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ABSTRACT

Quantum light sources are becoming an increasingly popular alternative to pulsed
lasers for spectroscopy, microscopy, and sensing. The inherent quantum corre-
lations of entangled photons present unique advantages in spectroscopy, enabling
high signal-to-noise ratios, low excitation fluxes, and time-resolved measurements
without requiring a pulsed laser. Entangled photon sources for spectroscopic mea-
surements typically consist of bulk crystals or ion-diffused waveguides. Integrated
platforms such as thin-film lithium niobate have potential for highly efficient, tai-
lored, and compact entangled photon sources through periodically poled nanopho-
tonic waveguides. The advantageous nonlinear optical properties of lithium niobate
coupled with the nanophotonic thin film platform allows for frequency conversion,
quantum state generation, state manipulation, and sample interaction all on a single
compact chip, demonstrating thin-film lithium niobate’s potential for compact and

portable integrated spectrometers.

Here, we present our work in frequency conversion and sample interactions in
thin-film lithium niobate. Most of the previous demonstrations of nanophotonic
lithium niobate waveguides have focused on infrared wavelengths for applications
in quantum communication and computing, leaving the shorter wavelengths that
are of interest for spectroscopy still a largely unexplored space. In this work,
frequency conversion in thin-film lithium niobate is investigated from ultraviolet
through telecom wavelengths. Periodically poled lithium niobate nanophotonic
waveguides are fabricated for second harmonic generation in the ultraviolet-A region
and entangled photon generation at visible and near-infrared wavelengths. Using
a violet continuous wave laser, a waveguide with a fluorescent dye-doped polymer
cladding layer is investigated for sample interactions. Finally, preliminary work in
entangled photon triplet generation down to telecom wavelengths is explored. This
work represents a step towards compact, on-chip spectrometers and sensors through

lithium niobate photonic integrated circuits.
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Chapter 1

INTRODUCTION

Spectroscopy and microscopy are powerful tools to investigate the properties of
atoms, molecules, and materials. Nonlinear spectroscopy and multiphoton mi-
croscopy in particular are capable of high spatial resolution, deep tissue imaging,
ultrafast dynamics, and excitation of transitions that are inaccessible in linear analogs
[1-4]. However, these techniques are often limited to academic laboratory settings
due to the large size, cost, and maintenance of the high power ultrafast pulsed lasers

required for measurements.

Entangled photons (Figure 1.1) have been an important resource in quantum op-
tical applications for decades and are a promising alternative to pulsed lasers in
spectroscopy, microscopy, and sensing. Entanglement can be generated through
spontaneous parametric downconversion (SPDC) in various degrees of freedom, in-
cluding energy-time, polarization, and path entanglement [6]. In the SPDC process,
a pump photon can spontaneously split into two lower energy entangled photons
as the pump propagates through a nonlinear optical crystal. The inherent quantum

correlations between the entangled photon pair are of great interest for applications

Figure 1.1: Photograph of entangled photons generated from a bulk nonlinear
crystal. Three false-color images are superposed. Due to nature of the energy and
momentum matching, each frequency is emitted in an emission cone. Reproduced
from Ref. [5] with permission from Springer Nature.
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such as quantum cryptography [7], communication [8], and computation [9]. In
spectroscopy and microscopy, these correlations have been demonstrated to enable
high signal-to-noise ratios [10-13], decreased diffraction limits [14], low excita-
tion fluxes for sensitive biological samples [15], linearization of nonlinear optical
processes [16], and time-resolved measurements without a pulsed laser [17]. In par-
ticular, the linearization and time-resolved measurements using entangled photons
are of interest for both new and established techniques in single-molecule sensing

and biological imaging.

The single photon-like behavior of the photon pairs, imparted by the entangled
photon generation process, enables the linearization of classically nonlinear pro-
cesses such as harmonic generation [19], sum frequency generation [20], and two
photon absorption [21]. In particular, the linear behavior of entangled two photon
absorption (ETPA) [22-24] has potential applications in sensing and spectroscopy
in the low-flux regime, where the linear response of entangled photons enhances the
two photon absorption rate compared to the quadratic scaling of classical light (Fig-
ure 1.2) [16, 25]. Despite the theoretical enhancements using entangled photons,
ETPA has been difficult to experimentally observe due to difficulties in eliminat-
ing single photon processes that can dominate the light-matter interaction, such as
residual pump excitation, scattering [26], or hot band absorption [27]. Even when
linear processes are eliminated, the low efficiencies of existing SPDC sources, which

are typically around one entangled photon pair generated for every million pump

3000
Varying SPDC pump power
"a * Varying down-converted power
2 2000
e
)
(=
3
O 1000
O
LL
(V2]
0
0 100 200 300

IR power [nW]

Figure 1.2: Demonstration of the linearization of classically nonlinear processes us-
ing entangled photons. Sum frequency generation (SFG) classically scales quadrat-
ically with the pump power (blue), but scales linearly when pumped with entangled
photons (orange). Used with permission from Ref. [18]; permission conveyed
through Copyright Clearance Center, Inc.
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photons, coupled with the the low ETPA cross sections limit the current applications
of ETPA even in the low flux regime [28-30].

The inherent quantum correlations of the photon pairs similarly enable time-resolved
measurements using a continuous wave laser to generate entangled photons. Through
energy-time entanglement, the photon pairs are deterministically correlated in time
[31] and can thus act as a pulse with ultrafast correlation times ranging from tens to
hundreds of femtoseconds [32, 33]. Utilizing these correlations for time-resolved
fluorescence measurements (Figure 1.3), which are of interest for medical imag-
ing [34, 35] and wearable devices [36, 37], entangled photons have the potential
to replicate pulsed measurements at lower fluxes with greater wavelength tunabil-
ity for sample multiplexing and without requiring external phase modulation [17].
However, the size and footprint of current SPDC sources as well as the associated
collection optics limit miniaturization, adding complexity and cost for applications

in portable spectrometers.

a 1.0 T b .
) - = IRF ) m — Raw data
= —Sample ol Fit
5 08 ple|. c 0.1
5 Fit 2
s / g .
2 06 4 3 AN
7 [ 2 e
5 I \ 2 N
£ 04 \’, k‘& § ‘PV'\ My
S i,
B . Y & Ml |
N f ( 2 V"W iy
T 0.2 j R 0.01 Wy 4
£ / L W
S :
P4 L L
¥ 1 10 100

Integration time (min)

Time delay (ns)

Figure 1.3: Fluorescence lifetime measurements for indocyanine green in dimethyl-
sulfoxide using entangled photons. a) The base instrument response function (IRF,
blue), measured indocyanine green sample response histogram (pink), and fitted
histogram (orange). b) Standard deviation of the fluorescence lifetime fit with re-
spect to integration time, demonstrating N~'/? scaling of the noise, where N is the
number of detection events. Reprinted with permission from Ref. [17]. Copyright
2023 American Chemical Society.

Previous work in spectroscopy and sensing-focused applications of entangled pho-
tons such as ETPA and time-resolved fluorescence have utilized bulk crystal or
large-area waveguide entangled photon sources (Figure 1.4a-b) that operate at visi-
ble and near-infrared wavelengths. These sources consist of bulk nonlinear optical
crystals such as S-barium borate (BBO), periodically poled potassium titanyl phos-
phate (PPKTP), and periodically poled lithium niobate (PPLN), or ion-diffused

waveguides fabricated through proton exchange or titanium diffusion. However,



lon-diffused c) Nanophotonic
Bulk crystal waveguide waveguide

|

Mode area: ~1 mm? 10-100 pm? <1um?

Figure 1.4: Illustration of the different types of SPDC sources in periodically poled
lithium niobate. a) Bulk crystals, b) ion-diffused waveguides, and ¢) nanophotonic
or TFLN waveguides.

the large mode area of bulk crystal sources limits the entangled photon generation
efficiency, and the low index contrast of ion-diffused waveguides restricts the device

bend radius, limiting dense photonic integration for compact devices.

Integrated optical platforms such as thin-film lithium niobate (TFLN) have seen
rapid growth over the past few decades. Lithium niobate (LiNbOs3, LN) is a nonlin-
ear optical crystal that can be described as the "silicon of photonics" due to its many
advantageous material properties, including high electro-optic, piezoelectric, and
nonlinear optical coefficients, wide transparency range, stability, and commercial
availability [38]. Further leveraging these advantageous properties, the sub-m?
modal confinement of nanophotonic waveguides fabricated on the thin film plat-
form (Figure 1.4c) enables highly efficient frequency conversion and quantum state
generation as well as the small bend radii desired for dense photonic integration.
Waveguide fabrication on TFLN through typical nanofabrication techniques also
increases the degrees of freedom available for device design, enabling dispersion
engineering through the waveguide geometry and allowing for modular integration
of photonic components. Thus, photonic integrated circuits on TFLN have the
potential to produce tailored, compact, and portable spectrometers with efficient
frequency conversion, quantum state generation, state manipulation, and sample

interaction all on a single compact chip.

Much of the previous work in TFLN waveguides has focused on infrared wave-
lengths for applications in quantum communication and computing, leaving the
shorter wavelengths that are of interest for spectroscopy still a largely unexplored
space. This thesis presents progress in lithium niobate nanophotonic waveguides

in the ultraviolet through telecom wavelengths. Chapter 2 provides relevant back-
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ground and theory of nonlinear optics and crystals. The derivation of the second
harmonic generation (SHG) and SPDC efficiencies used in Chapters 3, 4, and 6
is reviewed. Chapter 3 presents a periodically poled TFLN waveguide fabricated
for ultraviolet second harmonic generation. This device demonstrates SHG down
to 355 nm, the shortest wavelength demonstrated in TFLN to date. Chapter 4
demonstrates spontaneous parametric downconversion from visible to near-infrared
wavelengths in a periodically poled TFLN waveguide from a near-ultraviolet pump.
The brightness and efficiency of this nanophotonic entangled photon source is or-
ders of magnitude higher than that of the highest performing bulk crystal or diffused
waveguide sources at these wavelengths, and the entangled photons from this source
are the shortest wavelength photon pairs generated in TFLN by nearly an octave.
Chapter 5 explores a fluorescent dye-doped polymer film cladded on a rib waveg-
uide as a model system for evanescent wave sensing. The fundamental waveguide
modes are compared in terms of scattering and fluorescence losses as criteria for a
lithium niobate-based sensor. Chapter 6 expands upon the entangled photon pair
generation in Chapter 4 to present preliminary work in entangled photon triplet gen-
eration through cascaded spontaneous parametric downconversion (CSPDC) from
a near-ultraviolet pump to photon triplets at near-infrared and telecom wavelengths.
This device is the first demonstration of CSPDC in TFLN waveguides to date, and
the expected entangled photon triplet efficiency is orders of magnitude higher than
previous demonstrations of CSPDC. Finally, Chapter 7 summarizes the results of
this thesis and identifies several future research directions to improve device per-
formance and incorporate downstream photonic elements towards a fully realized

on-chip spectrometer.
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Chapter 2

NONLINEAR OPTICAL PROCESSES

This chapter covers the fundamentals of nonlinear optics and the relevant equations
for the frequency conversion processes described in Chapters 3, 4, and 6. The
coupled wave equations for second order nonlinear processes are revisited to derive
the efficiencies for sum frequency generation and second harmonic generation. The
theory of spontaneous parametric downconversion in waveguides is described. The
different types of phase matching in nonlinear crystals, including perfect, birefrin-
gent, and quasi-phase matching, are discussed. Finally, the properties of nonlinear
crystals, particularly lithium niobate, are reviewed. Appendix A serves as a supple-
ment to review the wave equations and other pertinent equations for electromagnetic

propagation.

2.1 Nonlinear optics
Nonlinear optics is the study of the nonlinear change in optical properties in response
to a strong electromagnetic field, such as a laser. To understand the source of

nonlinear optics, we can first revisit the fundamental equations of electromagnetism.

The constitutive relation between the electric displacement D and the electric field

E is used to define the polarization density P and the permittivity € of a material

[1]:
D=c¢cE

=S()E+P

2.1)

where g¢ is the vacuum permittivity. A review of Maxwell’s equations and the
derivation of the wave equations for electromagnetic fields a can be found in Ap-

pendix A.1.

In linear materials, the induced polarization is directly proportional to the electric
field:
P= £0X(1)E (2.2)

where y! is a constant known as the linear susceptibility. However, this linear
relation between P and E does not hold for many real systems. To account for

nonlinear effects, the polarization can be separated into its linear and nonlinear



components, which can be represented with a Taylor expansion [2, 3]:

P= PL + PNL
=PV 4+ PP 4P 4 (2.3)
= 80X(1)E1 + 80/\/(2)E1E2 + 80X(3)E1E2E3 + ...

where the linear polarization Py is defined analogously to Equation 2.2 for linear
crystals:
P, =PV = gy VE, (2.4)

while the nonlinear polarization Py is defined as:

Py, =PP + PO 4+ 2.5)
= SOX(z)EIEZ + 80X(3)E1E2E3 + ... .

Second order nonlinear processes, such as the frequency conversion processes de-
scribed in this thesis, involve the mixing of three waves and utilize the P term of
the nonlinear polarization. The d tensor for the second order nonlinear coeflicient is

often used to denote the nonlinear susceptibility in place of y(?, with the relation:

1
dijk = EXijk (2.6)

where i, j, k = x,y,z. The second order polarization can then be generally repre-

sented with a summation:

PO = Pi= > 2e0dicEjEx. 2.7)

i=x,y,Z i,j,k=x,y,2

2.2 Coupled wave equations

Using the expression for the nonlinear polarization, the efficiencies of commonly
used second order nonlinear processes such as sum frequency and second harmonic
generation can be derived. Consider an electric field at two frequencies w1 and w;

with the form: |

2
where c.c. stands for the complex conjugate and E| and E; are the magnitudes of

E = —(Eje ™ 4+ Eye @ 1 c.c.) (2.8)

the electric fields at frequencies w; and wy. Using this form for E in the general

form of the second order polarization P(?) in Equation 2.5 and expanding out the
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terms, the following expression can be obtained:

P? — SOX(Z)Ez

2
1 . .
= gox? (E(Ele_””‘t + Eye™ @2 4 C.C.))

2
_ 80)2( ) (E%e—Ziwlt + E%g—Ziwy‘ + 2E1Eze—i(w|+w2)t + 2E1E>2ke—i(w1—w2)t
L2UE P +2Eaf? + c.c.).
(2.9)
The polarization can also be expressed using the notation:
1 .
P=2 Zn:(Pwne iont 4 cc)). (2.10)

Using the equality between Equations 2.9 and 2.10, we can see that each of the
terms in Equation 2.9 corresponds to a particular physical process. Considering
sum frequency generation (SFG), which involves the generation of an electric field
at frequency w3 = w1 + wy, the amplitude of the second order polarization can be
assigned as:

Py, = sox P E 1 Ea
=2¢eodegE 1 E>.

2.11)

Note that d;;x from Equation 2.7 has been replaced with deg to generalize for the

polarizations of the fields. Now consider plane waves with z propagation of the

form: .
E = E(Aiei(kfz'“’it) +c.0) (2.12)
where k; = ™ is the propagation constant and the amplitude A; is a constant.

By setting E; = A,e'*i?, this representation of the electric field is consistent with
Equation 2.8. Using the amplitudes A; in Equation 2.11 and changing the subscripts
so that P, = P3:

Pw3 = P3 = 280deffA1€lk1ZA2€lk2Z

= 20defrA1 Age’ F1HR3, (2.13)

Using this expression, we can now revisit the nonlinear wave equation (Equa-
tion A.29). The derivations for the linear and nonlinear wave equations can be
found in Appendix A.

°E;  9°Pyy

V2E; —
3 ’usaﬂ K ot?

=0 (2.14)
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For the field E; = %(Agei(k3z_“’3’) + c.c.) and nonlinear polarization Py, = P3 =
%(Pge_"‘”“ + c.c.), the wave equation becomes:

(92

He o2

9% /1 .
,Uﬁ(E(280deﬂfA1Azel((k1+k2)z_w3t) + c.c.)). (2.15)

Cancelling out the 1@‘”’” factor from all terms and noting that the Laplacian V2

1 .
VZ(E(A3el(k3Z_‘”3t) + c.c.)) - ( (Asze!k32@3) 4 ¢ o, ))

can be reduced to =~ ~ for plane waves simplifies this expression to:

2
d A3 eik3Z

O72

dA; .
+ 2ik36—3e’k3z +cc = —280uA AL ce (2.16)
Z Z

Note that the complex conjugate terms can be dropped, and this expression will still

maintain equality. The momentum or wavevector mismatch Ak can also be defined

as
Ak =k3 — ki — ko (2.17)
to get the expression:
9’A 0A3 :
2 4 2iky = = —2sOuA1A2w§e—lAkZ. (2.18)
972 0z

3

term can be neglected:

2
68 ZAf k3aa_? (2.19)
Isolating the derivative term and using k3 = produces the coupled wave equation
for SFG:
043 _ (HEOCAens )y pmit (2.20)

0z ns3
where the spatial derivative of the sum frequency field % is coupled with the fields

Ay and A;. Integratlng 94 — from O to L, an expression for A3z can be obtained:

L 9As
Az = —d
3/MZZ

:/ iwAlAze—iAkz (2.21)
0

n3
d —IAKL _ 1
_ _H&oc eﬁw3A1A2€ .
nj3 Ak

We can now consider the intensity, which is given by the time-averaged Poynting

vector:

1
I = EnisoclAilz (2.22)
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so the intensity of the field at w3 is:

1
I3 = ~n3g0c|As]?

2
; 2
1 ueocdews e IAKL _ ]
== - AlA
2”3806 s 12— (2.23)
fregc dZpw] ,2(1 — cos(AkL))
= D0 T 4124 :
2n3 Ak
Using the cosine double angle identity and the definition sinc(x) = gm(x) , the
following expression can be obtained:
3.342 W22
8 d AkL
L=t o3t |A1 2| Az|?sinc? [ —==| . (2.24)
2713 2
Finally, |A;|?> and |A2|2 can also be replaced with their respective intensities:
; gitdiwil? 21, 2L o (AL
= si —
3 2n3 n1EQC N2ENC 2 (2.25)

In terms of optical powers P; instead of intensities, a similar expression can be

obtained for the generated power at w3 [4 5]

2d%, w? AkL
P3 = eff 3 Plesincz —_— (226)
n1nan3e0c3 Acr 2
where A.f is the effective mode interaction area. So we find that:
= L — 2.27

P p,  T0OSFG sinc ( > (2.27)

where the normalized conversion efficiency ng for SFG is defined as:

2d> w?
10,SFG = e (2.28)
nnan3e0C Aeft

Second harmonic generation

Although the equations presented so far were specified for SFG, a similar and
related second order process is second harmonic generation (SHG). In SHG, a field
at frequency w3 = 2w is generated, where w3 is known as the second harmonic
signal of the first harmonic w;. In this way, SHG can be thought of as a special case
of SFG when w; = w; and n; = ny. The normalized SHG conversion efficiency is

therefore given by:
2d% w3

3
=—— 2.29
10,SHG n%n3goc3 A (2.29)
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2.3 Spontaneous parametric downconversion

SFG and SHG are commonly used second order processes for classical frequency
conversion. Spontaneous parametric downconversion (SPDC) is a related process
that has been used for decades to produce quantum entanglement. SPDC can be
thought of as the time-reversed process of SHG or SFG. In SFG and SHG, two
lower energy photons interact to produce a higher energy photon at the sum of their
frequencies (Figure 2.1a-b); however, in SPDC, a higher energy photon interacts with
the vacuum state to downconvert into an entangled pair of photons (Figure 2.1c-d).
No interaction or frequency downconversion would be predicted to occur classically
without the presence of another field, so SPDC cannot be described with a fully

classical treatment.

a) b) _ c) d)
w, w wsignal wsignal
w W,= W, + W, w,= 2w Wi oump
2 w widler: wsignal widler
SFG SHG SPDC SPDC
(degenerate) (non-degenerate)

Figure 2.1: Photon energy picture of a) SFG, b) SHG, c) degenerate SPDC, and
d) non-degenerate SPDC.

To derive the SPDC efficiency in waveguides following Ref. [6], a semiclassical
approach can be used by quantizing the signal and idler fields but utilizing a classical

pump beam. The quantized electric field is given by [7]:

E,(r,1) =i (Z By (0) (py =it 4 c.c) (2.30)
k

where ¢®) are Fourier coefficients, and u®)(r) are the mode vector functions cor-

responding to frequencies w'¥), and the summation is over the number of modes k.

The modes satisfy the following conditions:

(k)y2

(V2 + %) u® =0 2.31)

V-u® =0 (2.32)

/ ) u*) = 540 (2.33)
\%4
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In waveguides, the solutions u (r) can be assumed to be separable. With propagation

along the z direction, they can be represented as:
1 .
(k)( ) = _U(k)( iBrz
u\(r X,y)e (2.34)
VL

where L is the length of the quantization volume along the propagation axis,
B is the propagation constant, and the mode profile U¥) is normalized so that

fA |U® (x, y)|>dxdy = 1 over the cross-sectional quantization area A.

The electric field operator for the signal and idler photons 1) s.i can be defined as:

A ~ i
By = 5 (Bos(r.0) + B (r1)

()
(z’ Z By (p)e ™05 tdﬁ,kt.) + h.c)
%

= =

(2.35)

2ha)(k.) k) (k)
L
ns,igo h )

where the constant ¢ (%) is chosen to maintain the commutation rules for the creation
and annihilation operators d' and 4, and h.c. represents the Hermitian conjugate.

The pump field E;, can be defined classically:

1
E, =3 (Ep(r,1) +c.c.)
1{ [2p, (2.36)

npEnC

2

Upe'Prizonh) 4 c.c.)

where the mode profile U, is normalized so that fA U, (x, y)|?dxdy = 1, and the
pump power P, is obtained from integrating the time-averaged Poynting vector over

1
the area, or P, = /A Inpeoc|Ey|*dxdy.

The interaction Hamiltonian can be represented as [8]:

A d A A
H,:_gozeff / (E,,ESTE; +h.c.) (2.37)
C

where C = LA is the crystal volume. Using the expressions from Equations 2.35
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and 2.36 in the expression for the Hamiltonian produces the expression:

[:II:_SOdeIT / 2P U el(’B”Z wpt)
2 c\ \npeoc
2hng) (J) ¥ —l(ﬁ(J) wmt) A(J')T
2 () e (o)
Ln? 5€0

®
= %L(UW) e 16 =0 (@}”)T +h.c.). (2.38)
T Ln &0

Simplifying and collecting terms:

. hdep [ 2
g, = et (/Z 0@ w®u, Wy ®)
L \n,n2 n £0C

(BB =B 2= (wp -0 -0)0) (dﬁf’)) (&lg/o)T +h.C.)- (2.39)

Now Fermi’s golden rule can be used to calculate the transition rate between the
initial state |7) and the final state | f):

2 N
W === (A p (2:40)

where p is the density of states. For SPDC, the initial state |i) is the vacuum state,
or no photons in either the signal or idler modes (|i) = [vac) = |00)). The final state
is the state with one photon in each of the signal and idler modes. We can denote the

signal and idler modes as modes / and m and represent the final state with creation

o B ROWRN
and annihilation operators as | f) = |11) = (d; a |00).

So now we can find an expression for ( f|H;|i):

. hd,
(Al = ooja"a" 5 || [ Dol 0,0 Wy
npn2 n £oc

o (BB Bz (wp -0 -0 (&ﬁ”) (a}")) +he

100y, (2.41)
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This expression can be simplified by using the / and m modes to reduce the summa-

tion over j and k, where [/ € j and m € k:

Nidefe ), (m) Dy oy 7(K)ys
CFIAL = *fnpnﬂzgoc(/'“““ U,y Py

ol (BB B~ (@p-0 ~0 ("”)z))@omgl)d;m) (@gn)* (alﬁ"”)T 100). (2.42)

For simplicity, the mode superscripts can be dropped so that the signal variables are
represented as wy = wgl), Bs = (l) , Ug = Uil), as = dgl), and so on for the idler.
Imposing the condition for energy conservation (w, = ws+w;) and utilizing a similar
expression for the momentum mismatch as in Equation 2.17 (A8 = B, — Bs — Bi)

produces the following expression:

hdeff 2Ppa)sw,

npn n £oC

(fIH)i) = /U U U e™™P(00a,a;a%a; 100). (2.43)

Recalling the commutation relation for the creation and annihilation operators
[a;, AT] = 0;j, we can simplify (00|a,d; aJf T|00) (00]00) = 1. Finally, we
can integrate over the crystal volume C = LA and take the magnitude to get the final

expression for |(f|ﬂ1|i)|2:

A hid, 2P, w.w
(1A iy 2 = | 2t pS’//UUUMw

L\ n,ng n2ggc

hd 2P, w w;
= |22ef p : /U U U; dxdy/ Py
L

L npn n £0C

2
L npn%n?S()CAeff

202d% P, w,w;
_ et PWsWi L (AﬁL)

2

(2.44)

eMBL _ 2

iAB

- 2,2
NpNsn: 0 Aeft 2

where the interaction area A.g can be defined as A.g = \/ /A U,UsU fdxdy. For
Fermi’s golden rule (Equation 2.40), an expression for the density of states p = dN
can also be found, where N is the number of states and E is the energy. In one

dimensional state space:

L
dN = —dk (2.45)
2
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For photons, the energy is given by E = fiw, so k = “* = % Therefore dk = ;-dE,
and plugging dk into the expression for dN:

dN = ﬂ%dE. (2.46)
So considering the change in the number of states for both the signal and the idler
modes: Ln L
dN = dNdN; = (g%dEs) (E%d&) (2.47)
and from energy conservation, we know dE = dE; = dE; = hdwy:
dN = (i)z M B dw,. (2.48)
2n) hic? ’

Therefore, the density of states is:

dw (2.49)

p he2

_dN (L 2nsn,-
~dE  \2n

The expressions for |( fIH 1|i>|2 (Equation 2.44) and p (Equation 2.49) can now be

plugged into Fermi’s golden rule (Equation 2.40) to obtain the transition rate:

2 N
W= == [l p

2n (202dAPpww; o (ABL\\ (( L\ nen;
== —— 5 ———sinc 5 ' ﬁdws (2.50)

2
NpNgNn;E0C Aett

2 2
d_;PpwswiL Ginc? (AgL

) dwy.

neoc3npngn; Aetr

Finally, the downconverted signal power dPs = hiw W in the frequency interval dwy
is given by:
_ hdZPpwiwL? ABL

dP, = sinc? | — | dws. 2.51
$ neoc3nyngn; Aegr ( 2 ) S 2.51)

To obtain theoretical SPDC spectra, Equation 2.51 can be numerically integrated

over all frequencies:

hd*.P,w’w;L? ABL
P, = / eﬁ;” ’ sincz( A )a’ws. (2.52)
TENC NpNsN; Acft 2
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2.4 Quasi-phase matching

From the treatment of SFG and SHG in Section 2.2 and SPDC in Section 2.3, it
follows that if the momentum mismatch AS or Ak = 0, then sinc? (A—IEL) =1 and the
SFG, SHG, or SPDC intensity will increase quadratically with the crystal length L
(Figure 2.2). The condition that Ak = 0 is known as perfect phase matching.
In practice, it is difficult or impossible to achieve perfect phase matching due to
chromatic dispersion, so most nonlinear processes will have a nonzero Ak. If Ak
is nonzero, then the nonlinear signal will eventually be generated out of phase and

destructively interfere, resulting in very low efficiencies and generation powers.

In birefringent crystals, the restriction of perfect phase matching can be avoided by
tailoring the polarization of the input and output fields, which is known as birefrin-
gent phase matching (BPM). In BPM, the difference in refractive index as well as the
wavelength dependence of the extraordinary and ordinary polarizations are utilized
to achieve phase matching. Although the conditions to achieve birefringent phase
matching are not as stringent as perfect phase matching, BPM still requires careful
control over the refractive indices at each wavelength of interest, and the generated
signal is often controlled through angle tuning or temperature tuning of the crystal.
Since BPM depends on the inherent material birefringence and dispersion, BPM can
be restrictive in terms of which wavelengths can be phase matched. Furthermore,
the use of different polarizations in BPM means that phase matching of all three

fields with the same polarization cannot be achieved.

An alternative approach to achieve phase matching is to periodically modulate the
properties of the nonlinear crystal to create an additional phase factor. This approach
to phase matching is known as quasi-phase matching (QPM) [9]. One way to achieve
QPM is through periodic poling, in which the sign of the nonlinear susceptibility
is periodically modulated in a ferroelectric crystal through inversion of the crystal
structure. To quantify the effects of QPM, the spatially-varying nonlinear coefficient

d(z) can be described as a Fourier series:
d(2) = dei Y cpe™(F): (2.53)

where c¢,, are the Fourier coeflicients, m is the order of the interaction, and A is the
period of the modulation. Replacing d.g with d(z) starting from Equation 2.11, we

can obtain an expression equivalent to Equation 2.26:

2((Ak—2’me)L)

2(Cmdeﬁ‘)20)§l42
3 =

P;P,sinc (2.54)

2

n1nan3enc’ Aese
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where only one term in the summation over m is assumed to significantly contribute
to bringing the quantity (Ak — Z”Tm) close to zero. The momentum mismatch for
QPM can also be redefined:

2

Akopy = k3 — ki — ka — % (2.55)
and an equivalent expression for ABgpym in waveguides can be defined. For periodic
poling, which is equivalent to a square wave modulation from deg to —deg With a
periodicity A and modulation duty cycle D, the Fourier coefficients c,, can also be
solved. The effective nonlinear coefficient is then modified as:
2sin(mnD)

mr

dopm = def (2.56)

We can see that the largest nonlinear coefficient would be for first-order quasi-phase
matching (m = 1), which would correspond to dopm = %deff. Therefore, compared
to perfect or birefringent phase matching, the nonlinear coefficient for first order
QPM is reduced by a factor of %, and the efficiency and generated power is similarly
reduced by a factor of % (Figure 2.2). For higher order quasi-phase matching, there

is an additional penalty to the effective nonlinearity by a factor of %

(a) with perfect phase-matching ~_
(b) with quasi-phase-matching

(c) with a wavevector
mismatch

field amplitude

el

0 2 4 6 8
z/ Lcoh

Figure 2.2: Comparison of the field amplitude of second order nonlinear processes
with a) perfect phase matching, b) quasi-phase matching, and c¢) no phase matching
with propagation along the z axis, where the coherence length L, is defined as half
of the poling period A. Note that since the axis is amplitude as opposed to power
or intensity, the perfect phase matching builds up the field linearly as opposed to
quadratically. Reprinted from Ref. [2] with permission from Elsevier.
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Despite this reduction in the effective nonlinear coefficient, QPM enables more
versatile phase matching compared to perfect or birefringent phase matching, par-
ticularly in terms of the wavelength and polarization. Because QPM utilizes the
poling period A, which is imparted by the fabrication process (Appendix B), the
additional momentum factor can be controlled independently of the bulk material
properties. The phase matched wavelengths can then be precisely tailored for a
particular process of interest by changing the period A appropriately. Furthermore,
because QPM is not restricted by the polarization of the modes as with BPM, QPM
enables phase matching of the three fields with the same polarization. This type of
phase matching allows the diagonal elements of the nonlinear coefficient tensor to
be utilized, described further in Section 2.5, which often corresponds to the largest
nonlinearity and therefore highest nonlinear conversion efficiency in crystals such

as lithium niobate.

2.5 Nonlinear crystals

In order for second order processes to occur, the second order nonlinear coefficients
d;j; must be nonzero. The elements in d;;; can only be nonzero if the symmetry
of the propagation medium lacks an inversion center, so the medium must be a

noncentrosymmetric crystal.

To demonstrate why the lack of inversion symmetry is a requirement for second
order nonlinear processes, we can consider the second order polarization P® from
Equation 2.7. If the sign of the electric field is inverted, then we will obtain an

identical expression for the polarization:

P2 — Z 2e0d;jk (—E;)(—Ey)
i,j,k=x,y,2

Z 2e0d;jiE;Er/
i,j,k=x,y,z

(2.57)

Now we can consider a centrosymmetric crystal. From Neumann’s principle, the
physical properties of a crystal must be invariant to the symmetry elements of the
point group of the crystal structure[3]. By definition, centrosymmetric crystals have
an inversion center. After an inversion element is applied to the centrosymmetric
crystal, the signs of P(z), E;, and E; must all change sign based on the original

coordinate system. Therefore:

PP = N 2eodijn(—Ej)(-Ex). (2.58)

i,7,k=x,y,2
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However, given the expression from Equation 2.57, the only way that Equation 2.58
can be true is if d;j; = 0. Therefore, the second order nonlinear coefficients are
all zero for centrosymmetric crystals [1]. It follows that noncentrosymmetry is a
requirement for second order optical processes. Lack of an inversion center is also
a requirement for a variety of other material properties and effects, including the

electro-optic effect, piezoelectricity, pyroelectricity, and ferroelectricity.

In Equation 2.7, the d;;; coeflicients are a rank 3 tensor with 27 distinct elements.
However, the subscripts j and k were introduced for notation, so swapping j and
k should produce the same physical result. Assuming that d,;; is symmetric upon
exchange of the j and k indices and that the nonlinear susceptibility does not have
significant dispersion, the following contracted notation for the nonlinear coefficient

can be introduced:
diy dip diz dis dis die
dii = |dy1 dy dyz dos dys do (2.59)
d31 d3x d3z dis dis die

where the jk subscripts have been mapped to a new subscript /:

Jjk: 11 22 33 23,32 13,31 12,21

XX Yy 22 YZ,ZYy XZ,ZX XY, yX (2.60)
[- 1 2 3 4 5 6

In terms of second harmonic generation, the polarization, contracted nonlinear
coeflicients, and electric field contributions from Equation 2.7 can then be written

in matrix form as:

]
(W) (W)
EVE
pi diy dip diz dia dis dis E}(;w)E)()w)
P)()Zw) =2g0|dy1 dy dyz dys dys dye zg(w)g(w) (2.61)
2w) y z
P dy1 dyp dizz dy dis d
. sty dis dss dis dse] | P EW
2EYE

In this way, the original 27 distinct elements of the rank 3 tensor can be reduced
to 18 elements. The number of elements can be further reduced depending on the

symmetry of the nonlinear crystal.

Commonly used nonlinear crystals for applications in the visible and near-infrared
wavelengths include S-barium borate (BBO, BaB,04), potassium titanyl phosphate
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(KTP, KTiOPOQy,), potassium dihydrogen phosphate (KDP, KH,PO,), lithium trib-
orate (LBO, LiB30Os), tantalum pentoxide (Ta;Os), lithium niobate (LN, LiNbO3),
and lithium tantalate (LT, LiTaO3). The devices in the following chapters are all

fabricated from lithium niobate.

Lithium Niobate

Lithium niobate (LN, LiNbO3) is a nonlinear crystal with a wide range of advan-
tageous properties. It is a negative uniaxial crystal with a trigonal crystal structure
(Figure 2.3). Lithium niobate belongs to the 3m point group, which reduces the

number of elements in the nonlinear coefficient matrix (Equation 2.59) to:

0 0 0 0 d31 —-dxn
dijzm = |—dp dn 0 d33 O 0 (2.62)
d3i dy dyz 0 0 0

where dyy = 2.1 pm/V, d3; = —4.35 pm/V, and d33 = —-27.2 pm/V for the con-
gruently melting composition of lithium niobate ([Li]/[Nb] = 0.946, Figure 2.4)
measured at 1060 nm [11-13].

Positive
dipole end

Figure 2.3: Crystal structure of lithium niobate with the polarization direction
indicated along the +c axis. Black circles represent the lithium ions, gray circles
represent the niobium ions, and white circles represent the oxygen ions. Horizontal
lines on the right diagram indicate the oxygen layers. Reproduced from Ref. [10]
with permission from SNCSC.
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Figure 2.4: Phase diagram of undoped lithium niobate. The congruent composition
of lithium niobate (solid, vertical) and associated melting (solid, horizontal) and
Curie (dashed, horizontal) temperatures are indicated with gray lines. Reprinted
from Ref. [14] with the permission of AIP Publishing.

In addition to its high optical nonlinearity, lithium niobate is also a ferroelectric
crystal. Ferroelectric materials have a spontaneous electric polarization that can
be reversed upon application of a strong electric field, known as the coercive field.
Congruent undoped lithium niobate has a coercive field of approximately 20 kV/mm
[15]. The ferroelectric properties of lithium niobate enable quasi-phase matching
through periodic poling, discussed in Section 2.4. In ferroelectric crystals, the Curie
temperature is the temperature at which the crystal loses its electric polarization,
analogous to the Curie temperature in ferromagnetic materials. The Curie temper-
ature of congruent LN is approximately 1130°C [14], which is close to its melting
point of 1240°C as shown in Figure 2.4. The high Curie temperature ensures that

periodically poled lithium niobate can be utilized at elevated temperatures.

Lithium niobate can also be doped with magnesium oxide (MgO) to reduce optical
damage [16], particularly at shorter ultraviolet and visible wavelengths generated in
Chapters 3 and 4. MgO doping also reduces the coercive field for ferroelectric poling
to approximately 4 kV/mm [15, 17]. The nonlinear coefficients of 5% MgO-doped
congruent lithium niobate have been measured as |d31| = 4.9 pm/V and |d33| = 28.4
pm/V at 852 nm [18].

For nonlinear optical processes, the transparency range and refractive indices of
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Figure 2.5: Extraordinary (black) and ordinary (gray) refractive indices of bulk 5%
MgO-doped lithium niobate at room temperature (solid) and 150°C (dashed) using
the Sellmeier equations from Ref. [19].

nonlinear crystals are integral for frequency generation. Lithium niobate has a
wide transparency range from the ultraviolet at 326 nm [20] out to the mid-IR
around 5 nm [21]. The refractive indices for 5% MgO-doped bulk crystal lithium
niobate are plotted in Figure 2.5. LN’s refractive indices of ~2.3 for the ordinary
index and ~2.1 for the extraordinary index are considerably higher than the indices
of air (n = 1) or materials such as SiO, (n = 1.44). This high refractive index
of LN relative to these materials provides index contrast and therefore enables
waveguiding through total internal reflection. Waveguides increase the efficiency
of nonlinear processes through tight modal confinement to increase the effective
nonlinear interaction area and also enable dense integration through small bend radii.
From bulk LN single crystals, which are typically grown through the Czochralski
technique, large-area waveguides can be fabricated through micromachining or
ion diffusion. Although these large-area waveguides do enhance the nonlinear
conversion efficiency, their cross sections are typically on the order of 10 pm?,
resulting in multimode propagation. Furthermore, with ion diffusion, the index
contrast is typically low (An ~ 0.1), producing only weak modal confinement in
the waveguide region and prohibiting the tight bend radii needed for dense photonic

integration [22].

An alternative approach to fabricating waveguides was implemented through the

integration of ion-cut or "smart cut" technology, which previously enabled the
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silicon-on-insulator (SOI) platform. Through these ion slicing techniques, sub-
pm thin films of lithium niobate can be bonded to a low-index insulator layer,
typically SiO,, with a bulk crystal substrate for stability and ease of handling [23].
This thin film platform is known as thin-film lithium niobate (TFLN) or lithium-
niobate-on-insulator (LNOI) as a parallel to SOI. Through dry etching techniques,
tightly confining waveguides with sub-pm? cross sections can be fabricated [24].
With such small effective areas and high index contrast, these tightly confining or
nanophotonic waveguides on TFLN are capable of enhanced nonlinear efficiencies
and dense integration, thus realizing the full potential of LN for photonic integrated
circuits (PICs).
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Chapter 3

ULTRAVIOLET SECOND HARMONIC GENERATION

On-chip ultraviolet (UV) sources are of great interest for building compact and
scalable atomic clocks, quantum computers, and spectrometers. However, few ma-
terial platforms are suitable for integrated UV light generation and manipulation.
Of these materials, thin-film lithium niobate offers unique advantages such as sub-
micron modal confinement, strong nonlinearity, and quasi-phase matching. Despite
these characteristics, its utilization in the UV has remained elusive because of the
substantial sensitivity of standard quasi-phase matching to fabrication imperfec-
tions, the photorefractive effect, and relatively large losses in this range. Here, we
present efficient (197 + 5 %/W/cm?) second harmonic generation of UV-A light in
a periodically poled lithium niobate nanophotonic waveguide. We achieve on-chip
UV powers of 30 pnW and linear wavelength tunability using temperature. These
results are enabled with large cross section waveguides, which leads to first-order
UV quasi-phase-matching with relatively long poling periods (>1.5 pm). By vary-
ing the poling period, we have achieved the shortest reported wavelength (355 nm)
generated through frequency doubling in thin-film lithium niobate to date. Our re-
sults open up new avenues for UV on-chip sources and chip-scale photonics through

compact frequency-doubling of common near-IR laser diodes.

Most of this chapter has been adapted with permission from:
E. Hwang, N. Harper, R. Sekine, L. Ledezma, A. Marandi, S. Cushing, Optics
Letters 2023, 48, 3917

3.1 Introduction

The field of integrated nonlinear optics has grown dramatically during the past
decade due to the development and commercial availability of thin-film lithium nio-
bate [1, 2]. In passive nonlinear devices, thin-film lithium niobate (TFLN) excels
in efficient frequency conversion and quantum state generation from the visible to
the infrared (IR) [3, 4]. The strong mode confinement of single-pass, low-loss [5]
nanophotonic waveguides and quasi-phase matched interactions utilizing lithium
niobate’s largest second-order nonlinear optical tensor element have resulted in
record-breaking efficiencies in applications such as second harmonic generation

(SHG) [6, 7], supercontinuum generation [8], difference frequency generation [9],
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parametric amplification [10], and parametric downconversion [11]. Similarly,
TFLN active devices such as modulators [12], electro-optic frequency combs [13],
and femtosecond pulse generators [14] show impressive performance in compact
form-factors due to lithium niobate’s large electro-optic tensor elements. How-
ever, there is still significant room for lithium niobate’s use in UV photonics [15],
with applications such as UV-visible spectroscopy, optogenetics, high-resolution
microscopy, security banknote features, laser cooling [16], atomic clocks [17], and

quantum computing [18].

Although lithium niobate has been extensively studied in the IR, and comparatively
less so in the visible, UV devices have remained rare to date. The few reported
lithium niobate devices for UV generation have been limited to metasurfaces [19],
nanoparticles [20], and large micromachined or channel waveguides [21, 22], and
therefore do not take advantage of the sub-micron mode confinement and efficiency
of lithium niobate in a nanophotonic platform. TFLN has yet to be well studied in
the UV due to significant quasi-phase matching sensitivity to fabrication errors, the
ultra-short poling periods required to overcome the high dispersion in waveguides at
short wavelengths, and material and scattering loss. Variations in the thin film thick-
ness of even 1 A are sufficient to disrupt phase matching in visible SHG, limiting
the effective interaction length and chip-to-chip repeatability [1, 23]. UV generation
should be possible up to lithium niobate’s band gap at ~330 nm (3.8 €V) [24], but an
exponentially decaying Urbach absorption tail persists towards the visible due to de-
fects in the crystal structure [25], and impurity ion (Cu*, Fe?*) resonances can cause
additional loss [26, 27]. Furthermore, losses at the waveguide sidewalls also in-
crease at shorter wavelengths due to surface imperfection Rayleigh scattering, which
scales as A% [28]. In spite of these difficulties, there is much to gain by extending the
spectral coverage of TFLN frequency conversion to the UV. Notably, near-IR laser
diodes, which can be frequency doubled, are considerably more accessible than UV
laser diodes and gas lasers [29]. Among other nanophotonic material platforms, only
aluminum nitride (AIN) has been significantly investigated for waveguided second
harmonic UV generation, despite AIN lacking ferroelectricity and therefore being
incapable of periodic poling. The lateral polar structures used to achieve quasi-
phase matching in AIN are highly scattering, resulting in much lower conversion
efficiencies (<1%) [30] compared to lithium niobate devices. Other potential UV
platforms (lithium tantalate [31], BBO [32], LBGO [33]) have yet to be thoroughly
explored in a thin fil<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>