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ABSTRACT

This thesis is primarily concerned with hypersonic turbulent boundary layers and
the unique features – present in them. This problem is studied in three levels of
varying fidelity – by means of linear resolvent analysis, a blended resolvent esti-
mation approach, and direct decomposition of a temporally-resolved dataset. This
thesis then explores three complementary research directions: (i) quantification of
how streamwise development influences acoustic radiation across various param-
eter regimes, (ii) development of a forcing model that enables acoustic radiation
estimation using only near-wall measurements, and (iii) evaluation of these findings
through comparison with data-driven analysis techniques.

First, the resolvent analysis is performed on a turbulent hypersonic streamwise
developing mean profile. It is shown that these (acoustically radiating) streamwise
developing resolvent modes may be effectively modeled using resolvent modes
around an assumed-parallel mean profile. Then this model is used to investigate the
impact of streamwise development on acoustic radiation for varying bulk parameters.

Second, the modeling of acoustic radiation from near-wall information is tackled.
To achieve this, resolvent based estimation (RBE) is leveraged along with a small
number of near-wall measurements. It is shown that RBE alone is insufficient to
accurately predict the freestream power spectral density. Resolvent analysis around
a streamwise developing mean profile is then analyzed by performing a Helmholtz
decomposition, where it is shown that the solenoidal part of the resolvent forcing is
primarily responsible for the linear amplification. This observation is used to develop
an approximate forcing CSD method, which filters out any dilatational forcing, to
supplement RBE. Using the approximate forcing with RBE shows significantly
improved estimation of the freestream PSD.

Finally, spectral proper orthogonal decomposition (SPOD) is applied to a 3-D
temporally-resolved dataset resulting from a direct numerical simulation of a hyper-
sonic streamwise developing turbulent boundary layer. It is shown that the SPOD of
the fluctuations around a streamwise developing mean extracts modes with a constant
streamwise wavenumber and shows high-rank behavior. By further transforming
the data in the streamwise direction, an SPOD of the fluctuations around a 1-D
mean profile uncovers low-rank behavior and similar structures are seen between
the resolvent and SPOD modes.
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5.1 Diagram outlining the modeling objective. Statistics of the TBL

in A are used to predict the freestream disturbance in B. The blue
dashed line indicates the maximum wall-height were measurements
are taken. Shown for a spatially-developing boundary layer for ease
of visualization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
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𝑦+𝑚 = 16.9 for both data and estimate. Estimate performed with
𝑞𝑚 = [𝑢, 𝑇], y+𝑚 ≈ [5, 16, 26, 72], using Equation 2.72 , and only PSD
information was provided to the estimate. Solid contours represent
the DNS, dashed (blue) and filled contours represent the estimation.
Contour levels are ≈ 1%, 22%, 45%, 67%, 90% of absolute maximum. 84
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tions. Estimate performed with 𝑞𝑚 = [𝑢, 𝑇], y+𝑚 ≈ [5, 16, 26, 72],
using Equation 2.72, and full CSD information was provided to the
estimate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.4 | (𝑆𝑇𝑇,𝑜𝑝𝑡−𝑆𝑇𝑇 )/S̃𝑇𝑇 | – Relative error for temperature CSD at (𝜅𝑥 , 𝜅𝑧, 𝜔) ≈
(15, 6, 10) for the standard estimator using Equation 2.72 and the es-
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𝑞𝑚 = [𝑢, 𝑇], y+𝑚 ∈ y+𝑚 ≈ [5, 16, 26, 72] and full CSD information
was provided to the estimate. . . . . . . . . . . . . . . . . . . . . . . 85

5.5 Pre-multiplied PSD for varying components at 𝑦/𝛿 = 1.8 and a
fixed (𝜅𝑧) (a-b) Estimate performed using PSD, 𝚽𝑦𝑦, as inputs, e.g.,
𝚽̃(𝜅𝑥 , 𝜔) = 𝑇𝑞𝚽𝑦𝑦𝑇

∗
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with 𝜅 ∈ {𝜅 |𝜅𝑥𝜔𝚽(𝜅𝑥 , 𝜔) > 0.01 max (𝜅𝑥𝜔𝚽(𝜅𝑥 , 𝜔)) .} are com-
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5.7 Estimate of freestream (integrated) pre-multiplied cospectra for tem-
perature fluctuations using standard RBE. Estimation is done with
four measurements at y+𝑚 ≈ [5, 16, 26, 72] and measuring the vari-
ables q𝑚 = [𝑢, 𝑇]. Solid contours represent the DNS, dashed (blue)
and filled contours represent the estimation. Contour levels are
≈ 1%, 22%, 45%, 67%, 90% of absolute maximum. . . . . . . . . . . 89

5.8 Estimate of freestream (integrated) pre-multiplied cospectra for tem-
perature fluctuations using standard RBE. Estimation is done with
four measurements at y+𝑚 ≈ [5, 16, 26, 72] and measuring the vari-
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measured 𝜅𝑥 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
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C h a p t e r 1

INTRODUCTION AND BACKGROUND

Though the actual engineering problem of flight has long since been solved and
thousands of airliners successfully complete their flights every day, the underlying
physical phenomenon of turbulence rages on without an end in sight and in need
of insight. Turbulence is the behavior of fluids to transition from a steady, smooth
‘laminar’ state to a chaotic ‘turbulent’ state, as the Reynolds number increases.
Turbulence is responsible for a large increase in drag in fluid flows and accounts
for 25% of the energy spent in moving fluids or moving vehicles through fluids
(Jiménez, 2013b). Moving to hypersonic vehicles, the problem becomes even more
stark with the extreme induced surface heating, due to near-wall turbulence, serving
as a massive barrier to even the successful flight of such vehicles (Reshotko, 2008;
Cheng et al., 2024).

Central to the discussion of turbulent flows is the boundary layer. At a solid surface,
a fluid must reach a velocity of zero, relative to the speed of the surface – this is
called the ‘no-slip’ condition. Due to the existence of the no-slip condition, there
is a transition between freestream conditions, the conditions of a fluid flow when
not in the presence of objects, and the wall, which is called a boundary layer. The
dynamics and modeling of turbulent boundary layers (TBL) (and other wall-bounded
turbulent flows) have been a subject of study since the very inception of the field of
fluid mechanics (Jackson and Launder, 2007).

In the early years of fluid mechanics research, the studies were strictly limited to
incompressible wall-bounded flows. However, with the advent of space travel and
other high-speed flows, there became a need to study hypersonic flows. Hypersonic
flows are fluid flows characterized by the Mach number, Ma = 𝑈∞/𝑐where𝑈∞ is the
freestream velocity and 𝑐 is the speed of sound, being greater than five. Early work on
supersonic fluid flows, by Morkovin, 1962, led to the so-called ‘Morkovin’s Hypoth-
esis’ and Strong Reynolds Analogies (SRA), which attempted to draw equivalences
between the incompressible and compressible cases. Due to Morkovin’s work and
the resulting SRA being one of the few theoretical developments for compressible
turbulence, this relation still receives much attention today (Duan, Beekman, and
Martín, 2010; Pirozzoli and Bernardini, 2011; Y.-S. Zhang et al., 2014; Cogo, Baù,
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et al., 2023).

Though there are many direct numerical simulations (DNS) of hypersonic flows,
the simulation of them numerically is limited to low, relative to freestream flight
conditions, Reynolds numbers even in the case of idealized gases (Cogo, Salvadore,
et al., 2022; C. Zhang, Duan, and Choudhari, 2018). This restriction is even greater
when simulations are required to fully resolve the freestream, as has been done by
Chen et al., 2024. Additionally, as compared to the study of incompressible flows,
which are primarily characterized by the Reynolds number alone, compressible flows
are characterized by a wide number of a parameters. Hence the characterization of
this large parameter space quickly becomes untenable, even at the relatively lower
Reynolds number that are within the capabilities of current simulations. Thus, to
characterise and better design hypersonic bodies of interest, it is imperative and
necessary to utilize experimental facilities, which allow testing a wider range of
parameters and more quickly.

Though experiments are a major avenue to study hypersonic flows, they are not
without problems and it is well documented that conventional wind tunnels are not
able to reliable reproduce transition found in freestream flight conditions, due to
many sources of experimental noise (Schneider, 2001). The most prominent source
of noise for flows with Mach numbers greater than 2.5 has been found to be due
to acoustic radiation generated by the boundary layers on the walls of wind tunnel
experimental facilities (Laufer, 1964). Thus, before proceeding with experimental
campaigns, the presence of this noise makes it imperative to characterise the tunnel
noise environment and ensure that the noise does not cause early transition on the
body of interest.

One method to achieve this is by measuring the freestream environment, in tunnels,
through the use of focused laser differential interferometry (FLDI), which is a
non-intrusive optimal measurement technique that has high frequency resolution
(Lawson, 2021). While many studies have successfully used FLDI to characterise
the noise environment (and generically measure the flow), it has been shown that
FLDI is sensitive to noise from the sidewall boundary layers in the low-wavenumber
spectra (Benitez et al., 2025). Hence, there is a need to supplement experimental
measurements with computational models for acoustic radiation from tunnels walls.

The study and modeling of acoustic radiation has been a subject of research since
Phillips, 1960 and J. E. F. Williams and Maidanik, 1965. These studies bore great
fruit and laid a theoretical foundation for acoustic radiation, but they operated by
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adding simplifying assumptions to the governing equations which make it chal-
lenging to use these equation directly to model acoustic radiation from tunnel wall
TBLs. Later work by Mack (1984) showed the existence of instability mechanisms
that were unique to the compressible supersonic boundary layer. These ‘supersonic
waves’ are solutions to the freestream Euler equations and provided a condition that
must be satisfied for acoustic radiation to occur from a TBL.

At the same time, in the study of incompressible wall-bounded flows, it was shown
that the analytical tools of linear stability theory (LST), as used by Mack, 1984, were
insufficient to predict transition in a simple pipe flow (Schmid and Henningson,
2001). It was found that transition in pipe flows could be predicted by accounting
for non-modal amplification mechanisms, which LST inherently does not account
for (Schmid and Henningson, 2001; Trefethen and Embree, 2005).

The work of McKeon and Sharma, 2010 built on these ideas of non-modal analysis
and studied the resolvent operator, which did not necessitate simplifying assumptions
and allowed to study of non-modal (and modal) mechanisms underlying turbulence.
This same framework was used to study compressible TBLs, by Bae, Dawson,
and McKeon, 2020, where it was found that the resolvent modes could be scaled to
match the incompressible resolvent modes within a specified region of the parameter
space. Additionally, Bae, Dawson, and McKeon, 2020 showed that the relative sonic
line, as studied by Mack (1984), demarcated the region where the incompressible
mechanisms match the compressible ones and where they differ.

This is the starting point of this thesis. The primary goals of this thesis are two-fold:
(i) To develop a better understanding of the turbulence dynamics that are unique to
the hypersonic TBL (e.g., the relative supersonic region of the hypersonic TBL) (ii)
To use this understanding to develop models for acoustic radiation from hypersonic
TBLs to aid in the study of hypersonic flows via experimental and computational
means. The following part of this section provides more details on the preceding
discussion and attempts to contextualize and lay the foundation for the work that
will follow in the rest of the thesis.

1.1 Wall-bounded turbulent flows
1.1.1 Incompressible Flows
Before discussing compressible wall-bounded flows, it is necessary to discuss the
fundamental theoretical developments that occurred in the study of incompressible
flows. A common trend in the study of compressible turbulent flows is to use the
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incompressible case as a base-line.

One of the seminal theoretical results of incompressible turbulence was formulated
by Prandtl in 1925 (reviewed by Pope, 2000). Prandtl hypothesized that close to
the wall of a turbulent wall-bounded flow, there is an inner layer, where the mean
velocity is determined solely by ‘viscous units’ and independent of the ‘outer’ flow
that exists away from the wall. This development is termed The law of the wall and
may be written as:

𝑢

𝑢𝜏
= 𝑓𝑤 (𝑦/𝛿𝜈) (1.1)

where 𝑢𝜏 is the friction velocity, 𝛿𝜈 is the inner length scale, and the form of 𝑓𝑤
varies will wall-height (details may be found in Pope, 2000).

Building on the work of Prandtl, von Kármán, and Millikan (review by Luchini,
2019), Coles, 1956 then developed ‘The law of the wake’ — expanding on the law
of the wall. These ‘laws’ may be compactly represented as:

𝑢

𝑢𝜏
= 𝑓𝑤 (𝑦/𝛿𝜈)︸     ︷︷     ︸

law of the wall

+ 2Π
𝜅
𝑊

( 𝑦
𝛿

)
︸      ︷︷      ︸

law of the wake

, (1.2)

where 𝜅 is the von Kármán constant, Π is the wake parameter that accounts for
pressure gradients, and𝑊 is the wake function. This composite profile successfully
collapses TBL data across a wide range of Reynolds numbers into a single universal
curve by combining the logarithmic behavior near the wall with the wake contri-
bution in the outer region; thus, showing the turbulent mean streamwise velocity
profiles are self-similar.

In addition to this universal mean-profile scaling, many theories regarding turbulence
phenomenology have been developed, with perhaps most notably ‘The attached eddy
hypothesis’ (Townsend, 1976; Perry and Chong, 1982; Marusic and Monty, 2019).
Put very loosely, the attached eddy hypothesis is a phenomenological model for
turbulence, wherein turbulence is constructed by a linear superposition of wall-
attached eddies. This theory then admits scalings that are consistent with many
experimental and computational observations. More generally, this points to a
common research direction of turbulence, which seeks to find ‘coherent structures’
that form a more deterministic basis for turbulence theory. A common example
of such a theory of turbulence is the near-wall self-sustaining process (Kline et al.,
1967; Waleffe, 1997; Jiménez and Pinelli, 1999). A common trend throughout this
line of research is to study linear mechanisms to understand the underlying nonlinear
process (Jiménez, 2013a) — this will be discussed more further in this chapter.
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1.1.2 Compressible Flows
Due to large increase of surface heating for turbulent hypersonic flows, many of
the early studies of hypersonic compressible flows focused on predicting transition,
e.g., Lees and Lin, 1946. An early, and seminal, theoretical development for the
turbulent compressible TBL can be attributed to Van Driest, 1956, who developed
a scaling law that collapsed the mean velocity of the compressible TBL onto the
self-similar profile for the incompressible one.

The Van Driest transformation is given by:

𝑈+VD =

∫ 𝑢/𝑢𝜏

0

(
𝜌̄

𝜌𝑤

)1/2
𝑑

(
𝑢

𝑢𝜏

)
(1.3)

𝜌𝑤 is the density at the wall. This transformation works by adjusting the velocity
gradient by the factor

√︁
𝜌̄/𝜌𝑤, thus, allowing the compressible means to scale simi-

larly to the incompressible ones in inner-scaled wall units, 𝑦/𝛿𝜈. This transformation
proved to work well for adiabatic walls (Duan, Beekman, and Martín, 2011), but the
transformation breaks down for cooled walls (Trettel and Larsson, 2016).

This lack of collapse in the cooled wall case led to the development of many more
scaling laws (Trettel and Larsson, 2016; Griffin, Fu, and Moin, 2021; Hasan et al.,
2023). Trettel and Larsson, 2016 modified the transformation of Van Driest, 1956
as,

𝑌+ =
𝜌̄ (𝜏𝑤/𝜌̄)1/2 𝑦

𝜇̄
, (1.4a)

𝑈+ =

∫ 𝑢/𝑢𝜏

0

(
𝜌̄

𝜌𝑤

)1/2 [
1 + 1

2
1
𝜌̄

𝑑 𝜌̄

𝑑𝑦
𝑦 − 1

𝜇̄

𝑑 𝜇̄

𝑑𝑦
𝑦

]
𝑑

(
𝑢

𝑢𝜏

)
(1.4b)

where 𝜏𝑤 is the shear stress at the wall and 𝜇 is the viscosity. Thus accounting for the
effect of cooled walls and other compressible effects by accounting for the variation
of the density and viscosity in the scaling of the wall-normal dimension. This was
then further extended by Hasan et al., 2023 to account for cases that exhibit stronger
effects of compressibility. At this point, there are well developed scalings that work
for many cases, outside of real gas effects and supercritical flows.

Much of this theory started with the foundational work of Morkovin, 1962, who
stated Morkovin’s hypothesis. Morkovin’s hypothesis was restated by Bradshaw,
1974 as,

High-speed boundary layers can be computed using the same model as
at low speeds by assuming that the density fluctuations are weak.
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In Morkovin’s original paper (Morkovin, 1962), relations were developed to connect
the velocity and temperature fluctuations, which are known as the ‘Strong Reynolds
Analogy’ (SRA). One of these (approximate) relations is:√︃

𝜌′2

𝜌̄
= (𝛾 − 1)Ma2

√︃
𝑢′2

𝑢̄
(1.5)

where (·)′ are fluctuations, (·̄) is the mean, and 𝛾 is the ratio of heat capacity (Smits,
2006). Thus connecting the fluctuations of velocity directly to the thermodynamic
fluctuations.

Following from the SRA, Walz, 1956 (reviewed by Smits, 2006) developed an
algebraic relation between the mean velocity and mean temperature. This relation,
termed Walz’s equation, is given as,

𝑇

𝑇∞
=
𝑇𝑤

𝑇∞
+ 𝑇𝑟 − 𝑇𝑤

𝑇∞

(
𝑢̃

𝑢∞

)
− 𝑟 𝛾 − 1

2
Ma2

(
𝑢̃

𝑢∞

)2
, (1.6)

where ˜(·) are Favre average quantities, (·)∞ are freestream values, and 𝑟 is the
recovery factor. The recovery factor, 𝑟 , is a fit parameter that is found to be a value
of 𝑟 ≈ Pr1/3 for adiabatic flows (Smits, 2006). This was then extended by Y.-S.
Zhang et al., 2014 to the Generalized Reynolds analogy, which has been verified to
hold for various compressible TBLs (C. Zhang, Duan, and Choudhari, 2018) and
utilized in the development of scaling laws (Griffin, Fu, and Moin, 2021).

Thus, there are strong connections between the turbulent mean flows for incom-
pressible and compressible flows. Though there have been scaling laws developed
for certain terms of the Reynold’s stresses, it still remains a question to what extent
the mechanics of the turbulence exactly follow the incompressible case. There have
been near-wall streaky structures observed, similar to those seen in incompressible
flows, but there is an ongoing debate regarding the impact of the Mach number and
other parameter variations (Duan, Beekman, and Martín, 2011; Duan, Choudhari,
and C. Zhang, 2016; O. J. H. Williams et al., 2018; Huang, Duan, and Choudhari,
2022).

These results, starting with the scaling laws of Van Driest to Morkovin’s hypothesis,
the strong Reynolds analogy and the Walz’ relation form the bedrock of current day
research on hypersonic turbulent flows. It also points to an aspiration of researchers
to model and understand compressible turbulence through the large body of work
for incompressible turbulence. As this thesis proceeds, these results serve as the
backdrop for questions of interest and what is known about the underlying theory.
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1.2 Modeling of turbulent phenomenon
Acoustic radiation is a key and unique feature of compressible flows. Early studies
by Phillips, 1960, and J. E. F. Williams and Maidanik, 1965 attempted to model this
process through ‘acoustic analogies.’ The basic idea is to reduce the Navier-Stokes
equations (N-S) to a forced wave equation and then model the forcing. Such studies
led to the idea of ‘eddy Mach waves’ and place the origination of the acoustic
radiation in the buffer layer of a TBL (Phillips, 1960). These approaches have
limitations in that they necessitate assumptions on the forcing to the wave equation,
as well as simplifying the governing equations themselves.

Later studies focused on predicting transition by analysing the unstable eigenvalues
and eigenmodes to the NS equations linearized around a laminar mean profile (Lees
and Lin, 1946; Mack, 1984), which is often called linear stability theory (LST).
Mack, 1984 found that the unstable eigenmodes came in two forms: (i) the first
mode, which has direct analogies to the incompressible instability of Tollmien-
Schlichting waves, and (ii) higher order eigenmodes, most notably Mack’s second
mode, that are unique to the compressible case. In many parameter regimes, it was
found that these unique compressible features, e.g., Mack’s second mode, were the
dominant instability mechanism leading to transition. Further, Mack, 1984 analyzed
the inviscid Euler equation in the freestream,

𝜕2
𝑦 𝑝 − (𝜅2

𝑥 + 𝜅2
𝑧 ) (1 −Ma(𝑦 →∞)2)𝑝 = 0, (1.7)

𝑝 are pressure fluctuations in the freestream (in Fourier space), 𝜅𝑧 is the spanwise
wavenumber, 𝜅𝑥 is the streamwise wavenumber, and the relative Mach number is
defined as

Ma(𝑦) = Ma
𝑈̄𝜅𝑥 − 𝜔

𝑇1/2
√︃
𝜅2
𝑥 + 𝜅2

𝑧

, (1.8)

where 𝜔 is the temporal wavenumber. It may then see that Equation 1.7 is either
an elliptic or hyperbolic PDE based upon the value of the relative Mach number in
the freestream. Thus, Mack, 1984 characterized freestream solutions as either: (1)
subsonic for Ma2

∞ < 1, (2) sonic for Ma2
∞ = 1, or (3) supersonic for Ma2

∞ > 1. A
key observation of Mack, 1984 was that the amplification mechanisms unique to
the supersonic case, e.g., Mack’s second mode, existed due the presence of spatial
regions where Ma2(𝑦) > 1.

Further, many authors have built off of Mack’s work for studying transition of
increasingly complex flow phenomenon (Fedorov, 2011). A significant focus in
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these subsequent studies focus on "Mack’s second mode," which has been identified
as the dominant modal mechanism leading to transition in supersonic boundary
layers for numerous cases of interest. This mechanism is characterized by trapped
acoustic waves within the boundary layer.

Building on this foundation, Bitter, 2015 applied linear stability theory under condi-
tions of chemical equilibrium and thermal non-equilibrium. Their analysis revealed
that intense wall cooling promotes a distinct supersonic instability mechanism fea-
turing acoustic radiation beyond the boundary layer—fundamentally different from
the traditional Mack’s second mode which remains confined within the boundary
layer region.

Subsequently, Chuvakhov and Fedorov, 2016 demonstrated that the findings of
Bitter and Shepherd, 2015 were not limited to reacting flows but also applied to
perfect gas models. They confirmed that this acoustic radiation, which they termed
"spontaneous radiation of sound," could exist in perfect gas scenarios as well.
Expanding on this work, Knisely, 2018 conducted a comprehensive investigation of
this mechanism and established two key findings: first, that the cooled wall condition
is essential for destabilizing the acoustically radiating mode; and second, that in
certain flow regimes, this acoustically radiating mode—rather than Mack’s second
mode—becomes the primary modal instability driving boundary layer transition.

Though Mack, 1984 and later studies focused on studies of transition to turbulence,
it was later found by Bae, Dawson, and McKeon, 2020; Madhusudanan, Stroot, and
McKeon, 2025 that Equation 1.7 and 1.8 are important for turbulent flows as well,
as will now be discussed in the following section.

1.3 Resolvent analysis
Initially, non-modal analysis focused on the initial value problem, or transient growth
(Schmid and Henningson, 2001). Following the initial work on transient growth
analysis, studies by Jovanović and Bamieh (2005) and Hwang and Cossu, 2010
studied the LNS operator subject to an exogenous forcing. Though not identified
as such, these studies looked at the properties of the resolvent operator (Trefethen
and Embree, 2005). Rather than considering a specific form for a forcing, McKeon
and Sharma, 2010 rewrote the N-S equations and grouped all the non-linear terms
into a forcing term then studied this same resolvent operator. This subtle distinction
allows for an equation-driven methodology for modeling turbulent flows and more
rigorously embeds non-modal linear analysis into the governing equations.
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Since the work of McKeon and Sharma, 2010, this analysis has been extended
and applied to the study of many canonical turbulent compressible flows (Jeun,
2018; Dwivedi, 2020; Pickering, 2021; Iwatani et al., 2023). Modal representations
resulting from resolvent analysis have also been found to have deep connections to
coherent structures observed in experiments and computations (McKeon, 2017).

In the case of boundary layers, resolvent analysis has been successfully applied
to streamwise developing laminar supersonic boundary layers to analyse optimal
non-modal mechanisms (Bugeat et al., 2019) and to find optimal route to receptivity
(Kamal, Lakebrink, and Colonius, 2023). Additionally, it has been applied to
parallel turbulent supersonic boundary layers and used to analyse the decomposition
of relatively subsonic and relatively supersonic mechanisms (Bae, Dawson, and
McKeon, 2020) and the mechanisms driving acoustic radiation (Madhusudanan,
Stroot, and McKeon, 2025). Though there has been work done for TBLs, there is
currently a gap in the literature to study the effect of streamwise development on
the acoustic radiation from supersonic TBLs, thus, in Chapter 4 this gap will be
addressed.

In addition to study the non-modal amplification mechanisms, resolvent analysis has
been built upon to estimate turbulent fluctuations using sparse data, via a method
termed resolvent based estimation (RBE) (Towne, Lozano-Durán, and Yang, 2020).
RBE has been successfully applied to estimate full flow field measurements from
sparse measurement points for incompressible turbulent channel flows (Amaral et
al., 2021) and has been applied to develop estimators and controllers, from sparse
measurements, for the laminar flow over an aerofoil (Jung, Bhagwat, and Towne,
2024), among other cases. This analysis is particularly well suited for the application
of acoustic radiation from hypersonic TBLs, the source of which exists in the near-
wall region (Duan, Choudhari, and C. Zhang, 2016). Hence, to address the need
for models of acoustic radiation in hypersonic experimental facilities, in Chapter
5, RBE will be applied to estimate freestream acoustic radiation generated by a
hypersonic TBL.

Relevant to the discussion at hand, Bae, Dawson, and McKeon, 2020 applied the
resolvent analysis to (assumed locally-parallel) compressible turbulent boundary
layers. There-in it was shown that spectral space could be decomposed into two parts:
(i) a region where the compressible resolvent modes could be scaled to collapse onto
incompressible resolvent modes, and (ii) a region containing (supersonic) modes
that had no counter-part in the incompressible region. It was shown that this region



10

was demarcated by the relative sonic line, none other than the same condition Mack,
1984 found for the idealized theoretical case. Further work by Madhusudanan,
Stroot, and McKeon, 2025 showed that these supersonic resolvent modes cleanly
aligned with solutions to Equation 1.7, as derived by Mack, 1984, in the freestream.

1.4 Spectral proper orthogonal decomposition
Resolvent analysis is an operator-based decomposition that finds basis functions that
are optimal with respect to the linear amplification through the resolvent operator. In
contrast, spectral proper orthogonal decomposition (SPOD) is a data-driven decom-
position that finds a basis that is optimal in representing the second order statistics of
the data itself. SPOD, like resolvent analysis, has been used for many applications
in control and reduced-ordered modeling (Schmidt and Colonius, 2020).

Due to the optimality in representing the data, SPOD has shown promising usage in
identifying dominant coherent structures sustaining turbulence (Abreu, Cavalieri,
et al., 2020), developing optimal eddy viscosity models (Pickering et al., 2021, and
understanding the most optimal representations of the forcing and response second
order statistics (Nogueira et al., 2021). Although SPOD has been performed for
hypersonic TBL (Fan et al., 2024), the application has been limited to relatively
subsonic, or boundary layer, type mechanisms and to the assumed parallel flow
case. Hence, in Chapter 6, SPOD will be utilized to understand the dominant
coherent structures underlying the acoustic radiation for SPOD with a streamwise
developing mean flow and assumed parallel mean flow.

1.5 Thesis outline
In this thesis, previous work on the resolvent analysis applied to compressible TBLs
(Bae, Dawson, and McKeon, 2020) is built upon and extended. In Chapter 4, the
resolvent analysis is applied to a streamwise developing hypersonic TBL. Particular
attention is paid to comparing the resolvent analysis of the streamwise developing
TBL and the resolvent analysis of the assumed parallel-flow TBL. A model is
proposed for the addition of streamwise developing effects and then this model is
used to study the variation of streamwise effects across parameter ranges.

In Chapter 5, resolvent analysis of a streamwise developing hypersonic TBL is
performed and the resulting fields are decomposed via the Helmholtz decomposition.
The results of this analysis are combined with RBE to allow estimation of freestream
acoustic radiation from a sparse number of near-wall measurements.
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The technical portion of the thesis is concluded in Chapter 6, by analysing a 3-D
temporally resolved dataset through the use of spectral proper orthogonal decom-
position (SPOD). This aim of this chapter is to clarify characteristics of acoustic
radiation and provide reasoning for pathologies seen in the estimation in Chapter
5. Finally, the thesis is concluded in Chapter 7 with a discussion of the results
presented and directions for future research.
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C h a p t e r 2

METHODS

2.1 Governing equations
Through the whole of this thesis, the non-dimensional compressible Navier-Stokes
equations for a calorically and thermally perfect gas will be used

𝜕𝜌

𝜕𝑡
+ 𝑢 𝑗

𝜕𝜌

𝜕𝑥 𝑗
= − 𝜌 𝜕𝑢𝑖

𝜕𝑥𝑖
, (2.1a)

𝜌

(
𝜕𝑢𝑖

𝜕𝑡
+ 𝑢 𝑗

𝜕𝑢𝑖

𝜕𝑥 𝑗

)
= − 1

𝛾Ma2
𝜕𝑝

𝜕𝑥𝑖
+ 1

Re𝛿
𝜕

𝜕𝑥 𝑗

[
𝜇

(
𝜕𝑢𝑖

𝜕𝑥 𝑗
+
𝜕𝑢 𝑗

𝜕𝑥𝑖

)
+ 𝜆𝜕𝑢𝑘

𝜕𝑥𝑘
𝛿𝑖 𝑗

]
, (2.1b)

𝜌

(
𝜕𝑇

𝜕𝑡
+ 𝑢 𝑗

𝜕𝑇

𝜕𝑥 𝑗

)
= − (𝛾 − 1)𝑝 𝜕𝑢𝑖

𝜕𝑥𝑖
+ 𝛾

Pr Re𝛿
𝜕

𝜕𝑥 𝑗

(
𝑘
𝜕𝑇

𝜕𝑥 𝑗

)
(2.1c)

+ 𝛾(𝛾 − 1)Ma2

Re𝛿
𝜇

[
𝜕𝑢𝑖

𝜕𝑥 𝑗

𝜕𝑢𝑖

𝜕𝑥 𝑗
+ 𝜕𝑢𝑖
𝜕𝑥 𝑗

𝜕𝑢 𝑗

𝜕𝑥𝑖
+ 𝜆
𝜇

(
𝜕𝑢𝑘

𝜕𝑥𝑘

)2
]
.

wherein the equations are formulated in primitive variables of velocity, density,
temperature, and pressure – [𝑢𝑖, 𝜌, 𝑇, 𝑝]. This equation is non-dimensionalized
following:

𝑢𝑖 =
𝑢̆𝑖

𝑢̆1,∞
, 𝜌 =

𝜌̆

𝜌̆∞
, 𝑇 =

𝑇

𝑇∞
, 𝑝 =

𝑝

𝜌̆∞𝑢̆2
1,∞
, 𝑡 =

𝑡𝑈̆∞
𝛿99

, x =
x̆

𝛿99
, (2.2)

where ˘(·) are dimensional quantities, (·)∞ are values measured in the freestream and
𝛿99 is the boundary layer thickness based upon 𝛿99 B {𝑦 | 𝑈̄ (𝑥 = 𝑥𝑠𝑡𝑎𝑡𝑖𝑜𝑛, 𝑦) = 0.99}
at some streamwise location 𝑥𝑠𝑡𝑎𝑡𝑖𝑜𝑛. The system is then closed by considering the
non-dimensionalized, equation of state for a perfect gas,

𝑝 =
1

𝛾Ma2 𝜌𝑇. (2.3)

Further parameters are 𝜇, 𝜆 the dynamic and bulk viscosity, 𝛾 = 𝑐𝑝/𝑐𝑣 the ratio
of specific heats, 𝑘 the coefficient of thermal conductivity, and 𝛿𝑖 𝑗 the Kronecker
delta. Following from the perfect gas assumption, the specific heat ratio is set to be
a constant value of 𝛾 = 1.4, which is that of a diatomic gas.

To ease the notation, we will refer to the state as q = [𝑢1, 𝑢2, 𝑢3, 𝜌, 𝑇] with (𝑥1, 𝑥2, 𝑥3)
being the streamwise, wall-normal, and spanwise directions, respectively. The state
and velocity terms may also be referred to as (𝑥, 𝑦, 𝑧) and (𝑢, 𝑣, 𝑤), respectively.
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Since the equation of state is utilized to transform pressure in terms of density and
temperatures, pressure is omitted from the state, q.

Further note, the above equations are non-dimensionalized by the Mach, Reynolds
, and Prandtl numbers, given by,

Ma =
𝑢̆1,∞√︁
𝛾R𝑇∞

, 𝑅𝑒𝛿 =
𝜌̆∞𝑢̆∞𝛿99
𝜇̆∞

, Pr =
𝜇̆∞𝑐𝑝

𝑘̆∞
, (2.4)

where R is the universal gas constant. The Prandtl number is assumed to be constant
and set to Pr = 0.72. Two further assumptions are that of Stokes assumption,
𝜆 = −2/3𝜇, and that viscosity varies with temperature according to the Sutherland
formula:

𝜇(𝑇) = 𝑇
3/2(1 + 𝑆)
𝑇 + 𝑆

, (2.5)

with 𝑆 = 𝑆/𝑇∞ and 𝑆 = 110.4𝐾 . The non-dimensionalization and set-up follows
Bitter, 2015, but for a perfect gas case. Additional references may be found in
Anderson, 2019.

2.2 Resolvent Analysis
The resolvent analysis, or input-ouput analysis, is performed on the linear operator
that connects ‘forcings’ to fluctuations around a (generally) turbulent mean (McKeon
and Sharma, 2010; Hwang and Cossu, 2010). Hence, to start the velocity, density,
and temperature are then decomposed, around a compressible mean profile, into
mean and fluctuating components (e.g., the Reynolds decomposition):

𝑢𝑖 = 𝑢̄𝑖 + 𝑢𝑖′, 𝜌 = 𝜌̄𝑖 + 𝜌′, 𝑇 = 𝑇 + 𝑇 ′, (2.6)

where ¯(·) represents a mean quantity and (·)′ represents a fluctuating quantity. Other
derived quantities (e.g., viscosity) are similarly decomposed. The steps used from
here to derive the linearized Navier-Stokes operator, largely follow the work of Mack,
1984, along with many others. It is prudent to note that the pressure fluctuations,
due to the equation of state, will include a mean pressure term,

𝑝′ = 𝑝
( 𝜌′
𝜌̄
+ 𝑇
′

𝑇

)
. (2.7)

Assuming a fully-developed wall-bounded flow, the state variableq′ = [𝑢′1, 𝑢
′
2, 𝑢
′
3, 𝜌
′, 𝑇 ′]⊺

is decomposed using the Fourier transform in homogeneous directions, here only
shown for the span-wise direction and time,

q′(𝑥, 𝑦, 𝑧, 𝑡) =
∫ ∫ ∞

−∞
q̂(𝑥, 𝑦; 𝜅𝑧, 𝜔)𝑒𝑖(𝜅𝑧𝑧−𝜔𝑡)𝑑𝜅𝑧𝑑𝜔, (2.8)
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where ˆ(·) denotes variables in the transformed Fourier domain, 𝑖 =
√
−1, and

(𝜅𝑧, 𝜔) represents the spanwise wavenumber and temporal frequency. The mean
turbulent state is taken to be, q̄ = [𝑢̄1(𝑥, 𝑦), 𝑢̄2(𝑥, 𝑦), 0, 𝜌̄, 𝑇]⊺, which corresponds
to (𝜅𝑧, 𝜔) = (0, 0).

Note that throughout this thesis at various times the parallel flow assumption will
be made. That is the Fourier transform in Equation 2.8 will be performed for the
streamwise, spanwise and temporal directions – resulting in three spectral parame-
ters, (𝜅𝑥 , 𝜅𝑧, 𝜔).

On applying these transformations to Equation 2.2, one obtains an equation for the
fluctuating components of the N-S equations (in pseudo-sprectral space) in the form
of,

[−i𝜔𝑰 + 𝑳 (𝜅3, 𝜔)]︸                  ︷︷                  ︸
H−1

q̂ (𝑥1, 𝑥2; 𝜅3, 𝜔) = f̂ (𝑥1, 𝑥2; 𝜅3, 𝜔)︸              ︷︷              ︸
Nonlinear terms

, (2.9)

where f̂ are the nonlinear terms (in pseudo-spectral space) grouped together, 𝑳 is
the linear N-S operator, and H is the resolvent operator (Trefethen and Embree,
2005).

The Navier-Stokes equation, and resolvent analysis, may be modified by considering
the restriction of the forcing and response field,

q̂(𝑥, 𝑦; 𝜅𝑧, 𝜔) = HBf̂ (𝑥, 𝑦; 𝜅𝑧, 𝜔) (2.10)

ŷ = CHB︸ ︷︷ ︸
H𝑚

f̂ , (2.11)

where B,C are masking matricies for the forcing and response fields, respectively,
andH𝑚 is the masked resolvent operator. Though the equation is only equivalent to
the Navier-Stokes for fluctuations when B and C are equal to the identity, changing
the masking matrices allows for additional flexibility in the resolvent analysis. For
example, B and C could be modified to only allow forcing in the boundary layer
and responses in the freestream.

Before the resolvent analysis can proceed by taking the SVD of the masked resolvent
operator, an energy norm must be defined to account for temperature and velocity
fluctuations. This is a shift from the incompressible case, where the implied 𝓁2

norm can be used.
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2.2.1 Choice of norm
In this work, the Chu’s energy norm (Chu, 1965), which has been used in many
studies of non-modal growth for compressible fluid flows, e.g., Bae, Dawson, and
McKeon, 2020; Pickering, 2021; Kamal, Rigas, et al., 2022. Chu’s energy norm
extends standard kinetic energy norms, which are used for incompressible flows,
to account for the energy in the thermodynamic components. Chu, 1965 derived
a norm that removes pressure-related energy transfer terms, which are inherently
conservative,

𝐸𝑐ℎ𝑢 =

∫
Ω

(
𝜌̄

(
(𝑢̂†𝑢̂ + 𝑣̂†𝑣̂ + 𝑤̂†𝑤̂

)
+ 𝑇

𝛾𝜌̄Ma2 𝜌̂
† 𝜌̂ + 𝜌̄

𝛾(𝛾 − 1)𝑇Ma2𝑇
†𝑇

)
dΩ,

(2.12)
where Ω is the domain of interest and (·)† is the conjugate transpose. It is also noted
that this norm was also independently derived by Hanifi, Schmid, and Henningson,
1996 many years later. Additionally, recent work by Vogel and Coder, 2022 has
derived a norm based on thermodynamic entropy, which in the case of small thermal
gradients converges to Chu’s norm. This latter work demonstrates the rigorous
connections of Chu’s energy norm to the laws of thermodynamics.

The Chu’s energy norm may be implemented in matrix form as a weighting matrix
by

W𝑐 = diag

(
𝜌̄, 𝜌̄, 𝜌̄,

𝑇

𝛾𝜌̄Ma2 ,
𝜌̄

𝛾(𝛾 − 1)𝑇Ma2

)
◦Wquad, (2.13)

where (◦) is the Hadarmard product, and Wquad account for numerical quadrature
weights. To utilize this in a similarity transformation, it may be decomposed via a
Cholesky decomposition:

W𝑐 = M †
𝑐M𝑐 . (2.14)

Since W𝑐 is a diagonal matrix, M𝑐 is simply the element-wise square root of the
diagonals. To account for this different norm in our analysis, the norm weightings
are combined with the resolvent operator,

H𝑤 = M𝑐H𝑚M
−1
𝑐 , (2.15)

which is a similarity transformation that ensures the singular vectors of H𝑚, after
undoing the transformation, are orthonormal and optimal with respect to Chu’s
energy norm in the following analysis.

To analyse the action of the resolvent operator, the singular value decomposition of
the weighted resolvent operator is taken as,

H𝑤 = U𝑤𝚺V
†
𝑤 , (2.16)
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where the weighted forcing and response modes satisfy the orthonormality condition
in the two-norm sense

U †𝑤U𝑤 = I , (2.17)

V †𝑤V𝑤 = I . (2.18)

Then the un-weighted resolvent modes may be obtained through the relation:

V = M−1
𝑐 V𝑤, (2.19)

U = M−1
𝑐 U𝑤, (2.20)

which satisfy the orthonormality constraint with respect to Chu’s norm. The singular
values are then represented by

𝜎2
𝑗 = max

| |V 𝑗 | |2𝑐=1

< U 𝑗 ,U 𝑗 >𝑐

< V 𝑗 ,V 𝑗 >𝑐
, (2.21)

in other words, the maximal linear amplification between forcing and response
modes based upon Chu’s energy norm. Hence, the resolvent analysis gives us
input-output pairs that are optimal in terms of linear amplification, which form an
orthonormal basis for the forcing and state variables of a compressible flow.

It may be noted that other norms which focus on the acoustic radiation alone as the
output variable of interest, could reasonably be considered for this study. Here the
well-studied Chu’s norm is used to give insight into both the boundary layer and
freestream responses.

Substituting Equations 2.19 and 2.20 into the expansion for the weighted resolvent
operator, Equation 2.16, the unweighted resolvent operator is obtained, as

H𝑚 = U𝚺V †W𝑐 . (2.22)

Thus the un-weighted resolvent operator may be re-written as a function of the
un-weighted forcing and response modes.

2.2.2 Numerical details
Thus far, the construction of the 2-D resolvent operator has been outlined in a
continuous fashion. In what follows, the numerical construction and solution of
the singular value decomposition of the resolvent operator, Equation 2.16, will be
outlined.
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The 2D resolvent operator requires a streamwise developing mean-flow. This is
discretized onto a Cartesian grid with grid stretching being used in the wall-normal
direction to cluster points near the wall. The transformation, that performs the grid
stretching, from 𝜉 ∈ [−1, 1] to 𝑦 ∈ [0, 𝑦𝑚𝑎𝑥], is given by

𝑦 = 𝑎
1 − 𝜉
𝑏 − 𝜉 , (2.23)

where 𝑏 = 1 + 2𝑎/𝑦𝑚𝑎𝑥 and 𝑎 = 𝑦ℎ𝑎𝑙 𝑓 𝑦𝑚𝑎𝑥/(𝑦𝑚𝑎𝑥 − 2𝑦ℎ𝑎𝑙 𝑓 ) (Malik, 1990). Here
𝑦ℎ𝑎𝑙 𝑓 corresponds to the location where half of the points are clustered below this
point and half above.

Derivative operators for this grid, (D𝑥 ,D𝑦,D𝑥𝑥 ,D𝑦𝑦), are constructed using a
4th-order summation-by-parts finite different method (Mattsson and Nordström,
2004), which has been used in many other studies of resolvent (Pickering, 2021;
Madhusudanan, Stroot, and McKeon, 2025).

To ensure that the resolvent modes have the proper properties at the boundaries,
boundary conditions must be applied to the resolvent operator before the SVD is
computed. The boundary conditions at the wall are set following the seminal work
of Malik, 1990:

û(𝑥, 𝑦 = 0) = 0, (2.24)

𝑇 (𝑥, 𝑦 = 0) = 0. (2.25)

The velocity boundary conditions are the standard no penetration and no-slip condi-
tions. The temperature boundary condition follows from the work of Malik, 1990,
where the case is made that the temperature fluctuations will not penetrate deep into
the solid boundary due to the thermal inertia of the body. These wall boundary
conditions have been used by many studies for resolvent analysis of compressible
boundary layers (Bae, Dawson, and McKeon, 2020; Kamal, Rigas, et al., 2022;
Madhusudanan, Stroot, and McKeon, 2025).

For the inflow, outflow, and freestream boundary conditions, the Navier-Stokes
characteristic boundary conditions (NSCBC) (Poinsot and Lele, 1992) are used
to approximately prevent any incoming waves from outside the domain. Due to
the NSCBC being only exact for the 1-D Euler equations, additional boundary
treatment is needed to prevent any incoming waves and prevent reflections against
the boundaries.

At the inflow and outflow, numerical sponges (Freund, 1997) are implemented. This
is done by forming a sponge region at the inlet and outlet region in the domain with
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length, 𝓁𝑠𝑝 = 0.05Δ𝑥, of five percent of the domain. Within this region, a numerical
damping is applied,

𝜎𝑠𝑙 (𝜂) = −𝜖𝑠𝑝
(
6𝜂5 − 15𝜂4 + 10𝜂3

)
, (2.26)

where 𝜂 ∈ [0, 1] are local sponge units, mapping to either [𝑥𝑖𝑛𝑙𝑒𝑡 , 𝑥𝑖𝑛𝑙𝑒𝑡 + 𝓁𝑠𝑝] or
[𝑥𝑜𝑢𝑡𝑙𝑒𝑡 − 𝓁𝑠𝑝, 𝑥𝑜𝑢𝑡𝑙𝑒𝑡], and 𝜖𝑠𝑝 = 1.5 is the sponge strength. This form of a damping
function was originally used by Schmidt, Towne, Colonius, et al., 2017. It was
found that this form performed similarly to many other possible numerical damping
functions, such as that of Sipp and Marquet, 2013. To numerically implement this
in 2-D, the function is expanded simply as:

𝜎𝑠𝑙 (𝑥, 𝑦) =


𝜎𝑠𝑙

(
𝜂 =

(𝑥𝑚𝑖𝑛+𝑙𝑠𝑝)−𝑥
𝑙𝑠𝑝

)
∀𝑥 ∈ [𝑥𝑚𝑖𝑛, 𝑥𝑚𝑖𝑛 + 𝑙𝑠𝑝]

𝜎𝑠𝑙

(
𝜂 =

𝑥−(𝑥𝑚𝑎𝑥+𝑙𝑠𝑝)
𝑙𝑠𝑝

)
∀𝑥 ∈ [𝑥𝑚𝑎𝑥 − 𝑙𝑠𝑝, 𝑥𝑚𝑎𝑥]

0

. (2.27)

To further prevent any incoming waves and damp any outgoing waves in the
freestream, absorbing layers (Appelö and Colonius, 2009) are applied in the freestream.
This approach works by damping out the derivative operators in a region near the
freestream boundary, e.g.,:

𝐷̃𝑦 (𝑥, 𝑦) = 𝜎𝑎𝑙 (𝑦)D𝑦 (𝑥, 𝑦), (2.28)

𝐷̃𝑦𝑦 (𝑥, 𝑦) = 𝜎𝑎𝑙 (𝑦)2D𝑦𝑦 (𝑥, 𝑦), (2.29)

𝐷̃𝑥𝑦 (𝑥, 𝑦) = 𝜎𝑎𝑙 (𝑦)D𝑥 (𝑥, 𝑦)D𝑦 (𝑥, 𝑦). (2.30)

The damping function is defined as:

𝜎𝑎𝑙 (𝜂) = 1 − (1 − 𝜖𝑎𝑙)
(
1 − (1 − 𝜂)4

)4
, (2.31)

where 𝜂 ∈ [0, 1], mapping to [𝑦𝑚𝑎𝑥 − 𝓁𝑎𝑙 , 𝑦𝑚𝑎𝑥], are local units for the length of the
absorbing layer, 𝓁𝑎𝑙 = 0.2Δ𝑦 is the length of the absorbing layer, and 𝜖𝑎𝑙 = 1𝑒 − 4
is the damping coefficient for the absorbing layer. Additionally, the absorbing layer
utilizes artificial viscosity:

𝐷𝑎𝑙 (𝑥, 𝑦) = (1 − 𝜎𝑎𝑙 (𝑦))
∑︁
𝑘∈𝐾
(−1)𝑘𝑑2𝑘−1

𝑦 𝛾𝑘
𝜕𝑘

𝜕𝑦𝑘

(
𝜎𝑎𝑙 (𝑦)

𝜕𝑘 (·)
𝜕𝑦𝑘

)
(2.32)

where 𝑑𝑦 are integration weights based on the 𝑦 location, K = [1, 4] and γ =

[0.05, 0.005]. Note that due to the construction of 𝜎𝑎𝑙 (𝑦) in Equation 2.31 both the
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artificial damping of the derivatives and the artificial viscosity is only active in the
absorbing layer, which is set to be the top 20% of the physical domain.

Due to the nature of these sponges being approximate damping terms, there is
some tuning that can be required in some cases. In this present study, it is found
that the values specified are reasonable generic starting points and work for most
computations.

In summary, the artificial damping and viscosity terms then modify Equation 2.11
as follows,

ŷ = C [−i𝜔𝑰 + 𝑳 (𝜅3, 𝜔) + I5 ⊗ 𝐷𝑎𝑙 + I5 ⊗ 𝜎𝑠𝑙]−1︸                                                    ︷︷                                                    ︸
H𝑚,𝑑𝑎𝑚𝑝𝑒𝑑

Bf̂ (2.33)

where I5 is an identity matrix of size five and where L is constructed using the
modified derivative operators defined in Equation 2.28. The term in the brackets of
Equation 2.33 is the operator that is constructed numerically.

Now that the linear operator, Equation 2.33, has been formed the singular value
decomposition may be performed. The singular value decomposition proceeds by
solving the following eigenvalue problem (EVP),

H†𝑤H𝑤v = 𝜎2v. (2.34)

Formally Equation 2.22 should be constructed using the adjoint, but in the current
formulation the adjoint is numerically computed by simply using the Hermitian
conjugate. In theory, using the Hermitian conjugate as the adjoint can cause issues
(Chandler et al., 2012), but it is found that this does not pose serious issues for
the current case. A brief comparison of the two methods to compute the adjoint
is covered in Appendix A.2, where it was shown that the two methods, either a
numerically computed adjoint via the Hermitian conjugate or the discretized adjoint
operator, produce similar results for the acoustically radiating case. Given that the
two results produce similar results, it is opted to use the numerical adjoint, as it is
computationally cheaper due to only requiring LU decomposition of one matrix.

Since memory required to form the resolvent operator is prohibitively large, the
operator may not be directly inverted. Instead the LU decomposition is computed,[

−𝑖𝜔I +L𝑑𝑎𝑚𝑝𝑒𝑑

]
= LU . (2.35)

Once the LU decomposition has been performed Equation 2.34, the EVP, may solved
using standard Krylov methods (Golub, 2013; Saad, 2003). Krylov methods work



20

by form a Krylov subspace,

𝒦𝑟 (A, v) B span{v,Av,A2v, ...A𝑟v} (2.36)

where v is (often) a random test vector, A = H
∗
𝑤H𝑤 in the case of the resolvent

anlysis, and (·)𝑛 is the composition of (·) performed 𝑛 times. In the current case,
H𝑤 can be applied by solving the linear equation

LUx = v (2.37)

where the result is x = H𝑤v. Thus allowing the Krylov subspace to be generated
using the LU factors instead of the direct inverse. Enabling the use of Krylov methods
to solve the EVP at the cost of additional computation time.

2.2.3 Validation
Now that the numerical details have been discussed, the actual implementation must
be validated before it can be utilized in studies. Though there are a wealth of
studies using the 2-D resolvent operator to study turbulent jets (Schmidt, Towne,
Rigas, et al., 2018; Pickering, 2021) and aerofoils (Iwatani et al., 2023), there have
been relatively far fewer studies using the 2-D resolvent operator for compressible
boundary layers. An appropriate study applying resolvent analysis to a streamwise
developing supersonic TBL could not be found to compare to; thus, the validation
will be done by comparing to a study of a compressible laminar turbulent boundary
layer (Bugeat et al., 2019).

To generate a laminar compressible mean-flow for comparison, the Howarth-Doronit-
syn similarity solution (Stewartson, 1964; Anderson, 2019) is used, as has been done
by other researchers (Kamal, Rigas, et al., 2022).

In the work of Bugeat et al., 2019, three different laminar amplification mechanisms
are found: (1) Lift-up type mechanisms, (2) Orr type mechanism, and (3) Mack’s
second mode mechanisms. Then sweeps varying either the spanwise or temporal
wavenumber are computed in the region of amplification for each of these mech-
anisms. This leads to a range of different mechanisms produced across spectral
space, which can serve as an excellent validation of the implementation of the 2-D
resolvent operator.

In Figure 2.1 the comparison of the optimal linear amplification values for the three
different linear amplification methods between the results of Bugeat et al., 2019,
Kamal, Rigas, et al., 2022, who also used the work of Bugeat et al., 2019 for
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validation, and the current implementation is shown. An excellent agreement is
seen for both the lift up and first mode. A reasonable match is seen for the second
mode with a slight discrepancy at high 𝜔. It is noted that these slight differences
may be due to either: (i) conservative vs. primitive linear equations, which has been
found to cause differences up to 40% in the gains (Karban, Bugeat, Martini, et al.,
2020) (ii) differences in the freestream treatment, due to our use of absorbing layers
and NSCBC.
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Figure 2.1: Optimal linear amplification, 𝜎1, for three different modal mechanisms.
Comparison between normalized data from (Bugeat et al., 2019; Kamal, Rigas,
et al., 2022). Wall boundary conditions and grid settings are set to follow those of
Bugeat et al., 2019. NSCBC are used at the inlet, outlet, and freestream.

Additionally, Bugeat et al., 2019 also plots the absolute value of the shape of the
leading resolvent modes as a fixed streamwise station. A comparison to these
results are shown in Figure 2.2. It is noted that there are slight differences in the
V1,𝑢 components, which is believed to be due to slightly different treatements of the
freestream.
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Figure 2.2: Absolute value of components of the optimal resolvent forcing and
response at a fixed streamwise station for Mack’s second mode at (𝜅𝑧, 𝜔) =

(0.00, 2.50). Forcing components are normalised by max
(
𝑉1,𝑢

)
. Comparison to

Figure 12 of Bugeat et al., 2019.

In order to characterize the streamwise growth of the different modal mechanisms,
Bugeat et al., 2019 utilizes two metrics for the energy density at each streamwise
location,

𝑑𝑐ℎ𝑢 (𝑥𝑖) =
∫ 𝑦𝑚𝑎𝑥

0
U ∗1 (𝑥𝑖, 𝑦)W𝑐ℎ𝑢 (𝑥𝑖, 𝑦)U1(𝑥𝑖, 𝑦)𝑑𝑦 (2.38a)

𝑑𝐹 (𝑥𝑖) =
∫ 𝑦𝑚𝑎𝑥

0
V ∗1 (𝑥𝑖, 𝑦)V1(𝑥𝑖, 𝑦)𝑑𝑦. (2.38b)

The quantities outline in Equation 2.38 are plotted in Figure 2.3 for the three
different dominant mechanisms studied — the lift-up mechanism, the first mode,
and the second mode. An excellent agreement can be seen between the current
implementation and that of Bugeat et al., 2019. Minor differences do appear at both
the inlet and outlet of the domain tested. The reason for this mismatch in the inlet
region is that sponge layers were utilised at the beginning to prevent reflections,
which leads to differing results at the inlet.

Additionally, in order to prevent any impacts of the sponge at the outlet, the physical
streamwise domain was extended and the integration bounds, for computation of the
resolvent modes, were set to be the same as Bugeat et al., 2019. This method allowed
a verification against the linear amplification rates and the streamwise location that
were tested in Bugeat et al., 2019. Without performing the computation in this way,
the abscissa locations tested in Bugeat et al., 2019 occur in the sponge region and
lead to an inaccurate comparison. The consequence of this implementation is that
the energy density does not follow the exact same trend for the lift-up and second
mode at the end of the streamwise domain (𝑥/𝛿∗0 ≈ 158). Since the physical domain
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Figure 2.3: Energy density as a function of streamwise location for the optimal
forcing and response modes. Linear mechanisms were computed at: (i) Lift-up
(𝜅𝑧, 𝜔) = (2.2, 0.002), (ii) first mode (𝜅𝑧, 𝜔) = (1.2, 0.32) , and (iii) second mode
(𝜅𝑧, 𝜔) = (0.0, 2.5)

ends sooner in the case of Bugeat et al., 2019, the modes damp out towards the
end of the domain to meet the outlet boundary conditions. In contrast, the present
implementation has a larger physical domain and so the modes may continue to
grow until the limit of the integration bounds. Besides these minor differences
due to slight differences in computational implementation, the general trends for
the streamwise development of the three different non-modal mechanisms show an
exceptional collapse for both the forcing and response.

Overall, the general trends and values from the work of Bugeat et al., 2019 was
reproduced with minor differences being shown due to the differences in imple-
mentation. Given the match in (1) various part of spectral space, (2) specificed
streamwise stations, and (3) the streamwise growth properties, the 2-D resolvent
analysis implementation is considered validated.

2.3 Resolvent Analysis: An optimization methodology
Although the singular value decomposition is traditionally done by solving the EVP
given by Equation 2.34, it may also be thought of as an optimization problem, given
that solving the SVD is equivalent to finding the optimal V that maximizes the
Rayleigh quotient, Equation 2.21. The limitation with the standard solution method
is that it limits the basis functions to being optimal in some weighted 𝓁2 norm, as
shown in the Rayleigh quotient.

However, solving Equation 2.21 as an optimisation problem allows for the use of
any arbitrary cost function and allows the addition of constraints. This fact has been
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leveraged by Skene et al., 2022 to study ‘spatially sparse resolvent forcing modes,’
by weighting the 𝓁2 in the Rayleigh quotient by an approximation of the 𝓁1 norm.

The method to solve this optimisation is outlined in both Figure 2.4 and Algorithm
1. This methodology will be further modified to accommodate additional norm
constraints in Section 5.5.

Here a brief description of the Algorithm 1 is provided. First, the optimization
problem is given in its most general form as,

𝑥 = arg min
𝑥 | ∥𝑥∥=1

𝑓 (𝑥), (2.39)

which may be directly mapped to the Rayleigh quotient, Equation 2.21 by proper
choice of 𝑓 (𝑥). To satisfy the norm constraint, the optimization problem is solved
on a manifold:

𝑥 = arg min
𝑥∈M

𝑓 (𝑥), (2.40)

M = { 𝑥 ∈ C𝑛 : ∥𝑥∥𝑤 = 1}, (2.41)

where the manifold can be represented by an n-dimensional hypersphere for the
norms that will be used. The basic idea is that the optimization minimizes the
cost function by following standard methods, such as conjugate gradient, while
maintaining 𝑥 ∈ M. This may be achieved by a projection onto the tangent space
and a retraction, which is a continuous mapping from the general space to the
manifold, as visualized in Figure 2.4.

Projection onto the tangent space. Given a point 𝑥 ( 𝑗) ∈ M and a vector v ∈ C𝑛,
the tangent-space projection proj𝑥 (v) onto 𝑇𝑥M is performed by removing the
component parallel to 𝑥 ( 𝑗):

proj𝑥 (v) = v −
x∗

(
v
)

x∗x
x. (2.42)

Retraction. From a point x ∈ M and a tangent vector v ∈ 𝑇𝑥M, the retraction,
𝑅𝑥 (v), is defined by

𝑅𝑥 (v) =
(
x + v

)

(x + v)

 . (2.43)

Equation 2.43 simply scales the updated point to lie on the hypersphere, hence,
preserving the normalization constraint at each step.
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Figure 2.4: Visual representation of one loop of Algorithm 1. Gray contours on the
surface of sphere represent contours of a possible objective function 𝑓 (𝑥).

Algorithm 1: Riemannian Optimization on a Hypersphere
Input: Cost function 𝑓 (𝑥), initial guess 𝑥 (0) ∈ M with ∥𝑥 (0) ∥ = 1, tolerance 𝜖
Output: Optimal vector 𝑥∗ ∈ M, optimal cost 𝑓 (𝑥∗)
Set iteration 𝑗 ← 0;
repeat

Compute Euclidean gradient 𝑔 𝑗 ← ∇𝑥 𝑓 (𝑥 ( 𝑗));
Project gradient onto tangent space: 𝑣 𝑗 ← 𝑔 𝑗 − (𝑥 ( 𝑗)†𝑔 𝑗 )𝑥 ( 𝑗);
Determine step size 𝛼 𝑗 (e.g., via line search);

Retraction step: 𝑥 ( 𝑗+1) ← 𝑥 ( 𝑗 )+𝛼 𝑗𝑣 𝑗

∥𝑥 ( 𝑗 )+𝛼 𝑗𝑣 𝑗 ∥
;

𝑗 ← 𝑗 + 1;
until ∥grad 𝑓 (𝑥 ( 𝑗))∥ < 𝜖 ;
Set 𝑥∗ ← 𝑥 ( 𝑗);
Output: 𝑥∗, 𝑓 (𝑥∗)

2.4 Spectral proper orthogonal decomposition
Spectral proper orthogonal decomposition (SPOD) is an extension of proper or-
thogonal decomposition (POD) into spectral space. Before covering the workings
of SPOD, the POD expansion will be briefly covered and their connection clarified
(Berkooz, Holmes, and Lumley, 1993).
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POD works by taking the eigenvalue decomposition of the cross correlation matrix,
constructed from the state variable q(x, 𝑡). POD then results in a modal basis for
the state matrix, Q = [q(x, 𝑡0), q(x, 𝑡1), ..., q(x, 𝑡𝑛)],

Q(x, 𝑡) =
∞∑︁
𝑖=0

𝑎 𝑗 (𝑡)𝜙(x), (2.44)

which may be represented as spatial modes 𝜙(x) that are each associated with
different temporally varying weightings 𝑎 𝑗 (𝑡). Though by construction the spatial
modes are orthonormal, e.g.,

< 𝜙𝑖 (x), 𝜙 𝑗 (x) >= 𝛿𝑖 𝑗 . (2.45)

The temporal weightings 𝑎 𝑗 (𝑡) are obtained by projection of the state onto the set
of basis functions at each times-step,

𝑎 𝑗 (𝑡𝑖) =< q(x, 𝑡𝑖), 𝜙 𝑗 (x) > . (2.46)

Hence, the evolution of 𝜙𝑖 (x) does not necessarily represent the evolution of a single
‘coherent motion.’ Thus, the primary issue with the standard (space-only) POD is
that these modes do not evolve coherently in space and time. SPOD was originally
used to address this gap.

In contrast to the standard POD, where the decomposition is performed in physical
space, SPOD starts by taking the Fourier transform of the state variable in time,

Q̂(x, 𝜔) = ℱ𝑡 [Q(x, 𝑡)] (2.47)

where ℱ𝑡 is the Fourier transform in time, and 𝜔 is the temporal wavenumber. Then
the cross-spectral density (CSD) is constructed as:

S (x,x′;𝜔) = E
[
Q̂(x;𝜔)Q̂†(x′;𝜔)

]
. (2.48)

Then SPOD proceeds by taking the eigenvalue decomposition of the CSD as:∫ ∞

−∞
S (x,x′;𝜔′)𝑊 (x′)Ψ(x′;𝜔′)𝑑𝜔′ = Λ(𝜔)Ψ(x;𝜔) (2.49)

where𝑊 is weighting matrix accounting for different norm weightings, e.g., Chu’s
norm, Ψ are SPOD modes (eigenvectors of Equation 2.49), and Λ is a diagonal
matrix of the corresponding eigenvalues or modal weights.

The connection between the standard POD and SPOD can be made (Towne, Schmidt,
and Colonius, 2018) by connecting the decompositions of the cross-correlation
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matrix and the CSD matrix:

C (x,x′) = E𝑡 [Q(x, 𝑡)Q(x′, 𝑡)] (2.50)

=

∫ ∞

−∞
S (x,x′;𝜔) 𝑑𝜔, (2.51)

which follows from Wiener-Khinchin theorem. Then expanding out C and S:

∞∑︁
𝑖=1

𝜆𝑖𝜙 𝑗 (x)𝜙†𝑗 (x) =
∫ ∞

−∞

∞∑︁
𝑗=1
𝜆 𝑗 (𝜔)𝜓𝑘 (x;𝜔)𝜓†

𝑘
(x′;𝜔)𝑑𝜔, (2.52)

where 𝜓𝑘 are individual SPOD modes that are elements of Ψ in Equation 2.49.

For additional references and details on SPOD, one is recommended to reference
Towne, Schmidt, and Colonius, 2018; Schmidt and Colonius, 2020.

2.4.1 Connection with Resolvent analysis
In this section, the connection between the resolvent response basis and the SPOD
basis will be clarified, following Towne, Schmidt, and Colonius, 2018. To start, the
expansion of the resolvent operator, Equation 2.22, may be rewritten in continuous
notation:

H(x, 𝜔) =
∞∑︁
𝑖=1

𝜎𝑖 (𝜔)𝑢𝑖 (x, 𝜔) ⊗ (𝑣𝑖 (x, 𝜔)𝑊𝑐 (x)) , (2.53)

where 𝑢𝑖, 𝑣𝑖 are response and forcing modes, respectively, and 𝑀−1
𝑐 is the continuous

analogue of the discreteM−1
𝑐 , which may be analytically written for the Chu’s norm.

The state variable, q̂, may be represented by resolvent basis by combining Equation
2.9 and Equation 2.53,

𝑞(x, 𝜔) =
∞∑︁
𝑖=1

𝜎𝑖 (𝜔)𝑢𝑖 (x, 𝜔)
∫
Ω

𝑣∗𝑖 (x, 𝜔)𝑊𝑐 (x) 𝑓 (x, 𝜔)𝑑x︸                               ︷︷                               ︸
𝜒𝑖 (𝜔)

, (2.54a)

=

∞∑︁
𝑖=1

𝜎𝑖 (𝜔)𝜒𝑖 (𝜔)𝑢𝑖 (x, 𝜔) (2.54b)

where (·)∗ is the adjoint operator, 𝑓 (x, 𝜔) is the non-linear forcing, and 𝜒𝑖 (𝜔) are
nonlinear weightings.

Equation 2.54b shows that the ranking of linear amplification of the resolvent modes,
𝜎𝑖, alone does not uncover the optimal ranking of resolvent modes that represents
the underlying flow physics. That is that the combined weights, 𝜎𝜒, are what
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determined how important an individual resolvent mode is in the actually in the
flow. For a more complete discussion on the impact of the nonlinear weights, once
may reference Morra et al., 2021, among many other research publication.

Now that the connection between the resolvent response modes, the state vari-
ables, and the forcing has been clarified, the connection between resolvent response
and SPOD modes may be discussed. Recall the definition of the CSD at a fixed
wavenumber,

𝑆𝑞𝑞 (x,x′;𝜔) = E [𝑞(x;𝜔)𝑞∗(x′;𝜔)] , (2.55)

which may be further expanded by utilising the connection between the state variable
and the resolvent operator, Equation 2.9,

S𝑞𝑞 (x,x′;𝜔) = E
[
H 𝑓 (x;𝜔) 𝑓 ∗(x′;𝜔)H ∗

]
. (2.56)

Then utilising the decomposition of the resolvent operator into response and forcing
modes, Equation 2.54b,

S𝑞𝑞 (x,x′;𝜔) = E

∞∑︁
𝑖=1

∞∑︁
𝑗=1
𝜎𝑖 (𝜔)𝑢𝑖 (x;𝜔)𝜒𝑖 (𝜔)𝜒 𝑗 (𝜔)𝑢∗𝑗 (x′;𝜔)𝜎𝑗 (𝜔)

 ,
=

∞∑︁
𝑖=1

∞∑︁
𝑗=1
𝜎𝑖 (𝜔)𝑢𝑖 (x;𝜔)E

[
𝜒𝑖 (𝜔)𝜒 𝑗 (𝜔)

]
𝑢∗𝑗 (x′;𝜔)𝜎𝑗 (𝜔),

(2.57)

where the expectation operator can be moved due 𝜎 and 𝑢 being deterministic.
Now the expectation of the non-linear weightings is expanded to uncover the main
relation,

E
[
𝜒𝑖 (𝜔)𝜒 𝑗 (𝜔)

]
= E

[(∫
Ω

𝑣∗𝑖 (x, 𝜔)𝑊𝑐 (x) 𝑓 (x, 𝜔)𝑑x
) (∫

Ω

𝑣∗𝑗 (x′, 𝜔)𝑊𝑐 (x′) 𝑓 (x′, 𝜔)𝑑x′
)]
,

=

∫
Ω

∫
Ω

𝑣∗𝑖 (x, 𝜔)𝑊𝑐 (x)𝑣∗𝑗 (x′, 𝜔)𝑊𝑐 (x′) E
[
𝑓 (x, 𝜔) 𝑓 (x′, 𝜔)

]︸                     ︷︷                     ︸
S 𝑓 𝑓 (x,x′;𝜔)

𝑑x𝑑x′.

(2.58)
Thus showing that the connection between the expected value of the non-linear
weighting terms and the correlation function for the forcing terms. Similar results
have been outlined in Towne, Schmidt, and Colonius, 2018. To better understand
this, two cases will be considered.

Limiting case: Spatially uncorrelated noise To understand Equation 2.58, con-
sider the limiting case where f is uncorrelated in space and has a unit variance,

S 𝑓 𝑓 (x,x′, 𝜔) = 𝛿(x − x′) (2.59)
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where 𝛿(𝑥) is the Dirac delta function. Hence, Equation 2.58 would become,

E
[
𝜒𝑖 (𝜔)𝜒 𝑗 (𝜔)

]
= 𝛿𝑖 𝑗 (2.60)

since the resolvent forcing functions are orthonormal with respect to the weighting
W𝑐.

Thus, in the case of spatially uncorrelated (white noise) forcing field, the decompo-
sition of state CSD is optimally represented by the decomposition of the resolvent
operator alone:

S𝑞𝑞 (x,x′;𝜔) = E [H (x, 𝜔)H ∗(x′, 𝜔)] . (2.61)

In other words, the SPOD modes and resolvent modes are identical in this case,

𝜓𝑖 (x;𝜔) = 𝑢𝑖 (x;𝜔) (2.62a)

𝜆𝑖 (𝜔) = 𝜎𝑖 (𝜔). (2.62b)

Spatially correlated noise In contrast, in the general case, the forcing will be
highly correlated in space and not have a unit variance (Zare, Jovanović, and Geor-
giou (2017) and Morra et al. (2021)). In the general case, the SPOD modes, 𝜓, may
represent the state CSD as

S𝑞𝑞 (x,x′;𝜔) =
∞∑︁
𝑖=1

𝜆𝑖 (𝜔)𝜓𝑖 (x, 𝜔)𝜓∗𝑖 (x′, 𝜔) (2.63)

following from Equation 2.49 and Mercer’s theorem. Thus, in that case, the impor-
tance of a resolvent mode, 𝑢𝑖, is given by the product of the nonlinear weighting and
the linear amplification, 𝜎𝑖𝜒𝑖.

Hence when there is non-white noise forcing, then the resolvent modes are no longer
necessarily ordered by importance in capturing the underlying statistics of the flow.
In contrast, by construction, the SPOD modes are optimal in this case and ordered
by their ability to maximally capture the 2nd order statistics.
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2.5 Resolvent based estimation
The objective of resolvent based estimation (RBE) (Towne, Lozano-Durán, and
Yang, 2020) is to obtain an estimation of flow statistics for the whole spatial domain,
and the freestream radiation in particular, from information obtained at 𝑚 limited
point measurements,

ŷ𝑚 = C𝑚q̂. (2.64)

The problem is formulated in terms of two-point statistics for generality; the state
and measurement cross-spectral densities (CSD) are defined as

S𝑞𝑞 (𝑦, 𝑦′; 𝜅𝑥 , 𝜅𝑧, 𝜔) = E{q̂q̂†}, (2.65)

S𝑦𝑦 (𝑦, 𝑦′; 𝜅𝑥 , 𝜅𝑧, 𝜔) = E{ŷŷ†}. (2.66)

Note that although Equation 2.65 and the rest of this section is formulated for a case
that is homogeneous in the streamwise, spanwise, and temporal dimensions, this
methodology is general and may theoretically be applied to a case with inhomo-
geneity in any dimension.

Given that the expectation operator is a linear operator, the CSD of both y and q

may be expanded in terms of the previously defined resolvent operator

S𝑞𝑞 = HE{f̂ f̂ †}H† (2.67)

S𝑦𝑦 = C𝑚HE{f̂ f̂ †} (C𝑚H)† . (2.68)

The forcing statistics from the limited measurement statistics may be estimated by
manipulation of the equation.

The decomposition of the masked resolvent operator, which follows from Equation
2.22,

(C𝑚HB) = U𝑦𝚺𝑦V
†
𝑦 W

−1
𝑐 , (2.69)

by definition has a rank of 𝑚, i.e. the product of the number of measurement
locations and measured variables. Note here that the forcing matrix, B, has been
added back in for generality. Thus the forcing statistics may be approximated by

S 𝑓 𝑓 ≈ S̃ 𝑓 𝑓 = (C𝑚HB)+ S𝑦𝑦
(
(C𝑚HB)†

)+
(2.70)

= V𝑦𝚺
−1
𝑦 U †𝑦W𝑐S𝑦𝑦W𝑐U

†
𝑦𝚺
−1
𝑦 V𝑦, (2.71)

where (·)+ is the Moore-Penrose pseudo-inverse. By construction U𝑦,V𝑦 form
an orthonormal basis for the measurement locations, but not necessarily for the
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complete spatial domain. This approximation assumes that the forcing statistics
are well captured by the forcing basis V𝑦. A more complete exposition of the
assumptions inherent to this modeling methodology is given in Martini et al., 2020.

To complete the model, the approximate forcing statistics are used along with the
definition of the complete state variable CSD (Equation 2.67),

S𝑞𝑞 ≈ S̃𝑞𝑞 = H (C𝑚HB)+ S𝑦𝑦
(
(C𝑚HB)†

)+
H† (2.72)

= HV𝑦𝚺
−1
𝑦 U †𝑦W𝑐S𝑦𝑦W𝑐U

†
𝑦𝚺
−1
𝑦 V𝑦H†, (2.73)

which is one of the two final equations which will be used, in Chapter 5, to gen-
erate models of the complete state variable spatial domain from limited point-wise
measurements. A visual representation of this equation, which may be thought of
as a mapping is shown in Figure 2.5. Equation 2.72 may be written using transfer
functions, or mappings, which will be used throughout this work, as

S̃𝑞𝑞 = T𝑞S𝑦𝑦T
†
𝑞 , (2.74)

where T𝑞 (= HH𝑦) is the transfer function mapping from ŷ → q̂.

Figure 2.5: Visual representation of the resolvent based estimation procedure.
Shown for two measurement points (𝑃1, 𝑃2).



32
Though Equation 2.72 (and RBE generally) is formulated in terms of the CSD of
measurements, in this work the power spectral density (PSD), 𝚽𝑦𝑦, will also be
used,

S̃𝑦𝑦 ≈ diag
(
𝚽𝑦𝑦

)
, (2.75)

i.e., neglecting the influence of the non-diagonal terms.

2.5.1 Non optimality of RBE
Equation 2.72 provides a linear estimator to map from S𝑦𝑦 → S𝑞𝑞 by leveraging
a mapping Tf : ŷ → f̂ from our measured state to an approximation of the full
forcing statistics. Martini et al., 2020 has shown that this estimator is not optimal
and derived a correction that leads to an optimal linear estimator mapping from the
measurements to the forcing. The derivation of the optimal linear estimator is now
briefly outlined.

To derive an optimal linear estimator, the goal is to find the linear operator that
minimizes the error between the true state variables and the estimation. The error
in the state estimation can be written as,

êq = q̂ − ˜̂q (2.76)

= H
(
f̂ − ˜̂f

)
, (2.77)

where (·̃) is an approximation of (·). The error CSD may then be expanded by using
the estimator T 𝑓 ,

S𝑒𝑒 = E

[(
H

(
f̂ − T 𝑓

(
H𝑦f̂

))) (
H

(
f̂ − T 𝑓

(
H𝑦f̂

)))†]
, (2.78)

where the fact that ŷ = H𝑦f̂ is used. The stationary point of Equation 2.78 can be
shown to be,

T 𝑓 ,𝑜𝑝𝑡 = S 𝑓 𝑓H†𝑦
(
H𝑦S 𝑓 𝑓H†𝑦

)+
, (2.79)

which is the optimal linear estimator mapping from the measurements, ŷ, to the
estimated forcing, ˜̂f . In the same way that a standard pseudo-inverse may be under-
stood as the solution to a least squares problem, Equation 2.79 may be understood
as the solution to a kernel-weighted least squares problem, where the kernel is the
forcing CSD. For a more detailed discussion of the effect of adding the forcing CSD
information to the estimation and an in-depth study of the forcing CSD for turbulent
flows may be found in Martini et al. (2020) and Nogueira et al. (2021).
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Similarly to the standard RBE estimation, the optimal linear estimator will be written
as,

T𝑞,𝑜𝑝𝑡 B HT 𝑓 ,𝑜𝑝𝑡 (2.80)

= HS 𝑓 𝑓H†𝑦
(
H𝑦S 𝑓 𝑓H

†
𝑦

)+
. (2.81)

2.6 Helmholtz decomposition
Another tool that will be leveraged in this work is that of the Helmholtz decom-
position (Bhatia et al., 2013). The Helmholtz decomposition decomposes a three
component (velocity) signal into a solenoidal part and a dilatation part,

q = q𝑠 + q𝑑 , (2.82)

where q𝑠 is called the solenoidal part and q𝑑 the dilatational part of the signal, which
have the properties

∇ · q𝑠 = 0, (2.83a)

∇ × q𝑑 = 0. (2.83b)

To calculate the Helmholtz decomposition given a signal, two calculus properties
must be recalled: (1) A solenoidal signal may be represented as the curl of a vector
potential,

q𝑠 = ∇ × S, (2.84)

where 𝑆 is some vector potential, (2) A dilatational signal may be represent as the
gradient of a scalar potential:

q𝑑 = ∇𝐷, (2.85)

where 𝐷 is some scalar potential. As outline in bhatiaHelmholtzHodgeDecomposi-
tionSurvey2013, the scalar potential that satisfies Equation 2.84 may be computed
by solving the following system:

Δ𝐷 = ∇ · q on Ω, (2.86)

∇𝐷 · ®n = ®n · q on 𝜕Ω, (2.87)

where Δ is the Laplacian operator, Ω is the domain of interest, 𝜕Ω the boundaries of
the domain, and ®n is the normal vector. Similarly, the vector potential that satisfies
Equation 2.85 may be computed by solving:

∇2 ®𝑆 = −∇ × q on Ω, (2.88)

®𝑛 × (∇ × ®𝑆) = ®𝑛 × q on 𝜕Ω. (2.89)



34

After solving the preceding linear systems for (S, 𝐷), the solenoidal and dilatational
part of the signal may then be computed by plugging (S, 𝐷) into Equation 2.84 and
2.85.

2.6.1 Validation
Throughout this work, the Helmholtz decomposition will be leveraged for both 1-D
and 2-D domains, hence, in this section the solver will be validated for both 1-D
and 2-D domains. To validate the solver, the following process will be followed:
(1) analytical test functions that contain both a solenoidal and dilatational part are
constructed, (2) the Helmholtz decomposition of the combined analytical function
is numerically computed, and (3) the computational and analytical decomposition
are compared, as well as if Equation 2.83 are satisfied.

For both cases, the test function may be generated by finding analytical functions
for a vector potential, 𝑆, and for a scalar potential, 𝐷. In the 1-D case, the chosen
analytical functions are,

𝑓 (𝑦) = 𝑒−𝑦2
𝑦3, (2.90)

S1𝐷𝑒1 = (1 + 1𝑖)𝜕𝑦 𝑓 (𝑦), (2.91)

S1𝐷𝑒2 = (1 − 1𝑖) (𝜅𝑥 + 𝜅𝑧) 𝑓 (𝑦) (2.92)

S1𝐷𝑒3 = (1 + 1𝑖)𝜕𝑦 𝑓 (𝑦), (2.93)

𝐷1𝐷 = 𝑒−𝑦 (𝑦 − 𝑦𝑚𝑖𝑛)2(𝑦 − 𝑦𝑚𝑎𝑥)2, (2.94)

where 𝑖 =
√
−1 and 𝑒𝑖 are unit vectors in the 𝑥𝑖 direction. Then the test function is

given as,
v1𝐷,𝑡𝑒𝑠𝑡 = ∇ × S1𝐷 + ∇𝐷1𝐷 . (2.95)

Figure 2.6 shows the point-wise error for the dilatational and the solenoidal compo-
nents of v1𝐷,𝑡𝑒𝑠𝑡 .

In summation, the relative error, as defined by

𝑒𝑟𝑒𝑙 (V𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙 ,V𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙) = ∥V𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙 − V𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙 ∥/∥V𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙 ∥, (2.96)

is found to be 𝑂 (1𝑒 − 10) for both the dilitational and solenoidal decomposition
shown in Figure 2.6.

This procress is then repeated for the Helmholtz decomposition of a 2D function.
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Figure 2.6: Comparison of analytical and numerically computed components of the
Helmholtz decomposition for v1𝐷,𝑡𝑒𝑠𝑡 . Validation of the Helmholtz decomposition
for a 1-D signal given by Equation 2.95.

The 2D function is constructed from the vector and scalar potential given as:

S2𝐷 (𝑥, 𝑦) 𝑒1 =
(
𝑥 − 𝑥min

)2 (
𝑥 − 𝑥max

)2 (
𝑦 − 𝑦min

)2 (
𝑦 − 𝑦max

)2
, (2.97)

S2𝐷 (𝑥, 𝑦) 𝑒2 = 0 (2.98)

S2𝐷 (𝑥, 𝑦) 𝑒3 =
(
𝑥 − 𝑥min

)2 (
𝑥 − 𝑥max

)2 (
𝑦 − 𝑦min

)2 (
𝑦 − 𝑦max

)2
, (2.99)

𝐷2𝐷 (𝑥, 𝑦) =
S2𝐷 (𝑥, 𝑦) 𝑒1

max
(
S2𝐷 (𝑥, 𝑦) 𝑒1

)
+ (1 + 𝑖) sin

(
𝜋
𝑥 − 𝑥min

0.05 (Δ𝑥)

)
sin

(
𝜋

𝑦 − 𝑦min
0.05 (Δ𝑦)

) (
𝑦 − 𝑦max

)
.

(2.100)

where the test function is, again, given as,

v2𝐷,𝑡𝑒𝑠𝑡 = ∇ × S2𝐷 + ∇𝐷2𝐷 . (2.101)

The relative error of the components of the test function versus the numerically
computed Helmholtz decomposition is shown in Figure 2.7. Though small (relative)
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errors are shown near the boundary of the domain, it is found that these decrease
with increasing number of grid points. In summation, the relative error, as defined
by Equation 2.96, is found be 𝑂 (1𝑒 − 4), or a percent error of 𝑂 (.01%), for a grid
size of (𝑁𝑥 , 𝑁𝑦) = (1001, 1001).
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Figure 2.7: Relative pointwise error of analtyical vs computational helmholtz
decomposition components (a)

∑3
𝑖=1 | (q𝑠,𝑖 − (∇ × S2𝐷)𝑖)/max(∇ × S2𝐷) | (b)∑3

𝑖=1 | (q𝑑𝑖𝑙,𝑖 − (∇𝐷2𝐷)𝑖)/max(∇𝐷2𝐷) |. Validation of the Helmholtz decomposi-
tion for a 2-D signal given by Equation 2.101.
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C h a p t e r 3

DATASETS

This chapter briefly outlines the details of the datasets and mean profiles that will
be used throughout this thesis. Broadly speaking, two types of data are used in this
thesis: (1) turbulent mean profiles, for their use in the computation of the resolvent
analysis, and (2) statistical information, for the computation of SPOD and RBE.

Since neither direct numerical simulation (DNS) was performed by the author of
this manuscript, only the details of the data relevant to this thesis are discussed. For
more information on the computational details, one should reference the two works
directly – (Di Renzo and Urzay, 2021) and (Duan, Choudhari, and C. Zhang, 2016;
Chen et al., 2024).

3.1 Mean flow profiles
In this thesis, mean profiles for a hypersonic streamwise developing TBL, originating
from DNS, were used from two different studies (Di Renzo and Urzay, 2021) and
(Chen et al., 2024). Herein, the mean profiles will be plotted and key features of
each set of mean profiles will be discussed.

3.1.1 Mach 7 cooled wall TBL
Table 3.1: Freestream conditions for Direct Numerical Simulation (DNS) of Mach
7.0 TBL (Di Renzo and Urzay, 2021) within the (resolvent) computational domain.
Dimensional quantities are given by ˘(·).

Ma∞ Re𝛿 Re𝜏 𝑇∞ (K) 𝑇𝑤/𝑇𝑟
7.0 (1.7 × 104, 2.8 × 104) (220,331) 100 0.20

The first dataset being utilized is of a Mach 7 cooled wall TBL (Di Renzo and Urzay,
2021), where key bulk parameters are tabulated in Table 3.1. Two key features can
be pointed out in this table: (i) the Re𝛿 is relatively low (ii) the wall-to-recovery
temperature ratio is that of a cooled wall.

The DNS was performed by solving the conservative compressible Navier-Stokes
equations using the HTR solver (Di Renzo, Fu, and Urzay, 2020). Though this
solver is formulated generally for real gases, in this case, the working fluid is a
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perfect gas and the viscosity, 𝜇, is computed using Sutherland’s law. The thermal
conductivity, 𝜅, is constant and is computed using the relation, 𝜅 = 𝜇𝑐𝑝/Pr, where
Pr = 0.72. The viscous fluxes are computed using a second-order central finite-
difference scheme and the inviscid fluxes are computed using a sixth-order central
finite difference method, with the reconstruction scheme being outlined in Di Renzo,
Fu, and Urzay, 2020. The time advancement is performed using the third-order
strong-stability-preserving Runge–Kutta method (Gottlieb, Shu, and Tadmor, 2001).
The turbulent inflow is generated using the recycling-rescaling method (Lund, Wu,
and Squires, 1998). Finally the top and outlet boundary conditions are set to be
the non-reflecting outflow boundary conditions of Thompson, 1987 and Poinsot and
Lele, 1992, respectively.
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Figure 3.1: Mean profiles at evenly spaced streamwise locations throughout the do-
main of study. The black arrow indicates the direction of increasing streamwise loca-
tion, 𝑥, of the 1-D profiles. Bulk properties are Ma = 7.0,Re𝜏 ∈ [220, 331], 𝑇𝑤/𝑇𝑟 =
0.2, 𝑇∞ = 100𝐾 . Profiles shown span the range used for the resolvent computation
with a total length of Δ𝑥 = 45𝛿𝑟 , where 𝛿𝑟 is the boundary layer thickness at the
streamwise location where Re𝛿 = 2 × 104.
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The variation of the mean profiles in the streamwise extent of the domain are plotted
in Figure 3.1. The effect of the wall cooling may be seen in Figure 3.1c, where a non-
monotonic mean temperature profile may be seen. Additionally, Figure 3.1a allows
visualization of the streamwise growth by inspecting the location of 𝛿99 visually.
This streamwise growth visualizes the boundary layer growth seen throughout the
domain, which is measured to be 𝛿𝑜𝑢𝑡𝑙𝑒𝑡/𝛿𝑖𝑛𝑙𝑒𝑡 = 1.58.

3.1.2 Mach 5.86 moderately cooled TBL

(a) (b)

Figure 3.2: Data from a DNS of a Mach 5.86 TBL. (a) Visualization of flow
structures and the subdomain (indicated by a red box) extracted for spectral
and modal analyses. Grey contours represent the instantaneous density gradi-
ent, while the color contours visualize the instantaneous vorticity magnitude.
(b) Contours of the pre-multiplied frequency-wavenumber spectrum of pressure,
𝜔𝜅𝑧Φ𝑝𝑝 (𝜅𝑧, 𝜔; 𝑦/𝛿 ≈ 2.15).

Table 3.2: Freestream conditions for Direct Numerical Simulation (DNS) of Mach
5.86 TBL (Duan, Choudhari, and C. Zhang, 2016; Chen et al., 2024). Dimensional
quantities are given by ˘(·).

Ma∞ Re𝛿 Re𝜏 𝑇∞ (K) 𝑇𝑤/𝑇𝑟
5.86 (1.5 × 105, 2.8 × 105) [379,438] 58.6 0.76

The second dataset being used is of a Mach 5.86 moderately cooled wall TBL
(Duan, Choudhari, and C. Zhang, 2016; Chen et al., 2024), where bulk parameters
are presented in Table 3.2. In the DNS, the conservative compressible Navier-Stokes
equations are solved. The fluid is assumed to be a perfect gas and viscosity, 𝜇, is
computed using Sutherland’s law. The thermal conductivity, 𝜅, is computed using
the relation, 𝜅 = 𝜇𝑐𝑝/Pr, where Pr = 0.71. The inviscid fluxes are discretized using
a seventh-order Weighted Essentially Non-Oscillatory (WENO) scheme, optimized
with limiters (Jiang and Shu, 1996). Viscous fluxes are discretized with a fourth-
order central difference method, while time integration is handled by a third-order
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low-storage Runge-Kutta scheme. The turbulent inflow is generated using the
recycling-rescaling method developed by Xu and Martin, 2004. The wall boundary
conditions are the no-slip conditions and an isothermal condition for temperature
with𝑇𝑤 = 0.76𝑇𝑟 . At the top and outlet boundaries unsteady non-reflecting boundary
conditions (Thompson, 1987) are used. Further details on the DNS methodology
can be found in Duan, Choudhari, and C. Zhang, 2016 and Chen et al., 2024.

As compare to the first dataset, there are a few distinguishing factors: (i) a signifi-
cantly higher Re𝛿, and correspondingly a higher Re𝜏, (ii) a more modest boundary
layer growth across the domain (𝛿𝑜𝑢𝑡𝑙𝑒𝑡/𝛿𝑖𝑛𝑙𝑒𝑡 ≈ 1.16), and (iii) a moderately cooled
wall with a higher wall-to-recovery temperature ratio.

A visualization of the flow structures in the DNS are shown in Figure 3.2(a) and the
frequency-wavenumber PSD in the freestream is shown in Figure 3.2(b). Addition-
ally, the streamwise variation of the mean profiles are shown in Figure 3.3. From
Figure 3.3c, it may be seen that the more moderate wall cooling greatly reduces the
non-monotonicity in temperature, as compared to the previous case, and the mean
temperature profiles only exhibits a small ‘bump’ in the near-wall region. Addi-
tionally Figure 3.3a, shows that there is significantly less streamwise growth of the
boundary layer and the boundary layer thickness remains nearly constant. As in the
previous case, Figure 3.3b shows that the mean wall-normal velocity is significantly
smaller than the mean streamwise velocity.
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Figure 3.3: Mean profiles at evenly spaced streamwise locations throughout the
domain of study. The black arrow indicates the direction of increasing stream-
wise location, 𝑥, of the 1-D profiles. Bulk properties are Ma = 5.86,Re𝜏 ∈
[379, 438], 𝑇𝑤/𝑇𝑟 = 0.76, 𝑇∞ = 58.6𝐾 . Profiles shown span the range used for
the resolvent computation with a total length of Δ𝑥 = 15𝛿𝑟 , where 𝛿𝑟 is the bound-
ary layer thickness at the streamwise location where Re𝜏 = 451.

3.2 Power spectral density at fixed wall heights
The information used in future modeling approaches, which are presented in Chapter
5, is the three-dimensional spatio-temporal power spectral density (PSD), which has
been computed as

Φq𝑖q𝑖 (𝜅𝑥 , 𝜅𝑧, 𝑓𝑠) = E
{

lim
𝐿𝑥 ,𝐿𝑧 ,𝐿𝑡→∞

1
𝐿𝑥𝐿𝑧𝐿𝑡

q̂𝑖q̂
†
𝑖

2𝜋Δ𝜅𝑥Δ𝜅𝑧Δ 𝑓

}
, (3.1)

where q̂𝑖 are state variables at a fixed wall height, 𝐿𝑖 is the length of the domain
for dimension 𝑖, and here Δ(·) represents the grid spacing for each field (·). This
approach follows the work of Gloerfelt and Berland (2013). Details on the DNS
methodology, from which this data is extracted, can be found in Duan, Choudhari,
and C. Zhang (2016) and Chen et al. (2024).
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To compute the frequency-wavenumber spectrum for the state variablesΦq𝑖q𝑖 (𝜅𝑥 , 𝜅𝑧, 𝑓𝑠),
the DNS time series data was collected in multiple two-dimensional wall-parallel
planes, each with a size of (𝐿𝑥 , 𝐿𝑧) = (11.45𝛿𝑟 , 9.27𝛿𝑟), where 𝛿𝑟 is the boundary
layer thickness where Re𝜏 = 451, at a fixed wall-normal height in absolute units.
The streamwise variation of the fluctuating signal (after subtracting the instanta-
neous spanwise-averaged mean at each streamwise point) is confirmed to be small
over the spatial FFT window so that they can be regarded as statistically homoge-
neous in the streamwise direction. Such a quasi-homogeneous assumption has been
made by multiple researchers for calculating the streamwise wavenumber spectrum
of a turbulent boundary layer (Gloerfelt and Berland, 2013; Di Marco et al., 2013;
Huang, Duan, Casper, et al., 2024).

The DNS snapshots were Fourier transformed in streamwise and spanwise spatial
directions, respectively, before they were Fourier transformed in time. A Hanning
window was used for weighting the DNS fluctuation data in the temporal and stream-
wise directions. The temporal power spectrum was calculated using 8 segments,
each with a length of 33.26𝛿𝑟/𝑢̆∞, and with 50% overlap. The sampling frequency
is 2 MHz (Δ𝑡+ ≈ 0.44).

The wall heights where data are stored is given by four near-wall planes,

𝑦+ ∈ [0, 5.3, 16.9, 26.6],

and six planes in the freestream or outer region,

𝑦/𝛿 ∈ [0.16, 0.76, 1.61, 2.15, 2.69, 3.21] .

The integrated spanwise-temporal pre-multiplied PSD for pressure at various wall-
normal heights is visualized in Figure 3.4.
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Figure 3.4: Visualization of variation of the pre-multiplied wavenumber-frequency
PSD for pressure at varying wall heights, 𝜅𝑧𝜔𝚽(𝜅𝑧, 𝜔; 𝑦). Plotted for a fixed relative
contour level of 0.10 max (𝜅𝑧, 𝜔𝚽(𝜅𝑧, 𝜔; 𝑦)) at each wall height.

3.3 Volumetric data
In addition to computing PSD fields, which was discussed in the previous section,
cross spectral density (CSD) information is utilized in this thesis in Chapters 5 and 6.
In order to obtain this CSD information, a spatio-temporal dataset was constructed
by saving the state variables in a subdomain of the full DNS. The subdomain saved
is visualized by a red box in Figure 3.2. The extracted subdomain has dimensions
of 𝐿𝑥 = 11.92𝛿, 𝐿𝑦 = 2.14𝛿, and 𝐿𝑧 = 9.24𝛿 in the streamwise (𝑥), wall-normal
(𝑦), and spanwise (𝑧) directions, respectively. The total number grid points for this
subdomain is 551× 275× 800 in the streamwise (𝑥), wall-normal (𝑦), and spanwise
(𝑧) directions, respectively.

To cover the broadband frequencies in the freestream acoustic field, the DNS data
are temporally sampled at a very high rate (corresponding to Δ𝑡+𝑠 = 0.88) and over
an extended period of 𝑇 𝑓𝑈∞/𝛿 = 223.4, resulting in over 6000 snapshots. Here,
Δ𝑡𝑠 is the sampling time interval and 𝑇 𝑓 is the overall time length over which three-
dimensional flow field are collected. Such a combination of fine temporal resolution
with long signal length follows the best practices listed in Schmidt and Colonius
(2020), which ensures the capture of relevant turbulent and acoustic structures by
SPOD.
To reveal the frequency and wavenumber contents of the freestream acoustic distur-
bances, Figure 1(b) plots the premultiplied frequency-wavenumber spectrum of the
pressure fluctuations in the freestream at 𝑦/𝛿 ≈ 2.15. The premultiplied spectrum
peaks at a frequency of 𝜔𝛿/𝑈∞ ≈ 9.2 with a spanwise wavenumber of 𝜅𝑧𝛿 ≈ 6.0.
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Due to the extremely large size of the data, this computation was only performed
for a single spanwise wavenumber. Additional details, regarding convergence of the
CSD, as tested by SPOD, are discussed in Chapter 6.

3.4 Analytical mean flow profiles
In this section, the analytical mean flow estimation method of Manzoor Hasan et al.,
2024 is briefly outlined and analytical mean profiles used in Chapter 4 are outlined.

3.4.1 Outline of methodology
In Hasan et al., 2023, it was shown that the mean shear for compressible TBLs could
be represented using:

𝑑𝑢̄

𝑑𝑦
=
𝑢∗𝜏
𝛿∗𝑣

1
1 + 𝜅𝑦∗𝐷 (𝑦∗,Ma𝜏)︸             ︷︷             ︸

𝜇𝑡/𝜇̄

+
𝑢∗𝜏
𝛿

Π

𝜅
𝜋 sin

(
𝜋
𝑦

𝛿

)
(3.2)

where (·)∗ are quantities scaled in semi-local units, Π is the wake parameter of
Coles, 1956, 𝜅 is the von Kármán constant, 𝛿𝜈 and 𝛿 are inner and outer length
scales, and the near-wall damping function 𝐷 is given as,

𝐷 (𝑦∗,Ma𝜏) =
[
1 − exp

(
−𝑦∗

𝐴+ + 𝑓 (Ma𝜏)

)]2
, (3.3)

where Ma𝜏 is the turbulent Mach number, 𝑓 (Ma𝜏) accounts for ‘intrinsic com-
pressibility effects’ and a proposed value of 𝑓 (Ma𝜏) = 19.3Ma𝜏 is used. The under
braced terms, in Equation 3.2, are a modification of the Johnson-King mixing-length
eddy viscosity model (Johnson and King, 1985), which were derived in Hasan et al.,
2023.

The work of Manzoor Hasan et al., 2024 then utilises Equation 3.2, via integration,
to generate analytical turbulent boundary layer profiles. In brief, this methodology
works by: (1) Specify bulk parameters and an initial guess for the mean velocity
𝑢̄, (2) compute the corresponding temperature, 𝑇 , using the generalized Reynolds
analogy (Y.-S. Zhang et al., 2014) and the density, 𝜌̄, via the perfect gas equation,
(3) compute the viscosity, 𝜇̄, using Sutherland’s law, (4) Recompute the velocity, via
integration of Equation 3.2, using the mean profiles and specified bulk parameters,
(5) Compute Re𝜏 using the computed mean profiles, and finally iterate this procedure
until Re𝜏 converges with the value specified at the start.

In the work of Manzoor Hasan et al., 2024, it was shown that these profiles closely
match profiles generated using DNS throughout a wide range of parameter space.
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In the current work, it was found that there were not any significant differences for
resolvent analysis computations when using either: (1) DNS mean profiles, or (2)
artificial mean profiles, computed via the method of Manzoor Hasan et al., 2024. It
is noted that this section only provides a very brief outline of the work of Manzoor
Hasan et al., 2024 and it is recommended that the reader reference the work for a
more complete overview of the methodology.

3.4.2 Properties of mean profiles
In Chapter 4, the following analytical mean profiles are used to study the properties
of Mach wave radiation of slow acoustic waves across different parameter ranges.
That study, varies three different parameters independently: (1) the friction Reynolds
number, Re𝜏, (2) the Mach number, Ma, and (3) the wall-to-recovery temperature
ratio, 𝑇𝑤/𝑇𝑟 . Though only one parameter is varied at a time, it is challenging to
perform a fair comparison in this case due to the various parameters being so tightly
coupled, e.g., fixing Re𝜏 and varying Ma still leads to large variations in Re𝛿. Thus,
to best understand the variation in each of those cases, the mean profiles and key
bulk parameters are plotted and discussed in the following.
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Figure 3.5: Mean profiles for varying Mach number, Ma ∈
[1.5, 3.6, 5.75, 7.875, 10]. Bulk parameters are given by Re𝜏 = 450, 𝑇∞ =

58.6𝐾,𝑇𝑤/𝑇𝑟 = 0.76. Mean profiles are analytically generated using the method of
Manzoor Hasan et al., 2024. The black arrow indicates profiles of increasing Mach
number.

Figure 3.5 shows the case where only the Mach number is varied. An extremely
large variation in the ratio of the wall-to-freestream temperature is seen. This may
be understood by considering a relationship following from Y.-S. Zhang et al., 2014,

𝑇𝑟/𝑇∞ = 1 + 𝑟 𝛾 − 1
2

Ma2, (3.4)
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where 𝑟 is the recovery factor and 𝛾 is the ratio of heat capacities. For this case,
both are constant. Hence, it can be seen that variation of the Mach number drives
a variation in the recovery temperature, which then modifies the wall temperature
through a fixed wall-to-recovery temperature ratio.
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Figure 3.6: Mean profiles for varying wall-to-recovery temperature ratio, 𝑇𝑤/𝑇𝑟 ∈
[0.2, 0.5, 0.76, 1.5, 3.0]. Bulk parameters are given by Ma = 5.86,Re𝜏 = 450, 𝑇∞ =

58.6𝐾 . Mean profiles are analytically generated using the method of Manzoor Hasan
et al., 2024. The black arrow indicates profiles of increasing wall-to-recovery ratio.

In Figure 3.6, the mean profiles for the variation in the wall-to-recovery temperature
is shown. The main point to note is that the temperature profiles vary from a
non-monotonic profile at the low values of wall-to-recovery temperature ratio to a
monotonic function with large differences in the wall temperature and freestream
temperature.

Finally, in Figure 3.7, the mean profiles for variation of Re𝜏 are shown. As expected,
there are minor variations in the mean temperature profile. A shift in the mean
velocity profiles are visualized by a shift in the location where the mean velocity
reaches the freestream value.
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Figure 3.7: Mean profiles for varying friction Reynolds number, Re𝜏 ∈
[450, 837, 1225, 1612, 2000]. Bulk parameters are given by Ma = 5.86, 𝑇∞ =

58.6𝐾,𝑇𝑤/𝑇𝑟 = 0.76. Mean profiles are analytically generated using the method
of Manzoor Hasan et al., 2024. The black arrow indicates profiles of increasing
friction Reynolds number.
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C h a p t e r 4

THE EFFECT OF STREAMWISE GROWTH ON LINEAR
MECHANISMS

This chapter1studies the phenomena of acoustic radiation from hypersonic turbulent
boundary layers by utilizing the resolvent analysis for streamwise constant and
streamwise developing boundary layers with two spatial dimensions. It is shown that
the optimal resolvent forcing and response modes for the 2-D resolvent analysis may
be modeled using a profile from the 1-D resolvent analysis and a streamwise varying
profile that generalizes across spectral space. A study of the effect of streamwise
growth on acoustic radiation is then performed. It is determined that the primary
influence of the streamwise developing profile is primarily due to the influence of the
Mach line, which arises due to the addition of a second spatial dimension. Finally,
a parametric study for the effect of varying the Reynolds number, the Mach number,
and the wall-to-recovery temperature ratio on the characteristics of the acoustic
radiation is performed.

4.1 Introduction
The linear analysis, by means of resolvent analysis, of compressible turbulent bound-
ary layers has been thoroughly studied for an assumed parallel flow (Tumin and
Reshotko, 2003; Malik, 1990; Bae, Dawson, and McKeon, 2020). In these cases, it
was found that the primary difference between the incompressible and the compress-
ible cases were supersonically radiating modes (Bae, Dawson, and McKeon, 2020),
which occur when the absolute value of the freestream relative Mach, Equation 1.8,
is greater than unity. Previous studies have looked at acoustic radiation originating
from the boundary layer in the laminar hypersonic parallel flow case (Bitter and
Shepherd, 2015; Knisely, 2018), but a study of acoustic radiation in the turbulent
case is absent from the literature. Additionally, resolvent analysis has been applied
to laminar streamwise developing boundary layers (Bugeat et al., 2019; Kamal,
Rigas, et al., 2022), but the application to the turbulent streamwise developing case
is absent. This leaves a gap in the literature, which may be addressed through the
application of the resolvent analysis to a streamwise developing TBL with a focus

1Parts of Section 4.2.2 have been previously published in Madhusudanan, Stroot, and McKeon,
2025
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on the acoustic radiation.
In this chapter, we seek to close that gap in the literature by analyzing the super-
sonically radiating linear mechanisms present for a streamwise developing turbulent
boundary layer. The primary aim of this chapter is to: (1) quantify and explain
the mechanisms in the streamwise developing case (2) quantify (and set bounds on)
the differences between the results of the analysis for the case of the streamwise
developing TBL and the assumed parallel TBL.
The latter goal is motivated, in part, by the extreme cost of the 2D analysis, owing
in part due to the high resolutions needed to resolve both the boundary layer and
freestream mechanisms. As a point of comparison, throughout this chapter a wall-
normal grid resolution of 𝑁𝑦 = 601 is used and is found to be at the limit of resolving
many structures. In contrast, other studies using the resolvent analysis which do not
need to resolve freestream waves, have used 𝑁𝑦 = 108 in the compressible laminar
case (Bugeat et al., 2019) and𝑁𝑦 = 151 in the incompressible turbulent case (Gomez,
2023). Due to the computational complexity of resolvent calculations scaling as
𝑂 (𝑁3), this additional grid resolution requirement results in the computational cost
increasing by a factor of 64-216. The end goal is to provide reasonable metrics for
where each analysis may be used and what type of cautions should be had when
utilizing the (considerably cheaper) assumed parallel flow in futher analysis’ and
modeling endeavors.

4.2 Theoretical considerations and computational set-up
In this section, various theoretical and computational details, which are necessary
to study the acoustic radiation from supersonic TBLs using resolvent analysis, are
outlined.

4.2.1 Radiation is not guaranteed at specific (𝜅𝑧, 𝜔)
As was outlined in Section 1.2, when the parallel flow assumption is made, it is
possible to exactly specify the spectral parameters, (𝜅𝑥 , 𝜅𝑧, 𝜔), that result in acoustic
radiation. For the case of the streamwise developing boundary layer, streamwise
homogeneity is no longer assumed, which allows for complex spatial development
of linear mechanisms in that direction (in addition to the wall-normal. Hence, there
exists no way to determine a priori whether or not a specific resolvent mode at a
specific (𝜅𝑧, 𝜔) will contain acoustic radiation.

The lack of an a priori method to restrict the 2-D resolvent computation to pro-
duce acoustically radiating modes requires another approach to attain these modes.
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Figure 4.1: Visualization showing forcing and response masking localization for
all state variables. The blue bounded area, marked C, represents the spatial region
allowed for response modes. The red bounded area, markedB, represents the spatial
region allowed for forcing modes. The dash-dotted line represents the boundary layer
thickness, 𝑦/𝛿99,𝑢 (𝑥) = 1.

Though the acoustically radiation modal mechanisms will exist in the full singular
value decomposition of the 2-D resolvent operator, the linear amplification is excep-
tionally low, hence, they will exists very far down in the singular value expansion
and be computationally expensive and hard to resolve. Therefore, as shown in Figure
4.1, we implement masking in the resolvent computation, Equation 4.1, to force the
response modes to exist in the freestream region and the forcing modes to exist in
the boundary layer region, as demarcated by the boundary layer thickness 𝛿99 based
upon the streamwise velocity. The masking matrices are given as,

B = diag (15 ⊗ 1(𝑦/𝛿 < 0.95)) , (4.1)

C = diag (15 ⊗ 1(𝑦/𝛿 > 1.15)) , (4.2)

where 15 ∈ R5 is a vector of ones, resulting from the five state variables, and
1(𝑥, 𝑦) ∈ R𝑁𝑥𝑁𝑦 is an indicator function that is one when the condition is true.

As will be seen in the coming sections, this method successfully forces the 2-D
resolvent computation to produce the acoustically radiating modes in the optimal
and sub-optimal singular vectors.

4.2.2 Mach wave radiation for streamwise developing boundary layer
The preceding discussion leads to a pressing question. If there exists no way to
know if Mach wave radiation exists at a specific (𝜅𝑧, 𝜔), how do we theoretically
know if Mach wave radiation exists, in the same fashion, in the case of a streamwise
developing mean flow?
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By following a similar procedure for the derivation of the inviscid equation for
pressure as in Section 1.2 and Madhusudanan, Stroot, and McKeon, 2025, but not
making the simplifying assumption of a parallel base flow, the inviscid equations
for pressure, with a streamwise developing base-flow may be written as:

𝜔2𝑝 − 2𝜔𝑈𝑖
𝜕𝑝

𝜕𝑥𝑖
+𝑈𝑖𝑈 𝑗

𝜕𝑝

𝜕𝑥𝑖𝜕𝑥 𝑗
+𝑈𝑖

𝜕𝑈 𝑗

𝜕𝑥𝑖

𝜕𝑝

𝜕𝑥 𝑗
+ 𝛾𝜔

𝜕𝑈 𝑗

𝜕𝑥 𝑗
𝑝 + 𝛾𝑈𝑖

𝜕𝑈 𝑗

𝜕𝑥 𝑗

𝜕𝑝

𝜕𝑥𝑖

− 𝛾 𝜕𝑈𝑖
𝜕𝑥 𝑗

𝜕𝑈 𝑗

𝜕𝑥𝑖
𝑝 − 1

Ma2
𝜕𝑇

𝜕𝑥 𝑗

𝜕𝑝

𝜕𝑥 𝑗
− 𝑇

Ma2
𝜕2𝑝

𝜕𝑥2
𝑗

= 𝛾

[
2
𝜕𝑈𝑖

𝜕𝑥 𝑗

𝜕

𝜕𝑥𝑖
+ 𝜕2𝑈𝑖
𝜕𝑥𝑖𝜕𝑥 𝑗

]
𝑢 𝑗

+
[
𝜔 +𝑈𝑖

𝜕

𝜕𝑥𝑖

] (
𝑇 𝑓𝜌 + 𝑓𝑇

)
− 𝛾

𝜕 𝑓𝑢𝑖

𝜕𝑥𝑖
.

(4.3)

Following this, a spanwise Fourier transform may be utilized in the homogeneous
spanwise direction, 𝑧. By restricting the domain to the freestream, it may be seen
that only the LHS of 4.3 will be non-zero. The resulting equation may then be
solved using separation of variables to give solutions of the form

𝑝(𝑥, 𝑦) = 𝐴exp(𝑟𝑥𝑥)exp(𝑟𝑦𝑦), (4.4)

where 𝐴 is a constant at each spectral pair (𝜅𝑧, 𝜔) and (𝑟𝑥 , 𝑟𝑦) can be obtained by
solving the ordinary differential equation that is obtained from performing separation
of variables.

These wavenumbers, (𝑟𝑥 , 𝑟𝑦), thenfollow one of the following two sets of quadratic
equations:

Either


𝑐1𝑟

2
𝑥 − 𝑐3𝑟𝑥 − 𝑙1 = 0,

𝑐2𝑟
2
𝑦 + (𝑐5𝑟𝑥 − 𝑐4)𝑟𝑦 + (𝑙1 + 𝑐6) = 0,

(4.5a)

or


𝑐2𝑟

2
𝑦 − 𝑐4𝑟𝑦 − 𝑙2 = 0,

𝑐1𝑟
2
𝑥 + (𝑐5𝑟𝑦 − 𝑐3)𝑟𝑥 + (𝑙2 + 𝑐6) = 0,

(4.5b)
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where the constants depend only one freestream properties:

𝑐1 = (1 − 1/Ma2), (4.6a)

𝑐2 = (𝑉2
∞ − 1/Ma2), (4.6b)

𝑐3 = 2𝜔, (4.6c)

𝑐4 = 2𝜔𝑉∞, (4.6d)

𝑐5 = 2𝑉∞, (4.6e)

𝑐6 = (𝜔2 − 𝜅2
𝑧/Ma2). (4.6f)

Then by varying the constants (𝑙1, 𝑙2) there exists a family of solutions for a range
of (𝑟𝑥 , 𝑟𝑦).

To verify that this theoretical derivation matches the resolvent response modes,
the contours of the analytical wave solutions are plotted on top of the pressure
component of the optimal resolvent response mode at a fixed (𝜅𝑧, 𝜔) in Figure 4.2.

Figure 4.2: The leading resolvent response mode for pressure, U𝑝,1, at (𝜅𝑧, 𝜔) =
(12.62, 3.15) for a TBL at Ma = 5.86,Re𝜏 (𝑥𝑠𝑡𝑎𝑡𝑖𝑜𝑛) = 451, 𝑇𝑤/𝑇𝑟 = 0.76 (Duan,
Choudhari, and C. Zhang, 2016; Chen et al., 2024) as outlined in Section 3.1.2. The
contour lines represent the analytical solution obtained by solving the LHS of the
inviscid pressure equation in the freestream, Equation 4.3. The black dashed line
visualises the Mach line.

Figure 4.2 then demonstrates that an equivalent form of Mach wave radiation does
exist in the streamwise developing case and it can be captured using the resol-
vent analysis on a streamwise developing TBL. Hence, the analysis proceeds by
performing resolvent analysis on this mean profile in the following sections.

4.3 Modeling freestream waves
In this section, we outline how the optimal and sub-optimal 2-D resolvent forc-
ing/response modes may be modeled using a combination of 1-D resolvent forc-
ing/response modes with a streamwise varying function that generalizes across



53

varying (𝜅𝑧, 𝜔). To start we will look at the response and forcing modes for a single
(𝜅𝑧, 𝜔).

Figure 4.3: Outline of various quantities plotted on resolvent response and forcing
modes.The boundary layer thickness, 𝛿99(𝑥), is visualised in black. The yellow
line indicates the relative sonic line, Ma(𝑦) = 1, the purple dashed line visualises
the critical layer, Ma = 0, and the purple solid line shows the negative sonic line,
Ma = −1.

Before proceeding, the various quantities plotted on top of the resolvent response
and forcing modes, shown throughout this chapter, are outlined in Figure 4.3. Three
quantities are plotted using the relative Mach number, Equation 1.8, the relative
sonic line, e.g., Ma(𝑦) = 1, the critical layer, e.g., Ma(𝑦) = 0, the negative relative
sonic line, e.g., Ma(𝑦) = −1. These three quantities provide a visual method to
understand where relatively supersonic and relatively subsonic quantities can exist
— given that acoustic radiation can only occur when |Ma(𝑦) | ≥ 1. Additionally,
the sponge regions are visualised by an opaque region shows where the sponge
damping, Equation 2.26, is applied and affects the solution.

Figure 4.4 shows the temperature component of the optimal and suboptimal at a
fixed wavenumber, which shows ‘archetypal’ acoustic beaming behavior. As shown
in Figure 4.4, the resolvent response mode expansion shows roughly one single
streamwise wavenumber throughout the domain and consistent for the sub-optimal
modes. Further, it may be seen that the sub-optimal modes split into multiple
‘beams’ when going down in the expansion. This is reminiscent of behavior seen in
jets (Jeun, 2018), where the beaming is split up in higher order modes.

In Figure 4.5, the corresponding resolvent forcing modes are plotted. Again, nearly
one dominant streamwise wavenumber and splitting of the amplitude in the forcing
modes. This split is nearly identical to that seen in incompressible boundary layers,
as seen by Gomez, 2023. It is hypothesized that the 2-D resolvent analysis is
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Figure 4.4: Optimal and sub-optimal resolvent response modes for temperature,
U

𝑖,𝑇
(𝑥, 𝑦; 𝜅𝑧, 𝜔), at (𝜅𝑧, 𝜔) = (2.08, 1.26). Mean profile for streamwise developing

TBL at 𝑅𝑒𝜏 (𝑥𝑠𝑡𝑎𝑡𝑖𝑜𝑛) ≈ 450,Ma = 7.0, 𝑇𝑤/𝑇𝑟 = 0.2, 𝑇∞ = 200K from Di Renzo and
Urzay, 2021. The boundary layer thickness, 𝛿99(𝑥), is visualised in black.

capturing a dominant streamwise wavenumber, 𝜅𝑥 , then to maintain orthogonality
in the suboptimal modes it must split up the wavepacket. The dominant streamwise
wavenumber is also nearly constant on either side of the relative sonic line, as may
be observed in Figure 4.5a.

Additionally, it may be observed, in Figure 4.5, that the forcing is concentrated near
the domain inlet. This can be explained by examining Equation 2.21, which shows
that resolvent optimization maximizes the response norm relative to the forcing
norm. For these acoustically radiating modes, the response is maximized when
acoustic waves can propagate the greatest possible distance through the domain.
Forcing applied at the inlet then allows radiation to travel the entire length of the
domain to the outlet, thereby maximizing this ratio. In contrast, forcing applied near
the outlet would result in a lower response-to-forcing ratio, as the resulting acoustic
waves would travel a shorter distance before exiting the domain.

4.3.1 The expansion into sub-optimal modes
As shown in Figure 4.4, visually it appears that the streamwise wavenumber is
approximately constant as we go down in the expansion of sub-optimal modes. To
better understand how this value changes along the singular vector expansion, it
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Figure 4.5: Optimal and sub-optimal resolvent forcing modes for wall-normal ve-
locity, V

𝑖,𝑣
(𝑥, 𝑦; 𝜅𝑧, 𝜔), at (𝜅𝑧, 𝜔) = (2.08, 1.26). Mean profile for streamwise

developing TBL at 𝑅𝑒𝜏 (𝑥𝑠𝑡𝑎𝑡𝑖𝑜𝑛) ≈ 450,Ma = 7.0, 𝑇𝑤/𝑇𝑟 = 0.2, 𝑇∞ = 200K from
Di Renzo and Urzay, 2021. The boundary layer thickness, 𝛿99(𝑥), is visualised
in black. The yellow line indicates the relative sonic line, Ma(𝑦) = 1, the purple
dashed line visualises the critical layer, Ma = 0, and the purple solid line shows the
negative sonic line, Ma = −1.

must be quantitiatively measured. To measure this in a quantitative fashion, we may
measure the approximate streamwise wavenumber by first assuming a wave-like
form in the streamwise direction,

U 𝑗 (𝑥, 𝑦) ≈ U 𝑗 (𝑦)𝑒𝑖𝜅𝑥𝑥 , (4.7)

then taking the streamwise derivative,

𝜕

𝜕𝑥

(
U 𝑗 (𝑥, 𝑦)

)
≈ 𝜕

𝜕𝑥

(
U 𝑗 (𝑦)𝑒𝑖𝜅𝑥𝑥

)
(4.8)

= (𝑖𝜅𝑥)
(
U 𝑗 (𝑦)𝑒𝑖𝜅𝑥𝑥

)
. (4.9)

Thus, arriving at an approximate streamwise wavenumber given as:

𝜅𝑥,𝑞𝑖 , 𝑗 (𝑥, 𝑦) = 𝑖−1 𝜕

𝜕𝑥

(
U𝑞𝑖 , 𝑗 (𝑥, 𝑦)

)
, (4.10)

where 𝜅𝑥,𝑞𝑖 , 𝑗 is the approximate wavenumber for the 𝑞𝑖 variable, e.g., 𝑞𝑖 ∈ [𝑢, 𝑣, 𝑤, 𝜌, 𝑇],
and 𝑗 is the listing of the optimality in the resolvent expansion.
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Equation 4.10 then gives the approximate wavenumber as a function of both spatial
directions and is defined on all variables. This method has been used by many other
researchers, for example Kamal, Rigas, et al., 2022; Ruan, 2021. To simplify this
expression for comparison across singular vectors and varying wavenumber pairs,
we opt to take the average in a constrained spatial region, where the energy norm is
high and average across the variables:

𝜅𝑥, 𝑗 (𝜅𝑧, 𝜔) B E𝑞𝑖∈q
[
E(𝑥,𝑦)∈Ω𝑎𝑣𝑔

[
𝜅𝑥,𝑞𝑖 , 𝑗 (𝑥, 𝑦; 𝜅𝑧, 𝜔)

] ]
, (4.11)

where the bounding box Ω is centered around (𝑥𝑚, 𝑦𝑚) B arg max(𝑥,𝑦) U (𝑥, 𝑦) and
has a width of 10% of the domain width, e.g.,

Ω𝑎𝑣𝑔 = [𝑥𝑚 − 0.05Δ𝑥, 𝑥𝑚 + 0.05Δ𝑥] × [𝑦𝑚 − 0.05Δ𝑦, 𝑦𝑚 + 0.05Δ𝑦] . (4.12)

This box is visualized on two resolvent response modes in Figure 4.6.

(a) Optimal mode (b) 4th sub-optimal mode

Figure 4.6: 𝐸𝑐ℎ𝑢 for an archetypal resolvent response modes following conditions
listed in Figure 4.4. Red bounding box shows the domain, Ω𝑎𝑣𝑔, where the average
𝜅𝑥 (𝑥, 𝑦) is taken for measurement of the scalar quantity of the streamwise wavenum-
ber. The blue dash-dotted line visualises the Mach line.

This method is then used to inspect the variation of 𝜅𝑥 (𝜅𝑧, 𝜔) while moving down
the singular value expansion at a fixed (𝜅𝑧, 𝜔) in Figure 4.7.

Though this behavior is the primary one that is seen, there are wavenumber pairs,
where the decomposition is not so clean. In Figure 4.7b, the same comparison is
shown for a wavenumber pair where there are two competing mechanisms for the
most optimal mode. The corresponding resolvent response modes are visualized in
Figure 4.8. Due to the relative Mach number in the freestream being greater than
unity, it is concluded that the optimal mode is a slow acoustic wave. In contrast
the first sub-optimal mode, as seen in Figure 4.8b, has a relative Mach number in
the freestream less than negative one, hence it is a fast acoustic wave. Thus, this
spectral pair represents the competition of slow and fast acoustic waves, which both
appear to be amplified and optimal at this spectral pair.
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Figure 4.7: Approximate streamwise wavenumber, computed via Equation 4.11,
versus 𝑗 , the order of the resolvent response mode at a fixed wavenumber (𝜅𝑧, 𝜔)
for conditions outlined in Figure 4.4.
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Figure 4.8: Optimal and sub-optimal resolvent response modes for temperature,
U

𝑖,𝑇
(𝑥, 𝑦; 𝜅𝑧, 𝜔), at (𝜅𝑧, 𝜔) = (7.0, 1.97). Mean profile for streamwise developing

TBL at 𝑅𝑒𝜏 (𝑥𝑠𝑡𝑎𝑡𝑖𝑜𝑛) ≈ 450,Ma = 7.0, 𝑇𝑤/𝑇𝑟 = 0.2, 𝑇∞ = 200K from Di Renzo and
Urzay, 2021. The yellow line indicates the relative sonic line, Ma(𝑦) = 1, the purple
dashed line visualises the critical layer, Ma = 0, and the purple solid line shows the
negative sonic line, Ma = −1.

4.3.2 Slow waves are dominant where linear amplification is highest
As shown in Figure 4.8, both slow and fast acoustic waves exist in optimal resolvent
response modes when we vary the wavenumber pair. At the same time, other
authors, e.g., Liu et al., 2022, have found that the freestream power-spectrum for a
moderately cooled hypersonic turbulent boundary layer can be accurately modeled
using only slow acoustic waves.
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To inspect the trends for the acoustically radiating modes, the resolvent analysis is
performed across the range of spectral pairs, (𝜅𝑧, 𝜔). As shown in Figure 4.9, there
are cross-hatches present, which visualize where the resolvent computation did not
converge to a physical solution. It was found that this was due to a combination of the
Reynolds number, Re𝛿, and wall-to-recovery temperature ratio, 𝑇𝑤/𝑇𝑟 — increasing
either of these two parameters allowed this region to converge. Furthermore, modifi-
cations to the boundary conditions, including implementation of multi-dimensional
non-reflecting boundary conditions (Lodato, Domingo, and Vervisch, 2008), did
not have an impact on these unphysical solutions. Without access to statistical in-
formation, an exact cause for the computational issue is challenge to pinpoint. That
being said it is hypothesized that there may not be any acoustic radiation for that
parameter regime in DNS, which could lead to the resolvent analysis not capturing
any physical mechanism.
In Figure 4.9, the approximate wavenumber and the freestream relative Mach num-
ber, Equation 1.8, is plotted for varying the spectral pairs. By inspecting Figure
4.9b and recalling the fact that slow waves are characterized by,

κslow B κ|
(
Ma∞ > 1

)
, (4.13)

it may be seen that the slow waves are the dominant structure appearing in the
optimal resolvent response modes for the highest linear amplification rates.

Further, in Figure 4.9b, a rapid transition to fast acoustic waves,

κfast B κ|
(
Ma∞ < −1

)
, (4.14)

may be seen as the spanwise and temporal wavenumber are increased. This rapid
transition may be understood as the fast waves acting as a competing mechanism,
which appear as the second most optimal mode as shown in Figure 4.8, until a critical
parameter regime is hit and the fast waves become the dominant linear mechanism.

Though this is only shown for the optimal resolvent mode, this is indicative of the
dominant linear mechanisms across spectral space. Due to the convective nature
of these modes and the large number of streamwise wavenumbers, 𝜅𝑥 , represented
at each spectral pair, it would be prohibitively (computationally) expensive to show
if/when the fast waves show up in the singular value expansion at each spectral pair.

Though it is not shown presently, 2D resolvent modes have been computed for a
sweep of spectral space for the mean data of Duan, Choudhari, Chou, et al., 2019,
as outlined in Section 3.1.2, for Chapter 5. In this case, it was found that the
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Figure 4.9: Bulk quantities for varying (𝜅𝑧, 𝜔). Cyan contours are constant values
of 𝜎1 ∈ [0.1, 1.0, 10]. Mean profile following conditions listed in Figure 4.4.
Cross hatching indicates region where computations did not converge to physical
mechanisms.

slow acoustic waves are dominant throughout the space and within the region with
the highest pre-multiplied PSD in the freestream. This fact and the present study
indicate that the dominance of fast or slow acoustic waves in the freestream may be
sensitive to the bulk parameters.

Additionally, it is pertinent to mention that to understand this break-down in sim-
ulations/experiments the color of the forcing is needed. Hence conclusive results
cannot be pulled from this section, but they may provide hints and directions of
study for future work. Instead of pursuing this line of thought, the rest of the chapter
will work to understand the mechanics and generation of the slow acoustic waves.

4.3.3 Modeling the wavepacket
Until this point, it has been shown that the primary modal structure that the re-
solvent response modes uncover are slow acoustic waves, in the region of largest
linear amplification, and that the resolvent optimization finds that response modes
with approximately one streamwise wavenumber is most optimal. Due to a single
dominant streamwise wavenumber and one particular form of acoustic wave being
dominant, an important question arises: Can the 2-D optimal modes be effectively
modeled using 1-D optimal modes? If true, such a finding may be indicative that
the, considerably more expensive, 2-D analysis is not necessary.

To start, we will: (1) inspect the resolvent response mode at a single spectral pair,
(2) propose a form for the expansion of a 1-D resolvent response mode to model
the 2-D resolvent response mode, and then (3) generalize this form to the entire
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parameter space.
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Figure 4.10: Chu’s energy and streamwise profile for the optimal resolvent response
mode at (𝜅𝑧, 𝜔) = (2.08, 1.26) for conditions outlined in Figure 4.4. (a) 𝐸𝑐ℎ𝑢 for the
optimal resolvent response mode. The white line indicates the angle of propagation,
the black dash-dot line shows the Mach line, and the red dashed line shows the plane
where we inspect the streamwise varying profile (b) Streamwise varying profile at
red dashed line in Figure 4.10a

For the case of the turbulent jet, Jeun, 2018 found, that the streamwise varying
profile of the acoustic radiation of the jet could be modeled using an Axisymmetric
Pseudo Gaussian (A-PG), given by:

𝐴𝑔 (𝑥; 𝑥𝑐) =


exp
((
𝑥−𝑥𝑐
𝜎𝑏

) 𝑝𝑏 )
, if 𝑥 < 𝑥

exp
((
𝑥−𝑥𝑐
𝜎 𝑓

) 𝑝 𝑓
)
, otherwise ,

(4.15)

where 𝑥𝑐 is the location that the A-PG is centered around and (𝜎𝑏, 𝜎 𝑓 , 𝑝𝑏, 𝑝 𝑓 ) are
all parameters to tune the shape of the A-PG to the beam shape. Inspired by the
work of Jeun and moviated by the beaming profile found in this case, Equation 4.15
is used to model the beaming profile for the acoustic radiation in the current case.
For the rest of this section, the parameters will be extract from the correspond 2-D
modes at each spectral parameter, so as to verify the form of the model. The match
of this A-PG profile to the data at a fixed wall-normal location may be seen in Figure
4.10b. Additionally, it may be seen in Figure 4.10a that the beaming angle, ∠𝑏𝑒𝑎𝑚,
shown in blue aligns with the Mach angle, which is shown above the beam in a black
dashed dotted line.

From these two observation, along with the observation that the 2-D resolvent
response modes have approximately one constant streamwise wavenumber, an ansatz
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for the construction of the leading 2-D resolvent response from the leading 1-D
resolvent response mode is given as:

|Ũ (𝑥, 𝑦) | = 𝐴𝑔 (𝑥; 𝑥(∠mach)) |U1𝐷,1 (𝑥, 𝑦; 𝜅𝑥) | (4.16a)

∠
(
Ũ (𝑥, 𝑦)

)
= ∠

(
U1𝐷,1 (𝑦; 𝜅𝑥) exp (𝑖𝜅𝑥𝑥)

)
, (4.16b)

where the A-PG is centered around

𝑥(𝑥) = tan(∠mach)𝑥 + 𝑏 (4.17)

and 𝑏 is a scalar that shifts the beam, which much be measured from the 2-D resolvent
mode. The result of the model, using Equation 4.16a and 4.16b, for the leading
resolvent response mode is shown in Figure 4.11. From a qualitative perspective,
we see a satisfactory reconstruction of the 2-D response mode using our model. In
the following sections, we will quantify this reconstruction and look at how well the
model generalizes to other spectral pairs.
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Figure 4.11: Modeled and true real part of the temperature component of the optimal
resolvent response mode at (𝜅𝑧, 𝜔) = (2.08, 1.26) at conditions listed in Figure 4.4.
The black line visualises the boundary layer thickness, 𝛿99(𝑥).

4.4 Generalization of modeled 2-D packets
4.4.1 Sub-optimal and optimal forcing modes
Thus far, it has been shown, for a single (𝜅𝑧, 𝜔), the leading resolvent response mode
can be modeled using a 1-D resolvent mode, at the same approximate streamwise
wavenumber, and a streamwise varied beaming profile. It may further show that
with some small modifications this modeling approach may be extended to leading
order resolvent forcing modes and sub-optimal resolvent response modes.

The extension to sub-optimal resolvent response modes simply requires modification
of 𝐴𝑔 in Equation 4.15. This 𝐴𝑔 may be computed by: (1) using gradient descent to
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find the bounds of each individual beam then (2) using Equation 4.15 to represent
each of the beams found. The result of this process may be seen in Figure 4.12. It
is worth mentioning that the higher order modes are not as easy to model since the
relative amplitudes of each individual beam is challenging to predict. The modeling
of the higher order modes was not pursued further than to show that it is possible to
model these waves in the same fashion.
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Figure 4.12: Streamwise varying profile measured at 𝑦/𝛿 = 1.5 of 6th sub-optimal
resolvent response mode at (𝜅𝑧, 𝜔) = (2.08, 1.26) for conditions outlined in Figure
4.4.
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Figure 4.13: Modeled and true real part of the temperature component of the
optimal resolvent forcing mode at (𝜅𝑧, 𝜔) = (2.08, 1.26) at conditions listed in
Figure 4.4.The black line visualises the boundary layer thickness, 𝛿99(𝑥).

In addition to being able to model sub-optimal modes that follow the slow wave
pattern, it is possible to model the forcing modes using a slight variation of Equation
4.16a and 4.16b. This modification is given as:
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|Ṽ (𝑥, 𝑦) | = 𝐴𝑔 (𝑥; 𝑥(∠mach)) |V1𝐷,1 (𝑥, 𝑦; 𝜅𝑥) | (4.18a)

∠
(
Ṽ (𝑥, 𝑦)

)
= ∠

(
V1𝐷,1 (𝑦; 𝜅𝑥) exp (𝑖𝜅𝑥𝑥)

)
, (4.18b)

where the A-PG is centered around

𝑥 = E

[
arg max

𝑥

𝐸𝑐ℎ𝑢 (V ) (𝑥, 𝑦)
]
. (4.19)

It is noted that although a fixed streamwise location is chosen in Equation 4.19,
there is a slight variation in the maximal streamwise location at each wall-normal
height. That being said, it is found that this variation has minimal impact on the
reconstruction and a fixed streamwise location is sufficient.

4.4.2 Generalization across spectral pairs
Thus far, it has been shown that the modeling of the resolvent modes can be per-
formed on a specific (𝜅𝑧, 𝜔). To measure the similarity between the modeled
response and the actual response, the linear coherence spectrum (LCS) is computed
as:

LCS(𝑈̃,𝑈) = < 𝑈̃,𝑈 >𝑐ℎ𝑢

∥𝑈̃∥𝑐ℎ𝑢∥𝑈∥𝑐ℎ𝑢
. (4.20)

In Figure 4.14, the LCS of the modeled and actual response/ forcing modes is shown
across spectral space, along with contours of the linear amplification shown in black
solid lines. It may be seen that the LCS of the response modes is high where the
LCS is highest. Thus showing that the modeling approach does in fact generalize
for the most important, in a linear sense, 2-D resolvent response modes.

A point of note is that although there is a change from fast/slow waves present in
spectral space, the modeling approach works equally well for both types of waves.
Finally, note that this project was performed by measuring the A-PG parameters at
each wavenumber pair, as here we are testing that the form of the modeled function
generalized. Inspection of the generalisability of the actual parameters in the A-PG
will be discussed in the following section.
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Figure 4.14: LCS of first response/forcing mode onto modeled response/forcing
mode showing generalization across wavenumber pairs. Cyan contours are constant
values of 𝜎1 ∈ [0.1, 1.0, 10]. Black contour, in sub-panel (b), shows the relative
sonic line, κ | Ma∞ ≈ 1. Cross hatching indicates region where computations did
not converge to physical mechanisms.

4.4.3 Generalization of axisymmetric pseudo Gaussian parameters
Throughout this study, the parameters for the A-PG had to be tuned against the 2-D
mode that is being modeled. If this model is to have a use outside of theoretical
settings, the parameters must also generalize or at least approximately so. In Figure
4.15, two parameters of the A-PG, (𝜎 𝑓 , 𝜎𝑏), are plotted and it may be seen that the
parameters are roughly the same value throughout the region of interest (high 𝜎1).
The same result, of approximate generalisability, holds for the other four parameters
that are necessary to control the A-PG.

The region where the generalisability degrades, around (𝜅𝑧, 𝜔) ≈ (7, 7), is found to
be correlated with the forcing being increasingly in the outer part of the boundary
layer. Though not shown here, there is found to be the dilatational part of the forcing
(c.f. 5), thus the degradation occurs due to a change in the method of amplification.
In other cases, where the solenoidal part of the forcing is dominant (e.g., Chapter
5), this degradation does not occur.
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Figure 4.15: Parameters of the Axisymmetric Pseudo Gaussian, Equation 4.15,
showing generalization across wavenumber pairs. (a) 𝜎 𝑓 (b) 𝜎 𝑓 . Cyan contours
are constant values of 𝜎1 ∈ [0.1, 1.0, 10]. Cross hatching indicates region where
computations did not converge to physical mechanisms.

4.4.4 Domain effects and the width of the axisymmetric pseudo Gaussian
Until this point, it has been shown that the A-PG parameters roughly generalize
across spectral space for the most amplified resolvent response modes. That being,
said this was all done for a fixed domain size in the streamwise direction. Hence,
the effect of varying domain sizes on these results is still left in question. To address
this gap, the effect of streamwise domain on the size of the A-PG is briefly studied.
The mean profile used to perform the resolvent analysis on this sweep of spectral
space was generated for a fixed domain, resulting from a direct numerical simulation.
To enable the study of the effect longer domains, an ad-hoc solution must be used,
hence a streamwise constant profile, from the current mean profile, is used. This is
done by taking the profile at a fixed 𝑥𝑠𝑡𝑎𝑡𝑖𝑜𝑛,where Re𝛿 (𝑥) = 2 × 104, and repeating
this constant profile along the streamwise direction.
The profile of the optimal resolvent forcing mode is the plotted along with a A-PG
in Figure 4.16 for both the streamwise parallel and streamwise developing case. It
may be seen that although there is an influence of the profile on the exact shape of
the A-PG, there is still a similar profile shape in both cases and an A-PG is sufficient
for modeling either case.

To study the effect of the streamwise domain, the streamwise domain, Δ𝑥, is then
varied and the resulting streamwise profile and modeled profile are plotted in Figure
4.17. It is found that the width of the A-PG roughly collapses when scaled by
the absolute domain size. This may be understood by considering the fact that the
singular value decomposition is an optimization problem and tries to maximize the
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Figure 4.16: Normalized |V𝑇 (𝑥) | at (𝜅𝑧, 𝜔) = (3.54, 1.58) for parameters set in
Figure 4.4. A-PG is overlaid in black dashed lines, where the parameters are tuned
to match the forcing profile at a fixed wall-normal height.

response-to-forcing amplification. This may be understood by considering a forcing
A-PG that has support in the whole domain and radiates, the part at the end of the
domain cannot propagate far, since the domain ends, but the part at the beginning
can propagate the furthest (and capture the most amplification). Hence, there is an
optimal shape given that the further a forcing is placed downstream, the less room
it has to radiate and generate a response due to physical domain limitations.

It is concluded that the streamwise varying profile, for acoustic radiation, is constant
when scaled by the streamwise domain length. A corollary of this is that increasing
the domain length does not modify the optimal modal mechanisms found, assuming
that the dominant approximate streamwise wavenumber can be resolved in the given
streamwise domain.

4.4.5 Input-Output behavior of 2-D modes
In the previous sections, it has been shown that modeling from the 1-D resolvent
response modes generalizes across spectral parameters and it is possible to capture
the 2-D resolvent response modes using a 1-D resolvent response mode and a
streamwise varying profile that generalizes. If the 2-D response modes can truly be
modeled using 1-D response modes, then we are able to fully dispense with the 2-D
analysis for this case, but to be truly be 1-D then we would expect all the input-output
behaviors to map from one streamwise wavenumber to another. In other words, in
the 1-D analysis by construction we have:

1. H1𝐷 : 𝑓 (𝜅𝑥) → 𝑞(𝜅𝑥)
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Figure 4.17: Tuned A-PG profile (dashed lines) and forcing profile (solid lines) at
a fixed wall-normal height 𝑦𝑚𝑎𝑥 B arg max𝑦 |V𝑇 (𝑥, 𝑦) | for varying domain size,
Δ𝑥. Mean profile is following Figure 4.4 and computation is done at (𝜅𝑧, 𝜔) =
(3.54, 1.58).

• The linear operator maps between the same streamwise wavenumber

2. 𝜅𝑥 (U𝑞𝑖 ) = 𝜅𝑥 (U𝑞 𝑗
) ∀ 𝑖, 𝑗

• The components of resolvent modes have the same wavenumber.

Hence, to inspect this we will look at how these properties hold up across the
wavenumber pairs for the leading 2-D resolvent response modes.
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Figure 4.18: Difference between the measured streamwise wavenumber 𝜅𝑥 for dif-
ferent components of the optimal resolvent response mode. Conditions follow those
outlines in Figure 4.4. Cross hatching indicates region where computations did not
converge to physical mechanisms.
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Figure 4.19: Normalized difference between the measured streamwise wavenumber
𝜅𝑥 for the temperature component of the forcing mode, 𝜅𝑥,𝑖𝑛, and the response mode,
𝜅𝑥,𝑜𝑢𝑡 , e.g., |

(
𝜅𝑥 (𝑈1,𝑇 ) − 𝜅𝑥 (𝑉1,𝑇 )

)
/𝜅𝑥 (𝑈1,𝑇 ) |. Conditions follow those outlines in

Figure 4.4. Cross hatching indicates region where computations did not converge
to physical mechanisms.

The relationship between the streamwise wavenumber of different sub-components
of the optimal resolvent response mode may be seen in Figure 4.18. It is seen
that some sub-components like U1,𝑣 and U1,𝑇 show minimal differences in their
measured wavenumber, but others like U1,𝑢 and U1,𝑇 show much larger differences.
This points to the fact that the 2-D resolvent computation is choosing to have different
streamwise wavenumbers interact to obtain a higher linear amplification, e.g., a 2-D
effect. This effect may also be seen in Figure 4.19, where the relative difference
between the streamwise wavenumber of the forcing and response is visualized. The
relative difference is on the order of 10%. This implies that there are 2-D effects
that are present, which will be addressed in the following section.

This brief bit of analysis points to the answer that was clear at the beginning:
there are differences between the 1-D and 2-D analysis. What was not clear at the
beginning of this study is how much of a difference there was and to what it extent
it matters for modeling. In what follows, the mechanism underlying the differences
in the 2-D operator is discussed and bounds for where the 1-D analysis is valid are
explored.
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4.5 Study of 2-D Input-Ouput behaviors using modeled forcing modes
4.5.1 Method
In the previous section, it was shown that the leading 2-D resolvent forcing mode
could be modeled using a 1-D profile and a streamwise varying A-PG profile for
a large region of spectral space, with high LCS where the linear amplification was
largest. Additionally, while it was found that while individual sub-components of the
2-D resolvent forcing and response modes do correspond with a 1-D assumption,
in total the input-output behavior of the 2-D resolvent shows signs of the 1-D
relationship breaking down. To address the limits of this assumption and find
reasonable limits for where a 1-D assumption is useful and where it is not, in this
section we use the modeled forcing to study the input-output behaviors of the 2-D
resolvent operator.

To study the acoustic radiation properties of the 2-D resolvent operator, approxi-
mate 2-D forcing modes are generated using Equation 4.18a and 4.18b and their
amplification is studied via:

𝜎1−𝐷→2−𝐷 (𝜅𝑥 , 𝜅𝑧, 𝜔)U1−𝐷→2−𝐷 (𝑥, 𝑦; 𝜅𝑥 , 𝜅𝑧, 𝜔) = H2−𝐷 (𝜅𝑧, 𝜔)Ṽ (𝑥, 𝑦; 𝜅𝑥 , 𝜅𝑧, 𝜔)
(4.21)

where Ṽ is a modeled 2-D forcing mode, Equation 4.18a, and the LHS results from
computing the amplification of the modeled forcing through the resolvent operator.
To generate the model forcing, Ṽ , a 2-D resolvent computation will be performed
at a nominally ‘well-behaved’ spectral pair of (𝜅𝑧, 𝜔) = (2.08, 1.26), for each set
of bulk parameters, and the A-PG parameters, for Equation 4.15, will be fit to
that computed mode. Then Equation 4.18a will be used with the extracted A-PG
parameters at each individual parameter.

This method explicitly allows us to consider what are the effects of the 2-D domain
and streamwise growing effects on the propogation and amplification of mach waves
from some boundary layer disturbance. In what follows, we will compare the trends
of the amplification rates between 𝜎1𝐷 and 𝜎1−𝐷→2−𝐷 , which uncovers how the
different mechanisms effect the same input forcing.

Additionally, we will look at the structure of U1𝐷 vs U1−𝐷→2−𝐷 (𝑥, 𝑦; 𝜅𝑥 , 𝜅𝑧, 𝜔) al-
lowing for an explanation and understanding of how these 2-D effects modify the
structure of the amplified mach wave. One way to look at this is the compare the
measured wavepacket, ∠𝑤𝑝, in the freestream,

∠𝑤𝑝 = tan−1 (𝜅𝑥/𝜅𝑦 ) , (4.22)
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versus the wavepacket angle in the 1-D theory, that results from the approximate
wall-normal wavenumber (Mack, 1984),

𝜅𝑦,1𝐷 =

√︃
𝜅2
𝑥 + 𝜅2

𝑧

(
Ma2
∞ − 1

)2
. (4.23)

4.5.2 The mechanics of the Mach line and streamwise effects on acoustic wave
propagation

Figure 4.20: Linear amplification of 1-D resolvent modes, 𝜎1𝐷 , and modeled
2-D resolvent modes through the 2-D operator, 𝜎1𝐷→2𝐷 for varying input 𝜅𝑥 at
(𝜅𝑧, 𝜔) ≈ (2.08, 1.26). Filled contours show U

𝑇,1𝐷→2𝐷 (top) and U𝑇,1𝐷𝑒
𝑖𝜅𝑥𝑥 (bot-

tom) at ∠𝑤𝑝,1𝐷 ∈ [15, 30, 50, 85], which is computed purely from the inputted 1-D
𝜅𝑥 of the forcing.

In the previous section, it was observed that the optimal 2-D resolvent response
modes showed a mis-match between the 𝜅𝑥 of the forcing and of the response. This
is indicative of 2-D effects and results in a different wavepacket angle, ∠𝑤𝑝, in the
freestream than is predicted from the approximate forcing streamwise wavenumber,
𝜅𝑥 (V ), of the 2-D resolvent forcing mode.

Herein, a comparison is made between the 1-D resolvent amplification properties
and that of the 2-D resolvent. In Figure 4.20, the linear amplification of the optimal
mode of the 1-D operator is plotted, 𝜎1𝐷 , and the linear amplifation of the modeled
forcing through the 2-D operator is plotted, 𝜎1𝐷→2𝐷 . It is seen that the 1-D resolvent
analysis predicts acoustic waves with large wavepacket angles in the freestream to be
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most amplified, where at the 2-D theory shows these same waves to be less amplified
than much smaller wavepacket angles. As may be observed in the visualization of
the response modes, the prediction of the final wavepacket angle between the 1-D
and 2-D theory, with the two showing up to a 60◦ difference when numerically
measured. It may be seen in Figure 4.20 (best seen in the two right sub-panels)
that the 2-D resolvent mode starts at a more inclined angle at the beginning of the
domain and then curves as it moves downstream (to the right).

4.5.3 2-D effects are primarily caused by having two (physical) spatial dimen-
sions

In the previous subsection, it was seen that there are large discrepancies between the
1-D and 2-D theory for large ∠𝑤𝑝 (as predicted by the 1-D theory). In this section,
the cause of this is studied. There are two primary differences in the 2-D resolvent
operator versus the 1-D resolvent operator: (1) Additional terms in the linear operator
due to the addition of 𝑉̄ and the streamwise growth, e.g., 𝑉̄ ≠ 0, 𝜕𝑦 (·̄) ≠ 0 (2) A
second spatial dimension and, hence, non-periodic boundary conditions.

Though there are extra terms in the linear operator due to the presence of the
streamwise growth, the results of the prior sections, e.g., modeling a 2D wave
using 1D waves and the ‘squishing’ of the mach wave in Figure 4.20, indicate that
these effects may be less important than the presence of the Mach line in the 2-D
computations. To address the importance of each of the individual effects, the
analysis studying the amplification of modeled forcing, utilising Equation 4.21, is
repeated with both a mean with streamwise varying properties, as has been done
until this point, and a mean with streamwise constant properties,

(·̄) (𝑥𝑖, 𝑦; 𝑥𝑙𝑜𝑐) = (·̄) (𝑦; 𝑥 = 𝑥𝑙𝑜𝑐) ∀𝑥𝑖 ∈ Δ𝑥, (4.24a)

𝑉̄ (𝑥, 𝑦) = 0, (4.24b)

with the goal to assess the absolute effect of both differences. The result of this
computation is shown in Figure 4.21.

As may be seen in Figure 4.21a, the streamwise wavenumber found is consistent
between both cases. In Figure 4.21b, there are slight discrepancies in the linear
amplification, but these differences are < 10%. This analysis may be taken further
and we may compute the LCS to see exactly how close the results of both analysis’
are qualitatively.

In Figure 4.22, the linear coherence spectrum between the results of the analysis
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Figure 4.21: Comparison bulk properties of U1𝐷→2𝐷 at (𝜅𝑧, 𝜔) = (2.08, 1.26)
computed using the resolvent operator around a streamwise developing mean and a
parallel mean, Equation 4.24a. Mean profile for streamwise developing following
set-up of Figure 4.4. Parallel BL is constructed with the same mean profile, but
sampled at 𝑥𝑠𝑡𝑎𝑡𝑖𝑜𝑛 where Re𝛿 (𝑥𝑠𝑡𝑎𝑡𝑖𝑜𝑛) = 2 × 104.
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Figure 4.22: LCS of U1𝐷→2𝐷 computed using streamwise developing and stream-
wise constant mean profiles in the construction of H2𝐷 with details outlined in
Figure 4.21.

for the resolvent operator generated with a streamwise growing and a streamwise
constant mean profiles is shown. It may be seen that there is an high level of
coherence at large ∠𝑤𝑝,1𝐷 , but this degrades when ∠𝑤𝑝,1𝐷 < 20. It is noted that there
is a minimum ∠𝑤𝑝,1𝐷 that can exist for each Mach number. The breakdown of the
LCS at low ∠𝑤𝑝 maybe explained by noting that in the limit of the minimum ∠𝑤𝑝,
the streamwise wavenumber approaches infinity. Hence, the resulting structures
in the response become very small and very sensitive to any mismatches in the
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structure. This degradation can be explained by inspecting Figure 4.21a, where
slightly differences in 𝜅𝑥 can be seen between the two cases. Given that, theoretically,
Fourier modes at different wavenumbers are orthogonal, it is expected that slight
discrepancies in the streamwise wavenumber would cause a significant degradation
in the coherence.

In the following sections, we will now utilize the streamwise constant profiles to
study a much larger range of parameters than is available with numerically computed
mean profiles alone. This will be done by using the analytical mean profiles as
outlined in Section 3.4.

4.5.4 Variation with Ma

Figure 4.23: 𝜎1𝐷→2𝐷 vs ∠𝑤𝑝 at fixed (𝜅𝑧, 𝜔) ≈ (2.08, 1.26) for varying Ma at Re𝜏 =
450, 𝑇𝑤/𝑇𝑟 = 0.76, 𝑇∞ = 200K with mean profile generated using the analytical
mean profiles of Manzoor Hasan et al., 2024, as outlined in Section 3.4 The top row
shows R

(
U1𝐷→2𝐷,𝑇

)
at arg max∠𝑤𝑝

𝜎1𝐷→2𝐷 and the bottom row shows the R
(
Ṽ2𝐷,𝑇

)
at arg max∠𝑤𝑝

𝜎1𝐷→2𝐷

In this section, the influence of Ma on the most amplified wavepacket angle and the
wavepacket angle range is studied. To do this, we look at varying Ma ∈ [1.5, 10]
with fixed 𝑇𝑤/𝑇𝑟 = 0.76,Re𝜏 = 450 and at a spectral pair, (𝜅𝑧, 𝜔) = (2.08, 1.26),
that contained a highly amplified mode in the previous studies. This may be seen in
Figure 4.23.

Before proceeding with the analysis, some words of caution must be made. Due to
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the Mach angle varying from ≈ 42◦ at Mach 1.5 to ≈ 5◦ at Mach 10.0, the domain
requirements needed to properly measure the acoustic radiation wildly vary. To
capture the Mach 10 waves, a domain that is very long in the streamwise direction
is necessary, but that same domain will not allow the acoustic radiation Mach 1.5
or Mach 3.625 to propagate nearly as far. The result becomes that, if the domain is
fixed (which is necessary for a fair comparison of linear amplification), either the
high Mach waves are not properly resolved or the low Mach waves are not properly
resolved. In this case, we have opted to choose a moderate domain size that can
resolve the highest Mach cases, but this forces us to artificially truncate the low
Mach cases where they cannot be resolved. This truncation has been done in the
Mach 3.625 case in Figure 4.23 for modeled forcings with low ∠𝑤𝑝.

In Figure 4.23, the variation of 𝜎1𝐷→2𝐷 is seen for varying Mach number. It is
seen that as the Mach number is increased the linear amplification increases, which
is consistent with finding in DNS that show an increased amplitude of the pre-
multiplied in the power spectrum for larger Mach numbers (Duan, Choudhari, and
C. Zhang, 2016). Additionally, it may be seen that uniformly across varying Ma the
optimal mode is not the largest wavepacket angle, which is often the case in the 1-D
resolvent mode. By plotting the most amplified wavepacket angles, in Figure 4.24,
versus the analytical Mach angle, ∠𝑀𝑎𝑐ℎ, which is defined as:

∠𝑀𝑎𝑐ℎ = sin−1
(
Ma−1

)
. (4.25)

It may be seen in Figure 4.24 that while the optimal wavepacket angle is damped
with increasing Mach number, it does not exactly follow the exact decay of the
Mach angle. From previous studies done by the author, it was seen that with
lower Reynolds number, Re𝛿, the decrease of the optimal wavepacket angle with
increasing Mach number more closely tracks with the decrease in the Mach angle
with increasing Mach number.
Additionally, in Figure 4.24, the freestream angle wavepacket computed using both
the 1-D theory and the measured 2-D streamwise wavenumber are plotted. This plots
shows that at the optimal ∠𝑤𝑝 both the 1-D and 2-D theory align. This is indicative
that the 1-D theory may overpredict the amplification of higher ∠𝑤𝑝 freestream
waves because it is not able to account for the Mach line, which limits the domain
of influence.
Thus far, only the optimal wavepacket angle has been discussed, in Figure 4.25 the
range of ∠𝑤𝑝 predicted in the 1-D and found in the U1𝐷→2𝐷 modes is compared.
Figure 4.25 shows that the limitation of the ∠𝑤𝑝 is imposed on not only the optimal
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Figure 4.24: Optimal freestream wavepacket angle, arg max∠𝑤𝑝
𝜎1𝐷→2𝐷 , versus Ma.

Square markers indicate the 2-D wavepacket angle, ∠𝑤𝑝 (𝜅𝑥), and cross markers
indicate the 1-D predicted wavepacket angle. The blue line is given by the analytical
Mach line equation, Equation 4.25.
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Figure 4.25: Visualization of freestream wavepacket angles, ∠𝑤𝑝, present in each
case tested. Dashed lines indicate the ∠𝑤𝑝 predicted from the 𝜅𝑥 provided in the
modeled forcing and solid lines indicate the measured freestream wavepacket angle
from measuring the 2-D response. Square markers indicate the arg max𝜅𝑥 𝜎1𝐷→2𝐷 in
each case.

∠𝑤𝑝, but actually limits the range of possible slow acoustic waves that are able
to propagate into the freestream. This then points to the fact that across Ma the
1-D theory is insufficient to predict the behavior of waves which in the 1-D theory
are large. Though the range of ∠𝑤𝑝 observed in the Mach 7 and 10 case are
also suppressed, it is seen that the damping of the wavepacket angles levels off and
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approximately the same maximum ∠𝑤𝑝 is observed for both cases. It is hypothesized
that this is due to the fact that increasing the Mach number, while holding Re𝜏 fixed,
leads to increasing Reynolds number, Re𝛿. Hence, the increased Reynolds number
lessens the effect of viscosity, which in turn leads to higher wavepacket angles being
able to propagate without being affected by the Mach line as much. Further studies
are necessary to further assess this hypothesis.

4.5.5 Variation with 𝑇𝑤/𝑇𝑟
In this section, we analyze the effect of varying the wall-to-recovery temperature
ratio with a fixed set of parameters – Ma = 7,Re𝜏 = 450, 𝑇∞ = 200K. The results
of this analysis may be seen in Figure 4.26. It may be seen that the optimal ∠𝑤𝑝
are clustered around two points. This may be explained by inspecting the mean
profiles in Figure 3.6, which shows that the temperature profile for the two lower
wall-to-temperature ratio cases are non-monotonic. Thus, Figure 4.26 shows that the
primary distinguishing factor for the wall-to-temperature ratio on acoustic radiation
is whether or not the temperature profile is monotonic or not.

Figure 4.26: 𝜎1𝐷→2𝐷 vs ∠𝑤𝑝 at fixed (𝜅𝑧, 𝜔) ≈ (2.08, 1.26) for varying 𝑇𝑤/𝑇𝑟 at
Re𝜏 = 450,Ma = 7.0, 𝑇∞ = 200K with mean profile generated using the analytical
mean profiles of Manzoor Hasan et al., 2024, as outlined in Section 3.4 The top row
shows R

(
U1𝐷→2𝐷,𝑇

)
at arg max∠𝑤𝑝

𝜎1𝐷→2𝐷 and the bottom row shows the R
(
Ṽ2𝐷,𝑇

)
at arg max∠𝑤𝑝

𝜎1𝐷→2𝐷

This bimodal structure, can also be observed in the forcing modes, where the two
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low ratio cases show similar forcing structures as do the two high ratio cases.
The last point of interest is that although different structures are shown, the relative
amplification of the most amplified wavepacket is relatively similar. Thus indicating
that the wall-to-temperature ratio may have a larger impact of the type of forcing
and acoustic radiation, but not as strong of an impact on the overall amplitude of the
radiation. Due to the influence of varying the near-wall localization of the forcing,
it may be expected that this would interact with the colored forcing to exhibit larger
changes than are indicated here.

4.5.6 Variation with Re

Figure 4.27: 𝜎1𝐷→2𝐷 vs ∠𝑤𝑝 at fixed (𝜅𝑧, 𝜔) ≈ (2.08, 1.26) for varying Re𝜏 at Ma =

7.0, 𝑇𝑤/𝑇𝑟 = 0.76, 𝑇∞ = 200K with mean profile generated using the analytical
mean profiles of Manzoor Hasan et al., 2024, as outlined in Section 3.4 The top row
shows R

(
U1𝐷→2𝐷,𝑇

)
at arg max∠𝑤𝑝

𝜎1𝐷→2𝐷 and the bottom row shows the R
(
Ṽ2𝐷,𝑇

)
at arg max∠𝑤𝑝

𝜎1𝐷→2𝐷

In this subsection, the parametric sweeps are continued by looking at varying Re𝜏
while fixing Ma = 7, 𝑇𝑤/𝑇𝑟 = 0.76, 𝑇∞ = 200K in Figure 4.27. Due to the freestream
wavepacket angle scaling in outer units and not being a function of Re, it is seen that



78

the 2-D freestream inclination angle does not change while varying Re𝜏. Addition-
ally, it may be seen that the linear amplification is minimally affected for variations
in Re𝜏.

4.6 Conclusions and future directions
In this chapter, the acoustic radiation from supersonic turbulent boundary layers
was studied with the use of resolvent analysis in two spatial dimensions. It was
found that there is an interplay between slow and fast acoustic waves being the
most optimal mode in resolvent analysis, but the slow acoustic waves are dominant
where the linear amplification is largest. It was then shown that the 2-D response
resolvent in the form of slow acoustic waves were able to be modeled using a 1-D
resolvent response modes and a streamwise varying profile that generalized across
spectral space. Similar models were briefly shown to extend to both sub-optimal
response modes and forcing modes. It was seen that there was a degradation in the
generalisability of the A-PG. This degradation is correlated with a move towards
slow waves been amplified by forcing in the outer part of the boundary layer, which
is the dilatational part of the forcing (c.f. Chapter 5).

The modeled forcing modes were then used to study the properties of the 2-D
resolvent operator for forcing modes with varying streamwise wavenumber. This
studied showed that for large ∠𝑤𝑝 there is a significant discrepancy in the prediction
of the freestream wavepackets generated between the 1-D resolvent analysis and the
2-D resolvent analysis.

Then, a brief study of the effect of a streamwise parallel and streamwise growing
mean profile on the resolvent response modes was done. It was shown that the
resolvent response modes were nearly identical and the additional streamwise vary-
ing terms in the 2-D resolvent operator have minimal effect for this case. Hence,
implying that the main contributor to the difference in the 2-D resolvent analysis
is the presence of the Mach line and the resulting restricted domain of influence,
which arises due to having two spatial dimensions.

Finally, a parametric study was done to analyze the acoustic radiation properties of
the 2-D resolvent operator through the use of analytical mean profiles, which were
extended in the streamwise direction with a constant profile. The results of this
showed the Mach line restricts the most amplified wavepacket angles and bounds
were shown for what wavepacket angles to expect at varying Mach numbers. It was
observed that viscosity impacted the restriction imposed by the Mach line, hence,
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pointing towards the importance of viscosity in the freestream. The results of varying
𝑇𝑤/𝑇𝑟 indicate that the wall-to-temperature recovery ratio does not have an impact
on the most amplified freestream wavepacket angle at each (𝜅𝑧, 𝜔), but it does cause
significant variation in the amplification. The results of varying Re𝜏 indicates that
there is only a small effect of varying Re𝜏 on the behaviors of freestream radiation.

Future work needs to be done to extend the results of these parametric studies.
For instance, how does the result of varying 𝑇𝑤/𝑇𝑟 generalize? Does it uniformly
modify the amplification across spectral space or does it varying based on (𝜅𝑧, 𝜔)
and modify the most amplified mechanisms. Similar questions could be posed for
each of the parametric sweeps, as these have been only done at a fixed (𝜅𝑧, 𝜔) and
the results will not necessarily generalize. Additionally, it would be interesting to
study how all these results interplay with the semi-local scaling and how to best
compare these results across spectral parameters.
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C h a p t e r 5

ESTIMATION AND MODELING FOR ACOUSTIC RADIATION
FROM A HYPERSONIC TBL

This chapter1performs estimation of the freestream space-time statistics for a radi-
ating moderately-cooled hypersonic turbulent boundary layer from a sparse number
of near-wall measurements. It is shown that using resolvent based estimation alone
is not sufficient to perform the estimation and further modeling must be done. By
leveraging the Helmholtz decomposition of the optimal 2D resolvent modes, it is
shown that the solenoidal (incompressible-like) part of the resolvent forcing modes
are responsible for a bulk of the freestream radiation. This fact is then incorporated
into a reduced-span model for the forcing CSD and is shown to enable estimation of
the freestream statistics from a few near-wall measurement points.

5.1 Introduction
The study of supersonic and hypersonic flows over bodies is of great interests for
topics of atmospheric re-entry, commercial aircraft, and national defense. Direct
numerical simulation of these flow conditions over a generic model geometry is
prohibitively expensive for anything outside of research purposes at reasonable
conditions. This leaves a large area where experimental facilities are the primary
tool for designing and analyzing hypersonic conditions for such bodies. In particular,
the study of transition on the surface of these bodies is of extreme importance for
the design of thermal heat shields, among other design objectives.

Currently many experimental facilities are so-called conventional, or noisy, facilities
that have a large amount of noise in the freestream environment. While ‘quiet’
experimental facilities exist, with more under development, conventional facilities
are still of use. Thus, it is of importance for researchers to characterize and be able to
predict the freestream noise environment in these tunnels, so that it may be accounted
for in the analysis. Though the disturbance environment is the summation of many
sources of noise, it has been found, (Duan, Choudhari, Chou, et al., 2019), that at
hypersonic conditions, the primary source of noise generated is due to eddy Mach
wave (Phillips, 1960) originating from the turbulent boundary layers (TBLs) at the
facility walls. Thus, in this study we focus solely on modeling acoustic disturbances

1Part of this chapter has been published in Stroot et al., 2025.
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generated by hypersonic TBLs, as a first step towards modeling the freestream noise
environment in hypersonic facilities. Although the freestream noise radiated often
visually appears, in shadowgraphs, to be correlated with the turbulent bulges in the
outer layer, this chapter instead focuses on where the radiation source is located, in
the near-wall region, and using measurements there to predict the freestream spectra.

The prediction of turbulent flows in both spectral space and physical space has long
been an open research question in fluid mechanics. As such, there are a multitude
of data-driven and physics-based modeling methodologies that researchers may
choose from when looking to estimate quantities of interests. In this study, we opt
to use a physics-based methodology based upon the resolvent analysis, the so-called
‘resolvent-based estimation’ (Towne, Lozano-Durán, and Yang, 2020) to model the
origin and influence of disturbances originating in the TBL which radiate to the
freestream (Figure 5.1). Since turbulent processes in the near-wall region in the
TBL have been shown to be responsible for the radiated disturbance field, resolvent-
based methodologies, which capture non-modal linear amplification, are particularly
suited for this modeling challenge.

The chapter will start with Section 5.2 by applying the standard resolvent-based
estimation (RBE) formulation to a hypersonic TBL. In the following section, Sec-
tion 5.3, the mechanics of the freestream radiation will be analyzed by analyzing
the optimal forcing mode, from a 2D resolvent computation for a streamwise devel-
oping hypersonic TBL mean, across spectral space. Section 5.4 will then use the
insights from the previous chapter and combine them with RBE to provide a more
accurate estimation of the freestream statistics. Additionally, the limits of the RBE
methodology will be addressed by studying the optimal linear estimator. Finally,
Section 5.5 addresses the non-optimality of the derived forcing model and compares
the efficacy of modeled forcing CSD using a basis filtered to be divergence free
versus a basis constructed to be divergence free. The chapter is then concluded in
Section 5.6 with conclusion and direction for future work.

5.2 Resolvent based estimation of freestream spectra
Table 5.1: Freestream conditions for Direct Numerical Simulation (DNS) of Mach
5.86 TBL

Ma∞ 𝑢̆∞ (m/s) 𝜌̆∞ (kg/m3) 𝑇∞ (K) 𝑇𝑤/𝑇𝑟
5.86 870.4 0.0427 54.97 0.76
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Figure 5.1: Diagram outlining the modeling objective. Statistics of the TBL in A
are used to predict the freestream disturbance in B. The blue dashed line indicates
the maximum wall-height were measurements are taken. Shown for a spatially-
developing boundary layer for ease of visualization.

Throughout this chapter, two different datasets for the same flow are used to perform
resolvent based estimation and resolvent analysis. The bulk flow for this case is
shown in Table 5.1. Computational details for the direct numerical simulations
and computation of PSD have been outlined in Section 3.2 and 3.3. In summary,
the PSD is constructed by: (1) saving streamwise-spanwise planes from the DNS
at a frequency 2 MHz, where the total number of snapshots save is 𝑛𝑡 = 8046,
and (2) using Welch’s method, Equation 3.1, with 8 segments with 50% overlap.
Throughout this chapter, the primary goal is to enable prediction of the freestream
statistics using some small number of near-wall measurements, as depicted in Figure
5.1

To start, estimation is performed at fixed a spanwise wavenumber, 𝜅𝑧𝛿 = 6.0, which
is the arg max𝜅𝑧 Φ𝑇𝑇 (𝜅𝑧; 𝑦/𝛿 ≈ 3.0). By restricting the attention to a single spanwise
wavenumber, the effects of the CSD may be considered, due to the volumetric dataset
used in this thesis only being available for a fixed subset of spanwise wavenumbers.
Following consideration of input CSD data, the full spatio-temporal estimation will
be considered using only PSD input data.

5.2.1 Validation of Methodology
Before proceeding with the optimization, it is imperative that the resolvent based
estimation method is validated. In the following, the base RBE methodology is
validated by ensuring that, (1) the input integrated PSD is reproduced when the
optimization is run for varying (𝜅𝑥 , 𝜅𝑧, 𝜔), e.g.,

S̃𝑞𝑞 (κ) ◦ 1(S𝑦𝑦≠0) = S𝑦𝑦, (5.1)



83

where 1(condition) is an indicator function that is only one when the condition is true
and zero otherwise. This validates that the estimation reproduces input statistics
across wavenumbers. The verification of this property may be seen in Figure 5.2,
where the comparison of the pre-multiplied integrated spatio-temporal PSD for
temperature is plotted for one of the near-wall measurement locations.

Additionally, (2) it is verified that the CSD is reproduced for fixed (𝜅𝑥 , 𝜅𝑧, 𝜔), e.g.,

S̃𝑞𝑞 (κ = κ𝑖) ◦ 1(S𝑦𝑦≠0) = S𝑦𝑦 (κ = κ𝑖), (5.2)

where κ𝑖 is a fixed wavenumber triplet, which ensures that the 2nd (and 1st) order
statistics at all measurement locations are reproduced. In Figure 5.3, Equation 5.2 is
verified by computing the relative error between the LHS and RHS of the equation.

Since an estimated forcing CSD, S̃ 𝑓 𝑓 , will be leveraged in this work to improve the
estimation capabilities of the RBE, the same validations are shown for the estimation,

T𝑞,𝑜𝑝𝑡 = HS 𝑓 𝑓H†𝑦
(
H𝑦S 𝑓 𝑓H

†
𝑦

)+
, (5.3)

where the input forcing CSD is set to be the identity, S 𝑓 𝑓 = I , for a test of
the implementation. For brevity, the results of this are only shown for the CSD
estimates. Since S 𝑓 𝑓 = I has been set in Equation 5.3, this estimator will reproduce
the same results as the standard RBE method, which serves as the validation of the
implementation as shown in Figure 5.4.

Now that the estimation method has been validated, the following section will apply
this validated RBE method to the hypersonic turbulent boundary layer and assess
the amount of information needed to perform the estimation.
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Figure 5.2: Pre-multiplied power spectra for temperature at fixed wall height 𝑦+𝑚 =

16.9 for both data and estimate. Estimate performed with 𝑞𝑚 = [𝑢, 𝑇], y+𝑚 ≈
[5, 16, 26, 72], using Equation 2.72 , and only PSD information was provided to
the estimate. Solid contours represent the DNS, dashed (blue) and filled contours
represent the estimation. Contour levels are≈ 1%, 22%, 45%, 67%, 90% of absolute
maximum.
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Figure 5.3: |
((
S̃𝑇𝑇 ◦ 1(S𝑦𝑦≠0)

)
− S𝑦𝑦

)
/S𝑦𝑦 |–Relative error of the CSD for temper-

ature at (𝜅𝑥 , 𝜅𝑧, 𝜔) ≈ (15, 6, 10) for the input (DNS) data and the estimate, which
has been filtered to only show measurement locations. Estimate performed with
𝑞𝑚 = [𝑢, 𝑇], y+𝑚 ≈ [5, 16, 26, 72], using Equation 2.72, and full CSD information
was provided to the estimate.
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Figure 5.4: | (𝑆𝑇𝑇,𝑜𝑝𝑡 − 𝑆𝑇𝑇 )/S̃𝑇𝑇 | – Relative error for temperature CSD at
(𝜅𝑥 , 𝜅𝑧, 𝜔) ≈ (15, 6, 10) for the standard estimator using Equation 2.72 and
the estimator using Equation 5.3 with S 𝑓 𝑓 = I . Estimate performed with
𝑞𝑚 = [𝑢, 𝑇], y+𝑚 ∈ y+𝑚 ≈ [5, 16, 26, 72] and full CSD information was provided
to the estimate.
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5.2.2 Estimation
In this subsection, the estimation of the freestream space-time statistics is generated
using four wall measurement locations, y+𝑚 ≈ [5, 16, 26, 72], which align with the
wall-normal locations that are measured in the dataset that contains the full space-
time PSD data.

Since there are two data-sets being discussed and one only contains PSD data, the
first question that is addressed is: How close can estimates generated with PSD
inputs get to estimates generated with CSD inputs? In other words, to what extent
are full second order statistics necessary to provide a sufficiently good estimate of
the freestream? This is primarily motivated by the practical purpose of providing
estimates when there is limited data, which is a limitation in most cases due to the
prohibitively large cost of storing time-resolved second order statistics for cases of
interest.

To address this question, the estimation, using Equation 2.72, is performed for
varying (𝜅𝑥 , 𝜔), and fixed 𝜅𝑧 ≈ 6.0. Due to a large majority of spectral space
not measurably contributing to the freestream PSD, these estimates will only be
computed for wavenumbers such that 𝜅𝑥𝜔𝚽(𝜅𝑥 , 𝜔) > 0.01 max (𝜅𝑥𝜔𝚽(𝜅𝑥 , 𝜔)).

These estimation are provided, as inputs, measurements for either (1) the PSD, e.g.,

S𝑦𝑦 (𝑦𝑖, 𝑦 𝑗 ;κ) = 𝛿𝑖 𝑗 (𝚽𝑦𝑦)𝑖 𝑗 (𝑦𝑖;κ), (5.4)

where 𝛿𝑖 𝑗 is the Kronecker delta, or (2) the CSD, e.g.

S𝑦𝑦 =
1
𝑛𝑎𝑣𝑔

Ŷ Ŷ ∗, (5.5)

where Ŷ are the masked (to the measurement location) Fourier modes with 𝑛𝑎𝑣𝑔
realizations, as outline in Section 3.2. The estimation of the freestream PSD for
various components using both inputs is shown in Figure 5.5.

In Figure 5.5 and Figure 5.6, it may be seen that for all components the spatial
(in spectral space) localization of the estimate shows minimal changes between
both inputs. When comparing to the DNS results, it is clear that both estimates
do not reproduce the salient features of the DNS statistics and predict freestream
wavepackets at a much lower inclination angle than in the DNS. It also may be seen
that estimates with either levels of input data fidelity over-predict the magnitude of
the PSD in the freestream by many orders of magnitude for the wall-normal and
temperature components.
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Figure 5.5: Pre-multiplied PSD for varying components at 𝑦/𝛿 = 1.8 and a fixed (𝜅𝑧)
(a-b) Estimate performed using PSD,𝚽𝑦𝑦, as inputs, e.g., 𝚽̃(𝜅𝑥 , 𝜔) = 𝑇𝑞𝚽𝑦𝑦𝑇

∗
𝑞 (c-d)

Estimate performed using CSD,S𝑦𝑦, as inputs, e.g., 𝚽̃(𝜅𝑥 , 𝜔) = 𝑇𝑞S𝑦𝑦𝑇∗𝑞 , (e-f) DNS
data. Estimate performed with q𝑚 = [𝑢, 𝑇], y+𝑚 ≈ [5, 16, 26, 72], using Equation
2.72. Checkered region indicates region not being computed – only wavenumbers
with 𝜅 ∈ {𝜅 |𝜅𝑥𝜔𝚽(𝜅𝑥 , 𝜔) > 0.01 max (𝜅𝑥𝜔𝚽(𝜅𝑥 , 𝜔)) .} are computed.

Due to the lack of availability of the CSD in practical purposes and the similar
estimation results shown in Figure 5.5 and Figure 5.6, the rest of this Chapter will
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(b) 𝚽̃𝑣𝑣 (𝜅𝑥 , 𝜔;S𝑦𝑦)
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Figure 5.6: Pre-multiplied PSD for varying components at 𝑦/𝛿 = 1.8 and a fixed (𝜅𝑧)
(a) Estimate performed using PSD, 𝚽𝑦𝑦, as inputs, e.g., 𝚽̃(𝜅𝑥 , 𝜔) = 𝑇𝑞𝚽𝑦𝑦𝑇

∗
𝑞 (b)

Estimate performed using CSD, S𝑦𝑦, as inputs, e.g., 𝚽̃(𝜅𝑥 , 𝜔) = 𝑇𝑞S𝑦𝑦𝑇∗𝑞 , (c) DNS
data. Estimate performed with q𝑚 = [𝑢, 𝑇], y+𝑚 ≈ [5, 16, 26, 72], using Equation
2.72. Checkered region indicates region not being computed – only wavenumbers
with 𝜅 ∈ {𝜅 |𝜅𝑥𝜔𝚽(𝜅𝑥 , 𝜔) > 0.01 max (𝜅𝑥𝜔𝚽(𝜅𝑥 , 𝜔)) .} are computed.

focus on performing the estimation for input PSD information only and the full
spatial-temporal estimation will be performed.

The full spatial-temporal estimation is then performed with only PSD measurement
data, as shown in Figure 5.7. Due to the estimation being performed in four
dimensions, the results of this estimation is shown at a fixed wall-normal height and
for integrated cospectra plots. The first point to note is that the general range of the
smallest contours is collocated with the DNS results, which provides promise for
this method in estimation. That being said, the amplitude of the estimate vs model is
off by multiple orders of magnitude. It may be seen that there are a few peak values
that skew the contours for visualization. Note that upon filtering out these ‘peaky’
wavenumbers the qualitative comparison of the the cospectrum improves, but there
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Figure 5.7: Estimate of freestream (integrated) pre-multiplied cospectra for temper-
ature fluctuations using standard RBE. Estimation is done with four measurements
at y+𝑚 ≈ [5, 16, 26, 72] and measuring the variables q𝑚 = [𝑢, 𝑇]. Solid contours
represent the DNS, dashed (blue) and filled contours represent the estimation. Con-
tour levels are ≈ 1%, 22%, 45%, 67%, 90% of absolute maximum.

still remains a multiple order of magnitudes difference between the amplitude of the
model and the DNS.

An astute reader may note that, thus far, the estimates have been performed only using
statistics measurements of the streamwise velocity and temperature fluctuations
— q𝑚 = [𝑢, 𝑇]. An estimate with all velocity measurements being used, q𝑚 =

[𝑢, 𝑣, 𝑤, 𝑇], is shown in Figure 5.8. In a counter-intuitive fashion, it may be seen that
the results actually degrade with an increasing amount of measurement information.
This apparent pathology will be discussed and explained in Section 5.4.3.

Now the poor estimation capabilities of RBE, as seen in Figure 5.7 must be addressed.
Resolvent based estimation works by finding the minimal norm forcing that generates
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Figure 5.8: Estimate of freestream (integrated) pre-multiplied cospectra for temper-
ature fluctuations using standard RBE. Estimation is done with four measurements
at y+𝑚 ≈ [5, 16, 26, 72] and measuring the variables q𝑚 = [𝑢, 𝑣, 𝑤, 𝑇]. Solid con-
tours represent the DNS, dashed (blue) and filled contours represent the estimation.
Contour levels are ≈ 1%, 22%, 45%, 67%, 90% of absolute maximum.

the statistics provided at the measurement locations. This may be seen by looking
at the estimation of the forcing CSD

S̃ 𝑓 𝑓 = H+𝑦 S𝑦𝑦 (H+𝑦 )∗, (5.6)

=

(
V𝑦S

−1
𝑦 U ∗𝑦W𝑐ℎ𝑢

)
S𝑦𝑦

(
W𝑐ℎ𝑢U𝑦S

−1
𝑦 V ∗𝑦

)
(5.7)

which projects the input CSD onto the masked resolvent response modes and then
the associated forcing modes. The resolvent computation solves for these masked
resolvent response modes by finding the minimal norm forcing that generates an
orthonormal basis (and the maximum linear amplification).

Thus, if the input-output relation given by the masked resolvent operator does not
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efficiently represent the physics in question, the pseudo-inverse may provide a sub-
optimal estimation. As discussed in Section 2.5, this intuition may be formalized in
that the estimator derived by RBE:

𝑇𝑞 = HH+𝑦 (5.8)

is not optimal unless forcing statistics, e.g., Equation 5.3, are included in the esti-
mator represented by the transfer function 𝑇𝑞.

In the following section, the goal is to study the the mechanisms generating the
Mach waves in the case of the 2D resolvent operator. By studying the underlying
mechanisms generating these waves, it may be possible to improve upon the standard
RBE estimator, Equation 5.8.

5.3 Understanding 2D linear amplification mechanisms
In this section, the amplification mechanisms that drive freestream acoustic radiation
in hypersonic TBLs will be discussed with the goal to develop forcing models for
usage in RBE. To start, the inviscid pressure equation will be considered — that is
Equation 4.3 is restated:
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− 𝛾 𝜕𝑈𝑖
𝜕𝑥 𝑗

𝜕𝑈 𝑗

𝜕𝑥𝑖
𝑝 − 1

Ma2
𝜕𝑇

𝜕𝑥 𝑗

𝜕𝑝

𝜕𝑥 𝑗
− 𝑇

Ma2
𝜕2𝑝

𝜕𝑥2
𝑗

= 𝛾

[
2
𝜕𝑈𝑖

𝜕𝑥 𝑗

𝜕

𝜕𝑥𝑖
+ 𝜕2𝑈𝑖
𝜕𝑥𝑖𝜕𝑥 𝑗

]
𝑢 𝑗

+
[
𝜔 +𝑈𝑖

𝜕

𝜕𝑥𝑖

] (
𝑇 𝑓𝜌 + 𝑓𝑇

)
− 𝛾

𝜕 𝑓𝑢𝑖

𝜕𝑥𝑖
.

(5.9)

It was shown in Section 4.2.2 that the LHS of Equation 5.9 admits solutions that
are the 2D equivalent of Mach waves, which constitute the freestream disturbance
field that is being modeled. Now, the structure of the forcing terms on the right side
will be broken down to understand the methods that can lead to amplification of the
Mach waves.

Upon inspection of Equation 5.9, it may be seen that the RHS of this equation are
the terms driving the Mach waves and that there are generally two distinct ways
that the Mach waves may be forced: (i) direct and (ii) indirect. By considered
the freestream only, it may be seen that the bracketed terms before 𝑢 𝑗 in Equation
5.9 must be zero, hence, the only way to force the Mach waves directly is through
one (or a combination) of (∇ · f𝑢, 𝑓𝑇 , 𝑓𝜌) – that is through dilatational forcing or
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thermodynamic forcing. In contrast, the indirect path is amplified through forcing
that is purely solenoidal, 𝑓𝑠𝑜𝑙 , which then drive 𝑢 𝑗 in Equation 5.9 leading to forcing
of the Mach waves.

To better understand the localization and the workings of these two routes to am-
plification, a sweep of spectral space is performed using the spatially developing
mean profile, for the current case being modeled, and the 2D resolvent analysis. In
performing this computation, masking of the domain will be performed throughout,
following the outline in Section 4.2.1. Additionally, the streamwise developing
mean profiles will be used, as introduced in Section 3.1.2.

Following the computation, the optimal forcing mode will be further decomposed
as:

𝑉1 = 𝑉1,𝑠𝑜𝑙 +𝑉1,𝑑𝑖𝑙 +𝑉1,𝜌 +𝑉1,𝑇︸                 ︷︷                 ︸
𝑉1,𝑑+𝜌𝑇

(5.10)

where ((·)𝑠𝑜𝑙 , (·)𝑑𝑖𝑙) are computed using the Helmholtz decomposition as outlined
in Section 2.6 and have the property that:

∇ · (·)𝑠𝑜𝑙 = 0, (5.11)

∇ × (·)𝑑𝑖𝑙 = 0. (5.12)

The result of the decomposition for the optimal forcing mode at (𝜅𝑧, 𝜔) ≈ (6.1, 7.8),
the argmax location of the pre-multiplied PSD, is shown in Figure 5.9. Figure 5.9
shows that the solenoidal only forcing is constrained to the near-wall region and
primarily exists below the relative sonic line, as well as being reaching its maximum
near the critical layer location. Additionally, it may be seen that the dilatational
part of the forcing is primarily located in the outer region of the boundary layer and
exists above the relative sonic line. Recall that the relative sonic line is where the
relative Mach number, Equation 1.8, is equal to unity, e.g., Ma = 1.

To generalize and draw out further conclusions, the contribution of the linear ampli-
fication from each part of the decomposed state will be quantified and results will
be studied across spectral space.
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Figure 5.9: Helmholtz Decomposition of the optimal resolvent forcing,
wall-normal componenent is shown. Computation performed at (𝜅𝑧, 𝜔) ≈
(6.1, 7.8), which is the peak location for the premultiplied integrated PSD,
arg max(𝜅𝑧 ,𝜔) 𝜅𝑧𝜔𝚽𝑇𝑇 (𝜅𝑧, 𝜔)𝑦/𝛿 ≈ 3). Masking is performed following Section
4.2.1. The relative sonic line, Ma(𝑦) = 1, is visualized by a solid yellow line and
the critical layer, Ma(𝑦) = 0, with a dashed purple line, where both are computed
with an approximately measured 𝜅𝑥

5.3.1 Understanding the breakdown
To understand how the individual components of the Helmholtz decomposition
contribute to the linear amplification, the linear amplification must be measured.
The procedure to do this is outlined below. First the resolvent optimization is solved
at a specific (𝜅𝑧, 𝜔), as outlined in Section 2.2,

H2𝐷 (𝜅𝑧, 𝜔) = U (𝑥, 𝑦)SV ∗(𝑥, 𝑦). (5.13)

The forcing modes are then decomposed into their solenoidal and dilatational com-
ponents, via the Helmholtz decomposition,

V𝑖 = V𝑠 +
(
V𝑑 + V𝜌 + V𝑇

)︸             ︷︷             ︸
V𝑑+𝜌𝑇

.
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The linear amplification and the response structure of each part may then be com-
puted using a linear solve along withH2𝐷 (𝜅𝑧, 𝜔):

𝜎𝑠U𝑠 = H2𝐷V𝑠 (5.14a)

𝜎𝑑+𝜌𝑇U𝑑+𝜌𝑇 = H2𝐷V𝑑+𝜌𝑇 , (5.14b)

where the linear amplification is computed in the standard fashion

𝜎2 =
< U ,U >𝑐ℎ𝑢

< V ,V >𝑐ℎ𝑢
. (5.15)

In interpreting this linear amplification rates, it is important to remember that due
to working with norms the sum of the decomposition of the linear amplifications is
not necessarily equal to the whole, that is

| |U1 | | ≤ | |U1,𝑑𝑖𝑙+𝜌𝑇 | | + | |U𝑠𝑜𝑙 | |, (5.16)

hence,
𝜎1 ≠ 𝜎1,𝑠𝑜𝑙 + 𝜎1,𝑑𝑖𝑙+𝜌𝑇 . (5.17)

Now, to understand this breakdown, the linear amplification rates across spectral
space are plotted in Figure 5.10. There are two primary take-away points from the
analysis of Figure 5.10: (1) The region of highest linear amplification rate roughly
coincides with the region of highest pre-multiplied PSD in the freestream (2) The
solenoidal part of the forcing, the indirect route, is responsible for a large majority
of the linear amplification of the freestream waves.

In this section, it has been seen that the indirect route, driven by solenoidal forcing,
is dominant in the optimal forcing mode for the 2D resolvent analysis and this
dominance corresponds to the region where the freestream PSD is largest in DNS.
In the following sections, the localization and the structure of both the solenoidal
and dilatational part of the optimal forcing mode will be inspected.
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Figure 5.10: Linear amplification rates for hypersonic streamwise developing TBL,
with properties outlined in Table 5.1. This computation is with masking to constrain
the forcing to the BL and the response to the freestream, as outlined in Section 4.2.1.
Solid contours represent the pre-multiplied PSD for temperature, 𝜅𝑧𝜔Φ𝑇𝑇 (𝑦/𝛿 =

2.69), computed from DNS data. Contour levels are ≈ 1%, 22%, 45%, 67%, 90%
of absolute maximum.

5.3.2 Mechanics of the dilatational forcing
In this section, the structure of the dilatational part of the optimal resolvent forcing
mode is studied. The physical mechanism that leads to its creation will be outlined
and then the properties will be studied across varying (𝜅𝑧, 𝜔).

To begin, the approximate local wavenumber, (𝜅𝑥 (𝑥, 𝑦), 𝜅𝑦 (𝑥, 𝑦)), at each spatial
location, (𝑥, 𝑦), is computed for the wall-normal and streamwise direction, via
Equation 4.10. To measure the approximate wavenumber, the wall-normal velocity
component was used, but it is seen that each component provides similar results.
Computation of the approximate local wavenumber then allows the interpretation
of how the mode will move when propagated in time, which can be done physically
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with an inverse Fourier transform. These approximate local wavenumbers are used
to depict direction of propagation for the wavefront, as shown in Figure 5.11
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Figure 5.11: 𝐸𝑐ℎ𝑢 (𝑉1,𝑣,𝑑𝑖𝑙) for (𝜅𝑧, 𝜔) ≈ (6.1, 7.8). White arrows (quiver) repre-
senting (𝜅𝑥 (𝑥, 𝑦), 𝜅𝑦 (𝑥, 𝑦)). Yellow line shows the relative sonic line, as computed
with a fixed streamwise wavenumber, 𝜅𝑥,𝑎𝑣𝑔 = E(𝜅𝑥 (𝑥, 𝑦)). The purple line depicts
the critical layer computed using 𝜅𝑥,𝑎𝑣𝑔.

From Figure 5.11, it is seen that the dilatational mode peaks right above the sonic
line with minimal penetration below the relative sonic line, e.g., from a qualitative
view it appears that the dilatational part of the forcing has a minor impact on the
amplitude of the forcing below the relative sonic line. Additionally, by looking at
the flow of the arrows, it can be seen that this forcing is representing an incoming
wave that reflects off the relative sonic line, minimally refracts, and then reflects
into the freestream.

This result is then generalized by looking at the approximate wall-normal wavenum-
ber, 𝜅𝑦, value for varying 𝜅𝑧 and fixed 𝜔 in Figure 5.12. In this case wall-
normal wavenumber dictates the local direction of propagation, since the streamwise
wavenumber is strictly positive due to propagating downstream, and a negative wall-
normal wavenumber indicates a wave coming towards the wall.

Now that it has been shown the behavior of the dilatational part of the forcing acting
as an incoming wave generalizes, it will finally be shown that the localization of this
mode above the relative sonic line generalizes. To do this, first the argmax of the
energy of the forcing mode is found:

(𝑥𝑚𝑎𝑥,𝑑𝑖𝑙 , 𝑦𝑚𝑎𝑥,𝑑𝑖𝑙) = arg max
(𝑥,𝑦)

𝐸𝑐ℎ𝑢 (𝑉1,𝑑𝑖𝑙). (5.18)

Then the wall-normal location of the relative sonic line at that streamwise location
is found:

𝑦Ma=1 =

{
𝑦 | Ma(𝑥max,dil, 𝑦) = 1

}
. (5.19)
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Figure 5.12: The approximate wall-normal wavenumber measured at the
maximal energy location for varying streamwise wavenumber, 𝜅𝑦 (𝑥, 𝑦 =

arg max𝑦 𝐸𝑐ℎ𝑢 (𝑥, 𝑦)). Plotted for varying 𝜅𝑧 at 𝜔 = 7.85.

Finally, these two values are compared to understand where the ‘center’ of the
dilatational mode is located relative to the relative sonic line. This is shown for
varying (𝜅𝑧, 𝜔) in Figure 5.13. Figure 5.13 shows that throughout the region
with activity in the freestream, as shown in the contour on Figure 5.10a, that the
dilatational mode is ‘centered’ above the relative sonic line indicating that the
behavior seen in Figure 5.11 generalizes.
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Figure 5.13: The height different between the maximal energy location in the
dilatational mode versus the height of the relative sonic line, 𝑦𝑚𝑎𝑥,𝑑𝑖𝑙 − 𝑦Ma=1, for
varying (𝜅𝑧, 𝜔).

In this section, it has been shown that the dilatational part of the forcing is repre-
sentative of a incoming wave that reflects (and minimally refracts) off the relative
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sonic lines and then propagates towards the freestream. In this case of a single-wall
flat plate boundary layer, it is believed that the existence of this forcing mechanism
is primarily due to imperfect non-reflecting boundary conditions.

In the multi-wall case, it has been found that the reflections are of minimal impact
(Laufer, 1964), which is consistent with these findings that the dilatational forcing
makes up a smaller portion of the linear amplification. That being said, to make a
accurate and general conclusions about the reflections of incoming acoustic waves
and their amplification for a TBL, one would need to study the incoming waves
directly. Though this is left for future work, such a study of the amplification of
incoming acoustic waves could be cleanly be done with the resolvent analysis using
the scatter ansatz of Kamal, Lakebrink, and Colonius, 2023.

5.3.3 Mechanics of the solenoidal forcing
It was seen in Figure 5.9c that the solenoidal part of the optimal forcing mode is
located on top of the critical layer location. To study if this observation generalizes,
the properties of the solenoidal part of the forcing will be analyzed for varying
(𝜅𝑧, 𝜔).

To do this, first the argmax of the energy of the forcing mode is found:

(𝑥𝑚𝑎𝑥,𝑠𝑜𝑙 , 𝑦𝑚𝑎𝑥,𝑠𝑜𝑙) = arg max
(𝑥,𝑦)

𝐸𝑐ℎ𝑢 (𝑉1,𝑠𝑜𝑙). (5.20)

Then the wall-normal location of the relative sonic line at that streamwise location
is found:

𝑦𝑐 =

{
𝑦 | Ma(𝑥max,sol, 𝑦) = 0

}
. (5.21)

Note that the critical layer location is also the location with a zero value for the
relative Mach equation, as (Ma = 0) =⇒ (𝑈̄ − 𝑐 = 0).

The difference between the critical layer location and the wall-normal height of the
maximum location is then shown in Figure 5.14. To only focus on the region where
the solenoidal part of the forcing is dominant, the quantity is only plotted where
𝜎1,𝑠𝑜𝑙 > 7. It may be seen in Figure 5.14b that the solenoidal part of the optimal
forcing mode is collocated with the critical layer throughout wavenumber space.
Additionally, as seen in Figure 5.14a, the peak value is around 𝑦+ = 10 in the inner
layer. This peak value is consistent with the peak location for the acoustic source
terms in other hypersonic flow (Duan, Choudhari, Chou, et al., 2019), which was
found to peak in the buffer layer.
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Figure 5.14: The height different between the maximal energy location in the
solenoidal mode versus the height of the relative sonic line, 𝑦𝑚𝑎𝑥,𝑠𝑜𝑙 − 𝑦𝑐, for varying
(𝜅𝑧, 𝜔). Red contour visualizes 𝜎1,𝑠𝑜𝑙 = 7, which is used as the cut off value for the
computation.

In this following section, the approximation will be made that the forcing driving
the freestream acoustic waves is purely solenoidal in nature. This assumption is
driven by the results of this section, namely: (1) The dilatational part of the forcing
representing incoming reflecting waves (2) The solenoidal being collocated with
the incompressible critical layer mechanisms, which are known to be important
for TBL physics, and (3) the solenoidal forcing being the main contributor to the
linear amplification of Mach waves. Additionally, it is known that the turbulent
kinetic energy is largest in the near-wall region, thus, one may expect that the linear
mechanisms in the near-wall region to be even more important once non-linear
forcing is accounted for.

5.4 Estimation with embedded physical mechanism understanding
In this section, a forcing model, that requires no a priori information is developed and
then implemented into the estimation framework to allow more accurate estimation
of the freestream spatial-temporal PSD.

Stated succinctly, the goal for this approximated forcing CSD, S̃ 𝑓 𝑓 , is to generate
an improved estimator:

T𝑞,𝑚𝑜𝑑𝑒𝑙 (S̃ 𝑓 𝑓 ) = H S̃ 𝑓 𝑓H†𝑦
(
H𝑦S̃ 𝑓 𝑓H

†
𝑦

)+
, (5.22)

with the goal that
𝑇𝑞,𝑚𝑜𝑑𝑒𝑙 ≈ 𝑇𝑞,𝑜𝑝𝑡 . (5.23)



100

5.4.1 Incorporating understanding from 2D resolvent studies
There are two design principles that are followed when deriving the approximate
forcing CSD: (i) the forcing CSD should still allow RBE to reproduce input statistics
(ii) the model should should require no information about the true forcing CSD.

As discussed in Section 5.3, the model proposed here works on the assumption that
the acoustic radiation from a hypersonic TBL is primarily driven by the solenoidal
part of the forcing, the incompressible-like mechanisms. Though this is not categori-
cally true for all wavenumbers, it is, as will be shown, a good enough approximation
for modeling. The intuition, aside from the solenoidal forcing being dominant
in resolvent analysis, is that since the turbulent kinetic energy (TKE) is large in
the near-wall region, we would expect that the mechanisms (i.e. the solenoidal
incompressible-like forcing) existing in that region would be preferentially ampli-
fied. For the case of interest, it was shown that the acoustic source terms peak in the
inner layer at 𝑦+ = 20 (Duan, Choudhari, Chou, et al., 2019).

Similarly, Jeun, 2018 used the TKE as a mask for the forcing in resolvent analysis
and showed a good rank-1 estimation of the directivity patterns (at a fixed temporal
frequency/Strouhal number) for acoustic radiation from subsonic turbulent jets.

Algorithm 2: Generation of a reduced-span forcing CSD at each κ

Data: S𝑦𝑦
Result: S̃ 𝑓 𝑓 ,𝑠𝑜𝑙

U𝑦,𝚺𝑦,V ∗𝑦 ← svd
(
H𝑦

)
;

V𝑦,𝑠𝑜𝑙 ← B𝑠𝑜𝑙V𝑦;
N𝑣 ← diag( | |V𝑦,𝑠𝑜𝑙 | |𝐸 );
𝚺𝑦,𝑠𝑜𝑙 ,U𝑦,𝑠𝑜𝑙 ←HV𝑦,𝑠𝑜𝑙 ;

S̃ 𝑓 𝑓 ,𝑠𝑜𝑙 ←
(
𝚺𝑦,𝑠𝑜𝑙𝚺−1

𝑦 N−1
𝑣 V𝑦,𝑠𝑜𝑙

) (
𝚺𝑦,𝑠𝑜𝑙𝚺−1

𝑦 𝑁
−1
𝑣 V𝑦,𝑠𝑜𝑙

)†
The methodology to compute our solenoidal-only reduced-span forcing approxima-
tion is found in Algorithm 2. We then are able to combine this estimation of the
forcing CSD with Equations 2.72 and 2.79, to arrive at the final equation for the
‘improved’ RBE estimator,

S𝑞𝑞 ≈ S̃𝑞𝑞 = 𝑇𝑞,𝑚𝑜𝑑𝑒𝑙 (S̃ 𝑓 𝑓 ,𝑠𝑜𝑙)S𝑦𝑦𝑇∗𝑞,𝑚𝑜𝑑𝑒𝑙 (S̃ 𝑓 𝑓 ,𝑠𝑜𝑙). (5.24)

In what follows, the estimation of the freestream spatio-temporal PSD is performed
for both the standard RBE formulation, 𝑇𝑞, and the newly developed RBE estimator
with the solenoidal forcing model, 𝑇𝑞,𝑚𝑜𝑑𝑒𝑙 (S̃ 𝑓 𝑓 ,𝑠𝑜𝑙).



101

5.4.2 Effect of forcing model on full data-set
Figures 5.15 and 5.16, show estimations for the freestream PSD using both the stan-
dard, as previously shown in Figure 5.7 and the improved RBE using the approximate
forcing CSD discussed earlier.

In Figure 5.15(a-c), we see that the standard RBE does get the general localisation
of the PSD correct, but fails at capturing the absolute magnitude and there is
approximate three to four orders of magnitude between the amplitude for the DNS
and the model, as shown in the legends.

In Figure 5.15(d-f), there is an improvement in the absolute magnitude of the model
vs DNS along with a marked improvement of the overlap of the (relative) contours.
In both Figure 5.15(b,e), there is an upward shift of the cospectrum for the model
as compared to the DNS, which indicates that the models under-predicts the PSD
for higher wave speeds. Additionally, it is noted that (for both estimations), only
temperature results are shown, but the model performs similarly other state variables.

In Figure 5.16, the 2D PSD is further integrated to get a 1D integrated pre-multiplied
PSD. These results show that the spanwise PSD shows an exceptional (relative)
overlap, but both the streamwise and temporal PSD are shifted to higher wavenum-
bers/frequencies. This is consistent with the 2D results and shows that there is an
over prediction of the importance of higher streamwise wavenumbers and higher
temporal wavenumbers, as opposed to one or the other.

One salient question is: what is the source of the error in the estimations and why
do the errors in the 𝜔 − 𝜅𝑥 cospectra not improve with the added forcing model, as
they did in the other two cospectra? In our model, there are several sources of error
that could be the cause of this: (i) Aliasing errors present in the data Nogueira et al.,
2021 (ii) Assumed locally parallel flow (iii) A poor approximation of the optimal
linear estimator (Equation 5.23). The origin of the errors is the subject of current
work.

Regardless of the assumptions made, it has been shown that the model performs
well and taking the ansatz that the forcing basis is constructed of solenoidal forcing
increases prediction capabilities.
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Figure 5.15: Estimate of freestream (integrated) pre-multiplied cospectra for tem-
perature fluctuations using (a,c,e) standard RBE, Equation 2.72, (b,d,f) RBE with
reduced-span forcing CSD, Equation 5.24. Estimation is done with four measure-
ments at y+𝑚 ≈ [5, 16, 26, 72] and measuring the variables q𝑚 = [𝑢, 𝑇]. Solid
contours represent the DNS, dashed (blue) and filled contours represent the estima-
tion. Contour levels are ≈ 1%, 22%, 45%, 67%, 90% of relative (to the amplitude in
the legend) maximum.
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Figure 5.16: Comparison of normalized one-dimensional pre-multiplied statistics at
a freestream plane for (i) RBE with constrained forcing basis and (ii) filtered DNS.
The DNS is represented by a solid red line and the model by dashed blue line.
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5.4.3 Explaining pathologies with the optimal linear estimator
In this section, pathologies related to the inclusion of measuring all state variables,
which were introduced in Section 5.2, are discussed. Recalling Figure 5.8, it was
seen that the addition of measuring [𝑣, 𝑤] to already measuring [𝑢, 𝑇], estimations
using only q𝑚 = [𝑢, 𝑇] are shown in Figure 5.5, showed a major degradation in the
estimate in the freestream.
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(b) q𝑚 = [𝑢, 𝑣, 𝑤, 𝜌, 𝑇]
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Figure 5.17: Estimated CSD for temperature, S̃𝑇𝑇 , at (𝜅𝑥 , 𝜅𝑧, 𝜔) = (15, 6, 10).
Estimation performed with modified RBE and the approximate forcing model, Al-
gorithm 2. Input data given CSD information for y+𝑚 ≈ [5, 16, 26, 72] and varying
measured variables. Blue stars show measurement locations.

In Figure 5.17, the estimation at a single κ is performed by using a few near-wall
measurements and varying number of variables measured. It may be seen that the
degradation of the estimation with the inclusion of [𝑣, 𝑤, 𝜌] is maintained even with
the addition of the approximate forcing model. The degradation is present in the
localization and the amplitude of the the estimated CSD. Thus, this indicates that
either: (1) The ansatz underlying the reduced-span forcing model is incorrect, or (2)
Even an optimal linear estimator cannot accurately estimate all components jointly
and more data is simply needed to estimate all variables jointly.

To assess this claim, S 𝑓 𝑓 ,𝑟 , the forcing CSD driving the response CSD through the
resolvent, is computed via:

S 𝑓 𝑓 ,𝑟 = H+S𝑞𝑞
(
H+

)∗
, (5.25)

is computed by leveraging the volumetric data-set at each wavenumber. Although
this is not the true forcing CSD, which must be computed by analytically constructing
the forcing terms, this is the optimal S 𝑓 𝑓 in terms of the estimator. When the true
forcing is computed, error terms must be accounted for, as outlined in the work of
Nogueira et al., 2021. In contrast, by constructionS 𝑓 𝑓 ,𝑟 necessarily has the property
that

S𝑞𝑞 = HS 𝑓 𝑓 ,𝑟H†. (5.26)
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As form of validation, Figure 5.18 shows the relative error of the LHS and RHS of
Equation 5.26 for a single κ.
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Figure 5.18: Relative error of response CSD reconstruction from forcing CSD –
𝑒𝑣𝑒𝑟𝑖 𝑓 . B |

(
S𝑞𝑞 −HS 𝑓 𝑓 ,𝑟H ∗

)
/S𝑞𝑞 |, for the temperature component. Computation

performed at (𝜅𝑥 , 𝜅𝑧, 𝜔) = (15, 6, 10).

This resolvent-based forcing CSD is then used to construct the optimal linear esti-
mator, e.g.,

T𝑞,𝑜𝑝𝑡,𝑟 B HS 𝑓 𝑓 ,𝑟H†𝑦
(
H𝑦S 𝑓 𝑓 ,𝑟H

†
𝑦

)+
. (5.27)

In Figure 5.19, the optimal linear estimator, given by Equation 5.27, is then used
to generate comparisons between estimations for the response CSD with varying
the measured variables. It may be seen that even in the case of the optimal linear
estimator, the inclusion of measuring [𝑣, 𝑤] leads to a degradation in the overall
estimation of the response CSD. Another way to put this is that the sparse number of
measurements that have been used are not sufficient to produce an accurate estimate
of all variables in the response CSD at the same time, even in the case of the
optimal resolvent based estimator. This result is reminiscent of previous results
in estimating TBLs that show estimating 𝑣 and 𝜔 (vorticity) separately performs
significantly better than estimating them jointly (Rosenberg and McKeon, 2019).

Another way to understand the results of Figure 5.19 is by noting that the varying
q𝑚 changes the basis functions in H𝑦 in the optimal linear estimator, Equation
5.27. Hence, in the case when q𝑚 = [𝑢, 𝑇], Figure 5.19 shows that the resolvent
modes that composeH𝑦 are more representative of the underlying data. In contrast,
the basis functions for H𝑦, when q𝑚 = [𝑢, 𝑣, 𝑤, 𝑇], are poor at representing the
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(a) S̃𝑢𝑢 (q𝑚 = [𝑢, 𝑇])
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(b) S̃𝑤𝑤 (q𝑚 = [𝑢, 𝑇])
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(c) S̃𝑇𝑇 (q𝑚 = [𝑢, 𝑇])
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(d) S̃𝑢𝑢 (q𝑚 = [𝑢, 𝑣, 𝑤, 𝑇])
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(e) S̃𝑤𝑤 (q𝑚 = [𝑢, 𝑣, 𝑤, 𝑇])
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(f) S̃𝑇𝑇 (q𝑚 = [𝑢, 𝑣, 𝑤, 𝑇])
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Figure 5.19: Estimated CSD for (𝜅𝑥 , 𝜅𝑧, 𝜔) = (10, 6, 15) at fixed κ using y𝑚 ≈
[5, 16, 26, 72] with (a)-(c) q𝑚 = [𝑢, 𝑇] (d)-(f) q𝑚 = [𝑢, 𝑣, 𝑤, 𝑇] (g)-(i) DNS CSD.
Measurement points are shown in blue stars

underlying data, hence, the addition of q𝑚 = [𝑣, 𝑤] simultaneously broadens the
estimation problem (estimating more variables), while degrading the quality of the
basis functions.

The challenge of resolvent modes inadequately representing underlying data is well-
documented in literature. This problem is commonly addressed by using eddy
viscosity models (Fan et al., 2024), which can improve data representation by
correcting the significant discrepancy in u-to-v amplitude ratios between resolvent
response modes and SPOD modes, which most optimally represent the second order
statistics in data. Such discrepancies typically necessitate using a large number of
resolvent response modes to accurately reconstruct the boundary layer (Symon et al.,
2023), which is naturally correlated to the reconstruction of the freestream in the
current case. Although the addition of eddy viscosity has proven effective in many
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other cases, our investigation (not shown) reveals no improvement in estimation
accuracy for the current acoustic radiation case, suggesting that specialized eddy
viscosity formulations may be required specifically for acoustic radiation from TBLs.

5.5 Optimality of filtered basis
In Section 5.4, a model for the forcing CSD was utilized to improve the estimation of
the freestream statistics. In doing this, a sequential approach was taken to generate
the modeled forcing CSD – that is the SVD of H𝑦 = U𝑦S𝑦V

∗
𝑦 was first performed

and then the forcing basis was filtered to only contain divergence free components,
as outlined in Algorithm 2.

Hence, this basis for the modeled forcing CSD, given by V𝑦,𝑠𝑜𝑙 , is not necessarily
optimal in terms of being the divergence free basis that maximizes the linear ampli-
fication through the masked resolvent operator, H𝑦, nor is it complete basis for the
forcing (since the dilatational part is being projected out). Another way of stating
the optimal basis set is by writing the Rayleigh quotient, Equation 2.21,

𝜎2
𝑦,𝑠𝑜𝑙 = arg max

| |𝜙 | |𝑐ℎ𝑢=1

< H𝑦𝜙,H𝑦𝜙 >𝑐ℎ𝑢

< 𝜙, 𝜙 >𝑐ℎ𝑢
(5.28)

s.t. ∇ · 𝜙 = 0

with the constraint that the derived forcing basis functions are by construction
divergence free. Unfortunately Equation 5.28 may not be directly solved using
standard numerical linear algebra methods, e.g., Krylov subspace methods which
are used to solve the other resolvent formulations (Equation 2.34).

5.5.1 Methodology
Instead of using standard Krylov methods to solve Equation 5.28, the constrained
eigenvalue problem is solved using Riemannian optimization (Skene et al., 2022).
Though the general approach for this methodology was outlined in Section 2.3,
further modifications must be made to account for the additional constraint in
Equation 5.28, as well as solving for multiple singular vectors.

The procedure is summarized in Algorithm 3, where 𝐷 is the matrix that numerical
implements the divergence, 𝑊𝑐ℎ𝑢 is the matrix representing Chu’s energy norm,
Equation 2.13, and 𝑛𝑠𝑣𝑑 is how many singular vectors are needed. To enforce the
divergence free constraint, the optimization is performed on a manifold that is both
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Algorithm 3: Constrained SVD with Divergence-Free Constraint
Input: H ∈ C𝑛×𝑛, 𝐷 ∈ C𝑚×𝑛, 𝑊𝑐ℎ𝑢, 𝑛𝑠𝑣𝑑
Output: {𝜎𝑘 }𝑛𝑠𝑣𝑑𝑘=1 , {𝑥

C
𝑘
}𝑛𝑠𝑣𝑑
𝑘=1

Function ConstrainedSVD_DivFree(H , 𝐷,𝑊𝑐ℎ𝑢, 𝑛𝑠𝑣𝑑):
M ← { 𝑥 ∈ C𝑛 : ∥𝑥∥ = 1, 𝐷 𝑥 = 0};
H𝑤 ← embed(H ,𝑊𝑐ℎ𝑢) ; /* Equation 2.16 */
for 𝑘 = 1 to 𝑛𝑠𝑣𝑑 do

𝑉𝑤,𝑘 ← arg min𝑥∈M
[
−
√︁
(H𝑤 𝑥)∗(H𝑤 𝑥)

]
;

𝜎𝑘 ← ∥H 𝑉𝑤,𝑘 ∥;
UpdateH𝑤 ←H𝑤 −

(
H𝑤 𝑉𝑤,𝑘

) (
𝑉𝑤,𝑘

)∗;
𝑉𝑘 = 𝑊

−1/2
𝑐ℎ𝑢

𝑉𝑤,𝑘 ;
𝑈𝑘 = H𝑉𝑘

end
return {𝜎𝑘 }𝑛𝑠𝑣𝑑𝑘=1 , {𝑈𝑘 }

𝑛𝑠𝑣𝑑
𝑘=1 , {𝑉𝑘 }

𝑛𝑠𝑣𝑑
𝑘=1 ;

divergence free and has a unit Chu’s norm:

M = { 𝑥 ∈ C𝑛 : ∥𝑥∥𝑐ℎ𝑢 = 1, ∇ · 𝑥 = 0}, (5.29)

where in Algorithm 3 the divergence free constraint is numerically enforced by a
linear equation with a matrixD. In practice, during the optimization, this is enforced
by modifying the projection and retraction steps, which will now be outlined.

Projection onto the tangent space. Given a point 𝑥 ∈ M, the orthogonal projector
onto ker(D) is defined as,

P = KK∗, (5.30)

where the columns of K form an orthonormal basis of ker(D) ⊂ C𝑛. Numerically
K is constructed by taking an SVD of D. Then, given a vector v ∈ C𝑛, the tangent-
space projection proj𝑥 (v) onto 𝑇𝑥M is performed by first projecting 𝑣 onto ker(D)
and then removing the component parallel to x, e.g., normal to the manifoldM:

proj𝑥 (v) = P 𝑣 −
x∗

(
Pv

)
x∗x

x. (5.31)

Retraction. From a point x ∈ M and a tangent vector v ∈ 𝑇𝑥M, the retraction,
𝑅𝑥 (v), is defined by

𝑅𝑥 (v) =
P
(
x + v

)

P (
x + v

)

 . (5.32)

This ensures that the updated point remains in ker(D) and on the unit hyper-sphere,
preserving both the divergence-free condition and the normalization constraint.
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It is noted that the outline of Riemannian optimization may be found in Section 2.3
and Algorithm 1, which provides an outline of how the projection and retraction
steps fit into the broader framework optimization framework.

5.5.2 Validation
To validate this solver, there are two separate objectives that must be tested: (1) in
the trivial case, e.g., D = Z where Z is a zero matrix, the standard resolvent forcing
and response modes can be reproduced, and (2) in the constrained optimization, the
divergence free constraint is being satisfied.

To address (1), the optimization may be run with a trivial constraint operator of
D = Z. Since, in this case, the projection will be done onto ker(Z) = I , algorithm
3 will converge to the optimization with no constraint imposed — e.g., the standard
SVD. To ensure this is validation is satisfied, in Figure 5.20,

𝑒𝐿𝐶𝑆 B 1 −𝑉∗𝑗 ,𝑠𝑣𝑑W𝑐ℎ𝑢V 𝑗 ,𝑜𝑝𝑡 , (5.33)

the error between the forcing modes found using the standard SVD routine and the
Riemannian optimization approach is shown. Thus validating the SVD aspect of
Algorithm 3.
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Figure 5.20: The error between forcing modes derived using standard SVD routine
and the Riemannian optimization approach using D = Z, 𝑒𝐿𝐶𝑆. Results are shown
for (𝜅𝑥 , 𝜅𝑧, 𝜔) = (10, 6, 15).

To address (2), the optimization is run as specified in Algorithm 3 with the constraint
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imposed via the matrix,

D =

©­­­­­­­­­­«

𝑖𝑘𝑥I D𝑦 𝑖𝑘𝑧I 0 0

e𝑇1 0 0 0 0

0 e𝑇1 0 0 0

0 0 e𝑇1 0 0

0 0 0 I 0

0 0 0 0 I

ª®®®®®®®®®®¬
, (5.34)

where I is the identity matrix of size 𝑁𝑦, 0 is the zero matrix, D𝑦 is the differential
operator in the 𝑦-direction, and e𝑇1 is the row vector enforcing boundary conditions at
the wall (selecting the first grid point). This enforces the divergence free constraint,
the boundary conditions on the velocity perturbations at the wall, and that the
thermodynamic components are zero. In Figure 5.21, the error of the constraint,

𝑒𝑖,𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 B |E
(
DV𝑖,𝑠𝑜𝑙−𝑜𝑝𝑡

)
|, (5.35)

is plotted to verify that the constraint is satisfied.
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Figure 5.21: The error of the constraint, 𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 for constrained SVD performed
as specified in Algorithm 3. Results are shown for (𝜅𝑥 , 𝜅𝑧, 𝜔) = (10, 6, 15).

5.5.3 Estimation with an optimal basis
Now that the solver has been fully verified, the constrained SVD problem, Equation
5.28, may be solved to generate a decomposition of the masked resolvent operator,

H𝑦 = U𝑦,𝑠𝑜𝑙−𝑜𝑝𝑡S𝑦,𝑠𝑜𝑙−𝑜𝑝𝑡V
∗
𝑦,𝑠𝑜𝑙−𝑜𝑝𝑡 , (5.36)

with an optimal divergence free basis. This basis then allows the creation of another
modeled estimator, 𝑇𝑞,𝑚𝑜𝑑𝑒𝑙−𝑜𝑝𝑡 with Algorithm 2, but using V𝑦,𝑠𝑜𝑙−𝑜𝑝𝑡 instead of
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V𝑦,𝑠𝑜𝑙 . Hence, the new estimation is computed as:

S𝑞𝑞 ≈ S̃𝑞𝑞 = 𝑇𝑞,𝑚𝑜𝑑𝑒𝑙 (S̃ 𝑓 𝑓 ,𝑠𝑜𝑙−𝑜𝑝𝑡)S𝑦𝑦𝑇∗𝑞,𝑚𝑜𝑑𝑒𝑙 (S̃ 𝑓 𝑓 ,𝑠𝑜𝑙−𝑜𝑝𝑡). (5.37)

In Figure 5.22, the comparison is made between estimations for𝑇𝑞,𝑚𝑜𝑑𝑒𝑙 (𝑆 𝑓 𝑓 ,𝑠𝑜𝑙) and
𝑇𝑞,𝑚𝑜𝑑𝑒𝑙 (𝑆 𝑓 𝑓 ,𝑠𝑜𝑙−𝑜𝑝𝑡). It may be seen that both estimators perform similarly. Due to
the extremely large cost of solving the constrained SVD and the minimal difference
in the estimated freestream fields, it is concluded that it is not worth further pursuing
the optimal solenoidal basis.
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(a) 𝜅𝑥𝜔𝚽̃𝑢𝑢 (𝑦/𝛿 = 1.8)
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(b) 𝜅𝑥𝜔𝚽̃𝑇𝑇 (𝑦/𝛿 = 1.8)

20 40
κx

10

20

30

40

ω

6 wp
= 15.0

6 wp
=

30
.0

6 wp
=

50
.0

6 w
p
=

80
.0

6 wp
= 15.0

6 wp
=

30
.0

6 wp
=

50
.0

6 w
p
=

80
.0

0

50

100

150

200

250

(c) 𝜅𝑥𝜔𝚽̃𝑢𝑢 (𝑦/𝛿 = 1.8)
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(d) 𝜅𝑥𝜔𝚽̃𝑇𝑇 (𝑦/𝛿 = 1.8)

Figure 5.22: Estimated pre-multiplied power spectra for temperature at fixed wall
height 𝑦/𝛿 = 1.8 for 𝜅𝑧 ≈ 6.0. Estimation performed with: (a-b)𝑇𝑞,𝑚𝑜𝑑𝑒𝑙 (𝑆 𝑓 𝑓 ,𝑠𝑜𝑙) (c-
d)𝑇𝑞,𝑚𝑜𝑑𝑒𝑙 (𝑆 𝑓 𝑓 ,𝑠𝑜𝑙−𝑜𝑝𝑡) . Estimate performed with 𝑞𝑚 = [𝑢, 𝑇], y+𝑚 ≈ [5, 16, 26, 72],
using Equation 2.72, and only PSD information was provided to the estimate.
Checkered region indicates region not being computed – only wavenumbers with
𝜅 ∈ {𝜅 |𝜅𝑥𝜔𝚽(𝜅𝑥 , 𝜔) > 0.01 max (𝜅𝑥𝜔𝚽(𝜅𝑥 , 𝜔)) .} are computed.

Although the estimation does not change significantly for this basis set, the benefit
of the optimal solenoidal basis is that it is a complete basis. Due the dilatational
component of the standard forcing function, V𝑦,𝑑𝑖𝑙 , existing above the relative sonic
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line, it is expect that the filtered basis, V𝑦,𝑠𝑜𝑙 may lack support in that region hence
leading to poor conclusions if measurements are made in the outer region. In
contrast, due to the fact that V𝑦,𝑠𝑜𝑙−𝑜𝑝𝑡 is complete and representative of solenoidal
forcings, it is hypothesized that this basis may perform better when measurements
in the outer layer are performed. The aim of this work is to predict the freestream
PSD from a sparse number of near-wall measurements, hence, such a study is left
for future work.

5.6 Conclusions and future directions
In this chapter, resolvent based estimation of freestream statistics from a sparse
number of near-wall statistic measurements was performed. It was shown that per-
forming estimates with PSD measurements produces results nearly as good as those
performed with CSD measurements, but much easier to obtain and cheaper to per-
form estimates with. It was then shown that with a sparse number of measurements,
RBE alone is not enough to produce accurate estimates of the freestream.

To address this lack of accurate measurements, a 2D resolvent analysis was per-
formed over a range of spanwise and temporal wavenumbers. The optimal forcing
mode was analyzed at each wavenumber pair and it was shown that the solenoidal,
incompressible-like, part of the optimal forcing mode was primarily responsible for
a bulk of the linear amplification. Additionally, it was shown that the dilatational part
of the forcing mode existed above the relative sonic line and could be representative
of an incoming disturbance that reflects off the relative sonic line.

This insight into the amplification of 2D optimal resolvent response modes was then
used to develop a forcing model that was incorporated into the RBE framework.
This forcing model requires no a priori information and works by constraining
the forcing to be solenoidal only. It was demonstrated that this forcing model
significantly improved the localization and the amplitude estimate of the freestream
PSD.

Finally, limitations of this framework were discussed. It was shown that inclusion
of measuring the spanwise and wall-normal velocity significantly degraded the
estimation capabilities. By analyzing the optimal resolvent based estimator, it was
shown that this was due to the estimator itself and not the forcing model. Though left
for future work, this is indicative of future gains to be had through the use of eddy
viscosity models or other ways of modifying the resolvent basis, e.g., data-driven
methods.
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The limitations of the forcing model were also explored, by computing a linear basis
that was optimal and divergence free. For measurement parameters use throughout
this chapter, it was seen that both methods to generate an approximate forcing
CSD produced similar results. That being said, due being a complete orthonormal
basis, it is expected that the optimal divergence-free basis may perform better for
increasing number of measurement points. Future work would require applying
this estimation method to all wavenumbers to understand its properties with varying
spanwise wavenumber.

There are many directions of future work and area to apply this. Chief among them
is the application of scaling laws to scale this model to other parameter regimes
where data is not available, which then would enable experimentalists to use these
tools to understand the freestream noise environment in various parameter regimes.
Additionally, it is of great interest to understand the optimal measurement locations
to estimate the freestream. The ultimate direction and goal of this work is to enable
estimation in: (1) DNS where the freestream is not resolved (2) Regions where data
is not obtained for estimation targeted towards experimental design.
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C h a p t e r 6

DATA DRIVEN STUDY OF ACOUSTIC RADIATION FROM
HYPERSONIC TBL

This chapter1performs spectral proper orthogonal decomposition (SPOD) on a
dataset for a hypersonic streamwise developing turbulent boundary layer (TBL)
with moderate wall cooling. It is shown that the directly performing SPOD of the
streamwise developing data shows high-rank behavior and does not isolate distinct
amplification mechanisms, which are amenable to analysis. The data is the processed
further by taking a Fourier transform in the streamwise direction and performing
the 1D SPOD. This case uncovers extremely low-rank behavior corresponding to
regions of largest amplification in the DNS. Finally, the structure of the optimal 1D
SPOD mode is explored and compare to the optimal resolvent response mode. It is
found that the optimal resolvent basis reproduced similar boundary layer structures
to the optimal SPOD mode, but overall a low similarity is seen between the two
when measured with the linear coherence spectrum.

6.1 Introduction
In an unheated hypersonic wind tunnel with adequate flow conditioning, the freestream
disturbance environment is dominated by acoustic radiation from tunnel-wall TBL
(Laufer, 1964; Schneider, 2001). As a result, freestream disturbance measurements
are susceptible to experimental errors, particularly due to the relatively lower fluctua-
tion amplitudes in the freestream compared to the near-wall region. Early theoretical
models by Phillips, 1960 and J. E. F. Williams and Maidanik, 1965 attributed this
acoustic radiation primarily to "eddy" Mach waves from boundary-layer turbulence
convecting supersonically relative to the freestream, but were limited by insufficient
knowledge of boundary-layer turbulence dynamics.

Although numerous investigators have reported measurements of freestream dis-
turbance intensity in high-speed facilities at both supersonic and hypersonic Mach
numbers, the measurements by Laufer, 1964 still provide one of the few datasets
detailed enough for comparison or model development. Even in these landmark
studies, highly accurate measurements of absolute amplitudes of radiated acoustic

1Part of this chapter has been previously published in Roy et al., 2024
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energy were not pursued, with focus instead on statistical quantities least likely to
be influenced by multiple tunnel walls.

Direct Numerical Simulations (DNS) is a valuable tool that can overcome some of the
aforementioned difficulties with both experimental measurements and theory and,
hence, provide access to both flow and acoustic quantities that are difficult to obtain
otherwise. DNS, and its analysis via SPOD, can also isolate the acoustic radiation
due to individual physical mechanisms, thereby avoiding any contamination due
to secondary sources such as vortical and entropy fluctuations in the incoming
stream. The successful application of DNS to capture the freestream acoustic
pressure fluctuations has been demonstrated across a wide range of Mach number,
wall-to-recovery temperature ratio, Reynolds number, and geometric configurations
(Duan, Choudhari, Chou, et al., 2019), creating opportunities for more meaningful
tunnel-noise modeling in high-speed ground facilities.

In this study, the high-fidelity dataset provided by DNS is leveraged and the analysis
of a spatio-temporal dataset of streamwise developing hypersonic turbulent boundary
layers with moderately cooled walls is performed. To extract physically meaningful
structures from this DNS data, SPOD is employed as the primary analytical tool.
SPOD is particularly well-suited for analyzing complex turbulent flows due to the
fact that it captures optimal, in terms of capturing second order statistics, structures
that evolve coherently in space and time — capabilities essential for understanding
the dominant mechanisms responsible for acoustic radiation in hypersonic TBLs.

As discussed in Section 2.4, SPOD shares strong theoretical connections with re-
solvent analysis and provides an optimal linear basis for capturing second-order
statistics from turbulent flow data. This theoretical foundation has made SPOD
an increasingly valuable tool across various flow regimes, including wall-bounded
flows (Abreu, Cavalieri, et al., 2020), jets (Schmidt, Towne, Rigas, et al., 2018;
Pickering, 2021), and airfoil configurations (Demange et al., 2024). Most recently,
SPOD has been applied to analyse locally parallel hypersonic TBL to study bound-
ary layer dynamics and to develop eddy viscosity models (Fan et al., 2024). Despite
its successful application in these contexts, SPOD analysis has not yet been utilized
to study relatively supersonic phenomenon in a hypersonic TBL. The present work
addresses this gap by applying SPOD to DNS data of a hypersonic TBL and exam-
ining the relationship between the extracted SPOD modes and the corresponding
resolvent basis.
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The chapter starts by performing the SPOD of the 2-D streamwise developing dataset
in Section 6.2. Then the data is further processed and the SPOD analysis, and
comparison to resolvent decomposition, is performed in Section 6.3. Conclusions
and future directions for research are then discussed in Section 6.4.

6.2 SPOD of a streamwise developing boundary layer

(a) (b)

Figure 6.1: Data from a DNS of a Mach 5.86 TBL. (a) Visualization of flow
structures and the subdomain (indicated by a red box) extracted for spectral
and modal analyses. Grey contours represent the instantaneous density gradi-
ent, while the color contours visualize the instantaneous vorticity magnitude.
(b) Contours of the pre-multiplied frequency-wavenumber spectrum of pressure,
𝜔𝜅𝑧Φ𝑝𝑝 (𝜅𝑧, 𝜔; 𝑦/𝛿 ≈ 2.15). Figure reproduced from Section 3.3 for ease of refer-
ence.

In this section, the focus is on a DNS of acoustic radiation from a Mach 5.86 spatially
developing TBL over a moderately cooled wall. The freestream conditions for this
DNS are similar to those of the Boeing/AFOSR Mach-6 Quiet Tunnel (BAM6QT)
during noisy runs, with a total pressure of 921 kPa and a total temperature of 433
K, which have been outlined in Section 3.1.2.

The details of the dataset and the computation of the SPOD may be found in Section
3.3 and 2.4, respectively. To aid in the discussion, a brief summary of those sections
is now provided.

During the computation of the DNS, the state variables in a sub-domain, shown in
Figure 6.1(a), were stored every ten time-steps, and collected as,

Q(𝑥, 𝑦, 𝑧, 𝑡) =
[
q(𝑥, 𝑦, 𝑧, 𝑡0), ...., q(𝑥, 𝑦, 𝑧, 𝑡 𝑓 )

]
, (6.1)

where 𝑡 𝑓 is the final time. Here the number of temporal snapshots is given as,
𝑛𝑡 = 7925.

The data is then further processing by subtracting the 2-D mean, e.g.,

q′(𝑥, 𝑦, 𝑧, 𝑡) = q(𝑥, 𝑦, 𝑧, 𝑡) − q̄(𝑥, 𝑦) ⊗ 1(𝑧) ⊗ 1(𝑡), (6.2)
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𝑛𝑡 7925 Total number of time samples
𝑛𝑏𝑙𝑘𝑠 123 Number of blocks
𝑛 𝑓 𝑓 𝑡 128 Number of snapshots in each block
𝑛𝑜𝑣𝑙𝑝 64 Overlap between consecutive blocks

Table 6.1: Parameters for Welch’s method used in SPOD computation

where 1(·) are unit functions in (·) dimension, and performing a Fourier transform
in the spanwise direction on the fluctuations:

Q̂(𝑥, 𝑦, 𝜅𝑧, 𝑡) =
[
q̂(𝑥, 𝑦, 𝑡0; 𝜅𝑧), ...., q̂(𝑥, 𝑦, 𝑡 𝑓 ; 𝜅𝑧)

]
. (6.3)

The CSD is then computed using Welch’s method (Schmidt and Colonius, 2020),

S𝑞𝑞 (𝑥, 𝑦; 𝜅𝑧, 𝜔) = E
[
Q̂(𝑥, 𝑦; 𝜅𝑧, 𝜔)Q̂†(𝑥, 𝑦; 𝜅𝑧, 𝜔)

]
(6.4)

using a Hanning window function, to prevent spectral leakage in time, and the
parameters specified in Table 6.1. The computation of the SPOD then follows,
Section 2.4, by taking the eigenvalue decomposition of the CSD, Equation 6.4,
along with a specified norm.

Additionally, to focus on the freestream fluctuations, the CSD, Equation 6.4, is
further modified with a spatial masking matrix:

S𝑞𝑞,𝑚 (𝑥, 𝑦; 𝜅𝑧, 𝜔) = E
[
CQ̂(𝑥, 𝑦; 𝜅𝑧, 𝜔)Q̂†(𝑥, 𝑦; 𝜅𝑧, 𝜔)C†

]
, (6.5)

where C zeros out anything below 𝑦/𝛿(𝑥) = 1.4, before performing the eigenvalue
decomposition to attain SPOD modes.

6.2.1 Convergence of 2-D SPOD
The second order statistics, the CSD, for turbulent flows are notoriously hard to
converge, with many works addressing ways to improve convergence or optimal
convergence strategies (Blanco et al., 2022; Heidt and Colonius, 2024). At the same
time, there are not well defined settings for the parameters used for the averaging,
𝑛𝑏𝑙𝑘𝑠, etc., that guarantee convergence of the SPOD modes. Hence, before proceed-
ing with the analysis, it is essential that a convergence study of the computation is
performed.

In order to verify the convergence, the dataset is first split into two equal chunks each
corresponding to 75% of the total dataset, and then the SPOD analysis is performed
on each dataset individually. The similarity of the SPOD modes from the subset with
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Figure 6.2: Linear coherence spectrum, 𝜇𝑖,𝑘 , between SPOD modes from the whole
dataset, Ψ𝑖, and those computed using 75% of the total number of snapshots, Ψ𝑖,𝑘 , at
(𝜅𝑧, 𝜔) ≈ (6, 9.2). SPOD is computed using Welch’s method following parameters
in Table 6.1 and a spatial mask to restrict the optimization to only account for
perturbations above 𝑦/𝛿(𝑥) > 1.4, Equation 6.5.

the SPOD of the whole dataset are then computed via the LCS, e.g., a normalized
inner product,

𝜇𝑖,𝑘 (𝜅𝑧, 𝜔) B
���� < Ψ𝑘 ,Ψ𝑖,𝑘 >𝑐ℎ𝑢

∥Ψ𝑘 ∥𝑐ℎ𝑢∥Ψ𝑖,𝑘 ∥𝑐ℎ𝑢

���� , (6.6)

where 𝜇𝑖,𝑘 is the projection coefficient for dataset 𝑖(∈ [1, 2]), 𝑘 is the order, in
terms of optimality in the expansion, of the mode, and Ψ𝑖,𝑘 is the 𝑘 optimal mode
computed using dataset 𝑖. This same methodology for testing convergence has been
ran in other studies, such as Lesshafft et al., 2019; Abreu, Cavalieri, et al., 2020.

The result of this convergence tested is plotted in Figure 6.2 for a single wavenumber
(𝜅𝑧, 𝜔) ≈ (6, 9.2). It can be seen that the first two modes show projection coefficients
𝜇𝑖,𝑘 ≥ .95 and further coefficients are 𝜇𝑖,𝑘 > 0.80, indicating that SPOD is well
converged for this parameter. Similar values were seen for other wavenumber pairs.

6.2.2 Analysis of 2-D SPOD
Following the test of convergence, the overall structure of the decomposition may be
inspected by plotting the eigenvalues and a metric for how low-rank the decompo-
sition is. Figure 6.3 plots the SPOD eigen-spectrum for a spanwise wavenumber of
𝜅𝑧𝛿 ≈ 6, corresponding to the peak of the 𝜅𝑧−𝜔 spectrum, as shown in Figure 6.1(b).
The eigenvalues corresponding to the first fifty SPOD modes are shown, with the
blue shaded region highlighting the gap between the first and second eigenvalues
for varying temporal wavenumber.

Unlike turbulent jets (Towne, Schmidt, and Colonius, 2018; Abreu, Cavalieri, et al.,
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Figure 6.3: Eigenvalue spectrum for SPOD of a Mach 5.86 TBL at 𝜅𝑧𝛿 = 6.0. Blue
region highlights the difference between the two leading eigenvalues.
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Figure 6.4: Low-rankness quantified by 𝜆1/
∑
𝑖 𝜆𝑖 for SPOD of a Mach 5.86 TBL at

𝜅𝑧𝛿 = 6.0. Blue region highlights the difference between the two leading eigenval-
ues.

2020) and flow over airfoils (Abreu, Tanarro, et al., 2021), in which large separations
between the first and second eigenvalues are seen at low-frequency ranges, a similarly
large separation of eigenvalues is not observed, in the present case for the current
hypersonic TBL, indicating a lack of low-rank behavior. This is further confirmed
by the low-rank metric plot shown in Figure 6.4, where the first SPOD mode only
captures less than 10% of the total energy at𝜔𝛿/𝑈∞ ≈ 9.2, which corresponds to the
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Figure 6.5: Temperature component of optimal suboptimal temperature SPOD
modes optimal for (𝜅𝑧𝛿, 𝜔𝛿/𝑈∞) ≈ (6.0, 9.2). SPOD is computed using Welch’s
method following parameters in Table 6.1 and a spatial mask to restrict the opti-
mization to only account for perturbations above 𝑦/𝛿(𝑥) > 1.4, Equation 6.5.

peak of the 𝜅𝑧 −𝜔 spectrum. It is further noted that this lack of low-rankness is not
affected by the spatial mask, e.g. whether we consider freestream only, boundary
layer only, or the whole domain the SPOD does not identify low-rank behavior.

Though low-rank behavior is not observed, it is still instrumental to inspect the
structure of the SPOD modes to see if anything may be ascertained about the
mechanisms generating acoustic waves. Figure 6.5 visualizes the first two optimal
modes for temperature at the most amplified spectral pair, as seen in Figure 6.1.
Both modes exhibit a dominant streamwise wavelength of 𝜆𝑥 ≈ (1/4)𝛿, along
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with a constant inclination angle, 𝜃𝑛 ≈ 120◦ for the freestream disturbance. The
inclination angle of 𝜃𝑛 ≈ 120◦ for the radiation wave front is consistent with the
previously reported value based on numerical Schlieren images of the DNS (Duan,
Choudhari, and C. Zhang, 2016; Duan, Choudhari, Chou, et al., 2019). The
existence of a dominant streamwise wavelength suggests that the flow may exhibit
low-rank characteristics if analyzed using 1-D SPOD.

6.2.3 Comparison with optimal resolvent mode
In this section, the structure for the optimal resolvent response mode is presented,
and it is compared with the leading SPOD mode to gain insight into the nonlinear
forcing mechanism.
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Figure 6.6: Optimal resolvent response mode for temperature shown for
(𝜅𝑧𝛿, 𝜔𝛿/𝑈∞) ≈ (6.0, 9.2) computed on the same spatial domain as the SPOD
analysis is ran. The inset highlights the near-wall behavior of the mode. Spatial
masking is used to ensure that the resolvent mode obtained is radiating, as done in
Section 4.2.1. The boundary layer thickness 𝛿(𝑥) is indicated by the black line.

Figure 6.6 shows the temperature component of the optimal resolvent response
mode with the same spectral parameters and domain as Figure 6.5. The leading
resolvent response does not align with the leading SPOD mode; neither streamwise
wavelength nor spatial localization align. The large difference between the leading
SPOD mode and the resolvent response suggests strong nonlinear interactions in the
flow dynamics, as SPOD is optimal for capturing the action of the resolvent operator
and the forcing, cf. Section 2.4.1. The significantly different wall-normal extent and
approximate streamwise wavenumber suggests that the 2-D resolvent computation
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may be over-estimating the influence of the near-wall amplification to freestream
field.

Although not shown, it is further noted that the first and second sub-optimal resolvent
modes show the same streamwise wavelength and similar spatial localization (as
also observed in Chapter 4), but with a two and three lobe structure, respectively,
that enforces orthonormality between the response modes.The large differences
seen between the optimal SPOD and resolvent modes indicates that the structure
of the forcing is essential for understanding the mechanics of freestream noise
amplification.

It is important to note that exact alignment, in terms of the location of the mode
structures in the streamwise direction, between the 2-D SPOD modes and the re-
solvent responses is not expected. The misalignment between the two could be
caused by domain effects, considering that the SPOD may have forcing before the
subdomain that gets amplified in the subdomain whereas the resolvent computation
is completely constrained to the subdomain. Therefore, in this comparison, our
focus is primarily on examining the structure of the response modes.

6.3 Streamwise Fourier transform reveals low-rank behavior
In Section 6.2, it was seen that the 2-D SPOD modes reveal extremely high rank
behavior, which shows consistent behavior with the corresponding 2-D resolvent
analysis of a streamwise developing TBL. Due to the fact that the leading order modes
in the 2-D SPOD revealed structures containing one primary wavelength, there is
reason to believe that further transforming the 2-D fluctuating data, Q̂(𝑥, 𝑦;𝜔, 𝜅𝑧),
in the streamwise direction, e.g., Q̂(𝑦; 𝜅𝑥 , 𝜅𝑧, 𝜔), may uncover low-rank behavior,
which may provide hints to the underlying physical mechanisms underlying acoustic
radiation. Thus, this section performs SPOD on the 1-D fluctuations, Q̂(𝑦; 𝜅𝑥 , 𝜅𝑧, 𝜔),
and analyzes the resulting modal decomposition.

6.3.1 Convergence of 1-D SPOD
To ensure the convergence of the SPOD for the 1-D fluctuations, a convergence
study is performed following the method used in Section 6.2.1. The results of this
study are shown in Figure 6.7 for varying temporal wavenumber, 𝜔. It may be seen
that the projection coefficients are large, with the projection coefficients for the first
two modes, 𝜇𝑖,1(𝜔) and 𝜇𝑖,2(𝜔) being greater than 0.90.

Additionally, the freestream relative sonic line, e.g., the wavenumbers where the
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Figure 6.7: Linear coherence spectrum, 𝜇𝑖,𝑘 , between SPOD modes from the whole
dataset Ψ𝑖 and those computed using 75% of the snapshots, Ψ𝑖,𝑘 , at (𝜅𝑥 , 𝜅𝑧, 𝜔) ≈
(8.41, 6.0) with varying 𝜅𝑥 . SPOD is computed using Welch’s method following
parameters in Table 6.1 and a spatial mask to restrict the optimization to only account
for perturbations above 𝑦/𝛿 > 1.6, Equation 6.5. The relative sonic line, the negative
relative sonic, and one of the locations being plotted, (𝜅𝑥 , 𝜅𝑧, 𝜔) ≈ (8.4, 6.0, 5.8), in
the rest of the section are shown in the solid red, dashed red, and blue dashed line,
respectively.

relative Mach number is unity,

{κ | Ma(κ) = 1}, (6.7)

is plotted in red, with the freestream relative Mach number, Equation 1.8, increasing
as 𝜔 decreases. Figure 6.7 then shows that within the relatively sonic region, e.g.,
below the red line, there is good convergence of the SPOD modes.

Further, it is noted that these computations are run with 𝑦𝑚𝑎𝑠𝑘/𝛿 = 1.6. It was
found that the projection coefficients increased when the masking height was raised
above unity. It is believed that this is due to intermittent presence of boundary layer
fluctuations above 𝛿(𝑥) = 1, hence, to solely focus on mach wave radiation the mask
height was increased.

6.3.2 Analysis of SPOD
Following the convergence of the 1-D SPOD, the analysis proceeds by first inspecting
the SPOD eigenvalue spectrum, which is shown in Figure 6.8. In Figure 6.8a, it is
seen that the leading eigenvalue peak corresponds with the critical layer mechanism.
This is consistent with previous studies that have been performed on incompressible
wall-bounded flows (Abreu, Cavalieri, et al., 2020).
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In contrast, Figure 6.8b, where the SPOD is computed using a spatial mask to focus
on freestream fluctuations, shows that the peak locations are located in the relatively
supersonic regime, which are demarcated by the negative and positive relative sonic
lines. The negative and positive relative sonic line are given by the spectral triplet
where the relative Mach in the freestream is equal to unity,

κ𝑟𝑒𝑙.𝑠𝑜𝑛𝑖𝑐 = {κ | Ma∞(κ) = 1} (6.8)

κ𝑛𝑒𝑔.𝑟𝑒𝑙.𝑠𝑜𝑛𝑖𝑐 = {κ | Ma∞(κ) = −1} (6.9)

where the relative Mach, Ma, is given by Equation 1.8. This represents the dividing
line between where a spectral parameter can and cannot radiate relative to the
theory of Mack, 1984. Additionally, a clear demarcation is shown between the
relatively subsonic and relatively supersonic region, which indicates that the SPOD
is capturing radiating modes.
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Figure 6.8: Pre-multiplied leading SPOD eigenvalue for varying (𝜅𝑥 , 𝜔) with vary-
ing masking matrices, C. The relative sonic and the negative relative sonic line are
shown in solid red and dashed red lines, respectively. The critical layer is indicated
by a black line in Figure 6.8a.

Since this work focuses on understanding the acoustic radiation, the analysis will
proceed with SPOD computed using a spatial mask to restrict attention to the
freestream, as shown in Figure 6.8b. The decomposition of the data can be further
understood by plotting a low-rankness metric by plotting the ratio of the first eigen-
value to the sum of the rest, 𝜆1/

∑
𝑖 𝜆𝑖, which provides a metric to understand how

well the flow may be represented by a single SPOD mode. This low-rankness metric
is shown in Figure 6.9.

By inspection of Figure 6.9, low-rank behavior, as demonstrated by a measurement
of 𝜆1/

∑
𝑖 𝜆𝑖 ≈ 0.7, may be observed throughout the relative sonic region, with both
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Figure 6.9: Low-rankness of the freestream SPOD, 𝜆1/
∑
𝑖 𝜆𝑖. Black contour lines

represent the integrated pre-multiplied power spectral density 𝜅𝑥𝜔Φ𝑇𝑇 (𝜅𝑥 , 𝜔; 𝑦/𝛿 =)
at levels 0.1 (darkest), 0.01 (medium), and 0.001 (lightest) of the maximum value.
Red solid and dashed lines indicate the relative Mach number Ma∞ = 1 and Ma∞ =

−1, respectively.

fast and slow waves showing low-rank behavior. Additionally, the overlaid black
and grey contours visualize the region of the largest pre-multiplied pressure PSD in
the freestream, from DNS measurements, which shows that this low-rank behavior
persists throughout the regions of largest amplification.

6.3.3 Understanding the impact of forcing: resolvent vs SPOD
In Section 6.3.2, the masked SPOD analysis revealed low-rank behavior correspond-
ing to the region of largest amplification for the freestream first order statistics. This
finding suggests that the optimal SPOD mode effectively captures both the underly-
ing statistics and physical mechanisms. This section will analyze the optimal SPOD
mode and compare it with the corresponding optimal resolvent response mode.

As established in Section 2.4, the primary distinction between resolvent and SPOD
modes lies in the structure, or color, of the forcing. Understanding the differences
between the optimal SPOD mode and the resolvent basis will illuminate how the
forcing influences modal structure and help develop more accurate models of the
dynamics. The analysis focuses on determining why these modal representations
differ and identifying key features that should be incorporated into effective models.
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Figure 6.10 presents a comparison of the optimal SPOD mode and resolvent response
mode at two spectral triplets. These locations correspond to the location with the
overall largest pre-multiplied pressure PSD in the freestream, 𝜅𝑥𝜔𝚽𝑝𝑝 (𝜅𝑥 , 𝜔; 𝑦/𝛿 =
2.15, 𝜅𝑧𝛿 = 6.0), and the location with the largest value of the freestream pre-
multiplied pressure PSD such that 𝜅𝑥𝛿 > 10. As a point of interest, these both are
around the same freestream relative Mach number, as tabulated in Figure 6.10.
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Figure 6.10: Comparison of components of optimal SPOD and resolvent re-
sponse mode at the argmax location in the pre-multiplied PSD, (𝜅𝑥 , 𝜅𝑧, 𝜔) ≈
(8.41, 6.0, 5.84). Both results have been computed with 𝑦𝑚𝑎𝑠𝑘 = 1.6. The dashed
black line and the dashed red line indicate the critical layer and the relative sonic
line, respectively.

In Figure 6.10, one may see that the optimal SPOD mode has support around the
critical layer, but also extends out into the log layer. Additionally, it is observed
that the wall-normal and spanwise velocity components have the same order of
magnitude as the streamwise velocity. Contrasting the two modes, it is seen that
the relative amplitude of the temperature component for the resolvent mode is
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significantly more dominant.

The ‘radiation efficiency’ of the resolvent modes is much larger with the freestream
temperature fluctuations being approximately half the peak boundary layer maxi-
mum of temperature fluctuations. The SPOD mode in contrast shows a maximum
freestream temperature fluctuation of approximately a twentieth the maximum tem-
perature value in the boundary layer. This result is reminiscent of results found
in Chapter 5, where the resolvent based estimation over-predicted the freestream
amplification.

By looking at both Figure 6.10a and 6.10b, it can be seen that there is a peak in
the resolvent modes directly above the relative sonic line, but before the boundary
layer thickness (𝑦+ ≈ 450), for both the density and temperature components. It
can be shown that these peaks are caused by the dilatational part of the resolvent
forcing mode. Due to the lack of this peak in the optimal SPOD modes, it may be
hypothesized that dilatational forcing, which exists outside of the boundary layer,
plays a relatively small role in the amplification of acoustic radiation in real turbulent
flows. That being said, to make a stronger statement further studies of the actual
forcing would be necessary.

Due to the exceptionally large temperature fluctuations present in the resolvent
response modes in Figure 6.10, the mechanics of the velocity components are chal-
lenging to ascertain. To remedy this and to understand how the different components
interact, in Figure 6.11, the streamwise velocity is plotted in the cross-plane with
arrows indicating the direction of flow for the wall-normal and spanwise velocity
components.

In Figure 6.11a, the wall-normal-spanwise velocity quiver shows that there are
swirling motions that are moving slower moving fluid down and then ejecting fluid
up towards the freestream. Similar vortical structures are seen in the resolvent
modes, Figure 6.11c, but with less overall wall-normal extent and being highly
localized to the critical layer. It is noted that these structures are qualitatively
different than the standard lift-up type mechanism that may be observed in the near-
wall cycle in the relatively subsonic regime, as shown in Sandberg, 2023, which
may be partially attributed to the spanwise wavenumber of 𝜆𝑧𝛿 ≈ 1.0 being more
representative of large scale motions. Similar trends are seen in the temperature
fluctuations, in Figures 6.11b and 6.11d, with the temperature fluctuations being
exactly out of phase with the streamwise velocity fluctuations.
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Figure 6.11: Comparison of components of optimal SPOD and resolvent response
mode in the cross-stream plane at the argmax location in the pre-multiplied PSD,
(𝜅𝑥 , 𝜅𝑧, 𝜔) ≈ (8.41, 6.0, 5.84). Both results have been computed with 𝑦𝑚𝑎𝑠𝑘 = 1.6.
The dashed black line and the dashed red line indicate the critical layer and the
relative sonic line, respectively.

To provide bulk metrics of similarity, the linear coherence spectrum (LCS) of the
optimal resolvent and optimal SPOD mode is tabulated in Table 6.2, where a poor
coherence may be seen in both cases. The projection shows that there is a nearly equal
projection of either the dilatational and solenoidal part of the response mode. Thus
suggesting that there may be a complex interplay of the dilatational and solenoidal
forcing that the optimal SPOD captures. This motivates future work to study the
forcing that is driving the optimal SPOD mode, e.g., via resolvent extended SPOD
(Karban, Bugeat, Towne, et al., 2023).

Lastly, Fan et al., 2024 has found that the comparison between the optimal SPOD
and resolvent modes may be improved through the use of an eddy viscosity model
for relatively subsonic modes in a hypersonic TBL. This idea was tested and it was
found that the projection only marginally improved, on the order of single percent
increases. Hence, if eddy viscosity is used for modeling, future work will be needed
to extend eddy viscosity models to the relatively supersonic regime.
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𝜅𝑧 = 6.0

Quantity (𝜅𝑥 , 𝜔) = (8.39, 5.26) (𝜅𝑥 , 𝜔) = (16.78, 11.83)
LCS(𝚿1,U1) 0.239 0.191
LCS(𝚿1,U1,𝑠) 0.156 0.199
LCS(𝚿1,U1,𝑑+𝜌𝑇 ) 0.258 0.190

Table 6.2: Linear coherence spectrum (LCS) projection coefficients for various
quantities at two important wavenumber-frequency pairs. Computation follows set-
up in Table 6.1 and Figure 6.7.

6.4 Conclusions
In this chapter, SPOD was performed on data resulting from a DNS of a hyper-
sonic moderately cooled streamwise developing hypersonic TBL. The analysis was
performed on both on streamwise developing data and an assumed parallel version
of the data. These decompositions were then compared with the corresponding
resolvent response modes.

It was first shown that the 2-D SPOD uncovered modal structures that exhibited
a dominant streamwise wavelength and a constant inclination angle of freestream
structures. This dominant wavelength persisted in the expansion of suboptimal
modes. While the correlated boundary layer structures showed a region of dominant
amplification, the structures had presence throughout the boundary layer. This
finally resulted in showing that the 2-D SPOD overall showed a high-rank behavior,
differing from the trends seen in other turbulent flows.

The analysis was then performed by further Fourier transforming the streamwise
developing flow in the streamwise direction. This uncovered low-rank behavior
with a majority of the important wavenumber triplets, where importance is mea-
sured via pre-multiplied freestream pressure PSD value, showing 𝜆1/

∑
𝑖 𝜆𝑖 ≈ 0.70.

The comparison of the optimal SPOD and resolvent response mode then showed
similar structures in the boundary layer, but with the resolvent mode showing much
higher relative amplification of the freestream and the boundary layer temperature
fluctuations.

These results underscore the importance of accounting for the forcing when mod-
eling acoustic radiation from hypersonic TBLs. Additionally, this study opens the
door for future modeling attempts by providing baselines for the boundary layer
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structures of the acoustic radiation and the corresponding pathologies present in the
optimal resolvent basis.

There are many future directions this work can be taken, which may provide fruitful
results. For instance, the true forcing may be computed and correlated to the
SPOD modes, which may provide possibilities for dynamic modeling of the forcing
(Karban, Bugeat, Towne, et al., 2023). In this chapter, this analysis has only been
performed for a single 𝜅𝑧𝛿 and a single set of flow parameters, hence, it would be of
great interest to study how these results generalize and how a more complete model
for the forcing driving the acoustic radiation could be developed. Finally, the focus
of this chapter was only on the slow acoustic waves, but the fast acoustic waves,
which exist above the negative relative sonic line, also exhibited low-rank behavior.
Hence, future studies could analyse the mechanics of those waves using this same
methodology.
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C h a p t e r 7

CONCLUSIONS AND FUTURE WORK

This chapter focuses on the contributions made by this thesis to the literature and
then proceeds to discuss directions for future work. The main contributions of this
thesis pertains to the linear mechanisms driving acoustic radiation, in both a locally-
parallel and a streamwise developing formulation, through the use of theoretical
models and data. Additionally, this thesis contributes to the estimation of the
acoustic radiation using a sparse amount of near-wall boundary layer information.

7.1 Conclusions
7.1.1 Chapter 4: Modeling streamwise growth
To start, in Chapter 4, resolvent analysis was applied to a streamwise developing
hypersonic TBL. To the authors knowledge, this is the first time that resolvent
analysis has been applied to the analysis of a hypersonic streamwise developing
TBL. The focus of the chapter was on the unique features of the hypersonic case,
where acoustic radiation from the boundary layer may be seen. Resolvent analysis
is particularity well suited for the application of acoustic radiation from a TBL, as
the input-output nature of it inherently allows the study of non-modal amplification
mechanisms that are present in this case.

It was found that the optimal 2-D resolvent response modes could be effectively
modeled using a beaming profile, an axi-symmetric Gaussian profile, and a 1-D
resolvent mode. It was shown that this model generalizes across spectral space and
the optimal 2-D resolvent response and forcing modes across all spectral pairs may
be modeled in this fashion. Additionally, it was shown that the slow acoustic waves
were the dominant mechanism where the linear amplification was largest.

This model for the 2-D resolvent modes was extended to the resolvent forcing
modes and used to study linear amplification mechanisms for varying streamwise
wavenumbers. Such a model allowed the study of the properties of forcing modes
that were periodic in the streamwise direction, while incorporating effects unique
to the streamwise developing case. It was shown that the primary effect of the
streamwise growth, on the acoustic radiation, was due to the influence of the Mach
line and that streamwise constant profiles on a 2-D spatial domain reproduced similar
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trends to a streamwise developing mean profile. Through the use of analytical 1-D
turbulent mean profiles, the affect of the 2-D resolvent operator on acoustic radiation
on the amplification and type of angle of waves most amplified were quantified for
varying wall-to-recovery temperature ratio, Mach numbers, and friction Reynolds
numbers.

7.1.2 Chapter 5: Modeling acoustic radiation
In Chapter 5, the principal matter was the modeling of acoustic radiation from
some amount of sparse near-wall information. The over-arching goal was to enable
operator-driven estimations that could target two goals: (i) Enable estimation of the
freestream statistics from DNS that does not resolve the freestream, and (ii) Scale
to different parameter regimes to enable experimentalists to predict the freestream
noise spectra and account for experimental errors. The ground-work was laid for
both of these directions.

To achieve this, the resolvent analysis of a streamwise developing hypersonic
TBL was performed. Then the resolvent response modes were decomposed us-
ing a Helmholtz decomposition. It was shown that the solenoidal part, e.g., the
incompressible-like part of the forcing, of the resolvent forcing mode was respon-
sible for a large majority of the linear amplification in the response mode, e.g., the
acoustic radiation or the features unique to the supersonic case. Additionally, it was
shown that the dilatational part of the forcing was localized above the relative sonic
line. It was then shown that the dilatational part of the forcing was driving acoustic
radiation by acting as an incoming wave and reflecting (and partially refracting) off
of the relative sonic line.

Resolvent based estimation (RBE) was then utilized to perform estimation of the
freestream spatio-temporal statistics using near-wall information. It was found
that using RBE alone was not sufficient for an accurate prediction. Hence, an
approximate forcing model was developed with the modeling assumption that the
forcing was purely solenoidal in structure. This forcing model along with RBE
showed improved results and closely matched the localization of the freestream
statistics from the DNS using four near-wall measurement planes.

Finally, the chapter was concluded by performing various tests to account for differ-
ent types of errors that could arise in the model. It was shown that using an optimal
solenoidal-only forcing basis, as opposed to a filtered basis that was used in the
original forcing model, provided minimal benefits, at least for the single spanwise
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wavenumber it was tested at.

7.1.3 Chapter 6: Data-driven study of acoustic radiation
Until this point in the thesis, there were varying levels of fidelity used to study
acoustic radiation: (i) resolvent analysis only and no data, and then (ii) resolvent
analysis and sparse data. In Chapter 6, we leveraged a high fidelity fully resolved
spatio-temporal volumetric dataset of a streamwise developing hypersonic turbulent
boundary layer to perform spectral proper orthogonal decomposition (SPOD).

By performing this decomposition on high fidelity data, we were able to inspect
the modes represented the dataset without simplifying assumptions. It was found
that, similar to the 2-D resolvent modes, the SPOD of the fluctuations around the
streamwise developing mean profile showed high-rank behavior and a dominant
streamwise wavenumber for each mode. Unlike the corresponding resolvent mode,
this mode was found to have a footprint outside of the buffer layer region and had
some imprint throughout the boundary layer.

The data was then further processed by performing a Fourier transform in the stream-
wise direction. By inspecting the SPOD of the fluctuations around the assumed-
parallel mean, it was found that there was low-rank behavior in the relatively super-
sonic region of the flow. Further comparison of the leading SPOD mode and the
leading resolvent response mode at the same wavenumber triplet, showed similar
structures present in both cases, but the resolvent mode showed greatly varying
amplitudes of the individual state variables and much higher amplification of the
freestream radiation. Thus, pointing to the necessity of accounting for the forcing
in modeling freestream radiation.

7.1.4 Summary of contribution
In summary, the acoustic radiation from a hypersonic TBL has been studied from a
theoretical view and a data-driven view, where modeling was performed throughout.
Resulting from this thesis, the effect of streamwise development on acoustic radiation
was found to be primarily due to the existence of the Mach line and region of influence
effects. It was then shown that the solenoidal part of the forcing was the primary
driver of acoustic radiation in 2-D resolvent modes. This insight was used to show
that a solenoidal-only forcing basis enabled the estimation of the freestream statistics
from a radiating hypersonic TBL. Finally, it was shown in what way the resolvent
basis over-predicts the amplification of different components in the optimal mode —
over predicting the acoustic radiation and the impact of temperature, as compared
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to SPOD modes.

7.2 Future work
In Chapter 4, the model for the forcing of freestream radiation showed great promise
in studying effects of streamwise development across parameter ranges. A clear
avenue of future work would be to more thoroughly study how these parameter
variations modify acoustic radiation. Such observations may then serve as a refer-
ence point for future model development and a deeper understanding of the physics.
Additionally, this chapter only studied a model for slow acoustic waves. Therefore,
it could be of interest to perform a similar analysis for fast acoustic waves, which
would allow a comparative study to understand if in certain parameter regimes the
fast waves are dominant.

Following from the work in Chapter 5, there are two major directions to pursue:
(i) Model extension (ii) Application. To extend this model, it is of great interest
to study how the resolvent based model could be scaled using scaling laws for the
resolvent modes to over nearby parameter regimes, e.g., varying Mach number or
Reynolds number. Another point of interest is: What are the optimal measurement
locations? By finding optimal measurement locations, the RBE model could be
applied to determine freestream statistics from a boundary layer, but not freestream
resolved, simulation. The final direction for future study, would be to study how
these results extend to estimation of temporal series and incorporating RBE into DNS
simulations, so as to allow for determination of freestream fluctuations without the
large additional computational cost of resolving the freestream.

Chapter 6 leaves open many different directions for future work. Given that there
is a natural connection between the decomposition of the forcing and response in
the freestream, it is believed that studying the forcing correlated with the leading
SPOD mode, via ReSPOD (Karban, Martini, et al., 2022), may help uncover exactly
why the resolvent modes do not align with the SPOD modes and avenues for
modeling those differences. Such insights may explain why the 2-D SPOD and
resolvent modes showed different wall-normal localization or why the 1-D SPOD
and resolvent modes showed large differences in the relative amplitudes between
components. Finally, this analysis was only performed on a singular spanwise
wavenumber, hence, it would be of great interest to see how these results compare
with varying spanwise wavenumber and to what extent they generalize.
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A p p e n d i x A

LINEAR OPERATORS

This section very briefly covers the analytical forms used for the linearised Navier-
Stokes (LNS) operators used throughout this thesis. These various operators are
used in Equation 2.9, along with the LU decomposition, to form the resolvent operator
numerically. In order to compactly write these operators, Equation 2.9, is expanded
as:

©­­­­­­­«
−𝑖𝜔I5 +


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𝐿31 𝐿32 𝐿33 𝐿34 𝐿35

𝐿41 𝐿42 𝐿43 𝐿44 𝐿45

𝐿51 𝐿52 𝐿53 𝐿54 𝐿55


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ρ

T


=


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f𝑣

f𝑤

f𝜌

f𝑇


, (A.1)

where numerically the state variables are of size 𝑁×1, e.g.,u = C𝑁×1, the individual
sub-blocks are of size 𝐿𝑖 𝑗 ∈ C𝑁×𝑁 , and 𝑁 is the product of the number of grid points,
e.g., either 𝑁𝑦 for one spatial dimension or 𝑁𝑥𝑁𝑦 for two spatial dimensions.

In order to write these operators compactly, the following short hand-notation will
be used:

𝜕1(·) B
𝜕

𝜕𝑥
(·) (A.2)

𝜕2(·) B
𝜕

𝜕𝑦
(·) (A.3)

(·̄),𝑖 B 𝜕𝑖 (·̄) (A.4)

(·̄),𝑖 𝑗 B 𝜕𝑖𝜕𝑗 (·̄) (A.5)

ū B [𝑢̄, 𝑣̄, 𝑤̄] (A.6)
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A.1 1-D compressible LNS operator
The LNS operator for a compressible perfect gas flow that is statistically stationary
and homogeneous in the spanwise and streamwise direction is given by:

𝐿11−1𝐷 = 𝑖𝜅𝑥𝑢̄1 + (Re𝜌̄)−1 [−𝜇̄,2𝜕2 + 𝜇̄(2𝜅2
𝑥 − 𝜕2

2 + 𝜅
2
𝑧 ) + 𝜅2

𝑥 𝜆̄]
𝐿12−1𝐷 = 𝑢̄1,2 − (Re𝜌̄)−1 [𝑖𝜅𝑥 𝜇̄,2 + 𝑖𝜅𝑥 𝜇̄𝜕2 + 𝑖𝜅𝑥𝜆̄𝜕2]
𝐿13−1𝐷 = −𝑖𝜅𝑧 (Re𝜌̄)−1 [𝑖𝜅𝑥 𝜇̄ + 𝑖𝜅𝑥𝜆̄]
𝐿14−1𝐷 = (𝛾Ma2 𝜌̄2)−1(𝑖𝜅𝑥)

𝐿15−1𝐷 = (𝛾Ma2𝑝)−1(𝑖𝜅𝑥) − (Re𝜌̄)−1
[
𝜇̄,𝑇𝑇 (𝑢̄1,2𝑇,2) + 𝜇̄,𝑇 (𝑢̄1,2𝜕2 + 𝑢̄1,22)

]
𝐿21−1𝐷 = −𝑖𝜅𝑥 (Re𝜌̄)−1 [𝜇̄𝜕2 + 𝜆̄,2 + 𝜆̄𝜕2

]
𝐿22−1𝐷 = 𝑖𝜅𝑥𝑢̄1 − (Re𝜌̄)−1 [2𝜇̄,2𝜕2 + 𝜇̄(−𝜅2

𝑥 + 2𝜕2
2 − 𝜅

2
𝑧 ) + 𝜆̄,2𝜕2 + 𝜆̄𝜕2

2
]

𝐿23−1𝐷 = −𝑖𝜅𝑧 (Re𝜌̄)−1 [𝜇̄𝜕2 + 𝜆̄,2 + 𝜆̄𝜕2
]

𝐿24−1𝐷 = (𝛾Ma2 𝜌̄)−1(𝑇𝜕2 + 𝑇,2)
𝐿25−1𝐷 = (𝛾Ma2)−1(𝜕2 + 𝜌̄−1 𝜌̄,2) − (Re𝜌̄)−1 [𝜇̄,𝑇 (𝑖𝜅𝑥𝑢̄1,2)

]
𝐿31−1𝐷 = 𝜅𝑥𝜅𝑧 (Re𝜌̄)−1 [𝜇̄ + 𝜆̄]
𝐿32−1𝐷 = −𝑖𝜅𝑧 (Re𝜌̄)−1 [𝜇̄,2 + 𝜇̄𝜕2 + 𝜆̄𝜕2

]
𝐿33−1𝐷 = 𝑖𝜅𝑥𝑢̄1 − (Re𝜌̄)−1 [𝜇̄,2𝜕2 + 𝜇̄(−𝜅2

𝑥 + 𝜕2
2 − 2𝜅2

𝑧 ) − 𝜅2
𝑧 𝜆̄
]

𝐿34−1𝐷 = 𝑖𝜅𝑧 (𝛾Ma2 𝜌̄2)−1

𝐿35−1𝐷 = 𝑖𝜅𝑧 (𝛾Ma2𝑝)−1

𝐿41−1𝐷 = 𝑖𝜅𝑥 𝜌̄

𝐿42−1𝐷 = 𝜌̄,2 + 𝜌̄𝜕2

𝐿43−1𝐷 = 𝑖𝜅𝑧 𝜌̄

𝐿44−1𝐷 = 𝑖𝜅𝑥𝑢̄1

𝐿45−1𝐷 = 0

𝐿51−1𝐷 = (𝛾 − 1)𝑖𝜅𝑥𝑇 − 2𝛾(𝛾 − 1)Ma2(Re𝜌̄)−1
[
𝜇̄(𝑢̄1,2𝜕2)

]
𝐿52−1𝐷 = 𝑇,2 + (𝛾 − 1)𝑇𝜕2 − 2𝛾(𝛾 − 1)Ma2(Re𝜌̄)−1

[
𝜇̄(𝑖𝜅𝑥𝑢̄1,2)

]
𝐿53−1𝐷 = 𝑖𝜅𝑧 (𝛾 − 1)𝑇
𝐿54−1𝐷 = 0

𝐿55−1𝐷 = 𝑖𝜅𝑥𝑢̄1 − 𝛾(PrRe𝜌̄)−1
[
𝜇̄,𝑇𝑇 (𝑇2

,2) + 𝜇̄,𝑇 (𝑇,22) + 2𝜇̄,𝑇 (𝑇,2𝜕2) + 𝜇̄(−𝜅2
𝑥 + 𝜕2

2 − 𝜅
2
𝑧 )
]

−𝛾(𝛾 − 1)Ma2(Re𝜌̄)−1
[
𝜇̄,𝑇 (𝑢̄2

1,2)
]
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Additional details that outline this derivation may be found in Chapter 2 and the
work of Bae, Dawson, and McKeon, 2020.

A.2 1-D compressible adjoint LNS operator
As was discussed in Chapter 2, there have been reported differences (Chandler et
al., 2012) for the numerically computed adjoint, e.g., constructing the LNS then
using the conjugate gradient, and the analytically derived adjoint, e.g., directly
construct the adjoint LNS. In this section, we briefly outline how to derive the
adjoint LNS operator, document the analytical form of the adjoint operator, and then
show comparisons for the different methods

A.2.1 Derivation of adjoint operator
The adjoint operator is formally defined as:

< g,Lf >𝑟=< L†g, f >𝑟 ,

where < 𝑓 , 𝑔 >𝑟=
∫
𝑓𝑊𝑟𝑔𝑑Ω. Hence, to derive the exact form the adjoint operator,

integration-by-parts needs to be performed analytically on the LNS operator. To aid
in this process, the 1-D LNS operator may be decomposed as:

Lq = Aq +B𝜕𝑦 (q) +C𝜕𝑦𝜕𝑦 (q) (A.7)

where L is broken down in A that contains all terms that do not contain derivative
operators, B contains all terms with a single derivative operator, and C contains all
terms that contain two derivative operators. Upon performing integration by parts,

< g,Lf >𝑐ℎ𝑢 =< g, (A +B𝜕2 +C𝜕2𝜕2) f >𝑐ℎ𝑢

= 𝑏B + 𝑏C+ < L∗g, f >𝑐ℎ𝑢 .

where 𝑏B and 𝑏C are boundary terms resulting from the integration-by-parts of
B and C, respectively, and (·)∗ is the hermitian conjugate operator, which can be
computed analytically.

In addition to the derivation of the operator, new boundary conditions must be
derived for the adjoint operator. The wall boundary conditions follow from the
standard case, but the freestream, non-reflecting, boundary conditions must be
derived separately. This was done by performing the same analysis as Thompson,
1987 to derive the non-reflecting outflow boundary conditions from the 1-D adjoint
Euler equations, which has been done for other computations of the adjoint LNS
operator (Ohmichi and Yamada, 2021).
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A.2.2 1-D compressible adjoint LNS operator
The adjoint LNS operator for a compressible perfect gas flow that is statistically
stationary and homogeneous in the spanwise and streamwise direction is given by:

𝐿
†
11−1𝐷 = −𝑖𝜅𝑥 𝑢̄1 + (Re𝜌̄)−1 [𝜇̄2𝜕2 + 𝜇̄22 + 𝜇̄(2𝜅2

𝑥 − 𝜕2
2 + 𝜅

2
𝑧) − 2𝜇̄2𝜕2 − 𝜇̄22 + 𝜅2

𝑥𝜆̄]

𝐿
†
12−1𝐷 = 𝑖𝜅𝑥 (Re𝜌̄)−1 [ − ( 𝜇̄ + 𝜆̄)𝜕2 − ( 𝜇̄2 + 𝜆̄2) + 𝜆̄,2

]
𝐿
†
13−1𝐷 = 𝜅𝑥𝜅𝑧 (Re𝜌̄)−1 [𝜇̄ + 𝜆̄]
𝐿
†
14−1𝐷 = −𝑖𝜅𝑥𝑇

(
𝜌̄𝛾Ma2

)−1

𝐿
†
15−1𝐷 = −𝑖𝜅𝑥

(
𝛾Ma2

)−1
+ 2(Re𝜌̄)−1𝑇−1

[
𝜇̄(𝑢̄1,2𝜕2) + 𝑇−1 (𝑇 (

𝜇̄2𝑢̄1,2 + 𝜇̄𝑢̄1,22
)
− 𝑇2 𝜇̄𝑢̄1,2

) ]
𝐿
†
21−1𝐷 = 𝑢̄1,2 + (Re𝜌̄)−1𝑖𝜅𝑥 [𝜇̄,2 − ( 𝜇̄ + 𝜆̄)𝜕2 − ( 𝜇̄2 + 𝜆̄2)]

𝐿
†
22−1𝐷 = −𝑖𝜅𝑥 𝑢̄1 − (Re𝜌̄)−1 [ − (2𝜇̄,2 + 𝜆̄,2)𝜕2 − (2𝜇̄22 + 𝜆̄22) + 𝜇̄(−𝜅2

𝑥 + 2𝜕2
2 − 𝜅

2
𝑧) + 𝜆̄𝜕2

2+

2(2𝜇̄2 + 𝜆̄2)𝜕2 + (2𝜇̄22 + 𝜆22)
]

𝐿
†
23−1𝐷 = 𝑖𝜅𝑧 (Re𝜌̄)−1 [𝜇̄,2 − ( 𝜇̄ + 𝜆̄)𝜕2 − ( 𝜇̄2 + 𝜆̄2)

]
𝐿
†
24−1𝐷 = 𝑇

(
𝜌̄2𝛾Ma2

)−1
𝜌̄,2 − (𝛾Ma2 𝜌̄)−1 [𝑇2 + 𝑇𝜕2

]
𝐿
†
25−1𝐷 =

(
𝛾(𝛾 − 1)𝑇Ma2

)−1
𝑇,2 − (𝛾Ma2)−1 [𝜕2 + 𝜌̄−1 𝜌̄2

]
+ 2(𝑇−1 𝜌̄−1) (𝑅𝑒)−1

[
𝜇̄(𝑖𝜅𝑥 𝑢̄1,2)

]
𝐿
†
31−1𝐷 = 𝜅𝑥𝜅𝑧 (Re𝜌̄)−1 [𝜇̄ + 𝜆̄]

𝐿
†
32−1𝐷 = 𝑖𝜅𝑧 (Re𝜌̄)−1 [ − ( 𝜇̄ + 𝜆̄)𝜕2 − ( 𝜇̄2 + 𝜆̄2) + 𝜆̄,2

]
𝐿
†
33−1𝐷 = −𝑖𝜅𝑥 𝑢̄1 + (Re𝜌̄)−1 [𝜇̄2𝜕2 + 𝜇̄22 − 𝜇̄(−𝜅2

𝑥 + 𝜕2
2 − 2𝜅2

𝑧) − 2𝜇̄2𝜕2 − 𝜇̄22 + 𝜅2
𝑧𝜆̄
]

𝐿
†
34−1𝐷 = −𝑖𝜅𝑧𝑇

(
𝜌̄𝛾Ma2

)−1

𝐿
†
35−1𝐷 = −𝑖𝜅𝑧

(
𝛾Ma2

)−1

𝐿
†
41−1𝐷 = −(𝑇)−1 (𝑖𝜅𝑥)

𝐿
†
42−1𝐷 = 𝜌̄(𝑇)−1 (𝑇,2) − 𝜌̄

(
𝜕2 + 𝑇−1𝑇2

)
𝐿
†
43−1𝐷 = −𝑖𝜅𝑧 (𝑇)−1

𝐿
†
44−1𝐷 = −𝑖𝜅𝑥 𝑢̄1

𝐿
†
45−1𝐷 = 0

𝐿
†
51−1𝐷 = −(𝛾 − 1)𝑇 (𝑖𝜅𝑥) + (Re𝜌̄)−1

[
(𝛾) (𝛾 − 1)Ma2𝑇

(
−𝜇̄,𝑇̄𝑇̄ (𝑢̄1,2𝑇,2) − 𝜇̄,𝑇̄ 𝑢̄1,22

)
+
(
𝛾(𝛾 − 1)Ma2𝑇

)
( 𝜇̄𝑇 𝑢̄1,2𝜕2 + 𝜇̄𝑇𝑇𝑇2𝑢̄1,2 + 𝜇̄𝑇 𝑢̄1,22)

]
𝐿
†
52−1𝐷 = −(𝛾 − 1)𝑇 (𝜕2 + 𝜌̄−1 𝜌̄,2) + (𝛾) (𝛾 − 1)Ma2𝑇 (Re𝜌̄)−1 [𝜇̄,𝑇̄ (𝑖𝜅𝑥 𝑢̄1,2)

]
+ (𝛾 − 1)𝑇 𝜌̄−1 𝜌̄2

𝐿
†
53−1𝐷 = −𝑖𝜅𝑧 (𝛾 − 1)𝑇

𝐿
†
54−1𝐷 = 0

𝐿
†
55−1𝐷 = −𝑖𝜅𝑥 𝑢̄1 − 𝛾(PrRe𝜌̄)−1

[
𝜇̄,𝑇̄𝑇̄ (𝑇2

,2) + 𝜇̄,𝑇̄ (𝑇,22)−2𝜇̄2𝜕2 − 2( 𝜇̄22 − 𝑇−1 𝜇̄2𝑇2) + 𝜇̄(−𝜅2
𝑥 + 𝜕2

2 − 𝜅
2
𝑧)

+2𝑇−1 (𝑇 𝜇̄2 − 𝑇2 𝜇̄)𝜕2 + 𝑇−1
(
𝑇 𝜇̄22 − 2𝜇̄2𝑇2 − 𝜇̄𝑇22 + 2𝑇−1 𝜇̄𝑇2

2

)]
− 𝛾(𝛾 − 1)Ma2 (Re𝜌̄)−1

[
𝜇̄,𝑇̄ (𝑢̄2

1,2)
]
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Note that this operator has been color-coded to help differentiate the different terms
that arise in the derivation. Prefactors that changes are listed in orange. Terms
in blue are additional terms resulting from the B operator, and terms in cyan are
additional terms resulting from the C operator.

A.2.3 Comparison of analytical vs numerical adjoint methodology
Following the derivation of the adjoint LNS operator, a brief comparison of the
two methodologies is performed. In this comparison, the resolvent optimization
problem, Equation 2.34,

H†𝑤H𝑤v = 𝜎2v, (A.8)

will be computing the action ofH†𝑤 using, either: (1) the standard approach used in
this thesis,

H−1
𝑤,𝑐𝑜𝑛𝑡.︸   ︷︷   ︸
L

= 𝐿𝑈 (A.9a)

(𝐿𝑈)∗x = v, (A.9b)

where Equation A.10b may be solved to compute the action of H ∗𝑤 on v, or (2) the
derive then discretize approach (

H†
𝑤,𝑑𝑖𝑠𝑐.

)−1︸         ︷︷         ︸
L†

= 𝐿𝑈 (A.10a)

(𝐿𝑈)x = v. (A.10b)

Note that the derive then discretize approach requires the resolvent computation
to compute the LU decomposition of both the adjoint and standard LNS operators.
Additionally note that to compute Equation A.10b computationally, the conjugate
transpose is not applied to (𝐿,𝑈) directly. For the purpose of comparison we will
call these two methods: (1) the discrete approach, H†

𝑤,𝑑𝑖𝑠𝑐.
, and (2) the continuous

approach,H†𝑤,𝑐𝑜𝑛𝑡..

To test these two methodologies, a wavenumber triplet in the relatively supersonic
regime is chosen and the linear amplification and optimal forcing and response
modes are plotted in Figure A.1a and Figure A.1, respectively. In Figure A.1a, it
is seen that there is a slight variation in the leading singular value, but the sub-
optimal values closely align between the two methods. Inspecting the optimal
forcing, in Figure A.1b, the match between the two methods shows a collapse for
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the two methods outside of the near-wall region of the density forcing and a slight
discrepancy in the peak value of the temperature forcing. Similar discrepancies of
the discrete and continuous approach, particularly at the boundaries of domains, has
been observed in the studies of Chandler et al., 2012. As also observed in Chandler
et al., 2012, it is found that the differences between the two methods do reduce with
increasing grid resolution, but the oscillations near the boundary do not completely
disappear with a higher resolution. Apart from the numerical artifact, the mode
shapes are very similar, as is expected from the equivalence of the two methods.
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Figure A.1: Comparison of two methodologies for computation of resolvent modes
for relatively supersonic mode at (𝜅𝑥 , 𝜅𝑧, 𝜔) = (2𝜋/1.4, 2𝜋/7.5, 2.5). Visualising
the real part of the resolvent mode computed with 𝑁𝑦 = 601. Mean profile given by
a turbulent boundary layer at Ma = 7.0, 𝑇𝑤/𝑇𝑟 = 0.3, 𝑇∞ = 100𝐾,Re𝛿 = 4𝑒4.
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A.3 2-D compressible LNS operator
The LNS operator for a compressible perfect gas flow that is statistically stationary
and homogeneous in the spanwise direction is given by:
𝐿11 = 𝑢̄1𝜕1 + 𝑢̄2𝜕2 + 𝑢̄1,1 − (Re𝜌̄)−1 [2𝜇̄,1𝜕1 + 𝜇̄,2𝜕2 + 𝜇̄(2𝜕2

1 + 𝜕
2
2 − 𝜅

2
𝑧) + 𝜆̄,1𝜕1 + 𝜆̄𝜕2

1 ]

𝐿12 = 𝑢̄1,2 − (Re𝜌̄)−1 [𝜇̄,2𝜕1 + 𝜇̄𝜕2𝜕1 + 𝜆̄,1𝜕2 + 𝜆̄𝜕1𝜕2]

𝐿13 = −𝑖𝜅𝑧 (Re𝜌̄)−1 [𝜇̄𝜕1 + 𝜆̄,1 + 𝜆̄𝜕1]

𝐿14 = 𝜌̄−1 (𝑢̄1,2𝑢̄2 + 𝑢̄1,1𝑢̄1) + (𝛾Ma2 𝜌̄2)−1 (𝜕1 − 𝜌̄−1 𝜌̄,1)

𝐿15 = (𝛾Ma2𝑝)−1 (𝜕1 − 𝑇−1𝑇,1) − (Re𝜌̄)−1
[
𝜇̄,𝑇̄𝑇̄ (2𝑢̄1,1𝑇,1 + 2𝑢̄2,1𝑇,2 + 𝑢̄1,2𝑇,2)

+ 𝜇̄,𝑇̄ (2𝑢̄1,1𝜕1 + 𝑢̄2,1𝜕2 + 𝑢̄1,2𝜕2 + 2𝑢̄1,11 + 𝑢̄1,22 + 𝑢̄2,12) + (𝑢̄1,1 + 𝑢̄2,2) (𝜆̄,𝑇̄𝑇̄𝑇,1 + 𝜆̄,𝑇̄𝜕1)

+ 𝜆̄,𝑇̄ (𝑢̄1,11 + 𝑢̄2,12)
]

𝐿21 = 𝑢̄2,1 − (Re𝜌̄)−1 [𝜇̄,1𝜕2 + 𝜇̄𝜕2𝜕1 + 𝜆̄,2𝜕1 + 𝜆̄𝜕1𝜕2
]

𝐿22 = 𝑢̄1𝜕1 + 𝑢̄2𝜕2 + 𝑢̄2,2 − (Re𝜌̄)−1 [2𝜇̄,2𝜕2 + 𝜇̄,1𝜕1 + 𝜇̄(𝜕2
1 + 2𝜕2

2 − 𝜅
2
𝑧) + 𝜆̄,2𝜕2 + 𝜆̄𝜕2

2
]

𝐿23 = −𝑖𝜅𝑧 (Re𝜌̄)−1 [𝜇̄𝜕2 + 𝜆̄,2 + 𝜆̄𝜕2
]

𝐿24 = 𝜌̄−1 (𝑢̄2,1𝑢̄1 + 𝑢̄2,2𝑢̄2) + (𝛾Ma2 𝜌̄2)−1 (𝜕2 − 𝜌̄−1 𝜌̄,2)

𝐿25 = (𝛾Ma2𝑝)−1 (𝜕2 − 𝑇−1𝑇,2) − (Re𝜌̄)−1
[
𝜇̄,𝑇̄𝑇̄ (2𝑢̄2,2𝑇,2 + 𝑢̄1,2𝑇,1 + 𝑢̄2,1𝑇,1)

+ 𝜇̄,𝑇̄ (2𝑢̄2,2𝜕2 + 𝑢̄1,2𝜕1 + 𝑢̄2,1𝜕1 + 2𝑢̄2,22 + 𝑢̄2,11 + 𝑢̄1,12) + (𝑢̄1,1 + 𝑢̄2,2) (𝜆̄,𝑇̄𝑇̄𝑇,2 + 𝜆̄,𝑇̄𝜕2)

+ 𝜆̄,𝑇̄ (𝑢̄2,22 + 𝑢̄1,12)
]

𝐿31 = −𝑖𝜅𝑧 (Re𝜌̄)−1 [𝜇̄,1 + 𝜇̄𝜕1 + 𝜆̄𝜕1
]

𝐿32 = −𝑖𝜅𝑧 (Re𝜌̄)−1 [𝜇̄,2 + 𝜇̄𝜕2 + 𝜆̄𝜕2
]

𝐿33 = 𝑢̄1𝜕1 + 𝑢̄2𝜕2 − (Re𝜌̄)−1 [𝜇̄,1𝜕1 + 𝜇̄,2𝜕2 + 𝜇̄(𝜕2
1 + 𝜕

2
2 − 2𝜅2

𝑧) − 𝜅2
𝑧𝜆̄
]

𝐿34 = 𝑖𝜅𝑧 (𝛾Ma2 𝜌̄2)−1

𝐿35 = 𝑖𝜅𝑧 (𝛾Ma2𝑝)−1 − 𝑖𝜅𝑧 (Re𝜌̄)−1 [[𝑟𝑒𝑑] 𝜇̄,𝑇̄ (𝑢̄1𝜕1 + 𝑢̄2𝜕2)+𝜆̄,𝑇̄ (𝑢̄1,1 + 𝑢̄2,2)
]

𝐿41 = 𝜌̄,1 + 𝜌̄𝜕1

𝐿42 = 𝜌̄,2 + 𝜌̄𝜕2

𝐿43 = 𝑖𝜅𝑧 𝜌̄

𝐿44 = 𝑢̄1𝜕1 + 𝑢̄2𝜕2 + 𝑢̄1,1 + 𝑢̄2,2

𝐿45 = 0

𝐿51 = 𝑇,1 + (𝛾 − 1)𝑇𝜕1 − 2𝛾(𝛾 − 1)Ma2 (Re𝜌̄)−1
[
𝜇̄(2𝑢̄1,1𝜕1 + 𝑢̄2,1𝜕2 + 𝑢̄1,2𝜕2) + 𝜆̄(𝑢̄1,1 + 𝑢̄2,2)𝜕1

]
𝐿52 = 𝑇,2 + (𝛾 − 1)𝑇𝜕2 − 2𝛾(𝛾 − 1)Ma2 (Re𝜌̄)−1

[
𝜇̄(𝑢̄1,2𝜕1 + 2𝑢̄2,2𝜕2 + 𝑢̄2,1𝜕1) + 𝜆̄(𝑢̄1,1 + 𝑢̄2,2)𝜕2

]
𝐿53 = 𝑖𝜅𝑧 (𝛾 − 1)𝑇 − 2𝑖𝜅𝑧𝛾(𝛾 − 1)Ma2 (Re𝜌̄)−1 [𝜆̄(𝑢̄1,1 + 𝑢̄2,2)

]
𝐿54 = 𝜌̄−1 (𝑢̄1𝑇,1 + 𝑢̄2𝑇,2) + 𝜌̄−2 (𝛾 − 1) (𝑢̄1,1 + 𝑢̄2,2)

𝐿55 = 𝑢̄1𝜕1 + 𝑢̄2𝜕2 + (𝛾 − 1)𝑝−1 (𝑢̄1,1 + 𝑢̄2,2) − 𝛾( 𝜌̄)−1
[
𝜇̄,𝑇̄𝑇̄ (𝑇2

,1 + 𝑇
2
,2) + 𝜇̄,𝑇̄ (𝑇,11 + 𝑇,22)

+ 2𝜇̄,𝑇̄ (𝑇,1𝜕1 + 𝑇,2𝜕2) + 𝜇̄(𝜕2
1 + 𝜕

2
2 − 𝜅

2
𝑧)
]
− 𝛾(𝛾 − 1)Ma2 ( 𝜌̄)−1

[
𝜆̄,𝑇̄ (𝑢̄1,1 + 𝑢̄2,2)2

+ 𝜇̄,𝑇̄ (2𝑢̄2
1,1 + 2𝑢̄1,2𝑢̄2,1 + 2𝑢̄2

2,2 + 𝑢̄
2
1,2 + 𝑢̄

2
2,1)

]
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