Software, tools, and
methods development for

single-cell transcriptomics

Thesis by
Delaney Kalcey Sullivan

In Partial Fulfillment of the Requirements
for the degree of
Doctor of Philosophy

Caltech

CALIFORNIA INSTITUTE OF TECHNOLOGY

Pasadena, California

2025
(Defended May 1%, 2025)

© 2025

Delaney Kalcey Sullivan
ORCID: 0000-0002-8359-6705

i

il

ACKNOWLEDGEMENTS

I would like to first thank my mom, Yihua Lin, for her unwavering support of my career
and ambitions. Her love and encouragement have been the bedrock of my journey. I also
wish to acknowledge my father, Billy C. Sullivan, who passed away from cancer during
my childhood. His passing deeply shaped my path, inspiring me to pursue medicine and

sparking my curiosity about the mechanisms of disease.

I am profoundly grateful to Lior Pachter and Mitch Guttman, who advised me throughout
my Ph.D. training. Their mentorship has both challenged and inspired me. I would
additionally like to express my heartfelt gratitude to my other thesis committee members,

Barbara Wold (committee chair) and Harold Pimentel, for their insight and support.

Next, I would like to thank my “BE/Bi 103 a” course partners, Lynn Fang and Nina Le,
who were the first classmates I befriended at Caltech. Their camaraderie helped me feel at

home in this chapter of my academic journey.

A special thanks to Olivia Ettlin (olive!) for being my co-developer on the SWIFT-seq
method in the Guttman lab; collaborating with her has been both productive and a lot of
fun. I also want to thank our superstar mentor, Mario Blanco, whose expertise and
enthusiasm were instrumental in our success. A sincere thank you to other members of the
Guttman lab as well for their friendship, laughs, and constant source of support, including
Jimmy Guo, Ben Yeh, Amy Chow, Carl Urbinati, Asuka Sato (another SWIFT-seq
developer), Jolo Ferrer, Noah Epstein, Praneeth Goli, Drew Honson, Linlin Chen,
Allen Chen, Ryan Hong, Drew Perez, Isabel Goronzy, Paulomi Bhattacharya,
Prashant Bhat, Mackenzie Strehle, and Anthony Vasquez.

I am deeply grateful to Laura Luebbert, Kristjan Eldjarn Hjorleifsson, Bekah Loving, and
Mayuko Boffelli for our work together developing k-mer-based sequence analysis methods
in the Pachter lab. Bonding over the struggles of debugging code has been quite the
experience. I would also like to extend my appreciation to other members of the Pachter

lab for fostering a positive, fun, and collaborative environment during my time at Caltech,

v
including Lambda Moses, Maria Carilli, Vera Beilinson, Tara Chari, Taleen Dilanyan,
Meichen Fang, Cat Felce, Kayla Jackson, Anne Kil, Joe Rich, Nikki Swarna,
Sina Booeshaghi, Angel Galvez- Merchan, Conrad Oakes, Gennady Gorin, Charlene Kim,

and Joseph Min.

I am also grateful to Ali Mortazavi (and members of his lab), Diane Trout, and
Brian Williams for important feedback on my work. Additionally, I would like to thank to
Verona Yue for trying out and testing my code. Furthermore, I would like to thank

Pall Melsted and Guillaume Holley for their help and advice on data structures.

I thank my former mentors of the Felsher Lab where I had worked during my bachelor’s
and master’s degree years at Stanford University: Dean Felsher, Daniel Liefwalker, Renu
Dhanasekaran, Anja Deutzmann, Arvin Gouw, and Srivi Swaminathan. It is thanks to them
that I decided to pursue science further. I am also grateful to Jonathan Chen for his

mentorship during my time at Stanford.

I would like to thank Danni Lu, whom I had the honor of serving as the best man for his

wedding.

I would like to thank my UCLA-Caltech MSTP friends, with a particular shout out to
Eric Lin for always being there to brighten my day.

Lastly, to the countless people who have brought joy, encouragement, and inspiration into
my life during the highs and lows of my Ph.D.: while not everyone is listed, please know
how much your presence has meant to me. Thank you all for making this journey

unforgettable.

ABSTRACT

Advances in transcriptomics have transformed the study of gene expression, enabling a
shift from low-throughput bulk RNA measurements to high-resolution, large-scale single-
cell RNA-sequencing (scRNA-seq). This work refines existing methodologies and
introduces new strategies for achieving precise, versatile, and scalable transcriptomic

analyses across a broad spectrum of assays and biological contexts.

On the computational front, this dissertation introduces new methods for adaptable
preprocessing of sequencing reads, enabling the handling of very complex read structures.
It refines existing strategies for efficiently querying large-scale transcriptomic datasets and
enhances approaches for quantifying nascent and mature RNA species. A general
framework 1is introduced for discovering and organizing biologically informative
sequences directly from raw sequencing data, facilitating the detection of sample-specific
or condition-specific variation. On the experimental front, a novel single-cell RNA
sequencing method is presented that is cost-effective, open source, and scalable, supporting

large-scale studies with substantial cell numbers and high per-cell resolution.

These developments collectively expand the toolkit for transcriptomics, enabling more

efficient and comprehensive exploration of RNA biology.

vi

PUBLISHED CONTENT AND CONTRIBUTIONS

Luebbert L, Sullivan DK, Carilli M, Hjorleifsson KE , Winnett AV, Chari T, Pachter L.
Detection of viral sequences at single-cell resolution identifies novel viruses associated
with host gene expression changes. Nature Biotechnology. 2025.

doi: 10.1038/s41587-025-02614-y

D.K.S. implemented the viral sequence detection algorithm (with L.L.).

Sullivan DK*, Hjérleifsson KE*, Swarna NP, Oakes C, Holley G, Melsted P*, Pachter L*.
Accurate quantification of nascent and mature RNAs from single-cell and single-nucleus
RNA-seq. Nucleic Acids Research. 2025;53(1):gkae1137.

doi: 10.1093/nar/gkae1137

*D.K.S. and K.E.H. contributed equally to this work.

“L.P. and P.M. are co-corresponding authors on this work.

D.K.S. conceived this study (with K.E.H., P.M. and L.P.), implemented the methods in
software (with K.E.H.), benchmarked the methods (with K.E.H. and N.P.S.), produced
analyses and figures (with K.E.H.), and wrote the paper (with K.E.H. and L.P.).

Sullivan DK, Min KHJ, Hjorleifsson KE, Luebbert L, Holley G, Moses L, Gustafsson J,
Bray NL, Pimentel H, Booeshaghi AS*, Melsted P#, Pachter L*. Nature Protocols. 2024.
doi: 10.1038/s41596-024-01057-0

“L.P., P.M., and A.S.B. are co-corresponding authors on this work.

D.K.S. conceived the writing of this paper (with L.P., P.M., and A.S.B.) and wrote the
initial draft of the paper. D.K.S. led the development of the latest versions (at the time
of publication) of kallisto (version 0.50.1), bustools (version 0.43.2), and kb-python
(version 0.28.2). D.K.S. created all figures and tables for this paper.

Sullivan DK, Pachter L. Flexible parsing, interpretation, and editing of technical sequences
with splitcode. Bioinformatics. 2024;40(6):btae331.
doi: 10.1093/bioinformatics/btae331

D.K.S. conceived of the work, developed the methods and software, and drafted the
manuscript.

vii
Bhat P, Chow A, Emert B, Ettlin O, Quinodoz SA, Strehle M, Takei Y, Burr A, Goronzy IN,
Chen AW, Huang W, Ferrer JLM, Soehalim E, Goh ST, Chari T, Sullivan DK, Blanco MR,
Guttman M. Genome organization around nuclear speckles drives mRNA splicing
efficiency. Nature. 2024;629:1165-1173.
doi: 10.1038/s41586-024-07429-6

D.K.S. performed RNA-seq analysis of single-cell SPLiT-seq data from mouse C2C12
myoblasts (with P.B.).

TABLE OF CONTENTS

AckNOWledgements.ouiieii i e il
ADSIIACE ...ttt v
Published Content and Contributions..............cooeveiiiiiiiniiiiiiine e, vi
Table 0f CONtENTS.ouiei e viii
Chapter I: Introduction

Overview Of tranSCriPLOMICS.......evuvieruierieeriierieeiieereeieeeeeeiee e eeee e enne 1

Bioinformatics software development............ccceeviieviieniienieniieeniecieeee 4
Chapter II: Sequencing read preprocessing

Flexible processing of technical SEqUENCEScceevvieriiiriieniieiienieee. 9
Chapter III: Enhancing single-cell and single-nucleus quantification

Quantifying nascent and mature RNASc.ccocevieiiniieninnenieneceeee, 18

Distinguishing flanking K-mers............cccceeviiniiienieniiieieceeeeee e, 29

Comprehensive pseudoalignment software protocol...........ccceveevvennenne. 56
Chapter IV: Pseudoassembly of k-mers

Beyond annotated reference mapping...........cccceeeeveerieeiiienienieenieeeeenn 121

A general-purpose k-mer toolKit.........cceevuierieriiieriiiiieieeieeeeeen 127

Application tO CANCEr ZENOMICS........eeruierreerrierreeiieaieenieesaeeieesneeseens 130
Chapter V: Efficient and scalable single-cell transcriptomics

Scaling single-cell tranSCriptomicscceevcveeriieriieriienieeriie e 137

The SWIFT-seq protocolcccueeiiiriiiiieiieeiieee e 140

Analysis of sequenced SWIFT-seq libraries...........ccceevieniieniieniennnn. 148

BibLiOZIapRYooviieiieiie e 156

viii

Chapter 1

INTRODUCTION

Overview of transcriptomics

The field of transcriptomics, which encompasses the study of RNA molecules produced by
the genome, is fundamental to understanding how genetic information is expressed and
regulated within cells. At its core, transcriptomics is built upon the central dogma of
molecular biology: DNA is transcribed into RNA, which is subsequently translated into
proteins (Crick, 1958). This process begins with transcription, where RNA polymerase in
the nucleus synthesizes RNA from a DNA template. Transcription produces a diverse
collection of RNA molecules, which may then be modified by chemical processing (such
as splicing), further expanding their diversity. The end result is a wide variety of RNA
molecules, including messenger RNAs (mRNAs), which are transported to the cytoplasm
for protein synthesis, and non-coding RNAs, which serve important regulatory and

structural roles.

Gene expression can be assessed by measuring RNA abundance. Early methods, such as
reverse transcription quantitative polymerase chain reaction (RT-qPCR) (Wang et al.,
1989), enabled precise measurement of specific RNA molecules, providing a robust way
to quantify gene expression. However, RT-qPCR is limited in throughput, as only a few

genes can be quantified at a time.

The advent of gene expression microarrays enabled simultaneous measurement of
expression levels across thousands of genes (Schena et al., 1995). These microarrays are
based on hybridization between chemically labeled RNA or ¢cDNA molecules and
complementary DNA probes fixed on a solid surface. Thus, a comprehensive probe set
could provide an extensive transcriptome profile. However, since microarrays are
constrained by their dependence on predefined probes, they cannot be used to detect and

quantify novel transcripts or any other sequences that are not pre-designed on the array.

2
RNA sequencing (RNA-seq) revolutionized transcriptomics by enabling comprehensive,

high-resolution transcriptome profiling without reliance on predefined probes (Mortazavi
et al., 2008; Wold and Myers, 2008). RNA-seq involves a series of experimental steps,
referred to as a library preparation, which convert an RNA isolate into a concentrated
collection of double-stranded DNA molecules that can be sequenced via high-throughput
sequencing. With the data generated from RNA sequencing, bioinformatics can empower
many downstream analyses including transcript abundance quantification (Mortazavi et al.,
2008), differential expression analysis (Oshlack et al., 2010), gene structure determination
and novel transcript discovery (Guttman et al., 2010; Trapnell et al., 2010), alternative
splicing detection (Griffith et al., 2010), and expression quantitative trait loci (eQTL)
analysis (Pickrell et al., 2010) (Figure 1.1).

FASTQ files
RNA Seq uencer d
(GHISEQ:971:CCTYGANXX:7:1101:1125:1980 1:N:0:TCTTCACA
(Whlch is converted to cDNA) NCAGTGCACTACAGAACTTTGTAGATCGGAAGAGCACACGTCTGAACTCC

N
OHISEQ:971:CCTYGANXX:7:1101:1259:1978 1:N:@:TCTTCACA
Sa[nples or Cells NAA(TGCTCTTATTTAGATCGGA CTGAACTCCAGT
m"’”""’ OHISEQ:971:CCTYGANXX:7:1101:1974:1985 1:N:@:TCTTCACA
[NCAGTGCACTACAGAACTTTGTAGATCGGAAGAGCACACGTCTGAACTCC

Exploration and statistics

T

= — : Quantification

| f , Gene1 | Gene2 | Gene3

I . Sample1| 3 6 5 M a p to

i — <:| Sample2| 12 10 4

e | o R Q annotated

Sample 3

& ————
Héffgﬁ
4 : reference

genome

|

Figure 1.1: Overview of a simple RNA-seq experiment.

RNA is prepared from biological samples of interest (very commonly, control samples and
treatment samples) then, after being processed through a series of biochemical steps,
sequenced via high-throughput sequencing. The output produced are sequencing reads,
which are stored in a FASTQ file. The FASTQ file is a text file that stores each read as
four lines: 1) the sequence name, 2) the sequence itself, 3) a spacer, and 4) the sequence
quality scores. The provenance of each read is determined by mapping (i.e. aligning) them
to an annotated reference genome. After counting how many reads map to each gene, one
can perform various analyses such as determining which genes are statistically
significantly differentially expressed between the treatment samples and the control
samples. Parts of this illustration were created with BioRender (biorender.com).

3

Traditionally, RNA-seq was conducted on bulk tissue samples (i.e. bulk RNA-seq), but
single-cell RNA-seq has been gaining increasing popularity. Single-cell RNA-seq can
unlock multiple types of analyses that cannot be done with bulk RNA-seq. For complex
tissue, single-cell technology can enable subpopulation and cell type identification from
the tissue whereas bulk RNA-seq would simply produce an ensemble gene expression
quantification, even though some cell types in the mixture may vary widely in expression
profiles. The ‘compartmentalization’ powered by single-cell RNA-seq can thus preserve
information about the composition of the mixture (Trapnell, 2015). Even among cells of a
given cell type, single-cell RNA-seq affords assessment of inter-cell heterogeneity, which
effectively means than rather than having a single biological signal, we can capture
thousands of distinct biological measurements for a cell type. Additionally, single cell
clustering can reveal transition paths between cell states, enabling the reconstruction of
cellular trajectories through processes such as differentiation (Trapnell et al., 2014).
Finally, and more recently, parameters describing the stochasticity of processes such as
transcription, splicing, and degradation can be inferred by biophysical models thanks to the
ability of single-cell RNA-seq to capture multimodal measurements (e.g. both nascent
RNA and mature RNA) (La Manno et al., 2018) across a large number of cells (Gorin et
al., 2022b, 2023). Of course, single-cell transcriptomics comes with its own challenges,
including data sparsity and higher levels of noise, in comparison to bulk RNA-seq.
Nonetheless, the single cell resolution can unlock many biological insights that would be

obscured by bulk analysis.

With genomic and transcriptomic technology development on the laboratory side comes
the need to develop methods on the computational front to process and analyze the resulting
data. The next section focuses on principles that underly effective bioinformatics software

development.

Bioinformatics software development

The growing complexity of bioinformatics workflows, driven by rapid advances in
biological and computational methods, hampers the integration of existing and new tools
into cohesive pipelines. Pipelines can involve a large number of components and software
tools that interact with each other. The selection of software to use at a particular point in
the pipeline is often complicated by the fact that different tools, even those performing the
same or similar tasks, ingest different input formats and produce different output types.
Restricting input and output formats can limit software to a specific use case or create
dependencies between tools. Additionally, software programs often combine multiple
processing steps in the back end, thereby reducing the ability to customize or modify
individual steps within the pipeline. As a result, venturing outside the realm of the specific
analysis the tool was designed for, e.g. to adapt the workflow to a new data type, is
challenging. While there is no one-size-fits-all solution to address this problem fully, here,
we describe specific design principles that can enhance the adaptability and utility of
bioinformatics tools. We focus on three such design principles: flexibility, modularity, and
cross-compatibility (Figure 1.2), which are partly based on the UNIX philosophy (Mcllroy
et al., 1978). These design principles can significantly enhance pipeline development for
researchers using bioinformatics tools, giving them greater control over their data
processing steps and the types of analysis they can perform. Following these principles
along with documented best practices can result in more robust and versatile workflows

while simultaneously ensuring proper usage.

Flexibility: Here, flexibility refers to the ability of a software tool to process diverse input
types and to produce output that can be used in many different downstream applications or
analyses. An inflexible tool would be one that accepts only one input structure, limiting its
applicability across different datasets and its adaptability to datasets produced by future
technological developments. Furthermore, an inflexible tool may produce output that is
usable for only one specific type of downstream analysis. To illustrate the notion of

flexibility, consider the processing of RNA-sequencing data. There exist many different

5
RNA-seq technologies (Aldridge and Teichmann, 2020), such as bulk RNA-seq, droplet

single-cell RNA-seq, plate-based single-cell RNA-seq, and split-and-pool barcoding-based
single-cell RNA-seq, each with a distinct raw sequencing read structure. A flexible tool
would be able to accommodate multiple or, ideally, all technologies. However, it may be
infeasible for an RNA-seq read mapping tool to be compatible with every single past and
future sequencing technology. File formats outputted by different sequencers (e.g. [llumina
vs. Nanopore) may vary, some assays have complex arrangements of molecular tags in the
reads that require specific parsing, etc. Therefore, an upstream tool may be developed to
reformat the sequencing reads into a compatible format, thereby augmenting the mapping
tool’s flexibility. For example, while the popular Cell Ranger software (Zheng et al., 2017)
can only process single-cell RNA-seq data from 10X Genomics technologies, tools that
reformat read structure for use with Cell Ranger have been developed (Battenberg et al.,
2022). An approach that uses an external tool to perform this type of preprocessing would
be a modular solution toward enhancing flexibility. Additionally, a flexible tool should
produce output compatible with multiple types of downstream analyses. For example, in
RNA-seq, a flexible tool would be able to perform isoform-level, gene-level, allelic, and
joint nascent and mature RNA quantification. Since quantification is distinct from
sequencing read mapping, these different quantifications need not be performed by a single
tool. A preferable and more modular solution would be to produce output with which a
downstream tool (or even a separate component of the read mapping software) can perform
the different quantifications. The goal is to retain flexibility while avoiding having one
component of a tool do too many things, which we will discuss further in the following

section.

Modularity: Modularity here refers to the separation of processing steps into distinct,
customizable components. A non-modular tool that performs an entire analysis within one
package can limit customization and hinder the ability to utilize intermediate results for
other analyses. A modular processing solution, however, separates individual steps and
produces intermediate outputs that users can inspect and modify. Since there might be

overhead from writing to disk, in many cases, the intermediate output of one step can be

6
directed to standard output, which can then be directly piped into the next step if the

intermediate output file is not needed for a particular use case. Consider sequencing data
processing. Sequencing data requires multiple steps of processing, from trimming to
alignment to quantification or variant calling followed by further downstream analysis. By
separating these steps and providing intermediate outputs, modular tools enable users to
customize their workflows and optimize each stage according to their specific needs. Of
course, the number of customizations and options can be large for a tool that is modular
and flexible, so a best practices guide, based on known benchmarking results, should be
provided to guide users towards proper usage of the tool and the most accurate results.
Oftentimes, a wrapper for the most common use cases would be desirable, so a user does

not need to manually execute the individual steps that they don’t wish to customize.

Cross-compatibility: refers to a tool being able to use the output of another tool as input
and/or to produce output that is compatible with a wide range of downstream tools. For
example, a differential gene expression program should be able to take the results of
different aligners and, likewise, different aligners should produce results that are
compatible with the differential gene expression program. Of important note, cross-
compatible solutions should use appropriate standard data file formats for each step (List
etal., 2017), such as BAM/SAM files (Li et al., 2009), FASTA/FASTQ files (Pearson and
Lipman, 1988), Matrix Market files (Boisvert et al., 1996), JSON files (Pezoa et al., 2016),
YAML files (Ben-Kiki et al., 2004), etc. If a new file format is introduced, developers
should include a detailed description of the new file format along with a tool to easily
process it. Some file formats are less amenable to cross-compatibility. For example, we
discourage from storing results in HDF (Hierarchical Data Format) files because HDF is
not straightforward to work with or convert to another file format and other tools do not
have built-in support. It may be inconvenient for a user to install half a dozen software
tools to complete an analysis, however, workflow managers, such as Snakemake (Mdlder
et al., 2021) or Nextflow, or containers such as Docker (Merkel, 2014) or conda

(https://conda.io), greatly facilitate tool installation, compatibility, and management.

7
Altogether, ensuring cross compatibility through standard input and output file formats

promotes interoperability and simplifies the integration of diverse tools within a pipeline.

There are many factors that ensure the long-term success of bioinformatics software,
including prompt user support, regular software maintenance, ease of installation and use,
comprehensive documentation, and use of package managers such as conda. While much
attention has been given to the principles of clear documentation (Karimzadeh and
Hoffman, 2018) and modular pipeline design (Hoon et al., 2003; Roy et al., 2018), these
discussions primarily focus on software and pipeline usability, with less emphasis on the
underlying software design. Although there has been considerable discussion on making
tools easy-to-use and easy-to-understand for both biologists and bioinformaticians (Ahmed
et al., 2014; Bolchini et al., 2009; Kumar and Dudley, 2007; Pavelin et al., 2012), there has
been less focus on software design that enhances its utility for data processing and analysis,
beyond just usability. Flexibility, modularity, and cross-compatibility in software design
are essential for creating adaptable tools that can handle diverse input formats, integrate
seamlessly with other software, and be customized for various analyses. Incorporating
these three principles into bioinformatics software can advance the capabilities of data

processing and analysis pipelines.

— [} —_— \ —p Analysis

Input
B)

Analysis #1
I -> | || |» - |—» 4» Analysis #2
7
/ Analysis #3

Output

wrapper

Input

Figure 1.2: Principles of flexibility, modularity, and cross-compatibility.

A) Schematic of a pipeline that does not contain flexible, modular, or cross-compatible
tools. Lack of flexibility: The processing software only accepts one input and produces
output that can only be used in one specific analysis. Lack of modularity: The software
bundles all processing steps into a single component. Lack of cross-compatibility: The
software can not integrate with other tools and no tools can be substituted into any step of
the processing. B) Schematic of a pipeline that contains tools that are flexible, modular
and cross-compatible. Flexibility: Tools in the pipeline accept multiple input types and
produce output that can be used in multiple downstream analyses. Modularity: The
processing is divided into multiple steps. The software in blue is broken down into multiple
components and a “wrapper” around its components can be executed to facilitate running
the components together. Cross-compatibility: The four different tools (shown in pink,
yellow, brown, and blue) are able to interface with one another such that each tool can
accept another tool’s input and/or produce output compatible with another tool. The tool
shown in brown can be substituted in for the tool shown in yellow.

Chapter 2

SEQUENCING READ PREPROCESSING

Flexible processing of technical sequences

The reads that result from next-generation sequencing libraries can contain many types of
synthetic constructs, or technical sequences, including adapters, primers, indices, barcodes,
and unique molecular identifiers (UMIs) (Booeshaghi et al., 2024; Johnson et al., 2023;
Kebschull and Zador, 2018; Kivioja et al., 2012; Martin, 2011; Melsted et al., 2019). These
oligonucleotide sequences are defined by the technicalities of sequencing-based assays and
experiments, with each sequence being either a completely unknown sequence, a known

sequence, or an unknown sequence that is a member of a set of known sequences.

There are many read preprocessing tools for editing and extracting information from such
sequences, including the widely used tools cutadapt (Martin, 2011), fastp (Chen et al.,
2018), and Trimmomatic (Bolger et al., 2014) for adapter and quality trimming, UMI-tools
(Smith et al., 2017) and zUMIs (Parekh et al., 2018) for UMI processing, BBTools
(https://sourceforge.net/projects/bbtools/) (Bushnell et al., 2017) and reaper (Davis et al.,
2013) for general filtering operations, Picard (https://github.com/broadinstitute/picard) and
fgbio (https://github.com/fulcrumgenomics/fgbio) for many read manipulation operations,
INTERSTELLAR for read structure interpretation (Kijima et al., 2023), among many other
tools (Battenberg et al., 2022; Cheng et al., 2024; Kong, 2011; Liu, 2019; Roehr et al.,
2017). Many of these tools define a “read structure” to describe the layout of a read, e.g.
fgbio uses a sequence of <number><operator> operators where the number of the length
of a segment and the operator describes how the segment should be processed. However,
no one tool can adequately address all technical sequence preprocessing tasks. Some
methods, such as adapter trimming methods, can only remove identified technical
sequences from reads but lack the ability to store information about technical sequences

that are relevant to the provenance of the read. Other methods can extract and store

10
technical sequences from reads but are limited to only extracting sequences at defined

positions of defined lengths within reads, and may present limited options for handling
variable position and variable length segments. Still other methods are designed for only a
specific type of assay, such as single-cell RNA-seq. Technologies such as (long-read)
SPLiT-seq (Rebboah et al., 2021; Rosenberg et al., 2018), SPRITE (Quinodoz et al., 2022,
2018), and Smart-seq3 (Hagemann-Jensen et al., 2020), contain complex, multifaceted
technical sequences that currently are processed by custom scripts or specific use-case

modifications to existing tools.

The tool that we developed, splitcode (Sullivan and Pachter, 2024), introduces versatile
new features for general preprocessing needs. splitcode is a flexible solution with a low
memory and computational footprint that can reliably, efficiently, and error-tolerantly
preprocess technical sequences based on a user-supplied structure of how those sequences
are organized within reads. For example, splitcode can simultaneously trim technical
sequences, parse combinatorial barcodes that are variable in length and inconsistent in
location within a read, and extract UMIs that are defined in location with respect to other
technical sequences rather than at a set position within a read. These features make
splitcode a suitable tool for processing variable length staggers at the start of reads; such
staggers are often introduced to enhance nucleotide diversity during the early cycles of
sequencing, preventing monotemplate issues that would arise from sequencing identical
nucleotides during those cycles. The technical sequences that splitcode may be useful for
identifying include not only barcodes or UMIs but also ligation linkers, integrase
attachment sites, and Tn5 transposase mosaic ends. Moreover, splitcode can seamlessly
interface with other command-line tools, including other read sequencing read
preprocessors as well as read mappers, by streaming the pre-processed reads into those
tools. Thus, splitcode can eliminate the need to write an entirely new file to disk at every
step of preprocessing, a practice that currently results in inefficient use of time and disk
space. Furthermore, splitcode can stream reads into itself and also can directly

accommodate multiple steps (i.e. the output from one set of user-defined instructions can

11
be directly fed into another), enabling multiple preprocessing steps to be performed in

sequence for more complicated assays.

Software:

The splitcode software is written in C++11 and is freely available and open source under
the BSD-2 clause license. The source code for the splitcode program is available at
https://github.com/pachterlab/splitcode. Documentation for the software is available at

https://splitcode.readthedocs.io/.

Framework and Usage:

We refer to the synthetic constructs, or technical sequences that can be identified in reads
as tags. Tags are described in the splitcode config file with several parameters including a
tag ID, the sequence itself, the error-tolerance for identifying that tag, and options such as
where the tag might be found within sequencing reads and conditions under which the tag
should be searched for. A collection of tags forms a barcode, which can be used to
demultiplex reads according to the tags identified within a read. Within the config file, a
user can also specify extraction options to delineate how certain subsequences within reads
should be extracted. Subsequences can be extracted by using tags as anchor points or can
be extracted at user-defined positions within reads. This feature is particularly useful for
unique molecular identifier (UMI) sequences which are generally unknown sequences that
exist at defined locations within reads. Additionally, in the config file, a user can specify
read editing options including trimming and whether identified tags should be replaced
with a particular sequence. Thus, identified technical sequences can be modified or
trimmed in situ. Taken together, this array of options makes it possible for splitcode to
parse data from a large variety of sequencing assays, including those with many levels of

multiplexing (Figure 2.1).

12

Edited
Reads
Raw
FastQ h ON /Jﬁ
C) >
> spliticode ~~> | Extracted
" |Sequences
Config v, 5 ‘ \‘_\A
— Final
Barcodes

Figure 2.1: Overview of the splitcode workflow.

The splitcode program takes in a set of FASTQ files and a user-specified config file, which
serves as a recipe describing how the reads should be parsed. The user executes splitcode
on the command-line, specifying command-line options on how the output should be
formatted. The output consists of one or more of the following: the original FASTQ files
(possibly edited), the extracted sequences (e.g. UMI sequences which are unknown and
need to be extracted by using location information or anchor points), and the final
barcodes which are unique for each combination of identified tags. The output may take
the form of FASTQ files, gzip-compressed FASTQ files, BAM files, or interleaved
sequences directed to standard output, depending on what the user specifies. This figure
was created with BioRender (biorender.com).

Following construction of the config file (Figure 2.2), users can supply the config file to
the splitcode program on the command-line. Users can further specify the output options
for how the final barcode, the (possibly edited) reads, the extracted subsequences should
be outputted. The program presents many options for outputting reads, allowing seamless
integration with many downstream tools. Importantly, the output can be interleaved and
directed to standard output, which can then be directly piped into tools (including splitcode
itself if another round of read processing is needed) that support such input. This feature
makes it possible to send processed reads directly to a read mapper, therefore eschewing

the inefficiencies of creating large intermediate files on disk.

13

Input:
R1: Barcode A Region 1 Barcode B NNN umi Region 2
5-bp Variable length S5-bpor6-bp 3-bp 8-bp Variable length
4-bp
@extract {{grp_B}}3<umi[8]>
@trim-3 0,4
group id tag distance next maxFindsG location
Config File: grp_A Barcode_Al AAGGA 1 {{grp_B}} 1 0:0:5
grp_A Barcode_A2 GTGTG 1 {{grp_B}} 1 0:0:5
grp_A Barcode_A3 CGTAT 1 {{grp_B}} 1 0:0:5
grp_B Barcode_B1 GCGCAA 0 - 1 0:5:100
grp_B Barcode_B2 CCCGT 0 - 1 0:5:100
Output:
. Final
R1 FastQ R2 FastQ 8-bp UMI Mapping
) . Barcodes
(unedited) (last 4 bp FastQ File FastQ
trimmed) as
AAAAAAAAAAAAAAAA Barcode A2,Barcode B2 6 @s2
AAAAAAAAAAAAAAAT Barcode A3,Barcode Bl 5 T
+
KKKKKKKKKKKKKKKK

Figure 2.2: Example of splitcode usage.
The structure of the reads from this hypothetical sequencing technology contains multiple
regions that need to be parsed, including some of variable length. In the config file, each
region that needs to be parsed is organized into groups and each “group” contains
multiple tags. The tags in the grp_A group have the value 1 in the “distance” column,
meaning a hamming distance 1 error tolerance. The values in the “next” column indicate
that after a grp_A tag (i.e. Barcode Al, Barcode A2, or Barcode A3) is found, we should
next search only for tags in the grp_B group. The “maxFindsG” values of 1 mean that the
maximum number of times a specific group can be found is 1 (e.g. after finding a tag in
grp A, stop searching for tags in grp_A). The “location” for grp A tags have the value
0:0:5, meaning that the tag is found in file #0 (i.e. the R1 file) within positions 0-5 of the
read; for grp_B tags, splitcode searches file #0 within positions 5—100. In the header of
the config file, the (@extract option contains an expression indicating that we should extract
an 8-bp sequence, which we name umi, 3 bases following identification of a grp_B tag. The
supplied @trim-3 option means that only 3'-end trimming of 0 bases and 4 bases of the R1
file and the R2 file, respectively, should be performed. Thus, here, the output R1 file will
contain the original R1 sequences (i.e. the entirety of Barcode A, Region I, Barcode B,
NNN, UMI, and Region 2) while the output R2 file will contain just the cDNA. The output
“Final Barcodes” FASTQ file will contain a sequence uniquely identifying a combination

14
of tags and the mapping file allows us to map the final barcode sequence back to the tag
combination (the numbers in the right-most column of the mapping file represent how many
reads that tag combination was found in). Finally, it is important to note that this is simply
one of many ways to parse this read structure with splitcode and users can configure the
options how they see fit. Further, users can also customize the output options. For example,
users can choose to output reads that contain both grp A and grp B tags into one set of
files and direct all other reads into a separate set of files, and users can choose whether to
output the 8-bp UMI sequence into an independent file or to put it in the FASTQ header of
the outputted reads. Users also have the option to output reads as a BAM file with the 8-
bp UMI sequence encoded in a SAM tag.

The splitcode program has many options, some of which can be supplied in the config file
and others of which (namely the output options) must be supplied on the command line. In
the config file, a user can specify “sequence identification” options for finding tags in reads
as well as editing reads in situ based on identified tags as well as “read modification and
extraction” options for general read trimming and extracting UMI-like sequences. The
latter option group is supplied in the header of the config file while the “sequence
identification” options are supplied as tab-separated values in a tabular format in the file,
an example of which is shown in Figure 2. Finally, splitcode is efficient software: On 150-
bp paired-end reads in gzip FASTQ format, splitcode can reach throughputs exceeding 10
million reads per minute with memory usage on the order of a few hundred megabytes on

a standard laptop, although these performance results vary depending on the task at hand.

Tag sequence identification:

Each sequence in the splitcode config file along with all sequences within the sequence’s
allowable hamming distance and/or indel error tolerance is indexed in a hash map. Each
sequence is associated with the tag(s) from which it originated. Note that sequences can
also be supplied in an external text file, which is useful when working with a long list of
“cell identification barcodes” as is common in single-cell RNA-seq. Reads in FASTQ files
are scanned from start to end to identify tags based on hash map lookups. Additionally,
users can specify locations and conditions within which a specific tag may appear and only

tags satisfying such conditions are identified. Further, by restricting tag identification to

15
only specific regions of reads, the number of hash map queries is reduced, therefore

improving runtime.
Final barcode sequences:

Each combination of tags is assigned a numerical ID, which begins at 0 and is incremented
for every newly encountered combination. Each numerical ID, a 32-bit unsigned integer,
can be converted to a unique 16-bp final barcode sequence (i.e. a pseudobarcode) by
mapping each nucleotide to a 2-bit binary representation as follows: A =00, C=01, G= 10,
T=11. It follows that the numerical ID can be represented in nucleotide-space based on
the integer’s binary representation. For example, the numerical ID 0 is
AAAAAAAAAAAAAAAA, the numerical ID 1 is AAAAAAAAAAAAAAAT, and the
numerical ID 30 is AAAAAAAAAAAAACTG. This interconversion between numerical

IDs and nucleotide sequences facilitates simplifying complex barcodes.

In certain applications, an optimized barcode encoding scheme may be preferable to a
sequential numerical assignment, particularly when efficiency or consistency across
datasets is required. Such a scheme ensures that each unique combination of tags is
deterministically mapped to a fixed final barcode sequence, regardless of dataset
composition or order of processing. This can be achieved through a mixed radix encoding
algorithm, which leverages the size of each tag group (for example, the number of barcodes
in a given round of a split-and-pool combinatorial barcoding strategy) to optimize the
representation of combinations. Given each tag group i, with n; possible elements (tags),

the total number of bits required to encode all tag groups is:

k
Total bits = [log2 nnl‘
i=1

where k is the number of groups. For instance, encoding three tag groups each containing
96 elements requires [log,(96)3] = 20 bits, corresponding to a barcode length of 10

nucleotides. The mixed-radix approach calculates a unique numerical ID for each

16
combination of tags by treating the combination as a mixed-radix number. Each tag

value v; is multiplied by the product of the domain sizes of all preceding groups as follows:

k i-1
Barcode ID = z v; nnj
i=1 j=1

The ID can then be converted into nucleotide space, by mapping each nucleotide to a 2-bit
binary representation as before. Decoding the ID into its constituent tag compositions can

also be done.

Discussion:

The preprocessing of FASTQ files is an important first step in bioinformatics pipelines.
This step is frequently inefficient, involving multiple steps with the creation of large
intermediate files or writing and running of custom unoptimized scripts which can be
challenging with large-scale sequencing data. Splitcode alleviates some of these
inefficiencies via a modular and flexible design to effectively and efficiently handle
intricate, hierarchical read structures produced by technologies with many layers of
multiplexing. While many of splitcode’s features overlap with those of existing
bioinformatics software, splitcode is not intended to fully recapitulate all the features of
existing tools or to replace or outperform any one tool. Rather, splitcode is intended to
serve as one additional, flexible and versatile tool in a bioinformatics arsenal, and has been
designed to be interoperable with other tools. Indeed, splitcode was designed with the
principles of flexibility, modularity, and cross-compatibility (as described in the first
chapter of this dissertation) in mind. Splitcode operates not as an alignment algorithm, but
on a principle of dictionary lookups. In this approach, technical sequences along with their
permissible mismatches are cataloged in a hash table. This makes splitcode apt for
scenarios requiring identification, interpretation, and modification of short sequences
within reads, and it effectively manages extensive lists of lookup sequences. Algorithms
like cutadapt, which use dynamic programming score matrix to optimize alignment, are

more suitable for cases, such as general adapter trimming, that require finding the best

17
possible alignment between two sequences or for finding long technical sequences. This

is because in such cases, storing the allowable mismatches in a hash table is
computationally infeasible; given the alphabet {A, T, C, G, N} and a sequence of length

L, the number of sequences with M substitution mismatches or fewer follows the formula:

M
L
Number of sequences = z (k) 4k

k=0

In any case, we anticipate that splitcode will be used in tandem with other preprocessing
tools to provide an effective solution for many bioinformatics needs. Furthermore, we
expect that splitcode will continue to expand in functionality based on user feedback, user
needs, and possibly the introduction of more complicated read structures that may arise
from the development of novel sequence census assays. Lastly, splitcode was utilized to
process portions of the data presented in this dissertation and will be revisited in later

chapters.

18
Chapter 3

ENHANCING SINGLE-CELL AND SINGLE-NUCLEUS QUANTIFICATION

Quantifying nascent and mature RNAs

The utility of single-cell RNA sequencing (RNA-seq) measurements for defining cell types
has represented a marked improvement over bulk RNA-seq, and has driven rapid
development and adoption of single-cell RNA-seq assays (Zeng, 2022). One application of
single-cell RNA-seq that is not possible with bulk RNA-seq is the study of cell transitions
and transcription dynamics, even via snapshot single-cell RNA-seq experiments (Gorin et
al., 2023, 2022a; La Manno et al., 2018). Such applications of single-cell RNA-seq are
based on the quantification of both unprocessed and processed messenger RNAs (mRNAs)
(Figure 3.1), lending import to the computational problem of accurately and separately
quantifying these two modalities (Soneson et al., 2021). The importance of quantifying
unprocessed mRNAs in addition to processed mRNAs has also been brought to the fore

with single-nucleus RNA-seq (Ding et al., 2020; Grindberg et al., 2013; Kuo et al., 2024).

Partially processed, Complete,
Transcription polyadenylated processed
starts molecule molecule

J_J.

)): exon inron exon ox exon =3P Translation, etc.

Transcription

Processing

Figure 3.1: The maturation process of RNA transcripts.

The traditional approach in quantifying RNA-seq has been to rely on a reference
transcriptome that defines a “region of interest”—typically restricted to mature mRNA
transcripts (i.e. no introns) for bulk RNA-seq analyses. This conventional focus has been
adequate for the broad objectives of bulk sequencing but is insufficient for the more

granular and precise requirements of single-cell and single-nucleus RNA-seq, where the

19
coexistence of nascent (unprocessed) and mature (processed) messenger RNA (mRNA)

poses challenges in accurate read mapping and the interpretation of count matrices. Reads
originating outside of the “region of interest” are prone to mismapping within this region,
and additionally, such external reads cannot be matched to specific transcript targets.
Expanding the “region of interest” to encompass both nascent and mature mRNA transcript
targets provides a more comprehensive framework for RNA-seq analysis, enhancing the
precision in quantifying both mature and nascent mRNA molecules, as well as in

delineating reads of ambiguous status (He et al., 2023; Sullivan et al., 2025).

In a later section of this chapter, the concept of distinguishing flanking k-mers (DFKs) will
be described in detail. DFKs are a minimal set of k-mers that can be used to distinguish
whether a read that is mapped to a set of targets in the transcriptome index has its origin
from within the transcriptome index or has an external origin. These DFKs can therefore
address the problem of mismapping of external reads (Kaminow et al., 2021), by acting as
a filter to prevent reads of external origin from being mismapped to the transcriptome
index. In other words, these k-mers, if present in a read, will cause the read to be filtered
out. We use the term D-list (distinguishing list) to denote the sequences from which DFKs
are extracted based on the contents of the transcriptome index. By default, the D-list is set
to the genome FASTA file. Therefore, hereinafter, specifying the usage of a D-list refers
to supplying the genome FASTA file as the D-list. While using standard mature mRNA
transcriptome index with a D-list can be used to improve the quantification of single-cell
RNA-seq due to intronic and intergenic reads, still, only mRNA transcripts exist in the
index and hence, only reads mapping to mature mRNA regions will be considered. While
this is useful for certain applications of single-cell analyses such as cell type identification,
having only a single-cell count matrix prevents the usage of biophysical models which
jointly consider mature and nascent RNA quantifications (Carilli et al., 2024; Gorin and
Pachter, 2022a). Thus, extending the index (He et al., 2022; Melsted et al., 2021; Soneson
et al.,, 2021) to allow quantifications of RNA molecules at different stages of their

processing is important, as will be discussed next.

20
To quantify nascent RNA transcripts, it is necessary to extend the transcriptome index

to include such targets. That is, an index should be created that encompasses the nascent
RNAs and the mature RNAs. While seemingly straightforward to construct such an index
and to map reads against it, a difficulty arises from classifying individual reads, or
individual unique molecular identifiers (UMIs), as being of “mature” or “nascent” status.
This difficulty stems from the fact that sequenced reads are typically much shorter than
transcripts, and therefore there can be ambiguity in classification of reads as “mature” or
“nascent”. Reads that span an exon—exon junction must originate from a completely or
partially processed mRNA (which we call “mature”), whereas reads containing sequence
unique to an intron must originate from a completely unprocessed or partially processed
mRNA (which we call “nascent”). However there are many reads for which it is impossible
to know whether they originated from an unprocessed or processed transcript (hence, are
ambiguous) (Figure 3.2). Methods that rely on k-mer mapping must account for the
distinction between k-mer ambiguity and read ambiguity, and this distinction has not been
carefully accounted for in previous k-mer based single-cell RNA-seq pre-processing

workflows (He et al., 2022; Melsted et al., 2021).

To classify reads as nascent, mature or ambiguous, we first pseudoalign reads using kallisto
(Bray et al., 2016) against a kallisto index containing the mature mRNA (as used originally
in pseudoalignment) and nascent mRNA. The nascent mRNA spans the full length of a
gene and contains both the gene’s exons and introns as a single contiguous sequence. This
comprehensive representation, implemented as the nac index in kallisto (Sullivan et al.,
2024), allows for accurate classification of reads as mature or nascent or ambiguous, as it
properly accounts for the exon—intron boundary and acknowledges that exons are
components of both nascent and mature mRNA (Figure 2). The developers of alevin-fry
have also adopted this approach in the alevin-fry spliceu index (He et al., 2023), an updated
version of the original alevin-fry splici index. However, other tools, such as STARsolo
(Kaminow et al., 2021) and the popular Cell Ranger software (Zheng et al., 2017), do not

produce such classifications.

21

Alignment I: = _— = s
intron exon intron exon
Transcripts
T, 2l intron exon
read 1
mmm read 2 r
= read 3
read 4 ﬂ Ground truth read 1 read 5 fead7 |
read 5 ;
= read 6 A A M N N N A
s read 7
ﬂ kallisto readi [XHE [EEE read 5 read 7 |
transcriptome (+ D-list) v v v v
transcriptome (~D-list) v v v v v v
Nac (d-list) A A M N N N A
sum=cell v v <
sum=nucleus v v v v v v
sum=total v v v v v v
ﬂ STARsolo read 1 read 3 read 5 read 7 |
Gene * v v v v
GeneFull ** v v v v v v v
Velocyto M M M N N N A
* Same as Cell Ranger <v7
** Same as Cell Ranger v7

Figure 3.2: Approach to read assignment and classification into nascent, mature, and
ambiguous categories by kallisto, STARsolo, and Cell Ranger.

This classification of reads enables accurate classification of RNA species, enabling
ambiguous (A) reads to be assigned in various ways based on context [e.g. ambiguous
reads are allocated to “mature” (M) in single-cell RNA-seq splicing analysis or added to
both “mature” (M) and “nascent” (N) in the case of quantifying “total” RNA content].
The kallisto nac index in this example produces the same classification with or without the
D-list because no external reads (i.e. those existing outside annotated genomic regions)
are present. The standard “transcriptome” index cannot resolve different RNA species
and, without the D-list, will result in some reads originating from nascent transcripts (i.e.
reads cross exon—intron boundaries) being mapped even though introns do not exist in the
index; however, with the D-list, those intronic k-mers in the reads will map to DFKs in the
index. The --sum options for the nac index represent the various ways the N, M and A
matrices can be summed up (i.e. using M + A for “cell” and N + A for “nucleus” or N +
A + M for “total”). Results for alevin-fry are not shown because its spliceu index produces
classifications identical to kallisto. The checkmarks represent whether a given read will be
counted and the letters M, N, and A represent the read classifications (with red letters
denoting classifications that differ from the ground truth).

22
While the nac index contains both mature and nascent mRNA, reads of external origin

could still arise from intergenic regions of the genome being sequenced. These reads may
still be erroneously mapped to this extended transcriptome index. To mitigate the
possibility of such instances occurring, one would want to use DFKs by using the nac index
with a D-list. This approach is implemented in kallisto by default when building the nac
index. Altogether, the nac index, in conjunction with DFKs to mask out reads of external
origin, enables the accurate quantification and classification of nascent, mature, and

ambiguous mRNA.

Nascent, mature, and ambiguous classifications:

The extended transcriptome index (i.e. the nac index type), by virtue of indexing intron-
containing nascent transcripts, enables the mapping of a substantial fraction of reads that
would otherwise go unmapped when using the standard index type. Furthermore, the
quantifications produced by the nac index can classify reads or UMIs as mature (M),
nascent (N), or ambiguous (A). We assessed the classifications on both single-cell and
single-nucleus data from mouse and human samples. As expected, single-nucleus data
tends to have a higher ratio of nascent to mature RNA compared to single-cell data since
RNA molecules that have been exported out of the nucleus have undergone splicing and
maturation while 10x Genomics Visium spatial transcriptomics data has the lowest
proportion of nascent RNA (<1%) due to the Visium kit’s exon capture (Figure 3.3). Across
the different count matrices, we observe that the total counts (N + M + A) are well-
correlated with the ambiguous counts, implying that the results of a single-cell or single-
nucleus RNA-seq analyses are largely driven by reads mapped solely within exons. Note
that regardless of assay type, there tend to be more UMIs classified as nascent than mature,
because introns have a much larger coverage over the genome than exon—exon SJs. The
individual N, M, and A count matrices are poorly correlated with one another, reflecting
that different information is present in each of those three matrices. As biophysical models
of the RNA life cycle make use of nascent transcript counts and mature transcript counts,

how to allocate those ambiguous counts to either nascent or mature remains a topic for

23
future research. For now, one might reasonably assume that the ambiguous counts in

single-cell RNA-seq experiments originate from mature transcripts since, in such assays,
it is expected that there will be more mature transcripts than nascent transcripts therefore a
purely-exonic UMI is most likely to be mature. However, in the nucleus context, the
likelihood of a purely-exonic UMI being mature is lower since there will be fewer mature
transcripts, as evidenced by the much larger nascent-to-mature ratio in UMI classification.
Developing methods to more accurately allocate ambiguous reads is an interesting topic to

pursue, and there are now some efforts to do so (He et al., 2024).

24

Nascent 37.83%
Human 20k PBMC cells
Mature 20.5% (76.5% reads mapped)
Ambiguous 41.67%
Nascent 27.67% Mouse 10k neuron cells
Matie 20.51% (83.2% reads mapped)
Ambiguous 51.82%
Nascent 47.72%

Human 5k jejunum nuclei
(63.9% reads mapped)

48.7%

Mature

Ambiguous

Nascent

Mature Mouse 5k lung nuclei

73.4% reads mapped,
Ambiguous 31.9% (: pped)
Nascent 4 0.49% Mouse Embryo CytAssist FFPE
Mature 9.46% (88.5% reads mapped)
Ambiguous 05%

I T T T T

0 20 40 60 80
Percent assignment

Figure 3.3: Quantification of mature and nascent RNA from single-cell and single-nucleus
experiments.

Exploration of single-cell and single-nuclei count matrices from human and mouse
samples (datasets from 10x Genomics). The bar plots show the percentage of UMIs
assigned to the ambiguous, nascent and mature classifications. The datasets were
downloaded from https://www. 10xgenomics.com/ and are as follows: Human 20k PBMC
cells (type: single-cell; name: 20k PBMC 3p HT nextgem Chromium X, depth:
818,107,363 reads), Mouse 10k neuron cells (type: single-cell; name:
SC3 v3 NextGem_SI Neuron 10K; depth: 1,589,915,447 reads), Human 5k jejunum
nuclei (type: single-nucleus; name: 5k_human_jejunum CNIK 3pv3; depth: 121,378,620
reads), Mouse 5k lung nuclei (type: single-nucleus;, name: 5k _mouse lung CNIK 3pv3;
depth: 232,479,932 reads), Mouse embryo Visium CytAssist 11mm FFPE (type: spatial;
name: CytAssist 11mm_FFPE Mouse Embryo; depth: 832,193,962 reads).

25
Moreover, mature RNA can have multiple isoforms and a comprehensive analysis will

identify not only whether a UMI originated from mature RNA produced by a gene but also
which mature RNA of that gene the UMI originated from. As pseudoalignment works by
identifying a set of targets that a UMI is compatible with, it is straightforward to determine
whether those set of targets contain specific isoforms of a gene. To investigate how this
may potentially be useful, we utilized SPLiT-seq (Rosenberg et al., 2018) data of mouse
myoblasts (Rebboah et al., 2021); the SPLiT-seq data can be found at GEO accession
identifier GSE168776 and all seven short read sequencing subpools within that dataset
were used. The processing of SPLiT-seq data was performed as follows: Cell barcodes
corresponding to C2C12 myoblast cells with at least 10 000 UMIs were extracted based on
metadata obtained from the study which produced that dataset (Rebboah et al., 2021). The
reads containing those barcodes were divided into oligo-dT reads and random hexamer
reads based on the first round barcode sequence. These initial steps were performed using
the splitcode program (Sullivan and Pachter, 2024). Next, to mitigate spurious read
alignment to low complexity intronic sequences, bowtie2 (Langmead and Salzberg, 2012)
was used to align the reads to an index of ribosomal RNAs, transfer RNAs, microRNAs,
and repetitive elements, and those reads were removed with segkit (Shen et al., 2016).
STAR (Dobin et al., 2013) was used to align reads to the mouse reference genome to
generate a BAM file, which was indexed with SAMtools (Li et al., 2009) and visualized
with Integrative Genomics Viewer (Robinson et al., 2011). Kallisto | bustools was used to
pseudoalign reads to the mouse nac index (with D-list) and to produce transcript
compatibility counts (TCCs). Normalized counts were produced by CP10k normalization

followed by loglp transformation and processed with Scanpy (Wolf et al., 2018).

We chose to analyze SPLiT-seq data because, in that technology, the same cell can be
sequenced using an oligo-dT priming strategy and a random hexamer priming strategy.
These two priming strategies will yield different isoform abundances as the oligo-dT
primer selects for the polyA tail of mRNA while the random hexamer does not. An example
from the gene Rplp0, which is present in both the oligo-dT library and the random hexamer

library, albeit to a lesser extent in the latter, illustrates the difference (Figure 3.4A). As can

26
be shown via the integrative genomics viewer (IGV) software (Robinson et al., 2011),

the random hexamer reads cover the entire gene body, including in intronic regions, while
the oligo-dT reads are heavily localized to the 3’ end region of the gene with very few reads
elsewhere or in introns (Figure 3.4B). Upon using the nac index to resolve nascent and
isoform-level mature RNA (Figure 3.4C), we find that a large number of sequenced
molecules from the oligo-dT library are of mature status and, specifically, belong to
isoform ENSMUST00000086519, which is a transcript that extends to the 3’ end of the
gene (Harrison et al., 2024). Nascent RNA and other isoforms primarily originate from the
random hexamer library. Although this analysis was only done at the target-compatibility
level (including both nascent and mature RNA as targets in contrast to previous approaches
which only included mature RNA), one can use such TCCs directly in cell clustering
analysis (Ntranos et al., 2019, 2016). While an expectation-maximization algorithm can
attempt to probabilistically assign TCCs to transcript-level estimates, an identifiability
problem due to a high degree of ambiguity may preclude robust estimates from being
obtained when quantification relies on short reads. Finally, while some work has been done
in jointly using nascent and mature RNA counts, as produced by kallisto for biophysically
motivated cell clustering analysis (Chari et al., 2024), utilizing isoform-level mature RNA
to further enhance such analysis is an avenue for future research (Gorin and Pachter,

2022b).

27
A SPLiT-seq: C2C12 myoblast cells B

2000 2000 random
. random . - oligo-dT hexamer
=0 hexamer 50 L L. A .. A

oligo-dT I

——E-E-n B E=
Rplp0 (ENSMUSG00000067274)

D,
es\ 1«3‘" 5925,3‘9

Rplp0 isoforms o
.

RS
RN
"9“0 \S‘}\)

Individual cells (oligo-dT)

T - o = ga‘p‘\z‘p‘,p
i e R e e | ;2T
I *—

Figure 3.4: Isoform compatibility quantification of nascent and mature RNA.

(4) Rplp0 gene-level counts (nascent + mature + ambiguous) of mouse C2C12 myoblast
cells from a SPLiT-seq single-cell RNA-seq assay, wherein reads from the random hexamer
priming strategy were quantified separately from the reads with the oligo-dT priming
strategy. The Rplp0 CPMs (counts per million) of individual cells are plotted. (B) Genome
browser tracks of the reads aligned to the Rplp0 gene. (C) Normalized TCCs of UMIs
assigned to the Rplp0 gene. Each row in the heatmap represents an EC (i.e. a set of
transcripts that a UMI is compatible with) and each column represents an individual cell.
ECs essentially capture UMI assignment ambiguity between isoforms and, when mapping
reads to the nac index, between nascent and mature status. The transcripts that constitute
each of the 12 ECs shown are presented in the UpSet plot labels to the right of the heatmap.
Each UMI within a given cell is assigned to an EC and a transcript isoform can be present
in multiple ECs. The isoform structures shown on the right were obtained from ENSEMBL.

All in all, while the described scheme, implemented in the nac index, can provide accurate
quantification of mature RNA transcripts, nascent RNA transcripts, and ambiguous RNA
transcripts (i.e. transcripts that cannot be unambiguously resolved as nascent or mature),
how to jointly utilize these three types of RNA transcripts remains an avenue for future
research. One approach to “integrating” the nascent and mature modalities is via
biophysical modeling of transcription (Carilli et al., 2024; Gorin et al., 2023; Gorin and
Pachter, 2022a); however questions remain, such as how to best utilize reads that are
ambiguous between the modalities. Importantly, there is not one single “count matrix”;

rather, there are multiple count matrices that each lend value in single-cell and single-

28
nucleus RNA-seq analyses. The number of count matrices becomes even larger when

considering technologies such as SPLiT-seq (Rosenberg et al., 2018), for which two
different priming strategies (oligo-dT and random hexamer) exist for a single cell, or
Smart-seq3 (Hagemann-Jensen et al., 2020), for which two complementary DNA (cDNA)
fragment types (UMI and internal) exist, thus resulting in an additional set of count
matrices. The ability to differentiate and quantify nascent, mature, and ambiguous
transcripts offers a more nuanced view of gene expression, potentially enriching our

understanding of RNA processing and transcriptome dynamics.

There are several limitations to the quantification framework we have proposed. In a cell,
the set of unprocessed mRNAs at any given time is likely to include partially processed
molecules (Pai et al., 2018; Pandya-Jones and Black, 2009), and in principle the complete
splicing cascade must be understood and known in order to accurately quantify single-
nucleus or single-cell RNA-seq data. Furthermore, the presence of ambiguous reads both
for single-cell and single-nucleus RN A-seq is unsatisfactory. Ideally reads should be longer
so that they can be uniquely classified, or they should be fractionally classified
probabilistically.

Nevertheless, this work introduces a method for improving the accuracy of generating
count matrices. It is anticipated that these improved quantifications and the multimodal
nature of these quantifications will prove useful for multiple downstream applications,
including both total gene expression quantification and the integration of multiple count

matrices via biophysically informed models.

29
Distinguishing flanking k-mers

As mentioned in the previous section, DFKs are a minimal set of k-mers that can be used
to distinguish whether a read that is mapped to a set of targets in the transcriptome index
has its origin from within the transcriptome index or has an external origin. Essentially,
they enable accurate quantification of RNA-seq reads in experiments where reads that are
not an expression of the target transcriptome may still contain sequences which do occur
in the target transcriptome (Sullivan et al., 2025). Without these DFKs, these reads may be
erroneously quantified as transcripts in the target transcriptome (Kaminow et al., 2021),
based on alignment of the common sequences. Thus, they serve as a sort of sophisticated
“background filter”. The D-list (distinguishing list) represents the sequences from which
DFKs are extracted based on the contents of the transcriptome index. The transcriptome
index is a colored de Bruijn graph (Igbal et al., 2012) that sequencing reads can be
mapped/aligned against (i.e. determining which transcript(s), represented as colors in the
graph, that a read might have originated from); this mapping process is based on identifying
k-mers shared between the sequencing reads and the de Bruijn graph via a process termed
pseudoalignment (Bray et al., 2016). The D-list may contain any sequences that are not
desired in the abundance matrix yielded by the quantification. Such sequences may include
genomes of other organisms (Luebbert et al., 2025) to avoid mismapping due to sample
contamination, they may consist of the genome from which the target transcriptome was
made, or they may contain common transposable elements, such as Alu regions, which
might confound analyses. The D-list is incorporated into the index by finding all sequences,
k base-pairs or longer, that occur in both the D-list and the target transcriptome. The first
k-mer upstream and the first k-mer downstream of each such common sequence in the D-
list are added to the index-colored de Bruijn graph (dBG). We refer to these new vertices
in the graph as DFKs. The DFK vertices are left uncolored in the index, such that during

quantification, reads that contain them will be masked out, and go unaligned.

As an illustration of how DFKs work, consider a read containing both k-mers found only

in intergenic RNA and k-mers found both in mRNA and the intergenic RNA. If that read

30
is mapped to an index built from mRNA transcripts, the mRNA k-mers will be found in

the index, whereas the disambiguating genome k-mers will not. The whole read will be
erroneously mapped based on the ambiguous k-mers (i.e. the k-mers found both in mRNA
and the intergenic RNA) that are present in the index. By finding all ambiguous k-mers in
the mRNA index, and adding any distinguishing flanking genome k-mers to the index, the
read will be masked from mapping to an mRNA transcript (Figure 3.5).

A read IS read N
— ———

compatible compatible

index [N D-index NN
T

|1 Distinguishing flanking k-mers |

B ;l'l Distinguishing flanking k-mer I'IDistinguishing flanking k-mer |

l'l In target transcriptome] ﬂCommon sequence | |l1 In target transcriptome

Figure 3.5: Overview of DFKs.

(A) A nontranscriptomic read containing a subsequence of length greater than k, which
also occurs in a transcript in the target transcriptome index, will get attributed to that
transcript. DFKs, here shown in the modified index (the D-index), can be used to determine
whether a read compatible with a reference transcriptome may have originated from
elsewhere in the genome. In this diagram, the D-index is one constructed with DFKs. The
hatched region depicts the k-mers shared between the read and the index, and the line
underneath the read shows the sequence stretch spanning both those shared k-mers plus
the DFKs. (B) A dBG representation of DFKs.

Recent papers have discussed various ways of reducing the number of false positives in
RNA quantification through either including the entire genome or a subset of the genome

in the index as a “decoy” or through alignment scoring (Srivastava et al., 2020). The D-list

31
method is distinct in that it incorporates only the minimum amount of data, required to

disambiguate common sequences, into the index while still adhering strictly to the
principles of k-mer based pseudoalignment. Therefore, the memory usage and runtime of
using pseudoalignment using a D-list are on par with the memory usage and runtime
without the use of a D-list. This method can scale favorably to larger genome size (or, more

generally, larger D-lists) while the target sequences to map against remain small.

The algorithm on the next section details the procedure in more detail, and the lemma that

follows demonstrates the space-efficiency of DFKs.

Generating DFKs:

A sequence s is a string of symbols drawn from an alphabet £ = {A, T, C, G}. The length
of' s is denoted by |s|. A substring of s is a string that occurs in s: it has (zero-indexed) start
position i and end position j and is denoted by s[i : j], therefore |s[i : /]| is equal toj — i. In
the case that |s[7:j]| equals k-mer size k, s[i :j] is k-mer. A compact de Bruijn graph
(cdBG) is a dBG where all maximal nonbranching paths of vertices from a dBG, wherein
each vertex is a k-mer, are merged into single vertices (21). Each vertex in a ¢cdBG is a
sequence called a unitig. We define a cdBG U as a set where each element u € U is a unitig.
The function Map(s, u) takes in ak-mersand a unitig#, and returns the position
of s along u if s exists in u, or NULL otherwise. The following algorithm applies these
definitions toward identifying DFKs from a D-list D, given a cdBG U of k-mer size & built
over target sequences (e.g. a transcriptome). For expository purposes, the algorithm is
described such that Uis a nonbidirected cdBG (i.e. the k-mers and their reverse
complements are not represented identically). However, in practice each k-mer and its
reverse complement are represented as a single canonical k-mer (the lexicographic
minimum of the k-mer and its reverse complement). Additionally, for simplicity, we define
DFKs and describe the algorithm only for single overhangs (i.e. the flanking sequences

that make up the DFKs will not be more than one k-mer long).

32

Algorithm Generate distinguishing flanking k-mers from a D-list

Input: Set of sequences D constituting the D-list, k-mer size k, cdBG U
1: function GenerateDFKs(D, k, U)

2: DFKs — @

3: for each seq € D do

4: pos «— 0

5: Ib——1 > Lower bound of “common sequence” (position of leading DFK)
6: ub — —1 > Upper bound of “common sequence” (position of trailing DFK)
7: N «—[seq| —k+1 > Number of k-mers in seq
8: while pos < N do

9: s < NULL

10: if pos # N then

11: s «— seq[pos : pos + k|

12: if s #NULL A Ju € U : Map(s, u) # NULL then > If k-mer s present in cdBG
13: if /b =—1 then

14: Ib — pos—1

15: n «— Map(s, u)

16: while s # NULL A Map(s, u) = # do

17: pos —pos+1,n«—n+1 > Extend mapping of sequence onto unitig
18: s «<— NULL

19: if pos # N then

20: s «— seq[pos : pos + k]

21: ub «— pos

22: else

23: if 0 </b <ub then

24: DFKs «— DFKs U {seq[lb : Ib+ k]} > Add leading DFK
25: if [b < ub < |seq| — k then

26: DFKs «— DFKs U {seq[ub : ub + k]} > Add trailing DFK
27: pos < pos + 1

28: Ib«——1,ub+— -1

29: return DFKs

Lemma. The worst case space complexity of DFKs is O(min(Ny, Mx)) where Ni and M
are the number of unique k-mers in the de Bruijn graph (dBG) and D-list, respectively.

Proof. Considering the alphabet £ = {A,T,C,G}, Vs € dBG, the maximum number of
flanking k-mers on each side of s is |Z|, permitting a flanking k-mer for each character in
the alphabet. On each side of s, the maximum number of DFKs, which are the flanking -
mers in the D-list but not in the dBG, is || — 1 corresponding to the presence of one
flanking k-mer that exists in the dBG and the remaining || — 1 k-mers being DFKs. Since
s has two sides (leading and trailing), the maximum number of DFKs becomes 2(|X| — 1) =
6. In the worst-case scenario, Vs € dBG, s contains the maximum number of DFKs. Thus,
|IDFKs| < 6Nk where |DFKs| is the cardinality of the set of DFKs. The actual number of
DFKs identified from the D-list is bounded by the number of unique k-mers in the D-list,
denoted as My, i.e., [DFKs| < Mk. Since |DFKs| < min(6Nk, My), the space complexity for
storing DFKs is O(min(Nk, My)). =

33
Implementation of the D-list and DFKs in software:

The D-list is implemented in kallisto version 0.50.1 (Bray et al., 2016; Sullivan et al.,
2024). The kallisto index command contains a --d-list option that takes in, as an argument,
the path to a FASTA file containing the D-list sequences for building an index with the D-
list. The kallisto index command also contains a --d-list-overhang option for specifying
longer overhangs (i.e. extending the flanking sequences that make up the DFKs). The
kallisto bus command (20) contains a --dfk-onlist option that, when enabled, adds a D-list
target to the equivalence class (i.e. the multi-set of transcripts associated with a read) for a
given pseudoalignment if a DFK is encountered rather than discards the read; this option
is useful for distinguishing reads that do not pseudoalign versus reads that are discarded
due to a DFK. Finally, in kb-python (version 0.28.0), the kb ref command automatically
uses the genome FASTA as the D-list when building the kallisto index—a behavior that
can be overwritten by explicitly specifying --d-list in kb ref. As a minor nuance, the default
genome FASTA D-list does not contain splice junctions (SJs); however, the number of
additional DFKs that would be indexed with the inclusion of SJ-spanning sequences is
miniscule since SJ-spanning contigs are only k — 1 number of k-mers in length. Therefore,
including the spliced transcriptome in the D-list would be unlikely to make any difference

in read mapping.

Additionally, in the updated kallisto software, the dBG implementation was replaced with
Bifrost (Holley and Melsted, 2020), which employs a minimizer (Roberts et al., 2004)
lookup table in lieu of a k-mer lookup table in order to achieve a lower memory footprint.
Furthermore, since the set of minimizers in the graph is known at the time of quantification,
we replaced the minimizer hash function with BBHash (Limasset et al., 2017), which
implements a minimal perfect hash function. This enables kallisto to shrink the minimizer
hash table to capacity, saving memory. Additionally, the equivalence class (EC) data
structure was redone. Sets of transcripts are represented as Roaring bitmaps (Chambi et al.,
2016) and a Robin Hood hash map (https://github.com/martinus/unordered_dense) is used
for the inverted hash table mapping transcript sets to EC. The Robin Hood hash map data

34
structure is also for storing DFKs since, as the number of DFKs is relatively small,

having a separate hash map to store DFKs occupies less memory, with only a small
reduction in speed, compared with integrating the DFKs into the main dBG (Figure 3.6).
These changes have resulted in an approximately 2% reduction in runtime and 4x reduction
in memory consumption in kallisto v0.50.1 compared with kallisto version 0.48.0 when

using the nac index type to map single-cell RNA-seq reads (Figure 3.6).

nac index type; 8 threads
10x v3 human pbmc_5k S1_L001 (96,285,389 reads)

DFKs in de Bruijn graph 19.6
(kallisto v0.50.0)
DFKs in separate hashmap 14.3
No D-list 14.1
kallisto (v0.48.0; no D-list) 29.4 59.1

0 5 10 15 20 25 30 35 0 10 20 30 40 50 60 70
Time elapsed (minutes) Maximum resident set size (GB)

Figure 3.6: Performance comparison of different implementations of the kallisto nac index
type (which contains both the nascent and mature transcriptomes), when assessed on
sequencing reads on a dataset produced by 10x Genomics.

The kallisto software is available under the BSD-2-Clause license and is available at

https://github.com/pachterlab/kallisto.
Benchmarking:

We obtained the simulation framework developed by the authors of STARsolo (Kaminow
et al., 2021) from https://github.com/dobinlab/STARsoloManuscript/ and ran the
simulation as-is to generate a ground truth matrix. For the kallisto nac index type, the

“mature” and “ambiguous” count matrices were summed up by using --sum=cell in kb

35
count and the resultant matrix was used for testing. For all tools, a predefined “on list”

of barcodes (referred to in other tools as a whitelist or an unfiltered permit list) was

supplied. The three simulated sequencing datasets used are as follows:
e No multigene: 339 million reads
e With multigene: 350 million reads
e Exon-only, no multigene: 189 million reads

The command /usr/bin/time -v which executes the GNU time program was used to obtain
the elapsed (wall clock) time and the maximum resident set size for runtime and peak
memory usage, respectively. All performance assessments were conducted on a server with
x86-64 architecture, 88 CPUs (Intel Xeon Gold 6152 CPU @ 2.10GHz) and 768 GB of

memory.

To evaluate the performance of a program’s output gene count matrix G, € R™*™ against
a simulation’s ground truth gene count matrix Gg¢ € R™™, where n is the number of cells,
m is the number of genes, J;; is the count of gene j in cell i in G, and y;; is the count of

gene j in cell i in Gy, the following metrics are used:

Root mean squared error (RMSE):

RMSE = % Z Z(?Jm - ?Qz'j)Q

i=1 j=1

False positive representation (FPR):

nm 0 otherwise
i=1 j=1

FPR— ii{l if y;; = 0 and g;; > 0

36
False negative representation (FPR):

n m . A
FNR — 1 ZZ 1 1fy7;j>0andyij:0
nm 0 otherwise
i=1 j=1
Note that the FPR and FNR are defined such that the denominator is the total size of the
matrix and therefore differ from the traditional false positive rate and false negative rate

calculations.

Correlation coefficient: We use two per-cell correlation coefficients to assess the
correlation between the “ground truth” simulated gene counts cell and the program’s output
gene counts for a given cell. The first, r, is the Pearson correlation computed across all
genes within a given cell. The second, p*, is a modified variant of the Spearman correlation
in that the Spearman correlation is computed only using the genes that have a nonzero
count in both the simulation and the program output within a given cell. This variant is the
assessment used by the developers of the STARsolo simulations (Kaminow et al., 2021).
The restriction to nonzero cells is necessary when using the Spearman correlation, as the
zeroes cannot be ranked with respect to each other. However, we note that use of the
Spearman (and therefore ignoring the zeroes) provides an assessment that is highly
sensitive to low counts, especially the difference in a program reporting a one or a zero for

a gene in a cell.
Pearson correlation for cell i using all genes:

r; = pearson ({<y2]7 :gij)v .] - 17 S 7m})

Spearman correlation for cell i, using only genes with a nonzero count in both the

simulation and the program output for that cell:

pPi* = spearman ({(yzjygzj) | (’yz'j,@ij) # (070)7 J=1... ,m})

37
Further (downstream) analyses of count matrices were performed following methods

described in other work, which should be referred to for a more detailed description (Rich
et al., 2024). Briefly, after filtering the count matrix for a minimum of 3 cells per gene, a
minimum of 200 genes per cell, and a maximum 20% mitochondrial gene content, count
data were CP10k normalized then loglp transformed. Highly variable genes were selected
for, then normalized gene counts were scaled to zero mean and unit variance. Nearest
neighbor graphs were constructed from the cell coordinates on the top 50 principal
component analysis (PCA) embeddings. Clusters were formed from the Leiden algorithm
(Traag et al., 2019) and then visualized on alluvial plots and Uniform Manifold
Approximation and Projection (UMAP) plots (Becht et al., 2019; Mclnnes et al., 2018).
These processing steps, as well as selection of significant (adjusted p-value < 0.05) marker

genes across all clusters, were performed using Scanpy (Wolf et al., 2018).

Code for the analysis is available at https://github.com/pachterlab/SHSOHMP 2024.

Unless stated otherwise, the software versions used are as follows: kallisto 0.50.1, bustools
0.43.2, kb-python 0.28.0, salmon 1.10.0, alevin-fry 0.8.2, simpleaf 0.15.1, Rsubread
2.12.3, Cell Ranger 7.0.1, STAR 2.7.9a, Bowtie2 2.5.3, seqkit 2.8.0, SAMtools 1.19.2,
Scanpy 1.9.5 and splitcode 0.30.0. Additionally, Bandage version 0.8.1 (Wick et al., 2015)
was used for rendering dBGs into ribbon-like representations. The human reference
genome (GRCh38) used throughout is the same one used in the STARsolo simulations
(Kaminow et al., 2021). The GRCh38 FASTA and GTF files used are available from the
previously mentioned code repository. The mouse reference genome (GRCm39) used is
the primary assembly FASTA file from Ensembl with the corresponding GTF annotation
version 110, which was filtered to only include the gene biotype values of protein_coding,
IncRNA, lincRNA, and antisense. These references were used for the analyses throughout

both this section and the previous section of this chapter of this dissertation.

38
Results:

To assess improvement of using pseudoalignment with DFKs on single-cell RNA-seq
reads, we used the simulation framework developed by the authors of STARsolo
(Kaminow et al., 2021). In that simulation framework, errors were introduced into reads at
0.5% mismatch error rate, and reads were simulated from both coding and noncoding
genomic sequence to mimic the presence of both unprocessed, partially processed and
completely processed transcripts in single-cell RNA-seq experiments. The top 5000
barcodes, based on UMI count from the simulated data, were used for analysis (Figure
3.7A). When quantifying simulated reads that only span exons with kallisto, the DFKs
produced by a D-list do not considerably affect quantification accuracy (Figure 3.7B).
However, upon including reads that span introns, the D-list improves the concordance
between kallisto quantification count matrix and the simulated truth count matrix in both
simulations that only include reads that map uniquely to one gene (Figure 3.7C) and in
simulations that additionally include multigene reads (Figure 3.7D). Interestingly, although
the nac index type includes nascent and mature transcripts, the quantification accuracy still
improves slightly with the use of a D-list, likely due to filtering out reads that originate
from outside annotated genic loci. The evaluation metrics are shown in Table 3.1. Note
that, for the nac index type, UMIs assigned to nascent transcripts were not used in the
quantification because the simulation truth matrix does not include nascent transcript
counts. For the multigene case, bustools was run with the multimapping option enabled
when counting UMIs following kallisto quantification. While this mode can identify
nonuniquely mapped reads by dividing UMI counts uniformly amongst the genes that the
UMI is assigned to, it results in counts that are not whole numbers; thus, the standard for

the field has been to discard such UMIs.

39

A . Simulated data B Simulation: Single-cell RNA-seq (exon-only; no multigene)
4 T
10 : 2000 mmm Kallisto [standard]
106 i} 1 B Kallisto [standard] (D-list)
H 1750w Kallisto [nac]
2 1054) 1500 ™ kallisto [nac] (D-list)
© ! %)
o ' -
o 104 ! 3 1250
g ks
™ 103_ g 1000
o €
- > 2 750
o 1044
& 500
101.
0 250
1001 ,
no N1 N2 n3 n4 0
10 10* 10 10° 10 065 070 075 080 085 090 095 1.00
UMI Counts Per-cell Spearman coefficient
(o Simulation: Single-cell RNA-seq (no multigene) D Simulation: Single-cell RNA-seq (multigene)
1000 N kallisto [standard] I kallisto (mult) [standard]
B Kallisto [standard] (D-list) 400 mmm Kallisto (mult) [standard] (D-list)
I Kallisto [nac] I kallisto (mult) [nac)
800 W Kallisto [nac] (D-list) B Kallisto (mult) [nac] (D-list)
E4 ©» 300
5] ©
< 600 o
o o
5 i
'g é 200
5 400 E
200 100
0 T eivetf . :
0.65 0.70 0.75 0.80 0.85 0..90 0.95 1.00 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Per-cell Spearman coefficient Per-cell Spearman coefficient

Figure 3.7: Assessment of the impact of DFKs on accuracy when tested on simulated
data generated using the STARsolo simulation framework.

(4) Knee plot of the truth count matrix from the STARsolo single-cell RNA-seq simulation.
These simulated data represent the “no multigene” simulation. The 5000 cell barcodes
with the highest UMI counts were filtered for (corresponding to a UMI threshold of 667).
These 5000 cell barcodes were used in downstream analysis of all STARsolo simulated
data. (B) Correlation between kallisto quantifications versus simulated truth for reads only
spanning exons. (C) Correlation between kallisto quantifications versus simulated truth
for single-cell RNA-seq reads that map to a single gene. (D) Correlation between kallisto
quantifications versus simulated truth for single-cell RNA-seq reads that include multigene
reads. mult: the multimapping quantification mode is enabled. The per-cell spearman
correlation, p*, between gene counts was determined by excluding genes that contain zero
counts in both the kallisto quantification and in the simulation quantification for a given
cell barcode.

40

Index type|D-listjmult{Median p*{Median r [RMSE FPR FNR k-mers DFKs
Simulation: Single-cell RNA-seq (exon-only; no multigene)

standard 0.991464 [0.999953 [0.04132 [0.000056 [0.000367 [113,209,587 [0

standard v 0.988987 [0.999922 |0.052084 [0.00004]0.000487 |113,209,587 14,333,316

nac 0.986443 [0.999888 [0.062731 [0.000038 |0.000595 [1,398,470,117 [0

nac v 0.985968 [0.999875 |0.066492 [0.000038 |0.000615 |1,398,470,117 |11,119,173
Simulation: Single-cell RNA-seq (no multigene)

standard 0.742376 [0.993061 [0.626481 [0.019403 [0.000328 (113,209,587 [0

standard v 0.973168 [0.999815 [0.081196 [0.000808 [0.000481 (113,209,587 (4,333,316

nac 0.959529 [0.996173 [0.484103 [0.000646 [0.000594 (1,398,470,117 [0

nac v 0.980208 [0.999809 (0.084899 [0.000206 [0.000615 |1,398,470,117 (11,119,173
Simulation: Single-cell RNA-seq (multigene)

standard v 10.751159]0.991926]0.665475 |0.051278]0.000265 |113,209,587 |0

standard v | v [0.932976 [0.999174 |0.168532 [0.00475 |0.00048 113,209,587 |4,333,316

nac v 10.933767 0.995264]0.524677 |0.037164]0.000568 |1,398,470,117 |0

nac v | v [0.945177 (0.999168 [0.169827 (0.032405 |0.000595 (1,398,470,117 [11,119,173

Table 3.1. Evaluation metrics of kallisto on simulated data generated using the STARsolo
simulation framework.

41
Since each DFK is only one k-mer flanking a unitig, we then sought to assess whether

considering more k-mers flanking a unitig as DFKs (i.e. longer overhangs) would improve
the accuracy of kallisto (Figure 3.8A). We found that the benefit of including longer
overhangs is negligible (Figure 3.8B and 3.8C; Table 3.2); therefore, by default, we adhere

to having exactly one DFK overhang.

A B % c

—e— standard —e— standard
—&— nac —&— nac

50 0.95

40

Number of DFKs (millions)

10

—e— standard 01 - Z Z |

- nac

0 1 2 3 4 5 6 o 1 2 3 4 5 6 o9 1 2 3 4 5 6
Overhang Overhang Overhang

Figure 3.8: Assessment of the impact of longer overhang DFKs on accuracy when tested

on simulated data generated using the STARsolo simulation framework.

(A) The number of DFKs at various overhang settings. An overhang of 0 means no DFKs
were used. An overhang of 1 is the default setting for the D-list implementation. (B) Median
correlation coefficient p* between kallisto quantifications at various D-list overhang
settings versus simulated truth for the “single-cell RNA-seq (no multigene)” simulation.
(C) RMSE between kallisto quantifications at various D-list overhang settings versus
simulated truth for the “single-cell RNA-seq (no multigene)” simulation.

42

':‘ydpe: Overhang |mult Megfa“ Medianr |RMSE [FPR [FNR |k-mers DFKs
Simulation: Single-cell RNA-seq (no multigene)

standard 2 0.973984 (0.999819 |0.080112 |0.000739 [0.000495 |113,209,587 (9,649,025
standard 3 0.974748 (0.999824 |0.078881 |0.000685 [0.000506 |113,209,587 |15,696,903
standard 4 0.97535 [0.999826 |0.07816 |0.000643 [0.000513 113,209,587 |22,293,140
standard 5 0.975842 [0.99983 [0.077472]0.000608 [0.000519 113,209,587 |29,278,838
standard 6 0.976265 [0.999833 |0.076833 |0.00058 [0.000524 [113,209,587 |36,550,263
nac 2 0.980336 [0.999812 |0.083905 |0.000202 [0.000618 |1,398,470,117 |21,338,179
nac 3 0.980491 [0.999814 |0.08297 |0.000197 [0.000619 |1,398,470,117 |30,833,829
nac 4 0.980585 [0.999816 |0.082474 |0.000193 [0.00062 (1,398,470,117 |39,760,674
nac 5 0.980698 [0.999817 |0.082168 |0.000189 [0.000621 |1,398,470,117 |48,233,865
nac 6 0.980771 [0.999819 |0.081806 |0.000185 [0.000622 [1,398,470,117 |56,344,346
mult: the multimapping quantification mode is enabled (not enabled for any of the runs
here). Overhang: The number of k-mers flanking a unitig to be considered a DFK.
p*: Modified spearman correlation. r: Pearson correlation. RMSE: root mean squared
error. FPR: false positive representation. FNR: false negative representation.

Table 3.2. Evaluation metrics of kallisto on simulated data as a function of DFK overhang.

Next, we assessed the performance of other tools using the STARsolo simulation
framework. Specifically, we assessed four tools: (i) STARsolo (Kaminow et al., 2021), a
single-cell/nucleus RNA-seq tool built into the STAR aligner program (Dobin et al., 2013),
(i1) Cell Ranger (Zheng et al., 2017), the pipeline implemented by 10x Genomics, (iii)
cellCounts (Liao et al., 2023), a tool based on the Rsubread aligner (Liao et al., 2019) and
the featureCounts program (Liao et al., 2014), and (iv) alevin-fry (He et al., 2022; He and
Patro, 2023), a tool that leverages salmon (Patro et al., 2017) for pseudoalignment. We
found that the tools produced quantifications that correlated well with the simulated ground

truth for the simulated reads that only span exons (Figure 3.9A; Table 3.3). However, on

43
simulations including intronic reads, both alevin-fry, when executed in a standard

pseudoalignment configuration against a spliced transcriptome, and cellCounts performed
less well compared with STARsolo and Cell Ranger (Figure 3.9B; Table 3.3). In the case
of alevin-fry, using an expanded index that includes introns eliminated this decrease in
performance, which is consistent with prior reports (He et al., 2022). Enabling selective
alignment (Srivastava et al., 2020) in alevin-fry resulted in further accuracy improvements,
similar to the improvements yielded by the D-list, even when used with an expanded
transcriptome index. As the same simulated data were used in Table 3.3 and Table 3.1, the

results are directly comparable between kallisto (Table 3.1) and other software (Table 3.3).

A Simulation: Single-cell RNA-seq (exon-only; no multigene) B Simulation: Single-cell RNA-seq (no multigene)
2000 mmm STARsolo EEE STARsolo
e B Cell Ranger 1200 Cell Ranger
Bl alevin-fry (splici align) Bl alevin-fry (splici align)
1500 Bl alevin-fry (sketch) 1000 B alevin-fry (sketch)
I cellCounts Il cellCounts

1250 800

1000
600

750

400 [\
500 ‘
250 /\ / "

0 1 :
065 070 075 080 085 090 095 1.00 065 070 075 080 085 090 095 1.00

Per-cell Spearman coefficient Per-cell Spearman coefficient

Number of cells
Number of cells

Figure 3.9: Assessment of different tools on simulated data generated using the STARsolo
simulation framework.

(A) Correlation between quantifications produced by the tools versus simulated truth for
reads only spanning exons. (B) Correlation between quantifications produced by the tools
versus simulated truth for single-cell RNA-seq reads that map to a single gene. Evaluation
against multigene reads was not performed because of different methods exposed by
different tools to handle such reads. The per-cell spearman correlation, p*, between gene
counts was determined by excluding genes that contain zero counts in both the tool’s
quantification and in the simulation quantification for a given cell barcode. splici align:
Enabling the index used by alevin-fry that contains introns as well as selective alignment
mode. sketch: Selective alignment disabled and index is a standard transcriptome index
that does not include introns in alevin-fry. For Cell Ranger, version 7 was used with the
include-introns option set to false in order to mimic the default behavior of older versions
of Cell Ranger. For cellCounts, the featureType option was set to “exon” (which is the
default option) rather than “gene” in order to exclude intronic read quantification.

Program Run mode Median p* [Medianr |RMSE FPR FNR
Simulation: Single-cell RNA-seq (exon-only; no multigene)
STARsolo 0.993564 0.999968 0.030486 0.000053 0.000270
Cell Ranger --include-introns=false |0.956866 0.999547 [0.232195 [0.000030 |0.000343
alevin-fry splici align 0.984427 0.999902 0.069541 0.000030 0.000709
alevin-fry splici sketch 0.982900 0.999889 0.062949 0.000031 0.000743
alevin-fry align 0.990880 0.999931 0.060543 0.000030 0.000466
alevin-fry sketch 0.991528 0.999948 0.043601 0.000031 0.000393
cellCounts 0.915796 0.994174 0.521436 0.000239 0.001337
Simulation: Single-cell RNA-seq (no multigene)
STARsolo 0.991877 0.999940 0.042743 0.000140 0.000270
Cell Ranger --include-introns=false |0.955377 0.999499]0.232933 [0.000081 0.000343
alevin-fry splici align 0.971626 0.998672 0.288308 0.000314 0.000702
alevin-fry splici sketch 0.960025 0.997419 0.414070 0.000764 0.000739
alevin-fry align 0.879684 0.998145 0.312199 0.005676 0.000446
alevin-fry sketch 0.778933 0.995372 0.527728 0.016063 0.000357
cellCounts 0.825302 0.993000 0.532384 0.005890 0.001299
p*: Modified spearman correlation. r: Pearson correlation. RMSE: root mean squared
error. FPR: false positive representation. FNR: false negative representation.
alevin-fry options:
o splici align: Enabling the index used by alevin-fry that contains introns as well as
selective alignment mode.
o splici sketch: Enabling the index used by alevin-fry that contains introns without
selective alignment mode.
o align: Selective alignment enabled and index is a standard transcriptome index|
that does not include introns in alevin-fry.
o sketch: Selective alignment disabled and index is a standard transcriptome index|
that does not include introns in alevin-fry.
For Cell Ranger, version 7 was used with the include-introns option set to false in order|
to mimic the default behavior of versions 1,2,3,4,5, and 6.

Table 3.3. Evaluation of the STARsolo, Cell Ranger, alevin-fry, and cellCounts RNA-seq

programs on simulated data generated using the STARsolo simulation framework.

45
We assessed the impact of DFKs on memory usage and runtime when processing RNA-

seq reads. Across single-cell and single-nucleus RNA-seq datasets from human and mouse
tissue, DFKs resulted in only a minor increase in memory usage and runtime. Memory
usage increased by <2% which is on the order of megabytes while runtime increased by
<15% (Figure 3.10). On the other hand, mapping RNA-seq reads with the nac index type
resulted in a much more substantial increase in memory usage and runtime compared with
the standard index type. These results make sense as the nac index type is 10 times larger
than (i.e. contains 10 times as many k-mers as) the standard index type, whereas the DFKs
extracted from a D-list are only a small percentage (i.e. less than 5%) of the total number
of k-mers. Thus, DFKs can substantially improve RNA-seq mapping accuracy without

having a major impact on performance.

A Human 20k PBMC cells
Elapsed Time Peak Memory
kallisto [standard]
kallisto [standard] (D-list)
kallisto [nac]
kallisto [nac] (D-list) i ! : : : : =
0 20 40 60 80 0 2 4 6 8 10 12 14 16
Time (minutes) Maximum Resident Set Size (GB)
B Mouse 10k neuron cells
Elapsed Time Peak Memory
kallisto [standard]
kallisto [standard] (D-list)
kallisto [nac]
kallisto [nac] (D-list) ' i : _ | 2 - = : i i
0 20 40 60 80 0 2 4 6 8 10 12 14 16
Time (minutes) Maximum Resident Set Size (GB)
Cc Human 5k jejunum nuclei
Elapsed Time Peak Memory
kallisto [nac]
kallisto [nac] (D-list)
0 10 15 200 2 4 6 8 10 12 14 16
Time (minutes) Maximum Resident Set Size (GB)
D Mouse 5k lung nuclei
Elapsed Time Peak Memory
kallisto [nac]
kallisto [nac] (D-list)
0 5 10 15 200 2 4 6 8 10 12 14 16

Time (minutes) Maximum Resident Set Size (GB)

46
Figure 3.10: Runtime and memory usage of kallisto with different index types.
(A and B) Runtime (on 16 threads) and memory usage of the standard index type and the
nac index type, created with and without a D-list, on single-cell RNA-seq data generated
with 10x Genomics. (C and D) Runtime (on 16 threads) and memory usage of the nac index
type, created with and without a D-list, on single-nucleus RNA-seq data generated with
10x Genomics. The standard index type was not employed for single-nucleus RNA-seq data
because single-nucleus RNA-seq reads predominantly originate from intron-containing
pre-mRNA.

Since DFKs improve mapping specificity, a natural question that arises is whether the
improvement in accuracy scales with higher sequencing error rates. Particularly, how do
DFKs compare to alignment-based approaches in maintaining accuracy in the face of more
sequencing errors? To address this, we introduced additional sequencing errors, consisting
of a combination of mismatches, insertions, and deletions, into the STARsolo simulations.
We found that the usage of DFKs always results in an improvement in accuracy, even with
a high mismatch rate or a high indel rate within the simulated sequencing reads
(Figure 3.11A). In contrast, while alignment-based methods tend to be robust to mismatch
errors, they fall short with high indel rates (Figure 3.11B). In particular, the same selective
alignment settings when executed on the original simulation and simulations where indels
are introduced result in a substantial performance decrease on the indel simulations.
Altogether, these results (Table 3.4) suggest that pseudoalignment with the incorporation
of DFKs is more robust than alignment-based methods to indels. Such considerations may
be important when mapping RNA-seq reads from technologies with higher indel rates, such

as long-read RNA-seq (Delahaye and Nicolas, 2021; Zhang et al., 2020).

A 0 0Simulation: Single-cell RNA-seq with introduced errors B Simulation: Single-cell RNA-seq with introduced errors

re

220

-0.1

-0.2

-0.3

ARMSE

-0.4

-0.5

B kallisto [standard]
B kallisto [nac]

=
o

0:0:0
Number of errors (mismatches:deletions:insertions)

1:1:1

4:0:0

0:2:2

3:5

2.5

1.5
1.0
0.5
0.0-

47

0:0:0

1:1:1

B kallisto [nac] (D-list)
B alevin-fry (splici align)
3.01 Wmm alevin-fry (splici sketch)
Bl STARsolo

4:0:0 0
Number of errors (mismatches:deletions:insertions)

12:2

Figure 3.11: Assessment of different mapping modes on simulated data generated using
the STARsolo simulation framework including the introduction of errors into the reads.
(A) Reduction in quantification error, as measured by change in RMSE, by using a D-list
to index DFKs compared with not using a D-list on simulated reads with mismatches,
deletions, and insertions. (B) Quantification error of different tools on simulated reads
with mismatches, deletions and insertions. splici align: enabling the index used by alevin-
fry that contains introns as well as selective alignment mode. splici sketch: Same as “splici
align” except selective alignment mode is disabled. The errors were introduced into the
“single-cell RNA-seq (no multigene)” simulated reads.

Mismatches

Deletions

Insertions

Program

Run mode

Median
p*

Median r

RMSE

FPR

FNR

Simulation: Single-cell RNA:

-seq (no multigene)

kallisto

standard
(no D-list)

0.629277

0.993046

0.575156

0.030304

0.001565

kallisto

standard
(D-list)

0.87452

0.998388

0.276873

0.003689

0.002376

kallisto

nac (no D-
list)

0.890008

0.995764

0.484241

0.001393

0.002872

kallisto

nac (D-list)

0.900935

0.998259

0.29544

0.001023

0.002973

alevin-fry

splici align

0.673962

0.989232

1.592164

0.000077

0.018216

alevin-fry

splici
sketch

0.899393

0.99736

0.39301

0.001391

0.002823

STARsolo

0.911674

0.998962

0.271059

0.000888

0.002918

48

standard

4 0 0 kallisto (no D-list) |0.612826|0.992954|0.570622|0.030607|0.002184
standard

4 0 0 kallisto (D-list) |0.85271 |0.998136|0.305361|0.004151|0.002991

nac (no D-

4 0 0 kallisto list) 0.870739|0.995728|0.483343|0.001446|0.003621

4 0 0 kallisto nac (D-list) |0.881683 |0.997985/0.330969|0.001098|0.003706

4 0 0 alevin-fry | splici align |0.819814|0.996343|0.76258 |0.000141/0.008301

splici

4 0 0 alevin-fry | sketch |0.878774|0.9971 |0.415686/0.00136 |0.003727

4 0 0 STARsolo 0.948253|0.999501|0.141767|0.000947|0.001244
standard

0 2 2 kallisto (no D-list) |0.586625|0.993183|0.557911|0.030393/0.002935
standard

0 2 2 kallisto (D-list) |0.831982(0.997594(0.381203|0.00433 |0.003804

nac (no D-

0 2 2 kallisto list) 0.851074|0.99581 |0.500121|0.001891|0.004287

0 2 2 kallisto nac (D-list) |0.861993 |0.997502|0.403226|0.001458|0.004384

0 2 2 alevin-fry | splici align |0.412969|0.924791|3.764902/0.000033/0.053289

splici

0 2 2 alevin-fry | sketch |0.852768|0.996873|0.466828/0.00178 |0.004671

0 2 2 STARsolo 0.763642|0.994432|0.948656|0.000552|0.010949

*: Modified spearman correlation. r: Pearson correlation. RMSE: root mean squared error.

FPR false positive representation. FNR: false negative representation.
alevin-fry options:
e splici align: Enabling the index used by alevin-fry that contains introns as well as selective alignment
mode.
e splici sketch: Enabling the index used by alevin-fry that contains introns without selective alignment
mode.

Table 3.4. Evaluation metrics of the kallisto, alevin-fry, and STARsolo single-cell RNA-seq
programs on simulated data generated using the STARsolo simulation framework with
errors introduced into sequencing reads.

49
Comparison of different index strategies:

As mentioned in the first section of this thesis chapter, the extended transcriptome index
(i.e. the nac index type), by virtue of indexing intron-containing nascent transcripts, enables
the mapping of a substantial fraction of reads that would otherwise go unmapped when

using the standard index type (Figure 3.12, Figure 3.13).

Count
Transcriptome matrices
Nascent RNA
/ + distinguishing
flanking

k-mers Map RNA-seq
reads

Mature RNA
ENE=N —

Figure 3.12: Transcriptome indices for accurately mapping RNA-seq reads.

The standard index is concise, as it only contains mature RNA; it is a suitable lightweight
solution when one wishes to simply quantify mature RNA (as is typically the case with bulk
RNA-seq analysis). The nac index contains both nascent and mature RNA, providing a
more comprehensive framework for RNA-seq analysis. In either case, DFKs can be
beneficial.

50

100
_ mmm kallisto [standard]
$ e kallisto [nac)
v 80 e filtered by D-list
a
©
g 60
n
°
]
= 40
S
S}
- N
]
S 20
[}
a

0uman 20k PBMC cells

Mouse 10k neuron cells Human 5k jejunum nuclei Mouse 5k lung nuclei

Figure 3.13: RNA-seq read mapping rate for different transcriptome indices.

The gray bar represents the reads that are excluded when the D-list is used. Of note, the
standard index only has mature and ambiguous transcripts in the index (M + A) while the
nac index has nascent, mature, and ambiguous transcripts in the index (N + M + A). The
datasets used herein are described in the previous section of this thesis chapter.

We explored how different index types and different count matrices may affect
downstream clustering analysis and marker gene selection (Rich et al., 2024). Using the
human 20k PBMC dataset (10x Genomics), we projected filtered count matrices (high-
quality cells and highly variable genes) onto the first two principal components through
PCA (Figure 3.14A). Applying a D-list to the standard index type affected cell projections,
but the impact was mild, likely because the human reference genome is a comprehensive
and well-annotated assembly, reducing the chance of reads from exonic regions being
mismapped. The effect was even more subtle when applying a D-list to the nac index,
which includes intronic regions. A more significant difference emerged when comparing
analyses with and without nascent transcript quantification. When identifying marker
genes through differential gene expression, application of the D-list led to a fraction of
marker genes (2% for the standard index type; 14% for the nac index) being uniquely
identified in one condition (D-list or no D-list) but not the other, while incorporating
nascent transcript quantification resulted in 19% more marker genes being identified

(Figure 3.14B).

51

A Index type: standard Index type: nac Index type: nac
B * D-list /| + D-list
+ No D-list 2 + No D-list 40+

£33
£33
3
b3

204

204

PC2
PC2

201

-30 60 ’ 30 0 60 0

30 30 =
PC1 PC1 PC1

B Index type: standard Index type: nac Index type: nac
Number of marker genes Number of marker genes Number of marker genes

No D-list
10826

Figure 3.14: Effect of index strategy and count matrix type on single-cell RNA-seq analysis
of the human 20k PBMC dataset (10x Genomics).

(A) PCA of cells from the human 20k PBMC dataset (10x Genomics) for count matrices
generated in various ways. The first two principal components are shown. Black lines
connect identical cell barcodes from each matrix used in pairwise comparisons.
(B) Number of marker genes identified through differential gene expression analysis for
count matrices generated in various ways. Left-hand panel: Count matrices were
generated by mapping reads to the standard index type with and without a D-list. Middle
panel: Count matrices (M + A) were generated by mapping reads to the nac index type
with and without a D-list. Right panel: M + A and N + M + A count matrices were
generated by mapping reads to the nac index type. N: nascent, M: nature, and A:
ambiguous.

Although, broadly, cluster analysis remained largely unaffected by these different
strategies (Figure 3.15), the simulations earlier on showed that more pronounced
differences can be observed at the individual cell and gene level, thus making the selection
of index strategy an important consideration depending on the type of downstream analysis
that is to be performed. Additionally, “mature” and “nascent” quantifications provide
distinct insights into the cell’s profile. Although count matrices containing only “nascent”
or “mature” gene counts can sometimes yield similar clusters, the cellular profile differs

greatly, with many marker genes unique to each matrix (Figure 3.16).

52

standard index type (No D-list) standard index type (D-list)

Figure 3.15: Effect of index strategy and count matrix type on clustering of the human 20k
PBMC dataset (10x Genomics) single-cell RNA-seq dataset.

Alluvial plots of cluster assignment mapping alongside UMAP plots are shown for pairwise
comparisons of count matrices generated by different index strategies in human 20k PBMC
single-cell RNA-seq data. N: nascent, M: nature, and A: ambiguous.

53
M-only vs. N-only count matrix comparisons

* nascent

- mature Index type: nac
Number of marker genes

20
Mature

PC2

850

-20

-25 0 25 50 75
PC1

Nascent Mature

Figure 3.16: Effect of mature versus nascent count matrix types on clustering of the human
20k PBMC dataset (10x Genomics) single-cell RNA-seq dataset.

Alluvial plots of cluster assignment mapping, marker gene numbers, PCA plots, and UMAP
plots are shown for comparing nascent and mature count matrices.

This work introduces a combined approach of using DFKs with an extended transcriptome
index (nac index) in single-cell and single-nucleus RNA-seq analysis (Figure 3.17). This
method aims to address specific challenges in RNA-seq, particularly in the quantification
of nascent and mature mRNA transcripts, and in reducing mismapping errors caused by

reads originating outside of the targeted transcriptomic regions.

54

+ Distinguishing

B

de Bruijn graph

Figure 3.17: Summary of enhancements to read mapping and classification.

This figure shows k-mers originating from the standard transcriptome index, the extended
transcriptome index containing nascent RNA transcripts, and the entire genome. The
integration of DFKs into a de Bruijn graph is shown.

While most mismapping errors that affect single-cell RNA-seq quantification are
eliminated by extending the transcriptome index, DFKs provide further improvement to
quantification accuracy. Specifically, DFKs can eliminate erroneous mapping of reads that
originate from transcripts that appear outside even the extended transcriptome index. More
importantly, DFKs provide high scalability. DFKs can scale to higher sequencing error
rates as the accuracy gains of DFKs are not reversed when different sequencing error
profiles are introduced. Moreover, DFKs can scale to size. When only a small specific set
of targets is of interest but there are many known possible target sequences, those possible

target sequences can simply be incorporated into the D-list. The resultant DFKs will

55
optimize mapping specificity making it unnecessary to index all the possible target

sequences. Irrespective of whether the target sequences occupy a small proportion or a
large proportion of the “background”, the DFKs will improve mapping specificity without
any major impact on performance. Thus, the DFKs act as a space-efficient general

“background filter”.

56
Comprehensive pseudoalignment software protocol

The term ‘RNA-seq’ refers to a collection of assays based on sequencing experiments that
involve quantifying RNA species from bulk tissue, single cells, or single nuclei. The
kallisto, bustools and kb-python programs are free, open-source software tools for
performing this analysis that together can produce gene expression quantification from raw
sequencing reads. The quantifications can be individualized for multiple cells, multiple
samples or both. Additionally, these tools allow gene expression values to be classified as
originating from nascent RNA species or mature RNA species, making this workflow
amenable to both cell-based and nucleus-based assays. This protocol describes in detail
how to use kallisto and bustools in conjunction with a wrapper, kb-python, to preprocess
RNA-seq data. Execution of this protocol requires basic familiarity with a command line
environment. With this protocol, quantification of a moderately sized RNA-seq dataset can

be completed within minutes.

Overview:

The preprocessing step (Melsted et al., 2021; Tian et al., 2018) of RNA-seq experiments
(Mortazavi et al., 2008) involves mapping reads to a reference genome or transcriptome,
followed by gene expression or transcript abundance quantification (Conesa et al., 2016).
Many open-source tools exist for bulk RNA-seq preprocessing (Anders et al., 2015; Bray
et al., 2016; Dobin et al., 2013; Li and Dewey, 2011; Liao et al., 2019, 2014; Patro et al.,
2017; Pertea et al., 2016; Roberts and Pachter, 2013; Trapnell et al., 2012) as well as single-
cell RNA-seq preprocessing (Battenberg et al., 2022; He et al., 2022; He and Patro, 2023;
Kaminow et al., 2021; Liao et al., 2023; Melsted et al., 2021; Niebler et al., 2020;
Srivastava et al., 2019). Kallisto (Bray et al., 2016) introduced the pseudoalignment
paradigm for improving the accuracy of alignment and reducing runtimes and memory
footprint of bulk RNA-seq preprocessing and, with the development of bustools (Melsted
et al., 2019), has been adapted for both single-cell RNA-seq quantification (Melsted et al.,
2021) and single-nucleus RNA-seq quantification (Sullivan et al., 2025). The bustools suite

of tools operates on the read mapping results of kallisto and processes them to generate

57
quantification results, which may involve unique molecular identifier (UMI) collapsing

(Kivioja et al., 2012; Smith et al., 2017) and barcode error correction for single-cell and
single-nucleus assays. While multiple steps are necessary to process input consisting of
FASTQ sequencing files, a reference genome FASTA, and a GTF annotation (Kent et al.,
2002; Reese et al., 2000), to an output of quantifications using kallisto and bustools, these
steps are greatly facilitated by the wrapper tool, kb-python. kb-python can extract reference
transcriptomes from reference genomes and run kallisto and bustools in workflows optimal
for each assay type (Box 1) (Sullivan et al., 2024). The kb-python tool simplifies the
running of kallisto and bustools to the extent that all of this can be done in two steps: kb ref
for generating a kallisto index from an annotated reference genome and kb count for
mapping and quantification. Thus, kallisto, bustools, and kb-python make RNA-seq
preprocessing efficient, modular, flexible, and simple (Melsted et al., 2021).

Box 1: Software tools and their description

Software tools:

o kallisto: Performs pseudoalignment to a reference transcriptome and stores
the mapping results in a BUS file.

o Dbustools: Processes the results in the BUS file to correct barcodes,
deduplicate UMIs, and generate quantification files (e.g. count matrices).

e kb-python: A wrapper around kallisto and bustools that facilitates usage of
those tools and facilitates the generation of a reference transcriptome. The
kallisto and bustools binaries come packaged in kb-python.

Installation:

pip install kb_python

Index construction:

For RNA-seq read mapping, kallisto builds an index from a set of sequences, referred to as
targets, representing the set of sequences that RNA-seq reads can be mapped to. In a
standard analysis, these targets are usually transcript sequences (i.e. each individual target

corresponds to one transcript). However, more generally, users can define targets from any

58
sets of sequences they wish to map their sequencing reads against. Since kallisto is a tool

that leverages pseudoalignment, the mapping procedure relies on read assignment, such
that each read is deemed to be compatible with a certain set of targets, rather than standard
alignment. The kallisto index is based on the Bifrost (Holley and Melsted, 2020)
implementation of the colored de Bruijn graph (Igbal et al., 2012), which enables memory-

efficient and rapid read assignment.

kb-python enables the construction of kallisto indices through the kb ref command
(Figure 3.18). Different types of kallisto indices can be built by specifying the --workflow
argument in kb ref, which selects the type of index to be constructed. The default setting is
--workflow=standard, which creates an index suitable for bulk and single-cell RNA-seq
quantification. It creates an index built from only the coding DNA sequences (the usage of
coding DNA here follows that of Ensembl (Harrison et al., 2024), i.e., the sequences of the
mature transcripts wherein introns are not included as they have been spliced out). The
index created by --workflow=nac (nac: nascent and coding DNA) contains both the coding
DNA and the nascent transcripts. The nascent transcript sequences consist of the full gene
(both exons and introns). This nac index is suitable for single-nucleus RNA-seq as there
exists a high abundance of non-mature transcripts captured in nucleus-based sequencing
assays (Grindberg et al., 2013). Additionally, this nac index should be used for analyses
that require jointly modeling nascent and mature RNA species (Carilli et al., 2024; Gorin
etal., 2023, 2022a, 2022b; Gorin and Pachter, 2022a; La Manno et al., 2018). For both the
standard and nac index types, a user supplies a genome FASTA and GTF annotation, which
kb-python uses to extract the relevant sequences. Finally, if one wishes to index a custom
set of targets or of k-mers, one can use --workflow=custom which builds an index from a

FASTA file containing the target sequences of interest to be supplied.

59

kb-python: kb ref

Genome + Annotation
FASTA GTF

4 4
‘ --workflow=nac

Genome 4 | Annotation - Target - ~
FASTA GTF Extract cDNA+nascent transcripts FASTA :> kallisto index

7 4

Custom

Targets

FASTA

Figure 3.18: “kb ref” can be used to generate three different types of kallisto indices.

Creating the index in kb-python invokes the kallisto index command in the kallisto
program (Box 2). Indexing with kb-python has the advantage that a reference transcriptome
is generated directly from a FASTA and GTF ensuring consistency between the

transcriptome reference, its associated index, and the input FASTA and GTF.

Additionally, using kb-python (via the --include-attributes and --exclude-attributes
options) allows specific biotypes to be selected from the GTF file, making possible filtering
of entries such as pseudogenes, which can improve read mapping accuracy (Pool et al.,
2023) and reduce memory usage. It is recommended to perform GTF filtering, especially
for the nac index type where there will be many overlapping segments among annotated
regions in the genome. While there is no universally defined best practice for GTF filtering,
it is recommended that a user uses the CellRanger (Zheng et al., 2017) gene biotypes for
standard single-cell and single-nucleus RNA-seq assays. More generally, if a user is unsure
of what biotypes to include, it is recommended that the user selects only the specific
biotypes that the user is interested in (e.g. selecting only protein coding genes if a user is

only interested in protein coding genes).

60

Box 2: kb ref

Below, we show how to run kb ref using three different index types. Only the underlined
files need to be supplied by the user; the other files are output files generated as part
of the indexing process and may be necessary for the subsequent mapping and
quantification step. The corresponding kallisto index commands that are invoked are
shown beneath each kb ref call (note that, by default, the kallisto index command is
invoked using 8 threads).

1. standard index type (default):

kb ref -i index.idx -g t2g.txt -f1 cdna.fasta genome.fasta genome.gtf

kallisto index -t 8 -i index.idx --d-list=genome.fasta cdna.fasta

2. nac index type:

kb ref --workflow=nac -i index.idx -g t2g.txt -c1 cdna.txt -c2 nascent.txt \
-f1 cdna.fasta -f2 nascent.fasta genome.fasta genome.gtf

kallisto index -t 8 -i index.idx --d-list=genome.fasta cdna.fasta nascent.fasta

3. custom index type:

kb ref --workflow=custom -i index.idx custom.fasta

kallisto index -t 8 -i index.idx custom.fasta

Explanation of output files:

e index.idx: The kallisto index that is generated

o t2g.txt: The transcript-to-gene mapping file

o cdna.fasta: The generated FASTA file containing the extracted cDNA
sequences

e nascent.fasta: The generated FASTA file with extracted nascent transcript
sequences

e cdna.txt: The transcript names of the coding DNA sequences

e nascent.txt: The nascent transcript names (which are simply the gene names)

61
Finally, the kallisto index command has a --d-list option which improves the mapping

specificity by isolating certain sequences, known as distinguishing flanking k-mers
(DFKs), that may cause erroneous read mapping (Sullivan et al., 2025). The DFKs that are
identified depend on the FASTA file supplied to the --d-list option. While the --d-list option
can be entered by the user directly into kb ref, kb ref already by default calls kallisto index
with the --d-list option set to the genome FASTA supplied but can be disabled by
specifying --d-list=None in kb ref. For all analyses that involve RNA transcript
quantification, it is recommended that the --d-list be set to the respective genome FASTA
file to ensure good mapping specificity. This feature should typically only be used in any
standard RNA-seq analysis (e.g. any usage with the standard index type or the nac index
type produced by kb ref). This feature should not be used in other cases where custom non-

transcript targets are indexed.
Mapping and quantification:

The kb count command within kb-python enables mapping and quantification of bulk,
single-cell, and single-nucleus RNA-seq reads (Figure 3.19). As different sequencing
assays have different read structures, strandedness, parity, and barcodes, one must provide

the specifications for the technology which produced the sequencing reads.

kb-python: kb count

bustools sort :
kalllsto index ﬂ Count matrix

ard
_ctand
W=9
. (ko
Pseudoalignment ~ Pustools allowlist* A0
ﬂ Mature+Ambiguous

Sequencing reads BUS :> bustools correct
FASTQ files file ﬂ
-WOrkﬂoW\

bustools sort Shae
ﬁ % Count matrices

bustools count

*Only performed to generate an “on list” if Nascent Mature Ambiguous
technology doesn't have an “on list" provided

Figure 3.19: “kb count” can be used to produce quantifications in the form of count
matrices for bulk, single-cell, and single-nucleus RNA-seq.

62

The specifications for sequencing assay technology within kb-python are as follows:

Technology string: A ‘technology string’ for a particular type of assay can be

supplied via the -x option. The technology string can be used in one of two ways:

o Option 1: several assays are predefined within the software (the list is
viewable by calling kb --list) so one can name one of those directly (e.g.

one can specify -x 10xv3).

o Option 2: one can format their own custom technology string specifying the
read locations of the barcodes, UMIs and the biological sequence that is to

be mapped (Box 3).

Strandedness: If a read (or the first read in the case of paired-end reads) is to be
mapped in forward orientation, one should specify --strand=forward. If it is to be
mapped in reverse orientation, one should specify --strand=reverse. If one does
not want to map reads with strand-specificity, then one should specify the option
as --strand=unstranded. If a predefined name is used in the technology string -x
option (option 1), then kb-python uses a default stranded option for that technology
(e.g., for 10xv3, the default is forward); otherwise, the default is unstranded. Setting

the --strand option explicitly will overrule the default option.

Parity: If the technology involves two biological read files that are derived from
paired-end sequencing, as is the case with Smartseq2 (Picelli et al., 2013),
Smartseq3 (Hagemann-Jensen et al., 2020), SPLiT-seq (Rosenberg et al., 2018),
and many bulk RNA sequencing kits, one should specify --parity=paired to
perform mapping that takes into account the fact that the reads are paired end.
Otherwise, one can specify --parity=single. If a predefined name is used in the -x
technology string option (option 1), then kb-python uses the default parity option
for that technology (e.g., for -x Smartseq?2, --parity=paired is already enabled by
default).

63
On list: For single-cell and single-nucleus sequencing assays, barcodes are used

to identify each cell or nucleus. The ‘on list’ of barcodes represents the known
barcode sequences that are included in the assay. Barcodes extracted from the
sequencing reads will be error-tolerantly mapped to this list in a process known as
barcode error correction. The ‘on list’ is a text file containing a list of barcode
sequences and its filename can be specified with the -w option in kb count. If an
on list is not provided or cannot be found for the given technology, then an on list
is created by bustools via the bustools allowlist command, which identifies
repeating barcodes in sequencing reads. If the technology does not include cell
barcodes (as is the case in bulk RNA-seq), the ‘on list’ option is irrelevant and no
barcode processing occurs, which should be the case for assays that do not include
cell/nuclei barcodes (skipping barcode error correction can also be done by
specifying -w NONE). If a predefined name is used in the -x technology string
option (option 1), then kb-python uses the default on list option for that technology.

64

Box 3: Custom technology string

The custom technology string (supplied to -x) contains the format barcode:UMI:DNA,
representing the locational information of the barcode, UMI, and the DNA (where
DNA is the biological read to be mapped):

-x a,b,c:d,e,f:g,h,i

e a: barcode file number, b: barcode start position, c: barcode end position
e d: UMI file number, e: UMI start position, f: UMI end position
e g: DNA file number, h: DNA start position, i: DNA end position

Important notes: File numbers and positions are zero-indexed. If no specific end
position exists (i.e. the end position is the very end of the read), the end position
should be set to 0. If cell barcodes and/or UMIs are not supported by the technology,
the barcode and/or UMI field can be set to -1,0,0.

Thus, for 10xv3:

-x 0,0,16:0,16,28:1,0,0

Sequences can be stitched together by specifying multiple locations; for example, a
SPLiT-seqs assay, which contains three separate unlinked barcodes, each of length
8, and a UMI of length 10 in the second file and the DNA in the first file would look as
follows:

-x 1,10,18,1,48,56,1,78,86:1,0,10:0,0,0

Final note about multiple locations: If the paired-end read mapping option is enabled,
exactly two DNA locations should be specified (for the first and second read in the

pair).

If a technology does not fit into this format (e.g. due to barcodes or UMIs of variable
lengths and positions), preprocessing of the FASTQ file should be performed
beforehand to reformat the reads into a structure that can be handled by this format.«

65
If a nac index was generated by kb ref, --workflow=nac should also be used in kb count

so that the nascent and mature RNA species are quantified accurately; otherwise that option
should be omitted or --workflow=standard (which is the default) can be explicitly
specified. For the nac index type, one obtains three count matrices: (1) nascent, (2) mature,
and (3) ambiguous. In most experiments, the plurality of reads will be “ambiguous” since
they originate from exons, which are present in both nascent RNA and mature RNA.
Therefore, it is desirable to generate additional matrices by adding the counts from those
three matrices, which users can either do themselves or by using the --sum option (Sullivan
et al., 2025). --sum=total adds all three matrices, --sum=cell adds the mature and
ambiguous matrices, and --sum=nucleus adds the nascent and ambiguous matrices.
Different matrices may be used for different types of analyses. For example, in single-cell
RNA-seq analysis (where most “ambiguous” counts are probably of mature RNA origin),
jointly modeling the mature + ambiguous count matrix (--sum=cell) with the nascent count
matrix permits biophysical modeling of RNA processing (Gorin et al., 2023, 2022b). The
kb-python, kallisto, and bustools commands for the standard and nac index types are

presented in Box 4 and Box 5, respectively.

66

Box 4: kb count (standard index type)

Below, we show how to run kb count using the standard index type (which is the default
used if no --workflow option is explicitly specified). The underlined files need to be
supplied by the user; these include the files generated from the kb ref command as
well as the FASTQ sequencing reads. The corresponding kallisto and bustools
commands (as well as Unix commands to create and remove files/directories) that are
called by kb count are shown beneath each kb count command (note that, by default,
8 threads and 2 gigabytes of memory are assigned).

kb count -x <tech> -w onlist.txt -o output_dir -i index.idx -g t2g.txt \
R1.fastqg R2.fastq

mkdir -p output_dir/tmp

mkdir -p output_dir

kallisto bus -x <tech> -i index.idx -o output_dir -t 8 R1.fastq R2.fastq

bustools sort -0 output_dir/tmp/output.s.bus -T output_dir/tmp -t 8 -m 2G output_dir/output.bus

bustools inspect -o output_dir/inspect.json -w onlist.txt output_dir/tmp/output.s.bus

bustools correct -o output_dir/tmp/output.s.c.bus -w onlist.txt output_dir/tmp/output.s.bus

bustools sort -0 output_dir/output.unfiltered.bus -T output_dir/tmp -t 8 -m 2G \
output_dir/tmp/output.s.c.bus

mkdir -p output_dir/counts_unfiltered

bustools count -o output_dir/counts_unfiltered/cells_x_genes -g t2g.txt -e output_dir/matrix.ec \
-t output_dir/transcripts.txt --genecounts --umi-gene output_dir/output.unfiltered.bus

rm -rf output_dir/tmp

o <tech>: The technology string
o onlist.txt: The name of the file containing the “on list” of barcodes
o Specify NONE to skip barcode error correction, or omit completely to
have bustools create its own “on list” for correction

Note: In the workflow above, the following options in kb count can be used:
e --parity=single or --parity=paired
o --strand=forward or --strand=reverse or --strand=unstranded
One can alternatively set those options at the end of <tech>, e.g.
<tech>%forward%paired

The R1.fastq and R2.fastq inputs can be replaced with multiple sets of read files
listed consecutively, as long as each pair is in order.

67

Box 5: kb count (nac index type)

Below, we show how to run kb count using the nac index type. The underlined files
need to be supplied by the user;these include the files generated from the kb ref
command using --workflow=nac as well as the FASTQ sequencing reads. The
corresponding kallisto and bustools commands (as well as Unix commands to create
and remove files/directories) that are called are shown beneath each kb count call (note

that, by default, 8 threads and 4 gigabytes of memory are used).

kb count -x <tech> --workflow=nac -w onlist.txt -o output_dir -i index.idx \
-g t29.txt -c1 cdna.txt -c2 nascent.txt --sum=<sum> R1.fastq R2.fastq

mkdir -p output_dir/tmp

mkdir -p output_dir

kallisto bus -x <tech> -i index.idx -o output_dir -t 8 R1.fastq R2.fastq

bustools sort -0 output_dir/tmp/output.s.bus -T output_dir/tmp -t 8 -m 4G output_dir/output.bus

bustools inspect -o output_dir/inspect.json -w onlist.txt output_dir/tmp/output.s.bus

bustools correct -o output_dir/tmp/output.s.c.bus -w onlist.txt output_dir/tmp/output.s.bus

bustools sort -0 output_dir/output.unfiltered.bus -T output_dir/tmp -t 8 -m 4G\
output_dir/tmp/output.s.c.bus

mkdir -p output_dir/counts_unfiltered

bustools count -o output_dir/counts_unfiltered/cells_x_genes -g t2g.txt -e output_dir/matrix.ec \
-t output_dir/transcripts.txt --genecounts --umi-gene \
-s nascent.txt output_dir/output.unfiltered.bus

mv output_dir/counts_unfiltered/cells_x_genes.mtx \
output_dir/counts_unfiltered/cells_x_genes.mature.mtx

mv output_dir/counts_unfiltered/cells_x_genes.2.mtx \
output_dir/counts_unfiltered/cells_x_genes.nascent.mtx

rm -rf output_dir/tmp

o <tech>: The technology string
o onlist.txt: The name of the file containing the “on list” of barcodes
o Specify NONE to skip barcode error correction, or omit completely to
have bustools create its own “on list” for correction
o <sum>: What additional matrix to create by adding up the output matrices
(options: cell, nucleus, or total)

Note: In the workflow above, we can additionally set the following two options in kb
count (otherwise, the defaults are chosen):

e --parity=single or --parity=paired

o --strand=forward or --strand=reverse or --strand=unstranded
One can alternatively set those options at the end of <tech>, e.g.:
<tech>%forward%paired

68
In addition to single-cell and single-nucleus RNA-seq, kb count can be used for bulk

RNA-seq. Bulk RNA-seq generally does not have UMIs or cell barcodes (although
artificial unique sample-specific barcodes, i.e. pseudobarcodes, are used to identify each
sample) and relies on cDNA mapping. With -x BULK as the technology string, a workflow
specific for bulk RNA-seq quantification is executed (Box 6). This will produce both
transcript-level and gene-level abundances that can be used by DESeq2 (Love et al., 2014;
Soneson et al., 2015), sleuth (Pimentel et al., 2017), limma-voom (Law et al., 2014; Ritchie
et al., 2015), edgeR (Baldoni et al., 2024; Chen et al., 2024; Robinson et al., 2010), and

other differential gene expression programs.

Box 6: kb count: bulk RNA-seq

Below, we show how to run kb count for preprocessing bulk RNA-seq data. The
procedure is similar to the preprocessing of single-cell RNA-seq (Box 4), but there are
some differences in how quantification is performed and barcode error correction is
not performed due to the lack of cell barcodes in bulk RNA-seq. --tcc specifies that
estimated counts should be produced in accordance with the count estimation
algorithm in the original kallisto publication and --matrix-to-directories means that
those quantifications should be reformatted into directories of “abundance files” with
each sample being a different directory. The abundance files can be directly used by
downstream tools designed for bulk RNA-seq differential gene expression. Below is an
example usage for a paired-end unstranded bulk RNA-seq experiment on one sample.

kb count -x BULK -o output_dir -i index.idx -g t2g.txt \
--parity=paired --strand=unstranded \
--tcc --matrix-to-directories R1.fastq R2.fastq

mkdir -p output_dir/tmp

mkdir -p output_dir

kallisto bus -x <tech> -i index.idx -o output_dir -t 8 --paired R1.fastq R2.fastq

bustools sort -0 output_dir/tmp/output.s.bus -T output_dir/tmp -t 8 -m 2G output_dir/output.bus

bustools inspect -o output_dir/inspect.json output_dir/tmp/output.s.bus

mkdir -p output_dir/counts_unfiltered

mkdir -p output_dir/quant_unfiltered

bustools count -o output_dir/counts_unfiltered/cells_x_tcc -g t2g.txt -e output_dir/matrix.ec \
-t output_dir/transcripts.txt --multimapping --cm output_dir/output.s.bus

kallisto quant-tcc -o output_dir/quant_unfiltered -i index.idx \
-e output_dir/counts_unfiltered/cells_x_tcc.ec.txt -g t2g.txt -t 8 -f output_dir/flens.txt \
--matrix-to-directories output_dir/counts_unfiltered/cells_x_tcc.mtx

rm -rf output_dir/tmp

69

To facilitate multi-sample analysis, artificial unique sample-specific barcodes can be
created, and the resulting mapping between the artificially generated barcode and the
sample ID is outputted. These sample-specific barcodes (i.e. ‘pseudobarcodes’) are 16-bp
in length and are stored in the BUS file. Where there exists both a cell barcode (like in
single-cell RNA-seq) and a sample-specific barcode, both sets of barcodes will be
outputted so that each entry in the resulting output count matrix can be associated with a
particular cell and a particular sample. To utilize the multi-sample workflow, a batch file
containing the file names of the FASTQ files must be provided (Box 7). Each sample ID

will then be assigned a ‘pseudobarcode’ upon running the program.

70

Box 7: kb count (multi-sample analysis using the standard index type)

Below, we show how to run kb count to perform an analysis of multiple samples using
the standard (default) index type. Use of this index type facilitates a workflow that is
similar to the single-sample standard workflow (Box 4). A batch file (batch.txt) should
be provided, in lieu of FASTQ files, listing all the samples to be analyzed with the paths
to their respective FASTQ files. The --batch-barcodes option is provided in order to
store the sample-specific barcodes that are created in addition to the cell barcodes
(without this option, only cell barcodes are stored). This option can be omitted in the
case that no cell barcodes exist (as in bulk RNA-seq).

kb count -x <tech> -w onlist.txt -o output_dir -i index.idx -g t2g.txt \
--batch-barcodes batch.txt

The only difference in the underlying kallisto command is in the kallisto bus
command.

kallisto bus -x <tech> -i index.idx -o output_dir -t 8 --batch-barcodes --batch batch.txt

The batch.txt file looks as follows:

batch.txt

Sample1 sample1_R1.fastq.gz sample1_R2.fastq.gz
Sample2 sample2_R1.fastq.gz sample2_R2.fastq.gz
Sample3 sample3_R1.fastq.gz sample3_R2.fastq.gz

The sample ID is in the first column. Multiple rows can be provided for the same
sample ID (e.g. if the FASTQ files are divided across multiple lanes). The third column
can be omitted if only one FASTQ file is specified by the technology.

In the output directory (output_dir), there will be two files: matrix.cells (which contains
the sample ID) and matrix.sample.barcodes (which contains the 16-bp sample-specific
barcodes, i.e. the pseudobarcodes). Each line in matrix.cells corresponds to the same
line in matrix.sample.barcodes. In the example above, the files look as follows:

matrix.cells matrix.sample.barcodes
Sample1 AAAAAAAAAAAAAAAA
Sample2 AAAAAAAAAAAAAAAC

Sample3 AAAAAAAAAAAAAAAG

71

The technical details of how kb count utilizes kallisto and bustools are detailed in the
following paragraph. Note that the --dry-run option in kb count outputs the kallisto and
bustools commands that will be run without actually running the programs. Also, the option
--verbose in kb count is helpful for examining the kallisto and bustools commands that are

being run as well as their output.

kb count first invokes the kallisto bus command within kallisto to produce a BUS file,
which stores the read mapping information, and then uses bustools (Melsted et al., 2019)
commands to process the BUS file. The kallisto bus command maps RNA-seq reads to a
kallisto index, and the resultant BUS file stores the mapping information, including the
barcode, unique molecular identifier (UMI), and the equivalence class representing the set
of transcripts the read is compatible with (Melsted et al., 2019). In certain RNA-seq assays,
barcodes and/or UMIs may not be present, and are therefore not considered when
processing the BUS file. After the mapping step is complete, the BUS file is sorted via the
bustools sort command to facilitate further processing. For single-cell and single-nucleus
experiments with multiplexed barcodes in the sequencing reads, an ‘on list’ of barcodes,
representing the known barcode sequences that are included in the assay, needs to be
provided. If an ‘on list’ is unavailable, the bustools allowlist command can be used to
construct one from a sorted BUS file. The barcodes in the sorted BUS file are error-
corrected to the ‘on list’ via bustools correct, then the BUS file is sorted again with
bustools sort. The final sorted, ‘on list’-corrected BUS file is then used to generate
quantifications via count matrices through the bustools count command. At any point, a
sorted BUS file can be inputted into bustools compress to create a compressed BUS file
(a BUSZ file), which can be subsequently decompressed via bustools decompress
(Einarsson and Melsted, 2023). There exist many other bustools features which enable
more specialized workflows beyond what is provided by kb-python (Gustafsson et al.,
2021; Melsted et al., 2021).

72

Quantification of RNA species can be performed in multiple ways as follows:

Gene-level count matrices: in single-cell and single-nucleus RNA-seq, typically a
gene-level count matrix is produced by collapsing UMIs to the gene level. Here,
the bustools count command is run with the --genecounts option. The --umi-gene
option may also be provided for sequencing technologies where the UMIs are not
expected to be unique within each cell. This ensures that in a case where two reads
with the same UMI sequence map to different genes, they are considered to be two
distinct molecules which were unintentionally labeled with the same UMI, and
hence each gene gets a count. Such instances occur very frequently when UMIs are
short such as in CEL-Seq2 (Hashimshony et al., 2016). By default, UMIs assigned
to multiple genes after collapsing are discarded in quantification; however, the
option --multimapping retains such UMIs and distributes the count uniformly
across the assigned genes. This option, while improving the sensitivity of gene
detection, causes noninteger counts to be created and is therefore disabled by
default, consistent with other single-cell RNA-seq software. Finally, if one wishes
to not perform UMI collapsing (i.e., each mapped read is its own unique molecule

regardless of the UMI sequence), one can supply the --cm option for quantification.

Transcript-level count matrices: transcript compatibility counts (TCCs) are counts
assigned to equivalence classes (ECs) where each EC is defined by a unique set of
transcripts. For producing a matrix of TCCs, the --genecounts option is not
provided, and --multimapping is provided to avoid discarding reads or collapsed
UMIs that are assigned to multiple genes. If UMISs are not present in the sequencing
technology, the --em option is supplied to perform counting without UMI
collapsing. While downstream analyses can be performed on TCCs (Ntranos et al.,
2019, 2016), it is more often useful to produce transcript-level abundances from the
TCC:s for technologies where sequencing reads span segments of full-length RNA
molecules, such as in bulk RNA-seq. In such cases, an expectation-maximization

algorithm is typically performed to probabilistically estimate transcript abundances

73
(Li and Dewey, 2011; Pachter, 2011). The procedure to generate transcript-level

abundance matrices is performed by running the kallisto quant-tcc command on

the TCC matrices.

Now, we describe the quantification output of the kb count command. While the initial step
of kb count uses kallisto to produce a BUS file located at output_dir/output.bus, the actual
quantification results are located in matrices in subdirectories of output dir/. All matrices
have the extension .mtx and will be in a sparse matrix (Matrix Market) file format with the
barcodes (i.e. the cells or samples) being the matrix rows and the genes (or transcripts or
equivalence classes or other features (A Sina Booeshaghi et al., 2024)) being the matrix

columns.

Gene-level counting to produce gene count matrices is the most common form of

quantification for UMI-based single-cell and single-nucleus RNA-seq assays.

- The output_dir/counts_unfiltered/ directory contains the following information
for gene count matrices (these are the matrices that are most commonly used for

single-cell and single-nucleus RNA-seq analysis):

o standard index type:

= cells x genes.mtx: The count matrix (in Matrix Market file

format); only exonic reads are counted.

= cells_x_genes.barcodes.txt: The barcodes representing the matrix

row names.

= cells_x_genes.genes.txt: The gene IDs representing the matrix

column names.

= cells_x_genes.genes.names.txt: Same as cells x genes.mtx except

with gene names instead of gene IDs for the matrix columns.

74
= cells_x_genes.barcodes.prefix.txt: If sample-specific barcodes

are generated in addition to cell barcodes being recorded, then this
file will be created and the sample-specific barcodes will be stored
here. The lines of this file correspond to the lines in the
cells x genes.barcodes.txt which contains the cell barcodes (both
files will have the same number of lines). The sample-specific
barcodes and cell barcodes can be joined together as a unique

identifier for downstream analysis.

o nac index type (same as the standard index type except the .mtx files

produced are different):

cells x genes.mature.mtx: The mature RNA count matrix.

= cells_x_genes.ambiguous.mtx: The nascent RNA count matrix.

= cells_x_genes.nascent.mtx: The ambiguous RNA count matrix.

= cells_x_genes.cell.mtx: The mature+ambiguous RNA count matrix
(note: this is what is quantified in the count matrix with the standard

index type workflow option).

= cells_x_genes.nucleus.mtx: The nascent+ambiguous RNA count

matrix.

= cells_x_genes.total. mtx: The mature+nascent+ambiguous RNA

count matrix.

For RNA-seq assays (e.g. bulk RNA-seq or Smartseq2) that profile the full length of
transcripts in which case it is desirable to perform transcript-level quantification, the --tee

option is used.

75
- The first step to doing transcript-level quantification is to obtain transcript-

compatibility counts (TCCs) over equivalence classes (ECs). The TCCs will be
outputted into output_dir/counts_unfiltered/ which contains the following files

for the standard workflow:

o cells_x_tcc.mtx: The count matrix containing the TCCs.

o cells_x_tcc.barcodes.txt: The barcodes representing the matrix row names.

o cells_x_tcc.ec.txt: The equivalence classes representing the matrix column
names (note: this file has two columns—the first is the equivalence class
numbers, which represent the column names, and the second is a comma-
separated list of transcript numbers (0 based) for all transcripts within the

equivalence class).

- The --tcc option will additionally produce transcript-level estimated counts which
will be placed in the output_dir/quant_unfiltered/ directory which contains the

following:

o matrix.abundance.mtx: The matrix containing the transcript-level

estimated counts.

o matrix.abundance.tpm.mtx: The matrix containing the TPM-normalized

transcript-level abundances.

o matrix.efflens.mtx: A matrix that contains the transcript effective length

o matrix.fld.tsv: A file with two columns, containing the mean and standard
deviation, respectively, of the fragment length distribution used to produce

transcript-level abundances and effective lengths for each row of the matrix.

o matrix.abundance.gene.mtx: A matrix that is the same as the

matrix.abundance.mtx matrix except counts are aggregated to gene-level.

76
o matrix.abundance.gene.tpm.mtx: A matrix that is the same as the

matrix.abundance.tpm.mtx matrix except TPMs are aggregated to gene-

level.

o transcripts.txt: The transcript names representing the matrix column

names for the transcript-level quantification matrices.

o genes.txt: The gene IDs representing the matrix column names for the gene-

level aggregation quantification matrices.

transcript_lengths.txt: The transcript names along with their lengths

©)

*Note: The row names are the individual samples and will be the same as those
in the output dir/counts unfiltered/cells x tcc.barcodes.txt file. The
output_dir/matrix.cells and output dir/matrix.sample.barcodes files provide a

mapping between the sample name and the sample barcode.

*Note: The --matrix-to-directories option will output each row of the matrix into
a separate subdirectory. In other words, using this option will produce multiple
new directories within output dir/quant unfiltered/. Each one will be named
abundance {n} (where {n} is the sample number, corresponding to the rows in
the matrix files). Within each subdirectory, an abundance.tsv text file and
abundance.h5 HDFS5 file will be created containing the quantifications for that
particular sample. These abundance files are identical to the abundance files

produced by the original version of kallisto for bulk RNA-seq.

To load the quantification results into SCANPY (Wolf et al., 2018) for downstream
processing in Python, an anndata (Virshup et al., 2021) object needs to be created. A user
can import the count matrices into an anndata object (Box 10), or can run kb count with

the --h5ad option to generate the anndata object directly.

77

Box 10: Loading count matrices into scanpy

The standard index produces a single count matrix (in output_dir/counts_unfiltered/)
which can be loaded into scanpy via an anndata object as follows:

import kb_python.utils as kb_utils

adata = kb_utils.import_matrix_as_anndata("cells_x_genes.mtx",
"cells_x_genes.barcodes.txt",
"cells_x_genes.genes.names.txt")

The nac index type produces multiple count matrices. If one wishes to investigate
different RNA species separately, one can load multiple count matrices as layers into
the anndata object. The first layer will always be named “spliced” and the second layer
will always be named “unspliced”. Below, we load in the “spliced” layer (from the
cells_x_genes.cell. mtx count matrix which represents mature+ambiguous counts) and
the “unspliced” layer (from the cells_x_genes.nascent.mtx count matrix, which
represents the nascent counts).

import kb_python.utils as kb_utils

adata_spliced =
kb_utils.import_matrix_as_anndata("cells_x_genes.cell.mtx",
"cells_x_genes.barcodes.txt",
"cells_x_genes.genes.names.txt")

adata_unspliced =
kb_utils.import_matrix_as_anndata("cells_x_genes.nascent.mtx",
"cells_x_genes.barcodes.txt",

"cells_x_genes.genes.names.txt")

adata = kb_utils.overlay_anndatas(adata_spliced, adata_unspliced)

Note: If sample-specific barcodes are specified in addition to cell barcodes, one can
add batch_barcodes_path="cells_x_genes.barcodes.prefix.txt" to
import_matrix_as_anndata to concatenate the two barcodes together.

If one runs kb count with the --h5ad option, the file adata.h5ad is created alongside the
count matrix files. With the nac index, it will have three layers: nascent, mature, and
ambiguous, containing those respective matrices. One can read the file in via:

adata = anndata.read_h5ad("output_dir/counts_unfiltered/adata.h5ad")

78
For downstream processing in R, one can load the quantification results into Seurat (Hao

et al, 2021) (Box 11). Additionally, in R, one can create a Bioconductor
SingleCellExperiment (Amezquita et al., 2020) object for use with single-cell analysis R
packages such as scran (Lun et al., 2016) and scater (McCarthy et al., 2017) (Box 12).

Box 11: Loading count matrices into Seurat

The standard workflow produces a single count matrix (within the directory
output_dir/counts_unfiltered/), which can be loaded into Seurat as follows:

library(Seurat)

expression_matrix <- ReadMtx(mtx="cells_x_genes.mtx",
features = "cells_x_genes.genes.names.txt",

cells = "cells_x_genes.barcodes.txt",

feature.column=1,

mtx.transpose = TRUE)

For the nac workflow, multiple count matrices are produced. For example, in this
workflow, the matrix file named cells_x_genes.total.mtx can be used if one wants to
consider the total counts (i.e. the sum of the nascent, mature, and ambiguous counts).

Box 12: Loading count matrices into SingleCellExperiment

Here, we show how to build a SingleCellExperiment object in R from the standard
workflow output count matrix (in output_dir/counts_unfiltered/):

library(SingleCellExperiment)
library(Matrix)

counts <- Matrix::readMM("cells_x_genes.mtx")

gene_ids <- readLines("cells_x_genes.genes.txt")
gene_symbols <- readLines("cells_x_genes.genes.names.txt")
barcodes <- readLines("cells_x_genes.barcodes.txt")

sce <- SingleCellExperiment(list(counts=t(counts)),
colData=DataFrame(Barcode=barcodes),
rowData=DataFrame(ID=gene_ids,SYMBOL=gene_symbols))
rownames(sce) <- gene_ids

79
The count matrices are initially unfiltered, which makes them very large and inefficient

to process. After filtering for cells with sufficient UMI counts (among other criteria), the

matrices that are loaded in will become much smaller and more efficient to process.

Materials:

e A 64-bit computer running either macOS, Windows, or a Linux/Unix operating

system.

e kb-python version 0.28.2 or later

o Kkallisto version 0.50.1 or later (which comes packaged with kb-python)

o bustools version 0.43.2 or later (which comes packaged with kb-python)

e Python 3.7 or later (for kb-python version 0.28.2)

e Bulk, single-cell, or single-nucleus RNA sequencing reads in (possibly gzip)

FASTQ format.

Timing:

The runtime depends on the size of the reference being indexed, the number and length of
the sequencing reads being processed, other properties of the dataset being quantified,
system hardware and the number of threads allotted. The kb ref command only needs to be
run once to create the index against which reads will be mapped. With 8 threads on a server
with x86-64 architecture and 32 Intel Xeon CPUs (E5-2667 v3 @ 3.20GHz), kb ref, which
by default uses the d-list option, takes ~15 min to generate a standard index from the
GRCm39 mouse genome (using the respective raw unfiltered GTF file) and an hour to
generate the nac index. For the preprocessing of 800 million Illumina sequencing reads
(stored in a single pair of fastq.gz files) produced by single-cell RNA-seq from 10x
Genomics, kb count with the nac workflow can take under an hour on 8 threads and under

40 min on 16 threads, with an even lower runtime for the standard workflow.

80
Troubleshooting:

The --verbose option in kb ref and kb count is helpful for examining the kallisto and
bustools commands that are being run as well as their output. This can be used to

troubleshoot errors.

The --overwrite option in kb ref and kb count can be used to regenerate output files and

directories that were produced (or left over) from a previous kb-python run.

The output directory of a kb count run contains multiple JSON (Pezoa et al., 2016) files

that contain quality control values such as the percentage of reads pseudoaligned.

When using kb ref to generate a kallisto index, a genome FASTA file (not a transcriptome
FASTA file) should be supplied along with the genome annotation GTF file. A
transcriptome file will automatically be generated by kb ref and be indexed by kallisto. In
general, the Ensembl (Harrison et al., 2024) .dna.toplevel.fa.gz files or the GENCODE
(Frankish et al., 2023) .primary assembly.genome.fa.gz files should be used as the

reference genome.

When using kb count, one should make sure that the value supplied to the -x technology
string option matches the assay from which the sequencing reads were generated. Note that
if the technology string begins with a -, for example: -1,0,0:0,0,5:0,5,0, one would need to
write -x " -1,0,0:0,0,5:0,5,0" to avoid the string being misinterpreted as a command-line

flag.

Additional troubleshooting information is shown in Table 3.5.

Step

kb ref

kb count

Problem

Error:
temporary
directory ‘tmp’
exists!

SIGILL illegal
Instruction

Error: input
file does not
exist, is ill-
formed or is
not in FASTA/
FASTQ/

GFA format

‘Error:
incompatible
indices’ or
‘Segmentation
fault’ at the
‘kallisto bus’
step

Very low
counts or very
few reads
being
pseudoaligned

Error:
temporary
directory ‘tmp’
exists!

SIGILL illegal
Instruction

Program is
hanging at the
“bustools
count” step

Possible reason

Another instance of kb-python is running or the
temporary directory ‘tmp’ already exists from a
previous kb-python run that terminated
prematurely

kallisto binary is incompatible with your system

Either the FASTA file or GTF file is empty,
truncated or corrupted

Either the index file being supplied is corrupted, is
not an actual kallisto index file, or was an index
file generated by a version of kallisto that utilized
a different index format; kallisto version 0.50.1
utilizes a different index format than previous
versions and future versions of kallisto may
probably adopt a newer index format

The strandedness setting is wrong

The technology specified is incorrect

The index being used is wrong

Another instance of kb-python is running or the
temporary directory ‘tmp’ already exists from a
previous kb-python run that terminated
prematurely

kallisto binary is incompatible with your system

The t2g (transcripts-to-gene mapping) file created
by kb ref should be the exact file used by kb count
when running kb count on that index. All the
transcripts in the t2g file must be exactly the same
as the transcripts present in the kallisto index.
Incompatibilities can lead to unpredictable
behavior in the bustools quantification step

81

Solution

Use --tmp to specify a different temporary
directory or delete the ‘tmp” directory before
rerunning kb-python

Install kallisto from source and follow the
instructions in Supplementary Note 1

Redownload the genome FASTA file and
genome GTF file

Note: this error can also arise if a transcriptome
FASTA file was supplied to kb ref instead of a
genome FASTA file, or if the FASTA file and
GTF file are incompatible (e.g., one was
downloaded from GENCODE and the other was
downloaded from ENSEMBL). In these cases,
the solution is also to download a correct pair of
genome FASTA and GTF files

The kallisto index should be regenerated

Rerun with --strand=unstranded

Contact the source of the data to obtain the
details about the assay, and then ensure that the
technology specified via -x and that the on-list
specified via -w are compatible with the FASTQ
files produced by that assay

Ensure that you are using the correct species’
index (i.e., not using a mouse index to map
human reads). Also ensure that, if you are
quantifying data from nuclei, the nac index type
is being used

Use --tmp to specify a different temporary
directory or delete the ‘tmp” directory before
rerunning kb-python

Install kallisto from source

Fix the t2g file or make a new t2g file with a
corresponding kallisto index by rerunning kb ref

Table 3.5. Troubleshooting kallisto, bustools, and kb-python run issues.

82
Procedure:

Here, we describe the procedures to use for mouse samples of paired-end bulk RNA-seq,

10x (version 3) single-cell RNA-seq, and 10x (version 3) single-nucleus RNA-seq.

Bulk RNA-seq

Input:
e Paired-end unstranded mouse RNA-seq reads (3 samples):
samplel Rl1.fastq.gz samplel R2.fastq.gz
sample2 Rl1.fastq.gz sample2 R2.fastq.gz
sample3 Rl1.fastq.gz sample3 R2.fastq.gz

1. Install kb-python

pip install kb python

2. Download the mouse genome and annotation files

wget ftp.ensembl.org/pub/release-108/fasta/mus musculus/dna/Mus_musculus.GRCm39.dna.primary assembly.fa.gz

wget ftp.ensembl.org/pub/release-108/gtf/mus_musculus/Mus_musculus.GRCm39.108.gtf.gz

3. Build the index

kb ref -i index.idx -g t2g.txt -fl cdna.fasta \
Mus musculus.GRCm39.dna.primary assembly.fa.gz \
Mus musculus.GRCm39.108.gtf.gz

4. Map the input sequencing reads to the index

kb count -x BULK -o output dir -i index.idx -g t2g.txt \
--parity=paired --strand=unstranded \
-—tcc --matrix-to-directories \
samplel Rl.fastg.gz samplel R2.fastg.gz \
sample2 Rl.fastg.gz sample2 R2.fastg.gz \
sample3 Rl.fastqg.gz sample3 R2.fastqg.gz

83
5. Analyze the output

Output for sample 1:
e output dir/quant unfiltered/abundance 1/abundance.tsv
e output dir/quant unfiltered/abundance 1/abundance.gene.tsv
e output dir/quant unfiltered/abundance 1/abundance.h5

Output for sample 2:
e output dir/quant unfiltered/abundance 2/abundance.tsv
e output dir/quant unfiltered/abundance 2/abundance.gene.tsv
e output dir/quant unfiltered/abundance 2/abundance.h5

Output for sample 3:
e output dir/quant _unfiltered/abundance 3/abundance.tsv
e output dir/quant unfiltered/abundance 3/abundance.gene.tsv
e output dir/quant unfiltered/abundance 3/abundance.h5

The abundance.tsv files contain the transcript-level abundances. The abundance.h5 file
contains the same information as the abundance.tsv files except in HDF5 format. The
abundance.gene.tsv files contain the gene-level abundances (taken by summing up the
transcript-level abundances for each gene). These files can be used in downstream
differential gene expression programs.

Single-cell RNA-seq

Input:
e 10x version 3 single-cell RNA-seq reads: R1.fastq.gz and R2.fastq.gz

1. Install kb-python

pip install kb python

2. Download the mouse genome and annotation files

wget ftp.ensembl.org/pub/release-108/fasta/mus musculus/dna/Mus_musculus.GRCm39.dna.primary assembly.fa.gz

wget ftp.ensembl.org/pub/release-108/gtf/mus_musculus/Mus_musculus.GRCm39.108.gtf.gz

3. Build the index

kb ref -i index.idx -g t2g.txt -fl cdna.fasta \
Mus musculus.GRCm39.dna.primary assembly.fa.gz \
Mus musculus.GRCm39.108.gtf.gz

84
4. Map the input sequencing reads to the index

kb count -x 10xv3 -o output dir -i index.idx -g t2g.txt \
Rl.fastg.gz R2.fastg.gz

5. Analyze the output

Output:
e output dir/counts unfiltered/cells x genes.mtx
e output dir/counts unfiltered/cells x genes.barcodes.txt
e output dir/counts unfiltered/cells x genes.genes.txt
e output dir/counts unfiltered/cells x genes.genes.names.txt

The cells x_genes.mtx is the count matrix file with the barcodes (the row names) listed in
cells x genes.barcodes.txt and the gene names (the column names) listed in
cells x genes.genes.names.txt (for gene IDs instead of gene names, use
cells x genes.genes.txt).

Single-nucleus RNA-seq

Input:
e 10x version 3 single-nucleus RNA-seq reads: R1.fastq.gz and R2.fastq.gz

1. Install kb-python

pip install kb python

2. Download the mouse genome and annotation files

wget ftp.ensembl.org/pub/release-108/gtf/mus_musculus/Mus_musculus.GRCm39.108.gtf.gz

wget ftp.ensembl.org/pub/release-108/fasta/mus musculus/dna/Mus_musculus.GRCm39.dna.primary assembly.fa.gz

3. Build the index

kb ref --workflow=nac -1 index.idx -g t2g.txt \

Mus musculus.GRCm39.dna.primary assembly.fa.gz \
Mus musculus.GRCm39.108.gtf.gz

—-cl cdna.txt -c2 nascent.txt -fl cdna.fasta -f2 nascent.fasta \

85
4. Map the input sequencing reads to the index

kb count -x 10xv3 --workflow=nac -o output dir \
-i index.idx -g t2g.txt -cl cdna.txt -c2 nascent.txt \
--sum=total Rl.fastg.gz R2.fastqg.gz

5. Analyze the output

Output:
e output dir/counts unfiltered/cells x genes.mature.mtx
e output dir/counts unfiltered/cells x genes.nascent.mtx
e output dir/counts unfiltered/cells x genes.ambiguous.mtx
e output dir/counts unfiltered/cells x genes.cell.mtx
e output dir/counts unfiltered/cells x genes.nucleus.mtx
e output dir/counts unfiltered/cells x genes.total.mtx
e output dir/counts unfiltered/cells x genes.barcodes.txt
e output dir/counts unfiltered/cells x genes.genes.txt
e output dir/counts unfiltered/cells x genes.genes.names.txt

This workflow can be used for both single-cell RNA-seq and single-nucleus RNA-seq.
Many count matrix files (.mtx files) are generated. For quantification of total RNA present
in each cell or nucleus, one would want to use the cells_x genes.total.mtx. For biophysical
models that jointly consider spliced and unspliced transcripts, one may want to use
cells x genes.cell. mtx (for the “spliced” transcripts) and cells x_genes.nascent.mtx (for
the “unspliced” transcripts).

The barcodes (the matrix row names) are listed in cells_x_genes.barcodes.txt and the gene
names (the matrix column names) are listed in cells x genes.genes.names.txt (for gene IDs
instead of gene names, use cells_x genes.genes.txt).

Additional note: A more straightforward way of quantifying single-nucleus RNA-seq (if
one doesn’t desire multiple count matrices) is to use kb count with the standard workflow
against an index created via the nac workflow option of kb ref. This will give you the
“total” counts in a single matrix file: output dir/counts_unfiltered/cells x genes.mix,
rather than producing multiple count matrix files.

86
Example quantification files:

Following a bulk RNA-seq analysis, one will obtain an abundance.tsv file as the main
quantification output to be used in further analysis. An example of such an abundance.tsv
file from an analysis run on a mouse liver tissue RNA-seq sample (Huntley et al., 2016),

along with the distribution of counts from that analysis, in shown in Figure 3.20.

abundance.tsv 0.16 I _
target_id length eff_length est_counts tpm 0.14 4
ENSMUSTO0000193198.2 2096 1941.28 0 0 I
ENSMUST00000191430.2 946 791.278 0 0 0.12 4 I
ENSMUST00000181451.2 899 744.278 193 716063 > 0.10 1
ENSMUST00000194081.2 2756 2601.28 0 0 B
ENSMUST00000194393.2 663 508287 O 0 g 0081
ENSMUST00000132100.2 472 317.611 0 0 O .06
ENSMUST00000185509.2 178 46.3166 0 0
ENSMUST00000194605.2 626 471.301 1.09204 0.0639835 0.04 +
ENSMUST00000191703.2 30 9.45614 0 0 0.02 |

0

0 5 10 15 20
log,(est_counts)

Figure 3.20: Example output of bulk RNA-seq quantification.

The abundance.tsv file was produced from running the protocol on a bulk RNA-seq sample
(Gene Expression Omnibus accession ID: GSM1931645). The est _counts represents the
estimated counts and the transcripts per million (tpm) represents the length- and depth-
normalized abundance for each transcript ID. Additionally, transcript length and effective
length (eff length) information are provided. In the histogram, the distribution of estimated
counts (est_counts, omitting transcripts with zero counts) is shown.

For single-cell RNA-seq analysis, one will obtain a count matrix file as the main
quantification output to be used in further analysis. Additionally, the files containing the
row names (the cell barcodes) and the column names (the gene identifiers) will be
outputted. The count matrix file from an analysis run on a mouse neuron single-cell RNA-
seq sample prepared using 10x version 3 chemistry is shown in Figure 3.21, along with the
row names and column names. The knee plot describing the distribution of UMI counts
across barcodes for that analysis is also shown. Note that these results were produced using
the standard index type; when using the nac index type (e.g., for single-nucleus RNA-seq),

the output structure will be similar except multiple count matrix files will be produced (for

nascent, mature, and ambiguous RNA).

cells_x_genes.mtx

cells_x_genes.barcodes.txt

cells_x_genes.genes.txt

%%MatrixMarket matrix coordinate real general
%

381092 56980 6355294

152651 1

2 36784 1

415491 1

6 258241

7 21594 1

8 7278 1

8 8910 1

AAACCCAAGAAACCAT
AAACCCAAGAAATCCA
AAACCCAAGAAATGGG
AAACCCAAGAAATTGC
AAACCCAAGAACCGCA
AAACCCAAGAATGTTG
AAACCCAAGACATAAC
AAACCCAAGACATATG
AAACCCAAGACATGCG
AAACCCAAGACCAACG

ENSMUSG00000102628 .2
ENSMUSG00000100595.2
ENSMUSG00000097426.2
ENSMUSG00000104478.2
ENSMUSG00000104385.2
ENSMUSG00000086053.2
ENSMUSG00000101231.2
ENSMUSG00000102135.2
ENSMUSG00000103282.2
ENSMUSG00000101097.2

Set of barcodes

87

Figure 3.21: Example output of single-cell RNA-seq quantification.
The count matrix file, in sparse Matrix Market format, from a mouse neuron single-cell
RNA-seq sample (neuron_lk v3 fastgs, 10x Genomics) is shown (cells x_genes.mtx). The
count matrix contains 381,092 rows (i.e., cell barcodes), 56,980 columns (i.e., genes) and
6,355,294 nonzero entries. The cells x_genes.barcodes.txt file containing the list of the
381,092 barcodes, corresponding to the rows of the matrix. The cells x_genes.genes.txt
file contains the list of the 56,980 genes (in Ensembl gene ID format), corresponding to the
columns of the matrix. The knee plot shows the distribution of UMI counts across barcodes.

T T T T T T
10 100 102 10 10 10°
UMI counts

Supplementary Manual:

Installation of kallisto and bustools from source or installation of specific versions.

Installing kallisto and bustools from source

kallisto (version 0.50.1):

git clone --branch v0.50.1 https://github.com/pachterlab/kallisto
cd kallisto

mkdir build

cd build

cmake ..

make

make install

bustools (version 0.43.2):

git clone --branch v0.43.2 https://github.com/BUStools/bustools
cd bustools

mkdir build

cd build

cmake ..

make

make install

Note: The --branch argument can be omitted to install the latest version of the software.

Using kb_python with kallisto and bustools installed from source

kb_python can be run with compiled binaries by supplying the paths to the binaries:

kb ref --kallisto=/path/to/kallisto --bustools=/path/to/bustools ...

kb count --kallisto=/path/to/kallisto --bustools=/path/to/bustools ...

Installing a specific version of kb_python

A specific version of kb _python (e.g. version 0.28.2) can installed as follows:

pip install kb_python==0.28.2

89
Indexing a custom set of k-mers.

Indexing a custom set of k-mers

When multiple sequences may belong to the same “target”, as is the case with genetic
polymorphisms, it can be desirable to index k-mers distributed across multiple targets
rather than across a single contiguous target sequence. The target names in the input
FASTA file must be numbers (specifically, zero-indexed numerical identifiers). Each k-
mer in the target sequence is associated with the target name specified in the header
line. Indexing this FASTA file can then be accomplished with the custom index type
using the --distinguish keyword.

custom workflow (--distinguish):

kb ref --workflow=custom -i index.idx --distinguish custom.fasta

kallisto index -t 8 -i index.idx --distinguish custom.fasta

Example custom.fasta file (with 3 targets):

;(()3TCTATCATCATCTACTACTACTCGCAGCGACGACATCAGCTTTTTT
(>31CGCGCCGCCGACGACACGCAGAGAAGAAAGCGCGACGAC
'T'?I'ATGTGTCGTGTAGTCGTAGTGTGTCGTGCCGCCGCGCGCAAA
;?I'ATACGATCATCAGCGACAGACTACTTCAGAAGACTATCA
EQFCGATCGGTGTCACATGCGCAAGCGTCAGCGACACGACTTCGG

D-listing a custom set of k-mers

When FASTA sequences are supplied to --d-list, distinguishing flanking k-mers (DFKSs)
are extracted from those sequences and placed in a D-list. Reads containing D-list k-
mers will not be mapped. One can also specify a custom set of k-mers to be in the D-
list, by using an empty sequence header. In the following example, since the header is
absent, all k-mers in the sequence will be D-listed (if a header were present, only DFKs
would be D-listed).

>
ACGCGACATAGCAGACTAGACATTATTTACGTATTATGATAGTAGAT

90
Filtering GTF entries when constructing the reference.

kb ref: --include-attributes and --exclude-attributes to filter GTF entries

Specific GTF entries can be included or excluded when building a reference
transcriptome from a genome FASTA and GTF file. This can be done by using the
following arguments to kb ref:

--include-attribute KEY:VALUE
--exclude-attribute KEY:VALUE

where KEY is the name of the field (e.g. gene_biotype) in the GTF file and the VALUE
is the value of the field (e.g. protein_coding).

The box below shows an example of how to use --include-attribute to include only
certain gene biotypes (the remaining gene biotypes present in the GTF file will not be
included). Note that these are the same biotypes included in the Ensembl GRCh38 Cell
Ranger reference (as of Cell Ranger version 7.1.0).

kb ref -i index.idx -g t2g.txt -f1 cdna.fasta \
--include-attribute gene_biotype:protein_coding \
--include-attribute gene_biotype:IncCRNA \
--include-attribute gene_biotype:lincRNA \
--include-attribute gene_biotype:antisense \
--include-attribute gene_biotype:IG_LV_gene \
--include-attribute gene_biotype:IG_V_gene \
--include-attribute gene_biotype:IG_V_pseudogene \
--include-attribute gene_biotype:IG_D_gene \
--include-attribute gene_biotype:IG_J_gene \
--include-attribute gene_biotype:IG_J_pseudogene \
--include-attribute gene_biotype:IG_C_gene \
--include-attribute gene_biotype:IG_C_pseudogene \
--include-attribute gene_biotype:TR_V_gene \
--include-attribute gene_biotype:TR_V_pseudogene \
--include-attribute gene_biotype:TR_D_gene \
--include-attribute gene_biotype:TR_J_gene \
--include-attribute gene_biotype:TR_J_pseudogene \
--include-attribute gene_biotype:TR_C_gene \
genome.fasta genome.gtf

91
Supplementary Manual: Reference for kallisto and bustools commands.

1. kallisto

Running kallisto usually involves two steps: 1) Indexing a FASTA file of target sequences
via kallisto 1index, and 2) Mapping sequencing reads to kallisto index using
kallisto bus.

1.1 kallisto index

Builds a kallisto index.

Usage: kallisto index [arguments] FASTA-files

Required argument:
-i, --index=STRING Filename for the kallisto index to be constructed

Optional arguments:

-k, --kmer-size=INT k-mer (odd) length (default: 31, max value: 31)
-t, --threads=INT Number of threads to use (default: 1)
-d, --d-1list=STRING Path to a FASTA-file containing sequences to mask

from quantification (i.e. to extract distinguishing
flanking k-mers from).

--make-unique Replace repeated target names with unique names

--aa Generate index from a FASTA-file containing
amino acid sequences

--distinguish Generate index where sequences are distinguished
by the sequence name, for example, when indexing
k-mers distributed across multiple targets rather
than across a single contiguous target sequence.

-T, --tmp=STRING Temporary directory (default: tmp)
-m, --min-size=INT Length of minimizers (default: automatically chosen)
-e, --ec-max-size=INT Maximum number of targets in an equivalence class

(default: no maximum)

Among the optional arguments in kallisto index, in a general use case, typically only
-1 (--index; to specify the name of the index output filename), -t (--threads; to
specify the number of threads), and -d (--d-1ist; to specify the filename from which to
extract distinguishing flanking k-mers) are used.

92

1.2 kallisto bus

Generates a BUS file containing the results from mapping sequencing reads to a kallisto
index.

Usage:
kallisto bus [arguments] FASTQ-files
kallisto bus [arguments] --batch=batch.txt

Required arguments:

-i, --index=STRING Filename for the kallisto index to be used for
pseudoalignment

-0, --output-dir=STRING Directory to write output to

-x, --technology=STRING The “technology” string for the sequencing

technology used

Other arguments:

-1, --list List the technologies that are hard-coded into
kallisto so the name of the technology can
simply be supplied as the technology string

-B, --batch=FILE Path to a batch file. The batch file is a text
file listing all the samples to be analyzed
with the paths to their respective FASTQ files.
If a batch file is supplied, then one shouldn’t
supply FASTQ files on the command line.

-t, --threads=INT Number of threads to use (default: 1)

-b, --bam Input file is a BAM file rather than a set of
FASTQ files. Note: This is a nonstandard
workflow. It is strongly recommended to supply
FASTQ files rather than use this option and not
all technologies are supported by this option.

-n, --num Output read number in flag column of BUS file
The read number is zero-indexed. One can view
the read numbers by inspecting the BUS file
using bustools text. This option is useful for
pulling specific mapped reads out of the FASTQ
file or for examining which reads did not end
up being mapped by kallisto. (Important note:
BUS files with read numbers in the flag column
can NOT be used in quantification tasks with
bustools). (Note: incompatible with --bam)

-N, --numReads=INT Maximum number of reads to process from
supplied input. This is useful for processing
a small subset of reads from a large sequencing
experiment as a quick quality control.
Moreover, the program returns 1 if the number

-T, --tag=STRING

--fr-stranded
--rf-stranded
--unstranded

--paired

--inleaved

of reads processed from the input is less than
the number supplied here. This is useful for
catching errors when we expect a certain number
of reads to be present in the input but not all
the reads end up being there.

5’ tag sequence to identify UMI reads for
certain technologies. This is useful for
smart-seq3 where the UMI-containing reads have
an 11-bp tag sequence (ATTGCGCAATG) located at
the beginning of the UMI location. If this tag
sequence is present immediately before the UMI
location, then the UMI is processed into the
output BUS file; for all other sequences, the
UMI field in the BUS file is left empty (the
field is populated with the value -1 in binary
format).

Note: Matching the tag sequence is done with

a hamming distance error tolerance of 1 if the
tag is longer than 5 nucleotides. Otherwise,
no error tolerance is permitted.

Note: If strand-specificity is enabled, it will
only be applied to the UMI-containing reads.

Strand specific reads, first read forward
Strand specific reads, first read reverse
Treat all read as non-strand-specific

Treat reads as paired (i.e. if two biological
read sequences are present across two FASTQ
files, they will be mapped taking into account
their paired-endness: fragment length
distribution will be estimated for the read
pairs, and only one read in the pair needs to
map successfully in order to be considered
successful pseudoalignment)

Align to index generated from a FASTA-file
containing amino acid sequences

Specifies that input is an interleaved FASTQ
file. That is, only one FASTQ file is supplied
and the sequences are interleaved. For example,
instead of an R1 and R2 FASTQ file, a single
FASTQ file can be supplied where the reads are
listed in order of each R2 read immediately
following each R1 read. This is also useful
when piping interleaved output generated by
another program directly into

kallisto bus which can be done by

supplying - as the input file in lieu of

FASTQ file names.

93

94

--batch-barcodes Records both the generated sample-specific

barcodes as well as the cell barcodes extracted
from the reads in the output BUS file. If not
supplied, then the sample-specific barcodes are
not recorded.

In the output directory specified by -0 or --output-dir, the following files are made:

output.bus: A BUS file containing the mapped reads information, which will be
further processed using bustools.

transcripts.txt: A text file containing a list of the names of the targets or transcripts
used.

matrix.ec: A text file containing the equivalence classes. The equivalence class
number (zero-indexed) is in the first column and a comma-separated list of target
or transcript IDs belonging to that equivalence class are in the second column. The
transcript IDs are numbers (zero-indexed) that correspond to the line numbers
(zero-indexed) in the transcripts.txt file.

run_info.json: Contains information about the run, including percent of reads
pseudoaligned, number of reads processed, index version, etc.

flens.txt: Only produced when using paired-end mapping. Contains the fragment
length distribution, which can be used by kallisto quant-tcc to produce TPM
abundance values.

95
1.3 kallisto quant-tcc

Quantifies abundance from pre-computed transcript-compatibility counts. It takes in a
transcript compatibility counts (TCC) matrix outputted by bustools count and runs an
expectation-maximization (EM) algorithm to produce transcript abundances. This is useful
for producing TPM values from bulk RNA-seq and smart-seq2 RNA-seq data. The output
files can be used by bulk RNA-seq differential gene expression programs.

Usage: kallisto quant-tcc [arguments] transcript-compatibility-counts-file

Required arguments:
-0, --output-dir=STRING Directory to write output to.

-e, --ec-file=FILE File containing equivalence classes
(the equivalence class file in the same
directory as the output matrix file
should be used).

Other arguments:

-i, --index=STRING Filename for the kallisto index
to be used
(required if --txnames is not supplied
or if any of the fragment length
options: -f, -1, -s, is supplied
since the index contains transcript
lengths, which is necessary for length
normalization).

-T, --txnames=STRING File with names of transcripts
(required if index file not supplied).

-f, --fragment-file=FILE File containing fragment length
distribution (flens.txt outputted by
kallisto).

-1, --fragment-length=DOUBLE Estimated average fragment length.

-s, --sd=DOUBLE Estimated standard deviation of fragment
length
(note: -1, -s values only should be
supplied when effective length
normalization needs to be performed
but --fragment-file is not specified).

Note: If none of the fragment length
options -f -1 -s are supplied, then
effective length normalization is not
performed (i.e. transcript length isn’t
taken into account when quantification
is performed).

-p, --priors=FILE Priors for the EM algorithm, either as

96
raw counts or as probabilities.
Pseudocounts are added to raw counts to
prevent zero valued priors. Supplied in
the same order as the transcripts in the
transcriptome (e.g. in --txnames).

-t, --threads=INT Number of threads to use (default: 1).

-g, --genemap=FILE File for mapping transcripts to genes

(this is the t2g.txt file produced by
kb ref in kb-python and is required for
obtaining gene-level abundances).

-G, --gtf=FILE GTF file for transcriptome information

(can be used instead of --genemap for
obtaining gene-level abundances).

-b, --bootstrap-samples=INT Number of bootstrap samples (default: 0)

Bootstrap samples are useful for
obtaining inferential variance which can
be used by programs such as sleuth.

--matrix-to-files Reorganize matrix output into abundance

tsv files.

--matrix-to-directories Reorganize matrix output into abundance

tsv files across multiple directories.

--seed=INT Seed for the bootstrap sampling

(default: 42).

--plaintext Output plaintext only, not HDF5

(When --matrix-to-directories or
--matrix-to-files are supplied, HDF5
files are outputted by default, in
addition to the plaintext abundance tsv
files since HDF5 files containing
abundance information are used by
programs such as sleuth; this option
disables that).

In the output directory specified by -0 or --output-dir, the following files are made:

matrix.abundance.mtx: A sample-by-transcript (or cell-by-transcript)
MatrixMarket sparse matrix file containing the estimated transcript counts.
matrix.abundance.gene.mtx: A sample-by-gene (or cell-by-gene) MatrixMarket
sparse matrix file containing the estimated transcript counts summed up to gene-
level. Only made if a transcript-to-gene mapping was provided.
matrix.abundance.tpm.mtx: A sample-by-transcript (or cell-by-transcript)
MatrixMarket sparse matrix file containing the normalized transcript abundances
(if effective length normalization is performed, then the results are in length-
normalized TPM units; otherwise the results are in CPM [counts-per-million] units

97
wherein each value is normalized by the sum of all counts for that particular
sample or cell).
matrix.abundance.gene.tpm.mtx: A sample-by-gene (or cell-by-gene)
MatrixMarket sparse matrix file containing the same information as
matrix.abundance.tpm.mtx except summed up to gene-level if a transcript-to-gene
mapping was provided.
transcripts.txt: A text file containing a list of the names of the targets or transcripts
used (not made if a transcripts file was already provided via --txnames). These
transcripts correspond to the columns of transcripts in the matrix abundance output
files.
genes.txt: A text file containing a list of genes, if a transcript-to-gene mapping was
provided. These genes correspond to the columns of genes in the matrix abundance
output files.

--matrix-to-files: If this option is provided, the abundance output files will be
named abundance {n}.tsv and abundance {n}.h5 (hdf5 format) where {n} is the
sample number or cell number (which corresponds to the rows in the matrix files).
If bootstrapping is enabled, additional abundance tsv files (starting with the prefix
bs abundance {n}) will be created for each bootstrap sample. If a transcript-to-
gene mapping is provided, abundance.gene {n}.tsv files will be created as well
with the gene-level quantification.

--matrix-to-directories: If this option is provided, directories named abundance {n}
(where {n} is the sample number or cell number, corresponding to the rows in the
matrix files) will be created. Within each directory, an abundance.tsv text file and
abundance.h5 HDFS5 file will be created containing the quantifications for that
particular sample or cell. If bootstrapping is enabled, additional abundance tsv files
(starting with the prefix bs_abundance) will be created for each bootstrap sample.
If a transcript-to-gene mapping is provided, an abundance.gene.tsv file will be
created within each directory with the gene-level quantification.

The first few lines of an abundance tsv file looks as follows:

target id length eff length est counts tpm
ENST00000641515.2 2618 2349.39 0 0
ENST00000426406.4 939 670.39 0 0
ENST00000332831.4 995 726.39 0 0
ENST00000616016.5 3465 3196.39 5.68407 0.128913
ENST00000618323.5 3468 3199.39 1.83535 0.041586

98
1.4 kallisto quant

kallisto quant is an old usage of kallisto when kallisto was first developed for bulk
RNA-seq quantification. It is now recommended that users use the kallisto bus
command instead.

As such, documentation for the old kallisto quant is not within the scope of this
protocol.

1.5 kallisto inspect

Inspects and gives information about an index. The index can be loaded more quickly by
using multiple threads, which can be specified by the -t option.

Example usage:
kallisto inspect -t 8 /path/to/kallisto/index.idx

Sample output:

[index] k-mer length: 31

[index] number of targets: 252,301

[index] number of k-mers: 155,044,518

[index] number of distinguishing flanking k-mers: 7,425,493
[inspect] Index version number = 12

[inspect] number of unitigs = 9411252

[inspect] minimizer length = 23

[] max EC size = 3873

[] number of ECs discarded = 0

inspect
inspect

1.6 kallisto version

Prints out the version of the kallisto software that is being used

1.7 kallisto cite

Prints out citation information

99
2. bustools

Bustools is run on BUS files generated by the kallisto bus command. The first step in
working with BUS files is usually to sort the BUS file using bustools sort. This will
organize the BUS file, making it suitable for use with other bustools commands. In a
standard workflow, the sorted BUS file is error-corrected to a barcode on list via bustools
correct, then sorted again, then quantified into count matrices via bustools count.
There are many bustools commands, some of which are outside the scope of this protocol
and some of which are in development; therefore only the bustools commands relevant to
most RNA-seq analyses are presented here.

Many of the bustools commands can read from the standard input (stdin), by specifying -
as the input file and write to standard output (stdout) using the -p flag if available.

2.1 bustools sort

Sorts a BUS file. bustools sort (using the default options) should always be done
before any additional processing of the BUS file following generation of the BUS file from
the kallisto bus command. Many bustools commands will not work properly with an
unsorted BUS file. Increasing the number of threads and maximum memory will speed up
sorting.

The default behavior is to sort by barcode, UMI, equivalence class (ec), then the flag
column.

Usage: bustools sort [options] bus-files

Arguments:

-t, --threads=INT Number of threads to use (default: 1).

-m, --memory=STRING Maximum memory used (default: 4G).

-T, --temp=STRING Location and prefix for temporary files
(required if using -p, otherwise
defaults to output).

-0, --output=STRING Filename to output sorted BUS file into.

-p, --pipe Write to standard output.

--umi Sort by UMI, barcode, then ec.
--count Sort by multiplicity (count), barcode, UMI, then ec.
--flags Sort by flag, ec, barcode, then UMI.

--flags-bc Sort by flag, barcode, UMI, then ec.

100

--no-flags Ignore and reset the flag column while sorting.
If read numbers are present in the flag column of
the BUS file, sorting using this option renders
BUS file suitable for use in generating
count matrices.

2.2 bustools correct

Error-corrects the barcodes in a BUS file to an “on list”.

Error correction is done based on a hamming distance 1 mismatch between each BUS file
barcode sequence and each “on list” sequence. For barcode error correction, the “on list”
file simply contains a list of sequences in the “on list”.

Another operation supported is the replacement operation: Each “on list” sequence (in the
first column of the “on list” file) has a replacement sequence (in the second column of the
“on list” file) designated therefore if a BUS file barcode has an exact match to one of those
“on list” sequences, it is replaced with its replacement sequence.

Note: The input BUS file need not be sorted.

Usage: bustools correct [options] bus-files

Arguments:

-0, --output=STRING Filename to output barcode-corrected BUS file into.
-w, --onlist=FILE File containing the “on list” sequences.

-p, --pipe Write to standard output.

-r, --replace Perform the replacement operation rather than the

barcode error correction operation for the file
supplied in the -w option.

101
2.3 bustools count

Generates count matrices from BUS files that have been sorted and barcode-error-
corrected.

Usage: bustools count [options] sorted-bus-files

Arguments:
-0, --output=STRING The prefix of the output files for count matrices.

-g, --genemap=FILE File for mapping transcripts to genes
(when using kb ref in kb-python, this is the
t2g.txt file produced by kb ref).

-e, --ecmap=FILE File for mapping equivalence classes to transcripts.
-t, --txnames=FILE File with names of transcripts.

--genecounts Aggregate counts to genes only.
This option generates a gene count matrix; if this
option is not supplied, a transcript-compatibility
counts (TCC) matrix (where each equivalence class
gets a count) is generated instead.

--umi-gene Handles cases of UMI collisions. For example, a case
may be where two reads with the same UMI
sequence and the same barcode map to different
genes. With this option enabled, those reads are
considered to be two distinct molecules which were
unintentionally labeled with the same UMI, and hence
each gene gets a count.

--cm Counts multiplicities rather than UMIs. In other
words, no UMI collapsing is performed and each
mapped read is its own unique molecule regardless of
the UMI sequence (i.e. the UMI sequence is ignored).

-m, --multimapping Include bus records that map to multiple genes.
When --genecounts is enabled, this option causes
counts to be distributed uniformly across all the
mapped genes (for example, if a read multimaps to
two genes, each gene will get a count of ©.5).

-s, --split=FILE Split output matrix in two (plus ambiguous) based on
the 1list of transcript names supplied in this file.
If a UMI (after collapsing) or a read maps to
transcripts found in this file, the count is entered
into a matrix file with the extension .2.mtx; if it
maps to transcripts not in this file, the count is
entered into a separate matrix file with the
extension .mtx; if it maps to some transcripts in
this file and some transcripts not in this file, the
count is entered into a third matrix file with the
extension .ambiguous.mtx.

102
When quantifying nascent, ambiguous, and mature RNA
species, the nascent transcript names (which will
actually simply be the gene IDs themselves) will
be listed in the file supplied to --split so that
the .mtx file contains the mature RNA counts, the
.2.mtx file contains the nascent RNA counts, and the
.ambiguous.mtx file contains the ambiguous RNA
counts. Note that kb-python renames .mtx to
.mature.mtx and renames 2.mtx to .nascent.mtx.

Output:

Each output file is prefixed with what is supplied to the --output option. In kb count
within kb-python, the prefix is cells_x_genes. Thus, the files outputted (when generating a
gene count matrix via --genecounts) will be cells x genes.mtx (the matrix file),
cells x genes.barcodes.txt (the barcodes, i.e. the rows of the matrix), and
cells x genes.genes.txt (the genes, i.e. the columns of the matrix). When generating a TCC
matrix, cells x genes.ec.txt will be generated in lieu of cells x genes.genes.txt as the
columns of the matrix will be equivalence classes (ECs) rather than genes. If both sample-
specific barcodes and cell barcodes are supplied (as is the case when one uses --batch-
barcodes in kallisto bus), then an additional cells x genes.barcodes.prefix.txt file
will be created containing the sample-specific barcodes. The lines of this file correspond
to the lines in the cells x genes.barcodes.txt (both files will have the same number of
lines). Finally, when --split is supplied, additional .mtx matrix files will be generated
(see the --split option described above).

2.4 bustools inspect

Produces a report summarizing the contents of a sorted BUS file. The report can be output
either to standard output or to a JSON file.

Usage: bustools inspect [options] sorted-bus-file

Arguments:

-0, --output=STRING Filename to output sorted BUS file into

-e, --ecmap=FILE File for mapping equivalence classes to transcripts
-wW, --onlist=FILE File containing the barcodes “on list”

-p, --pipe Write to standard output

103
Sample report output in standard output (using -p):
Read in 3148815 BUS records
Total number of reads: 3431849

Number of distinct barcodes: 162360
Median number of reads per barcode: 1.000000
Mean number of reads per barcode: 21.137281

Number of distinct UMIs: 966593

Number of distinct barcode-UMI pairs: 3062719
Median number of UMIs per barcode: 1.000000
Mean number of UMIs per barcode: 18.863753

Estimated number of new records at 2x sequencing depth:
2719327

Number of distinct targets detected: 70492
Median number of targets per set: 2.000000
Mean number of targets per set: 3.091267

Number of reads with singleton target: 1233940

Estimated number of new targets at 2x seugencing depth:
6168

Number of barcodes in agreement with on-1list: 92889
(57.211752%)

Number of reads with barcode in agreement with on-list:
3281671 (95.623992%)

Sample report output in JSON format:

{

"numRecords": 3148815,
"numReads": 3431849,
"numBarcodes": 162360,
"medianReadsPerBarcode": 1.000000,
"meanReadsPerBarcode": 21.137281,
"numUMIs": 966593,
"numBarcodeUMIs": 3062719,
"medianUMIsPerBarcode": 1.000000,
"meanUMIsPerBarcode": 18.863753,
"gtRecords": 2719327,
"numTargets": 70492,
"medianTargetsPerSet": 2.000000,
"meanTargetsPerSet": 3.091267,
"numSingleton": 1233940,
"gtTargets": 6168,
"numBarcodesOnOnlist": 92889,

"percentageBarcodesOnOnlist": 0.57211752,

"numReadsOnOnlist": 3281671,

"percentageReadsOnOnlist": 0.95623992

104

Note: The numTargets, medianTargetsPerSet, meanTargetsPerSet, numSingleton, and
gtTargets values are only generated if the --ecmap option is provided. The

numBarcodesOnOnlist, percentageBarcodesOnOnlist,
percentageReadsOnOnlist values are only generated if the --onlist is provided.

2.5 bustools allowlist

numReadsOnOnlist,

Generates an “on list” based on the barcodes in a sorted BUS file. This is a way of
generating an on list that the barcodes in the BUS file will be corrected to, for technologies

that don’t provide an on list.

Usage: bustools allowlist [options] sorted-bus-file

Arguments:
-0, --output=STRING Filename to output the “on list” into.
-f, --threshold=INT A highly optional

minimum number of
to be included in
threshold will be
200 to 100200 BUS

parameter specifying the
times a barcode must appear
“on list”. If not provided, a
determined based on the first

2.6 bustools capture

105

Separates a BUS file into multiple files according to the capture criteria.

Usage: bustools capture [options] bus-files

Capture options:

-F, --flags

-s, --transcripts
-u, --umis

-b, --barcode
Arguments:

-0, --output=STRING

—X,

—C,

_e,

_t,

-P»

--complement

--capture=FILE

--ecmap=FILE

--txnames=FILE

--pipe

Capture list is a list of flags to capture
Capture list is a list of transcripts to capture
Capture list is a list of UMI sequences to capture

Capture list is a list of barcodes to capture

Name of file for the captured BUS output

Take complement of captured set
(i.e. output all BUS records that do NOT
match an entry in the capture list)

File containing the “capture list”
(i.e. list of transcripts, transcripts, flags,
UMI sequences, or barcode sequences)

File for mapping equivalence classes to
transcripts (required for --transcripts)

File with names of transcripts
(required for --transcripts)

Write to standard output

Note: If you use the -b (--barcode) option and want to capture all records containing a
sample-specific barcode from running --batch-barcodes in kallisto bus, in the
“capture list” file, enter the 16-bp sample-specific barcode followed by a * character (e.g.
AAAAAAAAAAAAAACT?).

106
2.7 bustools text

Converts a binary BUS file into its plaintext representation. The plaintext will have the
columns (in order): barcode, UMI, equivalence class, count, flag, and pad. Note: The last
two columns will only be outputted if the respective option is specified by the user.

Usage: bustools text [options] bus-files

Arguments:

-0, --output=STRING Filename of the output text file.

-f, --flags Write the flag column.

-d, --pad Write the pad column
(the “pad” column is an additional 32-bit field
in the BUS file, in case one would like to use the
BUS format to store additional data for each BUS
record; this column is typically not used).

-p, --pipe Write to standard output.

-a, --showAll Show all 32 bases in the barcodes field (e.g. if

--batch-barcodes is specified in kallisto bus, the
cell barcodes are stored in barcodes field and are
used for bustools barcode correction to an on-list;
however, the artificial sample-specific barcodes
are stored as an additional “hidden” field in the
barcodes column, immediately preceding the cell
barcodes, and may be truncated or left-padded with
A’s to fill the 32 bases. For example, if the cell
barcode is 12 bases, there will be 4 A’s followed
by the 16-bp sample-specific barcode followed by
the 12-base cell barcode. If the cell barcode is 26
bases, the last 6 bases of the sample-specific
barcode will be shown followed by the 26-base cell
barcode).

An example of the plaintext output of a BUS file (with the flag column):
AAAAGATCACTATGCACTATCATCGCAAAACCTT 1562 0
AAAAGATCAGATCGCACACTTTCATAGAGTAACC 4383 0
AAAAGATCAGATCGCAGCTCTACTTTAGGTATAG 18081 O
AAAAGATCAGCACCTCCTGACTTCAATCGGCATT 44811 O

If one runs kallisto bus with the -n (--num) option, the read number (zero-indexed)
of the mapped reads will be stored in the flags column (i.e. the fifth column). One can view
those read numbers using bustools text to identify which reads in the input FASTQ
files mapped (and which reads were unmapped).

107
2.8 bustools fromtext

Converts a plaintext representation of a BUS file to a binary BUS file. The plaintext input
file should have four columns: barcode, UMI, equivalence class, and count. Optionally, a
fifth column (the flags column) can be supplied.

Usage: bustools fromtext [options] text-files

Arguments:
-0, --output=STRING Filename to write the output BUS file
-p, --pipe Write to standard output

2.9 bustools extract

Extracts the successfully mapped sequencing reads from the input FASTQ files that were
processed with kallisto bus with the -n (--num) option, which places the read
number (zero-indexed) in the flags column of the BUS file. Although BUS files with read
numbers present in the flags column should not be used for downstream quantification,
they can be used by bustools extract to extract the original sequencing reads (as well
as by bustools text to view the sequencing read number along with the barcode, UMI,
and equivalence class).

Note: The BUS file must be sorted by flag. The output BUS file directly from kallisto
should already be sorted by flag, but, if not, one can use apply bustools sort --flag
on the BUS file.

Usage: bustools extract [options] sorted-by-flag-bus-file

Arguments:
-0, --output=STRING Directory that the output FASTQ files will be stored in.

-f, --fastq=STRING FASTQ file(s) from which to extract reads
(comma-separated list). These should be the same files
used as input to kallisto bus.

-N, --nFastqs=INT Number of FASTQ file(s) per run. For example, in 10xv3
where there are two FASTQ files (and R1 and R2 file),
--nFastqgs=2 should be set.

108
Bustools extract is especially useful to use in conjunction with bustools capture
when one wishes to extract specific reads (e.g. reads that contain a certain barcode or reads
whose equivalence class contains a certain transcript). Below, we show an example of how
to extract reads from two input files: R1.fastq.gz and R2.fastq.gz entered into a kallisto bus
run with results outputted into a directory named output_dir. We’ll extract reads that are
compatible ~ with either = the transcript = ENSMUST00000171143.2 or
ENSMUST00000131532.2.

Create a file called capture.txt containing the following two lines:
ENSMUST00000171143.2
ENSMUST00000131532.2

Run the following:

bustools capture -c capture.txt --transcripts \
—--ecmap=output dir/matrix.ec \

--txnames=output dir/transcripts.txt -p \

output dir/output.bus | bustools extract --nFastgs=2 \
-—-fastg=R1l.fastqg.gz,R2.fastg.gz -o extracted output -

The capture results are directly piped into the extract command, and the extracted FASTQ
sequencing reads output are placed into the paths extracted output/l.fastq.gz and
extracted output/2.fastq.gz (for the input files R1.fastq.gz and R2.fastq.gz, respectively).

bustools extract does not work when you have sample-specific barcodes in your
BUS file because each sample’s read number (as recorded in the flags column of the BUS
file) starts from 0. To work around this, you should first use bustools capture to
isolate a specific sample and then supply that specific sample’s FASTQ file(s).

2.10 bustools umicorrect

Implements the UMI correction algorithm of UMI-tools and outputs a BUS file with the
corrected UMIs.

Usage: bustools umicorrect [options] sorted-bus-file

Arguments:
-0, --output=STRING Filename of the output BUS file with UMIs corrected
-p, --pipe Write to standard output
-g, --genemap=FILE File for mapping transcripts to genes
(when using kb ref in kb-python, this is the
t2g.txt file produced by kb ref)
-e, --ecmap=FILE File for mapping equivalence classes to transcripts

-t, --txnames=FILE File with names of transcripts

109
2.11 bustools compress

Takes in a BUS file, sorted by barcode-umi-ec (i.e. the default option for bustools
sort), and compresses it.

Usage: bustools compress [options] sorted-bus-file

Arguments:

-N, --chunk-size=INT Number of rows to compress as a single
block

-0, --output=STRING Filename for the output compressed BUS
file

-p, --pipe Write to standard output

2.12 bustools decompress

Takes in a compressed BUS file and inflates (i.e. decompresses) it.

Usage: bustools decompress [options] compressed-bus-file

Arguments:

-0, --output=STRING Filename for the output decompressed BUS
file

-p, --pipe Write to standard output

2.13 bustools version

Prints out the version of the bustools software that is being used.

2.14 bustools cite

Prints out citation information.

110
An example mouse multiplexed single-nucleus SPLiT-seq preprocessing workflow.

Here we describe how to process a mouse multiplexed single-nucleus SPLiT-seq assay.
The input FASTQ files are split across multiple subpools such that two cells may have the
same cell barcode but be in different subpools. The SPLiT-seq assay uses both oligo-dT
and random hexamer primers (which are represented in the third component of the cell
barcode, corresponding to the first round of split pooling). As a result, two sets of matrices
will be produced: One with both the oligo-dT and random hexamer barcodes in the same
count matrix and one with the oligo-dT barcodes converted into the random hexamer
barcodes (so that each barcode is unique to one nucleus). This facilitates investigation of
each library type separately (should one wish to generate an “oligo-dT” count matrix and
a “random hexamer” count matrix) as well as of the two library types combined together.

1. Install kb-python.

pip install kb python

2. Download the mouse genome and annotation files.

wget ftp.ensembl.org/pub/release-108/fasta/mus musculus/dna/Mus_musculus.GRCm39.dna.primary assembly.fa.gz

wget ftp.ensembl.org/pub/release-108/gtf/mus_musculus/Mus_musculus.GRCm39.108.gtf.gz

3. Build the index.

111

To illustrate index generation with GTF filtering we show below how to filter the GTF file
to only keep the relevant biotypes (the same ones that are used in the CellRanger
reference). This can improve both accuracy and efficiency. Additional methods to optimize
the GTF file can also be used such as the one proposed in Pool et al., 2023+ which can

greatly increase gene detection sensitivity.

kb ref --workflow=nac -1

--include-attribute
--include-attribute
--include-attribute
--include-attribute
--include-attribute
--include-attribute
--include-attribute
--include-attribute
--include-attribute
--include-attribute
--include-attribute
--include-attribute

index.idx -g

-cl cdna.txt -c2 nascent.txt -fl

gene biotype

gene biotype:
gene biotype:
gene biotype:
gene biotype:
:IG V gene \
gene biotype:
gene biotype:
gene biotype:
gene biotype:
gene biotype:
gene biotype:

gene biotype

t2g.txt \

cdna.fasta -f2 nascent.fasta \
:protein coding \

IncRNA \
1lincRNA \
antisense \
IG LV gene \

IG V _pseudogene
IG D gene \
IG J gene \
IG J pseudogene
IG C gene \
IG C pseudogene

--include-attribute
--include-attribute
--include-attribute
--include-attribute
--include-attribute
--include-attribute
Mus musculus.GRCm39.
Mus musculus.GRCm39.

gene biotype

108.gtf.gz

gene biotype:
gene biotype:TR |
:TR D gene \
gene biotype:
gene biotype:
gene biotype:
dna.primary assembly.fa.gz \

TR_V _gene \
TR V_pseudogene \

TR J gene \
TR J pseudogene \
TR _C gene \

4. Map the input sequencing reads to the index.

This assay has multiple FASTQ files across multiple subpools as well as two primer types.
To process this, we supply a batch.txt file containing the FASTQ files along with their
designated subpool, a barcodes.txt file containing the three barcode components (since
the assay contains three 8-bp barcodes, each separated by a linker, in the first read file),
and a replace.txt file designating how to convert the random hexamer barcodes to the
oligo-dT barcodes for the “combined” matrix. The final command to run with these files is

as follows:

kb count --strand=forward -r replace.txt -w barcodes.txt \
--workflow=nac -i index.idx -g t2g.txt -cl cdna.txt \
-c2 nascent.txt -x 1,10,18,1,48,56,1,78,86:1,0,10:0,0,0 \
--sum=total -o output dir --batch-barcodes batch.txt

112
5. Analyze the output.

Output (both the oligo-dT and random hexamer barcodes in the same count matrix):
e output_dir/counts_unfiltered/cells_x_genes.mature.mtx
output_dir/counts_unfiltered/cells_x_genes.nascent.mtx
output_dir/counts_unfiltered/cells_x_genes.ambiguous.mtx
output_dir/counts_unfiltered/cells_x_genes.cell.mtx
output_dir/counts_unfiltered/cells_x_genes.nucleus.mtx
output_dir/counts_unfiltered/cells_x_genes.total.mtx
output_dir/counts_unfiltered/cells_x_genes.barcodes.ixt
output_dir/counts_unfiltered/cells_x_genes.barcodes.prefix.ixt
output_dir/counts_unfiltered/cells_x_genes.genes.txt
output_dir/counts_unfiltered/cells_x_genes.genes.names.ixt

Output (the oligo-dT and random hexamer barcodes are combined):

e output_dir/counts_unfiltered_modified/cells_x_genes.mature.mtx
output_dir/counts_unfiltered_modified/cells_x_genes.nascent.mtx
output_dir/counts_unfiltered_modified/cells_x_genes.ambiguous.mtx
output_dir/counts_unfiltered_modified/cells_x_genes.cell.mtx
output_dir/counts_unfiltered_modified/cells_x_genes.nucleus.mtx
output_dir/counts_unfiltered_modified/cells_x_genes.total.mtx
output_dir/counts_unfiltered_modified/cells_x_genes.barcodes.ixt
output_dir/counts_unfiltered_modified/cells_x_genes.barcodes.prefix.txt
output_dir/counts_unfiltered_modified/cells_x_genes.genes.txt
output_dir/counts_unfiltered_modified/cells_x_genes.genes.names.txt

Note that the cells_x_genes.barcodes.prefix.txt will contain a unique identifier for each
subpool.

Information about batch.txt, barcodes.txt, and replace.txt files:

batch.txt:

Example with three subpools, each sequenced on four lanes:

113

subpool 1 S1 lanel Rl.fastqg.gz S1 lanel R2.fastqg.gz
subpool 1 S1 laneZ2 Rl.fastqg.gz S1 lane2 R2.fastqg.gz
subpool 1 S1 lane3 Rl.fastqg.gz S1 lane3 R2.fastqg.gz
subpool 1 S1 lane4 Rl.fastqg.gz S1 lane4 R2.fastqg.gz
subpool 2 S2 lanel Rl.fastqg.gz S2 lanel R2.fastqg.gz
subpool 2 S2 laneZ Rl.fastqg.gz S2 lane2 R2.fastqg.gz
subpool 2 S2 lane3 Rl.fastqg.gz S2 lane3 R2.fastqg.gz
subpool 2 S2 lane4 Rl.fastqg.gz S2 lane4 R2.fastqg.gz
subpool 3 S3 lanel Rl.fastqg.gz S3 lanel R2.fastqg.gz
subpool 3 S3 lane2 Rl.fastqg.gz S3 lane2 R2.fastqg.gz

subpool 3 S3 lane3 Rl.fastqg.gz S3 lane3 R2.fastqg.gz

subpool 3 S3 lane4 Rl.fastqg.gz S3 lane4 R2.fastqg.gz

In this configuration, subpool_1 will have the sample-specific barcode
AAAAAAAAAAAAAAAA, subpool 2 will have the sample-specific barcode
AAAAAAAAAAAAAAAC, and subpool_3 will have the sample-specific barcode

AAAAAAAAAAAAAAAG. This mapping can be found in the output_dir/matrix.cells and
output_dir/matrix.sample.barcodes files. These sample-specific barcodes are found in
cells_x_genes.barcodes.prefix.txt to identify the subpool a specific cell barcode originated
from when inspecting the count matrices.

barcodes.txt:

The cell barcodes contain three 8-bp components so we should correct each component
individually to its own “on list”. This can be done by having multiple columns in the
barcodes.txt file. Note that the first two columns have 96 barcodes and the third column
has 192 barcodes.

AACGTGAT AACGTGAT CATTCCTA
AAACATCG AAACATCG CTTCATCA
ATGCCTAA ATGCCTAA CCTATATC
AGTGGTCA AGTGGTCA ACATTTAC
ACCACTGT ACCACTGT ACTTAGCT
ACATTGGC ACATTGGC CCAATTCT
CAGATCTG CAGATCTG GCCTATCT
CATCAAGT CATCAAGT ATGCTGCT
CGCTGATC CGCTGATC CATTTACA
ACAAGCTA ACAAGCTA ACTCGTAA
CTGTAGCC CTGTAGCC CCTTTGCA
AGTACAAG AGTACAAG ACTCCTGC
AACAACCA AACAACCA ATTTGGCA
AACCGAGA AACCGAGA TTATTCTG
AACGCTTA AACGCTTA TCATGCTC

114

AAGACGGA
AAGGTACA
ACACAGAA
ACAGCAGA
ACCTCCAA
ACGCTCGA
ACGTATCA
ACTATGCA
AGAGTCAA
AGATCGCA
AGCAGGAA
AGTCACTA
ATCCTGTA
ATTGAGGA
CAACCACA
GACTAGTA
CAATGGAA
CACTTCGA
CAGCGTTA
CATACCAA
CCAGTTCA
CCGAAGTA
CCGTGAGA
CCTCCTGA
CGAACTTA
CGACTGGA
CGCATACA
CTCAATGA
CTGAGCCA
CTGGCATA
GAATCTGA
CAAGACTA
GAGCTGAA
GATAGACA
GCCACATA
GCGAGTAA
GCTAACGA
GCTCGGTA
GGAGAACA
GGTGCGAA
GTACGCAA
GTCGTAGA
GTCTGTCA
GTGTTCTA
TAGGATGA
TATCAGCA
TCCGTCTA
TCTTCACA
TGAAGAGA
TGGAACAA
TGGCTTCA
TGGTGGTA
TTCACGCA
AACTCACC
AAGAGATC
AAGGACAC
AATCCGTC
AATGTTGC
ACACGACC

AAGACGGA
AAGGTACA
ACACAGAA
ACAGCAGA
ACCTCCAA
ACGCTCGA
ACGTATCA
ACTATGCA
AGAGTCAA
AGATCGCA
AGCAGGAA
AGTCACTA
ATCCTGTA
ATTGAGGA
CAACCACA
GACTAGTA
CAATGGAA
CACTTCGA
CAGCGTTA
CATACCAA
CCAGTTCA
CCGAAGTA
CCGTGAGA
CCTCCTGA
CGAACTTA
CGACTGGA
CGCATACA
CTCAATGA
CTGAGCCA
CTGGCATA
GAATCTGA
CAAGACTA
GAGCTGAA
GATAGACA
GCCACATA
GCGAGTAA
GCTAACGA
GCTCGGTA
GGAGAACA
GGTGCGAA
GTACGCAA
GTCGTAGA
GTCTGTCA
GTGTTCTA
TAGGATGA
TATCAGCA
TCCGTCTA
TCTTCACA
TGAAGAGA
TGGAACAA
TGGCTTCA
TGGTGGTA
TTCACGCA
AACTCACC
AAGAGATC
AAGGACAC
AATCCGTC
AATGTTGC
ACACGACC

CATACTTC
CCGTTCTA
GCTTCATA
CTCTGTGC
CCCTTATA
ACTGCTCT
CTCTAATC
ACCCTTGC
ATCTTAGG
CATGTCTC
TCATTGCA
ACACCTTT
AATTTCTC
ATTCATGG
ACTTTACC
CTTCTAAC
CTATTTCA
TCTCATGC
ATCCTTAC
TAAATATC
TTACCTGC
CACTTTCA
CACCTTTA
CTGACTTC
CATTTGGA
GCTCTACT
GTTACGTA
CCTGTTGC
CTATCATC
GCTATCAT
ACATTCAT
TTCGCTAC
CATTCTAC
CACTTATC
ATAAGCTC
TCATCCTG
CCTGGTAT
TGGTATAC
TTGGGAGA
ACTTCATC
TCTCTAGC
ATGCCCTT
CCCAATTT
ACTATATA
CTCTATAC
CTGTCTCA
GACCTTTC
GATTTGGC
CGTCTAGG
TACTCGAA
CAGCCTTT
CCTCATTA
CTTATACC
TCTATTAC
CCTGCATT
CAATCCTT
TTGTCTTA
TCACTTTA
TGCTTGGG

115

ACAGATTC
AGATGTAC
AGCACCTC
AGCCATGC
AGGCTAAC
ATAGCGAC
ATCATTCC
ATTGGCTC
CAAGGAGC
CACCTTAC
CCATCCTC
CCGACAAC
CCTAATCC
CCTCTATC
CGACACAC
CGGATTGC
CTAAGGTC
GAACAGGC
GACAGTGC
GAGTTAGC
GATGAATC
GCCAAGAC

ACAGATTC
AGATGTAC
AGCACCTC
AGCCATGC
AGGCTAAC
ATAGCGAC
ATCATTCC
ATTGGCTC
CAAGGAGC
CACCTTAC
CCATCCTC
CCGACAAC
CCTAATCC
CCTCTATC
CGACACAC
CGGATTGC
CTAAGGTC
GAACAGGC
GACAGTGC
GAGTTAGC
GATGAATC
GCCAAGAC

CGCTCATT
GCCTCTAT
GAGCACAA
CTCTTAAC
TCTAGGCT
AATTCTGC
CATTCTCA
ACTTGCCT
ATCATTGC
GTTCAACA
CCATTTGC
GACTTTGC
ATTGGCTC
GTGCTAGC
CTTTCAAC
ACTATTGC
ACTGGCTT
ATTAGGCT
GCCTTTCA
ATTCTAGG
CCTTACAT
ACATTTGG
CATCATCC
CTGCTTTG
CTAAGGGA
GCTTATAG
TCTGATCC
TCTCTTGG
CAATTTCC
AGTCTCTT
TGCTGCTC
GTATTTCC
TTCCTGTG
GCTGCTTC
TATGTGTC
CAATTCTC
TGGTCTCC
GCTCTTTA
GCTGCATG
ACTCATTT
AGTCTTGG
GGTTCTTC
TCATGTTG
ATTTTGCC
CTTCTGTA
GTCCATCT
GCTATCTC
TAGTTTCC
TCCATTAT
AGGATTAA
AATCTTTC
GTCATATG
GTGCTTCC
ATGTGTTG
CCATCTTG
TACTGTCT
TTCATCGC
ACTGTGGG
TCTGTGCC

116

TCAATCTC
GTCCTCTG
TTACATTC
ATTCTGTC
TGTGTATG
TCCATTTG
TTAGCTTC
GTGCTTGA
GTTTGTGA
GAAATTAG
GCAAATTC
GAGGTTGA
CCTGTCTG
GTGGGTTC
TTTGCATC
AGGTAATA
GTGCCTTC
ATGTTTCC
CTTAATTC
TCTGGCTC
CATCATTT
GTTGTCTC
ATCTTCTG
TGTTTGCC
TTCTGTCA
ACGGACTC
TTTGGTCA
TATCCGGG
TGTCATTC
ATTCTCTG
TGGCTTCC
TTGTTGCC
GTCATCTC
TTGCTCAT
CTGTCTGC
TATATTCC
ATATTGGC
GTGTCCTC
ATCTTCAT
CGTGGTTG
TTGCATCC
TCTTAATC
TGCATTTC
GATGTTTC
ATCTTGTC
TCATATTC
TGGCCTCT
CGTTGTCT
TCTTGTCA
TATTCCTG
TCCATGTC
TTGTCATC
ATTTCCTG
GTGTCTCC
GTGTGTGT
TATGCTTC
ATGGTGTT
GAATAATG
CCTCTGTG

117
replace.txt:

This file contains the instructions on how to produce the “modified” count matrix in
output_dir/counts_unfiltered_modified/ — the output directory which contains the combined
oligo-dT and random hexamer barcodes wherein the random hexamer barcodes (first
column of the file) are converted to their oligo-dT counterparts (second column of the file).
These barcodes, being the third component of the barcode, occur at the end of the final
barcode string. The asterisk (*) at the beginning of the replacement string tells bustools to
convert the nucleotides at the end of the barcode sequence. As an example, the barcode
sequence AACAACCATGAAGAGACATCATCC will be converted into
AACAACCATGAAGAGACATTCCTA in the final output in the
output_dir/counts_unfiltered_modified/ directory.

CATCATCC *CATTCCTA
CTGCTTTG *CTTCATCA
CTAAGGGA *CCTATATC
GCTTATAG *ACATTTAC
TCTGATCC *ACTTAGCT
TCTCTTGG *CCAATTCT
CAATTTCC *GCCTATCT
AGTCTCTT *ATGCTGCT
TGCTGCTC *CATTTACA
GTATTTCC *ACTCGTAA
TTCCTGTG *CCTTTGCA
GCTGCTTC *ACTCCTGC
TATGTGTC *ATTTGGCA
CAATTCTC *TTATTCTG
TGGTCTCC *TCATGCTC
GCTCTTTA *CATACTTC
GCTGCATG *CCGTTCTA
ACTCATTT *GCTTCATA
AGTCTTGG *CTCTGTGC
GGTTCTTC *CCCTTATA
TCATGTTG *ACTGCTCT
ATTTTGCC *CTCTAATC
CTTCTGTA *ACCCTTGC
GTCCATCT *ATCTTAGG
GCTATCTC *CATGTCTC
TAGTTTCC *TCATTGCA
TCCATTAT *ACACCTTT
AGGATTAA *AATTTCTC
AATCTTTC *ATTCATGG
GTCATATG *ACTTTACC
GTGCTTCC *CTTCTAAC
ATGTGTTG *CTATTTCA
CCATCTTG *TCTCATGC
TACTGTCT *ATCCTTAC
TTCATCGC *TAAATATC
ACTGTGGG *TTACCTGC
TCTGTGCC *CACTTTCA
TCAATCTC *CACCTTTA
GTCCTCTG *CTGACTTC
TTACATTC *CATTTGGA
ATTCTGTC *GCTCTACT
TGTGTATG *GTTACGTA
TCCATTTG *CCTGTTGC

118

TTAGCTTC
GTGCTTGA
GTTTGTGA
GAAATTAG
GCAAATTC
GAGGTTGA
CCTGTCTG
GTGGGTTC
TTTGCATC
AGGTAATA
GTGCCTTC
ATGTTTCC
CTTAATTC
TCTGGCTC
CATCATTT
GTTGTCTC
ATCTTCTG
TGTTTGCC
TTCTGTCA
ACGGACTC
TTTGGTCA
TATCCGGG
TGTCATTC
ATTCTCTG
TGGCTTCC
TTGTTGCC
GTCATCTC
TTGCTCAT
CTGTCTGC
TATATTCC
ATATTGGC
GTGTCCTC
ATCTTCAT
CGTGGTTG
TTGCATCC
TCTTAATC
TGCATTTC
GATGTTTC
ATCTTGTC
TCATATTC
TGGCCTCT
CGTTGTCT
TCTTGTCA
TATTCCTG
TCCATGTC
TTGTCATC
ATTTCCTG
GTGTCTCC
GTGTGTGT
TATGCTTC
ATGGTGTT
GAATAATG
CCTCTGTG

*CTATCATC
*GCTATCAT
*ACATTCAT
*TTCGCTAC
*CATTCTAC
*CACTTATC
*ATAAGCTC
*TCATCCTG
*CCTGGTAT
*TGGTATAC
*TTGGGAGA
*ACTTCATC
*TCTCTAGC
*ATGCCCTT
*CCCAATTT
*ACTATATA
*CTCTATAC
*CTGTCTCA
*GACCTTTC
*GATTTGGC
*CGTCTAGG
*TACTCGAA
*CAGCCTTT
*CCTCATTA
*CTTATACC
*TCTATTAC
*CCTGCATT
*CAATCCTT
*TTGTCTTA
*TCACTTTA
*TGCTTGGG
*CGCTCATT
*GCCTCTAT
*GAGCACAA
*CTCTTAAC
*TCTAGGCT
*AATTCTGC
*CATTCTCA
*ACTTGCCT
*ATCATTGC
*GTTCAACA
*CCATTTGC
*GACTTTGC
*ATTGGCTC
*GTGCTAGC
*CTTTCAAC
*ACTATTGC
*ACTGGCTT
*ATTAGGCT
*GCCTTTCA
*ATTCTAGG
*CCTTACAT
*ACATTTGG

119
The commands run by kb count in this example:

mkdir -p output dir/tmp
mkdir -p output dir

kallisto bus -i index.idx -o output dir -x
1,10,18,1,48,56,1,78,86:1,0,10:0,0,0 -t 8 —-—-fr-stranded
—--batch-barcodes --batch batch.txt

bustools sort -o output dir/tmp/output.s.bus -T output dir/tmp -t 8
-m 4G output dir/output.bus

bustools inspect -o output dir/inspect.json -w barcodes.txt
output dir/tmp/output.s.bus

bustools correct -o output dir/tmp/output.s.c.bus -w barcodes.txt
output dir/tmp/output.s.bus

bustools sort -o output dir/output.unfiltered.bus -T output dir/tmp
-t 8 -m 4G output dir/tmp/output.s.c.bus

mkdir -p output dir/counts unfiltered

bustools count -o output dir/counts unfiltered/cells x genes -g
t2g.txt -e output dir/matrix.ec -t output dir/transcripts.txt -s
nascent.txt --genecounts --umi-gene output dir/output.unfiltered.bus

mv output dir/counts unfiltered/cells x genes.mtx
output dir/counts unfiltered/cells x genes.mature.mtx

mv output dir/counts unfiltered/cells x genes.2.mtx
output dir/counts unfiltered/cells x genes.nascent.mtx

bustools correct -o output dir/tmp/output.unfiltered.c.bus -w
replace.txt output dir/output.unfiltered.bus --replace

bustools sort -o output dir/output modified.unfiltered.bus -T
output dir/tmp -t 8 -m 4G output dir/tmp/output.unfiltered.c.bus

mkdir -p output dir/counts unfiltered modified

bustools count -o output dir/counts unfiltered modified/cells x genes
-g t2g.txt -e output dir/matrix.ec -t output dir/transcripts.txt -s
nascent.txt --genecounts --umi-gene

output dir/output modified.unfiltered.bus

120

mv output dir/counts unfiltered modified/cells x genes.mtx
output dir/counts unfiltered modified/cells x genes.mature.mtx

mv output dir/counts unfiltered modified/cells x genes.2.mtx
output dir/counts unfiltered modified/cells x genes.nascent.mtx

rm -rf output dir/tmp

121
Chapter 4

PSEUDOASSEMBLY OF K-MERS

Beyond annotated reference mapping

In the preceding chapters, we focused on methods that map sequencing reads to annotated
reference sequences. In these methods, each k-mer, indexed within a colored de Bruijn
graph, originates from one or more annotated target sequences. This framework enables
rapid and lightweight mapping (Almodaresi et al., 2021, 2018; Bray et al., 2016; Patro et
al., 2017, 2014) by leveraging known transcript or genome annotations. However, in
Chapter 3, we briefly introduced an extension of this framework: the use of unannotated k-
mers, called distinguishing flanking k-mers (Sullivan et al., 2025), which are extracted
directly from raw sequences (e.g. the genome assembly) without regards to annotation.

These k-mers proved valuable in improving the accuracy of pseudoalignment.

In this chapter, we explore a more generalized and systematic extension of that idea. Rather
than relying on known annotations, we now build target sequences de novo, derived from
k-mers discovered directly from raw sequences (Sullivan et al., 2025). We refer to this
approach as pseudoassembly, in the spirit of the term pseudoalignment. Unlike full
assembly, which reconstructs entire transcripts or genomes, pseudoassembly focuses on
indexing only those k-mers that are relevant for downstream read assignment. This targeted
construction avoids the complexities of full assembly while retaining the ability to detect

biologically meaningful sequence variation.

Pseudoassembly is particularly valuable for studying genetic variation. Because k-mers can
uniquely represent variant sequences, they are well-suited for identifying sample-specific
or condition-specific differences in sequence content. One common strategy for analyzing
known variants involves tiling k-mer windows around known polymorphisms, such as
SNPs, structural variants, or splice junctions, and indexing them for downstream analysis.

This approach depends on prior knowledge of variant locations. In contrast,

122
pseudoassembly proceeds de novo from raw sequences in FASTQ or FASTA format.

In this mode, we extract k-mers that are uniquely found in an "experimental" sample (i.e.
sequences absent from control datasets or the reference genome). This is particularly
relevant in settings such as cancer, where mutations are highly variable in both structure
and genomic location. The flexibility and reference-agnostic nature of k-mers make them

ideal for capturing such unstructured variation.

Several prior tools have leveraged this idea. For example, DE-kupl focuses on differential
k-mer abundance between conditions and has demonstrated high sensitivity in detecting
novel biological variation (Audoux et al., 2017). Differential k-mers have also been applied
in association mapping (Rahman et al., 2018). Another more recent method, SPLASH, uses
"anchor" and "target" k-mers, where a sequence anchor may be associated with multiple

different targets (each representing a variant), to quantify variation (Chaung et al., 2023).

Building on these ideas, we developed klue (k-mer based local uniqueness exploration), a
general-purpose tool for discovering, organizing, and extracting informative k-mers. klue
accepts both FASTQ and FASTA files as input and can be applied to RNA-seq data, DNA-
seq data, or sequence assemblies. k-mers are extracted in the form of longer contiguous

sequences (contigs). More details of klue will be provided in the subsequent section.

Following contig extraction (where the contigs represent variant-specific k-mers), we
proceed to pseudoassembly. This involves mapping the contigs of interest—those
extracted by klue—to known reference sequences. For example, if the input k-mer size was
31, we might use smaller k-mer matches (e.g. 29-mers) to find a partial match between a
contig and annotated transcript sequences. When a contig is mapped to a target sequence,
it inherits the color of that target in the de Bruijn graph (which is built by kallisto over the
transcripts). However, to distinguish it as a variant-derived sequence, the color is modified
into a uniquely shaded version. Each distinct contig mapped to a target gets its own unique

shade. If a contig maps to multiple target sequences, it is assigned a shade for each.

123
This process gives rise to an ornamental de Bruijn graph (Figure 4.1), a concept

introduced in earlier work and implemented in the tool Ornaments (Adduri and Kim, 2024).
In this setup, pseudoalignment proceeds as usual via set intersection of k-mer colors.
However, a set union is performed for the shades that are encountered in a read. The

resulting equivalence class will contain both the parent colors and the shades.

Transcript sequence: GAATATGG

1

GAA 1+ AAT ++ ATA = TAT ++ ATG ++TGG
+Variant contig #1: AACAT @
GAA + AAT 1+ ATA +—+ TAT 1+ ATG ++TGG
_AA;C;—{ ACA% CAT 2
+Variant contig #2: CGGAAT @
CGG ﬁGGA}» GAA +AAT 1+ ATA ++ TAT =+ ATG —+TGG

AAC

-{ACA% CAT 2

Figure 4.1: Building a de Bruijn graph with shades.

One transcript sequence (parent color) and two variant contigs (shades, shown as circles)
are represented. In the end, 11 k-mers (k=3) are present, all with the same parent color,
two with one shade of that color, and three with another shade of that color.

124
Next, we provide a formal definition of a shade.

Let:
e T = {T,, ..., T,} be the set of annotated transcripts

e [n]={1,2,..,n} be the set of canonical colors (like those used in standard

pseudoalignment).
e S be a disjoint set of shade colors.

e 7 :8 — [n]beaparent function, assigning each shade s € § exactly one canonical

parent color 7(s).
e A :=[n] US be the universe of all colors.
A colored de Bruijn graph of order k is a directed graph G = (V, E, C) with:
e FEach vertex v € V representing a unique k-mer over the alpha ¥ = {4, T, C, G}.

e A directed edge (v,w) € E whenever the (k — 1)-suffix of v’s k-mer equals the

(k — 1)-prefix of w’s k-mer.
e C(v) € A as the color set of each vertex v.
We call s € S a shade based on the following:

e Parent relationship: Each shade s is associated with exactly one canonical transcript

color via a parent mapping (s) € [n]; that is, s has exactly one parent color.
e Parent inclusion: A shade never appears without its parent color on any k-mer:

Vv eV,s € C(v) = n(s) € C(v).

125
When adding a shade to a transcript de Bruijn graph, the shade is added if and only if

the k-mer does not exist in the original graph with its parent color. Note: Each shade

implicitly adds its parent color to the k-mer color set. See the following algorithm.

Algorithm Add a new sequence to the colored de Bruijn graph as a shade

Input: Set of k-mers from new sequence u, shade color s,
colored de Bruijn graph (cdBG) G = (V, E, C),
original cdBG before any shades were added Gorig = (Vorig, Eorig, Corig)
(Note: G is a supergraph of Gorig)
1: function AddShadeToGraph(u, s, G, Gorig)
2 for each k-mer x € u do
3 if x € Gorig then
4: if 7(s) & Corig(x) then
5: C(x) « C(x) U {m(s), s}
6.
7
8

else
Ve—T U {x}
C(x) « C(x) Y {n(s), s}

To create equivalence classes, first set-intersection is done among the parent colors
encountered in the read then set-union is performed among the shade colors corresponding

to those parent colors. See the following algorithm.

Algorithm Assign equivalence class to read

Input: Set of k-mers in read v, set of canonical colors /n/, set of shades S,
colored de Bruijn graph G = (V, E, C)
1: function AssignEquivalenceClass(v, [/, S, G)

2: Compute the canonical intersection (i.e. standard pseudoalignment):
]
Ceanon = ﬂ (C(Ul) N [n])
i=1

3: Collect valid shades:
|v]

Cenade = 4 5 € | JC(vi) NS | 7(s) € Ceanon

i=1
4. Return equivalence class:

return Ccanon U Cshade

126
In the remainder of this chapter, we demonstrate two applications of this framework.

First, we describe klue and show an example use of klue in mouse strain demultiplexing
by extracting strain-specific sequences. Second, we apply pseudoassembly to RNA-seq
data from melanoma samples, using variant-specific contigs to profile tumor-specific
mutations. These case studies illustrate the power of k-mer-centric approaches in analyzing

complex, unstructured, and unannotated biological variation.

127
A general-purpose k-mer toolkit

Klue is a general-purpose k-mer toolkit that internally uses a colored compacted de Bruijn
graph (ccdBG), implemented via the C++ Bifrost library (Holley and Melsted, 2020). Each
input file is assigned a unique color, encoding sample identity in the graph. A given k-mer
may appear in multiple samples and thus exhibit a multi-color profile. The ccdBG
compacts adjacent k-mers into longer contiguous sequences called unitigs, conserving

memory and enabling analysis over longer sequence contexts.

A core feature of klue is its ability to extract contigs—unitigs, or contiguous substrings of
unitigs, that share the same color profile. For instance, given three input samples colored
red, blue, and green, klue can extract red-only contigs, red+blue shared contigs, contigs
found in any two colors, and so on. A comprehensive suite of set operations over input
samples is supported by klue. Figure 4.2 shows an example of extracting contigs based on
color profile, wherein monochromatic contigs (those unique to one sample) are extracted.
These contigs can represent tumor-specific mutations, species-specific sequences, or
treatment-induced transcripts. The resulting contigs are written to FASTA files, where they
can be subjected to further downstream analyses such as mapping, annotation, or

pseudoassembly.

Figure 4.2: Partitioning the colored compacted de Bruijn graph.
(A) The structure of the graph. The boxes shown are the nodes of the graph and represent
colored contigs. (B) The monochromatic contigs that are extracted.

128
To illustrate klue in practice, we applied klue to various different mouse genome

assemblies (Ferraj et al., 2023), including the standard C57BL/6J mouse reference genome
assembly (GRCm39). As expected, the genomes of the five inbred laboratory mouse strains
(C57BL/6J, A/J, 129S1/SvimJ, NOD/ShiLtJ, NZO/HILtJ) are more similar to each other
than to the genomes of the three inbred wild-derived strains (WSB/EiJ, PWK/PhJ,
CAST/E1J) based on overlap of k-mer content from the klue-extracted k-mers (Figure 4.3),
recapitulating expected phylogeny (Morgan and Welsh, 2015). Thus, klue can be used as

a convenient tool for extracting shared and unique k-mers.

) Pair-wise Jaccard Index Heatmap pe B)
(oL - IWNEEEIN .55 087 086 0.86 086 0.59 0.82 '

CAST/EiJ 058-0.59 059 059 059 059 059

JVARO87 0.59 087 ()1 087 059 083
12951/SvimJ -{lENIEER -1/ 87 0:86| 0.59 082 |_|__|_|_|
NOD/ShiLt 0/ 059“ o 086 050 083 22223 5 2 o
P IYEDTZS D g
(\r{eJ/cI|[RAR0:86" 0.59 fO.87 E| U>) (-,C) T E 2 p
=~
LWOGONE 0.59 059 059 B <= 3 ('3. C£ z 2
i ©C2o = a o
WSB/EiJ AR e 9
S

C57BL/6J

CAST/EJ

AJ
WSBEJ - -

129S81/SvimJ
NOD/ShiLtJ
NZO/HI

Figure 4.3: Relationship between different mouse strains.

(A) Jaccard similarity index of k-mers between different mouse strains as determined by
klue: the cardinality of the set intersection, X, represents the number of k-mers shared
between two mouse strains while the cardinality of the set union, Y, represents all the
number of k-mers present in either or both of two mouse strains, the Jaccard index is the
ratio of X to Y. (B) The ground truth phylogenetic relationship between the § mouse strains.

Next, we evaluated klue’s ability to infer cell identity using data from single-nucleus RNA-
seq experiments conducted on multiple tissues from multiple mouse strains (Rebboah et
al., 2025) as part of work of the IGVF Consortium (IGVF Consortium, 2024). Specifically,
we examined kidney tissue from eight A/J mice and eight PWK/PhJ mice. Contigs unique

to each mouse strain genome assembly were extracted, and only 61-bp contigs were

129
retained, as these correspond to SNPs when using a k-mer size of 31. We focused on

k-mers overlapping SNPs rather than all strain-specific k-mers because these “SNP
contigs” include both the variant and a conserved flanking region. These common anchors
helped reduce noise from spurious k-mers that may arise due to artifacts from genome
assembly or differences in sequencing quality between strains. Kallisto was then used to
map reads to the strain-specific contigs, and cell-level strain assignments were determined
based on the number of UMIs mapping to each strain (Figure 4.4). This klue+tkallisto
demultiplexing method could successfully resolve cells from PWK/PhJ mice versus A/J

mice (Figure 4.5).

6 «<—— Does this cell come from a PWK/PhJ mouse or an A/J mouse?

; N n =7084037 contigs
1) 2 oumm a3 mmm 9 Rl o i
rem— index
_ Sequencing reads
— —
S S P
Strain assignment
]
P
— Select contigs of length 2k-1 : ° s
. . because each k-mer within | 85
Build colored k-mer compact de Bruijn graph over . . .| a contig of that length will | £32 @
. Extract contigs unique to each strain " : X
PWK/PhJ and A/J long-read genome assemblies. overlap a putative SNP i 8
PWK/Ph)J - Al femers >
e W
Q

SNP

Figure 4.4: klue for mouse strain demultiplexing.
Overview of the workflow used for strain demultiplexing with klue and kallisto.

108
2 .
105 300000 s 5 1 o

K = PWK/Phi® 105, WM PWK/PhI ¥

E 10¢ - A/ - Al] g
Data: g o 250000]
SPLiT-Seq o 100
X 3 107 - =
single-nucleus -g S 200000 5
RNA-seq of 3 10] S
mouse kidney 100 s H s

100 S 1500001 § =]
. > : >

Classification is g é éloz
based on which | 8 0.98 § 100000 § i
strain gets the <é 0.96 a a
most UMIs o 3 10
assigned toit | § %94 50000

G 092

ki ol K . - -

O 0.90 .]] , i ; ;

| 0 50000 100000 150000 200000 250000 300000 10 10t 100 108 100 105
i 2 9 7 9 3
10 M it el 10 A/J UMI count A/) UMI count

Figure 4.5: Results of klue+tkallisto demultiplexing of the PWK/PhJ and A/J mouse cells.
Accuracy could be determined because the PWK/PhJ cells and A/J mouse cells were placed
into separate wells at the initial step of the split-pool barcoding, therefore the well barcode
could serve as a ground truth label for each cell.

130
Application to cancer genomics

A melanoma mouse model:

We performed pseudoassembly on single-cell data from a melanoma mouse model in order
to identify cell type-specific mutations. The dataset we used (Sun et al., 2019) featured
10x Genomics (version 2 chemistry) single-cell RNA-seq of mouse melanocyte stem cells
(McSCs) and melanomas arising from the McSCs. In that study, McSCs, derived from
transgenic Tyr-CreER:Braf:Pten:Tomato mice, were transplanted onto immunodeficient
nude mice and tumorigenesis was achieved by tamoxifen induction. Control McSCs were
obtained from the telogen back skin of Tyr-CreER:R26R-Tomato mice. Single-cell RNA-
seq was performed on both the tumors (melanomas) and the control McSCs, with three
biological replicates per condition; replicates were pooled and not distinguished in

downstream analyses. Single-end bulk RNA-seq of control McSCs was also performed.
klue was applied to four files:

1. A FASTA file containing both the human genome FASTA (from the T2T-
CHM13v2.0 assembly) and a transcriptome FASTA derived from the
GRCh38 assembly.

2. Bulk RNA-seq FASTQ file for control McSCs.

3. Single-cell RNA-seq FASTQ file for control McSCs.

4. Single-cell RNA-seq FASTA file for McSC-derived melanomas.

The reason for including all these datasets was to identify melanoma-unique contigs
(containing 31-mers unique to file #4), that would not include barcodes, adapters, or other
sequences common to 10x experiments (removed by inclusion of file #3), any existing
sequences in the genome (removed by inclusion of file #1), or sequences from exon-exon

junctions (removed by inclusion of file #2 and #3). The resultant contigs were mapped to

131
the human transcriptome using kallisto (with a k-mer size of 29) to assign “shades”

(Figure 4.5). Finally, the melanoma single-cell RNA-seq reads were mapped (using kallisto
version 0.51.1) to an index containing the human transcriptome targets along with their

shades.

Equivalence class: 453150
Gene: Tubb5

ENsMusTo0000001566.10 —TGTTGGGATTAAAGGCGTGTGCCACTATCACCCAACAAGTATCCAT—
ENSMUST00000001566.10_shade 290652 GGGATTAAAGGCGTGTGCCACTATCACCCAGCAAGT

Equivalence class: 92784
Gene: Lbp

ensmusToooo0o16168.9 —CTCCAACACTGGGTGGGAGACCTGGAATCACTTTAAGAGCGGGC—
ENSMUST00000016168.9_shade_3412885 CTAACACTGGGTGGGAGACCTGGAATCACTTT
ENSMUST00000016168.9_shade 3445216 GGGTGGGAGACCTGGAATCACTTTAAGAGCAG

Figure 4.5: Examples of equivalence classes containing shades.
The equivalence classes corresponding to two different genes are shown, each containing
a standard transcriptome target and one or more “shade” targets.

To obtain cell clusters, the melanoma single-cell RNA-seq reads were also mapped to a
standard kallisto index of the human transcriptome. After quantification of the data with
kallisto | bustools (Melsted et al., 2021; Sullivan et al., 2024) to generate a cell-by-gene
count matrix, cells with at least 5000 UMIs were retained. The counts were then normalized
with CP10k normalization followed by loglp transformation. Highly variable genes were
identified and then nearest neighbor graphs were constructed from the cell coordinates on
the top 40 principal component analysis (PCA) embeddings in Scanpy (Wolf et al., 2018).
The Leiden algorithm (Traag et al., 2019) was performed in Scanpy, resulting in 15
clusters. Clusters with fewer than 50 cells were excluded, resulting in a final count of 2776
cells distributed across 10 clusters. As the number of clusters obtained here was larger than
that obtained in the original study which produced this dataset (Sun et al., 2019), we merged

related clusters to create more coarse-grained groupings. The original study performed

132
pseudotemporal trajectory analysis (Trapnell et al., 2014) to define the branching

transition between McSC cells to either a mesenchymal-like cell type or a
neural crest/neuronal-like cell type. We therefore merged two clusters with high expression
of mesenchymal markers (Dcn, Collal, Colla2), merged five clusters with high expression
of neural crest/neuronal genes (Nes, Foxd3, L1cam, Ngfr), and then merged the remaining
three clusters which had high expression of the genes Fosb, K1f4, Serpine2, Cdknla from
a published metastatic melanoma gene set (Perego et al., 2018). These correspond to the
“mesenchymal-like” cluster, the “neural crest/neuronal-like” cluster, and the
“intermediate” cluster, respectively, from the original publication (Figure 4.6). The original
study also identified two additional clusters. One was a neural crest/neuronal-like cluster
characterized by high expression of proliferation genes (Mki67, Cdk1), which we merged
into the broader neural crest/neuronal-like cluster. The other was composed of control
McSC cells; however, since we did not include control McSC data in our cell type
clustering analysis, and the few McSC cells present in the melanoma dataset were likely
removed when filtering out clusters with low cell counts, this cluster was not represented

in our analysis.

133

D D A Ve Ve =

7 O O / l'\,_/' O U L =

. \]:JV/; O) {/77::) O (

Neuronal | - Y Y Yoy Yer i Fraction of cells

O UULC in group (%)
D ™ M SN

. 8 QOO0 - - c0000
—~y Y - 1 1 1 1 1

7 LA A B) O 20 40 60 80100

1

A
4

Mean expression
in group

0 5

Intermediate | -

cee

Mesenchymal

Dcn 1 @@ -
Collal{ @@
Colla2 1 @@ ©
UZER T Y I I JOXoKoXeNe
Serpine2 1 @00 00

Fosb {1 @O O O
Cdknla{ O O

Nes -
Foxd3 -
L1cam -
Ngfr -
Mki67 -
Cdk1 -

Figure 4.6: Cell type clustering of melanoma single-cell RNA-seq.

Based on expression of marker genes, three coarse-grained clusters of cells with a
mesenchymal-like signature, cells with a neural crest/neuronal-like signature, and
intermediate cells with a signature between neuronal and mesenchymal could be resolved.

Next, we further analyzed those clusters, defined by gene-level counts, using the transcript
compatibility counts (TCCs) from read mapping to the index containing the shades. We
sought to identify mutations that are expressed uniquely in certain clusters (i.e. mutation
cell-type specificity). We first filtered the cell-by-TCC count matrix to only contain
equivalence classes (ECs) which contain a shade target mapping and which are present in
at least 10 cells. All ECs corresponding to multiple genes, unannotated genes, or
pseudogenes were excluded. For differential expression testing of shade counts, a 2x2

contingency table was built for each shade-containing EC as follows:

134
In cluster Outside cluster

Shade-containing EC for a gene a b

All regular ECs for that gene c d

Here, a, b, c, and d represent cell numbers (i.e. the number of cells that contain at least
one count for the EC). The odds ratio is then calculated as follows, with higher values

indicating greater specificity of the shade (i.e. the putative mutation) for the cluster being

evaluated.
2
_c_aa
OR = b~ be
d

For each EC, a p-value was determined by Fisher’s exact test. A volcano plot depicting the

results of differential expression testing of shade (mutation) counts is shown in Figure 4.7.

Intermediate cell cluster vs. all other clusters

FDR < 0.05

(o))
o

S WU
o O

Equivalence class: 1173371
.// ENSMUST00000050360.14
ENSMUST00000170388.6
, i o ENSMUST00000196583.5
%) 2 ENSMUST00000199609.2
e & m; L i oo % ENSMUST00000050360.14_shade_3189812
O um-% ér: . ENSMUST00000170388.6_shade_3189812

H ENSMUST00000196583.5_shade_3189812
—6 -4 -2 0 2 4 6 ENSMUST00000199609.2_shade_3189812

log2(Odds Ratio)

-logio(p-value)
N w
o o

=
o

[}
@©

o

Figure 4.7: Differential expression testing of shade (mutation) counts.

Each point on the volcano plot represents a shade-containing equivalence class (EC). An
example of such an EC (EC number 1173371), corresponding to the P2ryl2 gene, is shown
on the right. 50 ECs had an odds ratio greater than I and a Benjamini-Hochberg FDR-
adjusted p-value less than 0.05, while 278 ECs had an odds ratio less than 1 with an
adjusted p-value below the same threshold.

135
The method was able to identify many examples in which a shade for a given gene is

abundant in one melanoma cluster but not the others (Figure 4.8). Specifically, the P2ry12
gene appeared to contain a differential variant in the intermediate cluster, and the Tubb5
gene was revealed to contain a differential variant in the mesenchymal cluster. These
observations would not have been possible within the standard single-cell RNA-seq

analysis framework (Chen et al., 2016).

I Neuronal W Intermediate B Mesenchymal
P2ry12

Equivalence class: 304214
ENSMUST00000050360.14
ENSMUST00000170388.6
ENSMUST00000196583.5
ENSMUST00000199609.2

N N W
o v O
o O O

Equivalence class: 1173371
ENSMUST00000050360.14
ENSMUST00000170388.6
ENSMUST00000196583.5
ENSMUST00000199609.2
ENSMUST00000050360.14_shade_3189812
ENSMUST00000170388.6_shade_3189812
ENSMUST00000196583.5_shade_3189812
ENSMUST00000199609.2_shade_3189812

= =
[0
o O

Number of cells

wn
o

o

304214 1173371

Equivalence class

Tubb5

Equivalence class: 451310
ENSMUST00000001566.10
ENSMUST00000173253.2

80

Equivalence class: 64490
ENSMUST00000001566.10
ENSMUST00000001566.10_shade_9013804

Equivalence class: 453150
ENSMUST00000001566.10
ENSMUST00000001566.10_shade_290652

Number of cells

451310 64490 453150

Equivalence class

Figure 4.8: Examples of genes where the associated equivalence classes display different
patterns of cluster-specific expression.

Shaded targets are marked in red. A P2ryl2 mutation is found specifically in the
intermediate cluster;, a Tubb5 mutation is found specifically in the mesenchymal cluster.
The y-axis represents the number of cells for which at least one UMI is identified as being
associated with the given equivalence class.

136
This melanoma dataset was well-suited for identifying mutation cell type specificity

due to two key factors: the inclusion of a control sample and the nature of 10x Genomics
chemistry, which sequences only the ends of transcripts. The control sample is essential to
distinguish true mutations from common genetic variants such as SNPs, which would
otherwise be picked up as “shades”. While sequencing only the 3’ ends of transcripts limits
coverage and may miss mutations located in the middle of genes, it helps reduce false
signals. For instance, incomplete coverage might result in certain transcript regions being
captured only in the disease group but not in the control group—Ieading to spurious
disease-unique contigs. Taken together, the melanoma datasets (Sun et al., 2019) provide
a compelling argument for pseudoassembly to discover cell-type specific mutations. The
generality and flexibility of using klue with kallisto makes it suitable for any (single-cell)
genomics datasets, and it should prove to be a useful complement to standard assembly

algorithms.

Code:

Code for the analysis is available at https://github.com/pachterlab/SBP 2025.

The klue program is available at https://github.com/pachterlab/klue.

137
Chapter 5

EFFICIENT AND SCALABLE SINGLE-CELL TRANSCRIPTOMICS

Scaling single-cell transcriptomics

Single-cell RNA-seq has several limitations: it is expensive, it requires complex library
preparation (compared to bulk RNA-seq), and it often relies on proprietary protocols. A
key tradeoff exists between the number of cells captured and sequencing depth. Droplet-
based technologies like 10x Genomics allow high-throughput cell capture but at low per-
cell depth, whereas plate-based methods like Smart-seq achieve high sequencing depth per
cell but are limited to hundreds or, at most, thousands of cells (Ding et al., 2020). Scaling
single-cell RNA-seq to be cost-effective, time-efficient, and capable of capturing both a

large number of cells and high per-cell depth is therefore a challenge.

SPLiT-seq, when introduced, boasted the features of “low-cost”, “hundreds of thousands
of fixed cells or nuclei in a single experiment”, and “consists just of pipetting steps and no
complex instruments are needed” (Rosenberg et al., 2018). This method, based on in situ
barcoding via split-and-pool ligation chemistry, has since been commercialized by Parse
Biosciences as part of its proprietary Evercode technology. By virtue of its split-pool
barcoding strategy, SPLiT-seq made high-throughput, high-depth single-cell

transcriptomics feasible.

Here, we introduce a split-and-pool barcoding-based technology, which we named SWIFT-
seq (Single-cell With Iterative Fast Transcriptome-sequencing), that features the following:
1) High depth per cell, 2) High cell throughput, 3) Cost-effectiveness, 4) Open source
accessibility, and 5) A simple, fast-executing protocol. These characteristics enable
scalability not only in terms of cell numbers and sequencing depth but also in cost and ease
of use, allowing for rapid, affordable experiments (Figure 5.1) . Like other split-pool

barcoding technologies, SWIFT-seq supports highly multiplexed experiments, includes

138
UMIs to mitigate PCR amplification bias, provides strand specificity, and offers full-

length gene body coverage, enabling isoform and allele detection.

A full cost breakdown of SWIFT-seq, when preparing one million cells for sequencing on
an AVITI System Sequencing Instrument (Element Biosciences) (Arslan et al., 2024) as
was done in all experiments described in this dissertation, is displayed in Figure 5.2. The
total cost per cell ends up being approximately $0.00028 ($0.0012 if sequencing is
included).

Catalog number EN0531 >

Price (USD) / 10 mg
52.65

Online exclusive
66:25-

Save 7.60 (13%)

In stock

-1+

Add to cart

Figure 5.1: SWIFT-seq is cost-effective and time-effective.
By relying solely on in-house reagents with minimal clean-up and wash steps, SWIFT-seq
is affordable, open-source, and fast.

change paramaters in green boxes:

How many cells crosslinked (millions): 1
How many cells thawed to wash (millions): 1
How many RTBCs: 24
How many ODD wells: 96
How many NY wells: 96
How many PCR aliquots: 10
How many cells: 1,000,000
How many reads on Aviti (millions) 500

sum of everything, cost of this SWIFT seq
287.3723794

how many cells
1,000,000

sum of everything, PLUS sequencing, cost

cost per cell ($)
0.0002873723794

cost per cell ($)

139

of this SWIFT seq how many cells| INCLUDING Aviti
1214.372379 1,000,000 0.001214372379

reagents (in order of appearance) per one reaction aka cost w Guttman lab pricing volume purchased (uL) cost per uL cost per uL * volume per rxn calculator input
fixation formaldehyde 62.5 51.32 10,000 0.005132 0.32075

1x PBS 3937.5 162.5 5,000,000 0.0000325 0.12796875 0.44871875 0.44871875
wash/perm 1x PBS 100000 162.5 5,000,000 0.0000325 3.25

triton 5 56.1 100000 0.000561 0.002805

tween 5 54.9 100000 0.000549 0.002745

Ribolock (in the washes) 10 5440 14000 0.3885714286 3.885714286 7.141264286 7.141264286
RT Ribolock 1 5440 14000 0.3885714286 0.3885714286

RT barcoded 9mer (400uM) 4 120 3360 0.03571428571 0.1428571429

= — 7

SxRT buffer 4 included in price for maxima RT (purchased together, one cost)

10mM dNTP 2 2304 4000 0.0576 0.1152

Maxima RT 1 565.52 250 222208 222208

Exol 5 2226 750 0.2968 1.484

EDTA 1 54.65 100000 0.0005465 0.0005465 4.353255071 104.4781217
split pool ODD homemade ligation mix (table below) 6 *cost from table below 0.08483895 0.5090337

odd plate (45uM, 1 well) 3 220 10080 0.02182539683 0.06547619048 0.5745098905 55.15294949
split pool NY homemade ligation mix (table below) 6 0.08483895 0.5090337

NY odd plate (45uM, 1 well) 3 220 10080 0.02182539683 0.06547619048 0.5745098905 55.15294949
PCR reaction Thermolabile Pro K 1 1416 250 0.5664 0.5664

5x RT buffer 0

10mM dNTP 1 2304 4000 0.0576 0.0576

Maxima RT 1 566.52 250 2.22208 2.22208

Rnase H 2 2303 250 0.9212 1.8424

Rnase cocktail 1 112.62 1000 0.11262 0.11262

UMI splint 0.45 233.47 3500 0.06670571429 0.03001757143

Silane beads 12 195 5000 0.039 0.468

RLT 120 20 120000 0.0001666666667 0.02

Q5 Master Mix 25 584 25000 0.02336 0.584

i5 primer (12.5uM) 25 75.18 12500 0.0060144 0.15036

i7 primer (12.5uM) 25 75.18 12500 0.0060144 0.15036

spri beads 40 3700 500000 0.0074 0.296 6.499837571 64.99837571

more costs to consider

tape station one lane and reagents

gel clean

qubit reagents and tubes

how many reads
asking for price of full run one billion reads total cost per one read | total cost for this Aviti run

Aviti Run 500,000,000 1854 1,000,000,000 0.000001854 927

homemade ligation mix amount (uL) cost w Guttman lab pricing volume purchased (uL) cost per uL. cost per 1 SWIFT seq

Instant Sticky Master Mix 1000 303.8 1250 0.24304 243.04

1,2 Propane diol 600 41.86 25000 0.0016744 1.00464

5x quick ligation buffer 1600 343 2,000 0.01715 27.44

total volume 3200 379.96 [cost for master mix 271.48464]

|cost per ul MM 0.08483895

more things to consider adding

tris-HCL
jumpcode kit

cost of annealing buffer included in plates

Figure 5.2: Cost breakdown of a SWIFT-seq experiment.
Spreadsheet showing the cost per cell for a SWIFT-seq experiment.

140
The SWIFT-seq protocol

Experimental protocol:

SWIFT-seq, our single-cell split-pool-barcoding approach, works by sequentially tagging
individual cells with unique barcode combinations in a simple, streamlined three day

workflow (Figure 5.3), as follows:

5. Day 1: First, formaldehyde-crosslinked cells are gently permeabilized and
subjected to first-strand cDNA synthesis using barcoded reverse
transcription (RT) primers, forming the first barcode in the combinatorial
barcoding scheme. Next, the cells are distributed into wells of a 96-well
plate, each well containing well-specific barcodes that are ligated onto the
cDNA. Cells are then pooled and re-distributed for additional barcoding
rounds. Typically, three sets of barcodes provide sufficient combinatorial
complexity to resolve single cells, but, as the need arises (i.e. scaling to tens

of millions of cells), more barcoding rounds can easily be incorporated.

6. Day 2: Crosslinks are reversed, and a second RT reaction extends partially
transcribed cDNA molecules from the first RT step. RNA is then digested
via RNase treatment, followed by the incorporation of a UMI sequence

through splint ligation.

7. Day 3: The cDNA is isolated and PCR-amplified, simultaneously adding
sequencing adapters to generate the final double-stranded cDNA library
(Figure 5.4). The product is then cleaned with SPRI beads, size-selected via
gel electrophoresis, quality-checked on an Agilent TapeStation, and

prepared for sequencing.

141

permeabilize and aliquot ~ A%° :"'w"f b

/ \
/ \
1% FA crosslinked RT

cell pellet

(Day 1) ‘

Let sit 2 hr or overnight

Ligate

Aliquot 2nd RT w UMI
-) — splint)

"iA

PCR Sequence

_J\

~——

Figure 5.3: SWIFT-seq library preparation.
SWIFT-seq uses an efficient three day library preparation strategy.

142

n times

l \

5 RNA 3 7P ODD EVEN TERMINAL

L 0 e

5' CDNA 3) 3'Spacer oDD EVEN PERRATRIAL
. M T S — e
UMI Splint Z
AI 1110 TR TN TRMTT |T. NN e e

—

Figure 5.4: SWIFT-seq library structure.
The R1 sequencing reads begin at the UMI sequence while the R2 sequencing reads begin
at the final round barcode tag and extend through all preceding barcode sequences.

SWIFT-seq reagents include:

- Buffers:
o 1XPBS
o 1XPBS
o 1XPBS
o 1XPBS
- Magnetic beads:
o MyOne Silane Beads
[Catalog Number: 37005D]
o Ampure SPRI Beads
[Bulldog Bio Catalog Number: CNGS500]
- Enzymes:
o RNA integrity:
= Ribolock RNase Inhibitor
[ThermoFisher Catalog Number: EO038C005]
o Ligation:
= NEB 2X Instant Sticky Master Mix (ISMM)
[NEB Catalog Number: M0370L]
o Reverse Transcription:
= 5X RT MasterMix Buffer & Maxima RT H minus
[LifeTech Catalog Number: EP0753]
* 10 mM dNTP mix
[Catalog Number:N0447L]
= NEB Exonuclease I
[Catalog Number: M0293L]
o Cell Lysis and Splint Ligation:
= 10X RNase H Buffer
[NEB Catalog Number: B0297S]
= NEB Thermolabile ProK
[NEB Catalog Number: P8111S]
= NEB RNase H
[Catalog Number: M0297L]
= NEB RNase A/T1 cocktail
[LifeTech Catalog Number: AM2286]

RNase/DNase free)

RNase/DNase free) + 0.125% Triton X-100
RNase/DNase free) + 0.1% Tween

RNase/DNase free) + 0.1% Tween + 50 mM EDTA

~ o~~~

o PCR:
= 2X Q5 Mastermix
[NEB Catalog Number: M0492L]

143

144
Computational protocol:

SWIFT-seq data (in the form of paired-end FASTQ files) can be processed via a
Snakemake workflow (Molder et al., 2021) (Figure 5.5). This pipeline includes steps such

as adapter trimming, barcode identification, ribosomal RNA removal, and alignment.

adaptor_trimming_pe

create_exclusion_index splitcode_barcodelD

get_exclusion_reads calc_ligation_efficiency

exclude_reads_r2 exclude_reads_rl

(concatenate_excIusion_results) starsolo_align set_barcode_mapping_file

post_trim_fastqc decode_barcodes_starsolo

generate_anndata_starsolo concatenate_ligeff_results
log_config initial_fastqc merge_anndata

all

Figure 5.5: SWIFT-seq computational pipeline.
The pipeline to process SWIFT-seq data is shown as dependency graph of rules as part of
the Snakemake workflow management system.

The workflow is executed based on settings specified in a YAML (Ben-Kiki et al., 2004)
configuration file where one can specify such options as the path to the input FASTQ files,
the adapter sequences, the path to the splitcode config file (Sullivan and Pachter, 2024) (for
processing the cell barcodes), the path to a file of ribosomal RNA sequences that are to be

excluded, and aligner settings (e.g. the path to the index for read alignment).

145

Main components of the workflow are detailed as follows:

adaptor_trimming_pe: The first processing step of the workflow. Adapters are

trimmed from the reads using cutadapt (Martin, 2011).

splitcode barcodelD: Processes the adapter-trimmed reads using splitcode
(Sullivan and Pachter, 2024), which assigns unique pseudobarcodes to each

barcode combination and reformats the reads into the following format:

o R1:20-bp pseudobarcode followed by 10-bp UMI followed by the sequence
to be aligned.

o R2: The sequence to be aligned from the other mate.

(By default, the alignment sequence is limited to 65 bp to prevent reading into

the split-pool barcode tags, but this setting can be adjusted).

set barcode mapping_file: Prepares a “barcode mapping file” from splitcode
output. This file contains the encoding necessary to convert the 20-bp

pseudobarcodes back to the original combination of split-pool barcoding tags.

starsolo_align: Runs STARsolo (Kaminow et al., 2021) to align the reformatted

reads to the reference genome and to generate a count matrix.

decode barcodes_starsolo: Decodes the pseudobarcodes of the count matrix into
the original combination of split-pool barcoding tags using the encoding specified

in the “barcode mapping file”.

generate_anndata_starsolo: An anndata object (Virshup et al., 2021) to store the

output count matrix for downstream processing in Python.

merge anndata: In case multiple samples or aliquots are analyzed, the multiple

count matrices are merged together into a single anndata object.

146
While the workflow described above uses STARsolo as the aligner, the workflow also

supports kallisto | bustools (Melsted et al., 2021; Sullivan et al., 2024) for generating output
count matrices. As the contents of this dissertation primarily focus on kallisto, STARsolo
was chosen to highlight the pipeline's flexibility and compatibility with different short-read
aligners. The pros and cons of each alignment strategy (i.e. full genome alignment vs.

pseudoalignment) are the same as with any other single-cell RNA-seq technology.

The SWIFT-seq pipeline also has components used for ribosomal RNA removal via

bowtie2 (Langmead and Salzberg, 2012):

e create exclusion index: Prepares a bowtie2 index from a path to a FASTA file

containing the sequences (e.g. ribosomal RNAs) that are to be removed.

e get exclusion reads: Performs the bowtie2 alignment in order to identify reads that

align to the bowtie2 index.

e cxclude reads rl: Uses seqgkit (Shen et al., 2016) to remove R1 reads that

correspond to the bowtie2 alignments.

e cxclusion reads r2: Uses segkit to remove R2 reads that correspond to the bowtie2
alignments (note: paired-end alignment is done with bowtie2 so the list of
alignments supplied to seqkit is the same for R1 and R2, ensuring that they remain

synchronized).

147

The final components of the SWIFT-seq pipeline are the generation of QC reports:

initial fastqc: Generates QC statistics from running the FastQC program
(Babraham Bioinformatics; program obtained from the following URL:
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/) on the raw FASTQ
files from a SWIFT-seq run.

post_trim_fastqc: Generates QC statistics from running the FastQC program on the

FASTQ files after adapter trimming has been performed.

concatenate _exclusion_results: Produces a QC report of the reads aligned (via

bowtie2) to the “exclusion” sequences (e.g. ribosomal RNA).

calc_ligation_efficiency: Calculates metrics on how many reads contain the full set
of barcodes, a partial set of barcodes, or no barcodes. This lends insight into the

ligation efficiency of the barcoding reactions.

concatenate ligeff results: Generates a QC report of the above barcode metrics.

log config: Simply records the configuration file used for the execution of the

Snakemake pipeline.

In addition to standard quantifications, one can also quantify allele-specific expression

using the SWIFT-seq Snakemake pipeline. One can supply a VCF file (Danecek et al.,

2011), which annotates single nucleotide polymorphisms (SNPs) in the reference genome.

For the STARsolo step, the WASP algorithm will be executed (Asiimwe and Alexander,

2024; Van De Geijn et al., 2015), enabling allele-specific read alignment with reduced

reference mapping bias. Alternately, for a kallisto-based pseudoalignment approach, one

can make a kallisto transcriptome index from a hybrid genome (i.e. containing the two

haplotypes if the organism is diploid).

148
Analysis of sequenced SWIFT-seq libraries

Human-mouse mixing experiment:

A human-mouse mixing experiment was performed to determine whether each
combination of barcodes represents a unique cell (as opposed to doublets). To do this,
cross-linked human HEK293T cells and mouse embryonic stem cells (TX1072 cells) were
mixed prior to split-pooling. The resulting SWIFT-seq libraries were then sequenced and
the sequencing reads were aligned to a combined human and mouse reference genome. The
UMISs that could be uniquely assigned to either a human gene or a mouse gene were counted
(Figure 5.6). Overall, there was a very low mixing rate (under 1%) suggesting that each

combination of barcodes represents a single cell (Figure 5.7).

10000 .

o 8000 L

+ \ 41

2 6000 A

Q Py

3 /

04000 4

5 q",r‘.

© 20001 ¢ e Human
N Mouse

00 15000 30000 45000 60000 75000
UMI Counts

Figure 5.6: UMI and gene detection from a species-mixing experiment.

UMIs mapped uniquely to either a mouse gene or a human gene were counted in a species
mixing experiment consisting of mouse embryonic stem cells (TX1072) and human cells
(HEK293T).

149

80000 -
« Human (44.5%)
Mouse (55.1%)
£ 600007, - Mixed (0.4%)
5
) :
= 400001 °
= s
(- 2
©
g é o
3 zoooo-é
olf | ,
0 20000 40000 60000

Mouse UMI Counts

Figure 5.7: Species-mixing experiment shows minimal mixing.
Mouse (TX1072) vs. human (HEK293T) cells are identified based on > 1000 UMI counts
and > 95% UMIs assigned to mouse or human.

Gene body coverage:

To assess whether SWIFT-seq provides full coverage over the gene body (as opposed to,
say, only the 5’ end or the 3’ end of genes), the mouse embryonic stem cells (TX1072) from
the species-mixing experiment were further analyzed. The program deepTools2 (Ramirez
et al., 2016) was used to create metagene plots (i.e. coverage profiles) from the BAM file
of aligned reads. Overall, SWIFT-seq appears to provide comprehensive gene length

coverage (Figure 5.8).

150

2.00 1.2
e==s R1] reads
1.75 - == R2 reads
. - 1.0 A
3 1.50 o
B ®
-l '08 a
— 1.25 1 Q
a'd 0]
3\°: 1.00 1) 6;@
Q P,
© 0.751 ™
) '04 8
3 0.501 2
O)
-0.2
0.25 A1
0.00 0.0

0 20 40 60 80 100
Gene body percentile (5 = 3')

Figure 5.8: SWIFT-seq shows comprehensive gene length coverage.
Coverages over RI and R2 reads of mouse embryonic stem cells (TX1072) are shown.

Allele-specific expression:

To validate SWIFT-seq's ability to resolve allele-specific expression, we performed
SWIFT-seq experiments on pSM44 mouse embryonic stem cells, which are
129S1/SvimJ x CAST hybrids carrying a doxycycline-inducible Xist gene from the
129S1/Svim] allele, and induced Xist expression with the addition of doxycycline. As
expected, UMIs for the Xist gene in individual cells were predominantly assigned to the

129S1/Svim] allele (Figure 5.9).

151

50Comparison of Xist Expression in Individual Cells

N w H
o o o

Expression in CAST

[
o

0122222 acale
0 10 20 30 40 50
Expression in 129

Figure 5.9: Example of allele-specific expression resolvable by SWIFT-seq.
For the Xist gene, most UMI counts in each cell are derived from the 12951/SvimJ allele,
the inducible allele in pSM44 mouse embryonic stem cells.

Cell type classification of a mixed population of blood cells:

Next, to assess the ability of SWIFT-seq to resolve cell types from a complex population
of cells, human peripheral blood mononuclear cells (PBMCs) were used. After filtering for
cells with at least 1000 UMIs, the counts were normalized with CP10k normalization
followed by loglp transformation. Highly variable genes were identified then nearest
neighbor graphs were constructed from the cell coordinates on the top 40 principal
component analysis (PCA) embeddings in Scanpy (Wolf et al., 2018). Cell type annotation
was then performed with CellTypist (Dominguez Conde et al., 2022; Xu et al., 2023), with
the option ‘model’ set to “Immune All Low.pkl” and the option ‘majority voting’ set to
True, enabling cell type annotation of immune cells with the aid of Leiden clustering.
Multiple subtypes of B cells, T cells, natural killer cells, and macrophages were identified,
along with confirmed expression of known marker genes, demonstrating that SWIFT-seq

can effectively be used to characterize diverse cell types (Figure 5.10).

152

A 0.35 1
0.30 1
)
o 0.25 1
O
Y
© 0.20 -
c
o
£ J
s 0.15
o
<
Q- 0.10 1
0.05 1
0.00 -
5 O O O WO O @ 9 WO O O O O O @
& P NN 0D N0 N0 S0 S0 S0 0 50
D R0, OO (O O O O O O N)
AT G ATAKATRATA E LR .9 .2
KR LR RIS D NI PN
FF S XN FF @ e N @ <2
LN L L ETS NIFOIR I
& LLLLLES S WL LK
& & © 2NN NN Y RN
O & O R\ ' o
K2 & NN & (4
\ ((\\ <@ “ é 2 O
‘?’&o & Q& e
& A Q&
<L <2
Cell Type
Endothelial cells{ © © > ° @ 0 o o @ ©
Alveolar macrophages . o o O o o @ ‘.OQ“C O o
Intestinal macrophages { @ - 000 ¢ Y IO I'T JoRIE
Epithelial cells 1 @ - ¢ o000 o @@@®oco0o0
CD16+ NK cells { @ © 00 @O@@®@®0 0o - 00000 o0
- 4 ° o o o . - 0 o - - .
CD16- NK cells 1 @ ' 7’.\..., * Fraction of cells
Tem/Temra cytotoxic T cells { @ - co0@O0@@®O®c o 00 - - @0 in group (%)
RegulatocheIIs-.ls o ‘.O 0@ 9 o000 - -@

Tem/Naive cytotoxic T cells { @ © 00 - .0+ s - 00 -000 co000
Tcm/Naive helperTceIIs-.O ... © o 0 (@] Q@ . 2:0 4|0 6IO 8IOl(I)0
Tem/Trm cytotoxic T cells { @ - 000° o @0 o

MAIT cells { @ - 000° ° o
Undetermined { @ - o 000 - o0 - -0 0@
Age—assoqat.ed B cells 1 @ O 00@@®o° - -0 -0 © ~00@® Mean expression
Naive Bcells 1@ © © O @@® - °c 0O o o ¢ in group
Memory B cells {@© O 0 @@@® © © ° o
URN O dndSddaINod >l dNYTAS Xxoodo 0 2
TEHIECE0352RE02:5585338858E8
E Uz g—gg 6U_§ % EE OOL0oOOd

Figure 5.10: Cell Type Classification of a mixed population (PBMCs) using SWIFT-seq.
(A) Proportions of each cell type identified within a PBMC sample. (B) Heatmap of immune
marker gene expressions across identified cell types.

153
Ribosomal RNA content:

Ribosomal RNAs (rRNAs) are extremely abundant in cells and it is expected that the
majority reads will originate from rRNAs, which is why the SWIFT-seq pipeline explicitly
removes alignments to rRNAs. One solution to remove rRNAs before sequencing is to use
a recombinant Cas9 enzyme complexed with a library of guide RNAs targeting ribosomal
RNA sequences. This method, called Depletion of Abundant Sequences by Hybridization
(DASH) (Gu et al., 2016), can deplete rRNAs directly from a sequencing library and is
thus an attractive option to add to SWIFT-seq. A proprietary Cas9-based rRNA depletion
approach has been commercialized into the CRISPRclean kit (Jumpcode Genomics). We
tested the kit and observed over a 3-fold reduction in rRNA content in our SWIFT-seq
libraries (Figure 5.11). Work is ongoing to develop an affordable, open-source approach

for depleting rRNA directly from sequencing libraries.

100

80

Percentage of rRNA (%)

Figure 5.11: Ribodepletion of SWIFT-seq libraries.

Using a ribosome depletion kit can greatly reduce the rRNA content of SWIFT-seq
libraries. Ribodepleted: A SWIFT-seq library with the CRISPRclean kit used. Non-
ribodepleted #1 and Non-ribodepleted #2: Two SWIFT-seq libraries without any rRNA
depletion procedures used.

154
Comparisons against other technologies:

To validate SWIFT-seq, we compared SWIFT-seq with other technologies to determine
whether SWIFT-seq is concordant with other technologies, such as Smart-seq3, SPLiT-seq
(Parse Biosciences), and 10x Genomics. SWIFT-seq, like other technologies, can capture
a considerable amount of both nascent and mature RNA for single-cell RNA-seq
(Figure 5.12). Moreover, HEK cells from SWIFT-seq are correlated well with HEK cells
sequenced from other technologies (Figure 5.13). Altogether, SWIFT-seq appears to be

concordant with other technologies.

SWIFT-seq 47.7% 19.5% 32.8%
(HEK cells)
10x Genomics 56.0% AT 25 1%
(HEK cells)
Category
Smart-seq3 34.1% 45.5% 20.4% A Nascent (intron-spanning)
(HEK cells) . : i B Mature (splice junction)
¢ Ambiguous (exon)
10x Genomics 31.9% 3.5% o

(mouse nuclei)

10x Genomics
(mouse embryo

visium exome)
0 25 50 75 100
Percentage

90.0% 9.5%0.5%

Figure 5.12: Distribution of RNA splicing status across different technologies.
Technologies are compared on the basis of nascent, mature, and ambiguous RNA
abundance.

155
Pseudobul Individual cells (pairwise correlation)

o
<

B Smart-seq3

Glioblastoma cells (10X) - 0.79 I 10x genomics

o
o

HEK cells (Smart-seq3)- 0.82 0.84

e
n

HEK cells (10X)- 0.79 0.85

I
~

o
w

HEK cells (SWIFT-seq)|- 0.78 0.82

Pearson Correlation with SWIFT-seq HEK cells

0.2
S P
S O
& NG
2 & < 0.1
0\ & \(’\
QQ’\‘\ /o“’@ &

7
%

o

o

HEK cells HEK cells Glioblastoma cells

Figure 5.13: Correlation between different single-cell RNA-seq technologies.
HEK cells profiled with SWIFT-seq show strong concordance with those from Smart-seq3
and 10x Genomics, as demonstrated at both the pseudobulk and single-cell level.

Conclusion:

In conclusion, SWIFT-seq is an affordable, open-source technology designed for both
small and large-scale single-cell RNA-seq experiments. By combining high-throughput
cell capture with deep, full-length transcript coverage, it enables accurate detection of
allelic and isoform-level differences across many cells. With its low cost and ease of use,

SWIFT-seq provides researchers a practical, scalable approach for achieving both depth

and breadth in single-cell transcriptomic studies.

156
Bibliography

Adduri, A., Kim, S., 2024. Ornaments for efficient allele-specific expression estimation
with bias correction. The American Journal of Human Genetics 111, 1770-1781.
https://doi.org/10.1016/j.ajhg.2024.06.014

Ahmed, Z., Zeeshan, S., Dandekar, T., 2014. Developing sustainable software solutions
for bioinformatics by the “Butterfly” paradigm. F1000Res 3, 71.
https://doi.org/10.12688/f1000research.3681.1

Aldridge, S., Teichmann, S.A., 2020. Single cell transcriptomics comes of age. Nat
Commun 11, 4307. https://doi.org/10.1038/s41467-020-18158-5

Almodaresi, F., Sarkar, H., Srivastava, A., Patro, R., 2018. A space and time-efficient
index for the compacted colored de Bruijn graph. Bioinformatics 34, i169-1177.
https://doi.org/10.1093/bioinformatics/bty292

Almodaresi, F., Zakeri, M., Patro, R., 2021. PuffAligner: a fast, efficient and accurate
aligner based on the Pufferfish index. Bioinformatics 37, 4048—4055.
https://doi.org/10.1093/bioinformatics/btab408

Amezquita, R.A., Lun, A.T.L., Becht, E., Carey, V.J., Carpp, L.N., Geistlinger, L.,
Marini, F., Rue-Albrecht, K., Risso, D., Soneson, C., Waldron, L., Pages, H.,
Smith, M.L., Huber, W., Morgan, M., Gottardo, R., Hicks, S.C., 2020.
Orchestrating single-cell analysis with Bioconductor. Nat Methods 17, 137-145.
https://doi.org/10.1038/s41592-019-0654-x

Anders, S., Pyl, P.T., Huber, W., 2015. HTSeq--a Python framework to work with high-
throughput sequencing data. Bioinformatics 31, 166—169.
https://doi.org/10.1093/bioinformatics/btu638

Arslan, S., Garcia, F.J., Guo, M., Kellinger, M.W., Kruglyak, S., LeVieux, J.A., Mah,
A.H., Wang, H., Zhao, J., Zhou, C., Altomare, A., Bailey, J., Byrne, M.B., Chang,
C., Chen, S.X., Cho, B., Dennler, C.N., Dien, V.T., Fuller, D., Kelley, R.,
Khandan, O., Klein, M.G., Kim, M., Lajoie, B.R., Lin, B., Liu, Y., Lopez, T.,
Mains, P.T., Price, A.D., Robertson, S.R., Taylor-Weiner, H., Tippana, R.,
Tomaney, A.B., Zhang, S., Abtahi, M., Ambroso, M.R., Bajari, R., Bellizzi, A.M.,
Benitez, C.B., Berard, D.R., Berti, L., Blease, K.N., Blum, A.P., Boddicker, A.M.,
Bondar, L., Brown, C., Bui, C.A., Calleja-Aguirre, J., Cappa, K., Chan, J., Chang,
V.W., Charov, K., Chen, X., Constandse, R.M., Damron, W., Dawood, M.,
DeBuono, N., Dimalanta, J.D., Edoli, L., Elango, K., Faustino, N., Feng, C.,
Ferrari, M., Frankie, K., Fries, A., Galloway, A., Gavrila, V., Gemmen, G.J.,
Ghadiali, J., Ghorbani, A., Goddard, L.A., Guetter, A.R., Hendricks, G.L.,
Hentschel, J., Honigfort, D.J., Hsieh, Y.-T., Hwang Fu, Y.-H., Im, S.K., Jin, C.,
Kabu, S., Kincade, D.E., Levy, S., Li, Y., Liang, V.K., Light, W.H., Lipsher, J.B.,
Liu, T., Long, G., Ma, R., Mailloux, J.M., Mandla, K.A., Martinez, A.R., Mass,
M., McKean, D.T., Meron, M., Miller, E.A., Moh, C.S., Moore, R.K., Moreno, J.,
Neysmith, J.M., Niman, C.S., Nunez, J.M., Ojeda, M.T., Ortiz, S.E., Owens, J.,
Piland, G., Proctor, D.J., Purba, J.B., Ray, M., Rong, D., Saade, V.M., Saha, S.,

157
Tomas, G.S., Scheidler, N., Sirajudeen, L.H., Snow, S., Stengel, G., Stinson,
R., Stone, M.J., Sundseth, K.J., Thai, E., Thompson, C.J., Tjioe, M., Trejo, C.L.,
Trieger, G., Truong, D.N., Tse, B., Voiles, B., Vuong, H., Wong, J.C., Wu, C.-T.,
Yu, H, Yu, Y., Yu, M., Zhang, X., Zhao, D., Zheng, G., He, M., Previte, M.,
2024. Sequencing by avidity enables high accuracy with low reagent
consumption. Nat Biotechnol 42, 132—138. https://doi.org/10.1038/s41587-023-
01750-7

Asiimwe, R., Alexander, D., 2024. STAR+WASP reduces reference bias in the allele-
specific mapping of RNA-seq reads. https://doi.org/10.1101/2024.01.21.576391

Audoux, J., Philippe, N., Chikhi, R., Salson, M., Gallopin, M., Gabriel, M., Le Coz, J.,
Drouineau, E., Commes, T., Gautheret, D., 2017. DE-kupl: exhaustive capture of
biological variation in RNA-seq data through k-mer decomposition. Genome Biol
18, 243. https://doi.org/10.1186/s13059-017-1372-2

Baldoni, P.L., Chen, Y., Hediyeh-zadeh, S., Liao, Y., Dong, X., Ritchie, M.E., Shi, W.,
Smyth, G.K., 2024. Dividing out quantification uncertainty allows efficient
assessment of differential transcript expression with edgeR. Nucleic Acids
Research 52, e13—e13. https://doi.org/10.1093/nar/gkad1167

Battenberg, K., Kelly, S.T., Ras, R.A., Hetherington, N.A., Hayashi, M., Minoda, A.,
2022. A flexible cross-platform single-cell data processing pipeline. Nat Commun
13, 6847. https://doi.org/10.1038/s41467-022-34681-z

Becht, E., Mclnnes, L., Healy, J., Dutertre, C.-A., Kwok, LW.H., Ng, L.G., Ginhoux, F.,
Newell, E.W., 2019. Dimensionality reduction for visualizing single-cell data
using UMAP. Nat Biotechnol 37, 38—44. https://doi.org/10.1038/nbt.4314

Ben-Kiki, O., Evans, C., Ingerson, B., 2004. Yaml ain’t markup language (yaml™)
version 1.1.

Boisvert, R.F., Pozo, R., Remington, K.A., 1996. The matrix market exchange formats:
Initial design. US Department of Commerce, National Institute of Standards and
Technology 5935.

Bolchini, D., Finkelstein, A., Perrone, V., Nagl, S., 2009. Better bioinformatics through
usability analysis. Bioinformatics 25, 406—412.
https://doi.org/10.1093/bioinformatics/btn633

Bolger, A.M., Lohse, M., Usadel, B., 2014. Trimmomatic: a flexible trimmer for Illumina
sequence data. Bioinformatics 30, 2114-2120.
https://doi.org/10.1093/bioinformatics/btul 70

Booeshaghi, A.S., Min, K.H. (Joseph), Gehring, J., Pachter, L., 2024. Quantifying
orthogonal barcodes for sequence census assays. Bioinformatics Advances 4,
vbad181. https://doi.org/10.1093/bioadv/vbad181

Booeshaghi, A.S., Chen, X., Pachter, L., 2024. A machine-readable specification for
genomics assays. Bioinformatics 40, btae168.
https://doi.org/10.1093/bioinformatics/btaec168

Bray, N.L., Pimentel, H., Melsted, P., Pachter, L., 2016. Near-optimal probabilistic RNA-
seq quantification. Nat Biotechnol 34, 525-527. https://doi.org/10.1038/nbt.3519

158

Bushnell, B., Rood, J., Singer, E., 2017. BBMerge — Accurate paired shotgun read
merging via overlap. PLoS ONE 12, e0185056.
https://doi.org/10.1371/journal.pone.0185056

Carilli, M., Gorin, G., Choi, Y., Chari, T., Pachter, L., 2024. Biophysical modeling with
variational autoencoders for bimodal, single-cell RNA sequencing data. Nat
Methods 21, 1466—1469. https://doi.org/10.1038/s41592-024-02365-9

Chambi, S., Lemire, D., Kaser, O., Godin, R., 2016. Better bitmap performance with
Roaring bitmaps. Softw Pract Exp 46, 709-719. https://doi.org/10.1002/spe.2325

Chari, T., Gorin, G., Pachter, L., 2024. Biophysically interpretable inference of cell types
from multimodal sequencing data. Nat Comput Sci 4, 677—689.
https://doi.org/10.1038/s43588-024-00689-2

Chaung, K., Baharav, T.Z., Henderson, G., Zheludev, L.N., Wang, P.L., Salzman, J.,
2023. SPLASH: A statistical, reference-free genomic algorithm unifies biological
discovery. Cell 186, 5440-5456.€26. https://doi.org/10.1016/j.cell.2023.10.028

Chen, S., Zhou, Y., Chen, Y., Gu, J., 2018. fastp: an ultra-fast all-in-one FASTQ
preprocessor. Bioinformatics 34, 1884—-i1890.
https://doi.org/10.1093/bioinformatics/bty560

Chen, X., Love, J.C., Navin, N.E., Pachter, L., Stubbington, M.J.T., Svensson, V.,
Sweedler, J.V., Teichmann, S.A., 2016. Single-cell analysis at the threshold. Nat
Biotechnol 34, 1111-1118. https://doi.org/10.1038/nbt.3721

Chen, Y., Chen, L., Lun, A.T.L., Baldoni, P.L., Smyth, G.K., 2024. edgeR v4: powerful
differential analysis of sequencing data with expanded functionality and improved
support for small counts and larger datasets.
https://doi.org/10.1101/2024.01.21.576131

Cheng, O., Ling, M.H., Wang, C., Wu, S., Ritchie, M.E., Goke, J., Amin, N., Davidson,
N.M., 2024. Flexiplex: a versatile demultiplexer and search tool for omics data.
Bioinformatics 40, btaec102. https://doi.org/10.1093/bioinformatics/btac102

Conesa, A., Madrigal, P., Tarazona, S., Gomez-Cabrero, D., Cervera, A., McPherson, A.,
Szczesniak, M.W., Gaftney, D.J., Elo, L.L., Zhang, X., Mortazavi, A., 2016. A
survey of best practices for RNA-seq data analysis. Genome Biol 17, 13.
https://doi.org/10.1186/s13059-016-0881-8

Crick, F.H.C., 1958. On protein synthesis. Symp Soc Exp Biol. 12, 138-163.

Danecek, P., Auton, A., Abecasis, G., Albers, C.A., Banks, E., DePristo, M.A.,
Handsaker, R.E., Lunter, G., Marth, G.T., Sherry, S.T., McVean, G., Durbin, R.,
1000 Genomes Project Analysis Group, 2011. The variant call format and
VCFtools. Bioinformatics 27, 2156-2158.
https://doi.org/10.1093/bioinformatics/btr330

Davis, M.P.A., Van Dongen, S., Abreu-Goodger, C., Bartonicek, N., Enright, A.J., 2013.
Kraken: A set of tools for quality control and analysis of high-throughput
sequence data. Methods 63, 41-49. https://doi.org/10.1016/j.ymeth.2013.06.027

Delahaye, C., Nicolas, J., 2021. Sequencing DNA with nanopores: Troubles and biases.
PLoS One 16, €0257521. https://doi.org/10.1371/journal.pone.0257521

Ding, J., Adiconis, X., Simmons, S.K., Kowalczyk, M.S., Hession, C.C., Marjanovic,
N.D., Hughes, T.K., Wadsworth, M.H., Burks, T., Nguyen, L.T., Kwon, J.Y.H.,

159

Barak, B., Ge, W., Kedaigle, A.J., Carroll, S., Li, S., Hacohen, N., Rozenblatt-
Rosen, O., Shalek, A.K., Villani, A.-C., Regev, A., Levin, J.Z., 2020. Systematic
comparison of single-cell and single-nucleus RNA-sequencing methods. Nat
Biotechnol 38, 737-746. https://doi.org/10.1038/s41587-020-0465-8

Dobin, A., Davis, C.A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P.,
Chaisson, M., Gingeras, T.R., 2013. STAR: ultrafast universal RNA-seq aligner.
Bioinformatics 29, 15-21. https://doi.org/10.1093/bioinformatics/bts635

Dominguez Conde, C., Xu, C., Jarvis, L.B., Rainbow, D.B., Wells, S.B., Gomes, T.,
Howlett, S.K., Suchanek, O., Polanski, K., King, H.W., Mamanova, L., Huang,
N., Szabo, P.A., Richardson, L., Bolt, L., Fasouli, E.S., Mahbubani, K.T., Prete,
M., Tuck, L., Richoz, N., Tuong, Z.K., Campos, L., Mousa, H.S., Needham, E.J.,
Pritchard, S., Li, T., Elmentaite, R., Park, J., Rahmani, E., Chen, D., Menon,
D.K., Bayraktar, O.A., James, L.K., Meyer, K.B., Yosef, N., Clatworthy, M.R.,
Sims, P.A., Farber, D.L., Saeb-Parsy, K., Jones, J.L., Teichmann, S.A., 2022.
Cross-tissue immune cell analysis reveals tissue-specific features in humans.
Science 376, eabl5197. https://doi.org/10.1126/science.abl5197

Einarsson, P.H., Melsted, P., 2023. BUSZ: compressed BUS files. Bioinformatics 39,
btad295. https://doi.org/10.1093/bioinformatics/btad295

Ferraj, A., Audano, P.A., Balachandran, P., Czechanski, A., Flores, J.I., Radecki, A.A.,
Mosur, V., Gordon, D.S., Walawalkar, I.A., Eichler, E.E., Reinholdt, L.G., Beck,
C.R., 2023. Resolution of structural variation in diverse mouse genomes reveals
chromatin remodeling due to transposable elements. Cell Genomics 3, 100291.
https://doi.org/10.1016/j.xgen.2023.100291

Frankish, A., Carbonell-Sala, S., Diekhans, M., Jungreis, 1., Loveland, J.E., Mudge, J.M.,
Sisu, C., Wright, J.C., Arnan, C., Barnes, 1., Banerjee, A., Bennett, R., Berry, A.,
Bignell, A., Boix, C., Calvet, F., Cerdan-Vélez, D., Cunningham, F., Davidson,
C., Donaldson, S., Dursun, C., Fatima, R., Giorgetti, S., Giron, C.G., Gonzalez,
J.M., Hardy, M., Harrison, P.W., Hourlier, T., Hollis, Z., Hunt, T., James, B.,
Jiang, Y., Johnson, R., Kay, M., Lagarde, J., Martin, F.J., Gébmez, L.M., Nair, S.,
Ni, P., Pozo, F., Ramalingam, V., Ruffier, M., Schmitt, B.M., Schreiber, J.M.,
Steed, E., Suner, M.-M., Sumathipala, D., Sycheva, 1., Uszczynska-Ratajczak, B.,
Wass, E., Yang, Y.T., Yates, A., Zafrulla, Z., Choudhary, J.S., Gerstein, M.,
Guigo, R., Hubbard, T.J.P., Kellis, M., Kundaje, A., Paten, B., Tress, M.L.,
Flicek, P., 2023. GENCODE: reference annotation for the human and mouse
genomes in 2023. Nucleic Acids Res 51, D942-D949.
https://doi.org/10.1093/nar/gkac1071

Gorin, G., Fang, M., Chari, T., Pachter, L., 2022a. RNA velocity unraveled. PLoS
Comput Biol 18, e1010492. https://doi.org/10.1371/journal.pcbi. 1010492

Gorin, G., Pachter, L., 2022a. Distinguishing biophysical stochasticity from technical
noise in single-cell RNA sequencing using Monod.
https://doi.org/10.1101/2022.06.11.495771

Gorin, G., Pachter, L., 2022b. Modeling bursty transcription and splicing with the
chemical master equation. Biophys J 121, 1056—1069.
https://doi.org/10.1016/j.bp;.2022.02.004

160
Gorin, G., Vastola, J.J., Fang, M., Pachter, L., 2022b. Interpretable and tractable

models of transcriptional noise for the rational design of single-molecule
quantification experiments. Nat Commun 13, 7620.
https://doi.org/10.1038/s41467-022-34857-7

Gorin, G., Vastola, J.J., Pachter, L., 2023. Studying stochastic systems biology of the cell
with single-cell genomics data. Cell Systems 14, 822-843.e22.
https://doi.org/10.1016/j.cels.2023.08.004

Griffith, M., Griffith, O.L., Mwenifumbo, J., Goya, R., Morrissy, A.S., Morin, R.D.,
Corbett, R., Tang, M.J., Hou, Y.-C., Pugh, T.J., Robertson, G., Chittaranjan, S.,
Ally, A., Asano, J.K., Chan, S.Y., Li, H.I., McDonald, H., Teague, K., Zhao, Y.,
Zeng, T., Delaney, A., Hirst, M., Morin, G.B., Jones, S.J.M., Tai, L.T., Marra,
M.A., 2010. Alternative expression analysis by RNA sequencing. Nat Methods 7,
843—847. https://doi.org/10.1038/nmeth.1503

Grindberg, R.V., Yee-Greenbaum, J.L., McConnell, M.J., Novotny, M., O’Shaughnessy,
A.L., Lambert, G.M., Aratizo-Bravo, M.J., Lee, J., Fishman, M., Robbins, G.E.,
Lin, X., Venepally, P., Badger, J.H., Galbraith, D.W., Gage, F.H., Lasken, R.S.,
2013. RNA-sequencing from single nuclei. Proc Natl Acad Sci U S A 110,
19802-19807. https://doi.org/10.1073/pnas.1319700110

Gu, W., Crawford, E.D., O’Donovan, B.D., Wilson, M.R., Chow, E.D., Retallack, H.,
DeRaisi, J.L., 2016. Depletion of Abundant Sequences by Hybridization (DASH):
using Cas9 to remove unwanted high-abundance species in sequencing libraries
and molecular counting applications. Genome Biol 17, 41.
https://doi.org/10.1186/s13059-016-0904-5

Gustafsson, J., Robinson, J., Nielsen, J., Pachter, L., 2021. BUTTERFLY: addressing the
pooled amplification paradox with unique molecular identifiers in single-cell
RNA-seq. Genome Biol 22, 174. https://doi.org/10.1186/s13059-021-02386-z

Guttman, M., Garber, M., Levin, J.Z., Donaghey, J., Robinson, J., Adiconis, X., Fan, L.,
Koziol, M.J., Gnirke, A., Nusbaum, C., Rinn, J.L., Lander, E.S., Regev, A., 2010.
Ab initio reconstruction of cell type—specific transcriptomes in mouse reveals the
conserved multi-exonic structure of lincRNAs. Nat Biotechnol 28, 503—-510.
https://doi.org/10.1038/nbt.1633

Hagemann-Jensen, M., Ziegenhain, C., Chen, P., Ramskoéld, D., Hendriks, G.-J., Larsson,
A.J.M., Faridani, O.R., Sandberg, R., 2020. Single-cell RNA counting at allele
and isoform resolution using Smart-seq3. Nat Biotechnol 38, 708-714.
https://doi.org/10.1038/s41587-020-0497-0

Hao, Y., Hao, S., Andersen-Nissen, E., Mauck, W.M., Zheng, S., Butler, A., Lee, M.J.,
Wilk, A.J., Darby, C., Zager, M., Hoffman, P., Stoeckius, M., Papalexi, E.,
Mimitou, E.P., Jain, J., Srivastava, A., Stuart, T., Fleming, L.M., Yeung, B.,
Rogers, A.J., McElrath, J.M., Blish, C.A., Gottardo, R., Smibert, P., Satija, R.,
2021. Integrated analysis of multimodal single-cell data. Cell 184, 3573-3587.e29.
https://doi.org/10.1016/j.cell.2021.04.048

Harrison, P.W., Amode, M.R., Austine-Orimoloye, O., Azov, A.G., Barba, M., Barnes, I.,
Becker, A., Bennett, R., Berry, A., Bhai, J., Bhurji, S.K., Boddu, S., Branco Lins,
P.R., Brooks, L., Ramaraju, S.B., Campbell, L.I., Martinez, M.C., Charkhchi, M.,

161

Chougule, K., Cockburn, A., Davidson, C., De Silva, N.H., Dodiya, K.,
Donaldson, S., El Houdaigui, B., Naboulsi, T.E., Fatima, R., Giron, C.G., Genez,
T., Grigoriadis, D., Ghattaoraya, G.S., Martinez, J.G., Gurbich, T.A., Hardy, M.,
Hollis, Z., Hourlier, T., Hunt, T., Kay, M., Kaykala, V., Le, T., Lemos, D., Lodha,
D., Marques-Coelho, D., Maslen, G., Merino, G.A., Mirabueno, L.P., Mushtaq,
A., Hossain, S.N., Ogeh, D.N., Sakthivel, M.P., Parker, A., Perry, M., Pilizota, .,
Poppleton, D., Prosovetskaia, 1., Raj, S., Pérez-Silva, J.G., Salam, A.I.A., Saraf,
S., Saraiva-Agostinho, N., Sheppard, D., Sinha, S., Sipos, B., Sitnik, V., Stark,
W., Steed, E., Suner, M.-M., Surapaneni, L., Sutinen, K., Tricomi, F.F., Urbina-
Gomez, D., Veidenberg, A., Walsh, T.A., Ware, D., Wass, E., Willhoft, N.L.,
Allen, J., Alvarez-Jarreta, J., Chakiachvili, M., Flint, B., Giorgetti, S., Haggerty,
L., llsley, G.R., Keatley, J., Loveland, J.E., Moore, B., Mudge, J.M., Naamati, G.,
Tate, J., Trevanion, S.J., Winterbottom, A., Frankish, A., Hunt, S.E.,
Cunningham, F., Dyer, S., Finn, R.D., Martin, F.J., Yates, A.D., 2024. Ensembl
2024. Nucleic Acids Res 52, D891-D899. https://doi.org/10.1093/nar/gkad 1049

Hashimshony, T., Senderovich, N., Avital, G., Klochendler, A., de Leeuw, Y., Anavy, L.,
Gennert, D., Li, S., Livak, K.J., Rozenblatt-Rosen, O., Dor, Y., Regev, A., Yanai,
I., 2016. CEL-Seq2: sensitive highly-multiplexed single-cell RNA-Seq. Genome
Biol 17, 77. https://doi.org/10.1186/s13059-016-0938-8

He, D., Gao, Y., Chan, S.S., Quintana-Parrilla, N., Patro, R., 2024. Forseti : a mechanistic
and predictive model of the splicing status of scRNA-seq reads. Bioinformatics
40, 1297-1306. https://doi.org/10.1093/bioinformatics/btac207

He, D., Patro, R., 2023. simpleaf: a simple, flexible, and scalable framework for single-
cell data processing using alevin-fry. Bioinformatics 39, btad614.
https://doi.org/10.1093/bioinformatics/btad6 14

He, D., Soneson, C., Patro, R., 2023. Understanding and evaluating ambiguity in single-
cell and single-nucleus RNA-sequencing.
https://doi.org/10.1101/2023.01.04.522742

He, D., Zakeri, M., Sarkar, H., Soneson, C., Srivastava, A., Patro, R., 2022. Alevin-fry
unlocks rapid, accurate and memory-frugal quantification of single-cell RNA-seq
data. Nat Methods 19, 316-322. https://doi.org/10.1038/s41592-022-01408-3

Holley, G., Melsted, P., 2020. Bifrost: highly parallel construction and indexing of
colored and compacted de Bruijn graphs. Genome Biol 21, 249.
https://doi.org/10.1186/s13059-020-02135-8

Hoon, S., Ratnapu, K.K., Chia, J., Kumarasamy, B., Juguang, X., Clamp, M., Stabenau,
A., Potter, S., Clarke, L., Stupka, E., 2003. Biopipe: A Flexible Framework for
Protocol-Based Bioinformatics Analysis. Genome Res. 13, 1904-1915.
https://doi.org/10.1101/gr.1363103

Huntley, M.A., Lou, M., Goldstein, L.D., Lawrence, M., Dijkgraaf, G.J.P., Kaminker,
J.S., Gentleman, R., 2016. Complex regulation of ADAR-mediated RNA-editing
across tissues. BMC Genomics 17, 61. https://doi.org/10.1186/s12864-015-2291-
9

IGVF Consortium, 2024. Deciphering the impact of genomic variation on function.
Nature 633, 47-57. https://doi.org/10.1038/s41586-024-07510-0

162

Igbal, Z., Caccamo, M., Turner, 1., Flicek, P., McVean, G., 2012. De novo assembly
and genotyping of variants using colored de Bruijn graphs. Nat Genet 44, 226—
232. https://doi.org/10.1038/ng.1028

Johnson, M.S., Venkataram, S., Kryazhimskiy, S., 2023. Best Practices in Designing,
Sequencing, and Identifying Random DNA Barcodes. J Mol Evol 91, 263-280.
https://doi.org/10.1007/s00239-022-10083-z

Kaminow, B., Yunusov, D., Dobin, A., 2021. STARsolo: accurate, fast and versatile
mapping/quantification of single-cell and single-nucleus RNA-seq data.
https://doi.org/10.1101/2021.05.05.442755

Karimzadeh, M., Hoffman, M.M., 2018. Top considerations for creating bioinformatics
software documentation. Briefings in Bioinformatics 19, 693—699.
https://doi.org/10.1093/bib/bbw134

Kebschull, J.M., Zador, A.M., 2018. Cellular barcoding: lineage tracing, screening and
beyond. Nat Methods 15, 871-879. https://doi.org/10.1038/s41592-018-0185-x

Kent, W.J., Sugnet, C.W., Furey, T.S., Roskin, K.M., Pringle, T.H., Zahler, A.M.,
Haussler, A.D., 2002. The Human Genome Browser at UCSC. Genome Res. 12,
996-1006. https://doi.org/10.1101/gr.229102

Kijima, Y., Evans-Yamamoto, D., Toyoshima, H., Yachie, N., 2023. A universal
sequencing read interpreter. Sci. Adv. 9, eadd2793.
https://doi.org/10.1126/sciadv.add2793

Kivioja, T., Vdhirautio, A., Karlsson, K., Bonke, M., Enge, M., Linnarsson, S., Taipale,
J., 2012. Counting absolute numbers of molecules using unique molecular
identifiers. Nat Methods 9, 72—74. https://doi.org/10.1038/nmeth.1778

Kong, Y., 2011. Btrim: a fast, lightweight adapter and quality trimming program for next-
generation sequencing technologies. Genomics 98, 152—153.
https://doi.org/10.1016/j.ygeno.2011.05.009

Kumar, S., Dudley, J., 2007. Bioinformatics software for biologists in the genomics era.
Bioinformatics 23, 1713—1717. https://doi.org/10.1093/bioinformatics/btm239

Kuo, A., Hansen, K.D., Hicks, S.C., 2024. Quantification and statistical modeling of
droplet-based single-nucleus RNA-sequencing data. Biostatistics 25, 801-817.
https://doi.org/10.1093/biostatistics/’kxad010

La Manno, G., Soldatov, R., Zeisel, A., Braun, E., Hochgerner, H., Petukhov, V.,
Lidschreiber, K., Kastriti, M.E., Lonnerberg, P., Furlan, A., Fan, J., Borm, L.E.,
Liu, Z., Van Bruggen, D., Guo, J., He, X., Barker, R., Sundstrém, E., Castelo-
Branco, G., Cramer, P., Adameyko, I., Linnarsson, S., Kharchenko, P.V., 2018.
RNA velocity of single cells. Nature 560, 494—498.
https://doi.org/10.1038/s41586-018-0414-6

Langmead, B., Salzberg, S.L., 2012. Fast gapped-read alignment with Bowtie 2. Nat
Methods 9, 357-359. https://doi.org/10.1038/nmeth.1923

Law, C.W., Chen, Y., Shi, W., Smyth, G.K., 2014. voom: precision weights unlock linear
model analysis tools for RNA-seq read counts. Genome Biol 15, R29.
https://doi.org/10.1186/gb-2014-15-2-129

163

Li, B., Dewey, C.N., 2011. RSEM: accurate transcript quantification from RNA-Seq
data with or without a reference genome. BMC Bioinformatics 12, 323.
https://doi.org/10.1186/1471-2105-12-323

Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G.,
Abecasis, G., Durbin, R., 1000 Genome Project Data Processing Subgroup, 2009.
The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078—
2079. https://doi.org/10.1093/bioinformatics/btp352

Liao, Y., Raghu, D., Pal, B., Mielke, L.A., Shi, W., 2023. cellCounts: an R function for
quantifying 10x Chromium single-cell RNA sequencing data. Bioinformatics 39,
btad439. https://doi.org/10.1093/bioinformatics/btad439

Liao, Y., Smyth, G.K., Shi, W., 2019. The R package Rsubread is easier, faster, cheaper
and better for alignment and quantification of RNA sequencing reads. Nucleic
Acids Res 47, e47. https://doi.org/10.1093/nar/gkz114

Liao, Y., Smyth, G.K., Shi, W., 2014. featureCounts: an efficient general purpose
program for assigning sequence reads to genomic features. Bioinformatics 30,
923-930. https://doi.org/10.1093/bioinformatics/btt656

Limasset, A., Rizk, G., Chikhi, R., Peterlongo, P., 2017. Fast and scalable minimal
perfect hashing for massive key sets.
https://doi.org/10.48550/ARXIV.1702.03154

List, M., Ebert, P., Albrecht, F., 2017. Ten Simple Rules for Developing Usable Software
in Computational Biology. PLoS Comput Biol 13, €¢1005265.
https://doi.org/10.1371/journal.pcbi. 1005265

Liu, D., 2019. Fuzzysplit: demultiplexing and trimming sequenced DNA with a
declarative language. Peer] 7, €7170. https://doi.org/10.7717/peerj.7170

Love, M.L., Huber, W., Anders, S., 2014. Moderated estimation of fold change and
dispersion for RNA-seq data with DESeq2. Genome Biol 15, 550.
https://doi.org/10.1186/s13059-014-0550-8

Luebbert, L., Sullivan, D.K., Carilli, M., Eldjarn Hjorleifsson, K., Winnett, A.V., Chari,
T., Pachter, L., 2025. Detection of viral sequences at single-cell resolution
identifies novel viruses associated with host gene expression changes.
Nat Biotechnol. https://doi.org/10.1038/s41587-025-02614-y

Lun, A.T.L., McCarthy, D.J., Marioni, J.C., 2016. A step-by-step workflow for low-level
analysis of single-cell RNA-seq data with Bioconductor. F1000Res 5, 2122.
https://doi.org/10.12688/f1000research.9501.2

Martin, M., 2011. Cutadapt removes adapter sequences from high-throughput sequencing
reads. EMBnet j. 17, 10. https://doi.org/10.14806/¢j.17.1.200

McCarthy, D.J., Campbell, K.R., Lun, A.T.L., Wills, Q.F., 2017. Scater: pre-processing,
quality control, normalization and visualization of single-cell RNA-seq data in R.
Bioinformatics 33, 1179-1186. https://doi.org/10.1093/bioinformatics/btw777

Mcllroy, M.D., Pinson, E.N., Tague, B.A., 1978. UNIX Time-Sharing System: Foreword.
Bell System Technical Journal 57, 1899-1904. https://doi.org/10.1002/j.1538-
7305.1978.tb02135.x

164

Mclnnes, L., Healy, J., Melville, J., 2018. UMAP: Uniform Manifold Approximation
and Projection for Dimension Reduction.
https://doi.org/10.48550/ARXIV.1802.03426

Melsted, P., Booeshaghi, A.S., Liu, L., Gao, F., Lu, L., Min, K.H.J., da Veiga Beltrame,
E., Hjorleifsson, K.E., Gehring, J., Pachter, L., 2021. Modular, efficient and
constant-memory single-cell RNA-seq preprocessing. Nat Biotechnol 39, 813—
818. https://doi.org/10.1038/s41587-021-00870-2

Melsted, P., Ntranos, V., Pachter, L., 2019. The barcode, UMI, set format and BUStools.
Bioinformatics 35, 4472—-4473. https://doi.org/10.1093/bioinformatics/btz279

Merkel, D., 2014. Docker: lightweight Linux containers for consistent development and
deployment. Linux Journal.

Molder, F., Jablonski, K.P., Letcher, B., Hall, M.B., Tomkins-Tinch, C.H., Sochat, V.,
Forster, J., Lee, S., Twardziok, S.O., Kanitz, A., Wilm, A., Holtgrewe, M.,
Rahmann, S., Nahnsen, S., Koster, J., 2021. Sustainable data analysis with
Snakemake. F1000Res 10, 33. https://doi.org/10.12688/f1000research.29032.2

Morgan, A.P., Welsh, C.E., 2015. Informatics resources for the Collaborative Cross and
related mouse populations. Mamm Genome 26, 521-539.
https://doi.org/10.1007/s00335-015-9581-z

Mortazavi, A., Williams, B.A., McCue, K., Schaeffer, L., Wold, B., 2008. Mapping and
quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5, 621-628.
https://doi.org/10.1038/nmeth.1226

Niebler, S., Miiller, A., Hankeln, T., Schmidt, B., 2020. RainDrop: Rapid activation
matrix computation for droplet-based single-cell RNA-seq reads. BMC
Bioinformatics 21, 274. https://doi.org/10.1186/s12859-020-03593-4

Ntranos, V., Kamath, G.M., Zhang, J.M., Pachter, L., Tse, D.N., 2016. Fast and accurate
single-cell RNA-seq analysis by clustering of transcript-compatibility counts.
Genome Biol 17, 112. https://doi.org/10.1186/s13059-016-0970-8

Ntranos, V., Yi, L., Melsted, P., Pachter, L., 2019. A discriminative learning approach to
differential expression analysis for single-cell RNA-seq. Nat Methods 16, 163—
166. https://doi.org/10.1038/s41592-018-0303-9

Oshlack, A., Robinson, M.D., Young, M.D., 2010. From RNA-seq reads to differential
expression results. Genome Biol 11, 220. https://doi.org/10.1186/gb-2010-11-12-
220

Pachter, L., 2011. Models for transcript quantification from RNA-Seq.
https://doi.org/10.48550/ARXIV.1104.3889

Pai, A.A., Paggi, J M., Yan, P., Adelman, K., Burge, C.B., 2018. Numerous recursive
sites contribute to accuracy of splicing in long introns in flies. PLoS Genet 14,
e1007588. https://doi.org/10.1371/journal.pgen.1007588

Pandya-Jones, A., Black, D.L., 2009. Co-transcriptional splicing of constitutive and
alternative exons. RNA 15, 1896—-1908. https://doi.org/10.1261/rna.1714509

Parekh, S., Ziegenhain, C., Vieth, B., Enard, W., Hellmann, 1., 2018. zUMIs - A fast and
flexible pipeline to process RNA sequencing data with UMIs. GigaScience 7,
giy059. https://doi.org/10.1093/gigascience/giy059

165

Patro, R., Duggal, G., Love, M.1, Irizarry, R.A., Kingsford, C., 2017. Salmon
provides fast and bias-aware quantification of transcript expression. Nat Methods
14, 417-419. https://doi.org/10.1038/nmeth.4197

Patro, R., Mount, S.M., Kingsford, C., 2014. Sailfish enables alignment-free isoform
quantification from RNA-seq reads using lightweight algorithms. Nat Biotechnol
32, 462—-464. https://doi.org/10.1038/nbt.2862

Pavelin, K., Cham, J.A., De Matos, P., Brooksbank, C., Cameron, G., Steinbeck, C.,
2012. Bioinformatics Meets User-Centred Design: A Perspective. PLoS Comput
Biol 8, e1002554. https://doi.org/10.1371/journal.pcbi. 1002554

Pearson, W.R., Lipman, D.J., 1988. Improved tools for biological sequence comparison.
Proc. Natl. Acad. Sci. U.S.A. 85, 2444-2448.
https://doi.org/10.1073/pnas.85.8.2444

Perego, M., Maurer, M., Wang, J.X., Shaffer, S., Miiller, A.C., Parapatics, K., Li, L.,
Hristova, D., Shin, S., Keeney, F., Liu, S., Xu, X., Raj, A., Jensen, J.K., Bennett,
K.L., Wagner, S.N., Somasundaram, R., Herlyn, M., 2018. A slow-cycling
subpopulation of melanoma cells with highly invasive properties. Oncogene 37,
302-312. https://doi.org/10.1038/onc.2017.341

Pertea, M., Kim, D., Pertea, G.M., Leek, J.T., Salzberg, S.L., 2016. Transcript-level
expression analysis of RNA-seq experiments with HISAT, StringTie and
Ballgown. Nat Protoc 11, 1650—1667. https://doi.org/10.1038/nprot.2016.095

Pezoa, F., Reutter, J.L., Suarez, F., Ugarte, M., Vrgoc¢, D., 2016. Foundations of JSON
Schema, in: Proceedings of the 25th International Conference on World Wide
Web. Presented at the WWW ’16: 25th International World Wide Web
Conference, International World Wide Web Conferences Steering Committee,
Montréal Québec Canada, pp. 263—273. https://doi.org/10.1145/2872427.2883029

Picelli, S., Bjérklund, A.K., Faridani, O.R., Sagasser, S., Winberg, G., Sandberg, R.,
2013. Smart-seq?2 for sensitive full-length transcriptome profiling in single cells.
Nat Methods 10, 1096—-1098. https://doi.org/10.1038/nmeth.2639

Pickrell, J.K., Marioni, J.C., Pai, A.A., Degner, J.F., Engelhardt, B.E., Nkadori, E.,
Veyrieras, J.-B., Stephens, M., Gilad, Y., Pritchard, J.K., 2010. Understanding
mechanisms underlying human gene expression variation with RNA sequencing.
Nature 464, 768—772. https://doi.org/10.1038/nature08872

Pimentel, H., Bray, N.L., Puente, S., Melsted, P., Pachter, L., 2017. Differential analysis
of RNA-seq incorporating quantification uncertainty. Nat Methods 14, 687-690.
https://doi.org/10.1038/nmeth.4324

Pool, A.-H., Poldsam, H., Chen, S., Thomson, M., Oka, Y., 2023. Recovery of missing
single-cell RNA-sequencing data with optimized transcriptomic references. Nat
Methods 20, 1506—1515. https://doi.org/10.1038/s41592-023-02003-w

Quinodoz, S.A., Bhat, P., Chovanec, P., Jachowicz, J.W., Ollikainen, N., Detmar, E.,
Soehalim, E., Guttman, M., 2022. SPRITE: a genome-wide method for mapping
higher-order 3D interactions in the nucleus using combinatorial split-and-pool
barcoding. Nat Protoc 17, 36-75. https://doi.org/10.1038/s41596-021-00633-y

Quinodoz, S.A., Ollikainen, N., Tabak, B., Palla, A., Schmidt, J.M., Detmar, E., Lai,
M.M., Shishkin, A.A., Bhat, P., Takei, Y., Trinh, V., Aznauryan, E., Russell, P.,

166

Cheng, C., Jovanovic, M., Chow, A., Cai, L., McDonel, P., Garber, M.,
Guttman, M., 2018. Higher-Order Inter-chromosomal Hubs Shape 3D Genome
Organization in the Nucleus. Cell 174, 744-757.€24.
https://doi.org/10.1016/j.cell.2018.05.024

Rahman, A., Hallgrimsdottir, 1., Eisen, M., Pachter, L., 2018. Association mapping from
sequencing reads using k-mers. Elife 7, €32920.
https://doi.org/10.7554/eLife.32920

Ramirez, F., Ryan, D.P., Griining, B., Bhardwaj, V., Kilpert, F., Richter, A.S., Heyne, S.,
Diindar, F., Manke, T., 2016. deepTools2: a next generation web server for deep-
sequencing data analysis. Nucleic Acids Res 44, W160—-W165.
https://doi.org/10.1093/nar/gkw257

Rebboah, E., Reese, F., Williams, K., Balderrama-Gutierrez, G., McGill, C., Trout, D.,
Rodriguez, 1., Liang, H., Wold, B.J., Mortazavi, A., 2021. Mapping and modeling
the genomic basis of differential RNA isoform expression at single-cell resolution
with LR-Split-seq. Genome Biol 22, 286. https://doi.org/10.1186/s13059-021-
02505-w

Rebboah, E., Weber, R., Abdollahzadeh, E., Swarna, N., Sullivan, D.K., Trout, D., Reese,
F., Liang, H.Y., Filimban, G., Mahdipoor, P., Duffield, M., Mojaverzargar, R.,
Taghizadeh, E., Fattahi, N., Mojgani, N., Zhang, H., Loving, R.K., Carilli, M.,
Booeshaghi, A.S., Kawauchi, S., Hallgrimsdéttir, [.B., Williams, B.A.,
MacGregor, G.R., Pachter, L., Wold, B.J., Mortazavi, A., 2025. Systematic cell-
type resolved transcriptomes of 8 tissues in 8 lab and wild-derived mouse strains
captures global and local expression variation.
https://doi.org/10.1101/2025.04.21.649844

Reese, M.G., Hartzell, G., Harris, N.L., Ohler, U., Abril, J.F., Lewis, S.E., 2000. Genome
annotation assessment in Drosophila melanogaster. Genome Res 10, 483-501.
https://doi.org/10.1101/gr.10.4.483

Rich, J.M., Moses, L., Einarsson, P.H., Jackson, K., Luebbert, L., Booeshaghi, A.S.,
Antonsson, S., Sullivan, D.K., Bray, N., Melsted, P., Pachter, L., 2024. The
impact of package selection and versioning on single-cell RNA-seq analysis.
bioRxiv 2024.04.04.588111. https://doi.org/10.1101/2024.04.04.588111

Ritchie, M.E., Phipson, B., Wu, D., Hu, Y., Law, C.W., Shi, W., Smyth, G.K., 2015.
limma powers differential expression analyses for RNA-sequencing and
microarray studies. Nucleic Acids Res 43, e47.
https://doi.org/10.1093/nar/gkv007

Roberts, A., Pachter, L., 2013. Streaming fragment assignment for real-time analysis of
sequencing experiments. Nat Methods 10, 71-73.
https://doi.org/10.1038/nmeth.2251

Roberts, M., Hayes, W., Hunt, B.R., Mount, S.M., Yorke, J.A., 2004. Reducing storage
requirements for biological sequence comparison. Bioinformatics 20, 3363—-3369.
https://doi.org/10.1093/bioinformatics/bth408

Robinson, J.T., Thorvaldsdottir, H., Winckler, W., Guttman, M., Lander, E.S., Getz, G.,
Mesirov, J.P., 2011. Integrative genomics viewer. Nat Biotechnol 29, 24-26.
https://doi.org/10.1038/nbt.1754

167

Robinson, M.D., McCarthy, D.J., Smyth, G.K., 2010. edgeR : a Bioconductor
package for differential expression analysis of digital gene expression data.
Bioinformatics 26, 139-140. https://doi.org/10.1093/bioinformatics/btp616

Roehr, J.T., Dieterich, C., Reinert, K., 2017. Flexbar 3.0 — SIMD and multicore
parallelization. Bioinformatics 33, 2941-2942.
https://doi.org/10.1093/bioinformatics/btx330

Rosenberg, A.B., Roco, C.M., Muscat, R.A., Kuchina, A., Sample, P., Yao, Z.,
Graybuck, L.T., Peeler, D.J., Mukherjee, S., Chen, W., Pun, S.H., Sellers, D.L.,
Tasic, B., Seelig, G., 2018. Single-cell profiling of the developing mouse brain
and spinal cord with split-pool barcoding. Science 360, 176—182.
https://doi.org/10.1126/science.aam8999

Roy, S., Coldren, C., Karunamurthy, A., Kip, N.S., Klee, E.-W., Lincoln, S.E., Leon, A.,
Pullambhatla, M., Temple-Smolkin, R.L., Voelkerding, K.V., Wang, C., Carter,
A.B., 2018. Standards and Guidelines for Validating Next-Generation Sequencing
Bioinformatics Pipelines. The Journal of Molecular Diagnostics 20, 4-27.
https://doi.org/10.1016/j.jmoldx.2017.11.003

Schena, M., Shalon, D., Davis, R.W., Brown, P.O., 1995. Quantitative Monitoring of
Gene Expression Patterns with a Complementary DNA Microarray. Science 270,
467-470. https://doi.org/10.1126/science.270.5235.467

Shen, W., Le, S., Li, Y., Hu, F., 2016. SeqKit: A Cross-Platform and Ultrafast Toolkit for
FASTA/Q File Manipulation. PLoS One 11, e0163962.
https://doi.org/10.1371/journal.pone.0163962

Smith, T., Heger, A., Sudbery, 1., 2017. UMI-tools: modeling sequencing errors in
Unique Molecular Identifiers to improve quantification accuracy. Genome Res.
27, 491-499. https://doi.org/10.1101/gr.209601.116

Soneson, C., Love, M.I., Robinson, M.D., 2015. Differential analyses for RNA-seq:
transcript-level estimates improve gene-level inferences. F1000Res 4, 1521.
https://doi.org/10.12688/f1000research.7563.2

Soneson, C., Srivastava, A., Patro, R., Stadler, M.B., 2021. Preprocessing choices affect
RNA velocity results for droplet scRNA-seq data. PLoS Comput Biol 17,
e1008585. https://doi.org/10.1371/journal.pcbi. 1008585

Srivastava, A., Malik, L., Sarkar, H., Zakeri, M., Almodaresi, F., Soneson, C., Love,
M.L., Kingsford, C., Patro, R., 2020. Alignment and mapping methodology
influence transcript abundance estimation. Genome Biol 21, 239.
https://doi.org/10.1186/s13059-020-02151-8

Srivastava, A., Malik, L., Smith, T., Sudbery, L., Patro, R., 2019. Alevin efficiently
estimates accurate gene abundances from dscRNA-seq data. Genome Biol 20, 65.
https://doi.org/10.1186/s13059-019-1670-y

Sullivan, D.K., Hjorleifsson, K.E., Swarna, N.P., Oakes, C., Holley, G., Melsted, P.,
Pachter, L., 2025. Accurate quantification of nascent and mature RNAs from
single-cell and single-nucleus RNA-seq. Nucleic Acids Research 53, gkael137.
https://doi.org/10.1093/nar/gkae1137

Sullivan, D.K., Min, K.H., Hjorleifsson, K.E., Luebbert, L., Holley, G., Moses, L.,
Gustafsson, J., Bray, N.L., Pimentel, H., Booeshaghi, A.S., Melsted, P., Pachter,

168

L., 2024. kallisto, bustools and kb-python for quantifying bulk, single-cell and
single-nucleus RNA-seq. Nat Protoc. https://doi.org/10.1038/s41596-024-01057-0

Sullivan, D.K., Pachter, L., 2024. Flexible parsing, interpretation, and editing of technical
sequences with splitcode. Bioinformatics 40, btae331.
https://doi.org/10.1093/bioinformatics/btae331

Sullivan, D K., Boffelli, M., Pachter, L., 2025. Pseudoassembly of k-mers.
bioRxiv 2025.05.11.653354. https://doi.org/10.1101/2025.05.11.653354

Sun, Q., Lee, W., Mohri, Y., Takeo, M., Lim, C.H., Xu, X., Myung, P., Atit, R.P.,
Taketo, M.M., Moubarak, R.S., Schober, M., Osman, 1., Gay, D.L., Saur, D.,
Nishimura, E.K., Ito, M., 2019. A novel mouse model demonstrates that
oncogenic melanocyte stem cells engender melanoma resembling human disease.
Nat Commun 10, 5023. https://doi.org/10.1038/s41467-019-12733-1

Tian, L., Su, S., Dong, X., Amann-Zalcenstein, D., Biben, C., Seidi, A., Hilton, D.J.,
Naik, S.H., Ritchie, M.E., 2018. scPipe: A flexible R/Bioconductor preprocessing
pipeline for single-cell RNA-sequencing data. PLoS Comput Biol 14, e1006361.
https://doi.org/10.1371/journal.pcbi. 1006361

Traag, V.A., Waltman, L., van Eck, N.J., 2019. From Louvain to Leiden: guaranteeing
well-connected communities. Sci Rep 9, 5233. https://doi.org/10.1038/s41598-
019-41695-z

Trapnell, C., 2015. Defining cell types and states with single-cell genomics. Genome Res.
25, 1491-1498. https://doi.org/10.1101/gr.190595.115

Trapnell, C., Cacchiarelli, D., Grimsby, J., Pokharel, P., Li, S., Morse, M., Lennon, N.J.,
Livak, K.J., Mikkelsen, T.S., Rinn, J.L., 2014. The dynamics and regulators of
cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat
Biotechnol 32, 381-386. https://doi.org/10.1038/nbt.2859

Trapnell, C., Roberts, A., Goff, L., Pertea, G., Kim, D., Kelley, D.R., Pimentel, H.,
Salzberg, S.L., Rinn, J.L., Pachter, L., 2012. Differential gene and transcript
expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat
Protoc 7, 562-578. https://doi.org/10.1038/nprot.2012.016

Trapnell, C., Williams, B.A., Pertea, G., Mortazavi, A., Kwan, G., Van Baren, M.J.,
Salzberg, S.L., Wold, B.J., Pachter, L., 2010. Transcript assembly and
quantification by RNA-Seq reveals unannotated transcripts and isoform switching
during cell differentiation. Nat Biotechnol 28, 511-515.
https://doi.org/10.1038/nbt.1621

Van De Geijn, B., McVicker, G., Gilad, Y., Pritchard, J.K., 2015. WASP: allele-specific
software for robust molecular quantitative trait locus discovery. Nat Methods 12,
1061-1063. https://doi.org/10.1038/nmeth.3582

Virshup, 1., Rybakov, S., Theis, F.J., Angerer, P., Wolf, F.A., 2021. anndata: Annotated
data. https://doi.org/10.1101/2021.12.16.473007

Wang, A.M., Doyle, M.V., Mark, D.F., 1989. Quantitation of mRNA by the polymerase
chain reaction. Proc. Natl. Acad. Sci. U.S.A. 86, 9717-9721.
https://doi.org/10.1073/pnas.86.24.9717

169

Wick, R.R., Schultz, M.B., Zobel, J., Holt, K.E., 2015. Bandage: interactive
visualization of de novo genome assemblies. Bioinformatics 31, 3350-3352.
https://doi.org/10.1093/bioinformatics/btv383

Wold, B., Myers, R.M., 2008. Sequence census methods for functional genomics. Nat
Methods 5, 19-21. https://doi.org/10.1038/nmeth1157

Wolf, F.A., Angerer, P., Theis, F.J., 2018. SCANPY: large-scale single-cell gene
expression data analysis. Genome Biol 19, 15. https://doi.org/10.1186/s13059-
017-1382-0

Xu, C., Prete, M., Webb, S., Jardine, L., Stewart, B.J., Hoo, R., He, P., Meyer, K.B.,
Teichmann, S.A., 2023. Automatic cell-type harmonization and integration across
Human Cell Atlas datasets. Cell 186, 5876-5891.€20.
https://doi.org/10.1016/j.cell.2023.11.026

Zeng, H., 2022. What is a cell type and how to define it? Cell 185, 2739-2755.
https://doi.org/10.1016/j.cell.2022.06.031

Zhang, H., Jain, C., Aluru, S., 2020. A comprehensive evaluation of long read error
correction methods. BMC Genomics 21, 889. https://doi.org/10.1186/s12864-020-
07227-0

Zheng, G.X.Y., Terry, .M., Belgrader, P., Ryvkin, P., Bent, Z.W., Wilson, R., Ziraldo,
S.B., Wheeler, T.D., McDermott, G.P., Zhu, J., Gregory, M.T., Shuga, J.,
Montesclaros, L., Underwood, J.G., Masquelier, D.A., Nishimura, S.Y., Schnall-
Levin, M., Wyatt, P.W., Hindson, C.M., Bharadwaj, R., Wong, A., Ness, K.D.,
Beppu, L.W., Deeg, H.J., McFarland, C., Loeb, K.R., Valente, W.J., Ericson,
N.G., Stevens, E.A., Radich, J.P., Mikkelsen, T.S., Hindson, B.J., Bielas, J.H.,
2017. Massively parallel digital transcriptional profiling of single cells. Nat
Commun 8, 14049. https://doi.org/10.1038/ncomms 14049

