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ABSTRACT

Engineered proteins can carry out a vast array of functions and have become indispensable
across numerous industrial applications. To accelerate wet-lab protein engineering efforts,
machine learning-based methods have advanced rapidly. However, a gap remains between
state-of-the-art machine learning methods and their practical adoption. A key factor
contributing to this disconnect is the lack of application-relevant benchmarking and
generalizable insights across protein engineering tasks. This thesis evaluates machine
learning-assisted protein engineering approaches to identify generalizable strategies. The
central problem considered is learning the mapping from protein sequence to function—
known as the fitness landscape—to enable the prediction of unseen variant fitness. Chapter
1 introduces the background and context for machine learning-assisted protein engineering
and highlights the practical constraint of limited experimental budgets. Chapter 2
investigates transfer learning, which leverages models pretrained on large protein sequence
databases to generate informative representations for modeling task specific sequence-
function relationships. Evaluation across ten diverse tasks shows that while transfer learning
is effective in structure prediction, it underperforms in variant fitness prediction—a key
objective in protein engineering. Chapter 3 evaluates alternative strategies with a focus on
combinatorial fitness landscapes, a common setting in protein engineering. Across 16 diverse
landscapes, focused training improves the performance of various machine learning
approaches by strategically selecting training variants using zero-shot predictors, which
estimate variant fitness from auxiliary information without relying on experimental data.
Building on these insights, Chapter 4 addresses the specific challenge of engineering
enzymes—proteins that convert substrates into products—for novel chemistries. While six
general zero-shot predictors without substrate information can predict enzyme activity on
non-native substrates, they fail on more out-of-distribution, new-to-nature chemistries.
Incorporating substrate information into zero-shot predictors leads to more generalizable
performance across all tested chemistries, spanning 22 substrates. Chapter S provides a brief
outlook on future directions. Overall, this thesis identifies generalizable strategies for
machine learning-assisted protein engineering by systematically evaluating and improving

how sequence-to-function relationships are modeled across diverse tasks.
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Chapter 1

MACHINE LEARNING-ASSISTED PROTEIN ENGINEERING

1.1 Introduction

Proteins—sequences composed of amino acid building blocks—carry out a vast array of
critical biological functions. By modifying their sequences, proteins can be engineered to
enhance their existing properties or perform entirely new functions. Engineered proteins have
become indispensable across numerous applications, serving as effective therapeutics to

combat diseases, non-toxic agents to enhance crops, and green biocatalysts to synthesize

chemicals.! For example, engineering of adeno-associated virus capsid proteins has enabled
the development of gene delivery vehicles with enhanced tissue specificity, immune evasion,
and therapeutic efficacy? and engineering of cytochrome P450 has enabled the synthesis of

pharmaceuticals and novel chemical bonds not accessible through traditional chemistry.’
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Figure 1.1. Conceptual overview of protein fitness landscapes and the directed evolution process. a) Protein
fitness landscapes map sequences to fitness values, where the landscape can be smooth (left) or rugged
(right). In smooth landscapes, a global maximum may be reachable through successive single mutations with
gradual fitness improvements. Rugged landscapes contain many local maxima, making navigating the
landscape more challenging. b) Directed evolution is an iterative experimental strategy inspired by natural
selection. It involves diversification of a parent sequence to generate a variant pool, followed by screening

or selection to identify improved variants, which are then amplified and served as the parent for the next
round.
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Protein engineering can be conceptually framed as navigating a “fitness landscape”

(Figure 1.1a),*> a high-dimensional surface where each point represents a unique protein
variant defined by its amino acid sequence, and its height corresponds to a quantitative
measure of the desired functional property—referred to as fitness (e.g., catalytic efficiency,
binding affinity, or fluorescence). In a smooth or convex landscape, a global maximum can
be reached through a greedy walk (i.e., a series of single amino acid substitutions that each
improve fitness). By contrast, rugged landscapes containing many local maxima are much

more difficult to traverse, as greedy steps may become trapped on suboptimal peaks.

The ultimate engineering objective is to achieve a variant sequence with high fitness for
the desired objective. However, the vast size of protein sequence space (e.g., 20- possible
sequences for a protein of length L, where 20 is the number of canonical amino acids
possible at each position) makes exhaustive search infeasible. Effective navigation of the
fitness landscape, therefore, requires strategies that efficiently explore the sequence space

and obtain variants with higher fitness values.

A widely adopted strategy for traversing the fitness landscape experimentally is directed
evolution. Inspired by natural selection, directed evolution involves iterative cycles of (1)
diversification of the protein sequences, through techniques such as random mutagenesis,
site-saturation mutagenesis, or recombination, and (2) selection or screening, to identify
improved variants for the subsequent round (Figure 1.1b).%® The beneficial mutations are
thus accumulated throughout the iterations of mutagenesis and functional assessment.
Despite its widespread use and remarkable success, directed evolution remains time
consuming and resource intensive: screening is expensive, and multiple rounds of mutation
and screening are often needed to generate the desired improvements. Furthermore, many
fitness assays—particularly those involving the synthesis of complex chemical products or
in vivo activity in animal models—are inherently low-throughput, which restricts the
number of variants that can be experimentally generated. Historically, collected negative
fitness data could not be used because high sequencing cost limited access to the

corresponding variant sequences.
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These challenges are exacerbated when fitness landscapes are more rugged and difficult

to traverse when we encounter non-additive effects of amino acid substitutions:
epistasis.”!? Epistasis is often observed between mutations in close structural proximity'!
and is enriched at binding surfaces or enzyme active sites, due to direct interactions
between residues, substrates, and/or cofactors, where residue-residue or residue-substrate
interactions can lead to context-dependent mutational effects. For example, beneficial
mutations in the context of the initial sequence may not be beneficial in combination with
other mutations. Therefore, epistasis can present a significant challenge for directed
evolution, which can cause campaigns to become trapped at local optima of the fitness

landscapes.’

In response to these challenges, machine learning (ML)-assisted protein engineering
approaches have emerged as powerful complements to traditional directed evolution.'>!?
ML models can learn sequence—fitness relationships from experimental data and predict
the fitness of untested variants in silico, enabling prioritization of variants which high
predicted fitness for experimental validation and thus facilitating more effective navigation
of the fitness landscape and the identification of improved variants. Furthermore, in
contrast to the incremental nature of directed evolution, ML-guided strategies can propose
larger jumps in sequence space, helping to escape local optima and access more diverse

regions of the landscape.

Recent advances in deep learning have dramatically improved our ability to model proteins
along difference axes. Inspired by natural language processing, pretrained protein language
models such as the Evolutionary Scale Modeling (ESM) family'4!” and the ProGen
family'®2° leverage large sequence databases to learn generalizable representations that
support specific downstream tasks. Protein structure-based models such as AlphaFold 3
have revolutionized protein structure prediction.?! Generative models such as
RFDiffusion?>?* and ProteinMPNN?* have expanded our ability to design proteins by
generating backbone structures conditioned on user-defined constraints (e.g., motifs or

targets) and by designing sequences conditioned on input backbone geometries,
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respectively. Although structure-based models do not directly encode protein function,

they offer complementary structural insights that could inform sequence-function
prediction. Similarly, although generative models are trained to produce plausible protein
designs, the distributions of structures and sequences they learn are expected to reflect
fundamental biophysical constraints, making model-derived likelihood scores potential
proxies for protein fitness. Together, these advances have opened new opportunities for

machine learning-assisted protein engineering.

However, despite these technological advances, a disconnect remains between the
capabilities of state-of-the-art ML models and their practical impact on experimental
protein engineering. There is a lack of application-relevant benchmarks and generalizable
insights that reflect the resources constraints, optimization goals, experimental setups, and
diversity of real-world engineering campaigns. These include limited screening budgets,
the need to identify top-performing variants rather than maximize overall prediction
accuracy, and the challenges of modeling combinatorial fitness landscapes arising from
simultaneous site-saturation mutagenesis, a common engineering strategy where multiple
positions are mutated simultaneously. This thesis addresses that gap by systematically
evaluating ML approaches through a protein engineering-oriented lens, with a focus on

strategies that are effective and generalizable across diverse tasks.

Specifically, this thesis evaluates the generalizability of machine learning-assisted protein
engineering methods through three key questions (Figure 1.2). First, when does transfer
learning with protein language models (PLMs) succeed? Transfer learning is an appealing
approach, especially for data-scarce protein engineering tasks, as PLMs pretrained on large
sequence databases can generate informative representations for modeling sequence—
function relationships. However, Chapter 2 shows that while transfer learning generalizes
well for structure prediction, its benefits are limited in variant fitness prediction—

particularly for combinatorial fitness landscapes that are common in protein engineering.

This motivates the second question: when and how should different ML strategies be

applied for effective protein engineering? Chapter 3 explores this question by evaluating
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alternative strategies across 16 combinatorial landscapes. It demonstrates that focused

training improves the performance of various machine learning approaches by strategically
selecting training variants using zero-shot (ZS) predictors, which estimate variant fitness
from auxiliary information without experimental data. However, the datasets used in

Chapter 3 are limited to native or near-native functions.

The third question, then, asks which ZS predictors generalize to non-native activities, with
a focus on the specific challenge of engineering enzymes—proteins that convert substrates
into products—for novel chemistries. Chapter 4 shows that while general-purpose ZS
predictors can capture activities on non-native substrates, they do not generalize to more
out-of-distribution, new-to-nature chemistries. In contrast, predictors that incorporate

substrate information can generalize across 22 distinct substrates.
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Figure 1.2. Three main questions guiding this thesis. a) When does transfer learning with protein language
models (PLMs) succeed? Chapter 2 evaluates PLMs downstream task performances and finds that PLMs
underperform in variant fitness prediction, especially for the combinatorial landscapes that are common in
protein engineering. b) When to apply what protein engineering strategy? Chapter 3 evaluates various ML-
assisted strategies across 16 combinatorial fitness landscapes and shows that focused training—selecting
training variants using zero-shot predictors—improves model performance especially under resource
constraints. ¢) Which methods generalize to new-to-nature chemistries? Chapter 4 extends these findings to
enzyme engineering for non-native substrates and new-to-nature chemistries. While general-purpose zero-
shot predictors fail on more out-of-distribution chemistries, incorporating substrate information yields more

robust generalization across 22 substrates.
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The remainder of this chapter serves as overarching background for the rest of the thesis.

Section 1.2 introduces the use of machine learning models to approximate and navigate
protein fitness landscapes, including supervised models and zero-shot predictors. Section
1.3 describes the core components that influence ML performance in protein engineering,
including data collection, sequence representation, learning strategies, and model
evaluation. Sections 1.4 and 1.5 outline the key application areas that motivate this thesis—
epistatic fitness landscapes and enzyme engineering for non-native chemistries—while
also highlighting the lack of benchmarking and generalizable insights in these challenging
settings. Section 1.6 summarizes the main findings from the three core projects (Chapters

2—4; Figure 1.2) and provides context for the outlook presented in Chapter 5.
1.2 Navigating protein fitness landscapes with supervised machine learning

To improve the efficiency and outcomes of protein engineering campaigns, supervised ML
models have become a powerful tool to approximate and navigate protein fitness
landscapes.'??*27 In supervised learning, a model is trained on labeled input—output
pairs—here, protein sequences and their experimentally measured fitness values—to learn
the relationship between them. Once trained, the model can be used to predict the fitness
of new, untested variants. These predictions can help prioritize variants with high predicted
fitness for experimental validation, reducing the need for exhaustive screening. Here, |
focus on three key main aspects of a typical supervised ML pipeline for protein

engineering: data collection, sequence representation, and learning strategy.
1.2.1 Assay-labeled data collection

Accurate fitness prediction depends critically on the quality, diversity, and size of labeled
sequence-fitness datasets.'>?® Traditionally, directed evolution does not require
sequencing, as the best-performing variant from the previous round simply serves as the
starting variant of the subsequent round. Sequencing is often reserved for identifying the
best variant in each round and is typically not performed on the entire pool of variants due

to time and cost constraints.
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Recent advances in sequencing technology—Ilower costs, higher throughput, and faster

turnaround—have made it feasible to sequence all variants in one round of a protein
engineering campaign.?’** Tools developed in our lab now further support this adoption by
combining high-throughput sequencing with automated analysis pipeline and interactive
visualizations, pairing sequence and function data to provide actionable insights for
experimentalists and further incentivizing the collection of comprehensive sequence—

fitness datasets.?’

Nevertheless, a key bottleneck remains to be overcome. While sequencing has become
faster and cheaper, many functional assays remain low-throughput and resource-intensive.
For example, quantifying product yield from enzymatic reactions often requires expensive
analytical methods, and in vivo activity screening in animal models can take weeks or
months. These intrinsic experimental bottlenecks limit both the number of assay-labeled
variants available for model training and the predicted high-fitness variants that can be
experimentally validated. Consequently, ML methods that can thrive in the low-N
regime—where the number of labeled variants is small—are particularly valuable.!?
Chapter 2 and Chapter 4 explore how methods such as transfer learning and zero-shot
prediction, which leverage unlabeled or auxiliary data, can improve learning in these

challenging regimes.
1.2.2 Sequence representation

Protein sequences must be converted into numerical representations to serve as inputs to
ML models to perform learning. A simple and widely used approach is one-hot encoding,
which assigns a unique binary vector to each of the twenty canonical amino acids. Each
vector is composed of “0”s except for a single “1” at the position corresponding to the
amino acid’s identity. While simple and commonly used as a baseline, one-hot encoding
treats all amino acids equally, ignoring any underlying physicochemical properties. This
can limit the model’s ability to generalize, especially in low-data regimes where leveraging

biochemical priors may be beneficial.
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A more informative approach is to represent amino acids using numerical descriptors

based on their physicochemical properties. The AAlIndex database provides over 500 such
descriptors, including experimentally measured properties such as hydrophobicity, steric
bulk, and pKa values, as well as theoretical scores designed to capture functional or
structural tendencies. These descriptors allow for more nuanced, domain-informed
encodings of amino acids but their high dimensionality and redundancy across AAlIndex
features can introduce noise and prone to overfitting.>! To address this, Georgiev encoding
applies principal component analysis to a carefully selected subset of AAIndex features,
reducing them to a small number of orthogonal components that capture the principal axes

of biochemical variation among amino acids.*

Both one-hot and physicochemical encodings, however, are context independent: they
represent each amino acid identically regardless of its position or role in the protein.
However, the function of each amino acid in a protein is, in fact, extremely context
dependent. For example, a tyrosine in a protein’s active site that facilitates a chemical
transformation performs a very different role than a tyrosine on the protein’s surface. There
is an analogy to natural languages: just as a word’s meaning depends on sentence context,

so too does a residue’s effect depend on its structural and functional environment.

Pretrained protein language models (PLMs) address this limitation by learning context-
aware representations from large-scale unlabeled sequence databases (e.g., UniRef).333
Typically trained using a masked language modeling objective, these models are analogous
to natural language transformers that fill in missing words in a sentence—Ilearning a
distribution over possible amino acids conditioned on surrounding residues.!41%3-38 The
resulting embeddings encode evolutionary, structural, and functional priors that can be
transferred to downstream prediction tasks. In supervised learning workflows for protein
fitness prediction, PLM embeddings can be used either as frozen features, where the
pretrained weights and features are passed unchanged into a downstream model, or through

fine-tuning, where the model’s parameters are updated during training on the labeled task.
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Fine-tuning has often been shown to yield improved performance by adapting the

representation to the specific functional landscape of interest.*

Despite their widespread adoption in recent years, however, it remains poorly understood
why and when PLMs improve performance on diverse prediction tasks, especially for protein
engineering tasks where a few amino acid substitutions are modified from a parent sequence
(Figure 1.2a). Through a systematic evolution across a comprehensive suite of factors and
tasks, Chapter 2 shows that current PLMs often fail to generalize beyond structure-based
tasks. This motivates the development and evaluation of alternative ML strategies tailored

more specifically for protein engineering (Chapter 3).
1.2.3 Machine learning strategies

Once sequences are numerically encoded, they can be used to train supervised ML models
to predict protein fitness. For a given design space, for example, mutating four residues to
optimize fitness, a basic workflow begins with randomly sampling variant sequences from
this design space and measuring their functional properties in the lab. These labeled
sequence-fitness data points are then used to train a predictive model, which is
subsequently applied to score all remaining variants in the design space. The top-ranked

variants are then validated through the wet-lab experiments.

Instead of using a single iteration of training and testing, active learning breaks this process
into multiple rounds.*>*' At each round, the model is retrained with newly acquired labeled
data and used to guide the selection of the next set of variants to test. Many active learning
strategies rely on uncertainty quantification to prioritize variants, using methods such as
Gaussian processes to estimate predictive confidence.?® A prominent way to perform active
learning is Bayesian optimization, which explicitly balances exploration and exploitation

to efficiently identify high-performing variants.*>#4

In both cases, the initial training set is often randomly sampled from the design space.

Alternatively, focused training can be used to strategically select initial training variants
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based on zero-shot predictors®®—methods that estimate variant fitness without any

assay-labeled data.!” Critically, the quality of the training data has been shown to impact
the optimization outcome. Wittmann et al. (2021) demonstrated on the combinatorial G
domain B1 (GBI1) landscape® that focused training guided by zero-shot predictors

outperforms standard supervised learning with randomly sampled training sets.?®

Chapter 3 systematically benchmarks basic supervised learning, active learning, and
focused training strategies across 16 diverse combinatorial fitness landscapes (Figure
1.2b). While all strategies outperform directed evolution, focused training guided by zero-
shot predictors demonstrates consistently strong performance, particularly in the low-N

regime relevant to protein engineering applications.
1.3 Zero-shot fitness prediction

Zero-shot (ZS) predictors estimate variant fitness without task-specific training data.
Instead, they leverage prior assumptions (biologically motivated heuristics) and auxiliary
information such as evolutionary conservation, structural heuristics, or likelihoods derived
from pretrained protein language models or structure models. These predictors have
augmented supervised models to identify higher-fitness variants, guided experimental data
collection for ML model training, and scored in silico designs for reinforcement learning
or experimental validation.?®4% Recent benchmarks further highlight the broad

applicability of ZS predictors.>!
1.4 Combinatorial fitness landscape and benchmarks

ML in protein engineering has been demonstrated in different case studies. Most of the
studies cover random mutations>® (mostly single amino acid substitutions) spread across a
protein, such as deep mutational scanning landscapes. In such settings, supervised ML
models can often generalize well from a subset of single mutants to other single mutant
variants.’> In contrast, combinatorial landscapes—which enumerate all possible

combinations of amino acid substitutions at a small number of functionally critical sites—
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pose a greater challenge. These landscapes are often dominated by low-fitness variants,

as the likelihood of retaining function decreases exponentially with the number of
simultaneous mutations.* As a result, small, randomly sampled training sets are typically
uninformative, containing few high-fitness variants. Models trained on such data struggle
to identify promising candidates, limiting their practical utility in low-throughput

experimental settings.?®

Combinatorial mutagenesis is commonly used when engineering antibody binding
interfaces or enzyme active sites, where mutations are typically in close structural
proximity and interact with one another and the substrate. These regions tend to exhibit
strong epistasis, with many combinations of individually beneficial mutations yielding
non-additive or even deleterious effects. In contrast, mutations randomly distributed across
the protein often exhibit near-additive behavior, making them more amenable to
optimization using laboratory methods such as staggered extension process

recombination.¥3->

Because real-world protein engineering often involves such targeted, epistatic landscapes,
they are of particular interest yet remain underrepresented in current ML benchmarking
efforts. Chapter 3 addresses this gap by systematically evaluating model generalization
across 16 diverse combinatorial landscapes, focusing on three strategies mentioned in
Section 1.3: basic supervised learning, active learning, and focused training guided by
zero-shot predictors. These benchmarks provide practical insight into which strategies are
most effective in the combinatorial, low-data regimes that are common in engineering real

protein functions.
1.5 Generalization to protein engineering for non-native functions

One of the most compelling goals in protein engineering is to engineer proteins with novel
functions, such as enzymes that catalyze reactions not observed in nature. These new-to-
nature activities hold transformative potential in sustainable synthesis, therapeutics, and

biotechnology. For example, the tryptophan synthase B-subunit (TrpB) catalyzes a native
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reaction between L-serine and indole to form tryptophan. Engineered TrpBs extend this

function to non-native substrates such as serine analogues and substituted indoles, enabling
the synthesis of tryptophan analogs and other noncanonical amino acids that are important

precursors to pharmaceuticals and natural products.’>>8

Another example, heme-
containing enzymes have been engineered to carry out a plethora of valuable reactions that
have not been found in biological systems.”® These new-to-nature reactivities include
carbene transfers for stereoselective olefin cyclopropanation, traditionally requiring
unsustainable transition metals,>® and the formation of carbon—silicon®! and carbon—boron

bonds.%?

Directed evolution has successfully evolved enzymes for new-to-nature activities, typically
by generating targeted combinatorial libraries at enzyme active sites to enable such new
chemistries. However, assessing variant activities often remains a major bottleneck due to
the inherent constraints of low-throughput screening methods. As shown in Chapter 3,
focused training with ZS predictors can excel in such low-N settings. However, standard
ZS predictors are typically trained on natural sequences and do not explicitly incorporate
substrate features or reaction mechanisms. In fact, these ZS predictors have anecdotally
shown low predictive power for non-native enzyme activity.*® Specifically, the general
zero-shot predictors studied in Chapter 3 do not account for the unique mechanistic
features of enzymatic reactions. Enzyme catalysis involves complex steps such as substrate
binding and transition-state stabilization; however, many ZS methods do not explicitly
encode substrate or transition-state properties—features that are likely essential for

predicting new-to-nature chemistries.

Chapter 4 thus evaluates the six general zero-shot predictor studied in Chapter 3
alongside ten substrate-aware ZS predictors derived from generative modeling, molecular
docking, and active-site heuristics (Figure 1.2¢). This is tested on a newly generated
dataset on 11 non-native substrates and three curated new-to-nature reactions with 11
additional substrates. Chapter 4 shows that while six general zero-shot predictors can

predict enzyme activity on non-native substrates, they fail to generalize to more out-of-
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distribution, new-to-nature chemistries. Incorporating substrate information into zero-shot

predictors offer new-to-nature chemistry insights. Furthermore, predictor ensembles improve

generalizations across all tested chemistries.

1.6 Summary of Chapter 1

This chapter introduces the background and motivation for evaluating the generalizability
of ML-assisted protein engineering methods. A central gap identified is the lack of
application-relevant benchmarks and generalizable insights, particularly under constraints
such as limited labeled data, epistatic fitness landscapes, and the need to engineer proteins
for non-native functions. This thesis addresses that gap through three interconnected
projects: evaluating transfer learning with protein language models, benchmarking ML
strategies for combinatorial fitness landscapes, and assessing generalization to non-native
enzyme activities. Together, these studies aim to develop practical, application-aware

methods for real-world protein engineering.
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Chapter 2

PROTEIN LANGUAGE MODEL TRANSFER LEARNING

Material from this chapter appears in: “Li, F.-Z., Amini, A. P., Yue, Y., Yang, K. K. & Lu,
A. X. Feature reuse and scaling: Understanding transfer learning with protein language

models. In Proceedings of the 4I1st International Conference on Machine Learning

(PMLR), 235, 27351-27375 (2024).”

ABSTRACT

Large pretrained protein language models (PLMs) have improved protein property and
structure prediction from sequences via transfer learning, in which weights and
representations from PLMs are repurposed for downstream tasks. Although PLMs have
shown great promise, currently there is little understanding of how the features learned by
pretraining relate to and are useful for downstream tasks. We perform a systematic analysis
of transfer learning using PLMs, conducting 370 experiments across a comprehensive suite
of factors including different downstream tasks, architectures, model sizes, model depths,
and pretraining time. We observe that while almost all downstream tasks do benefit from
pretrained models compared to naive sequence representations, for the majority of tasks
performance does not scale with pretraining, and instead relies on low-level features learned
early in pretraining. Our results point to a mismatch between current PLM pretraining
paradigms and most applications of these models, indicating a need for better pretraining

methods.
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2.1 Introduction for Chapter 2

Proteins perform a myriad of critical biological functions, and thus the ability to design
proteins has vast impacts on healthcare, environment, and industry.! Since a protein’s
function is largely determined by its amino acid sequence, specifying a sequence that will
yield a desired function is feasible in principle. However, the relationship between amino
acid sequence and function remains poorly understood, and most experimental methods for
measuring function are costly and low-throughput.>® To overcome the challenge presented
by limited labeled data, researchers have sought to use transfer learning, in which models are
pre-trained in a self-supervised fashion on large public datasets in the hope that the pretrained
features or model weights will improve performance on downstream tasks where supervised

data is limited (Figure 2.1a-b).
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[®®®®®J]] [@@@@@J’ "
] (]
Mask +¢Mutate ¥ E ¢ ce O. ® O. L L
[®®®®®] [®®®®®] Linear_ <One-hot k7 O. (0] O.
: = probe” bas?line s
Tnput Tnput ’
representation representation 5
v >
i : Linear_ ( Layer 0 ® ——— Legend ——
[Representatlon 0] [Representatlon 0]- robe™ | transfer < 9 —
v v P > . )
T 7 L 1 ¥ 2 Model Sizes Baselines
ayfr ayf' ' 5 Small - -+ One-hot
. >
- - Linear_ ( Layer 1 © e —_ i
[Representatlon 1] [Representatlon 1]'p'rc3b'e') (et 3 ° Medium —_—
v v 'J ©® — Large
H H .
o 2 s o v ™ £ Experimental Ablations
c
ay?r ayfr s © Random initialization
[Representation N] [Representation N] g @ Stat weight transfer
v Last layer -
Decoder transfer pica 8,
v [ f c — —
-ansfer o ?
®O®O® ¢ : -
v v
Reconstructed Downstream
sequences tasks

Figure 2.1. Summary of the transfer learning procedure and our analyses. a) PLMs are pretrained using
masked language modeling. b) Typically, transfer learning uses representations from the last layer of the PLM
for downstream tasks. We evaluate downstream task performance at every layer in the model. ¢c) We compare
to baselines and ablations and evaluate the effects of PLM size, model depth, and pretraining time. These
experiments characterize behavior consistent with either feature reuse (i), or an alternative hypothesis
(inductive biases/overparameterization - ii, weight statistics - iii, or reuse of low-level features only - iv).
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Protein language models have emerged as the most popular framework for transfer

learning for proteins.*! Most PLMs pretrain using the masked language modeling (MLM)
task, in which the model is trained to predict the original identity of masked or corrupted
amino acids. PLMs have been effective at improving performance on many protein function
prediction tasks, and some are now integrated into bioinformatics and structure prediction
tools.'"'* Despite their widespread adoption, it is not understood how or why PLMs improve

performance on downstream tasks.

Drawing from other domains like computer vision where investigations of transfer learning
are more established, we synthesize a set of possible hypotheses to explain improvement in
downstream tasks, and design and conduct a comprehensive series of experiments to test

them. We structure our study around the following hypotheses:

Feature reuse (Figure 2.1c-i). One popular hypothesis is that MLM pretraining learns
general features of protein biology, and that these features can be reused across tasks.
Previous work has shown that transfer learning improves performance across diverse
downstream tasks.'>!'¢ However, the degree of feature reuse is also important: ideally, the
pretrain and downstream tasks should be aligned, such that transferring PLM representations
improves downstream function prediction accuracy and that this improvement increases with

larger model sizes, deeper layers, and better pretraining performance.

If this does not occur, it suggests that pretraining primarily learns features that cannot be
reused on downstream tasks. To determine whether or not this is the case for PLMs, we

explore three alternative hypotheses.

Inductive biases and overparameterization (Figure 2.1c-ii). The large number of
parameters in pretrained models may lead to some alignment with useful signals by chance.!’
If inductive biases are sufficient, then transferring from randomly-initialized versions of the

same model architecture should provide similar performance.
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Statistics of pretrained weights (Figure 2.1c-iii). The primary benefit of pretraining may

be initializing weights to a sensible scale.!”!'® If pretraining primarily provides better weight
initialization, resampling weights from the empirical distribution after pretraining should

provide similar performance.

Reuse of low-level features (Figure 2.1c-iv). It is possible for only less complex features
learned early in pretraining to contribute to transfer learning.' If low-level features are
sufficient, then features extracted from earlier layers of the pretrained model may provide
better or similar performance to those extracted from the last layer. Similarly, earlier
pretraining checkpoints or smaller, less performant models should provide similar

performance to the full-size, fully-pretrained model.

Critically, while all three alternative hypotheses can still lead to improvements in
downstream task performance, they do not predict that downstream task performance can be

improved by transferring representations from larger, better trained models.!72°
Contributions

Our work evaluates the scalability of transfer learning for PLMs and makes the following

contributions:

1. The most comprehensive evaluation, to date and to the best of our knowledge, of
transfer learning with PLMs, spanning 370 experiments over a diverse suite of
downstream tasks.

2. The discovery that current MLM pretraining paradigms underserve many aspects of
protein biology, as supported empirically by evidence from both structure and
function prediction tasks

3. Systematic evidence that performance on many protein property prediction tasks
does not scale with PLM size or pretraining. Our results uncouple improvements in

downstream performance from scaling properties.
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Together, our results predict that scaling PLMs with current MLM pretraining paradigms

may not scale performance on many protein function prediction tasks, but provides an
evaluation framework for identifying if future pretraining efforts are scalable across more

aspects of protein biology.
2.2 Related work for Chapter 2
2.2.1 Pretrained protein language models

While numerous pretrained PLMs have been proposed in the past few years,*'? these works
primarily focus on validating that pretraining improves performance on downstream tasks.
In contrast, our work primarily seeks to understand the factors impacting transfer learning,
which have not been rigorously studied to date for PLMs. Most PLM studies include
comparisons to models with randomly initialized weights®'? to confirm that pretrained
models do not improve downstream task performance due to overparameterization or
inductive biases alone. Other studies show that under some circumstances, PLMs yield no
detectable improvement over a simple one-hot representation of sequences.'%?!?> Compared
to these individual baselines and benchmarks, our paper conducts a systematic analysis over

many different factors impacting transfer learning.

The most similar work to ours is Detlefsen et al. (2022),> which analyzes the effects of
model architecture, fine-tuning, and different pooling schemes on transfer learning
performance. However, we use MLMs trained on complete sequences instead of
autoregressive models trained on Pfam domains. While they train proprietary, unreleased
models for analysis, we use established models in the public domain. This makes our analysis
more relevant to applications currently using these models and also improves documentation
around these models. For example, neither their paper nor their released code describes the
pretrained models in detail, so it is uncertain what the size of their model is, whereas we
systematically vary the model size. More importantly, we evaluate a larger and more diverse
set of downstream tasks with experiments designed to differentiate possible mechanisms by

which transfer learning improves performance on downstream tasks. Critically, our
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systematic analysis identifies cases where transfer from PLMs is empirically effective in

improving downstream task performance but the improvement is due to factors that are not
expected to scale with further pretraining or larger models. However, to the extent that our
analyses reach similar conclusions (e.g., both our studies observe that performance on the
pretraining task does not always correlate with downstream task performance), we view our
work as complementary: Detlefsen et al. (2022) use different architectures, pretraining tasks,
and pretraining datasets than us, suggesting that our observations are general across more

factors than either paper analyzes independently.??
2.2.2 Understanding transfer learning in computer vision

While our analysis is differentiated as we focus on protein sequences, we take inspiration
from computer vision studies that have sought to understand factors underlying successful
transfer learning. Many are motivated by the observation that ImageNet-trained models are
effective when transferred to medical images, raising the question of whether transfer
performance is really due to reuse of features (given the extreme mismatch in domain), or
due to more trivial factors. Raghu et al. (2019) compare pretrained models against random
initialization to demonstrate that in some situations transfer performance is due to
overparameterization.'” By randomly initializing models to match the weight statistics of
pretrained models, the authors further demonstrate that improvements from pretraining may
arise from good weight scalings rather than learning reusable features. Similarly, He et al.
(2019) show that hyperparameter tuning can often explain improvements from transfer
learning.?* By scrambling input images, Neyshabur et al. (2021) show that improvements
from transfer learning can at least partially be attributed to the pretrained models learning
low-level statistics of data rather than more sophisticated feature use.'” Matsoukas et al.
(2022) further demonstrate that these factors vary depending upon downstream task dataset

and model architecture.!®

Beyond models pretrained on ImageNet, some papers have looked at factors more specific
to self-supervised pretraining. Abnar et al. (2022) show that improvements on the self-

supervised pretraining task do not necessarily translate to improved performance on
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downstream tasks, and in some cases, are even anti-correlated.’’ Pioneering work in

generative self-supervised models also demonstrates that these models often saturate in
downstream task performance in an intermediate layer of the model and degrade after.?> This
is reinforced by empirical studies showing that the representations learned by self-supervised
models versus supervised models rapidly diverge in the last few layers,?® consistent with
previous observations that later layers may be more specialized to the original network,?’

underscoring the importance of a layer-by-layer evaluation.

Beyond computer vision, transfer learning has been extensively studied in natural language
processing, and particularly in “BERTology”,?® which seeks to understand what self-
supervised Transformer models learn and their transferability. Among other factors, studies
have similarly analyzed the effects of pretraining,?’ overparameterization,*® and layer-by-

layer content.?!
2.3 Datasets and pretrained models

To understand why and when transfer learning with PLMs improves downstream
performance and how the improvements scale with increasingly large PLMs, we conducted
370 experiments on a diverse suite of downstream tasks with PLMs of different sizes,
architectures, and at different checkpoints in training. The downstream tasks are summarized

in Tables 2.1 and A.1.1.

Table 2.1. Summary of downstream prediction tasks.

Dataset Description Tasks Task type

SS3 Secondary structure CB513, TS115, CASP12 Residue-level classification
Thermostability Melting temperature Thermostability Regression

Subcellular localization Cellular location Subcellular localization Classification

GB1 Immunoglobulin binding  Sampled, low vs. high, two vs. rest Regression

AAV Viral viability Two vs. many, one vs. many Regression
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2.3.1 Downstream tasks

We test a diverse set of tasks covering both property and structure prediction, different types
of distribution shift relevant to protein engineering, and global versus local variation over the

sequence.

Structure prediction. We use the three-class secondary structure (SS3) task from TAPE
with three independent test sets, SS3 — CB513,32 SS3 - TS115,% and SS3 — CASP12,3* where

the objective is to predict whether each residue belongs to an a-helix, B-strand, or coil.'

Property prediction. We use the thermostability, subcellular localization, GB1, and AAV
datasets from FLIP.!®

Thermostability and subcellular localization are global protein properties measured for
sequences spanning different functional families and domains of life. The thermostability
dataset measures the melting temperature of 48,000 proteins across 13 species.® Subcellular
localization is a classification task predicting the cell compartment to which a eukaryotic

protein localizes.>¢-7

In contrast, the GB1 and AAV datasets measure the effects of local sequence variation. GB1
is the 56 amino-acid B1 domain of protein G, an immunoglobulin-binding protein. The GBI
dataset covers binding measurements for simultaneous mutations of up to 4 interactive
sites.*® VP1 is an adeno-associated virus (AAV) capsid protein, over 700 amino acids long.>
The AAV dataset measures the effects of sparsely sampled mutations across a contiguous 28
amino-acid region over the binding interface on viral viability. For GB1 and AAV, FLIP
provides different train-test splits with different distribution shifts, including sampled (in-
distribution) and out-of-distribution splits, as described in Table A.1.1. Out-of-distribution
splits more closely resemble protein engineering applications where a few low-functioning
variants with a limited number of mutations are initially generated, but high-functioning
variants across the larger sequence space are the engineering end goal. For GB1, we test three

splits, in order of increasing difficulty:



27
e Sampled: sequences randomly partitioned between 80% training and 20% testing.

o Low vs high: models are trained on mutants with function worse than the parent and
tested on those with better function.
o Two vs rest: Models are trained on single and double mutants and tested on triple

and quadruple mutants.
For AAV, we test two splits, in order of increasing difficulty:

e Two vs many: Models are trained on single and double mutants and tested on
variants with three or more mutations.
e One vs many: Models are trained on single mutants and tested on variants with more

mutations.
2.3.2 Transfer learning with protein language models

While a number of pretraining tasks have been proposed for protein sequences, we focused
on models trained using the popular BERT* masked language modeling (MLM) task.
During pretraining, 15% of tokens are randomly selected. Of the 15%, 10% are replaced with
a special masking token, 2.5% are randomly changed to another token, and the remaining
2.5% are unperturbed to encourage the model to preserve the input sequence. The corrupted
sequence is passed to the model, which is trained to maximize the probability of the original

tokens at the selected locations.

To evaluate the effect of model architecture, we chose two families of protein MLMs with
comparable model sizes trained on UniRef50:*' the ESM? family of transformer models and
the Convolutional Autoencoding Representations of Proteins (CARP)! family of
convolutional models. Due to the sequence length limit of the ESM-1b transformer model,
the first and last 511 amino acids were taken for all sequences exceeding 1022 amino acids.
This length restriction chiefly impacts the subcellular localization dataset: targeting signals
often occur at the N- or C- terminal, and we reason that taking both terminals preserves

biologically-relevant signals.
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Following standard protein transfer learning practice when resources for full finetuning

are not available,'® we pass representations from each PLM layer to a linear model and
compare the performance to a linear model on the one-hot encoding of the sequence for each
task (Figure 2.1b). In addition to linear models, we also tested a learned attention pooling
followed by a shallow MLP. However, we found last layer performance to be inferior to the
linear models across almost all downstream tasks (Figure A.1.1), so we focus on the linear
models in our analyses. For the SS3 and subcellular localization tasks, we train linear
classifiers with mini-batches in PyTorch and perform early stopping based on the validation
set. For the regression tasks, we train ridge regression models with Scikit-learn,*> using a
grid search on the validation set to tune the regularization strength. For all tasks except
secondary structure prediction, we mean pool the representations over the length dimension
from each layer. Secondary structure prediction requires a representation for every residue,

so no pooling is performed.

As protein engineers often seek to identify top-ranked mutants as opposed to predicting the
absolute function of mutations, we use ranking metrics, Spearman’s rank correlation and
Normalized Discounted Cumulative Gain (NDCGQG), as the primary metrics for the regression
tasks. For concision, we report Spearman’s rank correlation for regression tasks and accuracy
for classification tasks in the main text. Complete results, including mean square error, cross-

entropy loss, NDCG, and ROC-AUC are provided in the online Supplemental Materials.

2.4 Experimental setup

Baseline and ablations. We conduct baselines and model ablations to determine when
transfer learning improves downstream task performance and whether improvements in
downstream task performance can be attributed to mechanisms other than feature reuse

(Figure 2.1b-ii and 2.1b-iii).

o One-hot baseline. To determine whether transfer learning with PLMs improves
performance, we test if representations from pretrained models perform better than a

one-hot representation.
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e Random init. To evaluate whether the effect of transfer learning is due to

overparameterization and/or the inductive biases of the PLM architecture, we test the
impact of randomly initialized weights.

e Stat transfer. To evaluate whether the effect of transfer learning is due to weight
statistics and/or initializing the weights to a sensible scale, we test the impact of
randomly initialized weights matching the weight distribution of the pretrained PLM

by randomly permuting the pretrained weights.

For random init and stat transfer, we initialize models with 3 random seeds. We consider
transfer learning from a PLM to improve performance over these baselines if it has a one
tailed p-value < 0.05 in a one-sample t-test using the sample mean and standard deviation

across random init/stat transfer models.

Scaling experiments. To further understand if the MLM pretraining task is aligned with
downstream tasks, we sought to understand if improving PLM performance by scaling across
three factors also improves transfer learning performance on downstream tasks (Figure 2.1b-

iv):

o Model size. For both CARP and ESM, we test models with different numbers of
layers and parameters (Table A.1.2). For concision, we refer to CARP-38M and
ESM-43M as the “small” models, CARP-76M and ESM-85M as the “medium”
models, and CARP-640M and ESM-650M (ESM-1b) as the “large” models.

o Model depth. For each architecture (CARP, and ESM) and model size, we test
whether downstream task performance improves as we transfer deeper layers by
determining whether the Spearman rank correlation between layer number and
performance is greater than 0.9 (Table A.1.6). This experiment allows us to
understand if tasks primarily reuse low-level features early in the pretrained models,
or if more complex features deeper in the models also contribute to downstream task
performance. Convolutional neural networks (CNNs) induce a stronger correlation
between the depth of the layer and the complexity of the features than transformers,

leading to different patterns of feature reuse in previous transfer learning studies.'®
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However, we find little empirical difference between CNNs (CARP) and

transformers (ESM) in our analyses.

o Model checkpoint. For each model size, we test the effect of using checkpoints from
earlier in pretraining. We order these checkpoints based upon their pretraining
performance (perplexity, calculated on a held-out test set of 210k sequences from
Uniref50 not used to train CARP), as earlier checkpoints have higher losses on the
MLM pretraining task (Table A.1.7). We evaluate whether features from later in
pretraining improve transfer learning by determining whether the Spearman rank
correlation between the negative pretrain loss and downstream performance is greater
than 0.9 (Table A.1.8). Unfortunately, checkpoints are only publicly available for
CARP, so we cannot run this analysis with ESM.

Estimating error for our scaling experiments is infeasible as it would require re-training
multiple PLMs from scratch. Thus, we chose arbitrary thresholds, which may impact the way
we have categorized downstream tasks in our interpretation. For transparency, we have
plotted performance for all PLMs in each of our scaling experiments in Figures 2.3, 2.4, and

2.5.

We define the MLM pretraining task to be aligned with a downstream task if transferring
PLM representations improves downstream task performance over the baseline and ablations
and this improvement scales with improvements to pretraining. Code for all experiments is

available at Attps://github.com/microsoft/protein-transfer.

2.5 Results

Overall, our analyses reveal three clusters of transfer learning behavior across downstream
tasks (Figure 2.2). First, we find that within our set of benchmarks, secondary structure
prediction tasks are the only tasks where pretraining improves downstream performance and
the pretrain and downstream tasks are aligned. Second, we observe that transfer learning
improves performance for many downstream tasks despite the pretrain and downstream tasks

not being well-aligned, indicating that performance on these tasks may not improve as PLMs
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scale on the axes we tested. Third, we observe that although transfer learning improves

performance on almost all downstream tasks, for some tasks this improvement can be
attributed to overparameterization, inductive biases, or sensible weight initialization. In
subsequent sections, we expand on each of these clusters of observations in detail. The full

results of our experiments are available in the online Supplemental Materials.

Transfer > One-hot
Transfer > Random init
Transfer > Stat transfer

Scale with PLM sizes

>

Scale with layer depths

>
X % N % % N\

>

Scale with pretrain losses

Figure 2.2. Downstream task result summary. v/ indicates true, ~ indicates true for only one architecture, and
X indicates false.

2.5.1 Structure prediction benefits from transfer learning because it is well-aligned with

MLM pretraining

For all three residue-level secondary structure prediction tasks, Figure 2.3a and Table A.1.3
show that PLM embeddings outperform the one-hot baseline as well as the random init and
stat transfer ablations, demonstrating that transfer learning improves secondary structure
prediction performance and that the improvement is not due to the inductive biases or weight
statistics of the models. Secondary structure prediction performance improves when
transferring deeper PLM features (Figure 2.3b), indicating that more complex features from
later layers continue to improve performance. Furthermore, transfer learning with features
from larger models and from later in pretraining improve secondary structure prediction
(Figure 2.3a and 2.3c), as previously observed by Rives et al. (2021),° Elnaggar et al.
(2022),% and Yang et al. (2024)."° We therefore conclude that MLLM pretraining is well-
aligned to structure prediction, allowing PLM features to be reused when predicting

secondary structure from sequence.
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Figure 2.3. Results for secondary structure prediction. a) Performance on downstream tasks when transferring
the final layer representation from various sizes of ESM and CARP compared to baselines and ablations. b)
Downstream task performance by depth of layer transferred. c) Downstream task performance by pretraining
loss. Each dot is a model checkpoint. For all subplots, downstream task test performance is quantified using
accuracy.

2.5.2 Many tasks benefit from transfer learning despite lack of alignment with MLM

pretraining

Next, we observe a cluster of four downstream tasks (thermostability, GB1 — low vs high,
AAV — two vs many, and AAV — one vs many) where transfer learning improves
performance over baselines even though the tasks do not align well with the pretraining task
(Figure 2.4). For these tasks, transfer learning improves performance over both the random
init and stat transfer ablations, indicating that transfer learning confers at least some benefit
over the inductive biases, parameterization, or weight statistics of the models alone (with the
exception of the AAV — one vs many task, where weight statistics may still explain transfer
learning performance) (Figure 2.4a and Table A.1.4). However, for all of these tasks,
downstream task performance does not improve as features from deeper layers are

transferred (Figure 2.4b) or as the PLMs improve their pretraining loss over checkpoints
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(Figure 2.4c¢), suggesting that these tasks may rely upon low-level features learned early

in pretraining. Notably, the performance on these tasks typically saturates below fully fine-
tuned models of the same architecture (and always below the best-performing model for each
task) trained by Yang et al. (2022) (Table A.1.4),'° indicating that the saturation is not

because downstream task performance has hit an upper bound.

To supplement our quantitative cut-offs for alignment, we qualitatively assess trends in layer-
by-layer performance across tasks. We observe that for all tasks where transfer learning
improves performance over the baselines (including the secondary structure prediction
tasks), the largest gains in performance occur in the first 3-5 layers of both the ESM and
CARP models, across model sizes (Figure 2.3b and 2.4b). However, unlike the secondary
structure prediction tasks, which continue to improve in performance past this initial peak,
improvement on the downstream tasks in this cluster generally plateaus (e.g., for the AAV —
two vs many task), supporting our interpretation that features contributing to these tasks are

already present within the first few layers of pretrained PLMs.

Interestingly, although none of these tasks scale with model depth or pretraining loss, two
downstream tasks (thermostability and AAV — two vs many) scale with PLM size (Figure
2.4a). We reasoned that while our random init ablation rules out that improvements in
downstream task performance is entirely due to parameterization, parameterization may still
partially contribute to performance independently of feature reuse. To test this, we
additionally evaluated the performance of small and medium randomly initialized models.
Indeed, we observe that both types of randomly initialized models scale in performance with
model size for both tasks, and in similar proportions to the improvements for the pretrained
models (Table A.1.4). Together, this suggests that observing that downstream task
performance scales with model size alone is not sufficient to conclude that pretraining and
downstream tasks are aligned, and that demonstrating scaling across other axes (such as

model depth and checkpoints in training, as we propose here) is necessary.
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Figure 2.4. Results for tasks where transfer learning improves downstream task performance, but the pretrain
and downstream tasks are not aligned. a) Performance on downstream tasks when transferring the final layer
representation from various sizes of ESM and CARP compared to baselines and ablations. b) Downstream task
performance by depth of layer transferred. c) Downstream task performance by pretraining loss. Each dot is a
model checkpoint. For all subplots, downstream task test performance is quantified using Spearman’s rank
correlation.

2.5.3 Some tasks do not benefit from MLM pretraining

Finally, we observe a cluster of three downstream tasks (subcellular localization, GB1 —
sampled, and GB1 — two vs rest) where pretraining does not improve transfer learning
performance (Figure 2.5). For subcellular localization, although transfer learning improves
over a one-hot representation, pretrained models perform no better than randomly initialized
models, suggesting that the improvement can be entirely attributed to inductive biases and
parameterization. In contrast, the GB1 tasks in this cluster fail to outperform a one-hot
representation by at least 10% (Figure 2.5a and Table A.1.5). We hypothesize the GB1 splits
in this cluster are either too trivial, or too challenging for any representation. GB1 — sampled
is an in-distribution task with a relatively large training set, and all models and baselines
perform well. Meanwhile, GB1 — two vs rest is a challenging out-of-distribution split.

Intriguingly, our stats transfer ablation decreases performance for all GB1 tasks, including
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the GB1 — low vs high task in the previous section, compared to the one-hot and random

initialization baselines (Figure 2.4b and 2.5b; Tables A.1.4 and A.1.5). We hypothesize that
this is because the GB1 dataset is a highly local task, depending on finding interactions

between just four mutated positions in a sequence.
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Figure 2.5. Results for tasks where pretraining does not improve downstream task performance. a)
Performance on downstream tasks when transferring the final layer representation from various sizes of ESM
and CARP compared to baselines and ablations. b) Downstream task performance by depth of layer transferred.
¢) Downstream task performance by pretraining loss. Each dot is a model checkpoint. For subcellular
localization, the downstream classification task performance is quantified using accuracy. For other tasks, the
downstream regression task performance is quantified using Spearman’s rank correlation.

2.6 Discussion

In this work, we systematically evaluate the mechanisms via which transfer learning from
large pretrained protein language models improve performance on downstream protein
function and structure prediction tasks. While most downstream tasks benefit from transfer
learning, of the tasks we evaluated, structure prediction is the only task where we observe
pretrain-downstream alignment. Our results are consistent with previous studies that show

MLM pretraining imparts information about protein structure. Previous work has shown that
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the attention matrices in pretrained PLMs recapitulate contact maps,*>* that it is possible

to extract contact maps by perturbing the inputs to PLMs,* and that PLM representations

contain similar co-evolution information as multiple sequence alignments.®!4:46

Other works have argued that larger models will not benefit fitness prediction when using
zero-shot likelihoods from generative models,*’*® as some degree of misspecification is
important for generalizing from natural protein distributions to mutant variants. Our results,
which show that fitness prediction tasks do not scale with pretraining, are consistent with
these prior works, but we show this holds true even when transferring embeddings and even
with some degree of fine-tuning. At the same time, by showing that structural prediction
tasks do scale with pretraining, our results suggest that these prior results may not be general
past fitness prediction; one possibility is that fitness prediction usually involves mutant
variants not seen in the databases of natural proteins used for pretraining, whereas the
structural prediction tasks benchmarked in our paper classify secondary structural elements

that will be seen in natural proteins.

Our primary contribution is showing that scaling pretraining does not improve performance
on prediction tasks that are less reliant on coevolutionary patterns, and that outperforming
the one-hot and randomly initialized baselines does not imply that downstream task
performance will scale with pretraining performance. While our observation that PLMs fail
to scale on many downstream tasks may not generalize as our evaluation framework is
extended over different pretraining tasks, architectures, datasets, and fine-tuning methods,
by showing that performance over baselines is not always coupled with scaling, we provide

a means for future models to improve on these limitations.

Limitations. There are factors known to impact transfer that we could not test for PLMs due
to a lack of public models or to computational expense. First, pretraining dataset is important,
both in terms of distance between the pretraining and downstream task data domains* and
data size.?° PLMs pretrain on large databases of natural sequences. In principle, this means
that some downstream tasks may be out-of-distribution (e.g., those involving artificial

variation or non-natural function), or subject to biases in data collection (e.g., taxonomies
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less-represented in UniProt).° Previous studies have shown differences in pretraining

performance by taxonomy,’! and that model likelihoods are biased towards more frequent
species in UniProt.’> However, Meier ef al. (2021)>3 trained versions of ESM on UniRef100
instead of UniRef50, and Dallago et al. (2021)'° show that they perform very similarly on
function prediction tasks. Moreover, subsampling pretraining sequence datasets has not been
explored beyond down-sampling redundant sequences, making the impact of data difficult

to evaluate for pretrained PLMs.

Second, a variety of other pretraining tasks have been proposed for protein transfer learning,
such as autoregressive next-token prediction.’*>¢ Different pretraining tasks could
potentially learn different aspects of protein biology, and thus have different patterns of
scaling. While we only evaluated the MLLM pretraining objective, future work that tests other
pretraining tasks under our evaluation framework will be critical. However, from principle,
we remain uncertain if existing tasks in literature will result in significant differences from

37-60 and so are also

MLMs. Many pretraining tasks still aim to reconstruct natural sequences
likely to primarily learn coevolutionary patterns. Other tasks use structure as an additional
input or target, but they generally make only modest improvements on function prediction
tasks.®!%* Supporting the assertion that learning to predict structure may not improve
function prediction, Hu et al. (2022)% show that transfer learning using the AlphaFold26¢
structure module is less effective for function prediction than transferring PLMs. Finally,
Brandes et al. (2022)° and Xu et al. (2023)% reconstruct both sequence and functional

annotations but also find that downstream performance does not always scale with

pretraining time.

Finally, we only test probes on frozen models to limit computational cost, but previous work
shows that for many tasks finetuning the PLM end-to-end outperforms a linear probe or
training a small neural network on top of the frozen pre-trained weights,'®!® and that mean-
pooling is rarely optimal.?3%® In computer vision, models trained on different datasets*’ and
pretraining tasks?® exhibit different finetuning dynamics, and there is some evidence for this

in proteins as well.>> More sophisticated approaches to finetuning (such as using automated
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ML to select architecture of probe) could further improve performance, and introduce

different patterns of alignment.

Besides studying further factors that may impact transfer learning, improvements to our
evaluation could better understand details of mechanism. Transformer PLMs often learn
sparse attention matrices,*>** so one question is if it is the sparsity that drives performance,
or if pairwise attention must be placed on the correct pairs of residues (as opposed to any
pairs). However, our current baselines do not permit this understanding: both random init

and stat transfer do not guarantee that sparsity in attention matrices is preserved.

Finally, although we require that downstream task performance scale with improvements on
the pretraining task and specifically analyze three axes of scaling (model size, depth of
model, and checkpoint in pretraining), it is unclear if all three axes are necessary. For
example, effective self-supervised learning tasks in computer vision often diverge in their
final layer representations relative to supervised models,? suggesting that downstream task
performance may not always improve monotonically with layer depth, even when pretraining
is effective. However, in our specific context, we chose to include scaling with layer depth
because we thought it to be an explanation of potential mechanism for why scaling other
axes does not translate into downstream task performance. We observed that even though
larger models and models pretrained for longer generally achieve better performance on the
pretraining task, this often does not translate into downstream task performance. Our layer
depth experiments show that downstream task performance often saturates alarmingly early:
for the tasks where pretraining improves downstream task performance, but this
improvement does not scale, downstream task performance usually saturates within the first
3-5 layers of models (Figure 2.4), even in models with 30+ layers. This observation suggests
that PLMs are currently burning the majority of their capacity parameter-wise on modeling
the pretraining task, with very few of the learned features contributing to both the pretraining
and downstream tasks jointly. However, our rationale for why we included layer depth as an

axis of scaling contributing to “alignment” is dependent on this context, so ultimately, our
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definition of “alignment” is oversimplified, and future work should further analyze the

interplay and interaction between different axes of scaling.

Implications for future work. Together, the number of factors that can potentially impact
transfer learning means that there are many opportunities for future work to address the
limitations in scaling that we identified in our work. Towards this goal, our work provides
an improved evaluation standard for PLMs. We show that checking for improved
performance over baselines may overestimate the generality of PLMs across applications in
protein biology, as it does not rule out that improvement may be due to alternate hypotheses
that do not scale. However, most current works rely on comparisons to baselines to argue
that PLMs are widely applicable, and to the extent scaling has been studied, most only use
scaling on structure prediction accuracy alone to justify training larger models.®®* Future
PLM evaluation should therefore assess scaling on diverse downstream function prediction

and engineering tasks, and not just structure alone, to validate the generality of models.

Second, synthesizing our empirical results with how the current landscape of protein
sequence pretraining tasks primarily align with structure prediction, our work points to a
need for new pretraining tasks. For many downstream tasks, the lack of alignment prevents
transfer learning from taking full advantage of the pretrained model, as features from deep
in the PLM perform no better than features from early layers in the PLM. Likewise, for these
tasks, simply scaling to larger PLMs trained for more steps on more data may not improve
performance. Our study suggests that the field needs to explore diversified pretraining
strategies instead of further scaling existing strategies in order to reach aspects of protein

biology that are not currently well-served by PLMs.
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Chapter 3

MACHINE LEARNING-ASSISTED DIRECTED EVOLUTION ACROSS
DIVERSE COMBINATORIAL LANDSCAPES

Material from this chapter appears in: “Li, F.-Z., Yang, J., Johnston, K. E., Giirsoy, E.,
Yue, Y. & Amold, F. H. Evaluation of machine learning-assisted directed evolution across

diverse combinatorial landscapes. bioRxiv (2024). doi: 10.1101/2024.10.24.619774.”

ABSTRACT

Various machine learning-assisted directed evolution (MLDE) strategies have been shown
to identify high-fitness protein variants more efficiently than typical directed evolution
approaches. However, limited understanding of the factors influencing MLDE
performance across diverse proteins has hindered optimal strategy selection for wet-lab
campaigns. To address this, we systematically analyzed multiple MLDE strategies,
including active learning and focused training using six distinct zero-shot predictors, across
16 diverse protein fitness landscapes. By quantifying landscape navigability with six
attributes, we found that MLDE offers a greater advantage on landscapes which are more
challenging for directed evolution, especially when focused training is combined with
active learning. Despite varying levels of advantage across landscapes, focused training
with zero-shot predictors leveraging distinct evolutionary, structural, and stability
knowledge sources consistently outperforms random sampling for both binding
interactions and enzyme activities. Our findings provide practical guidelines for selecting

MLDE strategies for protein engineering.
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3.1 Introduction for Chapter 3

Engineered proteins are indispensable across myriad applications, serving as effective
therapeutics to combat diseases, non-toxic agents to enhance crops, and green biocatalysts to
synthesize chemicals." The development of such useful proteins often involves directed
evolution (DE), a method for accumulating beneficial mutations using iterations of
mutagenesis and functional assessment by selection or screening.”* DE is an empirical,
greedy hill climbing process on a high-dimensional fitness landscape that maps protein
sequence to function (Figure 3.1a).>° Despite its widespread use, DE remains time-
consuming and resource-intensive: screening is expensive, and multiple rounds of mutation

and screening may be needed to generate the desired improvements.

Fitness landscapes are more rugged and difficult to traverse when they are rich in epistatic,
or non-additive, effects of amino acid substitutions.”® Epistasis is often observed between
mutations in close structural proximity® and is enriched at binding surfaces or enzyme active
sites, due to direct interactions between residues, substrates, and/or cofactors.® Protein
engineers frequently target mutations to these interacting sites to enhance a function, often
using simultaneous site-saturation mutagenesis (SSM) to make libraries in which the targeted
amino acids are mutated to many or all 19 other possible amino acids.'® Combining the
beneficial mutations found at these sites often reveals epistatic effects. For example,
beneficial mutations in the context of the initial sequence may not be beneficial in
combination with other mutations. Therefore, epistasis can present a significant challenge

for DE.2

Compared to DE, machine learning-assisted DE (MLDE) has shown promise for exploring
a broader scope of sequence space and more effectively navigating epistatic landscapes.''-1?
MLDE utilizes supervised ML models trained on sequence-fitness data to capture non-
additive effects. The trained models can then be used to predict high-fitness variants across
the entire landscape in a single evaluation round (MLDE)!"-'%14 or iteratively in an active

learning (ALDE) fashion.!>7
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The choice of the training set can greatly influence the performance of the ML models.

One can randomly sample the full combinatorial space for training the model (MLDE) or
alternatively do focused training (ftMLDE)!? by selectively sampling to avoid low-fitness
variants. In the latter, the quality of the training set can be enriched with more-informative
variants using zero-shot (ZS) predictors to reach high-fitness variants more effectively.'? ZS
predictors estimate protein fitness without the need for experimental data: they are instead
based on prior assumptions and leverage auxiliary information, such as protein stability,

evolutionary data, or structural information.'8-2

Although ML in protein engineering has been demonstrated in different case studies,'!2"37
most MLDE'!1516 and fiMLDE'? studies on epistatic landscapes have been benchmarked
against a single dataset on the B1 domain of an immunoglobulin-binding protein G (GB1).3®
Thus, two key issues persist: first, the effectiveness of different MLDE strategies on proteins
with complex functions, such as enzymes, remains uncertain and, second, the principles that
guide successful use of MLDE strategies across diverse protein properties are not
understood. Furthermore, despite a growing array of ZS options,? there is no definitive
guideline for selecting predictors for a given application. This challenge is particularly

pronounced for combinatorial epistatic landscapes.?*-°

Recent experimental studies*®*

provide a wealth of data on a broader array of protein fitness
landscapes, enabling us to start establishing best practices and generalizable guidelines for
practitioners working with various proteins. To contextualize the benefits of MLDE, ALDE,
and focused training, we conducted a comprehensive study of 16 diverse combinatorial
protein fitness landscapes. They span six protein systems and two function types (protein
binding and enzyme activity). Consisting of variants that are simultaneously mutated at three
or four residues, these landscapes vary in landscape attributes (Box 3.1), such as statistical
measures (including the number of active variants and fitness distribution properties) as well
as ruggedness (a measure of the prevalence of fitness interactions among variants,*

including pairwise epistasis and the number of local optima). This study focuses on two

questions using comprehensive computational analyses: (1) When do MLDE, multiple
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rounds (such as in ALDE), and focused training (ft) offer a significant advantage compared

to DE? (2) How can we best select and utilize the ZS predictor(s) for focused training?

Box 3.1. Definitions of important terms used in this study.

Term

N-site (nsite)
combinatorial landscape

Library

Navigability

Landscape attribute

Fitness statistics

Ruggedness*®*

Rounds (nraund)

Total number of unique
variants (Ngoeqr)

Site-saturation
mutagenesis (SSM)'°

Directed evolution (DE)

Machine learning-
assisted DE (MLDE)

Active learning-assisted

DE (ALDE)

Zero-shot (ZS) predictor

Zero-shot (ZS) score

Focused training (ft)

Definition

A mapping of 20™site possible sequences to their corresponding fitness values. Specific sites can be selected
based on prior experiments, system-specific insights, or computational predictions.

A set of experimentally generated protein variants covering a portion of the landscape.

The ability to traverse the fitness landscape from lower- to higher-fitness sequences through single amino acid
substitutions in a sequence.

Empirically derived values used to quantify a fitness landscape’s navigability.

Landscape attributes derived from the fitness distribution, including the percent of active variants and
distribution shape (i.e., tail behavior, peak location, and multimodality).

Landscape attributes quantifying (1) non-magnitude epistasis, challenging for DE to navigate and (2) local
optima, where no neighboring variant with a single amino acid substitution has higher fitness.

The number of generations of wet-lab experiments conducted to collect fitness values.

The total number of unique variants sampled by a given strategy across all rounds.

An experimental method for generating libraries by substituting targeted amino acids with many or all 19
other possible amino acids.

An iterative protein engineering process that begins with an active variant (“parent”) and accumulates amino
acid substitutions to improve protein fitness. DE strategies include recombination (“recomb” and “top96
recomb”, both with n,,,,q = 2 rounds, which consist of a round of simultaneous SSM at all ng;,, sites and a
test round) and greedy hill climbing (“single-step”, with n,.,,nq = Nsi¢e rounds, which consists of successive
rounds of SSM at each site). The total number of unique variants is given by norqr = Nsampie + Neest, Where
Nsampte = 19 X Ngiee + 1 for all strategies. The number of test variants 1y, is 1 for recomb DE, 96 for
top96 recomb DE, and 0 for single-step DE.

Implemented in two rounds: training-validation round (With ny,qi, = Norar — Neese Variants) and testing round
(with nges = 96 variants). We report models trained with boosting ensembles using one-hot sequence
encoding in the main text. See the Discussion and Supplemental information for alternative models (ridge
regression), sequence representations (ESM-2 with three pooling options), and strategies (ESM-2 fine-tuning).

Implemented in multiple rounds (n,gynq = 2, 3, or 4), resembling batch Bayesian optimization. Each round
samples Nparen = Neotar / Mrouna Variants. We report boosting ensembles with greedy acquisition using one-
hot sequence encodings in the main text. See the Discussion and Supplemental information for alternative
models (deep neural network ensembles) and acquisition functions (upper confidence bound and Thompson
sampling).

A computational approach to estimating protein fitness based on prior assumptions and auxiliary information
(e.g., protein stability calculations, evolutionary data, or structural information).

A numerical score generated by a ZS predictor approximating protein fitness.

A variation of MLDE (ffMLDE) and ALDE (ftALDE) where the initial round sampling is enriched with
variants whose ZS scores are in the top 12.5% of the full library (referred to also as the focused training
library). See the Discussion and Supplemental information for alternative cutoffs.
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3.2 Results for Chapter 3

3.2.1 Overview of landscapes

For this study, we selected 16 experimental combinatorial landscapes covering a range of
binding interactions and enzyme activities (Tables 3.1 and B.3.1; Box 3.1; Appendix B.2
Methods).®#'# All landscapes feature mutations at binding interaction points, in active
sites, or at positions previously shown to modulate fitness, all of which are often targeted for
engineering tasks (Figure 3.1¢). For binding, we examined two three-site bacterial toxin-
antitoxin ParD-ParE landscapes*! and the GB1 landscape for immunoglobulin binding.* For
enzyme activity, we analyzed a three-site dihydrofolate reductase (DHFR) landscape,* a
three-site T7 RNA polymerase landscape,*** a four-site TEV protease landscape,**** and
ten three- or four-site landscapes of the thermostable B-subunit of tryptophan synthase

(TrpB).»

Table 3.1. Combinatorial landscapes analyzed in the main text (see Table B.3.1, Box 3.1, and
Appendix B.2 Methods for details).®*'

Fraction of Fraction of

Landscape Protein Function Fitness MSA. | Variant Sites Pcrcjt:nt local  non-magnitude
depth  space active . Lo
optima epistasis
ParD2  Bacterial toxin- Binding ParE toxin 6789 20° 161, L64, K80 82.89 0.001 0.34
ParD3 antitoxin interactions neutralization 6784 (8,000) D61, K64, ES0 91.96 0.001 0.31
. Protein GB1  Binding Binding affinity 20* .
GBI domain interactions  for IgG-Fc B (160,000) V39,D40,G41, V54 23.13 0.005 040
1 folate » ~ 1 A 1 3
pupr ~ Dibydrofolate  Enzyme  Trimethoprim o ) - 20 A26,D27,1.28 10.68  0.004 0.42
reductase activity resistance (8,000)
) T7 RNA 5
7 T7RNA — Enzyme 0 erase 309 20 N748,R756,Q758 348  0.368 0.52
polymerase activity . (8,000)
activity
TEV  TEVprotease Lr¥me  TEVprotease 0 200 146 b14g HI67,S170 115 0.060 0.56
activity activity (160,000)

TrpB3D T117, A118, A119 9.26 0.043 0.50
TrpB3E F184, G185, S186 2.02 0.348 0.63
TrpB3F B-subunit of 20° L162, 1166, Y301 1.06 0.232 0.54
TPB3G  yryptophan  LPZYMe  Tryptophan 50y 0 (8,000) V227, 8228, Y301 137 0213 0.52
TrpB3I synthase activity formation Y182, V183, F184 32.04  0.006 0.43
TrpB4 20¢ V183, F184,V227,S228 6.15 0.057 0.46
p (160,000) ¥ ° 1O : > : 0

We first characterized the landscapes to provide interpretation for further evaluations. To
minimize the misalignment between theoretical landscape modeling and experimental

applications, we selected two groups of empirical and interpretable attributes derived directly
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from the datasets: (1) fitness statistics (which do not incorporate sequence information)

and (2) landscape ruggedness (which involves mapping sequences to fitness) (Figure 3.1a;
Box 3.1; Appendix B.2 Methods).*’* We used the following statistics to indirectly infer
the complexity of the fitness landscape: the percentage of active variants, the fitness value
corresponding to the Cauchy peak location, the kurtosis of the fitness distribution
(“tailedness”), and the number of kernel density estimation (KDE) peaks (Appendix B.2
Methods). The Cauchy distribution is known for its heavy tails. We sought to use the fitness
corresponding to its peak location as a landscape attribute to capture the majority of the
variant finesses. KDE is a non-parametric method for estimating the probability density
function of fitness distribution. KDE does not assume any specific underlying distribution
for fitness and is useful for smoothing out noise. We reasoned that the number of KDE peaks,
reflecting the distribution modalities of fitness, could serve as a proxy for the underlying

landscape navigability, which impacts the outcome of DE.

To quantify ruggedness, which poses navigation challenges for DE,* we included the
number of local optima and the percentage of pairwise non-magnitude epistasis (Figure
3.1a). We defined a local optimum as a variant that possesses higher fitness than all its active
neighbors differing by a single amino acid substitution (Appendix B.2 Methods).*243:47:48:50
Recent studies have also highlighted the impact of epistasis on DE** and emphasized that
the majority of epistasis is pairwise.>> Thus, we also included the amount of non-magnitude
pairwise epistasis (challenging for DE to navigate) as a relevant landscape attribute

(Appendix B.2 Methods).
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Figure 3.1. Summary of landscape attributes, simulations, and combinatorial landscapes. a) Landscape
attributes include (1) fitness statistics (percent of active variants, tailedness, location of Cauchy peak, and
number of peaks for kernel density estimation) and (2) ruggedness (number of local optima and percent of non-
magnitude pairwise epistasis) (Box 3.1; Appendix B.2 Methods). b) In silico simulations include three types of
DE strategies (recomb, single-step, and top96 recomb), MLDE, multiple rounds of MLDE (ALDE), and focused
training for both MLDE (fiMLDE) and ALDE (fiALDE) (Box 3.1; Appendix B.2 Methods). All DE and ML
simulations were performed for each N-site library of a given landscape, where N, is the number of sites
targeted for mutation. All strategies were evaluated using two metrics: (1) average maximum fitness achieved
and (2) fraction reaching the global optimum. For ML simulations, a range of total unique variants screened
Miorar) Was considered. MLDE and ftMLDE divided n.,;4; into a training-validation round (Myy.qiy) and an
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evaluation round (Myps; = 96, Nypyna = 2). Evaluation metrics were calculated based on the fitness of the
top 96 ranked variants from the evaluation round. ALDE and ftALDE split N;,rq; across multiple rounds
Myouna = 2,3, 01 4), with each round sampling Nygicn = Niotar / Mrouna Variants. Evaluation metrics were
calculated based on the fitness of the variants sampled in the final batch. MLDE and ALDE sampled the initial
round randomly from the full N-site library, while ftiMLDE and fiALDE sampled the initial round randomly
from a focused library containing variants ranked in the top 12.5% of ZS scores from the full N-site library.
Different models, sequence encodings, and focus training library cutoffs were tested (Box 3.1; Appendix B.2
Methods). c) Combinatorial landscapes studied, categorized by the number of targeted sites (ng;e = 3 o1 4)
and function types (binding interactions and enzyme activities) on six protein systems (ParD-ParE toxin-
antitoxin, GBI immunoglobulin binding, dihydrofolate reductase, T7 RNA polymerase, TEV protease, and

tryptophan synthase).> 3849345 Targeted sites are highlighted in orange. We focus on libraries with at least
1% active variants in the main text, while the remaining landscapes are detailed in the Supplemental
information. The 1% threshold was extrapolated from the expected occurrence of one active variant in a
traditional DE screening method of the largest landscape in this study (1 / (4 X 20) X 100%, Appendix B.2
Methods).

3.2.2 All MLDE strategies consistently outperform DE, particularly as landscape

navigability decreases

We first assessed how landscape attributes influence the efficacy of protein engineering
strategies. Specifically, we evaluated the outcomes of a protein engineering campaign using
two metrics: (1) “average maximum fitness achieved” which is the fitness of the final variant
achieved by each method on average and (2) “fraction reaching the global optimum”, which
measures how frequently the true maximum fitness is reached. We explored these measures
across MLDE, ALDE, focused training, and three different DE strategies (Box 3.1). The DE
strategies are “recomb”, a recombination of the best SSM variant at each site (N;prq; =
19 X ngje + 2 variants over N,ounq = 2 rounds); “single-step”, an iterative process
starting from any site with subsequent variants built on the best variant found (n;prq; =
19 X ngje + 1 variants over nyoyng = MNgite rounds); and “top96 recomb”, where SSM is
performed at each position, all substitution combinations are calculated based on additive
recombination, and the top 96 variants are selected (n¢prq; = 19 X ngjee + 97 variants over
Nyouna = 2 rounds, where 96 is the number of wells in plates commonly used for screening;
Figure 3.1b; Box 3.1; Appendix B.2 Methods).'"'>* MLDE and ftMLDE trained an
ensemble of models, employing either random or ZS predictor-guided training sample
selection. The trained models were then used to predict fitness for all variants, where the top

96 predicted variants were then used for evaluation (Figure 3.1b; Box 3.1; Appendix B.2
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Methods).'> ALDE divided the total sample size equally into multiple rounds (N, gyng =

2,3, 0r 4), with each round of sampling guided by the acquisition function (Figure 3.1b;
Box 3.1; Appendix B.2 Methods).!” Similar to how ftMLDE improved upon MLDE,!?
ftALDE used ZS predictors to select a more informative initial training set, instead of the

random sampling used in ALDE.

Considering the variability in throughput and expense of experimental screens, we explored
a range of total number of unique variants screened (n;y¢q;), from 120 to 2,016 samples
(Figure 3.2a; Table B.3.2). On average across landscapes, MLDE (dashed light blue line)
required 48 training samples (n;,¢q; = 144) to outperform recomb DE and 96 (n;y¢q; = 192)
to surpass single-step DE for both metrics. It took 96 training samples (n;,tq; = 192) for
MLDE to match the average maximum fitness and 384 (n;y:o; = 480) to achieve a
comparable fraction reaching the global optimum to the most competitive DE strategy,
“top96 recomb”. By incorporating various ZS predictors, ftMLDE (solid dark blue line)
consistently outperformed MLDE with random sampling (showing a 4-12% improvement
in average maximum fitness achieved for up to 960 training samples (n;,tq; = 1,056) and a
9-77% improvement in fraction reaching the global optimum across all training sample
sizes; Table B.3.3); ftMLDE achieved the same levels of average maximum fitness and
global optimum fraction as MLDE but with fewer training samples required (Figure 3.2a).
These results suggest that MLDE can identify high-fitness variants more effectively than DE,
and its performance improves with more training data. Focused training with ZS predictors

can further improve performance compared to MLDE with random sampling.
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Figure 3.2. Performance of MLDE, ALDE, and focused training, compared with DE and correlated to six
landscape attributes. a) Comparison of DE, MLDE, ALDE, ftMLDE, and ftALDE performance, averaged
across 12 landscapes with at least 1% active variants. Shading indicates the standard deviation. Performance
is shown for i) the maximum fitness achieved and ii) the fraction of campaigns reaching the global optimum,
for different numbers of total unique variants sampled (Myyiq1). Three DE methods were included: recomb,
single-step, and top96 recomb. DE simulations started from all active variants (Appendix B.2 Methods). The
triangle and diamond indicate the total number of unique variants sampled for DE, where Nyorq; = Ngampre +
Nyest ANd Nggmpre = 19 X Ngipe + 1 (Box 3.1; Appendix B.2 Methods). The vertical line marks a total sample
size of 480, where 384 variants were sampled for training and the top 96 predicted variants were used for
testing in MLDE and ftMLDE, two rounds of ALDE (ALDE) sampled 240 variants per round; three rounds of
ALDE (ALDE x 3) sampled 160 variants per round, or four rounds of ALDE (ALDE x 4) sampled 120 variants
per round (i.e., Neorar = 480 = Ngpgin + Npese = 384 + 96 = Npgyung X Nparen = 2 X 240 =3 X 160 =
4 x 120). Subsequent results expand on this Nyypq; = 480 setting. See Figure S1 for landscapes with fewer
than 1% active variants, Figure S2 for Elo ratings, and Figures S3—S4 for individual landscapes. b) Single-step
DE, MLDE, ALDE, and focused training results broken down by landscape, with a total sample size of 480
Miotar = 480) for both metrics. See Figure S5 for landscapes with fewer than 1% active variants. c)
Spearman’s rank correlation of ML strategy performance improvement (the average maximum fitness of the
top 96 predicted variants by ML methods over single-step DE, y-axis) with six landscape attributes (x-axis): i)
percentage of active variants, ii) fraction of local optima, iii) fraction of non-magnitude epistasis, iv) Cauchy
peak location, v) kurtosis (tailedness), and vi) number of kernel density estimation (KDE) peaks (Appendix B.2
Methods). See Figure S6 for ALDE and ftALDE, Table S4 for attribute-performance correlation and Table S5
for fold improvements. For each MLDE and ftMLDE simulation, boosting models were trained on a range of
Nirain Tandom samples from the entire or ZS-focused library using one-hot sequence encoding, with five-fold
cross-validation. For each ALDE and ftALDE simulation, boosting ensembles with greedy acquisition function
were trained with Nygecn = Neotat/Mrouna Variants per round for Ny oyna=2, 3, or 4, respectively. The top 96
or final batch variants were evaluated. Each ML simulation was averaged across 50 replicates (Box 3.1;
Appendix B.2 Methods). ftMLDE and ftALDE performance were further averaged across six ZS predictors
(details in the next section).

Next, we compared ALDE (MLDE with multiple rounds of training and testing guided by
the acquisition function)!'” to MLDE (a single round of training and testing, equivalent to two
rounds) with the same total number of variants screened. With two rounds, ALDE (dotted
bright yellow line) began to outperform MLDE (dashed light blue line) after 480 total
samples for average maximum fitness achieved and 288 total samples for fraction reaching
the global optimum but did not outperform ftMLDE (solid dark blue line) until 1,056 samples
for both metrics. With four rounds, ALDE (dotted light brown line) matched or exceeded
ftMLDE performance. With focused training, ftALDE matched or surpassed ftMLDE with
the same number of rounds (n,.ynq = 2) and showed further improvement with additional
rounds (ftALDE x 3 and ftALDE x 4; Figure 3.2a). However, for libraries with fewer than

1% active variants, even four rounds of ALDE (without focused training) consistently
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underperformed compared to ftMLDE (Figure B.3.1). Our observations underscore the

utility of focused training using ZS predictors here, enabling MLDE to match multi-round
ALDE performance and offering further improvement to ALDE.

Given the large standard deviations in the performance of different approaches across
landscapes, we first validated our comparisons using the Elo rating system, a method widely
used in model benchmarking and competitive games (Figure B.3.2; Appendix B.2
Methods).’*>” We then examined how each approach performed on individual landscapes
and found that some landscapes exhibited more significant improvements than others
(Figure 3.2b and Figures B.3.3-B.3.5). We quantified the improvements of ML strategies
over single-step DE and found that ML strategies offered a greater advantage on landscapes
which were more challenging for DE to navigate. To better understand when DE struggled,
we calculated six different attributes to provide insights into landscape navigability (Figure
3.2¢; Appendix B.2 Methods). Specifically, the mean maximum fitness achieved by DE
correlated positively with the fraction of active variants (Spearman’s p = 0.50) and the fitness
distribution’s Cauchy peak location (Spearman’s p = 0.70), indicating improving
navigability by DE (Table B.3.4). Consequently, the improvements resulted from all ML
methods were anti-correlated with percent active (Figure 3.2¢—i) and Cauchy peak location
(Figure 3.2c—iv). Greater kurtosis (tailedness) and number of KDE peaks of the fitness
distribution hindered DE navigability (Spearman’s p = -0.82 and -0.80, respectively; Table
B.3.4). ML methods thus improved performance most significantly for landscapes with high
tailedness and more KDE peaks (Figures 3.2c—v and vi). Similarly, increased landscape
ruggedness decreased DE navigability, yielding greater benefit of using ML methods over
DE for such landscapes. DE navigability was anti-correlated with the fraction of local optima
and the fraction of non-magnitude epistasis (Spearman’s p = -0.76 and -0.73, respectively;
Table B.3.4), and thus the net improvement of ML methods over DE was positively
correlated with both more local optima (Figure 3.2c¢—ii) and more non-magnitude epistasis
(Figure 3.2c—iii). Indeed, ftMLDE demonstrated the most substantial performance
improvements (3.5-fold) for one of the least navigable landscapes (TrpB3E; Table B.3.5).

The performance improvements from different rounds of ALDE and ftALDE were also



58
correlated with landscape navigability defined by the six attributes (Figure B.3.6; Tables

B.3.4 and B.3.5).

3.2.3 ZS predictors provide orthogonal priors on protein fitness that improve focused

training performance

Next, we sought to understand the effectiveness of different ZS predictors for fitness
prediction and their ability to improve ftMLDE and ftALDE performance across landscapes.
7S predictors could be useful for (1) effectively ranking variants to sample the fittest mutants
(measured by Spearman’s correlation, Methods) and (2) classifying active/inactive variants
to avoid sampling non-viable variants, especially in landscapes dominated by inactive
variants (measured by active/inactive accuracy ROC-AUC, Appendix B.2 Methods). To
evaluate the effectiveness and limitations of various ZS predictors under different
assumptions and priors, we selected six distinct predictors across two axes: calculation vs.
learning-based and sequence vs. structure-based. These predictors are Hamming distances,
EVmutation, ESM-2, ESM-IF, CoVES, and Triad (Figure 3.3a; Appendix B.2 Methods).'3~
2259 To differentiate our work from comprehensive ZS predictor benchmarks that are largely
limited to measuring the effects of single amino acid substitutions,” we emphasized their

utilities for focused training applications in epistatic landscapes.

As a baseline, we used the Hamming distance as a ZS predictor, which counts the number of
amino acid substitutions from the parent, a variant already exhibiting some activity. By
setting a Hamming distance threshold, we essentially confined the sampling space to the
vicinity of the parent to enrich the training set with more viable variants on average, since
most mutations are deleterious.’ Indeed, we observed that the Hamming distance (indicated
in blue) showed a weak correlation with fitness ranking (Figure 3.3b—i) and classified
active/inactive variants better than random (Figure 3.3b—ii) as a ZS predictor. Notably,
Hamming distance relied on the parent defined by the authors of each landscape, rather than
a randomly sampled active variant as in the DE simulations. Since these landscapes were
designed to have variant activity levels both higher and lower than the parent, the parent and

its neighboring variants were likely to be more fit and active than those around a randomly
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selected active variant (Figure B.3.7). Although the landscape parent was one of the most

active variants, contributing to strong Hamming distance performance, Hamming distance
still outperformed random predictions in fitness ranking (Figure B.3.8) and active/inactive
classification (Figure B.3.9) on average, when different active variants were used as the
parent. In the focused training setting, Hamming distance-guided training set sampling
outperformed random selection, improving both the average maximum fitness achieved
across all total sample sizes (Figure 3.3e—i) and fraction reaching the global optimum, up to
total sample sizes of 1,056 for ftMLDE (Figure 3.3e—ii) and 480 for ftALDE (Figure
B.3.10).

Various ZS predictors can incorporate implicit evolutionary conservation based on the
distribution of naturally occurring sequences. The EVmutation score predicts the fitness
effect of a given set of substitutions based on conservation and evolutionary couplings
through multiple-sequence alignment (MSA).!80 We observed that EVmutation (indicated
in green) outperformed the Hamming distance for both ranking fitness values (Figure 3.3b—
i) and classifying active/inactive variants (Figure 3.3b—ii). Moreover, it was one of the best
ZS predictors for focused training across all sample sizes on both metrics (Figure 3.3e).
Similarly, protein language models (PLMs) can capture these evolutionary conservations by
learning to predict the original identity of masked or corrupted amino acids.®'2%62-%6 The
likelihood of filling such amino acids can be thought of as a predictor for different amino
acid substitutions given the sequence context.!” The ESM-2 score (Evolutionary Scale
Modeling,?¢ indicated in purple) from one of such state-of-the-art PLMSs performed similarly
to EVmutation as a ZS predictor for both fitness ranking (Figure 3.3b—i) and active/inactive
classification (Figure 3.3b—ii). It also did not further improve upon EVmutation in the

focused training setting (Figure 3.3e).

Incorporating structural context can also be useful for ZS predictions. ESM-IF (ESM inverse-
folding, indicated in yellow) is an inverse-folding model trained to predict a protein sequence
from its backbone atom coordinates, where effects of substituting amino acids can be

approximated with the likelihoods of each possible sequence for this reconstruction task.?’
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We observed that ESM-IF was one of the best ZS predictors for fitness ranking (Figure

3.3b—i) and active/inactive classification (Figure 3.3b-ii), alongside EVmutation and ESM-
2. In the focused training setting, ESM-IF score did offer a consistent advantage over the
sequence-only ESM-2, but only offered a slight advantage over EVmutation at either low or
high number of samples (i.e., N prq; =120, 144, 1,056, and 2,016, Figure 3.3¢). CoVES
(Combinatorial Variant Effects from Structure, indicated in brown) learns to predict a
masked amino acid identity from its surrounding atomic-level structural microenvironments
but does not account for epistasis.?! Compared to ESM-IF, we observed that CoVES was a
slightly less effective ZS predictor for fitness estimation (Figure 3.3b) and in the focused
training setting (Figure 3.3e), but it was still one of the most effective predictors for

improving over random sampling.

An alternative local structure-based ZS score utilizes physics-informed stability calculations.
Stability is an important prior for protein function, as an unfolded or misfolded protein is less
likely to be functional.'>??> The Triad score estimates mutant stability by calculating the
change in its free energy of folding relative to the parent (AAGy) using a Rosetta energy
function.'?>° While Triad (indicated in orange) was the weakest predictor for variant fitness
ranking (Figure 3.3b—i), it classified active/inactive variants fairly well (Figure 3.3b—ii) as
a ZS predictor. Triad-guided training set sampling outperformed random selection in the
ftMLDE setting, up to a total sample size of 1,056 for both metrics (Figure 3.3e). In the
ftALDE setting, it outperformed random selection up to a total sample size of 576 for average
maximum fitness and 384 for the fraction reaching the global optimum (Figure B.3.10). The
relative differences between ZS predictors in focused training remained consistent across
different rounds of ftALDE. However, in libraries with fewer than 1% active variants, these
differences were minimized, and all ZS-guided focused training approaches showed a

significant advantage over random sampling (Figures B.3.11- B.3.12).
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Figure 3.3. Summary of different ZS predictors and their impacts on focused training across landscapes. a) Six
ZS predictors: i) Hamming distance, ii) EVmutation (coevolutionary conservation),'® iii) ESM-2 (mutant
likelihood from pretrained protein-language model),"*?® iv) ESM-IF (mutant likelihood from pretrained
inverse-folding models based on sequence and structure information),”® and v) Triad (mutant stability
AAGy.'*> b) ZS predictor performances in terms of correlation between ZS score ranking and fitness ranking
(Spearman’s p) and active/inactive classification accuracy (ROC-AUC) across 12 landscapes with at least 1%
active variants. The cross and central line represent the mean and median, respectively. Boxes show the
interquartile range (IQR), and whiskers extend up to 1.5 % IQR. Outliers (gray circles) represent values beyond
this range. Dotted gray line indicates random classification. c) Correlation of the fitness ranking Spearman’s p



62
with MSA depth for each ZS predictor. Statistical significance (p-value <0.05) is indicated as * (Table B.3.6).
Dotted gray line indicates no correlation. d) Pairwise Spearman’s correlation among six ZS predictors
averaged across 12 landscapes. e) Performance of focused training with different ZS predictors including the
best Hamming distance ensemble, averaged across 12 landscapes. Shading indicates the standard deviation. It
assesses i) the maximum fitness achieved and ii) the fraction reaching the global optimum in relation to the
number of samples used by ftMLDE. For each MLDE and ftMLDE simulation, boosting models were trained
on 384 random samples from the entire or ZS-focused library using one-hot sequence encoding, with five-fold
cross-validation. The top 96 predicted variants were evaluated. Each ML simulation was averaged across 50
replicates (Appendix B.2 Methods). The vertical line marks a total sample size of 480 (e.g., 384 sampled
variants for training and top 96 predicted variants for testing). See Figure B.3.10 for ALDE and ftALDE,
Figures B.3.11, B.3.12, and B.3.15 for landscapes with fewer than 1% active variants, Figure B.3.16 for Elo
ratings, and B.3.17-B.3.22 for individual landscapes.
To facilitate ZS predictor selection and ensembling, we first examined how the fitness
ranking performance of ZS predictors correlated with the depth of multiple sequence
alignments (MSAs) (Figure 3.3¢; Table B.3.6; Appendix B.2 Methods). We found that the
performance of the physics-based Triad and the structure-only CoVES did not correlate with
MSA depth, confirming their independence from evolutionary data. In contrast, the three
sequence-based predictors, Hamming distance, EVmutation, and ESM-2 did show
correlation with MSA depth. Despite being a hybrid sequence-structure model, ESM-IF
captured evolutionary information to a similar extent as EVmutation, likely because over

99% of its structures were predicted from similar sequence databases (the UniRef family).?

We then investigated the relationship between different ZS predictors using pairwise
correlations (Figure 3.3d; Appendix B.2 Methods).®”-%® Within each modality, sequence-
based (Hamming distance, EVmutation, and ESM-2) or structure-based (CoVES and Triad),
all ZS predictors exhibited at least a 0.5 Spearman’s correlation with each other. ESM-2 and
EVmutation showed the strongest correlation (Spearman’s p = 0.78), suggesting PLMs like
ESM-2 may capture similar coevolutionary information as MSAs used by EVmutation,26-6%70
ESM-IF showed similar correlations with both the structure-only CoVES (Spearman’s p =
0.62) and the sequence-only ESM-2 (Spearman’s p = 0.62) and EVmutation (Spearman’s p
=0.63). Despite being distinct approaches, all four learning-based predictors captured related
information. However, Triad had only moderate correlations with the other two structure-
based predictors (Spearman’s p = 0.5) and weak correlations with the three sequence-based

predictors (Spearman’s p < 0.4). Hamming distance showed moderate correlations with
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ESM-2 and EVmutation (Spearman’s p = 0.6 and 0.5, respectively) but it was weakly

correlated with the structurally inclined predictors (Spearman’s p < 0.4). This underscores
the orthogonality between learning-based models, a naive protein engineering prior, and a
physics-based approach. Thus, we hypothesized that ensembling orthogonal ZS predictors

may further enhance focused training by synergizing complementary information sources.

We evaluated whether ensembling Hamming distance with other ZS predictors enhanced
focused training performance compared to each predictor alone. Prefiltering with a Hamming
distance (by restricting variants to those within two amino acid substitutions of the parent
sequence) boosted focused training performance from each ZS predictor up to 192 total
samples (left vertical gray line in Figure B.3.13). This benefit extended to 480 total samples
for ESM-2 and ESM-IF (right vertical gray line in Figure B.3.13) and continued to 1,056 for
EVmutation for both average max fitness achieved (Figure 3.3e—i) and fraction reaching the
global optimum (Figure 3.3e—ii). However, the benefits diminished beyond a total sample
size of 480, due to this pre-constrained sampling space. In contrast, ZS ensembles with Triad
did not show significant improvement (Figures B.3.14— B.3.15). This suggests that, despite
its orthogonal information, the physics-based Triad predictor offered no further benefit to
focused training performance. Similarly, naively ensembling the two top-performing
predictors, ESM-IF and EVmutation, yielded no additional improvements nor did naive
ensembling of other high-performing but orthogonal predictors (i.e., CoVES with
EVmutation or with ESM-2, Figures B.3.14— B.3.15). Elo ratings for ZS predictors and
ensembles, along with individual landscape analysis, validated the advantage of ZS-guided
focused training and the additional benefit of combining Hamming distance with other
informative ZS predictors, especially for low total sample numbers (e.g., Niora; < 480,

Figures B.3.16-B.3.22; Appendix B.2 Methods).

3.2.4 Landscape and functional attributes affect ZS predictability

We next examined how ZS predictability differed across landscapes, specifically comparing
those measuring binding interactions vs. enzyme activities (Figure 3.4a). All six ZS

predictors ranked fitness values substantially better for binding interactions than for enzyme
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activity (Figure 3.4a—i), with Triad showing a statistically significant difference (p-value

= 0.001, Table B.3.7). The structure-based predictors (CoVES and Triad) were better at
classifying active/inactive variants for binding datasets than for enzymatic ones, while the
sequence-based predictors (Hamming distance, EVmutation, and ESM-2) performed better
for the enzyme activity datasets. Hamming distance showed a statistically significant
difference in the context of classification (p-value = 0.042, Figure 3.4a-ii; Table B.3.7).
However, the differences between binding interactions and enzyme activities were no longer
statistically significant for any ZS predictors in the focused training setting across different

ML strategies (Figure 3.4b; Tables B.3.8— B.3.9).

For 10 out of the 12 landscapes, all six ZS predictors successfully focused the training set to
be more informative than random sampling, leading to improved ftMLDE performance for
both metrics (Figure 3.4b). Harder-to-navigate landscapes and the libraries with fewer than
1% active variants benefited more from focused training, provided the ZS predictor for
active/inactive variant classification was better than random (ROC-AUC > 0.5, Figures 3.4,
B.3.23, and B.3.29). TrpB3E (indicated in gray), one of the hardest-to-navigate landscapes
(Figure 3.2c¢) with one of the lowest but still above-random active/inactive variant
classification ROC-AUC (Figure 3.4a-ii), gained the most from all ZS predictors compared
to randomly sampled MLDE training sets for both performance metrics (Figure 3.4b).
Similar improvements in hard-to-navigate landscapes were consistently observed when
comparing ftALDE with ALDE in the same round, and when considering different total
sample sizes for each of the focused training approaches (Figures B.3.24-B.3.28).

A falsely biased training set could negatively impact focused training performance. For
DHFR (dihydrofolate reductase, indicated in blue), the structure-based predictions, Triad
AAGs and CoVES, performed poorly, with worse-than-random active/inactive classification
(Figure 3.4a—ii, dashed gray line) and harmed ftMLDE performance for both metrics
(Figure 3.4b).
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Figure 3.4. Summary of different ZS scores and their impact on individual landscapes, grouped by function
types. a) Six ZS predictor performance for each individual landscape in terms of i) Spearman’s correlation of
ZS score ranking and fitness values ranking and ii) ROC-AUC of active/inactive classification. Random
predictions are indicated in horizontal gray dashed lines. Statistical significance (p-value <0.05) is indicated
as * b) A breakdown of the ftMLDE results with a total sample size of 480 from Figure 3.3e, categorized by
six ZS predictors and two functions (binding interactions and enzyme activities) for each landscape. Focused
training improvement over randomly sampled training set (MLDE) is quantified by i) average maximum fitness
and ii) fraction reaching the global optimum. See Supplemental information for landscapes with fewer than 1%
active variants (Figures B.3.24-B.3.25), ftALDE with different rounds (Figures B.3.25-B.3.26) and ZS
predictor impacts on focused training with 192 total samples (Figures B.3.24, B.3.27, and B.3.28).

3.3 Discussion for Chapter 3

Our findings confirmed that all the MLDE strategies tested exceeded or at least matched DE
performance across 16 protein fitness landscapes, with the advantages becoming more
pronounced as landscape attributes posed greater obstacles for DE (e.g., fewer active variants
and more local optima). Using ZS predictors, which leverage various prior knowledge,
enriched training sets in focused training enable further performance improvements. Overall,
this computational study suggests that MLDE strategies are highly generalizable and can

unlock better protein engineering outcomes than DE, and we present key considerations for
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the effective deployment of these approaches. We expect that these findings will

encourage and facilitate the adoption of ML-assisted directed evolution for efficient protein

engineering.

We note that making an equitable comparison of traditional DE methods and ML strategies
is challenging. Iterative SSM-based DE methods inherently have a limited search space. The
recombination methods we assessed only combined variants that contained single amino acid
substitutions relative to the starting sequence. Single-step DE requires more rounds of
engineering as the number of targeted sites increases, slowing the process. Furthermore,
while we evaluated DE using the unique variants, in practice, ensuring adequate coverage of
the variant space (e.g., 95%) typically requires close to three-fold oversampling (Figures
B.3.3-B.3.4; Appendix B.2 Methods).”! In contrast, ML-assisted methods can explore a
broader sequence space and continue to improve with more data, but they often rely on

require direct synthesis of predicted variants or designed libraries.

As a general recommendation for the implementation of ML strategies to guide protein
engineering objectives, we introduce a decision-making process for selecting a campaign
strategy (Figure 3.5). The first step is to assess whether the landscape is hard to navigate.
This typically involves a low percentage of active variants and high percentage of pairwise
non-magnitude epistasis, which can be inferred from prior knowledge (e.g., the percentage
of active variants from single-site SSM experiments) or from the structural proximity of
residues of interest to functional (binding or active) sites and to each other. We observed a
weak negative correlation (Spearman’s p = -0.34, Table B.3.10) between the percentage of
pairwise non-magnitude epistasis (where higher values indicate harder-to-navigate
landscapes) and the average pairwise C-alpha distance of substituted residues (the smaller
the distance, the closer the central carbon atoms of the two amino acids at the targeted sites,
Appendix B.2 Methods). Next, determine whether there is a “good-enough” ZS prior-a ZS
predictor that can classify active/inactive variants better than random, for example an
evolutionary-based predictor when deep MSAs are available and fitness corresponds to

largely native activity. Meanwhile, assess whether the number of total variants is low or
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evolvability is low (e.g., the protein cannot tolerate multiple mutations at once). For hard-

to-navigate landscapes without prior information but low n;,¢4;, using a Hamming distance
threshold of two (i.e., constructing double-site libraries) can effectively enrich informed
variant sampling for the training sets. Additionally, ZS predictor classification performance
on single-site libraries can help identify predictors that may fail on larger combinatorial
libraries (Figures B.3.29—-B.3.30; Table B.3.11). For example, CoVES and Triad performed
worse than random in classifying active/inactive variants for DHFR single amino acid
substitutions (Figure B.3.29) and they also classified the full DHFR landscape worse than
random (Figure 3.4a—i), which ultimately ablated the benefit of focused training (Figure
3.4a-ii). Finally, consider whether the search space is large (e.g., four-site libraries) and
whether the screening budget allows for multiple rounds. A decision tree is provided to assist

users in selecting the appropriate strategy (Figure 3.5).

No Hard-to- Yes
navigate?
No Good ZS Yes
‘ prior?
Lown,, Lown,
No or low Yes No or low Yes
( evolvability? ‘ evolvability? ‘
ZS-focused ZS-focused
Double-site
multi-site double-site
I
No Large search Yes No Large search Yes
space or split space or split
into rounds? into rounds?
MLDE ALDEx n_ . ftMLDE ftALDE xn_ .

Figure 3.5. Decision tree summarizing recommended ML strategies based on landscape navigability (e.g.,
percentage of active variants, pairwise epistasis), ZS prior (i.e., ROC-AUC > (.5, evolution relevance), total
number of variants screened experimentally (Myy1q1) and the number of available screening rounds (Mygyna)-
We define a landscape as “hard-to-navigate” if the average pairwise C-alpha distance of substituted residues
was <10 A™ or if the sites were in an enzyme active site. A “good ZS prior” was defined as using EVmutation
if the MSA contained more than 1,000 sequences, using ESM-IF for binding interactions, and having no good
ZS prior otherwise. Low Nyyrq; Was defined as Nyyrqp < 480, for which ZS predictors were ensembled with
Hamming distance. A “large search space” was defined as a landscape targeting four or more sites (Appendix
B.2 Methods).
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Following this decision tree (Figure 3.5), we mimicked a prospective decision-making

process to select an ML strategy and ZS for a given landscape. For a total of 480 unique
variants screened, we would reach 0.93 + 0.15 average maximum fitness and 0.75 + 0.42
fraction reaching the global optimal, averaged across all 16 landscapes (Table B.3.12;
Appendix B.2 Methods). For a total of 2016 unique variants screened, we would reach 0.97
+0.12 and 0.85 £ 0.32, respectively (Table B.3.13; Appendix B.2 Methods). Although our
analyses provide valuable insights about strategy selection, most decisions in this tree were
retrospective in nature and may not fully capture campaign-specific nuances. The real test of
generalization lies in applying these approaches to a broader range of landscapes and,

ultimately, to real-world DE campaigns.

We focused this study on combinatorial landscapes typically generated using SSM, which
are often enriched in epistasis and present challenges for DE. In contrast, random mutations
spread across a protein generally exhibit little epistasis, and thus beneficial mutations can
often be combined to generate variants with higher fitness with great success using laboratory
methods such as staggered extension process (StEP) recombination.”’* Hence, we expect
simple additive models to be competitive with more complicated frameworks. Hamming
distance has been demonstrated to have a weak correlation with variant fitness in this
context.?? Similarly, the ZS predictor benchmark has also been performed predominantly on
datasets with random mutations spread across a protein.?> We expect our conclusions would
generalize to other few-site studies and alternative active-learning frameworks.” However,
identifying critical target sites in an entirely new system remains a challenge; identification
could benefit from computational tools but often requires some initial experimental

screening.

We also evaluated several additional design choices for ML strategies that had a more limited
impact on MLDE performance. First, we explored more informative ways to represent
protein sequences compared to a categorical encoding (one-hot, which has no learned
information and treats all amino acids equally). Learned representations from PLMs (e.g.,

frozen ESM-2 embeddings) showed minimal to no improvement over one-hot encoding for
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landscapes with at least 1% active variants (Figure B.3.31), including in the focused

training setting (Figure B.3.32). However, they did exhibit improvements for landscapes
with fewer than 1% active variants (Figure B.3.33). While not as beneficial as focused
training (Figure B.3.11), learned representations may still enhance performance for
particularly challenging landscapes when combined with focused training (Figure B.3.34).
To leverage learned representations beyond frozen embeddings and assess the impact of
focused training on fine-tuning, we fine-tuned ESM-2 with either randomly sampled or ZS-
guided variants. To mitigate overfitting risks,®> we adopted Low Rank Adaptation (LoRA),
a parameter-efficient approach effective on diverse, non-combinatorial datasets.” While
LoRA fine-tuning with randomly sampled variants failed to outperform MLDE, focused
training-based fine-tuning outperformed both fine-tuning and MLDE with randomly
sampled variants (Figure B.3.35). For challenging landscapes with fewer than 1% active
variants, focused training-based fine-tuning was among the most effective strategies,
alongside ftMLDE and ftALDE (Figure B.3.36). More advanced strategies like meta-
transfer learning or learning to rank could further enhance performance, especially with
limited training data.”” Additionally, we used boosting models to facilitate a direct
comparison between MLDE and ALDE. Different model choices and ensembles, such as
ridge regression for MLDE or deep neural network ensembles for ALDE (Figures B.3.37—
B.3.38), or hyperparameter tuning, could offer further improvements. Meanwhile, upper
confidence bound and Thompson sampling acquisition functions performed similarly to the
greedy acquisition function for ALDE (Figures B.3.39-B.3.40). For MLDE, we used top 96
variants for evaluation across all training sizes. However, different splits between training
and testing variants could be explored to achieve more optimal outcomes given a fixed total
number of variants. We provide a codebase, SSMuLA (Site-Saturation Mutagenesis
Landscape Assistant), which includes options for these granular design choices. While
MLDE and ALDE can be run on CPUs, fine-tuning is much more computationally expensive
and less feasible without GPUs. ZS predictions vary in runtime, ranging from seconds to a
few hours (Appendix B.2 Methods). The computational cost scales linearly with number of

rounds or number of samples for training and exponentially with number of sites for
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evaluation. For larger search spaces, more efficient methods such as generative modeling

may be necessary to reduce computational overhead and accelerate exploration.

While we streamlined focused training design choices, we also identified areas for
improvement. Based on testing individual ZS predictors across different thresholds of the
original search space, we set the ZS-focused library threshold to the top 12.5%, ranked by
ZS scores, across all landscapes (Figure B.3.41). We then naively ensembled ZS predictors
to demonstrate the benefits of combining orthogonal priors (Appendix B.2 Methods). The
current Hamming distance ensembled ZS-focused libraries inherently had a size cutoff (i.e.,
12.5% of a double-site library on a four-site landscape is 300). More sophisticated
approaches, such as MODIFY,” which balance ZS selection with training set diversity and
manage the exploration-exploitation trade-off, may offer a more comprehensive and

autonomous method for selecting and ensembling ZS predictors.

There are also signs that ZS predictors are intrinsically limited for certain prediction tasks.
For instance, the enabling K227 substitution in TrpB, which enables high-fitness variants
under engineering conditions but is nearly undetectable in natural sequences, might not be
adequately captured by EVmutation.* Additionally, the performance of different ZS
predictors varied even within the same protein, as observed in TrpB across different
landscapes. This indicates that while natural evolutionary information can be predictive, it
may fall short in capturing evolution in the laboratory. Furthermore, all the enzyme systems
we studied primarily involved native or near-native functions, with a majority being TrpB
landscapes. When applied to non-native functions, we expect that the usefulness of
evolutionary-based ZS predictors will decrease, perhaps significantly so. Enzyme activities
involve intricate catalytic mechanisms, including substrate recognition, transition state
stabilization, and conformational changes.” Some of the enzymes surveyed also involve
multi-step reactions.’’ These complexities make enzyme activities inherently more
challenging to predict than binding interactions, which are often dominated by non-covalent

intermolecular interactions. In the case of the TEV and T7 landscapes, none of the ZS
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predictors consistently improved focused training performance from random sampling,

suggesting room for the development of new ZS predictors.

We selected ZS predictors to cover diverse modalities and methodologies, rather than
focusing on exhaustiveness or the latest models. Benchmarks such as ProteinGym have
evaluated a wealth of models, and new ZS predictors continue to emerge rapidly.?> Future
work could explore hybrid and novel approaches. For example, TranceptEVE integrates
family-specific alignments with a family-agnostic PLM,*' and ProSST and SaProt
incorporate structural features distinct from inverse folding models that learn sequence
distributions conditional on an input structure.** Even within a single category like PLM-
based ZS predictors, differences in architecture and methodology exist. Unlike ESM-2,
which uses masked language modeling objective,?® ProGen uses an autoregressive approach
to predict amino acids sequentially,* while POET employs retrieval-augmented language
modeling to incorporate external contextual information.*> These distinctions may affect
performances, warranting further investigation to determine their relative advantages in

different contexts.

In summary, our study lays the groundwork for a ML-assisted protein engineering
framework leveraging the strengths of multiple ML approaches, including MLDE, ftMLDE,
ALDE, and, introduced here, ftALDE. With our growing ability to read***” and write
sequences,™ along with improved tools for constructing libraries,* we believe our findings
will demystify the application of ML-based DE strategies and encourage their broader

adoption in protein engineering.
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Chapter 4

SUBSTRATE-AWARE ZERO-SHOT PREDICTORS FOR NON-NATIVE
ENZYME ACTIVITIES

Material from this chapter appears in: “Li, F.-Z., Radtke, L. A., Johnston, K. E., Liu, C.-
H., Yue, Y. & Arnold, F. H. Substrate-aware zero-shot predictors for non-native enzyme

activities. GEM Workshop, ICLR (2025).”

ABSTRACT

Enzymes can be engineered to catalyze reactions with non-native substrates or even
perform entirely new reactions unknown in nature. However, developing such novel
activities through wet-lab engineering is time- and resource-intensive. By estimating
enzyme activity without new experimental data, zero-shot (ZS) predictors can accelerate
enzyme engineering. While ZS predictors have been demonstrated in various contexts, they
have yet to be evaluated on non-native substrates and new-fo-nature chemistry. Critically,
many existing predictors do not explicitly encode substrate or transition-state properties,
which we propose are essential for predicting new-to-nature chemistry. Here, we
systematically studied two types of mechanistically distinct enzymes using 16 ZS
predictors—including six general and ten substrate-aware scores derived from generative
modeling, molecular docking, and active-site heuristics. We curated new experimental and
literature mutation datasets spanning 11 non-native substrates and three new-to-nature
reactions with 11 additional substrates. The six general ZS predictors could generalize to
non-native substrates but failed for new-to-nature chemistries. In contrast, certain
substrate-aware approaches could predict new-to-nature chemistries, with AlphaFold 3’s
chain-predicted aligned error being the most predictive of both activity and
stereoselectivity. A weighted ensemble of AlphaFold 3 and EVmutation scores generalized
to all chemistries that we tested. Our findings highlight the potential of ZS predictors to
accelerate enzyme engineering, advancing the expansion of the chemical universe beyond

nature’s repertoire.
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4.1 Introduction for Chapter 4

Enzymes, nature’s catalysts, perform life-sustaining chemistry. Due to their exquisite
specificity and selectivity, engineered enzymes have applications in therapeutics,
bioremediation, and biocatalysis, where they can offer greener and more sustainable
alternatives to conventional chemical methods.!? Beyond merely enhancing their native
functions, significant efforts have focused on expanding enzyme repertoires to catalyze
reactions with non-native substrates—or even perform entirely new chemistries unknown in
biological systems, termed 376 The development of such enzymes often starts
by identifying a promiscuous or side activity, which is then optimized for desired functions
(termed “fitness”, Figure 4.1a).”-8 Fitness optimization typically employs directed evolution,
a widely used method for accumulating beneficial mutations through iterative rounds of
mutagenesis (to generate variants) and functional assessment by selection or screening.’!°
However, this process is labor- and resource-intensive, particularly for challenging

chemistries constrained by low-throughput data collection.

Emerging computational tools, especially machine learning (ML)-based methods, have
shown promise in accelerating enzyme engineering, from starting point discovery, to de novo

designs and fitness optimization.!'~!8

A particularly appealing avenue is zero-shot (ZS)
prediction: estimating variant fitness without relying on experimental data. ZS predictors
leverage auxiliary information such as protein stability, evolutionary patterns, or structural
features. These predictors have augmented supervised models to identify higher-fitness
variants, guided experimental data collection for ML model training, and scored in silico
designs for reinforcement learning or experimental validation.!>* Recent benchmarks
highlight the broad applicability of ZS predictors.?> However, these methods have yet to
demonstrate capability across diverse enzyme-substrate pairs, particularly for out-of-
distribution non-native substrates and chemistries. Few studies also assess the
ZS predictability of the reaction product stereoselectivity, a key factor influencing their

structural and functional properties.?® Furthermore, existing enzyme-substrate datasets

primarily focus on native or near-native activities and rarely address active-site mutations
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that are critical to enabling fundamentally new chemistries.?’?® Most importantly, many

existing ZS methods do not explicitly encode substrate or transition-state properties, which

we hypothesize are essential for predicting revw-ro-nature chemistry.
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Figure 4.1. Overview of datasets and zero-shot (ZS) predictors. a) Enzyme engineering for reactions with
nonnative substrates and new-to-nature chemistries. b) Six general ZS predictors, covering different modalities
and auxiliary information, alongside ten substrate-aware predictors derived from generative modeling,
molecular docking, and active-site properties. c) The PfTrpB reaction with the native substrate, indole, in a
pyridoxal phosphate (I°].1°)-dependent manner, along with 11 non-native indole analogs. d) -based new-
to-nature carbene transfer reactions with activity and stereoselectivity labels: i) ParLQ: protoglobin-catalyzed
olefin cyclopropanation with 9 styrenes and ii) Rma cyt c-mediated formation of C—B (Rma-CB) and C-Si
(Rma-CSi) bonds. Crystal structures illustrate the and active-site residues targeted for engineering.
The number of unique enzyme-substrate pairs is listed under each reaction.

Here, we curated new experimental and literature datasets for two types of mechanistically

distinct enzymes and benchmarked six general and ten newly proposed substrate-aware ZS
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predictors. Specifically, we evaluated their performance across 11 non-native substrates

and three chemistries, covering 11 additional substrates (Figure 4.1). Each
dataset includes active-site mutations designed to enhance specificity and selectivity, and
introduce new chemistries.® Our study addresses three key questions: 1) Do general ZS
predictors generalize to non-native substrates and chemistries for both activity
and stereoselectivity? 2) Are novel substrate-aware ZS scores, derived from generative
modeling, molecular docking, and active-site properties, more generalizable than the general
predictors? 3) Which combination of ZS predictors can best generalize across these

chemistries?
4.2 Methods and Datasets

We examined the predictability of ZS predictors on activity, defined by absorbance or percent
yield of the major product. Where applicable, we also studied stereoselectivity, defined as
enantiomeric excess of the desired chiral isomer or diastereomeric excess of the desired
diastereomer. We analyzed the effects of mutations in key active-site residues across two
types of mechanistically distinct enzymes: PfTrpB, which catalyzes reactions with 11 non-
native substrates, and heme-binding proteins (protoglobin and Rma cyt c), which catalyze
three different chemistries (ParLQ, Rma-CB, Rma-CSi). In ParLQ, we further
examined the effects of 9 different substrates. The PfTrpB dataset is presented for the first
time, while the rest were previously reported.'>'® The 11 PfTrpB datasets and ParLQ-a
contain more low-activity variants than the other datasets (Appendix C.4.1). The similarity
of the non-native substrate to the native substrate was calculated using the Tanimoto
similarity of atom-pair fingerprints.?’ The energy barriers of chemistries were
determined using density functional theory (DFT) calculations. We tested predictor
ensembles using families of linear models. See Appendix C.1 and Appendix C.3 for more
details. Spearman’s correlation is reported in the main text. For recall (true positives of the
top 25% ranked variants) and additional results, see Appendix C.4.2 and C.4.3. Data
supporting this study are deposited on Zenodo: https.//zenodo.org/records/15226690. The

code is available on GitHub: Attps.//github.com/fhalab/substrate_aware_zs.
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4.3 Results

4.3.1 General ZS predictors are predictive of activates on non-native substrates but do

not generalize to new-to-nature chemistries

As baselines, we evaluated six general ZS predictors for variant activity scoring. Each ZS
predictor leveraged distinct auxiliary information (Figure 4.2a). Hamming distance assumes
that most mutations are deleterious.>>? It counts the number of amino acid substitutions from
the parent, a variant with initial activity, aiming to perform a local search for viable variants.
Given similar reaction mechanisms and conserved catalytic residues, we expected the
assumption to hold true for substrates similar to their native counterparts. However, new-to-
nature chemistry may require exploring a more diverse sequence space. Indeed, we observed
a weak positive correlation for non-native activities (p ~ 0.3), but very little to weak negative

correlation for the new-to-nature reactions (p ~ -0.2 — 0.1).

EVmutation and ESM-2 estimate mutation effects using evolutionary patterns, either through
a Potts model applied to multiple-sequence alignments (MSAs) or a mask-prediction protein
language models.?!*? Both predictors generalized well to non-native substrates (p ~ 0.5) but
not to new-to-nature chemistries (p ~ -0.2 —0.2). Notably, their predictability decreased with
shallower MSAs (Table C6) and was statistically correlated with substrate similarity to the
native substrate (p < 0.05, Figure 4.2¢). ESM-IF and CoVES incorporate structural context
for ZS predictions. ESM-IF assigns residue likelihoods based on a backbone structure
(inverse folding) and CoVES predicts masked residues based on their local atomic
environments.>*** However, neither predictor outperformed EVmutation or ESM-2, though
CoVES scores exhibited a weaker correlation with substrate similarity to the native substrate

(Table C10).

Stability is crucial for protein function, as misfolded proteins will be less likely to retain
activity.!>* We estimated variant stability by calculating the change in its free energy of
folding relative to the parent (AAG)) using a Rosetta energy function.!” However, stability

did not predict new-to-nature activities (p ~-0.1 — 0.1). We reason that once a minimal
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stability threshold is met, factors such as substrate recognition and transition-state

stabilization become the dominant determinants of activity. Moreover, excessive stability
may limit the structural flexibility needed to accommodate new substrates or reaction

mechanisms.3¢
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Figure 4.2. General and substrate-aware ZS predictors. Spearman’s p for a) activity, b) stereoselectivity, c)
PfTrpB non-native substrate activities (Table C10), and d) heme-based new-to-nature activities (Table C11).

For the new-to-nature chemistries, we also evaluated the stereoselectivity of the major
products (Figure 4.2b). For the general ZS predictors, activity and stereoselectivity
predictions were generally correlated (p ~0.68 — 0.95, Table C7). The chemical
mechanisms for the non-native substrates in this study are conserved, thus we postulate that
this makes the predictions easier to generalize (Figure C1). In contrast, new-to-nature
chemistry involves mechanisms distinct from an enzyme’s native chemistry and may require
beneficial mutations that are rare in MSAs or occur at conserved residues, thus demanding

deeper structural insights into the substrate and/or the active site.
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4.3.2 Substrate-aware predictors offer insights for new-to-nature chemistries

Enzyme catalysis involves complex mechanistic steps, including substrate binding and
transition-state stabilization. We hypothesize that substrate-aware ZS predictors can better
describe substrate recognition and transition-state stabilization for more diverse molecular
systems, enhancing the predictability of new-to-nature chemistries. To capture the full
enzyme-substrate-cofactor interaction, we considered the cofactors in their catalytically

relevant states for each ZS predictor (Appendix C.2).

We first explored enzyme-substrate binding energy as a potential ZS score using physics-
based molecular docking with GALigandDock and AutoDock Vina.?’# Both methods had
weak to no correlation on non-native substrates (p ~ 0 — 0.3), but we noted GALigandDock
was slightly better (Ap ~0.1 — 0.2) than AutoDock Vina for new-to-nature chemistries
(Figure 4.2a). Correlations of both scores were independent of substrates (Table C10).

Recent advances in generative modeling have significantly advanced molecular docking and

structure prediction.’*#!

We hypothesized that the scores pertaining to enzyme-
substrate/cofactor binding may predict interactions impacting activity. While not
outperforming general ZS predictors for non-native substrates, AlphaFold 3 (AF3) and Chai-
I’s interface predicted TM-scores (iIPTM) for the enzyme-cofactor were predictive of new-
to-nature activities (Figure 4.2a). Interestingly, AF3’s chain-predicted aligned error (PAE)
for the enzyme-cofactor interaction was the most predictive for both activity and
stereoselectivity (p ~ 0.4), independent of the substrate (Figure 4.2). In contrast, despite
adopting similar algorithmic approaches but without MSAs or templates, Chai-1 exhibited
lower predictability, particularly for substrates more dissimilar to the native one (Figure 4.2c¢,
Table C10). While MSA quality may impact prediction accuracy, further investigation is
needed. Generative models can also facilitate binding site design via substrate-aware inverse
folding or simultaneous docking and backbone redesign.*** We studied using probability

scores from variant generation, conditioned on the parent structure, as a ZS predictor.

LigandMPNN and FlowSite were predictive of non-native reactions, performing comparably
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to existing predictors like ESM-2, but were less effective for new-to-nature chemistries

other than Rma-CB.

Beyond docking scores, we reasoned that a docked pose can be distilled into key components
that reflect enzyme-substrate interactions. We hypothesized that bond-forming atom
proximity could indicate higher activity—for instance, the distance between Glu104 and N1-
hydrogen in PfTrpB, or between the carbene carbon and boron, silicon, or the styrene double
bond (Appendix C.2). However, bond distance was a poor predictor, likely due to noise in
docking poses. Stabilization forces, particularly hydrogen bonding, can lower reaction
energy barriers in the enzyme’s active site.*¢ In PfTrpB, the number of active-site hydrogen
bonds correlated with activity, though it was less evident for heme-based new-to-nature
chemistries. Instead, the highly reactive carbene intermediate would be stabilized by the iron
in the heme.*’ The combined hydrophobicity of the substrate and active site affects their
interaction, with optimal binding occurring when their hydrophobicity levels match.*$4° This
offered some predictive power for PfTrpB, but not for heme-based chemistries. Lastly,
active-site volume has been linked to enzyme promiscuity,* but it showed little predictive
power for non-native or new-to-nature chemistries. We reasoned this may only exclude
overly large residues, while failing to account for exposed active sites in Rma cty c¢ or the
substrate tunnel in ParLQ.3! Consistent with general ZS predictors, the predictability for
activity in substrate-aware predictors generally correlated with its predictability for
stereoselectivity (p ~0.31 — 0.95, Table C7). AF3 remained the best predictor for new-to-

nature chemistries.
4.3.3 Predictors ensembles improve generalization across chemistries

We explored ensemble methods to improve generalization and found that many model and
predictor combinations outperformed individual predictors (Table CS). The unweighted
ensemble of EVmutation and AF3—the top two individual predictors averaged across all
chemistries—was consistently predictive (p ~ 0.3 — 0.5). A learned linear combination of
them achieved an average p of 0.39 across all chemistries in the test set (Figure 4.3). This

generalization remained robust regardless the training dataset (Figure C17). EVmutation,
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ESM-IF and AF3 had the highest regression weights when averaged across all chemistries

(Figure C16). However, incorporating ESM-IF, the third-best predictors averaged across all
chemistries, into any combination did not further improve the generalization (Figure C15).
Interestingly, EVmutation was one of the top predictors alongside AF3 in the top 25% recall
analysis, whereas ESM-IF was not (Figure C10).

a) Linear combinations b) EVmutation + AF3_
PfTrpB-avg EOZE l—0.5 PfTrpBavg-m03 0.2 0.2 '-05
Rma-CB - 0.2 alo rma-ce -FRLRYO 0.3

(activity)
Training

Rma-CSi - 0.1 (028 0.3 )1 0.2 0.1
ParLQ-avg - 0.1 0 3030302m|

Rma-CSi - 03 _

O
o

Spearman's p

o
)

Spearman's p
(activity)

ParLQ-avg - 0.2

S
w

EVmutation -
AF3 -
Allyy -
PfTrpB-avg -
Rma-CB -
Rma-CSi -

<)

ParLQ-avg - o

Testing

EVmutation + AF3,,,
EVmutation + AF3,, -

Figure 4.3. Predictor ensembles. a) Different linear combinations of ZS predictors. w represents weighted
linear combination trained on the Rma-CB dataset and tested on the rest. uw refers to an unweighted
combination of EVmutation and AF3 rankings for each dataset. b) Linear models were trained on EVmutation
and AF3 score for each dataset and tested on all the datasets.

4.4 Discussion

We evaluated six general and ten substrate-aware ZS predictors using two types of enzymes
with distinct mechanisms across 22 different substrates and four types of chemistries.
General ZS predictors were effective for non-native substrates but failed for new-to-nature
chemistries. Among substrate-aware ZS predictors, AF3 was the best for both activity and
stereoselectivity prediction in new-to-nature chemistries. A linear combination of AF3 and
EVmutation generalized across all studied reactions, which could complement current
protein design pipelines that employ a series of logical filtering steps.?3? Physics-based
docking methods and simple active-site heuristics did not consistently capture enzyme

reactivity.

Enzyme engineering for new reactivities remains an out-of-distribution challenge,

constrained by limited sequence-activity data. Although we generated new experimental data
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and curated literature datasets, their scope remains limited, especially since the literature

datasets had largely active variants, which would not resemble distributions with mostly
inactive variants. While the approaches studied here generalized well in active-site mutation
datasets, expanding to more diverse new-to-nature reactions and testing datasets with
mutations outside the active site remains a priority. With our growing ability to collect
sequence-activity data,>>>* more comprehensive datasets will be curated, and systematic
benchmarks will be conducted. We are optimistic that increasingly generalizable substrate-
aware ZS predictors will accelerate enzyme engineering, unlocking entirely new realms of

biocatalysis.
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Chapter 5

CONCLUSION AND OUTLOOK

5.1 Introduction for Chapter 5

Motivated by the gap between current machine learning (ML) capabilities and the practical
demands of experimental protein engineering, this thesis investigates how ML methods
can generalize across protein fitness landscapes to support the design of proteins with
enhanced or novel functions. It focuses on the core challenges of real-world campaigns:
scarce assay-labeled data, epistatic and rugged combinatorial landscapes, and the need to
extrapolate beyond natural biology. Through three core projects, the thesis systematically
evaluates strategies spanning the ML pipeline—from sequence representation and model
training to data-efficient learning and zero-shot prediction—with an emphasis on methods

that generalize across diverse engineering scenarios.

These findings not only provide practical strategies for navigating realistic protein design
challenges, but also identify specific failure modes in current ML approaches—offering
signals for ML developers to address these shortcomings. Together, they lay the
groundwork for more targeted, application-aware tools that align better with the needs of
experimental workflows. The remainder of this chapter outlines future opportunities and
challenges in assay-labeled data curation, benchmarking, frontier models, closed-loop

experimentation, and biosecurity considerations.
5.2 Data consolidation and benchmarking initiatives

The insights in this thesis are made possible by recent advances in sequencing and
screening technologies, which now enable high-throughput mapping of protein fitness
landscapes (Section 1.2.1).'2 As more laboratories adopt these methods, they are
generating an ever-growing diversity of protein-engineering datasets that span distinct

applications, degrees of epistasis, and non-native activities. Curating these data will not
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only enable more rigorous benchmarking and deeper insights into method generalization,

but will also accelerate algorithmic and architectural innovations and develop more capable

and generalizable foundation models.
5.2.1 Sequence-function databases

To make emerging datasets accessible and actionable for both experimental and
computational researchers, a unified effort to consolidating assay-labeled data into
structured, shareable resources is essential. In the Arnold Lab, we are building an
interactive sequence-fitness database with cross-institutional collaborators. The platform
is designed to enable experimentalists to effortlessly deposit their data and visualize results
within and across experiments, and to provide ML scientists access to rich, standardized
datasets for model training and benchmarking. Additionally, well-structured metadata can

offer valuable experimental context and tailored retrieval.

Although our current focus is on enzyme-catalyzed new-to-nature chemistry—where no
comparable repository yet exists—we envision a centralized, community-maintained
resource analogous to the Protein Data Bank for protein structure data or UniRef for
sequence data. Such a database would link protein sequences to quantitative functional
measurements, annotated with rich metadata and spanning multiple domains and

applications.
5.2.2 Fitness prediction benchmarking

On the evaluation front, benchmark frameworks such as ProteinGym provide a structured
suite for assessing fitness predictors.’ Although its coverage of challenging real-world
engineering scenarios—especially highly epistatic landscapes and non-native functions—
remains limited, ProteinGym has garnered notable community engagement. Researchers
continue to contribute new zero-shot predictors and supervised models, making it one of
the few adopted evaluation frameworks and a promising foundation for a standardized

benchmark platform in the field.
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5.3 Emerging ML frontiers in protein engineering

Recent advances at the interface of machine learning and protein science reveal both
limitations to overcome and opportunities to exploit. Section 5.3.1 reviews how scaling
behavior and dataset composition reveal limitations in current foundation models and
highlights opportunities for improvement. Section 5.3.2 surveys generative frameworks
that combine natural-sequence priors with assay-labeled data to expand and optimize
design space. Sections 5.3.3 and 5.3.4 discuss the potential of multimodal and Al-agent-
assisted approaches to improve protein design and engineering. Collectively, these avenues
aim to capture the information in vast, heterogeneous datasets into practical design and

engineering capabilities.
5.3.1 Foundation-model scaling and pretraining datasets

Protein language models (PLMs), protein sequence foundation models such as
Evolutionary Scale Modeling (ESM) covered in Chapter 2, have become indispensable
across applications. Inspired by natural language processing (NLP), developers have
pursued ever-larger models; yet scaling-law studies show that performance gains taper
once model size reaches the high-hundreds-of-millions to low-billions of parameters,
suggesting that the “bigger-is-better” rule from NLP does not directly translate to
proteins.*® Uneven taxonomic representation in the pretraining data further biases
likelihoods and fitness predictions toward over-sampled clades, sometimes at odds with

engineering objectives such as thermostability.’

Fundamentally, improvement of such foundation models may depend less on parameter
count alone and more on a combination of strategies, such as curating diverse,
taxonomically balanced datasets and making model design choices better suited to the
structure and sparsity of biological data. Metagenomic sequencing is now adding billions
of previously unseen sequences,® promising richer signal but also raising new curation
challenges. There is still a lack of principled guidelines for which sequence subsets, or

which levels of taxonomic, structural, or functional diversity, most effectively improve a
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given downstream task. Addressing these gaps will require close collaboration among

ML researchers, bioinformaticians, and protein engineers to assemble balanced training

sets and benchmark models on tasks that mirror real engineering contexts.
5.3.2 Generative modeling for design and optimization

Advances in generative modeling are opening new avenues for protein design and
engineering. First, generative models can propose diverse, high-quality starting points for
optimization—offering a principled alternative to traditional approaches like mutagenesis
or recombination, which are often limited to local searches.” Second, these models enable
broad exploration of sequence space and can support fitness prediction when guided by
zero-shot scoring or fine-tuned with assay-labeled data.'®'? By capturing the underlying
rules of natural proteins while incorporating functional signals, generative models offer a
unified framework for both design and optimization—expanding the reach of protein

engineering beyond what evolution or supervised ML alone can achieve.
5.3.3 Multimodal integration

The combination of sequence, structure, evolutionary context and nature language text
descriptions has emerged as a powerful strategy for protein modeling. For example,
leveraging both multiple sequence alignments and structure, predictors such as
VenusREM"? and S3F-MSA', consistently outperforms larger single-sequence models
like ESM on zero-shot fitness prediction. In the context of generative modeling, efforts
have included conditioning protein language models on protein structures or functional
descriptors.!® Future work may include a unified framework that can bridge sequence,

structure, natural language, and assay data, and support transfer learning across tasks.
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5.3.4 Agent-driven platforms

Recent advancements in Al-driven agent platforms are transforming protein engineering
workflows by enabling autonomous research pipelines. For example, the Virtual Lab is an
Al-human research framework that uses a team of specialized LLM agents—Ied by a
principal investigator agent and guided by a human—for interdisciplinary scientific
discovery. It operates through simulated team meetings and task delegation.!® When
applied to nanobody design against SARS-CoV-2 variants, the system generated 92
candidates through a pipeline integrating ESM, AlphaFold-Multimer, and Rosetta.
Experimental validation confirmed several functional binders, including two with
improved binding to recent variants, demonstrating the Virtual Lab’s potential to accelerate
real-world, cross-domain research.!® Similar multi-agent systems, such as Google’s Al
Co-Scientist, extend this paradigm to hypothesis generation and experimental planning

across diverse scientific domains.'’
5.4 Closing the loop in the wet lab

Ultimately, the value of machine learning-assisted protein engineering lies not only in
improved retrospective prediction accuracy or proven generalizability across benchmark
performance, but in its ability to prospectively guide successful individual experimental
outcomes. Closing the loop—by implementing model-driven predictions and designs in the

laboratory—is essential for realizing the practical impact of computational methods.
5.4.1 Ring expansion case study

Building on the substrate-aware zero-shot predictors developed in Chapter 4, current work
in the lab applies these tools to guide enzyme engineering for a new-to-nature reaction:
enantioselective oxetane ring expansion. This transformation enables access to valuable
five-membered tetrahydrofuran heterocycles—motifs prevalent in drugs and natural
products—from strained oxetane precursors.'®!” Achieving enantioselective control for

oxetane ring expansion has remained elusive with traditional chemical synthesis. Inspired
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by the laboratory-evolved variant of heme-containing enzyme P450BM3, P411-AzetS,

which catalyzes aziridine ring expansion with high enantioselectivity,'® the goal is to

engineer an enzyme capable of expanding oxetanes.

A variant of Aeropyrum pernix protoglobin (4pePgb) was recently identified with trace
activity for oxetane ring expansion in our lab. Three rounds of site-saturation mutagenesis
(SSM) at the active site improved the yield to 5%. However, the campaign stalled as the
variant resisted further improvement over multiple rounds of site-saturation mutagenesis
and error-prone mutagenesis. To overcome this, in silico SSM guided by the substrate-
aware zero-shot predictors identified in Chapter 4 was performed, and preliminary
experiments have identified several yield-improving variants. Ongoing efforts focus on
optimizing over a broader sequence space using sampling methods such as Markov chain
Monte Carlo, guided by these predictors, to identify higher-performing variants for

downstream experimental validation.
5.5 Community initiatives and open tournaments

Beyond individual lab efforts, non-profit and community-driven organizations are
emerging to build a more integrated ecosystem that connects data generation,
benchmarking, and experimental validation. For example, the Align Foundation, whose
mission is to enable “predictable biology,” promotes open data sharing, standardized
benchmarking, and automation platforms for reproducible, large-scale experimentation.
Inspired by the success of the Critical Assessment of Structure Prediction (CASP) in
advancing protein structure prediction, initiatives such as the Protein Engineering
Tournament aspire to play a similar role for protein fitness prediction and design.?’ These
efforts chart a promising path toward centralized, transparent, and collaborative
infrastructure to accelerate both model development and real-world impact. As the synergy
between machine learning and experimental protein engineering deepens, we are beginning
to see the emergence of workshops—and, potentially soon, dedicated conferences—
designed to bridge these communities and foster the interdisciplinary collaboration

essential for innovation.
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5.6 Biosecurity and ethical considerations

As machine learning becomes increasingly integrated into protein engineering, it
introduces not only powerful capabilities but also potential dual-use risks. One recent study
identified the theoretical potential for Al-generated protein sequences to evade current
biosecurity screening measures.?! Although the researchers proposed mitigation strategies,
the actual severity of the threat remained unclear due to the lack of experimental validation.
A follow-up study addressed this by introducing a testing, evaluation, validation, and
verification (TEVV) framework using safe biological proxies to empirically assess these
risks.??> The study found that, while current models can generate structurally similar
sequences, they are not yet capable of reliably producing functional proteins that escape
detection. Importantly, it demonstrated that experimental validation of Al-assisted protein
design risks is not only essential but also achievable, with the TEVV framework offering

a blueprint for future studies.

These studies highlight the need for proactive, ongoing assessment of biosecurity
safeguards as Al capabilities evolve. This includes the responsible development and
rigorous stress-testing of foundation models, as well as the creation of standardized
evaluation protocols. While many open questions remain, several organizations are already
working to address them, such as the International Gene Synthesis Consortium and the
International Biosecurity and Biosafety Initiative for Science. Meanwhile, broader
initiatives like the Al Safety Institutes across the globe and the Frontier Model Forum aim
to evaluate and mitigate risks from frontier Al models, including those relevant to
biosecurity. Together, these organizational, regulatory, and governmental efforts form a
growing ecosystem of safeguards—essential for ensuring the responsible development and

safe deployment of Al-driven biological design.
5.7 Closing thoughts

Looking ahead, machine learning will increasingly shape the future of protein

engineering—not only by accelerating optimization but by reimagining how we discover
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and design new proteins altogether. With advances in high-throughput sequencing,

synthesis, and screening, we are approaching an era where rich, functionally labeled
datasets—once scarce—can drive model development at scale. Generative models,
especially when informed by assay data and mechanistic priors, promise to explore vast
regions of sequence space unreachable by directed evolution or local search. Coupled with
zero-shot predictors, these models can prioritize viable, high-function variants and navigate
toward truly novel chemistries. As cloud labs and automated experimentation systems
mature, ML-guided “design—build—test—learn” cycles will become increasingly integrated
and autonomous. To ensure these powerful tools are used responsibly, technological
safeguards and policy frameworks must evolve in parallel. Ultimately, by combining data-
driven prediction with biophysical insight and experimental feedback, ML has the potential
not only to accelerate protein engineering but to unlock fundamentally new functions—

reshaping how we interact with biology and build with it.
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SUPPLEMENTARY INFORMATION FOR CHAPTER 2

A.1 Additional tables and figures

Table A.1.1. Downstream functional and structural tasks.

Task Task type Split type nTrain nVal nTest Model type (n classes)
SS3-CB513 Residue-level Minimal homology 8678 2170 513  PyTorch linear classifier (3)
secondary struc-
ture
SS3 -TS115 Residue-level Released in 2016, from 8678 2170 115  PyTorch linear classifier (3)
secondary struc- 43 to 1085 residues
ture
SS3 - CASP12 Residue-level CASP12 targets, mostly 8678 2170 21  PyTorch linear classifier (3)
secondary struc- more than 400 residues
ture
Thermostability Global property  In-distribution 22335 2482 3134  Scikit-learn ridge regression
Subcellular localization ~ Global property  In-distribution 9503 1678 385 PyTorch linear classifier (10)
(scl)
GBI - sampled Local property In-distribution 6289 699 1745  Scikit-learn ridge regression
GB1 - low vs high Local property ~ Out-of-distribution 4580 509 3644  Scikit-learn ridge regression
GB1 - two vs rest Local property Out-of-distribution 381 43 8309  Scikit-learn ridge regression
(fewer training samples)
AAV —two vs many Local property Out-of-distribution 28626 3181 50776  Scikit-learn ridge regression
AAV - one vs many Local property Out-of-distribution 1053 117 81413  Scikit-learn ridge regression
(fewer training samples)
Table A.1.2. Pretrained models.
Name Size Name in code Layers Parameters Embedding dimension
ESM-43M Small esm1_t6_43M_URS50S 6 43M 768
ESM-85M Medium esml_t12_85M_URS50S 12 85M 768
ESM-670M - esml_t34_670M_URS50S 34 670M 1280
ESM-650M Large esm1b_t33_650M_UR50S 33 650M 1280
CARP-600k  Tiny carp-600k 16 600k 128
CARP-38M Small carp38M 16 38M 1024
CARP-76M  Medium carp.76M 32 76M 1024
CARP-640M Large carp_640M 56 640M 1280




Table A.1.3. Last layer transfer learning performance for tasks that are aligned with MLM pretraining.

Values are accuracy.

Task Model Ablation
pretrain rand stat
SS3 - CASP12  onehot 0.481946 - -
carp_600k 0.660695 0.478914 0.452729
carp_38M 0.688671 0.563534 0.497244
carp_76M 0.699283 0.543137 0.485254
carp_640M 0.725055 0.517503 0.487321
esm1_t6_43M_URS50S 0.675441 0.552508 0.537486
esml_t12_85M_URS50S 0.681505 0.551130 0.540656
esml_t34_670M_URS0S  0.713892 0.545755 0.528528
esml1b_t33_650M_URS0S 0.717337 0.498208 0.509234
SS3 - CB513 onehot 0.488168 - -
carp_600k 0.711180 0.495941 0.451330
carp_38M 0.761277 0.573476  0.479191
carp_76M 0.792297 0.549633  0.443703
carp_640M 0.820865 0.530729 0.452383
esml_t6_43M_URS0S 0.742595 0.518412 0.507689
esml1_t12_85M_URS50S 0.770913  0.518973  0.495643
esm1_t34_670M_UR50S  0.802556 0.517013 0.504350
esml1b_t33_650M_URS0S 0.815163 0.449030 0.476766
SS3 - TS115 onehot 0.508551 - -
carp_600k 0.739395 0.506632 0.466368
carp_38M 0.779659  0.594533  0.504915
carp_76M 0.802989 0.571236 0.452633
carp_640M 0.824030 0.556827 0.459433
esml1_t6_43M_UR50S 0.766227 0.568543 0.547502
esm1_t12_85M_URS50S 0.789018 0.566826  0.527404
esml_t34 670M_URS50S  0.810127 0.565412 0.544607
esml1b_t33_650M_URS0S 0.821539 0.467715 0.501885
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Table A.1.4. Last layer transfer learning performance for tasks where transfer learning improves
performance but the pretrain and downstream tasks are not aligned. Values are Spearman rank correlation.
We include linear and attention probes for the pretrained models. The “Yang” column indicates results for the
best-performing baseline for the PLM from Yang et al. (2024)."

Ablation

Task Model Yang
linear attention rand stat
Thermostability onehot 0.1227 - - -
carp-600k 0.4499 0.5104 £0.0120 0.3189  0.2565 -
carp_38M 0.5092 0.5081 +0.0064 0.3641  0.3126 -
carp_76M 0.5138 0.4187 £0.0347 0.3518  0.2885 -
carp_640M 0.5779 0.4895 +0.0288  0.3389  0.3010 0.54
esm1._t6_43M_UR50S 0.4849 - 03619 0.3486 -
esm]1_t12_85M_URS50S 0.4867 - 03532 0.3621 -
esm1_t34_670M_UR50S 0.5847 - 03759  0.3707 -
esm1b_t33_650M_URS50S  0.5814 - 03150 0.2597 0.67 +£0.01
GBI - low vs high  onehot 0.3217 - - - -
carp_600k 0.2410 0.0827 £0.0766  0.2352  0.1209 -
carp_38M 0.4773 0.2470 £0.0384  0.3618  0.2694 -
carp_76M 0.4845 0.1503 £0.0361  0.4029  0.1485 -
carp_640M 0.4761 0.1534 £0.0604  0.3905 0.1654 0.43 +0.04
esm1_t6_43M_UR50S 0.4645 - 03426 0.3465 -
esml1_t12_85M_URS50S 0.4294 - 03270 0.3508 -
esm1.t34_670M_UR50S 0.5074 - 03514 0.3433 -
esm1b_t33_650M_UR50S  0.5247 - 03453  0.2711 0.53+0.03
AAV - two vs many  onehot -0.0016 - - - -
carp_600k 0.3608 0.3704 £ 0.1507 0.2812  0.3859 -
carp_38M 0.4946 0.5605 £ 0.0740  0.4375  0.4879 -
carp_76M 0.6181 0.5471 £0.1015 0.4056  0.5251 -
carp_640M 0.6777 0.5583 £0.1743  0.4000 0.5225 0.81 £+ 0.03
esm1_t6_43M_UR50S 0.5416 - -0.1771  0.2553 -
esm]_t12_85M_URS50S 0.6402 - -0.1514 -0.0804 -
esm1_t34_670M_UR50S 0.4586 - -0.1619  0.2867 -
esmlb_t33_650M_URS50S  0.6537 - -0.1422  0.4100 0.61 +0.04
AAV - one vs many onehot 0.1903 - - - -
carp_600k 0.5152  0.1800 +0.1204 0.3718  0.4829 -
carp_38M 03872 0.5218 £0.1145 0.3260 0.3111 -
carp_76M 0.4471 0.3992 +£0.0786  0.1919  0.2161 -
carp_640M 0.4342 0.5029 +£0.2130  0.3311  0.3679 0.73 £ 0.05
esm1_t6_43M_UR50S 0.3632 - 03544  0.3488 -
esm]_t12_85M_URS50S 0.4501 - 04798  0.3530 -
esm1_t34_670M_UR50S 0.3622 - 03513 0.4727

esm1b_t33_650M_URS50S  0.3775 - 02573 0.3992 0.18 +0.01
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Table A.1.5. Last layer transfer learning performance for tasks where transfer learning does not improve
performance. Values are Spearman rank correlation for the GBI tasks and accuracy for subcellular
localization. We include linear and attention probes for the pretrained models. The “Yang” column indicates
results for the best-performing baseline for the PLM from Yang et al. (2024)."

Task Model Ablation Yang
linear attention rand stat
GBI - two vs rest onehot 0.5428 - - - -
carp_600k 0.5623 -0.1611 +0.1816 0.5151 0.1754 -
carp_38M 0.5398  0.2421 +0.2000 0.4202 0.4140 -
carp_76M 0.5341 0.0701 +0.2850 0.4444 0.2934 -
carp_640M 0.5817 0.3311 £0.0667 0.5185 0.1919 0.73 +0.03
esml_t6_43M_URS50S 0.4806 - 0.6093 0.6295 -
esml_t12_85M_UR50S 0.3969 - 0.5852 0.5978 -
esml_t34_ 670M_URS0S  0.5065 - 0.5882 0.5664 -
esmlb_t33_650M_UR50S 0.5437 - 05421 04112 0.67 +£0.07
GB1 - sampled onehot 0.7885 - - - -
carp_600k 0.7856  0.4347 +0.0781 0.7528 0.6554 -
carp_38M 0.8598 0.7811 +£0.0320 0.8259 0.7760 -
carp_76M 0.8506  0.6899 +0.0491 0.8315 0.7153 -
carp-640M 0.8679  0.7366 + 0.0264 0.8312 0.6752 -
esml_t6_43M_URS50S 0.8524 - 07977 0.8133 -
esml_t12_85M_URS50S 0.8575 - 07930 0.8132 -
esml_t34_ 670M_URS0S  0.8660 - 0.8003 0.8164 -
esm1b_t33_650M_URS50S 0.8846 - 0.7899 0.7939 -
Subcellular localization  onehot 0.3740 - - - -
carp_600k 0.4494  0.5210 +=0.0095 0.4338 0.4312 -
carp_38M 04883 0.5164 £0.0170 0.5481 0.5013 -
carp_76M 0.5429  0.4836 +0.0224 0.5377 0.5506 -
carp_640M 0.5740  0.5397 £0.0410 0.5584 0.5662 -
esm1_t6_43M_URS50S 0.5584 - 0.5558 0.5766 -
esml_t12_85M_UR50S 0.5688 - 0.5714 0.5688 -
esml_t34_ 670M_URS0S  0.6156 - 0.6104 0.6104 -
esm1b_t33_650M_URS0S 0.6052 - 0.6104 0.6130 -

Table A.1.6. Spearman’s rank correlation (p) between downstream task performance and layer depth.

CARP-640M ESM-650M

Task

p p p p
SS3 - CB513 0.989 5.850 x 10~47 0.954 2.511 x 10718
SS3-TS115 0.985 6.109 x 10~44 0.953 4.197 x 10718
SS3 - CASP12 0.991 2.136 x 10749 0.957 1.063 x 10~18
Thermostability —0.090 5.042 x 1071 —0.432 1.068 x 102
GBI - low vs high 0.289 2.922 x 102 0.814 4.817 x 107?
AAV - two vs many 0.809 2.583 x 10714 0.014 9.378 x 1071
AAV - one vs many 0.853 3.966 x 10~17 0.757 2.160 x 107
Subcellular localization 0.694 2.085 x 10~° 0.621 8.896 x 10~°
GB1 - sampled 0.325 1.362 x 1072 0.850 1.961 x 1010

GBI - two vs rest 0.436 7.023 x 1074 —0.267 1.266 x 107!




Table A.1.7. Pretrained CARP checkpoints.

Name Fraction Loss Accuracy Step
carp_600k 1 2505 0.240 4.889 x 10°
carp_600k 0.5 2512 0.239 2.393 x 10°
carp_600k 025 2.518 0.237 1.143 x 10°
carp_600k 0.125 2.527 0.234 5.204 x 10*
carp_38M 1 2303 0.300 1.027 x 108
carp_38M 0.5 2319 0.295 5.176 x 10°
carp_38M 025 2.339 0.289 2.569 x 10°
carp_38M 0.125 2.363 0.282 1.296 x 10°
carp_76M 1 2206 0.328 6.545 x 10°
carp_76M 0.5 2225 0.322 3.280 x 10°
carp_76M 025 2.248 0.315 1.630 x 10°
carp_76M 0.125 2.278 0.307 8.318 x 10*
carp_640M 1 2019 0.382 6.220 x 10°
carp_640M 0.5 2.054 0.372 3.118 x 10°
carp_640M 025 2.094 0.360 1.547 x 10°
carp_640M 0.125 2.146 0.345 7.881 x 10*

Task p p
SS3 - CB513 1.000 0.000
SS3-TS115 1.000 0.000
SS3 - CASP12 0.949 2.000 x 10~6
Thermostability 0.552 6.251 x 102
GBI - low vs high —0.392 2.081 x 107!
AAV - two vs many 0.483 1.121 x 1071
AAV - one vs many 0.727 7.355 x 102
Subcellular localization 0.832 7.980 x 104
GBI - sampled 0.441 1.517 x 1071
GBI - two vs rest —0.084 7.954 x 10~1
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Table A.1.8. Spearman’s rank correlation (p) between downstream task performance and CARP pretrain loss.
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Figure A.1.1. Compare linear and attention probes for last layer performance on downstream tasks. For the

attention probe, a shallow neural net with learned aggregation is applied with 5 random seeds on 3-5

checkpoints, which is found to be inferior to the linear models across almost all downstream tasks.
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SUPPLEMENTARY INFORMATION FOR CHAPTER 3

B.1 Data and code availability

All data and  results

https://doi.org/10.5281/zenodo.13910505.

that

support
All

this

study are deposited at

code is available at

https://github.com/fhalab/SSMuL A and https://github.com/thalab/alde4ssmula.

B.2 Methods

B.2.1 Key resource table

REAGENT or RESOURCE

SOURCE

IDENTIFIER

Deposited data

Bacterial toxin-antitoxin (ParD-ParE)
fitness landscape

Lite, et al., 2020

https://doi.org/10.7554/eLife.60924

Bacterial toxin-antitoxin (ParD-ParE)
structure

Protein Data Bank

PDB: 6X0A; PDB: 5CEG

Protein G B1 domain (GB1) fitness
landscape

Wu, et al., 2016

https://doi.org/10.7554/eLife.16965

Protein G B1 domain (GB1) structure | Protein Data Bank PDB: 2GI9

Dihydrofolate reductase (DHFR) | Papkou, et al., 2023 https://doi.org/10.1126/science.adh3860
fitness landscape

Dihydrofolate reductase (DHFR) | Protein Data Bank PDB: 6XG5

structure

T7 RNA  polymerase fitness | Tu, ef al, 2024 https://doi.org/10.1101/2022.03.09.483646
landscape

T7 RNA polymerase structure Protein Data Bank PDB: 1CEZ

TEV protease fitness landscape Tu, et al.,, 2024 https://doi.org/10.1101/2022.03.09.483646
TEV protease structure Protein Data Bank PDB: ILVM

B-subunit of tryptophan synthase
(TrpB) fitness landscape

Johnston, et al., 2024

https://doi.org/10.1073/pnas.2400439121

Evolution for SSMuL A

(ALDE4SSMuLA)

B-subunit of tryptophan synthase | Protein Data Bank PDB: 8VHH

(TrpB) structure

Compiled data and results This chapter 10.5281/zenodo.13910505

Software and algorithms

SSMuLA  code and conda | This chapter https://github.com/thalab/SSMuL A
environment

Active Learning-Assisted Directed | This chapter https://github.com/fhalab/alde4ssmula
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EVmutation webserver

Hopf, et al., 2017

https://v2.evcouplings.org/

EVmutation GitHub

Hopf, et al., 2017

https://github.com/debbiemarkslab/EVmut
ation

Evolutionary Scale Modeling (ESM-
2)

Rives, et al, 2021;
Meier, et al., 2021;
Lin, et al., 2023

https://github.com/facebookresearch/esm

ESM inverse folding (ESM-IF)

Hsu, et al., 2022

https://github.com/facebookresearch/esm

Combinatorial Variant Effects from

Ding, et al., 2024

https://github.com/ddingding/CoVES

Structure (CoVES)

Triad Protabit,

CA, USA

Pasadena, | https://triad.protabit.com/

Machine Learning-Assisted Directed | Wittmann, et al., 2021

Evolution (MLDE)

https://github.com/thalab/MLDE

Fine-tuning protein language models | Schmirler, et al., 2024
boosts predictions across diverse

tasks

https://github.com/RSchmirler/data-
repo_plm-finetune-eval

B.2.2 Landscape preparation

To avoid biases and misrepresentations, especially for deriving landscape attributes, we
chose essentially complete datasets and did not perform any imputation. We assumed that
missing values followed the same distribution as the existing data and therefore did not affect
attribute calculations. To reduce bias from noisy data or less reliable landscape attribute
calculations, which could lead to non-generalizable conclusions, we focused on landscapes
with at least 1% active variants in the main text. However, to ensure that our conclusions
comparing different methods remain valid across all landscapes, we provided extensive
analyses of landscapes with fewer than 1% active variants in the Supplemental information,
addressing differences where applicable. The 1% threshold was derived based on the
expected occurrence of one active variant in a traditional DE screening of the largest

landscape in this study, calculated as (1 /(4 x 20)) x 100%.

All variant fitness values were normalized within each landscape such that the variant with

the maximum fitness was assigned a value of one:
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where w is the original fitness value of a variant, w,,, 1s the maximum observed fitness

within the landscape, and w’ is the normalized fitness value used in all analyses.
B.2.3 Landscape attributes

To provide comprehensive context for the model outcomes, we considered two groups of
attributes for this analysis: 1) fitness statistics, which included percent of active variants and
parameters derived from simple statistical modeling, and 2) ruggedness, which included
pairwise epistasis and the number of local optima. All values are empirically derived and
calculated. We did not impute missing values, assuming that they follow the same
distribution as the existing data and therefore do not affect attribute calculations. All values
can be found with data deposit and all implementations can be found in the SSMulLA

codebase.
B.2.3.1 Definition of active variants

For landscapes containing fitness data for variants with stop codons, “active” variants were
defined as those 1.96 standard deviations above the mean fitness of all sequences containing
stop codons, which are expected to be inactive.! For GB1, T7, and TEV we followed the

cutoffs set by the authors, based on the detection limit of their fitness measurement system.?"
4

B.2.3.2 Fitness statistics

We used the “statistical functions” (“scipy.stats’) and signal ('scipy.signal’) modules from
the SciPy Python package’ to calculate kurtosis, estimate the Cauchy peak location, and
determine the number of kernel density estimation (KDE) peaks. Specifically, kurtosis was
calculated using the "kurtosis® function with default settings from the “stats’ module. Cauchy
peak location was estimated using the 'fit" method from the “cauchy" distribution object in
the “stats’ module. The number of KDE peaks was determined by estimating the probability
density function with the ‘gaussian kde' function from the ‘stats module and then

identifying local optima using the “argrelextrema’ function from the signal module.
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B.2.3.3 Pairwise epistasis calculation

We classified pairwise epistasis into three categories: magnitude, sign, and reciprocal sign.
For each active variant, we assigned an epistasis type for each possible double substitution
at chosen sites.! We then calculated the fraction of epistasis type for each starting variant in
the landscape. To enhance relevance to DE navigability, we incorporated additive
interactions into magnitude epistasis, and merged sign and reciprocal sign epistasis into non-

magnitude epistasis. Missing values were omitted.

For each unique starting variant, ab, let w,;, be the fitness value of the starting variant, w4, be
fitness value of the variant with an amino acid substitution at position A only, w,gbe fitness
value of the variant with an amino acid substitution at position B only, and w4gbe fitness

value of the variant with amino acid substitutions at both positions A and B.

Magnitude epistasis

The combined effect of two amino acid substitutions is larger than or equal to their additive
effects in the same direction as each individual mutation. This is navigable through single-
step or recombination-based DE methods. The fraction of magnitude epistasis was calculated
by simply counting the number of instances classified as magnitude epistasis divided by the

total number of pairwise interactions.

Non-magnitude epistasis

Non-magnitude epistasis includes sign epistasis and reciprocal sign epistasis. For sign
epistasis, the direction of the effect of one amino acid substitution in the presence of the other
such that the substitution order impacts single-step DE navigability. For reciprocal sign
epistasis, the combined effect changes the direction of both mutations in the presence of each
other. This is not accessible with single-step DE that is inherently a greedy uphill walk. The
fraction of the non-magnitude epistasis was simply calculated using one minus the fraction

of magnitude epistasis.
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B.2.3.4 Pairwise epistasis correlation with C-alpha distances

The pairwise C-alpha distances of mutated residues were calculated based on each of the
parent structure (PDB: 6X0A, 5CEG, 2GI9, 6XG5, 1CEZ, 1LVM, and 8VHH) and then
averaged for each landscape. The Spearman’s correlation was then calculated between the
average C-alpha distance between residues in the landscape and the fraction of pairwise non-

magnitude epistasis.

For each residue pair (i, j) within the landscape, the C-alpha distance d;; was computed as:

dyj = || — 7|

where rl.c“ and rjc"‘ are the Cartesian coordinates of the C-alpha (C,) atoms for residues i

and j, ||-|| denotes the Euclidean norm, computed simply as:

dij = \/(xi —x) +(i-y) +(z-z)°

where (x;,y;, z;) and (xj, Vi Zj) are the 3D coordinates of the C-alpha atoms for residues i

and j.

For each landscape, the averaged C-alpha distance is then computed as

(@i.j)ep

where d is the mean pairwise C-alpha distance for the landscape, P is the set of all residue

pairs in the landscape, and N is the total number of residue pairs.
B.2.3.4 Local optimum calculation

A local optimum is a variant with higher fitness than all its neighboring active variants

differing by one amino acid substitution.!6~
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A variant with sequence x is a local optimum if:

Wy > w,r Vx' € H(x)

where w, is the fitness of variant with sequence x, £ (x) is the set of all neighbors of x with
a single-amino acid substitution (Hamming distance of one), and x' represents any

neighboring variant in H (x).
B.2.4 ZS calculations

We calculated six different ZS scores for each landscape. The ranking correlation between
ZS scores and the ground-truth fitness values was calculated using Spearman’s correlation
and the active/inactive variant classification was quantified by ROC-AUC. All values can be

found with data deposit and all implementations can be found in the SSMuLLA codebase.
B.2.4.1 Hamming distance

Hamming distance reflects the number of amino acid differences between a variant and the
parent sequence. The negation of Hamming distance was used as the score, meaning that a
less negative score corresponded to fewer number of amino acid substitutions from the parent
sequence and, therefore, a more fit variant. In the main text, the parent sequence was defined
by the authors of each landscape. Simulations provided in the Supplemental information
explored all possible parent sequences, starting from any active variant (Figures S7—S9). The
Hamming distance from each given parent sequence was used for fitness ranking and
active/inactive variant classification, with the final results averaged over all possible parent

sequences.
B.2.4.2 EVmutation score

The EVmutation scores were generated using EVcouplings, which employs a Potts model
framework to infer conservation and coevolutionary patterns from a multiple sequence

alignment (MSA).'%!! The probability P(x) of a sequence x is given by:



117

P() = SexplE())

where Z is a normalization constant, and E (x) represents the total energy of the sequence x,

computed as:

E(x) = Z hi(x;) + Z]ij(xi:xj)

i<j

where h;(x;) captures site-specific constraints, and J;; (xi,xj) models coevolutionary

interactions between amino acids. The coupling parameters h and J were estimated using a

regularized maximum pseudolikelihood.

The effect of amino acid substitutions was quantified using the EVmutation score
(Sgvmutation), calculated as the energy difference between the parent sequence (xP27e™t)

and the variant sequence with amino acid substitutions (x?V47t@"t);

SEVmutation(xvariant) — AE(xvariant’xparent) — E(xvariant) _ E(xparent)

p (xvariant)
= log —_—
p(xparent)

For each fitness landscape, the parent sequence was uploaded to the EVcouplings webserver
(https://v2.evcouplings.org/) using the default parameters for MSA generation (Sequence
database: UniRef90; Bitscore sequence inclusion thresholds: 0.10, 0.30, 0.50, and 0.70;
Search iterations: 5; Position filter: 70%; Sequence fragment filter: 50%; Removing similar
sequences: 90%; Downweighting similar sequences: 80%) and for evolutionary couplings
inference (Statistical inference method: pseudo-likelihood maximization). The resulting
evaluation parameters were also kept as default (Contact distance cutoff: 5.0 A; PDB
structure search method: conservative; Bitscore threshold for finding known homologous 3D

structures: 0.50), but they are independent of the downstream analyses.
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To ensure complete coverage of substituted sites, we prioritized EVcouplings models in

the following order: the recommended model, if it covered all substitution sites; the model
with the highest bitscore that covered all substitution sites; and if no model covered all
substitution sites, the position filter was reduced from 70% to 50% to increase sequence
coverage and the process was repeated. The final “EVcouplings model parameters” were
downloaded from the webserver as “.model” binary files, available in the “Download” tab
under the “Evolutionary couplings” section. The models used in the study are available on
Zenodo. As an alternative to using the webserver, a local version of EVcouplings can be
installed from the EVcouplings GitHub repository
(https://github.com/debbiemarkslab/EVcouplings), which can then be used to obtain the
EVcouplings models.

The EVmutation scores were computed using the selected EVcouplings model. The
EVcouplings Python library (https://github.com/debbiemarkslab/EVcouplings) was used to
parse the model output (regardless of whether the model was obtained via the webserver or
local command-line execution). The "CouplingsModel” module was used to load the model

file, and the "delta_hamiltonian® method was applied to compute EVmutation scores.
B.2.4.3 ESM-2 score

The ESM-2 score was based on the pretrained protein language model’s masked language
modeling objective, resulting in likelihoods for amino acid substitutions given their
surrounding context.'?> Unlike EVmutation, ESM-2 does not explicitly use MSAs but is
trained on UniRef sequences and extracts logits using a mask-filling protocol for each amino
acid position. For each landscape, the parent sequence was tokenized using a batch converter.
Each variant position was masked and a log-softmax operation was applied to obtain the
probability distribution over all possible amino acid substitutions at the masked positions.
The ESM-2 score for each position was calculated using the log-odds ratio between the
variant sequence with amino acid substitutions (x”#"14"t) and the parent sequence (xP*"¢"t),
The ESM-2 score (Sgsp—») for a given variant was computed by summing the contributions

from individual substitutions:!?!?
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SESM—Z (xvariant) — Z logP(xl- — xlyarl’antlx\M) _ logP(xl- — xiparentlx\M)
ieM

where M denotes the set of substitution sites, x\y represents sequence x with residues in M

masked. The ESM-2 score for the parent sequence was assigned a value of 0.

We found that ESM-1v (esmlv_t33 650M_URO90S 1), ESM-1b
(esmlb t33 650M_ URS0S), and ESM-2 (esm2 t33 650M URSO0D) yielded comparable
results, and we chose to proceed with ESM-2 for all analyses reported in this study.

B.2.4.4 ESM-IF score

The ESM-IF score was calculated as log-likelihood ratio between the variant and parent
sequences using the inverse folding model ESM-IF1 (esm ifl gvp4 t16 142M URS50),'
conditioned on the experimentally determined parent protein structure from PDB.!> This
model assigns likelihoods to sequences based on a given backbone structure. It incorporates
a Geometric Vector Perceptron (GVP) module that ensures invariance to transformations

such as rotations. !¢

For each fitness landscape, the parent PDB structure was provided as an input and its target
protein chain (chain A) backbone atomic coordinates (B) were extracted. The corresponding
parent sequence (xP47€™) was extracted, and the full sequence for each variant (xVariant)
was supplied as a FASTA file. The log-likelihoods for both the parent sequence and each
variant were computed using ‘esm.inverse folding.util.score sequence(model, alphabet,
coords, sequence)’. The ESM-IF score (Sgspy—;r) for a given variant was then computed as
the log-likelihood ratio between the variant and parent sequences, given the fixed parent

backbone structure (B):

SEsM—IF (xvariant) — logp(xvariantlB) _ logp(xparentlB)
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B.2.4.5 CoVES score

The CoVES score was calculated using pretrained weights
(RES 1646945484.3030427 8.pt) from Ding et al. (2024), following the “Unsupervised
protein variant scoring” methods section and the corresponding GitHub repository
(https://github.com/ddingding/CoVES).!” The scoring was applied to all the parent structures
from the Protein Data Bank (PDB). Per-residue amino acid preference scores were calculated
at each site throughout the substitution-containing chain (chain A). The scores were averaged
across 100 replicates (‘'n_ave = 100°). Variant CoVES scores were than calculated by

summing the log-probability-normalized classifier scores at each site, using a temperature of

0.1 (t=0.1").

Specifically, the normalized probability for the amino acid substitution i at a given site, given

exp (— @ — max; (— @))
j exp - — max; +

where s; is the preference score for amino acid substitution i at this site, s; represents the

t, is:

P.(s;) =

preference scores for all 20 possible amino acid substitutions at this site, and t is the

Is;]

temperature parameter. max; (— T) is a log probability shift applied to prevent numerical

underflow.

The variant CoVES score (S¢,ygs) for a variant sequence with amino acid substitutions

(xvarianty was then calculated by summing the log probabilities over all the sites covered in

the landscape:

Nsite

SCOVES(xvariant) = Z log P(s;)

=1
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where P;(s;) is the normalized probability for an amino acid substitution i at site n given

t and ng;¢, 1s the total number of sites covered in the landscape. The CoVES scores were

only compared within each landscape.
B.2.4.6 Triad score

The Triad score estimates mutant stability by calculating the change in its free energy of
folding relative to the parent (AAGs). Calculations were performed using the Rosetta energy
function under a fixed-backbone assumption. All calculations were carried out on a local
installation of the Triad software suite (version 2.1.3, Protabit, Pasadena, CA, USA:

https://triad.protabit.com). Installation details are provided in the Triad User Manual

(https://triad.protabit.com/api/static/doc/user/userGettingStarted.html). The databases and
dependencies were downloaded and built using the Makerfile, including “mpirun’ (OpenMPI

1.6.5) and Python 2.7.6.

The parent protein crystal structure for each landscape was obtained from the PDB. For each
fitness landscape, the structure processing and scoring were performed using the Triad suite

following the method described by Wittmann et al. (2021)'® and detailed below:

For each parent structure, preprocessing was performed by executing the following
command inside the "${INPUT PDB_DIR}" directory, which contained the input PDB file,
‘${TRIAD_DIR}/triad.sh ${TRIAD DIR}/apps/preparation/proteinProcess.py  -struct
${INPUT PDB DIR}/${NAME}.pdb -crosetta’, where ‘$ {TRIAD DIR}" is the directory
containing the “triad.sh™ executable and "${NAME}" is the name of the input PDB file. The
command generated the processed PDB file
('${INPUT_PDB DIR}/${NAME} prepared.pdb’) with an added constrained

minimization, which was used for the downstream calculations.

A “.mut” file was generated separately to describe amino acid substitutions for all variants
relative to the parent sequence in the landscape. Each row corresponded to a single variant

and followed the format "Chain_SiteSubstitution’ for single substitution (e.g., "A 26H") or
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joined by a plus sign "+ for multiple substitutions (e.g., "A 26H+A 27I+A 28F"). The

parent sequence should not be included in the “.mut” file.

The Triad scoring  process was executed  using  the command
"${TRIAD_ DIR}/tools/openmpi/bin/mpirun -np ${NUM_ CPUS} ${TRIAD DIR}/triad.sh
${TRIAD DIR}/apps/cleanSequences.py -struct ${PROC PDB FILE} -rosetta -
inputSequenceFormat pid -inputSequences ${MUTANTS FILE} -floatNearbyResidues -
numPDBs=$ {numPDBs} -soft 2>&1 | tee SOUTPUT TXT", where '${PROC PDB
FILE} is the processed parent PDB file (i.e.,
‘${INPUT PDB_DIR}/${NAME} prepared.pdb’), ‘${MUTANTS FILE}" is the “.mut”
file containing variant substitutions, *$ {numPDBs} " is the total number of variants (number
of lines in the “.mut” file), and "SOUTPUT TXT" is the output summary “.txt” file
containing the scoring results. The outputs consisted of the “.txt” file along with individual
PDB file for each variant. These files were stored in the same directory where the command

was executed.

The scoring output was located towards the end of “.txt” file under the “Solution summary”
section. Each row contained the variant index, name, score, and sequence (of the
concatenated substituted amino acids and “-” for the same amino acid as the parent). Variants
were ranked from the most stable (most negative score) to the least stable (least negative

score). The parent sequence was labeled as “WT”.
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Example output:

Solution summary:

All sequences:

Index Tags Score  Seq Muts
0 A 26H+A 271+A 28F,2544 -646.11885  HIF A 26H+A 271+A 28F
1 A 26H+A 27V+A 28F,2744 -646.04873 HVF A 26H+A 27V+A 28F
2 A 26Q+A _27V+A 28F,5544 -645.85691 QVF A 26Q+A 27V+A 28F

1118 WT -639.45570  --- WT

7999 A_26P+A_27P+A 28P,5052  -586.96179 PPP A 26P+A 27P+A 28P

To ensure consistency with other ZS scores, the negation of the score was taken as the Triad
score such that higher, more positive Triad scores indicate more fit variants. As an alternative
to the command-line version, the web app is available at https://triad.protabit.com (version
3.0.2). The standardize structure and score variants apps are equivalent to the command-line
‘proteinProcess’ and ‘cleanSequences’, and accept the same PDB and “.mut” files. We also

noted that tools such as FoldX could be used as an alternative.!3
B.2.5 ZS ensembles

For each landscape, the six different ZS scores were computed independently. Naive
ensemble scores were then derived using one of two methods: Hamming distance-based

down-selection or the sum of the individual ZS ranks.

Hamming distance-based ensemble:

A Hamming distance cutoff of two was first applied to preselect variants, meaning only
variants differing by two or fewer amino acid substitutions from the reference parent
sequence were considered (two-site libraries). Within this subset, the remaining five ZS

scores were then used to rank the variants, determining the final ensemble score.
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Other naive ensemble:

For all other ensembles, each ZS score was assigned equal weight. The ensemble score for a
variant was computed as the sum of its rankings across the selected ZS predictors. Variants
were then ranked based on this summed score, and the resulting ranking was used for ZS-

focused library construction.
B.2.6 ZS analysis
B.2.6.1 ZS MSA depth correlation

The MSA depth referred to the number of sequences resulting from EVcouplings search,

where all mutation sites were covered.
B.2.6.2 ZS pairwise correlation

The pairwise correlation was performed for each landscape and then averaged across the 12

landscapes with at least 1% active variants.
B.2.7 DE simulations

All DE simulations were performed for each N-site library of a given landscape, where N
was the number of targeted sites in the landscape (1. ). Each DE simulation started from
an active variant, which served as the “parent” for the simulated DE, regardless of its original
parent. The maximum fitness achieved by each starting variant was recorded. All DE
simulations were repeated for all active variants within a given landscape. Two evaluation
metrics were then calculated across all active variants within the landscape: (1) average
maximum fitness achieved and (2) fraction reaching the global optimum. The total number
of unique variants was given by Niorq1 = Nsgmpie + Neese- Both three-site and four-site
recomb DE share the same number of unique variants sampled (Msqmpre) as their

corresponding top96 recomb DE. In single-step DE, the same ngqpmp is divided across

Nround = Nsite Tounds, where Mggmpie = NMiorar SINCE Ngese = 0. To ensure adequate
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coverage of the variant space (e.g., 95%), the total number of screened variants, denoted

Neotar > 18 ZIVEN by Nyprar T = Ngereen + Neest = 66 X Ngjre + Nyese for each DE strategy.
The number of variants screened per site to cover all 20 amino acids can be approximated by
Ngereen = —MNeodon X IN(1 — p), where nyq0n represents the number of codons used to
generate the SSM library and p is the desired library coverage.'®?° For 95% coverage of a
single-site SSM library using the 22-codon trick (1:pgon= 22), Nscreen 1S approximated as
66 X ng;se. Inpractice, ng,40n varies depending on the SSM library generation methods and

a three-fold oversampling is often used as a rule of thumb.
B.2.7.1 Single-step DE

This is a greedy walk algorithm, where SSM was performed at each unique site sequentially.
The process begins with selecting one of the possible substitution sites, evaluating the fitness
impact of all possible amino acid substitutions at this position. The substitution yielding the
highest fitness is fixed, and the position is restricted from further exploration. In the next
round, one of the remaining positions is selected, with all mutants evaluated, and the best
substitution is fixed again. This process repeats iteratively until all positions have been
evaluated yielding the fitness of the best variant identified in the last (1, yng = Ngite) ToOUnd.
Consequently, each site is optimized once per simulation. Over n,yyng = Ngite rounds, a
total of Ngprq; = (19 X ngje + 1) + 0 unique variants were sampled and a total of
Neotar | = (66 X Ngie + 1) + 0 variants were considered to achieve 95% variant space

coverage.

Each single-step DE simulation for a given active variant was repeated ng;;.! (factorial) times
to sample all possible orders of the ng;;, sites. For example, a four-site library requires four
rounds of single-step DE to reach the optimal variant and there is a total of 24 (4!) possible
orders of sampling. This is a deterministic approach to navigate the fitness landscape as the

best variant is always selected.!!82!
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B.2.7.2 Recombination strategies

Two recombination strategies (recomb DE and top96 recomb DE) performed simultaneous
site-saturation mutagenesis (SSM) at each site in the initial round. The best variant at each
site was additively recombined. Either the top one variant or the top 96 variants (matching
the number of wells in plates commonly used for screening) were used in the evaluation

round (Nypyna = 2).
Recomb DE

This is a naive recombination. This approach starts from an active variant in the
combinatorial space, independently optimizing each site within the context of the initial
sequence and then combining the best substitutions from each site into a new variant.!?! Over
Nyouna = 2 rounds, a total of nyyrq; = (19 X nge + 1) + 1 unique variants were sampled
and a total of Mpgeq; T = (66 X Nge + 1) + 1 variants were considered to achieve 95%

variant space coverage.

Top96 recomb

This is an alternative recombination approach. All substitutions are made at each of the sites
independently in the background of the initial sequence, calculating fitness for all
combinations from single substitution over the initial sequence. The sequences are then
ranked based on their fitness, and the top 96 variants are calculated in silico assuming perfect
additivity. The reported maximum fitness reflects the highest observed among the initial
sequence, any single substitutions, and the best of the top 96.! Over n,.5ynq = 2 rounds, a
total of N;prqr = (19 X Ngje + 1) + 96 unique variants were sampled and a total of
Neotar | = (66 X Ngire + 1) + 96 variants were considered to achieve 95% variant space

coverage.
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B.2.8 MLDE, ALDE, fine-tuning, and focus-training simulations

Each simulation was performed on a given landscape. For all ML simulations, a range of
total unique variants screened (n:,:q; = 120, 144, 192, 288, 384, 480, 576, 672, 1056, and
2016) was considered. n;,;,; variants were split across training-validation and testing for
MLDE, ftMLDE, fine-tuning, and ZS-guided fine-tuning or multiple rounds of sampling for
ALDE and ftALDE. All strategies were evaluated using two metrics: (1) average maximum
fitness achieved and (2) fraction reaching the global optimum. All results were averaged
across 50 seeded replicates for MLDE, ALDE, and focused training, and five seeded

replicates for fine-tuning (constraint by computational resources).
B.2.8.1 Encoding strategies

One-hot and learned representations from ESM-2 (esm2 t33 650M_URS50D) were tested.
One-hot sequence encodings were flattened over the targeted sites. Learned representations
from ESM-2 (esm2 t33 650M_URS50D) were implemented in three ways, (1) flattened over
the targeted sites, (2) mean pooled over the targeted sites, and (3) mean pooled over the full

sequence.
B.2.8.2 MLDE simulations

For each MLDE simulation on a given landscape, we evaluated a range of total unique
variants screened (nsoeq; = 120, 144, 192, 288, 384, 480, 576, 672, 1056, and 2016). Each
N¢orar Was divided into a training-validation round (14, = 24, 48, 96, 192, 288, 384, 480,
576, 960, and 1920) and an evaluation round (N¢esr = 96, Nypyna = 2). . The training-
validation set was either randomly sampled from the full N-site library or from a focused
library containing variants with ZS scores in the top 12.5%, 25%, or 50% of the full N-site
library (12.5% for main results, while alternative cutoffs were discussed in the Discussion
and Supplemental information; see also the focused-training simulations in Methods).
Training was performed using five-fold cross-validation. Models were trained using

XGBoost?? (boosting ensembles) and the Scikit-learn ridge regression®® (ridge regression).
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The trained models were used to predict variant fitness across the entire landscape, and

the top 96 predicted variant fitness values (n.5; = 96) were used for the evaluation metric
calculations. Boosting models were trained with the ‘reg:tweedie® objective and an
‘early stopping rounds’ set to 10. Ridge regression used an alpha value of 1.
Hyperparameters were not tuned. Models trained with boosting ensembles using one-hot
encoded sequences were reported in the main text. Alternative models (ridge regression),
sequence representations (ESM-2 with three pooling options), and strategies (ESM-2 fine-
tuning) were detailed in the Discussion and Supplemental information. All sampling and

model splits were performed with fixed seeds for reproducibility.
B.2.8.3 ALDE simulations

We tested two surrogate models (boosting ensembles and deep neural network ensembles
(DNN)) and three acquisition functions (greedy, upper confidence bound (UCB), and
Thompson sampling (TS)) following the methods described by Yang er al.>* We presented
ALDE boosting ensembles with greedy acquisition function in the main results and

supplemented the alternatives in the Discussion section.

An ensemble of models (predicting fitness values from sequences) was used to estimate the
posterior distribution of the objective function (denoted as f). The acquisition function
quantified the potential benefit of evaluating any given batch of inputs based on these
predictions. In each iteration of the optimization loop (termed “rounds” and denoted 1, yyna
in the main text), a new batch of inputs was selected by maximizing the acquisition function.
After evaluating the objective function at these new inputs, the surrogate model was updated,
and the process repeats. BoTorch? and GPyTorch?® were used. Hyperparameters were based

on those reported by Yang et al.
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Surrogate models

Let X denote all feasible protein sequences over an N-site (ng;:. ) landscape and f denote the
objective function (fitness) to be optimized. To approximate f, we trained two types of

surrogate model ensembles:

Boosting ensembles

Each boosting ensemble was trained using bootstrapping, where five independent boosting
models were trained on 90% randomly sampled subsets of the total training data and

implemented the ‘reg:tweedie” objective with “early stopping rounds =10".

Deep neural network ensembles (DNN)

Each DNN ensemble was trained using bootstrapping, where five independently initialized
deep neural networks were trained on 90% randomly sampled subsets of the total training
data. Models were optimized using ‘torch.optim.Adam’® optimizer with the

“torch.nn.MSELoss" loss from PyTorch.?’

Acquisition functions

The acquisition function quantified the potential benefit of evaluating any given batch of

inputs based on the predictions from the surrogate models.

Upper confidence bound (UCB)

The UCB acquisition function selects sequences by balancing exploitation and exploration:

(%) = iy (x) + B 20, (%)

where W, (x) is the predicted (posterior) mean, o,,(x) is the standard deviation, and §3,, = 4

controls the exploration-exploitation trade-off. To form a batch of sequences, we selected the
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top q sequences that yield the highest values of a,,(x), evaluated across all discrete

sequence x in the design space.

Greedy acquisition

The greedy acquisition function selects sequences solely based on the predicted mean p,, (x).

This makes it a special case of UCB with 3,, = 0, focusing purely on exploitation.

Thompson sampling (TS)

TS selects sequences by drawing random samples from the posterior distribution of f,

choosing:
Xpy1 = arg r;l(_%?( f:s‘ampled (x)

where fsampieq (%) is randomly selected from one of the models in the ensemble. To from a

batch of sequences, each sequence was sampled independently.

ALDE simulation details

For each fitness landscape, models were trained and evaluated on a total of 120, 144, 192,
288, 384, 480, 576, 672, 1056, and 2016 samples (n;yt4;)- These samples were distributed
across two, three, or four acquisition rounds (1,yynq), With each round sampling nyg¢cn =
Neotal | Mrouna Variants. Samples for the initial round were drawn either randomly from the
full N-site library or randomly from a focused library containing variants with ZS scores in
the top 12.5%, 25%, or 50% of the full N-site library (12.5% was used for the main results,
with alternative cutoffs discussed in the Discussion and Supplemental information). Samples

for the subsequential rounds were selected based on the different acquisition functions.

For example, given n;y¢q; = 120, Nyouna = 2 (ALDE x 2), the initial round samples 1y 4¢cn
= 60 variants randomly from the full N-site library or from a focused library, followed by a

second round of 1., = 60 variants sampled based on the initial round; For n,yyng = 3



131
(ALDE x 3), the initial round samples 1,45, = 40 variants, either randomly from the full

N-site library or from a focused library, followed by two subsequent rounds, each sampling
Npatcn = 40 variants based on its previous round. The evaluation metrics were calculated

based on the fitness of the variants sampled in the final batch.

Results using boosting ensembles with greedy acquisition and one-hot sequence encoding
were reported in the main text. Alternative models (deep neural network ensembles (DNN))
and acquisition functions (upper confidence bound (UCB), Thompson sampling (TS)) were

detailed in the Discussion and Supplemental information.
B.2.8.4 Fine-tuning simulations

LoRA fine-tuning was performed based on the study by Schmirler et al.?® The script in
SSMulLA  codebase was adapted from the original Jupyter notebook

(https://github.com/RSchmirler/data-repo_plm-finetune-
eval/blob/main/notebooks/finetune/Finetuning_per_protein.ipynb).

Specifically, ESM-2 (esm2 t33 650M URS50D) was fine-tuned using the default
‘LoraConfig’ parameters, with a low-rank adaptation factor of 'r=4", ‘lora alpha=1", and
‘bias="all"", applied to the query, key, value, and dense transformer modules. The dataset
consisted of random or focused training samples of varying sizes (Nyyqin = 24, 48, 96, 192,
288, 384, 480, 576, 960, and 1920), which were split into 90% training and 10% validation
sets. Spearman’s rank correlation was used as the validation metric to assess model
performance. The training setup followed the recommended configuration, with an effective
batch size of eight (‘batch=4" for training batch size and ‘accum=2" for gradient
accumulation), a validation batch size of "val batch=16", and a total of 10 training epochs.
The learning rate was set to 'lr=3e-4’, and mixed precision training was enabled
(‘mixed=True"). DeepSpeed acceleration was disabled (*deepspeed=False’), and only LoRA
parameters were trained (‘full=False’). After training, the fine-tuned model was used to
predict variant fitness across the entire landscape, and the top 96 predicted variants were

analyzed.
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B.2.8.5 Focused training simulations

Three focused training set cutoffs were tested, corresponding to 50%, 25%, and 12.5% of the
total mutant library. A 12.5% cutoff was used for all simulations except those investigating
the optimal focused training library size (Figure S41). To construct the focused training sets
for each fitness landscape, all ZS scores were first computed for all variants, and the variants
were then ranked accordingly. The top 1,000 variants in three-site landscapes and the top
20,000 variants in four-site landscapes (12.5% of the total mutants) were selected as the
focused training library. These focused training sets were subsequently used to randomly
sample training data for MLDE, the initial round of ALDE, or fine-tuning. Due to
computational resource constraints, only EVmutation-guided focused training was tested in

the fine-tuning simulations.
B.2.9 Decision tree simulations

Following the decision tree (Figure 5), we simulated a prospective decision-making process
to choose a ML-strategy and associated ZS predictor. We defined a landscape as “hard-to-
navigate” if the average pairwise C-alpha distance of substituted residues was <10 A% or if
the sites were located in an enzyme active site. A “good ZS prior” was defined as using
EVmutation if the MSA contained more than 1,000 sequences, using ESM-IF for binding
interactions, and having no good ZS prior otherwise. We defined “low N¢pea1” aS Neorar <
480 and “large search space” as a landscape targeting four or more sites. The ML strategies
were the same as those in the main text. The MLDE strategies used boosting ensemble with
one-hot encoding. 384 variants for training-validation round with 96 for evaluation round
were tested in the low n;,.q; setting and 1920 with 96 variants otherwise. The ALDE
strategies used boosting ensembles with greed acquisition using one-hot encoding. 480
variants were equally split over four rounds in the low n;,,; setting and 2016 variants over

four rounds otherwise. The evaluation metrics were calculated based on 50 replicates.
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B.2.10 Elo rating

We performed Elo rating calculations to compare (1) different DE, MLDE, ALDE, and
focused training strategies and (2) various ZS predictors applied to different fftMLDE and
ftALDE methods. The calculations were performed across a range of total unique variants

screened (Niorq; = 120, 144, 192, 288, 384, 480, 576, 672, 1056, and 2016) for each ML-

based strategy. We modified the code from the Colab notebook by Large Model Systems
(LMSYS Corp; https://colab.research.google.com/drive/IRAWb22-PFNI-
X1gPVzc927SGUdfr6nsR 2usp=sharing).>’ “Methods” refer to either different DE or ML-
assisted strategies in (1), where the average of the six ZS predictors was taken for each of the
focused training strategy, or the different ZS predictors and their ensembles in (2). Elo ratings
were computed for both evaluation metrics: average max fitness achieved and the fraction
reaching the global optimum. For each analysis, bootstrap Elo ratings were computed
separately for different evaluation metrics. The results of the Elo rankings were used to assess
the relative effectiveness of different strategies and predictors in optimizing variant screening

outcomes.
B.2.10.1 Elo rating computation

Elo ratings were computed based on pairwise comparisons between methods within each
landscape. Pairwise comparisons were generated by grouping data by the landscape, and then
computing the mean performance of each method within the library. All possible pairwise
comparisons between methods within a given library were then performed. If one method
had a higher mean score than another, it was assigned as the winner; otherwise, the result

was recorded as a tie.

The Elo rating system was used to quantify the relative ranking of methods based on the
pairwise comparison results.>! All Elo parameters were set according to standard values to
ensure a balance between stability and responsiveness in the Elo rating system. Each method
was initially assigned a default Elo rating of 1000 to provide a fair starting point for all

methods, preventing negative values and ensuring comparability across different strategies.
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The ratings were then updated iteratively based on match outcomes. The rating updates

followed the standard Elo update formula:

1

EA = 1+ base(RB—RA)/scale

1
Es 1 + base(Ra—Rp)/scale

R) =Ry + K(S4— Ey)
Rz = Rp + K(Sp — Ep)

where E, and Eg are the expected probabilities of winning for methods A and B, R, and Ry
are the current Elo ratings, and S, and Sy are the actual score of the match (1 for a win, 0 for
a loss, and 0.5 for a tie). The base for probability computation was set to 10, following
standard Elo implementations in ranking systems for interpretability and consistency. The
K-factor (scaling factor that controls the magnitude of rating updates) was set to 4 (K = 4)
to ensure that adjustments occurred gradually over multiple comparisons and reducing the
influence of individual matchups. The scale factor (scale) for score differences was set to

400 (the “algorithm of 400™) to allow meaningful differentiation between methods.
B.2.10.2 Bootstrapped Elo computation

To account for variability in the comparisons and ensure robust ranking estimates, we applied
bootstrapping with 1000 resampling iterations. Each iteration involved: randomly sampling
the dataset of pairwise comparisons with replacement; recomputing Elo ratings using the
resampled data; and storing the results for statistical aggregation. Deterministic random seeds
were used to ensure reproducibility in bootstrapping. The median Elo score across bootstrap

iterations was used as the final ranking score for each method.

Additionally, stratified bootstrapping was applied to balance the number of comparisons

between methods with different frequencies of occurrence. This was applied to ZS predictor
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comparisons, as non-Hamming distance ensembles were not tested for all ftALDE

variations. In this case, each method’s comparisons were resampled independently to ensure

fair representation across bootstrap iterations.

B.2.11 Feature correlation and importance analysis

To analyze how each landscape attribute correlated with the simulation targets, a Spearman’s
correlation was calculated between the values of the attribute and the performance values of
the model. Both the Spearman’s p and p-value were reported. To test the differences between
binding and enzyme activities, t-tests were performed, where the t-statistic and p-values were

reported. A p-value less than 0.05 was considered statistically significant.

B.2.11 Computational information

B.2.11.1 Hardware

The majority of computational analyses were conducted on a computing server running
Ubuntu 22.04.4 LTS, equipped with two AMD EPYC 9654 96-core processors (384 logical
CPUs) and two NVIDIA H100 PCle GPUs (80GB each), running CUDA 12.4. Triad
calculations were performed on a server running Ubuntu 20.04.6 LTS, equipped with two
Intel Xeon Gold 6248R processors (96 logical CPUs). Fine-tuning simulations were
conducted on a local workstation equipped with a 12th Gen Intel Core 19-12900KS processor
(24 logical CPUs) and two NVIDIA RTX A6000 GPUs (48GB each), running CUDA 12.7.

B.2.11.2 ZS calculations

Computing Hamming distance for a full landscape is the least costly computationally.
Obtaining each EVcouplings model from the online server took a few hours to a day, though
this process could be expedited locally with parallelization and optimization. Computing
EVmutation scores from the model took only seconds per landscape. Computing ESM-2,
ESM-IF, and CoVES scores took a few minutes to under an hour per landscape, accelerated

by an H100 GPU. Triad calculations took a few seconds per variant with 48 CPU cores,
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requiring to several hours or up to a day for an entire landscape. The computational cost

for ensembling precomputed ZS scores was minimal.

B.2.11.3 ML strategies

Each MLDE and ALDE simulation was conducted with 50 replicates, running for several
minutes to under an hour with GPU acceleration, though execution on CPUs was also
feasible. Fine-tuning simulations required approximately 30GB of GPU memory and took

several minutes to two hours per replicate on a single A6000 GPU.
B.2.11.4 Scaling

The computational cost scales linearly with number of rounds and number of samples for

training and exponentially with number of sites for evaluation.
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B.3 Supplemental information

Table B.3.1. Combinatorial landscapes with additional details including landscapes with fewer than 1% active
variants (italic rows), related to Table 3.1.'-+53

Landscape PDBID sies compicte acive.local optima magniude cpvasis _locaion KO KD b
ParD2 6X0A I61, L64, K80 98.52  82.89 0.001 0.34 0.0807 0.07 3
ParD3 5CEG D61, K64, ES80 98.52  91.96 0.001 0.31 0.2521 -0.29 3
GBI 2GI9 V39, D40, G41, V54 9335  23.13 0.005 0.40 0.0003 76.92 33
DHFR 6XG5 A26,D27,1.28 100.00  10.68 0.004 0.42 0.1271 19.21 7

T7 1CEZ N748, R756, Q758 84.06 3.48 0.368 0.52 0.0000 46.51 11
TEV ILVM T146,D148,H167,S170  99.46 11.5 0.060 0.56 -0.0114 37.74 27
TrpB34 A104, E105, T106 99.64 0.74 0.390 0.60 -0.0399 53.44 9
TrpB3B E105, T106, G107 99.95 0.23 0.667 0.54 -0.0554 84.31 8
TrpB3C T106, G107, A108 99.93 0.44 0.514 0.59 -0.0736 7.15 8
TrpB3D T117, A118, A119 97.04 9.26 0.043 0.50 0.0036 32.52 13
TrpB3E QVHH F184, G185, S186 99.55 2.02 0.348 0.63 0.0008 355.09 15
TrpB3F L162,1166, Y301 96.71 1.06 0.232 0.54 -0.0230 47.49 15
TrpB3G V227, 8228, Y301 98.64 1.37 0.213 0.52 -0.0037 131.81 23
TrpB3H §228, G230, $231 96.45 0.69 0.547 0.62 -0.0152 464.45 13
TrpB3I Y182, V183, F184 9730  32.04 0.006 0.43 0.0228 9.38 6
TrpB4 V183, F184,V227,8228  99.46 6.15 0.057 0.46 0.0118 48.56 27

Table B.3.2. MLDE percent improvement from three types of DE, related to Figure 3.2a. Calculations were
based on landscapes with at least 1% active variants.

Recomb Single-step Top96 recomb
Number of MLDE ~ Average max Fraction reaching Average max Fraction reaching ~ Average max Fraction reaching
training samples  fitness achieved the global optimum fitness achieved the global optimum fitness achieved the global optimum

24 -1.35 -31.60 -15.25 -67.40 -23.89 -79.13
48 3.13 30.59 -5.66 -37.76 -15.28 -60.16
96 18.29 108.32 8.20 -0.71 -2.84 -36.44
192 28.66 162.73 17.69 25.22 5.68 -19.84
288 33.27 201.60 21.91 43.75 9.47 -7.98
384 34.95 238.91 23.44 61.53 10.85 3.40

480 37.94 282.44 26.17 82.28 13.30 16.69
576 40.24 313.53 28.28 97.09 15.20 26.17
960 47.09 427.02 34.54 151.18 20.82 60.80

1920 50.85 487.65 37.99 180.08 23.92 79.30
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Table B.3.3. fiMLDE and ftALDE percent improvement from MLDE and ALDE, related to Figure 3.2a.
Calculations were based on landscapes with at least 1% active variants.

ftMLDE from MLDE ftALDE from ALDE ftALDE x 3 from ALDE x3  ftALDE x 4 from ALDE x 4
Number Fraction Fraction Fraction Fraction
Average max . Average max . Average max . Average max .
of ] reaching the ) reaching the ] reaching the ] reaching the
o fitness fitness fitness fitness
training . global . global . global . global
achieved . achieved . achieved . achieved .
samples optimum optimum optimum optimum
24 11.17 76.89 19.32 154.76 14.34 72.90 17.11 61.31
48 11.86 53.57 19.50 151.47 15.61 62.93 13.24 48.66
96 9.57 60.32 15.22 88.94 12.99 67.55 12.09 48.48
192 8.64 76.73 10.50 58.57 8.39 40.86 6.78 33.39
288 7.08 70.02 8.95 49.07 5.41 20.24 522 20.86
384 6.94 58.94 6.42 39.11 4.04 15.78 4.05 17.71
480 5.18 44.44 4.97 30.14 335 14.07 1.70 7.32
576 4.04 38.85 3.32 27.76 2.72 9.10 1.77 393
960 0.13 17.60 1.25 12.57 0.79 5.42 0.74 3.81
1920 -1.60 9.48 0.07 7.90 -0.14 6.10 -0.05 5.67

Table B.3.4. Spearman’s rank correlation between landscape attributes and single-step DE average maximum
fitness achieved, as well as the average maximum fitness improvement from DE using MLDE, ALDE and
focused training with total sample size of 480, related to Figures 3.2c and B.3.6. Calculations were based on
landscapes with at least 1% active variants.

Attribute Single-step  MLDE ftIMLDE ALDE ftALDE ALDE x3 ftALDE x3 ALDE x4 ftALDE x 4

DE over DE over DE over DE over DE over DE over DE over DE over DE
Percent active 0.50 -0.85 -0.80 -0.59 -0.80 -0.88 -0.80 -0.81 -0.81
Fraction of local optima ~ -0.76 0.76 0.54 0.48 0.60 0.63 0.53 0.50 0.52
Fraction of non-, -0.73 0.81 0.66 0.56 0.72 0.76 0.65 0.54 0.64

magnitude epistasis

Cauchy peak location 0.70 -0.64 -0.55 -0.64 -0.58 -0.69 -0.58 -0.62 -0.57
Kurtosis (tailedness) -0.82 0.71 0.78 0.38 0.71 0.70 0.83 0.62 0.86
Number of KDE peaks -0.80 0.34 0.50 0.23 0.36 0.36 0.57 0.47 0.60

Table B.3.5. MLDE, ALDE and focused training with 480 total sample size fold improvement from single-step
DE, related to Figures 3.2c and B.3.6. Bold row indicates the landscape with the max improvement and italic
rows indicate landscapes with fewer than 1% active variants.

Landscape MLDE ftMLDE ALDE ftALDE ALDEx3 ftALDEx3 ALDEx4 ftALDEx4
DHFR 1.08 1.07 1.04 1.07 1.06 1.08 1.05 1.07
GBI 1.17 1.34 1.16 1.27 1.25 1.37 1.34 1.38
ParD2 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04
ParD3 1.01 1.01 1.02 1.02 1.02 1.02 1.02 1.02
T7 1.40 1.32 1.31 1.31 1.38 1.34 1.38 1.33
TEV 1.42 1.28 1.28 1.26 1.38 1.32 1.42 1.31
TrpB3A4 1.52 2.20 1.31 1.84 1.60 2.02 1.61 215
TrpB3B 1.25 2.05 0.85 1.47 0.96 1.44 0.87 1.48
TrpB3C 1.09 1.71 0.89 1.43 0.88 1.35 0.98 1.37
TrpB3D 1.24 1.32 1.26 1.28 1.30 1.30 1.30 1.32
TrpB3E 2.30 3.48 1.43 2.84 1.97 2.96 1.71 2.96
TrpB3F 1.30 1.43 1.38 1.39 1.40 1.43 1.37 1.43
TrpB3G 1.38 1.55 1.30 1.49 1.37 1.52 1.49 1.55
TrpB3H 1.30 2.46 0.89 2.10 1.07 213 1.52 2.28
TrpB3I 1.21 1.26 1.24 1.25 1.25 1.26 1.25 1.26

TrpB4 1.24 1.34 1.10 1.25 1.31 1.35 1.36 1.41



139
Table B.3.6. Protein function and MSA impact ZS predictor performances test significance, related to
Figure 3.3c. Correlation between Spearman’s correlation of ZS predictor fitness ranking prediction with MSA
depth, where the depth for the EVmutation calculation covering the full sequence is used. Bold font indicates
statistically significant (p-value < 0.05).

Metric MSA depth '
(Spearman’s correlation)
ZS predictor Spearman p p-value
Hamming distance 0.54 0.07
EVmutation 0.49 0.11
ESM-2 0.71 0.01
ESM-IF 0.55 0.07
CoVES 0.03 0.93
Triad -0.05 0.87

Table B.3.7. T-test for ZS predictor between binding and enzyme activities for landscapes with at least 1%
active variants, related to Figure 3.4a. Bold font indicates statistically significant (p-value < 0.05).

Metric Binding vs. Enzyme activities Binding vs. Enzyme activities

(Spearman’s correlation) (ROC-AUC)
ZS predictor t-statistics p-value t-statistics p-value
Hamming distance 1.740 0.210 -2.379 0.042
EVmutation 1.738 0.167 -1.669 0.126
ESM-2 1.297 0.308 -0.747 0.493
ESM-IF 3.316 0.052 0.749 0.494
CoVES 3.641 0.057 1.289 0.279
Triad 4332 0.001 1.101 0.334

Table B.3.8. T-test for focused training MLDE (480 total sample size) between binding and enzyme activities
Jor landscapes with at least 1% active variants, related to Figure 3.4b.

Binding vs. Enzyme activities Binding vs. Enzyme activities

Metrie (Spearman’s correlation) (ROC-AUC)

ZS predictor t-statistics p-value t-statistics p-value
Hamming distance 0.041 0.969 -0.720 0.525
EVmutation 0.351 0.738 -0.111 0918
ESM-2 0.341 0.784 -0.338 0.758
ESM-IF 0.582 0.577 -0.267 0.802
CoVES 0.342 0.745 0.217 0.843
Triad 0.904 0.397 -0.210 0.845
Hamming distance + 5 0.184 1.313 0219

EVmutation
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Table B.3.9. T-test for focused training ALDE (480 total sample size split into four rounds) between binding
and enzyme activities for landscapes with at least 1% active variants, related to Figure 3.4b.

Binding vs. Enzyme activities Binding vs. Enzyme activities

Metrie (Spearman’s correlation) (ROC-AUC)

ZS predictor t-statistics p-value t-statistics p-value
Hamming distance 0.070 0.948 -0.441 0.688
EVmutation 0.787 0.454 0.414 0.704
ESM-2 0.267 0.801 -0.235 0.829
ESM-IF 0.768 0.465 0.279 0.795
CoVES 0.369 0.726 0.335 0.761
Triad 1.612 0.139 0.128 0.905
Hamming distance +

ESMLIF 0.582 0.557 -0.024 0.982
Hamming distance +— 5, 0.759 0.157 0.884
EVmutation

famming distance ) ;)¢ 0.905 0.289 0.790

CoVES

Table B.3.10. Relationship between the percentage of pairwise non-magnitude epistasis (where higher values
indicate harder-to-navigate landscapes) and the average pairwise C-alpha distance of substituted residues (the
smaller the distance, the closer the central carbon atoms of the two amino acids at the targeted sites, Appendix
B.2 Methods).

Average pairwise C-  Fraction of non-

Landscape . . S
p alpha distance magnitude epistasis

DHFR 4.43+0.99 0.42
GBI 5.94+1.90 0.40
ParD2 17.18 £10.53 0.34
ParD3 17.57 £10.90 0.31
T7 5.55+0.90 0.52
TEV 9.04+1.35 0.56
TrpB3A 4.77+1.71 0.60
TrpB3B 4.88+£1.90 0.54
TrpB3C 4.61 +1.41 0.59
TrpB3D 433+091 0.50
TrpB3E 446+1.14 0.63
TrpB3F 7.58 £2.20 0.54
TrpB3G 6.84+3.24 0.52
TrpB3H 5.74 +£2.30 0.62
TrpB3I 457+1.33 0.43

TrpB4 12.36 + 6.87 0.46
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Table B.3.11. T-test for ZS predictor between binding and enzyme activities for landscapes with at least
1% active variants but with single substitution only, related to the Chapter 3 Discussion section and Figure
B.3.29. Bold font indicates statistically significant (p-value < 0.05).

Binding vs. Enzyme activities Binding vs. Enzyme activities

Metrie (Spearman’s correlation) (ROC-AUC)

ZS predictor t-statistics p-value t-statistics p-value
Hamming distance 0.336 0.746 -3.352 0.010

EVmutation -0.803 0.478 -0.116 0.924

ESM-2 0.467 0.660 0.521 0.668

ESM-IF 1.074 0.367 4.078 0.008

CoVES 1.032 0.371 3.116 0.044

Triad 1.534 0.205 5.036 0.001

Table B.3.12. Simulated campaign outcome following the recommended ML strategies flowchart. Hard-to-
navigate was defined as the average pairwise C-alpha distance of substituted residues less than or equal to 10
A or if the sites were located in an enzyme active site. Good ZS prior was defined as using Hamming distance
with EVmutation if more than 1,000 sequences were covered in the MSA, using Hamming distance with ESM-
IF for binding interactions, and no good ZS prior otherwise. Low Ny, / low evolvability was defined as nyyiq;
<480. Large search space / split into rounds was defined as if the landscape targeted four or more sites. Average
maximum fitness achieved and fraction reaching global optimum with N ,q; = 480.

Low Nyopq; / low  Large search

Hard-to- Deep Average maximum Fraction reaching the

Landscape navigate?  MSA? evolvability?  space sph't) mto Strategy fitness achieved global optimum
rounds?
. - . Hamming distance +
DHFR Yes Yes Yes No EVmutation fiMLDE 1.00 1.00
) . . . Hamming distance + o
GBI Yes No Yes Yes ESMLIF RALDE x 4 0.94 0.76
ParD2 No - Yes No MLDE 1.00 0.98
ParD3 No - Yes No MLDE 0.99 0.12
Hamming distance )
T7 Yes No Yes No SAMLDE 0.78 0.00
Hamming distance
) " .- . 2 -
TEV Yes No Yes Yes HALDE x 4 0.42 0.02
TrpB3A Yes Yes Yes No 1.00 1.00
TrpB3B Yes Yes Yes No 1.00 1.00
TrpB3C Yes Yes Yes No 1.00 1.00
TrpB3D Yes Yes Yes No u ine dist N 1.00 1.00
i . . . amming distance
TrpB3E Yes Yes Yes No EVmutation fiMLDE 1.00 1.00
TrpB3F Yes Yes Yes No 1.00 1.00
TrpB3G Yes Yes Yes No 1.00 1.00
TrpB3H Yes Yes Yes No 1.00 1.00
TrpB3I Yes Yes Yes No 1.00 1.00
Hamming distance +
TrpB4 Yes Yes Yes Yes EVmutation tALDE x 0.81 0.06

4
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Table B.3.13. Simulated campaign outcome following the recommended ML strategies flowchart. Hard-to-
navigate was defined as the average pairwise C-alpha distance of substituted residues less than or equal to 10
A or if the sites were located in an enzyme active site. Good ZS prior was defined as using Hamming distance
with EVmutation if more than 1000 sequences were covered in the MSA, using Hamming distance with ESM-
IF for binding interactions, and no good ZS prior otherwise. Low Ny y¢q; / low evolvability was defined as nyyiq;
<480. Large search space / split into rounds was defined as if the landscape targeted four or more sites. Average
maximum fitness achieved and fraction reaching global optimum with N.q; = 2016.

Hard-to- Deep Low nmm.l,/ I‘OW Large scgrgh Average Fraction reaching the
Landscape . . 1o cvolvability?  space/ split into Strategy maximum fitness .
navigate?  MSA? . . global optimum
rounds? achieved
DHFR Yes Yes No No EVmutation tMLDE 1.00 1.00
GBI Yes No No Yes ESM-IF ftALDE x 4 0.99 0.96
ParD2 No - No No MLDE 1.00 1.00
ParD3 No - No No MLDE 0.99 0.28
T7 Yes No No No MLDE 0.96 0.34
TEV Yes No No Yes ALDE x 4 0.52 0.00
TrpB3A Yes Yes No No 1.00 1.00
TrpB3B Yes Yes No No 1.00 1.00
TrpB3C Yes Yes No No 1.00 1.00
TrpB3D Yes Yes No No 1.00 1.00
TrpB3E Yes Yes No No EVmutation tMLDE 1.00 1.00
TrpB3F Yes Yes No No 1.00 1.00
TrpB3G Yes Yes No No 1.00 1.00
TrpB3H Yes Yes No No 1.00 1.00
TrpB3I Yes Yes No No 1.00 1.00
TrpB4 Yes Yes No Yes EVmutation ftALDE x 4 1.00 0.98
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Figure B.3.1. DE, MLDE, ALDE, and focused training performance averaged across four landscapes with
fewer than 1% active variants, related to Figure 3.2a. Shading indicates the standard deviation across
landscape means, each averaged over 50 replicates.
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Figure B.3.2. Elo ratings for DE, MLDE, ALDE, and focused training strategies across all 16 landscapes,
related to Figures 3.2a and B.3.1. The top panel shows Elo rating across all total sample sizes for each ML-
based method. The bottom panel shows a violin plot for total sample size of 480 (Myprqr = 480) across both
metrics, with inner black lines marking quartiles (25th, 50th/median, and 75th percentiles). Both panels reflect
results from 1,000 bootstrap resampling iterations; shading in the top panel indicates standard deviation from
these bootstraps.
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Figure B.3.3. Performance of DE, MLDE, ALDE, and focused training, measured by the average maximum
fitness achieved for each of the 16 landscapes individually, related to Figures 3.2a and B.3.1. The hollow
triangle and diamond indicate the total number of unique variants sampled for DE, where Nyorq; = Ngampie +
Nyest and Nggmpre = 19 X ngy, + 1 (Box 3.1; Appendix B.2 Methods). The solid triangle and diamond
indicate the total number of variants screened to achieve 95% variant space coverage, given by
Neotal] = Nscreen + Ntestr Where Ngereen = —Meodon X IN(1 —p) X Ngee and p is the desired library
coverage.""* The number of codons, Moo, Was set to 22 based on the 22-coden trick. In practice, Nzpgon
varies depending on the SSM library generation methods." Shading indicates the standard deviation, averaged
across 50 replicates.
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Figure B.3.4. Performance of DE, MLDE, ALDE, and focused training, measured by the fraction reaching the
global optimum for each of the 16 landscapes individually over 50 replicates, related to Figures 3.2a and B.3.1.
The hollow triangle and diamond indicate the total number of unique variants sampled for DE, where Nyyq; =
Nsampte T Neest ANd Nggmpre = 19 X Ngieo + 1 (Box 3.1; Appendix B.2 Methods). The solid triangle and
diamond indicate the total number of variants screened to achieve 95% variant space coverage, given by
Neotal] = Nscreen + Mtestr Where Ngereen = —Meodon X IN(1 —p) X Ngee and p is the desired library
coverage.""* The number of codons, Nygen, Was set to 22 based on the 22-coden trick. In practice, Nzpgon
varies depending on the SSM library generation methods."®
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Figure B.3.5. Single-step DE, MLDE, ALDE, and focused training results broken down by four landscapes with
Sfewer than 1% active variants. A total sample size of 480 was used for all ML strategies across both metrics,
related to Figure 3.2b.
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parent, related to Hamming distance in Figure 3.3.
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Figure B.3.8. Hamming distance fitness ranking using any active variant as the parent, related to Hamming
distance in Figure 3.3. The dotted line indicates random predictions.
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Figure B.3.11. iMLDE with Hamming distance-ensembled ZS predictors averaged across four landscapes with
fewer than 1% active variants, related to Figure 3.3e. Shading indicates the standard deviation across

landscape means, each averaged over 50 replicates.
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Figure B.3.13. fiMLDE with Hamming distance-ensembled ZS predictors, averaged across 12 landscapes with
more than 1% active variants, related to Figure 3.3e. Shading indicates the standard deviation across

landscape means, each averaged over 50 replicates.
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Figure B.3.14. fiMLDE with Triad-ensembled ZS predictors, CoVES-ensembled ZS predictors, or ESM-IF and
EVmutation ensemble, averaged across 12 landscapes with more than 1% active variants, related to Figure

3.3e. Shading indicates the standard deviation across landscape means, each averaged over 50 replicates.
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3.3e. Shading indicates the standard deviation across landscape means, each averaged over 50 replicates.
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Figure B.3.16. Elo ratings for different ZS predictors used to guide focused training strategies for all 16
landscapes, related to Figures 3.3e, B.3.10-B.3.15. The top and middle panels show Elo rating across all total
sample sizes for focused-training with Hamming distance-based ensembles or other high-performing but
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Figure B.3.18. ftMLDE with Hamming distance-ensembled ZS predictors, measured by the average maximum
fitness achieved for each of the 16 landscapes individually, related to Figures 3.3e, B.3.11, and B.3.13. Results
were calculated from 50 replicates.
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Figure B.3.19. fiMLDE with Triad-ensembled ZS predictors, CoVES-ensembled ZS predictors, or ESM-IF and
EVmutation ensemble, measured by the average maximum fitness achieved for each of the 16 landscapes
individually, related to Figures 3.3e, B.3.14, and B.3.15. Shading indicates the standard deviation, averaged
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Figure B.3.20. fiMLDE with Triad-ensembled ZS predictors, CoVES-ensembled ZS predictors, or ESM-IF and
EVmutation ensemble, measured by the fraction reaching the global optimum for each of the 16 landscapes
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Figure B.3.21. fiALDE x 4 with Hamming distance-ensembled ZS predictors, measured by the average
maximum fitness achieved for each of the 16 landscapes individually, related to Figures 3.3e, B.3.10, and
B.3.12. Shading indicates the standard deviation, averaged across 50 replicates.
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Figure B.3.22. fiALDE x 4 with Hamming distance-ensembled ZS predictors, measured by the fraction reaching
the global optimum for each of the 16 landscapes individually, related to Figures 3.3e, B.3.10, and B.3.12.
Results were calculated from 50 replicates.
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Figure B.3.24. Effects of focused training for iMLDE with a total sample size of 480 (384 training and 96
testing, top panel) and 192 (96 training and 96 testing, bottom panel) for four landscapes with fewer than 1%
active variants, related to Figure 3.4b.
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Figure B.3.25. Effects of focused training for two (top panel) and four (bottom panel) rounds of ftALDE with a
total sample size of 480 for four landscapes with fewer than 1% active variants, related to Figure 3.4b.
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Figure B.3.26. Effects of focused training for two (top panel) and four (bottom panel) rounds of ftALDE with a
total sample size of 480 for 12 landscapes with at least 1% active variants, related to Figure 3.4b.
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Figure B.3.27. Effects of focused training for two (top panel) and four (bottom panel) rounds of ftALDE with
a total sample size of 192 for 12 landscapes with at least 1% active variants, related to Figure 3.4b.
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Figure B.3.28. Effects of focused training for iMLDE with a total sample size of 192 (96 training and 96
testing) for 12 landscapes with at least 1% active variants, related to Figure 3.4b.
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Figure B.3.29. ZS predictor for single substitution fitness value ranking (left) and active/inactive variant
classification (vight) for 12 landscapes with at least 1% active variants, related to the Chapter 3 Discussion
section and Figure 3.4a. Statistical significance (p-value <0.05) is indicated as *.
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Figure B.3.30. ZS predictor for single substitution fitness value ranking (left) and active/inactive variant
classification (vight) for landscapes with fewer than 1% active variants, related to the Chapter 3 Discussion
section and Figure 3.4a.
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Figure B.3.31. Encoding strategies for MLDE performance, averaged across 12 landscapes with at least 1%
active variants. Comparison of learned embeddings from the protein language model ESM-2 using different
pooling methods vs. one-hot encoding flattened over the substitution sites, related to the Chapter 3 Discussion
section. Shading indicates the standard deviation across landscape means, each averaged over 50 replicates.
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Figure B.3.32. Encoding strategies for EVmutation-guided fiMLDE performance, averaged across landscapes
with at least 1% active variants. Comparison of learned embeddings from the protein language model ESM-2
using different pooling methods vs. one-hot encoding flattened over the substitution sites, related to the Chapter
3 Discussion section. Shading indicates the standard deviation across landscape means, each averaged over
50 replicates.
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Figure B.3.33. Encoding strategies for MLDE performance, averaged across four landscapes with fewer than
1% active variants. Comparison of learned embeddings from the protein language model ESM-2 using different
pooling methods vs. one-hot encoding flattened over the substitution sites, related to the Chapter 3 Discussion
section. Shading indicates the standard deviation across landscape means, each averaged over 50 replicates.
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Figure B.3.34. Encoding strategies for EVmutation-guided ftMLDE performance, averaged across four
landscapes with fewer than 1% active variants. Comparison of learned embeddings from the protein language
model ESM-2 using different pooling methods vs. one-hot encoding flattened over the substitution sites, related
to the Chapter 3 Discussion section. Shading indicates the standard deviation across landscape means, each
averaged over 50 replicates.
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Figure B.3.35. Performance of fine-tuning and EVmutation-guided fine-tuning (ftFine-tuning) compared with
MLDE, fiMLDE, ALDE, and ftALDE, averaged across 12 landscapes with at least 1% active variants. Fine-
tuning was performed using ESM-2 with Low Rank Adaptation (LoRA), with five replicates per landscape,
related to the Chapter 3 Discussion section. Shading indicates the standard deviation across landscape means,
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Figure B.3.37. MLDE and ALDE with different model types, averaged across 12 landscapes with at least 1%
active variants. MLDE with boosting or ridge regression. Different rounds of ALDE with boosting or deep
neural network ensembles (DNN). No focused training included, related to the Chapter 3 Discussion section.
Shading indicates the standard deviation across landscape means, each averaged over 50 replicates.
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Figure B.3.38. MLDE and ALDE with different model types, averaged across four landscapes with fewer than
1% active variants. MLDE with boosting or ridge regression. Different rounds of ALDE with boosting or deep
neural network ensembles (DNN). No focused training included, related to the Chapter 3 Discussion section.
Shading indicates the standard deviation across landscape means, each averaged over 50 replicates.
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Figure B.3.39. ALDE with different model type and acquisition function options, averaged across 12
landscapes with at least 1% active variants. Different rounds of ALDE with boosting or deep neural network
ensembles (DNN) in combination with greedy, upper confidence bound (UCB), and Thompson sampling (TS).
No focused training included, related to the Chapter 3 Discussion section. Shading indicates the standard
deviation across landscape means, each averaged over 50 replicates.
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Figure B.3.40. ALDE with different model type and acquisition function options, averaged across four
landscapes fewer than 1% active variants. Different rounds of ALDE with boosting or deep neural network
ensembles in combination with greedy, upper confidence bound (UCB), and Thompson sampling (TS). No
focused training included, related to the Chapter 3 Discussion section. Shading indicates the standard
deviation across landscape means, each averaged over 50 replicates.
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landscapes (top row) and four-site landscapes (bottom row). Related to the Chapter 3 Discussion section.
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SUPPLEMENTARY INFORMATION FOR CHAPTER 4

C.1 Datasets

C.1.1 Summary

Appendix C

All datasets are available on Zenodo: https://zenodo.org/records/15226690.

Table C1. Dataset summary.
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Enzyme Substrates # Pairs Sites Activity Selectivity
PfTrpB  4bromo indole + L-serine PLP 241 3 1165,1183,Y301 Absorbance N.A.
PfTrpB  4cyano indole + L-serine PLP 241 3 1165,1183,Y301 Absorbance N.A.
PfTrpB  5bromo indole + L-serine PLP 241 3 1165,1183,Y301 Absorbance N.A.
PfTrpB  5chloro indole + L-serine PLP 241 3 1165,1183,Y301 Absorbance N.A.
PfTrpB  5cyano indole + L-serine PLP 241 3 1165,1183,Y301 Absorbance N.A.
PfTrpB  5iodo indole + L-serine PLP 241 3 1165,1183,Y301 Absorbance N.A.
PfTrpB  6chloro indole + L-serine PLP 241 3 1165,1183,Y301 Absorbance N.A.
PfTrpB  7bromo indole + L-serine PLP 68 3 1165,1183,Y301 Absorbance N.A.
PfTrpB  7iodo indole + L-serine PLP 241 3 1165,1183,Y301 Absorbance N.A.
PfTrpB  7methyl indole + L-serine PLP 241 3 1165,1183,Y301 Absorbance N.A.
PfTrpB  5.6¢hloro indole + L-serine PLP 241 3 1165,1183,Y301 Absorbance N.A.

Rma cyt ¢ NHC-borane + Me-EDA heme 150 6 V75,M99, M100, T101T, D102, M103 % yield Enantio-
Rma cyt ¢ phenyldimethyl-silane + Me-EDA heme 150 6 V75, M99, M100, T101T, D102, M103 % yield Enantio-
ParLQ  a: 4-vinylanisole + EDA heme 490 5 W56,Y57,L59, Q60, F89 % yield Diastereo-
ParLQ  b: styrene + EDA heme 91 5 W56,Y57,1L59, Q60, F89 % yield Diastereo-
ParLQ  c: I-methyl-4-vinylbenzene + EDA heme 91 5 W56,Y57,L59, Q60, F89 % yield Diastereo-
ParLQ  d: I-methyl-3-vinylbenzene + EDA heme 91 5 W56,Y57,L59, Q60, F89 % yield Diastereo-
ParLQ e: I-methyl-2-vinylbenzene + EDA heme 91 5 W56,Y57,1L59, Q60, F89 % yield Diastereo-
ParLQ  f: I-chloro-4-vinylbenzene + EDA heme 91 5 W56,Y57,L59, Q60, F89 % yield Diastereo-
ParLQ g: I-bromo-4-vinylbenzene + EDA heme 91 5 W56,Y57,L59, Q60, F89 % yield Diastereo-
ParLQ  h: I-(trifluoromethyl)-4-vinylbenzene + EDA heme 91 5 W56,Y57,L59, Q60, F89 % yield Diastereo-
ParLQ  i: 2-vinylnaphthylene +EDA heme 91 5 W56,Y57,L59, Q60, F89 % yield Diastereo-

C.1.2 Dataset backgrounds

The tryptophan synthase f-subunit (TrpB) catalyzes a native reaction between L-serine and

indole to form tryptophan. Engineered TrpBs extend this function to non-native substrates

such as serine analogues and substituted indoles, enabling the synthesis of tryptophan analogs
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and other noncanonical amino acids that are important precursors to pharmaceuticals and

natural products (Figure 4.1¢).'

Heme-containing enzymes have been engineered to carry out a plethora of valuable reactions
that have not been found in biological systems.’> These new-to-nature reactivities include
carbene transfers for stercoselective olefin cyclopropanation, traditionally requiring
unsustainable transition metals,%’ and the formation of carbon-silicon (C-Si)? and carbon—

boron (C-B)° bonds (Figure 4.1d).
C.1.2.1 Multi-substrate PfTrpB dataset

Library Generation Beginning with a TrpB variant discovered in a directed evolution
campaign for 4-nitroTrp formation, P/5G8,? a triple-site saturation mutagenesis library was
generated. Primers from Table A2 were used to amplify out the vector in three pieces and
install variation at positions 165, 183, and 301 via the 22-codon trick.'® Amplification was
performed with Phusion® High-Fidelity DNA Polymerase according to manufacturer
recommendations (New England Biolabs, Catalog M0530L). A Gibson assembly was used
to generate full-length vectors which were transformed via -electroporation into
electrocompetent BL21-DE3 E. coli cells. These cells were plated onto LB agar containing

100 pg/mL ampicillin.

Single colonies were picked into 96-well deep well plates containing 300 uLL TB containing
100 pg/mL ampicillin (TBamp) and grown overnight at 37 °C, 250 rpm, and 80% humidity.
The following day, expression 96-well deep well plates were filled with 630 pL TBamp and
20 pL culture and grown for 3 h at 37 °C, 250 rpm, and 80% humidity. These plates were
then cooled on ice for 20 min prior to adding 50 uLL 14 mM IPTG (1 mM final) and incubating
overnight at 25 °C and 250 rpm overnight. Cells were pelleted at 3500—4000 rpm for 10 min,

the supernatant was decanted, and the plates were then frozen at -20 °C overnight.

Screening To prepare cell lysate, pellets were first resuspended in lysis buffer composed of

Img/mL HEWL, 2 mM MgCl,, 10X bug buster, 200 uM PLP, and a small amount of DNAse
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in 50 mM potassium phosphate buffer, pH 8.0 (KPi). They were then incubated at 37 °C

for 30 min and heat treated at 75 °C for at least 30 min. Plates were then spun down at 5000

rpm for 10 min and the supernatant was used as cell lysate.

Table C2. Primer sequences, where = 22 codon trick."’

Name Sequence

1165_f GTTCTCGCACCCTGAAAGACGCA GACGAGGCTCTGCGTGATTGG

1165_r TGCGTCTTTCAGGGTGCGAGAAC

1183_f GTGGCTACTTTTGAATACACCCACTACCTA GGTTCCGTGGTCGGTCCAC
1183_r TAGGTAGTGGGTGTATTCAAAAGTAGCCAC

Y301_f CTCCATCGCACCAGGTCTGGAT CCAGGTGTTGGTCCAGAACACG

Y301 _r ATCCAGACCTGGTGCGATGGAG

Table C3. Wavelengths.

Compound Wavelength (nm)
4bromo 304
Sbromo 306
7bromo 300
Schloro 306
6¢chloro 304
5,6¢hloro 310
Siodo 306
7iodo 306
4cyano 294
Scyano 310
Tmethyl 296

Nucleophile stocks were made for all indole analogs at 200 mM in either EtOH (4bromo,
Sbromo) or DMSO (7bromo, 5chloro, 6¢chloro, 5,6chloro, Siodo, 7iodo, 7methyl, 4cyano,
Scyano). Reactions were set up in 96-well deep well plates. Reactions were prepared with 10
puL nucleophile stock (10 mM final), 20 pL lysate, 10 pL r-serine (25 mM final), and 160
puL KPi and incubated in a tightly sealed plate at 75 °C overnight. The next day the reactions
were acidified with 200 uL 1M HCI and the unreacted indole extracted with 500 uLL. EtOAc.
The plates were sealed tightly and shaken vigorously, then spun down at 1000 rpm for 3 min

to separate the layers before drawing the bottom (aqueous) layer of the mixture into a 96-
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well UV-transparent flat-bottom plate. Absorbance was collected every 2 nm from 290—

310 nm for every substrate using a Tecan InfiniTe. The absorbance wavelength used for

quantification for each substrate was selected according to its absorbance properties (Table

C3).

C.1.2.2 Multi-substrate ParLQ dataset

The dataset was sourced from the study by Yang and Lal et al."" The model substrate was
presented in their main text, while the substrate scope data was provided in the supplementary
information. Additional experimental details were confirmed through direct communication

with the authors.

Activity was calculated based on GC-FID measurements, where the product area was
normalized to the internal standard area and converted using the calibration curve from
Figures S11-S28. The yield calculation followed the author’s notebook (GitHub repository:
https://github.com/jsunn-y/ALDE/blob/master/analysis/visualization.ipynb), = normalizing
the area to the maximum possible product concentration and accounting for the 1.5X dilution
from the reaction. The cis isomer was the major product. Selectivity was determined by

calculating the ratio of the cis to trans isomer.

C.1.2.3 Rma cytochrome ¢ C—B and C-Si dataset

The dataset was sourced from the study by Ding et al. (Supplementary Tables 3 and 4)."2
Upon communication with the corresponding author, we confirmed that no sequence
information was collected from the random mutagenesis libraries presented in

Supplementary Tables 5 and 6.
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C.2 Mechanism

C.2.1 PLP-dependent TrpB reactions

: E104/\§_10 o
7
R/\\ o OHQ I 0°
0® e,
N [ oo
A @
0 G
N Ejod phs
\ \\x /
>
R
Figure CI1. TrpB mechanism based on published studies."*"? The intermediate together with the

substrates were used for ZS predictors.

C.2.2 Heme-based carbene transfer reactions
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Figure C2. Mechanism for heme-based carbene transfer reaction as computed by DFT (Appendix
C.3.15)."*1° TS2 was used for ZS predictors.
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C.3 Methods

C.3.1 General ZS predictors

Hamming distance, EVmutation, ESM, ESM-IF, CoVES, and (AAGy) ZS scores were
calculated based on the study by Li et al.'®

C.3.2 Vina

AutoDock Vina v1.2.5 was used. PDBQT files for substrates were prepared from
corresponding SMILES strings using RDKit at pH 7.4 and Open Babel.!”"" The cofactor was
extracted from the parent PDB and converted to PDBQT using Open Babel, while metal ions
were prepared separately. Receptor structures were derived from parent PDB structures
(PDB ID: 5SDWO for PfTrpB and 3CP5 for Rma cyt c), while the structure for ParLQ was
modeled by the authors using Alphafold 3 with a bound-heme. Variant structures were

generated using MDAnalysis.

Docking coordinates were defined by the centroid of the substrate-cofactor complex with a
box size of 20 A. Each docking experiment was performed in five replicates, with nine
docking modes and an exhaustiveness setting of 32. The lowest energy from each replicate
was recorded, and the final energy was averaged across replicates. The negative values of the

energies were used as the ZS predictor.

C.3.3 Rosetta GALigandDock

The Pyrosetta GALigandDock-based ZS scores were obtained from a local copy of the
pyrosetta distribution pyrosetta-2025.3+release. 1f5080a079-py3. 12-linux-
x86_64.egg/pyrosetta/distributed. Two conda environments (anaconda.org) were created.
One for the input preprocessing and one for inference of Pyrosetta GALigandDock. To set
them up, download the corresponding .yaml files (ambertools.yml and pyrosetta env.yml)

and execute the following console commands:

$ conda env create -f <path/to/ambertools.ymI>
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and

$ conda env create -f <path/to/pyrosetta_env.yml>

respectively.

To preprocess the inputs, the first conda environment was activated and the script pyrosetta

pipeline.py was executed with the following parameters:

python -m  substrate aware.zs.pyrosetta pipeline  --meta list
<path/to/campaign 1 meta.csv>
<path/to/campaign 2 meta.csv>
<..>
<path/to/campaign n_meta.csv>
--struc_dir <path/to/structures_dir>
--tmp_dir <path/to/dir/for/tempfiles>
--out_dir <path/to/dir/for/output_files>
--rosettascript_path <rosetta/source/.../mol2genparams.py>
--net _charge unit 1 <net charge>

--net _charge unit 2 <net charge>

The script takes docked structures for a given campaign as input and returns them adequately
reformatted for Pyrosetta, alongside a Pyrosetta-specific parameter file for each of the
campaign’s substrates. The script runs into a tracepoint and prompts the user to manually
correct a newly created mol2 file of the substrates and then save it under a printed location.
For this purpose, the file was then downloaded, observed in a 3D molecular viewer, such as
Avogadro® and edited to meet antechambers?' requirements for amlbcc charge generation.
This includes adding hydrogen, correcting unnatural bond orders, and ensuring that the

molecule only contains atoms of the element set {H, C, N, O, F, P, S, Cl, Br, I} on which
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antechamber is parametrized. In the case of iron coordination centers, the metal atom was

replaced by a phosphorous. Boron and silicon were substituted with carbon. Lastly, each
connected unit must consist of 4 or more atoms. Units with less than that (e.g., ions) were

omitted. To finish the preprocessing, the console prompts were followed.

The second script, pyrosetta inference.py, runs the actual GALigandDock docking by

executing it with the following parameters:

python -m  substrate aware.zs.pyrosetta inference = --meta list
<path/to/campaign 1 meta.csv>

<path/to/campaign 2 meta.csv>

<..>

<path/to/campaign n_meta.csv>
--preprocessed_dir <path/to/directory containing pdbs and params>

--results dir <path/to/results_dir>

The docking mover is parametrized within this script. This will create two output files for
each variant of all campaigns. The variantname aligned enzyme final pkl contains the best
scoring docked poses and variantname aligned enzyme final.csv contains a table with Rosetta
metrics of these poses. Finally, for each campaign campaignname.csv summarizes the
Rosetta-metrics of the best docked pose of each variant together with variant ground-truth

data.

The negative values of all energy terms were extracted. The dH value, representing enthalpy,
was used as the score to indicate the thermodynamic stability of the binding event, where

more exothermic values correspond to stronger binding.
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C.3.4 Alphafold 3 (AF3)

For PfTrpB, the substrate SMILES was joint with the intermediate (Figure C1) and
the crystallographic sodium ion to prevent the substrate from docking onto the enzyme
surface. For heme-based reactions, the substrate SMILES was assigned to chain B, while the
carbene- intermediate complex (Figure C2) TS2 was assigned to chain C. All scores
were extracted from five replicates, and the final structure for each variant was aggregated.
The scores from the replicates were averaged. For chain-predicted aligned errors (PAE), the
negative values were used as the predictor. The confidence scores of each residue at the

targeted site were also extracted and averaged as a predictor.
C.3.5 Chai-1

Chai-1 version 0.1.0 was used, following the same process as AF3, except without MSAs

and using PAE as scores.
C.3.6 LigandMPNN

Code from LigandMPNN GitHub (https://github.com/dauparas/LigandMPNN) was adopted
to extract the ZS scores.”? The model with 20 A Gaussian noise was chosen. Only the mutated
residues of the campaign were redesigned with autoregressive scoring. To mitigate biases
introduced through decoding order, the number of batches was set to 100. Variant likelihoods

were thus obtained through:

Pvarlan

||Mc>

ﬁ AAn |Backbone, {A4;]j < n}i)
n=1

C.3.7 FlowSite

Code from FlowSite GitHub (https://github.com/HannesStark/FlowSite) was adopted to
extract ZS scores.”® The parameters were chosen according to the author’s suggestion. To

evaluate the docking and sequence co-generation as appropriate to directed evolution
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campaigns, both the residues to design and the pocket were defined via the mutated sites.

For each variant, 100 inference trajectories were generated. Predicted likelihoods were

averaged among inferences and position to yield the final variant ZS score.
C.3.8 Bond distance

Bond distances were derived from AF3 docked structures based on the mechanisms for bond-
forming atoms (Appendix C.2). For PfTrpB, distances were measured between the catalytic
Glul04 and N1-hydrogen. For heme-based carbene transfer reactions, the distances were

measured between the carbene carbon and either boron, silicon, or the styrene double bond.

Distances were calculated for each replicate and averaged. The negative value of the bond
distance was used as the predictor, based on the hypothesis that closer reactive atoms lead to

stronger reactivity and, consequently, higher activity.
C.3.9 Protein-ligand-interaction-profiler (PLIP)

A local copy of the PLIP software (release 2.4.0) was obtained from the GitHub
(https://github.com/pharmai/plip).>* The AF3 docked strucutres were used as inputs. An
output XML report file was generated to characterize each variant’s ligand-active-site-

interactions.
C.3.10 Active-site identification

Two different active site extraction heuristics were explored. The first heuristic defines all
residues to belong to the active site, that bear the centroid of their side-chain atoms within a

10 A distance threshold of the ligand’s centroid.

The second extraction heuristic used PLIP to define the active site. The residues tagged with

“bindingsite” were considered (Appendix C.3.9).
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C.3.11 Hydrogen bonds

The AF3 docked structures were used to run PLIP (Appendix C.3.9). The number of
hydrogen bonds identified in the active site was extracted from the output files and used as a

7S predictor.

C.3.12 Hydrophobicity

For the enzyme, active-site hydrophobicity was calculated based on different active-site
identification methods (Appendix C.3.10) using various scales, including the Kyte-Doolittle
scale,” the Hopp-Woods scale,* the Eisenberg scale,?” and theoretical and empirical residue

solvent accessibility.?

For the ligand, logP was calculated. While previous literature used the Kyte-Doolittle scale
to identify hydrophobic regions likely to be in transmembrane segments,” we instead chose

the Hopp-Woods scale, which highlights antigenic (hydrophilic) regions on protein surfaces.

C.3.13 Active-site volume

The substrate volume was estimated based on the Convex-Hull of the substrate. The active-
site volume of the parent was estimated with CASTp based on PDB ID SDWO for PfTrpB,
3CPS5 for Rma cyt ¢ and 3ZJ1 for ParLQ.** The variant active-site volume was estimated by

the different in different amino acid side chain at the targeted sites.

C.3.14 Similarity calculations

To quantify the similarity between the indole analogs to the native indole, Tanimoto

similarity of atom-pair fingerprints®' was calculated with RDKit.!7-!®

C.3.15 DFT calculations

DFT calculations were conducted using Orca 6.0.3> We constructed a model containing the

porphyrin core, Fe center and an imidazole to mimic the histidine ligand. Geometry
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optimizations and frequency calculations were performed using the unrestricted B3LYP

hybrid functional with def2-TZVP basis set and with D3(BJ) dispersion correction. All
geometries were verified as minima or first-order saddle points by frequency analysis.
Enthalpies and entropies were calculated for 1 atm and 298.15 K. The SMD continuum
solvation model was used in all optimizations and single point calculations with water as the
implicit solvent to approximate the energy otherwise required when the reaction is performed
without the enzyme. In Figure C2, we show the complete energetics of heme-catalyzed
cyclopropanation with different spin-states. In other carbenoid reactions, we report energetic
barriers derived from open-shell singlet calculations of the C-Si insertion/borylation
transition state, in comparison against the carbene-porphryin intermediate. Readers should
note that while DFT can derive reasonable geometries for transition states, the absolute
energy values can have significant margin of error and should only serve as qualitative
estimates. Surprisingly, DFT calculations yielded similar activation energies of ~ 9 — 13
kcal/mol for the three new-to-nature reactions, as shown by other studies.*** We also

obtained the AG of the reaction considering all substrates and products (Table C12).

C.3.16 Ensemble models

To ensemble ZS predictors into a unified score, unweighted ensemble and different types of
learned linear models were explored. Results from the shallow neural network were excluded

due to overfitting.

Unweighted ensemble. Each ZS predictor was ranked, and the ranks of different chosen ZS

predictors were summed up for the final score.

Learned ensemble. Each model was fitted on one specific enzyme optimization campaign
and successively tested on all other campaigns. The models included linear regression,
piecewise linear regression with a threshold. By doing so, we tested whether a model’s
learned relationship between feature scores and measured activities. During prediction, these

models thereby weighted individual ZS scores and introduced nonlinearities. Given the data:
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The goal is defined as:
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where j/(i)depends on the chosen transformation. And that fitting on 1 set of y() generalizes

to other sets of ys.

Inputs where normalized according to:

Linear regression. In the case of linear regression (w), the prediction is obtained by the

transformation:

n
7© =wy + Z ij](i)
=

where wj and w; are obtained through the optimization problem:

2
n
®
wo+ ) wix;
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Piecewise linear regression. Although linear regression is straightforward to fit and

m
. ) —
,min > (y

i=1

interpret, it may fail to capture threshold-dependent behaviors (e.g., scores only become
useful after a certain threshold and optimization is capped after a certain cutoff). To address
this, we additionally considered a piecewise linear regression model, which introduces
simple nonlinearities via a learned threshold for each feature. The prediction is obtained by

the transformation:
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n
y(i) =Wy + Z W]¢] (x](.i); ajl,ajz)
j=1

where the mapping function ¢ i introduces the nonlinearity:

0, Xj < xjy,

b, (xj; aj1, aj2) = @ — =2,

1, Xj = aj.

The piecewise model parameters {wo, w;} and thresholds {a;1, a;,} are fit by minimizing the

sum of squared errors:

2
m n
. Q) — , ( @, H. . )
ng.l.gvnz yW—|wo+ ) wid, (X7 a1, a2
a'jl,ajz i=1 ]:1

subject to aj1 < a;, for each feature ;.
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C.4 Additional results

C.4.1 Dataset visualization
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Figure C3. PfTrpB activity.
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C.4.2 Individual ZS predictor performance

Table C4. ZS predictors are averaged across all, non-native, and new-to-nature datasets. Bold indicates the
best predictor, bold italics indicates the second-best predictor, and italics highlight the third-best predictor
within each category.

ZS predictor All Non-native substrate New-to-nature chemistry
Hamming distance 0.1056 0.3378 -0.1266
EVmutation 0.2768 0.4652 0.0885
ESM-2 0.1904 0.5125 -0.1316
ESM-IF 0.2534 0.4810 0.0257
CoVES 0.1473 0.4075 -0.1129
AAGt 0.2379 0.5253 -0.0495
Vina 0.0361 0.0257 0.0465
GALigandDock 0.1393 0.1228 0.1559
AF3 0.2751 0.2416 0.3086
Chai-1 0.1420 0.2094 0.0746
LigandMPNN 0.2105 0.4780 -0.0570
FlowSite 0.2176 0.4007 0.0345
Bond distance 0.0607 0.1853 -0.0639
Hydrogen bonds 0.1633 0.2802 0.0464
Hydrophobicity 0.2028 0.4128 -0.0072

Active-site volume 0.0828 0.0469 0.1187
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Figure C9. Top 25% recall for activity.
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Figure C13. Top 25% recall for selectivity, averaged by chemistry.
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C.4.3 Combination of ZS predictors

Table C5. Spearman’s p of 34 unweighted ensembles of ZS predictors generalized better than the top individual
ZS across all chemistries. See Table C4 for topN predictors.

Predictor Combination Average Spearman’s p across all chemistries

All top2 0.3859
New-to-nature top8 0.3802
New-to-nature top9 0.3769
New-to-nature top5 0.3757
All top3 0.3738
New-to-nature top7 0.3708
New-to-nature top11 0.3598
New-to-nature top10 0.3588
New-to-nature top6 0.3579
All top4 0.3531
New-to-nature top12 0.3460
All top5 0.3457
New-to-nature top13 0.3395
New-to-nature top4 0.3390
All top6 0.3316
New-to-nature top14 0.3179
All top7 0.3162
New-to-nature top15 0.3091
All top12 0.3079
All top9 0.3046
All top14 0.3008
Non-native top16 0.3007
All top16 0.3007
New-to-nature top16 0.3007
All top13 0.3000
All top8 0.2983
Non-native top15 0.2978
All top15 0.2978
All top11 0.2943
Non-native top14 0.2938
All top10 0.2901
Non-native top12 0.2887
Non-native top11 0.2843

Non-native top13 0.2802
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Figure CI14. Linear regression model trained on one library with 16 ZS and tested on all.
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Figure C16. Averaged weights for linear regression model trained on one library with 16 ZS and tested on all.

Predicted

Predicted

Predicted

Predicted

60

40

PfTrpB-7iodo

PfTrpB-7methyl

PfTrpB-7bromo

PfTrpB-5iodo

PfTrpB-5bromo

PfTrpB-5chloro

Experimental

Experimental

Experimental

Experimental

Figure C17. Scatter plot for EVmutation + AF3,.

p: 0.58, top 25% recall: 0.59  p: 0.46, top 25% recall: 0.54  p: 0.53, top 25% recall: 0.53  p: 0.47, top 25% recall: 0.44  p: 0.50, top 25% recall: 0.51  p: 0.51, top 25% recall: 0.46
80
80 . 80 80 80 80 .
701 . 3—;&& 704 4= .' e, o 70 70 S
Zeo SN 3 3o Teo
g : £ 601% 260 g 2
§so4 W 3 K g 50 T s0
£ ° & 50 & £ 40 £
40 ® 50 40
409 P 30
30 40 : 30
20
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0 5 10 00 05 10 15 0.0 0.5 1.0
Experimental Experimental Experimental Experimental Experimental Experimental
PfTrpB-4bromo PfTrpB-6¢hloro PfTrpB-5cyano PfTrpB-4cyano PfTrpB-56chloro Rma-CB
0.50, top 25% recall: 0.64  p: 0.58, top 25% recall: 0.57  p: 0.44, top 25% recall: 0.51  p: 0.41, top 25% recall: 0.43  p: 0.38, top 25% recall: 0.36  p: 0.40, top 25% recall: 0.45
2 80 801 o 80 80
a0 5|
70 70 . 1 0 70 A
°l 8 3., % 3o H H
g% g 60 250 260 g
b 3 ® K 3
& 50 } & s0 £ a0 - £s0{® £
4 £ . s
40 401%% 30 40 @
30 ® 20 20
00 05 10 15 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 50 100
Experimental Experimental Experimental Experimental Experimental Experimental
Rma-CSi ParLQ-a ParLQ-b ParLQ-c ParLQ-d ParLQ-e
: 0.37, top 25% recall: 0.39  p: 0.32, top 25% recall: 0.37  p: 0.15, top 25% recall: 0.30  p: 0.24, top 25% recall: 0.30  p: 0.36, top 25% recall: 0.39  p: 0.33, top 25% recall: 0.35
® 80 80 80
80
2 70 = 3 g g7
g S $ i3 g g
H H y 60 H H ¢
& < 60 I & 60 & 60
50 0 50 50
20 40 0 50 0 25 50 75 0 20 40 60 0 20 40 20 40
Experimental Experimental Experimental Experimental Experimental Experimental
ParLQ-f ParLQ-g ParLQ-h ParLQ-i
: 0.31, top 25% recall: 0.30  p: 0.31, top 25% recall: 0.39  p: 0.27, top 25% recall: 0.39  p: 0.22, top 25% recall: 0.26
80
80 80
v 37 . 3 K
€ y g 3 g0 -~ Top 25% predicted
@ 2 60 3 3 Top 25% true
< < 60 £ 60
50 50 50
0 20 40 60 0 20 40 0 20 a0 0 20 40 60



C.4.3 Additional tables

199

Table C6. Bitscore and sequence counts for PfTrpB, Rma cyt ¢, and ParLQ. The bold row indicates the chosen

MSA covering all the targeted sites.

Enzyme Bitscore Sequences
PfTrpB 0.1 74795
0.3 5996

0.5 5935

0.7 4647

Rma cyt ¢ 0.1 Job exceeded resources
0.3 79025

0.5 3042

0.7 1940

ParLQ 0.1 15086
0.3 875

0.5 343

0.7 343

Table C7. Activity and selectivity Spearman’s correlation.

Library

Spearman’s p

ParLQ-a
ParLQ-b
ParLQ-c

ParLQ-d
ParLQ-¢

ParLQ-f
ParLQ-g
ParLQ-h
ParLQ-i

Rma-CB
Rma-CSi

0.9610
0.7527
0.9335
0.9326
0.8971
0.8197
0.7097
0.9257
0.7618
0.6438
0.4554




Table C8. Correlation between ZS predictions for activity and for selectivity, both measured by Spearman’s

correlation.

ZS predictor Spearman’s p p-value
Hamming distance 0.9455 1.12e-05
EVmutation 0.7818 0.0045
ESM-2 0.8545 0.0008
ESM-IF 0.7273 0.0112
CoVES 0.6818 0.0208
AAGt 0.8727 0.0005
Vina 0.8091 0.0026
GALigandDock 0.9182 6.66e-05
AF3 0.3091 0.3550
Chai-1 0.9545 4.99¢-06
LigandMPNN 0.8273 0.0017
FlowSite 0.6545 0.0289
Bond distance 0.5636 0.0710
Hydrogen bonds 0.4909 0.1252
Hydrophobicity 0.9364 2.21e-05
Active-site volume 0.9000 0.0002

Table CY9. Tanimoto similarity of atom-pair fingerprints for PfTrpB non-native substrates.

Indole Analogs

Similarity to Indole

7Tiodo
Tmethyl
7Tbromo
Siodo
Sbromo
Schloro
4bromo
6¢chloro
Scyano
4cyano
S6chloro

0.6053
0.6053
0.6053
0.6000
0.6000
0.6000
0.5500
0.5366
0.4898
0.4894
0.3333
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Table C10. Correlation between predictors and substrate similarity to the native substrate.

ZS predictor Spearman’s p p-value
Hamming distance 0.3890 0.2371
EVmutation 0.6390 0.0343
ESM-2 0.6390 0.0343
ESM-IF 0.5371 0.0884
CoVES 0.1574 0.6439
AAGt 0.6390 0.0343
Vina 0.3334 0.3164
GALigandDock 0.5371 0.0884
AF3 0.3982 0.2251
Chai-1 0.3241 0.3308
LigandMPNN 0.3982 0.2251
FlowSite 0.1574 0.6439
Bond distance 0.0185 0.9569
Hydrogen bonds 0.5464 0.0820
Hydrophobicity 0.3612 0.2751
Active-site volume 0.0370 0.9139

Table C11. Calculated reaction energy barrier (kcal/mol).

Chemistry Energy barrier
ParLQ ~9
Rma-CB ~ 11
Rma-CSi ~12

Table C12. Calculated reaction energy AG (kcal/mol) considering all substrates and products for new-to-nature
chemistries.

Chemistry AG
ParLQ-a -44.6075
ParLQ-b -44.7320
ParLQ-c -44.5280
ParLQ-d -46.3590
ParLQ-¢ -45.8877
ParLQ-f -45.5328
ParLQ-g -46.0807
ParLQ-h -75.2704
ParLQ-i -45.5365
Rma-CB -54.8434

Rma-CSi -62.6220
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Table C13. Correlation between reaction energy and ZS predictor performance.

ZS predictor Spearman’s p p-value
Hamming distance 0.4455 0.1697
EVmutation 0.1273 0.7092
ESM-2 0.3000 0.3701
ESM-IF -0.0545 0.8734
CoVES 0.3455 0.2981
AAGt 0.2818 0.4011
Vina 0.2000 0.5554
GALigandDock -0.1000 0.7699
AF3 0.4909 0.1252
Chai-1 0.3818 0.2466
LigandMPNN 0.3091 0.3550
FlowSite 0.0273 0.9366
Bond distance -0.0364 0.9155
Hydrogen bonds 0.1364 0.6893
Hydrophobicity 0.1273 0.7092

Active-site volume 0.0455 0.8944
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