } .:: A Llr) 6 
1 JLf [ X j i ] B ( ~) 

Clearly, if the transformation is linear, and if we make 

the induction hypothesis, then in equations (7.14), (7.16), (7.20) 
/,- ~-I lr I Ir • lr 

':'e can replace ...fl(µ by J _n__l'- and J" Aa..- by J ~_n_a- , and all 

equations will be valid. Hence J" JL /: [x:, iJ is a two point tensor. 

This completes the induction. 
(' "l. Ir 

Conversely, let us assume that o ~~ is a two point tensor, 
{ () Ir 

without assuming that J' -1. 1,..~ is a two point tensor. Then we can 

write 

where Then 

+A J 'Jf.; ex> J 1i: t:t'>-=e. >J B+ A 0
1J2.;cx ; Jj Lx ~i.,JJ 8 

-+ A J 2. .Jl.): [ x ., ~ i ~ :J B 
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Hence since is a tensor, the last four 

terms of (7.22) must sum to zero. Of these f our terms, the second, 

is homogeneous of second degree in z, and the othe rs are >if not 

identically zeroJof at least third degree in z. Hence the 

second term is linearly independent of the other two, and must 

vanish independently f or all z. But (7.23) vanishes only when 

d I i lx '> l) vanishes. But this implies that e. be independent 

of x, or that the transformation be l inear. 

Hence, if Jz..Jlt [)(',r.;~J is to be a tensor, the transform­

ation i-=- ~ (x) must be linear. .An identical type of argument 

holds if cf i, JL;: is G. tensor. This completes t he proof of 

theorem 7.3. 

Similarly, if and only if the transformation z ==- i (x.) is 
• t' 

linear, then 5 i. ...Jl1t [x; eJ is a two point tensor. For differ-

entiating the results of theorem 7.2 

(7. 24) cf
1
-1l;L-x-~r.J - 5 1Acx)~l r--J-1i;LicJ B llt)i-

A (~J JLt [ x] 5
1 

13 [xj 'e llf] + 

A/:t) o'Ji ~ [.x,; a'-i L)Q'>-eJ Bt,i) 

If x 1\::. i t'.tx) is linear, then J 1
A::: J' 'f3 -=- CJ since A and B are 

matt:'ices of constants, and fut:'ther, o'-i"c x.i~J='Bi!,.==-~ • If the 

transformation is not 1-inear, then o1 A(1-) ¾, O unless 1°'= tr , 

l 'Bt-.,.,)~ O unless vt-=a.- . 
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In a manner similar to that used in theorem 7.3 it is then easy 

to show 

Theorem 7~. Under the conditions of theorem 7.J, the Fr6.chet 

differentials of the matrizant tfi..Jl.~ [x·,ic.J are two point_tensor 

fields if and only if the trap_§formation of coordinates ~-= i'(x) 

is linear. 

The situation is entirely different when the change in 

the parallel vectors is caused by warping the space as in chapter 

v. In this case we have 

Theorem 7.,2. 
' -t 

Under the conditions of theorem 5.2 J i._J)._a, cr~>J r1.,J 

is a two_QQint tensor field, contravariant of order one at "/., (t) 

and covariant of order one at ;t::(a...) • 

Proof: rl'?... , the coefficients of connection in the bar co-
I 

or-dinates a.re Frechet differentiable f unctions of l11c, with incre-

ment t§ rri • For, the equations of transformation of the co­

eff icients of connection are, in component notation 

(7.25) 

Clearly the Fr/chet differentials J '- Fl?. [f'.t ~J/7-e J 

are given in rnatric notation by 

(7.26) 

(7.27) 

and 

(7. 28) 

exist and 
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Now differ-entiating the equation corr-esponding to (7.12), 

and using the composition theor-em for- Frechet differ-entials 

- t 
(7.29) JL! [ r ] == Alt) .J)_tl- [rj G (A.) 

(7.30) tJL~ L r'>orJ = Aet) o ' _if_:[i=r )cf ' r1[ r j J"rJ] 13co..) 

::: A lt) o' Ji..£ [ r i cf r J B c~) 

Since A, B ar-e independent of Pre. , the differ-entials J' ' A , 

~ ' (3 both vanish, hence no ter-ms involving o'A or- 0 16 occur 

in (7.JO). However, (7.30) is the defining equation of a two 

point tensor, contravar-iant of or-der- one at J(.(~) and covariant 

of order one at ~(~) . This proves the statement of theorem 7.5 

for the first Fre"chet differentials. The proof for all differ­

entials is by induction, using a step by step proof which is 

entirely similar to that used for- the first Fre'chet differential. 



VIII. The Classification of Riemannian _§paces by Their P~!~· 
VIII.A. The Concept of the D~gree of a Space. 

It is a common and u·seful practice to cl·assify plane 

curves by their degree. The degt'ee of a curve, when it is 

expressed parametrically, may be defined e,s the order of the 

lowest order derivative which vanishes for each coordinate 
24 

equation and each parameter value . Plane curves may be of 

finite or infinite degree. Similarly we seek to classify 
/ 

Riemannian spaces by means of the Frechet differentials of 

parallel displaced vectors with changes in the directrix as 

increment. Spaces of zero degree are spaces for which the 

first (and hence all higher order) Frech.et differential of an 

arbitrary vector vanishes for any and all directrices and 

variations. Spaces of degree one are spaces for which the first 
/ 

Frechet differential of some vector for some directt·ix and some 

variation does not vanish, but for which the second (and hence 

all higher order) Frechet differential does va.nish for any and 

all vectors, directrices and variations. 

In general, a space of degree mis one for which the mth 

Frt chet differential does not vanish for some vector directrix 

and variation, a.nd the (m + l)s t 
I 

Frechet differential vanishes 

for arbitrary vectors, directrices and variations. A space of 
I 

infinite degree is one for which no Frechet differential vru1ishes 

for arbitrary vectors, directrices and vat'iations. 

Of course the parametrization must be in terms of an essential 
parameter. ':j~t3 > x == t 3

- s- is only a first degree curve, 
even though the second and third derivatives do not vanish 
for this parametrization. 
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Because of the dependence of the displaced vector on 

the matrizant function, this problem is equivalent to classi­
/ fying spaces according to the vanishing of the Frechet differ-

entials of the matrizant. We now seek these conditions. 

VIII.B .. The Conditions for the Vanishing of the fr{chet 
• Ir 

cfLJL~ [X','e] Differentials 

Theorem 8.1. Under the conditions of theorem 6.~., the ne£f£-

sary and sufficient condition for thLvanishing of J 1JL~ Lx>tJ 

for a.11 directrices ;l:.i=- ;t:: t( l ) and variations e i:-=-~'(s) in 

an open region D of the space of definition is that 

R. ,ej = D 

2-.t all points in D. re, i = J, .. . ,Jt., 

Proof: From 6.19 

Clearly, if R. .i. ,c1.2- vanishes, , so does (8.1). On the other hand, 

if (8.1) vanishes for all directrices and variations, it 

vanishes in particular for the directrix and variation 

(8.2) J'..i (i ) arbitrary except in the neighborhood of ;:i 0,) 

;r,i( s ) - "J,t(s0) L =f, ... ) fe-1,fl+}"' ,r 

-,:,fl (J) =- -x-" (L) -t- ( 1 - L) k l,V\""-F 

=E.+s-so :L- E. ~ s !:: s" 

-= E. s. f:: £ ~ ~d-t S 

l s- so l~ Zt. 

/"5-f.,/ ~ Z L. 



We illustrate (8.2) in Figure 8.1 a, b, c 

L+2. £. 

Fig. 8.1 a 

Fig. 8.1 b 

Fig. 8 .1 c 

With these directrices and vac-is.tions, 

( 8 "J ) \ I Ir _ J So+ 2 C. 1.,- .,l 
1 •~ (J _(lo.. [X','c.] - 'F"-£ JLA- R_ol. oi. # ~ol.i_ n .-0... I . 

.)0 I l. j.A._, ---1 L Q... ~ 

(not summed on 1 ) 

If we expand the matric terms in a Taylor series about 50 

we have 
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where O (E.
3
) represents terms of degree 3 and higher in E. 

Since we may take & as small as we please, 

(8.5) _j)__t R,flj (so) J2.!
0 

-=-0 

But -n.. ;: and JLJ,0 have inverses _a[· and _n_;: respectively, 

since __n_ ~ ....D..t." = I . (This result follows since -1l~
0 

_f)_ f~ is 

the matrizant describing the displs.cement of a vector from 

'1 o to l.r and back to Jo , which leaves the vector un­

changed.) 

Hence, 

( 8 • 6) /?_, 1?.j [ X I 3 o] =- {) 
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But 'Jt( so) is an arbitcaary point. Hence R. re.j vanishes every­

where. The openness of domain D guarantees the existence of 

the curves in Figure 8.1 in D for sufficiently sme,11 E. • 

This proves the theorem, since ~i can have any values 1, 

... , n. 

Theorem 8d. Under the conditions of theorem 6.4, the neces-

sary and sufficient condition foy :the vanishing of the s~coBg 

Frfichet differential, oz.. Jl.t [x:, 'e] for all directrices ~ I-'(~ ) 

and variations ~ le~) in an open region D is that 

(8.7) 

Proof: If ft ,i,s =- t> every,Nhere, then from theorem 8 .1 

5 'JLi" c x ) eJ vanishes and hence so must ~2.J2.; [ x '., cJ . The proof 

of the necessity of the condition is similar to the proof for 

theorem 8.1. The two special functions for 1a <5) will be 



sketched only in Figure 8.2 and not described analytically. 

E 

Fig. 8.2 

Let the directrix be given by (8.2), and l et 

,(8.8) 
I o 

:f. = / Cs) 

l_'- = ,, ('$) 

z.3 = 0 
I 

Then from theo rem 6.7 

(8.9) J7=Jl: [x:_;~J-= fa-1r__n_}:, Rr1.,<J.z:. ~°'' r.t>(z:._n_~ J-v + 

We expand the matric terms in Taylor series, obtaining 

(8.10) dl._[}_~ [Xj'.!}::: 

• O 0 + 
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+ 

Use is ma.de of the skew symmett'y of ft o( 1rJ.'l.. in o< , > «z.. in the 

fit'st term. 
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We consider the integt'als of the fit'st terms of the three 

series in the right member of (8.10). We are interested only 

in order of magnitude with respect to E • The first integral 

is of order £z.. , the second of order s 3 and the third is of 

order £q • This can be vet'ified by direct computation Ot' by 

noting that the order is unchanged by changing the cut'ves 

slightly as long as a tet'm is not dropped or made infinite. 

Hence in the integrals in the second and third terms of (8.10) 

the function s/~ / ' may be replaced by the step function 

ll(1,)=-D 

1:-'-Cs)= E.. 

~'(s )= O 

s L... s-
$0 ~ s ~ so-tE.. 

sd+E L.. s 

The third integral of (8.10) is then of the same order as 

(8.11) 

and the second is of the same order as 

(8.12) 
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and the first, with no approximation, is 

(8.1.3) J "so+E. - E. k = - E. 2. 
J ., 

All the deleted terms will be of larger degree in 

than the first term in the series in which they occur . . Clearly 

then the lowest degree in c appearing is the second. Since we 

may take E. as small as we choose, the coefficient of E. -z.. in 

(8.10) must vanish, to wit, 

Hence as in (8.5), (8.6), since 

_n_;: have inverses, 

Ir 
1o is ~rbi trary and _J)_ ! o , 

everywhere. 

But the variation could have been chosen similarly, but 

differently to give any permutation of the subscripts on ~~, a L • 

Hence 

(8.16) everywhere 

for all values of k, j. This completes the proof of theorem 8.2. 

Theorem 8.~. The necessary and sufficient condition for the 

~ng of J 3 _n_: for all directrices -------------·- J:,'( 5) and vari·e.tions 

'1:- '- ( 5) in an open region D of a Riemannisn space is 

for all k,j = 1, ... , n and all points in D. 
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The proof of theorem 8 . .3, while along the same lines as 

the proof for theorems 8.1 and 8.2, is rather more difficult. 

We define for future use as values of ~ the curves 

(8.18) 

E. 

E. 

E. 

Note that each function / '"C"i) 
1 

i: = 1, ···, m,... is the same as every 

other function except in the range 50 :: 5 ~ so+ c. and in this 

"'ange, ,J ;, c-.:)-= (J-!o)i Th d ·11 b t h L -1 ~ . e proce ure w1 e o c oose 
£ i:-1 

• I?. 
particular varied directrices so that ~" (3) = / Cs) or zero. 

The matric terms in the differential will be expanded and 

factored out of the integrand. we particula.rly note at this 
R. ' 

stage those integrals involving J., i c,) / ~r) which ai:-e summed 
tl-5 



a gainst a t e rm which is skew symmetric ink and j because of 

the skew symmetry of R. ~J in k, j. For such integrals any 

contribution of l / ~l-.;,.) f J·Cs) will cancel that of ,,LI J'cr.> f tee~) 

~s ds 
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over the region 1. +E. ~ s = s'o+ 2. E. • But from the dagger differ-

entiation formul~s (6.33) and (6.37) for the different Frichet 

cl !~ dif ferentials, the only place 7g appears is when summed 

against the first index of ftte.j or some t e rm in the P1e,o1. . .. 13 

s e ries. The othe r indeces are always summed against a term 

-l:..« • Hence i~n only appears in an expression 
1 -s 

( l. :a-.,( =t. /3 _ ~.a~~ ) since R. d. /3 , P~ ;3 .. . l!' are all skew symmetric 
k s d.s . , 

in c1,,. f3 • If ~ o(' = / "cs) and i:..
13 = / J< i ) , the parenthesis term 

vanishes over 3
0
+c.~ sf:: 50+Zt. as noted above. 

i These functions, / (5) all diffe rent, are so chosen that 

the degree in & of any single or iterated integral of any com­

bination of them can be computed at a glance. For example 

(8.19) ('1
2 t.t-s., .J. i,( -S ) J 3 = £. 2. i=I 

j - £ T So 0 

::: S"/r. E z. i. = 2... 

= (...L -rl..) i. ==m 
?>1 +1 2. 

z. 
and hence is of order E. for each l • Simila,rly, 

J 
Z E + so 

cli_L('O I., cz.. (8.20) / JCs) 4§ ---
- t+ :So Jg 

i+j 

and hence is of order E.?.. for all "J j • Further 
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is of order £ ~ as is easily seen by direct computation, or by 

changing the curves by letting the portion in the range 

5.,+ t. f 1 = s.;+ z. £ approach pet'pendiculari ty. This does not change 

the degree of the integt'al in E. , but makes it easy to inte-

grate at sight. The rule for computing the degree in e of 

an integral is given by 

Lemma 8.,2.l. In the proof of theOt'fil!! 8.3, an iterated integral 

consisting of C( integrations, f3 functions I '-cs) defined 

(8.18) and '( derived functions c).. t·('f.) with limits a., Ir on 
J. s 

last Qerformed integration will be of degree ol. -t- ,/8 .!!l E., • 

Proof: From the above discussion, if the integral does not 
d... 1 {, 

involve ~ 
tls 

we may vary the f '- l-s) so the curve j 'ls) drops 

in 

the 

pe rpendiculat'ly from c.. to zero at so+ c. and is zero for all 

larger 5 This does not change the degree of the integral 

in E. , since the integrands are all positive. Then it is clear 

that each f introduces a term which on the final evaluation 

of the limits is of order c" • But each / ,. is divided by 

so the net contribution to the degree by each / • (5) is one, in­

dependent of i. Each integration similarly increases the degree 

by one. 

When J.. I 'c5 ) 

J. 5 
degree over Sti ~ 5 

occurs in a term, the net contribution to the 

~ f
0
+ E. will be zero, since J../ in ) is of degree 

d.s 
one less that / iC s) 

1.,+ E ~ 5 ~ so -t Z. E. the 

. From an above argument, in the region 

contribution will cancel that from another 

term. This proves lemma 8.3.1. 

From (6.49) we now consider J 3_n_:[x)eJ for the particular 

directrix given by (8.2 ) and variations ~~ chosen from (8.18). 



We expand the matric terms in (6.49) about s =~
0 

obtaining 

(8.22) _Qt po£1cJ.._o(3 _n_r == .JL~o P"-,ix1..<><3 Cs.)JL!c + 
_fl_ !,- D .JL. So _/ . ~'( 

+ So lc<,CX:2,cJ.?,o<'i-(so) CL ~- (-;s-s.) + 
J. 5 

1 JL 1r P. ( ) JL J., J 1.x~¥ 'L. 

+2! L -<, ... o1., so c,., cJ..-g-z.. ("s-so) + 

+.!... JL~ P-<,··· d.s(ru)-11[" ~-<''( k-<,,-('t'-r)2. + 
2. ! ~o ol 5 AS :, ~o 

+··. 

(8.2.3) _J)__~ Pot, ol.1."-3c<'l Jl.; = 

We consider a sample term in an iterated integral in 
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some detail, since it is more complicated. We discuss the term 

which may be written 

Now we expand the matric function of s .. about 50 • 

(8.25) _[Lt fc.o1_,<1.z.(~,)J2{~ r?. 13, 13,_ (s.,_)JLa-' t. =-

Jl~, feo<,~,_ (s,) JL i [ ftt3,fa2,(s.) + Pt3Jl ... f 31 f.3; [r.J (s.,,-rJ + 
5,:.. 

+ ±, Pp, ~,._p313 ., ~":, J.,,.f3-1 cs,. - s"/--t 
• is ... Ts2.-

..!... Pi h .a~ ,1.. 
+z., f3,/?>1./3a ~ Cs.,,-1.,; + 

• d-.s 
l, 



Similarly, expanding the mat~ic functions of 51 in (8.25) 

about 50 we get 
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The matric terms are all expanded in a similar way about 
3 I.,.. So , giving for the expansion of a _fl_~ [x~~J 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 
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(8.27) cont' d . 

1,- s [ J tr J.4."'• olz. J J s, J. "l-/3, cr1z.J + + + 3 .J2..io fL,.,d.z. R. /3 ,/3 i.. .JL a: 1,1, 4, ~ s, a, d. h Si. (9) 

(11) 

(12) 

(15) 

(16) 

(17) 

+·. () 
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(8.27) cont 1d. 

(20) 

(21) 

Note that (8.27) is the sum of several series. Each series 

is started with a double plus sign, and the first few explicitly 

written terms of lowest order in £ are written with a single 

plus sign. 
3 lr • 

Since rJ '-1La.. [x>i.J is to vanish for all directrices and 

variations ~~ , it vanishes for the directrix (8.2) and 

variations taken from (8.18). We compute all the integrals in 

(8.27) and collect terms of the same degree in £ . Since f 

is arbitrary, the coefficient of E~ E..
1

1 
•• • ) s"; .. , must vanish. 

In pa rticular we see that term (1) is the only term of 

degree three, and that no terms of lower degree exist. Hence 

(1) must vanish. We write (1) in detail 

(8 28) Ir So J 1,- J e °'1 o(z. ol3 I • ~ .JL~ Pel"' oi. (s) Aa.. - =c. =t:. .:?ls 
.)o I L J O OJ d_S 

on expanding the summations in (8.28) , the terms fall naturally 
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into groups where the indeces c,1_,) o<.._ ) o<.. 3 have the values 1,2,3; 

1,2,4; ... ; n-2, n-1, n. There are (~) such mutually exclusi",e 

groups. Without loss of generality we may discuss the first 

group only. Expanding the summation, this group in (8.28) be­

comes 

(8.29) r" SL L-
J "So 

(A) 

(B) 

(C) 

Ir j_ I 
i=- 2. d.;r + l.r 

p/12. _[2_ .lo J. __!:, r. I 

J -11 1., I,\., ,.,, til5 
(D) 

f _il.~o '~" 
Jo J fr J_ =t. I r: I :z::' cl s Jla., ~ J...:s 

(E) 

where j stands for the sum of all terms obtained by giving 

the indeces 1, 2, 3 all possible (six) permutations. The terms 

have been l ettered A - E for conveni ence. 

Now because of the skew symmetry of P a...1r~ in a.., lr , terms 

D and E vanish. If we choose variations ~3 ~a , terms A vanish 

and J is only ove r I, 2.. • We choose four sets of variations 
7"' 

of (8.18) I- ' l, z. from the f as follows! "l;. > l := 

(8.30) I ( I '3 I f 1 

J f 1
3 

l:. 

l'l.::: I~ , t s> I II I / '7 
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With these choices the statement that (1) of (8.27) or (8.29) 

vanishes for these four vari~tions yields four homogeneous 

linear matric equations in four unknowns with non-vanishing 

determinant. Hence each matric term SL ~
0 

P,z. z. __n_!0 

, 

P, z. I _f2_ .;,° , JL ~o p -Z.. 1 2. JL !,o must 
r, r vanish. Since ~L ~ has an inverse, this implies 

(8.31) 

when any two of the three indeces k, j, 1 are the same, for 

l
1 

z.. might have been any pair of indeces. 
\ 

We now assume t- 3 -=\ o , but ~ L =- O for L > 3 • Then since 

we have shown terms B, C, D, and E of (8.29) to vanish, we con­

sider t e rm A, which must also vanish. 

We evaluate the integrals for the three choices of e~,~=11 l, 3 
I, i. (.. 

-i ' ::: I' i z_ t i_ 

(8 • .32) 7.. - t 7. 1 3 ' ?, t:- -

l.' ~ -1- 3 I " ,~ 
Recalling that the integrals from 1o+ £, to s o+ 2 E. all cancel, 

the integrals in (8.29) are, for these three cases, 

i ii iii 

1(,- th ' e2.t 3 el5 - E, 3/t., f, ·y 3 E 3h -
a., p._ ~ 

1 1.,- J. 'e"l. r:.' 'i:.3 J-:s - E, 313 £ i/z t ½ .. -
~ J 5 

1 1r oh-' I ~ ?.. olg - 6 /2.. 2. £ 3/ 3 5 £ 3/ 0 
t;; -

Cl, J.. 5 
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Equating (8.29) to zero for these three variations gives three 

homogeneous linear matric equations in three unkno~ns with non­

vanishing determinant. Hence each matr·ic ter>m vanishes. 

Since -n._ ~ has an inverse, we conclude that 

(8.33) 

From (8.31), (8.33) and since we could perform the same 

analysis with any other triplet of components, and since PRj t 

is skew symmetric in Ii J , Pt?o'l is skew symmetric in all three 

indeces. For adding 

P,'" 3 +- Pi 1 z.. =- a 

p -z., n t- 1-=;_ ~ I -= Q 

which are valid from (8.33) gives 
? 
l,n +- P2.3r -=- D 

which shows skew symmetry in 12. L of R<-J .t • Hence 

(8.34) P1c. J- l is skew symmetric in each pair of indeces k;>R J)j· l • 

Now since Pre s l is completely skew symmetric, for a.11 
(', Ir-:) f\! values of x, 3 in the space, all derivatives of -1 L 3 I o1., o1,_o1.3 --' L e.., 

are completely skew symmetric in o< , o<.1., ol3 • Hence any term 

which is summed against ·an expression 

t ~~ ~ ~3 must vanish. Hence all the terms in the series (1), 

(2), (3), (4), ... of (8.27), and in the series (5); (6), (7), 

(8), ... vanish giving no new necessary conditions. 

The term of lowest degree in c remaining is (9), which 

is of degree four. (9) is the sum of two terms which involve 
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qifferent iterated integrals. In the first term, ~ appears 
cl :s 

in the first of two iterated integrals, and in the second term~ 

appears in the second. By choosing the directrix as in (8.2) 

then choosing a similar directrix slightly differently par·amater­

ized, (9) will be the sum of two terms_ with different coefficients 

for the two cases. Since (9) must vanish for each case, we con­

clude that each term in (9) vanishes separately. We write the 

first term in detail. 

(8.35) 

As in treating P.,z,o1..,_d...3 , we choose different sets of ~ such 

that, for a particular x.o<'. , we obtain from (8.35) 27 linear 

homogeneous matric equations in 27 matric unknowns with non­

vanishing determinant. Hence each matric term vanishes and 

(8.,36) 

for all values of k j , lm. 

Condition (8.36), however, implies that 

(8.37) 

For writing (8.36) in component notation for 1 - k, j = m, (not 

summed on k, j) gives 

(8 • .38) 

That is, the matrix R,ej must be nilpotent of order two. 
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Let us now choose coordinates which at x(~.) are orthogonal. 

This is always possible, since picking n mutually orthogonal 

directions at a point is equivalent to picking a self polar 

tetrahedron with respect to the quadric Ji::i ~l· 1/ in an n-1 dimen­

sional projective space. In general , these coordinates will 

not be mutually orthogonal everywhere in the spa.ce. 

In this coordinate system, at iCC5.) , 

(8.39) and then 

(not summed on r.) 

Since /cJi.c.. te.j is skew symmetric in r,c, so is R11e.j • Then 

(8.38) may be written 

for those terms for which c = r. 

But if the sum of squares of real terms vanishes, the 

terms themselves vanish. Hence 

a.t ;tC's.) • But ~(~") can be taken as any point of D. Hence 

(8.42) holds at every point of D, and is a necessary condition 

for the vanishing of J"
3Jl.~ Lx:, roJ. 

But R ,,.,__,11., k~-= o for all points is the necessa.ry and suf-

ficient condition for the vanishing of 
/ (,- . 

cf '..IL., [x:,'l.J , which is a 



f 3 lr sufficient condition for the vanishing of o JLa., [ x 1 ~J . Hence 

the necessary and sufficient condition for the vanishing of 

5 3-11; [>: , z] for all directrices and variations is 

0 . -o 
fl., le J -

at all points of D. This completes the proof of theorem 8.3. 

In general, the same condition will hold for the mth 
I 

Frechet differential. For, from the dagge r differentiation law, 

and the same type of argument as in theorem 8.J, at least one 
/ 

necessary condition for the vanishing of the mth Frechet dif-

ferential for all directrices and varia.tions is of the form 

where there are [ m;i J factors in (8.44). [ -rn;'] is the great-

est integer conts.ined in 7n +I 

2. • In particular (8.44) holds 

for ••• == e; j = d = . . • = f and ff. ie_; is nilpotent of 

order [ -rn;'J Now there exists an integer p such that 

2 f' t... crn;i J ~ 2. p +I • If R. 1ej· is nilpotent of order L 7>t : 
1 J it is 

nilpotent of order 
f -+I 

2 • Then, if q -= 2. f' , let 

and 

( not summed on k, j). 

On choosing orthogonal coordinates at ~ cso ) > Jj : 12. J is sym­

metric in n., ol • Hence (8.46) can be written, 
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For r ~ c (8.47) reduces to 

and hence 

(8.49) and (8.45) imply that R.~;, is nilpotent of or-der 2.P . 

Continuing the pr-ocess leads to the conclusion that 

(8.50) R. ltj =- D 

Hence we have proved, since sufficiency is obvious fr-om theor-em 

8.1, 

Theorem 8~. 
( -m., lr 

CJ :Jlo- [ x :i eJ 

directrices 

The necessary and sufficient condition that 

given by (6.39) of theor-em 6.8 vanish for ill 
):',<s) and variations l. "(~) in an open region D of 

the space of definition of J::; ~ is 

(8.51) Rl'lj = D 

evern1here in D for all k, j = 1, ... , n and all m = 1, 2, ... 

VIIr.c. The Classification of Riemannian ppaces ~X.. Their Degr~e. 

From theorem 8.4 and the fact that 

we have 

Theorem_Ll. Ever-y flat ~iemannian space is of degree zer-o and 

all other- Riemannian spages are of infinite degree. 



IX. AJ2plications of Matrix Theorems to Displacement About 

a Closed Directrix. 

When the directrix is a closed curve, the displaced 

vector 

is located at the same point as the original. 

the effect of a rotation of A (a.) into >i (Ir) • 

fact leads to 

tr Hence Jl....:i, has 

This geometric 

Theorem 9.1. If~ in an-dimensional Riem.._ag_n_!~~R.§:ce, a 

contravariant vector, indicated bl the column matrix A !§. 

g_isplaced about ~ _closed directrix, xi = ;e '- Cs) from s = a.. to 

s=-lr , :;r.Lca..)=:):i:(1,-) and if the values of >.c~)J).(1r) are re~ted 

~ (9.1) , then the determinant of the matrizant function_!:§, 

Qlus one. In smbols, 

Proof: Since the 1-ength of an arbitrary vector is unchanged 

under parallel displacement, in component notation, the square 

of the length is 
' • lr~ trJ' ~ \ .t 

(9.3) ~,-~ >,'- (1,,) )/(1r) = j i:j _n_,._, ~ JL()., (l A <.a..)/ <.a.. ) 

- ~ k Q. ). '2ctt.) A i (a..) 

Hence 

Taking the determinant of both sides of (9.4) 

(9. 5) I '!i I • I .12,i" i i. = 1 ~ I and 

(9.6) 1-11; J -i.. =- I hence 

(9.7) I _n_: I =-~I 
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But parallel displacement does not change the angle 

between two displaced vectors. Hence, an orthogonal ennuple, 

or set of n mutually orthogonal vectors, displaces into a new 

set with the same orientation. Hence the plus sign only holds 

in (9 . 7) which proves theorem 9.1. 

We seek next the vectors which have the same direction to 

within sign before and after displacement. 

Iheorem 2•~• Let a contravariant vector ~ be displaced by 

narallel displacement about a closed direck!2£ ~ i. =;:. ' ( $ ) • 

Then if n, the dimension of the Riemann space, is odd, there 

are exactly 1,.3,5, ... , n-2 .Q!. n linearly independent vect~ 

which have th§ same direction,.i_to within sign~_ before and after 

displac~!!_l,§nt ..... _ =I .... f n j.s even, there ar~ _exactl:r o, 2, ... , 

n .§_Uch ljnearly inde~endent vect~. 

Proof: We regard the components A'- as the n coordinates of 

a point in n-1 dimensiona.l projective space. The matrizant 

-12.~ in (9.1) describes a linear trensformation or collineation 

in the space. A fixed point, Ao , will be a solution of the n 

linear homogeneous equations in n unknowns) 

The necessary a.nd sufficient condition for the existence 

of such points is that the determinant of the coefficients 

vanish. 

where I is the unit matrix. This condition is an equation of 



degree -n in f , hence has n roots, real and complex. Since 

complex roots occur in pairs, there are exactly 1,3, ... , n-2 

or 0,2,4, ... ,n-2, n real roots as n is odd or even. F.very root, 

po( , on substitution in(9.8) gives a vector Ac1.. which displaces 

into the vector f.,. A~. Since parallel displacement preserves 

length, f~ must be ~ I , or complex. Further, since angles 
25 

are preserved, the elementary divisors of the matrix must all 

be linear. Hence each real root of (9.9) yields a distinct 

"fixed" vector A ot. , and r distinct real roots yield r linearly 

independent vectors. Since complex roots occur in pairs, this 

completes the proof of theorem 9.2. 

That linearity of the elementary divisors follows from 

the preservation of the angles between two displaced vectors is 

proved by the following contra.diction. If there is an elem~ntary 

divisor which is not linear, there will be fewer than n linearly 

independent vectors which assume their original directions. 

These, say n-m, vectors determine an n-m dimension space, S-;i_-m., , 

and by subtraction determine an m dimensional space, S-m- . All 

of the vectors of S-in are orthogonal to 5-n-m.., • Since angles are 

preserved, each of the vectors V-m- in S-ni displace into a 

vector which is in S-m. • Similarly for' the vectors Y11. --Y,,,,... in S11-m . 

Hence the transformation determined by the matrizant function 

must be the direct sum of two transforme,tions, one in the space 

S n-m and the other in the orthogonal space Sm • Since every 

collineation has at least one fixed point, the collineation 

25. Bocher, M. (1) 
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in S1"1. has at least one fixed vector.. But this contre.dicts the 

statement that there were only n-m fixed vectors, and hence 

contradicts the assumption that at least one of the elementary 

divisors was not linear. 

Under the conditions of theo_r,~m 9.1, there are 

an ev~n number of the· vectQ!§_ of theorem 9.2 y(hich return to 

their original direction by~.12.Qsite sense. 

Proof: It is shown in theoc-em 9.1 that l_fl.!\=+I . Let the 

coordinate system be so chosen that the real vectors of theorem 

9.2 lie on some of the coordinate axes. The relation (9.1) may 

then be written 

(9.10) 

>.i(lr)::, f,.~ (u,) 

x '-+I (/;-) =-/',',-ti (tl...) 

where the first 1 vectors are those returning to their initi'al 

The j. vectors returning to their initial direction but opposite 

sense have components o,• .. , o) 1, 0> • .. , o etc. The --n-i-j linearly 

independent real vectors which span the remaining space do not 
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return to their original direction. However the ~-~-J rowed 

determinant I w ! = + I from the same type of reasoning as in 

theorem 9.1. Since 
' 

(9.11) I .JL: / = (-l)j (t- 1) '- I w I-= +I 

j must be even. This completes the proof of theorem 9.3. 

On using theorem 9.2 and 9.3, there follows immediately 

Theore!Il 2•A• Let a contravaria,!!t vector ). be displaced abou,:t 

a closed directrix by para.lle~L displacement in a Riemannian 

spac~. Then there are §Xactu 1,3,5, ... , n-2, n Q! O,z,4, ... , 

n-2, vectors which return to their Qri_gi!!!l-1 value as n is odd 

or even. 

Clearly if two or more vectors return to their original 

direction and sense, any linear combination of them also does. 

Similarly any linear combination of vectors which return to 

their original direction but opposite sense also returns to its 

original direction and opposite sense. The two groups of vectors 

are quite distinct, for 

Theorem hl• The vector§__Qf theorem 9.2 which return to their 

griginal direction and sense are or~hogonal to those which re­

}!!!'.!! to their original girect~pn but .QP.P.osite sense. 

Proof: Let >., be a vector which returns to its original 

direction and sense and >. 2.. be a vector which returns to its 

original direction but opposite sense. Then, since the angle 

between A, and ~~ is unchanged by parallel displacement, 

(9.12) 

But this implies 
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and hence A, and ~z. are orthogonal. 

If such "fixed" vectors exist at a point of a directrix, 

they exist all along the directrix. In fact 

Theorem 9.~. If f is a contravariant_vector which ret~£!!.,e 

~o it§_o,rigl:nal direction either with or without the same sense 

after paralle;t_gj:§.pla.cement a.bout a. closed directrix in Riem~­

ian space..1, then evesy vectp_r parallel to )... on being 9-!spl·aced 

about the_di rectrix retur!}§.. to. its 2,.rj._ginal direction with OJ: 

with9ut its.origin~~~~~-sespect!veli. 

Proof: If ).. U-) is parallel to )\ la.) at some point Jt. (r:.) 

then 

(9.14) t- (C) = _n_;:_ )-_(ll-) 

If /\ <.c) is displaced once about the directrix and the curve 

parameter s goes from c to d, then 
J.. 

.n~ >,. (c) ::: _Q~ JL:, >- <.11.) = .ilo.- A (o..) 

- _J)._~ SL: A lo..) = ± -11t A("<- ) = ~ >-. (.c.) 

where the positive sign occurs if ~(.o.) returns with the same 

sense, and the minus sign occurs if ~<.~) returns with the op­

posite sense after being displaced about the directrix. 

Use is made of the fact that 
~ 

(9.16) ..Jl_~ == JL tr . 
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Contravaric.nt Vectors. 
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The entire theory of the previous chapters clearly extends 

immediately to tensors of types other t~n contravarie~t vectors. 

For the sake of completeness we indicate how this is done and 

prove some of the theorems corresponding to earlier theorems. 

Theorem 10.1. t t'._; If the contrava.riant ~§.!!.§.2.!: of rank two 

i,s di~J2;J;?-..£ed bYJ,evi- Ci.Yi ta :Q_?.ralleJ: displac.em~nt alo~ 

directrix ;r;'=1-'c5) from 5 =o... to s=lr and if t"J·ca..) and t'-'_;(tr) 

a re the values of t ~·J at x=a.. !filQ 3 = f.r respectively, then 

(10.1) 

(not SUirl!!l~d on a , b) 

( ) 
t,.. n... J _, ~ where 10.1 is written in cgmpone!}t notation., ie __n_;_, [-r.e. f7-J_,.. J 

C a.ls 

is the component in the rth row and cth column of the matrix 

Proof: The equations of parallel displacement for a contra-

variant tensor of rank two are 

(10.2) 

We may now integrate equations (10.2) by successive approxim­

ations in exactly the same way as equations (3.1) were integrated. 

The verification of the result (10.1) involves interchanging 

orders of integration and certain theorems in combinatori'-a.l 

analysis. The proof, while simple, is tricky, and becomes r:-athe r 



complicated when extended to tensors of order greater than 

two. 

A different proof proceeds as follows. Consider the 

particular tensor 
• . l. j 

(10 . .3) rr ":1 = .A ),l 

the direct product of Ai ls) , ,uJ l ~) two contravariant vectors. 

On displacing 'r i:-> along the directrix x- 1..' = ;t ,·l r)we have that 

111 ~-> mus t satisfy 

- - r ~ J,y, le 1---rl -nij r ~ ~ n. mi?¾, 
m;e dg I - 7't le ). r , 

which is the same differential equation as (10.2). But from 

(3.5), (10.4) has the unique solution at 5 = tr 

(not summed on a, b) 

Since ti.S satisfies the same differential equations as T i..i 

the theorem is immediate. 

In an entirely simila.r way, 
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Theorem 10.2. -t ij'• .. I?._ If a coQ_j;;ravariant tensor of ord~r Q, , 

is displ§-ced J:2y Levi-Civita parall~dispJ.B-.£~,!_Ilent 2,long a 

directrix --,..'-::::. -;x:.'Cs) from s=a.. 1Q s=lr , then 

, 

(10.6) t~_; . .. R. = _rr Ir~ _Q 1r.; . .. r\ Irle. -tol.,'( .. ,f., 
(Ir) {J.., CJ(.. o.- l( __J L(A,, /3 (<1.) 

(not ~µmmed on a 1 b) 

where there are ;g_indeces i, ~ .. . te. j rJ., -,;, . .. /3 
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1 t ( j ... k [ n Air] Now clear y, ....JL_ considered as a function 
Ir of the ma.trizant ..Il.a.., is a multilinear function on the Banach 

space B2 of square matrices of order n whose elements are real 

continuous numerical functions of two real numerical variables 

to a new Banach space whose elements are sets of elements from 
I 

B2 . Hence by the composition theorem for Frechet differenti'a.ls , 

Theo~J .. O.~. The Fre'chet differentials of 8:!}¥ order of tij ... ~c.-) 

g_iven in theo_r_§__m 10.2 exist and are given bz. the appropriate 
I 

formulae by means gf~_{l0.6) and the th~ems on Frechet differ-

entials of a multilinear function and the compositio!!_theorem. 
/ 

Theorem 10.3 is clearly valid for both the Frechet dif-

ferentia.ls resulting from warping the space l\nd from varying 

the directrix. 

The details for covariant and mixed tensors are only 

slightly different from those for the contravaria.nt tensors. 

For a covariant vector, ){ , the equations of parallel dis­

placement are 

(10.7) 

which can be written in the matrix form 

(10. 8) ol..u.. ::: µ fJ h J 
c.i s A-g 

Equation (10.8) differs from (3.3) only in sign and order of 

matric factors. Therefore, if 

(10. 9) 7 r l.r - J2... &- [ /1.· ~ J,J trans posed 
V 0,., - ,t., J d.5 

we have 
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Theorem 10.4. If a covariant vector..,_r§J2!'_e~~nteq_ _by th~ _!O:?£ 

matrix µ is displaced by Levi-Ci vi ta parallel displa£._e~,.! 

in a Riemannian space _ _§.lon~ectrix Jc. ~-::: ~ i( t ) f!.2m 3 = a.. 

12 -g=lr , and if µL a..) ,f<- llr) are the values of )l ~ s=-41 lr 

respectively, then 
Ir 

(10.10) ~ U,-) = Al~ ) V- a., 

where v o.,lr is the transpose of th~e matrix Jl.~ [ f'h. ~~~] . Further 

Theo~-1,Q_ . .5. All the theorems on the Fre'chet differentia.ls 

of a coptr-avariant vector under p§.£..§:J.)-~;L displacement have their 

counterparts in theorems for a covariant vector )-{ • These 

theorems are obtained by interchanging -r,a fQ.r. trans-

posigg all matrices in the theorems for A and replacing A 

~ f( 

We state the further theorem 

Theorem 19...!.£• If a mixed tensor t ~~ ·_j is displaced_b:[ 

,, ' ) Levi-Civi~a parall~l displacement along the directrix ~ =x C~ 

fr-om ~ ~ t(.. !Q 5 = f.r- , then if t ~-. -.J. (tL) , t ~:·. :~ C lr) ,~ th£ 

values a.t 5 -==-Q.. ~ 5 =- Ir respectively, then 

t i: ... ; (tr)_ ..Jl 1r .: . .. n 1r.; t m .. . p co.. ) U a..,1r ~ . . . u 1r n. 
(10.11) R · .. )._ - a., '?I\ J l.c,_ p 1- "· /l. 'r <- a., J... 

and all the Fre'chet differentials of t ~.':.~ U-) exist and are 

given by their obv1,QusJ9rmul§&. 
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