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ABSTRACT 

Advances in transcriptomics have transformed the study of gene expression, enabling a 

shift from low-throughput bulk RNA measurements to high-resolution, large-scale single-

cell RNA-sequencing (scRNA-seq). This work refines existing methodologies and 

introduces new strategies for achieving precise, versatile, and scalable transcriptomic 

analyses across a broad spectrum of assays and biological contexts. 

On the computational front, this dissertation introduces new methods for adaptable 

preprocessing of sequencing reads, enabling the handling of very complex read structures. 

It refines existing strategies for efficiently querying large-scale transcriptomic datasets and 

enhances approaches for quantifying nascent and mature RNA species. A general 

framework is introduced for discovering and organizing biologically informative 

sequences directly from raw sequencing data, facilitating the detection of sample-specific 

or condition-specific variation. On the experimental front, a novel single-cell RNA 

sequencing method is presented that is cost-effective, open source, and scalable, supporting 

large-scale studies with substantial cell numbers and high per-cell resolution. 

These developments collectively expand the toolkit for transcriptomics, enabling more 

efficient and comprehensive exploration of RNA biology. 
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1 
C h a p t e r  1  

INTRODUCTION 

Overview of transcriptomics 

The field of transcriptomics, which encompasses the study of RNA molecules produced by 

the genome, is fundamental to understanding how genetic information is expressed and 

regulated within cells. At its core, transcriptomics is built upon the central dogma of 

molecular biology: DNA is transcribed into RNA, which is subsequently translated into 

proteins (Crick, 1958). This process begins with transcription, where RNA polymerase in 

the nucleus synthesizes RNA from a DNA template. Transcription produces a diverse 

collection of RNA molecules, which may then be modified by chemical processing (such 

as splicing), further expanding their diversity. The end result is a wide variety of RNA 

molecules, including messenger RNAs (mRNAs), which are transported to the cytoplasm 

for protein synthesis, and non-coding RNAs, which serve important regulatory and 

structural roles. 

Gene expression can be assessed by measuring RNA abundance. Early methods, such as 

reverse transcription quantitative polymerase chain reaction (RT-qPCR) (Wang et al., 

1989), enabled precise measurement of specific RNA molecules, providing a robust way 

to quantify gene expression. However, RT-qPCR is limited in throughput, as only a few 

genes can be quantified at a time. 

The advent of gene expression microarrays enabled simultaneous measurement of 

expression levels across thousands of genes (Schena et al., 1995). These microarrays are 

based on hybridization between chemically labeled RNA or cDNA molecules and 

complementary DNA probes fixed on a solid surface. Thus, a comprehensive probe set 

could provide an extensive transcriptome profile. However, since microarrays are 

constrained by their dependence on predefined probes, they cannot be used to detect and 

quantify novel transcripts or any other sequences that are not pre-designed on the array. 



 

 

2 
RNA sequencing (RNA-seq) revolutionized transcriptomics by enabling comprehensive, 

high-resolution transcriptome profiling without reliance on predefined probes (Mortazavi 

et al., 2008; Wold and Myers, 2008). RNA-seq involves a series of experimental steps, 

referred to as a library preparation, which convert an RNA isolate into a concentrated 

collection of double-stranded DNA molecules that can be sequenced via high-throughput 

sequencing. With the data generated from RNA sequencing, bioinformatics can empower 

many downstream analyses including transcript abundance quantification (Mortazavi et al., 

2008), differential expression analysis (Oshlack et al., 2010), gene structure determination 

and novel transcript discovery (Guttman et al., 2010; Trapnell et al., 2010), alternative 

splicing detection (Griffith et al., 2010), and expression quantitative trait loci (eQTL) 

analysis (Pickrell et al., 2010) (Figure 1.1). 

 

Figure 1.1: Overview of a simple RNA-seq experiment. 
RNA is prepared from biological samples of interest (very commonly, control samples and 
treatment samples) then, after being processed through a series of biochemical steps, 
sequenced via high-throughput sequencing. The output produced are sequencing reads, 
which are stored in a FASTQ file. The FASTQ file is a text file that stores each read as 
four lines: 1) the sequence name, 2) the sequence itself, 3) a spacer, and 4) the sequence 
quality scores. The provenance of each read is determined by mapping (i.e. aligning) them 
to an annotated reference genome. After counting how many reads map to each gene, one 
can perform various analyses such as determining which genes are statistically 
significantly differentially expressed between the treatment samples and the control 
samples. Parts of this illustration were created with BioRender (biorender.com).  
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Traditionally, RNA-seq was conducted on bulk tissue samples (i.e. bulk RNA-seq), but 

single-cell RNA-seq has been gaining increasing popularity. Single-cell RNA-seq can 

unlock multiple types of analyses that cannot be done with bulk RNA-seq. For complex 

tissue, single-cell technology can enable subpopulation and cell type identification from 

the tissue whereas bulk RNA-seq would simply produce an ensemble gene expression 

quantification, even though some cell types in the mixture may vary widely in expression 

profiles. The ‘compartmentalization’ powered by single-cell RNA-seq can thus preserve 

information about the composition of the mixture (Trapnell, 2015). Even among cells of a 

given cell type, single-cell RNA-seq affords assessment of inter-cell heterogeneity, which 

effectively means than rather than having a single biological signal, we can capture 

thousands of distinct biological measurements for a cell type. Additionally, single cell 

clustering can reveal transition paths between cell states, enabling the reconstruction of 

cellular trajectories through processes such as differentiation (Trapnell et al., 2014). 

Finally, and more recently, parameters describing the stochasticity of processes such as 

transcription, splicing, and degradation can be inferred by biophysical models thanks to the 

ability of single-cell RNA-seq to capture multimodal measurements (e.g. both nascent 

RNA and mature RNA) (La Manno et al., 2018) across a large number of cells (Gorin et 

al., 2022b, 2023). Of course, single-cell transcriptomics comes with its own challenges, 

including data sparsity and higher levels of noise, in comparison to bulk RNA-seq. 

Nonetheless, the single cell resolution can unlock many biological insights that would be 

obscured by bulk analysis. 

With genomic and transcriptomic technology development on the laboratory side comes 

the need to develop methods on the computational front to process and analyze the resulting 

data. The next section focuses on principles that underly effective bioinformatics software 

development.  

 

 



 

 

4 
Bioinformatics software development 

The growing complexity of bioinformatics workflows, driven by rapid advances in 

biological and computational methods, hampers the integration of existing and new tools 

into cohesive pipelines. Pipelines can involve a large number of components and software 

tools that interact with each other. The selection of software to use at a particular point in 

the pipeline is often complicated by the fact that different tools, even those performing the 

same or similar tasks, ingest different input formats and produce different output types. 

Restricting input and output formats can limit software to a specific use case or create 

dependencies between tools. Additionally, software programs often combine multiple 

processing steps in the back end, thereby reducing the ability to customize or modify 

individual steps within the pipeline. As a result, venturing outside the realm of the specific 

analysis the tool was designed for, e.g. to adapt the workflow to a new data type, is 

challenging. While there is no one-size-fits-all solution to address this problem fully, here, 

we describe specific design principles that can enhance the adaptability and utility of 

bioinformatics tools. We focus on three such design principles: flexibility, modularity, and 

cross-compatibility (Figure 1.2), which are partly based on the UNIX philosophy (McIlroy 

et al., 1978). These design principles can significantly enhance pipeline development for 

researchers using bioinformatics tools, giving them greater control over their data 

processing steps and the types of analysis they can perform. Following these principles 

along with documented best practices can result in more robust and versatile workflows 

while simultaneously ensuring proper usage. 

Flexibility: Here, flexibility refers to the ability of a software tool to process diverse input 

types and to produce output that can be used in many different downstream applications or 

analyses. An inflexible tool would be one that accepts only one input structure, limiting its 

applicability across different datasets and its adaptability to datasets produced by future 

technological developments. Furthermore, an inflexible tool may produce output that is 

usable for only one specific type of downstream analysis. To illustrate the notion of 

flexibility, consider the processing of RNA-sequencing data. There exist many different 
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RNA-seq technologies (Aldridge and Teichmann, 2020), such as bulk RNA-seq, droplet 

single-cell RNA-seq, plate-based single-cell RNA-seq, and split-and-pool barcoding-based 

single-cell RNA-seq, each with a distinct raw sequencing read structure. A flexible tool 

would be able to accommodate multiple or, ideally, all technologies. However, it may be 

infeasible for an RNA-seq read mapping tool to be compatible with every single past and 

future sequencing technology. File formats outputted by different sequencers (e.g. Illumina 

vs. Nanopore) may vary, some assays have complex arrangements of molecular tags in the 

reads that require specific parsing, etc. Therefore, an upstream tool may be developed to 

reformat the sequencing reads into a compatible format, thereby augmenting the mapping 

tool’s flexibility. For example, while the popular Cell Ranger software (Zheng et al., 2017) 

can only process single-cell RNA-seq data from 10X Genomics technologies, tools that 

reformat read structure for use with Cell Ranger have been developed (Battenberg et al., 

2022). An approach that uses an external tool to perform this type of preprocessing would 

be a modular solution toward enhancing flexibility. Additionally, a flexible tool should 

produce output compatible with multiple types of downstream analyses. For example, in 

RNA-seq, a flexible tool would be able to perform isoform-level, gene-level, allelic, and 

joint nascent and mature RNA quantification. Since quantification is distinct from 

sequencing read mapping, these different quantifications need not be performed by a single 

tool. A preferable and more modular solution would be to produce output with which a 

downstream tool (or even a separate component of the read mapping software) can perform 

the different quantifications. The goal is to retain flexibility while avoiding having one 

component of a tool do too many things, which we will discuss further in the following 

section. 

Modularity: Modularity here refers to the separation of processing steps into distinct, 

customizable components. A non-modular tool that performs an entire analysis within one 

package can limit customization and hinder the ability to utilize intermediate results for 

other analyses. A modular processing solution, however, separates individual steps and 

produces intermediate outputs that users can inspect and modify. Since there might be 

overhead from writing to disk, in many cases, the intermediate output of one step can be 
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directed to standard output, which can then be directly piped into the next step if the 

intermediate output file is not needed for a particular use case. Consider sequencing data 

processing. Sequencing data requires multiple steps of processing, from trimming to 

alignment to quantification or variant calling followed by further downstream analysis. By 

separating these steps and providing intermediate outputs, modular tools enable users to 

customize their workflows and optimize each stage according to their specific needs. Of 

course, the number of customizations and options can be large for a tool that is modular 

and flexible, so a best practices guide, based on known benchmarking results, should be 

provided to guide users towards proper usage of the tool and the most accurate results. 

Oftentimes, a wrapper for the most common use cases would be desirable, so a user does 

not need to manually execute the individual steps that they don’t wish to customize. 

Cross-compatibility: refers to a tool being able to use the output of another tool as input 

and/or to produce output that is compatible with a wide range of downstream tools. For 

example, a differential gene expression program should be able to take the results of 

different aligners and, likewise, different aligners should produce results that are 

compatible with the differential gene expression program. Of important note, cross-

compatible solutions should use appropriate standard data file formats for each step (List 

et al., 2017), such as BAM/SAM files (Li et al., 2009), FASTA/FASTQ files (Pearson and 

Lipman, 1988), Matrix Market files (Boisvert et al., 1996), JSON files (Pezoa et al., 2016), 

YAML files (Ben-Kiki et al., 2004), etc. If a new file format is introduced, developers 

should include a detailed description of the new file format along with a tool to easily 

process it. Some file formats are less amenable to cross-compatibility. For example, we 

discourage from storing results in HDF (Hierarchical Data Format) files because HDF is 

not straightforward to work with or convert to another file format and other tools do not 

have built-in support. It may be inconvenient for a user to install half a dozen software 

tools to complete an analysis, however, workflow managers, such as Snakemake (Mölder 

et al., 2021) or Nextflow, or containers such as Docker (Merkel, 2014) or conda 

(https://conda.io), greatly facilitate tool installation, compatibility, and management. 
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Altogether, ensuring cross compatibility through standard input and output file formats 

promotes interoperability and simplifies the integration of diverse tools within a pipeline. 

There are many factors that ensure the long-term success of bioinformatics software, 

including prompt user support, regular software maintenance, ease of installation and use, 

comprehensive documentation, and use of package managers such as conda. While much 

attention has been given to the principles of clear documentation (Karimzadeh and 

Hoffman, 2018) and modular pipeline design (Hoon et al., 2003; Roy et al., 2018), these 

discussions primarily focus on software and pipeline usability, with less emphasis on the 

underlying software design. Although there has been considerable discussion on making 

tools easy-to-use and easy-to-understand for both biologists and bioinformaticians (Ahmed 

et al., 2014; Bolchini et al., 2009; Kumar and Dudley, 2007; Pavelin et al., 2012), there has 

been less focus on software design that enhances its utility for data processing and analysis, 

beyond just usability. Flexibility, modularity, and cross-compatibility in software design 

are essential for creating adaptable tools that can handle diverse input formats, integrate 

seamlessly with other software, and be customized for various analyses. Incorporating 

these three principles into bioinformatics software can advance the capabilities of data 

processing and analysis pipelines. 
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Figure 1.2: Principles of flexibility, modularity, and cross-compatibility. 
A) Schematic of a pipeline that does not contain flexible, modular, or cross-compatible 
tools. Lack of flexibility: The processing software only accepts one input and produces 
output that can only be used in one specific analysis. Lack of modularity: The software 
bundles all processing steps into a single component. Lack of cross-compatibility: The 
software can not integrate with other tools and no tools can be substituted into any step of 
the processing. B) Schematic of a pipeline that contains tools that are flexible, modular 
and cross-compatible. Flexibility: Tools in the pipeline accept multiple input types and 
produce output that can be used in multiple downstream analyses. Modularity: The 
processing is divided into multiple steps. The software in blue is broken down into multiple 
components and a “wrapper” around its components can be executed to facilitate running 
the components together. Cross-compatibility: The four different tools (shown in pink, 
yellow, brown, and blue) are able to interface with one another such that each tool can 
accept another tool’s input and/or produce output compatible with another tool. The tool 
shown in brown can be substituted in for the tool shown in yellow. 
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C h a p t e r  2  

SEQUENCING READ PREPROCESSING 

Flexible processing of technical sequences 

The reads that result from next-generation sequencing libraries can contain many types of 

synthetic constructs, or technical sequences, including adapters, primers, indices, barcodes, 

and unique molecular identifiers (UMIs) (Booeshaghi et al., 2024; Johnson et al., 2023; 

Kebschull and Zador, 2018; Kivioja et al., 2012; Martin, 2011; Melsted et al., 2019). These 

oligonucleotide sequences are defined by the technicalities of sequencing-based assays and 

experiments, with each sequence being either a completely unknown sequence, a known 

sequence, or an unknown sequence that is a member of a set of known sequences. 

There are many read preprocessing tools for editing and extracting information from such 

sequences, including the widely used tools cutadapt (Martin, 2011), fastp (Chen et al., 

2018), and Trimmomatic (Bolger et al., 2014) for adapter and quality trimming, UMI-tools 

(Smith et al., 2017) and zUMIs (Parekh et al., 2018) for UMI processing, BBTools 

(https://sourceforge.net/projects/bbtools/) (Bushnell et al., 2017) and reaper (Davis et al., 

2013) for general filtering operations, Picard (https://github.com/broadinstitute/picard) and 

fgbio (https://github.com/fulcrumgenomics/fgbio) for many read manipulation operations, 

INTERSTELLAR for read structure interpretation (Kijima et al., 2023), among many other 

tools (Battenberg et al., 2022; Cheng et al., 2024; Kong, 2011; Liu, 2019; Roehr et al., 

2017). Many of these tools define a “read structure” to describe the layout of a read, e.g. 

fgbio uses a sequence of <number><operator> operators where the number of the length 

of a segment and the operator describes how the segment should be processed. However, 

no one tool can adequately address all technical sequence preprocessing tasks. Some 

methods, such as adapter trimming methods, can only remove identified technical 

sequences from reads but lack the ability to store information about technical sequences 

that are relevant to the provenance of the read. Other methods can extract and store 
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technical sequences from reads but are limited to only extracting sequences at defined 

positions of defined lengths within reads, and may present limited options for handling 

variable position and variable length segments. Still other methods are designed for only a 

specific type of assay, such as single-cell RNA-seq. Technologies such as (long-read) 

SPLiT-seq (Rebboah et al., 2021; Rosenberg et al., 2018), SPRITE (Quinodoz et al., 2022, 

2018), and Smart-seq3 (Hagemann-Jensen et al., 2020), contain complex, multifaceted 

technical sequences that currently are processed by custom scripts or specific use-case 

modifications to existing tools. 

The tool that we developed, splitcode (Sullivan and Pachter, 2024), introduces versatile 

new features for general preprocessing needs. splitcode is a flexible solution with a low 

memory and computational footprint that can reliably, efficiently, and error-tolerantly 

preprocess technical sequences based on a user-supplied structure of how those sequences 

are organized within reads. For example, splitcode can simultaneously trim technical 

sequences, parse combinatorial barcodes that are variable in length and inconsistent in 

location within a read, and extract UMIs that are defined in location with respect to other 

technical sequences rather than at a set position within a read. These features make 

splitcode a suitable tool for processing variable length staggers at the start of reads; such 

staggers are often introduced to enhance nucleotide diversity during the early cycles of 

sequencing, preventing monotemplate issues that would arise from sequencing identical 

nucleotides during those cycles. The technical sequences that splitcode may be useful for 

identifying include not only barcodes or UMIs but also ligation linkers, integrase 

attachment sites, and Tn5 transposase mosaic ends. Moreover, splitcode can seamlessly 

interface with other command-line tools, including other read sequencing read 

preprocessors as well as read mappers, by streaming the pre-processed reads into those 

tools. Thus, splitcode can eliminate the need to write an entirely new file to disk at every 

step of preprocessing, a practice that currently results in inefficient use of time and disk 

space. Furthermore, splitcode can stream reads into itself and also can directly 

accommodate multiple steps (i.e. the output from one set of user-defined instructions can 
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be directly fed into another), enabling multiple preprocessing steps to be performed in 

sequence for more complicated assays. 

Software: 

The splitcode software is written in C++11 and is freely available and open source under 

the BSD-2 clause license. The source code for the splitcode program is available at 

https://github.com/pachterlab/splitcode. Documentation for the software is available at 

https://splitcode.readthedocs.io/. 

Framework and Usage:  

We refer to the synthetic constructs, or technical sequences that can be identified in reads 

as tags. Tags are described in the splitcode config file with several parameters including a 

tag ID, the sequence itself, the error-tolerance for identifying that tag, and options such as 

where the tag might be found within sequencing reads and conditions under which the tag 

should be searched for. A collection of tags forms a barcode, which can be used to 

demultiplex reads according to the tags identified within a read. Within the config file, a 

user can also specify extraction options to delineate how certain subsequences within reads 

should be extracted. Subsequences can be extracted by using tags as anchor points or can 

be extracted at user-defined positions within reads. This feature is particularly useful for 

unique molecular identifier (UMI) sequences which are generally unknown sequences that 

exist at defined locations within reads. Additionally, in the config file, a user can specify 

read editing options including trimming and whether identified tags should be replaced 

with a particular sequence. Thus, identified technical sequences can be modified or 

trimmed in situ. Taken together, this array of options makes it possible for splitcode to 

parse data from a large variety of sequencing assays, including those with many levels of 

multiplexing (Figure 2.1). 
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Figure 2.1: Overview of the splitcode workflow. 
The splitcode program takes in a set of FASTQ files and a user-specified config file, which 
serves as a recipe describing how the reads should be parsed. The user executes splitcode 
on the command-line, specifying command-line options on how the output should be 
formatted. The output consists of one or more of the following: the original FASTQ files 
(possibly edited), the extracted sequences (e.g. UMI sequences which are unknown and 
need to be extracted by using location information or anchor points), and the final 
barcodes which are unique for each combination of identified tags. The output may take 
the form of FASTQ files, gzip-compressed FASTQ files, BAM files, or interleaved 
sequences directed to standard output, depending on what the user specifies. This figure 
was created with BioRender (biorender.com). 
 
Following construction of the config file (Figure 2.2), users can supply the config file to 

the splitcode program on the command-line. Users can further specify the output options 

for how the final barcode, the (possibly edited) reads, the extracted subsequences should 

be outputted. The program presents many options for outputting reads, allowing seamless 

integration with many downstream tools. Importantly, the output can be interleaved and 

directed to standard output, which can then be directly piped into tools (including splitcode 

itself if another round of read processing is needed) that support such input. This feature 

makes it possible to send processed reads directly to a read mapper, therefore eschewing 

the inefficiencies of creating large intermediate files on disk. 
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Figure 2.2: Example of splitcode usage. 
The structure of the reads from this hypothetical sequencing technology contains multiple 
regions that need to be parsed, including some of variable length. In the config file, each 
region that needs to be parsed is organized into groups and each “group” contains 
multiple tags. The tags in the grp_A group have the value 1 in the “distance” column, 
meaning a hamming distance 1 error tolerance. The values in the “next” column indicate 
that after a grp_A tag (i.e. Barcode_A1, Barcode_A2, or Barcode_A3) is found, we should 
next search only for tags in the grp_B group. The “maxFindsG” values of 1 mean that the 
maximum number of times a specific group can be found is 1 (e.g. after finding a tag in 
grp_A, stop searching for tags in grp_A). The “location” for grp_A tags have the value 
0:0:5, meaning that the tag is found in file #0 (i.e. the R1 file) within positions 0–5 of the 
read; for grp_B tags, splitcode searches file #0 within positions 5–100. In the header of 
the config file, the @extract option contains an expression indicating that we should extract 
an 8-bp sequence, which we name umi, 3 bases following identification of a grp_B tag. The 
supplied @trim-3 option means that only 3′-end trimming of 0 bases and 4 bases of the R1 
file and the R2 file, respectively, should be performed. Thus, here, the output R1 file will 
contain the original R1 sequences (i.e. the entirety of Barcode A, Region 1, Barcode B, 
NNN, UMI, and Region 2) while the output R2 file will contain just the cDNA. The output 
“Final Barcodes” FASTQ file will contain a sequence uniquely identifying a combination 
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of tags and the mapping file allows us to map the final barcode sequence back to the tag 
combination (the numbers in the right-most column of the mapping file represent how many 
reads that tag combination was found in). Finally, it is important to note that this is simply 
one of many ways to parse this read structure with splitcode and users can configure the 
options how they see fit. Further, users can also customize the output options. For example, 
users can choose to output reads that contain both grp_A and grp_B tags into one set of 
files and direct all other reads into a separate set of files, and users can choose whether to 
output the 8-bp UMI sequence into an independent file or to put it in the FASTQ header of 
the outputted reads. Users also have the option to output reads as a BAM file with the 8-
bp UMI sequence encoded in a SAM tag. 
 

The splitcode program has many options, some of which can be supplied in the config file 

and others of which (namely the output options) must be supplied on the command line. In 

the config file, a user can specify “sequence identification” options for finding tags in reads 

as well as editing reads in situ based on identified tags as well as “read modification and 

extraction” options for general read trimming and extracting UMI-like sequences. The 

latter option group is supplied in the header of the config file while the “sequence 

identification” options are supplied as tab-separated values in a tabular format in the file, 

an example of which is shown in Figure 2. Finally, splitcode is efficient software: On 150-

bp paired-end reads in gzip FASTQ format, splitcode can reach throughputs exceeding 10 

million reads per minute with memory usage on the order of a few hundred megabytes on 

a standard laptop, although these performance results vary depending on the task at hand. 

Tag sequence identification: 

Each sequence in the splitcode config file along with all sequences within the sequence’s 

allowable hamming distance and/or indel error tolerance is indexed in a hash map. Each 

sequence is associated with the tag(s) from which it originated. Note that sequences can 

also be supplied in an external text file, which is useful when working with a long list of 

“cell identification barcodes” as is common in single-cell RNA-seq. Reads in FASTQ files 

are scanned from start to end to identify tags based on hash map lookups. Additionally, 

users can specify locations and conditions within which a specific tag may appear and only 

tags satisfying such conditions are identified. Further, by restricting tag identification to 
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only specific regions of reads, the number of hash map queries is reduced, therefore 

improving runtime. 

Final barcode sequences: 

Each combination of tags is assigned a numerical ID, which begins at 0 and is incremented 

for every newly encountered combination. Each numerical ID, a 32-bit unsigned integer, 

can be converted to a unique 16-bp final barcode sequence (i.e. a pseudobarcode) by 

mapping each nucleotide to a 2-bit binary representation as follows: A = 00, C = 01, G = 10, 

T = 11. It follows that the numerical ID can be represented in nucleotide-space based on 

the integer’s binary representation. For example, the numerical ID 0 is 

AAAAAAAAAAAAAAAA, the numerical ID 1 is AAAAAAAAAAAAAAAT, and the 

numerical ID 30 is AAAAAAAAAAAAACTG. This interconversion between numerical 

IDs and nucleotide sequences facilitates simplifying complex barcodes. 

In certain applications, an optimized barcode encoding scheme may be preferable to a 

sequential numerical assignment, particularly when efficiency or consistency across 

datasets is required. Such a scheme ensures that each unique combination of tags is 

deterministically mapped to a fixed final barcode sequence, regardless of dataset 

composition or order of processing. This can be achieved through a mixed radix encoding 

algorithm, which leverages the size of each tag group (for example, the number of barcodes 

in a given round of a split-and-pool combinatorial barcoding strategy) to optimize the 

representation of combinations.  Given each tag group 𝑖, with 𝑛! possible elements (tags), 

the total number of bits required to encode all tag groups is: 

𝑇𝑜𝑡𝑎𝑙	𝑏𝑖𝑡𝑠 = 	 ,𝑙𝑜𝑔".𝑛!

#

!$%

/ 

where	𝑘	is the number of groups. For instance, encoding three tag groups each containing 

96 elements requires	 ⌈𝑙𝑜𝑔"(96)&⌉	 =	 20 bits, corresponding to a barcode length of 10 

nucleotides.  The mixed-radix approach calculates a unique numerical ID for each 
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combination of tags by treating the combination as a mixed-radix number. Each tag 

value 𝑣! is multiplied by the product of the domain sizes of all preceding groups as follows:	

𝐵𝑎𝑟𝑐𝑜𝑑𝑒	𝐼𝐷 = 	?@𝑣!.𝑛'

!(%

'$%

A
#

!$%

	

The ID can then be converted into nucleotide space, by mapping each nucleotide to a 2-bit 

binary representation as before. Decoding the ID into its constituent tag compositions can 

also be done. 

Discussion:  

The preprocessing of FASTQ files is an important first step in bioinformatics pipelines. 

This step is frequently inefficient, involving multiple steps with the creation of large 

intermediate files or writing and running of custom unoptimized scripts which can be 

challenging with large-scale sequencing data. Splitcode alleviates some of these 

inefficiencies via a modular and flexible design to effectively and efficiently handle 

intricate, hierarchical read structures produced by technologies with many layers of 

multiplexing. While many of splitcode’s features overlap with those of existing 

bioinformatics software, splitcode is not intended to fully recapitulate all the features of 

existing tools or to replace or outperform any one tool. Rather, splitcode is intended to 

serve as one additional, flexible and versatile tool in a bioinformatics arsenal, and has been 

designed to be interoperable with other tools. Indeed, splitcode was designed with the 

principles of flexibility, modularity, and cross-compatibility (as described in the first 

chapter of this dissertation) in mind. Splitcode operates not as an alignment algorithm, but 

on a principle of dictionary lookups. In this approach, technical sequences along with their 

permissible mismatches are cataloged in a hash table. This makes splitcode apt for 

scenarios requiring identification, interpretation, and modification of short sequences 

within reads, and it effectively manages extensive lists of lookup sequences. Algorithms 

like cutadapt, which use dynamic programming score matrix to optimize alignment, are 

more suitable for cases, such as general adapter trimming, that require finding the best 
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possible alignment between two sequences or for finding long technical sequences. This 

is because in such cases, storing the allowable mismatches in a hash table is 

computationally infeasible; given the alphabet {A, T, C, G, N} and a sequence of length 

L, the number of sequences with M substitution mismatches or fewer follows the formula: 

𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠 = ?G
𝐿
𝑘I4

#
)

#$*

 

In any case, we anticipate that splitcode will be used in tandem with other preprocessing 

tools to provide an effective solution for many bioinformatics needs. Furthermore, we 

expect that splitcode will continue to expand in functionality based on user feedback, user 

needs, and possibly the introduction of more complicated read structures that may arise 

from the development of novel sequence census assays. Lastly, splitcode was utilized to 

process portions of the data presented in this dissertation and will be revisited in later 

chapters.  
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C h a p t e r  3  

ENHANCING SINGLE-CELL AND SINGLE-NUCLEUS QUANTIFICATION 

Quantifying nascent and mature RNAs 

The utility of single-cell RNA sequencing (RNA-seq) measurements for defining cell types 

has represented a marked improvement over bulk RNA-seq, and has driven rapid 

development and adoption of single-cell RNA-seq assays (Zeng, 2022). One application of 

single-cell RNA-seq that is not possible with bulk RNA-seq is the study of cell transitions 

and transcription dynamics, even via snapshot single-cell RNA-seq experiments (Gorin et 

al., 2023, 2022a; La Manno et al., 2018). Such applications of single-cell RNA-seq are 

based on the quantification of both unprocessed and processed messenger RNAs (mRNAs) 

(Figure 3.1), lending import to the computational problem of accurately and separately 

quantifying these two modalities (Soneson et al., 2021). The importance of quantifying 

unprocessed mRNAs in addition to processed mRNAs has also been brought to the fore 

with single-nucleus RNA-seq (Ding et al., 2020; Grindberg et al., 2013; Kuo et al., 2024).  

 

Figure 3.1: The maturation process of RNA transcripts. 
 
The traditional approach in quantifying RNA-seq has been to rely on a reference 

transcriptome that defines a “region of interest”—typically restricted to mature mRNA 

transcripts (i.e. no introns) for bulk RNA-seq analyses. This conventional focus has been 

adequate for the broad objectives of bulk sequencing but is insufficient for the more 

granular and precise requirements of single-cell and single-nucleus RNA-seq, where the 
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coexistence of nascent (unprocessed) and mature (processed) messenger RNA (mRNA) 

poses challenges in accurate read mapping and the interpretation of count matrices. Reads 

originating outside of the “region of interest” are prone to mismapping within this region, 

and additionally, such external reads cannot be matched to specific transcript targets. 

Expanding the “region of interest” to encompass both nascent and mature mRNA transcript 

targets provides a more comprehensive framework for RNA-seq analysis, enhancing the 

precision in quantifying both mature and nascent mRNA molecules, as well as in 

delineating reads of ambiguous status (He et al., 2023; Sullivan et al., 2025). 

In a later section of this chapter, the concept of distinguishing flanking k-mers (DFKs) will 

be described in detail. DFKs are a minimal set of k-mers that can be used to distinguish 

whether a read that is mapped to a set of targets in the transcriptome index has its origin 

from within the transcriptome index or has an external origin. These DFKs can therefore 

address the problem of mismapping of external reads (Kaminow et al., 2021), by acting as 

a filter to prevent reads of external origin from being mismapped to the transcriptome 

index. In other words, these k-mers, if present in a read, will cause the read to be filtered 

out. We use the term D-list (distinguishing list) to denote the sequences from which DFKs 

are extracted based on the contents of the transcriptome index. By default, the D-list is set 

to the genome FASTA file. Therefore, hereinafter, specifying the usage of a D-list refers 

to supplying the genome FASTA file as the D-list. While using standard mature mRNA 

transcriptome index with a D-list can be used to improve the quantification of single-cell 

RNA-seq due to intronic and intergenic reads, still, only mRNA transcripts exist in the 

index and hence, only reads mapping to mature mRNA regions will be considered. While 

this is useful for certain applications of single-cell analyses such as cell type identification, 

having only a single-cell count matrix prevents the usage of biophysical models which 

jointly consider mature and nascent RNA quantifications (Carilli et al., 2024; Gorin and 

Pachter, 2022a). Thus, extending the index (He et al., 2022; Melsted et al., 2021; Soneson 

et al., 2021) to allow quantifications of RNA molecules at different stages of their 

processing is important, as will be discussed next. 
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To quantify nascent RNA transcripts, it is necessary to extend the transcriptome index 

to include such targets. That is, an index should be created that encompasses the nascent 

RNAs and the mature RNAs. While seemingly straightforward to construct such an index 

and to map reads against it, a difficulty arises from classifying individual reads, or 

individual unique molecular identifiers (UMIs), as being of “mature” or “nascent” status. 

This difficulty stems from the fact that sequenced reads are typically much shorter than 

transcripts, and therefore there can be ambiguity in classification of reads as “mature” or 

“nascent”. Reads that span an exon–exon junction must originate from a completely or 

partially processed mRNA (which we call “mature”), whereas reads containing sequence 

unique to an intron must originate from a completely unprocessed or partially processed 

mRNA (which we call “nascent”). However there are many reads for which it is impossible 

to know whether they originated from an unprocessed or processed transcript (hence, are 

ambiguous) (Figure 3.2). Methods that rely on k-mer mapping must account for the 

distinction between k-mer ambiguity and read ambiguity, and this distinction has not been 

carefully accounted for in previous k-mer based single-cell RNA-seq pre-processing 

workflows (He et al., 2022; Melsted et al., 2021). 

To classify reads as nascent, mature or ambiguous, we first pseudoalign reads using kallisto 

(Bray et al., 2016) against a kallisto index containing the mature mRNA (as used originally 

in pseudoalignment) and nascent mRNA. The nascent mRNA spans the full length of a 

gene and contains both the gene’s exons and introns as a single contiguous sequence. This 

comprehensive representation, implemented as the nac index in kallisto (Sullivan et al., 

2024), allows for accurate classification of reads as mature or nascent or ambiguous, as it 

properly accounts for the exon–intron boundary and acknowledges that exons are 

components of both nascent and mature mRNA (Figure 2). The developers of alevin-fry 

have also adopted this approach in the alevin-fry spliceu index (He et al., 2023), an updated 

version of the original alevin-fry splici index. However, other tools, such as STARsolo 

(Kaminow et al., 2021) and the popular Cell Ranger software (Zheng et al., 2017), do not 

produce such classifications. 
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Figure 3.2: Approach to read assignment and classification into nascent, mature, and 
ambiguous categories by kallisto, STARsolo, and Cell Ranger. 
This classification of reads enables accurate classification of RNA species, enabling 
ambiguous (A) reads to be assigned in various ways based on context [e.g. ambiguous 
reads are allocated to “mature” (M) in single-cell RNA-seq splicing analysis or added to 
both “mature” (M) and “nascent” (N) in the case of quantifying “total” RNA content]. 
The kallisto nac index in this example produces the same classification with or without the 
D-list because no external reads (i.e. those existing outside annotated genomic regions) 
are present. The standard “transcriptome” index cannot resolve different RNA species 
and, without the D-list, will result in some reads originating from nascent transcripts (i.e. 
reads cross exon–intron boundaries) being mapped even though introns do not exist in the 
index; however, with the D-list, those intronic k-mers in the reads will map to DFKs in the 
index. The --sum options for the nac index represent the various ways the N, M and A 
matrices can be summed up (i.e. using M + A for “cell” and N + A for “nucleus” or N + 
A + M for “total”). Results for alevin-fry are not shown because its spliceu index produces 
classifications identical to kallisto. The checkmarks represent whether a given read will be 
counted and the letters M, N, and A represent the read classifications (with red letters 
denoting classifications that differ from the ground truth). 
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While the nac index contains both mature and nascent mRNA, reads of external origin 

could still arise from intergenic regions of the genome being sequenced. These reads may 

still be erroneously mapped to this extended transcriptome index. To mitigate the 

possibility of such instances occurring, one would want to use DFKs by using the nac index 

with a D-list. This approach is implemented in kallisto by default when building the nac 

index. Altogether, the nac index, in conjunction with DFKs to mask out reads of external 

origin, enables the accurate quantification and classification of nascent, mature, and 

ambiguous mRNA. 

Nascent, mature, and ambiguous classifications: 

The extended transcriptome index (i.e. the nac index type), by virtue of indexing intron-

containing nascent transcripts, enables the mapping of a substantial fraction of reads that 

would otherwise go unmapped when using the standard index type. Furthermore, the 

quantifications produced by the nac index can classify reads or UMIs as mature (M), 

nascent (N), or ambiguous (A). We assessed the classifications on both single-cell and 

single-nucleus data from mouse and human samples. As expected, single-nucleus data 

tends to have a higher ratio of nascent to mature RNA compared to single-cell data since 

RNA molecules that have been exported out of the nucleus have undergone splicing and 

maturation while 10x Genomics Visium spatial transcriptomics data has the lowest 

proportion of nascent RNA (<1%) due to the Visium kit’s exon capture (Figure 3.3). Across 

the different count matrices, we observe that the total counts (N + M + A) are well-

correlated with the ambiguous counts, implying that the results of a single-cell or single-

nucleus RNA-seq analyses are largely driven by reads mapped solely within exons. Note 

that regardless of assay type, there tend to be more UMIs classified as nascent than mature, 

because introns have a much larger coverage over the genome than exon–exon SJs. The 

individual N, M, and A count matrices are poorly correlated with one another, reflecting 

that different information is present in each of those three matrices. As biophysical models 

of the RNA life cycle make use of nascent transcript counts and mature transcript counts, 

how to allocate those ambiguous counts to either nascent or mature remains a topic for 
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future research. For now, one might reasonably assume that the ambiguous counts in 

single-cell RNA-seq experiments originate from mature transcripts since, in such assays, 

it is expected that there will be more mature transcripts than nascent transcripts therefore a 

purely-exonic UMI is most likely to be mature. However, in the nucleus context, the 

likelihood of a purely-exonic UMI being mature is lower since there will be fewer mature 

transcripts, as evidenced by the much larger nascent-to-mature ratio in UMI classification. 

Developing methods to more accurately allocate ambiguous reads is an interesting topic to 

pursue, and there are now some efforts to do so (He et al., 2024). 
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Figure 3.3: Quantification of mature and nascent RNA from single-cell and single-nucleus 
experiments. 
Exploration of single-cell and single-nuclei count matrices from human and mouse 
samples (datasets from 10x Genomics). The bar plots show the percentage of UMIs 
assigned to the ambiguous, nascent and mature classifications. The datasets were 
downloaded from https://www.10xgenomics.com/ and are as follows: Human 20k PBMC 
cells (type: single-cell; name: 20k_PBMC_3p_HT_nextgem_Chromium_X; depth: 
818,107,363 reads), Mouse 10k neuron cells (type: single-cell; name: 
SC3_v3_NextGem_SI_Neuron_10K; depth: 1,589,915,447 reads), Human 5k jejunum 
nuclei (type: single-nucleus; name: 5k_human_jejunum_CNIK_3pv3; depth: 121,378,620 
reads), Mouse 5k lung nuclei (type: single-nucleus; name: 5k_mouse_lung_CNIK_3pv3; 
depth: 232,479,932 reads), Mouse embryo Visium CytAssist 11mm FFPE (type: spatial; 
name: CytAssist_11mm_FFPE_Mouse_Embryo; depth: 832,193,962 reads). 



 

 

25 
Moreover, mature RNA can have multiple isoforms and a comprehensive analysis will 

identify not only whether a UMI originated from mature RNA produced by a gene but also 

which mature RNA of that gene the UMI originated from. As pseudoalignment works by 

identifying a set of targets that a UMI is compatible with, it is straightforward to determine 

whether those set of targets contain specific isoforms of a gene. To investigate how this 

may potentially be useful, we utilized SPLiT-seq (Rosenberg et al., 2018) data of mouse 

myoblasts (Rebboah et al., 2021); the SPLiT-seq data can be found at GEO accession 

identifier GSE168776 and all seven short read sequencing subpools within that dataset 

were used. The processing of SPLiT-seq data was performed as follows: Cell barcodes 

corresponding to C2C12 myoblast cells with at least 10 000 UMIs were extracted based on 

metadata obtained from the study which produced that dataset (Rebboah et al., 2021). The 

reads containing those barcodes were divided into oligo-dT reads and random hexamer 

reads based on the first round barcode sequence. These initial steps were performed using 

the splitcode program (Sullivan and Pachter, 2024). Next, to mitigate spurious read 

alignment to low complexity intronic sequences, bowtie2 (Langmead and Salzberg, 2012) 

was used to align the reads to an index of ribosomal RNAs, transfer RNAs, microRNAs, 

and repetitive elements, and those reads were removed with seqkit (Shen et al., 2016). 

STAR (Dobin et al., 2013) was used to align reads to the mouse reference genome to 

generate a BAM file, which was indexed with SAMtools (Li et al., 2009) and visualized 

with Integrative Genomics Viewer (Robinson et al., 2011). Kallisto | bustools was used to 

pseudoalign reads to the mouse nac index (with D-list) and to produce transcript 

compatibility counts (TCCs). Normalized counts were produced by CP10k normalization 

followed by log1p transformation and processed with Scanpy (Wolf et al., 2018). 

We chose to analyze SPLiT-seq data because, in that technology, the same cell can be 

sequenced using an oligo-dT priming strategy and a random hexamer priming strategy. 

These two priming strategies will yield different isoform abundances as the oligo-dT 

primer selects for the polyA tail of mRNA while the random hexamer does not. An example 

from the gene Rplp0, which is present in both the oligo-dT library and the random hexamer 

library, albeit to a lesser extent in the latter, illustrates the difference (Figure 3.4A). As can 
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be shown via the integrative genomics viewer (IGV) software (Robinson et al., 2011), 

the random hexamer reads cover the entire gene body, including in intronic regions, while 

the oligo-dT reads are heavily localized to the 3′ end region of the gene with very few reads 

elsewhere or in introns (Figure 3.4B). Upon using the nac index to resolve nascent and 

isoform-level mature RNA (Figure 3.4C), we find that a large number of sequenced 

molecules from the oligo-dT library are of mature status and, specifically, belong to 

isoform ENSMUST00000086519, which is a transcript that extends to the 3′ end of the 

gene (Harrison et al., 2024). Nascent RNA and other isoforms primarily originate from the 

random hexamer library. Although this analysis was only done at the target-compatibility 

level (including both nascent and mature RNA as targets in contrast to previous approaches 

which only included mature RNA), one can use such TCCs directly in cell clustering 

analysis (Ntranos et al., 2019, 2016). While an expectation-maximization algorithm can 

attempt to probabilistically assign TCCs to transcript-level estimates, an identifiability 

problem due to a high degree of ambiguity may preclude robust estimates from being 

obtained when quantification relies on short reads. Finally, while some work has been done 

in jointly using nascent and mature RNA counts, as produced by kallisto for biophysically 

motivated cell clustering analysis (Chari et al., 2024), utilizing isoform-level mature RNA 

to further enhance such analysis is an avenue for future research (Gorin and Pachter, 

2022b). 
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Figure 3.4: Isoform compatibility quantification of nascent and mature RNA. 
(A) Rplp0 gene-level counts (nascent + mature + ambiguous) of mouse C2C12 myoblast 
cells from a SPLiT-seq single-cell RNA-seq assay, wherein reads from the random hexamer 
priming strategy were quantified separately from the reads with the oligo-dT priming 
strategy. The Rplp0 CPMs (counts per million) of individual cells are plotted. (B) Genome 
browser tracks of the reads aligned to the Rplp0 gene. (C) Normalized TCCs of UMIs 
assigned to the Rplp0 gene. Each row in the heatmap represents an EC (i.e. a set of 
transcripts that a UMI is compatible with) and each column represents an individual cell. 
ECs essentially capture UMI assignment ambiguity between isoforms and, when mapping 
reads to the nac index, between nascent and mature status. The transcripts that constitute 
each of the 12 ECs shown are presented in the UpSet plot labels to the right of the heatmap. 
Each UMI within a given cell is assigned to an EC and a transcript isoform can be present 
in multiple ECs. The isoform structures shown on the right were obtained from ENSEMBL. 
 

All in all, while the described scheme, implemented in the nac index, can provide accurate 

quantification of mature RNA transcripts, nascent RNA transcripts, and ambiguous RNA 

transcripts (i.e. transcripts that cannot be unambiguously resolved as nascent or mature), 

how to jointly utilize these three types of RNA transcripts remains an avenue for future 

research. One approach to “integrating” the nascent and mature modalities is via 

biophysical modeling of transcription (Carilli et al., 2024; Gorin et al., 2023; Gorin and 

Pachter, 2022a); however questions remain, such as how to best utilize reads that are 

ambiguous between the modalities. Importantly, there is not one single “count matrix”; 

rather, there are multiple count matrices that each lend value in single-cell and single-
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nucleus RNA-seq analyses. The number of count matrices becomes even larger when 

considering technologies such as SPLiT-seq (Rosenberg et al., 2018), for which two 

different priming strategies (oligo-dT and random hexamer) exist for a single cell, or 

Smart-seq3 (Hagemann-Jensen et al., 2020), for which two complementary DNA (cDNA) 

fragment types (UMI and internal) exist, thus resulting in an additional set of count 

matrices. The ability to differentiate and quantify nascent, mature, and ambiguous 

transcripts offers a more nuanced view of gene expression, potentially enriching our 

understanding of RNA processing and transcriptome dynamics. 

There are several limitations to the quantification framework we have proposed. In a cell, 

the set of unprocessed mRNAs at any given time is likely to include partially processed 

molecules (Pai et al., 2018; Pandya-Jones and Black, 2009), and in principle the complete 

splicing cascade must be understood and known in order to accurately quantify single-

nucleus or single-cell RNA-seq data. Furthermore, the presence of ambiguous reads both 

for single-cell and single-nucleus RNA-seq is unsatisfactory. Ideally reads should be longer 

so that they can be uniquely classified, or they should be fractionally classified 

probabilistically. 

Nevertheless, this work introduces a method for improving the accuracy of generating 

count matrices. It is anticipated that these improved quantifications and the multimodal 

nature of these quantifications will prove useful for multiple downstream applications, 

including both total gene expression quantification and the integration of multiple count 

matrices via biophysically informed models. 
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Distinguishing flanking k-mers 

As mentioned in the previous section, DFKs are a minimal set of k-mers that can be used 

to distinguish whether a read that is mapped to a set of targets in the transcriptome index 

has its origin from within the transcriptome index or has an external origin. Essentially, 

they enable accurate quantification of RNA-seq reads in experiments where reads that are 

not an expression of the target transcriptome may still contain sequences which do occur 

in the target transcriptome (Sullivan et al., 2025). Without these DFKs, these reads may be 

erroneously quantified as transcripts in the target transcriptome (Kaminow et al., 2021), 

based on alignment of the common sequences. Thus, they serve as a sort of sophisticated 

“background filter”. The D-list (distinguishing list) represents the sequences from which 

DFKs are extracted based on the contents of the transcriptome index. The transcriptome 

index is a colored de Bruijn graph (Iqbal et al., 2012) that sequencing reads can be 

mapped/aligned against (i.e. determining which transcript(s), represented as colors in the 

graph, that a read might have originated from); this mapping process is based on identifying 

k-mers shared between the sequencing reads and the de Bruijn graph via a process termed 

pseudoalignment (Bray et al., 2016). The D-list may contain any sequences that are not 

desired in the abundance matrix yielded by the quantification. Such sequences may include 

genomes of other organisms (Luebbert et al., 2025) to avoid mismapping due to sample 

contamination, they may consist of the genome from which the target transcriptome was 

made, or they may contain common transposable elements, such as Alu regions, which 

might confound analyses. The D-list is incorporated into the index by finding all sequences, 

k base-pairs or longer, that occur in both the D-list and the target transcriptome. The first 

k-mer upstream and the first k-mer downstream of each such common sequence in the D-

list are added to the index-colored de Bruijn graph (dBG). We refer to these new vertices 

in the graph as DFKs. The DFK vertices are left uncolored in the index, such that during 

quantification, reads that contain them will be masked out, and go unaligned. 

As an illustration of how DFKs work, consider a read containing both k-mers found only 

in intergenic RNA and k-mers found both in mRNA and the intergenic RNA. If that read 
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is mapped to an index built from mRNA transcripts, the mRNA k-mers will be found in 

the index, whereas the disambiguating genome k-mers will not. The whole read will be 

erroneously mapped based on the ambiguous k-mers (i.e. the k-mers found both in mRNA 

and the intergenic RNA) that are present in the index. By finding all ambiguous k-mers in 

the mRNA index, and adding any distinguishing flanking genome k-mers to the index, the 

read will be masked from mapping to an mRNA transcript (Figure 3.5). 

 

Figure 3.5: Overview of DFKs. 
(A) A nontranscriptomic read containing a subsequence of length greater than k, which 
also occurs in a transcript in the target transcriptome index, will get attributed to that 
transcript. DFKs, here shown in the modified index (the D-index), can be used to determine 
whether a read compatible with a reference transcriptome may have originated from 
elsewhere in the genome. In this diagram, the D-index is one constructed with DFKs. The 
hatched region depicts the k-mers shared between the read and the index, and the line 
underneath the read shows the sequence stretch spanning both those shared k-mers plus 
the DFKs. (B) A dBG representation of DFKs. 

Recent papers have discussed various ways of reducing the number of false positives in 

RNA quantification through either including the entire genome or a subset of the genome 

in the index as a “decoy” or through alignment scoring (Srivastava et al., 2020). The D-list 
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method is distinct in that it incorporates only the minimum amount of data, required to 

disambiguate common sequences, into the index while still adhering strictly to the 

principles of k-mer based pseudoalignment. Therefore, the memory usage and runtime of 

using pseudoalignment using a D-list are on par with the memory usage and runtime 

without the use of a D-list. This method can scale favorably to larger genome size (or, more 

generally, larger D-lists) while the target sequences to map against remain small. 

The algorithm on the next section details the procedure in more detail, and the lemma that 

follows demonstrates the space-efficiency of DFKs. 

Generating DFKs: 

A sequence s is a string of symbols drawn from an alphabet Σ = {A, T, C, G}. The length 

of s is denoted by |s|. A substring of s is a string that occurs in s: it has (zero-indexed) start 

position i and end position j and is denoted by s[i : j], therefore |s[i : j]| is equal to j − i. In 

the case that |s[i : j]| equals k-mer size k, s[i : j] is k-mer. A compact de Bruijn graph 

(cdBG) is a dBG where all maximal nonbranching paths of vertices from a dBG, wherein 

each vertex is a k-mer, are merged into single vertices (21). Each vertex in a cdBG is a 

sequence called a unitig. We define a cdBG U as a set where each element u ∈ U is a unitig. 

The function Map(s, u) takes in a k-mer s and a unitig u, and returns the position 

of s along u if s exists in u, or NULL otherwise. The following algorithm applies these 

definitions toward identifying DFKs from a D-list D, given a cdBG U of k-mer size k built 

over target sequences (e.g. a transcriptome). For expository purposes, the algorithm is 

described such that U is a nonbidirected cdBG (i.e. the k-mers and their reverse 

complements are not represented identically). However, in practice each k-mer and its 

reverse complement are represented as a single canonical k-mer (the lexicographic 

minimum of the k-mer and its reverse complement). Additionally, for simplicity, we define 

DFKs and describe the algorithm only for single overhangs (i.e. the flanking sequences 

that make up the DFKs will not be more than one k-mer long). 
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Algorithm Generate distinguishing flanking k-mers from a D-list 
Input: Set of sequences D constituting the D-list, k-mer size k, cdBG U 
1:  function GenerateDFKs(D, k, U) 
2:       DFKs ← ∅ 
3:       for each seq ∈ D do 
4:             pos ← 0 
5:             lb ← −1            ▹ Lower bound of “common sequence” (position of leading DFK) 
6:             ub ← −1           ▹ Upper bound of “common sequence” (position of trailing DFK) 
7:             N ← |seq| − k + 1                                                            ▹ Number of k-mers in seq 
8:             while pos ≤ N do 
9:                   s ← NULL 
10:                   if pos ≠ N then 
11:                         s ← seq[pos : pos + k] 
12:                   if s ≠ NULL ∧ ∃u ∈ U : Map(s, u) ≠ NULL then     ▹ If k-mer s present in cdBG 
13:                         if lb = −1 then 
14:                               lb ← pos − 1 
15:                         η ← Map(s, u) 
16:                         while s ≠ NULL ∧ Map(s, u) = η do 
17:                               pos ← pos + 1, η ← η + 1   ▹ Extend mapping of sequence onto unitig 
18:                               s ← NULL 
19:                               if pos ≠ N then 
20:                                     s ← seq[pos : pos + k] 
21:                         ub ← pos 
22:                   else 
23:                         if 0 ≤ lb ≤ ub then 
24:                               DFKs ← DFKs ∪ {seq[lb : lb + k]}                       ▹ Add leading DFK  
25:                         if lb < ub ≤ |seq| − k then 
26:                               DFKs ← DFKs ∪ {seq[ub : ub + k]}                      ▹ Add trailing DFK 
27:                         pos ← pos + 1 
28:                         lb ← −1, ub ← −1 
29:       return DFKs 
 
Lemma. The worst case space complexity of DFKs is O(min(Nk, Mk)) where Nk and Mk 
are the number of unique k-mers in the de Bruijn graph (dBG) and D-list, respectively. 
 
Proof. Considering the alphabet Σ = {A,T,C,G}, ∀s ∈ dBG, the maximum number of 
flanking k-mers on each side of s is |Σ|, permitting a flanking k-mer for each character in 
the alphabet. On each side of s, the maximum number of DFKs, which are the flanking k-
mers in the D-list but not in the dBG, is |Σ| − 1 corresponding to the presence of one 
flanking k-mer that exists in the dBG and the remaining |Σ| − 1 k-mers being DFKs. Since 
s has two sides (leading and trailing), the maximum number of DFKs becomes 2(|Σ| − 1) = 
6. In the worst-case scenario, ∀s ∈ dBG, s contains the maximum number of DFKs. Thus, 
|DFKs| ≤ 6Nk where |DFKs| is the cardinality of the set of DFKs. The actual number of 
DFKs identified from the D-list is bounded by the number of unique k-mers in the D-list, 
denoted as Mk, i.e., |DFKs| ≤ Mk. Since |DFKs| ≤ min(6Nk, Mk), the space complexity for 
storing DFKs is O(min(Nk, Mk)). ∎	
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Implementation of the D-list and DFKs in software: 

The D-list is implemented in kallisto version 0.50.1 (Bray et al., 2016; Sullivan et al., 

2024). The kallisto index command contains a --d-list option that takes in, as an argument, 

the path to a FASTA file containing the D-list sequences for building an index with the D-

list. The kallisto index command also contains a --d-list-overhang option for specifying 

longer overhangs (i.e. extending the flanking sequences that make up the DFKs). The 

kallisto bus command (20) contains a --dfk-onlist option that, when enabled, adds a D-list 

target to the equivalence class (i.e. the multi-set of transcripts associated with a read) for a 

given pseudoalignment if a DFK is encountered rather than discards the read; this option 

is useful for distinguishing reads that do not pseudoalign versus reads that are discarded 

due to a DFK. Finally, in kb-python (version 0.28.0), the kb ref command automatically 

uses the genome FASTA as the D-list when building the kallisto index—a behavior that 

can be overwritten by explicitly specifying --d-list in kb ref. As a minor nuance, the default 

genome FASTA D-list does not contain splice junctions (SJs); however, the number of 

additional DFKs that would be indexed with the inclusion of SJ-spanning sequences is 

miniscule since SJ-spanning contigs are only k − 1 number of k-mers in length. Therefore, 

including the spliced transcriptome in the D-list would be unlikely to make any difference 

in read mapping. 

Additionally, in the updated kallisto software, the dBG implementation was replaced with 

Bifrost (Holley and Melsted, 2020), which employs a minimizer (Roberts et al., 2004) 

lookup table in lieu of a k-mer lookup table in order to achieve a lower memory footprint. 

Furthermore, since the set of minimizers in the graph is known at the time of quantification, 

we replaced the minimizer hash function with BBHash (Limasset et al., 2017), which 

implements a minimal perfect hash function. This enables kallisto to shrink the minimizer 

hash table to capacity, saving memory. Additionally, the equivalence class (EC) data 

structure was redone. Sets of transcripts are represented as Roaring bitmaps (Chambi et al., 

2016) and a Robin Hood hash map (https://github.com/martinus/unordered_dense) is used 

for the inverted hash table mapping transcript sets to EC. The Robin Hood hash map data 
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structure is also for storing DFKs since, as the number of DFKs is relatively small, 

having a separate hash map to store DFKs occupies less memory, with only a small 

reduction in speed, compared with integrating the DFKs into the main dBG (Figure 3.6). 

These changes have resulted in an approximately 2× reduction in runtime and 4× reduction 

in memory consumption in kallisto v0.50.1 compared with kallisto version 0.48.0 when 

using the nac index type to map single-cell RNA-seq reads (Figure 3.6).  

 

Figure 3.6: Performance comparison of different implementations of the kallisto nac index 
type (which contains both the nascent and mature transcriptomes), when assessed on 
sequencing reads on a dataset produced by 10x Genomics.  
 
The kallisto software is available under the BSD-2-Clause license and is available at 

https://github.com/pachterlab/kallisto. 

Benchmarking: 

We obtained the simulation framework developed by the authors of STARsolo (Kaminow 

et al., 2021) from https://github.com/dobinlab/STARsoloManuscript/ and ran the 

simulation as-is to generate a ground truth matrix. For the kallisto nac index type, the 

“mature” and “ambiguous” count matrices were summed up by using --sum=cell in kb 
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count and the resultant matrix was used for testing. For all tools, a predefined “on list” 

of barcodes (referred to in other tools as a whitelist or an unfiltered permit list) was 

supplied. The three simulated sequencing datasets used are as follows: 

• No multigene: 339 million reads 

• With multigene: 350 million reads 

• Exon-only, no multigene: 189 million reads 

The command /usr/bin/time -v which executes the GNU time program was used to obtain 

the elapsed (wall clock) time and the maximum resident set size for runtime and peak 

memory usage, respectively. All performance assessments were conducted on a server with 

x86-64 architecture, 88 CPUs (Intel Xeon Gold 6152 CPU @ 2.10GHz) and 768 GB of 

memory. 

To evaluate the performance of a program’s output gene count matrix 𝐺+ ∈ ℝ,×. against 

a simulation’s ground truth gene count matrix 𝐺/ ∈ ℝ,×., where 𝑛 is the number of cells, 

𝑚 is the number of genes, 𝑦Q!' is the count of gene 𝑗 in cell 𝑖 in 𝐺+, and 𝑦!' is the count of 

gene 𝑗 in cell 𝑖 in 𝐺/, the following metrics are used: 

Root mean squared error (RMSE): 

 

 

False positive representation (FPR): 
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False negative representation (FPR): 

 

Note that the FPR and FNR are defined such that the denominator is the total size of the 

matrix and therefore differ from the traditional false positive rate and false negative rate 

calculations. 

Correlation coefficient: We use two per-cell correlation coefficients to assess the 

correlation between the “ground truth” simulated gene counts cell and the program’s output 

gene counts for a given cell. The first, 𝑟, is the Pearson correlation computed across all 

genes within a given cell. The second, ρ∗, is a modified variant of the Spearman correlation 

in that the Spearman correlation is computed only using the genes that have a nonzero 

count in both the simulation and the program output within a given cell. This variant is the 

assessment used by the developers of the STARsolo simulations (Kaminow et al., 2021). 

The restriction to nonzero cells is necessary when using the Spearman correlation, as the 

zeroes cannot be ranked with respect to each other. However, we note that use of the 

Spearman (and therefore ignoring the zeroes) provides an assessment that is highly 

sensitive to low counts, especially the difference in a program reporting a one or a zero for 

a gene in a cell. 

Pearson correlation for cell 𝑖 using all genes: 

 
 
Spearman correlation for cell 𝑖, using only genes with a nonzero count in both the 

simulation and the program output for that cell: 
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Further (downstream) analyses of count matrices were performed following methods 

described in other work, which should be referred to for a more detailed description (Rich 

et al., 2024). Briefly, after filtering the count matrix for a minimum of 3 cells per gene, a 

minimum of 200 genes per cell, and a maximum 20% mitochondrial gene content, count 

data were CP10k normalized then log1p transformed. Highly variable genes were selected 

for, then normalized gene counts were scaled to zero mean and unit variance. Nearest 

neighbor graphs were constructed from the cell coordinates on the top 50 principal 

component analysis (PCA) embeddings. Clusters were formed from the Leiden algorithm 

(Traag et al., 2019) and then visualized on alluvial plots and Uniform Manifold 

Approximation and Projection  (UMAP) plots (Becht et al., 2019; McInnes et al., 2018). 

These processing steps, as well as selection of significant (adjusted p-value < 0.05) marker 

genes across all clusters, were performed using Scanpy (Wolf et al., 2018). 

Code for the analysis is available at https://github.com/pachterlab/SHSOHMP_2024. 

Unless stated otherwise, the software versions used are as follows: kallisto 0.50.1, bustools 

0.43.2, kb-python 0.28.0, salmon 1.10.0, alevin-fry 0.8.2, simpleaf 0.15.1, Rsubread 

2.12.3, Cell Ranger 7.0.1, STAR 2.7.9a, Bowtie2 2.5.3, seqkit 2.8.0, SAMtools 1.19.2, 

Scanpy 1.9.5 and splitcode 0.30.0. Additionally, Bandage version 0.8.1 (Wick et al., 2015) 

was used for rendering dBGs into ribbon-like representations. The human reference 

genome (GRCh38) used throughout is the same one used in the STARsolo simulations 

(Kaminow et al., 2021). The GRCh38 FASTA and GTF files used are available from the 

previously mentioned code repository. The mouse reference genome (GRCm39) used is 

the primary assembly FASTA file from Ensembl with the corresponding GTF annotation 

version 110, which was filtered to only include the gene_biotype values of protein_coding, 

lncRNA, lincRNA, and antisense. These references were used for the analyses throughout 

both this section and the previous section of this chapter of this dissertation.  
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Results: 

To assess improvement of using pseudoalignment with DFKs on single-cell RNA-seq 

reads, we used the simulation framework developed by the authors of STARsolo 

(Kaminow et al., 2021). In that simulation framework, errors were introduced into reads at 

0.5% mismatch error rate, and reads were simulated from both coding and noncoding 

genomic sequence to mimic the presence of both unprocessed, partially processed and 

completely processed transcripts in single-cell RNA-seq experiments. The top 5000 

barcodes, based on UMI count from the simulated data, were used for analysis (Figure 

3.7A). When quantifying simulated reads that only span exons with kallisto, the DFKs 

produced by a D-list do not considerably affect quantification accuracy (Figure 3.7B). 

However, upon including reads that span introns, the D-list improves the concordance 

between kallisto quantification count matrix and the simulated truth count matrix in both 

simulations that only include reads that map uniquely to one gene (Figure 3.7C) and in 

simulations that additionally include multigene reads (Figure 3.7D). Interestingly, although 

the nac index type includes nascent and mature transcripts, the quantification accuracy still 

improves slightly with the use of a D-list, likely due to filtering out reads that originate 

from outside annotated genic loci. The evaluation metrics are shown in Table 3.1. Note 

that, for the nac index type, UMIs assigned to nascent transcripts were not used in the 

quantification because the simulation truth matrix does not include nascent transcript 

counts. For the multigene case, bustools was run with the multimapping option enabled 

when counting UMIs following kallisto quantification. While this mode can identify 

nonuniquely mapped reads by dividing UMI counts uniformly amongst the genes that the 

UMI is assigned to, it results in counts that are not whole numbers; thus, the standard for 

the field has been to discard such UMIs. 
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Figure 3.7: Assessment of the impact of DFKs on accuracy when tested on simulated 
data generated using the STARsolo simulation framework. 
(A) Knee plot of the truth count matrix from the STARsolo single-cell RNA-seq simulation. 
These simulated data represent the “no multigene” simulation. The 5000 cell barcodes 
with the highest UMI counts were filtered for (corresponding to a UMI threshold of 667). 
These 5000 cell barcodes were used in downstream analysis of all STARsolo simulated 
data. (B) Correlation between kallisto quantifications versus simulated truth for reads only 
spanning exons. (C) Correlation between kallisto quantifications versus simulated truth 
for single-cell RNA-seq reads that map to a single gene. (D) Correlation between kallisto 
quantifications versus simulated truth for single-cell RNA-seq reads that include multigene 
reads. mult: the multimapping quantification mode is enabled. The per-cell spearman 
correlation, ρ*, between gene counts was determined by excluding genes that contain zero 
counts in both the kallisto quantification and in the simulation quantification for a given 
cell barcode.  
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Index type D-list mult Median ρ* Median r RMSE FPR FNR k-mers DFKs 

Simulation: Single-cell RNA-seq (exon-only; no multigene) 

standard   
0.991464 0.999953 0.04132 0.000056 0.000367 113,209,587 0 

standard ✓ 
 

0.988987 0.999922 0.052084 0.00004 0.000487 113,209,587 4,333,316 

nac   
0.986443 0.999888 0.062731 0.000038 0.000595 1,398,470,117 0 

nac ✓ 
 

0.985968 0.999875 0.066492 0.000038 0.000615 1,398,470,117 11,119,173 

Simulation: Single-cell RNA-seq (no multigene) 

standard   
0.742376 0.993061 0.626481 0.019403 0.000328 113,209,587 0 

standard ✓ 
 

0.973168 0.999815 0.081196 0.000808 0.000481 113,209,587 4,333,316 

nac   
0.959529 0.996173 0.484103 0.000646 0.000594 1,398,470,117 0 

nac ✓ 
 

0.980208 0.999809 0.084899 0.000206 0.000615 1,398,470,117 11,119,173 

Simulation: Single-cell RNA-seq (multigene) 

standard  
✓ 0.751159 0.991926 0.665475 0.051278 0.000265 113,209,587 0 

standard ✓ ✓ 0.932976 0.999174 0.168532 0.00475 0.00048 113,209,587 4,333,316 

nac  
✓ 0.933767 0.995264 0.524677 0.037164 0.000568 1,398,470,117 0 

nac ✓ ✓ 0.945177 0.999168 0.169827 0.032405 0.000595 1,398,470,117 11,119,173 
 

Table 3.1. Evaluation metrics of kallisto on simulated data generated using the STARsolo 
simulation framework. 
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Since each DFK is only one k-mer flanking a unitig, we then sought to assess whether 

considering more k-mers flanking a unitig as DFKs (i.e. longer overhangs) would improve 

the accuracy of kallisto (Figure 3.8A). We found that the benefit of including longer 

overhangs is negligible (Figure 3.8B and 3.8C; Table 3.2); therefore, by default, we adhere 

to having exactly one DFK overhang. 

 

Figure 3.8: Assessment of the impact of longer overhang DFKs on accuracy when tested 
on simulated data generated using the STARsolo simulation framework. 
(A) The number of DFKs at various overhang settings. An overhang of 0 means no DFKs 
were used. An overhang of 1 is the default setting for the D-list implementation. (B) Median 
correlation coefficient ρ* between kallisto quantifications at various D-list overhang 
settings versus simulated truth for the “single-cell RNA-seq (no multigene)” simulation. 
(C) RMSE between kallisto quantifications at various D-list overhang settings versus 
simulated truth for the “single-cell RNA-seq (no multigene)” simulation. 
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Index 
type Overhang mult Median 

ρ* Median r RMSE FPR FNR k-mers DFKs 

Simulation: Single-cell RNA-seq (no multigene) 

standard 2  0.973984 0.999819 0.080112 0.000739 0.000495 113,209,587 9,649,025 

standard 3  0.974748 0.999824 0.078881 0.000685 0.000506 113,209,587 15,696,903 

standard 4  0.97535 0.999826 0.07816 0.000643 0.000513 113,209,587 22,293,140 

standard 5  0.975842 0.99983 0.077472 0.000608 0.000519 113,209,587 29,278,838 

standard 6  0.976265 0.999833 0.076833 0.00058 0.000524 113,209,587 36,550,263 

nac 2  0.980336 0.999812 0.083905 0.000202 0.000618 1,398,470,117 21,338,179 

nac 3  0.980491 0.999814 0.08297 0.000197 0.000619 1,398,470,117 30,833,829 

nac 4  0.980585 0.999816 0.082474 0.000193 0.00062 1,398,470,117 39,760,674 

nac 5  0.980698 0.999817 0.082168 0.000189 0.000621 1,398,470,117 48,233,865 

nac 6  0.980771 0.999819 0.081806 0.000185 0.000622 1,398,470,117 56,344,346 
mult: the multimapping quantification mode is enabled (not enabled for any of the runs 
here). Overhang: The number of k-mers flanking a unitig to be considered a DFK.  
ρ*: Modified spearman correlation. r: Pearson correlation. RMSE: root mean squared 
error. FPR: false positive representation. FNR: false negative representation. 
 

Table 3.2. Evaluation metrics of kallisto on simulated data as a function of DFK overhang. 

Next, we assessed the performance of other tools using the STARsolo simulation 

framework. Specifically, we assessed four tools: (i) STARsolo (Kaminow et al., 2021), a 

single-cell/nucleus RNA-seq tool built into the STAR aligner program (Dobin et al., 2013), 

(ii) Cell Ranger (Zheng et al., 2017), the pipeline implemented by 10x Genomics, (iii) 

cellCounts (Liao et al., 2023), a tool based on the Rsubread aligner (Liao et al., 2019) and 

the featureCounts program (Liao et al., 2014), and (iv) alevin-fry (He et al., 2022; He and 

Patro, 2023), a tool that leverages salmon (Patro et al., 2017) for pseudoalignment. We 

found that the tools produced quantifications that correlated well with the simulated ground 

truth for the simulated reads that only span exons (Figure 3.9A; Table 3.3). However, on 
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simulations including intronic reads, both alevin-fry, when executed in a standard 

pseudoalignment configuration against a spliced transcriptome, and cellCounts performed 

less well compared with STARsolo and Cell Ranger (Figure 3.9B; Table 3.3). In the case 

of alevin-fry, using an expanded index that includes introns eliminated this decrease in 

performance, which is consistent with prior reports (He et al., 2022). Enabling selective 

alignment (Srivastava et al., 2020) in alevin-fry resulted in further accuracy improvements, 

similar to the improvements yielded by the D-list, even when used with an expanded 

transcriptome index. As the same simulated data were used in Table 3.3 and Table 3.1, the 

results are directly comparable between kallisto (Table 3.1) and other software (Table 3.3). 

 

Figure 3.9: Assessment of different tools on simulated data generated using the STARsolo 
simulation framework. 
(A) Correlation between quantifications produced by the tools versus simulated truth for 
reads only spanning exons. (B) Correlation between quantifications produced by the tools 
versus simulated truth for single-cell RNA-seq reads that map to a single gene. Evaluation 
against multigene reads was not performed because of different methods exposed by 
different tools to handle such reads. The per-cell spearman correlation, ρ*, between gene 
counts was determined by excluding genes that contain zero counts in both the tool’s 
quantification and in the simulation quantification for a given cell barcode. splici align: 
Enabling the index used by alevin-fry that contains introns as well as selective alignment 
mode. sketch: Selective alignment disabled and index is a standard transcriptome index 
that does not include introns in alevin-fry. For Cell Ranger, version 7 was used with the 
include-introns option set to false in order to mimic the default behavior of older versions 
of Cell Ranger. For cellCounts, the featureType option was set to “exon” (which is the 
default option) rather than “gene” in order to exclude intronic read quantification. 
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Program Run mode Median ρ* Median r RMSE FPR FNR 

Simulation: Single-cell RNA-seq (exon-only; no multigene) 

STARsolo  
0.993564 0.999968 0.030486 0.000053 0.000270 

Cell Ranger --include-introns=false 0.956866 0.999547 0.232195 0.000030 0.000343 

alevin-fry splici align 0.984427 0.999902 0.069541 0.000030 0.000709 

alevin-fry splici sketch 0.982900 0.999889 0.062949 0.000031 0.000743 

alevin-fry align 0.990880 0.999931 0.060543 0.000030 0.000466 

alevin-fry sketch 0.991528 0.999948 0.043601 0.000031 0.000393 

cellCounts  
0.915796 0.994174 0.521436 0.000239 0.001337 

Simulation: Single-cell RNA-seq (no multigene) 

STARsolo  
0.991877 0.999940 0.042743 0.000140 0.000270 

Cell Ranger --include-introns=false 0.955377 0.999499 0.232933 0.000081 0.000343 

alevin-fry splici align 0.971626 0.998672 0.288308 0.000314 0.000702 

alevin-fry splici sketch 0.960025 0.997419 0.414070 0.000764 0.000739 

alevin-fry align 0.879684 0.998145 0.312199 0.005676 0.000446 

alevin-fry sketch 0.778933 0.995372 0.527728 0.016063 0.000357 

cellCounts  
0.825302 0.993000 0.532384 0.005890 0.001299 

ρ*: Modified spearman correlation. r: Pearson correlation. RMSE: root mean squared 
error. FPR: false positive representation. FNR: false negative representation. 
alevin-fry options: 

• splici align: Enabling the index used by alevin-fry that contains introns as well as 
selective alignment mode. 

• splici sketch: Enabling the index used by alevin-fry that contains introns without 
selective alignment mode. 

• align: Selective alignment enabled and index is a standard transcriptome index 
that does not include introns in alevin-fry. 

• sketch: Selective alignment disabled and index is a standard transcriptome index 
that does not include introns in alevin-fry. 

For Cell Ranger, version 7 was used with the include-introns option set to false in order 
to mimic the default behavior of versions 1,2,3,4,5, and 6. 
 

Table 3.3. Evaluation of the STARsolo, Cell Ranger, alevin-fry, and cellCounts RNA-seq 
programs on simulated data generated using the STARsolo simulation framework. 
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We assessed the impact of DFKs on memory usage and runtime when processing RNA-

seq reads. Across single-cell and single-nucleus RNA-seq datasets from human and mouse 

tissue, DFKs resulted in only a minor increase in memory usage and runtime. Memory 

usage increased by <2% which is on the order of megabytes while runtime increased by 

<15% (Figure 3.10). On the other hand, mapping RNA-seq reads with the nac index type 

resulted in a much more substantial increase in memory usage and runtime compared with 

the standard index type. These results make sense as the nac index type is 10 times larger 

than (i.e. contains 10 times as many k-mers as) the standard index type, whereas the DFKs 

extracted from a D-list are only a small percentage (i.e. less than 5%) of the total number 

of k-mers. Thus, DFKs can substantially improve RNA-seq mapping accuracy without 

having a major impact on performance. 
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Figure 3.10: Runtime and memory usage of kallisto with different index types. 
(A and B) Runtime (on 16 threads) and memory usage of the standard index type and the 
nac index type, created with and without a D-list, on single-cell RNA-seq data generated 
with 10x Genomics. (C and D) Runtime (on 16 threads) and memory usage of the nac index 
type, created with and without a D-list, on single-nucleus RNA-seq data generated with 
10x Genomics. The standard index type was not employed for single-nucleus RNA-seq data 
because single-nucleus RNA-seq reads predominantly originate from intron-containing 
pre-mRNA. 
 

Since DFKs improve mapping specificity, a natural question that arises is whether the 

improvement in accuracy scales with higher sequencing error rates. Particularly, how do 

DFKs compare to alignment-based approaches in maintaining accuracy in the face of more 

sequencing errors? To address this, we introduced additional sequencing errors, consisting 

of a combination of mismatches, insertions, and deletions, into the STARsolo simulations. 

We found that the usage of DFKs always results in an improvement in accuracy, even with 

a high mismatch rate or a high indel rate within the simulated sequencing reads 

(Figure 3.11A). In contrast, while alignment-based methods tend to be robust to mismatch 

errors, they fall short with high indel rates (Figure 3.11B). In particular, the same selective 

alignment settings when executed on the original simulation and simulations where indels 

are introduced result in a substantial performance decrease on the indel simulations. 

Altogether, these results (Table 3.4) suggest that pseudoalignment with the incorporation 

of DFKs is more robust than alignment-based methods to indels. Such considerations may 

be important when mapping RNA-seq reads from technologies with higher indel rates, such 

as long-read RNA-seq (Delahaye and Nicolas, 2021; Zhang et al., 2020). 
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Figure 3.11: Assessment of different mapping modes on simulated data generated using 
the STARsolo simulation framework including the introduction of errors into the reads. 
(A) Reduction in quantification error, as measured by change in RMSE, by using a D-list 
to index DFKs compared with not using a D-list on simulated reads with mismatches, 
deletions, and insertions. (B) Quantification error of different tools on simulated reads 
with mismatches, deletions and insertions. splici align: enabling the index used by alevin-
fry that contains introns as well as selective alignment mode. splici sketch: Same as “splici 
align” except selective alignment mode is disabled. The errors were introduced into the 
“single-cell RNA-seq (no multigene)” simulated reads. 
 
 

Mismatches Deletions Insertions Program Run mode 
Median 

ρ* Median r RMSE FPR FNR 

Simulation: Single-cell RNA-seq (no multigene) 

1 1 1 kallisto 
standard 
(no D-list) 0.629277 0.993046 0.575156 0.030304 0.001565 

1 1 1 kallisto 
standard 
(D-list) 0.87452 0.998388 0.276873 0.003689 0.002376 

1 1 1 kallisto 
nac (no D-

list) 0.890008 0.995764 0.484241 0.001393 0.002872 

1 1 1 kallisto nac (D-list) 0.900935 0.998259 0.29544 0.001023 0.002973 

1 1 1 alevin-fry splici align 0.673962 0.989232 1.592164 0.000077 0.018216 

1 1 1 alevin-fry 
splici 

sketch 0.899393 0.99736 0.39301 0.001391 0.002823 

1 1 1 STARsolo  0.911674 0.998962 0.271059 0.000888 0.002918 
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4 0 0 kallisto 
standard 
(no D-list) 0.612826 0.992954 0.570622 0.030607 0.002184 

4 0 0 kallisto 
standard 
(D-list) 0.85271 0.998136 0.305361 0.004151 0.002991 

4 0 0 kallisto 
nac (no D-

list) 0.870739 0.995728 0.483343 0.001446 0.003621 

4 0 0 kallisto nac (D-list) 0.881683 0.997985 0.330969 0.001098 0.003706 

4 0 0 alevin-fry splici align 0.819814 0.996343 0.76258 0.000141 0.008301 

4 0 0 alevin-fry 
splici 

sketch 0.878774 0.9971 0.415686 0.00136 0.003727 

4 0 0 STARsolo  0.948253 0.999501 0.141767 0.000947 0.001244 

0 2 2 kallisto 
standard 
(no D-list) 0.586625 0.993183 0.557911 0.030393 0.002935 

0 2 2 kallisto 
standard 
(D-list) 0.831982 0.997594 0.381203 0.00433 0.003804 

0 2 2 kallisto 
nac (no D-

list) 0.851074 0.99581 0.500121 0.001891 0.004287 

0 2 2 kallisto nac (D-list) 0.861993 0.997502 0.403226 0.001458 0.004384 

0 2 2 alevin-fry splici align 0.412969 0.924791 3.764902 0.000033 0.053289 

0 2 2 alevin-fry 
splici 

sketch 0.852768 0.996873 0.466828 0.00178 0.004671 

0 2 2 STARsolo  0.763642 0.994432 0.948656 0.000552 0.010949 
ρ*: Modified spearman correlation. r: Pearson correlation. RMSE: root mean squared error. 
FPR: false positive representation. FNR: false negative representation. 
alevin-fry options: 

• splici align: Enabling the index used by alevin-fry that contains introns as well as selective alignment 
mode. 

• splici sketch: Enabling the index used by alevin-fry that contains introns without selective alignment 
mode. 

 
Table 3.4. Evaluation metrics of the kallisto, alevin-fry, and STARsolo single-cell RNA-seq 
programs on simulated data generated using the STARsolo simulation framework with 
errors introduced into sequencing reads. 
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Comparison of different index strategies: 

As mentioned in the first section of this thesis chapter, the extended transcriptome index 

(i.e. the nac index type), by virtue of indexing intron-containing nascent transcripts, enables 

the mapping of a substantial fraction of reads that would otherwise go unmapped when 

using the standard index type (Figure 3.12, Figure 3.13).  

 

 

Figure 3.12: Transcriptome indices for accurately mapping RNA-seq reads. 
The standard index is concise, as it only contains mature RNA; it is a suitable lightweight 
solution when one wishes to simply quantify mature RNA (as is typically the case with bulk 
RNA-seq analysis). The nac index contains both nascent and mature RNA, providing a 
more comprehensive framework for RNA-seq analysis. In either case, DFKs can be 
beneficial. 
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Figure 3.13: RNA-seq read mapping rate for different transcriptome indices. 
The gray bar represents the reads that are excluded when the D-list is used. Of note, the 
standard index only has mature and ambiguous transcripts in the index (M + A) while the 
nac index has nascent, mature, and ambiguous transcripts in the index (N + M + A). The 
datasets used herein are described in the previous section of this thesis chapter. 
 
 
We explored how different index types and different count matrices may affect 

downstream clustering analysis and marker gene selection (Rich et al., 2024). Using the 

human 20k PBMC dataset (10x Genomics), we projected filtered count matrices (high-

quality cells and highly variable genes) onto the first two principal components through 

PCA (Figure 3.14A). Applying a D-list to the standard index type affected cell projections, 

but the impact was mild, likely because the human reference genome is a comprehensive 

and well-annotated assembly, reducing the chance of reads from exonic regions being 

mismapped. The effect was even more subtle when applying a D-list to the nac index, 

which includes intronic regions. A more significant difference emerged when comparing 

analyses with and without nascent transcript quantification. When identifying marker 

genes through differential gene expression, application of the D-list led to a fraction of 

marker genes (2% for the standard index type; 14% for the nac index) being uniquely 

identified in one condition (D-list or no D-list) but not the other, while incorporating 

nascent transcript quantification resulted in 19% more marker genes being identified 

(Figure 3.14B). 
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Figure 3.14: Effect of index strategy and count matrix type on single-cell RNA-seq analysis 
of the human 20k PBMC dataset (10x Genomics). 
(A) PCA of cells from the human 20k PBMC dataset (10x Genomics) for count matrices 
generated in various ways. The first two principal components are shown. Black lines 
connect identical cell barcodes from each matrix used in pairwise comparisons. 
(B) Number of marker genes identified through differential gene expression analysis for 
count matrices generated in various ways. Left-hand panel: Count matrices were 
generated by mapping reads to the standard index type with and without a D-list. Middle 
panel: Count matrices (M + A) were generated by mapping reads to the nac index type 
with and without a D-list. Right panel: M + A and N + M + A count matrices were 
generated by mapping reads to the nac index type. N: nascent, M: nature, and A: 
ambiguous. 
 

Although, broadly, cluster analysis remained largely unaffected by these different 

strategies (Figure 3.15), the simulations earlier on showed that more pronounced 

differences can be observed at the individual cell and gene level, thus making the selection 

of index strategy an important consideration depending on the type of downstream analysis 

that is to be performed. Additionally, “mature” and “nascent” quantifications provide 

distinct insights into the cell’s profile. Although count matrices containing only “nascent” 

or “mature” gene counts can sometimes yield similar clusters, the cellular profile differs 

greatly, with many marker genes unique to each matrix (Figure 3.16). 
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Figure 3.15: Effect of index strategy and count matrix type on clustering of the human 20k 
PBMC dataset (10x Genomics) single-cell RNA-seq dataset. 
Alluvial plots of cluster assignment mapping alongside UMAP plots are shown for pairwise 
comparisons of count matrices generated by different index strategies in human 20k PBMC 
single-cell RNA-seq data. N: nascent, M: nature, and A: ambiguous. 
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Figure 3.16: Effect of mature versus nascent count matrix types on clustering  of the human 
20k PBMC dataset (10x Genomics) single-cell RNA-seq dataset. 
Alluvial plots of cluster assignment mapping, marker gene numbers, PCA plots, and UMAP 
plots are shown for comparing nascent and mature count matrices. 
 

This work introduces a combined approach of using DFKs with an extended transcriptome 

index (nac index) in single-cell and single-nucleus RNA-seq analysis (Figure 3.17). This 

method aims to address specific challenges in RNA-seq, particularly in the quantification 

of nascent and mature mRNA transcripts, and in reducing mismapping errors caused by 

reads originating outside of the targeted transcriptomic regions. 
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Figure 3.17: Summary of enhancements to read mapping and classification. 
This figure shows k-mers originating from the standard transcriptome index, the extended 
transcriptome index containing nascent RNA transcripts, and the entire genome. The 
integration of DFKs into a de Bruijn graph is shown. 
 

While most mismapping errors that affect single-cell RNA-seq quantification are 

eliminated by extending the transcriptome index, DFKs provide further improvement to 

quantification accuracy. Specifically, DFKs can eliminate erroneous mapping of reads that 

originate from transcripts that appear outside even the extended transcriptome index. More 

importantly, DFKs provide high scalability. DFKs can scale to higher sequencing error 

rates as the accuracy gains of DFKs are not reversed when different sequencing error 

profiles are introduced. Moreover, DFKs can scale to size. When only a small specific set 

of targets is of interest but there are many known possible target sequences, those possible 

target sequences can simply be incorporated into the D-list. The resultant DFKs will 
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optimize mapping specificity making it unnecessary to index all the possible target 

sequences. Irrespective of whether the target sequences occupy a small proportion or a 

large proportion of the “background”, the DFKs will improve mapping specificity without 

any major impact on performance. Thus, the DFKs act as a space-efficient general 

“background filter”. 
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Comprehensive pseudoalignment software protocol 

The term ‘RNA-seq’ refers to a collection of assays based on sequencing experiments that 

involve quantifying RNA species from bulk tissue, single cells, or single nuclei. The 

kallisto, bustools and kb-python programs are free, open-source software tools for 

performing this analysis that together can produce gene expression quantification from raw 

sequencing reads. The quantifications can be individualized for multiple cells, multiple 

samples or both. Additionally, these tools allow gene expression values to be classified as 

originating from nascent RNA species or mature RNA species, making this workflow 

amenable to both cell-based and nucleus-based assays. This protocol describes in detail 

how to use kallisto and bustools in conjunction with a wrapper, kb-python, to preprocess 

RNA-seq data. Execution of this protocol requires basic familiarity with a command line 

environment. With this protocol, quantification of a moderately sized RNA-seq dataset can 

be completed within minutes. 

Overview: 

The preprocessing step (Melsted et al., 2021; Tian et al., 2018) of RNA-seq experiments 

(Mortazavi et al., 2008) involves mapping reads to a reference genome or transcriptome, 

followed by gene expression or transcript abundance quantification (Conesa et al., 2016). 

Many open-source tools exist for bulk RNA-seq preprocessing (Anders et al., 2015; Bray 

et al., 2016; Dobin et al., 2013; Li and Dewey, 2011; Liao et al., 2019, 2014; Patro et al., 

2017; Pertea et al., 2016; Roberts and Pachter, 2013; Trapnell et al., 2012) as well as single-

cell RNA-seq preprocessing (Battenberg et al., 2022; He et al., 2022; He and Patro, 2023; 

Kaminow et al., 2021; Liao et al., 2023; Melsted et al., 2021; Niebler et al., 2020; 

Srivastava et al., 2019). Kallisto (Bray et al., 2016) introduced the pseudoalignment 

paradigm for improving the accuracy of alignment and reducing runtimes and memory 

footprint of bulk RNA-seq preprocessing and, with the development of bustools (Melsted 

et al., 2019), has been adapted for both single-cell RNA-seq quantification (Melsted et al., 

2021) and single-nucleus RNA-seq quantification (Sullivan et al., 2025). The bustools suite 

of tools operates on the read mapping results of kallisto and processes them to generate 
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quantification results, which may involve unique molecular identifier (UMI) collapsing 

(Kivioja et al., 2012; Smith et al., 2017) and barcode error correction for single-cell and 

single-nucleus assays. While multiple steps are necessary to process input consisting of 

FASTQ sequencing files, a reference genome FASTA, and a GTF annotation (Kent et al., 

2002; Reese et al., 2000), to an output of quantifications using kallisto and bustools, these 

steps are greatly facilitated by the wrapper tool, kb-python. kb-python can extract reference 

transcriptomes from reference genomes and run kallisto and bustools in workflows optimal 

for each assay type (Box 1) (Sullivan et al., 2024). The kb-python tool simplifies the 

running of kallisto and bustools to the extent that all of this can be done in two steps: kb ref 

for generating a kallisto index from an annotated reference genome and kb count for 

mapping and quantification. Thus, kallisto, bustools, and kb-python make RNA-seq 

preprocessing efficient, modular, flexible, and simple (Melsted et al., 2021). 

Box 1: Software tools and their description 

Software tools: 

• kallisto:  Performs pseudoalignment to a reference transcriptome and stores 
the mapping results in a BUS file.  

• bustools: Processes the results in the BUS file to correct barcodes, 
deduplicate UMIs, and generate quantification files (e.g. count matrices).  

• kb-python: A wrapper around kallisto and bustools that facilitates usage of 
those tools and facilitates the generation of a reference transcriptome. The 
kallisto and bustools binaries come packaged in kb-python. 

 
Installation: 
 
pip install kb_python 

 

 
Index construction: 

For RNA-seq read mapping, kallisto builds an index from a set of sequences, referred to as 

targets, representing the set of sequences that RNA-seq reads can be mapped to. In a 

standard analysis, these targets are usually transcript sequences (i.e. each individual target 

corresponds to one transcript). However, more generally, users can define targets from any 
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sets of sequences they wish to map their sequencing reads against. Since kallisto is a tool 

that leverages pseudoalignment, the mapping procedure relies on read assignment, such 

that each read is deemed to be compatible with a certain set of targets, rather than standard 

alignment. The kallisto index is based on the Bifrost (Holley and Melsted, 2020) 

implementation of the colored de Bruijn graph (Iqbal et al., 2012), which enables memory-

efficient and rapid read assignment. 

kb-python enables the construction of kallisto indices through the kb ref command 

(Figure 3.18). Different types of kallisto indices can be built by specifying the --workflow 

argument in kb ref, which selects the type of index to be constructed. The default setting is 

--workflow=standard, which creates an index suitable for bulk and single-cell RNA-seq 

quantification. It creates an index built from only the coding DNA sequences (the usage of 

coding DNA here follows that of Ensembl (Harrison et al., 2024), i.e., the sequences of the 

mature transcripts wherein introns are not included as they have been spliced out). The 

index created by --workflow=nac (nac: nascent and coding DNA) contains both the coding 

DNA and the nascent transcripts. The nascent transcript sequences consist of the full gene 

(both exons and introns). This nac index is suitable for single-nucleus RNA-seq as there 

exists a high abundance of non-mature transcripts captured in nucleus-based sequencing 

assays (Grindberg et al., 2013). Additionally, this nac index should be used for analyses 

that require jointly modeling nascent and mature RNA species (Carilli et al., 2024; Gorin 

et al., 2023, 2022a, 2022b; Gorin and Pachter, 2022a; La Manno et al., 2018). For both the 

standard and nac index types, a user supplies a genome FASTA and GTF annotation, which 

kb-python uses to extract the relevant sequences. Finally, if one wishes to index a custom 

set of targets or of k-mers, one can use --workflow=custom which builds an index from a 

FASTA file containing the target sequences of interest to be supplied. 
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Figure 3.18: “kb ref” can be used to generate three different types of kallisto indices. 
 
Creating the index in kb-python invokes the kallisto index command in the kallisto 

program (Box 2). Indexing with kb-python has the advantage that a reference transcriptome 

is generated directly from a FASTA and GTF ensuring consistency between the 

transcriptome reference, its associated index, and the input FASTA and GTF. 

Additionally, using kb-python (via the --include-attributes and --exclude-attributes 

options) allows specific biotypes to be selected from the GTF file, making possible filtering 

of entries such as pseudogenes, which can improve read mapping accuracy (Pool et al., 

2023) and reduce memory usage.  It is recommended to perform GTF filtering, especially 

for the nac index type where there will be many overlapping segments among annotated 

regions in the genome. While there is no universally defined best practice for GTF filtering, 

it is recommended that a user uses the CellRanger (Zheng et al., 2017) gene biotypes for 

standard single-cell and single-nucleus RNA-seq assays. More generally, if a user is unsure 

of what biotypes to include, it is recommended that the user selects only the specific 

biotypes that the user is interested in (e.g. selecting only protein coding genes if a user is 

only interested in protein coding genes). 
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Box 2: kb ref 

Below, we show how to run kb ref using three different index types. Only the underlined 
files need to be supplied by the user; the other files are output files generated as part 
of the indexing process and may be necessary for the subsequent mapping and 
quantification step. The corresponding kallisto index commands that are invoked are 
shown beneath each kb ref call (note that, by default, the kallisto index command is 
invoked using 8 threads). 
 
1. standard index type (default): 
 
kb ref -i index.idx -g t2g.txt -f1 cdna.fasta genome.fasta genome.gtf 

 
kallisto index -t 8 -i index.idx --d-list=genome.fasta cdna.fasta 

 
2. nac index type: 
 
kb ref --workflow=nac -i index.idx -g t2g.txt -c1 cdna.txt -c2 nascent.txt \ 
     -f1 cdna.fasta -f2 nascent.fasta genome.fasta genome.gtf 

 
kallisto index -t 8 -i index.idx --d-list=genome.fasta cdna.fasta nascent.fasta 

 

3. custom index type: 
 
kb ref --workflow=custom -i index.idx custom.fasta 

 
kallisto index -t 8 -i index.idx custom.fasta 

 

Explanation of output files: 
• index.idx: The kallisto index that is generated 
• t2g.txt: The transcript-to-gene mapping file 
• cdna.fasta: The generated FASTA file containing the extracted cDNA 

sequences 
• nascent.fasta: The generated FASTA file with extracted nascent transcript 

sequences 
• cdna.txt: The transcript names of the coding DNA sequences 
• nascent.txt: The nascent transcript names (which are simply the gene names)  
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Finally, the kallisto index command has a --d-list option which improves the mapping 

specificity by isolating certain sequences, known as distinguishing flanking k-mers 

(DFKs), that may cause erroneous read mapping (Sullivan et al., 2025). The DFKs that are 

identified depend on the FASTA file supplied to the --d-list option. While the --d-list option 

can be entered by the user directly into kb ref, kb ref already by default calls kallisto index 

with the --d-list option set to the genome FASTA supplied but can be disabled by 

specifying --d-list=None in kb ref. For all analyses that involve RNA transcript 

quantification, it is recommended that the --d-list be set to the respective genome FASTA 

file to ensure good mapping specificity. This feature should typically only be used in any 

standard RNA-seq analysis (e.g. any usage with the standard index type or the nac index 

type produced by kb ref). This feature should not be used in other cases where custom non-

transcript targets are indexed. 

Mapping and quantification: 

The kb count command within kb-python enables mapping and quantification of bulk, 

single-cell, and single-nucleus RNA-seq reads (Figure 3.19). As different sequencing 

assays have different read structures, strandedness, parity, and barcodes, one must provide 

the specifications for the technology which produced the sequencing reads. 

 

Figure 3.19: “kb count” can be used to produce quantifications in the form of count 
matrices for bulk, single-cell, and single-nucleus RNA-seq. 
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The specifications for sequencing assay technology within kb-python are as follows: 

• Technology string: A ‘technology string’ for a particular type of assay can be 

supplied via the -x option. The technology string can be used in one of two ways: 

o Option 1: several assays are predefined within the software (the list is 

viewable by calling kb --list) so one can name one of those directly (e.g. 

one can specify -x 10xv3). 

o Option 2: one can format their own custom technology string specifying the 

read locations of the barcodes, UMIs and the biological sequence that is to 

be mapped (Box 3). 

• Strandedness: If a read (or the first read in the case of paired-end reads) is to be 

mapped in forward orientation, one should specify --strand=forward. If it is to be 

mapped in reverse orientation, one should specify --strand=reverse. If one does 

not want to map reads with strand-specificity, then one should specify the option 

as --strand=unstranded. If a predefined name is used in the technology string -x 

option (option 1), then kb-python uses a default stranded option for that technology 

(e.g., for 10xv3, the default is forward); otherwise, the default is unstranded. Setting 

the --strand option explicitly will overrule the default option. 

• Parity: If the technology involves two biological read files that are derived from 

paired-end sequencing, as is the case with Smartseq2 (Picelli et al., 2013), 

Smartseq3 (Hagemann-Jensen et al., 2020), SPLiT-seq (Rosenberg et al., 2018), 

and many bulk RNA sequencing kits, one should specify --parity=paired to 

perform mapping that takes into account the fact that the reads are paired end. 

Otherwise, one can specify --parity=single. If a predefined name is used in the -x 

technology string option (option 1), then kb-python uses the default parity option 

for that technology (e.g., for -x Smartseq2, --parity=paired is already enabled by 

default). 
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• On list: For single-cell and single-nucleus sequencing assays, barcodes are used 

to identify each cell or nucleus. The ‘on list’ of barcodes represents the known 

barcode sequences that are included in the assay. Barcodes extracted from the 

sequencing reads will be error-tolerantly mapped to this list in a process known as 

barcode error correction. The ‘on list’ is a text file containing a list of barcode 

sequences and its filename can be specified with the -w option in kb count. If an 

on list is not provided or cannot be found for the given technology, then an on list 

is created by bustools via the bustools allowlist command, which identifies 

repeating barcodes in sequencing reads. If the technology does not include cell 

barcodes (as is the case in bulk RNA-seq), the ‘on list’ option is irrelevant and no 

barcode processing occurs, which should be the case for assays that do not include 

cell/nuclei barcodes (skipping barcode error correction can also be done by 

specifying -w NONE). If a predefined name is used in the -x technology string 

option (option 1), then kb-python uses the default on list option for that technology. 
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Box 3: Custom technology string 

The custom technology string (supplied to -x) contains the format barcode:UMI:DNA, 
representing the locational information of the barcode, UMI, and the DNA (where 
DNA is the biological read to be mapped): 
 
-x a,b,c:d,e,f:g,h,i 

 
 

• a: barcode file number, b: barcode start position, c: barcode end position 
• d: UMI file number, e: UMI start position, f: UMI end position 
• g: DNA file number, h: DNA start position, i: DNA end position 

 
Important notes: File numbers and positions are zero-indexed. If no specific end 
position exists (i.e. the end position is the very end of the read), the end position 
should be set to 0. If cell barcodes and/or UMIs are not supported by the technology, 
the barcode and/or UMI field can be set to -1,0,0. 
 
Thus, for 10xv3: 
 
-x 0,0,16:0,16,28:1,0,0 

 
Sequences can be stitched together by specifying multiple locations; for example, a 
SPLiT-seq45 assay, which contains three separate unlinked barcodes, each of length 
8, and a UMI of length 10 in the second file and the DNA in the first file would look as 
follows: 
 
-x 1,10,18,1,48,56,1,78,86:1,0,10:0,0,0 

 
Final note about multiple locations: If the paired-end read mapping option is enabled, 
exactly two DNA locations should be specified (for the first and second read in the 
pair). 
 
If a technology does not fit into this format (e.g. due to barcodes or UMIs of variable 
lengths and positions), preprocessing of the FASTQ file should be performed 
beforehand to reformat the reads into a structure that can be handled by this format.46  
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If a nac index was generated by kb ref, --workflow=nac should also be used in kb count 

so that the nascent and mature RNA species are quantified accurately; otherwise that option 

should be omitted or --workflow=standard (which is the default) can be explicitly 

specified. For the nac index type, one obtains three count matrices: (1) nascent, (2) mature, 

and (3) ambiguous. In most experiments, the plurality of reads will be “ambiguous” since 

they originate from exons, which are present in both nascent RNA and mature RNA. 

Therefore, it is desirable to generate additional matrices by adding the counts from those 

three matrices, which users can either do themselves or by using the --sum option (Sullivan 

et al., 2025). --sum=total adds all three matrices, --sum=cell adds the mature and 

ambiguous matrices, and --sum=nucleus adds the nascent and ambiguous matrices. 

Different matrices may be used for different types of analyses. For example, in single-cell 

RNA-seq analysis (where most “ambiguous” counts are probably of mature RNA origin), 

jointly modeling the mature + ambiguous count matrix (--sum=cell) with the nascent count 

matrix permits biophysical modeling of RNA processing (Gorin et al., 2023, 2022b). The 

kb-python, kallisto, and bustools commands for the standard and nac index types are 

presented in Box 4 and Box 5, respectively. 
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Box 4: kb count (standard index type) 

Below, we show how to run kb count using the standard index type (which is the default 
used if no --workflow option is explicitly specified). The underlined files need to be 
supplied by the user; these include the files generated from the kb ref command as 
well as the FASTQ sequencing reads. The corresponding kallisto and bustools 
commands (as well as Unix commands to create and remove files/directories) that are 
called by kb count are shown beneath each kb count command (note that, by default, 
8 threads and 2 gigabytes of memory are assigned). 
 
kb count -x <tech> -w onlist.txt -o output_dir -i index.idx -g t2g.txt \ 
     R1.fastq R2.fastq 

 
mkdir -p output_dir/tmp 
mkdir -p output_dir 
kallisto bus -x <tech> -i index.idx -o output_dir -t 8 R1.fastq R2.fastq 
bustools sort -o output_dir/tmp/output.s.bus -T output_dir/tmp -t 8 -m 2G output_dir/output.bus 
bustools inspect -o output_dir/inspect.json -w onlist.txt output_dir/tmp/output.s.bus 
bustools correct -o output_dir/tmp/output.s.c.bus -w onlist.txt output_dir/tmp/output.s.bus 
bustools sort -o output_dir/output.unfiltered.bus -T output_dir/tmp -t 8 -m 2G \  
     output_dir/tmp/output.s.c.bus 
mkdir -p output_dir/counts_unfiltered 
bustools count -o output_dir/counts_unfiltered/cells_x_genes -g t2g.txt -e output_dir/matrix.ec \ 
     -t output_dir/transcripts.txt --genecounts --umi-gene output_dir/output.unfiltered.bus 
rm -rf output_dir/tmp 

 
 

• <tech>: The technology string 
• onlist.txt: The name of the file containing the “on list” of barcodes 

o Specify NONE to skip barcode error correction, or omit completely to 
have bustools create its own “on list” for correction 

 
Note: In the workflow above, the following options in kb count  can be used: 

• --parity=single or --parity=paired 
• --strand=forward or --strand=reverse or --strand=unstranded 

One can alternatively set those options at the end of <tech>, e.g. 
<tech>%forward%paired 
 
The R1.fastq and R2.fastq inputs can be replaced with multiple sets of read files 
listed consecutively, as long as each pair is in order. 
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Box 5: kb count (nac index type) 

Below, we show how to run kb count using the nac index type. The underlined files 
need to be supplied by the user;these include the files generated from the kb ref 
command using --workflow=nac as well as the FASTQ sequencing reads. The 
corresponding kallisto and bustools commands (as well as Unix commands to create 
and remove files/directories) that are called are shown beneath each kb count call (note 
that, by default, 8 threads and 4 gigabytes of memory are used). 
 
kb count -x <tech> --workflow=nac -w onlist.txt -o output_dir -i index.idx \ 
     -g t2g.txt -c1 cdna.txt -c2 nascent.txt --sum=<sum> R1.fastq R2.fastq 

 

mkdir -p output_dir/tmp 
mkdir -p output_dir 
kallisto bus -x <tech> -i index.idx -o output_dir -t 8 R1.fastq R2.fastq 
bustools sort -o output_dir/tmp/output.s.bus -T output_dir/tmp -t 8 -m 4G output_dir/output.bus 
bustools inspect -o output_dir/inspect.json -w onlist.txt output_dir/tmp/output.s.bus 
bustools correct -o output_dir/tmp/output.s.c.bus -w onlist.txt output_dir/tmp/output.s.bus 
bustools sort -o output_dir/output.unfiltered.bus -T output_dir/tmp -t 8 -m 4G \  
     output_dir/tmp/output.s.c.bus 
mkdir -p output_dir/counts_unfiltered 
bustools count -o output_dir/counts_unfiltered/cells_x_genes -g t2g.txt -e output_dir/matrix.ec \ 
     -t output_dir/transcripts.txt --genecounts --umi-gene \ 
     -s nascent.txt output_dir/output.unfiltered.bus 
mv output_dir/counts_unfiltered/cells_x_genes.mtx \ 
     output_dir/counts_unfiltered/cells_x_genes.mature.mtx 
mv output_dir/counts_unfiltered/cells_x_genes.2.mtx \  
     output_dir/counts_unfiltered/cells_x_genes.nascent.mtx 
rm -rf output_dir/tmp 

 
 

• <tech>: The technology string 
• onlist.txt: The name of the file containing the “on list” of barcodes 

o Specify NONE to skip barcode error correction, or omit completely to 
have bustools create its own “on list” for correction 

• <sum>: What additional matrix to create by adding up the output matrices 
(options: cell, nucleus, or total) 

 
Note: In the workflow above, we can additionally set the following two options in kb 
count (otherwise, the defaults are chosen): 

• --parity=single or --parity=paired 
• --strand=forward or --strand=reverse or --strand=unstranded 

One can alternatively set those options at the end of <tech>, e.g.: 
<tech>%forward%paired 
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In addition to single-cell and single-nucleus RNA-seq, kb count can be used for bulk 

RNA-seq. Bulk RNA-seq generally does not have UMIs or cell barcodes (although 

artificial unique sample-specific barcodes, i.e. pseudobarcodes, are used to identify each 

sample) and relies on cDNA mapping. With -x BULK as the technology string, a workflow 

specific for bulk RNA-seq quantification is executed (Box 6). This will produce both 

transcript-level and gene-level abundances that can be used by DESeq2 (Love et al., 2014; 

Soneson et al., 2015), sleuth (Pimentel et al., 2017), limma-voom (Law et al., 2014; Ritchie 

et al., 2015), edgeR (Baldoni et al., 2024; Chen et al., 2024; Robinson et al., 2010), and 

other differential gene expression programs. 

Box 6: kb count: bulk RNA-seq 

Below, we show how to run kb count for preprocessing bulk RNA-seq data. The 
procedure is similar to the preprocessing of single-cell RNA-seq (Box 4), but there are 
some differences in how quantification is performed  and barcode error correction is 
not performed due to the lack of cell barcodes in bulk RNA-seq. --tcc specifies that 
estimated counts should be produced in accordance with the count estimation 
algorithm in the original kallisto publication and --matrix-to-directories means that 
those quantifications should be reformatted into directories of “abundance files” with 
each sample being a different directory. The abundance files can be directly used by 
downstream tools designed for bulk RNA-seq differential gene expression. Below is an 
example usage for a paired-end unstranded bulk RNA-seq experiment on one sample. 
 
kb count -x BULK -o output_dir -i index.idx -g t2g.txt \ 
     --parity=paired --strand=unstranded \ 
     --tcc --matrix-to-directories R1.fastq R2.fastq 

 

mkdir -p output_dir/tmp 
mkdir -p output_dir 
kallisto bus -x <tech> -i index.idx -o output_dir -t 8 --paired R1.fastq R2.fastq 
bustools sort -o output_dir/tmp/output.s.bus -T output_dir/tmp -t 8 -m 2G output_dir/output.bus 
bustools inspect -o output_dir/inspect.json output_dir/tmp/output.s.bus 
mkdir -p output_dir/counts_unfiltered 
mkdir -p output_dir/quant_unfiltered 
bustools count -o output_dir/counts_unfiltered/cells_x_tcc -g t2g.txt -e output_dir/matrix.ec \ 
     -t output_dir/transcripts.txt --multimapping --cm output_dir/output.s.bus 
kallisto quant-tcc -o output_dir/quant_unfiltered -i index.idx \ 
     -e output_dir/counts_unfiltered/cells_x_tcc.ec.txt -g t2g.txt -t 8 -f output_dir/flens.txt \  
     --matrix-to-directories output_dir/counts_unfiltered/cells_x_tcc.mtx 
rm -rf output_dir/tmp 
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To facilitate multi-sample analysis, artificial unique sample-specific barcodes can be 

created, and the resulting mapping between the artificially generated barcode and the 

sample ID is outputted. These sample-specific barcodes (i.e. ‘pseudobarcodes’) are 16-bp 

in length and are stored in the BUS file. Where there exists both a cell barcode (like in 

single-cell RNA-seq) and a sample-specific barcode, both sets of barcodes will be 

outputted so that each entry in the resulting output count matrix can be associated with a 

particular cell and a particular sample. To utilize the multi-sample workflow, a batch file 

containing the file names of the FASTQ files must be provided (Box 7). Each sample ID 

will then be assigned a ‘pseudobarcode’ upon running the program. 
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Box 7: kb count (multi-sample analysis using the standard index type) 

Below, we show how to run kb count to perform an analysis of multiple samples using 
the standard (default) index type. Use of this index type facilitates a workflow that is 
similar to the single-sample standard workflow (Box 4). A batch file (batch.txt) should 
be provided, in lieu of FASTQ files, listing all the samples to be analyzed with the paths 
to their respective FASTQ files. The --batch-barcodes option is provided in order to 
store the sample-specific barcodes that are created in addition to the cell barcodes 
(without this option, only cell barcodes are stored). This option can be omitted in the 
case that no cell barcodes exist (as in bulk RNA-seq). 
 
kb count -x <tech> -w onlist.txt -o output_dir -i index.idx -g t2g.txt \  
     --batch-barcodes batch.txt 

 
The only difference in the underlying kallisto command is in the kallisto bus 
command. 
 
kallisto bus -x <tech> -i index.idx -o output_dir -t 8 --batch-barcodes --batch batch.txt  

 

The batch.txt file looks as follows: 
 

batch.txt 
Sample1    sample1_R1.fastq.gz    sample1_R2.fastq.gz 
Sample2    sample2_R1.fastq.gz    sample2_R2.fastq.gz 
Sample3    sample3_R1.fastq.gz    sample3_R2.fastq.gz 

 
The sample ID is in the first column. Multiple rows can be provided for the same 
sample ID (e.g. if the FASTQ files are divided across multiple lanes). The third column 
can be omitted if only one FASTQ file is specified by the technology. 
 
In the output directory (output_dir), there will be two files: matrix.cells (which contains 
the sample ID) and matrix.sample.barcodes (which contains the 16-bp sample-specific 
barcodes, i.e. the pseudobarcodes). Each line in matrix.cells corresponds to the same 
line in matrix.sample.barcodes. In the example above, the files look as follows: 
 

matrix.cells 
Sample1 
Sample2 
Sample3 

 

matrix.sample.barcodes 
AAAAAAAAAAAAAAAA 
AAAAAAAAAAAAAAAC 
AAAAAAAAAAAAAAAG 
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The technical details of how kb count utilizes kallisto and bustools are detailed in the 

following paragraph. Note that the --dry-run option in kb count outputs the kallisto and 

bustools commands that will be run without actually running the programs. Also, the option 

--verbose in kb count is helpful for examining the kallisto and bustools commands that are 

being run as well as their output. 

kb count first invokes the kallisto bus command within kallisto to produce a BUS file, 

which stores the read mapping information, and then uses bustools (Melsted et al., 2019) 

commands to process the BUS file. The kallisto bus command maps RNA-seq reads to a 

kallisto index, and the resultant BUS file stores the mapping information, including the 

barcode, unique molecular identifier (UMI), and the equivalence class representing the set 

of transcripts the read is compatible with (Melsted et al., 2019). In certain RNA-seq assays, 

barcodes and/or UMIs may not be present, and are therefore not considered when 

processing the BUS file. After the mapping step is complete, the BUS file is sorted via the 

bustools sort command to facilitate further processing. For single-cell and single-nucleus 

experiments with multiplexed barcodes in the sequencing reads, an ‘on list’ of barcodes, 

representing the known barcode sequences that are included in the assay, needs to be 

provided. If an ‘on list’ is unavailable, the bustools allowlist command can be used to 

construct one from a sorted BUS file. The barcodes in the sorted BUS file are error-

corrected to the ‘on list’ via bustools correct, then the BUS file is sorted again with 

bustools sort. The final sorted, ‘on list’-corrected BUS file is then used to generate 

quantifications via count matrices through the bustools count command. At any point, a 

sorted BUS file can be inputted into bustools compress to create a compressed BUS file 

(a BUSZ file), which can be subsequently decompressed via bustools decompress 

(Einarsson and Melsted, 2023). There exist many other bustools features which enable 

more specialized workflows beyond what is provided by kb-python (Gustafsson et al., 

2021; Melsted et al., 2021). 
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Quantification of RNA species can be performed in multiple ways as follows: 

• Gene-level count matrices: in single-cell and single-nucleus RNA-seq, typically a 

gene-level count matrix is produced by collapsing UMIs to the gene level. Here, 

the bustools count command is run with the --genecounts option. The --umi-gene 

option may also be provided for sequencing technologies where the UMIs are not 

expected to be unique within each cell. This ensures that in a case where two reads 

with the same UMI sequence map to different genes, they are considered to be two 

distinct molecules which were unintentionally labeled with the same UMI, and 

hence each gene gets a count. Such instances occur very frequently when UMIs are 

short such as in CEL-Seq2 (Hashimshony et al., 2016). By default, UMIs assigned 

to multiple genes after collapsing are discarded in quantification; however, the 

option --multimapping retains such UMIs and distributes the count uniformly 

across the assigned genes. This option, while improving the sensitivity of gene 

detection, causes noninteger counts to be created and is therefore disabled by 

default, consistent with other single-cell RNA-seq software. Finally, if one wishes 

to not perform UMI collapsing (i.e., each mapped read is its own unique molecule 

regardless of the UMI sequence), one can supply the --cm option for quantification. 

• Transcript-level count matrices: transcript compatibility counts (TCCs) are counts 

assigned to equivalence classes (ECs) where each EC is defined by a unique set of 

transcripts. For producing a matrix of TCCs, the --genecounts option is not 

provided, and --multimapping is provided to avoid discarding reads or collapsed 

UMIs that are assigned to multiple genes. If UMIs are not present in the sequencing 

technology, the --cm option is supplied to perform counting without UMI 

collapsing. While downstream analyses can be performed on TCCs (Ntranos et al., 

2019, 2016), it is more often useful to produce transcript-level abundances from the 

TCCs for technologies where sequencing reads span segments of full-length RNA 

molecules, such as in bulk RNA-seq. In such cases, an expectation-maximization 

algorithm is typically performed to probabilistically estimate transcript abundances 
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(Li and Dewey, 2011; Pachter, 2011). The procedure to generate transcript-level 

abundance matrices is performed by running the kallisto quant-tcc command on 

the TCC matrices. 

Now, we describe the quantification output of the kb count command. While the initial step 

of kb count uses kallisto to produce a BUS file located at output_dir/output.bus, the actual 

quantification results are located in matrices in subdirectories of output_dir/. All matrices 

have the extension .mtx and will be in a sparse matrix (Matrix Market) file format with the 

barcodes (i.e. the cells or samples) being the matrix rows and the genes (or transcripts or 

equivalence classes or other features (A Sina Booeshaghi et al., 2024)) being the matrix 

columns. 

Gene-level counting to produce gene count matrices is the most common form of 

quantification for UMI-based single-cell and single-nucleus RNA-seq assays. 

- The output_dir/counts_unfiltered/ directory contains the following information 

for gene count matrices (these are the matrices that are most commonly used for 

single-cell and single-nucleus RNA-seq analysis): 

o standard index type: 

§ cells_x_genes.mtx: The count matrix (in Matrix Market file 

format); only exonic reads are counted. 

§ cells_x_genes.barcodes.txt: The barcodes representing the matrix 

row names. 

§ cells_x_genes.genes.txt: The gene IDs representing the matrix 

column names. 

§ cells_x_genes.genes.names.txt: Same as cells_x_genes.mtx except 

with gene names instead of gene IDs for the matrix columns. 



 

 

74 
§ cells_x_genes.barcodes.prefix.txt: If sample-specific barcodes 

are generated in addition to cell barcodes being recorded, then this 

file will be created and the sample-specific barcodes will be stored 

here. The lines of this file correspond to the lines in the 

cells_x_genes.barcodes.txt which contains the cell barcodes (both 

files will have the same number of lines). The sample-specific 

barcodes and cell barcodes can be joined together as a unique 

identifier for downstream analysis. 

o nac index type (same as the standard index type except the .mtx files 

produced are different): 

§ cells_x_genes.mature.mtx: The mature RNA count matrix. 

§ cells_x_genes.ambiguous.mtx: The nascent RNA count matrix. 

§ cells_x_genes.nascent.mtx: The ambiguous RNA count matrix. 

§ cells_x_genes.cell.mtx: The mature+ambiguous RNA count matrix 

(note: this is what is quantified in the count matrix with the standard 

index type workflow option). 

§ cells_x_genes.nucleus.mtx: The nascent+ambiguous RNA count 

matrix. 

§ cells_x_genes.total.mtx: The mature+nascent+ambiguous RNA 

count matrix. 

For RNA-seq assays (e.g. bulk RNA-seq or Smartseq2) that profile the full length of 

transcripts in which case it is desirable to perform transcript-level quantification, the --tcc 

option is used. 
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- The first step to doing transcript-level quantification is to obtain transcript-

compatibility counts (TCCs) over equivalence classes (ECs). The TCCs will be 

outputted into output_dir/counts_unfiltered/ which contains the following files 

for the standard workflow: 

o cells_x_tcc.mtx: The count matrix containing the TCCs. 

o cells_x_tcc.barcodes.txt: The barcodes representing the matrix row names. 

o cells_x_tcc.ec.txt: The equivalence classes representing the matrix column 

names (note: this file has two columns—the first is the equivalence class 

numbers, which represent the column names, and the second is a comma-

separated list of transcript numbers (0 based) for all transcripts within the 

equivalence class). 

- The --tcc option will additionally produce transcript-level estimated counts which 

will be placed in the output_dir/quant_unfiltered/ directory which contains the 

following:  

o matrix.abundance.mtx: The matrix containing the transcript-level 

estimated counts. 

o matrix.abundance.tpm.mtx: The matrix containing the TPM-normalized 

transcript-level abundances. 

o matrix.efflens.mtx: A matrix that contains the transcript effective length 

o matrix.fld.tsv: A file with two columns, containing the mean and standard 

deviation, respectively, of the fragment length distribution used to produce 

transcript-level abundances and effective lengths for each row of the matrix. 

o matrix.abundance.gene.mtx: A matrix that is the same as the 

matrix.abundance.mtx matrix except counts are aggregated to gene-level. 
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o matrix.abundance.gene.tpm.mtx: A matrix that is the same as the 

matrix.abundance.tpm.mtx matrix except TPMs are aggregated to gene-

level. 

o transcripts.txt: The transcript names representing the matrix column 

names for the transcript-level quantification matrices. 

o genes.txt: The gene IDs representing the matrix column names for the gene-

level aggregation quantification matrices. 

o transcript_lengths.txt: The transcript names along with their lengths 

*Note: The row names are the individual samples and will be the same as those 

in the output_dir/counts_unfiltered/cells_x_tcc.barcodes.txt file. The 

output_dir/matrix.cells and output_dir/matrix.sample.barcodes files provide a 

mapping between the sample name and the sample barcode. 

*Note: The --matrix-to-directories option will output each row of the matrix into 

a separate subdirectory. In other words, using this option will produce multiple 

new directories within output_dir/quant_unfiltered/. Each one will be named 

abundance_{n} (where {n} is the sample number, corresponding to the rows in 

the matrix files). Within each subdirectory, an abundance.tsv text file and 

abundance.h5 HDF5 file will be created containing the quantifications for that 

particular sample. These abundance files are identical to the abundance files 

produced by the original version of kallisto for bulk RNA-seq. 

To load the quantification results into SCANPY (Wolf et al., 2018) for downstream 

processing in Python, an anndata (Virshup et al., 2021) object needs to be created. A user 

can import the count matrices into an anndata object (Box 10), or can run kb count with 

the --h5ad option to generate the anndata object directly. 
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Box 10: Loading count matrices into scanpy 

 
The standard index produces a single count matrix (in output_dir/counts_unfiltered/) 
which can be loaded into scanpy via an anndata object as follows: 
 
import kb_python.utils as kb_utils 
 
adata = kb_utils.import_matrix_as_anndata("cells_x_genes.mtx",  
"cells_x_genes.barcodes.txt",  
"cells_x_genes.genes.names.txt") 

 
The nac index type produces multiple count matrices. If one wishes to investigate 
different RNA species separately, one can load multiple count matrices as layers into 
the anndata object. The first layer will always be named “spliced” and the second layer 
will always be named “unspliced”. Below, we load in the “spliced” layer (from the 
cells_x_genes.cell.mtx count matrix which represents mature+ambiguous counts) and 
the “unspliced” layer (from the cells_x_genes.nascent.mtx count matrix, which 
represents the nascent counts). 
 
import kb_python.utils as kb_utils 
 
adata_spliced = 
kb_utils.import_matrix_as_anndata("cells_x_genes.cell.mtx",  
"cells_x_genes.barcodes.txt",  
"cells_x_genes.genes.names.txt") 
 
adata_unspliced = 
kb_utils.import_matrix_as_anndata("cells_x_genes.nascent.mtx",  
"cells_x_genes.barcodes.txt",  
"cells_x_genes.genes.names.txt") 
 
adata = kb_utils.overlay_anndatas(adata_spliced, adata_unspliced) 

 

Note: If sample-specific barcodes are specified in addition to cell barcodes, one can 
add batch_barcodes_path="cells_x_genes.barcodes.prefix.txt" to 
import_matrix_as_anndata to concatenate the two barcodes together. 
 
If one runs kb count with the --h5ad option, the file adata.h5ad is created alongside the 
count matrix files. With the nac index, it will have three layers: nascent, mature, and 
ambiguous, containing those respective matrices. One can read the file in via: 
 
adata = anndata.read_h5ad("output_dir/counts_unfiltered/adata.h5ad") 
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For downstream processing in R, one can load the quantification results into Seurat (Hao 

et al., 2021) (Box 11). Additionally, in R, one can create a Bioconductor 

SingleCellExperiment (Amezquita et al., 2020) object for use with single-cell analysis R 

packages such as scran (Lun et al., 2016) and scater (McCarthy et al., 2017) (Box 12). 

Box 11: Loading count matrices into Seurat 

 
The standard workflow produces a single count matrix (within the directory 
output_dir/counts_unfiltered/), which can be loaded into Seurat as follows: 
 
library(Seurat) 
 
expression_matrix <- ReadMtx(mtx="cells_x_genes.mtx", 
features = "cells_x_genes.genes.names.txt", 
cells = "cells_x_genes.barcodes.txt", 
feature.column=1, 
mtx.transpose = TRUE) 

 
For the nac workflow, multiple count matrices are produced. For example, in this 
workflow, the matrix file named  cells_x_genes.total.mtx can be used if one wants to 
consider the total counts (i.e. the sum of the nascent, mature, and ambiguous counts).  

 

Box 12: Loading count matrices into SingleCellExperiment 

 
Here, we show how to build a SingleCellExperiment object in R from the standard 
workflow output count matrix (in output_dir/counts_unfiltered/): 
 
library(SingleCellExperiment) 
library(Matrix) 
 
counts <- Matrix::readMM("cells_x_genes.mtx") 
gene_ids <- readLines("cells_x_genes.genes.txt") 
gene_symbols <- readLines("cells_x_genes.genes.names.txt") 
barcodes <- readLines("cells_x_genes.barcodes.txt") 
sce <- SingleCellExperiment(list(counts=t(counts)), 
colData=DataFrame(Barcode=barcodes), 
rowData=DataFrame(ID=gene_ids,SYMBOL=gene_symbols)) 
rownames(sce) <- gene_ids 
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The count matrices are initially unfiltered, which makes them very large and inefficient 

to process. After filtering for cells with sufficient UMI counts (among other criteria), the 

matrices that are loaded in will become much smaller and more efficient to process. 

Materials: 

• A 64-bit computer running either macOS, Windows, or a Linux/Unix operating 

system. 

• kb-python version 0.28.2 or later 

o kallisto version 0.50.1 or later (which comes packaged with kb-python) 

o bustools version 0.43.2 or later (which comes packaged with kb-python) 

• Python 3.7 or later (for kb-python version 0.28.2) 

• Bulk, single-cell, or single-nucleus RNA sequencing reads in (possibly gzip) 

FASTQ format. 

Timing: 

The runtime depends on the size of the reference being indexed, the number and length of 

the sequencing reads being processed, other properties of the dataset being quantified, 

system hardware and the number of threads allotted. The kb ref command only needs to be 

run once to create the index against which reads will be mapped. With 8 threads on a server 

with x86-64 architecture and 32 Intel Xeon CPUs (E5-2667 v3 @ 3.20GHz), kb ref, which 

by default uses the d-list option, takes ~15 min to generate a standard index from the 

GRCm39 mouse genome (using the respective raw unfiltered GTF file) and an hour to 

generate the nac index. For the preprocessing of 800 million Illumina sequencing reads 

(stored in a single pair of fastq.gz files) produced by single-cell RNA-seq from 10x 

Genomics, kb count with the nac workflow can take under an hour on 8 threads and under 

40 min on 16 threads, with an even lower runtime for the standard workflow. 



 

 

80 
Troubleshooting: 

The --verbose option in kb ref and kb count is helpful for examining the kallisto and 

bustools commands that are being run as well as their output. This can be used to 

troubleshoot errors. 

The --overwrite option in kb ref and kb count can be used to regenerate output files and 

directories that were produced (or left over) from a previous kb-python run. 

The output directory of a kb count run contains multiple JSON (Pezoa et al., 2016) files 

that contain quality control values such as the percentage of reads pseudoaligned. 

When using kb ref to generate a kallisto index, a genome FASTA file (not a transcriptome 

FASTA file) should be supplied along with the genome annotation GTF file. A 

transcriptome file will automatically be generated by kb ref and be indexed by kallisto. In 

general, the Ensembl (Harrison et al., 2024) .dna.toplevel.fa.gz files or the GENCODE 

(Frankish et al., 2023) .primary_assembly.genome.fa.gz files should be used as the 

reference genome. 

When using kb count, one should make sure that the value supplied to the -x technology 

string option matches the assay from which the sequencing reads were generated. Note that 

if the technology string begins with a -, for example: -1,0,0:0,0,5:0,5,0, one would need to 

write -x " -1,0,0:0,0,5:0,5,0" to avoid the string being misinterpreted as a command-line 

flag. 

Additional troubleshooting information is shown in Table 3.5. 
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Step Problem Possible reason Solution 

kb ref 

Error: 
temporary 
directory ‘tmp’ 
exists! 

Another instance of kb-python is running or the 
temporary directory ‘tmp’ already exists from a 
previous kb-python run that terminated 
prematurely 

Use --tmp to specify a different temporary 
directory or delete the ‘tmp’ directory before 
rerunning kb-python 

SIGILL illegal 
Instruction kallisto binary is incompatible with your system Install kallisto from source and follow the 

instructions in Supplementary Note 1 

Error: input 
file does not 
exist, is ill-
formed or is 
not in FASTA/ 
FASTQ/ 
GFA format 

Either the FASTA file or GTF file is empty, 
truncated or corrupted 

Redownload the genome FASTA file and 
genome GTF file 

Note: this error can also arise if a transcriptome 
FASTA file was supplied to kb ref instead of a 
genome FASTA file, or if the FASTA file and 
GTF file are incompatible (e.g., one was 
downloaded from GENCODE and the other was 
downloaded from ENSEMBL). In these cases, 
the solution is also to download a correct pair of 
genome FASTA and GTF files 

kb count 

‘Error: 
incompatible 
indices’ or 
‘Segmentation 
fault’ at the 
‘kallisto bus’ 
step 

Either the index file being supplied is corrupted, is 
not an actual kallisto index file, or was an index 
file generated by a version of kallisto that utilized 
a different index format; kallisto version 0.50.1 
utilizes a different index format than previous 
versions and future versions of kallisto may 
probably adopt a newer index format 

The kallisto index should be regenerated 

Very low 
counts or very 
few reads 
being 
pseudoaligned 

The strandedness setting is wrong Rerun with --strand=unstranded 

The technology specified is incorrect 

Contact the source of the data to obtain the 
details about the assay, and then ensure that the 
technology specified via -x and that the on-list 
specified via -w are compatible with the FASTQ 
files produced by that assay 

The index being used is wrong 

Ensure that you are using the correct species’ 
index (i.e., not using a mouse index to map 
human reads). Also ensure that, if you are 
quantifying data from nuclei, the nac index type 
is being used 

Error: 
temporary 
directory ‘tmp’ 
exists! 

Another instance of kb-python is running or the 
temporary directory ‘tmp’ already exists from a 
previous kb-python run that terminated 
prematurely 

Use --tmp to specify a different temporary 
directory or delete the ‘tmp’ directory before 
rerunning kb-python 

SIGILL illegal 
Instruction kallisto binary is incompatible with your system Install kallisto from source 

Program is 
hanging at the 
“bustools 
count” step 

The t2g (transcripts-to-gene mapping) file created 
by kb ref should be the exact file used by kb count 
when running kb count on that index. All the 
transcripts in the t2g file must be exactly the same 
as the transcripts present in the kallisto index. 
Incompatibilities can lead to unpredictable 
behavior in the bustools quantification step 

Fix the t2g file or make a new t2g file with a 
corresponding kallisto index by rerunning kb ref 

 

Table 3.5. Troubleshooting kallisto, bustools, and kb-python run issues. 
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Procedure: 

Here, we describe the procedures to use for mouse samples of paired-end bulk RNA-seq, 

10x (version 3) single-cell RNA-seq, and 10x (version 3) single-nucleus RNA-seq. 

Bulk RNA-seq 
 
Input: 

• Paired-end unstranded mouse RNA-seq reads (3 samples):  
sample1_R1.fastq.gz sample1_R2.fastq.gz 
sample2_R1.fastq.gz sample2_R2.fastq.gz 
sample3_R1.fastq.gz sample3_R2.fastq.gz 

 
1. Install kb-python 
 
pip install kb_python 

 

2. Download the mouse genome and annotation files 
 
wget ftp.ensembl.org/pub/release-108/fasta/mus_musculus/dna/Mus_musculus.GRCm39.dna.primary_assembly.fa.gz 
 
wget ftp.ensembl.org/pub/release-108/gtf/mus_musculus/Mus_musculus.GRCm39.108.gtf.gz 

 
3. Build the index 
 
kb ref -i index.idx -g t2g.txt -f1 cdna.fasta \ 
     Mus_musculus.GRCm39.dna.primary_assembly.fa.gz \ 
     Mus_musculus.GRCm39.108.gtf.gz 

 
4. Map the input sequencing reads to the index 
 
kb count -x BULK -o output_dir -i index.idx -g t2g.txt \ 
     --parity=paired --strand=unstranded \ 
     --tcc --matrix-to-directories \ 
     sample1_R1.fastq.gz sample1_R2.fastq.gz \ 
     sample2_R1.fastq.gz sample2_R2.fastq.gz \ 
     sample3_R1.fastq.gz sample3_R2.fastq.gz 
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5. Analyze the output 
 
Output for sample 1: 

• output_dir/quant_unfiltered/abundance_1/abundance.tsv 
• output_dir/quant_unfiltered/abundance_1/abundance.gene.tsv 
• output_dir/quant_unfiltered/abundance_1/abundance.h5 

 
Output for sample 2: 

• output_dir/quant_unfiltered/abundance_2/abundance.tsv 
• output_dir/quant_unfiltered/abundance_2/abundance.gene.tsv 
• output_dir/quant_unfiltered/abundance_2/abundance.h5 

 
Output for sample 3: 

• output_dir/quant_unfiltered/abundance_3/abundance.tsv 
• output_dir/quant_unfiltered/abundance_3/abundance.gene.tsv 
• output_dir/quant_unfiltered/abundance_3/abundance.h5 

 
The abundance.tsv files contain the transcript-level abundances. The abundance.h5 file 
contains the same information as the abundance.tsv files except in HDF5 format. The 
abundance.gene.tsv files contain the gene-level abundances (taken by summing up the 
transcript-level abundances for each gene). These files can be used in downstream 
differential gene expression programs. 
 
Single-cell RNA-seq 
 
Input: 

• 10x version 3 single-cell RNA-seq reads: R1.fastq.gz and R2.fastq.gz 
 
1. Install kb-python 
 
pip install kb_python 

 
2. Download the mouse genome and annotation files 
 
wget ftp.ensembl.org/pub/release-108/fasta/mus_musculus/dna/Mus_musculus.GRCm39.dna.primary_assembly.fa.gz 
 
wget ftp.ensembl.org/pub/release-108/gtf/mus_musculus/Mus_musculus.GRCm39.108.gtf.gz 

 
3. Build the index 
 
kb ref -i index.idx -g t2g.txt -f1 cdna.fasta \ 
     Mus_musculus.GRCm39.dna.primary_assembly.fa.gz \ 
     Mus_musculus.GRCm39.108.gtf.gz 
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4. Map the input sequencing reads to the index 
 
kb count -x 10xv3 -o output_dir -i index.idx -g t2g.txt \ 
     R1.fastq.gz R2.fastq.gz 

 
5. Analyze the output 
 
Output: 

• output_dir/counts_unfiltered/cells_x_genes.mtx 
• output_dir/counts_unfiltered/cells_x_genes.barcodes.txt 
• output_dir/counts_unfiltered/cells_x_genes.genes.txt 
• output_dir/counts_unfiltered/cells_x_genes.genes.names.txt 

 
The cells_x_genes.mtx is the count matrix file with the barcodes (the row names) listed in 
cells_x_genes.barcodes.txt and the gene names (the column names) listed in 
cells_x_genes.genes.names.txt (for gene IDs instead of gene names, use 
cells_x_genes.genes.txt). 
 
Single-nucleus RNA-seq 
 
Input: 

• 10x version 3 single-nucleus RNA-seq reads: R1.fastq.gz and R2.fastq.gz 
 
1. Install kb-python 
 
pip install kb_python 

 
2. Download the mouse genome and annotation files 
 
wget ftp.ensembl.org/pub/release-108/fasta/mus_musculus/dna/Mus_musculus.GRCm39.dna.primary_assembly.fa.gz 
 
wget ftp.ensembl.org/pub/release-108/gtf/mus_musculus/Mus_musculus.GRCm39.108.gtf.gz 

 
3. Build the index 
 
kb ref --workflow=nac -i index.idx -g t2g.txt \ 
    -c1 cdna.txt -c2 nascent.txt -f1 cdna.fasta -f2 nascent.fasta \ 
    Mus_musculus.GRCm39.dna.primary_assembly.fa.gz \ 
    Mus_musculus.GRCm39.108.gtf.gz 
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4. Map the input sequencing reads to the index 
 
kb count -x 10xv3 --workflow=nac -o output_dir \ 
     -i index.idx -g t2g.txt -c1 cdna.txt -c2 nascent.txt \ 
     --sum=total R1.fastq.gz R2.fastq.gz 

 
5. Analyze the output 
 
Output: 

• output_dir/counts_unfiltered/cells_x_genes.mature.mtx 
• output_dir/counts_unfiltered/cells_x_genes.nascent.mtx 
• output_dir/counts_unfiltered/cells_x_genes.ambiguous.mtx 
• output_dir/counts_unfiltered/cells_x_genes.cell.mtx 
• output_dir/counts_unfiltered/cells_x_genes.nucleus.mtx 
• output_dir/counts_unfiltered/cells_x_genes.total.mtx 
• output_dir/counts_unfiltered/cells_x_genes.barcodes.txt 
• output_dir/counts_unfiltered/cells_x_genes.genes.txt 
• output_dir/counts_unfiltered/cells_x_genes.genes.names.txt 

 

This workflow can be used for both single-cell RNA-seq and single-nucleus RNA-seq. 
Many count matrix files (.mtx files) are generated. For quantification of total RNA present 
in each cell or nucleus, one would want to use the cells_x_genes.total.mtx. For biophysical 
models that jointly consider spliced and unspliced transcripts, one may want to use 
cells_x_genes.cell.mtx (for the “spliced” transcripts) and cells_x_genes.nascent.mtx (for 
the “unspliced” transcripts). 

The barcodes (the matrix row names) are listed in cells_x_genes.barcodes.txt and the gene 
names (the matrix column names) are listed in cells_x_genes.genes.names.txt (for gene IDs 
instead of gene names, use cells_x_genes.genes.txt). 

Additional note: A more straightforward way of quantifying single-nucleus RNA-seq (if 
one doesn’t desire multiple count matrices) is to use kb count with the standard workflow 
against an index created via the nac workflow option of kb ref. This will give you the 
“total” counts in a single matrix file: output_dir/counts_unfiltered/cells_x_genes.mtx, 
rather than producing multiple count matrix files. 
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Example quantification files: 

Following a bulk RNA-seq analysis, one will obtain an abundance.tsv file as the main 

quantification output to be used in further analysis. An example of such an abundance.tsv 

file from an analysis run on a mouse liver tissue RNA-seq sample (Huntley et al., 2016), 

along with the distribution of counts from that analysis, in shown in Figure 3.20. 

 

Figure 3.20: Example output of bulk RNA-seq quantification. 
The abundance.tsv file was produced from running the protocol on a bulk RNA-seq sample 
(Gene Expression Omnibus accession ID: GSM1931645). The est_counts represents the 
estimated counts and the transcripts per million (tpm) represents the length- and depth-
normalized abundance for each transcript ID. Additionally, transcript length and effective 
length (eff_length) information are provided. In the histogram, the distribution of estimated 
counts (est_counts; omitting transcripts with zero counts) is shown. 
 
For single-cell RNA-seq analysis, one will obtain a count matrix file as the main 

quantification output to be used in further analysis. Additionally, the files containing the 

row names (the cell barcodes) and the column names (the gene identifiers) will be 

outputted. The count matrix file from an analysis run on a mouse neuron single-cell RNA-

seq sample prepared using 10x version 3 chemistry is shown in Figure 3.21, along with the 

row names and column names. The knee plot describing the distribution of UMI counts 

across barcodes for that analysis is also shown. Note that these results were produced using 

the standard index type; when using the nac index type (e.g., for single-nucleus RNA-seq), 

the output structure will be similar except multiple count matrix files will be produced (for 

nascent, mature, and ambiguous RNA). 
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Figure 3.21: Example output of single-cell RNA-seq quantification. 
The count matrix file, in sparse Matrix Market format, from a mouse neuron single-cell 
RNA-seq sample (neuron_1k_v3_fastqs, 10x Genomics) is shown (cells_x_genes.mtx). The 
count matrix contains 381,092 rows (i.e., cell barcodes), 56,980 columns (i.e., genes) and 
6,355,294 nonzero entries. The cells_x_genes.barcodes.txt file containing the list of the 
381,092 barcodes, corresponding to the rows of the matrix. The cells_x_genes.genes.txt 
file contains the list of the 56,980 genes (in Ensembl gene ID format), corresponding to the 
columns of the matrix. The knee plot shows the distribution of UMI counts across barcodes. 
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Supplementary Manual: 

Installation of kallisto and bustools from source or installation of specific versions. 
 
Installing kallisto and bustools from source 

kallisto (version 0.50.1): 
 
git clone --branch v0.50.1 https://github.com/pachterlab/kallisto 
cd kallisto 
mkdir build 
cd build 
cmake .. 
make 
make install 

 
bustools (version 0.43.2): 
 
git clone --branch v0.43.2 https://github.com/BUStools/bustools 
cd bustools 
mkdir build 
cd build 
cmake .. 
make 
make install 

 
Note: The --branch argument can be omitted to install the latest version of the software. 

 
Using kb_python with kallisto and bustools installed from source 

kb_python can be run with compiled binaries by supplying the paths to the binaries: 
 
kb ref --kallisto=/path/to/kallisto --bustools=/path/to/bustools … 

 
kb count --kallisto=/path/to/kallisto --bustools=/path/to/bustools … 

 

 
Installing a specific version of kb_python 

A specific version of kb_python (e.g. version 0.28.2) can installed as follows: 
pip install kb_python==0.28.2 
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Indexing a custom set of k-mers. 
 
Indexing a custom set of k-mers 

When multiple sequences may belong to the same “target”, as is the case with genetic 
polymorphisms, it can be desirable to index k-mers distributed across multiple targets 
rather than across a single contiguous target sequence. The target names in the input 
FASTA file must be numbers (specifically, zero-indexed numerical identifiers). Each k-
mer in the target sequence is associated with the target name specified in the header 
line. Indexing this FASTA file can then be accomplished with the custom index type 
using the --distinguish keyword. 
 
custom workflow (--distinguish): 
 
kb ref --workflow=custom -i index.idx --distinguish custom.fasta 

 
kallisto index -t 8 -i index.idx --distinguish custom.fasta 

 
Example custom.fasta file (with 3 targets): 
 
>0 
ACTCTATCATCATCTACTACTACTCGCAGCGACGACATCAGCTTTTTT 
>1 
GCGCGCCGCCGACGACACGCAGAGAAGAAAGCGCGACGAC 
>2 
TTATGTGTCGTGTAGTCGTAGTGTGTCGTGCCGCCGCGCGCAAA 
>2 
ATATACGATCATCAGCGACAGACTACTTCAGAAGACTATCA 
>0 
GTCGATCGGTGTCACATGCGCAAGCGTCAGCGACACGACTTCGG 

 

 
D-listing a custom set of k-mers 

When FASTA sequences are supplied to --d-list, distinguishing flanking k-mers (DFKs) 
are extracted from those sequences and placed in a D-list. Reads containing D-list k-
mers will not be mapped. One can also specify a custom set of k-mers to be in the D-
list, by using an empty sequence header. In the following example, since the header is 
absent, all k-mers in the sequence will be D-listed (if a header were present, only DFKs 
would be D-listed). 
> 
ACGCGACATAGCAGACTAGACATTATTTACGTATTATGATAGTAGAT 
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Filtering GTF entries when constructing the reference. 
 
kb ref: --include-attributes and --exclude-attributes to filter GTF entries 

Specific GTF entries can be included or excluded when building a reference 
transcriptome from a genome FASTA and GTF file. This can be done by using the 
following arguments to kb ref: 

   --include-attribute KEY:VALUE  

   --exclude-attribute KEY:VALUE 

where KEY is the name of the field (e.g. gene_biotype) in the GTF file and the VALUE 
is the value of the field (e.g. protein_coding). 

The box below shows an example of how to use --include-attribute to include only 
certain gene biotypes (the remaining gene biotypes present in the GTF file will not be 
included). Note that these are the same biotypes included in the Ensembl GRCh38 Cell 
Ranger reference (as of Cell Ranger version 7.1.0). 
 
kb ref -i index.idx -g t2g.txt -f1 cdna.fasta \ 
     --include-attribute gene_biotype:protein_coding \ 
     --include-attribute gene_biotype:lncRNA \ 
     --include-attribute gene_biotype:lincRNA \ 
     --include-attribute gene_biotype:antisense \ 
     --include-attribute gene_biotype:IG_LV_gene \ 
     --include-attribute gene_biotype:IG_V_gene \ 
     --include-attribute gene_biotype:IG_V_pseudogene \ 
     --include-attribute gene_biotype:IG_D_gene \ 
     --include-attribute gene_biotype:IG_J_gene \ 
     --include-attribute gene_biotype:IG_J_pseudogene \ 
     --include-attribute gene_biotype:IG_C_gene \ 
     --include-attribute gene_biotype:IG_C_pseudogene \ 
     --include-attribute gene_biotype:TR_V_gene \ 
     --include-attribute gene_biotype:TR_V_pseudogene \ 
     --include-attribute gene_biotype:TR_D_gene \ 
     --include-attribute gene_biotype:TR_J_gene \ 
     --include-attribute gene_biotype:TR_J_pseudogene \ 
     --include-attribute gene_biotype:TR_C_gene \ 
     genome.fasta genome.gtf 

 

 
 
 
 
 



 

 

91 
Supplementary Manual: Reference for kallisto and bustools commands. 
 
1. kallisto 
 
Running kallisto usually involves two steps: 1) Indexing a FASTA file of target sequences 
via kallisto index, and 2) Mapping sequencing reads to kallisto index using 
kallisto bus. 
 
1.1 kallisto index 
 
Builds a kallisto index. 
 
Usage: kallisto index [arguments] FASTA-files 
 
Required argument: 
-i, --index=STRING       Filename for the kallisto index to be constructed  
 
Optional arguments: 
-k, --kmer-size=INT      k-mer (odd) length (default: 31, max value: 31) 
 
-t, --threads=INT        Number of threads to use (default: 1) 
 
-d, --d-list=STRING      Path to a FASTA-file containing sequences to mask  
                         from quantification (i.e. to extract distinguishing  
                         flanking k-mers from). 
 
--make-unique            Replace repeated target names with unique names 
 
--aa                     Generate index from a FASTA-file containing 
                         amino acid sequences 
 
--distinguish            Generate index where sequences are distinguished  
                         by the sequence name, for example, when indexing  
                         k-mers distributed across multiple targets rather  
                         than across a single contiguous target sequence. 
 
-T, --tmp=STRING         Temporary directory (default: tmp) 
 
-m, --min-size=INT       Length of minimizers (default: automatically chosen) 
 
-e, --ec-max-size=INT    Maximum number of targets in an equivalence class  
                         (default: no maximum) 
 
Among the optional arguments in kallisto index, in a general use case, typically only 
-i (--index; to specify the name of the index output filename), -t (--threads; to 
specify the number of threads), and -d (--d-list; to specify the filename from which to 
extract distinguishing flanking k-mers) are used. 
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1.2 kallisto bus 
 
Generates a BUS file containing the results from mapping sequencing reads to a kallisto 
index. 
 
Usage: 
kallisto bus [arguments] FASTQ-files 
kallisto bus [arguments] --batch=batch.txt 
 
Required arguments: 
-i, --index=STRING            Filename for the kallisto index to be used for 
                              pseudoalignment 
 
-o, --output-dir=STRING       Directory to write output to 
 
-x, --technology=STRING       The “technology” string for the sequencing  
                              technology used 
 
Other arguments: 
-l, --list                    List the technologies that are hard-coded into  
                              kallisto so the name of the technology can          
                              simply be supplied as the technology string  
 
-B, --batch=FILE              Path to a batch file. The batch file is a text  
                              file listing all the samples to be analyzed  
                              with the paths to their respective FASTQ files. 
                              If a batch file is supplied, then one shouldn’t 
                              supply FASTQ files on the command line. 
 
-t, --threads=INT             Number of threads to use (default: 1) 
 
-b, --bam                     Input file is a BAM file rather than a set of  
                              FASTQ files. Note: This is a nonstandard  
                              workflow. It is strongly recommended to supply  
                              FASTQ files rather than use this option and not  
                              all technologies are supported by this option. 
 
-n, --num                     Output read number in flag column of BUS file 
                              The read number is zero-indexed. One can view  
                              the read numbers by inspecting the BUS file  
                              using bustools text. This option is useful for  
                              pulling specific mapped reads out of the FASTQ  
                              file or for examining which reads did not end  
                              up being mapped by kallisto. (Important note:  
                              BUS files with read numbers in the flag column  
                              can NOT be used in quantification tasks with  
                              bustools). (Note: incompatible with --bam) 
 
-N, --numReads=INT            Maximum number of reads to process from  
                              supplied input. This is useful for processing  
                              a small subset of reads from a large sequencing  
                              experiment as a quick quality control. 
                              Moreover, the program returns 1 if the number 
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                              of reads processed from the input is less than  
                              the number supplied here. This is useful for  
                              catching errors when we expect a certain number 
                              of reads to be present in the input but not all  
                              the reads end up being there. 
 
-T, --tag=STRING              5ʹ tag sequence to identify UMI reads for  
                              certain technologies. This is useful for  
                              smart-seq3 where the UMI-containing reads have  
                              an 11-bp tag sequence (ATTGCGCAATG) located at  
                              the beginning of the UMI location. If this tag  
                              sequence is present immediately before the UMI 
                              location, then the UMI is processed into the  
                              output BUS file; for all other sequences, the  
                              UMI field in the BUS file is left empty (the  
                              field is populated with the value -1 in binary  
                              format). 
                              Note: Matching the tag sequence is done with  
                              a hamming distance error tolerance of 1 if the  
                              tag is longer than 5 nucleotides. Otherwise,  
                              no error tolerance is permitted. 
                              Note: If strand-specificity is enabled, it will 
                              only be applied to the UMI-containing reads. 
 
    --fr-stranded             Strand specific reads, first read forward 
 
    --rf-stranded             Strand specific reads, first read reverse 
 
    --unstranded              Treat all read as non-strand-specific 
 
    --paired                  Treat reads as paired (i.e. if two biological  
                              read sequences are present across two FASTQ  
                              files, they will be mapped taking into account 
                              their paired-endness: fragment length  
                              distribution will be estimated for the read  
                              pairs, and only one read in the pair needs to  
                              map successfully in order to be considered           
                              successful pseudoalignment) 
 
    --aa                      Align to index generated from a FASTA-file  
                              containing amino acid sequences 
 
    --inleaved                Specifies that input is an interleaved FASTQ  
                              file. That is, only one FASTQ file is supplied  
                              and the sequences are interleaved. For example,  
                              instead of an R1 and R2 FASTQ file, a single  
                              FASTQ file can be supplied where the reads are  
                              listed in order of each R2 read immediately  
                              following each R1 read. This is also useful  
                              when piping interleaved output generated by  
                              another program directly into  
                              kallisto bus which can be done by  
                              supplying - as the input file in lieu of  
                              FASTQ file names. 
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    --batch-barcodes          Records both the generated sample-specific  
                              barcodes as well as the cell barcodes extracted  
                              from the reads in the output BUS file. If not  
                              supplied, then the sample-specific barcodes are  
                              not recorded. 
 
In the output directory specified by -o or --output-dir, the following files are made: 

• output.bus: A BUS file containing the mapped reads information, which will be 
further processed using bustools. 

• transcripts.txt: A text file containing a list of the names of the targets or transcripts 
used. 

• matrix.ec: A text file containing the equivalence classes. The equivalence class 
number (zero-indexed) is in the first column and a comma-separated list of target 
or transcript IDs belonging to that equivalence class are in the second column. The 
transcript IDs are numbers (zero-indexed) that correspond to the line numbers 
(zero-indexed) in the transcripts.txt file. 

• run_info.json: Contains information about the run, including percent of reads 
pseudoaligned, number of reads processed, index version, etc. 

• flens.txt: Only produced when using paired-end mapping. Contains the fragment 
length distribution, which can be used by kallisto quant-tcc to produce TPM 
abundance values. 
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1.3 kallisto quant-tcc 
 
Quantifies abundance from pre-computed transcript-compatibility counts. It takes in a 
transcript compatibility counts (TCC) matrix outputted by bustools count and runs an 
expectation-maximization (EM) algorithm to produce transcript abundances. This is useful 
for producing TPM values from bulk RNA-seq and smart-seq2 RNA-seq data. The output 
files can be used by bulk RNA-seq differential gene expression programs. 
 
Usage: kallisto quant-tcc [arguments] transcript-compatibility-counts-file 
 
Required arguments: 
-o, --output-dir=STRING       Directory to write output to. 
 

-e, --ec-file=FILE            File containing equivalence classes 
                              (the equivalence class file in the same  
                              directory as the output matrix file  
                              should be used). 
 
Other arguments: 
-i, --index=STRING            Filename for the kallisto index  
                              to be used 
                              (required if --txnames is not supplied  
                              or if any of the fragment length  
                              options: -f, -l, -s, is supplied 
                              since the index contains transcript  
                              lengths, which is necessary for length  
                              normalization). 
 
-T, --txnames=STRING          File with names of transcripts 
                              (required if index file not supplied). 
 
-f, --fragment-file=FILE      File containing fragment length  
                              distribution (flens.txt outputted by  
                              kallisto). 
 
-l, --fragment-length=DOUBLE  Estimated average fragment length. 
 
-s, --sd=DOUBLE               Estimated standard deviation of fragment  
                              length 
                              (note: -l, -s values only should be  
                              supplied when effective length  
                              normalization needs to be performed 
                              but --fragment-file is not specified). 
 
                              Note: If none of the fragment length  
                              options -f -l -s are supplied, then  
                              effective length normalization is not  
                              performed (i.e. transcript length isn’t  
                              taken into account when quantification  
                              is performed). 
 
-p, --priors=FILE             Priors for the EM algorithm, either as  
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                              raw counts or as probabilities.  
                              Pseudocounts are added to raw counts to 
                              prevent zero valued priors. Supplied in  
                              the same order as the transcripts in the  
                              transcriptome (e.g. in --txnames). 
 
-t, --threads=INT             Number of threads to use (default: 1). 
 
-g, --genemap=FILE            File for mapping transcripts to genes 
                              (this is the t2g.txt file produced by  
                              kb ref in kb-python and is required for  
                              obtaining gene-level abundances). 
 
-G, --gtf=FILE                GTF file for transcriptome information 
                              (can be used instead of --genemap for  
                              obtaining gene-level abundances). 
 
-b, --bootstrap-samples=INT   Number of bootstrap samples (default: 0) 
                              Bootstrap samples are useful for 
                              obtaining inferential variance which can 
                              be used by programs such as sleuth. 
 
    --matrix-to-files         Reorganize matrix output into abundance  
                              tsv files. 
 
    --matrix-to-directories   Reorganize matrix output into abundance  
                              tsv files across multiple directories. 
 
    --seed=INT                Seed for the bootstrap sampling  
                              (default: 42). 
 
    --plaintext               Output plaintext only, not HDF5 
                              (When --matrix-to-directories or  
                              --matrix-to-files are supplied, HDF5  
                              files are outputted by default, in  
                              addition to the plaintext abundance tsv  
                              files since HDF5 files containing  
                              abundance information are used by  
                              programs such as sleuth; this option  
                              disables that). 
 
In the output directory specified by -o or --output-dir, the following files are made: 

• matrix.abundance.mtx: A sample-by-transcript (or cell-by-transcript) 
MatrixMarket sparse matrix file containing the estimated transcript counts. 

• matrix.abundance.gene.mtx: A sample-by-gene (or cell-by-gene) MatrixMarket 
sparse matrix file containing the estimated transcript counts summed up to gene-
level. Only made if a transcript-to-gene mapping was provided. 

• matrix.abundance.tpm.mtx: A sample-by-transcript (or cell-by-transcript) 
MatrixMarket sparse matrix file containing the normalized transcript abundances 
(if effective length normalization is performed, then the results are in length-
normalized TPM units; otherwise the results are in CPM [counts-per-million] units 
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wherein each value is normalized by the sum of all counts for that particular 
sample or cell). 

• matrix.abundance.gene.tpm.mtx: A sample-by-gene (or cell-by-gene) 
MatrixMarket sparse matrix file containing the same information as 
matrix.abundance.tpm.mtx except summed up to gene-level if a transcript-to-gene 
mapping was provided. 

• transcripts.txt: A text file containing a list of the names of the targets or transcripts 
used (not made if a transcripts file was already provided via --txnames). These 
transcripts correspond to the columns of transcripts in the matrix abundance output 
files. 

• genes.txt: A text file containing a list of genes, if a transcript-to-gene mapping was 
provided. These genes correspond to the columns of genes in the matrix abundance 
output files. 

• --matrix-to-files: If this option is provided, the abundance output files will be 
named abundance_{n}.tsv and abundance_{n}.h5 (hdf5 format) where {n} is the 
sample number or cell number (which corresponds to the rows in the matrix files). 
If bootstrapping is enabled, additional abundance tsv files (starting with the prefix 
bs_abundance_{n}_) will be created for each bootstrap sample. If a transcript-to-
gene mapping is provided, abundance.gene_{n}.tsv files will be created as well 
with the gene-level quantification. 

• --matrix-to-directories: If this option is provided, directories named abundance_{n} 
(where {n} is the sample number or cell number, corresponding to the rows in the 
matrix files) will be created. Within each directory, an abundance.tsv text file and 
abundance.h5 HDF5 file will be created containing the quantifications for that 
particular sample or cell. If bootstrapping is enabled, additional abundance tsv files 
(starting with the prefix bs_abundance_) will be created for each bootstrap sample. 
If a transcript-to-gene mapping is provided, an abundance.gene.tsv file will be 
created within each directory with the gene-level quantification. 

 
The first few lines of an abundance tsv file looks as follows: 
 
target_id           length   eff_length  est_counts tpm 
ENST00000641515.2   2618     2349.39     0          0 
ENST00000426406.4   939      670.39      0          0 
ENST00000332831.4   995      726.39      0          0 
ENST00000616016.5   3465     3196.39     5.68407    0.128913 
ENST00000618323.5   3468     3199.39     1.83535    0.041586 
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1.4 kallisto quant 
 
kallisto quant is an old usage of kallisto when kallisto was first developed for bulk 
RNA-seq quantification. It is now recommended that users use the kallisto bus 
command instead. 
 
As such, documentation for the old kallisto quant is not within the scope of this 
protocol. 
 
1.5 kallisto inspect 
 
Inspects and gives information about an index. The index can be loaded more quickly by 
using multiple threads, which can be specified by the -t option. 
 
Example usage: 
kallisto inspect -t 8 /path/to/kallisto/index.idx 
 
Sample output: 
[index] k-mer length: 31 
[index] number of targets: 252,301 
[index] number of k-mers: 155,644,518 
[index] number of distinguishing flanking k-mers: 7,425,493 
[inspect] Index version number = 12 
[inspect] number of unitigs = 9411252 
[inspect] minimizer length = 23 
[inspect] max EC size = 3873 
[inspect] number of ECs discarded = 0 
 
1.6 kallisto version 
 
Prints out the version of the kallisto software that is being used 
 
1.7 kallisto cite 
 
Prints out citation information 
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2. bustools 
 
Bustools is run on BUS files generated by the kallisto bus command. The first step in 
working with BUS files is usually to sort the BUS file using bustools sort. This will 
organize the BUS file, making it suitable for use with other bustools commands. In a 
standard workflow, the sorted BUS file is error-corrected to a barcode on list via bustools 
correct, then sorted again, then quantified into count matrices via bustools count. 
There are many bustools commands, some of which are outside the scope of this protocol 
and some of which are in development; therefore only the bustools commands relevant to 
most RNA-seq analyses are presented here. 
 
Many of the bustools commands can read from the standard input (stdin), by specifying - 
as the input file and write to standard output (stdout) using the -p flag if available. 
 
2.1 bustools sort 
 
Sorts a BUS file. bustools sort (using the default options) should always be done 
before any additional processing of the BUS file following generation of the BUS file from 
the kallisto bus command. Many bustools commands will not work properly with an 
unsorted BUS file. Increasing the number of threads and maximum memory will speed up 
sorting. 
 
The default behavior is to sort by barcode, UMI, equivalence class (ec), then the flag 
column. 
 
Usage: bustools sort [options] bus-files 
 
Arguments: 
-t, --threads=INT         Number of threads to use (default: 1). 
 
-m, --memory=STRING       Maximum memory used (default: 4G). 
 
-T, --temp=STRING         Location and prefix for temporary files 
                          (required if using -p, otherwise 
                          defaults to output). 
 
-o, --output=STRING       Filename to output sorted BUS file into. 
 
-p, --pipe                Write to standard output. 
 

    --umi                 Sort by UMI, barcode, then ec. 
 
    --count               Sort by multiplicity (count), barcode, UMI, then ec. 
 
    --flags               Sort by flag, ec, barcode, then UMI. 
 
    --flags-bc            Sort by flag, barcode, UMI, then ec. 
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    --no-flags            Ignore and reset the flag column while sorting. 
                          If read numbers are present in the flag column of 
                          the BUS file, sorting using this option renders 
                          BUS file suitable for use in generating  
                          count matrices. 
 
2.2 bustools correct 
 
Error-corrects the barcodes in a BUS file to an “on list”. 
 
Error correction is done based on a hamming distance 1 mismatch between each BUS file 
barcode sequence and each “on list” sequence. For barcode error correction, the “on list” 
file simply contains a list of sequences in the “on list”. 
 
Another operation supported is the replacement operation: Each “on list” sequence (in the 
first column of the “on list” file) has a replacement sequence (in the second column of the 
“on list” file) designated therefore if a BUS file barcode has an exact match to one of those 
“on list” sequences, it is replaced with its replacement sequence. 
 
Note: The input BUS file need not be sorted. 
 
Usage: bustools correct [options] bus-files 
 
Arguments: 
-o, --output=STRING      Filename to output barcode-corrected BUS file into. 
 
-w, --onlist=FILE        File containing the “on list” sequences. 
 
-p, --pipe               Write to standard output. 
 
-r, --replace            Perform the replacement operation rather than the  
                         barcode error correction operation for the file  
                         supplied in the -w option. 
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2.3 bustools count 
 
Generates count matrices from BUS files that have been sorted and barcode-error-
corrected. 
 
Usage: bustools count [options] sorted-bus-files 
 
Arguments: 
-o, --output=STRING      The prefix of the output files for count matrices. 
 
-g, --genemap=FILE       File for mapping transcripts to genes 
                         (when using kb ref in kb-python, this is the  
                         t2g.txt file produced by kb ref). 
 
-e, --ecmap=FILE         File for mapping equivalence classes to transcripts. 
 
-t, --txnames=FILE       File with names of transcripts. 
 
    --genecounts         Aggregate counts to genes only. 
                         This option generates a gene count matrix; if this  
                         option is not supplied, a transcript-compatibility  
                         counts (TCC) matrix (where each equivalence class  
                         gets a count) is generated instead. 
 
    --umi-gene           Handles cases of UMI collisions. For example, a case  
                         may be where two reads with the same UMI  
                         sequence and the same barcode map to different  
                         genes. With this option enabled, those reads are  
                         considered to be two distinct molecules which were  
                         unintentionally labeled with the same UMI, and hence  
                         each gene gets a count. 
 
    --cm                 Counts multiplicities rather than UMIs. In other  
                         words, no UMI collapsing is performed and each  
                         mapped read is its own unique molecule regardless of  
                         the UMI sequence (i.e. the UMI sequence is ignored). 
 
-m, --multimapping       Include bus records that map to multiple genes. 
                         When --genecounts is enabled, this option causes  
                         counts to be distributed uniformly across all the  
                         mapped genes (for example, if a read multimaps to  
                         two genes, each gene will get a count of 0.5). 
 
-s, --split=FILE         Split output matrix in two (plus ambiguous) based on  
                         the list of transcript names supplied in this file. 
                         If a UMI (after collapsing) or a read maps to  
                         transcripts found in this file, the count is entered 
                         into a matrix file with the extension .2.mtx; if it  
                         maps to transcripts not in this file, the count is  
                         entered into a separate matrix file with the 
                         extension .mtx; if it maps to some transcripts in  
                         this file and some transcripts not in this file, the  
                         count is entered into a third matrix file with the  
                         extension .ambiguous.mtx. 
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                         When quantifying nascent, ambiguous, and mature RNA  
                         species, the nascent transcript names (which will  
                         actually simply be the gene IDs themselves) will  
                         be listed in the file supplied to --split so that  
                         the .mtx file contains the mature RNA counts, the  
                         .2.mtx file contains the nascent RNA counts, and the  
                         .ambiguous.mtx file contains the ambiguous RNA 
                         counts. Note that kb-python renames .mtx to  
                         .mature.mtx and renames 2.mtx to .nascent.mtx. 
 
Output: 
Each output file is prefixed with what is supplied to the --output option. In kb count 
within kb-python, the prefix is cells_x_genes. Thus, the files outputted (when generating a 
gene count matrix via --genecounts) will be cells_x_genes.mtx (the matrix file), 
cells_x_genes.barcodes.txt (the barcodes, i.e. the rows of the matrix), and 
cells_x_genes.genes.txt (the genes, i.e. the columns of the matrix). When generating a TCC 
matrix, cells_x_genes.ec.txt will be generated in lieu of cells_x_genes.genes.txt as the 
columns of the matrix will be equivalence classes (ECs) rather than genes. If both sample-
specific barcodes and cell barcodes are supplied (as is the case when one uses --batch-
barcodes in kallisto bus), then an additional cells_x_genes.barcodes.prefix.txt file 
will be created containing the sample-specific barcodes. The lines of this file correspond 
to the lines in the cells_x_genes.barcodes.txt (both files will have the same number of 
lines). Finally, when --split is supplied, additional .mtx matrix files will be generated 
(see the --split option described above). 
 
2.4 bustools inspect 
 
Produces a report summarizing the contents of a sorted BUS file. The report can be output 
either to standard output or to a JSON file. 
 
Usage: bustools inspect [options] sorted-bus-file 
Arguments: 
-o, --output=STRING       Filename to output sorted BUS file into 
 
-e, --ecmap=FILE          File for mapping equivalence classes to transcripts 
 
-w, --onlist=FILE         File containing the barcodes “on list” 
 
-p, --pipe                Write to standard output 
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Sample report output in standard output (using -p): 
Read in 3148815 BUS records 
Total number of reads: 3431849 
 
Number of distinct barcodes: 162360 
Median number of reads per barcode: 1.000000 
Mean number of reads per barcode: 21.137281 
 
Number of distinct UMIs: 966593 
Number of distinct barcode-UMI pairs: 3062719 
Median number of UMIs per barcode: 1.000000 
Mean number of UMIs per barcode: 18.863753 
 
Estimated number of new records at 2x sequencing depth: 
2719327 
 
Number of distinct targets detected: 70492 
Median number of targets per set: 2.000000 
Mean number of targets per set: 3.091267 
 
Number of reads with singleton target: 1233940 
 
Estimated number of new targets at 2x seuqencing depth: 
6168 
 
Number of barcodes in agreement with on-list: 92889 
(57.211752%) 
Number of reads with barcode in agreement with on-list: 
3281671 (95.623992%) 
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Sample report output in JSON format: 
{ 
 "numRecords": 3148815, 
 "numReads": 3431849, 
 "numBarcodes": 162360, 
 "medianReadsPerBarcode": 1.000000, 
 "meanReadsPerBarcode": 21.137281, 
 "numUMIs": 966593, 
 "numBarcodeUMIs": 3062719, 
 "medianUMIsPerBarcode": 1.000000, 
 "meanUMIsPerBarcode": 18.863753, 
 "gtRecords": 2719327, 
 "numTargets": 70492, 
 "medianTargetsPerSet": 2.000000, 
 "meanTargetsPerSet": 3.091267, 
 "numSingleton": 1233940, 
 "gtTargets": 6168, 
 "numBarcodesOnOnlist": 92889, 
 "percentageBarcodesOnOnlist": 0.57211752, 
 "numReadsOnOnlist": 3281671, 
 "percentageReadsOnOnlist": 0.95623992 
} 
 
Note: The numTargets, medianTargetsPerSet, meanTargetsPerSet, numSingleton, and 
gtTargets values are only generated if the --ecmap option is provided. The 
numBarcodesOnOnlist, percentageBarcodesOnOnlist, numReadsOnOnlist, 
percentageReadsOnOnlist values are only generated if the --onlist is provided. 
 
 
 
2.5 bustools allowlist 
 
Generates an “on list” based on the barcodes in a sorted BUS file. This is a way of 
generating an on list that the barcodes in the BUS file will be corrected to, for technologies 
that don’t provide an on list. 
 
Usage: bustools allowlist [options] sorted-bus-file 
 
Arguments: 
-o, --output=STRING           Filename to output the “on list” into. 
 
-f, --threshold=INT           A highly optional parameter specifying the 
                              minimum number of times a barcode must appear 
                              to be included in “on list”. If not provided, a  
                              threshold will be determined based on the first  
                              200 to 100200 BUS records. 
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2.6 bustools capture 
 
Separates a BUS file into multiple files according to the capture criteria. 
 
Usage: bustools capture [options] bus-files 
 
Capture options: 
-F, --flags                Capture list is a list of flags to capture 
 
-s, --transcripts          Capture list is a list of transcripts to capture 
 
-u, --umis                 Capture list is a list of UMI sequences to capture 
 
-b, --barcode              Capture list is a list of barcodes to capture 
 
Arguments: 
-o, --output=STRING        Name of file for the captured BUS output 
 
-x, --complement           Take complement of captured set 
                           (i.e. output all BUS records that do NOT  
                           match an entry in the capture list) 
 
-c, --capture=FILE         File containing the “capture list” 
                           (i.e. list of transcripts, transcripts, flags,  
                           UMI sequences, or barcode sequences) 
 
-e, --ecmap=FILE           File for mapping equivalence classes to  
                           transcripts (required for --transcripts) 
 
-t, --txnames=FILE         File with names of transcripts 
                           (required for --transcripts) 
 
-p, --pipe                 Write to standard output 
 
Note: If you use the -b (--barcode) option and want to capture all records containing a 
sample-specific barcode from running --batch-barcodes in kallisto bus, in the 
“capture list” file, enter the 16-bp sample-specific barcode followed by a * character (e.g. 
AAAAAAAAAAAAAACT*). 
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2.7 bustools text 
 
Converts a binary BUS file into its plaintext representation. The plaintext will have the 
columns (in order): barcode, UMI, equivalence class, count, flag, and pad. Note: The last 
two columns will only be outputted if the respective option is specified by the user. 
 
Usage: bustools text [options] bus-files 
 
Arguments: 
-o, --output=STRING       Filename of the output text file. 
 
-f, --flags               Write the flag column. 
 
-d, --pad                 Write the pad column 
                          (the “pad” column is an additional 32-bit field 
                          in the BUS file, in case one would like to use the  
                          BUS format to store additional data for each BUS  
                          record; this column is typically not used). 
 
-p, --pipe                Write to standard output. 
 
-a, --showAll             Show all 32 bases in the barcodes field (e.g. if  
                          --batch-barcodes is specified in kallisto bus, the  
                          cell barcodes are stored in barcodes field and are  
                          used for bustools barcode correction to an on-list;  
                          however, the artificial sample-specific barcodes  
                          are stored as an additional “hidden” field in the  
                          barcodes column, immediately preceding the cell  
                          barcodes, and may be truncated or left-padded with  
                          A’s to fill the 32 bases. For example, if the cell  
                          barcode is 12 bases, there will be 4 A’s followed  
                          by the 16-bp sample-specific barcode followed by  
                          the 12-base cell barcode. If the cell barcode is 26  
                          bases, the last 6 bases of the sample-specific  
                          barcode will be shown followed by the 26-base cell  
                          barcode). 
 
An example of the plaintext output of a BUS file (with the flag column): 
AAAAGATCACTATGCACTATCATC GCAAAACCTT 156 2 0 
AAAAGATCAGATCGCACACTTTCA TAGAGTAACC 438 3 0 
AAAAGATCAGATCGCAGCTCTACT TTAGGTATAG 1808 1 0 
AAAAGATCAGCACCTCCTGACTTC AATCGGCATT 4481 1 0 
If one runs kallisto bus  with the -n (--num) option, the read number (zero-indexed) 
of the mapped reads will be stored in the flags column (i.e. the fifth column). One can view 
those read numbers using bustools text to identify which reads in the input FASTQ 
files mapped (and which reads were unmapped). 
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2.8 bustools fromtext 
 
Converts a plaintext representation of a BUS file to a binary BUS file. The plaintext input 
file should have four columns: barcode, UMI, equivalence class, and count. Optionally, a 
fifth column (the flags column) can be supplied. 
 
Usage: bustools fromtext [options] text-files 
 
Arguments: 
-o, --output=STRING           Filename to write the output BUS file 
 
-p, --pipe                    Write to standard output 
 

 

2.9 bustools extract 
 
Extracts the successfully mapped sequencing reads from the input FASTQ files that were 
processed with kallisto bus  with the -n (--num) option, which places the read 
number (zero-indexed) in the flags column of the BUS file. Although BUS files with read 
numbers present in the flags column should not be used for downstream quantification, 
they can be used by bustools extract to extract the original sequencing reads (as well 
as by bustools text to view the sequencing read number along with the barcode, UMI, 
and equivalence class). 
 
Note: The BUS file must be sorted by flag. The output BUS file directly from kallisto 
should already be sorted by flag, but, if not, one can use apply bustools sort --flag 
on the BUS file. 
 
Usage: bustools extract [options] sorted-by-flag-bus-file 
 
Arguments: 
-o, --output=STRING   Directory that the output FASTQ files will be stored in. 
 
-f, --fastq=STRING    FASTQ file(s) from which to extract reads  
                      (comma-separated list). These should be the same files  
                      used as input to kallisto bus. 
 
-N, --nFastqs=INT     Number of FASTQ file(s) per run. For example, in 10xv3  
                      where there are two FASTQ files (and R1 and R2 file),  
                      --nFastqs=2 should be set. 
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Bustools extract is especially useful to use in conjunction with bustools capture 
when one wishes to extract specific reads (e.g. reads that contain a certain barcode or reads 
whose equivalence class contains a certain transcript). Below, we show an example of how 
to extract reads from two input files: R1.fastq.gz and R2.fastq.gz entered into a kallisto bus 
run with results outputted into a directory named output_dir. We’ll extract reads that are 
compatible with either the transcript ENSMUST00000171143.2 or 
ENSMUST00000131532.2. 
 
Create a file called capture.txt containing the following two lines: 
ENSMUST00000171143.2 
ENSMUST00000131532.2 
 
Run the following: 
bustools capture -c capture.txt --transcripts \  
--ecmap=output_dir/matrix.ec \  
--txnames=output_dir/transcripts.txt -p \ 
output_dir/output.bus | bustools extract --nFastqs=2 \  
--fastq=R1.fastq.gz,R2.fastq.gz -o extracted_output - 
 
The capture results are directly piped into the extract command, and the extracted FASTQ 
sequencing reads output are placed into the paths extracted_output/1.fastq.gz and 
extracted_output/2.fastq.gz (for the input files R1.fastq.gz and R2.fastq.gz, respectively). 
 
bustools extract does not work when you have sample-specific barcodes in your 
BUS file because each sample’s read number (as recorded in the flags column of the BUS 
file) starts from 0. To work around this, you should first use bustools capture to 
isolate a specific sample and then supply that specific sample’s FASTQ file(s). 
 
2.10 bustools umicorrect 
 
Implements the UMI correction algorithm of UMI-tools and outputs a BUS file with the 
corrected UMIs. 
 
Usage: bustools umicorrect [options] sorted-bus-file 
 
Arguments: 
-o, --output=STRING      Filename of the output BUS file with UMIs corrected 
 
-p, --pipe               Write to standard output 
 
-g, --genemap=FILE       File for mapping transcripts to genes 
                         (when using kb ref in kb-python, this is the  
                         t2g.txt file produced by kb ref) 
 
-e, --ecmap=FILE         File for mapping equivalence classes to transcripts 
 
-t, --txnames=FILE       File with names of transcripts 
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2.11 bustools compress 
 
Takes in a BUS file, sorted by barcode-umi-ec (i.e. the default option for bustools 
sort), and compresses it. 
 
Usage: bustools compress [options] sorted-bus-file 
 
Arguments: 
-N, --chunk-size=INT           Number of rows to compress as a single 
block 
 
-o, --output=STRING            Filename for the output compressed BUS 
file 
 
-p, --pipe                     Write to standard output 
 
2.12 bustools decompress 
 
Takes in a compressed BUS file and inflates (i.e. decompresses) it. 
 
Usage: bustools decompress [options] compressed-bus-file 
 
Arguments: 
-o, --output=STRING            Filename for the output decompressed BUS 
file 
 
-p, --pipe                     Write to standard output 
 
2.13 bustools version 
 
Prints out the version of the bustools software that is being used. 
 
2.14 bustools cite 
 
Prints out citation information. 
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An example mouse multiplexed single-nucleus SPLiT-seq preprocessing workflow. 
 
Here we describe how to process a mouse multiplexed single-nucleus SPLiT-seq assay. 
The input FASTQ files are split across multiple subpools such that two cells may have the 
same cell barcode but be in different subpools. The SPLiT-seq assay uses both oligo-dT 
and random hexamer primers (which are represented in the third component of the cell 
barcode, corresponding to the first round of split pooling). As a result, two sets of matrices 
will be produced: One with both the oligo-dT and random hexamer barcodes in the same 
count matrix and one with the oligo-dT barcodes converted into the random hexamer 
barcodes (so that each barcode is unique to one nucleus). This facilitates investigation of 
each library type separately (should one wish to generate an “oligo-dT” count matrix and 
a “random hexamer” count matrix) as well as of the two library types combined together. 
 

1. Install kb-python. 
 
pip install kb_python 

 
2. Download the mouse genome and annotation files. 
 
wget ftp.ensembl.org/pub/release-108/fasta/mus_musculus/dna/Mus_musculus.GRCm39.dna.primary_assembly.fa.gz 
 
wget ftp.ensembl.org/pub/release-108/gtf/mus_musculus/Mus_musculus.GRCm39.108.gtf.gz 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

111 
3. Build the index. 
 
To illustrate index generation with GTF filtering we show below how to filter the GTF file 
to only keep the relevant biotypes (the same ones that are used in the CellRanger 
reference). This can improve both accuracy and efficiency. Additional methods to optimize 
the GTF file can also be used such as the one proposed in Pool et al., 202338 which can 
greatly increase gene detection sensitivity. 
 
kb ref --workflow=nac -i index.idx -g t2g.txt \ 
     -c1 cdna.txt -c2 nascent.txt -f1 cdna.fasta -f2 nascent.fasta \ 
     --include-attribute gene_biotype:protein_coding \ 
     --include-attribute gene_biotype:lncRNA \ 
     --include-attribute gene_biotype:lincRNA \ 
     --include-attribute gene_biotype:antisense \ 
     --include-attribute gene_biotype:IG_LV_gene \ 
     --include-attribute gene_biotype:IG_V_gene \ 
     --include-attribute gene_biotype:IG_V_pseudogene \ 
     --include-attribute gene_biotype:IG_D_gene \ 
     --include-attribute gene_biotype:IG_J_gene \ 
     --include-attribute gene_biotype:IG_J_pseudogene \ 
     --include-attribute gene_biotype:IG_C_gene \ 
     --include-attribute gene_biotype:IG_C_pseudogene \ 
     --include-attribute gene_biotype:TR_V_gene \ 
     --include-attribute gene_biotype:TR_V_pseudogene \ 
     --include-attribute gene_biotype:TR_D_gene \ 
     --include-attribute gene_biotype:TR_J_gene \ 
     --include-attribute gene_biotype:TR_J_pseudogene \ 
     --include-attribute gene_biotype:TR_C_gene \ 
     Mus_musculus.GRCm39.dna.primary_assembly.fa.gz \ 
     Mus_musculus.GRCm39.108.gtf.gz 

 

4. Map the input sequencing reads to the index. 
 
This assay has multiple FASTQ files across multiple subpools as well as two primer types. 
To process this, we supply a batch.txt file containing the FASTQ files along with their 
designated subpool, a barcodes.txt file containing the three barcode components (since 
the assay contains three 8-bp barcodes, each separated by a linker, in the first read file), 
and a replace.txt file designating how to convert the random hexamer barcodes to the 
oligo-dT barcodes for the “combined” matrix. The final command to run with these files is 
as follows: 
 
kb count --strand=forward -r replace.txt -w barcodes.txt \ 
     --workflow=nac -i index.idx -g t2g.txt -c1 cdna.txt \ 
     -c2 nascent.txt -x 1,10,18,1,48,56,1,78,86:1,0,10:0,0,0 \ 
     --sum=total -o output_dir --batch-barcodes batch.txt 
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5. Analyze the output. 
 
Output (both the oligo-dT and random hexamer barcodes in the same count matrix): 

• output_dir/counts_unfiltered/cells_x_genes.mature.mtx 
• output_dir/counts_unfiltered/cells_x_genes.nascent.mtx 
• output_dir/counts_unfiltered/cells_x_genes.ambiguous.mtx 
• output_dir/counts_unfiltered/cells_x_genes.cell.mtx 
• output_dir/counts_unfiltered/cells_x_genes.nucleus.mtx 
• output_dir/counts_unfiltered/cells_x_genes.total.mtx 
• output_dir/counts_unfiltered/cells_x_genes.barcodes.txt 
• output_dir/counts_unfiltered/cells_x_genes.barcodes.prefix.txt 
• output_dir/counts_unfiltered/cells_x_genes.genes.txt 
• output_dir/counts_unfiltered/cells_x_genes.genes.names.txt 

 
Output (the oligo-dT and random hexamer barcodes are combined): 

• output_dir/counts_unfiltered_modified/cells_x_genes.mature.mtx 
• output_dir/counts_unfiltered_modified/cells_x_genes.nascent.mtx 
• output_dir/counts_unfiltered_modified/cells_x_genes.ambiguous.mtx 
• output_dir/counts_unfiltered_modified/cells_x_genes.cell.mtx 
• output_dir/counts_unfiltered_modified/cells_x_genes.nucleus.mtx 
• output_dir/counts_unfiltered_modified/cells_x_genes.total.mtx 
• output_dir/counts_unfiltered_modified/cells_x_genes.barcodes.txt 
• output_dir/counts_unfiltered_modified/cells_x_genes.barcodes.prefix.txt 
• output_dir/counts_unfiltered_modified/cells_x_genes.genes.txt 
• output_dir/counts_unfiltered_modified/cells_x_genes.genes.names.txt 

 
Note that the cells_x_genes.barcodes.prefix.txt will contain a unique identifier for each 
subpool. 
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Information about batch.txt, barcodes.txt, and replace.txt files: 
 
batch.txt: 
 
Example with three subpools, each sequenced on four lanes: 
 
subpool_1    S1_lane1_R1.fastq.gz    S1_lane1_R2.fastq.gz 
subpool_1    S1_lane2_R1.fastq.gz    S1_lane2_R2.fastq.gz 
subpool_1    S1_lane3_R1.fastq.gz    S1_lane3_R2.fastq.gz 
subpool_1    S1_lane4_R1.fastq.gz    S1_lane4_R2.fastq.gz 
subpool_2    S2_lane1_R1.fastq.gz    S2_lane1_R2.fastq.gz 
subpool_2    S2_lane2_R1.fastq.gz    S2_lane2_R2.fastq.gz 
subpool_2    S2_lane3_R1.fastq.gz    S2_lane3_R2.fastq.gz 
subpool_2    S2_lane4_R1.fastq.gz    S2_lane4_R2.fastq.gz 
subpool_3    S3_lane1_R1.fastq.gz    S3_lane1_R2.fastq.gz 
subpool_3    S3_lane2_R1.fastq.gz    S3_lane2_R2.fastq.gz 
subpool_3    S3_lane3_R1.fastq.gz    S3_lane3_R2.fastq.gz 
subpool_3    S3_lane4_R1.fastq.gz    S3_lane4_R2.fastq.gz 

 
In this configuration, subpool_1 will have the sample-specific barcode 
AAAAAAAAAAAAAAAA, subpool_2 will have the sample-specific barcode 
AAAAAAAAAAAAAAAC, and subpool_3 will have the sample-specific barcode 
AAAAAAAAAAAAAAAG. This mapping can be found in the output_dir/matrix.cells and 
output_dir/matrix.sample.barcodes files. These sample-specific barcodes are found in 
cells_x_genes.barcodes.prefix.txt to identify the subpool a specific cell barcode originated 
from when inspecting the count matrices. 
 
barcodes.txt: 
 
The cell barcodes contain three 8-bp components so we should correct each component 
individually to its own “on list”. This can be done by having multiple columns in the 
barcodes.txt file. Note that the first two columns have 96 barcodes and the third column 
has 192 barcodes. 
 
AACGTGAT AACGTGAT CATTCCTA 
AAACATCG AAACATCG CTTCATCA 
ATGCCTAA ATGCCTAA CCTATATC 
AGTGGTCA AGTGGTCA ACATTTAC 
ACCACTGT ACCACTGT ACTTAGCT 
ACATTGGC ACATTGGC CCAATTCT 
CAGATCTG CAGATCTG GCCTATCT 
CATCAAGT CATCAAGT ATGCTGCT 
CGCTGATC CGCTGATC CATTTACA 
ACAAGCTA ACAAGCTA ACTCGTAA 
CTGTAGCC CTGTAGCC CCTTTGCA 
AGTACAAG AGTACAAG ACTCCTGC 
AACAACCA AACAACCA ATTTGGCA 
AACCGAGA AACCGAGA TTATTCTG 
AACGCTTA AACGCTTA TCATGCTC 
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AAGACGGA AAGACGGA CATACTTC 
AAGGTACA AAGGTACA CCGTTCTA 
ACACAGAA ACACAGAA GCTTCATA 
ACAGCAGA ACAGCAGA CTCTGTGC 
ACCTCCAA ACCTCCAA CCCTTATA 
ACGCTCGA ACGCTCGA ACTGCTCT 
ACGTATCA ACGTATCA CTCTAATC 
ACTATGCA ACTATGCA ACCCTTGC 
AGAGTCAA AGAGTCAA ATCTTAGG 
AGATCGCA AGATCGCA CATGTCTC 
AGCAGGAA AGCAGGAA TCATTGCA 
AGTCACTA AGTCACTA ACACCTTT 
ATCCTGTA ATCCTGTA AATTTCTC 
ATTGAGGA ATTGAGGA ATTCATGG 
CAACCACA CAACCACA ACTTTACC 
GACTAGTA GACTAGTA CTTCTAAC 
CAATGGAA CAATGGAA CTATTTCA 
CACTTCGA CACTTCGA TCTCATGC 
CAGCGTTA CAGCGTTA ATCCTTAC 
CATACCAA CATACCAA TAAATATC 
CCAGTTCA CCAGTTCA TTACCTGC 
CCGAAGTA CCGAAGTA CACTTTCA 
CCGTGAGA CCGTGAGA CACCTTTA 
CCTCCTGA CCTCCTGA CTGACTTC 
CGAACTTA CGAACTTA CATTTGGA 
CGACTGGA CGACTGGA GCTCTACT 
CGCATACA CGCATACA GTTACGTA 
CTCAATGA CTCAATGA CCTGTTGC 
CTGAGCCA CTGAGCCA CTATCATC 
CTGGCATA CTGGCATA GCTATCAT 
GAATCTGA GAATCTGA ACATTCAT 
CAAGACTA CAAGACTA TTCGCTAC 
GAGCTGAA GAGCTGAA CATTCTAC 
GATAGACA GATAGACA CACTTATC 
GCCACATA GCCACATA ATAAGCTC 
GCGAGTAA GCGAGTAA TCATCCTG 
GCTAACGA GCTAACGA CCTGGTAT 
GCTCGGTA GCTCGGTA TGGTATAC 
GGAGAACA GGAGAACA TTGGGAGA 
GGTGCGAA GGTGCGAA ACTTCATC 
GTACGCAA GTACGCAA TCTCTAGC 
GTCGTAGA GTCGTAGA ATGCCCTT 
GTCTGTCA GTCTGTCA CCCAATTT 
GTGTTCTA GTGTTCTA ACTATATA 
TAGGATGA TAGGATGA CTCTATAC 
TATCAGCA TATCAGCA CTGTCTCA 
TCCGTCTA TCCGTCTA GACCTTTC 
TCTTCACA TCTTCACA GATTTGGC 
TGAAGAGA TGAAGAGA CGTCTAGG 
TGGAACAA TGGAACAA TACTCGAA 
TGGCTTCA TGGCTTCA CAGCCTTT 
TGGTGGTA TGGTGGTA CCTCATTA 
TTCACGCA TTCACGCA CTTATACC 
AACTCACC AACTCACC TCTATTAC 
AAGAGATC AAGAGATC CCTGCATT 
AAGGACAC AAGGACAC CAATCCTT 
AATCCGTC AATCCGTC TTGTCTTA 
AATGTTGC AATGTTGC TCACTTTA 
ACACGACC ACACGACC TGCTTGGG 
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ACAGATTC ACAGATTC CGCTCATT 
AGATGTAC AGATGTAC GCCTCTAT 
AGCACCTC AGCACCTC GAGCACAA 
AGCCATGC AGCCATGC CTCTTAAC 
AGGCTAAC AGGCTAAC TCTAGGCT 
ATAGCGAC ATAGCGAC AATTCTGC 
ATCATTCC ATCATTCC CATTCTCA 
ATTGGCTC ATTGGCTC ACTTGCCT 
CAAGGAGC CAAGGAGC ATCATTGC 
CACCTTAC CACCTTAC GTTCAACA 
CCATCCTC CCATCCTC CCATTTGC 
CCGACAAC CCGACAAC GACTTTGC 
CCTAATCC CCTAATCC ATTGGCTC 
CCTCTATC CCTCTATC GTGCTAGC 
CGACACAC CGACACAC CTTTCAAC 
CGGATTGC CGGATTGC ACTATTGC 
CTAAGGTC CTAAGGTC ACTGGCTT 
GAACAGGC GAACAGGC ATTAGGCT 
GACAGTGC GACAGTGC GCCTTTCA 
GAGTTAGC GAGTTAGC ATTCTAGG 
GATGAATC GATGAATC CCTTACAT 
GCCAAGAC GCCAAGAC ACATTTGG 
-        -        CATCATCC 
-        -        CTGCTTTG 
-        -        CTAAGGGA 
-        -        GCTTATAG 
-        -        TCTGATCC 
-        -        TCTCTTGG 
-        -        CAATTTCC 
-        -        AGTCTCTT 
-        -        TGCTGCTC 
-        -        GTATTTCC 
-        -        TTCCTGTG 
-        -        GCTGCTTC 
-        -        TATGTGTC 
-        -        CAATTCTC 
-        -        TGGTCTCC 
-        -        GCTCTTTA 
-        -        GCTGCATG 
-        -        ACTCATTT 
-        -        AGTCTTGG 
-        -        GGTTCTTC 
-        -        TCATGTTG 
-        -        ATTTTGCC 
-        -        CTTCTGTA 
-        -        GTCCATCT 
-        -        GCTATCTC 
-        -        TAGTTTCC 
-        -        TCCATTAT 
-        -        AGGATTAA 
-        -        AATCTTTC 
-        -        GTCATATG 
-        -        GTGCTTCC 
-        -        ATGTGTTG 
-        -        CCATCTTG 
-        -        TACTGTCT 
-        -        TTCATCGC 
-        -        ACTGTGGG 
-        -        TCTGTGCC 
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-        -        TCAATCTC 
-        -        GTCCTCTG 
-        -        TTACATTC 
-        -        ATTCTGTC 
-        -        TGTGTATG 
-        -        TCCATTTG 
-        -        TTAGCTTC 
-        -        GTGCTTGA 
-        -        GTTTGTGA 
-        -        GAAATTAG 
-        -        GCAAATTC 
-        -        GAGGTTGA 
-        -        CCTGTCTG 
-        -        GTGGGTTC 
-        -        TTTGCATC 
-        -        AGGTAATA 
-        -        GTGCCTTC 
-        -        ATGTTTCC 
-        -        CTTAATTC 
-        -        TCTGGCTC 
-        -        CATCATTT 
-        -        GTTGTCTC 
-        -        ATCTTCTG 
-        -        TGTTTGCC 
-        -        TTCTGTCA 
-        -        ACGGACTC 
-        -        TTTGGTCA 
-        -        TATCCGGG 
-        -        TGTCATTC 
-        -        ATTCTCTG 
-        -        TGGCTTCC 
-        -        TTGTTGCC 
-        -        GTCATCTC 
-        -        TTGCTCAT 
-        -        CTGTCTGC 
-        -        TATATTCC 
-        -        ATATTGGC 
-        -        GTGTCCTC 
-        -        ATCTTCAT 
-        -        CGTGGTTG 
-        -        TTGCATCC 
-        -        TCTTAATC 
-        -        TGCATTTC 
-        -        GATGTTTC 
-        -        ATCTTGTC 
-        -        TCATATTC 
-        -        TGGCCTCT 
-        -        CGTTGTCT 
-        -        TCTTGTCA 
-        -        TATTCCTG 
-        -        TCCATGTC 
-        -        TTGTCATC 
-        -        ATTTCCTG 
-        -        GTGTCTCC 
-        -        GTGTGTGT 
-        -        TATGCTTC 
-        -        ATGGTGTT 
-        -        GAATAATG 
-        -        CCTCTGTG 
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replace.txt: 
 
This file contains the instructions on how to produce the “modified” count matrix in 
output_dir/counts_unfiltered_modified/ – the output directory which contains the combined 
oligo-dT and random hexamer barcodes wherein the random hexamer barcodes (first 
column of the file) are converted to their oligo-dT counterparts (second column of the file). 
These barcodes, being the third component of the barcode, occur at the end of the final 
barcode string. The asterisk (*) at the beginning of the replacement string tells bustools to 
convert the nucleotides at the end of the barcode sequence. As an example, the barcode 
sequence AACAACCATGAAGAGACATCATCC will be converted into 
AACAACCATGAAGAGACATTCCTA in the final output in the 
output_dir/counts_unfiltered_modified/ directory. 
 
CATCATCC *CATTCCTA 
CTGCTTTG *CTTCATCA 
CTAAGGGA *CCTATATC 
GCTTATAG *ACATTTAC 
TCTGATCC *ACTTAGCT 
TCTCTTGG *CCAATTCT 
CAATTTCC *GCCTATCT 
AGTCTCTT *ATGCTGCT 
TGCTGCTC *CATTTACA 
GTATTTCC *ACTCGTAA 
TTCCTGTG *CCTTTGCA 
GCTGCTTC *ACTCCTGC 
TATGTGTC *ATTTGGCA 
CAATTCTC *TTATTCTG 
TGGTCTCC *TCATGCTC 
GCTCTTTA *CATACTTC 
GCTGCATG *CCGTTCTA 
ACTCATTT *GCTTCATA 
AGTCTTGG *CTCTGTGC 
GGTTCTTC *CCCTTATA 
TCATGTTG *ACTGCTCT 
ATTTTGCC *CTCTAATC 
CTTCTGTA *ACCCTTGC 
GTCCATCT *ATCTTAGG 
GCTATCTC *CATGTCTC 
TAGTTTCC *TCATTGCA 
TCCATTAT *ACACCTTT 
AGGATTAA *AATTTCTC 
AATCTTTC *ATTCATGG 
GTCATATG *ACTTTACC 
GTGCTTCC *CTTCTAAC 
ATGTGTTG *CTATTTCA 
CCATCTTG *TCTCATGC 
TACTGTCT *ATCCTTAC 
TTCATCGC *TAAATATC 
ACTGTGGG *TTACCTGC 
TCTGTGCC *CACTTTCA 
TCAATCTC *CACCTTTA 
GTCCTCTG *CTGACTTC 
TTACATTC *CATTTGGA 
ATTCTGTC *GCTCTACT 
TGTGTATG *GTTACGTA 
TCCATTTG *CCTGTTGC 
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TTAGCTTC *CTATCATC 
GTGCTTGA *GCTATCAT 
GTTTGTGA *ACATTCAT 
GAAATTAG *TTCGCTAC 
GCAAATTC *CATTCTAC 
GAGGTTGA *CACTTATC 
CCTGTCTG *ATAAGCTC 
GTGGGTTC *TCATCCTG 
TTTGCATC *CCTGGTAT 
AGGTAATA *TGGTATAC 
GTGCCTTC *TTGGGAGA 
ATGTTTCC *ACTTCATC 
CTTAATTC *TCTCTAGC 
TCTGGCTC *ATGCCCTT 
CATCATTT *CCCAATTT 
GTTGTCTC *ACTATATA 
ATCTTCTG *CTCTATAC 
TGTTTGCC *CTGTCTCA 
TTCTGTCA *GACCTTTC 
ACGGACTC *GATTTGGC 
TTTGGTCA *CGTCTAGG 
TATCCGGG *TACTCGAA 
TGTCATTC *CAGCCTTT 
ATTCTCTG *CCTCATTA 
TGGCTTCC *CTTATACC 
TTGTTGCC *TCTATTAC 
GTCATCTC *CCTGCATT 
TTGCTCAT *CAATCCTT 
CTGTCTGC *TTGTCTTA 
TATATTCC *TCACTTTA 
ATATTGGC *TGCTTGGG 
GTGTCCTC *CGCTCATT 
ATCTTCAT *GCCTCTAT 
CGTGGTTG *GAGCACAA 
TTGCATCC *CTCTTAAC 
TCTTAATC *TCTAGGCT 
TGCATTTC *AATTCTGC 
GATGTTTC *CATTCTCA 
ATCTTGTC *ACTTGCCT 
TCATATTC *ATCATTGC 
TGGCCTCT *GTTCAACA 
CGTTGTCT *CCATTTGC 
TCTTGTCA *GACTTTGC 
TATTCCTG *ATTGGCTC 
TCCATGTC *GTGCTAGC 
TTGTCATC *CTTTCAAC 
ATTTCCTG *ACTATTGC 
GTGTCTCC *ACTGGCTT 
GTGTGTGT *ATTAGGCT 
TATGCTTC *GCCTTTCA 
ATGGTGTT *ATTCTAGG 
GAATAATG *CCTTACAT 
CCTCTGTG *ACATTTGG 
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The commands run by kb count in this example: 
 

mkdir -p output_dir/tmp 
 
mkdir -p output_dir 
 
kallisto bus -i index.idx -o output_dir -x 
1,10,18,1,48,56,1,78,86:1,0,10:0,0,0 -t 8 --fr-stranded              
--batch-barcodes --batch batch.txt 
 
bustools sort -o output_dir/tmp/output.s.bus -T output_dir/tmp -t 8  
-m 4G output_dir/output.bus 
 
bustools inspect -o output_dir/inspect.json -w barcodes.txt 
output_dir/tmp/output.s.bus 
 
bustools correct -o output_dir/tmp/output.s.c.bus -w barcodes.txt 
output_dir/tmp/output.s.bus 
 
bustools sort -o output_dir/output.unfiltered.bus -T output_dir/tmp  
-t 8 -m 4G output_dir/tmp/output.s.c.bus 
 
mkdir -p output_dir/counts_unfiltered 
 
bustools count -o output_dir/counts_unfiltered/cells_x_genes -g 
t2g.txt -e output_dir/matrix.ec -t output_dir/transcripts.txt -s 
nascent.txt --genecounts --umi-gene output_dir/output.unfiltered.bus 
 
mv output_dir/counts_unfiltered/cells_x_genes.mtx 
output_dir/counts_unfiltered/cells_x_genes.mature.mtx 
 
mv output_dir/counts_unfiltered/cells_x_genes.2.mtx 
output_dir/counts_unfiltered/cells_x_genes.nascent.mtx 
 
bustools correct -o output_dir/tmp/output.unfiltered.c.bus -w 
replace.txt output_dir/output.unfiltered.bus --replace 
bustools sort -o output_dir/output_modified.unfiltered.bus -T 
output_dir/tmp -t 8 -m 4G output_dir/tmp/output.unfiltered.c.bus 
 
mkdir -p output_dir/counts_unfiltered_modified 
 
bustools count -o output_dir/counts_unfiltered_modified/cells_x_genes 
-g t2g.txt -e output_dir/matrix.ec -t output_dir/transcripts.txt -s 
nascent.txt --genecounts --umi-gene 
output_dir/output_modified.unfiltered.bus 
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mv output_dir/counts_unfiltered_modified/cells_x_genes.mtx 
output_dir/counts_unfiltered_modified/cells_x_genes.mature.mtx 
 
mv output_dir/counts_unfiltered_modified/cells_x_genes.2.mtx 
output_dir/counts_unfiltered_modified/cells_x_genes.nascent.mtx 
 
rm -rf output_dir/tmp 

 
 



 

 

121 
C h a p t e r  4  

PSEUDOASSEMBLY OF K-MERS 

Beyond annotated reference mapping 

In the preceding chapters, we focused on methods that map sequencing reads to annotated 

reference sequences. In these methods, each k-mer, indexed within a colored de Bruijn 

graph, originates from one or more annotated target sequences. This framework enables 

rapid and lightweight mapping (Almodaresi et al., 2021, 2018; Bray et al., 2016; Patro et 

al., 2017, 2014) by leveraging known transcript or genome annotations. However, in 

Chapter 3, we briefly introduced an extension of this framework: the use of unannotated k-

mers, called distinguishing flanking k-mers (Sullivan et al., 2025), which are extracted 

directly from raw sequences (e.g. the genome assembly) without regards to annotation. 

These k-mers proved valuable in improving the accuracy of pseudoalignment. 

In this chapter, we explore a more generalized and systematic extension of that idea. Rather 

than relying on known annotations, we now build target sequences de novo, derived from 

k-mers discovered directly from raw sequences (Sullivan et al., 2025). We refer to this 

approach as pseudoassembly, in the spirit of the term pseudoalignment. Unlike full 

assembly, which reconstructs entire transcripts or genomes, pseudoassembly focuses on 

indexing only those k-mers that are relevant for downstream read assignment. This targeted 

construction avoids the complexities of full assembly while retaining the ability to detect 

biologically meaningful sequence variation. 

Pseudoassembly is particularly valuable for studying genetic variation. Because k-mers can 

uniquely represent variant sequences, they are well-suited for identifying sample-specific 

or condition-specific differences in sequence content. One common strategy for analyzing 

known variants involves tiling k-mer windows around known polymorphisms, such as 

SNPs, structural variants, or splice junctions, and indexing them for downstream analysis. 

This approach depends on prior knowledge of variant locations. In contrast, 



 

 

122 
pseudoassembly proceeds de novo from raw sequences in FASTQ or FASTA format. 

In this mode, we extract k-mers that are uniquely found in an "experimental" sample (i.e. 

sequences absent from control datasets or the reference genome). This is particularly 

relevant in settings such as cancer, where mutations are highly variable in both structure 

and genomic location. The flexibility and reference-agnostic nature of k-mers make them 

ideal for capturing such unstructured variation. 

Several prior tools have leveraged this idea. For example, DE-kupl focuses on differential 

k-mer abundance between conditions and has demonstrated high sensitivity in detecting 

novel biological variation (Audoux et al., 2017). Differential k-mers have also been applied 

in association mapping (Rahman et al., 2018). Another more recent method, SPLASH, uses 

"anchor" and "target" k-mers, where a sequence anchor may be associated with multiple 

different targets (each representing a variant), to quantify variation (Chaung et al., 2023). 

Building on these ideas, we developed klue (k-mer based local uniqueness exploration), a 

general-purpose tool for discovering, organizing, and extracting informative k-mers. klue 

accepts both FASTQ and FASTA files as input and can be applied to RNA-seq data, DNA-

seq data, or sequence assemblies. k-mers are extracted in the form of longer contiguous 

sequences (contigs). More details of klue will be provided in the subsequent section. 

Following contig extraction (where the contigs represent variant-specific k-mers), we 

proceed to pseudoassembly. This involves mapping the  contigs of interest—those 

extracted by klue—to known reference sequences. For example, if the input k-mer size was 

31, we might use smaller k-mer matches (e.g. 29-mers) to find a partial match between a 

contig and annotated transcript sequences. When a contig is mapped to a target sequence, 

it inherits the color of that target in the de Bruijn graph (which is built by kallisto over the 

transcripts). However, to distinguish it as a variant-derived sequence, the color is modified 

into a uniquely shaded version. Each distinct contig mapped to a target gets its own unique 

shade. If a contig maps to multiple target sequences, it is assigned a shade for each. 
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This process gives rise to an ornamental de Bruijn graph (Figure 4.1), a concept 

introduced in earlier work and implemented in the tool Ornaments (Adduri and Kim, 2024). 

In this setup, pseudoalignment proceeds as usual via set intersection of k-mer colors. 

However, a set union is performed for the shades that are encountered in a read. The 

resulting equivalence class will contain both the parent colors and the shades.  

 

Figure 4.1: Building a de Bruijn graph with shades. 
One transcript sequence (parent color) and two variant contigs (shades, shown as circles) 
are represented. In the end, 11 k-mers (k=3) are present, all with the same parent color, 
two with one shade of that color, and three with another shade of that color. 
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Next, we provide a formal definition of a shade. 

Let: 

•  𝒯 =	 {𝑇%, … , 𝑇,} be the set of annotated transcripts 

• [𝑛] = {1, 2, … , 𝑛} be the set of canonical colors (like those used in standard 

pseudoalignment). 

• 𝒮 be a disjoint set of shade colors. 

• 𝜋 ∶ 𝒮 ⟶ [𝑛] be a parent function, assigning each shade 𝑠 ∈ 𝒮 exactly one canonical 

parent color 𝜋(𝑠). 

• 𝒜 ≔ [𝑛] ∪ 𝒮 be the universe of all colors. 

A colored de Bruijn graph of order 𝑘 is a directed graph 𝐺 = (𝑉, 𝐸, 𝒞) with: 

• Each vertex 𝑣 ∈ 𝑉 representing a unique 𝑘-mer over the alpha Σ = {𝐴, 𝑇, 𝐶, 𝐺}. 

• A directed edge (𝑣, 𝑤) ∈ 𝐸 whenever the (𝑘 − 1)-suffix of 𝑣’s 𝑘-mer equals the  

(𝑘 − 1)-prefix of 𝑤’s 𝑘-mer. 

• 𝒞(𝑣) ⊆ 𝒜 as the color set of each vertex 𝑣. 

We call 𝑠 ∈ 𝑆 a shade based on the following: 

• Parent relationship: Each shade 𝑠 is associated with exactly one canonical transcript 

color via a parent mapping 𝜋(𝑠) ∈ [𝑛]; that is, s has exactly one parent color. 

• Parent inclusion: A shade never  appears without its parent color on any 𝑘-mer: 

∀𝑣 ∈ 𝑉, 𝑠 ∈ 𝒞(𝑣) ⟹ 	𝜋(𝑠) ∈ 𝒞(𝑣). 
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When adding a shade to a transcript de Bruijn graph, the shade is added if and only if 

the 𝑘-mer does not exist in the original graph with its parent color. Note: Each shade 

implicitly adds its parent color to the 𝑘-mer color set. See the following algorithm. 

Algorithm Add a new sequence to the colored de Bruijn graph as a shade 
Input: Set of k-mers from new sequence u, shade color s,  
            colored de Bruijn graph (cdBG) G = (V, E, C), 
            original cdBG before any shades were added Gorig = (Vorig, Eorig, Corig) 
            (Note: G is a supergraph of Gorig) 
1:  function AddShadeToGraph(u, s, G, Gorig) 
2:       for each k-mer x ∈ u do 
3:             if x ∈ Gorig then 
4:                   if π(s) ∉	Corig(x) then 
5:                         C(x) ← C(x) ∪ {π(s), s} 
6:             else 
7:                   V ← V  ∪ {x} 
8:                   C(x) ← C(x) ∪ {π(s), s} 
 
To create equivalence classes, first set-intersection is done among the parent colors 

encountered in the read then set-union is performed among the shade colors corresponding 

to those parent colors. See the following algorithm. 

Algorithm Assign equivalence class to read 
Input: Set of k-mers in read v, set of canonical colors [n], set of shades S, 
            colored de Bruijn graph G = (V, E, C) 
1:  function AssignEquivalenceClass(v, [n], S, G) 
2:       Compute the canonical intersection (i.e. standard pseudoalignment): 

  
         

3:       Collect valid shades: 

 

         
4:       Return equivalence class: 
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In the remainder of this chapter, we demonstrate two applications of this framework. 

First, we describe klue and show an example use of klue in mouse strain demultiplexing 

by extracting strain-specific sequences. Second, we apply pseudoassembly to RNA-seq 

data from melanoma samples, using variant-specific contigs to profile tumor-specific 

mutations. These case studies illustrate the power of k-mer-centric approaches in analyzing 

complex, unstructured, and unannotated biological variation. 
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A general-purpose k-mer toolkit 

Klue is a general-purpose k-mer toolkit that internally uses a colored compacted de Bruijn 

graph (ccdBG), implemented via the C++ Bifrost library (Holley and Melsted, 2020). Each 

input file is assigned a unique color, encoding sample identity in the graph. A given k-mer 

may appear in multiple samples and thus exhibit a multi-color profile. The ccdBG 

compacts adjacent k-mers into longer contiguous sequences called unitigs, conserving 

memory and enabling analysis over longer sequence contexts. 

A core feature of klue is its ability to extract contigs—unitigs, or contiguous substrings of 

unitigs, that share the same color profile. For instance, given three input samples colored 

red, blue, and green, klue can extract red-only contigs, red+blue shared contigs, contigs 

found in any two colors, and so on. A comprehensive suite of set operations over input 

samples is supported by klue. Figure 4.2 shows an example of extracting contigs based on 

color profile, wherein monochromatic contigs (those unique to one sample) are extracted. 

These contigs can represent tumor-specific mutations, species-specific sequences, or 

treatment-induced transcripts. The resulting contigs are written to FASTA files, where they 

can be subjected to further downstream analyses such as mapping, annotation, or 

pseudoassembly.  

 

Figure 4.2: Partitioning the colored compacted de Bruijn graph. 
(A) The structure of the graph. The boxes shown are the nodes of the graph and represent 
colored contigs. (B) The monochromatic contigs that are extracted. 
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To illustrate klue in practice, we applied klue to various different mouse genome 

assemblies (Ferraj et al., 2023), including the standard C57BL/6J mouse reference genome 

assembly (GRCm39). As expected, the genomes of the five inbred laboratory mouse strains 

(C57BL/6J, A/J, 129S1/SvImJ, NOD/ShiLtJ, NZO/HlLtJ) are more similar to each other 

than to the genomes of the three inbred wild-derived strains (WSB/EiJ, PWK/PhJ, 

CAST/EiJ) based on overlap of k-mer content from the klue-extracted k-mers (Figure 4.3), 

recapitulating expected phylogeny (Morgan and Welsh, 2015). Thus, klue can be used as 

a convenient tool for extracting shared and unique k-mers.  

 

Figure 4.3: Relationship between different mouse strains. 
(A) Jaccard similarity index of k-mers between different mouse strains as determined by 
klue: the cardinality of the set intersection, X, represents the number of k-mers shared 
between two mouse strains while the cardinality of the set union, Y, represents all the 
number of k-mers present in either or both of two mouse strains; the Jaccard index is the 
ratio of X to Y. (B) The ground truth phylogenetic relationship between the 8 mouse strains. 
 

Next, we evaluated klue’s ability to infer cell identity using data from single-nucleus RNA-

seq experiments conducted on multiple tissues from multiple mouse strains (Rebboah et 

al., 2025) as part of work of the IGVF Consortium (IGVF Consortium, 2024). Specifically, 

we examined kidney tissue from eight A/J mice and eight PWK/PhJ mice. Contigs unique 

to each mouse strain genome assembly were extracted, and only 61-bp contigs were 
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retained, as these correspond to SNPs when using a k-mer size of 31. We focused on 

k-mers overlapping SNPs rather than all strain-specific k-mers because these “SNP 

contigs” include both the variant and a conserved flanking region. These common anchors 

helped reduce noise from spurious k-mers that may arise due to artifacts from genome 

assembly or differences in sequencing quality between strains. Kallisto was then used to 

map reads to the strain-specific contigs, and cell-level strain assignments were determined 

based on the number of UMIs mapping to each strain (Figure 4.4). This klue+kallisto 

demultiplexing method could successfully resolve cells from PWK/PhJ mice versus A/J 

mice (Figure 4.5). 

 

Figure 4.4: klue for mouse strain demultiplexing. 
Overview of the workflow used for strain demultiplexing with klue and kallisto. 
 

 

Figure 4.5: Results of klue+kallisto demultiplexing of the PWK/PhJ and A/J mouse cells. 
Accuracy could be determined because the PWK/PhJ cells and A/J mouse cells were placed 
into separate wells at the initial step of the split-pool barcoding, therefore the well barcode 
could serve as a ground truth label for each cell. 
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Application to cancer genomics 

A melanoma mouse model: 

We performed pseudoassembly on single-cell data from a melanoma mouse model in order 

to identify cell type-specific mutations. The dataset we used  (Sun et al., 2019) featured 

10x Genomics (version 2 chemistry) single-cell RNA-seq of mouse melanocyte stem cells 

(McSCs) and melanomas arising from the McSCs. In that study, McSCs, derived from 

transgenic Tyr-CreER:Braf:Pten:Tomato mice, were transplanted onto immunodeficient 

nude mice and tumorigenesis was achieved by tamoxifen induction. Control McSCs were 

obtained from the telogen back skin of Tyr-CreER:R26R-Tomato mice. Single-cell RNA-

seq was performed on both the tumors (melanomas) and the control McSCs, with three 

biological replicates per condition; replicates were pooled and not distinguished in 

downstream analyses. Single-end bulk RNA-seq of control McSCs was also performed. 

klue was applied to four files: 

1. A FASTA file containing both the human genome FASTA (from the T2T-

CHM13v2.0 assembly) and a transcriptome FASTA derived from the 

GRCh38 assembly. 

2. Bulk RNA-seq FASTQ file for control McSCs. 

3. Single-cell RNA-seq FASTQ file for control McSCs. 

4. Single-cell RNA-seq FASTA file for McSC-derived melanomas. 

The reason for including all these datasets was to identify melanoma-unique contigs 

(containing 31-mers unique to file #4), that would not include barcodes, adapters, or other 

sequences common to 10x experiments (removed by inclusion of file #3), any existing 

sequences in the genome (removed by inclusion of file #1), or sequences from exon-exon 

junctions (removed by inclusion of file #2 and #3). The resultant contigs were mapped to 
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the human transcriptome using kallisto (with a k-mer size of 29) to assign “shades” 

(Figure 4.5). Finally, the melanoma single-cell RNA-seq reads were mapped (using kallisto 

version 0.51.1) to an index containing the human transcriptome targets along with their 

shades. 

 

Figure 4.5: Examples of equivalence classes containing shades. 
The equivalence classes corresponding to two different genes are shown, each containing 
a standard transcriptome target and one or more “shade” targets. 
 

To obtain cell clusters, the melanoma single-cell RNA-seq reads were also mapped to a 

standard kallisto index of the human transcriptome. After quantification of the data with 

kallisto | bustools (Melsted et al., 2021; Sullivan et al., 2024) to generate a cell-by-gene 

count matrix, cells with at least 5000 UMIs were retained. The counts were then normalized 

with CP10k normalization followed by log1p transformation. Highly variable genes were 

identified and then nearest neighbor graphs were constructed from the cell coordinates on 

the top 40 principal component analysis (PCA) embeddings in Scanpy (Wolf et al., 2018). 

The Leiden algorithm (Traag et al., 2019) was performed in Scanpy, resulting in 15 

clusters. Clusters with fewer than 50 cells were excluded, resulting in a final count of 2776 

cells distributed across 10 clusters. As the number of clusters obtained here was larger than 

that obtained in the original study which produced this dataset (Sun et al., 2019), we merged 

related clusters to create more coarse-grained groupings. The original study performed 
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pseudotemporal trajectory analysis (Trapnell et al., 2014) to define the branching 

transition between McSC cells to either a mesenchymal-like cell type or a 

neural crest/neuronal-like cell type. We therefore merged two clusters with high expression 

of mesenchymal markers (Dcn, Col1a1, Col1a2), merged five clusters with high expression 

of neural crest/neuronal genes (Nes, Foxd3, L1cam, Ngfr), and then merged the remaining 

three clusters which had high expression of the genes Fosb, Klf4, Serpine2, Cdkn1a from 

a published metastatic melanoma gene set (Perego et al., 2018). These correspond to the 

“mesenchymal-like” cluster, the “neural crest/neuronal-like” cluster, and the 

“intermediate” cluster, respectively, from the original publication (Figure 4.6). The original 

study also identified two additional clusters. One was a neural crest/neuronal-like cluster 

characterized by high expression of proliferation genes (Mki67, Cdk1), which we merged 

into the broader neural crest/neuronal-like cluster. The other was composed of control 

McSC cells; however, since we did not include control McSC data in our cell type 

clustering analysis, and the few McSC cells present in the melanoma dataset were likely 

removed when filtering out clusters with low cell counts, this cluster was not represented 

in our analysis. 
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Figure 4.6: Cell type clustering of melanoma single-cell RNA-seq. 
Based on expression of marker genes, three coarse-grained clusters of cells with a 
mesenchymal-like signature, cells with a neural crest/neuronal-like signature, and 
intermediate cells with a signature between neuronal and mesenchymal could be resolved. 
 

Next, we further analyzed those clusters, defined by gene-level counts, using the transcript 

compatibility counts (TCCs) from read mapping to the index containing the shades. We 

sought to identify mutations that are expressed uniquely in certain clusters (i.e. mutation 

cell-type specificity). We first filtered the cell-by-TCC count matrix to only contain 

equivalence classes (ECs) which contain a shade target mapping and which are present in 

at least 10 cells. All ECs corresponding to multiple genes, unannotated genes, or 

pseudogenes were excluded. For differential expression testing of shade counts, a 2x2 

contingency table was built for each shade-containing EC as follows: 
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 In cluster Outside cluster 

Shade-containing EC for a gene 𝑎 𝑏 

All regular ECs for that gene 𝑐 𝑑 

 

Here, 𝑎, 	𝑏, 	𝑐, and 𝑑 represent cell numbers (i.e. the number of cells that contain at least 

one count for the EC). The odds ratio is then calculated as follows, with higher values 

indicating greater specificity of the shade (i.e. the putative mutation) for the cluster being 

evaluated. 

𝑂𝑅 =
𝑎
𝑐
𝑏
𝑑
=
𝑎𝑑
𝑏𝑐  

For each EC, a p-value was determined by Fisher’s exact test. A volcano plot depicting the 

results of differential expression testing of shade (mutation) counts is shown in Figure 4.7. 

 

Figure 4.7: Differential expression testing of shade (mutation) counts. 
Each point on the volcano plot represents a shade-containing equivalence class (EC). An 
example of such an EC (EC number 1173371), corresponding to the P2ry12 gene, is shown 
on the right. 50 ECs had an odds ratio greater than 1 and a Benjamini-Hochberg FDR-
adjusted p-value less than 0.05, while 278 ECs had an odds ratio less than 1 with an 
adjusted p-value below the same threshold. 
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The method was able to identify many examples in which a shade for a given gene is 

abundant in one melanoma cluster but not the others (Figure 4.8). Specifically, the P2ry12 

gene appeared to contain a differential variant in the intermediate cluster, and the Tubb5 

gene was revealed to contain a differential variant in the mesenchymal cluster. These 

observations would not have been possible within the standard single-cell RNA-seq 

analysis framework (Chen et al., 2016). 

 

Figure 4.8: Examples of genes where the associated equivalence classes display different 
patterns of cluster-specific expression. 
Shaded targets are marked in red. A P2ry12 mutation is found specifically in the 
intermediate cluster; a Tubb5 mutation is found specifically in the mesenchymal cluster. 
The y-axis represents the number of cells for which at least one UMI is identified as being 
associated with the given equivalence class.  
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This melanoma dataset was well-suited for identifying mutation cell type specificity 

due to two key factors: the inclusion of a control sample and the nature of 10x Genomics 

chemistry, which sequences only the ends of transcripts. The control sample is essential to 

distinguish true mutations from common genetic variants such as SNPs, which would 

otherwise be picked up as “shades”. While sequencing only the 3′ ends of transcripts limits 

coverage and may miss mutations located in the middle of genes, it helps reduce false 

signals. For instance, incomplete coverage might result in certain transcript regions being 

captured only in the disease group but not in the control group—leading to spurious 

disease-unique contigs. Taken together, the melanoma datasets (Sun et al., 2019) provide 

a compelling argument for pseudoassembly to discover cell-type specific mutations. The 

generality and flexibility of using klue with kallisto makes it suitable for any (single-cell) 

genomics datasets, and it should prove to be a useful complement to standard assembly 

algorithms. 

Code: 

Code for the analysis is available at https://github.com/pachterlab/SBP_2025. 

The klue program is available at https://github.com/pachterlab/klue. 
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C h a p t e r  5  

EFFICIENT AND SCALABLE SINGLE-CELL TRANSCRIPTOMICS 

Scaling single-cell transcriptomics 

Single-cell RNA-seq has several limitations: it is expensive, it requires complex library 

preparation (compared to bulk RNA-seq), and it often relies on proprietary protocols. A 

key tradeoff exists between the number of cells captured and sequencing depth. Droplet-

based technologies like 10x Genomics allow high-throughput cell capture but at low per-

cell depth, whereas plate-based methods like Smart-seq achieve high sequencing depth per 

cell but are limited to hundreds or, at most, thousands of cells (Ding et al., 2020). Scaling 

single-cell RNA-seq to be cost-effective, time-efficient, and capable of capturing both a 

large number of cells and high per-cell depth is therefore a challenge. 

SPLiT-seq, when introduced, boasted the features of “low-cost”, “hundreds of thousands 

of fixed cells or nuclei in a single experiment”, and “consists just of pipetting steps and no 

complex instruments are needed” (Rosenberg et al., 2018). This method, based on in situ 

barcoding via split-and-pool ligation chemistry, has since been commercialized by Parse 

Biosciences as part of its proprietary Evercode technology. By virtue of its split-pool 

barcoding strategy, SPLiT-seq made high-throughput, high-depth single-cell 

transcriptomics feasible. 

Here, we introduce a split-and-pool barcoding-based technology, which we named SWIFT-

seq (Single-cell With Iterative Fast Transcriptome-sequencing), that features the following: 

1) High depth per cell, 2) High cell throughput, 3) Cost-effectiveness, 4) Open source 

accessibility, and 5) A simple, fast-executing protocol. These characteristics enable 

scalability not only in terms of cell numbers and sequencing depth but also in cost and ease 

of use, allowing for rapid, affordable experiments (Figure 5.1) . Like other split-pool 

barcoding technologies, SWIFT-seq supports highly multiplexed experiments, includes 
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UMIs to mitigate PCR amplification bias, provides strand specificity, and offers full-

length gene body coverage, enabling isoform and allele detection. 

A full cost breakdown of SWIFT-seq, when preparing one million cells for sequencing on 

an AVITI System Sequencing Instrument (Element Biosciences) (Arslan et al., 2024) as 

was done in all experiments described in this dissertation, is displayed in Figure 5.2. The 

total cost per cell ends up being approximately $0.00028 ($0.0012 if sequencing is 

included). 

 

 

Figure 5.1: SWIFT-seq is cost-effective and time-effective. 
By relying solely on in-house reagents with minimal clean-up and wash steps, SWIFT-seq 
is affordable, open-source, and fast. 
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Figure 5.2: Cost breakdown of a SWIFT-seq experiment. 
Spreadsheet showing the cost per cell for a SWIFT-seq experiment. 
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The SWIFT-seq protocol 

Experimental protocol: 

SWIFT-seq, our single-cell split-pool-barcoding approach, works by sequentially tagging 

individual cells with unique barcode combinations in a simple, streamlined three day 

workflow (Figure 5.3), as follows: 

5. Day 1: First, formaldehyde-crosslinked cells are gently permeabilized and 

subjected to first-strand cDNA synthesis using barcoded reverse 

transcription (RT) primers, forming the first barcode in the combinatorial 

barcoding scheme. Next, the cells are distributed into wells of a 96-well 

plate, each well containing well-specific barcodes that are ligated onto the 

cDNA. Cells are then pooled and re-distributed for additional barcoding 

rounds. Typically, three sets of barcodes provide sufficient  combinatorial 

complexity to resolve single cells, but, as the need arises (i.e. scaling to tens 

of millions of cells), more barcoding rounds can easily be incorporated. 

6. Day 2: Crosslinks are reversed, and a second RT reaction extends partially 

transcribed cDNA molecules from the first RT step. RNA is then digested 

via RNase treatment, followed by the incorporation of a UMI sequence 

through splint ligation. 

7. Day 3: The cDNA is isolated and PCR-amplified, simultaneously adding 

sequencing adapters to generate the final double-stranded cDNA library 

(Figure 5.4). The product is then cleaned with SPRI beads, size-selected via 

gel electrophoresis, quality-checked on an Agilent TapeStation, and 

prepared for sequencing. 
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Figure 5.3: SWIFT-seq library preparation. 
SWIFT-seq uses an efficient three day library preparation strategy. 
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Figure 5.4: SWIFT-seq library structure. 
The R1 sequencing reads begin at the UMI sequence while the R2 sequencing reads begin 
at the final round barcode tag and extend through all preceding barcode sequences.  
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SWIFT-seq reagents include: 

- Buffers: 
o 1X PBS (RNase/DNase free) 
o 1X PBS (RNase/DNase free) + 0.125% Triton X-100  
o 1X PBS (RNase/DNase free) + 0.1% Tween 
o 1X PBS (RNase/DNase free) + 0.1% Tween + 50 mM EDTA 

- Magnetic beads: 
o MyOne Silane Beads 

[Catalog Number: 37005D] 
o Ampure SPRI Beads 

[Bulldog Bio Catalog Number: CNGS500] 
- Enzymes: 

o RNA integrity: 
§ Ribolock RNase Inhibitor 

[ThermoFisher Catalog Number: EO038C005] 
o Ligation: 

§ NEB 2X Instant Sticky Master Mix (ISMM) 
[NEB Catalog Number: M0370L] 

o Reverse Transcription: 
§ 5X RT MasterMix Buffer & Maxima RT H minus 

[LifeTech Catalog Number: EP0753] 
§ 10 mM dNTP mix 

[Catalog Number:N0447L] 
§ NEB Exonuclease I 

[Catalog Number: M0293L] 
o Cell Lysis and Splint Ligation: 

§ 10X RNase H Buffer 
[NEB Catalog Number: B0297S] 

§ NEB Thermolabile ProK 
[NEB Catalog Number: P8111S] 

§ NEB RNase H 
[Catalog Number: M0297L] 

§ NEB RNase A/T1 cocktail 
[LifeTech Catalog Number: AM2286] 

o PCR: 
§ 2X Q5 Mastermix 

[NEB Catalog Number: M0492L] 
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Computational protocol: 

SWIFT-seq data (in the form of paired-end FASTQ files) can be processed via a 

Snakemake workflow (Mölder et al., 2021) (Figure 5.5). This pipeline includes steps such 

as adapter trimming, barcode identification, ribosomal RNA removal, and alignment. 

 

Figure 5.5: SWIFT-seq computational pipeline. 
The pipeline to process SWIFT-seq data is shown as dependency graph of rules as part of 
the Snakemake workflow management system. 
 

The workflow is executed based on settings specified in a YAML (Ben-Kiki et al., 2004) 

configuration file where one can specify such options as the path to the input FASTQ files, 

the adapter sequences, the path to the splitcode config file (Sullivan and Pachter, 2024) (for 

processing the cell barcodes), the path to a file of ribosomal RNA sequences that are to be 

excluded, and aligner settings (e.g. the path to the index for read alignment). 
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 Main components of the workflow are detailed as follows: 

• adaptor_trimming_pe: The first processing step of the workflow. Adapters are 

trimmed from the reads using cutadapt (Martin, 2011).  

• splitcode_barcodeID: Processes the adapter-trimmed reads using splitcode 

(Sullivan and Pachter, 2024), which assigns unique pseudobarcodes to each 

barcode combination and reformats the reads into the following format: 

o R1: 20-bp pseudobarcode followed by 10-bp UMI followed by the sequence 

to be aligned. 

o R2: The sequence to be aligned from the other mate. 

(By default, the alignment sequence is limited to 65 bp to prevent reading into 

the split-pool barcode tags, but this setting can be adjusted). 

• set_barcode_mapping_file: Prepares a “barcode mapping file” from splitcode 

output. This file contains the encoding necessary to convert the 20-bp 

pseudobarcodes back to the original combination of split-pool barcoding tags. 

• starsolo_align: Runs STARsolo (Kaminow et al., 2021) to align the reformatted 

reads to the reference genome and to generate a count matrix. 

• decode_barcodes_starsolo: Decodes the pseudobarcodes of the count matrix into 

the original combination of split-pool barcoding tags using the encoding specified 

in the “barcode mapping file”. 

• generate_anndata_starsolo: An anndata object (Virshup et al., 2021) to store the 

output count matrix for downstream processing in Python. 

• merge_anndata: In case multiple samples or aliquots are analyzed, the multiple 

count matrices are merged together into a single anndata object. 
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While the workflow described above uses STARsolo as the aligner, the workflow also 

supports kallisto | bustools (Melsted et al., 2021; Sullivan et al., 2024) for generating output 

count matrices. As the contents of this dissertation primarily focus on kallisto, STARsolo 

was chosen to highlight the pipeline's flexibility and compatibility with different short-read 

aligners. The pros and cons of each alignment strategy (i.e. full genome alignment vs. 

pseudoalignment) are the same as with any other single-cell RNA-seq technology.  

The SWIFT-seq pipeline also has components used for ribosomal RNA removal via 

bowtie2 (Langmead and Salzberg, 2012): 

• create_exclusion_index: Prepares a bowtie2 index from a path to a FASTA file 

containing the sequences (e.g. ribosomal RNAs) that are to be removed. 

• get_exclusion_reads: Performs the bowtie2 alignment in order to identify reads that 

align to the bowtie2 index. 

• exclude_reads_r1: Uses seqkit (Shen et al., 2016) to remove R1 reads that 

correspond to the bowtie2 alignments. 

• exclusion_reads_r2: Uses seqkit to remove R2 reads that correspond to the bowtie2 

alignments (note: paired-end alignment is done with bowtie2 so the list of 

alignments supplied to seqkit is the same for R1 and R2, ensuring that they remain 

synchronized). 
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The final components of the SWIFT-seq pipeline are the generation of QC reports: 

• initial_fastqc: Generates QC statistics from running the FastQC program 

(Babraham Bioinformatics; program obtained from the following URL: 

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/) on the raw FASTQ 

files from a SWIFT-seq run. 

• post_trim_fastqc: Generates QC statistics from running the FastQC program on the 

FASTQ files after adapter trimming has been performed. 

• concatenate_exclusion_results: Produces a QC report of the reads aligned (via 

bowtie2) to the “exclusion” sequences (e.g. ribosomal RNA). 

• calc_ligation_efficiency: Calculates metrics on how many reads contain the full set 

of barcodes, a partial set of barcodes, or no barcodes. This lends insight into the 

ligation efficiency of the barcoding reactions. 

• concatenate_ligeff_results: Generates a QC report of the above barcode metrics. 

• log_config: Simply records the configuration file used for the execution of the 

Snakemake pipeline. 

In addition to standard quantifications, one can also quantify allele-specific expression 

using the SWIFT-seq Snakemake pipeline. One can supply a VCF file (Danecek et al., 

2011), which annotates single nucleotide polymorphisms (SNPs) in the reference genome. 

For the STARsolo step, the WASP algorithm will be executed (Asiimwe and Alexander, 

2024; Van De Geijn et al., 2015), enabling allele-specific read alignment with reduced 

reference mapping bias. Alternately, for a kallisto-based pseudoalignment approach, one 

can make a kallisto transcriptome index from a hybrid genome (i.e. containing the two 

haplotypes if the organism is diploid).  
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Analysis of sequenced SWIFT-seq libraries 

Human-mouse mixing experiment: 

A human-mouse mixing experiment was performed to determine whether each 

combination of barcodes represents a unique cell (as opposed to doublets). To do this, 

cross-linked human HEK293T cells and mouse embryonic stem cells (TX1072 cells) were 

mixed prior to split-pooling. The resulting SWIFT-seq libraries were then sequenced and 

the sequencing reads were aligned to a combined human and mouse reference genome. The 

UMIs that could be uniquely assigned to either a human gene or a mouse gene were counted 

(Figure 5.6). Overall, there was a very low mixing rate (under 1%) suggesting that each 

combination of barcodes represents a single cell (Figure 5.7). 

 

Figure 5.6: UMI and gene detection from a species-mixing experiment. 
UMIs mapped uniquely to either a mouse gene or a human gene were counted in a species 
mixing experiment consisting of mouse embryonic stem cells (TX1072) and human cells 
(HEK293T). 
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Figure 5.7: Species-mixing experiment shows minimal mixing. 
Mouse (TX1072) vs. human (HEK293T) cells are identified based on ≥ 1000 UMI counts 
and ≥ 95% UMIs assigned to mouse or human. 
 

Gene body coverage: 

To assess whether SWIFT-seq provides full coverage over the gene body (as opposed to, 

say, only the 5′ end or the 3′ end of genes), the mouse embryonic stem cells (TX1072) from 

the species-mixing experiment were further analyzed. The program deepTools2 (Ramírez 

et al., 2016) was used to create metagene plots (i.e. coverage profiles) from the BAM file 

of aligned reads. Overall, SWIFT-seq appears to provide comprehensive gene length 

coverage (Figure 5.8). 
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Figure 5.8: SWIFT-seq shows comprehensive gene length coverage. 
Coverages over R1 and R2 reads of mouse embryonic stem cells (TX1072) are shown. 
 

Allele-specific expression: 

To validate SWIFT-seq's ability to resolve allele-specific expression, we performed 

SWIFT-seq experiments on pSM44 mouse embryonic stem cells, which are 

129S1/SvImJ × CAST hybrids carrying a doxycycline-inducible Xist gene from the 

129S1/SvImJ allele, and induced Xist expression with the addition of doxycycline. As 

expected, UMIs for the Xist gene in individual cells were predominantly assigned to the 

129S1/SvImJ allele (Figure 5.9). 
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Figure 5.9: Example of allele-specific expression resolvable by SWIFT-seq. 
For the Xist gene, most UMI counts in each cell are derived from the 129S1/SvImJ allele, 
the inducible allele in pSM44 mouse embryonic stem cells. 
 

Cell type classification of a mixed population of blood cells: 

Next, to assess the ability of SWIFT-seq to resolve cell types from a complex population 

of cells, human peripheral blood mononuclear cells (PBMCs) were used. After filtering for 

cells with at least 1000 UMIs, the counts were normalized with CP10k normalization 

followed by log1p transformation. Highly variable genes were identified then nearest 

neighbor graphs were constructed from the cell coordinates on the top 40 principal 

component analysis (PCA) embeddings in Scanpy (Wolf et al., 2018). Cell type annotation 

was then performed with CellTypist (Domínguez Conde et al., 2022; Xu et al., 2023), with 

the option ‘model’ set to “Immune_All_Low.pkl” and the option ‘majority_voting’ set to 

True, enabling cell type annotation of immune cells with the aid of Leiden clustering. 

Multiple subtypes of B cells, T cells, natural killer cells, and macrophages were identified, 

along with confirmed expression of known marker genes, demonstrating that SWIFT-seq 

can effectively be used to characterize diverse cell types (Figure 5.10). 
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Figure 5.10: Cell Type Classification of a mixed population (PBMCs) using SWIFT-seq. 
(A) Proportions of each cell type identified within a PBMC sample. (B) Heatmap of immune 
marker gene expressions across identified cell types. 
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Ribosomal RNA content: 

Ribosomal RNAs (rRNAs) are extremely abundant in cells and it is expected that the 

majority reads will originate from rRNAs, which is why the SWIFT-seq pipeline explicitly 

removes alignments to rRNAs. One solution to remove rRNAs before sequencing is to use 

a recombinant Cas9 enzyme complexed with a library of guide RNAs targeting ribosomal 

RNA sequences. This method, called Depletion of Abundant Sequences by Hybridization 

(DASH) (Gu et al., 2016), can deplete rRNAs directly from a sequencing library and is 

thus an attractive option to add to SWIFT-seq. A proprietary Cas9-based rRNA depletion 

approach has been commercialized into the CRISPRclean kit (Jumpcode Genomics). We 

tested the kit and observed over a 3-fold reduction in rRNA content in our SWIFT-seq 

libraries (Figure 5.11). Work is ongoing to develop an affordable, open-source approach 

for depleting rRNA directly from sequencing libraries. 

 

Figure 5.11: Ribodepletion of SWIFT-seq libraries. 
Using a ribosome depletion kit can greatly reduce the rRNA content of SWIFT-seq 
libraries. Ribodepleted: A SWIFT-seq library with the CRISPRclean kit used. Non-
ribodepleted #1 and Non-ribodepleted #2: Two SWIFT-seq libraries without any rRNA 
depletion procedures used. 
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Comparisons against other technologies: 

To validate SWIFT-seq, we compared SWIFT-seq with other technologies to determine 

whether SWIFT-seq is concordant with other technologies, such as Smart-seq3, SPLiT-seq 

(Parse Biosciences), and 10x Genomics. SWIFT-seq, like other technologies, can capture 

a considerable amount of both nascent and mature RNA for single-cell RNA-seq 

(Figure 5.12). Moreover, HEK cells from SWIFT-seq are correlated well with HEK cells 

sequenced from other technologies (Figure 5.13). Altogether, SWIFT-seq appears to be 

concordant with other technologies. 

 

 

Figure 5.12: Distribution of RNA splicing status across different technologies. 
Technologies are compared on the basis of nascent, mature, and ambiguous RNA 
abundance. 
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Figure 5.13: Correlation between different single-cell RNA-seq technologies. 
HEK cells profiled with SWIFT-seq show strong concordance with those from Smart-seq3 
and 10x Genomics, as demonstrated at both the pseudobulk and single-cell level. 
 

 

Conclusion: 

In conclusion, SWIFT-seq is an affordable, open-source technology designed for both 

small and large-scale single-cell RNA-seq experiments. By combining high-throughput 

cell capture with deep, full-length transcript coverage, it enables accurate detection of 

allelic and isoform-level differences across many cells. With its low cost and ease of use, 

SWIFT-seq provides researchers a practical, scalable approach for achieving both depth 

and breadth in single-cell transcriptomic studies. 

 

 

 

 



 

 

156 
Bibliography 

 
Adduri, A., Kim, S., 2024. Ornaments for efficient allele-specific expression estimation 

with bias correction. The American Journal of Human Genetics 111, 1770–1781. 
https://doi.org/10.1016/j.ajhg.2024.06.014 

Ahmed, Z., Zeeshan, S., Dandekar, T., 2014. Developing sustainable software solutions 
for bioinformatics by the “Butterfly” paradigm. F1000Res 3, 71. 
https://doi.org/10.12688/f1000research.3681.1 

Aldridge, S., Teichmann, S.A., 2020. Single cell transcriptomics comes of age. Nat 
Commun 11, 4307. https://doi.org/10.1038/s41467-020-18158-5 

Almodaresi, F., Sarkar, H., Srivastava, A., Patro, R., 2018. A space and time-efficient 
index for the compacted colored de Bruijn graph. Bioinformatics 34, i169–i177. 
https://doi.org/10.1093/bioinformatics/bty292 

Almodaresi, F., Zakeri, M., Patro, R., 2021. PuffAligner: a fast, efficient and accurate 
aligner based on the Pufferfish index. Bioinformatics 37, 4048–4055. 
https://doi.org/10.1093/bioinformatics/btab408 

Amezquita, R.A., Lun, A.T.L., Becht, E., Carey, V.J., Carpp, L.N., Geistlinger, L., 
Marini, F., Rue-Albrecht, K., Risso, D., Soneson, C., Waldron, L., Pagès, H., 
Smith, M.L., Huber, W., Morgan, M., Gottardo, R., Hicks, S.C., 2020. 
Orchestrating single-cell analysis with Bioconductor. Nat Methods 17, 137–145. 
https://doi.org/10.1038/s41592-019-0654-x 

Anders, S., Pyl, P.T., Huber, W., 2015. HTSeq--a Python framework to work with high-
throughput sequencing data. Bioinformatics 31, 166–169. 
https://doi.org/10.1093/bioinformatics/btu638 

Arslan, S., Garcia, F.J., Guo, M., Kellinger, M.W., Kruglyak, S., LeVieux, J.A., Mah, 
A.H., Wang, H., Zhao, J., Zhou, C., Altomare, A., Bailey, J., Byrne, M.B., Chang, 
C., Chen, S.X., Cho, B., Dennler, C.N., Dien, V.T., Fuller, D., Kelley, R., 
Khandan, O., Klein, M.G., Kim, M., Lajoie, B.R., Lin, B., Liu, Y., Lopez, T., 
Mains, P.T., Price, A.D., Robertson, S.R., Taylor-Weiner, H., Tippana, R., 
Tomaney, A.B., Zhang, S., Abtahi, M., Ambroso, M.R., Bajari, R., Bellizzi, A.M., 
Benitez, C.B., Berard, D.R., Berti, L., Blease, K.N., Blum, A.P., Boddicker, A.M., 
Bondar, L., Brown, C., Bui, C.A., Calleja-Aguirre, J., Cappa, K., Chan, J., Chang, 
V.W., Charov, K., Chen, X., Constandse, R.M., Damron, W., Dawood, M., 
DeBuono, N., Dimalanta, J.D., Edoli, L., Elango, K., Faustino, N., Feng, C., 
Ferrari, M., Frankie, K., Fries, A., Galloway, A., Gavrila, V., Gemmen, G.J., 
Ghadiali, J., Ghorbani, A., Goddard, L.A., Guetter, A.R., Hendricks, G.L., 
Hentschel, J., Honigfort, D.J., Hsieh, Y.-T., Hwang Fu, Y.-H., Im, S.K., Jin, C., 
Kabu, S., Kincade, D.E., Levy, S., Li, Y., Liang, V.K., Light, W.H., Lipsher, J.B., 
Liu, T., Long, G., Ma, R., Mailloux, J.M., Mandla, K.A., Martinez, A.R., Mass, 
M., McKean, D.T., Meron, M., Miller, E.A., Moh, C.S., Moore, R.K., Moreno, J., 
Neysmith, J.M., Niman, C.S., Nunez, J.M., Ojeda, M.T., Ortiz, S.E., Owens, J., 
Piland, G., Proctor, D.J., Purba, J.B., Ray, M., Rong, D., Saade, V.M., Saha, S., 



 

 

157 
Tomas, G.S., Scheidler, N., Sirajudeen, L.H., Snow, S., Stengel, G., Stinson, 
R., Stone, M.J., Sundseth, K.J., Thai, E., Thompson, C.J., Tjioe, M., Trejo, C.L., 
Trieger, G., Truong, D.N., Tse, B., Voiles, B., Vuong, H., Wong, J.C., Wu, C.-T., 
Yu, H., Yu, Y., Yu, M., Zhang, X., Zhao, D., Zheng, G., He, M., Previte, M., 
2024. Sequencing by avidity enables high accuracy with low reagent 
consumption. Nat Biotechnol 42, 132–138. https://doi.org/10.1038/s41587-023-
01750-7 

Asiimwe, R., Alexander, D., 2024. STAR+WASP reduces reference bias in the allele-
specific mapping of RNA-seq reads. https://doi.org/10.1101/2024.01.21.576391 

Audoux, J., Philippe, N., Chikhi, R., Salson, M., Gallopin, M., Gabriel, M., Le Coz, J., 
Drouineau, E., Commes, T., Gautheret, D., 2017. DE-kupl: exhaustive capture of 
biological variation in RNA-seq data through k-mer decomposition. Genome Biol 
18, 243. https://doi.org/10.1186/s13059-017-1372-2 

Baldoni, P.L., Chen, Y., Hediyeh-zadeh, S., Liao, Y., Dong, X., Ritchie, M.E., Shi, W., 
Smyth, G.K., 2024. Dividing out quantification uncertainty allows efficient 
assessment of differential transcript expression with edgeR. Nucleic Acids 
Research 52, e13–e13. https://doi.org/10.1093/nar/gkad1167 

Battenberg, K., Kelly, S.T., Ras, R.A., Hetherington, N.A., Hayashi, M., Minoda, A., 
2022. A flexible cross-platform single-cell data processing pipeline. Nat Commun 
13, 6847. https://doi.org/10.1038/s41467-022-34681-z 

Becht, E., McInnes, L., Healy, J., Dutertre, C.-A., Kwok, I.W.H., Ng, L.G., Ginhoux, F., 
Newell, E.W., 2019. Dimensionality reduction for visualizing single-cell data 
using UMAP. Nat Biotechnol 37, 38–44. https://doi.org/10.1038/nbt.4314 

Ben-Kiki, O., Evans, C., Ingerson, B., 2004. Yaml ain’t markup language (yamlTM) 
version 1.1. 

Boisvert, R.F., Pozo, R., Remington, K.A., 1996. The matrix market exchange formats: 
Initial design. US Department of Commerce, National Institute of Standards and 
Technology 5935. 

Bolchini, D., Finkelstein, A., Perrone, V., Nagl, S., 2009. Better bioinformatics through 
usability analysis. Bioinformatics 25, 406–412. 
https://doi.org/10.1093/bioinformatics/btn633 

Bolger, A.M., Lohse, M., Usadel, B., 2014. Trimmomatic: a flexible trimmer for Illumina 
sequence data. Bioinformatics 30, 2114–2120. 
https://doi.org/10.1093/bioinformatics/btu170 

Booeshaghi, A.S., Min, K.H. (Joseph), Gehring, J., Pachter, L., 2024. Quantifying 
orthogonal barcodes for sequence census assays. Bioinformatics Advances 4, 
vbad181. https://doi.org/10.1093/bioadv/vbad181 

Booeshaghi, A.S., Chen, X., Pachter, L., 2024. A machine-readable specification for 
genomics assays. Bioinformatics 40, btae168. 
https://doi.org/10.1093/bioinformatics/btae168 

Bray, N.L., Pimentel, H., Melsted, P., Pachter, L., 2016. Near-optimal probabilistic RNA-
seq quantification. Nat Biotechnol 34, 525–527. https://doi.org/10.1038/nbt.3519 



 

 

158 
Bushnell, B., Rood, J., Singer, E., 2017. BBMerge – Accurate paired shotgun read 

merging via overlap. PLoS ONE 12, e0185056. 
https://doi.org/10.1371/journal.pone.0185056 

Carilli, M., Gorin, G., Choi, Y., Chari, T., Pachter, L., 2024. Biophysical modeling with 
variational autoencoders for bimodal, single-cell RNA sequencing data. Nat 
Methods 21, 1466–1469. https://doi.org/10.1038/s41592-024-02365-9 

Chambi, S., Lemire, D., Kaser, O., Godin, R., 2016. Better bitmap performance with 
Roaring bitmaps. Softw Pract Exp 46, 709–719. https://doi.org/10.1002/spe.2325 

Chari, T., Gorin, G., Pachter, L., 2024. Biophysically interpretable inference of cell types 
from multimodal sequencing data. Nat Comput Sci 4, 677–689. 
https://doi.org/10.1038/s43588-024-00689-2 

Chaung, K., Baharav, T.Z., Henderson, G., Zheludev, I.N., Wang, P.L., Salzman, J., 
2023. SPLASH: A statistical, reference-free genomic algorithm unifies biological 
discovery. Cell 186, 5440-5456.e26. https://doi.org/10.1016/j.cell.2023.10.028 

Chen, S., Zhou, Y., Chen, Y., Gu, J., 2018. fastp: an ultra-fast all-in-one FASTQ 
preprocessor. Bioinformatics 34, i884–i890. 
https://doi.org/10.1093/bioinformatics/bty560 

Chen, X., Love, J.C., Navin, N.E., Pachter, L., Stubbington, M.J.T., Svensson, V., 
Sweedler, J.V., Teichmann, S.A., 2016. Single-cell analysis at the threshold. Nat 
Biotechnol 34, 1111–1118. https://doi.org/10.1038/nbt.3721 

Chen, Y., Chen, L., Lun, A.T.L., Baldoni, P.L., Smyth, G.K., 2024. edgeR v4: powerful 
differential analysis of sequencing data with expanded functionality and improved 
support for small counts and larger datasets. 
https://doi.org/10.1101/2024.01.21.576131 

Cheng, O., Ling, M.H., Wang, C., Wu, S., Ritchie, M.E., Göke, J., Amin, N., Davidson, 
N.M., 2024. Flexiplex: a versatile demultiplexer and search tool for omics data. 
Bioinformatics 40, btae102. https://doi.org/10.1093/bioinformatics/btae102 

Conesa, A., Madrigal, P., Tarazona, S., Gomez-Cabrero, D., Cervera, A., McPherson, A., 
Szcześniak, M.W., Gaffney, D.J., Elo, L.L., Zhang, X., Mortazavi, A., 2016. A 
survey of best practices for RNA-seq data analysis. Genome Biol 17, 13. 
https://doi.org/10.1186/s13059-016-0881-8 

Crick, F.H.C., 1958. On protein synthesis. Symp Soc Exp Biol. 12, 138–163. 
Danecek, P., Auton, A., Abecasis, G., Albers, C.A., Banks, E., DePristo, M.A., 

Handsaker, R.E., Lunter, G., Marth, G.T., Sherry, S.T., McVean, G., Durbin, R., 
1000 Genomes Project Analysis Group, 2011. The variant call format and 
VCFtools. Bioinformatics 27, 2156–2158. 
https://doi.org/10.1093/bioinformatics/btr330 

Davis, M.P.A., Van Dongen, S., Abreu-Goodger, C., Bartonicek, N., Enright, A.J., 2013. 
Kraken: A set of tools for quality control and analysis of high-throughput 
sequence data. Methods 63, 41–49. https://doi.org/10.1016/j.ymeth.2013.06.027 

Delahaye, C., Nicolas, J., 2021. Sequencing DNA with nanopores: Troubles and biases. 
PLoS One 16, e0257521. https://doi.org/10.1371/journal.pone.0257521 

Ding, J., Adiconis, X., Simmons, S.K., Kowalczyk, M.S., Hession, C.C., Marjanovic, 
N.D., Hughes, T.K., Wadsworth, M.H., Burks, T., Nguyen, L.T., Kwon, J.Y.H., 



 

 

159 
Barak, B., Ge, W., Kedaigle, A.J., Carroll, S., Li, S., Hacohen, N., Rozenblatt-
Rosen, O., Shalek, A.K., Villani, A.-C., Regev, A., Levin, J.Z., 2020. Systematic 
comparison of single-cell and single-nucleus RNA-sequencing methods. Nat 
Biotechnol 38, 737–746. https://doi.org/10.1038/s41587-020-0465-8 

Dobin, A., Davis, C.A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P., 
Chaisson, M., Gingeras, T.R., 2013. STAR: ultrafast universal RNA-seq aligner. 
Bioinformatics 29, 15–21. https://doi.org/10.1093/bioinformatics/bts635 

Domínguez Conde, C., Xu, C., Jarvis, L.B., Rainbow, D.B., Wells, S.B., Gomes, T., 
Howlett, S.K., Suchanek, O., Polanski, K., King, H.W., Mamanova, L., Huang, 
N., Szabo, P.A., Richardson, L., Bolt, L., Fasouli, E.S., Mahbubani, K.T., Prete, 
M., Tuck, L., Richoz, N., Tuong, Z.K., Campos, L., Mousa, H.S., Needham, E.J., 
Pritchard, S., Li, T., Elmentaite, R., Park, J., Rahmani, E., Chen, D., Menon, 
D.K., Bayraktar, O.A., James, L.K., Meyer, K.B., Yosef, N., Clatworthy, M.R., 
Sims, P.A., Farber, D.L., Saeb-Parsy, K., Jones, J.L., Teichmann, S.A., 2022. 
Cross-tissue immune cell analysis reveals tissue-specific features in humans. 
Science 376, eabl5197. https://doi.org/10.1126/science.abl5197 

Einarsson, P.H., Melsted, P., 2023. BUSZ: compressed BUS files. Bioinformatics 39, 
btad295. https://doi.org/10.1093/bioinformatics/btad295 

Ferraj, A., Audano, P.A., Balachandran, P., Czechanski, A., Flores, J.I., Radecki, A.A., 
Mosur, V., Gordon, D.S., Walawalkar, I.A., Eichler, E.E., Reinholdt, L.G., Beck, 
C.R., 2023. Resolution of structural variation in diverse mouse genomes reveals 
chromatin remodeling due to transposable elements. Cell Genomics 3, 100291. 
https://doi.org/10.1016/j.xgen.2023.100291 

Frankish, A., Carbonell-Sala, S., Diekhans, M., Jungreis, I., Loveland, J.E., Mudge, J.M., 
Sisu, C., Wright, J.C., Arnan, C., Barnes, I., Banerjee, A., Bennett, R., Berry, A., 
Bignell, A., Boix, C., Calvet, F., Cerdán-Vélez, D., Cunningham, F., Davidson, 
C., Donaldson, S., Dursun, C., Fatima, R., Giorgetti, S., Giron, C.G., Gonzalez, 
J.M., Hardy, M., Harrison, P.W., Hourlier, T., Hollis, Z., Hunt, T., James, B., 
Jiang, Y., Johnson, R., Kay, M., Lagarde, J., Martin, F.J., Gómez, L.M., Nair, S., 
Ni, P., Pozo, F., Ramalingam, V., Ruffier, M., Schmitt, B.M., Schreiber, J.M., 
Steed, E., Suner, M.-M., Sumathipala, D., Sycheva, I., Uszczynska-Ratajczak, B., 
Wass, E., Yang, Y.T., Yates, A., Zafrulla, Z., Choudhary, J.S., Gerstein, M., 
Guigo, R., Hubbard, T.J.P., Kellis, M., Kundaje, A., Paten, B., Tress, M.L., 
Flicek, P., 2023. GENCODE: reference annotation for the human and mouse 
genomes in 2023. Nucleic Acids Res 51, D942–D949. 
https://doi.org/10.1093/nar/gkac1071 

Gorin, G., Fang, M., Chari, T., Pachter, L., 2022a. RNA velocity unraveled. PLoS 
Comput Biol 18, e1010492. https://doi.org/10.1371/journal.pcbi.1010492 

Gorin, G., Pachter, L., 2022a. Distinguishing biophysical stochasticity from technical 
noise in single-cell RNA sequencing using Monod. 
https://doi.org/10.1101/2022.06.11.495771 

Gorin, G., Pachter, L., 2022b. Modeling bursty transcription and splicing with the 
chemical master equation. Biophys J 121, 1056–1069. 
https://doi.org/10.1016/j.bpj.2022.02.004 



 

 

160 
Gorin, G., Vastola, J.J., Fang, M., Pachter, L., 2022b. Interpretable and tractable 

models of transcriptional noise for the rational design of single-molecule 
quantification experiments. Nat Commun 13, 7620. 
https://doi.org/10.1038/s41467-022-34857-7 

Gorin, G., Vastola, J.J., Pachter, L., 2023. Studying stochastic systems biology of the cell 
with single-cell genomics data. Cell Systems 14, 822-843.e22. 
https://doi.org/10.1016/j.cels.2023.08.004 

Griffith, M., Griffith, O.L., Mwenifumbo, J., Goya, R., Morrissy, A.S., Morin, R.D., 
Corbett, R., Tang, M.J., Hou, Y.-C., Pugh, T.J., Robertson, G., Chittaranjan, S., 
Ally, A., Asano, J.K., Chan, S.Y., Li, H.I., McDonald, H., Teague, K., Zhao, Y., 
Zeng, T., Delaney, A., Hirst, M., Morin, G.B., Jones, S.J.M., Tai, I.T., Marra, 
M.A., 2010. Alternative expression analysis by RNA sequencing. Nat Methods 7, 
843–847. https://doi.org/10.1038/nmeth.1503 

Grindberg, R.V., Yee-Greenbaum, J.L., McConnell, M.J., Novotny, M., O’Shaughnessy, 
A.L., Lambert, G.M., Araúzo-Bravo, M.J., Lee, J., Fishman, M., Robbins, G.E., 
Lin, X., Venepally, P., Badger, J.H., Galbraith, D.W., Gage, F.H., Lasken, R.S., 
2013. RNA-sequencing from single nuclei. Proc Natl Acad Sci U S A 110, 
19802–19807. https://doi.org/10.1073/pnas.1319700110 

Gu, W., Crawford, E.D., O’Donovan, B.D., Wilson, M.R., Chow, E.D., Retallack, H., 
DeRisi, J.L., 2016. Depletion of Abundant Sequences by Hybridization (DASH): 
using Cas9 to remove unwanted high-abundance species in sequencing libraries 
and molecular counting applications. Genome Biol 17, 41. 
https://doi.org/10.1186/s13059-016-0904-5 

Gustafsson, J., Robinson, J., Nielsen, J., Pachter, L., 2021. BUTTERFLY: addressing the 
pooled amplification paradox with unique molecular identifiers in single-cell 
RNA-seq. Genome Biol 22, 174. https://doi.org/10.1186/s13059-021-02386-z 

Guttman, M., Garber, M., Levin, J.Z., Donaghey, J., Robinson, J., Adiconis, X., Fan, L., 
Koziol, M.J., Gnirke, A., Nusbaum, C., Rinn, J.L., Lander, E.S., Regev, A., 2010. 
Ab initio reconstruction of cell type–specific transcriptomes in mouse reveals the 
conserved multi-exonic structure of lincRNAs. Nat Biotechnol 28, 503–510. 
https://doi.org/10.1038/nbt.1633 

Hagemann-Jensen, M., Ziegenhain, C., Chen, P., Ramsköld, D., Hendriks, G.-J., Larsson, 
A.J.M., Faridani, O.R., Sandberg, R., 2020. Single-cell RNA counting at allele 
and isoform resolution using Smart-seq3. Nat Biotechnol 38, 708–714. 
https://doi.org/10.1038/s41587-020-0497-0 

Hao, Y., Hao, S., Andersen-Nissen, E., Mauck, W.M., Zheng, S., Butler, A., Lee, M.J., 
Wilk, A.J., Darby, C., Zager, M., Hoffman, P., Stoeckius, M., Papalexi, E., 
Mimitou, E.P., Jain, J., Srivastava, A., Stuart, T., Fleming, L.M., Yeung, B., 
Rogers, A.J., McElrath, J.M., Blish, C.A., Gottardo, R., Smibert, P., Satija, R., 
2021. Integrated analysis of multimodal single-cell data. Cell 184, 3573-3587.e29. 
https://doi.org/10.1016/j.cell.2021.04.048 

Harrison, P.W., Amode, M.R., Austine-Orimoloye, O., Azov, A.G., Barba, M., Barnes, I., 
Becker, A., Bennett, R., Berry, A., Bhai, J., Bhurji, S.K., Boddu, S., Branco Lins, 
P.R., Brooks, L., Ramaraju, S.B., Campbell, L.I., Martinez, M.C., Charkhchi, M., 



 

 

161 
Chougule, K., Cockburn, A., Davidson, C., De Silva, N.H., Dodiya, K., 
Donaldson, S., El Houdaigui, B., Naboulsi, T.E., Fatima, R., Giron, C.G., Genez, 
T., Grigoriadis, D., Ghattaoraya, G.S., Martinez, J.G., Gurbich, T.A., Hardy, M., 
Hollis, Z., Hourlier, T., Hunt, T., Kay, M., Kaykala, V., Le, T., Lemos, D., Lodha, 
D., Marques-Coelho, D., Maslen, G., Merino, G.A., Mirabueno, L.P., Mushtaq, 
A., Hossain, S.N., Ogeh, D.N., Sakthivel, M.P., Parker, A., Perry, M., Piližota, I., 
Poppleton, D., Prosovetskaia, I., Raj, S., Pérez-Silva, J.G., Salam, A.I.A., Saraf, 
S., Saraiva-Agostinho, N., Sheppard, D., Sinha, S., Sipos, B., Sitnik, V., Stark, 
W., Steed, E., Suner, M.-M., Surapaneni, L., Sutinen, K., Tricomi, F.F., Urbina-
Gómez, D., Veidenberg, A., Walsh, T.A., Ware, D., Wass, E., Willhoft, N.L., 
Allen, J., Alvarez-Jarreta, J., Chakiachvili, M., Flint, B., Giorgetti, S., Haggerty, 
L., Ilsley, G.R., Keatley, J., Loveland, J.E., Moore, B., Mudge, J.M., Naamati, G., 
Tate, J., Trevanion, S.J., Winterbottom, A., Frankish, A., Hunt, S.E., 
Cunningham, F., Dyer, S., Finn, R.D., Martin, F.J., Yates, A.D., 2024. Ensembl 
2024. Nucleic Acids Res 52, D891–D899. https://doi.org/10.1093/nar/gkad1049 

Hashimshony, T., Senderovich, N., Avital, G., Klochendler, A., de Leeuw, Y., Anavy, L., 
Gennert, D., Li, S., Livak, K.J., Rozenblatt-Rosen, O., Dor, Y., Regev, A., Yanai, 
I., 2016. CEL-Seq2: sensitive highly-multiplexed single-cell RNA-Seq. Genome 
Biol 17, 77. https://doi.org/10.1186/s13059-016-0938-8 

He, D., Gao, Y., Chan, S.S., Quintana-Parrilla, N., Patro, R., 2024. Forseti : a mechanistic 
and predictive model of the splicing status of scRNA-seq reads. Bioinformatics 
40, i297–i306. https://doi.org/10.1093/bioinformatics/btae207 

He, D., Patro, R., 2023. simpleaf: a simple, flexible, and scalable framework for single-
cell data processing using alevin-fry. Bioinformatics 39, btad614. 
https://doi.org/10.1093/bioinformatics/btad614 

He, D., Soneson, C., Patro, R., 2023. Understanding and evaluating ambiguity in single-
cell and single-nucleus RNA-sequencing. 
https://doi.org/10.1101/2023.01.04.522742 

He, D., Zakeri, M., Sarkar, H., Soneson, C., Srivastava, A., Patro, R., 2022. Alevin-fry 
unlocks rapid, accurate and memory-frugal quantification of single-cell RNA-seq 
data. Nat Methods 19, 316–322. https://doi.org/10.1038/s41592-022-01408-3 

Holley, G., Melsted, P., 2020. Bifrost: highly parallel construction and indexing of 
colored and compacted de Bruijn graphs. Genome Biol 21, 249. 
https://doi.org/10.1186/s13059-020-02135-8 

Hoon, S., Ratnapu, K.K., Chia, J., Kumarasamy, B., Juguang, X., Clamp, M., Stabenau, 
A., Potter, S., Clarke, L., Stupka, E., 2003. Biopipe: A Flexible Framework for 
Protocol-Based Bioinformatics Analysis. Genome Res. 13, 1904–1915. 
https://doi.org/10.1101/gr.1363103 

Huntley, M.A., Lou, M., Goldstein, L.D., Lawrence, M., Dijkgraaf, G.J.P., Kaminker, 
J.S., Gentleman, R., 2016. Complex regulation of ADAR-mediated RNA-editing 
across tissues. BMC Genomics 17, 61. https://doi.org/10.1186/s12864-015-2291-
9 

IGVF Consortium, 2024. Deciphering the impact of genomic variation on function. 
Nature 633, 47–57. https://doi.org/10.1038/s41586-024-07510-0 



 

 

162 
Iqbal, Z., Caccamo, M., Turner, I., Flicek, P., McVean, G., 2012. De novo assembly 

and genotyping of variants using colored de Bruijn graphs. Nat Genet 44, 226–
232. https://doi.org/10.1038/ng.1028 

Johnson, M.S., Venkataram, S., Kryazhimskiy, S., 2023. Best Practices in Designing, 
Sequencing, and Identifying Random DNA Barcodes. J Mol Evol 91, 263–280. 
https://doi.org/10.1007/s00239-022-10083-z 

Kaminow, B., Yunusov, D., Dobin, A., 2021. STARsolo: accurate, fast and versatile 
mapping/quantification of single-cell and single-nucleus RNA-seq data. 
https://doi.org/10.1101/2021.05.05.442755 

Karimzadeh, M., Hoffman, M.M., 2018. Top considerations for creating bioinformatics 
software documentation. Briefings in Bioinformatics 19, 693–699. 
https://doi.org/10.1093/bib/bbw134 

Kebschull, J.M., Zador, A.M., 2018. Cellular barcoding: lineage tracing, screening and 
beyond. Nat Methods 15, 871–879. https://doi.org/10.1038/s41592-018-0185-x 

Kent, W.J., Sugnet, C.W., Furey, T.S., Roskin, K.M., Pringle, T.H., Zahler, A.M., 
Haussler, A.D., 2002. The Human Genome Browser at UCSC. Genome Res. 12, 
996–1006. https://doi.org/10.1101/gr.229102 

Kijima, Y., Evans-Yamamoto, D., Toyoshima, H., Yachie, N., 2023. A universal 
sequencing read interpreter. Sci. Adv. 9, eadd2793. 
https://doi.org/10.1126/sciadv.add2793 

Kivioja, T., Vähärautio, A., Karlsson, K., Bonke, M., Enge, M., Linnarsson, S., Taipale, 
J., 2012. Counting absolute numbers of molecules using unique molecular 
identifiers. Nat Methods 9, 72–74. https://doi.org/10.1038/nmeth.1778 

Kong, Y., 2011. Btrim: a fast, lightweight adapter and quality trimming program for next-
generation sequencing technologies. Genomics 98, 152–153. 
https://doi.org/10.1016/j.ygeno.2011.05.009 

Kumar, S., Dudley, J., 2007. Bioinformatics software for biologists in the genomics era. 
Bioinformatics 23, 1713–1717. https://doi.org/10.1093/bioinformatics/btm239 

Kuo, A., Hansen, K.D., Hicks, S.C., 2024. Quantification and statistical modeling of 
droplet-based single-nucleus RNA-sequencing data. Biostatistics 25, 801–817. 
https://doi.org/10.1093/biostatistics/kxad010 

La Manno, G., Soldatov, R., Zeisel, A., Braun, E., Hochgerner, H., Petukhov, V., 
Lidschreiber, K., Kastriti, M.E., Lönnerberg, P., Furlan, A., Fan, J., Borm, L.E., 
Liu, Z., Van Bruggen, D., Guo, J., He, X., Barker, R., Sundström, E., Castelo-
Branco, G., Cramer, P., Adameyko, I., Linnarsson, S., Kharchenko, P.V., 2018. 
RNA velocity of single cells. Nature 560, 494–498. 
https://doi.org/10.1038/s41586-018-0414-6 

Langmead, B., Salzberg, S.L., 2012. Fast gapped-read alignment with Bowtie 2. Nat 
Methods 9, 357–359. https://doi.org/10.1038/nmeth.1923 

Law, C.W., Chen, Y., Shi, W., Smyth, G.K., 2014. voom: precision weights unlock linear 
model analysis tools for RNA-seq read counts. Genome Biol 15, R29. 
https://doi.org/10.1186/gb-2014-15-2-r29 



 

 

163 
Li, B., Dewey, C.N., 2011. RSEM: accurate transcript quantification from RNA-Seq 

data with or without a reference genome. BMC Bioinformatics 12, 323. 
https://doi.org/10.1186/1471-2105-12-323 

Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., 
Abecasis, G., Durbin, R., 1000 Genome Project Data Processing Subgroup, 2009. 
The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–
2079. https://doi.org/10.1093/bioinformatics/btp352 

Liao, Y., Raghu, D., Pal, B., Mielke, L.A., Shi, W., 2023. cellCounts: an R function for 
quantifying 10x Chromium single-cell RNA sequencing data. Bioinformatics 39, 
btad439. https://doi.org/10.1093/bioinformatics/btad439 

Liao, Y., Smyth, G.K., Shi, W., 2019. The R package Rsubread is easier, faster, cheaper 
and better for alignment and quantification of RNA sequencing reads. Nucleic 
Acids Res 47, e47. https://doi.org/10.1093/nar/gkz114 

Liao, Y., Smyth, G.K., Shi, W., 2014. featureCounts: an efficient general purpose 
program for assigning sequence reads to genomic features. Bioinformatics 30, 
923–930. https://doi.org/10.1093/bioinformatics/btt656 

Limasset, A., Rizk, G., Chikhi, R., Peterlongo, P., 2017. Fast and scalable minimal 
perfect hashing for massive key sets. 
https://doi.org/10.48550/ARXIV.1702.03154 

List, M., Ebert, P., Albrecht, F., 2017. Ten Simple Rules for Developing Usable Software 
in Computational Biology. PLoS Comput Biol 13, e1005265. 
https://doi.org/10.1371/journal.pcbi.1005265 

Liu, D., 2019. Fuzzysplit: demultiplexing and trimming sequenced DNA with a 
declarative language. PeerJ 7, e7170. https://doi.org/10.7717/peerj.7170 

Love, M.I., Huber, W., Anders, S., 2014. Moderated estimation of fold change and 
dispersion for RNA-seq data with DESeq2. Genome Biol 15, 550. 
https://doi.org/10.1186/s13059-014-0550-8 

Luebbert, L., Sullivan, D.K., Carilli, M., Eldjárn Hjörleifsson, K., Winnett, A.V., Chari, 
T., Pachter, L., 2025. Detection of viral sequences at single-cell resolution 
identifies novel viruses associated with host gene expression changes. 
Nat Biotechnol. https://doi.org/10.1038/s41587-025-02614-y 

Lun, A.T.L., McCarthy, D.J., Marioni, J.C., 2016. A step-by-step workflow for low-level 
analysis of single-cell RNA-seq data with Bioconductor. F1000Res 5, 2122. 
https://doi.org/10.12688/f1000research.9501.2 

Martin, M., 2011. Cutadapt removes adapter sequences from high-throughput sequencing 
reads. EMBnet j. 17, 10. https://doi.org/10.14806/ej.17.1.200 

McCarthy, D.J., Campbell, K.R., Lun, A.T.L., Wills, Q.F., 2017. Scater: pre-processing, 
quality control, normalization and visualization of single-cell RNA-seq data in R. 
Bioinformatics 33, 1179–1186. https://doi.org/10.1093/bioinformatics/btw777 

McIlroy, M.D., Pinson, E.N., Tague, B.A., 1978. UNIX Time-Sharing System: Foreword. 
Bell System Technical Journal 57, 1899–1904. https://doi.org/10.1002/j.1538-
7305.1978.tb02135.x 



 

 

164 
McInnes, L., Healy, J., Melville, J., 2018. UMAP: Uniform Manifold Approximation 

and Projection for Dimension Reduction. 
https://doi.org/10.48550/ARXIV.1802.03426 

Melsted, P., Booeshaghi, A.S., Liu, L., Gao, F., Lu, L., Min, K.H.J., da Veiga Beltrame, 
E., Hjörleifsson, K.E., Gehring, J., Pachter, L., 2021. Modular, efficient and 
constant-memory single-cell RNA-seq preprocessing. Nat Biotechnol 39, 813–
818. https://doi.org/10.1038/s41587-021-00870-2 

Melsted, P., Ntranos, V., Pachter, L., 2019. The barcode, UMI, set format and BUStools. 
Bioinformatics 35, 4472–4473. https://doi.org/10.1093/bioinformatics/btz279 

Merkel, D., 2014. Docker: lightweight Linux containers for consistent development and 
deployment. Linux Journal. 

Mölder, F., Jablonski, K.P., Letcher, B., Hall, M.B., Tomkins-Tinch, C.H., Sochat, V., 
Forster, J., Lee, S., Twardziok, S.O., Kanitz, A., Wilm, A., Holtgrewe, M., 
Rahmann, S., Nahnsen, S., Köster, J., 2021. Sustainable data analysis with 
Snakemake. F1000Res 10, 33. https://doi.org/10.12688/f1000research.29032.2 

Morgan, A.P., Welsh, C.E., 2015. Informatics resources for the Collaborative Cross and 
related mouse populations. Mamm Genome 26, 521–539. 
https://doi.org/10.1007/s00335-015-9581-z 

Mortazavi, A., Williams, B.A., McCue, K., Schaeffer, L., Wold, B., 2008. Mapping and 
quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5, 621–628. 
https://doi.org/10.1038/nmeth.1226 

Niebler, S., Müller, A., Hankeln, T., Schmidt, B., 2020. RainDrop: Rapid activation 
matrix computation for droplet-based single-cell RNA-seq reads. BMC 
Bioinformatics 21, 274. https://doi.org/10.1186/s12859-020-03593-4 

Ntranos, V., Kamath, G.M., Zhang, J.M., Pachter, L., Tse, D.N., 2016. Fast and accurate 
single-cell RNA-seq analysis by clustering of transcript-compatibility counts. 
Genome Biol 17, 112. https://doi.org/10.1186/s13059-016-0970-8 

Ntranos, V., Yi, L., Melsted, P., Pachter, L., 2019. A discriminative learning approach to 
differential expression analysis for single-cell RNA-seq. Nat Methods 16, 163–
166. https://doi.org/10.1038/s41592-018-0303-9 

Oshlack, A., Robinson, M.D., Young, M.D., 2010. From RNA-seq reads to differential 
expression results. Genome Biol 11, 220. https://doi.org/10.1186/gb-2010-11-12-
220 

Pachter, L., 2011. Models for transcript quantification from RNA-Seq. 
https://doi.org/10.48550/ARXIV.1104.3889 

Pai, A.A., Paggi, J.M., Yan, P., Adelman, K., Burge, C.B., 2018. Numerous recursive 
sites contribute to accuracy of splicing in long introns in flies. PLoS Genet 14, 
e1007588. https://doi.org/10.1371/journal.pgen.1007588 

Pandya-Jones, A., Black, D.L., 2009. Co-transcriptional splicing of constitutive and 
alternative exons. RNA 15, 1896–1908. https://doi.org/10.1261/rna.1714509 

Parekh, S., Ziegenhain, C., Vieth, B., Enard, W., Hellmann, I., 2018. zUMIs - A fast and 
flexible pipeline to process RNA sequencing data with UMIs. GigaScience 7, 
giy059. https://doi.org/10.1093/gigascience/giy059 



 

 

165 
Patro, R., Duggal, G., Love, M.I., Irizarry, R.A., Kingsford, C., 2017. Salmon 

provides fast and bias-aware quantification of transcript expression. Nat Methods 
14, 417–419. https://doi.org/10.1038/nmeth.4197 

Patro, R., Mount, S.M., Kingsford, C., 2014. Sailfish enables alignment-free isoform 
quantification from RNA-seq reads using lightweight algorithms. Nat Biotechnol 
32, 462–464. https://doi.org/10.1038/nbt.2862 

Pavelin, K., Cham, J.A., De Matos, P., Brooksbank, C., Cameron, G., Steinbeck, C., 
2012. Bioinformatics Meets User-Centred Design: A Perspective. PLoS Comput 
Biol 8, e1002554. https://doi.org/10.1371/journal.pcbi.1002554 

Pearson, W.R., Lipman, D.J., 1988. Improved tools for biological sequence comparison. 
Proc. Natl. Acad. Sci. U.S.A. 85, 2444–2448. 
https://doi.org/10.1073/pnas.85.8.2444 

Perego, M., Maurer, M., Wang, J.X., Shaffer, S., Müller, A.C., Parapatics, K., Li, L., 
Hristova, D., Shin, S., Keeney, F., Liu, S., Xu, X., Raj, A., Jensen, J.K., Bennett, 
K.L., Wagner, S.N., Somasundaram, R., Herlyn, M., 2018. A slow-cycling 
subpopulation of melanoma cells with highly invasive properties. Oncogene 37, 
302–312. https://doi.org/10.1038/onc.2017.341 

Pertea, M., Kim, D., Pertea, G.M., Leek, J.T., Salzberg, S.L., 2016. Transcript-level 
expression analysis of RNA-seq experiments with HISAT, StringTie and 
Ballgown. Nat Protoc 11, 1650–1667. https://doi.org/10.1038/nprot.2016.095 

Pezoa, F., Reutter, J.L., Suarez, F., Ugarte, M., Vrgoč, D., 2016. Foundations of JSON 
Schema, in: Proceedings of the 25th International Conference on World Wide 
Web. Presented at the WWW ’16: 25th International World Wide Web 
Conference, International World Wide Web Conferences Steering Committee, 
Montréal Québec Canada, pp. 263–273. https://doi.org/10.1145/2872427.2883029 

Picelli, S., Björklund, Å.K., Faridani, O.R., Sagasser, S., Winberg, G., Sandberg, R., 
2013. Smart-seq2 for sensitive full-length transcriptome profiling in single cells. 
Nat Methods 10, 1096–1098. https://doi.org/10.1038/nmeth.2639 

Pickrell, J.K., Marioni, J.C., Pai, A.A., Degner, J.F., Engelhardt, B.E., Nkadori, E., 
Veyrieras, J.-B., Stephens, M., Gilad, Y., Pritchard, J.K., 2010. Understanding 
mechanisms underlying human gene expression variation with RNA sequencing. 
Nature 464, 768–772. https://doi.org/10.1038/nature08872 

Pimentel, H., Bray, N.L., Puente, S., Melsted, P., Pachter, L., 2017. Differential analysis 
of RNA-seq incorporating quantification uncertainty. Nat Methods 14, 687–690. 
https://doi.org/10.1038/nmeth.4324 

Pool, A.-H., Poldsam, H., Chen, S., Thomson, M., Oka, Y., 2023. Recovery of missing 
single-cell RNA-sequencing data with optimized transcriptomic references. Nat 
Methods 20, 1506–1515. https://doi.org/10.1038/s41592-023-02003-w 

Quinodoz, S.A., Bhat, P., Chovanec, P., Jachowicz, J.W., Ollikainen, N., Detmar, E., 
Soehalim, E., Guttman, M., 2022. SPRITE: a genome-wide method for mapping 
higher-order 3D interactions in the nucleus using combinatorial split-and-pool 
barcoding. Nat Protoc 17, 36–75. https://doi.org/10.1038/s41596-021-00633-y 

Quinodoz, S.A., Ollikainen, N., Tabak, B., Palla, A., Schmidt, J.M., Detmar, E., Lai, 
M.M., Shishkin, A.A., Bhat, P., Takei, Y., Trinh, V., Aznauryan, E., Russell, P., 



 

 

166 
Cheng, C., Jovanovic, M., Chow, A., Cai, L., McDonel, P., Garber, M., 
Guttman, M., 2018. Higher-Order Inter-chromosomal Hubs Shape 3D Genome 
Organization in the Nucleus. Cell 174, 744-757.e24. 
https://doi.org/10.1016/j.cell.2018.05.024 

Rahman, A., Hallgrímsdóttir, I., Eisen, M., Pachter, L., 2018. Association mapping from 
sequencing reads using k-mers. Elife 7, e32920. 
https://doi.org/10.7554/eLife.32920 

Ramírez, F., Ryan, D.P., Grüning, B., Bhardwaj, V., Kilpert, F., Richter, A.S., Heyne, S., 
Dündar, F., Manke, T., 2016. deepTools2: a next generation web server for deep-
sequencing data analysis. Nucleic Acids Res 44, W160–W165. 
https://doi.org/10.1093/nar/gkw257 

Rebboah, E., Reese, F., Williams, K., Balderrama-Gutierrez, G., McGill, C., Trout, D., 
Rodriguez, I., Liang, H., Wold, B.J., Mortazavi, A., 2021. Mapping and modeling 
the genomic basis of differential RNA isoform expression at single-cell resolution 
with LR-Split-seq. Genome Biol 22, 286. https://doi.org/10.1186/s13059-021-
02505-w 

Rebboah, E., Weber, R., Abdollahzadeh, E., Swarna, N., Sullivan, D.K., Trout, D., Reese, 
F., Liang, H.Y., Filimban, G., Mahdipoor, P., Duffield, M., Mojaverzargar, R., 
Taghizadeh, E., Fattahi, N., Mojgani, N., Zhang, H., Loving, R.K., Carilli, M., 
Booeshaghi, A.S., Kawauchi, S., Hallgrímsdóttir, I.B., Williams, B.A., 
MacGregor, G.R., Pachter, L., Wold, B.J., Mortazavi, A., 2025. Systematic cell-
type resolved transcriptomes of 8 tissues in 8 lab and wild-derived mouse strains 
captures global and local expression variation. 
https://doi.org/10.1101/2025.04.21.649844 

Reese, M.G., Hartzell, G., Harris, N.L., Ohler, U., Abril, J.F., Lewis, S.E., 2000. Genome 
annotation assessment in Drosophila melanogaster. Genome Res 10, 483–501. 
https://doi.org/10.1101/gr.10.4.483 

Rich, J.M., Moses, L., Einarsson, P.H., Jackson, K., Luebbert, L., Booeshaghi, A.S., 
Antonsson, S., Sullivan, D.K., Bray, N., Melsted, P., Pachter, L., 2024. The 
impact of package selection and versioning on single-cell RNA-seq analysis. 
bioRxiv 2024.04.04.588111. https://doi.org/10.1101/2024.04.04.588111 

Ritchie, M.E., Phipson, B., Wu, D., Hu, Y., Law, C.W., Shi, W., Smyth, G.K., 2015. 
limma powers differential expression analyses for RNA-sequencing and 
microarray studies. Nucleic Acids Res 43, e47. 
https://doi.org/10.1093/nar/gkv007 

Roberts, A., Pachter, L., 2013. Streaming fragment assignment for real-time analysis of 
sequencing experiments. Nat Methods 10, 71–73. 
https://doi.org/10.1038/nmeth.2251 

Roberts, M., Hayes, W., Hunt, B.R., Mount, S.M., Yorke, J.A., 2004. Reducing storage 
requirements for biological sequence comparison. Bioinformatics 20, 3363–3369. 
https://doi.org/10.1093/bioinformatics/bth408 

Robinson, J.T., Thorvaldsdóttir, H., Winckler, W., Guttman, M., Lander, E.S., Getz, G., 
Mesirov, J.P., 2011. Integrative genomics viewer. Nat Biotechnol 29, 24–26. 
https://doi.org/10.1038/nbt.1754 



 

 

167 
Robinson, M.D., McCarthy, D.J., Smyth, G.K., 2010. edgeR : a Bioconductor 

package for differential expression analysis of digital gene expression data. 
Bioinformatics 26, 139–140. https://doi.org/10.1093/bioinformatics/btp616 

Roehr, J.T., Dieterich, C., Reinert, K., 2017. Flexbar 3.0 – SIMD and multicore 
parallelization. Bioinformatics 33, 2941–2942. 
https://doi.org/10.1093/bioinformatics/btx330 

Rosenberg, A.B., Roco, C.M., Muscat, R.A., Kuchina, A., Sample, P., Yao, Z., 
Graybuck, L.T., Peeler, D.J., Mukherjee, S., Chen, W., Pun, S.H., Sellers, D.L., 
Tasic, B., Seelig, G., 2018. Single-cell profiling of the developing mouse brain 
and spinal cord with split-pool barcoding. Science 360, 176–182. 
https://doi.org/10.1126/science.aam8999 

Roy, S., Coldren, C., Karunamurthy, A., Kip, N.S., Klee, E.W., Lincoln, S.E., Leon, A., 
Pullambhatla, M., Temple-Smolkin, R.L., Voelkerding, K.V., Wang, C., Carter, 
A.B., 2018. Standards and Guidelines for Validating Next-Generation Sequencing 
Bioinformatics Pipelines. The Journal of Molecular Diagnostics 20, 4–27. 
https://doi.org/10.1016/j.jmoldx.2017.11.003 

Schena, M., Shalon, D., Davis, R.W., Brown, P.O., 1995. Quantitative Monitoring of 
Gene Expression Patterns with a Complementary DNA Microarray. Science 270, 
467–470. https://doi.org/10.1126/science.270.5235.467 

Shen, W., Le, S., Li, Y., Hu, F., 2016. SeqKit: A Cross-Platform and Ultrafast Toolkit for 
FASTA/Q File Manipulation. PLoS One 11, e0163962. 
https://doi.org/10.1371/journal.pone.0163962 

Smith, T., Heger, A., Sudbery, I., 2017. UMI-tools: modeling sequencing errors in 
Unique Molecular Identifiers to improve quantification accuracy. Genome Res. 
27, 491–499. https://doi.org/10.1101/gr.209601.116 

Soneson, C., Love, M.I., Robinson, M.D., 2015. Differential analyses for RNA-seq: 
transcript-level estimates improve gene-level inferences. F1000Res 4, 1521. 
https://doi.org/10.12688/f1000research.7563.2 

Soneson, C., Srivastava, A., Patro, R., Stadler, M.B., 2021. Preprocessing choices affect 
RNA velocity results for droplet scRNA-seq data. PLoS Comput Biol 17, 
e1008585. https://doi.org/10.1371/journal.pcbi.1008585 

Srivastava, A., Malik, L., Sarkar, H., Zakeri, M., Almodaresi, F., Soneson, C., Love, 
M.I., Kingsford, C., Patro, R., 2020. Alignment and mapping methodology 
influence transcript abundance estimation. Genome Biol 21, 239. 
https://doi.org/10.1186/s13059-020-02151-8 

Srivastava, A., Malik, L., Smith, T., Sudbery, I., Patro, R., 2019. Alevin efficiently 
estimates accurate gene abundances from dscRNA-seq data. Genome Biol 20, 65. 
https://doi.org/10.1186/s13059-019-1670-y 

Sullivan, D.K., Hjörleifsson, K.E., Swarna, N.P., Oakes, C., Holley, G., Melsted, P., 
Pachter, L., 2025. Accurate quantification of nascent and mature RNAs from 
single-cell and single-nucleus RNA-seq. Nucleic Acids Research 53, gkae1137. 
https://doi.org/10.1093/nar/gkae1137 

Sullivan, D.K., Min, K.H., Hjörleifsson, K.E., Luebbert, L., Holley, G., Moses, L., 
Gustafsson, J., Bray, N.L., Pimentel, H., Booeshaghi, A.S., Melsted, P., Pachter, 



 

 

168 
L., 2024. kallisto, bustools and kb-python for quantifying bulk, single-cell and 
single-nucleus RNA-seq. Nat Protoc. https://doi.org/10.1038/s41596-024-01057-0 

Sullivan, D.K., Pachter, L., 2024. Flexible parsing, interpretation, and editing of technical 
sequences with splitcode. Bioinformatics 40, btae331. 
https://doi.org/10.1093/bioinformatics/btae331 

Sullivan, D.K., Boffelli, M., Pachter, L., 2025. Pseudoassembly of k-mers. 
bioRxiv 2025.05.11.653354. https://doi.org/10.1101/2025.05.11.653354 

Sun, Q., Lee, W., Mohri, Y., Takeo, M., Lim, C.H., Xu, X., Myung, P., Atit, R.P., 
Taketo, M.M., Moubarak, R.S., Schober, M., Osman, I., Gay, D.L., Saur, D., 
Nishimura, E.K., Ito, M., 2019. A novel mouse model demonstrates that 
oncogenic melanocyte stem cells engender melanoma resembling human disease. 
Nat Commun 10, 5023. https://doi.org/10.1038/s41467-019-12733-1 

Tian, L., Su, S., Dong, X., Amann-Zalcenstein, D., Biben, C., Seidi, A., Hilton, D.J., 
Naik, S.H., Ritchie, M.E., 2018. scPipe: A flexible R/Bioconductor preprocessing 
pipeline for single-cell RNA-sequencing data. PLoS Comput Biol 14, e1006361. 
https://doi.org/10.1371/journal.pcbi.1006361 

Traag, V.A., Waltman, L., van Eck, N.J., 2019. From Louvain to Leiden: guaranteeing 
well-connected communities. Sci Rep 9, 5233. https://doi.org/10.1038/s41598-
019-41695-z 

Trapnell, C., 2015. Defining cell types and states with single-cell genomics. Genome Res. 
25, 1491–1498. https://doi.org/10.1101/gr.190595.115 

Trapnell, C., Cacchiarelli, D., Grimsby, J., Pokharel, P., Li, S., Morse, M., Lennon, N.J., 
Livak, K.J., Mikkelsen, T.S., Rinn, J.L., 2014. The dynamics and regulators of 
cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat 
Biotechnol 32, 381–386. https://doi.org/10.1038/nbt.2859 

Trapnell, C., Roberts, A., Goff, L., Pertea, G., Kim, D., Kelley, D.R., Pimentel, H., 
Salzberg, S.L., Rinn, J.L., Pachter, L., 2012. Differential gene and transcript 
expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat 
Protoc 7, 562–578. https://doi.org/10.1038/nprot.2012.016 

Trapnell, C., Williams, B.A., Pertea, G., Mortazavi, A., Kwan, G., Van Baren, M.J., 
Salzberg, S.L., Wold, B.J., Pachter, L., 2010. Transcript assembly and 
quantification by RNA-Seq reveals unannotated transcripts and isoform switching 
during cell differentiation. Nat Biotechnol 28, 511–515. 
https://doi.org/10.1038/nbt.1621 

Van De Geijn, B., McVicker, G., Gilad, Y., Pritchard, J.K., 2015. WASP: allele-specific 
software for robust molecular quantitative trait locus discovery. Nat Methods 12, 
1061–1063. https://doi.org/10.1038/nmeth.3582 

Virshup, I., Rybakov, S., Theis, F.J., Angerer, P., Wolf, F.A., 2021. anndata: Annotated 
data. https://doi.org/10.1101/2021.12.16.473007 

Wang, A.M., Doyle, M.V., Mark, D.F., 1989. Quantitation of mRNA by the polymerase 
chain reaction. Proc. Natl. Acad. Sci. U.S.A. 86, 9717–9721. 
https://doi.org/10.1073/pnas.86.24.9717 



 

 

169 
Wick, R.R., Schultz, M.B., Zobel, J., Holt, K.E., 2015. Bandage: interactive 

visualization of de novo genome assemblies. Bioinformatics 31, 3350–3352. 
https://doi.org/10.1093/bioinformatics/btv383 

Wold, B., Myers, R.M., 2008. Sequence census methods for functional genomics. Nat 
Methods 5, 19–21. https://doi.org/10.1038/nmeth1157 

Wolf, F.A., Angerer, P., Theis, F.J., 2018. SCANPY: large-scale single-cell gene 
expression data analysis. Genome Biol 19, 15. https://doi.org/10.1186/s13059-
017-1382-0 

Xu, C., Prete, M., Webb, S., Jardine, L., Stewart, B.J., Hoo, R., He, P., Meyer, K.B., 
Teichmann, S.A., 2023. Automatic cell-type harmonization and integration across 
Human Cell Atlas datasets. Cell 186, 5876-5891.e20. 
https://doi.org/10.1016/j.cell.2023.11.026 

Zeng, H., 2022. What is a cell type and how to define it? Cell 185, 2739–2755. 
https://doi.org/10.1016/j.cell.2022.06.031 

Zhang, H., Jain, C., Aluru, S., 2020. A comprehensive evaluation of long read error 
correction methods. BMC Genomics 21, 889. https://doi.org/10.1186/s12864-020-
07227-0 

Zheng, G.X.Y., Terry, J.M., Belgrader, P., Ryvkin, P., Bent, Z.W., Wilson, R., Ziraldo, 
S.B., Wheeler, T.D., McDermott, G.P., Zhu, J., Gregory, M.T., Shuga, J., 
Montesclaros, L., Underwood, J.G., Masquelier, D.A., Nishimura, S.Y., Schnall-
Levin, M., Wyatt, P.W., Hindson, C.M., Bharadwaj, R., Wong, A., Ness, K.D., 
Beppu, L.W., Deeg, H.J., McFarland, C., Loeb, K.R., Valente, W.J., Ericson, 
N.G., Stevens, E.A., Radich, J.P., Mikkelsen, T.S., Hindson, B.J., Bielas, J.H., 
2017. Massively parallel digital transcriptional profiling of single cells. Nat 
Commun 8, 14049. https://doi.org/10.1038/ncomms14049 

 
 


