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ABSTRACT 

Engineered proteins can carry out a vast array of functions and have become indispensable 

across numerous industrial applications. To accelerate wet-lab protein engineering efforts, 

machine learning-based methods have advanced rapidly. However, a gap remains between 

state-of-the-art machine learning methods and their practical adoption. A key factor 

contributing to this disconnect is the lack of application-relevant benchmarking and 

generalizable insights across protein engineering tasks. This thesis evaluates machine 

learning-assisted protein engineering approaches to identify generalizable strategies. The 

central problem considered is learning the mapping from protein sequence to function—

known as the fitness landscape—to enable the prediction of unseen variant fitness. Chapter 

1 introduces the background and context for machine learning-assisted protein engineering 

and highlights the practical constraint of limited experimental budgets. Chapter 2 

investigates transfer learning, which leverages models pretrained on large protein sequence 

databases to generate informative representations for modeling task specific sequence-

function relationships. Evaluation across ten diverse tasks shows that while transfer learning 

is effective in structure prediction, it underperforms in variant fitness prediction—a key 

objective in protein engineering. Chapter 3 evaluates alternative strategies with a focus on 

combinatorial fitness landscapes, a common setting in protein engineering. Across 16 diverse 

landscapes, focused training improves the performance of various machine learning 

approaches by strategically selecting training variants using zero-shot predictors, which 

estimate variant fitness from auxiliary information without relying on experimental data. 

Building on these insights, Chapter 4 addresses the specific challenge of engineering 

enzymes—proteins that convert substrates into products—for novel chemistries. While six 

general zero-shot predictors without substrate information can predict enzyme activity on 

non-native substrates, they fail on more out-of-distribution, new-to-nature chemistries. 

Incorporating substrate information into zero-shot predictors leads to more generalizable 

performance across all tested chemistries, spanning 22 substrates. Chapter 5 provides a brief 

outlook on future directions. Overall, this thesis identifies generalizable strategies for 

machine learning-assisted protein engineering by systematically evaluating and improving 

how sequence-to-function relationships are modeled across diverse tasks.  
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C h a p t e r  1  

MACHINE LEARNING-ASSISTED PROTEIN ENGINEERING 

1.1 Introduction 

Proteins—sequences composed of amino acid building blocks—carry out a vast array of 

critical biological functions. By modifying their sequences, proteins can be engineered to 

enhance their existing properties or perform entirely new functions. Engineered proteins have 

become indispensable across numerous applications, serving as effective therapeutics to 

combat diseases, non-toxic agents to enhance crops, and green biocatalysts to synthesize 

chemicals.1 For example, engineering of adeno-associated virus capsid proteins has enabled 

the development of gene delivery vehicles with enhanced tissue specificity, immune evasion, 

and therapeutic efficacy2 and engineering of cytochrome P450 has enabled the synthesis of 

pharmaceuticals and novel chemical bonds not accessible through traditional chemistry.3 

 

Figure 1.1. Conceptual overview of protein fitness landscapes and the directed evolution process. a) Protein 

fitness landscapes map sequences to fitness values, where the landscape can be smooth (left) or rugged 

(right). In smooth landscapes, a global maximum may be reachable through successive single mutations with 

gradual fitness improvements. Rugged landscapes contain many local maxima, making navigating the 

landscape more challenging. b) Directed evolution is an iterative experimental strategy inspired by natural 

selection. It involves diversification of a parent sequence to generate a variant pool, followed by screening 

or selection to identify improved variants, which are then amplified and served as the parent for the next 

round. 
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Protein engineering can be conceptually framed as navigating a “fitness landscape” 

(Figure 1.1a),4,5 a high-dimensional surface where each point represents a unique protein 

variant defined by its amino acid sequence, and its height corresponds to a quantitative 

measure of the desired functional property—referred to as fitness (e.g., catalytic efficiency, 

binding affinity, or fluorescence). In a smooth or convex landscape, a global maximum can 

be reached through a greedy walk (i.e., a series of single amino acid substitutions that each 

improve fitness). By contrast, rugged landscapes containing many local maxima are much 

more difficult to traverse, as greedy steps may become trapped on suboptimal peaks. 

The ultimate engineering objective is to achieve a variant sequence with high fitness for 

the desired objective. However, the vast size of protein sequence space (e.g., 20L possible 

sequences for a protein of length L, where 20 is the number of canonical amino acids 

possible at each position) makes exhaustive search infeasible. Effective navigation of the 

fitness landscape, therefore, requires strategies that efficiently explore the sequence space 

and obtain variants with higher fitness values. 

A widely adopted strategy for traversing the fitness landscape experimentally is directed 

evolution. Inspired by natural selection, directed evolution involves iterative cycles of (1) 

diversification of the protein sequences, through techniques such as random mutagenesis, 

site-saturation mutagenesis, or recombination, and (2) selection or screening, to identify 

improved variants for the subsequent round (Figure 1.1b).6–8 The beneficial mutations are 

thus accumulated throughout the iterations of mutagenesis and functional assessment. 

Despite its widespread use and remarkable success, directed evolution remains time 

consuming and resource intensive: screening is expensive, and multiple rounds of mutation 

and screening are often needed to generate the desired improvements. Furthermore, many 

fitness assays—particularly those involving the synthesis of complex chemical products or 

in vivo activity in animal models—are inherently low-throughput, which restricts the 

number of variants that can be experimentally generated. Historically, collected negative 

fitness data could not be used because high sequencing cost limited access to the 

corresponding variant sequences. 
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These challenges are exacerbated when fitness landscapes are more rugged and difficult 

to traverse when we encounter non-additive effects of amino acid substitutions: 

epistasis.9,10 Epistasis is often observed between mutations in close structural proximity11 

and is enriched at binding surfaces or enzyme active sites, due to direct interactions 

between residues, substrates, and/or cofactors, where residue-residue or residue-substrate 

interactions can lead to context-dependent mutational effects. For example, beneficial 

mutations in the context of the initial sequence may not be beneficial in combination with 

other mutations. Therefore, epistasis can present a significant challenge for directed 

evolution, which can cause campaigns to become trapped at local optima of the fitness 

landscapes.7 

In response to these challenges, machine learning (ML)-assisted protein engineering 

approaches have emerged as powerful complements to traditional directed evolution.12,13 

ML models can learn sequence–fitness relationships from experimental data and predict 

the fitness of untested variants in silico, enabling prioritization of variants which high 

predicted fitness for experimental validation and thus facilitating more effective navigation 

of the fitness landscape and the identification of improved variants. Furthermore, in 

contrast to the incremental nature of directed evolution, ML-guided strategies can propose 

larger jumps in sequence space, helping to escape local optima and access more diverse 

regions of the landscape. 

Recent advances in deep learning have dramatically improved our ability to model proteins 

along difference axes. Inspired by natural language processing, pretrained protein language 

models such as the Evolutionary Scale Modeling (ESM) family14–17 and the ProGen 

family18–20 leverage large sequence databases to learn generalizable representations that 

support specific downstream tasks. Protein structure-based models such as AlphaFold 3 

have revolutionized protein structure prediction.21 Generative models such as 

RFDiffusion22,23 and ProteinMPNN24 have expanded our ability to design proteins by 

generating backbone structures conditioned on user-defined constraints (e.g., motifs or 

targets) and by designing sequences conditioned on input backbone geometries, 
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respectively. Although structure-based models do not directly encode protein function, 

they offer complementary structural insights that could inform sequence-function 

prediction. Similarly, although generative models are trained to produce plausible protein 

designs, the distributions of structures and sequences they learn are expected to reflect 

fundamental biophysical constraints, making model-derived likelihood scores potential 

proxies for protein fitness. Together, these advances have opened new opportunities for 

machine learning-assisted protein engineering. 

However, despite these technological advances, a disconnect remains between the 

capabilities of state-of-the-art ML models and their practical impact on experimental 

protein engineering. There is a lack of application-relevant benchmarks and generalizable 

insights that reflect the resources constraints, optimization goals, experimental setups, and 

diversity of real-world engineering campaigns. These include limited screening budgets, 

the need to identify top-performing variants rather than maximize overall prediction 

accuracy, and the challenges of modeling combinatorial fitness landscapes arising from 

simultaneous site-saturation mutagenesis, a common engineering strategy where multiple 

positions are mutated simultaneously. This thesis addresses that gap by systematically 

evaluating ML approaches through a protein engineering-oriented lens, with a focus on 

strategies that are effective and generalizable across diverse tasks. 

Specifically, this thesis evaluates the generalizability of machine learning-assisted protein 

engineering methods through three key questions (Figure 1.2). First, when does transfer 

learning with protein language models (PLMs) succeed? Transfer learning is an appealing 

approach, especially for data-scarce protein engineering tasks, as PLMs pretrained on large 

sequence databases can generate informative representations for modeling sequence–

function relationships. However, Chapter 2 shows that while transfer learning generalizes 

well for structure prediction, its benefits are limited in variant fitness prediction—

particularly for combinatorial fitness landscapes that are common in protein engineering. 

This motivates the second question: when and how should different ML strategies be 

applied for effective protein engineering? Chapter 3 explores this question by evaluating 
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alternative strategies across 16 combinatorial landscapes. It demonstrates that focused 

training improves the performance of various machine learning approaches by strategically 

selecting training variants using zero-shot (ZS) predictors, which estimate variant fitness 

from auxiliary information without experimental data. However, the datasets used in 

Chapter 3 are limited to native or near-native functions.  

The third question, then, asks which ZS predictors generalize to non-native activities, with 

a focus on the specific challenge of engineering enzymes—proteins that convert substrates 

into products—for novel chemistries. Chapter 4 shows that while general-purpose ZS 

predictors can capture activities on non-native substrates, they do not generalize to more 

out-of-distribution, new-to-nature chemistries. In contrast, predictors that incorporate 

substrate information can generalize across 22 distinct substrates. 

 

Figure 1.2. Three main questions guiding this thesis. a) When does transfer learning with protein language 

models (PLMs) succeed? Chapter 2 evaluates PLMs downstream task performances and finds that PLMs 

underperform in variant fitness prediction, especially for the combinatorial landscapes that are common in 

protein engineering. b) When to apply what protein engineering strategy? Chapter 3 evaluates various ML-

assisted strategies across 16 combinatorial fitness landscapes and shows that focused training—selecting 

training variants using zero-shot predictors—improves model performance especially under resource 

constraints. c) Which methods generalize to new-to-nature chemistries? Chapter 4 extends these findings to 

enzyme engineering for non-native substrates and new-to-nature chemistries. While general-purpose zero-

shot predictors fail on more out-of-distribution chemistries, incorporating substrate information yields more 

robust generalization across 22 substrates.  
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The remainder of this chapter serves as overarching background for the rest of the thesis.  

Section 1.2 introduces the use of machine learning models to approximate and navigate 

protein fitness landscapes, including supervised models and zero-shot predictors. Section 

1.3 describes the core components that influence ML performance in protein engineering, 

including data collection, sequence representation, learning strategies, and model 

evaluation. Sections 1.4 and 1.5 outline the key application areas that motivate this thesis—

epistatic fitness landscapes and enzyme engineering for non-native chemistries—while 

also highlighting the lack of benchmarking and generalizable insights in these challenging 

settings. Section 1.6 summarizes the main findings from the three core projects (Chapters 

2–4; Figure 1.2) and provides context for the outlook presented in Chapter 5. 

1.2 Navigating protein fitness landscapes with supervised machine learning   

To improve the efficiency and outcomes of protein engineering campaigns, supervised ML 

models have become a powerful tool to approximate and navigate protein fitness 

landscapes.12,24–27 In supervised learning, a model is trained on labeled input–output 

pairs—here, protein sequences and their experimentally measured fitness values—to learn 

the relationship between them. Once trained, the model can be used to predict the fitness 

of new, untested variants. These predictions can help prioritize variants with high predicted 

fitness for experimental validation, reducing the need for exhaustive screening. Here, I 

focus on three key main aspects of a typical supervised ML pipeline for protein 

engineering: data collection, sequence representation, and learning strategy. 

1.2.1 Assay-labeled data collection 

Accurate fitness prediction depends critically on the quality, diversity, and size of labeled 

sequence-fitness datasets.12,28 Traditionally, directed evolution does not require 

sequencing, as the best-performing variant from the previous round simply serves as the 

starting variant of the subsequent round. Sequencing is often reserved for identifying the 

best variant in each round and is typically not performed on the entire pool of variants due 

to time and cost constraints. 
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Recent advances in sequencing technology—lower costs, higher throughput, and faster 

turnaround—have made it feasible to sequence all variants in one round of a protein 

engineering campaign.29,30 Tools developed in our lab now further support this adoption by 

combining high-throughput sequencing with automated analysis pipeline and interactive 

visualizations, pairing sequence and function data to provide actionable insights for 

experimentalists and further incentivizing the collection of comprehensive sequence–

fitness datasets.29 

Nevertheless, a key bottleneck remains to be overcome. While sequencing has become 

faster and cheaper, many functional assays remain low-throughput and resource-intensive. 

For example, quantifying product yield from enzymatic reactions often requires expensive 

analytical methods, and in vivo activity screening in animal models can take weeks or 

months. These intrinsic experimental bottlenecks limit both the number of assay-labeled 

variants available for model training and the predicted high-fitness variants that can be 

experimentally validated. Consequently, ML methods that can thrive in the low-N 

regime—where the number of labeled variants is small—are particularly valuable.12 

Chapter 2 and Chapter 4 explore how methods such as transfer learning and zero-shot 

prediction, which leverage unlabeled or auxiliary data, can improve learning in these 

challenging regimes. 

1.2.2 Sequence representation  

Protein sequences must be converted into numerical representations to serve as inputs to 

ML models to perform learning. A simple and widely used approach is one-hot encoding, 

which assigns a unique binary vector to each of the twenty canonical amino acids. Each 

vector is composed of “0”s except for a single “1” at the position corresponding to the 

amino acid’s identity. While simple and commonly used as a baseline, one-hot encoding 

treats all amino acids equally, ignoring any underlying physicochemical properties. This 

can limit the model’s ability to generalize, especially in low-data regimes where leveraging 

biochemical priors may be beneficial. 
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A more informative approach is to represent amino acids using numerical descriptors 

based on their physicochemical properties. The AAIndex database provides over 500 such 

descriptors, including experimentally measured properties such as hydrophobicity, steric 

bulk, and pKa values, as well as theoretical scores designed to capture functional or 

structural tendencies. These descriptors allow for more nuanced, domain-informed 

encodings of amino acids but their high dimensionality and redundancy across AAIndex 

features can introduce noise and prone to overfitting.31 To address this, Georgiev encoding 

applies principal component analysis to a carefully selected subset of AAIndex features, 

reducing them to a small number of orthogonal components that capture the principal axes 

of biochemical variation among amino acids.32 

Both one-hot and physicochemical encodings, however, are context independent: they 

represent each amino acid identically regardless of its position or role in the protein. 

However, the function of each amino acid in a protein is, in fact, extremely context 

dependent. For example, a tyrosine in a protein’s active site that facilitates a chemical 

transformation performs a very different role than a tyrosine on the protein’s surface. There 

is an analogy to natural languages: just as a word’s meaning depends on sentence context, 

so too does a residue’s effect depend on its structural and functional environment. 

Pretrained protein language models (PLMs) address this limitation by learning context-

aware representations from large-scale unlabeled sequence databases (e.g., UniRef).33,34 

Typically trained using a masked language modeling objective, these models are analogous 

to natural language transformers that fill in missing words in a sentence—learning a 

distribution over possible amino acids conditioned on surrounding residues.14–16,35–38 The 

resulting embeddings encode evolutionary, structural, and functional priors that can be 

transferred to downstream prediction tasks. In supervised learning workflows for protein 

fitness prediction, PLM embeddings can be used either as frozen features, where the 

pretrained weights and features are passed unchanged into a downstream model, or through 

fine-tuning, where the model’s parameters are updated during training on the labeled task. 
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Fine-tuning has often been shown to yield improved performance by adapting the 

representation to the specific functional landscape of interest.39 

Despite their widespread adoption in recent years, however, it remains poorly understood 

why and when PLMs improve performance on diverse prediction tasks, especially for protein 

engineering tasks where a few amino acid substitutions are modified from a parent sequence 

(Figure 1.2a). Through a systematic evolution across a comprehensive suite of factors and 

tasks, Chapter 2 shows that current PLMs often fail to generalize beyond structure-based 

tasks. This motivates the development and evaluation of alternative ML strategies tailored 

more specifically for protein engineering (Chapter 3). 

1.2.3 Machine learning strategies 

Once sequences are numerically encoded, they can be used to train supervised ML models 

to predict protein fitness. For a given design space, for example, mutating four residues to 

optimize fitness, a basic workflow begins with randomly sampling variant sequences from 

this design space and measuring their functional properties in the lab. These labeled 

sequence-fitness data points are then used to train a predictive model, which is 

subsequently applied to score all remaining variants in the design space. The top-ranked 

variants are then validated through the wet-lab experiments. 

Instead of using a single iteration of training and testing, active learning breaks this process 

into multiple rounds.40,41 At each round, the model is retrained with newly acquired labeled 

data and used to guide the selection of the next set of variants to test. Many active learning 

strategies rely on uncertainty quantification to prioritize variants, using methods such as 

Gaussian processes to estimate predictive confidence.25 A prominent way to perform active 

learning is Bayesian optimization, which explicitly balances exploration and exploitation 

to efficiently identify high-performing variants.42–44 

In both cases, the initial training set is often randomly sampled from the design space. 

Alternatively, focused training can be used to strategically select initial training variants 
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based on zero-shot predictors28—methods that estimate variant fitness without any 

assay-labeled data.17 Critically, the quality of the training data has been shown to impact 

the optimization outcome. Wittmann et al. (2021) demonstrated on the combinatorial G 

domain B1 (GB1) landscape45 that focused training guided by zero-shot predictors 

outperforms standard supervised learning with randomly sampled training sets.28 

Chapter 3 systematically benchmarks basic supervised learning, active learning, and 

focused training strategies across 16 diverse combinatorial fitness landscapes (Figure 

1.2b). While all strategies outperform directed evolution, focused training guided by zero-

shot predictors demonstrates consistently strong performance, particularly in the low-N 

regime relevant to protein engineering applications. 

1.3 Zero-shot fitness prediction 

Zero-shot (ZS) predictors estimate variant fitness without task-specific training data. 

Instead, they leverage prior assumptions (biologically motivated heuristics) and auxiliary 

information such as evolutionary conservation, structural heuristics, or likelihoods derived 

from pretrained protein language models or structure models. These predictors have 

augmented supervised models to identify higher-fitness variants, guided experimental data 

collection for ML model training, and scored in silico designs for reinforcement learning 

or experimental validation.28,46–50 Recent benchmarks further highlight the broad 

applicability of ZS predictors.51 

1.4 Combinatorial fitness landscape and benchmarks  

ML in protein engineering has been demonstrated in different case studies. Most of the 

studies cover random mutations50 (mostly single amino acid substitutions) spread across a 

protein, such as deep mutational scanning landscapes. In such settings, supervised ML 

models can often generalize well from a subset of single mutants to other single mutant 

variants.52 In contrast, combinatorial landscapes—which enumerate all possible 

combinations of amino acid substitutions at a small number of functionally critical sites—
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pose a greater challenge. These landscapes are often dominated by low-fitness variants, 

as the likelihood of retaining function decreases exponentially with the number of 

simultaneous mutations.4 As a result, small, randomly sampled training sets are typically 

uninformative, containing few high-fitness variants. Models trained on such data struggle 

to identify promising candidates, limiting their practical utility in low-throughput 

experimental settings.28 

Combinatorial mutagenesis is commonly used when engineering antibody binding 

interfaces or enzyme active sites, where mutations are typically in close structural 

proximity and interact with one another and the substrate. These regions tend to exhibit 

strong epistasis, with many combinations of individually beneficial mutations yielding 

non-additive or even deleterious effects. In contrast, mutations randomly distributed across 

the protein often exhibit near-additive behavior, making them more amenable to 

optimization using laboratory methods such as staggered extension process 

recombination.53,54 

Because real-world protein engineering often involves such targeted, epistatic landscapes, 

they are of particular interest yet remain underrepresented in current ML benchmarking 

efforts. Chapter 3 addresses this gap by systematically evaluating model generalization 

across 16 diverse combinatorial landscapes, focusing on three strategies mentioned in 

Section 1.3: basic supervised learning, active learning, and focused training guided by 

zero-shot predictors. These benchmarks provide practical insight into which strategies are 

most effective in the combinatorial, low-data regimes that are common in engineering real 

protein functions. 

1.5 Generalization to protein engineering for non-native functions 

One of the most compelling goals in protein engineering is to engineer proteins with novel 

functions, such as enzymes that catalyze reactions not observed in nature. These new-to-

nature activities hold transformative potential in sustainable synthesis, therapeutics, and 

biotechnology. For example, the tryptophan synthase β-subunit (TrpB) catalyzes a native 
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reaction between L-serine and indole to form tryptophan. Engineered TrpBs extend this 

function to non-native substrates such as serine analogues and substituted indoles, enabling 

the synthesis of tryptophan analogs and other noncanonical amino acids that are important 

precursors to pharmaceuticals and natural products.55–58 Another example, heme-

containing enzymes have been engineered to carry out a plethora of valuable reactions that 

have not been found in biological systems.59 These new-to-nature reactivities include 

carbene transfers for stereoselective olefin cyclopropanation, traditionally requiring 

unsustainable transition metals,3,60 and the formation of carbon–silicon61 and carbon–boron 

bonds.62 

Directed evolution has successfully evolved enzymes for new-to-nature activities, typically 

by generating targeted combinatorial libraries at enzyme active sites to enable such new 

chemistries. However, assessing variant activities often remains a major bottleneck due to 

the inherent constraints of low-throughput screening methods. As shown in Chapter 3, 

focused training with ZS predictors can excel in such low-N settings. However, standard 

ZS predictors are typically trained on natural sequences and do not explicitly incorporate 

substrate features or reaction mechanisms. In fact, these ZS predictors have anecdotally 

shown low predictive power for non-native enzyme activity.40 Specifically, the general 

zero-shot predictors studied in Chapter 3 do not account for the unique mechanistic 

features of enzymatic reactions. Enzyme catalysis involves complex steps such as substrate 

binding and transition-state stabilization; however, many ZS methods do not explicitly 

encode substrate or transition-state properties—features that are likely essential for 

predicting new-to-nature chemistries. 

Chapter 4 thus evaluates the six general zero-shot predictor studied in Chapter 3 

alongside ten substrate-aware ZS predictors derived from generative modeling, molecular 

docking, and active-site heuristics (Figure 1.2c). This is tested on a newly generated 

dataset on 11 non-native substrates and three curated new-to-nature reactions with 11 

additional substrates. Chapter 4 shows that while six general zero-shot predictors can 

predict enzyme activity on non-native substrates, they fail to generalize to more out-of-
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distribution, new-to-nature chemistries. Incorporating substrate information into zero-shot 

predictors offer new-to-nature chemistry insights. Furthermore, predictor ensembles improve 

generalizations across all tested chemistries. 

1.6 Summary of Chapter 1 

This chapter introduces the background and motivation for evaluating the generalizability 

of ML-assisted protein engineering methods. A central gap identified is the lack of 

application-relevant benchmarks and generalizable insights, particularly under constraints 

such as limited labeled data, epistatic fitness landscapes, and the need to engineer proteins 

for non-native functions. This thesis addresses that gap through three interconnected 

projects: evaluating transfer learning with protein language models, benchmarking ML 

strategies for combinatorial fitness landscapes, and assessing generalization to non-native 

enzyme activities. Together, these studies aim to develop practical, application-aware 

methods for real-world protein engineering. 
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C h a p t e r  2  

PROTEIN LANGUAGE MODEL TRANSFER LEARNING  

Material from this chapter appears in: “Li, F.-Z., Amini, A. P., Yue, Y., Yang, K. K. & Lu, 

A. X. Feature reuse and scaling: Understanding transfer learning with protein language 

models. In Proceedings of the 41st International Conference on Machine Learning 

(PMLR), 235, 27351–27375 (2024).” 

 

ABSTRACT 

Large pretrained protein language models (PLMs) have improved protein property and 

structure prediction from sequences via transfer learning, in which weights and 

representations from PLMs are repurposed for downstream tasks. Although PLMs have 

shown great promise, currently there is little understanding of how the features learned by 

pretraining relate to and are useful for downstream tasks. We perform a systematic analysis 

of transfer learning using PLMs, conducting 370 experiments across a comprehensive suite 

of factors including different downstream tasks, architectures, model sizes, model depths, 

and pretraining time. We observe that while almost all downstream tasks do benefit from 

pretrained models compared to naive sequence representations, for the majority of tasks 

performance does not scale with pretraining, and instead relies on low-level features learned 

early in pretraining. Our results point to a mismatch between current PLM pretraining 

paradigms and most applications of these models, indicating a need for better pretraining 

methods. 
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2.1 Introduction for Chapter 2 

Proteins perform a myriad of critical biological functions, and thus the ability to design 

proteins has vast impacts on healthcare, environment, and industry.1 Since a protein’s 

function is largely determined by its amino acid sequence, specifying a sequence that will 

yield a desired function is feasible in principle. However, the relationship between amino 

acid sequence and function remains poorly understood, and most experimental methods for 

measuring function are costly and low-throughput.2,3 To overcome the challenge presented 

by limited labeled data, researchers have sought to use transfer learning, in which models are 

pre-trained in a self-supervised fashion on large public datasets in the hope that the pretrained 

features or model weights will improve performance on downstream tasks where supervised 

data is limited (Figure 2.1a-b). 

 

Figure 2.1. Summary of the transfer learning procedure and our analyses. a) PLMs are pretrained using 

masked language modeling. b) Typically, transfer learning uses representations from the last layer of the PLM 

for downstream tasks. We evaluate downstream task performance at every layer in the model. c) We compare 

to baselines and ablations and evaluate the effects of PLM size, model depth, and pretraining time. These 

experiments characterize behavior consistent with either feature reuse (i), or an alternative hypothesis 

(inductive biases/overparameterization - ii, weight statistics - iii, or reuse of low-level features only - iv). 
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Protein language models have emerged as the most popular framework for transfer 

learning for proteins.4–10 Most PLMs pretrain using the masked language modeling (MLM) 

task, in which the model is trained to predict the original identity of masked or corrupted 

amino acids. PLMs have been effective at improving performance on many protein function 

prediction tasks, and some are now integrated into bioinformatics and structure prediction 

tools.11–14 Despite their widespread adoption, it is not understood how or why PLMs improve 

performance on downstream tasks. 

Drawing from other domains like computer vision where investigations of transfer learning 

are more established, we synthesize a set of possible hypotheses to explain improvement in 

downstream tasks, and design and conduct a comprehensive series of experiments to test 

them. We structure our study around the following hypotheses: 

Feature reuse (Figure 2.1c-i). One popular hypothesis is that MLM pretraining learns 

general features of protein biology, and that these features can be reused across tasks. 

Previous work has shown that transfer learning improves performance across diverse 

downstream tasks.15,16 However, the degree of feature reuse is also important: ideally, the 

pretrain and downstream tasks should be aligned, such that transferring PLM representations 

improves downstream function prediction accuracy and that this improvement increases with 

larger model sizes, deeper layers, and better pretraining performance. 

If this does not occur, it suggests that pretraining primarily learns features that cannot be 

reused on downstream tasks. To determine whether or not this is the case for PLMs, we 

explore three alternative hypotheses. 

Inductive biases and overparameterization (Figure 2.1c-ii). The large number of 

parameters in pretrained models may lead to some alignment with useful signals by chance.17 

If inductive biases are sufficient, then transferring from randomly-initialized versions of the 

same model architecture should provide similar performance. 
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Statistics of pretrained weights (Figure 2.1c-iii). The primary benefit of pretraining may 

be initializing weights to a sensible scale.17,18 If pretraining primarily provides better weight 

initialization, resampling weights from the empirical distribution after pretraining should 

provide similar performance. 

Reuse of low-level features (Figure 2.1c-iv). It is possible for only less complex features 

learned early in pretraining to contribute to transfer learning.19 If low-level features are 

sufficient, then features extracted from earlier layers of the pretrained model may provide 

better or similar performance to those extracted from the last layer. Similarly, earlier 

pretraining checkpoints or smaller, less performant models should provide similar 

performance to the full-size, fully-pretrained model. 

Critically, while all three alternative hypotheses can still lead to improvements in 

downstream task performance, they do not predict that downstream task performance can be 

improved by transferring representations from larger, better trained models.17,20 

Contributions 

Our work evaluates the scalability of transfer learning for PLMs and makes the following 

contributions: 

1. The most comprehensive evaluation, to date and to the best of our knowledge, of 

transfer learning with PLMs, spanning 370 experiments over a diverse suite of 

downstream tasks. 

2. The discovery that current MLM pretraining paradigms underserve many aspects of 

protein biology, as supported empirically by evidence from both structure and 

function prediction tasks 

3. Systematic evidence that performance on many protein property prediction tasks 

does not scale with PLM size or pretraining. Our results uncouple improvements in 

downstream performance from scaling properties. 
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Together, our results predict that scaling PLMs with current MLM pretraining paradigms 

may not scale performance on many protein function prediction tasks, but provides an 

evaluation framework for identifying if future pretraining efforts are scalable across more 

aspects of protein biology. 

2.2 Related work for Chapter 2 

2.2.1 Pretrained protein language models 

While numerous pretrained PLMs have been proposed in the past few years,4–10 these works 

primarily focus on validating that pretraining improves performance on downstream tasks. 

In contrast, our work primarily seeks to understand the factors impacting transfer learning, 

which have not been rigorously studied to date for PLMs. Most PLM studies include 

comparisons to models with randomly initialized weights9,10 to confirm that pretrained 

models do not improve downstream task performance due to overparameterization or 

inductive biases alone. Other studies show that under some circumstances, PLMs yield no 

detectable improvement over a simple one-hot representation of sequences.16,21,22 Compared 

to these individual baselines and benchmarks, our paper conducts a systematic analysis over 

many different factors impacting transfer learning. 

The most similar work to ours is Detlefsen et al. (2022),23 which analyzes the effects of 

model architecture, fine-tuning, and different pooling schemes on transfer learning 

performance. However, we use MLMs trained on complete sequences instead of 

autoregressive models trained on Pfam domains. While they train proprietary, unreleased 

models for analysis, we use established models in the public domain. This makes our analysis 

more relevant to applications currently using these models and also improves documentation 

around these models. For example, neither their paper nor their released code describes the 

pretrained models in detail, so it is uncertain what the size of their model is, whereas we 

systematically vary the model size. More importantly, we evaluate a larger and more diverse 

set of downstream tasks with experiments designed to differentiate possible mechanisms by 

which transfer learning improves performance on downstream tasks. Critically, our 
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systematic analysis identifies cases where transfer from PLMs is empirically effective in 

improving downstream task performance but the improvement is due to factors that are not 

expected to scale with further pretraining or larger models. However, to the extent that our 

analyses reach similar conclusions (e.g., both our studies observe that performance on the 

pretraining task does not always correlate with downstream task performance), we view our 

work as complementary: Detlefsen et al. (2022) use different architectures, pretraining tasks, 

and pretraining datasets than us, suggesting that our observations are general across more 

factors than either paper analyzes independently.23  

2.2.2 Understanding transfer learning in computer vision 

While our analysis is differentiated as we focus on protein sequences, we take inspiration 

from computer vision studies that have sought to understand factors underlying successful 

transfer learning. Many are motivated by the observation that ImageNet-trained models are 

effective when transferred to medical images, raising the question of whether transfer 

performance is really due to reuse of features (given the extreme mismatch in domain), or 

due to more trivial factors. Raghu et al. (2019) compare pretrained models against random 

initialization to demonstrate that in some situations transfer performance is due to 

overparameterization.17 By randomly initializing models to match the weight statistics of 

pretrained models, the authors further demonstrate that improvements from pretraining may 

arise from good weight scalings rather than learning reusable features. Similarly, He et al. 

(2019) show that hyperparameter tuning can often explain improvements from transfer 

learning.24 By scrambling input images, Neyshabur et al. (2021) show that improvements 

from transfer learning can at least partially be attributed to the pretrained models learning 

low-level statistics of data rather than more sophisticated feature use.19 Matsoukas et al. 

(2022) further demonstrate that these factors vary depending upon downstream task dataset 

and model architecture.18 

Beyond models pretrained on ImageNet, some papers have looked at factors more specific 

to self-supervised pretraining. Abnar et al. (2022) show that improvements on the self-

supervised pretraining task do not necessarily translate to improved performance on 
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downstream tasks, and in some cases, are even anti-correlated.20 Pioneering work in 

generative self-supervised models also demonstrates that these models often saturate in 

downstream task performance in an intermediate layer of the model and degrade after.25 This 

is reinforced by empirical studies showing that the representations learned by self-supervised 

models versus supervised models rapidly diverge in the last few layers,26 consistent with 

previous observations that later layers may be more specialized to the original network,27 

underscoring the importance of a layer-by-layer evaluation. 

Beyond computer vision, transfer learning has been extensively studied in natural language 

processing, and particularly in “BERTology”,28 which seeks to understand what self-

supervised Transformer models learn and their transferability. Among other factors, studies 

have similarly analyzed the effects of pretraining,29 overparameterization,30 and layer-by-

layer content.31 

2.3 Datasets and pretrained models 

To understand why and when transfer learning with PLMs improves downstream 

performance and how the improvements scale with increasingly large PLMs, we conducted 

370 experiments on a diverse suite of downstream tasks with PLMs of different sizes, 

architectures, and at different checkpoints in training. The downstream tasks are summarized 

in Tables 2.1 and A.1.1. 

Table 2.1. Summary of downstream prediction tasks. 
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2.3.1 Downstream tasks 

We test a diverse set of tasks covering both property and structure prediction, different types 

of distribution shift relevant to protein engineering, and global versus local variation over the 

sequence. 

Structure prediction. We use the three-class secondary structure (SS3) task from TAPE 

with three independent test sets, SS3 – CB513,32 SS3 – TS115,33 and SS3 – CASP12,34 where 

the objective is to predict whether each residue belongs to an α-helix, β-strand, or coil.15 

Property prediction. We use the thermostability, subcellular localization, GB1, and AAV 

datasets from FLIP.16 

Thermostability and subcellular localization are global protein properties measured for 

sequences spanning different functional families and domains of life. The thermostability 

dataset measures the melting temperature of 48,000 proteins across 13 species.35 Subcellular 

localization is a classification task predicting the cell compartment to which a eukaryotic 

protein localizes.36,37 

In contrast, the GB1 and AAV datasets measure the effects of local sequence variation. GB1 

is the 56 amino-acid B1 domain of protein G, an immunoglobulin-binding protein. The GB1 

dataset covers binding measurements for simultaneous mutations of up to 4 interactive 

sites.38 VP1 is an adeno-associated virus (AAV) capsid protein, over 700 amino acids long.39 

The AAV dataset measures the effects of sparsely sampled mutations across a contiguous 28 

amino-acid region over the binding interface on viral viability. For GB1 and AAV, FLIP 

provides different train-test splits with different distribution shifts, including sampled (in-

distribution) and out-of-distribution splits, as described in Table A.1.1. Out-of-distribution 

splits more closely resemble protein engineering applications where a few low-functioning 

variants with a limited number of mutations are initially generated, but high-functioning 

variants across the larger sequence space are the engineering end goal. For GB1, we test three 

splits, in order of increasing difficulty: 
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● Sampled: sequences randomly partitioned between 80% training and 20% testing. 

● Low vs high: models are trained on mutants with function worse than the parent and 

tested on those with better function. 

● Two vs rest: Models are trained on single and double mutants and tested on triple 

and quadruple mutants. 

For AAV, we test two splits, in order of increasing difficulty: 

● Two vs many: Models are trained on single and double mutants and tested on 

variants with three or more mutations. 

● One vs many: Models are trained on single mutants and tested on variants with more 

mutations. 

2.3.2 Transfer learning with protein language models 

While a number of pretraining tasks have been proposed for protein sequences, we focused 

on models trained using the popular BERT40 masked language modeling (MLM) task. 

During pretraining, 15% of tokens are randomly selected. Of the 15%, 10% are replaced with 

a special masking token, 2.5% are randomly changed to another token, and the remaining 

2.5% are unperturbed to encourage the model to preserve the input sequence. The corrupted 

sequence is passed to the model, which is trained to maximize the probability of the original 

tokens at the selected locations. 

To evaluate the effect of model architecture, we chose two families of protein MLMs with 

comparable model sizes trained on UniRef50:41 the ESM9 family of transformer models and 

the Convolutional Autoencoding Representations of Proteins (CARP)10 family of 

convolutional models. Due to the sequence length limit of the ESM-1b transformer model, 

the first and last 511 amino acids were taken for all sequences exceeding 1022 amino acids. 

This length restriction chiefly impacts the subcellular localization dataset: targeting signals 

often occur at the N- or C- terminal, and we reason that taking both terminals preserves 

biologically-relevant signals. 
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Following standard protein transfer learning practice when resources for full finetuning 

are not available,16 we pass representations from each PLM layer to a linear model and 

compare the performance to a linear model on the one-hot encoding of the sequence for each 

task (Figure 2.1b). In addition to linear models, we also tested a learned attention pooling 

followed by a shallow MLP. However, we found last layer performance to be inferior to the 

linear models across almost all downstream tasks (Figure A.1.1), so we focus on the linear 

models in our analyses. For the SS3 and subcellular localization tasks, we train linear 

classifiers with mini-batches in PyTorch and perform early stopping based on the validation 

set. For the regression tasks, we train ridge regression models with Scikit-learn,42 using a 

grid search on the validation set to tune the regularization strength. For all tasks except 

secondary structure prediction, we mean pool the representations over the length dimension 

from each layer. Secondary structure prediction requires a representation for every residue, 

so no pooling is performed. 

As protein engineers often seek to identify top-ranked mutants as opposed to predicting the 

absolute function of mutations, we use ranking metrics, Spearman’s rank correlation and 

Normalized Discounted Cumulative Gain (NDCG), as the primary metrics for the regression 

tasks. For concision, we report Spearman’s rank correlation for regression tasks and accuracy 

for classification tasks in the main text. Complete results, including mean square error, cross-

entropy loss, NDCG, and ROC-AUC are provided in the online Supplemental Materials. 

2.4 Experimental setup 

Baseline and ablations. We conduct baselines and model ablations to determine when 

transfer learning improves downstream task performance and whether improvements in 

downstream task performance can be attributed to mechanisms other than feature reuse 

(Figure 2.1b-ii and 2.1b-iii). 

● One-hot baseline. To determine whether transfer learning with PLMs improves 

performance, we test if representations from pretrained models perform better than a 

one-hot representation. 
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● Random init. To evaluate whether the effect of transfer learning is due to 

overparameterization and/or the inductive biases of the PLM architecture, we test the 

impact of randomly initialized weights. 

● Stat transfer. To evaluate whether the effect of transfer learning is due to weight 

statistics and/or initializing the weights to a sensible scale, we test the impact of 

randomly initialized weights matching the weight distribution of the pretrained PLM 

by randomly permuting the pretrained weights. 

For random init and stat transfer, we initialize models with 3 random seeds. We consider 

transfer learning from a PLM to improve performance over these baselines if it has a one 

tailed p-value < 0.05 in a one-sample t-test using the sample mean and standard deviation 

across random init/stat transfer models. 

Scaling experiments. To further understand if the MLM pretraining task is aligned with 

downstream tasks, we sought to understand if improving PLM performance by scaling across 

three factors also improves transfer learning performance on downstream tasks (Figure 2.1b-

iv): 

● Model size. For both CARP and ESM, we test models with different numbers of 

layers and parameters (Table A.1.2). For concision, we refer to CARP-38M and 

ESM-43M as the “small” models, CARP-76M and ESM-85M as the “medium” 

models, and CARP-640M and ESM-650M (ESM-1b) as the “large” models. 

● Model depth. For each architecture (CARP, and ESM) and model size, we test 

whether downstream task performance improves as we transfer deeper layers by 

determining whether the Spearman rank correlation between layer number and 

performance is greater than 0.9 (Table A.1.6). This experiment allows us to 

understand if tasks primarily reuse low-level features early in the pretrained models, 

or if more complex features deeper in the models also contribute to downstream task 

performance. Convolutional neural networks (CNNs) induce a stronger correlation 

between the depth of the layer and the complexity of the features than transformers, 

leading to different patterns of feature reuse in previous transfer learning studies.18 
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However, we find little empirical difference between CNNs (CARP) and 

transformers (ESM) in our analyses. 

● Model checkpoint. For each model size, we test the effect of using checkpoints from 

earlier in pretraining. We order these checkpoints based upon their pretraining 

performance (perplexity, calculated on a held-out test set of 210k sequences from 

Uniref50 not used to train CARP), as earlier checkpoints have higher losses on the 

MLM pretraining task (Table A.1.7). We evaluate whether features from later in 

pretraining improve transfer learning by determining whether the Spearman rank 

correlation between the negative pretrain loss and downstream performance is greater 

than 0.9 (Table A.1.8). Unfortunately, checkpoints are only publicly available for 

CARP, so we cannot run this analysis with ESM. 

Estimating error for our scaling experiments is infeasible as it would require re-training 

multiple PLMs from scratch. Thus, we chose arbitrary thresholds, which may impact the way 

we have categorized downstream tasks in our interpretation. For transparency, we have 

plotted performance for all PLMs in each of our scaling experiments in Figures 2.3, 2.4, and 

2.5. 

We define the MLM pretraining task to be aligned with a downstream task if transferring 

PLM representations improves downstream task performance over the baseline and ablations 

and this improvement scales with improvements to pretraining. Code for all experiments is 

available at https://github.com/microsoft/protein-transfer.  

2.5 Results 

Overall, our analyses reveal three clusters of transfer learning behavior across downstream 

tasks (Figure 2.2). First, we find that within our set of benchmarks, secondary structure 

prediction tasks are the only tasks where pretraining improves downstream performance and 

the pretrain and downstream tasks are aligned. Second, we observe that transfer learning 

improves performance for many downstream tasks despite the pretrain and downstream tasks 

not being well-aligned, indicating that performance on these tasks may not improve as PLMs 



 

 

31 
scale on the axes we tested. Third, we observe that although transfer learning improves 

performance on almost all downstream tasks, for some tasks this improvement can be 

attributed to overparameterization, inductive biases, or sensible weight initialization. In 

subsequent sections, we expand on each of these clusters of observations in detail. The full 

results of our experiments are available in the online Supplemental Materials. 

 

Figure 2.2. Downstream task result summary. ✓ indicates true, ∼ indicates true for only one architecture, and 

✗ indicates false. 

2.5.1 Structure prediction benefits from transfer learning because it is well-aligned with 

MLM pretraining 

For all three residue-level secondary structure prediction tasks, Figure 2.3a and Table A.1.3 

show that PLM embeddings outperform the one-hot baseline as well as the random init and 

stat transfer ablations, demonstrating that transfer learning improves secondary structure 

prediction performance and that the improvement is not due to the inductive biases or weight 

statistics of the models. Secondary structure prediction performance improves when 

transferring deeper PLM features (Figure 2.3b), indicating that more complex features from 

later layers continue to improve performance. Furthermore, transfer learning with features 

from larger models and from later in pretraining improve secondary structure prediction 

(Figure 2.3a and 2.3c), as previously observed by Rives et al. (2021),9 Elnaggar et al. 

(2022),6 and Yang et al. (2024).10 We therefore conclude that MLM pretraining is well-

aligned to structure prediction, allowing PLM features to be reused when predicting 

secondary structure from sequence. 
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Figure 2.3. Results for secondary structure prediction. a) Performance on downstream tasks when transferring 

the final layer representation from various sizes of ESM and CARP compared to baselines and ablations. b) 

Downstream task performance by depth of layer transferred. c) Downstream task performance by pretraining 

loss. Each dot is a model checkpoint. For all subplots, downstream task test performance is quantified using 

accuracy. 

2.5.2 Many tasks benefit from transfer learning despite lack of alignment with MLM 

pretraining 

Next, we observe a cluster of four downstream tasks (thermostability, GB1 – low vs high, 

AAV – two vs many, and AAV – one vs many) where transfer learning improves 

performance over baselines even though the tasks do not align well with the pretraining task 

(Figure 2.4). For these tasks, transfer learning improves performance over both the random 

init and stat transfer ablations, indicating that transfer learning confers at least some benefit 

over the inductive biases, parameterization, or weight statistics of the models alone (with the 

exception of the AAV – one vs many task, where weight statistics may still explain transfer 

learning performance) (Figure 2.4a and Table A.1.4). However, for all of these tasks, 

downstream task performance does not improve as features from deeper layers are 

transferred (Figure 2.4b) or as the PLMs improve their pretraining loss over checkpoints 
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(Figure 2.4c), suggesting that these tasks may rely upon low-level features learned early 

in pretraining. Notably, the performance on these tasks typically saturates below fully fine-

tuned models of the same architecture (and always below the best-performing model for each 

task) trained by Yang et al. (2022) (Table A.1.4),10 indicating that the saturation is not 

because downstream task performance has hit an upper bound.  

To supplement our quantitative cut-offs for alignment, we qualitatively assess trends in layer-

by-layer performance across tasks. We observe that for all tasks where transfer learning 

improves performance over the baselines (including the secondary structure prediction 

tasks), the largest gains in performance occur in the first 3-5 layers of both the ESM and 

CARP models, across model sizes (Figure 2.3b and 2.4b). However, unlike the secondary 

structure prediction tasks, which continue to improve in performance past this initial peak, 

improvement on the downstream tasks in this cluster generally plateaus (e.g., for the AAV – 

two vs many task), supporting our interpretation that features contributing to these tasks are 

already present within the first few layers of pretrained PLMs. 

Interestingly, although none of these tasks scale with model depth or pretraining loss, two 

downstream tasks (thermostability and AAV – two vs many) scale with PLM size (Figure 

2.4a). We reasoned that while our random init ablation rules out that improvements in 

downstream task performance is entirely due to parameterization, parameterization may still 

partially contribute to performance independently of feature reuse. To test this, we 

additionally evaluated the performance of small and medium randomly initialized models. 

Indeed, we observe that both types of randomly initialized models scale in performance with 

model size for both tasks, and in similar proportions to the improvements for the pretrained 

models (Table A.1.4). Together, this suggests that observing that downstream task 

performance scales with model size alone is not sufficient to conclude that pretraining and 

downstream tasks are aligned, and that demonstrating scaling across other axes (such as 

model depth and checkpoints in training, as we propose here) is necessary.  
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Figure 2.4. Results for tasks where transfer learning improves downstream task performance, but the pretrain 

and downstream tasks are not aligned. a) Performance on downstream tasks when transferring the final layer 

representation from various sizes of ESM and CARP compared to baselines and ablations. b) Downstream task 

performance by depth of layer transferred. c) Downstream task performance by pretraining loss. Each dot is a 

model checkpoint. For all subplots, downstream task test performance is quantified using Spearman’s rank 

correlation. 

2.5.3 Some tasks do not benefit from MLM pretraining 

Finally, we observe a cluster of three downstream tasks (subcellular localization, GB1 – 

sampled, and GB1 – two vs rest) where pretraining does not improve transfer learning 

performance (Figure 2.5). For subcellular localization, although transfer learning improves 

over a one-hot representation, pretrained models perform no better than randomly initialized 

models, suggesting that the improvement can be entirely attributed to inductive biases and 

parameterization. In contrast, the GB1 tasks in this cluster fail to outperform a one-hot 

representation by at least 10% (Figure 2.5a and Table A.1.5). We hypothesize the GB1 splits 

in this cluster are either too trivial, or too challenging for any representation. GB1 – sampled 

is an in-distribution task with a relatively large training set, and all models and baselines 

perform well. Meanwhile, GB1 – two vs rest is a challenging out-of-distribution split. 

Intriguingly, our stats transfer ablation decreases performance for all GB1 tasks, including 
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the GB1 – low vs high task in the previous section, compared to the one-hot and random 

initialization baselines (Figure 2.4b and 2.5b; Tables A.1.4 and A.1.5). We hypothesize that 

this is because the GB1 dataset is a highly local task, depending on finding interactions 

between just four mutated positions in a sequence. 

 

Figure 2.5. Results for tasks where pretraining does not improve downstream task performance. a) 

Performance on downstream tasks when transferring the final layer representation from various sizes of ESM 

and CARP compared to baselines and ablations. b) Downstream task performance by depth of layer transferred. 

c) Downstream task performance by pretraining loss. Each dot is a model checkpoint. For subcellular 

localization, the downstream classification task performance is quantified using accuracy. For other tasks, the 

downstream regression task performance is quantified using Spearman’s rank correlation. 

2.6 Discussion 

In this work, we systematically evaluate the mechanisms via which transfer learning from 

large pretrained protein language models improve performance on downstream protein 

function and structure prediction tasks. While most downstream tasks benefit from transfer 

learning, of the tasks we evaluated, structure prediction is the only task where we observe 

pretrain-downstream alignment. Our results are consistent with previous studies that show 

MLM pretraining imparts information about protein structure. Previous work has shown that 
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the attention matrices in pretrained PLMs recapitulate contact maps,43,44 that it is possible 

to extract contact maps by perturbing the inputs to PLMs,45 and that PLM representations 

contain similar co-evolution information as multiple sequence alignments.8,14,46 

Other works have argued that larger models will not benefit fitness prediction when using 

zero-shot likelihoods from generative models,47,48 as some degree of misspecification is 

important for generalizing from natural protein distributions to mutant variants. Our results, 

which show that fitness prediction tasks do not scale with pretraining, are consistent with 

these prior works, but we show this holds true even when transferring embeddings and even 

with some degree of fine-tuning. At the same time, by showing that structural prediction 

tasks do scale with pretraining, our results suggest that these prior results may not be general 

past fitness prediction; one possibility is that fitness prediction usually involves mutant 

variants not seen in the databases of natural proteins used for pretraining, whereas the 

structural prediction tasks benchmarked in our paper classify secondary structural elements 

that will be seen in natural proteins. 

Our primary contribution is showing that scaling pretraining does not improve performance 

on prediction tasks that are less reliant on coevolutionary patterns, and that outperforming 

the one-hot and randomly initialized baselines does not imply that downstream task 

performance will scale with pretraining performance. While our observation that PLMs fail 

to scale on many downstream tasks may not generalize as our evaluation framework is 

extended over different pretraining tasks, architectures, datasets, and fine-tuning methods, 

by showing that performance over baselines is not always coupled with scaling, we provide 

a means for future models to improve on these limitations. 

Limitations. There are factors known to impact transfer that we could not test for PLMs due 

to a lack of public models or to computational expense. First, pretraining dataset is important, 

both in terms of distance between the pretraining and downstream task data domains49 and 

data size.20 PLMs pretrain on large databases of natural sequences. In principle, this means 

that some downstream tasks may be out-of-distribution (e.g., those involving artificial 

variation or non-natural function), or subject to biases in data collection (e.g., taxonomies 
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less-represented in UniProt).50 Previous studies have shown differences in pretraining 

performance by taxonomy,51 and that model likelihoods are biased towards more frequent 

species in UniProt.52 However, Meier et al. (2021)53 trained versions of ESM on UniRef100 

instead of UniRef50, and Dallago et al. (2021)16 show that they perform very similarly on 

function prediction tasks. Moreover, subsampling pretraining sequence datasets has not been 

explored beyond down-sampling redundant sequences, making the impact of data difficult 

to evaluate for pretrained PLMs. 

Second, a variety of other pretraining tasks have been proposed for protein transfer learning, 

such as autoregressive next-token prediction.54–56 Different pretraining tasks could 

potentially learn different aspects of protein biology, and thus have different patterns of 

scaling. While we only evaluated the MLM pretraining objective, future work that tests other 

pretraining tasks under our evaluation framework will be critical. However, from principle, 

we remain uncertain if existing tasks in literature will result in significant differences from 

MLMs. Many pretraining tasks still aim to reconstruct natural sequences57–60 and so are also 

likely to primarily learn coevolutionary patterns. Other tasks use structure as an additional 

input or target, but they generally make only modest improvements on function prediction 

tasks.61–64 Supporting the assertion that learning to predict structure may not improve 

function prediction, Hu et al. (2022)65 show that transfer learning using the AlphaFold266 

structure module is less effective for function prediction than transferring PLMs. Finally, 

Brandes et al. (2022)5 and Xu et al. (2023)67 reconstruct both sequence and functional 

annotations but also find that downstream performance does not always scale with 

pretraining time. 

Finally, we only test probes on frozen models to limit computational cost, but previous work 

shows that for many tasks finetuning the PLM end-to-end outperforms a linear probe or 

training a small neural network on top of the frozen pre-trained weights,10,16 and that mean-

pooling is rarely optimal.23,68 In computer vision, models trained on different datasets49 and 

pretraining tasks26 exhibit different finetuning dynamics, and there is some evidence for this 

in proteins as well.23 More sophisticated approaches to finetuning (such as using automated 
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ML to select architecture of probe) could further improve performance, and introduce 

different patterns of alignment. 

Besides studying further factors that may impact transfer learning, improvements to our 

evaluation could better understand details of mechanism. Transformer PLMs often learn 

sparse attention matrices,43,44 so one question is if it is the sparsity that drives performance, 

or if pairwise attention must be placed on the correct pairs of residues (as opposed to any 

pairs). However, our current baselines do not permit this understanding: both random init 

and stat transfer do not guarantee that sparsity in attention matrices is preserved. 

Finally, although we require that downstream task performance scale with improvements on 

the pretraining task and specifically analyze three axes of scaling (model size, depth of 

model, and checkpoint in pretraining), it is unclear if all three axes are necessary. For 

example, effective self-supervised learning tasks in computer vision often diverge in their 

final layer representations relative to supervised models,26 suggesting that downstream task 

performance may not always improve monotonically with layer depth, even when pretraining 

is effective. However, in our specific context, we chose to include scaling with layer depth 

because we thought it to be an explanation of potential mechanism for why scaling other 

axes does not translate into downstream task performance. We observed that even though 

larger models and models pretrained for longer generally achieve better performance on the 

pretraining task, this often does not translate into downstream task performance. Our layer 

depth experiments show that downstream task performance often saturates alarmingly early: 

for the tasks where pretraining improves downstream task performance, but this 

improvement does not scale, downstream task performance usually saturates within the first 

3-5 layers of models (Figure 2.4), even in models with 30+ layers. This observation suggests 

that PLMs are currently burning the majority of their capacity parameter-wise on modeling 

the pretraining task, with very few of the learned features contributing to both the pretraining 

and downstream tasks jointly. However, our rationale for why we included layer depth as an 

axis of scaling contributing to “alignment” is dependent on this context, so ultimately, our 
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definition of “alignment” is oversimplified, and future work should further analyze the 

interplay and interaction between different axes of scaling. 

Implications for future work. Together, the number of factors that can potentially impact 

transfer learning means that there are many opportunities for future work to address the 

limitations in scaling that we identified in our work. Towards this goal, our work provides 

an improved evaluation standard for PLMs. We show that checking for improved 

performance over baselines may overestimate the generality of PLMs across applications in 

protein biology, as it does not rule out that improvement may be due to alternate hypotheses 

that do not scale. However, most current works rely on comparisons to baselines to argue 

that PLMs are widely applicable, and to the extent scaling has been studied, most only use 

scaling on structure prediction accuracy alone to justify training larger models.6,8,9,69 Future 

PLM evaluation should therefore assess scaling on diverse downstream function prediction 

and engineering tasks, and not just structure alone, to validate the generality of models. 

Second, synthesizing our empirical results with how the current landscape of protein 

sequence pretraining tasks primarily align with structure prediction, our work points to a 

need for new pretraining tasks. For many downstream tasks, the lack of alignment prevents 

transfer learning from taking full advantage of the pretrained model, as features from deep 

in the PLM perform no better than features from early layers in the PLM. Likewise, for these 

tasks, simply scaling to larger PLMs trained for more steps on more data may not improve 

performance. Our study suggests that the field needs to explore diversified pretraining 

strategies instead of further scaling existing strategies in order to reach aspects of protein 

biology that are not currently well-served by PLMs. 
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C h a p t e r  3  

MACHINE LEARNING-ASSISTED DIRECTED EVOLUTION ACROSS 
DIVERSE COMBINATORIAL LANDSCAPES  

Material from this chapter appears in: “Li, F.-Z., Yang, J., Johnston, K. E., Gürsoy, E., 

Yue, Y. & Arnold, F. H. Evaluation of machine learning-assisted directed evolution across 

diverse combinatorial landscapes. bioRxiv (2024). doi: 10.1101/2024.10.24.619774.” 

 

ABSTRACT 

Various machine learning-assisted directed evolution (MLDE) strategies have been shown 

to identify high-fitness protein variants more efficiently than typical directed evolution 

approaches. However, limited understanding of the factors influencing MLDE 

performance across diverse proteins has hindered optimal strategy selection for wet-lab 

campaigns. To address this, we systematically analyzed multiple MLDE strategies, 

including active learning and focused training using six distinct zero-shot predictors, across 

16 diverse protein fitness landscapes. By quantifying landscape navigability with six 

attributes, we found that MLDE offers a greater advantage on landscapes which are more 

challenging for directed evolution, especially when focused training is combined with 

active learning. Despite varying levels of advantage across landscapes, focused training 

with zero-shot predictors leveraging distinct evolutionary, structural, and stability 

knowledge sources consistently outperforms random sampling for both binding 

interactions and enzyme activities. Our findings provide practical guidelines for selecting 

MLDE strategies for protein engineering. 
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3.1 Introduction for Chapter 3 

Engineered proteins are indispensable across myriad applications, serving as effective 

therapeutics to combat diseases, non-toxic agents to enhance crops, and green biocatalysts to 

synthesize chemicals.1 The development of such useful proteins often involves directed 

evolution (DE), a method for accumulating beneficial mutations using iterations of 

mutagenesis and functional assessment by selection or screening.2–4 DE is an empirical, 

greedy hill climbing process on a high-dimensional fitness landscape that maps protein 

sequence to function (Figure 3.1a).5,6 Despite its widespread use, DE remains time-

consuming and resource-intensive: screening is expensive, and multiple rounds of mutation 

and screening may be needed to generate the desired improvements. 

Fitness landscapes are more rugged and difficult to traverse when they are rich in epistatic, 

or non-additive, effects of amino acid substitutions.7,8 Epistasis is often observed between 

mutations in close structural proximity9 and is enriched at binding surfaces or enzyme active 

sites, due to direct interactions between residues, substrates, and/or cofactors.8 Protein 

engineers frequently target mutations to these interacting sites to enhance a function, often 

using simultaneous site-saturation mutagenesis (SSM) to make libraries in which the targeted 

amino acids are mutated to many or all 19 other possible amino acids.10 Combining the 

beneficial mutations found at these sites often reveals epistatic effects. For example, 

beneficial mutations in the context of the initial sequence may not be beneficial in 

combination with other mutations. Therefore, epistasis can present a significant challenge 

for DE.3  

Compared to DE, machine learning-assisted DE (MLDE) has shown promise for exploring 

a broader scope of sequence space and more effectively navigating epistatic landscapes.11–13 

MLDE utilizes supervised ML models trained on sequence-fitness data to capture non-

additive effects. The trained models can then be used to predict high-fitness variants across 

the entire landscape in a single evaluation round (MLDE)11,12,14 or iteratively in an active 

learning (ALDE) fashion.15–17  
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The choice of the training set can greatly influence the performance of the ML models. 

One can randomly sample the full combinatorial space for training the model (MLDE) or 

alternatively do focused training (ftMLDE)12 by selectively sampling to avoid low-fitness 

variants. In the latter, the quality of the training set can be enriched with more-informative 

variants using zero-shot (ZS) predictors to reach high-fitness variants more effectively.12 ZS 

predictors estimate protein fitness without the need for experimental data: they are instead 

based on prior assumptions and leverage auxiliary information, such as protein stability, 

evolutionary data, or structural information.18–26 

Although ML in protein engineering has been demonstrated in different case studies,11,27–37 

most MLDE11,15,16 and ftMLDE12 studies on epistatic landscapes have been benchmarked 

against a single dataset on the B1 domain of an immunoglobulin-binding protein G (GB1).38 

Thus, two key issues persist: first, the effectiveness of different MLDE strategies on proteins 

with complex functions, such as enzymes, remains uncertain and, second, the principles that 

guide successful use of MLDE strategies across diverse protein properties are not 

understood. Furthermore, despite a growing array of ZS options,25 there is no definitive 

guideline for selecting predictors for a given application. This challenge is particularly 

pronounced for combinatorial epistatic landscapes.23,39  

Recent experimental studies40–45 provide a wealth of data on a broader array of protein fitness 

landscapes, enabling us to start establishing best practices and generalizable guidelines for 

practitioners working with various proteins. To contextualize the benefits of MLDE, ALDE, 

and focused training, we conducted a comprehensive study of 16 diverse combinatorial 

protein fitness landscapes. They span six protein systems and two function types (protein 

binding and enzyme activity). Consisting of variants that are simultaneously mutated at three 

or four residues, these landscapes vary in landscape attributes (Box 3.1), such as statistical 

measures (including the number of active variants and fitness distribution properties) as well 

as ruggedness (a measure of the prevalence of fitness interactions among variants,46 

including pairwise epistasis and the number of local optima). This study focuses on two 

questions using comprehensive computational analyses: (1) When do MLDE, multiple 
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rounds (such as in ALDE), and focused training (ft) offer a significant advantage compared 

to DE? (2) How can we best select and utilize the ZS predictor(s) for focused training? 

Box 3.1. Definitions of important terms used in this study. 
 
Term Definition 

N-site (!!"#$) 
combinatorial landscape 

A mapping of 20%!"#$ possible sequences to their corresponding fitness values. Specific sites can be selected 
based on prior experiments, system-specific insights, or computational predictions. 

Library A set of experimentally generated protein variants covering a portion of the landscape. 

Navigability The ability to traverse the fitness landscape from lower- to higher-fitness sequences through single amino acid 
substitutions in a sequence. 

Landscape attribute Empirically derived values used to quantify a fitness landscape’s navigability. 

Fitness statistics Landscape attributes derived from the fitness distribution, including the percent of active variants and 
distribution shape (i.e., tail behavior, peak location, and multimodality). 

Ruggedness48,50 Landscape attributes quantifying (1) non-magnitude epistasis, challenging for DE to navigate and (2) local 
optima, where no neighboring variant with a single amino acid substitution has higher fitness. 

Rounds (!&'(%)) The number of generations of wet-lab experiments conducted to collect fitness values. 

Total number of unique 
variants (!#'#*+) 

The total number of unique variants sampled by a given strategy across all rounds. 

Site-saturation 
mutagenesis (SSM)10 

An experimental method for generating libraries by substituting targeted amino acids with many or all 19 
other possible amino acids. 

Directed evolution (DE) An iterative protein engineering process that begins with an active variant (“parent”) and accumulates amino 
acid substitutions to improve protein fitness. DE strategies include recombination (“recomb” and “top96 
recomb”, both with !&'(%) = 2 rounds, which consist of a round of simultaneous SSM at all !!"#$ sites and a 
test round) and greedy hill climbing (“single-step”, with !&'(%) = !!"#$ rounds, which consists of successive 
rounds of SSM at each site). The total number of unique variants is given by !#'#*+ = !!*,-+$ +	!#$!#, where 
!!*,-+$ = 19	 × 	!!"#$ + 1 for all strategies. The number of test variants !#$!# is 1 for recomb DE, 96 for 
top96 recomb DE, and 0 for single-step DE. 

Machine learning-
assisted DE (MLDE) 

Implemented in two rounds: training-validation round (with !#&*"% = !#'#*+ − !#$!# variants) and testing round 
(with !#$!# = 96 variants). We report models trained with boosting ensembles using one-hot sequence 
encoding in the main text. See the Discussion and Supplemental information for alternative models (ridge 
regression), sequence representations (ESM-2 with three pooling options), and strategies (ESM-2 fine-tuning). 

Active learning-assisted 
DE (ALDE) 

Implemented in multiple rounds (!&'(%) = 2, 3, or 4), resembling batch Bayesian optimization. Each round 
samples !.*#/0 = !#'#*+	/	!&'(%) variants. We report boosting ensembles with greedy acquisition using one-
hot sequence encodings in the main text. See the Discussion and Supplemental information for alternative 
models (deep neural network ensembles) and acquisition functions (upper confidence bound and Thompson 
sampling). 

Zero-shot (ZS) predictor A computational approach to estimating protein fitness based on prior assumptions and auxiliary information 
(e.g., protein stability calculations, evolutionary data, or structural information). 

Zero-shot (ZS) score A numerical score generated by a ZS predictor approximating protein fitness. 

Focused training (ft) A variation of MLDE (ftMLDE) and ALDE (ftALDE) where the initial round sampling is enriched with 
variants whose ZS scores are in the top 12.5% of the full library (referred to also as the focused training 
library). See the Discussion and Supplemental information for alternative cutoffs. 
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3.2 Results for Chapter 3 

3.2.1 Overview of landscapes 

For this study, we selected 16 experimental combinatorial landscapes covering a range of 

binding interactions and enzyme activities (Tables 3.1 and B.3.1; Box 3.1; Appendix B.2 

Methods).38,41–45 All landscapes feature mutations at binding interaction points, in active 

sites, or at positions previously shown to modulate fitness, all of which are often targeted for 

engineering tasks (Figure 3.1c). For binding, we examined two three-site bacterial toxin-

antitoxin ParD-ParE landscapes41 and the GB1 landscape for immunoglobulin binding.38 For 

enzyme activity, we analyzed a three-site dihydrofolate reductase (DHFR) landscape,42 a 

three-site T7 RNA polymerase landscape,43,44 a four-site TEV protease landscape,43,44 and 

ten three- or four-site landscapes of the thermostable β-subunit of tryptophan synthase 

(TrpB).45 

Table 3.1. Combinatorial landscapes analyzed in the main text (see Table B.3.1, Box 3.1, and 
Appendix B.2 Methods for details).38,41–45 
 

Landscape Protein Function Fitness 
MSA 
depth 

Variant 
space 

Sites 
Percent 
active 

Fraction of 
local 

optima 

Fraction of 
non-magnitude 

epistasis 
ParD2 Bacterial toxin-

antitoxin 
Binding 

interactions 
ParE toxin 

neutralization 
6789 203 

(8,000) 
I61, L64, K80 82.89 0.001 0.34 

ParD3 6784 D61, K64, E80 91.96 0.001 0.31 

GB1 
Protein G B1 

domain 
Binding 

interactions 
Binding affinity 

for IgG-Fc 
29 

204 
(160,000) 

V39, D40, G41, V54 23.13 0.005 0.40 

DHFR 
Dihydrofolate 

reductase 
Enzyme 
activity 

Trimethoprim 
resistance 

16042 
203 

(8,000) 
A26, D27, L28 10.68 0.004 0.42 

T7 
T7 RNA 

polymerase 
Enzyme 
activity 

T7 RNA 
polymerase 

activity 
309 

203 
(8,000) 

N748, R756, Q758 3.48 0.368 0.52 

TEV TEV protease 
Enzyme 
activity 

TEV protease 
activity 

164 
204 

(160,000) 
T146, D148, H167, S170 11.5 0.060 0.56 

TrpB3D 

β-subunit of 
tryptophan 
synthase 

Enzyme 
activity 

Tryptophan 
formation 

5816 

 
203 

(8,000) 

T117, A118, A119 9.26 0.043 0.50 
TrpB3E F184, G185, S186 2.02 0.348 0.63 
TrpB3F L162, I166, Y301 1.06 0.232 0.54 
TrpB3G V227, S228, Y301 1.37 0.213 0.52 
TrpB3I Y182, V183, F184 32.04 0.006 0.43 

TrpB4 
204 

(160,000) 
V183, F184, V227, S228 6.15 0.057 0.46 

 
We first characterized the landscapes to provide interpretation for further evaluations. To 

minimize the misalignment between theoretical landscape modeling and experimental 

applications, we selected two groups of empirical and interpretable attributes derived directly 
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from the datasets: (1) fitness statistics (which do not incorporate sequence information) 

and (2) landscape ruggedness (which involves mapping sequences to fitness) (Figure 3.1a; 

Box 3.1; Appendix B.2 Methods).47–54 We used the following statistics to indirectly infer 

the complexity of the fitness landscape: the percentage of active variants, the fitness value 

corresponding to the Cauchy peak location, the kurtosis of the fitness distribution 

(“tailedness”), and the number of kernel density estimation (KDE) peaks (Appendix B.2 

Methods). The Cauchy distribution is known for its heavy tails. We sought to use the fitness 

corresponding to its peak location as a landscape attribute to capture the majority of the 

variant finesses. KDE is a non-parametric method for estimating the probability density 

function of fitness distribution. KDE does not assume any specific underlying distribution 

for fitness and is useful for smoothing out noise. We reasoned that the number of KDE peaks, 

reflecting the distribution modalities of fitness, could serve as a proxy for the underlying 

landscape navigability, which impacts the outcome of DE. 

To quantify ruggedness, which poses navigation challenges for DE,48,50 we included the 

number of local optima and the percentage of pairwise non-magnitude epistasis (Figure 

3.1a). We defined a local optimum as a variant that possesses higher fitness than all its active 

neighbors differing by a single amino acid substitution (Appendix B.2 Methods).42,45,47,48,50 

Recent studies have also highlighted the impact of epistasis on DE3,45 and emphasized that 

the majority of epistasis is pairwise.55 Thus, we also included the amount of non-magnitude 

pairwise epistasis (challenging for DE to navigate) as a relevant landscape attribute 

(Appendix B.2 Methods). 
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Figure 3.1. Summary of landscape attributes, simulations, and combinatorial landscapes. a) Landscape 

attributes include (1) fitness statistics (percent of active variants, tailedness, location of Cauchy peak, and 

number of peaks for kernel density estimation) and (2) ruggedness (number of local optima and percent of non-

magnitude pairwise epistasis) (Box 3.1; Appendix B.2 Methods). b) In silico simulations include three types of 

DE strategies (recomb, single-step, and top96 recomb), MLDE, multiple rounds of MLDE (ALDE), and focused 

training for both MLDE (ftMLDE) and ALDE (ftALDE) (Box 3.1; Appendix B.2 Methods). All DE and ML 

simulations were performed for each N-site library of a given landscape, where "!"#$ is the number of sites 

targeted for mutation. All strategies were evaluated using two metrics: (1) average maximum fitness achieved 

and (2) fraction reaching the global optimum. For ML simulations, a range of total unique variants screened 

("#%#&') was considered. MLDE and ftMLDE divided "#%#&' into a training-validation round ("#(&")) and an 
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evaluation round ("#$!# = 96, "(%*)+ = 2). Evaluation metrics were calculated based on the fitness of the 

top 96 ranked variants from the evaluation round. ALDE and ftALDE split "#%#&' across multiple rounds 

("(%*)+ = 2, 3, )*	4), with each round sampling ",&#-. = "#%#&' 	/	"(%*)+ variants. Evaluation metrics were 

calculated based on the fitness of the variants sampled in the final batch. MLDE and ALDE sampled the initial 

round randomly from the full N-site library, while ftMLDE and ftALDE sampled the initial round randomly 

from a focused library containing variants ranked in the top 12.5% of ZS scores from the full N-site library. 

Different models, sequence encodings, and focus training library cutoffs were tested (Box 3.1; Appendix B.2 
Methods). c) Combinatorial landscapes studied, categorized by the number of targeted sites ("!"#$ = 3	)*	4) 

and function types (binding interactions and enzyme activities) on six protein systems (ParD-ParE toxin-

antitoxin, GB1 immunoglobulin binding, dihydrofolate reductase, T7 RNA polymerase, TEV protease, and 

tryptophan synthase).5738,41,43–45 Targeted sites are highlighted in orange. We focus on libraries with at least 

1% active variants in the main text, while the remaining landscapes are detailed in the Supplemental 

information. The 1% threshold was extrapolated from the expected occurrence of one active variant in a 

traditional DE screening method of the largest landscape in this study (1	/	(4 × 20) × 100%; Appendix B.2 
Methods). 

3.2.2 All MLDE strategies consistently outperform DE, particularly as landscape 

navigability decreases 

We first assessed how landscape attributes influence the efficacy of protein engineering 

strategies. Specifically, we evaluated the outcomes of a protein engineering campaign using 

two metrics: (1) “average maximum fitness achieved” which is the fitness of the final variant 

achieved by each method on average and (2) “fraction reaching the global optimum”, which 

measures how frequently the true maximum fitness is reached. We explored these measures 

across MLDE, ALDE, focused training, and three different DE strategies (Box 3.1). The DE 

strategies are “recomb”, a recombination of the best SSM variant at each site (!!"!#$ =

19	 ×	!%&!' + 2 variants over !(")*+ = 2 rounds); “single-step”, an iterative process 

starting from any site with subsequent variants built on the best variant found (!!"!#$ =

19	 ×	!%&!' + 1 variants over !(")*+ =	!%&!' rounds); and “top96 recomb”, where SSM is 

performed at each position, all substitution combinations are calculated based on additive 

recombination, and the top 96 variants are selected (!!"!#$ = 19	 ×	!%&!' + 97 variants over 

!(")*+ = 2 rounds, where 96 is the number of wells in plates commonly used for screening; 

Figure 3.1b; Box 3.1; Appendix B.2 Methods).11,12,45 MLDE and ftMLDE trained an 

ensemble of models, employing either random or ZS predictor-guided training sample 

selection. The trained models were then used to predict fitness for all variants, where the top 

96 predicted variants were then used for evaluation (Figure 3.1b; Box 3.1; Appendix B.2 
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Methods).12 ALDE divided the total sample size equally into multiple rounds (!(")*+ =

2, 3, ,-	4), with each round of sampling guided by the acquisition function (Figure 3.1b; 

Box 3.1; Appendix B.2 Methods).17 Similar to how ftMLDE improved upon MLDE,12 

ftALDE used ZS predictors to select a more informative initial training set, instead of the 

random sampling used in ALDE. 

Considering the variability in throughput and expense of experimental screens, we explored 

a range of total number of unique variants screened (!!"!#$), from 120 to 2,016 samples 

(Figure 3.2a; Table B.3.2). On average across landscapes, MLDE (dashed light blue line) 

required 48 training samples (!!"!#$ = 144) to outperform recomb DE and 96 (!!"!#$ = 192) 

to surpass single-step DE for both metrics. It took 96 training samples (!!"!#$ = 192) for 

MLDE to match the average maximum fitness and 384 (!!"!#$ = 480) to achieve a 

comparable fraction reaching the global optimum to the most competitive DE strategy, 

“top96 recomb”. By incorporating various ZS predictors, ftMLDE (solid dark blue line) 

consistently outperformed MLDE with random sampling (showing a 4–12% improvement 

in average maximum fitness achieved for up to 960 training samples (!!"!#$ = 1,056) and a 

9–77% improvement in fraction reaching the global optimum across all training sample 

sizes; Table B.3.3); ftMLDE achieved the same levels of average maximum fitness and 

global optimum fraction as MLDE but with fewer training samples required (Figure 3.2a). 

These results suggest that MLDE can identify high-fitness variants more effectively than DE, 

and its performance improves with more training data. Focused training with ZS predictors 

can further improve performance compared to MLDE with random sampling. 
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Figure 3.2. Performance of MLDE, ALDE, and focused training, compared with DE and correlated to six 

landscape attributes. a) Comparison of DE, MLDE, ALDE, ftMLDE, and ftALDE performance, averaged 

across 12 landscapes with at least 1% active variants. Shading indicates the standard deviation. Performance 

is shown for i) the maximum fitness achieved and ii) the fraction of campaigns reaching the global optimum, 

for different numbers of total unique variants sampled ("#%#&'). Three DE methods were included: recomb, 

single-step, and top96 recomb. DE simulations started from all active variants (Appendix B.2 Methods). The 

triangle and diamond indicate the total number of unique variants sampled for DE, where "#%#&' = "!&/0'$ +
	"#$!# and "!&/0'$ = 19 ×	"!"#$ + 1 (Box 3.1; Appendix B.2 Methods). The vertical line marks a total sample 

size of 480, where 384 variants were sampled for training and the top 96 predicted variants were used for 

testing in MLDE and ftMLDE; two rounds of ALDE (ALDE) sampled 240 variants per round; three rounds of 

ALDE (ALDE x 3) sampled 160 variants per round; or four rounds of ALDE (ALDE x 4) sampled 120 variants 

per round (i.e., "#%#&' = 480 = 	"#(&") +	"#$!# = 384 + 96 = 	"(%*)+ × ",&#-. = 	2 × 240 = 3 × 160 =
	4 × 120). Subsequent results expand on this "#%#&' = 480 setting. See Figure S1 for landscapes with fewer 

than 1% active variants, Figure S2 for Elo ratings, and Figures S3–S4 for individual landscapes. b) Single-step 

DE, MLDE, ALDE, and focused training results broken down by landscape, with a total sample size of 480 

("#%#&' = 480) for both metrics. See Figure S5 for landscapes with fewer than 1% active variants. c) 

Spearman’s rank correlation of ML strategy performance improvement (the average maximum fitness of the 

top 96 predicted variants by ML methods over single-step DE, y-axis) with six landscape attributes (x-axis): i) 

percentage of active variants, ii) fraction of local optima, iii) fraction of non-magnitude epistasis, iv) Cauchy 

peak location, v) kurtosis (tailedness), and vi) number of kernel density estimation (KDE) peaks (Appendix B.2 
Methods). See Figure S6 for ALDE and ftALDE, Table S4 for attribute-performance correlation and Table S5 

for fold improvements. For each MLDE and ftMLDE simulation, boosting models were trained on a range of 

"#(&") random samples from the entire or ZS-focused library using one-hot sequence encoding, with five-fold 

cross-validation. For each ALDE and ftALDE simulation, boosting ensembles with greedy acquisition function 

were trained with ",&#-. =	"#%#&'/"(%*)+ variants per round for "(%*)+=2, 3, or 4, respectively. The top 96 

or final batch variants were evaluated. Each ML simulation was averaged across 50 replicates (Box 3.1; 

Appendix B.2 Methods). ftMLDE and ftALDE performance were further averaged across six ZS predictors 

(details in the next section). 

Next, we compared ALDE (MLDE with multiple rounds of training and testing guided by 

the acquisition function)17 to MLDE (a single round of training and testing, equivalent to two 

rounds) with the same total number of variants screened. With two rounds, ALDE (dotted 

bright yellow line) began to outperform MLDE (dashed light blue line) after 480 total 

samples for average maximum fitness achieved and 288 total samples for fraction reaching 

the global optimum but did not outperform ftMLDE (solid dark blue line) until 1,056 samples 

for both metrics. With four rounds, ALDE (dotted light brown line) matched or exceeded 

ftMLDE performance. With focused training, ftALDE matched or surpassed ftMLDE with 

the same number of rounds (!(")*+ = 2) and showed further improvement with additional 

rounds (ftALDE x 3 and ftALDE x 4; Figure 3.2a). However, for libraries with fewer than 

1% active variants, even four rounds of ALDE (without focused training) consistently 
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underperformed compared to ftMLDE (Figure B.3.1). Our observations underscore the 

utility of focused training using ZS predictors here, enabling MLDE to match multi-round 

ALDE performance and offering further improvement to ALDE. 

Given the large standard deviations in the performance of different approaches across 

landscapes, we first validated our comparisons using the Elo rating system, a method widely 

used in model benchmarking and competitive games (Figure B.3.2; Appendix B.2 

Methods).56,57 We then examined how each approach performed on individual landscapes 

and found that some landscapes exhibited more significant improvements than others 

(Figure 3.2b and Figures B.3.3–B.3.5). We quantified the improvements of ML strategies 

over single-step DE and found that ML strategies offered a greater advantage on landscapes 

which were more challenging for DE to navigate. To better understand when DE struggled, 

we calculated six different attributes to provide insights into landscape navigability (Figure 

3.2c; Appendix B.2 Methods). Specifically, the mean maximum fitness achieved by DE 

correlated positively with the fraction of active variants (Spearman’s ρ = 0.50) and the fitness 

distribution’s Cauchy peak location (Spearman’s ρ = 0.70), indicating improving 

navigability by DE (Table B.3.4). Consequently, the improvements resulted from all ML 

methods were anti-correlated with percent active (Figure 3.2c–i) and Cauchy peak location 

(Figure 3.2c–iv). Greater kurtosis (tailedness) and number of KDE peaks of the fitness 

distribution hindered DE navigability (Spearman’s ρ = -0.82 and -0.80, respectively; Table 

B.3.4). ML methods thus improved performance most significantly for landscapes with high 

tailedness and more KDE peaks (Figures 3.2c–v and vi). Similarly, increased landscape 

ruggedness decreased DE navigability, yielding greater benefit of using ML methods over 

DE for such landscapes. DE navigability was anti-correlated with the fraction of local optima 

and the fraction of non-magnitude epistasis (Spearman’s ρ = -0.76 and -0.73, respectively; 

Table B.3.4), and thus the net improvement of ML methods over DE was positively 

correlated with both more local optima (Figure 3.2c–ii) and more non-magnitude epistasis 

(Figure 3.2c–iii). Indeed, ftMLDE demonstrated the most substantial performance 

improvements (3.5-fold) for one of the least navigable landscapes (TrpB3E; Table B.3.5). 

The performance improvements from different rounds of ALDE and ftALDE were also 
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correlated with landscape navigability defined by the six attributes (Figure B.3.6; Tables 

B.3.4 and B.3.5). 

3.2.3 ZS predictors provide orthogonal priors on protein fitness that improve focused 

training performance 

Next, we sought to understand the effectiveness of different ZS predictors for fitness 

prediction and their ability to improve ftMLDE and ftALDE performance across landscapes. 

ZS predictors could be useful for (1) effectively ranking variants to sample the fittest mutants 

(measured by Spearman’s correlation, Methods) and (2) classifying active/inactive variants 

to avoid sampling non-viable variants, especially in landscapes dominated by inactive 

variants (measured by active/inactive accuracy ROC-AUC, Appendix B.2 Methods). To 

evaluate the effectiveness and limitations of various ZS predictors under different 

assumptions and priors, we selected six distinct predictors across two axes: calculation vs. 

learning-based and sequence vs. structure-based. These predictors are Hamming distances, 

EVmutation, ESM-2, ESM-IF, CoVES, and Triad (Figure 3.3a; Appendix B.2 Methods).18–

22,59 To differentiate our work from comprehensive ZS predictor benchmarks that are largely 

limited to measuring the effects of single amino acid substitutions,25 we emphasized their 

utilities for focused training applications in epistatic landscapes. 

As a baseline, we used the Hamming distance as a ZS predictor, which counts the number of 

amino acid substitutions from the parent, a variant already exhibiting some activity. By 

setting a Hamming distance threshold, we essentially confined the sampling space to the 

vicinity of the parent to enrich the training set with more viable variants on average, since 

most mutations are deleterious.5 Indeed, we observed that the Hamming distance (indicated 

in blue) showed a weak correlation with fitness ranking (Figure 3.3b–i) and classified 

active/inactive variants better than random (Figure 3.3b–ii) as a ZS predictor. Notably, 

Hamming distance relied on the parent defined by the authors of each landscape, rather than 

a randomly sampled active variant as in the DE simulations. Since these landscapes were 

designed to have variant activity levels both higher and lower than the parent, the parent and 

its neighboring variants were likely to be more fit and active than those around a randomly 
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selected active variant (Figure B.3.7). Although the landscape parent was one of the most 

active variants, contributing to strong Hamming distance performance, Hamming distance 

still outperformed random predictions in fitness ranking (Figure B.3.8) and active/inactive 

classification (Figure B.3.9) on average, when different active variants were used as the 

parent. In the focused training setting, Hamming distance-guided training set sampling 

outperformed random selection, improving both the average maximum fitness achieved 

across all total sample sizes (Figure 3.3e–i) and fraction reaching the global optimum, up to 

total sample sizes of 1,056 for ftMLDE (Figure 3.3e–ii) and 480 for ftALDE (Figure 

B.3.10). 

Various ZS predictors can incorporate implicit evolutionary conservation based on the 

distribution of naturally occurring sequences. The EVmutation score predicts the fitness 

effect of a given set of substitutions based on conservation and evolutionary couplings 

through multiple-sequence alignment (MSA).18,60 We observed that EVmutation (indicated 

in green) outperformed the Hamming distance for both ranking fitness values (Figure 3.3b–

i) and classifying active/inactive variants (Figure 3.3b–ii). Moreover, it was one of the best 

ZS predictors for focused training across all sample sizes on both metrics (Figure 3.3e). 

Similarly, protein language models (PLMs) can capture these evolutionary conservations by 

learning to predict the original identity of masked or corrupted amino acids.61,26,62–66 The 

likelihood of filling such amino acids can be thought of as a predictor for different amino 

acid substitutions given the sequence context.19 The ESM-2 score (Evolutionary Scale 

Modeling,26 indicated in purple) from one of such state-of-the-art PLMs performed similarly 

to EVmutation as a ZS predictor for both fitness ranking (Figure 3.3b–i) and active/inactive 

classification (Figure 3.3b–ii). It also did not further improve upon EVmutation in the 

focused training setting (Figure 3.3e). 

Incorporating structural context can also be useful for ZS predictions. ESM-IF (ESM inverse-

folding, indicated in yellow) is an inverse-folding model trained to predict a protein sequence 

from its backbone atom coordinates, where effects of substituting amino acids can be 

approximated with the likelihoods of each possible sequence for this reconstruction task.20 
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We observed that ESM-IF was one of the best ZS predictors for fitness ranking (Figure 

3.3b–i) and active/inactive classification (Figure 3.3b-ii), alongside EVmutation and ESM-

2. In the focused training setting, ESM-IF score did offer a consistent advantage over the 

sequence-only ESM-2, but only offered a slight advantage over EVmutation at either low or 

high number of samples (i.e., !!"!#$=120, 144, 1,056, and 2,016, Figure 3.3e). CoVES 

(Combinatorial Variant Effects from Structure, indicated in brown) learns to predict a 

masked amino acid identity from its surrounding atomic-level structural microenvironments 

but does not account for epistasis.21 Compared to ESM-IF, we observed that CoVES was a 

slightly less effective ZS predictor for fitness estimation (Figure 3.3b) and in the focused 

training setting (Figure 3.3e), but it was still one of the most effective predictors for 

improving over random sampling. 

An alternative local structure-based ZS score utilizes physics-informed stability calculations. 

Stability is an important prior for protein function, as an unfolded or misfolded protein is less 

likely to be functional.12,22 The Triad score estimates mutant stability by calculating the 

change in its free energy of folding relative to the parent (ΔΔGf) using a Rosetta energy 

function.12,59 While Triad (indicated in orange) was the weakest predictor for variant fitness 

ranking (Figure 3.3b–i), it classified active/inactive variants fairly well (Figure 3.3b–ii) as 

a ZS predictor. Triad-guided training set sampling outperformed random selection in the 

ftMLDE setting, up to a total sample size of 1,056 for both metrics (Figure 3.3e). In the 

ftALDE setting, it outperformed random selection up to a total sample size of 576 for average 

maximum fitness and 384 for the fraction reaching the global optimum (Figure B.3.10). The 

relative differences between ZS predictors in focused training remained consistent across 

different rounds of ftALDE. However, in libraries with fewer than 1% active variants, these 

differences were minimized, and all ZS-guided focused training approaches showed a 

significant advantage over random sampling (Figures B.3.11– B.3.12). 
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Figure 3.3. Summary of different ZS predictors and their impacts on focused training across landscapes. a) Six 

ZS predictors: i) Hamming distance, ii) EVmutation (coevolutionary conservation),18,60 iii) ESM-2 (mutant 

likelihood from pretrained protein-language model),19,26 iv) ESM-IF (mutant likelihood from pretrained 

inverse-folding models based on sequence and structure information),20 and v) Triad (mutant stability 

ΔΔGf).12,59 b) ZS predictor performances in terms of correlation between ZS score ranking and fitness ranking 

(Spearman’s ρ) and active/inactive classification accuracy (ROC-AUC) across 12 landscapes with at least 1% 

active variants. The cross and central line represent the mean and median, respectively. Boxes show the 

interquartile range (IQR), and whiskers extend up to 1.5× IQR. Outliers (gray circles) represent values beyond 

this range. Dotted gray line indicates random classification. c) Correlation of the fitness ranking Spearman’s ρ 
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with MSA depth for each ZS predictor. Statistical significance (p-value <0.05) is indicated as * (Table B.3.6). 

Dotted gray line indicates no correlation. d) Pairwise Spearman’s correlation among six ZS predictors 

averaged across 12 landscapes. e) Performance of focused training with different ZS predictors including the 

best Hamming distance ensemble, averaged across 12 landscapes. Shading indicates the standard deviation. It 

assesses i) the maximum fitness achieved and ii) the fraction reaching the global optimum in relation to the 

number of samples used by ftMLDE. For each MLDE and ftMLDE simulation, boosting models were trained 

on 384 random samples from the entire or ZS-focused library using one-hot sequence encoding, with five-fold 

cross-validation. The top 96 predicted variants were evaluated. Each ML simulation was averaged across 50 

replicates (Appendix B.2 Methods). The vertical line marks a total sample size of 480 (e.g., 384 sampled 

variants for training and top 96 predicted variants for testing). See Figure B.3.10 for ALDE and ftALDE, 

Figures B.3.11, B.3.12, and B.3.15 for landscapes with fewer than 1% active variants, Figure B.3.16 for Elo 

ratings, and B.3.17–B.3.22 for individual landscapes.  

To facilitate ZS predictor selection and ensembling, we first examined how the fitness 

ranking performance of ZS predictors correlated with the depth of multiple sequence 

alignments (MSAs) (Figure 3.3c; Table B.3.6; Appendix B.2 Methods). We found that the 

performance of the physics-based Triad and the structure-only CoVES did not correlate with 

MSA depth, confirming their independence from evolutionary data. In contrast, the three 

sequence-based predictors, Hamming distance, EVmutation, and ESM-2 did show 

correlation with MSA depth. Despite being a hybrid sequence-structure model, ESM-IF 

captured evolutionary information to a similar extent as EVmutation, likely because over 

99% of its structures were predicted from similar sequence databases (the UniRef family).20 

We then investigated the relationship between different ZS predictors using pairwise 

correlations (Figure 3.3d; Appendix B.2 Methods).67,68 Within each modality, sequence-

based (Hamming distance, EVmutation, and ESM-2) or structure-based (CoVES and Triad), 

all ZS predictors exhibited at least a 0.5 Spearman’s correlation with each other. ESM-2 and 

EVmutation showed the strongest correlation (Spearman’s ρ = 0.78), suggesting PLMs like 

ESM-2 may capture similar coevolutionary information as MSAs used by EVmutation.26,69,70 

ESM-IF showed similar correlations with both the structure-only CoVES (Spearman’s ρ = 

0.62) and the sequence-only ESM-2 (Spearman’s ρ = 0.62) and EVmutation (Spearman’s ρ 

= 0.63). Despite being distinct approaches, all four learning-based predictors captured related 

information. However, Triad had only moderate correlations with the other two structure-

based predictors (Spearman’s ρ = 0.5) and weak correlations with the three sequence-based 

predictors (Spearman’s ρ < 0.4). Hamming distance showed moderate correlations with 
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ESM-2 and EVmutation (Spearman’s ρ = 0.6 and 0.5, respectively) but it was weakly 

correlated with the structurally inclined predictors (Spearman’s ρ < 0.4). This underscores 

the orthogonality between learning-based models, a naive protein engineering prior, and a 

physics-based approach. Thus, we hypothesized that ensembling orthogonal ZS predictors 

may further enhance focused training by synergizing complementary information sources. 

We evaluated whether ensembling Hamming distance with other ZS predictors enhanced 

focused training performance compared to each predictor alone. Prefiltering with a Hamming 

distance (by restricting variants to those within two amino acid substitutions of the parent 

sequence) boosted focused training performance from each ZS predictor up to 192 total 

samples (left vertical gray line in Figure B.3.13). This benefit extended to 480 total samples 

for ESM-2 and ESM-IF (right vertical gray line in Figure B.3.13) and continued to 1,056 for 

EVmutation for both average max fitness achieved (Figure 3.3e–i) and fraction reaching the 

global optimum (Figure 3.3e–ii). However, the benefits diminished beyond a total sample 

size of 480, due to this pre-constrained sampling space. In contrast, ZS ensembles with Triad 

did not show significant improvement (Figures B.3.14– B.3.15). This suggests that, despite 

its orthogonal information, the physics-based Triad predictor offered no further benefit to 

focused training performance. Similarly, naively ensembling the two top-performing 

predictors, ESM-IF and EVmutation, yielded no additional improvements nor did naive 

ensembling of other high-performing but orthogonal predictors (i.e., CoVES with 

EVmutation or with ESM-2, Figures B.3.14– B.3.15). Elo ratings for ZS predictors and 

ensembles, along with individual landscape analysis, validated the advantage of ZS-guided 

focused training and the additional benefit of combining Hamming distance with other 

informative ZS predictors, especially for low total sample numbers (e.g., !!"!#$ ≤ 	480, 

Figures B.3.16–B.3.22; Appendix B.2 Methods). 

3.2.4 Landscape and functional attributes affect ZS predictability 

We next examined how ZS predictability differed across landscapes, specifically comparing 

those measuring binding interactions vs. enzyme activities (Figure 3.4a). All six ZS 

predictors ranked fitness values substantially better for binding interactions than for enzyme 
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activity (Figure 3.4a–i), with Triad showing a statistically significant difference (p-value 

= 0.001, Table B.3.7). The structure-based predictors (CoVES and Triad) were better at 

classifying active/inactive variants for binding datasets than for enzymatic ones, while the 

sequence-based predictors (Hamming distance, EVmutation, and ESM-2) performed better 

for the enzyme activity datasets. Hamming distance showed a statistically significant 

difference in the context of classification (p-value = 0.042, Figure 3.4a–ii; Table B.3.7). 

However, the differences between binding interactions and enzyme activities were no longer 

statistically significant for any ZS predictors in the focused training setting across different 

ML strategies (Figure 3.4b; Tables B.3.8– B.3.9). 

For 10 out of the 12 landscapes, all six ZS predictors successfully focused the training set to 

be more informative than random sampling, leading to improved ftMLDE performance for 

both metrics (Figure 3.4b). Harder-to-navigate landscapes and the libraries with fewer than 

1% active variants benefited more from focused training, provided the ZS predictor for 

active/inactive variant classification was better than random (ROC-AUC > 0.5, Figures 3.4, 

B.3.23, and B.3.29). TrpB3E (indicated in gray), one of the hardest-to-navigate landscapes 

(Figure 3.2c) with one of the lowest but still above-random active/inactive variant 

classification ROC-AUC (Figure 3.4a–ii), gained the most from all ZS predictors compared 

to randomly sampled MLDE training sets for both performance metrics (Figure 3.4b). 

Similar improvements in hard-to-navigate landscapes were consistently observed when 

comparing ftALDE with ALDE in the same round, and when considering different total 

sample sizes for each of the focused training approaches (Figures B.3.24–B.3.28). 

A falsely biased training set could negatively impact focused training performance. For 

DHFR (dihydrofolate reductase, indicated in blue), the structure-based predictions, Triad 

ΔΔGf and CoVES, performed poorly, with worse-than-random active/inactive classification 

(Figure 3.4a–ii, dashed gray line) and harmed ftMLDE performance for both metrics 

(Figure 3.4b). 
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Figure 3.4. Summary of different ZS scores and their impact on individual landscapes, grouped by function 

types. a) Six ZS predictor performance for each individual landscape in terms of i) Spearman’s correlation of 

ZS score ranking and fitness values ranking and ii) ROC-AUC of active/inactive classification. Random 

predictions are indicated in horizontal gray dashed lines. Statistical significance (p-value <0.05) is indicated 

as *. b) A breakdown of the ftMLDE results with a total sample size of 480 from Figure 3.3e, categorized by 

six ZS predictors and two functions (binding interactions and enzyme activities) for each landscape. Focused 

training improvement over randomly sampled training set (MLDE) is quantified by i) average maximum fitness 

and ii) fraction reaching the global optimum. See Supplemental information for landscapes with fewer than 1% 

active variants (Figures B.3.24–B.3.25), ftALDE with different rounds (Figures B.3.25–B.3.26) and ZS 

predictor impacts on focused training with 192 total samples (Figures B.3.24, B.3.27, and B.3.28).  

3.3 Discussion for Chapter 3 

Our findings confirmed that all the MLDE strategies tested exceeded or at least matched DE 

performance across 16 protein fitness landscapes, with the advantages becoming more 

pronounced as landscape attributes posed greater obstacles for DE (e.g., fewer active variants 

and more local optima). Using ZS predictors, which leverage various prior knowledge, 

enriched training sets in focused training enable further performance improvements. Overall, 

this computational study suggests that MLDE strategies are highly generalizable and can 

unlock better protein engineering outcomes than DE, and we present key considerations for 
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the effective deployment of these approaches. We expect that these findings will 

encourage and facilitate the adoption of ML-assisted directed evolution for efficient protein 

engineering. 

We note that making an equitable comparison of traditional DE methods and ML strategies 

is challenging. Iterative SSM-based DE methods inherently have a limited search space. The 

recombination methods we assessed only combined variants that contained single amino acid 

substitutions relative to the starting sequence. Single-step DE requires more rounds of 

engineering as the number of targeted sites increases, slowing the process. Furthermore, 

while we evaluated DE using the unique variants, in practice, ensuring adequate coverage of 

the variant space (e.g., 95%) typically requires close to three-fold oversampling (Figures 

B.3.3–B.3.4; Appendix B.2 Methods).71 In contrast, ML-assisted methods can explore a 

broader sequence space and continue to improve with more data, but they often rely on 

require direct synthesis of predicted variants or designed libraries. 

As a general recommendation for the implementation of ML strategies to guide protein 

engineering objectives, we introduce a decision-making process for selecting a campaign 

strategy (Figure 3.5). The first step is to assess whether the landscape is hard to navigate. 

This typically involves a low percentage of active variants and high percentage of pairwise 

non-magnitude epistasis, which can be inferred from prior knowledge (e.g., the percentage 

of active variants from single-site SSM experiments) or from the structural proximity of 

residues of interest to functional (binding or active) sites and to each other. We observed a 

weak negative correlation (Spearman’s ρ = -0.34, Table B.3.10) between the percentage of 

pairwise non-magnitude epistasis (where higher values indicate harder-to-navigate 

landscapes) and the average pairwise C-alpha distance of substituted residues (the smaller 

the distance, the closer the central carbon atoms of the two amino acids at the targeted sites, 

Appendix B.2 Methods). Next, determine whether there is a “good-enough” ZS prior–a ZS 

predictor that can classify active/inactive variants better than random, for example an 

evolutionary-based predictor when deep MSAs are available and fitness corresponds to 

largely native activity. Meanwhile, assess whether the number of total variants is low or 
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evolvability is low (e.g., the protein cannot tolerate multiple mutations at once). For hard-

to-navigate landscapes without prior information but low !!"!#$, using a Hamming distance 

threshold of two (i.e., constructing double-site libraries) can effectively enrich informed 

variant sampling for the training sets. Additionally, ZS predictor classification performance 

on single-site libraries can help identify predictors that may fail on larger combinatorial 

libraries (Figures B.3.29–B.3.30; Table B.3.11). For example, CoVES and Triad performed 

worse than random in classifying active/inactive variants for DHFR single amino acid 

substitutions (Figure B.3.29) and they also classified the full DHFR landscape worse than 

random (Figure 3.4a–i), which ultimately ablated the benefit of focused training (Figure 

3.4a–ii). Finally, consider whether the search space is large (e.g., four-site libraries) and 

whether the screening budget allows for multiple rounds. A decision tree is provided to assist 

users in selecting the appropriate strategy (Figure 3.5). 

 

Figure 3.5. Decision tree summarizing recommended ML strategies based on landscape navigability (e.g., 

percentage of active variants, pairwise epistasis), ZS prior (i.e., ROC-AUC > 0.5, evolution relevance), total 

number of variants screened experimentally ("#%#&') and the number of available screening rounds ("(%*)+). 

We define a landscape as “hard-to-navigate” if the average pairwise C-alpha distance of substituted residues 

was ≤10 Å72 or if the sites were in an enzyme active site. A “good ZS prior” was defined as using EVmutation 

if the MSA contained more than 1,000 sequences, using ESM-IF for binding interactions, and having no good 

ZS prior otherwise. Low "#%#&' was defined as "#%#&' ≤ 480, for which ZS predictors were ensembled with 

Hamming distance. A “large search space” was defined as a landscape targeting four or more sites (Appendix 
B.2 Methods). 



 

 

68 
Following this decision tree (Figure 3.5), we mimicked a prospective decision-making 

process to select an ML strategy and ZS for a given landscape. For a total of 480 unique 

variants screened, we would reach 0.93 ± 0.15 average maximum fitness and 0.75 ± 0.42 

fraction reaching the global optimal, averaged across all 16 landscapes (Table B.3.12; 

Appendix B.2 Methods). For a total of 2016 unique variants screened, we would reach 0.97 

± 0.12 and 0.85 ± 0.32, respectively (Table B.3.13; Appendix B.2 Methods). Although our 

analyses provide valuable insights about strategy selection, most decisions in this tree were 

retrospective in nature and may not fully capture campaign-specific nuances. The real test of 

generalization lies in applying these approaches to a broader range of landscapes and, 

ultimately, to real-world DE campaigns. 

We focused this study on combinatorial landscapes typically generated using SSM, which 

are often enriched in epistasis and present challenges for DE. In contrast, random mutations 

spread across a protein generally exhibit little epistasis, and thus beneficial mutations can 

often be combined to generate variants with higher fitness with great success using laboratory 

methods such as staggered extension process (StEP) recombination.73,74 Hence, we expect 

simple additive models to be competitive with more complicated frameworks. Hamming 

distance has been demonstrated to have a weak correlation with variant fitness in this 

context.23 Similarly, the ZS predictor benchmark has also been performed predominantly on 

datasets with random mutations spread across a protein.25 We expect our conclusions would 

generalize to other few-site studies and alternative active-learning frameworks.75 However, 

identifying critical target sites in an entirely new system remains a challenge; identification 

could benefit from computational tools but often requires some initial experimental 

screening. 

We also evaluated several additional design choices for ML strategies that had a more limited 

impact on MLDE performance. First, we explored more informative ways to represent 

protein sequences compared to a categorical encoding (one-hot, which has no learned 

information and treats all amino acids equally). Learned representations from PLMs (e.g., 

frozen ESM-2 embeddings) showed minimal to no improvement over one-hot encoding for 
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landscapes with at least 1% active variants (Figure B.3.31), including in the focused 

training setting (Figure B.3.32). However, they did exhibit improvements for landscapes 

with fewer than 1% active variants (Figure B.3.33). While not as beneficial as focused 

training (Figure B.3.11), learned representations may still enhance performance for 

particularly challenging landscapes when combined with focused training (Figure B.3.34). 

To leverage learned representations beyond frozen embeddings and assess the impact of 

focused training on fine-tuning, we fine-tuned ESM-2 with either randomly sampled or ZS-

guided variants. To mitigate overfitting risks,62 we adopted Low Rank Adaptation (LoRA), 

a parameter-efficient approach effective on diverse, non-combinatorial datasets.76 While 

LoRA fine-tuning with randomly sampled variants failed to outperform MLDE, focused 

training-based fine-tuning outperformed both fine-tuning and MLDE with randomly 

sampled variants (Figure B.3.35). For challenging landscapes with fewer than 1% active 

variants, focused training-based fine-tuning was among the most effective strategies, 

alongside ftMLDE and ftALDE (Figure B.3.36). More advanced strategies like meta-

transfer learning or learning to rank could further enhance performance, especially with 

limited training data.77 Additionally, we used boosting models to facilitate a direct 

comparison between MLDE and ALDE. Different model choices and ensembles, such as 

ridge regression for MLDE or deep neural network ensembles for ALDE (Figures B.3.37–

B.3.38), or hyperparameter tuning, could offer further improvements. Meanwhile, upper 

confidence bound and Thompson sampling acquisition functions performed similarly to the 

greedy acquisition function for ALDE (Figures B.3.39–B.3.40). For MLDE, we used top 96 

variants for evaluation across all training sizes. However, different splits between training 

and testing variants could be explored to achieve more optimal outcomes given a fixed total 

number of variants. We provide a codebase, SSMuLA (Site-Saturation Mutagenesis 

Landscape Assistant), which includes options for these granular design choices. While 

MLDE and ALDE can be run on CPUs, fine-tuning is much more computationally expensive 

and less feasible without GPUs. ZS predictions vary in runtime, ranging from seconds to a 

few hours (Appendix B.2 Methods). The computational cost scales linearly with number of 

rounds or number of samples for training and exponentially with number of sites for 
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evaluation. For larger search spaces, more efficient methods such as generative modeling 

may be necessary to reduce computational overhead and accelerate exploration. 

While we streamlined focused training design choices, we also identified areas for 

improvement. Based on testing individual ZS predictors across different thresholds of the 

original search space, we set the ZS-focused library threshold to the top 12.5%, ranked by 

ZS scores, across all landscapes (Figure B.3.41). We then naively ensembled ZS predictors 

to demonstrate the benefits of combining orthogonal priors (Appendix B.2 Methods). The 

current Hamming distance ensembled ZS-focused libraries inherently had a size cutoff (i.e., 

12.5% of a double-site library on a four-site landscape is 300). More sophisticated 

approaches, such as MODIFY,78 which balance ZS selection with training set diversity and 

manage the exploration-exploitation trade-off, may offer a more comprehensive and 

autonomous method for selecting and ensembling ZS predictors.  

There are also signs that ZS predictors are intrinsically limited for certain prediction tasks. 

For instance, the enabling K227 substitution in TrpB, which enables high-fitness variants 

under engineering conditions but is nearly undetectable in natural sequences, might not be 

adequately captured by EVmutation.45 Additionally, the performance of different ZS 

predictors varied even within the same protein, as observed in TrpB across different 

landscapes. This indicates that while natural evolutionary information can be predictive, it 

may fall short in capturing evolution in the laboratory. Furthermore, all the enzyme systems 

we studied primarily involved native or near-native functions, with a majority being TrpB 

landscapes. When applied to non-native functions, we expect that the usefulness of 

evolutionary-based ZS predictors will decrease, perhaps significantly so. Enzyme activities 

involve intricate catalytic mechanisms, including substrate recognition, transition state 

stabilization, and conformational changes.79 Some of the enzymes surveyed also involve 

multi-step reactions.80 These complexities make enzyme activities inherently more 

challenging to predict than binding interactions, which are often dominated by non-covalent 

intermolecular interactions. In the case of the TEV and T7 landscapes, none of the ZS 
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predictors consistently improved focused training performance from random sampling, 

suggesting room for the development of new ZS predictors. 

We selected ZS predictors to cover diverse modalities and methodologies, rather than 

focusing on exhaustiveness or the latest models. Benchmarks such as ProteinGym have 

evaluated a wealth of models, and new ZS predictors continue to emerge rapidly.25 Future 

work could explore hybrid and novel approaches. For example, TranceptEVE integrates 

family-specific alignments with a family-agnostic PLM,81 and ProSST and SaProt 

incorporate structural features distinct from inverse folding models that learn sequence 

distributions conditional on an input structure.82,83 Even within a single category like PLM-

based ZS predictors, differences in architecture and methodology exist. Unlike ESM-2, 

which uses masked language modeling objective,26 ProGen uses an autoregressive approach 

to predict amino acids sequentially,84 while PoET employs retrieval-augmented language 

modeling to incorporate external contextual information.85 These distinctions may affect 

performances, warranting further investigation to determine their relative advantages in 

different contexts. 

In summary, our study lays the groundwork for a ML-assisted protein engineering 

framework leveraging the strengths of multiple ML approaches, including MLDE, ftMLDE, 

ALDE, and, introduced here, ftALDE. With our growing ability to read86,87 and write 

sequences,88 along with improved tools for constructing libraries,89 we believe our findings 

will demystify the application of ML-based DE strategies and encourage their broader 

adoption in protein engineering. 
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C h a p t e r  4  

SUBSTRATE-AWARE ZERO-SHOT PREDICTORS FOR NON-NATIVE 
ENZYME ACTIVITIES 

Material from this chapter appears in: “Li, F.-Z., Radtke, L. A., Johnston, K. E., Liu, C.-

H., Yue, Y. & Arnold, F. H. Substrate-aware zero-shot predictors for non-native enzyme 

activities. GEM Workshop, ICLR (2025).” 

ABSTRACT 

Enzymes can be engineered to catalyze reactions with non-native substrates or even 

perform entirely new reactions unknown in nature. However, developing such novel 

activities through wet-lab engineering is time- and resource-intensive. By estimating 

enzyme activity without new experimental data, zero-shot (ZS) predictors can accelerate 

enzyme engineering. While ZS predictors have been demonstrated in various contexts, they 

have yet to be evaluated on non-native substrates and new-to-nature chemistry. Critically, 

many existing predictors do not explicitly encode substrate or transition-state properties, 

which we propose are essential for predicting new-to-nature chemistry. Here, we 

systematically studied two types of mechanistically distinct enzymes using 16 ZS 

predictors—including six general and ten substrate-aware scores derived from generative 

modeling, molecular docking, and active-site heuristics. We curated new experimental and 

literature mutation datasets spanning 11 non-native substrates and three new-to-nature 

reactions with 11 additional substrates. The six general ZS predictors could generalize to 

non-native substrates but failed for new-to-nature chemistries. In contrast, certain 

substrate-aware approaches could predict new-to-nature chemistries, with AlphaFold 3’s 

chain-predicted aligned error being the most predictive of both activity and 

stereoselectivity. A weighted ensemble of AlphaFold 3 and EVmutation scores generalized 

to all chemistries that we tested. Our findings highlight the potential of ZS predictors to 

accelerate enzyme engineering, advancing the expansion of the chemical universe beyond 

nature’s repertoire.  
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4.1 Introduction for Chapter 4 

Enzymes, nature’s catalysts, perform life-sustaining chemistry. Due to their exquisite 

specificity and selectivity, engineered enzymes have applications in therapeutics, 

bioremediation, and biocatalysis, where they can offer greener and more sustainable 

alternatives to conventional chemical methods.1,2 Beyond merely enhancing their native 

functions, significant efforts have focused on expanding enzyme repertoires to catalyze 

reactions with non-native substrates—or even perform entirely new chemistries unknown in 

biological systems, termed new-to-nature.3–6 The development of such enzymes often starts 

by identifying a promiscuous or side activity, which is then optimized for desired functions 

(termed “fitness”, Figure 4.1a).7,8 Fitness optimization typically employs directed evolution, 

a widely used method for accumulating beneficial mutations through iterative rounds of 

mutagenesis (to generate variants) and functional assessment by selection or screening.9,10 

However, this process is labor- and resource-intensive, particularly for challenging 

chemistries constrained by low-throughput data collection. 

Emerging computational tools, especially machine learning (ML)-based methods, have 

shown promise in accelerating enzyme engineering, from starting point discovery, to de novo 

designs and fitness optimization.11–18 A particularly appealing avenue is zero-shot (ZS) 

prediction: estimating variant fitness without relying on experimental data. ZS predictors 

leverage auxiliary information such as protein stability, evolutionary patterns, or structural 

features. These predictors have augmented supervised models to identify higher-fitness 

variants, guided experimental data collection for ML model training, and scored in silico 

designs for reinforcement learning or experimental validation.19–24 Recent benchmarks 

highlight the broad applicability of ZS predictors.25 However, these methods have yet to 

demonstrate capability across diverse enzyme-substrate pairs, particularly for out-of-

distribution non-native substrates and new-to-nature chemistries. Few studies also assess the 

ZS predictability of the reaction product stereoselectivity, a key factor influencing their 

structural and functional properties.26 Furthermore, existing enzyme-substrate datasets 

primarily focus on native or near-native activities and rarely address active-site mutations 
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that are critical to enabling fundamentally new chemistries.27,28 Most importantly, many 

existing ZS methods do not explicitly encode substrate or transition-state properties, which 

we hypothesize are essential for predicting new-to-nature chemistry. 

 

Figure 4.1. Overview of datasets and zero-shot (ZS) predictors. a) Enzyme engineering for reactions with 

nonnative substrates and new-to-nature chemistries. b) Six general ZS predictors, covering different modalities 

and auxiliary information, alongside ten substrate-aware predictors derived from generative modeling, 

molecular docking, and active-site properties. c) The PfTrpB reaction with the native substrate, indole, in a 

pyridoxal phosphate (PLP)-dependent manner, along with 11 non-native indole analogs. d) Heme-based new-

to-nature carbene transfer reactions with activity and stereoselectivity labels: i) ParLQ: protoglobin-catalyzed 

olefin cyclopropanation with 9 styrenes and ii) Rma cyt c-mediated formation of C–B (Rma-CB) and C–Si 

(Rma-CSi) bonds. Crystal structures illustrate the cofactors and active-site residues targeted for engineering. 

The number of unique enzyme-substrate pairs is listed under each reaction. 

Here, we curated new experimental and literature datasets for two types of mechanistically 

distinct enzymes and benchmarked six general and ten newly proposed substrate-aware ZS 



 

 

83 
predictors. Specifically, we evaluated their performance across 11 non-native substrates 

and three new-to-nature chemistries, covering 11 additional substrates (Figure 4.1). Each 

dataset includes active-site mutations designed to enhance specificity and selectivity, and 

introduce new chemistries.6 Our study addresses three key questions: 1) Do general ZS 

predictors generalize to non-native substrates and new-to-nature chemistries for both activity 

and stereoselectivity? 2) Are novel substrate-aware ZS scores, derived from generative 

modeling, molecular docking, and active-site properties, more generalizable than the general 

predictors? 3) Which combination of ZS predictors can best generalize across these 

chemistries? 

4.2 Methods and Datasets 

We examined the predictability of ZS predictors on activity, defined by absorbance or percent 

yield of the major product. Where applicable, we also studied stereoselectivity, defined as 

enantiomeric excess of the desired chiral isomer or diastereomeric excess of the desired 

diastereomer. We analyzed the effects of mutations in key active-site residues across two 

types of mechanistically distinct enzymes: PfTrpB, which catalyzes reactions with 11 non-

native substrates, and heme-binding proteins (protoglobin and Rma cyt c), which catalyze 

three different new-to-nature chemistries (ParLQ, Rma-CB, Rma-CSi). In ParLQ, we further 

examined the effects of 9 different substrates. The PfTrpB dataset is presented for the first 

time, while the rest were previously reported.15,16 The 11 PfTrpB datasets and ParLQ-a 

contain more low-activity variants than the other datasets (Appendix C.4.1). The similarity 

of the non-native substrate to the native substrate was calculated using the Tanimoto 

similarity of atom-pair fingerprints.29 The energy barriers of new-to-nature chemistries were 

determined using density functional theory (DFT) calculations. We tested predictor 

ensembles using families of linear models. See Appendix C.1 and Appendix C.3 for more 

details. Spearman’s correlation is reported in the main text. For recall (true positives of the 

top 25% ranked variants) and additional results, see Appendix C.4.2 and C.4.3. Data 

supporting this study are deposited on Zenodo: https://zenodo.org/records/15226690. The 

code is available on GitHub: https://github.com/fhalab/substrate_aware_zs. 
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4.3 Results 

4.3.1 General ZS predictors are predictive of activates on non-native substrates but do 

not generalize to new-to-nature chemistries 

As baselines, we evaluated six general ZS predictors for variant activity scoring. Each ZS 

predictor leveraged distinct auxiliary information (Figure 4.2a). Hamming distance assumes 

that most mutations are deleterious.3,30 It counts the number of amino acid substitutions from 

the parent, a variant with initial activity, aiming to perform a local search for viable variants. 

Given similar reaction mechanisms and conserved catalytic residues, we expected the 

assumption to hold true for substrates similar to their native counterparts. However, new-to-

nature chemistry may require exploring a more diverse sequence space. Indeed, we observed 

a weak positive correlation for non-native activities (2	~	0.3), but very little to weak negative 

correlation for the new-to-nature reactions (2	~	-0.2 – 0.1). 

EVmutation and ESM-2 estimate mutation effects using evolutionary patterns, either through 

a Potts model applied to multiple-sequence alignments (MSAs) or a mask-prediction protein 

language models.31,32 Both predictors generalized well to non-native substrates (2	~	0.5) but 

not to new-to-nature chemistries (2	~	-0.2 – 0.2). Notably, their predictability decreased with 

shallower MSAs (Table C6) and was statistically correlated with substrate similarity to the 

native substrate (p < 0.05, Figure 4.2c). ESM-IF and CoVES incorporate structural context 

for ZS predictions. ESM-IF assigns residue likelihoods based on a backbone structure 

(inverse folding) and CoVES predicts masked residues based on their local atomic 

environments.33,34 However, neither predictor outperformed EVmutation or ESM-2, though 

CoVES scores exhibited a weaker correlation with substrate similarity to the native substrate 

(Table C10). 

Stability is crucial for protein function, as misfolded proteins will be less likely to retain 

activity.15,35 We estimated variant stability by calculating the change in its free energy of 

folding relative to the parent (∆∆Gf) using a Rosetta energy function.19 However, stability 

did not predict new-to-nature activities (2	~	-0.1 – 0.1). We reason that once a minimal 
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stability threshold is met, factors such as substrate recognition and transition-state 

stabilization become the dominant determinants of activity. Moreover, excessive stability 

may limit the structural flexibility needed to accommodate new substrates or reaction 

mechanisms.36 

 

Figure 4.2. General and substrate-aware ZS predictors. Spearman’s ρ for a) activity, b) stereoselectivity, c) 

PfTrpB non-native substrate activities (Table C10), and d) heme-based new-to-nature activities (Table C11). 

For the new-to-nature chemistries, we also evaluated the stereoselectivity of the major 

products (Figure 4.2b). For the general ZS predictors, activity and stereoselectivity 

predictions were generally correlated (2	~	0.68 – 0.95, Table C7). The chemical 

mechanisms for the non-native substrates in this study are conserved, thus we postulate that 

this makes the predictions easier to generalize (Figure C1). In contrast, new-to-nature 

chemistry involves mechanisms distinct from an enzyme’s native chemistry and may require 

beneficial mutations that are rare in MSAs or occur at conserved residues, thus demanding 

deeper structural insights into the substrate and/or the active site. 
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4.3.2 Substrate-aware predictors offer insights for new-to-nature chemistries 

Enzyme catalysis involves complex mechanistic steps, including substrate binding and 

transition-state stabilization. We hypothesize that substrate-aware ZS predictors can better 

describe substrate recognition and transition-state stabilization for more diverse molecular 

systems, enhancing the predictability of new-to-nature chemistries. To capture the full 

enzyme-substrate-cofactor interaction, we considered the cofactors in their catalytically 

relevant states for each ZS predictor (Appendix C.2). 

We first explored enzyme-substrate binding energy as a potential ZS score using physics-

based molecular docking with GALigandDock and AutoDock Vina.37,38 Both methods had 

weak to no correlation on non-native substrates (2	~ 0 – 0.3), but we noted GALigandDock 

was slightly better (∆2	~ 0.1 – 0.2) than AutoDock Vina for new-to-nature chemistries 

(Figure 4.2a). Correlations of both scores were independent of substrates (Table C10). 

Recent advances in generative modeling have significantly advanced molecular docking and 

structure prediction.39–41 We hypothesized that the scores pertaining to enzyme-

substrate/cofactor binding may predict interactions impacting activity. While not 

outperforming general ZS predictors for non-native substrates, AlphaFold 3 (AF3) and Chai-

1’s interface predicted TM-scores (iPTM) for the enzyme-cofactor were predictive of new-

to-nature activities (Figure 4.2a). Interestingly, AF3’s chain-predicted aligned error (PAE) 

for the enzyme-cofactor interaction was the most predictive for both activity and 

stereoselectivity (2	~ 0.4), independent of the substrate (Figure 4.2). In contrast, despite 

adopting similar algorithmic approaches but without MSAs or templates, Chai-1 exhibited 

lower predictability, particularly for substrates more dissimilar to the native one (Figure 4.2c, 

Table C10). While MSA quality may impact prediction accuracy, further investigation is 

needed. Generative models can also facilitate binding site design via substrate-aware inverse 

folding or simultaneous docking and backbone redesign.42–45 We studied using probability 

scores from variant generation, conditioned on the parent structure, as a ZS predictor. 

LigandMPNN and FlowSite were predictive of non-native reactions, performing comparably 
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to existing predictors like ESM-2, but were less effective for new-to-nature chemistries 

other than Rma-CB. 

Beyond docking scores, we reasoned that a docked pose can be distilled into key components 

that reflect enzyme-substrate interactions. We hypothesized that bond-forming atom 

proximity could indicate higher activity–for instance, the distance between Glu104 and N1-

hydrogen in PfTrpB, or between the carbene carbon and boron, silicon, or the styrene double 

bond (Appendix C.2). However, bond distance was a poor predictor, likely due to noise in 

docking poses. Stabilization forces, particularly hydrogen bonding, can lower reaction 

energy barriers in the enzyme’s active site.46 In PfTrpB, the number of active-site hydrogen 

bonds correlated with activity, though it was less evident for heme-based new-to-nature 

chemistries. Instead, the highly reactive carbene intermediate would be stabilized by the iron 

in the heme.47 The combined hydrophobicity of the substrate and active site affects their 

interaction, with optimal binding occurring when their hydrophobicity levels match.48,49 This 

offered some predictive power for PfTrpB, but not for heme-based chemistries. Lastly, 

active-site volume has been linked to enzyme promiscuity,50 but it showed little predictive 

power for non-native or new-to-nature chemistries. We reasoned this may only exclude 

overly large residues, while failing to account for exposed active sites in Rma cty c or the 

substrate tunnel in ParLQ.51 Consistent with general ZS predictors, the predictability for 

activity in substrate-aware predictors generally correlated with its predictability for 

stereoselectivity (2	~ 0.31 – 0.95, Table C7). AF3 remained the best predictor for new-to-

nature chemistries. 

4.3.3 Predictors ensembles improve generalization across chemistries 

We explored ensemble methods to improve generalization and found that many model and 

predictor combinations outperformed individual predictors (Table C5). The unweighted 

ensemble of EVmutation and AF3—the top two individual predictors averaged across all 

chemistries—was consistently predictive (2	~ 0.3 – 0.5). A learned linear combination of 

them achieved an average ρ of 0.39 across all chemistries in the test set (Figure 4.3). This 

generalization remained robust regardless the training dataset (Figure C17). EVmutation, 
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ESM-IF and AF3 had the highest regression weights when averaged across all chemistries 

(Figure C16). However, incorporating ESM-IF, the third-best predictors averaged across all 

chemistries, into any combination did not further improve the generalization (Figure C15). 

Interestingly, EVmutation was one of the top predictors alongside AF3 in the top 25% recall 

analysis, whereas ESM-IF was not (Figure C10). 

 

Figure 4.3. Predictor ensembles. a) Different linear combinations of ZS predictors. w represents weighted 

linear combination trained on the Rma-CB dataset and tested on the rest. uw refers to an unweighted 

combination of EVmutation and AF3 rankings for each dataset. b) Linear models were trained on EVmutation 

and AF3 score for each dataset and tested on all the datasets. 

4.4 Discussion 

We evaluated six general and ten substrate-aware ZS predictors using two types of enzymes 

with distinct mechanisms across 22 different substrates and four types of chemistries. 

General ZS predictors were effective for non-native substrates but failed for new-to-nature 

chemistries. Among substrate-aware ZS predictors, AF3 was the best for both activity and 

stereoselectivity prediction in new-to-nature chemistries. A linear combination of AF3 and 

EVmutation generalized across all studied reactions, which could complement current 

protein design pipelines that employ a series of logical filtering steps.23,52 Physics-based 

docking methods and simple active-site heuristics did not consistently capture enzyme 

reactivity. 

Enzyme engineering for new reactivities remains an out-of-distribution challenge, 

constrained by limited sequence-activity data. Although we generated new experimental data 
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and curated literature datasets, their scope remains limited, especially since the literature 

datasets had largely active variants, which would not resemble distributions with mostly 

inactive variants. While the approaches studied here generalized well in active-site mutation 

datasets, expanding to more diverse new-to-nature reactions and testing datasets with 

mutations outside the active site remains a priority. With our growing ability to collect 

sequence-activity data,53,54 more comprehensive datasets will be curated, and systematic 

benchmarks will be conducted. We are optimistic that increasingly generalizable substrate-

aware ZS predictors will accelerate enzyme engineering, unlocking entirely new realms of 

biocatalysis. 
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C h a p t e r  5  

CONCLUSION AND OUTLOOK 

5.1 Introduction for Chapter 5 

Motivated by the gap between current machine learning (ML) capabilities and the practical 

demands of experimental protein engineering, this thesis investigates how ML methods 

can generalize across protein fitness landscapes to support the design of proteins with 

enhanced or novel functions. It focuses on the core challenges of real-world campaigns: 

scarce assay-labeled data, epistatic and rugged combinatorial landscapes, and the need to 

extrapolate beyond natural biology. Through three core projects, the thesis systematically 

evaluates strategies spanning the ML pipeline—from sequence representation and model 

training to data-efficient learning and zero-shot prediction—with an emphasis on methods 

that generalize across diverse engineering scenarios. 

These findings not only provide practical strategies for navigating realistic protein design 

challenges, but also identify specific failure modes in current ML approaches—offering 

signals for ML developers to address these shortcomings. Together, they lay the 

groundwork for more targeted, application-aware tools that align better with the needs of 

experimental workflows. The remainder of this chapter outlines future opportunities and 

challenges in assay-labeled data curation, benchmarking, frontier models, closed-loop 

experimentation, and biosecurity considerations. 

5.2 Data consolidation and benchmarking initiatives 

The insights in this thesis are made possible by recent advances in sequencing and 

screening technologies, which now enable high-throughput mapping of protein fitness 

landscapes (Section 1.2.1).1,2 As more laboratories adopt these methods, they are 

generating an ever‑growing diversity of protein‑engineering datasets that span distinct 

applications, degrees of epistasis, and non‑native activities. Curating these data will not 
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only enable more rigorous benchmarking and deeper insights into method generalization, 

but will also accelerate algorithmic and architectural innovations and develop more capable 

and generalizable foundation models. 

5.2.1 Sequence-function databases 

To make emerging datasets accessible and actionable for both experimental and 

computational researchers, a unified effort to consolidating assay‑labeled data into 

structured, shareable resources is essential. In the Arnold Lab, we are building an 

interactive sequence-fitness database with cross‑institutional collaborators. The platform 

is designed to enable experimentalists to effortlessly deposit their data and visualize results 

within and across experiments, and to provide ML scientists access to rich, standardized 

datasets for model training and benchmarking. Additionally, well‑structured metadata can 

offer valuable experimental context and tailored retrieval. 

Although our current focus is on enzyme‑catalyzed new‑to‑nature chemistry—where no 

comparable repository yet exists—we envision a centralized, community‑maintained 

resource analogous to the Protein Data Bank for protein structure data or UniRef for 

sequence data. Such a database would link protein sequences to quantitative functional 

measurements, annotated with rich metadata and spanning multiple domains and 

applications. 

5.2.2 Fitness prediction benchmarking 

On the evaluation front, benchmark frameworks such as ProteinGym provide a structured 

suite for assessing fitness predictors.3 Although its coverage of challenging real-world 

engineering scenarios—especially highly epistatic landscapes and non‑native functions—

remains limited, ProteinGym has garnered notable community engagement. Researchers 

continue to contribute new zero‑shot predictors and supervised models, making it one of 

the few adopted evaluation frameworks and a promising foundation for a standardized 

benchmark platform in the field. 
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5.3 Emerging ML frontiers in protein engineering 

Recent advances at the interface of machine learning and protein science reveal both 

limitations to overcome and opportunities to exploit. Section 5.3.1 reviews how scaling 

behavior and dataset composition reveal limitations in current foundation models and 

highlights opportunities for improvement. Section 5.3.2 surveys generative frameworks 

that combine natural‑sequence priors with assay‑labeled data to expand and optimize 

design space. Sections 5.3.3 and 5.3.4 discuss the potential of multimodal and AI-agent-

assisted approaches to improve protein design and engineering. Collectively, these avenues 

aim to capture the information in vast, heterogeneous datasets into practical design and 

engineering capabilities. 

5.3.1 Foundation‑model scaling and pretraining datasets 

Protein language models (PLMs), protein sequence foundation models such as 

Evolutionary Scale Modeling (ESM) covered in Chapter 2, have become indispensable 

across applications. Inspired by natural language processing (NLP), developers have 

pursued ever‑larger models; yet scaling‑law studies show that performance gains taper 

once model size reaches the high‑hundreds‑of‑millions to low‑billions of parameters, 

suggesting that the “bigger‑is‑better” rule from NLP does not directly translate to 

proteins.4–6 Uneven taxonomic representation in the pretraining data further biases 

likelihoods and fitness predictions toward over‑sampled clades, sometimes at odds with 

engineering objectives such as thermostability.7 

Fundamentally, improvement of such foundation models may depend less on parameter 

count alone and more on a combination of strategies, such as curating diverse, 

taxonomically balanced datasets and making model design choices better suited to the 

structure and sparsity of biological data. Metagenomic sequencing is now adding billions 

of previously unseen sequences,8 promising richer signal but also raising new curation 

challenges. There is still a lack of principled guidelines for which sequence subsets, or 

which levels of taxonomic, structural, or functional diversity, most effectively improve a 
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given downstream task. Addressing these gaps will require close collaboration among 

ML researchers, bioinformaticians, and protein engineers to assemble balanced training 

sets and benchmark models on tasks that mirror real engineering contexts. 

5.3.2 Generative modeling for design and optimization 

Advances in generative modeling are opening new avenues for protein design and 

engineering. First, generative models can propose diverse, high-quality starting points for 

optimization—offering a principled alternative to traditional approaches like mutagenesis 

or recombination, which are often limited to local searches.9 Second, these models enable 

broad exploration of sequence space and can support fitness prediction when guided by 

zero-shot scoring or fine-tuned with assay-labeled data.10–12 By capturing the underlying 

rules of natural proteins while incorporating functional signals, generative models offer a 

unified framework for both design and optimization—expanding the reach of protein 

engineering beyond what evolution or supervised ML alone can achieve. 

5.3.3 Multimodal integration 

The combination of sequence, structure, evolutionary context and nature language text 

descriptions has emerged as a powerful strategy for protein modeling. For example, 

leveraging both multiple sequence alignments and structure, predictors such as 

VenusREM13 and S3F-MSA14, consistently outperforms larger single-sequence models 

like ESM on zero-shot fitness prediction. In the context of generative modeling, efforts 

have included conditioning protein language models on protein structures or functional 

descriptors.15 Future work may include a unified framework that can bridge sequence, 

structure, natural language, and assay data, and support transfer learning across tasks. 
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5.3.4 Agent-driven platforms 

Recent advancements in AI-driven agent platforms are transforming protein engineering 

workflows by enabling autonomous research pipelines. For example, the Virtual Lab is an 

AI–human research framework that uses a team of specialized LLM agents—led by a 

principal investigator agent and guided by a human—for interdisciplinary scientific 

discovery. It operates through simulated team meetings and task delegation.18 When 

applied to nanobody design against SARS-CoV-2 variants, the system generated 92 

candidates through a pipeline integrating ESM, AlphaFold-Multimer, and Rosetta. 

Experimental validation confirmed several functional binders, including two with 

improved binding to recent variants, demonstrating the Virtual Lab’s potential to accelerate 

real-world, cross-domain research.18 Similar multi‑agent systems, such as Google’s AI 

Co‑Scientist, extend this paradigm to hypothesis generation and experimental planning 

across diverse scientific domains.19 

5.4 Closing the loop in the wet lab  

Ultimately, the value of machine learning-assisted protein engineering lies not only in 

improved retrospective prediction accuracy or proven generalizability across benchmark 

performance, but in its ability to prospectively guide successful individual experimental 

outcomes. Closing the loop—by implementing model-driven predictions and designs in the 

laboratory—is essential for realizing the practical impact of computational methods. 

5.4.1 Ring expansion case study 

Building on the substrate-aware zero-shot predictors developed in Chapter 4, current work 

in the lab applies these tools to guide enzyme engineering for a new-to-nature reaction: 

enantioselective oxetane ring expansion. This transformation enables access to valuable 

five-membered tetrahydrofuran heterocycles—motifs prevalent in drugs and natural 

products—from strained oxetane precursors.16,17 Achieving enantioselective control for 

oxetane ring expansion has remained elusive with traditional chemical synthesis. Inspired 
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by the laboratory-evolved variant of heme-containing enzyme P450BM3, P411-AzetS, 

which catalyzes aziridine ring expansion with high enantioselectivity,16 the goal is to 

engineer an enzyme capable of expanding oxetanes. 

A variant of Aeropyrum pernix protoglobin (ApePgb) was recently identified with trace 

activity for oxetane ring expansion in our lab. Three rounds of site-saturation mutagenesis 

(SSM) at the active site improved the yield to 5%. However, the campaign stalled as the 

variant resisted further improvement over multiple rounds of site-saturation mutagenesis 

and error-prone mutagenesis. To overcome this, in silico SSM guided by the substrate-

aware zero-shot predictors identified in Chapter 4 was performed, and preliminary 

experiments have identified several yield-improving variants. Ongoing efforts focus on 

optimizing over a broader sequence space using sampling methods such as Markov chain 

Monte Carlo, guided by these predictors, to identify higher-performing variants for 

downstream experimental validation. 

5.5 Community initiatives and open tournaments 

Beyond individual lab efforts, non-profit and community-driven organizations are 

emerging to build a more integrated ecosystem that connects data generation, 

benchmarking, and experimental validation. For example, the Align Foundation, whose 

mission is to enable “predictable biology,” promotes open data sharing, standardized 

benchmarking, and automation platforms for reproducible, large-scale experimentation. 

Inspired by the success of the Critical Assessment of Structure Prediction (CASP) in 

advancing protein structure prediction, initiatives such as the Protein Engineering 

Tournament aspire to play a similar role for protein fitness prediction and design.20 These 

efforts chart a promising path toward centralized, transparent, and collaborative 

infrastructure to accelerate both model development and real-world impact. As the synergy 

between machine learning and experimental protein engineering deepens, we are beginning 

to see the emergence of workshops—and, potentially soon, dedicated conferences—

designed to bridge these communities and foster the interdisciplinary collaboration 

essential for innovation. 
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5.6 Biosecurity and ethical considerations 

As machine learning becomes increasingly integrated into protein engineering, it 

introduces not only powerful capabilities but also potential dual-use risks. One recent study 

identified the theoretical potential for AI-generated protein sequences to evade current 

biosecurity screening measures.21 Although the researchers proposed mitigation strategies, 

the actual severity of the threat remained unclear due to the lack of experimental validation. 

A follow-up study addressed this by introducing a testing, evaluation, validation, and 

verification (TEVV) framework using safe biological proxies to empirically assess these 

risks.22 The study found that, while current models can generate structurally similar 

sequences, they are not yet capable of reliably producing functional proteins that escape 

detection. Importantly, it demonstrated that experimental validation of AI-assisted protein 

design risks is not only essential but also achievable, with the TEVV framework offering 

a blueprint for future studies. 

These studies highlight the need for proactive, ongoing assessment of biosecurity 

safeguards as AI capabilities evolve. This includes the responsible development and 

rigorous stress-testing of foundation models, as well as the creation of standardized 

evaluation protocols. While many open questions remain, several organizations are already 

working to address them, such as the International Gene Synthesis Consortium and the 

International Biosecurity and Biosafety Initiative for Science. Meanwhile, broader 

initiatives like the AI Safety Institutes across the globe and the Frontier Model Forum aim 

to evaluate and mitigate risks from frontier AI models, including those relevant to 

biosecurity. Together, these organizational, regulatory, and governmental efforts form a 

growing ecosystem of safeguards—essential for ensuring the responsible development and 

safe deployment of AI-driven biological design. 

5.7 Closing thoughts 

Looking ahead, machine learning will increasingly shape the future of protein 

engineering—not only by accelerating optimization but by reimagining how we discover 
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and design new proteins altogether. With advances in high-throughput sequencing, 

synthesis, and screening, we are approaching an era where rich, functionally labeled 

datasets—once scarce—can drive model development at scale. Generative models, 

especially when informed by assay data and mechanistic priors, promise to explore vast 

regions of sequence space unreachable by directed evolution or local search. Coupled with 

zero-shot predictors, these models can prioritize viable, high-function variants and navigate 

toward truly novel chemistries. As cloud labs and automated experimentation systems 

mature, ML-guided “design–build–test–learn” cycles will become increasingly integrated 

and autonomous. To ensure these powerful tools are used responsibly, technological 

safeguards and policy frameworks must evolve in parallel. Ultimately, by combining data-

driven prediction with biophysical insight and experimental feedback, ML has the potential 

not only to accelerate protein engineering but to unlock fundamentally new functions—

reshaping how we interact with biology and build with it.  
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A p p e n d i x  A  

SUPPLEMENTARY INFORMATION FOR CHAPTER 2 

A.1 Additional tables and figures 

Table A.1.1. Downstream functional and structural tasks. 

 

 

Table A.1.2. Pretrained models. 
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Table A.1.3. Last layer transfer learning performance for tasks that are aligned with MLM pretraining. 

Values are accuracy. 
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Table A.1.4. Last layer transfer learning performance for tasks where transfer learning improves 

performance but the pretrain and downstream tasks are not aligned. Values are Spearman rank correlation. 

We include linear and attention probes for the pretrained models. The “Yang” column indicates results for the 

best-performing baseline for the PLM from Yang et al. (2024).10 
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Table A.1.5. Last layer transfer learning performance for tasks where transfer learning does not improve 

performance. Values are Spearman rank correlation for the GB1 tasks and accuracy for subcellular 

localization. We include linear and attention probes for the pretrained models. The “Yang” column indicates 

results for the best-performing baseline for the PLM from Yang et al. (2024).10 

 

 

Table A.1.6. Spearman’s rank correlation (ρ) between downstream task performance and layer depth. 
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Table A.1.7. Pretrained CARP checkpoints. 

 

 

Table A.1.8. Spearman’s rank correlation (ρ) between downstream task performance and CARP pretrain loss. 

 

 



 

 

110 

 

Figure A.1.1. Compare linear and attention probes for last layer performance on downstream tasks. For the 

attention probe, a shallow neural net with learned aggregation is applied with 5 random seeds on 3-5 

checkpoints, which is found to be inferior to the linear models across almost all downstream tasks.  
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A p p e n d i x  B  

SUPPLEMENTARY INFORMATION FOR CHAPTER 3 

B.1 Data and code availability 

All data and results that support this study are deposited at 

https://doi.org/10.5281/zenodo.13910505. All code is available at 

https://github.com/fhalab/SSMuLA and https://github.com/fhalab/alde4ssmula. 

B.2 Methods 

B.2.1 Key resource table 

REAGENT or RESOURCE SOURCE IDENTIFIER 
Deposited data 
Bacterial toxin-antitoxin (ParD-ParE) 
fitness landscape      

Lite, et al., 2020 https://doi.org/10.7554/eLife.60924 

Bacterial toxin-antitoxin (ParD-ParE) 
structure 

Protein Data Bank PDB: 6X0A; PDB: 5CEG                     

Protein G B1 domain (GB1) fitness 
landscape 

Wu, et al., 2016 https://doi.org/10.7554/eLife.16965 

Protein G B1 domain (GB1) structure Protein Data Bank PDB: 2GI9 
Dihydrofolate reductase (DHFR) 
fitness landscape 

Papkou, et al., 2023 https://doi.org/10.1126/science.adh3860 

Dihydrofolate reductase (DHFR) 
structure 

Protein Data Bank PDB: 6XG5 

T7 RNA polymerase fitness 
landscape 

Tu, et al., 2024  https://doi.org/10.1101/2022.03.09.483646 

T7 RNA polymerase structure Protein Data Bank PDB: 1CEZ 
TEV protease fitness landscape Tu, et al., 2024  https://doi.org/10.1101/2022.03.09.483646 
TEV protease structure Protein Data Bank PDB: 1LVM 
β-subunit of tryptophan synthase 
(TrpB) fitness landscape 

Johnston, et al., 2024 https://doi.org/10.1073/pnas.2400439121 

β-subunit of tryptophan synthase 
(TrpB) structure 

Protein Data Bank PDB: 8VHH 

Compiled data and results This chapter 10.5281/zenodo.13910505 
Software and algorithms 
SSMuLA code and conda 
environment 

This chapter https://github.com/fhalab/SSMuLA 

Active Learning-Assisted Directed 
Evolution for SSMuLA 
(ALDE4SSMuLA) 

This chapter https://github.com/fhalab/alde4ssmula 
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EVmutation webserver Hopf, et al., 2017 https://v2.evcouplings.org/ 
EVmutation GitHub Hopf, et al., 2017 https://github.com/debbiemarkslab/EVmut

ation 
Evolutionary Scale Modeling (ESM-
2) 

Rives, et al., 2021; 
Meier, et al., 2021;  
Lin, et al., 2023 

https://github.com/facebookresearch/esm 

ESM inverse folding (ESM-IF) Hsu, et al., 2022 https://github.com/facebookresearch/esm 
Combinatorial Variant Effects from 
Structure (CoVES) 

Ding, et al., 2024 https://github.com/ddingding/CoVES 

Triad Protabit, Pasadena, 
CA, USA 

https://triad.protabit.com/ 

Machine Learning-Assisted Directed 
Evolution (MLDE) 

Wittmann, et al., 2021 https://github.com/fhalab/MLDE 

Fine-tuning protein language models 
boosts predictions across diverse 
tasks 

Schmirler, et al., 2024 https://github.com/RSchmirler/data-
repo_plm-finetune-eval 

 

B.2.2 Landscape preparation 

To avoid biases and misrepresentations, especially for deriving landscape attributes, we 

chose essentially complete datasets and did not perform any imputation. We assumed that 

missing values followed the same distribution as the existing data and therefore did not affect 

attribute calculations. To reduce bias from noisy data or less reliable landscape attribute 

calculations, which could lead to non-generalizable conclusions, we focused on landscapes 

with at least 1% active variants in the main text. However, to ensure that our conclusions 

comparing different methods remain valid across all landscapes, we provided extensive 

analyses of landscapes with fewer than 1% active variants in the Supplemental information, 

addressing differences where applicable. The 1% threshold was derived based on the 

expected occurrence of one active variant in a traditional DE screening of the largest 

landscape in this study, calculated as (1 / (4 × 20)) × 100%. 

All variant fitness values were normalized within each landscape such that the variant with 

the maximum fitness was assigned a value of one: 

4, =	
4

4-#.
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where 4 is the original fitness value of a variant, 4-#. is the maximum observed fitness 

within the landscape, and 4, is the normalized fitness value used in all analyses. 

B.2.3 Landscape attributes 

To provide comprehensive context for the model outcomes, we considered two groups of 

attributes for this analysis: 1) fitness statistics, which included percent of active variants and 

parameters derived from simple statistical modeling, and 2) ruggedness, which included 

pairwise epistasis and the number of local optima. All values are empirically derived and 

calculated. We did not impute missing values, assuming that they follow the same 

distribution as the existing data and therefore do not affect attribute calculations. All values 

can be found with data deposit and all implementations can be found in the SSMuLA 

codebase. 

B.2.3.1 Definition of active variants 

For landscapes containing fitness data for variants with stop codons, “active” variants were 

defined as those 1.96 standard deviations above the mean fitness of all sequences containing 

stop codons, which are expected to be inactive.1 For GB1, T7, and TEV we followed the 

cutoffs set by the authors, based on the detection limit of their fitness measurement system.2–

4 

B.2.3.2 Fitness statistics 

We used the “statistical functions” (`scipy.stats`) and signal (`scipy.signal`) modules from 

the SciPy Python package5 to calculate kurtosis, estimate the Cauchy peak location, and 

determine the number of kernel density estimation (KDE) peaks. Specifically, kurtosis was 

calculated using the `kurtosis` function with default settings from the `stats` module. Cauchy 

peak location was estimated using the `fit` method from the `cauchy` distribution object in 

the `stats` module. The number of KDE peaks was determined by estimating the probability 

density function with the `gaussian_kde` function from the `stats` module and then 

identifying local optima using the `argrelextrema` function from the signal module. 
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B.2.3.3 Pairwise epistasis calculation 

We classified pairwise epistasis into three categories: magnitude, sign, and reciprocal sign. 

For each active variant, we assigned an epistasis type for each possible double substitution 

at chosen sites.1 We then calculated the fraction of epistasis type for each starting variant in 

the landscape. To enhance relevance to DE navigability, we incorporated additive 

interactions into magnitude epistasis, and merged sign and reciprocal sign epistasis into non-

magnitude epistasis. Missing values were omitted. 

For each unique starting variant, 56, let 4#/ be the fitness value of the starting variant, 40/be 

fitness value of the variant with an amino acid substitution at position A only, 4#1be fitness 

value of the variant with an amino acid substitution at position B only, and 401be fitness 

value of the variant with amino acid substitutions at both positions A and B. 

Magnitude epistasis 

The combined effect of two amino acid substitutions is larger than or equal to their additive 

effects in the same direction as each individual mutation. This is navigable through single-

step or recombination-based DE methods. The fraction of magnitude epistasis was calculated 

by simply counting the number of instances classified as magnitude epistasis divided by the 

total number of pairwise interactions. 

Non-magnitude epistasis 

Non-magnitude epistasis includes sign epistasis and reciprocal sign epistasis.  For sign 

epistasis, the direction of the effect of one amino acid substitution in the presence of the other 

such that the substitution order impacts single-step DE navigability. For reciprocal sign 

epistasis, the combined effect changes the direction of both mutations in the presence of each 

other. This is not accessible with single-step DE that is inherently a greedy uphill walk. The 

fraction of the non-magnitude epistasis was simply calculated using one minus the fraction 

of magnitude epistasis. 
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B.2.3.4 Pairwise epistasis correlation with C-alpha distances 

The pairwise C-alpha distances of mutated residues were calculated based on each of the 

parent structure (PDB: 6X0A, 5CEG, 2GI9, 6XG5, 1CEZ, 1LVM, and 8VHH) and then 

averaged for each landscape. The Spearman’s correlation was then calculated between the 

average C-alpha distance between residues in the landscape and the fraction of pairwise non-

magnitude epistasis. 

For each residue pair (8, 9) within the landscape, the C-alpha distance ;&2 was computed as: 

;&2 = <=&
31 − =2

31< 

where =&
31 and  =2

31 are the Cartesian coordinates of the C-alpha (?4) atoms for residues 8 

and 9, ‖∙‖ denotes the Euclidean norm, computed simply as: 

;&2 = BCD& − D2E
5
+ CF& − F2E

5
+ CG& − G2E

5
 

where (D& , F& , G&) and CD2 , F2 , G2E are the 3D coordinates of the C-alpha atoms for residues 8 

and 9. 

For each landscape, the averaged C-alpha distance is then computed as 

;̅ =
1
I

J ;&2
(&,2)∈:

 

where ;̅ is the mean pairwise C-alpha distance for the landscape, K is the set of all residue 

pairs in the landscape, and I is the total number of residue pairs. 

B.2.3.4 Local optimum calculation 

A local optimum is a variant with higher fitness than all its neighboring active variants 

differing by one amino acid substitution.1,6–9 
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A variant with sequence D is a local optimum if: 

4. > 4.2 		∀D, ∈ ℋ(D) 

where 4. is the fitness of variant with sequence D, ℋ(D) is the set of all neighbors of D with 

a single-amino acid substitution (Hamming distance of one), and D, represents any 

neighboring variant in ℋ(D). 

B.2.4 ZS calculations 

We calculated six different ZS scores for each landscape. The ranking correlation between 

ZS scores and the ground-truth fitness values was calculated using Spearman’s correlation 

and the active/inactive variant classification was quantified by ROC-AUC. All values can be 

found with data deposit and all implementations can be found in the SSMuLA codebase. 

B.2.4.1 Hamming distance 

Hamming distance reflects the number of amino acid differences between a variant and the 

parent sequence. The negation of Hamming distance was used as the score, meaning that a 

less negative score corresponded to fewer number of amino acid substitutions from the parent 

sequence and, therefore, a more fit variant. In the main text, the parent sequence was defined 

by the authors of each landscape. Simulations provided in the Supplemental information 

explored all possible parent sequences, starting from any active variant (Figures S7–S9). The 

Hamming distance from each given parent sequence was used for fitness ranking and 

active/inactive variant classification, with the final results averaged over all possible parent 

sequences. 

B.2.4.2 EVmutation score 

The EVmutation scores were generated using EVcouplings, which employs a Potts model 

framework to infer conservation and coevolutionary patterns from a multiple sequence 

alignment (MSA).10,11 The probability K(D) of a sequence D is given by: 
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K(D) = 	
1
P
exp{U(D)} 

where P is a normalization constant, and U(D) represents the total energy of the sequence D, 

computed as: 

U(D) =Jℎ&(D&) +	
&

JX&2CD& , D2E	
&;2

 

where ℎ&(D&) captures site-specific constraints, and X&2CD& , D2E models coevolutionary 

interactions between amino acids. The coupling parameters ℎ and X were estimated using a 

regularized maximum pseudolikelihood. 

The effect of amino acid substitutions was quantified using the EVmutation score 

(Y<=-)!#!&"*), calculated as the energy difference between the parent sequence (D>#('*!) 

and the variant sequence with amino acid substitutions (D?#(&#*!): 

Y<=-)!#!&"*(D?#(&#*!) = ∆UCD?#(&#*! , D>#('*!E = UCD?#(&#*!E − U(D>#('*!)

= [,\
KCD?#(&#*!E
K(D>#('*!)

 

For each fitness landscape, the parent sequence was uploaded to the EVcouplings webserver 

(https://v2.evcouplings.org/) using the default parameters for MSA generation (Sequence 

database: UniRef90; Bitscore sequence inclusion thresholds: 0.10, 0.30, 0.50, and 0.70; 

Search iterations: 5; Position filter: 70%; Sequence fragment filter: 50%; Removing similar 

sequences: 90%; Downweighting similar sequences: 80%) and for evolutionary couplings 

inference (Statistical inference method: pseudo-likelihood maximization). The resulting 

evaluation parameters were also kept as default (Contact distance cutoff: 5.0 Å; PDB 

structure search method: conservative; Bitscore threshold for finding known homologous 3D 

structures: 0.50), but they are independent of the downstream analyses. 
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To ensure complete coverage of substituted sites, we prioritized EVcouplings models in 

the following order: the recommended model, if it covered all substitution sites; the model 

with the highest bitscore that covered all substitution sites; and if no model covered all 

substitution sites, the position filter was reduced from 70% to 50% to increase sequence 

coverage and the process was repeated. The final “EVcouplings model parameters” were 

downloaded from the webserver as “.model” binary files, available in the “Download” tab 

under the “Evolutionary couplings” section. The models used in the study are available on 

Zenodo. As an alternative to using the webserver, a local version of EVcouplings can be 

installed from the EVcouplings GitHub repository 

(https://github.com/debbiemarkslab/EVcouplings), which can then be used to obtain the 

EVcouplings models. 

The EVmutation scores were computed using the selected EVcouplings model. The 

EVcouplings Python library (https://github.com/debbiemarkslab/EVcouplings) was used to 

parse the model output (regardless of whether the model was obtained via the webserver or 

local command-line execution). The `CouplingsModel` module was used to load the model 

file, and the `delta_hamiltonian` method was applied to compute EVmutation scores. 

B.2.4.3 ESM-2 score 

The ESM-2 score was based on the pretrained protein language model’s masked language 

modeling objective, resulting in likelihoods for amino acid substitutions given their 

surrounding context.12 Unlike EVmutation, ESM-2 does not explicitly use MSAs but is 

trained on UniRef sequences and extracts logits using a mask-filling protocol for each amino 

acid position. For each landscape, the parent sequence was tokenized using a batch converter. 

Each variant position was masked and a log-softmax operation was applied to obtain the 

probability distribution over all possible amino acid substitutions at the masked positions. 

The ESM-2 score for each position was calculated using the log-odds ratio between the 

variant sequence with amino acid substitutions (D?#(&#*!) and the parent sequence (D>#('*!). 

The ESM-2 score (Y<@AB5) for a given variant was computed by summing the contributions 

from individual substitutions:12,13 
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Y<@AB5(D?#(&#*!) = JlogKCD& = D&?#(&#*!`D\AE − log KCD& = D&
>#('*!`D\AE

&∈A

 

where a denotes the set of substitution sites, D\A represents sequence D with residues in a 

masked. The ESM-2 score for the parent sequence was assigned a value of 0. 

We found that ESM-1v (esm1v_t33_650M_UR90S_1), ESM-1b 

(esm1b_t33_650M_UR50S), and ESM-2 (esm2_t33_650M_UR50D) yielded comparable 

results, and we chose to proceed with ESM-2 for all analyses reported in this study. 

B.2.4.4 ESM-IF score 

The ESM-IF score was calculated as log-likelihood ratio between the variant and parent 

sequences using the inverse folding model ESM-IF1 (esm_if1_gvp4_t16_142M_UR50),14 

conditioned on the experimentally determined parent protein structure from PDB.15 This 

model assigns likelihoods to sequences based on a given backbone structure. It incorporates 

a Geometric Vector Perceptron (GVP) module that ensures invariance to transformations 

such as rotations.16  

For each fitness landscape, the parent PDB structure was provided as an input and its target 

protein chain (chain A) backbone atomic coordinates (b) were extracted. The corresponding 

parent sequence (D>#('*!) was extracted, and the full sequence for each variant (D?#(&#*!) 

was supplied as a FASTA file. The log-likelihoods for both the parent sequence and each 

variant were computed using `esm.inverse_folding.util.score_sequence(model, alphabet, 

coords, sequence)`. The ESM-IF score (Y<@ABDE) for a given variant was then computed as 

the log-likelihood ratio between the variant and parent sequences, given the fixed parent 

backbone structure (b): 

Y<@ABDE(D?#(&#*!) = log KCD?#(&#*!`bE − log K(D>#('*!|b) 
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B.2.4.5 CoVES score 

The CoVES score was calculated using pretrained weights 

(RES_1646945484.3030427_8.pt) from Ding et al. (2024), following the “Unsupervised 

protein variant scoring” methods section and the corresponding GitHub repository 

(https://github.com/ddingding/CoVES).17 The scoring was applied to all the parent structures 

from the Protein Data Bank (PDB). Per-residue amino acid preference scores were calculated 

at each site throughout the substitution-containing chain (chain A). The scores were averaged 

across 100 replicates (`n_ave = 100`). Variant CoVES scores were than calculated by 

summing the log-probability-normalized classifier scores at each site, using a temperature of 

0.1 (`t=0.1`). 

Specifically, the normalized probability for the amino acid substitution 8 at a given site, given 

d, is: 

K!(e&) = 	

exp	 f− |e&|d −	g5D2 h−
`e2`
d ij

∑ exp	 f−
`e2`
d −	g5D2 h−

`e2`
d ij2

 

where e& is the preference score for amino acid substitution 8 at this site, e2 represents the 

preference scores for all 20 possible amino acid substitutions at this site, and d is the 

temperature parameter. g5D2 l−
F%3F
!
m is a log probability shift applied to prevent numerical 

underflow.  

The variant CoVES score (Y3"=<@) for a variant sequence with amino acid substitutions 

(D?#(&#*!) was then calculated by summing the log probabilities over all the sites covered in 

the landscape: 

Y3"=<@(D?#(&#*!) = J logK!(e&)
*4567

$GH

 



 

 

121 
where K!(e&) is the normalized probability for an amino acid substitution 8 at site ! given 

d and !%&!' is the total number of sites covered in the landscape. The CoVES scores were 

only compared within each landscape. 

B.2.4.6 Triad score 

The Triad score estimates mutant stability by calculating the change in its free energy of 

folding relative to the parent (ΔΔGf). Calculations were performed using the Rosetta energy 

function under a fixed-backbone assumption. All calculations were carried out on a local 

installation of the Triad software suite (version 2.1.3, Protabit, Pasadena, CA, USA: 

https://triad.protabit.com). Installation details are provided in the Triad User Manual  

(https://triad.protabit.com/api/static/doc/user/userGettingStarted.html). The databases and 

dependencies were downloaded and built using the Makerfile, including ̀ mpirun` (OpenMPI 

1.6.5) and Python 2.7.6. 

The parent protein crystal structure for each landscape was obtained from the PDB. For each 

fitness landscape, the structure processing and scoring were performed using the Triad suite 

following the method described by Wittmann et al. (2021)18 and detailed below: 

For each parent structure, preprocessing was performed by executing the following 

command inside the `${INPUT_PDB_DIR}` directory, which contained the input PDB file, 

`${TRIAD_DIR}/triad.sh ${TRIAD_DIR}/apps/preparation/proteinProcess.py -struct 

${INPUT_PDB_DIR}/${NAME}.pdb -crosetta`, where `${TRIAD_DIR}` is the directory 

containing the `triad.sh` executable and  `${NAME}` is the name of the input PDB file. The 

command generated the processed PDB file 

(`${INPUT_PDB_DIR}/${NAME}_prepared.pdb`) with an added constrained 

minimization, which was used for the downstream calculations. 

A “.mut” file was generated separately to describe amino acid substitutions for all variants 

relative to the parent sequence in the landscape. Each row corresponded to a single variant 

and followed the format `Chain_SiteSubstitution` for single substitution (e.g., `A_26H`) or 
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joined by a plus sign `+` for multiple substitutions (e.g., `A_26H+A_27I+A_28F`). The 

parent sequence should not be included in the “.mut” file. 

The Triad scoring process was executed using the command 

`${TRIAD_DIR}/tools/openmpi/bin/mpirun -np ${NUM_CPUS} ${TRIAD_DIR}/triad.sh 

${TRIAD_DIR}/apps/cleanSequences.py -struct ${PROC_PDB_FILE} -rosetta  -

inputSequenceFormat pid -inputSequences ${MUTANTS_FILE} -floatNearbyResidues -

numPDBs=${numPDBs} -soft 2>&1 | tee $OUTPUT_TXT`, where `${PROC_PDB_ 

FILE}` is the processed parent PDB file (i.e., 

`${INPUT_PDB_DIR}/${NAME}_prepared.pdb`), `${MUTANTS_FILE}` is the “.mut” 

file containing variant substitutions, `${numPDBs}` is the total number of variants (number 

of lines in the “.mut” file), and `$OUTPUT_TXT` is the output summary “.txt” file 

containing the scoring results. The outputs consisted of the “.txt” file along with individual 

PDB file for each variant. These files were stored in the same directory where the command 

was executed. 

The scoring output was located towards the end of “.txt” file under the “Solution summary” 

section. Each row contained the variant index, name, score, and sequence (of the 

concatenated substituted amino acids and “-” for the same amino acid as the parent). Variants 

were ranked from the most stable (most negative score) to the least stable (least negative 

score). The parent sequence was labeled as “WT”. 
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Example output: 

``` 

Solution summary: 

All sequences: 

Index                                          Tags            Score       Seq         Muts              

       0   A_26H+A_27I+A_28F,2544   -646.11885       HIF        A_26H+A_27I+A_28F 

       1 A_26H+A_27V+A_28F,2744   -646.04873       HVF       A_26H+A_27V+A_28F 

       2 A_26Q+A_27V+A_28F,5544   -645.85691       QVF       A_26Q+A_27V+A_28F 

     …                                              …                 …        …           … 

 1118                                            WT   -639.45570       ---           WT    

     …                                              …                 …        …           … 

7999 A_26P+A_27P+A_28P,5052      -586.96179       PPP       A_26P+A_27P+A_28P 

``` 

 

To ensure consistency with other ZS scores, the negation of the score was taken as the Triad 

score such that higher, more positive Triad scores indicate more fit variants. As an alternative 

to the command-line version, the web app is available at https://triad.protabit.com (version 

3.0.2). The standardize structure and score variants apps are equivalent to the command-line 

`proteinProcess` and `cleanSequences`, and accept the same PDB and “.mut” files. We also 

noted that tools such as FoldX could be used as an alternative.13 

B.2.5 ZS ensembles 

For each landscape, the six different ZS scores were computed independently. Naive 

ensemble scores were then derived using one of two methods: Hamming distance-based 

down-selection or the sum of the individual ZS ranks. 

Hamming distance-based ensemble: 

A Hamming distance cutoff of two was first applied to preselect variants, meaning only 

variants differing by two or fewer amino acid substitutions from the reference parent 

sequence were considered (two-site libraries). Within this subset, the remaining five ZS 

scores were then used to rank the variants, determining the final ensemble score. 
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Other naive ensemble: 

For all other ensembles, each ZS score was assigned equal weight. The ensemble score for a 

variant was computed as the sum of its rankings across the selected ZS predictors. Variants 

were then ranked based on this summed score, and the resulting ranking was used for ZS-

focused library construction. 

B.2.6 ZS analysis 

B.2.6.1 ZS MSA depth correlation 

The MSA depth referred to the number of sequences resulting from EVcouplings search, 

where all mutation sites were covered. 

B.2.6.2 ZS pairwise correlation 

The pairwise correlation was performed for each landscape and then averaged across the 12 

landscapes with at least 1% active variants. 

B.2.7 DE simulations 

All DE simulations were performed for each N-site library of a given landscape, where N 

was the number of targeted sites in the landscape (!%&!'). Each DE simulation started from 

an active variant, which served as the “parent” for the simulated DE, regardless of its original 

parent. The maximum fitness achieved by each starting variant was recorded. All DE 

simulations were repeated for all active variants within a given landscape. Two evaluation 

metrics were then calculated across all active variants within the landscape: (1) average 

maximum fitness achieved and (2) fraction reaching the global optimum. The total number 

of unique variants was given by !!"!#$ = !%#->$' +	!!'%!. Both three-site and four-site 

recomb DE share the same number of unique variants sampled (!%#->$') as their 

corresponding top96 recomb DE. In single-step DE, the same !%#->$' is divided across 

!(")*+ = !%&!' rounds, where !%#->$' = 	!!"!#$ since !!'%! = 0. To ensure adequate 
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coverage of the variant space (e.g., 95%), the total number of screened variants, denoted 

!!"!#$	J, is given by !!"!#$	J = !%K(''* + !!'%! = 66 ×	!%&!' +	!!'%! for each DE strategy. 

The number of variants screened per site to cover all 20 amino acids can be approximated by 

!%K(''* = −!K"+"* × ln(1 − p), where !K"+"* represents the number of codons used to 

generate the SSM library and p is the desired library coverage.19,20 For 95% coverage of a 

single-site SSM library using the 22-codon trick (!K"+"*= 22), !%K(''* is approximated as 

66 ×	!%&!'. In practice, !K"+"* varies depending on the SSM library generation methods and 

a three-fold oversampling is often used as a rule of thumb. 

B.2.7.1 Single-step DE 

This is a greedy walk algorithm, where SSM was performed at each unique site sequentially. 

The process begins with selecting one of the possible substitution sites, evaluating the fitness 

impact of all possible amino acid substitutions at this position. The substitution yielding the 

highest fitness is fixed, and the position is restricted from further exploration. In the next 

round, one of the remaining positions is selected, with all mutants evaluated, and the best 

substitution is fixed again. This process repeats iteratively until all positions have been 

evaluated yielding the fitness of the best variant identified in the last (!(")*+ = !%&!') round. 

Consequently, each site is optimized once per simulation. Over !(")*+ = !%&!' rounds, a 

total of !!"!#$ = (19	 ×	!%&!' + 1) + 0 unique variants were sampled and a total of 

!!"!#$	J = (66	 ×	!%&!' + 1) + 0 variants were considered to achieve 95% variant space 

coverage. 

Each single-step DE simulation for a given active variant was repeated !%&!'! (factorial) times 

to sample all possible orders of the !%&!' sites. For example, a four-site library requires four 

rounds of single-step DE to reach the optimal variant and there is a total of 24 (4!) possible 

orders of sampling. This is a deterministic approach to navigate the fitness landscape as the 

best variant is always selected.1,18,21  
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B.2.7.2 Recombination strategies 

Two recombination strategies (recomb DE and top96 recomb DE) performed simultaneous 

site-saturation mutagenesis (SSM) at each site in the initial round. The best variant at each 

site was additively recombined. Either the top one variant or the top 96 variants (matching 

the number of wells in plates commonly used for screening) were used in the evaluation 

round (!(")*+ = 2). 

Recomb DE 

This is a naive recombination. This approach starts from an active variant in the 

combinatorial space, independently optimizing each site within the context of the initial 

sequence and then combining the best substitutions from each site into a new variant.1,21 Over 

!(")*+ = 2 rounds, a total of !!"!#$ = (19	 ×	!%&!' + 1) + 1 unique variants were sampled 

and a total of !!"!#$	J = (66	 ×	!%&!' + 1) + 1 variants were considered to achieve 95% 

variant space coverage. 

Top96 recomb 

This is an alternative recombination approach. All substitutions are made at each of the sites 

independently in the background of the initial sequence, calculating fitness for all 

combinations from single substitution over the initial sequence. The sequences are then 

ranked based on their fitness, and the top 96 variants are calculated in silico assuming perfect 

additivity. The reported maximum fitness reflects the highest observed among the initial 

sequence, any single substitutions, and the best of the top 96.1 Over !(")*+ = 2 rounds, a 

total of !!"!#$ = (19	 ×	!%&!' + 1) + 96 unique variants were sampled and a total of 

!!"!#$	J = (66	 ×	!%&!' + 1) + 96 variants were considered to achieve 95% variant space 

coverage. 
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B.2.8 MLDE, ALDE, fine-tuning, and focus-training simulations 

Each simulation was performed on a given landscape. For all ML simulations, a range of 

total unique variants screened (!!"!#$ = 120, 144, 192, 288, 384, 480, 576, 672, 1056, and 

2016) was considered. !!"!#$ variants were split across training-validation and testing for 

MLDE, ftMLDE, fine-tuning, and ZS-guided fine-tuning or multiple rounds of sampling for 

ALDE and ftALDE. All strategies were evaluated using two metrics: (1) average maximum 

fitness achieved and (2) fraction reaching the global optimum. All results were averaged 

across 50 seeded replicates for MLDE, ALDE, and focused training, and five seeded 

replicates for fine-tuning (constraint by computational resources). 

B.2.8.1 Encoding strategies 

One-hot and learned representations from ESM-2 (esm2_t33_650M_UR50D) were tested. 

One-hot sequence encodings were flattened over the targeted sites. Learned representations 

from ESM-2 (esm2_t33_650M_UR50D) were implemented in three ways, (1) flattened over 

the targeted sites, (2) mean pooled over the targeted sites, and (3) mean pooled over the full 

sequence.  

B.2.8.2 MLDE simulations 

For each MLDE simulation on a given landscape, we evaluated a range of total unique 

variants screened (!!"!#$ = 120, 144, 192, 288, 384, 480, 576, 672, 1056, and 2016). Each 

!!"!#$ was divided into a training-validation round (!!(#&* = 24, 48, 96, 192, 288, 384, 480, 

576, 960, and 1920) and an evaluation round (!!'%! = 96, !(")*+ = 2). . The training-

validation set was either randomly sampled from the full N-site library or from a focused 

library containing variants with ZS scores in the top 12.5%, 25%, or 50% of the full N-site 

library (12.5% for main results, while alternative cutoffs were discussed in the Discussion 

and Supplemental information; see also the focused-training simulations in Methods). 

Training was performed using five-fold cross-validation. Models were trained using 

XGBoost22 (boosting ensembles) and the Scikit-learn ridge regression23 (ridge regression). 
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The trained models were used to predict variant fitness across the entire landscape, and 

the top 96 predicted variant fitness values (!!'%! = 96) were used for the evaluation metric 

calculations. Boosting models were trained with the `reg:tweedie` objective and an 

`early_stopping_rounds` set to 10. Ridge regression used an alpha value of 1. 

Hyperparameters were not tuned. Models trained with boosting ensembles using one-hot 

encoded sequences were reported in the main text. Alternative models (ridge regression), 

sequence representations (ESM-2 with three pooling options), and strategies (ESM-2 fine-

tuning) were detailed in the Discussion and Supplemental information. All sampling and 

model splits were performed with fixed seeds for reproducibility. 

B.2.8.3 ALDE simulations 

We tested two surrogate models (boosting ensembles and deep neural network ensembles 

(DNN)) and three acquisition functions (greedy, upper confidence bound (UCB), and 

Thompson sampling (TS)) following the methods described by Yang et al.24 We presented 

ALDE boosting ensembles with greedy acquisition function in the main results and 

supplemented the alternatives in the Discussion section. 

An ensemble of models (predicting fitness values from sequences) was used to estimate the 

posterior distribution of the objective function (denoted as r). The acquisition function 

quantified the potential benefit of evaluating any given batch of inputs based on these 

predictions. In each iteration of the optimization loop (termed “rounds” and denoted !(")*+ 

in the main text), a new batch of inputs was selected by maximizing the acquisition function. 

After evaluating the objective function at these new inputs, the surrogate model was updated, 

and the process repeats. BoTorch25 and GPyTorch26 were used. Hyperparameters were based 

on those reported by Yang et al. 



 

 

129 
Surrogate models 

Let s denote all feasible protein sequences over an N-site (!%&!') landscape and r denote the 

objective function (fitness) to be optimized. To approximate r, we trained two types of 

surrogate model ensembles: 

Boosting ensembles 

Each boosting ensemble was trained using bootstrapping, where five independent boosting 

models were trained on 90% randomly sampled subsets of the total training data and 

implemented the `reg:tweedie` objective with `early_stopping_rounds = 10`. 

Deep neural network ensembles (DNN) 

Each DNN ensemble was trained using bootstrapping, where five independently initialized 

deep neural networks were trained on 90% randomly sampled subsets of the total training 

data. Models were optimized using `torch.optim.Adam` optimizer with the 

`torch.nn.MSELoss` loss from PyTorch.27 

Acquisition functions 

The acquisition function quantified the potential benefit of evaluating any given batch of 

inputs based on the predictions from the surrogate models. 

Upper confidence bound (UCB) 

The UCB acquisition function selects sequences by balancing exploitation and exploration: 

α*(D) = µ*(D) + β*
H/5σ*(D) 

where µ*(D) is the predicted (posterior) mean, σ*(D) is the standard deviation, and β* = 4 

controls the exploration-exploitation trade-off. To form a batch of sequences, we selected the 
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top x sequences that yield the highest values of y*(D), evaluated across all discrete 

sequence D in the design space. 

Greedy acquisition 

The greedy acquisition function selects sequences solely based on the predicted mean µ*(D). 

This makes it a special case of UCB with β* = 0, focusing purely on exploitation. 

Thompson sampling (TS) 

TS selects sequences by drawing random samples from the posterior distribution of r, 

choosing: 

D*MH = 	argmax
.∈N

r%#->$'+(D) 

where r%#->$'+(D) is randomly selected from one of the models in the ensemble. To from a 

batch of sequences, each sequence was sampled independently. 

ALDE simulation details 

For each fitness landscape, models were trained and evaluated on a total of 120, 144, 192, 

288, 384, 480, 576, 672, 1056, and 2016 samples (!!"!#$). These samples were distributed 

across two, three, or four acquisition rounds (!(")*+), with each round sampling !/#!KO = 

!!"!#$ 	/	!(")*+ variants. Samples for the initial round were drawn either randomly from the 

full N-site library or randomly from a focused library containing variants with ZS scores in 

the top 12.5%, 25%, or 50% of the full N-site library (12.5% was used for the main results, 

with alternative cutoffs discussed in the Discussion and Supplemental information). Samples 

for the subsequential rounds were selected based on the different acquisition functions. 

For example, given !!"!#$ = 120, !(")*+ = 2 (ALDE x 2), the initial round samples !/#!KO 

= 60 variants randomly from the full N-site library or from a focused library, followed by a 

second round of !/#!KO = 60 variants sampled based on the initial round; For !(")*+ = 3 
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(ALDE x 3), the initial round samples !/#!KO = 40 variants, either randomly from the full 

N-site library or from a focused library, followed by two subsequent rounds, each sampling 

!/#!KO = 40 variants based on its previous round. The evaluation metrics were calculated 

based on the fitness of the variants sampled in the final batch. 

Results using boosting ensembles with greedy acquisition and one-hot sequence encoding 

were reported in the main text. Alternative models (deep neural network ensembles (DNN)) 

and acquisition functions (upper confidence bound (UCB), Thompson sampling (TS)) were 

detailed in the Discussion and Supplemental information.  

B.2.8.4 Fine-tuning simulations 

LoRA fine-tuning was performed based on the study by Schmirler et al.28 The script in 

SSMuLA codebase was adapted from the original Jupyter notebook 

(https://github.com/RSchmirler/data-repo_plm-finetune-

eval/blob/main/notebooks/finetune/Finetuning_per_protein.ipynb). 

Specifically, ESM-2 (esm2_t33_650M_UR50D) was fine-tuned using the default 

`LoraConfig` parameters, with a low-rank adaptation factor of `r=4`, `lora_alpha=1`, and 

`bias="all"`, applied to the query, key, value, and dense transformer modules. The dataset 

consisted of random or focused training samples of varying sizes (!!(#&* = 24, 48, 96, 192, 

288, 384, 480, 576, 960, and 1920), which were split into 90% training and 10% validation 

sets. Spearman’s rank correlation was used as the validation metric to assess model 

performance. The training setup followed the recommended configuration, with an effective 

batch size of eight (`batch=4` for training batch size and `accum=2` for gradient 

accumulation), a validation batch size of `val_batch=16`, and a total of 10 training epochs. 

The learning rate was set to `lr=3e-4`, and mixed precision training was enabled 

(`mixed=True`). DeepSpeed acceleration was disabled (`deepspeed=False`), and only LoRA 

parameters were trained (`full=False`). After training, the fine-tuned model was used to 

predict variant fitness across the entire landscape, and the top 96 predicted variants were 

analyzed. 
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B.2.8.5 Focused training simulations 

Three focused training set cutoffs were tested, corresponding to 50%, 25%, and 12.5% of the 

total mutant library. A 12.5% cutoff was used for all simulations except those investigating 

the optimal focused training library size (Figure S41). To construct the focused training sets 

for each fitness landscape, all ZS scores were first computed for all variants, and the variants 

were then ranked accordingly. The top 1,000 variants in three-site landscapes and the top 

20,000 variants in four-site landscapes (12.5% of the total mutants) were selected as the 

focused training library. These focused training sets were subsequently used to randomly 

sample training data for MLDE, the initial round of ALDE, or fine-tuning. Due to 

computational resource constraints, only EVmutation-guided focused training was tested in 

the fine-tuning simulations. 

B.2.9 Decision tree simulations 

Following the decision tree (Figure 5), we simulated a prospective decision-making process 

to choose a ML-strategy and associated ZS predictor. We defined a landscape as “hard-to-

navigate” if the average pairwise C-alpha distance of substituted residues was ≤10 Å29 or if 

the sites were located in an enzyme active site. A “good ZS prior” was defined as using 

EVmutation if the MSA contained more than 1,000 sequences, using ESM-IF for binding 

interactions, and having no good ZS prior otherwise. We defined “low !!"!#$” as !!"!#$ ≤ 

480 and “large search space” as a landscape targeting four or more sites. The ML strategies 

were the same as those in the main text. The MLDE strategies used boosting ensemble with 

one-hot encoding. 384 variants for training-validation round with 96 for evaluation round 

were tested in the low !!"!#$ setting and 1920 with 96 variants otherwise. The ALDE 

strategies used boosting ensembles with greed acquisition using one-hot encoding. 480 

variants were equally split over four rounds in the low !!"!#$ setting and 2016 variants over 

four rounds otherwise. The evaluation metrics were calculated based on 50 replicates. 
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B.2.10 Elo rating 

We performed Elo rating calculations to compare (1) different DE, MLDE, ALDE, and 

focused training strategies and (2) various ZS predictors applied to different ftMLDE and 

ftALDE methods. The calculations were performed across a range of total unique variants 

screened (!!"!#$ = 120, 144, 192, 288, 384, 480, 576, 672, 1056, and 2016) for each ML-

based strategy. We modified the code from the Colab notebook by Large Model Systems 

(LMSYS Corp; https://colab.research.google.com/drive/1RAWb22-PFNI-

X1gPVzc927SGUdfr6nsR?usp=sharing).30 “Methods” refer to either different DE or ML-

assisted strategies in (1), where the average of the six ZS predictors was taken for each of the 

focused training strategy, or the different ZS predictors and their ensembles in (2). Elo ratings 

were computed for both evaluation metrics: average max fitness achieved and the fraction 

reaching the global optimum. For each analysis, bootstrap Elo ratings were computed 

separately for different evaluation metrics. The results of the Elo rankings were used to assess 

the relative effectiveness of different strategies and predictors in optimizing variant screening 

outcomes. 

B.2.10.1 Elo rating computation 

Elo ratings were computed based on pairwise comparisons between methods within each 

landscape. Pairwise comparisons were generated by grouping data by the landscape, and then 

computing the mean performance of each method within the library. All possible pairwise 

comparisons between methods within a given library were then performed. If one method 

had a higher mean score than another, it was assigned as the winner; otherwise, the result 

was recorded as a tie.  

The Elo rating system was used to quantify the relative ranking of methods based on the 

pairwise comparison results.31 All Elo parameters were set according to standard values to 

ensure a balance between stability and responsiveness in the Elo rating system. Each method 

was initially assigned a default Elo rating of 1000 to provide a fair starting point for all 

methods, preventing negative values and ensuring comparability across different strategies. 
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The ratings were then updated iteratively based on match outcomes. The rating updates 

followed the standard Elo update formula: 

U0	 =	
1

1 + 65e~(P8BP9)/%K#$'
 

U1	 =	
1

1 + 65e~(P9BP8)/%K#$'
 

�0, = �0 + Ä(Y0 − U0) 

�1, = �1 + Ä(Y1 − U1) 

where U0	 and U1 are the expected probabilities of winning for methods A and B, �0 and �1 

are the current Elo ratings, and Y0 and Y1 are the actual score of the match (1 for a win, 0 for 

a loss, and 0.5 for a tie). The 65e~ for probability computation was set to 10, following 

standard Elo implementations in ranking systems for interpretability and consistency. The 

K-factor (scaling factor that controls the magnitude of rating updates) was set to 4 (Ä = 4) 

to ensure that adjustments occurred gradually over multiple comparisons and reducing the 

influence of individual matchups. The scale factor (eÅ5[~) for score differences was set to 

400 (the “algorithm of 400”) to allow meaningful differentiation between methods.  

B.2.10.2 Bootstrapped Elo computation 

To account for variability in the comparisons and ensure robust ranking estimates, we applied 

bootstrapping with 1000 resampling iterations. Each iteration involved: randomly sampling 

the dataset of pairwise comparisons with replacement; recomputing Elo ratings using the 

resampled data; and storing the results for statistical aggregation. Deterministic random seeds 

were used to ensure reproducibility in bootstrapping. The median Elo score across bootstrap 

iterations was used as the final ranking score for each method.   

Additionally, stratified bootstrapping was applied to balance the number of comparisons 

between methods with different frequencies of occurrence. This was applied to ZS predictor 
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comparisons, as non-Hamming distance ensembles were not tested for all ftALDE 

variations. In this case, each method’s comparisons were resampled independently to ensure 

fair representation across bootstrap iterations. 

B.2.11 Feature correlation and importance analysis 

To analyze how each landscape attribute correlated with the simulation targets, a Spearman’s 

correlation was calculated between the values of the attribute and the performance values of 

the model. Both the Spearman’s ρ and p-value were reported. To test the differences between 

binding and enzyme activities, t-tests were performed, where the t-statistic and p-values were 

reported. A p-value less than 0.05 was considered statistically significant. 

B.2.11 Computational information 

B.2.11.1 Hardware 

The majority of computational analyses were conducted on a computing server running 

Ubuntu 22.04.4 LTS, equipped with two AMD EPYC 9654 96-core processors (384 logical 

CPUs) and two NVIDIA H100 PCIe GPUs (80GB each), running CUDA 12.4. Triad 

calculations were performed on a server running Ubuntu 20.04.6 LTS, equipped with two 

Intel Xeon Gold 6248R processors (96 logical CPUs). Fine-tuning simulations were 

conducted on a local workstation equipped with a 12th Gen Intel Core i9-12900KS processor 

(24 logical CPUs) and two NVIDIA RTX A6000 GPUs (48GB each), running CUDA 12.7.  

B.2.11.2 ZS calculations 

Computing Hamming distance for a full landscape is the least costly computationally. 

Obtaining each EVcouplings model from the online server took a few hours to a day, though 

this process could be expedited locally with parallelization and optimization. Computing 

EVmutation scores from the model took only seconds per landscape.  Computing ESM-2, 

ESM-IF, and CoVES scores took a few minutes to under an hour per landscape, accelerated 

by an H100 GPU. Triad calculations took a few seconds per variant with 48 CPU cores, 
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requiring to several hours or up to a day for an entire landscape. The computational cost 

for ensembling precomputed ZS scores was minimal. 

B.2.11.3 ML strategies 

Each MLDE and ALDE simulation was conducted with 50 replicates, running for several 

minutes to under an hour with GPU acceleration, though execution on CPUs was also 

feasible. Fine-tuning simulations required approximately 30GB of GPU memory and took 

several minutes to two hours per replicate on a single A6000 GPU. 

B.2.11.4 Scaling 

The computational cost scales linearly with number of rounds and number of samples for 

training and exponentially with number of sites for evaluation.  
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B.3 Supplemental information 

Table B.3.1. Combinatorial landscapes with additional details including landscapes with fewer than 1% active 

variants (italic rows), related to Table 3.1.1–4,6,32 

Landscape PDB ID Sites 
Percent 

complete 
Percent 
active 

Fraction of 
local optima 

Fraction of non-
magnitude epistasis  

Cauchy peak 
location 

Kurtosis 
Number of 
KDE peaks 

ParD2 6X0A I61, L64, K80 98.52 82.89 0.001 0.34 0.0807 0.07 3 

ParD3 5CEG D61, K64, E80 98.52 91.96 0.001 0.31 0.2521 -0.29 3 

GB1 2GI9 V39, D40, G41, V54 93.35 23.13 0.005 0.40 0.0003 76.92 33 
DHFR 6XG5 A26, D27, L28 100.00 10.68 0.004 0.42 0.1271 19.21 7 

T7 1CEZ N748, R756, Q758 84.06 3.48 0.368 0.52 0.0000 46.51 11 
TEV 1LVM T146, D148, H167, S170 99.46 11.5 0.060 0.56 -0.0114 37.74 27 

TrpB3A 

8VHH 

A104, E105, T106 99.64 0.74 0.390 0.60 -0.0399 53.44 9 
TrpB3B E105, T106, G107 99.95 0.23 0.667 0.54 -0.0554 84.31 8 
TrpB3C T106, G107, A108 99.93 0.44 0.514 0.59 -0.0736 7.15 8 
TrpB3D  T117, A118, A119 97.04 9.26 0.043 0.50 0.0036 32.52 13 

TrpB3E F184, G185, S186 99.55 2.02 0.348 0.63 0.0008 355.09 15 

TrpB3F L162, I166, Y301  96.71 1.06 0.232 0.54 -0.0230 47.49 15 

TrpB3G V227, S228, Y301 98.64 1.37 0.213 0.52 -0.0037 131.81 23 

TrpB3H S228, G230, S231 96.45 0.69 0.547 0.62 -0.0152 464.45 13 
TrpB3I Y182, V183, F184  97.30 32.04 0.006 0.43 0.0228 9.38 6 

TrpB4 V183, F184, V227, S228 99.46 6.15 0.057 0.46 0.0118 48.56 27 
 
 

Table B.3.2. MLDE percent improvement from three types of DE, related to Figure 3.2a. Calculations were 

based on landscapes with at least 1% active variants. 

 Recomb Single-step Top96 recomb 
Number of MLDE 
training samples 

Average max 
fitness achieved 

Fraction reaching 
the global optimum 

Average max 
fitness achieved 

Fraction reaching 
the global optimum 

Average max 
fitness achieved 

Fraction reaching 
the global optimum 

24 -7.35 -31.60 -15.25 -67.40 -23.89 -79.13 

48 3.13 30.59 -5.66 -37.76 -15.28 -60.16 

96 18.29 108.32 8.20 -0.71 -2.84 -36.44 

192 28.66 162.73 17.69 25.22 5.68 -19.84 
288 33.27 201.60 21.91 43.75 9.47 -7.98 
384 34.95 238.91 23.44 61.53 10.85 3.40 
480 37.94 282.44 26.17 82.28 13.30 16.69 

576 40.24 313.53 28.28 97.09 15.20 26.17 

960 47.09 427.02 34.54 151.18 20.82 60.80 

1920 50.85 487.65 37.99 180.08 23.92 79.30 
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Table B.3.3. ftMLDE and ftALDE percent improvement from MLDE and ALDE, related to Figure 3.2a. 

Calculations were based on landscapes with at least 1% active variants. 

 ftMLDE from MLDE  ftALDE from ALDE ftALDE x 3 from ALDE x 3 ftALDE x 4 from ALDE x 4 
Number 

of 
training 
samples 

Average max 
fitness 

achieved 

Fraction 
reaching the 

global 
optimum 

Average max 
fitness 

achieved 

Fraction 
reaching the 

global 
optimum 

Average max 
fitness 

achieved 

Fraction 
reaching the 

global 
optimum 

Average max 
fitness 

achieved 

Fraction 
reaching the 

global 
optimum 

24 11.17 76.89 19.32 154.76 14.34 72.90 17.11 61.31 
48 11.86 53.57 19.50 151.47 15.61 62.93 13.24 48.66 
96 9.57 60.32 15.22 88.94 12.99 67.55 12.09 48.48 
192 8.64 76.73 10.50 58.57 8.39 40.86 6.78 33.39 
288 7.08 70.02 8.95 49.07 5.41 20.24 5.22 20.86 
384 6.94 58.94 6.42 39.11 4.04 15.78 4.05 17.71 
480 5.18 44.44 4.97 30.14 3.35 14.07 1.70 7.32 
576 4.04 38.85 3.32 27.76 2.72 9.10 1.77 3.93 
960 0.13 17.60 1.25 12.57 0.79 5.42 0.74 3.81 
1920 -1.60 9.48 0.07 7.90 -0.14 6.10 -0.05 5.67 

 
 

Table B.3.4. Spearman’s rank correlation between landscape attributes and single-step DE average maximum 

fitness achieved, as well as the average maximum fitness improvement from DE using MLDE, ALDE and 

focused training with total sample size of 480, related to Figures 3.2c and B.3.6. Calculations were based on 

landscapes with at least 1% active variants. 

Attribute 
Single-step 

DE 
MLDE 
over DE 

ftMLDE 
over DE 

ALDE 
over DE 

ftALDE 
over DE 

ALDE x 3 
over DE 

ftALDE x 3 
over DE 

ALDE x 4 
over DE 

ftALDE x 4 
over DE 

Percent active 0.50 -0.85 -0.80 -0.59 -0.80 -0.88 -0.80 -0.81 -0.81 
Fraction of local optima -0.76 0.76 0.54 0.48 0.60 0.63 0.53 0.50 0.52 

Fraction of non-
magnitude epistasis 

-0.73 0.81 0.66 0.56 0.72 0.76 0.65 0.54 0.64 

Cauchy peak location 0.70 -0.64 -0.55 -0.64 -0.58 -0.69 -0.58 -0.62 -0.57 
Kurtosis (tailedness) -0.82 0.71 0.78 0.38 0.71 0.70 0.83 0.62 0.86 

Number of KDE peaks -0.80 0.34 0.50 0.23 0.36 0.36 0.57 0.47 0.60 

 
Table B.3.5. MLDE, ALDE and focused training with 480 total sample size fold improvement from single-step 

DE, related to Figures 3.2c and B.3.6. Bold row indicates the landscape with the max improvement and italic 

rows indicate landscapes with fewer than 1% active variants. 

Landscape MLDE ftMLDE ALDE ftALDE ALDE x 3 ftALDE x 3 ALDE x 4 ftALDE x 4 
DHFR 1.08 1.07 1.04 1.07 1.06 1.08 1.05 1.07 
GB1 1.17 1.34 1.16 1.27 1.25 1.37 1.34 1.38 

ParD2 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04 
ParD3 1.01 1.01 1.02 1.02 1.02 1.02 1.02 1.02 

T7 1.40 1.32 1.31 1.31 1.38 1.34 1.38 1.33 
TEV 1.42 1.28 1.28 1.26 1.38 1.32 1.42 1.31 

TrpB3A 1.52 2.20 1.31 1.84 1.60 2.02 1.61 2.15 
TrpB3B 1.25 2.05 0.85 1.47 0.96 1.44 0.87 1.48 
TrpB3C 1.09 1.71 0.89 1.43 0.88 1.35 0.98 1.37 
TrpB3D 1.24 1.32 1.26 1.28 1.30 1.30 1.30 1.32 
TrpB3E 2.30 3.48 1.43 2.84 1.97 2.96 1.71 2.96 
TrpB3F 1.30 1.43 1.38 1.39 1.40 1.43 1.37 1.43 
TrpB3G 1.38 1.55 1.30 1.49 1.37 1.52 1.49 1.55 
TrpB3H 1.30 2.46 0.89 2.10 1.07 2.13 1.52 2.28 
TrpB3I 1.21 1.26 1.24 1.25 1.25 1.26 1.25 1.26 
TrpB4 1.24 1.34 1.10 1.25 1.31 1.35 1.36 1.41 
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Table B.3.6. Protein function and MSA impact ZS predictor performances test significance, related to 

Figure 3.3c. Correlation between Spearman’s correlation of ZS predictor fitness ranking prediction with MSA 

depth, where the depth for the EVmutation calculation covering the full sequence is used. Bold font indicates 

statistically significant (p-value < 0.05). 

Metric 
MSA depth  

(Spearman’s correlation) 

ZS predictor Spearman ρ p-value 
Hamming distance 0.54 0.07 
EVmutation 0.49 0.11 
ESM-2 0.71 0.01 
ESM-IF 0.55 0.07 
CoVES 0.03 0.93 
Triad -0.05 0.87 

 
 
Table B.3.7. T-test for ZS predictor between binding and enzyme activities for landscapes with at least 1% 

active variants, related to Figure 3.4a. Bold font indicates statistically significant (p-value < 0.05). 

Metric 
Binding vs. Enzyme activities 

(Spearman’s correlation) 
Binding vs. Enzyme activities 

(ROC-AUC) 

ZS predictor t-statistics  p-value t-statistics  p-value 
Hamming distance 1.740 0.210 -2.379 0.042 
EVmutation 1.738 0.167 -1.669 0.126 
ESM-2 1.297 0.308 -0.747 0.493 
ESM-IF 3.316 0.052 0.749 0.494 
CoVES 3.641 0.057 1.289 0.279 
Triad 4.332 0.001 1.101 0.334 

 
 
Table B.3.8. T-test for focused training MLDE (480 total sample size) between binding and enzyme activities 

for landscapes with at least 1% active variants, related to Figure 3.4b.  

Metric 
Binding vs. Enzyme activities 

(Spearman’s correlation) 
Binding vs. Enzyme activities 

(ROC-AUC) 

ZS predictor t-statistics  p-value t-statistics  p-value 
Hamming distance 0.041 0.969 -0.720 0.525 
EVmutation 0.351 0.738 -0.111 0.918 
ESM-2 0.341 0.784 -0.338 0.758 
ESM-IF 0.582 0.577 -0.267 0.802 
CoVES 0.342 0.745 0.217 0.843 
Triad 0.904 0.397 -0.210 0.845 
Hamming distance + 
EVmutation 

1.445 0.184 1.313 0.219 
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Table B.3.9. T-test for focused training ALDE (480 total sample size split into four rounds) between binding 

and enzyme activities for landscapes with at least 1% active variants, related to Figure 3.4b. 

Metric 
Binding vs. Enzyme activities 

(Spearman’s correlation) 
Binding vs. Enzyme activities 

(ROC-AUC) 

ZS predictor t-statistics  p-value t-statistics  p-value 
Hamming distance 0.070 0.948 -0.441 0.688 
EVmutation 0.787 0.454 0.414 0.704 
ESM-2 0.267 0.801 -0.235 0.829 
ESM-IF 0.768 0.465 0.279 0.795 
CoVES 0.369 0.726 0.335 0.761 
Triad 1.612 0.139 0.128 0.905 
Hamming distance + 
ESM-IF 

0.582 0.557 -0.024 0.982 

Hamming distance + 
EVmutation 

0.323 0.759 0.157 0.884 

Hamming distance + 
CoVES 

0.128 0.905 0.289 0.790 

 
 
Table B.3.10. Relationship between the percentage of pairwise non-magnitude epistasis (where higher values 

indicate harder-to-navigate landscapes) and the average pairwise C-alpha distance of substituted residues (the 

smaller the distance, the closer the central carbon atoms of the two amino acids at the targeted sites, Appendix 
B.2 Methods). 

Landscape 
Average pairwise C-

alpha distance  
Fraction of non-

magnitude epistasis 
DHFR 4.43 ± 0.99 0.42 
GB1 5.94 ± 1.90 0.40 

ParD2 17.18 ± 10.53 0.34 
ParD3 17.57 ± 10.90 0.31 

T7 5.55 ± 0.90 0.52 
TEV 9.04 ± 1.35 0.56 

TrpB3A 4.77 ± 1.71 0.60 
TrpB3B 4.88 ± 1.90 0.54 
TrpB3C 4.61 ± 1.41 0.59 
TrpB3D 4.33 ± 0.91 0.50 
TrpB3E 4.46 ± 1.14 0.63 
TrpB3F 7.58 ± 2.20 0.54 
TrpB3G 6.84 ± 3.24 0.52 
TrpB3H 5.74 ± 2.30 0.62 
TrpB3I 4.57 ± 1.33 0.43 
TrpB4 12.36 ± 6.87 0.46 

 
 
  



 

 

141 
Table B.3.11. T-test for ZS predictor between binding and enzyme activities for landscapes with at least 

1% active variants but with single substitution only, related to the Chapter 3 Discussion section and Figure 
B.3.29. Bold font indicates statistically significant (p-value < 0.05). 

Metric 
Binding vs. Enzyme activities 

(Spearman’s correlation) 
Binding vs. Enzyme activities 

(ROC-AUC) 

ZS predictor t-statistics  p-value t-statistics  p-value 
Hamming distance 0.336 0.746 -3.352 0.010 
EVmutation -0.803 0.478 -0.116 0.924 
ESM-2 0.467 0.660 0.521 0.668 
ESM-IF 1.074 0.367 4.078 0.008 
CoVES 1.032 0.371 3.116 0.044 
Triad 1.534 0.205 5.036 0.001 

 
 
Table B.3.12. Simulated campaign outcome following the recommended ML strategies flowchart. Hard-to-

navigate was defined as the average pairwise C-alpha distance of substituted residues less than or equal to 10 

Å or if the sites were located in an enzyme active site. Good ZS prior was defined as using Hamming distance 

with EVmutation if more than 1,000 sequences were covered in the MSA, using Hamming distance with ESM-

IF for binding interactions, and no good ZS prior otherwise. Low "#%#&' / low evolvability was defined as "#%#&' 
≤ 480. Large search space / split into rounds was defined as if the landscape targeted four or more sites. Average 

maximum fitness achieved and fraction reaching global optimum with "#%#&' = 480. 

Landscape 
Hard-to- 
navigate? 

Deep 
MSA? 

Low !#'#*+ / low 
evolvability? 

Large search 
space / split into 

rounds? 
Strategy 

Average maximum 
fitness achieved 

Fraction reaching the 
global optimum 

DHFR Yes Yes Yes No 
Hamming distance + 
EVmutation ftMLDE 

1.00 1.00 

GB1 Yes No Yes Yes 
Hamming distance + 
ESM-IF ftALDE x 4 

0.94 0.76 

ParD2 No - Yes No MLDE 1.00 0.98 
ParD3 No - Yes No MLDE 0.99 0.12 

T7 Yes No Yes No 
Hamming distance 

ftMLDE 
0.78 0.00 

TEV Yes No Yes Yes 
Hamming distance 

ftALDE x 4 
0.42 0.02 

TrpB3A Yes Yes Yes No 

Hamming distance + 
EVmutation ftMLDE 

1.00 1.00 
TrpB3B Yes Yes Yes No 1.00 1.00 
TrpB3C Yes Yes Yes No 1.00 1.00 
TrpB3D Yes Yes Yes No 1.00 1.00 
TrpB3E Yes Yes Yes No 1.00 1.00 
TrpB3F Yes Yes Yes No 1.00 1.00 
TrpB3G Yes Yes Yes No 1.00 1.00 
TrpB3H Yes Yes Yes No 1.00 1.00 
TrpB3I Yes Yes Yes No 1.00 1.00 

TrpB4 Yes Yes Yes Yes 
Hamming distance + 

EVmutation ftALDE x 
4 

0.81 0.06 
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Table B.3.13. Simulated campaign outcome following the recommended ML strategies flowchart. Hard-to-

navigate was defined as the average pairwise C-alpha distance of substituted residues less than or equal to 10 

Å or if the sites were located in an enzyme active site. Good ZS prior was defined as using Hamming distance 

with EVmutation if more than 1000 sequences were covered in the MSA, using Hamming distance with ESM-

IF for binding interactions, and no good ZS prior otherwise. Low "#%#&' / low evolvability was defined as "#%#&' 
≤ 480. Large search space / split into rounds was defined as if the landscape targeted four or more sites. Average 

maximum fitness achieved and fraction reaching global optimum with "#%#&' = 2016. 

Landscape 
Hard-to- 
navigate? 

Deep 
MSA? 

Low !#'#*+ / low 
evolvability? 

Large search 
space / split into 

rounds? 
Strategy 

Average 
maximum fitness 

achieved 

Fraction reaching the 
global optimum 

DHFR Yes Yes No No EVmutation ftMLDE 1.00 1.00 

GB1 Yes No No Yes ESM-IF ftALDE x 4 0.99 0.96 

ParD2 No - No No MLDE 1.00 1.00 
ParD3 No - No No MLDE 0.99 0.28 

T7 Yes No No No MLDE 0.96 0.34 
TEV Yes No No Yes ALDE x 4 0.52 0.00 

TrpB3A Yes Yes No No 

EVmutation ftMLDE 

1.00 1.00 
TrpB3B Yes Yes No No 1.00 1.00 
TrpB3C Yes Yes No No 1.00 1.00 
TrpB3D Yes Yes No No 1.00 1.00 
TrpB3E Yes Yes No No 1.00 1.00 
TrpB3F Yes Yes No No 1.00 1.00 
TrpB3G Yes Yes No No 1.00 1.00 
TrpB3H Yes Yes No No 1.00 1.00 
TrpB3I Yes Yes No No 1.00 1.00 
TrpB4 Yes Yes No Yes EVmutation ftALDE x 4 1.00 0.98 

 

 
 
Figure B.3.1. DE, MLDE, ALDE, and focused training performance averaged across four landscapes with 

fewer than 1% active variants, related to Figure 3.2a. Shading indicates the standard deviation across 

landscape means, each averaged over 50 replicates. 
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Figure B.3.2. Elo ratings for DE, MLDE, ALDE, and focused training strategies across all 16 landscapes, 

related to Figures 3.2a and B.3.1. The top panel shows Elo rating across all total sample sizes for each ML-

based method. The bottom panel shows a violin plot for total sample size of 480 ("#%#&' = 480) across both 

metrics, with inner black lines marking quartiles (25th, 50th/median, and 75th percentiles). Both panels reflect 

results from 1,000 bootstrap resampling iterations; shading in the top panel indicates standard deviation from 

these bootstraps. 
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Figure B.3.3. Performance of DE, MLDE, ALDE, and focused training, measured by the average maximum 

fitness achieved for each of the 16 landscapes individually, related to Figures 3.2a and B.3.1. The hollow 

triangle and diamond indicate the total number of unique variants sampled for DE, where "#%#&' = "!&/0'$ +
	"#$!# and "!&/0'$ = 19 ×	"!"#$ + 1 (Box 3.1; Appendix B.2 Methods). The solid triangle and diamond 

indicate the total number of variants screened to achieve 95% variant space coverage, given by 

"#%#&': = "!-($$) +	"#$!#, where "!-($$) = −"-%+%) × ln(1 − p) 	× "!"#$ and p is the desired library 

coverage.19,20 The number of codons, "-%+%), was set to 22 based on the 22-coden trick. In practice, "-%+%) 

varies depending on the SSM library generation methods.19 Shading indicates the standard deviation, averaged 

across 50 replicates. 
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Figure B.3.4. Performance of DE, MLDE, ALDE, and focused training, measured by the fraction reaching the 

global optimum for each of the 16 landscapes individually over 50 replicates, related to Figures 3.2a and B.3.1. 

The hollow triangle and diamond indicate the total number of unique variants sampled for DE, where "#%#&' =
"!&/0'$ +	"#$!# and "!&/0'$ = 19 ×	"!"#$ + 1 (Box 3.1; Appendix B.2 Methods). The solid triangle and 

diamond indicate the total number of variants screened to achieve 95% variant space coverage, given by 

"#%#&': = "!-($$) +	"#$!#, where "!-($$) = −"-%+%) × ln(1 − p) 	× "!"#$ and p is the desired library 

coverage.19,20 The number of codons, "-%+%), was set to 22 based on the 22-coden trick. In practice, "-%+%) 

varies depending on the SSM library generation methods.19 
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Figure B.3.5. Single-step DE, MLDE, ALDE, and focused training results broken down by four landscapes with 

fewer than 1% active variants. A total sample size of 480 was used for all ML strategies across both metrics, 

related to Figure 3.2b. 

 

 

 
 

Figure B.3.6. Correlation of ALDE and ftALDE performance improvement (the average maximum fitness of 

the top 96 predicted variants by ALDE and ftALDE over single-step DE, y-axis) with six landscape attributes 

(x-axis), related to Figure 3.2c. 
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Figure B.3.7. Mean variant fitness of double-site library (Hamming distance of two) from active variant as the 

parent, related to Hamming distance in Figure 3.3. 

 

 

 
 

Figure B.3.8. Hamming distance fitness ranking using any active variant as the parent, related to Hamming 

distance in Figure 3.3. The dotted line indicates random predictions. 
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Figure B.3.9. Hamming distance active/inactive variant classification using any active variant as the parent, 

related to Hamming distance in Figure 3.3. The dotted line indicates random predictions. 
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Figure B.3.10. Multiple rounds of ftALDE averaged across 12 landscapes with more than 1% active variants, 

related to Figure 3.3e.  Shading indicates the standard deviation across landscape means, each averaged over 

50 replicates. 
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Figure B.3.11. ftMLDE with Hamming distance-ensembled ZS predictors averaged across four landscapes with 

fewer than 1% active variants, related to Figure 3.3e. Shading indicates the standard deviation across 

landscape means, each averaged over 50 replicates. 
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Figure B.3.12. Multiple rounds of ftALDE averaged across four landscapes with fewer than 1% active variants, 

related to Figure 3.3e. Shading indicates the standard deviation across landscape means, each averaged over 

50 replicates. 
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Figure B.3.13. ftMLDE with Hamming distance-ensembled ZS predictors, averaged across 12 landscapes with 

more than 1% active variants, related to Figure 3.3e. Shading indicates the standard deviation across 

landscape means, each averaged over 50 replicates. 

 
 

 
 
Figure B.3.14. ftMLDE with Triad-ensembled ZS predictors, CoVES-ensembled ZS predictors, or ESM-IF and 

EVmutation ensemble, averaged across 12 landscapes with more than 1% active variants, related to Figure 
3.3e. Shading indicates the standard deviation across landscape means, each averaged over 50 replicates. 
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Figure B.3.15. ftMLDE with Triad-ensembled ZS predictors, CoVES-ensembled ZS predictors, or ESM-IF and 

EVmutation ensemble, averaged across four landscapes with fewer than 1% active variants, related to Figure 
3.3e. Shading indicates the standard deviation across landscape means, each averaged over 50 replicates. 
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Figure B.3.16. Elo ratings for different ZS predictors used to guide focused training strategies for all 16 

landscapes, related to Figures 3.3e, B.3.10–B.3.15. The top and middle panels show Elo rating across all total 

sample sizes for focused-training with Hamming distance-based ensembles or other high-performing but 

orthogonal ZS predictor ensembles. The bottom panel shows a violin plot for 480 ("#%#&' = 480) across both 

metrics, with inner black lines marking quartiles (25th, 50th/median, and 75th percentiles). All panels reflect 

results from 1,000 bootstrap resampling iterations; shading in the top and middle panels indicate standard 

deviation from these bootstraps. 
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Figure B.3.17. ftMLDE with Hamming distance-ensembled ZS predictors, measured by the average maximum 

fitness achieved for each of the 16 landscapes individually, related to Figures 3.3e, B.3.11, and B.3.13. Shading 

indicates the standard deviation, averaged across 50 replicates. 
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Figure B.3.18. ftMLDE with Hamming distance-ensembled ZS predictors, measured by the average maximum 

fitness achieved for each of the 16 landscapes individually, related to Figures 3.3e, B.3.11, and B.3.13. Results 

were calculated from 50 replicates. 
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Figure B.3.19. ftMLDE with Triad-ensembled ZS predictors, CoVES-ensembled ZS predictors, or ESM-IF and 

EVmutation ensemble, measured by the average maximum fitness achieved for each of the 16 landscapes 

individually, related to Figures 3.3e, B.3.14, and B.3.15. Shading indicates the standard deviation, averaged 

across 50 replicates. 
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Figure B.3.20. ftMLDE with Triad-ensembled ZS predictors, CoVES-ensembled ZS predictors, or ESM-IF and 

EVmutation ensemble, measured by the fraction reaching the global optimum for each of the 16 landscapes 

individually, related to Figures 3.3e, B.3.14, and B.3.15. Results were calculated from 50 replicates. 
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Figure B.3.21. ftALDE x 4 with Hamming distance-ensembled ZS predictors, measured by the average 

maximum fitness achieved for each of the 16 landscapes individually, related to Figures 3.3e, B.3.10, and 

B.3.12. Shading indicates the standard deviation, averaged across 50 replicates. 
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Figure B.3.22. ftALDE x 4 with Hamming distance-ensembled ZS predictors, measured by the fraction reaching 

the global optimum for each of the 16 landscapes individually, related to Figures 3.3e, B.3.10, and B.3.12. 

Results were calculated from 50 replicates. 

 
 

  
 
Figure B.3.23. ZS predictor fitness value ranking (left) and active/inactive variant classification (right) for four 

landscapes with fewer than 1% active variants, related to Figure 3.4a.  
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Figure B.3.24. Effects of focused training for ftMLDE with a total sample size of 480 (384 training and 96 

testing, top panel) and 192 (96 training and 96 testing, bottom panel) for four landscapes with fewer than 1% 

active variants, related to Figure 3.4b.  
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Figure B.3.25. Effects of focused training for two (top panel) and four (bottom panel) rounds of ftALDE with a 

total sample size of 480 for four landscapes with fewer than 1% active variants, related to Figure 3.4b.  
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Figure B.3.26. Effects of focused training for two (top panel) and four (bottom panel) rounds of ftALDE with a 

total sample size of 480 for 12 landscapes with at least 1% active variants, related to Figure 3.4b. 
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 Figure B.3.27. Effects of focused training for two (top panel) and four (bottom panel) rounds of ftALDE with 

a total sample size of 192 for 12 landscapes with at least 1% active variants, related to Figure 3.4b. 
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Figure B.3.28. Effects of focused training for ftMLDE with a total sample size of 192 (96 training and 96 

testing) for 12 landscapes with at least 1% active variants, related to Figure 3.4b. 

 
 

  
 
Figure B.3.29. ZS predictor for single substitution fitness value ranking (left) and active/inactive variant 

classification (right) for 12 landscapes with at least 1% active variants, related to the Chapter 3 Discussion 
section and Figure 3.4a. Statistical significance (p-value <0.05) is indicated as *. 
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Figure B.3.30. ZS predictor for single substitution fitness value ranking (left) and active/inactive variant 
classification (right) for landscapes with fewer than 1% active variants, related to the Chapter 3 Discussion 
section and Figure 3.4a. 
 

 
 
Figure B.3.31. Encoding strategies for MLDE performance, averaged across 12 landscapes with at least 1% 
active variants. Comparison of learned embeddings from the protein language model ESM-2 using different 
pooling methods vs. one-hot encoding flattened over the substitution sites, related to the Chapter 3 Discussion 
section. Shading indicates the standard deviation across landscape means, each averaged over 50 replicates. 
  

 
 
Figure B.3.32. Encoding strategies for EVmutation-guided ftMLDE performance, averaged across landscapes 
with at least 1% active variants. Comparison of learned embeddings from the protein language model ESM-2 
using different pooling methods vs. one-hot encoding flattened over the substitution sites, related to the Chapter 
3 Discussion section. Shading indicates the standard deviation across landscape means, each averaged over 
50 replicates.  
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Figure B.3.33. Encoding strategies for MLDE performance, averaged across four landscapes with fewer than 
1% active variants. Comparison of learned embeddings from the protein language model ESM-2 using different 
pooling methods vs. one-hot encoding flattened over the substitution sites, related to the Chapter 3 Discussion 
section. Shading indicates the standard deviation across landscape means, each averaged over 50 replicates. 
 
 

 
 
Figure B.3.34. Encoding strategies for EVmutation-guided ftMLDE performance, averaged across four 
landscapes with fewer than 1% active variants. Comparison of learned embeddings from the protein language 
model ESM-2 using different pooling methods vs. one-hot encoding flattened over the substitution sites, related 
to the Chapter 3 Discussion section. Shading indicates the standard deviation across landscape means, each 
averaged over 50 replicates.  
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Figure B.3.35. Performance of fine-tuning and EVmutation-guided fine-tuning (ftFine-tuning) compared with 
MLDE, ftMLDE, ALDE, and ftALDE, averaged across 12 landscapes with at least 1% active variants. Fine-
tuning was performed using ESM-2 with Low Rank Adaptation (LoRA), with five replicates per landscape, 
related to the Chapter 3 Discussion section. Shading indicates the standard deviation across landscape means, 
each averaged over 50 replicates. 
 
 

 
 
Figure B.3.36. Performance of fine-tuning and EVmutation-guided fine-tuning (ftFine-tuning) compared with 
MLDE, ftMLDE, ALDE, and ftALDE, averaged across four landscapes with fewer than 1% active variants. 
Fine-tuning was performed using ESM-2 with Low Rank Adaptation (LoRA), with five replicates per landscape, 
related to the Chapter 3 Discussion section. Shading indicates the standard deviation across landscape means, 
each averaged over 50 replicates. 
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Figure B.3.37. MLDE and ALDE with different model types, averaged across 12 landscapes with at least 1% 
active variants. MLDE with boosting or ridge regression. Different rounds of ALDE with boosting or deep 
neural network ensembles (DNN). No focused training included, related to the Chapter 3 Discussion section. 
Shading indicates the standard deviation across landscape means, each averaged over 50 replicates. 
 
 

 
 
Figure B.3.38. MLDE and ALDE with different model types, averaged across four landscapes with fewer than 
1% active variants. MLDE with boosting or ridge regression. Different rounds of ALDE with boosting or deep 
neural network ensembles (DNN). No focused training included, related to the Chapter 3 Discussion section. 
Shading indicates the standard deviation across landscape means, each averaged over 50 replicates. 
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Figure B.3.39. ALDE with different model type and acquisition function options, averaged across 12 
landscapes with at least 1% active variants. Different rounds of ALDE with boosting or deep neural network 
ensembles (DNN) in combination with greedy, upper confidence bound (UCB), and Thompson sampling (TS). 
No focused training included, related to the Chapter 3 Discussion section. Shading indicates the standard 
deviation across landscape means, each averaged over 50 replicates. 
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Figure B.3.40. ALDE with different model type and acquisition function options, averaged across four 
landscapes fewer than 1% active variants. Different rounds of ALDE with boosting or deep neural network 
ensembles in combination with greedy, upper confidence bound (UCB), and Thompson sampling (TS). No 
focused training included, related to the Chapter 3 Discussion section. Shading indicates the standard 
deviation across landscape means, each averaged over 50 replicates.  
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Figure B.3.41. The impact of reducing the size of the focused training library relative to the full library on 

ftMLDE performance averaged across 12 landscapes with at least 1% active variants split into three-site 

landscapes (top row) and four-site landscapes (bottom row). Related to the Chapter 3 Discussion section. 
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A p p e n d i x  C  

SUPPLEMENTARY INFORMATION FOR CHAPTER 4 

C.1 Datasets 

C.1.1 Summary 

All datasets are available on Zenodo: https://zenodo.org/records/15226690. 

Table C1. Dataset summary. 

Enzyme Substrates Cofactor  # Pairs  # Sites Sites Activity Selectivity 

PfTrpB 4bromo indole + L-serine PLP 241 3 I165, I183, Y301 Absorbance N.A. 

PfTrpB 4cyano indole + L-serine PLP 241 3 I165, I183, Y301 Absorbance N.A. 

PfTrpB 5bromo indole + L-serine PLP 241 3 I165, I183, Y301 Absorbance N.A. 

PfTrpB 5chloro indole + L-serine PLP 241 3 I165, I183, Y301 Absorbance N.A. 

PfTrpB 5cyano indole + L-serine PLP 241 3 I165, I183, Y301 Absorbance N.A. 

PfTrpB 5iodo indole + L-serine PLP 241 3 I165, I183, Y301 Absorbance N.A. 

PfTrpB 6chloro indole + L-serine PLP 241 3 I165, I183, Y301 Absorbance N.A. 

PfTrpB 7bromo indole + L-serine PLP 68 3 I165, I183, Y301 Absorbance N.A. 

PfTrpB 7iodo indole + L-serine PLP 241 3 I165, I183, Y301 Absorbance N.A. 

PfTrpB 7methyl indole + L-serine PLP 241 3 I165, I183, Y301 Absorbance N.A. 

PfTrpB 5,6chloro indole + L-serine PLP 241 3 I165, I183, Y301 Absorbance N.A. 

Rma cyt c NHC-borane + Me-EDA heme 150 6 V75, M99, M100, T101T, D102, M103 % yield Enantio- 

Rma cyt c phenyldimethyl-silane + Me-EDA heme 150 6 V75, M99, M100, T101T, D102, M103 % yield Enantio- 

ParLQ a: 4-vinylanisole + EDA heme 490 5 W56, Y57, L59, Q60, F89 % yield Diastereo- 

ParLQ b: styrene + EDA heme 91 5 W56, Y57, L59, Q60, F89 % yield Diastereo- 

ParLQ c: 1-methyl-4-vinylbenzene + EDA heme 91 5 W56, Y57, L59, Q60, F89 % yield Diastereo- 

ParLQ d: 1-methyl-3-vinylbenzene + EDA heme 91 5 W56, Y57, L59, Q60, F89 % yield Diastereo- 

ParLQ e: 1-methyl-2-vinylbenzene + EDA heme 91 5 W56, Y57, L59, Q60, F89 % yield Diastereo- 

ParLQ f: 1-chloro-4-vinylbenzene + EDA heme 91 5 W56, Y57, L59, Q60, F89 % yield Diastereo- 

ParLQ g: 1-bromo-4-vinylbenzene + EDA heme 91 5 W56, Y57, L59, Q60, F89 % yield Diastereo- 

ParLQ h: 1-(trifluoromethyl)-4-vinylbenzene + EDA heme 91 5 W56, Y57, L59, Q60, F89 % yield Diastereo- 

ParLQ i: 2-vinylnaphthylene +EDA heme 91 5 W56, Y57, L59, Q60, F89 % yield Diastereo- 

 

C.1.2 Dataset backgrounds 

The tryptophan synthase β-subunit (TrpB) catalyzes a native reaction between L-serine and 

indole to form tryptophan. Engineered TrpBs extend this function to non-native substrates 

such as serine analogues and substituted indoles, enabling the synthesis of tryptophan analogs 
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and other noncanonical amino acids that are important precursors to pharmaceuticals and 

natural products (Figure 4.1c).1–4 

Heme-containing enzymes have been engineered to carry out a plethora of valuable reactions 

that have not been found in biological systems.5 These new-to-nature reactivities include 

carbene transfers for stereoselective olefin cyclopropanation, traditionally requiring 

unsustainable transition metals,6,7 and the formation of carbon–silicon (C–Si)8 and carbon–

boron (C–B)9 bonds (Figure 4.1d). 

C.1.2.1 Multi-substrate PfTrpB dataset 

Library Generation Beginning with a TrpB variant discovered in a directed evolution 

campaign for 4-nitroTrp formation, Pf5G8,2 a triple-site saturation mutagenesis library was 

generated. Primers from Table A2 were used to amplify out the vector in three pieces and 

install variation at positions 165, 183, and 301 via the 22-codon trick.10 Amplification was 

performed with Phusion® High-Fidelity DNA Polymerase according to manufacturer 

recommendations (New England Biolabs, Catalog M0530L). A Gibson assembly was used 

to generate full-length vectors which were transformed via electroporation into 

electrocompetent BL21-DE3 E. coli cells. These cells were plated onto LB agar containing 

100 µg/mL ampicillin. 

Single colonies were picked into 96-well deep well plates containing 300 µL TB containing 

100 µg/mL ampicillin (TBAmp) and grown overnight at 37 °C, 250 rpm, and 80% humidity. 

The following day, expression 96-well deep well plates were filled with 630 µL TBAmp and 

20 µL culture and grown for 3 h at 37 °C, 250 rpm, and 80% humidity. These plates were 

then cooled on ice for 20 min prior to adding 50 µL 14 mM IPTG (1 mM final) and incubating 

overnight at 25 °C and 250 rpm overnight. Cells were pelleted at 3500–4000 rpm for 10 min, 

the supernatant was decanted, and the plates were then frozen at -20 °C overnight. 

Screening To prepare cell lysate, pellets were first resuspended in lysis buffer composed of 

1mg/mL HEWL, 2 mM MgCl2, 10X bug buster, 200 µM PLP, and a small amount of DNAse 
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in 50 mM potassium phosphate buffer, pH 8.0 (KPi). They were then incubated at 37 °C 

for 30 min and heat treated at 75 °C for at least 30 min. Plates were then spun down at 5000 

rpm for 10 min and the supernatant was used as cell lysate. 

Table C2. Primer sequences, where XXX = 22 codon trick.10 

Name Sequence 

I165_f GTTCTCGCACCCTGAAAGACGCAXXXGACGAGGCTCTGCGTGATTGG 

I165_r TGCGTCTTTCAGGGTGCGAGAAC 

I183_f GTGGCTACTTTTGAATACACCCACTACCTAXXXGGTTCCGTGGTCGGTCCAC 

I183_r TAGGTAGTGGGTGTATTCAAAAGTAGCCAC 

Y301_f CTCCATCGCACCAGGTCTGGATXXXCCAGGTGTTGGTCCAGAACACG 

Y301_r ATCCAGACCTGGTGCGATGGAG 

 

Table C3. Wavelengths. 

Compound Wavelength (nm) 

4bromo 304 

5bromo 306 

7bromo 300 

5chloro 306 

6chloro 304 

5,6chloro 310 

5iodo 306 

7iodo 306 

4cyano 294 

5cyano 310 

7methyl 296 

 

Nucleophile stocks were made for all indole analogs at 200 mM in either EtOH (4bromo, 

5bromo) or DMSO (7bromo, 5chloro, 6chloro, 5,6chloro, 5iodo, 7iodo, 7methyl, 4cyano, 

5cyano). Reactions were set up in 96-well deep well plates. Reactions were prepared with 10 

µL nucleophile stock (10 mM final), 20 µL lysate, 10 µL L-serine (25 mM final), and 160 

µL KPi and incubated in a tightly sealed plate at 75 °C overnight. The next day the reactions 

were acidified with 200 µL 1M HCl and the unreacted indole extracted with 500 µL EtOAc. 

The plates were sealed tightly and shaken vigorously, then spun down at 1000 rpm for 3 min 

to separate the layers before drawing the bottom (aqueous) layer of the mixture into a 96-
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well UV-transparent flat-bottom plate. Absorbance was collected every 2 nm from 290–

310 nm for every substrate using a Tecan InfiniTe. The absorbance wavelength used for 

quantification for each substrate was selected according to its absorbance properties (Table 

C3). 

C.1.2.2 Multi-substrate ParLQ dataset 

The dataset was sourced from the study by Yang and Lal et al.11 The model substrate was 

presented in their main text, while the substrate scope data was provided in the supplementary 

information. Additional experimental details were confirmed through direct communication 

with the authors. 

Activity was calculated based on GC-FID measurements, where the product area was 

normalized to the internal standard area and converted using the calibration curve from 

Figures S11–S28. The yield calculation followed the author’s notebook (GitHub repository: 

https://github.com/jsunn-y/ALDE/blob/master/analysis/visualization.ipynb), normalizing 

the area to the maximum possible product concentration and accounting for the 1.5X dilution 

from the reaction. The cis isomer was the major product. Selectivity was determined by 

calculating the ratio of the cis to trans isomer. 

C.1.2.3 Rma cytochrome c C–B and C–Si dataset 

The dataset was sourced from the study by Ding et al. (Supplementary Tables 3 and 4).12 

Upon communication with the corresponding author, we confirmed that no sequence 

information was collected from the random mutagenesis libraries presented in 

Supplementary Tables 5 and 6. 
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C.2 Mechanism 

C.2.1 PLP-dependent TrpB reactions 

 

Figure C1. TrpB mechanism based on published studies.1,2,13 The E(A-A) intermediate together with the 

substrates were used for ZS predictors. 

C.2.2 Heme-based carbene transfer reactions 

 

Figure C2. Mechanism for heme-based carbene transfer reaction as computed by DFT (Appendix 
C.3.15).14,15 TS2 was used for ZS predictors. 

Fe
N
N N

N

N

O

OH

MeO

HN

Fe
N
N N

N

N

O

O
H

HN

Fe
N
N N

N

N

O

O
N2 H

HN

Fe
N
N N

N

N

O

O
N2

HN

Fe
N
N N

N

N

O

OO

+

HN

Fe
N
N N

N

N

+

O

O
N2

HN



 

 

181 
C.3 Methods 

C.3.1 General ZS predictors 

Hamming distance, EVmutation, ESM, ESM-IF, CoVES, and (∆∆Gf) ZS scores were 

calculated based on the study by Li et al.16  

C.3.2 Vina 

AutoDock Vina v1.2.5 was used. PDBQT files for substrates were prepared from 

corresponding SMILES strings using RDKit at pH 7.4 and Open Babel.17–19 The cofactor was 

extracted from the parent PDB and converted to PDBQT using Open Babel, while metal ions 

were prepared separately. Receptor structures were derived from parent PDB structures 

(PDB ID: 5DW0 for PfTrpB and 3CP5 for Rma cyt c), while the structure for ParLQ was 

modeled by the authors using Alphafold 3 with a bound-heme. Variant structures were 

generated using MDAnalysis. 

Docking coordinates were defined by the centroid of the substrate-cofactor complex with a 

box size of 20 Å. Each docking experiment was performed in five replicates, with nine 

docking modes and an exhaustiveness setting of 32. The lowest energy from each replicate 

was recorded, and the final energy was averaged across replicates. The negative values of the 

energies were used as the ZS predictor. 

C.3.3 Rosetta GALigandDock 

The Pyrosetta GALigandDock-based ZS scores were obtained from a local copy of the 

pyrosetta distribution pyrosetta-2025.3+release.1f5080a079-py3.12-linux-

x86_64.egg/pyrosetta/distributed. Two conda environments (anaconda.org) were created. 

One for the input preprocessing and one for inference of Pyrosetta GALigandDock. To set 

them up, download the corresponding .yaml files (ambertools.yml and pyrosetta env.yml) 

and execute the following console commands: 

$ conda env create -f <path/to/ambertools.yml> 
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and 

$ conda env create -f <path/to/pyrosetta_env.yml> 

respectively. 

To preprocess the inputs, the first conda environment was activated and the script pyrosetta 

pipeline.py was executed with the following parameters: 

``` 

python -m substrate_aware.zs.pyrosetta_pipeline --meta_list 

<path/to/campaign_1_meta.csv> 

<path/to/campaign_2_meta.csv> 

<...> 

<path/to/campaign_n_meta.csv> 

--struc_dir <path/to/structures_dir> 

--tmp_dir <path/to/dir/for/tempfiles> 

--out_dir <path/to/dir/for/output_files> 

--rosettascript_path <rosetta/source/.../mol2genparams.py> 

--net_charge_unit_1 <net charge> 

--net_charge_unit_2 <net charge> 

``` 

The script takes docked structures for a given campaign as input and returns them adequately 

reformatted for Pyrosetta, alongside a Pyrosetta-specific parameter file for each of the 

campaign’s substrates. The script runs into a tracepoint and prompts the user to manually 

correct a newly created mol2 file of the substrates and then save it under a printed location. 

For this purpose, the file was then downloaded, observed in a 3D molecular viewer, such as 

Avogadro20 and edited to meet antechambers21 requirements for am1bcc charge generation. 

This includes adding hydrogen, correcting unnatural bond orders, and ensuring that the 

molecule only contains atoms of the element set {H, C, N, O, F, P, S, Cl, Br, I} on which 
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antechamber is parametrized. In the case of iron coordination centers, the metal atom was 

replaced by a phosphorous. Boron and silicon were substituted with carbon. Lastly, each 

connected unit must consist of 4 or more atoms. Units with less than that (e.g., ions) were 

omitted. To finish the preprocessing, the console prompts were followed. 

The second script, pyrosetta inference.py, runs the actual GALigandDock docking by 

executing it with the following parameters: 

``` 

python -m substrate_aware.zs.pyrosetta_inference --meta_list 

<path/to/campaign_1_meta.csv> 

<path/to/campaign_2_meta.csv> 

<...> 

<path/to/campaign_n_meta.csv> 

--preprocessed_dir <path/to/directory_containing_pdbs_and_params> 

--results_dir <path/to/results_dir> 

``` 

The docking mover is parametrized within this script. This will create two output files for 

each variant of all campaigns. The variantname aligned enzyme final.pkl contains the best 

scoring docked poses and variantname aligned enzyme final.csv contains a table with Rosetta 

metrics of these poses. Finally, for each campaign campaignname.csv summarizes the 

Rosetta-metrics of the best docked pose of each variant together with variant ground-truth 

data. 

The negative values of all energy terms were extracted. The dH value, representing enthalpy, 

was used as the score to indicate the thermodynamic stability of the binding event, where 

more exothermic values correspond to stronger binding. 
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C.3.4 Alphafold 3 (AF3) 

For PfTrpB, the substrate SMILES was joint with the E(A-A) intermediate (Figure C1) and 

the crystallographic sodium ion to prevent the substrate from docking onto the enzyme 

surface. For heme-based reactions, the substrate SMILES was assigned to chain B, while the 

carbene-heme intermediate complex (Figure C2) TS2 was assigned to chain C. All scores 

were extracted from five replicates, and the final structure for each variant was aggregated. 

The scores from the replicates were averaged. For chain-predicted aligned errors (PAE), the 

negative values were used as the predictor. The confidence scores of each residue at the 

targeted site were also extracted and averaged as a predictor. 

C.3.5 Chai-1 

Chai-1 version 0.1.0 was used, following the same process as AF3, except without MSAs 

and using PAE as scores. 

C.3.6 LigandMPNN 

Code from LigandMPNN GitHub (https://github.com/dauparas/LigandMPNN) was adopted 

to extract the ZS scores.22 The model with 20 Å Gaussian noise was chosen. Only the mutated 

residues of the campaign were redesigned with autoregressive scoring. To mitigate biases 

introduced through decoding order, the number of batches was set to 100. Variant likelihoods 

were thus obtained through: 

Kvariant =
1
100: ; K <ÇÇW =Backbone, >ÇÇX?9 < !@YA

Zmut

W=1

100

Y=1
 

C.3.7 FlowSite 

Code from FlowSite GitHub (https://github.com/HannesStark/FlowSite) was adopted to 

extract ZS scores.23 The parameters were chosen according to the author’s suggestion. To 

evaluate the docking and sequence co-generation as appropriate to directed evolution 
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campaigns, both the residues to design and the pocket were defined via the mutated sites. 

For each variant, 100 inference trajectories were generated. Predicted likelihoods were 

averaged among inferences and position to yield the final variant ZS score. 

C.3.8 Bond distance 

Bond distances were derived from AF3 docked structures based on the mechanisms for bond-

forming atoms (Appendix C.2). For PfTrpB, distances were measured between the catalytic 

Glu104 and N1-hydrogen. For heme-based carbene transfer reactions, the distances were 

measured between the carbene carbon and either boron, silicon, or the styrene double bond. 

Distances were calculated for each replicate and averaged. The negative value of the bond 

distance was used as the predictor, based on the hypothesis that closer reactive atoms lead to 

stronger reactivity and, consequently, higher activity. 

C.3.9 Protein-ligand-interaction-profiler (PLIP) 

A local copy of the PLIP software (release 2.4.0) was obtained from the GitHub 

(https://github.com/pharmai/plip).24 The AF3 docked strucutres were used as inputs. An 

output XML report file was generated to characterize each variant’s ligand-active-site-

interactions. 

C.3.10 Active-site identification 

Two different active site extraction heuristics were explored. The first heuristic defines all 

residues to belong to the active site, that bear the centroid of their side-chain atoms within a 

10 Å distance threshold of the ligand’s centroid. 

The second extraction heuristic used PLIP to define the active site. The residues tagged with 

“bindingsite” were considered (Appendix C.3.9). 
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C.3.11 Hydrogen bonds 

The AF3 docked structures were used to run PLIP (Appendix C.3.9). The number of 

hydrogen bonds identified in the active site was extracted from the output files and used as a 

ZS predictor. 

C.3.12 Hydrophobicity 

For the enzyme, active-site hydrophobicity was calculated based on different active-site 

identification methods (Appendix C.3.10) using various scales, including the Kyte-Doolittle 

scale,25 the Hopp-Woods scale,26 the Eisenberg scale,27 and theoretical and empirical residue 

solvent accessibility.28 

For the ligand, logP was calculated. While previous literature used the Kyte-Doolittle scale 

to identify hydrophobic regions likely to be in transmembrane segments,29 we instead chose 

the Hopp-Woods scale, which highlights antigenic (hydrophilic) regions on protein surfaces. 

C.3.13 Active-site volume 

The substrate volume was estimated based on the Convex-Hull of the substrate. The active-

site volume of the parent was estimated with CASTp based on PDB ID 5DW0 for PfTrpB, 

3CP5 for Rma cyt c and 3ZJI for ParLQ.30 The variant active-site volume was estimated by 

the different in different amino acid side chain at the targeted sites. 

C.3.14 Similarity calculations 

To quantify the similarity between the indole analogs to the native indole, Tanimoto 

similarity of atom-pair fingerprints31 was calculated with RDKit.17,18 

C.3.15 DFT calculations 

DFT calculations were conducted using Orca 6.0.32 We constructed a model containing the 

porphyrin core, Fe center and an imidazole to mimic the histidine ligand. Geometry 
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optimizations and frequency calculations were performed using the unrestricted B3LYP 

hybrid functional with def2-TZVP basis set and with D3(BJ) dispersion correction. All 

geometries were verified as minima or first-order saddle points by frequency analysis. 

Enthalpies and entropies were calculated for 1 atm and 298.15 K. The SMD continuum 

solvation model was used in all optimizations and single point calculations with water as the 

implicit solvent to approximate the energy otherwise required when the reaction is performed 

without the enzyme. In Figure C2, we show the complete energetics of heme-catalyzed 

cyclopropanation with different spin-states. In other carbenoid reactions, we report energetic 

barriers derived from open-shell singlet calculations of the C–Si insertion/borylation 

transition state, in comparison against the carbene-porphryin intermediate. Readers should 

note that while DFT can derive reasonable geometries for transition states, the absolute 

energy values can have significant margin of error and should only serve as qualitative 

estimates. Surprisingly, DFT calculations yielded similar activation energies of ~ 9 – 13 

kcal/mol for the three new-to-nature reactions, as shown by other studies.33–35 We also 

obtained the ∆G of the reaction considering all substrates and products (Table C12). 

C.3.16 Ensemble models 

To ensemble ZS predictors into a unified score, unweighted ensemble and different types of 

learned linear models were explored. Results from the shallow neural network were excluded 

due to overfitting. 

Unweighted ensemble. Each ZS predictor was ranked, and the ranks of different chosen ZS 

predictors were summed up for the final score. 

Learned ensemble. Each model was fitted on one specific enzyme optimization campaign 

and successively tested on all other campaigns. The models included linear regression, 

piecewise linear regression with a threshold. By doing so, we tested whether a model’s 

learned relationship between feature scores and measured activities. During prediction, these 

models thereby weighted individual ZS scores and introduced nonlinearities. Given the data: 
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where FD(Y)depends on the chosen transformation. And that fitting on 1 set of F(Y) generalizes 

to other sets of Fs. 

Inputs where normalized according to: 

DY =
DY−ç`
é`

 

Linear regression. In the case of linear regression (w), the prediction is obtained by the 

transformation: 

FD(Y) = è0 +:èXDX
(Y)

W

X=1
 

where è0 and èX are obtained through the optimization problem: 

min
a0,⋯,aA

:GF(Y)− Hè0 +:èXDX
(Y)

W

X=1
IJ

2^

Y=1
 

Piecewise linear regression. Although linear regression is straightforward to fit and 

interpret, it may fail to capture threshold-dependent behaviors (e.g., scores only become 

useful after a certain threshold and optimization is capped after a certain cutoff). To address 

this, we additionally considered a piecewise linear regression model, which introduces 

simple nonlinearities via a learned threshold for each feature. The prediction is obtained by 

the transformation: 
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FD(Y) = è0 +:èXêX <DX
(Y); yX1, yX2A

W

X=1
 

where the mapping function êX introduces the nonlinearity: 

êXBDX; yX1, yX2C =

⎩
⎪
⎨

⎪
⎧

0, DX < yX1,
DX−yX1
yX2 −yX1

, yX1 ≤ DX < yX2

1, DX ≥ yX2.

, 

The piecewise model parameters >è0,èX@ and thresholds >yX1, yX2@ are fit by minimizing the 

sum of squared errors: 

mina0,⋯,aA
cB1,cB2

:GF(Y)− Hè0 +:èXêX <DX
(Y); yX1, yX2A

W

X=1
IJ

2^

Y=1
 

subject to yX1 < yX2 for each feature j. 
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C.4 Additional results 

C.4.1 Dataset visualization 

 

Figure C3. PfTrpB activity. 

 

Figure C4. ParLQ activity. 

 

Figure C5. ParLQ diastereoselectivity. 

 

Figure C6. Rma cyt c activity. 

 

Figure C7. Rma cyt c enantioselectivity. 



 

 

191 
C.4.2 Individual ZS predictor performance 

Table C4. ZS predictors are averaged across all, non-native, and new-to-nature datasets. Bold indicates the 

best predictor, bold italics indicates the second-best predictor, and italics highlight the third-best predictor 

within each category. 

ZS predictor All Non-native substrate New-to-nature chemistry 

Hamming distance 0.1056  0.3378  -0.1266 

EVmutation 0.2768 0.4652 0.0885 

ESM-2 0.1904 0.5125 -0.1316 

ESM-IF 0.2534 0.4810 0.0257 

CoVES 0.1473 0.4075 -0.1129 

∆∆Gf 0.2379 0.5253 -0.0495 

Vina 0.0361 0.0257 0.0465 

GALigandDock 0.1393 0.1228 0.1559 
AF3 0.2751 0.2416 0.3086 
Chai-1 0.1420 0.2094 0.0746 

LigandMPNN 0.2105 0.4780 -0.0570 

FlowSite 0.2176 0.4007 0.0345 

Bond distance 0.0607 0.1853 -0.0639 

Hydrogen bonds 0.1633 0.2802 0.0464 

Hydrophobicity 0.2028 0.4128 -0.0072 

Active-site volume 0.0828 0.0469 0.1187 
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Figure C8. Spearmen’s correlation for activity. 
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Figure C9. Top 25% recall for activity. 

 

Figure C10. Top 25% recall for activity, averaged by chemistry. 
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Figure C11. Spearmen’s correlation for selectivity. 

 

Figure C12. Top 25% recall for selectivity. 
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Figure C13. Top 25% recall for selectivity, averaged by chemistry. 
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C.4.3 Combination of ZS predictors 

Table C5. Spearman’s ρ of 34 unweighted ensembles of ZS predictors generalized better than the top individual 

ZS across all chemistries. See Table C4 for topN predictors. 

Predictor Combination Average Spearman’s ρ across all chemistries 

All top2 0.3859 

New-to-nature top8 0.3802 

New-to-nature top9 0.3769 

New-to-nature top5 0.3757 

All top3 0.3738 

New-to-nature top7 0.3708 

New-to-nature top11 0.3598 

New-to-nature top10 0.3588 

New-to-nature top6 0.3579 

All top4 0.3531 

New-to-nature top12 0.3460 

All top5 0.3457 

New-to-nature top13 0.3395 

New-to-nature top4 0.3390 

All top6 0.3316 

New-to-nature top14 0.3179 

All top7 0.3162 

New-to-nature top15 0.3091 

All top12 0.3079 

All top9 0.3046 

All top14 0.3008 

Non-native top16 0.3007 

All top16 0.3007 

New-to-nature top16 0.3007 

All top13 0.3000 

All top8 0.2983 

Non-native top15 0.2978 

All top15 0.2978 

All top11 0.2943 

Non-native top14 0.2938 

All top10 0.2901 

Non-native top12 0.2887 

Non-native top11 0.2843 

Non-native top13 0.2802 
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Figure C14. Linear regression model trained on one library with 16 ZS and tested on all. 

 

Figure C15. Different model and ZS predictor combinations for ensembling. uw refers to an unweighted 

combination. w refers weighted linear combination trained on the best dataset and tested on the rest. lp refers 

to piecewise linear models trained on the best dataset and tested on the rest. The * symbol indicates the training 

set, which is excluded from the test-avg calculation. 
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Figure C16. Averaged weights for linear regression model trained on one library with 16 ZS and tested on all. 

 

Figure C17. Scatter plot for EVmutation + AF3w. 
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C.4.3 Additional tables 

Table C6. Bitscore and sequence counts for PfTrpB, Rma cyt c, and ParLQ. The bold row indicates the chosen 

MSA covering all the targeted sites. 

Enzyme Bitscore Sequences 

PfTrpB 0.1 74795 
 0.3 5996 

 0.5 5935 

 0.7 4647 

Rma cyt c 0.1 Job exceeded resources 
 0.3 79025 
 0.5 3042 

 0.7 1940 

ParLQ 0.1 15086 
 0.3 875 

 0.5 343 
 0.7 343 

 

Table C7. Activity and selectivity Spearman’s correlation. 

Library Spearman’s ρ 

ParLQ-a 0.9610 

ParLQ-b 0.7527 

ParLQ-c 0.9335 

ParLQ-d 0.9326 

ParLQ-e 0.8971 

ParLQ-f 0.8197 

ParLQ-g 0.7097 

ParLQ-h 0.9257 

ParLQ-i 0.7618 

Rma-CB 0.6438 

Rma-CSi 0.4554 
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Table C8. Correlation between ZS predictions for activity and for selectivity, both measured by Spearman’s 

correlation. 

ZS predictor Spearman’s ρ p-value 

Hamming distance 0.9455 1.12e-05 

EVmutation 0.7818  0.0045 

ESM-2 0.8545  0.0008 

ESM-IF 0.7273  0.0112 
CoVES 0.6818  0.0208 

∆∆Gf 0.8727 0.0005 

Vina 0.8091  0.0026 

GALigandDock 0.9182  6.66e-05 
AF3 0.3091  0.3550 
Chai-1 0.9545  4.99e-06 
LigandMPNN 0.8273  0.0017 

FlowSite 0.6545  0.0289 

Bond distance 0.5636  0.0710 
Hydrogen bonds 0.4909  0.1252 

Hydrophobicity 0.9364  2.21e-05 

Active-site volume 0.9000  0.0002 

 

Table C9. Tanimoto similarity of atom-pair fingerprints for PfTrpB non-native substrates. 

Indole Analogs Similarity to Indole 

7iodo 0.6053 

7methyl 0.6053 

7bromo 0.6053 

5iodo 0.6000 

5bromo 0.6000 

5chloro 0.6000 

4bromo 0.5500 

6chloro 0.5366 

5cyano 0.4898 

4cyano 0.4894 

56chloro 0.3333 
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Table C10. Correlation between predictors and substrate similarity to the native substrate. 

ZS predictor Spearman’s ρ p-value 

Hamming distance 0.3890  0.2371 

EVmutation 0.6390   0.0343 

ESM-2 0.6390   0.0343 
ESM-IF 0.5371  0.0884 

CoVES 0.1574  0.6439 

∆∆Gf 0.6390  0.0343  

Vina 0.3334  0.3164 

GALigandDock 0.5371  0.0884 
AF3 0.3982  0.2251 
Chai-1 0.3241  0.3308 
LigandMPNN 0.3982  0.2251 

FlowSite 0.1574  0.6439 

Bond distance 0.0185  0.9569 
Hydrogen bonds 0.5464   0.0820 

Hydrophobicity 0.3612  0.2751 

Active-site volume 0.0370 0.9139 

 

Table C11. Calculated reaction energy barrier (kcal/mol). 

Chemistry Energy barrier 

ParLQ ~ 9 

Rma-CB ~ 11 
Rma-CSi ~ 12 

 

Table C12. Calculated reaction energy ∆G (kcal/mol) considering all substrates and products for new-to-nature 

chemistries. 

Chemistry ∆G 

ParLQ-a -44.6075 

ParLQ-b -44.7320 
ParLQ-c -44.5280 

ParLQ-d -46.3590 

ParLQ-e -45.8877 
ParLQ-f -45.5328 

ParLQ-g -46.0807 

ParLQ-h -75.2704 
ParLQ-i -45.5365 

Rma-CB -54.8434 
Rma-CSi -62.6220 
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Table C13. Correlation between reaction energy and ZS predictor performance. 

ZS predictor Spearman’s ρ p-value 

Hamming distance 0.4455  0.1697 

EVmutation 0.1273 0.7092 

ESM-2 0.3000   0.3701 
ESM-IF -0.0545  0.8734 

CoVES 0.3455  0.2981 

∆∆Gf 0.2818  0.4011 

Vina 0.2000  0.5554 

GALigandDock -0.1000  0.7699 
AF3 0.4909  0.1252 
Chai-1 0.3818  0.2466 
LigandMPNN 0.3091  0.3550 

FlowSite 0.0273  0.9366 

Bond distance -0.0364  0.9155 
Hydrogen bonds 0.1364   0.6893 

Hydrophobicity 0.1273  0.7092 

Active-site volume 0.0455 0.8944 
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