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Abstract

This thesis is concerned with the exploration and development of a variational finite element mesh
adaption framework for non-linear solid dynamics and its conceptual links with the theory of dy-
namic configurational forces. The distinctive attribute of this methodology is that the underlying
variational principle of the problem under study is used to supply both the discretized fields and the
mesh on which the discretization is supported. To this end a mixed-multifield version of Hamilton’s
principle of stationary action and Lagrange-d’Alembert principle is proposed, a fresh perspective on
the theory of dynamic configurational forces is presented, and a unifying variational formulation that
generalizes the framework to systems with general dissipative behavior is developed. A mixed finite
element formulation with independent spatial interpolations for deformations and velocities and a
mixed variational integrator with independent time interpolations for the resulting nodal parameters
is constructed. This discretization is supported on a continuously deforming mesh that is not pre-
scribed at the outset but computed as part of the solution. The resulting space-time discretization
satisfies exact discrete configurational force balance and exhibits excellent long term global energy
stability behavior. The robustness of the mesh adaption framework is assessed and demonstrated

with a set of examples and convergence tests.
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Chapter 1

Introduction

This thesis is concerned with the exploration and development of a variational finite element mesh
adaption framework for non-linear solid dynamics and its conceptual links with the concept of
dynamic configurational forces. The distinctive attribute of this methodology is that the underlying
variational principle of the problem under study is used to supply both the discretized fields and
the mesh on which the discretization is supported. To this end a mized-multifield (as opposed to
the standard, single-field) version of the governing variational principles is proposed, an expanded
perspective on the theory of dynamic configurational forces is presented, and a unifying variational
formulation that generalizes the framework to dissipative systems with viscous, inelastic, and thermal
processes is developed.

Dynamic applications often exhibit solutions with steep gradients at some regions of the domain of
analysis and smooth gradients at others. These steep regions may change their locations and shapes
both in space and time. It is therefore advantageous to vary the resolution of the computational grid,
i.e., to adapt the mesh, according to the behavior of the solution, to ensure that the spatial mesh and
time step are sufficiently fine in those regions and stages of steep gradients and reasonably coarse in
other areas of less interest. In this way the accuracy and reliability of the numerical approximation
is increased and evolving, and developing small scale features of the solution are explicitly resolved.
We shall explore and develop in this work a mesh adaption framework particularly targeted for the
challenging conditions just described.

In traditional finite element mesh adaption strategies mesh improvement is a post-processing
operation based on error estimation. For static applications this approach might be summarized
as follows: The user first selects an initial mesh. Then the error in the finite element solution
corresponding to that mesh is estimated. Next, using this error as a measure of mesh quality, another
mesh is designed by refining and coarsening the initial mesh in those areas where the estimated error

is beyond a prescribed limit. This cycle is continued until a finite element solution with an error
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below the target tolerance is found. The same methodology can be extended to dynamic applications
when only space adaption (and no time adaption) is pursued. In this case the (space) mesh adaption
process is exercised at each time step of the computation using as initial mesh for the adaption loop
the adapted mesh of the previous time step, see for example [55].

While considerable success has been achieved on error estimation and adaptivity for linear, static
(elliptic) problems (see for example [61]), the theory concerning error estimation and the formulations
and implementation of adaptive methods for dynamic (hyperbolic) applications is comparatively
less developed, ([32], [55]). For this class of analysis the development of alternative mesh adaption
paradigms is therefore desirable.

One possible approach in this direction that applies naturally to non-linear variational problems
and that sidesteps the use of error estimation is the framework of variational mesh adaption. In this
approach the mesh is not prescribed at the outset but regarded as an unknown of the problem to be
handled jointly with the main unknowns, the evolving fields of the dynamical system under study.
Then the variational principle that governs the evolution of the system is used to determine both
the main unknowns and the mesh. For dynamics, the governing variational principle is Hamilton’s
principle of stationary action in the conservative case and Lagrange-d’Alembert principle in the
non-conservative case.

The concept of using the underlying variational principle to optimize the mesh enjoys a long
tradition in the context of linear static elasto and structural mechanics problems and traces back at
least to [10], [11], [33]. The idea was to use the principle of minimum potential energy (the governing
variational principle for static applications) as a measure of mesh quality and to regard as a better
mesh the particular mesh that produces a lower potential energy. The total energy functional was
thus minimized not only with respect to nodal field values but also with respect to the triangulation
of the domain of analysis. Up to that moment, the computation of the analytic derivative of the
discretized potential energy with respect to the discretization was regarded "a hopeless task in
the case of arbitrary two and three-dimensional grids," (see [10]) and only optimization techniques
based on energy evaluation (as opposed to energy differentiation) were thus implemented. These
techniques proved to be too costly for the computational resources available at the time.

By contrast, the connection between energy minimization with respect to the triangulation and
configurational forces was only recognized recently ([24], [35], [36], [37], [59], [60]). A closed form
expression for the analytical derivative of the total potential energy with respect to nodal mesh
placements was derived (see also [57]) and feasible solution strategies for the minimization process
were successfully implemented [49]. Configurational forces, also known as material forces, arise in
applications involving the evolution of defects or interfaces in continuum bodies. Unlike standard
(Newtonian) forces that drive the spatial motion, configurational forces drive the motion of entities

that migrate relative to the material. Examples include vacancies, inclusions, dislocations, cracks,
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inhomogeneities, or evolving interfaces. From a variational point of view, configurational forces may
be described as those energetically conjugate to rearrangements of defects. When the continuum
is discretized, artificial defects are induced due to the non-smooth nature of the discretized fields.
The forces energetically conjugate to changes in the discretization can thus be uderstood as discrete
configurational forces.

As opposed to static applications, the generalization of the concept of variational mesh adaption
to solid dynamics is far from being fully explored. The idea, as it applies to dynamical systems,
was originally conceptualized within the context of the theory of discrete mechanics and variational
integrators [29], [31], [30], [63]. For finite degree-of-freedom dynamical systems the notion of applying
the underlying variational principle, i.e., Hamilton’s principle, to find the time mesh was originally
studied in Kane, Marsden & Ortiz [20]. Then, the possibility of extending this concept to solid
dynamics for both space and time adaption was theoretically conceived in [28], [29], [30], [63] and an
implementation restricted to one-dimensional low dimensionality problems was attempted in [60].

Despite of the conceptual appeal of generalizing the methodology conceived for the time do-
main to the space-time domain, we have found, as we shall explain as we proceed in this work,
that the application of this approach to non-linear multidimensional solid dynamic problems is not
without difficulty. Concisely, the main idea of the theory of discrete mechanics as it applies to
finite-dimensional (time-only-dependent) dynamical systems is to derive time-stepping algorithms
by discretizing Hamilton’s principle. The continuous trajectory of the dynamical system is first dis-
cretized. Then the discrete trajectory is obtained by invoking Hamilton’s principle, i.e., by rendering
the discrete action sum, discrete version of the action integral of the system, stationary with respect
to the parameters that define the discrete trajectory. The main consequence of this methodology
is that the resulting time-stepping algorithms, referred to as variational integrators, preserve part
of the geometric structure of the continuous system, in particular they are simplectic methods and
exactly conserve momenta associated to symmetries of the system [31], [30]. However they do not
preserve exactly energy (see [20], [31], [30]) although they do exhibit long time energy stability.
Kane, Marsden & Ortiz [20] noticed that this lack of ezact energy balance was artificially induced
by the discretization since in the continuous setting, energy balance follows directly from Hamilton’s
principle as Euler-Lagrange equations or, alternatively, as conserved momenta associated to sym-
metries with respect to time translations of the continuous action integral. They then proposed to
compute the time steps in such a way that the energy of the discrete system is exactly conserved.
Furthermore, they showed that this was equivalent to render the discrete action sum stationary not
only with respect to the discrete trajectory but also with respect to the discrete times where that
trajectory was sampled, i.e., the mesh. This resulted in variational time adaption in as much as the
time set was not prescribed at the outset but determined as part of the solution by invoking the

variational principle of the problem, namely, Hamilton’s principle.
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The generalization of the idea of variational integrators to space-time-dependent systems was
studied in [29], [30], [31], [63], see also references therein. Within this context it was established
that, in this expanded space-time framework, not only energy balance but also configurational force
balance arise directly from Hamilton’s principle and follow necessarily from momentum balance.
Furthermore it was observed that this is not the case when space-time is discretized. The ap-
proximations derived by invoking Hamilton’s principle are (multi)simplectic and preserve momenta
associated to symmetries of the system but do not preserve exactly discrete energy and do not result
in the automatic balance of discrete configurational forces. It was then suggested to generalize the
variational mesh adaption notion proposed by Kane, Marsden & Ortiz [20] for the time domain to
the space-time domain by computing the space-time mesh using Hamilton’s principle. More pre-
cisely it was theoretically proposed to require the stationarity of the discrete action sum with respect
to the space-time mesh. This would result in a new set of equations from which both space and
time adaptivity eventually could be driven. The resulting discretization would exhibit the desirable
feature of (multi)simplecticity and momentum conservation and at the same time the also desirable
property of exact discrete energy and discrete configurational force balances, see for example [30],
§7.3., [63], §6.2.3., [28], §5.6.

This space-time generalization approach was attempted in [60] by discretizing the space-time
domain with isoparametric space-time finite elements. The method was implemented for one-
dimensional elastodynamics and tested in a low dimensionality linear elastic problem. One essential
problem of this generalization is the issue of solvability for the time step. The energy balance equa-
tion from which the time step should be solved for involves the unknown time step in a very highly
non-linear way and do not always delivers physically admissible solutions as reported in [20], [29].
Since variational integrators do exhibit good average energy stability and since exact energy conser-
vation was too costly and not always possible, it was then suggested to restrict the methodology to
space adaption only while the global time step would be estimated rather than computed to exactly
preserve energy. This was the approach of [60], where space-time isoparametric finite elements were
implemented by taking the space coordinates of the space-time nodes as unknown while prescribing
the time coordinate at the outset. This can be regarded as the starting point of this thesis where we
have reexamined and expanded the theoretical developments to establish a powerful, efficient and
robust variational space adaptivity framework.

We begin by observing that since time adaptivity is no longer pursued, there is no need to
resort to the simultaneous discretization of the space-time domain, which requires the machinery
of space-time finite elements and is supported on the expanded space-time theoretical framework.
The approach we shall follow instead is to uncouple the space and time discretization by effecting
a space semidiscretization in a first stage, keeping the time variable continuous and leading to the

construction of a finite dimensional dynamical system. The latter is then discretized in time in a
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second stage using an appropriate time integrator. We shall therefore pursue a finite element space
semidiscretization supported on a spatial mesh that, as a result of adaption, evolves continuously
in time. The evolution of this continuously varying mesh shall not be prescribed but computed as
part of the solution simultaneously with the motion of the dynamical system under study. Both the
evolution of the body and the evolution of the mesh will be derived using Hamilton’s principle. This
will result, as we shall prove in the following, in nodal configurational force balance, which unlike
the continuous setting is not automatically satisfied.

We next observe that the expanded space-time based configurational bundle framework that
serves as a theoretical basis for the analysis of space-time variational integrators and variational
space-time mesh adaption, is not advantageous when the spatial and time discretization are de-
coupled By contrast, much more insight might be gained by adopting a space-space configuration
bundle approach, that notably highlights the structure of mesh adaption framework while remarkably
simplifying its analysis and implementation.

We proceed to show in an illustrative example that the use of the standard Hamilton’s principle
to supply both the motion and the evolution of the spatial mesh usually results in unstable and
meaningless solutions. These instabilities are attributed to inaccurate approximations for the velocity
field resulting from the approximation for the motion of the mechanical system. To overcome this
difficulty we shall make use of an independent, assumed velocity approximation different from that
derived by time differentiation of the motion and we shall develop a mized, multifield version of
Hamilton’s principle that allows for independent interpolations of velocities and deformations. This
mized variational principle, which shall be referred to as mized Hamilton’s principle, has been also
linked to the Pontryagin’s maximum principle in optimal control [54] and is thus referred to as
Hamilton’s Pontryagin variational principle, see [64] for a historical overview. Within the full space-
time context and for small strains it was theoretically conceptualized by Washizu, see [62], §15.2. This
mixed version of Hamilton’s principle is invoked and the corresponding Euler-Lagrange equations
might be collected to form an extended system of equations to determine the time evolution of nodal
displacements, velocities, and the mesh.

We finally consider the problem of time discretization. After the space is discretized one is left
with a finite degree-of-freedom dynamical system that evolves continuously in time. More precisely,
the action integral of the system transitions from a mized space-time-dependent field functional to
a mized semidiscrete functional whose arguments depend only on time. A complete discrete system
is then obtained by recourse of time discretization. To this end we shall develop an extended family
of variational time integrators, which will be referred to as mixed variational time integrators, that
allow for the use of independent time interpolations for velocities and configurations.

Chapter 2 reviews the process just outlined with particular emphasis in the conceptual tran-

sition from variational adaption in t¢ime, to variational mesh adaption in space-time and finally
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to variational adaption in space-space. To simplify the exposition and to keep the technicalities
to a minimum only one-dimensional solid dynamics is considered. This chapter provides a simple
overview of the mixed version of Hamilton’s principle both in time and space-time as well as its
semidiscrete and full discrete versions.

In attempting to apply the variational adaptivity framework to problems with evolving shocks
and steep gradients we are required to consider systems with viscosity. In this case the governing vari-
ational principle is the Lagrange-d’Alembert principle. One intrinsic difficulty in non-conservative
systems is the formulation of a variational framework from which the equations of balance of con-
figurational forces in the presence of viscosity can be established and can provide the basis for mesh
adaption. For conservative systems it was demonstrated, as we shall review as we proceed, that
configurational force balance follows directly from Hamilton’s principle as Euler-Lagrange equations
corresponding to spatial translations or reparametrizations of the base space, i.e., space-time. Mo-
tivated by the ideas developed in [44] for general dissipative behavior, we shall develop an extended
version of Lagrange-d’Alembert principle in both standard-single-field and mixed-multifield versions
from which both mechanical and configurational force balance equations in the presence of viscosity
can be established. The mixed version of this extended version of Lagrange-d’Alembert principle will
operate as the driving variational principle for mesh adaptivity in the framework of solid dynamics
for elastic materials with viscosity.

Chapter 3 reviews this variational formulation of configurational forces for isothermal elasto-
dynamics with and without viscosity. The development follows the spirit of the space-time based
concept analyzed within the context of variational integrators by [29], [30], [31], [63] but using a
space-space bundle as opposed to a space-time based bundle. This space-space perspective provides
a more intuitive and appropriate conceptual framework for the class of approximations considered
in this work, i.e., based on uncoupled space and time discretization. The derivation of the equa-
tions of balance of configurational forces from Hamilton’s principle is reviewed and the extension of
Lagrange-d’Alembert principle to drive configurational force balance in the presence of viscosity is
presented. Particular emphasis has been placed on geometrical considerations where we have added
some innovative concepts relevant to the analysis of the structure of the method.

In Chapter 4 we consider the formulation of a generalized variational framework to account for
general dissipative behavior to include not only viscosity, but also thermal and inelastic processes.
Thermal processes are incorporated by taking as primitive thermal variables the so-called thermal
displacements, an idea suggested in [13] and considered within the context of the theory of config-
urational forces in [3], [18], [47], [48]. Thermal displacements are defined as the time integral of
the temperature field or, equivalently, as the scalar field whose rate is the temperature. The main
consequence of introducing thermal displacements as primitive variables is that a correspondence or

analogy between mechanical variables and thermal variables can be established. For each quantity
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in the equation of mechanical force balance, parallel quantities can be identified in the equation of
entropy balance. In order to extend the variational adaptivity framework to problems with thermal
and internal variables we shall take this analogy further by assuming an additive decomposition for
the heat flux into a conservative, dissipationless part and a non-conservative (or dissipative) part in
complete analogy to the well-established additive decomposition of the mechanical stress into elas-
tic (or conservative) and viscous parts. We shall furthermore pursue equivalent decompositions for
the thermodynamic stresses conjugate to the internal variables and for the mechanical body forces
and heat sources. Then, mirroring the formulation of the extended Lagrange-d’Alembert principle
developed for isothermal elasticity with viscosity, we shall formulate an eztended thermomechanical
analog of Lagrange-d’Alembert principle from which all governing equations, i.e., mechanical force
balance, entropy balance, internal force balance, and configurational force balance, can be derived
and from which adaptivity eventually can be driven.

A central attribute of the variational principles we consider in this work is its mized or multifield
character, which allows for the combination of multiple interpolation spaces as an approach to control
stability. Mixed variational principles have been widely used in the formulation of finite element
procedures (see for example [1]) mainly in elliptic (static) boundary value problems. In chapter 5 we
develop the mixed version of Hamilton’s principle as it will be used for variational space adaptivity.
These mixed principles might be regarded as the dynamic analog of well-known DeVeubeke-Hu-
Washizu mixed variational principles for statics and related principles [62], [9]. In particular the
two-field (deformation-velocity) mixed version of Hamilton’s principle from which we shall drive
adaptivity corresponds to the deformation-strain dual of the well-known Hellinger-Reissner principle.
We shall also develop in this chapter a mixed version of the extended Lagrange-d’Alembert principle
(in its mechanical and thermomechanical versions) targeted to drive adaptivity in problems with
viscosity. In this mixed version of the extended Lagrange-d’Alembert principle a total assumed
viscous force field is incorporated into the model as a new unknown, and independent test functions
are used to enforce compatibility between the assumed viscous field and the physical viscous stresses.

Chapter 6 fully develops the finite element formulation and implementation and variational time
integration within the context of elastodynamics with and without viscous processes. Since the full
space-time discretization is effected in stages, the first part of the chapter focuses in the spatial
discretization using the mixed Hamilton’s principle and leads to a semidiscrete, finite degree-of-
freedom dynamical system, while the second part focuses in the time discretization using mixed
variational time integrators. Particular emphasis has been placed in geometrical aspects of the
method and in highlighting differences and similitudes between the semidiscrete and continuous
pictures. A comparison between the formulations based on the standard, single-field and mixed-
multifield versions of Hamilton’s principle is presented and the need for driving adaptivity with the

latter is demonstrated with an illustrative example. Several one dimensional and three-dimensional
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numerical examples and tests designed to assess the performance, robustness and potential of the
adaptivity framework are presented in Chapter 7. In particular we assess the convergence in a wave
propagation example and explore the use of this methodology in a dynamic fracture mechanics test

problem.



Chapter 2

Variational Mesh Adaption in 1D

In this chapter we present an overview of the fundamental aspects of the variational methods de-
veloped in this work. To simplify the exposition and to keep the technicalities to a minimum we
shall restrict the presentation to one-dimensional hyperelastodynamics. The general formulation
will be developed in the following chapters. We start by reviewing Hamilton’s principle, Lagrange-
d’Alembert’s principle and variational integrators, highlighting the fundamental concept of horizon-
tal variations. We next review the concept of variational adaptivity as it applies to finite dimensional
Lagrangian systems. We proceed then to study a mized version of Hamilton’s principle in which not
only configurations but also velocities are taken as independent functions. This mixed variational
principle, which will be referred to as mized-Hamilton’s principle, is then used to formulate an ex-
tended family of time integrators that makes use of different time interpolations for velocities and
trajectories. The first section of this chapter focuses on systems where the only independent variable
is time ¢, i.e., finite-dimensional Lagrangian systems, and provides a background for the upcoming
developments. In the second section we turn to systems that depend on both space X and time t
(Lagrangian field theory). When the space variable is incorporated into the picture, we are obviously
required to consider the problem of discretization in time and space. Within this context we review
Hamilton’s principle, highlighting the fundamental concept of space-time horizontal variations and
horizontal Euler-Lagrange equations and we study the mixed version of Hamilton’s principle for
space-time-dependent systems. After reviewing the concept of variational adaptivity as it applies
to static problems, we present the space-time generalization of this idea and its implementation in
terms of space-time isoparametric elements. This methodology is then restricted to space adaption
only, which results in a particular class of space-time finite elements where the same time step is used
for all nodes in the mesh, i.e., space-time is discretized with an homogeneous time step. We will show
that for this particular class of space-time finite elements there is no need to resort to the machinery

of the space-time formalism and its implementation in terms of finite elements since, as we shall
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prove, this discretization is equivalent to effect the space-time discretization in two separated and
uncoupled stages, the first stage (semidiscretization in space) where the space variable is discretized
keeping the time continuous and over a continuously deforming spatial mesh, followed by a second
stage in which the time is discretized using an appropriate time integrator. We finally present a
mixed variational adaptive finite element formulation governed by the mixed version of Hamilton’s
principle and characterized by an independent, assumed spatial interpolation for the material veloc-
ity field and independent time interpolations for nodal displacement and velocity parameters. The
use of an independent interpolation for the velocity field is proposed as an approach to overcome
instability problems inherent to the use of finite elements supported over moving meshes.

In summary, the resulting mesh adaption framework is characterized by the following features:

1. The unknown field of the problem (deformation) and its time derivative (velocity) are inter-

polated in space over a continuously deforming spatial mesh.

2. The evolving mesh itself is regarded as a new unknown to be handled jointly with the original

unknown field and its time rate.

3. The mixed version of Hamilton’s principle is used to supply not only the main unknowns but

also the deforming mesh.

4. Space interpolation and time interpolation are decoupled and effected in two separated stages.
The first spatial discretization over the continuously deforming mesh leads to the construction
of a finite-dimensional (time-only-dependent) Lagrangian system. The latter is then discretized

in time leading to the construction of a full discrete (in space and time) system.

5. Equations for the evolution of all unknowns (original unknown, fields, their velocities and the
mesh) are obtained by invoking the stationarity of the mixed action with respect to variation of
all its arguments. These equations correspond to the equations of mechanical force balance (or
balance of linear momentum), configurational force balance (balance of material momentum),

and compatibility between assumed and consistent velocity interpolations.

6. Since the governing differential equations follow from the mized Hamilton’s principle, its in-
tegration can be directly accomplished by making use of a mized variational integrator of the

class analyzed in the first part of this chapter.
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2.1 Mixed variational principles for dynamics and mixed vari-

ational integrators

2.1.1 Hamilton’s principle

We consider a finite-dimensional dynamical system with configurations specified by the set of gen-
eralized coordinates ¢ (¢t) and with Lagrangian L (g, q) typically defined as the difference between
kinetic and potential energies of the system. As we mentioned in the introduction to this chapter,
in this section we will consider only time as independent variable. The action functional is defined
as

S[q@n:/fL(q,q)dt

to
where ¢y and ¢ are the initial and final times. Given the forces that act in and on the dynamical
system, we would like to find its time evolution, namely the curve ¢ (¢). Hamilton’s principle states
that among all the possible trajectories that join a given initial configuration ¢ (o) with a final
configuration ¢ (¢s), the actual motion of the system corresponds to the particular trajectory that
renders the action functional stationary with respect to every admissible variation dq of the trajectory
q(t), i.e., variations d¢ that vanish in the initial and final times dq (t9) = d¢ (ty) = 0. This implies

that the variation of the action functional vanishes, namely

(05,0q) = lq + €dq]

—5
d{-: e=0
ts (L oL
= = +_6') dt =0
/to <3q 17 9q%1

for every dq in the set of admissible variations. Integrating by parts we find

(/0L d [OL oL
(95,00) = /to {(aq i (aq>> 5q} i+ 5g%

Since this identity must be satisfied for every admissible variations dg, and assuming that the latter

ty
=0

to

is continuous in the time interval, the previous implies the well-known Fuler-Lagrange equations

d (oL oL _,
dt \ 9¢ dq

The magnitudes

)

b = 7&2
oL

reo= -2

dq
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are, respectively, the generalized momentum and generalized (conservative) forces, and in terms of

them the Euler-Lagrange equations reduce to

dp

— + c=90

dt /

which correspond to the equation of mechanical force balance, or equations of momentum balance.

In particular we will consider Lagrangian systems of the form

L(gd) = 3m (@)@ ~ 1) (21)

where m (q) is the mass, possibly configuration-dependent, I (¢) is the potential energy, and the La-
grangian is given simply by the difference between kinetic and potential energies. For this particular

Lagrangian the momentum and conservative forces follow as

p = m(q)d
and the Euler-Lagrange equations reduce to
L@ @)+ 1 (@) =0 (29)

dt
2.1.2 Lagrange-d’Alembert principle

We will consider also systems with viscosity. In this case the total force is given by
f=r+r

where f¥ are the viscous (non-equilibrium or non-conservative) forces assumed to depend explicitly

on velocity and possibly on the instantaneous configuration, i.e.,
[P =1"(g,4)

Furthermore we shall assume that the viscous force derives from a kinetic potential ¢ (g, q) in the

form
v _ 09

In this case the total force balance equation is given by

& m (@) + 7 (t0) + £ (0.0) = 0 (2.3
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or in terms of the Lagrangian and kinetic potentials as

d (0L oL  0¢
— == -5 +5 =0

dt \ 9q dq 94

Unlike the case of conservative systems, this equation does not derive from Hamilton’s principle.

It can be established instead from the Lagrange d’Alembert principle

ty
<wm—/fwm@ww
to

where S is the action defined as in the case of conservative systems as

sm:/%mmﬁ

to

and where the above identity must be satisfied for every admissible variation dq. For viscous forces

deriving from a kinetic potential the Lagrange-d’Alembert principle becomes

ty a¢ )
(65.8q) — | 5. (a:4)gdt =0 Viq
to q

2.1.3 Horizontal variations

Of key importance to understanding the methods studied in this work is the concept of horizontal
variations and the Euler-Lagrange equations associated to the stationarity of the action functional
with respect to the latter, which will be referred to as horizontal Euler-Lagrange equations. Consider
the graph of the function g (¢), i.e., the curve (¢,q(t)) € R x Q, where Q is the configuration space,
figure 2.1. The components ¢ and ¢ are, respectively, the horizontal and wvertical coordinates of
each point on this curve. Hamilton’s principle involves the stationarity of the action functional with

respect to vertical variations d¢g, which implies the Euler-Lagrange equation

d (0L oL 0
dt \ 9q 0q
the equation of momentum balance. We now focus attention on the study of variations of the action

with respect to the horizontal variable ¢. To this end we follow the usual procedure (c.f. references

[20], [29], [31]) of introducing a change of parametrization of the horizontal variable

t=1(r)

where 7 is a new parameter and 1 : R —R is an invertible function that maps the parameter domain

[T0, 7] into the time domain [to,ts] as depicted in figure 2.1.
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qu
(t,qg(®) =@ (), ¢(7))
T — 1
to tf
Y (7)
f — 7

Figure 2.1: Trajectory of the dynamical system. Graph and representation of a change of parame-
trization of the horizontal (time) domain.

Let
or

be the composition function. It follows from these definitions that the pair (¢ (1), ¢ (7)) represents
a change of parametrization of the graph of the function ¢ (¢), namely, each point of this graph might

be parametrized as

(t,q(t) = (¥ (7),9(7))

We next refer the action integral to the parameter domain (7¢,7f) to obtain

ty
s = / L(q.d)dt =

to

- /fL(qow,qow)wr)dr

To

[ (o 52 v myar -

0

S, ]

where we the prime symbol ’ denotes the derivative with respect to the parameter 7 (as opposed to

the dot symbol, which denotes the derivative with respect to time ¢) and where we have made use
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of the identity

/

qow:%

that follows by differentiation of (2.4) with respect to the parameter 7. Horizontal variations of S

are defined as the variations of the latter with respect to ¢, namely,

d
e=0

[ (oo

Referring the previous back to the original time domain [tg,t¢] we find

(88, 5v) = / ! <L - O;gﬂ;) % (5¢o¢*1) dr

to

where we have made use of the identity

d —1\ / 71£ -1\ _
S (@pou™) = (W ov™) Z (W) =
- ()
= (% )ev

Integrating by parts yields

tr g L
(68,8¢) = /t dt(quq> (6o~ ") dr

oL . _
NI

tf (2.5)

to

Horizontal Euler-Lagrange equations follow then by invoking the stationarity of the action functional
S with respect to all admissible horizontal variations 01, i.e., variations d7) continuous and vanishing

at the initial and final times %) (7o) = 6¢ (75) = 0,
(6S,00) =0 Vo
On account of identity (2.5), the previous implies the following horizontal Fuler-Lagrange equation:

d oL .
(1= 1) =0

Three important observations follow:

(i) The horizontal Euler-Lagrange equation is independent of the parametrization 1 (7). We shall

therefore and occasionally write dt instead of d1).
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(ii) For Lagrangian systems of the form

LZ%m(q)cf—I(q)

I (q) is the potential energy; the horizontal Euler-Lagrange equation reduces to

dE

— =0
dt

where

is the total energy of the system. The horizontal balance equations for finite-dimensional

(time-only-dependent) Lagrangian systems is therefore the equation of energy balance.

(iii) For conservative systems, horizontal and vertical Euler-Lagrange equations are equivalent, in
the sense that if one equation is satisfied, the other is automatically satisfied. This can be
directly verified by defining the following operators (left hand side of the vertical and horizontal

Euler-Lagrange equations)

d OL OL
Pl = 5o 9

d oL .
Fl = - (L_aqq>

whereupon the vertical and horizontal balance equations can be rewritten as

Fy = 0
F o= 0

Then, it is straightforward to prove the identity

ft = —(j]:q (27)

which implies

Fe=0<=F =0

As will be illustrated shortly, this equivalence is broken in the discrete setting, and discrete

energy conservation does not follow automatically from discrete momentum conservation in
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general but only for particular and appropriate selection of the time discretization.

2.1.4 Variational integrators

We review in this subsection the basic formulation of variational integrators as a background for the
upcoming developments. An extensive analysis of this class of integrators may be found for example
in [20], [29], [30], [31] and references therein.

As opposed to standard integrators that discretize (in time) the Euler-Lagrange equations, in a
variational integrator it is the action functional what is discretized. To this end we partition the
time interval [to, t¢] into discrete times (to =tg, - ,th,... tK = tf), where K is the number of time
subintervals and where we use a supraindex to denote time step. This partition results in a sequence
of discrete configurations (qo =q0, - ,q"%, - ,q¢% = qf). We then interpolate the trajectories g (¢)
in each interval [tk, tkH] with appropriate interpolating functions. Different choices of interpolation
spaces will give place to different integrators. To fix ideas and by way of example assume that we
choose linear interpolation, namely,

g PR
— ok k41
a(t)=q gt gk T T gk

Inserting this interpolation into the action integral result in the action sum

K—
Sd (qov"' 7qk7"' 7qK) = Ld (qk7qk+1atkatk+1)
k=0

Pty PR K+l k
L\ o qu"’ ) quH’Qk i qk dt
thtl ¢ thtl ¢ thtl ¢

=

where
(Rl

La (", ¢*1 ¢ 9+ :/
tk

is the discrete-Lagrangian. We next approximate the integral by recourse of an appropriate quadra-
ture rule. Different quadrature rules will give different integrators. We take as a particular example

the simple "midpoint" rule
k  k+1 4k pk+1 k+1 _ 4k k 1 € ="
Ld(q N AR A e ):(t Tt )L((l—a)q + ag"t ’tk"‘l—tk>
where the integrand is evaluated at the intermediate time (midpoint)

tk-‘roz — (1 o Ol) tk + atk-‘rl

with @ € [0,1] an integration parameter. Discrete trajectories are then obtained by invoking the



18

stationarity of the discrete action sum S; with respect to variations of the discrete trajectories ¢*:

a8 )
W = DlLd (qk7 qk+17 tkv tk+1) + D2Ld (qk_17 qu tk_la tk) =0 (28)
q
where we have made use of the standard notation D; L4 to indicate the derivative of Ly with respect
to its i-th argument. This identity is the discrete Fuler-Lagrange equation (DEL). It represents an

k-1

equation to be solved for ¢! given ¢* and ¢ and defines therefore a time-stepping algorithm.

Introducing the discrete momentum
pk — _DlLd (qk’ qk’-‘rl’ tk, tk+1) — DQLd (qk—l, qk) tk_l, tk) (29)
the algorithm may be rewritten in the so-called position-momentum form:

pk = _DlLd (qkaqk+1atk7tk+l)

pk+1 = D2Ld (quqk+17tk7tk+1)

Given the pair (pk, qk) the first equation provides an (implicit) equation to be solved for ¢"*! and

the second serves as an update equation for the momentum p*+!

. The pair provides therefore an
update system for the determination of (p*™!,¢"*!) given (p*,¢").
For the particular Lagrangian of the form (2.1) and making use of linear time interpolation and

the midpoint integration rule we obtain the discrete Lagrangian

k _k+1 4k pk+1 k+1 k Loy qurl - qk ? k+
Ld(q » q 7t7t ):(t _t) §m (M) -1 (210)
where
e = (1—a)th + ath !
qk+a = q (throz) _

= (1-a)d" +ag"t!

are, respectively, the intermediate time and configuration, and

kara m (q

Ik-‘ra — I (qk‘-‘ra)

k:Jra)

are the mass and potential energy evaluated at the midpoint. The discrete momenta follow in this
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case as
L gk
pFo= mkte (tk:+1 5 ) +(1-a) (tk+1 _ tk) fe— Uit
gt — g
pk+1 S (tk+1 o ) — (a) (tk+1 _ tk) fef(k+a)
where
e (io+a) o (1 ¢+ — g* 2
f = _qu Qm(q)<tk+1—tk> —1(q) =
qk+a

(Lomtre (gt —gt\Farte
2 (9(] th+1 _ ¢k 6(]
is the midpoint force and the DEL reduce to
k+1 k b h1
kta (4 —4q k—l4a (4 —4
" (tk+1—tk> -m <tk_tk—1> + (2.11)
(1= @) (P — %) fer ) (a) (8 — 1) pertmtte) — g

which clearly represent a discretization of (2.2)

2.1.5 Extension for non-conservative systems

For discrete systems with non-conservative forces we may extend the previous integrator by making

use of the following discretized version of Lagrange d’Alembert principle ([29], [30], [30]):
oS X
d v v .
9t 00" = D (T T Bt T (aa a =0 v
k=0

where f'~ and f¥T are the so-called "left" and "right" non-conservative forces that should approx-

imate the non-conservative part j;tof fYdqdt of the Lagrange-d’Alembert principle, namely,

K ty
SET (@ TR RTY 6qF 4 £ (¢ TR R 6" [ £ () Oqdt (2.12)
k=0 to

Enforcing this principle for every variation in the discretized trajectory d¢* results in the identity

DiLg (¢", "t 5 45T 4+ DLy (¢F71, ¢ 51 89 + (2.13)

_fcll)i (quqk+1vtk7tk+1) - fer (qk_laqk7tk_17tk) =0
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which provides the time-stepping algorithm in the presence of non-conservative forces. Defining the

discrete momentum now as

p' = =DiLa(q,q" 5 ) + £ (68, M R ) =

= D2Ld (qk_17qkatk_17tk) - ;H_ (qk_laqkatk_17tk)
the "position-momentum" form of the algorithm may be rewritten as

p* = =DiLa(¢", ¢" 5 ) T (o8, gM R )

pk+1 = D2Ld (qka qk+1atk7tk+1) - f;+ (qk7 qk+17tk7tk+1)

As in the case of conservative systems, the previous equations define the update algorithm to com-

k+1
)

pute the updated position and momentum (¢***,p**1) given the current position and momentum

(a*,p").

We consider by way of example the particular case of linear time interpolation for ¢ (¢) and one
single quadrature point located at t*¥7 = (1 — )tk + (y) t**! with v € [0, 1], another integration
parameter (possibly coincident with «). The non-conservative part of the Lagrange-d’Alembert

results are approximated then as

b - k+1 4k I A k+
U(q(t),q (1)) dqdt ~ — v R K
/to £ (@0 a)dadt =) (1 =) 1 <q 7tk+1_tk>6q
with
T =1=) "+ ()
and

0q" 7 = (1 =) 8¢" + (v) 6¢**

Rearranging in the approximation we find

t K
/t "), 4 0) Sadt = 3 £m0¢¢ + 364

k=0

where

fdi _ (1 _ 'Y) (tk-‘rl o tlc) fv—(k-i—’y)

5-&- — (,y) (tk+1 _ tk) fvf(k+’y)
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with

k+1 k
ve(hty) _ po [k O @Y _ 0P
f v _f <q ’Y’ tk+1_tk>_ aq (q7Q)

kb1 gk
ket 4 q
(q +’Y’tk+1,tk)

In particular, if the Lagrangian is of the form 2.1, the discrete momentum reduce to

koo kta qkﬂ - qk k+1 4k _ e—(k+a) _ v—(k+7)
po=m <tk+1_tk)+(t t)((l a) f +A=-7f )
k41 _ k
PRl = ke (ikﬂ - ;Jk) _ (tk+1 . tk) ((a) fe—(k+a) + () fvf(kwy))

which clearly represents a discretization of equations (2.3).

2.1.6 Variational integrators and incremental potentials

We analyze whether the DEL equations (2.8) or their counterpart for dissipative systems (2.13) derive
from the so-called incremental potential. An incremental potential is a function ® (q’“’l,qk, q’”l)
such that the update equations that map the pair (qk_l,qk) to the updated pair (qk, qk‘H) (or a

linear combination of them) can be written as

9o
aqk+1 -

In this way the configuration at the new time step ¢®**! can be found by minimizing the incremental
potential ®.
Consider the following hypothesis:

1. A Lagrangian of the form (2.1).
2. Constant mass matrix m (¢) = m.

3. A variational integrator based on linear time interpolation for ¢ (¢) and midpoint quadrature

rule.
4. A constant time step At.
5. A viscous force independent of ¢ and only dependent on .

6. Integration parameters o =y

In this case the update equations reduce to

k+1 k k k—1
¢ —-q¢" ¢ —q ar 99
m ( A7 Az ) + At <(1 @) <8q + 8q>

o1 , 09
k4a - (a) (34 * 3‘?)

=0
k—14+«
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A straightforward differentiation shows that the previous equation may be written as

9o
3qk+1 -

where

1 _
D (¢" 1, ¢k, d") = % (" —¢7)" + AtTa ((I+ aAtd)| g — (I + aAtd)|;_140)

is the incremental potential, with

At? (0  0O¢
pre k k k—1 .
q 4 (q q ) m (aq a4 )

k—14+« B
_ At2 0
= ¢"+ (qk —q* 1) T m ok (I(1 + aAt)], 11 y)

and

Ik+oz I ((1 _ a) qk + aqurl)
= I(g"®)
k+1 k
a q —q
k+a k
_ q —q
= ¢ ( alt >

2.1.7 Variational time adaption

In this section we illustrate the concept of variational adaptivity within the context of finite dimen-
sional Lagrangian systems. As opposed to standard variational integrators, where the set of discrete
times (9 =tg,--- ,t* .-+ [t =1ts) is given or estimated, we shall regard the latter as unknowns
and we shall make use of Hamilton’s principle to compute those unknowns. As was explained in
Chapter 1, this idea was originally studied in Kane, Marsden & Ortiz [20] and the class of variational
integrators so obtained exactly preserve discrete energy.

We recall that in standard variational integrators (see §2.1.4), only the vertical coordinates ¢*
of the discretized trajectory (see figure 2.2) are computed and only one equation is derived. This

equation is the discrete (vertical) Euler-Lagrange equation (equation 2.8)
DyLg (¢%, ¢ 5 ") + DoLg (¢" 1, ¢ 41, 1F) =0 (2.14)

where

Ly (qk7qk+17tk’tk+1)
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is the discrete Lagrangian.

q

A A

dk+1
ak

v

v

t tk k41

(a) (b)

Figure 2.2: Continuous (a) and discrete (b) trajectory of the dynamical system. The complete set
of parameters that define the discretization is given not only by the vertical coordinates ¢* but also
by the horizontal coordinates t* (the mesh).

We regard now as unknowns not only the vertical coordinates ¢* but also the horizontal coordi-
nates t* and we use the the same variational principle from which the (vertical) unknowns ¢* are
obtained (discrete Hamilton’s principle) to derive equations for the determination of the discrete
times t* (horizontal unknowns). In other words we assume that an optimal set of discrete times
t* is obtained by rendering the discrete action sum S; stationary with respect to the horizontal

coordinates t*. We recall that the discrete action sum is given by

Lg (%, ¢" 1t tF 5+

wn
QU
—
uﬂ
>~
(=)
>~
SN—
I
x>
I M =
o

Invoking the latter stationary with respect to horizontal coordinates t* we find
D3Ld (qk7 qk+17 tky tk+1) + D4Ld (qk717 qk7 tk717 tk) =0 (215)

This equation coupled with the first discrete Euler-Lagrange equation (2.14) enables the simultaneous
determination of both ¢* (vertical coordinates) and the mesh ¥ (horizontal coordinates).

Consider for example the particular case of Lagrangian systems of the form

L{g,d) = ym (@) i~ 1)

discretized with piecewise linear and continuous interpolation and a single quadrature point

ko k+1 1k 4k+1 k+1 k I qk+1—qk2 k
La (", g™ 5, 4500) = (11 — ) 2m+a<tk+1_tk> -
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In this case we have

D4Ld (qkaqk+1atk7tk+l) = _Ek
D3Ld (qk7qk+17tkatk+1) = Ek
where )
1 qk+1 _ qk
k_ — kta 1 4 k+a
E — ™M <tk+1_tk +1
is the discrete energy. Equation (2.15) then yields
EF —EF'=0

Motivated by this example we arrive to the following two important conclusions:

(i) Enforcing horizontal balance equations at the discrete level is equivalent to choosing discrete

times t* such that the discrete energy is exactly conserved.

(ii) As opposed to the continuum setting where energy conservation (horizontal balance) follows
automatically from momentum conservation (vertical balance) (see §2.1.3 ), in the discrete
setting this equivalence is broken. Arbitrary selection of discrete times t* will not result in
general in the automatic satisfaction of a discrete energy conservation law. Vertical and hori-
zontal balance equations are equivalent in the continuum setting but are not equivalent in the
discrete setting. Therefore, the stationarity of the discrete action with respect to the vertical
coordinates ¢* will not imply stationarity of the discrete action with respect to horizontal

coordinates t*.

This discrepancy between continuous and discrete settings is illustrated graphically in figure 2.3
(c.f. reference ([29]), see also Chapter 3). Every vertical variation can be interpreted as an horizontal
variation in the continuous case. In the discrete case however, horizontal and vertical variations do
not lead to the same variation and therefore, horizontal and vertical discrete balance equations are

not equivalent.

2.1.8 Mixed Hamilton’s principle

In this section we study a mized variational formulation that allows for independent variations of
trajectories ¢ () and velocities V (¢) and an extended class of variational integrators based on this
mixed formulation. The mixed variational formulation and corresponding integrator will be referred,
respectively, to as the mired Hamilton’s principle and mizred variational integrators. This mixed
principle might be understood as the analogous for dynamics of the well-known DeBeuveke-Hu-

Washizu variational principle for statics and has been linked to the Pontryagin maximum principle
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1 (0, 69) t (0,dq5)

(5t,0) (6t 0)

»

t "

(a) (b)

Figure 2.3: Horizontal and vertical variations in the continuous (a) and discrete (b) settings. In the
continuous case every horizontal variation might be interpreted as a vertical variation and recipro-
cally. In the discrete setting, however, horizontal and vertical variations are not equivalent leading
to independent horizontal and vertical balance equations.

v

in optimal control (c.f. [54]). Due to the conceptual link with Pontryagin’s maximum principle the
name Hamilton- Pontryagin variational principle has also been proposed [64]. The formulation of this
mixed variational principle follows standard Lagrange multiplier arguments, where the compatibility
condition ¢ — V = 0 is imposed by recourse of a Lagrange multiplier p that is itself taken as

independent variable. The mized action follows then as

S[q,v,m:/f<L<q,v>+p<q—v>>dt

to

The variations of this functional with respect to each of its arguments are

ty
(5S,6q) = / OL 5o+ pog) dt =0
to Jq
tr /oL

ty
/ (4= V) opdt =0

to

(65, op)

Integrating by parts in the first identity we obtain

ws.o0= [

to

3L d'p ty

Demanding now the stationarity of the mixed action with respect to admissible variations of all of

its arguments, namely, variations (dg, 0V, 0p) with the first component dq vanishing on the initial
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and final times ¢ty and ¢; we find the Euler-Lagrange equations

dp 0L _
dt  Oq
0L
b= v
g =V

We obtain then a system of equations that is equivalent to the Euler-Lagrange equations correspond-
ing to the standard (one-field-dependent) Hamilton’s principle. It follows from this identities that
the Lagrange multiplier p is nothing more than the momentum evaluated in V instead of g.

We next eliminate the Lagrange multiplier p by making use of the Euler-Lagrange equation
corresponding to variations of V. In this way we build the following (two-field-dependent) mixed

action functional

S[q,V}z/tf (L(q,V)—Fg‘L/ )(Q—V)> dt

The variations of the previous with respect to each of its arguments are

(¢,V

(0L oL .. 0°L .
<($S, (5(]) = /to (8(]6(] + W(Sq + &]W (q - V) 5(]) dt =0
ty 92
(05,6V) = % (G V)Vt =0
to

Integrating by parts in the first identity we obtain

tf (L d (0L 2L . oL
<5S,(5q> = /to (aq — % (8‘/) + w (q — V)) 5th+ W&q

Stationarity of the mixed action with respect to independent variations of each of the two arguments

ty
=0
to

(6q,6V) (with d¢ vanishing in the initial and final times) implies the Euler-Lagrange equations

oL d (OL\ , oL

aq_dt(av>+aqav(q_v) =0
02L .
W(q_v)

|
o

It easy to see that, if % is not singular, the previous is equivalent to the Euler-Lagrange equations
corresponding to the standard (single-field-dependent) Hamilton’s principle.
To simplify the notation we will occasionally use the notation

L™ (q,4,V)=L(q,V) (¢-V)

+ —_
W (gv)
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The new magnitude L™ will be referred to as the mized Lagrangian. Using this new symbol the

mixed Hamilton’s principle becomes

ty )
Sla.V] = / L™ (q,,V) dt

to

Written in terms of L™ the variations of the mixed action are

ty mix mix
/ (aL 5q+8L, 5(1)dt:0
to

(68, 0q) B4 94

ty 8Lmix
65,0V) = / SVdt=0

0

and the Euler-Lagrange equation take the compact form

i aLmix B aLmix _ 0
dt \ 9q dqg
aLmiz
ov =0

For the particular class of Lagrangians of the form L (q,¢) = %m (q) ¢*> — I (q) the mixed (two-

field) action is given by

Sla.v]= / (3m@V = 1@+ Vm(@ - V) ) a

The corresponding Euler-Lagrange equations are in this case

L@Vt = 0
m(q)(¢—V) = 0
where
F@iy) = e (m@V 1@+ V@ - 1)) -
- 2w

2.1.9 Relation with Hamilton’s equations

A straightforward derivation shows that the mixed (two-field) variational formulation just outlined

may be transformed into another functional that operates as a variational principle for Hamilton’s
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equations. We recall that Hamilton’s equations are

) |
b= o
. 0H
T

where H (g, p) is the Hamiltonian defined as
H(q,p)=—-L(q,V)+pV

with V written in terms of (p, ¢), using for this the inverse of the equation that defines the momentum,

namely
oL

p

To establish this relation, we simply rearrange the mixed (two field) action in the form

Slg, V] = /ttf ((L(q,V) —VS‘L/) 4 gj;) dt

and define
oL
Using this notation the mixed variational principle becomes
S(g,V] /tf( H (g, v) - 2 >d
q, = - q, - 7q t
to dq
Inverting now the relation
oL
=—(q,V
p=55@V)

to obtain V as function of (¢,p) and composing the mixed functional S (¢, V) with the obtained

function V (g, p), the following new mixed functional arise

S'lg,p) = Slg,V(g:p)]
/fFH@m—th

to
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where H (g,p) is the Hamiltonian. Stationarity of the S’ with respect to each one of its arguments

implies
tr ( OH
) = / <—6 — 5'> dt=0
{ q) ; ag 09~ PY
tr( OH
58, 6p) = / <——'>5dt:0
( 12 \ op 9)0P

with corresponding Euler-Lagrange equations

OH
o = °
. OH
o =

Therefore the stationarity of the new mixed functional S’ [¢,p] = S'[¢,V (q,p)] with V (g, p) defined

implicitly by p = g—‘L/ (g, V') with respect to its arguments implies Hamilton’s equations.

2.1.10 Mixed Variational Integration

We proceed now to use the mixed action S (¢, V') as an operative variational principle to formulate
an extended class of time-stepping algorithms. To this end we partition the time interval [to, ]
into discrete times (tO =tg, -, tF, o K = tf) where K is the number of time subintervals. We
proceed by interpolating the trajectories ¢ () and velocities V () in each interval [¢t*,t*™!] with
some interpolating functions. As is standard in mixed formulations, the question that immediately
arise is how to select the interpolating spaces. We will provide an insight to the answer of this

question by analyzing by way of example the following two possibilities:

1. Trajectories ¢ (t) are interpolated linearly and velocities V' (¢) are interpolated with a constant

VF+8 namely,

Rt —¢ t—t*
_k k
q(t) = 4 s T A s s
V() = VP

for every t € [tk tFF1].

2. Both trajectories and velocities are interpolated linearly, namely, for every t € [tk , t’“‘l]

1y PR
_ ok K
q(t) = 4q prs S I S R
Pl g PR
vt = vk + vk

tk+1 _ tk tk+1 _ tk
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Using these two examples we now proceed to build the mixed action sum, discrete-mixed La-
grangian, and discrete-mixed Euler-Lagrange equations. To simplify the derivations we assume the
classical Lagrangian

1
L(g,V)=5m(@)V?=1(q9)
for which the mixed Lagrangian is given by

mix . _ 87.[/ s _

_ %m(q)VZ—I(q)—i—Vm(Q)(q—V)

Inserting the first of these interpolations into the mixed action functional, the following mized action

sum is obtained

K

51d (( o >qk7 T ) ’ ( o 7Vk+67 T )) = ZLTdr“.L (qk’ qk-‘rl’ Vk+57tkatk+1) (216)
k=0
where
L:inm: (qk7 qurl’ Vk+'87 tk’ thrl) _
pht1
k+1 k
_ miz q —4q k+p _
tk
Rt
1 k812 k+8 ¢t —¢* k+8
im(q (t) (VEF2)" =1 (q () + VEPm(q(1)) s 14 dt (2.17)
tk
with

thtt —¢ t—tF
q(t):tk+1_tkq +tk+1_tkq

Inserting the second of the interpolations into the mixed action functional, the mixed action sum

follow instead as

K
S, (( A ) , ( VR )) - ZLgm (qk”qk-&-l’vk,Vk+17tk7tk+1)
k=0
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with corresponding discrete-mixed Lagrangian given by

LZM’I‘ (qk7qk,+1, Vk7 Vk+17tk,tk+1) —

tk+1

) qkJrl - qk
tk
tk+1
1 2 il &
-/ (2m<q ) (V0 = () +V H)m (g (t) (t*—t . V(t)» ;
tk
with
thtt —¢ t—t*
q(t) = tk+1—tkq +tk;+1_tkq
thtl —¢ t—t*
V(t) tht1 _ ¢k Vit thtl —th v

The formulation of time integrators is then completed by the appropriate selection of a quadrature
rule. If for example we use a single quadrature point located at t*+® = (1 — ) t* + () t*+! the
following discrete-mixed Lagrangians are obtained: for the first set of interpolating spaces (linear

for ¢ and constant for V):

LgL’LI (qkr7 qurl7 Vk+ﬁ, tk, tk+1) —

ki1 gk (L kta (1h4s)2 k+a k48, k+a ¢t —q* k+8
(t —t) -m (V ﬁ) 4 + VEPm - = _V

2 th+1 _ ¢k
where
Thte g (qk+a)
mkte = (gF)
¢t = (1-a)d" + (a) "
and

VF+8 = constant

per time interval. For the second set of spaces (linear for both ¢ and V') we obtain

LZLZL <qk7 qu’_l, ‘/k‘7 Vk+17 tk7 tk—l—l) —
k+1

(tk+1 _ tk) 1 k+a (Vk:+a)2 — JFta 4 yhta kta 4 — qk _ ykta
oM m thL _ 4k
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where mF*+®, I¥+ and ¢**< is given as before but where V**¢ is given now by
VEre = (1= ) VF + (a) V!

While these two discrete-mixed Lagrangians seem to be identical, there is a very important difference:
in the first case the Lagrangian is assumed to be function of one velocity V*# per time interval
[tk ,tkH] while in the second case the Lagrangian is assumed to depend on two velocities V* and
VE+L per time interval. As we will illustrate shortly this derives in the existence of "modes" for the
velocity.

The discrete trajectories and velocities follow now by invoking the stationarity of the discrete-

mixed action sum Sy with respect to each and all of its arguments. In the first case we obtain

aS, : ; _ _ _
8(]}? _ D1L7dnza: (qk7 qk-l-l7 Vk-‘rﬂ’ tk7 tk-i—l) + DQL;rinzac (qk 17 qk7 Vk 1+5’ tk: 17 tk) _ Q218)
an mix
oV k+B = D3Ld (qu qk+17 V]H_ﬁv tkv tk+1) =0 (219)

while in the second case we get

a8, } ,

8qZ - DlLZ”z (qk’qk+l’ k’ k+1’tk7tk+1) + D2L7dnzw (qk_lvqu ’ k_l, ! kvtk_l?tk) =0
0S4 } ; _ VRl yk phe

8[/k = DBLZ“‘T (qk’qurl’ k’ k+1’tk7tk+1) +D4LZ”£E (qk 17qk7 F 1, kvtk 1’tk) =0

These equations are the discrete-mized Euler-Lagrange equations (DMEL). For the particular discrete-

mixed Lagrangians under study the DMEL reduce to

0 = — (mk+avk+6 _ mk—1+avk—1+ﬁ) + (tk-i-l _ tk) 1-a) fha 4 (tk _ tk—l) (@) fh=l+a
k+1 k
_ o kta[ykes 4 —4
0 = m <V t’f“—t’f)
with
fk+a _ laﬂ (Vk?Jrﬁ)Q _ g + Vk:+ﬁaim q - q _ VkJrﬁ
2 dq Oq Oq thtl ¢k
k—1+a« k—1+a k—1+« _

fholte }aﬂ o (kalJrB)Q B g T " kalﬂiaim e gh— ¢! _ k148

2 dq 0q Oq th — k-1

in the first case and

0 = — (mk+avk+a . mlc—l-i-avk—l-l—a) + (tk-‘rl _ tk) (1 _ a) fk-l-a + (tk _ tk—l) (Oz) fk—1+a

k k k k—
0 = (1—a)mhte(yhte _ qﬂi_q + (@) mP—tFe (yh-lta _ w
- R gk PR
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with
fk+a B laﬂk+a (Vk+a)2 B ngra N V]H_aaikara qk—i-l _ qk B Vk-‘ra
- 20q dq q thtl — ¢k
k—14a k—14« k—14a —
frotte = 19m o (V’“‘1+°‘)2 _ o o +Vk—1+aaﬂ gt -t _ yk-l+a
2 Jq dq dq th — k-1

in the second case.

We can see that in the first case we have a system of two equations for the unknowns (qk“, Vk+5)
given (q"c’l7 gk, VE-1t8 ) and discrete trajectories and velocities result univocally determined given
initial conditions (qo, qt, Voth ) However only two of these are required since the Euler-Lagrange

equation for V' at the initial time is just

Vo+s _ % =0

Therefore, and as expected, given the initial data (qo, yo+s ) the complete discrete trajectories for ¢
and V are well defined by this algorithm. Analyzing now the DMEL equations for the second case
we observe that we obtain a system of two equations for the unknowns (qk‘H, V’”‘O‘) that can only
be solved if we are given (qk_l, q", Vk_1+°‘). A discrete trajectory will therefore be generated if we
provide as initial conditions the triple (qo, qt, V‘””‘). However, unlike the first case, the three values
(qo, q, VOJ”") are required to generate a unique trajectory and the algorithm does not provide a
unique way to generate the additional required value ¢*. We thus conclude that the second algorithm
will exhibit arbitrary global modes in time. This means that the resulting trajectory for ¢ (¢) and
V (t) will be unique up to an arbitrary global mode fixed only by the arbitrary selection of the initial
data ¢'.

We also observe that in the first case we recover the variational integrator based on the single
field Lagrangian (2.10). This can be easily verified by eliminating V**# from the second DMEL

equation and substituting the result into the first to obtain

tk+1 _ tk tk _ tk—l
19 k4o k+1l kN 2 alk+a
+ (T = #F) (1 - ) ~am R S
2 dq thtl — ¢k dq
1ta ) N Mt
+ (tk — tk—l) () laﬂk " M — gk o
2 dq th — k-1 dq

that correspond to the DEL equations (2.11). This will happen in general when the interpolation

k+1 _ Kk k k-1
0 - _(mk+aq A >+

space for V (t) coincides with the space that results from taking derivatives in time of the interpo-

lating functions selected for ¢ (t). More precisely, let Q be the global interpolation space for ¢ (¥)
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and V be the global interpolating space for V, i.e., the functions ¢ (¢) and V (¢) (in the complete
time interval [to,tf]) are linear combinations of functions of Q and V. Then If V = Q, that is to
say, functions of V are time derivatives of functions of Q, then both methods will be equivalent. If
on the other hand the space V is too rich compared to the space O then the method will exhibit

velocity modes.

2.1.11 Mixed Variational Integration with selective quadrature rules

Consider again the case of piecewise linear (and continuous) interpolation for trajectories ¢ (¢) and

piecewise constant (and discontinuous) interpolation for the velocity V (¢), namely,

thrl —t t— tk:
_ k k
q(t) = 49 tk+1_tk+q th+1 _ ¢k
V(i) = VA

for t € [tk,tk“] and for every k. As was explained in the previous subsection, inserting this

interpolation into the mixed action functional, the following mized action sum is obtained:
K
Sd (( ce 7qk7 o ) 5 ( o 7Vk+5a e )) = Z Lg“m (qka qk+1a Vk+5atkatk+1)

k=0

with a discrete-mixed Lagrangian given by

LI (gk, gt HL VRS g gkt =

tk+l
k+1 k
miz q —4q k
tk
et
1 kt5)2 K+ ¢ —q" s
§m(Q(t))(V ) = 1(a @)+ V" m(q(t) s dt
tk

Different alternative time-stepping algorithms follow by an appropriate selection of quadrature rule.

A class of mixed variational integrators might be designed by making use of selective quadrature
rules, that is to say, different quadrature rules for the different terms in the previous integral. For
example, if we use one single quadrature point located at t**# for the kinetic energy term and
Lagrange multiplier terms, but a two point quadrature rule (located at t*+® = (1 — a) t* + () tF+!

and tFT1=2 = (a)t* + (1 — @) t**!) for the potential energy term, we obtain the discrete-mixed
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Lagrangian

LI (gk, gL VRS g gkt =

k1 ok (L ks Vh+8)2 ]‘Ik-i-a JhH1=a kB kB ¢t —q Vk+8 2.90
(#F7 = 27) [ gm" T (V)T = S (1 + )+ m T (2:20)

where

]—k-‘roc = 7T ((1 _ a) qk + (a) qk-i-l)

Ik“rl*Oé = T ((a) qk + (1 _ OL) qk+1)

In this case the discrete-mixed Euler-Lagrange equations take the form

0 = ( k+Byk+6 _ k71+BVk*1+ﬁ)
+ (tk+1 tk) 6k+6 +
—|—(tk tk 1) ek 1+ﬁ
1 « «
+ (tk+1 tk) 5 (fk+ ) + fk+1 (Oé))
1 -«
+ (tF =t 1)§(f’“ () + (1 - ) (2.21)
k+ k
_ k48 k+8 4 —q
with
1om*t OmFTB gkt _ gk
F B — (Vk+ﬁ)2 4 ks q 4 _ yk+s
2 g dq thtl _ ¢k
k—1+8 k—1+8 : —
k=148 10m (Vk—1+5)2 +Vk—1+56ﬂ q* — ¢k 1 ke
2 dq dq th — k-1
and
fk;+a _ gk+a B g
0q 94{((1-a)g +(a)q++1)
fk+1_a B gklefa B g
9 94 ((@)q+(1-a)g*+1)
fk;71+a B gk—l—‘ra B g
0q 94 [((1-a)gt=1+(a)*)
fkfoc _ gk_a aI
9 94 |((@)q+-1+(1-aat)
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2.1.12 Mixed Variational Integration and mixed incremental potential

For non-conservative systems, we may extend the update equations for a mixed variational integrator

(2.18) and (2.19) in the form

0 = DlL’rdnzw (qk:7q/i:-‘y-17 Vk+’8,tk,tk+1) + D2L7dnix (qk_l,qk7vk_1+6,tk_l7tk) +
_fcll)7 (qk,qk+l7tkatk+1) - f§+ (qkilvqkﬂtkilatk)
0 = DSLZLZCE (qk’ qk:+1’ Vk+ﬂ’ tk, thrl)

where f9~' and f* are the left and right discrete viscous forces defined such that relation (2.12)
is satisfied. It becomes useful to analyze whether these equations derive from a mixed-incremental

potential, i.e., a function ® (qk“, Vk+5) such that the previous can be written as

0P
dgFt1 =0
0P _ 0
ovk+s

Consider the following hypothesis:

1. A Lagrangian of the form (2.1).
2. Constant mass matrix m (q) = m.

3. A variational integrator based on linear time interpolation for g (t), piecewise constant inter-

polation for V () and midpoint quadrature rule.
4. A constant time step At.
5. A viscous force independent of ¢ and only dependent on ¢.

6. Integration parameters oo =y

In this case the updated equations reduce to

m (Vk-+6 _ Vk—1+6) + At <(1 — ) (gé + gﬁ)

ol 0
+ (@) ( + (b) =0
k+a aq aq k—14+«

k+1 _ k
Vk“‘rﬁ — 4 q — O
" ( At
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A straightforward differentiation shows that the previous equation derive from the following incre-

mental potential:

P (qk717qk7 Vk71+5’ qk+1’ Vk+5) _ ﬂ (Vk+5 _ Vpre)2
+At7 (11 + aAtd)|py o — 1L+ aAt¢)|k—1+a) +

+ (Vk+l3 _ Vpre) m (qk+1 — ¢ _ (Vk-l-/j’ _ Vpre))
At

with
2
¢ = ¢F+ AVETIHA aAit <8[ + 3(;5) -
m \0q 04 k—14a
At 0
=g AR O (I + A1 40
e —  yhel+8 _ aAitQ (I + 8(b) =
m \ 0 ¢ k—14a
B At? 9
Vh—1+8 R (I + aAtd) ;140
and

Ik‘+0£ — I( 1 - OL q + Oéqk+1)
= I(¢")
k+1 k
k+a q —q
k+a k
_ q —4q
= ¢ ( alt >

2.2 Mixed variational principles for Solid dynamics and vari-
ational mesh adaption

We proceed in this section to incorporate the space variable X into the picture and to highlight
the salient features of the variational principles and the variational finite element mesh adaption
framework analyzed in this thesis. To keep the presentation simple we will consider for the duration of
this chapter only one-dimensional (in space) problems and the particular case of isothermal elasticity
with no viscosity. The full three-dimensional formulation in the presence of viscous, thermal, and

internal processes will be treated in the following chapters.
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2.2.1 Lagrangian formulation for elastodynamics

We begin by reviewing Hamilton’s principle in the context of one-dimensional elasticity. The ex-
tension of Hamilton’s principle and its mixed version to the space-time context is accomplished by

defining the Lagrangian L of the the body B in terms of a density £

L:/[ﬁdX
B

Consider a one-dimensional body B = [0, L] where L is the undeformed length L of the body.
The body subsequently moves under the action of externally applied forces and we are interested
in finding its motion ¢ (X, ), i.e., the function that specifies the spatial position x = ¢ (X,t) for
each material particle X € B and each time ¢ in the time interval [to,t¢] of analysis. Let B (X,t)
be the external body forces per unit of undeformed length and assume that the material is elastic

and possibly inhomogeneous, i.e., its constitutive relation is given by

0A

P=3F

where P is the (Piolla-Kirchhoff) stress, F' = g—;‘; is the deformation gradient, and A (X, F') is the

strain-energy density (assumed to depend explicitly on X to account for the possible inhomogeneity).

To simplify the derivations we will assume zero traction and displacement boundary conditions, i.e.,

©(0,t) = ¢(Lt)=0
P(0,t) = P(L,t)=0
The Lagrangian density is defined as
1
L(X,t,p,V,F) = 5RW —W (X,t, 0, F) (2.23)

where V = ¢ is the material velocity, R is the mass density per unit of undeformed length, and W

is the total potential energy given in this case as

W (X, t,p,F)=A(X,F)— B(X,t)¢

The (standard, single-field) action functional S (¢) follows by integrating in space and time the
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Lagrangian density in the form

tf L
Slel = / (X,t,¢,¢, Dp) dXdt =
0

L
ty L 1
= / / <2R¢2W(X,t,<p,D<p)) dXdt (2.24)
to 0

where we are using the notation

, 09
7T o
9

De = gx

for the partial derivatives with respect to time and space. The variations of the action functional

with respect to its argument are

tr L ror oL oL
<5S,5<p>—/to /0 (&p5w+ —0p aFD&p)dth

where we have used the usual commutative assumption

N dp\ 0 Y
5) = 3(5) = g Ge1 =

5Dp) = 3(5%) = 55 69) =D

Integrating by parts in time for the second factor and in space for the third factor we obtain the

variations in the form
ty doL d oc
(68,6 — - ——— — ——— | dpd X dt
?) /t / (3(,0 dov  dx ap) patat+

ts ac L Bﬁ

0
Hamilton’s principle states the actual motion ¢ (X, ¢) that joins prescribed initial and final configu-

ty
dX
to

rations ¢, (X) and ¢, (X) will be the particular motion that renders the action functional stationary
with respect to all admissible variations, i.e., variations that vanish in the initial and final times and

in the Dirichlet part of the boundary. This implies the Euler-Lagrange equations

oL d oL d 0L
9y @0V axaF " (2.25)

For a Lagrangian density of the form £ = $RV? — W (X, ¢, ¢, F) the previous yields

P d
~B— =t o (RV) =0 (2.26)
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that corresponds to the equations of balance of mechanical forces or balance of linear momentum.

2.2.2 Horizontal variations and Euler-Lagrange equations

As in the case of finite-dimensional Lagrangian systems, the concept of horizontal variations and
horizontal Euler-Lagrange equations will play a fundamental role in the analysis of the methods
presented in this thesis. This variational formulation was developed within the context of the theory
of multisimplectic continuum mechanics in [29], [30] and the procedure we will present in what
follows is its particularization to one-dimensional elasticity rewritten in a less abstract notation.

The motion of the body is defined as the function

I'ZLP(X,t)

Consider the graph of this function, i.e., the surface

(X,t, 0 (X, 1))

which belongs to the combined space-time-space bundle with coordinates (X, ¢, ) and its one of its
sections. Figure 2.4 depicts this surface. With this picture in mind, we shall refer to (X, t) as the
horizontal variables and to = ¢ (X, t) as the vertical variable.

In the previous subsection we invoked the stationarity of the action functional S [p] with respect
to variations of the vertical variable ¢, or vertical variations. The corresponding Euler-Lagrange

equation (equation 2.25) evaluated to

9L doL d 9L
dp dtoV  dXOF

We focus the attention now in variations with respect to the horizontal variables and the Euler-
Lagrange equations corresponding to the stationarity of the action functional with respect to hori-
zontal variations, which shall be referred to as horizontal Fuler-Lagrange equations. We recall from
§2.1.3 that for finite-dimensional Lagrangian systems, the Euler-Lagrange equation corresponding
to horizontal variations was nothing more than the energy balance equation. When the base space
is space-time, we are allowed to take horizontal variations both in the direction of space and the
direction of time. We shall find as we proceed, that the horizontal Euler-Lagrange equation in the
direction of time corresponds to the equation of energy balance while the horizontal Euler-Lagrange
equation associated to the space direction yields the equation of balance of dynamic configurational
forces.

To this end, and as it was done for the finite-dimensional case (see §2.1.3), we introduce a change
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(Xt 0 (X, 1)) =
= (X (§7),t(&7),2 (& 7))

70 T f

£

Figure 2.4: Graph of the motion ¢ (X, ¢) of a one-dimensional body B and change of parametrization
of its base space, i.e., the space-time subset B x [to, /]

in parametrization of the base space (see figure 2.4)

(X?t) = 1#(577.) = (X (537) 7t(£a7-))

that maps every pair (§,7) in the set D X [1¢, Tf] into the space-time domain B x [to, ;] where (£, T)
are new space-time coordinates as depicted in figure 2.4 . We shall refer to the set D x [, 7¢] as

the parameter space, or parametric configuration. Let

r=gpop

or

1‘(5,7’) = QO(X (5)7-) 7t(§v7-))
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be the composition mapping. Differentiating the latter with respect to the space and time parameters

& and 7 we find

ox

&£ D

€ 36| 7 |ow (2.27)
Oox .

or 12

where J is the Jacobian matrix of the space-time reparametrization mapping

X ot
) )
J (&7 = ai aﬁ
or  or

We next refer the action functional to the parameter configuration to find

tf L
s = / /L(X,t,w,(Dgo,(p))dthz
to 0

_ /T:f /OLL<X(§,T),t(§,’l’),m(f,7-)7(gz’g‘j> JT> dot (3) dedr —
S[X,t, 4]

Horizontal variations of the action S [X, ¢, x| are those corresponding to variations in the parame-
trization of the base space dv (&, 7) = (6 X (&, 7),dt(£,7)). To compute these variations we switch

to indicial notation and write

X = 1
t o= 1y
§ = 4
T = Z

whereupon the change of parametrization is reexpressed as

¢(Z) = (¢1(Z17Z2)a¢2(Z17Z2)):
= (X(§a7)7t(£v7-))

and the Jacobian relation (2.27) shall be rewritten as

To=(pa0)Va, (2.28)

with Jacobian

Jaa = 1/&4,04

Here and in what follows we will use Latin indices (A, B,---) for physical space-time coordinates
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(X,t) and Greek indices («,f3,--) for the space-time parametric coordinates (&,7). Using this

notation the action might be reexpressed as
ty L
S [p,x] = / / L(Zaw,w oty 0tp)det (v, ) dédr
to 0

Noticing then that

d _

% det (wA,oz + 557/)147(1) |€:0 = 51/),4,(11/)(1,114

4 (Va0 + 209 )‘1‘ 51 0 (You+ethap)| =

de \TAe Asa e=0 B.A g 5 oA o =0
= —Yo 50Up sV5a

the horizontal variations evaluate to

(05,69) = (S + ey, a])l. =

oL _ _
(m 57 LAt - aww,awa}gwmwﬁi)oiﬁdet (¥a,5) dédr =

)

L
[

/L oL 1

(‘W’A 07 4 +0vp ﬁwﬁ A <£5AB 99 4 x,alba,B)) o 1 det (1/),4,8) dédr =
0
/
0

)

oL
((WA 974 +0Yp ;ﬂ% A </~35AB 9% 4 @,B)) otpdet (¢, p) dédr

Il
\;\ 5‘\;\ 3\: %‘Q‘

To

where relation (2.28) has been invoked. Referring now the previous integral back to the space-time

reference configuration [0, L] x [to,t¢] we obtain

ty L

oL oL

-1 -1

<5S,5¢>://((5¢A01/} )E‘F((SwBo'lp ),A (E(SAB_%QQB))dth
to O

where we have made use of the identity

(0¢p o ¢71),A = (0p g0 ¥) wgi‘l

Integrating by parts in the second term and assuming that horizontal variations vanish in the bound-

ary of the space-time domain we finally obtain

ty L

_ —ny (9L _ oL
@s,50) = [ [ (0400 )(aZA (zaAB 3@’14@,3)7/{) axt

to O
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which rewritten in terms of the component functions (1, (Z1,22) ,¥4 (Z1,2Z2)) = (X (§,7),t (£, 7))

takes the form
tr L 8£ X B
5,50 //( o o (& )W ;
1
0

oL
0 ] - ( oc >(D</>,sb) ~<5X ) oufl) axt

Horizontal Euler-Lagrange equations follow by demanding the stationarity of the action func-

tional with respect to admissible horizontal variations,
(05,69) =0

which implies under appropriate smoothness conditions on the integrand the space-time equations

L oc d d 10 %% .
(8X’3t>_(dX’dt). L . - % (Dy, @) —(070) (2.29)

with space and time components

B A 0 e
()R o e

1 0 oL

0 1 gL
) [,;_ oy
-LF -2tV

which represents the space-time analog of

The magnitude

(2.32)

(see §2.1.3, equation (2.6)) is the space-time energy-(material) momentum tensor or space-time
FEshelby stress tensor ([6], [7], [29],[30], [63]) and equation (2.29) is the equation of balance of energy-

(material) momentum.
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oL
C=- (E—aFF)

The magnitude

which corresponds to the space-space component of the space-time Eshelby stress temsor defined
in (2.32) will be referred to as the dynamic Eshelby stress tensor. The space component (2.30) of
equation (2.29) is the equation of balance of material momentum or equation of balance of dynamic
configurational forces while its time component (2.31) is the equation of balance of mechanical energy.

For Lagrangian densities of the form
[
L :§RV - W (X, t,0, F)
the space-time Eshelby stress tensor evaluates to

(W-1iRV?)—PF  —PV
RVF sRVZ+ W

C =

and equations (2.30) and (2.31) reduce to

o D (RVE) = 0 (2.33)
% + 8% (=PV) + % (;sz + W) =0 (2.34)
where
C = —%RW +W-PF

are, respectively, the dynamic Eshelby stress tensor and first Piolla-Kirchhoff stress tensor.

As we shall explain shortly, we will particularize the variational adaptivity framework to space
adaption only. It follows that the equations of interest in our formulation will be the vertical Euler-
Lagrange equation (2.25) and the horizontal Euler-Lagrange equation in the direction of space (2.30),
i.e., the equations of motion and the equation of balance of dynamic configurational forces. We shall

rewrite these equations jointly in a column vector equation as

%\ (g \ _a-ser)_ (o
aL dx _ocL dt L 0
dp OF ov
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or alternatively as

x| d (SRR ) d foc (=) (0
oL dX _oL dt \ oV 1 0
Oy oF

2.2.3 Equivalence of vertical and horizontal Euler-Lagrange equations

As was demonstrated in the case of finite degree-of-freedom Lagrangian systems (see §2.1.3), for con-
servative systems, horizontal and vertical Euler-Lagrange equations are equivalent in the sense that
if the vertical equation is satisfied, both horizontal Euler-Lagrange equations will be automatically
satisfied. This can be directly verified in complete analogy to what was done in the finite-dimensional
case, by defining the following Euler-Lagrange operators (left hand side of the vertical and horizontal

Euler-Lagrange equations (2.25), (2.30), and (2.31))

oL d oL d oL

Fel9) = 3, @wav  dxoF

oL d oL d oL
o) = 5x+tax (‘ (“aﬂ)) T (_avF)

oL d (0L d oL
A6 = G ax (o) i (- (e 57))

whereupon the balance equations reduce to

Folp) = 0
Fx(p) = 0
Fi(p) = 0

Then it is straightforward to prove the identities (compare with identity (2.7), see §3.3.3 for a formal

proof in the multidimensional setting)

Fx = —-FF,
Fr = —-VF,.
where
= ¢

which implies

Fo=0&Fx=0&F=0
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As will be illustrated as we proceed and as happened in finite dimensional Lagrangians systems,
this is not the case when the system has been discretized. Indeed, requiring then satisfaction of the
discrete counterparts of the horizontal Euler-Lagrange equations by rendering the discrete action
stationarity with respect to the horizontal discrete reparametrization will give a new set of equations
that can be used to solve for the discrete base space, i.e., for the space-time mesh. Both time and

space adaptivity could be eventually be driven by this set of equations.

2.2.4 Mixed Lagrangian formulation for elastodynamics

Following the same ideas that led to the formulation of the mixed Hamilton’s principle in finite-
dimensional (time-only-dependent) Lagrangian systems, we proceed to present a mixed variational
formulation for continuous (space-time-dependent) bodies. To this end we assume that ¢ and V are
different fields and impose the compatibility condition ¢ —V = 0 by making use of a Lagrange mul-
tiplier p (X, t), that is taken itself as independent variable. The (three-field) mixed action functional

follows then as

tf L
S[%V,p]:/ / (L(X,t,0,V,Dp)+p(p—V))dXdt
to 0

The previous functional might be contrasted with the well-known "De-Beubeke-Hu-Washizu" mixed
variational principle for elasto-statics (see for example [9], [62]) that in the context of one-dimensional

elasticity and for zero-traction boundary conditions, takes the form
L
He. PP = [ (W (X, F)+ P (Dg = F)dX
0
The variations of the mixed action functional with respect to each of its arguments are

tr oL oL

ty L a[:
05,0V) = — —p | éVdXdt
(65,0V) /tO /O <8V p)

ty L
(08,0p) = / / (p—V)opdXdt
to 0

Invoking next the stationarity of the mixed action S [p, V, p] with respect to variations of each of its

arguments implies

(65.50) = 0
(5S,6V) = 0
(65.0p) = 0
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The corresponding Euler-Lagrange equations are

oL d - d (OLN _
o at’ ax \or) ~
oL
av P =0
p—V =0

that are equivalent to the Euler-Lagrange equations associated to the stationarity of the standard

action S [p] given in (2.25). For the Lagrangian density of the form (2.23), the previous yields

_ﬁ _|_£ — 0

al Tax T
RV—-—p = 0
-V = 0

that correspond to the equations of balance of mechanical forces.
Using now the second Euler-Lagrange equation to eliminate the Lagrange multiplier p, the fol-

lowing two-field mixed action is obtained:
ty L oL
z/ / L(X,t,p,V,Dp)+ (p—V) | dXdt (2.35)
to 0 aV (X ,t,0,V,Dyp)

The previous should be compared with the deformation-strain dual of the Hellinger-Reissner vari-
ational principle for statics which for one dimensional elasticity and zero Dirichlet and traction

boundary conditions takes the form

k oW
ekl = [ (Weeer+ Sp  (Dp-p))ax
0 (Xt,p,F)

The variations of the mixed action with respect to each of its arguments yield

by ﬁ 5£ o*°L .

ty
05,0V —V)oVdXdt
(65,6V) /to ; av2 (@=V)

Stationarity of the mixed (two-field) action demands

(55,60) = 0 (2.36)
(55,6V) = 0 (2.37)
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The corresponding Euler-lagrange equations are

0L ~d (9LN d (0L + 0’L (-V) = 0
8o dt\av ) dx \oF) " agov ¥ -

0L .
vz (p— V)

Il
o

As in the case of finite-dimensional Lagrangians, this equation is equivalent to the Euler-Lagrange
equations corresponding to the standard, single-field Hamilton’s principle. For the particular La-

grangian density (2.23) the mixed Lagrangian reduces to

ty L
Slp, V] = / /0 GRV2 — W (X,t,0,Dp) + RV (¢ — V)> dXdt (2.38)
to

their variations to

bl ow oW ,
tf L
(58,6V) = / / R(p—V)oVdXdt (2.40)
to 0

and their corresponding Euler-Lagrange equation to

dP d

B+ﬁ—%(RV) = 0
R(@-V) = 0
with
)%
B = -
dp
oW
P=%F

In this way the (two-field) mixed variational formulation operates as a variational principle equivalent

to the mechanical force balance equations and the compatibility (in time) condition V' = ¢.

2.2.5 Finite element discretization and variational mesh adaption

We focus now on the discretization (in space and time) of the boundary-value problem (2.26). As
was outlined in Chapter 1, the main idea behind the wvariational approach to mesh adaption is to
use the principle of stationary action (Hamilton’s principle) to determine not only the unknown of
the problem (the motion ¢) but the discretization, i.e., the finite element mesh is chosen in such a

way as to render the discretized action stationary.
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To motivate the idea and as a background for the upcoming developments we review the concept
of variational adaptivity as it applies to static problems. Within the context of solid statics the
idea of variational adaptivity and its connection with configurational forces has been studied by a
number of authors, see for example [24], [25], [35], [36], [37], [59], [60].

We proceed next to present the space-time generalization of this idea and its implementation in
terms of space-time isoparametric finite elements. An essential problem related to this approach is
the issue of solvability of the time step, which is involved in a highly non-linear way. As a result
we study the restriction of this methodology to space adaption only, which results in a particular
class of space-time elements where the same time step is used for all nodes in the mesh, i.e., space-
time is discretized with a homogeneous time step. We will show that for this particular class of
space-time finite elements there is no need to resort to the machinery and formalism of space-time
finite elements since, as we shall prove, this discretization is equivalent to effect the space-time
discretization in two separated and uncoupled stages, the first stage (semidiscretization in space)
where the space variable is discretized keeping the time continuous and over a continuously deforming
spatial mesh, followed by a second stage in which the time is discretized using an appropriate time
integrator. Since during the first stage the time is kept continuous and since time adaption is
no longer pursued there is no need to use the theoretical space-time framework. By contrast a
space-space picture becomes more appropriate and provides more insight. We finally present a
semidiscrete mized formulation based on independent interpolations for motion ¢ and velocities V'
and the use of the mixed Hamilton’s principle presented in the previous subsection. This mixed
interpolation is proposed as an approach to overcome instability problems arising when consistent

velocity interpolations are used with continuously evolving spatial meshes.

2.2.6 Review of Variational Mesh Adaption for statics

In static, non-linear elastic problems the operative variational principle is the principle of minimum
potential energy, which states that the stable configurations ¢ (X) of the body B are those for which
the potential energy I [¢] is minimized:

inf I [¢]
©

The total potential energy (assuming zero traction boundary conditions) is given by

I[W}Z/BW(X%Dw)dX

where

W(X’QDvF):A(XvF)_B(X)QD

is the total potential energy density per unit of length of the body.
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The standard (displacement-based) finite element method (see for example [17]) proposes then
to discretize the energy functional I [p] by the introduction of a triangulation 7, of the domain B

and approximating the deformation ¢ (X) with the finite element interpolation
Ph (X) = ZN(L (X):L'a

where N, (X) are the nodal shape functions and z, are the nodal coordinates in the deformed
configuration. The discretized potential energy I; follows by evaluating the continuous potential

energy in the discretized deformation

Ih("'axaa"'):-[[@h]

and the finite element solution ¢;, is found by minimizing the discretized energy I, with respect to

the parameters that define the finite element interpolation, i.e., nodal coordinates x,
inf]h(... ,mm...)
Tq

It is observed next (see for example [59]) that the minimum attained by this minimization problem
depends not only on the spatial nodal coordinates =, but also on the choice of the mesh. In particular

it will depend on the reference coordinates of nodes X,
Ih( aXaaxa,"')

It has been then proposed (see for example Thoutireddy and Ortiz, [59]) to use the energy as a
measure of mesh quality and to regard as better mesh the particular one that produces a lower

potential energy. We therefore formulate the extended minimization problem

inf I}L("' 7Xa7$aa"')

Xa,Ta
which implies
ol
Ip,6X = X, = 2.41
<5 }L,CS a> - 8Xa5 a 0 ( )
oIy,
(61, 04) = ;8—%5% =0 (2.42)

i.e., the potential energy is minimized not only with respect to nodal spatial coordinates x,, but
with respect to the node referential placements X,. In this way the underlying variational principle

of the problem, the principle of minimum potential energy, is used to supply both the finite element
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solution and the optimal mesh. Energy minimization with respect to the spatial positions z, has
the effect of equilibrating the mechanical nodal forces, while minimization with respect to referential
nodal coordinates has the effect of equilibrating the nodal configurational forces induced by the

discretization.

2.2.7 Relation with static configurational forces

Within the context of static applications, the idea of using the underlying variational principle (the
principle of minimum potential energy) as an optimality criterion to find a "better" mesh (and
therefore to minimize the energy with respect to both nodal referential and spatial coordinates
(X4, 2q)) enjoys a long tradition in the finite element literature and traces back at least to [33],
[10], [11]. At that moment the calculation of the analytic derivatives of the discretized energy Iy,
with respect to the X, variables was thought to be "a hopeless task in the case of arbitrary two and
three dimensional grids" (see [10]) and only optimization techniques based on energy evaluation (and
without computing the energy derivatives with respect to X, ) were studied. For high dimensionality
problems those optimization techniques proved to be too costly and prohibitive for the computational
resources available at the time.

By contrast, the connection between derivatives of the energy I;, with respect to node referential
coordinates X, and configurational or material forces has been recognized only recently [24], [35],
[?]. The analytic differentiation of the energy I with respect to X, can be computed directly

and the forces conjugate to changes in node placements F, = BB)I(" can be interpreted as discrete

configurational forces.
We recall from §2.2.2 that the equation of balance of dynamic configurational forces for one-

dimensional elasticity is given by (see equation (2.30))

(o) dng) e e

For Lagrangian densities of the form

2

L= B WX =
2

= R;/ —A(X,F)+ By

this balance equation reduces to

2 <B+ szz) v ((W - RQVQ) - FP) - (PR =0 (2.44)
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and in the static case (no inertia) to

0B d
8—X+R(W FP)—O

oL
C=—-(L-F
(o)
is the Eshelby stress tensor ([6], [7], see also Chapter 3) which for Lagrangian densities of the form

(2.23) (and in 1D) is given by
2
C= (W _ RV > - FP

We recall also that the magnitude

2

and in the static case it reduces to

C=W-—-FP

A straightforward computation ([59], appendix A) that mirrors that developed in §2.2.2 for
the derivation of the continuous configurational force balance equation in the space-time setting,
shows that the derivative of the discretized energy I with respect to the reference coordinate X,

corresponds to the nodal (static) configurational force associated to node a given by
BIh GN 0B 9B v ax

Fo = 5 0X

where C}, is the static Eshelby stress tensor evaluated in the discretized deformation ¢, i.e.,
Cy =Wy, — Fp, Py,
with
Wi = W(X, ¢4, Dgy) =

W|<X ZName e wa>

ON,
F = D = _
h Ph X Lq
(X7Wh7DWh)
o
- OF

(X ENaa:a,E xa>

The derivative of the discretized energy Iy, with respect to nodal spatial coordinates x, is the nodal
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mechanical nodal force given by (see for example [17])

Ja

oI, ON,
— = P, X BN_,dX
oz, /B(h) ax @ +/B ad

where Py, is the (Piolla-Kirchhoff) stress evaluated in the discretized deformation ¢, and given

above. Then the system of equations (2.41, 2.42) arranged jointly in a column array evaluates to

=3

F, % Wi, — FiPy, \ 8N, 28 0
—| % | = / b ) ONa ey / X | NdX = (2.45)
fa ol B Py 0X B\ B 0

As we have explained in §2.2.3, the continuous counterpart of the previous equations, namely the
equations of balance of mechanical forces (2.25, 2.26) and configurational forces (2.43, 2.44) are equiv-
alent in the sense that if one equation is satisfied, the other is automatically satisfied. In the discrete
setting however this equivalence is broken. The discretization induces discrete configurational forces
that are not balanced in general, even in homogeneous materials where no configurational forces
are expected. The joint system (2.45) is therefore and, in general, a non-degenerate, non-singular
system of equations with a unique solution (X,,z,). In many situations however the solution is not
unique, the system is ill-posed, or even non-convex (as reported in [49]). In those cases regularization
techniques are required to find an admissible solution for (2.45).

Within the context of static applications, the variational mesh adaption framework suggests then
to minimize the discretized energy I, with respect to referential nodal placements X, along with
the standard minimization with respect to nodal spatial coordinates z,. Minimization with respect
to X, has the effect of equilibrating the nodal configurational forces that are unbalanced in general,
even when the continuous counterpart are automatically balanced. In the upcoming subsections we

analyze possible extensions of this concept to dynamic applications.

2.2.8 Space-time finite elements

We proceed in this subsection to generalize to solid dynamics applications the previous spatial mesh
adaption method for statics and its time adaption analog considered in §2.1.7 within the context of
finite degree-of-freedom Lagrangian systems. The direct generalization is obtained by making use
of space-time finite elements supported on a space-time mesh that is not prescribed at the outset
but computed using Hamilton’s principle. More precisely, we discretize the action functional S [¢]
by introducing a triangulation 7, of the space-time domain B x [tg,ts], as depicted in figure 2.5,

and approximating the motion ¢ (X,t) with a space-time finite element interpolation ¢, given by

h (Xv t) = Z Nk (X7 t) Tak (246)
ak
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where N, (X, t) are the space-time shape functions, z, are the spatial coordinates of the space-time

node ak, and where the index "ak" is used to enumerate nodes in the space-time element. Figure

Node “ak”

/

Element “ek”
/

»
»

X

Figure 2.5: General triangulation of the space-time domain B X [to, f].

(2.6) sketches the discretization for the motion and the space time mesh. Compare with figure 2.4.

The discrete action functional Sy follows then by evaluating the continuous action functional S [y)

QD(Xat> Soh(Xﬂf)

] [

v
~
v
~

| ¥
(Xak:> tak)

Figure 2.6: Discretization of the motion ¢ (X,t) with space-time finite elements. The space-time
placements (X k, tqr) and the nodal deformation z,j, represent, respectively, horizontal and vertical
coordinates of points on the graph of the discretized motion (X, ty;, (X,t))

in the discretized motion

Sd("' ,xak7"'):S[§0h]
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and the finite element solution for the motion ¢, (X, %) is found by rendering the discrete action Sy

stationary with respect to xqp

a8
(684, 02ar) = > = b5xqr =0 (2.47)
ok awak‘
Let (Xak,tar) be the space-time coordinates of each space-time node "ak" in each space-time

element "ek”, where the index "ek" is used to enumerate the space-time elements in the space-time

mesh (figure 2.7). In complete analogy to the static case where we recognized that the discretized

t Node “ak” o (X.t) t Node “ak”
t (Xata) gh h (Xak:tak)
Element “ek”
_— ]
> X > x

Figure 2.7: Space-time discretization. Reference (left) and spatial (right) space-time domain. Notice
that for different times t (spatial) mesh change (space-adaption). Notice also that for different
particles X, the time step change (time-adaption).

action I, was-dependent not only on nodal spatial coordinates =, but on nodal referential placements
X, and in complete analogy with the finite degree-of-freedom case where the discrete action sum was
dependent on the discrete time set (see section §2.1.7), we observe now that the discrete space-time
action Sy, and therefore the solution of (2.47), will depend on the space-time mesh. In particular it

will depend on the space-time reference coordinates (X, tqr) of each space-time element

Sa=3S8a (-, Xak, tak Tak, )

Motivated by the methodology presented in the static case in §2.2.6 and by the variational time
integrators with horizontal variations developed in [20] (see §2.1.7), we assume now that the previous
discrete action should be rendered stationary with respect to all of its arguments. This results in a

system of equations to be solved not only for the finite element parameters x,; but for the space-time
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nodal placements (X, tak)

oSy,
aXak ( ) ak?atakhxak) ) 0 ( 8)
6Sh ( : 7Xak7tak7xak7' ) = 0 (249)
Otk
a5y,

Xavtav aky, """ = 2.
3xak( s Xaks tak, Tak, ) 0 (2.50)

It is then conjectured that the space-time mesh nodal placements (X,k,tqx) obtained by solving
the previous system are optimal since they are obtained by invoking the stationarity of the action
functional, which is the operative variational principle for the problem under study. It bear emphasis
that the previous is a conjecture and not a self-evident or obvious fact. One of the objectives of this

thesis is indeed to explore its validity and scope.

2.2.9 Relation with space-time configurational forces

We recall from §2.2.2 that the equations of balance of dynamic configurational forces (2.30) and bal-
ance of energy (2.31) are the horizontal Euler-Lagrange equations, i.e., the Euler-Lagrange equations
corresponding to the stationarity of the action functional S with respect to horizontal variations.
We notice also that nodal placements (X,,tqx) represent horizontal coordinates of nodal points
of the discretized motion ¢, (X,t) (see figure 2.6) and that therefore variations of (X ter) will
induce variations on the base space, i.e., the space-time domain. It follows that the derivatives of
the discretized action S; with respect to the nodal placements (X, tqr) will correspond to the
discrete space-time nodal configurational forces and that demanding the stationarity of the dis-
crete action with respect to the horizontal nodal coordinates will be equivalent to enforcing discrete
configurational force balance and discrete balance of energy.

The proof of this statement is straightforward and follows the lines of the procedure developed
in §2.2.2 to compute horizontal variations of the continuous action and horizontal Euler-Lagrange
equations. Consider the particular case of isoparametric space-time elements (figure 2.8) For this
class of elements the space-time shape functions N, (X, ) are given by

Nak o X(€7T) - Nak (677—)

(&)

where (£,7) are parametric coordinates defined over the space-time standard domain Q, N,y (£,7)

are the isoparametric space-time shape functions and the pair (X (§,7),t(&, 7)) is the space-time
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P (X,1)0
t g t g t
A —_— A
ot (Xa, ta) ();3’ o (Xa, )
\
(X1, ta) (X1, ta) (X2, t2)
> X > X
X2,
X (x A )9 t (X2, t2)

tx.t) g ax(x,t )0
4 tx.t) g

v

Figure 2.8: Isoparametric space-time element. The isoparametric "standard" domain (§,7) €
() is mapped to each space-time element Q¢ with the isoparametric space-time mapping

(X (&,7),t(&7))-

isoparametric mapping given by

X (&)
t(&7)

Xak

= Nak (§,7) (2.51)
ak

ta,k

The interpolation for the motion ¢, written in terms of the parametric coordinates follows then as

cier) = o ~ O 2
L)

X (67)
Ngy 0 Tq
; T\ e ’

= > Nak(&7) Ta (2.52)
ak

For example, for linear spatial elements (two nodes) and linear time interpolation the space-time
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isoparametric shape functions are given by

NET) = 1-00-7)
Nyer) = s0+91-7)
Ny(er) = 5(1-9()
NiEr) = S48 )

and the space-time standard element is
(EaT) € Q = [_lv 1] X [07 1]
We focus next in the discretization of the action functional, given in the continuos case by

S[p] = /t :f <];¢2 — W (X, t,, D@)) dXdt (2.53)

The discrete action Sy is built by evaluating the continuous action S [p] on the discretization (.
This requires the computation of interpolations for the material velocity V' = ¢ and deformation
gradient F' = Dy, which might be obtained by differentiating the interpolation for the motion (2.46)

¢y, with respect to time

8Nak

Vi (X,t) = (X, t)=) o (0t Ta (2.54)
ak

Fo(X,t) = Dy, (X,t):z%(X,t)xak (2.55)
ak

For the particular case of isoparametric space-time elements, the space and time derivatives of the

shape functions % and %V)g’“ are computed by making use of the (inverse of the) Jacobian of the

(space-time) isoparametric mapping (X (§,7),t (£, 7))

ot 9X

J ) = a‘l‘ 67‘

(&) o ox

o o¢

in the form

ONgp ONak

J ot — aAT
ONagp ONag

X D¢
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which implies along with definition (2.52) for x (&, 7)

Vi fekd
"l = o (2.56)
Fh 67955

Inserting the approximation Vj, and F}, in the action functional (2.53) we obtain the discretized

action as
Sa = Y L
ek
| ON ? ON
R Tk | WX LS Nowzar, Y g dXdt
IR B IR GO v

am

ek
Ld

where Lj’“ is the discrete Lagrangian, and where the index "ek" ranges over all space-time elements
Qcr. Different discrete Lagrangians Lfik follow then by choosing an appropriate quadrature rule
to approximate the integrals over each space-time element Q. Since the space-time mesh (and
therefore the space-time shape functions N, and the space-time element domains €.x) depend on
the space-time nodal coordinates (X, tqx), then the discrete action Sy itself will depend explicitly
on (Xak,tak)-

Sq=Sa(-, Xakstak, Tak, )

Rendering now the discrete action sum Sy stationary with respect to all of its arguments equations
for the computation of all variables are obtained. Differentiation of the previous discrete action sum

with respect to x,x yields

an aNak aNak
- _p BN, b dx
Oran 2 //Qk {RVh ot hax T “’“}d dt

where P, is the discretized stress. Differentiation of S}, with respect to (Xgk,tar) might look pro-
hibitive at first sight. However, following a methodology similar to that presented in §2.2.2, it
can be computed analytically and as we anticipated before, correspond to the space-time nodal

configurational forces. For a Lagrangian density of the form (2.23) these are given by (see §2.2.2)

BSd 8Nak @
Xar | _ Z —Cy, X + | 2% | Ny Sdxdt
9S4 Q ONgy L
Btark ek ek ot ot

where Cy, is the discretized space-time Eshelby tensor (or energy-(material) momentum tensor)

(W~ 5E) ~ FuPy FuRV:

Ch = sz
—VhPh 2h + Wh
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discrete counterpart of (2.32). The system of equations to solve for the unknowns (Xgk, tak, Zak) is

therefore
8Ss ON, RV}? ON.. OL B
X, = ;//ka{—Fthh T (Wh— 5 — B, P, o +8XNak dXdt =0
98, RV}? ON o ON.. OL
= — (= Py 4 TE N S dXdt =
Dt %;//Qek{ < 5 + Wh En + W e +8t k 0
8Sd o 8Nak: 8Nakt _
o = Z’;//Qk {th o P, X +BNak}dth_0

which represent the discretization of equations (2.33), (2.34), and (2.26).

As happens in the static and finite-dimensional cases, in the continuous setting, the Euler-
Lagrange equations corresponding to horizontal variations are equivalent to those corresponding to
vertical variations. This is not the case when the system has been discretized. Requiring then sta-
tionarity of the discrete action Sy with respect to horizontal variations gives independent equations
that can be used to solve for the space-time mesh. Enforcing the satisfaction of these equations
results in a discretization that exactly preserves energy and exactly satisfies discrete balance of

dynamic configurational forces.

2.2.10 Space-time elements with homogeneous time steps

An essential problem related to the space-time generalization and its implementation in terms of
space-time finite elements is the issue of solvability for the time step. It has been noticed (see for
example [20], [29], [30]) that the energy equation involves the unknown discrete time in a highly
non-linear way and that it is not always possible to find admissible solutions. It was then suggested
([60]) to restrict the methodology to space adaption only by regarding only the spatial mesh as
unknown while providing the discrete times at the outset.

An implementation of this approach based on the space-time framework was attempted in ([60]).
The approach in this case was to adopt a particular class of space-time finite elements where the
same time step was used for all nodes in the mesh, i.e., space-time is discretized with a homogeneous
time step. In this section we will show that for this particular class of space-time finite elements there
is no need to resort to the machinery and formalism of space-time finite elements since, as we shall
prove, this discretization is equivalent to effect the space-time discretization in two separated and
uncoupled stages, the first stage (semidiscretization in space) where the space variable is discretized
keeping the time continuous, followed by a second stage in which the time is discretized using an
appropriate time integrator.

To prove this equivalence, consider the particular class of isoparametric space-time elements
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obtained by making use of isoparametric shape functions of the form
N (€,7) = Nz (&) K (1) (257)

where N2Pece (£) and N!™e (1) are uncoupled space and time shape functions and where two sep-
arated indexes a and k instead of a single index "ak" are used. We recall that the isoparametric

space-time interpolation is

b
—
AN
N
~—
Il

ZNak (577—) Xak

ak

t(gvT) = ZNak (577-) tak
ak

T (67 T) = Z Nak (§7 T) Tak
ak

where z (£, 7) is given by

z (&) =gy 0 X&) (2.58)
t(& )

with ¢, (X,t) the discretized motion (2.46). Inserting (2.57) in the isoparametric interpolation we
find

X(Er) = Y > N (NI (1) Xy

k a

Hem) = XX N @ N ()
k a

6T) = 303N (6) Nime (7) ok
k a

that might be split in two staggered interpolations: a first interpolation in the £ variable,

X(€r) = NP () Xalr)
L&) = LN (E) talr)
w(€m) = LN () walr)

a

and a second interpolation in the 7 variable

Xa(r) = %Nzﬁime(T)Xf
ta(7) = zij,gime (T)tq
za() = L NU(7) g

k
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Assume also that we make use of homogeneous time steps in each space-time element, i.e., that

the isoparametric function ¢ (£, 7) is not a function of £ but only of 7

t(& ) =1t(r) (2.59)

For space-time shape functions of the form in (2.57) the previous condition will be satisfied provided
that the time component of the space-time nodal coordinates (Xak, tar) = (Xf,t’;) is chosen such

that
t’; — ¢k (2.60)

independent on the index a and for all &k (see figure 2.9, compare with figure 2.8). This can be

directly verified by observing that (2.57) and (2.60) imply

EET) = DD NP (&) NE™e (r) th =
k a
33 ) N () =

k a
- (zaem o) (Ssem0) -
k a
_ Z A]zime (T)tk _

k
= ()

where we have assumed that the shape functions for the space N P*“¢ satisfy the partition of unity
property

S (@ =1

Figure 2.9 illustrates condition (2.60) for a one-dimensional (in-space) mesh.
Using the particular class of space-time shape functions (2.57) in combination with "homogeneous

time steps" (assumptions (2.59) and (2.60)) we obtain

P
BN
™
"y

I

> NPeee (€) Xa(7)
tE7) = t(r) =ta(r)
> NP (€) wa(T)

S

~

2
I

Furthermore, since the time ¢ and the time parameter 7 are in a one-to-one correspondence, we may

eliminate the latter (using for that the inverse of ¢ (7)) and regard X, and z, as functions of ¢ to



64
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Figure 2.9: Isoparametric mapping in 1D using a time step that is independent of the spatial
parameter £. All the grid points in the element are sampled at the same time t*.

obtain

X (&1 = MNP (€) Xa(t)

z(&t) = LN (€)wa(t)

a

We thus arrive to the same interpolation used in static isoparametric finite elements but with node
referential and spatial coordinates regarded as continuous functions of time.
By way of example consider as in the previous section the case of linear shape functions in space

and time:

MuEr) = 3-8
Na(&r) = Z0+6A-7)
Naer) = 1-9@)
Na(6r) = 5(1+6@)
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where we are now using two indices to label the functions. Consider also a particular space-time
element with four nodes, two nodes at time t* and the other two at time t**! as depicted in figure

2.10 (homogeneous time step)

+ + + +
Xlk 1 sz 1 Xlk 1 sz 1

v
v

Figure 2.10: Space-time linear finite element with two nodes sampled at time t* and the other two
sampled at time t**! (homogeneous time step). For this particular space-time nodal arrangement the
time part of the isoparametric space-time mapping is independent of the space parameter ¢ (§,7) =

t (7).

In this case the space-time isoparametric mapping reduces to

X(&7) = Nu(&m) X+ Noy (§7) X5+ Nia (6, 7) X + Nop (6,7) X5 =

- (30-9xt4zaroxt)a-n+ (0-9xt +Fa+9xE) () -

= la-o(@-nXE+ () XE) 4

> L49 ((- Xk + () X
Ni1 (6, 7)tF + Noy (6, 7)t% + Nyg (&, 7) P 4 Noo (€, 7) tF L =
- (3a-9r+gurot)a-n+ (Fa-947 +1ar 9t ) )=

2
= t"(1—71)+ (r)th!

~
—~
A
3
~
Il

and the motion referred to the isoparametric domain becomes

z(§,7) Nip (& 7) @b 4+ Noy (6, 7) 25 + Nig (6, 7) 2T + Noo (§,7) 257! =
~ (30-9st5ar0a)a-n+ (F0-9a" 449 ) ()=
= S (1 -nah+ @A) 4 S04 (1 )ak + (D) ah)

Therefore, the time component of the space-time mapping t (£, 7) becomes only a function of 7.
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Inverting we get
t—tk

T T gk

Composing the mappings X (£,7) and ¢ (£, 7) with the previous we find

1—& p 1+E& ) tFt—t¢ 1—& pyr  L4E€ ppg) t—tF
X6 = (2 R T e e N T A T A
=gt — o t—tF 14+& (b —t o t=th
2 (tk+1th1+tk+1th1 + 2 tk+1,th2+tk+1,th2
1=& , 1+ 4 1 1—€ jpr, 1HE o) t—tF
z(§,t) = < 5 Tyt 5 Ta+1 tk+1_tk+ 5 Ta + 9 Tatl ) 1 _gk

1-¢ (tk“—t o t—tF
2

r1 + ghtt +1+§ tkH_txk L=t it
tht1l k=1 T gyl kT 2 thtl — k=2 1 gkl _ pk T2

which might be written as

1- 1+
X (&t) = TgXl (t) + T§X2 (t) (2.61)
1- 1+
x(&,t) = 5 £x1 (t) + 5 5322 (t) (2.62)
along with
gty t—th
Xa(t) = thtl _ ¢k Xo + thtl _ ¢k Xa
1 _ g r_th
Ta (t) k k+1

Pt — gk Ya T gt — gk Ya
for a =1 and 2. Furthermore, solving for £ in (2.61) we find

X1(t)+X2(t
X — 1()2 2(t)

S NS S0
2
which implies
1-¢ Xy () — X
2 Xo (t) — X1 (b)
1+ X-Xi(?)
2 Xo (t) — X1 (1)
Equation (2.62) becomes
Xo(t)— X Xo(t)— X
o= (X,1) = 20Xy gy 220

A A AN ES AL

which results in the same interpolation used in static finite elements but with nodal positions in the

reference and spatial configurations (X, x,) regarded as continuous functions of time.
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We therefore conclude that in space-time finite elements with uncoupled space and time shape

functions and homogeneous time steps the time parameter 7 and the physical time ¢ result in one-to-

one correspondence and the time parametrization might be thus eliminated at the element level. The

machinery of space-time finite elements, which involves the computation of the space-time Jacobian

and its inverse, is no longer needed and might be sidestepped. Consider for example the computation

of material velocities Vi,. We recall that in a general space-time finite element the velocity is given

by (2.56) which requires the inversion of the Jacobian of the space-time isoparametric mapping.

Notice now that if the time is homogeneous (and uncoupled space/time shape functions are used)

we have

X (&)
t7) =

D NaPaee (€) X ()

t(7)

whereupon relation (2.56) for material velocity Vj, and deformation gradient Fj, reduces to (2.51)

ot 90X
or or
90X

O 876

The inverse of the Jacobian might be thus computed analytically and evaluates to

Vi

or more compactly to

where

ot 90X
F, or 9E

oz
or
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or

ox
i\ _ [ &
ox
Fh 75

90X oz 90X dz

o€ Ot or 0¢

Ot Oz
oT 0¢
9z 9x
_ 9¢ 97
90X ot
o¢ oOr
oz
o€
90X
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T — FpX
oz
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3
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(2.63)
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2.2.11 Space semidiscretization and mesh adaption in "Space-Space"

The key observation that results from the developments of the previous subsection is that when
time adaption is no longer pursued there is no need to resort to the formalism of the space-time
framework and its implementation using the machinery of space-time finite elements. The particular
class of space-time finite elements based on uncoupled space and time shape functions (assumption
(2.57)) and homogeneous time steps (assumption (2.59 )) is equivalent to an uncoupled spatial
and time interpolations that may be completed in two separated stages: a spatial discretization,
keeping the time continuous and leading to the formulation of a differential problem with unknowns
(Xa (1), 24 (t)), and a second time-discretization stage where the latter is integrated. Since the time
variable is kept continuous during the first stage of the discretization process, the expanded space-
time framework that serves as the theoretical basis for the analysis of variational space-time mesh
adaption and its implementation in terms of space-time finite elements is not advantageous. By
contrast, much more insight can be gained by adopting a space-space point of view.

Within the framework just outlined, consider a spatial semidiscretization with an isoparametric

interpolation of the form

X(f,t) = ZNa(g)Xa(t)
x(gut) = ;Na(g)xa(t)

where N, (€) are the isoparametric shape functions for space (previously denoted as N57%¢¢ (¢)) and

x (&,t) is the motion referred to the isoparametric domain &, i.e.,

.’L‘(f,t) = ¥n (X (g?t)’t)

As was demonstrated in the previous subsection, this interpolation is equivalent to that resulting from
space-time isoparametric finite elements with homogeneous time steps where the time parameter has
been eliminated at the element level and the time is regarded as a continuous variable. Let N, (X, )

be the global shape functions given for the case of isoparametric elements such that
Na (X (§,1),) = N (€) (2.64)
and let ¢, (X,t) be the (semidiscretized) motion

(X)) = N (X,t)za (t) (2.65)

The proposed interpolation is illustrated from a space-space point of view in figure 2.11 where the
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approximation for the motion ¢, for two successive times ¢ and t + At is shown when the same
mesh is used for every time (standard semidiscrete interpolation, figure 2.11(a)) and when the nodes

are allowed to move (figure 2.11(b)) It may be also illustrated from a space-time point of view as

x x

A A
on (X, t+ A1)

X,t At
#n (Xt AL o (X, 1)

s P (X, 1)

.ﬁ/

> X > X
(a) (b)

Figure 2.11: Approximation for the motion ¢ at two different time steps, ¢ and t + At, using the
same mesh at every time (a) and a mesh supported on a node set that moves continuously in time

(b)

depicted in figure (?7?) where the spatial mesh for two successive times ¢ and t + At is shown for
both a fixed and a moving mesh. From figure 2.11 we observe that the unknown of the problem,
the motion ¢ (X, t), might be reinterpreted as an continuously evolving curve (X, ¢ (X,t)) imbedded
in the space-space bundle [0, L] x R. This curve is the graph of the deformation mapping and the
proposed interpolation is just a piecewise continuous approximation for this curve, the graph, with

its two-dimensional nodal positions (X,, z,) all treated as unknowns.

2.2.12 Semidiscrete action functional and discrete action sum

In the space-time finite element approach a discrete action Sy was built by inserting the space-time
interpolation for the motion (¢, into the continuous action S [¢]. We then invoked the stationarity
of the discrete action sum with respect to the parameters that define the discrete motion, namely
(Xak, tak, Tak) to obtain a joint system of equations to solve not only for the spatial coordinates x4
but for the space-time nodal placements (X, tqx) (equations (2.48), (2.49), (2.50)). We proceed
now to build a discrete action Sy, for the current interpolation. This will be accomplished in two
stages: First a semidiscrete action Sgq (X, (t), %4 (t)) will be built by inserting the semidiscrete
interpolation (2.65) into the continuous action S [¢]. Then a discrete action Sy will be constructed
by discretizing the semidiscrete action in time by an appropriate time interpolation of the nodal

trajectories (X, (t), x4 (t)).
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Figure 2.12: Spatial mesh for two successive times t* and t**1. (a) The same mesh is used for every
time (no adaption), (b) a mesh with time-dependent nodal placements X, (t).

The continuous action functional is given by

tf L
/ / (R<‘p2 ~-W (X, o, Dcp)) dXdt =
to 0 2

ty L
= /t /0 (];¢2A(X,D¢)+Bgo) dXdt

We would like now to insert the interpolation for the motion ¢ (2.65) into the previous. To this end

Sl

we first need to provide appropriate interpolations for velocities and deformation gradients V = ¢

and F' = De. At first sight it seems natural to take

Vi = @h:(i(ZNa(X’t)xa(t))

> Naiq + Naza (2.66)

F, = Dy, = diX (Z N, (X,t) x4 (t))

ON,

. aTza (267)

However, and as will be illustrated in Chapter 6, the natural (or consistent) velocity interpolation

Vi, = ¢y, is usually a very poor approximation for V3. Therefore independent (inconsistent) velocity



71

interpolations are needed. In the next section we will explore interpolations of the form
Vii=>_ Na(X,t) Ve (t)
a

where V, (t) are new parameters that must be taken as unknowns along with the nodal referential
and spatial trajectories (X, (t),z, (t)).

For the duration of this subsection, consider the consistent velocity interpolation (2.66). For this
particular case of isoparametric elements (elements supported on moving meshes), the derivative N,
can be directly computed. This can be accomplished by differentiating relation (2.65) with respect

to time to find
ON,

with
X(f,t) = ZNa (5) Xa (t)

Composing the previous with the inverse of X (-, t) and rearranging we obtain

7]

. N, )
N, = — o Za:NaXa ()

The suggested interpolation for the velocity field thus becomes
Vh = ¢h:ZNa$a+Naxa:
a
. ON, . _
> Nadq + (— o %:Nbxb> To =
ON, .
— (a)(ma) ;NbXb =

a (xa - FhXb>

I I
1 =17
-z

a

As was illustrated in the example of §2.2.10 (see equation (2.63)) this formula can also be obtained
by inverting analytically the Jacobian of the space-time isoparametric mapping.
Inserting now the obtained interpolations for V}, and F} into the continuous action, we obtain

the semidiscrete action Syq as

Ssd (Xavxa) = S[Qph] =

ty
/ B
to

v | =

2
(Z N (0 — F,LX,,)) —-W (X, > Nowa, Y %];];xa> dxdt
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The previous can be compactly expressed as

RN B Xy
Ssd ( 7Xa7xaa"’) = 5 <Xaaza) Map ) —1Ip (sza) dt (268)
to Ty

where mgy, is a configuration-dependent extended mass matrix (space-space mass) given by

F,F, —F
Mgy = / RN,N, [ """ "l ax
B — I, 1

and Iy is the discrete potential energy given as in the static case as

ON,
I:/W X, t,) Nyzq (1), Caq (1) | dX
o= fr (e S 5no)

We invoke next the stationarity of the semidiscrete action functional with respect to all of its

arguments (X, (t),z, (¢)).

(6854,6X,) = 0
(68.4,074) = 0

Computing the variations of the semidiscrete action Ssq with respect to x, (t) yields

t
(0S.a, 020) = / f/ (R Ny (83, — (eoze) X, ) = P9 + BN, ) dXdt
to B

To compute the variations with respect to X, (t) we follow the same procedure developed in §2.2.2
to compute variations in the continuous space-time setting (see also next chapter and Chapter 6) to

find

ty . . 1
(6S0a, 6X,) = / / <R<‘thb (—Fp) (5Xb — (2:5x,) Xb) — C) e (gB + 2ng2) Na) dXdt
to B
where
2
Cp = (Wh — R;/h > — FpPy

is the (semi) discrete dynamic Eshelby stress tensor. As happens in the static case and in the case of
space-time finite elements, variations of the action functional with respect to nodal referential place-

ments correspond to the nodal configurational forces. The corresponding Euler-Lagrange equations
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might be written as

d X o 1 /. X, 0
X [ ax; 1 ( X, a':a) map | 70| = I (Xavza) | = (2.69)
dt @ 2 2 i 0

which represents a system of two differential equations for the joint unknown (X, (¢),x, (t)). As
was explained before, we conjecture that the nodal instantaneous referential placements X, (t) ob-
tained by solving the previous system are optimal for every time ¢ since they follow by invoking the
stationarity of the action functional, which is the operative variational principle for dynamics.

We finally discretize in time the semidiscrete system of ordinary differential equations (2.69) for
the unknowns (X, (t),2, (t)). To this end an appropriate time integrator needs to be formulated.
Since the system of equations to integrate derive from a Lagrangian, and to avoid any ad-hoc time-
stepping device that ignores this particular structure of the equations, we shall make use in particular
of a wariational integrator.

This is simply accomplished by discretizing in time the semidiscrete action integral Ssq to build
a discrete action sum Sy by interpolating in time the nodal trajectories (X, (t), x4 (t)). The time-
stepping algorithm follows then by invoking the stationarity of the latter with respect to discrete
trajectories to obtain the discrete Euler-Lagrange equations. The construction of the discrete action
sum follows exactly the same procedure presented in §2.1.3 to formulate variational integrators for
finite-dimensional systems with generalized coordinates ¢ (t). Indeed, after discretizing the space
variable (while keeping the time continuous) the continuous Lagrangian system becomes a finite
dimensional dynamical system with generalized coordinates given by q (t) = (-, X4 () , 24 (£) , -+ ).

More precisely, the semidiscrete Lagrangian (2.68) can be rewritten as

Ssa(q) = /t:f <;Qamab (@) ap —In (Q)) dt

which is the class of Lagrangians studied in the first section of this chapter (Notice that the extended
mass matrix is configuration-dependent). If for example, piecewise linear (continuous) interpolation
(in time) is used for g, (t), i.e., for both X, (¢) and z, (¢) and if a single quadrature point for the
time integral is used (as was assumed in §2.1.3, equation 2.11), then the following discrete action

sum Sy is obtained

k .k k+1 _k+1 _

Sd("';Xavxa’Xa » Tg, 7)*

K k1 ko k1 _ ok XXy
o 1 X(I. - X(L Lg — Ty mk+a th+1 _¢k I (XkJra karoz)
- z : z : ) th+1l _ ¢k 7 k41 _ 4k ab ahtl_gk hita  »va

k=0 ab th+1 ,tlg
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with

mEre = mg, (1 - @) d* + (@) ")

Invoking the stationarity of the previous with respect to all of its argument demands

98 k k yk+l k+1
aXl’f(”"X’“%’X“ ,xzk ’) = 0
dSh E .k yk+1 _k+1
o X Xt ) = o
The previous represents a system of two equations for the unknowns q*+! = ( . ,ij“, x’;"’l, . )

to be solved given the configuration at the preceding time q* = (---, X} 2k, ...) and represents

therefore a time stepping algorithm for the integration of the semidiscrete system of equations (2.69).

2.2.13 Velocity interpolation

As was briefly mentioned in the previous subsection, an important difficulty that arises when we
make use of the semidiscrete interpolation (2.65) is the problem of how to interpolate the material
velocities V = . The consistent approximation is obtained by differentiating the interpolation for

the motion ¢, with respect to time, i.e., by choosing V}, = ¢,. This results in

@ (X,t) = o (X,8) = 3 (Na (X,0) da (8) + Na (X, D)2 (1)

a

which, as was proved in the previous section, for isoparametric elements reduces to
(X 1) = oy (X,0) = 30 Na (X,) (2 (8) = Fi (X, ) X4 (1))

with

Notice that the consistent velocity field will be discontinuous across element boundaries, since it
is a function of the deformation gradient that in standard finite element interpolations is only
elementwise continuous. Although this approximation looks natural and appealing (in fact it was
initially adopted in the process of this investigation), our experience showed (as will be illustrated
in Chapter 6) that it becomes very poor in many situations and leads to instability problems and
meaningless solutions. To overcome this difficulty we propose the use of an independent velocity

approximation of the form

Vi = ZNH (X7t) Va (t)
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that differs pointwise from the consistent velocity field, i.e., V} # ¢, but approximates it globally
or in a weak sense. This global approximation will be accomplished by making use of the mized
variational formulation presented in §2.2.4. that was precisely designed to allow for the use of inde-
pendent interpolations for V, and ¢;,. More precisely, and as we will show in detail in the following
subsection, inserting independent interpolations for ¢, and Vj, into the mized action functional
(2.38), a semidiscrete mizved action SV (X, (t),z4 (t),V, (t)) is obtained. This mized functional
will depend not only on referential and spatial coordinates (X, (t),z, (t)) but also on the velocities
parameters V, (t). Invoking the stationarity of this semidiscrete mized action (see relations (2.39)
and (2.40)) we will find differential equations to solve for the complete set of unknowns (X, x4, Va).

Figure 2.13 illustrates the difference between these two velocity interpolations. Assume we have
a mesh with two elements. Figure 2.13(a) shows the interpolated displacement up, = ¢, — X at
two different times ¢* and t*+!. Notice that both the displacements and the and mesh change from
time k to time k + 1. Figure 2.13(b) shows an approximation for the velocity obtained using a
finite difference between the two consecutive displacement fields Vj, = %. This approximation
exhibit a kink inside an element and is difficult to handle. 2.13(c) shows the consistent velocity
approximation ¢;,. Since the latter is a function of Fj, the approximated deformation gradient,
and since F}, exhibits jumps across elements, then the consistent velocity itself will be discontinuous
across elements. As was mentioned before, we have found that this is not a good approximation and
brings instability problems. 2.13(d) shows the independent (inconsistent but continuous) approxi-
mation for the velocity. We will use this (continuous) approximation that differs pointwise from the

(discontinuous) consistent velocity interpolation but approximates it in a global or averaged sense.

2.2.14 Semidiscrete mired Interpolation

We consider then independent semidiscrete interpolations for the motion ¢ (X,t) and the material

velocity field V (X, t) of the form

on (X,t) = ) Na(X,t)z, (1) (2.70)

Vi (X, 1) D Na (X, 1) Vo (t) (2.71)

where the shape functions N, (X, t) satisfy the isoparametric relation

Nao X (€,t) = N, (€) (2.72)
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i k+l
J

V

(@)

(b) (©) (d)

Figure 2.13: Possible approximations for the velocity field: (a) approximated displacement for two
successive times t* and t**1. (b) Finite-difference approximation for the velocity. (c) Consistent
velocity approximation. (d) Independent velocity interpolation. (e) The three alternative velocity
interpolations.

with N, (&) the isoparametric shape functions referred to the standard domain ¢ € [—1,1], and

X (&,1) the isoparametric (time-dependent) mapping
X (€7t) = ZNa (6) Xa (t)
a

The consistent velocity interpolation is given by

on =" N (0~ FiXa) (2.73)
where
ON,
= 74
h 8X Tq (2 7 )

is the (consistent) interpolation for the deformation gradient FF = Dp. As was illustrated in the
previous subsection, the consistent velocity field ¢, is discontinuous across element boundaries,

the assumed (inconsistent) velocity interpolation Vj, is continuous, and the two differ pointwise:

Qbh (Xat) 7& Vh (X7t)'
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In this formulation we will regard as unknowns to the complete set (X, (t),zq, (), V, (t)) and
will make use of the mized Hamilton’s principle (2.36, 2.37) to find the differential equations for
the evolution of these unknowns. A semidiscrete-mized action functional Ssq (X (t),xq (t), Vs (¥))
will be built by inserting the mixed interpolation into the mixed action (2.35). The differential
equations for (X, (t), x4 (t), Vs (¢t)) will follow then by invoking the stationarity of the semidiscrete-
mixed action with respect to each of its arguments. As happened in the static, space-time and
semidiscrete (with consistent velocities) cases, the Euler-Lagrange equations corresponding to the
stationarity of the action functional with respect to x, and X, will correspond, respectively, to the
equations of balance of nodal mechanical forces and nodal configurational forces. In addition, the
Euler-Lagrange equation corresponding to the stationarity of Ssq with respect to V, will correspond
to the weak statement of the compatibility equation between the assumed V}, and consistent ¢,
velocity interpolations. The Euler-Lagrange equations will then be discretized in time using a mized

variational integrator of the class studied in §2.1.7.

2.2.15 Semidiscrete mixzed action and discrete mized action sum

Following the program just outlined, we proceed to discretize first in space the mixed action S [p, V]
(2.38) with independent interpolations for ¢ and V' to obtain a semidiscrete-mized action functional
Sea (Xa (t) 24 (), Va (t)). We next discretize the latter in time to obtain a discrete-mized action
sum Sy using a mizved variational integrator. We recall that for Lagrangian densities of the form

(2.23), the mixed (two-field) action functional is given by

ty )
Slp,V] = / /B L™ (X1, ¢, D, V, ) dXdt
to

with
) R
i (X,t,(p,F,V,QD) — EVQ_W(X,t,QO,F)‘FRV((p_V)

Inserting the semidiscrete-mixed interpolation (2.70, 2.71) with consistent velocity and deformation

gradient interpolations (2.73, 2.74) we obtain the semidiscrete-mixed action in the form

Ssa (Xa (t),2a (1), Va (1)) = Slep Vil =
2
ts R N,
/to /B 5 (za:NaVa> _W<X7taza:Naxa7 — a)(xa>

+ 3 RVaNa N, (0 — B Xy - v;,)) dXdt
ab
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The previous may be compactly rewritten as

tr /1 .
Sat (- ) Xy ay Varees) = / <2Vamabe — Iy (X, 70) + Vi (mab (i — Vi) + MabXb)) dt
t
’ (2.75)

where myp, and M, are the mass matrices

Mab _Fh
= / RN,N, dXx
B

Mab 1

and Iy is the discrete potential energy given as in the static case as

ON,
I:—/W X,t,) Nyz, (1), Yuq ()| dX
o= (e g L)

or, using the notation q = (--- , Xg, 24, ), V=(--,Va,--+) as

ty 1
Ssa(q, V) = / <2Vamab (@) Vo — I (q) + Vo (Map, map) dp — mabe)) dt
to

The semidiscrete-mixed action (2.75) might be contrasted with the semidiscrete (standard) action
(2.68) obtained when a consistent interpolation ¢, instead an independent assumed interpolation
V}, is used to approximate velocities.

Invoking next the stationarity of the semidiscrete mized action functional with respect to all of

its arguments (X, (t),z, (t), V, (t)) implies

(0S54,0X4)

I
o

(68.4,024) = 0
(68:a,0V,) = 0

Variations of the semidiscrete action Sgq with respect to z, (t) yield

ty .
(6Sa, 00a) = / / (RVAN, (620 — (30w.) Xo) = PLG + BN, ) dXdt
to B

The variations with respect to X, (¢) are given by

25 ) ) ) .
(65, 6X ) = /t /B (RVhNb(—Fh) (5Xb—(%1§;5xc)xb)— miv ONy | iz ) dXdt
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where

RV?

oy = (Wh -

) 0B OR V2 OR
Bmzm — ) 7 'h _ pH, —
n ox Tax 2 Tax Vi)

is the (semi)discrete (mixed ) Eshelby stress tensor. Finally, variations of the semidiscrete action
with respect to V}, yield
ty .
/ / RSVaNaNy (i = Fu Xy = V3 ) = 0
to B

The corresponding Euler-Lagrange equations might be written as

0 d v
0 - % (mab b)
g 1 .
- a;” (2Vamabe — I (Xa,2q) + Va (mab (2p — Vp) + MabXb)> (2.76)
Oxq
0 = mais+ MupXe — marVh (2.77)

which represent a system of three differential equations for the joint unknown (X, (¢), x4 (t), Va (¢))
(compare with the system (2.69)).

We finally establish an appropriate time integrator to discretize (in time) the previous system
of ordinary differential equations. This is accomplished by making use of the mized variational
integrators studied in §2.1.7. Recall that these integrators are built by discretizing in time the
curves X, (t) z, (t) and V, (¢) using suitable (time) interpolation spaces (not necessarily coincident)
to build a discrete-mized action sum Sy. Following the example of §2.1.7 (see equations (2.16) and

(2.17)) we use piecewise linear time interpolation for nodal referential and spatial trajectories

Xa(t) = (1-0a) X5+ (o) X5H

za(t) = (L—a)ag+ (a)ag™
and piecewise constant interpolation for nodal velocity parameters
Vo (t) = VETB = const

Inserting this interpolation in the semidiscrete-mixed action (2.75) and integrating the resulting time

integral with a single quadrature point located at t*+2, the following discrete-mixed action sum is
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obtained:
K
Sd ( o 7X¢11€7 xlgv Vak+5a T ) = Z L&mw (Xk7 Xk+1’ xka xk-Hv V’f-‘r,@’ tkv tk+1)
k=0
with
; 1
Lgnm _ (thrl - tk) <2Vak+6m1;;-avbk+[3 o I}I:+a+
k+1 P Xk—‘rl o Xk
k48 k4a [ T Ty k4B kta“Yp b
+Va (mab ( th+1l _ ¢k Vb ) + Mab th+1 _ ¢k ))

The integration of the semidiscrete system of equations (2.76, 2.77) follows then by invoking the

stationarity of the previous discrete-mixed action with respect to all of its arguments.

aSs
oxr — 0
0S5y

ook = 0
&Zd _ 0
8Va/+5

The previous represent a non-linear system of equations for the determination of (X kel gkt ykts )

given (X k ok vk-148 ) and defines therefore a time stepping algorithm.

2.3 Concluding remarks

We have presented in this chapter the salient features of the variational methods developed in
this thesis. The main objective is to formulate a mesh adaption framework for non-linear solid
dynamic applications for which the mesh itself is taken as unknown. We then conjecture that this
unknown might be found using the same variational principle that governs the evolution of the main
unknown (the motion of the body under study), namely Hamilton’s principle. The discretized
action functional S, is therefore rendered stationary with respect to all the parameters that define
the discretization, namely, nodal spatial coordinates xj,, and nodal space-time referential placements
(X, tp). After the theoretical conceptualization of this space-time approach it was observed that
effecting space and time adaption simultaneously was too costly since the time unknown was involved
in the resulting equations in a highly non-linear way. It was thus suggested to pursue only variational
space adaption while providing the discrete time steps from the outset. This led to the development
of the particular class of space-time meshes with homogeneous time steps, i.e., the same time step is

chosen everywhere in the (spatial) mesh. We have proved that for this particular space-time finite
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element interpolation the time parametrization might be eliminated at the element level and all the
machinery required to formulate general space-time finite elements, i.e., space-time isoparametric
mappings and Jacobians, becomes thus unnecessary. We might simplify notably the formulation,
implementation, and analysis by performing the space-time discretization in two separated stages,
a semidiscrete (in space) initial stage where the space is discretized keeping the time continuous
and leading to the construction of a semidiscrete action Ssq and Lagrangian Lyg, and a second time
integration stage where a discrete action Sy and discrete Lagrangian Ly are built by discretizing the
semidiscrete action S;; and semidiscrete Lagrangian Lgy in time. Since the time is kept continuous
and homogeneous during the first stage, a space-space, as opposed to a space-time, picture becomes
more appropriate. Within this space-space framework, nodal referential and spatial coordinates Xy,
and xy, are reinterpreted as horizontal and vertical components of a position vector q;, = (X, xy) in
a higher dimensional space, the space-space bundle. When both nodal referential coordinates X; and
spatial coordinates x; are assumed to evolve continuously in time, particular care must be taken in
the velocity interpolation. It was proved that the natural (or consistent) interpolation for the velocity
is given by ¢, = > N, ()’(a — tha) which is discontinuous across element boundaries because of
its dependence on ]?‘;, If this interpolation is used to approximate velocities, then very poor solutions
are obtained. To overcome this problem, we proposed to use an independent, or assumed velocity
interpolation V;, = >~ N, 'V, which as opposed to the consistent velocity interpolation, is continuous
across elements. Tlfis implies that we are required to accommodate for the use of a continuous
velocity interpolation that differs pointwise with the consistent (and discontinuous) velocity field,
namely V}, # ¢;,. Motivated by the well-known De-Beuveke-Hu-Washizu mixed variational principle
for statics that allows for independent interpolations for deformation gradient Fy, and deformation
mapping ¢y, and for which the (space) compatibility condition Fj, = D¢, is imposed by recourse
of a Lagrange multiplier P;, we formulate the analogous version for dynamics by replacing space by
time. More precisely, we formulate a mixed variational principle for dynamics (the mixed Hamilton’s
principle) that allows for independent interpolations of velocities V;, and deformations ¢, and for
which the (time) compatibility condition V, = ¢, is imposed by means of a Lagrange multiplier
pr. Using independent (semidiscrete) interpolations for velocities and deformations, we arrive at the
construction of a mized semidiscrete action Sy and mized semidiscrete Lagrangian LZ””” with two
independent unknown variables, configurations qy and velocities V. Appropriate time integration
of their corresponding Euler-Lagrange equations might be accomplished by making use of a new
family of time integrators, the so-called mixed variational integrators, that allow for the use of
independent time interpolations of both variables and possible independent (or selective) quadrature
rules.

In the following we proceed to develop this formulation in the more general setting of three-

dimensional elasticity with possibly viscous, thermal, and inelastic processes.



82

Chapter 3

Configurational forces in elastic

materials with viscosity

In this chapter we study different aspects of the theory of configurational forces. We begin by present-
ing the Lagrangian formulation of dynamics in the context of non-linear elasticity and the Lagrange-
d’Alembert principle to account for viscous behavior. Hamilton’s principle is then rephrased in a
more general way to render simultaneously the equations of motion and the equations of balance of
configurational forces. We review and further develop the geometrical interpretation of this varia-
tional framework for which the motion is regarded as a time-dependent family of sections evolving
in the higher dimensional space, the space-space bundle. We also develop an extended version of
Lagrange-d’Alembert principle that accounts properly for viscous effects both in the spatial (vertical)
and material (horizontal) manifolds. In this chapter we focus on isothermal hyperelastic materials

with viscosity. Temperature and internal process will be studied in the next chapter.

3.1 Lagrangian formulation of elastodynamics

We consider a body occupying at some arbitrary reference time a region B of ambient space R™.
The set B C R™ is the reference (material or undeformed) configuration of the body. We will use
the usual convention of labeling material particles of the body by their position in the reference
configuration B. Let ¢ : B x I — R™ be a smooth motion over the time interval I = [to,t;] C R.
The set B, = ¢ (B,t) C R™ is the deformed (spatial or current) configuration of the body at
time ¢ and the sets By = ¢ (B, ty) and By = ¢ (B,ts) are the initial and final configurations, not
necessarily coincident with the reference configuration B. For a fixed time ¢ the motion ¢ maps

material particles X € B in the reference configuration with their position x = ¢ (X,t) in the
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deformed configuration at time ¢. In Cartesian coordinates we shall write
T = P; (XI7 t)

Here and in what follows we will use upper (respectively, lower) case indices to denote components of
vector and tensor fields over the reference (respectively, deformed) configuration. The deformation

gradient and material velocity fields are given by

F = Dp(X,1)

= ¢ (X7t)

where Dy and ¢ denote, respectively, differentiation with respect to X and ¢. The Jacobian of the

deformation is given by

J = det (F)
In Cartesian components we shall write

oy,
Fy; = :
’ X,

0p;

Vi = 2

ot

We will consider in this section a (possibly inhomogeneous) non-linear hyperelastic material, i.e.,
a material for which the constitutive behavior can be described with a Helmholtz free energy density

per unit of undeformed volume of the form
A(X,F)

such that the constitutive relation takes the form

0A

Py =
iJ c’)FlJ

where P is the first Piola-Kirchhoff stress tensor. It should be noticed that to account for the
inhomogeneity of the material, the free energy is assumed to depend explicitly on X along with
its implicit dependence through F (X,t). In this section we will assume that the free energy is
independent of temperature (isothermal hyperelasticity).

For every material particle X € B the total potential energy W may be defined as

W(X,t,¢,F)=AX,F) -B(X,t)¢
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where B is the body force density per unit mass (possibly dependent on X and t). It follows from
this definition that

ow
P; = oF,, (3.1)
ow
B = - 2
’ I, ® )

To formulate an initial-boundary-value problem we assume that the boundary 9B of B can be

divided disjointly in two parts, the traction part dB; and the Dirichlet or deformation part 0Bs:

0B = 0By U0B;

0 0B;1 N OBy

and that the motion ¢ must satisfy the following boundary conditions:

P,yN; = T; on 0By and Vt € I

Y, = ¥ on 0By and Vt € I

where N is the outer unit normal to the boundary of the reference configuration B and T and
i are the applied tractions and prescribed deformation mapping. To simplify the exposition, we
will consider zero deformation and traction boundary conditions, i.e., ¢; = 0 and T; = 0. Also the

motion must satisfy the following initial conditions:

p = ¢, (X) att =1ty and VX € B

Vv

Vo (X) att =ty and VX € B

where ¢, (X) is the initial deformation mapping and Vg (X) is the initial material velocities. The
initial configuration is then given by By = ¢ (B, tg) = ¢, (B).

Within the framework of the Lagrangian field theory [34], we regard the body B undergoing a
spatial motion as a Lagrangian system whose Lagrangian is defined in terms of a density. For elastic

materials the Lagrangian density may be defined as
1
L(X,t,¢,V.F)=3R V> = W (X, t, o, F) (3.3)

where R is the mass density per unit of undeformed volume (also assumed to depend possibly on
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X). The action functional follows as

ty
90]:/ /ﬁ(X,t,so,cb,Ddedt (3.4)
B

or, using definition (3.3), as

/ / ( R|| (tho,Dcp)) vt (3.5)

The corresponding variations with respect to the argument ¢ are

by oL oL
(65,0 —5 0p; + =90 avdt 3.6
o= [ [ (Stei+ St sitons) (36)
that upon integration by parts in time for the first term and in space for the second term yield!
b doc d OC
45,6 — — ——— — ———— | dp,dVdt
(95, 9:) /t / (a% oV,  dxy aFZJ> piavat+

b tr oL
< / 5¢1dv) + / / <5goiN J> dSdt (3.7)
i, Jto Jom OF;y

Hamilton’s principle postulates that the actual motion ¢ (X, t) of the body from its initial config-
uration By at time tg to its final configuration at time ¢y corresponds to that motion that renders the
action functional S stationary with respect to all admissible variations, i.e., variations d¢ vanishing
at the initial and final times and satisfying the essential boundary conditions on 9Bs. This may be
written in the form

<5S, op) =0

d

Here, and in what follows, the notations 7x and 4 shouldn’t be confused with the standard notation and

9
o0X
% for partial differentiation. We recall that we are COHbldeI‘ng the possibility of inhomogeneities that are taken
into account by assuming an explicit dependence of W (and hence on £ and ;TL]) on the position X7 along with
its implicit dependence through F;; and ¢,;. We also assume an explicit dependence on time. For functions that

. . d . d . . .
exhibit such an explicit/implicit dependence we will use the notation x5 (respectively E) for the derivative with

respect to the total (explicit and implicit) dependence on X (resp. t) while the notation (or alternatively

dX
%J exp(resp. % exp)) will be restricted to the derivative with respect to the explicit dependence. More precisely if

W =W (X1,t,;, Fiy) then

AW oW AW 8o,  OW OF,
Xy - 0X; ¢, 0X; = OF;; 9Xr
ow oW | oW

0X;  O0Xlep OX1 01 Fiy

Consistently we will use the notation % and % for the total and explicit dependence on time. Then

AW OW dp; = OW 8F;;
At 0p, Ot | OF;; ot
ow AW | oW
s exp - TXI i Fig
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for every admissible variation d¢. Under appropriate smoothness conditions on the integrand in

(3.7) this implies the well-known Euler-Lagrange equations

———————— =0 in B and Vt € T 3.8
Dp.  dtdV,  dxX,0F, mEand e e (38)
along with the traction boundary conditions
oL
N;=0 indB;andVtel (3.9)

On account of (3.1), (3.2) and (3.3), equation (3.7) gives

b d .. dPy
(65,60;) = /t /B(Bidt(R(pi)erXJ)&pidthJr

ty ty
—/ / (=0@;P;yNy)dSdt
v, Jto JoB

and the Euler-Lagrange equations (3.8) and boundary conditions (3.9) reduce to

[ Besear
B

d . dPy
B; — — (Ro,
dt( @)+

ixX, 0 in B and Vt € 1 (3.10)

—P,yN; =0 inc‘?BlanthEI

or, written in invariant notation, to

B % (Rp) + DIV (P) = 0 (3.11)

-PN=0

that corresponds to the equations of motion.

3.2 Viscosity and Lagrange-d’Alembert principle

We shall also consider elastic materials exhibiting viscous effects, i.e., materials for which the total

state of stress depends not only on F but also on the rate of deformation F in the form
P = P°(F) + P° (FF)

where P¢ (F) is the equilibrium or elastic part of the stress given by

oL oW

P =—Fr = or
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and P? (F7 F) is the viscous stress. We shall study in particular Newtonian viscosity for which the

viscous stress is assumed to be of the form
P (FF) = Jo'F T (3.12)
where o? is the Cauchy viscous stress given by
. —1\dev
o’ =2usym (FF ) (3.13)

.1
with p the (shear) viscosity, d = FF  the rate of deformation spatial tensor and sym and dev the

symmetric and deviatoric operators, namely,

_ 1 T
sym(d) = §(d+d )
tr(d),
ddev — d _
3

In the presence of viscosity the equations of motion (3.11) with their corresponding boundary

conditions (3.9) become
B-Rp+DIV(P°+P?)=0 in Band Vt € 1 (3.14)
- (P*+P")N=0 in By and Vt € T
that for systems with a Lagrangian density of the form (3.3) may be rewritten as

oL d [OL oL - .
&DClt(aV)DIV<aF>+DIV(P)_O in BandVt eI (3.15)

oL .
(aF_pv)N_o in 9By and Vt € I

We notice next that unlike in the case of elastic materials, these equations cannot be obtained
directly from Hamilton’s principle. They may be established instead from the Lagrange-d’Alembert

principle, namely,

(58, 0¢) + /t ’ /B (5 DIV (Pv)) dV dt

ty
+// (¢ (~P”)N) dSdt = 0
to 9B,

where S is the action and (4.5, d¢) are its corresponding variation. Integrating by parts the viscosity
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terms and making use of the divergence theorem the Lagrange-d’Alembert principle reads

by ol
85, 0¢p) — / / (P” . ) dVdt=10 3.16
wse) - [ [ (P55 (3.16)

or, in Cartesian coordinates,

Ly 0o,
5S,0p,) — / / (P; > dVdt =0
< > t B JaXJ

3.3 Elastic configurational forces and configurational force

balance

Configurational forces, also known as material forces, arise in applications involving the evolution
of defects within the material. As opposed to standard (Newtonian or mechanical) forces that drive
the motion of material particles in space, configurational forces drive the motion of entities that
migrate relative to the material. Examples include dislocations, cracks, inclusions, voids, vacancies,
or evolving interfaces.

The concept was introduced in the context of elasticity and continuum mechanics by Eshelby
[6],[7]. Since then several approaches have been proposed to elucidate their true nature and to
formulate the equations of configurational force balance. Without claiming completeness we mention
1) the "pull-back" approach ([40], [41], [42], [43]) in which configurational force balance is regarded as
the projection (pull-back) of the mechanical force balance equations onto the material manifold and
configurational forces are related to the concept of material uniformity and homogeneity (as defined
in [51] or [58]) as the forces behind continuous distribution of inhomogeneities (4], [5], [8], [39], [46]).
2) the "basic primitive objects" approach of Gurtin ([2], [15], [16], [18]), where configurational forces
are postulated as primitive physical entities, independent of mechanical forces, and their balance
is derived using invariance arguments. 3) the "Noether’s theorem" approach ([23], [29], [31], [34]),
where conservation (lack of conservation) of configurational forces arises as the conservation law
associated to material translational symmetry (lack of symmetry) of the Lagrangian density, 4) the
"inverse motion" approach ([38], [40], [53], [56]) for which the equations of balance of configurational
forces follow from the stationarity of the energy (or action) functional with respect to the reference
configuration keeping the current configuration fixed, and 5) very closely related to the previous
two, what we refer to as the "variational approach" ([24], [26], [29], [30], [31]) where, in addition
to the reference (or material) configuration B and the deformed (or spatial) configuration Bj, a
new configuration is introduced (the "parameter configuration" D) as a fixed reference for the
motion of defects with respect to the material manifold, in analogy to the material configuration

that acts as a reference for the motion of material particles in space. The equations of balance of
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configurational forces follow then as those energetically conjugate to variations with respect to the
material configuration B keeping fixed the new reference D.

The "variational approach" admits an important geometrical interpretation originally suggested
in [29], [30]: The deformation mapping ¢ : B — R™ may be reinterpreted as a section (X, ¢ (X)) of
the configuration bundle B x R™ that may be conceptually represented in two axes, the horizontal
axis for the reference configuration B and the vertical axis for the space R™. Variations of the
energy functional with respect to the deformed configuration By, keeping the reference configuration
B fixed, can be interpreted as wvertical variations, while variations of the reference configuration
B keeping the deformed configuration B; fixed may be regarded as horizontal variations. Hence
mechanical and configurational forces may be described as those forces associated to vertical and
horizontal variations of the energy (or action) functional.

In this work we will follow the variational approach, with a formulation similar to that of [29],
[30], [31], but using a "space-space" (as opposed to a "space-time-space") configuration bundle, i.e.,
using the body B (instead of the space-time body B X [to,t¢]) as the base for the bundle. We will
extend the geometrical interpretation by regarding the motion ¢ (X,t) as a family of sections of
the space-space bundle parametrized by time, analyzing "normal" and "tangential" variations (in
addition to horizontal and vertical variations) and reexpressing the joint system of configurational
and mechanical force balance as a single equation for the evolution of the time-dependent section
(X, (X,t)) in the space-space bundle. The resulting system of equations will exhibit a structure

that will be preserved in the discrete setting.

3.3.1 Defect motion and Defect reference configuration

In his original papers on configurational forces [6], [7], Eshelby considered solids with "defects or
imperfections capable of altering their configuration in a crystal" and observed that the total energy
of the body will be function not only of the applied external forces but of the "set of parameters
required to specify the configuration of the defects." Therefore he defined "force on the defect" as the
negative gradient (or variation) of the total energy with respect to the position of the imperfections.

With this picture in mind we shall consider a continuous body B with defects undergoing two
simultaneous and independent kinematic processes: the motion of material particles with respect to
the ambient space R™ and the motion of "defects" within the material. We will refer to the first
motion as the material motion or mechanical motion, and to the second as the defect motion or
defect rearrangement.

In the mathematical description of the material motion, the body is identified with its reference
configuration B, and the (material) motion is defined as a time-dependent family of smooth mappings
¢ : B — R" from the reference configuration B C R™ onto space R™. Analogously we may describe

the "defect motion" by introducing a "reference configuration for the defect rearrangement" D C B
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and a family of smooth mappings from this new configuration D onto the reference configuration B.
We will refer to this new configuration D as the "defect reference configuration" or as the "parameter
configuration."

Within the context just outlined, we consider a new configuration D, an open bounded subset
of the reference configuration B, the elements of which will be called "continuous defects." We label
continuous defects with their position vector £ relative to some convenient reference frame as shown
in figure 3.1.

A "defect motion" or "defect rearrangement" may be described by considering a time-dependent
family of smooth mapping 1, (independent and coexisting with the deformation mapping ¢) that

maps the "defect reference configuration" D onto the reference configuration B, i.e.,

Yv:DxI—B

such that, for every time ¢ of the interval I = [to,ts] the instantaneous defect rearrangement map
1 (-, 1) is bijective.

The particle X = 1) (€,t) € B is the particle on which the continuous defect £ € D is sitting at
time ¢. For a given fixed continuous defect &€ the set X (t) = 1 (€,t) is the collection of different
material particles visited by the defect during its migration within the material. In coordinates we

shall write

XI - ¢1 (gout)

Here and in what follows, we will use greek indexes to denote components of coordinates and vector
and tensor fields in D.

Let ¢ = ¢ 01 be the composition mapping between the deformation and the defect rearrange-
ment mappings. Then the map ¢ maps the defect reference configuration D onto the deformed

configuration. In coordinates we shall write

$i (Eart) = @i (V1 (€0r1) 1) (3.17)

Figure (3.1) sketches the three configurations (defect reference configuration D, body reference
configuration B, and deformed configuration at time ¢ ¢, (B)), and the relation between the three
mappings ¢, ¥, and ¢.

The set D is also known in the literature as the "space of reference labels" and the coordinates
&, € D as "reference labels," see Gurtin [15] and Kalpakides & Dascalu [18]. For a given neigh-
borhood P of € € D the set ¥ (P, t) is regarded as a migrating control volume within the reference
configuration B. The set D is also known as the "referential configuration" and the maps 1 and

¢ = p o as "the referential maps" ([26], [24]). Epstein & Maugin ([4], , [5], [39]) and Epstein [§]
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Body Deformed
Reference Configuration
Configuration

Defect
Reference
Configuration

Figure 3.1: Reference configuration, deformed configuration, defect reference (or parametric) con-
figuration, and composition mappings.

consider "local rearrangements" that bring a "reference or stress-free crystal" into the neighborhood
of each particle, the local rearrangement need not to be integrable to a global rearrangement 1.
Maugin & Trimarco [38] choose the defect reference configuration D coincident with the deformed
configuration B; and spatial positions as instantaneous reference labels for the defect configuration,
the map 1 becoming in this case the inverse motion ¢!, see also [27], [40], [53], [56]. The defect
rearrangement v : D — B may be also interpreted as a change of parametrization of the reference
configuration ([29], [30], [31]) and the set D is referred to as the "parameter space" or "parametric
configuration," or, more generally, the space projection of a change of parametrization of space-time
B x [to, ty].

On account of the existence of two simultaneous and independent motions, we next regard the
action as a functional that depends on both mappings ¢ and 1) independently. To do this we make
use of the following relations, which are obtained by direct differentiation with respect to £ and ¢ of

(3.17):

e Relation between mappings

p=¢oyp

e Relation for the deformation gradients

F = D¢ (Dy) (3.18)
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e Relation between velocities

¢ = ¢—D¢(Dp) ' (3.19)
= ¢-Fy

Here D¢y, Db, ¢, and v are the derivatives of ¢; (€,,t) and 1, (£,,t) with respect to the

parameter £ and time t, i.e.,

(D), = dro= 20

7%,
0
(D¥)e = Vra= g
0,
% =
L
¢I - at

Referring the action functional (3.4) to the parametric configuration D and making use of the

the deformation gradient and velocity relations (3.18) and (3.19) we obtain:

Slp.d) = /tf/cozbdet(w)dsdt
to D
t
= [ [ £(v.t.0.6 - Do Dw) " b D (D)) det (D) et (3:20)
to D

In coordinates the previous reads

[ 00 (001 5 9 (Ovy! 9,
Shbr, il = /to /DE <w17ta¢ia¢i - €. ( 9X; ) %E ( 9X; )) det (5'Xa> d§,dt

3.3.2 Variations and Euler-Lagrange equations

Hamilton’s principle states that the actual (particle) motion renders the action functional S station-
ary with respect to all admissible variations. In keeping with this principle we invoke the stationarity

of the action S [1), ¢] with respect to admissible variations of both arguments:

(05,0¢;) = 0
(05,69 = 0

The variation of the action functional S [1, ¢] with respect to ¢ (keeping 1 fixed) is

[ oL L . - oL .
(65, 00,) = / / (a%&ma%(wi(é%wa,ﬂ wJ)+%(5¢i,awa,J)) det(chgd;)
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Referring the integral back to the reference configuration B we find

tr oL _ oL d oL d
(55,6¢i>=/to /B<a¢i( oY) 4 P (6p; 02p™ )+87W(5¢ P ))dth (3.22)

where the following identities have been used:

% (6piopp™!) = (5¢7, ° ’lpﬂ) — (0¢s 009 ") w;b (wj o 1/;*1) (3.23)
d -1 _ e
o (00w™) = (00ia 09 ™) U3l (3.24)

Integrating by parts in (3.22) yields the identity

ty d [oC d [ ocC .
(95,36:) / /(awz <8V->‘dXJ<aF- ))(5‘”‘”‘/’ ) dvt
ty
/av S 0 p L dV /t /83<5¢ WL N;)det (3.25)

We next compute the variations with respect to 1 (keeping ¢ fixed). Notice first that since

S, ¢] = f 1 (L oap)det (D) dédt then there are two contributions for this variation, namely

(6 {Lopdet (D)},0) = (6 (Lop),09r)det (D) + (L o) (0det (DY), 6¢;)
Notice also that

(6det (D), 60;) = - det (D + Do), =

de
8 det (D)
= 5 —_— =
w[,ﬁ 8'(/“',5

= 0y g det (D) (3.26)
and

d -
(vl o dvn) = — (b+eoy))

e=0
= —(Vako¥) 0vrs (Vi o) (3.27)
Hence, the variation with respect to 1 gives
ty oL B . N -
wsoe) = [ f (00 + B (o) (900 = (S0r5035) 1) +

(e - 8%‘ (@,w;})) (301505)) ) det (D) dec (3.28)

(2
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Referring the integral back to the reference configuration B, the previous takes the form

s oL d
asav) = [ [ (G5 6w+ G R g Burow )
+ (E(S[J — ai_f]Fu) f;,‘] (5’¢I o ¢_1)> dVdt (3.29)

where the following identities have been used:

o5 (0ropp™") = (rz0v ") Y5lh (3.30)

% (0py o 1/)71) (5% ° 1/’71> - {((WI,B o 'l/fl) 1&;5} (sz o 1/)*1) (3.31)

Integrating by parts in (3.29) gives the variations in the form

ty oL d oL .
(05, 0v;) / /<8XI dt( Fuav) ax, (£(51J OF., 1)) (0rop™) +
oL b
() wowra]

ty 1 oL
—|—/ / ((51/)1 o~ ) (£51J — Fu) NJ> dSdt (3.32)
to JoB 0F;;

We next obtain the corresponding Euler-Lagrange equations. Stationarity of the action with

respect to admissible variations d¢, i.e., mappings d¢ such that (5(;5 o 1,b_1) vanishes on the Dirichlet
boundary 0B, Vt € I = [ty,ts] and everywhere in B at t, and t¢, yields the Euler-Lagrange equation

oL d (0L d oL .

D, ov; OF;;
along with the boundary condition

oL

aFZJNJ =0 in 0By and Vt eI

that, as was shown in the previous section, corresponds to the equation of motion (3.10).

Stationarity of the action with respect to admissible variations d1), i.e., mappings 1) such that
(&,b o z,b_l) vanishes in the complete boundary 0B Vt € I = [tg,ts] and everywhere in B at t, and
iy, yields the Euler-Lagrange equation

oL d (0L d oL .
87)(] — % <8Vz (_le)> dXJ (E(S[J 6FZJF ) =0 in BandVtel (334)

The magnitude

oL
Crj=- <ﬁ51J — %Fif)
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is the dynamic Eshelby tensor or (or space-space component of the space-time energy-momentum

tensor) and equation (3.34) is the equation of balance of Configurational Forces. The magnitude

. oc
]1_8‘/;‘

(=Fir) (3.35)

is the "material momentum" [34], or pseudomomentum ([40], [41], [42], [44], [45], [46]). The term

Bink — oL _ oL
0X;p  0Xrly,
is a source resulting from the assumption that the Lagrangian density is inhomogeneous. Equation
(3.34) is also referred to as the equation of balance of pseudomomentum. For a Lagrangian density

L of the form (3.3), the material momentum, dynamic Eshelby stress tensor, and inhomogeneity

source term yield

Jji = —RViFj
1 .
Cry = <W — 3R |<,0|2> o1y — PisFir
; g (1 2
Bi"h 3 s B llell” = W (Xi, ¢, Fi
e L B
and the equations of balance of configurational forces read
. d . dCry .
Bt - (FFuRE;) + ix, = 0 inBandVtel (3.36)
that resemble the equations of motion
d dP;y )
B, — — (R, =0 BandVtel
g (Rp;) + X, in B an €

The Euler-Lagrange equations written in invariant notation yield

B—%(RV)—&-D[V(P) =0
; d oL
inh _ _wT _
B dt( Pl )+DIV(C) 0

3.3.3 [Equivalence between mechanical and configurational force balance

We notice now that the action functional (3.20) does not depend on the two mappings (¢, @)
independently, but only on the combination ¢ = ¢ o 4~ '. It follows then that the equations of
configurational and mechanical force balance are equivalent in the sense that if equation (3.33) is

satisfied, then equation (3.34) will be automatically satisfied. More precisely, let Fg (¢0) and Fy (¢)
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be the left hand sides of the Euler-Lagrange equations (3.33) and (3.34), namely

oL d (0L d [ OL

oo = 55 (5r) -7 (o) (3.37)
v d[(Or d Yo

(Fy (@) = X, dt (8‘/7 (_Fil)) T ax, <£5IJ - M,“Fu) (3.38)

Then we have
Fo(p) =0 Fy(p) =0

To prove this equivalence observe that

ac 87£+87£690i oL 0p; oL OF;;
dX[ a 8X 8901' 3X[ GVZ 8X] 8FiJ aX[
oL oL oL 0F;; oL 0F;,
- Fr+ — 3.39
ox; Tog, Y ag, or T aF, ax; (3:39)
where we have made use of the relation between mixed partial derivatives 3)‘? = aF +L. Substituting

equation (3.33) in the previous we find

dac oL (d (oL d_( 0L\, , OLOFy 0L 0Fy _
dX; X v OF; s TV, ot OFy; 0X;

— X at\ov, 1) Tax, \or, "

that, using the identity

dl d
axX; ~ dx; (Léry) (3.40)

may be reexpresed in the form (3.34).
Alternatively, the equivalence between (3.33) and (3.34) may be proved as follows: multiplying

Fp () by (=FT) and rearranging terms yields

g (O£ _d(OLN d [OL\\ _
T\op, dt\ov;) dx,\oF,,))

oL d< 8£> 0F;1 0L d <F 8£) 0F;; 0L
_F B —

—F,——= - = ) — = _
Top, dt Tav, ot v, dX, oF,,; ) 90X, 0F;,

Making use of the identities (3.39) and (3.40) we then find

<a¢ ;’<a> o (5@))—

oL d E 8£




97

that may be compactly expressed, using the notation (3.37) and (3.38) as

—F'Fy (p) = Fuy () (3.42)

Therefore the left hand side of the equations of configurational force balance is identically equal to
the left hand side of the equations of mechanical force balance multiplied by —F7. The operation of
multiplying equations (3.33) by —F7 may be interpreted as a pull-back or projection of this balance
law onto the material manifold, thus the terms "material” momentum and forces, see Maugin [40],
[43], [46].

Of fundamental importance for understanding the finite element method studied in this work
is the following remark: While in the continuum setting the mechanical and configurational force
balance equations are equivalent, in the discrete setting this equivalence does not hold. The discrete
(nodal) configurational force system computed from the finite element discretization is unbalanced
in general, even in homogeneous materials where configurational forces are not expected. These
discrete configurational forces will be used as driving forces for the motion of the finite element

mesh.

3.3.4 Noether’s theorem and material translational symmetry

We also notice that if the material is homogeneous, i.e., the Lagrangian density L is independent
of X, and if ¢ is a solution of the Euler-Lagrange equations (3.33), then the equation of balance of

configurational forces (3.34) becomes the local conservation law

d oL d oL

— | —Fir = — (Lo — Fiy=— ] =0 3.43

dt( ’am>+dXJ< & IaFZ—J> (3:43)
with momentum given by j; = *FH% (the material momentum) and with the Eshelby stress
tensor Cry = — (£6 17— Fir %) acting as the momentum flux. This result may be also obtained

as a direct application of Noether’s theorem to elasticity ([40], [43], [22], [29], [30], [31], [34]).
Assume that for fixed (1, ¢) the action (3.34) is symmetric (or invariant) with respect to a one-

parameter family of transformations in their variables, i.e., the action functional remains invariant

S, ¢l = S, ¢.] (3.44)

under the influence of a family of maps 1, (§,t) and ¢, (§,t) such that

’/’0:1/’
¢0:¢
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Denoting by

v -
de |._q

_ do,
y o= de |._g

the infinitesimal generators of the symmetries and differentiating the identity (3.44) with S given

by (3.20) with respect to the parameter e gives

[ g e

—Yi oﬂ/}a J¢J>

o (i
aﬁ ( (137 oﬂ/’a ]) ( YI ,87/’5 JT/}J)

&C - —
+8F (yz oﬂ% I (bi,uwa,{]YJ:BwB}I) +
+LY7 00, I} det ( ?I) dgdt (345)

where we have made use of the following equalities:

9 et (D) = det (DY), 1 Via
de e=0 ’
d -1 -1 —1
e (Dy,) = Y Y185,
€ e=0

Referring the previous integral back to the reference configuration B equation (3.45) gives the local
symmetry condition as
L -
yioh '+

- [ {5 3%
(e mive).

d -
+£d—XI (Yio 1)} dXdt

where we have made use of the identities
d . _ _ _ . _
ey = (Viow™) = (Vaoy™)uh (b,007")

e (Yiow™) = (Yiaow ")u.h
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piod™) = (Biov ™) = (maow )il (dsov!)

S
Il

E (yz © (yi,a © 7,[’_1) 7/1;,5

On account of equation (3.39), the symmetry condition may be written as

/t:f/ {(Fo (¢ FijYy) +

oL d oL
+ % (( Yi — FZJYJ) 8V> + E ((yl — Fi]YJ) OF; + EY[) } dXdt

where Fg (¢) is the Euler-Lagrange operator defined in (3.37). Therefore, if ¢ is a solution of the
Euler-Lagrange equations (3.33), i.e., if Fy () = 0, and if the action (3.20) is symmetric with

respect to the flows (9., ¢.) then the following local conservation law is satisfied:

d oL d oL
7 ((y Fi;Yy) 8V) + ax; (( —FiyYy) 55— OF, +EY1> =0

or in global form

oL
/ (yz - FZJYJ / / ( Yi — lJYJ) OF + ﬁY]) NidSdt =0
P aP il

where P C B is any open subset of B. This result is the statement of Noether’s theorem. In

particular, if the action is symmetric with respect to material (or horizontal) translations (¢, ¢,.) =
(E+¢€Y,¢) with Y a constant vector, as happens when the Lagrangian density L is independent of

X (homogeneous materials), Noether’s theorem yields the conservation law

d Y d or
YJ(dt <( E; )av>+ (E‘S” ”am)) 0

or in global form

aL | ts oL
Y / “Fy) =dv +/ / (r,(s —F )Ndet =0
J < P( J) 8‘/; " op IJ JaFu I

that implies the conservation law (3.34). The equations of conservation (lack of) of mechanical forces

may be thus reinterpreted as the conservation (balance) law associated to material translational
symmetry (lack of symmetry) of the action functional.

The global form of this conservation law may alternatively be written as

Q(tf>—Q<to>:/fJ<t>dt

to
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or equivalently as

J-Q=0

where

Qs (t) = /P (~Fiy) gV

is the total material momentum or total pesudomentum (see the definition of material momentum

density in (3.35)) of the subbody P C B and

oL
— | Lérg — Fijm—= | NidS =
/ap ( 1J IgFﬂ) I

= CryNidS
oP

Jy (t)

is the total configurational force within the subbody P C B. The magnitude
den =J— Q

is the dynamic J-integral (see [12], [50]). For a Lagrangian density of the form (3.3) it reduces to

R|V|? oW d
Jhm — / wW—-—"1L|6,-F Nﬁ—/g—JQMQW:
J aP(( 5 J J@FH 1 pdt( J )

R|V]? oW / .
/ P<<W+2 17~ Furgge | NidS + | R (FigVi = vivi,s) av

In the context of Noether’s theorem and the established relation between material symmetry and

conservation of material momentum, we may restate the remark of the previous subsection in the
following way: While in the continuous setting and for homogeneous materials the material momen-
tum is conserved, in the discrete setting and for arbitrary meshes, the discrete material momentum
will not be conserved in general. The discretization breaks the material translational symmetry in
general and the material momentum may not be conserved even when the mechanical momentum is
conserved. The out of balance discrete configurational forces that preclude the conservation of the

discrete material momentum will be used as driving forces for the evolution of the moving mesh.

3.3.5 Energy release rate and dynamic J-integral

So far we have focused attention in the kinematics of defect motion given by the mapping v (€,t)
and on what are the consequences of demanding the stationarity of an action functional that was
built with a Lagrangian and energy densities that depend implicitly on 1, i.e., depend on ) only
through ¢ = ¢ o w1 In this section we will analyze materials for which the energy density A

depends explicitly on the defect parameter £&. We recall that the parameter £ specifies one particular
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configuration of the defects, namely the defect reference configuration. Just as the parameter X,
which is used to label particles but coincides with the spatial position x occupied by the material
particle X at a reference time tef, ie., x = ¢ (X, tycs), the defect parameter &, used to label
continuous defects, is in one-to-one correspondence with the material particle on which the defect
is sitting at the reference time ¢,ey, i.e., X = 9 (§,trer). It follows then that assuming that A
is function of £ implies that the material has a memory of where the defect was at the reference
time ¢,.; just as do elastic materials that "remember" the reference position of particles. Since
E=qo ! (X,t), an explicit dependence of A on &€ implies an explicit dependence on the defect
motion .

We shall therefore assume in this section that the free energy depends ezplicitly on the parameters

& required to specify the reference configuration of the defects, i.e.,
=A(¢,X,F)

This results, since & = ¢! (X,t). in a free energy density A, Lagrangian density £, and action
functional S that depend explicitly on the the defect motion 1), namely,

A = Al (X,t),X,F)
= [,(zp " (X, 1) Xt<p,VF)
S = X, t, 0, ¢, D) dVd
/to/ X,t),X,t,,p,Dp) dVdt

Notice that the free energy density and Lagrangian density become therefore explicit functions
of position X through two different sources, namely, those that are a consequence of the explicit
dependence on £ and those that are a consequence of the explicit dependence on X. To distinguish

between these two sources we will use the notation

oc|  aco(y)
X ¢ 90X
oL|  ocr
x|,  0X

and the explicit derivative of the Lagrangian with respect to X becomes

oc oLl oL

oLow)  oc
o0& 00X 0X
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It follows that the pull-back relation (3.41) reduces in this case to

_|T %_7 OLY _ d (OL\\ _
D ov )~ dX \oF
oc| d 7 OL d 0L
%, dt( F av) £ (a F 8F) (3.46)

We notice also that the free energy becomes in this case an explicit function of time. As we will see

ot
axX |,

shortly this implies energy dissipation.

We observe next that when the free energy of the material A depends explicitly on &, we cannot
demand the stationarity of the action with respect to variations in the defect motion . This can
directly be verified by taking variations of the action functional S (¢, 1)) with respect to each of its

arguments to find

ty oL
(65,6p) = / ((5g0+ = 5p + 8F5Dcp> dvdt =
to
ty oL d 0L
/ (Q¢ﬁ@0me@W“
+ / oL
A aaal

ts ts oL
dV+/ / dp—NdSdt
0 to OB aF
tr oL
(3S,50) — / o6 () av
to JB 0
Using the identity

o) 1
=X (51,[;01/1 )

() = 'aag (v + eep)

e=0

the variation with respect to ¥ (keeping ¢ constant) can be rewritten as

ts LA () . B
/to % ox (5 op~t) dVdt =

[ 3 oo e

Invoking then the stationarity of the action functional with respect to admissible variations of ¢,

(0, 07)

and keeping constant 1), requires

(08,0¢) =0

with corresponding Euler-Lagrange equation

ac_d<ac) d oc (3.47)

dp V) dXOF

However for our original assumption of an energy that depends exclusively on € =~ ' to remain
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true, we cannot invoke also the stationarity of the action functional with respect to 1 since in that

case we would obtain the Euler-Lagrange equation

L _0Lo)
oX |, ~ 06 oX

which contradicts the aforementioned assumption.
We can also consider variations of the action with respect to 1 keeping constant ¢ = ¢ o 9
instead of keeping constant ¢ as before. This can be accomplished by referring the action integral

S to the defect reference configuration to obtain

siol= [ [ £(&wt.6.6- oDy . DeDY ) det (D) dea

oL
ov;

The variations of this action with respect to 1 keeping ¢ follow then as
51/’1 ° 1/)71) +
2

e
d

oL -
</L51J 9E ——F, )dX (69 0 1)) dvdt

(~Fur) & (0, 0 7) +

dL is involved

where now only the derivative with respect to the second kind of inhomogeneity
in the integrand. However, and as happened with variations of S with respect to and keeping ¢

constant, we shall not demand

(05,64) =0

since this contradicts the original hypothesis of a Lagrangian-dependent explicitly on &.

We define now the total (internal) energy of a portion P of the body B as
oL oL
E(t)= —L(p (X, 1), X, ¢t D Pt —p]d
(t) /P<E(¢ (X,1),X,t, 0,9, <P)+3V<P+&P>V

Notice that for a Lagrangian density of the form £ = IR [V]|*> = A + By the previous takes the

form

&=
—~
=
=
Il

1
[ (W= 3RIGI B g+ Ro- o B ) av =
P

1
_ /(A+R||<,'o||2) av
P 2

which corresponds the standard definition of total (internal) energy of a subbody P. Differentiating
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the total energy with respect to time we find

. ocd . oL oL. oL, OC oL . oc -
E@®) = /P<_agdt(‘/’ )= 0. T avP aFD“"+<aV +ago‘P)>dV_

B ocd , _, oL oLC _. oL\ . oL
= [ G- G e i (o) o (5) )

Integrating by parts in the third factor and on account of the identity

(dov7)

oc d
IE dt

oL

(v = X |,

O oy~ Hdow™) =

35

the rate of change of total energy E can be rewritten as

s = (8] oow - (55 ()
fe(iE ()5 ()
o ()

Assuming also that for every time t the Euler-Lagrange equations (3.46) are satisfied, we finally

0 - (35| Gow)- (% ()9))o
+/83¢g]§Nds+/aB %dv

In particular, for Lagrangian densities of the form

obtain

1
L=2R|V|* - A€ X.F)+Be
we have

oL oL
()

and the rate of change of energy follows in this case as
E(t):/—% (12:01/;‘1)dv+/ '%Nd5+/ %dv
P 1 7]

5 P OF o
We can see therefore that for materials with explicit dependence of A on & and Lagrangian densities

of the form £ = 1R ||V||2 — A+ B, the rate of change of the total energy of a portion P of the body

depends not only on the power of external forces P = _{TF and B = ai but also on the evolution
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of the defects evolving within this portion P. We thus define energy release rate as

oL
Git)=|[| — =
0= [ - 5%
Using the pull-back relation (3.46) we have the identity
oL d oL d oL .
— = _ _FTi = I-— FTi —1
¢® /P(ax2 dt< av) dX (‘C 8F)) (w‘”p )dv
We finally define the dynamic J—integral J®" as
oL d oL d oL
i) L A X o IR 0 G X i -
[ (o, ()~ ax (a1 ¥758) ) av

B T Y G N O B SR e
= Gl () )= (e s

Then if the defects move at uniform velocity, i.e., if the field W = 1,b o1~ ! is not a function of X,

1 (¢ o z/rl) av

den (t)

then we have the result

G(t)=JW" (t)- W (t)

3.3.6 Space-space bundle

The variational formulation outlined in the previous subsections admits the following geometrical
interpretation: consider the "space-space" bundle, i.e., the set E = B x S where S = R" is the
ambient space, figure 3.2. Local coordinates for this bundle are (X I ml) and its projection map is
7w : E — B given in coordinates by ! (XI,xi) = X', For a fixed time ¢t we consider the graph
f; (X) = (X,¢(X,t)) of the deformation mapping ¢ at time ¢. This graph is an n-dimensional
manifold immersed in 2n-dimensional space, the space-space bundle, and is one of its sections, i.e.,
mofy = Id: B — B, the identity map in B. Therefore, rather than looking at the motion ¢ (X, )
as a time-dependent family of mappings from B to S we shall regard it as an evolving manifold or
section in the space-space bundle B x S.

We next notice that for a one-dimensional body undergoing one-dimensional deformations, i.e.,
when B C R and S = R, the graph f; (X) = (X, ¢ (X,t)) becomes a curve in B x S = R? with X
acting as parameter (figure(3.2)). For this curve the tangent vector will be given by

df 1

T = —t —
dX I

where F' = g—}‘; is the deformation gradient at time ¢. Furthermore, if the standard euclidean inner
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=
7
+
g

B "X

Figure 3.2: The graph of the deformation mapping as a manifold (section) of the space-space bundle.
Finding the motion is equivalent to finding the evolution of this manifold.

product in R? is used, then a vector in the normal direction will be

N* = (=F,1)
since
1
N*. T =(-F,1) =0
F

Analogously, for an n-dimensional body immersed and deforming in n-dimensional space we may

define the tangent vectors to the manifold f; (X) as

of, 5 I
T)=—— = 7o) = (3.48)
BXJ F’LJ F
and a (co)vectors in the normal direction as
N* = (=F;,6";) = (-F,i) (3.49)

where I and i are, respectively, the metric tensors in B and S. Also, the tangent covector may be
defined as
T = (5, F7) = (LF7) (3.50)
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and a normal vector as

_F J 7FT
N = A - (3.51)
5.7 i
We have
o 57 , ,
N“T = (-Fi;0)-| ¥ |=-Fg+Fg=0
F]
K
. —F,7 I I
T N = (5},1?/) =R+ R =—ED +EF) =0

where we are using the following inner product in B x S to define orthogonality:

BK
A*-B = (Aj,aj)-
bk
5% 0 BX
= (A, ay) K ; e
0y, b

= Ay0%BE 4+ a;000k =

= AJBJ—i—ajbj

We now observe that f; (X) = (X, ¢ (X,t)) is only a particular parametrization of the manifold
at time ¢, i.e., a parametrization with parameter X. Consider any alternative parametrization
g (&) = (Y (&,t),¢0(&,t)) of the same manifold, where £ € D is a new parameter and D is the
parameter set. For f; (X) and g; (£) to be two different parametrizations of the same manifold, the

component functions must be related by

12 (’lﬁ (Ev t) ’t) =¢ (6’ t) (352)

that corresponds to equation (3.17). The velocity of the parametrized points on the manifold will
be given by

d

—f; (X) = (0, ¢

dt t( ) ( 790)

when the manifold is parametrized using f; (X), and by
d .o
%gt &) = (¢a¢)

when parametrized using g; (§). Differentiating identity (3.52) with respect to time and rearranging
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yields
$p = ¢-Fip=
)
= N*. 1/] (3.53)
¢
which may be rewritten as
0 .
V =N*. =N*. 1/)
@ é

where V is the material velocity and N is the (co)normal to the manifold. This identity has the
following geometrical interpretation (3.3). The normal projection of the manifold velocity onto
the normal direction to the manifold is independent of the parametrization and coincident with
the material velocity V. Different parametrizations of the manifold will render different manifold
velocities, however with identical normal component.

€T

A

= (¢, ¢)

> X

Figure 3.3: Representation of the relation between the graph velocities ((0, ¢) when the graph is
parametrized with parameter X and (v,b, qb) when it is parametrized with parameter &) and the

material velocity V. The latter is the projection of the graph velocity onto the normal N to the
graph.

3.3.7 Horizontal-Vertical Variations—Tangential-Normal variations

We have reinterpreted each configuration parametrized either as (X, ¢ (X)) or as (¥ (£), ¢ (£))
as a manifold in the space-space bundle B x S. This space can be conceptually represented (see

reference [29]) in two axes, the horizontal axis for the body B and the vertical axis for the ambient
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space S. From this representation, variations with respect to ¢ and ¢ may be easily interpreted as
follows: A variation (0,d¢) can be regarded as a vertical perturbation of the surface (1, ¢) and a
variation (d1p,0) as an horizontal perturbation (Figure (3.4)). Therefore variations on ¢ are also

called horizontal variations while variations d¢ are named vertical variations.We notice that for

xr

A

(61,0)

(0,09)

S

> X

Figure 3.4: Horizontal and vertical variations. Every horizontal variation might be interpreted as a
vertical variation and reciprocally. Therefore variations of the action with respect to horizontal and
vertical variations are equivalent.

smooth configurations (1, ¢), every vertical variation can be interpreted as a horizontal variation
and conversely, every horizontal variation can be regarded as a vertical variation. This provides a
geometrical justification of the fact that variations of the action functional (3.20) with respect to
horizontal and vertical variations are equivalent in the absence of singular defects.

Alternatively we may illustrate this equivalence by considering tangential and normal variations

as shown in figure 3.5. For smooth configurations, an admissible variation T in the tangent direction

xTr

A

n

T

S

> X
Figure 3.5: Tangential and normal variations. For smooth configurations, variations in the tangential

direction and vanishing at the end points leave the configuration unperturbed.

(a variation in the tangent direction that vanishes in the boundary of the body B) will leave the

configuration unperturbed. Therefore the action will remain itself unperturbed (symmetric) with
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respect to tangential variations if it is only a function of the configuration ¢ = ¢ o 1p~*, namely,
(05,6T) =0 YT

This statement may be easily verified by computing tangential and normal variations and making
use of the pull-back property (3.42). To do this notice first that on account of (3.25) and (3.32) and
by making use of the notation (3.37) and (3.38), horizontal and vertical (admissible) variations can

be written as
(68,6) = /t N /B (6¢T.}'¢(<p)> dvdt
(65,6) = /t tf /B {&M-ﬂ, (go)}dth

where the boundary terms of (3.25) and (3.32) vanish if (§1), d¢) are admissible. Combining both
we find

(55, 6) + (65, 5¢) — /t v /B (607 - Fy () + 06" - Fo )} Vit =

/ N / (597, 547) Fo@ N Uy (3.54)
to /B Fo (@)

Tangential and normal variations (§T, dn) are defined as components on the tangential and normal

directions T and N of horizontal and vertical variations (51/JT, 5¢T), namely,

(5¢T,5¢T) = on? N 4017 . T* =
— onT . (—F,i) +oT7 . (I, FT)
= (6T —én” -F,on” + 617 - FT)

In coordinates the previous yields

(605,60,) = oni (~F'y,0) + 0Ty (3, F;")
= <5TJ fFiJ5n¢,§nj +Fj15T[)

Substituting this definition in the combined variations (3.54) we find

/tf/ on” . (~F,i)- Fulo) +5TT~(I,FT>~ Fo@ VU var
to /B Fo (#) Fo (¥)

= (5S,6n) + (65, 5T)

(05,09) + (65,0¢)
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Therefore, tangential and normal variations will be given by

T T Ty () -
psmy [ [ (ur (%(@)M
/tf / or7 .1 | 7O yar -
to /B T (#)

/ v / oTT . (ﬂ, (o) +FT Fy (cp)) dVdt
to B

_ b nl . (—F.1)- Fy () B
ssim — [ e (ﬂ(@)dm

/ N / s? v | T gy -
to /B T (#)
/ ! [ T (R E () 47y () Vil

with corresponding tangential and normal Euler-Lagrange equations

T . (fw()):

+FTf¢(<p
Fal(p) = N° (

= “Fry(e +7¢ (¢) =

Fr (p)

We now recall that from the pull-back relation (3.42) we have

(@) = = Fo (p)
Fo (p) i

= NF(p)

Therefore tangential and normal variations reduce to

/t:f /BéTT. (I,FT>- ( I:T )J-'¢ (p)dVdt =

ty
= / / STT . (T* - N) Fy () dVdt
to B

= 0

(5S,0T)
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ty —F7T
(6S,0n) = / / sn’ - (=F,i)- Fo () dVdt =
to B i

1

ty
= / /5nT~(N*~N)f¢(go)dth:
to B

ty
/ / on” - |N||® el (@) dVdt
0 B

t

where

INJ? = (N*-N)=
_FT
= (_F’i)
i
= i+ FFT
In coordinates
(68,6T"y = 0

(58, 6m') oni (HN||2): (Fo (p)) dVdt =

I
T
o —

in' (IN) (s (o)) av

I
T~
o

where

(INP) = &)+ FiE

[

2\ 7 . .
(INP) " = 87 +F7F,

Summarizing, tangential variations vanish identically for materials with no singular defects, and
the Euler-Lagrange equations corresponding to normal variations are equal to the Euler-Lagrange

equation corresponding to vertical variations multiplied by the spatial tensor |N|* = i+ FF”.

3.3.8 Equations of motion in "Space-Space"

The equations of balance of configurational and mechanical forces (3.34) and (3.33) are therefore the
Euler-Lagrange equations corresponding to the horizontal and vertical components of variations in
the configuration regarded as subset of the space-space bundle B x S. Being components in a higher

dimensional combined space it is useful to write them jointly as a single 2n-dimensional equation
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rather than two separately n-dimensional equations. We thus obtain

F () p | d ([ F ) ee) | d (LG
(Fo (), gé dt &, oV; dX s a%.,
0
0
or in invariant notation
F. 9 _FT
v@h ) o Ef% . g—é + DIV
Fo (¥) 20 i P
0
0
where
c\_ [e-wre
P oL

OF

are the Eshelby tensor and the Piolla-Kirchhoff stress tensors regarded as a tensor on B x S and
V=¢p

is the material velocity at time ¢, related to the manifold velocity (1/;, qb) by (3.53). For a Lagrangian
density of the form (3.3) the above reads

Binh

d —FT C 0
- — RV | + DIV
B dt i P 0
with
, oL 10R ow
Bmh _ = - 2_ Y
oX exp (2 0X v 0X exp)

Combining with (3.53) and rearranging we obtain the differential system

C Binh
— RV = DIV
dt : P B
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that may be rewritten as

d _FT . ’l/) C Binh
— R(-F,i)- ) = DIV +
dt i b P B

or more compactly as

12) C Binh
dt ¢ P B

where N is a vector in the normal direction to the configuration at time ¢ defined in (3.51). The

above may be further simplified as

% (M- &) = DIV (P) + B (3.55)

were M is the mass matrix in B x S given by

M = NRN*=
—_FT
= R(—F,i):
i
FTF —FT
_ R (3.56)
-F i

the vector q € B x S is the array of combined horizontal /vertical coordinates

(4
q =
¢
. P
q = .
¢
and
9L
P C _ LI — FTﬁ
oL
P oF
inh oL
B — B — ﬁ exp
oL
B o

are, respectively, the combined (horizontal/vertical) stress tensor and combined (horizontal/vertical)

body forces. Equation (3.55) is thus an equation for the evolution of the manifold with coordinates
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q = (¢, ¢) within the space-space bundle B x S.

3.4 Configurational forces in the presence of viscosity

We recall from §3.2 (equation 3.59) that the equations of balance of mechanical forces in the presence

of viscosity can be written as

oL oL oL i '
oo <8V) DIV <3F>+DIV(P )=0 inBandVtel

Using the Euler-Lagrange operator (3.37) the previous can be compactly written as
Fo (@) + DIV (PY) =0

We recall also that these equations do not derive from Hamilton’s principle, but they can be estab-
lished instead from the Lagrange-d’Alembert principle (3.16). Using vertical variations d¢ instead of
full variations d¢ in the previous, the following "vertical" version of Lagrange-d’Alembert principle

is obtained
(58, 5¢) + / N /B ((6¢)To¢*1)DIV(P”)) dvdt
to

+/t:f /331 ((5¢To¢*1) (—P”)N) dSdt = 0

where S is the action and (4.5, d¢) are its vertical variations. Integrating by parts the viscosity terms

and making use of the divergence theorem the (vertical) Lagrange-d’Alembert principle becomes

(8S,00) — N Pv. 5¢ o) | avdt =0 (3.57)
FAACE )

or, in Cartesian coordinates,

Y v 0 —1 _
(65, 66;) — / /| (P,-Jm(a@ow ))dth()

We turn now the equations of balance of configurational forces in the presence of viscosity.
Following the approach of Maugin for materials with a general dissipative behavior [44], since we
cannot use a direct variational principle (Hamilton’s principle) as we did in the elastic case, we are
required to establish the balance of configurational forces by a direct method, namely by multiplying

(or pulling back) the equations of balance of mechanical forces with FZ. On account of the identity
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(3.41), multiplying equations (3.15) by —F7 yields

oL d oL 0L T " ,
8X_dt<( F )8V> DIV(LI—F aF>+(—F )DIV(PY) =0  in BandVtel (3.58)

or using the Euler-Lagrange operator (3.38)
Fy (@) + (-F") DIV (P") =0
For a Lagrangian density of the form (3.3) the previous yields

B — % ((-F")RV) + DIV (C)+ (-F")DIV(P") =0 inBandVte/ (3.59)

Equations (3.58) and (3.59) are thus the equations of balance of configurational forces in the presence
of viscous effects.

In analogy to the equations of mechanical (vertical) force balance with viscous effects (3.14)
(3.15), the configurational (horizontal) balance (3.58) (3.59) cannot be derived from a direct vari-
ational principle (Hamilton’s principle with horizontal variations), but can instead be established

from the following (horizontal) Lagrange-d’Alembert principle:

(68, 51p) + /tf/B ((§¢T ° ¢—1) (—FT) DIV (P”)) dVdt =0

Integrating by parts the previous reads

(65, 1) — t:f / < —F (§pop™ ))) dvdt =0 (3.60)

In Cartesian coordinates

ty
5S 51/}1 /to / ( lJaX 115w10¢_1)> dVdt =0

Finally we combine horizontal and vertical Lagrange-d’Alembert principle to establish a vari-
ational principle in the space-space bundle B x S. The equations of balance of mechanical and

configurational forces in the presence of viscosity are

Fy () + (-FI)DIV(PY) = 0

Fo (¢) + DIV (P?)

I
o
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These equations may be written jointly as an equation in the space-space bundle B x S as

F, —F7
wl@) ) | pive) =o (3.61)
Fy (#) i
or alternatively as
f
22 ) L npv e — o (3.62)
Fs (p)

where N is a normal vector to the configuration as regarded as a manifold in the space-space bundle.
The weak form of this equations (combined horizontal-vertical Lagrange-d’Alembert principle) is

therefore

T

t _
(65, 8t) + (05, 66p) + /t ' /B (5¢T,5¢T) F DIV (PY) dV dt+

1

ty _FT
/ / syt 6¢> (P'N)dSdt =
9B,
or, more compactly

(68, 6%) + (65, 0¢) + / ! / (5¢T—5¢TFT> DIV (PY)dVdt+
B

/ Y /a N - 5¢TFT) (PYN) dSdt = 0 (3.63)

Integrating by parts and making use of the divergence theorem the (combined horizontal-vertical)

Lagrange-d’Alembert principle takes the form

t
(55,59 + (55, 5) — /t ' /B Pvaix(acp—Fw)dth:o (3.64)

In Cartesian coordinates

(6. 601) + (55,36, / | Py (80— Fudur)ave =0

with horizontal and vertical components given by (3.60) and (3.57).
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Chapter 4

Configurational forces in materials
with viscous, thermal, and internal

processes

In this chapter we study a Lagrange-d’Alembert formulation for materials with coupled thermome-
chanical and internal processes, and derive the equations of configurational force balance in the pres-
ence of the new sources of dissipation, namely, thermal and internal effects. Thermal processes are
incorporated by making use of the approach of Green and Naghdi’s (c.f. [13]) of considering as prim-
itive thermal variables the so-called thermal displacements instead of the temperature. Thermal dis-
placements « (X, t) are defined as the time integral of the temperature, i.e., a (X,t) = f:o T(X,7)dr
or equivalently, as the scalar quantity such that & = T. The reinterpretation of temperature as a
rate suggests that the entropy N given by the relation RN = % where £ is the (temperature-
dependent) Lagrangian, and the heat flux H given by a generalized Fourier’s law H = H (DT),
should be reinterpreted, respectively, as a momentum and as a viscous stress, in complete analogy
to the velocity RV = % and viscous force PY = P? (D¢g). Once this analogy is established, a
Lagrange-d’Alembert formulation for all balance equations and the equations of balance of configu-
rational forces for materials with thermal processes follow by mirroring the procedure developed for
elastic materials with viscosity in the previous chapter.

The main consequence of introducing thermal displacements « as primitive variables is that a
correspondence or analogy between mechanical variables and thermal variables can be established.
For each quantity in the equation of mechanical force balance, there are parallel or analogues in the

oW

equation of entropy balance. For example, to the (elastic part of the) mechanical stress P = 9Dhg

corresponds the (conservative or dissipationless part of the) entropy flux % = %’Va. Direct at-
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tempts to exploit this analogy have been explored for example in [47] and [48], where Lagrangian
and Hamiltonian formulations of (dissipationless) thermoelasticity were investigated, see also [19].
Furthermore, using Noether’s theorem with a Lagrangian expressed in terms of the "direct motion
and thermal displacements" (¢, @), or alternatively, invoking the stationarity of the Lagrangian

L ofl) a (dissipa-

expressed in terms of the inverse motion and inverse thermal displacements (go_
tionless) thermoelastic configurational force balance equation was obtained (c.f. [47], [48]). The
extension of the latter for the dissipative case was studied for example in [3]. This extension was
obtained by "pulling-back" or "projecting" both balance equations (mechanical force balance and
entropy balance) onto the material manifold as was suggested in [44] as a general or "direct" method
to establish the configurational force balance equation in general dissipative materials. The same
equation was later obtained using Gurtin’s approach to configurational forces (see [15], [16]) in [18].

The objective of this chapter is to take this analogy or parallelism further. We propose an additive
decomposition for the heat flux H = H® + H" into a conservative (or equilibrium or dissipationless)
heat H® and a non-conservative (or non-equilibrium or dissipative) heat H” in complete analogy to

the decomposition of the mechanical stress P into elastic (or equilibrium or conservative) part and

viscous (on non-equilibrium) parts P = P¢ + P?. The dissipationless part of the heat H¢ derives

from the energy (or Lagrangian density) in the form HT = %’Va = faa,ﬁﬁa while the dissipative
part H" derives from a kinetic potential ® in the form HTU = % = % in perfect parallelism
with the elastic and viscous parts of the mechanical stress P¢ = % and PV = % = g—? We

shall furthermore pursue equivalent decompositions for the thermodynamic stresses conjugate to the
internal variables Y = Y¢ + Y and for the mechanical body forces B = B¢ 4+ B" and heat sources
per unit of reference volume S = S¢ + SV.

A thermomechanical Lagrangian and thermomechanical action is considered. The independent
thermomechanical variables are taken to be the motion ¢, the thermal displacements «, and the
collection of internal variables Q. The thermomechanical Lagrangian is assumed to depend on the
independent variables, their rates, and their gradients. Derivatives of the Lagrangian with respect to
the rates define momenta. Derivatives of the Lagrangian with respect to gradients define equilibrium
stresses, and derivatives of the Lagrangian with respect to the thermomechanical variables define
equilibrium forces. We also define non-equilibrium stresses and non-equilibrium body forces for all
the processes. All these are assumed to derive from a kinetic potential as derivatives with respect to
the rates of each independent variables and their gradients. Non-equilibrium stresses are obtained
as derivatives with respect to the gradient rates, namely (Q7 D%Dc’u). Non-equilibrium forces are
obtained as derivatives with respect to the rate of the independent variables (¢, d). Adding the
equilibrium and non-equilibrium parts of stresses we obtain the total stresses. Adding equilibrium
and non-equilibrium parts of the forces we obtain total forces. The Euler-Lagrange equations asso-

ciated to the stationarity of the thermomechanical action with respect to each variable will give the
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equilibrium part of the "mechanical force balance," "entropy balance," and "internal force balance"
equations. Each equation will have also a non-equilibrium part that unlike the "equilibrium" part
cannot be obtained from the stationarity of the thermomechanical action. The total balance can be

established instead from a "thermomechanical" Lagrange-d’Alembert principle.

4.1 Balance equations and constitutive assumptions

We begin this chapter by reviewing the balance laws and constitutive assumptions that govern the
motion and thermodynamic processes of a deformable body with reference configuration B C R™.

The local form of the balance equations written in Lagrangian coordinates are:

Conservation of mass

R=0

Balance of mechanical forces (or balance of linear momentum)

d
= (RV) = DIV (P) ~B =0

Balance of energy

CZ(;R||V|2+A+RTN> —DIV(PV-—H)-S—-B-V=0

Clausius-Duhem inequality

%(RN)—{—DIV (I;) — ; >0
where ¢ (X, t) is the motion, V (X, t) = ¢ (X, t) is the material velocity, R (X) (independent of ¢
by conservation of mass) is the mass density per unit of undeformed volume, P (X,t) is the total
stress tensor (force per unit of undeformed area or Piolla-Kirchhoff stress tensor), B (X, t) are body
forces per unit of undeformed volume, A (X,t) is the free energy, N (X,t) is the entropy density
per unit mass, T (X, ¢) is the temperature, U (X,t) = A+ RTN is the internal energy per unit of
undeformed volume, S (X, ) is the heat source (per unit of undeformed volume), and H (X, t) is the
heat flux per unit of undeformed area.

We shall be interested in the treatment of thermal variables and mechanical variables in an equal
footing. To this end we split the Clausius-Duhem inequality into an entropy balance equation,

. d H\ S
F—Clt(RN)—DIV(T)—T
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and the inequality
>0

where I is the internal entropy production. FEntropy balance and mechanical force balance will
become the main objects of the upcoming developments. More precisely these two balance equations
will be considered as the Euler-Lagrange equations of the Lagrangian and Lagrange-d’Alembert
formulation of the next section.

Let F,, Fn and F; be the left hand side of the three balance equations (mechanical momentum

balance, entropy balance and energy balance), i.e.,

d
Fy = - (RV)-DIV(P)-B
d H\ S .
Fn = dt(RN)+DIV<T>TF
1
Fi = Z(QRV||2+A+RTN)—DIV(PV—H)—S—B-V

Then it is straightforward to prove the identity
Fe—VF,—TFy=A+RITN+TI' - PDV + ?DT

Combining this identity with the balance equations (F, = 0, Fy = 0 and F; = 0) the following
relation is obtained:

A+RTN+TI“—PDV+%DT:0 (4.1)

which is usually regarded as another statement of energy conservation.

In addition to the balance equations, the following constitutive assumptions are made:

e The local thermodynamic state is assumed to depend on (F,T,Q) where F = Dy is the
deformation gradient, T is the temperature, and Q is a set of internal additional variables.
FEach material particle with reference coordinates X is regarded as a thermodynamic sys-
tem in equilibrium undergoing a thermodynamic process defined completely by the curve

(F(X,1),T(X,1),Q(X,1))

e The stress is split additively into an "equilibrium" part P¢ (or "elastic" or "conservative" part)

and a non-equilibrium part (or viscous or non-conservative part)
P=P°+P"

The total stress P is assumed to depend on the local thermodynamic state (F, T, Q) and on the
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rate of deformation F, i.e., P =P (F7 F, T, Q) and the equilibrium part satisfies the relation

PG:P(on,F,T,Q)

e The internal energy of each material point is assumed to depend on the local thermodynamic

state, namely on (X, F,T,Q), i.e.,

A:A(X’F7T7Q)

e The equilibrium stresses and thermodynamic forces conjugate to the internal variables are

defined as
e 0A
P - aF (X5F7Ta Q)
0A
Y = ——(X,F,.T
aQ ( ) b ’Q)

and the entropy IV is given by the relation

0A
RN = T (X,F, T,Q)

Under these assumptions we have

; 0A. 0A. 0A.

= PF+RNT-YQ
and the identity (4.1) reduces then to

Tl'“fYQfP“FJr%DT:O

which implies that the viscous power P”I'T‘7 heat flux against thermal gradients %DT, and power of

internal processes YQ contribute additively to the internal entropy production
IT=YQ+ PF — TDT

The entropy balance equation becomes then

d H\ S 1/ . .. H
dt(RN)—DIV(T)—T—T<YQ+PF—TDT>_O
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Finally the set of balance equations and constitutive relations need to be complemented with
appropriate kinetic relations that enable the determination of (Y, P, H). They usually assume the

general form

P’ — PV (X,F,Q,T,F,Q,DT)
Y = Y(X,F,Q,T,F,Q,DT)
% - %(X,F,Q,T,F,Q,DT)

Furthermore we shall assume that the previous functions derive from a kinetic potential

d—d (X,F, Q.T.F,Q, DT) (4.2)
such that
b
OF
y - 92
0Q
H 09
T ~ T 9(DI)

4.2 Restatement of the balance laws in terms of thermal dis-
placements.

We next proceed to study how the previous equations and constitutive assumptions are reframed in
a more general context when we assume that the local thermodynamic state is specified by (F, Q)
and the thermal displacement « instead of the temperature T. Thermal displacements « are defined

as

a(X,t):/tT(X,T)dT

to

or equivalently as the scalar field such that
a=T
The reinterpretation of T' as a rate has the following two fundamental consequences:

1. If the free energy is assumed to be dependent on (F,T,Q) = (F, &, Q) then the relation for

the entropy becomes

0A

N=-22
R dex
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or, using the Lagrangian density defined as

R
L= SIVIP-AFTQ=

R . .
= Slel - AF.6.Q)

the entropy result

oL
RN = —
foJe!
This relation is in perfect analogy to
RV = a—ﬁ
op

which states that RV is a (mechanical) momentum for the particular Lagrangian £ defined
above. We thus reinterpret RN as a thermal momentum and consider A not as an energy but

as a Lagrangian, or more precisely, as a Lagrangian excluding the kinetic energy term.

. Let 3 = Da be the thermal displacement gradient and assume now that the free energy depends

not only on deformation gradient F but also on thermal displacements gradients 3, i.e.,
A=A(F,T,Q,B)

In analogy to the equilibrium stress P¢ defined as

o4

P =5

and the viscous or non-equilibrium part of the stress PV defined such that
P=P°+P"
we may define the equilibrium part of the heat flux H® such that

H° 0A

T o8

and the viscous or non-equilibrium part of the heat flur HY such that

H-H"+H"
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It follows then that

A = afFF—l—afTT—F@Q‘F%ﬂ—

€

= PF+RNT-YQ+ DT

whereupon the identity (4.1) reduces to
. . . HY
TF—YQ—P”F+?DT:0
or equivalently to
. . . HY

The previous suggests that only the "non-equilibrium" part of the heat flux H” will contribute
to internal entropy production I' and only this part will be related with the temperature

gradient DT = B through a kinetic relation

B _ 0%
T 3
_ 92
- 9DT

in complete analogy with the non-equilibrium part of the mechanical stress

v_ 02
OF
Materials for which H” = 0 and H® # 0 are referred to as thermoelastic materials with
dissipationless thermal conduction.
Motivated by the decomposition
H=H°‘+H"

we proceed now to pursue an equivalent decomposition for the thermodynamic forces conjugate to
the internal processes Y, namely

Y=Y°+Y"
To this end we recall first that for these forces we have defined

DA 0L

Y="2q " 9q



126

and assumed a kinetic relation of the form

0%

=% (4.4)

We notice next that the notation adopted in the first of these relations seems not to be in agreement

with the adopted for the mechanical stress P and heat flux H for which we have interpreted

. 0A_ oc
P = T oF
H° 94 oL
T ~— 93 0B

as a definition for the equilibrium parts of the total stress P and flux H and therefore used the

supraindex e. It seems then natural to change the notation in (4.3) to

e_ 04 _ 0L
Q  9Q
Equation (4.4) can then be rewritten as
Y°© - (“)7@ =0 (4.5)
0Q

Defining now the non-equilibrium part of the thermodynamic forces Y? as

_o®
0Q

v

(in complete analogy to P¥ and HY) relation (4.5) becomes
Y=Y"+Y"=0

which might be now reinterpreted as a balance equation for the thermodynamic forces conjugate to
the internal processes.
In light of the previous assumptions and observations, the mechanical force balance equation,

entropy balance equations, and balance equations for the internal processes may be rewritten as

DIV (P¢ +PY) 4
-prv (BHHY) [ — | 42(RN) | + +T | =] o0 (4.6)
Y°+YY 0 0 0
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where in the first column we have grouped the "stresses," in the second the "momenta," and in the

third the "sources," and where the "equilibrium-stresses" are given by

Pe 0A oL

OF - OF
"non-equilibrium stresses" by
I}v = —g—g (4.8)
Y T

and the internal entropy production follows as
. . . HY
T =-Y"'Q+ PF — ?DT (4.9)
or, written in terms of the kinetic potential ®, as

P 1<8<I>- 09 .. 8@-)

a \0Q oF op
Having established equivalent decompositions for mechanical stresses P, heat fluxes H and in-
ternal forces Y we now proceed to assume similar decompositions for the body forces B and heat

sources S. We shall consider therefore

B = B°+BY
5 _ s, 8
T T T

where (B¢, 5¢) and (BY,S") are, respectively, the equilibrium (or conservative or potential) and
non-equilibrium (or non-conservative or viscous) parts of the body force and heat source. The

equilibrium part is assumed to derive from a potential I (¢, ) in the form

B ol
_ | Og
se | ol
T e’
or alternatively as
o1 oL
B[ oe g (4.10)
se ol oL '
- i

da Oa
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where we have redefined the Lagrangian density as

R
£ = SIVIP-AXF.T.Q0) +I(p.a)

R
= 5”90”27A(X7F7Q7Qaﬂ)+‘[(<)oaa)

while the non-equilibrium parts BY and S% are assumed to derive from a new kinetic potential

¢ (p, &) in the form

BY @
—| 9¢
s 9
g dix
or alternatively as
ov
B” o
_| 0
s | = ﬁ (4.11)
T D

where we have combined the kinetic potential for the body sources ¢ with the kinetic potential ®

defined for the stresses in (4.2) to define a total kinetic potential
UV=0¢p+@

For example if an external body force field B¢ (X, t) and an external radiation source S* (X, t) are

applied, then we can take

I(p,0) = B
o(p,&) = S"log (&)
whereupon
ol 0¢
B = —+—=B°
8<p+8<,'0 +0
S ol 0¢ S
T = 2atoa "Ta

On account of all the previous assumptions, the balance equations take the form

DIV (P¢ + PY) 4 (Rp) B¢+ BY 0 0
~DIV (H£H") F@BN) [+ 5= =0 (412)
Y+Y? 0 0 0 0

with the "equilibrium" (or conservative) and "non-equilibrium" (or non-conservative or viscous)

parts of the mechanical stresses, heat fluxes, and internal stresses given, respectively, by (4.7) and
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(4.8), with conservative and non-conservative parts of the body sources given, respectively, by (4.10)
and (4.11), and with internal dissipation given by

F_1<a<1>. 99

0P .

o

4.3 Lagrange-d’Alembert formulation of the balance equa-

tions

We turn in this section to the formulation of a general Lagrangian and Lagrange-d’Alembert principle
from which a generalized form of the set of balance equations stated in the previous section can be

derived. To this end we take as independent thermomechanical variables

(p,2,Q)

where ¢ is the motion, « is the thermal displacement, and Q are the internal variables. We envision
a formulation for which the equilibrium part of the balance equations (4.12) (mechanical force
balance, entropy balance, and balance of force conjugate to the internal processes) can be derived
from the stationarity of an action functional defined in terms of a thermomechanical Lagrangian
density, while the total balance equations can be defined from a thermomechanical analog to the
Lagrange-d’Alembert principle.

We shall assume therefore the existence of function £, the thermodynamical Lagrangian density,
that in analogy to the mechanical Lagrangian density (3.3), is a function of the thermodynamical

variables, their rates, and their spatial derivatives:

£ (X.t,,0,Q, Dy, Do, DQ, $,, Q)

The Lagrangian density is also assumed to depend explicitly on the space and time variables (X, t).
To simplify the notation we shall make use of the following new symbols for the spatial and time

derivatives of ¢ and a:

» 8N =1 <
I
Q
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which implies the compatibility conditions

B8 = DT
The Lagrangian is then assumed to depend on
£(X,t,¢,0,Q.F,8,DQ,V,T,Q)

We shall restrict ourselves to the particular case of Lagrangian densities independent of (Q,DQ) .
This assumption is motivated by the following observation: In the same way as we introduced
"thermal displacements" « such that & = T', we could have introduced "internal deformations" ¢

such that
D¢ =Q

In that case the Lagrangian would have been dependent on

(¢.06.9) = (¢.Q.9)

However in the particular case of plasticity and viscoplasticity, the internal variables are given by
Q = F? which is not integrable to a global plastic deformation ¢. It seems then that taking ¢ as
an independent variable is not a valid assumption. We thus take Q as independent variable but the
Lagragian is assumed to be dependent only on Q and not on Q and DQ, which would have implied
a dependence on second derivatives and its rates Dd) and D?¢. The Lagrangian density L is then

assumed to depend on

E(Xﬁt?(P’Oé’F?/g?Q’V’T)

In particular we shall consider Lagrangian densities of the form

ﬁ(X’t7(P7a’F757Q’V’T): W(X7t’(p7a7F767Q7T)

R|V|*
2
with
W=AXtF B,QT)—I(Xtepa)

where A is the free energy density (or the kinetic-energy-free part of the Lagrangian density) and I
is the potential for the body sources.
Under these assumptions it is straightforward to prove that the equilibrium part of the balance

equations (4.12) are the Euler-Lagrange equations corresponding to the stationarity of the following
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thermomechanical action
ty
Swa@ = [ [ LXte.0DeDaQpa) Vi -
to B

ty Rllol?
= / / (H;’DH - W (X,t,p,a, Do, Da, Q7d)> dVdt
to /B

with "equilibrium stresses" given by

oL ow
| o o
T o 0 o 9] ’
||
0Q 0Q
"equilibrium body forces" given by
oL ow
Be % T 0o
« |=laz |7 o (4.14)
4 da ~ da
and momenta given by
oL
Re g
of
RN | = gf (4.15)
0 7%
0Q

Assuming now the existence of a kinetic potential ¥ that is a function of the same variables of

the Lagrangian density and, in addition, of the rate of the gradients B=Da, F = D¢ and Q
v ((X,1), (@, F.8,Q), (.0, F,5,Q) )

such that the "non-equilibrium" stresses are given by

ov
P oF
HY 5‘\11
T || o (4.16)
Y? _ov
0Q
and "non-equilibrium body forces" given by
ov
B” e
o |- g (4.17)
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then it is straightforward to prove that total balance equations (4.12) follow from the Lagrange-

d’Alembert principle:

(68,8¢) + (85, 5a) + (5S,0Q) +

/tf/ (5 T( —&-DIV(?E))+5a(?+F+DIV<ZZ>)+6QTa;>dth—0

that can be split in three different principles:

by 0w
(68, 5¢) / /550 <+DIV<8F)>dth =0 (4.18)
ov
(68, 00) + / /5a<+F+DIV<aﬁ)>dth =0 (4.19)
. am) _
(65,6Q) + /to /B Q <8Q avdt 0 (4.20)

Using the kinetic relations (4.16) and (4.17) the Lagrange-d’Alembert principle can be written as

(65,0) + (3, 6a) + (68, 5Q) +
b 5 HY
T v v T~v _
+/t0 /B(&p (BY + DIV (P ))+5a<T+I‘ DIV(T)>5QY)dthO

The proof of these statements follows standard Euler-Lagrange derivation arguments: taking first

variations of the thermodynamical action with respect to all of its arguments we find

by oL
(0S,0¢) = / / (6 + —D&p + 6&0) dvdt
to
(05,6a) = / / <5 + —D(Sﬂ + M&a) dvdt
to

(65,0Q) = /f (5Q+§Q> dVdt
to
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Integrating then by parts in time we obtain

by d (oL oL oL
ssse = [ [ (- (2) - o (%) + 22 sorva

+ % ¢ptdedt+/tf/ ( )dth
— L 55) o (35) 5 s

/g;écp dth+/t0 /dB ((5a>dth
(09,0Q) = /tf/( dt( ) gé>5Qdth

dvdt

to

+/BQ5Q

which under appropriate admissibility assumptions for the variations (i.e., variations (d¢, da, 6Q)

that vanish in the initial and final times and on the boundary of the body B), on account of the
definitions (4.13), (4.14), (4.15), (4.16), and (4.17) and in combination with the Lagrange-d’Alembert
principle (4.18), (4.19), (4.20) implies the balance equations (4.12).

4.4 Configurational forces in general dissipative solids

In this section we make use of the Lagrangian and Lagrange-d’Alembert formulations stated in the
last section to derive an equation of configurational force balance for deformable materials with
thermal, viscous, and internal processes. To this end we follow the same procedure developed
in the previous chapter to formulate the equations of configurational force balance for isothermal
elastic materials with viscosity. We first establish the equation for materials with no viscous (or non-
conservative) behavior by referring the thermomechanical action to the defect reference configuration
and taking variations with respect to defect rearrangements (horizontal variations). We then prove
that the equation obtained is the "pull-back" of the mechanical force balance equation and entropy
balance equation to the material manifold and finally use this property to formulate the equations
of balance of configurational forces in the dissipative (viscous) case.

To this end we begin by considering a thermomechanical action given by

ty
S(p,a,Q) = / /BK(X,t,%a,D%Da,Q7<,'o,o'z)dth:
to

ty .« 112
_ / /(R”;P” —W(X,t,go,a,Dcp,Da,Q,d)) dvdi
to B

Let D be the defect-reference configuration, as defined in the previous chapter (§3.3.1), and let
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1 : D X [ty,t¢] — B be the defect rearrangement. Furthermore let

¢(&,t) = e@(&1).1) (4.21)
a(§t) = a(P(&t),t) (4.22)
a.t) = Q@ (&1),t) (4.23)

be the composition mappings between the motion, thermal displacement, and internal variable fields
e, o and Q with the defect rearrangement 1 (£, t). Differentiating the previous with respect to the

parameter £ and time ¢ we obtain

F = D¢Dyp!
V = ¢-(DéDy )9
= ¢-Fy

Referring now the action functional to the domain D we obtain

S (¢7 a’? q? w)

/ttf /B'C o 1) det (D) dédt =

s
[ ] £tet.60.psv " DaDy ' q
to D
¢ — (DD~ ") P, a— (DaDep™ ") 'z,b> det (Dvp) dédt

We next compute variations of the previous with respect to each of its arguments keeping the

rest fixed. Taking variations with respect to (¢, a,q) yields

tr &C 5 .
w5000 = [ [ (500t gp-00iai+ g (56— 60uvlyby) ) det (D) deat

t
(68, 6a) /t ! / (5 + ol + gé (5a — 5a7a¢a,{,¢J)> det (D) dédt

(58,6q4) = /tf/ <5qA) det (D) dedt
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Referring all the previous integrals back to the reference configuration B we find
)+ oL d
OF;;dX;

ts oL
05,09;) =
wsiey =[] (
ty a

(65,0q4) = /t:f/( (6ga o™ ))dth

where we have used the identities

oL d

L Goow™) = (shi0w) ~ (360009 )ik (brow)
% (06, 097") = (00009 ) vl

di(aaoqp )= (aey) = (Gaaow ) vk (G 0v7)
dij (dao™) = (daaov™)vay

Integrating by parts we obtain

d 0L d oL

— . -1
(65,60;) = iX, 08, di av)(m“’b ) dvdt

ts tr oL
B 6p; op "
/(¢ ) o t0+/t0/83(¢tw)8FU
tr d oL doL 4
/to /(M_M]%_ﬁW)(éao¢ ) dV dt
ty ty
/(5 ot —dV / /é)B (daoyp™ %NJdet

(6S,6q4) = /tf/< (6gaoyp™ ))dth

Taking next variations with respect to the defect rearrangement 1) keeping constant the other

tree fields (¢, a,q) we find

asiov) = [ [ (st (5 (owwvid) + 5 (aavad) ) (50— (svrs055) ) +

+ (ﬁéu - 8‘% (Gra¥id) ~ 55 (a,awg}f)) (w],ﬁwgb)) det (D) dédt

\
h
\
A
(@)

S

oL

(58, 5a)

Notice that the first term involves the derivative of £ with respect to the explicit dependence of X

and excluding derivatives with respect to ¢, «, Q and their time and spatial derivatives. Referring
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the integral back to the reference configuration B, the variations with respect to v take the form

oL
asov = [ [ (55 Goow )+ (lea -1z ) g Gvrow )+

+<L61J_8ifJF 98, ﬂ1> (5%01/’ )) dvdt

where identities (3.30) and (3.31) have been used. Integrating by parts in the previous gives the

variations in the form

oL oL d oL oL 1
108 0¢1) //(ax, it Py 157~ ax; (8000 Pagy, ~Brg ) Jovrow™
oL Y
v [ (~Fagi -~ orgg ) Gurow) av

+
7 B B
_1 L L
+//g)3 ((51/)10110 )(£51J “TBFZJ ﬁ]aﬁJ>NJ> dsdt

to
We finally invoke the stationarity of the thermomechanical action functional with respect to

admissible variations of each of its arguments to obtain the Euler-Lagrange equations. Stationarity

of the action functional with respect to (d¢, da, dq) implies the Euler-Lagrange equations

oL oL d (0L
&O_DIV<6F>_dt(8V> =0
oL oL d (0L
aaDIV<8ﬂ)dt<8T> =0
oL
aq = °

that, using the equilibrium relations (4.13) and momenta definitions (4.15), can be rewritten as

B + DIV (P°) — % (RV) = 0 (4.24)
% — DIV (I;) - % (RN) = 0 (4.25)
Y = 0 (4.26)

These equations correspond to the equilibrium part of the equations of mechanical force balance,
entropy balance and internal force balance (4.12).

Invoking next the stationarity of the action functional with respect to variations of ¥ implies the
Euler-Lagrange equation

oL d oL oL d oL oL
aX,_dt(F”av; B18T> dX; (m” Firgp, ~ 510@,) 0
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or in invariant notation

oL d 2 0L L 0L oL\
E)X_dt(_F v aT)—DIV(LZI—F W—ﬂ@@%)_o

Using the equilibrium relations (4.13) and momenta definitions (4.15) the previous yield

%5( - % (-F"R¢ — BRN) — DIV (LI +F'P° -8B I;) =0 (4.27)

Equation (4.27) has been obtained following exactly the same procedure used to derive the equation
of configurational force balance (3.34), (3.36) and will therefore be regarded as the equilibrium part
of the equation of configurational force balance.

We finally derive the configurational force balance equation in the presence of dissipative (or
non-conservative or viscous) stresses and forces. To this end we first prove a pull-back relation
analogous to the one obtained for isotropic elastic materials (3.42). We next use this relation as a
rule to build the equations in the presence of both equilibrium and non-equilibrium factors. Let Fg,

Fa, Fq, and Fy be the Euler-Lagrange operators

= o (i) 4()-
= B€+DIV(P6)—%(RV)
- () () -
= “?—DIV(If)—jt(RN)
oo %y
Fyp = gf(—DIV(EI—Fng—ﬁ@Zg)—CZ<—FT3\£[— g?)
oL

He\ d
o~ Tpe _ _ 2 (_wT _
5 DIV(£I+F P - B® r) dt( F"RV — BRN)

i.e., the left hand side of the Euler-Lagrange equations (4.24), (4.25), (4.26), and (4.27). Then it is
straightforward to prove the identity

~F'Fy — BF. — DQFq = Fy (4.28)

This relation expresses that if the first three Euler-Lagrange equations 4 = 0, F, = 0, Fq = 0
(those corresponding to vertical variations) are satisfied, then the configurational force balance
equation Fy = 0 is automatically satisfied and establishes an algebraic relation between all balance

equations. We take now this property as a rule to build the configurational force balance equation
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in the presence of dissipative terms. The full (including non-equilibrium terms) balance equations

are

Fsp+BU4+DIV(PY) = 0 (4.29)

W+ —4+TI-DIV|(— ] = 0 4.30
R St oo (1) w30)
Fq+Y’" =0 (4.31)

Left-multiplying these equations, respectively, by (—FT7 -3, —DQ) and using the pull-back relation

(4.28) we obtain the configurational force balance equation in the form
T v v SY - H" v
Fy~FT (B' + DIV (P")) - B 7 +T DIV (= ) ) - DQY" =0 (4.32)

The previous might also be rewritten as

v

H v
0 = Fyu—DIV (FTP“ — 5T> —FT'BY — 5%

- (ﬁf — (P’”DF - %Dﬂ - Y”DQ))

or using the relation (4.9) for the internal entropy production I' and rearranging appropriately as

v

0 = F,—DIV (FTP’“ - gH— 5

) _ FTBU _ /87

T T

1 VL H" . v ¢ v H" v
—(ﬁT (P Fo oY Q)— <P DF - —-DB-Y DQ>>

Finally grouping terms in the last factor we obtain

HY Sv
0 = Fyu-DIV (FTP'” — ,3T> —FTBY — ﬁT

F B (63 AQ
—|\P'|=—=-DF | ——|=—-D3|-Y"|=—-D
( ( T T\T p T Q
- i identity —D (2) = 1 (82T _ _1 (88 _
or alternatively, using the identity —D (T> =7 ( 7 Dﬁ) =7 ( T D,B) we finally find

v

0 = Fy—DIV (FTP” — BI;) —FTBY — ,6%

(o (5 - oe) smen (8) - (52 o)) (139

Equation (4.32) or its equivalent (4.33) is the equation of balance of configurational forces in the

presence of dissipative behavior. Notice that for isothermic processes we have T' (X, t) = 0 (a constant
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independent of space and time) and therefore « = 0 (t — tp) and 8 = Da = 0. Assuming in addition
that Q (X,¢) = 0, which implies Q = DQ = 0, then the equation of balance of configurational forces

(4.32) reduces in this case (isothermal processes with no internal variables) to
Fyp—FT(B"+ DIV (P") =0

with
oL

_ T’U_i_T
X DIV (LI+ F'PY) dt( F'RV)

Fp =

This equation correspond to the equations of configurational force balance for isothermal elastic
materials with viscosity obtained in the pervious chapter, equations (3.58) and (3.59). Eliminating
the symbol F,, from equation (4.33), the configurational force balance equation adopts the final

form

oL

0 = —DIV<£I+FT(P€+P”)—ﬁ®H+H) 4 TRV - BRN) — FTB”—ﬁ%

0X T dt (-

i (PU (ﬁTF . DF) () oy (ﬂQ _DQ))

We end this chapter by establishing vertical, horizontal and combined vertical-horizontal versions
of the Lagrange-d’Alembert principle (4.18),(4.19),(4.20) in complete analogy with what was done in
the previous chapter for isothermal materials with no internal processes. The Lagrange-d’Alembert

principle for the (vertical) balance equations (4.29),(4.30),(4.31) are

(5S,5¢) + /t / 5T oap! <+DIV<Z§>>dth = 0
(55, 5a) + // Saoqp! < +F+DIV<2§>)dth = 0
(5S,5q) + / / <2Z)dth = 0

The Lagrange-d’Alembert principle for the configurational balance equation (horizontal balance)

(4.32) is

) (o) oo
+/t0 /B (5" o) <ﬁ (gz +1'+ DIV <2‘;)>) dvdt
J,

(&pT ° 1/;—1) (-DQZ‘%) dvdt
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Combining vertical and horizontal Lagrange-d’Alembert principles we finally obtain

(65,66) + (3, 6a) + (55, 6q) + (85, ) +

+/tf/((5¢ o) — (5¢o¢*1)) <+DIV< >>+
// (baoyp™) =B 0oy~ )) (g\p—kfﬁ—DIV( >>+

~ _ )
+/t/3 (5qop 1) = DQ (5poyp)) (m)dm_o

that using the kinetic relations (4.16) and (4.17) can be rewritten as

(05,0¢) + (65, da) + (8S,q) + (0.5, 6¢) +

/tf/ ((0porp™" F(5¢o¢*1))T(B”+DIV(P”))+

/ttf/ (baop™) — B (dporp™ ))T<‘S;+r DIV(PJ{U>>+

t
[0 (Gaew™) - DQ sy ow ™)) (-Y") v =0
to B
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Chapter 5

Mixed variational principles for

dynamics

We turn in this section to the formulation of a mixed (two-field) variational formulation for dynamics
that allows for independent variations of deformations ¢ and velocities V. We will refer to this
formulation as the mixed Hamilton’s principle. The construction of this mixed variational principle
follows a standard -Lagrange multiplier argument to enforce the "time-compatiblity" identity V = ¢
between "assumed" V and compatible ¢ velocity fields. We next extend this formulation to account
for variations with respect to defect rearrangements (horizontal variations). The resulting mixed
(three-field) formulation will render simultaneously the equations of balance of mechanical forces,
configurational forces, and time compatibility.

The mixed formulation for dynamics is introduced as an approach to overcome instabilities in-
herent to the use of the standard (single-field) Hamilton’s principle with moving meshes. More
specifically, as was illustrated for one-dimensional problems in the second chapter and will be fur-
ther elaborated in the next chapter, the approximation for the material velocity field ¢, that results
from the approximation of the motion ¢, with finite elements interpolated over moving meshes
may exhibit jump discontinuities across element boundaries. This discontinuities eventually grow
unbounded rendering unstable and meaningless solutions. These instabilities are effectively con-
trolled by making use of a continuous, assumed velocity interpolation Vj, in lieu of the consistent
interpolation ¢, and the mixed Hamilton’s principle as the underlying variational framework.

The mixed variational formulation presented here may be considered as the dynamic analogous
to the Beuveke-Hu-Washizu mixed variational principle for statics [9]. Furthermore, both variational
principles may be combined together to establish a single mixed space-time variational principle for
non-linear dynamics that accounts for independent variations of all fields (deformations, velocities,

strains, momentum, and stresses).
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5.1 Beuveke-Hu-Washizu variational principle for statics

The Beuveke-Hu-Washizu mixed variational principle for elastostatics allows for independent varia-

tions of deformations, strains and stresses. The Beuveke-Hu-Washizu functional is

I[p,F,P] = /B(W(X,QO,F)JFR'J(%,J*FZ' ) dV

—/ (¢ — @) PigNydS — Tip;dS (5.1)
0B2> dB1

The stress tensor P acts as Lagrange multiplier in B and on the traction boundary 0B; to enforce
the "strain-displacement" compatibility condition ¢, ; = Fi; and Dirichlet boundary conditions

; = @;. The variations of the generalized potential I with respect to each field are

ow
(01,6p,) = / 0p; + Pisbp; 5| dV +
B \0p; '
—/ 5(pZHJNJdS - 5QDZTldS
832 8Bl
ow
0l,0F; = — P,y | 0F;;dV
(01, 0Fu1) /B (3Fu J) !
(01,0F;5) = / 6Py (ps g — Fiy)dV
B

*/ (0; — §;) 6Py N dS
0B

with Euler-Lagrange equations

oW dPy _ 0 B
PiJNJ - Ti = 0 on 831
ow
~—— _PpP; = 0 inB
aFZ-J J m
v, g—Fiy = 0 in B
$; — 8_02‘ = 0 on aBQ

that correspond to the field equations and boundary conditions of elastostatics. Replacing the P
multiplier in the Beuveke-Hu-Washizu functional I with the Euler-Lagrange equation corresponding
to the variations of its conjugate F, a two-field functional in which deformations and strains are

independent variables, is obtained.

ow
Iy, F] = /B<W+(m](%,J_FiJ)>dV
ow _
- .= i) o= NydS — | Tip,dS
/832(90 <P)8F“ J o, @
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This potential is a (deformation-strain) dual of the well-known Hellinger-Reissner (deformation-

stress) mixed variational principle and has been attributed to Beuveke [9].

5.2 Mixed Hamilton’s principle and mixed Lagrangian

Motivated by the methodology that led to the Beuveke-Hu-Washizu potential for statics and its
reduction to a two field "strain-deformation" potential, the following three-field "mixed action func-

tional" for dynamics arises:
ty
Slevel = [ [ (Xt V.D0) 4o - V) ava
to B

ty B
+ / / T, dSdt (5.2)
to 0B

where (what will turn out to be) the momentum p acts as the Lagrange multiplier in B to enforce
the "velocity-deformation" compatibility or "time-compatibility" condition ¢, = V; and where the
"strain-deformation" compatibility condition ¢; ; — F;; = 0 is accounted for strongly. Integrals are
taken over the space-time domain [tg,t¢] x B. For a Lagrangian density of the form (3.3) the mixed

action functional becomes
ty 1 9
Sle,V,p] = / /(QRIVI _W(X>ta‘10»D‘P)+pi(9bi_Vi))dth
to JB

ty B
+ / / Tip,dSt (5.3)
to 9B,

Unlike the Beuveke-Hu-Washizu principle, in which not only the field equations but also the Dirichlet
boundary conditions are weakly enforced within the variational framework, we do not attempt to
enforce initial conditions variationally. Therefore we maintain the restriction on the variations d¢
to belong to the set of admissible variations, i.e., variations that vanish on the initial and final times
and on the Dirichlet part of the boundary 0Bs. Nevertheless the formulation of a more general mixed
variational principle for dynamics that account also for initial (and final) conditions and Dirichlet

boundary conditions appears to be straightforward.
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The variations of the mixed action with respect to each field are

oL oL
59,50, = / /( 8g; + b, —i—ié'i)dth—l—
(65,6¢;) ]\ 80,091 T B, 0 T P00
f

t B
/ 5o, TLdSdt
to 0B

oot
3S,0V;) = / / <
{ ) )\,

ty
/ / 5pi (1 — Vi) dVdt
to B

- pl) SVidVdt

(68, 0p;)

The variational principle

(6S,0¢) = 0
(65,6V) = 0
(05,0p) = 0

for every admissible variations (d¢,dV,0p) will be referred to as the mized Hamilton’s principle.

We will denote the mixed Lagrangian density by

Lz (X, t,, V.F,p, (};) =L (}(7 t,o,V, F) + pi (90

i = Vi) (5.4)

The corresponding Euler-Lagrange equations are

= 0 in BandVte [

oL d <8£>_dpi

dp;, dX; \OF;; dt
gé—pi = 0 in BandVt el
p,—Vi =0 in Band Vt € I
oL +T; = 0 on 0By and Vt €
8F,-J i 1

that correspond to the equations of mechanical force balance (3.10), time compatibility ¢ = V, and
oL

traction boundary conditions, the Lagrange multiplier p resulting coincident to the momentum 5.

Replacing now the p multiplier in the mixed action (5.2) with the Euler-Lagrange equation
corresponding to variations of its conjugate V, the following two-field action functional in which

deformations and velocities are independent variables is obtained:

oL

vV (X,t,0,V, D)

ty
Slp, V] = /t /}3<£(th,¢7%&9)+

ty B
+ / / Ty dSdt
to OBy

(i — V%)) dvdt
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Defining the following mixed Lagrangian density

Emm‘ (X, t, @, V7 F’ Sb) =L (){7 t, p, \/7 F) + 87/5 (901 - V;) (55)

8‘/2 (X,t,,V,F)

the two-field action takes the form

tr ty
S, V] —/ / LM (X, t, 0, V, D, @) dth+/ / Tip;dSdt (5.6)
0B

Taking variations with respect to each independent arguments yields

ty 8£mw 8£mm 6£mzm
60S,0p;) = 0, ] ———0p,; | dVdt
(08, d¢;) /t0 / ( —0pi+ 0% T 5y >

/tf/ 5‘£ oL oL Jraﬁé. n
aF 901] ‘/z P

°L .
+ <a avvé R0V, &pu) (¢; — Vj)> dvdt +

ty B
/ / Ti6¢p,dSdt
0B
ty mix
(68,6V;) = / /(M 5m>dth

to .

ts oL .

= / /(avav Vj)axx;-)dv(zt

The mixed (two-field) Hamilton’s principle becomes

(05, 0¢)

I
=)

(68,6V) = 0

where d¢ is taken over the space of admissible variations, variations vanishing in the initial and final

times and on the Dirichlet boundary. The corresponding Euler-Lagrange equations follow as in this

case:
aﬁmz’x B d aﬁmix B g aﬁmix _ 0
A, dX; \ OFiy dt \ 9, a
aV; =0
oL Ny + T,‘ = 0

OF;;
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or, using the definition (5.5) as

oL d oL \ d (oL N 0*L (6~ V) - d oL (@,-Vv)) = o
dp,  dxX; \oF,) dt\av;) " ag,ov, \F1 ) T ax; \oFev, \Y1 T ) T
oL .
aVian ((pj—Vj) =0
oL oL -
% (6. —V) N, +T, = 0
<8FU A J)> T
that are equivalent to the equations of motion (3.8).
For a Lagrangian density of the form (3.3) the mixed (two-field) action takes the form
ty 1 9
Stevl = [ [ (GRIVE =W (60 RV (- V) ) avas
to B
ty _
+ / / Typ,dSdT (5.7)
to 0Bs

On account of (3.1) and (3.2) the corresponding variations are

ty
(65,0p;) = / / (Bibgp; — Pirdp; 1 + RVid;) dVdt +
to B

ty B
+ / / 6, dSdt
to 0B;

tf
ws.ov) = [ [ R - veviavae
to B

and the Euler-Lagrange equations become

B + DIV (P) — % (RV) =

0
p-V = 0
0

5.3 Configurational forces and configurational force balance

In analogy to the single-field Hamilton’s principle, the mixed (two-field) Hamilton’s principle may
be reformulated in a more general way to account not only for vertical but also for horizontal
variations and to render, in addition to the equations of balance of mechanical forces and time
compatibility, the equations of balance of configurational forces. To this end, let D be the defect
reference configuration, & € D the defect parameter, 1 (€,¢) the defect (horizontal) motion, and
¢ (&,t) the defect (vertical) motion in the deformed configuration at time ¢ or composition mapping
between the motion ¢ and ¥~ ' (figure 3.1). In addition, let v (£,t) be the material velocity referred

to the parametric configuration D, i.e., the composition between the material velocity field V and
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™', namely

or equivalently

Qbi(gout) = ‘pi(qpl(gwt)vt)
Vi(gavt) = Vi(wl(faat)vt)

We next refer the mixed (two-field) action (5.6) to the parametric configuration and regard the
action as an independent functional of both defect (horizontal) and body (vertical) motion. To do
this we make use of the relations between deformation gradient and velocities (3.18) and (3.19). The

mixed action thus becomes

tf )
Sip, ] = / / L7 o 4p det (D) dEdt =

/ / Emm d" t, v D¢D¢ ¢ (D¢D¢ )’l/)) det (D’I/J) d€dt =

/ / (9,1, ¢,v,DpDp ") + Rv (<2> — (DD e — 1/)) det (D) dédt

where we have assumed zero traction boundary conditions to simplify the derivation.
We now invoke the stationarity of the mixed action S [1), ¢, v] with respect to admissible varia-

tions of the three arguments (mixed Hamilton’s principle)

(05,00;) = 0
(05,0¢7) = 0
<6S, (51/1> = 0

The variation of the mixed action functional S [v, ¢, v]| with respect to ¢ (keeping ¥ and v
fixed) yields

<§Sa §¢7,>

[
h
u\

(aﬁmzac acmzw aﬁmzx

5o 0%+ g (08iaval) + 5z (6@—<6¢i,aw;,b)m)>det<D¢>d§dt=

%

B ty oL 0 . . -
- /t /D (a%6¢i+%(5¢i,awa,l)+am(5@—(5@,&%’])%%

9’L 9?L _ ; 1
+ ( 5007 % 357 (5@,&%3)) (6 (8002) s —w)) det (DY) dédt




148

Referring the integral back to the reference configuration B we obtain

ty Emm« acmw d 8[:7"” d
wsio) = [ [ (% berow) 4 (b0 097) 4 2 (00,0w7) ) avde =

D, OF,; dX; op; d
b 8£ oL d .
[ ] (o Gonow™) + i (oo ™) + G (G,0w ™)+

82£ %L d . '
+(8 0V (6¢ v ) aFH@VjTXI(‘S@OQb )) (SOj—Vj))dth

where the identities (3.23) and (3.24) have been used along with the relation:

D (60w = (biow™) ~ (braov™ ) vah (byow) =
de;

dt Pi

and where the Lagrangian density £ and its derivatives are evaluated in (X, ¢, ¢, V, D).
We next compute the variations with respect to v (keeping ¢ and v fixed). On account of

relations (3.26) (3.27) we obtain

ty aﬁmzw ) a['mw: 3 3
(68, 6¢;) = /t / ( dpr + (ﬁm”(;u T OR, (¢z‘,a7/)a,11)> <5¢1,ﬁ'¢157l‘]> +

+8§:1x ( ¢z a'l/’a I) (512)1 - (5'1/)1,g¢/§i;> 1/JJ>> det (D¢) dédt

= /tf/ <6XI oYy + <E(51J - 8871 (¢zoﬂ/&;11)) (M)Iﬁﬁjg’b) +
o (~buatinh) (50— (dwrp03h) ) +

0L ) oL . .
+ (8X18V 5¢I 8V <£5I‘] FiJ (¢i,a¢a,1)> (51/}I,B¢5,J)> :
(65— (Bpavals) s — vs) ) det (DY) deds

Referring the integral back to the reference configuration B, the previous takes the form

ty aﬁmm B i 8£mm d B
asav) = [ [ (G oo w )+ (£~ by ) g (oo w )+

Emzm
a%( ) (5¢,o¢ ))dth

/f/( (6, 09) + (LéfJ—gifFlI> C (g op )+
(5¢IO¢ )

_|_

8%( i) 5

TL s O (s, 25, 5 ~V;) ) dva
+(8XI‘9VJ‘(¢IO¢ )+8V< ok, ”)dX (Orow™ ))( J)>

where identities (3.31) and (3.30) have been used. Notice that for a Lagrangian Density of the form
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3.3) the mixed derivative terms =2%_ and vanish.
D, 0V aF av

Finally we compute variations of S [t), ¢, V| with respect to v keeping (v, ¢) fixed. We obtain
ty o mix
(58, 6v)) = / / v det (D) dédt =
to ‘

tf %L .
L[ (G (6 = @ity i = ) ) et (D)

Referring the space integral in the previous variation back to the reference configuration B yields

ty mix
(65,0v;) = / / oL (dviop™ ') dVdt =
to

_ /t:f/<avav 5~ V) (5yio1/;1))dth

We now turn to the derivation of the corresponding Euler-Lagrange equations. Stationarity of

the mixed action functional with respect to admissible variations on each of its arguments requires

aLmiz B d aﬁmim B i (9£mm — 0
I, dX; \ 0F;y dt \ 0 a
8£miw d . 8£miw d ac'rnix
= _ = | pmizg _7Fi v _Fii. - 0
(9X] dXJ < = GFU I) dt ( ! 6<pi )
aﬁmim
oV; =0

that, on account of the definition (5.5), can be rewritten as

o - 9L d (oL d oLy
o 8<pi dXJ aFiJ dt a‘/;

2L . d oL .
+6%3Vj (%, = V3) T X, <W(%VJ)>

oc  d oL d oL
0 = mgwn<“”mbﬂﬁﬁ(fﬁmﬂ+
2L . d [0 oL .
Tox.ov, (75 =Vi) — ox, (av <£5” - aFUF”> (%5 - Vj))
2L

This equations are equivalent to the Euler-Lagrange equations (3.33) and (3.34) corresponding to
the single-field Hamilton’s principle.

For a Lagrangian density of the form (3.3) the variations take the form:
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e Variations with respect to ¢

(68,66;) / /( (6¢; 09~ ") — ;J(é@oz/ﬁ)ﬁ-RV (6; 01p™ ))dth
(5.8)

e Variations with respect to ¥

(05, 0¢r)

ty
/ /(anh mix 51/) O’l,b ) ;T(L]de (51/)10,'# )
+RV; (—Fu) — (w, o qp—l)) dV dt
ty
— / /(Bmh 51/)101,b_) CIJ (&ploqp Y
to
+RV; (—Fir) a (o) +
OR d
( (6300 ") + R— (5¢,o¢—1)> Vi (¢ —Vj)> dvdt (5.9)
ty
/ / <anh static 5121} O¢ ) statzc (5w10¢—1)
to J

+RV; (—F;) % (60 otp™ ) +
(28 Gurow™) + Rak (30, 007)) (5 475 (6, - 7)) ) dvds

e Variations with respect to v
tr
(65, 0v;) / / R(p ) (oviowp™ )dth (5.10)
to

where

oLmx _ oL B _8W
dp; B dp; B dp;
oLm= oL ow

B = — = — —
7 OF; ; OF,;  OF;,

B, =

are the mechanical body force and first Piolla-Kirchhoff stress tensor,

_ . aLmi 1 OR ow OR
inh—mizx _ = 2 _ (. — .
B T O0Xy |, 20X VIT-ax; oo +ax, Vi (25 = V)
mix miz aﬁmzcr 1 2 .
C = —|L 5[‘]* oF,, Fir) = W*§R|V| *RV'(‘P*V) 5IJ*F1'IP12J

and the inhomogeneity force and Eshelby stress tensor based on the mixed Lagrangian densities
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(5.5),
Binh _ oL — 1 IR 2 _ 8l
T 0Xy,, 20X X7 | o
oL 1
CIJ = _(CélJ_aﬂ]FiI> = <(W—2R|V2> 5IJ_FiIPiJ>

are the inhomogeneity force and Eshelby stress tensor but based on the standard Lagrangian (3.3),

and where
Bmh—static _ ow
f =
00Xt exp
Ci¥te = Wérys— FyPy

are the static parts of the inhomogeneity force and Eshelby stress tensor. The Euler-Lagrange

equations become

B + DIV (P) —%(RV) = 0
$-V = 0

when written in terms of the mixed Lagrangian (5.5) or alternatively

B + DIV (P) — % (RV) = 0 (5.11)
Bi"" + DIV (C) — % ((-F")RV) —=RGRAD (V- (¢—V)) = 0 (5.12)
-V =0 (5.13)

when written in terms of the standard Lagrangian density (3.3). Furthermore, making use of the

identities

% (-FTRV) + DIV (;R [V]? I) = —FT% (RV)+ RV - (GRADV —F) (5.14)

RGRAD (V- (¢ — V)) = RGRAD (V) - (¢ — V) + RV - GRAD (¢ — V) (5.15)

and rearranging conveniently, the Euler-Lagrange equations may be rewritten as

B + DIV (P) — % (RV) = 0 (5.16)
Binh—static 1 DIy (Cetatic) — (—FT) 4 (RV)— (DV)' “R(p—-V) = 0 (5.17)

dt
p-V = 0 (5.18)
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Notice that the mixed Lagrangian is £™ is the sum of three factors, namely the kinetic energy

term, the potential energy term, and the Lagrange multiplier term. We can thus define body forces

and stress tensors based, respectively, on L™, £, and W and therefore write the Euler-Lagrange

equations based on these three different representations.

We finally derive a pull-back relation analogous to the one obtained in the case of a single-

field variational principle (3.42). To this end, we define the following (two-field) Euler-Lagrange

operators, the left hand side of the (vertical and horizontal) Euler-Lagrange equations

Folpv)), = L d (azmiw) d(@ﬁmi””):

dp; dX; \ 0Fy ) dt \ 9y,
~oc _d oL _d oL n
- 8(,01- dXJ aFiJ dt 8‘/1
oL . d 0L .
+8§0¢8ij (<'0j - Vv]) - di)([ (8F118V3 (‘pj - ‘/J)>
a[,mix d i acmiz d aLmzz
(Fyp (o, V), = X, dX, (»’3 o1y — m}ﬂz) ~ (—Fua%> =
oL d oL d oL
= X, dx, <551J - 8F“Fi1) 7 (-Fiza%) +

PL . d a( o

Left multiplying Fy (¢, V) by —F7T yields

oL 0L

_ d oL o’L .
—Fir (Fe (@, V), = —Fi <5<pi + 90,0V, (@) - VJ)> T ax, <F¢J (8FN + dF; ;0V; (#;

OF;; ( 0L 0L . d oL . 0L
“ox, (aFw *omev; P~ V3)> @ (‘F”av;) ~Fugy

Differentiating (5.5) with respect to X1 we find

d oL . 0 oL .
ix, (£+8Vj(%‘—vj)> = X <£+8Vj(%‘_vy’)> +
oL oL .
+0 (5 + g =) +
0F,; ( 0L oL .
Tox, <8FU a7, i~ VJ))

SOV (0L oL
ox; \ov;,  ov,av; \Fi
oL (. oV
v (F”_aX,>

Combining the previous two we finally obtain the relation

oV, 0L
aX; OV;0V;

—Fir (‘7:d> (SD’V))Z = (‘7:11’ (SD’V))I + (<p] - V;)

)
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that when evaluated on V = ¢ reduces to the single-field relation (3.42) as expected.

5.4 Full mixed action and full mixed Hamilton’s principle

We combine in this section the mixed (three-field) Hamilton’s principle for dynamics with the mixed
(three-field) Beuveke-Hu-Washizu variational principle for statics to establish a full (five-field) space-
time mixed variational formulation for dynamics that account for independent variations in all
fields (motion, velocity, strain, momentum, stress). This principle may be used to formulate high
performance enhanced finite element formulations with moving meshes. Since we do not attempt
to enforce initial (and final) conditions weakly, variations in ¢ are required to vanish at the initial
and final times. A more general mixed variational principle than the one presented here may be
formulated to account for initial conditions as well. Combining (5.1) and (5.2) the following mixed

action functional is obtained
ty
S[§03V7F7P7P] = / / (‘C (X7t7907V7F) + Di (% - V;) - by (@i,J _FiJ))dth
to JB

ty ty _
to OBo to OB,

For a Lagrangian density L (X,t,¢, V,F) of the form (3.3) the previous yields
ts 1 2 .
Sle,V,F,p,P] = / / (2R V" =W (X, 0,F) +pi (i = Vi) = Pis (i — Fu)) dVdi
to B

ty ty _
+/ / P,yNy(¢; — ;) dSdt + / / T;p,dSdt
to JOBa2 to dB1

Using the space-time domain [tg,t¢] x B with coordinates (¢, X1, X2, X3) and space-time gradient

9 9 . . .
(E? WJ) the mixed action may be rewritten as

o
% v,
S [‘PvVa F7p7P] = / L + (pia RJ) . Z;t Y; — dtdV
[t(),tf]XB m FLJ

0 _
+ / (p; — @) (i, Piy) dtdsS + / Typ;dtdS
[to,t]xOB2 Ny [to,tf]x0B1
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Stationarity of the mixed action with respect to (admissible) variations in each field demands
' oL
(68, 0¢;) = / / (5%’ — P00, 5 +pi5¢i) dvdt
to JB \Op; '

tf ty _
+ / / PyyN6p,dSdt + / / Ti6,dSdt
0B, to OB»

(08,0p;) = / /(5p1 @, — Vi) dVdt

ty
oVi | —pi + ) dVdt
I ( o7

ty
<6S, 6PL‘J> = / / (—5PiJ ((piJ - FL‘J)) dVdt +

ty
/ / 5P2JNJ Q_OZ) dSdt
0B

ts oL
<6S, 6Fi]> = / / <P¢J + ) OF; ;dV dt
to JB OF;;

which are the weak restatement of the field equations of motion along with their corresponding

(05,6Vi)

boundary conditions

OL  dP;  dp;

=0 in B and Vt € 1
oo, X, a n 5 an S

PyN; -1, = 0 on 0By and Vt € I
p,—=Vi =0 in Band Vt € 1
—pi-i-g‘i =0 in Band Vt € 1
v, g—Fi = 0 in Band Vt €[
oL .
PiJ—FaF“ = 0 in Band Vt el
p,—@; = 0 on 0By and Vt €

5.5 Viscosity and mixed Lagrange-d’Alembert principle

We proceed to establish in this section a mized version of the Lagrange-d’Alembert principle. We
recall that the mirzed Hamilton’s principle was formulated by assuming the existence of an inde-
pendent velocity field V different from ¢ and enforcing the identity V = ¢ in a weak sense by the
introduction of a Lagrange multiplier. We also recall from Chapter 3 (see §3.4, equation 3.63) that

in the presence of viscous behavior, the equations of configurational and mechanical force balance
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can be established from the combined horizontal-vertical Lagrange-d’Alembert principle
tr
(05, 0%) + (05,6¢) + / / DIV (P?) (6¢p — Févp) dVdt+
to JB
ty ’
+/ / (P’N) (6¢p — Forp) dSdt =0
By

where

P’ — P® (FF)

are the viscous forces and N is the outward unit normal on the traction boundary dB;. To develop

a mixed version of this principle we begin assuming that the viscosity depends on DV instead of F
P’ =P"(F,DV)
We next rewrite this principle in the form
(08, 6vp) + (65, 6¢) + / / RY (¢ — Fovp) dVdi+
ty
+/ TV (§¢p — Fép) dSdt =0
to 0B,

where RY and TV are the viscous force per unit of undeformed volume and the undeformed surface

viscous traction, related to the viscous stress by

R’ = DIV (PY)
T = —P'N

We finally impose the above identities weakly using for this a new test function J¢p

ty ty
/ / (DIV (P¥) — RY) ¢ — / 5T (P'N + T*)dSdt = 0
B to 0B

Integrating by parts, the previous yields

ty ty
/ / ( Ly ) / . 5T (TV) dSdt =
to 1
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Combining the previous two principles we obtain the combined principle

0 = (5S,00) + (35,60) + (55, 6v) +
RY (6 — Fé)dVd TY (¢ — Fo)) dSd
+// (66 — Foup) t+/t/831 (66 — Foup) dSidt

tf tf
/ / ( v —|—R”5cp> dvdt — / . 5T (TV) dSdt (5.19)
to 1

or alternatively

0 = (5S,00) + (5S,06) + (3S,00) +
/ ' / ( P“a&’a—i—R” (6¢p — Foop — 5(,0)) dvdt +

+ /t /a N TV (5¢ — Fovp — S¢p) dSdt (5.20)

In this principle there are four unknown fields, namely (¢, ¥, v, RV) and four independent variations
(6¢p, 01, dv, §¢). The established four-field variational principle will be used in the next chapter for

materials with viscous behavior.

5.6 Mixed Hamilton and mixed Lagrange-d’Alembert prin-
ciples for general dissipative materials

In the previous section we formulated a mixed version of Hamilton’s principle and Lagrange-
d’Alembert principles for isothermal materials with no internal variables. These mixed principles
follow by assuming a priori V # ¢ and RY # DIV (P") and imposing the constraint ¢ — V =0
with a Lagrange multiplier p (that is lately identified with the momentum p = g—‘L, = RV) and the
constraint R” — DIV (P¥) = 0 with an independent weight function d¢. We have also studied in the
previous chapter a Lagrangian formulation for general dissipative media in which the equations of
balance of mechanical forces and balance of entropy are treated on an equal footing by introducing
a new variable «, the thermal displacement, such that & = T, the temperature. In perfect analogy
to what we have done to formulate a mixed variational principle for the equation of balance of me-
chanical forces, we proceed now to formulate a mized variational principle from which not only the
mechanical force balance equation but the entropy balance equation can be derived. More precisely
we shall assume a priori 7" # & and impose the constraint & — T = 0 with a Lagrange multiplier 7.
This Lagrange multiplier will coincide with the thermal momentum 7 = g—g = RN previously iden-
tified with the entropy density per unit of volume. Furthermore, we shall introduce new symbols s
and Z" for the total thermal and internal dissipative sources s’ = % +I'—DIV (HTW) and Z" =Y"

and impose the previous identities in a weak form by making use of independent weighting functions
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da and 0Q.

Motivated by the previous discussion we consider the following mized thermomechanical action

functional:

ty
S[QoaaaQ,VaTvpvn] :/ / (’C (X,t,(ﬂ,()é,DQO,DCE,Q,V,T) + Di (507, - Vvl) -|—’I7(Oé _T)) dvdt
to B

Taking variations of the mixed action functional with respect to all of its seven arguments we obtain

o oc,
(6S,0¢) = / / ( D5<p + p5<p> dvdt
to
ty
(65,60) = / / (&Céa + %D(sa 4 n&a) vt

(09,0Q) = /tf/ (5@) AV dt

(65,6T) =

(55,6V) = /ttf/ (p) SVdVdt
/:/B(aT— )(STdth

ty
(6S, 6p) / / @ —V)opdVdt
to

ty
(65, 0m) / / a—T)ondVdt

Invoking now the stationarity of the mixed thermomechanical action with respect to all of its argu-

ments imply the Euler-Lagrange equations

oL oL d
%_Dv(w)_dt -0
oL oL d
7% o (55) -~ = 0
oL
0 - 0
oL
Py = °
oL
7@ — 0
-V =0
a—-T = 0

On account of the equilibrium relations and momenta definitions (see (4.13), (4.14), and (4.15)) the
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previous equations take the form

Be—I—DIV(Pe)—%p =0
Se H° d
T—DIV<T>—dtn =0

Y = 0
p—RV =0
n—RN = 0
p-V =0
a-T = 0

The stationarity of the mixed-thermomechanical action functional implies therefore the equilibrium
part of the mechanical force balance, entropy balance, and internal stress balance equations (4.12)
along with the compatibility conditions ¢ = V and & = T and identifies also the Lagrange multipliers
p and 7 with the mechanical and thermal momenta (mass times velocity and mass times entropy).

Replacing now the Lagrange multipliers p and 7, respectively, with RV and RN, the following

(six-field) mixed thermomechanical action is obtained
ty
SleaQV.IN = [ [ (£(X.t.p.0.Dp. Da.QV.T) + RV (o~ Vi) + BN (&~ T) Vi
to B

Their corresponding Euler-Lagrange equations are

M—Dlv(aﬁ) 4 rv) = 0

dp oF ) dt
oL oL d
aa_DIV(aﬁ)_dt(RN) =0
Y¢ = 0
oL
Sy RV =0
oL
57 BN =0
-V =0
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or equivalently (using the definitions (4.13), (4.14), (4.15)

d

B¢+ DIV (P°) — ﬁ(RV)
Se H¢ d
T_DIV<T)_dt(RN)

'Y'e

oL
— — RN
oT i
-V
a—T

Defining finally the following total dissipative sources

R’ = @JFDIV(@) =
O oF
= BY+ DIV (PY)
¥ = a—\?—kf—kDIV (
O
S’U . HU
Z’U — Y’U

o )
9B

(5.21)

(5.22)

(5.23)

it is straightforward to see that the total balance equations (including both equilibrium and non-

equilibrium parts) can be derived from the following mixed version of Lagrange-d’Alembert principle:

ty
(55,5cp>+/ /R”&pdth
to JB
ty
<6S,5a>+/ /s”éadth
to B

t
(55,6Q) + /t ' /B Z°5QdV dt

along with the weak restatement of the relations (5.21), (5.22), and (5.23) given by

ty
/ / (BY + DIV (PY) — R") dpdVdt
to B

ty Sv . HY v
/to /B (T +TI — DIV (T) ] )éadth
ty
/ / (Y — Z?) 6QdVdt
to B

which after integration by parts and assuming d¢ and da vanish on

Il
=

|
o

I
=

the boundary 0B might be
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[

A

ﬂ\cgm
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( B v R?)

p—P?

0dp
0X

HY 06

) avdt

T 0X

£ )dat i G ) ava

[ o

— ZY)5QdVdt
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Chapter 6

Finite element discretization

In this chapter we present the formulation of a class of Eulerian-Lagrangian finite element methods
for which the finite element mesh is allowed to evolve within the reference configuration continuously
in time and simultaneously with the body motion and where both motions follow jointly from the
same variational framework, namely, Hamilton’s principle.

The body motion ¢ will be approximated with finite elements supported on a moving mesh.
Unlike traditional arbitrary-Lagrangian-Eulerian methods in which the mesh motion is arbitrary
and prescribed by the user, we will regard the mesh motion as an unknown of the problem to
be handled jointly with the main unknown, the body motion. A semidiscrete approach will be
used with independent spatial interpolations for deformations ¢, and velocities V,, leading to the
construction of a semidiscrete-mixed action functional with nodal referential trajectories Xy, (¢),
nodal spatial trajectories xp (t), and nodal coefficients for the spatial interpolation of velocities
V. (t) as unknown variables. Stationarity of the semidiscrete-mixed action with respect to each of
its arguments leads to a system of differential-algebraic equations in the time variable for the three
unknowns. This system of equations corresponds to the equations of nodal mechanical force balance,
nodal configurational force balance, and compatibility between assumed and consistent velocities Vi,
and ¢y,.

As was explained in the third chapter, in the continuous setting the equations of configurational
and mechanical force balance are equivalent in the sense that if one equation is satisfied, the other
will be automatically satisfied. In the discrete setting however this equivalence does not hold. The
discretization breaks the material (horizontal) translation symmetry of the action functional inducing
artificial nodal configurational forces. These forces remain unbalanced in general, even when the
continuum Lagrangian density is homogeneous (material invariant) and no configurational forces are
expected. The motion of the mesh is thus obtained by enforcing the configurational force equilibrium

simultaneously with the mechanical force equilibrium.
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The use of independent interpolations for velocities and deformations is proposed as an approach
to overcome instability issues that arise when convecting the deformation with the moving mesh.
The compatibility between assumed and consistent velocity fields V}, and ¢, is enforced within a
unified variational framework using the mixed (deformation-velocity) Hamilton’s principle discussed
in the previous chapter.

The resulting semidiscrete system of equations for the three unknowns (mesh motion, material
motion, and the material velocity) is integrated with a mixed variational integrator of the kind
presented in the second chapter. This integrator follows from a direct discretization in time the

semidiscrete-mixed Lagrangian.

6.1 Spatial discretization

6.1.1 Semidiscrete Interpolation

Let 7, (t) be a time-dependent family of triangulations of the reference configuration B. We shall
analyze the particular family 7}, (¢) consisting of a node set that is allowed to move continuously in
time within the reference configuration while the mesh topology (connectivity and number of nodes
and elements) remains constant.

We consider independent finite element spatial interpolations for the motion ¢ and velocities V

of the form

N E n

e (X,t) = ZNa (X, 1) %, (t) = Z N (X, 1) xq (1) (6.1)
N B

ViXon) = SN Va () = 303N (X, 6V () (62)

where N is the total number of nodes, E the total number of elements, n the total number of
nodes per element, N, (X,¢) are the nodal shape functions at time ¢, N¢ are the elemental shape
functions (at time t), x, (t) (respectively, x¢ (t)) are the coordinates of node a (respectively, local
node a of element e) in the deformed configuration at time ¢, and V, (t) (respectively, V¢ (¢)) are
the coeflicients for the global (local) interpolation of the material velocity V, at time ¢. Notice that
the spatial shape functions N, depend continuously on time ¢ because the nodes are assumed to
move within the reference configuration and therefore, the shape functions result supported on a
moving domain. Deformations ¢, and velocities V), are required to be globally continuous and are
interpolated with the same shape functions N,.

In particular we shall consider an isoparametric (moving) finite element interpolation for which
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the elemental shape functions N¢ (X, t) are of the form
N¢ =N, oap®? (6.3)

where

Y€1) =D Na (&)X (t) (6.4)

is the (time-dependent) isoparametric mapping that maps the standard element domain ) into the
element Q¢ = )¢ (Qt) in the reference configuration B as illustrated in figure 6.1, £ € Q) are the
isoparametric coordinates and N, (&) are the standard shape functions defined over the standard
domain Q.

Let ¢ (X,t) and V¢ (X, t) be the restrictions of the global finite element approximation ¢, and

V}, to the element Q°, i.e.,

v (X,1)

DN (X, )% () (6.5)

Ve (X,t)

D NG (X )V (1) (6.6)
and let ¢ (&,t) and v (€,t) be the composition mappings

¢e — Cpeo'l,be
v = Veoqy°

It follows from this definition and (6.3) that
¢° (&) = Y Na(&)xc (1)
ve(gt) = > Na(§) V()

Figure (6.1) sketches the standard domain, evolving elements in the reference and deformed config-
urations and the corresponding mappings (compare with figure 3.1).

The class of time-dependent triangulations of the reference configuration B here considered
may be interpreted as a particular triangularization of the space-time reference domain B X [to, tf]
as depicted in figure 6.2. Furthermore, if nodal trajectories in the reference configuration X, (¢)
are discretized in time with isoparametric (one-dimensional) finite elements in the time variable,
a particular class of space-time finite elements is obtained for which the space-time isoparametric

shape functions are given by the product of uncoupled spatial and time factors and homogeneous
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Reference Deformed
Configuration je Configuration

3 N 2 fe
X
4
Standard
Isoparametric
Domain

Figure 6.1: An isoparametric moving element and related mappings. Notice that nodes are assumed
to move continuously in time within the reference configuration, simultaneously with the motion of
the body.

time steps (see Chapter 2, §2.2.10 and §2.2.11). Nevertheless we will follow a semidiscrete approach
and the discretization of the time variable will be postponed to a second stage.

The proposed discretization may be also understood as a time-dependent interpolation of the
graphs (X, ¢ (X, t)) and (X, V (X, t)) of the deformation and velocity mappings in which both hor-
izontal and vertical coordinates of discrete nodes on the graphs (X, (¢),x, (t)) and (X, (), Vq (¢))

are allowed to move continuously in time (see figure 6.3). Within this framework the space-space

mappings
e (&) - X5 (1)
=) Na(&)
¢° (&) za: xq (1)
and
P° (&, 1) . X5 (1)
=) Ni(&)
ve (&) zaz Vo ()

become parametrizations of the approximated graphs (X, ¢, (X,t)) and (X, V}, (X,?)) in the ele-

ment e.
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t

I
B

Figure 6.2: Representation of the class of finite elements considered from a space-time point of view.

6.1.2 Consistent Material velocity field for a moving isoparametric ele-

ment

We next compute the consistent (discretized) material velocity field ¢, . Differentiating the dis-

cretized deformation mapping (6.5) with respect to time ¢ yields

n

P (X ) = D (Ve (X %6 (1) + N (X, 1) % (1)) (6.7)
In order to evaluate this expression we need to determine N¢ (X, t) = 8(13\;: (X,t). To this end we

first recall that in an isoparametric interpolation the shape functions must satisfy relation (6.3) that

can be rewritten in the form

N; (’Q/"e (ﬁvt) 7t) =N, (5)

Differentiating the previous with respect to time at constant X yields

ONe . ONE .\ e
<m0¢)+@wﬁ¢)%‘°

The time derivative of the isoparametric mapping (6.3) is

e =D Na(©)XS (1)



166

T Vv

A (Xa (t) sy Za (t)) A (Xa (t) 77 Va (t))
\ on (Xt + At)
‘Ph(X’t) 'Vh(X,t-|—At)
a
a
Vi (X, 1)
»> X > X

Figure 6.3: Representation of the class of finite elements considered from a space-space point of
view.

Combining the previous two we find

aN; e _ 8N; e . e

which implies after composition with ¥°~! and use of relation (6.3) the sought identity

aN; 8N5 - e yve
ot = _aX[ ZNAXAI (68)
A

Inserting now the previous relation into (6.7) gives the consistent material velocity field as

.e S e, e S ONg e S e yve
P5(X,t) = E Ny, — 8X(; Ty E Ny Xy =
a a A

= Y Ngig—Fgy NiXg, =
a A
= e (a6 - FaX) (6.9)

where

€ - 8N§ €
Fi (X,t) =} o5t (1) (6.10)

is the local deformation gradient field. Equation (6.9) is the discrete counterpart of relation (3.19).

Notice that the consistent velocity ¢, exhibits jumps across element boundaries as a result of
its dependence on the discretized deformation gradient F,, which is discontinuous across elements.
As will be illustrated in the example of §6.1.6 these jumps may grow unbounded and the field

@;, becomes a very poor approximation of the material velocity V. The approach we follow to
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overcome this difficulty is to approximate the velocities with an assumed, independent, continuous
interpolation Vj, and enforce the compatibility requirement ¢ = V in a weak sense by making use
of the mixed-variational formulation introduced in Chapter 5, see also Chapter 2, §2.2.12, §2.2.14,
and §2.2.15.

Relation (6.9) can be alternatively written as

pOX1) = 3NE(XH) (“F i) ’,(f((;) -
_ zn:Nj(X,t)Ne* XZ((? (6.11)
; xe (¢
where
Ne* = (—F°, i) (6.12)

is a covector in the normal direction to the graph of the discretized deformation mapping ¢; in

element e as depicted in figure 6.4. Relation (6.11) is the discrete counterpart of (3.53).

i

A

en (X, 1)
Ne

(Xa (1), xa (1))

> X

B

Figure 6.4: Local normal N° to the graph of the discretized deformation mapping ¢;,.

6.1.3 Semidiscrete-mixed Lagrangian and semidiscrete-mixed action

We now proceed to obtain a semidiscrete-mized Lagrangian by evaluating the mixed Lagrangian
density £™* on the discretized fields and integrating the latter over space. We will denote the
Lagrangian (integral over space of the Lagrangian density £) with the symbol L, namely L = [ 5L
Inserting the deformation and velocity interpolations (6.1), (6.2) with deformation gradient (6.1)

and consistent material velocity (6.9) in the mixed action functional (5.6) the following semidiscrete-
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mized action functional is obtained:

/ Y s (X () 30 (1) K () 30 (1) Vi (1) dt =

to

Sp (Xn () % (t), Vi ()

/t v i Le-mis (xe (t),x° (), X° (t),%° (1), V© (t)) dt (6.13)
o e
where xp, (t) = {x,(t),a=1,--- N}, Xp(t) = {Xo(t),a=1,---,N} and V; (t) = {V.(¢),
a=1,--- N} are, respectively, the global arrays of nodal coordinates in the reference and de-
formed configurations and velocity nodal coefficients, x¢(t) = {x¢(¢),a=1,---,n}, X°(t) =
{Xe(t),a=1,--- ,n}and V¢ (t) = {VE(t), a=1,---,n} the corresponding local arrays of referen-
tial and spatial coordinates and velocity coefficients of nodes in the element e, and Li"*® (respectively,

Le~™i%) are the mixed global (respectively, local) semidiscrete Lagrangians, given, respectively, by

L7 (X0, X, Vi) = > g (%7 (0% (0. X7 (1), 5 (1), V* (1))

e

[e—miz _ / Emv?" (X[, t, (Pf? V;e, F;I, (pf) dVv (614)
Qe (t)
with

Xr = N;Xg5;

vi (Xot) = Noag

¢ (X,t) = N¢ (f'cf;i - F fz)

‘/ie (th) = Ns (lei

ON¢
F5(X,t) = g,
7,I( Y ) aX] x‘“

where L™ (X, t, ¢, V,F, ) the mized Lagrangian density (see equation (5.5)) defined in terms of
the standard Lagrangian density £ as

oL

LM (X, t, 0, V,F, @)=L (X,t,0,V,F) +
8‘/1 (X,t,,V,F)

(b = Vi)

Here and in what follows we will use Einstein’s summation convention on both nodal and coordinate
indices. Referring the integrals over each element Q. (t) to the standard domain ) the local mixed

Lagrangian density can be written as

miz—e _ /mm [£miz (¢e7t7 ¢, v°, (F€ 0 9°) 7(&56 — (F€ 0 9°) 1/}6) det (Dy°) de

Qe
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with
YT (&) = No(8) XS (1)
(bf (57 t) = Na (5) x?n (t)
Vf (Ea t) = Na (é) Vaez (t)
and

oYt = 80?,101//"3:

$a (Vos 0°) =
N -~ —1
ON, . ONy .
<3§a %i) <%Xb1>

For a Lagrangian density of the form (3.3) the local semidiscrete-mixed Lagrangian becomes

mir—e R e e e e[ e e
g = [ (VR WO B RVE (7 - V) )V =
e(t

-,

R 9 < ON¢ >
—|[|INEV " =W | NEXE 8, Noxl,, Lzl )+
(t) <2 | | ! 0X;

e

+ > RNEVENG (5 - FiXir = Vii) | av (6.15)
a,b

that can be compactly expressed as

. 1 .
[mir—e §V6Tmeve _ I + VcT (meke + MeEXE — meve) (616)
where
ey = | RNouNiav (6.17)
aibl = /Q RNg (=F;) Nydv (6.18)

are the mass matrices based on the tensors i and —F and I¢ is the total potential energy over the

element e
ONY
1° = W N XS, t,Nixe,, x| dV (6.19)
Q. 0Xy

Let my, M} be the assembled global mass matrices and I, the assembled global total potential
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energy:

m, = Z m° (6.20)
M, = > M° (6.21)
I, = Y I° (6.22)
e
Notice that the global mass matrix my will be a function of the nodal global referential coordinates
X} (t), and that the global mass matrix M}, and global potential energy I, result dependent on both

nodal referential and spatial coordinates Xy, (t) and xy, (¢). Assembling the elemental contributions

into global arrays, the semidiscrete mixed global Lagrangian becomes

) . 1
Ly (Xhaxhaxha).(havh> = ivgmhvh — Iy
+V,1; (mh)'(h + MhXh — thh> (6.23)
with
my = 1my (Xh)
M, = My (xp,Xp)
I = Iy (xp,Xp)

6.1.4 Variations and semidiscrete Euler-Lagrange equations

In analogy with the continuous case, we next compute the variations of the semidiscrete-mixed action
functional (6.13) with respect to all of its arguments x, (¢), X}, (¢) and Vy, () and the corresponding

Euler-Lagrange equations. Taking variations in (6.13) we obtain
8Lmzm e e aLmix—e o
<5Sh, 5Xh> = / Z ( Tgi + (%’Zi(sxai> dt
aLmL.’E e 8L/"L'l$ e
<6Sh,6Xh> = / e a + 75)(
to g 8X I 8Xa[
Lm'Lx 8 .
/ 2 (Fegovar)

where L™®~¢ is the elemental mixed semidiscrete Lagrangian defined in (6.14), and (6.16). Dif-

<6Sh,7 6Vh>

ferentiating now the latter with respect to each of its arguments, or, alternatively, substituting the
semidiscrete finite element interpolations (6.5) and (6.6) with consistent velocity interpolation (6.7)

and deformation gradient interpolation (6.10) into the continuous mixed variations (5.8), (5.9), and
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(5.10) we obtain the variations in the form:

e Variations with respect to dx;,

N , . d
(65, 622,) / Z / F (5% (Ne Bf - S ) + RNGVai (837) 7 (N§ 5%])) dvdt (6.24)

e Variations with respect to dXp

€

ty
; ; N,
(05,0X5r) = / > / <5X§, (N;B;ﬂhm“ - gxa cmie= > +
to €

FRNEVE (—F,) % (Ngang)> vt (6.25)

a " at

ty
e e ptnh—e 8Ne
- /Z/ <5Xa1 (NaBI hoe 09X, CIJ)
to ©

d
+RNG Vi (=F) pn (Ny6Xpy) +

a " at

10Xk (R NG+ RIYE ) ViaNesy (3 (Niaiy) - NiVig) ) avt

(6.26)

ty
inh—static—e ONS tati
_ /Z/e (5XSI (NSB;TLL static eiaXJCs’azc (’) +
i ©

+RNSVE (— 8) (NGOXy,) +

a’ar

FOXE, (;;(RK N¢ + R{,X;) (”V; I® 1 venes; (4 (Ngag,) - NfV,fj))) dvdt

(6.27)

e Variations with respect to dVy,
€ € 6 d e €
(6S,8V5) E eRN oV5é 7 (mebj) NyVy; ) dVdt (6.28)

where

B — a‘cmiazfe B % - _awe

- 9, B 0 B dp;

. acmiac—e oLe oWwe
GFU aFl—J aFiJ
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are the mechanical body force Piolla-Kirchhoff stress tensors evaluated on the discretized fields,

anhfmlmfe — —
! XTI | oxp
1 OR 2 OW| L OR oes .
= 28X vel™ - 37X1 8X v VailNa0ij Ny (% FJXbJ Vbj)
) ) 8£mzx e
C}r‘z]zzfe - _ (Emzx—e(le _ 6F1J Fz'c}) —

e 1 e e nre e € ¢ pP¢
= ((W — §R||V ||2 — RV N;0:; Ny (% FJXbJ VE:J‘)) or7 — Fij “)

are the material body force and Eshelby stress tensor constructed with £™# (evaluated on the

discretized fields),

ginh—e  _ oLe 1 0R v H2
i T 8X; exp D) 0X; X,
e oLe e e e pe
Ci; = <£ drg — zIaF ) = (W - 2R|V‘||2> or; — Fi P

are the corresponding quantities computed with £, that is to say excluding the Lagrange multiplier

term (and also evaluated on the discretized fields) and

e
B@'nh—static—e ow
00Xy exp
C;‘t]aticfe _ We(s[J _F

are the static parts of the inhomogeneity force and Eshelby stress tensors. In the previous expressions
Lmiz=e re and W€ are, respectively, the mixed Lagrangian density (5.5), the standard Lagrangian
density (3.3), and the total potential energy all evaluated on the discretized fields.

Making use of (6.8) and rearranging terms the semidiscrete variations take the compact form

<6Sh7 5x2i>

ty

/ (Z 6$2i ( cfi + 622) + V mazbjéxbj> dt (629)
to e
ty

/ (Z 0Xgr (Far+Eqp) + Vg me(SXbJ> (6.30)

e

(0Sh, 0X (1)

(651, 8V,5) (Mgt + Moy Xy — méa, V;,])) dt (6.31)

|
h
3
™
(=%
o3

where
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.o
ai awai
ON¢
= — — B¢N¢€ e @\ d 39
/( ‘ “+”6XJ>V (6.32)
oIe
Fa = — fr—
! 8Xa[
. . 8Ne
— _ _Blnh—statzc—eNe Cstatzc e dV 633
/Qe ( ! 8XJ ( )
and
e 0 1 e, exre e ese ewe eyre
€k, = 8mck{2vmv +V (mx + M*X —mV)}:
ON¢
- / <RN§Vai (6:1) ( Y > N;XbJ) dv (6.34)
e o 0 lvemeve + Ve (me)-(e + MeXe o meve) _
cK T 3X¢K 2 =

eyre e 8Ne e
/ <RNaVaz( zK)< aX )NbXbJ> av

+ /Q (B Ne + R ) (DL + vieNgoy Ny (af; — FisXiy — Vi) ) dv (6.35)

The forces f¢, and F¢; are the static nodal mechanical force and nodal configurational force at node
a. They are computed using body forces and stress tensors based only on the energy density W.
The forces e; and E; are dynamic sources that group together all velocity-dependent terms. They
arise as a consequence of the dependence of the mass matrices m® and M€ on the configuration
(Xe,x°).

We turn next to the derivation of the semidiscrete Euler-Lagrange equations. We will write these
equations in two different forms, the first better suited for numerical implementation, and the second
useful to derive simplified expressions for the tangential and normal Euler-Lagrange equations that

will be computed in the next section.
6.1.4.1 Semidiscrete Euler-Lagrange equations, first form
Stationarity of the semidiscrete action Sy with respect to admissible variations of all of its arguments

Xy, (t),.xp, (t) and 'V, (¢) implies

(654,0X,) = 0 V6X,
((5Sh,5xh> = 0 V(th
(654,,0Vy) = 0 VoV,
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Integrating by parts with respect to the time variable in (6.29) and (6.30) we obtain the Euler-

Lagrange equations in the form

d € (& € e

E (dt (Vaimaibj) - (fbj + ebj)) =0
d e e [ e

§ (dt (VaiMgiy) — (Fpy + EbJ)) =0

e -e e e e e _
E (maibﬂbg’ + My Xpy — maiijbj) =0

(&

Assembling the element contributions into global arrays, the semidiscrete Euler-Lagrange equations

evaluate to the global equations

d
7 (m} Vy,) e, + 1 (6.36)
d
7 (MEV,) = E,+F, (6.37)
my %, + M, X, m,Vy, (6.38)

where ey, Eyp, {5, and Fj, are the global force vectors

en = Y e (6.39)
E, = ZE (6.40)
ze:fe (6.41)
F, = ZF (6.42)

=
I

Equations (6.36), (6.37), and (6.38) are the first sought form of the semidiscrete Euler-Lagrange
equations. They are the (semi)discrete counterpart of the continuous Euler-Lagrange equations
(5.11), (5.12), (5.13). Notice that the static nodal mechanical and configurational forces f, and Fj,

will be functions of (X}, %) while the dynamic sources will be functions of (Xh, Xp, Xh,)'(h, Vh).

6.1.4.2 Semidiscrete Euler-Lagrange equations, second form

Notice that the Euler-Lagrange equations (6.36), (6.37) involve time derivatives of the mass matrices
(M},, my) multiplied by the velocity vector V5. We would like now to rewrite the previous equations
in a form that does not involve time differentiation of the mass matrices (M}, my) but only time
differentiation of the velocity vector V. To this end we observe that integrating by parts in time

and space appropriately in the variations (6.24) and (6.27) and making use of the identities (5.14)
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and (5.15), the semidiscrete variations might be rewritten as

(0Sh, 6x;)

ty

e € € aNg € d € € e
/ > / ) (&cm. (NQBZ- e u) - (RNaVai)(éij)Nbémbj> dvdt
to ©

ty
e e e pinh—static—e aN: static—e
<5Sh75XaI> = /Z/e <5Xal (NaBI hstat - 8X C tati >+
to €

d eyre e e e
_a (RNaVaz) (_FZJ) NbléXb‘J_'—

—(SX:JRNCEa(VaiNa) (d

ax, o (N§xy;) — Nf%ﬁ)) dvdt

e e 6 d e (&
(68,,0V5) = /Z/eRN oVES (d (Ng=g;) — me,j) dvdt
Making use next of (6.8) and rearranging terms, the semidiscrete variations take the compact form

ty . .
(5Sh, 8a5;) = /t (Z o5y (fos = Viiiming — ugja,x(ﬂ)> dt (6.43)
0 e
tr .
/ (Z/ 0X5; (FI:J = VaiMgay + (25 — Vi) MZibJ)) dt (6.44)
to e €
tf .
/ (Z 6Vgi (mzz‘bjﬂbz?j + Mg Xy — meVb;)> dt (6.45)
to e

(0Sh,0X5 ;)

(0Sh,0Vy5)

where

MZibJ :/ RN; (_ i(fJ) NbedV

is a new mass matrix based on the tensor V; ; (material velocity gradient). The Euler-Lagrange

equations therefore become

Z (Vueimgibj + szalXaI - fbj) =0
> (VeMgins = Gty = Vi) tis = Fiy) = 0
Z (mfzibj (i”gj - Vbeg) + MfibJXfJ) =0

e

or assembling the element contributions into global arrays

mf\'/'h + HhXh = f (646)
M;Z:Vh — /1,;1; ()'(h - Vh) = Fh (647)
my, ()'{h — Vh) + thh = 0 (648)
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where
By =Y K

is the global assembled velocity-gradient—based mass matrix. Equations (6.46), (6.47), (6.48) are the
second sought form of the semidiscrete Euler-Lagrange equations and correspond to the (semi)discrete
counterpart of the continuous Euler-Lagrange equations written in the form (5.16), (5.17), (5.18).

Notice that comparing (6.36), (6.37) with (6.46), (6.47) we have the identities

d
% (m:,th) — €ep
d
pn (M/ V) —Ey

m}‘th + Hhxh

M}V, — iy (kn = Vi)

or equivalently

Iif,th—eh = H«hxh

M}V, —E, = —pulb (%, —Vy)

that can be derived directly from the definitions of my, My, ey, Ep and .u;,. Therefore we might
avoid the computation (and time discretization) of the time derivative of the mass matrices by

evaluating instead the new mass-like matrix p; based on the gradient of the velocity field.

6.1.5 Horizontal-Vertical variations—Tangential-Normal variations

Analogous to what was done in the continuous setting, we now reinterpret the motion in terms
of the evolution of the graph of the deformation mapping (X, ) within the space-space bundle
B x S. We thus regard nodal coordinates in the reference and deformed configurations X; and xj
as horizontal and vertical components of the generalized dynamical variable qn = (X, xp) that we
now understand as a single variable in the configurational bundle RV x RN where d is the spatial
dimension and N the total number of nodes. Variations of the semidiscrete action with respect to Xy,
and xy, can be thus interpreted as horizontal and vertical variations and their corresponding Euler-
Lagrange equations as horizontal and vertical components of a single equation for the evolution of
the dynamical variable qy,.

When comparing this semidiscrete picture against the continuous picture discussed in §3.3.3
we find however a very important difference: The semidiscrete Euler-Lagrange equations (SDEL)
corresponding to horizontal variations are not satisfied automatically whenever the semidiscrete
Euler-Lagrange equations corresponding to the vertical variations are. Or equivalently, semidiscrete
tangential variations do not vanish identically and result in non-trivial tangential SDEL. Horizontal

and vertical SDEL or alternatively, tangential and normal SDEL become therefore a non-trivial set
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of differential equations to solve for the joint unknown qy,.

Figures (6.5) illustrate graphically this fact. Recall that in the continuous setting (see §3.3.7)
every horizontal variation can be understood as a vertical variation (figure 3.4). Therefore a sta-
tionary point of the action with respect to vertical variations becomes automatically stationary with
respect to all horizontal variations. In the discrete setting however horizontal and vertical varia-
tions are not equivalent in general and therefore the corresponding Euler-Lagrange equations are

independent as a result.

(6Xh7 O)

(07 5$h)

> X

Figure 6.5: Horizontal and vertical variations of the (semi)discretized deformation mapping. Unlike
the continuous case, in the discrete case these are not equivalent.

Alternatively we may illustrate the discrepancy by looking at tangential and normal variations
as depicted in figure 6.5. We recall that in the continuous setting any perturbation in the tan-
gential direction leaves the configuration unperturbed and, therefore, since the action is a function
of the configuration, the tangential Euler-Lagrange equations are trivially satisfied (figure 3.5). In
the discrete setting however each discrete configuration does not remain invariant with respect to
perturbations in the tangential direction. Therefore the semidiscrete Euler-Lagrange equations cor-
responding to the tangential direction are not trivially satisfied in general. More precisely, if S is

the continuous action and S, is the semidiscrete action, then we have

(68,6T) =0  VoT

identically for any tangential variation 0T, however for its semidiscrete counterpart we obtain

(8Sn, 6T4) # 0

for arbitrary general variations 6T} in the tangential direction.
In what follows we derive the Euler-Lagrange equations projected into the tangential and normal

directions following the procedure outlined for the continuous setting in §3.3.7. To this end we define
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> X

Figure 6.6: Normal and tangential variations of the (semi)discretized deformation mapping. Unlike
the continuous case, in the discrete case the mapping does not remain unperturbed under the action
of tangential variations.

the following global normal vector N}, and covector Nj

MT

N, = "l my T (6.49)
T h
my,

N; = m; ' (M, my) (6.50)

and global tangent vector T} and covector Tj:

1 my

T, = m, (6.51)
_Mh

¢ = (m},—MJ)m, 7 (6.52)

Notice that the matrices

(My,,my),,

Z(Me,me)ab:Z/ RNENE (=F¢,i)dV
€ Qe

€

(mp,-M}),, = > (m -MT) =" /Q RNENG (LFT)av

€

M;; Me¢ __weT
. = > . => / RNENG ' av
mh ab ¢ m ab ¢ o !
m? m°T I
" = > => / RNENg v
_Mz: . - _MET , - Qe Fe

are the assembled weighted averages over element ¢ of the local normal and tangent vectors and
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covectors

N = (~F%i)
Te* _ (LFeT)
7FeT
Ne =
i
1
T¢ =
Fe

Notice also that Nj, and T}, are arrays of dimension 2d/N x dN while the dimension of N} and T} is

dN x 2dN and that we have the orthogonality properties

x _ -1 -1 M _ 1 _ _
Nh'Th = my, (Mh,mh)mh =m, (Mh Mh)—O
—M,,
T M T T
Ty N, = (m},-M])m, o mnt = (M = M) m, T =0
my,

We also define the following differential operators:

Fx (Xp, xpn, Vi) d MF v E, Fy
= J— h — —
Fx (Xn,Xn, Vi) dt m] ey £,
MT O\ . Tm M, \ . F,
_ b, Ky my, X, —
m; By, )

that are just the left hand side of the Euler-Lagrange equations ((6.36), (6.37)) and ((6.46), (6.37))
written in a column vector. Using the above definitions, the Euler-Lagrange equations can be

rewritten as

Fx (Xn,Xn, Vi) _ i{thth}— E, \ [ Fn _
Fx Xn,xp, Vi) dt ey fy,
. Tm; 'M . F 0
= Nym,V, + Hin Wi S50 Xp — "=
1223 fy, 0
X
N[ T = v
X,

Finally, following the same methodology we used in the continuum setting (§3.3.7) we define global
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tangential and normal variations dn; and 0T} using the identities
(6X7,6x}) = énf Ny, + 6T} Tj,

The combined horizontal and vertical variations become therefore

i Fx (Xn,xn, Vi
(0Sh,0Xp) + (0S,0xp) = / (5X£,§x{) x (Xn,%n, Vi) g —
fo ‘FX (Xh7 Xhy Vh)
i Fx (Xp,xn, V
= / (6nf N + 6T/ T;) x (X, Xn, Vi) gt -
to -/’:.x (X}“X}“Vh)

= <5Sh, §T;,> + <5S, 5n;,,>

with corresponding tangential and normal semidiscrete Euler-Lagrange equations given by

. Fx (Xn,xp, Vi)
Fa (X, x, Vi) = Nj )

Fx (Xp,Xn, Vi
Fx (Xp,Xn, Vi)

Fr (Xp,xp, Vi) = T =0
fx (X}Laxhavh)

Using the definitions of the differential operators Fx (X, Xp, Vi) and Fx (X, xp, V) the previous

evaluates to

* d * Eh * Fh
Fan (Xn,xp, Vi) = th {Nm, Vi } — N -Nj, =
¢ e fr,
. Tm;'M . F
T A S B e B S N i
K, £
* d * Eh * Fh
Fr (Xp,xp,Vy) = [ {Nym,Vy} =T}, =T =
t ey fh
T —1
" . x M, 1M Mh o « Fh
= (T} -Ny)m,V,+Ti | """ X, — T =
K fn

(ugmgth — Mfm;Tuh) Xh — (Fh — Mgmngh) =0

We thus arrive at the following important conclusion: as was anticipated, the tangential evolution
equations for the dynamical system under consideration are not trivially satisfied. But there is more:

This equation is only first-order in time; that is to say, it involves only first-order derivatives of the
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unknown variables (Xp,,x;). This is a consequence of the fact that the second-order derivatives
enter the equations multiplied by the normal Nj,. Therefore, when projecting the equations into the
tangential direction, the factor that multiplies the second-order derivatives vanishes. Furthermore,
if the matrix (u{m;ll\/[h) is symmetric, as happens for example if we use mass lumping, then also
the first-order derivative term vanishes from the tangential equation and this equation becomes an
algebraic constraint. The dynamical system becomes therefore constrained to evolve within a manifold

in the configuration bundle. This manifold will be given by the global equations

T;; = Fh (Xh, Xh) — M{ (Xh, Xh) m;T (Xh) fh (Xh, Xh) =0

or more compactly as

T; - Fp, =0

where

is a global extended vector that combines the static nodal configurational and mechanical forces.

6.1.6 Semidiscrete Euler-Lagrange equations in Space-Space

The Euler-Lagrange equations (6.36) and (6.37) (or their equivalents (6.46) and (6.47)) are, re-
spectively, the vertical and horizontal projections of a balance equation for the evolution of the
generalized dynamical variable q;, = (X, xy). Being horizontal and vertical components of a higher
dimensional combined space (the configuration bundle R4 x R4V) it becomes useful (as was done
in the continuous setting, see §3.3.8) to restate them as a joint system of equations in this combined

space, rather than two separate equations in RV

. We will write the joint system for the two alter-
native expressions, the expression involving time derivatives of the mass matrices (equations (6.36),
(6.37), and (6.38)), and the expression involving only the time derivative of the velocity vector V,

and the mass matrix based on velocity gradients p,;, ((6.46), (6.47), (6.48))
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6.1.6.1 Equations in space-space, first form.

Combining horizontal and vertical variations (6.29) and (6.30) we find

b Eor Egr
65u0X57) + 6500 = [ | X @i bt ¥
to e ;1' eZi
e e e 5XZ$J
+Vai (MaibJ’ maibj) . dt
O,
e ts e e e le] e e
(6Sh,0Vy;) = / Z‘Svm (Mg 7, miin;) — M Vi, | dt
to e i’gj
that evaluates to the global form
tr E F
(68, 6Xp) + (85, 0xp,) = / (5x£, 5x£) A I
to en £
6X
+V}Y; (1\/I}L7 mh) dt
oxp,
ty Xh
(6Sh,0Vy) = / Vi | (Mp,my) | —m,Vy
to Xh
The corresponding Euler-Lagrange equations become
d M, E¢ Fe 0
Z @ %j bjal _ I + I _
dt Mipiqi €ai Fg; 0
e e X;J e e
Z (M méibj) . — Mg Vij =0
c g,
that assembled into global array take the global form
d M7 E, F;,
— "V = +
dt 1’1’1{ (7% fh
X
(Mp,, my) = mpVy

(6.53)

(6.54)



183

Using the definition for the global normal Nj;, and conormal N} (equations (6.49) and (6.50)) the

previous might be compactly written as
d
7 (NempVi} o = By +Fp
Nyan = Vp
where q, is the combined horizontal/vertical nodal coordinate array

X
aqn =
Xp

E;, and F, are the extended dynamic and static forces given by

E
E, = " (6.55)
€p
F
F, = " (6.56)
£

Combining both, these equations can be rewritten finally in the equivalent form

d X
— < M, h =E;, +TF,,
dt %,
where
Mh = thth =
M

= m; " (M, my) =
mj;

M?m;'M, M}

_ . (6.57)
Mh m;

is the global semidiscrete extended mass matrix, the semidiscrete global analog to the continuous

extended mass matrix (3.56).
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6.1.6.2 Equations in space-space, second form.

Alternatively, combining horizontal and vertical variations written in the form (6.43) and (6.44) we

find
ts F¢ : Me,
(08,0X5,) + (8S,6z5;) = / > (6X5,,0z5)) Mol —ve aibd
to ¢ o M

_ —(Zg5; — Vai) Paib.g dt

e
,UbjanaI

ty Xe
(653,8VE) = / STOVE | (M min;) | ) = mia Vi | dt
to e xij

which in global form evaluates to

F,, M7

ty
(6Sp,0X3) + (85, 0xp) = / (5XZ , axf) - \'
to fh, In}j;
—ul (%, —V
_ K, (xh. h) dt
X
ty Xh
(5Sh, 5Vh> = / (5Vh (M}“ mh) . — l’nth

to Xp

The corresponding local and global Euler-Lagrange equations become respectively

Z Eyy _ye Mg I (@5 — Vai) Haivs _ 0
e Joj Mai; Mhjar Xar 0
e (& leJ € €
Z (Maiva mdibj) . — M Vij =0
e xbj
and
MT . 7,u/T ).{h — Vh Fh
Py, o [ HRGa-vi)
mg IJJhXh fh
X,
(Mp, my,) -m,V, = 0
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Combining both, we finally obtain

ML\ . Tm ‘M, \ . F,
N R e P } (6.58)
m{ K £
Xh
(Mp,, my,) =0 (6.59)
Xp— Vi

which might be compactly written as

(pfmy, "My, — M m, " )
0

Nh (mhvh + ll'hxh) + X}L = IFh

X,

Xp

with Nj, and N} the normal and conormal defined in (6.49) and (6.50) and F), the column vector

that group configurational and mechanical nodal forces defined in (6.56).

6.1.7 Comparison with the single-field Hamilton’s principle formulation

As was anticipated in the introduction to this section, the use of an independent velocity interpolation
(6.6) instead of the consistent velocity interpolation (6.9) is proposed as an approach to overcome
severe instability issues inherent to the use of the latter. To understand the difference between both
formulations, we derive in this section the Euler-Lagrange equations resulting from the use of the
standard Lagrangian formulation (the formulation that make use of consistent velocities Vi, = ¢y,)
and compare these equations with those that follow from the mized Lagrangian formulation (using
independent velocities V5, # ¢,).

Inserting the deformation interpolation (6.10) with deformation gradient given by (6.10) and
consistent interpolation for the velocities given by (6.9) in the standard (single-field) action (3.4,

3.5) the following semidiscrete action S; and global and elemental Lagrangians Lj and L°¢ are

obtained:
ty .
Sh (thxh) = / Lh (Xhaxh; Xh;)‘(h) dt
to
Ly (Xh,,Xh,Xh,fih) = ) I° (XE,XE,XGJCQ)
Le (xxxx) - L(X,t, . 1, Fr)dV

Qe
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For a Lagrangian density of the form (3.3) the local semidiscrete standard Lagrangian becomes

Le

R .e e e
L (G -w g m ) av =

R ( . 2 ON¢
(e (x — F4X¢ )) —w (Ngxg t, x>) dt
/Qﬁ(t) (2 [*al ! 0Xr

that can be compactly expressed as

Lo =

[N

where M€ is a configuration-dependent mass matrix given by

e
_Fk‘l

(—Ffy,0k5)dV =
Oki

My = /Q NN
e(t

F{Fe, —Ff
= / RNeNg | MR I gy
2 (?) —Ey 0

Assembling the elemental contributions into global arrays we obtain the global semidiscrete La-

grangian in the form

(Xh, xh) M, — I

DN | =

Lh (Xha Xhakh)Xh> =

where
My, =) M°

is the assembled global extended mass matrix. We recall that in the mixed Lagrangian formulation

the mass matrix was given by

Mh = thhNZ:
-1
= > RN{NNdV | (> RNEINgdV > RNEN{Ne*dV
o J) = o) Pl WO

while in the standard Lagrangian formulation the mass matrix becomes
My, = Z / (RN, N,N°N®*) dV
—~ Ja.)

Therefore, while in the mixed formulation the extended mass matrix is computed by multiplying the

global average of local normals, in the standard Lagrangian formulation the mass matrix is built by
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averaging the product of local normals. As will be illustrated in the example of the next section, this
is indeed an essential difference. In the following table we summarize the main differences between

both formulations.
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Standard Formulation

Mixed Formulation

s mix 2
Lagrangian Lo Rv? (X. . F) Lmie = RY" — W (X, ¢,F) +
density ? +RV (p—V)
Indep.
Variables
@n => Nuxq @ = same
¢ . =N
Q.oh - Z Na, ().(a, - Fth) Vh ; aVa
Interpolation Fh _ Xa: 8Nax ‘lbh — same
a 0X F; = same
X, =Y N, X
h %: azra X}, = same
Elemental . )
. Xe [mit—e — %VeTmeve _ Ie+
semidiscr. L¢ =3 (XG,XG> M —I° .
%€ +VeT (me)'(e + Mexe — meve)
Lagrangian
Elemental —FeT MZ{ —FeT
Mg, = f RNZNy (=Fe,i) = f RNZNY
mass matrix Qe i mZ;"; Qe i
Global . ) LT
1 . . Xh LZ”I = §Vh thh, — Ih
semidisc. Ly =3 (Xm Xh> Mp, —1In - . .
L ) Xp +Vh (mhxh + Mp X, — thh)
agrangian
Mg MeT
m,T a § m°”
Global '
M} T
extended M, = > Me Ny, = m;
e mz
mass matrix .
NTL = l’l’lh (Mh, Il’lh)
Mh = thhNZ
d
Euler-Lagr. — (N V,)=E F
uler-Lagr di(thh) _E, +F, pm (Npmp, Vy,) n+Fn
equations t Nign = Vy
Xh
Generalized ap =
. Xh qp = same
coordinate .
. X, dn = same
array qn =
Xn
F; 0
Fp, = = d);“ 1, F;, = same
fh oxy, E; o
Forces E, 9 E; = ' OXn Kie
E, = = a)gh Ky, en %
€p %1,

mir _ mix
Lh, - Kh —1In
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6.1.8 Example: Oscillation of a one-dimensional bar, non-linear material

As an illustrative example we consider a one-dimensional body B = [0, L] fixed on both sides and
free of body forces. The body is set to oscillate by applying an initial deformation and releasing it
from rest. For simplicity we assume that the body is made of a homogeneous hyperelastic material
with total energy density W (F') and that the mass density R is constant.

We will establish the Euler-Lagrange equations for this particular example using the two formu-
lations just outlined: namely, the mixed (two-field) Lagrangian formulation with velocities interpo-
lated independently, and the standard (single-field) Lagrangian formulation with consistent velocity
interpolation.

In both cases we discretize the body into two finite elements with nodal coordinates of the mid

node in both the reference and deformed configuration taken as unknowns:

T = xl(t)

X1 = Xi(t)
Interpolating deformations and velocities with linear elements we obtain

(X.5) () if0< X < X3(t)
@h ) = _ X_X .
#ﬁt)zl(t) + L_Xll((tt))L ifX(t) <X <L

X .
@ Valt ifo< X <Xy(t
Vi (X,t) — %0 1(?) 1 (t)
xeValt) i Xa(t) <X <L
where V7 () is the coefficient for the interpolation of the velocity also taken as unknown in the mixed

Lagrangian formulation. Differentiating with respect to time the deformation mapping ¢, (X,t) at

constant X, we find

o, (X, 1) =4{ O [ml(t) - ()zcll((?)) Xl(t)} if0< X < X (t)
h ) - i .
A2 [0 - () o] txm<x<L

Differentiating next with respect to space X at constant time ¢ we obtain

21(t) if0<X < Xq(t
Fy(X.)={ %0 1®)

L—x .
Llel((tt)) if X;(t) <X<L
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6.1.8.1 Mixed Lagrangian formulation

The semidiscrete-mixed action functional and mixed Lagrangian becomes in this case

Sn(X (01 0.V ) = [ L (a0 (0.0 0,80 (0,50 (). Vi (0) e

to

L
R 1 .
Lmie (xl,Xl,xl,Xth) - / (QRV,f — W (Ey) + RV (¢, — Vh)> dX =
0
that making use of the given interpolation and integrating evaluates to

mix RL z L—J,'l RL . .
Lyt = <=V - (Xlw (1> F(L- X)W <LX1)> 5 (xl ~ X, —1/1)

Taking variations we obtain

sy - (e e(z) <(t22))on)o

et = [ (5o (o () - (5=2))on)
(68, 6V1) = /ttf <RgL5v1 1V1>>dt

where

rr) = Wp)

OF
ow
F) = F)—-F— (F
C(F) = W(F)-For (F)
are, respectively, the first Piolla-Kirchhoff and static Eshelby stress tensors. The corresponding

horizontal-vertical Euler-Lagrange equations are

RL - L—CBl T

?Vl = F (Ll‘l) P (X1>

RL . - L—l‘l I

TVl o C <L—x1> C(X1>
Vi = i1-X)

that can written in matrix form as

w1y () c ()
) )t
no-
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or combining both as

X, [C]
M = (6.60)
I [P]
where
-1
M = @ (71, 1) —
1 3
_ RL 1 -1
3\ -1 1

is the extended mass matrix and

L—xq 1
© o(g2)-c()
L—x T
P P(fa)-p(2)
are the jumps of the Eshelby static and Piolla-kirchhoff stress tensor across the boundary between
the two elements. Notice that in this example the extended mass matrix is independent of the

configuration (X7, z1). In general this is not the case.

The normal and tangential vectors and covectors evaluate in this case simply to

-1
N =

1
N = (-1,1)

1
T =

1
T = (1,1)

that correspond to a weighted average of the normals and tangents to the graph of ¢, on each

element. Tangential and normal Euler-Lagrange equations become therefore

RL [ -1

Q

(71’1) ? 1 Vlf [P] = 0
wo(Z v (D)) = o
3\ 1 P
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that evaluates to

The tangential equation results therefore an algebraic equation and represents a constraint manifold

for the evolution of the dynamical variable (X1, z1). The constraint equation is thus

L—z 1 L—x; T1\
c(r=)-c(®)rr(=2)-#(2)-

Figure (6.7(a)) shows this constraint manifold for the particular case of an incompressible Neo-

hookean material, characterized by a strain energy density of the form

W(F)g<F2+;3)

along with the solution of the above system at different times.

6.1.8.2 Standard Lagrangian formulation

If on the other hand the standard (single-field) Lagrangian formulation is adopted and the velocity

is interpolated using ¢;, instead of the independent interpolation V;, we obtain

Sn (X1 (1), 21 (1))

/tf Ly (l'l (t), X1 (t),21 (), X1 (t)) dt

to
) L1
Lh (.’Eth,ftl,Xl) = / <2R¢i_W(Fh)> dX =
0
that making use of the given interpolation and integrating evaluates to

2
. 1 . 1 L—
Lo (o, X1, 1) = SR <¢1—2X1> X+ R (:'cl—L_f(ll

_ (X1W <§(11) +(LX1)W<LL—§(11)>

Expanding the square velocity terms, the previous can be written as

Xl)Z(L—Xl)

122 L*ZE 2 .
(. , X—11+((L7);3) ) X,

X1 T .
—L L T1

ol =

Ly (a:l,Xh:tl,Xl) _
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The variations are

2 2
ty R . x1 + (L*CEl) —L Xl
<5Sh,5X1> + (5Sh,5z1> = / 7( §X, 0iy ) X (I—=X1)
to 3 —L L (tl
z? (L—x1)?
R —xz T x. 2 .
2 (71 - Lle)
1 L—xq
~(6x1 b1 ) c(w)-c(=) ),
! o 1 L—xy
P(%)-r(E2)
and the corresponding Euler-Lagrange equations evaluates to
' _i (L—Il)z
% w( +§ X ! (L=X0 ) X2 = ] (6.61)
W )1 e ) ) e

where

3 (L—21)?
E X1 + L*rxl —L
3 L L

21— X \2
RL 1+(XL1+L7LX1) (=5)" -1
3 -1 1

is the extended mass matrix. Notice that when x; = X7 the mass matrix becomes identical to the
mass matrix obtained with the mixed Lagrangian formulation. The tangential and normal Euler-

Lagrange equations become in this case

R €1 L—x x% (L*LEl) o
+6<2<X1_L—X1> XIQ—(L_X1)2>X1+[C}—[P]
_d | R [ aF (L — 1)
" dt{3<X (L—X) L>X1}+

R 1 L—$1> CL‘% (L—$1)2 =)
— (2= - -+ ——= | Xi—-[C]-[P
6( (B-=2)-2 e ) K-
Figure (6.7(b)) shows the solution of the above system for an incompressible Neohookean mate-

rial. Figure (6.8) shows the phase space for the horizontal motion (X7, P;) where

P = L =V = —
1 0x, 3 /1 3

dLy™  RL__ RL ( o 3,61)
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(b)

Figure 6.7: Oscillation of a 1D bar discretized with two 1D linear elements. Displacements as a
function of position for different times u (X,¢). (a) Mixed Lagrangian formulation. (b) Standard
Lagrangian formulation

in the case of the mixed Lagrangian formulation and

0Ly, RL /. . R/ 1 1 .
Plaxl3(X1"’“)+3(X1+L_X1)<“X1>X1

in the case of the standard Lagrangian formulation.

6.1.8.3 Comparison between both formulations

Comparing the extended mass matrices of both formulations we find that for the mixed Lagrangian

formulation we obtained
RL 1 -1
3\ -1 1

Mmiz _

whereas for the standard Lagrangian formulation we found

L L z1—X1\2
Mstd:@ 1+(X71+L7X1>(1L 1) -1
3

-1 1

Subtracting both expressions yields

RL [ (&+i)u 0

Mstd _ Mmiw +
3 0 0

(6.62)
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Figure 6.8: Oscillation of 1D bar discretized with two 1D linear elements. Phase space diagram
(X1, Py) for the mixed Lagrangian formulation (blue) and for the standard Lagrangian formulation

(red).

where v and U are the adimensionalized vertical and horizontal displacements of node 1 given by

" z1 — X1
N L
Xy
U = 2L
L

or more compactly
,  RL [ AU)u* 0
Mbtd = MmiT 4 ( )
3 0 0

where the function A (U) is given by

(6.63)

(6.64)

Using this notation, the differential equations of motion for the pair (X1, 21) (equations (6.60) and

(6.61)) might be rewritten as

Mmlflj p—
I

N
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for the mixed Lagrangian formulation, and

. 22 (L—1)?
d Mstd X + R _Xilf + (L—X11)2 X12 _ [C]
& i O\ 2(%-2) 7]

for the standard Lagrangian formulation. On account of identity (6.62) and definitions (6.63) and
(6.64) the previous yields

P RIZ d [ AWU)w2U LR [ A28\ ([0
i 3 dt 0 6 24 (U) u [P]
where
dA
A/ = —_— =
U) T
- 1. _1
U2 (1 o U)2

Assume now that U = % + ¢ with ¢ < 1, which implies, given definition (6.64), that ¢ is the offset

from a uniform mesh, i.e., if £ = 0 then both elements have length é Notice that

1

AU) = A(2+E>=4(1—|—452+1654+...)
1

A/(U) = AI<2+5>:4(85+6453+)

Inserting the previous expansions into the differential equations we find to leading order in ¢

- X L ARL? w2 + 2uié — ug” [C]
i 3 us? [P

The differential equation in the tangent direction (which can be obtained by multiplying the hori-

zontal/vertical equations by the tangent vector T*= (1, 1)) evaluates therefore to

4RL?

3 (w2 + 2uie) + [C]+ [P] =0

which might be contrasted with the tangent differential equation for the mixed Lagrangian formua-
tion

€]+ [P] =0

We notice that the term 2uwu, which operates as a non-linear viscosity coefficient, becomes negative

when the bar is returning to its undeformed configuration, i.e., when u — 0. This is the reason why
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the solution becomes unstable for the standard Lagrangian formulation.

6.1.9 Example: Oscillation of a 1D bar, linear material

As a second illustrative example of the difference between both formulations, we consider again a
one-dimensional body B = [0, L] fixed on both sides and free of body forces. The bar is now set to
oscillate from an underfomed configuration by applying an initial sinusoidal velocity. We assume a

quadratic strain energy function of the form
3 2
W(F) = gu(F-1)

which results in linear stress-strain relation

and Eshelby stress

C(F) = (W (F) — ;Rgb?) — PF =

3 1
= —§H(F— D(F+1) - §R¢2

The differential equations of motion are in this case

. oP
e = ox =

0 Op
0X 0X
which corresponds to the wave equation. The analytical solution with zero boundary conditions,

undeformed initial configuration and sinusoidal initial velocities is

X t
v (X,t) = Ay sin (2k7rL) sin <2kﬂ'cL>

with
o R
3p
Figure (6.9) shows the finite element solution for the displacement field u (X, ¢) = ¢ (X,t) — X using

a different number of elements for both the mixed and standard Lagrangian formulations. It can be

noticed that the latter is catastrophically unstable and leads to meaningless solutions.
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Figure 6.9: Oscillation of a 1D bar discretized with two 1D linear elements. Displacements as a
function of position for different times w (X, ¢) for a linear elastic material. Comparison between
the solution for the mixed (left column) and standard (right column) Lagrangian formulations for
meshes with a different number of elements

6.1.10 Viscosity and Semidiscrete Mixed Lagrange-d’Alembert principle

The incorporation of viscous effects into the analysis in the context of Lagrange-d’Alembert principle
was discussed in sections §3.2, §3.4, and §5.5. We recall that the combined (vertical-horizontal)

Lagrange-d’Alembert principle is given by (see §3.4, equations (3.63) or (3.64))

o

ty .
0 = (85, 0%) + (55, 66) — /t /B p* (FF) o5 (06 —Fop)avdt v (5¢,59) (6.65)

and that the mized version of this principle (section (5.5), equation (5.19) and (5.20)) is given by

0 = (85,069) +
2] ddp
PUFDV— RY (¢ — Fovp — 6 dVdt
//( ) 202 R (56 - Fop 90))

+(5S,5¢) + (55, 6v) +

V (64, 0¢) (6.66)
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We noticed also that in the latter there are four unknown fields, namely (¢,,v,R") and four
independent variations (d¢, 01, v, ). Furthermore, we notice that in the first principle the viscous

stress PV is weighted with the gradient of

5 — Foup

while in the second, with the gradient of

o

As in the case of conservative Lagrangian systems (no viscosity) where the use of independent
interpolations for velocities V and deformations ¢ was required to avoid unstable solutions, we
will see in this section that for non-conservative systems (viscous behavior) we might simplify the
formulation and reduce notably the computational effort by making use of independent interpolations
not only for ¢ and V but also for the viscous body forces R” and for the variations d¢.

To understand this fact (the need for an independent interpolation for RY and independent
weighting function d¢) consider first that we use the combined horizontal-vertical Lagrange-d’Alembert
principle (6.66) with independent interpolations of velocities V and deformations ¢ but without in-
dependent interpolations for R?, i.e., with R? = DIV (P?) strongly enforced. In this case the mixed
Lagrange-d’Alembert principle takes the form

0 = (3S,00) + (6S,6¢) — / t'f /B P’ (F,DV)%(M—FM avdt Y (5v,5¢) (6.67)
to

0 = (55,0V) V6V (6.68)

where the first two terms correspond to the combination of horizontal and vertical variations of the
mixed action (equations (5.6) and (5.7)) and the viscous stress P? is evaluated on DV (material
velocity gradient) instead of F. We would like now to insert the finite element (mixed) interpolation

((6.1), (6.2)) into the previous. To this end we notice that this principle contains a term of the

form g—; and that if standard finite element shape functions are used, F will be discontinuous across

OF,

element boundaries. This implies the presence of delta function contributions to the derivative%g

of the discretized deformation gradient Fj will result in delta function contributions. Inserting

the (mixed) interpolation (6.1), (6.2) in the mixed Lagrange-d’Alembert principle (6.67, 6.68) we
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therefore find

0 = <5Sh,6Xh)+(6Sh,6xh> /
t

0

tf/B Zaix (N, (6%q — Fr,0X,)) dVdt =
ty 6
= (05h, 0Xp) + (65h, 0xp) — / (Z EP'HaX(N;(axg—Fe(sxg))dV) dt
/ Z / PUINIoXSds | dt (6.69)
Ly
0 = <6Sh,6Vh> (6.70)

where P?~¢ is the discretized viscous stress within the element

v—e __ 8N5 e 8N5 e
PiJ _P (aX Lais BX >

N, and N¢ are, respectively, the global and elemental shape functions, N is the shape function
evaluated on each element face I'y, and szf are viscous material forces, distributed on every
element face I'¢, conjugate to the (delta-function) singularities occurring as derivatives of the jump
discontinuities on F}, across element boundaries.
Consider as an illustrative example of the jump terms, a one-dimensional domain [0, L] discretized
into two linear finite elements [0, X;] and [X1, L]. In this case both Py and F}, will be piecewise
OF,

constant and exhibit jump discontinuities at the element boundary X7, the derivative 53¢ resulting

thus in a delta function singularity. Integrating we find
aF P 4+ (P)”
/ Ph h (N0 X,) = % (Ft—F7)éXy :Ff7f6X1
where (P”)+, F* and (PY)", F~ are, respectively, the viscous stress and deformation gradient in

the first and second element and FU~7 is the sought viscous material forces distributed over the

interelement boundary. Therefore the total configurational (horizontal) viscous force is in this case
L0
FPoX, = P — (—F,N,60X,) =
1 1 A hox ( hi¥a a)
= (Fres Ff‘f) 5X) =

L N, th
v+ v—
(_ (Pvaf _ Pv+F+) _ % (F+ —F)) 5X,

Using relations (6.29), (6.30), and (6.31), and following the same methodology that led to the
semidiscrete Euler-Lagrange equations (6.36), (6.37), and (6.38), the (semi)discretized version of
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this mixed Lagrange-d’Alembert principle with no independent interpolation for R¥ (the principle

defined by equations (6.67) and (6.68)) might be rewritten as

d

dt
d

dt
mhkh'i‘MhXh = mVy

(m{Vh) = e+, +1

M{V,) = E,+F,+F}

where

=2
I

> e (6.71)
FY S FUe4 > F (6.72)
f

€

are the global assembled viscous mechanical (vertical) and configurational (horizontal) nodal forces

with elemental forces given by

ON¢
v—e — P}/—E a .
at /(i iJ aXJ dV (6 73)
v—e v—e 8 € e
For = /ch‘J 78XJ (_FiINa)dV:
ON¢ OF¢
= Py —F5—% — N,—L | aV 6.74
/Se iJ ( zIaXJ aXJ) ( )

Fot / Py I N,dS (6.75)
T

We thus arrive at a system of equations similar to those obtained for conservative systems but with

additional forces f; and F} in both the vertical and horizontal equations. Furthermore there are

two contributions to the total configurational nodal viscous force F} = F,~° + Fz_f , a bulk or

elemental term F}™“ and a boundary or face term F;’;f , the latter arising as viscous configurational

force conjugate to the delta function singularity terms.

The computation of the boundary term Fz_f is cumbersome for two-dimensional and three-
dimensional problems and for general grids because to pursue this computation we are required,
as definitions (6.72) and (6.75) suggest, to walk and integrate over every element face in the finite
element mesh, and this is an expensive and non-standard computation in traditional finite element
implementations. As an alternative to avoid this difficult calculation we propose to make use of
the mixed Lagrange-d’Alembert principle written in the form of (5.19) and (5.20) with independent
interpolations for the total bulk viscous force RV and independent variations d¢ to enforce the
identity

RY = DIV (P")
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Assume therefore the same (independent) interpolations for deformations ¢ and velocities V used
before (equations (6.1) and (6.2)) and, in addition, the following independent interpolation for

viscous forces RV and variations d¢p:
R} (X,t) = ZN (X, )R (¢ ZZNeXtRe t)
Sy (X,1) = ZN (X,t) 8¢, = ZZN@ (X, 1) 8¢5, (t)

where N, (respectively N¢) are nodal (respectively elemental) shape functions chosen to be coin-
cident with the shape functions used for to interpolate deformations ¢ and velocities V. Inserting

the four independent interpolations into the mixed Lagrange-d’Alembert principle (6.66) we find

0 = 6Sh,6Xh <6Sh,<5xh>
ty
/ / f— ax (Nabp,) + (RUN,) (N, (6%, — F16X, — d¢,)) dVdt

to

= <5Sh,5Xh> <5Sh,5xh) +
ty 8

+/t Z/ —P eax (NS (598)) + (Ry™NE) (NS (6x5 — Fe6XE — 6¢5)) dV | dt

o e

0 = (6Sh,0Vp)

When comparing the previous with (6.69) and (6.70) we can see that we now find a derivative of a

continuous variation

oy, = Z Nyop,

while before we were required to differentiate a discontinuous variation
Spp =Y Na (6% — F0X,)
a

In this way we avoid the computation of the (delta function-related) viscous forces szf that arose
as a consequence of the discontinuity of Fj. Defining as before the nodal (spatial) viscous force f¥

as

N,
o= [ PG

Z/ P- eafodv
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and the extended mass matrix (M, my) as

(Mh’mh)ab = /RNaNb(—Fh,i)dVZ
B
= Y | RN{Ng(-F¢i)dV
e Qe

we can rewrite the discretized mixed Lagrange d’Alembert principle as

0 = <6Sh,6Xh>+<6Sh76xh>

0X,

ty
[ e T (M) )y, o, | | dt
to

0X,

0 = (6Sh,6Vy)

Using relations (6.29), (6.30), and (6.31), and taking into account that the variations d¢p are inde-

pendent, the following Euler-Lagrange equations are obtained:

d M E, F M7
0 — _ h Vh 7 h - h + h z
dt mg e f;, m{
0 = f,l; + mth
X,
0 = (Mh, mh) . - l’nth
Xh

Eliminating now the vector R the previous can finally be written as

d MT E F Fv
% h Vh _ h + h i h
m;{ ep fh f}l})
X
(Mp, myp,) ) = mVy
Xh
with
FY M7
"ol = "o my Ty (6.76)
fy mj;

Recalling the definition for the global normal Ny, and conormal N} (equations (6.49) and (6.50))

Nh = mh

NZ = m}:1 (Mlu mh)



204

the (combined horizontal-vertical) Euler-Lagrange equations might be rewritten as

En, +F, + T,

d
T {N,m,Vy}

Rln = Vh
where q, is the combined (horizontal /vertical) generalized coordinate

Xh
qn =
Xp
Ej, Fj, and F} are, respectively, the combined configurational/mechanical (horizontal/vertical)

dynamic, static, and viscous forces

E
E, = "
en
F
Fp = "
fy
Fy = " = NfY

h

Using continuous variations we therefore obtain the following global configurational (horizontal)
viscous force:

v =Mim; "} (6.77)

as opposed to (6.72), (6.74), and (6.75). The semidiscrete Euler-Lagrange equations become modified
by a factor of the form
Nty

in complete analogy to the continuous case (equation (3.62)) where the continuous horizontal-vertical
Euler-lagrange equations result modified by the factor

NDIV (P?)

6.1.11 Viscous regularization

We have observed in §6.1.5 that, unlike the continuous case, horizontal and vertical variations are
not equivalent in the (semi)discrete setting and therefore horizontal and vertical semidiscrete Euler-
Lagrange equations are independent as a result. In some situations, however, the system of equations

becomes only weakly independent and consequently ill-posed, and a special approach is required to
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obtain an accurate and stable solution. An example of such a situation is a body undergoing uniform
(constant) deformations for every time. In this case the graph of the deformation mapping at every
given time is flat both in the continuous and discrete settings and, therefore, horizontal and vertical
variations do become equivalent. A possible approach to overcome this difficulty is to influence the
horizontal equations of motion with viscous regularizing forces. The semidiscrete system of equations

thus becomes

d

a (meh) = ep+1f)+ f;{

d v—re

ﬁ(Mth) = E,+F,+F}+F, "¢
my, %, + M X, = m,V),

where F} ™" is the viscous regularization force. We shall assume that this force is composed of two
parts, one that penalizes the total horizontal nodal velocity X, and another that accounts for the

relative horizontal velocity between nodes, namely,

v—reg _ mv—reg—tot v—reg—rel
F. "9 — FY +FY (6.78)
where
v—reg—tot __ Y
F, = mXn
v—reg—rel __ v—reg—rel—e
F, = E F
e
with

v—reg—rel—e 0 7.€ - aN;
R e o /QEZuQ(aXJ (09 1)) v

; ON¢
= 2 Loyt “dv
[ 2o (w3l o v 532

The relative viscous force is modelled in analogy to the Newtonian viscous force ((3.12), (3.13)) and
will be a function of the material gradient of W = 1) B © w;l, the horizontal velocity field.
The modified system of equations may be established finally from the following semidiscrete-

mixed Lagrange-d’Alembert principle:

ty F;)L + FZ*TEQ
(6Sh,6Xh> + ((55’h,6xh> — / (§Xh, (5Xh) dt = 0 V((SX}” (5Xh)(6.79)

to f;;

(55,,6Vy) = 0 WV, (6.80)
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with combined horizontal-vertical semidiscrete Euler-Lagrange equations

d MT Eh Fh Fv Fv—reg
4 N [ VR G + + L h (6.81)
dt mf ey fh f;; 0
X}L
(Mp,my) [ = m,Vj (6.82)
Xp

or alternatively

d v—re
i{thth} = Eh-i-Fh-f—Fz-i-]Fh g
X
N[ T = v
Xn

with Ny, N}, Ep, Fj, and I} defined as before and with

v—reg
Fh

0

v—reg __
F, =

6.2 Time discretization

In the remainder of this section we turn to the problem of discretizing in time the semidiscrete
system of differential equations (6.53) and (6.54) and their extension to include viscous effects ((6.81),
(6.82)). These equations might be discretized using a direct time-stepping algorithm based on finite
difference approximations of the rates in the unknown variables (X}, x5, V},). However widely used
direct methods such as those of the Newmark family were not designed for configuration-dependent
(and therefore time-dependent) inertia and although they might be generalized to this case, the
extension is not unique and relies on ad-hoc considerations. To avoid this difficulty the semidiscrete
equations may be alternatively discretized in time by recourse to a mized variational integrator (see
Chapter 2, §2.1.4 and §2.1.8) for a review of standard and mixed variational integrators). The use
of a semidiscrete finite element interpolation resulted in the formulation of a semidiscrete (mixed)
action functional Sy, and a semidiscrete (mixed) Lagrangian L7*. As it was outlined in chapter 2 for
the particular case of one-dimensional elasticity (see §2.2.14 and §2.2.15), we will now discretize this
semidiscrete action and Lagrangian in time to obtain a discrete action sum Sy and discrete-mized
Lagrangian L7"*. We next obtain the discrete Euler-Lagrange equations by invoking the stationarity
of the discrete action sum with respect to the discrete nodal trajectories. These equations become
a discrete version of the semidiscrete Euler-Lagrange equation and define the sought time-stepping

algorithm.
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6.2.1 Discrete mixed Lagrangian and Discrete mixed Hamilton’s princi-
ple

We recall from §6.1.3 that the semidiscrete-mixed action and semidiscrete-mixed Lagrangian are

given by
ty . .
Sh (X, x, Vi) = / L (Xh (t),%n (), X (1), %8 (1), Vi (t)) dt

to

and

. . . 1
Ly® (Xh,Xm Xh, Xp, Vh) §nghvh — I, (Xh,xn) +

T X .
+Vh (Mh, mh) . thh
X

1
= ivgthh — Ih (X}“ Xh) +

X,

+V£mh N;.(L . -V
Xp
with semidiscrete Euler-Lagrange equations

d T S o

7 (MjV,) = E, (Xhaxh7Xh7Xh7Vh> +Fp, (X, xp)
d T S N

p (mj;Vy) = e (Xh,Xh,Xh,Xh,Vh) + £ (X, x1)

myx, + MpX;, = m,Vy

where the mass matrices My, (X, x;,) and my, (X3) are given by (6.17), (6.18), (6.20) and (6.21);
I}, is the total potential energy defined in (6.19) and (6.22); the forces (Fy,,f},) and (Ep,ep,) are the

static and dynamic internal forces given in compact notation by

o]
Fn —_| X |
£ I
h Bwh
E, o 1 X,
= 8)6(’7' ngthh + Vg (Mh, mh) . —m;Vy
€p Dan Xh

(see equations (6.32), (6.33), (6.34), (6.35), (6.41), (6.42), (6.39), (6.40)) and N} is the global

(co)normal defined as

n=m; "' (M), my)

(see equation (6.50)).

In order to obtain a fully discrete system of equations, the time variable needs to be discretized.
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To this end we begin by collecting all dynamical variables into the generalized coordinate array
an = (Xn,Xp)
whereupon the semidiscrete-mixed action and Lagrangian adopt the simplified form

Sn(an, Vi) = / ’ L™ (an (t) . an (£), Vi (1)) dt

to

. 1 X .
Ly (an, Gn, Vn) = QV{mh (an) Vi = In (an) + Vimy, (qn) (N}, (an) @ — Vi)
and the Euler-Lagrange equations reduce to

d ! . mix .
%(DQL;an(qhaCIhvVh)) = DiLy"™ (an,dn, Vi)

0 = D3L"™ (qn,dn, Vi)

where we are using the classical notation D;L to denote the partial derivative with respect to
variables in the ith slot of the dependent variable list of L. We thus arrive at a dynamical system
of the class studied in Chapter 2, (see §2.1).

We next partition the time interval [t, t ;] into discrete times (tO =19, ,tF . tK = tf) where
K is the number of time subintervals and where we are using a supraindex to denote time step.
As suggested by the analysis performed in the second chapter, we proceed by interpolating the
trajectories qy (t) and velocities Vy, (t), respectively, with piecewise linear functions of time and

piecewise constant functions, namely,

R -t i [t ko gkt1
an(t) = qp <tk+1—t’“> +qj, <tk+1—t’“> vt e [t°, "]

Vi (t) = Vit wte [t i

where foﬁ is constant in the interval (tk, tkH). We recall from our discussion in chapter 2 (section
(2.1.10)) that an arbitrary choice of interpolation spaces might lead to the presence of arbitrary global
modes in time and that to avoid these modes a careful selection of interpolation spaces is required.

This results in the discrete-mixed action sum

K
Sd ( o 7qﬁa e 7VZ+ﬁ’ e 7tk7 o ) = ZLZ“LZQ? (q27q2+17vz+57tkatk+l) (683)
k=0
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where
th1
miz (k k41 kB gk k1) _ miz (k[ t*H—¢ k1l [ t—tk ' —al kB
Ld (qthh 7Vh 7t )t - Lh qh thk+1_¢k +qh th+1_¢k 9 ti‘,+l_tl:"7vh dt
tk

(6.84)
is the discrete-mixed Lagrangian. Different alternative variational integrators follow now from the
selection of an appropriate quadrature rule to approximate the previous integral. We will use in par-
ticular a selective quadrature rule that combines midpoint integration (one single quadrature point
at t*+9) for the kinetic energy term and Lagrange multiplier term, combined with a trapezoidal rule
(two quadrature points sampled at t*+* = (1 — a) t* + () t**! and tFH1-% = (o) tF 4 (1 — o) tFH1)
for the potential energy term I, (see §2.1.11), equations (2.20), (2.21), (2.22)). The discrete mixed

Lagrangian thus obtained is

) 1 1
mix k c k T k k « —a
L (af af ™ VL) = (R ) (2v,g R A L A )) +
k+1 k
k+1 4k (k+8)T__k+8 #(k+8)9n 9 k+8
+(t —t ) <Vh mh (Nh W—V}L >>
where
L = (@)
I}]f+17a — Ih (qZJrlfa)
miw — m, (qI;JrB)
Nk N (qz+ﬁ> = my, ! (M, mp)| e
with
a” = 1-Bd+B)di"!
k
VitP = (1-B)VE+ (B) VT
™ = (1-a)qf + (a)q}"
Q" = (gt (1 -a)qt!

and «, 3 € [0, 1] are integration parameters. In terms of the individual dynamic variables (Xp,xp)
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the discrete-mixed Lagrangian reads

k Jk k+1 _k+1 k+B8 4k jk+1Y) _
Lg'”(xh,xh,xh xbHL YIS gk )_

Ly k48T ktBymtB L (rhta | phti-
= (M —¢9) (QV,(Z Tmf oy P I L) )+

Xt x
k k k+8)T k+ K+ TR TR k+B~yyk+
(= ) VT (M m ) S e (6.85)

The discrete action sum expands in this case to the form

K
S, ( JXE ok VR tk) =" Ly (xg,xﬁ,x;j“,x;j“,VZ*B,t’“,t’““)
k=0
(6.86)

Discrete trajectories are next obtained by invoking the stationarity of the discrete-mixed action
sum Sy with respect to variations of all of its argument. The resulting variational principle will be

referred to as the "mixed" discrete Hamilton’s principle:

05y
% =0
oxF
05y
=2 —_ 0
GXZ
0Sy
avits = O

It bears emphasis that only one single velocity sample V¥4 per time interval [ty 51 1] is taken.

6.2.2 Discrete Euler-Lagrange equations

We next turn to the derivation of the discrete Euler-Lagrange equations. Differentiating the discrete-
mixed action sum Sy (6.83) with discrete-mixed Lagrangian (6.84), the following discrete-mized

Euler-Lagrange equations are obtained (see equations (2.21), (2.22))

Dy L7 (q27q2+17vz+67tk7tk+1> + DL (qzqvqﬁvzflw?tk—atk) - 0

3 k k
D3L2“x (q]}CL)q}L+17V}L+ﬁ?tkatk+1) = 0
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that evaluate to

(k+B8)T (k=1+8)T k+p
Mh V;CJrﬁ o Mh fol+ﬁ _ (1 _ ﬂ) (tk:+1 _ tk;) Eh
m(F+A)T L m(E- 1T L e t8

EE-1+8
k k-1 h
+(B) (" =) ok =145

h

th+1 _ 4k (1—a) Fifl-&-a + (@) FZ—&-l—a

+ 2 k+a k+1l—a
(1—a) ™ + (o) £
N th — =1 [ (Q)FF ' 4 (1 —a)Fp®
2 (@) fF71F 4 (1 — ) fF
X;’l+1_x;’1+1
+ + Y- n+ +
= (M) | S ) StV
At
where
+1 “+1 —+1 +1
BS g, (x5 e K KR X X ks
h he 2The o At ’ At P
—+1 +1 +1 +1
k8 — Xk+6 s Xy X Xt X VRS
h Xp ) At ’ At h
and
F;CL-i-a B Fh ( k-‘roc)
k4 o k+
£, £ (a;,")
FZ—&-l—a _ Fh ( k-‘rl—a)
k+1— k+1—
fh “ f (qh 04)

and with Ej,, ey, Fy, £, defined in (6.34), (6.35), (6.32), (6.33), (6.39), (6.40), (6.41), and (6.42).
For implementation purposes it result more convenient to rewrite the discrete Euler-Lagrange
equations in the so-called "position-momentum" form. To this end we define the discrete momentum

mf at time k to be
7k = Dy (qﬁ Lk, VETIB gk tk“) — DL (q,L,qu+1,V,li+ﬂ,tk,tk+l> (6.87)
whereupon the discrete-mixed Euler-Lagrange equations take the form

772 - _DlL’Zlnm: (qlmqﬁ-i_l Vﬁ+5atkatk+1>
mtl = pypmie (qh, htl Rt gk tk+1)

0 = DyLmie (qh’ k1 Vk:+ﬁ ik tk+1)
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Using the given form of L7 the previous evaluates to

k (k+8)T k+
Py . M, k48 k+1 4k E, g
- (k+8)T Vi = (1= 8) (17 1) k+8
pﬁ m, e,
tk+1 tk 1 o a Fk+a (a) F;TH_O‘
2 (1 —a) £ + (a) fFHte
k41 (k+8)T k+8
Py, _ M, v k+p + ( (tk+1 _ tk) E
k+1 (k+5)T k+8
P €
t’”l (1-a) Fk‘“’ + (a) F’ffl_“
(1 —a) £ 4 (a) fFri
X;LL+17XZ+1
0= (Mzwa mZ+B) xZﬂAf:c,"“ —my PvpEe
A
where
P,
T = (6.88)
Pr

is an array that collects horizontal and vertical discrete momentum Py, and pp. Given (qﬁ7 71"5) the
first and third equations represent an implicitly system to solve for the unknowns ( k1 Vk+[3 )

Using this result we then obtain 7¥*1 by evaluating the second equation.

6.2.3 Comparison with Lagrangian system with constant inertia

It becomes useful at this point to compare the obtained discrete Euler-Lagrange equations with
those corresponding to a Lagrangian system with constant inertia. In this case the discrete-mixed

Lagrangian reduces to

. , X 1 , 1
Ly (qk q’,ﬁﬂ V1}2+B,tk,tk+1) _ (tk+1 _ tk) (2V§Lk+@)Tth1};+B -5 (I;f‘l*a _|_I}If+loz)> +

s
k+1 k (k+ﬁ)T —q k+p
+ (¢ -t )(Vh <Nhtk+1tk_v ))

with corresponding discrete-mixed Euler-Lagrange equations given by

_ tk+1 _ tk alk-‘r(x alk-‘rl—a
Npm? (V’“*B A% 1+ﬁ) - (-0 T+ () —

oqn oqn
k _ 4k—1 Ik—1+a Ik:—a
ot (1,a)8h7+(a)8h
2 oqp, dqy

hopk+1 _ 4k
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Eliminating velocities from the second equation we obtain

k+1 _ Lk k _ k-1 tk‘-i—l _ tk alk+a aIlH»lfa
Mh<q 4 979 ):_ ((1—@) h 4 (o) =R

thtl ¢k th k=1 2 daqn dan
th — o1 oIyt oy
- (=)L + (o) 2
2 aCIh 3(1h

where

My, = Nym! N,

is the mass matrix. These equations correspond to the Euler-Lagrange equations of the standard

single-field discrete Lagrangian
k k+1 gtk pk+1 k1 gk [ L gt — g ! gt —q* Lok k+1
Ld (qthh ’t 7t ) :(t -t ) 2(tk+1—tk ) Mh(tk+1_tk ) _i(Ih +Ih )

As was shown in [20], for the particular case of affine forces, i.e., when the forces have the property

oIfte
dqy,

oIk
dan

oIt
dqy,

=1 -a) o+ (o)

this integrator is equivalent to the implicit Newmark integrator with v = % and 8 =« (1 —a). The

proposed variational integrator is its generalization for configuration-dependent inertia.

6.2.4 Discrete-mixed Lagrange-d’Alembert principle

In this subsection we extend the discrete-mixed Hamilton’s principle developed in the previous
section to systems with viscous effects. This is accomplished by discretizing in time the semidiscrete
Lagrange-d’Alembert principle ((6.79), (6.80)). We recall that this variational principle can be

written as

tr F; +F," "
<6Sh,5Xh> + <55h,5xh> — / (§Xh, (5Xh) .
to ;L)

(58,,6Vy) = 0 WV,

dt = 0 V(éXh,éxh)

with mechanical (vertical) viscous forces ff given in (6.71) and (6.73), configurational (horizontal)

forces computed from (6.77), and horizontal regularization forces defined in (6.78). We notice also
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that these viscous forces depend on the dynamical variables in the form

£y, = £ (Xn,xn, Vi)
b= Fpn(Xn,xn, Vi)
szreg — lefreg (Xh; Xh)

The above principle may be compactly expressed as

ty
(0Sh, 0qn) + sar - FY (an, &, Vi) dt = 0

to

where q;, = {Xj,x,} and
FY 4+ F 7%

£y

F* (qn, qn' Vi) =

are arrays that collects respectively the viscous physical and regularization forces.
Following the ideas presented in [20] we may discretize in time the semidiscrete Lagrange-

d’Alembert principle in the form
K
5Sd7 5Qh +Z 5qh ']F’U7 (qha qZ+1 VZJrBa tk, tk+l) +(5qk+1) Fv+ (qhv quJrl VfLJrB? tka tk+1>
k=0

where F~ and F*T are the left and right discrete viscous forces that should satisfy the identity

tk,+1

v T v —
/k sap, -F (an (t), Vi () dt = (éqj)” -F (qh,qZ“ VZ”J’“J’““)
,

k
((5qk+1) LUt (%QIZH Vh+/3,tk’tk+1>

and where only one velocity sample for the whole time interval [tx,txt1] is used. For simplicity
this velocity is taken to coincide with that used for the kinetic energy term, namely VZJFB . The

corresponding discrete Euler-Lagrange equations follow as

0 = DL7e (Clh?q;iﬂ V}kL+B’tk7tk+1) + DL (qﬁfquz,vllifprﬂ,tk—ljk) n
— k k—1
FF (af, af VR ) B (gl VT )

0 = D3Lm1m (qh7 k+1 Vk+,@ tk tk+1)
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The left and right physical and regularization viscous forces may be chosen to be simply

k+1 k
- k+1 7k vk+1 4k Lk k k k+8 9n  — 9p skt
Fv (q.h7thL \/-h5‘/h+ at at +1) = (1 _’Y) (t 1 —t )]FU <qh ﬁ» t2+1 7tk th ﬁ)
k qu — qk k
Fot (qh’ q;clﬂ VZ,VZH,tk,tk'H) _ (7) (tk+1 o tk) Fv qh+ﬁ7 t2+1 — tkh’Vh+ﬁ

where 7 € [0,1] is a new integration parameter.
In terms of the individual dynamic variables (Xj,xy, V},) the discrete-mixed Euler-Lagrange

equations evaluates to

e T L e BT el BUSEOL YA (O]
R T _ h = )
mgH_B)T mglk 1+8)T 2 (1 _ a) f;z—&-oz + (Ol) f}]f—H_a
+ th— k1 [ (@) Fy T 4 (1 —a)Fp
2 (@) £F71F 4 (1 — a) £
Ek+ﬁ
+ (1 _ ﬂ) (tk+1 _ tk) k+ﬁ
€h
Ek—l-‘rﬁ
+ (6) (tk _ tk—l) h
eifl—l-i-ﬁ
; - k+B
Fv)k+5+ (Fv reg)
_ k1 _ gk (Fj h
+ (=) (¢ t*) (£ +
k=148
- F;} k 1+[3+ (Fv reg)
+ (’Y) (tk - tk 1) L o k—1+8
(f7)
Xptt_xntt
0 = (MZ-HB’ mZ'i’ﬁ) x:JrlA_tx;Hrl - mZ+BVZ+B
AT
where
()7 = & (X3, V)
v\k+ v k k k
(Fp)"7 = Fp (Xh+6vxh+67vh+ﬂ)
k+1 k
v—reg k+B _ v—reg k+8 X X
(F, ") = F, (X T

Using the discrete momentum definitions (6.87) and (6.88), the previous may be rewritten in the
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position-momentum form:

k T a c+1—a
pk B M) s _ Pt (1 —a)Fit® + (o) Fy! N
= h — ,
pz mgbk-i'B)T 2 (1 _ a) f}]f+a + (a) f}lj+1—a
k+8
o (1 o B) (tk+1 o tk) Eh +
e;wﬁ
(Fp)"7
—(L—7) (" —¢F) +
ok
(£)" 7
regy k4B
Fv reg
—(1—08) (¢H —tF) (F) (6.89)
0
PZ+1 B MngrB)T hes thHL _ gk (1 _ Ot) FZJra + (Oé) Fnglfa
k+1 - (k+B)T Vh T 2 k+a k+1—« +
P, my, (I—a)f™ + ()£
DLARC
k+1 4k h
) (e (
h
(Fp)*7
4 ('Y) (tk+1 _ tk .
) (£
—reqy k+B
F'u reg
+(0) (¢ —tF) (F) (6.90)
0
X;’:+1_X;’:+1
0= (M i) | S | VR (6.91)
T At

where we are using a different integration parameters ¢ € [0,1] in the viscous regularizing force.
Given (X’,fb,xﬁ,P’fL, pﬁ) the first of the above equations (equation (6.89)) is a non-linear system to
solve for (Xﬁ+17x§+1) with VZ+B given by the third equation (equation (6.91)). Once the first
equation is solved, the second (equation (6.90)) yields the identity for the update of the momentum

(Prh Pt
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Chapter 7

Numerical tests

In this section we present a collection of tests and examples designed to assess the performance of
the method developed in the following. The first example is designed to measure the accuracy of the
method and concern the propagation of compressive waves along a shock tube for which the exact
analytical solution can be obtained in closed form. The solutions of both the one-dimensional and
three-dimensional wave propagation problems are presented as well as a three-dimensional example
where the wave propagates and expands along a tube with a non-uniform cross-section. The second
example relates to the natural oscillation of a one-dimensional bar and illustrates how the node
motion in the combined horizontal-vertical plane result constrained to oscillate within a manifold as
predicted by the theory. The third example involves a block of non-linear elastic material subjected
to the application of a moving point load, and the last example concerns the propagation of a crack

along a preexisting crack path.

7.1 Shock propagation example

The first test involves the propagation of a plane wave travelling down a highly compressive material
and has been used as a benchmark example to assess the convergence and accuracy of other mesh

adaption strategies (c.f. [55]).

7.1.1 Analytical solution

Assume a solid body undergoing planar deformations in the direction of the X axis. Then the motion

may be fully described by a deformation mapping of the form ¢ (X1, X2, X3,t) = (¢ (X1,t), X2, X3).
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The corresponding deformation gradient will be

with rate of deformation
P11
P11

0 0
d=FF = 0 0 0
0 0

0

We assume that there are no body forces and that the material is homogeneous. Therefore the total

energy density is dependent only on F, i.e.,
W= W(F) =W (%01,1)

The action will be given by

S(p1) = /ttf /_o; (fgo’;’ - W(%J)) dXdt

where we assume that the body extends unbounded in the X; direction. The equations of balance

of mechanical and configurational force balance (3.14) and (3.58) reduce in this case to

Ry = Phq+ P, (7.1)

R (—‘Pl,l) ¢ = Cui+ (‘@1,1) P1v1,1 (7.2)

where Py; and Cq; are, respectively, the equilibrium part of the first Piolla-Kirchhoff stress and the
dynamic Eshelby stress given by

15144
Py =
1 &Pl,l
R ow
o = () o 2
H 2 ! 1’18%01,1

and P is the viscous Newtonian stress given by (3.12) and (3.13), which in this one-dimensional
case simplifies to
4 ¢11
PV = = )
11 3/1('01’1
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Inserting the previous into (7.1) and (7.2) leads to the governing equations

( ow 4 ¢1,1>

+ o
9p11 3" 1, 1
d . . ow 4 ¢1,
— (R (— = W — — I - a - Sh——
dt (7 ( 901,1) #) (< 2 %) @1’18%,1),1 + %71) <3M901»1>,1

For a certain simple class of constitutive relations W (F'), the solution of the previous can be carried

Ry

out analytically. A particular example is the constitutive equation
K
W (J) = i (J* = 1—2log (J))

where J = det (F). In this case the analytical solution is given by

o1 (X)) - Xn (X —ct
l =/ l

where
Jt+J- + _ 1 n
f(n) = (2—1>77+(J —J )log(2cosh(2>) (7.3)
K 1
2 — R
¢t = 2R<1+J—J+> (7.4)
~ 8uc JJ*
L= 3= (7.5)

and JT and J~ are given boundary conditions

J* = lim ¢1,1 (X1,1)

X1—+o00

. X1 —ct
%01:—Cf< ll )

Lo (TP T Jt—J" 7
/ <’7>—<2‘1)+2ta“h(2)

The velocity field is given by

where
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The analytical solution for the displacement u; = ¢, — Xj, velocity ¢;, deformation gradient ¢ ;

and acceleration fields ¢, is shown in figure 7.1 for the following parameters

R 1
K 1

o 0.025
J- 1

J* 01

The analytic computed value for the shock velocity is in this case

€
Q
£ =
8
ot Q
k) >
a
X X
(a) (b)
<
Q2
8 S
o 8
c Q
K=} [7]
T 3
£ <
S
[
)
X X

(c) (d)

Figure 7.1: Propagation of a planar isothermal compression shock. Time evolution of (a) displace-

ment, (b) velocity, (c) deformation gradient, and (d) acceleration fields. Analytical solution.

c=VH5.5~2.3452

and the corresponding computed shock thickness is

1=1.7372x 1072

The problem is solved both using a one-dimensional and a three-dimensional model. The domain
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of analysis is discretized using linear elements in one dimensions and four-noded linear tetrahedral
elements in three dimensions. The governing equations are discretized in time using the mixed

variational integrator described in §6.2.1 and §6.2.2, (see equations (6.89), (6.90) and (6.91)) with

integration parameters o = %, 8= %7 v = %, 0 = 0. The non-linear system of equations (6.89) for
the update of referencial and spatial nodal coordinates is solved using the Polak-Ribiere variant of

the non-linear conjugate-gradient method. A stable time step was estimated as

hmin
At

IN

where hyi, is the measure of the element size and c¢ is the shock velocity given by (7.4). The
parameters listed in table 1 are used in the calculations. The length of the domain of analysis is
L =701 where [ is the length of the shock, computed from (7.4).

Figure (7.2) shows the convergence curves. The accuracy of the solution is measured using
the Ly (B x [to,ts]) norm of the difference between the analytic and finite element solutions of

deformations and velocity fields, namely,

ty
2
le = enll L, xitot;) = / /Hso—sohll dvdt
to B
tf 9
V= Viliawawen = [ [ IV =Vl avae
0

These errors are plotted against the number of degrees of freedom in a log-log axes. Figure (7.3) and

Error in Deformation Mapping Error in Velocity Error in Deformation Gradient
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e m 0.004
¢
7 >- AN
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@) (b) (©)
Figure 7.2: Convergence plot for isothermal compressive shock example. (a) Displacement field. (b)

Velocity field. (c) Deformation gradient.

(7.4) show the time evolution of the deformation mapping and material velocity fields along with

the node trajectory. Figure (7.5) displays the time evolution of nodes in the reference configuration.
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erX,h

0.2

Figure 7.3: Time evolution of displacements profile. Node trajectories and analytical solution are
also displayed. The shock advances from right to left in the figure.

Figures (7.6), (7.7), and (7.8) show a sequence of snapshots of the adapted mesh during the
three-dimensional simulation both in the reference and deformed configurations. It can be observed
that the nodes cluster in the neighborhood of the shock front and follow the shock as it propagates
along the domain.

For the three dimensional model we used a mesh composed of 11520 elements and 3270 nodes.
Figure (7.9) shows the profile and contour plot of the axial velocity over a plane that contains the
cylinder axis and for three different times during the simulation.

As a complementary demonstrative example we modeled also the propagation of a plane wave
down a highly compressive cylinder that exhibits a sudden expansion in the cross-section. The
material and material parameters are identical to those used in the example of the previous section.
Figure (7.10) shows a sequence of snapshots of the evolution of the adapted mesh in the reference
configuration at different times. The ability of the mesh to cluster in the neighborhood of the shock

as it travels down the tube and expands is remarkable.
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Figure 7.4: Time evolution of velocity profiles. Node trajectories and analytical solution are also
displayed.

7.2 Wave propagation example

The second test involves the natural oscillation of an incompressible body that is released from rest
from a distorted configuration. We first assume that the body is stretched in one direction, the X3
axes, and contracts symmetrically in the other two directions due to the incompressibility constraint.

The motion is thus assumed to be of the form

@ (X1, Xo, X3,t) = (1 (X1,t), 09 (X1, X2,1) , 03 (X1, X3,1))

whereupon the deformation gradient reduces to

¥1,1 0 0

F= Vo1 2o 0O
¥3,1 0 33
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Figure 7.5: Time evolution of nodes in the reference configuration. The shock propagates from top
to bottom in the figure. As time progresses the nodes cluster in the neighborhood of the shock front.

Enforcing the incompressibility constraint J = det (F) = 1 and symmetry condition Fay = F33 we

find
1

VP11

We will assume that the body is free of body forces and made of a homogeneous (incompressible)

P22 = P33 =

Neohookean material with no viscous behavior, characterized by a strain energy density of the form

W (F) = % (tr (FTF) —3)

For the particular class of deformations here considered the strain energy density reduces to

K 2
W(Fll) = B (F121 + F_11 —3>

The action functional per unit of area is given by

ty L R
S(p1) = /t /0 (5‘?% -w (901,1)) dX,dt
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Figure 7.6: Propagation of a compression wave down a cylinder. Adapted 3D meshes at different

times. Reference configuration.
of mechanical force balance (3.14) and (7.2) in the direction of stretch reduce in this case to

where we assume that the reference configuration of the body is B
where P;; and C1; are, respectively, the first Piolla-Kirchhoff

given by
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1 the strain energy density might be approximated with the first term

~

For small deformations Fj;

of its Taylor series expansion

K (Fip —1)°

el e

W(Fll) ~

whereupon the Piolla-Kirchhoff stress and Eshelby stress reduce to

3K (Fi1 — 1)

Py

The equation of balance of mechanical forces becomes in this case

= 3K<P,11

Ry

which corresponds to the wave equation. The solution with zero boundary conditions and zero initial

velocities ¢, (X,0) =0 is

ct
L

X
L) cos | 2kn

Ay sin (2k7r

@1( 7t)
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Figure (7.11) shows the evolution for displacements and adaptive mesh the bar is released from rest

(¢ (X,0) =0) from an initial position that is the superposition of the two first modes of oscillation
. X ct . X ct
v (X,0) = A;sin (27TL) cos (27rL> + Ay sin <47rL> cos <47TL>
with

A =1
Ay = 0.2

0.3+

0.2/ 13

Figure 7.11: Displacement evolution and mesh evolution for the bar oscillation problem.

7.3 Neohookean block under a moving point load

The method has been applied to the case of a three-dimensional Neohookean block subjected to the
action of a moving point load. The block dimensions are 1 x 1 x 0.5 and zero normal displacement

boundary conditions are enforced on the base and on the face closest to the initial point of application



231

of the load. Only half of the block is simulated due to the symmetry of the loads and geometry. The
material chosen is Neohookean extended to the compressible level, which is described by a strain

energy density given by
W (X,F) = % log (det (F))? — p1 (X) log (det (F)) + @ tr (F”F)

where )\g and p, are to the Lame constants. The material constants used are young modulus

Ey = 3E108, Poisson constant v = 0.3, which results in Lame constants

Eoyvg

P — 1.73E°6
0 (1+ vo) (1 — 200)
Ey
= =%  _115E°6
Ho 2(1+ 1)

The mass density per unit of underformed volume is R = 100. The load moves at 1/10 of the
characteristic shear wave speed of the material. The mesh consists of 2160 tetrahedral linear finite
elements and 637 nodes. To maintain the geometry during the computation the node motion within
the reference configuration is restricted in the normal direction to each face. Figure (7.12) show
snapshots of the adapted mesh at different times of the simulation. Figure (7.13) shows the deformed
configuration and adapted mesh along with a contour plot of the vertical displacement. As a result
of mesh adaption and due to the fact that dynamic forces are small compared to the static contact
forces, the nodes tend to concentrate in the neighborhood of the point of application of the load.
Due to the effect of viscous regularizing forces and due to the fact that configurational forces are
small away from the loading area, no rearrangement of nodes takes place in the wake of the moving

load.

7.4 Crack propagation example

An application area where variational adaptivity might be particularly advantageous is dynamic
fracture mechanics. An alternative for the accurate tracking of dynamically growing cracks is the
use of cohesive elements and cohesive laws (see for example [52]). Cohesive elements are surface
elements that are inserted within bulk interelement faces and govern their separation and consequent
generation of new surfaces and crack growth according to a cohesive law. A immediate limitation of
this approach is that crack paths are restricted to the bulk element boundaries. The combination of
cohesive finite elements with variational adaptivity would be an approach to overcome this limitation
and improve dynamic crack path predictability since both crack evolution and node rearrangement
would be driven by the same forces, i.e., dynamic configurational forces.

The potential use of this approach is investigated by modeling an externally driven mode I
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growing crack in a square slab of Neohookean material as depicted in figure 7.14. Due to the
symmetry of the geometry and loading, only the upper half of the body is simulated. To avoid
changes in geometry, the motion of nodes in the reference configuration is constrained to remain
within the faces. The material properties are Young modulus E = 1.0E®, Poisson ratio v = 0.3, and
mass density per unit of undeformed volume R = 2300. The mesh consists of 720 linear tetrahedral
finite elements and 273 nodes. Vertical displacement-boundary conditions corresponding to the

linear elastic K field were applied with K; = 1.E®. The K field is given by

w (1,25) = ﬁ@cos(i) (K1 — cos (0))
up (21,3) = ﬁ\/wsm@) (K — cos (0))

where
2 2
r = (r1—a) +z5
0 = tan'(y,x—a)
The crack is advanced by assuming a constant crack tip velocity of a = %cs where ¢, is the

characteristic shear wave speed of the material. The node closest to the instantaneous theoretical
placement of the crack tip a (t) = ag + at is kept fixed and only released after the assumed crack
tip position a () reaches the subsequent node in the direction of crack advance. Figure (7.15) shows
the adapted mesh within the reference configuration for different times of the simulation. Figure
(7.16) shows the adaptive mesh in the deformed configuration along with contour plots of vertical
displacements. The ability of the method to cluster nodes in the neighborhood of the crack tip while

simultaneously following dynamic waves emanating from the advancing crack is noteworthy.
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Figure 7.12: Neohookean block subjected to a moving point load. Reference configuration and
adapted mesh at different times of the simulation.



234

Figure 7.13: Neohookean block subjected to a moving point load. Adapted mesh in the deformed
at different times of the simulation and countour plot of vertical displacements.



(b)

Figure 7.14: Dynamic propagation of a crack along a slab of Neohookean material.

configuration. (b) Deformed configuration at time ¢.
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Figure 7.15: Propagation of a crack along a slab of Neohookean material. Adapted mesh in the

reference configuration at different time steps of the simulation.
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Figure 7.16: Crack propagation along a Neohookean body. The nodes cluster following the crack
tip. Countour plots indicate vertical displacements.
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Chapter 8

Conclusions and future directions

We have developed in this thesis a variational finite element mesh adaption framework for solid
dynamic applications and its conceptual links with the theory of dynamic configurational forces.
A mixed, multifield version of Hamilton’s principle and a mixed extended version of Lagrange-
d’Alembert principle are proposed as underlying variational principles for the formulation. General-
izations of these principles to account for dissipative behavior are conceptualized and and extended
class of variational integrators for the integration in time of the resulting differential equations is
formulated.

The basic ingredients of this framework are, in addition to the use of the mized form of Hamilton’s
and Lagrange d’Alembert principles, (i) the use of uncoupled space and time discretizations, (ii) the
use of independent space interpolations for velocities and deformations (iii) the application of these
interpolations over a continuously varying adaptive mesh, (iv) the application of mixed variational
integrators with independent time interpolations for velocities and nodal parameters. The result
is a robust adaptive finite element formulation for dynamic applications that satisfies the balance
of mechanical forces (or balance of spatial momentum) and the balance of dynamic configurational
forces (or balance of material momentum), and, as a result of its variational nature, exhibits excelent
long term energy stability behavior.

A space-space configurational bundle perspective, complementary to the space-time-based bun-
dle framework developed in the context of multisimplectic continuum mechanics and variational
integrators, is proposed as a theoretical base for the formulation. After careful examination of
the variational adaption concept as it applies to time adaption for both finite degree-of-freedom
dynamical systems and solid dynamics (space-time) problems it was concluded that attempting si-
multaneous space and time variational adaptivity was too costly. Variational space adaptivity was
then pursued, which led to abandoning the space-time framework and implementations based on

space-time finite elements and to adopting a staggered approach with an initial semidiscretization
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in space followed by a discretization in time. Since time is kept continuous during the first stage of
the computation, and since time adaption is no longer pursued, it was found that the space-space
framework became more useful to analyze the underlying structure of the method.

It was then found that the use of Hamilton’s principle led to unstable and meaningless solu-
tions. After careful examination and testing it was concluded that these instabilities were caused by
inaccuracy of the velocity approximation whose interpolation was derived, or consistent, with the in-
terpolation for deformations. An independent interpolation for the velocity was then proposed and a
variational framework that allowed for the use of incompatible velocity interpolations was required.
This led to the development of the mixed multifield version of Hamilton’s and related principles
and stable solutions were obtained. To our knowledge, this is the first successful application of this
multifield principle whose theoretical conceptualization can be traced back to a century ago.

In attempting to use the variational mesh adaptivity framework in problems involving shocks a
generalization to account for viscosity was required. An extended version of the Lagrange-d’Alembert
principle was thus developed. This principle acts as a variational restatement both of the equations
of motion and the equations of configurational force balance in the presence of viscosity. It was
then observed that the application of this principle required the computation of interelement viscous
boundary sources, which proved to be prohibitive for three-dimensional tetrahedral meshes. A mixed
version of the extended Lagrange-d’Alembert principle was then developed as an approach to avoid
the computation of interelement boundary forces and successfully tested in a shock propagation
example. A finite element implementation was developed and exercised in several one and three
dimensional problems and tests designed to assess convergence, robustness, and scope of the method.

A generalization of all these principles to account for thermal and inelastic processes was then
conceptualized. This extension is accomplished by making use of thermal displacements as opposed
to temperature as independent thermal variables. An additive decomposition for the heat flux
into conservative or dissipationless and non-conservative or dissipative parts was proposed. This
decomposition parallels the well-established additive decomposition of mechanical stresses into elastic
(conservative) and viscous (nonconservative) factors and facilitates the full identification of different
components in the mechanical and thermal balance equations. Then this parallelism was exploited
to establish a thermomechanical analog of the mixed Hamilton’s principle and extended, mixed
Lagrange-d’Alembert principles developed for isothermal elastic materials with viscosity.

Many possible directions might be taken in the future to further the scope of application of this
methodology. Immediate steps would be the extension of the methodology to h-adaptivity (work in
progress), a direction that has already been explored within the context of static applications in [49],
the application to fully coupled thermomechanical problems, the combination with cohesive elements
or the coupling with asynchronous variational integrators or discontinuous Galerkin approximations.

From the numerical analysis point of view more optimized solvers for the resulting non-linear and
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ill-posed system of equations and parallel implementations might be devised.
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