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People have stars, but they aren’t the same. For travelers, the stars are guides. For other
people, they’re nothing but tiny lights. And for still others, for scholars, they’re problems.
For my businessman, they were gold. But all those stars are silent stars. You, though, you’ll
have stars like nobody else.

When you look up at the sky at night, since I’ll be living on one of them, since I’ll be
laughing on one of them, for you it’ll be as if all the stars are laughing. You’ll have stars
that can laugh!

And when you’re consoled (everyone eventually is consoled), you’ll be glad you’ve known
me. You’ll always be my friend. You’ll feel like laughing with me. And you’ll open your
window sometimes just for the fun of it . . . And your friends will be amazed to see you
laughing while you’re looking up at the sky. Then you’ll tell them, “Yes, it’s the stars; they
always make me laugh!” And they’ll think you’re crazy. It’ll be a nasty trick I played on
you . . .

And it’ll be as if I had given you, instead of stars, a lot of tiny bells that know how to
laugh . . .

Antoine de Saint-Exupéry, The Little Prince
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ABSTRACT

Stellar pulsations can do what most other astrophysical observables cannot: directly probe
internal stellar properties. This thesis consolidates work investigating how stellar oscillation
modes are affected by two common but “noncanonical” pieces of stellar physics: mergers
and magnetism.

The earlier chapters develop “seismic stellar merger genealogy,” the application of seis-
mology to the discovery of stellar merger remnants. In Chapter II, I show that red giants
which have engulfed close, main-sequence companions possess unusual gravity-mode pe-
riod spacings, indicating their binary origin. I identify two dozen promising merger remnant
candidates in archival Kepler data, roughly consistent with expected stellar merger rates.
In Chapter III, I study the evolution and properties of the red-giant-like stars which result
from coalescences of accreting helium-core white dwarf systems. These merger remnants
display distinctive seismic and chemical properties, particularly during the core helium-
burning phase as the result of an especially violent helium flash.

The later chapters develop “seismic stellar magnetometry,” the application of seismology to
the measurement of stellar magnetic fields. In Chapter IV, I calculate the morphology of
high-radial-order gravity modes under the influence of strong magnetic fields. The eigen-
functions exhibit two morphological features at which energy dissipation may be strong, in
agreement with the suppressed dipole modes observed in many red giants. In Chapter V, I
apply the same method to calculate the gravity-mode period spacing pattern under a strong
magnetic field. The perturbative theory developed for weak fields underestimates the true
frequency shifts to gravity modes caused by strong magnetic fields. In Chapter VI, I model
the behavior of stochastic pulsators whose magnetic fields are strong enough to misalign
their pulsations from the rotation axis. Even in the presence of stochasticity, the light curves
of such oblique pulsators indefinitely retain some phase information in a way that can be
used to identify them. In Chapter VII, I place upper bounds on the near-surface magnetic
fields of a sample of white dwarfs based on the non-detection of magnetic features in their
pulsation spectra. Although these constraints vary significantly with white dwarf structure
and mode periods, they are consistently much stronger than the megagauss-scale magnetic
fields to which spectroscopy is sensitive.
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1

C h a p t e r 1

INTRODUCTION

A star is a fluid body which has relaxed into hydrostatic equilibrium, a state in which
pressure forces exactly balance out gravity. In the absence of complicating effects such as
rapid rotation or tidal effects from a close companion, this condition forces the star into a
spherical shape obeying

d𝑝
d𝑟

= −𝜌𝑔, (1.1)

where 𝑝, 𝜌, and 𝑔 respectively denote the pressure, density, and gravitational acceleration.
It is also customary to assert that the star’s interior sustain a significant amount of nuclear
fusion. Defined this way, stars are a central subject of fascination in astronomy and
astrophysics (the root astro- originates from the Ancient Greek ἀστήρ, for star). Stars are
also the hosts of planets, the luminous components of galaxies, and the progenitors of
compact objects. Even in stories in which stars are not the protagonists, they are still central
characters whose personalities must be understood.

Nature is known to create fusing fluid spheres satisfying Equation 1.1 within the mass range
1032 g ≲ 𝑀 ≲ 1035 g1. In defiance of the simplicity of the problem statement, the structure
and evolution of stars are extremely complicated and depend sensitively on the details of
hydrodynamics, radiative transfer, and nuclear reactions evaluated at extreme pressures,
temperatures, and densities. Yet stars defy experimentation: we cannot make stars in a
laboratory2, and we cannot travel to them3. All we can hope to do is observe them from
afar.

Troublingly, stars are opaque to all wavelengths of light. Although photons propagate
through stellar interiors, they scatter at such a high rate that their transport is diffusive. A
photon only remembers information about its most recent interaction or so. The upshot
is that an observer on earth effectively only measures blackbody radiation. This sort of
radiation only depends on a single scalar, the temperature of the photosphere, the surface
at which a photon is most likely to have last interacted before free-streaming through
space. Departures from perfect blackbody behavior may be caused by, e.g., the influence
of atomic transitions on the opacity, or emission from optically thin coronal regions, and

10.1 ≲ 𝑀/𝑀⊙ ≲ 100 when normalized to the mass 𝑀⊙ of the most well-known and well-understood such
sphere.

2budget constraints.
3travel restrictions.
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these departures may encode finer details about the stellar environment. However, in any
case, photons are incapable of directly communicating any information to us from stellar
interiors. This apparently curses our knowledge about the physics that goes in on these
places to be forever model-dependent.

1.1 Waves in stars
This thesis concerns asteroseismology, the measurement of hydrodynamical waves in stars.
Waves are evolving disturbances which result when a star is perturbed from hydrostatic
equilibrium. When these perturbations are of low-enough amplitude, waves can be treated
in linear theory. In this linear regime (assumed hereafter), waves obey superposition and
evolve according to the linearized equations of stellar structure (e.g., Unno, Osaki, Ando,
Saio, et al., 1989). When they reach the surface, waves perturb the surface flux and fluid
displacement pattern to which photometry and spectroscopy are respectively sensitive.

In a maximally broad interpretation, hydrodynamical waves are carriers of information with
unique characteristics. To drive home this point: the last decade preceding the time of writ-
ing has seen the rapid rise and high fashion of “multimessenger astronomy,” a phrase which
describes observations of the same astrophysical source delivered by multiple “messengers”
(e.g., gravitational waves, neutrinos, and different categories of electromagnetic radiation).
Physically, each messenger probes different substructures within the source (possibly at
different times), owing to the unique conditions governing the messenger’s production
and propagation. In what follows, I summarize hydrodynamical waves’ characteristics as
“messengers” with respect to these two fronts, and describe further essential physics.

1.1.1 Production
In order to exist, hydrodynamical waves must be produced. Fortunately, many things can
excite them. The most well-observed pulsating star is the Sun, which possesses solar-
like oscillations (whose nomenclature is self-evident). Solar-like oscillations are both
turbulently excited and turbulently damped by near-surface convection (see, e.g., Houdek,
Balmforth, et al., 1999) and occur in stars with deep outer convective zones (e.g., Sun-like
stars, subgiants, red giants). Other excitation mechanisms include the 𝜅- (opacity, e.g., Cox,
1963) and 𝜖- (nuclear burning, e.g., Kawaler, 1988) mechanisms, convective flux blocking
(Guzik, Kaye, Bradley, Cox, and Neuforge, 2000), and strange-mode instabilities (Glatzel,
1994). These processes often (but do not always) involve a heat-engine-like process which
operates when the partial ionization zone of a certain species (e.g., helium) produces a thin
convective zone sufficiently close to the stellar surface. Affected modes are sometimes
called self-excited, unstable, or overstable, since they possess positive growth rates which
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cause them to quickly and spontaneously grow to saturation amplitudes set by nonlinear
effects. Modes can also be excited by tides raised by the gravitational fields of close
companions (e.g., Fuller, 2017).

The diversity of stellar pulsations is worth emphasis—pulsators occur in the main-sequence,
giant, and compact phases, and sample the heterogeneity of stars themselves. To visualize
this, it is a traditional pastime of aficionados of stellar oscillations (and other variability)
to plot various species of pulsator on a Hertzsprung–Russell diagram. A diagram showing
the variability across such variable diagrams is shown in Figure 1.1. While excitation of
oscillation modes is prerequisite to performing asteroseismology, nature often provides such
means.

1.1.2 Propagation
Although stellar interiors are opaque to light, they are often transparent (or at least translu-
cent) to hydrodynamical waves. The latter are therefore capable of delivering information
from a star’s interior to its surface, at which point light can transmit the information the
rest of the way to the observer. This is the real power of asteroseismology: it allows us to
directly see into the stellar interior in a way that traditional methods cannot4.

It is mathematically convenient to decompose a given wave into components whose shape
does not evolve in time. Components obeying this condition are eigenfunctions of the time
derivative operator:

𝜕/𝜕𝑡 ∼ 𝑖𝜔, (1.2)

where 𝜔 is the angular frequency. It is also common to also make the identification

∇ ∼ −𝑖®𝑘, (1.3)

where the components of the wavenumber ®𝑘 can be interpreted as inverse reduced wave-
lengths: 𝑘𝑖 = 2𝜋/𝜆𝑖. This substitution is particularly justified when the eigenfunction
varies rapidly enough in space to closely resemble a plane wave (Deubner and Gough,
1984). Heuristically, the linearized equations of stellar structure then relate 𝜕/𝜕𝑡 to the spa-
tial derivative ∇, relative to their action on the fluid variables. These equations fix the local
relationship between 𝜔 and ®𝑘—the dispersion relation—which determine the propagative
behavior of the wave.

4As we have now definitively established asteroseismology to be a category of multimessenger astronomy ipso
facto, it is of the author’s present opinion that this field should receive a proportionate amount of attention
and funding.
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1.1.3 Oscillation modes
In stars, hydrodynamical waves often propagate across the star faster than they can be
damped. When this occurs, waves “feel” the global stellar structure in which they propagate.
In particular, the boundary conditions of the eigenvalue problem overdetermine 𝜔 and force
it to take one of only a discrete set of values. The resulting eigenfunctions take the
form of standing waves, called modes. Due to this quantization of 𝜔, modes manifest in
time series data as sinusoidal signals with sharply defined frequencies whose measurement
enables the detailed extraction of stellar properties. In short, asteroseismology is a precision
science—modern surveys can measure mode frequencies with minuscule uncertainties down
to 𝛿𝜈 ≃ 1/𝑇 ≃ 10−2 𝜇Hz (set by the time baseline, e.g., 𝑇 = 4 yr for the main mission of
Kepler; Borucki et al., 2010).

The quantization introduced by boundary conditions allows modes to be indexed by three
integer quantum numbers, one for each spatial dimension. In the simple, spherically
symmetric case, the horizontal wavenumber 𝑘ℎ is quantized according to the appearance of
the Laplacian operator in the linearized equations:

∇2
ℎ ≡

1
𝑟2 sin 𝜃

𝜕

𝜕𝜃

(
sin 𝜃

𝜕

𝜕𝜃

)
+ 1
𝑟2 sin2 𝜃

𝜕2

𝜕𝜙2 ∼ −ℓ(ℓ + 1)
𝑟2 ≡ −𝑘2

ℎ, (1.4)

i.e., 𝑘ℎ =
√︁
ℓ(ℓ + 1)/𝑟, where ℓ = 0, 1, 2, . . . is the angular degree, familiar from quantum

mechanics. Here, 𝜃 and 𝜙 are spherical coordinates with respect to a (so far arbitrarily
chosen) polar axis. It is convenient to further enforce 𝜕/𝜕𝜙 ∼ 𝑖𝑚 where −ℓ ≤ 𝑚 ≤ ℓ.
The angular dependence of the eigenfunctions are therefore given by the complex spherical
harmonics 𝑌ℓ𝑚, quantized by the periodic domain of the unit sphere.

It remains to understand the dependence of the eigenfunction on radius. We hereafter
work in the asymptotic approximation, which truncates the Jeffreys–Wentzel–Kramers–
Brillouin (JWKB) expansion and heuristically amounts to assuming that the eigenfunction
varies quickly in radius (e.g., Section 7.2 of Christensen-Dalsgaard, 2008). The radial
quantization on the mode frequencies then imposes∫

𝑘𝑟 d𝑟 = 𝜋(𝑛 + 𝜖), (1.5)

where the integral is over the mode cavity. By writing Equation 1.5, we assume that the
wave is trapped underneath the stellar surface so that an outer boundary condition is indeed
imposed, eliding a nuance related to the acoustic cutoff frequency (but see Deubner and
Gough, 1984).
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The spacing between successive modes can be found by taking a derivative:

Δ𝜔 =
𝜕𝜔

𝜕𝑛
Δ𝑛 =

(
𝜕𝑛

𝜕𝜔

)−1
= 𝜋

(∫
𝜕𝑘𝑟

𝜕𝜔
d𝑟

)−1
, (1.6)

which can be rewritten as
Δ𝜔 =

𝜋∫
d𝑟/𝑣𝑔,𝑟

, (1.7)

where 𝑣𝑔,𝑟 ≡ 𝜕𝜔/𝜕𝑘𝑟 is the radial component of the group velocity. The spacing between
mode frequencies is therefore comparable to the inverse wave crossing time across the
cavity.

1.1.4 Taxonomy of stellar waves
Multiple different species of waves propagate through stellar interiors, classified primarily
by the force which is responsible for restoring fluid parcels back to the equilibrium. Further
in the spirit of simplicity, we neglect spatial derivatives of the equilibrium stellar structure
as well as perturbations to the gravitational potential (the Cowling approximation). The
linearized hydrodynamical equations become

𝜕𝜌′

𝜕𝑡
+ 𝜌0∇ · ®𝑢 = 0 (1.8a)

𝜌0
𝜕 ®𝑢
𝜕𝑡

= −∇𝑝′ − 𝜌′𝑔𝑟 (1.8b)

𝜕𝑡𝜌
′ = 𝜌0𝑁

2𝑟 · ®𝑢/𝑔 + 𝜕𝑡 𝑝/𝑐2
𝑠 , (1.8c)

where 𝜌′, 𝑝′, and ®𝑢 are perturbed variables, 𝜌0 is the unperturbed density profile, 𝑐𝑠 is the
speed of sound, and 𝑁 is the Brunt–Väsälä (buoyancy) frequency.

The dispersion relation produced by Equations 1.8 is approximately

𝑘2
𝑟 =

1
𝜔2𝑐2

𝑠

(
𝜔2 − 𝑁2

) (
𝜔2 − 𝑆2

ℓ

)
, (1.9)

where 𝑆ℓ = 𝑘ℎ𝑐𝑠 is the Lamb frequency of degree ℓ. Equation 1.9 admits three qualitatively
different behaviors.

When both 𝜔2 > 𝑆2
ℓ

and 𝜔2 > 𝑁2, the dispersion relation is approximately

𝜔2 = 𝑘2𝑐2
𝑠 ≈ 𝑘2

𝑟 𝑐
2
𝑠 . (1.10)

This is the regime of pressure waves, whose restoring force is the pressure backreaction
caused by fluid compression, i.e., the tendency of a fluid to resist being squeezed. Equation
1.10 asserts that, for high-radial-order pressure waves, 𝑐𝑠 (with dimensions L/T) defines
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the natural scale for converting between 𝜔 and 𝑘𝑟 . A standing pressure wave is called a
pressure mode, or p mode. By Equation 1.7, p modes are approximately spaced evenly in
frequency by

Δ𝜈 =
Δ𝜔

2𝜋
=

(
2
∫

d𝑟/𝑐𝑠
)−1

, (1.11)

called the large frequency separation (in contrast to the small frequency separation, e.g.,
Chaplin and Miglio, 2013).

In the opposite regime in which both 𝜔2 < 𝑆2
ℓ

and 𝜔2 < 𝑁2, the dispersion relation instead
takes on a very different form, approximately

𝜔2 =
𝑘2
ℎ

𝑘2𝑁
2 ≈

𝑘2
ℎ

𝑘2
𝑟

𝑁2. (1.12)

This is the regime of gravity waves, whose restoring force is buoyancy, i.e., the tendency
of dense fluid to sink. Equation 1.12 asserts that, for high-radial-order gravity waves, 𝑁𝑘ℎ
(with dimensions L ·T) defines the natural scale for converting between𝜔 and 𝑘𝑟 . Moreover,
Equation 1.12 implies that gravity waves must be nonradial (ℓ ≠ 0) and can only propagate
in stably stratified regions (𝑁2 > 0). A standing gravity wave is called a gravity mode, or g
mode. By Equation 1.7, g modes are approximately spaced evenly in period (not frequency)
by

ΔΠℓ =
2𝜋Δ𝜔
𝜔2 =

2𝜋2√︁
ℓ(ℓ + 1)

(∫
𝑁

𝑟
d𝑟

)−1
, (1.13)

called the period spacing. Algebraically, the spacing is even in period and not frequency
due to the different dimensions of 𝑁𝑘ℎ and 𝑐𝑠.

Finally, when𝜔2 lies between 𝑆2
ℓ

and 𝑁2 in either order, 𝑘2
𝑟 < 0, i.e., 𝑘𝑟 is imaginary. Under

these conditions, the eigenfunction grows or decays exponentially in space and is called
evanescent.

The dispersion relation in Equation 1.9 describes most behaviors relevant to high-radial-
order waves in stellar interiors. However, the introduction of additional forces can both
modify the propagation of existing branches of waves as well as introduce new types. For
example, in rotating stars, the Coriolis force modifies gravity waves to gravito-inertial waves
(e.g., Dintrans, Rieutord, and Valdettaro, 1999). It also introduces inertial waves, for which
the Coriolis force is the main restoring force (e.g., Rieutord and Valdettaro, 1997). Stars
can also sustain modes which arise out of sharp discontinuities in the stellar profile, e.g.,
fundamental and interfacial modes, which are also not captured by Equation 1.9.

Red giants (RGs) are a central focus of this work. Like the Sun itself, RGs are solar-like
oscillators whose pulsations are both excited and damped by turbulent processes associated
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with near-surface convection. This stochastic driving is broadband and can excite up to
dozens of modes to visible amplitudes, producing asteroseismic treasure troves. Unlike the
Sun, however, RGs exhibit extreme density contrasts owing to their core–envelope structure.
In particular, the high densities in the core push the allowed range of g-mode frequencies up
to those which are driven by convection. RGs which are on the lower red giant branch or in
the red clump display dipole modes which behave as p modes in the envelope and p modes
in the core, with significant amplitude in each region, i.e., the cavities are significantly
coupled. The resulting mixed modes constitute valuable seismic windows into the deep
interior of the star. This combination of nice properties makes RGs excellent asteroseismic
laboratories on which to push the frontier of our understanding.

1.2 Seismology as the hammer
This thesis investigates the observational properties of stars with histories of stellar merg-
ers (Chapters II–III) and magnetic fields (Chapters IV–VII). Both topics are considered
“noncanonical” components of stellar physics—they are traditionally ignored in the “stan-
dard model” of isolated, non-magnetic stellar evolution. This is not because stellar mergers
or magnetic fields are rare but rather because each individually introduces additional, ex-
tremely complex phenomenologies which are often wise to ignore on a first pass.

In what follows, I treat stellar mergers and magnetism as nails for which seismology is the
hammer. To organize the workspace, I summarize the recent literature in application of
seismology to each of these pieces of physics, and place the core chapters of this thesis in
their appropriate context.

1.2.1 Seismic stellar merger genealogy
For the most part, all of the properties of a single star are determined by two parameters:
its initial mass 𝑀 and current age 𝑡. In this simplified picture, a population of single stars
thus populates a two-dimensional manifold in any parameter space within which they are
placed. In contrast, the space of post-interaction stars is very high-dimensional. Mass
transfer events and stellar mergers are messy maps from extremely diverse initial conditions
(the progenitors’ structures and pre-interaction binary configuration) to the remnant star’s
structure. Therefore, stellar merger remnants usually have combinations of stellar properties
which position them off of the “single-star manifold.” This basic observation about the
dimensionality of a stellar population generalizes when adding secondary (but deterministic)
effects due to, e.g., metallicity.

Star clusters are an instructive example. It is common to assume that stars within the same
cluster were born at the same time, and thus that the resulting population is coeval (i.e.,
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𝑡 is a constant within the population). Single stars within a star cluster must therefore lie
on a one-dimensional sequence within any parameter space. This is the basic reason why
stars in any star cluster form an approximately one-dimensional sequence (isochrone) when
plotted on a Hertzsprung–Russell diagram (luminosity 𝐿 versus effective temperature 𝑇eff).
However, observed star clusters also possess objects which lie off of the isochrone in the
Hertzsprung–Russell diagram. Their “outlier” status flag them as prima facie unusual, even
without necessarily identifying them as post-interaction stars such as blue stragglers or
hot subdwarfs (or photometric binaries, which are not post-interaction but nevertheless not
captured by models of isolated stars).

Of course, it is still possible for a post-interaction star to closely resemble a single star.
For instance, the remnant of a merger between two main-sequence stars is expected to
closely resemble another isolated (but more massive) main-sequence star. This is be-
cause main-sequence stars (especially young ones) are made of more-or-less unprocessed
hydrogen-rich material, as are the remnants of the mergers between them. Merger remnants
may be particularly hard to discern if only their surface properties have been observed.
Observational placement on an Hertzsprung–Russell, for example, only directly constrains
the outer boundary condition satisfied by a solution of the stellar structure equations. Many
different such solutions may exist.

In contrast, adding seismic observables allows stars to be placed in a space in which those
with exclusively unusual interiors are also outliers. Framed this way, the seismic identi-
fication of stellar merger remnants can be framed as internal structure-informed anomaly
detection, where the “anomalies” occur at the few-percent level in stars with Sun-like masses
(e.g., Price-Whelan et al., 2020).

The initial chapters of this thesis focus on the seismic properties of two classes of RG-
like merger remnants. For such merger remnants, the tools and intuition developed for
the seismology of normal RGs can be straightforwardly adapted. Chapter II (Rui and
Fuller, 2021a) considers RGs which have ingested close main-sequence companions during
their ascension up the red giant branch. This engulfment endows the merger remnant with
unusually overmassive envelopes to which seismology is sensitive. Chapter III (Rui and
Fuller, 2024) considers the remnants of coalescences of accreting helium-core white dwarf
systems. The resulting object possesses an abnormally low-entropy core which affects the
remnant’s seismic properties and subsequent evolution.

In recent years, seismology has rapidly gained recognition as a probe of stellar interaction
histories. Closely following Rui and Fuller (2021a), Deheuvels, Ballot, Gehan, et al. (2022)
discovered roughly four dozen red giant branch stars in the scatter below the degenerate
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sequence in the seismic Δ𝜈–ΔΠ1 diagram (see also Li, Deheuvels, and Ballot, 2024). Their
positions on the seismic spacing diagram indicate that their total masses and degrees of core
degeneracy are inconsistent with isolated stellar evolution, implying that they likely gained
mass from a stellar interaction.

In the red clump (core helium-burning phase), Li, Bedding, Murphy, et al. (2022) identify
two classes of unusual stars in the seismic mass–radius plane. The “very low-mass” stars
have masses ≲ 0.8𝑀⊙ implying main-sequence lifetimes longer than the age of the universe,
and the “underluminous” stars have unusually low radii but otherwise normal masses. Both
very-low-mass and underluminous stars have lost an unusually large amount of mass during
the course of their evolution, likely due to a close binary interaction. These classes are
distinguished from each other by whether the initial helium ignition was degenerate (very-
low-mass) or non-degenerate (underluminous). Matteuzzi et al. (2023) further investigate
three members within the very low-mass class of RGs (termed in that work as “red horizontal
branch” stars), finding extremely high degrees of mixed-mode coupling consistent with
model predictions for their evanescent wave regions.

Seismology can also effectively synergize with other observational techniques to identify
systems of likely binary origin. By measuring ΔΠ1, Hon, Huber, Rui, et al. (2023)
seismically identified the star 8 UMi (Baekdu) as a core helium-burning star. However, 8
UMi is also the host of a close (𝑎 ≈ 0.5 AU) giant planet which, in the single-star scenario,
should have been engulfed during 8 UMi’s preceding red giant branch phase. The system
can, however, be explained as the outcome of a merger between a RG and a helium-core
white dwarf. Such a merger could have ignited 8 UMi’s helium without requiring it to
ascend all the way to the tip of the red giant branch (e.g., Zhang and Jeffery, 2013). The
lithium-richness of 8 UMi seems to lend credence to this binary hypothesis.

Rapid rotation in RGs is also a strong indicator for past stellar interactions. This is because
the envelopes of isolated RGs spin extremely slowly, owing to angular momentum con-
servation on the red giant branch. In consequence, any detection of a substantial rotation
rate in the envelope implies some kind of spin-up due to a stellar or tidal interaction (e.g.,
Carlberg, Majewski, et al., 2011; Tayar, Ceillier, et al., 2015; Ceillier et al., 2017). While
surface rotation rates can be measured by other methods (e.g., photometric modulation, ro-
tational broadening), rapid envelope rotation can also be corroborated by p-mode rotational
splittings (see, e.g., Tayar, Moyano, et al., 2022; Ong, Hon, et al., 2024). Furthermore,
unlike those other methods, seismology is also capable of measuring the rotation rates of
the cores of RGs. Leveraging this sensitivity to differential rotation, (Ong, 2025) show that
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the envelope and core of Kepler-56 rotate around different axes, consistent with either the
past engulfment of or ongoing tidal realignment by a planet.

1.2.2 Seismic stellar magnetometry
Stellar magnetic fields are largely a consequence of the fact that electrically conductive
fluids, common throughout the universe, conserve magnetic flux as they deform. In con-
sequence, when a progenitor molecular cloud collapses and contracts manyfold into stars,
even tiny magnetic fields can translate to large magnetic fields. Flux freezing also allows
stars with complex motions (e.g., differential rotation, instabilities) to amplify small seed
magnetic fields into large ones by “stretching” them out (the realm of dynamo theory, e.g.,
Elsasser, 1956). These processes offer a compelling post hoc explanation not only for the
basic existence of stellar magnetic fields in general but also their observed diversity. Mag-
netic fields are also crucial actors in the rotational evolution of stars via magnetic braking
(Mestel, 1968) and angular momentum transport (Aerts, Mathis, et al., 2019).

Magnetic fields influence the propagation of hydrodynamical waves as an additional restora-
tive force and a damping effect. In high-radial-order g modes (such as those in the radiative
cores of RGs), the wavenumber is primarily radial and the fluid motions are primarily
horizontal. These properties make such modes primarily sensitive to the magnetic tension
associated with the radial component of the magnetic field. The degree to which a magnetic
field affects the propagation of a g mode is given by its strength relative to a critical field
strength:

𝐵𝑟,crit ∝
√
𝜌𝜔2𝑟/𝑁, (1.14)

typically hundreds of kilogauss in RG cores (Fuller, Cantiello, et al., 2015). At this field
strength, the Alfvén frequency becomes comparable to the frequency of a g mode with
angular frequency 𝜔 (e.g., Cantiello et al., 2016). Gravity waves propagating in regions
with 𝐵𝑟 > 𝐵𝑟,crit are predicted to be strongly damped.

Magnetic g-mode suppression was first invoked by Fuller, Cantiello, et al. (2015) to explain
the depressed amplitudes of dipole modes in ≃ 20% of observed RGs (García, Pérez
Hernández, et al., 2014; Stello, Cantiello, Fuller, Huber, et al., 2016). The implication
from Equation 1.14 that low-frequency modes are preferentially suppressed appears to be
validated by the suppression of only the low-frequency g modes in a RG (KIC 6975038;
Deheuvels, Li, et al., 2023) as well as in a B-type star with a strong surface magnetic field
(HD 43317; Lecoanet, Bowman, et al., 2022). In this basic picture, observation of g-mode
suppression places a lower bound on the magnetic field, and non-observation places an
upper bound. However, an analysis by Mosser, Belkacem, et al. (2017) argues that dipole
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modes in affected RGs still retain some g-mode-like character (see also Arentoft et al.,
2017). This observation seems to contradict the supposition by Fuller, Cantiello, et al.
(2015) that magnetic fields > 𝐵𝑟,crit result in near-total suppression of g-mode energy.

Recent studies have greatly advanced our theoretical understanding of magnetogravity
wave propagation. In a original schematic calculation, Fuller, Cantiello, et al. (2015)
show that magnetogravity waves become spatially evanescent (𝑘2

𝑟 < 0) when 𝐵𝑟 > 𝐵𝑟,crit,
and speculate that the resulting wave contain higher-ℓ content which is both efficiently
damped and difficult to see due to geometric cancellation. Performing a deeper analysis of
zonal magnetogravity waves under a realistic multipolar field geometry, Lecoanet, Vasil,
et al. (2017) show that refracted magnetogravity waves approach zero wavelength at a
finite “cutoff” height, suggesting a natural avenue for wave dissipation. Motivated by
this progress, Chapter IV (Rui and Fuller, 2023) introduces a formalism for calculating
the morphology of a g mode under the influence of a strong gravitational field. The
radial–horizontal decomposition applied in this study is justified by the high radial orders
characterizing g modes in typical RGs and intermediate-mass main-sequence stars. I find
that, for 𝐵𝑟 > 𝐵𝑟,crit, non-zonal modes develop sharp features at critical latitudes where the
mode satisfies a resonance condition with the Alfvén frequency. These sharp features were
also observed in the numerical calculations of Lecoanet, Bowman, et al. (2022), and provide
an additional mechanism for g-mode dissipation. However, ray-tracing calculations by Loi
(2020c) and Müller et al. (2025) show that some wave power may yet escape magnetic
suppression and be observed, at least for high-ℓ modes. Analyses such as these are likely
to help reconcile our theoretical picture of magnetic suppression with the residual g-mode
character of suppressed-dipole modes reported by Mosser, Belkacem, et al. (2017) and
Arentoft et al. (2017).

Magnetic fields weaker than 𝐵𝑟,crit can still measurably influence g-mode frequencies, even
if they are too weak to suppress g modes. When included as an additional restorative force,
the Lorentz force always has the effect of increasing their frequencies (“stiffening” them).
Most theoretical analyses calculate magnetic shifts to g-mode frequencies by performing
perturbation theory with 𝐵𝑟/𝐵𝑟,crit as the small quantity (Gomes and Lopes, 2020; Bugnet,
2022; Li, Deheuvels, Ballot, and Lignières, 2022; Mathis and Bugnet, 2023; Das et al.,
2024). It is usually further assumed that the magnetic field is still subdominant compared
to the Coriolis force, such that the pulsations are aligned with the rotation axis.

Magnetic g-mode shifts were first discovered several years ago by Li, Deheuvels, Ballot,
and Lignières (2022) in the dipole modes of three RGs. In particular, the study made use of
the fact that magnetic shifts generally depend on 𝑚. This dependence causes the rotational
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triplets of RGs to depart from uniform spacing in frequency (the frequency shift due to
rotation is proportional to 𝑚), producing measurable “asymmetries.” Of particular intrigue
has been the sensitivity of the asymmetry of the triplet to the geometry of the magnetic
field. Later studies have expanded the sample of RGs with measured magnetic asymmetries
to several dozen (Li, Deheuvels, Li, et al., 2023; Hatt et al., 2024). In RGs with stronger
core magnetic fields (but still less than 𝐵𝑟,crit, so that suppression does not occur), magnetic
frequency shifts can even be high enough to produce a measurable departure from the
period-uniformity of g modes (Deheuvels, Li, et al., 2023).

Two chapters of these thesis address the calculation of magnetic g-mode frequency shifts
when certain conventional assumptions are relaxed. Chapter V (Rui, Ong, et al., 2024)
generalizes the method developed in Chapter IV to include rotation and uses it to predict
g-mode frequency shifts under strong magnetic fields for which perturbation theory is
inapplicable (𝐵𝑟 ∼ 𝐵𝑟,crit). I emphasize a strong analogy to the traditional approximation
of rotation, the standard approach for computing the effects of a strong Coriolis force (e.g.,
Hough, 1898a; Bildsten, Ushomirsky, et al., 1996; Lee and Saio, 1997). This traditional
approximation of rotation and magnetism may help bridge the observational gap between
RGs with dipole-suppression and those with magnetic asymmetries (interpreted with the
perturbative theory). Chapter VI (Rui, Fuller, and Ong, 2025), in contrast, works in the
perturbative weak-field limit, but allows the magnetic field to exceed the Coriolis force in
strength. When this occurs, the g modes become oblique, and the one-to-one mapping
between modes and power spectral peaks is broken. This is a well-known phenomenon
afflicting the spectra of roAp stars, which are known to harbor strong surface magnetic
fields (e.g., Kurtz, 1982; Dziembowski and Goode, 1996). I show that stochastic oblique
pulsators (such as magnetic RGs or Sun-like stars) should possess frequency components
whose relative phases and amplitudes are fixed, even as stochasticity erases absolute phase
information. This perfect relative coherence may be the key to detecting oblique magnetic
pulsators in RGs and Sun-like stars for the first time.

Finally, though most of the discussion about magnetogravity waves in this thesis occurs in
the context of RGs, the vast majority of the formalism assumes little more than high-radial-
order g-mode pulsation. In fact, although seismic magnetometry in RGs is recent, the idea
of seismic magnetometry in white dwarfs dates back to a calculation by (Jones et al., 1989)
showing that even weak magnetic fields (< 1 MG) can produce measurable frequency shifts.
This was soon followed by the putative detection of asymmetric rotational triplets in the
prototype DBV pulsator GD 358 (Winget, Nather, et al., 1994). Chapter VII (Rui, Fuller,
and Hermes, 2025) uses non-detections of magnetic g-mode suppression and asymmetries
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in rotational triplets/quintuplets to place order-of-magnitude upper limits on the magnetic
fields in white dwarfs. It is found that seismology can place strong upper bounds on the
near-surface magnetic fields of white dwarfs. These upper bounds are typically ∼ 1–10 kG,
but occasionally much more stringent (∼ 1–100 G).

Chapter VIII concludes with my perspective on possible future directions. This thesis
in sum: most of what we know about stars comes from looking at them—I argue that we
should also listen.
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C h a p t e r 2

ASTEROSEISMIC FINGERPRINTS OF STELLAR MERGERS

Rui, N. Z. and J. Fuller (2021). “Asteroseismic fingerprints of stellar mergers.” In: Monthly
Notices of the Royal Astronomical Society 508.2, pp. 1618–1631. doi: 10.1093/mnras/
stab2528. arXiv: 2108.10322.

Stellar mergers are important processes in stellar evolution, dynamics, and transient science.
However, it is difficult to identify merger remnant stars because they cannot easily be
distinguished from single stars based on their surface properties. We demonstrate that
merger remnants can potentially be identified through asteroseismology of red giant stars
using measurements of the gravity mode period spacing together with the asteroseismic
mass. For mergers that occur after the formation of a degenerate core, remnant stars have
over-massive envelopes relative to their cores, which is manifested asteroseismically by a g-
mode period spacing smaller than expected for the star’s mass. Remnants of mergers which
occur when the primary is still on the main sequence or whose total mass is less than ≈2𝑀⊙

are much harder to distinguish from single stars. Using the red giant asteroseismic catalogs
of Vrard, Mosser, et al. (2016) and Yu et al. (2018), we identify 24 promising candidates for
merger remnant stars. In some cases, merger remnants could also be detectable using only
their temperature, luminosity, and asteroseismic mass, a technique that could be applied to
a larger population of red giants without a reliable period spacing measurement.
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the Sloan Foundation through grant FG-2018-10515. This research has made use of the
SIMBAD database, operated at CDS, Strasbourg, France. We thank the anonymous referee
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2.1 Introduction
Stellar mergers are physically complex processes with broad implications across astro-
physics. Kochanek et al. (2014) find that galactic mergers occur at a high rate of ∼0.2 yr−1,
and Mink et al. (2014) further show that merger products comprise ≈ 30% of high-mass
main sequence stars. Mergers are a common endpoint of binary stellar evolution (Paczynski,
1976), and they are believed to be the origin of astrophysical transients such as luminous red
novae (Tylenda and Soker, 2006; Soker and Tylenda, 2006; Ivanova, Justham, Nandez, et al.,
2013; Pejcha et al., 2016; Metzger and Pejcha, 2017). Collisions between stars are also
expected to occur at high rates in dense stellar environments such as globular clusters, where
they are believed to be an important formation channel for blue stragglers (Bailyn, 1995),
some of which have exotic properties suggestive of this origin (e.g., Schneider, Ohlmann,
Podsiadlowski, Röpke, Balbus, Pakmor, and Springel, 2019). In these environments, they
have been recently proposed as one possible explanation for multiple stellar populations
(Mastrobuono-Battisti et al., 2019; Wang, Kroupa, et al., 2020).

While millions of merger remnants are expected to exist in the Galaxy, identifying the
surviving stars in the field is challenging. Detailed asteroseismic characterization of red
giant (RG) stars offers a new hope, because the oscillations of RGs are particularly rich
in information for two reasons. First, the close values of the Brunt–Väisälä and Lamb
frequencies create a narrow evanescent region within the star, coupling the observable
p modes at their surfaces to the g modes within their radiative cores. Second, the frequencies
occupied by these “mixed modes” are serendipitously excited by stochastic driving from
convective motions in their envelopes. The intimate coupling between interior and surface
oscillations allow for detailed asteroseismic constraints on their core structures, allowing for
the determination of evolutionary states (Bedding et al., 2011; Bildsten, Paxton, et al., 2011;
Mosser, Benomar, et al., 2014; Cunha, Stello, et al., 2015; Elsworth et al., 2017), internal
rotation rates (Beck et al., 2012; Mosser, Goupil, Belkacem, Marques, Beck, Bloemen,
De Ridder, Barban, Deheuvels, Elsworth, et al., 2012b; Klion and Quataert, 2017; Gehan
et al., 2018; Ahlborn et al., 2020; Deheuvels, Ballot, Eggenberger, et al., 2020), and core
magnetic fields (Fuller, Cantiello, et al., 2015; Stello, Cantiello, Fuller, Garcia, et al., 2016;
Cantiello et al., 2016; Mosser, Belkacem, et al., 2017; Loi, 2020a).

Therefore, in addition to encoding stellar masses and radii in the large frequency spacing Δ𝜈

and the frequency of maximum power 𝜈max (Kallinger, Weiss, et al., 2010), asteroseismology
is also a probe of the core structures of RGs through the mixed mode period spacing Δ𝑃𝑔
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Figure 2.1: A cartoon comparing a 2.5 𝑀⊙ RG formed as an isolated, single star with one
formed in a merger where the primary has already entered the RG phase and the secondary
remains on the MS. If the RG primary is in the mass range where it forms a degenerate core
(e.g., 𝑀 = 1.5 𝑀⊙), the merger product will generally retain it, even if a single star of the
same mass would have been expected to produce a more massive, non-degenerate core on
the RGB.

in the dipole (ℓ = 1) mode peaks of approximately

Δ𝑃𝑔 =
√

2𝜋2
(∫

R

𝑁

𝑟
d𝑟

)−1
. (2.1)

Here, 𝑁 is the Brunt–Väisälä frequency and R denotes the portion of the star’s central
radiative region where 𝜈max < 𝑁 (Chaplin and Miglio, 2013). Intuitively, this dipole
splitting results from the coupling of a given p mode to multiple, distinct g modes, hence
the sensitive dependence of Δ𝑃𝑔 on the Brunt–Väisälä frequency in the central regions of
the star. For a typical RG, Δ𝑃𝑔 is typically on the order of minutes, large enough to be
measured by prominent surveys such as CoRoT (Mosser, Barban, et al., 2011) and Kepler
(Stello, Huber, et al., 2013; Vrard, Mosser, et al., 2016). The value of Δ𝑃𝑔 is primarily
determined by the mass and evolutionary state of the star’s helium core, and comparison of
measured values to models provides an excellent test of stellar evolution theories.

In this work, we demonstrate that RGs which have a merger in their histories can be
identified via asteroseismology, provided that the merger occurs after the primary has left
the main sequence (MS) and the secondary remains a MS star. Asteroseismology will be
effective at identifying a merger when the original RG develops a small, degenerate core
that the final RG would not otherwise be expected to have. The difference in core structure
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between such a merger product and an equal-mass RG forming via single star evolution
manifests in a different gravity mode structure and, in turn, different period spacings of their
dipole modes. We sketch this picture heuristically in Figure 2.1, which shows our fiducial
comparison between a single 2.5 𝑀⊙ RG and the product of a 1.5+1.0 𝑀⊙ RG+MS merger.

2.2 Stellar models
In order to obtain physically realistic stellar models, we employ Modules for Experiments in
Stellar Astrophysics (mesa, version r12778; Paxton, Bildsten, et al., 2010; Paxton, Cantiello,
et al., 2013; Paxton, Marchant, et al., 2015; Paxton, Schwab, et al., 2018; Paxton, Smolec,
et al., 2019), an open-source one-dimensional stellar evolution code. We first initialize a
grid of single star models from 0.75 𝑀⊙ from 2.75 𝑀⊙, which are integrated through the
MS and RGB, for the purpose of (1) providing initial conditions for binary merger models
and (2) computing asteroseismic observables in single stars. The stellar models are taken
to be non-rotating and solar-metallicity, with reasonable values for convective overshoot.
Model details and inlists are provided in Appendix 2.A.

We then model mergers as rapid accretion events with a rate ¤𝑀 = 10−5 𝑀⊙ yr−1 at the
surface of the star. The original star starts off on the main sequence with solar composition,
and at a specified age, it accretes material with the same composition as its surface (which
is also close to solar composition). While this cannot be expected to capture the transient
structure of the star immediately after the merger, it should provide a reasonable model of
the star after thermal relaxation, i.e., a few thermal times after merger. While the adopted
accretion rate is less than what is expected during a real merger, it should approximate a
real merger event well because the accretion time scale 𝑡ac = 𝑀/ ¤𝑀 ∼ 105 yr is much shorter
than a thermal time scale, hence the accretion is still in the rapid (adiabatic) regime. We
run a number of “merger” models, beginning with a fine grid of 1.5+1.0 𝑀⊙ models where
we vary the time of merger (Section 2.3.2). Next, we run a pair of grids where we vary the
initial and final stellar masses, one in which the merger occurs when the primary is on the
RGB, and the second when it is on the MS (Section 2.3.3). We then relax the convergence
conditions required to run a 1.5 + 1.0 𝑀⊙ model through helium burning, and we examine
the behavior of the period spacing on the red clump (Section 2.3.4).

While in reality the secondary star may be expected to penetrate deeply into the star’s
envelope before being disrupted and mixed into the star, modeling an RG+MS merger as a
surface mass injection is sensible as long as the secondary mixes into the envelope before
reaching the core. We can use the approximation of Eggleton (1983) to compute an effective
Roche lobe radius for a secondary during a common envelope phase, taking as the mass
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Figure 2.2: Left: Hertzsprung-Russell diagram of a single 1.5 𝑀⊙ star (blue dotted line), a
1.5 + 1.0 𝑀⊙ RG+MS merger product (solid green line), and a single 2.5 𝑀⊙ star (dashed
red line). Circular points indicate merger remnant candidates discussed in Section 2.4.1,
with black points showing the best candidates. Right: Propagation diagrams at 𝐿 = 60 𝐿⊙
for these three models. We also show the the gravity mode region (green), as well as the
acoustic mode region (gray) and 𝜈max (purple), for the merger model, although the latter
two are similar between all three models. Despite the merger, the Brunt–Väisälä frequency
of the merger product most closely resembles that of a non-merged star of the original mass,
rather than that of a non-merged star of the present-day mass.

ratio 𝑞 = 𝑀2/𝑀1,enc(𝑟), the ratio of the mass of the secondary to the mass of the primary
enclosed by the orbit. For the 1.5+1.0 𝑀⊙ merger shown in Figure 2.2, we find that the MS
secondary is expected to disrupt and mix into the primary’s convective envelope at 𝑟 ≈ 2.8
𝑅⊙ in our models, very close to the surface of the primary and far outside of the helium
core (𝑟core ≈ 0.04 𝑅⊙ on the lower RGB).

2.2.1 Detailed oscillation mode calculations
While the period spacing between modes of the same gravity mode degree generally lie
quite close to the asymptotic period spacing Δ𝑃𝑔, they may deviate somewhat from this
value, particularly when the mode has a large mixed character. Since mixed modes are
the most easily detected, it is critical to correct for this phenomenon when extracting the
asymptotic period spacing from observations (e.g., Vrard, Mosser, et al., 2016).

In order to confirm that the asymptotic period spacing Δ𝑃𝑔 as defined by Equation 2.1
lies close to the actual gravity mode spacing of our stellar profiles, we employ gyre,
a shooting code which computes stellar oscillation modes given one-dimensional stellar
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profiles (Townsend and Teitler, 2013). Working in the adiabatic limit, we first calculate
all oscillation modes with ℓ = 0 or 1 lying within a factor of 2 of 𝜈max (computed from
our mesa models using the scaling relation in Equation 2.3) for single 1.5 𝑀⊙ and 2.5 𝑀⊙

RGs. We next compute these modes for the product of a 1.5 + 1.0 𝑀⊙ merger that occurs
soon after the main sequence when the primary’s radius reaches 𝑅 = 1.25𝑅TAMS. Here,
𝑅TAMS is the radius of the star at the terminal age main sequence (TAMS), defined to be
the earliest time that 𝑋 = 0 in the core. Within each acoustic mode order, we calculate the
difference in period between adjacent ℓ = 1 modes (which differ in gravity mode order),
finding them to be very close to Δ𝑃𝑔 in almost all cases except when the character of the
mode was very mixed. Therefore, moving forwards, we center our discussion around Δ𝑃𝑔

(as defined in Equation 2.1), with the knowledge that (1) it is a good approximation to
the actual, generally frequency-dependent period spacing, and (2) is typically reported in
observations after accounting for this frequency dependence.

2.3 Results
2.3.1 Heuristic description
RGs comprise a large convective envelope surrounding a compact, high density core which
primarily governs the star’s evolution. With the premise that a stellar merger between a RG
with a degenerate core and a MS star mainly increases the RG’s envelope mass while leaving
its core intact, the core mass and structure of the RG is nearly unaffected by the merger.
Already compact and degenerate cores have higher Brunt–Väisälä frequencies in the core
and thus a smaller Δ𝑃𝑔, relative to the less compact and less degenerate cores arising from
more massive stars. This gives rise to a robust observational signature of mergers of this
type, provided that the core structure of the post-merger star is significantly different than
that of a single RG star with the same mass as the merger product.

Figure 2.2 shows the Brunt–Väisälä frequency profiles of our fiducial models, where it is
apparent that the RG merger product largely retains the core gravity mode structure of its RG
progenitor. Whereas the 1.5 𝑀⊙ single star model has a more compact gravity mode region
characterized by a larger value of 𝑁 in its degenerate core, the 2.5 𝑀⊙ single star model has
a more radially extended gravity mode region in its non-degenerate core whose 𝑁 peaks at
a lower frequency. Importantly, for an 1.5 + 1.0 𝑀⊙ RG+MS merger, the Brunt–Väisälä
frequency profile more closely resembles that of the original 1.5 𝑀⊙ RG. As 𝜈max and Δ𝜈

(together with 𝑇eff) provide an independent asteroseismic measurement of the mass, Δ𝑃𝑔
can be used to distinguish a merger product from a single star via their different gravity
mode regions. Specifically, merger remnants are expected to have a smaller Δ𝑃𝑔 (similar to
that of the progenitor) relative to single stars of the same mass, when evaluated at the same
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Figure 2.3: The frequency of maximum power 𝜈max (top left), large frequency spacing Δ𝜈

(bottom left), asymptotic period spacing Δ𝑃𝑔 (top right), and helium core mass (bottom
right) of the merger product of a 1.5 𝑀⊙ primary with a 1.0 𝑀⊙ secondary. The 𝑥-axis is the
radius of the merging primary relative to its radius at the TAMS, so post-MS mergers occur
when 𝑅accrete/𝑅TAMS > 1. The asteroseismic quantities are evaluated when the merger
remnant reaches 𝐿 = 60 𝐿⊙ on the RGB. The red and blue lines show the analogous values
for single 1.5 𝑀⊙ and 2.5 𝑀⊙ RG models of the same luminosity.

luminosity. In the model in Figure 2.2 at 𝐿 = 60 𝐿⊙, the merger remnant has Δ𝑃𝑔 = 61.9 s,
very close to that of the original 1.5 𝑀⊙ star (Δ𝑃𝑔 = 57.7 s) but very far from that of a
single star 2.5 𝑀⊙ (Δ𝑃𝑔 = 164.0 s).

The following sections elaborate on the point that Δ𝑃𝑔 reveals the fingerprint of a stellar
merger, but only when the merger occurs after the primary has already left the MS (Section
2.3.2), and only when the merger brings an RG with a degenerate core into a mass regime
where single star evolution does not produce degenerate cores (Section 2.3.3).

2.3.2 Δ𝑃𝑔 is sensitive to mergers on the RGB
We run a series of 1.5 + 1.0 𝑀⊙ merger models where we vary the time of merger from
the main sequence to the lower RGB. When the merger product reaches 60 𝐿⊙ during its
ascent up the RGB, we calculate Δ𝑃𝑔—this luminosity is chosen because RGs at 𝐿 = 60
𝐿⊙ lie just below the bump at a value of Δ𝜈 where mixed modes are still observable, but
well above the base of the RGB where the merger occurs.
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We also calculate the large acoustic frequency spacing Δ𝜈 and peak oscillation frequency
𝜈max (Brown, Gilliland, et al., 1991):

Δ𝜈 =

(
2
∫ 𝑅

0

𝑑𝑟

𝑐𝑠

)−1

(2.2)

𝜈max = 3100 𝜇Hz
(
𝑀

𝑀⊙

) (
𝑅⊙
𝑅

)2 (
𝑇eff,⊙
𝑇eff

)1/2
. (2.3)

When combined with the surface temperature, these two quantities trace the total mass
and radius of the star. Independent of the time of merger, 𝜈max and Δ𝜈 are unsurprisingly
very close to their values for an equal-mass single RG, as the total mass and radius of the
resulting RG will be almost identical to a non-merged analogy, when measured at the same
luminosity.

Even though Δ𝜈 and 𝜈max are only sensitive to the total mass and radius, Δ𝑃𝑔 traces the core
structure and retains information about the star’s evolutionary history which can be used
to identify merger remnants. Figure 2.3 demonstrates that for mergers occurring after the
TAMS, Δ𝑃𝑔 of the merger product more closely resembles that of the 1.5 𝑀⊙ progenitor
as if it had never merged. Physically, this is due to the pre-merger core already being high
density and degenerate, such that its structure is insensitive to the overlying layers. In other
words, mergers which occur after the TAMS barely affect the underlying core structure of
the progenitor.

For mergers which occur when the primary is still on the MS, Figure 2.3 shows that Δ𝑃𝑔 is
essentially the same as that for a single star of the same total mass. The reason for this is
revealed in Figure 2.4, whose left-hand panel shows the propagation diagrams of an “early”
1.5 + 1.0 𝑀⊙ merger which occurs at 𝑡 = 0.5 𝑡TAMS, when the primary is on the MS. We
see that, in contrast to the “late merger” case (right panel, Figure 2.2), the Brunt–Väisälä
frequency profile of the “early" merger model is indistinguishable from a single star of the
same mass. This occurs because the main sequence core is not degenerate and is sensitive
to the mass of the overlying material, so the core readjusts to be nearly identical to that of a
star that was born at 2.5 𝑀⊙. As an additional note, we find that, if the merger occurs very
close to the TAMS, Δ𝑃𝑔 plateaus to an intermediate value between what is expected for 1.5
𝑀⊙ and 2.5 𝑀⊙ single stars (Figure 2.3). However, due to the short time window for this
merger occur, it is unlikely that this case will be frequently observed.

In principle, a MS merger model may require more sophisticated simulations of the hydro-
dynamical mixing associated with such a traumatic event. In such mergers, there may be
a greater degree of mixing between the two stars, with material from both stars extending
throughout the remnant in general. However, as the evolution of a MS star of a given
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Figure 2.4: Left: Propagation diagrams at 𝐿 = 60 𝐿⊙ for a single 1.5 𝑀⊙ star (blue dotted
line), a 1.5 + 1.0 𝑀⊙ MS+MS merger product (green solid line), and a single 2.5 𝑀⊙ star
(red dashed line). When the merger occurs while the primary is still on the MS, the merger
product will be nearly indistinguishable via Δ𝑃𝑔 from an equal-mass single star. Right:
Propagation diagrams at 𝐿 = 60 𝐿⊙ for a single 1.0 𝑀⊙ star (blue dotted line), a 1.0 + 0.5
𝑀⊙ RG+MS merger product (green solid line), and a single 1.5 𝑀⊙ star (red dashed line).
As single stars below 𝑀 ≲ 2 𝑀⊙ all share similar degenerate core structures, Δ𝑃𝑔 cannot
distinguish between a lower mass merger product and equal-mass single star.

composition is essentially determined by its mass, we expect our simple surface accretion
approximation to capture the most important effect. To confirm this, we use mesa’s native
entropy sorting procedure (accessible as create_merger_model) to model a 1.5 + 1.0
MS+MS merger, and confirm that the resulting gravity mode structure at 𝐿 = 60 𝐿⊙ is
virtually identical to the surface accretion merger model.

2.3.3 Pre-merger core degeneracy is key to merger identification
To understand the parameter space where merger products can be asteroseimically identified,
we run two grids of merger models. The grids have primary mass in the range 𝑀primary ∈
[0.75, 2.50] 𝑀⊙ and post-merger mass in the range 𝑀product ∈ [1.00, 2.75] 𝑀⊙, spaced by
0.25𝑀⊙ in each dimension. We consider both the case where the merger occurs on the lower
RGB (when the primary’s radius reaches 1.25 times its value at TAMS) as well as the case
where the merger occurs on the MS (when the primary reaches half of its TAMS age). Figure
2.5 compares the period spacings of merger products at 60 𝐿⊙ to non-merged stars of equal
masses. It is clear that the period spacing is substantially different for high enough product
masses when the merger occurs on the RGB, but it is practically indistinguishable when the
merger occurs on the MS. While Δ𝑃𝑔 could conceivably be reasonably discriminating for
𝑀product as low as ≈ 1.75 𝑀⊙ in the RG+MS case, the effect is especially pronounced for
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Figure 2.5: The difference between the period spacings of a single star and an RG+MS
merger product of the same total mass, for a merger which occurs when the primary is on
the lower RGB (left) or on the MS (right). In each panel, the period spacing difference is
evaluated at a luminosity of 𝐿 = 60 𝐿⊙. The side panels show the central density 𝜌𝑐,single
and central degeneracy parameter 𝜂𝑐 for single stars at 𝐿 = 60 𝐿⊙. Mergers resulting in
stars with 𝑀 ≳ 2 𝑀⊙ are distinguishable from their non-merged counterparts via Δ𝑃𝑔, but
only when the primary has already left the MS by the time the merger occurs. The hatching
covers unphysical mergers where 𝑀product > 2𝑀primary.

≳ 2 𝑀⊙, corresponding approximately to the mass below which a star would be expected
to develop a degenerate core.

In RGs with high core degeneracy, core properties such as the temperature, density, and
Brunt–Väisälä frequency are primarily functions of the core mass, and they are largely
independent of the properties of the surrounding envelope. This is the origin of the famous
luminosity-core mass relation for RGs (Kippenhahn, 1981). Hence, Δ𝑃𝑔 can be seen as
a tracer for the core mass. Late-stage MS stars will develop helium cores which grow as
hydrogen-shell burning progresses, developing into proper RGs when the core mass reaches
the star’s Schönberg–Chandrasekhar limit (Schönberg and Chandrasekhar, 1942). For a star
with 𝑀 ≲ 2 𝑀⊙, the core becomes degenerate before this limit is reached, and the star enters
the RGB with a degenerate core (Cox and Giuli, 1968). In this case, a merger which occurs
after a degenerate core has already been formed will leave Δ𝑃𝑔 nearly unchanged—such
mergers will simply add mass to the envelope, and the small increased pressure will leave
the core unaffected. The merger product will be distinguishable from a single star in the
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case that the latter would otherwise be expected to form a more massive non-degenerate
core, which would have a larger Δ𝑃𝑔.

We note, however, that Δ𝑃𝑔 is insensitive to a merger in the case that a single star with the
same mass as the product would have developed a degenerate core anyway—this can be
seen in our models for 𝑀product ≲ 2 𝑀⊙ in Figure 2.5. This is also demonstrated in the right
panel of Figure 2.4, which shows a propagation diagram for the result of a 1.0+0.5 RG+MS
merger. Since both 1.0 and 1.5 𝑀⊙ single stars would be expected to develop degenerate
cores through normal stellar evolution, their gravity mode structures are very similar when
they evolve to the same point on the RGB, and Δ𝑃𝑔 cannot be used to distinguish them (or
a merger bringing a 1.0 𝑀⊙ RG to a 1.5 𝑀⊙ RG).

2.3.4 Mergers on the red clump are difficult to distinguish
We have so far focused on first ascent giants, which manifest observationally as a roughly
horizontal track at low Δ𝑃𝑔 tracing the star’s evolution through Δ𝜈. However, many, more
evolved RGs have already exhausted their hydrogen supplies available for off-center burning
and have entered the helium core burning phase, with most such stars having accumulated
on the red clump. Red clump stars are also very apparent on a spacing diagram as a large
cloud of points at lowΔ𝜈 and highΔ𝑃𝑔, which makes them straightforwardly distinguishable
from RGB stars (Figure 2.6). It is natural to wonder whether measurements of Δ𝑃𝑔 can
be used to distinguish red clump merger remnants from single stars, similar to the process
described above for RGB stars.

In practice, identifying merger remnants on the clump will be difficult due to the very similar
values of Δ𝑃𝑔 between low-mass and high-mass clump stars. The evolution of Δ𝑃𝑔 over
time is similar for the single 1.5 𝑀⊙ and merger 1.5+1.0 𝑀⊙ models. However, because the
merger model has a larger total mass relative to the single star model, it has a systematically
larger Δ𝜈 ≃

√︁
𝐺𝜌̄. This manifests as a slight horizontal offset between the two models’

evolutionary tracks on a spacing diagram. While this effect also applies to first ascent RGs,
it is less obvious since the trajectory of such RGs through a spacing diagram is shallower,
i.e., Δ𝜈 evolves much more quickly for first ascent giants than clump stars, relative to Δ𝑃𝑔.
This small offset between the single 1.5 𝑀⊙ and merger 1.5 + 1.0 𝑀⊙ evolutionary tracks
is comparable to both models’ offsets from the track of a single 2.5 𝑀⊙ star. In general,
the three models all coincide with each other at some point in their evolution, making them
difficult to distinguish using asteroseismology. Therefore, although constraining the merger
history using Δ𝑃𝑔 may be possible in some cases, we anticipate that it will be difficult for
most clump stars.
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2.4 Merger candidates
2.4.1 Promising candidates from Δ𝑃𝑔

The evolutionary stage of RGs can be tracked on an asteroseismic period vs. frequency
spacing diagram like that shown in Figure 2.6, where merger remnants will appear as
outliers relative to the paths taken by single stars. When ascending the RGB, RGs first
evolve from larger Δ𝑃𝑔 and Δ𝜈 to smaller Δ𝑃𝑔 and Δ𝜈, later accumulating at high Δ𝑃𝑔 and
low Δ𝜈 once they reach the red clump. Stars of different mass take different paths through
the diagram, and merger remnants take different paths from single stars of the same mass.
Hence, combined with an asteroseismic mass estimate (which can be deduced via 𝜈max, Δ𝜈,
and 𝑇eff), mergers that occur after the primary has left the MS can readily be apparent from
Δ𝑃𝑔. For stars with 𝑀 ≳ 2𝑀⊙, merger remnants will manifest as stars with a significantly
lower Δ𝑃𝑔 than expected from their mass. In other words, merger remnants will lie near
tracks corresponding to lower mass single stars.

Figure 2.6 also shows the measured Δ𝑃𝑔 versus Δ𝜈 for a sample of 6111 RGs in the Kepler
field from the catalog of Vrard, Mosser, et al., 2016. Of these RGs, we coarsely classify these
stars as first ascent giants (1995; Δ𝑃𝑔 < 125 s) and red clump stars (4116; Δ𝑃𝑔 ≥ 125 s).
We identify 24 stars in this sample on the first ascent RGB with 𝑀 ≥ 2 𝑀⊙ which, despite
their ostensibly larger masses, appear to lie on the sequence of a less massive (≈1.5𝑀⊙) star
through this space. Of these, 9 are flagged as having aliases, although Deheuvels, Ballot,
Gehan, et al. (2022) find that the extracted period spacings of “high-mass” (𝑀 ≳ 1.6 𝑀⊙)
RGs within this sample are usually unaffected by these. Note that one of these stars (KIC
8517859) has been classified as a 𝛿 Scuti star in some catalogs Barceló Forteza et al. (e.g.,
2018) which, if correct, would exclude it as a merger remnant candidate. The possibility
that it is a 𝛿 Scuti–RGB binary system (similar to, e.g., the system reported by Murphy, Li,
et al., 2021) is also intriguing.

However, Yu et al. (2018), who later revisited these asteroseismic mass measurements, found
that 17 of these candidates have masses < 2 𝑀⊙ after applying a correction assuming that
these stars are first ascent giants (with one candidate absent in their catalog). Nonetheless,
6 of these stars (KIC 12254159, KIC 2972876, KIC 7778197, KIC 8708536, KIC 9907511,
and KIC 11465942) have𝑀 > 2𝑀⊙ in both catalogs, and should be considered the strongest
merger remnant candidates in the sample. These merger candidates are listed in Table 2.1.
For some of these candidates, it is possible that their true masses lie a few 𝜎 below their
reported values, in which case they are consistent with single stars with𝑀 ≃ 1.8𝑀⊙ without
any need to invoke a merger scenario. Another possible source of false positives is that the
extracted period spacings underestimate the true value—such errors may be exacerbated
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by suppressed dipole modes in some RGs (Mosser, Elsworth, et al., 2012; García, Pérez
Hernández, et al., 2014; Fuller, Cantiello, et al., 2015; Stello, Cantiello, Fuller, Garcia,
et al., 2016; Mosser, Belkacem, et al., 2017).

Note that our 1.5 𝑀⊙ single star model track appears to run at slightly lower Δ𝑃𝑔 than the
observed sample. Lower mass models come closer to the data points due to their smaller
frequency spacings, as expected since a mass of ≈1.2𝑀⊙ is most common amongst Kepler
RGs. It may also be possible that the models predict slightly too small Δ𝑃𝑔 (or conversely,
slightly too large Δ𝜈) or that this difference is related to a correction applied in the Vrard,
Mosser, et al. (2016) sample in the conversion between the uncorrected period spacing
(which depends complexly on coupling to acoustic modes) and the asymptotic value.

Because RG evolution is primarily governed by core physics, we expect that the product
of a 1.5 + 1.0 𝑀⊙ merger after the TAMS to ascend the RGB at a rate similar to a single
1.5𝑀⊙ star, i.e., much more slowly than a single 2.5 𝑀⊙ star. In our models, a 1.5 + 1.0
𝑀⊙ merger remnant spends 37.8 Myr in the range 4 𝜇Hz ≤ Δ𝜈 ≤ 10 𝜇Hz versus the much
shorter 2.8 Myr for a single 2.5 𝑀⊙ star. Hence, even though the single star evolutionary
route is more common, merger products will be over-represented relative to single stars of
the same mass within this range of frequency spacing.

Just before this paper was finalized, Deheuvels, Ballot, Gehan, et al. (2022) performed a
similar study investigating the asteroseismic signatures of mass transfer. They also found
that RGs which lie below the main RGB sequence in Δ𝜈–Δ𝑃𝑔 space can be explained by
stars that have accreted mass after developing a degenerate core. They propose that stars
that lie below the main RGB sequence (especially those with 𝑀 ≳ 1.8𝑀⊙) have likely
accreted mass, which increases their Δ𝜈 without modifying Δ𝑃𝑔 substantially. Indeed, our
models predict the same behavior, which is why the merger model in Figure 2.6 lies to
the right of the single star model. Using this asteroseismic signature, they identify ∼ 30
RGs which may have experienced mass transfer in the past. Several of their mass transfer
candidates do not appear in our list of candidates because they either have 𝑀 < 2𝑀⊙ or
do not appear in the catalog of Vrard, Mosser, et al. (2016) but have separately measured
period spacings. In turn, our candidate list contains stars which do not lie below the RGB
period spacing sequence and therefore are not selected by their method.

2.4.2 Recognizing merger remnants in the absence of Δ𝑃𝑔
While Δ𝑃𝑔 is a robust way to identify certain merger remnants on the basis of an apparently
under-massive core, it may be possible to identify merger remnants without Δ𝑃𝑔. Specifi-
cally, by using measurements of Δ𝜈, 𝜈max, and 𝑇eff , one can in principle constrain the stellar
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mass 𝑀 , radius 𝑅, and luminosity 𝐿. The latter quantities can also be determined using
Gaia parallax measurements, given a reliable 𝑇eff . A merger remnant would then manifest
as a giant which is less luminous and/or cooler than possible for a single star of mass 𝑀
which is just beginning its ascent up the RGB.

For example, one could distinguish a 1.5 + 1.0 𝑀⊙ merger remnant from a single 2.5 𝑀⊙

star based on their location on the Hertzsprung-Russell diagram (HRD) in Figure 2.2. This
is likely only possible if the remnant giant is young enough to be located at the base of the
RGB such that its luminosity is smaller than that of a single 2.5 𝑀⊙ model at the bottom of
the RGB. In other words, at a given 𝑇eff and mass 𝑀 , merger remnants would be expected to
have smaller luminosity (i.e., smaller 𝑅 and larger Δ𝜈 and 𝜈max) than expected to be possible
from the model track of a single star. As an example, four of our merger candidates from
above lie below the 2.5𝑀⊙ track in Figure 2.2 and could potentially be identified using this
method, if they were to have asteroseismic masses greater than 2.5𝑀⊙.

This method of identification is limited because it can only identify remnants young enough
that they lie near the base of the RGB, and with masses where the minimum RGB luminosity
is somewhat sensitive to mass. Additionally, the stellar track on a HRD is model-dependent
and can vary with metallicity, further complicating this method (Basu et al., 2012). Nonethe-
less, this method does not require measurements of Δ𝑃𝑔, so it may be applicable to a much
larger number of stars for which only Δ𝜈 and 𝜈max can be measured, as expected for the bulk
of red giants observed by TESS. We encourage follow-up work to investigate this technique
in more detail.

2.5 Discussion
2.5.1 Merger dynamics
The RG+MS mergers described in this work may naturally be formed by binary coalescences
when the primary in a close binary expands along the RGB and initiates unstable mass
transfer (for a review, see Ivanova, Justham, Chen, et al., 2013). For conservative mass
transfer, a mass ratio 𝑞 < 2/3 (where 𝑞 is the ratio of the donor to accretor mass) is
required for stable mass transfer from a 𝑛 = 3/2 polytrope. Hence mass transfer in standard
coeval binaries (where an RG primary accretes onto a less massive secondary such that
𝑞 > 1) is typically expected to be unstable, though we note a radiative core does enhance
mass transfer stability (Soberman et al., 1997). In these unstable cases, stars are expected to
eventually merge in a bright transient (“luminous red nova”; e.g., Ivanova, Justham, Nandez,
et al., 2013). Moreover, on the lower RGB where the envelope binding energy is still large,
mergers will occur more frequently relative to successful envelope ejections.
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Hydrodynamical simulations (MacLeod et al., 2018) have shown that stellar coalescences
are expected to produce a bipolar outflow structure which has been observed in follow-up
radio observations of a number of luminous red novae (Kamiński, Steffen, et al., 2018).
With observations taken using the Atacama Large Millimeter Array, Kamiński, Steffen,
et al. (2018) estimate the ejecta mass of three red novae (V4332 Sgr, V1309 Sco, and V838
Mon) as varying dramatically between events, but characteristically on the level of a few
percent of the total mass of the system. This is comparable to the prediction of Metzger and
Pejcha, 2017 that the ejecta mass 𝑀ej ∼ 0.1𝑀 is a relatively small fraction of the total mass
of the system, such that the merger results in a single star with nearly the same total mass.
The detection of similar outflow material around stars identified as merger products using
asteroseismology could validate this method. In may cases, however, the merger ejecta
may have already been expelled from the system. The lifetime of protoplanetary disks has
been estimated to be on the order of 1 Myr (Mamajek, 2009; Cieza, 2015; Li and Xiao,
2016), whereas Δ𝑃𝑔 should be able to discern a merger remnant for approximately ≈ 40
Myr throughout its ascent up the lower RGB. Hence, circumstellar disks have most likely
already been expelled from most asteroseismically detectable merger remnants.

Interestingly, V1309 Sco (Tylenda, Hajduk, et al., 2011) is thought to have arisen from a
merger involving a primary of mass 𝑀1 ∼ 1.5𝑀⊙ and radius 𝑅1 ∼ 3.5 𝑅⊙ (Metzger and
Pejcha, 2017). The primary was thus on the sub-giant branch at the time of merger, at a time
favorable for asteroseismic identification of the merger product. For a secondary of mass
𝑀2 ≳ 0.25𝑀⊙, the merger product would lie in the mass range favorable for asteroseismic
identification, so V1309 Sco may be a perfect example of the type of stellar merger whose
remnant can later be identified through asteroseismic techniques. Along similar lines,
the SPIRITS survey recently identified a class of “eSPecially Red Intermediate-luminosity
Transient Events” (“SPRITEs”; Kasliwal et al., 2017), characterized by luminosities between
those of novae and supernovae, relatively red colors, and lack of any optical counterparts.
(Metzger and Pejcha, 2017) suggest that these dustier SPRITE events may in fact be giant
star mergers, in contrast to luminous red novae, which are more likely to be MS mergers.

2.5.2 Additional merger signals
To corroborate the merger candidates asteroseismically identified above, additional evidence
for a previous merger event would be useful. Merger remnants are expected to initially be
rapidly rotating, though they may spin down rapidly on a time scale of less than 1 Myr
(Casey, Ho, Ness, Hogg, Rix, Angelou, Hekker, Tout, Lattanzio, Karakas, et al., 2019b).
Some remnants may be expected to exhibit large magnetic fields generated during the
merger (Schneider, Podsiadlowski, et al., 2016; Schneider, Ohlmann, Podsiadlowski, Röpke,
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Balbus, Pakmor, and Springel, 2019) or sustained by a dynamo in the convective envelope
due to the high post-merger rotation rate. The fields may be detected via spectropolarimetry
(Aurière et al., 2015) or they may manifest in Ca II H&K emission (Medeiros and Mayor,
1999) or X-ray emission (Soker and Tylenda, 2007). A class of lithium-enriched giants has
also emerged in the last few decades, some of which are also rapidly rotating (Charbonnel and
Balachandran, 2000; Drake et al., 2002; Rebull et al., 2015; Martell et al., 2021a). Evidence
has suggested tidal spin-up (Casey, Ho, Ness, Hogg, Rix, Angelou, Hekker, Tout, Lattanzio,
Karakas, et al., 2019b), stellar mergers (Siess and Livio, 1999; Jura, 2003; Melis, 2020)
and/or giant planet accretion (Denissenkov and Weiss, 2000; Sandquist et al., 2002; Reddy
et al., 2002; Carlberg, Cunha, et al., 2012; Punzi et al., 2017; Soares-Furtado et al., 2021) as
explanations for these lithium-enhanced, sometimes rapidly rotating stars. Asteroseismic
merger candidates should be examined for these other signatures of a prior stellar merger.
While there have been many surveys that have searched for lithium enhancement in RGs,
many of them have were directed at a different field of view than the Kepler data set (Buder
et al., 2018; Kumar, Reddy, Campbell, et al., 2020), not sufficiently photometrically deep
(e.g., Kumar, Reddy, and Lambert, 2011), or restricted only to clump stars (e.g., Singh et al.,
2021). The studies of Deepak and Lambert, 2021 and Yan et al., 2021 cross-referenced
asteroseismic classifications with high lithium abundances via LAMOST data, but none
of our merger candidates appear in their publicly available samples, suggesting they are
likely not strongly lithium enhanced. While the catalog of Casey, Ho, Ness, Hogg, Rix,
Angelou, Hekker, Tout, Lattanzio, Karakas, et al. (2019b) contains 23 lithium-rich giants
which have also been asteroseismically observed by Kepler, only 2 of them have been
identified to be on the RGB, and none of them coincide with any of our 24 merger remnant
candidates. Additional spectroscopic study of our candidates may reveal more subtle,
unusual compositional features which may be associated with a previous merger.

In addition, examining the light curves of Kepler RGs (and performing limited spectroscopic
follow-up), Gaulme, Jackiewicz, Spada, et al. (2020) find a correspondence between surface
activity, close binarity, and suppressed oscillations, consistent with previous work (García,
Mathur, et al., 2010; Chaplin, Bedding, et al., 2011; Gaulme, Jackiewicz, Appourchaux,
et al., 2014; Mathur et al., 2019). As discussed in Section 2.5.2, merger remnants may
have elevated rotational rates and magnetic fields, suggesting that their oscillations may
be preferentially suppressed. This may prevent a measurement of Δ𝑃𝑔 in some cases and
may partially account for our relatively low fraction of remnant candidates (see Section
2.5.3). Of our 24 remnant candidates, 16 appear within the catalog of Gaulme, Jackiewicz,
Spada, et al. (2020), who search for surface activity via rotational modulation in RG’s light
curves. However, they do not report surface activity in any of these candidates. In addition,
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none of our candidates appear in the rotational catalog of Ceillier et al. (2017). While these
non-detections do not provide additional support for the merger hypothesis, they may reflect
an asteroseismic candidate selection bias due to the suppression of oscillations associated
with stronger magnetic activity.

2.5.3 Rates of stellar mergers
For a circular orbit and mass ratio 𝑞 = 3/2, Roche overflow will occur when 𝑎 = 2.4𝑅1

(Eggleton, 1983). We calculate that a 1.5 𝑀⊙ in a circular binary with a 1.0 𝑀⊙ star
will undergo Roche overflow on the lower RGB (𝑎 ≲ 30 𝑅⊙) when the period 𝑃 ≲ 12 d,
with weak dependence on the mass ratio. Such close binaries should account for ≈ 4% of
solar-type binaries (Raghavan et al., 2010). Price-Whelan et al. (2020) demonstrate a deficit
of “close” binaries in red clump and asymptotic giant stars suggestive of stellar mergers on
the RGB. Their observed decrease of close binaries approaching the red clump implies that
≈ 8% of systems (singles and binaries) merge on the RGB, with ≈ 3% of stars merging on
the lower RGB where log 𝑔 is higher than that of the clump but lower than that of the MS.
Tracking transient events, Kochanek et al. (2014) additionally find that the rate of mergers in
the Milky Way between an MS star and an evolved star is ≈ 0.045 yr−1. Together with their
star formation model (3.5 𝑀⊙ yr−1 and the initial mass function of Kroupa and Weidner
2003) this merger rate implies that ≈7% of red giants are merger remnants (although many
of these mergers may occur higher up on the RGB). These observations consistently suggest
that the fraction of lower RGB stars that are merger remnants (and which merged after the
MS) is on the order of a few percent.

Within the Vrard, Mosser, et al. (2016) data set, we identify 24 candidate remnants (see
Section 2.4.1), representing ≈ 1.2% of the total number of RGB stars in their sample.
A total of 6 (≈ 0.3%) are found to be strong candidates using the asterosemismic mass
measurements of both Vrard, Mosser, et al. (2016) and Yu et al. (2018). These fractions
appear to fall somewhat short of our estimates above, but this is not unexpected. Our
method is most sensitive to the subset of RG remnants with 𝑀 ≳ 2 𝑀⊙ (corresponding to
the identification criteria for candidate remnants), and also those which merge low enough
on the RGB to produce a remnant which can still be probed effectively by asteroseismology.
More detailed population synthesis would be needed to confirm whether our candidate
fraction of ∼1% is consistent with expectations of merger rates fulfilling the asteroseismic
selection criteria.
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2.5.4 Mergers in dense stellar environments
Dense stellar populations are clearly a natural setting for frequent stellar collisions as well
as stellar-evolution mediated mergers in binaries hardened by scattering events. The high
stellar densities associated with the core of globular clusters make them hotbeds for such
mergers. Hills and Day (1976) estimate that as many as tens of percent of stars in some
globular clusters may have suffered from at least one collision in their history, and Liu
and Jiang (2021) find (assuming an initial binary fraction 𝑓𝑏 = 0.5) that as many as 50%
of RGs in a globular cluster may have undergone a binary interaction, with evolved blue
straggler stars making up ≃ 10% of RGs. Unfortunately, owing to limited observing fields
and stellar crowding, asteroseismic measurements of stars in star clusters is sparse—only
four open clusters appear in the Kepler field, and only two of those have measured period
spacings for non-clump giants (NGC 6791 and NGC 6819; Corsaro et al., 2012). Using
these data, Brogaard et al. (2021) recently demonstrated the presence of overmassive giants
in NGC 6791—these stars likely originate from mass transfer events or mergers which could
potentially be encoded in the period spacing. In addition, while limited asteroseismology
has been conducted on globular clusters (e.g., Stello and Gilliland, 2009; Miglio, Chaplin,
et al., 2016), measurements of the period spacing for stars in these clusters still remain
elusive.

Ultimately, future observational asteroseismology campaigns, especially those directed
towards dense stellar regions (e.g., Miglio, Girardi, et al., 2021), appear lucrative for
identifying a large sample of merger products as well as providing a direct measurement
of the merger rate in these populations. Optimal observing targets for this type of merger
remnant identification would have turn-off masses ∼ 1–2 𝑀⊙, where stars with masses ≲ 2
𝑀⊙ have entered the RGB but 𝑀 ≳ 2 𝑀⊙ merger remnants can still form (although this
threshold mass may decrease somewhat at lower metallicity). Such populations would place
detectable merger remnants below the RG bump, where asteroseismology is most effective.

2.6 Conclusion
In this work, we investigated the asteroseismic signatures of stellar mergers, focusing on
observable diagnostics in red giant merger remnants. Our main finding is that merger
remnants can often be identified by the presence of an over-massive envelope relative to
their cores, compared to what is expected for a single star. Merger remnants can be found
amongst red giants, provided an asteroseismic measurement of the mass (via 𝜈max, Δ𝜈, and
𝑇eff), in addition to a measurement of the mixed mode period spacing Δ𝑃𝑔. Since the latter
traces the core structure, it can be used to distinguish merger products from single stars
under the following conditions:
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• The merger occurs when the primary is on the RGB, so that it has already developed
a dense core and the merger essentially only adds to the envelope of the star (Section
2.3.2).

• The additional mass contributed by the secondary brings the mass of the giant from
𝑀 ≲ 2 𝑀⊙ to 𝑀 ≳ 2 𝑀⊙. This threshold corresponds roughly to the mass below
which an RG would form a degenerate core, which would be distinguishable from the
non-degenerate core of a more massive star formed via single star evolution (Section
2.3.3).

Mergers that occur when the primary is on the main sequence are difficult to identify because
the merger remnant structure is nearly indistinguishable from a single star of the same mass.
The same is true for a merger that does not bring the total mass above ≈2𝑀⊙.

In other words, Δ𝑃𝑔 can be used to identify a merger remnant in the situation where
the primary in a RG+MS merger has already developed a dense and degenerate core that
withstands the merger, which would not otherwise be produced by a single star with the
mass of the merger product. At the same point on the HRD (or alternatively, at the same
𝜈max or Δ𝜈), a merger product is distinguished by a smaller period spacing relative to the
expectations of a single star (Figure 2.6). Even without a Δ𝑃𝑔 measurement, mergers
remnants can also potentially be identified as stars having a luminosity that is too low for
their asteroseismically measured mass (see Section 2.4.2), and future work should examine
this possibility in more detail.

Fortunately, the RG mass range where merger remnants can be identified is well-sampled
in existing asteroseismic catalogs built primarily from Kepler data. Using the catalog of
Vrard, Mosser, et al., 2016, we have identified 24 promising candidates in Section 2.4.1,
and we encourage follow-up observations to search for additional hints of a prior merger
such as rapid rotation, magnetic fields, unusual chemical abundances, or circumstellar gas
and dust. These stars are a natural endpoint of close binary stellar evolution, and they are
expected to be even more common in dense stellar environments. A further examination
of the data and future observational surveys will provide illuminating constraints on the
occurrence rates and outcomes of stellar mergers in the Milky Way.

2.A MESA simulation controls
The input inlist_project files for all of our mesa runs are very similar, with variations
in specific parameters which control the initial mass of the star, as well as the mass ac-
creted during the rapid merger period. Here, the parameters x_ctrl(1) and x_ctrl(2)
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represent the mass accretion rate during the merger period (fixed at ¤𝑀 = 10−5 𝑀⊙ yr−1)
and the star age at which the merger occurs, respectively. We have also used the parameter
x_integer_ctrl(1) to control profile write-out. This work is accompanied by a Zenodo
repository containing inlists and selected output files associated with the simulations used
in this work (Rui and Fuller, 2021b). We have included as a representative example the
inlist_project file for the 1.5 + 1.0 𝑀⊙ merger run, where the merger occurs when the
radius of the primary reaches 125% of its value at TAMS:
&star_job

pgstar_flag = .true.

/ ! end of star_job namelist

&controls

!---------------------------------------- Write GYRE

write_pulse_data_with_profile = .true.

pulse_data_format = ’GYRE’

x_integer_ctrl(1) = 10 ! Force write-out at log L close to integer values

↩→ divided by this number

!---------------------------------------- Manages accretion

x_ctrl(1) = 1e-5 ! mass accretion rate

x_ctrl(2) = 2614839409.7825627 ! time (yr) at which to start accretion (if

↩→ 0, no accretion)

mass_change = 0 ! initial accretion rate (modified dynamically)

max_star_mass_for_gain = 2.50

!---------------------------------------- MAIN

initial_mass = 1.50

initial_z = 0.02

use_Type2_opacities = .true.

Zbase = 2.d-2

predictive_mix(1) = .true.

predictive_superad_thresh(1) = 0.005

predictive_avoid_reversal(1) = ’he4’

predictive_zone_type(1) = ’any’

predictive_zone_loc(1) = ’core’

predictive_bdy_loc(1) = ’top’

dX_div_X_limit_min_X = 3d-5

dX_div_X_limit = 3d-1

dX_nuc_drop_min_X_limit = 3d-5

dX_nuc_drop_limit = 3d-2

!---------------------------------------- WIND

cool_wind_RGB_scheme = ’Reimers’

cool_wind_AGB_scheme = ’Blocker’

RGB_to_AGB_wind_switch = 1d-4
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Reimers_scaling_factor = 0.2

Blocker_scaling_factor = 0.5

use_accreted_material_j = .true.

accreted_material_j = 0

!---------------------------------------- OVERSHOOTING

overshoot_scheme(1) = ’exponential’

overshoot_zone_type(1) = ’nonburn’

overshoot_zone_loc(1) = ’core’

overshoot_bdy_loc(1) = ’top’

overshoot_f(1) = 0.015

overshoot_f0(1) = 0.005

overshoot_scheme(2) = ’exponential’

overshoot_zone_type(2) = ’nonburn’

overshoot_zone_loc(2) = ’shell’

overshoot_bdy_loc(2) = ’any’

overshoot_f(2) = 0.015

overshoot_f0(2) = 0.005

overshoot_scheme(3) = ’exponential’

overshoot_zone_type(3) = ’burn_H’

overshoot_zone_loc(3) = ’core’

overshoot_bdy_loc(3) = ’top’

overshoot_f(3) = 0.015

overshoot_f0(3) = 0.005

overshoot_scheme(4) = ’exponential’

overshoot_zone_type(4) = ’burn_H’

overshoot_zone_loc(4) = ’shell’

overshoot_bdy_loc(4) = ’any’

overshoot_f(4) = 0.015

overshoot_f0(4) = 0.005

overshoot_scheme(5) = ’exponential’

overshoot_zone_type(5) = ’burn_He’

overshoot_zone_loc(5) = ’core’

overshoot_bdy_loc(5) = ’top’

overshoot_f(5) = 0.015

overshoot_f0(5) = 0.005

overshoot_scheme(6) = ’exponential’

overshoot_zone_type(6) = ’burn_He’

overshoot_zone_loc(6) = ’shell’

overshoot_bdy_loc(6) = ’any’

overshoot_f(6) = 0.015

overshoot_f0(6) = 0.005

set_min_D_mix = .true.

min_D_mix = 1d0
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!---------------------------------------- MISC

photo_interval = 25

profile_interval = 50

max_num_profile_models = 3000

history_interval = 10

terminal_interval = 10

write_header_frequency = 10

max_number_backups = 500

max_number_retries = 3000

max_timestep = 3d15

!---------------------------------------- MISC

photo_interval = 25

profile_interval = 50

max_num_profile_models = 3000

history_interval = 10

terminal_interval = 10

write_header_frequency = 10

max_number_backups = 500

max_number_retries = 3000

max_timestep = 3d15

!---------------------------------------- MESH

mesh_delta_coeff = 1

varcontrol_target = 0.7d-3

/ ! end of controls namelist

&pgstar

The run_star_extras.f file accompanying this run takes the form of the default
standard_run_star_extras.inc file, slightly modified to handle the merger and profile
write-out. In particular, in the extras_check_model function, we add the following lines
to initiate accretion at the proper time specified in the inlist_project file:
if (s% star_age >= s% x_ctrl(2) .and. s% x_ctrl(2) /= 0) then

s% mass_change = s% x_ctrl(1)

end if

Additionally, in the function extras_finish_step, we add the following lines to force a
write-out of the stellar profile at values of log 𝐿 close to multiples of 0.1.
f = s% x_integer_ctrl(1)

s% xtra(1) = s% log_surface_luminosity

if ((floor(f * s% xtra_old(1)) - floor(f * s% xtra(1)) .ne. 0)) then

s% need_to_update_history_now = .true.

s% need_to_save_profiles_now = .true.

endif
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In Section 2.3.2, we briefly discuss the usage of the create_merger_model fea-
ture to confirm the validity of modeling a MS+MS merger as a surface accretion
event onto the primary. Specifically, we have included in inlist_project the op-
tion write_model_with_profile = .true. for the 𝑀 = 1.50 𝑀⊙ and 𝑀 = 1.00
𝑀⊙ models, and have passed the saved model files at the desired time of accretion to
saved_model_for_merger_1 and saved_model_for_merger_2.

In Section 2.3.4, we examine the period spacing for stars undergoing helium core burning on
the red clump. As the helium flash is a very difficult stage of evolution to model numerically,
we include the following two lines in the &controls section of inlist_project in order
to prevent the timestep from becoming prohibitively small:

use_dedt_form_of_energy_eqn = .true.

convergence_ignore_equL_residuals = .true.
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C h a p t e r 3

FINDING THE UNUSUAL RED GIANT REMNANTS OF
CATACLYSMIC VARIABLE MERGERS

Rui, N. Z. and J. Fuller (2024). “Finding the unusual red giant remnants of cataclysmic
variable mergers.” In: Open Journal of Astrophysics. doi: 10.33232/001c.123878.
arXiv: 2404.14474.

Mergers between helium white dwarfs and main-sequence stars are likely common, produc-
ing red giant-like remnants making up roughly a few percent of all low-mass (≲ 2𝑀⊙) red
giants. Through detailed modeling, we show that these merger remnants possess distinctive
photometric, asteroseismic, and surface abundance signatures through which they may be
identified. During hydrogen shell burning, merger remnants reach higher luminosities and
possess pulsations which depart from the usual degenerate sequence on the asteroseismic
Δ𝜈–ΔΠ diagram for red giant branch stars. For sufficiently massive helium white dwarfs,
merger remnants undergo especially violent helium flashes which can dredge up a large
amount of core material (up to ∼ 0.1𝑀⊙) into the envelope. Such post-dredge-up rem-
nants are more luminous than normal red clump stars, are surface carbon-, helium-, and
possibly lithium-rich, and possess a wider range of asteroseismic g-mode period spacings
and mixed-mode couplings. Recent asteroseismically determined low-mass (≲ 0.8𝑀⊙) red
clump stars may be core helium-burning remnants of mergers involving lower-mass helium
white dwarfs.

We thank Kareem El-Badry, Joel Ong, Marc Hon, and Yaguang Li for their insightful
comments and thorough reading of the manuscript, as well as Lars Bildsten for useful
discussions. We also acknowledge Masao Takata, Andrew Casey, Tim Bedding, and Ken
Shen for their helpful remarks, as well as the anonymous referee whose report increased
the clarity of the final manuscript. N.Z.R. acknowledges support from the National Science
Foundation Graduate Research Fellowship under Grant No. DGE-1745301. All stellar evo-
lution calculations were performed on the Wheeler cluster at Caltech, which was supported
by the Sherman Fairchild Foundation and by Caltech.
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3.1 Introduction
Growing evidence suggests that mergers between main-sequence (MS) stars and low-mass
white dwarfs should be fairly common (Schreiber, Zorotovic, et al., 2015). The likely out-
come of such a merger is to accrete the MS star onto the white dwarf, igniting hydrogen shell
burning and creating an unusual red giant (RG) star. These RG remnants of those mergers
should exist within the stellar population, and may be identifiable through a combination of
their photometry, pulsations, and surface abundances.

Cataclysmic variables, or CVs, are stably mass-transferring systems with white dwarf (WD)
accretors and MS donors. Typically, the progenitor binaries of CVs are post-common-
envelope systems (Paczynski, 1976; Belczynski et al., 2005; Toonen and Nelemans, 2013;
Camacho et al., 2014; Ablimit et al., 2016; Zorotovic and Schreiber, 2022) which have
been tightened by magnetic braking and gravitational waves until the onset of Roche lobe
overflow (Knigge, 2011).

For a while, the research field has been dogged by a WD mass problem (e.g., Zorotovic and
Schreiber, 2020):

1. the typical accretor mass in CVs is ≃ 0.8𝑀⊙, greater than the typical observed mass
of carbon–oxygen white dwarfs (CO WDs) ≃ 0.6𝑀⊙, and

2. only a small handful of helium(-core) white dwarf (hereafter He WD) accretors have
ever been discovered in accreting systems, even though they should be frequent,
observable outcomes of conventional binary stellar evolution (Zorotovic, Schreiber,
and Gänsicke, 2011; Zorotovic and Schreiber, 2020; Pala et al., 2022).

Where are all of the low-mass CV accretors?

In the past decade, it was realized that the WD mass problem can naturally be solved by an
extra, accretor mass-dependent angular momentum loss mechanism (Schreiber, Zorotovic,
et al., 2015). This so-called consequential angular momentum loss would preferentially
destabilize the mass transfer of CV-like systems with lower-mass white dwarfs, causing
them to quickly merge before they can be observed (Belloni et al., 2018). Physically,
this mechanism may be a frictional effect associated with nova events (Shen, 2015; Shen
and Quataert, 2022), which are expected to be much longer-duration for lower-mass white
dwarfs (Shara, Prialnik, et al., 1993) and may cause mergers to occur on the timescale of
hours (Shen, 2015), although the subsequent analysis is agnostic to the details.

If CVs with low accretor masses are missing because they merge, it is obvious to ask whether
their remnants can be observed and identified. In the case where the progenitor system is
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a close He WD–MS binary (the scenario of focus in this study), the remnant is expected
to evolve along highly modified versions of the red giant branch (RGB) and possibly core
helium burning (CHeB, or the red clump) phases of isolated, low-mass (𝑀 ≲ 2𝑀⊙) stars.

More recently, in only the last few years, the community has realized that stellar interactions
may produce RGs with conspicuous and lasting asteroseismic signatures. Rui and Fuller
(2021a) and Deheuvels, Ballot, Gehan, et al. (2022) show that many first-ascent RGs which
gain hydrogen mass from companions (either through merger or stable mass transfer) pos-
sess unusually low gravity-mode period spacings. Li, Bedding, Murphy, et al. (2022) and
Matteuzzi et al. (2023) similarly identify anomalously undermassive CHeB stars through
asteroseismology. Because asteroseismology probes internal structures, it constrains sepa-
rate information from traditional techniques which probe the surface properties of the star.
It may thus play a critical role in identifying the remnants of cataclysmic variable mergers.

In this work, we investigate observable signatures of He WD–MS merger remnants. The
physical picture we advance is shown schematically in Figure 3.1. We construct and evolve
merger remnant models (described in Section 3.2), and demonstrate a significant number of
telltale signs (photometric, asteroseismic, and surface compositional) which are complex
downstream consequences of a highly cold and degenerate core during hydrogen shell
burning. Sections 3.3 and 3.4 discuss merger remnants during hydrogen shell burning
(RGB) and helium core burning (CHeB), respectively. In Section 2.4.1, we identify some
merger remnant candidates in existing observations. Section 3.6 discusses other possible
signatures, and contextualizes this work in the broader nascent field of binary interaction
asteroseismology. Section 3.7 summarizes our key findings.

3.2 Stellar models
By the time of merger, the He WD component of a close He WD–MS binary has undergone
an extended phase of radiative cooling lasting potentially up to gigayears. When the binary
subsequently merges, the MS component (now the remnant’s envelope) quickly ignites
hydrogen in a burning shell around the He WD (now the remnant’s core) and sets up
thermal equilibrium on a short envelope thermal timescale:

𝜏th,env =
𝐺𝑀2

𝑅𝐿

≈ 0.1 Myr ×
(
𝑀

𝑀⊙

)2 (
𝑅

10𝑅⊙

)−1 (
𝐿

30𝐿⊙

)−1
.

(3.1)

In contrast, the degenerate core only thermalizes (via electron-mediated conduction) with
the hydrogen burning shell on a much longer timescale ∼ 10–100 Myr comparable to the
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reality model

a single star model is evolved through the MS   
into a RG of the desired core mass ▶

◀ a
binary
system
evolves
until
one
of
the
stars
evolves
into
a
RG

the envelope of the RG model is stripped off,
leaving a hot He WD with a hydrogen atmosphere ▶

◀ the
RG
initiates
a
common
envelope
event
with
its
companion

the RG model core is replaced by the He WD model ▶
◀ the
MS
star
disrupts
around
the
He
WD
and
accretes
onto
it

the He WD model is evolved along a cooling track   
until it reaches the desired luminosity ▶

◀ the
resulting
close
He
WD–MS
binary
hardens




as
the
He
WD
radiatively
cools

the model is evolved without burning for 2 kyr   
and then subsequently evolved normally ▶

◀ the
accreted
hydrogen
starts
to
shell
burn




and
inflates
a
convective
envelope

Figure 3.2: A summary of the evolution of one possible progenitor system of a He WD–MS
merger remnant (left), juxtaposed against our procedure for constructing the stellar model
of a merger remnant in MESA (right).

duration of the RGB phase (see Appendix 3.B). Therefore, as previously noticed by Zhang,
Hall, et al. (2017), the low-entropy core can persist for long enough to influence the long-
term evolution of the remnant.

Using Modules for Experiments in Stellar Astrophysics (MESA, version r10398; Paxton,
Bildsten, et al., 2010; Paxton, Cantiello, et al., 2013; Paxton, Marchant, et al., 2015; Paxton,
Schwab, et al., 2018), we create and evolve evolutionary models of merger remnants,
consisting of cold helium cores surrounded by hydrogen envelopes1.

We do this in the following stages (summarized in Figure 3.2):

1. An isolated star with 𝑀 = 1.2𝑀⊙ is evolved through the MS and part of the RGB
until it attains the desired initial core mass of the remnant, 𝑀WD. This initial mass is
chosen to be close to typical RG masses from Kepler (e.g., Yu et al., 2018). Because
single RGs with 𝑀 ≲ 2𝑀⊙ all obey the same core mass–luminosity relation, the
subsequent analysis is insensitive to this choice.

1Inlists and other files required to reproduce our results can be found at the following Zenodo link:
https://zenodo.org/records/10828187

https://zenodo.org/records/10828187
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2. The hydrogen envelope is removed by applying a high mass-loss rate (using
relax_initial_mass with | ¤𝑀 | = 10−3𝑀⊙ yr−1). To simulate a realistic white
dwarf atmosphere, we retain an additional 𝑀atm = 10−4𝑀⊙ of material from the base
of the envelope, on top of the core mass 𝑀WD.

3. The resulting object (which quickly relaxes into a He WD) is evolved through a
cooling track to log(𝐿WD/𝐿⊙) = −4.0.

4. To stellar-engineer the merger remnant, we start with a scaffold RG model with
core mass 𝑀WD. To build the scaffold model, we start with the original RG model
from above, and remove envelope mass from the scaffold model via relaxation with
| ¤𝑀 | = 10−3𝑀⊙ yr−1 with nuclear burning disabled, until the RG attains the desired
final envelope mass 𝑀MS (physically equal to the mass of the MS star participating
in the merger, assuming no mass lost).

Next, we replace shells with mass coordinates 𝑚 ≤ 𝑀WD with the He WD model,
excluding the He WD’s atmosphere (shells where 𝑋 ≥ 10−4). Because the modified
RG model’s core is now more compact, we recalculate the radial coordinate grid to
be consistent with d𝑚 = 4𝜋𝑟2𝜌 d𝑟. This produces a merger remnant with total mass
𝑀tot = 𝑀MS + 𝑀WD.

For most merger remnant models in this work, we somewhat arbitrarily fix 𝑀MS such
that 𝑀 = 0.8𝑀⊙, to resemble fairly typical low-mass RGs which may result from CV
mergers.

5. To ensure numerical convergence, the resulting remnant is evolved for 2 kyr without
burning and gold tolerances disabled. Nuclear reactions and gold tolerances are re-
enabled at 2 kyr and 4 kyr, respectively. Although not initially so, the merger remnant
model quickly reaches hydrostatic equilibrium. Evolution through the helium flash
involves disabling gold tolerances again, and the models are terminated after helium-
burning when the central helium fraction drops to 𝑌𝑐 ≤ 10−3.

In post-processing, we truncate the first 1 Myr (a few envelope thermal times) of our merger
remnant models in order to avoid possibly unphysical transient behavior closely following
the merger, which is not modelled accurately.

The relatively low He WD luminosity 𝐿WD = 10−4.0𝐿⊙ is chosen to highlight the effects of
a highly degenerate core in the limiting case. In Appendix 3.A, we show that, once the core
has thermalized sufficiently long on the RGB, the effect of increasing 𝐿WD is very similar
to that of decreasing 𝑀WD. This is because these changes ultimately affect the entropy of
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the merger remnants’ cores in the same direction, and subtler differences in the remnants’
core temperature profiles are erased by thermal conduction on the core’s thermal time (see
Appendix 3.B).

Our models include the predictive mixing scheme described in Section 2.1 of Paxton,
Schwab, et al. (2018) to account for near-core mixing, and to suppress numerical instability
associated with definition of the convective core boundary, especially during the CHeB
phase. We omit winds in order to avoid sensitivity to the wind prescription, which is highly
uncertain. The effect of winds at the tip of the RGB (or mass loss during the merger itself)
is primarily to increase the value of 𝑀MS required for a given merger remnant mass during
CHeB. Stellar models are initialized to solar metallicity, using the metal mass fractions
given by Grevesse and Sauval (1998). We use the built-in pp_cno_extras_o18_ne22
network for nuclear reactions.

When evolving the non-merged and merger remnant models, we run MESA in the hydrody-
namical mode (evolving the radial velocity variable 𝑣𝑟 explicitly), in order to stably evolve
our models through the helium flash. We find that this is particularly necessary in the
merger remnant models, where the helium flash is abnormally violent (see Section 3.4). We
are able to model merger remnants involving He WD masses as high as 𝑀WD = 0.38𝑀⊙.
Higher He WD masses cause numerical problems during the He flash.

This scheme for producing He WD–MS merger remnants produces very similar models to
those of Zhang, Hall, et al. (2017), who instead manually add the hydrogen envelope back
onto the He WD using a large, time-dependent mass gain rate. We find that our method
more reliably produces a model which MESA can evolve without case-by-case human
intervention, and allows for the successful evolution of remnants with more degenerate
cores.

In order to demonstrate the effects of the enhanced core degeneracy in our merger remnant
models, we also run a model (hereafter the non-merged model) of a RG whose envelope has
only partially been removed on the RGB (so that it has a total mass 𝑀 =0.80𝑀⊙). Besides
having possibly a low-mass envelope, this model otherwise behaves like a normal RG and
should be thought of as representing standard stellar evolution.

3.3 Red giant branch
Soon after merger, a merger remnant quickly relaxes into a RG which behaves similarly to
a normal star on the RGB. Specifically, it is composed of an inert degenerate helium core
surrounded by a tenuous hydrogen envelope which is inflated to a large radius by hydrogen
burning in a thin shell at its base. However, merger remnants differ from single RGs because
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Figure 3.3: The trajectories on the Hertzsprung–Russell diagram of merger remnant models
with varying He WD mass 𝑀WD and total mass 𝑀tot = 𝑀MS + 𝑀WD = 0.80𝑀⊙. The red
dashed line indicates a non-merged model with 𝑀 = 0.80𝑀⊙. The top-left and bottom-left
panels zoom into the tRGB and CHeB stages, respectively. The red-outlined star symbols
on the top-left panel indicate the location of the helium flash. On the bottom-left panel, only
evolution ≳ 5 Myr following the helium flash is shown, and points are distributed 10 Myr
apart. We have excised times near the helium flash, when the envelope sometimes becomes
hydrodynamical.

their cores are cold (owing to the potentially long cooling phase of the progenitor He WD),
rather than being almost isothermal with the burning shell.

Soon after their formation, merger remnants, especially those involving lower-mass He
WDs, are out of thermal equilibrium and temporarily shrink in radius. The duration of
this phase is a decreasing function with 𝑀WD, lasting ≃ 10 Myr for 𝑀WD = 0.20𝑀⊙

and dropping to ≲ 1 Myr by 𝑀WD = 0.27𝑀⊙. The degree of this secular dimming also
drops off strongly with 𝑀WD. However, after this short-lived period, the remnant evolves
monotonically up a modified version of the RGB.

Overall, this cold core has three consequences on the RGB:
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1. At fixed helium core mass, the star is brighter and has a larger radius (Section 3.3.1).
Because the helium core of a remnant is colder and thus slightly more compact, the
overlying hydrogen-burning shell has a significantly higher luminosity.

2. The degenerate core alters the structure of the gravity-mode (g-mode) cavity (Section
3.3.2), modifying the propagation of g modes in an observable way.

3. The helium flash, which occurs when some shell in the core reaches a sufficient
temperature 𝑇 ≃ 108 K, is slightly delayed (Section 3.3.3). This allows merger
remnants to exceed the maximum luminosity attainable by a single RG at the tip of the
RGB. Additionally, the more violent helium flash can have significant consequences
for the CHeB stage (Section 3.4).

3.3.1 More compact cores inflate the radius
In a typical RG, the total luminosity 𝐿 is essentially entirely determined by its core mass
𝑀𝑐 (Refsdal and Weigert, 1970), with very little sensitivity to the mass of the envelope.
This correspondence is called the core mass–luminosity relation. Photometrically, this
means that single RGs with similar core masses will appear essentially indistinguishable
on a Hertzsprung–Russell diagram, even if their envelopes differ significantly in mass.
Asteroseismically, it results in a tight relationship between the large frequency spacing Δ𝜈

and the g-mode period spacing ΔΠ (defined and interpreted below) for degenerate-core RGs
with 𝑀 ≲ 2𝑀⊙ (e.g., Deheuvels, Ballot, Gehan, et al., 2022).

Crucial to this relation is that the radius of the burning shell (which is similar to the radius
of the core, 𝑅𝑐) is a strict function of 𝑀𝑐 (for a degenerate core, roughly 𝑅𝑐 ∝ 𝑀

−1/3
𝑐 ). In

merger remnants, the core is cooler than the hydrogen-burning shell and therefore slightly
more compact (Althaus et al., 2005). In this case, the luminosity is no longer fixed by 𝑀𝑐

alone, although it is still determined by the environment around the burning shell.

In addition to modifying its placement on the Hertzsprung–Russell diagram (Figure 3.3),
the inflated radius significantly modifies the observable pressure (p) modes in the envelope.
Asteroseismically, RGs are solar-like oscillators (Chaplin and Miglio, 2013), for which
a frequency of maximum power 𝜈max and large (p-mode) frequency spacing Δ𝜈 can be
measured. These observables are approximately related to the mass 𝑀 and radius 𝑅 of the
RG as

𝜈max ∝ 𝑔/𝑇1/2
eff ∝ 𝑀 𝑅−2 𝑇

−1/2
eff (3.2)

and
Δ𝜈 ≃

√︁
𝐺𝜌̄ ∝ 𝑀1/2 𝑅−3/2 (3.3)
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(Ulrich, 1986; Brown, Gilliland, et al., 1991).

In the absence of additional information, 𝑀𝑐 and 𝑅𝑐 are not known. While 𝐿, 𝜈max, and
Δ𝜈 are all significantly different in merger remnants, this is only a direct consequence of
their inflated radii. Therefore, these observables alone cannot distinguish merger remnants
except near the tip of the RGB (Section 3.3.3). However, independent probes of the core,
most notably the asteroseismic g-mode period spacing (Section 3.3.2) can help distinguish
merger remnants from normal stars.

3.3.2 Asteroseismic signatures on the red giant branch
Asteroseismically, RGs which are sufficiently low on the RGB (roughly before the red
bump; Pinçon, Goupil, et al., 2020) have strong enough mixed-mode coupling such that the
g-mode period spacing ΔΠ can be measured:

ΔΠ ≈
√

2𝜋2∫
R (𝑁/𝑟) d𝑟

, (3.4)

defined here specifically for the dipole (ℓ = 1) modes. This quantity probes the radiative
core of the star. The integral in Equation 3.4 is taken over R, the g-mode cavity of the
RG, i.e., the region where 2𝜋𝜈max < 𝑁 , where 𝑁 is the Brunt–Väisälä frequency. At
present, ΔΠ has been measured for a few thousand RGs (e.g., Vrard, Mosser, et al., 2016),
observationally constraining the structures of their radiative cores.

By Equation 3.4, more stratified radiative zones with larger integrals over 𝑁 d ln 𝑟 have
lower period spacings. In Appendix 3.C, we show that the Brunt–Väisälä frequency in the
degenerate part of the radiative core is given by

𝑁2 ≈ 𝑁2
0
𝑘𝐵𝑇

𝑍𝐸𝐹

(
1 − 5

2
∇
)
∝ 𝑇

𝑍𝐸𝐹

(
1 − 5

2
∇
)
, (3.5)

where 𝐸𝐹 is the Fermi energy of the core, ∇ = 𝑑 ln𝑇/𝑑 ln 𝑃, and the normalization 𝑁2
0 is

comparable to the dynamical frequency of the core, and is given by

𝑁2
0 =

𝜌𝑔2

𝑝
∼

√︃
𝐺𝑀𝑐/𝑅3

𝑐 . (3.6)

Both a typical RG core and cooling WD are approximately isothermal (∇ ≪ 1). Then, ig-
noring the temperature dependence of the stellar structure for the moment, we approximately
expect

𝑁 ∝
√
𝑇. (3.7)
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A “cold,” highly degenerate isothermal core will have a significantly smaller𝑁 , and therefore
significantly larger ΔΠ, than a “warm” one (Bildsten and Cutler, 1995). However, if there
is a temperature gradient, it may significantly affect ΔΠ.

The evolution of the buoyancy profile of a merger remnant with 𝑀WD = 0.25𝑀⊙ and
𝑀MS = 0.55𝑀⊙ (together with a non-merged model of equal mass) is shown in the top
panels of Figure 3.4. In He WD–MS merger remnants, the period spacing is modified by
two effects which act roughly in opposite directions with comparable magnitudes.

First, at early times (left panels of Figure 3.4), the core of a merger remnant is roughly
isothermal at its initial temperature 𝑇 ≪ 𝑇shell. In comparison, the core of a single RG is
roughly isothermal with the hydrogen-burning shell (𝑇 ≈ 𝑇shell). During this time period,
the Brunt–Väisälä frequency profile in the core is suppressed from that of a single star by
a factor

√︁
𝑇shell/𝑇 . This effect tends to increase the period spacing. However, in a short

time < 𝜏th,core, electronic thermal conduction (approximately obeying the nonlinear law in
Equation 3.18) sets up a temperature gradient ∇. Curiously, we find that this temperature
gradient happens to mostly cancel out the factor

√︁
𝑇shell/𝑇 (see Equation 3.5) to cause the

𝑁 profiles of the single and merger remnant models to be similar (top center panels of
Figure 3.4). Equality between the Brunt–Väisälä frequency profiles occurs long before the
interior of the core has thermalized to the shell temperature. Therefore, in the relatively
short time that it takes heat conduction to set up a temperature gradient throughout the
core, the lower temperature of the merger remnant core no longer works to increase ΔΠ.
The reason for this “coincidental” cancellation remains mysterious, but may be related to
some properties of long-lived pre-thermalized solutions of nonlinear heat diffusion. These
solutions (called “intermediate asymptotics”; Barenblatt, 1996) exhibit self-similar behavior
in many nonlinear heat diffusion problems (often in the context of diffusion in a porous
medium), and have been studied extensively in applied mathematics (by, e.g., Witelski and
Bernoff, 1998; Galaktionov et al., 2004; Hayek, 2014).

The second effect is that, because 𝑁 scales with the dynamical frequency of the core, it is
higher in a more compact core, and is therefore larger in a merger remnant’s core than in
a single star’s core. In contrast with the first effect, the increased Brunt–Väisälä frequency
due to this effect persists until the core heats up enough for the difference in 𝑅𝑐 between
the merger remnant and single stars to be erased (which occurs on the thermal timescale
𝜏th,core). This effect tends to reduce ΔΠ in the merger remnant compared to a single RG. As
a merger remnant evolves, ΔΠ typically evolves from being larger than that of a single star
(at fixed 𝑀𝑐) to smaller (Figure 3.5), although it may not achieve the latter regime by the
helium flash if the merger involves a sufficiently massive WD. In our models, departures of
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Figure 3.4: The Brunt–Väisälä frequency 𝑁 (top) and temperature 𝑇 (bottom) shown for
the 𝑀MS = 0.55𝑀⊙, 𝑀WD = 0.25𝑀⊙ merger remnant (solid gray-blue) and non-merged
model of 𝑀 = 0.80𝑀⊙ (red dashed), at various stages of evolution. The two models are
compared at equal core masses 𝑀𝑐. The shaded region denotes helium deposited onto the
helium core of the merger remnant model by hydrogen burning during its evolution.

ΔΠ from the non-merged case can reach up to ≈ 10 s at a given core mass. However, we
again caution that 𝑀𝑐 is not directly known, and diagnosis of a past merger requires another
observable, such as the radius or Δ𝜈.

Asteroseismic measurements Δ𝜈 and ΔΠ of RGs are typically represented on a spacing
diagram as shown in Figure 3.5. Most stars on the RGB (zoomed in on the bottom panel)
cluster around a tight sequence which ultimately arises from the core mass–luminosity
relation (e.g., Deheuvels, Ballot, Gehan, et al., 2022). This is also essentially the path
followed by our 𝑀 = 0.8𝑀⊙ non-merged model, modulo a small order-unity factor owing
to a weak dependence on total mass (Δ𝜈 ∝ 𝑀1/2). In this space, it is clear merger remnants
usually lie above the degenerate sequence, before slowly evolving back towards it. The
position of merger remnants above that of normal RGB stars is dominated by the larger radii
of these objects at the same core mass. Since Δ𝜈 ∝ 𝑅−3/2, this shifts their positions on the
diagram to the left. Merger remnants may also pass slightly below the degenerate sequence
during their evolution (due to sufficiently small values of ΔΠ). This effect is however subtle.
Stars in this region of Δ𝜈–ΔΠ space may more naturally be explained by RG–MS mergers
(Deheuvels, Ballot, Gehan, et al., 2022), particularly if they lie far below the degenerate
sequence.

The g-mode period spacing ΔΠ is only observable for remnants sufficiently low on the
RGB (i.e., below the RGB bump, which is the “hook” feature in Figure 3.5). For merger
remnants in this regime, departure from the degenerate sequence is most prominent during
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Figure 3.5: An asteroseismic spacing diagram (ΔΠ versus Δ𝜈) showing merger remnant
evolutionary sequences and a non-merged model (red dashed) all with 𝑀 = 0.80𝑀⊙. The
top-right panel shows the entire parameter space, and the left and bottom panels zoom in
on CHeB stars and the RGB, respectively. Roughly speaking, both RGB and CHeB stars
evolve from right to left on this diagram (i.e., towards decreasing Δ𝜈, or increasing 𝑅). The
black points are observations taken from the catalog of Vrard, Mosser, et al. (2016) with
stars flagged for possible aliases removed. In the top-left panel, colored triangles denote
the last 5 Myr of the CHeB phase. The blue squares denote 8 stars from the very low-mass
sample of Li, Bedding, Murphy, et al. (2022) which appear in the Vrard catalog.

the initial contraction phase after the formation of the remnant, although RGs which have
passed this phase still lie above the degenerate sequence for an additional ∼ 20 Myr. Hence,
this particular asteroseismic diagnosis may only be possible for sufficiently recent mergers
involving sufficiently low-mass He WDs.

3.3.3 Overbright tip of the RGB
During the RGB phase of a single star, the helium core grows in mass and contracts over time,
as the envelope expands. Simultaneously, the core heats up gradually until the temperature
is high enough for helium burning through the triple-𝛼 process (≃ 108 K), at which time the
star has reached the tip of the RGB (tRGB).

In our most extreme model with 𝑀WD = 0.38𝑀⊙, the tRGB surface luminosity exceeds
that of a single star by a factor of 2 (Figure 3.3). This factor is likely to be even larger for
more massive values of 𝑀WD than we can run (but which are still physical). At the tRGB,
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Figure 3.6: Top: The maximum helium-burning luminosities 𝐿He,flash attained during the
helium flash in our merger remnant models with total mass 𝑀tot = 𝑀MS +𝑀WD = 0.80𝑀⊙.
Bottom: For the merger remnant models, we show core masses 𝑀c@flash at the helium flash
(purple circles), mass coordinates 𝑀flash where the helium flash begins (magenta stars), and
initial (turquoise triangles) and final (green squares) core masses 𝑀CHeB,ci and 𝑀CHeB,cf
during the CHeB phase. In both panels, dashed lines denote values for the 𝑀 = 0.80𝑀⊙
non-merged model.

our merger remnant models outshine the tRGB of the single star model for between 140 kyr
(𝑀WD = 0.20𝑀⊙) and 1.8 Myr (𝑀WD = 0.38𝑀⊙). Since RG luminosities are essentially
totally determined by near-core properties, even merger remnants of low mass (involving
small values of 𝑀MS) are still expected to outshine single RGs at the tRGB.

The ostensibly well-known luminosity of the tRGB is often leveraged to measure cosmolog-
ical distances (Bellazzini, Ferraro, and Pancino, 2001; Bellazzini, Ferraro, Sollima, et al.,
2004). We point out that overbright merger remnants near the tRGB may affect the tRGB
of a stellar population’s role as a standard candle. However, this effect is probably minor,
since merger remnants of this type likely make up no more than a few percent of all RGs.



3.4. Core helium-burning phase 54

3.4 Core helium-burning phase
When the core reaches a sufficient temperature, helium burning begins. In single RGs, it
is well known that helium ignites off-center due to a slight temperature inversion caused
by neutrino cooling (Thomas, 1967). The peak burning rate reached during the subsequent
helium flash depends sensitively on the density where helium ignites (Salpeter, 1957), and
therefore on the mass of the helium core. Subsequent intermittent burning events occur in
a series of subflashes (Thomas, 1967). In a normal RG, these subflashes propagate inwards
over the course of a few megayears until they reach the core, fully lifting the degeneracy of
the helium core and burning ≈4% of its mass into carbon. Once this occurs, RGs quickly
contract on a thermal time until they have radii ≈ 11𝑅⊙ (the CHeB phase), after which
they are supported by a combination of helium core- and hydrogen shell burning, which
generally contribute in comparable amounts to the stellar luminosity.

In merger remnants, the helium flash occurs similarly, although, as previously pointed out
by Zhang, Hall, et al. (2017), the flash occurs farther off-center (Figure 3.6), since the core
temperature inversion is now dominated by the low temperature of the WD progenitor rather
than the weaker effect of neutrino cooling (compare the dashed red and solid blue curves
of the lower-right panel of Figure 3.4). Additionally, the subflashes occur closer together
in time, and are more energetic in general.

In our models, the maximum helium-burning luminosity attained by a merger remnant is
roughly a linear function of 𝑀WD, with the most extreme model attaining a factor of ≈ 5
higher helium-burning luminosity than attained by a non-merged star (see the top panel of
Figure 3.6). The energy production rate can be a whopping ≈ 1010𝐿⊙ at the peak of the
helium flash. Since mergers involving more massive WDs than those on our model grid are
possible, even larger helium-burning luminosities may occur in nature. The most vigorous
helium flash in our merger models also burns a larger fraction of the core into carbon, up
to ≃ 7% by mass. We present the post-helium flash composition profiles of several of our
models in Appendix 3.D.

We verify in our models that the helium flash, though abnormally energetic in merger
remnants, still does not result in hydrodynamical burning (which might result in detonation).
Specifically, following Shen, Kasen, et al. (2010), we verify that convection is always
efficient enough to flatten temperature gradients created by helium burning, and also that
the hierarchy |𝑣𝑟 | ≪ 𝑣conv ≪ 𝑐𝑠 is maintained throughout the helium core (though not
necessarily in the hydrogen envelope). The properties of this dredge-up concern physics
in the helium core only, and is essentially independent of the envelope mass. Similar core
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Figure 3.7: Kippenhahn diagrams for the non-merged 𝑀 = 0.80𝑀⊙ and selected merger
remnant models, during the helium flash (left) and CHeB phase (right). Convective (radia-
tive) zones are shown in blue (yellow), and burning regions fusing more vigorously than
𝜖 = 103 erg g−1 s−1 are shown in red (at this scale, the CHeB region is highly localized to
the center of the star and cannot be seen). The black dashed line indicates the helium core
mass 𝑀𝑐. Merger remnant models with 𝑀WD ≥ 0.27𝑀⊙ experience core dredge-up events
during the helium flash, and subsequently develop thinner convective envelopes by mass
during CHeB. If 𝑀MS is small enough, the convective envelope disappears entirely, and the
star enters the horizontal branch.

dredge-up events during the helium flash have also been predicted in low-metallicity stars
which have undergone extreme mass loss (Sweigart, 1997; Cassisi, Schlattl, et al., 2002).

The CHeB-phase evolution of our merger remnant models fits into two regimes, sorted by
𝑀WD:

1. For 𝑀WD ≤ 0.26𝑀⊙, the flash is delayed slightly, and occurs when the core is slightly
more massive. As a result, the CHeB phase of these remnants begins with a slightly
higher helium core mass. Specifically, our single non-merged model ignites helium
at a core mass 𝑀𝑐 ≈ 0.46𝑀⊙, and our merger remnant model with 𝑀WD = 0.26𝑀⊙

undergoes its flash at a slightly higher core mass 𝑀𝑐 ≈ 0.50𝑀⊙.
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Figure 3.8: Time evolution of the CHeB-phase luminosity 𝐿, hydrogen- and helium-burning
luminosities 𝐿H and 𝐿He, effective temperature 𝑇eff , radius 𝑅, and helium core mass 𝑀𝑐

for merger remnant models and a non-merged model (red dashed) all with 𝑀 = 0.80𝑀⊙.
The left and right panels show merger remnant models with 𝑀WD ≤ 0.26𝑀⊙ and 𝑀WD ≥
0.27𝑀⊙, respectively. The latter models have helium flashes which are vigorous enough to
dredge up some of the helium core into the envelope.

2. For 𝑀WD ≥ 0.27𝑀⊙, the flash produces so much heat that it causes the convective
envelope to deepen significantly, dredging up both the hydrogen-burning shell and
the outer layers of the helium core (see Figure 3.7). For our most extreme model
(𝑀WD = 0.38𝑀⊙), ≈ 20% of the core (≈ 0.1𝑀⊙ of helium) is dredged up into the
envelope, significantly modifying its mean molecular weight.

As a result of this, merger remnants involving lower-mass He WDs 𝑀WD ≤ 0.26𝑀⊙

evolve very similarly to normal red clump stars, appearing almost identical to them in both
photometric (bottom-left panel of Figure 3.3) and asteroseismic (top-left panel of Figure
3.5 and left panel of Figure 3.10) observables. One minor difference is that the merger
remnants have systematically shorter CHeB lifetimes, by up to ≲ 20%.



3.4. Core helium-burning phase 57

In contrast, merger remnants involving more massive He WDs 𝑀WD ≥ 0.27𝑀⊙ evolve
and appear very differently from their single counterparts. The following sections focus
on observational signatures in this latter case (hereafter post-dredge-up merger remnants).
The dredge-up event ultimately affects the luminosity (Section 3.4.1), asteroseismology
(Sections 3.4.2 and 3.4.3), and surface abundances (Section 3.4.4) significantly.

3.4.1 Over-luminous red clump stars
During the CHeB phase, post-dredge-up remnants have significantly modified photometric
properties:

1. They are brighter and slightly cooler, with the effect being stronger for higher values
of 𝑀WD (bottom-left panel of Figure 3.3 and top-right panel of Figure 3.8). For our
most extreme model (𝑀WD = 0.38𝑀⊙), the luminosity is roughly tripled.

2. Their luminosities evolve much more significantly over the CHeB phase. Again, this
effect is stronger for higher values of 𝑀WD. In comparison, normal CHeB stars have
essentially fixed luminosities for almost the entirety of the helium-burning phase.

As in normal CHeB stars, nuclear energy production has two main contributions:

1. Core helium burning. The now non-degenerate helium core burns helium through
the triple-𝛼 process in a convective core. Structurally, the core is similar to normal,
intermediate-mass MS stars in that they have convective core burning surrounded by
a radiative envelope. Analogously, the helium-burning luminosity is essentially set
by the helium core mass.

2. Hydrogen shell burning. Hydrogen continues to burn in a shell around the helium
core through the CNO cycle. The luminosity of the hydrogen burning is a sensitive
function of the environment around the burning shell.

The luminosities of these burning regions are highly coupled to each other. For example,
the mass of the helium core determines the helium-burning luminosity and, thus, the radius
of the core. This in turn strongly affects the hydrogen-burning luminosity and thus the total
luminosity of the star. In turn, the luminosity of the hydrogen-burning shell determines the
growth rate of the helium core, therefore feeding back onto the time dependence of both
contributions to the luminosity.

As can be seen in the right panels of Figure 3.8, post-dredge-up merger remnants can
have significantly larger hydrogen-burning luminosities 𝐿H. While normal clump stars
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have comparable hydrogen- and helium-burning luminosities (≈ 20𝐿⊙ in both cases), our
most extreme merger remnant model with 𝑀WD = 0.38𝑀⊙ has 𝐿H ≃ 100𝐿⊙ (compared to
𝐿He ≲ 40𝐿⊙). The dominant factor setting 𝐿H in a post-dredge-up remnant is the mean
molecular weight 𝜇 at the hydrogen-burning shell, which is significantly enhanced by the
helium dredge-up event. Single star models have a near-solar helium mass fraction𝑌 ≈ 30%.
In contrast, the 𝑀WD = 0.38𝑀⊙ remnant model (with total mass 𝑀 = 0.80𝑀⊙) has a much
larger value 𝑌 ≈ 46% owing to the ≈ 0.1𝑀⊙ of helium added to a pre-existing, solar-
composition envelope with mass ≈ 0.3𝑀⊙. These values of 𝑌 correspond approximately to
mean molecular weights 𝜇 ≈ 0.62 and 𝜇 ≈ 0.70, respectively. Refsdal and Weigert (1970)
show that the hydrogen-burning luminosity exhibits a steep scaling with 𝜇: 𝐿 ∝ 𝜇7–8 for
CNO-cycle burning, corresponding to increases in 𝐿H by a factor ≃ 2.5, which is roughly
consistent with the behavior of 𝐿H in our models.

Because 𝐿H is very sensitive to 𝜇, the appearance and evolution of the remnant is now
acutely sensitive to the initial envelope mass of the remnant. This is contrary to single
stars, in which 𝐿 and 𝑇eff during the CHeB phase are nearly independent of the envelope
mass. Since 𝜇 is set by the final mass fraction of the envelope after the dredge-up event,
larger pre-existing envelopes dilute the added helium and reduce the mean molecular weight
enhancement. We note in passing that structurally important increases in 𝜇 during a core
dredge-up event also appear in some RG–He WD merger models of Zhang and Jeffery
(2013).

As can be seen in Figure 3.8, the helium-burning luminosity 𝐿He is also different in post-
dredge-up models. 𝐿He essentially tracks the helium core mass 𝑀𝑐 until significant core
helium depletion at the end of the CHeB phase. The high value of 𝐿H translates to a
fast-growing helium core, and, in turn, an up to a factor of a few increase in 𝐿He over the
CHeB phase. In sum, the higher 𝐿H and 𝐿He naturally translate to an overbright CHeB
phase with significant time evolution in luminosity.

The increased luminosity causes merger remnants to have abnormally large radii, up to
𝑅 ≈ 20𝑅⊙ in our models (for 𝑀WD = 0.38𝑀⊙). In addition to affecting the photometry,
these large radii can also be directly measured asteroseismically via 𝜈max and Δ𝜈, together
with the scaling relations in Equations 3.2 and 3.3. However, in order to distinguish merger
remnants from ordinary stars beginning to ascend the asymptotic giant branch, it may also
be necessary to measure mixed mode period spacings or surface abundances.
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Figure 3.9: CHeB-phase asteroseismic propagation diagrams for a non-merged model
(left) and merger remnants with 𝑀WD = 0.26𝑀⊙ (center) and 𝑀WD = 0.38𝑀⊙ (right).
The Brunt–Väisälä (𝑁), dipole Lamb (𝐿1), and maximum power (2𝜋𝜈max) frequencies are
shown as the dashed blue, dotted red, and solid purple curves, respectively. Color coding
of areas denotes the p-mode propagating regions (pink), g-mode propagating regions (light
blue), evanescent regions (white), and the exterior of the star (yellow). Top panels show
propagation diagrams near the beginning of the CHeB phase, and bottom panels show the
same farther along the CHeB phase, when the models attain maxima in the asteroseismic
g-mode period spacing ΔΠ. All models have total mass 𝑀 = 0.80𝑀⊙.
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Figure 3.10: Time evolution of the CHeB-phase asteroseismic g-mode period spacing ΔΠ

(top), and 𝑒−I1 (bottom), which is a simple proxy for the dipole mixed-mode coupling
factor. We plot merger remnant models and a non-merged model (red dashed) all with
𝑀 = 0.80𝑀⊙. As in Figure 3.8, the left and right panels show merger remnant models with
𝑀WD ≤ 0.26𝑀⊙ and 𝑀WD ≥ 0.27𝑀⊙, respectively.
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3.4.2 Wider range of asteroseismic g-mode period spacings
During the CHeB phase, post-dredge-up mergers remnant models have substantially dif-
ferent structures which directly modify asteroseismic observables such as ΔΠ. This can
be seen by comparing the left and right panels of Figure 3.9, which show the propagation
diagrams of the non-merged and 𝑀WD = 0.38𝑀⊙ merger remnant models at two selected
times. On the other hand, merger remnants which do not experience significant dredge-up
of the helium core (𝑀WD ≤ 0.26𝑀⊙) have essentially identical structures (compare the left
and center panels of Figure 3.9).

Because the nuclear burning luminosities are substantially modified in post-dredge-up
models, the g-mode period spacing ΔΠ of merger remnants spans a wider range of values
over the CHeB phase (see the top-right panel of Figure 3.10, as well as the top-left panel
of Figure 3.5). While ΔΠ (Equation 3.4) depends on the integral of 𝑁 within the radiative
core, its value is dominated by the regions with the largest 𝑁 . As can be seen in Figure 3.9,
𝑁 is maximal underneath the hydrogen-burning shell (i.e., below the compositional spike
in 𝑁 at radii ≲ 0.1𝑅⊙).

At the beginning of the CHeB phase (the top panels of Figure 3.9), post-dredge-up merger
remnants have smaller helium core masses, resulting in smaller 𝐿He. This results in a
smaller convective core (slightly extending the bottom boundary of the g-mode cavity) as
well as a slightly higher core dynamical frequency (resulting in slightly higher values of 𝑁
overall). Both of these effects tend to decrease ΔΠ.

In contrast, near the end of CHeB (the bottom panels of Figure 3.9), the helium core of
merger remnants has grown substantially due to the large hydrogen burning rate. They
therefore evolve to have larger 𝐿He, which ultimately results in an increased convective core
size and overall lower 𝑁 profile, and therefore larger ΔΠ. Because they also have inflated
radii (Section 3.4.1), they have smaller values of Δ𝜈, and will occupy a region to the left of
normal clump stars on a Δ𝜈–ΔΠ spacing diagram (top panels of Figure 3.5).

3.4.3 Asteroseismic mixed-mode coupling
In RGs, pulsations can probe not only the g-mode cavity (through ΔΠ) but also the evanes-
cent zone between the p- and g-mode cavities. The extent of coupling between the two
cavities is usually described by a coupling factor 𝑞 (Unno, Osaki, Ando, Saio, et al., 1989).
In addition to determining the visibility of mixed modes, 𝑞 itself is an independent ob-
servable which probes a different internal structural feature than does ΔΠ (Mosser, Pinçon,
et al., 2017; Dhanpal et al., 2023). The recent discovery that low-mass or low-metallicity
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RGs have preferentially high 𝑞 (Matteuzzi et al., 2023; Kuszlewicz et al., 2023) has created
revitalized demand for physical interpretations of 𝑞.

Computing 𝑞 is mathematically nontrivial and involves detailed solution of a wave trans-
mission problem (e.g., Takata, 2016a; Takata, 2016b; Takata, 2018) or fitting a model
spectrum directly (e.g., Jiang and Christensen-Dalsgaard, 2014). Takata (2016a) show that
the coupling factor is related to the transmission coefficient 𝑇 by

𝑞 =
1 −

√
1 − 𝑇2

1 +
√

1 − 𝑇2
. (3.8)

Takata (2016b) further write the transmission coefficient as

𝑇 = 𝑒−𝜋(𝑋𝐼+𝑋𝑅) . (3.9)

Here, 𝑋𝐼 is defined as an integral over the evanescent zone E of the radial wavenumber with
respect to the asymptotic dispersion relation, i.e., for dipole modes,

I1 ≡ 𝜋𝑋𝐼 =
∫
E
|𝑘𝑟 | d𝑟

=

∫
E

𝜔

𝑐𝑠

√︂(
1 − 𝑁2/𝜔2) (

𝐿2
1/𝜔2 − 1

)
d𝑟

(3.10)

where, for simplicity, we have applied the Cowling approximation. 𝑋𝑅 is a remainder term
which can be specified analytically in the limit of a thin evanescent zone (Takata, 2016b),
where it is most important.

We focus on the value of 𝑒−I1 as a rough proxy for the mixed-mode coupling. Although
CHeB stars typically have strong coupling such that 𝑋𝑅 is likely to be important, calculation
of this contribution requires more care (see, e.g., Rossem, 2023), and we therefore defer a
detailed calculation of 𝑞 in these merger remnants to a potential future investigation.

From the propagation diagrams (Figure 3.9), it can be seen that the evanescent zone evaluated
at 𝜈max is initially substantially wider in the𝑀WD = 0.38𝑀⊙ post-dredge-up merger remnant
than in the non-merged model. This decreases the value of 𝑒−I1 and, in turn, the g-mode
coupling factor 𝑞 at early phases of CHeB evolution.

However, late in the CHeB phase of post-dredge-up merger remnants involving especially
massive He WDs with 𝑀WD ≥ 0.33𝑀⊙, the evanescent region becomes exceedingly small
because of a larger radiative core. This temporarily causes 𝑒−I1 and the mixed-mode
coupling to become larger than in typical CHeB stars, giving their mixed modes high
visibility.
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In the last ≲ 20 Myr, both ΔΠ and 𝑒−I1 dive sharply as the CHeB star begins to enter the
asymptotic giant branch phase. During this time, the star expands especially quickly, and
it will lie even farther to the left of most merger remnants on the asteroseismic spacing
diagram in Figure 3.5.

3.4.4 Abundance anomalies
Merger remnants that experience a core dredge-up at the flash naturally display unusual
surface abundances. While dredge-up of the helium core most obviously produces an en-
hancement in 4He, direct spectroscopic measurement of helium abundance in late-type stars
is likely infeasible. Fortunately, dredge-up probably enriches the surface with other ele-
ments that can be directly probed spectroscopically. Figure 3.11 shows surface abundances
for selected species in terms of the index A(X), defined for a given species X as

A(X) ≡ log(𝑛X/𝑛H) + 12 (3.11)

where 𝑛X and 𝑛H are the surface number densities of X and hydrogen, respectively.

We find that post-dredge-up remnants exhibit significant 12C surface enrichment, up to
≃ 1 dex relative to hydrogen. This enhancement arises from dredge-up of core material
which has been partially fused during the helium flash into carbon. Post-dredge-up remnants
thus possess increased values of C/Fe and decreased values of 13C/12C. Additionally,
our post-dredge-up remnant models also possess significant surface enhancements (up to
∼ 1.5 dex relative to hydrogen) in 18O and 22Ne, which are created by successive 𝛼 captures
of 14N (e.g., Clayton, 2003) during the helium flash. As the surface abundance of 16O in
all of our merger remnant models is almost identical to that of our non-merged model, the
surface abundance ratio 16O/18O is also decreased by up to ∼ 1.5 dex in post-dredge-up
remnants. While not included in our reaction network, it is also probable that a significant
amount of 26Mg is formed through 𝛼 capture of 22Ne in the abnormally hot helium flash (as
in Shen, Blouin, et al., 2023). The surface abundance of 26Mg is therefore also likely to be
enhanced.

The lithium abundance is also important, because it can be created by the burning of 3He or
destroyed by burning at temperatures comparable to those required for hydrogen burning.
Lithium-rich giants make up about 3% of all CHeB stars (Kumar, Reddy, Campbell, et
al., 2020), and have previously been suggested to have formed via binary interactions or
mergers (e.g., Zhang and Jeffery, 2013; Casey, Ho, Ness, Hogg, Rix, Angelou, Hekker,
Tout, Lattanzio, Karakas, et al., 2019a). Our merger remnant models with high 𝑀WD

become highly lithium-rich very soon after merger, owing to a brief dredge-up event which
occurs when hydrogen burning is first turned on (similar to the Cameron–Fowler mechanism;
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Cameron and Fowler, 1971). While such a merger-era lithium enhancement seems plausible
(see, e.g., observations of lithium enrichment in luminous red novae; Kamiński, Schmidt,
et al., 2023), our treatment of the merger process itself is highly artificial, and the evolution
of the remnant is unreliable for post-merger ages younger than a thermal time, 𝜏th,env.
Modification to the surface abundances of other species during this (possibly artificial)
dredge-up event are minor, since they primordially occur in much higher abundance than
lithium.

If lithium is not enhanced during the merger, we investigate whether core dredge-up during
the helium flash may be able to create lithium-rich giants anyway. To test this, we remove
all of the lithium from our merger remnant models (with total 𝑀 = 0.8𝑀⊙) just prior to the
tRGB, and evolve them through the helium flash and CHeB phase. As shown in Figure 3.11,
most models do not become lithium-rich according to the standard criterion A(Li) ≥ 1.5
(e.g., Deepak and Lambert, 2021), with the exception of the 𝑀WD = 0.38𝑀⊙ model. It is
possible that merger remnants with higher values of𝑀WD or lower values of𝑀MS may attain
stronger lithium enhancements. Moreover, extra mixing during the helium flash suggested
by recent evidence may increase the amount of lithium surfaced (Kumar, Reddy, Campbell,
et al., 2020; Martell et al., 2021b; Schwab, 2020). Overall, we conclude that, unless lithium
enrichment occurs at merger or non-canonical mixing processes operate during the helium
flash, He WD–MS merger remnants are unlikely to become lithium-rich.

3.4.5 Populating the horizontal branch with merger remnants
Neglecting mass loss during merger or through winds, 𝑀MS sets the envelope mass of the
merger remnant. In the preceding discussion, we have focused on varying 𝑀WD and fixed
𝑀MS so that the total mass of the merger remnant models is 𝑀tot = 𝑀WD +𝑀MS = 0.80𝑀⊙.
However, in principle, 𝑀MS could span a wide range of masses, including very small ones
(if the hydrogen-rich component is a brown dwarf or if there is significant mass loss, e.g.,
Metzger, Zenati, et al. 2021), up to a few solar masses for mergers with intermediate-mass
MS stars. In this section, we explore the behavior of merger remnants under varying 𝑀MS.

Variation of 𝑀MS may significantly change the behavior of the remnant in the following
ways:

1. If 𝑀MS is sufficiently small, merger remnants may only ignite helium with scant
hydrogen envelopes (starting CHeB as subdwarf B-type stars; sdBs), or may fail to
ignite helium altogether (fizzling out into He WDs). For reasons of scope, we do not
investigate the He WD or sdB outcomes (but see the detailed modeling of Zhang,
Hall, et al. 2017 and Zhang, Jeffery, Su, et al. 2023). Alternatively, if the envelope
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mass drops below 𝑀env ≃ 0.1𝑀⊙ during CHeB but can still sustain hydrogen shell
burning, the remnant can evolve onto the horizontal branch (Catelan, 2009).

2. In post-dredge-up remnants (where a helium flash mixes a fixed amount of core helium
into the envelope), the helium fraction of the envelope during the CHeB phase is set
by 𝑀MS (larger hydrogen-rich envelopes during this stage more effectively dilute this
additional helium). For merger remnants massive enough to enter a CHeB phase with
a hydrogen-burning shell, this significantly affects their hydrogen-burning (and, thus,
total) luminosity (as in Section 3.4).

Fixing 𝑀WD = 0.30𝑀⊙, we present in Figure 3.12 the CHeB-phase evolution of merger
remnants with 𝑀MS/𝑀⊙ ∈ [0.30, 0.35, 0.40, 0.50, 0.70]. All of these models are massive
enough to reach the tRGB and undergo a helium flash, which in this case is energetic enough
to dredge up ≈ 0.06𝑀⊙ of helium. However, the envelopes of models with lower 𝑀MS

possess much more helium-enriched envelopes: envelope helium mass fractions during the
CHeB phase for these models range from 𝑌 = 0.36 (for 𝑀MS = 0.70𝑀⊙) to 𝑌 = 0.48 (for
𝑀MS = 0.30𝑀⊙).

At the zero-age CHeB, all of these models possess a convective envelope. As expected,
models with lower 𝑀MS (and higher envelope 𝑌 ) have higher hydrogen shell-burning lumi-
nosities at the beginning of the CHeB phase (as can be seen in the 𝐿H panel in Figure 3.12).
Models with higher 𝑀MS = 0.40, 0.50, and 0.70𝑀⊙ retain these convective envelopes and
behave similarly to the remnants discussed in Section 3.4.

The lower-mass 𝑀MS = 0.30 and 0.35𝑀⊙ models display significantly different behavior.
These models burn most of their remaining hydrogen during the CHeB phase such that their
envelope mass drops below 0.1𝑀⊙. The outer layers of these models become completely
radiative (at 𝑡 − 𝑡flash ≈ 25 Myr and 55 Myr, respectively), and the remnants behave like
horizontal branch stars. When this occurs, the stars become very blue, roughly reaching
respective effective temperatures 𝑇eff ≈ 20000 K and ≈ 12000 K. While these models
continue to sustain hydrogen-shell burning to some extent, 𝐿H significantly drops during
this horizontal branch stage (decreasing by factors ≃ 10 and ≳ 2 for the 𝑀MS = 0.30𝑀⊙ and
𝑀MS = 0.35𝑀⊙ models). In the𝑀MS = 0.30𝑀⊙ model, this extreme drop in 𝐿H precipitates
a significantly lower total luminosity, which is readily apparent on a Hertzsprung–Russell
diagram (top-left panel of Figure 3.12). We confirm for these two cases that the inclusion
of gravitational settling does not change the results. A Reimers wind (Reimers, 1975;
Reimers, 1977) scaled as in Reimers (1977) suggests that winds in these objects are small
( ¤𝑀 < 10−10 𝑀⊙ yr−1) and may be ignored.
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Figure 3.12: Evolution during the CHeB phase for merger remnants with 𝑀WD = 0.30𝑀⊙
but varying 𝑀MS (Section 3.4.5). We plot a Hertzsprung–Russell diagram (left, with
zoomed-in inset on the top right) and the time evolution of the hydrogen-rich mass 𝑀env =

𝑀 − 𝑀𝑐 and hydrogen shell-burning luminosity 𝐿H (bottom right). A non-merged model
with 𝑀 = 0.80𝑀⊙ is also shown for comparison (red dashed line).

3.5 Candidate merger remnants
3.5.1 Undermassive red clump stars may be merger remnants
Using asteroseismology, Li, Bedding, Murphy, et al. (2022) discovered a population of
undermassive CHeB stars with masses ≲ 0.8𝑀⊙ (their “very low-mass” sample). Since
single stars of these masses could not have evolved off of the MS in the age of the universe,
these undermassive stars must have undergone non-standard evolution, such as stripping by a
companion or binary assembly. Although Li, Bedding, Murphy, et al. (2022) argue that these
undermassive giants are the product of partial envelope stripping by close companions, most
of these objects do not exhibit the expected radial velocity variability between APOGEE
and Gaia (Kareem El-Badry, private communication), disfavoring this formation channel.
Matteuzzi et al. (2023) identify several more such objects (referred to as “red horizontal
branch” stars), further demonstrating their extremely strong mixed-mode coupling. Figure
3.5 shows 8 members of the very low-mass sample of Li, Bedding, Murphy, et al. (2022)
for which Vrard, Mosser, et al. (2016) reports g-mode period spacings. Despite their small
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Figure 3.13: Measured masses and radii of observed CHeB stars, measured using asteroseis-
mology. Blue and green squares denote the very low-mass (VLM) sample of Li, Bedding,
Murphy, et al. (2022) and red horizontal branch (rHB) stars of Matteuzzi et al. (2023). Gray
data points are taken from the catalog of Yu et al. (2018). Orange stars denote CHeB-phase
merger remnant models with 𝑀WD = 0.20𝑀⊙ and varying 𝑀MS. Red triangles denote a
CHeB-phase non-merged model with 𝑀 = 0.8𝑀⊙, for comparison. Model track points are
sampled 10 Myr apart.

.

masses, these very low-mass CHeB stars have typical values of ΔΠ and, therefore, likely
possess similar core structures to those of normal CHeB stars.

Observed undermassive clump stars likely have typical helium core masses and only stand
out due to their low envelope masses. He WD–MS mergers naturally explain these objects:
as long as 𝑀WD is small enough that no dredge-up occurs at the helium flash, merger
remnants have core masses which are basically normal. Furthermore, a merger remnant’s
envelope mass is simply set by 𝑀MS (modulo merger or tRGB mass loss), which can
be arbitrarily low. Finally, this binary scenario does not leave any companion behind,
explaining why most undermassive CHeB stars are consistent with being single at present.
While other mechanisms may exist for forming single undermassive CHeB stars (e.g., mass
loss during failed common-envelope events), He WD–MS mergers appear to be highly
promising.
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To demonstrate this possibility, we run additional merger remnant models, fixing 𝑀WD =

0.20𝑀⊙ and varying 𝑀MS between 0.35𝑀⊙ and 0.60𝑀⊙ (total masses 𝑀 between 0.55𝑀⊙

and 0.80𝑀⊙). Lower-mass merger remnant models have masses and radii which are consis-
tent with the observed very low-mass sample of Li, Bedding, Murphy, et al. (2022) (Figure
3.13). Because the He WD–MS merger channel produces CHeB stars with essentially
normal cores, our models behave almost identically to models performed by Li, Bedding,
Murphy, et al. (2022) of normal CHeB stars with artificial envelope stripping to mimic mass
loss from an initially standard RG.

3.5.2 Zvrk: a possible post-dredge-up merger remnant?
Using asteroseismology, Ong, Hon, et al. (2024) recently discovered a peculiar RG (“Zvrk”)
with the following features:

1. The oscillation spectrum is complex, superficially resembling typical spectra of CHeB
giants (which are dense due to their strong mixed-mode coupling, e.g., Mosser,
Pinçon, et al., 2017; Dhanpal et al., 2023).

2. The asteroseismic scaling relations imply a radius 𝑅 ≈ 24𝑅⊙, a factor of two larger
than that of a typical CHeB star.

3. The star is highly lithium-rich (A(Li) > 3), and also has a somewhat high [C/N]
ratio relative to typical first-ascent RGs of the same mass, or indeed CHeB stars (e.g.,
Bufanda et al., 2023).

4. Photometric modulation and asteroseismic rotational splittings (assuming a pure p-
mode spectrum) are consistent with a fast-spinning envelope with period 𝑃 ≈ 100 d.

Mainly on the basis of its radius, Ong, Hon, et al. (2024) conclude that Zvrk cannot be in
the CHeB phase and must instead be a first-ascent RG. Because the expected mixed-mode
coupling for an RG of this size would be weak, they argue that the spectrum is actually
composed of pure p modes (rather than mixed modes), with the complexity of the spectrum
instead coming from large rotational splittings from its fast rotation rate.

We suggest instead the possibility that Zvrk is a post-dredge-up He WD–MS merger remnant
which is on the CHeB phase, not the RGB. This addresses the aforementioned observations
in the following ways:

1. If Zvrk were a CHeB star, it would naturally have a large mixed-mode coupling and,
thus, a CHeB-like spectrum (see also Section 3.4.3).
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2. Our models of post-dredge-up CHeB remnants (Section 3.4.1), like Zvrk, have radii
approximately twice as large as those of typical CHeB stars.

3. As demonstrated in Section 3.4.4, post-dredge-up remnants are expected to be carbon-
rich, similar to Zvrk. While the core dredge-up event at the helium flash is unlikely
to match the measured value of A(Li), lithium enrichment may occur at merger
(Kamiński, Schmidt, et al., 2023, as suggested by observations of luminous red
novae). Although some of our merger remnant models become very lithium-rich
soon after merger (as we describe in Section 3.4.4), future work should address
whether this enhancement persists under more careful modeling.

4. As discussed in Section 3.6.3, merger remnants are likely rapidly rotating.

It is unclear at present whether He WD–MS mergers can reproduce these effects in the
correct combination to match observations. The mass 𝑀 ≈ 1.2𝑀⊙ inferred by scaling
relations is larger than those of our fiducial models (𝑀 = 0.8𝑀⊙), possibly requiring even
stronger core dredge-ups which probably occur for larger values of 𝑀WD than we can model.
We point out that an extreme dredge-up event of this type probably modifies 𝜈max (in a still-
contested manner; Viani et al., 2017; Zhou et al., 2024) and, thus, the accuracy of scaling
relation-based values of 𝑀 and 𝑅. The similarly behaving remnants of RG–He WD mergers
(e.g., Zhang and Jeffery, 2013) may also possibly reproduce the properties of Zvrk.

Further complicating the picture, Ong, Hon, et al. (2024) point out that a naïve identification
of the double-ridged feature in Zvrk’s échelle diagram with the usual ℓ = 0 and 2 degrees
implies an unusually small p-mode offset 𝜖𝑝 ∼ 0.25. This is too low to be consistent with
a low-mass RG of any canonical evolutionary state: none of the observed stars in Figure
10 of Kallinger, Hekker, et al. (2012) have 𝜖𝑝 < 0.4 (though CHeB stars do have lower
values of 𝜖𝑝 than do first-ascent RGs with comparable Δ𝜈). Of course, if Zvrk is a post-
dredge-up remnant, it may well be possible that it attains an unusual value of 𝜖𝑝. While
not theoretically characterized in this work, 𝜖𝑝 may turn out to be another observational
diagnostic for He WD–MS remnants.

While it is beyond the scope of the present work, we encourage a more detailed investigation
to determine whether this hypothesis can explain Zvrk’s large radius, oscillation spectrum,
surface abundances, and rapid rotation in a quantitative and self-consistent way.

3.5.3 Other potential post-dredge-up merger remnants
On the Δ𝜈–ΔΠ diagram, Mosser, Benomar, et al. (2014) identify several RGs which lie
near, but slightly leftward, of the red clump (see their Figure 1). While Mosser, Benomar,
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et al. (2014) argue that these stars have recently undergone helium subflashes, we suggest
that they might be post-dredge-up remnants. As we show in Section 3.4.2, post-dredge-up
remnants are also expected to have values of ΔΠ comparable to those of normal CHeB
stars, but smaller values of Δ𝜈 on account of their larger radii.

Recently, a small number of highly carbon-deficient red giants has been discovered and
characterized as a distinct class with a few common properties (Bidelman and MacConnell,
1973; Bond, 2019; Maben et al., 2023). These objects are almost all in the CHeB phase (as
implied by their g-mode period spacings), and many are also lithium-rich and overluminous
compared to the usual red clump (Maben et al., 2023). However, the He WD–MS merger
scenario predicts a carbon enrichment and thus fails to explain the abnormally low carbon
abundances in these stars.

3.6 Discussion and future prospects
3.6.1 Progenitors and rates
While very few CVs with He WD accretors have been discovered (to our knowledge), CV
progenitors (known as pre-CVs) have been, some shown in Figure 3.14. As their name
suggests, such systems are expected to eventually initiate (possibly unstable) mass transfer
after a combination of magnetic braking and gravitational radiation tighten their orbits
sufficiently.

Zorotovic, Schreiber, and Gänsicke (2011) compile a catalog of post-common envelope
binaries (PCEBs), WD–MS binary systems, some of which may contain He WD compo-
nents, identified in this work as those with 𝑀WD < 0.5𝑀⊙ (see Figure 3.14). Most of the
MS components are of relatively low mass, with 𝑀MS ≃ 0.3𝑀⊙. However, many of these
systems contain fairly massive He WDs and could, upon merging, display fairly extreme
versions of the asteroseismic and photometric merger remnant signatures we propose.

In later years, Maxted, Bloemen, et al. (2014) identified a separate class of close detached
binaries involving AF-type MS stars orbiting low-mass (≃ 0.2𝑀⊙) proto-He WDs, with
Roestel et al. (2018) later measuring 𝑀WD and 𝑀MS for 36 such systems (see Figure 3.14).
Due to the low masses of the proto-WD components, EL CVns are likely formed via stable
mass transfer rather than common-envelope events (which would likely result in merger;
Chen, Maxted, et al., 2017). The EL CVns in Figure 3.14 will likely merge when the stellar
component is either a MS star or a subgiant (Lagos et al., 2020). In the He WD–subgiant
case, the He WD is expected to merge with the subgiant core and produce a similar,
low-entropy-core remnant as in the He WD–MS case explored in this work. However,
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Figure 3.14: Parameters for a collection of known pre-CVs which may contain He WDs
(𝑀WD ≤ 0.5𝑀⊙) taken from Zorotovic, Schreiber, and Gänsicke (2011) for PCEBs and
Roestel et al. (2018) for EL CVns. Color indicates the orbital periods of each system.

He WD–subgiant mergers may also have their own distinctive signatures, and a detailed
investigation of the associated remnants is probably warranted.

Based on MESA models of merger remnants (Zhang, Hall, et al., 2017), Zhang, Hall, et al.
(2018) perform a population synthesis calculation to determine how much these sorts of
merger remnants contribute to the population of single He WDs, which are not a natural
outcome of isolated stellar evolution (see also Zorotovic and Schreiber, 2017). Assuming
a star-formation rate of 5𝑀⊙ yr−1, their calculation implies a Galactic formation rate of
merger remnants ∼ 0.02 yr−1 (about half of which fizzle out into He WDs before starting
helium burning), with a factor-of-a-few uncertainty when the Reimers wind parameter is
varied (Reimers, 1975; Reimers, 1977). If merger remnants continue to appear as RGs for
100𝑇m8 Myr, the Milky Way should contain ∼ 2𝑇m8 × 106 remnants at a given time. Put
another way, for a Kroupa initial mass function (Kroupa, 2001), single low-mass RGs in
the range 0.8𝑀⊙ to 2.0𝑀⊙ form at a rate ∼ 0.3𝑀⊙ yr−1. If isolated RGs have lifetimes
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100𝑇s8 Myr, He WD–MS merger remnants should make up roughly ∼ 7% × (𝑇m8/𝑇s8) of
all low-mass RGs.

The present work has focused on the case where the compact component is a He WD.
However, in principle, lower-mass CO WDs may also participate in mergers with MS stars
for the same reasons. In such cases, the MS component is expected to disrupt around and
accrete onto the carbon–oxygen core and initiate shell burning, and the merger remnant is
therefore likely to resemble an asymptotic giant branch star with an unusually cold core.
We defer a detailed investigation of this interesting possibility to a future work.

3.6.2 Merger transients and mass retention
The observable signatures of He WD–MS merger remnants described in this paper are
applicable long (at least a thermal time) after the merger. However, the merger itself as well
as any preceding novae events should produce observable transients and other emission,
whose rates should be consistent with the population of merger remnants.

Metzger, Zenati, et al. (2021) show that the merger itself likely produces a dusty transient
similar to a luminous red nova (e.g., Kulkarni, Ofek, et al., 2007) powered by recombination
of the ejected material, and roughly estimate a Galactic rate ∼ 0.1 yr−1. This is larger than
the rate predicted by Zhang, Hall, et al. (2018) by a factor ∼ 5, although both estimates
are subject to significant uncertainties. From this rate, they estimate that the Milky Way
contains 103–104 remnants at the present day, which is much smaller than the ∼ 106 we
estimate in Section 3.6.1. The reason is that their models predict the merger remnant only
retains a small fraction ∼ 10% of the hydrogen supplied by an already low-mass MS star,
rather than all of it. This implies a much shorter post-merger lifetime ∼ 10–100 kyr.

However, Metzger, Zenati, et al., 2021 investigates cases where the MS star has a low
mass, 𝑀MS ≲ 0.5𝑀WD. As they point out, higher-mass MS stars will likely produce
gravitationally unstable disks that accrete much more efficiently onto the WD, closer to
our assumption of conservative mass accretion. Ignition of hydrogen burning on the WD
during the merger (not included in their simulations) may also cause the remnant to swell
up and gain more mass from the disk. An independent constraint on the population of He
WD–MS merger remnants in the Milky Way may help distinguish these scenarios.

3.6.3 Rapid rotation
While most RG envelopes rotate very slowly, spectroscopic (Carlberg, Majewski, et al.,
2011) and photometric (Ceillier et al., 2017) studies have indicated that ∼ 2% of RGs
are rapidly rotating (𝑣 sin 𝑖 ≳ 10 km s−1, or 𝑣/𝑣crit ≳ 7% for typical values 𝑀 ∼ 𝑀⊙ and
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𝑅 ∼ 10𝑅⊙), likely as a result of stellar interactions such as mergers. The He WD–MS merger
remnants discussed in this work may also rotate rapidly enough for rotation measurements
to serve as an orthogonal diagnosis for their binary origin.

The merger occurs when the MS component of the close binary overflows its Roche lobe.
Very roughly, this occurs at a semimajor axis 𝑎 ∼ 3 𝑅MS ∼ 3𝑅⊙ (𝑀MS/𝑀⊙)0.8, according
to the traditional mass–radius scaling formula for the MS. At the time of merger, the total
binary has an orbital angular momentum

𝐿 = 𝑀MS𝑀WD

√︂
𝐺𝑎

𝑀
(3.12)

where 𝑀tot = 𝑀MS + 𝑀WD (and we have assumed a circular orbit). Then, assuming that no
mass is lost during the merger, the final envelope spin rate of the resulting RG remnant is

Ωenv ∼ 3.8 𝜇Hz ×
( 𝜅
0.2

)−1
(
𝑀MS

0.5𝑀⊙

)0.4 (
𝑀WD

0.3𝑀⊙

)
×

(
𝑀

0.8𝑀⊙

)−1/2 (
𝑅

20𝑅⊙

)−2 (3.13)

where we have scaled the moment of inertia of the merger remnant’s envelope to 𝜅 =

𝐼/𝑀MS𝑅
2 = 0.2 (as in, e.g., Bear and Soker, 2010).

This corresponds to rotation periods∼20 days, more than half the surface breakup frequency
Ω𝐾 =

√︁
𝐺𝑀/𝑅3 ∼ 6.2 𝜇Hz, depending on the inflated radius of the remnant. This is much

faster than the rotation rate of typical RG stars at similar radii: rapid rotation (without
associated radial velocity variability) and associated magnetic activity can therefore help
distinguish merger remnants.

However, Equation 3.13 gives an estimate of the envelope rotation rate very soon (roughly a
thermal time) after the merger. The subsequent evolution of the rotation profile is strongly
dependent on the physics of magnetic braking (which saps angular momentum from the
system) and angular momentum transport (which couples the core and envelope rotation
rates). Both of these pieces of physics are not particularly well understood (especially
in the context of fast-rotating RGs), and models which incorporate both of these effects
are necessary for predicting the long-term evolution of core and envelope rotation rates of
merger remnants (Qian et al., in preparation).

Throughout this work, we have neglected rotation-induced mixing processes (Zahn, 1994;
Talon et al., 1997; Mathis and Zahn, 2004; Zahn, 2010; Park et al., 2020) which may be
important in a rapidly rotating merger remnant. Our predictions for the amount of helium
and other species mixed into the envelope and brought to the surface during a core dredge-up
event should thus be considered lower limits.
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3.6.4 Non-asymptotic effects on pulsations
Both Equations 3.3 and 3.4 for Δ𝜈 and ΔΠ rely on the asymptotic approximation for stellar
oscillations, i.e., that the radial wavelength of the oscillation is much smaller than the scale
height of any structural variable. While the asymptotic approximation is well-justified for
most RGs (see, e.g., the introductory discussion of Ong and Basu, 2020), merger remnants
may possess sharp features in their profiles (glitches) which may cause departures from the
asymptotic formulae. Indeed, such glitches are observed in a small fraction of CHeB red
giants (Vrard, Cunha, et al., 2022a).

Although we eschew a comprehensive analysis of non-asymptotic effects in this work, we
point out three possible glitches which may occur in He WD–MS merger remnants:

1. Soon after merger, the Brunt–Väisälä frequency rises sharply with radius at the
interface between the He WD and hydrogen-burning shell. In intermediate-mass MS
stars, a similar spike in 𝑁 near the convective core can produce variations in ΔΠ

versus 𝑃 whose “period” in this space is a function of the buoyancy coordinate of
the glitch (Miglio, Montalbán, Noels, et al., 2008; Pedersen et al., 2018). Given the
low-entropy state of the core and the short-lived nature of the entropy discontinuity,
it remains to be seen whether this buoyancy feature is detectable.

2. In merger remnants, more intense helium flashes quickly burn larger fractions of
helium into carbon. This enhances the composition gradient between helium flash-
processed material and outer layers of the helium core. This may produce an abnor-
mally strong compositional peak in 𝑁 during the CHeB phase, which may manifest
as an observable buoyancy glitch.

3. At the He i and He ii ionization zones, the first adiabatic exponent dips abruptly,
producing sharp features in the sound speed (e.g., Miglio, Montalbán, Carrier, et al.,
2010). Notably, the amplitudes of these acoustic glitches increase with higher helium
mass fraction 𝑌 (Houdek and Gough, 2007). During the CHeB phase of our models,
𝑌 can be enhanced to extreme degrees (Section 3.4), and it is possible that the effect
of these acoustic glitches may be very strong.

Detailed mode calculations are likely required to determine whether these glitches are
observable, what their characteristics are in the oscillation spectrum, and to what extent
they can be used to identify and characterize merger remnants.

Our predictions for the large frequency spacingΔ𝜈 relies on the scaling relations in Equation
3.3, which is known to require corrections when the outer layers deviate from homology to
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a calibration standard (Belkacem et al., 2013; Ong and Basu, 2019). This may be slightly
modified in merger remnants by changes in surface composition or rapid rotation, and
should be investigated in the future.

3.6.5 Broader progress in binary interaction asteroseismology
Due to the diversity of stellar interactions expected to occur in the field, other post-merger
stellar structures and their asteroseismic signatures deserve future investigation, in particu-
lar:

• RG–He WD mergers likely produce unusual CHeB giants, which have been previously
explored as a possible channel for producing certain classes of carbon stars (Izzard
et al., 2007; Zhang and Jeffery, 2013; Zhang, Jeffery, Li, et al., 2020) and as possible
progenitors of the 8 UMi planetary system (Hon, Huber, Rui, et al., 2023) and CK
Vulpeculae, a historical transient observed in the year 1670 which is now a bipolar
nebula (Tylenda, Kamiński, et al., 2024). The models of Zhang and Jeffery (2013)
suggest that these merger remnants behave like overluminous CHeB stars, similar to
those described in Section 3.4.1 for the He WD–MS scenario (compare their Figure
4 to our Figure 3.3).

• CO WD–MS mergers are likely to result from consequential angular momentum loss,
particularly for lower-mass CO WDs. While existing modeling literature typically
focuses on progenitor systems’ nova eruptions (Iben and Tutukov, 1996; Shara, Yaron,
et al., 2010; Kato et al., 2017) or their role in producing Type Ia supernovae (Kovetz
and Prialnik, 1994; Cassisi, Iben, et al., 1998; Newsham et al., 2014; Hillman et al.,
2016; Wang, 2018), mergers of such remnants should become unusual asymptotic
giant branch stars with highly degenerate cores (Cassisi, Iben, et al., 1998; Piersanti
et al., 2000; Wolf et al., 2013), with possibly observable consequences.

• CO WD–He WD mergers are the likely progenitors of R Coronae Borealis stars (R
Cor Bor stars), which are yellow supergiants consisting of a carbon–oxygen core sur-
rounded by a helium envelope inflated by shell burning (Clayton et al., 2007; Menon
et al., 2013). R Cor Bor stars are known to pulsate at periods between 40 and 100 d
(Lawson and Kilkenny, 1996; Karambelkar et al., 2021), making asteroseismology a
promising tool for probing their internal structures (Wong and Bildsten, 2024).

• Last year, Bellinger, Mink, et al. (2024) identified asteroseismology as a tool for
testing the post-MS merger channel for producing blue supergiants, finding that
the g-mode period spacing ΔΠ constrains their formation channels. In a parallel
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observational study using TESS, Ma, Johnston, et al. (2024) discovered a peculiar but
universal low-frequency ( 𝑓 ≲ 2 d−1) photometric power excess, although the physical
nature of these oscillations remains unclear, and the authors were unable to observe
individual modes or measure ΔΠ.

Binary interaction asteroseismology is a technique at its infancy, with likely many more
fruitful directions.

3.7 Summary
In this work, we presented detailed models of merger remnants of He WD–MS mergers.
Merger remnants quickly initiate hydrogen shell burning and become unusual giant stars
which may hide inside the RG population. However, they exhibit a number of unique
signatures which may be used to distinguish them. In summary, during hydrogen shell-
burning (RGB), merger remnants:

1. are over-inflated at a given core mass.

2. depart from the standard degenerate sequence on the asteroseismic Δ𝜈–ΔΠ diagram.
Asteroseismology can thus identify remnants whose mixed-mode coupling is suffi-
ciently strong.

3. undergo delayed helium flashes, and attain higher luminosities at the tRGB than do
single RGs.

During helium core burning (CHeB), remnants of mergers involving lower-mass He WDs:

1. attain core masses which are essentially typical for single CHeB stars.

2. are strong candidates for the undermassive red clump stars discovered by Li, Bedding,
Murphy, et al. (2022) and Matteuzzi et al. (2023).

Remnants of mergers involving higher-mass He WDs dredge up a significant fraction (up to
∼ 0.1𝑀⊙) of helium into the envelope. During core helium burning, these post-dredge-up
merger remnants:

1. have significantly larger radii and luminosities than single stars on the red clump.

2. exhibit a wider range of asteroseismic g-mode period spacings ΔΠ than do typical
stars on the red clump.
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3. attain abnormally strong degrees of asteroseismic mixed-mode coupling towards the
end of CHeB.

4. are enriched in 12C, as well as 18O and 22Ne.

5. may already have been discovered. The rapidly rotating RG discovered by Ong, Hon,
et al. (2024) (“Zvrk”) has many of the predicted properties of this type of merger
remnant.

Observational probes of these merger remnants can constrain the He WD–MS merger
process at the population level. In turn, this may provide additional confirmation of the
consequential angular momentum loss hypothesis and white dwarf mass problem for CVs.

3.A Dependence on the cooling age of the white dwarf
Pre-merger, all of the merger models discussed in the main text use a He WD which has
been cooled until it achieves a luminosity 𝐿WD = 10−4.0𝐿⊙. This relatively low luminosity
is chosen to explore the limiting case of a very degenerate helium core. In our models, this
luminosity corresponds to relatively long He WD cooling ages 5 Gyr ≲ 𝑡cool ≲ 7 Gyr, with
a fixed 𝐿WD corresponding to longer 𝑡cool for He WDs with higher masses 𝑀WD or more
substantial atmospheres. For comparison, note that the merger remnant models of Zhang,
Hall, et al. (2017) use 𝐿WD = 10−2.0𝐿⊙.

In this Appendix, we discuss the effect of varying log(𝐿WD/𝐿⊙). Figure 3.15 shows the
evolution of some selected selected quantities for four models (the first three of which also
appear in the main text):

1. A non-merged model, which has a “normal” helium core on the RGB which is close
to isothermal with the hydrogen-burning shell.

2. A merger remnant with log(𝐿WD/𝐿⊙) = −4.0 and 𝑀WD = 0.30𝑀⊙.

3. A merger remnant with log(𝐿WD/𝐿⊙) = −4.0 and a lower-mass 𝑀WD = 0.27𝑀⊙.

4. A merger remnant with a higher pre-merger He WD luminosity log(𝐿WD/𝐿⊙) = −2.5
and 𝑀WD = 0.30𝑀⊙. This value of log(𝐿WD/𝐿⊙) corresponds to a He WD cooling
age 𝑡cool ≈ 550 Myr.

All models have total masses of 𝑀 = 0.80𝑀⊙ and WD atmospheres of mass 10−4𝑀⊙, and
respectively.



3.B. Thermal timescale of the core 78

As described in Section 3.3, merger remnants during the RGB will start with initially low-
entropy cores, but their entropies will gradually grow due to heat diffusion and deposition
of higher-entropy helium resulting from hydrogen burning. The degree of entropy deficit in
the core therefore results from a combination of the entropy of the original He WD as well
as its mass, which determines its total heat capacity). Because increasing log(𝐿WD/𝐿⊙) and
decreasing 𝑀WD affect this core entropy deficit in the same way, merger remnants should
be affected by increases in log(𝐿WD/𝐿⊙) and decreases in 𝑀WD in similar ways.

Figure 3.15 shows the evolution of the models listed above. They all have comparable
radii on the RGB, but ΔΠ (reflecting the internal thermal structure of the core) varies
somewhat between them. As can be seen on the bottom left panel of Figure 3.15, the
core temperature 𝑇𝑐 of the 𝑀WD = 0.27𝑀⊙, log(𝐿WD/𝐿⊙) = −4.0 model initially behaves
very similarly to the 𝑀WD = 0.30𝑀⊙, log(𝐿WD/𝐿⊙) = −4.0 model, since not enough
time has yet elapsed for conduction to significantly modify its temperature. Later on, 𝑇𝑐
in the 𝑀WD = 0.27𝑀⊙ model takes a sharp upturn to more closely resemble the warmer
𝑀WD = 0.30𝑀⊙, log(𝐿WD/𝐿⊙) = −2.5 model. By the helium flash, these two models have
very similar ΔΠ and temperature profiles.

Once the helium flash occurs, variations in the temperature profile due to a finite thermal
conductivity in the core are erased entirely. During the CHeB phase, the 𝑀WD = 0.27𝑀⊙,
log(𝐿WD/𝐿⊙) = −4.0 and 𝑀WD = 0.30𝑀⊙, log(𝐿WD/𝐿⊙) = −2.5 models are essentially
identical (right panels of Figure 3.15). Both models evolve significantly differently than
the 𝑀WD = 0.3𝑀⊙, log(𝐿WD/𝐿⊙) = −4.0 model (which had a larger entropy deficit on the
RGB).

In summary, decreasing the cooling age of the merging He WD has a very similar effect
to slightly decreasing its mass. Hence, the merger models in the main text are expected to
behave similarly to merger models with younger and slightly more massive WDs.

3.B Thermal timescale of the core
In this Appendix, we estimate the timescale 𝜏th,core for a cold, highly degenerate remnant
core to thermalize with a hot burning shell. In this environment, electron-mediated heat
conduction is the dominant heat transport mechanism.

The resulting heat flux ®𝑞 takes the form

®𝑞 = −𝛼cond𝜌𝑇∇𝑇 (3.14)

where
𝛼cond ≈ 2.44 × 103𝐴𝑍−2 cm4 s−3 K−2, (3.15)
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Figure 3.15: The total luminosity 𝐿, radius 𝑅, asteroseismic g-mode period spacing ΔΠ,
and central temperature 𝑇𝑐 for selected models during the RGB (left) and CHeB (right)
phases. A model with 𝑀WD = 0.30𝑀⊙ but a brighter He WD (log(𝐿WD/𝐿⊙) = −2.5) is
included.

see Mestel (1950). The heat capacity per unit volume is dominated by the non-degenerate
ions:

𝑐𝑣 ≈
𝜀

𝑇
≈ 3𝜌𝑘𝐵

2𝐴𝑚𝑝

. (3.16)

In the absence of heat sources, the continuity equation for energy density 𝜀 within the
interior of the WD is thus given by

𝜕𝜀

𝜕𝑡
= −∇ · ®𝑞. (3.17)

Substituting Equations 3.14 and 3.16 into Equation 3.17 yields the following nonlinear heat
diffusion equation:

𝜕𝑇

𝜕𝑡
=
𝜅

𝑟2
𝜕

𝜕𝑟

(
𝑟2𝑇

𝜕𝑇

𝜕𝑟

)
, (3.18)
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cf. Mestel (1952). In writing Equation 3.18, we have assumed spherical symmetry, and
that 𝜌 does not vary with temperature. The diffusion coefficient 𝜅 is given by

𝜅 =
2𝐴𝑚𝑝𝛼cond

3𝑘𝐵
. (3.19)

At early times, the core is essentially isothermal at a low temperature𝑇0 ≪ 𝑇shell ≃ 3×107 K.
Thermal contact with the hot hydrogen-burning shell at the outer boundary sets up a
temperature gradient 𝜕𝑇/𝜕𝑟 ∼ 𝑇shell/𝑅𝑐. The natural length scale of the problem is 𝑅𝑐. By
Equation 3.18, the core therefore thermalizes on a timescale 𝜏th,core given roughly by

1
𝜏th,core

∼ 𝜅𝑇shell

𝑅2
𝑐

(3.20)

or

𝜏th,core ∼
3𝑘𝐵

2𝐴𝑚𝑝𝛼cond

𝑅2
𝑐

𝑇shell
≈ 80 Myr ×

(
𝑅𝑐

0.035𝑅⊙

)2 (
𝑇shell

3 × 107 K

)−1 (
𝑍

2

)2 (
𝐴

4

)−2
. (3.21)

A similar timescale to 𝜏th,core has been previously derived by Shen, Idan, et al. (2009).
The scaling relation in Equation 3.21 is normalized to a typical He WD in thermal contact
with a typical hydrogen-burning shell. This timescale is comparable to the length of the
remnant’s RGB phase—the longest RGB phase leading to helium ignition in our merger
remnant models lasts ≃ 180 Myr (for a He WD mass 𝑀WD = 0.20𝑀⊙). Heat conduction
thus cannot completely destroy the low-entropy state of the core quickly enough to erase
its long-term effects on the appearance and evolution of the remnant, especially for higher
values of 𝑀WD.

3.C Brunt–Väisälä frequency in degenerate helium cores
In this Appendix, we derive the Brunt–Väisälä frequency 𝑁 in the part of the g-mode cavity
which lies within the helium core of a star on the RGB. This region is characterized by
degenerate electrons which dominate the pressure support and non-degenerate ions which
dominate the heat capacity.

Following Brassard, Fontaine, Wesemael, Kawaler, et al. (1991), in the absence of compo-
sition gradients, 𝑁 can be written as

𝑁2 = 𝑁2
0
𝜒𝑇

𝜒𝜌
(∇ad − ∇) (3.22)



3.C. Brunt–Väisälä frequency in degenerate helium cores 81

m (M )

m
as

s f
ra

ct
io

n

10 3

10 2

10 1

100
non-merged

1H 4He 12C 16O

10 3

10 2

10 1

100
MWD = 0.20M

10 3

10 2

10 1

100
MWD = 0.30M

0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.5510 3

10 2

10 1

100
MWD = 0.38M

Figure 3.16: Composition profiles for the non-merged 𝑀 = 0.80𝑀⊙ and selected merger
remnant models at the beginning of CHeB (a few megayear after the helium flash).

where

𝜒𝑇 =

(
𝜕 ln 𝑝
𝜕 ln𝑇

)
𝜌

(3.23a)

𝜒𝜌 =

(
𝜕 ln 𝑝
𝜕 ln 𝜌

)
𝑇

(3.23b)

∇ad =

(
d ln𝑇
d ln 𝑝

)
ad

(3.23c)

∇ =
d ln𝑇
d ln 𝑝

(3.23d)

and we have defined
𝑁2

0 =
𝜌𝑔2

𝑝
(3.24)

where roughly 𝑁0≃
√︁
𝐺𝑀𝑐/𝑅3

𝑐 is comparable to the dynamical frequency of the core.

In degeneracy-supported matter, 𝜒𝜌 ≈ 5/3 and ∇ad ≈ 0.4 are basically constant. In WDs,
the pressure has two contributions from the degenerate electrons (which dominate the total
pressure) and non-degenerate ions (which carry the temperature dependence):

𝑝 =
2
5
𝑛𝑒𝐸𝐹 + 𝑛𝑖𝑘𝐵𝑇 (3.25)
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where 𝑛𝑒 = 𝑍𝜌/𝐴𝑚𝑝 and 𝑛𝑖 = 𝜌/𝐴𝑚𝑝 are the electron and ion number densities, respec-
tively, and 𝐸𝐹 is the electronic Fermi energy. Roughly

𝑝 ≈ 2
5
𝑍𝜌𝐸𝐹

𝐴𝑚𝑝

(3.26a)(
𝜕𝑝

𝜕𝑇

)
𝜌

≈ 𝜌𝑘𝐵

𝐴𝑚𝑝

. (3.26b)

Then
𝜒𝑇 =

𝑇

𝑝

(
𝜕𝑝

𝜕𝑇

)
𝜌

=
5

2𝑍
𝑘𝐵𝑇

𝐸𝐹
. (3.27)

Therefore, for mostly degenerate matter,

𝑁2 ≈ 𝑁2
0
𝑘𝐵𝑇

𝑍𝐸𝐹

(
1 − 5

2
∇
)
. (3.28)

3.D Post-helium flash composition profiles
Figure 3.16 compares the composition profiles for various merger remnants at the beginning
of CHeB, soon after the helium flash. As explained in Section 3.4, merger remnants
involving more massive He WDs (higher 𝑀WD) convert a larger fraction of their core
helium into carbon during the helium flash. Moreover, our merger remnant models with
𝑀WD ≥ 0.27𝑀⊙ (e.g., the bottom two panels of Figure 3.16) undergo core dredge-up events
which mix some of the helium core into the envelope. Such merger remnants therefore begin
CHeB with lower core masses and possess envelopes which are dramatically enhanced in
species such as helium and carbon (see Section 3.4.4).
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C h a p t e r 4

GRAVITY WAVES IN STRONG MAGNETIC FIELDS

Rui, N. Z. and J. Fuller (2023). “Gravity waves in strong magnetic fields.” In: Monthly
Notices of the Royal Astronomical Society 523.1, pp. 582–602. doi: 10.1093/mnras/
stad1424. arXiv: 2303.08147.

Strong magnetic fields in the cores of stars are expected to significantly modify the behavior
of gravity waves: this is likely the origin of suppressed dipole modes observed in many red
giants. However, a detailed understanding of how such fields alter the spectrum and spatial
structure of magnetogravity waves has been elusive. For a dipole field, we analytically
characterize the horizontal eigenfunctions of magnetogravity modes, assuming that the
wavevector is primarily radial. For axisymmetric modes (𝑚 = 0), the magnetogravity wave
eigenfunctions become Hough functions, and they have a radial turning point for sufficiently
strong magnetic fields. For non-axisymmetric modes (𝑚 ≠ 0), the interaction between the
discrete g mode spectrum and a continuum of Alfvén waves produces nearly discontinuous
features in the fluid displacements at critical latitudes associated with a singularity in the fluid
equations. We find that magnetogravity modes cannot propagate in regions with sufficiently
strong magnetic fields, instead becoming evanescent. When encountering strong magnetic
fields, ingoing gravity waves are likely refracted into outgoing slow magnetic waves. These
outgoing waves approach infinite radial wavenumbers, which are likely to be damped
efficiently. However, it may be possible for a small fraction of the wave power to escape
the stellar core as pure Alfvén waves or magnetogravity waves confined to a very narrow
equatorial band. The artificially sharp features in the WKB-separated solutions suggest the
need for global mode solutions which include small terms neglected in our analysis.
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4.1 Introduction
Stellar magnetism is a highly impactful, but often neglected, property of many main se-
quence stars (Ferrario, Pringle, et al., 2009; Vidotto et al., 2014), red giants (García,
Hernández, et al., 2014; Stello, Cantiello, Fuller, Garcia, et al., 2016; Stello, Cantiello,
Fuller, Huber, et al., 2016; Fuller, Cantiello, et al., 2015), white dwarfs (Angel, 1977;
Wickramasinghe and Ferrario, 2000; Liebert et al., 2003), and neutron stars (Thompson
and Duncan, 1993; Kulkarni and Thompson, 1998; Levin, 2006) alike. In stars, such
magnetic fields are expected to originate from dynamo mechanisms (Baliunas et al., 1996;
Spruit, 2002; Maeder and Meynet, 2005; Brun and Browning, 2017), as fossils leftover from
the star’s formation (Braithwaite and Spruit, 2004; Dudorov and Khaibrakhmanov, 2015;
Ferrario, Melatos, et al., 2015), or from stellar mergers (Ferrario, Pringle, et al., 2009;
Tutukov and Fedorova, 2010; Wickramasinghe, Tout, et al., 2014; Schneider, Ohlmann,
Podsiadlowski, Röpke, Balbus, Pakmor, and Springel, 2019). Despite the importance
and ubiquity of strong stellar magnetism, our understanding of oscillations in such highly
magnetized stars remains incomplete, even at the qualitative level.

Interest in the influence of magnetic fields on nonradial stellar oscillations has been reignited
in the past few years by the discovery of suppressed dipole (ℓ = 1) and quadrupole (ℓ = 2)
oscillation modes in a family of red giants (Mosser, Elsworth, et al., 2012; García, Hernán-
dez, et al., 2014; Stello, Cantiello, Fuller, Garcia, et al., 2016; Stello, Cantiello, Fuller,
Huber, et al., 2016; Mosser, Belkacem, et al., 2017). It is largely believed that the origin
of this phenomenon is magnetic in nature, with recent work suggesting that ingoing gravity
waves can damp out after either being trapped inside the core (the “magnetic greenhouse ef-
fect,” Fuller, Cantiello, et al., 2015), refracted into high-wavenumber oscillations (Lecoanet,
Vasil, et al., 2017), or dissipated by Alfvén waves (Loi and Papaloizou, 2017). In parallel,
Li, Deheuvels, Ballot, and Lignières (2022) have made the first-ever constraints on the inte-
rior magnetic field topology—the recent development of such new powerful observational
tools further demands proportionate advances in our theoretical understanding of internal
magnetogravity waves.

Efforts to understand the impact of magnetic fields on stellar oscillation modes have taken
many forms, but have been limited due to the difficulty of the problem. For example, early
attempts to understand magnetic effects on non-radial oscillations involved introducing
a magnetic field as a small perturbation (e.g., Goossens, 1972; Goossens et al., 1976;
Goossens, 1976; Mathis, Bugnet, et al., 2021). Some of these perturbative calculations
have promisingly suggested that core magnetic fields may leave imprints on the mixed-mode
period spacing (Prat, Mathis, Buysschaert, et al., 2019; Prat, Mathis, Neiner, et al., 2020a;
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Bugnet et al., 2021; Bugnet, 2022), in addition to their impact on dipole mode visibilities.
However, magnetic mode splittings are often small except for fields large enough to strongly
couple with Alfvén waves, where a perturbative treatment is largely inappropriate (Cantiello
et al., 2016). While other analyses have assumed a purely horizontal field (Rogers and
MacGregor, 2010; Mathis and De Brye, 2011; MacGregor and Rogers, 2011; Dhouib,
Mathis, et al., 2022), such studies are not applicable to the general case where the radial
component of the field dominates the interaction with the gravity waves. Fuller, Cantiello,
et al. (2015) used a Wentzel–Kramers–Brillouin (WKB) approximation in both components
of the wavenumber to show that magnetogravity waves are forced to be evanescent when
the mode frequency lies below a characteristic frequency given by

𝜔𝐵 =

(
ℓ(ℓ + 1)𝐵2

0𝑁
2

𝜋𝜌0𝑟2

)1/4

, (4.1)

where ℓ, 𝐵0, 𝑁 , 𝜌0, and 𝑟 are the angular degree, radial magnetic field, Brunt–Väisälä
frequency, density, and radius, respectively. This result can also be recovered exactly when
considering the coupling of gravity waves to an exactly uniform radial field geometry (see
Section 4.62). However, while setting a useful scale for strong coupling between gravity
waves and the magnetic field, this analysis relies on the assumption that the radial magnetic
field is uniform at a given radius (which is not physical).

Other studies have probed the behavior of magnetogravity waves under arbitrarily compli-
cated magnetic field geometries using a flexible ray-tracing method (Loi and Papaloizou,
2018; Loi, 2020c; Loi, 2020b). However, crucially, this method relies heavily upon the
(WKB) approximation that both the radial and horizontal components of the wavenumber
are large compared to the variation scales of the magnetic field and stellar structure. In
reality, the horizontal wavenumber 𝑘ℎ =

√︁
ℓ(ℓ + 1)/𝑟 of the observable ℓ ≲ 3 modes likely

has a comparable length scale to that of the magnetic field gradient. It is clear that a fuller
understanding of magnetogravity waves must account for a magnetic field which is allowed
to vary with latitude and longitude, without assuming an unrealistically large horizontal
wavenumber.

Some progress on this front was made by Lecoanet, Vasil, et al. (2017), who solve for
the eigenmodes of a two-dimensional Cartesian analogue of a multipole magnetic field
geometry, demonstrating that modes in their model cannot propagate in regions whose
magnetic field exceeds a critical strength (see Section 4.A.2) close to the estimate of Equation
4.1. However, since their analysis cannot capture modes which propagate horizontally
relative to the field (i.e., non-axisymmetric modes), the possibility is left open that such
non-axisymmetric modes may propagate deeper into a star. Later, Lecoanet, Bowman, et al.
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(2022) extended this analysis numerically to more general tesseral/sectoral (𝑚 ≠ 0) modes
using the dedalus code in order to probe the interior field of a main sequence B-type star
HD 43317. However, explanations for many qualitative properties of the solution have
heretofore remained elusive. In this work, we analyze the horizontal structure of g modes
under a strong magnetic field. We assume that the wavevector is primarily radial, and the
radial wavelengths of the perturbations are much smaller than the stellar structure length
scale (the radial WKB approximation), and numerically solve for the magnetogravity mode
eigenfunctions. We find that such g modes contain sharp features in the fluid displacements
at the locations of resonances with Alfvén waves (so-called “critical latitudes”), and that
the general structure of their branches and eigenfunctions are sensitive to even vanishingly
small amounts of dissipation. We also discuss the importance of the horizontal component
of the field near these critical latitudes, as well as near the equator. Nevertheless, we still
find that g modes cannot propagate arbitrarily deep in sufficiently magnetized stars, and are
likely converted into outgoing slow magnetic waves that dissipate inside of the star. An
outline of the solution described in this work is shown in Figure 4.1.

We organize this paper as follows. In Section 4.2, we describe the problem setup: a sta-
bly stratified, magnetized star obeying the incompressible MHD equations (Section 4.2.1),
whose essential physics are governed by the relationship between the mode, Alfvén, and
magnetogravity frequencies 𝜔, 𝜔𝐴, and 𝜔𝐵 (Section 4.2.2). For the majority of this work,
we specialize to a dipole magnetic field (Section 4.2.3). In the WKB limit, the result-
ing differential eigenproblem contains singularities at critical latitudes corresponding to
resonances with the Alfvén spectrum. We point out a close analogy with the rotational
problem (Section 4.3.1), then comment on previous work on internally singular eigenprob-
lems (Section 4.3.2), and lastly investigate the behavior of eigenfunctions around those
critical latitudes (Section 4.3.3). In Section 4.4, we present zonal (𝑚 = 0; Section 4.4.1)
and sectoral/tesseral (𝑚 ≠ 0; Section 4.4.2) solutions to the problem. We then comment on
the origin and behavior of the continuous Alfvén wave spectrum (Section 4.4.3). However,
since vanishingly small dissipation can qualitatively affect the mode spectrum, we present
numerical solutions of dissipative solutions in Section 4.5, first allowing for evanescent
solutions (Section 4.5.1) and then constraining the radial phase velocity (Section 4.5.2).
Finally, in Section 4.6, we discuss the importance of horizontal field terms near the critical
latitudes and equator (Section 4.6.1), nonharmonic solutions of singular differential equa-
tions (Section 4.6.2), the effects of more general magnetic field geometries (Section 4.6.3),
and the possibility of magnetically stabilized g modes in convective zones (Section 4.6.4).
Section 4.7 concludes.
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Figure 4.1: A meridional slice of the 𝜃 displacement 𝜉𝜃 for a magnetogravity mode with
(ℓ, |𝑚 |) = (5, 2), with the left half showing an ingoing gravity wave and the right half
showing an outgoing (slow) magnetic wave (calculated in Section 4.5.2), which approaches
an infinite wavenumber at a cutoff radius (where it is dissipated). The eigenfunctions
become large at the Alfven resonance 𝜔 = 𝜔𝐴 (𝑏 cos 𝜃 = ±1; red dashed line), and they
become evanescent past the turning point 𝜔 = 𝜔𝐵 (𝑎 ∼ 1; blue dotted line), where the
solutions are given in Section 4.5.1. This diagram is not to scale, as the stellar profile has
been modified to better show the spatial structure of the magnetic wave.

4.2 Problem statement
In this work, we consider a spherically symmetric star in hydrostatic equilibrium, with
a possibly large equilibrium magnetic field (which is not spherically symmetric). It is
assumed that the magnetic field does not act on the background structure, i.e., it is not strong
enough to introduce substantial departures from a spherically symmetric stellar profile. For
simplicity, we ignore rotation and use the incompressible and Cowling approximations,
such that buoyancy and magnetic forces dominate the dynamics. These forces are likely to
dominate in, e.g., the slowly rotating radiative cores of red giants.

Throughout this work, we use the term “magnetogravity wave” to refer to the general
phenomenon of a gravity wave propagating through a highly conductive, magnetized fluid.
In sufficiently magnetized stars, ingoing magnetogravity waves are refracted outwards, and
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(as we will show in Sections 4.4.1, 4.4.2, and 4.5.2) approach infinite radial wavenumber
at a finite height—we refer to such waves as “slow magnetic waves.” Such branches are
“slow” in the sense that their phase and group velocities approach zero as waves propagate
outwards. This medium also sustains “Alfvén waves,” which are confined to magnetic field
lines and appear as highly localized, linearly independent toroidal solutions to the fluid
equations (see Section 4.4.3).

In this Section, we first introduce the linearized fluid equations (Section 4.2.1). We then
identify the most important dimensionless parameters governing the physics (Section 4.2.2).
Finally, we specialize to the case of a dipole magnetic field (Section 4.2.3), to which the
majority of this work is dedicated.

4.2.1 Linearized fluid equations
The linearized incompressible MHD equations are

∇ · ®𝜉 = 0 (4.2a)

𝜌0𝜕
2
𝑡
®𝜉 = −∇

(
𝑝′ + 1

4𝜋
®𝐵0 · ®𝐵′

)
− 𝜌′𝑔𝑟 + 1

4𝜋

(
®𝐵0 · ∇

)
®𝐵′ (4.2b)

𝜌′ =
𝜌0𝑁

2

𝑔
𝜉𝑟 (4.2c)

®𝐵′ =
(
®𝐵0 · ∇

)
®𝜉 (4.2d)

where ®𝜉 is the perturbed fluid displacement, while 𝜌′, 𝑝′, and ®𝐵′ are the Eulerian density,
pressure, and magnetic field perturbations, and 0 subscripts indicate non-perturbed quanti-
ties (Proctor and Weiss, 1982). Here, 𝑁 is the Brunt–Väisälä frequency, and 𝑔 = 𝑔(𝑟) is the
inward gravitational acceleration. Here, we have assumed the WKB approximation in the
radial direction only, and have made the Cowling approximation (𝑔′ ≈ 0). Additionally, as
implied by Equation 4.2c, we only consider adiabatic oscillations. Equation 4.2d is simply
the induction equation in ideal magnetohydrodynamics, written in the WKB limit (for ®𝐵0

varying radially on a length scale ∼ 𝑟). Throughout this paper, we will focus on solving
for oscillation modes with harmonic time dependence, i.e., those with ∝ 𝑒𝑖𝜔𝑡 (although this
assumption is discussed in Section 4.6.2).

Describing an incompressible fluid under ideal magnetohydrodynamics, these equations
admit modes which are restored by buoyancy and magnetism (i.e., there are no acoustic
waves). Gravity waves are expected to have large radial wavenumbers which are much
larger than both their horizontal wavenumbers (𝑘𝑟/𝑘ℎ ∼ 𝑁/𝜔 ∼ 102 in typical red giant
cores) and the star’s structural variation scale 1/𝐻. However, the horizontal wavenumber
𝑘ℎ ≃

√︁
ℓ(ℓ + 1)/𝑟, so low-ℓ magnetogravity modes vary horizontally on similar length
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scales to large-scale magnetic fields. Therefore, we have adopted a WKB approximation in
the radial direction only (i.e., 𝜕/𝜕𝑟 ≈ −𝑖𝑘𝑟) such that 𝑘𝑟 is assumed to be larger than any
structural gradients.

We define the Alfvén frequency 𝜔𝐴 = ®𝑘 · ®𝑣𝐴, where ®𝑣𝐴 = ®𝐵0/
√︁

4𝜋𝜌0 is the Alfvén velocity.
Then the assumption that 𝑘𝑟 ≫ 𝑘ℎ entails that 𝜔𝐴 ∝

(
®𝐵 · ®𝑘

)
= 𝐵𝑟 𝑘𝑟 + 𝐵ℎ𝑘ℎ ≃ 𝐵𝑟 𝑘𝑟 , such

that the horizontal component of the magnetic field is unimportant as long as 𝐵𝑟 and 𝐵ℎ
are comparable. This approximation is made by Fuller, Cantiello, et al. (2015), and is very
analogous to the “traditional approximation of rotation” (see Section 4.3.1). We discuss the
importance of 𝐵ℎ terms in Section 4.6.1.

When a WKB approximation is made in both the vertical and horizontal directions (or if a
monopolar field is considered; Appendix 4.A), the dispersion relation is given by

𝜔2 −
𝑘2
ℎ

𝑘2
𝑟

𝑁2 − 𝑘2
𝑟 𝑣

2
𝐴 = 0 (4.3)

where 𝑣𝐴 = |𝑣𝐴,𝑟 | is the radial component of the Alfvén velocity (Unno, Osaki, Ando, Saio,
et al., 1989). If both buoyancy and magnetism are important, all three terms in Equation
4.3 are of the same order. This defines a hierarchy of variables: letting 𝜖 be a small quantity
around which we implicitly expand, we see that, if 𝜔, 𝑘ℎ ∼ O(1), then 𝑁, 𝑘𝑟 ∼ O(𝜖−1) are
“large” and 𝑣𝐴 ∼ O(𝜖) is “small.” Hereafter, we only retain terms leading-order in 𝜖 , which
is realistic as long as 𝑘𝑟 ≫ 𝑘ℎ.

4.2.2 Important frequency scales
To understand the nature of this magnetogravity problem, we can non-dimensionalize the
relevant physics equations. All formulations of the magnetogravity problem (see, e.g.,
Appendix 4.A) that make similar assumptions to ours can be formulated as the following
horizontal eigenproblem at a given radius (see Section 4.6.3):

L𝑘𝑟 𝑣𝐴/𝜔𝑝′ +
(
𝜔2

𝑁2 𝑟
2𝑘2
𝑟

)
𝑝′ = 0 (4.4)

where L𝑘𝑟 𝑣𝐴/𝜔 is some geometry-dependent differential operator that depends on the ratio
of the Alfvén frequency 𝜔𝐴 ∼ 𝑘𝑟𝑣𝐴 to the mode frequency 𝜔. In Equation 4.4, 𝑣𝐴 is a
measure of the the Alfvén velocity at a given radius. Although the magnetic field strength
clearly varies as a function of 𝜃 and 𝜙, hereafter we use 𝑣𝐴 to denote its maximum value at
a given radius.

The Buckingham 𝜋 theorem (Vaschy, 1892; Federman, 1911; Riabouchinsky, 1911; Buck-
ingham, 1914) states that, for some equations depending on 𝑝 dimensionful quantities in 𝑞
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independent dimensions, those equations can be written in terms of 𝑝 − 𝑞 dimensionless
quantities which completely determine their behavior. In this particular problem, Equa-
tion 4.4 depends on the 𝑝 = 5 dimensionful quantities 𝜔, 𝑁 , 𝑘𝑟 , and 𝑟, and 𝑣𝐴 over the
𝑞 = 2 independent dimensions, length and time. Therefore, the essential behavior of the
magnetogravity problem can be understood by understanding the interaction of 𝑝 − 𝑞 = 3
dimensionless quantities.

One natural dimensionless quantity to construct is 𝑟𝑘𝑟 , the radial wavenumber rescaled
to the characteristic length scale of the star. Fortuitously, because 𝑟𝑘𝑟 ≫ 1 according to
the radial WKB approximation, the non-dimensionalized version of Equation 4.4 will not
actually depend on this quantity. Next, because L𝑘𝑟 𝑣𝐴/𝜔 depends only on the combination
𝑘𝑟𝑣𝐴/𝜔 (which describes the presence/location of resonances between modes and Alfvén
waves), it is natural to choose this to be another dimensionless quantity:

𝑏 =
𝑘𝑟𝑣𝐴

𝜔
≃ 𝜔𝐴

𝜔
. (4.5)

Finally, if one seeks to non-dimensionalize Equation 4.4 using a third quantity which does
not depend on the spatial structure of the mode itself (i.e., independent of 𝑘𝑟), the remaining
dimensionless quantity must depend solely on some “depth parameter” 𝑎, given by

𝑎 =

(
𝑁

𝜔

) (
𝑣𝐴/𝑟
𝜔

)
. (4.6)

We refer to 𝑎 as a depth parameter because 𝑁 and 𝑣𝐴 often increase with depth in stars
such as red giants, so we expect 𝑎 to increase with depth. It is possible that 𝑎 could reach
a maximum at some finite radius which would admit a weakly magnetized inner region. In
practice, this inner region will be nearly decoupled from the rest of the star by an evanescent
region and will be effectively unobservable, except for finely tuned frequencies. In a red
giant, 𝑁2 peaks near the H-burning shell, where the value of 𝑎 will likely peak as well.

In the terminology of Fuller, Cantiello, et al. (2015), 𝑎 ∼ 𝜔2
𝐵
/𝜔2 where

𝜔𝐵 ∼
√︁
𝑁𝑣𝐴/𝑟 (4.7)

is the magnetogravity frequency, below which modes cannot be spatially propagating. We
thus argue that the frequency scale 𝜔𝐵 defining strong magnetogravity waves (identified by
Fuller, Cantiello, et al. 2015 under some specific assumptions) arises as the most natural
mode-independent frequency scale in the problem.

Adopting 𝑏 and 𝑎 as our dimensionless parameters, Equation 4.4 can be rewritten as

L𝑏𝑝′ + 𝑏
2

𝑎2 𝑝
′ = 0. (4.8)
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For the hierarchy of variables adopted in Section 4.2.1, we see that both 𝑎 and 𝑏 are of
order unity within the domain of interest, where magnetic forces and buoyancy forces are
comparable. Consequently, when non-dimensionalizing the fluid equations, specifying
𝑎 (which is independent of 𝑘𝑟) determines the spectrum of allowed 𝑏. For a fixed mode
frequency𝜔, the resulting dispersion relation will therefore relate𝜔𝐵 to the allowed𝜔𝐴 ∝ 𝑘𝑟 .

For the remainder of this, we will study the magnetogravity problem in terms of these two
dimensionless quantities, which relate the mode (𝜔), Alfvén (𝜔𝐴), and magnetogravity (𝜔𝐵)
frequencies to each other.

4.2.3 Dipole geometry
We give special attention to the case of a magnetic field whose radial component is dipolar,

®𝐵0 = 𝐵0(𝑟) cos 𝜃 𝑟 + 𝐵𝜃 (𝑟, 𝜃, 𝜙) 𝜃 + 𝐵𝜙 (𝑟, 𝜃, 𝜙) 𝜙 ∼ 𝐵0(𝑟) cos 𝜃 𝑟. (4.9)

Because the wavenumbers of gravity waves are predominantly radial, the radial component
of the field couples most efficiently to them (Fuller, Cantiello, et al., 2015), and the
horizontal field components can be neglected at lowest order. This generic dipole angular
dependence encompasses as special cases the force-free dipole (𝐵0(𝑟) ∝ 𝑟−3) and uniform
𝐵0𝑧 (𝐵0(𝑟) = const.) field geometries, as well as the mixed poloidal–toroidal field solution
of Prendergast (1956).

For this special case, and adopting a radial WKB approximation, Equations 4.2 can be
written in spherical polar coordinates as

𝑖𝑘𝑟𝜉𝑟 +
1
𝑟

d
d𝜇

(
𝜉𝜃

√︃
1 − 𝜇2

)
− 𝑖𝑚

𝑟
√︁

1 − 𝜇2
𝜉𝜙 = 0 (4.10a)

𝜌0𝑁
2𝜉𝑟 = 𝑖𝑘𝑟 𝑝

′ (4.10b)

𝜌0𝜔
2𝜉𝜃 = −

√︁
1 − 𝜇2

𝑟

d𝑝′

d𝜇
+ 1

4𝜋
𝑘2
𝑟 𝐵

2
0𝜇

2𝜉𝜃 (4.10c)

𝜌0𝜔
2𝜉𝜙 =

𝑖𝑚

𝑟
√︁

1 − 𝜇2
𝑝′ + 1

4𝜋
𝑘2
𝑟 𝐵

2
0𝜇

2𝜉𝜙 (4.10d)

where we have substituted Equation 4.2c into the radial component of Equation 4.2a,
Equation 4.2d into the horizontal components of Equation 4.2a, and kept only leading-order
terms. Here, 𝜇 ≡ cos 𝜃, and the axisymmetry of this geometry entails eigenfunctions with
𝜕/𝜕𝜙 → 𝑖𝑚 for an integer 𝑚.
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In terms of the pressure perturbation 𝑝′, the other perturbations become

𝜉𝑟 =
𝑖𝑘𝑟

𝜌0𝑁2 𝑝
′ =

𝑖

𝜌𝜔2𝑟

(𝜔
𝑁

) 𝑏
𝑎
𝑝′ (4.11a)

𝜉𝜃 = −
√︁

1 − 𝜇2

𝜌0𝜔2𝑟
(
1 − 𝑏2𝜇2) d𝑝′

d𝜇
(4.11b)

𝜉𝜙 =
𝑖𝑚

𝜌0𝜔2𝑟
√︁

1 − 𝜇2 (
1 − 𝑏2𝜇2) 𝑝′ (4.11c)

𝜌′ =
𝑖𝑘𝑟

𝑔
𝑝′ (4.11d)

and ®𝐵′ = −𝑖𝐵0𝜇𝑘𝑟 ®𝜉. When Equations 4.11a, 4.11b, and 4.11c for the displacements are
substituted into the continuity equation (Equation 4.10a), we obtain

L𝑚,𝑏
mag𝑝

′(𝜇) + 𝑏
2

𝑎2 𝑝
′(𝜇) = 0 (4.12)

where
L𝑚,𝑏

mag𝑝
′(𝜇) = d

d𝜇

(
1 − 𝜇2

1 − 𝑏2𝜇2
d𝑝′(𝜇)

d𝜇

)
− 𝑚2(

1 − 𝜇2) (
1 − 𝑏2𝜇2) 𝑝′(𝜇). (4.13)

Equation 4.12 can be viewed as an eigenvalue equation for the unusual operator L𝑚,𝑏
mag.

Letting 𝜆 be the (conventionally negative) eigenvalues of L𝑚,𝑏
mag, Equation 4.12 is

L𝑚,𝑏
mag𝑝

′ + 𝜆𝑝′ = 0 (4.14)

with
𝜆 = 𝑏2/𝑎2 (4.15)

constitutes the dispersion relation for magnetogravity waves.

In the limit of zero magnetic field, L𝑚,𝑏
mag approaches the usual generalized Legendre op-

erator (whose eigenfunctions are associated Legendre polynomials). Here, while 𝑎 and 𝑏
individually approach zero, the combination 𝜆 = 𝑏2/𝑎2 (= 𝑟2𝑘2

𝑟𝜔
2/𝑁2) approaches ℓ(ℓ+1),

matching the zero-field result that 𝑘ℎ =
√︁
ℓ(ℓ + 1)/𝑟). In this case, Equation 4.15 approaches

the unusual internal gravity wave dispersion relation 𝜔/𝑁 = 𝑘ℎ/𝑘𝑟 .

In this work, we index mode branches using ℓ and |𝑚 |, corresponding to the angular degree
and order of the branch at zero field (note that modes of +𝑚 and −𝑚 have identical spectra).
Hereafter, we refer to mode branches as an ordered pair (ℓ, |𝑚 |), e.g., the (2, 1) branch
corresponds to the branch which, at zero field, has a horizontal dependence of a spherical
harmonic with ℓ = 2 and𝑚 = ±1. However, note that the eigenvalue of L𝑚,𝑏

mag does not equal
𝜆 = ℓ(ℓ + 1) except precisely in the 𝑏 = 0 (zero-field) case, and the index ℓ is just used for
indexing purposes.
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4.3 Important features of the magnetogravity eigenproblem
4.3.1 Close analogy to the rotational problem
In the study of nonradial pulsations under uniform rotation, it is common to consider
only the influence of the Coriolis force, which dominates the rotational effect for small Ω.
Specializing further to the case where 𝑘𝑟 ≫ 𝑘ℎ, it is common also to ignore the horizontal
component of the rotational vector ®Ω, since the product ®𝑘 · ®Ω = 𝑘𝑟Ω𝑟 + 𝑘ℎΩℎ ≈ 𝑘𝑟Ω𝑟 will
be dominated by the radial term (see, e.g., Lee and Saio, 1997; Chen and Lü, 2009; Wang,
Boyd, et al., 2016). Under this approximation (the “traditional approximation of rotation”),
the radial and horizontal fluid equations become separable, and the following eigenproblem
appears:

L𝑚,𝜈
rot 𝑝

′(𝜇) + 𝜆𝑝′(𝜇) = 0 (4.16)

where L𝑚,𝜈
rot (called the “Laplace tidal operator”) is given by

L𝑚,𝜈
rot 𝑝

′(𝜇) = d
d𝜇

(
1 − 𝜇2

1 − 𝜇2𝜈2
d𝑝′(𝜇)

d𝜇

)
− 𝑚2(

1 − 𝜇2) (
1 − 𝜇2𝜈2) 𝑝′(𝜇)

−
𝑚𝜈

(
1 + 𝜇2𝜈2)(

1 − 𝜇2𝜈2)2 𝑝′(𝜇)
(4.17)

where 𝜈 = 2Ω/𝜔 describes the influence of rotation.

Comparing L𝑚,𝑏
mag and L𝑚,𝜈

rot suggests a close analogy—the latter is identical to the former
(with 𝜈 playing the role of 𝑏) except for the presence of an extra term (the second term
in Equation 4.17) which distinguishes prograde (𝑚𝜈 < 0) and retrograde (𝑚𝜈 > 0) modes
(Lee and Saio, 1997). Because a dipole magnetic field does not privilege either clockwise
or counterclockwise-propagating oscillations, the symmetries of the problem do not permit
this term to exist in the magnetogravity problem.

The eigenfunctions of L𝑚,𝜈
rot (whose eigenvalues we denote by 𝜆𝜈

ℓ𝑚
) are called Hough func-

tions (Hough, 1898a; Hough, 1898b), and their properties have been widely studied, both
analytically (Homer, 1990; Townsend, 2003; Townsend, 2020) and numerically (Bildsten,
Ushomirsky, et al., 1996; Lee and Saio, 1997; Chen and Lü, 2009; Fuller and Lai, 2014;
Wang, Boyd, et al., 2016). In Section 4.4.1, we show that the exact correspondence be-
tween L𝑚,𝑏

mag and L𝑚,𝜈
rot in the zonal (𝑚 = 0) case allows us to identify Hough functions as

eigensolutions of the magnetogravity problem.

We note that, for |𝜈 | > 1, the coefficients in the Laplace tidal operator L𝑚,𝜈
rot (Equation

4.17) switch signs on the domain, and Sturm–Liouville theory no longer guarantees that its
eigenvalues are positive-definite (see Section 4.3.2), and indeed there are an infinite number
of 𝜆𝜈

ℓ𝑚
< 0 branches occupying the range |𝜈 | > 1 which diverge to negative infinity as
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|𝜈 | = 1 is approached (e.g., Lee and Saio, 1997). In the rotation problem, these negative
𝜆𝜈
ℓ𝑚

branches correspond physically to oscillatory convective modes (e.g., Section 4.6.4).
Notably, in the retrograde case for |𝑚 | ≠ 0, some of these branches of eigenvalues actually
rise above 0 and physically correspond to Rossby waves (Lee and Saio, 1997). In the
magnetogravity problem, these negative eigenvalue branches are not directly relevant in
radiative regions (see Section 4.4.1 for a discussion of this), although their existence may
imply magnetically stabilized g modes in convective regions (see Section 4.6.4).

In the general 𝑚 case (Section 4.4.2), L𝑚,𝑏
mag and L𝑚,𝜈

rot no longer coincide. However, the
Laplace tidal equation can at least provide some basic expectations about the behavior of
the magnetogravity eigenfunctions, although the latter are significantly more pathological.

4.3.2 Sturm–Liouville problems with internal singularities
The magnetogravity problem is dependent on the behavior of the eigenvalue problem stated
in Equation 4.12, which contains a differential operator whose coefficients have singularities
on the interior of the domain, at least, when 𝜔 and 𝑘𝑟 are real (at 𝜇 = ±1/𝑏). To inform our
procedure, we summarize in this Section the previous body of work on such Sturm–Liouville
problems with internal singularities.

Consider the following general eigenvalue problem

(𝑃(𝑥)𝑦′(𝑥))′ −𝑄(𝑥)𝑦(𝑥) + 𝜆𝑦(𝑥) ≡ L𝑦(𝑥) + 𝜆𝑦(𝑥) = 0 (4.18)

where 𝑃(𝑥) and 𝑄(𝑥) are real functions of 𝑥 on the open range 𝑥 ∈ (𝑎, 𝑏), and primes
denote derivatives in 𝑥. If the value of 𝑓 (𝑥)∗𝑃(𝑥)𝑔′(𝑥) matches at the endpoints 𝑥 = 𝑎 and
𝑥 = 𝑏 for any two functions 𝑓 (𝑥) and 𝑔(𝑥) satisfying some boundary conditions, then the
operator L is Hermitian with respect to the inner product

⟨ 𝑓 , 𝑔⟩ =
∫ 𝑏

𝑎

𝑓 (𝑥)∗L𝑔(𝑥) d𝑥 (4.19)

for those boundary conditions. Standard Sturm–Liouville theory then implies that L has a
large number of “nice” properties such as an orthonormal basis of eigenfunctions with real
eigenvalues (e.g., Al-Gwaiz, 2008). Specific properties held by 𝑃(𝑥) and 𝑄(𝑥) often imply
bounds on those eigenvalues. An important example is that, if 𝑃(𝑥), 𝑄(𝑥) > 0 on (𝑎, 𝑏),
then all of the eigenvalues 𝜆 must be positive. This can be seen by multiplying Equation
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4.18 by 𝑦(𝑥)∗, integrating over the domain, and solving for 𝜆

𝜆 =
−

∫ 𝑏

𝑎
𝑦(𝑥)∗ (𝑃(𝑥)𝑦′(𝑥))′ d𝑥 +

∫ 𝑏

𝑎
𝑄(𝑥)𝑦(𝑥)∗𝑦(𝑥) d𝑥∫ 𝑏

𝑎
𝑦(𝑥)∗𝑦(𝑥) d𝑥

=

∫ 𝑏

𝑎
𝑃(𝑥) |𝑦′(𝑥) |2 d𝑥 +

∫ 𝑏

𝑎
𝑄(𝑥) |𝑦(𝑥) |2 d𝑥∫ 𝑏

𝑎
|𝑦(𝑥) |2 d𝑥

(4.20)

where in the second equality we have integrated by parts, applying our boundary condition
to discard the boundary term. Equation 4.20 is called the Rayleigh quotient, and the fact
that all of the integrands that appear are positive-definite implies that 𝜆 must be positive.
We will apply this result in later sections.

While the differential operator L𝑚,𝑏
mag (for real 𝑏) appears superficially similar to L as written

in Equation 4.18, the comparison is thwarted by the interior singularities which appear in
𝑃 and 𝑄 at 𝜇 = ±1/𝑏 (for |𝑏 | ≤ 1, Sturm–Liouville theory indeed applies). Although
we show in Section 4.4.1 that solutions in the 𝑚 = 0 case are Hough functions which are
second-differentiable everywhere, solutions with 𝑚 ≠ 0 do not generally have this property,
and have a number of unusual attributes (physically reflecting resonant interaction of gravity
modes with Alfvén waves).

Motivated by problems in atmospheric physics (Boyd, 1976; Boyd, 1982), Boyd (1981)
wrote down a prototypical eigenvalue problem with an interior singularity,

d2𝑦(𝑥)
d𝑥2 − 1

𝑥
𝑦(𝑥) + 𝜆𝑦(𝑥) = 0. (4.21)

Equation 4.21 is called the Boyd problem, and its interesting mathematical properties have
been the subject of some study (Boyd, 1981; Everitt et al., 1987; Gunson, 1987; Atkinson
et al., 1988). The most interesting case is when it is considered over the domain 𝑥 ∈ (𝑎, 𝑏)
where 𝑎 < 0 < 𝑏, so that there is an interior, non-integrable singularity at 𝑥 = 0. It is
common to consider this problem over the direct sum domain 𝑥 ∈ (𝑎, 0) ∪ (0, 𝑏), over
which Everitt et al. (1987) show that Equation 4.21 possesses an orthonormal basis of
discrete eigenfunctions with real 𝜆. These eigenfunctions are continuous over the entire
range 𝑥 ∈ (𝑎, 𝑏) (including over the singularity), but not necessarily differentiable.

Boyd (1981) and Everitt et al. (1987) note that, for a given real 𝜆, 𝑦(𝑥) has two lin-
early independent solutions defined in terms of the Whittaker functions, 𝑀−𝜅,1/2(−𝑥/𝜅)
and 𝑊−𝜅,1/2(−𝑥/𝜅) (with 1/𝜅 ≡ 2

√
𝜆), themselves defined via confluent hypergeometric

functions (Whittaker, 1903). While the former is analytic, the latter has a logarithmic diver-
gence whose coefficient is proportional to𝑀−𝜅,1/2(−𝑥/𝜅). As we will show, these properties
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are shared by the magnetogravity wave (analogous to 𝑀−𝜅,1/2(−𝑥/𝜅); Section 4.4.2) and
Alfvén wave (analogous to 𝑊−𝜅,1/2(−𝑥/𝜅); Section 4.4.3) parts of the eigenfunctions of
L𝑚,𝑏

mag. Notably, the former solution 𝑀−𝜅,1/2(−𝑥/𝜅) vanishes at 𝑥 = 0.

The Boyd problem shares many properties with the magnetogravity problem (Equation
4.12). In particular, the singularity in the Boyd problem appears in 𝑄, and the singularity
in 𝑄 in the magnetogravity is responsible for the unusual behavior of its eigenfunctions
(as shown in Section 4.4.1, the magnetogravity problem is numerically well-behaved when
𝑄 = 0). We will see in Section 4.4.2 that 𝑝′ eigenfunctions of the 𝑚 ≠ 0 eigenproblem
also vanish at the critical latitudes. However, we shall also see that the displacements ®𝜉 are
discontinuous for 𝑚 ≠ 0, even though 𝑝′ is continuous, making the solutions unphysical.

4.3.3 Power series expansion around singularity
When |𝑏 | > 1 for real 𝑏, Equation 4.12 develops a singularity at the critical latitudes
𝜇 = ±1/𝑏 where the mode frequency exactly matches the Alfvén frequency, and in this case
naïvely trying to numerically solve for these modes produces erratic behavior.

In order to characterize the behavior of Equation 4.12 in the |𝑏 | > 1 case, we can perform
a Frobenius power series expansion of the form

𝑝′(𝜇) = (𝜇 − 1/𝑏)𝛼
∞∑︁
𝑛=0

𝑐𝑛 (𝜇 − 1/𝑏)𝑛. (4.22)

The leading-order term is the indicial equation, and can be solved to yield 𝛼 = 0 and
𝛼 = 2, implying either that the leading-order dependence of the eigenfunctions around the
singularity must either be constant or quadratic. Enforcing equality at the next two lowest
orders for 𝛼 = 0 (the constant case) yields

0 =
(𝑏2 − 1)3

𝑏5 𝑐1 (4.23a)

0 =
𝑏2 − 1
𝑏4

[
(𝑏4 − 6𝑏2 + 5)𝑐1 + 𝑏3𝑚2𝑐0

]
(4.23b)

indicating that 𝑐1 = 0 (the first derivative vanishes) and also 𝑚2𝑐0 = 0 (the value of the
function also vanishes when 𝑚 ≠ 0). Therefore, the pressure perturbation of eigenfunctions
which can be expanded in this way must vanish at the critical latitudes, as must their first
derivatives. Note that, while the first derivative at 𝜇 = ±1/𝑏 must also vanish in the
𝑚 = 0 case (consistent with numerical solutions in Section 4.4.1), the value of the pressure
perturbation need not vanish.
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This result may also be seen in a more straightforward fashion from Equation 4.12 by
multiplying the singular factor to the numerator. One thereby obtains(

1 − 𝜇2
) (

1 − 𝑏2𝜇2
) d2𝑝′(𝜇)

d𝜇2 + 2𝜇
(
𝑏2 − 1

) d𝑝′(𝜇)
d𝜇

+
(
𝑏2

𝑎2

(
1 − 𝑏2𝜇2

)
− 𝑚2

1 − 𝜇2

) (
1 − 𝑏2𝜇2

)
𝑝′(𝜇) = 0.

(4.24)

If the pressure perturbation 𝑝′ is everywhere finite, then Equation 4.24 implies that d𝑝′/d𝜇 =

0 when 𝜇 = ±1/𝑏 (for any value of 𝑚).

To show that the value of the function must also vanish for 𝑚 = 0, we require not just that
the horizontal gradient of 𝑝′ vanish in the direction across the critical latitude but the more
general result that it vanish in all directions on this curve, i.e., that 𝑝′ must be a constant on
connected curves of |𝑏 | = 1. We will show this in Section 4.6.3 for magnetic fields which
are more general functions of 𝜃 and 𝜙). Then the only way to enforce both that 𝑝′ ∝ 𝑒𝑖𝑚𝜙

and 𝑝′ = const. on a critical latitude is for 𝑝′ itself to vanish. This result can be compared to
the vanishing of the finite eigenfunctions of the Boyd equation around 𝑥 = 0 (Section 4.3.2).
In Section 4.4.2, we will demonstrate that this fact requires that the 𝑚 ≠ 0 solutions must
be exactly confined to an equatorial band with width Δ𝜇 = 2/|𝑏 |, in the sense of having
exactly zero amplitude outside of it.

4.4 Oscillation modes without dissipation
In this Section, we give solutions for the zonal (𝑚 = 0; Section 4.4.1), tesseral/sectoral
(𝑚 ≠ 0; Section 4.4.2), and Alfvén continuum (Section 4.4.3) modes for the singular
eigenvalue problem discussed in Section 4.3. The inclusion of viscous terms neutralizes
the singularity and is discussed in Section 4.5. This is similar to the treatment given by
authors such as Boyd (1981) and similar authors investigating internally singular eigenvalue
problems (Section 4.3.2). We refer to the solutions obtained in this way as dissipationless
solutions, and caution that this is distinct from the limit as the dissipation is taken to zero
(dissipative solutions; Section 4.5). The 𝑚 = 0 modes in the dissipationless solutions do
not contain any discontinuous behavior at the critical latitude, and are exactly approached
in the low-dissipation limit. However, as we show in Section 4.5, any nonzero dissipation
implies important qualitative differences in the𝑚 ≠ 0 modes, even in the very high Reynolds
number, near-ideal magnetohydrodynamic flows in real stars.

4.4.1 Zonal (𝑚 = 0) solutions
In Section 4.3.1, we noted the correspondence between L𝑚,𝑏

mag and the L𝑚,𝜈
rot operator which

appears in the rotational problem. The latter’s eigenfunctions are the Hough functions
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Figure 4.2: The inverse depth parameter 𝑎−1 plotted against 𝑏 for zonal (𝑚 = 0) modes
(Section 4.4.1). The quantities 𝑎−1 and 𝑏 have been roughly translated to 𝑟 and 𝑘𝑟 using
constant values 𝜔 = 2𝜋 × 102 𝜇Hz, 𝑁 = 102𝜔, 𝑣𝐴 = 0.1 km s−1, and 𝑅 = 10𝑅⊙, reasonable
parameters near the hydrogen burning shell in a first-ascent red giant. Ingoing gravity waves
of different ℓ follow the tracks to the right, such that they never propagate back towards the
surface of the star, and are converted to slow magnetic waves with high radial wavenumber.

Θ𝜈
ℓ𝑚
(𝜇) with eigenvalues𝜆𝜈

ℓ𝑚
, where ℓ denotes the degree of associated Legendre polynomial

obtained by following a given Hough function branch to 𝜈 = 0. When 𝑚 = 0, the
correspondence becomes exact, and

L𝑚,𝑏
mag𝑝

′(𝜇) = L𝑚,𝑏
rot 𝑝

′(𝜇) = d
d𝜇

(
1 − 𝜇2

1 − 𝑏2𝜇2
d𝑝′(𝜇)

d𝜇

)
. (4.25)

It can therefore be seen that the Hough functions Θ𝑏
ℓ𝑚
(𝜇) are also horizontal pressure 𝑝′(𝜇)

eigenfunctions of the 𝑚 = 0 case of the magnetic problem. Known properties of Hough
functions thus greatly inform the behavior of these eigenfunctions. In particular, because
(a real value of) 𝑏 sets 1/|𝑏 | as a length scale with respect to 𝜇in L𝑚,𝑏

mag, Hough functions
become approximately confined to an equatorial band of width Δ𝜇 ≈ 2/|𝑏 |.
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Figure 4.3: Fluid perturbations for the zonal (ℓ, |𝑚 |) = (5, 0) (top; Section 4.4.1) and
tesseral (5, 4) modes (bottom:; Section 4.4.2) as a function of the latitude 𝜇 = cos 𝜃, for
𝑏 = 𝑘𝑟𝑣𝐴/𝜔 = 0.5. The left, center, and right columns are the non-dimensionalized 𝑝′,
𝜉𝜃 , and 𝜉𝜙 perturbations, respectively, with black solid lines representing the real part and
red dashed lines representing the imaginary part. For low 𝑏, the eigenfunctions are close to
spherical harmonics.
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Figure 4.4: Fluid perturbations for the same mode branches as in Figure 4.3, but for
𝑏 = 𝑘𝑟𝑣𝐴/𝜔 = 1.3. The vertical arrows on the bottom right panel indicate the locations
and phases of delta functions. For 𝑏 > 1 (when parts of the mode are resonant with Alfvén
waves), both the 𝑚 = 0 and 𝑚 ≠ 0 modes become localized to the equator, but only the
𝑚 ≠ 0 modes gain sharp latitudinal features in 𝜉𝜃 and 𝜉𝜙 (owing to their vanishing outside
of the critical latitudes).
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Additionally, it is known that the Hough function eigenvalue 𝜆𝑏
ℓ0 ≈ (2ℓ − 1)2𝑏2 when |𝑏 | is

large, where the degree ℓ is equal to the number of latitudinal nodes for the 𝑚 = 0 case. A
heuristic argument for this behavior was given by Bildsten, Ushomirsky, et al. (1996), who
argue that the quadratic scaling with 𝑏 arises from requiring that the eigenfunctions’ zero
crossings be localized to the aforementioned equatorial band. The asymptotic behavior of
the eigenvalues of the Hough functions was later derived more rigorously by Townsend
(2003) (and more recently, to higher orders, by Townsend, 2020).

By setting 𝜆𝑏
ℓ0 equal to 𝑏2/𝑎2 (as required by the dispersion relation, Equation 4.15), one

obtains for the zonal modes that 𝑏 diverges to infinity at some finite cutoff height 𝑎 = 𝑎ℓ0∞
defined by

𝑎ℓ0∞ =
1

2ℓ − 1
. (4.26)

In other words, the “cutoff height” for these modes occurs at a radial magnetic field strength

𝐵∞
0 =

√︁
4𝜋𝜌0𝜔

2𝑟

(2ℓ − 1)𝑁 . (4.27)

This is approximately equal to the critical magnetic field strength derived in Fuller, Cantiello,
et al., 2015, although conceptually different. For ℓ = 1, we find numerically that the in-
coming wave approaches the cutoff height from above, and approaches infinite wavenumber
before reaching a turning point (as can be seen in Figure 4.2). However, for all other values
of ℓ, we find that the incoming wave first refracts outwards before approaching the cutoff
height from below.

In addition, for each mode, there is some critical field 𝐵𝑐 such that, for 𝐵0 > 𝐵𝑐 (or 𝑎 > 𝑎𝑐),
there is no solution for a real value of 𝑏. Only complex values of 𝑏 allow for solutions,
implying (for real 𝜔) complex wavenumbers 𝑘𝑟 and evanescent waves similar to those
discussed in Fuller, Cantiello, et al., 2015 and Lecoanet, Vasil, et al., 2017. Physically,
this means that 𝑚 = 0 modes will refract off of strong magnetic fields as discussed in the
works above. This is different from the rotation problem where gravito-inertial waves can
propagate at all radii where 𝑁 > 𝜔, regardless of the rotation rate.

Using a relaxation method (see Appendix 4.B.1), we solve for the 𝑚 = 0 eigenvalues and
shown in Figure 4.2, and the eigenfunctions shown in the top panels of Figures 4.3 and 4.4.
Because 𝜆𝑏

ℓ0 approaches a constant ℓ(ℓ+1) when 𝑏 approaches zero, 𝑎−1 =

√︃
𝜆𝑏
ℓ0/𝑏 diverges

as 𝑏 vanishes. In most cases, an internal gravity wave branch increases in |𝑏 | (∝ |𝑘𝑟 |) as it
is followed to higher 𝑎 (∝ 𝑁𝑣𝐴/𝑟), until it connects to a slow magnetic branch. The wave
then reaches a turning point at a maximum value of 𝑎 = 𝑎𝑐 (the “critical depth”), and it
is then forced to propagate back out to smaller values of 𝑎 (i.e., larger radii within a star)



4.4. Oscillation modes without dissipation 101

0246810

a−1

−101

−100

−10−1

−10−2

0

+10−2

+10−1

v g
,r
/v

A

` = 1

` = 2

` = 3
` = 4` = 5

2.29 1.83 1.37 0.92 0.46 0.00

r (R�)

Figure 4.5: The group velocities 𝑣g,𝑟 for 1 ≤ ℓ ≤ 5 zonal (𝑚 = 0) magnetogravity wave
branches. For most branches, ingoing magnetogravity waves refract back to larger radii at a
critical depth 𝑎𝑐 before approaching infinite radial wavenumber (as slow magnetic waves) at
some cutoff depth 𝑎∞. For the ℓ = 1 branch, the ingoing magnetogravity wave approaches
the cutoff depth from above, without refracting outwards. The inverse depth parameter 𝑎−1

has been roughly translated to a physical radius 𝑟 in the same manner as in Figure 4.2.

although |𝑏 | continues to increase. The value of |𝑏 | and the radial wavenumber then diverge
at the cutoff height defined in Equation 4.26. This behavior is consistent with Lecoanet,
Vasil, et al. (2017) (see Appendix 4.A.2) who discovered the same behavior in Cartesian
geometry.

The one exception is the ℓ = 1 case, where the wavenumber of the internal gravity wave
branch directly diverges when approaching 𝑎 from below—there is no turning point, and
no distinct slow magnetic branch. In both cases there is a maximum 𝑎 (minimum radius) to
which the wave can propagate, and the wavenumber 𝑘𝑟 diverges at a cutoff height within the
star. We thus find that the conclusions of Fuller, Cantiello, et al. (2015) and Lecoanet, Vasil,
et al. (2017) that zonal modes cannot propagate arbitrarily deep in a sufficiently magnetized
star to be robust for a dipole field geometry. In Table 4.1, we report values of the critical
depth 𝑎−1

𝑐 and cutoff depths 𝑎−1
∞ for these mode branches.
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Section (ℓ, |𝑚 |) 𝑏𝑐 |𝑎𝑐 |−1 |𝑎∞ |−1

dissipationless
𝑚 = 0

(Section 4.4.1)

(1, 0) ∞ 𝑎−1
∞

𝑎−1
∞ = 2ℓ − 1

(Equation 4.26)

(2, 0) 1.46 2.92
(3, 0) 1.15 4.64
(4, 0) 1.04 6.27
(5, 0) 0.99 7.85

dissipationless
𝑚 ≠ 0

(Section 4.4.2)

(1, 1) 0.94 1.99

𝑎−1
∞ ≈



2.26 ℓ − |𝑚 | = 0
4.29 ℓ − |𝑚 | = 1
6.30 ℓ − |𝑚 | = 2
8.30 ℓ − |𝑚 | = 3
10.31 ℓ − |𝑚 | = 4
...

(eigenvalues of Equation 4.33)

(2, 1) 0.93 3.45
(3, 1) 0.92 4.93
(4, 1) 0.92 6.42
(5, 1) 0.92 7.91
(2, 2) ∞ 𝑎−1

∞
(3, 2) 1.66 4.28
(4, 2) 1.02 5.90
(5, 2) 0.99 7.44
(3, 3) ∞ 𝑎−1

∞
(4, 3) ∞ 𝑎−1

∞
(5, 3) ∞ 𝑎−1

∞
(4, 4) ∞ 𝑎−1

∞
(5, 4) ∞ 𝑎−1

∞
(5, 5) ∞ 𝑎−1

∞

dissipative
real-𝑣p,𝑟

(Section 4.5.2)

(1, 1) 0.94 1.99

|𝑎∞ |−1 ≈ 2(ℓ − |𝑚 |) + 3
(Equation 4.44)

(2, 1) 0.93 3.45
(3, 1) 0.92 4.93
(4, 1) 0.92 6.42
(5, 1) 0.92 7.91
(2, 2) 1.31 2.66
(3, 2) 1.09 4.33
(4, 2) 1.02 5.90
(5, 2) 0.99 7.44
(3, 3) 1.73 2.95
(4, 3) 1.38 4.81
(5, 3) 1.21 6.53
(4, 4) 2.24 3.09
(5, 4) 1.74 5.07
(5, 5) ∞ |𝑎∞ |−1

Table 4.1: For the mode branches computed in Sections 4.4.1, 4.4.2, and 4.5.2, values of
𝑏 = 𝑏𝑐 and |𝑎𝑐 |−1 at the critical depth (the wave turning point), as well as values of the
cutoff height |𝑎∞ |−1. Rows with 𝑏𝑐 = ∞ and |𝑎𝑐 |−1 = |𝑎∞ |−1 denote cases where the mode
branch approaches |𝑎∞ |−1 from above. Because our calculations only extend to 𝑏 = 2.5, it
is possible that some branches reported as having 𝑏𝑐 = ∞ have turning points at 𝑏𝑐 > 2.5.
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Assuming that | ®𝑘 | ≈ 𝑘𝑟 , the radial components of the phase and group velocities 𝑣p,𝑟 and
𝑣g,𝑟 can be specified in terms of 𝑎 and 𝑏 as

𝑣p,𝑟

𝑣𝐴
=

1
𝑣𝐴

𝜔

𝑘𝑟
=

1
𝑏

(4.28a)

𝑣g,𝑟

𝑣𝐴
=

1
𝑣𝐴

𝜕𝜔

𝜕𝑘𝑟
=

1
𝑣𝐴

(
d𝜔
d𝑏

) (
d𝑘𝑟
d𝑏

)−1
= − d𝑎/d𝑏

2𝑎 − 𝑏 d𝑎/d𝑏
(4.28b)

where we have used 𝜔 =
√︁
𝑁𝑣𝐴/𝑟𝑎−1/2 and 𝑘𝑟 =

√︁
𝑁/𝑣𝐴𝑟𝑏𝑎−1/2 (from Equations 4.5 and

4.6).

While 𝑣p,𝑟 follows the motion of the wave pattern, 𝑣g,𝑟 tracks the transport of wave energy.
Figure 4.5 shows 𝑣g,𝑟 as a function of 𝑎−1. Ingoing gravity waves (whose 𝑣p,𝑟 and 𝑣g,𝑟 are
in opposite directions) refract at the critical depth 𝑎𝑐 where 𝑣g,𝑟 = 0. They then propagate
outwards as slow magnetic waves with 𝑣p,𝑟 and 𝑣g,𝑟 in the same direction, with progressively
slower group velocities as they approach the cutoff height. The group velocities for 𝑚 ≠ 0
modes (Sections 4.4.2 and 4.5.2) have similar behavior.

In Section 4.3.1, we pointed out that the Laplace tidal operator L𝑚,𝜈
rot (defined in Equation

4.17) has branches of mostly negative eigenvalues for 𝜈 > 1, which manifest as Rossby
waves on the segments of the branches which are positive. However, in the magnetic
problem, these branches are irrelevant when 𝜔 and 𝑁 are real, since the eigenvalues on
these branches are always negative. When 𝜆𝑏

ℓ0 < 0, this implies that 𝑏 (∝ 𝑘𝑟) is imaginary
(i.e., that the wave is evanescent). However, if 𝑏 is imaginary, then 𝑏2 = −|𝑏 |2, and L𝑚,𝑏

mag

becomes

L𝑚,𝑏
mag𝑝

′(𝜇) = d
d𝜇

(
1 − 𝜇2

1 + |𝑏 |2𝜇2
d𝑝′(𝜇)

d𝜇

)
− 𝑚2(

1 − 𝜇2) (
1 + |𝑏 |2𝜇2) 𝑝′(𝜇). (4.29)

Equation 4.29 clearly has a positive 𝑃,𝑄 on the domain of the eigenproblem, with no
internal singularities at all. Sturm–Liouville theory thus implies (contrary to our initial
assumption) that 𝜆𝑏

ℓ0 must be positive (see Section 4.3.2). This contradiction implies not
only that these 𝜆𝑏

ℓ0 < 0 branches are irrelevant to the magnetogravity problem but also that
the magnetogravity problem does not admit purely spatially evanescent solutions (for real
𝜔).

4.4.2 Tesseral and sectoral (𝑚 ≠ 0) solutions
When |𝑏 | < 1, the 𝑚 ≠ 0 horizontal eigenfunctions (representing tesseral and sectoral
modes) are simply solutions of a standard Sturm–Liouville problem with no internal singu-
larities, and can be solved numerically using standard techniques. However, in the |𝑏 | > 1



4.4. Oscillation modes without dissipation 104

case, the mode and Alfvén frequencies are resonant at a critical latitude, where Equation
4.12 develops an internal singularity (Section 4.3.2). We discuss the implications of this
critical latitude in the succeeding paragraphs.

In Section 4.3.3, it is argued (vis-à-vis power series expansion) that both the pressure
perturbation 𝑝′ and its first derivative d𝑝′/d𝜇 must vanish in the vicinity of the critical
latitudes 𝜇 = ±1/𝑏. We first consider an eigenfunction with eigenvalue 𝜆, and form a
“Rayleigh quotient” (cf. Equation 4.20), but only over the portion of the domain bounded
between 𝜇 ∈ (−1/𝑏, +1/𝑏) with 𝑏 > 0:

𝜆 =

∫ +1/𝑏
−1/𝑏

1−𝜇2

1−𝑏2𝜇2

���d𝑝′ (𝜇)
d𝜇

���2 d𝑥 +
∫ +1/𝑏
−1/𝑏

𝑚2

(1−𝜇2) (1−𝑏2𝜇2) |𝑝
′(𝜇) |2 d𝑥∫ +1/𝑏

−1/𝑏 |𝑝′(𝜇) |2 d𝜇
(4.30)

where the vanishing pressure perturbation and gradient justify discarding the boundary
term. It is easily seen that each of the integrands above is positive-definite over the entire
subdomain, and therefore 𝜆 > 0.

However, one may write a similar Rayleigh quotient over the range 𝜇 ∈ (1/𝑏, 1),

𝜆 =

∫ 1
1/𝑏

1−𝜇2

1−𝑏2𝜇2

���d𝑝′ (𝜇)
d𝜇

���2 d𝑥 +
∫ 1

1/𝑏
𝑚2

(1−𝜇2) (1−𝑏2𝜇2) |𝑝
′(𝜇) |2 d𝑥∫ 1

1/𝑏 |𝑝′(𝜇) |2 d𝜇
(4.31)

where it can be verified that the integrands in the numerator are now negative-definite. In
Equation 4.31, we have similarly discarded the boundary terms—this can be done at the
outer boundary 𝜇 = 1 so long as 𝑝′ and its derivative are finite there. This, in turn, implies
that 𝜆 < 0.

Of course, by definition, an eigenfunction must have just a single eigenvalue across the
entire domain. There are two ways to rectify these apparently contradictory conclusions.
One possibility is that the 𝜆 > 0 eigenfunctions vanish outside of the critical latitudes,
i.e., they are localized to a band of width Δ𝜇 = 2/|𝑏 |, bounded by the critical latitudes on
each side (as demonstrated in Section 4.4.1, the 𝜆 < 0 eigenvalues are not physical in this
problem). A second possibility is that only complex values of 𝑏 (and hence evanescent
waves) exist when the real part of 𝑏 is greater than unity.

In the first case, because the eigenfunction is confined to the range 𝜇 ∈ (−1/𝑏, +1/𝑏), we can
restate the problem as a standard Sturm–Liouville problem (with no internal singularities)
over this subinterval. In particular, Equation 4.12 can be rewritten using 𝑥 = 𝑏𝜇 as

d
d𝑥

(
𝑏2 − 𝑥2

𝑏2 (
1 − 𝑥2) d𝑝′(𝑥)

d𝑥

)
− 𝑚2(

1 − 𝑥2) (
1 − 𝑏2𝑥2) 𝑝′(𝑥) + 1

𝑎2 𝑝
′(𝑥) = 0 (4.32)
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over the range 𝑥 ∈ (−1, +1). We solve for both the eigenvalues and eigenfunctions by solving
Equation 4.12 when 𝑏 < 1 and Equation 4.32 when 𝑏 > 1, again using the relaxation method
(Appendix 4.B.1). The eigenvalues for ℓ, |𝑚 | ≤ 5 are shown in Figure 4.6, and example
eigenfunctions are shown in the bottom panels of Figures 4.3 (for 𝑏 < 1) and 4.4 (for
𝑏 > 1), respectively. While the eigenfunctions are close to spherical harmonics for low
𝑏 (Figure 4.3), they become formally confined between the critical latitudes when 𝑏 > 1,
corresponding to resonances with Alfvén waves. This is in contrast to the 𝑚 = 0 solutions
which, although also experiencing some degree of equatorial confinement, are not forced
to vanish outside of the resonant latitudes.

When 𝑏 is large (compared to |𝑚 |), Equation 4.32 approaches

d
d𝑥

(
1

1 − 𝑥2
d𝑝′(𝑥)

d𝑥

)
+ 1
𝑎2 𝑝

′(𝑥) = 0. (4.33)

Equation 4.33 is a generalized eigenvalue problem with eigenvalues 1/𝑎2. Therefore, we
see that 𝑎 approaches a constant cutoff value 𝑎ℓ𝑚∞ in the large 𝑏 limit—in other words, when
approaching some cutoff value 𝑎 = 𝑎ℓ𝑚∞ from either above or below, 𝑏 diverges. Moreover,
since Equation 4.33 does not depend on 𝑚, 𝑎ℓ𝑚∞ only depends on the specific solution of
Equation 4.33 which is approached by a given branch. Therefore, 𝑎 = 𝑎ℓ𝑚∞ is a function of
ℓ− |𝑚 |, which defines the number of nodes possessed by the generalized Legendre operator.
The cutoff values roughly lie between the𝑚 = 0 cutoff values 𝑎ℓ0∞ (defined in Equation 4.26),
which do not follow the same pattern (see Figure 4.6). Table 4.1 reports the eigenvalues of
Equation 4.33, which give the cutoff depths 𝑎−1

∞ for these 𝑚 ≠ 0 mode branches (as well as
the critical depths 𝑎−1

𝑐 ).

Another very important implication of Equation 4.32 is that the 𝑚 ≠ 0 branches cannot
extend to arbitrarily large 𝑎, i.e., in a sufficiently magnetized star, propagating modes cannot
extend arbitrarily deeply. When compared to Equation 4.18, the differential operator which
appears in Equation 4.32 has 𝑃,𝑄 > 0 everywhere on the domain, implying that 1/𝑎2 > 0,
i.e., 𝑎 cannot be infinity for any finite 𝑏. Furthermore, because the differential operator
in Equation 4.33 (the large-𝑏 limit of Equation 4.32) has 𝑃 > 0 and 𝑄 = 0 everywhere
on the domain, the Rayleigh quotient (Equation 4.20) still implies that 1/𝑎2 > 0 (in the
large-𝑏 limit) strictly, so long as d𝑝′(𝑥)/d𝑥 ≠ 0 somewhere on the domain. As this is
guaranteed to be the case for any perturbation for which 𝑝′(𝑥) ≠ 0 (since it must vary from
its boundary values 𝑝′(±1) = 0), 𝑎 may not approach infinity even in the limit that 𝑏 does.
If we consider the second possibility discussed above, that 𝑏 becomes complex, the waves
become evanescent at large values of 𝑎, meaning they no longer propagate. This extends
the conclusions of Fuller, Cantiello, et al. (2015) and Lecoanet, Vasil, et al. (2017) to the
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general 𝑚 ≠ 0 case that propagating magnetogravity waves cannot exist arbitrarily deeply
in a magnetized-enough star.

However, the localized nature of the pressure perturbations of the 𝑚 ≠ 0 modes has
important implications for the other perturbations (which also vanish outside of the critical
latitudes, by Equations 4.11). For example, since the leading-order dependence of the 𝑝′

eigenfunction near the singularity is quadratic (Section 4.3.3), the discontinuity of d2𝑝′/d𝜇2

across the critical latitudes implies via Equation 4.11b that the value of 𝜉𝜃 is discontinuous.
The fact that 𝜉𝜃 behaves as a step function near the singularity further implies (by the
continuity equation) that 𝜉𝜙 contains a delta function at the critical latitude. This behavior
is discussed in depth in Goedbloed and Poedts, 2004, and we comment further on this
behavior in Section 4.4.3.

Because of the singular denominator factors in L𝑚,𝑏
mag and implied discontinuous eigenfunc-

tions, it is important to consider that even infinitesimally little viscosity/Ohmic diffusivity
can induce finite damping as well as global changes to the eigenfunctions. We further
discuss these effects in Section 4.5. Nevertheless, the dissipationless solutions provide
some analytic insight to qualitative features that they share with dissipative solutions to the
magnetogravity wave problem.

4.4.3 Alfvén wave solutions
In Sections 4.3.3 and 4.4.2, we performed a power series expansion to probe the behavior
of the perturbations around the critical latitude 𝜇 = 1/𝑏 and solved for the 𝑚 ≠ 0 solutions.
However, as a second-order differential equation, one naïvely expects there to be two linearly
independent solutions. More formally, when performing a Frobenius expansion, one obtains
an indicial equation which can be solved to yield two solutions for the power law dependence
of the solution very near the singularity (as in Section 4.3.3). When these two values are not
separated by an integer, one immediately obtains these two linearly independent solutions.

However, the values of the indicial root 𝛼 found in Section 4.3.3 are separated by an integer,
so a Frobenius expansion in 𝑝′ is not particularly helpful in the search for the other solution.
Instead, by substituting Equations 4.11a and 4.11c into the continuity equation (Equation
4.10a), solving for 𝑝′ in terms of 𝜉𝜃 , and then substituting the result into the 𝜃 momentum
equation (Equation 4.10c), one obtains

d
d𝜇

[(
𝑏2

𝑎2 − 𝑚2(
1 − 𝜇2) (

1 − 𝑏2𝜇2) )−1 dZ𝜃 (𝜇)
d𝜇

]
+ 1 − 𝑏2𝜇2

1 − 𝜇2 Z𝜃 (𝜇) = 0 (4.34)

where
Z𝜃 (𝜇) ≡

√︃
1 − 𝜇2 𝜉𝜃 (𝜇)

𝑟
. (4.35)
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Figure 4.6: The inverse depth parameter 𝑎−1 plotted against 𝑏 for tesseral/sectoral (𝑚 ≠ 0)
modes for the singular eigenvalue problem described in Section 4.4.2. Both 𝑎−1 and 𝑏 have
been translated to 𝑟 and 𝑘𝑟 as in Figure 4.2. As in Figure 4.2, ingoing gravity waves follow
the lines to the right, and are converted to slow magnetic waves that do not propagate back
to the surface.

A power series expansion of the form

Z𝜃 (𝜇) = (𝜇 − 1/𝑏)𝛼
∞∑︁
𝑛=0

𝑐𝑛 (𝜇 − 1/𝑏)𝑛 (4.36)

gives an indicial equation which has a double root at 𝛼 = 0, consistent with the results of
Goedbloed and Poedts 2004 on a similar magnetohydrodynamic problem (see their Section
7.4).

Hereafter, for illustrative purposes, we focus on the restricted problem over the interval
𝜇 ∈ (0, 1) in order to focus on the critical latitude at 𝜇 = 1/𝑏 (this is justified in Section
4.B.1). The choice of 𝛼 = 0 gives a single everywhere-finite solution which can be called
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Z𝜃 (𝜇) = Z1(𝜇) = 𝑢(𝜇). In this case, a second linearly independent solution is given by

Z2(𝜇) = 𝑢(𝜇) ln |𝜇 − 1/𝑏 | + 𝑣(𝜇) (4.37)

which contains a logarithmic divergence at the critical latitude. Goedbloed and Poedts
2004 show that, while the coefficient Z1 may differ on either side of the singularity, the
coefficient in front of Z2 may not. The general solution for Z𝜃 is thus given by

Z𝜃 (𝜇) = [𝐴1Θ(𝜇 − 1/𝑏) + 𝐴2Θ(1/𝑏 − 𝜇)] Z1(𝜇) + 𝐴3Z2(𝜇) (4.38)

whereΘ is the Heaviside step function. Note that that the presence of three undetermined co-
efficients 𝐴1, 𝐴2, and 𝐴3 constrained by only two boundary conditions implies a continuous
spectrum of modes. This is a well-established consequence of singularities in differential
equations, especially those corresponding to Alfvén resonances in plasma physics (Appert
et al., 1974; Poedts et al., 1985; Rauf and Tataronis, 1995; Appert et al., 1998; Widdowson
et al., 1998; Rincon and Rieutord, 2003; Goedbloed and Poedts, 2004; Reese et al., 2004;
Pintér et al., 2007; Loi and Papaloizou, 2017). Physically, the continuous Alfvén spectrum
arises out of a lack of discretization in the 𝜃 direction, associated with mode localization in
geometries with field/plasma inhomogeneity.

In the treatment in this work, we do not explicitly impose boundary conditions in the radial
direction. However, doing so would discretize the allowed values of 𝑘𝑟 both for the global
modes and the Alfvén waves (see, e.g., Loi and Papaloizou, 2017). Alfvén resonances can
exist whenever 𝜔 = 𝑘𝑟𝑣𝐴 |𝜇 |, i.e., 𝑏 = 1/|𝜇 |. The continuum Alfvén spectrum therefore
occupies all frequencies 𝜔 with |𝑏 | ≥ 1 (i.e., every point to the right of 𝑏 = 1 in Figure
4.6). In practice, because each field line has a discrete spectrum of Alfvén waves (which are
analogous to oscillations on a closed loop), a real global mode resonates with the Alfvén
spectrum at only a finite (but large) number of locations (Loi and Papaloizou, 2017).

In problems possessing even vanishingly small amounts of dissipation, the Alfvén contin-
uum has important implications both for the global forms of the eigenfunctions and wave
damping. Hoven and Levin (2011) note that any dissipation couples fluid displacements
across flux surfaces, destroying the continuum nature of the Alfvén spectrum (see Section
4.6.1). In Section 4.5, we find that including dissipation produces discrete spectra for which
only a specific linear combination of 𝑢(𝜇) and 𝑣(𝜇) are truly eigenfunctions.

Because Alfvén waves are not associated with a pressure perturbation, the Lagrangian tem-
perature perturbation vanishes and therefore does not produce bulk brightness fluctuations
which would be asteroseismically detectable in the light curve (Houdek and Dupret, 2015).It
may be possible to observe their signature in surface velocity fluctuations, if the waves do
not damp before reaching the surface.
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Figure 4.7: The inverse depth parameter 𝑎−1 plotted against 𝑏 for non-axisymmetric 𝑚 ≠ 0
modes, with finite dissipation and real 𝜔 (Section 4.5.1). The color represents the complex
argument of 𝑘𝑟 , with the lower branches representing spatially evanescent solutions. Both
𝑎−1 and 𝑏 have been translated to 𝑟 and 𝑘𝑟 as in Figure 4.2. Unlike previous figures, gravity
waves do not propagate into the colored portions of the lines, where they become strongly
evanescent. Instead, they are refracted upwards onto a slow magnetic wave branch not
shown here (see Figure 4.10).

4.5 Oscillation modes with dissipation
So far, we have considered the mathematical problem where we have formally set all
dissipation to zero. In this Section, we consider the important role played by even small
amounts of dissipation in shaping the horizontal structure of magnetogravity modes.

As discussed in Section 4.4.3, the magnetogravity problem possesses a continuum of Alfvén
modes, each localized to a magnetic field line. Adjacent Alfvén modes will oscillate at
slightly different frequencies, corresponding to the slightly different Alfvén frequencies of
their field lines. This quickly leads to a dephasing process called “phase mixing,” a kind of
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quasi-damping which, while formally reversible in ideal magnetohydrodynamics, leads to
finite energy damping under any (arbitrarily small) amount of dissipation. Interestingly, this
energy damping approaches a finite value in the limit of even a vanishingly small dissipation,
meaning that its role cannot be ignored even in stars where dissipative processes are usually
considered to be negligible. For further discussion of phase mixing and its associated
energy dissipation, see Goedbloed and Poedts (2004).

If dissipation, in the form of fluid viscosity and Ohmic diffusion, are included, the linearized
horizontal momentum and induction equations are modified to

−𝜌0𝜔
2 ®𝜉ℎ = −∇𝑝′ + 1

4𝜋

(
®𝐵0 · ∇

)
®𝐵′ + 𝑖𝜔𝜌0𝜈∇2 ®𝜉ℎ (4.39a)

®𝐵′ =
(
®𝐵0 · ∇

)
®𝜉 − 𝑖(𝜂/𝜔)∇2 ®𝐵′ (4.39b)

where we continue to assume the hierarchy of variables described in Section 4.2.1 (including
taking ∇2 ≈ −𝑘2

𝑟 ). In Equations 4.39, 𝜈 and 𝜂 denote the kinematic viscosity and magnetic
diffusivity, respectively. We note in passing that the latter is expected to dominate the
overall dissipation, but that both terms have a similar impact on the solutions.

Equations 4.39a and 4.39b can be combined to obtain

∇ℎ𝑝′ = 𝜌0𝜔
2
(
1 − 𝑏2𝜇2 − 𝑖𝑐

)
®𝜉ℎ (4.40)

where 𝑐 is given by
𝑐 = 𝑐𝜈𝑏

2 + 𝑐𝜂𝑏4𝜇2 (4.41)

where

𝑐𝜈 =
𝜈𝜔

𝑣2
𝐴

(4.42a)

𝑐𝜂 =
𝜂𝜔

𝑣2
𝐴

. (4.42b)

In deriving Equations 4.40 and 4.41, we have assumed that 𝑘2
𝑟 𝜂/𝜔 ≪ 1. Note that, because

the effect of 𝑐 ≪ 1 is to shift the poles slightly off of the real line into the complex plane,
the exact form of 𝑐 does not matter, and it suffices to take it to be a small, real constant.
Moreover, since dissipation is most important near the critical latitudes 𝜇 = ±1/𝑏, both
terms scale roughly as ∝ 𝑏2 in the most affected regions.

Overall, the operator L𝑚,𝑏
magthen takes the new form

L𝑚,𝑏
mag𝑝

′(𝜇) = d
d𝜇

(
1 − 𝜇2

1 − 𝑏2𝜇2 − 𝑖𝑐
d𝑝′(𝜇)

d𝜇

)
− 𝑚2(

1 − 𝜇2) (
1 − 𝑏2𝜇2 − 𝑖𝑐

) 𝑝′(𝜇) (4.43)
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Figure 4.8: Fluid perturbations for the tesseral (ℓ, |𝑚 |) = (5, 4) modes for
√︁

Re(𝑏2) = 1.3
calculated numerically in the dissipative case where either 𝜔 is real (top; Section 4.5.1), or
𝑣p,𝑟 = 𝜔/𝑘𝑟 is real (bottom; Section 4.5.2). These eigenfunctions should be compared to
those shown in the bottom panels of Figure 4.3 for the discontinuous case.

where 𝑐 encodes the dissipative processes in the problem, and “softens” the singularity.

We note in passing that terms dependent on the horizontal field 𝐵ℎ may be significant at
the critical latitudes where dissipation is expected to be most important. The inclusion of
such terms introduces higher-order horizontal derivatives to the linearized equations and
greatly increases their complexity. Nevertheless, we expect that the parameterization above
in terms of 𝑐 will still physically select the right branch of solutions, in the limit of small
dissipation. In Section 4.6.1, we comment further on the importance of such terms near the
critical latitudes.

In the following subsections, we present numerical solutions for the dissipative magne-
togravity eigenproblem (details in Appendix 4.B.2). Section 4.5.1 considers modes with
real𝜔 but complex 𝑘𝑟 , i.e., possibly spatially evanescent modes, and Section 4.5.2 considers
modes with real radial phase velocity 𝑣p,𝑟 = 𝜔/𝑘𝑟 (approximating the case of propagating
waves). We will show that, while the analysis of Section 4.4.2 provides insights into re-
alistic modes, the presence of dissipation introduces notable deviations from the idealized
behavior.

4.5.1 Numerical solutions of the evanescent branch
We first consider the case where 𝜔 is real but 𝑘𝑟 is allowed to be complex (i.e., allowing
solutions to be spatially evanescent). This corresponds to fixing 𝑎 ∝ 𝜔−2 to be real but
allowing 𝑏 ∝ 𝑘𝑟/𝜔 to be complex. As described in Appendix 4.B.2, we solve for the
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eigenfunctions of the operator in Equation 4.43 up to ℓ, |𝑚 | = 5 (using 𝑐 = 10−3) while
allowing the complex argument of 𝑏 to vary. For consistency, we search for only solutions
with Im(𝑏) ≥ 0, although each such evanescent branch is accompanied by a conjugate
branch of solutions.

The eigenvalues are shown in Figure 4.7 as a function of |𝑏 |. When |𝑏 | ≲ 1 (i.e., weak
magnetic fields), the singularity does not lie on the domain and dissipation does not play a
major role. For decreasing values of 𝑐, 𝑏 approaches a real number, as expected, and the
solutions are nearly identical to those discussed in Section 4.4.2.

However, for |𝑏 | > 1, there are significant qualitative differences between the discontinous
solutions of Section 4.4.2 and the dissipative solutions. Even in the limit of 𝑐 → 0, the
imaginary part of 𝑏 does not correspondingly vanish, although (as we discuss below) its
limiting value is sometimes quite small. This implies that the corresponding eigenfunctions
are still “smoothed” with respect to the discontinuous solutions even in the 𝑐 → 0 limit.

For some branches of modes, there is a range extending from |𝑏 | = 1 to some intermediate
value of |𝑏 | where Im(𝑏) is small when 𝑐 ≈ 0. In these intermediate ranges, the real
parts of 𝑝′, 𝜉𝜃 , and 𝜉𝜙 strongly resemble smoothed versions of the discontinuous solutions
described in Section 4.4.2 (e.g., the top panel of Figure 4.8). In particular, 𝜉𝜃 has a
smoothed step-like jump across the singularity, and 𝜉𝜙 retains a smoothed, but narrow, peak
there. Interestingly, the imaginary part of 𝜉𝜃 approaches the logarithmic Alfvén “spike”
solutions described in Section 4.4.3—the numerical solution is thus a close approximation
of a superposition of these two solutions predicted in Section 4.4.3. These solutions can
be visualized as equatorially focused magnetogravity modes which oscillate 𝜋/2 out of
phase with an Alfvén mode. This closely resembles the example shown in Figure 11.2 by
Goedbloed and Poedts (2004) (in a similar magnetohydrodynamic problem), as well as the
numerical results of Lecoanet, Bowman, et al. (2022). We emphasize that, because the
imaginary part of 𝑏 does not approach zero in the 𝑐 → 0 limit, the “smoothing” does not
go away even in this limit. It appears that the size of the intermediate range of |𝑏 | for which
Im(𝑏) is small appears to increase with |𝑚 | for fixed ℓ. However, the origin of this trend is
so far unclear.

In all branches, for large enough |𝑏 | ≳ few, the imaginary part of 𝑏 found by the solver
becomes large, and 𝑎−1 dips as the solver follows an evanescent branch deeper into the star.
At large 𝑏, all of the evanescent mode branches we solve for approach Im(𝑘𝑟)/Re(𝑘𝑟) = 1
(i.e., arg(𝑘𝑟) → +𝜋/4) such that waves radially decay in the same direction as they travel.
In this regime, the eigenfunctions approach horizontally traveling waves which propagate
away from the equator (e.g., top panel of Figure 4.9), as shown by the relative phases of
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Figure 4.9: Fluid perturbations for the same mode branches as in Figure 4.8, but for√︁
Re(𝑏2) = 2.5.

the real and imaginary eigenfunctions. The conjugate branches are expected to have the
opposite behavior, with the eigenfunctions approaching horizontally traveling waves which
propagate toward the equator. Note that, because the values of 𝑏 (and therefore 𝑘𝑟) for
these equator-ward and pole-ward traveling solutions are complex conjugates of each other,
they exponentially decay in radius in opposite directions, and it is generally not possible to
superpose them to form a wavefunction which is a horizontal standing wave at all radii.

Overall, the behavior at |𝑏 | > 1 is very complex and difficult to characterize from first
principles. Branches often have multiple “kinks” in addition to the initial one at |𝑏 | = 1
characterizing the transition from propagation to evanescence. We suspect these kinks
are related to avoided crossings between different evanescent branches of magnetogravity
waves.

However, these branches represent modes that are evanescent on short length scales, im-
plying very little wave energy propagates to larger depths. Hence, it seems clear that in
the dissipative case, there are no propagating mode branches which extend arbitrarily deep
into the star. This extends the two-dimensional results of Lecoanet, Vasil, et al. (2017)
to non-axisymmetric modes. Physically, evanescent waves indicate the presence of either
total internal reflection or (in this case) refraction. Unless the radial extent of the core is
≲ 1/Im(𝑘𝑟), the wave power transmitted by these evanescent waves through the core is
vanishingly small, and conservation of energy thereby enforces that the rest of the energy
(which is the vast majority) be converted into some kind of outgoing propagating wave
(Section 4.5.2).
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4.5.2 Numerical solutions of the propagating branch
It is natural to search for solutions where waves are purely propagating (real 𝑘𝑟) but 𝜔 is
complex (corresponding to decay). However, we find that our relaxation approach is unable
to solve this particular problem formulation. Instead, we consider the case where the radial
phase velocity 𝑣p,𝑟 = 𝜔/𝑘𝑟 is real, which is equivalent to taking 𝑏 = 𝑣𝐴/𝑣p,𝑟 to be real
(placing the singularity as close to the real line as possible), but allowing 𝑎 ∝ 𝜔−1 to be
complex (i.e., so that arg(𝑘𝑟) = arg(𝜔) ≠ 0). The eigenvalues for these calculations are
shown in Figure 4.10.

Interestingly, in this formulation, the eigenvalues have similar qualitative behavior to dis-
continuous case in Figure 4.6. They reach some maximum |𝑎 | at 𝑏 ∼ 1, at which point
the waves turn and propagate outwards onto a slow magnetic branch which asymptotes
to a finite cutoff height at infinite wavenumber. This corroborates the basic picture that
propagating modes with real (or nearly real) 𝑘𝑟 and 𝜔 cannot exist in a strongly magnetized
star, and that gravity waves are converted to slow magnetic waves by strong magnetic fields.
Table 4.1 reports the critical and cutoff depths |𝑎𝑐 |−1 and |𝑎∞ |−1 for these solutions.

However, there are some interesting features unique to this problem, which were unantici-
pated by the discontinuous solutions. First, the “cutoff” values of |𝑎 | where the wavenumbers
diverge are approximately

|𝑎∞ | ≈
1

2(ℓ − |𝑚 |) + 3
. (4.44)

This deviates from the expected cutoff heights for 𝑚 ≠ 0 modes, which are the solutions to
Equation 4.33 and lie close to even numbers rather than odd numbers. The 𝑚 = 0 modes
have 𝑎−1

∞ = 2ℓ − 1 (Figure 4.2), offset by 4 (in inverse depth) for the same values of ℓ − |𝑚 |.
This should not be too surprising because, at 𝑏 ≳ 1, the mode eigenfunctions are very
different in each case. The modes described here gain substantial complex parts (unlike the
𝑚 = 0 modes), and logarithmic “spike” features appear in the real part of 𝑝′, as shown in
the bottom panel of Figure 4.9.

Figure 4.10 also shows that the imaginary components of 𝑘𝑟 and 𝜔 are largest for 𝑏 slightly
larger than unity, reaching up to ≈ Re(𝜔)/12 in the (1, 1) case. For larger values of
𝑏, the complex arguments of 𝑘𝑟 and 𝜔 appear to decrease to roughly constant values of
arg(𝜔) = arg(𝑘𝑟) ∼ 10−2. However, due to numerical difficulty, we are unable to confirm
this behavior for 𝑏 ≳ 2.5 or much lower values of 𝑐.

At values of 𝑏 just above unity, the eigenfunctions behave similarly to the discontinous so-
lutions, with a sharp peak in 𝜉𝜙 and a discontinuity in 𝜉𝜃 at the critical latitude (Figure 4.8).
In the dissipationless solutions (Section 4.4.2), we assumed that a given mode oscillates
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Figure 4.10: The inverse depth parameter 𝑎−1 plotted against 𝑏 for tesseral/sectoral (𝑚 ≠ 0)
modes, with finite dissipation and real 𝑣p,𝑟 = 𝜔/𝑘𝑟 (Section 4.5.2). The color represents the
complex argument of 𝜔, which is enforced to be equal to the complex argument of 𝑘𝑟 . Both
𝑎−1 and 𝑏 have been translated to 𝑟 and 𝑘𝑟 as in Figure 4.2. As in previous figures, waves
follow these tracks to the right as they are converted from gravity waves to slow magnetic
waves.

entirely in phase (i.e., each perturbation was either totally real or totally imaginary). For dis-
sipative modes with 𝑏 only slightly larger than 1, this is still true—for example, for the (5, 4)
mode at 𝑏 = 1.3 (lower panels of Figure 4.8), the delta function feature in 𝜉𝜙 oscillates in
phase with the bulk oscillation between the critical latitudes (both are imaginary). However,
at higher values of 𝑏 (lower panels of Figure 4.9), the sharp/discontinuous features oscillate
𝜋/2 out of phase with the bulk oscillation (e.g., the delta function in 𝜉𝜙 becomes real). The
spike in Im(𝜔) (which occurs on the slow magnetic branch) coincides with a transition
between these two regimes. This latter behavior is not captured by the non-dissipative
solution, which assumes that 𝜉𝜙 and 𝜉𝜃 are purely real. It is thus unsurprising that the cutoff
depths 𝑎−1

∞ predicted by the non-dissipative solution (Section 4.4.2) do not coincide with
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those predicted by Equation 4.44. For increasingly small values of 𝑐, the spike features of the
eigenfunctions at the critical latitudes become increasingly sharp and narrow. This makes
calculating the eigenfunctions increasingly numerically challenging for smaller viscosities
(we have chosen 𝑐 = 10−2 here). Decreasing 𝑐 from this value appears to steadily decrease
Im(𝜔) for small values of 𝑏, but only marginally for large values of 𝑏. We suspect this is due
to the finite damping rates that persist at vanishing viscosities/diffusivities for waves with
these sorts of internal singularities, as discussed earlier. If true, the upward-propagating
branch would also be radially evanescent: this complicates the energetic argument that
all initially ingoing wave power must be carried by out by the upward-propagating branch
rather than the ingoing evanescent one described in Section 4.5.1. However, since in this
case the damping rate Im(𝜔) remains finite, we believe it is most likely that the wave en-
ergy be dissipated on the upward-propagating branch, rather than transmitting through the
core. Moreover, as 𝑘𝑟 → 0 on this branch, upward-propagating waves will eventually attain
high enough wavenumbers that they should be efficiently damped by even arbitrarily small
dissipation 𝑐: the argument that the wave energy is dissipated in the upward-propagating
branch would then be the same as previous.

4.6 Further remarks
4.6.1 Behavior of the wavefunctions near the equator and critical latitudes
A primary assumption of our analysis is that perturbations vary much faster in the radial
direction than the horizontal direction. This allowed us to effectively decouple the radial
dependence of the mode from the horizontal dependence, and solve the latter independently
as a two-dimensional problem over the sphere. The problem then reduces to a more
tractable one-dimensional eigenproblem by making an assumption that the equilibrium
field is axisymmetric (although some analytical insight is still available if this assumption
is relaxed; see Section 4.6.3). For gravity modes at zero field, the ratio of 𝑘𝑟/𝑘ℎ = 𝑁/𝜔 is
large, and this assumption is very reasonable. This assumption has also been instrumental
in defining a hierarchy of variables whereby buoyancy and magnetism contribute at similar
strengths to mode restoration (via Equation 4.3), and that 𝑘𝑟 dominates the magnetic
interaction. However, this hierarchy can be subverted in a few ways.

First, in regions where the magnetic field is nearly horizontal, 𝑣𝐴𝑟 ≈ 0, and the magnetic
interaction ( ®𝑘 · ®𝑣𝐴)2 = 𝑘2

𝑟 𝑣
2
𝐴𝑟

+ 2𝑘𝑟 𝑘ℎ𝑣𝐴𝑟𝑣𝐴ℎ + 𝑘2
ℎ
𝑣2
𝐴ℎ

is no longer dominated by the radial
part. The other magnetic terms become comparable when 𝑘𝑟𝑣𝐴𝑟 ≲ 𝑘ℎ𝑣𝐴ℎ, which is when
𝑣𝐴𝑟/𝑣𝐴ℎ ≲ 𝑘ℎ/𝑘𝑟 ∼ 𝜔/𝑁 . For a dipole field, this occurs in a very narrow band around
the equator with angular extent 𝛿𝜃 ∼ 𝜔/𝑁 ≪ 1. It is possible that mode confinement
between the critical latitudes found in our work may “funnel” refracted magnetogravity
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waves into radially propagating solutions which may produce detectable surface power
in outgoing magnetogravity waves. We further investigate such equatorially confined
magnetogravity waves in Appendix 4.C. While such waves may exist, they have large
horizontal wavenumbers and very large radial wavenumbers, so they may be difficult to
observe.

The usual hierarchy can also be subverted very near the critical latitudes, where the solutions
described in this work attain very sharp horizontal features. More specifically, our solutions
predict that 𝜉𝜃 has a discontinuity and 𝜉𝜙 is a delta function according to the solutions in
Section 4.4.2. While the presence of dissipation (Section 4.5) may smooth these sharp
features somewhat, the sharpness of the features is still cause for concern in realistic stars
where these effects are small. As in the example above, the 𝑘ℎ𝑣𝐴ℎ terms will become
important near the critical latitude and can regulate the singularity in our equations.

Now assuming a WKB approximation in both the radial and horizontal directions and a
purely poloidal field (𝐵𝜙 = 0), the horizontal momentum equations become

𝜔2 ®𝜉ℎ =
(
®𝑘 · ®𝑣𝐴

)2 ®𝜉ℎ

=

(
𝑘2
𝑟 𝑣

2
𝐴𝑟 + 2𝑘𝑟 𝑘𝜃𝑣𝐴𝑟𝑣𝐴𝜃 + 𝑘2

𝜃𝑣
2
𝐴𝜃

)
®𝜉ℎ (4.45)

where we have ignored the pressure term (note that the Alfvén waves which cause the sharp
features at the critical latitudes cannot be restored by pressure).

Keeping the dominant terms (and still assuming 𝑘𝑟 ≫ 𝑘ℎ, 𝐵𝑟 ∼ 𝐵ℎ),

𝜔2 − 𝑘2
𝑟 𝑣

2
𝐴𝑟 = 2𝑘𝑟 𝑘𝜃𝑣𝐴𝑟𝑣𝐴𝜃 . (4.46)

Because the left-hand side of Equation 4.46 is close to zero near the critical latitude, we can
perform a Taylor expansion in the horizontal direction:

−𝑘2
𝑟

𝜕𝑣2
𝐴𝑟

𝜕𝜃
𝛿𝜃 ≈ 2𝑘𝑟 𝑘𝜃𝑣𝐴𝑟𝑣𝐴𝜃 ≈

2𝑘𝑟𝑣𝐴𝑟𝑣𝐴𝜃
𝑟𝛿𝜃

(4.47)

where 𝛿𝜃 is the horizontal angular distance from the resonance point where |𝜔 | = |𝑘𝑟𝑣𝐴𝑟 |.
Here we have assumed that the displacements vary on an angular length scale 𝛿𝜃 such that
𝑘𝜃 ∼ 1/(𝑟𝛿𝜃). Appendix 4.D solves for the “wavefunction” ®𝜉ℎ more precisely.

From Equation 4.47, we then see that the horizontal field terms terms become important
when

|𝛿𝜃 | ≲

√︄
𝑣𝐴𝜃

𝑘𝑟𝑟

����𝜕𝑣𝐴𝑟𝜕𝜃

����−1
. (4.48)
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However, since 𝑣𝐴𝑟 ∼ 𝑣𝐴𝜃 typically,

1
𝑣𝐴𝜃

𝜕𝑣𝐴𝑟

𝜕𝜃
∼ 𝜕 ln 𝑣𝐴

𝜕𝜃
∼ 1 (4.49)

for a large-scale (e.g., dipole) magnetic field. Therefore, near the critical latitudes, we
expect that the wavefunction ®𝜉ℎ will vary over an angular scale

|𝛿𝜃 | ∼ 1
√
𝑘𝑟𝑟

. (4.50)

This angular scale also naturally appears in Appendix 4.D, where it describes the angular
wavenumber of Alfvén waves near the critical latitude. Note that, because magnetogravity
waves with 𝑚 = 0 have 𝜉𝜙 = 0, they cannot couple to 𝑚 = 0 Alfvén waves, which are
purely toroidal (i.e., 𝜉𝜃 = 0; Loi and Papaloizou, 2017). This physically explains why sharp
fluid features near critical latitudes do not appear in our 𝑚 = 0 solutions (Section 4.4.1), or
earlier two-dimensional solutions (Lecoanet, Vasil, et al., 2017).

Physically, the Alfvén and magnetogravity waves, which are decoupled in the dispersion
relation of Equation 4.3, may become strongly coupled in a narrow band due to additional
small terms left out of Equation 4.3. Because the Alfvén waves are expected to have angular
scales 𝛿𝜃 ∼ 1/

√
𝑘𝑟𝑟 due to the effect of the horizontal field, coupling between Alfvén and

magnetogravity waves should also occur within ∼𝛿𝜃 of a critical latitude (due to geometric
overlap). This coupling may allow a small amount of gravity wave power to be converted
into outgoing Alfvén waves. These Alfvén waves would then propagate along a closed field
line, eventually curving back inwards to the critical latitude on the opposite hemisphere
of the star. Here, they could be converted back into outgoing gravity waves, potentially
allowing for some wave power to escape the core. This possibility could be investigated
with numerical simulations.

Additionally, the presence of shear stress would also cause quantifiable departures from
the horizontal mode structure derived in this work. While plasmas do not generally have
shear restorative forces, Hoven and Levin (2011) argue that tangling in the equilibrium
magnetic field at small scales can produce a small effective shear modulus. We investigate
this possibility further in Appendix 4.E, finding that it causes the wave function to have an
Airy function horizontal dependence near the critical latitude.

Out of these effects, it is most likely that the horizontal field terms have the largest impact
on the mode structure (i.e., 𝛿𝜃 as given by Equation 4.50 most accurately characterizes
when our solutions break down). Both dissipation and shear stress (due to, e.g., tangling)
are likely to be small in real stars, but any physical equilibrium fields must have horizontal
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magnetic fields 𝐵ℎ ∼ 𝐵𝑟 . In general, the importance of horizontal-field terms near the
equator and critical latitudes strongly suggests that a search for global solutions with those
terms included is the natural next step for accurately characterizing strong-field g modes.
However, the solutions become non-separable in the radial and horizontal directions, and
a solution of the full, coupled partial differential equations would be necessary. A global
treatment of magnetogravity modes dramatically increases the complexity of any numerical
mode calculations, but is likely to reveal important (and hard to predict) departures from a
separable treatment (as it has in eigenmode problems in differentially rotating planets, e.g.,
Takata and Saio, 2013; Dewberry et al., 2021). While we believe our solutions to capture
the basic behavior of the waves, the effects of horizontal magnetic fields discussed here are
likely to be the more important effect in real stars, and should be examined more thoroughly
in future work.

4.6.2 The continuum spectrum and nonharmonic solutions
In this work, we have focused on harmonic solutions with time dependence ∝ 𝑒𝑖𝜔𝑡 , for
some global oscillation frequency 𝜔. However, the unusual nuances introduced by the
internal singularity suggest more general approaches may be appropriate. For example,
standard Sturm–Liouville theory only ensures that the eigenfunctions of L𝑚,𝑏

mag form a basis
for a real 𝑏 ∝ 𝑘𝑟 in the absence of internal singularities. Thus, while we have mostly
discussed the discrete spectrum of eigenfunctions of L𝑚,𝑏

mag, it is not guaranteed that an
arbitrary perturbation can be decomposed into them, both because 𝑏 is not necessarily real
and because different modes at the same radius are eigenfunctions of different differential
operators (i.e., L𝑚,𝑏

mag for different 𝑏). In general, the continuous spectrum of Alfvén waves
(i.e., Section 4.4.3) plays a major role.

Similar frequency-dependent internal singularities often appear in problems related to
differentially-rotating fluids. In such problems, authors such as Burger (1966) and Bal-
binski (1984) apply more general Laplace transform techniques involving contour integrals
to solve for the time dependence of possible solutions. Specifically, Balbinski (1984)
find that the continuum spectrum in a differentially-rotating cylinder corresponds to per-
turbations which oscillate periodically and also decay as a power law in time. In those
“quasi-modal” solutions, the oscillation frequency depends on position, and hence the
solutions are not separable in space and time.

Levin (2007) and Hoven and Levin (2011) intuitively explain the origin of such non-
exponential time dependence in the context of the coupling of a magnetar crust mode to
an Alfvén continuum in the magnetar bulk. In a toy model analogous to this problem, a
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“large” oscillator (the crust mode) couples to a dense collection of “small” oscillators (the
Alfvén modes). In our case, the “large" oscillator would be an ingoing gravity wave. At
early times, the large oscillator’s amplitude exponentially decays as energy is distributed
among the small oscillators. However, the time dependence transitions to algebraic decay
to a finite, nonzero amplitude driven by coherent driving from small oscillators at the edges
of the continuum. In the presence of dissipation, such edge modes retain energy for much
longer than modes in the interior of the continuum. It is unclear how these edge modes
manifest in the simplified model of magnetogravity waves presented in this work.

Interestingly, Boyd (1981) note in their Appendix B that the decomposition of perturbations
into either real-eigenvalue continuum modes or complex-eigenvalue discrete modes are
equivalent and complementary approaches. The eigenfunctions of the modes may diverge
at some points, similar to an Alfvén wave confined to a single field line. However, a
superposition of a continuous spectrum of modes can produce a finite-valued function.
Hence, examining single continuum modes can be misleading, but they can be superposed
to produce unusual decay behavior as in Balbinski (1984). In future work, application of
these insights to the magnetogravity wave problem may shed more light on what to expect
in real stars, including the possibility of quasi-modes with non-harmonic time dependence.

4.6.3 Magnetogravity waves in general geometries
In this work, we have focused on dipolar magnetic field configurations whose radial com-
ponents have angular dependence ∝ cos 𝜃 (Equation 4.9). However, many real stars have
more complex field morphologies (Maxted, Ferrario, et al., 2000; Tout, Wickramasinghe,
and Ferrario, 2004; Donati and Landstreet, 2009; Kochukhov, Lundin, et al., 2010; Szary,
2013; Kochukhov and Wade, 2016). In this Section, we generalize some of the arguments
made in Section 4.4 to more general magnetic fields of the form

𝐵𝑟 = 𝐵0(𝑟)𝜓(𝜃, 𝜙) (4.51)

where 𝜓 is a dimensionless function describing the horizontal dependence of the field. As
in Section 4.2.3, we use a WKB approximation such that terms dependent on the horizontal
component of the field are small and can be dropped. Without loss of generality, we can
rescale 𝜓 and 𝐵0 so that the maximum of |𝜓 | on the sphere is 1.

The general problem can be non-dimensionalized in the same way as described in Section
4.2.2. In particular, we still define 𝑏 and 𝑎 as in Equations 4.5 and 4.6, but interpreting 𝑣𝐴
as the maximum Alfvén speed at a given radius (which no longer necessarily occurs at the
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poles). Via Equations 4.2, the perturbations are given by

𝜉𝑟 =
𝑖𝑘𝑟

𝜌0𝑁2 𝑝
′ (4.52a)

®𝜉ℎ =
1

𝜌0𝜔2𝑟 (1 − 𝑏2𝜓(𝜃, 𝜙)2)
∇ℎ𝑝′ (4.52b)

𝜌′ =
𝑖𝑘𝑟

𝑔
𝑝′ (4.52c)

where we have defined the horizontal gradient,

∇ℎ = 𝜃
𝜕

𝜕𝜃
+ 𝜙 1

sin 𝜃
𝜕

𝜕𝜙
(4.53)

with the factor of 1/𝑟 excluded.

Substituting Equations 4.52 into the continuity equation (Equation 4.2a), we obtain

0 =
𝑏2

𝑎2 𝑝
′ + ∇ℎ ·

(
1

1 − 𝑏2𝜓2∇ℎ𝑝
′
)

(4.54)

We see that Equation 4.54 can be viewed as a partial differential equation to be solved over
a sphere of radius 𝑎−1 (i.e., Equation 4.54 can be rewritten without 𝑎 after defining some
∇𝑎 = 𝑎∇). In other words, the depth parameter 𝑎 parameterizes the effective “curvature” of
the spherical domain over which the horizontal equations are to be solved. Since we have not
assumed a specific magnetic field geometry here, the form of the differential eigenproblem
in Equation 4.4 is generic. In the case of an axisymmetric field, the two-dimensional angular
differential operator in Equation 4.54 can be reduced to a differential operator in 𝜃 only
(recovering, e.g., Equation 4.12, for a dipole field).

Equation 4.52b can be rearranged to

∇ℎ𝑝′ = 𝜌0𝜔
2𝑟

(
1 − 𝑏2𝜓2

)
®𝜉ℎ. (4.55)

We therefore see that, so long as ®𝜉ℎ is finite, ∇ℎ𝑝′ = 0 along any critical surface (|𝜓 | =
±1/|𝑏 |) as long as 𝑏 is real.

The vanishing directional derivative of 𝑝′ across the critical surface generalizes an analogous
result in Section 4.3.3 for the dipole geometry. Physically, this result simply reflects that, at
the site of an Alfvén resonance, magnetic tension completely accounts for the (horizontal)
restoring force of the mode, and the pressure perturbation makes no contribution. This fact
was also used in Section 4.4.2 to show that dissipationless 𝑚 ≠ 0 solutions must vanish
outside of the critical latitudes.
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We can perform a similar analysis as in Section 4.4.2 by multiplying Equation 4.54 by 𝑝′∗

and integrating over the region of the sphere where |𝑏𝜓 | < 1 (i.e., where 𝜔 < 𝜔𝐴), denoted
by 𝑆<:

0 =
𝑏2

𝑎2

∫
𝑆<

|𝑝′|2 dΩ +
∫
𝑆<

𝑝′∗∇ℎ ·
(

1
1 − 𝑏2𝜓2∇ℎ𝑝

′
)

dΩ. (4.56)

The second term becomes∫
𝑆<

𝑝′∗∇ℎ ·
(

1
1 − 𝑏2𝜓2∇ℎ𝑝

′
)

dΩ

=

∫
𝑆<

∇ℎ ·
(

1
1 − 𝑏2𝜓2 𝑝

′∗∇ℎ𝑝′
)

dΩ −
∫
𝑆<

1
1 − 𝑏2𝜓2 |∇ℎ𝑝

′|2dΩ

=

∫
𝜕𝑆<

1
1 − 𝑏2𝜓2 𝑝

′∗∇ℎ𝑝′ · 𝑛̂ d𝜒 −
∫
𝑆<

1
1 − 𝑏2𝜓2 |∇ℎ𝑝

′|2dΩ

(4.57)

where we have first integrated by parts, and then applied the divergence theorem to the first
term (𝜕𝑆< denotes the boundary of 𝑆<, d𝜒 is an angular line element, and 𝑛̂ points out of
𝑆<). If the first (boundary) term in Equation 4.57 vanishes, then

𝑏2

𝑎2 =

∫
𝑆<

1
1−𝑏2𝜓2 |∇ℎ𝑝′|2 dΩ∫
𝑆<

|𝑝′|2 dΩ
> 0 (4.58)

generalizes Equation 4.30. However, this process can be repeated for 𝑆>, the region where
|𝑏𝜓 | > 1, to obtain

𝑏2

𝑎2 =

∫
𝑆>

1
1−𝑏2𝜓2 |∇ℎ𝑝′|2 dΩ∫
𝑆>

|𝑝′|2 dΩ
< 0. (4.59)

Since 𝑏2/𝑎2 may only have one sign or another for a given global mode, we see that modes
for which 𝑘𝑟 and𝜔 are both real (i.e., propagating and non-decaying) will be localized to the
region where 𝜔 < 𝜔𝐴 in the case when the boundary term in Equation 4.57 vanishes. This
condition will be satisfied when the complex winding number enclosed by 𝜕𝑆< is nonzero,
since 𝑝′ = const. on 𝜕𝑆<. This argument generalizes the result described in Section 4.4.2
that propagating, non-decaying 𝑚 ≠ 0 modes in the dipole geometry must be localized
between the critical latitudes.

4.6.4 Stable g modes in convective regions
Standard mixing-length theory assumes a slight superadiabatic temperature gradient such
that 𝑁2 < 0 in convective zones. While g modes in non-rotating, non-magnetized stars are
only present in stably stratified (radiative) regions, Lee and Saio (1997) show that buoyancy-
restored oscillatory modes (real 𝜔) can be stabilized even in convective regions (𝑁2 < 0) by
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sufficiently high rotation. In particular, when |Ω| > |𝜔|/2, the coefficient functions which
appear in the Laplace tidal operator L𝑚,𝜈

rot (Equation 4.17) are no longer strictly positive,
and it will possess negative eigenvalues 𝜆 < 0. In this case, 𝑘ℎ =

√
𝜆/𝑟 becomes imaginary,

and there exist solutions to 𝑘ℎ/𝑘𝑟 = 𝜔/𝑁 when 𝑁 is also imaginary. While standard g
modes under strong rotation tend to be localized to the equator, these rotationally stabilized
convective modes are instead localized near the poles (Lee and Saio, 1997).

However, the same argument can be applied to the magnetogravity problem, and gives
meaning to the negative branches of eigenvalues 𝜆 implied by Equation 4.12. In particular,
like L𝑚,𝜈

rot , the operator L𝑚,𝑏
mag (Equation 4.13) also contains coefficients which switch signs

over the domain. In this formalism, for oscillatory solutions with real 𝜔, 𝑎 becomes
imaginary, and one instead must solve

L𝑚,𝑏
mag𝑝

′ − 𝑏2

|𝑎 |2
𝑝′ = 0 (4.60)

where now the (negative) eigenvalues 𝜆 of L𝑚,𝑏
mag must satisfy

𝜆 = −𝑏2/|𝑎 |2 . (4.61)

In the case of no buoyancy (𝑁2 = 0) and relaxing the Boussinesq assumption, convective
regions are expected to sustain standard magnetohydrodynamic waves (Shu, 1991). On
top of these modes, the aforementioned negative eigenvalue branches hint at the existence
of buoyancy-restored oscillations in convective regions which are stabilized by magnetic
forces. By a similar argument as made in Section 4.4.2, Equation 4.60 implies that such
𝜆 < 0 modes would be exactly localized outside (rather than inside) the critical latitudes.
Moreover, while they require |𝑏 | > 1, there is no formal upper limit on the magnetic fields at
which they can exist, meaning they may exist in the convective cores of strongly magnetized
stars.

While the analogy to rotationally stabilized convective modes seems obvious, we note the
magnitude of the Brunt–Väisälä frequency |𝑁 | is typically extremely close to 0 in convective
zones, owing to the extremely efficient mixing caused by the convective instability. Note
that this feature is not unique to the magnetogravity problem, and would also be true
for the rotational problem considered by Lee and Saio (1997). This appears to violate a
fundamental assumption of our analysis that 𝑘𝑟/𝑘ℎ ∼ 𝑁/𝜔 is large, or at least implies that
stable convective oscillations which can accurately be described by our formalism must be
of very low frequency. Therefore, we strongly caution against using the formalism in this
work to make quantitative (or even strong qualitative) predictions about the properties of
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these modes. More detailed analyses relaxing this assumption are necessary to characterize
these modes accurately (if indeed they exist).

4.7 Summary
In this work, we have characterized the pulsation modes of a spherically symmetric, stratified
stellar structure with a strong dipole magnetic field. We focus on radiative zones with large
Brunt–Väisälä frequencies such that magnetogravity waves have short radial wavelengths.
We have assumed that

• the radial wavelength is everywhere much smaller than both the stellar structure length
(the radial WKB approximation) and the horizontal wavelength (i.e., the wavevector
is primarily radial),

• oscillations are incompressible and adiabatic,

• perturbations to the gravitational potential can be ignored (Cowling), and

• dissipative processes are either formally absent (Section 4.4) or small (Section 4.5).

Our chief conclusions are as follows:

1. Propagating zonal (𝑚 = 0) magnetogravity modes merge at a finite field with a branch
of slow magnetic waves whose wavenumbers diverge at a finite cutoff radius. Their
horizontal eigenfunctions are Hough functions for a dipolar magnetic field. Hence,
ingoing gravity waves are converted into slow magnetic waves at a critical magnetic
field strength similar to that derived in Fuller, Cantiello, et al., 2015. Above this field
strength, the modes become evanescent and cannot propagate. This is in agreement
with the results of Lecoanet, Vasil, et al. 2017 in a similar geometry.

2. Propagating sectoral and tesseral (𝑚 ≠ 0) modes also merge with branches of slow
magnetic waves whose wavenumbers diverge at a cutoff radius within the star. Like
𝑚 = 0 modes, ingoing gravity waves cannot propagate above a critical magnetic field
strength, and are instead converted to outgoing slow magnetic waves. For strong
fields and large wavenumbers, the modes are closely confined to the equator, and are
bounded by sharp features in the fluid displacement profile at critical latitudes where
the wave frequency is resonant with Alfvén waves.

3. Even vanishingly small dissipation can cause qualitative deviations from the problem
where dissipation is formally set to zero. This can be heuristically understood because
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viscosity allows for interaction between magnetogravity waves and the continuous
Alfvén wave spectrum. However, even for finite dissipation, the conclusion that
sufficiently high magnetic fields will destroy all propagating magnetogravity modes
is robust.

4. Near the critical latitudes and equator, magnetic tension terms associated with the
horizontal field are likely to affect the mode structure significantly. Thus, a global
solution which includes such terms is necessary to confidently characterize the mode
structure very near these regions. We speculate that such an analysis might reveal that
an observable amount of wave power may be able to escape a strongly magnetized
stellar core through coupling with Alfvén waves (at critical latitudes) or extremely
localized magnetogravity waves (near the equator).

Our analysis reinforces conclusions from earlier studies that strong magnetic fields should
convert gravity waves into slow magnetic waves that damp within stellar interiors, causing
magnetic fields to suppress the amplitudes of gravity modes in red giant stars (Fuller,
Cantiello, et al., 2015; Stello, Cantiello, Fuller, Huber, et al., 2016). However, it may
remain possible that higher-order WKB terms (neglected in our analysis) or modes with
non-harmonic time dependence (Section 4.6.2) could allow for some signatures of mixed
modes in observed power spectra as claimed by Mosser, Belkacem, et al. (2017). More
effort accounting for these effects will be required to robustly predict the magnetogravity
pulsation spectra of stars with strong magnetic fields.

4.A Magnetogravity eigenproblems in other geometries
In this Appendix, we non-dimensionalize the fluid equations for the geometries considered
by Fuller, Cantiello, et al. (2015) and Lecoanet, Vasil, et al. (2017), and show that they can
be interpreted as similar eigenvalue problems as considered in our work.

4.A.1 Fuller, Cantiello, et al. (2015): Uniform radial field model
The model presented by Fuller, Cantiello, et al. (2015) can be precisely reproduced by
adopting a purely uniform radial magnetic field,

®𝐵0 = 𝐵0(𝑟) 𝑟. (4.62)

Adopting a WKB approximation in the radial direction, we can define

𝑏F =
𝑘𝑟𝑣𝐴

𝜔
(4.63a)

𝑎F =

(
𝑁

𝜔

) (
𝑣𝐴/𝑟
𝜔

)
(4.63b)
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where 𝑣𝐴 = 𝐵0(𝑟)/
√︁

4𝜋𝜌0.

While such a monopolar field is clearly unphysical, it is also a useful toy model because
it retains the spherical symmetry of the zero-field problem. Therefore, its horizontal
eigenfunctions are simply spherical harmonics, and its dispersion relation is

ℓ(ℓ + 1)
1 − 𝑏2

F
= 𝑏2

F/𝑎
2
F. (4.64)

Equation 4.64 can be analytically solved for 𝑏F to yield

𝑏2
F =

1
2
± 1

2

√︃
1 − 4𝑎2

𝐹
ℓ(ℓ + 1) (4.65)

where it can be seen that there are no real solutions for 𝑏F for some critical 𝑎F > 𝑎
ℓ
𝑐 given

by
𝑎ℓ𝑐 =

1
2
√︁
ℓ(ℓ + 1)

. (4.66)

This is equivalent to the result originally presented by Fuller, Cantiello, et al. (2015) that
there are no propagating solutions when the magnetogravity frequency (defined in Equation
4.1) rises above the mode frequency. At small buoyancy or Alfvén frequencies, the two
solutions for 𝑏2

F in Equation 4.65 approach the usual internal gravity wave and Alfvén wave
dispersion relations, and remain finite. Equations 4.62, 4.63, and 4.64 are analogous to
Equations 4.9, 4.5 and 4.6, and 4.15 in the main text.

4.A.2 Lecoanet, Vasil, et al. (2017): Multipole Cartesian geometry
Lecoanet, Vasil, et al. (2017) consider a Cartesian geometry with the equilibrium magnetic
field configuration

®𝐵0 = 𝐵0𝑒
−𝑘𝐵𝑧 [sin(𝑘𝐵𝑥) 𝑥 + cos(𝑘𝐵𝑥) 𝑧] (4.67)

where the oscillatory dependence in 𝑥 is chosen to closely mimic the 𝜃 dependence of a
multipole magnetic field.

Define 𝑘𝑃 to the wavenumber which defines the periodicity of the domain, i.e., the solution
is periodic in 𝑥 with a period 2𝜋/𝑘𝑃 (𝑘𝑃 is analogous to 1/𝑟 in the spherical problem). We
can first define

𝑏L =
𝑘𝑧𝑣𝐴

𝜔
(4.68a)

𝑎L =

(
𝑁

𝜔

) (
𝑘𝑃𝑣𝐴

𝜔

)
(4.68b)

where 𝑣𝐴 = 𝐵0𝑒
−𝑘𝐵𝑧/

√︁
4𝜋𝜌0.
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Then, following a very similar procedure to the spherical dipole problem described in the
main text, the three-dimensional Cartesian problem corresponding to the field in Equation
4.67 can be reduced to

L𝑚,𝑏L 𝑝′(𝜇) +
𝑏2

L

𝑎2
L
𝑝′(𝜇) = 0 (4.69)

where 𝜇 = cos(𝑘𝑃𝑥).

In the special case that 𝑘𝐵 = 𝑘𝑃 (i.e., a dipole field), the differential operator L𝑚,𝑏L
L is given

by

L𝑚,𝑏L
L 𝑝′(𝜇) =

√︃
1 − 𝜇2 d

d𝜇

( √︁
1 − 𝜇2

1 − 𝑏2
L𝜇

2
d𝑝′(𝜇)

d𝜇

)
− 𝑚2

1 − 𝑏2
L𝜇

2
𝑝′(𝜇) (4.70)

where 𝑚 = 𝑘𝑦/𝑘𝑃. Letting 𝜆L be a given (negative) eigenvalue of L𝑚,𝑏L
L , the dispersion

relation takes the form
𝜆L = 𝑏2

L/𝑎
2
L. (4.71)

Lecoanet, Vasil, et al. (2017) solve the problem described above in the two-dimensional
zonal case (i.e., 𝑚 = 0), taking advantage of the fact that two-dimensional incompressibility
defines a “vector potential” whose direction is everywhere orthogonal to the fluid motions.
They find the eigenfunctions to be Mathieu functions (Mathieu, 1868), with a branch of
inward-traveling internal gravity waves refracting up into a branch of slow magnetic waves
which diverge to infinite wavenumber at a finite “cutoff” radius. We reproduce this behavior
in the dipole geometry for the 𝑚 = 0 modes (see Section 4.4.1).

Equations 4.67, 4.68, 4.69, 4.70, and 4.71 are analogous to Equations 4.9, 4.5 and 4.6, 4.12,
4.13, and 4.15, in the main text. We see that, aside from geometrical factors ∝

√︁
1 − 𝜇2

(which become irrelevant in the large 𝑏L limit), L𝑚,𝑏
mag and L𝑚,𝑏L

L are identical.

4.B Numerically solving L𝑚,𝑏
mag

We use a relaxation scheme to numerically solve Equations 4.72 and 4.73, following closely
the procedure used by Lee and Saio (1997) and Fuller and Lai (2014) to diagonalize the
Laplace tidal equation, using the C++ implementation given by Numerical Recipes (Press
et al., 2007).

However, the procedures which we adopt vary somewhat for the dissipative and dissipation-
less cases. The numerical solution procedure for Sections 4.4.1 and 4.4.2 is summarized in
Section 4.B.1, and the procedure for Section 4.5 is summarized in Section 4.B.2.
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4.B.1 Numerical solution without dissipation
In the 𝑚 = 0 (Section 4.4.1) and 𝑚 ≠ 0, |𝑏 | ≤ 1 (Section 4.4.2) cases without dissipation,
little special care is required to solve the requisite two first-order differential equations.
In the former case, the solutions (Hough functions) are known to be second-differentiable
across the singularity. In the latter case, the problem is a standard Sturm–Liouville problem
with no internal singularities. Moreover, because L𝑚,𝑏

mag (Equation 4.13) is even with respect
to 𝜇, its eigenfunctions can be partitioned into even and odd parity, which is given by
(−1)ℓ+𝑚 for 𝑝′ and (−1)ℓ+𝑚+1 for 𝜉𝜃 . This known parity greatly simplifies the problem,
allowing us to solve for the eigenfunctions for only 𝜇 ∈ [0, +1) rather than over the full
domain.

Then, definingP = 𝑝′/𝜌0𝜔
2𝑟2 andZ𝜃 =

√︁
1 − 𝜇2𝜉𝜃/𝑟 as (assumed real) non-dimensionalized

versions of P and Z𝜃 , our equations become

dP
d𝜇

= −1 − 𝑏2𝜇2

1 − 𝜇2 Z𝜃 (4.72a)

dZ𝜃

d𝜇
=

(
𝑏2

𝑎2 − 𝑚2(
1 − 𝜇2) (

1 − 𝑏2𝜇2) ) P (4.72b)

where the first equation follows from the 𝜃 component of the momentum equation (Equation
4.10c) and the second equation follows from the continuity equation (Equation 4.10a).

Starting from Legendre polynomials as initial guess, we gradually increase 𝑏 (> 0) from
0, retaining lower 𝑏 solutions as initial guesses for higher 𝑏 relaxations. Note that, in
the numerical implementation, we promote 𝑎 = 𝑎(𝜇) to a function of 𝜇, and additionally
enforce d𝑎/d𝜇 = 0 (this is the standard technique for solving such eigenproblems in, e.g.,
Press et al., 2007). We impose boundary conditions on P and Z𝜃 at 𝜇 = 0 depending on
parity, setting one of these variables to 0 and the other to 1 for normalization. Additionally,
at the right boundary 𝜇 = 1 − 𝜖 , we enforce that Z𝜃 must vanish (which can be seen in its
definition).

In the𝑚 ≠ 0, |𝑏 | < 1 case, we demonstrate in Section 4.4.2 that eigenfunctions in the formal
zero-dissipation limit are exactly localized to the band between the internal singularities at
𝜇 = ±1/𝑏 (where we have taken 𝑏 > 0 without loss of generality). Then we can rescale
Equations 4.72 via 𝑥 = 𝑏𝜇 to

dP
d𝑥

= − 1 − 𝑥2

𝑏2 − 𝑥2 𝑏
3Z𝜃 (4.73a)

dZ𝜃

d𝑥
=

(
1
𝑎2 − 𝑚2(

𝑏2 − 𝑥2) (
1 − 𝑥2) ) 𝑏3P (4.73b)
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over the range 𝑥 ∈ [0, +1) (i.e., 𝜇 ∈ [0, +1/𝑏)), enforcing P = 0 at 𝑥 = 1 − 𝜖 (see Section
4.4.2).

4.B.2 Numerical solution with dissipation
When dissipation is considered, the internal singularities are “softened” in the sense that
they are shifted off of the real line. Therefore, a case-wise treatment of the singularity (as
in Section 4.B.1) is not necessary. However, in general, both the perturbations and at least
one of the quantities 𝑘𝑟 and 𝜔 are complex, doubling the number of equations to be solved.

Moreover, in the dissipative case (even for arbitrarily small viscosities/diffusivities), the
delta function which appears in 𝜉𝜙 becomes softened to a sharp peak with a finite width.
Therefore, instead of solving for P ∼ (1− 𝑏2𝜇2)𝜉𝜙 as a perturbation, we probe this peak by
solving the complex versions of the following equations,

dZ𝜙

d𝜇
=

2𝑏2𝜇

1 − 𝑏2𝜇2 − 𝑖𝑐
Z𝜙 −

1
1 − 𝜇2Z𝜃 (4.74a)

dZ𝜃

d𝜇
=

(
𝜆

(
1 − 𝑏2𝜇2 − 𝑖𝑐

)
− 𝑚2

1 − 𝜇2

)
Z𝜙 (4.74b)

where Z𝜙 =
√︁

1 − 𝜇2𝜉𝜙/𝑖𝑚𝑟. In Section 4.5.1, we pick 𝑐 = 10−3 and take 𝜆 = |𝜆 |𝑒𝑖𝜁1 and
𝑏 = |𝑏 |𝑒𝑖𝜁1/2 and solve for |𝜆 | and 𝜁1, while varying |𝑏 |. In Section 4.5.2, we pick 𝑐 = 10−2

and take 𝜆 = |𝜆 |𝑒𝑖𝜁2 and 𝑏 = |𝑏 | (real) and solve for |𝜆 | and 𝜁2, while again varying |𝑏 |. As in
Section 4.B.1, the first equation follows from the 𝜃 component of the momentum equation,
and the second equation follows from the continuity equation (but in terms of different
perturbations). The evenness and oddness conditions can be applied as in Section 4.B.1
to Re

(
Z𝜙

)
(which has the same parity as P) and Re (Z𝜃) at the left boundary 𝜇 = 0. At

this same boundary, we enforce (due to overall phase invariance) Im
(
Z𝜙

)
= Im (Z𝜃) = 0.

Finally, at 𝜇 = 1 − 𝜖 , we enforce Re (Z𝜃) = Im (Z𝜃) = 0. Equations 4.74 are then solved
for increasingly large values of |𝑏 |, using associated Legendre polynomials as the initial
|𝑏 | = 0 guesses.

4.C Tightly confined equatorial magnetogravity waves
In this Appendix, we investigate the behavior of magnetogravity waves very close to the
equator (for a dipole field), where 𝑣𝐴𝑟 ≈ 0. In the following, we demonstrate in this narrow
equatorial band the existence of self-consistent, propagating solutions with wavenumbers
enhanced in magnitude by a factor 𝑁/𝜔. These solutions are not captured by the analysis in
the main text, which assumed that the vertical component of the Alfvén velocity dominates
the mode structure. However, the dynamics of these modes may play an important role in
understanding the observable, asteroseismic consequences of strong core magnetic fields.
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In this region, the assumption (used throughout this work) that the Alfvén frequency 𝜔𝐴 =

®𝑘 · ®𝑣𝐴 is dominated by the radial component is violated. We expect this violation to be
important when

𝑣𝐴𝑟/𝑣𝐴ℎ ≲ 𝑘ℎ/𝑘𝑟 ∼ 𝜔/𝑁 (4.75)

or in a narrow band around the equator with angular extent 𝛿𝜃 ∼ 𝜔/𝑁 .

Assuming a WKB approximation in all directions, the dispersion relation for magnetogravity
waves near the equator becomes

𝜔2 −
𝑘2
ℎ

𝑘2
𝑟

𝑁2 − 𝑘2
ℎ𝑣

2
𝐴ℎ = 0 , (4.76)

where now 𝜔𝐴 ≈ 𝑘ℎ𝑣𝐴ℎ is dominated by the horizontal component. Then, solving for 𝑘𝑟 ,
we have

𝑘2
𝑟 =

𝑘2
ℎ
𝑁2

𝜔2 − 𝑘2
ℎ
𝑣2
𝐴ℎ

, (4.77)

where the criterion for radial propagation is

𝜔2 > 𝑘2
ℎ𝑣

2
𝐴ℎ . (4.78)

Because these solutions are only accurate in an equatorial band 𝛿𝜃 ≲ 𝜔/𝑁 , it follows that

𝑘ℎ ≳
𝑁

𝜔𝑟
, (4.79)

i.e., at least one horizontal wavelength fits within this band. The criteria in Equation 4.78
and 4.79 can be combined to obtain

𝜔 ≳
√︁
𝑁𝑣𝐴ℎ/𝑟 ∼ 𝜔𝐵 (4.80)

where 𝜔𝐵 is the critical magnetic field strength from Equation 4.7, but now applied to the
horizontal field rather than the radial field. Therefore, such confined magnetogravity waves
would remain radially propagating in roughly the same regions that magnetogravity waves
throughout the rest of the star would (within a small, order-unity factor in radius).

Interestingly, when Equation 4.78 (for the minimum 𝑘ℎ) is combined with Equation 4.77
for propagating waves, we obtain

|𝑘𝑟 | ≳
𝑁√︃

𝜔2/𝑘2
ℎ,min − 𝑣

2
𝐴ℎ

∼
(
𝑁

𝜔

)2 1
𝑟

(4.81)

where we have examined the limit where 𝑣𝐴ℎ ≪ 𝑟𝜔2/𝑁 (i.e., at fields much lower than the
critical field, or where𝜔 ≫ 𝜔𝐵). This radial wavenumber is larger than the radial wavenum-
ber of normal, low-ℓ gravity waves by a large factor ∼ 𝑁/𝜔, implying that magnetogravity
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waves near the equator will develop very small radial wavelengths. This increased radial
wavenumber appears to be qualitatively consistent with numerical simulations conducted
by Lecoanet, Vasil, et al. (2017), which seem to exhibit such waves at locations where the
radial magnetic field vanishes (see their Figure 6). However, their simulation also seems to
show outgoing equatorially confined evanescent waves, whose driving we cannot explain.
Moreover, due to their small spatial scale, it is unclear to us whether these modes are
numerically resolved. Future work will be required to further elucidate the nature of these
highly confined modes.

Note that the dispersion relation in Equation 4.77 implies that the group and phase velocities
of these confined magnetogravity waves are in opposite directions (similar to normal,
zero-field gravity waves). Because the refracted, outgoing magnetogravity wave solutions
at 𝑏 > 1 (described in the rest of this work) have aligned group and phase velocities,
this implies that such outgoing magnetogravity waves couple most efficiently to ingoing,
equatorially confined magnetogravity waves (described above). This poses a challenge for
equatorially confined magnetogravity waves as a vehicle for bringing wave power out of the
core. Moreover, the very short wavelengths of the equatorially confined waves make them
much more susceptible to damping processes. Further work may elucidate the nature of
these waves, and their role in wave power transport and dissipation.

4.D Structure of Alfvén resonances including horizontal-field contributions to the
magnetic tension

In the solutions throughout the main text, it has been assumed that the magnetic tension terms
which appear in the momentum equations are dominated by the radial component (in, e.g.,
Equations 4.10). However, very near to 𝜔2 = 𝑘2

𝑟 𝑣
2
𝐴𝑟

(i.e., very near to a critical latitude),
the horizontal components of the magnetic tension may become relevant. As described
throughout the text (e.g., Section 4.6.1), sharp horizontal fluid features may appear in the
vicinity of Alfvén resonances. To estimate the impact of such terms, we will make a WKB
approximation in both the radial and horizontal directions (i.e., 𝑘𝑟 , 𝑘ℎ ≫ 1/𝑟). We further
hypothesize that it still remains true that 𝑘ℎ ≪ 𝑘𝑟 (this will set a condition for validity). For
Alfvén waves, we examine the horizontal momentum equation:(

𝑘2
𝑟 𝑣

2
𝐴𝑟 +

2𝑖𝑘𝑟𝑣𝐴𝑟𝑣𝐴𝜃
𝑟

d
d𝜃

−
𝑣2
𝐴𝜃

𝑟2
d2

d𝜃2

)
®𝜉ℎ = 𝜔2 ®𝜉ℎ , (4.82)

where we have assumed a poloidal field (𝐵𝜙 = 0) for simplicity. Because we are interested
in the solution in the vicinity of 𝜔2 − 𝑘2

𝑟 𝑣
2
𝐴𝑟

≈ 0, we can perform a Taylor expansion:

𝜔2 − 𝑘2
𝑟 𝑣

2
𝐴𝑟 ≈ −𝑘2

𝑟

d𝑣2
𝐴𝑟

d𝜃
𝛿𝜃 (4.83)
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where 𝛿𝜃 = 𝜃 − 𝜃𝑐, and 𝜃𝑐 is the critical latitude. Then Equation 4.82 becomes

2𝑖𝑘𝑟𝑣𝐴𝑟𝑣𝐴𝜃
𝑟

d®𝜉ℎ
d𝜃

= −𝑘2
𝑟

d𝑣2
𝐴𝑟

d𝜃
𝛿𝜃 ®𝜉ℎ = −2𝑘2

𝑟 𝑣
2
𝐴𝑟

d ln 𝑣𝐴𝑟
d𝜃

𝛿𝜃 ®𝜉ℎ (4.84)

where 𝑘ℎ ≫ 𝑘𝑟 allowed us to drop the term ∝ d2 ®𝜉ℎ/d𝜃2. This becomes

d®𝜉ℎ
d𝜃

= 𝑖𝑘𝑟𝑟
𝑣𝐴𝑟

𝑣𝐴𝜃

d ln 𝑣𝐴𝑟
d𝜃

𝛿𝜃 ®𝜉ℎ. (4.85)

Then, since 𝑣𝐴𝑟 ∼ 𝑣𝐴𝜃 and d ln 𝑣𝐴𝑟/d𝜃 ≃ 1 (since 𝑣𝐴𝑟 varies horizontally roughly on the
order of a radian), the prefactors involving 𝑣𝐴𝑟 and 𝑣𝐴ℎ are order-unity. Doing this more
carefully for a dipole field (where 𝑣𝐴𝑟 ∝ 2 cos 𝜃 and 𝑣𝐴ℎ ∝ sin 𝜃) yields

d®𝜉ℎ
d𝜃

= −2𝑖𝑘𝑟𝑟𝛿𝜃 ®𝜉ℎ. (4.86)

Equation 4.86 is straightforwardly solved by

®𝜉ℎ ≃ ®𝜉ℎ,0𝑒−𝑖𝑘𝑟𝑟𝛿𝜃
2
. (4.87)

This complex Gaussian describes a wave whose wavelength decreases away from the critical
latitude 𝜃𝑐. The first wavelength occurs where 𝑟𝑘𝑟𝛿𝜃2 = 2𝜋, yielding a characteristic
angular scale of 𝛿𝜃 ∼ 1/

√
𝑘𝑟𝑟, or characteristic angular wavenumber of 𝑟𝑘𝜃 ∼

√
𝑘𝑟𝑟

(compare Equation 4.50). Note that this horizontal wavenumber satisfies our assumption
that 1/𝑟 ≪ 𝑘𝜃 ≪ 𝑘𝑟 .

4.E Magnetic tangling-induced shear stress
While realistic stars do not have shear-restorative forces, Hoven and Levin (2011) argue that
small-scale disordered magnetic fields (“tangling”) may introduce an effective shear stress,
with characteristic wave speed 𝑐2

𝑠 = 𝐵2
rms/4𝜋𝜌0. To characterize the effect that this shear

modulus term has on the Alfvén waves, we can focus on the magnetic tension term in the
horizontal momentum equation, which is the only other term capable of restoring torsional
mode components (Loi and Papaloizou, 2017):

𝜔2 ®𝜉ℎ = −𝑐2
𝑠𝑟

−2∇2
ℎ
®𝜉ℎ + 𝜔2

𝐴𝑟
®𝜉ℎ. (4.88)

We see that Equation 4.88 is mathematically identical to a two-dimensional Schrödinger
equation, where 𝐸 = 𝜔2 plays the role of the total energy, 𝑉 = 𝜔2

𝐴𝑟
plays the role of the

potential, and the small shear speed 𝑐𝑠 plays the role of ℏ. As noted by Hoven and Levin
(2011), the effect of a small shear modulus is to transform the continuous spectrum of Alfvén
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waves into a discrete one (as in standard bound-state spectra of the Schrödinger equation),
whose mode spacings decrease to zero in the limit where 𝑐𝑠 → 0. If a WKB approximation
is adopted for Equation 4.88 in the horizontal direction, the coupling of these discrete waves
to a mode is similar to that of the continuum waves in the 𝑐𝑠 = 0 case. In the region where
𝜔2 ≫ 𝜔2

𝐴𝑟
, the discrete Alfvén wave oscillates spatially very rapidly, and its overlap with a

global-scale g mode averages to zero. Similarly, in the region where 𝜔2 ≪ 𝜔2
𝐴𝑟

, the wave
decays very rapidly, and therefore is very close to zero. However, the solution very close to
𝜔2 = 𝜔2

𝐴𝑟
(the “classical turning point”) is known to be an Airy function of angular width

𝛿𝜃 =
3

√√√
𝑐2
𝑠

𝑟2

�����𝜕𝜔2
𝐴

𝜕𝜃

�����−1

(4.89)

which sets the scale at which an interaction with a mode and Alfvén wave will be “smeared”
in the angular direction, due to shear stress. Physically, the shear modulus-induced dis-
cretization of the Alfvén waves occurs because shear adds an isotropic contribution to the
wave speed (so that it is not exactly zero perpendicular to the field lines), and thus couples
fluid motions across field lines. This effect is likely to be small relative to similar effects
associated with the horizontal component of the mean magnetic field (Section 4.6.1).
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C h a p t e r 5

ASTEROSEISMIC G-MODE PERIOD SPACINGS IN STRONGLY
MAGNETIC ROTATING STARS

Rui, N. Z., J. M. J. Ong, and S. Mathis (2024). “Asteroseismic g-mode period spacings in
strongly magnetic rotating stars.” In: Monthly Notices of the Royal Astronomical Society
527.3, pp. 6346–6362. doi: 10.1093/mnras/stad3461. arXiv: 2310.19873.

Strong magnetic fields are expected to significantly modify the pulsation frequencies of
waves propagating in the cores of red giants or in the radiative envelopes of intermediate-
and high-mass main-sequence stars. We calculate the g-mode frequencies of stars with
magnetic dipole fields which are aligned with their rotational axes, treating both the Lorentz
and Coriolis forces non-perturbatively. We provide a compact asymptotic formula for
the g-mode period spacing, and universally find that strong magnetism decreases this
period spacing substantially more than is predicted by perturbation theory. These results
are validated with explicit numerical mode calculations for realistic stellar models. The
approach we present is highly versatile: once the eigenvalues 𝜆 of a certain differential
operator are precomputed as a function of the magnetogravity and rotational frequencies
(in units of the mode frequency), the non-perturbative impact of the Coriolis and Lorentz
forces is understood under a broad domain of validity, and is readily incorporated into
asteroseismic modeling.
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5.1 Introduction
Because stellar oscillations extend throughout the stars in which they propagate, they contain
a wealth of information about stellar interiors. Asteroseismology is thus a sensitive probe of
interior structure (Gough and Kosovichev, 1993; Christensen-Dalsgaard, 2012; Bellinger,
Basu, Hekker, and Ball, 2017; Mombarg, Dotter, Van Reeth, et al., 2020; Bellinger, Basu,
Hekker, Christensen-Dalsgaard, et al., 2021; Mombarg, Dotter, Rieutord, et al., 2022;
Buldgen et al., 2022), rotation (Beck et al., 2012; Mosser, Goupil, Belkacem, Marques,
Beck, Bloemen, De Ridder, Barban, Deheuvels, Elsworth, et al., 2012a; Deheuvels, Garcia,
et al., 2012; Deheuvels, Doğan, et al., 2014; Kurtz et al., 2014; Van Reeth, Tkachenko,
and Aerts, 2016; Aerts, Van Reeth, et al., 2017; Pápics et al., 2017; Deheuvels, Ballot,
Eggenberger, et al., 2020; Burssens et al., 2023; Mombarg, Rieutord, et al., 2023), mixing
(Constantino et al., 2015; Li, Bedding, Huber, et al., 2018; Pedersen et al., 2018; Michielsen,
Pedersen, et al., 2019; Lindsay et al., 2023), evolution (Miglio, Montalbán, Noels, et al.,
2008; Mosser, Benomar, et al., 2014), and binary interaction history (Rui and Fuller, 2021a;
Deheuvels, Ballot, Gehan, et al., 2022; Li, Bedding, Murphy, et al., 2022; Tayar, Moyano,
et al., 2022; Hekker et al., 2023).

In recent years, there has been a large amount of progress in developing asteroseismology as
a probe of strong internal magnetic fields, particularly through their effects on the gravity (g)
modes which propagate in radiative regions. Such fields likely have important consequences
for the transport of angular momentum within evolved stars (Mathis and Brye, 2012; Fuller,
Piro, et al., 2019; Aerts, Mathis, et al., 2019). On the red giant branch, g modes propagate
in the radiative core, which may possess strong magnetic fields left over from efficient core
convective dynamos on the main sequence (Fuller, Cantiello, et al., 2015; Stello, Cantiello,
Fuller, Huber, et al., 2016). In these cases, magnetism may have a significant effect on
the frequency spectrum: by measuring these frequency patterns, Li, Deheuvels, Ballot, and
Lignières (2022) strongly constrain both the rotational periods and field strengths (≳30 kG)
as well as their geometries for a modest sample of red giants. Even stronger magnetic fields
≳ 100 kG are commonly invoked to explain the observed suppression of dipole (ℓ = 1)
and quadrupole (ℓ = 2) oscillation modes in red giants (e.g., García, Hernández, et al.,
2014; Stello, Cantiello, Fuller, Garcia, et al., 2016; Stello, Cantiello, Fuller, Huber, et al.,
2016). Specifically, mode suppression is expected to occur in the non-perturbative “strong
magnetogravity” regime (Fuller, Cantiello, et al., 2015; Lecoanet, Vasil, et al., 2017; Rui
and Fuller, 2023), when a mode’s frequency 𝜔 is sufficiently close to the critical frequency

𝜔 ≲ 𝜔crit ∼ 𝜔𝐵 ≡
√︁
𝑁𝑣𝐴𝑟/𝑟. (5.1)
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In Equation 5.1, 𝑣𝐴𝑟 = 𝐵𝑟/
√︁

4𝜋𝜌 is the radial component of the Alfvén velocity, 𝑟 is the
radial coordinate, and 𝑁 is the Brunt–Väisälä (buoyancy) frequency, given by

𝑁2 = 𝑔

(
𝛾−1 d ln 𝑝0

d𝑟
− d ln 𝜌0

d𝑟

)
, (5.2)

where 𝛾 is the adiabatic index.

Equivalently, mode suppression occurs at some frequency 𝜔crit when the magnetic field is
at least comparable to some critical field (Fuller, Cantiello, et al., 2015):

𝐵 ≳ 𝐵crit ∝
√
𝜌𝜔2

crit𝑟/𝑁. (5.3)

Complementarily, main-sequence pulsators of intermediate mass (≳1.3𝑀⊙) have radiative,
rather than convective, envelopes, and their g modes extend to their surfaces where they
can be observed directly (Aerts, 2021). Examining the slowly pulsating B-type (SPB)
star HD 43317, Lecoanet, Bowman, et al. (2022) demonstrate that observations of mode
suppression in main sequence (MS) pulsators may place meaningful constraints on their
internal magnetism. The detection of g modes in the vicinity of magnetic suppression
suggests MS pulsators as a separate platform for testing the effect of strong magnetic fields
on propagating gravity waves.

In the absence of effects such as magnetic fields or rotation, successive g modes are evenly
spaced in period by a constant g-mode period spacing 𝛿𝑃𝑔, which can be estimated as

𝛿𝑃𝑔 =
2𝜋2√︁
ℓ(ℓ + 1)

(∫
𝑁

𝑟
d𝑟

)−1
, (5.4)

where the integral is over the part of the radial cavity within which g modes propagate
(𝜔 < 𝑁).

However, both rotation and magnetism leave distinctive signatures on the period spacing,
both by lifting the degeneracy between modes of different 𝑚 (by breaking the spherical
symmetry of the system) and by introducing period dependence (Bouabid et al., 2013;
Van Reeth, Tkachenko, and Aerts, 2016; Dhouib, Mathis, et al., 2022). The period spacing
as a function of period 𝛿𝑃𝑔 = 𝛿𝑃𝑔 (𝑃) is therefore a valuable measure for rotational and
magnetic effects (Van Beeck et al., 2020; Henneco, Van Reeth, et al., 2021). Characterizing
this observable non-perturbatively is the primary focus of this work.

Our paper proceeds as follows. Section 5.2 presents the problem statement and motivates
the asymptotic treatment of magnetism and rotation. Section 5.3 derives the differential
operator which governs the horizontal structure of magnetic gravito-inertial modes. In
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Section 5.4, we numerically calculate this operator’s eigenvalues, which enter directly
into an asymptotic formula for the period spacing. In Section 5.5, we solve the radial
oscillation problem directly, including both magnetism and rotation while partially relaxing
the asymptotic assumption. Section 5.6 presents the results of such calculations for models
of red giants, 𝛾 Doradus (𝛾 Dor), and SPB pulsators. Finally, Section 5.7 concludes. The
reader seeking our observational predictions is guided to Equations 5.33 and 5.40 (for the
asymptotic period spacing) and the discussion in Section 5.6.

5.2 Problem statement
The effect of magnetism on the asteroseismic period spacing has been previously explored by
various authors. So far, this work has typically either restricted its attention to toroidal fields
(𝐵𝑟 = 𝐵𝜃 = 0; Rogers and MacGregor, 2010; Mathis and De Brye, 2011; MacGregor and
Rogers, 2011; Dhouib, Mathis, et al., 2022), treated magnetism perturbatively (𝐵≪ 𝐵crit;
Cantiello et al., 2016; Prat, Mathis, Buysschaert, et al., 2019; Prat, Mathis, Neiner, et al.,
2020a; Prat, Mathis, Neiner, et al., 2020b; Mathis, Bugnet, et al., 2021; Bugnet et al., 2021;
Bugnet, 2022; Li, Deheuvels, Ballot, and Lignières, 2022), or worked in the ray-tracing
limit (𝑘𝑟 , 𝑘ℎ≫1/𝑟; Loi and Papaloizou, 2018; Loi, 2020c; Loi, 2020b). However, in realistic
situations, gravity waves couple most strongly to the radial component of the field 𝐵𝑟 (see
Section 5.2.1), which may be very strong (𝐵∼𝐵crit; Fuller, Cantiello, et al., 2015). Moreover,
due to geometric cancellation, observable modes are typically of low degree (𝑘ℎ∼1/𝑟).

The central goal of this work is to calculate the period spacing pattern in the simultaneous
presence of rotation and an axisymmetric radial magnetic field in a non-perturbative way.
The work proceeds under the “traditional approximation of rotation and magnetism” defined
in Section 5.2.1 (which restricts attention purely to the radial field).

5.2.1 The traditional approximation of rotation and magnetism (TARM)
Pure, low-frequency gravity waves follow the dispersion relation

𝜔 = ± 𝑘ℎ
𝑘
𝑁 (5.5)

when 𝑁≫𝜔. Therefore, their wavenumbers are primarily radial, with their radial wavenum-
bers exceeding their horizontal wavenumbers by ratios

𝑘𝑟

𝑘ℎ
≃ 𝑁

𝜔
. (5.6)

In the presence of restoring forces other than buoyancy or pressure (e.g., Coriolis forces,
magnetic tension), the dispersion relation will be modified from Equation 5.5. However,
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for modes which still have g mode character (i.e., buoyancy is still a significant restorative
force), 𝑘𝑟/𝑘ℎ will still be comparable to 𝑁/𝜔 ≫ 1. Throughout, we restrict our attention to
modes whose wavenumbers are primarily radial: this is a crucial assumption of our work.

This approximation underlies the standard analytic treatment of gravity waves in rotating
stars. The qualitative behavior of low-frequency gravito-inertial waves can be seen in the
dispersion relation in the fully Jeffreys–Wentzel–Kramers–Brillouin (JWKB) limit:

𝜔2 −
𝑘2
ℎ

𝑘2𝑁
2 − ( 𝑘̂ · ®Ω)2 = 0, (5.7)

see, e.g., Bildsten, Ushomirsky, et al. (1996) and Lee and Saio (1997). Because low-
frequency g modes have primarily radial wavenumbers, 𝑘 ≈ 𝑘𝑟 ∼ (𝑁/𝜔)𝑘ℎ≫ 𝑘ℎ, the radial
part of the rotation vector ®Ω dominates in Equation 5.7. It is thus both convenient and
accurate for many purposes to assume ®Ω ≈ Ω cos 𝜃 𝑟 , i.e., to neglect the horizontal part
of ®Ω. Given its usefulness, this assumption is appropriately known as the “traditional
approximation of rotation” (TAR).

We emphasize that the TAR is only valid when 𝑘𝑟≫𝑘ℎ. It is therefore applicable when𝜔≪𝑁
and 2Ω≪𝑁 , with the interpretation that stratification is the dominant restorative force in the
radial direction (such that the Coriolis force is only important in the horizontal directions).
The utility of this approximation is that it allows the (buoyancy-driven) vertical dynamics
to be decoupled from the (Coriolis-driven) horizontal dynamics. Because of this useful
feature, the TAR has also found extensive use in geophysics (e.g., Eckart, 1960; Longuet-
Higgins, 1968). However, if either of the hypotheses of the TAR above are not satisfied,
the traditional approximation should be abandoned (Dintrans, Rieutord, and Valdettaro,
1999; Dintrans and Rieutord, 2000; Gerkema and Shrira, 2005; Ballot et al., 2010; Mathis,
Neiner, et al., 2014).

When assumed, the TAR implies that the pressure perturbation varies in the horizontal
directions according to the Laplace tidal equation:

0 = 𝜆𝑝′(𝜇) + d
d𝜇

(
1 − 𝜇2

1 − 𝑞2𝜇2
d𝑝′(𝜇)

d𝜇

)
− 𝑚2(

1 − 𝜇2) (
1 − 𝑞2𝜇2) 𝑝′(𝜇)

−
𝑚𝑞

(
1 + 𝑞2𝜇2)(

1 − 𝑞2𝜇2)2 𝑝′(𝜇).
(5.8)

In the non-rotating limit (𝑞→0), the Laplace tidal equation approaches the usual generalized
Legendre equation, for which 𝜆 = ℓ(ℓ + 1) and the eigenfunctions are associated Legendre
polynomials. Here, 𝜇 = cos 𝜃 is the colatitude and 𝑞 = 2Ω/𝜔 is the spin parameter. When



5.2. Problem statement 139

computing mode frequencies the TAR, the effect of rotation is thus simply to replace ℓ(ℓ+1)
with 𝜆.

To handle the effect of a strong dipole magnetic field, Rui and Fuller (2023) borrow intuition
from the TAR. The full JWKB dispersion relation for magnetogravity waves is

𝜔2 −
𝑘2
ℎ

𝑘2𝑁
2 − (®𝑘 · ®𝑣𝐴)2 = 0, (5.9)

where ®𝑣𝐴 = ®𝐵0/
√︁

4𝜋𝜌0 is the Alfvén velocity, e.g., Unno, Osaki, Ando, Saio, et al. (1989)
and Fuller, Cantiello, et al. (2015). Analogously with the rotational argument, we see
that the radial part of ®𝐵 dominates, and it suffices for a dipole magnetic field to assume
®𝐵 ≈ 𝐵0 cos 𝜃 𝑟. The pressure perturbation then follows

0 = 𝜆𝑝′(𝜇) + d
d𝜇

(
1 − 𝜇2

1 − 𝑏2𝜇2
d𝑝′(𝜇)

d𝜇

)
− 𝑚2(

1 − 𝜇2) (
1 − 𝑏2𝜇2) 𝑝′(𝜇), (5.10)

where 𝑏 = 𝑘𝑟𝑣𝐴𝑟/𝜔. The interpretation of this approximation is that the fluid is sufficiently
stratified that buoyancy is the only important restorative force in the radial direction (i.e., the
Lorentz force need only be included in the horizontal directions). As in the TAR, including
magnetism in a calculation of mode frequencies under this approximation simply involves
replacing ℓ(ℓ + 1) with a suitably computed 𝜆 when solving the radial problem.

We note the similar forms of Equation 5.8 (for rotation) and Equation 5.10 (for magnetism).
However, unlike the singularities in Equation 5.8 (around which the eigenfunctions are
smooth), the singularities in Equation 5.10 are of significantly different character, and imply
sharp fluid features corresponding to resonances with Alfvén waves (Rui and Fuller, 2023).
For the frequency-shift analysis conducted in this work, this property of the singularities
in Equation 5.10 motivates restriction to solutions for which 𝑏 < 1 (so that the Alfvén
resonances are not on the domain).

In this work, we generalize both the traditional approximation of rotation and its magnetic
analogue to incorporate both effects: in other words, we consider only the effects of the
radial components of both the rotation vector and magnetic field. Equivalently, we include
only the horizontal components of the Coriolis and Lorentz forces. Hereafter, we refer to this
joint approximation as the traditional approximation of rotation and magnetism (TARM).

5.2.2 Assumptions, conventions, and scope
In addition to assuming that 𝑘𝑟 ≫ 𝑘ℎ, we adopt the JWKB approximation in the radial
direction only, i.e., we assume that the equilibrium structure and field of the star vary on
length scales much larger than the radial wavelength (the “asymptotic” regime). Because



5.2. Problem statement 140

such length scales are typically ∼ 𝑟, this assumption is usually justified, although it may
be violated in the presence of sharp compositional gradients which are known to produce
mode-trapping phenomena (e.g., Miglio, Montalbán, Noels, et al., 2008; Pedersen et al.,
2018; Michielsen, Pedersen, et al., 2019). In Section 5.5, we solve for the full radial
dependence of the wavefunction without directly assuming that the radial wavenumber is
large. However, under the TARM, we perform this calculation using a precomputed grid of
horizontal eigenvalues 𝜆 (see Section 5.4) which does make this assumption. Therefore, the
calculation described in Section 5.5 is expected to partially, but not fully, capture non-JWKB
effects in the radial direction.

We index branches by the angular degree ℓ and order𝑚. In particular, a mode is said to have
some value of ℓ and 𝑚 when the horizontal dependence becomes the spherical harmonic
𝑌ℓ𝑚 when both the field and rotation are smoothly taken to zero. We caution that, while
we may refer to some mode as having some degree ℓ in a rotating and/or magnetized star,
𝑌ℓ𝑚 is not the correct horizontal dependence, and the eigenvalues are no longer ℓ(ℓ + 1).
For the angular order 𝑚, we adopt the sign convention used by Lee and Saio (1997) and
Rui and Fuller (2023) that 𝑚𝑞 > 0 (𝑚𝑞 < 0) corresponds to retrograde (prograde) modes.
Additionally, without loss of generality, we consider throughout the case where 𝑞 > 0 and
𝑏 > 0(which appear in, e.g., Equations 5.8 and 5.10, respectively), i.e., positive (negative)
azimuthal order 𝑚 corresponds to retrograde (prograde) modes. In this problem, the sign
of 𝑏 is irrelevant, and the effect of a sign change in 𝑞 can be fully compensated by changing
the sign convention of 𝑚.

In the presence of (solid-body) rotation, it is important to distinguish the mode frequency in
the inertial frame (which is observable) from the mode frequency in the frame co-rotating
with the star (in which the effect of rotation appears as a Coriolis force). Hereafter, we use
𝜔 (𝜔̄) to denote the mode frequency in the inertial (co-rotating) frame. Hence, we calculate
the oscillation modes directly with respect to 𝜔̄, but convert to𝜔 for observational purposes.

We restrict our attention to a magnetic field whose radial part has a dipolar horizontal
dependence. However, our results are not sensitive to the radial dependence of the field (as
long as it is not very steep), or the geometry of the horizontal field components (as long
as they are not much larger than the radial component). While Section 5.3.2 makes no
additional assumptions about the field than those listed above, Section 5.5 requires a radial
magnetic field profile 𝐵0𝑟 = 𝐵0𝑟 (𝑟). For this work, we adopt the Prendergast magnetic field
geometry (Prendergast, 1956). For our purposes, it suffices to specify the radial component
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of the magnetic field:

𝐵0𝑟 = 𝐵𝑐
2𝑅2

𝑟2
𝛽

Λ2

(
𝑟2

𝑅2 − 𝑟

𝑅

𝑗1(Λ𝑟/𝑅)
𝑗1(Λ)

)
cos 𝜃, (5.11)

where 𝑗1(𝑥) = sin 𝑥/𝑥2 − cos 𝑥/𝑥 is the first spherical Bessel function and 𝑅 is the radius of
the star. Although Kaufman et al. (2022) have recently shown that the Prendergast geometry
is likely unstable over timescales relevant to stellar evolution, we adopt it simply as a closed-
form model for a large-scale, dipole-like field, and we expect our findings to be insensitive
to the exact radial dependence of the field. Following, e.g., Kaufman et al. (2022), we
take Λ ≈ 5.76346 and 𝛽 ≈ 1.31765, corresponding to the normalized, lowest-energy field
solution with a vanishing surface field. Hereafter, 𝐵𝑐 should be understood to refer to the
radial component of the core magnetic field amplitude, although it is typically expected that
the radial and horizontal components of the field are comparable. We expect all of the chief
results of this work to be robust to magnetic field geometry, as long as 𝐵0ℎ/𝐵0𝑟 ≲ 𝑁/𝜔 and
𝑘𝑟 ≫ d ln 𝐵0𝑟/d𝑟.

We specialize to the case where magnetism is not strong enough to suppress the modes
(although we explore the mode frequencies right up to this limit). While the suppression
mechanism of magnetogravity waves is not fully understood, suppression may occur when
magnetogravity waves refract upwards at some critical 𝜔 = 𝜔𝐵 to infinite wavenumber
(Lecoanet, Vasil, et al., 2017; Lecoanet, Bowman, et al., 2022; Rui and Fuller, 2023) or
are damped out by phase-mixing processes once resonant with Alfvén waves (𝑏 > 1) in
a manner similar to that described by Loi and Papaloizou (2017). Therefore, we restrict
the scope of our calculations to the case where 𝑏 = 𝑘𝑟𝑣𝐴𝑟/𝜔 < 1 and 𝜔 <𝜔𝐵. Under these
circumstances, the effects of magnetism on g modes should be well-modeled by our method.

For demonstrative purposes, we restrict most of our attention in this work to the dipole (ℓ=1)
and quadrupole (ℓ = 2) modes, although our calculations do not assume this, and it is not
more complicated to extend this analysis to higher ℓ. Low-degree g modes suffer the least
from geometric cancellation and are thus the easiest g modes to observe (there are no radial
g modes). For simplicity, we assume modes are adiabatic, and neglect perturbations to the
gravitational potential (i.e., we adopt the Cowling approximation). The general result that
the perturbative theory underestimates the impact of magnetism on the period spacings for
the dipole modes (Section 5.6) is also expected to hold for the quadrupole modes, although
the asymmetry in the frequency shifts of different multiplets is known to behave differently
(cf. Section 5.6.1 of Bugnet et al., 2021).



5.3. Analytic formulation 142

5.3 Analytic formulation
In this Section, we derive an expression for the horizontal equation obeyed by low-frequency
g modes under the simultaneous influence of uniform (or weak differential) rotation and a
dipolar magnetic field (Section 5.3.1). Under the TARM, the eigenvalues associated with
these normal modes can be easily translated to an asymptotic expression for the period
spacing (Section 5.3.2).

5.3.1 Fluid equations for gravity modes
In the presence of gravity, magnetic tension and pressure, and Coriolis forces, the linearized
momentum equation is

𝜌0𝜕
2
𝑡
®𝜉 + 2𝜌0 ®Ω × 𝜕𝑡 ®𝜉

= −∇
(
𝑝′ + 1

4𝜋
®𝐵0 · ®𝐵′

)
− 𝜌′𝑔𝑟 + 1

4𝜋

(
®𝐵0 · ∇

)
®𝐵′

(5.12)

where ®𝜉 is the fluid displacement, subscript 0 and primes denote equilibrium and perturbed
quantities respectively, 𝑔 is the gravitational acceleration, and

®𝐵′ =
(
®𝐵0 · ∇

)
®𝜉 (5.13)

is the magnetic field perturbation. Equations 5.12 ignore the centrifugal force, and apply a
Cowling approximation to neglect perturbations in 𝑔. Under the TARM, 𝜕𝑟 → −𝑖𝑘𝑟 when
acting on a perturbation, and the magnetic tension term in Equation 5.12 thus becomes

1
4𝜋

(
®𝐵0 · ∇

)
®𝐵′ = −

𝑘2
𝑟 𝐵

2
0

4𝜋
®𝜉 ≡ 𝜌0𝑘

2
𝑟 𝑣

2
𝐴𝑟 cos2 𝜃 ®𝜉 (5.14)

where |𝑣𝐴𝑟 cos 𝜃 | is the radial component of the Alfvén velocity, with the angular dependence
explicitly factored out.

In spherical coordinates and applying the traditional approximation, the momentum equation
becomes

−𝜌0𝜔̄
2𝜉𝑟 = 𝑖𝑘𝑟 𝑝

′ − 𝜌′𝑔 − 𝜌0𝑘
2
𝑟 𝑣

2
𝐴𝑟 cos2 𝜃𝜉𝑟 (5.15a)

−𝜌0𝜔̄
2𝜉𝜃 − 2𝑖𝜌0𝜔̄Ω cos 𝜃 𝜉𝜙 = −1

𝑟

d𝑝′

d𝜃
− 𝜌0𝑘

2
𝑟 𝑣

2
𝐴𝑟 cos2 𝜃𝜉𝜃 (5.15b)

−𝜌0𝜔̄
2𝜉𝜙 + 2𝑖𝜌0𝜔̄Ω cos 𝜃 𝜉𝜃 = − 𝑖𝑚

𝑟 sin 𝜃
𝑝′ − 𝜌0𝑘

2
𝑟 𝑣

2
𝐴𝑟 cos2 𝜃𝜉𝜙 (5.15c)

where we have assumed harmonic time dependence, 𝜕𝑡 → 𝑖𝜔̄, and used axisymmetry to take
𝜕𝜙 → 𝑖𝑚. Magnetic tension dominates over magnetic pressure in the asymptotic regime,
and so the latter is ignored in Equations 5.15.
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For adiabatic oscillations, the pressure and density 𝑝 and 𝜌 are related by

D ln 𝑝
D𝑡

= 𝛾
D ln 𝜌

D𝑡
, (5.16)

where D/D𝑡 = 𝜕/𝜕𝑡+ ®𝑢 ·∇ denotes the advective derivative. Equation 5.16 can be linearized
to

𝜌′ = 𝜌0𝑁
2𝜉𝑟/𝑔 + 𝑝′/𝑐2

𝑠 (5.17)

where 𝑐𝑠 =
√︁
𝛾𝑝0/𝜌0 is the sound speed. For gravity waves, the first term dominates, so

that
𝜌′ ≈ 𝜌0𝑁

2𝜉𝑟/𝑔. (5.18)

Finally, the fluid perturbation must satisfy the equation of continuity, so that

∇ · ®𝜉 = 0, (5.19)

where we have applied the Boussinesq approximation (Proctor and Weiss, 1982).

Now, the horizontal momentum equations give a linear system of equations for 𝜉𝜃 and 𝜉𝜙 in
terms of 𝑝′:

(1 − 𝑏2 cos2 𝜃)𝜉𝜃 + 𝑖𝑞 cos 𝜃 𝜉𝜙 =
1

𝜌0𝜔̄2𝑟

d𝑝′

d𝜃
(5.20a)

−𝑖𝑞 cos 𝜃 𝜉𝜃 + (1 − 𝑏2 cos2 𝜃)𝜉𝜙 =
𝑖𝑚

𝜌0𝜔̄2𝑟 sin 𝜃
𝑝′ (5.20b)

where 𝑏= 𝑘𝑟𝑣𝐴𝑟/𝜔̄ (Rui and Fuller, 2023) and again 𝑞=2Ω/𝜔̄ (Lee and Saio, 1997) are the
dimensionless parameters governing the effects of magnetism and rotation on the horizontal
eigenfunctions. Equations 5.20 can be solved to obtain

𝜉𝜃 =

√︁
1 − 𝜇2

𝜌0𝜔̄2𝑟
[
(1 − 𝑏2𝜇2)2 − 𝑞2𝜇2

] (
𝑚𝑞𝜇

1 − 𝜇2 𝑝
′ − (1 − 𝑏2𝜇2)d𝑝′

d𝜇

)
(5.21a)

𝜉𝜙 =
𝑖
√︁

1 − 𝜇2

𝜌0𝜔̄2𝑟
[
(1 − 𝑏2𝜇2)2 − 𝑞2𝜇2

] (
(1 − 𝑏2𝜇2) 𝑚

1 − 𝜇2 𝑝
′ − 𝑞𝜇d𝑝′

d𝜇

)
(5.21b)

where 𝜇 = cos 𝜃. Likewise, the radial component of the momentum equation (Equation
5.15a) can be solved to yield

𝜉𝑟 =
𝑖𝑘𝑟

𝜌0𝑁2 𝑝
′. (5.22)

Substituting Equations 5.17, 5.21, and 5.22 into the continuity equation (Equation 5.19),
we obtain

L𝑚,𝑏,𝑞 [𝑝′] + 𝜔̄
2𝑟2𝑘2

𝑟

𝑁2 𝑝′ = 0, (5.23)
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where the differential operator L𝑚,𝑏,𝑞 is given by

L𝑚,𝑏,𝑞 [ 𝑓 (𝜇)] = d
d𝜇

(
(1 − 𝜇2) (1 − 𝑏2𝜇2)
(1 − 𝑏2𝜇2)2 − 𝑞2𝜇2

d 𝑓 (𝜇)
d𝜇

)
− 𝑚2

1 − 𝜇2
1 − 𝑏2𝜇2

(1 − 𝑏2𝜇2)2 − 𝑞2𝜇2 𝑓 (𝜇)

− 𝑚𝑞
(

4𝑏2𝜇2(1 − 𝑏2𝜇2) + 2𝑞2𝜇2[
(1 − 𝑏2𝜇2)2 − 𝑞2𝜇2

]2 + 1
(1 − 𝑏2𝜇2)2 − 𝑞2𝜇2

)
𝑓 (𝜇).

(5.24)

The operator L𝑚,𝑏,𝑞 further reduces to the standard Laplace tidal operator (e.g., Lee and
Saio, 1997) when 𝑏 = 0 (no magnetism), and to the magnetic operator discussed by Rui and
Fuller (2023) when 𝑞 = 0 (no rotation). Hereafter, we define the “eigenvalues” 𝜆 of L𝑚,𝑏,𝑞

as constants admitting solutions 𝑓 (𝜇) to

L𝑚,𝑏,𝑞 [ 𝑓 (𝜇)] + 𝜆 𝑓 (𝜇) = 0, (5.25)

i.e., the eigenvalues of L𝑚,𝑏,𝑞 in the “standard” sign convention are −𝜆.

When 𝑏 = 𝑞 = 0 (i.e., no magnetism or rotation), L𝑚,𝑏,𝑞 [ 𝑓 (𝜇)] reduces further still to the
standard Laplacian operator on a sphere, where solutions to the associated boundary value
problem are the spherical harmonics, indexed by integers ℓ, 𝑚 with eigenvalues ℓ(ℓ + 1).
Equation 5.23 becomes

𝜔̄2 =
𝜆/𝑟2

𝑘2
𝑟

𝑁2 =
𝑘̃2
ℎ

𝑘2
𝑟

𝑁2, (5.26)

where 𝑘̃ℎ ≡
√
𝜆/𝑟 is an effective horizontal wavenumber, which incorporates the effects of

rotation and magnetism. By analogy with the spherically symmetric case, we may define
an effective degree

ℓ𝑒 =
√︁
𝜆 + 1/4 − 1/2, (5.27)

such that 𝜆 = ℓ𝑒 (ℓ𝑒 + 1). In the TARM, oscillation modes are calculated by replacing ℓ with
ℓ𝑒 throughout the entire star, in the same manner as is done in the standard TAR.

5.3.2 Asymptotic period spacing
In the absence of rotation and magnetism, gravity modes obey the dispersion relation
𝜔̄ = ±𝑘ℎ𝑁/𝑘𝑟 ∝ 𝑘−1

𝑟 . In the asymptotic regime (where 𝑘𝑟𝑟 → ∞), this implies that
adjacent g modes (with relative radial orders 𝛿𝑛𝑔 = 1, and 𝑘𝑟 ∼ 𝑛𝑔/𝑟) are spaced uniformly
in the mode period 𝑃. In this Section, we derive an expression for the asymptotic period
spacing 𝛿𝑃𝑔 for g modes. We note that further departures from the asymptotic formula are
expected when the stellar structure varies over a comparable radial scale to the wavefunction,
or when there is mode mixing.
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Before proceeding, we review a fundamental difference between the inclusion of uniform
rotation and magnetism. For rotation, the fluid equations are solved by eigenfunctions
whose shapes are solely parameterized by the spin parameter 𝑞 = 2Ω/𝜔̄, which can be
calculated using stellar model parameters and the mode frequency, i.e., without knowledge
of 𝑘𝑟 . Observed spin parameters for intermediate-mass g-mode pulsations range from
𝑞 ≃ 0.1 to 𝑞 ≃ 30 (Aerts, Van Reeth, et al., 2017). However, for magnetism, the parameter
which controls the shapes of the eigenfunctions, 𝑏 = 𝑘𝑟𝑣𝐴𝑟/𝜔̄, does depend on 𝑘𝑟 (which
varies mode-to-mode and with 𝑟 in a complicated way). Fortunately, Equation 5.26 can
also be rewritten

𝜆 = 𝑏2/𝑎2, (5.28)

where the parameter 𝑎 (described by Rui and Fuller, 2023) is given by

𝑎 =
𝑁𝑣𝐴𝑟

𝑟𝜔̄2 . (5.29)

This parameter is the squared ratio of the magnetogravity frequency 𝜔𝐵 (Equation 5.1) to
the mode frequency (𝑎 ∼ 𝜔2

𝐵
/𝜔̄2) and, conveniently, can be computed in terms of the stellar

model and 𝜔̄ alone. By computing the horizontal eigenfunctions 𝜆 as a function of 𝑏 and
then inverting Equation 5.28, 𝜆 can be found as a function of 𝑎.

To compute the period spacing in the co-rotating frame, we first observe that the radial
phase 𝜑𝑔 across the gravity mode cavity is

𝜑𝑔 = 𝜋(𝑛𝑔 + 𝜖𝑔) =
∫

𝑘𝑟d𝑟 =
𝑃̄

2𝜋

∫ √
𝜆
𝑁

𝑟
d𝑟, (5.30)

where we have used Equation 5.26, and the integral is over the region of the star where
𝜔<𝑁 and 𝜔< 𝑘ℎ𝑐𝑠. In Equation 5.30, 𝑛𝑔 is the radial order, and 𝜖𝑔 is a (here unimportant)
phase offset. Adjacent modes (with 𝛿𝑛𝑔 = 1) will thus have

𝜋𝛿𝑛𝑔 = 𝜋 =
𝛿𝑃̄𝑔

2𝜋

∫ √
𝜆
𝑁

𝑟
d𝑟 + 𝜋𝑃̄

4𝜋

∫
𝛿𝜆
√
𝜆

𝑁

𝑟
d𝑟, (5.31)

where we have neglected the frequency dependence of the bounds of the buoyancy integral.

Because 𝑞 ∝ 𝜔̄−1 ∝ 𝑃̄ and 𝑎 ∝ 𝜔̄−2 ∝ 𝑃̄2,

𝛿𝜆 =
d𝜆
d𝑃̄
𝛿𝑃̄𝑔 =

𝜆

𝑃̄

d ln𝜆
d ln 𝑃̄

𝛿𝑃̄𝑔 =
𝜆

𝑃̄

(
1
2
𝜕 ln𝜆
𝜕 ln 𝑞

+ 𝜕 ln𝜆
𝜕 ln 𝑎

)
𝛿𝑃̄𝑔 . (5.32)

Combining Equations 5.31 and 5.32 and solving for 𝛿𝑃̄𝑔 gives

𝛿𝑃̄𝑔 = 2𝜋2
(∫ √

𝜆

(
1 + 1

2
𝜕 ln𝜆
𝜕 ln 𝑞

+ 𝜕 ln𝜆
𝜕 ln 𝑎

)
𝑁

𝑟
d𝑟

)−1
. (5.33)
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This approaches the well-known, zero-field, zero-rotation asymptotic formula in the relevant
limit (Equation 5.4), as well as Equation 4 of Bouabid et al. (2013) which was derived for
the purely rotational case.

Equation 5.33 requires the calculation of (𝜕 ln𝜆/𝜕 ln 𝑞)𝑎 and (𝜕 ln𝜆/𝜕 ln 𝑎)𝑞, where sub-
scripts denote fixed variables with respect to the partial derivative. In Section 5.4.1, we com-
pute 𝜆 and its derivatives on a discrete, rectangular grid of 𝑏 and 𝑞. While (𝜕 ln𝜆/𝜕 ln 𝑎)𝑞
is easy to calculate numerically via a finite difference formula (since fixing 𝑞 is straight-
forward), computing (𝜕 ln𝜆/𝜕 ln 𝑞)𝑎 is slightly trickier because it is harder to fix 𝑎. Via
Equation 5.28, we see that (

𝜕𝜆

𝜕𝑞

)
𝑎

=
2𝑏
𝑎2

(
𝜕𝑏

𝜕𝑞

)
𝑎

. (5.34)

Using the identity that

−1 =

(
𝜕𝑏

𝜕𝑞

)
𝑎

(
𝜕𝑎

𝜕𝑏

)
𝑞

(
𝜕𝑞

𝜕𝑎

)
𝑏

, (5.35)

we obtain (
𝜕𝜆

𝜕𝑞

)
𝑎

= −2𝑏
𝑎2

(
𝜕𝑎

𝜕𝑞

)
𝑏

(
𝜕𝑎

𝜕𝑏

)−1

𝑞

(5.36)

so that (
𝜕 ln𝜆
𝜕 ln 𝑞

)
𝑎

= −2𝑞
𝑏

(
𝜕𝑎

𝜕𝑞

)
𝑏

(
𝜕𝑎

𝜕𝑏

)−1

𝑞

. (5.37)

We use Equation 5.37 in our numerical calculation of 𝛿𝑃𝑔.

In the inertial frame, the observed frequencies 𝜔 are related to 𝜔̄ under our sign convention
by

𝜔 = 𝜔̄ − 𝑚Ω, (5.38)

so that the periods 𝑃 and 𝑃̄ in the inertial and co-rotating frames are related by

𝑃 =
𝑃̄

1 − 𝑚𝑃̄/𝑃rot
, (5.39)

where 𝑃rot is the rotation period. The (asymptotic) period spacing measured by an observer
is thus given by

𝛿𝑃𝑔 =
𝛿𝑃̄𝑔

(1 − 𝑚𝑃̄/𝑃rot)2 . (5.40)

Thus, the inclusion of either rotation or magnetism will also leave distinct imprints on 𝛿𝑃𝑔
as a function of mode period: understanding these signatures is crucial for extracting these
properties from 𝛿𝑃𝑔.
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5.4 Numerical solutions of the horizontal problem
In preceding sections, we have introduced an analytic formulation of the magnetorotational
pulsation problem. However, applying the TARM to concrete predictions of oscillation
spectra requires robust numerical solutions for the horizontal eigenvalues 𝜆. We describe
our numerical procedure for this calculation in this Section.

5.4.1 Numerical collocation scheme
Rui and Fuller (2023) calculate numerical solutions to the horizontal problem (Equation
5.25) in the nonrotating case (𝑞=0) by introducing a small artificial dissipation and using a
relaxation scheme. While this method satisfactorily treats numerical pathologies associated
with a singularity at critical latitudes 𝜇± = ±1/𝑏 for large fields, it is computationally
inefficient. Relatedly, because the coefficients of Equation 5.24 vary quickly across 𝜇±,
unreasonably large dissipation coefficients must be assumed to avoid needing prohibitively
high resolution near those latitudes.

The more general form of Equation 5.25 that we consider here is still of the Boyd type (e.g.,
Boyd, 1981), but now has solutions, and singular points, indexed by two parameters, 𝑏 and
𝑞. In particular, Equation 5.25 produces four additional singular points, obeying

𝜇2 =
2𝑏2 + 𝑞2 ±

√︁
4𝑏2𝑞2 + 𝑞4

2𝑏4 , (5.41)

two of which may lie within the solution domain even for fields too weak to resonate with
a given oscillation mode (i.e., 𝑏 < 1).

We therefore seek an alternative solution strategy that is robust to the presence of such
regular singular points. For 𝑞 < 1 − 𝑏2, no singularities lie on the domain, and it suffices
to perform standard Chebyshev collocation on the real line (e.g., Wang, Boyd, et al., 2016).
However, the collocation procedure must be modified somewhat to work for 𝑞 > 1−𝑏2. We
note that since the Sturm–Liouville linear operator in Equation 5.24 is analytic, it may be
treated as defining an ordinary differential equation on the complex plane. Solutions to the
standard Sturm–Liouville problem on the real line coincide with those of this analytically
continued problem, restricted to the real line. Thus, we may construct numerical solutions
to the analytically continued problem on a contour on the complex plane, chosen to match
the boundary conditions of the real problem on the interval 𝜇∈ [−1, +1]. Eigenvalues of the
analytically continued problem will not depend on this choice of contour. Thus, the contour
may be chosen to avoid the singular points that we have described above, and therefore to
improve the numerical conditioning (e.g. stiffness) of the problem. We refer the reader
to, e.g., Boyd (1985) for a more detailed examination of this procedure, and nature of the
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resulting solutions. We find the standard collocation procedure to be sufficient for 𝑚 = 0
and 𝑚 =±2 for any values of 𝑞 ∈ [0, 2] and 𝑏 ∈ [0, 1). However, solutions for the 𝑚 =±1
modes under this procedure are numerically badly behaved for 𝑞 > 1 − 𝑏2. In these cases,
we perform a complex coordinate transformation from 𝜇 to 𝜁 given by

𝜇 = 𝜁

(
2 − 𝜁2

)
+ 𝜁

(
1 − 𝜁2

)2
𝑖, (5.42)

and then solve the resulting problem using Chebyshev collocation on the interval 𝜁 ∈ [−1, 1].
This contour is chosen to share endpoints with the original real interval, while being tangent
with the real line from the |𝜇 | > 1 (rather than |𝜇 | < 1) direction.

The eigenvalue 𝜆 depends on the relationship between the mode frequency 𝜔̄, rotational
frequencyΩ (via 𝑞=2Ω/𝜔̄), and magnetogravity frequency𝜔𝐵 (via 𝑎=𝜔2

𝐵
/𝜔̄2). Therefore,

once 𝜆 is computed for a given pair of 𝑏 and 𝑞, we retroactively compute 𝑎 = 𝑏/
√
𝜆),

and regard 𝜆 as being a function of 𝑎 and 𝑞. Because this procedure only produces
values of 𝑎 below some critical 𝑎crit = 𝑎crit(𝑞) (corresponding to the maximum field which
permits propagating magnetogravity waves), we excise two families of solutions: the Alfvén
resonant ones for which 𝑏 > 1 (which are expected to experience phase mixing, e.g., Loi
and Papaloizou, 2017), and those which lie on the “slow” branch described by Rui and
Fuller (2023) (which are expected to approach infinite wavenumber). Within this work, we
consider both such solutions to be “suppressed”: we do not otherwise make claims about
the degree of suppression or the mode frequencies of suppressed modes.

Figure 5.1 shows values of 𝜆 computed for all dipole (ℓ = 1) and quadrupole (ℓ = 2)
modes. In particular, for the zonal (𝑚 = 0) and retrograde (𝑚 > 0) modes calculated here,
the critical magnetic field needed to cause mode suppression decreases with increasing
rotation rate. This is because, for these branches, 𝜆 increases relatively strongly with 𝑞
(for 𝑏 = 0, 𝜆 ∝ 𝑞2; Bildsten, Ushomirsky, et al., 1996; Townsend, 2003; Townsend,
2020). Therefore, 𝑎crit = 𝑏crit/

√
𝜆 decreases with 𝑞. However, since larger rotation rates

cause the prograde Kelvin modes (which have 𝑚 = −ℓ) to attain larger horizontal scales
(𝜆 decreases to a smaller constant value with 𝑞, when 𝑏 = 0), the critical field increases
with increasing rotation rate. For the (ℓ, 𝑚) = (2,−1) case, the dependence of 𝜆 on 𝑞 and
𝑏 is slightly more complicated, hence the non-monotonic behavior of the corresponding
critical field with rotation rate. In any case, a straightforward prediction of this formalism
is thus that different branches of modes should undergo suppression at different mode
frequencies. Observational measurements of these critical periods may therefore impose
strong constraints on the magnetic and rotational properties of the star.
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5.5 Numerical solutions of the radial problem
5.5.1 Non-asymptotic numerical scheme
In the asymptotic regime, the perturbations vary with radius as ∼ 𝑒𝑖𝜑𝑔 , where 𝜑𝑔 is given
by Equation 5.30 (using the appropriate bounds). In other words, in this regime, the
wavefunctions in the g-mode cavity are expected to be sinusoidal with respect to a modified
buoyancy radius Π given by

Π(𝑟) =

∫ 𝑟

𝑟1

𝑁
𝑟

d𝑟∫ 𝑟2
𝑟1

𝑁
𝑟

d𝑟
(5.43)

which we define over the entire main radiative cavity (with respective inner and outer
boundaries 𝑟1 and 𝑟2). This quantity is normalized such that Π ranges from 0 to 1.

However, the asymptotic assumption is violated in the proximity of sharp features in 𝑁
(i.e., buoyancy glitches) when their characteristic widths are ≲ 𝑘−1

𝑟 . In such cases, the
period spacing is expected to be modified from the asymptotic estimate in Equation 5.33.
Sharp peaks in 𝑁 are known to develop at the lower boundaries of the radiative envelopes
of evolved MS stars (in which they cause periodic “dips” in the 𝛿𝑃𝑔 pattern with 𝑃; Miglio,
Montalbán, Noels, et al., 2008; Pedersen et al., 2018), and similar buoyancy glitches
have recently been observed asteroseismically in red giants (Cunha, Stello, et al., 2015;
Vrard, Cunha, et al., 2022b), although their structure is very sensitive to the details of
convective boundary mixing (e.g., Michielsen, Aerts, et al., 2021; Lindsay et al., 2023).
The asymptotic assumption is also strongly violated for g modes with low radial order,
which may be observable in subgiants or some pulsators on the MS.

To model some of the non-asymptotic effects, we use a shooting method to solve the stellar
pulsation equations under the assumption of adiabaticity, cast in the dimensionless form of
Dziembowski (1971). This form of the pulsation equations is also employed by commonly
used mode-solving codes such as GYRE (Townsend and Teitler, 2013). Rotation and
magnetism are implemented only by replacing the angular degree ℓ in the equations with
an effective degree ℓ𝑒, defined in Equation 5.27. Thus, we account only for the dynamical
effects of rotation and magnetism, and neglect their indirect effects on stellar structure
itself. Additionally, we emphasize that this “1.5D” approach still includes both rotation and
magnetism asymptotically (similarly to the treatment of rotation in GYRE), and thus relies
on the rotation and magnetic field profiles varying slowly in 𝑟 compared to the wavefunctions
themselves. In other words, while this procedure captures phenomena like wave-trapping
due to peaks in 𝑁 , it does not accurately model the effects of sharp radial gradients in the
magnetic field or rotation profiles, or coupling to, e.g., inertial modes.
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In what follows, 𝑀 and 𝑅 denote the total mass and radius of the star, and 𝑚 denotes the
mass interior to radius 𝑟. We solve the radial problem for

𝑦1 = 𝑥2−ℓ𝑖 𝜉𝑟
𝑟

(5.44a)

𝑦2 = 𝑥2−ℓ𝑖 𝑝′

𝜌0𝑔𝑟
(5.44b)

where 𝑥 = 𝑟/𝑅, and ℓ𝑖 = ℓ𝑒 (𝑟1) is evaluated at the inner boundary. In buoyancy coordinates,
the perturbed time-independent oscillation equations then become

𝑆(Π) d®𝑦
dΠ

= A®𝑦 (5.45)

where
𝑆(Π) = 𝑁

𝑥
∫ 𝑟2
𝑟1

𝑁
𝑟

d𝑟
, (5.46)

®𝑦 = (𝑦1, 𝑦2), 𝜎 = 𝜔̄
√︁
𝑅3/𝐺𝑀 ,

A =

(
𝑉/𝛾 − 1 − ℓ𝑒 𝜆/𝑐1𝜎

2

𝑐1𝜎
2 − 𝐴∗ 3 −𝑈 + 𝐴∗ − ℓ𝑒

)
, (5.47)

and

𝑉 = 𝜌0𝑟𝑔/𝑝0 (5.48a)

𝑐1 = 𝑥3𝑀/𝑚 (5.48b)

𝐴∗ = 𝑁2𝑟/𝑔 (5.48c)

𝑈 = 4𝜋𝑟3𝜌/𝑚. (5.48d)

Equations 5.45 reflect the 𝛾-mode localization scheme of Ong and Basu (2020) as well as
the Cowling approximation (neglecting perturbations to the gravitational potential). These
approximations are made to restrict our attention to the effect of magnetism and rotation
on pure g modes, and to avoid boundary condition-related numerical artifacts (see Section
2.2 of Ong and Basu, 2020). Because the Cowling approximation is well-justified at high
radial orders (where the TARM is valid), this approach should capture all of the robust
predictions of our formalism. For the red giant model (Section 5.5.2), the resulting modes
should be compared to the output of the stretching procedure typically used to extract 𝛿𝑃𝑔
from solar-like oscillators (Mosser, Vrard, et al., 2015).

For our numerical shooting, we first integrate Equation 5.45 outwards from the stellar centre
as an initial value problem to produce inner basis solutions which are consistent with the
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boundary conditions imposed there. In this work, we impose the boundary condition 𝑦1 = 0
(𝑥𝑟 = 0) on both boundaries. The solution vector evaluated at any intermediate point (here
taken to be Π = 1/2) should thus be equivalent (up to linear dependence) when obtained
by integrating from either boundary (starting from ®𝑦 = (0, 1)). These two solution vectors
(obtained using a Radau integration scheme; Wanner and Hairer, 1996) can then be formed
into a 2 × 2 matrix whose determinant D(𝜔̄) must vanish at a normal mode 𝜔̄ = 𝜔̄∗.

The adiabatic prescription of Equation 5.45 produces strictly real eigenvalues. To search for
modes, we evaluate D(𝜔̄) over some frequency grid. Between frequency grid points where
D changes sign, we use a bisection algorithm to locate the roots of D. These oscillation
modes 𝜔̄ are then converted to their values 𝜔 in the inertial frame via Equation 5.39 (when
there is rotation).

5.5.2 Stellar models
We find the oscillation modes of stellar models produced using version r22.11.1 of the
Modules for Stellar Experiments (MESA) code (Paxton, Bildsten, et al., 2010; Paxton,
Cantiello, et al., 2013; Paxton, Marchant, et al., 2015; Paxton, Schwab, et al., 2018; Paxton,
Smolec, et al., 2019). We incorporate realistic convective overshoot using exponential
overmixing with scale height 𝑓ov𝐻𝑝 = 0.015𝐻𝑝 (where 𝐻𝑝 is the local pressure scale
height), with the overshooting region starting a distance 0.005𝐻𝑝 inside the convective
zone.

The stellar profiles as well as the rotation periods and magnetic fields we assume for them
are summarized in Table 5.1. In particular, we choose three snapshots from a 1.5𝑀⊙

model to assess the behavior of the period spacing on the early-MS (MS-1.5-young),
late-MS (MS-1.5-evolved), and lower RG (RG-1.5), and two snapshots from a 6.0𝑀⊙

star on the early-MS (MS-6.0-young) and late-MS (MS-6.0-evolved). These models are
chosen to be representative of 𝛾 Dor (MS-1.5-young, MS-1.5-evolved), slowly pulsating B-
type (SPB; MS-6.0-young, MS-6.0-evolved), and red giant solar-like (RG-1.5) oscillators.
We solve for the dipole (ℓ = 1) oscillation modes over a realistic range of frequencies.
For RG-1.5, we compute these frequencies with both rotation and magnetism, as well
as in the absence of either, in order to benchmark the prediction of perturbation theory
(Equation 5.6.1). For the main-sequence models, the mode frequencies are computed three
times, including the effects of magnetism and rotation both separately and simultaneously
(Equation 5.6.2). The magnetic field is chosen to be strong enough to exhibit the effects of
strong magnetic modification and suppression of some branch of oscillation modes. The
mode period/frequency ranges shown in Table 5.1 are given in the inertial frame. When
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relevant, we solve only for co-rotating frequencies 𝜔̄ ≳ 0 to avoid the pile-up of g modes
close to 𝜔̄ = 0.

Our models do not take into account distortions of the stellar structure due to centrifugal
forces and magnetic pressure. While these effects are unlikely to matter in most observed
𝛾 Dor and SPB stars (Henneco, Van Reeth, et al., 2021), they are likely to be important in
rapidly rotating p-mode pulsators (such as 𝛿 Sct stars, e.g., Lignières et al., 2006).

5.6 Results and discussion
5.6.1 Strong fields in red giant cores
Strong magnetic fields in red giant cores have two main asteroseismic manifestations. First,
they may produce frequency shifts on the nonradial modes which tend to shift modes of
all 𝑚 in the same direction (as opposed to rotation, which creates a frequency multiplet).
Measurements of such frequency shifts have recently been used to make inferences about
the field strength and, in one case, even geometry (Li, Deheuvels, Ballot, and Lignières,
2022; Li, Deheuvels, Li, et al., 2023). Second, if the magnetic field is extraordinarily
strong, the magnetic field is expected to suppress the amplitudes of dipole modes whose
frequencies lie below some 𝜔crit∼𝜔𝐵 (Fuller, Cantiello, et al., 2015; Lecoanet, Vasil, et al.,
2017; Rui and Fuller, 2023).

Our red giant model (RG-1.5; described in Section 5.5.2) is chosen to mimic a star on
the lower red giant branch (for which mixed modes are easiest to observe) with a typical
rotation rate (𝑃rot=30 d). For a frequency of maximum power 𝜈max≈300 𝜇Hz, we calculate
all dipole modes within the frequency range 𝜈max/2 and 3𝜈max/2 in the simultaneous
presence of magnetism and rotation, using the scheme described in Section 5.5.1. The
width of the adopted frequency range is comparable to the full width at half maximum
value 𝛿𝜈env ≈100 𝜇Hz ≈ 𝜈max/3 calculated using the scaling relation of Mosser, Elsworth,
et al. (2012). The large central magnetic field 𝐵𝑐 ≈ 820 kG is chosen such that the 𝑚 =±1
sectoral modes are suppressed at the lower frequency range, to show the effect of a strong
field. Note that 𝐵𝑐 refers to the maximum value of the radial component of the field at the
center of the star, rather than some horizontally averaged version of this quantity. Therefore,

this value of 𝐵𝑐 corresponds to a horizontally averaged field 𝐵2
𝑟

1/2
≈𝐵𝑐/

√
3≈470 kG when

normalized in the same way as the values reported by Li, Deheuvels, Ballot, and Lignières
(2022) (30–100 kG), Deheuvels, Li, et al. (2023) (40–610 kG), and Li, Deheuvels, Li, et al.
(2023) (20–150 kG). The middle panels of Figure 5.2 show mock period echelle diagrams
corresponding to these calculations.
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We additionally calculate the mode frequencies for the same stellar model in the absence
of either rotation and magnetism, in order to test the perturbative formalism. At high
frequencies (where both rotation and magnetism are perturbative), the mode frequencies
are closely consistent with the perturbative frequency shifts derived by Li, Deheuvels, Ballot,
and Lignières (2022) (the unfilled symbols in the middle panels of Figure 5.2). However,
at low frequencies close to suppression (𝜈 ≲ 220 𝜇Hz), the TARM and perturbative results
deviate substantially, with the TARM results tending to predict much larger frequency
shifts than the perturbative formulae. This effect becomes increasingly dramatic until,
at 𝜈 ≈ 170 𝜇Hz, the sectoral modes are totally suppressed (although the zonal 𝑚 = 0
mode remains propagating, and is suppressed at a frequency below the chosen observed
frequency range). Disagreement between the perturbative and TARM frequency shifts is
fully expected: at or near suppression, the effects of magnetism are, by definition, highly
non-perturbative.

To formally demonstrate consistency with the perturbative formulae at high mode frequen-
cies, we can expand the operator in Equation 5.24 in 𝑏 and 𝑞 and perform a perturbation
analysis. Corrections to the subsequent analysis enter at O(𝑞3, 𝑞𝑎2, 𝑎4) ∼ O(Ω3,Ω𝜔4

𝐵
, 𝜔8

𝐵
).

We obtain the following eigenvalue equation:

0 = 𝜆𝑝′(𝜇) + L𝑚
0 [𝑝′(𝜇)] + L𝑚,𝑏,𝑞

pert [𝑝′(𝜇)] (5.49)

where

L𝑚,𝑏,𝑞
pert [𝑝′(𝜇)] = −𝑚𝑞𝑝′(𝜇)

+ (𝑏2 + 𝑞2)
[

d
d𝜇

(
𝜇2(1 − 𝜇2) d𝑝′

d𝜇

)
− 𝑚2𝜇2

1 − 𝜇2 𝑝
′(𝜇)

]
.

(5.50)

To find the effect of L𝑚,𝑏,𝑞
pert on the eigenvalues, we perform first-order perturbation theory.

If the dipole eigenvalues are given by

𝜆 = ℓ(ℓ + 1) + 𝜆̃𝑚,𝑏,𝑞 = 2 + 𝜆̃𝑚,𝑏,𝑞, (5.51)

where

0 = 𝜆̃𝑚,𝑏,𝑞 +
∫ +1

−1
𝑝′0𝑚 (𝜇)∗L

𝑚,𝑏,𝑞
pert [𝑝′0𝑚 (𝜇)] d𝜇 (5.52)

and 𝑝′0𝑚 (𝜇) are the unperturbed eigenfunctions (of L𝑚
0 ). We emphasize that this is a

perturbative expansion on the space of latitudinal functions all of the same 𝑚 (for the
generalized Legendre operators), and not on the full space of spherical harmonics (as done
by Li, Deheuvels, Ballot, and Lignières, 2022). Degenerate perturbation theory is thus not
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necessary here, since the eigenvalues of the generalized Legendre operator for a given 𝑚
do not repeat. Furthermore, while in principle corrections may enter in an expression at
second-order in perturbation theory, the only relevant term ∝−𝑚𝑞 in L𝑚,𝑏,𝑞

pert shifts all of the
eigenvalues of a given 𝑚 equally, and thus does not induce a second-order perturbation in
𝜆.

The unperturbed pressure perturbations are the associated Legendre polynomials,

𝑝′0𝑚 (𝜇) =

√︃

3
2𝜇 𝑚=0√︃
3
4

√︁
1 − 𝜇2 𝑚=±1

(5.53)

where we have normalized the functions to square-integrate to unity and ignored the overall
(Condon–Shortley) phase. The integral in Equation 5.52 can therefore be evaluated to give

𝜆 =


2 + 2

5 (𝑏
2 + 𝑞2) 𝑚=0

2 ± 𝑞 + 4
5 (𝑏

2 + 𝑞2) 𝑚=±1
(5.54)

so that
√
𝜆 =


√

2 + 1
5
√

2
(𝑏2 + 𝑞2) 𝑚=0

√
2 ± 1

2
√

2
𝑞 + 1

80
√

2
(32𝑏2 + 27𝑞2) 𝑚=±1

. (5.55)

To transform the independent variable 𝑏 to 𝑎 (which can directly be specified given a field
and stellar profile), we note that

𝑏 = 𝑎
√
𝜆 ≈ 𝑎

√
2 (5.56)

up to the relevant order. Then

√
𝜆 =


√

2 + 1
5
√

2
(2𝑎2 + 𝑞2) 𝑚=0

√
2 ± 1

2
√

2
𝑞 + 1

80
√

2
(64𝑎2 + 27𝑞2) 𝑚=±1

. (5.57)

The mode frequencies in the co-rotating frame are given by

𝜔̄ =
1
𝜑𝑔

∫ 𝑟2

𝑟1

√
𝜆
𝑁

𝑟
d𝑟 (5.58)

in the asymptotic regime, where 𝜑𝑔 = 𝜋(𝑛𝑔 + 𝜀𝑔) (Tassoul, 1980) is the total radial phase
(note that 𝜆 depends implicitly on 𝜔̄ in a complicated way). We again proceed in ignoring
the frequency dependence of the bounds of the integral in Equation 5.58 (which should
formally only enclose the part of the main radiative cavity where 𝜔 < 𝑁).
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We define the “buoyant average”:

⟨. . .⟩𝑔 =

∫ 𝑟2
𝑟1

(. . .) 𝑁
𝑟

d𝑟∫ 𝑟2
𝑟1

𝑁
𝑟

d𝑟
. (5.59)

Assuming that 𝛿𝜔̄≪ 𝜔̄0 (sufficient for the desired order of the expansion), we may expand
Equation 5.58 as

𝛿𝜔̄ =

(
⟨𝜔4

𝐵
⟩𝑔

5𝜔̄3
0

+
2⟨Ω2⟩𝑔

5𝜔̄0

)
−
√

2

(
2⟨𝜔4

𝐵
⟩𝑔

5𝜔̄3
0

+
2⟨Ω2⟩𝑔

5𝜔̄0

)
𝛿𝜔̄

𝜔̄0
(5.60)

for 𝑚=0, and

𝛿𝜔̄ =

(
±
⟨Ω⟩𝑔

2
+

2⟨𝜔4
𝐵
⟩𝑔

5𝜔̄3
0

+
27⟨Ω2⟩𝑔

40𝜔̄0

)
−
√

2

(
±
⟨Ω⟩𝑔

4
−

8⟨𝜔4
𝐵
⟩𝑔

5𝜔̄3
0

−
27⟨Ω2⟩𝑔

40𝜔̄0

)
𝛿𝜔̄

𝜔̄0

(5.61)

for 𝑚=±1. Equations 5.60 and 5.61 can be solved to yield the following frequency shifts:

𝛿𝜔̄𝑚=0 =
1
5
⟨𝜔4

𝐵
⟩𝑔

𝜔̄3
0

+ 2
5
⟨Ω2⟩𝑔
𝜔̄0

(5.62a)

𝛿𝜔̄𝑚=±1 = ±
⟨Ω⟩𝑔

2
+ 2

5
⟨𝜔4

𝐵
⟩𝑔

𝜔̄3
0

+
27⟨Ω2⟩𝑔 − 10⟨Ω⟩2

𝑔

40𝜔̄0
. (5.62b)

We keep one higher order of the rotation rate than do Li, Deheuvels, Ballot, and Lignières
(2022). We distinguish between ⟨Ω2⟩𝑔 and ⟨Ω⟩2

𝑔 in the above to allow for the possibility of
weak differential rotation (e.g., Beck et al., 2012), which may distinguish between the two.
However, in the case of uniform rotation (assumed throughout this work), ⟨Ω2⟩𝑔 = ⟨Ω⟩2

𝑔 =

Ω2. In the inertial frame, these frequency shifts become

𝛿𝜔𝑚=0 =
1
5
⟨𝜔4

𝐵
⟩𝑔

𝜔3
0

+ 2
5
⟨Ω2⟩𝑔
𝜔0

(5.63a)

𝛿𝜔̄𝑚=±1 = ∓
⟨Ω⟩𝑔

2
+ 2

5
⟨𝜔4

𝐵
⟩𝑔

𝜔3
0

+
27⟨Ω2⟩𝑔 − 10⟨Ω⟩2

𝑔

40𝜔0
(5.63b)

where 𝜔̄0 = 𝜔0 for the unperturbed modes. We have full consistency with the perturbation
formulae of Li, Deheuvels, Ballot, and Lignières (2022) (their Equations 61 and 62, with
𝜁 = 1). Note that the star-averaged quantity which they define to be 𝜔𝐵 (≡ 𝜔𝐵,L22) is equal
to 𝜔𝐵,L22 = ⟨𝜔4

𝐵
⟩𝑔/3𝜔̄3

0.
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We caution that both the direct role of the centrifugal force as a restorative force and its
indirect impact on the stellar structure (e.g., Ballot et al., 2010) also enter at ∝ Ω2. Inclusion
of these effects is likely necessary to accurately capture the second-order effects of rotation.

Our non-perturbative mode calculations imply a few straightforward predictions. First, as
mentioned previously, the magnetic frequency shifts become substantially stronger than
implied by a perturbative estimate. While the relative change in the period spacing is still
small (𝛿𝑃𝑔 decreases by ≈ 10% before suppression), the frequency shifts still substantially
modify the period echelle diagram. Conversely, if the period spacing pattern of a strongly
magnetic red giant is fit using the perturbative formulae, the inferred magnetic field is likely
to be a significant overestimate. For example, Deheuvels, Li, et al. (2023) claim the detection
of a red giant (KIC 6975038) whose magnetic field (≈ 286 kG) significantly exceeds the
critical field 𝐵crit by a factor ∼ 1.7. Under our formalism, a field near or exceeding 𝐵crit

should efficiently damp magnetogravity waves, either through phase mixing or refraction
to infinite wavenumbers. Indeed, Deheuvels, Li, et al. (2023) observe nearly total dipole
suppression in the same star for only low-frequency modes ≲ 𝜈max, consistent with 𝜔crit

lying on their observed frequency range. Their results could potentially be brought into
accord with ours if non-perturbative effects have caused an observational overestimate of
the field by a factor of a few.

To characterize the severity of such systematic overestimates, we compute the dipole fre-
quency shifts in the red giant model for a range of internal magnetic fields (by numerically
solving Equation 5.58). For each order 𝑚, we then calculate the internal magnetic field
which would be needed to produce the same frequency shift in perturbation theory. Figure
5.3 shows that the magnetic field ⟨𝐵2

𝑟 ⟩1/2 implied by perturbation theory can exceed the
“true” value for fields which are almost strong enough to cause suppression. Specifically, we
use ⟨𝐵2

𝑟 ⟩1/2 to denote the field averaged over all angles and over the radial kernel (following
Li, Deheuvels, Ballot, and Lignières, 2022):

⟨𝐵2
𝑟 ⟩ =

1
3

∫ 𝑟2

𝑟1

𝐾 (𝑟)𝐵2
𝑟 d𝑟. (5.64)

where 𝐾 (𝑟) is given by Equation 5.67 in the asymptotic limit.

While the errors accrued by the perturbative formulae in Figure 5.3 are relatively small
and do not rise to a factor ∼ 1.7, the degree to which perturbation theory overestimates
the field likely depends on the field geometry adopted and the exact structure of the star
(via, e.g., how far up the red giant branch the star is). Moreover, it likely depends on the
exact procedure used to extract the field. For example, Figure 5.3 shows magnetic field
values inferred using only one azimuthal order at one frequency, but an inference using
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the whole oscillation spectrum may yield a different answer. In the future, the manner in
which perturbation theory misestimates the field should be characterized in more detail as
a function of these factors. Large relative errors in the inferred magnetic field may also
appear at low fields end if second-order rotational effects are mistaken for magnetic shifts
(top panel of Figure 5.3).

Second, Li, Deheuvels, Ballot, and Lignières (2022) and Li, Deheuvels, Li, et al. (2023)
measure the dipole asymmetry parameter, defined by

𝑎asym =
𝛿𝜔𝑚=+1 + 𝛿𝜔𝑚=−1 − 2𝛿𝜔𝑚=0
𝛿𝜔𝑚=+1 + 𝛿𝜔𝑚=−1 + 𝛿𝜔𝑚=0

. (5.65)

This should not be confused with the parameter 𝑎=𝜔2
𝐵
/𝜔2 defined in this work and by Rui

and Fuller (2023). In the perturbative regime, they show that

𝑎asym =

∫ 𝑟2
𝑟1

d𝑟 𝐾 (𝑟)
∬

sin 𝜃 d𝜃 d𝜙 𝐵2
0𝑟𝑃2(cos 𝜃)∫ 𝑟2

𝑟1
d𝑟 𝐾 (𝑟)

∬
sin 𝜃 d𝜃 d𝜙 𝐵2

0𝑟

, (5.66)

where 𝑃2(𝜇) = (3𝜇2 − 1)/2 is the second-order Legendre polynomial and 𝐾 (𝑟) is a radial
kernel function given by

𝐾 (𝑟) = 𝜌−1(𝑁/𝑟)3∫ 𝑟2
𝑟1
𝜌−1(𝑁/𝑟)3 d𝑟

. (5.67)

In particular, when the horizontal dependence of 𝐵0𝑟 is given by 𝜓(𝜃, 𝜙) (i.e., the horizontal
geometry is radius-independent), the radial integral in Equation 5.66 can be eliminated,
yielding

𝑎asym =

∬
sin 𝜃 d𝜃 d𝜙 𝜓(𝜃, 𝜙)2𝑃2(cos 𝜃)∬

sin 𝜃 d𝜃 d𝜙 𝜓(𝜃, 𝜙)2
. (5.68)

In the special case of a dipole magnetic field whose axis is aligned with the rotational axis
(𝜓(𝜃, 𝜙) = cos 𝜃), it can be seen that 𝑎asym = 2/5 = 0.4 in this expression.

In the bottom panel of Figure 5.2, we see that this expectation holds at high frequencies, but
increases slightly to≈0.5 at lower frequencies (near𝜔crit). While likely difficult to measure,
a value of 𝑎asym that varies towards lower frequencies (coinciding with the inference of a
large magnetic field from the frequency shifts) may be an independent signature of a near-
critical field. This non-perturbative asymmetry effect is related to the different magnetic
fields implied by perturbation theory’s predictions for the frequency shifts of different
azimuthal orders (Figure 5.3).
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Figure 5.2: Top: The Brunt–Väisälä (𝑁) and magnetogravity (𝜔𝐵) frequencies for the
red giant model (RG-1.5), plotted in relation to the range over which we solve for mode
frequencies. The rotational frequency Ω ≃ 2.4 𝜇Hz (𝑃rot = 30 d) is below the bottom bound
of this plot. Center: Period echelle diagram for the red giant’s core g modes. The right
panel zooms into the low frequency modes of the left panel, and folds on a different period
for clarity. Solid symbols denote mode frequencies calculated using the TARM, whereas
hollow symbols denote the lowest-order prediction of perturbation theory. Bottom: The
dipole asymmetry parameter (Equation 5.65) plotted against unperturbed mode frequency.
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In stars with especially weak magnetic fields, it is in principle possible for the dipole
asymmetry to be dominated by rotation, even if it is slow enough for perturbation theory to
be applicable. From Equation 5.63 and Equations 5.65, we have

𝑎asym =
8⟨𝜔4

𝐵
⟩𝑔/𝜔̄2

0 + 11⟨Ω2⟩𝑔 − 10⟨Ω⟩2
𝑔

20⟨𝜔4
𝐵
⟩𝑔/𝜔̄2

0 + 35⟨Ω2⟩𝑔 − 10⟨Ω⟩2
𝑔

(5.69)

such that, for a uniform rotation rate Ω, ⟨Ω2⟩𝑔 = ⟨Ω⟩2
𝑔 = Ω2), Equation 5.69 possesses the

limiting behavior

𝑎asym =


2
5 − 9

20
𝜔̄2

0Ω
2

⟨𝜔4
𝐵
⟩𝑔

⟨𝜔4
𝐵
⟩𝑔 ≫ 𝜔̄2

0Ω
2

1
25 + 36

125
⟨𝜔4

𝐵
⟩𝑔

𝜔̄2
0Ω

2 ⟨𝜔4
𝐵
⟩𝑔 ≪ 𝜔̄2

0Ω
2
. (5.70)

When the magnetic asymmetry dominates (⟨𝜔4
𝐵
⟩𝑔/𝜔̄2

0 ≫ ⟨Ω⟩2
𝑔 ≃ Ω2), 𝑎asym ≈ 2/5= 0.40.

However, when the Coriolis-induced rotational asymmetry dominates (Ω2 ≫ ⟨𝜔4
𝐵
⟩𝑔/𝜔̄2

0),
we instead have 𝑎asym ≈ 1/25 = 0.04. We stress that this is a fully perturbative effect:
it only deviates from the result of Li, Deheuvels, Ballot, and Lignières (2022) because it
includes a single higher-order effect of rotation. The upshot is that, even when both rotation
and magnetism are individually small, 𝑎asym ≠ 2/5 for aligned rotational/magnetic axes if
the effect of rotation is relatively at least comparable to that of magnetism. We again caution
that the centrifugal force (which is also relevant at this order in Ω) has been neglected—
this likely implies that the rotation-dominated asymmetry does not exactly approach 1/25
but some other value. Inclusion of such effects (as done by, e.g., Mathis and Prat, 2019;
Dhouib, Prat, et al., 2021b; Dhouib, Prat, et al., 2021a) is needed to properly predict the
true rotation-dominated asymmetry value. Nevertheless, we expect the qualitative ability
for rotation to dominate over magnetism in determining the dipole asymmetry to be robust.

Li, Deheuvels, Ballot, and Lignières (2022) and Li, Deheuvels, Li, et al. (2023) neglect
the rotational asymmetry effect on the basis that the core rotation rates in the stars in their
sample are typical (i.e., low): we hereafter check this explicitly. As a crude estimate,
the magnetic asymmetry dominates the rotational asymmetry in a red giant core when
⟨𝜔4

𝐵
⟩𝑔/𝜔2

maxΩ
2 ≫ 1. In the three stars investigated by Li, Deheuvels, Ballot, and Lignières

(2022), ⟨𝜔4
𝐵
⟩𝑔/𝜔2

maxΩ
2 ≳ 102 and their asymmetries are thus indeed very magnetically

dominated. Most of the stars reported by Li, Deheuvels, Li, et al. (2023) have values of
⟨𝜔4

𝐵
⟩𝑔/𝜔2

max in the tens or hundreds. However, this parameter reaches a minimum for KIC
8540034, for which ⟨𝜔4

𝐵
⟩𝑔/𝜔2

maxΩ
2 ≈ 9. In this star, rotation may affect the asymmetry

parameter for low-frequency modes (note the frequency dependence of ⟨𝜔4
𝐵
⟩𝑔/𝜔2Ω2) In

general, magnetic domination of the dipole asymmetry may not be the case for giants with
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Figure 5.3: For the red giant model (RG-1.5): Top: The relative error on the inferred
magnetic field ⟨𝐵2

𝑟 ⟩1/2 associated with perturbation theory. ⟨𝐵2
𝑟 ⟩1/2 refers to an angle- and

radial kernel-averaged field, following the notation of Li, Deheuvels, Ballot, and Lignières
(2022) (see Equation 5.64). Bottom: The internal magnetic field ⟨𝐵2

𝑟 ⟩1/2 implied by
perturbation theory using the frequency shift for some angular degree 𝑚, plotted against
the “real” value (given by our non-perturbative TARM formalism). The frequency shift is
evaluated using 𝜑𝑔 ≃ 𝜋𝑛𝑔 for a physically realistic radial order 𝑛𝑔 = 70 (𝜈max ≈ 150 𝜇Hz),
roughly the bottom of the frequency range shown in the period echelle diagram in Figure
5.2.
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Figure 5.4: Characteristic frequency profiles and mode frequencies for a young 𝛾 Dor
analogue (MS-1.5-young). Top: The Brunt–Väisälä (𝑁), rotational (Ω), and magnetogravity
(𝜔𝐵) frequencies, plotted in relation to the range over which we solve for mode frequencies.
Bottom: The period spacing 𝛿𝑃𝑔 versus period 𝑃 in the inertial frame for the dipole modes,
in the magnetic, rotating, and magnetic and rotating cases. Predictions for the asymptotic
period spacing for the 𝑚=1 branch (using Equation 5.33) are shown in solid red. We also
show predictions for the asymptotic period spacing handling rotation non-perturbatively
but magnetism only perturbatively (using Equation 5.71; dashed blue curves).

either fast core rotation rates or weak fields, and we caution against using 𝑎asym alone to
make an inference of the field geometry without checking this criterion explicitly.

5.6.2 Strong fields threading the envelopes of main-sequence pulsators
Stars with masses ≳ 1.3𝑀⊙ have radiative envelopes and convective cores on the main
sequence. Therefore, such stars may pulsate in g modes which are directly detectable,
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Figure 5.5: Same as Figure 5.4, but for an evolved 𝛾 Dor analogue (MS-1.5-evolved).

without needing to be disentangled from p modes as in solar-like oscillators. Such os-
cillators are ubiquitous: as discussed previously, they include 𝛾 Dor (AF-type) and SPB
(B-type) variables. The pulsations are driven by coherent mechanisms such as convective
flux blocking (in 𝛾 Dors; Guzik, Kaye, Bradley, Cox, Neuforge-Verheecke, et al., 2002;
Dupret, Grigahcene, et al., 2004) and the 𝜅 mechanism (in B-type pulsators; Gautschy and
Saio, 1993; Dziembowski, Moskalik, et al., 1993). This is in contrast to the broadband,
stochastic driving present in solar-like oscillators (Samadi et al., 2015). Crucially, in these
pulsators, there is no guarantee that the measurable modes are complete over some observed
frequency range. The selection mechanism for mode excitation is poorly understood, and
the asteroseismic power spectra are often sparse. Observational studies of such pulsators
thus typically apply a forward-modeling approach based on the identified modes (e.g., Aerts,
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Figure 5.6: Same as Figure 5.4, but for a young SPB analogue (MS-6.0-young).

Molenberghs, et al., 2018), which rely on good models for predicting observed oscillation
spectra.

In this Section, we primarily focus on the period spacing pattern 𝛿𝑃𝑔 = 𝛿𝑃𝑔 (𝑃) for modes
of a given 𝑚. This is a standard observable in the study of main-sequence pulsators. The
period spacing pattern is known to encode the rotation rate of the star (through an overall
slope; Bouabid et al., 2013; Ouazzani, Salmon, et al., 2017), as well as the presence of
buoyancy glitches (e.g., Miglio, Montalbán, Noels, et al., 2008).

We first calculate the dipole oscillation modes for two 𝛾 Dor-like models, one near the
zero-age main sequence (MS-1.5-young) and one near the terminal-age main sequence
(MS-1.5-evolved), shown respectively in Figures 5.4 and 5.5. The chief difference between
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Figure 5.7: Same as Figure 5.4, but for a evolved SPB analogue (MS-6.0-evolved).

these models is that the convective core in the latter model has had time to develop a large
compositional gradient at the base of its radiative envelope: this produces a jump in 𝑁 (see
the top panel of Figure 5.5). Qualitatively, this sharp feature in 𝑁 results in a trapping
phenomenon which results in a period spacing 𝛿𝑃𝑔 which oscillates as a function of mode
period 𝑃 (Miglio, Montalbán, Noels, et al., 2008; Pedersen et al., 2018; Vanlaer et al.,
2023). We adopt a fairly typical core rotation rate of 1.5 d to accentuate the effects of
rotation (Van Reeth, Tkachenko, and Aerts, 2016; Li, Van Reeth, et al., 2020). Unlike in
the red giant model described in Section 5.6.1 (where realistic rotation rates are small, such
that 𝑞≪ 1), rotation in the MS models is fast enough to cause frequency splittings/shifts
which are nonlinear with respect to Ω.
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The lower panels of Figures 5.4 and 5.5 show 𝛿𝑃𝑔 versus 𝑃𝑔 for the young and evolved 1.5𝑀⊙

models, under the effects of magnetism and rotation individually as well as simultaneously.
First, since rotation distinguishes between prograde and retrograde modes, the slope it
imparts onto the period spacing pattern is different for the 𝑚 = +1 and 𝑚 =−1 modes. In
contrast, the oscillation modes are not sensitive to the overall sign of the magnetic field,
and thus magnetism affects the 𝑚=±1 modes identically (but still differently than the 𝑚=0
mode).

Moreover, while rotation produces values of 𝑃𝑔 which vary fairly linearly with 𝑃, magnetism
produces a curvature in the pattern, especially near suppression. This effect is similar to
what was demonstrated by Dhouib, Mathis, et al. (2022) in the case of a purely toroidal field.
In particular, when the maximum allowed value of 𝑎 = 𝑎crit is determined by connection to
the evanescent region (rather than the presence of a critical Alfvén latitude), the asymptotic
expression (in Equation 5.33) predicts that 𝛿𝑃𝑔 sharply approaches zero at 𝜔 ≈ 𝜔𝐵. This
is because the term ∝ d ln𝜆/d ln 𝑎 in Equation 5.33 diverges at radii where the main
magnetogravity wave branch connects to the slow branch described by Lecoanet, Vasil,
et al. (2017) and Rui and Fuller (2023). In reality, there is not likely to be an infinitely dense
forest of modes, since the asymptotic formula is based on a linear approximation which
is likely to break down close to suppression. Nevertheless, the curvature is conspicuous,
especially for the young model, where the period spacing drops from its high-frequency
value by ≃ 50% near the critical frequency. Moreover, this curvature is apparent even
when rotation is included alongside magnetism, with the added feature that fast rotation can
cause the 𝑚 = +1 and 𝑚 =−1 modes to become magnetically suppressed at very different
frequencies. This curvature effect on the period spacing pattern is very different than those
caused by inertial-mode coupling in main-sequence convective cores (which manifest as
isolated “dips”; Tokuno and Takata, 2022) and mode-trapping near strong compositional
gradients outside of those cores (which manifests as “oscillations”; Miglio, Montalbán,
Noels, et al., 2008).

This sharp curvature feature is not adequately captured by any low-order perturbative
treatment of magnetism. To make comparison to the perturbative prediction generous, we
expand Equation 5.33 around 𝑎 = 0, while treating rotation non-perturbatively (through the
traditional approximation of rotation, cf. Van Beeck et al., 2020). The effect of magnetism
then enters the period spacing earliest through 𝑎2 ∝ 𝜔4

𝐵
/𝜔4 ∝ 𝐵2/𝐵2

crit (as predicted by
Cantiello et al., 2016). Specifically, defining 𝜆𝐻 to be the eigenvalue calculated including
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rotation only, we have

𝛿𝑃̄𝑔 ≈
2𝜋2
√
𝜆𝐻

(∫ (
1 + 1

2
d ln𝜆𝐻
d ln 𝑞

)
𝑁

𝑟
d𝑟

)−1

− 16𝜋6𝜆′

𝜆
3/2
𝐻

𝑃̄−4
(∫

𝜔4
𝐵

(
1 + 1

2
d ln𝜆𝐻
d ln 𝑞

)
𝑁

𝑟
d𝑟

)−1
,

(5.71)

where we have used (
d ln𝜆
d ln 𝑎

)
𝑎=0

= 0. (5.72)

In addition to lacking the suppression phenomenon entirely, the perturbative prediction
(shown for the 𝑚 = +1 mode as the blue-dashed lines in Figures 5.4 and 5.5) dramatically
underestimates the magnetic curvature predicted by the full TARM-based formalism. To
further demonstrate this point, in Figure 5.1, we show contours where the perturbative
estimate misestimates the integrand of the integral in the asymptotic formula (Equation 5.33)
by 10% and 50%, respectively. As expected, departure from the full TARM calculation
becomes increasingly severe close to suppression. Non-perturbative effects must therefore
be taken into account predicting the frequency spectrum close to 𝜔crit. For example, the
magnetic “sawtooth” pattern in the period spacing pattern predicted by some authors (Prat,
Mathis, Buysschaert, et al., 2019; Prat, Mathis, Neiner, et al., 2020a; Van Beeck et al.,
2020) was derived using perturbation theory at low frequencies, and preliminary results
suggest that this feature does not appear once magnetism is incorporated non-perturbatively
(Dhouib et al., in prep.).

An important observation is that the magnetically induced curvature in the period spacing
pattern is more conspicuous in the young model than in the evolved one. This is because
the relative magnetic frequency shifts are primarily determined by the quantity ⟨𝜔4

𝐵
⟩1/4
𝑔 /𝜔̄0

(as shown in Section 5.6.1), which is maximized when as many layers of the star have
𝜔𝐵 ∼ 𝜔̄0 as possible. However, within our physical picture, the entire oscillation mode
becomes suppressed when even a small layer of the star has 𝜔̄0 ≲ 𝜔crit ∼ 𝜔𝐵. Because
𝑁 accounts for most of the variation of 𝜔𝐵 ∝

√
𝑁 (the Prendergast field we adopt varies

comparatively more slowly with radius), 𝜔𝐵 is a much broader function of 𝑟 in the young
model versus in the evolved one, where it is peaked at the composition gradient at the lower
boundary of the radiative envelope. Therefore, the young model reaches a larger maximum
value of ⟨𝜔4

𝐵
⟩1/4
𝑔 /𝜔̄0 than the evolved one, and furthermore in general attains large values

of ⟨𝜔4
𝐵
⟩1/4
𝑔 /𝜔̄0 over a wider frequency range. This heuristic explanation is even stronger for

higher-order terms in the perturbative expansion, which involve buoyant integrals of higher
powers of 𝜔4

𝐵
/𝜔̄4

0.
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Figure 5.8: The critical period 𝑃crit against the rotation period 𝑃rot for a young SPB-like
model (MS-6.0-young), for fixed values of the field near the compositional gradient at the
base of the radiative envelope (which most easily experiences magnetic suppression). 𝑃crit
is given in the inertial frame.

The magnetic curvature is in principle detectable even in evolved main-sequence pulsators,
as long as it can be deconvolved from other effects. It should be noted that the typical
uncertainties in 𝛾 Dor period spacings in Kepler are small, comparable to the marker sizes
of Figures 5.4 and 5.5 (Van Reeth, Tkachenko, Aerts, et al., 2015; Li, Van Reeth, et al.,
2020). Moreover, because of the sensitivity of the magnetic curvature in the period spacing
pattern to the compositional profile, strongly magnetized main-sequence pulsators may be
a promising avenue for constraining mixing processes. However, in nonasymptotic cases
where sharp features in the buoyancy profile are expected, the limitations of the TARM
must carefully be considered.

For completeness, we also examine young (MS-6.0-young) and evolved (MS-6.0-evolved)
SPB analogues, with masses 6𝑀⊙ (Figures 5.6 and 5.7, respectively). The qualitative
features of the period spacing pattern are similar, except that the peak in 𝜔𝐵 at the base
of the radiative region in the young model (due to the peak in 𝑁) exceeds the value of 𝜔𝐵
throughout the rest of the cavity. Therefore, for similar reasons as in the evolved 𝛾 Dor
model, the curvature in the period spacing pattern due to magnetism is not as prominent as
in the young 𝛾 Dor model.
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For illustrative purposes, we calculate the critical mode frequencies for a variety of internal
magnetic fields and rotation rates, using the MS-6.0-young model. Figure 5.8 shows
the critical mode period 𝑃crit = 2𝜋/𝜔crit for the dipole and quadrupole prograde sectoral
modes. Interestingly, although rotation is expected to make prograde modes suppress at
higher frequencies in the co-rotating frame (see Figure 5.1), higher rotation rates actually
cause modes to suppress at lower frequencies in the inertial frame. Simultaneous knowledge
of the suppression frequency for one identified mode branch together with the rotation rate
should be sufficient to make a model-dependent estimate of the magnetic field at the interior
of the star. Alternatively, while potentially challenging, simultaneous measurement of the
suppression frequencies for two identified mode branches may be able to put a constraint on
both the internal magnetic field as well as rotation rate. Because the shapes of the contours
in Figure 5.8 are largely determined by change-of-frame effects (vis-à-vis Equation 5.39),
the latter method is most viable when the two mode branches have different azimuthal order
𝑚.

Roughly ∼10% of massive dwarf stars possess significant (inclined dipolar) fossil fields
up to tens of kilogauss at their surfaces (Grunhut et al., 2016; Shultz et al., 2019). Such
fields may be strong enough in the interiors of such stars to suppress low-frequency g-mode
oscillations. Recently, Lecoanet, Bowman, et al. (2022) attributed missing low-frequency
modes in the magnetic SPB star HD 43317 (observed with CoRoT; Buysschaert, Neiner,
et al., 2017; Buysschaert, Aerts, et al., 2018) to magnetic suppression caused by a near-core
radial field 𝐵𝑟 ≃500 kG. As in our MS-6.0-early model, suppression in their model occurs
when 𝜔crit > 𝜔 in the compositional peak in 𝑁 at the base of the radiative cavity (see
their Figure 2). Moreover, Aerts, Van Reeth, et al. (2017) predict that core dynamos in B-
type (AF-type) pulsators may produce strong magnetic fields 20–400 kG (0.1–3kG) where
non-perturbative magnetic effects may be realized. Magnetic g-mode main-sequence stars
thus appear to be natural environments to observe g modes which are non-perturbatively
modified by magnetism.

Pulsators in the 𝛾 Dor mass range may also possess influential magnetic fields (Aerts,
Augustson, et al., 2021). Surface fields of hundreds to thousands of gauss are typical of the
enigmatic family of rapidly oscillating Ap-type (roAp) stars (Hubrig et al., 2004), and the
magnetic field is believed to play an important role in the (still not fully understood) driving
mechanism of their high-overtone p-mode oscillations (Gautschy, Saio, and Harzenmoser,
1998; Balmforth et al., 2001). It has been speculated (e.g., by Handler, 2012) and claimed
(Balona et al., 2011) that some roAp stars may also pulsate in g modes (on the basis of overlap
between roAp and 𝛾 Dor stars on the Hertzsprung–Russell diagram). However, this is far
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from certain. On the basis of non-adiabatic mode calculations, Murphy, Saio, et al. (2020)
argue that high-order g modes are likely to be very efficiently damped, possibly explaining
the current lack of observed hybrid 𝛾 Dor/roAp pulsators. However, if roAp stars containing
high-order g modes do turn out to exist, they would serve as ideal laboratories for strong
magnetogravity waves. Moreover, the understanding of high-order magnetogravity waves
presented in this work may extend some insight into the behavior of low-order magnetic g
modes (for which the asymptotic limit is not appropriate).

5.6.3 Future prospects
This work presents a non-perturbative formalism for calculating the g-mode oscillation
frequencies of a magnetized and rotating star, including both effects asymptotically (i.e.,
applying the TARM). We have considered only with the case where the magnetic field is
dipolar and aligned with the rotational axis. As test examples we have only applied it to red
giant cores and g-mode pulsators on the main sequence. Here, we describe future possible
directions of study in relation to the TARM formalism, and potential extensions.

This work represents a joint generalization of the traditional approximation of rotation (Lee
and Saio, 1997) and an analogous approximation for a purely dipolar magnetic field (Rui and
Fuller, 2023), in order to non-perturbatively incorporate the effects of both. Generalizations
of the traditional approximation have, in the past, also incorporated centrifugal distortion
(Mathis and Prat, 2019; Dhouib, Prat, et al., 2021b; Dhouib, Prat, et al., 2021a), differential
rotation (Ogilvie and Lin, 2004; Mathis, 2009; Van Reeth, Mombarg, et al., 2018; Dhouib,
Prat, et al., 2021a), and axisymmetric toroidal fields, both with constant Alfvén and rotation
frequencies (Mathis and De Brye, 2011) as well as with more general field geometries
together with differential rotation (Dhouib, Mathis, et al., 2022). Based on observational
demands (or theoretical intrigue), it is likely possible to add any combination of these effects
to the operator L𝑚,𝑏,𝑞 defined in Equation 5.24. Although 𝜆 would then be a function of
more than two dimensionless parameters, such an approach would retain much of the
advantage of non-perturbatively capturing complex rotational/magnetic effects while only
interpolating over a precomputed eigenvalue grid.

Unlike Rui and Fuller (2023), this work has focused on the regime where suppression is not
likely to occur, i.e., when there are no Alfvén resonances on the domain and where the slow
magnetic branch has been ignored. We have ignored modes with these effects because their
observational implications are unclear, but the behavior of the operator L𝑚,𝑏,𝑞 in this regime
is an extremely rich mathematical problem with so far unexplored structure. Rui and Fuller
(2023) find that solutions with 𝑏 > 1 develop sharp fluid features at the Alfvén-resonant



5.6. Results and discussion 172

critical latitudes, where processes such as phase-mixing are likely to efficiently damp the
waves. In this regime, the magnetic operator in Equation 5.10 is of Boyd-type (Boyd,
1981), and the interior singularities give dissipation an important role in determining the
physically appropriate branch cut. The eigenvalues 𝜆 for the 𝑏 > 1 are thus not guaranteed
to be real even in the formal limit where dissipation is taken to zero (and the numerical
results of Rui and Fuller (2023) suggest that they are not). For reasons of scope, we have
also ignored magneto-Rossby waves and magnetically stabilized gravity waves (Rui and
Fuller, 2023), which do not connect to any spherical harmonic in the limits 𝑎, 𝑞 → 0.
These, too, may conceal detectable predictions which are implied by the breakdown of
positive-(semi)definiteness of L𝑚,𝑏,𝑞.

As such, our calculations also do not capture the coupling between magnetic g modes
and magneto-inertial modes which propagate in the convective core of intermediate-mass
main-sequence stars (within which dynamo-generated magnetic fields are expected; Brun,
Browning, and Toomre, 2005; Featherstone et al., 2009). Coupling with inertial modes is
known to result in isolated dips in the 𝛿𝑃𝑔–𝑃 diagram at frequencies corresponding to those
of inertial modes. This effect provides a seismic probe of the core rotation rates of such stars
(Ouazzani, Lignières, et al., 2020; Saio, Takata, et al., 2021; Tokuno and Takata, 2022).
In the future, it may be interesting to explore how this picture is modified by magnetism,
and whether similar inference of the magnetic field in these convective cores is possible.
We emphasize that coupling to (magneto-)inertial waves produces localized dip features
in the period spacing pattern, and is very different than the global curvature in the pattern
predicted by this work.

While we have only explicitly modeled analogues of 𝛾 Dor and SPB stars, our analysis
applies to any magnetized pulsator with pulsations of high radial order. This includes
compact pulsators such as white dwarfs and hot subdwarfs. Since both of these species
result from red giants whose envelopes have been lost (either in isolation or through binary
evolution), it is natural to expect that they will retain the strong fields believed to cause
dipole suppression in red giants. While a small handful of magnetized hot subdwarfs (100s
of kG) are known (Pelisoli, Dorsch, et al., 2022), white dwarfs with kilogauss surface fields
are believed to make up a fourth of all white dwarfs (Cuadrado et al., 2004; Valyavin et al.,
2006), and a number of magnetized white dwarfs with fields up to hundreds of megagauss
have been discovered (Kepler et al., 2013; Bagnulo and Landstreet, 2021). The latter
fields are likely to be so strong that they outright suppress g mode oscillations altogether
(Lecoanet, Vasil, et al., 2017). However, it may be possible for a white dwarf to have a
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field strong enough to significantly shift the frequencies of the g modes, without being not
strong enough to suppress them outright.

While a dipolar field is expected at the surfaces of stars with fossil fields (Braithwaite and
Nordlund, 2006; Duez and Mathis, 2010), that field need not be aligned with the rotation
axis (Duez, 2011; Keszthelyi, 2023), and is unlikely to be dipolar at all if the field is
generated by a dynamo. In the perturbative regime, Mathis and Bugnet (2023) recently
characterized the frequency shifts associated to an inclined dipole field. Extending the
TARM formalism to describe a non-axisymmetric horizontal field dependence requires
solving for the eigenvalues of families of two-dimensional differential operators over the
sphere, rather than a one-dimensional one (as in L𝑚,𝑏,𝑞), and this analysis would need
to be repeated for every different horizontal field dependence desired. Nevertheless, near
suppression, departures in the frequency shifts from the perturbative theory are likely, and
may be required for accurate magnetic field inference in this regime.

Finally, low-frequency propagating gravity waves are one of the best candidates for the
strong angular momentum transport needed in stellar radiative zones to reproduce the
observed internal rotation revealed in all types of stars by helio- and asteroseismology (e.g.,
Schatzman, 1993; Zahn, 1997; Charbonnel and Talon, 2005; Aerts, 2015; Rogers, 2015;
Pinçon, Belkacem, et al., 2017; Neiner et al., 2020). The manner in which this wave-
mediated angular momentum transport occurs can be significantly modified by the presence
of a magnetic field. In general, the net angular momentum flux implied by this mechanism
is given by the sum of the wave-induced Reynolds and Maxwell contributions to the stress
tensor. The relevant gravity waves are precisely those which are most strongly affected by
the combined action of rotation and magnetism (see, e.g., Mathis and Brye, 2012, in the
case of weak, shellular differential rotation and a purely toroidal field with constant Alfvén
frequency). Because our TARM-based formalism is relevant to exactly this kind of wave,
its application to this problem is likely to yield insights into the rotational state and internal
chemical mixing of rotating, magnetic stars.

5.7 Conclusion
Rapidly evolving progress in observational magnetoasteroseismology demands refinements
in our theoretical understanding of magnetic effects on stellar pulsations. In this work, we
develop a formalism for incorporating the effects of an aligned dipole magnetic field into
g mode calculations, valid for rapidly rotating stars. This method relies on an asymptotic
treatment of magnetism and rotation (under a “traditional approximation of rotation and
magnetism”), and can be partitioned into two main steps:
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1. Calculate the eigenvalues 𝜆 of the horizontal differential operator L𝑚,𝑏,𝑞 (Equation
5.24) as a function of the dimensionless magnetic and rotational parameters 𝑎 =

𝜔2
𝐵
/𝜔̄2 and 𝑞 = 2Ω/𝜔̄.

2. In either an asymptotic mode formula (Equation 5.58) or a non-asymptotic numerical
scheme (e.g., shooting; Section 5.5.1), include the effects of magnetism and rotation
by replacing ℓ(ℓ + 1) throughout the star with a suitably interpolated 𝜆, calculated
using the magnetic and rotational profiles.

These steps are done relatively independently of each other: once the eigenvalues 𝜆 are
computed once over a sufficiently large grid of 𝑎 and 𝑞 (for the desired ℓ and 𝑚), they do
not need to be calculated again for any individual stellar model. Moreover, modifications
to existing mode solving procedures are “minimal” in the sense of being localized to the
interpolation of 𝜆 and its substitution into the relevant equations.

As proofs of concept, we have computed the g modes in the cores of red giants as well
as in the radiative envelopes of high-mass main-sequence stars. In both cases, strong
magnetic fields tend to decrease the period spacing significantly more than is suggested
by the perturbative theory, especially for low frequencies close to the critical frequency
𝜔crit ∼

√︁
𝑁𝑣𝐴𝑟/𝑟. This results in a curvature in the period spacing pattern which can

in some cases be very conspicuous (e.g., Figure 5.4). Non-perturbative effects may also
introduce asymmetry in the dipole frequency shifts which is not predicted by perturbation
theory.

This regime is expected to be directly realized in the SPB star described by Lecoanet,
Bowman, et al. (2022) and some of the red giants described by Deheuvels, Li, et al. (2023).
Refined understanding of these effects is therefore prerequisite to perform accurate magnetic
field inference using asteroseismology.
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C h a p t e r 6

IT’S NOT JUST A PHASE: OBLIQUE PULSATIONS IN MAGNETIC
RED GIANTS AND OTHER STOCHASTIC OSCILLATORS

Rui, N. Z., J. Fuller, and J. M. J. Ong (2025). “It’s not just a phase: oblique pulsations
in magnetic red giants and other stochastic oscillators.” In: The Astrophysical Journal
Letters 985.2, L39. doi: 10.3847/2041-8213/add5e2. arXiv: 2505.03169.

Magnetic fields play a significant role in stellar evolution. In the last few years, asteroseis-
mology has enabled the measurement of strong magnetic fields 104–106 G in the cores of
dozens of red giants, and is the only known way to directly measure internal stellar magnetic
fields. However, current data are still interpreted assuming that these fields are too weak
or too axisymmetric to affect the orientation of the pulsations (i.e., make the pulsations
“oblique”), rendering stronger field strengths beyond the reach of existing asteroseismic
searches. We show that, even when an oblique pulsator is also stochastic (such as in a
red giant with a strong non-axisymmetric magnetic field), geometric effects will cause the
signal to contain frequency components which remain in perfect relative phase with each
other. This perfect phase relationship persists even over timescales in which stochasticity
erases absolute phase information. This perfect relative coherence is a distinctive obser-
vational signature of oblique pulsation that does not require a model for mode frequencies
to search for. However, due to its dependence on phase, this effect will not be evident
in the power spectral density alone, and phase information should be retained in order to
detect it. Coherence-based searches for oblique pulsations may pave the way to measure-
ments of magnetic fields of currently inaccessible strengths in red giants, as well as some
main-sequence and compact pulsators.
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in a recent sample of red giants. We also thank Janosz Dewberry, Masao Takata, and
the anonymous referee for their helpful comments. We are grateful for support from the
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acknowledges support from the National Science Foundation Graduate Research Fellowship
under Grant No. DGE-1745301. J.M.J.O. acknowledges support from NASA through the
NASA Hubble Fellowship grant HST-HF2-51517.001, awarded by STScI. STScI is operated
by the Association of Universities for Research in Astronomy, Incorporated, under NASA
contract NAS5-26555.
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6.1 Introduction
Although stellar magnetic fields are common, their formation, evolution, diversity, and
role in angular momentum transport in stars and compact objects form a tangled web of
open problems across astrophysics (Donati and Landstreet, 2009; Ferrario, Melatos, et al.,
2015; Aerts, Mathis, et al., 2019). Our understanding of stellar magnetism is tethered to
the uncertain strengths and structures of subsurface magnetic fields, which are invisible to
standard observational techniques.

Asteroseismology—the measurement and interpretation of stellar oscillations—exploits
the translucency of stars to hydrodynamical waves to constrain internal stellar properties,
such as stellar mixing processes, internal rotation profiles, and evolutionary states (Aerts,
2021). Magnetic fields with strengths ≃ 20–600 kG have recently been asteroseismically
measured in the cores of several dozen lower red giant branch stars (Li, Deheuvels, Ballot,
and Lignières, 2022; Deheuvels, Li, et al., 2023; Li, Deheuvels, Li, et al., 2023; Hatt
et al., 2024). These measurements make use of the sensitivity of gravity-mode (g-mode)
frequencies to the magnetic tension. “Seismic magnetometry,” which is still in its infancy,
remains the only direct way to probe internal stellar magnetic fields.

When incorporating magnetic fields, present data analyses assume the pulsations to be
aligned with the rotation axis. This occurs either when the magnetic field is axisymmetric
about the rotation axis, or otherwise is weak enough that its effects are subdominant to
those of the Coriolis and centrifugal forces. In the opposite case, the magnetic field is
strong enough to misalign the pulsations from the rotation axis, i.e., make the pulsations
oblique. In this regime, individual oscillation modes appear as multiple, Doppler-shifted
periodicities to the observer. This breaks the one-to-one mapping between oscillation
modes and frequency components in the light curve (hereafter “periodicities”), and produces
complicated pulsation spectra which can be difficult to interpret (Kurtz, 1982; Shibahashi
and Takata, 1993; Dziembowski and Goode, 1996; Bigot and Dziembowski, 2002; Saio
and Gautschy, 2004; Loi, 2021). In some pulsators such as red giants, the oscillations are
additionally stochastic: each mode decoheres on a characteristic mode lifetime 𝜏 (between
tens of days to several years in red giants; Dupret, Belkacem, et al., 2009; Grosjean et al.,
2014).

In this Letter, we show that oblique, stochastically driven pulsators (such as red giants with
strong non-axisymmetric magnetic fields) display some coherent properties which can be
used to identify them in a general, model-independent way. Because ordinary stochastic
pulsations lack a mechanism for “remembering” phase information for times ≫ 𝜏, this
long-lived coherence is a smoking-gun signature of oblique pulsations. Since this signature
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involves phase information, usual analyses based on the power spectral density (PSD) will
be insensitive to it.

6.2 Pulsation model
We construct a simple toy model which exhibits the essential behavior of stochastic, oblique
pulsations. The key observable is the intensity perturbation 𝛿𝐼 (𝑡), which has contributions
from each oscillation mode:

𝛿𝐼 (𝑡) = ℜ
∑︁
𝑗

𝛿𝐼 𝑗 (𝑡), (6.1)

where we have indexed the modes by 𝑗 and allowed the intensity 𝛿𝐼 𝑗 (𝑡) of each individual
mode to be complex.

The individual mode intensities are given by integrals of the surface flux perturbation
𝛿𝐹𝑗 (𝑡; 𝜃′, 𝜙′) over the visible disk of the star:

𝛿𝐼 𝑗 (𝑡) ∝
∫ 2𝜋

0

∫ 1

0
𝛿𝐹𝑗 (𝑡; 𝜃′, 𝜙′)𝑊 (𝜃′) cos 𝜃′ d(cos 𝜃′) d𝜙′, (6.2)

where 𝑊 (𝜃′) is an arbitrary limb-darkening function on which the details of this analysis
do not depend. The primed variables (𝜃′, 𝜙′) denote spherical coordinates in the inertial
(observer) frame, with the north pole (𝜃′ = 0) fixed to the line of sight (direction pointing to
the observer). This is the frame in which integrals over the disk are most natural to compute.

Assuming surface flux perturbations trace scalar fluid perturbations (e.g., Gizon and Solanki,
2003), the flux perturbation due to a single mode can be decomposed into time- and angle-
dependent factors:

𝛿𝐹𝑗 (𝑡; 𝜃, 𝜙) ∝ 𝐴 𝑗 (𝑡)𝜓 𝑗 (𝜃, 𝜙), (6.3)

where the unprimed spherical coordinates (𝜃, 𝜙) are in the frame corotating with the star,
with the north pole (𝜃 = 0) fixed to the rotation axis. This is the frame in which the
oscillation modes of the star are most natural to compute.

The angular dependence of a mode pattern can, in turn, be decomposed into spherical
harmonics:

𝜓 𝑗 (𝜃, 𝜙) =
∑︁
ℓ𝑚

𝑐 𝑗 ;ℓ𝑚𝑌ℓ𝑚 (𝜃, 𝜙), (6.4)

where 𝑐 𝑗 ;ℓ𝑚 is the contribution of each spherical harmonic to the flux perturbation of mode
𝑗 . We show in Appendix 6.A that, upon changing coordinates from the corotating frame to
the observer’s frame, these spherical harmonics transform as

𝑌ℓ𝑚 (𝜃, 𝜙) =
∑︁
𝑚′
𝑒−𝑖𝑚Ω𝑡𝑑ℓ𝑚′𝑚 (𝑖)𝑌ℓ𝑚′ (𝜃′, 𝜙′), (6.5)
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where the Wigner matrix 𝑑ℓ captures the effect of inclination on visibilities.

Combining Equations 6.2, 6.3, 6.4, and 6.5 gives

𝛿𝐼 𝑗 (𝑡) ∝ 𝐴 𝑗 (𝑡)
∑︁
ℓ𝑚

𝑉ℓ 𝑐 𝑗 ;ℓ𝑚 𝑑
ℓ
0𝑚 (𝑖)𝑒

−𝑖𝑚Ω𝑡 , (6.6)

where we have used the fact that spherical harmonics with 𝑚 ≠ 0 have vanishing disk
integrals, and defined

𝑉ℓ =

∫ 2𝜋

0

∫ +1

−1
𝑌ℓ0(𝜃′, 𝜙′)𝑊 (𝜃′) cos 𝜃′ d(cos 𝜃′) d𝜙′ (6.7)

to be the mode visibilities, which only depend on ℓ.

The time dependence of a stochastically excited mode is well described by a damped
harmonic oscillator driven by noise (e.g., Stello, Kjeldsen, et al., 2004). As we show in
Appendix 6.B, 𝐴 𝑗 is well modeled as

𝐴 𝑗 (𝑡) = 𝐴̄ 𝑗 (𝑡)𝑒𝑖𝜎𝑗 𝑡 , (6.8)

where 𝜎𝑗 is the corotating mode frequency and the complex prefactor 𝐴̄ 𝑗 (𝑡) stays roughly
constant for short times 𝑡 ≪ 𝜏while varying randomly for long times 𝑡 ≳ 𝜏. We illustratively
define 𝐴̄ 𝑗 = 𝐻 𝑗𝑒

𝑖𝜑 𝑗 , so that
𝐴 𝑗 (𝑡) = 𝐻 𝑗 (𝑡)𝑒𝑖(𝜎𝑗 𝑡+𝜑 𝑗 (𝑡)) , (6.9)

where the mode amplitude 𝐻 𝑗 = 𝐻 𝑗 (𝑡) and phase 𝜑 𝑗 = 𝜑 𝑗 (𝑡) are real-valued functions
which, like 𝐴̄ 𝑗 , vary substantially only on timescales ≫ 𝜏.

Our final expression for the total intensity perturbation follows from Equations 6.1 and 6.6:

𝛿𝐼 (𝑡) ∝ ℜ
∑︁
𝑗

𝐴 𝑗 (𝑡)
∑︁
ℓ𝑚

𝑉ℓ𝑐 𝑗 ;ℓ𝑚𝑑
ℓ
0𝑚 (𝑖)𝑒

−𝑖𝑚Ω𝑡 . (6.10)

A mode is “rotationally aligned” when its horizontal structure is well described by a single
spherical harmonic (i.e., 𝑐 𝑗 ;ℓ′,𝑚′ ≈ 𝛿ℓℓ′𝛿𝑚𝑚′ for some ℓ and 𝑚). In this special case, the sum
over ℓ and𝑚 in Equation 6.10 reduces to a single term, and the mode appears to an observer
as a single sinusoidal signal. Conversely, if more than one expansion coefficient 𝑐 𝑗 ;ℓ′,𝑚′ is
nonzero, the mode is “oblique,” and the observed signal will be non-sinusoidal.

6.2.1 Rotationally aligned pulsations
It is common to assume that pulsations are rotationally aligned which, for g modes, occurs
when the Coriolis effect supplies the strongest non-spherically symmetric restoring force.
Via Equations 6.6 and 6.8, the intensity perturbation due to such a mode is

𝛿𝐼ℓ𝑚 (𝑡) ∝ 𝑉ℓ 𝐴̄ℓ𝑚 (𝑡)𝑑ℓ0𝑚 (𝑖)𝑒
𝑖(𝜎ℓ𝑚−𝑚Ω)𝑡 . (6.11)
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Equation 6.11 shows that the observer measures a Doppler-shifted mode frequency

𝜔ℓ𝑚 = 𝜎ℓ𝑚 − 𝑚Ω, (6.12)

under the convention that positive-frequency modes with 𝑚Ω > 0 are retrograde.

Rotation also produces a Coriolis force which contributes to the restoration of fluid motions,
causing an additional frequency shift

𝜎ℓ𝑚 = 𝜎
(0)
ℓ

+ 𝑚𝐶ℓΩ, (6.13)

where 𝜎 (0)
ℓ

is the mode frequency in the absence of rotation, and the Ledoux coefficient
𝐶ℓ ≈ 1/ℓ(ℓ + 1) for high-radial order g modes (Ledoux, 1951).

These effects taken together, the observer measures an apparent rotational frequency shift

𝛿𝜔 = 𝜔ℓ𝑚 − 𝜎 (0)
ℓ

= −𝑚(1 − 𝐶ℓ)Ω. (6.14)

While 𝛿𝜔 resembles a single shift proportional to 𝑚, it is actually caused by a combination
of effects due to the Doppler shift (which is purely geometric) and the Coriolis force (which
is physical). These two very different effects become unnatural to group together when
analyzing stochastic, oblique pulsators.

6.2.2 Do two periodicities mean one mode or two?
When a pulsation is oblique (i.e., not rotationally aligned), a single oscillation mode is no
longer a traveling wave of fixed𝑚 around the rotation axis. Instead, the morphology𝜓 𝑗 (𝜃, 𝜙)
of the mode has multiple components with different values of 𝑚 which Doppler shift into
multiple periodicities via Equation 6.12. Because of this, a single oblique oscillation mode
can therefore be misinterpreted as multiple (rotationally aligned) oscillation modes. The
so-called “oblique pulsator model” successfully describes the magnetically tilted pressure-
mode (p-mode) pulsations of rapidly oscillating Ap stars (Dziembowski and Goode, 1996).

Fortunately, if the modes are observed for long enough to resolve their stochasticity (i.e.,
for baselines 𝑇 ≳ 𝜏), it is possible to tell whether two periodicities are caused by two
distinct modes or a single mode which is oblique without any model for their amplitudes
and frequencies. To illustrate this, we consider two toy scenarios which produce almost
indistinguishable empirical PSDs peaked at two close frequencies (𝜔1 = 𝜔̄ − 𝛿𝜔/2 and
𝜔2 = 𝜔̄ + 𝛿𝜔/2) despite their corresponding time series’ obviously different properties
(Figure 6.1, in which 𝜔1 = 0.9𝜔̄ and 𝜔2 = 1.1𝜔̄). The two periodicities can be resolved as
long as 𝛿𝜔 ≳ 1/𝜏.
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In the first scenario, we consider two rotationally aligned modes with frequencies 𝜎1 = 𝜔1

and 𝜎2 = 𝜔2 with quantum numbers (ℓ, 𝑚) = (1, +1) and (1,−1), respectively. The star
is assumed to be non-rotating (or, for self-consistency, rotating at a negligible rate Ω ≈ 0).
By Equation 6.10, the intensity perturbation due to these two modes is

𝛿𝐼 ∝ ℜ [𝐴1 + 𝐴2]

= ℜ
[
𝑒𝑖𝜔̄𝑡

(
𝐻1𝑒

𝑖(−𝛿𝜔𝑡/2+𝜑1) − 𝐻2𝑒
𝑖(+𝛿𝜔𝑡/2+𝜑2)

)]
,

(6.15)

where we have used the fact that 𝑑1
0,−1(𝑖) = −𝑑1

0,+1(𝑖) (Rose, 1995) and omitted overall
constant prefactors. Defining 𝐻̄ = (𝐻1 + 𝐻2)/2, 𝜑̄ = (𝜑1 + 𝜑2)/2, 𝛿𝐻 = 𝐻2 − 𝐻1, and
𝛿𝜑 = 𝜑2 − 𝜑1, Equation 6.15 simplifies to

𝛿𝐼 ∝ 2𝐻̄ sin (𝛿𝜔𝑡/2 + 𝛿𝜑/2)︸                  ︷︷                  ︸
beat

sin (𝜔̄𝑡 + 𝜑̄)︸        ︷︷        ︸
carrier

− 𝛿𝐻 cos (𝛿𝜔𝑡/2 + 𝛿𝜑/2)︸                   ︷︷                   ︸
beat

cos (𝜔̄𝑡 + 𝜑̄)︸         ︷︷         ︸
carrier

.
(6.16)

The intensity pattern consists of a high-frequency oscillation with a carrier frequency 𝜔̄
modulated by a beating envelope with a lower frequency 𝛿𝜔 (a factor of two arises because
the envelope refers to the absolute value of the beat sinusoid). On short timescales (𝑡 ≪ 𝜏),
the quantities 𝐻̄, 𝜑̄, 𝛿𝐻, and 𝛿𝜑 are all approximately constant, and the oscillation is
roughly coherent. However, for longer observation baselines 𝑇 ≳ 𝜏, both the carrier and
beat oscillations dephase, i.e., 𝜑̄ and 𝛿𝜑 vary randomly (top middle panel of Figure 6.1).

In the second scenario, we consider a single oblique mode with corotating frequency
𝜎 = 𝜔̄ with two equal spherical harmonic components with 𝑚 = ±1 (i.e., 𝑐1,+1 = 𝑐1,−1).
Additionally, the star itself rotates with a rate Ω = 𝛿𝜔/2. By Equation 6.10, the resulting
intensity perturbation due to this single mode is

𝛿𝐼 ∝ ℜ
[
𝐴

(
𝑒−𝑖𝛿𝜔𝑡/2 − 𝑒𝑖𝛿𝜔𝑡/2

)]
= ℜ

[
−2𝑖𝐻𝑒𝑖(𝜔̄𝑡+𝜑) sin (𝛿𝜔𝑡/2)

]
.

(6.17)

Upon taking the real part, Equation 6.17 becomes

𝛿𝐼 ∝ 2𝐻 sin (𝛿𝜔𝑡/2)︸        ︷︷        ︸
beat

sin (𝜔̄𝑡 + 𝜑)︸        ︷︷        ︸
carrier

. (6.18)

Similarly to the first scenario, the two periodicities generated by the oblique mode oscillate
with a carrier frequency 𝜔̄ modulated by an envelope with a beat frequency 𝛿𝜔. On
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short timescales (𝑡 ≪ 𝜏), the intensity perturbation is indistinguishable from that of the
first scenario, or, indeed, a purely coherent beat pattern. However, while the overall
amplitude 𝐻 and carrier phase offset 𝜑 vary randomly as before, the beating envelope is
perfectly coherent and never dephases. In the corresponding time series (bottom middle
panel of Figure 6.1), the beating envelope vanishes on exact multiples of the beat period
𝑡beat = 2𝜋/𝛿𝜔. Intuitively, the non-axisymmetric magnetic field misaligning the oblique
pulsation serves as a “clock hand” which perfectly tracks the rotational phase. In contrast,
stars with no magnetic fields (or other non-axisymmetric features) have no mechanism by
which to keep track of their absolute rotational phases over timescales ≫ 𝜏.

Attempting to interpret the intensity perturbation generated by the single oblique mode
as two separate rotationally aligned modes would imply the bizarre conclusion that the
amplitude ratio 𝐻2/𝐻1 and phase offset difference 𝛿𝜑 between the two stochastic modes are
exactly constant in time. Despite this, both the average amplitude 𝐻 → 𝐻̄ and phase offset
𝜑 → 𝜑̄ would be observed to vary stochastically in the expected way.

By construction, the periodicities in both scenarios have identical frequencies and linewidths.
The two scenarios thus produce very similar-looking PSDs, each consisting of an envelope of
two broad Lorentzians multiplied by noise (the left panels of Figure 6.1, cf. Cunha, Avelino,
et al. 2020). Nevertheless, since the time-domain intensities 𝛿𝐼 in the two scenarios are
fundamentally different, the Fourier transforms 𝛿𝐼 (which encode identical information)
must also be different in some distinctive way.

The frequency-domain manifestation of oblique stochastic pulsation becomes apparent when
comparing the Fourier transforms of Equations 6.16 and 6.18, which are

𝛿𝐼 ∝ 1
2

[
˜̄𝐴1(𝜔 − 𝜔1) − ˜̄𝐴2(𝜔 − 𝜔2)

]
+ sym. (6.19)

for two aligned modes, and

𝛿𝐼 ∝ 1
2

[
˜̄𝐴(𝜔 − 𝜔1) − ˜̄𝐴(𝜔 − 𝜔2)

]
+ sym. (6.20)

for one oblique mode, where “sym.” denotes the frequency-flipped, complex conjugate of
the first term (which arises from taking the real part). In the case of two aligned modes, the
Fourier profiles of the two periodicities ( ˜̄𝐴1 and ˜̄𝐴2) are different, i.e., the noise multiplying
the square-root Lorentzians in the Fourier transform are different from each other. In
contrast, in the case of one oblique mode, the Fourier profiles of the two periodicities are
identical, i.e., the noise multiplying the square-root Lorentzians are the same across the two
Fourier peaks.
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Figure 6.2: Linear g-mode frequency shifts 𝛿𝜈 = 𝛿𝜔/2𝜋 relative to the power-weighted
average shift of the triplet 𝛿𝜈̄ (defined in the main text), plotted against the strength of the
magnetic perturbation 𝛿𝜈mag = 𝛿𝜔mag/2𝜋. The magnetic field strengths corresponding to
𝛿𝜈mag are also shown for the 𝑀 = 1.5𝑀⊙, 𝑅 = 5.2𝑅⊙ red giant model described in Section
6.2.3. For illustrative purposes here we have fixed 2𝜋𝜎0 = 180 𝜇Hz, 𝛿𝜔rot ≈ 1.2 𝜇Hz,
𝑖 = 60°, and 𝛽 = 70°. Line colors indicate the underlying mode, and line thicknesses
are proportional to the spectral power. Low field strengths leave the rotational triplet
symmetrically split, moderate field strengths introduce asymmetry in the triplet, and higher
field strengths induce oblique pulsations in which each mode individually appears as a
triplet.

Although frequency resolution, noise floor, and nonuniform sampling effects will cause
non-ideal behavior, oblique pulsation will still generally produce spectral correlation which
cannot be caused by separate, rotationally aligned, stochastic modes. We note that spec-
tral correlation describes correlation between frequency components, and is conceptually
distinct from temporal correlation, which describes the time-domain correlations which are
characteristic of colored (but stationary) noise. Fourier peaks with identical noise profiles
are smoking-gun signals of oblique pulsation and, thus, the likely presence of a strong non-
axisymmetric magnetic field. Since the PSD (|𝐼2 |) discards all of the phase information in
𝛿𝐼, data analyses which start from the PSD are likely to overlook oblique pulsations. It’s
not just a phase.
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6.2.3 Magnetic red giants: a theoretical case study
Seismically, red giants are especially rich: near-surface convection drives information-
dense pulsations containing up to dozens of independent oscillation modes (Chaplin and
Miglio, 2013). In lower red giant branch (𝑅 ≲ 10𝑅⊙) and red clump stars, dipole (ℓ = 1) p
modes are also well-coupled to g modes, which propagate exclusively in the stars’ radiative
cores. Strong core magnetic fields appreciably modify internal restorative forces, shifting
mode frequencies in distinctive ways. Measurement of these frequency shifts has recently
enabled the precise extraction of core magnetic field strengths in dozens of red giants (Li,
Deheuvels, Ballot, and Lignières, 2022; Deheuvels, Li, et al., 2023; Li, Deheuvels, Li,
et al., 2023; Hatt et al., 2024).

We briefly summarize known theoretical predictions of magnetic effects on red giant mixed
modes (Li, Deheuvels, Ballot, and Lignières, 2022; Mathis and Bugnet, 2023; Das et
al., 2024), deferring many details to Appendix 6.C. Although red giant g modes can
only be observed when coupled to p modes, the non-axisymmetric nature of the problem
suggests that mixed-mode coupling may affect the spectrum in a complicated way. Thus,
for simplicity, we hereafter consider only pure g modes.

The seismic effects of rotation and magnetism are calculated by solving the eigenvalue
problem

𝛿𝜎 cℓ = (Rℓ + Mℓ) cℓ (6.21)

for the corotating frequency shifts 𝛿𝜎 and the spherical harmonic expansion coefficient
vectors cℓ (see Equation 6.4). The matrices Rℓ and Mℓ describe the effects of the Coriolis
and Lorentz forces.

The ℓ = 1 Coriolis matrix Rℓ=1 is given by

Rℓ=1 = 𝛿𝜔rot diag(−1, 0, +1) (6.22)

where 𝛿𝜔rot ∝ Ω. Because Rℓ is purely diagonal (for any ℓ), the off-diagonal elements of
Rℓ + Mℓ are totally set by magnetic effects. The elements of the Lorentz matrix Mℓ are, in
turn, highly dependent on the geometry of the magnetic field. For illustrative purposes, we
subsequently adopt a dipolar magnetic field misaligned with the rotation axis by an angle
𝛽, for which the ℓ = 1 Lorentz matrix is

Mℓ=1 =
3
20
𝛿𝜔mag

©­­«
7 + 𝐶𝛽 −

√
2𝑆𝛽 1 − 𝐶𝛽

−
√

2𝑆𝛽 6 − 2𝐶𝛽
√

2𝑆𝛽
1 − 𝐶𝛽

√
2𝑆𝛽 7 + 𝐶𝛽

ª®®¬ , (6.23)

where 𝐶𝛽 = cos 2𝛽, 𝑆𝛽 = sin 2𝛽, and 𝛿𝜔mag depends on some stellar interior-averaged
magnetic field (𝛿𝜔mag ∝ ⟨𝐵2

𝑟 ⟩). While this form of Mℓ=1 only describes a specific magnetic
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field configuration, the qualitative results of this analysis generalize to other large-scale
non-axisymmetric magnetic fields.

Dipole mode frequency shifts can be decomposed into a mean component 𝛿𝜈̄ which shifts
the entire triplet and an asymmetric component which changes the triplet’s structure. Figure
6.2 shows the observed frequency structure of the rotational triplet as a function of 𝛿𝜔mag, for
oblique g-modes with 𝛽 = 70°. Specifically, Figure 6.2 shows the rotational and magnetic
frequency shifts with 𝛿𝜈̄ subtracted off, where 𝛿𝜈̄ is the mean frequency shift of the nine
periodicities weighted by the observed spectral power ∝ |𝑐 𝑗 ;ℓ𝑚𝑑ℓ0𝑚 (𝑖) |

2. When the Coriolis
force dominates (𝛿𝜔mag ≲ 𝛿𝜔rot; the blue region in Figure 6.2), the off-diagonal elements
of Rℓ + Mℓ are negligible, and magnetism shifts the mode frequencies without creating
extra observed periodicities. This is the familiar limit assumed by most observational (Li,
Deheuvels, Ballot, and Lignières, 2022; Deheuvels, Li, et al., 2023; Li, Deheuvels, Li,
et al., 2023; Hatt et al., 2024) and many theoretical (Bugnet et al., 2021; Bugnet, 2022;
Mathis and Bugnet, 2023; Das et al., 2024) studies (although see Loi, 2021; Li, Deheuvels,
Ballot, and Lignières, 2022). In this regime, magnetism causes rotational multiplets to be
asymmetric, but does not introduce extra periodicities to the signal.

In contrast, when the Lorentz force dominates (𝛿𝜔mag ≳ 𝛿𝜔rot; the yellow region in Figure
6.2), the off-diagonal elements of Rℓ + Mℓ cause the eigenvectors cℓ to mix across 𝑚:
the pulsations are oblique. The rotationally aligned and magnetically oblique regimes
are respectively indicated by the blue and yellow regions in Figure 6.3 for a standard
𝑀 = 1.5𝑀⊙, 𝑅 = 5.2𝑅⊙ red giant stellar model generated using version r24.08.1 of
Modules for Experiments in Stellar Astrophysics (MESA; Paxton, Bildsten, et al., 2010;
Paxton, Cantiello, et al., 2013; Paxton, Marchant, et al., 2015; Paxton, Schwab, et al., 2018;
Paxton, Smolec, et al., 2019; Jermyn et al., 2023). Magnetic fields detected thus far lie
primarily in the rotationally aligned regime, consistent with the modeling assumptions used
to identify and interpret them. However, magnetically oblique pulsators should exist at
slightly larger field strengths, especially for low core rotation rates (as also speculated by
Li, Deheuvels, Li, et al., 2023).

There is a different (but overlapping) condition under which the magnetic field significantly
alters the propagation of gravity waves, such that the weak-field theory breaks down. This
occurs for magnetic fields near a critical field strength which Fuller, Cantiello, et al. (2015)
gives as

𝐵𝑟,crit ≃
√︂

𝜋

ℓ(ℓ + 1)

√
𝜌𝜔2𝑟

𝑁
. (6.24)
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Figure 6.3: “Phase diagram” of pulsation regimes in the space of magnetic field versus
rotation rate, where data points indicate known magnetic red giants with observed rotational
triplets. Regions of rotational alignment (𝛿𝜔mag < 𝛿𝜔rot) and magnetic obliquity (𝛿𝜔mag >
𝛿𝜔rot) are shown for the case of pure g modes, assuming the stellar model described in
Section 6.2.3 and the stellar parameters described in Section 6.2.4. The condition for
magnetic g-mode suppression (𝐵 > 𝐵crit; Equation 6.24) is also shown for the same model.
These shaded regions show approximate, model-dependent estimates for these regimes, and
the precise boundaries between the regimes depend on stellar parameters and therefore vary
from star to star.
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Magnetic fields stronger than 𝐵𝑟,crit (the red region in Figure 6.3) are expected to suppress
g-mode propagation (Fuller, Cantiello, et al., 2015; Rui and Fuller, 2023; Stello, Cantiello,
Fuller, Huber, et al., 2016). Notably, Deheuvels, Li, et al. (2023) discovered and character-
ized 11 red giants with distorted period spacing patterns consistent with relatively strong
internal magnetic fields. In particular, one of their stars (KIC 6975038) appears to expe-
rience magnetic suppression which exclusively affects its lowest-frequency mixed modes,
consistent with theoretical expectations. The magnetically oblique and suppressed regions
would shift to smaller field strengths for stars farther up the red giant branch.

6.2.4 Simulated observations of oblique pulsations
We simulate observations of a single g-mode triplet under the effects of a strong inclined
magnetic dipole by numerically solving Equation 6.21 for the frequencies in the observer’s
inertial frame. We choose parameters which produce the rotational triplet structure at the
maximum value of 𝛿𝜈mag = 1.7 𝜇Hz shown in Figure 6.2. In addition to the parameters
described in Section 6.2.3, this corresponds for our red giant model to the realistic (though
optimistic) rotation period 𝑃rot = 2𝜋/Ω = 30 d and a field strength 𝐵𝑟 ≈ 292 kG (for a flat
magnetic field radial profile). We also assume a typical mode lifetime 𝜏 = 2 months.

Our mock observations are evenly sampled in time with a cadence Δ𝑡 = 30 min and a
baseline 𝑇obs = 8 yr (twice that of the main Kepler mission; Borucki, 2016). We also inject
a white noise background to mimic a realistic height-to-background ratio (cf. Li, Deheuvels,
Ballot, and Lignières, 2022). Details of our procedure for generating synthetic data can be
found in Appendix 6.B. The empirical PSD derived from these mock observations is shown
in the top panel of Figure 6.4. Figure 6.4 also shows the theoretically expected value of the
PSD (orange curve). However, since the statistics of the process now explicitly modulate
with time, the process is not stationary and is therefore not fully described by the PSD like
in the usual case of a stationary process (see, e.g., Gardner, 2003).

We perform a mock analysis of our simulated observations by calculating a windowed,
complex-valued version of a normalized cross correlation (NCC; Kirch, 2008) of 𝛿𝐼 (𝜔).
The NCC measures the overlap between two arrays, and is extensively applied to image
comparison. Specifically, we compute

NCC𝛿𝜔win (𝜔1, 𝜔2) =
I𝛿𝜔win (𝜔1, 𝜔2)√︁

I𝛿𝜔win (𝜔1, 𝜔1)I𝛿𝜔win (𝜔2, 𝜔2)
, (6.25)

where we have defined the windowed inner product

I𝛿𝜔win (𝜔1, 𝜔2) ≡
1

2𝛿𝜔win

∫ +𝛿𝜔win

−𝛿𝜔win

𝛿𝐼∗(𝜔1 + 𝜉)𝛿𝐼 (𝜔2 + 𝜉) d𝜉, (6.26)



6.2. Pulsation model 188

0204060 PSD (SNR)
th

eo
re

tic
al

em
pi

ric
al

0.
2

0.
4

0.
6

0.
8

1.
0

wi
nd

ow

0.
2

0.
4

0.
6

0.
8

1.
0

wi
nd

ow

18
0.

5
18

1.
0

18
1.

5
18

2.
0

18
2.

5
 (

Hz
)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

wi
nd

ow

|NCC|

Fi
gu

re
6.

4:
Sy

nt
he

tic
da

ta
of

am
ag

ne
tic

al
ly

ob
liq

ue
g-

m
od

et
rip

le
ti

n
ar

ed
gi

an
t,

de
sc

rib
ed

fu
rth

er
in

Se
ct

io
n

6.
2.

3)
.B

ac
kg

ro
un

d
sh

ad
in

g
in

di
ca

te
s

th
e

lo
ca

tio
n

of
a

pe
rio

di
ci

ty
,w

he
re

th
e

co
lo

r
re

pr
es

en
ts

th
e

ph
ys

ic
al

m
od

e
fr

om
w

hi
ch

a
pe

rio
di

ci
ty

or
ig

in
at

es
.

To
p:

Th
e

ob
se

rv
ed

PS
D
|𝛿
𝐼
|2 ,

no
rm

al
iz

ed
to

th
ee

xp
ec

ta
tio

n
va

lu
eo

ft
he

si
m

ul
at

ed
w

hi
te

no
is

efl
oo

r.
Bo

tto
m

:
Th

ea
bs

ol
ut

ev
al

ue
of

th
ew

in
do

w
ed

no
rm

al
iz

ed
cr

os
s-

co
rr

el
at

io
n

(|N
C

C
|)

w
ith

re
sp

ec
tt

o
th

e
th

re
e

w
in

do
w

si
nd

ic
at

ed
by

th
e

bl
ac

k
ba

rs
.|

N
C

C
|m

ea
su

re
sw

he
th

er
se

gm
en

ts
of

th
e

Fo
ur

ie
r

tra
ns

fo
rm

ar
e

sp
ec

tra
lly

co
rr

el
at

ed
to

th
e

ch
os

en
w

in
do

w.
A

s
di

sc
us

se
d

in
Se

ct
io

n
6.

2.
3,

|N
C

C
|p

ea
ks

at
se

co
nd

ar
y

pe
rio

di
ci

tie
s

w
ho

se
co

rr
es

po
nd

in
g

m
od

e
m

at
ch

es
th

e
pe

rio
di

ci
ty

in
th

e
w

in
do

w,
w

hi
le

m
os

tly
ig

no
rin

g
pe

rio
di

ci
tie

s
co

rr
es

po
nd

in
g

to
di

ffe
re

nt
m

od
es

.



6.3. Summary and prospects 189

for some choice of window width 𝛿𝜔win. Intuitively, NCC𝛿𝜔win (𝜔1, 𝜔2) quantifies the
degree of spectral correlation between two segments of the Fourier transform centered at
𝜔1 and 𝜔2 with widths 𝛿𝜔win. The absolute value of NCC is 1 when the segments are
exactly identical, up to a constant scaling factor, and tends to 0 when the segments are
totally spectrally uncorrelated.

In practice, owing to the finite baseline, we compute a discrete version of the windowed
NCC by taking

I(𝜔1, 𝜔2) ≈
+𝛿𝑛win∑︁
𝑘=−𝛿𝑛win

𝛿𝐼∗𝑛𝜔1+𝑘
𝛿𝐼𝑛𝜔2+𝑘 , (6.27)

where 𝛿𝐼𝑛 denotes elements of the discrete Fourier transform, 𝛿𝑛win ≈ 𝛿𝜔win/Δ𝜔 (where
Δ𝜔 is the frequency resolution), and 𝑛𝜔1 (𝑛𝜔2) refers to the index whose corresponding
frequency is closest to 𝜔1 (𝜔2). To mitigate non-ideal frequency-resolution effects, we also
sinc-interpolate the discrete Fourier transform by zero-padding the time series by a factor
of ten (Schanze, 1995).

Each of the bottom panels of Figure 6.4 shows the windowed NCC of our mock triplet,
with 𝜔1 fixed to the frequency of a different power spectral peak and the window width
to 𝛿𝜔win/2𝜋 = 0.05 𝜇Hz. When 𝜔1 is chosen this way, the NCC measures how spectrally
correlated segments of the Fourier transform are with the windowed peak. It is thus expected
to spike when 𝜔2 coincides with the frequency of another periodicity arising from the same
mode (i.e., another peak with the same shading in Figure 6.4). Indeed, Figure 6.4 shows
that the NCC peaks substantially in absolute value at these other periodicities, which are
often lower in amplitude (but still significant). In contrast, the magnitude of the windowed
NCC does not peak significantly at periodicities corresponding to other modes, since their
different noise profiles destructively interfere with the window within the inner product in
Equation 6.27. This proof-of-concept mock analysis demonstrates the ability to perform
model-independent searches for oblique, stochastic pulsations in the frequency domain.

6.3 Summary and prospects
Sufficiently strong non-axisymmetric magnetic fields can misalign stellar pulsations from
the rotation axis, i.e., cause the pulsations to be oblique. The oblique pulsator model
is the standard framework for interpreting the pulsations of rapidly oscillating Ap stars,
which are known to harbor strong surface oblique dipolar-like magnetic fields (Kurtz, 1982;
Dziembowski and Goode, 1996). Additionally, oblique pulsations appear to have been
detected in the prototype DBV white dwarf pulsator (GD 358; Montgomery, Provencal,
et al., 2010) and have been suggested to produce the quintuplet of periodicities observed
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in the main-sequence pulsator 𝛽 Cephei (Telting, Aerts, et al., 1997; Shibahashi and Aerts,
2000). More recently, two blue large-amplitude pulsators (BLAPs) were also suggested to
exhibit oblique pulsations (Pigulski et al., 2024).

In this work, we show that time series observations of oblique pulsators with stochasticity
share generic signatures which can be used to identify them. These signatures take the form
of a permanent periodic mode amplitude modulation (in the time domain) or, equivalently,
spectrally correlated line profiles in the Fourier transform (in the frequency domain). Due
to their dependence on stochasticity, these signatures are easiest to detect for modes with
shorter lifetimes (i.e., larger linewidths). Promisingly, searches for these signatures can be
agnostic to the precise pattern of mode frequencies predicted by models. Data analyses
looking for spectrally correlated signals may identify magnetic red giants in the yellow
region in Figure 6.3, within which current analyses are inapplicable.

While magnetic red giants are the motivating use case for this work, our results apply
to oblique pulsations in any pulsator with detectable stochasticity. Outside of red giants,
stochasticity is a prominent characteristic of main-sequence solar-like oscillators (such as
the Sun itself; Chaplin and Miglio, 2013), and has also been observed in some modes
in classical pulsators (such as 𝛿 Scuti stars; Breger and Pamyatnykh, 1998) and compact
pulsators (such as white dwarfs and hot subdwarfs; Winget, Nather, et al., 1994; Reed et al.,
2007; Østensen et al., 2014; Hermes, Gänsicke, Kawaler, et al., 2017).

A similar analysis is likely also applicable to tidally tilted pulsations (TTPs), which are
misaligned from the rotation axis by tidal forces from a companion rather than a strong
magnetic field (Handler et al., 2020; Fuller, Kurtz, et al., 2020; Fuller, Rappaport, et al.,
2025). As such, TTPs are also oblique pulsations, and are similarly characterized by
multiple periodicities with fixed relative phase and amplitude relationships (e.g., Fuller,
Rappaport, et al., 2025). While TTPs have been discovered in coherent pulsators such as
𝛿 Scuti (Handler et al., 2020) and subdwarf B (Jayaraman et al., 2022) stars, searches for
anomalous long-term coherence may enable the discovery of TTPs in stochastic pulsators.

Magnetic fields produce oblique pulsations when they are strong enough to overwhelm
rotational effects such as the Coriolis force (i.e., for parameters within the yellow region in
Figure 6.3). Magnetic fields which are close in strength to 𝐵𝑟,crit mix modes across values
of ℓ (Lecoanet, Vasil, et al., 2017; Loi, 2020b; Dhouib, Mathis, et al., 2022; Rui and Fuller,
2023; Rui, Ong, et al., 2024; Lecoanet, Bowman, et al., 2022), not just 𝑚 as in this work.
This will produce additional peaks (e.g., more than three for ℓ = 1) spaced by the stellar
spin frequency in the PSD, which can likely be detected by the same method outlined here.
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In future work, we plan to extend our analysis of magnetic obliquity to stronger magnetic
field strengths 𝐵𝑟 ∼ 𝐵𝑟,crit.

6.A Transforming between the observer and corotating frames
Performing the disk integral in Equation 6.2 requires a change of coordinates from the
corotating frame (unprimed; 𝜃, 𝜙) to the observer’s frame (primed; 𝜃′, 𝜙′). In this Appendix,
we describe how spherical harmonics transform under this change of coordinates.

These two coordinate systems differ in relative rotation (by the stellar rotation rate Ω) and
choice of polar axis (by the inclination angle 𝑖). The transformation between the two frames
is characterized by the Euler angles (𝛼𝑒, 𝛽𝑒, 𝛾𝑒) = (0, 𝑖,Ω𝑡) (in an intrinsic z-y-z convention,
following Rose, 1995). Under rotation, spherical harmonics transform as

𝑌ℓ𝑚 (𝜃, 𝜙) =
∑︁
𝑚′
𝐷ℓ
𝑚′𝑚 (𝛼𝑒, 𝛽𝑒, 𝛾𝑒)𝑌ℓ𝑚′ (𝜃′, 𝜙′), (6.28)

where 𝐷ℓ is the Wigner 𝐷-matrix, whose elements are

𝐷ℓ
𝑚′𝑚 (𝛼𝑒, 𝛽𝑒, 𝛾𝑒) = 𝑒−𝑖𝑚

′𝛼𝑒−𝑖𝑚𝛾𝑒𝑑ℓ𝑚′𝑚 (𝛽𝑒), (6.29)

where 𝑑ℓ is a matrix which only depends on ℓ. For our particular transformation,

𝑌ℓ𝑚 (𝜃, 𝜙) =
∑︁
𝑚′
𝑒−𝑖𝑚Ω𝑡𝑑ℓ𝑚′𝑚 (𝑖)𝑌ℓ𝑚′ (𝜃′, 𝜙′), (6.30)

reproducing Equation 6.5 in the main text.

6.B Amplitude evolution under stochastic driving
A stochastic mode is oscillatory (with a corotating frequency𝜎0) on short timescales (𝑡 ≪ 𝜏)
but decoheres on longer timescales (𝑡 ≫ 𝜏). To mimic this behavior, we model the complex
amplitude 𝐴(𝑡) as an underdamped harmonic oscillator with frequency 𝜎0 and damping
rate 𝜂 = 1/𝜏 > 0 driven by noise 𝑓 (𝑡). The time dependence of the amplitudes follow

𝜕𝑡𝐴(𝑡) = (𝑖𝜎0 − 𝜂)𝐴(𝑡) + 𝜂 𝑓 (𝑡), (6.31)

which is the stochastically driven amplitude equation (Buchler et al., 1993) evaluated in the
linear regime. We have included an extra prefactor 𝜂multiplying 𝑓 to normalize the height of
the power spectral peak to be independent of 𝜂. Solutions to Equation 6.31 behave similarly
to those of the usual damped driven harmonic oscillator equation, ¥𝐴+2𝜂 ¤𝐴+ (𝜎2

0 +𝜂
2)𝐴 = 𝑓 .

The difference is that the former excites only a single complex oscillation∝ 𝑒𝑖𝜎0𝑡 whereas the
latter (as a second-order differential equation) excites linear combinations of two complex
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oscillations ∝ 𝑒𝑖𝜎0𝑡 and ∝ 𝑒−𝑖𝜎0𝑡 . Aiming to construct a simple excitation model for a single
complex oscillation, we therefore solve Equation 6.31 rather than the usual damped driven
harmonic oscillator equation.

In the frequency domain, the Fourier transform of 𝐴(𝑡) is given by

𝐴̃(𝜎) = 1
1 + 𝑖(𝜎 − 𝜎0)/𝜂

𝑓 (𝜎), (6.32)

i.e., the product of a peaked complex function whose squared norm is a Lorentzian and
the spectrum 𝑓 of the stochastic driving. Although the square-root-Lorentzian factor has
a complex phase profile (reflecting the phase lag of a damped driven harmonic oscillator),
this phase is irrelevant as long as the stochastic driving is spectrally uncorrelated.

In the time domain, 𝐴(𝑡) is given by the inverse Fourier transform

𝐴(𝑡) =
∫ +∞

−∞

𝑓 (𝜎)
1 + 𝑖(𝜎 − 𝜎0)/𝜂

𝑒𝑖𝜎𝑡 d𝜎. (6.33)

Applying the change of variables 𝜎′ = 𝜎 − 𝜎0 allows us to rewrite Equation 6.33 as

𝐴(𝑡) = 𝑒𝑖𝜎0𝑡

∫ +∞

−∞

𝑓 (𝜎0 + 𝜎′)
1 + 𝑖𝜎′/𝜂 𝑒

𝑖𝜎′𝑡 d𝜎′. (6.34)

Defining

𝐴̄(𝑡) ≡
∫ +∞

−∞

𝑓 (𝜎0 + 𝜎′)
1 + 𝑖𝜎′/𝜂 𝑒

𝑖𝜎′𝑡 d𝜎′ ≡
∫ +∞

−∞
˜̄𝐴(𝜎′)𝑒𝑖𝜎′𝑡 d𝜎′ (6.35)

recovers Equation 6.8 in the main text. As a complex function, 𝐴̄(𝑡) stores the departure in
amplitude and phase of 𝐴(𝑡) from a perfect sinusoid. Equation 6.35 represents 𝐴̄(𝑡) as the
Fourier transform of a square-root Lorentzian multiplied by noise. Since ˜̄𝐴 is very roughly
localized to frequencies |𝜎′| ≲ 𝜂, 𝐴̄(𝑡) remains roughly constant on short timescales ≲ 𝜏
while varying randomly on longer timescales ≫ 𝜏.

For simplicity, we assume the driving to be white noise, although our results are not sensitive
to this choice and extend to colored (but spectrally uncorrelated) noise. To simulate a single
statistical realization of 𝐴̃(𝜎) on a discrete frequency grid (Section 6.2.4), we independently
draw values from a 𝜒2 distribution with two degrees of freedom, take their square roots,
and multiply them by random complex phases drawn uniformly from the unit circle. This
ensures that the values of the PSD of the driving | 𝑓 (𝜎) |2 obey a 𝜒2 distribution with two
degrees of freedom, a standard assumption in the study of solar-like oscillations (Woodard,
1985; Duvall and Harvey, 1986; Anderson et al., 1990) which results from the values of the
real and imaginary parts of 𝑓 (𝜎) each individually following Gaussian distributions with
identical statistics. We then compute 𝐴̃(𝜎) using Equation 6.32. The simulated time series



6.C. Rotating and magnetic g-mode frequencies and eigenfunctions 193

𝛿𝐼 (𝑡) is then obtained by applying an inverse fast Fourier transform to 𝐴̃ 𝑗 (𝜎) to obtain 𝐴 𝑗 (𝑡)
for each mode 𝑗 and evaluating Equation 6.10. A simulated observational noise background
is generated in the same way as 𝑓 (𝜎), and its inverse fast Fourier transform added to 𝛿𝐼 (𝑡).

6.C Rotating and magnetic g-mode frequencies and eigenfunctions
At lowest order, the simultaneous effects of rotation and magnetism can be calculated using
degenerate perturbation theory. In this Appendix, we quote the main results of this type of
analysis for pure dipole (ℓ = 1) g modes (in particular, those of Gomes and Lopes, 2020;
Bugnet, 2022; Li, Deheuvels, Ballot, and Lignières, 2022; Mathis and Bugnet, 2023; Das
et al., 2024) in the asymptotic limit. These conditions reasonably describe observable g
modes in red giants.

The scale 𝛿𝜔rot of the Coriolis frequency shift is given by

𝛿𝜔rot =
1
2
⟨Ω⟩𝑔 ≡

1
2
Ω, (6.36)

where ⟨Ω⟩𝑔 is the average rotation rate of the g-mode cavity (core). Similarly, the scale of
magnetic frequency shifts 𝛿𝜔mag is given by

𝛿𝜔mag =
ℐ

4𝜋𝜔3
0
⟨𝐵2

𝑟 ⟩. (6.37)

The value of 𝛿𝜔mag depends on a particular average of the squared radial component of the
magnetic field over the g-mode cavity:

⟨𝐵2
𝑟 ⟩ =

∫ 𝑟2

𝑟1

d𝑟 𝐾 (𝑟)
∫
𝑆2

dΩ2 𝐵
2
𝑟 , (6.38)

where 𝑟1 and 𝑟2 are the boundaries of the g-mode cavity (demarcated by 𝜔2 < min
(
𝑆2

1, 𝑁
2)

where 𝑆1 and 𝑁 are the ℓ = 1 Lamb and Brunt–Väsälä frequencies) and dΩ2 = d(cos 𝜃) d𝜙
is an infinitesimal solid angle element. This average is weighted in radius by a function

𝐾 (𝑟) ≃


𝑁3/𝜌𝑟3∫
Rℓ𝜈

(𝑁3/𝜌𝑟3) d𝑟 𝑟1 ≤ 𝑟 ≤ 𝑟2

0 otherwise,
(6.39)

which peaks near the hydrogen-burning shell in red giants. Finally, the sensitivity factor

ℐ =

∫ 𝑟2
𝑟1

(𝑁3/𝜌𝑟3) d𝑟∫ 𝑟2
𝑟1

(𝑁/𝑟) d𝑟
(6.40)

depends on the stellar structure.
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For general magnetic configurations, the ℓ = 1 Lorentz force matrix Mℓ=1 is

Mℓ=1 = 𝛿𝜔mag

∫ 𝑟2
𝑟1

d𝑟 𝐾 (𝑟)
∫
𝑆2 dΩ2 Mℓ=1(𝜃, 𝜙)𝐵2

𝑟∫ 𝑟2
𝑟1

d𝑟 𝐾 (𝑟)
∫
𝑆2 dΩ2 𝐵

2
𝑟

(6.41)

where

Mℓ=1(𝜃, 𝜙) =
3
8

©­­«
3 + 𝐶𝜃 −

√
2𝑒𝑖𝜙𝑆𝜃 𝑒2𝑖𝜙 (1 − 𝐶𝜃)

−
√

2𝑒−𝑖𝜙𝑆𝜃 2 − 2𝐶𝜃
√

2𝑒𝑖𝜙𝑆𝜃
𝑒−2𝑖𝜙 (1 − 𝐶𝜃)

√
2𝑒−𝑖𝜙𝑆𝜃 3 + 𝐶𝜃

ª®®¬ (6.42)

is a matrix-valued horizontal weighting function, with 𝑆𝜃 ≡ sin 2𝜃 and 𝐶𝜃 ≡ cos 2𝜃.
Magnetic obliquity is generated by the off-diagonal elements of Mℓ=1, which are related
to the 𝑚 = 1 and 𝑚 = 2 coefficients of the azimuthal Fourier transform of 𝐵2

𝑟 (see the
Supplementary Information of Li, Deheuvels, Ballot, and Lignières, 2022). Azimuthal
Fourier coefficients of higher 𝑚 correspond to smaller-scale azimuthal non-axisymmetry in
the magnetic field which do not couple to the dipole modes in perturbation theory.

In this work, we illustratively assume an inclined dipolar magnetic field such that 𝐵𝑟 ∝
cos 𝛽 cos 𝜃 + sin 𝛽 sin 𝜃 cos 𝜙, where 𝛽 is the misalignment angle between the rotation and
magnetic axes. Combining Equations 6.37, 6.41, and 6.42 yields

Mℓ=1 =
3

20
𝛿𝜔mag

©­­«
7 + cos 2𝛽 −

√
2 sin 2𝛽 1 − cos 2𝛽

−
√

2 sin 2𝛽 6 − 2 cos 2𝛽
√

2 sin 2𝛽
1 − cos 2𝛽

√
2 sin 2𝛽 7 + cos 2𝛽

ª®®¬ , (6.43)

reproducing Equation 6.23 in the text.

While this particular field geometry keeps the off-diagonal elements of Mℓ=1 real, the off-
diagonal elements can be complex in general. Complex off-diagonal elements can cause
phase shifts between periodicities associated with the same mode, but do not otherwise
modify our general conclusions
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C h a p t e r 7

SUPERSENSITIVE SEISMIC MAGNETOMETRY OF WHITE DWARFS

Rui, N. Z., J. Fuller, and J. J. Hermes (2025). “Supersensitive Seismic Magnetometry
of White Dwarfs.” In: The Astrophysical Journal 981.1, 72. doi: 10.3847/1538-
4357/adaf9e. arXiv: 2410.20557.

The origin of magnetic fields in white dwarfs (WDs) remains mysterious. Magnetic WDs
are traditionally associated with field strengths ≳ 1 MG, set by the sensitivity of typical
spectroscopic magnetic field measurements. Informed by recent developments in red giant
magnetoasteroseismology, we revisit the use of WD pulsations as a seismic magnetometer.
WD pulsations primarily probe near-surface magnetic fields, whose effect on oscillation
mode frequencies is to asymmetrize rotational multiplets and, if strong enough, suppress
gravity-mode propagation altogether. The sensitivity of seismology to magnetic fields
increases strongly with mode period and decreases quickly with the depth of the partial
ionization-driven surface convective zone. We place upper limits for magnetic fields in
24 pulsating WDs: 20 hydrogen-atmosphere (DAV) and three helium-atmosphere (DBV)
carbon–oxygen WDs, and one extremely low-mass (helium-core) pulsator. These bounds
are typically∼ 1–10 kG, although they can reach down to∼ 10–100 G for DAVs and helium-
core WDs in which lower-frequency modes are excited. Seismic magnetometry may enable
new insights into the formation and evolution of WD magnetism.
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7.1 Introduction
White dwarfs (WDs) are the compact remnants of low- and intermediate-mass (≲ 8𝑀⊙)
stars. Although a large fraction of WDs are now known to be magnetic (≈ 20%; Bagnulo
and Landstreet, 2021), the origins of their magnetic fields are still largely mysterious.

Magnetic fields in WDs are typically measured using Zeeman splitting of spectral absorption
or emission lines (Landstreet, 2014; Ferrario, Martino, et al., 2015). Recent volume-
limited surveys have revealed that magnetism in typical WDs (with masses 𝑀 ≤ 0.75𝑀⊙)
experience a delayed onset, with both the incidence and strength of magnetism increasing
at cooling ages of 2–3 Gyr (Bagnulo and Landstreet, 2021; Bagnulo and Landstreet, 2022).
The late appearance of magnetic fields in these WDs may be due to some combination of
an outward-diffusing fossil field from earlier evolutionary stages and a magnetic dynamo
activated during core crystallization (Isern et al., 2017; Schreiber, Belloni, et al., 2021;
Ginzburg et al., 2022; Blatman and Ginzburg, 2024a; Fuentes et al., 2024; Blatman and
Ginzburg, 2024b). In contrast, strong magnetic fields occur in a large fraction (∼ 40%)
of ultramassive (𝑀 ≳ 1.1𝑀⊙) WDs (Bagnulo and Landstreet, 2022; Kilic, Moss, et al.,
2023), suggesting a merger-related origin may be responsible for some of them (Tout,
Wickramasinghe, Liebert, et al., 2008; García-Berro et al., 2012; Briggs et al., 2018;
Schneider, Ohlmann, Podsiadlowski, Röpke, Balbus, and Pakmor, 2020). The puzzle of
WD magnetism is a timely one.

In parallel with these developments, leaps and bounds have been made in the asteroseismic
inference of magnetic fields in the interiors of red giants in the last few years. The
propagation of buoyancy-restored gravity waves through stably stratified regions (such as
in the radiative cores of red giants) is sensitive to the magnetic field. The degree to which a
standing gravity wave (g mode) of period 𝑃 is locally influenced by magnetism is determined
by the comparison between the radial component of the magnetic field, 𝐵𝑟 , to the critical
field

𝐵𝑟,crit ∼
2𝜋2√︁
ℓ(ℓ + 1)

√︁
4𝜋𝜌 𝑟
𝑁𝑃2 , (7.1)

where 𝜌 is the density, 𝑟 is the radial coordinate, and 𝑁 is the Brunt–Väisälä (buoyancy)
frequency, given in Gaussian units (Fuller, Cantiello, et al., 2015).

Magnetism (due to fields ≳ 100 kG) is thought to dampen or outright suppress dipolar
oscillations in approximately one-fifth of observed red giants (García, Hernández, et al.
2014; Stello, Cantiello, Fuller, Huber, et al. 2016; Cantiello et al. 2016, although see
Mosser, Belkacem, et al. 2017). This magnetic suppression can occur when 𝐵𝑟 > 𝐵𝑟,crit

somewhere in the g-mode cavity (Fuller, Cantiello, et al., 2015; Lecoanet, Vasil, et al., 2017;
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Lecoanet, Bowman, et al., 2022; Rui and Fuller, 2023). However, in the last few years,
asteroseismic frequency shifts due to weaker magnetic fields of tens to a hundred kilogauss
have been detected for the very first time (Li, Deheuvels, Ballot, and Lignières, 2022;
Deheuvels, Li, et al., 2023; Li, Deheuvels, Li, et al., 2023; Hatt et al., 2024). Magnetic
frequency shifts depend not only the magnetic field’s strength but also its geometry.

The majority of existing red giant magnetic field measurements based on seismic frequency
shifts have relied on asymmetries in observed dipole (ℓ = 1) triplets (Li, Deheuvels, Ballot,
and Lignières, 2022; Li, Deheuvels, Li, et al., 2023). While rotation (to first order) splits a
single peak in the asteroseismic power spectrum into a symmetric multiplet of 2ℓ+1 distinct
modes, the Lorentz force typically causes asymmetric splitting within the multiplet (Bugnet
et al., 2021; Li, Deheuvels, Ballot, and Lignières, 2022; Das et al., 2024). Even when
other sources of asymmetry cannot be excluded (e.g., near-degeneracy effects; Deheuvels,
Ouazzani, et al., 2017; Ong, Bugnet, et al., 2022), the degree (or lack) of asymmetry
imposes an upper bound on the magnetic field.

The concept of performing similar, asymmetry-based magnetic field measurements in pul-
sating WDs dates back to Jones et al. (1989), who predicted that seismology would be
sensitive to weak fields far below the “traditional” megagauss WD magnetic field. Soon
after, Winget, Nather, et al. (1994) reported the seismic detection of a kilogauss-level mag-
netic field in Whole Earth Telescope observations of the brightest DBV, GD 358 (i.e., the
prototype DBV, V777 Herculis). Similar seismic field constraints have been placed on var-
ious other WDs over the years (Kawaler et al., 1995; Schmidt and Grauer, 1997; Vauclair
et al., 2002; Dolez et al., 2006; Fu et al., 2007; Hermes, Kawaler, et al., 2017), but a
uniform analysis for a large sample of WDs has not been performed. Although DQVs have
previously been thought to be pulsating, magnetic WDs (Dufour, Fontaine, et al., 2008),
their variability is now generally believed to be due to surface spots (Williams et al., 2016).
We are not aware of any definitive detections of pulsations in known magnetic WDs.

In this work, we use asteroseismic data to place approximate upper limits on the magnetic
fields in the near-surface layers of 24 WDs. In doing so, we aim to add seismology to
the toolkit of WD magnetometry. Seismic magnetometry has the potential to complement
traditional Zeeman effect-based techniques in constraining the formation and evolution of
WD magnetic fields (Figure 7.1). Section 7.2 summarizes our present understanding of
gravity waves under magnetic fields. Section 7.3 describes our stellar models and the
procedure by which we place seismic upper bounds on WD fields. Section 7.4 presents and
discusses our findings. Section 7.5 summarizes and presents optimistic prospects.
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Figure 7.1: Kiel diagram showing various classes of pulsating (diamonds; Córsico et al.,
2019) and magnetic (colored circles; Bagnulo and Landstreet 2021; Bagnulo and Landstreet
2022, with some values of log 𝑔 taken from the Gaia EDR3 catalog of Gentile Fusillo et
al. 2021) WDs. Black stars indicate WDs whose magnetic fields we constrain in this
study, while blue points are DA WDs and red points are DB WDs from the literature.
Following the plotting convention of Bagnulo and Landstreet (2022), magnetic WD points
surrounded by zero, one, two, and three concentric circles have measured fields 𝐵 < 1 MG,
1 MG ≤ 𝐵 < 10 MG, and 10 MG ≤ 𝐵 < 100 MG, and 𝐵 ≥ 100 MG, respectively. The
background translucent gray points indicate a subsample of other WDs in the catalog of
Gentile Fusillo et al. (2021). The innermost 5% by mass of carbon–oxygen WDs with
thin (thick) hydrogen envelopes will crystallize once they reach the red (blue) dashed lines
(Bédard et al., 2020).

7.2 Theoretical background
Here, we outline the existing formalism on gravity waves under the influence of the Lorentz
force. Sections 7.2.1 and 7.2.2 summarize theoretical predictions for frequency shifts and
conditions for mode suppression, respectively.

The following formulae for the frequency shifts are valid in the perturbative regime where
both magnetism and rotation are treated at lowest order, with the additional assumption that
rotation is strong enough to set the preferred direction of the problem (see Li, Deheuvels,
Ballot, and Lignières, 2022; Das et al., 2024). Mode suppression conditions arise from
a non-perturbative treatment of the magnetogravity problem (e.g., Fuller, Cantiello, et al.,
2015; Lecoanet, Vasil, et al., 2017; Lecoanet, Bowman, et al., 2022; Rui and Fuller, 2023;
Rui, Ong, et al., 2024). Both calculations rely heavily on the incompressible approximation
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(which filters out pressure waves), the asymptotic approximation (which relies on high radial
orders), and the Cowling approximation. Departures from these assumptions are treated in
this work as an ad hoc correction factor (Appendix 7.B). Under these assumptions, g modes
are primarily sensitive to the radial component of the magnetic field 𝐵𝑟 and insensitive to
the horizontal components 𝐵𝜃 and 𝐵𝜙, which are hereafter neglected.

The aim of this work is to provide a constraint on WD field using both magnetic asymmetries
and mode suppression. While both effects are primarily sensitive to the outer layers of the
WD (as we subsequently explain), the exact layers probed by each effect are different, and
additionally they depend on the mode period, 𝑃. Since all seismic methods we discuss probe
the field in geometrically thin, near-surface layers, we speak of bounding “the” surface field
𝐵𝑟 , which assumes that the magnetic field is roughly constant near the surface of the WD.

7.2.1 Seismic frequency shifts
A non-rotating, non-magnetic star such as a WD possesses spherical symmetry, so that
each radial order 𝑘 and angular degree ℓ are assigned to a multiplet of 2ℓ + 1 modes of
varying azimuthal order −ℓ ≤ 𝑚 ≤ ℓ with degenerate frequencies 𝜈(0)

𝑛ℓ
. Due to geometric

cancellation effects, observable g modes are typically low-ℓ, either ℓ = 1 dipole modes or
ℓ = 2 quadrupole modes, forming mode triplets and quintuplets, respectively. The first-
order effect of rotation is to split these modes into a symmetric multiplet (Ledoux, 1951;
Unno, Osaki, Ando, and Shibahashi, 1979; Aerts, Christensen-Dalsgaard, et al., 2010;
Aerts, 2021):

𝜈𝑘ℓ𝑚 ≈ 𝜈(0)
𝑘ℓ

+ 𝑚
(
1 − 1

ℓ(ℓ + 1)

) ⟨Ω⟩𝑔
2𝜋

, (7.2)

where

⟨Ω⟩𝑔 ≈

∫
Rℓ

𝜈
Ω (𝑁/𝑟) d𝑟∫

Rℓ
𝜈
(𝑁/𝑟) d𝑟

(7.3)

is a wave-cavity-averaged rotation rate. The symbol Rℓ𝜈 denotes the g-mode cavity, the
contiguous range of radii where the linear mode frequency 𝜈 satisfies 2𝜋𝜈 < 𝑁, 𝑆ℓ, where
𝑆ℓ =

√︁
ℓ(ℓ + 1)𝑐𝑠/𝑟 is the degree-ℓ Lamb frequency (Unno, Osaki, Ando, and Shibahashi,

1979; Aerts, Christensen-Dalsgaard, et al., 2010). The rotational frequency shift is due to
a combination of the Coriolis force (which is a physical effect) and a Doppler effect acting
on the mode frequencies (which is a geometric one).



7.2. Theoretical background 200

0.2

0.4

0.6

0.8

1.0

1.2

1.4

P 
(ks

)

 (
Hz

)
 (g

 c
m

3 )
r 0K(

r)
dr

B c
rit

 (G
)

103

104

105

106 N/2

S1/2

10 7

10 3

101

10 10

10 6

10 2

10 410 310 210 1100

1 r/R
100

104

108

Figure 7.2: Top: Asteroseismic propagation diagram for the dipole (ℓ = 1) modes of a WD
model with 𝑀 = 0.64𝑀⊙ and𝑇eff = 12 kK, with 1−𝑟/𝑅 on the 𝑥 axis (fractional radius from
the outermost shell of the model). The green and brown curves show the Brunt–Väisala
(𝑁) and dipole Lamb (𝑆1) frequencies, respectively. The green shaded region denotes
the g-mode cavity. Second from top: Density as a function of radius. Third from top:
Cumulative magnetic weight function (defined in Equation 7.7) for the same model, for a
variety of mode periods. The function

∫ 𝑟

0 𝐾 (𝑟′) d𝑟′ represents the cumulative contribution
of the magnetic field in shells within radii 𝑟 to the average ⟨𝐵2

𝑟 ⟩ (Equation 7.6). Bottom:
Critical field 𝐵𝑟,crit required to suppress gravity waves, for a variety of mode periods.
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When the star is also magnetic, the magnetic tension serves as an additional, “stiffening”
restorative force which shifts gravity mode frequencies by roughly

𝜈ℓ𝐵 ≡ 𝐴ℓ

64𝜋5
𝑃3∫

Rℓ
𝜈
(𝑁/𝑟) d𝑟

∫
Rℓ

𝜈

d𝑟
𝑁3

𝜌𝑟3

∫
𝐵2
𝑟

4𝜋
dΩ

= 𝐴ℓ
ℐ

64𝜋5 ⟨𝐵
2
𝑟 ⟩𝑃3,

(7.4)

where dΩ is an integral over a spherical surface and

ℐ ≃

∫
Rℓ

𝜈
(𝑁3/𝜌𝑟3) d𝑟∫

Rℓ
𝜈
(𝑁/𝑟) d𝑟

, (7.5)

and 𝑃 = 1/𝜈 is the period of the mode and 𝐴ℓ = ℓ(ℓ + 1)/2. The characteristic scale 𝜈ℓ
𝐵

of
the frequency shift can be computed from a field strength and stellar model (which enters
Equation 7.4 purely through ℐ).

The weighted average ⟨𝐵2
𝑟 ⟩ which appears in Equation 7.4 is given by Li, Deheuvels, Ballot,

and Lignières (2022):

⟨𝐵2
𝑟 ⟩ =

∫
Rℓ

𝜈

d𝑟 𝐾 (𝑟)
∫

dΩ
4𝜋

𝐵2
𝑟 , (7.6)

where the weight function is

𝐾 (𝑟) ≃


𝑁3/𝜌𝑟3∫
Rℓ𝜈

(𝑁3/𝜌𝑟3) d𝑟 inRℓ𝜈

0 otherwise
. (7.7)

The quantity 𝜈ℓ
𝐵

is the mean frequency shift averaged over a multiplet. However, individual
modes within the multiplet will experience different frequency shifts from each other. The
precise order-unity prefactor relating a mode’s magnetic frequency shift to 𝜈ℓ

𝐵
depends both

on the quantum numbers of the mode and the geometry of the field (Li, Deheuvels, Ballot,
and Lignières, 2022). As a consequence, unlike rotation, magnetism does not generically
preserve the symmetry of the multiplet, and the asymmetry of the multiplet can distinguish
frequency shifts due to magnetism from those due to first-order rotation. We assume
throughout this work that the pulsations are aligned with the rotation axis, so that each
mode is observed as a single sinusoidal periodicity. This is appropriate when the magnetic
force is weaker than the Coriolis force (although see Section 7.4.2).

The asymmetry of a multiplet can be parameterized by dimensionless asymmetry parameters
𝑎ℓ𝑚1 𝑚2 𝑚3 , the most commonly used of which (“𝑎”) is defined as

𝑎ℓ=1
−1 0 +1 =

Δℓ=1
−1 0 +1

3 𝜈ℓ=1
𝐵

, (7.8)
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where
Δℓ=1

−1 0 +1 = 𝜈ℓ=1
𝑚=−1 − 2 𝜈ℓ=1

𝑚=0 + 𝜈
ℓ=1
𝑚=+1 (7.9)

is a linear combination of the three dipole modes in a triplet (Li, Deheuvels, Ballot, and
Lignières, 2022; Mathis and Bugnet, 2023; Das et al., 2024). This is the only possible
asymmetry parameter for ℓ = 1.

We similarly construct quadrupole asymmetry parameters by taking linear combinations
Δℓ𝑚1 𝑚2 𝑚3 ∝ 𝜈

ℓ
𝐵

of three modes within the same multiplet such that the first-order rotational
splitting terms cancel out (our adopted definitions for Δℓ=2

𝑚1 𝑚2 𝑚3 are given by Equations
7.22). We define the ten quadrupole asymmetry parameters 𝑎ℓ𝑚1 𝑚2 𝑚3 as

𝑎ℓ𝑚1 𝑚2 𝑚3 =
Δℓ=2
𝑚1 𝑚2 𝑚3

5 𝜈ℓ=2
𝐵

. (7.10)

In Appendix 7.A, we relate them to the magnetic field geometry and compute them for an
inclined dipolar magnetic field (see also Das et al., 2024).

In WDs, 𝜌 sharply decreases towards surface, and 𝑁 often also reaches its peak value there,
just below the surface convective zone. The weight function 𝐾 (𝑟) is thus very sharply
peaked just below the surface, at depths 1 − 𝑟/𝑅 ∼ 10−3–10−2, and asteroseismology is
most sensitive to the near-surface field (center panel of Figure 7.2). This is in contrast to
the cases of red giant or intermediate-mass main-sequence stars, within which 𝐾 (𝑟) peaks
at some highly stratified layer in the deep interior of the star (the hydrogen-burning shell
and near-core composition gradient, respectively; Fuller, Cantiello, et al., 2015; Lecoanet,
Bowman, et al., 2022). While the pulsations of WDs are in principle modified by deep
internal magnetic fields, the influence of these fields is highly diluted. In the 0.64𝑀⊙ WD
model in Figure 7.2, a uniform magnetic field of ≃ 1 MG restricted to the inner 𝑟/𝑅 ≲ 0.993
of the WD affects a 𝑃 = 1200 s gravity mode identically to a uniform ≃ 1 G field restricted
to the outer layers with 𝑟/𝑅 ≳ 0.993. Long-period modes probe the magnetic field at very
low-density layers (𝜌 ≃ 4 × 10−6 g cm−3 for the 𝑃 = 1200 s mode in Figure 7.2), although
still far within the photosphere of the WD.

In principle, magnetic shifts also modify the spacing between adjacent multiplets, causing
a period-dependent period spacing ΔΠℓ = ΔΠℓ (𝑃) (e.g., Cantiello et al., 2016; Rui, Ong,
et al., 2024). Deheuvels, Li, et al. (2023) used this effect to measure strong magnetic fields
in red giants in which dipole triplets were not detected. However, this is likely difficult
in WDs, whose g modes already depart from period-uniformity due to non-asymptotic
mode trapping effects due to, e.g., near-surface composition gradients (Brassard, Fontaine,
Wesemael, and Hansen, 1992). We instead focus on intra-multiplet asymmetries, since
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non-asymptotic effects are expected to affect each component of a multiplet in the same
way.

7.2.2 Mode suppression
About ≃ 20% of observed red giants have unusually low-amplitude non-radial (dipole)
oscillations (García, Hernández, et al., 2014; Stello, Cantiello, Fuller, Huber, et al., 2016).
Fuller, Cantiello, et al. (2015) show that the amplitudes of these suppressed oscillations are
consistent with nearly total damping of g-mode oscillations in the core. They argue that
such near-total suppression of g modes can occur if the damping mechanism is magnetic in
nature. Simple scaling arguments (Fuller, Cantiello, et al., 2015; Cantiello et al., 2016; Rui
and Fuller, 2023) show that g modes will be significantly affected by a magnetic field when
the radial component of the field approaches 𝐵𝑟,crit as defined in Equation 7.1, and detailed
calculations validate several magnetic dissipation mechanisms (Lecoanet, Vasil, et al., 2017;
Loi and Papaloizou, 2017; Loi and Papaloizou, 2018; Loi, 2020b; Lecoanet, Bowman, et
al., 2022; Rui and Fuller, 2023). Throughout this work, we assume that magnetic g-mode
suppression damps out all g-mode energy (although see Mosser, Belkacem, et al., 2017),
and use the presence of non-suppressed g modes in WDs to set upper bounds on the magnetic
field.

As can be seen in Equation 7.1, longer-period modes require weaker magnetic fields to
suppress. At fixed ℓ, the longest-period modes observed in a WD therefore set the strongest
upper limits on the WD field. Also, since 𝐵𝑟,crit ∝ √

𝜌/𝑁 , the value of 𝐵𝑟,crit reaches
a minimum near the outer edge of the WD g-mode cavity. Therefore, like magnetic
asymmetries, magnetic mode suppression probes the near-surface layers. The bottom panel
of Figure 7.2 shows 𝐵𝑟,crit for various g modes in a 0.64𝑀⊙ WD. While fields of ≃ 3 G at a
depth of 𝑟/𝑅 = 0.998 are sufficient to suppress 𝑃 = 1200 s oscillations, a ≃ 10 MG field is
needed to achieve the same effect at a depth of 𝑟/𝑅 = 0.9.

For simplicity, when calculating 𝐵𝑟,crit, we adopt the dimensionless prefactors shown in
Equation 7.1 originally derived by Fuller, Cantiello, et al. (2015). In reality, this prefactor
actually depends on ℓ, 𝑚, and the field geometry in complicated ways (Lecoanet, Vasil,
et al., 2017; Loi and Papaloizou, 2018; Rui and Fuller, 2023). Because this prefactor
is order-unity (Lecoanet, Vasil, et al., 2017; Rui and Fuller, 2023), its uncertain value
translates to order-unity errors in the inferred field strength, but changes in its value are
unlikely to greatly affect the field constraint.
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7.3 Methods
7.3.1 White dwarf models
Seismic magnetic field estimates rely on detailed stellar models. To this end, we use
several helium-core and carbon–oxygen WD models prepackaged with version r10398 of
the Modules for Experiments in Stellar Astrophysics code (MESA; Paxton, Bildsten, et al.,
2010; Paxton, Cantiello, et al., 2013; Paxton, Marchant, et al., 2015; Paxton, Schwab, et al.,
2018). We evolve models down a cooling track in the presence of gravitational settling using
as diffusion representatives 1H, 4He, 12C, 16O, 20Ne, and 22Ne. In order to avoid helium shell
flashes and/or help with numerical convergence issues, we sometimes artificially reduce the
size of the hydrogen atmosphere by replacing its inner layers with helium. In one case
(𝑀 = 0.73𝑀⊙), we replace the outer layers of the originally helium-atmosphere model with
hydrogen to create a DA WD model. We also evolve several helium-atmosphere (DB) and
DA WD models with lower total hydrogen masses 𝑀H, initialized by replacing some of the
WD’s hydrogen with helium prior to evolution.

We apply the Ledoux criterion for convective stability. This sometimes produces short-lived
convective zones owing to the particular composition gradient in the initial stellar model.
Although these convective zones can technically split the WD into multiple g mode cavities
(requiring more sophisticated analysis Pinçon and Takata, 2022), the appearance times,
locations, and lifetimes of these convective zones are hard to predict. When performing
integrals over the g mode cavity (i.e., when determining Rℓ𝜈), we therefore integrate over all
shells satisfying the gravity wave propagation condition (2𝜋𝜈 < 𝑁, 𝑆ℓ) without enforcing
that the g-mode cavity is contiguous. Our WD models are summarized in Table 7.1.1

7.3.2 Seismic field constraints
Magnetism tends to asymmetrize rotational multiplets. Symmetric multiplets therefore
place upper limits on the magnetic field present in a WD. For each multiplet, we use
Equations 7.8 (for ℓ = 1) or 7.10 (for ℓ = 2) to convert a measured asymmetry to 𝜈ℓ

𝐵
. To be

conservative, we calculate this magnetic field bound assuming that the measured asymmetry
is underestimated by 2𝜎, i.e., using as the asymmetry |Δℓ𝑚1 𝑚2 𝑚3 | + 2𝛿Δℓ𝑚1 𝑚2 𝑚3 where
𝛿Δℓ𝑚1 𝑚2 𝑚3 is the uncertainty on the asymmetry implied by the measurement uncertainties
on the mode frequencies. Finally, we invert Equation 7.4 to solve for the upper limit

1These MESA models can be reproduced with the inlists, run_star_extras.f, and other files at the
following link: https://doi.org/10.5281/zenodo.14457127

https://doi.org/10.5281/zenodo.14457127
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core type 𝑀 (𝑀⊙) 𝑀H (𝑀⊙) 𝑀He (𝑀⊙)
He DA 0.15∗ 9.95 × 10−4 · · ·
He DA 0.20 9.54 × 10−4 · · ·
He DA 0.40∗ 7.26 × 10−5 · · ·
CO DA 0.52 8.53 × 10−5 2.90 × 10−2

CO DB 0.52 0 2.91 × 10−2

CO DA 0.64 1.64 × 10−5 4.23 × 10−3

CO DA 0.64∗ 8.00 × 10−8 4.25 × 10−3

CO DB 0.64 0 4.25 × 10−3

CO DA 0.73 3.48 × 10−6 2.53 × 10−3

CO DB 0.73 0 2.54 × 10−3

CO DA 0.86 3.99 × 10−6 1.64 × 10−3

CO DB 0.86 0 1.65 × 10−2

Table 7.1: Summary of the WD models used in this work (Section 7.3.1). Asterisks (∗)
indicate that we checked the magnetic sensitivity of the model, but did not use it in fitting
WD observations.

𝐵𝑟,shift =
√︁
⟨𝐵2

𝑟 ⟩:

𝐵𝑟,shift = 8𝜋5/2

√√√
min

{
|Δℓ𝑚1 𝑚2 𝑚3 | + 2𝛿Δℓ𝑚1 𝑚2 𝑚3

(2ℓ + 1) |𝑎ℓ𝑚1 𝑚2 𝑚3 |𝐴ℓℐ𝑃3

}
(7.11)

where the minimum is over all combinations of three modes (indexed by 𝑚1, 𝑚2, and 𝑚3)
within the same multiplet. The quantity ℐ is corrected for non-asymptotic effects using an
ad hoc factor described in Appendix 7.B.

In this work, we assume asymmetry parameters 𝑎ℓ𝑚1 𝑚2 𝑚3 typical for an inclined, centered
dipolar magnetic field (derived in Appendix 7.A.3). This sets 𝑎ℓ=1

−1 0 +1 ≈ 0.253 and 𝑎ℓ=2
𝑚1 𝑚2 𝑚3

to values between −0.217 and −0.036, depending on the values of 𝑚1, 𝑚2, and 𝑚3. While
the field geometry is uncertain in reality, changes to the field geometry only modify the
field strength estimate by order-unity factors. Mode asymmetries can also be non-magnetic
in origin (e.g., from second-order rotational effects or near-degeneracy effects). However,
we assume that other sources of asymmetry do not decrease the rough scale of the observed
symmetry. In principle, we can underestimate the magnetic field if another source of
asymmetry happens to nearly cancel out the magnetic asymmetry.

When 𝐵𝑟 > 𝐵𝑟,crit(𝑃), a g mode of period 𝑃 is expected to be suppressed. Therefore, the
presence of a g mode indicates that the field does not exceed 𝐵𝑟,crit. We use this fact to place
additional suppression-based upper bounds 𝐵𝑟,supp by setting 𝐵𝑟,supp = 𝐵𝑟,crit and inverting
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Equation 7.1 for each mode:

𝐵𝑟,supp = 4𝜋5/2min

{ (√
𝜌 𝑟/𝑁

)
min 𝑔,𝑃0√︁

ℓ(ℓ + 1)𝑃2
0

}
(7.12)

where the minimum is over all observed radial orders. The quantity
(√
𝜌 𝑟/𝑁

)
min g,𝑃 is the

minimum value of √𝜌 𝑟/𝑁 in the g-mode cavity corresponding to period 𝑃. The period
𝑃0 indicates the central frequency of the multiplet, which we take as an estimate for the
unperturbed mode period. When the 𝑚 = 0 component is reported, we take its period to be
𝑃0. Otherwise, if two or more components are reported, we calculate 𝑃0 = 1/𝜈(0) , where
𝜈(0) is the 𝑦-intercept of a fit to the mode frequencies 𝜈 within a multiplet to a linear function
of 𝑚. Finally, if there is only a single mode within the multiplet, we take its period as 𝑃0.
As can be seen in Equation 7.1, the minimum is always set by either the longest-period
dipole multiplet or longest-period quadrupole multiplet. Since this constraint relies on the
existence of an excited radial order rather than a rotational multiplet asymmetry, we only
require a single observed mode within a multiplet.

7.3.3 Dependence of magnetic sensitivity on white dwarf properties
The sensitivity of a WD’s oscillation modes to magnetism depends on the WD’s structure,
particularly through ℐ (defined in Equation 7.5) for 𝐵𝑟,shift and (√𝜌 𝑟/𝑁)min 𝑔,𝑃 (through
Equation 7.12) for 𝐵𝑟,supp.

The first three columns of Figure 7.3 show how 𝐵𝑟,shift and 𝐵𝑟,supp depend on various WD
properties relative to a fiducial DAV model with 𝑀 = 0.64𝑀⊙ and 𝑇eff = 12 kK. To good
approximation, both 𝐵𝑟,shift (at fixed 𝜈ℓ

𝐵
) and 𝐵𝑟,supp can be described as broken power laws,

with a shallower power law index at higher mode periods. The transition period 𝑃𝑡 between
these two regimes corresponds to the mode period above (below) which the outer boundary
g-mode cavity is set by 𝑁 (𝑆ℓ). It is given by 𝑃𝑡 = 2𝜋/𝑆ℓ at the outer intersection between
𝑁 and 𝑆ℓ, and corresponds to a long period 𝑃𝑡 ≃ 1100 s (𝜈 ≃ 900 𝜇Hz) for dipole modes
in the model in Figure 7.2 (consistent with the value computed by Montgomery, Hermes,
et al., 2020). Hereafter, we refer to modes with long periods 𝑃 > 𝑃𝑡 (short periods 𝑃 < 𝑃𝑡)
as 𝑁-limited (𝑆ℓ-limited).

The Lamb frequency 𝑆ℓ has a gradually varying profile. This means the outer boundary of
the g-mode cavity varies substantially with 𝑃 for 𝑆ℓ-limited modes. Since the layers of the
WD most sensitive to magnetism are those closest to the outer boundary of the radiative zone,
both 𝐵𝑟,shift and 𝐵𝑟,supp for 𝑆ℓ-limited modes strongly depend on 𝑃. Conversely, the Brunt–
Väisälä frequency 𝑁 drops sharply at the outer boundary of the radiative zone. Accordingly,
the outer g-mode-cavity boundaries of 𝑁-limited modes are essentially identical to each
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other. In this regime, 𝐵𝑟,shift and 𝐵𝑟,supp have the approximate scalings 𝐵𝑟,shift ∝ 𝑃−3/2 and
𝐵𝑟,supp ∝ 𝑃−2, reflecting only the explicit period dependences in Equations 7.11 and 7.12.

More massive WDs have higher dynamical frequencies, which in turn increases both 𝑁
and 𝑆ℓ (first column of Figure 7.3). In the 𝑆ℓ-limited regime, the increased 𝑆ℓ in more
massive WDs translates to an outer g-mode cavity boundary which is closer to the surface.
𝑆ℓ-limited modes in more massive WDs are thus more magnetically sensitive than those in
less massive WDs. We find that the magnetic sensitivity of 𝑁-limited modes, however, is
almost independent of mass.

The primary effect of varying the effective temperature 𝑇eff (second column of Figure
7.3) is to change the extent of the outer, partial ionization-driven convection zone. As
DA WDs cool below 𝑇eff ∼ 13 kK, they develop progressively deeper (albeit low mass;
𝑀conv/𝑀WD ∼ 10−12) convective zones driven by a near-surface partial ionization zone
(e.g., Tremblay, Ludwig, et al., 2015). The result is that both 𝐵𝑟,shift and 𝐵𝑟,supp are
unaffected for 𝑆ℓ-limited modes. However, 𝑁-limited modes are less sensitive to magnetic
fields in cooler WDs because they are confined deeper in the WD where 𝜌 is larger and 𝑁
is smaller. Furthermore, cooler WDs have lower 𝑃𝑡 : as they cool, the range of frequencies
which are 𝑁-limited widens. While only very-long dipole period modes are 𝑁-limited
in most cases, 𝑃𝑡 drops dramatically near the very red edge of the DAV instability strip
(𝑃𝑡 ≃ 600 s in the 𝑇eff = 10 kK model in the second panel of Figure 7.3).

Because the near-surface partial ionization zone is also responsible for mode excitation
(Brickhill, 1991; Goldreich and Wu, 1999), the DA instability strip contains DAVs with
both deep and shallow convective zones on its red and blue sides, respectively. Deep
convective zones also develop within the the DBV instability strip for similar reasons, albeit
at a hotter temperature𝑇eff ≈ 30 kK (Fontaine and Wesemael, 1987). Diminished sensitivity
of long-period modes in cooler WDs (relative to hotter ones) trades off with the tendency
of cooler WDs to excite more sensitive longer-period modes (e.g., Van Grootel et al., 2012;
Hermes, Gänsicke, Kawaler, et al., 2017).

Although hydrogen spectral lines in DA WDs indicate the presence of surface hydrogen, the
precise amount of this hydrogen is very uncertain. The third column of Figure 7.3 shows
that the effect of changing the hydrogen mass 𝑀H is minor. This is because the depth of the
surface convective zone is largely insensitive to 𝑀H, as long as it is enough to prevent the
development of a helium partial ionization-driven convection zone around ≃ 25 kK. Figure
7.3 also shows the sensitivity of a DB model in the DBV instability strip which, despite
being much hotter, has a similar sensitivity to the DAV model.
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At fixed 𝜈ℓ
𝐵
, quadrupole modes are more sensitive than dipole modes (last column in Figure

7.3), especially for 𝑆ℓ-limited modes. Since 𝑆ℓ ∝
√︁
ℓ(ℓ + 1), the outer boundary of the

g-mode cavity of 𝑆ℓ-limited quadrupole modes is farther out than those of 𝑆ℓ-limited dipole
modes. For the same reason, 𝑃𝑡 is significantly lower for quadrupole modes (𝑃𝑡 ≃ 600 s for
the model in Figure 7.3

In contrast, 𝑁-limited quadrupole modes only achieve a modest improvement in sensitivity
over their dipole counterparts. In this case, both 𝐵𝑟,shift and 𝐵𝑟,supp are decreased by a factor
of ≈

√
3, owing to their explicit dependences on ℓ in Equations 7.11 and 7.12.

7.4 Seismic field constraints in observed white dwarfs
We place asymmetry- and suppression-based upper bounds on the magnetic field for 24
observed pulsating WDs of varying types (Table 7.2). For each WD, we first identify the
stellar model which best minimizes

𝜒2 =

(
𝑇eff,spec − 𝑇eff,model

100 K

)2
+

( log 𝑔spec − log 𝑔model

0.01

)2
, (7.13)

where 𝑇eff,spec and log 𝑔eff,spec are spectroscopically measured values of 𝑇eff and log 𝑔 taken
from the literature. In other words, we choose the stellar model which best matches the
location of the WD on the Kiel diagram. Using this model, we then compute 𝐵𝑟,shift and
𝐵𝑟,supp using Equations 7.11 and 7.12. These upper bounds are shown in Table 7.2 and
Figure 7.4.

7.4.1 Magnetic leaf diagrams
We visualize the impact of magnetism on seismology using “leaf diagrams,” such as those
shown in Figure 7.5. For each ℓ, the leaf diagram plots as brown circles the value of 𝜈ℓ

𝐵

implied by a measurement of the asymmetry Δℓ𝑚1 𝑚2 𝑚3 (Equations 7.8 and 7.10) against
the mode period 𝑃. The error bars on these points denote 2𝜎 uncertainty intervals on
the asymmetries. The magnetic field required to reproduce an observed asymmetry can
be read off of the diagram by comparing to the contours in the background of the leaf
diagram, which show model predictions for 𝜈ℓ

𝐵
(from Equation 7.4). The solid blue stripe

shows 𝐵𝑟,shift, corresponding to the weakest-field strength contour which entirely encloses
the lowest asymmetry point (the one closest to the 𝑥 axis), including its full error bar.

The yellow dotted regions show “magnetically forbidden” values of 𝜈ℓ
𝐵
. Observed asymme-

tries in this region are so high that the field required to generate them (in the perturbative
theory) would also magnetically suppress the mode. Under the present assumptions, such
asymmetries must therefore be non-magnetic in origin. Accordingly, if a field contour is in
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Figure 7.4: Seismic upper limits on WD magnetic fields min(𝐵𝑟,shift, 𝐵𝑟,supp) (triangles)
versus 𝑇eff , compared to the spectropolarimetric measurements (circles) of Bagnulo and
Landstreet (2022). Concentric circles have the same meaning as in Figure 7.1. We
explicitly label WDs whose leaf diagrams are shown in Figures 7.5, 7.6, and 7.8.

the forbidden region at some period 𝑃, that magnetic field strength suppresses a g mode of
period 𝑃. The boundary of the forbidden region is demarcated by 𝜈ℓ

𝐵
evaluated at 𝐵𝑟,crit.

The vertical gray lines show the estimated central components of the multiplets, including
those too incomplete for an asymmetry measurement. The suppression constraint 𝐵𝑟,supp

(the dotted red stripe) can be read off the diagram by finding the weakest-field 𝜈ℓ
𝐵

contour
which intersects with all vertical gray lines before entering the forbidden region.

As defined in Equation 7.4, 𝜈ℓ
𝐵

is strictly non-negative. Negative values of 𝜈ℓ
𝐵

on the leaf
diagram represent those where the sign of the measured asymmetry differs from the assumed
sign of 𝑎ℓ𝑚1 𝑚2 𝑚3 (given for this work in Appendix 7.A.3). For example, Li, Deheuvels,
Ballot, and Lignières (2022) show that 𝑎ℓ=1

−1 0 +1 can take a range of values from −1/2 to
1, depending on the horizontal structure of the magnetic field. A negative value thus
indicates an incorrect assumption about the magnetic field geometry, or a non-magnetic
origin for the asymmetry altogether. However, as 𝑎ℓ𝑚1 𝑚2 𝑚3 is an order-unity constant,
incorrect assumptions about its value only affect 𝐵𝑟,shift by order-unity factors.
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7.4.2 Carbon–oxygen white dwarfs
As Figure 7.1 shows, both the DAV and DBV WD instability strips lie blueward of both the
concentration of magnetic WDs ∼ 6 kK and the onset of carbon–oxygen crystallization for
near-canonical masses ≃ 0.6𝑀⊙. Pulsating WDs may thus represent present-day magnetic
WDs when they were younger and hotter. It takes > 2 Gyr for both our 0.64𝑀⊙ DA and DB
models to cool from the DAV and DBV instability strips to 6 kK.

Our sample of DAV WDs is taken from the K2 catalog of Hermes, Gänsicke, Kawaler, et al.
(2017). Whenever possible, we use mode periods and uncertainties given by their nonlinear
least-squares method. However, they also find that some (usually low-period; 𝑃 ≳ 800 s)
modes have power spectral linewidths which are significantly broader than implied by the
spectral window, consistent with a lack of phase stability (see also Winget, Nather, et al.,
1994; Bischoff-Kim et al., 2019; Montgomery, Hermes, et al., 2020). In these cases, they fit
a Lorentzian to the power spectral peak. When the nonlinear least-squares uncertainties are
not reported, we adopt the uncertainties on the mode period derived from this Lorentzian
fit.

To be conservative, we have excluded uncertain or unknown identifications of ℓ for calcu-
lating 𝐵𝑟,supp, as well as either ℓ or𝑚 for 𝐵𝑟,shift. We have also excluded all modes which are
labeled as combination frequencies. This leaves 20 DAVs for which we place upper bounds
on the magnetic field. These upper bounds are usually in the range 1–10 kG, but sometimes
are as low as a few gauss for DAVs within which long-period modes are excited. We show
leaf diagrams for three selected DAVs in Figure 7.5.

Additionally, we select 3 DBVs which span the temperature range of the DBV instability
strip. Using mode frequencies reported by Duan et al. (2021), we place an upper bound
𝐵𝑟,shift ∼ 3 kG for the “cool” (𝑇eff ≈ 22 kK) WD EPIC 228782059. We similarly place an
upper bound 𝐵𝑟,shift ∼ 10 kG for the “hot” (𝑇eff ≈ 31 kK; Dufour, Desharnais, et al., 2010)
DBV PG 0112+104, consistent with the bound placed by Hermes, Kawaler, et al. (2017).
The leaf diagrams of these WDs are shown in Figure 7.6.

As a further consistency check, we revisit GD 358, finding an asymmetry-based bound
𝐵𝑟,shift ∼ 800 G set by the lowest-frequency triplet (similar to their inferred value ≈ 1.3kG),
as well as a formally slightly stronger suppression-based bound 𝐵𝑟,supp ∼ 500 G. Curiously,
subsequent observations of GD 358 have observed time variation in both the amplitudes and
frequencies of the oscillation modes (e.g., Bischoff-Kim et al., 2019). The wandering of the
frequencies takes place on timescales much longer than an observing season (roughly several
months; Provencal et al., 2009), and the frequencies vary by much more than the measured
asymmetries of ∼ 1 𝜇Hz shown in Figure 7.6. Both time-varying dynamo magnetic fields
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(Markiel et al., 1994) and convective zone thicknesses (Montgomery, Provencal, et al., 2010;
Montgomery, Hermes, et al., 2020) have been proposed for this phenomenon, although a
definitive explanation remains elusive.

Curiously, most of GD 358’s asymmetries in Figure 7.6 lie in the magnetically forbidden
region. The degree of asymmetry is too large to be explained by second-order rotational
effects (Dziembowski and Goode, 1992), which predict Δℓ=1

−1 0 +1 = 𝑃/20𝑃2
rot ≲ 10−2 𝜇Hz (the

dashed purple curve in Figure 7.5), much lower than the observed values Δℓ=1
−1 0 +1 ∼ 0.5 𝜇Hz.

If the asymmetries are magnetic in origin, 𝜈ℓ
𝐵

must be overestimated by a factor of ≳ 6.
It is plausible that order-unity uncertainties in Equation 7.1 (for 𝐵𝑟,crit) and 𝑎ℓ=1

−1 0 +1 may
account for this. However, the measured asymmetries require very different field strengths
for different radial orders. This suggests either that the magnetic field falls off quickly in
the outer layers or that the asymmetries have a non-magnetic origin. In the latter case,
the asymmetries may instead originate from GD 358’s drifting mode frequencies. This
frequency wandering does not keep the asymmetry constant over time (cf. Figure 9 of
Bischoff-Kim et al., 2019). Notably, after the sforzando event of August 1996 during which
the 𝑘 = 8 and 𝑘 = 9 modes briefly dominated the light curve, the asymmetries of the
𝑘 = 8 and 𝑘 = 9 triplets were permanently modified (Provencal et al., 2009; Montgomery,
Provencal, et al., 2010). We therefore suspect that the measured asymmetries result from
wandering mode frequencies rather than magnetic shifts.

Curiously, Montgomery, Provencal, et al. (2010) show that the 𝑘 = 12 triplet in GD 358
exhibits signatures of oblique pulsation, which occurs when the Lorentz force exceeds the
Coriolis force in strength and misaligns the pulsations from the rotation axis (the 𝑘 = 12
triplet was not observed by the Whole Earth Telescope May 1990 run data examined in this
work; Winget, Nather, et al., 1994). In the case of oblique pulsation, the magnetic field
still shifts mode frequencies by ∼ 𝜈ℓ

𝐵
. However, contrary to the prediction in Section 7.2.1

(which assumes rotationally aligned pulsations), the magnetic field does not simply produce
an asymmetric rotational multiplet from the perspective of an inertial observer. Instead,
each mode manifests as multiple peaks in the power spectrum (Loi, 2021). In this case,
the asymmetry-based upper bounds 𝐵𝑟,shift in this work and Winget, Nather, et al. (1994)
should be replaced by a more elaborate fit to an oblique pulsator model. The parameters
extracted by Montgomery, Provencal, et al. (2010) in this way are consistent with a magnetic
field strength 𝐵𝑟 ∼ 40 kG ∼ 10𝐵𝑟,crit, placing their result at tension with our assumptions
regarding the fundamental g-mode suppression physics (Section 7.2.2).

Bagnulo and Landstreet (2022) conduct a volume-limited spectropolarimetric survey of
nearby WDs, finding a dearth of magnetic fields in young (≲ 2 Gyr), canonical-mass WDs
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down to their detection limit (a few kilogauss). These spectropolarimetric measurements
are shown in Figure 7.4. The low (≲ 10 kG) magnetic field limits we place on most of our
carbon–oxygen WDs are consistent with this finding. In many cases, our seismic limits
appear to be much more constraining, entailing magnetic fields less than ∼ 100 G in several
WDs with long-period pulsation modes.

In addition to placing upper limits on magnetism in individual WDs, the observation of
(non-suppressed) pulsations can constrain the distribution of magnetic fields in the WD
population as a whole. If the DAVs included in this work are representative, the high purity
of the instability strip (e.g., Gianninas, Bergeron, et al., 2005) suggests that most DA WDs
at instability-strip temperatures lack magnetic fields ≳ 10 kG.

7.4.3 ELMVs: probing the stripped cores of red giants?
Unlike carbon–oxygen WDs, helium-core WDs are exclusively produced by binary stellar
evolution. These low-mass (𝑀 ≲ 0.5𝑀⊙) WDs are the leftover cores of red giants whose
envelopes have been stripped by a companion or ejected during a common-envelope event.
To date, roughly 20 helium-core WDs are known to pulsate (Hermes, Montgomery, Winget,
Brown, Kilic, et al., 2012; Hermes, Montgomery, Winget, Brown, Gianninas, et al., 2013;
Hermes, Montgomery, Gianninas, et al., 2013; Kilic, Hermes, Gianninas, et al., 2015;
Gianninas, Curd, et al., 2016; Bell, Gianninas, et al., 2017; Bell, Pelisoli, et al., 2018; Kilic,
Hermes, Corsico, et al., 2018; Pelisoli, Kepler, et al., 2018; Pelisoli, Bell, et al., 2019;
Wang, Zhang, et al., 2020). These “extremely low-mass variables,” or ELMVs, are all are
located on a low-log 𝑔 extension of the DAV instability strip (Gianninas, Kilic, et al., 2015;
Tremblay, Gianninas, et al., 2015). As the direct descendants of the same red giants for
which seismic magnetometry is already possible, helium-core WDs likely inherit the field
strengths of the cores of their progenitors. Figure 7.7 shows the magnetic fields to which
helium-core WD pulsators are sensitive.

We place an upper bound on GD 278, a low-mass (𝑀 ≈ 0.19𝑀⊙) WD which pulsates in
low-frequency gravity modes (𝑃 ≃ 2400–6700 s; Lopez et al., 2021). To date, GD 278 is
the only known ELMV for which rotational splittings have been measured. Assuming the
mode identifications determined by Calcaferro et al. (2023), we find that the magnetic field
in GD 278 is no larger than 𝐵𝑟,supp ∼ 70 G (Figure 7.8). This field is much lower than those
inferred for dipole-suppressed red giants (≈ 20% of all red giants; Stello, Cantiello, Fuller,
Huber, et al., 2016), and smaller than the field expected to be generated by a core convective
dynamo on the main sequence (Cantiello et al., 2016).
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GD 278’s asymmetries are often close to or within the forbidden region, i.e., within the
yellow dotted region in Figure 7.8). As discussed for GD 358, a magnetic origin for these
asymmetries may still be possible if some order-unity prefactors are misestimated. The
relatively fast rotation period 𝑃rot ≈ 10 hr (Lopez et al., 2021) corresponds to 𝑃/𝑃rot ∼ 10%
for the observed modes, suggesting that second-order rotational effects may play a role
(shown as the dashed purple curves in Figure 7.8). Second-order rotational effects are
expected to produce asymmetries Δℓ=1

−1 0 +1 = 𝑃/20𝑃2
rot ≃ 0.2 𝜇Hz in the two complete

observed triplets at 𝑃 ≈ 4030 s and 𝑃 ≈ 4760 s (Dziembowski and Goode, 1992). The
observed asymmetries (Δℓ=1

−1 0 +1 = (0.44 ± 0.06) 𝜇Hz and Δℓ=1
−1 0 +1 = (0.07 ± 0.07) 𝜇Hz,

respectively) are similar in scale to (though at significant tension with) those predicted
by second-order rotational effects. Further, we find that observed asymmetries do not
consistently match second-order rotational asymmetries in sign. We also curiously find
that observed quadrupole asymmetries are often lower than the expected second-order
asymmetries by factors ∼ 3–10 relative to predicted values (Dziembowski and Goode,
1992). The ultimate origin of asymmetries in GD 278 are puzzling.

It is possible that GD 278’s progenitor was a lower-mass (𝑀 ≲ 1.2𝑀⊙) main-sequence
star below the Kraft break. Such stars have radiative cores, and are thus not expected to
generate strong fields during the main sequence. If this is the case, it suggests that, in the
absence of a convective core, the core field of a main-sequence star can be extremely low.
In a 1𝑀⊙ MESA model, mass coordinates ≤ 0.19𝑀⊙ are enclosed by a radius 𝑅 ≈ 0.1𝑅⊙

during the main-sequence. This decreases to ≈ 0.025𝑅⊙ during the red giant branch, once
the helium core has grown to ≈ 0.19𝑅⊙. Assuming flux conservation, this implies that the
core magnetic field of GD 278’s progenitor was no larger than ≃ 4 G on the main sequence.
Alternatively, our upper bound may challenge the assumption of magnetic flux conservation
between evolutionary stages.

At a time of rapid progress in red giant magnetoasteroseismology, ELMVs may help test
our understanding of magnetism in stellar cores as well as the essential pulsation physics
itself. Since the near-surface WD fields to which seismology is sensitive can also be probed
by spectroscopy or spectropolarimetry, comparison between the field strengths inferred
by these techniques and seismology may serve as a valuable consistency check. While
thorough spectroscopic surveys of ELMs have been conducted (e.g., Brown, Kilic, Prieto,
et al., 2010; Brown, Kilic, Prieto, et al., 2011; Brown, Kilic, Kosakowski, et al., 2020; Wang,
Németh, et al., 2022; Kosakowski et al., 2023), we are not presently aware of any detections
of Zeeman splitting in low-mass WDs (although Pichardo Marcano, Rivera Sandoval, et al.
2023 and Pichardo Marcano, Sandoval, et al. 2025 report photometric variability in two
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candidate ELM WDs in the globular cluster NGC 6397 that might arise from magnetic
spots).

7.4.4 Caveats
The behavior of high-frequency pulsations under magnetic fields should be investigated in
more detail. While we make a rudimentary correction for some non-asymptotic effects
in this work, our correction leaves out some additional effects. Non-asymptotic modes
may produce significant displacements in evanescent regions, which are ignored by our
integral estimate for ℐ in Equation 7.5. Further, as described in Appendix 7.B, our results
correct for non-asymptotic eigenfunctions in the calculation of ℐ. However, the derivation
of Equation 7.4 (which writes 𝜈ℓ

𝐵
in terms of ℐ) still assumes certain terms scaling as

∼ 2𝜋𝜈/𝑁 are negligible, including effects of the horizontal field components and the radial
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displacement in the calculation of the mode inertia. Our estimates of magnetic effects also
assume the mode wavelength is smaller than the scale height 𝐻 on which quantities such
as 𝜌 and 𝐵 change. For the long-period modes shown in Figure 7.2, the mode wavelengths
are comparable to 𝐻 just below the convective zone, making magnetic effects on modes
more difficult to calculate. The effect of relaxing these assumptions should be investigated
in more detail.

Our analysis also required basic assumptions about the dimensionless asymmetry parameters
𝑎ℓ𝑚1 𝑚2 𝑚3 , as well as the prefactor which appears in Equation 7.1 for 𝐵𝑟,crit. Both of these are
order-unity functions of the field geometry (Lecoanet, Vasil, et al., 2017; Rui and Fuller,
2023; Lecoanet, Bowman, et al., 2022) and the rotation rate, if it is high enough (Rui, Ong,
et al., 2024). This introduces an uncertain order-unity factor to our field estimates (e.g.,
Das et al., 2024). However, dipole/quadrupole asymmetries may fail more catastrophically
when faced with, e.g., small-scale magnetic structures that cannot be resolved by ℓ = 1 or
ℓ = 2 modes well enough to produce significant rotational multiplet asymmetries.

We also assume that the frequencies of each multiplet component have not been affected
by nonlinear resonant mode coupling. However, WD pulsation modes occasionally show
large, nonsecular frequency changes (e.g., Hermes, Montgomery, Mullally, et al., 2013;
Dalessio et al., 2013). In fact, some multiplet components within a pulsating WD have
shown correlated, periodic frequency changes, a signature of resonant mode coupling (Zong
et al., 2016). Such frequency changes could produce non-magnetic multiplet asymmetries.

Finally, this work stitches together a perturbative theory in (𝐵𝑟/𝐵𝑟,crit)2 for 𝐵𝑟 < 𝐵𝑟,crit

with the assumption of total suppression when 𝐵𝑟 > 𝐵𝑟,crit. In reality, perturbation theory
is no longer valid once 𝐵𝑟 is a large fraction of 𝐵𝑟,crit. Rui, Ong, et al. (2024) show, for
example, that the inappropriate application of perturbation theory overestimates the field
strength in the case of a centered dipolar field aligned with the rotation axis. Along similar
lines, strong-enough fields in slow-enough rotators are expected to align pulsations with the
magnetic axis, dramatically increasing the complexity of a rotational multiplet in the power
spectrum. These strong magnetic effects should be more thoroughly investigated.

7.5 Summary and future directions
We summarize our conclusions in this work as follows:

1. WD pulsations can be used as a highly sensitive probe of the radial components
of their near-surface magnetic fields. Magnetic fields are expected to asymmetrize
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rotational multiplets at intermediate field strengths 𝐵𝑟 ≲ 𝐵𝑟,crit and suppress g-mode
propagation when 𝐵𝑟 > 𝐵𝑟,crit.

2. Seismology is most sensitive to magnetic fields in pulsating WDs with lower-
frequency modes and thinner surface convection zones.

3. We place upper limits on the magnetic field in 20 DAV and 3 DBV carbon–oxygen
WDs. Most upper limits in carbon–oxygen WDs lie within roughly ∼ 1–10 kG, but
they can be as low as a few to tens of gauss when low-frequency modes (≳ 800 s) are
not observed to be suppressed. Seismology may help uncover the as-of-yet unknown
formation mechanism of strong magnetic fields in WDs at low effective temperatures.

4. We also place an upper limit on the near-surface magnetic field ≃ 70 G in the ELMV
GD 278 (helium-core) WD. As stripped red giants, ELMVs may present a valu-
able opportunity to test our understanding of red giant magnetism as well as the
fundamental pulsation physics.

Following results from red giant asteroseismology, this work assumes that strong magnetic
fields 𝐵𝑟 > 𝐵𝑟,crit strongly suppress gravity waves (Fuller, Cantiello, et al., 2015; Stello,
Cantiello, Fuller, Huber, et al., 2016; Cantiello et al., 2016). However, despite some
informative theoretical work (Lecoanet, Vasil, et al., 2017; Loi and Papaloizou, 2017; Loi
and Papaloizou, 2018; Loi, 2020b; Lecoanet, Bowman, et al., 2022; Rui and Fuller, 2023),
some details of the damping mechanism are not fully understood. If pulsations can instead
persist in the presence of a strong magnetic field, our suppression-based upper bounds
on the field strength 𝐵𝑟,supp no longer apply, although our asymmetry-based upper bounds
𝐵𝑟,shift (which are grounded on more certain physics and are typically of similar order) are
still valid.

Although definitive evidence of magnetic g-mode suppression remains largely elusive, the
massive WD SDSS J1529+2928 may be an example of magnetic g-mode suppression acting
in a white dwarf. Despite lying within the DAV instability strip, SDSS J1529 has not been
observed to pulsate. Furthermore, although spectroscopy excludes a magnetic field≳ 70 kG,
SDSS J1529 exhibits variability consistent with a magnetic spot (Kilic, Gianninas, et al.,
2015). SDSS J1529 may therefore be an illustrative example of magnetic suppression of
oscillations, either by damping the gravity waves magnetically (the mechanism invoked in
this work) or by obstructing the convection involved in driving the pulsations (not considered
in this work, although see, e.g., Tremblay, Fontaine, et al., 2015).
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Seismic WD magnetometry affords many further possibilities. Pulsating WDs are a highly
diverse class which also include pre-WDs (GW Virs/DOVs/PNNVs, e.g., Winget, Hansen,
et al., 1991; Sowicka et al., 2023), pre-ELMVs (e.g., Maxted, Serenelli, et al., 2013), and
pulsating accretors in cataclysmic variables (GW Lib, e.g., Van Zyl et al., 2004). Addition-
ally, several pulsating ultramassive (𝑀 ≳ 1.1𝑀⊙) DAV WDs are known (Hermes, Kepler,
et al., 2013; Curd et al., 2017; Kanaan et al., 2005; Rowan et al., 2019; Vincent et al., 2020;
Kilic, Córsico, et al., 2023) which, unlike the WDs considered in this work, have already
begun to crystallize on the DAV instability strip. This is expected to affect their pulsations
(Kanaan et al., 2005; Nitta et al., 2015; De Gerónimo et al., 2019), possibly allowing them
to help uncover the relationship between their crystallization and magnetization. Finally,
some hot subdwarfs are known to pulsate in gravity modes (Pablo et al., 2012; Telting,
Östensen, et al., 2014; Baran, Telting, Németh, et al., 2016; Baran, Telting, Jeffery, et al.,
2019; Silvotti, Uzundag, et al., 2019; Sanjayan et al., 2022; Silvotti, Németh, et al., 2022;
Ma, Zong, et al., 2023), which are likely sensitive to their near-core fields. Seismology may
contribute to the solution of an open problem regarding the dearth of observed magnetic
fields in hot subdwarfs (Dorsch, Reindl, et al., 2022; Pelisoli, Dorsch, et al., 2022; Pakmor
et al., 2024; Dorsch, Jeffery, et al., 2024).

7.A Magnetic formalism
The asymmetry-based magnetic field bounds placed in this work require concrete assump-
tions about the asymmetry parameters 𝑎ℓ𝑚1 𝑚2 𝑚3 . This Appendix derives the dipole and
quadrupole asymmetry parameters assumed in this study.

7.A.1 Magnetic frequency shifts of g-mode pulsations
In the most common formalism (Bugnet et al., 2021; Li, Deheuvels, Ballot, and Lignières,
2022; Das et al., 2024), the Coriolis and Lorentz forces are assumed to be weak and degen-
erate perturbation theory is applied. The incompressible and asymptotic approximations
(appropriate for high-radial order g modes) are additionally assumed. Furthermore, it is
assumed either that the magnetic field is axisymmetric about the rotation axis or that the
effect of the Coriolis force on the waves is much stronger than that of the Lorentz force. In
both cases, the eigenfunctions are aligned with the rotation axis, and the frequency shifts
are only sensitive to azimuthal averages of 𝐵2

𝑟 , i.e.,

⟨𝐵2
𝑟 ⟩𝜙 =

∫ 2𝜋

0

d𝜙
2𝜋

𝐵2
𝑟 , (7.14)

although the field’s dependence on the colatitude 𝜇 = cos 𝜃 still matters.
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In the inertial frame, the frequency shifts 𝛿𝜈 of the dipole modes are given by Equations 32
and 33 of Li, Deheuvels, Ballot, and Lignières (2022):

𝛿𝜈ℓ=1
𝑚=0 = Bℓ=1

[
3
2
(1 − 𝜇2)

]
(7.15a)

𝛿𝜈ℓ=1
𝑚=±1 = ±1

2
⟨Ω⟩𝑔
2𝜋

+ Bℓ=1
[
3
4
(1 + 𝜇2)

]
, (7.15b)

and the same for the quadrupole modes are given by Appendix C.1 of Das et al. (2024):

𝛿𝜈ℓ=2
𝑚=0 = Bℓ=2

[
15
2
(𝜇2 − 𝜇4)

]
(7.16a)

𝛿𝜈ℓ=2
𝑚=±1 = ±5

6
⟨Ω⟩𝑔
2𝜋

+ Bℓ=2
[
5
4
(1 − 3𝜇2 + 4𝜇4)

]
(7.16b)

𝛿𝜈ℓ=2
𝑚=±2 = ±5

3
⟨Ω⟩𝑔
2𝜋

+ Bℓ=2
[
5
4
(1 − 𝜇4)

]
, (7.16c)

where the relevant integral average operation Bℓ [ · ] is given under the present assumptions
by

Bℓ [ 𝑓 (𝜇)] ≈ 𝜈ℓ𝐵
∫
Rℓ

𝜈

d𝑟 𝐾 (𝑟)
∫
𝑆2

dΩ
4𝜋

𝐵2
𝑟 𝑓 (𝜇). (7.17)

If the Lorentz force is instead comparable to or stronger than the Coriolis force, the frequency
shifts it causes are still at the same order of magnitude as 𝜈ℓ

𝐵
(as in Equation 7.4), although the

dimensionless prefactors are given by the solution of a more complicated matrix problem,
and multiplets generally possess more than 2ℓ + 1 peaks in the inertial frame (see the
discussion in the Supplementary Information of Li, Deheuvels, Ballot, and Lignières 2022).
This does not seem to be the case in any of the WDs we analyze, since all of their
(possibly incomplete) rotational multiplets are broadly recognizable and lack significant
extra frequency peaks.

7.A.2 Multiplet asymmetries due to magnetism
When 𝐾 (𝑟) is sharply peaked and the magnetic frequency shifts are only sensitive to a
geometrically thin radial shell (which is often true, especially in the WD case), the radial
integral in Equation 7.17 becomes independent of the angular one, and we can speak of a
single horizontal dependence of 𝐵𝑟 . In other words, we can approximately take

𝐵𝑟 (𝑟, 𝜇, 𝜙) = 𝐴(𝑟) 𝜓(𝜇, 𝜙), (7.18)
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where we normalize the horizontal dependence of 𝐵𝑟 to 𝜓 = 𝜓(𝜇, 𝜙) such that
∫
𝑆2 𝜓

2 sin 𝜃
d𝜃 d𝜙 = 1. We define the azimuthal average ⟨𝜓2⟩𝜙 as

⟨𝜓2⟩𝜙 ≡
∫ 2𝜋

0

d𝜙
2𝜋

𝜓2. (7.19)

Under this condition, Li, Deheuvels, Ballot, and Lignières (2022) show that the dipole
asymmetry parameter is given by

𝑎ℓ=1
−1 0 +1 =

∫ +1

−1
⟨𝜓2⟩𝜙

1
2

(
3𝜇2 − 1

)
d𝜇, (7.20)

and encodes some information about the geometry of the field.

We generalize the parameter 𝑎ℓ=1
−1 0 +1 to describe the asymmetry between any three modes

within the same multiplet, including those involving higher-degree (ℓ > 1) modes such as
quadrupole modes (ℓ = 2). We start by noticing that the linear combination of frequencies
in Equation 7.9 is useful because it depends on neither the unperturbed frequencies 𝜈(0)

(which are the same for all modes within a multiplet) nor the rotational splitting (which
is proportional to 𝑚). In other words, for three modes with equal 𝑘 and ℓ but distinct
azimuthal orders 𝑚1, 𝑚2, and 𝑚3, maximally “useful” linear combinations Δℓ𝑚1 𝑚2 𝑚3 of
measured frequencies of the form

Δℓ𝑚1 𝑚2 𝑚3 = 𝑐1𝜈
ℓ
𝑚1 + 𝑐2𝜈

ℓ
𝑚2 + 𝑐3𝜈

ℓ
𝑚3 . (7.21)

should satisfy 𝑐1 + 𝑐2 + 𝑐3 = 0 and 𝑚1𝑐1 + 𝑚2𝑐2 + 𝑚3𝑐3 = 0 to cancel out 𝜈(0) and ⟨Ω⟩𝑔,
respectively.

For concreteness, for the quadrupole modes, we choose the coefficients 𝑐1, 𝑐2, and 𝑐3 to be
small integers. There are 2ℓ+1𝐶3 = 10 distinct useful linear combinations:

Δℓ=2
−2 −1 0 = 𝜈ℓ=2

𝑚=−2 − 2 𝜈ℓ=2
𝑚=−1 + 𝜈

ℓ=2
𝑚=0 (7.22a)

Δℓ=2
−2 −1 +1 = 2 𝜈ℓ=2

𝑚=−2 − 3 𝜈ℓ=2
𝑚=−1 + 𝜈

ℓ=2
𝑚=+1 (7.22b)

Δℓ=2
−2 −1 +2 = 3 𝜈ℓ=2

𝑚=−2 − 4 𝜈ℓ=2
𝑚=−1 + 𝜈

ℓ=2
𝑚=+2 (7.22c)

Δℓ=2
−2 0 +1 = 𝜈ℓ=2

𝑚=−2 − 3 𝜈ℓ=2
𝑚=0 + 2 𝜈ℓ=2

𝑚=+1 (7.22d)

Δℓ=2
−2 0 +2 = 𝜈ℓ=2

𝑚=−2 − 2 𝜈ℓ=2
𝑚=0 + 𝜈

ℓ=2
𝑚=+2 (7.22e)

Δℓ=2
−2 +1 +2 = 𝜈ℓ=2

𝑚=−2 − 4 𝜈ℓ=2
𝑚=+1 + 3 𝜈ℓ=2

𝑚=+2 (7.22f)

Δℓ=2
−1 0 +1 = 𝜈ℓ=2

𝑚=−1 − 2 𝜈ℓ=2
𝑚=0 + 𝜈

ℓ=2
𝑚=+1 (7.22g)

Δℓ=2
−1 0 +2 = 2 𝜈ℓ=2

𝑚=−1 − 3 𝜈ℓ=2
𝑚=0 + 𝜈

ℓ=2
𝑚=+2 (7.22h)

Δℓ=2
−1 +1 +2 = 𝜈ℓ=2

𝑚=−1 − 3 𝜈ℓ=2
𝑚=+1 + 2 𝜈ℓ=2

𝑚=+2 (7.22i)

Δℓ=2
0 +1 +2 = 𝜈ℓ=2

𝑚=0 − 2 𝜈ℓ=2
𝑚=+1 + 𝜈

ℓ=2
𝑚=+2. (7.22j)
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Although only 2ℓ−1 = 3 of these contain independent information, observed multiplets are
often incomplete, restricting which of these 10 asymmetry parameters can be calculated. In
general, whether a given mode is observable depends on the excitation mechanism as well
as viewing angle (see Gizon and Solanki 2003 and Das et al. 2024 for further discussion).
WD modes are also not generally in energy equipartition, and even modes within the same
multiplet can be excited to very different amplitudes (Hermes, Gänsicke, Bischoff-Kim,
et al., 2015).

Following the normalization convention of Li, Deheuvels, Ballot, and Lignières (2022)
and Das et al. (2024), these linear combinations are related to dimensionless asymmetry
parameters 𝑎ℓ𝑚1 𝑚2 𝑚3 using Equations 7.8 and 7.10. Using Equation 7.19, we rewrite the
operator Bℓ [ · ] as

Bℓ [ 𝑓 (𝜇)] ≈ 𝜈ℓ𝐵
∫ +1

−1
⟨𝜓2⟩𝜙 𝑓 (𝜇) d𝜇. (7.23)

Equations 7.16 for the quadrupole frequency shifts then imply that

𝑎ℓ=2
−2 −1 0 = 𝑎ℓ=2

0 +1 +2

=

∫ +1

−1
⟨𝜓2⟩𝜙

1
4

(
−15𝜇4 + 12𝜇2 − 1

)
d𝜇

(7.24a)

𝑎ℓ=2
−2 −1 +1 = 𝑎ℓ=2

−2 −1 +2 = 𝑎ℓ=2
−2 +1 +2 = 𝑎ℓ=2

−1 +1 +2

=

∫ +1

−1
⟨𝜓2⟩𝜙

1
2

(
−5𝜇4 + 3𝜇2

)
d𝜇

(7.24b)

𝑎ℓ=2
−2 0 +1 = 𝑎ℓ=2

−1 0 +2

=

∫ +1

−1
⟨𝜓2⟩𝜙

1
4

(
25𝜇4 − 24𝜇2 + 3

)
d𝜇

(7.24c)

𝑎ℓ=2
−2 0 +2 =

∫ +1

−1
⟨𝜓2⟩𝜙

1
2

(
5𝜇4 − 6𝜇2 + 1

)
d𝜇 (7.24d)

𝑎ℓ=2
−1 0 +1 =

∫ +1

−1
⟨𝜓2⟩𝜙

1
2

(
10𝜇4 − 9𝜇2 + 1

)
d𝜇. (7.24e)

Curiously, five groups of dimensionless asymmetry parameters in Equations 7.24 are con-
strained to be equal. This is not a field geometry-dependent fact, but rather a result of
the assumption that rotation fixes the preferred direction respected by the modes. It is
also distinct from the linear dependence of the linear combinations of frequencies in Equa-
tions 7.22, although they are self-consistent. For example, Equations 7.22 and 7.10 easily
show that Δℓ=2

−1 0 +1 + 2Δℓ=2
0 +1 +2 = Δℓ=2

−1 +1 +2, a relationship which is obeyed by the expressions in
Equations 7.24.
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On the one hand, this implies that not all of the modes in a quintuplet are required to be
measured to extract all of the information the quintuplet encodes. Conversely, checking
that these linear combinations of quadrupole modes in fact obey these relationships may be
a useful test in determining whether observed asymmetries are in fact magnetic in origin
(under the present assumptions).

7.A.3 Asymmetry parameters for an inclined dipole
For a centered dipole magnetic field with some obliquity angle 𝛽 relative to the rotation
axis, the normalized horizontal dependence of 𝐵𝑟 is given by

𝜓(𝜇, 𝜙) = 1
2

√︂
3
𝜋
(cos 𝛽 cos 𝜃 + sin 𝛽 sin 𝜃 cos 𝜙), (7.25)

cf. Mathis and Bugnet (2023) and Das et al. (2024). Averaging 𝜓2 over 𝜙 gives

⟨𝜓2⟩𝜙 =
3
2
𝑃2(cos 𝛽)𝜇2 + 3

4
sin2 𝛽 (7.26)

where 𝑃2(𝑥) = (3𝑥2 − 1)/2 is a Legendre polynomial.

The form of Equation 7.26 is highly instructive. It writes ⟨𝜓2⟩𝜙 as two terms, the second of
which is a constant over the star and therefore shifts all modes equally (i.e., cannot introduce
asymmetries). Since all asymmetry parameters only depend on the field through latitudinal
averages over ⟨𝜓2⟩𝜙, every asymmetry parameter defined in Equations 7.20 and 7.24 must
be proportional to 𝑃2(cos 𝛽) (and therefore to each other, in ratios which are independent
of 𝛽). Moreover, all asymmetry parameters of any ℓ (including ℓ > 2) must vanish for all
𝛽 at some critical obliquity 𝛽 = arccos(−1/3)/2 where 𝑃2(cos 𝛽) vanishes (this has been
noticed in special cases by Mathis and Bugnet 2023 and Das et al. 2024). This appears to be
a special property of the dipole geometry, where the relevant component of ⟨𝜓2⟩𝜙 depends
on 𝛽 and 𝜇 only in a “disentangled” way.

Evaluating Equations 7.20 and 7.24, we have

𝑎ℓ=1
−1 0 +1 =

2
5
𝑃2(cos 𝛽) (7.27)

for ℓ = 1, and
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𝑎ℓ=2
−2 −1 0 = 𝑎ℓ=2

−1 0 +1 = 𝑎ℓ=2
0 +1 +2 = − 2

35
𝑃2(cos 𝛽) (7.28a)

𝑎ℓ=2
−2 −1 +1 = 𝑎ℓ=2

−2 0 +1 = 𝑎ℓ=2
−1 0 +2 = 𝑎ℓ=2

−1 +1 +2 = − 6
35
𝑃2(cos 𝛽) (7.28b)

𝑎ℓ=2
−2 −1 +2 = 𝑎ℓ=2

−2 +1 +2 = −12
35
𝑃2(cos 𝛽) (7.28c)

𝑎ℓ=2
−2 0 +2 = − 8

35
𝑃2(cos 𝛽) (7.28d)

for ℓ = 2.

If all possible magnetic axes are equally probable, 𝑃2(cos 𝛽) has a root-mean-square value

𝑃2(cos 𝛽)rms =

√︄
1
2

∫ +1

−1
𝑃2(cos 𝛽)2 d(cos 𝛽)

=

√︂
2
5
≈ 0.63.

(7.29)

We adopt this root-mean-square value as the fiducial value of 𝑃2(cos 𝛽) when modeling
asymmetry parameters in this study.

7.B Correction for non-asymptotic effects
The exposition in Section 7.2 makes extensive use of the asymptotic approximation and
related assumptions. For example, the expressions in Section 7.2 require incompressibility,
as well as the condition that the radial wavelength is small compared both to the horizontal
wavelength 𝜆ℎ/2𝜋 = 𝑟/

√︁
ℓ(ℓ + 1) and the pressure scale height. Both assumptions are

challenged for WD pulsations, which are usually localized to the outer edge of the g-mode
cavity near the surface of the star, and are low-radial order at the high-frequency end.
Non-asymptotic effects may be particularly important for the magnetism, whose effects are
especially confined to the outer turning point of the g-mode cavity.

To investigate the effect of relaxing these assumptions, we numerically solve for the adia-
batic oscillation modes using version 7.2.1 of the GYRE code (Townsend and Teitler, 2013).
GYRE computes both mode frequencies and fluid perturbations in the absence of assump-
tions about the size of the density scale height or perturbations to the gravitational potential.
Equation 7.5 gives an asymptotic estimate of ℐ. We then compute a non-asymptotic esti-
mate ℐ using the mode periods 𝑃 and horizontal fluid displacements 𝜉ℎ from GYRE (cf.
Equation 40 in Li, Deheuvels, Ballot, and Lignières, 2022):

ℐ =
4𝜋2

ℓ(ℓ + 1)𝑃
−2

∫
Rℓ

𝜈
[𝜕𝑟 (𝑟𝜉ℎ)]2d𝑟∫

Rℓ
𝜈
𝜉2
ℎ
𝜌𝑟2 d𝑟

. (7.30)
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Figure 7.9: Model seismic magnetic field sensitivity 𝐵𝑟,shift, with or without the non-
asymptotic correction in Equation 7.31 applied. Black points denote the non-asymptotic
result using eigenfunctions calculated by GYRE (Equation 7.30). The top panel shows
the ratio of the GYRE result to the asymptotic estimate (with or without correction) to the
non-asymptotic result. This figure has been extended to longer periods to emphasize the
behavior of 𝑁-limited modes. The symbol⋆ denotes the same choice of parameters as in
Figure 7.3.
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The derivation of Equation 7.30 applies assumptions such as incompressibility and approx-
imately radial wavenumber, and it ignores a surface term contribution which has been found
to make a small difference (Jones et al., 1989). Nevertheless, it stops short of substituting
in the full asymptotic expression for 𝜉ℎ (see the Appendix of Li, Deheuvels, Ballot, and
Lignières, 2022). GYRE does not assume that the radial wavenumber is large relative to
the scale height, nor does it assume the Cowling approximation. In the asymptotic limit
(taking 𝜉ℎ ∝ 𝜌−1/2𝑟−3/2𝑁1/2 sinΦ with 𝑘𝑟 = 𝜕𝑟Φ =

√︁
ℓ(ℓ + 1)𝑁/𝜔𝑟), we recover Equation

7.5. However, ℐ may differ from its value in Equation 7.5 for various reasons, including
corrections to the outer turning point and domination of the integrals in Equation 7.30 by
only a single wavelength.

We bundle non-asymptotic effects into a simple, ad hoc correction factor 𝑓corr, defined such
that the inferred field 𝐵𝑟,shift from the asymmetries is related to its asymptotic estimate by

𝑓corr =
𝐵𝑟,shift

𝐵
asympt
𝑟,shift

=

√︂
ℐasympt

ℐ
(7.31)

where superscript “asympt” denotes the application of Equation 7.5 for calculating ℐ.

We find that 𝑓corr is approximately described by

𝑓corr = 𝑓𝑁 + ( 𝑓𝑆ℓ − 𝑓𝑁 )
(

2𝜋
𝑃𝑆ℓ

)10

out
(7.32)

where 𝑓𝑁 = 1/
√

2 and 𝑓𝑆ℓ = 3, respectively, and (2𝜋/𝑃𝑆ℓ)out is evaluated at the outer turning
point of the mode. This form is chosen to set 𝑓corr = 𝑓𝑁 for 𝑁-limited modes and 𝑓corr = 𝑓𝑆ℓ

for 𝑆ℓ-limited modes, with a fast but smooth transition in between the regimes enforced
by an arbitrary but steep power index (10). Figure 7.9 shows that there is good agreement
between 𝐵GYRE

𝑟,shift (computed using GYRE eigenfunctions) and 𝐵𝑟,shift = 𝑓corr𝐵
asympt
𝑟,shift . Future

work should more thoroughly investigate the impact of non-asymptotic effects on seismic
magnetic field measurements.
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C h a p t e r 8

CONCLUSION

This thesis investigates the seismic properties of stars whose structures have been shaped
by violent mergers (Chapters II–III) and whose interiors harbor strong magnetic fields
(Chapters IV–VII). It focuses on stellar exotica which either have only recently been
discovered or are likely to be discoverable with the instruments and surveys we will soon
have. Where do we go from here?

I am optimistic about the near-term potential of asteroseismology to enable new and inter-
esting discoveries. Much of what we know about asteroseismology comes from data taken
during the Kepler satellite’s four-year main mission1 (Borucki et al., 2010). Despite having
ended in 2013, Kepler’s main mission supplied a wealth of archival data which is still
routinely mined for scientific discoveries in the present day. Moreover, the TESS2 mission
continues to provide high-quality light curves for bright sources across the sky (Ricker et al.,
2015). In this time, it has detected solar-like oscillations in ≈ 1.6 × 105 RGs—an order of
magnitude more than Kepler’s main mission (Hon, Huber, Kuszlewicz, et al., 2021). Now
seven years old, TESS will continue to enhance seismic science for as long as its useful
lifetime can be extended.

Both metaphorically and literally, the future is also bright. The Roman Space Telescope’s
Galactic Bulge Time Domain Survey (GBTDS)3, to launch in 2026, will closely monitor
a Galactic-bulge field at 15-minute cadence during six ≈ 70 d campaigns. In the process,
Roman is projected to detect solar-like oscillations in ≃ 6 × 105 RGs (Gould et al., 2015;
Huber et al., 2023), vastly expanding the number of known pulsating RGs and seismically
probing the Galactic-bulge population for the first time. Measurements of 𝜈max for these
RGs (and Δ𝜈 for a subset of them) combined with radii inferred using parallaxes (either
from Gaia or Roman itself) will yield precise stellar masses and ages.

These measurements will be indispensable to galactic archaeology of the thin disk, thick
disk, and bulge populations. The PLATO mission, also slated to launch in 2026, is designed

1Kepler’s primary aim was to detect exoplanetary transits.
2TESS is short for Transiting Exoplanet Survey Satellite—its primary aim is to detect exoplanetary transits.
3A primary aim of Roman is to detect exoplanets using gravitational microlensing.



231

specifically with asteroseismology as a primary goal4. The combination of its wide field of
view, numerous pointings, and fast cadence will allow PLATO to measure the oscillation
modes in main-sequence, subgiant, giant, and compact pulsators across the Hertzsprung–
Russell diagram. PLATO is projected to take exquisite light curves for ≃ 106 targets and
seismically measure the masses, radii, and ages of ≈ 8.5 × 104 bright sun-like stars (Rauer
et al., 2014).

Astrophysics has a tradition of frequent, near-synchronous dialogue between observations
and theory—stellar merger genealogy is no different. While this thesis discusses the seismic
properties of two types of merger remnants, stellar interactions are extremely diverse, and
the structure and evolution of their products remain largely mysterious. For example,
while mergers of main-sequence stars with carbon–oxygen white dwarfs (Zorotovic and
Schreiber, 2022) and hot subdwarfs (Schaffenroth et al., 2022) both appear to be implied
by censuses of close binaries, the remnants of these mergers are not well understood
theoretically (other than that they probably inflate into red-giant-like stars). The last few
years have also seen growing interest in characterizing the seismic properties of massive
main-sequence and Hertzsprung-gap stars which have experienced mass transfer (Wagg
et al., 2024) or merger (Henneco, Schneider, Hekker, et al., 2024; Henneco, Schneider,
Heller, et al., 2025). It has even been recently suggested that asteroseismology may
reveal the as-yet puzzling (possibly binary) origin of blue supergiants (Ma, Johnston, et
al., 2024; Bellinger, Mink, et al., 2024). However, one-dimensional studies of merger
remnant evolution depend on the messy hydrodynamics of the merger, particularly for
merger remnants with a less clear core–envelope distinction—study of this merger physics
itself promises to be fruitful (e.g., Lombardi et al., 2002; Gaburov et al., 2008). Remnants
also likely possess unusual but highly uncertain rotational and magnetic properties (Ceillier
et al., 2017; Schneider, Ohlmann, Podsiadlowski, Röpke, Balbus, Pakmor, and Springel,
2019; Schneider, Ohlmann, Podsiadlowski, Röpke, Balbus, and Pakmor, 2020) which merit
further investigation. Translation of system-level physics to population-level statistics is the
domain of binary population synthesis (e.g., Han et al., 2020), which will likely be critical
for connecting remnant occurrence rates to stellar evolutionary predictions.

Within seismic magnetometry, there is also plenty left for theorists to do. This thesis
includes non-perturbative calculations of g modes under strong, dipolar magnetic fields,
but the basic method I have outlined can be vastly generalized to magnetic fields with
arbitrary large-scale geometries. Such strong magnetic fields can mix g modes across

4Uniquely, PLATO places stellar oscillations at enough of a focus to warrant their representation in a full 20%
of the mission’s acronym: “O” stands for “Oscillations of stars.” (Naturally, “PLAT” stands for “PLAnetary
Transits.")
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different angular degrees ℓ (not just𝑚), further increasing the complexity of stellar pulsation
spectra. A qualitative understanding of the way in which strong magnetic fields affect mixed
modes (as in RGs) also remains elusive and should be investigated systematically. Highly
magnetically distorted g modes also violate the asymptotic approximation, suggesting that
multi-dimensional simulations may be an important way to better understand their behavior
(e.g., Lecoanet, Vasil, et al., 2017). On the applied side, it seems very natural to study
what the pulsations of ultramassive white dwarfs (within which magnetism is common;
Kilic, Córsico, et al., 2023, Blatman et al., in preparation) and hot subdwarfs (within which
magnetism is exceedingly rare; Pelisoli, Dorsch, et al., 2022) can teach us about these
objects’ magnetic fields. Finally, the ideas explored in this thesis in the context of stellar
magnetism may also aid in the calculation of oscillation modes in tidally deformed Sun-like
stars (cf. Fuller, Rappaport, et al., 2025), broadening the applicability of these techniques.

Taking the long view, this era is one in which binary or magnetic processes (and often both
together) are important actors in many open problems in stellar physics and beyond. It is now
widely recognized that both effects are important across a wide variety of systems, though
their rich phenomenology promises to remain an unexplored playground for many years
to come. Perhaps uncommonly, the depth of the complexity caused by both is something
about which even the theorists do not claim to feel certain. Advances in seismology will
likely shed further insights into how these effects manifest within stellar interiors.

Following the scientist’s conceit: I hope this work becomes obsolete. I hope this happens
soon, and that there is more to do. I hope what I have written is wrong, but in interesting
ways. I hope the stars continue to wiggle and change color and explode, so that we may
learn more about them. This thesis does not aspire to be timeless—it is only the latest data
point in a time series whose overall trend is not yet clear.
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