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Abstract

This thesis is concerned with the exploration and development of a variational �nite element mesh

adaption framework for non-linear solid dynamics and its conceptual links with the theory of dy-

namic con�gurational forces. The distinctive attribute of this methodology is that the underlying

variational principle of the problem under study is used to supply both the discretized �elds and the

mesh on which the discretization is supported. To this end a mixed-multi�eld version of Hamilton�s

principle of stationary action and Lagrange-d�Alembert principle is proposed, a fresh perspective on

the theory of dynamic con�gurational forces is presented, and a unifying variational formulation that

generalizes the framework to systems with general dissipative behavior is developed. A mixed �nite

element formulation with independent spatial interpolations for deformations and velocities and a

mixed variational integrator with independent time interpolations for the resulting nodal parameters

is constructed. This discretization is supported on a continuously deforming mesh that is not pre-

scribed at the outset but computed as part of the solution. The resulting space-time discretization

satis�es exact discrete con�gurational force balance and exhibits excellent long term global energy

stability behavior. The robustness of the mesh adaption framework is assessed and demonstrated

with a set of examples and convergence tests.
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Chapter 1

Introduction

This thesis is concerned with the exploration and development of a variational �nite element mesh

adaption framework for non-linear solid dynamics and its conceptual links with the concept of

dynamic con�gurational forces. The distinctive attribute of this methodology is that the underlying

variational principle of the problem under study is used to supply both the discretized �elds and

the mesh on which the discretization is supported. To this end a mixed-multi�eld (as opposed to

the standard, single-�eld) version of the governing variational principles is proposed, an expanded

perspective on the theory of dynamic con�gurational forces is presented, and a unifying variational

formulation that generalizes the framework to dissipative systems with viscous, inelastic, and thermal

processes is developed.

Dynamic applications often exhibit solutions with steep gradients at some regions of the domain of

analysis and smooth gradients at others. These steep regions may change their locations and shapes

both in space and time. It is therefore advantageous to vary the resolution of the computational grid,

i.e., to adapt the mesh, according to the behavior of the solution, to ensure that the spatial mesh and

time step are su¢ ciently �ne in those regions and stages of steep gradients and reasonably coarse in

other areas of less interest. In this way the accuracy and reliability of the numerical approximation

is increased and evolving, and developing small scale features of the solution are explicitly resolved.

We shall explore and develop in this work a mesh adaption framework particularly targeted for the

challenging conditions just described.

In traditional �nite element mesh adaption strategies mesh improvement is a post-processing

operation based on error estimation. For static applications this approach might be summarized

as follows: The user �rst selects an initial mesh. Then the error in the �nite element solution

corresponding to that mesh is estimated. Next, using this error as a measure of mesh quality, another

mesh is designed by re�ning and coarsening the initial mesh in those areas where the estimated error

is beyond a prescribed limit. This cycle is continued until a �nite element solution with an error
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below the target tolerance is found. The same methodology can be extended to dynamic applications

when only space adaption (and no time adaption) is pursued. In this case the (space) mesh adaption

process is exercised at each time step of the computation using as initial mesh for the adaption loop

the adapted mesh of the previous time step, see for example [55].

While considerable success has been achieved on error estimation and adaptivity for linear, static

(elliptic) problems (see for example [61]), the theory concerning error estimation and the formulations

and implementation of adaptive methods for dynamic (hyperbolic) applications is comparatively

less developed, ([32], [55]). For this class of analysis the development of alternative mesh adaption

paradigms is therefore desirable.

One possible approach in this direction that applies naturally to non-linear variational problems

and that sidesteps the use of error estimation is the framework of variational mesh adaption. In this

approach the mesh is not prescribed at the outset but regarded as an unknown of the problem to be

handled jointly with the main unknowns, the evolving �elds of the dynamical system under study.

Then the variational principle that governs the evolution of the system is used to determine both

the main unknowns and the mesh. For dynamics, the governing variational principle is Hamilton�s

principle of stationary action in the conservative case and Lagrange-d�Alembert principle in the

non-conservative case.

The concept of using the underlying variational principle to optimize the mesh enjoys a long

tradition in the context of linear static elasto and structural mechanics problems and traces back at

least to [10], [11], [33]. The idea was to use the principle of minimum potential energy (the governing

variational principle for static applications) as a measure of mesh quality and to regard as a better

mesh the particular mesh that produces a lower potential energy. The total energy functional was

thus minimized not only with respect to nodal �eld values but also with respect to the triangulation

of the domain of analysis. Up to that moment, the computation of the analytic derivative of the

discretized potential energy with respect to the discretization was regarded "a hopeless task in

the case of arbitrary two and three-dimensional grids," (see [10]) and only optimization techniques

based on energy evaluation (as opposed to energy di¤erentiation) were thus implemented. These

techniques proved to be too costly for the computational resources available at the time.

By contrast, the connection between energy minimization with respect to the triangulation and

con�gurational forces was only recognized recently ([24], [35], [36], [37], [59], [60]). A closed form

expression for the analytical derivative of the total potential energy with respect to nodal mesh

placements was derived (see also [57]) and feasible solution strategies for the minimization process

were successfully implemented [49]. Con�gurational forces, also known as material forces, arise in

applications involving the evolution of defects or interfaces in continuum bodies. Unlike standard

(Newtonian) forces that drive the spatial motion, con�gurational forces drive the motion of entities

that migrate relative to the material. Examples include vacancies, inclusions, dislocations, cracks,
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inhomogeneities, or evolving interfaces. From a variational point of view, con�gurational forces may

be described as those energetically conjugate to rearrangements of defects. When the continuum

is discretized, arti�cial defects are induced due to the non-smooth nature of the discretized �elds.

The forces energetically conjugate to changes in the discretization can thus be uderstood as discrete

con�gurational forces.

As opposed to static applications, the generalization of the concept of variational mesh adaption

to solid dynamics is far from being fully explored. The idea, as it applies to dynamical systems,

was originally conceptualized within the context of the theory of discrete mechanics and variational

integrators [29], [31], [30], [63]. For �nite degree-of-freedom dynamical systems the notion of applying

the underlying variational principle, i.e., Hamilton�s principle, to �nd the time mesh was originally

studied in Kane, Marsden & Ortiz [20]. Then, the possibility of extending this concept to solid

dynamics for both space and time adaption was theoretically conceived in [28], [29], [30], [63] and an

implementation restricted to one-dimensional low dimensionality problems was attempted in [60].

Despite of the conceptual appeal of generalizing the methodology conceived for the time do-

main to the space-time domain, we have found, as we shall explain as we proceed in this work,

that the application of this approach to non-linear multidimensional solid dynamic problems is not

without di¢ culty. Concisely, the main idea of the theory of discrete mechanics as it applies to

�nite-dimensional (time-only-dependent) dynamical systems is to derive time-stepping algorithms

by discretizing Hamilton�s principle. The continuous trajectory of the dynamical system is �rst dis-

cretized. Then the discrete trajectory is obtained by invoking Hamilton�s principle, i.e., by rendering

the discrete action sum, discrete version of the action integral of the system, stationary with respect

to the parameters that de�ne the discrete trajectory. The main consequence of this methodology

is that the resulting time-stepping algorithms, referred to as variational integrators, preserve part

of the geometric structure of the continuous system, in particular they are simplectic methods and

exactly conserve momenta associated to symmetries of the system [31], [30]. However they do not

preserve exactly energy (see [20], [31], [30]) although they do exhibit long time energy stability.

Kane, Marsden & Ortiz [20] noticed that this lack of exact energy balance was arti�cially induced

by the discretization since in the continuous setting, energy balance follows directly from Hamilton�s

principle as Euler-Lagrange equations or, alternatively, as conserved momenta associated to sym-

metries with respect to time translations of the continuous action integral. They then proposed to

compute the time steps in such a way that the energy of the discrete system is exactly conserved.

Furthermore, they showed that this was equivalent to render the discrete action sum stationary not

only with respect to the discrete trajectory but also with respect to the discrete times where that

trajectory was sampled, i.e., the mesh. This resulted in variational time adaption in as much as the

time set was not prescribed at the outset but determined as part of the solution by invoking the

variational principle of the problem, namely, Hamilton�s principle.
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The generalization of the idea of variational integrators to space-time-dependent systems was

studied in [29], [30], [31], [63], see also references therein. Within this context it was established

that, in this expanded space-time framework, not only energy balance but also con�gurational force

balance arise directly from Hamilton�s principle and follow necessarily from momentum balance.

Furthermore it was observed that this is not the case when space-time is discretized. The ap-

proximations derived by invoking Hamilton�s principle are (multi)simplectic and preserve momenta

associated to symmetries of the system but do not preserve exactly discrete energy and do not result

in the automatic balance of discrete con�gurational forces. It was then suggested to generalize the

variational mesh adaption notion proposed by Kane, Marsden & Ortiz [20] for the time domain to

the space-time domain by computing the space-time mesh using Hamilton�s principle. More pre-

cisely it was theoretically proposed to require the stationarity of the discrete action sum with respect

to the space-time mesh. This would result in a new set of equations from which both space and

time adaptivity eventually could be driven. The resulting discretization would exhibit the desirable

feature of (multi)simplecticity and momentum conservation and at the same time the also desirable

property of exact discrete energy and discrete con�gurational force balances, see for example [30],

§7.3., [63], §6.2.3., [28], §5.6.

This space-time generalization approach was attempted in [60] by discretizing the space-time

domain with isoparametric space-time �nite elements. The method was implemented for one-

dimensional elastodynamics and tested in a low dimensionality linear elastic problem. One essential

problem of this generalization is the issue of solvability for the time step. The energy balance equa-

tion from which the time step should be solved for involves the unknown time step in a very highly

non-linear way and do not always delivers physically admissible solutions as reported in [20], [29].

Since variational integrators do exhibit good average energy stability and since exact energy conser-

vation was too costly and not always possible, it was then suggested to restrict the methodology to

space adaption only while the global time step would be estimated rather than computed to exactly

preserve energy. This was the approach of [60], where space-time isoparametric �nite elements were

implemented by taking the space coordinates of the space-time nodes as unknown while prescribing

the time coordinate at the outset. This can be regarded as the starting point of this thesis where we

have reexamined and expanded the theoretical developments to establish a powerful, e¢ cient and

robust variational space adaptivity framework.

We begin by observing that since time adaptivity is no longer pursued, there is no need to

resort to the simultaneous discretization of the space-time domain, which requires the machinery

of space-time �nite elements and is supported on the expanded space-time theoretical framework.

The approach we shall follow instead is to uncouple the space and time discretization by e¤ecting

a space semidiscretization in a �rst stage, keeping the time variable continuous and leading to the

construction of a �nite dimensional dynamical system. The latter is then discretized in time in a
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second stage using an appropriate time integrator. We shall therefore pursue a �nite element space

semidiscretization supported on a spatial mesh that, as a result of adaption, evolves continuously

in time. The evolution of this continuously varying mesh shall not be prescribed but computed as

part of the solution simultaneously with the motion of the dynamical system under study. Both the

evolution of the body and the evolution of the mesh will be derived using Hamilton�s principle. This

will result, as we shall prove in the following, in nodal con�gurational force balance, which unlike

the continuous setting is not automatically satis�ed.

We next observe that the expanded space-time based con�gurational bundle framework that

serves as a theoretical basis for the analysis of space-time variational integrators and variational

space-time mesh adaption, is not advantageous when the spatial and time discretization are de-

coupled By contrast, much more insight might be gained by adopting a space-space con�guration

bundle approach, that notably highlights the structure of mesh adaption framework while remarkably

simplifying its analysis and implementation.

We proceed to show in an illustrative example that the use of the standard Hamilton�s principle

to supply both the motion and the evolution of the spatial mesh usually results in unstable and

meaningless solutions. These instabilities are attributed to inaccurate approximations for the velocity

�eld resulting from the approximation for the motion of the mechanical system. To overcome this

di¢ culty we shall make use of an independent, assumed velocity approximation di¤erent from that

derived by time di¤erentiation of the motion and we shall develop a mixed, multi�eld version of

Hamilton�s principle that allows for independent interpolations of velocities and deformations. This

mixed variational principle, which shall be referred to as mixed Hamilton�s principle, has been also

linked to the Pontryagin�s maximum principle in optimal control [54] and is thus referred to as

Hamilton�s Pontryagin variational principle, see [64] for a historical overview. Within the full space-

time context and for small strains it was theoretically conceptualized byWashizu, see [62], §15.2. This

mixed version of Hamilton�s principle is invoked and the corresponding Euler-Lagrange equations

might be collected to form an extended system of equations to determine the time evolution of nodal

displacements, velocities, and the mesh.

We �nally consider the problem of time discretization. After the space is discretized one is left

with a �nite degree-of-freedom dynamical system that evolves continuously in time. More precisely,

the action integral of the system transitions from a mixed space-time-dependent �eld functional to

a mixed semidiscrete functional whose arguments depend only on time. A complete discrete system

is then obtained by recourse of time discretization. To this end we shall develop an extended family

of variational time integrators, which will be referred to as mixed variational time integrators, that

allow for the use of independent time interpolations for velocities and con�gurations.

Chapter 2 reviews the process just outlined with particular emphasis in the conceptual tran-

sition from variational adaption in time, to variational mesh adaption in space-time and �nally
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to variational adaption in space-space. To simplify the exposition and to keep the technicalities

to a minimum only one-dimensional solid dynamics is considered. This chapter provides a simple

overview of the mixed version of Hamilton�s principle both in time and space-time as well as its

semidiscrete and full discrete versions.

In attempting to apply the variational adaptivity framework to problems with evolving shocks

and steep gradients we are required to consider systems with viscosity. In this case the governing vari-

ational principle is the Lagrange-d�Alembert principle. One intrinsic di¢ culty in non-conservative

systems is the formulation of a variational framework from which the equations of balance of con-

�gurational forces in the presence of viscosity can be established and can provide the basis for mesh

adaption. For conservative systems it was demonstrated, as we shall review as we proceed, that

con�gurational force balance follows directly from Hamilton�s principle as Euler-Lagrange equations

corresponding to spatial translations or reparametrizations of the base space, i.e., space-time. Mo-

tivated by the ideas developed in [44] for general dissipative behavior, we shall develop an extended

version of Lagrange-d�Alembert principle in both standard-single-�eld and mixed-multi�eld versions

from which both mechanical and con�gurational force balance equations in the presence of viscosity

can be established. The mixed version of this extended version of Lagrange-d�Alembert principle will

operate as the driving variational principle for mesh adaptivity in the framework of solid dynamics

for elastic materials with viscosity.

Chapter 3 reviews this variational formulation of con�gurational forces for isothermal elasto-

dynamics with and without viscosity. The development follows the spirit of the space-time based

concept analyzed within the context of variational integrators by [29], [30], [31], [63] but using a

space-space bundle as opposed to a space-time based bundle. This space-space perspective provides

a more intuitive and appropriate conceptual framework for the class of approximations considered

in this work, i.e., based on uncoupled space and time discretization. The derivation of the equa-

tions of balance of con�gurational forces from Hamilton�s principle is reviewed and the extension of

Lagrange-d�Alembert principle to drive con�gurational force balance in the presence of viscosity is

presented. Particular emphasis has been placed on geometrical considerations where we have added

some innovative concepts relevant to the analysis of the structure of the method.

In Chapter 4 we consider the formulation of a generalized variational framework to account for

general dissipative behavior to include not only viscosity, but also thermal and inelastic processes.

Thermal processes are incorporated by taking as primitive thermal variables the so-called thermal

displacements, an idea suggested in [13] and considered within the context of the theory of con�g-

urational forces in [3], [18], [47], [48]. Thermal displacements are de�ned as the time integral of

the temperature �eld or, equivalently, as the scalar �eld whose rate is the temperature. The main

consequence of introducing thermal displacements as primitive variables is that a correspondence or

analogy between mechanical variables and thermal variables can be established. For each quantity
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in the equation of mechanical force balance, parallel quantities can be identi�ed in the equation of

entropy balance. In order to extend the variational adaptivity framework to problems with thermal

and internal variables we shall take this analogy further by assuming an additive decomposition for

the heat �ux into a conservative, dissipationless part and a non-conservative (or dissipative) part in

complete analogy to the well-established additive decomposition of the mechanical stress into elas-

tic (or conservative) and viscous parts. We shall furthermore pursue equivalent decompositions for

the thermodynamic stresses conjugate to the internal variables and for the mechanical body forces

and heat sources. Then, mirroring the formulation of the extended Lagrange-d�Alembert principle

developed for isothermal elasticity with viscosity, we shall formulate an extended thermomechanical

analog of Lagrange-d�Alembert principle from which all governing equations, i.e., mechanical force

balance, entropy balance, internal force balance, and con�gurational force balance, can be derived

and from which adaptivity eventually can be driven.

A central attribute of the variational principles we consider in this work is its mixed or multi�eld

character, which allows for the combination of multiple interpolation spaces as an approach to control

stability. Mixed variational principles have been widely used in the formulation of �nite element

procedures (see for example [1]) mainly in elliptic (static) boundary value problems. In chapter 5 we

develop the mixed version of Hamilton�s principle as it will be used for variational space adaptivity.

These mixed principles might be regarded as the dynamic analog of well-known DeVeubeke-Hu-

Washizu mixed variational principles for statics and related principles [62], [9]. In particular the

two-�eld (deformation-velocity) mixed version of Hamilton�s principle from which we shall drive

adaptivity corresponds to the deformation-strain dual of the well-known Hellinger-Reissner principle.

We shall also develop in this chapter a mixed version of the extended Lagrange-d�Alembert principle

(in its mechanical and thermomechanical versions) targeted to drive adaptivity in problems with

viscosity. In this mixed version of the extended Lagrange-d�Alembert principle a total assumed

viscous force �eld is incorporated into the model as a new unknown, and independent test functions

are used to enforce compatibility between the assumed viscous �eld and the physical viscous stresses.

Chapter 6 fully develops the �nite element formulation and implementation and variational time

integration within the context of elastodynamics with and without viscous processes. Since the full

space-time discretization is e¤ected in stages, the �rst part of the chapter focuses in the spatial

discretization using the mixed Hamilton�s principle and leads to a semidiscrete, �nite degree-of-

freedom dynamical system, while the second part focuses in the time discretization using mixed

variational time integrators. Particular emphasis has been placed in geometrical aspects of the

method and in highlighting di¤erences and similitudes between the semidiscrete and continuous

pictures. A comparison between the formulations based on the standard, single-�eld and mixed-

multi�eld versions of Hamilton�s principle is presented and the need for driving adaptivity with the

latter is demonstrated with an illustrative example. Several one dimensional and three-dimensional
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numerical examples and tests designed to assess the performance, robustness and potential of the

adaptivity framework are presented in Chapter 7. In particular we assess the convergence in a wave

propagation example and explore the use of this methodology in a dynamic fracture mechanics test

problem.
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Chapter 2

Variational Mesh Adaption in 1D

In this chapter we present an overview of the fundamental aspects of the variational methods de-

veloped in this work. To simplify the exposition and to keep the technicalities to a minimum we

shall restrict the presentation to one-dimensional hyperelastodynamics. The general formulation

will be developed in the following chapters. We start by reviewing Hamilton�s principle, Lagrange-

d�Alembert�s principle and variational integrators, highlighting the fundamental concept of horizon-

tal variations. We next review the concept of variational adaptivity as it applies to �nite dimensional

Lagrangian systems. We proceed then to study a mixed version of Hamilton�s principle in which not

only con�gurations but also velocities are taken as independent functions. This mixed variational

principle, which will be referred to as mixed-Hamilton�s principle, is then used to formulate an ex-

tended family of time integrators that makes use of di¤erent time interpolations for velocities and

trajectories. The �rst section of this chapter focuses on systems where the only independent variable

is time t, i.e., �nite-dimensional Lagrangian systems, and provides a background for the upcoming

developments. In the second section we turn to systems that depend on both space X and time t

(Lagrangian �eld theory). When the space variable is incorporated into the picture, we are obviously

required to consider the problem of discretization in time and space. Within this context we review

Hamilton�s principle, highlighting the fundamental concept of space-time horizontal variations and

horizontal Euler-Lagrange equations and we study the mixed version of Hamilton�s principle for

space-time-dependent systems. After reviewing the concept of variational adaptivity as it applies

to static problems, we present the space-time generalization of this idea and its implementation in

terms of space-time isoparametric elements. This methodology is then restricted to space adaption

only, which results in a particular class of space-time �nite elements where the same time step is used

for all nodes in the mesh, i.e., space-time is discretized with an homogeneous time step. We will show

that for this particular class of space-time �nite elements there is no need to resort to the machinery

of the space-time formalism and its implementation in terms of �nite elements since, as we shall
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prove, this discretization is equivalent to e¤ect the space-time discretization in two separated and

uncoupled stages, the �rst stage (semidiscretization in space) where the space variable is discretized

keeping the time continuous and over a continuously deforming spatial mesh, followed by a second

stage in which the time is discretized using an appropriate time integrator. We �nally present a

mixed variational adaptive �nite element formulation governed by the mixed version of Hamilton�s

principle and characterized by an independent, assumed spatial interpolation for the material veloc-

ity �eld and independent time interpolations for nodal displacement and velocity parameters. The

use of an independent interpolation for the velocity �eld is proposed as an approach to overcome

instability problems inherent to the use of �nite elements supported over moving meshes.

In summary, the resulting mesh adaption framework is characterized by the following features:

1. The unknown �eld of the problem (deformation) and its time derivative (velocity) are inter-

polated in space over a continuously deforming spatial mesh.

2. The evolving mesh itself is regarded as a new unknown to be handled jointly with the original

unknown �eld and its time rate.

3. The mixed version of Hamilton�s principle is used to supply not only the main unknowns but

also the deforming mesh.

4. Space interpolation and time interpolation are decoupled and e¤ected in two separated stages.

The �rst spatial discretization over the continuously deforming mesh leads to the construction

of a �nite-dimensional (time-only-dependent) Lagrangian system. The latter is then discretized

in time leading to the construction of a full discrete (in space and time) system.

5. Equations for the evolution of all unknowns (original unknown, �elds, their velocities and the

mesh) are obtained by invoking the stationarity of the mixed action with respect to variation of

all its arguments. These equations correspond to the equations of mechanical force balance (or

balance of linear momentum), con�gurational force balance (balance of material momentum),

and compatibility between assumed and consistent velocity interpolations.

6. Since the governing di¤erential equations follow from the mixed Hamilton�s principle, its in-

tegration can be directly accomplished by making use of a mixed variational integrator of the

class analyzed in the �rst part of this chapter.
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2.1 Mixed variational principles for dynamics andmixed vari-

ational integrators

2.1.1 Hamilton�s principle

We consider a �nite-dimensional dynamical system with con�gurations speci�ed by the set of gen-

eralized coordinates q (t) and with Lagrangian L (q; _q) typically de�ned as the di¤erence between

kinetic and potential energies of the system. As we mentioned in the introduction to this chapter,

in this section we will consider only time as independent variable. The action functional is de�ned

as

S [q (t)] =

Z tf

t0

L (q; _q) dt

where t0 and tf are the initial and �nal times. Given the forces that act in and on the dynamical

system, we would like to �nd its time evolution, namely the curve q (t). Hamilton�s principle states

that among all the possible trajectories that join a given initial con�guration q (t0) with a �nal

con�guration q (tf ), the actual motion of the system corresponds to the particular trajectory that

renders the action functional stationary with respect to every admissible variation �q of the trajectory

q (t), i.e., variations �q that vanish in the initial and �nal times �q (t0) = �q (tf ) = 0. This implies

that the variation of the action functional vanishes, namely

h�S; �qi =
d

d"
S [q + "�q]

����
"=0

=

=

Z tf

t0

�
@L

@q
�q +

@L

@ _q
� _q

�
dt = 0

for every �q in the set of admissible variations. Integrating by parts we �nd

h�S; �qi =
Z tf

t0

��
@L

@q
� d

dt

�
@L

@ _q

��
�q

�
dt+

@L

@ _q
�q

����tf
t0

= 0

Since this identity must be satis�ed for every admissible variations �q, and assuming that the latter

is continuous in the time interval, the previous implies the well-known Euler-Lagrange equations

d

dt

�
@L

@ _q

�
� @L

@q
= 0

The magnitudes

p =
@L

@ _q

fe = �@L
@q
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are, respectively, the generalized momentum and generalized (conservative) forces, and in terms of

them the Euler-Lagrange equations reduce to

dp

dt
+ fe = 0

which correspond to the equation of mechanical force balance, or equations of momentum balance.

In particular we will consider Lagrangian systems of the form

L (q; _q) =
1

2
m (q) _q2 � I (q) (2.1)

where m (q) is the mass, possibly con�guration-dependent, I (q) is the potential energy, and the La-

grangian is given simply by the di¤erence between kinetic and potential energies. For this particular

Lagrangian the momentum and conservative forces follow as

p = m (q) _q

fe = � @

@q

�
1

2
m _q2

�
+
@I

@q

and the Euler-Lagrange equations reduce to

d

dt
(m (q) _q) + fe (q) = 0 (2.2)

2.1.2 Lagrange-d�Alembert principle

We will consider also systems with viscosity. In this case the total force is given by

f = fe + fv

where fv are the viscous (non-equilibrium or non-conservative) forces assumed to depend explicitly

on velocity and possibly on the instantaneous con�guration, i.e.,

fv = fv (q; _q)

Furthermore we shall assume that the viscous force derives from a kinetic potential � (q; _q) in the

form

fv =
@�

@ _q

In this case the total force balance equation is given by

d

dt
(m (q) _q) + fe (t; q) + fv (q; _q) = 0 (2.3)
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or in terms of the Lagrangian and kinetic potentials as

d

dt

�
@L

@ _q

�
� @L

@q
+
@�

@ _q
= 0

Unlike the case of conservative systems, this equation does not derive from Hamilton�s principle.

It can be established instead from the Lagrange d�Alembert principle

h�S; �qi �
Z tf

t0

fv (q; _q) �qdt = 0

where S is the action de�ned as in the case of conservative systems as

S [q] =

Z tf

t0

L (q; _q) dt

and where the above identity must be satis�ed for every admissible variation �q. For viscous forces

deriving from a kinetic potential the Lagrange-d�Alembert principle becomes

h�S; �qi �
Z tf

t0

@�

@ _q
(q; _q) �qdt = 0 8�q

2.1.3 Horizontal variations

Of key importance to understanding the methods studied in this work is the concept of horizontal

variations and the Euler-Lagrange equations associated to the stationarity of the action functional

with respect to the latter, which will be referred to as horizontal Euler-Lagrange equations. Consider

the graph of the function q (t), i.e., the curve (t; q (t)) 2 R�Q, where Q is the con�guration space,

�gure 2.1. The components t and q are, respectively, the horizontal and vertical coordinates of

each point on this curve. Hamilton�s principle involves the stationarity of the action functional with

respect to vertical variations �q, which implies the Euler-Lagrange equation

d

dt

�
@L

@ _q

�
� @L

@q
= 0

the equation of momentum balance. We now focus attention on the study of variations of the action

with respect to the horizontal variable �t. To this end we follow the usual procedure (c.f. references

[20], [29], [31]) of introducing a change of parametrization of the horizontal variable

t =  (�)

where � is a new parameter and  : R!R is an invertible function that maps the parameter domain

[�0; �f ] into the time domain [t0; tf ] as depicted in �gure 2.1.
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Figure 2.1: Trajectory of the dynamical system. Graph and representation of a change of parame-
trization of the horizontal (time) domain.

Let

� = q �  (2.4)

or

� (�) = q ( (�))

be the composition function. It follows from these de�nitions that the pair ( (�) ; � (�)) represents

a change of parametrization of the graph of the function q (t), namely, each point of this graph might

be parametrized as

(t; q (t)) = ( (�) ; � (�))

We next refer the action integral to the parameter domain (�0; �f ) to obtain

S =

Z tf

t0

L (q; _q) dt =

=

Z �f

�0

L (q �  ; _q �  ) 0 (�) d� =

=

Z �f

�0

L

�
� (�) ;

�0 (�)

 0 (�)

�
 0 (�) d� =

= S [ ; �]

where we the prime symbol 0 denotes the derivative with respect to the parameter � (as opposed to

the dot symbol, which denotes the derivative with respect to time t) and where we have made use
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of the identity

_q �  = �0

 0

that follows by di¤erentiation of (2.4) with respect to the parameter � . Horizontal variations of S

are de�ned as the variations of the latter with respect to  , namely,

h�S; � i =
d

d"
S [ + "� ; �]

����
"=0

=

=

Z �f

�0

�
L� @L

@ _q

�0 (�)

 0 (�)

�
� 0 (�) d�

Referring the previous back to the original time domain [t0; tf ] we �nd

h�S; � i =
Z tf

t0

�
L� @L

@ _q
_q

�
d

dt

�
� �  �1

�
d�

where we have made use of the identity

d

dt

�
� �  �1

�
=

�
� 0 �  �1

� d
dt

�
 �1

�
=

=

�
� 0

 0

�
�  �1

Integrating by parts yields

h�S; � i =

Z tf

t0

� d

dt

�
L� @L

@ _q
_q

��
� �  �1

�
d�

+

�
L� @L

@ _q
_q

��
� �  �1

�����tf
t0

(2.5)

Horizontal Euler-Lagrange equations follow then by invoking the stationarity of the action functional

S with respect to all admissible horizontal variations � , i.e., variations � continuous and vanishing

at the initial and �nal times � (�0) = � (�f ) = 0,

h�S; � i = 0 8� 

On account of identity (2.5), the previous implies the following horizontal Euler-Lagrange equation:

� d

dt

�
L� @L

@ _q
_q

�
= 0

Three important observations follow:

(i) The horizontal Euler-Lagrange equation is independent of the parametrization  (�). We shall

therefore and occasionally write �t instead of � .
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(ii) For Lagrangian systems of the form

L =
1

2
m (q) _q2 � I (q)

I (q) is the potential energy; the horizontal Euler-Lagrange equation reduces to

dE

dt
= 0

where

E = �
�
L� @L

@ _q
_q

�
= (2.6)

=
1

2
m (q) _q2 + I (q)

is the total energy of the system. The horizontal balance equations for �nite-dimensional

(time-only-dependent) Lagrangian systems is therefore the equation of energy balance.

(iii) For conservative systems, horizontal and vertical Euler-Lagrange equations are equivalent, in

the sense that if one equation is satis�ed, the other is automatically satis�ed. This can be

directly veri�ed by de�ning the following operators (left hand side of the vertical and horizontal

Euler-Lagrange equations)

Fq (q) =
d

dt

@L

@ _q
� @L

@q

Ft (q) = � d

dt

�
L� @L

@ _q
_q

�

whereupon the vertical and horizontal balance equations can be rewritten as

Fq = 0

Ft = 0

Then, it is straightforward to prove the identity

Ft = � _qFq (2.7)

which implies

Fq = 0() Ft = 0

As will be illustrated shortly, this equivalence is broken in the discrete setting, and discrete

energy conservation does not follow automatically from discrete momentum conservation in
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general but only for particular and appropriate selection of the time discretization.

2.1.4 Variational integrators

We review in this subsection the basic formulation of variational integrators as a background for the

upcoming developments. An extensive analysis of this class of integrators may be found for example

in [20], [29], [30], [31] and references therein.

As opposed to standard integrators that discretize (in time) the Euler-Lagrange equations, in a

variational integrator it is the action functional what is discretized. To this end we partition the

time interval [t0; tf ] into discrete times
�
t0 = t0; � � � ; tk; � � � ; tK = tf

�
, where K is the number of time

subintervals and where we use a supraindex to denote time step. This partition results in a sequence

of discrete con�gurations
�
q0 = q0; � � � ; qk; � � � ; qK = qf

�
. We then interpolate the trajectories q (t)

in each interval
�
tk; tk+1

�
with appropriate interpolating functions. Di¤erent choices of interpolation

spaces will give place to di¤erent integrators. To �x ideas and by way of example assume that we

choose linear interpolation, namely,

q (t) = qk
tk+1 � t
tk+1 � tk + q

k+1 t� tk
tk+1 � tk

Inserting this interpolation into the action integral result in the action sum

Sd
�
q0; � � � ; qk; � � � ; qK

�
=

K�1X
k=0

Ld
�
qk; qk+1; tk; tk+1

�
where

Ld
�
qk; qk+1; tk; tk+1

�
=

Z tk+1

tk
L

�
tk+1 � t
tk+1 � tk q

k +
t� tk

tk+1 � tk q
k+1;

qk+1 � qk
tk+1 � tk

�
dt

is the discrete-Lagrangian. We next approximate the integral by recourse of an appropriate quadra-

ture rule. Di¤erent quadrature rules will give di¤erent integrators. We take as a particular example

the simple "midpoint" rule

Ld
�
qk; qk+1; tk; tk+1

�
=
�
tk+1 � tk

�
L

�
(1� �) qk + �qk+1; q

k+1 � qk
tk+1 � tk

�

where the integrand is evaluated at the intermediate time (midpoint)

tk+� = (1� �) tk + �tk+1

with � 2 [0; 1] an integration parameter. Discrete trajectories are then obtained by invoking the
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stationarity of the discrete action sum Sd with respect to variations of the discrete trajectories qk:

@S

@qk
= D1Ld

�
qk; qk+1; tk; tk+1

�
+D2Ld

�
qk�1; qk; tk�1; tk

�
= 0 (2.8)

where we have made use of the standard notation DiLd to indicate the derivative of Ld with respect

to its i-th argument. This identity is the discrete Euler-Lagrange equation (DEL). It represents an

equation to be solved for qk+1 given qk and qk�1 and de�nes therefore a time-stepping algorithm.

Introducing the discrete momentum

pk = �D1Ld
�
qk; qk+1; tk; tk+1

�
= D2Ld

�
qk�1; qk; tk�1; tk

�
(2.9)

the algorithm may be rewritten in the so-called position-momentum form:

pk = �D1Ld
�
qk; qk+1; tk; tk+1

�
pk+1 = D2Ld

�
qk; qk+1; tk; tk+1

�
Given the pair

�
pk; qk

�
the �rst equation provides an (implicit) equation to be solved for qk+1 and

the second serves as an update equation for the momentum pk+1. The pair provides therefore an

update system for the determination of
�
pk+1; qk+1

�
given

�
pk; qk

�
.

For the particular Lagrangian of the form (2.1) and making use of linear time interpolation and

the midpoint integration rule we obtain the discrete Lagrangian

Ld
�
qk; qk+1; tk; tk+1

�
=
�
tk+1 � tk

� 1
2
mk+�

�
qk+1 � qk
tk+1 � tk

�2
� Ik+�

!
(2.10)

where

tk+� = (1� �) tk + �tk+1

qk+� = q
�
tk+�

�
=

= (1� �) qk + �qk+1

are, respectively, the intermediate time and con�guration, and

mk+� = m
�
qk+�

�
Ik+� = I

�
qk+�

�
are the mass and potential energy evaluated at the midpoint. The discrete momenta follow in this
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case as

pk = mk+�

�
qk+1 � qk
tk+1 � tk

�
+ (1� �)

�
tk+1 � tk

�
fe�(k+�)

pk+1 = mk+�

�
qk+1 � qk
tk+1 � tk

�
� (�)

�
tk+1 � tk

�
fe�(k+�)

where

fe�(k+�) = � @

@q

 
1

2
m (q)

�
qk+1 � qk
tk+1 � tk

�2
� I (q)

!�����
qk+�

=

= �
 
1

2

@m

@q

k+��qk+1 � qk
tk+1 � tk

�2
� @I

@q

k+�
!

is the midpoint force and the DEL reduce to

mk+�

�
qk+1 � qk
tk+1 � tk

�
�mk�1+�

�
qk � qk�1
tk � tk�1

�
+ (2.11)

+(1� �)
�
tk+1 � tk

�
fe�(k+�) + (�)

�
tk � tk�1

�
fe�(k�1+�) = 0

which clearly represent a discretization of (2.2)

2.1.5 Extension for non-conservative systems

For discrete systems with non-conservative forces we may extend the previous integrator by making

use of the following discretized version of Lagrange d�Alembert principle ([29], [30], [30]):

@Sd
@qk

�qk �
KX
k=0

fv�d
�
qk; qk+1; tk; tk+1

�
�qk + fv+d

�
qk; qk+1; tk; tk+1

�
�qk+1 = 0 8k

where fv� and fv+ are the so-called "left" and "right" non-conservative forces that should approx-

imate the non-conservative part
R tf
t0
fv�qdt of the Lagrange-d�Alembert principle, namely,

KX
k=0

fv�d
�
qk; qk+1; tk; tk+1

�
�qk + fv+d

�
qk; qk+1; tk; tk+1

�
�qk+1 �

Z tf

t0

fv (q; _q) �qdt (2.12)

Enforcing this principle for every variation in the discretized trajectory �qk results in the identity

D1Ld
�
qk; qk+1; tk; tk+1

�
+D2Ld

�
qk�1; qk; tk�1; tk

�
+ (2.13)

�fv�d
�
qk; qk+1; tk; tk+1

�
� fv+d

�
qk�1; qk; tk�1; tk

�
= 0
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which provides the time-stepping algorithm in the presence of non-conservative forces. De�ning the

discrete momentum now as

pk = �D1Ld
�
qk; qk+1; tk; tk+1

�
+ fv�d

�
qk; qk+1; tk; tk+1

�
=

= D2Ld
�
qk�1; qk; tk�1; tk

�
� fv+d

�
qk�1; qk; tk�1; tk

�
the "position-momentum" form of the algorithm may be rewritten as

pk = �D1Ld
�
qk; qk+1; tk; tk+1

�
+ fv�d

�
qk; qk+1; tk; tk+1

�
pk+1 = D2Ld

�
qk; qk+1; tk; tk+1

�
� fv+d

�
qk; qk+1; tk; tk+1

�
As in the case of conservative systems, the previous equations de�ne the update algorithm to com-

pute the updated position and momentum
�
qk+1; pk+1

�
given the current position and momentum�

qk; pk
�
.

We consider by way of example the particular case of linear time interpolation for q (t) and one

single quadrature point located at tk+
 = (1� 
) tk + (
) tk+1 with 
 2 [0; 1], another integration

parameter (possibly coincident with �). The non-conservative part of the Lagrange-d�Alembert

results are approximated then as

Z tf

t0

fv (q (t) ; _q (t)) �qdt �
KX
k=0

�
tk+1 � tk

�
fv
�
qk+
 ;

qk+1 � qk
tk+1 � tk

�
�qk+


with

qk+
 = (1� 
) qk + (
) qk+1

and

�qk+
 = (1� 
) �qk + (
) �qk+1

Rearranging in the approximation we �nd

Z tf

t0

fv (q (t) ; _q (t)) �qdt �
KX
k=0

fv�d �qk + fv+d �qk+1

where

fv�d = (1� 
)
�
tk+1 � tk

�
fv�(k+
)

fv+d = (
)
�
tk+1 � tk

�
fv�(k+
)
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with

fv�(k+
) = fv
�
qk+
 ;

qk+1 � qk
tk+1 � tk

�
=
@�

@ _q
(q; _q)

�����
qk+
 ; q

k+1�qk
tk+1�tk

�
In particular, if the Lagrangian is of the form 2.1, the discrete momentum reduce to

pk = mk+�

�
qk+1 � qk
tk+1 � tk

�
+
�
tk+1 � tk

� �
(1� �) fe�(k+�) + (1� 
) fv�(k+
)

�
pk+1 = mk+�

�
qk+1 � qk
tk+1 � tk

�
�
�
tk+1 � tk

� �
(�) fe�(k+�) + (
) fv�(k+
)

�
which clearly represents a discretization of equations (2.3).

2.1.6 Variational integrators and incremental potentials

We analyze whether the DEL equations (2.8) or their counterpart for dissipative systems (2.13) derive

from the so-called incremental potential. An incremental potential is a function �
�
qk�1; qk; qk+1

�
such that the update equations that map the pair

�
qk�1; qk

�
to the updated pair

�
qk; qk+1

�
(or a

linear combination of them) can be written as

@�

@qk+1
= 0

In this way the con�guration at the new time step qk+1 can be found by minimizing the incremental

potential �.

Consider the following hypothesis:

1. A Lagrangian of the form (2.1).

2. Constant mass matrix m (q) = m.

3. A variational integrator based on linear time interpolation for q (t) and midpoint quadrature

rule.

4. A constant time step �t.

5. A viscous force independent of q and only dependent on _q.

6. Integration parameters � = 


In this case the update equations reduce to

m

�
qk+1 � qk
�t

� qk � qk�1
�t

�
+�t

 
(1� �)

�
@I

@q
+
@�

@ _q

�����
k+�

+ (�)

�
@I

@q
+
@�

@ _q

�����
k�1+�

!
= 0
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A straightforward di¤erentiation shows that the previous equation may be written as

@�

@qk+1
= 0

where

�
�
qk�1; qk; qk+1

�
=

m

2�t

�
qk+1 � qpre

�2
+�t

1� �
a

�
(I + ��t�)jk+� � (I + ��t�)jk�1+�

�
is the incremental potential, with

qpre = qk +
�
qk � qk�1

�
� ��t

2

m

�
@I

@q
+
@�

@ _q

�����
k�1+�

=

= qk +
�
qk � qk�1

�
� �t

2

m

@

@qk
�
j(I + ��t�)jk�1+�

�
and

Ik+� = I
�
(1� �) qk + �qk+1

�
= I

�
qk+�

�
�k+� = �

�
qk+1 � qk
�t

�
= �

�
qk+� � qk
��t

�

2.1.7 Variational time adaption

In this section we illustrate the concept of variational adaptivity within the context of �nite dimen-

sional Lagrangian systems. As opposed to standard variational integrators, where the set of discrete

times
�
t0 = t0; � � � ; tk; � � � ; tK = tf

�
is given or estimated, we shall regard the latter as unknowns

and we shall make use of Hamilton�s principle to compute those unknowns. As was explained in

Chapter 1, this idea was originally studied in Kane, Marsden & Ortiz [20] and the class of variational

integrators so obtained exactly preserve discrete energy.

We recall that in standard variational integrators (see §2.1.4), only the vertical coordinates qk

of the discretized trajectory (see �gure 2.2) are computed and only one equation is derived. This

equation is the discrete (vertical) Euler-Lagrange equation (equation 2.8)

D1Ld
�
qk; qk+1; tk; tk+1

�
+D2Ld

�
qk�1; qk; tk�1; tk

�
= 0 (2.14)

where

Ld
�
qk; qk+1; tk; tk+1

�
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is the discrete Lagrangian.

Figure 2.2: Continuous (a) and discrete (b) trajectory of the dynamical system. The complete set
of parameters that de�ne the discretization is given not only by the vertical coordinates qk but also
by the horizontal coordinates tk (the mesh).

We regard now as unknowns not only the vertical coordinates qk but also the horizontal coordi-

nates tk and we use the the same variational principle from which the (vertical) unknowns qk are

obtained (discrete Hamilton�s principle) to derive equations for the determination of the discrete

times tk (horizontal unknowns). In other words we assume that an optimal set of discrete times

tk is obtained by rendering the discrete action sum Sd stationary with respect to the horizontal

coordinates tk. We recall that the discrete action sum is given by

Sd
�
� � � ; tk; qk; � � �

�
=

KX
k=0

Ld
�
qk; qk+1; tk; tk+1

�
Invoking the latter stationary with respect to horizontal coordinates tk we �nd

D3Ld
�
qk; qk+1; tk; tk+1

�
+D4Ld

�
qk�1; qk; tk�1; tk

�
= 0 (2.15)

This equation coupled with the �rst discrete Euler-Lagrange equation (2.14) enables the simultaneous

determination of both qk (vertical coordinates) and the mesh tk (horizontal coordinates).

Consider for example the particular case of Lagrangian systems of the form

L (q; _q) =
1

2
m (q) _q � I (q)

discretized with piecewise linear and continuous interpolation and a single quadrature point

Ld
�
qk; qk+1; tk; tk+1

�
=
�
tk+1 � tk

� 1
2
mk+�

�
qk+1 � qk
tk+1 � tk

�2
� Ik+�

!
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In this case we have

D4Ld
�
qk; qk+1; tk; tk+1

�
= �Ek

D3Ld
�
qk; qk+1; tk; tk+1

�
= Ek

where

Ek =
1

2
mk+�

�
qk+1 � qk
tk+1 � tk

�2
+ Ik+�

is the discrete energy. Equation (2.15) then yields

Ek � Ek�1 = 0

Motivated by this example we arrive to the following two important conclusions:

(i) Enforcing horizontal balance equations at the discrete level is equivalent to choosing discrete

times tk such that the discrete energy is exactly conserved.

(ii) As opposed to the continuum setting where energy conservation (horizontal balance) follows

automatically from momentum conservation (vertical balance) (see §2.1.3 ), in the discrete

setting this equivalence is broken. Arbitrary selection of discrete times tk will not result in

general in the automatic satisfaction of a discrete energy conservation law. Vertical and hori-

zontal balance equations are equivalent in the continuum setting but are not equivalent in the

discrete setting. Therefore, the stationarity of the discrete action with respect to the vertical

coordinates qk will not imply stationarity of the discrete action with respect to horizontal

coordinates tk.

This discrepancy between continuous and discrete settings is illustrated graphically in �gure 2.3

(c.f. reference ([29]), see also Chapter 3). Every vertical variation can be interpreted as an horizontal

variation in the continuous case. In the discrete case however, horizontal and vertical variations do

not lead to the same variation and therefore, horizontal and vertical discrete balance equations are

not equivalent.

2.1.8 Mixed Hamilton�s principle

In this section we study a mixed variational formulation that allows for independent variations of

trajectories q (t) and velocities V (t) and an extended class of variational integrators based on this

mixed formulation. The mixed variational formulation and corresponding integrator will be referred,

respectively, to as the mixed Hamilton�s principle and mixed variational integrators. This mixed

principle might be understood as the analogous for dynamics of the well-known DeBeuveke-Hu-

Washizu variational principle for statics and has been linked to the Pontryagin maximum principle



25

Figure 2.3: Horizontal and vertical variations in the continuous (a) and discrete (b) settings. In the
continuous case every horizontal variation might be interpreted as a vertical variation and recipro-
cally. In the discrete setting, however, horizontal and vertical variations are not equivalent leading
to independent horizontal and vertical balance equations.

in optimal control (c.f. [54]). Due to the conceptual link with Pontryagin�s maximum principle the

name Hamilton-Pontryagin variational principle has also been proposed [64]. The formulation of this

mixed variational principle follows standard Lagrange multiplier arguments, where the compatibility

condition _q � V = 0 is imposed by recourse of a Lagrange multiplier p that is itself taken as

independent variable. The mixed action follows then as

S [q; V; p] =

Z tf

t0

(L (q; V ) + p ( _q � V )) dt

The variations of this functional with respect to each of its arguments are

h�S; �qi =

Z tf

t0

�
@L

@q
�q + p� _q

�
dt = 0

h�S; �V i =

Z tf

t0

�
@L

@V
� p
�
�V dt = 0

h�S; �pi =

Z tf

t0

( _q � V ) �pdt = 0

Integrating by parts in the �rst identity we obtain

h�S; �qi =
Z tf

t0

�
@L

@q
� dp

dt

�
�qdt+ p�qjtft0 = 0

Demanding now the stationarity of the mixed action with respect to admissible variations of all of

its arguments, namely, variations (�q; �V; �p) with the �rst component �q vanishing on the initial
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and �nal times t0 and tf we �nd the Euler-Lagrange equations

dp

dt
� @L

@q
= 0

p =
@L

@V

_q = V

We obtain then a system of equations that is equivalent to the Euler-Lagrange equations correspond-

ing to the standard (one-�eld-dependent) Hamilton�s principle. It follows from this identities that

the Lagrange multiplier p is nothing more than the momentum evaluated in V instead of _q.

We next eliminate the Lagrange multiplier p by making use of the Euler-Lagrange equation

corresponding to variations of V . In this way we build the following (two-�eld-dependent) mixed

action functional

S [q; V ] =

Z tf

t0

 
L (q; V ) +

@L

@V

����
(q;V )

( _q � V )
!
dt

The variations of the previous with respect to each of its arguments are

h�S; �qi =

Z tf

t0

�
@L

@q
�q +

@L

@V
� _q +

@2L

@q@V
( _q � V ) �q

�
dt = 0

h�S; �V i =

Z tf

t0

@2L

@V 2
( _q � V ) �V dt = 0

Integrating by parts in the �rst identity we obtain

h�S; �qi =
Z tf

t0

�
@L

@q
� d

dt

�
@L

@V

�
+

@2L

@q@V
( _q � V )

�
�qdt+

@L

@V
�q

����tf
t0

= 0

Stationarity of the mixed action with respect to independent variations of each of the two arguments

(�q; �V ) (with �q vanishing in the initial and �nal times) implies the Euler-Lagrange equations

@L

@q
� d

dt

�
@L

@V

�
+

@2L

@q@V
( _q � V ) = 0

@2L

@V 2
( _q � V ) = 0

It easy to see that, if @
2L
@V 2 is not singular, the previous is equivalent to the Euler-Lagrange equations

corresponding to the standard (single-�eld-dependent) Hamilton�s principle.

To simplify the notation we will occasionally use the notation

Lmix (q; _q; V ) = L (q; V ) +
@L

@V

����
(q;V )

( _q � V )
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The new magnitude Lmix will be referred to as the mixed Lagrangian. Using this new symbol the

mixed Hamilton�s principle becomes

S [q; V ] =

Z tf

t0

Lmix (q; _q; V ) dt

Written in terms of Lmix the variations of the mixed action are

h�S; �qi =

Z tf

t0

�
@Lmix

@q
�q +

@Lmix

@ _q
� _q

�
dt = 0

h�S; �V i =

Z tf

t0

@Lmix

@V
�V dt = 0

and the Euler-Lagrange equation take the compact form

d

dt

�
@Lmix

@ _q

�
� @Lmix

@q
= 0

@Lmix

@V
= 0

For the particular class of Lagrangians of the form L (q; _q) = 1
2m (q) _q

2 � I (q) the mixed (two-

�eld) action is given by

S [q; V ] =

Z tf

t0

�
1

2
m (q)V 2 � I (q) + V m (q) ( _q � V )

�
dt

The corresponding Euler-Lagrange equations are in this case

d

dt
(m (q)V ) + fe = 0

m (q) ( _q � V ) = 0

where

fe (q; _q; V ) = � @

@q

�
1

2
m (q)V 2 � I (q) + V m (q) ( _q � V )

�
=

= �@L
mix

@q
(q; _q; V )

2.1.9 Relation with Hamilton�s equations

A straightforward derivation shows that the mixed (two-�eld) variational formulation just outlined

may be transformed into another functional that operates as a variational principle for Hamilton�s
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equations. We recall that Hamilton�s equations are

_p = �@H
@q

_q =
@H

@p

where H (q; p) is the Hamiltonian de�ned as

H (q; p) = �L (q; V ) + pV

with V written in terms of (p; q), using for this the inverse of the equation that de�nes the momentum,

namely

p =
@L

@V
(q; V )

To establish this relation, we simply rearrange the mixed (two �eld) action in the form

S [q; V ] =

Z tf

t0

��
L (q; V )� V @L

@V

�
+
@L

@q
_q

�
dt

and de�ne

�H (q; V ) = L (q; V )� V @L

@V

Using this notation the mixed variational principle becomes

S [q; V ] =

Z tf

t0

�
�H (q; V )� @L

@q
_q

�
dt

Inverting now the relation

p =
@L

@V
(q; V )

to obtain V as function of (q; p) and composing the mixed functional S (q; V ) with the obtained

function V (q; p), the following new mixed functional arise

S0 [q; p] = S [q; V (q; p)]

=

Z tf

t0

(�H (q; p)� p _q) dt
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where H (q; p) is the Hamiltonian. Stationarity of the S0 with respect to each one of its arguments

implies

h�S0; �qi =

Z tf

t0

�
�@H
@q

�q � p� _q
�
dt = 0

h�S0; �pi =

Z tf

t0

�
�@H
@p

� _q

�
�pdt = 0

with corresponding Euler-Lagrange equations

_p� @H

@q
= 0

_q +
@H

@q
= 0

Therefore the stationarity of the new mixed functional S0 [q; p] = S [q; V (q; p)] with V (q; p) de�ned

implicitly by p = @L
@V (q; V ) with respect to its arguments implies Hamilton�s equations.

2.1.10 Mixed Variational Integration

We proceed now to use the mixed action S (q; V ) as an operative variational principle to formulate

an extended class of time-stepping algorithms. To this end we partition the time interval [t0; tf ]

into discrete times
�
t0 = t0; � � � ; tk; � � � ; tK = tf

�
where K is the number of time subintervals. We

proceed by interpolating the trajectories q (t) and velocities V (t) in each interval
�
tk; tk+1

�
with

some interpolating functions. As is standard in mixed formulations, the question that immediately

arise is how to select the interpolating spaces. We will provide an insight to the answer of this

question by analyzing by way of example the following two possibilities:

1. Trajectories q (t) are interpolated linearly and velocities V (t) are interpolated with a constant

V k+� , namely,

q (t) = qk
tk+1 � t
tk+1 � tk + q

k t� tk
tk+1 � tk

V (t) = V k+�

for every t 2
�
tk; tk+1

�
.

2. Both trajectories and velocities are interpolated linearly, namely, for every t 2
�
tk; tk+1

�
q (t) = qk

tk+1 � t
tk+1 � tk + q

k t� tk
tk+1 � tk

V (t) = V k
tk+1 � t
tk+1 � tk + V

k t� tk
tk+1 � tk



30

Using these two examples we now proceed to build the mixed action sum, discrete-mixed La-

grangian, and discrete-mixed Euler-Lagrange equations. To simplify the derivations we assume the

classical Lagrangian

L (q; V ) =
1

2
m (q)V 2 � I (q)

for which the mixed Lagrangian is given by

Lmix (q; _q; V ) = L (q; V ) +
@L

@V
( _q � V ) =

=
1

2
m (q)V 2 � I (q) + V m (q) ( _q � V )

Inserting the �rst of these interpolations into the mixed action functional, the following mixed action

sum is obtained

Sd
��
� � � ; qk; � � �

�
;
�
� � � ; V k+� ; � � �

��
=

KX
k=0

Lmixd

�
qk; qk+1; V k+� ; tk; tk+1

�
(2.16)

where

Lmixd

�
qk; qk+1; V k+� ; tk; tk+1

�
=

=

tk+1Z
tk

Lmix
�
q (t) ;

qk+1 � qk
tk+1 � tk ; V

k+�

�
dt =

tk+1Z
tk

�
1

2
m (q (t))

�
V k+�

�2 � I (q (t)) + V k+�m (q (t))�qk+1 � qk
tk+1 � tk � V

k+�

��
dt (2.17)

with

q (t) =
tk+1 � t
tk+1 � tk q

k +
t� tk

tk+1 � tk q
k+1

Inserting the second of the interpolations into the mixed action functional, the mixed action sum

follow instead as

Sd
��
� � � ; qk; � � �

�
;
�
� � � ; V k; � � �

��
=

KX
k=0

Lmixd

�
qk; qk+1; V k; V k+1; tk; tk+1

�
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with corresponding discrete-mixed Lagrangian given by

Lmixd

�
qk; qk+1; V k; V k+1; tk; tk+1

�
=

=

tk+1Z
tk

Lmix
�
q (t) ;

qk+1 � qk
tk+1 � tk ; V (t)

�
dt =

=

tk+1Z
tk

�
1

2
m (q (t)) (V (t))

2 � I (q (t)) + V (t)m (q (t))
�
qk+1 � qk
tk+1 � tk � V (t)

��
dt

with

q (t) =
tk+1 � t
tk+1 � tk q

k +
t� tk

tk+1 � tk q
k+1

V (t) =
tk+1 � t
tk+1 � tk V

k +
t� tk

tk+1 � tk V
k+1

The formulation of time integrators is then completed by the appropriate selection of a quadrature

rule. If for example we use a single quadrature point located at tk+� = (1� �) tk + (�) tk+1 the

following discrete-mixed Lagrangians are obtained: for the �rst set of interpolating spaces (linear

for q and constant for V ):

Lmixd

�
qk; qk+1; V k+� ; tk; tk+1

�
=�

tk+1 � tk
��1
2
mk+�

�
V k+�

�2 � Ik+� + V k+�mk+�

�
qk+1 � qk
tk+1 � tk � V

k+�

��

where

Ik+� = I
�
qk+�

�
mk+� = m

�
qk+�

�
qk+� = (1� �) qk + (�) qk+1

and

V k+� = constant

per time interval. For the second set of spaces (linear for both q and V ) we obtain

Lmixd

�
qk; qk+1; V k; V k+1; tk; tk+1

�
=�

tk+1 � tk
��1
2
mk+�

�
V k+�

�2 � Ik+� + V k+�mk+�

�
qk+1 � qk
tk+1 � tk � V

k+�

��
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where mk+�, Ik+� and qk+� is given as before but where V k+� is given now by

V k+a = (1� �)V k + (�)V k+1

While these two discrete-mixed Lagrangians seem to be identical, there is a very important di¤erence:

in the �rst case the Lagrangian is assumed to be function of one velocity V k+� per time interval�
tk; tk+1

�
while in the second case the Lagrangian is assumed to depend on two velocities V k and

V k+1 per time interval. As we will illustrate shortly this derives in the existence of "modes" for the

velocity.

The discrete trajectories and velocities follow now by invoking the stationarity of the discrete-

mixed action sum Sd with respect to each and all of its arguments. In the �rst case we obtain

@Sd
@qk

= D1L
mix
d

�
qk; qk+1; V k+� ; tk; tk+1

�
+D2L

mix
d

�
qk�1; qk; V k�1+� ; tk�1; tk

�
= 0(2.18)

@Sd
@V k+�

= D3L
mix
d

�
qk; qk+1; V k+� ; tk; tk+1

�
= 0 (2.19)

while in the second case we get

@Sd
@qk

= D1L
mix
d

�
qk; qk+1; V k; V k+1; tk; tk+1

�
+D2L

mix
d

�
qk�1; qk; V k�1; V k; tk�1; tk

�
= 0

@Sd
@V k

= D3L
mix
d

�
qk; qk+1; V k; V k+1; tk; tk+1

�
+D4L

mix
d

�
qk�1; qk; V k�1; V k; tk�1; tk

�
= 0

These equations are the discrete-mixed Euler-Lagrange equations (DMEL). For the particular discrete-

mixed Lagrangians under study the DMEL reduce to

0 = �
�
mk+�V k+� �mk�1+�V k�1+�

�
+
�
tk+1 � tk

�
(1� �) fk+� +

�
tk � tk�1

�
(�) fk�1+�

0 = mk+�

�
V k+� � qk+1 � qk

tk+1 � tk

�

with

fk+� =
1

2

@m

@q

k+� �
V k+�

�2 � @I

@q

k+�

+ V k+�
@m

@q

k+��qk+1 � qk
tk+1 � tk � V

k+�

�
fk�1+� =

1

2

@m

@q

k�1+� �
V k�1+�

�2 � @I

@q

k�1+�
+ V k�1+�

@m

@q

k�1+��qk � qk�1
tk � tk�1 � V

k�1+�
�

in the �rst case and

0 = �
�
mk+�V k+� �mk�1+�V k�1+�

�
+
�
tk+1 � tk

�
(1� �) fk+� +

�
tk � tk�1

�
(�) fk�1+�

0 = (1� �)mk+�

�
V k+� � qk+1 � qk

tk+1 � tk

�
+ (�)mk�1+�

�
V k�1+� � qk � qk�1

tk � tk�1

�
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with

fk+� =
1

2

@m

@q

k+� �
V k+�

�2 � @I

@q

k+�

+ V k+�
@m

@q

k+��qk+1 � qk
tk+1 � tk � V

k+�

�
fk�1+� =

1

2

@m

@q

k�1+� �
V k�1+�

�2 � @I

@q

k�1+�
+ V k�1+�

@m

@q

k�1+��qk � qk�1
tk � tk�1 � V

k�1+�
�

in the second case.

We can see that in the �rst case we have a system of two equations for the unknowns
�
qk+1; V k+�

�
given

�
qk�1; qk; V k�1+�

�
and discrete trajectories and velocities result univocally determined given

initial conditions
�
q0; q1; V 0+�

�
. However only two of these are required since the Euler-Lagrange

equation for V at the initial time is just

V 0+� � q1 � q0
t1 � t0 = 0

Therefore, and as expected, given the initial data
�
q0; V 0+�

�
the complete discrete trajectories for q

and V are well de�ned by this algorithm. Analyzing now the DMEL equations for the second case

we observe that we obtain a system of two equations for the unknowns
�
qk+1; V k+�

�
that can only

be solved if we are given
�
qk�1; qk; V k�1+�

�
. A discrete trajectory will therefore be generated if we

provide as initial conditions the triple
�
q0; q1; V 0+�

�
. However, unlike the �rst case, the three values�

q0; q1; V 0+�
�
are required to generate a unique trajectory and the algorithm does not provide a

unique way to generate the additional required value q1. We thus conclude that the second algorithm

will exhibit arbitrary global modes in time. This means that the resulting trajectory for q (t) and

V (t) will be unique up to an arbitrary global mode �xed only by the arbitrary selection of the initial

data q1.

We also observe that in the �rst case we recover the variational integrator based on the single

�eld Lagrangian (2.10). This can be easily veri�ed by eliminating V k+� from the second DMEL

equation and substituting the result into the �rst to obtain

0 = �
�
mk+� q

k+1 � qk
tk+1 � tk �m

k�1+� q
k � qk�1
tk � tk�1

�
+

+
�
tk+1 � tk

�
(1� �)

 
1

2

@m

@q

k+��qk+1 � qk
tk+1 � tk

�2
� @I

@q

k+�
!

+
�
tk � tk�1

�
(�)

 
1

2

@m

@q

k�1+��qk � qk�1
tk � tk�1

�2
� @I

@q

k�1+�
!

that correspond to the DEL equations (2.11). This will happen in general when the interpolation

space for V (t) coincides with the space that results from taking derivatives in time of the interpo-

lating functions selected for q (t). More precisely, let Q be the global interpolation space for q (t)



34

and V be the global interpolating space for V , i.e., the functions q (t) and V (t) (in the complete

time interval [t0; tf ]) are linear combinations of functions of Q and V. Then If V = _Q, that is to

say, functions of V are time derivatives of functions of Q, then both methods will be equivalent. If

on the other hand the space V is too rich compared to the space _Q then the method will exhibit

velocity modes.

2.1.11 Mixed Variational Integration with selective quadrature rules

Consider again the case of piecewise linear (and continuous) interpolation for trajectories q (t) and

piecewise constant (and discontinuous) interpolation for the velocity V (t), namely,

q (t) = qk
tk+1 � t
tk+1 � tk + q

k t� tk
tk+1 � tk

V (t) = V k+�

for t 2
�
tk; tk+1

�
and for every k. As was explained in the previous subsection, inserting this

interpolation into the mixed action functional, the following mixed action sum is obtained:

Sd
��
� � � ; qk; � � �

�
;
�
� � � ; V k+� ; � � �

��
=

KX
k=0

Lmixd

�
qk; qk+1; V k+� ; tk; tk+1

�
with a discrete-mixed Lagrangian given by

Lmixd

�
qk; qk+1; V k+� ; tk; tk+1

�
=

=

tk+1Z
tk

Lmix
�
q (t) ;

qk+1 � qk
tk+1 � tk ; V

k+�

�
dt =

tk+1Z
tk

�
1

2
m (q (t))

�
V k+�

�2 � I (q (t)) + V k+�m (q (t))�qk+1 � qk
tk+1 � tk � V

k+�

��
dt

Di¤erent alternative time-stepping algorithms follow by an appropriate selection of quadrature rule.

A class of mixed variational integrators might be designed by making use of selective quadrature

rules, that is to say, di¤erent quadrature rules for the di¤erent terms in the previous integral. For

example, if we use one single quadrature point located at tk+� for the kinetic energy term and

Lagrange multiplier terms, but a two point quadrature rule (located at tk+� = (1� �) tk + (�) tk+1

and tk+1�� = (�) tk + (1� �) tk+1) for the potential energy term, we obtain the discrete-mixed
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Lagrangian

Lmixd

�
qk; qk+1; V k+� ; tk; tk+1

�
=�

tk+1 � tk
��1
2
mk+�

�
V k+�

�2 � 1
2

�
Ik+� + Ik+1��

�
+ V k+�mk+�

�
qk+1 � qk
tk+1 � tk � V

k+�

��
(2.20)

where

Ik+� = I
�
(1� �) qk + (�) qk+1

�
Ik+1�� = I

�
(�) qk + (1� �) qk+1

�
In this case the discrete-mixed Euler-Lagrange equations take the form

0 = �
�
mk+�V k+� �mk�1+�V k�1+�

�
+
�
tk+1 � tk

�
ek+� (1� �) +

+
�
tk � tk�1

�
ek�1+� (�) +

+
�
tk+1 � tk

� 1
2

�
fk+� (1� �) + fk+1�� (�)

�
+
�
tk � tk�1

� 1
2

�
fk�1+� (�) + fk�� (1� �)

�
(2.21)

0 = mk+�

�
V k+� � qk+1 � qk

tk+1 � tk

�
(2.22)

with

ek+� =
1

2

@m

@q

k+� �
V k+�

�2
+ V k+�

@m

@q

k+� �qk+1 � qk
tk+1 � tk � V

k+�

�
ek�1+� =

1

2

@m

@q

k�1+� �
V k�1+�

�2
+ V k�1+�

@m

@q

k�1+� �qk � qk�1
tk � tk�1 � V

k�1+�
�

and

fk+� =
@I

@q

k+�

=
@I

@q

����
((1��)qk+(�)qk+1)

fk+1�� =
@I

@q

k+1��
=
@I

@q

����
((�)qk+(1��)qk+1)

fk�1+� =
@I

@q

k�1+�
=
@I

@q

����
((1��)qk�1+(�)qk)

fk�� =
@I

@q

k��
=
@I

@q

����
((�)qk�1+(1��)qk)
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2.1.12 Mixed Variational Integration and mixed incremental potential

For non-conservative systems, we may extend the update equations for a mixed variational integrator

(2.18) and (2.19) in the form

0 = D1L
mix
d

�
qk; qk+1; V k+� ; tk; tk+1

�
+D2L

mix
d

�
qk�1; qk; V k�1+� ; tk�1; tk

�
+

�fv�d
�
qk; qk+1; tk; tk+1

�
� fv+d

�
qk�1; qk; tk�1; tk

�
0 = D3L

mix
d

�
qk; qk+1; V k+� ; tk; tk+1

�
where fv�1d and fv+d are the left and right discrete viscous forces de�ned such that relation (2.12)

is satis�ed. It becomes useful to analyze whether these equations derive from a mixed-incremental

potential, i.e., a function �
�
qk+1; V k+�

�
such that the previous can be written as

@�

@qk+1
= 0

@�

@V k+�
= 0

Consider the following hypothesis:

1. A Lagrangian of the form (2.1).

2. Constant mass matrix m (q) = m.

3. A variational integrator based on linear time interpolation for q (t), piecewise constant inter-

polation for V (t) and midpoint quadrature rule.

4. A constant time step �t.

5. A viscous force independent of q and only dependent on _q.

6. Integration parameters � = 


In this case the updated equations reduce to

m
�
V k+� � V k�1+�

�
+�t

 
(1� �)

�
@I

@q
+
@�

@ _q

�����
k+�

+ (�)

�
@I

@q
+
@�

@ _q

�
k�1+�

!
= 0

m

�
V k+� � qk+1 � qk

�t

�
= 0
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A straightforward di¤erentiation shows that the previous equation derive from the following incre-

mental potential:

�
�
qk�1; qk; V k�1+� ; qk+1; V k+�

�
=

m

2

�
V k+� � V pre

�2
+

+�t
1� �
a

�
j(I + ��t�)jk+� � j(I + ��t�)jk�1+�

�
+

+
�
V k+� � V pre

�
m

�
qk+1 � qpre

�t
�
�
V k+� � V pre

��

with

qpre = qk +�tV k�1+� � ��t
2

m

�
@I

@q
+
@�

@ _q

�����
k�1+�

=

= qk +�tV k�1+� � �t
2

m

@

@qk
(I + ��t�)jk�1+�

V pre = V k�1+� � ��t
2

m

�
@I

@q
+
@�

@ _q

�����
k�1+�

=

= V k�1+� � �t
2

m

@

@qk
(I + ��t�)jk�1+�

and

Ik+� = I
�
(1� �) qk + �qk+1

�
= I

�
qk+�

�
�k+� = �

�
qk+1 � qk
�t

�
= �

�
qk+� � qk
��t

�

2.2 Mixed variational principles for Solid dynamics and vari-

ational mesh adaption

We proceed in this section to incorporate the space variable X into the picture and to highlight

the salient features of the variational principles and the variational �nite element mesh adaption

framework analyzed in this thesis. To keep the presentation simple we will consider for the duration of

this chapter only one-dimensional (in space) problems and the particular case of isothermal elasticity

with no viscosity. The full three-dimensional formulation in the presence of viscous, thermal, and

internal processes will be treated in the following chapters.
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2.2.1 Lagrangian formulation for elastodynamics

We begin by reviewing Hamilton�s principle in the context of one-dimensional elasticity. The ex-

tension of Hamilton�s principle and its mixed version to the space-time context is accomplished by

de�ning the Lagrangian L of the the body B in terms of a density L

L =

Z
B

LdX

Consider a one-dimensional body B = [0; L] where L is the undeformed length L of the body.

The body subsequently moves under the action of externally applied forces and we are interested

in �nding its motion ' (X; t), i.e., the function that speci�es the spatial position x = ' (X; t) for

each material particle X 2 B and each time t in the time interval [t0; tf ] of analysis. Let B (X; t)

be the external body forces per unit of undeformed length and assume that the material is elastic

and possibly inhomogeneous, i.e., its constitutive relation is given by

P =
@A

@F

where P is the (Piolla-Kirchho¤) stress, F = @'
@X is the deformation gradient, and A (X;F ) is the

strain-energy density (assumed to depend explicitly onX to account for the possible inhomogeneity).

To simplify the derivations we will assume zero traction and displacement boundary conditions, i.e.,

' (0; t) = ' (L; t) = 0

P (0; t) = P (L; t) = 0

The Lagrangian density is de�ned as

L (X; t; '; V; F ) = 1

2
RV 2 �W (X; t; '; F ) (2.23)

where V = _' is the material velocity, R is the mass density per unit of undeformed length, and W

is the total potential energy given in this case as

W (X; t; '; F ) = A (X;F )�B (X; t)'

The (standard, single-�eld) action functional S (') follows by integrating in space and time the
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Lagrangian density in the form

S ['] =

Z tf

t0

Z L

0

L (X; t; '; _';D') dXdt =

=

Z tf

t0

Z L

0

�
1

2
R _'2 �W (X; t; ';D')

�
dXdt (2.24)

where we are using the notation

_' =
@'

@t

D' =
@'

@X

for the partial derivatives with respect to time and space. The variations of the action functional

with respect to its argument are

h�S; �'i =
Z tf

t0

Z L

0

�
@L
@'

�'+
@L
@V

� _'+
@L
@F

D�'

�
dXdt

where we have used the usual commutative assumption

� ( _') = �

�
@'

@t

�
=

@

@t
(�') = � _'

� (D') = �

�
@'

@X

�
=

@

@X
(�') = D�'

Integrating by parts in time for the second factor and in space for the third factor we obtain the

variations in the form

h�S; �'i =

Z tf

t0

Z L

0

�
@L
@'

� d

dt

@L
@V

� d

dX

@L
@F

�
�'dXdt+Z tf

t0

@L
@F

�'

����L
0

dt+

Z L

0

@L
@V

�'

����tf
t0

dX

Hamilton�s principle states the actual motion ' (X; t) that joins prescribed initial and �nal con�gu-

rations '0 (X) and 'f (X) will be the particular motion that renders the action functional stationary

with respect to all admissible variations, i.e., variations that vanish in the initial and �nal times and

in the Dirichlet part of the boundary. This implies the Euler-Lagrange equations

@L
@'

� d

dt

@L
@V

� d

dX

@L
@F

= 0 (2.25)

For a Lagrangian density of the form L = 1
2RV

2 �W (X; t; '; F ) the previous yields

�B � dP

dX
+
d

dt
(RV ) = 0 (2.26)
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that corresponds to the equations of balance of mechanical forces or balance of linear momentum.

2.2.2 Horizontal variations and Euler-Lagrange equations

As in the case of �nite-dimensional Lagrangian systems, the concept of horizontal variations and

horizontal Euler-Lagrange equations will play a fundamental role in the analysis of the methods

presented in this thesis. This variational formulation was developed within the context of the theory

of multisimplectic continuum mechanics in [29], [30] and the procedure we will present in what

follows is its particularization to one-dimensional elasticity rewritten in a less abstract notation.

The motion of the body is de�ned as the function

x = ' (X; t)

Consider the graph of this function, i.e., the surface

(X; t; ' (X; t))

which belongs to the combined space-time-space bundle with coordinates (X; t; x) and its one of its

sections. Figure 2.4 depicts this surface. With this picture in mind, we shall refer to (X; t) as the

horizontal variables and to x = ' (X; t) as the vertical variable.

In the previous subsection we invoked the stationarity of the action functional S ['] with respect

to variations of the vertical variable ', or vertical variations. The corresponding Euler-Lagrange

equation (equation 2.25) evaluated to

@L
@'

� d

dt

@L
@V

� d

dX

@L
@F

= 0

We focus the attention now in variations with respect to the horizontal variables and the Euler-

Lagrange equations corresponding to the stationarity of the action functional with respect to hori-

zontal variations, which shall be referred to as horizontal Euler-Lagrange equations. We recall from

§2.1.3 that for �nite-dimensional Lagrangian systems, the Euler-Lagrange equation corresponding

to horizontal variations was nothing more than the energy balance equation. When the base space

is space-time, we are allowed to take horizontal variations both in the direction of space and the

direction of time. We shall �nd as we proceed, that the horizontal Euler-Lagrange equation in the

direction of time corresponds to the equation of energy balance while the horizontal Euler-Lagrange

equation associated to the space direction yields the equation of balance of dynamic con�gurational

forces.

To this end, and as it was done for the �nite-dimensional case (see §2.1.3), we introduce a change
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Figure 2.4: Graph of the motion ' (X; t) of a one-dimensional body B and change of parametrization
of its base space, i.e., the space-time subset B � [t0; tf ].

in parametrization of the base space (see �gure 2.4)

(X; t) =  (�; �) = (X (�; �) ; t (�; �))

that maps every pair (�; �) in the set D� [�0; �f ] into the space-time domain B� [t0; tf ] where (�; �)

are new space-time coordinates as depicted in �gure 2.4 . We shall refer to the set D � [�0; �f ] as

the parameter space, or parametric con�guration. Let

x = ' � 

or

x (�; �) = ' (X (�; �) ; t (�; �))
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be the composition mapping. Di¤erentiating the latter with respect to the space and time parameters

� and � we �nd 0@ @x
@�

@x
@�

1A = J (�; �)

0@ D'

_'

1A � (2.27)

where J is the Jacobian matrix of the space-time reparametrization mapping

J (�; �) =

24 @X
@�

@t
@�

@X
@�

@t
@�

35
We next refer the action functional to the parameter con�guration to �nd

S =

Z tf

t0

Z L

0

L (X; t; '; (D'; _')) dXdt =

=

Z �f

�0

Z L

0

L
�
X (�; �) ; t (�; �) ; x (�; �) ;

�
@x

@�
;
@x

@�

�
J�T

�
det (J) d�d� =

= S [X; t; x]

Horizontal variations of the action S [X; t; x] are those corresponding to variations in the parame-

trization of the base space � (�; �) = (�X (�; �) ; �t (�; �)). To compute these variations we switch

to indicial notation and write

X =  1

t =  2

� = Z1

� = Z2

whereupon the change of parametrization is reexpressed as

 (Z) = ( 1 (Z1; Z2) ;  2 (Z1; Z2)) =

= (X (�; �) ; t (�; �))

and the Jacobian relation (2.27) shall be rewritten as

x;� =
�
';A � 

�
 A;� (2.28)

with Jacobian

JA� =  A;�

Here and in what follows we will use Latin indices (A;B; � � � ) for physical space-time coordinates
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(X; t) and Greek indices (�; �; � � � ) for the space-time parametric coordinates (�; �). Using this

notation the action might be reexpressed as

S [ ; x] =

Z tf

t0

Z L

0

L
�
ZA; x; x;� 

�1
�;A � 

�
det
�
 A;�

�
d�d�

Noticing then that

d

d"
det
�
 A;� + "� A;�

���
"=0

= � A;� 
�1
�;A

d

d"

�
 A;� + "� A;�

��1���
"=0

= � B;�
@

@ B;�

�
 �;A + "� �;B

�����
"=0

=

= � �1�;B� B;� 
�1
�A

the horizontal variations evaluate to

h�S; � i =
d

d"
(S [ + "� ; x])j"=0 =

=

�fZ
�0

LZ
0

�
� A

@L
@ZA

+ L� A;� �1�;A �
@L
@';A

x;� 
�1
�;B� B;� 

�1
�A

�
� det

�
 A;B

�
d�d� =

=

�fZ
�0

LZ
0

�
� A

@L
@ZA

+ � B;� 
�1
�;A

�
L�AB �

@L
@';A

x;� 
�1
�;B

��
� det

�
 A;B

�
d�d� =

=

�fZ
�0

LZ
0

�
� A

@L
@ZA

+ � B;� 
�1
�;A

�
L�AB �

@L
@';A

';B

��
� det

�
 A;B

�
d�d�

where relation (2.28) has been invoked. Referring now the previous integral back to the space-time

reference con�guration [0; L]� [t0; tf ] we obtain

h�S; � i =
tfZ
t0

LZ
0

��
� A � �1

� @L
@ZA

+
�
� B � �1

�
;A

�
L�AB �

@L
@';A

';B

��
dXdt

where we have made use of the identity

�
� B � �1

�
;A
=
�
� B;� � �1

�
 �1�;A

Integrating by parts in the second term and assuming that horizontal variations vanish in the bound-

ary of the space-time domain we �nally obtain

h�S; � i =
tfZ
t0

LZ
0

�
� A � �1

� @L
@ZA

�
�
L�AB �

@L
@';A

';B

�
;A

!
dXdt
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which rewritten in terms of the component functions ( 1 (Z1;Z2) ;  2 (Z1; Z2)) = (X (�; �) ; t (�; �))

takes the form

h�S; � i =

tfZ
t0

LZ
0

0@� @L
@X

;
@L
@t

�
�

0@ �X

�t

1A � �1 +
�
�

@

@X
;
@

@t

�
�

24L
24 1 0

0 1

35�
0@ @L

@F

@L
@V

1A (D'; _')
35 �
0@ �X

�t

1A � �1
1A dXdt

Horizontal Euler-Lagrange equations follow by demanding the stationarity of the action func-

tional with respect to admissible horizontal variations,

h�S; � i = 0

which implies under appropriate smoothness conditions on the integrand the space-time equations

�
@L
@X

;
@L
@t

�
�
�

d

dX
;
d

dt

�
�

0@L
24 1 0

0 1

35�
0@ @L

@F

@L
@V

1A (D'; _')
1A = (0; 0) (2.29)

with space and time components

@L
@X

+
d

dX

�
�
�
L� @L

@F
F

��
� d

dt

�
� @L
@V

F

�
= 0 (2.30)

@L
@t
+

d

dX

�
@L
@F

V

�
+
d

dt

�
�
�
L� @L

@V
V

��
= 0 (2.31)

The magnitude

C = �

0@L
24 1 0

0 1

35�
0@ @L

@F

@L
@V

1A (F; V )
1A =

= �

24 L� @L
@F F � @L

@F V

� @L
@V F L� @L

@V V

35 (2.32)

which represents the space-time analog of

E = �
�
L� @L

@ _q
_q

�

(see §2.1.3, equation (2.6)) is the space-time energy-(material) momentum tensor or space-time

Eshelby stress tensor ([6], [7], [29],[30], [63]) and equation (2.29) is the equation of balance of energy-

(material) momentum.
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The magnitude

C = �
�
L� @L

@F
F

�
which corresponds to the space-space component of the space-time Eshelby stress tensor de�ned

in (2.32) will be referred to as the dynamic Eshelby stress tensor. The space component (2.30) of

equation (2.29) is the equation of balance of material momentum or equation of balance of dynamic

con�gurational forces while its time component (2.31) is the equation of balance of mechanical energy.

For Lagrangian densities of the form

L =1
2
RV 2 �W (X; t; '; F )

the space-time Eshelby stress tensor evaluates to

C =

24 �W � 1
2RV

2
�
� PF �PV

RV F 1
2RV

2 +W

35
and equations (2.30) and (2.31) reduce to

@L
@X

+
@C

@X
� @

@t
(�RV F ) = 0 (2.33)

@L
@t
+

@

@X
(�PV ) + @

@t

�
1

2
RV 2 +W

�
= 0 (2.34)

where

C = �1
2
RV 2 +W�PF

P =
@W

@F

are, respectively, the dynamic Eshelby stress tensor and �rst Piolla-Kirchho¤ stress tensor.

As we shall explain shortly, we will particularize the variational adaptivity framework to space

adaption only. It follows that the equations of interest in our formulation will be the vertical Euler-

Lagrange equation (2.25) and the horizontal Euler-Lagrange equation in the direction of space (2.30),

i.e., the equations of motion and the equation of balance of dynamic con�gurational forces. We shall

rewrite these equations jointly in a column vector equation as0@ @L
@X

@L
@'

1A+ d

dX

0@ �
�
L� @L

@F F
�

� @L
@F

1A� d

dt

0@ � @L
@V F

@L
@V

1A =

0@ 0

0

1A
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or alternatively as0@ @L
@X

@L
@'

1A+ d

dX

0@ �
�
L� @L

@F F
�

� @L
@F

1A� d

dt

0@ @L
@V

0@ �F

1

1A1A =

0@ 0

0

1A
2.2.3 Equivalence of vertical and horizontal Euler-Lagrange equations

As was demonstrated in the case of �nite degree-of-freedom Lagrangian systems (see §2.1.3), for con-

servative systems, horizontal and vertical Euler-Lagrange equations are equivalent in the sense that

if the vertical equation is satis�ed, both horizontal Euler-Lagrange equations will be automatically

satis�ed. This can be directly veri�ed in complete analogy to what was done in the �nite-dimensional

case, by de�ning the following Euler-Lagrange operators (left hand side of the vertical and horizontal

Euler-Lagrange equations (2.25), (2.30), and (2.31))

Fx (') =
@L
@'

� d

dt

@L
@V

� d

dX

@L
@F

FX (') =
@L
@X

+
d

dX

�
�
�
L� @L

@F
F

��
� d

dt

�
� @L
@V

F

�
Ft (') =

@L
@t
+

d

dX

�
@L
@F

V

�
+
d

dt

�
�
�
L� @L

@V
V

��

whereupon the balance equations reduce to

Fx (') = 0

FX (') = 0

Ft (') = 0

Then it is straightforward to prove the identities (compare with identity (2.7), see §3.3.3 for a formal

proof in the multidimensional setting)

FX = �FFx

Ft = �V Fx

where

F = D'

V = _'

which implies

Fx = 0, FX = 0, Ft = 0
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As will be illustrated as we proceed and as happened in �nite dimensional Lagrangians systems,

this is not the case when the system has been discretized. Indeed, requiring then satisfaction of the

discrete counterparts of the horizontal Euler-Lagrange equations by rendering the discrete action

stationarity with respect to the horizontal discrete reparametrization will give a new set of equations

that can be used to solve for the discrete base space, i.e., for the space-time mesh. Both time and

space adaptivity could be eventually be driven by this set of equations.

2.2.4 Mixed Lagrangian formulation for elastodynamics

Following the same ideas that led to the formulation of the mixed Hamilton�s principle in �nite-

dimensional (time-only-dependent) Lagrangian systems, we proceed to present a mixed variational

formulation for continuous (space-time-dependent) bodies. To this end we assume that _' and V are

di¤erent �elds and impose the compatibility condition _'�V = 0 by making use of a Lagrange mul-

tiplier p (X; t), that is taken itself as independent variable. The (three-�eld) mixed action functional

follows then as

S ['; V; p] =

Z tf

t0

Z L

0

(L (X; t; '; V;D') + p ( _'� V )) dXdt

The previous functional might be contrasted with the well-known "De-Beubeke-Hu-Washizu" mixed

variational principle for elasto-statics (see for example [9], [62]) that in the context of one-dimensional

elasticity and for zero-traction boundary conditions, takes the form

I ['; F; P ] =

Z L

0

(W (X;'; F ) + P (D'� F )) dX

The variations of the mixed action functional with respect to each of its arguments are

h�S; �'i =

Z tf

t0

Z L

0

�
@L
@'

�'+ p� _'+
@L
@F

D�'

�
dXdt

h�S; �V i =

Z tf

t0

Z L

0

�
@L
@V

� p
�
�V dXdt

h�S; �pi =

Z tf

t0

Z L

0

( _'� V ) �pdXdt

Invoking next the stationarity of the mixed action S ['; V; p] with respect to variations of each of its

arguments implies

h�S; �'i = 0

h�S; �V i = 0

h�S; �pi = 0
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The corresponding Euler-Lagrange equations are

@L
@'

� d

dt
p� d

dX

�
@L
@F

�
= 0

@L
@V

� p = 0

_'� V = 0

that are equivalent to the Euler-Lagrange equations associated to the stationarity of the standard

action S ['] given in (2.25). For the Lagrangian density of the form (2.23), the previous yields

B � d

dt
p+

dP

dX
= 0

RV � p = 0

_'� V = 0

that correspond to the equations of balance of mechanical forces.

Using now the second Euler-Lagrange equation to eliminate the Lagrange multiplier p, the fol-

lowing two-�eld mixed action is obtained:

S ['; V ] =

Z tf

t0

Z L

0

 
L (X; t; '; V;D') + @L

@V

����
(X;t;';V;D')

( _'� V )
!
dXdt (2.35)

The previous should be compared with the deformation-strain dual of the Hellinger-Reissner vari-

ational principle for statics which for one dimensional elasticity and zero Dirichlet and traction

boundary conditions takes the form

I ['; F ] =

Z L

0

 
W (X;'; F ) +

@W

@F

����
(X;t;';F )

(D'� F )
!
dX

The variations of the mixed action with respect to each of its arguments yield

h�S; �'i =

Z tf

t0

Z L

0

�
@L
@'

�'+
@L
@F

D�'+
@L
@V

� _'+
@2L
@'@V

( _'� V ) �'
�
dXdt

h�S; �V i =

Z tf

t0

Z L

0

@2L
@V 2

( _'� V ) �V dXdt

Stationarity of the mixed (two-�eld) action demands

h�S; �'i = 0 (2.36)

h�S; �V i = 0 (2.37)
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The corresponding Euler-lagrange equations are

@L
@'

� d

dt

�
@L
@V

�
� d

dX

�
@L
@F

�
+

@2L
@'@V

( _'� V ) = 0

@2L
@V 2

( _'� V ) = 0

As in the case of �nite-dimensional Lagrangians, this equation is equivalent to the Euler-Lagrange

equations corresponding to the standard, single-�eld Hamilton�s principle. For the particular La-

grangian density (2.23) the mixed Lagrangian reduces to

S ['; V ] =

Z tf

t0

Z L

0

�
1

2
RV 2 �W (X; t; ';D') +RV ( _'� V )

�
dXdt (2.38)

their variations to

h�S; �'i =

Z tf

t0

Z L

0

�
�@W
@'

�'� @W

@F
D�'+RV � _'

�
dXdt (2.39)

h�S; �V i =

Z tf

t0

Z L

0

R ( _'� V ) �V dXdt (2.40)

and their corresponding Euler-Lagrange equation to

B +
dP

dX
� d

dt
(RV ) = 0

R ( _'� V ) = 0

with

B = �@W
@'

P =
@W

@F

In this way the (two-�eld) mixed variational formulation operates as a variational principle equivalent

to the mechanical force balance equations and the compatibility (in time) condition V = _'.

2.2.5 Finite element discretization and variational mesh adaption

We focus now on the discretization (in space and time) of the boundary-value problem (2.26). As

was outlined in Chapter 1, the main idea behind the variational approach to mesh adaption is to

use the principle of stationary action (Hamilton�s principle) to determine not only the unknown of

the problem (the motion ') but the discretization, i.e., the �nite element mesh is chosen in such a

way as to render the discretized action stationary.
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To motivate the idea and as a background for the upcoming developments we review the concept

of variational adaptivity as it applies to static problems. Within the context of solid statics the

idea of variational adaptivity and its connection with con�gurational forces has been studied by a

number of authors, see for example [24], [25], [35], [36], [37], [59], [60].

We proceed next to present the space-time generalization of this idea and its implementation in

terms of space-time isoparametric �nite elements. An essential problem related to this approach is

the issue of solvability of the time step, which is involved in a highly non-linear way. As a result

we study the restriction of this methodology to space adaption only, which results in a particular

class of space-time elements where the same time step is used for all nodes in the mesh, i.e., space-

time is discretized with a homogeneous time step. We will show that for this particular class of

space-time �nite elements there is no need to resort to the machinery and formalism of space-time

�nite elements since, as we shall prove, this discretization is equivalent to e¤ect the space-time

discretization in two separated and uncoupled stages, the �rst stage (semidiscretization in space)

where the space variable is discretized keeping the time continuous and over a continuously deforming

spatial mesh, followed by a second stage in which the time is discretized using an appropriate time

integrator. Since during the �rst stage the time is kept continuous and since time adaption is

no longer pursued there is no need to use the theoretical space-time framework. By contrast a

space-space picture becomes more appropriate and provides more insight. We �nally present a

semidiscrete mixed formulation based on independent interpolations for motion ' and velocities V

and the use of the mixed Hamilton�s principle presented in the previous subsection. This mixed

interpolation is proposed as an approach to overcome instability problems arising when consistent

velocity interpolations are used with continuously evolving spatial meshes.

2.2.6 Review of Variational Mesh Adaption for statics

In static, non-linear elastic problems the operative variational principle is the principle of minimum

potential energy, which states that the stable con�gurations ' (X) of the body B are those for which

the potential energy I ['] is minimized:

inf
'
I [']

The total potential energy (assuming zero traction boundary conditions) is given by

I ['] =

Z
B

W (X;';D') dX

where

W (X;'; F ) = A (X;F )�B (X)'

is the total potential energy density per unit of length of the body.



51

The standard (displacement-based) �nite element method (see for example [17]) proposes then

to discretize the energy functional I ['] by the introduction of a triangulation Th of the domain B

and approximating the deformation ' (X) with the �nite element interpolation

'h (X) =
X
a

Na (X)xa

where Na (X) are the nodal shape functions and xa are the nodal coordinates in the deformed

con�guration. The discretized potential energy Ih follows by evaluating the continuous potential

energy in the discretized deformation

Ih (� � � ; xa; � � � ) = I ['h]

and the �nite element solution 'h is found by minimizing the discretized energy Ih with respect to

the parameters that de�ne the �nite element interpolation, i.e., nodal coordinates xa

inf
xa
Ih (� � � ; xa; � � � )

It is observed next (see for example [59]) that the minimum attained by this minimization problem

depends not only on the spatial nodal coordinates xa but also on the choice of the mesh. In particular

it will depend on the reference coordinates of nodes Xa

Ih (� � � ; Xa; xa; � � � )

It has been then proposed (see for example Thoutireddy and Ortiz, [59]) to use the energy as a

measure of mesh quality and to regard as better mesh the particular one that produces a lower

potential energy. We therefore formulate the extended minimization problem

inf
Xa;xa

Ih (� � � ; Xa; xa; � � � )

which implies

h�Ih; �Xai =
X
a

@Ih
@Xa

�Xa = 0 (2.41)

h�Ih; �xai =
X
a

@Ih
@xa

�xa = 0 (2.42)

i.e., the potential energy is minimized not only with respect to nodal spatial coordinates xa, but

with respect to the node referential placements Xa. In this way the underlying variational principle

of the problem, the principle of minimum potential energy, is used to supply both the �nite element
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solution and the optimal mesh. Energy minimization with respect to the spatial positions xa has

the e¤ect of equilibrating the mechanical nodal forces, while minimization with respect to referential

nodal coordinates has the e¤ect of equilibrating the nodal con�gurational forces induced by the

discretization.

2.2.7 Relation with static con�gurational forces

Within the context of static applications, the idea of using the underlying variational principle (the

principle of minimum potential energy) as an optimality criterion to �nd a "better" mesh (and

therefore to minimize the energy with respect to both nodal referential and spatial coordinates

(Xa; xa)) enjoys a long tradition in the �nite element literature and traces back at least to [33],

[10], [11]. At that moment the calculation of the analytic derivatives of the discretized energy Ih

with respect to the Xa variables was thought to be "a hopeless task in the case of arbitrary two and

three dimensional grids" (see [10]) and only optimization techniques based on energy evaluation (and

without computing the energy derivatives with respect to Xa) were studied. For high dimensionality

problems those optimization techniques proved to be too costly and prohibitive for the computational

resources available at the time.

By contrast, the connection between derivatives of the energy Ih with respect to node referential

coordinates Xa and con�gurational or material forces has been recognized only recently [24], [35],

[?]. The analytic di¤erentiation of the energy Ih with respect to Xa can be computed directly

and the forces conjugate to changes in node placements Fa = @Ih
@Xa

can be interpreted as discrete

con�gurational forces.

We recall from §2.2.2 that the equation of balance of dynamic con�gurational forces for one-

dimensional elasticity is given by (see equation (2.30))

@L
@X

+
d

dX

�
�
�
L � F @L

@F

��
� d

dt

�
(�F ) @L

@V

�
= 0 (2.43)

For Lagrangian densities of the form

L =
RV 2

2
�W (X;'; F ) =

=
RV 2

2
�A (X;F ) +B'

this balance equation reduces to

@

@X

�
B +

RV 2

2

�
+

d

dX

��
W � RV 2

2

�
� FP

�
� d

dt
((�F )RV ) = 0 (2.44)
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and in the static case (no inertia) to

@B

@X
+

d

dX
(W � FP ) = 0

We recall also that the magnitude

C = �
�
L � F @L

@F

�
is the Eshelby stress tensor ([6], [7], see also Chapter 3) which for Lagrangian densities of the form

(2.23) (and in 1D) is given by

C =

�
W � RV 2

2

�
� FP

and in the static case it reduces to

C =W � FP

A straightforward computation ([59], appendix A) that mirrors that developed in §2.2.2 for

the derivation of the continuous con�gurational force balance equation in the space-time setting,

shows that the derivative of the discretized energy Ih with respect to the reference coordinate Xa

corresponds to the nodal (static) con�gurational force associated to node a given by

Fa =
@Ih
@Xa

=

Z
B

Ch
@Na
@X

dX +

Z
B

@B

@X
NadX

where Ch is the static Eshelby stress tensor evaluated in the discretized deformation 'h, i.e.,

Ch =Wh � FhPh

with

Wh = W (X;'h; D'h) =

= W j�
X;
P
a
Naxa;

P
a

@Na
@X xa

�

Fh = D'h =
X
a

@Na
@X

xa

Ph =
@W

@F

����
(X;'h;D'h)

=

=
@W

@F

�����
X;
P
a
Naxa;

P
a

@Na
@X xa

�

The derivative of the discretized energy Ih with respect to nodal spatial coordinates xa is the nodal
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mechanical nodal force given by (see for example [17])

fa =
@Ih
@xa

=

Z
B

(Ph)
@Na
@X

dX +

Z
B

BNadX

where Ph is the (Piolla-Kirchho¤) stress evaluated in the discretized deformation 'h and given

above. Then the system of equations (2.41, 2.42) arranged jointly in a column array evaluates to

0@ Fa

fa

1A =

0@ @Ih
@Xa

@Ih
@xa

1A =

Z
B

0@ Wh � FhPh
Ph

1A @Na
@X

dX +

Z
B

0@ @B
@X

B

1ANadX =

0@ 0

0

1A (2.45)

As we have explained in §2.2.3, the continuous counterpart of the previous equations, namely the

equations of balance of mechanical forces (2.25, 2.26) and con�gurational forces (2.43, 2.44) are equiv-

alent in the sense that if one equation is satis�ed, the other is automatically satis�ed. In the discrete

setting however this equivalence is broken. The discretization induces discrete con�gurational forces

that are not balanced in general, even in homogeneous materials where no con�gurational forces

are expected. The joint system (2.45) is therefore and, in general, a non-degenerate, non-singular

system of equations with a unique solution (Xa; xa). In many situations however the solution is not

unique, the system is ill-posed, or even non-convex (as reported in [49]). In those cases regularization

techniques are required to �nd an admissible solution for (2.45).

Within the context of static applications, the variational mesh adaption framework suggests then

to minimize the discretized energy Ih with respect to referential nodal placements Xa along with

the standard minimization with respect to nodal spatial coordinates xa. Minimization with respect

to Xa has the e¤ect of equilibrating the nodal con�gurational forces that are unbalanced in general,

even when the continuous counterpart are automatically balanced. In the upcoming subsections we

analyze possible extensions of this concept to dynamic applications.

2.2.8 Space-time �nite elements

We proceed in this subsection to generalize to solid dynamics applications the previous spatial mesh

adaption method for statics and its time adaption analog considered in §2.1.7 within the context of

�nite degree-of-freedom Lagrangian systems. The direct generalization is obtained by making use

of space-time �nite elements supported on a space-time mesh that is not prescribed at the outset

but computed using Hamilton�s principle. More precisely, we discretize the action functional S [']

by introducing a triangulation Th of the space-time domain B � [t0; tf ], as depicted in �gure 2.5,

and approximating the motion ' (X; t) with a space-time �nite element interpolation 'h given by

'h (X; t) =
X
ak

Nak (X; t)xak (2.46)



55

where Nak (X; t) are the space-time shape functions, xak are the spatial coordinates of the space-time

node ak, and where the index "ak" is used to enumerate nodes in the space-time element. Figure

X

t

Element “ek”

Node “ak”

Figure 2.5: General triangulation of the space-time domain B � [t0; tf ].

(2.6) sketches the discretization for the motion and the space time mesh. Compare with �gure 2.4.

The discrete action functional Sd follows then by evaluating the continuous action functional S [']

Figure 2.6: Discretization of the motion ' (X; t) with space-time �nite elements. The space-time
placements (Xak; tak) and the nodal deformation xak represent, respectively, horizontal and vertical
coordinates of points on the graph of the discretized motion (X; t'h (X; t))

in the discretized motion

Sd (� � � ; xak; � � � ) = S ['h]
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and the �nite element solution for the motion 'h (X; t) is found by rendering the discrete action Sd

stationary with respect to xak

h�Sd; �xaki =
X
ak

@Sh
@xak

�xak = 0 (2.47)

Let (Xak; tak) be the space-time coordinates of each space-time node "ak" in each space-time

element "ek", where the index "ek" is used to enumerate the space-time elements in the space-time

mesh (�gure 2.7). In complete analogy to the static case where we recognized that the discretized

X

t

Element “ek”

x

Node “ak”

(Xak,tak)
t Node “ak”

(xak,tak)( )








t

tXh ,ϕ

Figure 2.7: Space-time discretization. Reference (left) and spatial (right) space-time domain. Notice
that for di¤erent times t (spatial) mesh change (space-adaption). Notice also that for di¤erent
particles X, the time step change (time-adaption).

action Ih was-dependent not only on nodal spatial coordinates xa but on nodal referential placements

Xa and in complete analogy with the �nite degree-of-freedom case where the discrete action sum was

dependent on the discrete time set (see section §2.1.7), we observe now that the discrete space-time

action Sd, and therefore the solution of (2.47), will depend on the space-time mesh. In particular it

will depend on the space-time reference coordinates (Xak; tak) of each space-time element

Sd = Sd (� � � ; Xak; tak; xak; � � � )

Motivated by the methodology presented in the static case in §2.2.6 and by the variational time

integrators with horizontal variations developed in [20] (see §2.1.7), we assume now that the previous

discrete action should be rendered stationary with respect to all of its arguments. This results in a

system of equations to be solved not only for the �nite element parameters xak but for the space-time
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nodal placements (Xak; tak)

@Sh
@Xak

(� � � ; Xak; tak; xak; � � � ) = 0 (2.48)

@Sh
@tak

(� � � ; Xak; tak; xak; � � � ) = 0 (2.49)

@Sh
@xak

(� � � ; Xak; tak; xak; � � � ) = 0 (2.50)

It is then conjectured that the space-time mesh nodal placements (Xak; tak) obtained by solving

the previous system are optimal since they are obtained by invoking the stationarity of the action

functional, which is the operative variational principle for the problem under study. It bear emphasis

that the previous is a conjecture and not a self-evident or obvious fact. One of the objectives of this

thesis is indeed to explore its validity and scope.

2.2.9 Relation with space-time con�gurational forces

We recall from §2.2.2 that the equations of balance of dynamic con�gurational forces (2.30) and bal-

ance of energy (2.31) are the horizontal Euler-Lagrange equations, i.e., the Euler-Lagrange equations

corresponding to the stationarity of the action functional S with respect to horizontal variations.

We notice also that nodal placements (Xak; tak) represent horizontal coordinates of nodal points

of the discretized motion 'h (X; t) (see �gure 2.6) and that therefore variations of (Xak;tak) will

induce variations on the base space, i.e., the space-time domain. It follows that the derivatives of

the discretized action Sh with respect to the nodal placements (Xak; tak) will correspond to the

discrete space-time nodal con�gurational forces and that demanding the stationarity of the dis-

crete action with respect to the horizontal nodal coordinates will be equivalent to enforcing discrete

con�gurational force balance and discrete balance of energy.

The proof of this statement is straightforward and follows the lines of the procedure developed

in §2.2.2 to compute horizontal variations of the continuous action and horizontal Euler-Lagrange

equations. Consider the particular case of isoparametric space-time elements (�gure 2.8) For this

class of elements the space-time shape functions Nak (X; t) are given by

Nak �

0@ X (�; �)

t (�; �)

1A = N̂ak (�; �)

where (�; �) are parametric coordinates de�ned over the space-time standard domain 
̂, N̂ak (�; �)

are the isoparametric space-time shape functions and the pair (X (�; �) ; t (�; �)) is the space-time
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(X2, t2)
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
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tX ),(ϕ

( )τξ ,

Figure 2.8: Isoparametric space-time element. The isoparametric "standard" domain (�; �) 2

̂ is mapped to each space-time element 
ek with the isoparametric space-time mapping
(X (�; �) ; t (�; �)).

isoparametric mapping given by0@ X (�; �)

t (�; �)

1A =
X
ak

N̂ak (�; �)

0@ Xak

tak

1A (2.51)

The interpolation for the motion 'h written in terms of the parametric coordinates follows then as

x (�; �) = 'h �

0@ X (�; �)

t (�; �)

1A =

=
X
ak

0@Nak �
0@ X (�; �)

t (�; �)

1A1Axak

=
X
ak

N̂ak (�; �)xak (2.52)

For example, for linear spatial elements (two nodes) and linear time interpolation the space-time
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isoparametric shape functions are given by

N1 (�; �) =
1

2
(1� �) (1� �)

N2 (�; �) =
1

2
(1 + �) (1� �)

N3 (�; �) =
1

2
(1� �) (�)

N4 (�; �) =
1

2
(1 + �) (�)

and the space-time standard element is

(�; �) 2 
̂ = [�1; 1]� [0; 1]

We focus next in the discretization of the action functional, given in the continuos case by

S ['] =

Z tf

t0

�
R

2
_'2 �W (X; t; ';D')

�
dXdt (2.53)

The discrete action Sd is built by evaluating the continuous action S ['] on the discretization 'h.

This requires the computation of interpolations for the material velocity V = _' and deformation

gradient F = D', which might be obtained by di¤erentiating the interpolation for the motion (2.46)

'h with respect to time

Vh (X; t) = _'h (X; t) =
X
ak

@Nak
@t

(X; t)xak (2.54)

Fh (X; t) = D'h (X; t) =
X
ak

@Nak
@X

(X; t)xak (2.55)

For the particular case of isoparametric space-time elements, the space and time derivatives of the

shape functions @Nak

@t and @Nak

@X are computed by making use of the (inverse of the) Jacobian of the

(space-time) isoparametric mapping (X (�; �) ; t (�; �))

J (�; �) =

24 @t
@�

@X
@�

@t
@�

@X
@�

35
in the form

J

0@ @Nak

@t

@Nak

@X

1A =

0@ @N̂ak

@�

@N̂ak

@�

1A
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which implies along with de�nition (2.52) for x (�; �)

J

0@ Vh

Fh

1A =

0@ @x
@�

@x
@�

1A (2.56)

Inserting the approximation Vh and Fh in the action functional (2.53) we obtain the discretized

action as

Sd =
X
ek

Lekh

Lekd =

ZZ

ek

8<:12R
 X

ak

@Nak
@t

xak

!2
�W

 
X; t;

X
ak

Nakxak;
X
am

@Nak
@X

xak

!9=; dXdt

where Lekd is the discrete Lagrangian, and where the index "ek" ranges over all space-time elements


ek. Di¤erent discrete Lagrangians Lekd follow then by choosing an appropriate quadrature rule

to approximate the integrals over each space-time element 
ek. Since the space-time mesh (and

therefore the space-time shape functions Nak and the space-time element domains 
ek) depend on

the space-time nodal coordinates (Xak; tak), then the discrete action Sd itself will depend explicitly

on (Xak; tak).

Sd = Sd (� � � ; Xak; tak; xak; � � � )

Rendering now the discrete action sum Sd stationary with respect to all of its arguments equations

for the computation of all variables are obtained. Di¤erentiation of the previous discrete action sum

with respect to xak yields

@Sd
@xak

=
X
ek

ZZ

ek

�
RVh

@Nak
@t

� Ph
@Nak
@X

+BNak

�
dXdt

where Ph is the discretized stress. Di¤erentiation of Sh with respect to (Xak; tak) might look pro-

hibitive at �rst sight. However, following a methodology similar to that presented in §2.2.2, it

can be computed analytically and as we anticipated before, correspond to the space-time nodal

con�gurational forces. For a Lagrangian density of the form (2.23) these are given by (see §2.2.2)

0@ @Sd
@Xak

@Sd
@tak

1A =
X
ek

ZZ

ek

8<:�Ch
0@ @Nak

@X

@Nak

@t

1A+
0@ @L

@X

@L
@t

1ANak

9=; dXdt

where Ch is the discretized space-time Eshelby tensor (or energy-(material) momentum tensor)

Ch =

24 �Wh � RV 2
h

2

�
� FhPh FhRVh

�VhPh RV 2
h

2 +Wh

35
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discrete counterpart of (2.32). The system of equations to solve for the unknowns (Xak; tak; xak) is

therefore

@Sd
@Xak

=
X
ek

ZZ

ek

�
�FhRVh

@Nak
@t

�
�
Wh �

RV 2h
2

� FhPh
�
@Nak
@X

+
@L
@X

Nak

�
dXdt = 0

@Sd
@tak

=
X
ek

ZZ

ek

�
�
�
RV 2h
2

+Wh

�
@Nak
@t

+ VhPh
@Nak
@X

+
@L
@t
Nak

�
dXdt = 0

@Sd
@xak

=
X
ek

ZZ

ek

�
RVh

@Nak
@t

� Ph
@Nak
@X

+BNak

�
dXdt = 0

which represent the discretization of equations (2.33), (2.34), and (2.26).

As happens in the static and �nite-dimensional cases, in the continuous setting, the Euler-

Lagrange equations corresponding to horizontal variations are equivalent to those corresponding to

vertical variations. This is not the case when the system has been discretized. Requiring then sta-

tionarity of the discrete action Sd with respect to horizontal variations gives independent equations

that can be used to solve for the space-time mesh. Enforcing the satisfaction of these equations

results in a discretization that exactly preserves energy and exactly satis�es discrete balance of

dynamic con�gurational forces.

2.2.10 Space-time elements with homogeneous time steps

An essential problem related to the space-time generalization and its implementation in terms of

space-time �nite elements is the issue of solvability for the time step. It has been noticed (see for

example [20], [29], [30]) that the energy equation involves the unknown discrete time in a highly

non-linear way and that it is not always possible to �nd admissible solutions. It was then suggested

([60]) to restrict the methodology to space adaption only by regarding only the spatial mesh as

unknown while providing the discrete times at the outset.

An implementation of this approach based on the space-time framework was attempted in ([60]).

The approach in this case was to adopt a particular class of space-time �nite elements where the

same time step was used for all nodes in the mesh, i.e., space-time is discretized with a homogeneous

time step. In this section we will show that for this particular class of space-time �nite elements there

is no need to resort to the machinery and formalism of space-time �nite elements since, as we shall

prove, this discretization is equivalent to e¤ect the space-time discretization in two separated and

uncoupled stages, the �rst stage (semidiscretization in space) where the space variable is discretized

keeping the time continuous, followed by a second stage in which the time is discretized using an

appropriate time integrator.

To prove this equivalence, consider the particular class of isoparametric space-time elements
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obtained by making use of isoparametric shape functions of the form

N̂ak (�; �) = N̂space
a (�) N̂ time

k (�) (2.57)

where Nspace
a (�) and N time

a (�) are uncoupled space and time shape functions and where two sep-

arated indexes a and k instead of a single index "ak" are used. We recall that the isoparametric

space-time interpolation is

X (�; �) =
X
ak

N̂ak (�; �)Xak

t (�; �) =
X
ak

N̂ak (�; �) tak

x (�; �) =
X
ak

N̂ak (�; �)xak

where x (�; �) is given by

x (�; �) = 'h �

0@ X (�; �)

t (�; �)

1A (2.58)

with 'h (X; t) the discretized motion (2.46). Inserting (2.57) in the isoparametric interpolation we

�nd

X (�; �) =
X
k

X
a

N̂space
a (�) N̂ time

k (�)Xk
a

t (�; �) =
X
k

X
a

N̂space
a (�) N̂ time

k (�) tka

x (�; �) =
X
k

X
a

N̂space
a (�) N̂ time

k (�)xka

that might be split in two staggered interpolations: a �rst interpolation in the � variable,

X (�; �) =
P
a
N̂space
a (�)Xa(�)

t (�; �) =
P
a
N̂space
a (�) ta(�)

x (�; �) =
P
a
N̂space
a (�)xa(�)

and a second interpolation in the � variable

Xa(�) =
P
k

N̂ time
k (�)Xk

a

ta(�) =
P
k

N̂ time
k (�) tka

xa(�) =
P
k

N̂ time
k (�)xka
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Assume also that we make use of homogeneous time steps in each space-time element, i.e., that

the isoparametric function t (�; �) is not a function of � but only of �

t (�; �) = t (�) (2.59)

For space-time shape functions of the form in (2.57) the previous condition will be satis�ed provided

that the time component of the space-time nodal coordinates (Xak; tak) =
�
Xk
a ; t

k
a

�
is chosen such

that

tka = tk (2.60)

independent on the index a and for all k (see �gure 2.9, compare with �gure 2.8). This can be

directly veri�ed by observing that (2.57) and (2.60) imply

t (�; �) =
X
k

X
a

N̂space
a (�) N̂ time

k (�) tka =

=
X
k

X
a

N̂space
a (�) N̂ time

k (�) tk =

=

 X
k

N̂ time
k (�) tk

! X
a

N̂space
a (�)

!
=

=
X
k

N̂ time
k (�) tk =

= t (�)

where we have assumed that the shape functions for the space Nspace
a satisfy the partition of unity

property X
a

N̂space
a (�) = 1

Figure 2.9 illustrates condition (2.60) for a one-dimensional (in-space) mesh.

Using the particular class of space-time shape functions (2.57) in combination with "homogeneous

time steps" (assumptions (2.59) and (2.60)) we obtain

X (�; �) =
P
a
N̂space
a (�)Xa(�)

t (�; �) = t (�) = ta (�)

x (�; �) =
P
a
N̂space
a (�)xa(�)

Furthermore, since the time t and the time parameter � are in a one-to-one correspondence, we may

eliminate the latter (using for that the inverse of t (�)) and regard Xa and xa as functions of t to
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Figure 2.9: Isoparametric mapping in 1D using a time step that is independent of the spatial
parameter �. All the grid points in the element are sampled at the same time tk.

obtain

X (�; t) =
P
a
N̂space
a (�)Xa(t)

x (�; t) =
P
a
N̂space
a (�)xa(t)

We thus arrive to the same interpolation used in static isoparametric �nite elements but with node

referential and spatial coordinates regarded as continuous functions of time.

By way of example consider as in the previous section the case of linear shape functions in space

and time:

N11 (�; �) =
1

2
(1� �) (1� �)

N21 (�; �) =
1

2
(1 + �) (1� �)

N12 (�; �) =
1

2
(1� �) (�)

N22 (�; �) =
1

2
(1 + �) (�)
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where we are now using two indices to label the functions. Consider also a particular space-time

element with four nodes, two nodes at time tk and the other two at time tk+1 as depicted in �gure

2.10 (homogeneous time step)

X

t

tk

tk+1 X1
k+1 X2

k+1

X2
kX1

k

x

t

tk

tk+1 x1
k+1 x2

k+1

x2
kx1

k

Figure 2.10: Space-time linear �nite element with two nodes sampled at time tk and the other two
sampled at time tk+1 (homogeneous time step). For this particular space-time nodal arrangement the
time part of the isoparametric space-time mapping is independent of the space parameter t (�; �) =
t (�).

In this case the space-time isoparametric mapping reduces to

X (�; �) = N11 (�; �)X
k
1 +N21 (�; �)X

k
2 +N12 (�; �)X

k+1
1 +N22 (�; �)X

k+1
2 =

=

�
1

2
(1� �)Xk

1 +
1

2
(1 + �)Xk

2

�
(1� �) +

�
1

2
(1� �)Xk+1

1 +
1

2
(1 + �)Xk+1

2

�
(�) =

=
1

2
(1� �)

�
(1� �)Xk

1 + (�)X
k+1
1

�
+
1

2
(1 + �)

�
(1� �)Xk

2 + (�)X
k+1
2

�
t (�; �) = N11 (�; �) t

k +N21 (�; �) t
k +N12 (�; �) t

k+1 +N22 (�; �) t
k+1 =

=

�
1

2
(1� �) tk + 1

2
(1 + �) tk

�
(1� �) +

�
1

2
(1� �) tk+1 + 1

2
(1 + �) tk+1

�
(�) =

= tk (1� �) + (�) tk+1

and the motion referred to the isoparametric domain becomes

x (�; �) = N11 (�; �)x
k
1 +N21 (�; �)x

k
2 +N12 (�; �)x

k+1
1 +N22 (�; �)x

k+1
2 =

=

�
1

2
(1� �)xk1 +

1

2
(1 + �)xk2

�
(1� �) +

�
1

2
(1� �)xk+11 +

1

2
(1 + �)xk+12

�
(�) =

=
1

2
(1� �)

�
(1� �)xk1 + (�)xk+11

�
+
1

2
(1 + �)

�
(1� �)xk2 + (�)xk+12

�
Therefore, the time component of the space-time mapping t (�; �) becomes only a function of � .
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Inverting we get

� =
t� tk

tk+1 � tk

Composing the mappings X (�; �) and t (�; �) with the previous we �nd

X (�; t) =

�
1� �
2

Xk
1 +

1 + �

2
Xk
2

�
tk+1 � t
tk+1 � tk +

�
1� �
2

Xk+1
1 +

1 + �

2
Xk+1
2

�
t� tk

tk+1 � tk =

=
1� �
2

�
tk+1 � t
tk+1 � tkX

k
1 +

t� tk
tk+1 � tkX

k+1
1

�
+
1 + �

2

�
tk+1 � t
tk+1 � tkX

k
2 +

t� tk
tk+1 � tkX

k+1
2

�
x (�; t) =

�
1� �
2

xka +
1 + �

2
xka+1

�
tk+1 � t
tk+1 � tk +

�
1� �
2

xk+1a +
1 + �

2
xk+1a+1

�
t� tk

tk+1 � tk =

=
1� �
2

�
tk+1 � t
tk+1 � tk x

k
1 +

t� tk
tk+1 � tk x

k+1
1

�
+
1 + �

2

�
tk+1 � t
tk+1 � tk x

k
2 +

t� tk
tk+1 � tk x

k+1
2

�

which might be written as

X (�; t) =
1� �
2

X1 (t) +
1 + �

2
X2 (t) (2.61)

x (�; t) =
1� �
2

x1 (t) +
1 + �

2
x2 (t) (2.62)

along with

Xa (t) =
tk+1 � t
tk+1 � tkX

k
a +

t� tk
tk+1 � tkX

k+1
a

xa (t) =
tk+1 � t
tk+1 � tk x

k
a +

t� tk
tk+1 � tk x

k+1
a

for a = 1 and 2. Furthermore, solving for � in (2.61) we �nd

� =
X � X1(t)+X2(t)

2
X2(t)�X1(t)

2

which implies

1� �
2

=
X2 (t)�X

X2 (t)�X1 (t)

1 + �

2
=

X �X1 (t)

X2 (t)�X1 (t)

Equation (2.62) becomes

x = 'h (X; t) =
X2 (t)�X

X2 (t)�X1 (t)
x1 (t) +

X2 (t)�X
X2 (t)�X1 (t)

x2 (t)

which results in the same interpolation used in static �nite elements but with nodal positions in the

reference and spatial con�gurations (Xa; xa) regarded as continuous functions of time.
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We therefore conclude that in space-time �nite elements with uncoupled space and time shape

functions and homogeneous time steps the time parameter � and the physical time t result in one-to-

one correspondence and the time parametrization might be thus eliminated at the element level. The

machinery of space-time �nite elements, which involves the computation of the space-time Jacobian

and its inverse, is no longer needed and might be sidestepped. Consider for example the computation

of material velocities Vh. We recall that in a general space-time �nite element the velocity is given

by (2.56) which requires the inversion of the Jacobian of the space-time isoparametric mapping.

Notice now that if the time is homogeneous (and uncoupled space/time shape functions are used)

we have

X (�; �) =
X
a

N̂space
a (�)Xa (�)

t (�; �) = t (�)

whereupon relation (2.56) for material velocity Vh and deformation gradient Fh reduces to (2.51)24 @t
@�

@X
@�

0 @X
@�

350@ Vh

Fh

1A =

0@ @x
@�

@x
@�

1A
The inverse of the Jacobian might be thus computed analytically and evaluates to0@ Vh

Fh

1A =
1

@t
@�

@X
@�

24 @X
@�

@x
@� �

@X
@�

@x
@�

@t
@�

@x
@�

35 =

=

266664
@x
@�
@t
@�

�
@x
@�

@X
@�

@X
@�
@t
@�

@x
@�

@X
@�

377775
or more compactly to

Vh = _x� Fh _X (2.63)

Fh =

@x
@�

@X
@�

where

_x =
@x
@�
@t
@�

_X =
@X
@�
@t
@�
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2.2.11 Space semidiscretization and mesh adaption in "Space-Space"

The key observation that results from the developments of the previous subsection is that when

time adaption is no longer pursued there is no need to resort to the formalism of the space-time

framework and its implementation using the machinery of space-time �nite elements. The particular

class of space-time �nite elements based on uncoupled space and time shape functions (assumption

(2.57)) and homogeneous time steps (assumption (2.59 )) is equivalent to an uncoupled spatial

and time interpolations that may be completed in two separated stages: a spatial discretization,

keeping the time continuous and leading to the formulation of a di¤erential problem with unknowns

(Xa (t) ; xa (t)), and a second time-discretization stage where the latter is integrated. Since the time

variable is kept continuous during the �rst stage of the discretization process, the expanded space-

time framework that serves as the theoretical basis for the analysis of variational space-time mesh

adaption and its implementation in terms of space-time �nite elements is not advantageous. By

contrast, much more insight can be gained by adopting a space-space point of view.

Within the framework just outlined, consider a spatial semidiscretization with an isoparametric

interpolation of the form

X (�; t) =
P
a
N̂a (�)Xa(t)

x (�; t) =
P
a
N̂a (�)xa(t)

where N̂a (�) are the isoparametric shape functions for space (previously denoted as Nspace
a (�)) and

x (�; t) is the motion referred to the isoparametric domain �, i.e.,

x (�; t) = 'h (X (�; t) ; t)

As was demonstrated in the previous subsection, this interpolation is equivalent to that resulting from

space-time isoparametric �nite elements with homogeneous time steps where the time parameter has

been eliminated at the element level and the time is regarded as a continuous variable. Let Na (X; t)

be the global shape functions given for the case of isoparametric elements such that

Na (X (�; t) ; t) = N̂a (�) (2.64)

and let 'h (X; t) be the (semidiscretized) motion

'h (X; t) =
X
a

Na (X; t)xa (t) (2.65)

The proposed interpolation is illustrated from a space-space point of view in �gure 2.11 where the
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approximation for the motion 'h for two successive times t and t + �t is shown when the same

mesh is used for every time (standard semidiscrete interpolation, �gure 2.11(a)) and when the nodes

are allowed to move (�gure 2.11(b)) It may be also illustrated from a space-time point of view as

(a) (b)

Figure 2.11: Approximation for the motion ' at two di¤erent time steps, t and t + �t, using the
same mesh at every time (a) and a mesh supported on a node set that moves continuously in time
(b)

depicted in �gure (??) where the spatial mesh for two successive times t and t + �t is shown for

both a �xed and a moving mesh. From �gure 2.11 we observe that the unknown of the problem,

the motion ' (X; t), might be reinterpreted as an continuously evolving curve (X;' (X; t)) imbedded

in the space-space bundle [0; L] � R. This curve is the graph of the deformation mapping and the

proposed interpolation is just a piecewise continuous approximation for this curve, the graph, with

its two-dimensional nodal positions (Xa; xa) all treated as unknowns.

2.2.12 Semidiscrete action functional and discrete action sum

In the space-time �nite element approach a discrete action Sd was built by inserting the space-time

interpolation for the motion 'h into the continuous action S [']. We then invoked the stationarity

of the discrete action sum with respect to the parameters that de�ne the discrete motion, namely

(Xak; tak; xak) to obtain a joint system of equations to solve not only for the spatial coordinates xak

but for the space-time nodal placements (Xak; tak) (equations (2.48), (2.49), (2.50)). We proceed

now to build a discrete action Sh for the current interpolation. This will be accomplished in two

stages: First a semidiscrete action Ssd (Xa (t) ; xa (t)) will be built by inserting the semidiscrete

interpolation (2.65) into the continuous action S [']. Then a discrete action Sd will be constructed

by discretizing the semidiscrete action in time by an appropriate time interpolation of the nodal

trajectories (Xa (t) ; xa (t)).
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tk+1

X

t t

X

tk

tk+1

tk

Figure 2.12: Spatial mesh for two successive times tk and tk+1. (a) The same mesh is used for every
time (no adaption), (b) a mesh with time-dependent nodal placements Xa (t).

The continuous action functional is given by

S ['] =

Z tf

t0

Z L

0

�
R

2
_'2 �W (X;';D')

�
dXdt =

=

Z tf

t0

Z L

0

�
R

2
_'2 �A (X;D') +B'

�
dXdt

We would like now to insert the interpolation for the motion ' (2.65) into the previous. To this end

we �rst need to provide appropriate interpolations for velocities and deformation gradients V = _'

and F = D'. At �rst sight it seems natural to take

Vh = _'h =
d

dt

 X
a

Na (X; t)xa (t)

!
=

X
a

Na _xa + _Naxa (2.66)

Fh = D'h =
d

dX

 X
a

Na (X; t)xa (t)

!

=
X
a

@Na
@X

xa (2.67)

However, and as will be illustrated in Chapter 6, the natural (or consistent) velocity interpolation

Vh = _'h is usually a very poor approximation for Vh. Therefore independent (inconsistent) velocity



71

interpolations are needed. In the next section we will explore interpolations of the form

Vh =
X
a

Na (X; t)Va (t)

where Va (t) are new parameters that must be taken as unknowns along with the nodal referential

and spatial trajectories (Xa (t) ; xa (t)).

For the duration of this subsection, consider the consistent velocity interpolation (2.66). For this

particular case of isoparametric elements (elements supported on moving meshes), the derivative _Na

can be directly computed. This can be accomplished by di¤erentiating relation (2.65) with respect

to time to �nd
@Na
@X

_X (�; t) + _Na = 0

with

_X (�; t) =
X
a

N̂a (�) _Xa (t)

Composing the previous with the inverse of X (�; t) and rearranging we obtain

_Na = �
@Na
@X

X
a

Na _Xa (t)

The suggested interpolation for the velocity �eld thus becomes

Vh = _'h =
X
a

Na _xa + _Naxa =

=
X
a

Na _xa +

 
�@Na
@X

X
b

Nb _Xb

!
xa =

=
X
a

Na _xa �
�
@Na
@X

xa

�X
b

Nb _Xb =

=
X
a

Na

�
_xa � Fh _Xb

�

As was illustrated in the example of §2.2.10 (see equation (2.63)) this formula can also be obtained

by inverting analytically the Jacobian of the space-time isoparametric mapping.

Inserting now the obtained interpolations for Vh and Fh into the continuous action, we obtain

the semidiscrete action Ssd as

Ssd (Xa; xa) = S ['h] =

=

tfZ
t0

Z
B

0@R
2

 X
a

Na

�
_xa � Fh _Xb

�!2
�W

 
X; t;

X
a

Naxa;
X
a

@Na
@X

xa

!1A dXdt
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The previous can be compactly expressed as

Ssd (� � � ; Xa; xa; � � � ) =
Z tf

t0

0@1
2

�
_Xa; _xa

�
mab

0@ _Xb

_xb

1A� Ih (Xa; xa)

1A dt (2.68)

where mab is a con�guration-dependent extended mass matrix (space-space mass) given by

mab =

Z
B

RNaNb

0@ FhFh �Fh
�Fh 1

1A dX

and Ih is the discrete potential energy given as in the static case as

Ih =

Z
B

W

 
X; t;

X
a

Naxa (t) ;
X
a

@Na
@X

xa (t)

!
dX

We invoke next the stationarity of the semidiscrete action functional with respect to all of its

arguments (Xa (t) ; xa (t)).

h�Ssd; �Xai = 0

h�Ssd; �xai = 0

Computing the variations of the semidiscrete action Ssd with respect to xa (t) yields

h�Ssd; �xai =
Z tf

t0

Z
B

�
R _'hNb

�
� _xb �

�
@Nc

@X �xc
�
_Xb

�
� Ph @Nc

@X +BNa

�
dXdt

To compute the variations with respect to Xa (t) we follow the same procedure developed in §2.2.2

to compute variations in the continuous space-time setting (see also next chapter and Chapter 6) to

�nd

h�Ssd; �Xai =
Z tf

t0

Z
B

�
R _'hNb (�Fh)

�
� _Xb �

�
@Nc

@X �Xc

�
_Xb

�
� Ch @Na

@X +

�
@B
@X +

1

2
@R
@XV

2

�
Na

�
dXdt

where

Ch =

�
Wh �

RV 2h
2

�
� FhPh

is the (semi) discrete dynamic Eshelby stress tensor. As happens in the static case and in the case of

space-time �nite elements, variations of the action functional with respect to nodal referential place-

ments correspond to the nodal con�gurational forces. The corresponding Euler-Lagrange equations
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might be written as

d

dt

0@mab

0@ _Xb

_xb

1A1A�
0@ @

@Xa

@
@xa

1A0@1
2

�
_Xa; _xa

�
mab

0@ _Xb

_xb

1A� Ih (Xa; xa)

1A =

0@ 0

0

1A (2.69)

which represents a system of two di¤erential equations for the joint unknown (Xa (t) ; xa (t)). As

was explained before, we conjecture that the nodal instantaneous referential placements Xa (t) ob-

tained by solving the previous system are optimal for every time t since they follow by invoking the

stationarity of the action functional, which is the operative variational principle for dynamics.

We �nally discretize in time the semidiscrete system of ordinary di¤erential equations (2.69) for

the unknowns (Xa (t) ; xa (t)). To this end an appropriate time integrator needs to be formulated.

Since the system of equations to integrate derive from a Lagrangian, and to avoid any ad-hoc time-

stepping device that ignores this particular structure of the equations, we shall make use in particular

of a variational integrator.

This is simply accomplished by discretizing in time the semidiscrete action integral Ssd to build

a discrete action sum Sd by interpolating in time the nodal trajectories (Xa (t) ; xa (t)). The time-

stepping algorithm follows then by invoking the stationarity of the latter with respect to discrete

trajectories to obtain the discrete Euler-Lagrange equations. The construction of the discrete action

sum follows exactly the same procedure presented in §2.1.3 to formulate variational integrators for

�nite-dimensional systems with generalized coordinates q (t). Indeed, after discretizing the space

variable (while keeping the time continuous) the continuous Lagrangian system becomes a �nite

dimensional dynamical system with generalized coordinates given by q (t) = (� � � ; Xa (t) ; xa (t) ; � � � ).

More precisely, the semidiscrete Lagrangian (2.68) can be rewritten as

Ssd (q) =

Z tf

t0

�
1

2
_qamab (q) _qb � Ih (q)

�
dt

which is the class of Lagrangians studied in the �rst section of this chapter (Notice that the extended

mass matrix is con�guration-dependent). If for example, piecewise linear (continuous) interpolation

(in time) is used for qa (t), i.e., for both Xa (t) and xa (t) and if a single quadrature point for the

time integral is used (as was assumed in §2.1.3, equation 2.11), then the following discrete action

sum Sd is obtained

Sd
�
� � � ; Xk

a ; x
k
a; X

k+1
a ; xk+1a ; � � �

�
=

=
KX
k=0

0@X
ab

1

2

�
Xk+1
a �Xk

a

tk+1 � tk ;
xk+1a � xka
tk+1 � tk

�
mk+�
ab

0@ Xk+1
a �Xk

a

tk+1�tk
xk+1a �xka
tk+1�tk

1A� Ih �Xk+�
a ; xk+�a

�1A
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with

mk+�
ab = mab

�
(1� �)qk + (�)qk+1

�
Invoking the stationarity of the previous with respect to all of its argument demands

@Sh
@Xk

a

�
� � � ; Xk

a ; x
k
a; X

k+1
a ; xk+1a ; � � �

�
= 0

@Sh
@xka

�
� � � ; Xk

a ; x
k
a; X

k+1
a ; xk+1a ; � � �

�
= 0

The previous represents a system of two equations for the unknowns qk+1 =
�
� � � ; Xk+1

a ; xk+1a ; � � �
�

to be solved given the con�guration at the preceding time qk =
�
� � � ; Xk

a ; x
k
a; � � �

�
and represents

therefore a time stepping algorithm for the integration of the semidiscrete system of equations (2.69).

2.2.13 Velocity interpolation

As was brie�y mentioned in the previous subsection, an important di¢ culty that arises when we

make use of the semidiscrete interpolation (2.65) is the problem of how to interpolate the material

velocities V = _'. The consistent approximation is obtained by di¤erentiating the interpolation for

the motion 'h with respect to time, i.e., by choosing Vh � _'h. This results in

_' (X; t) ' _'h (X; t) =
X
a

�
Na (X; t) _xa (t) + _Na (X; t)xa (t)

�
which, as was proved in the previous section, for isoparametric elements reduces to

_' (X; t) ' _'h (X; t) =
X
a

Na (X; t)
�
_xa (t)� Fh (X; t) _Xa (t)

�
with

Fh =
X
a

@Na
@X

(X; t)xa

Notice that the consistent velocity �eld will be discontinuous across element boundaries, since it

is a function of the deformation gradient that in standard �nite element interpolations is only

elementwise continuous. Although this approximation looks natural and appealing (in fact it was

initially adopted in the process of this investigation), our experience showed (as will be illustrated

in Chapter 6) that it becomes very poor in many situations and leads to instability problems and

meaningless solutions. To overcome this di¢ culty we propose the use of an independent velocity

approximation of the form

Vh =
X
a

Na (X; t)Va (t)
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that di¤ers pointwise from the consistent velocity �eld, i.e., Vh 6= _'h but approximates it globally

or in a weak sense. This global approximation will be accomplished by making use of the mixed

variational formulation presented in §2.2.4. that was precisely designed to allow for the use of inde-

pendent interpolations for Vh and _'h. More precisely, and as we will show in detail in the following

subsection, inserting independent interpolations for 'h and Vh into the mixed action functional

(2.38), a semidiscrete mixed action Smixsd (Xa (t) ; xa (t) ; Va (t)) is obtained. This mixed functional

will depend not only on referential and spatial coordinates (Xa (t) ; xa (t)) but also on the velocities

parameters Va (t). Invoking the stationarity of this semidiscrete mixed action (see relations (2.39)

and (2.40)) we will �nd di¤erential equations to solve for the complete set of unknowns (Xa; xa; Va).

Figure 2.13 illustrates the di¤erence between these two velocity interpolations. Assume we have

a mesh with two elements. Figure 2.13(a) shows the interpolated displacement uh = 'h � X at

two di¤erent times tk and tk+1. Notice that both the displacements and the and mesh change from

time k to time k + 1. Figure 2.13(b) shows an approximation for the velocity obtained using a

�nite di¤erence between the two consecutive displacement �elds Vh =
'k+1�'k
tk+1�tk . This approximation

exhibit a kink inside an element and is di¢ cult to handle. 2.13(c) shows the consistent velocity

approximation _'h. Since the latter is a function of Fh, the approximated deformation gradient,

and since Fh exhibits jumps across elements, then the consistent velocity itself will be discontinuous

across elements. As was mentioned before, we have found that this is not a good approximation and

brings instability problems. 2.13(d) shows the independent (inconsistent but continuous) approxi-

mation for the velocity. We will use this (continuous) approximation that di¤ers pointwise from the

(discontinuous) consistent velocity interpolation but approximates it in a global or averaged sense.

2.2.14 Semidiscrete mixed Interpolation

We consider then independent semidiscrete interpolations for the motion ' (X; t) and the material

velocity �eld V (X; t) of the form

'h (X; t) =
X
a

Na (X; t)xa (t) (2.70)

Vh (X; t) =
X
a

Na (X; t)Va (t) (2.71)

where the shape functions Na (X; t) satisfy the isoparametric relation

Na �X (�; t) = N̂a (�) (2.72)
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(a)

ϕk ϕk+1

(b) (c) (d)

(e)

(a)

ϕk ϕk+1

(b) (c) (d)

(e)

Figure 2.13: Possible approximations for the velocity �eld: (a) approximated displacement for two
successive times tk and tk+1. (b) Finite-di¤erence approximation for the velocity. (c) Consistent
velocity approximation. (d) Independent velocity interpolation. (e) The three alternative velocity
interpolations.

with N̂a (�) the isoparametric shape functions referred to the standard domain � 2 [�1; 1], and

X (�; t) the isoparametric (time-dependent) mapping

X (�; t) =
X
a

N̂a (�)Xa (t)

The consistent velocity interpolation is given by

_'h =
X
a

Na

�
_xa � Fh _Xa

�
(2.73)

where

Fh =
X
a

@Na
@X

xa (2.74)

is the (consistent) interpolation for the deformation gradient F = D'. As was illustrated in the

previous subsection, the consistent velocity �eld _'h is discontinuous across element boundaries,

the assumed (inconsistent) velocity interpolation Vh is continuous, and the two di¤er pointwise:

_'h (X; t) 6= Vh (X; t).
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In this formulation we will regard as unknowns to the complete set (Xa (t) ; xa (t) ; Va (t)) and

will make use of the mixed Hamilton�s principle (2.36, 2.37) to �nd the di¤erential equations for

the evolution of these unknowns. A semidiscrete-mixed action functional Ssd (Xa (t) ; xa (t) ; Va (t))

will be built by inserting the mixed interpolation into the mixed action (2.35). The di¤erential

equations for (Xa (t) ; xa (t) ; Va (t)) will follow then by invoking the stationarity of the semidiscrete-

mixed action with respect to each of its arguments. As happened in the static, space-time and

semidiscrete (with consistent velocities) cases, the Euler-Lagrange equations corresponding to the

stationarity of the action functional with respect to xa and Xa will correspond, respectively, to the

equations of balance of nodal mechanical forces and nodal con�gurational forces. In addition, the

Euler-Lagrange equation corresponding to the stationarity of Ssd with respect to Va will correspond

to the weak statement of the compatibility equation between the assumed Vh and consistent _'h

velocity interpolations. The Euler-Lagrange equations will then be discretized in time using a mixed

variational integrator of the class studied in §2.1.7.

2.2.15 Semidiscrete mixed action and discrete mixed action sum

Following the program just outlined, we proceed to discretize �rst in space the mixed action S ['; V ]

(2.38) with independent interpolations for ' and V to obtain a semidiscrete-mixed action functional

Ssd (Xa (t) ; xa (t) ; Va (t)). We next discretize the latter in time to obtain a discrete-mixed action

sum Sh using a mixed variational integrator. We recall that for Lagrangian densities of the form

(2.23), the mixed (two-�eld) action functional is given by

S ['; V ] =

Z tf

t0

Z
B

Lmix (X; t; ';D'; V; _') dXdt

with

Lmix (X; t; '; F; V; _') =
R

2
V 2 �W (X; t; '; F ) +RV ( _'� V )

Inserting the semidiscrete-mixed interpolation (2.70, 2.71) with consistent velocity and deformation

gradient interpolations (2.73, 2.74) we obtain the semidiscrete-mixed action in the form

Ssd (Xa (t) ; xa (t) ; Va (t)) = S ['h; Vh] =

=

Z tf

t0

Z
B

0@R
2

 X
a

NaVa

!2
�W

 
X; t;

X
a

Naxa;
X
a

@Na
@X

xa

!

+
X
ab

RVaNaNb

�
_xb � Fh _Xb � Vb

�!
dXdt
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The previous may be compactly rewritten as

Ssd (� � � ; Xa; xa; Va; � � � ) =
Z tf

t0

�
1

2
VamabVb � Ih (Xa; xa) + Va

�
mab ( _xb � Vb) +Mab

_Xb

��
dt

(2.75)

where mab and Mab are the mass matrices0@ Mab

mab

1A =

Z
B

RNaNb

0@ �Fh
1

1A dX

and Ih is the discrete potential energy given as in the static case as

Ih = �
Z
B

W

 
X; t;

X
a

Naxa (t) ;
X
a

@Na
@X

xa (t)

!
dX

or, using the notation q = (� � � ; Xa; xa; � � � ), V = (� � � ; Va; � � � ) as

Ssd (q;V) =

Z tf

t0

�
1

2
Vamab (q)Vb � Ih (q) + Va ((Mab;mab)qb �mabVb)

�
dt

The semidiscrete-mixed action (2.75) might be contrasted with the semidiscrete (standard) action

(2.68) obtained when a consistent interpolation _'h instead an independent assumed interpolation

Vh is used to approximate velocities.

Invoking next the stationarity of the semidiscrete mixed action functional with respect to all of

its arguments (Xa (t) ; xa (t) ; Va (t)) implies

h�Ssd; �Xai = 0

h�Ssd; �xai = 0

h�Ssd; �Vai = 0

Variations of the semidiscrete action Ssd with respect to xa (t) yield

h�Ssd; �xai =
Z tf

t0

Z
B

�
RVhNb

�
� _xb �

�
@Nc

@X �xc
�
_Xb

�
� Ph @Nc

@X +BNa

�
dXdt

The variations with respect to Xa (t) are given by

h�Ssd; �Xai =
Z tf

t0

Z
B

�
RVhNb (�Fh)

�
� _Xb �

�
@Nc

@X �Xc

�
_Xb

�
� Cmixh

@Na

@X +Bmixh Na

�
dXdt
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where

Cmixh =

�
Wh �

RV 2h
2

�RVh ( _'h � Vh)
�
� FhPh

Bmixh =
@B

@X
+
@R

@X

V 2h
2
+
@R

@X
Vh ( _'h � Vh)

is the (semi)discrete (mixed ) Eshelby stress tensor. Finally, variations of the semidiscrete action

with respect to Vh yield Z tf

t0

Z
B

R�VaNaNb

�
_xb � Fh _Xb � Vb

�
= 0

The corresponding Euler-Lagrange equations might be written as0@ 0

0

1A =
d

dt
(mabVb)

�

0@ @
@Xa

@
@xa

1A�1
2
VamabVb � Ih (Xa; xa) + Va

�
mab ( _xb � Vb) +Mab

_Xb

��
(2.76)

0 = mab _xb +Mab
_Xb �mabVb (2.77)

which represent a system of three di¤erential equations for the joint unknown (Xa (t) ; xa (t) ; Va (t))

(compare with the system (2.69)).

We �nally establish an appropriate time integrator to discretize (in time) the previous system

of ordinary di¤erential equations. This is accomplished by making use of the mixed variational

integrators studied in §2.1.7. Recall that these integrators are built by discretizing in time the

curves Xa (t) xa (t) and Va (t) using suitable (time) interpolation spaces (not necessarily coincident)

to build a discrete-mixed action sum Sd. Following the example of §2.1.7 (see equations (2.16) and

(2.17)) we use piecewise linear time interpolation for nodal referential and spatial trajectories

Xa (t) = (1� �)Xk
a + (�)X

k+1
a

xa (t) = (1� �)xka + (�)xk+1a

and piecewise constant interpolation for nodal velocity parameters

Va (t) = V k+�a = const

Inserting this interpolation in the semidiscrete-mixed action (2.75) and integrating the resulting time

integral with a single quadrature point located at tk+�, the following discrete-mixed action sum is
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obtained:

Sd
�
� � � ; Xk

a ; x
k
a; V

k+�
a ; � � �

�
=

KX
k=0

Lmixd

�
Xk; Xk+1; xk; xk+1; V k+� ; tk; tk+1

�
with

Lmixd =
�
tk+1 � tk

��1
2
V k+�a mk+�

ab V k+�b � Ik+�h +

+V k+�a

 
mk+�
ab

 
xk+1b � xkb
tk+1 � tk � V

k+�
b

!
+Mk+�

ab

Xk+1
b �Xk

b

tk+1 � tk

!!

The integration of the semidiscrete system of equations (2.76, 2.77) follows then by invoking the

stationarity of the previous discrete-mixed action with respect to all of its arguments.

@Sd
@Xk

a

= 0

@Sd
@xka

= 0

@Sd

@V k+�a

= 0

The previous represent a non-linear system of equations for the determination of
�
Xk+1
a ; xk+1a ; V k+�a

�
given

�
Xk
a ; x

k
a; V

k�1+�
a

�
and de�nes therefore a time stepping algorithm.

2.3 Concluding remarks

We have presented in this chapter the salient features of the variational methods developed in

this thesis. The main objective is to formulate a mesh adaption framework for non-linear solid

dynamic applications for which the mesh itself is taken as unknown. We then conjecture that this

unknown might be found using the same variational principle that governs the evolution of the main

unknown (the motion of the body under study), namely Hamilton�s principle. The discretized

action functional Sd is therefore rendered stationary with respect to all the parameters that de�ne

the discretization, namely, nodal spatial coordinates xh, and nodal space-time referential placements

(Xh; th). After the theoretical conceptualization of this space-time approach it was observed that

e¤ecting space and time adaption simultaneously was too costly since the time unknown was involved

in the resulting equations in a highly non-linear way. It was thus suggested to pursue only variational

space adaption while providing the discrete time steps from the outset. This led to the development

of the particular class of space-time meshes with homogeneous time steps, i.e., the same time step is

chosen everywhere in the (spatial) mesh. We have proved that for this particular space-time �nite
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element interpolation the time parametrization might be eliminated at the element level and all the

machinery required to formulate general space-time �nite elements, i.e., space-time isoparametric

mappings and Jacobians, becomes thus unnecessary. We might simplify notably the formulation,

implementation, and analysis by performing the space-time discretization in two separated stages,

a semidiscrete (in space) initial stage where the space is discretized keeping the time continuous

and leading to the construction of a semidiscrete action Ssd and Lagrangian Lsd, and a second time

integration stage where a discrete action Sd and discrete Lagrangian Ld are built by discretizing the

semidiscrete action Ssd and semidiscrete Lagrangian Lsd in time. Since the time is kept continuous

and homogeneous during the �rst stage, a space-space, as opposed to a space-time, picture becomes

more appropriate. Within this space-space framework, nodal referential and spatial coordinates Xh

and xh are reinterpreted as horizontal and vertical components of a position vector qh = (Xh;xh) in

a higher dimensional space, the space-space bundle. When both nodal referential coordinatesXh and

spatial coordinates xh are assumed to evolve continuously in time, particular care must be taken in

the velocity interpolation. It was proved that the natural (or consistent) interpolation for the velocity

is given by _'h =
P
a
Na

�
_xa � Fh _Xa

�
which is discontinuous across element boundaries because of

its dependence on Fh. If this interpolation is used to approximate velocities, then very poor solutions

are obtained. To overcome this problem, we proposed to use an independent, or assumed velocity

interpolationVh =
P
a
NaVa, which as opposed to the consistent velocity interpolation, is continuous

across elements. This implies that we are required to accommodate for the use of a continuous

velocity interpolation that di¤ers pointwise with the consistent (and discontinuous) velocity �eld,

namelyVh 6= _'h. Motivated by the well-known De-Beuveke-Hu-Washizu mixed variational principle

for statics that allows for independent interpolations for deformation gradient Fh, and deformation

mapping 'h, and for which the (space) compatibility condition Fh = D'h is imposed by recourse

of a Lagrange multiplier Ph we formulate the analogous version for dynamics by replacing space by

time. More precisely, we formulate a mixed variational principle for dynamics (the mixed Hamilton�s

principle) that allows for independent interpolations of velocities Vh and deformations 'h and for

which the (time) compatibility condition Vh = _'h is imposed by means of a Lagrange multiplier

ph. Using independent (semidiscrete) interpolations for velocities and deformations, we arrive at the

construction of a mixed semidiscrete action Sh and mixed semidiscrete Lagrangian Lmixh with two

independent unknown variables, con�gurations qh and velocities Vh. Appropriate time integration

of their corresponding Euler-Lagrange equations might be accomplished by making use of a new

family of time integrators, the so-called mixed variational integrators, that allow for the use of

independent time interpolations of both variables and possible independent (or selective) quadrature

rules.

In the following we proceed to develop this formulation in the more general setting of three-

dimensional elasticity with possibly viscous, thermal, and inelastic processes.
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Chapter 3

Con�gurational forces in elastic

materials with viscosity

In this chapter we study di¤erent aspects of the theory of con�gurational forces. We begin by present-

ing the Lagrangian formulation of dynamics in the context of non-linear elasticity and the Lagrange-

d�Alembert principle to account for viscous behavior. Hamilton�s principle is then rephrased in a

more general way to render simultaneously the equations of motion and the equations of balance of

con�gurational forces. We review and further develop the geometrical interpretation of this varia-

tional framework for which the motion is regarded as a time-dependent family of sections evolving

in the higher dimensional space, the space-space bundle. We also develop an extended version of

Lagrange-d�Alembert principle that accounts properly for viscous e¤ects both in the spatial (vertical)

and material (horizontal) manifolds. In this chapter we focus on isothermal hyperelastic materials

with viscosity. Temperature and internal process will be studied in the next chapter.

3.1 Lagrangian formulation of elastodynamics

We consider a body occupying at some arbitrary reference time a region B of ambient space Rn.

The set B � Rn is the reference (material or undeformed) con�guration of the body. We will use

the usual convention of labeling material particles of the body by their position in the reference

con�guration B. Let ' : B � I ! Rn be a smooth motion over the time interval I = [t0; tf ] � R.

The set Bt = ' (B; t) � Rn is the deformed (spatial or current) con�guration of the body at

time t and the sets B0 = ' (B; t0) and Bf = ' (B; tf ) are the initial and �nal con�gurations, not

necessarily coincident with the reference con�guration B. For a �xed time t the motion ' maps

material particles X 2 B in the reference con�guration with their position x = ' (X; t) in the



83

deformed con�guration at time t. In Cartesian coordinates we shall write

xi = 'i (XI ; t)

Here and in what follows we will use upper (respectively, lower) case indices to denote components of

vector and tensor �elds over the reference (respectively, deformed) con�guration. The deformation

gradient and material velocity �elds are given by

F = D' (X; t)

V = _' (X; t)

where D' and _' denote, respectively, di¤erentiation with respect to X and t. The Jacobian of the

deformation is given by

J = det (F)

In Cartesian components we shall write

FiJ =
@'i
@XI

Vi =
@'i
@t

We will consider in this section a (possibly inhomogeneous) non-linear hyperelastic material, i.e.,

a material for which the constitutive behavior can be described with a Helmholtz free energy density

per unit of undeformed volume of the form

A (X;F)

such that the constitutive relation takes the form

PiJ =
@A

@FiJ

where P is the �rst Piola-Kirchho¤ stress tensor. It should be noticed that to account for the

inhomogeneity of the material, the free energy is assumed to depend explicitly on X along with

its implicit dependence through F (X; t). In this section we will assume that the free energy is

independent of temperature (isothermal hyperelasticity).

For every material particle X 2 B the total potential energyW may be de�ned as

W (X; t;';F) = A (X;F)�B (X; t)'
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where B is the body force density per unit mass (possibly dependent on X and t). It follows from

this de�nition that

PiJ =
@W

@FiJ
(3.1)

Bi = �@W
@'i

(3.2)

To formulate an initial-boundary-value problem we assume that the boundary @B of B can be

divided disjointly in two parts, the traction part @B1 and the Dirichlet or deformation part @B2:

@B = @B1 [ @B2

; = @B1 \ @B2

and that the motion ' must satisfy the following boundary conditions:

PiJNJ = �Ti on @B1 and 8t 2 I

'i = �'i on @B2 and 8t 2 I

where NJ is the outer unit normal to the boundary of the reference con�guration B and �T and

�' are the applied tractions and prescribed deformation mapping. To simplify the exposition, we

will consider zero deformation and traction boundary conditions, i.e., �'i = 0 and �Ti = 0. Also the

motion must satisfy the following initial conditions:

' = '0 (X) at t = t0 and 8X 2 B

V = V0 (X) at t = t0 and 8X 2 B

where '0 (X) is the initial deformation mapping and V0 (X) is the initial material velocities. The

initial con�guration is then given by B0 = ' (B; t0) = '0 (B).

Within the framework of the Lagrangian �eld theory [34], we regard the body B undergoing a

spatial motion as a Lagrangian system whose Lagrangian is de�ned in terms of a density. For elastic

materials the Lagrangian density may be de�ned as

L (X; t;';V;F)=1
2
R kVk2 �W (X; t;';F) (3.3)

where R is the mass density per unit of undeformed volume (also assumed to depend possibly on
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X). The action functional follows as

S ['] =

Z tf

t0

Z
B

L (X; t;'; _'; D') dV dt (3.4)

or, using de�nition (3.3), as

S ['] =

Z tf

t0

Z
B

�
1

2
R k _'k2�W (X; t;'; D')

�
dV dt (3.5)

The corresponding variations with respect to the argument ' are

h�S; �'ii =
Z tf

t0

Z
B

�
@L
@'i

�'i +
@L
@Vi

� _'i +
@L
@FiJ

�'i;J

�
dV dt (3.6)

that upon integration by parts in time for the �rst term and in space for the second term yield1

h�S; �'ii =

Z tf

t0

Z
B

�
@L
@'i

� d

dt

@L
@Vi

� d

dXJ

@L
@FiJ

�
�'idV dt+

+

�Z
B

@L
@Vi

�'idV

�tf
to

+

Z tf

t0

Z
@B

�
�'i

@L
@FiJ

NJ

�
dSdt (3.7)

Hamilton�s principle postulates that the actual motion ' (X; t) of the body from its initial con�g-

uration B0 at time t0 to its �nal con�guration at time tf corresponds to that motion that renders the

action functional S stationary with respect to all admissible variations, i.e., variations �' vanishing

at the initial and �nal times and satisfying the essential boundary conditions on @B2. This may be

written in the form

h�S; �'i = 0
1Here, and in what follows, the notations d

dX
and d

dt
shouldn�t be confused with the standard notation @

@X
and

@
@t

for partial di¤erentiation. We recall that we are considering the possibility of inhomogeneities that are taken

into account by assuming an explicit dependence of W (and hence on L and @L
@FiJ

) on the position XI along with
its implicit dependence through FiJ and 'i. We also assume an explicit dependence on time. For functions that
exhibit such an explicit/implicit dependence we will use the notation d

dXJ
(respectively d

dt
) for the derivative with

respect to the total (explicit and implicit) dependence on XJ (resp. t) while the notation @
@XJ

(or alternatively
@

@XJ

���
exp
(resp. @

@t

���
exp
)) will be restricted to the derivative with respect to the explicit dependence. More precisely if

W =W (XI ; t; 'i; FiJ ) then

dW

dXI
=

@W

@XI
+
@W

@'i

@'i
@XI

+
@W

@FiJ

@FiJ

@XI

@W

@XI
=

@W

@XI

����
exp

=
@W

@XI

����
'i;FiJ

Consistently we will use the notation d
dt
and @

@t
for the total and explicit dependence on time. Then

dW

dt
=

@W

@'i

@'i
@t

+
@W

@FiJ

@FiJ

@t

@W

@t
=

@W

@t

����
exp

=
@W

@XI

����
'i;FiJ
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for every admissible variation �'. Under appropriate smoothness conditions on the integrand in

(3.7) this implies the well-known Euler-Lagrange equations

@L
@'i

� d

dt

@L
@Vi

� d

dXJ

@L
@FiJ

= 0 in B and 8t 2 I (3.8)

along with the traction boundary conditions

@L
@FiJ

NJ = 0 in @B1 and 8t 2 I (3.9)

On account of (3.1), (3.2) and (3.3), equation (3.7) gives

h�S; �'ii =

Z tf

t0

Z
B

�
Bi �

d

dt
(R _'i) +

dPiJ
dXJ

�
�'idV dt+

+

Z
B

R _'i�'idV

����tf
to

�
Z tf

t0

Z
@B

(��'iPiJNJ) dSdt

and the Euler-Lagrange equations (3.8) and boundary conditions (3.9) reduce to

Bi �
d

dt
(R _'i) +

dPiJ
dXJ

= 0 in B and 8t 2 I (3.10)

�PiJNJ = 0 in @B1 and 8t 2 I

or, written in invariant notation, to

B� d

dt
(R _') + DIV (P) = 0 (3.11)

�PN = 0

that corresponds to the equations of motion.

3.2 Viscosity and Lagrange-d�Alembert principle

We shall also consider elastic materials exhibiting viscous e¤ects, i.e., materials for which the total

state of stress depends not only on F but also on the rate of deformation _F in the form

P = Pe (F) +Pv
�
F; _F

�
where Pe (F) is the equilibrium or elastic part of the stress given by

Pe = �@L
@F

=
@W

@F
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and Pv
�
F; _F

�
is the viscous stress. We shall study in particular Newtonian viscosity for which the

viscous stress is assumed to be of the form

Pv
�
F; _F

�
= J�vF�T (3.12)

where �v is the Cauchy viscous stress given by

�v = 2� sym
�
_FF

�1�dev
(3.13)

with � the (shear) viscosity, d = _FF
�1
the rate of deformation spatial tensor and sym and dev the

symmetric and deviatoric operators, namely,

sym (d) =
1

2

�
d+ dT

�
ddev = d� tr (d)

3
i

In the presence of viscosity the equations of motion (3.11) with their corresponding boundary

conditions (3.9) become

B�R�'+DIV (Pe +Pv) = 0 in B and 8t 2 I (3.14)

� (Pe +Pv)N = 0 in @B1 and 8t 2 I

that for systems with a Lagrangian density of the form (3.3) may be rewritten as

@L

@'
� d

dt

�
@L
@V

�
�DIV

�
@L
@F

�
+DIV (Pv) = 0 in B and 8t 2 I (3.15)

�
@L
@F

�Pv
�
N = 0 in @B1 and 8t 2 I

We notice next that unlike in the case of elastic materials, these equations cannot be obtained

directly from Hamilton�s principle. They may be established instead from the Lagrange-d�Alembert

principle, namely,

h�S; �'i+
Z tf

t0

Z
B

(�'DIV (Pv)) dV dt

+

Z tf

t0

Z
@B1

(�' (�Pv)N) dSdt = 0

where S is the action and h�S; �'i are its corresponding variation. Integrating by parts the viscosity
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terms and making use of the divergence theorem the Lagrange-d�Alembert principle reads

h�S; �'i �
Z tf

t0

Z
B

�
Pv � @�'

@X

�
dV dt = 0 (3.16)

or, in Cartesian coordinates,

h�S; �'ii �
Z tf

t0

Z
B

�
P viJ

@�'i
@XJ

�
dV dt = 0

3.3 Elastic con�gurational forces and con�gurational force

balance

Con�gurational forces, also known as material forces, arise in applications involving the evolution

of defects within the material. As opposed to standard (Newtonian or mechanical) forces that drive

the motion of material particles in space, con�gurational forces drive the motion of entities that

migrate relative to the material. Examples include dislocations, cracks, inclusions, voids, vacancies,

or evolving interfaces.

The concept was introduced in the context of elasticity and continuum mechanics by Eshelby

[6],[7]. Since then several approaches have been proposed to elucidate their true nature and to

formulate the equations of con�gurational force balance. Without claiming completeness we mention

1) the "pull-back" approach ([40], [41], [42], [43]) in which con�gurational force balance is regarded as

the projection (pull-back) of the mechanical force balance equations onto the material manifold and

con�gurational forces are related to the concept of material uniformity and homogeneity (as de�ned

in [51] or [58]) as the forces behind continuous distribution of inhomogeneities ([4], [5], [8], [39], [46]).

2) the "basic primitive objects" approach of Gurtin ([2], [15], [16], [18]), where con�gurational forces

are postulated as primitive physical entities, independent of mechanical forces, and their balance

is derived using invariance arguments. 3) the "Noether�s theorem" approach ([23], [29], [31], [34]),

where conservation (lack of conservation) of con�gurational forces arises as the conservation law

associated to material translational symmetry (lack of symmetry) of the Lagrangian density, 4) the

"inverse motion" approach ([38], [40], [53], [56]) for which the equations of balance of con�gurational

forces follow from the stationarity of the energy (or action) functional with respect to the reference

con�guration keeping the current con�guration �xed, and 5) very closely related to the previous

two, what we refer to as the "variational approach" ([24], [26], [29], [30], [31]) where, in addition

to the reference (or material) con�guration B and the deformed (or spatial) con�guration Bt, a

new con�guration is introduced (the "parameter con�guration" D) as a �xed reference for the

motion of defects with respect to the material manifold, in analogy to the material con�guration

that acts as a reference for the motion of material particles in space. The equations of balance of
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con�gurational forces follow then as those energetically conjugate to variations with respect to the

material con�guration B keeping �xed the new reference D.

The "variational approach" admits an important geometrical interpretation originally suggested

in [29], [30]: The deformation mapping ' : B ! Rn may be reinterpreted as a section (X;' (X)) of

the con�guration bundle B � Rn that may be conceptually represented in two axes, the horizontal

axis for the reference con�guration B and the vertical axis for the space Rn. Variations of the

energy functional with respect to the deformed con�guration Bt, keeping the reference con�guration

B �xed, can be interpreted as vertical variations, while variations of the reference con�guration

B keeping the deformed con�guration Bt �xed may be regarded as horizontal variations. Hence

mechanical and con�gurational forces may be described as those forces associated to vertical and

horizontal variations of the energy (or action) functional.

In this work we will follow the variational approach, with a formulation similar to that of [29],

[30], [31], but using a "space-space" (as opposed to a "space-time-space") con�guration bundle, i.e.,

using the body B (instead of the space-time body B � [t0; tf ]) as the base for the bundle. We will

extend the geometrical interpretation by regarding the motion ' (X; t) as a family of sections of

the space-space bundle parametrized by time, analyzing "normal" and "tangential" variations (in

addition to horizontal and vertical variations) and reexpressing the joint system of con�gurational

and mechanical force balance as a single equation for the evolution of the time-dependent section

(X;' (X; t)) in the space-space bundle. The resulting system of equations will exhibit a structure

that will be preserved in the discrete setting.

3.3.1 Defect motion and Defect reference con�guration

In his original papers on con�gurational forces [6], [7], Eshelby considered solids with "defects or

imperfections capable of altering their con�guration in a crystal" and observed that the total energy

of the body will be function not only of the applied external forces but of the "set of parameters

required to specify the con�guration of the defects." Therefore he de�ned "force on the defect" as the

negative gradient (or variation) of the total energy with respect to the position of the imperfections.

With this picture in mind we shall consider a continuous body B with defects undergoing two

simultaneous and independent kinematic processes: the motion of material particles with respect to

the ambient space Rn and the motion of "defects" within the material. We will refer to the �rst

motion as the material motion or mechanical motion, and to the second as the defect motion or

defect rearrangement.

In the mathematical description of the material motion, the body is identi�ed with its reference

con�guration B, and the (material) motion is de�ned as a time-dependent family of smooth mappings

' : B ! Rn from the reference con�guration B � Rn onto space Rn. Analogously we may describe

the "defect motion" by introducing a "reference con�guration for the defect rearrangement" D � B
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and a family of smooth mappings from this new con�guration D onto the reference con�guration B.

We will refer to this new con�guration D as the "defect reference con�guration" or as the "parameter

con�guration."

Within the context just outlined, we consider a new con�guration D, an open bounded subset

of the reference con�guration B, the elements of which will be called "continuous defects." We label

continuous defects with their position vector � relative to some convenient reference frame as shown

in �gure 3.1.

A "defect motion" or "defect rearrangement" may be described by considering a time-dependent

family of smooth mapping  , (independent and coexisting with the deformation mapping ') that

maps the "defect reference con�guration" D onto the reference con�guration B, i.e.,

 : D � I ! B

such that, for every time t of the interval I = [t0; tf ] the instantaneous defect rearrangement map

 (�; t) is bijective.

The particle X =  (�; t) 2 B is the particle on which the continuous defect � 2 D is sitting at

time t. For a given �xed continuous defect � the set X (t) =  (�; t) is the collection of di¤erent

material particles visited by the defect during its migration within the material. In coordinates we

shall write

XI =  I (��; t)

Here and in what follows, we will use greek indexes to denote components of coordinates and vector

and tensor �elds in D.

Let � = ' �  be the composition mapping between the deformation and the defect rearrange-

ment mappings. Then the map � maps the defect reference con�guration D onto the deformed

con�guration. In coordinates we shall write

�i (��; t) = 'i ( I (��; t) ; t) (3.17)

Figure (3.1) sketches the three con�gurations (defect reference con�guration D, body reference

con�guration B, and deformed con�guration at time t 't (B)), and the relation between the three

mappings '; , and �.

The set D is also known in the literature as the "space of reference labels" and the coordinates

�� 2 D as "reference labels," see Gurtin [15] and Kalpakides & Dascalu [18]. For a given neigh-

borhood P of � 2 D the set  (P; t) is regarded as a migrating control volume within the reference

con�guration B. The set D is also known as the "referential con�guration" and the maps  and

� = ' � as "the referential maps" ([26], [24]). Epstein & Maugin ([4], , [5], [39]) and Epstein [8]
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ψI

ϕi

D

B
ϕt(B)

φi

XI

ξα

xi
{I,J,K}

{i,j,k}

{α,β,γ}

Body
Reference

Configuration

Deformed
Configuration

Defect
Reference

Configuration

Figure 3.1: Reference con�guration, deformed con�guration, defect reference (or parametric) con-
�guration, and composition mappings.

consider "local rearrangements" that bring a "reference or stress-free crystal" into the neighborhood

of each particle, the local rearrangement need not to be integrable to a global rearrangement  .

Maugin & Trimarco [38] choose the defect reference con�guration D coincident with the deformed

con�guration Bt and spatial positions as instantaneous reference labels for the defect con�guration,

the map  becoming in this case the inverse motion '�1, see also [27], [40], [53], [56]. The defect

rearrangement  : D ! B may be also interpreted as a change of parametrization of the reference

con�guration ([29], [30], [31]) and the set D is referred to as the "parameter space" or "parametric

con�guration," or, more generally, the space projection of a change of parametrization of space-time

B � [t0; tf ].

On account of the existence of two simultaneous and independent motions, we next regard the

action as a functional that depends on both mappings � and  independently. To do this we make

use of the following relations, which are obtained by direct di¤erentiation with respect to � and t of

(3.17):

� Relation between mappings

' = � � �1

� Relation for the deformation gradients

F = D� (D )
�1 (3.18)
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� Relation between velocities

_' = _��D� (D )�1 _ (3.19)

= _�� F _ 

Here D�, D , _�, and _ are the derivatives of �i (��; t) and  J (��; t) with respect to the

parameter � and time t, i.e.,

(D�)i� = �i;� =
@�i
@��

(D )I� =  I;� =
@ I
@��

_�i =
@�i
@t

_ I =
@ I
@t

Referring the action functional (3.4) to the parametric con�guration D and making use of the

the deformation gradient and velocity relations (3.18) and (3.19) we obtain:

S [ ;�] =

Z tf

t0

Z
D

L � det (D ) d�dt

=

Z tf

t0

Z
D

L
�
 ; t;�; _��D� (D )�1 _ ; D� (D )�1

�
det (D ) d�dt (3.20)

In coordinates the previous reads

S [ I ; 'i] =

Z tf

t0

Z
D

L
�
 I ; t; �i;

_�i �
@�i
@��

�
@ �1�
@XI

�
_ I ;

@�i
@��

�
@ �1�
@XI

��
det

�
@ I
@X�

�
d��dt

3.3.2 Variations and Euler-Lagrange equations

Hamilton�s principle states that the actual (particle) motion renders the action functional S station-

ary with respect to all admissible variations. In keeping with this principle we invoke the stationarity

of the action S [ ;�] with respect to admissible variations of both arguments:

h�S; ��ii = 0

h�S; � Ii = 0

The variation of the action functional S [ ;�] with respect to � (keeping  �xed) is

h�S; ��ii =
Z tf

t0

Z
D

�
@L
@'i

��i +
@L
@Vi

�
� _�i �

�
��i;� 

�1
�;J

�
_ J

�
+

@L
@FiJ

�
��i;� 

�1
�;J

��
det (D ) d�dt

(3.21)
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Referring the integral back to the reference con�guration B we �nd

h�S; ��ii =
Z tf

t0

Z
B

�
@L
@'i

�
��i � �1

�
+
@L
@Vi

d

dt

�
��i � �1

�
+

@L
@FiJ

d

dXJ

�
��i � �1

��
dV dt (3.22)

where the following identities have been used:

d

dt

�
��i � �1

�
=

�
� _�i � �1

�
�
�
��i;� � �1

�
 �1�;J

�
_ J � �1

�
(3.23)

d

dXJ

�
��i � �1

�
=

�
��i;� � �1

�
 �1�;J (3.24)

Integrating by parts in (3.22) yields the identity

h�S; ��ii =

Z tf

t0

Z
B

�
@L
@'i

� d

dt

�
@L
@Vi

�
� d

dXJ

�
@L
@FiJ

���
��i � �1

�
dV dt

+

Z
B

@L
@Vi

�
��i � �1

�
dV

����tf
to

+

Z tf

t0

Z
@B

��
��i � �1

� @L
@FiJ

NJ

�
dSdt (3.25)

We next compute the variations with respect to  (keeping � �xed). Notice �rst that since

S [�;  ] =
R tf
t0

R
D
(L � ) det (D ) d�dt then there are two contributions for this variation, namely

h� fL � det (D )g ; � Ii = h� (L � ) ; � Iidet (D ) + (L � ) h� det (D ) ; � Ii

Notice also that

h� det (D ) ; � Ii =
d

d"
det (D + "D� )j"=0 =

= � I;�
@ det (D )

@ I;�
=

= � I;� 
�1
�;I det (D ) (3.26)

and



� �1�;J � ; � I

�
=

d

d"
( + "� )

�1
�;J

���
"=0

=

= �
�
 �1�;I � 

�
� I;�

�
 �1�;J � 

�
(3.27)

Hence, the variation with respect to  gives

h�S; � Ii =

Z tf

t0

Z
D

�
@L
@XI

� I +
@L
@Vi

�
��i;� �1�;I

� �
� _ I �

�
� I;� 

�1
�;J

�
_ J

�
+

+

�
L�IJ �

@L
@FiJ

�
�i;� 

�1
�;I

���
� I;� 

�1
�;J

��
det (D ) d�dt (3.28)
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Referring the integral back to the reference con�guration B, the previous takes the form

h�S; � Ii =

Z tf

t0

Z
B

�
@L
@XI

�
� I � �1

�
+
@L
@Vi

(�FiI)
d

dt

�
� I � �1

�
+

+

�
L�IJ �

@L
@FiJ

FiI

�
d

dXJ

�
� I � �1

��
dV dt (3.29)

where the following identities have been used:

d

dXJ

�
� I � �1

�
=

�
� I;� � �1

�
 �1�;J (3.30)

d

dt

�
� I � �1

�
=

�
� _ I � �1

�
�
h�
� I;� � �1

�
 �1�;J

i �
_ J � �1

�
(3.31)

Integrating by parts in (3.29) gives the variations in the form

h�S; � Ii =

Z tf

t0

Z
B

�
@L
@XI

� d

dt

�
�FiI

@L
@Vi

�
� d

dXJ

�
L�IJ �

@L
@FiJ

FiI

���
� I � �1

�
+

+

Z
B

�
@L
@Vi

(�FiI)
��

� I � �1
�
dV

����tf
to

+

Z tf

t0

Z
@B

��
� I � �1

��
L�IJ �

@L
@FiJ

FiI

�
NJ

�
dSdt (3.32)

We next obtain the corresponding Euler-Lagrange equations. Stationarity of the action with

respect to admissible variations ��, i.e., mappings �� such that
�
�� � �1

�
vanishes on the Dirichlet

boundary @B2 8t 2 I = [t0; tf ] and everywhere in B at to and tf , yields the Euler-Lagrange equation

@L
@'i

� d

dt

�
@L
@Vi

�
� d

dXJ

�
@L
@FiJ

�
= 0 in B and 8t 2 I (3.33)

along with the boundary condition

@L
@FiJ

NJ = 0 in @B1 and 8t 2 I

that, as was shown in the previous section, corresponds to the equation of motion (3.10).

Stationarity of the action with respect to admissible variations � , i.e., mappings � such that�
� � �1

�
vanishes in the complete boundary @B 8t 2 I = [t0; tf ] and everywhere in B at to and

tf , yields the Euler-Lagrange equation

@L
@XI

� d

dt

�
@L
@Vi

(�FiI)
�
� d

dXJ

�
L�IJ �

@L
@FiJ

FiI

�
= 0 in B and 8t 2 I (3.34)

The magnitude

CIJ = �
�
L�IJ �

@L
@FiJ

FiI

�
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is the dynamic Eshelby tensor or (or space-space component of the space-time energy-momentum

tensor) and equation (3.34) is the equation of balance of Con�gurational Forces. The magnitude

jI =
@L
@Vi

(�FiI) (3.35)

is the "material momentum" [34], or pseudomomentum ([40], [41], [42], [44], [45], [46]). The term

BinhI =
@L
@XI

=
@L
@XI

����
exp

is a source resulting from the assumption that the Lagrangian density is inhomogeneous. Equation

(3.34) is also referred to as the equation of balance of pseudomomentum. For a Lagrangian density

L of the form (3.3), the material momentum, dynamic Eshelby stress tensor, and inhomogeneity

source term yield

jI = �RViFiI

CIJ =

�
W � 1

2
R k _'k2

�
�IJ � PiJFiI

BinhI =
@

@XI

�
1

2
R k _'k2 �W (Xi; 'i; FiJ)

�����
exp

and the equations of balance of con�gurational forces read

BinhI � d

dt
(�FiIR _'i) +

dCIJ
dXJ

= 0 in B and 8t 2 I (3.36)

that resemble the equations of motion

Bi �
d

dt
(R _'i) +

dPiJ
dXJ

= 0 in B and 8t 2 I

The Euler-Lagrange equations written in invariant notation yield

B� d

dt
(RV) +DIV (P) = 0

Binh � d

dt

�
�FT @L

@V

�
+DIV (C) = 0

3.3.3 Equivalence between mechanical and con�gurational force balance

We notice now that the action functional (3.20) does not depend on the two mappings ( ;�)

independently, but only on the combination ' = � �  �1. It follows then that the equations of

con�gurational and mechanical force balance are equivalent in the sense that if equation (3.33) is

satis�ed, then equation (3.34) will be automatically satis�ed. More precisely, let F� (') and F (')
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be the left hand sides of the Euler-Lagrange equations (3.33) and (3.34), namely

(F� ('))i =
@L

@'i
� d

dt

�
@L
@Vi

�
� d

dXJ

�
@L
@FiJ

�
(3.37)

(F ('))I =
@v

@XI
� d

dt

�
@L
@Vi

(�FiI)
�
� d

dXJ

�
L�IJ �

@L
@FiJ

FiI

�
(3.38)

Then we have

F� (') = 0, F (') = 0

To prove this equivalence observe that

dL
dXI

=
@L
@X

+
@L
@'i

@'i
@XI

+
@L
@Vi

@ _'i
@XI

+
@L
@FiJ

@FiJ
@XI

=

=
@L
@XI

+
@L
@'i

FiI +
@L
@ _'i

@FiI
@t

+
@L
@FiJ

@FiJ
@XI

(3.39)

where we have made use of the relation between mixed partial derivatives @ _'i
@XI

= @FiI
@t . Substituting

equation (3.33) in the previous we �nd

dL
dXI

=
@L
@X

+

�
d

dt

�
@L
@Vi

�
+

d

dXJ

�
@L
@FiJ

��
FiI +

@L
@Vi

@FiI
@t

+
@L
@FiJ

@FiJ
@XI

=

=
@L

@X
+
d

dt

�
@L
@Vi

FiI

�
+

d

dXJ

�
@L
@FiJ

FiI

�

that, using the identity
dL
dXI

=
d

dXI
(L�IJ) (3.40)

may be reexpresed in the form (3.34).

Alternatively, the equivalence between (3.33) and (3.34) may be proved as follows: multiplying

F� (') by
�
�FT

�
and rearranging terms yields

�FiI
�
@L
@'i

� d

dt

�
@L
@Vi

�
� d

dXJ

�
@L
@FiJ

��
=

�FiI
@L
@'i

� d

dt

�
�FiI

@L
@Vi

�
� @FiI

@t

@L
@Vi

� d

dXJ

�
�FiI

@L
@FiJ

�
� @FiI
@XJ

@L
@FiJ

Making use of the identities (3.39) and (3.40) we then �nd

�FiI
�
@L
@'i

� d

dt

�
@L
@Vi

�
� d

dXJ

�
@L
@FiJ

��
=

@L
@XI

� d

dt

�
�FiI

@L
@Vi

�
� d

dXJ

�
L�IJ � FiI

@L
@FiJ

�
(3.41)
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that may be compactly expressed, using the notation (3.37) and (3.38) as

�FTF� (') = F (') (3.42)

Therefore the left hand side of the equations of con�gurational force balance is identically equal to

the left hand side of the equations of mechanical force balance multiplied by �FT . The operation of

multiplying equations (3.33) by �FT may be interpreted as a pull-back or projection of this balance

law onto the material manifold, thus the terms "material" momentum and forces, see Maugin [40],

[43], [46].

Of fundamental importance for understanding the �nite element method studied in this work

is the following remark: While in the continuum setting the mechanical and con�gurational force

balance equations are equivalent, in the discrete setting this equivalence does not hold. The discrete

(nodal) con�gurational force system computed from the �nite element discretization is unbalanced

in general, even in homogeneous materials where con�gurational forces are not expected. These

discrete con�gurational forces will be used as driving forces for the motion of the �nite element

mesh.

3.3.4 Noether�s theorem and material translational symmetry

We also notice that if the material is homogeneous, i.e., the Lagrangian density L is independent

of X; and if ' is a solution of the Euler-Lagrange equations (3.33), then the equation of balance of

con�gurational forces (3.34) becomes the local conservation law

d

dt

�
�FiI

@L
@Vi

�
+

d

dXJ

�
L�IJ � FiI

@L
@FiJ

�
= 0 (3.43)

with momentum given by jI = �FiI @L@Vi (the material momentum) and with the Eshelby stress

tensor CIJ = �
�
L�IJ � FiI @L

@FiJ

�
acting as the momentum �ux. This result may be also obtained

as a direct application of Noether�s theorem to elasticity ([40], [43], [22], [29], [30], [31], [34]).

Assume that for �xed ( ;�) the action (3.34) is symmetric (or invariant) with respect to a one-

parameter family of transformations in their variables, i.e., the action functional remains invariant

S [ ;�] = S [ ";�"] (3.44)

under the in�uence of a family of maps  " (�; t) and �" (�; t) such that

 0 =  

�0 = �
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Denoting by

Y =
d "
d"

����
"=0

y =
d�"
d"

����
"=0

the in�nitesimal generators of the symmetries and di¤erentiating the identity (3.44) with S given

by (3.20) with respect to the parameter " gives

0 =

Z tf

t0

Z
D

�
@L
@XI

YI � �1 +
@L
@'i

yi � �1+

+
@L
@Vi

�
_yi � yi;� �1�;J _ J

�
+

+
@L
@Vi

�
��i;� �1�;I

� �
_YI � YI;� �1�;J _ J

�
+

+
@L
@FiI

�
yi;� 

�1
�;I � �i;� 

�1
�;JYJ;� 

�1
�;I

�
+

+LYI;� �1�;I
	
det

�
@ I
@��

�
d�dt (3.45)

where we have made use of the following equalities:

d

d"
det (D ")

����
"=0

= det (D ") 
�1
�;IYI;�

d

d"
(D ")

�1
����
"=0

= � �1�;IYI;� 
�1
�;J

Referring the previous integral back to the reference con�guration B equation (3.45) gives the local

symmetry condition as

0 =

Z tf

t0

Z
B

�
@L
@XI

YI � �1 +
@L
@'i

yi � �1+

+

�
@L
@Vi

��
d

dt

�
yi � �1

�
� FiI

d

dt

�
YI � �1

��
+

�
@L
@FiI

��
d

dXI

�
yi � �1

�
� FiJ

d

dXI

�
YJ � �1

��
+

+L d

dXI

�
YI � �1

��
dXdt

where we have made use of the identities

d

dt

�
YI � �1

�
=

�
_YI � �1

�
�
�
YI;� � �1

�
 �1�;J

�
_ J � �1

�
d

dXJ

�
YI � �1

�
=

�
YI;� � �1

�
 �1�;J
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d

dt

�
yi � �1

�
=

�
_yi � �1

�
�
�
yi;� � �1

�
 �1�;J

�
_ J � �1

�
d

dXJ

�
yi � �1

�
=

�
yi;� � �1

�
 �1�;J

On account of equation (3.39), the symmetry condition may be written as

0 =

Z tf

t0

Z
B

�
(F� ('))i (yi � FiJYJ) +

+
d

dt

�
(yi � FiJYJ)

@L
@Vi

�
+

d

dXI

�
(yi � FiJYJ)

@L
@FiI

+ LYI
��

dXdt

where F� (') is the Euler-Lagrange operator de�ned in (3.37). Therefore, if ' is a solution of the

Euler-Lagrange equations (3.33), i.e., if F� (') = 0, and if the action (3.20) is symmetric with

respect to the �ows ( ";�") then the following local conservation law is satis�ed:

d

dt

�
(yi � FiJYJ)

@L
@Vi

�
+

d

dXI

�
(yi � FiJYJ)

@L
@FiI

+ LYI
�
= 0

or in global form

Z
P

(yi � FiJYJ)
@L
@Vi

dV

����tf
t0

+

Z tf

t0

Z
@P

�
(yi � FiJYJ)

@L
@FiI

+ LYI
�
NIdSdt = 0

where P � B is any open subset of B. This result is the statement of Noether�s theorem. In

particular, if the action is symmetric with respect to material (or horizontal) translations ( ";�") =

(� + "Y;�) with Y a constant vector, as happens when the Lagrangian density L is independent of

X (homogeneous materials), Noether�s theorem yields the conservation law

YJ

�
d

dt

�
(�FiJ)

@L
@Vi

�
+

d

dXI

�
L�IJ � FiJ

@L
@FiI

��
= 0

or in global form

YJ

 Z
P

(�FiJ)
@L
@Vi

dV

����tf
t0

+

Z tf

t0

Z
@P

�
L�IJ � FiJ

@L
@FiI

�
NIdSdt

!
= 0

that implies the conservation law (3.34). The equations of conservation (lack of) of mechanical forces

may be thus reinterpreted as the conservation (balance) law associated to material translational

symmetry (lack of symmetry) of the action functional.

The global form of this conservation law may alternatively be written as

Q (tf )�Q (t0) =
Z tf

t0

J (t) dt
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or equivalently as

J� _Q = 0

where

QJ (t) =

Z
P

(�FiJ)
@L

@Vi
dV

is the total material momentum or total pesudomentum (see the de�nition of material momentum

density in (3.35)) of the subbody P � B and

JJ (t) =

Z
@P

�
�
L�IJ � FiJ

@L
@FiI

�
NIdS =

=

Z
@P

CIJNIdS

is the total con�gurational force within the subbody P � B. The magnitude

Jdyn = J� _Q

is the dynamic J-integral (see [12], [50]). For a Lagrangian density of the form (3.3) it reduces to

JdynJ =

Z
@P

  
W � R kVk2

2

!
�IJ � FiJ

@W

@FiI

!
NIdS �

Z
P

d

dt
(�FiJRVi) dV =

=

Z
@P

  
W +

R kVk2

2

!
�IJ � FiJ

@W

@FiI

!
NIdS +

Z
P

R
�
FiJ _Vi � ViVi;J

�
dV

In the context of Noether�s theorem and the established relation between material symmetry and

conservation of material momentum, we may restate the remark of the previous subsection in the

following way: While in the continuous setting and for homogeneous materials the material momen-

tum is conserved, in the discrete setting and for arbitrary meshes, the discrete material momentum

will not be conserved in general. The discretization breaks the material translational symmetry in

general and the material momentum may not be conserved even when the mechanical momentum is

conserved. The out of balance discrete con�gurational forces that preclude the conservation of the

discrete material momentum will be used as driving forces for the evolution of the moving mesh.

3.3.5 Energy release rate and dynamic J-integral

So far we have focused attention in the kinematics of defect motion given by the mapping  (�; t)

and on what are the consequences of demanding the stationarity of an action functional that was

built with a Lagrangian and energy densities that depend implicitly on  , i.e., depend on  only

through ' = � �  �1. In this section we will analyze materials for which the energy density A

depends explicitly on the defect parameter �. We recall that the parameter � speci�es one particular
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con�guration of the defects, namely the defect reference con�guration. Just as the parameter X,

which is used to label particles but coincides with the spatial position x occupied by the material

particle X at a reference time tref , i.e., x = ' (X; tref ), the defect parameter �, used to label

continuous defects, is in one-to-one correspondence with the material particle on which the defect

is sitting at the reference time tref , i.e., X =  (�; tref ). It follows then that assuming that A

is function of � implies that the material has a memory of where the defect was at the reference

time tref just as do elastic materials that "remember" the reference position of particles. Since

� =  �1 (X; t), an explicit dependence of A on � implies an explicit dependence on the defect

motion  .

We shall therefore assume in this section that the free energy depends explicitly on the parameters

� required to specify the reference con�guration of the defects, i.e.,

A = A (�;X;F)

This results, since � =  �1 (X; t). in a free energy density A, Lagrangian density L, and action

functional S that depend explicitly on the the defect motion  , namely,

A = A
�
 �1 (X; t) ;X;F

�
L = L

�
 �1 (X; t) ;X; t; ';V;F

�
S = S ('; ) =

Z tf

t0

Z
B

L
�
 �1 (X; t) ;X; t;'; _'; D'

�
dV dt

Notice that the free energy density and Lagrangian density become therefore explicit functions

of position X through two di¤erent sources, namely, those that are a consequence of the explicit

dependence on � and those that are a consequence of the explicit dependence on X. To distinguish

between these two sources we will use the notation

@L
@X

����
1

=
@L
@�

@
�
 �1

�
@X

@L
@X

����
2

=
@L
@X

and the explicit derivative of the Lagrangian with respect to X becomes

@L
@X

����
exp

=
@L
@X

����
1

+
@L
@X

����
2

=

=
@L
@�

@
�
 �1

�
@X

+
@L
@X
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It follows that the pull-back relation (3.41) reduces in this case to

�FT
�
@L
@'

� d

dt

�
@L
@V

�
� d

dX

�
@L
@F

��
=

@L
@X

����
1

+
@L
@X

����
2

� d

dt

�
�FT @L

@V

�
� d

dX

�
LI� FT @L

@F

�
(3.46)

We notice also that the free energy becomes in this case an explicit function of time. As we will see

shortly this implies energy dissipation.

We observe next that when the free energy of the material A depends explicitly on �, we cannot

demand the stationarity of the action with respect to variations in the defect motion  . This can

directly be veri�ed by taking variations of the action functional S ('; ) with respect to each of its

arguments to �nd

h�S; �'i =

Z tf

t0

Z
B

�
@L
@'

�'+
@L
@V

� _'+
@L
@F

�D'

�
dV dt =

=

Z tf

t0

Z
B

��
@L
@'

� d

dt

�
@L
@V

�
� d

dX

@L
@F

�
�'

�
dV dt

+

Z
B

@L
@V

�'

����tf
t0

dV +

Z tf

t0

Z
@B

�'
@L
@F
NdSdt

h�S; � i =

Z tf

t0

Z
B

@L
@�

�
�
 �1

�
dV dt

Using the identity

�
�
 �1

�
=

���� @@" ( + "� )�1
����
"=0

= �@ ( )
�1

@X

�
� � �1

�
the variation with respect to  (keeping ' constant) can be rewritten as

h�S; � i =

Z tf

t0

Z
B

�@L
@�

@ ( )
�1

@X

�
� � �1

�
dV dt =

=

Z tf

t0

Z
B

�
� @L
@X

����
1

��
� � �1

�
dV dt

Invoking then the stationarity of the action functional with respect to admissible variations of ',

and keeping constant  , requires

h�S; �'i = 0

with corresponding Euler-Lagrange equation

@L
@'

� d

dt

�
@L
@V

�
� d

dX

@L
@F

= 0 (3.47)

However for our original assumption of an energy that depends exclusively on � =  �1 to remain
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true, we cannot invoke also the stationarity of the action functional with respect to  since in that

case we would obtain the Euler-Lagrange equation

@L
@X

����
1

=
@L
@�

@ ( )
�1

@X
= 0

which contradicts the aforementioned assumption.

We can also consider variations of the action with respect to  keeping constant � = ' �  

instead of keeping constant ' as before. This can be accomplished by referring the action integral

S to the defect reference con�guration to obtain

S [�; ] =

Z tf

t0

Z
D

L
�
�; ; t;�; _��D�D �1 _ ; D�D �1

�
det (D ) d�dt

The variations of this action with respect to  keeping � follow then as

h�S; � Ii =

Z tf

t0

Z
B

�
@L
@XI

����
2

�
� I � �1

�
+
@L
@Vi

(�FiI)
d

dt

�
� I � �1

�
+

+

�
L�IJ �

@L
@FiJ

FiI

�
d

dXJ

�
� I � �1

��
dV dt

where now only the derivative with respect to the second kind of inhomogeneity @L
@XI

���
2
is involved

in the integrand. However, and as happened with variations of S with respect to  and keeping '

constant, we shall not demand

h�S; � i = 0

since this contradicts the original hypothesis of a Lagrangian-dependent explicitly on �.

We de�ne now the total (internal) energy of a portion P of the body B as

E (t) =

Z
P

�
�L

�
 �1 (X; t) ;X; t;'; _'; D'

�
+
@L
@V

_'+
@L
@'
'

�
dV

Notice that for a Lagrangian density of the form L = 1
2R kVk

2 � A + B' the previous takes the

form

E (t) =

Z
P

�
W � 1

2
R k _'k2 �B �'+R _' � _'+B �'

�
dV =

=

Z
P

�
A+

1

2
R k _'k2

�
dV

which corresponds the standard de�nition of total (internal) energy of a subbody P . Di¤erentiating
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the total energy with respect to time we �nd

_E (t) =

Z
P

�
�@L
@�

d

dt

�
 �1

�
� @L
@t
� @L
@'

_'� @L
@V

�'� @L
@F

D _'+
d

dt

�
@L
@V

_'+
@L
@'
'

��
dV =

=

Z
P

�
�@L
@�

d

dt

�
 �1

�
� @L
@t
� @L
@F

D _'+
d

dt

�
@L
@V

�
_'+

d

dt

�
@L
@'

�
'

�
dV

Integrating by parts in the third factor and on account of the identity

@L
@�

d

dt

�
 �1

�
= �@L

@�
D �1

�
_ � �1

�
= � @L

@X

����
1

�
_ � �1

�
the rate of change of total energy _E can be rewritten as

_E (t) =

Z
P

�
� @L
@X

����
1

�
_ � �1

�
�
�
@L
@t
� d

dt

�
@L
@'

�
'

��
dV

+

Z
P

� _'
�
@L
@'

� d

dX

�
@L
@F

�
� d

dt

�
@L
@V

��
dV

+

Z
@P

_'

�
�@L
@F

�
NdS +

Z
@B

_'

�
@L
@'

�
dV

Assuming also that for every time t the Euler-Lagrange equations (3.46) are satis�ed, we �nally

obtain

_E (t) =

Z
P

�
� @L
@X

����
1

�
_ � �1

�
�
�
@L

@t
� d

dt

�
@L
@'

�
'

��
dV

+

Z
@B

_'
@L
@F
NdS +

Z
@B

_'
@L
@'

dV

In particular, for Lagrangian densities of the form

L = 1

2
R kVk2 �A (�;X;F) +B'

we have
@L

@t
� d

dt

�
@L
@'

�
' = _B'� _B' = 0

and the rate of change of energy follows in this case as

_E (t) =

Z
P

� @L
@X

����
1

�
_ � �1

�
dV +

Z
@B

_'
@L
@F
NdS +

Z
@B

_'
@L
@'

dV

We can see therefore that for materials with explicit dependence of A on � and Lagrangian densities

of the form L = 1
2R kVk

2�A+B', the rate of change of the total energy of a portion P of the body

depends not only on the power of external forces P = �@L
@F and B = @L

@' but also on the evolution
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of the defects evolving within this portion P . We thus de�ne energy release rate as

G (t) =

Z
P

� @L
@X

����
1

�
_ � �1

�
dV

Using the pull-back relation (3.46) we have the identity

G (t) =

Z
P

�
@L
@X

����
2

� d

dt

�
�FT @L

@V

�
� d

dX

�
LI� FT @L

@F

���
_ � �1

�
dV

We �nally de�ne the dynamic J�integral Jdyn as

Jdyn (t) =

Z
P

�
@L
@X

����
2

� d

dt

�
�FT @L

@V

�
� d

dX

�
LI� FT @L

@F

��
dV =

=

Z
P

�
@L
@X

����
2

� d

dt

�
�FT @L

@V

��
dV �

Z
@P

�
LI� FT @L

@F

�
NdS

Then if the defects move at uniform velocity, i.e., if the �eldW = _ �  �1 is not a function of X,

then we have the result

G (t) = Jdyn (t) �W (t)

3.3.6 Space-space bundle

The variational formulation outlined in the previous subsections admits the following geometrical

interpretation: consider the "space-space" bundle, i.e., the set E = B � S where S = Rn is the

ambient space, �gure 3.2. Local coordinates for this bundle are
�
XI ; xi

�
and its projection map is

� : E ! B given in coordinates by �I
�
XI ; xi

�
= XI . For a �xed time t we consider the graph

ft (X) = (X;' (X; t)) of the deformation mapping ' at time t. This graph is an n-dimensional

manifold immersed in 2n-dimensional space, the space-space bundle, and is one of its sections, i.e.,

� � ft = Id : B ! B, the identity map in B. Therefore, rather than looking at the motion ' (X; t)

as a time-dependent family of mappings from B to S we shall regard it as an evolving manifold or

section in the space-space bundle B � S.

We next notice that for a one-dimensional body undergoing one-dimensional deformations, i.e.,

when B � R and S = R, the graph ft (X) = (X;' (X; t)) becomes a curve in B � S = R2 with X

acting as parameter (�gure(3.2)). For this curve the tangent vector will be given by

T =
dft
dX

=

0@ 1

F

1A
where F = @'

@X is the deformation gradient at time t. Furthermore, if the standard euclidean inner
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B

N

X

x

T
(X,ϕ(X,t))

(X,ϕ(X,t+∆t)
)

Figure 3.2: The graph of the deformation mapping as a manifold (section) of the space-space bundle.
Finding the motion is equivalent to �nding the evolution of this manifold.

product in R2 is used, then a vector in the normal direction will be

N� = (�F; 1)

since

N� � T =(�F; 1)

0@ 1

F

1A = 0

Analogously, for an n-dimensional body immersed and deforming in n-dimensional space we may

de�ne the tangent vectors to the manifold ft (X) as

TJ =
@ft
@XJ

=

0@ �IJ

F iJ

1A =

0@ I

F

1A (3.48)

and a (co)vectors in the normal direction as

N� =
�
�F iJ ; �ij

�
= (�F; i) (3.49)

where I and i are, respectively, the metric tensors in B and S. Also, the tangent covector may be

de�ned as

T� =
�
� JI ; F

J
i

�
=
�
I;FT

�
(3.50)
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and a normal vector as

N =

0@ �F J
i

� ji

1A =

0@ �FT

i

1A (3.51)

We have

N� � T =
�
�F iJ ; �ij

�
�

0@ �JK

F jK

1A = �F iK + F iK = 0

T� � N =
�
� IJ ; F

I
j

�
�

0@ �F J
k

� jk

1A = �F I
k + F I

k = �
�
FT
�I
k
+
�
FT
�I
k
= 0

where we are using the following inner product in B � S to de�ne orthogonality:

A� � B = (AJ ; aj) �

0@ BK

bk

1A
= (AJ ; aj)

0@ �JK 0

0 �jk

1A0@ BK

bk

1A =

= AJ�
J
KB

K + aj�
j
kb
k =

= AJB
J + ajb

j

We now observe that ft (X) = (X;' (X; t)) is only a particular parametrization of the manifold

at time t, i.e., a parametrization with parameter X. Consider any alternative parametrization

gt (�) = ( (�; t) ;� (�; t)) of the same manifold, where � 2 D is a new parameter and D is the

parameter set. For ft (X) and gt (�) to be two di¤erent parametrizations of the same manifold, the

component functions must be related by

' ( (�; t) ; t) = � (�; t) (3.52)

that corresponds to equation (3.17). The velocity of the parametrized points on the manifold will

be given by
d

dt
ft (X) = (0; _')

when the manifold is parametrized using ft (X), and by

d

dt
gt (�) =

�
_ ; _�

�
when parametrized using gt (�). Di¤erentiating identity (3.52) with respect to time and rearranging
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yields

_' = _�� F _ =

= (�F; i) �

0@ _ 

_�

1A =

= N� �

0@ _ 

_�

1A (3.53)

which may be rewritten as

V = N� �

0@ 0

_'

1A = N� �

0@ _ 

_�

1A
where V is the material velocity and N is the (co)normal to the manifold. This identity has the

following geometrical interpretation (3.3). The normal projection of the manifold velocity onto

the normal direction to the manifold is independent of the parametrization and coincident with

the material velocity V. Di¤erent parametrizations of the manifold will render di¤erent manifold

velocities, however with identical normal component.

Figure 3.3: Representation of the relation between the graph velocities ((0; _') when the graph is

parametrized with parameter X and
�
_ ; _�

�
when it is parametrized with parameter �) and the

material velocity V. The latter is the projection of the graph velocity onto the normal N to the
graph.

3.3.7 Horizontal-Vertical Variations� Tangential-Normal variations

We have reinterpreted each con�guration parametrized either as (X;' (X)) or as ( (�) ;� (�))

as a manifold in the space-space bundle B � S. This space can be conceptually represented (see

reference [29]) in two axes, the horizontal axis for the body B and the vertical axis for the ambient
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space S. From this representation, variations with respect to  and � may be easily interpreted as

follows: A variation (0; ��) can be regarded as a vertical perturbation of the surface ( ;�) and a

variation (� ;0) as an horizontal perturbation (Figure (3.4)). Therefore variations on  are also

called horizontal variations while variations �� are named vertical variations.We notice that for

Figure 3.4: Horizontal and vertical variations. Every horizontal variation might be interpreted as a
vertical variation and reciprocally. Therefore variations of the action with respect to horizontal and
vertical variations are equivalent.

smooth con�gurations ( ;�), every vertical variation can be interpreted as a horizontal variation

and conversely, every horizontal variation can be regarded as a vertical variation. This provides a

geometrical justi�cation of the fact that variations of the action functional (3.20) with respect to

horizontal and vertical variations are equivalent in the absence of singular defects.

Alternatively we may illustrate this equivalence by considering tangential and normal variations

as shown in �gure 3.5. For smooth con�gurations, an admissible variation �T in the tangent direction

Figure 3.5: Tangential and normal variations. For smooth con�gurations, variations in the tangential
direction and vanishing at the end points leave the con�guration unperturbed.

(a variation in the tangent direction that vanishes in the boundary of the body B) will leave the

con�guration unperturbed. Therefore the action will remain itself unperturbed (symmetric) with
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respect to tangential variations if it is only a function of the con�guration ' = � � �1, namely,

h�S; �Ti = 0 8�T

This statement may be easily veri�ed by computing tangential and normal variations and making

use of the pull-back property (3.42). To do this notice �rst that on account of (3.25) and (3.32) and

by making use of the notation (3.37) and (3.38), horizontal and vertical (admissible) variations can

be written as

h�S; ��i =

Z tf

t0

Z
B

�
��T � F� (')

�
dV dt

h�S; � i =

Z tf

t0

Z
B

n
� T � F (')

o
dV dt

where the boundary terms of (3.25) and (3.32) vanish if (� ; ��) are admissible. Combining both

we �nd

h�S; � i+ h�S; ��i =

Z tf

t0

Z
B

n
� T � F (') + ��T � F� (')

o
dV dt =

=

Z tf

t0

Z
B

8<:�� T ; ��T� �
0@ F (')

F� (')

1A9=; dV dt (3.54)

Tangential and normal variations (�T; �n) are de�ned as components on the tangential and normal

directions T and N of horizontal and vertical variations
�
� T ; ��T

�
, namely,

�
� T ; ��T

�
= �nT � N� + �TT � T� =

= �nT � (�F; i) + �TT �
�
I;FT

�
=

�
�TT � �nT � F; �nT + �TT � FT

�
In coordinates the previous yields

�
� J ; ��j

�
= �ni

�
�F iJ ; �ij

�
+ �TI

�
� IJ ; F

I
j

�
=

�
�TJ � F iJ�ni; �nj + F I

j �TI
�

Substituting this de�nition in the combined variations (3.54) we �nd

h�S; � i+ h�S; ��i =

Z tf

t0

Z
B

8<:�nT � (�F; i) �
0@ F (')

F� (')

1A+ �TT � �I;FT� �
0@ F (')

F� (')

1A9=; dV dt =

= h�S; �ni+ h�S; �Ti
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Therefore, tangential and normal variations will be given by

h�S; �Ti =

Z tf
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Z
B

�TT �
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=
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Z
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with corresponding tangential and normal Euler-Lagrange equations

FT (') = T� �

0@ F (')

F� (')

1A =

= F (')+FTF� (') = 0

Fn (') = N� �

0@ F (')
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= �FF (')+F� (') = 0

We now recall that from the pull-back relation (3.42) we have

0@ F (')

F� (')

1A =

0@ �FT
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Therefore tangential and normal variations reduce to
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= 0
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h�S; �ni =
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Z
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In coordinates
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Summarizing, tangential variations vanish identically for materials with no singular defects, and

the Euler-Lagrange equations corresponding to normal variations are equal to the Euler-Lagrange

equation corresponding to vertical variations multiplied by the spatial tensor kNk2 = i+ FFT .

3.3.8 Equations of motion in "Space-Space"

The equations of balance of con�gurational and mechanical forces (3.34) and (3.33) are therefore the

Euler-Lagrange equations corresponding to the horizontal and vertical components of variations in

the con�guration regarded as subset of the space-space bundle B�S. Being components in a higher

dimensional combined space it is useful to write them jointly as a single 2n-dimensional equation
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rather than two separately n-dimensional equations. We thus obtain

0@ (F ('))I
(F� ('))i

1A =

0@ @L
@XI

@L
@'i

1A� d

dt

0@0@ �F jI
�ji

1A @L
@Vj

1A� d

dXJ

0@ L�JI � @L
@F i

J
F iI

@L
@F i

J

1A
=

0@ 0

0

1A
or in invariant notation0@ F (')

F� (')

1A =

0@ @
@X

@
@'

1AL � d

dt

0@0@ �FT

i

1A @L
@V

1A+DIV
0@ C

P

1A
=

0@ 0

0

1A
where 0@ C

P

1A = �

0@ LI� FT @L@F
@L
@F

1A
are the Eshelby tensor and the Piolla-Kirchho¤ stress tensors regarded as a tensor on B � S and

V = _'

is the material velocity at time t, related to the manifold velocity
�
_ ; _�

�
by (3.53). For a Lagrangian

density of the form (3.3) the above reads

0@ Binh

B

1A� d

dt

0@0@ �FT

i

1ARV

1A+DIV
0@ C

P

1A =

0@ 0

0

1A
with

Binh =
@L
@X

����
exp

=

 
1

2

@R

@X
jVj2 � @W

@X

����
exp

!

Combining with (3.53) and rearranging we obtain the di¤erential system

d

dt

0@0@ �FT

i

1ARV

1A = DIV

0@ C

P

1A+
0@ Binh

B

1A
V = (�F; i) �

0@ _ 

_�

1A
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that may be rewritten as

d

dt

0@0@ �FT

i

1AR (�F; i) �

0@ _ 

_�

1A1A = DIV

0@ C

P

1A+
0@ Binh

B

1A
or more compactly as

d

dt

0@NRN� �
0@ _ 

_�

1A1A = DIV

0@ C

P

1A+
0@ Binh

B

1A
where N is a vector in the normal direction to the con�guration at time t de�ned in (3.51). The

above may be further simpli�ed as

d

dt
(M � _q) = DIV (P) + B (3.55)

were M is the mass matrix in B � S given by

M = NRN� =

=

0@ �FT

i

1AR (�F; i) =

= R

0@ FTF �FT

�F i

1A (3.56)

the vector q 2 B � S is the array of combined horizontal/vertical coordinates

q =

0@  

�

1A
_q =

0@ _ 

_�

1A
and

P =

0@ C

P

1A = �

0@ LI� FT @L@F
@L
@F

1A
B =

0@ Binh

B

1A =

0@ @L
@X

��
exp

@L
@'

1A
are, respectively, the combined (horizontal/vertical) stress tensor and combined (horizontal/vertical)

body forces. Equation (3.55) is thus an equation for the evolution of the manifold with coordinates
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q = ( ;�) within the space-space bundle B � S.

3.4 Con�gurational forces in the presence of viscosity

We recall from §3.2 (equation 3.59) that the equations of balance of mechanical forces in the presence

of viscosity can be written as

@L
@'

� d

dt

�
@L
@V

�
�DIV

�
@L
@F

�
+DIV (Pv) = 0 in B and 8t 2 I

Using the Euler-Lagrange operator (3.37) the previous can be compactly written as

F� (') + DIV (Pv) = 0

We recall also that these equations do not derive from Hamilton�s principle, but they can be estab-

lished instead from the Lagrange-d�Alembert principle (3.16). Using vertical variations �� instead of

full variations �' in the previous, the following "vertical" version of Lagrange-d�Alembert principle

is obtained

h�S; ��i+
Z tf

t0

Z
B

��
��T � �1

�
DIV (Pv)

�
dV dt

+

Z tf

t0

Z
@B1

��
��T � �1

�
(�Pv)N

�
dSdt = 0

where S is the action and h�S; ��i are its vertical variations. Integrating by parts the viscosity terms

and making use of the divergence theorem the (vertical) Lagrange-d�Alembert principle becomes

h�S; ��i �
Z tf

t0

Z
B

�
Pv � @

@X

�
�� � �1

��
dV dt = 0 (3.57)

or, in Cartesian coordinates,

h�S; ��ii �
Z tf

t0

Z
B

�
P viJ

@

@XJ

�
��i � �1

��
dV dt = 0

We turn now the equations of balance of con�gurational forces in the presence of viscosity.

Following the approach of Maugin for materials with a general dissipative behavior [44], since we

cannot use a direct variational principle (Hamilton�s principle) as we did in the elastic case, we are

required to establish the balance of con�gurational forces by a direct method, namely by multiplying

(or pulling back) the equations of balance of mechanical forces with FT . On account of the identity
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(3.41), multiplying equations (3.15) by �FT yields

@L
@X

� d

dt

��
�FT

� @L
@V

�
�DIV

�
LI� FT @L

@F

�
+
�
�FT

�
DIV (Pv) = 0 in B and 8t 2 I (3.58)

or using the Euler-Lagrange operator (3.38)

F (') +
�
�FT

�
DIV (Pv) = 0

For a Lagrangian density of the form (3.3) the previous yields

Binh � d

dt

��
�FT

�
RV

�
+DIV (C) +

�
�FT

�
DIV (Pv) = 0 in B and 8t 2 I (3.59)

Equations (3.58) and (3.59) are thus the equations of balance of con�gurational forces in the presence

of viscous e¤ects.

In analogy to the equations of mechanical (vertical) force balance with viscous e¤ects (3.14)

(3.15), the con�gurational (horizontal) balance (3.58) (3.59) cannot be derived from a direct vari-

ational principle (Hamilton�s principle with horizontal variations), but can instead be established

from the following (horizontal) Lagrange-d�Alembert principle:

h�S; � i+
Z tf

t0

Z
B

��
� T � �1

� �
�FT

�
DIV (Pv)

�
dV dt = 0

Integrating by parts the previous reads

h�S; � i �
Z tf

t0

Z
B

�
Pv � @

@X

�
�F

�
� � �1

���
dV dt = 0 (3.60)

In Cartesian coordinates

h�S; � Ii �
Z tf

t0

Z
B

�
P viJ

@

@XJ

�
FiI� I � �1

��
dV dt = 0

Finally we combine horizontal and vertical Lagrange-d�Alembert principle to establish a vari-

ational principle in the space-space bundle B � S. The equations of balance of mechanical and

con�gurational forces in the presence of viscosity are

F (') +
�
�FT

�
DIV (Pv) = 0

F� (') + DIV (Pv) = 0
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These equations may be written jointly as an equation in the space-space bundle B � S as0@ F (')

F� (')

1A+
0@ �FT

i

1ADIV (Pv) = 0 (3.61)

or alternatively as 0@ F (')

F� (')

1A+ NDIV (Pv) = 0 (3.62)

where N is a normal vector to the con�guration as regarded as a manifold in the space-space bundle.

The weak form of this equations (combined horizontal-vertical Lagrange-d�Alembert principle) is

therefore

h�S; � i+ h�S; ��i+
Z tf

t0

Z
B

�
� T ; ��T

�0@ �FT

i

1ADIV (Pv) dV dt+
+

Z tf

t0

Z
@B1

�
� T ; ��T

�0@ �FT

i

1A (PvN) dSdt = 0
or, more compactly

h�S; � i+ h�S; ��i+
Z tf

t0

Z
B

�
��T � � TFT

�
DIV (Pv) dV dt+

+

Z tf

t0

Z
@B1

�
��T � � TFT

�
(PvN) dSdt = 0 (3.63)

Integrating by parts and making use of the divergence theorem the (combined horizontal-vertical)

Lagrange-d�Alembert principle takes the form

h�S; � i+ h�S; ��i �
Z tf

t0

Z
B

Pv
@

@X
(��� F� ) dV dt = 0 (3.64)

In Cartesian coordinates

h�S; � Ii+ h�S; ��ii �
Z tf

t0

Z
B

P viJ
@

@XJ
(��i � FiI� I) dV dt = 0

with horizontal and vertical components given by (3.60) and (3.57).
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Chapter 4

Con�gurational forces in materials

with viscous, thermal, and internal

processes

In this chapter we study a Lagrange-d�Alembert formulation for materials with coupled thermome-

chanical and internal processes, and derive the equations of con�gurational force balance in the pres-

ence of the new sources of dissipation, namely, thermal and internal e¤ects. Thermal processes are

incorporated by making use of the approach of Green and Naghdi�s (c.f. [13]) of considering as prim-

itive thermal variables the so-called thermal displacements instead of the temperature. Thermal dis-

placements � (X; t) are de�ned as the time integral of the temperature, i.e., � (X; t) =
R t
t0
T (X; �) d�

or equivalently, as the scalar quantity such that _� = T . The reinterpretation of temperature as a

rate suggests that the entropy N given by the relation RN = @L
@T where L is the (temperature-

dependent) Lagrangian, and the heat �ux H given by a generalized Fourier�s law H = H (DT ),

should be reinterpreted, respectively, as a momentum and as a viscous stress, in complete analogy

to the velocity RV = @L
@ _' and viscous force Pv = Pv (D _'). Once this analogy is established, a

Lagrange-d�Alembert formulation for all balance equations and the equations of balance of con�gu-

rational forces for materials with thermal processes follow by mirroring the procedure developed for

elastic materials with viscosity in the previous chapter.

The main consequence of introducing thermal displacements � as primitive variables is that a

correspondence or analogy between mechanical variables and thermal variables can be established.

For each quantity in the equation of mechanical force balance, there are parallel or analogues in the

equation of entropy balance. For example, to the (elastic part of the) mechanical stress P = @W
@D'

corresponds the (conservative or dissipationless part of the) entropy �ux H
T = @W

@D� . Direct at-
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tempts to exploit this analogy have been explored for example in [47] and [48], where Lagrangian

and Hamiltonian formulations of (dissipationless) thermoelasticity were investigated, see also [19].

Furthermore, using Noether�s theorem with a Lagrangian expressed in terms of the "direct motion

and thermal displacements" ('; �), or alternatively, invoking the stationarity of the Lagrangian

expressed in terms of the inverse motion and inverse thermal displacements
�
'�1; ��1

�
a (dissipa-

tionless) thermoelastic con�gurational force balance equation was obtained (c.f. [47], [48]). The

extension of the latter for the dissipative case was studied for example in [3]. This extension was

obtained by "pulling-back" or "projecting" both balance equations (mechanical force balance and

entropy balance) onto the material manifold as was suggested in [44] as a general or "direct" method

to establish the con�gurational force balance equation in general dissipative materials. The same

equation was later obtained using Gurtin�s approach to con�gurational forces (see [15], [16]) in [18].

The objective of this chapter is to take this analogy or parallelism further. We propose an additive

decomposition for the heat �ux H = He+Hv into a conservative (or equilibrium or dissipationless)

heat He and a non-conservative (or non-equilibrium or dissipative) heat Hv in complete analogy to

the decomposition of the mechanical stress P into elastic (or equilibrium or conservative) part and

viscous (on non-equilibrium) parts P = Pe + Pv. The dissipationless part of the heat He derives

from the energy (or Lagrangian density) in the form He

T = @W
@D� = � @L

@D� while the dissipative

part Hv derives from a kinetic potential � in the form Hv

T = @�
@D _� =

@�
@DT in perfect parallelism

with the elastic and viscous parts of the mechanical stress P e = @W
@D' and Pv = @�

@D _' = @�
@ _F
. We

shall furthermore pursue equivalent decompositions for the thermodynamic stresses conjugate to the

internal variables Y = Ye +Yv and for the mechanical body forces B = Be +Bv and heat sources

per unit of reference volume S = Se + Sv.

A thermomechanical Lagrangian and thermomechanical action is considered. The independent

thermomechanical variables are taken to be the motion ', the thermal displacements �, and the

collection of internal variables Q. The thermomechanical Lagrangian is assumed to depend on the

independent variables, their rates, and their gradients. Derivatives of the Lagrangian with respect to

the rates de�ne momenta. Derivatives of the Lagrangian with respect to gradients de�ne equilibrium

stresses, and derivatives of the Lagrangian with respect to the thermomechanical variables de�ne

equilibrium forces. We also de�ne non-equilibrium stresses and non-equilibrium body forces for all

the processes. All these are assumed to derive from a kinetic potential as derivatives with respect to

the rates of each independent variables and their gradients. Non-equilibrium stresses are obtained

as derivatives with respect to the gradient rates, namely
�
_Q; D _';D _�

�
. Non-equilibrium forces are

obtained as derivatives with respect to the rate of the independent variables ( _'; _�). Adding the

equilibrium and non-equilibrium parts of stresses we obtain the total stresses. Adding equilibrium

and non-equilibrium parts of the forces we obtain total forces. The Euler-Lagrange equations asso-

ciated to the stationarity of the thermomechanical action with respect to each variable will give the



120

equilibrium part of the "mechanical force balance," "entropy balance," and "internal force balance"

equations. Each equation will have also a non-equilibrium part that unlike the "equilibrium" part

cannot be obtained from the stationarity of the thermomechanical action. The total balance can be

established instead from a "thermomechanical" Lagrange-d�Alembert principle.

4.1 Balance equations and constitutive assumptions

We begin this chapter by reviewing the balance laws and constitutive assumptions that govern the

motion and thermodynamic processes of a deformable body with reference con�guration B � Rn.

The local form of the balance equations written in Lagrangian coordinates are:

� Conservation of mass
_R = 0

� Balance of mechanical forces (or balance of linear momentum)

d

dt
(RV)�DIV (P)�B = 0

� Balance of energy

d

dt

�
1

2
R kVk2 +A+RTN

�
�DIV (PV �H)� S �B �V = 0

� Clausius-Duhem inequality

d

dt
(RN) +DIV

�
H

T

�
� S

T
� 0

where ' (X; t) is the motion, V (X; t) = _' (X; t) is the material velocity, R (X) (independent of t

by conservation of mass) is the mass density per unit of undeformed volume, P (X; t) is the total

stress tensor (force per unit of undeformed area or Piolla-Kirchho¤ stress tensor), B (X; t) are body

forces per unit of undeformed volume, A (X; t) is the free energy, N (X; t) is the entropy density

per unit mass, T (X; t) is the temperature, U (X; t) = A + RTN is the internal energy per unit of

undeformed volume, S (X; t) is the heat source (per unit of undeformed volume), and H (X; t) is the

heat �ux per unit of undeformed area.

We shall be interested in the treatment of thermal variables and mechanical variables in an equal

footing. To this end we split the Clausius-Duhem inequality into an entropy balance equation,

_� =
d

dt
(RN)�DIV

�
H

T

�
� S

T
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and the inequality

_� � 0

where _� is the internal entropy production. Entropy balance and mechanical force balance will

become the main objects of the upcoming developments. More precisely these two balance equations

will be considered as the Euler-Lagrange equations of the Lagrangian and Lagrange-d�Alembert

formulation of the next section.

Let Fp, FN and Ft be the left hand side of the three balance equations (mechanical momentum

balance, entropy balance and energy balance), i.e.,

Fp =
d

dt
(RV)�DIV (P)�B

FN =
d

dt
(RN) +DIV

�
H

T

�
� S

T
� _�

Ft =
d

dt

�
1

2
R kVk2 +A+RTN

�
�DIV (PV �H)� S �B �V

Then it is straightforward to prove the identity

Ft �VFp � TFN = _A+R _TN + T _��PDV + H
T
DT

Combining this identity with the balance equations (Fp = 0, FN = 0 and Ft = 0) the following

relation is obtained:

_A+R _TN + T _��PDV + H
T
DT = 0 (4.1)

which is usually regarded as another statement of energy conservation.

In addition to the balance equations, the following constitutive assumptions are made:

� The local thermodynamic state is assumed to depend on (F; T;Q) where F = D' is the

deformation gradient, T is the temperature, and Q is a set of internal additional variables.

Each material particle with reference coordinates X is regarded as a thermodynamic sys-

tem in equilibrium undergoing a thermodynamic process de�ned completely by the curve

(F (X; t) ; T (X; t) ; Q (X; t))

� The stress is split additively into an "equilibrium" part Pe (or "elastic" or "conservative" part)

and a non-equilibrium part (or viscous or non-conservative part)

P = Pe +Pv

The total stress P is assumed to depend on the local thermodynamic state (F; T;Q) and on the
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rate of deformation _F, i.e., P = P
�
_F;F; T;Q

�
and the equilibrium part satis�es the relation

Pe = P
�
_F = 0;F; T;Q

�

� The internal energy of each material point is assumed to depend on the local thermodynamic

state, namely on (X;F; T;Q), i.e.,

A = A (X;F; T;Q)

� The equilibrium stresses and thermodynamic forces conjugate to the internal variables are

de�ned as

Pe =
@A

@F
(X;F; T;Q)

Y = � @A
@Q

(X;F; T;Q)

and the entropy N is given by the relation

RN = �@A
@T

(X;F; T;Q)

Under these assumptions we have

_A =
@A

@F
_F+

@A

@T
_T +

@A

@Q
_Q =

= Pe _F+RN _T �Y _Q

and the identity (4.1) reduces then to

T _��Y _Q�Pv _F+ H
T
DT = 0

which implies that the viscous power Pv _F, heat �ux against thermal gradients HT DT; and power of

internal processes Y _Q contribute additively to the internal entropy production

T _� = Y _Q+Pv _F� H
T
DT

The entropy balance equation becomes then

d

dt
(RN)�DIV

�
H

T

�
� S

T
� 1

T

�
Y _Q+Pv _F� H

T
DT

�
= 0
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Finally the set of balance equations and constitutive relations need to be complemented with

appropriate kinetic relations that enable the determination of (Y;Pv;H). They usually assume the

general form

Pv = Pv
�
X;F;Q; T; _F; _Q; DT

�
Y = Y

�
X;F;Q; T; _F; _Q; DT

�
H

T
=

H

T

�
X;F;Q; T; _F; _Q; DT

�
Furthermore we shall assume that the previous functions derive from a kinetic potential

� = �
�
X;F;Q; T; _F; _Q; DT

�
(4.2)

such that

Pv =
@�

@ _F

Y =
@�

@ _Q

H

T
= � @�

@ (DT )

4.2 Restatement of the balance laws in terms of thermal dis-

placements.

We next proceed to study how the previous equations and constitutive assumptions are reframed in

a more general context when we assume that the local thermodynamic state is speci�ed by (F;Q)

and the thermal displacement � instead of the temperature T . Thermal displacements � are de�ned

as

� (X; t) =

Z t

t0

T (X; �) d�

or equivalently as the scalar �eld such that

_� = T

The reinterpretation of T as a rate has the following two fundamental consequences:

1. If the free energy is assumed to be dependent on (F; T;Q) = (F; _�;Q) then the relation for

the entropy becomes

RN = �@A
@ _�
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or, using the Lagrangian density de�ned as

L =
R

2
kVk2 �A (F; T;Q) =

=
R

2
k _'k2 �A (F; _�;Q)

the entropy result

RN =
@L
@ _�

This relation is in perfect analogy to

RV =
@L
@ _'

which states that RV is a (mechanical) momentum for the particular Lagrangian L de�ned

above. We thus reinterpret RN as a thermal momentum and consider A not as an energy but

as a Lagrangian, or more precisely, as a Lagrangian excluding the kinetic energy term.

2. Let � = D� be the thermal displacement gradient and assume now that the free energy depends

not only on deformation gradient F but also on thermal displacements gradients �, i.e.,

A = A (F; T;Q;�)

In analogy to the equilibrium stress Pe de�ned as

Pe =
@A

@F

and the viscous or non-equilibrium part of the stress Pv de�ned such that

P = Pe +Pv

we may de�ne the equilibrium part of the heat �ux He such that

He

T
= �@A

@�

and the viscous or non-equilibrium part of the heat �ux Hv such that

H = He +Hv
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It follows then that

_A =
@A

@F
_F+

@A

@T
_T +

@A

@Q
_Q+

@A

@�
_� =

= Pe _F+RN _T �Y _Q+
He

T
DT

whereupon the identity (4.1) reduces to

T _��Y _Q�Pv _F+ H
v

T
DT = 0

or equivalently to

T _� = Y _Q+Pv _F� H
v

T
DT

The previous suggests that only the "non-equilibrium" part of the heat �ux Hv will contribute

to internal entropy production _� and only this part will be related with the temperature

gradient DT = _� through a kinetic relation

Hv

T
= �@�

@ _�

= � @�

@DT

in complete analogy with the non-equilibrium part of the mechanical stress

Pv =
@�

@ _F

Materials for which Hv = 0 and He 6= 0 are referred to as thermoelastic materials with

dissipationless thermal conduction.

Motivated by the decomposition

H = He +Hv

we proceed now to pursue an equivalent decomposition for the thermodynamic forces conjugate to

the internal processes Y, namely

Y = Ye +Yv

To this end we recall �rst that for these forces we have de�ned

Y = � @A
@Q

=
@L
@Q

(4.3)
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and assumed a kinetic relation of the form

Y =
@�

@ _Q
(4.4)

We notice next that the notation adopted in the �rst of these relations seems not to be in agreement

with the adopted for the mechanical stress P and heat �ux H for which we have interpreted

Pe =
@A

@F
= �@L

@F
He

T
= �@A

@�
=
@L
@�

as a de�nition for the equilibrium parts of the total stress P and �ux H and therefore used the

supraindex e. It seems then natural to change the notation in (4.3) to

Ye = � @A
@Q

=
@L
@Q

Equation (4.4) can then be rewritten as

Ye � @�

@ _Q
= 0 (4.5)

De�ning now the non-equilibrium part of the thermodynamic forces Yv as

Yv = � @�
@ _Q

(in complete analogy to Pv and Hv) relation (4.5) becomes

Y = Ye +Yv = 0

which might be now reinterpreted as a balance equation for the thermodynamic forces conjugate to

the internal processes.

In light of the previous assumptions and observations, the mechanical force balance equation,

entropy balance equations, and balance equations for the internal processes may be rewritten as0BBB@
DIV (Pe +Pv)

�DIV
�
He+Hv

T

�
Ye +Yv

1CCCA�
0BBB@

d
dt (R _')

d
dt (RN)

0

1CCCA+
0BBB@

B

S
T +

_�

0

1CCCA =

0BBB@
0

0

0

1CCCA (4.6)
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where in the �rst column we have grouped the "stresses," in the second the "momenta," and in the

third the "sources," and where the "equilibrium-stresses" are given by0BBB@
Pe

He

T

Ye

1CCCA =

0BBB@
@A
@F

�@A
@�

� @A
@Q

1CCCA =

0BBB@
�@L
@F

@L
@�

@L
@Q

1CCCA (4.7)

"non-equilibrium stresses" by 0BBB@
Pv

Hv

T

Yv

1CCCA =

0BBB@
@�
@ _F

�@�
@ _�

� @�
@ _Q

1CCCA (4.8)

and the internal entropy production follows as

T _� = �Yv _Q+Pv _F� H
v

T
DT (4.9)

or, written in terms of the kinetic potential �, as

_� =
1

_�

�
@�

@ _Q
_Q+

@�

@ _F
_F+

@�

@ _�
_�

�

Having established equivalent decompositions for mechanical stresses P, heat �uxes H and in-

ternal forces Y we now proceed to assume similar decompositions for the body forces B and heat

sources S. We shall consider therefore

B = Be +Bv

S

T
=

Se

T
+
Sv

T

where (Be; Se) and (Bv; Sv) are, respectively, the equilibrium (or conservative or potential) and

non-equilibrium (or non-conservative or viscous) parts of the body force and heat source. The

equilibrium part is assumed to derive from a potential I ('; �) in the form

0@ Be

Se

T

1A =

0B@ @I

@'
@I

@�

1CA
or alternatively as 0@ Be

Se

T

1A =

0B@ @I

@'
@I

@�

1CA =

0B@ @L
@'
@L
@�

1CA (4.10)
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where we have rede�ned the Lagrangian density as

L =
R

2
kVk2 �A (X;F; T;Q;�) + I ('; �)

=
R

2
k _'k2 �A (X;F; _�;Q;�) + I ('; �)

while the non-equilibrium parts Bv and Sv

T are assumed to derive from a new kinetic potential

� ( _'; _�) in the form 0@ Bv

Sv

T

1A =

0B@ @�

@ _'
@�

@ _�

1CA
or alternatively as 0@ Bv

Sv

T

1A =

0B@ @	

@ _'
@	

@ _�

1CA (4.11)

where we have combined the kinetic potential for the body sources � with the kinetic potential �

de�ned for the stresses in (4.2) to de�ne a total kinetic potential

	 = �+�

For example if an external body force �eld Be (X; t) and an external radiation source Sv (X; t) are

applied, then we can take

I ('; �) = Be'

� ( _'; _�) = Sv log ( _�)

whereupon

B =
@I

@'
+
@�

@ _'
= Be + 0

S

T
=

@I

@�
+
@�

@ _�
= 0 +

Sv

_�

On account of all the previous assumptions, the balance equations take the form0BBB@
DIV (Pe +Pv)

�DIV
�
He+Hv

T

�
Ye +Yv

1CCCA�
0BBB@

d
dt (R _')

d
dt (RN)

0

1CCCA+
0BBB@
Be +Bv

Se+Sv

T

0

1CCCA+
0BBB@
0

_�

0

1CCCA =

0BBB@
0

0

0

1CCCA (4.12)

with the "equilibrium" (or conservative) and "non-equilibrium" (or non-conservative or viscous)

parts of the mechanical stresses, heat �uxes, and internal stresses given, respectively, by (4.7) and
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(4.8), with conservative and non-conservative parts of the body sources given, respectively, by (4.10)

and (4.11), and with internal dissipation given by

_� =
1

_�

�
@�

@ _Q
_Q+

@�

@ _F
_F+

@�

@ _�
_�

�

4.3 Lagrange-d�Alembert formulation of the balance equa-

tions

We turn in this section to the formulation of a general Lagrangian and Lagrange-d�Alembert principle

from which a generalized form of the set of balance equations stated in the previous section can be

derived. To this end we take as independent thermomechanical variables

('; �;Q)

where ' is the motion, � is the thermal displacement, and Q are the internal variables. We envision

a formulation for which the equilibrium part of the balance equations (4.12) (mechanical force

balance, entropy balance, and balance of force conjugate to the internal processes) can be derived

from the stationarity of an action functional de�ned in terms of a thermomechanical Lagrangian

density, while the total balance equations can be de�ned from a thermomechanical analog to the

Lagrange-d�Alembert principle.

We shall assume therefore the existence of function L, the thermodynamical Lagrangian density,

that in analogy to the mechanical Lagrangian density (3.3), is a function of the thermodynamical

variables, their rates, and their spatial derivatives:

L
�
X; t;'; �;Q; D'; D�;DQ; _'; _�; _Q

�
The Lagrangian density is also assumed to depend explicitly on the space and time variables (X; t).

To simplify the notation we shall make use of the following new symbols for the spatial and time

derivatives of ' and �:

V = _'

F = D'

T = _�

� = D�
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which implies the compatibility conditions

_F = DV

_� = DT

The Lagrangian is then assumed to depend on

L
�
X; t;'; �;Q;F;�; DQ;V; T; _Q

�
We shall restrict ourselves to the particular case of Lagrangian densities independent of

�
_Q;DQ

�
.

This assumption is motivated by the following observation: In the same way as we introduced

"thermal displacements" � such that _� = T , we could have introduced "internal deformations" �

such that

D� = Q

In that case the Lagrangian would have been dependent on

�
�; D�; _�

�
=
�
�;Q; _�

�
However in the particular case of plasticity and viscoplasticity, the internal variables are given by

Q = Fp which is not integrable to a global plastic deformation �. It seems then that taking � as

an independent variable is not a valid assumption. We thus take Q as independent variable but the

Lagragian is assumed to be dependent only on Q and not on _Q and DQ, which would have implied

a dependence on second derivatives and its rates D _� and D2�. The Lagrangian density L is then

assumed to depend on

L (X; t;'; �;F;�;Q;V; T )

In particular we shall consider Lagrangian densities of the form

L (X; t;'; �;F;�;Q;V; T ) = R kVk2

2
�W (X; t;'; �;F;�;Q; T )

with

W = A (X; t;F;�;Q; T )� I (X; t;'; �)

where A is the free energy density (or the kinetic-energy-free part of the Lagrangian density) and I

is the potential for the body sources.

Under these assumptions it is straightforward to prove that the equilibrium part of the balance

equations (4.12) are the Euler-Lagrange equations corresponding to the stationarity of the following
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thermomechanical action

S ('; �;Q) =

Z tf

t0

Z
B

L (X; t;'; �;D';D�;Q; _'; _�) dV dt =

=

Z tf

t0

Z
B

 
R k _'k2

2
�W (X; t;'; �;D';D�;Q; _�)

!
dV dt

with "equilibrium stresses" given by

0BBB@
Pe

He

T

Ye

1CCCA =

0BBBBB@
�@L
@F
@L
@�

� @L
@Q

1CCCCCA =

0BBBBB@
@W

@F

�@W
@�
@W

@Q

1CCCCCA (4.13)

"equilibrium body forces" given by

0@ Be

Se

T

1A =

0B@ @L
@'
@L
@�

1CA =

0B@ �@W
@'

�@W
@�

1CA (4.14)

and momenta given by 0BBB@
R _'

RN

0

1CCCA =

0BBBBB@
@L
@ _'
@L
@ _�
@L
@ _Q

1CCCCCA (4.15)

Assuming now the existence of a kinetic potential 	 that is a function of the same variables of

the Lagrangian density and, in addition, of the rate of the gradients _� = D _�, _F = D _' and _Q

	
�
(X; t) ; ('; �;F;�;Q) ;

�
_'; _�; _F; _�; _Q

��
such that the "non-equilibrium" stresses are given by

0BBB@
Pv

Hv

T

Yv

1CCCA =

0BBBBB@
@	

@ _F

�@	
@ _�

� @	
@ _Q

1CCCCCA (4.16)

and "non-equilibrium body forces" given by

0@ Bv

Sv

T

1A =

0B@ @	

@ _'
@	

@ _�

1CA (4.17)
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then it is straightforward to prove that total balance equations (4.12) follow from the Lagrange-

d�Alembert principle:

h�S; �'i+ h�S; ��i+ h�S; �Qi+

+

Z tf

t0

Z
B

�
�'T

�
@	

@ _'
+DIV

�
@	

@ _F

��
+ ��

�
@	

@ _�
+ _� + DIV

�
@	

@ _�

��
+ �QT @	

@ _Q

�
dV dt = 0

that can be split in three di¤erent principles:

h�S; �'i+
Z tf

t0

Z
B

�'T
�
@	

@ _'
+DIV

�
@	

@ _F

��
dV dt = 0 (4.18)

h�S; ��i+
Z tf

t0

Z
B

��

�
@	

@ _�
+ _� + DIV

�
@	

@ _�

��
dV dt = 0 (4.19)

h�S; �Qi+
Z tf

t0

Z
B

�QT

�
@	

@ _Q

�
dV dt = 0 (4.20)

Using the kinetic relations (4.16) and (4.17) the Lagrange-d�Alembert principle can be written as

h�S; �'i+ h�S; ��i+ h�S; �Qi+

+

Z tf

t0

Z
B

�
�'T (Bv +DIV (Pv)) + ��

�
Sv

T
+ _��DIV

�
Hv

T

��
� �QTYv

�
dV dt = 0

The proof of these statements follows standard Euler-Lagrange derivation arguments: taking �rst

variations of the thermodynamical action with respect to all of its arguments we �nd

h�S; �'i =

Z tf

t0

Z
B

�
@L
@V

� _'+
@L
@F

D�'+
@L
@'

�'

�
dV dt

h�S; ��i =

Z tf

t0

Z
B

�
@L
@T

� _�+
@L
@�

D�� +
@L
@�

��

�
dV dt

h�S; �Qi =

Z tf

t0

Z
B

�
@L
@ _Q

� _Q+
@L
@Q

�Q

�
dV dt
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Integrating then by parts in time we obtain

h�S; �'i =

Z tf

t0

Z
B

�
� d

dt

�
@L
@V

�
�DIV

�
@L
@F

�
+
@L
@'

�
�'dV dt

+

Z
B

@L
@V

�'

����tf
t0

dXdt+

Z tf

t0

Z
@B

�
@L
@F

�'

�
dV dt

h�S; ��i =

Z tf

t0

Z
B

�
� d

dt

�
@L
@T

�
�DIV

�
@L
@�

�
+
@L
@�

�
��dV dt

+

Z
B

@L
@T

�'

����tf
t0

dXdt+

Z tf

t0

Z
@B

�
@L
@�

��

�
dV dt

h�S; �Qi =

Z tf

t0

Z
B

�
� d

dt

�
@L
@ _Q

�
+
@L
@Q

�
�QdV dt

+

Z
B

@L
@ _Q

�Q

����tf
t0

dV dt

which under appropriate admissibility assumptions for the variations (i.e., variations (�'; ��; �Q)

that vanish in the initial and �nal times and on the boundary of the body B), on account of the

de�nitions (4.13), (4.14), (4.15), (4.16), and (4.17) and in combination with the Lagrange-d�Alembert

principle (4.18), (4.19), (4.20) implies the balance equations (4.12).

4.4 Con�gurational forces in general dissipative solids

In this section we make use of the Lagrangian and Lagrange-d�Alembert formulations stated in the

last section to derive an equation of con�gurational force balance for deformable materials with

thermal, viscous, and internal processes. To this end we follow the same procedure developed

in the previous chapter to formulate the equations of con�gurational force balance for isothermal

elastic materials with viscosity. We �rst establish the equation for materials with no viscous (or non-

conservative) behavior by referring the thermomechanical action to the defect reference con�guration

and taking variations with respect to defect rearrangements (horizontal variations). We then prove

that the equation obtained is the "pull-back" of the mechanical force balance equation and entropy

balance equation to the material manifold and �nally use this property to formulate the equations

of balance of con�gurational forces in the dissipative (viscous) case.

To this end we begin by considering a thermomechanical action given by

S ('; �;Q) =

Z tf

t0

Z
B

L (X; t;'; �;D';D�;Q; _'; _�) dV dt =

=

Z tf

t0

Z
B

 
R k _'k2

2
�W (X; t;'; �;D'; D�;Q; _�)

!
dV dt

Let D be the defect-reference con�guration, as de�ned in the previous chapter (§3.3.1), and let
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 : D � [t0; tf ]! B be the defect rearrangement. Furthermore let

� (�; t) = ' ( (�; t) ; t) (4.21)

a (�; t) = � ( (�; t) ; t) (4.22)

q (�; t) = Q ( (�; t) ; t) (4.23)

be the composition mappings between the motion, thermal displacement, and internal variable �elds

', � and Q with the defect rearrangement  (�; t). Di¤erentiating the previous with respect to the

parameter � and time t we obtain

F = D�D �1

V = _��
�
D�D �1

�
_ 

= _�� F _ 

� = DaD �1

T = _a�
�
DaD �1

�
_ 

= _a� � _ 

Referring now the action functional to the domain D we obtain

S (�; a;q; ) =

Z tf

t0

Z
B

L � det (D ) d�dt =

=

Z tf

t0

Z
D

L
�
 ; t;�; a;D�D �1; DaD �1;q;

; _��
�
D�D �1

�
_ ; _a�

�
DaD �1

�
_ 
�
det (D ) d�dt

We next compute variations of the previous with respect to each of its arguments keeping the

rest �xed. Taking variations with respect to (�; a;q) yields

h�S; ��ii =

Z tf

t0

Z
D

�
@L
@'i

��i +
@L
@FiJ

��i;� 
�1
�;J +

@L
@Vi

�
� _�i � ��i;� �1�;J _ J

��
det (D ) d�dt

h�S; �ai =

Z tf

t0

Z
D

�
@L
@�

�a+
@L
@�J

�a;� 
�1
�;J +

@L
@T

�
� _a� �a;� �1�;J _ J

��
det (D ) d�dt

h�S; �qAi =

Z tf

t0

Z
D

�
@L
@QA

�qA

�
det (D ) d�dt
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Referring all the previous integrals back to the reference con�guration B we �nd

h�S; ��ii =

Z tf

t0

Z
B

�
@L
@'i

�
��i � �1

�
+

@L
@FiJ

d

dXJ

�
��i � �1

�
+
@L
@Vi

d

dt

�
��i � �1

��
dV dt

h�S; �ai =

Z tf

t0

Z
B

�
@L
@�

�a+
@L
@�J

�a;� 
�1
�;J +

@L
@T

d

dt

�
�a � �1

��
dV dt

h�S; �qAi =

Z tf

t0

Z
B

�
@L
@QA

�
�qA �  �1

��
dV dt

where we have used the identities

d

dt

�
��i � �1

�
=

�
� _�i � �1

�
�
�
��i;� � �1

�
 �1�;J

�
_ J � �1

�
d

dXJ

�
��i � �1

�
=

�
��i;� � �1

�
 �1�;J

d

dt

�
�a � �1

�
=

�
� _a � �1

�
�
�
�a;� � �1

�
 �1�;J

�
_ J � �1

�
d

dXJ

�
�a � �1

�
=

�
�a;� � �1

�
 �1�;J

Integrating by parts we obtain

h�S; ��ii =

Z tf

t0

Z
B

�
@L
@'i

� d

dXJ

@L
@FiJ

� d

dt

@L
@Vi

��
��i � �1

�
dV dt

+

Z
B

�
��i � �1

� @L
@Vi

dV

����tf
to

+

Z tf

t0

Z
@B

�
��i � �1

� @L
@FiJ

NJdSdt

h�S; �ai =

Z tf

t0

Z
B

�
@L
@�

� d

dXJ

@L
@�J

� d

dt

@L
@T

��
�a � �1

�
dV dt

+

Z
B

�
�a � �1

� @L
@T

dV

����tf
to

+

Z tf

t0

Z
@B

�
�a � �1

� @L
@�J

NJdSdt

h�S; �qAi =

Z tf

t0

Z
B

�
@L
@QA

�
�qA � �1

��
dV dt

Taking next variations with respect to the defect rearrangement  keeping constant the other

tree �elds (�; a;q) we �nd

h�S; � Ii =

Z tf

t0

Z
D

�
@L
@XI

� I +

�
@L
@Vi

�
��i;� �1�;I

�
+
@L
@T

�
�a;� �1�;I

���
� _ I �

�
� I;� 

�1
�;J

�
_ J

�
+

+

�
L�IJ �

@L
@FiJ

�
�i;� 

�1
�;I

�
� @L
@�J

�
a;� 

�1
�;I

���
� I;� 

�1
�;J

��
det (D ) d�dt

Notice that the �rst term involves the derivative of L with respect to the explicit dependence of X

and excluding derivatives with respect to '; �;Q and their time and spatial derivatives. Referring
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the integral back to the reference con�guration B, the variations with respect to  take the form

h�S; � Ii =

Z tf

t0

Z
B

�
@L
@XI

�
� I � �1

�
+

�
�FiI

@L
@Vi

� �I
@L
@T

�
d

dt

�
� I � �1

�
+

+

�
L�IJ �

@L
@FiJ

FiI �
@L
@�J

�I

�
d

dXJ

�
� I � �1

��
dV dt

where identities (3.30) and (3.31) have been used. Integrating by parts in the previous gives the

variations in the form

h�S; � Ii =

tfZ
t0

Z
B

�
@L
@XI

� d

dt

�
�FiI

@L
@Vi

� �I
@L
@T

�
� d

dXJ

�
L�IJ � FiI

@L
@FiJ

� �I
@L
@�J

��
� I � �1 +

+

Z
B

�
�FiI

@L
@Vi

� �I
@L
@T

��
� I � �1

�
dV

����tf
to

+

+

tfZ
t0

Z
@B

��
� I � �1

��
L�IJ � FiI

@L
@FiJ

� �I
@L
@�J

�
NJ

�
dSdt

We �nally invoke the stationarity of the thermomechanical action functional with respect to

admissible variations of each of its arguments to obtain the Euler-Lagrange equations. Stationarity

of the action functional with respect to (��; �a; �q) implies the Euler-Lagrange equations

@L
@'

�DIV
�
@L
@F

�
� d

dt

�
@L
@V

�
= 0

@L
@�

�DIV
�
@L
@�

�
� d

dt

�
@L
@T

�
= 0

@L
@Q

= 0

that, using the equilibrium relations (4.13) and momenta de�nitions (4.15), can be rewritten as

Be +DIV (Pe)� d

dt
(RV) = 0 (4.24)

Se

T
�DIV

�
He

T

�
� d

dt
(RN) = 0 (4.25)

Ye = 0 (4.26)

These equations correspond to the equilibrium part of the equations of mechanical force balance,

entropy balance and internal force balance (4.12).

Invoking next the stationarity of the action functional with respect to variations of  implies the

Euler-Lagrange equation

@L
@XI

� d

dt

�
�FiI

@L
@Vi

� �I
@L
@T

�
� d

dXJ

�
L�IJ � FiI

@L
@FiJ

� �I
@L
@�J

�
= 0
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or in invariant notation

@L
@X

� d

dt

�
�FT @L

@V
� � @L

@T

�
�DIV

�
LI� FT @L

@F
� � 
 @L

@�

�
= 0

Using the equilibrium relations (4.13) and momenta de�nitions (4.15) the previous yield

@L
@X

� d

dt

�
�FTR _'� �RN

�
�DIV

�
LI+ FTPe � � 
 H

e

T

�
= 0 (4.27)

Equation (4.27) has been obtained following exactly the same procedure used to derive the equation

of con�gurational force balance (3.34), (3.36) and will therefore be regarded as the equilibrium part

of the equation of con�gurational force balance.

We �nally derive the con�gurational force balance equation in the presence of dissipative (or

non-conservative or viscous) stresses and forces. To this end we �rst prove a pull-back relation

analogous to the one obtained for isotropic elastic materials (3.42). We next use this relation as a

rule to build the equations in the presence of both equilibrium and non-equilibrium factors. Let F�,

Fa, Fq, and F be the Euler-Lagrange operators

F� =
@L
@'

�DIV
�
@L
@F

�
� d

dt

�
@L
@V

�
=

= Be +DIV (Pe)� d

dt
(RV)

Fa =
@L
@�

�DIV
�
@L
@�

�
� d

dt

�
@L
@T

�
=

=
Se

T
�DIV

�
He

T

�
� d

dt
(RN)

Fq =
@L
@Q

= Ye

F =
@L
@X

�DIV
�
LI� FT @L

@F
� � 
 @L

@�

�
� d

dt

�
�FT @L

@V
� � @L

@T

�
@L
@X

�DIV
�
LI+ FTPe � � 
 H

e

T

�
� d

dt

�
�FTRV � �RN

�
i.e., the left hand side of the Euler-Lagrange equations (4.24), (4.25), (4.26), and (4.27). Then it is

straightforward to prove the identity

�FTF� � �Fa �DQFq = F (4.28)

This relation expresses that if the �rst three Euler-Lagrange equations F� = 0, Fa = 0, Fq = 0

(those corresponding to vertical variations) are satis�ed, then the con�gurational force balance

equation F = 0 is automatically satis�ed and establishes an algebraic relation between all balance

equations. We take now this property as a rule to build the con�gurational force balance equation
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in the presence of dissipative terms. The full (including non-equilibrium terms) balance equations

are

F� +Bv +DIV (Pv) = 0 (4.29)

Fa +
Sv

T
+ _��DIV

�
Hv

T

�
= 0 (4.30)

Fq +Yv = 0 (4.31)

Left-multiplying these equations, respectively, by
�
�FT ;��;�DQ

�
and using the pull-back relation

(4.28) we obtain the con�gurational force balance equation in the form

F � FT (Bv +DIV (Pv))� �
�
Sv

T
+ _��DIV

�
Hv

T

��
�DQYv = 0 (4.32)

The previous might also be rewritten as

0 = F �DIV
�
FTPv � �H

v

T

�
� FTBv � �S

v

T

�
�
� _��

�
PvDF� H

v

T
D� �YvDQ

��

or using the relation (4.9) for the internal entropy production _� and rearranging appropriately as

0 = F �DIV
�
FTPv � �H

v

T

�
� FTBv � �S

v

T

�
�
�
1

T

�
Pv _F� H

v

T
_� �Yv _Q

�
�
�
PvDF� H

v

T
D� �YvDQ

��

Finally grouping terms in the last factor we obtain

0 = F �DIV
�
FTPv � �H

v

T

�
� FTBv � �S

v

T

�
 
Pv

 
� _F

T
�DF

!
� H

v

T

 
� _�

T
�D�

!
�Yv

 
� _Q

T
�DQ

!!

or alternatively, using the identity �D
�
�
T

�
= 1

T

�
�DT
T �D�

�
= 1

T

�
� _�
T �D�

�
we �nally �nd

0 = F �DIV
�
FTPv � �H

v

T

�
� FTBv � �S

v

T

�
 
Pv

 
� _F

T
�DF

!
+HvD

�
�

T

�
�Yv

 
� _Q

T
�DQ

!!
(4.33)

Equation (4.32) or its equivalent (4.33) is the equation of balance of con�gurational forces in the

presence of dissipative behavior. Notice that for isothermic processes we have T (X; t) = � (a constant
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independent of space and time) and therefore � = � (t� t0) and � = D� = 0. Assuming in addition

that Q (X; t) = 0, which implies _Q = DQ = 0, then the equation of balance of con�gurational forces

(4.32) reduces in this case (isothermal processes with no internal variables) to

F � FT (Bv +DIV (Pv)) = 0

with

F =
@L

@X
�DIV

�
LI+ FTPv

�
� d

dt

�
�FTRV

�
This equation correspond to the equations of con�gurational force balance for isothermal elastic

materials with viscosity obtained in the pervious chapter, equations (3.58) and (3.59). Eliminating

the symbol F from equation (4.33), the con�gurational force balance equation adopts the �nal

form

0 =
@L
@X

�DIV
�
LI+ FT (Pe +Pv)� � 
 H

e +Hv

T

�
� d

dt

�
�FTRV � �RN

�
� FTBv � �S

v

T

�
 
Pv

 
� _F

T
�DF

!
+HvD

�
�

T

�
�Yv

 
� _Q

T
�DQ

!!

We end this chapter by establishing vertical, horizontal and combined vertical-horizontal versions

of the Lagrange-d�Alembert principle (4.18),(4.19),(4.20) in complete analogy with what was done in

the previous chapter for isothermal materials with no internal processes. The Lagrange-d�Alembert

principle for the (vertical) balance equations (4.29),(4.30),(4.31) are

h�S; ��i+
Z tf

t0

Z
B

�
��T � �1

��@	
@ _'

+DIV

�
@	

@ _F

��
dV dt = 0

h�S; �ai+
Z tf

t0

Z
B

�
�a � �1

��@	
@ _�

+ _� + DIV

�
@	

@ _�

��
dV dt = 0

h�S; �qi+
Z tf

t0

Z
B

�
�qT � �1

�� @	
@ _Q

�
dV dt = 0

The Lagrange-d�Alembert principle for the con�gurational balance equation (horizontal balance)

(4.32) is

0 = h�S; � i+

+

Z tf

t0

Z
B

�
� T � �1

��
�FT

�
@	

@ _'
+DIV

�
@	

@ _F

���
dV dt

+

Z tf

t0

Z
B

�
� T � �1

��
��

�
@	

@ _�
+ _� + DIV

�
@	

@ _�

���
dV dt

+

Z tf

t0

Z
B

�
� T � �1

��
�DQ @	

@ _Q

�
dV dt
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Combining vertical and horizontal Lagrange-d�Alembert principles we �nally obtain

h�S; ��i+ h�S; �ai+ h�S; �qi+ h�S; � i+

+

Z tf

t0

Z
B

��
�� � �1

�
� F

�
� � �1

��T �@	
@ _'

+DIV

�
@	

@ _F

��
+

+

Z tf

t0

Z
B

��
�a � �1

�
� �

�
� � �1

��T �@	
@ _�

+ _� + DIV

�
@	

@ _�

��
+

+

Z tf

t0

Z
B

��
�q � �1

�
�DQ

�
� � �1

��T � @	
@ _Q

�
dV dt = 0

that using the kinetic relations (4.16) and (4.17) can be rewritten as

h�S; ��i+ h�S; �ai+ h�S; �qi+ h�S; � i+

+

Z tf

t0

Z
B

��
�� � �1

�
� F

�
� � �1

��T
(Bv +DIV (Pv))+

+

Z tf

t0

Z
B

��
�a � �1

�
� �

�
� � �1

��T �Sv
T
+ _��DIV

�
Hv

T

��
+

+

Z tf

t0

Z
B

��
�q � �1

�
�DQ

�
� � �1

��T
(�Yv) dV dt = 0
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Chapter 5

Mixed variational principles for

dynamics

We turn in this section to the formulation of a mixed (two-�eld) variational formulation for dynamics

that allows for independent variations of deformations ' and velocities V. We will refer to this

formulation as the mixed Hamilton�s principle. The construction of this mixed variational principle

follows a standard -Lagrange multiplier argument to enforce the "time-compatiblity" identityV = _'

between "assumed" V and compatible _' velocity �elds. We next extend this formulation to account

for variations with respect to defect rearrangements (horizontal variations). The resulting mixed

(three-�eld) formulation will render simultaneously the equations of balance of mechanical forces,

con�gurational forces, and time compatibility.

The mixed formulation for dynamics is introduced as an approach to overcome instabilities in-

herent to the use of the standard (single-�eld) Hamilton�s principle with moving meshes. More

speci�cally, as was illustrated for one-dimensional problems in the second chapter and will be fur-

ther elaborated in the next chapter, the approximation for the material velocity �eld _'h that results

from the approximation of the motion 'h with �nite elements interpolated over moving meshes

may exhibit jump discontinuities across element boundaries. This discontinuities eventually grow

unbounded rendering unstable and meaningless solutions. These instabilities are e¤ectively con-

trolled by making use of a continuous, assumed velocity interpolation Vh in lieu of the consistent

interpolation _'h and the mixed Hamilton�s principle as the underlying variational framework.

The mixed variational formulation presented here may be considered as the dynamic analogous

to the Beuveke-Hu-Washizu mixed variational principle for statics [9]. Furthermore, both variational

principles may be combined together to establish a single mixed space-time variational principle for

non-linear dynamics that accounts for independent variations of all �elds (deformations, velocities,

strains, momentum, and stresses).
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5.1 Beuveke-Hu-Washizu variational principle for statics

The Beuveke-Hu-Washizu mixed variational principle for elastostatics allows for independent varia-

tions of deformations, strains and stresses. The Beuveke-Hu-Washizu functional is

I [';F;P] =

Z
B

�
W (X;';F) + PiJ

�
'i;J � FiJ

��
dV

�
Z
@B2

('i � �'i)PiJNJdS �
Z
@B1

�Ti'idS (5.1)

The stress tensor P acts as Lagrange multiplier in B and on the traction boundary @B1 to enforce

the "strain-displacement" compatibility condition 'i;J = FiJ and Dirichlet boundary conditions

'i = �'i. The variations of the generalized potential I with respect to each �eld are

h�I; �'ii =

Z
B

�
@W

@'i
�'i + PiJ�'i;J

�
dV +

�
Z
@B2

�'iPiJNJdS �
Z
@B1

�'i �TidS

h�I; �FiJi =

Z
B

�
@W

@FiJ
� PiJ

�
�FiJdV

h�I; �FiJi =

Z
B

�PiJ
�
'i;J � FiJ

�
dV

�
Z
@B1

('i � �'i) �PiJNJdS

with Euler-Lagrange equations

�@W
@'i

+
dPiJ
dXJ

= 0 in B

PiJNJ � �Ti = 0 on @B1
@W

@FiJ
� PiJ = 0 in B

'i;J � FiJ = 0 in B

'i � �'i = 0 on @B2

that correspond to the �eld equations and boundary conditions of elastostatics. Replacing the P

multiplier in the Beuveke-Hu-Washizu functional I with the Euler-Lagrange equation corresponding

to the variations of its conjugate F, a two-�eld functional in which deformations and strains are

independent variables, is obtained.

I [';F] =

Z
B

�
W +

@W

@FiJ

�
'i;J � FiJ

��
dV

�
Z
@B2

('i � �'i)
@W

@FiJ
NJdS �

Z
@B1

�Ti'idS
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This potential is a (deformation-strain) dual of the well-known Hellinger-Reissner (deformation-

stress) mixed variational principle and has been attributed to Beuveke [9].

5.2 Mixed Hamilton�s principle and mixed Lagrangian

Motivated by the methodology that led to the Beuveke-Hu-Washizu potential for statics and its

reduction to a two �eld "strain-deformation" potential, the following three-�eld "mixed action func-

tional" for dynamics arises:

S [';V;p] =

Z tf

t0

Z
B

(L (X; t;';V; D') + pi ( _'i � Vi)) dV dt

+

Z tf

t0

Z
@B1

�Ti'idSdt (5.2)

where (what will turn out to be) the momentum p acts as the Lagrange multiplier in B to enforce

the "velocity-deformation" compatibility or "time-compatibility" condition _'i = Vi and where the

"strain-deformation" compatibility condition 'i;J � FiJ = 0 is accounted for strongly. Integrals are

taken over the space-time domain [t0; tf ]�B. For a Lagrangian density of the form (3.3) the mixed

action functional becomes

S [';V;p] =

Z tf

t0

Z
B

�
1

2
R jVj2 �W (X; t;'; D') + pi ( _'i � Vi)

�
dV dt

+

Z tf

t0

Z
@B1

�Ti'idSdt (5.3)

Unlike the Beuveke-Hu-Washizu principle, in which not only the �eld equations but also the Dirichlet

boundary conditions are weakly enforced within the variational framework, we do not attempt to

enforce initial conditions variationally. Therefore we maintain the restriction on the variations �'

to belong to the set of admissible variations, i.e., variations that vanish on the initial and �nal times

and on the Dirichlet part of the boundary @B2. Nevertheless the formulation of a more general mixed

variational principle for dynamics that account also for initial (and �nal) conditions and Dirichlet

boundary conditions appears to be straightforward.
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The variations of the mixed action with respect to each �eld are

h�S; �'ii =

Z tf

t0

Z
B

�
@L
@'i

�'i +
@L
@FiJ

�'i;J + pi� _'i

�
dV dt+Z tf

t0

Z
@B1

�'i �TidSdt

h�S; �Vii =

Z tf

t0

Z
B

�
@L
@Vi

� pi
�
�VidV dt

h�S; �pii =

Z tf

t0

Z
B

�pi ( _'i � Vi) dV dt

The variational principle

h�S; �'i = 0

h�S; �Vi = 0

h�S; �pi = 0

for every admissible variations (�'; �V; �p) will be referred to as the mixed Hamilton�s principle.

We will denote the mixed Lagrangian density by

Lmix (X; t;';V;F;p; _') = L (X; t;';V;F) + pi ( _'i � Vi) (5.4)

The corresponding Euler-Lagrange equations are

@L
@'i

� d

dXJ

�
@L
@FiJ

�
� dpi

dt
= 0 in B and 8t 2 I

@L
@Vi

� pi = 0 in B and 8t 2 I

_'i � Vi = 0 in B and 8t 2 I
@L
@FiJ

+ �Ti = 0 on @B1 and 8t 2 I

that correspond to the equations of mechanical force balance (3.10), time compatibility _' = V, and

traction boundary conditions, the Lagrange multiplier p resulting coincident to the momentum @L
@V .

Replacing now the p multiplier in the mixed action (5.2) with the Euler-Lagrange equation

corresponding to variations of its conjugate V, the following two-�eld action functional in which

deformations and velocities are independent variables is obtained:

S [';V] =

Z tf

t0

Z
B

 
L (X; t;';V; D') + @L

@Vi

����
(X;t;';V;D')

( _'i � Vi)
!
dV dt

+

Z tf

t0

Z
@B2

�Ti'idSdt
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De�ning the following mixed Lagrangian density

Lmix (X; t;';V;F; _') = L (X; t;';V;F) + @L
@Vi

����
(X;t;';V;F)

( _'i � Vi) (5.5)

the two-�eld action takes the form

S [';V] =

Z tf

t0

Z
B

Lmix (X; t;';V; D'; _') dV dt+
Z tf

t0

Z
@B2

�Ti'idSdt (5.6)

Taking variations with respect to each independent arguments yields

h�S; �'ii =

Z tf

t0

Z
B

�
@Lmix
@'i

�'i +
@Lmix
@FiI

�'i;I +
@Lmix
@Vi

� _'i

�
dV dt

=

Z tf

t0

Z
B

�
@L
@'i

�'i +
@L
@FiI

�'i;I +
@L
@Vi

� _'i +

+

�
@2L

@'i@Vj
�'i +

@2L
@FiI@Vj

�'i;I

��
_'j � Vj

��
dV dt+

+

Z tf

t0

Z
@B2

�Ti�'idSdt

h�S; �Vii =

Z tf

t0

Z
B

�
@Lmix
@Vi

�Vi

�
dV dt

=

Z tf

t0

Z
B

�
@2L

@Vj@Vi

�
_'j � Vj

�
�Vi

�
dV dt

The mixed (two-�eld) Hamilton�s principle becomes

h�S; �'i = 0

h�S; �Vi = 0

where �' is taken over the space of admissible variations, variations vanishing in the initial and �nal

times and on the Dirichlet boundary. The corresponding Euler-Lagrange equations follow as in this

case:

@Lmix
@'i

� d

dXJ

�
@Lmix
@FiJ

�
� d

dt

�
@Lmix
@ _'i

�
= 0

@Lmix
@Vi

= 0

@Lmix
@FiJ

NJ + �Ti = 0
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or, using the de�nition (5.5) as

@L
@'i

� d

dXJ

�
@L
@FiJ

�
� d

dt

�
@L
@Vi

�
+

@2L
@'i@Vj

�
_'j � Vj

�
� d

dXI

�
@L

@FiI@Vj

�
_'j � Vj

��
= 0

@L
@Vi@Vj

�
_'j � Vj

�
= 0�

@L
@FiJ

+
@L

@FiI@Vj

�
_'j � Vj

��
NJ + �Ti = 0

that are equivalent to the equations of motion (3.8).

For a Lagrangian density of the form (3.3) the mixed (two-�eld) action takes the form

S [';V] =

Z tf

t0

Z
B

�
1

2
R jVj2 �W (X; t;';F) +RVi ( _'i � Vi)

�
dV dt

+

Z tf

t0

Z
@B2

�Ti'idSdT (5.7)

On account of (3.1) and (3.2) the corresponding variations are

h�S; �'ii =

Z tf

t0

Z
B

�
Bi�'i � PiI�'i;I +RVi� _'i

�
dV dt+

+

Z tf

t0

Z
@B2

�Ti�'idSdt

h�S; �Vii =

Z tf

t0

Z
B

R ( _'i � Vi) �VidV dt

and the Euler-Lagrange equations become

B+DIV (P)� d

dt
(RV) = 0

_'�V = 0

�T�PN = 0

5.3 Con�gurational forces and con�gurational force balance

In analogy to the single-�eld Hamilton�s principle, the mixed (two-�eld) Hamilton�s principle may

be reformulated in a more general way to account not only for vertical but also for horizontal

variations and to render, in addition to the equations of balance of mechanical forces and time

compatibility, the equations of balance of con�gurational forces. To this end, let D be the defect

reference con�guration, � 2 D the defect parameter,  (�; t) the defect (horizontal) motion, and

� (�; t) the defect (vertical) motion in the deformed con�guration at time t or composition mapping

between the motion ' and  �1 (�gure 3.1). In addition, let � (�; t) be the material velocity referred

to the parametric con�guration D, i.e., the composition between the material velocity �eld V and
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 �1, namely

' = � � �1

V = � � �1

or equivalently

�i (��; t) = 'i ( I (��; t) ; t)

�i (��; t) = Vi ( I (��; t) ; t)

We next refer the mixed (two-�eld) action (5.6) to the parametric con�guration and regard the

action as an independent functional of both defect (horizontal) and body (vertical) motion. To do

this we make use of the relations between deformation gradient and velocities (3.18) and (3.19). The

mixed action thus becomes

S [ ;�;�] =

Z tf

t0

Z
D

Lmix � det (D ) d�dt =

=

Z tf

t0

Z
D

Lmix
�
 ; t;�;�;D�D �1; _�� (D�D �1) _ 

�
det (D ) d�dt =

=

Z tf

t0

Z
D

�
L
�
 ; t;�;�;D�D �1

�
+R�

�
_�� (D�D �1) _ � �

��
det (D ) d�dt

where we have assumed zero traction boundary conditions to simplify the derivation.

We now invoke the stationarity of the mixed action S [ ;�;�] with respect to admissible varia-

tions of the three arguments (mixed Hamilton�s principle)

h�S; ��ii = 0

h�S; � Ii = 0

h�S; ��ii = 0

The variation of the mixed action functional S [ ;�;�] with respect to � (keeping  and �

�xed) yields

h�S; ��ii =

Z tf
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D
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@Lmix
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+
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��
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=

Z tf
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Z
D

�
@L
@'i

��i +
@L
@FiI

�
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�;I

�
+
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@Vi
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�
��i;� 

�1
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�
_ J

�
+

+

�
@2L

@'i@Vj
��i +

@2L
@FiI@Vj

�
��i;� 

�1
�;I

���
_�j �

�
�j;� 

�1
�;J

�
_ J � �j

��
det (D ) d�dt
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Referring the integral back to the reference con�guration B we obtain

h�S; ��ii =

Z tf

t0

Z
B

�
@Lmix
@'i

�
��i � �1

�
+
@Lmix
@FiJ

d

dXJ
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��i � �1
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+
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@ _'i

d

dt

�
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dV dt =

=

Z tf
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�
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@'i

�
��i � �1

�
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@FiJ
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dXJ

�
��i � �1
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+
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@FiI@Vj

d

dXI

�
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�� �
_'j � Vj

��
dV dt

where the identities (3.23) and (3.24) have been used along with the relation:

d

dt

�
�i � �1

�
=

�
_�i � �1

�
�
�
�i;� � �1

�
 �1�;J

�
_ J � �1

�
=

=
d'i
dt

= _'i

and where the Lagrangian density L and its derivatives are evaluated in (X; t;';V; D').

We next compute the variations with respect to  (keeping � and � �xed). On account of

relations (3.26) (3.27) we obtain
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Referring the integral back to the reference con�guration B, the previous takes the form

h�S; � Ii =

Z tf
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where identities (3.31) and (3.30) have been used. Notice that for a Lagrangian Density of the form
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(3.3) the mixed derivative terms @L
@'i@Vj

and @L
@FiI@Vj

vanish.

Finally we compute variations of S [ ;�;�] with respect to � keeping ( ;�) �xed. We obtain

h�S; ��ii =

Z tf

t0

Z
D

@Lmix
@Vi

��i det (D ) d�dt =

=

Z tf

t0

Z
D

�
@2L

@Vj@Vi

�
_�j �

�
�j;� 

�1
�;I

�
_ I � �j

�
��i

�
det (D ) d�dt

Referring the space integral in the previous variation back to the reference con�guration B yields

h�S; ��ii =

Z tf

t0

Z
B

@Lmix
@Vi

�
��i � �1

�
dV dt =

=

Z tf

t0

Z
B

�
@2L

@Vj@Vi

�
_'j � Vj

� �
��i � �1

��
dV dt

We now turn to the derivation of the corresponding Euler-Lagrange equations. Stationarity of

the mixed action functional with respect to admissible variations on each of its arguments requires

@Lmix
@'i

� d

dXJ

�
@Lmix
@FiJ

�
� d

dt

�
@Lmix
@ _'i

�
= 0

@Lmix
@XI

� d

dXJ

�
Lmix�IJ �

@Lmix
@FiJ

FiI

�
� d

dt

�
�FiI

@Lmix
@ _'i

�
= 0

@Lmix
@Vi

= 0

that, on account of the de�nition (5.5), can be rewritten as

0 =
@L
@'i

� d

dXJ

�
@L
@FiJ

�
� d

dt

�
@L
@Vi

�
+

+
@2L

@'i@Vj

�
_'j � Vj

�
� d

dXJ

�
@2L

@FiJ@Vj

�
_'j � Vj

��
0 =

@L
@XI

� d

dXJ

�
L�IJ �

@L
@FiJ

FiI

�
� d

dt

�
�FiI

@L
@Vi

�
+

+
@2L

@XI@Vj

�
_'j � Vj

�
� d

dXJ

�
@

@Vj

�
L�IJ �

@L
@FiJ

FiI

��
_'j � Vj

��
0 =

@2L
@Vi@Vj

�
_'j � Vj

�
This equations are equivalent to the Euler-Lagrange equations (3.33) and (3.34) corresponding to

the single-�eld Hamilton�s principle.

For a Lagrangian density of the form (3.3) the variations take the form:
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� Variations with respect to �

h�S; ��ii =
Z tf

t0

Z
B

�
Bi
�
��i � �1

�
� PiJ

d

dXJ

�
��i � �1

�
+RVi

d

dt

�
��i � �1

��
dV dt

(5.8)

� Variations with respect to  

h�S; � Ii =

Z tf

t0

Z
B

�
Binh�mixI

�
� I � �1

�
� CmixIJ

d

dXJ

�
� I � �1

�
+RVi (�FiI)

d

dt

�
� I � �1

��
dV dt

=

Z tf

t0

Z
B

�
BinhI

�
� I � �1

�
� CIJ

d

dXJ

�
� I � �1

�
+RVi (�FiI)

d

dt

�
� I � �1

�
+�

@R

@XI

�
� I � �1

�
+R

d

dXI

�
� I � �1

��
Vj
�
_'j � Vj

��
dV dt (5.9)

=

Z tf

t0

Z
B

�
Binh�staticI

�
� I � �1

�
� CstaticIJ

d

dXJ

�
� I � �1

�
+RVi (�FiI)

d

dt

�
� I � �1

�
+�

@R
@XI

�
� I � �1

�
+R d

dXI

�
� I � �1

���kVk2
2 + Vj

�
_'j � Vj

���
dV dt

� Variations with respect to �

h�S; ��ii =
Z tf

t0

Z
B

R ( _'i � Vi)
�
��i � �1

�
dV dt (5.10)

where

Bi =
@Lmix
@'i

=
@L
@'i

= �@W
@'i

PiJ = �@L
mix

@FiJ
= � @L

@FiJ
=

@W

@FiJ

are the mechanical body force and �rst Piolla-Kirchho¤ stress tensor,

Binh�mixI =
@Lmix
@XI

����
exp

=
1

2

@R

@XI
jVj2 � @W

@XI

����
exp

+
@R

@XI
Vj
�
_'j � Vj

�
CmixIJ = �

�
Lmix�IJ �

@Lmix
@FiJ

FiI

�
=

��
W � 1

2
R jVj2 �RV� ( _'�V)

�
�IJ � FiIPiJ

�

and the inhomogeneity force and Eshelby stress tensor based on the mixed Lagrangian densities
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(5.5),

BinhI =
@L
@XI

����
exp

=
1

2

@R

@XI
jVj2 � @W

@XI

����
exp

CIJ = �
�
L�IJ �

@L
@FiJ

FiI

�
=

��
W � 1

2
R jVj2

�
�IJ � FiIPiJ

�

are the inhomogeneity force and Eshelby stress tensor but based on the standard Lagrangian (3.3),

and where

Binh�staticI = � @W

@XI

����
exp

CstaticIJ = W�IJ � FiIPiJ

are the static parts of the inhomogeneity force and Eshelby stress tensor. The Euler-Lagrange

equations become

B+DIV (P)� d

dt
(RV) = 0

Binh�mix +DIV
�
Cmix

�
� d

dt

��
�FT

�
RV

�
= 0

_'�V = 0

when written in terms of the mixed Lagrangian (5.5) or alternatively

B+DIV (P)� d

dt
(RV) = 0 (5.11)

Binh +DIV (C)� d

dt

��
�FT

�
RV

�
�RGRAD(V � ( _'�V)) = 0 (5.12)

_'�V = 0 (5.13)

when written in terms of the standard Lagrangian density (3.3). Furthermore, making use of the

identities

d

dt

�
�FTRV

�
+DIV

�
1

2
R kVk2 I

�
= �FT d

dt
(RV) +RV � (GRADV � F) (5.14)

RGRAD(V � ( _'�V)) = RGRAD(V) � ( _'�V) +RV �GRAD( _'�V) (5.15)

and rearranging conveniently, the Euler-Lagrange equations may be rewritten as

B+DIV (P)� d

dt
(RV) = 0 (5.16)

Binh�static +DIV
�
Cstatic

�
�
�
�FT

� d
dt
(RV)� (DV)T �R ( _'�V) = 0 (5.17)

_'�V = 0 (5.18)
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Notice that the mixed Lagrangian is Lmix is the sum of three factors, namely the kinetic energy

term, the potential energy term, and the Lagrange multiplier term. We can thus de�ne body forces

and stress tensors based, respectively, on Lmix, L, and W and therefore write the Euler-Lagrange

equations based on these three di¤erent representations.

We �nally derive a pull-back relation analogous to the one obtained in the case of a single-

�eld variational principle (3.42). To this end, we de�ne the following (two-�eld) Euler-Lagrange

operators, the left hand side of the (vertical and horizontal) Euler-Lagrange equations

(F� (';V))i =
@Lmix
@'i

� d

dXJ

�
@Lmix
@FiJ

�
� d

dt

�
@Lmix
@ _'i

�
=

=
@L
@'i

� d

dXJ

�
@L
@FiJ

�
� d

dt

�
@L
@Vi

�
+

+
@2L

@'i@Vj

�
_'j � Vj

�
� d

dXI

�
@2L

@FiI@Vj

�
_'j � Vj

��
(F (';V))I =

@Lmix
@XI

� d

dXJ

�
Lmix�IJ �

@Lmix
@FiJ

FiI

�
� d

dt

�
�FiI

@Lmix
@ _'i

�
=

=
@L
@XI

� d

dXJ

�
L�IJ �

@L
@FiJ

FiI

�
� d

dt

�
�FiI

@L
@Vi

�
+

+
@2L

@XI@Vj

�
_'j � Vj

�
� d

dXJ

�
@

@Vj

�
L�IJ �

@L
@FiJ

FiI

��
_'j � Vj

��

Left multiplying F� (';V) by �FT yields

�FiI (F� (';V))i = �FiI
�
@L
@'i

+
@2L

@'i@Vj

�
_'j � Vj

��
� d

dXI

�
�FiJ

�
@L
@FiJ

+
@2L

@FiJ@Vj

�
_'j � Vj

���
�@FiJ
@XI

�
@L
@FiJ

+
@2L

@FiJ@Vj

�
_'j � Vj

��
� d

dt

�
�FiI

@L
@Vi

�
� _FiI

@L
@Vi

Di¤erentiating (5.5) with respect to XI we �nd

d

dXI

�
L+ @L

@Vj

�
_'j � Vj

��
=

@

@Xi

�
L+ @L

@Vj

�
_'j � Vj

��
+

+FiI

�
@L
@'i

+
@L

@'i@Vj

�
_'j � Vj

��
+

+
@FiJ
@XI

�
@L
@FiJ

+
@L

@FiJ@Vj

�
_'j � Vj

��
+
@Vi
@XI

�
@L
@Vi

+
@L

@Vi@Vj

�
_'j � Vj

��
+
@L
@Vi

�
_FiI �

@Vi
@XI

�

Combining the previous two we �nally obtain the relation

�FiI (F� (';V))i = (F (';V))I +
@Vi
@XI

@2L
@Vi@Vj

�
_'j � Vj

�
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that when evaluated on V = _' reduces to the single-�eld relation (3.42) as expected.

5.4 Full mixed action and full mixed Hamilton�s principle

We combine in this section the mixed (three-�eld) Hamilton�s principle for dynamics with the mixed

(three-�eld) Beuveke-Hu-Washizu variational principle for statics to establish a full (�ve-�eld) space-

time mixed variational formulation for dynamics that account for independent variations in all

�elds (motion, velocity, strain, momentum, stress). This principle may be used to formulate high

performance enhanced �nite element formulations with moving meshes. Since we do not attempt

to enforce initial (and �nal) conditions weakly, variations in ' are required to vanish at the initial

and �nal times. A more general mixed variational principle than the one presented here may be

formulated to account for initial conditions as well. Combining (5.1) and (5.2) the following mixed

action functional is obtained

S [';V;F;p;P] =

Z tf

t0

Z
B

�
L (X; t;';V;F) + pi ( _'i � Vi)� PiJ

�
'i;J � FiJ

��
dV dt

+

Z tf

t0

Z
@B2

PiJNJ ('i � �'i) dSdt+
Z tf

t0

Z
@B1

�Ti'idSdt

For a Lagrangian density L (X; t;';V;F) of the form (3.3) the previous yields

S [';V;F;p;P] =

Z tf

t0

Z
B

�
1

2
R jVj2 �W (X;';F) + pi ( _'i � Vi)� PiJ

�
'i;J � FiJ

��
dV dt

+

Z tf

t0

Z
@B2

PiJNJ ('i � �'i) dSdt+
Z tf

t0

Z
@B1

�Ti'idSdt

Using the space-time domain [t0; tf ] � B with coordinates (t;X1; X2; X3) and space-time gradient�
@
@t ;

@
@XJ

�
the mixed action may be rewritten as

S [';V;F;p;P] =

Z
[t0;tf ]�B

0@L+ (pi; PiJ) �
0@0@ @

@t

@
@XJ

1A'i �

0@ Vi

FiJ

1A1A1A dtdV

+

Z
[t0;tf ]�@B2

('i � �'i) (pi; PiJ)

0@ 0

NJ

1A dtdS +

Z
[t0;tf ]�@B1

�Ti'idtdS
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Stationarity of the mixed action with respect to (admissible) variations in each �eld demands

h�S; �'ii =

Z tf

t0

Z
B

�
@L
@'i

�'i � PiJ�'i;J + pi� _'i
�
dV dt

+

Z tf

t0

Z
@B1

PiJNJ�'idSdt+

Z tf

t0

Z
@B2

�Ti�'idSdt

h�S; �pii =

Z tf

t0

Z
B

�pi ( _'i � Vi) dV dt

h�S; �Vii =

Z tf

t0

Z
B

�Vi

�
�pi +

@L
@Vi

�
dV dt

h�S; �PiJi =

Z tf

t0

Z
B

�
��PiJ

�
'i;J � FiJ

��
dV dt+

+

Z tf

t0

Z
@B1

�PiJNJ ('i � �'i) dSdt

h�S; �FiJi =

Z tf

t0

Z
B

�
PiJ +

@L
@FiJ

�
�FiJdV dt

which are the weak restatement of the �eld equations of motion along with their corresponding

boundary conditions

@L

@'i
+
dPiJ
dXJ

� dpi
dt

= 0 in B and 8t 2 I

PiJNJ � Ti = 0 on @B2 and 8t 2 I

_'i � Vi = 0 in B and 8t 2 I

�pi +
@L
@Vi

= 0 in B and 8t 2 I

'i;J � FiJ = 0 in B and 8t 2 I

PiJ +
@L
@FiJ

= 0 in B and 8t 2 I

'i � �'i = 0 on @B1 and 8t 2 I

5.5 Viscosity and mixed Lagrange-d�Alembert principle

We proceed to establish in this section a mixed version of the Lagrange-d�Alembert principle. We

recall that the mixed Hamilton�s principle was formulated by assuming the existence of an inde-

pendent velocity �eld V di¤erent from _' and enforcing the identity V = _' in a weak sense by the

introduction of a Lagrange multiplier. We also recall from Chapter 3 (see §3.4, equation 3.63) that

in the presence of viscous behavior, the equations of con�gurational and mechanical force balance
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can be established from the combined horizontal-vertical Lagrange-d�Alembert principle

h�S; � i+ h�S; ��i+
Z tf

t0

Z
B

DIV (Pv) (��� F� ) dV dt+

+

Z tf

t0

Z
@B1

(PvN) (��� F� ) dSdt = 0

where

Pv = Pv
�
F; _F

�
are the viscous forces and N is the outward unit normal on the traction boundary @B1. To develop

a mixed version of this principle we begin assuming that the viscosity depends on DV instead of _F

Pv = Pv (F; DV)

We next rewrite this principle in the form

h�S; � i+ h�S; ��i+
Z tf

t0

Z
B

Rv (��� F� ) dV dt+

+

Z tf

t0

Z
@B1

Tv (��� F� ) dSdt = 0

where Rv and Tv are the viscous force per unit of undeformed volume and the undeformed surface

viscous traction, related to the viscous stress by

Rv = DIV (Pv)

Tv = �PvN

We �nally impose the above identities weakly using for this a new test function �'

Z tf

t0

Z
B

(DIV (Pv)�Rv) �'�
Z tf

t0

Z
@B1

�'T (PvN+Tv) dSdt = 0

Integrating by parts, the previous yields

�
Z tf

t0

Z
B

�
Pv

@�'

@X
+Rv�'

�
�
Z tf

t0

Z
@B1

�'T (Tv) dSdt = 0
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Combining the previous two principles we obtain the combined principle

0 = h�S; � i+ h�S; ��i+ h�S; ��i+

+

Z
t

Z
B

Rv (��� F� ) dV dt+
Z
t

Z
@B1

Tv (��� F� ) dSdt

�
Z tf

t0

Z
B

�
Pv

@�'

@X
+Rv�'

�
dV dt�

Z tf

t0

Z
@B1

�'T (Tv) dSdt (5.19)

or alternatively

0 = h�S; � i+ h�S; ��i+ h�S; ��i+

+

Z tf

t0

Z
B

�
�Pv @�'

@X
+Rv (��� F� � �')

�
dV dt+

+

Z
t

Z
@B1

Tv (��� F� � �') dSdt (5.20)

In this principle there are four unknown �elds, namely (�; ;�;Rv) and four independent variations

(��; � ; ��; �'). The established four-�eld variational principle will be used in the next chapter for

materials with viscous behavior.

5.6 Mixed Hamilton and mixed Lagrange-d�Alembert prin-

ciples for general dissipative materials

In the previous section we formulated a mixed version of Hamilton�s principle and Lagrange-

d�Alembert principles for isothermal materials with no internal variables. These mixed principles

follow by assuming a priori V 6= _' and Rv 6= DIV (Pv) and imposing the constraint _' � V = 0

with a Lagrange multiplier p (that is lately identi�ed with the momentum p = @L
@V = RV) and the

constraint Rv�DIV (Pv) = 0 with an independent weight function �'. We have also studied in the

previous chapter a Lagrangian formulation for general dissipative media in which the equations of

balance of mechanical forces and balance of entropy are treated on an equal footing by introducing

a new variable �, the thermal displacement, such that _� = T , the temperature. In perfect analogy

to what we have done to formulate a mixed variational principle for the equation of balance of me-

chanical forces, we proceed now to formulate a mixed variational principle from which not only the

mechanical force balance equation but the entropy balance equation can be derived. More precisely

we shall assume a priori T 6= _� and impose the constraint _�� T = 0 with a Lagrange multiplier �.

This Lagrange multiplier will coincide with the thermal momentum � = @L
@ _� = RN previously iden-

ti�ed with the entropy density per unit of volume. Furthermore, we shall introduce new symbols sv

and Zv for the total thermal and internal dissipative sources sv = Sv

T +
_��DIV

�
Hv

T

�
and Zv = Yv

and impose the previous identities in a weak form by making use of independent weighting functions
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�� and �Q.

Motivated by the previous discussion we consider the following mixed thermomechanical action

functional :

S ['; �;Q;V; T;p; �] =

Z tf

t0

Z
B

(L (X; t;'; �;D'; D�;Q;V; T ) + pi ( _'i � Vi) + � ( _�� T )) dV dt

Taking variations of the mixed action functional with respect to all of its seven arguments we obtain

h�S; �'i =

Z tf

t0

Z
B

�
@L
@'

�'+
@L
@F

D�'+ p� _'

�
dV dt

h�S; ��i =

Z tf

t0

Z
B

�
@L
@�

��+
@L
@�

D��+ �� _�

�
dV dt

h�S; �Qi =

Z tf

t0

Z
B

�
@L
@Q

�Q

�
dV dt

h�S; �Vi =

Z tf

t0

Z
B

�
@L
@V

� p
�
�VdV dt

h�S; �T i =

Z tf

t0

Z
B

�
@L
@T

� �
�
�TdV dt

h�S; �pi =

Z tf

t0

Z
B

( _'�V) �pdV dt

h�S; ��i =

Z tf

t0

Z
B

( _�� T ) ��dV dt

Invoking now the stationarity of the mixed thermomechanical action with respect to all of its argu-

ments imply the Euler-Lagrange equations

@L
@'

�DIV
�
@L
@F

�
� d

dt
p = 0

@L
@�

�DIV
�
@L
@�

�
� d

dt
� = 0

@L
@Q

= 0

p� @L
@V

= 0

� � @L
@T

= 0

_'�V = 0

_�� T = 0

On account of the equilibrium relations and momenta de�nitions (see (4.13), (4.14), and (4.15)) the
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previous equations take the form

Be +DIV (Pe)� d

dt
p = 0

Se

T
�DIV

�
He

T

�
� d

dt
� = 0

Ye = 0

p�RV = 0

� �RN = 0

_'�V = 0

_�� T = 0

The stationarity of the mixed-thermomechanical action functional implies therefore the equilibrium

part of the mechanical force balance, entropy balance, and internal stress balance equations (4.12)

along with the compatibility conditions _' = V and _� = T and identi�es also the Lagrange multipliers

p and � with the mechanical and thermal momenta (mass times velocity and mass times entropy).

Replacing now the Lagrange multipliers p and �, respectively, with RV and RN , the following

(six-�eld) mixed thermomechanical action is obtained

S ['; �;Q;V; T;N ] =

Z tf

t0

Z
B

(L (X; t;'; �;D'; D�;Q;V; T ) +RV ( _'i � Vi) +RN ( _�� T )) dV dt

Their corresponding Euler-Lagrange equations are

@L
@'

�DIV
�
@L
@F

�
� d

dt
(RV) = 0

@L
@�

�DIV
�
@L
@�

�
� d

dt
(RN) = 0

Ye = 0

@L
@V

�RV = 0

@L
@T

�RN = 0

_'�V = 0

_�� T = 0
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or equivalently (using the de�nitions (4.13), (4.14), (4.15)

Be +DIV (Pe)� d

dt
(RV) = 0

Se

T
�DIV

�
He

T

�
� d

dt
(RN) = 0

Ye = 0

@L

@T
�RN = 0

_'�V = 0

_�� T = 0

De�ning �nally the following total dissipative sources

Rv =
@	

@ _'
+DIV

�
@	

@ _F

�
=

= Bv +DIV (Pv) (5.21)

sv =
@	

@ _�
+ _� + DIV

�
@	

@ _�

�
=

=
Sv

T
+ _��DIV

�
Hv

T

�
(5.22)

Zv = Yv (5.23)

it is straightforward to see that the total balance equations (including both equilibrium and non-

equilibrium parts) can be derived from the following mixed version of Lagrange-d�Alembert principle:

h�S; �'i+
Z tf

t0

Z
B

Rv�'dV dt = 0

h�S; ��i+
Z tf

t0

Z
B

sv��dV dt = 0

h�S; �Qi+
Z tf

t0

Z
B

Zv�QdV dt = 0

along with the weak restatement of the relations (5.21), (5.22), and (5.23) given by

Z tf

t0

Z
B

(Bv +DIV (Pv)�Rv) �'dV dt = 0Z tf

t0

Z
B

�
Sv

T
+ _��DIV

�
Hv

T

�
� sv

�
��dV dt = 0Z tf

t0

Z
B

(Yv � Zv) �QdV dt = 0

which after integration by parts and assuming �' and �� vanish on the boundary @B might be
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rewritten as

Z tf

t0

Z
B

�
(Bv �Rv) �'�Pv @�'

@X

�
dV dt = 0Z tf

t0

Z
B

��
Sv

T
+ _�� sv

�
��+

Hv

T

@��

@X

�
dV dt = 0Z tf

t0

Z
B

(Yv � Zv) �QdV dt = 0
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Chapter 6

Finite element discretization

In this chapter we present the formulation of a class of Eulerian-Lagrangian �nite element methods

for which the �nite element mesh is allowed to evolve within the reference con�guration continuously

in time and simultaneously with the body motion and where both motions follow jointly from the

same variational framework, namely, Hamilton�s principle.

The body motion ' will be approximated with �nite elements supported on a moving mesh.

Unlike traditional arbitrary-Lagrangian-Eulerian methods in which the mesh motion is arbitrary

and prescribed by the user, we will regard the mesh motion as an unknown of the problem to

be handled jointly with the main unknown, the body motion. A semidiscrete approach will be

used with independent spatial interpolations for deformations 'h and velocities Vh, leading to the

construction of a semidiscrete-mixed action functional with nodal referential trajectories Xh (t),

nodal spatial trajectories xh (t), and nodal coe¢ cients for the spatial interpolation of velocities

Vh (t) as unknown variables. Stationarity of the semidiscrete-mixed action with respect to each of

its arguments leads to a system of di¤erential-algebraic equations in the time variable for the three

unknowns. This system of equations corresponds to the equations of nodal mechanical force balance,

nodal con�gurational force balance, and compatibility between assumed and consistent velocities Vh

and _'h.

As was explained in the third chapter, in the continuous setting the equations of con�gurational

and mechanical force balance are equivalent in the sense that if one equation is satis�ed, the other

will be automatically satis�ed. In the discrete setting however this equivalence does not hold. The

discretization breaks the material (horizontal) translation symmetry of the action functional inducing

arti�cial nodal con�gurational forces. These forces remain unbalanced in general, even when the

continuum Lagrangian density is homogeneous (material invariant) and no con�gurational forces are

expected. The motion of the mesh is thus obtained by enforcing the con�gurational force equilibrium

simultaneously with the mechanical force equilibrium.
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The use of independent interpolations for velocities and deformations is proposed as an approach

to overcome instability issues that arise when convecting the deformation with the moving mesh.

The compatibility between assumed and consistent velocity �elds Vh and _'h is enforced within a

uni�ed variational framework using the mixed (deformation-velocity) Hamilton�s principle discussed

in the previous chapter.

The resulting semidiscrete system of equations for the three unknowns (mesh motion, material

motion, and the material velocity) is integrated with a mixed variational integrator of the kind

presented in the second chapter. This integrator follows from a direct discretization in time the

semidiscrete-mixed Lagrangian.

6.1 Spatial discretization

6.1.1 Semidiscrete Interpolation

Let Th (t) be a time-dependent family of triangulations of the reference con�guration B. We shall

analyze the particular family Th (t) consisting of a node set that is allowed to move continuously in

time within the reference con�guration while the mesh topology (connectivity and number of nodes

and elements) remains constant.

We consider independent �nite element spatial interpolations for the motion ' and velocities V

of the form

'h (X; t) =
NX
a

Na (X; t)xa (t) =
EX
e

nX
a

Ne
a (X; t)x

e
a (t) (6.1)

Vh (X; t) =

NX
a

Na (X; t)Va (t) =

EX
e

nX
a

Ne
a (X; t)V

e
a (t) (6.2)

where N is the total number of nodes, E the total number of elements, n the total number of

nodes per element, Na (X; t) are the nodal shape functions at time t, Ne
a are the elemental shape

functions (at time t), xa (t) (respectively, xea (t)) are the coordinates of node a (respectively, local

node a of element e) in the deformed con�guration at time t, and Va (t) (respectively, Ve
a (t)) are

the coe¢ cients for the global (local) interpolation of the material velocity Vh at time t. Notice that

the spatial shape functions Na depend continuously on time t because the nodes are assumed to

move within the reference con�guration and therefore, the shape functions result supported on a

moving domain. Deformations 'h and velocities Vh are required to be globally continuous and are

interpolated with the same shape functions Na.

In particular we shall consider an isoparametric (moving) �nite element interpolation for which
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the elemental shape functions Ne
a (X; t) are of the form

Ne
a = N̂a � e�1 (6.3)

where

 e (�; t) =
nX
a

N̂a (�)X
e
a (t) (6.4)

is the (time-dependent) isoparametric mapping that maps the standard element domain 
̂ into the

element 
e =  e
�

̂; t
�
in the reference con�guration B as illustrated in �gure 6.1, � 2 
̂ are the

isoparametric coordinates and N̂a (�) are the standard shape functions de�ned over the standard

domain 
̂.

Let 'e (X; t) and Ve (X; t) be the restrictions of the global �nite element approximation 'h and

Vh to the element 
e, i.e.,

'e (X; t) =
nX
a

Ne
a (X; t)x

e
a (t) (6.5)

Ve (X; t) =

nX
a

Ne
a (X; t)V

e
a (t) (6.6)

and let �e (�; t) and �e (�; t) be the composition mappings

�e = 'e � e

�e = Ve � e

It follows from this de�nition and (6.3) that

�e (�; t) =
nX
a

N̂a (�)x
e
a (t)

�e (�; t) =

nX
a

N̂a (�)V
e
a (t)

Figure (6.1) sketches the standard domain, evolving elements in the reference and deformed con�g-

urations and the corresponding mappings (compare with �gure 3.1).

The class of time-dependent triangulations of the reference con�guration B here considered

may be interpreted as a particular triangularization of the space-time reference domain B � [t0; tf ]

as depicted in �gure 6.2. Furthermore, if nodal trajectories in the reference con�guration Xa (t)

are discretized in time with isoparametric (one-dimensional) �nite elements in the time variable,

a particular class of space-time �nite elements is obtained for which the space-time isoparametric

shape functions are given by the product of uncoupled spatial and time factors and homogeneous
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Ω
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x2(t)

x3(t)

x4(t)

Figure 6.1: An isoparametric moving element and related mappings. Notice that nodes are assumed
to move continuously in time within the reference con�guration, simultaneously with the motion of
the body.

time steps (see Chapter 2, §2.2.10 and §2.2.11). Nevertheless we will follow a semidiscrete approach

and the discretization of the time variable will be postponed to a second stage.

The proposed discretization may be also understood as a time-dependent interpolation of the

graphs (X;' (X; t)) and (X;V (X; t)) of the deformation and velocity mappings in which both hor-

izontal and vertical coordinates of discrete nodes on the graphs (Xa (t) ;xa (t)) and (Xa (t) ;Va (t))

are allowed to move continuously in time (see �gure 6.3). Within this framework the space-space

mappings 0@  e (�; t)

�e (�; t)

1A =
nX
a

Ne
a (�)

0@ Xe
a (t)

xea (t)

1A
and 0@  e (�; t)

�e (�; t)

1A =
nX
a

Ne
a (�)

0@ Xe
a (t)

Ve
a (t)

1A
become parametrizations of the approximated graphs (X;'h (X; t)) and (X;Vh (X; t)) in the ele-

ment e.
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Figure 6.2: Representation of the class of �nite elements considered from a space-time point of view.

6.1.2 Consistent Material velocity �eld for a moving isoparametric ele-

ment

We next compute the consistent (discretized) material velocity �eld _'h. Di¤erentiating the dis-

cretized deformation mapping (6.5) with respect to time t yields

_'e (X; t) =
nX
a

�
Ne
a (X; t) _x

e
a (t) + _Ne

a (X; t) _x
e
a (t)

�
(6.7)

In order to evaluate this expression we need to determine _Ne
a (X; t) =

@Ne
a

@t (X; t). To this end we

�rst recall that in an isoparametric interpolation the shape functions must satisfy relation (6.3) that

can be rewritten in the form

Ne
a ( 

e (�; t) ; t) = N̂a (�)

Di¤erentiating the previous with respect to time at constant X yields

�
@Ne

a

@t
� e

�
+

�
@Ne

a

@XI
� e

�
_ 
e

I = 0

The time derivative of the isoparametric mapping (6.3) is

_ 
e
(�; t) =

nX
a

N̂a (�) _X
e
a (t)
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Figure 6.3: Representation of the class of �nite elements considered from a space-space point of
view.

Combining the previous two we �nd

@Ne
a

@t
� e = �

�
@Ne

a

@XI
� e

� nX
AA

N̂a (�) _X
e
AI

which implies after composition with  e�1 and use of relation (6.3) the sought identity

@Ne
a

@t
= �@N

e
a

@XI

nX
A

Ne
A
_Xe
AI (6.8)

Inserting now the previous relation into (6.7) gives the consistent material velocity �eld as

_'ei (X; t) =
nX
a

Ne
a _x

e
ai �

nX
a

@Ne
a

@XI
xeai

nX
A

Ne
A
_Xe
AI =

=
nX
a

Ne
a _x

e
ai � F eiI

nX
A

Ne
A
_Xe
AI =

=
nX
a

Ne
a

�
_xeai � F eiI _Xe

aI

�
(6.9)

where

F eiI (X; t) =
nX
a

@Ne
a

@XI
xeai (t) (6.10)

is the local deformation gradient �eld. Equation (6.9) is the discrete counterpart of relation (3.19).

Notice that the consistent velocity _'h exhibits jumps across element boundaries as a result of

its dependence on the discretized deformation gradient Fh, which is discontinuous across elements.

As will be illustrated in the example of §6.1.6 these jumps may grow unbounded and the �eld

_'h becomes a very poor approximation of the material velocity V. The approach we follow to
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overcome this di¢ culty is to approximate the velocities with an assumed, independent, continuous

interpolation Vh and enforce the compatibility requirement _' = V in a weak sense by making use

of the mixed-variational formulation introduced in Chapter 5, see also Chapter 2, §2.2.12, §2.2.14,

and §2.2.15.

Relation (6.9) can be alternatively written as

_'e (X; t) =
nX
a

Ne
a (X; t) (�Fe; i)

0@ _Xe
a (t)

_xea (t)

1A =

=
nX
a

Ne
a (X; t)Ne�

0@ _Xe
a (t)

_xea (t)

1A (6.11)

where

Ne� = (�Fe; i) (6.12)

is a covector in the normal direction to the graph of the discretized deformation mapping 'h in

element e as depicted in �gure 6.4. Relation (6.11) is the discrete counterpart of (3.53).

BB

Figure 6.4: Local normal Ne to the graph of the discretized deformation mapping 'h.

6.1.3 Semidiscrete-mixed Lagrangian and semidiscrete-mixed action

We now proceed to obtain a semidiscrete-mixed Lagrangian by evaluating the mixed Lagrangian

density Lmix on the discretized �elds and integrating the latter over space. We will denote the

Lagrangian (integral over space of the Lagrangian density L) with the symbol L, namely L =
R
B
L.

Inserting the deformation and velocity interpolations (6.1), (6.2) with deformation gradient (6.1)

and consistent material velocity (6.9) in the mixed action functional (5.6) the following semidiscrete-
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mixed action functional is obtained:

Sh (Xh (t) ;xh (t) ;Vh (t)) =

Z tf

t0

Lmixh

�
Xh (t) ;xh (t) ; _Xh (t) ; _xh (t) ;Vh (t)

�
dt =

=

Z tf

t0

EX
e

Le�mix
�
Xe (t) ;xe (t) ; _Xe (t) ; _xe (t) ;Ve (t)

�
dt(6.13)

where xh (t) = fxa (t) , a = 1; � � � ; Ng, Xh (t) = fXa (t) , a = 1; � � � ; Ng and Vh (t) = fVa (t) ,

a = 1; � � � ; Ng are, respectively, the global arrays of nodal coordinates in the reference and de-

formed con�gurations and velocity nodal coe¢ cients, xe (t) = fxea (t) , a = 1; � � � ; ng, Xe (t) =

fXe
a (t) , a = 1; � � � ; ng andVe (t) = fVe

a (t) , a = 1; � � � ; ng the corresponding local arrays of referen-

tial and spatial coordinates and velocity coe¢ cients of nodes in the element e, and Lmixh (respectively,

Le�mix) are the mixed global (respectively, local) semidiscrete Lagrangians, given, respectively, by

Lmixh

�
Xh;xh; _Xh; _xh;Vh

�
=

EX
e

Lmix�e
�
Xe (t) ;xe (t) ; _Xe (t) ; _xe (t) ;Ve (t)

�

Le�mix =

Z

e(t)

Lmix (XI ; t; '
e
i ; V

e
i ; F

e
iI ; _'

e
i ) dV (6.14)

with

XI = Ne
aX

e
aI

'ei (X; t) = Ne
ax

e
ai

_'ei (X; t) = Ne
a

�
_xeai � F eiI _Xe

aI

�
V ei (X; t) = Ne

aV
e
ai

F eiI (X; t) =
@Ne

a

@XI
xeai

where Lmix (X; t;';V;F; _') the mixed Lagrangian density (see equation (5.5)) de�ned in terms of

the standard Lagrangian density L as

Lmix (X; t;';V;F; _') = L (X; t;';V;F) + @L
@Vi

����
(X;t;';V;F)

( _'i � Vi)

Here and in what follows we will use Einstein�s summation convention on both nodal and coordinate

indices. Referring the integrals over each element 
e (t) to the standard domain 
̂ the local mixed

Lagrangian density can be written as

Lmix�e =

Z mix


̂e

Lmix
�
 e; t;�e;�e; (Fe � e) ; _�e � (Fe � e) _ e

�
det (D e) d�
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with

 eI (�; t) = N̂a (�)X
e
aI (t)

�ei (�; t) = N̂a (�)x
e
ai (t)

�ei (�; t) = N̂a (�)V
e
ai (t)

and

F eiI � e = 'ei;I � e =

= �ei;�
�
 e�1�;I � 

e
�
=

=

 
@N̂a
@��

xeai

! 
@N̂b
@��

Xe
bI

!�1

For a Lagrangian density of the form (3.3) the local semidiscrete-mixed Lagrangian becomes

Lmix�e =

Z

e(t)

�
R

2
kVek2 �W (XI ; t; '

e
i ; F

e
iI) +RV

e
i ( _'

e
i � V ei )

�
dV =

=

Z

e(t)

�
R

2
kNe

aVak2 �W
�
Ne
aX

e
aI ; t; N

e
ax

e
ai;

@Ne
a

@XI
xeai

�
+

+
X
a;b

RNe
aV

e
aiN

e
b

�
_xebi � F eiI _Xe

bI � V ebi
�1A dV (6.15)

that can be compactly expressed as

Lmix�e =
1

2
VeTmeVe � Ie +VeT

�
me _xe +Me _Xe �meVe

�
(6.16)

where

me
aibj =

Z

e

RNe
a�ijN

e
b dV (6.17)

Me
aibJ =

Z

e

RNe
a (�F eiJ)Ne

b dV (6.18)

are the mass matrices based on the tensors i and �F and Ie is the total potential energy over the

element e

Ie =

Z

e

W

�
Ne
aX

e
aI ; t; N

e
ax

e
ai;

@Ne
a

@XJ
xeai

�
dV (6.19)

Let mh, Mh be the assembled global mass matrices and Ih the assembled global total potential
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energy:

mh =
X
e

me (6.20)

Mh =
X
e

Me (6.21)

Ih =
X
e

Ie (6.22)

Notice that the global mass matrix mh will be a function of the nodal global referential coordinates

Xh (t), and that the global mass matrixMh and global potential energy Ih result dependent on both

nodal referential and spatial coordinates Xh (t) and xh (t). Assembling the elemental contributions

into global arrays, the semidiscrete mixed global Lagrangian becomes

Lmixh

�
Xh;xh; _Xh; _xh;Vh

�
=

1

2
VT
hmhVh � Ih

+VT
h

�
mh _xh +Mh

_Xh �mhVh

�
(6.23)

with

mh = mh (Xh)

Mh = Mh (xh;Xh)

Ih = Ih (xh;Xh)

6.1.4 Variations and semidiscrete Euler-Lagrange equations

In analogy with the continuous case, we next compute the variations of the semidiscrete-mixed action

functional (6.13) with respect to all of its arguments xh (t), Xh (t) and Vh (t) and the corresponding

Euler-Lagrange equations. Taking variations in (6.13) we obtain

h�Sh; �xhi =

Z tf

t0

X
e

�
@Lmix�e

@xeai
�xeai +

@Lmix�e

@ _xeai
� _xeai

�
dt

h�Sh; �Xhi =

Z tf

t0

X
e

 
@Lmix�e

@Xe
aI

�Xe
aI +

@Lmix�e

@ _Xe
aI

� _Xe
aI

!
dt

h�Sh; �Vhi =

Z tf

t0

X
e

�
@Lmix�e

@V eai
�V eaI

�
dt

where Lmix�e is the elemental mixed semidiscrete Lagrangian de�ned in (6.14), and (6.16). Dif-

ferentiating now the latter with respect to each of its arguments, or, alternatively, substituting the

semidiscrete �nite element interpolations (6.5) and (6.6) with consistent velocity interpolation (6.7)

and deformation gradient interpolation (6.10) into the continuous mixed variations (5.8), (5.9), and
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(5.10) we obtain the variations in the form:

� Variations with respect to �xh

h�S; �xeaii =
tfZ
t0

X
e

Z

e

�
�xeai

�
Ne
aB

e
i �

@Ne
a

@XI
P eiI

�
+RNe

aVai (�ij)
d

dt

�
Ne
b �x

e
bj

��
dV dt (6.24)

� Variations with respect to �Xh

h�S; �Xe
aIi =

tfZ
t0

X
e

Z

e

�
�Xe

aI

�
Ne
aB

inh�mix�e
I � @Ne

a

@XJ
Cmix�eIJ

�
+

+RNe
aV

e
ai (�F eiJ)

d

dt
(Ne

b �X
e
bJ)

�
dV dt (6.25)

=

tfZ
t0

X
e

Z

e

�
�Xe

aI

�
Ne
aB

inh�e
I � @Ne

a

@XJ
CeIJ

�
+

+RNe
aV

e
ai (�F eiJ)

d

dt
(Ne

b �X
e
bJ)+

+�Xe
cK

�
@R
@XK

Ne
c +R

@Ne
c

@XK

�
V eaiN

e
a�ij

�
d
dt

�
Ne
b x

e
bj

�
�Ne

b V
e
bj

��
dV dt

(6.26)

=

tfZ
t0

X
e

Z

e

�
�Xe

aI

�
Ne
aB

inh�static�e
I � @Ne

a

@XJ
Cstatic�eIJ

�
+

+RNe
aV

e
ai (�F eiJ) ddt (N

e
b �X

e
bJ)+

+�Xe
cK

�
@R
@XK

Ne
c +R

@Ne
c

@XK

��
kVek2
2 + V eaN

e
a�ij

�
d
dt

�
Ne
b x

e
bj

�
�Ne

b V
e
bj

���
dV dt

(6.27)

� Variations with respect to �Vh

h�S; �V eaii =
tfZ
t0

X
e

Z

e
RNe

a�V
e
ai�ij

�
d

dt

�
Ne
b x

e
bj

�
�Ne

b V
e
bj

�
dV dt (6.28)

where

Bei =
@Lmix�e
@'i

=
@Le
@'i

= �@W
e

@'i

P eiJ = �@L
mix�e

@FiJ
= � @Le

@FiJ
=
@W e

@FiJ
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are the mechanical body force Piolla-Kirchho¤ stress tensors evaluated on the discretized �elds,

Binh�mix�eI =
@Lmix
@XI

����
exp

=

=
1

2

@R

@XI
kVek2 � @W

@XI

����
exp

+
@R

@XI
V eaiN

e
a�ijN

e
b

�
_xebj � F ejJ _Xe

bJ � V ebj
�

Cmix�eIJ = �
�
Lmix�e�IJ �

@Lmix�e
@FiJ

F eiI

�
=

=

��
W e � 1

2
R kVek2 �RV eaiNe

a�ijN
e
b

�
_xebj � F ejJ _Xe

bJ � V ebj
��

�IJ � F eiIP eiJ
�

are the material body force and Eshelby stress tensor constructed with Lmix (evaluated on the

discretized �elds),

Binh�ei =
@Le
@Xi

����
exp

=
1

2

@R

@XI
kVek2 � @W e

@XI

����
exp

CeIJ = �
�
Le�IJ � F eiI

@Le
@FiJ

�
=

�
W e � 1

2
R kVek2

�
�IJ � F eiIP eiJ

are the corresponding quantities computed with L, that is to say excluding the Lagrange multiplier

term (and also evaluated on the discretized �elds) and

Binh�static�ei =
@W e

@XI

����
exp

Cstatic�eIJ = W e�IJ � F eiIP eiJ

are the static parts of the inhomogeneity force and Eshelby stress tensors. In the previous expressions

Lmix�e, Le, and W e are, respectively, the mixed Lagrangian density (5.5), the standard Lagrangian

density (3.3), and the total potential energy all evaluated on the discretized �elds.

Making use of (6.8) and rearranging terms the semidiscrete variations take the compact form

h�Sh; �xeaii =

Z tf

t0

 X
e

�xeai (f
e
ai + e

e
ai) + V

e
aim

e
aibj� _x

e
bj

!
dt (6.29)

h�Sh; �Xe
aIi =

Z tf

t0

 X
e

�Xe
aI (F

e
aI + E

e
aI) + V

e
aiM

e
aibJ� _X

e
bJ

!
dt (6.30)

h�Sh; �V eaii =

Z tf

t0

 X
e

�V eai

�
me
aibj _x

e
bj +M

e
aibJ

_Xe
bJ �me

aibjV
e
bj

�!
dt (6.31)

where
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feai = � @Ie

@xai

= �
Z

e

�
�BeiNe

a + P
e
iJ

@Ne
a

@XJ

�
dV (6.32)

FaI = � @Ie

@XaI
=

= �
Z

e

�
�Binh�static�eI Ne

a + C
static�e
IJ

@Ne
a

@XJ

�
dV (6.33)

and

eeck =
@

@xck

�
1

2
VemeVe +Ve

�
me _xe +Me _Xe �meVe

��
=

=

Z

e

�
RNe

aV
e
ai (�ik)

�
�@N

e
c

@XJ

�
Ne
b
_Xe
bJ

�
dV (6.34)

EecK =
@

@XcK

�
1

2
VemeVe +Ve

�
me _xe +Me _Xe �meVe

��
=

=

Z

e

�
RNe
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The forces feai and F
e
aI are the static nodal mechanical force and nodal con�gurational force at node

a. They are computed using body forces and stress tensors based only on the energy density W .

The forces eeai and E
e
aI are dynamic sources that group together all velocity-dependent terms. They

arise as a consequence of the dependence of the mass matrices me and Me on the con�guration

(Xe;xe).

We turn next to the derivation of the semidiscrete Euler-Lagrange equations. We will write these

equations in two di¤erent forms, the �rst better suited for numerical implementation, and the second

useful to derive simpli�ed expressions for the tangential and normal Euler-Lagrange equations that

will be computed in the next section.

6.1.4.1 Semidiscrete Euler-Lagrange equations, �rst form

Stationarity of the semidiscrete action Sh with respect to admissible variations of all of its arguments

Xh (t),.xh (t) and Vh (t) implies

h�Sh; �Xhi = 0 8�Xh

h�Sh; �xhi = 0 8�xh

h�Sh; �Vhi = 0 8�Vh
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Integrating by parts with respect to the time variable in (6.29) and (6.30) we obtain the Euler-

Lagrange equations in the form

X
e

�
d

dt

�
V eaim

e
aibj

�
�
�
febj + e

e
bj

��
= 0

X
e

�
d

dt
(V eaiM

e
aibJ)� (F ebJ + EebJ)

�
= 0X

e

�
me
aibj _x

e
bj +M

e
aibJ

_Xe
bJ �me

aibjV
e
bj

�
= 0

Assembling the element contributions into global arrays, the semidiscrete Euler-Lagrange equations

evaluate to the global equations

d

dt

�
mT
hVh

�
= eh + fh (6.36)

d

dt

�
MT

hVh

�
= Eh + Fh (6.37)

mh _xh +Mh
_Xh = mhVh (6.38)

where eh, Eh, fh, and Fh are the global force vectors

eh =
X
e

ee (6.39)

Eh =
X
e

Ee (6.40)

fh =
X
e

fe (6.41)

Fh =
X
e

Fe (6.42)

Equations (6.36), (6.37), and (6.38) are the �rst sought form of the semidiscrete Euler-Lagrange

equations. They are the (semi)discrete counterpart of the continuous Euler-Lagrange equations

(5.11), (5.12), (5.13). Notice that the static nodal mechanical and con�gurational forces fh and Fh

will be functions of (Xh;xh) while the dynamic sources will be functions of
�
Xh;xh; _Xh; _xh;Vh

�
.

6.1.4.2 Semidiscrete Euler-Lagrange equations, second form

Notice that the Euler-Lagrange equations (6.36), (6.37) involve time derivatives of the mass matrices

(Mh;mh) multiplied by the velocity vector Vh. We would like now to rewrite the previous equations

in a form that does not involve time di¤erentiation of the mass matrices (Mh;mh) but only time

di¤erentiation of the velocity vector Vh. To this end we observe that integrating by parts in time

and space appropriately in the variations (6.24) and (6.27) and making use of the identities (5.14)
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and (5.15), the semidiscrete variations might be rewritten as

h�Sh; �xeaii =

tfZ
t0

X
e
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e

�
�xeai

�
Ne
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e
i �

@Ne
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@XI
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e
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dV dt

h�Sh; �Xe
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dV dt

h�Sh; �V eaii =

tfZ
t0

X
e

Z

e
RNe

a�V
e
ai�ij

�
d

dt

�
Ne
b x

e
bj

�
�Ne

b V
e
bj

�
dV dt

Making use next of (6.8) and rearranging terms, the semidiscrete variations take the compact form



�Sh; �x

e
bj

�
=

Z tf

t0

 X
e

�xebj

�
fbj � _V eaim

e
aibj � �ebjaI _XaI

�!
dt (6.43)

h�Sh; �Xe
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Z tf
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e
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e
�Xe

bJ
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F ebJ � _V eaiM

e
aibJ + ( _x

e
ai � V eai)�eaibJ
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h�Sh; �V eaii =

Z tf

t0

 X
e

�V eai

�
me
aibj _x

e
bj +M

e
aibJ

_Xe
bJ �me

aibjV
e
bj
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dt (6.45)

where

�eaibJ =

Z

e

RNe
a

�
�V ei;J

�
Ne
b dV

is a new mass matrix based on the tensor Vi;J (material velocity gradient). The Euler-Lagrange

equations therefore become

X
e

�
_V eaim

e
aibj + �

e
bjaI

_XaI � fbj
�

= 0X
e

�
_V eaiM

e
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aibj

�
_xebj � V ebj

�
+Me

aibJ
_Xe
bJ

�
= 0

or assembling the element contributions into global arrays

mT
h
_Vh + �h _Xh = fh (6.46)

MT
h
_Vh � �Th ( _xh �Vh) = Fh (6.47)

mh ( _xh �Vh) +Mh
_Xh = 0 (6.48)
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where

�h =
X
e

�e

is the global assembled velocity-gradient�based mass matrix. Equations (6.46), (6.47), (6.48) are the

second sought form of the semidiscrete Euler-Lagrange equations and correspond to the (semi)discrete

counterpart of the continuous Euler-Lagrange equations written in the form (5.16), (5.17), (5.18).

Notice that comparing (6.36), (6.37) with (6.46), (6.47) we have the identities

d

dt

�
mT
hVh

�
� eh = mT

h
_Vh + �h _Xh

d

dt

�
MT

hVh

�
�Eh = MT

h
_Vh � �Th ( _xh �Vh)

or equivalently

_mT
hVh � eh = �h _Xh

_MT
hVh �Eh = ��Th ( _xh �Vh)

that can be derived directly from the de�nitions of mh, Mh, eh, Eh and .�h. Therefore we might

avoid the computation (and time discretization) of the time derivative of the mass matrices by

evaluating instead the new mass-like matrix �h based on the gradient of the velocity �eld.

6.1.5 Horizontal-Vertical variations� Tangential-Normal variations

Analogous to what was done in the continuous setting, we now reinterpret the motion in terms

of the evolution of the graph of the deformation mapping (X;') within the space-space bundle

B � S. We thus regard nodal coordinates in the reference and deformed con�gurations Xh and xh

as horizontal and vertical components of the generalized dynamical variable qh = (Xh;xh) that we

now understand as a single variable in the con�gurational bundle RdN �RdN where d is the spatial

dimension and N the total number of nodes. Variations of the semidiscrete action with respect toXh

and xh can be thus interpreted as horizontal and vertical variations and their corresponding Euler-

Lagrange equations as horizontal and vertical components of a single equation for the evolution of

the dynamical variable qh.

When comparing this semidiscrete picture against the continuous picture discussed in §3.3.3

we �nd however a very important di¤erence: The semidiscrete Euler-Lagrange equations (SDEL)

corresponding to horizontal variations are not satis�ed automatically whenever the semidiscrete

Euler-Lagrange equations corresponding to the vertical variations are. Or equivalently, semidiscrete

tangential variations do not vanish identically and result in non-trivial tangential SDEL. Horizontal

and vertical SDEL or alternatively, tangential and normal SDEL become therefore a non-trivial set
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of di¤erential equations to solve for the joint unknown qh.

Figures (6.5) illustrate graphically this fact. Recall that in the continuous setting (see §3.3.7)

every horizontal variation can be understood as a vertical variation (�gure 3.4). Therefore a sta-

tionary point of the action with respect to vertical variations becomes automatically stationary with

respect to all horizontal variations. In the discrete setting however horizontal and vertical varia-

tions are not equivalent in general and therefore the corresponding Euler-Lagrange equations are

independent as a result.

Figure 6.5: Horizontal and vertical variations of the (semi)discretized deformation mapping. Unlike
the continuous case, in the discrete case these are not equivalent.

Alternatively we may illustrate the discrepancy by looking at tangential and normal variations

as depicted in �gure 6.5. We recall that in the continuous setting any perturbation in the tan-

gential direction leaves the con�guration unperturbed and, therefore, since the action is a function

of the con�guration, the tangential Euler-Lagrange equations are trivially satis�ed (�gure 3.5). In

the discrete setting however each discrete con�guration does not remain invariant with respect to

perturbations in the tangential direction. Therefore the semidiscrete Euler-Lagrange equations cor-

responding to the tangential direction are not trivially satis�ed in general. More precisely, if S is

the continuous action and Sh is the semidiscrete action, then we have

h�S; �Ti = 0 8�T

identically for any tangential variation �T, however for its semidiscrete counterpart we obtain

h�Sh; �Thi 6= 0

for arbitrary general variations �Th in the tangential direction.

In what follows we derive the Euler-Lagrange equations projected into the tangential and normal

directions following the procedure outlined for the continuous setting in §3.3.7. To this end we de�ne
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N

N
T

T

N

N
T

T

Figure 6.6: Normal and tangential variations of the (semi)discretized deformation mapping. Unlike
the continuous case, in the discrete case the mapping does not remain unperturbed under the action
of tangential variations.

the following global normal vector Nh and covector N�h

Nh =

0@ MT
h

mT
h

1Am�T
h (6.49)

N�h = m�1
h (Mh;mh) (6.50)

and global tangent vector Th and covector T�h:

Th = m�1
h

0@ mh

�Mh

1A (6.51)

T�h =
�
mT
h ;�MT

h

�
m�T
h (6.52)

Notice that the matrices

(Mh;mh)ab =
X
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X
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0@ meT

�MeT
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ab
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e
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e
RNe
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e
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0@ I

Fe

1A dV

are the assembled weighted averages over element 
e of the local normal and tangent vectors and
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covectors

Ne� = (�Fe; i)

Te� =
�
I;FeT

�
Ne =

0@ �FeT

i

1A
Te =

0@ I

Fe

1A
Notice also that Nh and Th are arrays of dimension 2dN � dN while the dimension of N�h and T�h is

dN � 2dN and that we have the orthogonality properties

N�h � Th = m�1
h (Mh;mh)m

�1
h

0@ mh

�Mh

1A =m�1
h (Mh �Mh) = 0

T�h � Nh =
�
mT
h ;�MT

h

�
m�T
h

0@ MT
h

mT
h

1Am�T
h =

�
MT

h �MT
h

�
m�T
h = 0

We also de�ne the following di¤erential operators:0@ FX (Xh;xh;Vh)

Fx (Xh;xh;Vh)

1A =
d

dt

8<:
0@ MT

h

mT
h

1AVh

9=;�
0@ Eh

eh

1A�
0@ Fh

fh

1A
=

0@ MT
h

mT
h

1A _Vh +

0@ �Thm
�1
h Mh

�h

1A _Xh �

0@ Fh

fh

1A
that are just the left hand side of the Euler-Lagrange equations ((6.36), (6.37)) and ((6.46), (6.37))

written in a column vector. Using the above de�nitions, the Euler-Lagrange equations can be

rewritten as0@ FX (Xh;xh;Vh)

Fx (Xh;xh;Vh)

1A =
d

dt
fNhmhVhg �

0@ Eh

eh

1A�
0@ Fh

fh

1A =

= Nhmh
_Vh +

0@ �Thm
�1
h Mh

�h

1A _Xh �

0@ Fh

fh

1A =

0@ 0

0

1A
N�h

0@ _Xh

_xh

1A = Vh

Finally, following the same methodology we used in the continuum setting (§3.3.7) we de�ne global
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tangential and normal variations �nh and �Th using the identities

�
�XT

h ; �x
T
h

�
= �nThN�h + �TThT�h

The combined horizontal and vertical variations become therefore

h�Sh; �Xhi+ h�S; �xhi =

Z tf
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1A dt =
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with corresponding tangential and normal semidiscrete Euler-Lagrange equations given by
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1A = 0

FT (Xh;xh;Vh) = T�h
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Fx (Xh;xh;Vh)

1A = 0

Using the de�nitions of the di¤erential operators FX (Xh;xh;Vh) and Fx (Xh;xh;Vh) the previous

evaluates to
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We thus arrive at the following important conclusion: as was anticipated, the tangential evolution

equations for the dynamical system under consideration are not trivially satis�ed. But there is more:

This equation is only �rst-order in time; that is to say, it involves only �rst-order derivatives of the
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unknown variables (Xh;xh). This is a consequence of the fact that the second-order derivatives

enter the equations multiplied by the normal Nh. Therefore, when projecting the equations into the

tangential direction, the factor that multiplies the second-order derivatives vanishes. Furthermore,

if the matrix
�
�Thm

�1
h Mh

�
is symmetric, as happens for example if we use mass lumping, then also

the �rst-order derivative term vanishes from the tangential equation and this equation becomes an

algebraic constraint. The dynamical system becomes therefore constrained to evolve within a manifold

in the con�guration bundle. This manifold will be given by the global equations

T�h

0@ Fh

fh

1A = Fh (Xh;xh)�MT
h (Xh;xh)m

�T
h (Xh) fh (Xh;xh) = 0

or more compactly as

T�h � Fh = 0

where

Fh =

0@ Fh

fh

1A
is a global extended vector that combines the static nodal con�gurational and mechanical forces.

6.1.6 Semidiscrete Euler-Lagrange equations in Space-Space

The Euler-Lagrange equations (6.36) and (6.37) (or their equivalents (6.46) and (6.47)) are, re-

spectively, the vertical and horizontal projections of a balance equation for the evolution of the

generalized dynamical variable qh = (Xh;xh). Being horizontal and vertical components of a higher

dimensional combined space (the con�guration bundle RdN �RdN ), it becomes useful (as was done

in the continuous setting, see §3.3.8) to restate them as a joint system of equations in this combined

space, rather than two separate equations in RdN . We will write the joint system for the two alter-

native expressions, the expression involving time derivatives of the mass matrices (equations (6.36),

(6.37), and (6.38)), and the expression involving only the time derivative of the velocity vector _Vh

and the mass matrix based on velocity gradients �h ((6.46), (6.47), (6.48))
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6.1.6.1 Equations in space-space, �rst form.

Combining horizontal and vertical variations (6.29) and (6.30) we �nd

h�Sh; �Xe
aIi+ h�Sh; �xeaii =

Z tf

t0

0@X
e

(�Xe
aI ; �x

e
ai)

0@0@ F eaI

feai

1A+
0@ EeaI

eeai

1A1A
+V eai

�
Me
aibJ ;m

e
aibj

�0@ � _Xe
bJ

� _xebj

1A1A dt

h�Sh; �V eaii =

Z tf

t0

X
e

�V eai

0@�Me
aibJ ;m

e
aibj

�0@ _Xe
bJ

_xebj

1A�me
aibjV

e
bj

1A dt

that evaluates to the global form
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The corresponding Euler-Lagrange equations become
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that assembled into global array take the global form

d

dt
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fh

1A (6.53)

(Mh;mh)

0@ _Xh

_xh

1A = mhVh (6.54)
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Using the de�nition for the global normal Nh and conormal N�h (equations (6.49) and (6.50)) the

previous might be compactly written as

d

dt
fNhmhVhg = Eh + Fh

N�h _qh = Vh

where qh is the combined horizontal/vertical nodal coordinate array

qh =

0@ Xh

xh

1A
Eh and Fh are the extended dynamic and static forces given by

Eh =

0@ Eh

eh

1A (6.55)

Fh =

0@ Fh

fh

1A (6.56)

Combining both, these equations can be rewritten �nally in the equivalent form

d

dt

8<:Mh

0@ _Xh

_xh

1A9=; = Eh + Fh
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Mh = NhmhN�h =
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0@ MT
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0@ MT
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�1
h Mh MT

h

Mh mT
h

1A (6.57)

is the global semidiscrete extended mass matrix, the semidiscrete global analog to the continuous

extended mass matrix (3.56).
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6.1.6.2 Equations in space-space, second form.

Alternatively, combining horizontal and vertical variations written in the form (6.43) and (6.44) we

�nd
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which in global form evaluates to
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The corresponding local and global Euler-Lagrange equations become respectively
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Combining both, we �nally obtain0@ MT
h

mT
h
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h Mh
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1A _Xh =
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fh
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(Mh;mh)

0@ _Xh
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1A = 0 (6.59)

which might be compactly written as

Nh
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mh

_Vh + �h _Xh

�
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0@ �
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h Mh �MT

hm
�T
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�
0

1A _Xh = Fh

N�h

0@ _Xh
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1A = Vh

with Nh and N�h the normal and conormal de�ned in (6.49) and (6.50) and Fh the column vector

that group con�gurational and mechanical nodal forces de�ned in (6.56).

6.1.7 Comparison with the single-�eld Hamilton�s principle formulation

As was anticipated in the introduction to this section, the use of an independent velocity interpolation

(6.6) instead of the consistent velocity interpolation (6.9) is proposed as an approach to overcome

severe instability issues inherent to the use of the latter. To understand the di¤erence between both

formulations, we derive in this section the Euler-Lagrange equations resulting from the use of the

standard Lagrangian formulation (the formulation that make use of consistent velocities Vh � _'h)

and compare these equations with those that follow from the mixed Lagrangian formulation (using

independent velocities Vh 6= _'h).

Inserting the deformation interpolation (6.10) with deformation gradient given by (6.10) and

consistent interpolation for the velocities given by (6.9) in the standard (single-�eld) action (3.4,

3.5) the following semidiscrete action Sh and global and elemental Lagrangians Lh and Le are

obtained:

Sh (Xh;xh) =

Z tf

t0

Lh

�
Xh;xh; _Xh; _xh

�
dt

Lh

�
Xh;xh; _Xh; _xh

�
=

X
e

Le
�
Xe;xe; _Xe; _xe

�
Le
�
Xe;xe; _Xe; _xe

�
=

Z

e
L (X; t;'h; _'h;Fh) dV
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For a Lagrangian density of the form (3.3) the local semidiscrete standard Lagrangian becomes

Le =

Z

e(t)

�
R

2
k _'ek2 �W (XI ; t; '

e
i ; F

e
iI)

�
dV =

=

Z

e(t)

�
R

2

�
Ne
a

�
_xeai � F eiI _Xe

aI

��2
�W

�
Ne
aX

e
aI ; t;

@Ne
a

@XI
xeai

��
dt

that can be compactly expressed as

Le =
1

2

�
_Xe; _xe

�
Me

0@ _Xe

_xe

1A� Ie
where Me is a con�guration-dependent mass matrix given by

Me
aIibJj =

Z

e(t)

RNe
aN

e
b

0@ �F ekI
�ki

1A (�F ekJ ; �kj) dV =
=

Z

e(t)

RNe
aN

e
b

0@ F ekIF
e
kJ �F ejI

�F eiJ �ij

1A dV

Assembling the elemental contributions into global arrays we obtain the global semidiscrete La-

grangian in the form

Lh

�
xh;Xh; _xh; _Xh

�
=
1

2

�
_Xh; _xh

�
Mh

0@ _Xh

_xh

1A� Ih
where

Mh =
X
e

Me

is the assembled global extended mass matrix. We recall that in the mixed Lagrangian formulation

the mass matrix was given by

Mh = NhmhN�h =

=

 X
e

Z

e(t)

RNe
aN

e
bNedV

! X
e

Z

e(t)

RNe
aIN

e
b dV

!�1 X
e

Z

e(t)

RNe
aN

e
bNe�dV

!

while in the standard Lagrangian formulation the mass matrix becomes

Mh =
X
e

Z

e(t)

(RNaNbNeNe�) dV

Therefore, while in the mixed formulation the extended mass matrix is computed by multiplying the

global average of local normals, in the standard Lagrangian formulation the mass matrix is built by
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averaging the product of local normals. As will be illustrated in the example of the next section, this

is indeed an essential di¤erence. In the following table we summarize the main di¤erences between

both formulations.
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Standard Formulation Mixed Formulation

Lagrangian

density
L = RV

2

2 �W (X;';F)
Lmix = RV

2

2 �W (X;';F)+

+RV ( _'�V)

Indep.

Variables
' (';V)

Interpolation

'h =
P
a
Naxa

_'h =
P
a
Na

�
_xa � Fh _Xa

�
Fh =

P
a

@Na
@X

xa

Xh =
P
a
NaXa

'h = same

Vh =
P
a
NaVa

_'h = same

Fh = same

Xh = same

Elemental

semidiscr.

Lagrangian

Le = 1
2

�
_Xe; _xe

�
Me

0@ _Xe

_xe

1A� Ie Lmix�e = 1
2V

eTmeVe � Ie+

+VeT
�
me _xe +Me _Xe �meVe

�
Elemental

mass matrix
Me
ab =

R

e

RNe
aN

e
b

0@ �FeT

i

1A (�Fe; i)
0@ MeT

ab

meT
ab

1A =
R

e

RNe
aN

e
b

0@ �FeT

i

1A
Global

semidisc.

Lagrangian

Lh =
1
2

�
_Xh; _xh

�
Mh

0@ _Xh

_xh

1A� Ih Lmixh = 1
2V

T
hmhVh � Ih

+VT
h

�
mh _xh +Mh

_Xh �mhVh

�

Global

extended

mass matrix

Mh =
P
e
Me

0@ MT
h

mT
h

1A =
P
e

0@ MeT

meT

1A
Nh =

0@ MT
h

mT
h

1Am�T
h

N�h =m
�1
h (Mh;mh)

Mh = NhmhN�h

Euler-Lagr.

equations

d

dt
(Mh _qh) = Eh + Fh

d

dt
(NhmhVh) = Eh + Fh

N�h _qh = Vh

Generalized

coordinate

array

qh =

0@ Xh

xh

1A
_qh =

0@ _Xh

_xh

1A
qh = same

_qh = same

Forces

Fh =

0@ Fh

fh

1A =

0@ @
@Xh

@
@xh

1A Ih

Eh =

0@ Eh

eh

1A =

0@ @
@Xh

@
@xh

1AKh

Lh = Kh � Ih

Fh = same

Eh =

0@ Eh

eh

1A =

0@ @
@Xh

@
@xh

1AKmix
h

Lmixh = Kmix
h � Ih



189

6.1.8 Example: Oscillation of a one-dimensional bar, non-linear material

As an illustrative example we consider a one-dimensional body B = [0; L] �xed on both sides and

free of body forces. The body is set to oscillate by applying an initial deformation and releasing it

from rest. For simplicity we assume that the body is made of a homogeneous hyperelastic material

with total energy density W (F ) and that the mass density R is constant.

We will establish the Euler-Lagrange equations for this particular example using the two formu-

lations just outlined: namely, the mixed (two-�eld) Lagrangian formulation with velocities interpo-

lated independently, and the standard (single-�eld) Lagrangian formulation with consistent velocity

interpolation.

In both cases we discretize the body into two �nite elements with nodal coordinates of the mid

node in both the reference and deformed con�guration taken as unknowns:

x1 = x1(t)

X1 = X1(t)

Interpolating deformations and velocities with linear elements we obtain

'h (X; t) =

8<: X
X1(t)

x1(t) if 0 < X < X1(t)

L�X
L�X1(t)

x1(t) +
X�X1(t)
L�X1(t)

L if X1(t) < X < L

Vh (X; t) =

8<: X
X1(t)

V1(t) if 0 < X < X1(t)

L�X
L�X1(t)

V1(t) if X1(t) < X < L

where V1 (t) is the coe¢ cient for the interpolation of the velocity also taken as unknown in the mixed

Lagrangian formulation. Di¤erentiating with respect to time the deformation mapping 'h (X; t) at

constant X, we �nd

_'h (X; t) =

8<:
X

X1(t)

h
_x1(t)�

�
x1(t)
X1(t)

�
_X1(t)

i
if 0 < X < X1 (t)

L�X
L�X1(t)

h
_x1(t)�

�
L�x1(t)
L�X1(t)

�
_X1(t)

i
if X1 (t) < X < L

Di¤erentiating next with respect to space X at constant time t we obtain

Fh (X; t) =

8<:
x1(t)
X1(t)

if 0 < X < X1(t)

L�x1(t)
L�X1(t)

if X1(t) < X < L
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6.1.8.1 Mixed Lagrangian formulation

The semidiscrete-mixed action functional and mixed Lagrangian becomes in this case

Sh (X1 (t) ; x1 (t) ; V1 (t)) =

Z tf

t0

Lmixh

�
x1 (t) ; X1 (t) ; _x1 (t) ; _X1 (t) ; V1 (t)

�
dt

Lmixh

�
x1; X1; _x1; _X1; V1

�
=

Z L

0

�
1

2
RV 2h �W (Fh) +RVh ( _'h � Vh)

�
dX =

that making use of the given interpolation and integrating evaluates to

Lmixh =
RL

6
V 21 �

�
X1W

�
x1
X1

�
+ (L�X1)W

�
L� x1
L�X1

��
+
RL

3
V1

�
_x1 � _X1 � V1

�
Taking variations we obtain

h�Sh; �X1i =

Z tf

t0

��
�RL
3
V1

�
� _X1 �

�
C

�
x1
X1

�
� C

�
L� x1
L� x1

��
�X1

�
dt

h�Sh; �x1i =

Z tf

t0

��
RL

3
V1

�
� _X1 �

�
P

�
x1
X1

�
� P

�
L� x1
L� x1

��
�x1

�
dt

h�Sh; �V1i =

Z tf

t0

�
RL

3
�V1

�
_x1 � _X1 � V1

��
dt

where

P (F ) =
@W

@F
(F )

C (F ) = W (F )� F @W
@F

(F )

are, respectively, the �rst Piolla-Kirchho¤ and static Eshelby stress tensors. The corresponding

horizontal-vertical Euler-Lagrange equations are

RL

3
_V1 = P

�
L� x1
L� x1

�
� P

�
x1
X1

�
�RL
3
_V1 = C

�
L� x1
L� x1

�
� C

�
x1
X1

�
V1 = _x1 � _X1

that can written in matrix form as

RL

3

0@ �1

1

1A _V1 =

0@ C
�
L�x1
L�x1

�
� C

�
x1
X1

�
P
�
L�x1
L�x1

�
� P

�
x1
X1

�
1A

V1 = (�1; 1)

0@ _X1

_x1

1A
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or combining both as

M

0@ �X1

�x1

1A =

0@ [C]

[P ]

1A (6.60)

where

M =

0@ �1

1

1A RL

3
(�1; 1) =

=
RL

3

0@ 1 �1

�1 1

1A
is the extended mass matrix and0@ [C]

[P ]

1A =

0@ C
�
L�x1
L�x1

�
� C

�
x1
X1

�
P
�
L�x1
L�x1

�
� P

�
x1
X1

�
1A

are the jumps of the Eshelby static and Piolla-kirchho¤ stress tensor across the boundary between

the two elements. Notice that in this example the extended mass matrix is independent of the

con�guration (X1; x1). In general this is not the case.

The normal and tangential vectors and covectors evaluate in this case simply to

N =

0@ �1

1

1A
N� = (�1; 1)

T =

0@ 1

1

1A
T� = (1; 1)

that correspond to a weighted average of the normals and tangents to the graph of 'h on each

element. Tangential and normal Euler-Lagrange equations become therefore

(�1; 1)

0@RL
3

0@ �1

1

1A _V1 �

0@ [C]

[P ]

1A1A = 0

(1; 1)

0@RL
3

0@ �1

1

1A _V1 �

0@ [C]

[P ]

1A1A = 0
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that evaluates to

2RL

3
_V1 + [C]� [P ] = 0

[C] + [P ] = 0

The tangential equation results therefore an algebraic equation and represents a constraint manifold

for the evolution of the dynamical variable (X1; x1). The constraint equation is thus

C

�
L� x1
L� x1

�
� C

�
x1
X1

�
+ P

�
L� x1
L� x1

�
� P

�
x1
X1

�
= 0

Figure (6.7(a)) shows this constraint manifold for the particular case of an incompressible Neo-

hookean material, characterized by a strain energy density of the form

W (F ) =
�

2

�
F 2 +

2

F
� 3
�

along with the solution of the above system at di¤erent times.

6.1.8.2 Standard Lagrangian formulation

If on the other hand the standard (single-�eld) Lagrangian formulation is adopted and the velocity

is interpolated using _'h instead of the independent interpolation Vh we obtain

Sh (X1 (t) ; x1 (t)) =

Z tf

t0

Lh

�
x1 (t) ; X1 (t) ; _x1 (t) ; _X1 (t)

�
dt

Lh

�
x1; X1; _x1; _X1

�
=

Z L

0

�
1

2
R _'2h �W (Fh)

�
dX =

that making use of the given interpolation and integrating evaluates to

Lh

�
x1; X1; _x1; _X1

�
=

1

6
R

�
_x1 �

x1
X1

_X1

�2
X1 +

1

6
R

�
_x1 �

L� x1
L�X1

_X1

�2
(L�X1)

�
�
X1W

�
x1
X1

�
+ (L�X1)W

�
L� x1
L�X1

��

Expanding the square velocity terms, the previous can be written as

Lh

�
x1; X1; _x1; _X1

�
=

R

6

�
_X1 _x1

�0@ x21
X1
+ (L�x1)2

(L�X1)
�L

�L L

1A0@ _X1

_x1

1A
�
�
X1W

�
x1
X1

�
+ (L�X1)W

�
L� x1
L�X1

��
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The variations are

h�Sh; �X1i+ h�Sh; �x1i =

Z tf

t0

R

3

�
� _X1 � _x1

�0@ x21
X1
+ (L�x1)2

(L�X1)
�L

�L L

1A0@ _X1

_x1

1A+
+
R

6

�
�X1 �x1

�0@ �
� x21
X2
1
+ (L�x1)2

(L�X1)
2

�
2
�
x1
X1
� L�x1

L�X1

�
1A _X2

1 +

�
�
�X1 �x1

�0@ C
�
x1
X1

�
� C

�
L�x1
L�x1

�
P
�
x1
X1

�
� P

�
L�x1
L�x1

�
1A dt

and the corresponding Euler-Lagrange equations evaluates to

d

dt

8<:M
0@ _X1

_x1

1A9=;+ R

6

0@ � x21
X2
1
+ (L�x1)2

(L�X1)
2

2
�
x1
X1
� L�x1

L�X1

�
1A _X2

1 =

0@ [C]

[P ]

1A (6.61)

where

M =
R

3

0@ x21
X1
+ (L�x1)2

L�X1
�L

�L L

1A =

=
RL

3

0@ 1 +
�
L
X1
+ L

L�X1

� �
x1�X1

L

�2 �1

�1 1

1A
is the extended mass matrix. Notice that when x1 = X1 the mass matrix becomes identical to the

mass matrix obtained with the mixed Lagrangian formulation. The tangential and normal Euler-

Lagrange equations become in this case

0 =
d

dt

(
R

3

 
� x21
X1

� (L� x1)
2

(L�X1)
� L

!
_X1 + 2L _x1

)
+

+
R

6

 
2

�
x1
X1

� L� x1
L�X1

�
+
x21
X2
1

� (L� x1)2

(L�X1)
2

!
_X2
1 + [C]� [P ]

0 =
d

dt

(
R

3

 
x21
X1

+
(L� x1)2

(L�X1)
� L

!
_X1

)
+

R

6

 
2

�
x1
X1

� L� x1
L�X1

�
� x21
X2
1

+
(L� x1)2

(L�X1)
2

!
_X2
1 � [C]� [P ]

Figure (6.7(b)) shows the solution of the above system for an incompressible Neohookean mate-

rial. Figure (6.8) shows the phase space for the horizontal motion (X1; P1) where

P1 =
@Lmixh

@ _X1

= �RL
3
V1 =

RL

3

�
_X1 � _x1

�
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Figure 6.7: Oscillation of a 1D bar discretized with two 1D linear elements. Displacements as a
function of position for di¤erent times u (X; t). (a) Mixed Lagrangian formulation. (b) Standard
Lagrangian formulation

in the case of the mixed Lagrangian formulation and

P1 =
@Lh

@ _X1

=
RL

3

�
_X1 � _x1

�
+
R

3

�
1

X1
+

1

L�X1

�
(x1 �X1) _X1

in the case of the standard Lagrangian formulation.

6.1.8.3 Comparison between both formulations

Comparing the extended mass matrices of both formulations we �nd that for the mixed Lagrangian

formulation we obtained

Mmix =
RL

3

0@ 1 �1

�1 1

1A
whereas for the standard Lagrangian formulation we found

Mstd =
RL

3

0@ 1 +
�
L
X1
+ L

L�X1

� �
x1�X1

L

�2 �1

�1 1

1A
Subtracting both expressions yields

Mstd =Mmix +
RL

3

0@ �
1
U +

1
1�U

�
u2 0

0 0

1A (6.62)
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Figure 6.8: Oscillation of 1D bar discretized with two 1D linear elements. Phase space diagram
(X1; P1) for the mixed Lagrangian formulation (blue) and for the standard Lagrangian formulation
(red).

where u and U are the adimensionalized vertical and horizontal displacements of node 1 given by

u =
x1 �X1

L
(6.63)

U =
X1

L
(6.64)

or more compactly

Mstd =Mmix +
RL

3

0@ A (U)u2 0

0 0

1A
where the function A (U) is given by

A (U) =
1

U
+

1

1� U

Using this notation, the di¤erential equations of motion for the pair (X1; x1) (equations (6.60) and

(6.61)) might be rewritten as

Mmix

0@ �X1

�x1

1A =

0@ [C]

[P ]

1A
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for the mixed Lagrangian formulation, and

d

dt

8<:Mstd

0@ _X1

_x1

1A9=;+ R

6

0@ � x21
X2
1
+ (L�x1)2

(L�X1)
2

2
�
x1
X1
� L�x1

L�X1

�
1A _X2

1 =

0@ [C]

[P ]

1A
for the standard Lagrangian formulation. On account of identity (6.62) and de�nitions (6.63) and

(6.64) the previous yields

Mmix

0@ �X1

�x1

1A+ RL2

3

d

dt

0@ A (U)u2 _U

0

1A+ RL2

6

0@ A0 (U)u2 � 2A (U)u

2A (U)u

1A _U2 =

0@ [C]

[P ]

1A

where

A0 (U) =
dA

dU
=

= � 1

U2
+

1

(1� U)2

Assume now that U = 1
2 + " with " � 1, which implies, given de�nition (6.64), that " is the o¤set

from a uniform mesh, i.e., if " = 0 then both elements have length L
2 . Notice that

A (U) = A

�
1

2
+ "

�
= 4

�
1 + 4"2 + 16"4 + � � �

�
A0 (U) = A0

�
1

2
+ "

�
= 4

�
8"+ 64"3 + � � �

�
Inserting the previous expansions into the di¤erential equations we �nd to leading order in "

Mmix

0@ �X1

�x1

1A+ 4RL2
3

0@ u2�"+ 2u _u _"� u _"2

u _"2

1A =

0@ [C]

[P ]

1A
The di¤erential equation in the tangent direction (which can be obtained by multiplying the hori-

zontal/vertical equations by the tangent vector T�=(1; 1)) evaluates therefore to

4RL2

3

�
u2�"+ 2u _u _"

�
+ [C] + [P ] = 0

which might be contrasted with the tangent di¤erential equation for the mixed Lagrangian formua-

tion

[C] + [P ] = 0

We notice that the term 2u _u, which operates as a non-linear viscosity coe¢ cient, becomes negative

when the bar is returning to its undeformed con�guration, i.e., when u! 0. This is the reason why
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the solution becomes unstable for the standard Lagrangian formulation.

6.1.9 Example: Oscillation of a 1D bar, linear material

As a second illustrative example of the di¤erence between both formulations, we consider again a

one-dimensional body B = [0; L] �xed on both sides and free of body forces. The bar is now set to

oscillate from an underfomed con�guration by applying an initial sinusoidal velocity. We assume a

quadratic strain energy function of the form

W (F ) =
3

2
� (F � 1)2

which results in linear stress-strain relation

P (F ) = 3� (F � 1)

and Eshelby stress

C (F ) =

�
W (F )� 1

2
R _'2

�
� PF =

= �3
2
� (F � 1) (F + 1)� 1

2
R _'2

The di¤erential equations of motion are in this case

R�' =
@P

@X
=

=
@

@X

�
3�

@'

@X

�

which corresponds to the wave equation. The analytical solution with zero boundary conditions,

undeformed initial con�guration and sinusoidal initial velocities is

' (X; t) = Ak sin

�
2k�

X

L

�
sin

�
2k�

ct

L

�

with

c2 =
R

3�

Figure (6.9) shows the �nite element solution for the displacement �eld u (X; t) = ' (X; t)�X using

a di¤erent number of elements for both the mixed and standard Lagrangian formulations. It can be

noticed that the latter is catastrophically unstable and leads to meaningless solutions.
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Figure 6.9: Oscillation of a 1D bar discretized with two 1D linear elements. Displacements as a
function of position for di¤erent times u (X; t) for a linear elastic material. Comparison between
the solution for the mixed (left column) and standard (right column) Lagrangian formulations for
meshes with a di¤erent number of elements

6.1.10 Viscosity and Semidiscrete Mixed Lagrange-d�Alembert principle

The incorporation of viscous e¤ects into the analysis in the context of Lagrange-d�Alembert principle

was discussed in sections §3.2, §3.4, and §5.5. We recall that the combined (vertical-horizontal)

Lagrange-d�Alembert principle is given by (see §3.4, equations (3.63) or (3.64))

0 = h�S; � i+ h�S; ��i �
Z tf

t0

Z
B

Pv
�
F; _F

� @

@X
(��� F� ) dV dt 8 (� ; ��) (6.65)

and that the mixed version of this principle (section (5.5), equation (5.19) and (5.20)) is given by

0 = h�S; � i+ h�S; ��i+ h�S; ��i+

+

Z tf

t0

Z
B

�
�Pv (F; DV) @�'

@X
+Rv (��� F� � �')

�
dV dt 8 (� ; ��) (6.66)
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We noticed also that in the latter there are four unknown �elds, namely (�; ;�;Rv) and four

independent variations (��; � ; ��; �'). Furthermore, we notice that in the �rst principle the viscous

stress Pv is weighted with the gradient of

��� F� 

while in the second, with the gradient of

�'

As in the case of conservative Lagrangian systems (no viscosity) where the use of independent

interpolations for velocities V and deformations ' was required to avoid unstable solutions, we

will see in this section that for non-conservative systems (viscous behavior) we might simplify the

formulation and reduce notably the computational e¤ort by making use of independent interpolations

not only for ' and V but also for the viscous body forces Rv and for the variations �'.

To understand this fact (the need for an independent interpolation for Rv and independent

weighting function �') consider �rst that we use the combined horizontal-vertical Lagrange-d�Alembert

principle (6.66) with independent interpolations of velocities V and deformations ' but without in-

dependent interpolations for Rv, i.e., with Rv = DIV (Pv) strongly enforced. In this case the mixed

Lagrange-d�Alembert principle takes the form

0 = h�S; � i+ h�S; ��i �
Z tf

t0

Z
B

Pv (F; DV)
@

@X
(��� F� ) dV dt 8 (� ; ��) (6.67)

0 = h�S; �Vi 8�V (6.68)

where the �rst two terms correspond to the combination of horizontal and vertical variations of the

mixed action (equations (5.6) and (5.7)) and the viscous stress Pv is evaluated on DV (material

velocity gradient) instead of _F. We would like now to insert the �nite element (mixed) interpolation

((6.1), (6.2)) into the previous. To this end we notice that this principle contains a term of the

form @F
@X and that if standard �nite element shape functions are used, F will be discontinuous across

element boundaries. This implies the presence of delta function contributions to the derivative@Fh@X

of the discretized deformation gradient Fh will result in delta function contributions. Inserting

the (mixed) interpolation (6.1), (6.2) in the mixed Lagrange-d�Alembert principle (6.67, 6.68) we
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therefore �nd

0 = h�Sh; �Xhi+ h�Sh; �xhi �
Z tf

t0

Z
B

Pvh
@

@X
(Na (�xa � Fh�Xa)) dV dt =

= h�Sh; �Xhi+ h�Sh; �xhi �
Z tf

t0

 X
e

Z

e
Pv�e

@

@X
(Ne

a (�x
e
a � Fe�Xe

a)) dV

!
dt

�
Z tf

t0

0@X
f

Z
�f

Pv�fNf
a �X

f
adS

1A dt (6.69)

0 = h�Sh; �Vhi (6.70)

where Pv�e is the discretized viscous stress within the element

P v�eiJ = P viJ

�
@Ne

a

@XI
xeai;

@Ne
a

@XI
V eai

�

Na and Ne
a are, respectively, the global and elemental shape functions, N

f
a is the shape function

evaluated on each element face �f , and P
v�f
b are viscous material forces, distributed on every

element face �f , conjugate to the (delta-function) singularities occurring as derivatives of the jump

discontinuities on Fh across element boundaries.

Consider as an illustrative example of the jump terms, a one-dimensional domain [0; L] discretized

into two linear �nite elements [0; X1] and [X1; L]. In this case both P vh and Fh will be piecewise

constant and exhibit jump discontinuities at the element boundary X1, the derivative @Fh
@X resulting

thus in a delta function singularity. Integrating we �nd

Z L

0

P vh
@Fh
@X

(Na�Xa) =
(P v)

+
+ (P v)

�

2

�
F+ � F�

�
�X1 = F v�f1 �X1

where (P v)+, F+ and (P v)�, F� are, respectively, the viscous stress and deformation gradient in

the �rst and second element and F v�f is the sought viscous material forces distributed over the

interelement boundary. Therefore the total con�gurational (horizontal) viscous force is in this case

F v1 �X1 =

Z L

0

P vh
@

@X
(�FhNa�Xa) =

=
�
F v�e1 + F v�f1

�
�X1 =

= �
Z L

0

P vhFh

�
@Na
@X

�Xa

�
�
Z L

0

P vh
@Fh
@X

(Na�Xa) =

=

�
�
�
P v�F� � P v+F+

�
� P v+ + P v�

2

�
F+ � F�

��
�X1

Using relations (6.29), (6.30), and (6.31), and following the same methodology that led to the

semidiscrete Euler-Lagrange equations (6.36), (6.37), and (6.38), the (semi)discretized version of
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this mixed Lagrange-d�Alembert principle with no independent interpolation for Rv (the principle

de�ned by equations (6.67) and (6.68)) might be rewritten as

d

dt

�
mT
hVh

�
= eh + fh + f

v
h

d

dt

�
MT

hVh

�
= Eh + Fh + F

v
h

mh _xh +Mh
_Xh = mhVh

where

fvh =
X
e

fv�e (6.71)

Fvh =
X
e

Fv�e +
X
f

Fv�f (6.72)

are the global assembled viscous mechanical (vertical) and con�gurational (horizontal) nodal forces

with elemental forces given by

fv�eai =

Z

e
P v�eiJ

@Ne
a

@XJ
dV (6.73)

F v�eaI =

Z

e
P v�eiJ

@

@XJ
(�F eiINe

a) dV =

=

Z

e
P v�eiJ

�
�F eiI

@Ne
a

@XJ
�Na

@F eiI
@XJ

�
dV (6.74)

F v�faI =

Z
�f
P v�fI NadS (6.75)

We thus arrive at a system of equations similar to those obtained for conservative systems but with

additional forces fvh and F
v
h in both the vertical and horizontal equations. Furthermore there are

two contributions to the total con�gurational nodal viscous force Fvh = Fv�eh + Fv�fh , a bulk or

elemental term Fv�eh and a boundary or face term Fv�fh , the latter arising as viscous con�gurational

force conjugate to the delta function singularity terms.

The computation of the boundary term Fv�fh is cumbersome for two-dimensional and three-

dimensional problems and for general grids because to pursue this computation we are required,

as de�nitions (6.72) and (6.75) suggest, to walk and integrate over every element face in the �nite

element mesh, and this is an expensive and non-standard computation in traditional �nite element

implementations. As an alternative to avoid this di¢ cult calculation we propose to make use of

the mixed Lagrange-d�Alembert principle written in the form of (5.19) and (5.20) with independent

interpolations for the total bulk viscous force Rv and independent variations �' to enforce the

identity

Rv = DIV (Pv)
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Assume therefore the same (independent) interpolations for deformations ' and velocities V used

before (equations (6.1) and (6.2)) and, in addition, the following independent interpolation for

viscous forces Rv and variations �':

Rv
h (X; t) =

NX
a

Na (X; t)R
v
a (t) =

EX
e

nX
a

Ne
a (X; t)R

e
a (t)

�'h (X; t) =

NX
a

Na (X; t) �'a =

EX
e

nX
a

Ne
a (X; t) �'

e
a (t)

where Na (respectively Ne
a) are nodal (respectively elemental) shape functions chosen to be coin-

cident with the shape functions used for to interpolate deformations ' and velocities V. Inserting

the four independent interpolations into the mixed Lagrange-d�Alembert principle (6.66) we �nd

0 = h�Sh; �Xhi+ h�Sh; �xhi+

+

Z tf

t0

Z
B

�Pvh
@

@X
(Na�'a) + (R

v
bNb) (Na (�xa � Fh�Xa � �'a)) dV dt

= h�Sh; �Xhi+ h�Sh; �xhi+

+

Z tf

t0

 X
e

Z

e
�Pv�e @

@X
(Ne

a (�'
e
a)) +

�
Rv�e
b Ne

b

�
(Ne

a (�x
e
a � Fe�Xe

a � �'ea)) dV
!
dt

0 = h�Sh; �Vhi

When comparing the previous with (6.69) and (6.70) we can see that we now �nd a derivative of a

continuous variation

�'h =
X
a

Na�'a

while before we were required to di¤erentiate a discontinuous variation

�'h =
X
a

Na (�xa � Fh�Xa)

In this way we avoid the computation of the (delta function�related) viscous forces Fv�fh that arose

as a consequence of the discontinuity of Fh. De�ning as before the nodal (spatial) viscous force fv

as

fva =

Z
B

Pvh
@Na
@X

dV

=
X
e

Z

e
Pv�e

@Ne
a

@X
dV
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and the extended mass matrix (Mh;mh) as

(Mh;mh)ab =

Z
B

RNaNb (�Fh; i) dV =

=
X
e

Z

e
RNe

bN
e
a (�Fe; i) dV

we can rewrite the discretized mixed Lagrange d�Alembert principle as

0 = h�Sh; �Xhi+ h�Sh; �xhi

�
Z tf

t0

0@�'Ta � fva + (Rv
b )
T

0@(Mba;mba) �

0@ �Xa

�xa

1A� (mh)ba � �'a

1A1A dt

0 = h�Sh; �Vhi

Using relations (6.29), (6.30), and (6.31), and taking into account that the variations �' are inde-

pendent, the following Euler-Lagrange equations are obtained:

0 =
d

dt

8<:
0@ MT

h

mT
h

1AVh

9=;�
0@ Eh

eh

1A�
0@ Fh

fh

1A+
0@ MT

h

mT
h

1ARv
h

0 = fvh +mhR
v
h

0 = (Mh;mh)

0@ _Xh

_xh

1A�mhVh

Eliminating now the vector Rv the previous can �nally be written as

d

dt

8<:
0@ MT

h

mT
h

1AVh

9=; =

0@ Eh

eh

1A+
0@ Fh

fh

1A+
0@ Fvh

fvh

1A
(Mh;mh)

0@ _Xh

_xh

1A = mhVh

with 0@ Fvh

fvh

1A =

0@ MT
h

mT
h

1Am�T
h fvh (6.76)

Recalling the de�nition for the global normal Nh and conormal N�h (equations (6.49) and (6.50))

Nh =

0@ MT
h

mT
h

1Am�T
h

N�h = m�1
h (Mh;mh)
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the (combined horizontal-vertical) Euler-Lagrange equations might be rewritten as

d

dt
fNhmhVhg = Eh + Fh + Fvh

N�h _qh = Vh

where qh is the combined (horizontal/vertical) generalized coordinate

qh =

0@ Xh

xh

1A
Eh, Fh, and Fvh are, respectively, the combined con�gurational/mechanical (horizontal/vertical)

dynamic, static, and viscous forces

Eh =

0@ Eh

eh

1A
Fh =

0@ Fh

fh

1A
Fvh =

0@ Fvh

fvh

1A = Nhfvh

Using continuous variations we therefore obtain the following global con�gurational (horizontal)

viscous force:

Fvh =M
T
hm

�T
h fvh (6.77)

as opposed to (6.72), (6.74), and (6.75). The semidiscrete Euler-Lagrange equations become modi�ed

by a factor of the form

Nhfvh

in complete analogy to the continuous case (equation (3.62)) where the continuous horizontal-vertical

Euler-lagrange equations result modi�ed by the factor

NDIV (Pv)

6.1.11 Viscous regularization

We have observed in §6.1.5 that, unlike the continuous case, horizontal and vertical variations are

not equivalent in the (semi)discrete setting and therefore horizontal and vertical semidiscrete Euler-

Lagrange equations are independent as a result. In some situations, however, the system of equations

becomes only weakly independent and consequently ill-posed, and a special approach is required to
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obtain an accurate and stable solution. An example of such a situation is a body undergoing uniform

(constant) deformations for every time. In this case the graph of the deformation mapping at every

given time is �at both in the continuous and discrete settings and, therefore, horizontal and vertical

variations do become equivalent. A possible approach to overcome this di¢ culty is to in�uence the

horizontal equations of motion with viscous regularizing forces. The semidiscrete system of equations

thus becomes

d

dt

�
mT
hVh

�
= eh + fh + f

v
h

d

dt

�
MT

hVh

�
= Eh + Fh + F

v
h + F

v�reg
h

mh _xh +Mh
_Xh = mhVh

where Fv�regh is the viscous regularization force. We shall assume that this force is composed of two

parts, one that penalizes the total horizontal nodal velocity _Xh and another that accounts for the

relative horizontal velocity between nodes, namely,

Fv�regh = Fv�reg�toth + Fv�reg�relh (6.78)

where

Fv�reg�toth = �1 _Xh

Fv�reg�relh =
X
e

Fv�reg�rel�e

with

Fv�reg�rel�eaI =

Z

e
2�2

�
@

@XJ

�
_ 
e

I � �1
�� @Ne

a

@XJ
dV

=

Z

e
2�2

_ I;�
�
 �1�;J � 

�1� @Ne
a

@XJ
dV

The relative viscous force is modelled in analogy to the Newtonian viscous force ((3.12), (3.13)) and

will be a function of the material gradient ofW = _ h � �1h , the horizontal velocity �eld.

The modi�ed system of equations may be established �nally from the following semidiscrete-

mixed Lagrange-d�Alembert principle:

h�Sh; �Xhi+ h�Sh; �xhi �
Z tf

t0

(�xh; �Xh)

0@ Fvh + F
v�reg
h

fvh

1A dt = 0 8 (�Xh; �xh)(6.79)

h�Sh; �Vhi = 0 8�Vh (6.80)
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with combined horizontal-vertical semidiscrete Euler-Lagrange equations

d

dt

8<:
0@ MT

h

mT
h

1AVh

9=; =

0@ Eh

eh

1A+
0@ Fh

fh

1A+
0@ Fvh

fvh

1A+
0@ Fv�regh

0

1A (6.81)

(Mh;mh)

0@ _Xh

_xh

1A = mhVh (6.82)

or alternatively

d

dt
fNhmhVhg = Eh + Fh + Fvh + F

v�reg
h

N�h

0@ _Xh

_xh

1A = Vh

with Nh, N�h, Eh, Fh and Fvh de�ned as before and with

Fv�regh =

0@ Fv�regh

0

1A
6.2 Time discretization

In the remainder of this section we turn to the problem of discretizing in time the semidiscrete

system of di¤erential equations (6.53) and (6.54) and their extension to include viscous e¤ects ((6.81),

(6.82)). These equations might be discretized using a direct time-stepping algorithm based on �nite

di¤erence approximations of the rates in the unknown variables (Xh;xh;Vh). However widely used

direct methods such as those of the Newmark family were not designed for con�guration-dependent

(and therefore time-dependent) inertia and although they might be generalized to this case, the

extension is not unique and relies on ad-hoc considerations. To avoid this di¢ culty the semidiscrete

equations may be alternatively discretized in time by recourse to a mixed variational integrator (see

Chapter 2, §2.1.4 and §2.1.8) for a review of standard and mixed variational integrators). The use

of a semidiscrete �nite element interpolation resulted in the formulation of a semidiscrete (mixed)

action functional Sh and a semidiscrete (mixed) Lagrangian Lmixh . As it was outlined in chapter 2 for

the particular case of one-dimensional elasticity (see §2.2.14 and §2.2.15), we will now discretize this

semidiscrete action and Lagrangian in time to obtain a discrete action sum Sd and discrete-mixed

Lagrangian Lmixd . We next obtain the discrete Euler-Lagrange equations by invoking the stationarity

of the discrete action sum with respect to the discrete nodal trajectories. These equations become

a discrete version of the semidiscrete Euler-Lagrange equation and de�ne the sought time-stepping

algorithm.
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6.2.1 Discrete mixed Lagrangian and Discrete mixed Hamilton�s princi-

ple

We recall from §6.1.3 that the semidiscrete-mixed action and semidiscrete-mixed Lagrangian are

given by

Sh (Xh;xh;Vh) =

Z tf

t0

Lmixh

�
Xh (t) ;xh (t) ; _Xh (t) ; _xh (t) ;Vh (t)

�
dt

and

Lmixh

�
Xh;xh; _Xh; _xh;Vh

�
=

1

2
VT
hmhVh � Ih (Xh;xh) +

+VT
h

0@(Mh;mh)

0@ _Xh

_xh

1A�mhVh

1A
=

1

2
VT
hmhVh � Ih (Xh;xh) +

+VT
hmh

0@N�h
0@ _Xh

_xh

1A�Vh

1A
with semidiscrete Euler-Lagrange equations

d

dt

�
MT

hVh

�
= Eh

�
Xh;xh; _Xh; _xh;Vh

�
+ Fh (Xh;xh)

d

dt

�
mT
hVh

�
= eh

�
Xh;xh; _Xh; _xh;Vh

�
+ fh (Xh;xh)

mh _xh +Mh
_Xh = mhVh

where the mass matrices Mh (Xh;xh) and mh (Xh) are given by (6.17), (6.18), (6.20) and (6.21);

Ih is the total potential energy de�ned in (6.19) and (6.22); the forces (Fh; fh) and (Eh; eh) are the

static and dynamic internal forces given in compact notation by0@ Fh

fh

1A = �

0@ @
@Xh

@
@xh

1A Ih

0@ Eh

eh

1A =

0@ @
@Xh

@
@xh

1A0@1
2
VT
hmhVh +V

T
h

0@(Mh;mh)

0@ _Xh

_xh

1A�mhVh

1A1A
(see equations (6.32), (6.33), (6.34), (6.35), (6.41), (6.42), (6.39), (6.40)) and N�h is the global

(co)normal de�ned as

N�h =m
�1
h (Mh;mh)

(see equation (6.50)).

In order to obtain a fully discrete system of equations, the time variable needs to be discretized.
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To this end we begin by collecting all dynamical variables into the generalized coordinate array

qh = (Xh;xh)

whereupon the semidiscrete-mixed action and Lagrangian adopt the simpli�ed form

Sh (qh;Vh) =

Z tf

t0

Lmixh (qh (t) ; _qh (t) ;Vh (t)) dt

Lmixh (qh; _qh;Vh) =
1

2
VT
hmh (qh)Vh � Ih (qh) +VT

hmh (qh) (N�h (qh) _qh �Vh)

and the Euler-Lagrange equations reduce to

d

dt

�
D2L

mix
h (qh; _qh;Vh)

�
= D1L

mix
h (qh; _qh;Vh)

0 = D3L
mix
h (qh; _qh;Vh)

where we are using the classical notation DiL to denote the partial derivative with respect to

variables in the ith slot of the dependent variable list of L. We thus arrive at a dynamical system

of the class studied in Chapter 2, (see §2.1).

We next partition the time interval [t0; tf ] into discrete times
�
t0 = t0; � � � ; tk; � � � ; tK = tf

�
where

K is the number of time subintervals and where we are using a supraindex to denote time step.

As suggested by the analysis performed in the second chapter, we proceed by interpolating the

trajectories qh (t) and velocities Vh (t), respectively, with piecewise linear functions of time and

piecewise constant functions, namely,

qh (t) = qkh

�
tk+1 � t
tk+1 � tk

�
+ qk+1h

�
t� tk

tk+1 � tk

�
8t 2

�
tk; tk+1

�
Vh (t) = Vk+�

h 8t 2
�
tk; tk+1

�
where Vk+�

h is constant in the interval
�
tk; tk+1

�
. We recall from our discussion in chapter 2 (section

(2.1.10)) that an arbitrary choice of interpolation spaces might lead to the presence of arbitrary global

modes in time and that to avoid these modes a careful selection of interpolation spaces is required.

This results in the discrete-mixed action sum

Sd

�
� � � ;qkh; � � � ;V

k+�
h ; � � � ; tk; � � �

�
=

KX
k=0

Lmixd

�
qkh;q

k+1
h ;Vk+�

h ; tk; tk+1
�

(6.83)



209

where

Lmixd

�
qkh;q

k+1
h ;Vk+�

h ; tk; tk+1
�
=

tk+1Z
tk

Lmixh

�
qkh

�
tk+1�t
tk+1�tk

�
+ qk+1h

�
t�tk

tk+1�tk

�
;
qk+1h �qkh
tk+1�tk ;V

k+�
h

�
dt

(6.84)

is the discrete-mixed Lagrangian. Di¤erent alternative variational integrators follow now from the

selection of an appropriate quadrature rule to approximate the previous integral. We will use in par-

ticular a selective quadrature rule that combines midpoint integration (one single quadrature point

at tk+�) for the kinetic energy term and Lagrange multiplier term, combined with a trapezoidal rule

(two quadrature points sampled at tk+� = (1� �) tk + (�) tk+1 and tk+1�� = (�) tk + (1� �) tk+1)

for the potential energy term Ih (see §2.1.11), equations (2.20), (2.21), (2.22)). The discrete mixed

Lagrangian thus obtained is

Lmixd

�
qkh;q

k+1
h ;Vk+�

h ; tk; tk+1
�

=
�
tk+1 � tk

��1
2
V
(k+�)T
h mk+�

h Vk+�
h � 1

2

�
Ik+�h + Ik+1��h

��
+

+
�
tk+1 � tk

� 
V
(k+�)T
h mk+�

h

 
N�(k+�)h

qk+1h � qkh
tk+1 � tk �Vk+�

h

!!

where

Ik+�h = Ih
�
qk+�h

�
Ik+1��h = Ih

�
qk+1��h

�
mk+�
h = mh

�
qk+�h

�
N�(k+�)h = N�h

�
qk+�h

�
= m�1

h (Mh;mh)
��
qk+�h

with

qk+�h = (1� �)qkh + (�)qk+1h

Vk+�
h = (1� �)Vk

h + (�)V
k+1
h

qk+�h = (1� �)qkh + (�)qk+1h

qk+1��h = (�)qkh + (1� a)qk+1h

and �; � 2 [0; 1] are integration parameters. In terms of the individual dynamic variables (Xh;xh)
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the discrete-mixed Lagrangian reads

Lmixd

�
Xk
h;x

k
h;X

k+1
h ;xk+1h ;Vk+�

h ; tk; tk+1
�
=

=
�
tk+1 � tk

��1
2
V
(k+�)T
h mk+�

h Vn+�
h � 1

2

�
Ik+�h + Ik+1��h

��
+

+
�
tk+1 � tk

�
V
(k+�)T
h

0@�Mk+�
h ;mk+�

h

�0@ Xk+1
h �Xk

h

tk+1�tk
xk+1h �xkh
tk+1�tk

1A�mk+�
h Vk+�

h

1A (6.85)

The discrete action sum expands in this case to the form

Sd

�
� � � ;Xk

h; � � � ;xkh; � � � ;V
k+�
h ; � � � ; tk; � � �

�
=

KX
k=0

Lmixd

�
Xk
h;x

k
h;X

k+1
h ;xk+1h ;Vk+�

h ; tk; tk+1
�
(6.86)

Discrete trajectories are next obtained by invoking the stationarity of the discrete-mixed action

sum Sd with respect to variations of all of its argument. The resulting variational principle will be

referred to as the "mixed" discrete Hamilton�s principle:

@Sd
@Xk

h

= 0

@Sd
@xkh

= 0

@Sd

@Vk+�
h

= 0

It bears emphasis that only one single velocity sample V k+� per time interval [tk; tk+1] is taken.

6.2.2 Discrete Euler-Lagrange equations

We next turn to the derivation of the discrete Euler-Lagrange equations. Di¤erentiating the discrete-

mixed action sum Sd (6.83) with discrete-mixed Lagrangian (6.84), the following discrete-mixed

Euler-Lagrange equations are obtained (see equations (2.21), (2.22))

D1L
mix
d

�
qkh;q

k+1
h ;Vk+�

h ; tk; tk+1
�
+D2L

mix
d

�
qk�1h ;qkh;V

k�1+�
h ; tk�1; tk

�
= 0

D3L
mix
d

�
qkh;q

k+1
h ;Vk+�

h ; tk; tk+1
�

= 0
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that evaluate to0@ M
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m
(k+�)T
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where
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h
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�
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fh
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fh
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and with Eh; eh;Fh; fh de�ned in (6.34), (6.35), (6.32), (6.33), (6.39), (6.40), (6.41), and (6.42).

For implementation purposes it result more convenient to rewrite the discrete Euler-Lagrange

equations in the so-called "position-momentum" form. To this end we de�ne the discrete momentum

�kh at time k to be

�kh = D2L
mix
d

�
qk�1h ;qkh;V

k�1+�
h ; tk; tk+1

�
= �D1L

mix
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�
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h ; tk; tk+1
�

(6.87)

whereupon the discrete-mixed Euler-Lagrange equations take the form

�kh = �D1L
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0 = D3L
mix
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Using the given form of Lmixd the previous evaluates to
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where

�h =

0@ Ph

ph

1A (6.88)

is an array that collects horizontal and vertical discrete momentum Ph and ph. Given
�
qkh;�

k
h

�
the

�rst and third equations represent an implicitly system to solve for the unknowns
�
qk+1h ;Vk+�

h

�
.

Using this result we then obtain �k+1 by evaluating the second equation.

6.2.3 Comparison with Lagrangian system with constant inertia

It becomes useful at this point to compare the obtained discrete Euler-Lagrange equations with

those corresponding to a Lagrangian system with constant inertia. In this case the discrete-mixed

Lagrangian reduces to
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with corresponding discrete-mixed Euler-Lagrange equations given by
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Eliminating velocities from the second equation we obtain

Mh
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where

Mh = NhmT
hN�h

is the mass matrix. These equations correspond to the Euler-Lagrange equations of the standard

single-�eld discrete Lagrangian

Ld
�
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h ; tk; tk+1

�
=
�
tk+1 � tk
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As was shown in [20], for the particular case of a¢ ne forces, i.e., when the forces have the property

@Ik+�h

@qh
= (1� �) @I

k
h

@qh
+ (�)

@Ik+1h

@qh

this integrator is equivalent to the implicit Newmark integrator with 
 = 1
2 and � = � (1� �). The

proposed variational integrator is its generalization for con�guration-dependent inertia.

6.2.4 Discrete-mixed Lagrange-d�Alembert principle

In this subsection we extend the discrete-mixed Hamilton�s principle developed in the previous

section to systems with viscous e¤ects. This is accomplished by discretizing in time the semidiscrete

Lagrange-d�Alembert principle ((6.79), (6.80)). We recall that this variational principle can be

written as

h�Sh; �Xhi+ h�Sh; �xhi �
Z tf

t0

(�Xh; �xh)

0@ Fvh + F
v�reg
h

fvh

1A dt = 0 8 (�Xh; �xh)

h�Sh; �Vhi = 0 8�Vh

with mechanical (vertical) viscous forces fvh given in (6.71) and (6.73), con�gurational (horizontal)

forces computed from (6.77), and horizontal regularization forces de�ned in (6.78). We notice also
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that these viscous forces depend on the dynamical variables in the form

fvh = fvh (Xh;xh;Vh)

Fvh = Fvh (Xh;xh;Vh)

Fv�regh = Fv�regh

�
Xh; _Xh

�
The above principle may be compactly expressed as
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are arrays that collects respectively the viscous physical and regularization forces.

Following the ideas presented in [20] we may discretize in time the semidiscrete Lagrange-

d�Alembert principle in the form
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where Fv� and Fv+ are the left and right discrete viscous forces that should satisfy the identity
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and where only one velocity sample for the whole time interval [tk; tk+1] is used. For simplicity

this velocity is taken to coincide with that used for the kinetic energy term, namely Vn+�
h . The

corresponding discrete Euler-Lagrange equations follow as
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The left and right physical and regularization viscous forces may be chosen to be simply
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where 
 2 [0; 1] is a new integration parameter.

In terms of the individual dynamic variables (Xh;xh;Vh) the discrete-mixed Euler-Lagrange

equations evaluates to0@ M
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Using the discrete momentum de�nitions (6.87) and (6.88), the previous may be rewritten in the
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position-momentum form:0@ Pkh
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where we are using a di¤erent integration parameters � 2 [0; 1] in the viscous regularizing force.

Given
�
Xk
h;x

k
h;P

k
h;p

k
h

�
the �rst of the above equations (equation (6.89)) is a non-linear system to

solve for
�
Xk+1
h ;xk+1h

�
with Vk+�

h given by the third equation (equation (6.91)). Once the �rst

equation is solved, the second (equation (6.90)) yields the identity for the update of the momentum�
Pk+1h ;pk+1h

�
.



217

Chapter 7

Numerical tests

In this section we present a collection of tests and examples designed to assess the performance of

the method developed in the following. The �rst example is designed to measure the accuracy of the

method and concern the propagation of compressive waves along a shock tube for which the exact

analytical solution can be obtained in closed form. The solutions of both the one-dimensional and

three-dimensional wave propagation problems are presented as well as a three-dimensional example

where the wave propagates and expands along a tube with a non-uniform cross-section. The second

example relates to the natural oscillation of a one-dimensional bar and illustrates how the node

motion in the combined horizontal-vertical plane result constrained to oscillate within a manifold as

predicted by the theory. The third example involves a block of non-linear elastic material subjected

to the application of a moving point load, and the last example concerns the propagation of a crack

along a preexisting crack path.

7.1 Shock propagation example

The �rst test involves the propagation of a plane wave travelling down a highly compressive material

and has been used as a benchmark example to assess the convergence and accuracy of other mesh

adaption strategies (c.f. [55]).

7.1.1 Analytical solution

Assume a solid body undergoing planar deformations in the direction of theX1 axis. Then the motion

may be fully described by a deformation mapping of the form' (X1; X2; X3; t) = ('1 (X1; t) ; X2; X3).
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The corresponding deformation gradient will be

F =

0BBB@
'1;1 0 0

0 1 0

0 0 1

1CCCA
with rate of deformation

d = _FF
�1
=
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0 0
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0 0 0

1CCCA
We assume that there are no body forces and that the material is homogeneous. Therefore the total

energy density is dependent only on F, i.e.,

W =W (F) =W
�
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�
The action will be given by
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Z tf
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Z 1

�1

�
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2
_'21 �W

�
'1;1

��
dXdt

where we assume that the body extends unbounded in the X1 direction. The equations of balance

of mechanical and con�gurational force balance (3.14) and (3.58) reduce in this case to

R�'1 = P e11;1 + P
v
11;1 (7.1)

R
�
�'1;1

�
�'1 = C11;1 +

�
�'1;1

�
P v11;1 (7.2)

where P e11 and C11 are, respectively, the equilibrium part of the �rst Piolla-Kirchho¤ stress and the

dynamic Eshelby stress given by

P e11 =
@W

@'1;1

C11 =

�
W � R

2
_'21

�
� '1;1

@W

@'1;1

and P v11 is the viscous Newtonian stress given by (3.12) and (3.13), which in this one-dimensional

case simpli�es to

P v11 =
4

3
�
_'1;1
'1;1
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Inserting the previous into (7.1) and (7.2) leads to the governing equations
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For a certain simple class of constitutive relations W (F ), the solution of the previous can be carried

out analytically. A particular example is the constitutive equation

W (J) =
K

4

�
J2 � 1� 2 log (J)

�
where J = det (F). In this case the analytical solution is given by
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8�c

3K

J�J+
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and J+ and J� are given boundary conditions

J� = lim
X1!�1

'1;1 (X1; t)

The velocity �eld is given by
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The analytical solution for the displacement u1 = '1 �X1, velocity _'1, deformation gradient '1;1

and acceleration �elds �'1 is shown in �gure 7.1 for the following parameters

R 1

K 1

� 0:025

J� 1

J+ 0:1

The analytic computed value for the shock velocity is in this case
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(c) (d)
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Figure 7.1: Propagation of a planar isothermal compression shock. Time evolution of (a) displace-
ment, (b) velocity, (c) deformation gradient, and (d) acceleration �elds. Analytical solution.

c =
p
5:5 ' 2:3452

and the corresponding computed shock thickness is

l = 1:737 2� 10�2

The problem is solved both using a one-dimensional and a three-dimensional model. The domain
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of analysis is discretized using linear elements in one dimensions and four-noded linear tetrahedral

elements in three dimensions. The governing equations are discretized in time using the mixed

variational integrator described in §6.2.1 and §6.2.2, (see equations (6.89), (6.90) and (6.91)) with

integration parameters � = 1
2 , � =

1
2 , 
 =

1
2 , � = 0. The non-linear system of equations (6.89) for

the update of referencial and spatial nodal coordinates is solved using the Polak-Ribiere variant of

the non-linear conjugate-gradient method. A stable time step was estimated as

�t � hmin
c

where hmin is the measure of the element size and c is the shock velocity given by (7.4). The

parameters listed in table 1 are used in the calculations. The length of the domain of analysis is

L = 70l where l is the length of the shock, computed from (7.4).

Figure (7.2) shows the convergence curves. The accuracy of the solution is measured using

the L2 (B � [t0; tf ]) norm of the di¤erence between the analytic and �nite element solutions of

deformations and velocity �elds, namely,

k'�'hkL2(B�[t0;tf ]) =

Z tf

t0

Z
B

k'�'hk
2
dV dt

kV �VhkL2(B�[t0;tf ]) =

Z tf

t0

Z
B

kV �Vhk2 dV dt

These errors are plotted against the number of degrees of freedom in a log-log axes. Figure (7.3) and

(a) (b) (c)

Figure 7.2: Convergence plot for isothermal compressive shock example. (a) Displacement �eld. (b)
Velocity �eld. (c) Deformation gradient.

(7.4) show the time evolution of the deformation mapping and material velocity �elds along with

the node trajectory. Figure (7.5) displays the time evolution of nodes in the reference con�guration.
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Figure 7.3: Time evolution of displacements pro�le. Node trajectories and analytical solution are
also displayed. The shock advances from right to left in the �gure.

Figures (7.6), (7.7), and (7.8) show a sequence of snapshots of the adapted mesh during the

three-dimensional simulation both in the reference and deformed con�gurations. It can be observed

that the nodes cluster in the neighborhood of the shock front and follow the shock as it propagates

along the domain.

For the three dimensional model we used a mesh composed of 11520 elements and 3270 nodes.

Figure (7.9) shows the pro�le and contour plot of the axial velocity over a plane that contains the

cylinder axis and for three di¤erent times during the simulation.

As a complementary demonstrative example we modeled also the propagation of a plane wave

down a highly compressive cylinder that exhibits a sudden expansion in the cross-section. The

material and material parameters are identical to those used in the example of the previous section.

Figure (7.10) shows a sequence of snapshots of the evolution of the adapted mesh in the reference

con�guration at di¤erent times. The ability of the mesh to cluster in the neighborhood of the shock

as it travels down the tube and expands is remarkable.
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Figure 7.4: Time evolution of velocity pro�les. Node trajectories and analytical solution are also
displayed.

7.2 Wave propagation example

The second test involves the natural oscillation of an incompressible body that is released from rest

from a distorted con�guration. We �rst assume that the body is stretched in one direction, the X1

axes, and contracts symmetrically in the other two directions due to the incompressibility constraint.

The motion is thus assumed to be of the form

' (X1; X2; X3; t) = ('1 (X1; t) ; '2 (X1; X2; t) ; '3 (X1; X3; t))

whereupon the deformation gradient reduces to

F =

0BBB@
'1;1 0 0

'21 '2;2 0

'3;1 0 '3;3

1CCCA
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Figure 7.5: Time evolution of nodes in the reference con�guration. The shock propagates from top
to bottom in the �gure. As time progresses the nodes cluster in the neighborhood of the shock front.

Enforcing the incompressibility constraint J = det (F) = 1 and symmetry condition F22 = F33 we

�nd

'2;2 = '3;3 =
1

p
'1;1

We will assume that the body is free of body forces and made of a homogeneous (incompressible)

Neohookean material with no viscous behavior, characterized by a strain energy density of the form

W (F) =
K

2

�
tr
�
FTF

�
� 3
�

For the particular class of deformations here considered the strain energy density reduces to

W (F11) =
K

2

�
F 211 +

2

F11
� 3
�

The action functional per unit of area is given by

S ('1) =

Z tf

t0

Z L

0

�
R

2
_'21 �W

�
'1;1

��
dX1dt
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Figure 7.6: Propagation of a compression wave down a cylinder. Adapted 3D meshes at di¤erent
times. Reference con�guration.

where we assume that the reference con�guration of the body is B = [0; L]. The equations of balance

of mechanical force balance (3.14) and (7.2) in the direction of stretch reduce in this case to

R�'1 = P11;1

d

dt

�
R
�
�'1;1

�
_'1
�
= C11;1

where P11 and C11 are, respectively, the �rst Piolla-Kirchho¤ stress tensor and Eshelby stress tensor

given by

P11 =
@W

@F11
=

= K

�
F11 �

1

F 211

�
C11 =

��
W � R

2
_'21

�
� F11

@W

@F11

�
=

=
K

2

�
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4

F11
� 3
�
� R

2
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Figure 7.7: Propagation of a compression wave down a cylinder. Detail of the adapted 3D meshes
at di¤erent times. Reference con�guration.
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Figure 7.8: Propagation of a compression wave down a cylinder. Adapted 3D meshes at di¤erent
times. Deformed con�guration.

For small deformations F11 ' 1 the strain energy density might be approximated with the �rst term

of its Taylor series expansion

W (F11) '
3

2
K (F11 � 1)2

whereupon the Piolla-Kirchho¤ stress and Eshelby stress reduce to

P11 = 3K (F11 � 1)

C11 = �3
2
K (F11 � 1) (F11 + 1)�

R

2
_'21

The equation of balance of mechanical forces becomes in this case

R�'1 = 3K';11

which corresponds to the wave equation. The solution with zero boundary conditions and zero initial

velocities _'1 (X; 0) = 0 is

'1 (X; t) = Ak sin

�
2k�

X

L

�
cos

�
2k�

ct

L

�
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Figure 7.9: Pro�le and contour plot of axial velocity at di¤erent times of the simulation on a plane
that contains the axis of the cylinder.
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Figure 7.10: Propagation of a plane wave down a cylinder with a sudden expansion. Snapshots of
the instantanous mesh (in the reference con�guration) at di¤erent time steps.
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with

c2 =
R

3K

Figure (7.11) shows the evolution for displacements and adaptive mesh the bar is released from rest

( _' (X; 0) = 0) from an initial position that is the superposition of the two �rst modes of oscillation

' (X; 0) = A1 sin

�
2�
X

L

�
cos

�
2�
ct

L

�
+A2 sin

�
4�
X

L

�
cos

�
4�
ct

L

�

with

A1 = 1

A2 = 0:2

Figure 7.11: Displacement evolution and mesh evolution for the bar oscillation problem.

7.3 Neohookean block under a moving point load

The method has been applied to the case of a three-dimensional Neohookean block subjected to the

action of a moving point load. The block dimensions are 1� 1� 0:5 and zero normal displacement

boundary conditions are enforced on the base and on the face closest to the initial point of application
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of the load. Only half of the block is simulated due to the symmetry of the loads and geometry. The

material chosen is Neohookean extended to the compressible level, which is described by a strain

energy density given by

W (X;F) =
�0 (X)

2
log (det (F))

2 � �0 (X) log (det (F)) +
�0(X)

2
tr
�
FTF

�
where �0 and �0 are to the Lame constants. The material constants used are young modulus

E0 = 3E10
6, Poisson constant �0 = 0:3, which results in Lame constants

�0 =
E0�0

(1 + �0) (1� 2�0)
= 1:73E^6

�0 =
E0

2 (1 + �0)
= 1:15E^6

The mass density per unit of underformed volume is R = 100. The load moves at 1=10 of the

characteristic shear wave speed of the material. The mesh consists of 2160 tetrahedral linear �nite

elements and 637 nodes. To maintain the geometry during the computation the node motion within

the reference con�guration is restricted in the normal direction to each face. Figure (7.12) show

snapshots of the adapted mesh at di¤erent times of the simulation. Figure (7.13) shows the deformed

con�guration and adapted mesh along with a contour plot of the vertical displacement. As a result

of mesh adaption and due to the fact that dynamic forces are small compared to the static contact

forces, the nodes tend to concentrate in the neighborhood of the point of application of the load.

Due to the e¤ect of viscous regularizing forces and due to the fact that con�gurational forces are

small away from the loading area, no rearrangement of nodes takes place in the wake of the moving

load.

7.4 Crack propagation example

An application area where variational adaptivity might be particularly advantageous is dynamic

fracture mechanics. An alternative for the accurate tracking of dynamically growing cracks is the

use of cohesive elements and cohesive laws (see for example [52]). Cohesive elements are surface

elements that are inserted within bulk interelement faces and govern their separation and consequent

generation of new surfaces and crack growth according to a cohesive law. A immediate limitation of

this approach is that crack paths are restricted to the bulk element boundaries. The combination of

cohesive �nite elements with variational adaptivity would be an approach to overcome this limitation

and improve dynamic crack path predictability since both crack evolution and node rearrangement

would be driven by the same forces, i.e., dynamic con�gurational forces.

The potential use of this approach is investigated by modeling an externally driven mode I
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growing crack in a square slab of Neohookean material as depicted in �gure 7.14. Due to the

symmetry of the geometry and loading, only the upper half of the body is simulated. To avoid

changes in geometry, the motion of nodes in the reference con�guration is constrained to remain

within the faces. The material properties are Young modulus E = 1:0E6, Poisson ratio � = 0:3, and

mass density per unit of undeformed volume R = 2300: The mesh consists of 720 linear tetrahedral

�nite elements and 273 nodes. Vertical displacement-boundary conditions corresponding to the

linear elastic K1 �eld were applied with K1 = 1:E
5. The K �eld is given by

u1 (x1; x2) =
K1

2�0

r
r

2�
cos

�
�

2

�
(K1 � cos (�))

u2 (x1; x2) =
K1

2�0

s
(x1 � a)2 + x22

2�
sin

�
�

2

�
(K1 � cos (�))

where

r = (x1 � a)2 + x22

� = tan�1 (y; x� a)

The crack is advanced by assuming a constant crack tip velocity of _a = 1
10cs where cs is the

characteristic shear wave speed of the material. The node closest to the instantaneous theoretical

placement of the crack tip a (t) = a0 + _at is kept �xed and only released after the assumed crack

tip position a (t) reaches the subsequent node in the direction of crack advance. Figure (7.15) shows

the adapted mesh within the reference con�guration for di¤erent times of the simulation. Figure

(7.16) shows the adaptive mesh in the deformed con�guration along with contour plots of vertical

displacements. The ability of the method to cluster nodes in the neighborhood of the crack tip while

simultaneously following dynamic waves emanating from the advancing crack is noteworthy.
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Figure 7.12: Neohookean block subjected to a moving point load. Reference con�guration and
adapted mesh at di¤erent times of the simulation.
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Figure 7.13: Neohookean block subjected to a moving point load. Adapted mesh in the deformed
at di¤erent times of the simulation and countour plot of vertical displacements.
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Figure 7.14: Dynamic propagation of a crack along a slab of Neohookean material. (a) Reference
con�guration. (b) Deformed con�guration at time t.

Figure 7.15: Propagation of a crack along a slab of Neohookean material. Adapted mesh in the
reference con�guration at di¤erent time steps of the simulation.
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Figure 7.16: Crack propagation along a Neohookean body. The nodes cluster following the crack
tip. Countour plots indicate vertical displacements.
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Chapter 8

Conclusions and future directions

We have developed in this thesis a variational �nite element mesh adaption framework for solid

dynamic applications and its conceptual links with the theory of dynamic con�gurational forces.

A mixed, multi�eld version of Hamilton�s principle and a mixed extended version of Lagrange-

d�Alembert principle are proposed as underlying variational principles for the formulation. General-

izations of these principles to account for dissipative behavior are conceptualized and and extended

class of variational integrators for the integration in time of the resulting di¤erential equations is

formulated.

The basic ingredients of this framework are, in addition to the use of themixed form of Hamilton�s

and Lagrange d�Alembert principles, (i) the use of uncoupled space and time discretizations, (ii) the

use of independent space interpolations for velocities and deformations (iii) the application of these

interpolations over a continuously varying adaptive mesh, (iv) the application of mixed variational

integrators with independent time interpolations for velocities and nodal parameters. The result

is a robust adaptive �nite element formulation for dynamic applications that satis�es the balance

of mechanical forces (or balance of spatial momentum) and the balance of dynamic con�gurational

forces (or balance of material momentum), and, as a result of its variational nature, exhibits excelent

long term energy stability behavior.

A space-space con�gurational bundle perspective, complementary to the space-time-based bun-

dle framework developed in the context of multisimplectic continuum mechanics and variational

integrators, is proposed as a theoretical base for the formulation. After careful examination of

the variational adaption concept as it applies to time adaption for both �nite degree-of-freedom

dynamical systems and solid dynamics (space-time) problems it was concluded that attempting si-

multaneous space and time variational adaptivity was too costly. Variational space adaptivity was

then pursued, which led to abandoning the space-time framework and implementations based on

space-time �nite elements and to adopting a staggered approach with an initial semidiscretization
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in space followed by a discretization in time. Since time is kept continuous during the �rst stage of

the computation, and since time adaption is no longer pursued, it was found that the space-space

framework became more useful to analyze the underlying structure of the method.

It was then found that the use of Hamilton�s principle led to unstable and meaningless solu-

tions. After careful examination and testing it was concluded that these instabilities were caused by

inaccuracy of the velocity approximation whose interpolation was derived, or consistent, with the in-

terpolation for deformations. An independent interpolation for the velocity was then proposed and a

variational framework that allowed for the use of incompatible velocity interpolations was required.

This led to the development of the mixed multi�eld version of Hamilton�s and related principles

and stable solutions were obtained. To our knowledge, this is the �rst successful application of this

multi�eld principle whose theoretical conceptualization can be traced back to a century ago.

In attempting to use the variational mesh adaptivity framework in problems involving shocks a

generalization to account for viscosity was required. An extended version of the Lagrange-d�Alembert

principle was thus developed. This principle acts as a variational restatement both of the equations

of motion and the equations of con�gurational force balance in the presence of viscosity. It was

then observed that the application of this principle required the computation of interelement viscous

boundary sources, which proved to be prohibitive for three-dimensional tetrahedral meshes. A mixed

version of the extended Lagrange-d�Alembert principle was then developed as an approach to avoid

the computation of interelement boundary forces and successfully tested in a shock propagation

example. A �nite element implementation was developed and exercised in several one and three

dimensional problems and tests designed to assess convergence, robustness, and scope of the method.

A generalization of all these principles to account for thermal and inelastic processes was then

conceptualized. This extension is accomplished by making use of thermal displacements as opposed

to temperature as independent thermal variables. An additive decomposition for the heat �ux

into conservative or dissipationless and non-conservative or dissipative parts was proposed. This

decomposition parallels the well-established additive decomposition of mechanical stresses into elastic

(conservative) and viscous (nonconservative) factors and facilitates the full identi�cation of di¤erent

components in the mechanical and thermal balance equations. Then this parallelism was exploited

to establish a thermomechanical analog of the mixed Hamilton�s principle and extended, mixed

Lagrange-d�Alembert principles developed for isothermal elastic materials with viscosity.

Many possible directions might be taken in the future to further the scope of application of this

methodology. Immediate steps would be the extension of the methodology to h-adaptivity (work in

progress), a direction that has already been explored within the context of static applications in [49],

the application to fully coupled thermomechanical problems, the combination with cohesive elements

or the coupling with asynchronous variational integrators or discontinuous Galerkin approximations.

From the numerical analysis point of view more optimized solvers for the resulting non-linear and
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ill-posed system of equations and parallel implementations might be devised.
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