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ABSTRACT

Predictions are ubiquitous in modern systems, offering insights into how environ-
ments might evolve by encoding our prior knowledge and assumptions. Recent
advances in artificial intelligence have significantly expanded the scope and accu-
racy of such models, creating vast new opportunities across domains. At the same
time, online decision making remains a fundamental challenge in many real-world
problems, concerned with challenges such as limited information, delayed feedback,
and irrevocable actions. This dissertation focuses on the interplay between predic-
tions and online decision making—how predictive information can be effectively
leveraged to improve performance in dynamic, uncertain environments.

While incorporating predictions often enhances decision-making, the degree of
improvement can vary substantially. This variability arises from two key factors.
First, the potential benefit of using predictions is fundamentally determined by both
the nature of the predictions (e.g., their targets, errors, and distributions) and the
characteristics of the decision-making process (e.g., costs and dynamics). Second,
standard predictive policies frequently fall short of realizing such potential, espe-
cially in changing environments or when critical system parameters are unknown.

This dissertation introduces a unified theoretical framework to quantify the benefit
of leveraging predictions across a broad range of online decision-making problems.
To close the gap between the maximum potential and achievable performance, we
formulate a general policy optimization framework and design efficient algorithms
capable of tracking optimal (predictive) policies in time-varying settings. Addi-
tionally, we address practical considerations such as scalability and computational
efficiency, enabling the application of our methods in large-scale networks and on
resource-constrained devices.
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C h a p t e r 1

INTRODUCTION

Online decision making studies the problem of making sequential decisions under
uncertainty, where information and feedback are typically revealed over time, poten-
tially with delays. Due to limited information, a decision made at any given moment
may become suboptimal as new information emerges. As a result, predictions
about future uncertainties are extremely valuable since they expand the available in-
formation for making each decision, enabling more sophisticated decision-making
policies that may achieve better performances. Predictions are increasingly em-
ployed across a wide range of decision-making tasks. For instance, in autonomous
driving, machine learning (ML) models can predict different types of obstacles and
their potential trajectories, enabling the controller to plan maneuvers that avoid col-
lisions and ensure a smooth ride. Similarly, in video streaming, forecasts of future
network throughput allow the controller to select the bitrate of video segments that
minimizes re-buffering delays and maximizes viewing quality (see Figure 1.1 for
an illustrative example). When applied to electric vehicle charging, predictions
of future electricity prices and departure times inform the controller’s selection of
charging rates, ultimately improving the consumers’ satisfaction rate and the service
provider’s profit. Despite their broad applicability, different prediction tasks and
methods exhibit varied performance characteristics. Sophisticated ML-based pre-
dictors often excel in environments similar to those represented in their training data
or simulators, but their performance can deteriorate when faced with unexpected or
changing conditions. In contrast, simpler predictors may produce relatively larger
errors yet remain more robust under diverse real-world scenarios.

Incorporating predictions into control systems often enhances performance, yet the
extent of improvement can vary greatly across different scenarios. In many ap-
plications, even limited predictions within a short lookahead window can yield
substantial cost reductions. In contrast, there are empirical and theoretical coun-
terexamples in which more sophisticated predictive methods and controllers do not
perform well. This discrepancy raises a critical question: under what conditions do
predictions reliably improve control performance? Addressing this question would
help system designers determine whether to adopt specific predictive methods or
other alternative approaches in a control task. While prior research has studied this
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Figure 1.1: An illustrative example of making predictions in adaptive bitrate stream-
ing: Given the observed network throughput in past 𝑡 seconds (blue curve), predict
the throughput for the next second (orange curve).

topic within specific combinations of prediction models, dynamical systems, and
predictive controllers, a unified analytical framework that addresses this question
more broadly across diverse settings remains a critical open challenge.

While leveraging predictions can improve the performance of online decision mak-
ing significantly, one important aspect is understanding how to develop controllers
to use predictions with time-varying reliability. For instance, ML-based predictors
often suffer from distribution shifts, meaning their reliability may change over time.
To address this challenge, we can introduce parameters to the predictive control
policies that allow us to change how we use predictions. Taking the predictive con-
trol with confidence coefficients (Li, Yang, Qu, Shi, et al., 2022; Lin, Preiss, Anand,
et al., 2023) as an example, the adaptivity is achieved by tuning the coefficients that
control how much the controller trusts each prediction entry. More broadly, the
problem of finding the optimal way to use predictions can be viewed as a special
case of learning the parameters of any control policy to optimize its performance.
There is a need for a general framework to optimize control policy adaptively in
time-varying environments with provable guarantees. The framework is helpful in
many real-world applications, such as quadcopters experiencing fluctuating wind
conditions or variable payloads, where a fixed control policy may fail to provide
near-optimal responses in hindsight.

For online decision making and policy optimization algorithms to be practical,
achieving scalability and efficiency in large-scale or complex systems is essential.
For instance, in a large networked system where the nodes collaborate to maximize
their average total reward, each node must rely only on localized information, as
global communication is often too costly. As another example, when deploying



4

an online policy optimization algorithm on a quadcopter, minimizing memory and
computational complexity is critical due to hardware constraints and the need for
frequent updates. While many prior works focus primarily on theoretical guarantees,
they often overlook the practical challenges of scalability and efficiency. Addressing
these concerns is crucial for ensuring that proposed algorithms have significant
impacts when applied to real-world applications.

This thesis aims to provide analytical frameworks to characterize the benefit of
using predictions in control under general prediction/dynamical models and propose
efficient/scalable policy optimization algorithms with provable guarantees.

1.1 Major Challenges and Prior Work
Two key factors fundamentally shape the performance of leveraging predictions in
online decision making: the prediction power and the policy optimization process.
Prediction power characterizes the intrinsic value of the predictions themselves—the
extent to which they can improve the control performance in principle. It depends on
how the predictions relate to unknown system parameters, underlying dynamics, and
cost structures. Even highly accurate predictions may offer limited benefit if they
do not align with the decision-relevant uncertainties. Complementing this, policy
optimization focuses on how to realize the full potential of predictions in practice.
It involves identifying or tracking the optimal decision policy under constraints
such as limited feedback, computational resources, and time-varying environments.
Together, these two dimensions—what predictions can offer and how well that offer
can be harnessed—define the central challenges in this domain.

Prediction Power. We use the term prediction power to refer to the benefit of
using predictions in online decision making compared to the no-prediction case. To
attain such benefit, we rely on control policies that can leverage future predictions
in deciding the control actions, termed predictive control. Among various design
philosophies of predictive control, perhaps the most prominent approach is Model
Predictive Control (MPC), also known as receding horizon control. Generally speak-
ing, at each time step, an MPC-style controller leverages all available predictions to
solve an optimal control problem in a short horizon and commits to the first action in
the planned trajectory. MPC’s flexibility allows it to accommodate challenges from
time-varying/nonlinear dynamics and constraints on the state or control actions, and
it is known to work well in practice. Theoretically, while many classical results
are about MPC’s asymptotic behaviors (e.g., stability and convergence), there is a
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growing interest in establishing non-asymptotic learning guarantees that quantify
how the sub-optimality of MPC reduces as the predictions become more power-
ful. However, existing results are limited to linear time-invariant (LTI) dynamics
with quadratic costs because the proof approaches require explicitly writing down
optimal control actions and MPC’s control actions. Even with more flexibility al-
lowed in controller design rather than focusing on MPC-style controllers, handling
time-varying dynamics and/or constraints is still challenging.

While many works on predictive control start with the ideal model where the predic-
tions are exact, most predictions in real-world applications are imperfect. Character-
izing the impact of such inaccurate predictions is essential in two ways: 1) Showing
the robustness of a predictive control approach (e.g., MPC) against bounded (or even
adversarial) prediction errors and 2) providing guidance on how to reduce the control
cost by choosing or improving the predictions. Many prior works have taken a nat-
ural path to extend the results under an ideal exact-prediction model: They model
the observed predictions as the actual targets plus bounded adversarial perturba-
tions. These works derive regret bounds that depend on the prediction errors—the
magnitude of such perturbations—and show predictive controllers maintain similar
regret guarantees with the exact-prediction case if the prediction errors are suffi-
ciently small. However, obtaining near-accurate predictions is too much to hope
for in many applications, while weaker predictions with stochastic correlations with
their targets still proved useful. As the prediction error grows, the worst-case regret
bounds become overly conservative because they overlook the potential stochastic
dependencies between predictions and future uncertainties. Further, optimizing the
prediction accuracy does not always lead to better control costs.

Multiple practical challenges may arise when we apply predictive control to real-
world problems. First, scalability issues are significant when implementing an MPC-
based predictive control approach in large networked systems. Each node cannot
afford the complexity of gathering information from the whole network and solving
the predictive optimization problem globally. Second, critical assumptions that
lead to theoretical guarantees may break under application-specific objectives and
constraints. For example, in high-quality video streaming, the key assumption about
the exponentially decaying perturbation property of the optimal control problem
breaks due to the structure of the objectives and buffer constraints. Lastly, the
optimal predictive controller may depend on the unknown joint distribution of
predictions and disturbances or change as the environment changes. Therefore, the
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user cannot directly implement the optimal predictive controller without learning
the key system/controller parameters.

Policy Optimization. Optimization is the process of choosing the best option in
a set of feasible alternatives. Policy optimization can be viewed as a special class
of optimization problems, where the objective is the state/control cost and each
solution corresponds to a control policy. Compared with classic offline optimization
settings where the solver has full knowledge of the objective function/constraints,
the online nature of the decision-making process brings the major challenge for
policy optimization: When updating the policy at an intermediate time step, the
agent only receives incremental feedback without a “whole picture” that includes,
for example, how the costs/dynamics will change in the future.

One challenge of online policy optimization arises from the dynamical system, where
each action has impacts beyond the current time step. Prior works on online policy
optimization build on techniques from online optimization, but their results often
rely on the convexity of the objectives with respect to previous policy parameters –
an assumption that typically confines applications to linear dynamics with specific
policy classes. In practice, this convexity assumption can break down easily for
more general policy classes (e.g., state-feedback controllers) or nonlinear dynamics.

Another challenge in policy optimization is that the underlying dynamical (or tran-
sition) model is often partially or completely unknown to the control agent. In
many control applications, the user usually has some knowledge about a nominal
system, so a common approach is to follow a model-based framework. Specifically,
a standard technique is to apply random perturbations to collect data, enabling the
agent to obtain a sufficiently accurate approximation of the dynamical model with
high probability. With the learned model, one can solve the optimal policy or apply
online policy optimization algorithms that use the models to compute the gradients.
However, the approach is generally restricted to linear systems with specific policy
classes, because extrapolating from local data to approximate global models works
for time-invariant linear dynamics but not for nonlinear or time-varying systems.

Practical challenges in implementing policy optimization algorithms may arise from
complexity and scalability issues—not only due to the structure of the control policy
class, but also from the optimization process itself. Even when the policy class is
simple or low-dimensional, identifying and tracking the optimal policy can remain
computationally demanding, particularly in settings with multi-agent coordination
requirements or limited resources. Consider a large-scale networked system where
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the agents work together to maximize the global average reward. Although each
agent’s policy that we wish to optimize might only depend its local state, the optimal
policies depend on the global interaction structure in general. However, the size
of the global state/action space grows exponentially with respect to the number
of agents, so one cannot afford to run a classic policy optimization approach on
the global scale. As another example, when applying online policy optimization
on quadcopter, the limited resources onboard put constraints on complexity of the
algorithm in terms of both computation and memory. In addition, the fast-changing
environment may require the policy be updated at a high frequency, so the policy
optimization algorithm must run efficiently.

Connections between Prediction Power and Policy Optimization. To understand
the relationship between the two major parts of this thesis on a high level, we draw an
intuitive analogue with a classic optimization problem. The performance of online
decision making can be viewed as the “objective,” while each predictive control
policy corresponds to a “solution.” Under this analog, the study of prediction
power asks the question of how good an optimal solution can be. In contrast,
policy optimization aims to find/learn a (near-)optimal solution.

Policy optimization can help achieve the prediction power. Specifically, predictive
control methods such as MPC can be viewed as policy classes parameterized by how
they incorporate predictions. For example, in an MPC framework with confidence
coefficients, the controller fully trusts the predictions when the coefficient is one
and ignores them entirely when the coefficient is zero. To fully exploit the benefits
of available predictions, the agent must adopt the optimal predictive policy within
a suitable policy class. However, deriving closed-form optimal policies is often
intractable in time-varying or large-scale systems. Policy optimization approaches
help overcome this difficulty by learning a (near-)optimal predictive policy using
limited observations and/or computing.

On the other hand, prediction power is a fundamental quantity to characterize before
using predictions and implementing policy optimization. For example, if an evalua-
tion of prediction power suggests that the potential benefit is small, there is no need
to obtain such predictions and/or deploy policy optimization algorithms. Other-
wise, if the evaluation suggests the prediction power is large, meaning the potential
benefit could be significant, we will focus on finding the optimal predictive policy
with possible challenges from time-varying environments or unknown parameters.
Policy optimization provides powerful tools for this subsequent step.



8

1.2 Motivating Applications
In this section, we introduce three motivating applications of our theoretical frame-
works on prediction power and policy optimization.

Adaptive Bitrate Streaming. Adaptive bitrate streaming studies the problem of
deciding the bitrates for video download sequentially, where the controller has
access to (unreliable) predictions about network throughputs. As online video
streaming becomes increasingly popular nowadays, the users watch videos from
devices with different hardware capabilities and connect to the internet in a variety
of ways, leading to a diverse range of network conditions. In addition, the network
throughput can also be unstable due to congestion and other complicated network
issues. The goal of adaptive bitrate streaming is to enhance the users’ experience
by dynamically adjusting the video bitrate under changing network conditions.

Adaptive bitrate streaming is challenging because the controller needs to balance
multiple objectives including optimizing video quality, minimizing rebuffering fre-
quency, and reducing bitrate switching. In addition, since the buffer length is
usually short in live streaming, the controller must react quickly to fluctuating net-
work conditions and make robust decisions with volatile throughput decisions. Our
theoretical framework provides a promising approach to tackle these challenges by
formulating the problem as online optimal control: The dynamics capture the buffer
level change as the controller downloads new video segments into the buffer, and the
user consumes video segments to watch. The objective balances different metrics
that may affect the user’s experience. Using the insights from our theoretical results,
we design MPC-based policies that can leverage throughput predictions while being
robust against prediction errors.

Adaptive Tuning of Quadcopter Controllers. We consider an application of
general policy optimization for quadcopter control that does not involve predictions.
Quadcopter is a type of unmanned aerial vehicle that uses four rotating propellers
to generate lift and maneuver. It becomes increasingly popular in a variety of real-
world applications ranging from agriculture to photography. Given the diversity
of the deployment environments, the user cannot rely on a certain “expert” control
policy that is set by default when the quadcopter is produced. For example, the user
may put on additional attachments (e.g., carrying goods) or operate the quadcopter
in an unexpected (e.g., high wind) environment. The default policy may become
suboptimal in such scenarios.

Our works on policy optimization are promising for tackling the specific challenges
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arising in quadcopter control. First, our algorithms and results apply to general pol-
icy classes that satisfy the contraction properties, allowing sophisticated designs for
safety while maintaining sufficient flexibility to adapt. Second, a primary goal of our
online policy optimization framework is to adapt quickly to changes of the environ-
ment that may occur frequently during the flight (e.g., periodic wind disturbance).
Third, we design policy optimization algorithms with high computation/memory
efficiency, which make them applicable with limited computing hardware onboard.

Networked Systems. Networked systems are a class of multi-agent systems with
special interaction/reward structures. Specifically, each node in the network corre-
sponds to an individual agent, and it only interacts with its immediate neighbors.
Each node has a local reward (or cost) function, and collectively, the nodes aim to
maximize (or minimize) the sum of these local functions.

Various multi-agent systems can be captured under this general structure. One
example is Wi-Fi networks, where each user (node) transmits packets to a nearby
access point. A collision occurs if multiple users send packets to the same access
point simultaneously. In this setting, a user’s local state – namely, the packets waiting
to be transmitted before a given deadline – depends on both its own actions and those
of its neighbors. A second example is the Susceptible-Infected-Susceptible (SIS)
epidemic network, in which an agent’s state is either “susceptible” or “infected.” The
probability of transitioning from “susceptible” to “infected” depends on the number
of infected neighbors as well as on whether the agent takes a preventive action at
some cost. Lastly, consider a product network for multiple items sold on an online
retail platform. Each product’s demand is affected by its current and previous prices,
as well as by the prices of complementary or supplementary products. To fit this
setting into the networked system framework, we model each product as a node and
use edge to encode complementary or supplementary relationships. The objective
is to determine prices that maximize the platform’s total revenue in a manner that is
both efficient and interpretable.

By studying predictive control and policy optimization in networked systems, we
demonstrate how to overcome the practical challenge of scalability by exploiting the
interaction structure among nodes/agents.

1.3 Thesis Roadmap and Contributions
We introduce the basic settings of online optimization, online control, prediction
models, and the networked systems in Chapter 2. Then, we present the main results
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of this thesis in two major parts.

Part II: Prediction Power

While the study of prediction power has received much attention recently, a novel
perspective that sets our works apart is the perturbation analysis. Specifically,
instead of analyzing the online process directly, we look at the underlying optimiza-
tion problem (offline) and study the behaviors of the optimal solution as a function
of problem parameters. Perturbation analysis plays a critical role in establishing
prediction power bounds: On the one hand, it allows us to characterize the im-
pact of having limited/inaccurate predictions at a single step; On the other hand, it
helps bound the accumulative effect of per-step impacts along the whole horizon.
Compared with prior works, our proof framework built upon perturbation analysis
significantly generalizes the scope of settings where prediction powers can be char-
acterized. It is particularly useful for MPC-style controllers, which represent the
design principle behind a class of predictive policies that are flexible and empirically
successful.

In this context, Part II of this thesis focuses on characterizing the benefit of using
predictions in online decision making/control. We start by studying MPC under an
adversarial prediction model that does not rely on any distributional assumptions. In
Chapter 3, we provide a general analysis pipeline to establish finite-time optimality
guarantees for model predictive control (Lin, Hu, Shi, et al., 2021). The pipeline
reduces the study of MPC to the perturbation analysis, enabling the derivation of
regret bounds of MPC under various settings.

• In Section 3.1, we first introduce the perturbation analysis for finite-time optimal
control problem and define the exponential decaying properties that we want to
establish. We discuss about its intuitions and derivations in classic settings.

• In Section 3.2, we present the main theorems of the pipeline. With the exponential
decaying properties that we have derived in perturbation analysis, we use the
pipeline to establish finite-time performance bounds for MPC. Our results show
the insight that, although it becomes harder to get near-accurate predictions when
we predict further into the future, they also have less impact on the performance
than predictions that are closer to the current step.

• In Section 3.3, we extend our proof framework based on the perturbation analysis
to online optimization in networked systems. The key observation is that we can
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establish the exponential decaying properties not only in “temporal” dimension—
the time horizon that includes the future and the past—but also in “spatial”
dimension, which implies the impact of a node on another node decays quickly
as their graph distance in the network grows. Using the generalized exponential
decaying properties, we propose a localized predictive control algorithm with
provable performance guarantees. Our results show predictions into the future and
information sharing among neighbors are both important, and the two “resources”
should be balanced to achieve the best performance bound.

• In Section 3.4, we consider the application of adaptive bitrate streaming. We use
the theoretical insight of the perturbation analysis to design the objective function
of a novel MPC-style controller so that the exponential decay property holds.
Our proposed approach achieves superior empirical performance in production
experiments, but we will focus on discussing the theoretical insights in this thesis.

A limitation of the adversarial prediction model in Chapter 3 is that it overlooks the
stochastic relationships between predictions and future uncertainties. As a result,
the performance bounds may fail to characterize the benefit of using predictions,
because the worst-case analysis is overly conservative. Therefore, in Chapter 4,
we study the benefit of using predictions under a general stochastic model, under
which the predictions and environment uncertainties are sampled from a joint dis-
tribution. In this context, we seek to characterize a general notion of the prediction
power, which is the maximum cost improvement under the optimal predictive policy
compared with the no-prediction scenario. In Section 4.2, we provide sufficient
conditions for establishing the lower bound of the prediction power. The conditions
put requirements on the landscape of the cost-to-go functions and the conditional
covariance of the policy’s actions. In Section 4.3, we instantiate the general lower
bound with specific online optimal control settings such as linear quadratic regulator
(LQR). Our results highlight that even “weak” (in terms of stochastic dependencies)
predictions have the potential to provide fundamental benefit in online control, and
we provide examples to explain why strict improvements on prediction accuracy
does not necessarily reduce the total state/control cost.

Part III: Policy Optimization

Our results for online policy optimization build upon a property called contractive
perturbation that makes the goal of tracking the optimal policy in a dynamic envi-
ronment tractable. Intuitively, contractive perturbation ensures each policy has its
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“preferred trajectory” and converges towards it if deployed for several steps in a row.
It generalizes a key property of many standard control policies and helps policy op-
timization by containing the impact of past explorations. In Chapter 5, we consider
online policy optimization on a single trajectory under contractive perturbation. We
propose efficient online policy optimization algorithms that can adapt quickly with
provable finite-time guarantees. This chapter is organized as following:

• In Section 5.2, we define the contractive perturbation property formally and
provide examples to demonstrate its generality. Although our original def-
inition requires the property to hold for a slowly-changing policy parameter
sequence, we show it suffices to verify it under a fixed policy parameter.

• In Section 5.3, we present an efficient online policy optimization algorithm—
Memoryless Gradient-based Adaptive Policy Selection (M-GAPS)—that lever-
ages the first-order derivatives of the costs/dynamics to perform gradient-
based updates on the policy parameters. Under the contractiveness assump-
tion, we show that M-GAPS approximates the behavior of an ideal online
gradient descent algorithm on the policy parameters. When convexity holds,
M-GAPS achieves the optimal policy regret. When convexity does not hold,
we establish a local regret bound for M-GAPS.

• In Section 5.4, we address the challenge of implementing online policy opti-
mization when the dynamics are only partially known. Specifically, we assume
there is an unknown component in the dynamics that can be time-varying and
state-dependent. We develop a meta-framework that combines a module for
learning the unknown component in dynamics with an online policy optimiza-
tion algorithm like M-GAPS. Our theoretical results suggest that, to mimic the
behavior of an online policy optimization algorithm when the true dynamics
are known, it is unnecessary to identify the unknown component globally.

• In Section 5.5, we apply M-GAPS to select the parameters in a class of predic-
tive control policies, so the controller can use the predictions adaptively based
on their qualities and/or their stochastic relationship with future uncertainties.
Intuitively, when the quality of predictions changes during the control pro-
cess, M-GAPS adjusts the confidence coefficients that determine how much
the MPC policy trusts the provided predictions. As a result, the controller
“trusts” the predictions more when they are accurate and reduces the “trust”
when they are bad. Our experiments show M-GAPS can learn the optimal
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predictive control policy and adapt quickly to changes, building connections
between online policy optimization with prediction power (Part III).

• In Section 5.6, we present a practical implementation of M-GAPS on quad-
copter control. Focusing on the task of trajectory tracking, we use M-GAPS
to tune the feedback gains of a quadcopter controller. In hardware exper-
iments, M-GAPS can improve from a suboptimal initialization to near an
expert controller that takes several days of efforts to tune manually. Further,
we test M-GAPS with heavy payload or time-varying wind conditions. In
these scenarios, M-GAPS can rapidly adapt to the disturbances and substan-
tially reduce the cost compared with the expert controller. The experiment
results demonstrate the hardware practicality of M-GAPS.

In Chapter 6, we use multi-agent reinforcement learning (MARL) to optimize the
local policies for agents in a large-scale networked system. Classic centralized
policy optimization algorithms are intractable because their complexities grow with
the size of global state space, which is exponentially large in the number of agents. To
address this challenge, we propose a scalable actor critic algorithm. Compared with
its centralized counterpart, the most significant change is on the critic part, where we
adopt localized truncation on the state/action space to reduce the computation/space
complexity. Thus, we focus on the theoretical foundation of this key change in this
thesis. In Section 6.2, we utilize the interaction structure among agents to derive
the exponential decay property of local Q functions. With this property, we can
confirm that localized information in the truncated state/action space is sufficient
for approximating the local Q function, which depends on the global state/action in
general. In Section 6.3, we introduce the connection between our truncated critic
design and TD learning with state aggregation. Thus, we can use results on state
aggregation to show finite-sample error bounds on Q function evaluation. Lastly, in
Section 6.4, we apply our scalable actor critic algorithm to the settings of wireless
and spreading networks. The results show that the proposed algorithm can improve
the local policies effectively.
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C h a p t e r 2

BACKGROUND

In this chapter, we summarize the underlying problem settings in this thesis with the
goal to build intuitions for our main results in Parts II and III. We start with the most
basic setting of online optimization (Section 2.1) and discuss how it is generalized
to study control with dynamical systems (Section 2.2). Then, in Section 2.3, we
introduce different methods to model predictions and their relationship with future
uncertainties. Lastly, in Section 2.4, we present two settings of networked systems
that consider continuous or discrete decisions, respectively.

2.1 Online Optimization
The basic form of online optimization is a two-player game between the online agent
and the (potentially adversarial) environment.

Classic online optimization. At each time step, the agent makes a decision 𝑥𝑡 ∈ X.
A cost function 𝑓𝑡 : X → R is revealed, and the agent incurs the stage cost 𝑓𝑡 (𝑥𝑡).
The agent’s goal is to minimize the total cost

∑𝑇
𝑡=1 𝑓𝑡 (𝑥𝑡). The performance is usually

evaluated by comparing against the optimal trajectory in hindsight (e.g., the static
regret

∑𝑇
𝑡=1 𝑓𝑡 (𝑥𝑡) −min𝑥∗∈X

∑𝑇
𝑡=1 𝑓𝑡 (𝑥∗)).

In classic online optimization, each step’s decision is independent with other steps.
However, it is common for the current step’s cost to also depends on the previous
action. For example, in data center/power system operation, additional costs are
incurred when the servers/generators are turned on or off. Thus, it is sometime
preferable to have “smoother” decision trajectories where the decisions (e.g., the
number of running servers) does not change dramatically between consecutive time
steps. These considerations motivate the extension of the classic online optimization
framework to include switching costs.

Smoothed online optimization. At each time step, a hitting cost function 𝑓𝑡 : X →
R and a switching cost function 𝑐𝑡 : X × X → R are revealed. The agent decides
an action 𝑥𝑡 ∈ X and incurs a stage cost 𝑓𝑡 (𝑥𝑡) + 𝑐𝑡 (𝑥𝑡 , 𝑥𝑡−1). The agent’s goal is to
minimize the total cost

∑𝑇
𝑡=1 𝑓𝑡 (𝑥𝑡) +

∑𝑇
𝑡=2 𝑐𝑡 (𝑥𝑡 , 𝑥𝑡−1). To evaluate the performance,

we compare the algorithm’s trajectory with the hindsight optimal trajectory 𝑥∗1:𝑇 .
The difference with classic online optimization is that 𝑥∗1:𝑇 can change over time.
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Following the intuition to penalize changes between consecutive steps, researchers
have considered different forms of switching costs such as the norm distance
𝑐𝑡 (𝑥𝑡 , 𝑥𝑡−1) = ∥𝑥𝑡 − 𝑥𝑡−1∥ or the squared ℓ2-norm 𝑐𝑡 (𝑥𝑡 , 𝑥𝑡−1) = 1

2 ∥𝑥𝑡 − 𝑥𝑡−1∥22. In-
deed, the switching costs can be more general as long as they satisfy some assump-
tions jointly with the hitting costs. Other generalizations consider longer coupling
with the previous time steps. For example, the switching cost 𝑐𝑡 (𝑥𝑡−𝑘:𝑡) depends on
the decisions at 𝑘 > 1 past time steps.

2.2 Online Control
In the setting of online optimization, we can choose any 𝑥𝑡 from the set X (at some
cost). However, in most control applications, we cannot steer the system to an
arbitrary state in one step. Instead, we must pick control actions that can affect the
system’s state through the dynamics.

Dynamics. We consider a discrete-time dynamical system that is given by

𝑥𝑡+1 = 𝑔𝑡 (𝑥𝑡 , 𝑢𝑡 ;𝑤∗𝑡 ), where 𝑥𝑡 ∈ X, 𝑢𝑡 ∈ U, and 𝑤∗𝑡 ∈ W. (2.1)

Here, 𝑥𝑡 denotes the system’s current state; 𝑢𝑡 denotes the control action; and 𝑤∗𝑡
denotes the disturbance or exogenous input. We use the star superscript to indicate
that 𝑤∗𝑡 is the true value (i.e., the actual disturbance experienced by the controller)
and distinguish with any predictions/estimations. The dynamical function 𝑔𝑡 :
X × U × W → X decides how the current state and control action decide the
next state 𝑥𝑡+1 together. Function 𝑔𝑡 is determined by the specific application, and
its subscript 𝑡 means it may change over time. A simple example is the linear
time-invariant (LTI) dynamics, where function 𝑔𝑡 has the form

𝑔𝑡 (𝑥𝑡 , 𝑢𝑡 ;𝑤∗𝑡 ) = 𝐴𝑥𝑡 + 𝐵𝑢𝑡 + 𝑤∗𝑡 for 𝑥𝑡 ∈ R𝑛, 𝑢𝑡 ∈ R𝑚, and 𝑤∗𝑡 ∈ R𝑛. (2.2)

Although many previous works on online control focus on the LTI dynamics in
(2.2), some real-world applications demand different generalizations. For example,

• Linear Time-Varying (LTV) Dynamics. Dynamical matrices (𝐴, 𝐵) are re-
placed by {(𝐴𝑡 , 𝐵𝑡)}𝑡=0,1,... that change over time.

• Nonlinear Dynamics. 𝑔𝑡 can be a nonlinear function of (𝑥𝑡 , 𝑢𝑡).

• State/Action Constraints. X andU can be bounded sets.

Policy. The way we decide the control action 𝑢𝑡 based on the state 𝑥𝑡 is called
the control policy, which is a function 𝜋𝑡 that maps any state in X to an action in
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U. For example, a classic policy class for controlling the LTI dynamics in (2.2)
decides the control action by taking a linear feedback on the state 𝑢𝑡 = −𝐾𝑥𝑡 . To
control general dynamical systems, one may consider adopting more sophisticated
optimization-based or ML-based policies that uses additional information (e.g.,
future predictions or expert advice). The problem of choosing control actions can
be converted to finding the optimal control policy. To formulate this problem
rigorously, we consider a parameterized policy class

𝑢𝑡 = 𝜋𝑡 (𝑥𝑡 ; 𝜃𝑡), (2.3)

where 𝜃𝑡 ∈ Θ is the policy parameter to learn and update throughout the control
process. The policy class 𝜋𝑡 (·, ·) together with policy parameter set Θ encode all
feasible control policies that we want to consider for the purpose of cost optimization.

Costs. At each time step, after taking the control action 𝑢𝑡 , the agent incurs a stage
cost that depends on the current state/action pair (𝑥𝑡 , 𝑢𝑡):

𝑐𝑡 = 𝑓𝑡 (𝑥𝑡 , 𝑢𝑡). (2.4)

Note that the subscript 𝑡 allows 𝑓𝑡 to change between time steps. The objective of
online control is to minimize the total cost incurred through a finite horizon 𝑇 , i.e.,∑𝑇−1
𝑡=0 𝑐𝑡 . Often, the cost functions 𝑓𝑡 are defined by the user, so it is common to

assume that they are known. However, if we need to consider uncertainties in costs,
one way to model them is extending the cost function to be

𝑐𝑡 = 𝑓𝑡 (𝑥𝑡 , 𝑢𝑡 ;𝑤∗𝑡 ). (2.5)

Here, 𝑤∗𝑡 is an uncertainty parameter that combines the uncertainties at time step 𝑡,
so it is shared with the dynamical function 𝑥𝑡+1 = 𝑔𝑡 (𝑥𝑡 , 𝑢𝑡 ;𝑤∗𝑡 ).

As a remark, stability is a fundamental issue in control theory, which means the
system state must be kept in a region that is “safe.” For example, the linear dynamics
approximation only holds if the state is not too far away from the equilibrium
point. However, stability guarantees are not the primary focus of online control.
Specifically, the user should design the policy class in online control carefully, so
changing the policy parameter 𝜃𝑡 will not destabilize the system. As a result, online
policy optimization algorithms can focus on minimizing the total cost

∑𝑇−1
𝑡=0 𝑐𝑡 .

Connection with Online Optimization. Smoothed online optimization is a special
case of online control. One common approach to do the reduction is to consider a
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simple dynamics 𝑥𝑡+1 = 𝑥𝑡 + 𝑢𝑡 , where the state 𝑥𝑡 corresponds to the decision in
online optimization. The stage cost 𝑓𝑡 (𝑥𝑡 , 𝑥𝑡 −𝑥𝑡−1) is also general enough to capture
different combinations of hitting/switching costs. Although online control is a more
general setting, smoothed online optimization is still important for both theory and
practice. For example, establishing the exponentially decaying perturbation property
is easier for smoothed online optimization. Meanwhile, for some dynamical systems,
one can reduce online control to smoothed online optimization with the help of
control canonical form or uniform controllability assumptions.

2.3 Prediction Models
Prediction is a general term that includes any useful information about what may
happen in the future. To model the prediction theoretically in the context of online
optimization/control, we denote the prediction that the agent receives at time step 𝑡
as 𝑣𝑡 ∈ V. Intuitively, the prediction 𝑣𝑡 is provided by the environment in addition to
the original observations (e.g., state 𝑥𝑡) that the agent can make at time 𝑡. Although
one can combine 𝑣𝑡 and 𝑥𝑡 to form a “large” state 𝑥𝑡 := (𝑥𝑡 , 𝑣𝑡) when designing the
control policy, we treat 𝑣𝑡 and 𝑥𝑡 separately when studying prediction power because
it is easier to characterize the incremental benefit of observing 𝑣𝑡 . Another reason
for separating 𝑣𝑡 is that the predictions are oblivious in many applications, meaning
that they come from an exogenous source. As a result, the realization of 𝑣𝑡 will not
be affected by the agent’s past actions 𝑢0:𝑡−1. In some settings, the assumption about
oblivious predictions is critical for deriving the theoretical guarantees.

The goal of formulating the prediction models is to explain how the prediction 𝑣𝑡
provided at time step 𝑡 is related to the unknown future uncertainties 𝑤∗

𝑡:𝑇−1. In this
thesis, we consider the following two types of prediction models.

Adversarial prediction model. At time step 𝑡, prediction 𝑣𝑡 is a vector that combines
the predictions of future uncertainties within a finite lookahead window 𝑘:

𝑣𝑡 =
(
𝑤𝑡 |𝑡 , 𝑤𝑡+1|𝑡 , . . . , 𝑤𝑡+𝑘−1|𝑡

)
, (2.6)

where 𝑤𝜏 |𝑡 denotes the prediction of the true uncertainty parameter 𝑤∗𝜏 at time step
𝑡 (𝜏 ≥ 𝑡). Recall that we use 𝑤∗𝜏 to denote the true disturbance in dynamics (2.1)
or true parameter in the stage cost (2.5) in online control. Under this model, the
predictions and the ground-truth are assumed to be chosen by an adversary subject
to certain constraints. For example, an ideal special case considers the setting
that all predictions are exact (i.e., 𝑤𝜏 |𝑡 = 𝑤∗𝜏 for 𝜏 = 𝑡, . . . , 𝑡 + 𝑘 − 1). To study
the robustness of predictive controllers against prediction errors, we can relax the
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constraints to allow the adversary to provide predictions subject to some prediction
error bounds (i.e., the distance



𝑤𝜏 |𝑡 − 𝑤∗𝜏

 is upper bounded). The adversarial
is conservative because it consider the worst-case scenarios and overlooks any
stochastic relationships.

Stochastic prediction model. In stochastic prediction model, we assume the pre-
dictions 𝑣0:𝑇−1 and the unknown parameters 𝑤∗0:𝑇−1 are sampled together from some
joint distribution. Unlike (2.6), we do not need further assumptions on what 𝑣𝑡
predicts about or its specific structure. Intuitively, the stochastic predictions are
useful because they contain information about future uncertainties.

Compared with the adversarial prediction model, the stochastic prediction model
is particularly useful for characterizing the benefit of “weak” predictions that are
far from accurate. For example, some predictions may be useful because they have
stochastic dependencies with the true uncertainty parameters. However, if we only
look at their prediction errors, it may be difficult to distinguish them with “useless”
predictions who contain no mutual information with future uncertainty parameters.
As a result, we cannot conclude they are useful under the adversarial prediction
model. On the other hand, one can see a limitation of the stochastic prediction model
arises from the joint distribution assumption. Even if the assumption holds, another
challenge is that the optimal predictive policy depends on the joint distribution,
which we often do not know in practice. In contrast, the adversarial prediction
model does not rely on any distributional assumptions.

2.4 Networked Systems
Networked systems is a special class of multi-agent systems that features localized
interaction/dependency structures. Specifically, for a network (undirect graph) G =

(V, E), each node 𝑖 ∈ V represents an agent, and an edge 𝑒 ∈ E between two
nodes indicate that they can directly affect each other. Each node has its own local
state/action space. We consider different forms of interaction/dependency between
nodes:

• Transition probabilities in MDP. The local state of node 𝑖 at time step 𝑡 + 1
depends on the current local states/actions of node 𝑖’s direct neighbors:

𝑃(𝑠𝑖 (𝑡 + 1) | 𝑠𝑁𝑖 (𝑡), 𝑎𝑁𝑖 (𝑡)), where 𝑁𝑖 = { 𝑗 | distG (𝑖, 𝑗) ≤ 1}.

Here, 𝑠𝑁𝑖 (𝑡), 𝑎𝑁𝑖 (𝑡) denotes the local states/actions of the nodes in 𝑁𝑖 at time
𝑡, and 𝑠𝑖 (𝑡 + 1) denotes the local state of node 𝑖 at time 𝑡 + 1.
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• Cost functions in online optimization. For each edge 𝑒 = (𝑖, 𝑗) ∈ E, nodes
𝑖 and 𝑗 share a cost 𝑠𝑒𝑡 (𝑥𝑖𝑡 , 𝑥

𝑗
𝑡 ) that depends on their decisions jointly, where 𝑥𝑖𝑡

and 𝑥 𝑗𝑡 denote the local decisions of nodes 𝑖 and 𝑗 , respectively.

Therefore, the decision of a node 𝑖 can affect any other node 𝑗 because the impact
can travel through a multi-edge path from 𝑖 to 𝑗 even if they are not direct neighbors.

In this thesis, we focus on collaborative settings, where all nodes work together to
optimize the global cost/reward. The global cost/reward can be decomposed to be the
sum/average of local costs/rewards. Due to observation/complexity constraints, each
agent adopts a localized policy that uses information within a finite neighborhood.
Policy optimization is challenging in this setting due to the global dependence, and
a centralized approach can be intractable for large-scale networks.



Part II

Prediction Power
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C h a p t e r 3

ADVERSARIAL PREDICTIONS

Predictions play a important role in enhancing online control performance, par-
ticularly when dealing with uncertain or adversarial environments. In contrast to
purely stochastic models, the adversarial prediction model enables robust perfor-
mance guarantees without relying on specific probabilistic assumptions regarding
the predictions and uncertainties. Under this adversarial model, we show that the
classic MPC-style policies, requiring only a short prediction horizon, can demon-
strate near-optimal performance in a wide range of dynamical systems and cost
functions. Moreover, with exact predictions, the performances of MPC-style poli-
cies improve at an exponential rate as the prediction horizon increases. With inexact
predictions, the impact of an error for predicting further into the future decays ex-
ponentially with respect to the temporal distance. In turn, the theoretical analysis
offers valuable insights into designing better MPC-style policies in applications such
as adaptive bitrate streaming.

This chapter is mainly based on the following papers:

[Lin, Hu, Shi, et al., 2021] Lin, Yiheng, Yang Hu, Guanya Shi, Haoyuan Sun,
Guannan Qu, and Adam Wierman. “Perturbation-based regret analysis of predictive
control in linear time varying systems.” Advances in Neural Information Processing
Systems 34 (2021): 5174-5185.

[Lin, Gan, et al., 2022] Lin, Yiheng, Judy Gan, Guannan Qu, Yash Kanoria, and
Adam Wierman. “Decentralized online convex optimization in networked systems.”
In International Conference on Machine Learning, pp. 13356-13393. Proceedings
of Machine Learning Research, 2022.

[Lin, Hu, Qu, et al., 2022] Lin, Yiheng, Yang Hu, Guannan Qu, Tongxin Li, and
Adam Wierman. “Bounded-regret MPC via perturbation analysis: Prediction error,
constraints, and nonlinearity.” Advances in Neural Information Processing Systems
35 (2022): 36174-36187.

[Chen, Lin, et al., 2024] Chen, Tianyu, Yiheng Lin, Nicolas Christianson, Zahaib
Akhtar, Sharath Dharmaji, Mohammad Hajiesmaili, Adam Wierman, and Ramesh
K. Sitaraman. “SODA: An adaptive bitrate controller for consistent high-quality
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video streaming.” In Proceedings of the ACM SIGCOMM 2024 Conference, pp.
613-644. 2024.

3.1 Perturbation Analysis
Perturbation analysis examines how changes in a system’s parameters—such as
initial states, dynamic functions, or cost functions—affect the solutions of a finite-
time optimal control problem. By quantifying how these solutions deviate when
parameters are perturbed, perturbation analysis provides guarantees about how errors
that come from inexact predictions or finite prediction horizons propagate through
the online process of running an MPC-style policy.

A core component of both the design of MPC-style control policies and our analysis
is the following finite-time optimal control problem (FTOCP). Given a time interval
[𝑡1, 𝑡2], the FTOCP solves the optimal sub-trajectory subjected to the given initial
state 𝑧, terminal cost 𝐹, and a sequence of (potentially noisy) parameters 𝜉𝑡1:𝑡2−1, 𝜁𝑡2 ,
as formalized in the following definition.

Definition 3.1.1 (FTOCP). The finite-time optimal control problem (FTOCP) over
the time horizon [𝑡1, 𝑡2], with parameters 𝜉[𝑡1,𝑡2] := (𝑧𝑡1 , 𝑤𝑡1:𝑡2−1, 𝜁𝑡2) and terminal
cost function 𝐹 (·; ·), is defined as

𝜄
𝑡2
𝑡1
(𝜉[𝑡1,𝑡2] ; 𝐹) := min

𝑥𝑡1:𝑡2 ,𝑢𝑡1:𝑡2−1

𝑡2−1∑︁
𝑡=𝑡1

𝑓𝑡 (𝑥𝑡 , 𝑢𝑡 ;𝑤𝑡) + 𝐹 (𝑥𝑡2; 𝜁𝑡2)

s.t. 𝑥𝑡+1 = 𝑔𝑡 (𝑥𝑡 , 𝑢𝑡 ;𝑤𝑡), ∀𝑡1 ≤ 𝑡 < 𝑡2,
𝑠𝑡 (𝑥𝑡 , 𝑢𝑡 ;𝑤𝑡) ≤ 0, ∀𝑡1 ≤ 𝑡 < 𝑡2,
𝑥𝑡1 = 𝑧𝑡1 , (3.1)

and a corresponding optimal solution as 𝜓𝑡2𝑡1 (𝜉[𝑡1,𝑡2] ; 𝐹).

The components of 𝜉[𝑡1,𝑡2] correspond to different elements in FTOCP. 𝑧𝑡1 corre-
sponds to the initial state. 𝑤𝑡1:𝑡2−1 correspond to the uncertainty parameters for
intermediate time steps. It is shared between the dynamics function 𝑔𝑡 , cost func-
tion 𝑓𝑡 , and the constraint function 𝑠𝑡 . 𝜁𝑡2 is the parameter of the terminal cost.
Sometimes, when we need to write down the components of 𝜉[𝑡1,𝑡2] and the context
is clear, we use the shorthand (𝑧𝑡1 , 𝑤𝑡1:𝑡2) to denote (𝑧𝑡1 , 𝑤𝑡1:𝑡2−1, 𝑤𝑡2).

As a remark, Definition 3.1.1 formulates FTOCP in a general form. In many settings,
there might be less uncertainties that we want to consider (e.g., unconstrained, or
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𝑥0

𝑥′0

Figure 3.1: Illustration of the exponentially decaying perturbation.

deterministic cost functions). The FTOCP in (3.1) does not include a terminal
constraint set. To compensate for this, we allow the terminal cost 𝐹 (·; 𝜁𝑡2) to take
value +∞ in some subset of R𝑛. For example, a terminal cost function that we
frequently use later is the indicator function of the terminal parameter 𝜁𝑡2 , where
𝜁𝑡2 ∈ R𝑛. We use I to denote such indicator terminal cost (i.e., I(𝑦𝑡2; 𝜁𝑡2) = 0 if
𝑦𝑡2 = 𝜁𝑡2 and I(𝑦𝑡2; 𝜁𝑡2) = +∞ otherwise).

Theorem 3.1.1 (Meta Perturbation Bound). Consider the FTOCP defined in (3.1).
Given any parameters 𝜉[𝑡1,𝑡2] := (𝑧𝑡1 , 𝑤𝑡1:𝑡2−1, 𝜁𝑡2) and 𝜉′[𝑡1,𝑡2] := (𝑧′𝑡1 , 𝑤

′
𝑡1:𝑡2−1, 𝜁

′
𝑡2
),


𝜓𝑡2𝑡1 (𝜉[𝑡1,𝑡2] ; 𝐹)𝑥ℎ − 𝜓𝑡2𝑡1 (𝜉′[𝑡1,𝑡2] ; 𝐹)𝑥ℎ




≤ 𝐶
(
𝜆ℎ



𝑧𝑡1 − 𝑧′𝑡1

 + 𝑡2−𝑡1−1∑︁
𝜏=0

𝜆 |ℎ−𝜏 |


𝑤𝜏 − 𝑤′𝜏

 + 𝜆𝑡2−𝑡1

𝜁𝑡2 − 𝜁 ′𝑡2

)

hold for all time intervals [𝑡1, 𝑡2].

Instantiation with SOCO
Perhaps the most straightforward instantiation of Theorem 3.1.1 is in SOCO. Recall
that the classic setting of SOCO is an online game played by an agent against an
adversary: at each time step 𝑡, the adversary reveals a hitting cost function 𝑓𝑡 , a
switching cost function 𝑐𝑡 , and a disturbance (or exogenous input) 𝑤̂𝑡 . The agent
picks a decision point 𝑥𝑡 ∈ R𝑛, and incurs a stage cost of 𝑓𝑡 (𝑥𝑡) + 𝑐𝑡 (𝑥𝑡 , 𝑥𝑡−1; 𝑤̂𝑡−1).
The agent seeks to minimize the total cost it incurs throughout the game. The offline
optimal cost is defined as the minimum cost if the agent has full knowledge of the
costs and disturbances at the start of the game. Instead of analyzing the performance
of an online algorithm directly, our focus is on studying how the perturbations of the
system parameters (initial state, terminal state, and disturbances) impact the offline
optimal solution. We consider the case when the terminal state is fixed to 𝑥𝑝, which
is given as one of the problem parameters.
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To begin, observe that when the initial state 𝑥0, terminal state 𝑥𝑝, and the disturbances
𝑤̂ are given, the optimal 𝑝-step trajectory of SOCO can be obtained from the
unconstrained optimization problem

𝜓̂(𝑥0, 𝑤̂, 𝑥𝑝) := arg min
𝑥1:𝑝−1

𝑝−1∑︁
𝜏=1

𝑓𝜏 (𝑥𝜏) +
𝑝∑︁
𝜏=1

𝑐𝜏 (𝑥𝜏, 𝑥𝜏−1; 𝑤̂𝜏−1), (3.2)

where the objective is a convex function of the decision variables 𝑥1:𝑝−1. Since
(3.2) is an unconstrained optimization problem, the gradient of its objective equals
zero at 𝜓̂(𝑥0, 𝑤̂, 𝑥𝑝). Using this, we can further show that the directional derivative
of 𝜓̂(𝑥0, 𝑤̂, 𝑥𝑝) along some direction 𝑒, denoted by 𝜒, satisfies the linear equation
𝑀𝜒 = 𝛿, where symmetric matrix 𝑀 is the Hessian of the objective and vector 𝛿
is determined by the direction 𝑒. A special structure of the objective of (3.2) is
that the correlations only occur in two consecutive time steps. This implies that its
Hessian 𝑀 is block tri-diagonal. Such tri-diagonal structure of 𝑀 has been noted
by previous work, e.g., Amos et al., 2018, and have been leveraged to solve the
linear equation 𝑀𝜒 = 𝛿 quickly. In contrast, we focus on the exponential decay
phenomena 𝑀−1 exhibits, i.e., the magnitudes of entries decay exponentially with
respect to their distances to the main diagonal (Demko, Moss, and Smith, 1984).
Bounding each entry of 𝜒 = 𝑀−1𝛿 separately gives us the following perturbation
bound.

Theorem 3.1.2. Given a tuple (𝑥0, 𝑤̂, 𝑥𝑝) that contains the initial state, the distur-
bances, and the terminal state in this order, we consider the optimal solution of the
SOCO problem

𝜓̂(𝑥0, 𝑤̂, 𝑥𝑝) := arg min
𝑥1:𝑝−1

𝑝−1∑︁
𝜏=1

𝑓𝜏 (𝑥𝜏) +
𝑝∑︁
𝜏=1

𝑐𝜏 (𝑥𝜏, 𝑥𝜏−1; 𝑤̂𝜏−1)

indexed by 1, . . . , 𝑝 − 1. Assume 𝑓𝜏 : R𝑛 → R is 𝜇-strongly convex, 𝑐𝜏 : R𝑛 ×
R𝑛 × R𝑟 → R is convex and ℓ-strongly smooth, and both are twice continuously
differentiable for 𝜏 = 1, . . . , 𝑝, then

𝜓̂(𝑥0, 𝑤̂, 𝑥𝑝)ℎ − 𝜓̂(𝑥′0, 𝑤̂

′, 𝑥′𝑝)ℎ




≤ 𝐶0

(
𝜆ℎ−1

0


𝑥0 − 𝑥′0



 + 𝑝−1∑︁
𝜏=0

𝜆
|ℎ−𝜏 |−1
0



𝑤̂𝜏 − 𝑤̂′𝜏

 + 𝜆𝑝−ℎ−1
0



𝑥𝑝 − 𝑥′𝑝

)
for all 1 ≤ ℎ ≤ 𝑝 − 1, where 𝐶0 = (2ℓ)/𝜇 and 𝜆0 = 1 − 2 ·

(√︁
1 + (2ℓ/𝜇) + 1

)−1
.
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We defer the formal proof of Theorem 3.1.2 to Appendix 3.A. As a remark, we do
not require the hitting cost 𝑓𝜏 to be strongly smooth, or the switching cost 𝑐𝜏 to be
strongly convex in Theorem 3.1.2.

Instantiations in Unconstrained LTV Systems
We study the FTOCP with LTV dynamics:

𝜓
𝑡2
𝑡1
(𝜉[𝑡1,𝑡2] ; 𝐹) := arg min

𝑥𝑡1:𝑡2 ,𝑢𝑡1:𝑡2−1

𝑡2−1∑︁
𝑡=𝑡1

𝑓𝑡 (𝑥𝑡) +
𝑡2−1∑︁
𝑡=𝑡1

𝑐𝑡 (𝑢𝑡) + 𝐹 (𝑥𝑡2; 𝜁𝑡2)

s.t. 𝑥𝑡+1 = 𝐴𝑡𝑥𝑡 + 𝐵𝑡𝑢𝑡 + 𝑤𝑡 , 𝑡1 ≤ 𝑡 < 𝑡2, (3.3)

𝑥𝑡1 = 𝑧𝑡1 ,

where 𝜉[𝑡1,𝑡2] := (𝑧𝑡1 , 𝑤𝑡1:𝑡2−1, 𝜁𝑡2). Because we often set 𝐹 to be the indicator
function I that is defined as I(𝑥; 𝜁) = 0 if 𝑥 = 𝜁 and I(𝑥; 𝜁) = +∞ otherwise, we
introduce the shorthand 𝜓𝑡2𝑡1 (𝜉[𝑡1,𝑡2]) := 𝜓𝑡2𝑡1 (𝜉[𝑡1,𝑡2] ; I) to simplify the notations.

As is standard in studies of regret and competitive ratio in linear control problems,
we assume the cost functions are well-conditioned.

Assumption 3.1.1. The cost functions satisfy the following conditions:

1. 𝑓𝑡 (·) is both 𝑚 𝑓 -strongly convex and ℓ 𝑓 -strongly smooth for all 𝑡.

2. 𝑐𝑡 (·) is both 𝑚𝑐-strongly convex and ℓ𝑐-strongly smooth for all 𝑡.

3. 𝑓𝑡 (·) and 𝑐𝑡 (·) are twice continuously differentiable for all 𝑡.

4. 𝑓𝑡 (·) and 𝑐𝑡 (·) are non-negative, and 𝑓𝑡 (0) = 𝑐𝑡 (0) = 0 for all 𝑡.

5. The terminal cost function 𝐹 is the indicator function I or satisfies that (1)
𝐹 (·; 𝜁) is twice continuously differentiable and 𝑚 𝑓 -strongly convex for all 𝜁;
(2) For a positive constant ℓ𝐹 , we have

∥∇𝑥𝐹 (𝑥; 𝜁) − ∇𝑥𝐹 (𝑥; 𝜁 ′)∥ ≤ ℓ𝐹 ∥𝜁 − 𝜁 ′∥, for all 𝑥, 𝜁 , 𝜁 ′.

Note that assumptions (1) through (3) are quite common (Li, Chen, and Li, 2019;
Li, Qu, and Li, 2021; Goel and Wierman, 2019; Goel, Lin, et al., 2019; Shi et al.,
2020). Assumption (4) is less common, but can be satisfied via re-parameterization
without loss of generality. Specifically, when the minimizers of state cost 𝑓𝑡 and
control cost 𝑐𝑡 are nonzero, we perform the transformation

𝑥′𝑡 ← 𝑥𝑡 − arg min
𝑥

𝑓𝑡 (𝑥), 𝑢′𝑡 ← 𝑢𝑡 − arg min
𝑢

𝑐𝑡 (𝑢),
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𝑤′𝑡 ← 𝑤𝑡 + 𝐴𝑡 arg min
𝑥

𝑓𝑡 (𝑥) + 𝐵𝑡 arg min
𝑢

𝑐𝑡 (𝑢).

The intuition of this transformation is that, when the minimizer of the cost function
for the next step is known, we can always perform a translation in the state and
control space to align the minimizer with the origin.

Additionally, we need to assume the dynamics are controllable. It is crucial that
the dynamical system can be steered from an arbitrary initial state to an arbitrary
final state via a finite sequence of admissible control actions. For linear time-
invariant (LTI) systems, the full-rankness of the controllability matrix completely
characterizes the reachability of the state space, which is generally used as a standard
assumption for analysis (Zhang, Li, and Li, 2021; Mania, Tu, and Recht, 2019;
Astrom and Murray, 2008). This can be generalized to parallel assumptions for
LTV systems as follows. We begin with a definition.

Definition 3.1.2. For a dynamical system with linear time-varying dynamics 𝑥𝑡+1 =

𝐴𝑡𝑥𝑡 + 𝐵𝑡𝑢𝑡 + 𝑤𝑡 , 𝑡 = 0, . . . , 𝑇 − 1, the transition matrix Φ(𝑡2, 𝑡1) ∈ R𝑛×𝑛 (from time
step 𝑡1 to 𝑡2) is defined as

Φ(𝑡2, 𝑡1) :=

𝐴𝑡2−1𝐴𝑡2−2 · · · 𝐴𝑡1 if 𝑡2 > 𝑡1

𝐼 if 𝑡2 ≤ 𝑡1
,

and the controllability matrix 𝑀 (𝑡, 𝑝) ∈ R𝑛×(𝑚𝑝) is defined as

𝑀 (𝑡, 𝑝) :=
[
Φ(𝑡 + 𝑝, 𝑡 + 1)𝐵𝑡 ,Φ(𝑡 + 𝑝, 𝑡 + 2)𝐵𝑡+1, . . . ,Φ(𝑡 + 𝑝, 𝑡 + 𝑝)𝐵𝑡+𝑝

]
.

The dynamical system is called controllable if there exists a constant 𝑑 ∈ Z+, such
that the controllability matrix 𝑀 (𝑡, 𝑑) is of full row rank for any 𝑡 = 0, . . . , 𝑇 − 𝑑.
The smallest constant 𝑑 with such property is called the controllability index of the
system.

Given the above definition, we can state the key assumption necessary for the
analysis of LTV systems. We use a slightly stronger assumption than being merely
controllable, which we refer to as (𝑑, 𝜎)-uniform controllability. It is a natural
generalization of its counterpart for LTI systems (see Assumption 2 in Mania, Tu,
and Recht, 2019, where (𝑑, 𝜎) is instead named as (ℓ, 𝜈)).

Assumption 3.1.2. There exists positive constants 𝑎, 𝑏, and 𝑏′, such that

∥𝐴𝑡 ∥ ≤ 𝑎, ∥𝐵𝑡 ∥ ≤ 𝑏, and ∥𝐵†𝑡 ∥ ≤ 𝑏′
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hold for all time steps 𝑡 = 0, . . . , 𝑇 −1, where 𝐵†𝑡 denotes the Moore–Penrose inverse
of matrix 𝐵𝑡 . Furthermore, there exists a positive constant 𝜎 such that

𝜎min (𝑀 (𝑡, 𝑑)) ≥ 𝜎

holds for all time steps 𝑡 = 0, . . . , 𝑇 − 𝑑, where 𝑑 denotes the controllability index.

Note that Assumption 3.1.2 implies 𝜎min(𝑀 (𝑡, 𝑝)) ≥ 𝜎 for all 𝑝 ≥ 𝑑 because
appending more columns to a matrix with full row rank will not reduce its minimum
singular value.

We now build upon the SOCO perturbation result to derive a perturbation result
for LTV systems. In particular, we show an exponentially-decaying perturbation
bound for our LTV system by reducing it to SOCO and apply Theorem 3.1.2. As we
have discussed, LTV systems are more difficult than SOCO because the dynamics
prevent the online agent from picking the next state 𝑥𝑡+1 freely at a given state 𝑥𝑡 . We
overcome this obstacle by redefining the decision points as illustrated in Figure 3.2.
Specifically, given state 𝑥𝑡 at time step 𝑡 as the last decision point, we then ask the
online agent to decide state 𝑥𝑡+𝑑 at time step (𝑡 + 𝑑) rather than 𝑥𝑡+1 at time step
(𝑡 + 1).

Since 𝑑 is the controllability index, 𝑥𝑡+𝑑 can be picked freely from the whole space
R𝑛 regardless of 𝑥𝑡 . We also utilize the principle of optimality, e.g., if 𝑥𝑡:𝑡+𝑘 , 𝑢𝑡:𝑡+𝑘−1

is the optimal solution to 𝜓𝑡+𝑘𝑡 ((𝑧𝑡 , 𝑤𝑡:𝑡+𝑘−1, 𝑧𝑡+𝑘 )), then 𝑥𝑖: 𝑗 , 𝑢𝑖: 𝑗−1 is the optimal
solution to 𝜓 𝑗

𝑖
((𝑥𝑖, 𝑤𝑖: 𝑗−1, 𝑥 𝑗 )) for any 𝑡 ≤ 𝑖 < 𝑗 ≤ 𝑡 + 𝑘 . Therefore, the trajectory

between time 𝑡 and (𝑡 + 𝑑) can be recovered by solving 𝜓𝑡+𝑑𝑡 ((𝑥𝑡 , 𝑤𝑡:𝑡+𝑑−1, 𝑥𝑡+𝑑)).
So we are able to formulate a valid SOCO problem on the sequence of time steps
𝑡, 𝑡 + 𝑑, 𝑡 + 2𝑑, . . . .

Naturally, the hitting cost at time step (𝑡 + 𝑑) remains the same, while the switching
cost becomes Υ𝑡+𝑑𝑡 ((𝑥𝑡 , 𝑤𝑡:𝑡+𝑑−1, 𝑥𝑡+𝑑)), where the function Υ

𝑡+𝑝
𝑡 is defined as

Υ
𝑡+𝑝
𝑡 ((𝑧𝑡 , 𝑤𝑡:𝑡+𝑝−1, 𝑧𝑡+𝑝)) := 𝜄𝑡+𝑝𝑡 (𝑧𝑡 , 𝑤𝑡:𝑡+𝑝−1, 𝑧𝑡+𝑝) − 𝑓𝑡+𝑝 (𝑧𝑡+𝑝). (3.4)

An illustration of the reduction can be found in Figure 3.2. We would like to point
out that our reduction from optimal control to SOCO is novel in that it leverages
the principle of optimality to apply to more general LTV settings, as opposed to the
reduction via control canonical forms in Li, Chen, and Li, 2019 that is specific to LTI
systems. Unlike the switching costs in Goel, Lin, et al., 2019; Goel and Wierman,
2019; Chen, Goel, and Wierman, 2018; Argue, Gupta, and Guruganesh, 2020
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which are explicitly defined as the ℓ2-distance or squared ℓ2-distance, the switching
cost Υ𝑡+𝑝𝑡 here is defined implicitly as the optimal value of an optimization problem.
Lemma 3.1.3 shows that the switching cost defined in (3.4) satisfies the requirements
of Theorem 3.1.2, which allows us to obtain the desired perturbation bound.

Υ2𝑑
𝑑
(𝑥𝑑 , 𝑤𝑑:2𝑑−1, 𝑥2𝑑 )

𝑥𝑑

𝑓𝑑 (𝑥𝑑 )

𝑢𝑑

𝑐𝑑 (𝑢𝑑 )
𝑥𝑑+1

𝑓𝑑+1 (𝑥𝑑+1 )

𝑢𝑑+1
𝑐𝑑+1 (𝑢𝑑+1 )

𝑥𝑑+2

𝑓𝑑+2 (𝑥𝑑+2 )

𝑢𝑑+2
𝑐𝑑+2 (𝑢𝑑+2 )

· · · 𝑢2𝑑−1
𝑐2𝑑−1 (𝑢2𝑑−1 )

𝑥2𝑑

𝑓2𝑑 (𝑥2𝑑 )

𝑥0

𝑐̂1 ( 𝑥̂1, 𝑥̂0, 𝑤̂0 )
q

Υ𝑑
0 (𝑥0, 𝑤0:𝑑−1, 𝑥𝑑 )

· · · 𝑥1

𝑓1 ( 𝑥̂1 )
q

𝑓𝑑 (𝑥𝑑 )

𝑐̂2 ( 𝑥̂2, 𝑥̂1, 𝑤̂1 )
q

Υ2𝑑
𝑑
(𝑥𝑑 , 𝑤𝑑:2𝑑−1, 𝑥2𝑑 )

· · · 𝑥2

𝑓2 ( 𝑥̂2 )
q

𝑓2𝑑 (𝑥2𝑑 )

· · · 𝑥𝑣−1

𝑓𝑣−1 ( 𝑥̂𝑣−1 )
q

𝑓 (𝑣−1)𝑑 (𝑥(𝑣−1)𝑑 )

𝑐̂𝑣 ( 𝑥̂𝑣 , 𝑥̂𝑣−1, 𝑤̂𝑣−1 )
q

Υ𝑣𝑑
(𝑣−1)𝑑 (𝑥(𝑣−1)𝑑 , 𝑤(𝑣−1)𝑑:𝑣𝑑−1, 𝑥𝑣𝑑 )

· · · 𝑥𝑣

Figure 3.2: Illustration of the reduction from LTV to SOCO. Here we consider a
simple example where 𝑡 = 0 and 𝑝 = 𝑣𝑑. At time step 0, the agent cannot steer the
system to an arbitrary target state at the next time step due to dynamical constraints.
However, given (𝑑, 𝜎)-uniform controllability, the controller is able to enforce an
arbitrary target state after 𝑑 time steps, which prompts the transformation to a SOCO
problem with a decision point in every 𝑑 time steps.

Lemma 3.1.3. Under Assumption 3.1.1 and 3.1.2, for integer 𝑝 ≥ 𝑑, we have

1. 𝜓𝑡+𝑝𝑡 (𝜉[𝑡:𝑡+𝑝]) is 𝐿1(𝑝)-Lipschitz in 𝜉[𝑡:𝑡+𝑝];

2. 𝜉 𝑝𝑡 (𝜉[𝑡:𝑡+𝑝]) is convex and 𝐿2(𝑝)-strongly smooth in 𝜉[𝑡:𝑡+𝑝] .

Here 𝐿1(𝑝) = 𝐶 (𝑝) (1 + ℓ · 𝐶 (𝑝)/𝑚𝑐) , 𝐿2(𝑝) = ℓ · 𝐶 (𝑝)2 + ℓ2 · 𝐶 (𝑝)4/𝑚𝑐, where
ℓ = max(ℓ 𝑓 , ℓ𝑐),

𝐶 (𝑝) =


𝑂 (𝑎3𝑝) if 𝑎 > 1;

𝑂 (𝑝2) if 𝑎 = 1;

𝑂 (1) if 𝑎 < 1.

In Lemma 3.1.3, we use𝑂 (·) to hide quantities 𝑎, 𝑏, and 1/𝜎; the precise expression
of 𝐶 (𝑝) and the proof of Lemma 3.1.3 can be found in Appendix 3.A. Using the
reduction from LTV to SOCO, we obtain a perturbation bound for the LTV systems
in Theorem 3.1.4, the proof of which is deferred to Appendix 3.A.
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Theorem 3.1.4. Consider the FTOCP defined in (3.3) and with a horizon length
𝑝 ≥ 𝑑. Under Assumptions 3.1.1 and 3.1.2, given any parameter sets

𝜉[𝑡,𝑡+𝑝] := (𝑥𝑡 , 𝑤𝑡:𝑡+𝑝−1, 𝜁𝑡+𝑝) and 𝜉′[𝑡,𝑡+𝑝] := (𝑥′𝑡 , 𝑤′𝑡:𝑡+𝑝−1, 𝜁
′
𝑡+𝑝),

we have 


𝜓𝑡+𝑝𝑡 (𝜉[𝑡,𝑡+𝑝] ; 𝐹)𝑥𝑡+ℎ − 𝜓
𝑡+𝑝
𝑡 (𝜉′[𝑡,𝑡+𝑝] ; 𝐹)𝑥𝑡+ℎ





≤ 𝐶

(
𝜆ℎ



𝑥𝑡 − 𝑥′𝑡

 + 𝑝−1∑︁
𝜏=0

𝜆 |ℎ−𝜏 |


𝑤𝑡+𝜏 − 𝑤′𝑡+𝜏

 + 𝜆𝑝−ℎ

𝜁𝑡+𝑝 − 𝜁𝑡+𝑝

) .

Here we define 𝐿0 = max𝑑≤𝑝≤2𝑑−1 𝐿2(𝑝), and the constants are given by

𝜆 =

(
1 − 2

(√︁
1 + (2𝐿0/𝑚𝑐) + 1

)−1
) 1

2𝑑−1

,

𝐶 = max
{
1,
ℓ𝐹

𝑚𝐹

}
· 2𝐿0
𝑚𝑐
·
(
1 − 2

(√︁
1 + (2𝐿0/𝑚𝑐) + 1

)−1
)−1

.

Theorem 3.1.4 allows us to bound the distance between any two trajectories so long
as they can be expressed as the optimal solutions of the FTOCP (3.3). For example,
to bound the norm of each state in the predictive trajectory 𝜓̃𝑝𝑡 (𝑥, 𝜁 ; 𝐹), we only
need to set 𝑥′ = 0, 𝜁 ′ = 0 in the first inequality because an all zero trajectory can be
expressed as 𝜓̃𝑝𝑡 (0, 0; 𝐹).

More examples of FTOCP exponentially decaying perturbation bounds can be found
in Lin, Hu, Qu, et al., 2022 and Chen, Lin, et al., 2024. Note that this property does
not hold for all dynamics/costs, and counterexamples are provided in Lin, Hu, Qu,
et al., 2022.

3.2 From Perturbation Bounds to Control Performance Guarantees
We first introduce the general predictive online control problem including the set-
tings, the objective, available information, and the predictive controller class. Then,
we introduce the MPC algorithm, which is a widely-used predictive controller that
we focus on. Specifically, we consider a general, finite-horizon, discrete-time opti-
mal control problem with time-varying costs, dynamics and constraints, namely

min
𝑥0:𝑇 ,𝑢0:𝑇−1

𝑇−1∑︁
𝑡=0

𝑓𝑡 (𝑥𝑡 , 𝑢𝑡 ;𝑤∗𝑡 ) + 𝐹𝑇 (𝑥𝑇 ;𝑤∗𝑇 )

s.t. 𝑥𝑡+1 = 𝑔𝑡 (𝑥𝑡 , 𝑢𝑡 ;𝑤∗𝑡 ), ∀0 ≤ 𝑡 < 𝑇,
𝑠𝑡 (𝑥𝑡 , 𝑢𝑡 ;𝑤∗𝑡 ) ≤ 0, ∀0 ≤ 𝑡 < 𝑇, (3.5)

𝑥0 = 𝑥(0).



30

Here, 𝑥𝑡 ∈ R𝑛 is the state, 𝑢𝑡 ∈ R𝑚 is the control input or action; 𝑓𝑡 is a time-varying
stage cost function, 𝑔𝑡 is a time-varying dynamical function, and 𝑠𝑡 is a time-varying
constraint function, all parameterized by a ground-truth parameter 𝑤∗𝑡 (unknown to
an online controller); and 𝐹𝑇 is a terminal cost function parameterized by 𝑤∗

𝑇
that

regularizes the terminal state.

The offline optimal trajectory OPT is obtained by solving (3.5) with the full knowl-
edge of the true parameters 𝑤∗0:𝑇 . In contrast, an online controller can only observe
noisy estimations of the parameters in a fixed prediction horizon to decide its current
action 𝑢𝑡 at each time step 𝑡. For example, MPC picks 𝑢𝑡 by calculating the optimal
sub-trajectory confined to the prediction horizon. The objective is to design an
online controller that can compete against the offline optimal trajectory OPT. We
use dynamic regret as the performance metric, which is widely used to evaluate the
performance of online controllers/algorithms in the literature of online control (Lin,
Hu, Shi, et al., 2021; Yu et al., 2022; Zhang, Li, and Li, 2021) and online optimiza-
tion (Li, Qu, and Li, 2021; Goel, Lin, et al., 2019; Lin, Goel, and Wierman, 2020).
Specifically, for a concrete problem instance (𝑥(0), 𝑤∗0:𝑇 ), let cost(OPT) denote the
total cost incurred by OPT, and cost(ALG) denote the total cost incurred by an
online controller ALG. The dynamic regret is defined as the worst-case additional
cost incurred by ALG against OPT, i.e., sup𝑥(0),𝑤∗0:𝑇

(cost(ALG) − cost(OPT)).

Model Predictive Control
We focus on Model Predictive Control (MPC), a popular predictive controller. In
this subsection, we first define the available information (predictions) as well as
its quality (prediction power), and how general predictive online controllers make
decisions. Then, we introduce MPC as a predictive online controller.

We represent the uncertainties in cost functions, dynamics, constraints, and termi-
nal costs as function families parameterized by 𝑤𝑡 : F𝑡 := { 𝑓𝑡 (𝑥𝑡 , 𝑢𝑡 ;𝑤𝑡) | 𝑤𝑡 ∈
W𝑡},G𝑡 := {𝑔𝑡 (𝑥𝑡 , 𝑢𝑡 ;𝑤𝑡) | 𝑤𝑡 ∈ W𝑡}, S𝑡 := {𝑠𝑡 (𝑥𝑡 , 𝑢𝑡 ;𝑤𝑡) | 𝑤𝑡 ∈ W𝑡}, and
F𝑇 := {𝐹𝑇 (𝑥𝑇 ;𝑤𝑇 ) | 𝑤𝑇 ∈ W𝑇 }. The online controller knows the function families
F0:𝑇 , G0:𝑇−1, andS0:𝑇−1 as prior knowledge, but it does not know the true parameters
𝑤∗0:𝑇 ∈

∏𝑇
𝜏=0W𝜏. Instead, at time step 𝑡, the online controller has access to noisy

predictions of these parameters for the future 𝑘 time steps (where 𝑘 is called the
prediction horizon), represented by 𝑤𝑡:𝑡+𝑘 |𝑡 ∈

∏𝑡+𝑘
𝜏=𝑡W𝜏. The parameter spaceW𝑡

at each time step 𝑡 may have different dimensions.

We formally define the quality of predictions by introducing the following notion of
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prediction error.

Definition 3.2.1. The prediction error is defined as 𝜌𝑡,𝜏 :=


𝑤𝑡+𝜏 |𝑡 − 𝑤∗𝑡+𝜏

 for an

integer 𝜏 ≥ 0. The power of 𝜏-step-away predictions (for parameter 𝑤) is defined
as 𝑃(𝜏) :=

∑𝑇−𝜏
𝑡=0 𝜌2

𝑡,𝜏.

Under this noisy prediction model, a general predictive online controller ALG de-
cides the control action based on the current state and the latest available predictions
of future parameters. We formally define the class of predictive online controllers
considered in this paper in Definition 3.2.2, which includes MPC as a special case.

Definition 3.2.2. A predictive online controller ALG is a function that takes the
current state 𝑥𝑡 and the available predictions 𝑤𝑡:𝑡+𝑘 |𝑡 as inputs at time 𝑡 and outputs
the current control action 𝑢𝑡 , i.e., 𝑢𝑡 = ALG(𝑥𝑡 , 𝑤𝑡:𝑡+𝑘 |𝑡). We use 𝑥0

𝑢0−→ 𝑥1
𝑢1−→

· · · 𝑢𝑇−1−−−→ 𝑢𝑇 to denote the trajectory achieved by ALG, and use 𝑥0
𝑢∗0−→ 𝑥∗1

𝑢∗1−→

· · ·
𝑢∗
𝑇−1−−−→ 𝑢∗

𝑇
to denote the offline optimal trajectory OPT.

We formally introduce MPC using the definition of the FTOCP (Definition 3.1.1).
The pseudocode of this online controller is given in Algorithm 1. Basically, at time
step 𝑡, MPC𝑘 solves a 𝑘-step predictive FTOCP using the latest available parameter
predictions, and commits the first control action in the solution. When there are
only fewer than 𝑘 steps left, MPC𝑘 directly solves a (𝑇 − 𝑡)-step FTOCP at time 𝑡
until the end of the horizon, using the predicted real terminal cost 𝐹𝑇 (·;𝑤𝑇 |𝑡). This
MPC controller (and its variants) has a wide range of real-world applications.

Algorithm 1: Model Predictive Control (MPC𝑘 )
Require: Specify the terminal costs 𝐹𝑡 for 𝑘 ≤ 𝑡 < 𝑇 .
for 𝑡 = 0, 1, . . . , 𝑇 − 1 do

𝑡′← min{𝑡 + 𝑘, 𝑇}
Observe current state 𝑥𝑡 and obtain predictions 𝑤𝑡:𝑡′ |𝑡 .
Solve and commit control action 𝑢𝑡 := 𝜓𝑡′𝑡 ((𝑥𝑡 , 𝑤𝑡:𝑡′ |𝑡); 𝐹𝑡′)𝑣𝑡 .

end

Next, we give an overview of a novel analysis pipeline that converts a perturbation
bound into a bound on the dynamic regret. We begin by highlighting the form of
perturbation bounds required in the pipeline, and then describe the 3-step process
of applying the pipeline. We apply this pipeline to obtain regret bounds for MPC in
different settings.
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Per-Step Error and Perturbation Bounds
A key challenge when comparing the performance of an online controller against
the offline optimal trajectory is that the online controller’s state 𝑥𝑡 is different from
the offline optimal state 𝑥∗𝑡 at time step 𝑡. Due to such discrepancy in states, we
cannot simply evaluate the online controller’s action 𝑢𝑡 via comparison against the
offline optimal action 𝑢∗𝑡 . To address this challenge, our pipeline uses the notion of
per-step error (Definition 3.2.3) inspired by the performance difference lemma and
its proofs in reinforcement learning (RL) (Lin, Hu, Shi, et al., 2021). Specifically,
we compare 𝑢𝑡 to the clairvoyant optimal action one may adopt at the same state 𝑥𝑡
if all true future parameters 𝑤∗

𝑡:𝑇 are known, which leads to the definition of per-step
error as follows.

Definition 3.2.3. The per-step error 𝑒𝑡 incurred by a predictive online controller
ALG at time step 𝑡 is defined as the distance between its actual action 𝑢𝑡 and the
clairvoyant optimal action, i.e.,

𝑒𝑡 :=


𝑢𝑡 − 𝜓𝑇𝑡 ((𝑥𝑡 , 𝑤∗𝑡:𝑇 ); 𝐹𝑇 )𝑢𝑡

, where 𝑢𝑡 = ALG(𝑥𝑡 , 𝑤𝑡:𝑡+𝑘 |𝑡).

The clairvoyant optimal trajectory starting from 𝑥𝑡 is defined as

𝑥∗
𝑡:𝑇 |𝑡 := 𝜓𝑇𝑡 ((𝑥𝑡 , 𝑤∗𝑡:𝑇 ); 𝐹𝑇 )𝑥𝑡:𝑇 .

Note that the clairvoyant optimal trajectory can be viewed as being generated by an
MPC controller with long enough prediction horizon and exact predictions. This
notion highlights the reason why MPC can compete against the clairvoyant opti-
mal trajectory, since the per-step error in a system controlled by MPC𝑘 becomes
𝑒𝑡 =



𝜓𝑡+𝑘𝑡 ((𝑥𝑡 , 𝑤𝑡:𝑡+𝑘 |𝑡); 𝐹𝑡+𝑘 )𝑢𝑡 − 𝜓𝑇𝑡 ((𝑥𝑡 , 𝑤∗𝑡:𝑇 ); 𝐹𝑇 )𝑢𝑡

. Intuitively, the per-step er-
ror converges to zero as the prediction horizon 𝑘 increases and the quality of
predictions improves (i.e.,



𝑤𝑡:𝑡+𝑘 |𝑡 − 𝑤∗𝑡:𝑡+𝑘

→ 0).

This intuition highlights the important role of perturbation bounds in comparing
online controllers against (offline) clairvoyant optimal trajectories. As we have
discussed in Section 3.1, the problem of establishing decaying perturbation bounds
for different instances of the FTOCP (3.1) can be studied separately with the online
implementation of predictive control. Perturbation bounds may take different forms,
but for the application of our pipeline we require two types of perturbation bounds
that are both common in the literature:

(a) Perturbations of the parameters 𝑤𝑡1:𝑡2 given a fixed initial state 𝑧𝑡1:



𝜓𝑡2𝑡1 (
(𝑧𝑡1 , 𝑤𝑡1:𝑡2−1, 𝜁𝑡2); 𝐹

)
𝑢𝑡1
− 𝜓𝑡2𝑡1

(
(𝑧𝑡1 , 𝑤′𝑡1:𝑡2−1, 𝜁

′
𝑡2); 𝐹

)
𝑢𝑡1
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≤
(
𝑡2−1∑︁
𝑡=𝑡1

𝑞1(𝑡 − 𝑡1) ·


𝑤𝑡 − 𝑤′𝑡

) 

𝑧𝑡1

 + 𝑡2−1∑︁

𝑡=𝑡1

𝑞2(𝑡 − 𝑡1) ·


𝑤𝑡 − 𝑤′𝑡



+ 𝑞1(𝑡2 − 𝑡1) ·


𝜁𝑡2 − 𝜁 ′𝑡2

 · 

𝑧𝑡1

 + 𝑞2(𝑡2 − 𝑡1) ·



𝜁𝑡2 − 𝜁 ′𝑡2

, (3.6)

where scalar functions 𝑞1 and 𝑞2 satisfy lim𝑡→∞ 𝑞𝑖 (𝑡) = 0,
∑∞
𝑡=0 𝑞𝑖 (𝑡) ≤ 𝐶𝑖 for

constants 𝐶𝑖 ≥ 1, 𝑖 = 1, 2. This perturbation bound is useful in bounding the
per-step error 𝑒𝑡 , as we will discuss in Lemma 3.2.1.

(b) Perturbation of the initial state 𝑧𝑡1 given fixed parameters 𝑤𝑡1:𝑡2:


𝜓𝑡2𝑡1 (
(𝑧𝑡1 , 𝑤𝑡1:𝑡2−1, 𝜁𝑡2); 𝐹

)
(𝑥𝑡 ,𝑢𝑡 ) − 𝜓

𝑡2
𝑡1

(
(𝑧′𝑡1 , 𝑤𝑡1:𝑡2−1, 𝜁𝑡2); 𝐹

)
(𝑥𝑡 ,𝑢𝑡 )





≤ 𝑞3(𝑡 − 𝑡1) ·



𝑧𝑡1 − 𝑧′𝑡1

, for 𝑡 ∈ [𝑡1, 𝑡2], (3.7)

where the scalar function 𝑞3 satisfies
∑∞
𝑡=0 𝑞3(𝑡) ≤ 𝐶3 for some constant 𝐶3 ≥

1. This bound is useful in preventing the accumulation of per-step errors 𝑒𝑡
throughout the horizon (see Lemma 3.2.2). Compared with (3.6), the right hand
side of (3.7) has a simpler form.

Existing perturbation bounds usually combine the above two types ((3.6) and (3.7))
into a single equation that characterizes perturbations on 𝑧 and 𝜉𝑡1:𝑡2 simultaneously,
e.g., Lin, Hu, Shi, et al., 2021; Shin and Zavala, 2021. Here, we decompose them
into two separate types because they are used in different parts of our pipeline.

A 3-Step Pipeline from Perturbation Bounds to Regret

Step 1. obtain perturbation
bounds (3.6) & (3.7)

Step 2. bound the per-step
error 𝑒𝑡 (Lemma 3.2.1)

Step 3. bound dynamic
regret (Lemma 3.2.2)

dynamic regret bound

The
Pipeline

Theorem
3.2.3

Figure 3.3: Illustrative dia-
gram of the 3-step pipeline
from perturbation analysis to
bounded regret.

An overview of the pipeline is given in Figure 3.3,
which illustrates the high-level ideas of the pipeline
that starts by obtaining perturbation bounds, pro-
ceeds to bound the per-step error using perturbation
bounds, and finally combines the per-step error and
perturbation bounds to bound the dynamic regret. In
the following we describe each step in detail.

Step 1: Obtain the perturbation bounds given
in (3.6) and (3.7). The form of the perturbation
bounds depends heavily on the specific form of the
FTOCP, and thus the derivation requires case-by-
case study (e.g., see Section 3.1). However, off-the-
shelf bounds are available in most cases, as there
has been a rich literature on perturbation analysis of
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control systems (e.g., Xu and Anitescu, 2019; Na and
Anitescu, 2022; Shin, Zavala, and Anitescu, 2020;
Shin and Zavala, 2021; Lin, Hu, Shi, et al., 2021
and the references therein). The following property summarizes precisely what is
expected to be derived for bounds (3.6) and (3.7) in Steps 2 and 3.

Property 3.2.1. Suppose there exists a positive constant 𝑅 such that the perturbation
bound (3.6) holds for the following specifications: with 𝑡1 = 𝑡 and 𝑡2 = 𝑡 + 𝑘 for
𝑡 < 𝑇 − 𝑘 , (3.6) holds for 𝐹 : R𝑛 → R𝑛 be the identity function I, and

𝑧𝑡 ∈ B(𝑥∗𝑡 , 𝑅); 𝑤𝑡:𝑡+𝑘−1 ∈ W𝑡:𝑡+𝑘−1, 𝑤
′
𝑡:𝑡+𝑘−1 = 𝑤∗𝑡:𝑡+𝑘−1;

𝜁𝑡+𝑘 , 𝜁
′
𝑡+𝑘 ∈ B(𝑥

∗
𝑡+𝑘 , 𝑅) ⊆ R𝑛;

with 𝑡1 = 𝑡 and 𝑡2 = 𝑇 for 𝑡 ≥ 𝑇−𝑘 , (3.6) holds for 𝑧𝑡 ∈ B(𝑥∗𝑡 , 𝑅); 𝑤𝑡:𝑇 ∈ W𝑡:𝑇 , 𝑤𝑡:𝑇 =

𝑤∗
𝑡:𝑇 ; 𝐹 = 𝐹𝑇 . Further, perturbation bound (3.7) holds for any 𝑧𝑡1 , 𝑧′𝑡1 ∈ B(𝑥

∗
𝑡1
, 𝑅)

and 𝑤𝑡1:𝑡2 = 𝑤
∗
𝑡1:𝑡2 .

Intuitively, Property 3.2.1 states that perturbation bounds (3.6) and (3.7) hold in a
small neighborhood (specifically, a ball with radius 𝑅) around the offline optimal
trajectory OPT, which is much weaker than the global exponentially decaying
perturbation bounds required by previous work (e.g., Lin, Hu, Shi, et al., 2021)
in the following sense: (i) in the general settings where the dynamical function
𝑔𝑡 is non-linear, or where there are constraints on states and actions, one cannot
hope the perturbation bound to hold globally for all possible parameters (Shin,
Anitescu, and Zavala, 2022; Shin and Zavala, 2021; Na and Anitescu, 2022); (ii)
the decay functions {𝑞𝑖}𝑖=1,2,3 are only required to converge to zero and satisfy∑∞
𝜏=0 𝑞𝑖 (𝜏) ≤ 𝐶𝑖, which means the exponential decay rate as in Lin, Hu, Shi, et

al., 2021 is not necessary — in fact, polynomial decay rates can also satisfy these
properties, which greatly broadens the applicability of our pipeline.

Step 2: Bound the per-step error 𝑒𝑡 . The core of the analysis is to apply the
perturbation bounds to bound the per-step error. For MPC𝑘 , under Property 3.2.1,
this step can be done in a universal way, as summarized in Lemma 3.2.1 below. A
complete proof of Lemma 3.2.1 can be found in Section 3.B.

Lemma 3.2.1. Let Property 3.2.1 hold. Suppose the current state 𝑥𝑡 satisfies
𝑥𝑡 ∈ B(𝑥∗𝑡 , 𝑅/𝐶3) and the terminal cost 𝐹𝑡+𝑘 of MPC𝑘 is set to be the indicator
function of some state 𝑥(𝑤𝑡+𝑘 |𝑡) that satisfies 𝑥(𝑤𝑡+𝑘 |𝑡) ∈ B(𝑥∗𝑡+𝑘 , 𝑅) for 𝑡 < 𝑇 − 𝑘 .
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Then, the per-step error of MPC𝑘 is bounded by

𝑒𝑡 ≤
𝑘∑︁
𝜏=0

((
𝑅

𝐶3
+ 𝐷𝑥∗

)
· 𝑞1(𝜏) + 𝑞2(𝜏)

)
𝜌𝑡,𝜏 + 2𝑅

((
𝑅

𝐶3
+ 𝐷𝑥∗

)
· 𝑞1(𝑘) + 𝑞2(𝑘)

)
.

(3.8)

Lemma 3.2.1 is a straight-forward implication of perturbation bound (3.6) specified
in Property 3.2.1. To see this, for 𝑡 < 𝑇 − 𝑘 , note that the per-step error 𝑒𝑡 can be
bounded by

𝑒𝑡 =


𝜓𝑡+𝑘𝑡 (𝑥𝑡 , 𝑤𝑡:𝑡+𝑘−1|𝑡 , 𝑥(𝑤𝑡+𝑘 |𝑡); I)𝑢𝑡 − 𝜓𝑇𝑡 (𝑥𝑡 , 𝑤∗𝑡:𝑇 ; 𝐹𝑇 )𝑢𝑡



 (3.9a)

=




𝜓𝑡+𝑘𝑡 (𝑥𝑡 , 𝑤𝑡:𝑡+𝑘−1|𝑡 , 𝑥(𝑤𝑡+𝑘 |𝑡); I)𝑢𝑡 − 𝜓𝑡+𝑘𝑡 (𝑥𝑡 , 𝑤∗𝑡:𝑡+𝑘−1, 𝑥
∗
𝑡+𝑘 |𝑡 ; I)𝑢𝑡




 (3.9b)

≤
𝑘−1∑︁
𝜏=0

(
∥𝑥𝑡 ∥ · 𝑞1(𝜏) + 𝑞2(𝜏)

)
𝜌𝑡,𝜏

+
(
∥𝑥𝑡 ∥ · 𝑞1(𝑘) + 𝑞2(𝑘)

)


𝑥(𝑤𝑡+𝑘 |𝑡) − 𝑥∗𝑡+𝑘 |𝑡


. (3.9c)

Here, we apply the principle of optimality to conclude that the optimal trajectory
from 𝑥𝑡 to 𝑥∗

𝑡+𝑘 |𝑡 (i.e., 𝜓𝑡+𝑘𝑡 (𝑥𝑡 , 𝑤∗𝑡:𝑡+𝑘−1, 𝑥
∗
𝑡+𝑘 |𝑡 ; I) in (3.9b)) is a sub-trajectory of the

clairvoyant optimal trajectory from 𝑥𝑡 (i.e., 𝜓𝑇𝑡 (𝑥𝑡 , 𝑤∗𝑡:𝑇 ; 𝐹𝑇 ) in (3.9a)), and (3.9c) is
obtained by directly applying perturbation bound (3.6). Note that ∥𝑥𝑡 ∥ ≤ 𝑅

𝐶3
+ 𝐷𝑥∗ ,

and that both 𝑥(𝑤𝑡+𝑘 |𝑡) and 𝑥∗
𝑡+𝑘 |𝑡 are inB(𝑥∗

𝑡+𝑘 ; 𝑅) by assumption and by perturbation
bound (3.7) specified in Property 3.2.1, we conclude that (3.8) hold for 𝑡 < 𝑇−𝑘 . The
case 𝑡 ≥ 𝑇 − 𝑘 can be shown similarly. We defer the detailed proof to Section 3.B.

Step 3: Bound the dynamic regret by
∑𝑇−1
𝑡=0 𝑒

2
𝑡 . This final step builds upon

perturbation bound (3.7), and aims at deriving dynamic regret bounds in a universal
way, as stated in Lemma 3.2.2 below. Specifically, under the assumption that a local
decaying perturbation bound in the form of (3.7) holds around the offline optimal
trajectory OPT, and the property that per-step errors 𝑒𝑡 are sufficiently small, we
can show that the online controller will not leave the “safe region” near the offline
optimal trajectory as specified in Property 3.2.1, and thus the dynamic regret of ALG
is bounded as in (3.10) (note that ALG is not confined to MPC, but is allowed to be
any algorithm with bounded per-step errors). We provide an intuitive illustration in
Figure 3.4. A complete proof of Lemma 3.2.2 can be found in Section 3.B.

Lemma 3.2.2. Let Property 3.2.1 hold. If the per-step errors of ALG satisfy 𝑒𝜏 ≤
𝑅/(𝐶2

3𝐿𝑔) for all time steps 𝜏 < 𝑡, the trajectory of ALG will remain close to OPT at
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𝑥0 𝑥∗1 𝑥∗2 𝑥∗3 𝑥∗4

𝑥1

𝑥2

𝑥3

Figure 3.4: Illustration of the per-step error accumulation over time.

time 𝑡, i.e., 𝑥𝑡 ∈ B(𝑥∗𝑡 , 𝑅/𝐶3). Further, if 𝑒𝑡 ≤ 𝑅/(𝐶2
3𝐿𝑔) for all 𝑡 < 𝑇 , the dynamic

regret of ALG is upper bounded by

cost(ALG) − cost(OPT) = 𝑂 ©­«
√√√

cost(OPT) ·
𝑇−1∑︁
𝑡=0

𝑒2
𝑡 +

𝑇−1∑︁
𝑡=0

𝑒2
𝑡

ª®¬ . (3.10)

Summary. Combining Steps 2 and 3 of the pipeline yields the following Pipeline
Theorem for MPC𝑘 (see Theorem 3.2.3). Basically it states that, when the prediction
horizon 𝑘 is sufficiently large and the prediction errors 𝜌𝑡,𝜏 are sufficiently small,
Lemma 3.2.1 and Lemma 3.2.2 can work together to make sure that MPC𝑘 never
leaves a (𝑅/𝐶3)-ball around the offline optimal trajectory OPT; thus we obtain a
dynamic regret bound.

Theorem 3.2.3 (The Pipeline Theorem). Let Property 3.2.1 hold. Suppose the
terminal cost 𝐹𝑡+𝑘 of MPC𝑘 is set to be the indicator function of some state 𝑥(𝑤𝑡+𝑘 |𝑡)
that satisfies 𝑥(𝑤𝑡+𝑘 |𝑡) ∈ B(𝑥∗𝑡+𝑘 , 𝑅) for all time steps 𝑡 < 𝑇 − 𝑘 . Further, suppose
the prediction errors 𝜌𝑡,𝜏 are sufficiently small and the prediction horizon 𝑘 is
sufficiently large, such that
𝑘∑︁
𝜏=0

((
𝑅

𝐶3
+ 𝐷𝑥∗

)
· 𝑞1(𝜏) + 𝑞2(𝜏)

)
𝜌𝑡,𝜏+2𝑅

((
𝑅

𝐶3
+ 𝐷𝑥∗

)
· 𝑞1(𝑘) + 𝑞2(𝑘)

)
≤ 𝑅

𝐶2
3𝐿𝑔

.

Then, the trajectory of MPC𝑘 will remain close to OPT, i.e., 𝑥𝑡 ∈ B(𝑥∗𝑡 , 𝑅/𝐶3) for
all time steps 𝑡, and the dynamic regret of MPC𝑘 is upper bounded by

cost(MPC𝑘 ) − cost(OPT) = 𝑂
(√︁

cost(OPT) · 𝐸 + 𝐸
)
, (3.11)

where 𝐸 :=
∑𝑘−1
𝜏=0 (𝑞1(𝜏) + 𝑞2(𝜏)) 𝑃(𝜏) +

(
𝑞1(𝑘)2 + 𝑞2(𝑘)2

)
𝑇 .

The proof of Theorem 3.2.3 can be found in Section 3.B. To interpret the dynamic
regret bound in (3.11), note that we have cost(OPT) = 𝑂 (𝑇) as a result of our model
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assumptions. Thus, the dynamic regret of ALG is in the order of
√
𝑇𝐸 + 𝐸 . When

there is no prediction error, the regret bound 𝑂 ((𝑞1(𝑘) + 𝑞2(𝑘)) ·𝑇) reproduces the
result in Lin, Hu, Shi, et al., 2021, and the bound will degrade as the prediction error
increases. It is also worth noticing that, when the prediction power improves over
time as the online controller learns the system better and 𝑘 = Ω(ln𝑇), the dynamic
regret can be 𝑜(𝑇).

Instantiation: Unconstrained LTV Systems
In this section, we consider the following special case of problem (3.5), where the
dynamics is LTV and the prediction error can only occur on the disturbances 𝑤𝑡 :

min
𝑥0:𝑇 ,𝑢0:𝑇−1

𝑇−1∑︁
𝑡=0

(
𝑓 𝑥𝑡 (𝑥𝑡) + 𝑓 𝑢𝑡 (𝑢𝑡)

)
+ 𝐹𝑇 (𝑥𝑇 )

s.t. 𝑥𝑡+1 = 𝐴𝑡𝑥𝑡 + 𝐵𝑡𝑢𝑡 + 𝑤∗𝑡 , ∀0 ≤ 𝑡 < 𝑇, (3.12)

𝑥0 = 𝑥(0).

We summarize all necessary assumptions below in Assumption 3.2.1.

Assumption 3.2.1. Assume the following holds for the online control problem in-
stance (3.12):

• Cost functions: { 𝑓 𝑥𝑡 }𝑇−1
𝑡=0 , { 𝑓

𝑢
𝑡 }𝑇−1

𝑡=0 , 𝐹𝑇 are nonnegative 𝜇-strongly convex and
ℓ-smooth. And we assume 𝑓 𝑥𝑡 (0) = 𝑓 𝑢𝑡 (0) = 𝐹𝑇 (0) = 0 without the loss of
generality.

• Dynamical systems: The LTV system {𝐴𝑡 , 𝐵𝑡} is 𝜎-uniform controllable with
controllability index 𝑑 1, and ∥𝐴𝑡 ∥ ≤ 𝑎, ∥𝐵𝑡 ∥ ≤ 𝑏, and ∥𝐵†𝑡 ∥ ≤ 𝑏′ hold for all
𝑡, where 𝐵†𝑡 denotes the Moore–Penrose inverse of matrix 𝐵𝑡 .

• Predicted quantities: ∥𝑤𝑡 ∥ ≤ 𝐷𝑤 holds for all 𝑤𝑡 ∈ W𝑡 and all 𝑡.

Under Assumption 3.2.1, we can again apply the perturbation bounds shown in Lin,
Hu, Shi, et al., 2021 to show Property 3.2.1. In particular, we already know that
for some constants 𝐻1 ≥ 1 and 𝜆1 ∈ (0, 1), perturbation bounds (3.6) and (3.7)
hold globally for 𝑞1(𝑡) = 0, 𝑞2(𝑡) = 𝐻1𝜆

𝑡
1, and 𝑞3(𝑡) = 𝐻1𝜆

𝑡
1. Since both of these

perturbation bounds hold globally, radius 𝑅 in Property 3.2.1 can be set arbitrarily,
and we shall take 𝑅 := max

{
𝐷𝑥∗ ,

2𝐿𝑔𝐻3
1

(1−𝜆1)3

}
so that Theorem 3.2.3 can be applied

to MPC𝑘 with terminal cost 𝐹𝑡+𝑘 (·;𝑤𝑡+𝑘 |𝑡) ≡ I(·; 0). This leads to the following
dynamic regret bound:

1Uniform controllability is defined in Assumption 3.1.2.
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Theorem 3.2.4. In the unconstrained LTV setting (3.12), under Assumption 3.2.1,
when the prediction horizon 𝑘 is sufficiently large such that 𝑘 ≥ ln

( 4𝐻3
1𝐿𝑔

(1−𝜆1)2

)
/ln(1/𝜆1),

the dynamic regret of MPC𝑘 (Algorithm 1) with terminal cost 𝐹𝑡+𝑘 (·;𝑤𝑡+𝑘 |𝑡) ≡ I(·; 0)
is bounded by

cost(MPC𝑘 ) − cost(OPT) ≤ 𝑂 ©­«
√√√
𝑇 ·

𝑘−1∑︁
𝜏=0

𝜆𝜏1𝑃(𝜏) + 𝜆
2𝑘
1 𝑇

2 +
𝑘−1∑︁
𝜏=0

𝜆𝜏1𝑃(𝜏)
ª®¬ .

A complete proof of Theorem 3.2.4 can be found in Appendix 3.B. When there
are no prediction errors, the bound in Theorem 3.2.4 reduces to 𝑂 (𝜆𝑘1𝑇), which
reproduces the result of Lin, Hu, Shi, et al., 2021. Further, it is also worth noticing
that due to the form of discounted sum

∑𝑘−1
𝜏=0 𝜆

𝜏
1𝑃(𝜏), prediction errors for the near

future matter more than those for the far future.

3.3 Application: Networked Online Convex Optimization
We consider online optimization in a networked system where each nodes individu-
ally decides on an action at each period and the objective is to minimize a global cost
over a finite time horizon 𝑘 . Specifically, we use a graph G = (V, E) to represent
the network whereV denotes the set of nodes. Two nodes 𝑣 and 𝑢 interact with each
other if and only if they are connected by an undirected edge (𝑣, 𝑢) ∈ E. At each
period 𝑡 = 1, 2, . . . , 𝐻, each node 𝑣 picks an 𝑛-dimensional local action 𝑥𝑣𝑡 ∈ 𝐷𝑣

𝑡 ,
where 𝑛 is a positive integer and 𝐷𝑣

𝑡 ⊂ R𝑛 is a convex set of feasible actions. The
global action at period 𝑡 is the vector of all local actions 𝑥𝑡 = {𝑥𝑣𝑡 }𝑣∈V , and incurs a
global cost, which is the sum of three types of local cost functions:

• Node costs: Each node 𝑣 incurs a time-varying node cost 𝑓 𝑣𝑡 (𝑥𝑣𝑡 ), which charac-
terizes the local preference for its local action 𝑥𝑣𝑡 .

• Temporal interaction costs: Each node 𝑣 incurs a time-varying temporal inter-
action cost 𝑐𝑣𝑡 (𝑥𝑣𝑡 , 𝑥𝑣𝑡−1), that characterizes how its previous local action interacts
with the current one.

• Spatial interaction costs: Each pair of nodes (𝑣, 𝑢) over an edge 𝑒 ∈ E incurs
a time-varying spatial interaction cost2 𝑠𝑒𝑡 (𝑥𝑣𝑡 , 𝑥𝑢𝑡 ). This characterizes how their
local actions affect each other.

In our model, the node cost is the part of the cost that only depends on a node’s current
local action. If the other two types of costs are zero, each node will trivially pick the

2Since 𝑒 is an undirected edge, the order in which we write the two inputs (the action of 𝑣
and the action of 𝑢) does not matter. Note that 𝑠𝑒𝑡 can be asymmetric for nodes 𝑣 and 𝑢, e.g.,
𝑠𝑒𝑡 (𝑥𝑣𝑡 , 𝑥𝑢𝑡 ) = 𝑠𝑒𝑡 (𝑥𝑢𝑡 , 𝑥𝑣𝑡 ) =



𝑥𝑣𝑡 + 2𝑥𝑢𝑡


2.
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minimizer of its node cost. Temporal interaction costs encourage the local actions
at each period to be “compatible” with the previous local actions. For example, a
temporal interaction could be a switching cost that penalizes large deviations from
the previous action in order to make the trajectory of local actions “smooth.” Such
switching costs can be found in work on single-node online optimization, e.g., Chen,
Goel, and Wierman (2018), Goel, Lin, et al. (2019), and Lin, Goel, and Wierman
(2020). In multi-product pricing, a general switching cost can be used to capture the
impact of the previous price on the current demand. Spatial interaction costs, on the
other hand, can be used to enforce some collective behavior among the nodes. For
example, spatial interaction can model the probability that one node’s actions affect
its neighbor’s actions in diffusion processes on social networks (Kempe, Kleinberg,
and Tardos, 2015); or model interactions between complement/substitute products
in multiproduct pricing (Candogan, Bimpikis, and Ozdaglar, 2012).

To this point, we summarize all necessary elements that define a specific instance of
the Networked OCO problem in Definition 3.3.1. This is useful later for defining the
class of Networked OCO problem we study and defining the performance metrics
rigorously.

Definition 3.3.1. An instance of the Networked OCO problem is characterized by
a tuple with 4 entries, (G, 𝐻, 𝑥0, { 𝑓 𝑣𝑡 , 𝑐𝑣𝑡 , 𝑠𝑒𝑡 , 𝐷𝑣

𝑡 }𝑡∈[𝐻],𝑣∈V,𝑒∈E), that contains the
graph, the number of periods, the initial actions, and the set of all local cost
functions/constraint sets.

To study any instance of the Networked OCO problem, it is useful to separate the
global cost at each period into two parts based on whether the cost term depends
only on the current global action or whether it also depends on the previous action.
Specifically, the part that depends only on the current global action 𝑥𝑡 is the sum
of all node costs and spatial interaction costs. We refer to this component as the
(global) hitting cost and denote it as

𝑓𝑡 (𝑥𝑡) :=
∑︁
𝑣∈V

𝑓 𝑣𝑡 (𝑥𝑣𝑡 ) +
∑︁
(𝑣,𝑢)∈E

𝑠
(𝑣,𝑢)
𝑡 (𝑥𝑣𝑡 , 𝑥𝑢𝑡 ).

The rest of the global cost involves the current global action 𝑥𝑡 and the previous
global action 𝑥𝑡−1. We refer to it as the (global) switching cost and denote it as

𝑐𝑡 (𝑥𝑡 , 𝑥𝑡−1) :=
∑︁
𝑣∈V

𝑐𝑣𝑡 (𝑥𝑣𝑡 , 𝑥𝑣𝑡−1).
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Given an instance 𝑝 of the Networked OCO problem, the objective of the de-
centralized online algorithm is to minimize the total global stage costs in a finite
horizon 𝐻 starting from a given initial global action 𝑥0 at period 0: cost𝑝 (ALG) :=∑𝐻
𝑡=1 ( 𝑓𝑡 (𝑥𝑡) + 𝑐𝑡 (𝑥𝑡 , 𝑥𝑡−1)) , where ALG denotes any decentralized online algorithm

used to solve the Networked OCO problem. The offline optimal cost is the clairvoy-
ant minimum cost one can incur on the same sequence of cost functions and the initial
global action 𝑥0 at time step 0, i.e., cost𝑝 (OPT) := min𝑥1:𝐻

∑𝐻
𝑡=1 ( 𝑓𝑡 (𝑥𝑡) + 𝑐𝑡 (𝑥𝑡 , 𝑥𝑡−1)) .

We measure the performance of any online algorithm ALG by the competitive ratio
(CR), which is a widely-used metric in the literature of online optimization, e.g.,
Chen, Goel, and Wierman (2018), Goel, Lin, et al. (2019), and Argue, Gupta, and
Guruganesh (2020). The competitive ratio is defined as the worst-case ratio between
cost𝑝 (ALG) and cost𝑝 (OPT) over a class of problem instances.

Definition 3.3.2. The competitive ratio of a given online algorithm ALG for a class
of problem instances P is the supremum of cost(ALG)/cost(OPT) over problem
instances in class P, i.e.,

CRP (ALG) := sup
𝑝∈P

cost𝑝 (ALG)/cost𝑝 (OPT).

Finally, we define the partial hitting and switching costs over subsets of the nodes.
In particular, for a subset of nodes 𝑆 ⊆ V, we denote the joint action over 𝑆 as
𝑥𝑆𝑡 := {𝑥𝑣𝑡 | 𝑣 ∈ 𝑆} and define the partial hitting cost and partial switching cost over
𝑆 as

𝑓 𝑆𝑡 (𝑥
𝑆+
𝑡 ) :=

∑︁
𝑣∈𝑆

𝑓 𝑣𝑡 (𝑥𝑣𝑡 ) +
∑︁

(𝑣,𝑢)∈E(𝑆+)
𝑠
(𝑣,𝑢)
𝑡 (𝑥𝑣𝑡 , 𝑥𝑢𝑡 ),

𝑐𝑆𝑡 (𝑥𝑆𝑡 , 𝑥𝑆𝑡−1) :=
∑︁
𝑣∈𝑆

𝑐𝑣𝑡 (𝑥𝑣𝑡 , 𝑥𝑣𝑡−1). (3.13)

This notation is useful for presenting decentralized online algorithms where the
optimizations are performed over the 𝑟-hop neighborhood of each node.

Predictions and Locality
We assume that each node has access to local cost functions up to a prediction horizon
𝑘 into the future, for themselves and their neighborhood up to an observation radius
𝑟. In more detail, recall that 𝑁𝑟𝑣 denotes the 𝑟-hop neighborhood of a node 𝑣, i.e.,
𝑁𝑟𝑣 := {𝑢 ∈ V | 𝑑G (𝑢, 𝑣) ≤ 𝑟}. To pick a local action 𝑥𝑣𝑡 at period 𝑡, node 𝑣 can use
𝑘 steps of future node costs, temporal interaction costs, and spatial interaction costs
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Figure 3.5: Illustration of available information for agent 𝑣 at period 𝑡 with
𝑘 = 2 and 𝑟 = 1, for the network with V = {𝑢1, 𝑢2, 𝑣, 𝑢3, 𝑢4} and E =

{(𝑢1, 𝑢2), (𝑢2, 𝑣), (𝑣, 𝑢3), (𝑢2, 𝑢3), (𝑢3, 𝑢4)}).

within its 𝑟-hop neighborhood, {{( 𝑓 𝑢
𝜏 |𝑡 , 𝑐

𝑢
𝜏 |𝑡) | 𝑢 ∈ 𝑁

𝑟
𝑣 }, {𝑠𝑒𝜏 |𝑡 | 𝑒 ∈ E(𝑁

𝑟
𝑣)}}𝑡≤𝜏<𝑡+𝑘 ,

and the previous local actions in 𝑁𝑟𝑣 : {𝑥𝑢𝑡−1 | 𝑢 ∈ 𝑁
𝑟
𝑣 }. Here, 𝑓 𝑢

𝜏 |𝑡 , 𝑐
𝑢
𝜏 |𝑡 , and 𝑠𝑒

𝜏 |𝑡 denote
the best predictions for the future true local cost functions 𝑓 𝑢𝜏 , 𝑐𝑢𝜏, 𝑠𝑒𝜏 (𝜏 > 𝑡) that we
can make at the current period 𝑡.

We provide an illustration of the local cost functions known to node 𝑣 at period 𝑡
in Figure 3.5. In the figure, the black circles, blue lines, and orange lines denote
the node costs, temporal interaction costs, and spatial interaction costs, respectively.
The known functions are marked by solid lines. Note that, in addition to the local
cost functions, node 𝑣 also knows the local actions in 𝑁𝑟𝑣 at period 𝑡 − 1, which are
not illustrated in the figure.

To ease the presentation, we first focus on the case when the 𝑘-step predictions
of cost functions are exact. Specifically, exact predictions mean 𝑓 𝑢

𝜏 |𝑡 = 𝑓 𝑢𝜏 , 𝑐
𝑢
𝜏 |𝑡 =

𝑐𝑢𝜏, 𝑠
𝑒
𝜏 |𝑡 = 𝑠𝑒𝜏 for all 𝑡 ≤ 𝜏 < 𝑡 + 𝑘 and 𝑢 ∈ V, 𝑒 ∈ E. Then, we discuss how to

model the prediction errors when the predictions are inexact and how they affect the
performance of the proposed algorithm.

Localized Predictive Control (LPC)
The design of LPC is inspired by the classical model predictive control (MPC)
framework (García, Prett, and Morari, 1989), which leverages all available infor-
mation at the current period to decide the current local action “greedily.” In our
context, when a node 𝑣 decides its action 𝑥𝑣𝑡 at time 𝑡, the available information
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includes previous local actions in the 𝑟-hop neighborhood and 𝑘-period predictions
of all local node costs and temporal/spatial interaction costs. The boundaries of all
available information, which are formed by {𝑡 − 1} × 𝑁𝑟𝑣 and 𝜕𝑁 (𝑘,𝑟)(𝑡,𝑣) , are illustrated
in Figure 3.6.

The pseudocode for LPC is presented in Algorithm 2. For each node 𝑣 at pe-
riod 𝑡, LPC fixes the actions on the boundaries of available information and then
solves for the optimal actions inside the boundaries. Specifically, for an instance
𝑝 = (G, 𝐻, 𝑥0, { 𝑓 𝑣𝑡 , 𝑐𝑣𝑡 , 𝑠𝑒𝑡 , 𝐷𝑣

𝑡 }𝑡∈[𝐻],𝑣∈V,𝑒∈E) of the Networked OCO problem, de-
fine 𝜓 (𝑘,𝑟)

𝑝,(𝑡,𝑣)

(
{𝑦𝑢
𝑡−1 | 𝑢 ∈ 𝑁

𝑟
𝑣 }, {𝑧𝑢𝜏 | (𝜏, 𝑢) ∈ 𝜕𝑁

(𝑘,𝑟)
(𝑡,𝑣) }

)
as the optimal solution of the

problem 3

min
𝑡+𝑘−1∑︁
𝜏=𝑡

(
𝑓
(𝑁𝑟−1
𝑣 )

𝜏

(
𝑥
(𝑁𝑟𝑣 )
𝜏

)
+ 𝑐(𝑁

𝑟
𝑣 )

𝜏

(
𝑥
(𝑁𝑟𝑣 )
𝜏 , 𝑥

(𝑁𝑟𝑣 )
𝜏−1

))
s.t. 𝑥𝑢𝑡−1 = 𝑦𝑢𝑡−1,∀𝑢 ∈ 𝑁

𝑟
𝑣 ,

𝑥𝑢𝜏 = 𝑧
𝑢
𝜏,∀(𝜏, 𝑢) ∈ 𝜕𝑁

(𝑘,𝑟)
(𝑡,𝑣) , (3.14)

𝑥𝑢𝜏 ∈ 𝐷𝑢
𝜏,∀(𝜏, 𝑢) ∈ 𝑁

(𝑘−1,𝑟−1)
(𝑡,𝑣) ,

where the partial hitting cost and partial switching cost 𝑓 𝑆𝜏 and 𝑐𝑆𝜏 for a subset 𝑆
of nodes were defined in (3.13). When the context is clear, we use the shorthand
𝜓
(𝑘,𝑟)
𝑝,(𝑡,𝑣)

(
{𝑦𝑢
𝑡−1}, {𝑧

𝑢
𝜏}

)
. Note that 𝜓 (𝑘,𝑟)

𝑝,(𝑡,𝑣)

(
{𝑦𝑢
𝑡−1}, {𝑧

𝑢
𝜏}

)
is a matrix of actions (in R𝑛)

indexed by (𝜏, 𝑢) ∈ 𝑁 (𝑘−1,𝑟−1)
𝑝,(𝑡,𝑣) . Once the parameters {𝑦𝑢

𝑡−1} and {𝑧𝑢𝜏} are fixed, the
node 𝑣 can leverage its local predictions to solve the optimization problem in (3.14).

LPC fixes the parameters {𝑦𝑢
𝑡−1} to be {𝑥𝑢

𝑡−1}, which are the previous local actions
in 𝑁𝑟𝑣 , and fixes the parameters {𝑧𝑢𝜏} to be the minimizers of the predicted local
node cost functions at nodes in 𝜕𝑁 (𝑘,𝑟)(𝑡,𝑣) . The selection of the parameters at nodes
in 𝜕𝑁 (𝑘,𝑟)(𝑡,𝑣) plays a similar role as the terminal cost of classical MPC in single-node
settings.

For a single-node system, MPC-style algorithms are perhaps the most prominent
approach for optimization-based control (García, Prett, and Morari, 1989) because
of their simplicity and excellent performance in practice. LPC extends the ideas
of MPC to a decentralized setting in a networked system by leveraging available

3To simplify notation, in cases when the prediction horizon exceeds the whole horizon length
𝐻, we adopt the convention that 𝑓 𝑣𝑡 (𝑥𝑣𝑡 ) =

𝜇

2


𝑥𝑣𝑡 

2, 𝑐𝑣𝑡 ≡ 𝑠𝑒𝑡 ≡ 0 and 𝐷𝑣𝑡 = R𝑛 for 𝑡 > 𝐻, where 𝜇

is the strongly convexity coefficient defined in Assumption 3.3.1. These extended definitions do not
affect our original problem with horizon 𝐻. Note that every node has access to exact predictions of
the local cost functions with 𝑡 > 𝐻 with this convention.
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predictions in both the temporal and spatial dimensions, whereas classical MPC
focuses only on the temporal dimension. This change makes our algorithm simple
and practical for applications including multi-product pricing but also leads to
significant technical challenges in the analysis. For ease of presentation, we first
study the case when all the predictions are exact and discuss how to generalize the
results to include inexact predictions.

Algorithm 2: Localized Predictive Control (for node 𝑣)
Parameters: Prediction horizon 𝑘 and observation radius 𝑟 .
for 𝑡 = 1 to 𝐻 do

Receive information {𝑥𝑢
𝑡−1 | 𝑢 ∈ 𝑁

𝑟
𝑣 } and the predictions

{{( 𝑓 𝑢
𝜏 |𝑡 , 𝑐

𝑢
𝜏 |𝑡) | 𝑢 ∈ 𝑁

𝑟
𝑣 }, {𝑠𝑒𝜏 |𝑡 | 𝑒 ∈ E(𝑁

𝑟
𝑣)}}𝑡≤𝜏<𝑡+𝑘 . (3.15)

Solve the optimization problem (3.14) with the predicted local cost
functions in (3.15):

𝜓
(𝑘,𝑟)
(𝑡,𝑣)

(
{𝑥𝑢𝑡−1 |𝑢 ∈𝑁

𝑟
𝑣 },

{
𝜃𝑢𝜏 | (𝜏, 𝑢) ∈𝜕𝑁

(𝑘,𝑟)
(𝑡,𝑣)

})
,

where 𝜃𝑢𝜏 := arg min𝑦∈𝐷𝑢𝜏 𝑓 𝑢𝜏 |𝑡 (𝑦).
Choose local action 𝑥𝑣𝑡 to be the (𝑡, 𝑣)-th element in the solution.

end

Our analysis is based on standard smoothness and convexity assumptions on the
local cost functions:

Assumption 3.3.1. For 𝜇 > 0, ℓ 𝑓 < ∞, ℓ𝑇 < ∞, ℓ𝑆 < ∞, the local cost functions and
feasible sets in an instance (G, 𝐻, 𝑥0, { 𝑓 𝑣𝑡 , 𝑐𝑣𝑡 , 𝑠𝑒𝑡 , 𝐷𝑣

𝑡 }𝑡∈[𝐻],𝑣∈V,𝑒∈E) of the Networked
OCO problem satisfy:

• 𝑓 𝑣𝑡 : R𝑛 → R≥0 is 𝜇-strongly convex, ℓ 𝑓 -smooth, and in 𝐶2;
• 𝑐𝑣𝑡 : R𝑛 × R𝑛 → R≥0 is convex, ℓ𝑇 -smooth, and in 𝐶2;
• 𝑠𝑒𝑡 : R𝑛 × R𝑛 → R≥0 is convex, ℓ𝑆-smooth, and in 𝐶2;
• 𝐷𝑣

𝑡 ⊆ R𝑛 satisfies 𝑖𝑛𝑡 (𝐷𝑣
𝑡 ) ≠ ∅ and can be written as𝐷𝑣

𝑡 := {𝑥𝑣𝑡 ∈ R𝑛 | (𝑔𝑣𝑡 )𝑖 (𝑥𝑣𝑡 ) ≤
0,∀1 ≤ 𝑖 ≤ 𝑚𝑣𝑡 }, where each (𝑔𝑣𝑡 )𝑖 : R𝑛 → R is a convex function in 𝐶2.

Intuitively, under Assumption 3.3.1, the Networked OCO problem becomes easier
as the coefficient 𝜇 increases. This is because a larger 𝜇 encourages each node to
choose its local action closer to the minimizer of the node cost function 𝑓 𝑣𝑡 , which
makes every node more “independent” from each other. In contrast, the problem
becomes more challenging as the coefficient ℓ𝑇 increases, because that strengthens
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Figure 3.6: Illustration of LPC with 𝑘 = 3, 𝑟 = 2 on a line graph (the underlying
graph is replicated over the time dimension). The orange node marks the decision
variable at (𝑡, 𝑣). The green part denotes the actions in 𝑁𝑟𝑣 at period (𝑡 − 1). The
blue “U” shape denotes the boundary of available predictions for node 𝑣 at period 𝑡.

the need to “coordinate” between the decisions at different periods. Similarly,
increasing the coefficient ℓ𝑆 or the maximum degree Δ of each node also makes the
problem harder by requiring more coordination between different nodes. Therefore,
the competitive ratio bounds that we derive depend on the quantities ℓ𝑇/𝜇 andΔℓ𝑆/𝜇,
which characterize the difficulty of a class of Networked OCO problems.

We define the set of possible configurations for Networked OCO Υ as

{(𝜇, ℓ 𝑓 , ℓ𝑇 , ℓ𝑆,Δ, ℎ) | 𝜇 ∈ R>0, ℓ 𝑓 ∈ R>0, ℓ𝑇 ∈ R≥0, ℓ𝑆 ∈ R≥0,Δ ∈ N, ℎ : N→ N}.

Each configuration tuple in Υ specifies a class of Networked OCO problems for
which we study the competitive ratio of LPC, and this relationship is defined formally
in Definition 3.3.3.

Definition 3.3.3. For any configuration tuple (𝜇, ℓ 𝑓 , ℓ𝑇 , ℓ𝑆,Δ, ℎ) ∈ Υ, we de-
fine P(𝜇, ℓ 𝑓 , ℓ𝑇 , ℓ𝑆,Δ, ℎ) as the set of problem instances of Networked OCO 𝑝 =

(G, 𝐻, 𝑥0, { 𝑓 𝑣𝑡 , 𝑐𝑣𝑡 , 𝑠𝑒𝑡 , 𝐷𝑣
𝑡 }𝑡∈[𝐻],𝑣∈V,𝑒∈E) that satisfy:

1. Assumption 3.3.1 with (𝜇, ℓ 𝑓 , ℓ𝑇 , ℓ𝑆);

2. degree(𝑣) ≤ Δ for every node 𝑣 ∈ V;

3.
��𝜕𝑁𝑟𝑣 �� ≤ ℎ(𝑟) for every node 𝑣 ∈ V and 𝑟 ∈ N.

Before presenting our main results in the most general form, we first provide two
examples that instantiate our competitive ratio bounds for LPC under specific pa-
rameters. The first example, Corollary 3.3.1, is a special instance of our main result
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(Theorem 3.3.5) when ℓ𝑇/𝜇 and Δℓ𝑆/𝜇 are bounded by some specific constants. A
formal proof can be found in Section 3.D.

Corollary 3.3.1. For any tuple 𝜐 = (𝜇, ℓ 𝑓 , ℓ𝑇 , ℓ𝑆,Δ, ℎ) ∈ Υ that satisfies Δ ≥ 3,
ℓ𝑇/𝜇 ≤ 0.88, Δℓ𝑆/𝜇 ≤ 0.28, and ℎ(𝛾) ≤ 𝐶 · 2𝛾/2 for some constant 𝐶 < ∞, if
the prediction horizon 𝑘 and observation radius 𝑟 are sufficiently large such that(
14 · 2−3𝑟 + 234 · 2−4𝑘 ) 𝐶2 ≤ 1

2 , then the competitive ratio of LPC for the problem
class P(𝜈), denoted as CRP(𝜐) (LPC), is bounded above by

1 +
(
1 + 𝐶′1 ·

ℓ 𝑓 + Δℓ𝑆 + 2ℓ𝑇
𝜇

· 𝐶2
)
· 2−𝑟 +

(
2 + 𝐶′2 ·

ℓ 𝑓 + Δℓ𝑆 + 2ℓ𝑇
𝜇

· 𝐶2
)
· 2−𝑘 ,

where 𝐶′1 < ∞ and 𝐶′2 < ∞ are numerical constants.

Corollary 3.3.1 shows that, if we increase the prediction horizon 𝑘 and observation
radius 𝑟 simultaneously, the competitive ratio of LPC improves exponentially to 1
with a decay factor of 1

2 . Besides the constant upper bounds on ℓ𝑇/𝜇 and Δℓ𝑆/𝜇, this
corollary also requires the boundary of any 𝛾-hop neighborhood to not grow too fast
(i.e., ℎ(𝛾) = 𝑂 (2𝛾/2)). Note that any graph such that ℎ(𝛾) = poly(𝛾) satisfies this
assumption. Corollary 3.3.1 is a special case of our general result, Theorem 3.3.5,
which holds for any ℓ𝑇/𝜇,Δℓ𝑆/𝜇, and ℎ(𝛾) (without the constraints), with decay
factors which (instead of 1/2) are functions of ℓ𝑇/𝜇 and Δℓ𝑆/𝜇. We note that the
decay factor is smaller than 1

2 for small enough ℓ𝑇/𝜇 and Δℓ𝑆/𝜇.

Our second example, Corollary 3.3.2, studies the dependence of the exponential
decay factor on the quantities ℓ𝑇/𝜇 and Δℓ𝑆/𝜇 as they approach zero. A formal
proof can be found in Section 3.D.

Corollary 3.3.2. For any tuple 𝜐 = (𝜇, ℓ 𝑓 , ℓ𝑇 , ℓ𝑆,Δ, ℎ) ∈ Υ that satisfies Δ ≥ 3,
ℓ𝑇/𝜇 ≤ 1

16 , ℓ𝑆/𝜇 ≤ Δ−7, if the prediction horizon 𝑘 and observation radius 𝑟 are
sufficiently large that Δ−6𝑟 + 4 · 2−12𝑘 ≤ 1

256 , then the competitive ratio of LPC for
the problem class P(𝜈), denoted as CRP(𝜐) (LPC), is bounded above by

1 +
(
1 + 𝐶′3 ·

ℓ 𝑓 + Δℓ𝑆 + 2ℓ𝑇
𝜇

)
·
(
Δ3ℓ𝑆
𝜇

) 𝑟
2

+
(
2 + 𝐶′4 ·

ℓ 𝑓 + Δℓ𝑆 + 2ℓ𝑇
𝜇

)
·
(
8ℓ𝑇
𝜇

) 𝑘
,

where 𝐶′3 and 𝐶′4 are numerical constants.

Corollary 3.3.2 shows that the constraint on ℎ(𝛾) can be relaxed when if the quantities
ℓ𝑇/𝜇 and Δℓ𝑆/𝜇 are sufficiently small. Further, the decay factor of the competitive
ratio bound tends to zero if Δ is a fixed constant and both ℓ𝑇/𝜇 and ℓ𝑆/𝜇 tend to
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zero. While we simplify the expression in Corollary 3.3.2 by adopting the worst-
case upper bound on ℎ(𝛾), i.e., ℎ(𝛾) ≤ Δ𝛾, our general result in Theorem 3.3.4
considers general ℎ(𝛾), which can give tighter bounds for the decay factors.

Perturbation Analysis for Networked OCO
The key idea underlying our analysis of LPC is that the impact of perturbations to
the actions at the boundaries of the available predictions of a node decays quickly,
in fact exponentially fast, in the distance of the boundary from the node. This quick
decay means that small errors cannot build up to hurt algorithm performance.

In this section, we formally study such perturbations by deriving several new results
that generalize perturbation bounds for Networked OCO. Our bounds capture both
the effect of temporal interactions as well as spatial interactions between node
actions, which is a more challenging problem compared to previous literature that
only considers either temporal interactions (Lin, Hu, Shi, et al., 2021) or spatial
interactions (Shin, Anitescu, and Zavala, 2022) but not both simultaneously.

More specifically, recall that for each node 𝑣 at period 𝑡, LPC solves an optimization
problem 𝜓

(𝑘,𝑟)
𝑝,(𝑡,𝑣) where actions on the boundaries of available predictions (i.e., {𝑡 −

1} × 𝑁𝑟𝑣 and 𝜕𝑁 (𝑘,𝑟)(𝑡,𝑣) ) are fixed. By the principle of optimality, we know that if the
actions on the boundaries are selected to be identical to the offline optimal actions,
one can decide the optimal current action for a node by solving 𝜓 (𝑘,𝑟)

𝑝,(𝑡,𝑣) . However,
due to the limits on the prediction horizon and observation radius, LPC can only
approximate the offline optimal actions on the boundaries (we do this by using the
minimizer of node cost functions). The key idea to our analysis of the optimality
gap of LPC is by first asking: If we perturb the parameters of 𝜓 (𝑘,𝑟)

𝑝,(𝑡,𝑣) , i.e., the fixed

actions on the prediction boundaries 𝜕𝑁 (𝑘,𝑟)(𝑡,𝑣) , how large is the resulting change
on the local action 𝑥𝑣𝑡 in the optimal solution to (3.14), which corresponds to the
decision of LPC?

Ideally, we would like the above impact to decay exponentially fast with respect to
either the prediction horizon 𝑘 or the observation radius 𝑟. We formalize this goal
as exponentially decaying local perturbation bound in Definition 3.3.4. We then
show in Theorems 3.3.3 and 3.3.4 that such bounds hold for the class of Networked
OCO problems in Definition 3.3.3.

Definition 3.3.4. We say an exponentially decaying local perturbation bound holds
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for the problem class P(𝜇, ℓ 𝑓 , ℓ𝑇 , ℓ𝑆,Δ, ℎ) if there exists non-negative constants

𝐶1 = 𝐶1(ℓ𝑇/𝜇, (Δℓ𝑆)/𝜇) < ∞ , 𝜌𝑇 = 𝜌𝑇 (ℓ𝑇/𝜇) < 1 , and 𝜌𝑆 = 𝜌𝑆 ((Δℓ𝑆)/𝜇) < 1 ,

such that for any 𝑝 ∈ P(𝜇, ℓ 𝑓 , ℓ𝑇 , ℓ𝑆,Δ, ℎ) and arbitrary, {(𝑦𝑢
𝑡−1)}, {(𝑧

𝑢
𝜏)}, and

{(𝑧𝑢𝜏)′}, we have:


𝜓 (𝑘,𝑟)
𝑝,(𝑡,𝑣)

(
{𝑦𝑢𝑡−1}, {𝑧

𝑢
𝜏}

)
(𝑡,𝑣) − 𝜓

(𝑘,𝑟)
𝑝,(𝑡,𝑣)

(
{𝑦𝑢𝑡−1}, {(𝑧

𝑢
𝜏)′}

)
(𝑡,𝑣)





≤ 𝐶1

∑︁
(𝑢,𝜏)∈𝜕𝑁 (𝑘,𝑟 )(𝑡 ,𝑣)

𝜌
|𝑡−𝜏 |
𝑇

𝜌
𝑑G (𝑣,𝑢)
𝑆



𝑧𝑢𝜏 − (𝑧𝑢𝜏)′

 .
Note that the exponentially decaying local perturbation bound in Definition 3.3.4
only consider the perturbations on {(𝑧𝑢𝜏)}, which are caused by the limited pre-
diction/observation power. We ignore the perturbations on {(𝑦𝑢

𝑡−1)} because we
quantify the error of LPC at each period by comparing its decision against the
clairvoyant optimal trajectory that starts from the same previous actions {(𝑥𝑢

𝑡−1)}.
The form of exponentially decaying local perturbation bound in Definition 3.3.4
is already sufficient to bound this per-period error, and the accumulation of past
per-period errors can be handled separately by exponentially decaying perturbation
bounds on the global scale, which previous works have established (Lin, Hu, Shi,
et al., 2021; Lin, Hu, Qu, et al., 2022).

We illustrate two important consequences of the exponentially decaying local per-
turbation bound before proving it holds for Networked OCO in the following section.
The first consequence is that when a unit of perturbation is applied to a node on
the prediction boundary, the magnitude of impact on the optimal solution decays
exponentially with respect to the temporal (or spatial) distance when the spatial (or
temporal) distance is fixed (see Figure 3.7). The second is that when we apply a unit
of perturbation at every node on the decision boundary, the impact on the decision
decays quickly when 𝑘 and 𝑟 are increased simultaneously. Only increasing either
one of 𝑘 or 𝑟 while the other is fixed cannot decrease the magnitude of the impact
significantly. We illustrate this effect in Figure 3.8.

As we discuss in Section 3.2, perturbation bounds are important because they
guarantee that (a) the online decision of predictive control is close to the clairvoyant
optimal action and (b) the past “error” does not accumulate over time.

Exponentially Decaying Perturbation Bounds
The exponentially decaying local perturbation bound defined above is similar in spirit
to two recent results, i.e., Lin, Hu, Shi, et al. (2021) derives a similar perturbation
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Figure 3.7: Simulation of exponentially decaying local perturbation bound. We
study the optimal solution to (3.14) when 𝑘 = 6, 𝑟 = 5. In the left figure, we perturb
the constraint at a random node in {(𝑡, 𝑢) | 𝑢 ∈ 𝜕𝑁𝑟𝑣 } for 𝑡 = 0, 1, . . . , 4 and study
the impact at node (0, 𝑣). In the right figure, we perturb the constraint at a random
node in {(𝑘 − 1, 𝑢) | 𝑢 ∈ 𝜕𝑁 𝑗

𝑣 } for 𝑗 = 0, 1, . . . , 4 and study the impact at node
(0, 𝑣).
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Figure 3.8: The aggregated impact of boundary perturbations when the prediction
horizon and observation radius are (𝑘, 𝑟). For each (𝑘, 𝑟) pair in {1, . . . , 5}2, we
generate a uniform random perturbation on every boundary constraint at the nodes
in 𝜕𝑁 (𝑘,𝑟)(𝑡,𝑣) and study the impact on the decision at node (𝑡, 𝑣). We take log on the
impact magnitude, and lighter color means the impact is stronger. From the figure,
we see that one need to balance 𝑘 and 𝑟 to reduce the impact of prediction errors on
the decision boundary.
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bound for line graphs and Shin, Anitescu, and Zavala (2022) for general graphs with
local perturbations. In fact, one may attempt to derive such a bound by applying
these results directly; however, a major weakness of the direct approach is that it will
yield 𝜌𝑇 = 𝜌𝑆, i.e., it cannot distinguish between spatial and temporal dependencies,
and the bound deteriorates as max{ℓ𝑇/𝜇, ℓ𝑆/𝜇} increases. For instance, even if the
temporal interactions are weak (i.e., ℓ𝑇/𝜇 ≈ 0), 𝜌𝑇 = 𝜌𝑆 can still be close to 1 if
ℓ𝑆/𝜇 is large, leading to a large slack in the perturbation bound for small prediction
horizons 𝑘 .

We overcome this limitation by redefining the action variables. Specifically, to focus
on the temporal decay effect, we regroup all local actions in {𝜏} × 𝑁𝑟𝑣 as a “large”
decision variable for period 𝜏 (in Figure 3.5 we would group each horizontal blue
plane in 𝑁𝑟𝑣 to create a new variable). After regrouping, we have (𝑘 + 1) “large”
decision variables located on a line graph, where the strength of the interactions
between consecutive variables is upper bounded by ℓ𝑇 . On the other hand, to focus
on spatial decay, we regroup all local actions in {𝜏 | 𝑡 − 1 ≤ 𝜏 < 𝑡 + 𝑘} × {𝑣} as a
decision variable (in Figure 3.5 we would group each vertical orange line connecting
from 𝑡−1 to 𝑡+𝑘−1 to create a new variable). After regrouping, we have |V| “large”
decision variables located on G, where the strength of the interactions between two
neighbors is upper bounded by ℓ𝑆. Averaging over the two perturbation bounds
(since we have two valid bounds, their average is also a valid bound) provides
the following exponentially decaying local perturbation bound (see Section 3.D for
details of the proof).

Theorem 3.3.3. For any tuple (𝜇, ℓ 𝑓 , ℓ𝑇 , ℓ𝑆,Δ, ℎ) ∈ Υ, the exponentially de-
caying local perturbation bound (Definition 3.3.4) holds for the problem class
P(𝜇, ℓ 𝑓 , ℓ𝑇 , ℓ𝑆,Δ, ℎ) with 𝐶1 =

2
√
Δℓ𝑆ℓ𝑇
𝜇

, and

𝜌𝑇 =

√︂
1 − 2

(√︁
1 + (2ℓ𝑇/𝜇) + 1

)−1
, 𝜌𝑆 =

√︂
1 − 2

(√︁
1 + (Δℓ𝑆/𝜇) + 1

)−1
.

Note that, as ℓ𝑇/𝜇 (respectively ℓ𝑆/𝜇) tends to zero, 𝜌𝑇 (respectively 𝜌𝑆) in Theo-
rem 3.3.3 also tends to zero with the scaling 𝜌𝑇 = Θ(

√︁
ℓ𝑇/𝜇) (resp. 𝜌𝑆 = Θ(

√︁
ℓ𝑆/𝜇)).

One may wonder if it is possible to derive a tighter bound on the decay factor. For
example, if we can show 𝜌𝑇 = Θ(ℓ𝑇/𝜇) and 𝜌𝑆 = Θ(ℓ𝑆/𝜇), the lower bound on 𝑘
and 𝑟 to achieve a target competitive ratio can be decreased by half.

Next, we provide a tighter bound (through a refined analysis) for the regime where
𝜇 is much larger than ℓ𝑇 , ℓ𝑆. Specifically, we establish a bound with the scaling
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𝜌𝑇 = Θ(ℓ𝑇/𝜇) and 𝜌𝑆 = Θ(ℓ𝑆/𝜇). Again, it is not possible to obtain this result from
previous perturbation bounds in the literature.

Theorem 3.3.4. Consider a tuple (𝜇, ℓ 𝑓 , ℓ𝑇 , ℓ𝑆,Δ, ℎ) ∈ Υ. Given any 𝑏1, 𝑏2 > 0,

define 𝑎 =
∑
𝛾≥0( 1+𝑏1

1+𝑏1+𝑏2
)𝛾ℎ(𝛾), 𝑎̃ =

∑
𝛾≥0( 1

1+𝑏1
)𝛾ℎ(𝛾) and 𝛾𝑆 =

√
1+Δℓ𝑆/𝜇−1√
1+Δℓ𝑆/𝜇+1

.

Suppose 𝑎, 𝑎̃ < ∞ and 𝜇 ≥ max{8𝑎̃ℓ𝑇 ,Δℓ𝑆 (𝑏1 + 𝑏2)/4}. Then the exponentially
decaying local perturbation bound (Definition 3.3.4) holds for P(𝜇, ℓ 𝑓 , ℓ𝑇 , ℓ𝑆,Δ, ℎ)
with 𝐶1 = max{ 𝑎2

2𝑎̃(1−4𝑎̃ℓ𝑇/𝜇) ,
2𝑎2Δℓ𝑆/𝜇

𝛾𝑆 (1+𝑏1+𝑏2) (1−4𝑎̃ℓ𝑇/𝜇) }

𝜌𝑇 =
4𝑎̃ℓ𝑇
𝜇
, 𝜌𝑆 = (1 + 𝑏1 + 𝑏2)𝛾𝑆 .

Note that 𝜌𝑇 , 𝜌𝑆 < 1 follow from the condition on 𝜇. Also observe that 𝛾𝑆 = Θ(ℓ𝑆/𝜇)
as ℓ𝑆/𝜇→ 0.

The main difference between this result and Theorem 3.3.3 is, instead of dividing
and redefining the action variables, we explicitly write down the perturbations along
spatial edges and along temporal edges in the original temporal-spatial graph. We
observe that per-period spatial interactions are characterized by a banded matrix and
that the inverse of the banded matrix exhibits exponential correlation decay, which
implies the exponentially decaying local perturbation bounds holds if the perturbed
boundary action and the impacted local action we consider are at the same the time
step. However, for a multi-period problem, to characterize the impact at a local
action at some time step due to perturbation at a boundary action at a different time
step is a difficult problem. To address this difficulty, the main technical contribution
of our proof is to establish that a product of exponentially decaying matrices still
satisfies exponential decay under the conditions in Theorem 3.3.4.

Our condition on 𝑎, 𝑎̃ < ∞ and 𝜇 > max{8𝑎̃ℓ𝑇 ,Δℓ𝑆 (𝑏1 + 𝑏2)/4} characterizes a
tradeoff between the allowable neighborhood boundary sizes ℎ(𝛾), and how large 𝜇
needs to be compared to the interaction cost parameters ℓ𝑇 , ℓ𝑆. At one extreme, if
ℎ(𝛾) = Δ𝛾, then by setting 𝑏1 = 2Δ− 1 and 𝑏2 = 4Δ2 − 2Δ, we obtain 𝑎 = 𝑎̃ = 2 but
must make a strong requirement on 𝜇, namely, 𝜇 > max{16ℓ𝑇 ,Δ3ℓ𝑆 (1 − 1

4Δ2 )} (as
we discussed in Corollary 3.3.2). At the other extreme, if ℎ(𝛾) ≤ 𝑂 (𝑝𝑜𝑙𝑦(𝛾)) (as
is the case if G is a grid), then 𝑎, 𝑎̃ < ∞ holds for any 𝑏1, 𝑏2 > 0 and we can impose
a weaker requirement on 𝜇: for example, taking 𝑏1 = 𝑏2 = 1 yields a requirement
𝜇 > max{8𝑎̃ℓ𝑇 ,Δℓ𝑆/2} (where 𝑎̃ =

∑
𝛾≥0( 12 )

𝛾ℎ(𝛾)); which grows only linearly in
Δ, and compares favorably with the 𝜇 > Ω(Δ3) requirement which arose earlier.
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From Perturbations to Competitive Bounds
We now present our main result, which bounds the competitive ratio of LPC using
the exponentially decaying local perturbation bounds defined in the previous section.

Before presenting the result, we first provide some intuition as to why the pertur-
bation bounds are useful for deriving the competitive ratio bound. Specifically, to
bound the competitive ratio requires bounding the gap between LPC’s trajectory
and the offline optimal trajectory. This gap comes from the following two sources:
(i) the per-period error made by LPC due to its limited prediction horizon and ob-
servation radius; and (ii) the cumulative impact of all per-period errors made in the
past. Intuitively, the local perturbation bounds allow us to bound the per-period
error made jointly by all nodes in LPC. Then, we use the perturbation bounds from
Lin, Hu, Shi, et al. (2021) to help us bound the second type of cumulative errors:
Although a per-period error is incurred at every period, the impact of past errors
decays exponentially fast, so their accumulative effect does not grow with respect to
time.

We present our main result in the following theorem. A formal proof can be found
in Section 3.D.

Theorem 3.3.5. For any tuple 𝜈 = (𝜇, ℓ 𝑓 , ℓ𝑇 , ℓ𝑆,Δ, ℎ) ∈ Υ, suppose the exponen-
tially decaying local perturbation bound (Definition 3.3.4) holds with the decay
factors 𝜌𝑇 and 𝜌𝑆. Define

𝜌𝐺 := 1 − 2 ·
(√︁

1 + (2ℓ𝑇/𝜇) + 1
)−1

, and 𝐶3(𝑟) :=
𝑟∑︁
𝛾=0

ℎ(𝛾) · 𝜌𝛾
𝑆
, for all 𝑟 ∈ N.

If the prediction horizon 𝑟 and observation radius 𝑘 are large enough such that
ℎ(𝑟)2 · 𝜌2𝑟

𝑆
+𝐶3(𝑟)2 · 𝜌2𝑘

𝑇
· 𝜌2𝑘
𝐺
≤ 𝑐1 = 𝑐1(ℓ 𝑓 /𝜇, ℓ𝑇/𝜇, (Δℓ𝑆)/𝜇), then the competitive

ratio of LPC for the problem class P(𝜈) is bounded above as

CRP(𝜐) (LPC) = 1 +𝑂
(
ℎ(𝑟)2 · 𝜌𝑟𝑆

)
+𝑂

(
𝐶3(𝑟)2 · 𝜌𝑘𝑇

)
.

Here theΩ(·) and𝑂 (·) notations hide factors that depend polynomially on ℓ 𝑓 /𝜇, ℓ𝑇/𝜇,
and (Δℓ𝑆)/𝜇; see Appendix 3.D.

Recall that ℎ(𝑟) denotes the size of the largest 𝑟-hop boundary in G. The bound
in Theorem 3.3.5 implies that if ℎ(𝑟) can be upper bounded by 𝑝𝑜𝑙𝑦(𝑟) · 𝜌−

(1− 𝜄)𝑟
2

𝑆

for some constant 𝜄 > 0, the competitive ratio of LPC can be upper bounded by
1 + 𝑂 (𝜌𝜄𝑟

𝑆
) + 𝑂 (𝜌𝑘

𝑇
), because 𝐶3(𝑟) can be upper bounded by some constant that
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depends on 𝜄 in this case. Therefore, the competitive ratio improves exponentially
with respect to the prediction horizon 𝑘 and observation radius 𝑟 (see Corollary 3.3.1
for an example). Note that the assumption ℎ(𝑟) ≤ 𝑝𝑜𝑙𝑦(𝑟) · 𝜌−

(1− 𝜄)𝑟
2

𝑆
is not partic-

ularly restrictive: For commonly seen graphs like an 𝑚-dimensional grid, ℎ(𝑟) is
polynomial in 𝑟, so 𝜄 = 1 works.

More generally, note that 𝜌𝑆 will converge to zero as ℓ𝑆 tends to 0. Thus, for graphs
with bounded degree Δ < ∞, there exists 𝛿 = 𝛿(Δ) > 0 such that, when ℓ𝑆/𝜇 ≤ 𝛿,
the spatial decay factor 𝜌𝑆 (from either Theorem 3.3.3 or Theorem 3.3.4) will be
small enough that, e.g., ℎ(𝑟) ≤ Δ𝑟 = 𝑂 (𝜌−

𝑟
4

𝑆
); i.e., 𝜄 = 1/2 works. Therefore,

we can eliminate the dependence on ℎ(𝑟) and 𝐶3(𝑟) in the competitive ratio by
making additional assumptions on ℓ𝑆/𝜇, and a concrete example has been discussed
in Corollary 3.3.2.

A Lower Bound
In this section, we show the competitive ratio in Theorem 3.3.5 is order-optimal by
deriving a lower bound on the competitive ratio of any decentralized online algorithm
with prediction horizon 𝑘 and observation radius 𝑟 . The specific constants and a
proof of Theorem 3.3.6 can be found in Section 3.D.

Theorem 3.3.6. Consider any tuple 𝜈 = (𝜇, ℓ 𝑓 , ℓ𝑇 , ℓ𝑆,Δ, ℎ) ∈ Υ that satisfiesΔ ≥ 3.
The competitive ratio of any decentralized online algorithm ALG with prediction
horizon 𝑘 and observation radius 𝑟 for the problem class P(𝜈) is bounded below as

CRP(𝜐) (ALG) = 1 +Ω(𝜆𝑘𝑇 ) +Ω(𝜆
𝑟
𝑆).

Here, the decay factor 𝜆𝑇 is given by 𝜆𝑇 =

(
1 − 2

(√︁
1 + (4ℓ𝑇/𝜇) + 1

)−1
)2

. The de-

cay factor𝜆𝑆 is given by𝜆𝑆 = (Δℓ𝑆/𝜇)
3+3(Δℓ𝑆/𝜇) ifΔℓ𝑆/𝜇 < 𝑐0; 𝜆𝑆 =

(
1 − 4

√
3 · (Δℓ𝑆/𝜇)−

1
2

)2

otherwise, where 𝑐0 ≈ 267.3 is a numerical constant. The Ω(·) notation hides fac-
tors that depend polynomially on 1/𝜇, ℓ𝑇 , and ℓ𝑆.

While Theorem 3.3.6 highlights that Theorem 3.3.5 is order-optimal, the decay
factors 𝜆𝑇 , 𝜆𝑆 in the lower bound differ from their counterparts 𝜌𝑇 , 𝜌𝑆 in the upper
bound for LPC. To understand the magnitude of the difference, we compare the
bounds on graphs with bounded degree Δ. The decay factors are a function of the
interaction strengths, which are measured by ℓ𝑆/𝜇 and ℓ𝑇/𝜇. Our lower bound on
the temporal decay factor 𝜆𝑇 and upper bound 𝜌𝑇 only differ by a constant factor in
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the log-scale, and the same holds for the lower/upper bound in terms of the spatial
decay factor.

To formalize this comparison, we derive a resource augmentation bound that bounds
the additional “resources” that LPC needs to outperform the optimal decentralized
online algorithm.4 Here the prediction horizon 𝑘 and the observation radius 𝑟 can
be viewed as the “resources” available to a decentralized online algorithm in our
setting. We ask how large do 𝑘 and 𝑟 given to LPC need to be, to ensure that it
beats the optimal decentralized online algorithm given an observation radius 𝑟∗ and
prediction horizon 𝑘∗?

We formally state our result in the following corollary and provide a proof in
Section 3.D.

Corollary 3.3.7. Consider any tuple 𝜈 = (𝜇, ℓ 𝑓 , ℓ𝑇 , ℓ𝑆,Δ, ℎ) ∈ Υ that satisfies
Δ ≥ 3 and ℎ(𝛾) = poly(𝛾) · 𝜌−𝛾/4

𝑆
, where the 𝑂̃ notation hides a factor that

depends polynomially on 𝛾. Suppose the optimal decentralized online algorithm
achieves a competitive ratio of 𝑐(𝑘∗, 𝑟∗) on the problem class P(𝜈) with prediction
horizon 𝑘∗ and observation radius 𝑟∗. There exists a mapping (𝑘∗, 𝑟∗) → (𝑘, 𝑟)
such that LPC with prediction horizon 𝑘 and observation radius 𝑟 is at least as
good as that of the optimal decentralized online algorithm on class P(𝜈) and
sup𝑟∗ lim sup𝑘∗→∞ 𝑘/𝑘∗ ≤ 4 and sup𝑘∗ lim sup𝑟∗→∞ 𝑟/𝑟∗ ≤ 32.

Note that we establish Corollary 3.3.7 based on the local perturbation bound in The-
orem 3.3.3 rather than Theorem 3.3.4. This approach does not require assumptions
on the relationship among 𝜇, ℓ𝑇 , and ℓ𝑆. In contrast, Theorem 3.3.4 can give better
resource augmentation bounds under stronger assumptions on 𝜇, ℓ𝑇 , and ℓ𝑆, which
we state formally below and provide a proof in Section 3.D.

Corollary 3.3.8. Consider any tuple 𝜈 = (𝜇, ℓ 𝑓 , ℓ𝑇 , ℓ𝑆,Δ, ℎ) ∈ Υ that satisfiesΔ ≥ 3
and ℓ𝑇/𝜇 ≤ 1

16 , ℓ𝑆/𝜇 ≤ Δ−7. Suppose the optimal decentralized online algorithm
achieves a competitive ratio of 𝑐(𝑘∗, 𝑟∗) on the problem class P(𝜈) with prediction
horizon 𝑘∗ and observation radius 𝑟∗. There exists a mapping (𝑘∗, 𝑟∗) → (𝑘, 𝑟)
and a positive constant 𝐶 = 𝐶 (Δ) < ∞ such that LPC with prediction horizon 𝑘
and observation radius 𝑟 is at least as good as that of the optimal decentralized
online algorithm on class P(𝜈) and sup𝑟∗ lim sup𝑘∗→∞ 𝑘/𝑘∗ ≤ 1+𝐶/log(𝜇/ℓ𝑇 ) and
sup𝑘∗ lim sup𝑟∗→∞ 𝑟/𝑟∗ ≤ 2 + 𝐶/log(𝜇/ℓ𝑆).

4See, e.g., Roughgarden (2020), for an introduction to this flavor of bounds for expressing the
near-optimality of an algorithm.
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In the extreme that the ratios ℓ𝑇/𝜇 and ℓ𝑆/𝜇 tends to 0, to match the competitive
ratios of the optimal decentralized algorithm, the resources required by LPC satisfies
𝑘/𝑘∗ → 1 and 𝑟/𝑟∗ → 2. Here, 𝑟/𝑟∗ does not converge to 1 because we do not make
additional assumptions about the function ℎ, which characterizes how fast the 𝛾-hop
neighborhood in G grows. Thus, a part of the spatial decay factor 𝜌𝑆 is diverted to
handle the exponentially growing ℎ. To improve the convergence limit to 𝑟/𝑟∗ → 1,
we need to additionally assume the boundary size function ℎ grows polynomially,
i.e., ℎ(𝛾) = poly(𝛾).

Inexact Predictions
In this section, we discuss how to generalize the performance bounds for LPC
(Algorithm 2) to the case when the predictions of future cost function are inexact,
i.e., the predicted functions { 𝑓 𝑢

𝜏 |𝑡 , 𝑐
𝑢
𝜏 |𝑡 , 𝑠

𝑒
𝜏 |𝑡} are different from the true functions

{ 𝑓 𝑢𝜏 , 𝑐𝑢𝜏, 𝑠𝑒𝜏}. Here, we use the subscript 𝜏 | 𝑡 to denote the prediction for period 𝜏
(𝜏 ≥ 𝑡) made at period 𝑡. Such cases can arise naturally in applications, for example,
when we predict the future demand functions in multi-product pricing.

Under inexact predictions, the degradation of the performance depends on the mag-
nitude of the prediction errors. To quantify such errors, we make a structural
assumption by assuming that the uncertainty on each local cost function comes
from an uncertainty parameter and the prediction error of this function is the result
of noisy estimation of its uncertainty parameter. Specifically, we introduce the
notations of generalized local cost functions

𝑓 𝑢𝑡 : R𝑑 ×Ω𝑢 → R≥0, 𝑐
𝑢
𝑡 : R𝑑 × R𝑑 × A𝑢 → R≥0, 𝑠

𝑒
𝑡 : R𝑑 × R𝑑 × B𝑒 → R≥0,

which can help to put both the true and the predicted cost functions under a unified
framework. Here, {Ω𝑢}𝑢∈V , {A𝑢}𝑢∈V , and {B𝑒}𝑒∈E are convex compact subsets of
a finite-dimension Euclidean space R𝑚. The relationship between the generalized
local cost functions and the true/predicted local cost functions are summarized in
the table below:

True cost function at period 𝜏 Prediction made at period 𝑡 (𝑡 ≤ 𝜏 < 𝑡 + 𝑘)
Node 𝑓 𝑢𝜏 (𝑥𝑢𝜏) := 𝑓 𝑢𝜏 (𝑥𝑢𝜏 ; (𝜔𝑣𝜏)∗) 𝑓 𝑢

𝜏 |𝑡 (𝑥
𝑢
𝜏 |𝑡 ) := 𝑓 𝑢𝜏 (𝑥𝑢𝜏 |𝑡 ;𝜔

𝑣
𝜏 |𝑡 )

Temporal 𝑐𝑣𝜏 (𝑥𝑣𝜏 , 𝑥𝑣𝜏−1) := 𝑐𝑣𝜏 (𝑥𝑣𝜏 , 𝑥𝑣𝜏−1; (𝛼𝑣𝜏)∗) 𝑐𝑣
𝜏 |𝑡 (𝑥

𝑣
𝜏 , 𝑥

𝑣
𝜏−1) := 𝑐𝑣𝜏 (𝑥𝑣𝜏 , 𝑥𝑣𝜏−1;𝛼𝑣

𝜏 |𝑡 )
Spatial 𝑠𝑒𝜏 (𝑥𝑢𝜏 , 𝑥𝑣𝜏) := 𝑠𝑒𝜏 (𝑥𝑢𝜏 , 𝑥𝑣𝜏 ; (𝛽𝑒𝜏)∗) 𝑠𝑒

𝜏 |𝑡 (𝑥
𝑢
𝜏 , 𝑥

𝑣
𝜏) := 𝑠𝑒𝜏 (𝑥𝑢𝜏 , 𝑥𝑣𝜏 ; 𝛽𝑒

𝜏 |𝑡 ).

Previous works (Chen, Agarwal, et al., 2015; Chen, Comden, et al., 2016; Lin, Hu,
Qu, et al., 2022) also use similar ways to parameterize the prediction errors. With the
notation of generalized local cost functions, we can measure the prediction errors,
i.e., the error for predicting 𝜏 periods into the future, by the total distance between
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true/predicted uncertainty parameters (see, e.g., Γ𝜏 defined in Theorem 3.3.10). An
instance of Networked OCO with inexact predictions problem is characterized by the
generalized cost function, the ground truth uncertainty parameters, and the predicted
uncertainty parameters. We provide the formal definition in Definition 3.3.5.

Definition 3.3.5. An instance of the Networked OCO with inexact predictions is
characterized by a tuple with 7 entries,

(G, 𝐻, 𝑥0, { 𝑓 𝑣𝑡 , 𝑐𝑣𝑡 , 𝑠𝑒𝑡 , 𝐷𝑣
𝑡 }𝑡∈[𝐻],𝑣∈V,𝑒∈E , {Ω𝑣,A𝑣,B𝑒}𝑣∈V,𝑒∈E , {𝜉∗𝑡 }𝑡∈[𝐻] , {𝜉𝑡}𝑡∈[𝐻]),

that contains the graph, the number of periods, the initial decisions, the set of all
cost functions/constraint sets, the sets of uncertainty parameters, the ground true
uncertainty parameters, and the predicted uncertainty parameters. Here, for every
𝑡 ∈ [𝐻], we use the notations

𝜉∗𝑡 = {(𝜔𝑣𝑡 )∗, (𝛼𝑣𝑡 )∗, (𝛽𝑒𝑡 )∗}𝑣∈V,𝑒∈E , and 𝜉𝑡 = {𝜔𝑣𝜏 |𝑡 , 𝛼
𝑣
𝜏 |𝑡 , 𝛽

𝑒
𝜏 |𝑡}𝑡≤𝜏<𝑡+𝑘,𝑣∈V,𝑒∈E .

Based on the results we have derived for LPC with exact prediction, a critical step
in our proof is to bound the difference between the decisions of LPC with inexact
predictions and its counterpart with exact predictions in terms of the magnitude of
the prediction errors. To achieve this, we show a generalized local exponentially
decaying perturbation bound that also considers the perturbations on uncertainty
parameters. The proof of the generalized perturbation bound requires an additional
assumption that the gradients of the generalized local cost functions with respect to
decision variables are ℓ𝑤-Lipschitz in uncertainty parameters.

Assumption 3.3.2. For 𝜇 > 0, ℓ 𝑓 < ∞, ℓ𝑇 < ∞, ℓ𝑆 < ∞, ℓ𝑤 < ∞, the local cost
functions and feasible sets for all 𝑡 ∈ [𝐻], 𝑣 ∈ V, 𝑒 ∈ E satisfy:

• For every 𝑣 ∈ V and 𝑒 ∈ E, Ω𝑣,A𝑣, and B𝑒 are convex compact subsets of R𝑚.
• 𝐷𝑣

𝑡 ⊆ R𝑛 satisfies 𝑖𝑛𝑡 (𝐷𝑣
𝑡 ) ≠ ∅ and can be written as𝐷𝑣

𝑡 := {𝑥𝑣𝑡 ∈ R𝑛 | (𝑔𝑣𝑡 )𝑖 (𝑥𝑣𝑡 ) ≤
0,∀1 ≤ 𝑖 ≤ 𝑚𝑣𝑡 }, where each (𝑔𝑣𝑡 )𝑖 : R𝑛 → R is a convex function in 𝐶2.

• 𝑓 𝑣𝑡 : R𝑛 ×Ω𝑣 → R≥0 is in 𝐶2. It also satisfies that

𝜇𝐼𝑛 ⪯ ∇2
𝑥𝑣𝑡
𝑓 𝑣𝑡 (𝑥𝑣𝑡 ;𝜔𝑣𝑡 ) ⪯ ℓ 𝑓 𝐼𝑛,∀𝑥𝑣𝑡 ∈ R𝑛, 𝜔𝑣𝑡 ∈ Ω𝑣,

∇𝜔𝑣𝑡 ∇𝑥𝑣𝑡 𝑓 𝑣𝑡 (𝑥𝑣𝑡 ;𝜔𝑣𝑡 )

 ≤ ℓ𝑤,∀𝑥𝑣𝑡 ∈ 𝐷𝑣

𝑡 , 𝜔
𝑣
𝑡 ∈ Ω𝑣 .

• 𝑐𝑣𝑡 : R𝑛 × R𝑛 × A𝑣 → R≥0 is in 𝐶2. It also satisfies that

0 ⪯ ∇2
(𝑥𝑣𝑡 ,𝑥𝑣𝑡−1)

𝑐𝑣𝑡 (𝑥𝑣𝑡 , 𝑥𝑣𝑡−1;𝛼𝑣𝑡 ) ⪯ ℓ𝑇 𝐼2𝑛,∀𝑥𝑣𝑡 , 𝑥𝑣𝑡−1 ∈ R
𝑛, 𝛼𝑣𝑡 ∈ A𝑣,


∇𝛼𝑣𝑡 ∇(𝑥𝑣𝑡 ,𝑥𝑣𝑡−1)𝑐

𝑣
𝑡 (𝑥𝑣𝑡 , 𝑥𝑣𝑡−1;𝛼𝑣𝑡 )




 ≤ ℓ𝑤,∀𝑥𝑣𝑡 , 𝑥𝑣𝑡−1 ∈ 𝐷
𝑣
𝑡 , 𝛼

𝑣
𝑡 ∈ A𝑣 .
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• 𝑠𝑒𝑡 : R𝑛 × R𝑛 × B𝑒 → R≥0 is in 𝐶2. Let 𝑒 = (𝑢, 𝑣). It also satisfies that

0 ⪯ ∇2
(𝑥𝑢𝑡 ,𝑥𝑣𝑡 )

𝑠𝑒𝑡 (𝑥𝑢𝑡 , 𝑥𝑣𝑡 ; 𝛽𝑒𝑡 ) ⪯ ℓ𝑆 𝐼2𝑛,∀𝑥𝑢𝑡 , 𝑥𝑣𝑡 ∈ R𝑛, 𝛽𝑒𝑡 ∈ B𝑒,

∇𝛽𝑒𝑡 ∇(𝑥𝑢𝑡 ,𝑥𝑣𝑡 )𝑠𝑒𝑡 (𝑥𝑢𝑡 , 𝑥𝑣𝑡 ; 𝛽𝑒𝑡 )

 ≤ ℓ𝑤,∀𝑥𝑢𝑡 , 𝑥𝑣𝑡 ∈ 𝐷𝑒
𝑡 , 𝛽

𝑒
𝑡 ∈ B𝑒 .

Intuitively, the Lipschitzness assumption we make on the generalized local cost
functions guarantees that the impact of inexact predictions of the uncertainty pa-
rameters on the optimal solution can be bounded, and the Networked OCO with
inexact problem gets more challenging as ℓ𝑤 increases. We define the set of possi-
ble configurations for Networked OCO with inexact predictions as

Υ̃ := {(𝜇, ℓ 𝑓 , ℓ𝑇 , ℓ𝑆, ℓ𝑤,Δ, ℎ) | 𝜇 ∈ R>0, ℓ 𝑓 ∈ R>0, ℓ𝑇 ∈ R≥0, ℓ𝑆 ∈ R≥0, ℓ𝑤 ∈ R≥0,

Δ ∈ N, ℎ : N→ N}.

Each configuration tuple in Υ̃ specifies a problem class of Networked OCO with
inexact predictions. We define this relationship in Definition 3.3.6.

Definition 3.3.6. For any configuration tuple 𝜈 = (𝜇, ℓ 𝑓 , ℓ𝑇 , ℓ𝑆, ℓ𝑤,Δ, ℎ) ∈ Υ̃, we
define P̃ (𝜈) as the set of problem instances of Networked OCO with inexact predic-
tions

(G, 𝐻, 𝑥0, { 𝑓 𝑣𝑡 , 𝑐𝑣𝑡 , 𝑠𝑒𝑡 , 𝐷𝑣
𝑡 }𝑡∈[𝐻],𝑣∈V,𝑒∈E , {Ω𝑣,A𝑣,B𝑒}𝑣∈V,𝑒∈E , {𝜉∗𝑡 }𝑡∈[𝐻] , {𝜉𝑡}𝑡∈[𝐻]),

that satisfy:

1. Assumption 3.3.2 with (𝜇, ℓ 𝑓 , ℓ𝑇 , ℓ𝑆, ℓ𝑤);

2. degree(𝑣) ≤ Δ for every node 𝑣 ∈ V;

3.
��𝜕𝑁𝑟𝑣 �� ≤ ℎ(𝑟) for every node 𝑣 ∈ V and 𝑟 ∈ N.

Before picking a local action 𝑥𝑣𝑡 at time 𝑡, agent 𝑣 can observe 𝑘 periods of fu-
ture node costs, temporal interaction costs, and spatial interaction costs within
its 𝑟-hop neighborhood but with noisy prediction of the uncertainty parameters,
{{( 𝑓 𝑢𝜏 , 𝜔𝑢𝜏 |𝑡), (𝑐

𝑢
𝜏, 𝛼

𝑢
𝜏 |𝑡) | 𝑢 ∈ 𝑁

𝑟
𝑣 }, {(𝑠𝑒𝜏, 𝛽𝑒𝜏 |𝑡) | 𝑒 ∈ E(𝑁

𝑟
𝑣)}}𝑡≤𝜏<𝑡+𝑘 , and the previ-

ous local actions in 𝑁𝑟𝑣 : {𝑥𝑢𝑡−1 | 𝑢 ∈ 𝑁
𝑟
𝑣 }. To simplify the notations, we define

𝜉
(𝑘,𝑟)
𝑝,(𝑡,𝑣) := {{𝜔𝑢

𝜏 |𝑡 , 𝛼
𝑢
𝜏 |𝑡 | 𝑢 ∈ 𝑁

𝑟
𝑣 }, {𝛽𝑒𝜏 |𝑡 | 𝑒 ∈ E(𝑁

𝑟
𝑣)}}𝑡≤𝜏<𝑡+𝑘 ,

which are the predicted parameters at period 𝑡;(
𝜉
(𝑘,𝑟)
𝑝,(𝑡,𝑣)

)∗
:= {{(𝜔𝑢𝜏)∗, (𝛼𝑢𝜏)∗ | 𝑢 ∈ 𝑁𝑟𝑣 }, {(𝛽𝑒𝜏)∗ | 𝑒 ∈ E(𝑁𝑟𝑣)}}𝑡≤𝜏<𝑡+𝑘 ,
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which are the ground true parameters. We define

𝜓̃
(𝑘,𝑟)
𝑝,(𝑡,𝑣)

(
{𝑦𝑢𝑡−1 | 𝑢 ∈ 𝑁

𝑟
𝑣 }, {𝑧𝑢𝜏 | (𝜏, 𝑢) ∈ 𝜕𝑁

(𝑘,𝑟)
(𝑡,𝑣) }; 𝜉

(𝑘,𝑟)
(𝑡,𝑣)

)
as the optimal solution of the problem

min
𝑡+𝑘−1∑︁
𝜏=𝑡

( ∑︁
𝑢∈𝑁𝑟−1

𝑣

𝑓 𝑢𝜏 (𝑥𝑢𝜏 ;𝜔𝑢𝜏) +
∑︁

𝑢∈𝑁𝑟−1
𝑣

𝑐𝑢𝜏 (𝑥𝑢𝜏 , 𝑥𝑢𝜏−1;𝛼𝑢𝜏)

+
∑︁

(𝑢,𝑞)∈E(𝑁𝑟−1
𝑣 )

𝑠
(𝑢,𝑞)
𝜏 (𝑥𝑢𝜏 , 𝑥

𝑞
𝜏 ; 𝛽(𝑢,𝑞)𝜏 )

)
s.t. 𝑥𝑢𝑡−1 = 𝑦𝑢𝑡−1,∀𝑢 ∈ 𝑁

𝑟
𝑣 ,

𝑥𝑢𝜏 = 𝑧
𝑢
𝜏,∀(𝜏, 𝑢) ∈ 𝜕𝑁

(𝑘,𝑟)
(𝑡,𝑣) , (3.16)

𝑥𝑢𝜏 ∈ 𝐷𝑢
𝜏,∀(𝜏, 𝑢) ∈ 𝑁

(𝑘−1,𝑟−1)
(𝑡,𝑣) .

When applied to Networked OCO with inexact predictions, LPC first construct
the local cost functions within the prediction horizon and observation radius by
treating the predicted uncertainty parameters as the true ones. Then, it follows the
same procedure as LPC with exact predictions to decide the current local action.
The pseudocode of LPC for Networked OCO with inexact predictions is given in
Algorithm 3.

Algorithm 3: Localized Predictive Control with Inexact Predictions (for node
𝑣)
Parameters: Prediction horizon 𝑘 and observation radius 𝑟 . for 𝑡 = 1 to 𝐻 do

Receive information {𝑥𝑢
𝑡−1 | 𝑢 ∈ 𝑁

𝑟
𝑣 } and observe

{{( 𝑓 𝑢𝜏 , 𝜔𝑢𝜏 |𝑡), (𝑐
𝑢
𝜏, 𝛼

𝑢
𝜏 |𝑡) | 𝑢 ∈ 𝑁

𝑟
𝑣 }, {(𝑠𝑒𝜏, 𝛽𝑒𝜏 |𝑡) | 𝑒 ∈ E(𝑁

𝑟
𝑣)}}𝑡≤𝜏<𝑡+𝑘 .

Choose local action 𝑥𝑣𝑡 to be the (𝑡, 𝑣)-th element in

𝜓
(𝑘,𝑟)
𝑝,(𝑡,𝑣)

(
{𝑥𝑢𝑡−1 |𝑢 ∈𝑁

𝑟
𝑣 },

{
𝜃𝑢𝜏 | (𝜏, 𝑢) ∈𝜕𝑁

(𝑘,𝑟)
(𝑡,𝑣)

}
; 𝜉 (𝑘,𝑟)
𝑝,(𝑡,𝑣)

)
the solution of (3.14), where 𝜃𝑢

𝜏 |𝑡 := arg min𝑦∈𝐷𝑢𝜏 𝑓 𝑢𝜏 (𝑦;𝜔𝑢
𝜏 |𝑡).

end

We generalize the exponentially decaying local perturbation bound in Definition 3.3.4
to also include perturbations on the predicted uncertainty parameters. This gener-
alization is necessary to study how the magnitude of the prediction errors affect the
performance of LPC. We provide the formal definition the generalized in Defini-
tion 3.3.7.
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Definition 3.3.7. We say the generalized exponentially decaying local perturba-
tion bound holds for the problem class 𝑃̃(𝜇, ℓ 𝑓 , ℓ𝑇 , ℓ𝑆, ℓ𝑤,Δ, ℎ) if for non-negative
constants

𝐶1 = 𝐶1(ℓ𝑇/𝜇, (Δℓ𝑆)/𝜇) < ∞, 𝐶2 = 𝐶2(ℓ𝑤/𝜇) < ∞,
𝜌𝑇 = 𝜌𝑇 (ℓ𝑇/𝜇) < 1, 𝜌𝑆 = 𝜌𝑆 ((Δℓ𝑆)/𝜇) < 1,

such that for any 𝑝 ∈ 𝑃̃(𝜇, ℓ 𝑓 , ℓ𝑇 , ℓ𝑆, ℓ𝑤,Δ, ℎ) and arbitrary

{𝑦𝑢𝑡−1}, {(𝑧
𝑢
𝜏)′}, {(𝑧𝑢𝜏)}, 𝜉

(𝑘,𝑟)
(𝑡,𝑣) , (𝜉

(𝑘,𝑟)
(𝑡,𝑣) )

′,

we have:



𝜓 (𝑘,𝑟)𝑝,(𝑡,𝑣)

(
{𝑦𝑢𝑡−1}, {𝑧

𝑢
𝜏}; 𝜉

(𝑘,𝑟)
(𝑡,𝑣)

)
(𝑡,𝑣)
− 𝜓 (𝑘,𝑟)

𝑝,(𝑡,𝑣)

(
{𝑦𝑢𝑡−1}, {(𝑧

𝑢
𝜏)′}; (𝜉

(𝑘,𝑟)
(𝑡,𝑣) )

′
)
(𝑡,𝑣)






≤ 𝐶1

∑︁
(𝑢,𝜏)∈𝜕𝑁 (𝑘,𝑟 )(𝑡 ,𝑣)

𝜌
|𝑡−𝜏 |
𝑇

𝜌
𝑑G (𝑣,𝑢)
𝑆



𝑧𝑢𝜏 − (𝑧𝑢𝜏)′

 + 𝐶2 · dist𝑝
(
𝜉
(𝑘,𝑟)
(𝑡,𝑣) , (𝜉

(𝑘,𝑟)
(𝑡,𝑣) )

′
)
,

where dist𝑝
(
𝜉
(𝑘,𝑟)
(𝑡,𝑣) , (𝜉

(𝑘,𝑟)
(𝑡,𝑣) )

′
)

is defined as∑︁
(𝑢,𝜏)∈𝑁 (𝑘−1,𝑟−1)

(𝑡 ,𝑣)

𝜌
|𝑡−𝜏 |
𝑇

𝜌
𝑑G (𝑣,𝑢)
𝑆



𝜔𝑢𝜏 − (𝜔𝑢𝜏)′

 + ∑︁
(𝑢,𝜏)∈𝑁 (𝑘,𝑟 )(𝑡 ,𝑣)

𝜌
|𝑡−𝜏 |
𝑇

𝜌
𝑑G (𝑣,𝑢)
𝑆



𝛼𝑢𝜏 − (𝛼𝑢𝜏)′


+
𝑡+𝑘∑︁
𝜏=𝑡

∑︁
𝑒∈E(𝑁𝑟𝑣 )

𝜌
|𝑡−𝜏 |
𝑇

𝜌
𝑑G (𝑣,𝑒)
𝑆



𝛽𝑒𝜏 − (𝛽𝑒𝜏)′

.
Using a similar approach with our proof of Theorem 3.3.3, we state the following
generalized exponentially decaying local perturbation bound for Networked OCO
with inexact predictions and defer its proof to Section 3.D.

Theorem 3.3.9. For any tuple 𝜈 = (𝜇, ℓ 𝑓 , ℓ𝑇 , ℓ𝑆, ℓ𝑤,Δ, ℎ) ∈ Υ̃, the generalized
exponentially decaying local perturbation bound (Definition 3.3.7) holds for the
problem class 𝑃̃(𝜈) with 𝐶1 =

2
√
Δℓ𝑆ℓ𝑇
𝜇

, 𝐶2 =
2ℓ𝑤
𝜇

, and

𝜌𝑇 =

√︂
1 − 2

(√︁
1 + (2ℓ𝑇/𝜇) + 1

)−1
, 𝜌𝑆 =

√︂
1 − 2

(√︁
1 + (Δℓ𝑆/𝜇) + 1

)−1
.

We present our main result for LPC with inexact predictions in Theorem 3.3.10.

Theorem 3.3.10. For any tuple 𝜈 = (𝜇, ℓ 𝑓 , ℓ𝑇 , ℓ𝑆, ℓ𝑤,Δ, ℎ) ∈ Υ̃, suppose the gen-
eralized exponentially decaying local perturbation bound (Definition 3.3.7) holds
with the decay factors 𝜌𝑇 and 𝜌𝑆. Define

𝜌𝐺 := 1 − 2 ·
(√︁

1 + (2ℓ𝑇/𝜇) + 1
)−1

, and 𝐶3(𝑟) :=
𝑟∑︁
𝛾=0

ℎ(𝛾) · 𝜌𝛾
𝑆
, for all 𝑟 ∈ N.
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If the prediction horizon 𝑟 and observation radius 𝑘 are large enough such that
ℎ(𝑟)2 · 𝜌2𝑟

𝑆
+ 𝐶3(𝑟)2 · 𝜌2𝑘

𝑇
· 𝜌2𝑘

𝐺
≤ 𝑐2 = 𝑐2(ℓ 𝑓 /𝜇, ℓ𝑇/𝜇, (Δℓ𝑆)/𝜇), then, for any

problem instance 𝑝 in the class P̃ (𝜈), the total cost of LPC satisfies

cost𝑝 (LPC) − cost𝑝 (OPT)

≤ 𝑂
(
ℎ(𝑟)2 · 𝜌𝑟𝑆 + 𝐶3(𝑟)2 · 𝜌𝑘𝑇

)
· cost𝑝 (OPT) +𝑂

(
𝐶3(𝑟)2

𝑘−1∑︁
𝜏=0

𝜌𝜏𝑇Γ𝜏 (𝑝)
)
,

where Γ𝜏 (𝑝) denotes the total error for predicting 𝜏 time steps into the future on 𝑝,
i.e.,

Γ𝜏 (𝑝) =
𝐻−𝜏∑︁
𝑡=1

( ∑︁
𝑣∈V




𝜔𝑣𝑡+𝜏 |𝑡 − (𝜔𝑣𝑡+𝜏)∗


2
+

∑︁
𝑣∈V




𝛼𝑣𝑡+𝜏 |𝑡 − (𝛼𝑣𝑡+𝜏)∗


2

+
∑︁
𝑒∈E




𝛽𝑒𝑡+𝜏 |𝑡 − (𝛽𝑒𝑡+𝜏)∗


2
)
.

Here the𝑂 (·) notation hides factors that depend polynomially on ℓ 𝑓 /𝜇, ℓ𝑇/𝜇, (Δℓ𝑆)/𝜇,
and ℓ𝑤/𝜇.

To interpret Theorem 3.3.10, note that the first (multiplicative) term that involves
cost(OPT) is the same up to a constant factor as the competitive ratio bound derived
in Theorem 3.3.5 for LPC with exact predictions. The second (additive) term is
a weighted sum of the total squared prediction errors Γ𝜏 (𝑝) in the entire horizon.
The exponentially decaying coefficients (𝜌𝜏

𝑇
) indicate that LPC can tolerate more

error in predictions of the more distant future. This also suggests that given limited
resources to improve predictions, improving predictions of the near future may be
more valuable than improving predictions of the distant future. Specifically, for an
instance 𝑝 of Networked OCO with inexact predictions, recall that Γ𝜏 (𝑝) denotes
the total error of predicting 𝜏 periods into the future on 𝑝. Depending on how Γ𝜏 (𝑝)
grows with 𝜏, there may be an optimal prediction horizon 𝑘∗ under which the cost
of LPC is minimized. The problem of finding the optimal prediction horizon for
an MPC-based algorithm has been studied in the single-node setting (Lin, Preiss,
Anand, et al., 2023; Li, Preiss, et al., 2023), and generalizing existing results to
Networked OCO with inexact predictions is an interesting topic of future research.

3.4 Application: Adaptive Video Streaming
Adaptive bitrate streaming (ABR) addresses the challenge of delivering consis-
tent high-quality video under volatile network conditions with the goal to balance
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three critical factors: maximizing visual fidelity, minimizing rebuffering events,
and avoiding abrupt bitrate switches. Although existing works make attempts to
apply model predictive control (MPC) for ABR, a straightforward application often
suffers in environments with fluctuating or uncertain throughput predictions. By
drawing on recent advances in perturbation analysis, one can show that MPC be-
comes robust to these prediction errors if the underlying optimal control formulation
satisfies exponentially decaying perturbation properties. To achieve such properties
in the setting of video streaming, we introduce a time-based ABR formulation that
explicitly encodes a buffer cost. The buffer cost follows two intuitions: Empirically,
it penalizes the agent for letting the buffer level get close to the constraint boundaries
even if it does not violate the constraint; Theoretically, it brings in a strongly convex
stage cost on the state that is critical for establishing the exponentially decaying
perturbation properties.

A Time-based ABR Formulation
Our time-based ABR formulation treats a video stream as a continuous flow rather
than a discrete sequence of segments. Consider a streaming session that consists of
𝑁 time intervals with fixed duration Δ𝑡 in terms of clock time (not video time). The
controller’s task is to select a bitrate for each time interval from a set of available
bitrates R ⊂ [𝑟min, 𝑟max] to optimize for a combination of higher video quality,
shorter rebuffering time, and less frequent bitrate switching.

Let 𝜔𝑛 denote the average throughput during the 𝑛th time interval, 𝑟𝑛 the selected
bitrate for that time interval, and 𝑥𝑛 the buffer level immediately after that time
interval. Our objective is to minimize the overall cost given as a linear combination
of the three QoE components:

𝑁∑︁
𝑛=1

(
𝑣(𝑟𝑛) ·

𝜔𝑛Δ𝑡

𝑟𝑛
+ 𝛽 · 𝑏(𝑥𝑛) + 𝛾 · 𝑐(𝑟𝑛, 𝑟𝑛−1)

)
, (3.17)

where

• 𝑣(𝑟𝑛) is the distortion cost, which should be a positive, strictly decreasing,
and convex function that models the encoding distortion, e.g., 𝑣(𝑟𝑛) = 1/𝑟𝑛. It
is then weighted by the amount of video downloaded during that time interval,
i.e., 𝜔𝑛Δ𝑡/𝑟𝑛 because the controller downloads a variable amount of video
during each fixed time interval.
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• 𝑏(𝑥𝑛) is the buffer cost, which aims to stabilize the buffer level around a
target level 𝑥, i.e.,

𝑏(𝑥𝑛) =

(𝑥 − 𝑥𝑛)2 𝑥𝑛 ≤ 𝑥

𝜖 (𝑥𝑛 − 𝑥)2 𝑥𝑛 > 𝑥
,

where 𝜖 < 1 is a small constant. Note that we purposely do not model the
rebuffering time explicitly to avoid the pitfalls encountered by RobustMPC and
as we show later, this helps SODA achieve theoretical performance guarantees.

• 𝑐(𝑟𝑛, 𝑟𝑛−1) is the switching cost from the previous bitrate to the current bitrate,
e.g., 𝑐(𝑟𝑛, 𝑟𝑛−1) = (𝑣(𝑟𝑛) − 𝑣(𝑟𝑛−1))2.

Coefficients 𝛽 and 𝛾 are positive weights for the buffer and the switching cost,
respectively, based on user preferences. The choices for the distortion and switching
cost functions are flexible.

The time-based buffer dynamics are introduced into the optimization problem
through the following constraint:

𝑥𝑛 = 𝑥𝑛−1 +
𝜔𝑛Δ𝑡

𝑟𝑛
− Δ𝑡 ∈ [0, 𝑥max],

where𝜔𝑛Δ𝑡/𝑟𝑛 accounts for the variable amount of video downloaded during a time
interval and Δ𝑡 accounts for the fixed amount of buffer drained during the same
time interval. Note that we do not allow the controller to violate the buffer range
constraint during the optimization phase when determining the bitrate. Of course,
due to throughput prediction errors, this may sometimes be inevitable during the
execution phase when applying the bitrate decision.

Why a Time-Based Formulation? The time-based formulation allows a cleaner
theoretical analysis over a given throughput sequence (𝜔1, . . . , 𝜔𝑁 ). For example,
consider the throughput function shown in Figure 3.9. In the time-based formulation,
we naturally have 𝜔1 = 4, 𝜔2 = 1, and 𝜔3 = 𝜔4 = {2}𝑀𝑏/𝑠 given Δ𝑡 = {1}𝑠.
By contrast, in the segment-based formulation, the throughput sequence becomes
dependent on the bitrate sequence. Assuming the segment duration is also 𝐿 = {1}𝑠,
if the controller chooses 𝑟1 = {2.0}𝑀𝑏/𝑠 and 𝑟2 = {2.5}𝑀𝑏/𝑠, then it takes 0.5 and
1 s to download the first and second segments, respectively, resulting in 𝜔1 = 4 and
𝜔2 = {2.5}𝑀𝑏/𝑠. As such, the segment based formulation gets causally biased due
to bitrate selection 𝑟1, ..., 𝑟𝑁 , which in turn makes it difficult to theoretically analyze
the design (Bothra et al., 2023).
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Figure 3.9: Sample throughput function illustrates why time-based formulation is
better for future prediction.

Incorporating Throughput Predictions
In addition to facilitating theoretical analysis, our time-based formulation is crucial
to ensuring the validity of throughput predictions over the prediction horizon. An
important observation is that bitrate decisions have no causal impact on how long the
throughput predictions are valid for. However, segment-based controllers such as
MPC (Yin et al., 2015) and Fugu (Yan et al., 2020) intertwine throughput predictions
and bitrate decisions in non-causal ways. In these designs, for a given available
bandwidth, the throughput prediction horizon spans shorter periods of clock time
when low bitrate is selected compared to when high bitrate is selected. In fact, their
underlying assumption about the validity of the throughput prediction horizon can
vary by 𝑟max/𝑟min.

By contrast, the way we incorporate throughput predictions into SODA does not
suffer from this issue. Specifically, just before each time interval, the controller is
given access to a (not necessarily accurate) throughput prediction for the next 𝐾
time intervals from a black-box throughput predictor. It is always assumed that the
validity of the throughput prediction is 𝐾Δ𝑡, a fixed value. In general, a throughput
predictor may output a different value for each of the next 𝐾 time intervals, i.e.,
𝜔̂𝑛|𝑛−1, 𝜔̂𝑛+1|𝑛−1, . . . , 𝜔̂𝑛+𝐾−1|𝑛−1,where 𝜔̂𝑚 |𝑛−1 (𝑚 ≥ 𝑛) is the throughput prediction
for the 𝑚th time interval given previous download information up until the (𝑛 − 1)th

time interval. In other words, a throughput predictor can output a piecewise constant
throughput function for the next 𝐾Δ𝑡 time. In practice, though, a typical throughput
predictor outputs a single value that corresponds to a constant throughput function.

Control Mechanism
Inspired by the model predictive control framework, SODA selects a bitrate for each
time interval by optimizing over the next 𝐾 time intervals and then committing to the
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bitrate decision for the immediate next time interval, i.e., minimizing the following
objective function

𝑛+𝐾−1∑︁
𝑚=𝑛

(
𝑣(𝑟𝑚) ·

𝜔̂𝑚 |𝑛−1Δ𝑡

𝑟𝑚
+ 𝛽 · 𝑏(𝑥𝑚) + 𝛾 · 𝑐(𝑟𝑚, 𝑟𝑚−1)

)

subject to 𝑥𝑚 = 𝑥𝑚−1 +
𝜔̂𝑚 |𝑛−1Δ𝑡

𝑟𝑚
− Δ𝑡,

𝑥𝑚 ∈ [0, 𝑥max], 𝑟𝑚 ∈ R,

with respect to variables 𝑟𝑛, . . . , 𝑟𝑛+𝐾−1 and then committing to only the first bitrate
decision 𝑟𝑛.

Solving this optimization problem is computationally expensive, furthermore, it
is unclear what prediction horizon should be used and how accurate throughput
predictions must be in order for SODA to perform well.

Theoretical Design Insights
Our design of SODA is motivated by recent theoretical advances at the interface of
learning and control (Lin, Hu, Shi, et al., 2021; Hazan and Singh, 2022; Agarwal et
al., 2019; Dean et al., 2020) and smoothed online convex optimization (Chen, Goel,
and Wierman, 2018; Goel, Lin, et al., 2019; Lin, Gan, et al., 2022). In particular,
we design SODA to satisfy an exponentially decaying perturbation property that has
been shown to ensure efficient and robust use of predictions in model predictive
control policies (Lin, Hu, Shi, et al., 2021; Lin, Hu, Qu, et al., 2022). Intuitively,
this property describes the behavior of the solution to the optimization problem
defining SODA as a function of problem parameters, including bandwidth predictions
{𝜔̂𝑚 |𝑛−1}𝑛≤𝑚<𝑛+𝐾 and the previous buffer level/bitrate. When this property holds,
the impact of perturbing a prediction 𝜔̂𝑚 |𝑛−1 on the current bitrate decision 𝑟𝑛 decays
exponentially with respect to their temporal distance (𝑚 − 𝑛). The formal definition
of exponentially decaying perturbation generalizes the intuition above to consider
the optimal trajectory and other parameters.

Definition 3.4.1 (Exponentially Decaying Perturbation Bound for ABR). We say the
exponentially decaying perturbation bound holds if there exists uniform constants
𝐶 > 0, 𝜌 ∈ (0, 1) such that the following inequalities hold:����𝜓𝑡+𝑝𝑡

(
𝜉[𝑡,𝑡+𝑝] ; 0

)
𝑥𝜏
− 𝜓𝑡+𝑝𝑡

(
𝜉′[𝑡,𝑡+𝑝] ; 0

)
𝑥𝜏

����
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≤ 𝐶𝜌𝜏−𝑡+1
(��𝜎𝑡−1 − 𝜎′𝑡−1

�� + ��𝜈𝑡−1 − 𝜈′𝑡−1
��) + 𝐶 𝑡+𝑝∑︁

𝑗=𝑡

𝜌 |𝜏− 𝑗 |
���𝜔̂ 𝑗 − 𝜔̂′𝑗

���, (3.18)����𝜓𝑡+𝑝𝑡

(
𝜉[𝑡,𝑡+𝑝] ; I

)
𝑥𝜏
− 𝜓𝑡+𝑝𝑡

(
𝜉′[𝑡,𝑡+𝑝] ; I

)
𝑥𝜏

����
≤ 𝐶𝜌𝜏−𝑡+1

(��𝜎𝑡−1 − 𝜎′𝑡−1
�� + ��𝜈𝑡−1 − 𝜈′𝑡−1

��) + 𝐶 𝑡+𝑝∑︁
𝑗=𝑡

𝜌 |𝜏− 𝑗 |
���𝜔̂ 𝑗 − 𝜔̂′𝑗

���
+ 𝐶𝜌𝑡+𝑝−𝜏

(��𝜎𝑡+𝑝 − 𝜎′𝑡+𝑝 �� + ���𝜈𝑡+𝑝+1 − 𝜈′𝑡+𝑝+1���) , (3.19)

where

𝜉[𝑡,𝑡+𝑝] :=
(
(𝜎𝑡−1, 𝜈𝑡−1); 𝜔̂𝑡:𝑡+𝑝; (𝜎𝑡+𝑝, 𝜈𝑡+𝑝+1)

)
,

𝜉′[𝑡,𝑡+𝑝] :=
(
(𝜎′𝑡−1, 𝜈

′
𝑡−1); 𝜔̂

′
𝑡:𝑡+𝑝; (𝜎′𝑡+𝑝, 𝜈′𝑡+𝑝+1)

)
.

Two metrics that we use to measure SODA’s performance theoretically are dynamic
regret and competitive ratio, which are standard in the literature of online opti-
mization Lin, Hu, Shi, et al., 2021; Hazan and Singh, 2022; Agarwal et al., 2019;
Chen, Goel, and Wierman, 2018; Goel, Lin, et al., 2019. Specifically, let cost(ALG)
denote the total cost incurred by an online algorithm ALG and cost(OPT) denote
the offline optimal cost (3.17) an agent can incur if it has exact knowledge of all
future bandwidth at the beginning. We say ALG achieves a dynamic regret of 𝑅 if
cost(ALG) − cost(OPT) ≤ 𝑅 always holds, and ALG achieves a competitive ratio of
𝐶 if cost(ALG) ≤ 𝐶 · cost(OPT) always holds.

The key idea of our theoretical analysis is leveraging the exponentially decaying
property to bound the per-step error of SODA against the hindsight optimal decision
and the aggregations of such errors over time. To prove the exponentially decay-
ing perturbation, we require a technical assumption that guarantees the controller
can “reach” any desired buffer level by choosing the largest/smallest bitrate (see
Assumption 3.4.1).

Assumption 3.4.1. There exists uniform constants 𝜔max > 𝜔min > 0 such that for
any time step 𝑡, we have that 𝜔min ≤ 𝜔𝑡 ≤ 𝜔max holds. We also assume that
𝜔min/𝑟min ≥ 𝑥max, and 𝜔max/𝑟max − 1 ≤ −𝛿 holds for a fixed constant 𝛿 > 0.

Intuitively, Assumption 3.4.1 guarantees that the controller can always fill up the
buffer at the cost of choosing the smallest bitrate or decrease the buffer level by choos-
ing the largest bitrate. This assumption is used to eliminate extreme boundary cases
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in the analysis, but SODA empirically performs well even when Assumption 3.4.1 is
not strictly satisfied. Using this assumption, we show the exponentially decaying
perturbation property holds for the video streaming problem in Theorem 3.4.1.

Theorem 3.4.1. Under Assumption 3.4.1, the exponentially decaying perturbation
bound holds with constants

𝜌 =

©­­­­«
1 − 2

1 +
√︂

1 + max{6𝜔min (𝜔min+3),4𝑥max (𝜔min+8𝛾)}
𝜔3

min𝜖 𝛽

ª®®®®¬
1

3(3+⌈𝑥max/𝛿⌉ )

and

𝐶 =
(1 + 𝜔max)

(
3𝛽𝜔3

min +max{6𝜔min(𝜔min + 3), 4𝑥max(𝜔min + 8𝛾)}
)

𝜔3
min𝜌

3+⌈𝑥max/𝛿⌉
.

Exact Predictions
When the bandwidth predictions are accurate, a small prediction horizon is sufficient
for SODA to achieve near-optimal performance. In practice, it is desirable to use a
relatively small prediction horizon for a predictive controller like SODA because pre-
diction errors grow dramatically as we predict further into the future. Fortunately,
the exponential decay property that ensures good performance with only a few pre-
dictions. More formally, we present a theorem showing that a small prediction
horizon is sufficient for SODA to achieve near-optimal performance when the predic-
tions within this window are accurate (i.e., 𝜔̂𝑚 |𝑛−1 = 𝜔𝑚 for 𝑚 = 𝑛, . . . , 𝑛 + 𝐾 − 1).

Theorem 3.4.2. [Informal] When the predictions of the bandwidth in future 𝐾
steps are exact (i.e., 𝜔̂𝑚 |𝑛−1 = 𝜔𝑚 for 𝑚 = 𝑛, . . . , 𝑛 + 𝐾 − 1) and the prediction
horizon 𝐾 ≥ 𝑂 (1), SODA achieves a dynamic regret of 𝑂 (𝜌𝐾𝑁) and a competitive
ratio of 1 + 𝑂 (𝜌𝐾), where 𝜌 < 1 is the decay factor of the exponentially decaying
perturbation property.

The formal statement of Theorem 3.4.2 is given in Section 3.E. This result implies
that SODA’s performance approaches that of the optimal sequence of decisions
exponentially fast in the prediction horizon size 𝐾; thus, only a small prediction
horizon length is necessary to obtain good performance.

Inexact Predictions
We now relax the exact prediction assumption to prove SODA’s robustness to a certain
level of prediction errors thanks to its exponentially decaying perturbation property.
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Theorem 3.4.3. [Informal] Suppose the prediction error at each step is bounded
above. The buffer level of SODAwill never hit the constraint boundary, i.e., 0 < 𝑥𝑛 <
𝑥max. Further, define E = 𝜌2𝐾𝑁 +∑𝐾

𝜅=1 𝜌
𝜅𝐸𝜅, where 𝐸𝜅 is the total squared error for

predicting 𝜅 steps into the future. SODA achieves a dynamic regret of 𝑂 (
√
E𝑁 + E).

The formal statement of Theorem 3.4.3 is given in Section 3.E. Theorem 3.4.3 shows
that, if the buffer costs are “steep” and the prediction errors on the bandwidth are
relatively small, SODA can achieve a sequence of buffer levels that stay safely away
from the boundaries of buffer constraint [0, 𝑥max]. The dynamic regret of SODA
depends on the magnitude of the prediction errors and the regret improves when the
errors become smaller. SODA acquires this guarantee thanks to its maintenance of
the buffer near a target level 𝑥. In contrast, RobustMPC (Yin et al., 2015) does not
offer the same performance guarantee, thus even small bandwidth prediction errors
can cause the video to rebuffer if the buffer level is near zero.

Computational Efficiency
Solving the predictive optimization problem to determine the exact optimal solu-
tion can be unrealistic in the application of adaptive bitrate streaming, where each
decision needs to be made in the minimum possible time. A critical observation
underlying the implementation of SODA is that it is sufficient to search only for bitrate
sequences that are increasing or decreasing monotonically. We provide a theoretical
justification in the following theorem.

Theorem 3.4.4. [Informal] Suppose SODA is given the predictions that satisfy
𝜔̂𝑛|𝑛−1 = · · · = 𝜔̂𝑛+𝐾−1|𝑛−1 at an intermediate time step 𝑛. Then, the bitrate trajec-
tory solved by SODA can be approximated by a feasible monotonic bitrate trajectory
with an error of 𝑂

(
𝐾√
𝛾

)
.

The formal statement of Theorem 3.4.4 is given in Section 3.E. Theorem 3.4.4
shows that the true optimal solution becomes closer to monotonic as the weight 𝛾
of switching costs increases. While the theoretical bound can be conservative, we
find that even with moderate 𝛾, the (discrete) decision made under the monotonic
heuristic is usually identical to the true optimal solution on a real trajectory (see
Figure 3.10).
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Figure 3.10: The probability that the bitrate decision produced by the approximate
solver is different from that produced by the brute-force solver quickly converges to
0 as switching cost weight increases.

3.A Proofs for the Perturbation Analysis
Proof of Theorem 3.1.2
In the next lemma we will use the notation 𝐴𝑆𝑅 ,𝑆𝐶 to denote the submatrix obtained by
selecting the blocks indexed by some set 𝑆𝑅×𝑆𝐶 while preserving their relative order.
Specifically, consider a matrix 𝐴 ∈ R𝜔𝑛×𝜔𝑛 formed by 𝜔 × 𝜔 blocks 𝐴𝑖, 𝑗 ∈ R𝑛×𝑛.
Let 𝑖1 < · · · < 𝑖 |𝑆𝑅 | be the elements in 𝑆𝑅 ⊆ {1, . . . , 𝜔}, and 𝑗1 < · · · < 𝑗 |𝑆𝐶 | be the
elements in 𝑆𝐶 ⊆ {1, . . . , 𝜔}, both in ascending order. Then 𝐴𝑆𝑅 ,𝑆𝐶 ∈ R|𝑆𝑅 |𝑛×|𝑆𝐶 |𝑛

is defined as a block matrix

𝐴𝑆𝑅 ,𝑆𝐶 :=


𝐴𝑖1, 𝑗1 𝐴𝑖1, 𝑗2 · · · 𝐴𝑖1, 𝑗 |𝑆𝐶 |

𝐴𝑖2, 𝑗1 𝐴𝑖2, 𝑗2 · · · 𝐴𝑖2, 𝑗 |𝑆𝐶 |
...

...
. . .

...

𝐴𝑖 |𝑆𝑅 | , 𝑗1
𝐴𝑖 |𝑆𝑅 | , 𝑗2

· · · 𝐴𝑖 |𝑆𝑅 | , 𝑗 |𝑆𝐶 |


.

For a diagonal block matrix 𝐷 = diag(𝐷1, . . . , 𝐷𝜔) and a set 𝑆 ⊆ {1, . . . , 𝜔}, we
use the shorthand notation 𝐷𝑆 := diag

(
𝐷𝑖1 , 𝐷𝑖2 , . . . , 𝐷𝑖 |𝑆 |

)
, where 𝑖1 < . . . < 𝑖 |𝑆 |

are the elements in 𝑆.

Lemma 3.A.1. Suppose 𝐴 is a positive definite matrix in S𝜔𝑛 formed by 𝜔 × 𝜔
blocks 𝐴𝑖, 𝑗 ∈ R𝑛×𝑛. Assume that 𝐴 is 𝑞-banded for an even positive integer 𝑞, i.e.,

𝐴𝑖, 𝑗 = 0,∀|𝑖 − 𝑗 | > 𝑞/2.

Let [𝑎0, 𝑏0] (𝑏0 > 𝑎0 > 0) be the smallest interval containing the spectrum 𝜎(𝐴).
Suppose 𝐷 = diag(𝐷1, . . . , 𝐷𝜔), where 𝐷𝑖 ∈ S𝑛 is positive semi-definite. Let
𝑀 =

(
(𝐴 + 𝐷)−1)

𝑆𝑅 ,𝑆𝐶
as defined above, where 𝑆𝑅, 𝑆𝐶 ⊆ {1, . . . , 𝜔}. Then we have
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∥𝑀 ∥ ≤ 𝐶𝛾𝑑 , where the coefficient 𝐶, the decay factor 𝛾, and the distance 𝑑 are
given by

𝐶 =
2
𝑎0
, 𝛾 =

(√︁
cond(𝐴) − 1√︁
cond(𝐴) + 1

)2/𝑞

, 𝑑 = min
𝑖∈𝑆𝑅 , 𝑗∈𝑆𝑐

|𝑖 − 𝑗 |.

Here cond(𝐴) = 𝑏0/𝑎0 denotes the condition number of matrix 𝐴.

Proof of Lemma 3.A.1. We first prove the lemma for the the special case where
𝐷 = 0.

For the case 𝑑 ≠ 0, write 𝑑 = 𝜐𝑞/2+𝜅 for integers 𝜐, 𝜅 satisfying 𝜐 ≥ 0, 1 ≤ 𝜅 ≤ 𝑞/2.
Following the same approach as the proof of Proposition 2.2 in Demko, Moss, and
Smith, 1984, we see that there exists a polynomial 𝑝𝜐 of degree 𝜐, where



𝐴−1 − 𝑝𝜐 (𝐴)


 ≤ 1

𝑎0
·

(
1 +

√︁
cond(𝐴)

)2

2 cond(𝐴) 𝛾𝑑 ≤ 𝐶𝛾𝑑 ,

where the last inequality holds because cond(𝐴) ≥ 1.

Since 𝑝𝑣 has degree 𝑣 < 2𝑑
𝑞

and 𝐴 is 𝑞-banded, the matrix 𝑝𝜐 (𝐴) satisfies
(𝑝𝜐 (𝐴))𝑖, 𝑗 = 0 for any 𝑖 ∈ 𝑆𝑅 and 𝑗 ∈ 𝑆𝐶 . We then obtain

∥𝑃∥ =




(𝐴−1

)
𝑆𝑅 ,𝑆𝐶





 = 



(𝐴−1 − 𝑝𝜐 (𝐴)
)
𝑆𝑅 ,𝑆𝐶





 ≤ 

𝐴−1 − 𝑝𝜐 (𝐴)


 ≤ 𝐶𝛾𝑑 ,

because 2-norm of a submatrix cannot be larger than that of the original matrix.

For the case 𝑑 = 0, as ∥𝑃∥ =



(𝐴−1)

𝑆𝑅 ,𝑆𝐶




 ≤ 

𝐴−1


 = 1

𝑎0
≤ 𝐶, the result trivially

holds.

Now we show the general case (where 𝐷𝑖 ⪰ 0 for 1 ≤ 𝑖 ≤ 𝑛) through a reduction to
the special case. Define a positive definite matrix 𝑁 := (𝑎0𝐼 + 𝐷) ∈ S𝑛𝜔, and then
define matrix 𝐻 ∈ S𝑛𝜔 as follows,

𝐻 = 𝑁−
1
2 (𝐴 + 𝐷)𝑁− 1

2 .

We start by showing that 𝐼 ⪯ 𝐻 ⪯ 𝑏0
𝑎0
· 𝐼. For any 𝑥 ∈ R𝑛𝜔, we observe

𝑥⊤𝐻𝑥 = 𝑥⊤𝑁−
1
2 𝐴𝑁−

1
2 𝑥 + 𝑥⊤𝑁− 1

2𝐷𝑁−
1
2 𝑥

≥ 𝑥⊤𝑁− 1
2 𝑎0𝐼𝑁

− 1
2 𝑥 + 𝑥⊤𝑁− 1

2𝐷𝑁−
1
2 𝑥

= 𝑥⊤𝑁−
1
2 (𝑎0𝐼 + 𝐷)𝑁−

1
2 𝑥

= ∥𝑥∥2.
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For the other inequality, we have

𝑥⊤𝐻𝑥 = 𝑥⊤𝑁−
1
2 𝐴𝑁−

1
2 𝑥 + 𝑥⊤𝑁− 1

2𝐷𝑁−
1
2 𝑥

≤ 𝑥⊤𝑁− 1
2 𝑏0𝐼𝑁

− 1
2 𝑥 + 𝑥⊤𝑁− 1

2𝐷𝑁−
1
2 𝑥

= 𝑥⊤𝑁−
1
2 (𝑎0𝐼 + 𝐷)𝑁−

1
2 𝑥 + (𝑏0 − 𝑎0)𝑥⊤𝑁−1𝑥

≤ ∥𝑥∥2 + 𝑏0 − 𝑎0
𝑎0

· ∥𝑥∥2

=
𝑏0
𝑎0
· ∥𝑥∥2.

Thus 𝐼 ⪯ 𝐻 ⪯ 𝑏0
𝑎0
· 𝐼, which gives cond(𝐻) ≤ 𝑏0

𝑎0
= cond(𝐴). Note that 𝐻 is also

𝑞-banded, so we can apply the result of the special case (𝐷𝑖 = 0, 𝑖 = 1, · · · , 𝑛) to
obtain that 

(𝐻−1)𝑆𝑅 ,𝑆𝐶



 ≤ 2𝛾𝑑𝐻 ≤ 2𝛾𝑑 ,

where 𝛾𝐻 =

(√
cond(𝐻)−1√
cond(𝐻)+1

)2/𝑞
≤ 𝛾. Using this inequality, we conclude that

∥𝑃∥ =


((𝐴 + 𝐷)−1)𝑆𝑅 ,𝑆𝐶



 = 



(𝑁− 1
2𝐻−1𝑁−

1
2

)
𝑆𝑅 ,𝑆𝐶






≤




(𝑎0𝐼 + 𝐷𝑆𝑅 )−
1
2




 · 

(𝐻−1)𝑆𝑅 ,𝑆𝐶


 · 


(𝑎0𝐼 + 𝐷𝑆𝐶 )−

1
2





≤ 1
𝑎0



(𝐻−1)𝑆𝑅 ,𝑆𝐶




≤ 𝐶𝛾𝑑 .

Here we apply the fact that



(𝑎0𝐼 + 𝐷𝑆)−

1
2




 ≤ 1√
𝑎0

since 𝐷𝑆 ⪰ 0.

Now we return to the proof of Theorem 3.1.2

Proof of Theorem 3.1.2. Let 𝑒 = (𝑒⊤0 , 𝜇
⊤, 𝑒⊤𝑝 )⊤ be a vector where 𝑒0, 𝑒𝑝 ∈ R𝑛 and

𝜇 = [𝜇0, 𝜇1, . . . , 𝜇𝑝−1],

for 𝜇𝑖 ∈ R𝑟 , 𝑖 = 0, 1, . . . , 𝑝 − 1. Let 𝜃 be an arbitrary real number. Define function
ℎ̂ : R(𝑝−1)×𝑛 × R𝑛 × R𝑝×𝑟 × R𝑛 → R+ as

ℎ̂(𝑥1:𝑝−1, 𝑥0, 𝑤̂0:𝑝−1, 𝑥𝑝) =
𝑝−1∑︁
𝜏=1

𝑓𝜏 (𝑥𝜏) +
𝑝∑︁
𝜏=1

𝑐𝜏 (𝑥𝜏, 𝑥𝜏−1; 𝑤̂𝜏−1).

To simplify the notation, we use 𝜁 to denote the tuple of system parameters, i.e.,

𝜁 := (𝑥0, 𝑤̂0:𝑝−1, 𝑥𝑝).
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From out construction, we know that ℎ̂ is 𝜇-strongly convex in 𝑥1:𝑝−1, so we use the
decomposition ℎ̂ = ℎ̂𝑎 + ℎ̂𝑏, where

ℎ̂𝑎 (𝑥1:𝑝−1, 𝜁) =
𝑝−1∑︁
𝜏=1

𝜇

2
∥𝑥𝜏∥2 +

𝑝∑︁
𝜏=1

𝑐𝜏 (𝑥𝜏, 𝑥𝜏−1; 𝑤̂𝜏−1),

ℎ̂𝑏 (𝑥1:𝑝−1, 𝜁) =
𝑝−1∑︁
𝜏=1

(
𝑓𝜏 (𝑥𝜏) −

𝜇

2
∥𝑥𝜏∥2

)
.

Since 𝜓̂(𝜁 + 𝜃𝑒) is the minimizer of convex function ℎ̂(·, 𝜁 + 𝜃𝑒), we see that

∇𝑥1:𝑝−1 ℎ̂(𝜓̂(𝜁 + 𝜃𝑒), 𝜁 + 𝜃𝑒) = 0.

Taking the derivative with respect to 𝜃 gives that

∇2
𝑥1:𝑝−1

ℎ̂(𝜓̂(𝜁 + 𝜃𝑒), 𝜁 + 𝜃𝑒) 𝑑
𝑑𝜃
𝜓̂(𝜁 + 𝜃𝑒)

= − ∇𝑥0∇𝑥1:𝑝−1 ℎ̂(𝜓̂(𝜁 + 𝜃𝑒), 𝜁 + 𝜃𝑒)𝑒0 − ∇𝑥𝑝∇𝑥1:𝑝−1 ℎ̂(𝜓̂(𝜁 + 𝜃𝑒), 𝜁 + 𝜃𝑒)𝑒𝑝

−
𝑝−1∑︁
𝜏=0
∇𝑤𝜏∇𝑥1:𝑝−1 ℎ̂(𝜓̂(𝜁 + 𝜃𝑒), 𝜁 + 𝜃𝑒)𝜇𝜏 .

To simplify the notation, we define

𝑀 := ∇2
𝑥1:𝑝−1

ℎ̂(𝜓̂(𝜁 + 𝜃𝑒), 𝜁 + 𝜃𝑒),which is a (𝑝 − 1) × (𝑝 − 1) block matrix,

𝑅(0) := −∇𝑥0∇𝑥1:𝑝−1 ℎ̂(𝜓̂(𝜁 + 𝜃𝑒), 𝜁 + 𝜃𝑒),which is a (𝑝 − 1) × 1 block matrix,

𝑅(𝑝) := −∇𝑥𝑝∇𝑥1:𝑝−1 ℎ̂(𝜓̂(𝜁 + 𝜃𝑒), 𝜁 + 𝜃𝑒),which is a (𝑝 − 1) × 1 block matrix,

𝐾 (𝜏) := −∇𝑤𝜏∇𝑥1:𝑝−1 ℎ̂(𝜓̂(𝜁 + 𝜃𝑒), 𝜁 + 𝜃𝑒),∀0 ≤ 𝜏 ≤ 𝑝 − 1,which are

(𝑝 − 1) × 1 block matrices,

where in 𝑀 , 𝑅(0) , 𝑅(𝑝) , the block size is 𝑛×𝑛; in 𝐾 (𝜏) , the block size is 𝑛× 𝑟. Hence
we can write

𝑑

𝑑𝜃
𝜓̂(𝜁 + 𝜃𝑒) = 𝑀−1

(
𝑅(0)𝑒0 + 𝑅(𝑝)𝑒𝑝 +

𝑝−1∑︁
𝜏=0

𝐾 (𝜏)𝜇𝜏

)
.

Recall that 𝑅(0) , 𝑅(𝑝) are (𝑝−1)×1 block matrices with block size 𝑛×𝑛. {𝐾 (𝜏)}0≤𝜏≤𝑝−1

are (𝑝 − 1) × 1 block matrices with block size 𝑛 × 𝑟. For 𝑅(0) and 𝐾 (0) , only the
(1, 1)-th blocks are non-zero. For 𝑅(𝑝) and 𝐾 (𝑝−1) , only the (𝑝 − 1, 1)-th blocks are
non-zero. For 𝐾 (𝜏) , 𝜏 = 1, . . . , 𝑝 − 2, only the (𝜏, 1)-th and (𝜏 + 1, 1)-th blocks are
non-zero. Hence we see that

𝑑

𝑑𝜃
𝜓̂(𝜁 + 𝜃𝑒)ℎ = (𝑀−1)ℎ,1𝑅(0)1,1𝑒0 + (𝑀−1)ℎ,𝑝−1𝑅

(𝑝)
𝑝−1,1𝑒𝑝
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+ (𝑀−1)ℎ,1𝐾 (0)1,1 𝜇0 + (𝑀−1)ℎ,𝑝−1𝐾
(𝑝−1)
𝑝−1,1 𝜇𝑝−1

+
𝑝−2∑︁
𝜏=1
(𝑀−1)ℎ,𝜏:𝜏+1𝐾

(𝜏)
𝜏:𝜏+1,1𝜇𝜏 .

Since the switching costs 𝑐𝜏 (·, ·, ·), 𝜏 = 1, . . . , 𝑝 are ℓ-strongly smooth, we know
that the norms of

𝑅
(0)
1,1 , 𝑅

(𝑝)
𝑝−1,1, 𝐾

(0)
1,1 , 𝐾

(𝑝−1)
𝑝−1,1 , and {𝐾 (𝜏)

𝜏:𝜏+1,1}1≤𝜏≤𝑝−2

are all upper bounded by ℓ. Taking norm on both sides gives that



 𝑑𝑑𝜃 𝜓̂(𝜁 + 𝜃𝑒)ℎ



 ≤ ℓ

(𝑀−1)ℎ,1


∥𝑒0∥ + ℓ



(𝑀−1)ℎ,𝑝−1


∥𝑒𝑝 ∥

+ ℓ


(𝑀−1)ℎ,1



∥𝜇0∥ + ℓ


(𝑀−1)ℎ,𝑝−1



∥𝜇𝑝−1∥

+
𝑝−2∑︁
𝜏=1

ℓ


(𝑀−1)ℎ,𝜏:𝜏+1



∥𝜇𝜏∥. (3.20)

Note that 𝑀 can be decomposed as 𝑀 = 𝑀𝑎 + 𝑀𝑏, where

𝑀𝑎 := ∇2
1:𝑝−1 ℎ̂𝑎 (𝜓̂(𝜁 + 𝜃𝑒), 𝜁 + 𝜃𝑒),

𝑀𝑏 := ∇2
1:𝑝−1 ℎ̂𝑏 (𝜓̂(𝜁 + 𝜃𝑒), 𝜁 + 𝜃𝑒).

Since 𝑀𝑎 is block tri-diagonal and satisfies (𝜇 + 2ℓ)𝐼 ⪰ 𝑀𝑎 ⪰ 𝜇𝐼, and 𝑀𝑏 is block
diagonal and satisfies 𝑀𝑏 ⪰ 0, we obtain the following with Lemma 3.A.1:

(𝑀−1)ℎ,1



 ≤ 2
𝜇
𝜆ℎ−1

0 ,


(𝑀−1)ℎ,𝑝−1



 ≤ 2
𝜇
𝜆
𝑝−ℎ−1
0 , and



(𝑀−1)ℎ,𝜏:𝜏+1


 ≤ 2

𝜇
𝜆
|ℎ−𝜏 |−1
0 ,

where 𝜆0 := (
√︁

cond(𝑀𝑎) − 1)/(
√︁

cond(𝑀𝑎) + 1) = 1 − 2 ·
(√︁

1 + (2ℓ/𝜇) + 1
)−1

.

Substituting this into (3.20), we see that



 𝑑𝑑𝜃 𝜓̂(𝜁 + 𝜃𝑒)ℎ



 ≤ 𝐶0

(
𝜆ℎ−1

0 ∥𝑒0∥ +
𝑝−1∑︁
𝜏=0

𝜆
|ℎ−𝜏 |−1
0 ∥𝜇𝜏∥ + 𝜆𝑝−ℎ−1

0 ∥𝑒𝑝 ∥
)
,

where 𝐶0 = (2ℓ)/𝜇.

Hence we obtain

𝜓̂(𝜁)ℎ − 𝜓̂(𝜁 + 𝑒)ℎ

 = 



∫ 1

0

𝑑

𝑑𝜃
𝜓̂(𝜁 + 𝜃𝑒)ℎ𝑑𝜃






≤

∫ 1

0





 𝑑𝑑𝜃 𝜓̂(𝜁 + 𝜃𝑒)ℎ



𝑑𝜃
≤ 𝐶0

(
𝜆ℎ−1

0 ∥𝑒0∥ +
𝑝−1∑︁
𝜏=0

𝜆
|ℎ−𝜏 |−1
0 ∥𝜇𝜏∥ + 𝜆𝑝−ℎ−1

0 ∥𝑒𝑝 ∥
)
.

This finishes the proof.
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Proof of Lemma 3.1.3
Before we prove Lemma 3.1.3, we first show two technical lemmas. The first is
about the properties of the optimal value/solution of an optimization problem.

Lemma 3.A.2. Suppose function 𝑓 (𝑥, 𝑦) is convex and 𝐿-strongly smooth in (𝑥, 𝑦),
𝜇-strongly convex in 𝑦, and continuously differentiable. Define functions 𝑦∗(𝑥) :=
arg min𝑦 𝑓 (𝑥, 𝑦) and 𝑔(𝑥) := min𝑦 𝑓 (𝑥, 𝑦). Then, function 𝑦∗ is 𝐿

𝜇
-Lipschitz and

function 𝑔 is
(
𝐿 + 𝐿2

𝜇

)
-strongly smooth.

Proof of Lemma 3.A.2. Let 𝑦∗(𝑥) = arg min𝑦 𝑓 (𝑥, 𝑦). This function is well-defined
since the strong convexity of 𝑓 (𝑥, 𝑦) in 𝑦 guarantees that 𝑦∗(𝑥) is unique. We see
that for all 𝑥, 𝑥′,

∇𝑦 𝑓 (𝑥, 𝑦∗(𝑥)) = 0 and ∇𝑦 𝑓 (𝑥′, 𝑦∗(𝑥′)) = 0.

Using these equalities, we obtain

0 = ⟨𝑦∗(𝑥) − 𝑦∗(𝑥′),∇𝑦 𝑓 (𝑥, 𝑦∗(𝑥)) − ∇𝑦 𝑓 (𝑥′, 𝑦∗(𝑥′))⟩
= ⟨𝑦∗(𝑥) − 𝑦∗(𝑥′),∇𝑦 𝑓 (𝑥, 𝑦∗(𝑥)) − ∇𝑦 𝑓 (𝑥, 𝑦∗(𝑥′))⟩
+ ⟨𝑦∗(𝑥) − 𝑦∗(𝑥′),∇𝑦 𝑓 (𝑥, 𝑦∗(𝑥′)) − ∇𝑦 𝑓 (𝑥′, 𝑦∗(𝑥′))⟩

≥ 𝜇∥𝑦∗(𝑥) − 𝑦∗(𝑥′)∥2 − ∥𝑦∗(𝑥) − 𝑦∗(𝑥′)∥ ·


∇𝑦 𝑓 (𝑥, 𝑦∗(𝑥′)) − ∇𝑦 𝑓 (𝑥′, 𝑦∗(𝑥′))

,

where we used the fact that a 𝜇-strongly convex function ℎ satisfies

⟨𝑎 − 𝑏,∇ℎ(𝑎) − ∇ℎ(𝑏)⟩ ≥ 𝜇∥𝑎 − 𝑏∥2,∀𝑎, 𝑏

and the Cauchy-Schwartz inequality in the last inequality. Since 𝑓 is 𝐿-strongly
smooth, we see that

∥𝑦∗(𝑥) − 𝑦∗(𝑥′)∥ ≤ 1
𝜇



∇𝑦 𝑓 (𝑥, 𝑦∗(𝑥′)) − ∇𝑦 𝑓 (𝑥′, 𝑦∗(𝑥′))

 ≤ 𝐿

𝜇
∥𝑥 − 𝑥′∥,

which implies function 𝑦∗ is 𝐿
𝜇
-Lipschitz.

Note that the gradient of 𝑔 is given by

∇𝑔(𝑥) = ∇𝑥 𝑓 (𝑥, 𝑦∗(𝑥)) + ∇𝑦 𝑓 (𝑥, 𝑦∗(𝑥))
𝜕𝑦∗(𝑥)
𝜕𝑥

= ∇𝑥 𝑓 (𝑥, 𝑦∗(𝑥)),

because ∇𝑦 𝑓 (𝑥, 𝑦∗(𝑥)) = 0. Hence we obtain

∥∇𝑔(𝑥) − ∇𝑔(𝑥′)∥
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≤ ∥∇𝑥 𝑓 (𝑥, 𝑦∗(𝑥)) − ∇𝑥 𝑓 (𝑥′, 𝑦∗(𝑥′))∥
≤ ∥∇𝑥 𝑓 (𝑥, 𝑦∗(𝑥)) − ∇𝑥 𝑓 (𝑥′, 𝑦∗(𝑥))∥ + ∥∇𝑥 𝑓 (𝑥′, 𝑦∗(𝑥)) − ∇𝑥 𝑓 (𝑥′, 𝑦∗(𝑥′))∥
≤ 𝐿∥𝑥 − 𝑥′∥ + 𝐿∥𝑦∗(𝑥) − 𝑦∗(𝑥′)∥

≤
(
𝐿 + 𝐿

2

𝜇

)
∥𝑥 − 𝑥′∥.

The second technical lemma connects the induced 2-norm of a block matrix with
the 2-norms of individual blocks.

Lemma 3.A.3. Suppose 𝐴 is a 𝜔1 × 𝜔2 block matrix. Let 𝐴𝑖 𝑗 denote the (𝑖, 𝑗) th
block of 𝐴, 1 ≤ 𝑖 ≤ 𝜔1, 1 ≤ 𝑗 ≤ 𝜔2. The induced 2-norm of 𝐴 is upper bounded by

∥𝐴∥ ≤ ©­«
𝜔1∑︁
𝑖=1

𝜔2∑︁
𝑗=1



𝐴𝑖 𝑗

2ª®¬
1
2

.

Proof of Lemma 3.A.3. For unit vector 𝑥, we have the following:

∥𝐴𝑥∥2 =

𝜔1∑︁
𝑖=1







 𝜔2∑︁
𝑗=1

𝐴𝑖 𝑗𝑥 𝑗








2

≤
𝜔1∑︁
𝑖=1

©­«
𝜔2∑︁
𝑗=1



𝐴𝑖 𝑗

 · 

𝑥 𝑗

ª®¬
2

≤
𝜔1∑︁
𝑖=1

©­«
𝜔2∑︁
𝑗=1



𝐴𝑖 𝑗

2ª®¬ ©­«
𝜔2∑︁
𝑗=1



𝑥 𝑗

2ª®¬
=

𝜔1∑︁
𝑖=1

𝜔2∑︁
𝑗=1



𝐴𝑖 𝑗

2
,

where we used the definition of the induced 2-norm in the first inequality and the
Cauchy-Schwarz inequality in the second inequality.

Now we come back to the proof of Lemma 3.1.3.

Proof of Lemma 3.1.3. To simplify the notation, we define the stacked state vector
𝑦, control vector 𝑣, and disturbance vector 𝜁 as

𝑦 =


𝑦0

𝑦1
...

𝑦𝑝


, 𝑣 =


𝑣0

𝑣1
...

𝑣𝑝−1


, 𝜁 =


𝜁0

𝜁1
...

𝜁𝑝−1


.
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Recall that the transition matrix Φ(𝑡2, 𝑡1) is defined as

Φ(𝑡2, 𝑡1) :=

𝐴𝑡2−1𝐴𝑡2−2 · · · 𝐴𝑡1 if 𝑡2 > 𝑡1
𝐼 if 𝑡2 ≤ 𝑡1

.

Using this, we can express the state vector 𝑦 as an affine function of initial state 𝑥,
control 𝑣, and disturbance 𝜁 :

𝑦 = 𝑆𝑥𝑥 + 𝑆𝑣𝑣 + 𝑆𝜁 𝜁, (3.21)

where

𝑆𝜁 :=



0 0 · · · 0
Φ(𝑡 + 1, 𝑡 + 1) 0 · · · 0
Φ(𝑡 + 2, 𝑡 + 1) Φ(𝑡 + 2, 𝑡 + 2) · · · 0

...
...

. . .
...

Φ(𝑡 + 𝑝, 𝑡 + 1) Φ(𝑡 + 𝑝, 𝑡 + 2) · · · Φ(𝑡 + 𝑝, 𝑡 + 𝑝)


, 𝑆𝑥 =



Φ(𝑡, 𝑡)
Φ(𝑡 + 1, 𝑡)
Φ(𝑡 + 2, 𝑡)

...

Φ(𝑡 + 𝑝, 𝑡)


,

and 𝑆𝑣 = 𝑆𝜁 · 𝑑𝑖𝑎𝑔(𝐵𝑡 , . . . , 𝐵𝑡+𝑝−1).

To simplify the notation, we use the shorthand 𝑀 := 𝑀 (𝑡, 𝑝) for the controllability
matrix and

𝑅𝜁 := [Φ(𝑡 + 𝑝, 𝑡 + 1),Φ(𝑡 + 𝑝, 𝑡 + 2), . . . ,Φ(𝑡 + 𝑝, 𝑡 + 𝑝)]

throughout the proof. Since 𝑝 is greater than the controllability index 𝑑, we know
𝑀 has full row rank. The dynamical constraints for (3.4) can be written as

𝑀𝑣 = 𝑧 −Φ(𝑡 + 𝑝, 𝑡)𝑥 − 𝑅𝜁 𝜁 .

Because 𝑀 has full row rank, we let 𝑀† = 𝑀⊤ (𝑀𝑀⊤)−1 be the Moore-Penrose
pseudo-inverse of 𝑀 . Let 𝑉 ∈ R(𝑚𝑝)×(𝑚𝑝−𝑛) be a matrix whose columns constitute
an orthonormal basis of 𝑘𝑒𝑟 (𝑀). Then, we can express all feasible control vector 𝑣
as

𝑣 = 𝑀†
(
𝑧 −Φ(𝑡 + 𝑝, 𝑡)𝑥 − 𝑅𝜁 𝜁

)
+𝑉𝑟, (3.22)

where 𝑟 is a free variable that can take any value in R𝑚𝑝−𝑛.

Let 𝐹 denote the objective function of 𝜉 𝑝𝑡 , i.e.,

𝐹 (𝑦, 𝑣) :=

(
𝑝−1∑︁
𝜏=1

𝑓𝑡+𝜏 (𝑦𝜏) + 𝑐𝑡+𝜏 (𝑣𝜏−1)
)
+ 𝑐𝑡+𝑝 (𝑣𝑝−1).
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Since we can express the state vector 𝑦 and control vector 𝑣 as linear functions of
𝑥, 𝑧, 𝜁 and 𝑟 , we can write the switching cost (3.4) as an unconstrained optimization
problem

min
𝑟∈R𝑚𝑝−𝑛

𝐹 (𝑦(𝑥, 𝑧, 𝜁 , 𝑟), 𝑣(𝑥, 𝑧, 𝜁 , 𝑟)), (3.23)

where functions 𝑦(𝑥, 𝑧, 𝜁 , 𝑟) and 𝑣(𝑥, 𝑧, 𝜁 , 𝑟) are determined by

[
𝑦

𝑣

]
=

[
𝑆𝑥 − 𝑆𝑣𝑀†Φ(𝑡 + 𝑝, 𝑡) 𝑆𝑣𝑀† 𝑆𝜁 − 𝑆𝑣𝑀†𝑅𝜁 𝑆𝑣𝑉

−𝑀†Φ(𝑡 + 𝑝, 𝑡) 𝑀† −𝑀†𝑅𝜁 𝑉

]
·


𝑥

𝑧

𝜁

𝑟


. (3.24)

Note that if 𝑎 ≠ 1, the following is due to Lemma 3.A.3:

∥𝑆𝜁 ∥ ≤ ©­«
𝑝∑︁
𝑖=1

𝑖∑︁
𝑗=1
∥𝜙(𝑡 + 𝑖, 𝑡 + 𝑗)∥2ª®¬

1
2

≤ ©­«
𝑝∑︁
𝑖=1

𝑖∑︁
𝑗=1
𝑎2(𝑖− 𝑗)ª®¬

1
2

=

√︁
𝑎2𝑝+2 − (𝑝 + 1)𝑎2 + 𝑝��𝑎2 − 1

�� .

By Lemma 3.A.3, we also have

∥𝑆𝑥 ∥ ≤
√︂
𝑎2𝑝+2 − 1
𝑎2 − 1

,


𝑀†

 ≤ 𝑏

𝜎2 ·
√︂
𝑎2𝑝 − 1
𝑎2 − 1

, ∥𝑆𝑣 ∥ ≤ 𝑏∥𝑆𝜁 ∥, and

∥𝑅𝜁 ∥ ≤
√︂
𝑎2𝑝 − 1
𝑎2 − 1

≤ 𝑎
𝑝 − 1
𝑎 − 1

.

Since the norm of a block matrix is upper bounded by the sum of norms of each
block, we see that






[
𝑆𝑥 − 𝑆𝑣𝑀†Φ(𝑡 + 𝑝, 𝑡) 𝑆𝑣𝑀† 𝑆𝜁 − 𝑆𝑣𝑀†𝑅𝜁 𝑆𝑣𝑉

−𝑀†Φ(𝑡 + 𝑝, 𝑡) 𝑀† −𝑀†𝑅𝜁 𝑉

]




 ≤ 𝐶 (𝑝). (3.25)

When 𝑎 ≠ 1, 𝐶 (𝑝) is given by

𝐶 (𝑝) =
(
𝑏(𝑎𝑝+1 + 𝑎 − 2)
𝜎2(𝑎 − 1)

·
√︂
𝑎2𝑝 − 1
𝑎2 − 1

+ 1 + 𝑏
𝑏

) ©­­«
𝑏

√︃(
𝑎2𝑝+2 − (𝑝 + 1)𝑎2 + 𝑝

)��𝑎2 − 1
�� + 1

ª®®¬
+

√︂
𝑎2𝑝+2 − 1
𝑎2 − 1

− 1
𝑏
.

If 𝑎 = 1, by Lemma 3.A.3, we see that

∥𝑆𝜁 ∥ ≤ ©­«
𝑝∑︁
𝑖=1

𝑖∑︁
𝑗=1
∥𝜙(𝑡 + 𝑖, 𝑡 + 𝑗)∥2ª®¬

1
2

≤ ©­«
𝑝∑︁
𝑖=1

𝑖∑︁
𝑗=1
𝑎2(𝑖− 𝑗)ª®¬

1
2

=

√︂
𝑝(𝑝 + 1)

2
.
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By Lemma 3.A.3, we also see that

∥𝑆𝑥 ∥ ≤
√︁
𝑝 + 1,



𝑀†

 ≤ 𝑏

𝜎2 ·
√
𝑝, ∥𝑆𝑣 ∥ ≤ 𝑏∥𝑆𝜁 ∥, ∥𝑅𝜁 ∥ ≤ √𝑝.

Therefore, for (3.25) to hold when 𝑎 = 1, we need to set

𝐶 (𝑝) =
(
𝑏
√
𝑝

𝜎2
(√
𝑝 + 2

)
+ 1

) (
1 + 𝑏

√︂
𝑝(𝑝 + 1)

2

)
+

√︁
𝑝 + 1 ·

(
1 +

√︂
𝑝

2

)
.

Since 𝐹 is convex and strongly smooth in (𝑥, 𝑢), and both 𝑥, 𝑢 are affine functions of
(𝑦, 𝑧, 𝑟), 𝐹 (𝑥(𝑦, 𝑧, 𝑟), 𝑢(𝑦, 𝑧, 𝑟)) is convex and ℓ ·𝐶 (𝑝)2-strongly smooth in (𝑦, 𝑧, 𝑟).
Since 𝐹 (𝑥, 𝑢) is 𝑚𝑐-strongly convex in 𝑢, by (3.22), we have

∇2
𝑟𝐹 (𝑥(𝑦, 𝑧, 𝑤, 𝑟), 𝑢(𝑦, 𝑧, 𝑤, 𝑟)) ⪰ 𝑉⊺∇2

𝑢𝐹 (𝑥, 𝑢)𝑉
⪰ 𝑚𝑐 𝐼,

where we used that ∥𝑉𝜈∥2 = ∥𝜈∥2,∀𝜈 ∈ R𝑚𝑝−𝑛 because the columns of 𝑉 are
orthonormal in the last inequality. Therefore, by Lemma 3.A.2, we know that (3.23)
is convex and 𝐿2(𝑝)-strongly smooth in (𝑦, 𝑧), where

𝐿2(𝑝) := ℓ · 𝐶 (𝑝)2 + ℓ
2 · 𝐶 (𝑝)4
𝑚𝑐

.

By Lemma 3.A.2, we also know that the optimal solution of (3.23):

𝑟∗(𝑥, 𝑧, 𝜁) := arg min
𝑟∈R𝑚𝑝−𝑛

𝐹 (𝑦(𝑥, 𝑧, 𝜁 , 𝑟), 𝑣(𝑥, 𝑧, 𝜁 , 𝑟))

is ℓ · 𝐶 (𝑝)2/𝑚𝑐-Lipschitz. By (3.24) and (3.25), we see that

𝜓
𝑝
𝑡 (𝑥, 𝜁 , 𝑧) =

[
𝑆𝑥 − 𝑆𝑣𝑀†Φ(𝑡 + 𝑝, 𝑡) 𝑆𝑣𝑀† 𝑆𝜁 − 𝑆𝑣𝑀†𝑅𝜁 𝑆𝑣𝑉

−𝑀†Φ(𝑡 + 𝑝, 𝑡) 𝑀† −𝑀†𝑅𝜁 𝑉

]
·


𝑥

𝑧

𝜁

𝑟∗(𝑥, 𝑧, 𝜁)


is 𝐿1(𝑝)-Lipschitz, where

𝐿1(𝑝) = 𝐶 (𝑝) (1 + ℓ · 𝐶 (𝑝)2/𝑚𝑐).

Proof of Theorem 3.1.4
The proof of Theorem 3.1.4 is based on the decision-point transformation method
that we introduce before.



77

Recall that we use 𝑑 to the controllability index as defined in Definition 3.1.2.
Without any loss of the generality, we only need to show the perturbation bound of
𝜓
𝑡+𝑝
𝑡 ((𝑥𝑡 , 𝑤𝑡:𝑡+𝑝−1, 𝑥𝑡+𝑝))𝑥𝑡+ℎ holds for 𝑡 = 0, and the proof generalizes to other time
𝑡. Suppose ℎ and 𝑝 satisfy 𝑢𝑑 ≤ ℎ < (𝑢 + 1)𝑑 and 𝑝 = 𝑣𝑑 + 𝑟, where 𝛿, 𝑣, 𝑟 ∈ N

and 0 ≤ 𝑟 < 𝑑. Now we shall select the decision points as

𝑥0, 𝑥𝑑 , · · · , 𝑥(𝛿−1)𝑑 , 𝑥ℎ, 𝑥(𝛿+2)𝑑 , · · · , 𝑥(𝑣−1)𝑑 , 𝑥𝑝,

which are also denoted by 𝑥𝑖0 , · · · , 𝑥𝑖𝑣−1 for simplicity. Since the distance of any
consecutive decision points falls in [𝑑, 2𝑑), we can apply Lemma 3.1.3 to bound
the strong smoothness of switching costs. In the transformed SOCO problem, the
disturbance input of the (𝜏 − 1)-th time period is a vector 𝑤̂𝜏−1 := 𝑤𝑖𝜏−1:𝑖𝜏−1 ∈
R𝑛×(𝑖𝜏−𝑖𝜏−1) . Each stage cost Υ𝑖𝜏

𝑖𝜏−1
((𝑥𝑖𝜏−1 , 𝑤̂𝜏−1, 𝑥𝑖𝜏 )) is convex and 𝐿2(𝑖𝜏 − 𝑖𝜏−1)-

strongly smooth by Lemma 3.1.3, and is thus 𝐿0-strongly smooth by definition.
Recall that the solution of the transformed SOCO problem is denoted by 𝜓̂(𝑥0, 𝑤̂, 𝑥𝑝).
Then by Theorem 3.1.2 we have


𝜓𝑝0 ((𝑥0, 𝑤0:𝑝−1, 𝑥𝑝))𝑥ℎ − 𝜓

𝑝

0 ((𝑥
′
0, 𝑤

′
0:𝑝−1, 𝑥

′
𝑝)𝑥ℎ





=



𝜓̂(𝑥0, 𝑤̂, 𝑥𝑝)𝛿 − 𝜓̂(𝑥′0, 𝑤̂
′, 𝑥′𝑝)𝛿




≤ 𝐶0

(
𝜆𝛿−1

0


𝑥0 − 𝑥′0




2 +

𝑣−2∑︁
𝜏=0

𝜆
|𝛿−𝜏 |−1
0



𝑤̂𝜏 − 𝑤̂′𝜏

2 + 𝜆
(𝑣−1)−𝛿−1
0



𝑥𝑝 − 𝑥′𝑝

2

)
≤ 𝐶0

(
𝜆𝛿−1

0


𝑥0 − 𝑥′0




2 +

𝑣−2∑︁
𝜏=0

𝜆
|𝛿−𝜏 |−1
0

𝑖𝜏+1−1∑︁
𝑗=𝑖𝜏




𝑤 𝑗 − 𝑤′𝑗





2
+ 𝜆(𝑣−1)−𝛿−1

0



𝑥𝑝 − 𝑥′𝑝

2

)
≤ 𝐶0
𝜆0

(
𝜆𝑖𝛿−𝑖0



𝑥0 − 𝑥′0




2 +
𝑣−2∑︁
𝜏=0

𝑖𝜏+1−1∑︁
𝑗=𝑖𝜏

𝜆 | 𝑗−𝑖𝛿 |



𝑤 𝑗 − 𝑤′𝑗





2
+ 𝜆𝑖𝑣−1−𝑖𝛿



𝑥𝑝 − 𝑥′𝑝

2

)
= 𝐶̄

(
𝜆ℎ



𝑥0 − 𝑥′0


 + 𝑝−1∑︁

𝜏=0
𝜆 |ℎ−𝜏 |



𝑤𝜏 − 𝑤′𝜏

 + 𝜆𝑝−ℎ

𝑥𝑝 − 𝑥′𝑝

) . (3.26)

The last inequality holds because each interval is of length at most (2𝑑 − 1). Here
the constants are

𝐶0 =
2𝐿0
𝑚𝑐

, 𝜆0 = 1 − 2 ·
(√︁

1 + (2𝐿0/𝑚𝑐) + 1
)−1

,

𝐶̄ = 𝐶0/𝜆0 =
2𝐿0
𝑚𝑐

(
1 − 2 ·

(√︁
1 + (2𝐿0/𝑚𝑐) + 1

)−1
)−1

,

𝜆 =

(
1 − 2

(√︁
1 + (2𝐿0/𝑚𝑐) + 1

)−1
) 1

2𝑑−1

.
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The proof of the perturbation bound of 𝜓𝑡+𝑝𝑡 ((𝑥𝑡 , 𝑤𝑡:𝑡+𝑝−1, 𝜁𝑡+𝑝); 𝐹)𝑥𝑡+ℎ is quite sim-
ilar. The only difference lies in the terminal cost, which can be addressed by a
two-step approach.

Again, we set 𝑡 = 0 without any loss of the generality. First, let 𝜁𝑝 be fixed. We
append 𝑥aux = 0 to the end of the decision point sequence, and define a zero transition
cost to the auxiliary state 𝑐𝑣 (𝑥𝑡+𝑝, 𝑤̂𝑣, 𝑥aux) ≡ 0 (note that 𝑐𝑣 is trivially convex and
𝐿0-strongly smooth). Denote the solution of the modified version of transformed
SOCO problem by 𝜓̂′(𝑥𝑡 , 𝑤̂, 𝑥aux), then by the same argument as above, we have


𝜓𝑝0 ((𝑥0, 𝑤0:𝑝−1, 𝜁𝑝); 𝐹)𝑥ℎ − 𝜓

𝑝

0 ((𝑥
′
0, 𝑤

′
0:𝑝−1, 𝜁𝑝); 𝐹)𝑥ℎ





=



𝜓̂′(𝑥0, 𝑤̂, 0)𝛿 − 𝜓̂′(𝑥′0, 𝑤̂
′, 0)𝛿




≤ · · · ≤ 𝐶̄

(
𝜆ℎ



𝑥0 − 𝑥′0


 + 𝑝−1∑︁

𝜏=0
𝜆 |ℎ−𝜏 |



𝑤𝜏 − 𝑤′𝜏

) , (3.27)

where the constants are the same as previously defined. Now, we go on to bound
the distance 


𝜓𝑝0 ((𝑥′0, 𝑤′0:𝑝−1, 𝜁𝑝); 𝐹)𝑥ℎ − 𝜓

𝑝

0 ((𝑥
′
0, 𝑤

′
0:𝑝−1, 𝜁

′
𝑝); 𝐹)𝑥ℎ




.
To simplify the notations, we define

𝑥𝑝 := 𝜓𝑝0 ((𝑥
′
0, 𝑤

′
0:𝑝−1, 𝜁𝑝); 𝐹)𝑥𝑝 , and 𝑥′𝑝 := 𝜓𝑝0 ((𝑥

′
0, 𝑤

′
0:𝑝−1, 𝜁

′
𝑝); 𝐹)𝑥𝑝 .

By the first-order optimality condition, we see that

∇𝑥𝑝 𝜄
𝑝

0 ((𝑥
′
0, 𝑤

′
0:𝑝−1, 𝑥𝑝)) + ∇𝑥𝐹 (𝑥𝑝; 𝜁𝑝) = 0, (3.28a)

∇𝑥𝑝 𝜄
𝑝

0 ((𝑥
′
0, 𝑤

′
0:𝑝−1, 𝑥

′
𝑝)) + ∇𝑥𝐹 (𝑥′𝑝; 𝜁 ′𝑝) = 0. (3.28b)

Note that the function

𝐻 (𝑥𝑝) := 𝜄𝑝0 ((𝑥
′
0, 𝑤

′
0:𝑝−1, 𝑥𝑝)) + 𝐹 (𝑥𝑝; 𝜁𝑝)

is a 𝑚𝐹-strongly convex in 𝑥𝑝. Thus, we see that

𝑚𝐹



𝑥𝑝 − 𝑥′𝑝

2 ≤ ⟨∇𝐻 (𝑥𝑝) − 𝐻 (𝑥′𝑝), 𝑥𝑝 − 𝑥′𝑝⟩ (3.29a)

= ⟨∇𝑥𝐹 (𝑥′𝑝; 𝜁 ′𝑝) − ∇𝑥𝐹 (𝑥′𝑝; 𝜁𝑝), 𝑥𝑝 − 𝑥′𝑝⟩ (3.29b)

≤


∇𝑥𝐹 (𝑥′𝑝; 𝜁 ′𝑝) − ∇𝑥𝐹 (𝑥′𝑝; 𝜁𝑝)



 · 

𝑥𝑝 − 𝑥′𝑝

 (3.29c)

≤ ℓ𝐹


𝜁𝑝 − 𝜁 ′𝑝

 · 

𝑥𝑝 − 𝑥′𝑝

, (3.29d)
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where we use the properties of strongly convex functions in (3.29a); we use (3.28)
in (3.29b); we use Cauchy-Schwartz inequality in (3.29c); we use Assumption 3.1.1
in (3.29d). Thus, we have shown that

𝑥𝑝 − 𝑥′𝑝

 ≤ ℓ𝐹

𝑚𝐹



𝜁𝑝 − 𝜁 ′𝑝

. (3.30)

Therefore, we obtain that


𝜓𝑝0 ((𝑥′0, 𝑤′0:𝑝−1, 𝜁𝑝); 𝐹)𝑥ℎ − 𝜓
𝑝

0 ((𝑥
′
0, 𝑤

′
0:𝑝−1, 𝜁

′
𝑝); 𝐹)𝑥ℎ





=




𝜓𝑝0 ((𝑥′0, 𝑤′0:𝑝−1, 𝑥𝑝))𝑥ℎ − 𝜓
𝑝

0 ((𝑥
′
0, 𝑤

′
0:𝑝−1, 𝑥

′
𝑝))𝑥ℎ




 (3.31a)

≤ 𝐶̄ · 𝜆𝑝−ℎ


𝑥𝑝 − 𝑥′𝑝

 (3.31b)

≤ ℓ𝐹

𝑚𝐹

· 𝐶̄ · 𝜆𝑝−ℎ


𝜁𝑝 − 𝜁 ′𝑝

, (3.31c)

where we use the principle of optimality in (3.31a); we use the perturbation bound
with terminal constraint (3.26) in (3.31b); we use (3.30) in (3.31c).

Combining (3.31) with (3.27) by the triangle inequality gives


𝜓𝑝0 ((𝑥0, 𝑤0:𝑝−1, 𝜁𝑝); 𝐹)𝑥ℎ − 𝜓
𝑝

0 ((𝑥
′
0, 𝑤

′
0:𝑝−1, 𝜁

′
𝑝); 𝐹)𝑥ℎ





≤




𝜓𝑝0 ((𝑥0, 𝑤0:𝑝−1, 𝜁𝑝); 𝐹)𝑥ℎ − 𝜓
𝑝

0 ((𝑥
′
0, 𝑤

′
0:𝑝−1, 𝜁𝑝); 𝐹)𝑥ℎ





+




𝜓𝑝0 ((𝑥′0, 𝑤′0:𝑝−1, 𝜁𝑝); 𝐹)𝑥ℎ − 𝜓
𝑝

0 ((𝑥
′
0, 𝑤

′
0:𝑝−1, 𝜁

′
𝑝); 𝐹)𝑥ℎ





≤ 𝐶

(
𝜆ℎ



𝑥0 − 𝑥′0


 + 𝑝−1∑︁

𝜏=0
𝜆 |ℎ−𝜏 |



𝑤𝜏 − 𝑤′𝜏

 + 𝜆𝑝−ℎ

𝜁𝑝 − 𝜁 ′𝑝

) .
Recall that 𝐶 := max

{
1, ℓ𝐹

𝑚𝐹

}
. This finishes the proof of Theorem 3.1.4.

3.B Proofs for the Perturbation Pipeline
Proof of Lemma 3.2.1
We have already shown (3.8) holds for all time step 𝑡 < 𝑇 − 𝑘 in the main body. For
𝑡 ≥ 𝑇 − 𝑘 , we see that

𝑒𝑡 =


𝜓𝑇𝑡 (

𝑥𝑡 , 𝑤𝑡:𝑇 |𝑡 ; 𝐹𝑇
)
− 𝜓𝑇𝑡

(
𝑥𝑡 , 𝑤

∗
𝑡:𝑇 ; 𝐹𝑇

)

 (3.32a)

≤
𝑘∑︁
𝜏=0

(
∥𝑥𝑡 ∥ · 𝑞1(𝜏) + 𝑞2(𝜏)

)
𝜌𝑡,𝜏 (3.32b)

≤
𝑘∑︁
𝜏=0

( ( 𝑅
𝐶3
+ 𝐷𝑥∗

)
· 𝑞1(𝜏) + 𝑞2(𝜏)

)
𝜌𝑡,𝜏, (3.32c)
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where we used the definition of per-step error 𝑒𝑡 in (3.32a); we used the perturbation
bound (3.6) specified by Property 3.2.1 in (3.32b); we used the assumption 𝑥𝑡 ∈
B

(
𝑥∗𝑡 ,

𝑅
𝐶3

)
,


𝑥∗𝑡 

 ≤ 𝐷𝑥∗ , and the convention 𝜌𝑡,𝜏 := 0 if 𝑡 + 𝜏 > 𝑇 in (3.32c). Thus 𝑒𝑡

also satisfies (3.8) for 𝑡 ≥ 𝑇 − 𝑘 .

Proof of Lemma 3.2.2
To simplify the notation, we will use𝜓𝑇𝑡 (𝑧𝑡) as a shorthand notation of𝜓𝑇𝑡 (𝑧𝑡 , 𝑤∗𝑡:𝑇 ; 𝐹𝑇 )
in the proof of Lemma 3.2.2, since the proof only relies on the perturbation bound
(3.7).

Note that for any time step 𝑡 + 1, by Lipschitzness of the dynamics we have

𝑥𝑡+1 − 𝜓𝑇𝑡 (𝑥𝑡)𝑥𝑡+1

 = 


𝑔𝑡 (𝑥𝑡 , 𝑢𝑡 , 𝑤𝑡) − 𝑔𝑡 (𝑥𝑡 , 𝜓𝑇𝑡 (𝑥𝑡)𝑢𝑡 , 𝑤𝑡)



≤ 𝐿𝑔



𝑢𝑡 − 𝜓𝑇𝑡 (𝑥𝑡)𝑢𝑡


≤ 𝐿𝑔𝑒𝑡 . (3.33)

Therefore, we can show the statement that 𝑥𝑡 ∈ B
(
𝑥∗𝑡 ,

𝑅
𝐶3

)
holds if 𝑒𝜏 ≤ 𝑅/(𝐶2

3𝐿𝑔),∀𝜏 <
𝑡 by induction. Note that this statement clearly holds for 𝑡 = 0 since 𝑥∗0 = 𝑥0. Suppose
it holds for 0, 1, . . . , 𝑡 − 1. Then, we see that

𝑥𝑡 − 𝑥∗𝑡 

 = 

𝑥𝑡 − 𝜓𝑇0 (𝑥0)𝑥𝑡




≤



𝑥𝑡 − 𝜓𝑇𝑡−1(𝑥𝑡−1)𝑥𝑡


 + 𝑡−1∑︁

𝑖=1



𝜓𝑇𝑡−𝑖 (𝑥𝑡−𝑖)𝑥𝑡 − 𝜓𝑇𝑡−𝑖−1(𝑥𝑡−𝑖−1)𝑥𝑡




≤


𝑥𝑡 − 𝜓𝑇𝑡−1(𝑥𝑡−1)𝑥𝑡



 + 𝑡−1∑︁
𝑖=1

𝑞3(𝑖)


𝑥𝑡−𝑖 − 𝜓𝑇𝑡−𝑖−1(𝑥𝑡−𝑖−1)𝑥𝑡−𝑖



 (3.34a)

≤
𝑡−1∑︁
𝑖=0

𝑞3(𝑖)


𝑥𝑡−𝑖 − 𝜓𝑇𝑡−𝑖−1(𝑥𝑡−𝑖−1)𝑥𝑡−𝑖



 (3.34b)

≤ 𝐿𝑔
𝑡−1∑︁
𝑖=0

𝑞3(𝑖)𝑒𝑡−𝑖−1, (3.34c)

where in (3.34a), we apply the perturbation bound (3.7) specified by Property
3.2.1. To see why it can be applied, note that for 𝑖 ∈ [1, 𝑡 − 1], 𝑥𝑡−𝑖−1 satisfies
𝑥𝑡−𝑖−1 ∈ B

(
𝑥∗
𝑡−𝑖−1,

𝑅
𝐶3

)
by the induction assumption, thus we have

𝜓𝑇𝑡−𝑖−1(𝑥𝑡−𝑖−1)𝑥𝑡−𝑖 ∈ B
(
𝑥∗𝑡−𝑖, 𝑅

)
because 𝑞3(1) ≤

∑∞
𝜏=0 𝑞3(𝜏) ≤ 𝐶3. Therefore, we can apply the perturbation

bound (3.7) specified by Property 3.2.1 to compare the optimization solution vectors
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𝜓𝑇
𝑡−𝑖 (𝑥𝑡−𝑖) and 𝜓𝑇

𝑡−𝑖
(
𝜓𝑇
𝑡−𝑖−1(𝑥𝑡−𝑖−1)𝑥𝑡−𝑖

)
, and by the principle of optimality, we see

that
𝜓𝑇𝑡−𝑖

(
𝜓𝑇𝑡−𝑖−1(𝑥𝑡−𝑖−1)𝑥𝑡−𝑖

)
𝑥𝑡
= 𝜓𝑇𝑡−𝑖−1(𝑥𝑡−𝑖−1)𝑥𝑡 .

We also used 𝑞3(0) ≥ 1 in (3.34b) and (3.33) in (3.34c). Recall that we assume
𝑒𝑡−𝑖 ≤ 𝑅

𝐶2
3𝐿𝑔

. Substituting this into (3.34) gives that



𝑥𝑡 − 𝑥∗𝑡 

 ≤ 𝐿𝑔 · 𝑅

𝐶2
3𝐿𝑔

𝑡−1∑︁
𝑖=0

𝑞3(𝑖) ≤
𝑅

𝐶3
.

Hence we have shown 𝑥𝑡 ∈ B
(
𝑥∗𝑡 ,

𝑅
𝐶3

)
holds if 𝑒𝜏 ≤ 𝑅/(𝐶2

3𝐿𝑔),∀𝜏 < 𝑡 by induction.

An implication of this result is that 𝑥𝑡 ∈ B
(
𝑥∗𝑡 ,

𝑅
𝐶3

)
holds for all 𝑡 ≤ 𝑇 if 𝑒𝑡 ≤

𝑅/(𝐶2
3𝐿𝑔) holds for all 𝑡 < 𝑇 .

Similar with (3.34), we see the following inequality holds for all 𝑡 < 𝑇 if 𝑒𝑡 ≤
𝑅/(𝐶2

3𝐿𝑔),∀𝑡 < 𝑇 :

𝑢𝑡 − 𝑢∗𝑡 

 = 

𝑢𝑡 − 𝜓𝑇0 (𝑥0)𝑢𝑡




≤


𝑢𝑡 − 𝜓𝑇𝑡 (𝑥𝑡)𝑢𝑡

 + 𝑡−1∑︁

𝑖=0



𝜓𝑇𝑡−𝑖 (𝑥𝑡−𝑖)𝑢𝑡 − 𝜓𝑇𝑡−𝑖−1(𝑥𝑡−𝑖−1)𝑢𝑡




≤


𝑢𝑡 − 𝜓𝑇𝑡 (𝑥𝑡)𝑢𝑡

 + 𝑡−1∑︁

𝑖=0
𝑞3(𝑖)



𝑥𝑡−𝑖 − 𝜓𝑇𝑡−𝑖−1(𝑥𝑡−𝑖−1)𝑥𝑡−𝑖




≤ 𝑒𝑡 + 𝐿𝑔
𝑡−1∑︁
𝑖=0

𝑞3(𝑖)𝑒𝑡−𝑖−1, (3.35)

where the second inequality holds for the same reason as (3.34a).

By (3.34), we see that



𝑥𝑡 − 𝑥∗𝑡 

2 ≤ 𝐿2
𝑔

(
𝑡−1∑︁
𝑖=0

𝑞3(𝑖)𝑒𝑡−𝑖−1

)2

≤ 𝐿2
𝑔

(
𝑡−1∑︁
𝑖=0

𝑞3(𝑖)
)
·
(
𝑡−1∑︁
𝑖=0

𝑞3(𝑖)𝑒2
𝑡−𝑖−1

)
(3.36a)

≤ 𝐶3𝐿
2
𝑔

(
𝑡−1∑︁
𝑖=0

𝑞3(𝑖)𝑒2
𝑡−𝑖−1

)
, (3.36b)

where we use the Cauchy-Schwarz inequality in (3.36a), and
∑𝑡−1
𝑖=0 𝑞3(𝑖) ≤ 𝐶3 in

(3.36b).
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Similarly, by (3.35), we see that

𝑢𝑡 − 𝑢∗𝑡 

2 ≤
(
𝑒𝑡 + 𝐿𝑔

𝑡−1∑︁
𝑖=0

𝑞3(𝑖)𝑒𝑡−𝑖−1

)2

≤
(
1 + 𝐿2

𝑔

𝑡−1∑︁
𝑖=0

𝑞3(𝑖)
)
·
(
𝑒2
𝑡 +

𝑡−1∑︁
𝑖=0

𝑞3(𝑖)𝑒2
𝑡−𝑖−1

)
(3.37a)

≤
(
1 + 𝐶3𝐿

2
𝑔

)
·
(
𝑒2
𝑡 +

𝑡−1∑︁
𝑖=0

𝑞3(𝑖)𝑒2
𝑡−𝑖−1

)
, (3.37b)

where we use the Cauchy-Schwarz inequality in (3.37a), and we use
∑𝑡−1
𝑖=0 𝑞3(𝑖) ≤ 𝐶3

in (3.37b).

Summing (3.36) and (3.37) over time steps 𝑡 gives that
𝑇∑︁
𝑡=1



𝑥𝑡 − 𝑥∗𝑡 

2 +
𝑇−1∑︁
𝑡=0



𝑢𝑡 − 𝑢∗𝑡 

2

≤ 𝐶3𝐿
2
𝑔

𝑇∑︁
𝑡=1

(
𝑡−1∑︁
𝑖=0

𝑞3(𝑖)𝑒2
𝑡−𝑖−1

)
+

(
1 + 𝐶3𝐿

2
𝑔

)
·
𝑇−1∑︁
𝑡=0

(
𝑒2
𝑡 +

𝑡−1∑︁
𝑖=0

𝑞3(𝑖)𝑒2
𝑡−𝑖−1

)
≤

(
1 + 2𝐶3𝐿

2
𝑔

)
· (1 + 𝐶3) ·

𝑇−1∑︁
𝑡=0

𝑒2
𝑡 , (3.38)

where we rearrange the terms and use
∑∞
𝑗=0 𝑞3( 𝑗) ≤ 𝐶3 in the last inequality.

Since the cost function 𝑓𝑡 (·, ·;𝑤∗𝑡 ) and 𝐹𝑇 (·;𝑤∗𝑇 ) are nonnegative, convex, and ℓ-
smooth in their inputs, by Lemma F.2 in Lin, Hu, Shi, et al., 2021, we see that the
following inequality holds for arbitrary 𝜂 > 0:

cost(ALG) − cost(OPT)

≤
(
𝑇−1∑︁
𝑡=0

𝑓𝑡 (𝑥𝑡 , 𝑢𝑡 ;𝑤∗𝑡 ) + 𝐹𝑇 (𝑥𝑇 ;𝑤∗𝑇 )
)
−

(
𝑇−1∑︁
𝑡=0

𝑓𝑡 (𝑥∗𝑡 , 𝑢∗𝑡 ;𝑤∗𝑡 ) + 𝐹𝑇 (𝑥∗𝑇 ;𝑤∗𝑇 )
)

≤ 𝜂
(
𝑇−1∑︁
𝑡=0

𝑓𝑡 (𝑥∗𝑡 , 𝑢∗𝑡 ;𝑤∗𝑡 ) + 𝐹𝑇 (𝑥∗𝑇 ;𝑤∗𝑇 )
)

+ ℓ
2

(
1 + 1

𝜂

) (
𝑇∑︁
𝑡=1



𝑥𝑡 − 𝑥∗𝑡 

2 +
𝑇−1∑︁
𝑡=0



𝑢𝑡 − 𝑢∗𝑡 

2
)

(3.39a)

≤ 𝜂 · cost(OPT) +
(
1 + 1

𝜂

)
· ℓ

2
·
(
1 + 2𝐶3𝐿

2
𝑔

)
· (1 + 𝐶3) ·

𝑇−1∑︁
𝑡=0

𝑒2
𝑡 (3.39b)

= 𝜂 · cost(OPT) + 1
𝜂
· ℓ

2
·
(
1 + 2𝐶3𝐿

2
𝑔

)
· (1 + 𝐶3) ·

𝑇−1∑︁
𝑡=0

𝑒2
𝑡
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+ ℓ
2
·
(
1 + 2𝐶3𝐿

2
𝑔

)
· (1 + 𝐶3) ·

𝑇−1∑︁
𝑡=0

𝑒2
𝑡 , (3.39c)

where we apply Lemma F.2 in Lin, Hu, Shi, et al., 2021 in (3.39a), and we use (3.38)
in (3.39b). Setting the tunable weight 𝜂 in (3.39c) to be

𝜂 =
©­­«
ℓ
2 ·

(
1 + 2𝐶3𝐿

2
𝑔

)
· (1 + 𝐶3) ·

∑𝑇−1
𝑡=0 𝑒

2
𝑡

cost(OPT)
ª®®¬

1
2

gives that

cost(ALG) − cost(OPT)

≤

√√√(
ℓ

2
·
(
1 + 2𝐶3𝐿

2
𝑔

)
· (1 + 𝐶3)

)
· cost(OPT) ·

𝑇−1∑︁
𝑡=0

𝑒2
𝑡

+ ℓ
2
·
(
1 + 2𝐶3𝐿

2
𝑔

)
· (1 + 𝐶3) ·

𝑇−1∑︁
𝑡=0

𝑒2
𝑡 . (3.40)

This finishes the proof of Lemma 3.2.2.

Proof of Theorem 3.2.3
We first use induction to show that the following two conditions holds for all time
steps 𝑡 < 𝑇 :

𝑥𝑡 ∈ B
(
𝑥∗𝑡 ,

𝑅

𝐶3

)
, (3.41a)

𝑒𝑡 ≤
𝑘∑︁
𝜏=0

((
𝑅

𝐶3
+ 𝐷𝑥∗

)
· 𝑞1(𝜏) + 𝑞2(𝜏)

)
𝜌𝑡,𝜏 + 2𝑅

((
𝑅

𝐶3
+ 𝐷𝑥∗

)
· 𝑞1(𝑘) + 𝑞2(𝑘)

)
.

(3.41b)

At time step 0, (3.41a) holds because 𝑥0 = 𝑥∗0, and (3.41b) holds by Lemma 3.2.1
and the assumption on the terminal cost 𝐹𝑘 of MPC𝑘 .

Suppose (3.41a) and (3.41b) hold for all time steps 𝜏 < 𝑡. For time step 𝑡, by the
assumption on the prediction errors 𝜌𝑡,𝜏 and prediction horizon 𝑘 in Theorem 3.2.3,
we know that 𝑒𝜏 ≤ 𝑅

𝐶2
3𝐿𝑔

holds for all 𝜏 < 𝑡 because (3.41b) holds for all 𝜏 < 𝑡. Thus,
we know that (3.41a) holds for time step 𝑡 by Lemma 3.2.2. Then, since (3.41a)
holds for time step 𝑡, and the terminal cost 𝐹𝑡+𝑘 of MPC𝑘 is set to be the indicator
function of some state 𝑥(𝑤𝑡+𝑘 |𝑡) that satisfies 𝑥(𝑤𝑡+𝑘 |𝑡) ∈ B(𝑥∗𝑡+𝑘 , 𝑅) if 𝑡 < 𝑇 − 𝑘 , we
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know (3.41b) also holds for time step 𝑡 by Lemma 3.2.1. This finishes the induction
proof of (3.41).

To simplify the notation, let 𝑅0 := 𝑅
𝐶3
+ 𝐷𝑥∗ . Note that (3.41b) implies that

𝑒2
𝑡 ≤

(
𝑘∑︁
𝜏=0
(𝑅0 · 𝑞1(𝜏) + 𝑞2(𝜏)) + 2𝑅 (𝑅0 + 1)

)
·
(
𝑘∑︁
𝜏=0
(𝑅0 · 𝑞1(𝜏) + 𝑞2(𝜏)) 𝜌2

𝑡,𝜏 + 2𝑅
(
𝑅0 · 𝑞1(𝑘)2 + 𝑞2(𝑘)2

))
(3.42a)

≤ (𝑅0𝐶1 + 𝐶2 + 2𝑅(𝑅0 + 1))

·
(
𝑘−1∑︁
𝜏=0
(𝑅0 · 𝑞1(𝜏) + 𝑞2(𝜏)) 𝜌2

𝑡,𝜏 + (2𝑅 + 1)
(
𝑅0 · 𝑞1(𝑘)2 + 𝑞2(𝑘)2

))
,

(3.42b)

where we use the Cauchy-Schwarz inequality in (3.42a); we use the assumptions
that

∑𝑘
𝜏=0 𝑞1(𝜏) ≤ 𝐶1,

∑𝑘
𝜏=0 𝑞2(𝜏) ≤ 𝐶2, and 𝜌𝑡,𝜏 ≤ 1 in (3.42b).

Since (3.41) and (3.42) holds for all time steps 𝑡 < 𝑇 , we can apply Lemma 3.2.2 to
obtain that

cost(MPC𝑘 ) − cost(OPT) ≤
√︁

cost(OPT) · 𝐸0 + 𝐸0,

where

𝐸0 := (𝑅0𝐶1 + 𝐶2 + 2𝑅(𝑅0 + 1))

·
(
𝑘−1∑︁
𝜏=0
(𝑅0 · 𝑞1(𝜏) + 𝑞2(𝜏)) 𝑃(𝜏) + (2𝑅 + 1)

(
𝑅0 · 𝑞1(𝑘)2 + 𝑞2(𝑘)2

)
𝑇

)
.

This finishes the proof of Theorem 3.2.3.

Proof of Theorem 3.2.4
By Theorem 3.3 in Lin, Hu, Shi, et al., 2021, we know Property 3.2.1 holds under
Assumption 3.2.1 for arbitrary 𝑅 and 𝑞1(𝑡) = 0, 𝑞2(𝑡) = 𝐻1𝜆

𝑡
1, and 𝑞3(𝑡) = 𝐻1𝜆

𝑡
1,

where 𝐻1 = 𝐻1(𝜇, ℓ, 𝑑, 𝜎, 𝑎, 𝑏, 𝑏′) > 0 is some constant, and

𝜆1 = 𝜆1(𝜇, ℓ, 𝑑, 𝜎, 𝑎, 𝑏, 𝑏′) ∈ (0, 1)

is the decay rate. Here, 𝐻1 corresponds to 𝐶 and 𝜆1 corresponds to 𝜆 in Theorem
3.3 in Lin, Hu, Shi, et al., 2021.
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By setting 𝑅 := max
{
𝐷𝑥∗ ,

2𝐿𝑔𝐻3
1

(1−𝜆1)3

}
, we guarantee that the terminal state 0 of MPC𝑘

is always in the closed ball B(𝑥∗
𝑡+𝑘 , 𝑅), and the condition

𝑘∑︁
𝜏=0

((
𝑅

𝐶3
+ 𝐷𝑥∗

)
· 𝑞1(𝜏) + 𝑞2(𝜏)

)
𝜌𝑡,𝜏 + 2𝑅

((
𝑅

𝐶3
+ 𝐷𝑥∗

)
· 𝑞1(𝑘) + 𝑞2(𝑘)

)
≤ 𝑅

𝐶2
3𝐿𝑔

holds once 𝑘 ≥ ln
( 4𝐻3

1𝐿𝑔

(1−𝜆1)2

)
/ln(1/𝜆1) because 𝜌𝑡,𝜏 ≤ 1. Therefore, we can apply

Theorem 3.2.3 to finish the proof of Theorem 3.2.4.

3.C Proof Outline for Networked Online Convex Optimization
In this section, we outline the major novelties in our proofs for the tighter exponen-
tially decaying local perturbation bound in Theorem 3.3.4 and the main competitive
ratio bound for LPC in Theorem 3.3.5. The full details of the proofs of these results
are deferred to Section 3.D.

Refined Analysis of Perturbation Bounds
We begin by outlining the four-step structure we use to prove Theorem 3.3.4. Our
goal is to highlight the main ideas, while deferring a detailed proof to Section 3.D.
Throughout this section, we consider a Networked OCO problem instance 𝑝 ∈
P(𝜇, ℓ 𝑓 , ℓ𝑇 , ℓ𝑆,Δ, ℎ).

Step 1. Establishing first order equations

The exponentially decaying local perturbation bounds (Definition 3.3.4) study how
the optimal solution 𝜓 (𝑘,𝑟)

𝑝,(𝑡,𝑣)

(
{𝑦𝑢
𝑡−1}, {𝑧

𝑢
𝜏}

)
reacts as we change the fixed actions on

the boundary {𝑧𝑢𝜏 | (𝜏, 𝑢) ∈ 𝜕𝑁
(𝑘,𝑟)
(𝑡,𝑣) }. We combine these fixed actions into a single

vector and denote it as

𝜁 := {𝑧𝑢𝜏 | (𝜏, 𝑢) ∈ 𝜕𝑁
(𝑘,𝑟)
(𝑡,𝑣) }.

Since we do not perturb the previous actions {𝑦𝑢
𝑡−1}𝑢∈𝑁𝑟𝑣 in the local exponentially

decaying perturbation bound (Definition 3.3.4), we introduce the shorthand notation
𝜓(𝜁) := 𝜓 (𝑘,𝑟)

𝑝,(𝑡,𝑣)

(
{𝑦𝑢
𝑡−1}, 𝜁

)
to simplify the notations when the context is clear. The

objective function of the corresponding optimization problem

𝑡+𝑘−1∑︁
𝜏=𝑡

(
𝑓
(𝑁𝑟−1
𝑣 )

𝜏

(
𝑥
(𝑁𝑟𝑣 )
𝜏

)
+ 𝑐(𝑁

𝑟
𝑣 )

𝜏

(
𝑥
(𝑁𝑟𝑣 )
𝜏 , 𝑥

(𝑁𝑟𝑣 )
𝜏−1

))
, where

𝑥𝑢𝑡−1 = 𝑦𝑢𝑡−1,∀𝑢 ∈ 𝑁
𝑟
𝑣 , 𝑥

𝑢
𝜏 = 𝑧

𝑢
𝜏,∀(𝜏, 𝑢) ∈ 𝜕𝑁

(𝑘,𝑟)
(𝑡,𝑣) ,
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is a function of the previous actions {𝑦𝑢
𝑡−1}𝑢∈𝑁𝑟𝑣 , the fixed actions on the boundaries 𝜁 ,

and the free variables {𝑥𝑢𝜏 | (𝜏, 𝑢) ∈ 𝑁
(𝑘−1,𝑟−1)
(𝑡,𝑣) }. Since we do not perturb the previous

actions, we express the objective function as ℎ̂
(
{𝑥𝑢𝜏 | (𝜏, 𝑢) ∈ 𝜕𝑁

(𝑘−1,𝑟−1)
(𝑡,𝑣) }, 𝜁

)
. To

avoid writing the period index 𝑡 repeatedly, for arbitrary 𝑖 ∈ {0, 1, . . . , 𝑘}, we use 𝑥𝑢
𝑖

to denote the decision variable 𝑥𝑢
𝑡−1+𝑖 for 𝑢 ∈ 𝑁𝑟−1

𝑣 at period 𝑡 − 1 + 𝑖 and introduce
the notations

𝑧𝑢𝑖 =


𝑧𝑢
𝑡−1+𝑖 for 𝑢 ∈ 𝜕𝑁𝑟𝑣 if 𝑖 ∈ {1, . . . , 𝑘 − 1},

𝑧𝑢
𝑡+𝑘−1 for 𝑢 ∈ 𝑁𝑟𝑣 if 𝑖 = 𝑘.

To simplify the notations, we also use the shorthand

𝑥𝑖 := 𝑥 (𝑁
𝑟−1
𝑣 )

𝑖
, 𝑧𝑖 := 𝑧(𝜕𝑁

𝑟
𝑣 )

𝑖
, for 𝑖 ∈ {1, . . . , 𝑘 − 1},

𝑧𝑘 := 𝑧(𝑁
𝑟
𝑣 )

𝑘
.

Using these notations, we can rewrite the objective function as ℎ̂(𝑥1:𝑘−1, 𝑧1:𝑘 ). The
main lemma for this step is the following.

Lemma 3.C.1. Let 𝑒 = (𝑒1, . . . , 𝑒𝑘 ) be the perturbation vector such that 𝑒𝑖 shares
the same dimensions as 𝑧𝑖 for 𝑖 ∈ {1, 2, . . . , 𝑘}. Given 𝜃 ∈ R, optimization parameter
𝜁 and perturbation vector 𝑒, we have

𝑑

𝑑𝜃
𝜓(𝜁 + 𝜃𝑒) = 𝑀−1

(
𝑅(𝑘)𝑒𝑘 +

𝑘−1∑︁
𝜏=1

𝐾 (𝜏)𝑒𝜏

)
, where

𝑀 := ∇2
𝑥1:𝑘−1

ℎ̂(𝜓(𝜁 + 𝜃𝑒), 𝜁 + 𝜃𝑒),
𝑅(𝑘) := −∇𝑧𝑘∇𝑥1:𝑘−1 ℎ̂(𝜓(𝜁 + 𝜃𝑒), 𝜁 + 𝜃𝑒),
𝐾 (𝜏) := −∇𝑧𝜏∇𝑥1:𝑘−1 ℎ̂(𝜓(𝜁 + 𝜃𝑒), 𝜁 + 𝜃𝑒), for 𝜏 ∈ {1, . . . , 𝑘 − 1}.

The proof for Lemma 3.C.1 using first order conditions at the global optimal solution
for the convex function ℎ̂(·, 𝜁 + 𝜃𝑒) and then takes derivatives with respect to to 𝜃.
See Appendix 3.D for a proof.

Step 2: Decomposing 𝑀−1 as infinite series

𝑀 is a hierarchical block matrix with the first level of dimension (𝑘 − 1) × (𝑘 −
1). When fixing the first level indices (i.e., period indices) in 𝑀 , the lower level
matrices are non-zero only if their difference in the period indices is ≤ 1. Hence
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we decompose 𝑀 to 𝑀 = 𝐷 + 𝐴, where 𝐷 is a block diagonal matrix and 𝐴 is a tri-
diagonal block matrix with zero matrix on the diagonal. Each diagonal block in 𝐷 is
a graph-induced banded matrix, which captures the Hessian of ℎ̂ in a single period.
Denote each diagonal block as 𝐷𝑖,𝑖 for 1 ≤ 𝑖 ≤ 𝑘 − 1. Further, for 2 ≤ 𝑖 ≤ 𝑘 − 1,
𝐴𝑖,𝑖−1 (similarly 𝐴𝑖,𝑖+1) captures the temporal correlation of an individual’s action
between consecutive periods. Under this decomposition, we know that each 𝐷𝑖,𝑖 is
invertible because 𝑓

(𝑁𝑟𝑣 )
𝑡−1+𝑖 is strictly strongly convex for 𝑖 = 1, . . . , 𝑘 − 1. Thus, we

know that 𝐷−1 = diag({𝐷−1
𝑖,𝑖
}1≤𝑖≤𝑘−1). And 𝑀−1 can be expressed as

𝑀−1 = (𝐷 + 𝐴)−1 = 𝐷−1(𝐼 + 𝐴𝐷−1)−1.

For the ease of notation, we denote 𝐼 + 𝐴𝐷−1 by 𝑃. Note that 𝑃 is not necessarily a
symmetric matrix. Nevertheless, under technical conditions on 𝑃’s eigenvalues, we
have the following power series expansion (Shin, Zavala, and Anitescu, 2020). The
details are presented in the Lemma 3.C.2 in Section 3.D.

Lemma 3.C.2. Let 𝜌(·) denote the spectral radius of a matrix. Under the condition
𝜇 > 2ℓ𝑇 , we have 𝜌(𝐼 − 𝑃) < 1, and

𝑃−1 =
∑︁
𝜏≥0
(𝐼 − 𝑃)𝜏 . (3.43)

To understand the power series in (3.43), consider the special case where each block
𝐴𝑖,𝑖+1 = 𝐴𝑖+1,𝑖 = ℓ𝑇 · 𝐼 for 𝑖 = 1, . . . , 𝑘 −2, and 𝐷𝑖,𝑖 = 𝑄. Denote 𝐽 := 𝑃− 𝐼 = 𝐴𝐷−1.
Then, we have 𝐽𝑖,𝑖 = 0, 𝐽𝑖,𝑖−1 = 𝐽𝑖,𝑖+1 = ℓ𝑇𝑄

−1, 𝐽𝑖, 𝑗 = 0 when |𝑖 − 𝑗 | > 1. Intuitively,
𝐽 captures the “correlation over actions” after one period. More generally, for 𝑞 ≥ 0
and any two period indices 𝜏′, 𝜏,

(𝐽𝑞)𝜏′,𝜏 = ℓ𝑞𝑇𝑄
−𝑞𝑏(𝑞, 𝜏, 𝜏′),

where 𝑏(𝑞, 𝜏, 𝜏′) is a coefficient that is upper bounded by 2𝑞 and it equals to zero if
𝑞 < |𝜏 − 𝜏′|.

Given that 𝑄 is a graph-induced banded matrix, 𝑄−1 satisfies exponential-decay
properties, which makes it plausible that 𝑄−𝜏 is an exponential decay matrix with a
slower rate.

For the general case where diagonal blocks 𝐷𝑖,𝑖 are not identical and 𝐴𝑖,𝑖+1, 𝐴𝑖+1,𝑖
are not equal to ℓ𝑇 · 𝐼, we need to bound terms such as


(𝐴𝑖0,𝑖1𝐷−1

𝑖1,𝑖1
𝐴𝑖1,𝑖2𝐷

−1
𝑖2,𝑖2
· · · 𝐴𝑖𝑞−1,𝑖𝑞𝐷

−1
𝑖𝑞 ,𝑖𝑞
)𝑢,𝑣





where 𝑖0, 𝑖1, 𝑖2, · · · , 𝑖𝑞 ∈ {1, . . . , 𝑘 − 1}. This is the goal of Step 3.
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Step 3: Showing exponential-decay properties are preserved through matrix
multiplications

The goal of this step is to establish that, given an underlying graph, a product of a
general class of exponential decay matrices still exhibits exponential decay property
under technical conditions.

Lemma 3.C.3. Given any graph G′ = (V′, E′) and integers 𝑑, 𝑞 ≥ 1, suppose a
sequence of block matrices {𝐴𝑖 ∈ R|V

′ |𝑑×|V′ |𝑑}1≤𝑖≤𝑞 all satisfy exponential decay
properties with respect to G′, i.e. there exists 𝐶𝑖 ≥ 0, and 0 ≤ 𝜆 < 1, such that

(𝐴𝑖)𝑢,𝑣

 ≤ 𝐶𝑖𝜆𝑑G′ (𝑢,𝑣) for any nodes 𝑢, 𝑣 ∈ V′.

Suppose there exists a constant 𝜆′ that satisfies 1 > 𝜆′ > 𝜆 and

𝑎̃ :=
∞∑︁
𝑘=0
( 𝜆
𝜆′
)𝑘 ( sup

𝑢∈V′
|𝜕𝑁 𝑘𝑢 |) < ∞.

Then, the product matrix
∏𝑞

𝑖=1 𝐴𝑖 satisfies exponential decay properties with decay
rate 𝜆′, i.e., 




( 𝑞∏

𝑖=1
𝐴𝑖)𝑢,𝑣






 ≤ 𝐶′(𝜆′)𝑑G′ (𝑢,𝑣) for any nodes 𝑢, 𝑣 ∈ V′,

where 𝐶′ = (𝑎̃)𝑞 ∏𝑞

𝑖=1𝐶𝑖.

Intuitively, Lemma 3.C.3 shows that the exponential decay properties of matrices
are preserved through matrix multiplications, though the product matrix has a worse
decay factor 𝜆′. A proof of Lemma 3.C.3 can be found in the Section 3.D.

Step 4: Establishing exponential decay properties of matrix 𝑀−1

The last step of the proof is to study the properties of 𝑀 . To accomplish this, we
first show that, for period indices 𝑖, 𝑗 ≥ 1, 𝐽ℓ has the following properties:

• (𝐽𝑞)𝑖, 𝑗 = 0 if 𝑞 < |𝑖 − 𝑗 | or 𝑞 − |𝑖 − 𝑗 | is odd.

• (𝐽𝑞)𝑖, 𝑗 is a summation of terms
∏𝑞

𝑘=1 𝐴𝑖𝑘−1,𝑖𝑘𝐷
−1
𝑖𝑘 ,𝑖𝑘

where 𝑖0, 𝑖1, 𝑖2, · · · , 𝑖𝑞 ∈
{1, . . . , 𝑘 − 1} and the number of such terms is bounded by

( 𝑞

(𝑞−|𝑖− 𝑗 |)/2
)
.

We formally state and prove the above properties in Section 3.D. We can further use
Theorem 3.C.3 on block matrices 𝐴𝑖𝑘−1,𝑖𝑘𝐷

−1
𝑖𝑘 ,𝑖𝑘

, which gives the following lemma.
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Lemma 3.C.4. Recall 𝛾𝑆 :=
√

1+(Δℓ𝑆/𝜇)−1√
1+(Δℓ𝑆/𝜇)+1

. Suppose there exists a constant 𝛾′
𝑆

such

that 1 > 𝛾′
𝑆
> 𝛾𝑆 and 𝑏 :=

∑∞
𝛾=0(

𝛾𝑆
𝛾′
𝑆

)𝛾ℎ(𝛾) < ∞. Given positive integers 𝑞, 𝑖, 𝑗 and
𝑢, 𝑣 ∈ V, we have

((𝐽𝑞)𝑖, 𝑗 )𝑢,𝑣

 ≤ (

𝑞

(𝑞 − |𝑖 − 𝑗 |)/2

) (
𝑏

2ℓ𝑇
𝜇

)𝑞
(𝛾′𝑆)

𝑑G (𝑢,𝑣) .

Intuitively speaking, Lemma 3.C.4 bounds the correlations over actions for node 𝑢
at period 𝑡 − 1 + 𝑖 and action for node 𝑞 at period 𝑡 − 1 + 𝑗 . We present its proof in
the Section 3.D.

Recall that, for 1 ≤ 𝑖, 𝑗 ≤ 𝑘 − 1,

(𝑀−1)𝑖, 𝑗 = 𝐷−1
𝑖,𝑖

∑︁
𝑞≥0
((−𝐽)𝑞)𝑖, 𝑗 .

With the exponential decaying bounds on matrix 𝐽𝑞, we can thus bound the entries
that corresponds to node 𝑣 on the RHS of the first order equations derived in
Lemma 3.C.1. We state this result formally in Lemma 3.C.5 and present the proof
in Appendix 3.D.

Lemma 3.C.5. Given 1 ≤ 𝑖, 𝑗 ≤ 𝑘 − 1, for any 𝑒 ∈ R|𝜕𝑁𝑟𝑣 |×𝑛, we have





(
(𝑀−1)𝑖, 𝑗𝐾 ( 𝑗)𝑗 𝑒

)
𝑣






 ≤ 𝐶1𝜌
|𝑖− 𝑗 |
𝑇

∑︁
𝑢∈𝜕𝑁𝑟𝑣

𝜌
𝑑G (𝑣,𝑢)−1
𝑆

∥𝑒𝑢∥,

and for any 𝑒′ ∈ R|𝑁𝑟𝑣 |×𝑛,





(
(𝑀−1)𝑖,𝑘−1)𝑅(𝑘)𝑘−1𝑒

′
)
𝑣






 ≤ 𝐶1𝜌
|𝑖−(𝑘−1) |+1
𝑇

∑︁
𝑢∈𝑁𝑟𝑣

𝜌
𝑑G (𝑣,𝑢)
𝑆



𝑒′𝑢

,
where 𝜌𝑇 =

4𝑎̃ℓ𝑇
𝜇

and 𝜌𝑆 = (1 + 𝑏1 + 𝑏2)𝛾𝑆 . We let

𝐶1 = max{ 𝑎2

2𝑎̃(1 − 4𝑎̃ℓ𝑇/𝜇)
,

2𝑎2Δℓ𝑆/𝜇
𝛾𝑆 (1 + 𝑏1 + 𝑏2) (1 − 4𝑎̃ℓ𝑇/𝜇)

}.

Using the first-order equations derived in Lemma 3.C.1 in Step 1, we can bound the
entry in 𝑑

𝑑𝜃
𝜓(𝜁 + 𝜃𝑒) that corresponds to node 𝑣. Then, we conclude Theorem 3.3.4

by integrating over 𝜃. The detailed proofs of the results we state in this section can
be found in Section 3.D.



90

From Perturbation to Competitive Ratio
We now show how to use the exponentially decaying local perturbation bounds
proven in the previous section to prove our competitive ratio bounds in Theo-
rem 3.3.5. Our starting point is the assumption that the exponentially decaying
local perturbation bound in Definition 3.3.4 holds for a class of Networked OCO
problems, which is established using the proof approach outlined in the Section 3.3.

As we discussed in Section 3.3, our proof contains two key parts: (i) we bound the
per-period error of LPC (Lemma 3.C.7); and (ii) show that the per-period error does
not accumulate to be unbounded (Theorem 3.C.8).

A key observation that enables the above analysis approach is that the aggregation
of the local per-period error made by each agent at 𝑥𝑣𝑡 can be viewed as a global
per-period error in the joint global decision 𝑥𝑡 . Following this observation, we
first introduce a global perturbation bound that focuses on the global decision 𝑥𝑡
rather than the local decisions 𝑥𝑣𝑡 . Recall that 𝑓𝑡 denotes the global hitting cost
(see Section 3.3). Define the optimization problem that solves the optimal global
decision trajectory from period (𝑡 − 1) to period (𝑡 + 𝑞 − 1)

𝜓̃
𝑞
𝑡 (𝑦, 𝑧) = arg min

𝑥𝑡:𝑡+𝑞−1

𝑡+𝑞−1∑︁
𝜏=𝑡

( 𝑓𝜏 (𝑥𝜏) + 𝑐𝜏 (𝑥𝜏, 𝑥𝜏−1))

s.t. 𝑥𝑡−1 = 𝑦, 𝑥𝑡+𝑞−1 = 𝑧, (3.44)

and another one that solves the optimal global decision trajectory from period (𝑡−1)
to the end of the game

𝜓̃𝑡 (𝑦) = arg min
𝑥𝑡:𝑇

𝐻∑︁
𝜏=𝑡

( 𝑓𝜏 (𝑥𝜏) + 𝑐𝜏 (𝑥𝜏, 𝑥𝜏−1))

s.t. 𝑥𝑡−1 = 𝑦. (3.45)

The following global perturbation bound can be derived from Theorem 3.1 in Lin,
Hu, Shi, et al. (2021):

Theorem 3.C.6 (Global Perturbation Bound). For any tuple (𝜇, ℓ 𝑓 , ℓ𝑇 , ℓ𝑆,Δ, ℎ) ∈ Υ,
consider the problem class P(𝜇, ℓ 𝑓 , ℓ𝑇 , ℓ𝑆,Δ, ℎ). The following global perturbation
bounds hold for optimization problems (3.44) and (3.45): For arbitrary 𝑦 ∈ 𝐷𝑡 and
𝑧 ∈ 𝐷𝑡+𝑞−1, we have

𝜓̃𝑞𝑡 (𝑦, 𝑧)𝑡0 − 𝜓̃𝑞𝑡 (𝑦′, 𝑧′)𝑡0

 ≤ 𝐶𝐺𝜌𝑡0−𝑡+1𝐺

∥𝑦 − 𝑦′∥ + 𝐶𝐺𝜌𝑡+𝑞−1−𝑡0
𝐺

∥𝑧 − 𝑧′∥,
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for 𝑡0 ∈ {𝑡, . . . , 𝑡 + 𝑞 − 1} and

𝜓̃𝑡 (𝑦)𝑡0 − 𝜓̃𝑡 (𝑦′)𝑡0

 ≤ 𝐶𝐺𝜌𝑡0−𝑡+1𝐺
∥𝑦 − 𝑦′∥

for 𝑡0 ∈ {𝑡, . . . , 𝐻 − 1}. Here, 𝜌𝐺 = 1 − 2 ·
(√︃

1 + 2ℓ𝑇
𝜇
+ 1

)−1
and 𝐶𝐺 =

2ℓ𝑇
𝜇

.

To make the concept of per-period error at period 𝑡 rigorous, we formally define it
as the distance between the actual next decision made by LPC and the clairvoyant
optimal next decision from previous decision 𝑥𝑡−1 to the end of the game:

Definition 3.C.1 (Per-period error magnitude). Consider applying LPC on an in-
stance 𝑝 of the Networked OCO problem (Definition 3.3.1). At period 𝑡, given its
previous decision 𝑥𝑡−1, LPC picks 𝑥𝑡 ∈ 𝐷𝑡 . We define the per-period error magnitude
𝑒𝑡 as

𝑒𝑡 :=


𝑥𝑡 − 𝜓̃𝑡 (𝑥𝑡−1)𝑡



. (3.46)

Using the exponentially decaying local perturbation bound in Definition 3.3.4, we
show the per-period error of LPC decays exponentially with respect to predic-
tion horizon length 𝑘 and observation radius 𝑟. This result is stated formally in
Lemma 3.C.7, and the proof can be found in Section 3.D.

Lemma 3.C.7. For any tuple 𝜈 = (𝜇, ℓ 𝑓 , ℓ𝑇 , ℓ𝑆,Δ, ℎ) ∈ Υ, suppose the exponentially
decaying local perturbation bound (Definition 3.3.4) holds with the decay factors 𝜌𝑇
and 𝜌𝑆 for P(𝜈). Suppose we apply LPC with prediction horizon 𝑘 and observation
radius 𝑟 to an instance 𝑝 ∈ P(𝜈). Then, the per-period error 𝑒𝑡 satisfies

𝑒2
𝑡 = 𝑂

(
ℎ(𝑟)2 · 𝜌2𝑟

𝑆 + 𝐶3(𝑟)2 · 𝜌2𝑘
𝑇 𝜌

2𝑘
𝐺

)
·


𝑥𝑡−1 − 𝑥∗𝑡−1



2

+𝑂
(
ℎ(𝑟)2 · 𝜌2𝑟

𝑆

) 𝑡+𝑘−1∑︁
𝜏=𝑡

𝜌𝜏−𝑡𝑇 𝑓𝜏 (𝑥∗𝜏) +𝑂
(
𝐶3(𝑟)2 · 𝜌2𝑘

𝑇

)
𝑓𝑡+𝑘−1(𝑥∗𝑡+𝑘−1),

where𝐶3(𝑟) :=
∑𝑟
𝛾=0 ℎ(𝛾) ·𝜌

𝛾

𝑆
and 𝜌𝐺 is defined in Theorem 3.C.6. We use {𝑥∗𝑡 }𝑡∈[𝐻]

to denote the offline optimal global decision trajectory in the problem instance 𝑝.

Using the global perturbation bound in Theorem 3.C.6, we show the total squared
distance between LPC and the offline optimal decision trajectories can be upper
bounded by the sum of per-time-step errors of LPC in Theorem 3.C.8. The proof
can be found in Section 3.D.
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Theorem 3.C.8. For any tuple 𝜈 = (𝜇, ℓ 𝑓 , ℓ𝑇 , ℓ𝑆,Δ, ℎ) ∈ Υ, consider an instance
𝑝 of Networked OCO problem in the class P(𝜈). Let 𝑥0, 𝑥

∗
1, 𝑥
∗
2, . . . , 𝑥

∗
𝐻

denote the
offline optimal global decision trajectory and 𝑥0, 𝑥1, 𝑥2, . . . , 𝑥𝐻 denote the decision
trajectory of LPC. The trajectory of LPC satisfies that

𝐻∑︁
𝑡=1



𝑥𝑡 − 𝑥∗𝑡 

2 ≤
𝐶2

0
(1 − 𝜌𝐺)2

𝐻∑︁
𝑡=1

𝑒2
𝑡 ,

where 𝐶0 := max{1, 𝐶𝐺}, 𝜌𝐺 is defined in Theorem 3.C.6, and {𝑒𝑡}𝑡∈[𝐻] are the
per-period error magnitudes defined in (3.46).

To understand the bound in Theorem 3.C.8, we can set all per-period error magnitude
𝑒𝑡 to be zero except a single period 𝜏. We see the impact of 𝑒𝜏 on the total squared
distance

∑𝑇
𝑡=1



𝑥𝑡 − 𝑥∗𝑡 

2 is up to some constant factor of 𝑒𝜏. This is because the
impact of 𝑒𝜏 on



𝑥𝑡 − 𝑥∗𝑡 

 decays exponentially as 𝑡 increases from 𝜏 to 𝐻.

By substituting the per-period error bound in Lemma 3.C.7 into Theorem 3.C.8,
one can bound the total squared distance

∑𝐻
𝑡=1



𝑥𝑡 − 𝑥∗𝑡 

2 by the offline optimal cost,
which can be converted to the competitive ratio bound in Theorem 3.3.5.

Generalization to Inexact Predictions
To show the performance bound in Theorem 3.3.10, we follow a similar procedure
with the proof outline for the exact prediction case discussed in Appendix 3.C. The
key observation is that Theorem 3.C.8 still applies for the inexact prediction case,
and we only need to bound the per-period error magnitude (Definition 3.C.1) of LPC
with inexact predictions. We state this bound formally in Lemma 3.C.9 below and
defer its proof to Section 3.D.

Lemma 3.C.9. For any tuple 𝜈 = (𝜇, ℓ 𝑓 , ℓ𝑇 , ℓ𝑆, ℓ𝑤,Δ, ℎ) ∈ Υ̃, consider a problem
instance 𝑝 ∈ 𝑃̃(𝜈). For LPC with inexact predictions (Algorithm 3), the per-period
error 𝑒𝑡 satisfies

𝑒2
𝑡 = 𝑂

(
ℎ(𝑟)2 · 𝜌2𝑟

𝑆 + 𝐶3(𝑟)2 · 𝜌2𝑘
𝑇 𝜌

2𝑘
𝐺

)
·


𝑥𝑡−1 − 𝑥∗𝑡−1



2

+𝑂
(
ℎ(𝑟)2 · 𝜌2𝑟

𝑆

) 𝑡+𝑘−1∑︁
𝜏=𝑡

𝜌𝜏−𝑡𝑇 𝑓𝜏 (𝑥∗𝜏) +𝑂
(
𝐶3(𝑟)2 · 𝜌2𝑘

𝑇

)
𝑓𝑡+𝑘−1(𝑥∗𝑡+𝑘−1)

+𝑂
(
(1 + Δ2)𝐶3(𝑟)2

)
· PredictionError𝑝,(𝑡,𝑘) ,

where 𝐶3(𝑟) :=
∑𝑟
𝛾=0 ℎ(𝛾) · 𝜌

𝛾

𝑆
and PredictionError𝑝,(𝑡,𝑘) is defined as

𝑡+𝑘−1∑︁
𝜏=𝑡

𝜌𝜏−𝑡𝑇

(∑︁
𝑢∈V




𝜔𝑢𝜏 |𝑡 − (𝜔𝑢𝜏)∗


2
+

∑︁
𝑢∈V




𝛼𝑢𝜏 |𝑡 − (𝛼𝑢𝜏)∗


2
+

∑︁
𝑒∈E




𝛽𝑒𝜏 |𝑡 − (𝛽𝑒𝜏)∗


2
)
.
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By substituting the per-period error bound in Lemma 3.C.9 into Theorem 3.C.8,
one can bound the total squared distance

∑𝐻
𝑡=1



𝑥𝑡 − 𝑥∗𝑡 

2 by the offline optimal cost,
which can be converted to the performance bound of LPC with inexact predictions
in Theorem 3.3.10.

3.D Proofs for Networked Online Convex Optimization
Proof of Theorem 3.3.3 and Theorem 3.3.9
We begin with a technical lemma. Recall that for any positive integer 𝑚, S𝑚 denotes
the set of all symmetric 𝑚 × 𝑚 real matrices.

Lemma 3.D.1. For a graph G′ = (V′, E′), suppose 𝐴 is a positive definite matrix
in S

∑
𝑖∈V′ 𝑝𝑖 formed by |V′| × |V′| blocks, where the (𝑖, 𝑗)-th block has dimension

𝑝𝑖 × 𝑝 𝑗 , i.e., 𝐴𝑖, 𝑗 ∈ R𝑝𝑖×𝑝 𝑗 . Assume that 𝐴 is 𝑞-banded for an even positive integer
𝑞; i.e.,

𝐴𝑖, 𝑗 = 0, ∀𝑑G′ (𝑖, 𝑗) > 𝑞/2.

Let 𝑎0 denote the smallest eigenvalue value of 𝐴, and 𝑏0 denote the largest eigenvalue
value of 𝐴. Assume that 𝑏0 ≥ 𝑎0 > 0. Suppose 𝐷 = 𝑑𝑖𝑎𝑔(𝐷1, . . . , 𝐷 |V′ |), where
𝐷𝑖 ∈ S𝑝𝑖 is positive semi-definite. Let 𝑀 =

(
(𝐴 + 𝐷)−1)

𝑆𝑅 ,𝑆𝐶
, where 𝑆𝑅, 𝑆𝐶 ⊆

{1, . . . , |V′|}. Then we have ∥𝑀 ∥ ≤ 𝐶𝛾𝑑 , where

𝐶 =
2
𝑎0
, 𝛾 =

(√︁
𝑐𝑜𝑛𝑑 (𝐴) − 1√︁
𝑐𝑜𝑛𝑑 (𝐴) + 1

)2/𝑞

, 𝑑 = min
𝑖∈𝑆𝑅 , 𝑗∈𝑆𝑐

𝑑G′ (𝑖, 𝑗).

Here 𝑐𝑜𝑛𝑑 (𝐴) = 𝑏0/𝑎0 denotes the condition number of matrix 𝐴.

We can show Lemma 3.D.1 using the same method as Lemma B.1 in Lin, Hu, Shi,
et al. (2021). We only need to note that even when the size of blocks are not identical,
the 𝑚 th power of a 𝑞-banded matrix is a 𝑞𝑚-banded matrix for any positive integer
𝑚.

With the help of Lemma 3.D.1, we can proceed to show a local perturbation bound
on a general G′ in Theorem 3.D.2, where G′ can be different from the network
G of agents in Section 3.3. Compared with Theorem 3.1 in Lin, Hu, Shi, et al.
(2021), Theorem 3.D.2 is more general because it considers a general network of
decision variables while Theorem 3.1 in Lin, Hu, Shi, et al. (2021) only consider the
special case of a line graph. Although Theorem 3.D.2 does not consider the temporal
dimension which features in the local perturbation bound defined in Definition 3.3.4,
we will use it to show Theorems 3.3.3 and 3.3.9 later by redefining the variables
from two perspectives.



94

Theorem 3.D.2. For a network G′ = (V′, E′) with undirected edges, suppose that
each node 𝑣 ∈ V′ is associated with a decision vector 𝑥𝑣 ∈ R𝑝𝑣 and a cost function
𝑓𝑣 : R𝑝𝑣 ×W𝑣 → R≥0, and each edge 𝑒 = (𝑢, 𝑣) ∈ E′ is associated with an edge cost
𝑐𝑒 : R𝑝𝑣 × R𝑝𝑢 ×W𝑒 → R≥0. HereW := ({W𝑣}𝑣∈V′ , {W𝑒}𝑒∈E′) denote the set of
all possible disturbances on cost functions, whereW𝑣 andW𝑒 are convex compact
subsets of R𝑞 for all 𝑣 ∈ V′, 𝑒 ∈ E′. Assume that: For all 𝑣 ∈ V′, 𝑓𝑣 (𝑥𝑣;𝑤𝑣) is
𝜇-strongly convex in 𝑥𝑣 under any fixed disturbance 𝑤𝑣; For all 𝑒 = (𝑢, 𝑣) ∈ E′,
𝑐𝑒 (𝑥𝑢, 𝑥𝑣;𝑤𝑒) is convex and ℓ-smooth in (𝑥𝑢, 𝑥𝑣) under any fixed disturbance 𝑤𝑒,
i.e., for all 𝑣 ∈ V′ and 𝑒 = (𝑢, 𝑣) ∈ E′, we have

∇2
𝑥𝑣
𝑓𝑣 (𝑥𝑣;𝑤𝑣) ⪰ 0,∀𝑤𝑣 ∈ W𝑣, and 0 ⪯ ∇2

(𝑥𝑢,𝑥𝑣)𝑐𝑒 (𝑥𝑢, 𝑥𝑣;𝑤𝑒) ⪯ ℓ𝐼𝑝𝑣+𝑝𝑢 ,∀𝑤𝑒 ∈ W𝑒 .

For some subset 𝑆 ⊂ V′, define

𝐸0 := {(𝑢, 𝑣) ∈ E′ | 𝑢, 𝑣 ∈ V′ \ 𝑆}, and 𝐸1 := {(𝑢, 𝑣) ∈ E′ | 𝑢 ∈ V′ \ 𝑆, 𝑣 ∈ 𝑆}.

For any disturbance vector 𝑤 ∈ W and boundary vector 𝑦 := {𝑦𝑣}𝑣∈𝑆 ∈ Y :=
{Y𝑣}𝑣∈𝑆 where Y𝑣 is a convex subset of R𝑝𝑣 for all 𝑣 ∈ 𝑆, let 𝜓(𝑤, 𝑦) denote the
optimal solution defined as

𝜓(𝑤, 𝑦) := arg min
{𝑥𝑣 |𝑣∈V′\𝑆}

∑︁
𝑣∈V′\𝑆

𝑓𝑣 (𝑥𝑣;𝑤𝑣) +
∑︁
(𝑢,𝑣)∈𝐸0

𝑐(𝑢,𝑣) (𝑥𝑢, 𝑥𝑣;𝑤 (𝑢,𝑣))

+
∑︁
(𝑢,𝑣)∈𝐸1

𝑐(𝑢,𝑣) (𝑥𝑢, 𝑦𝑣;𝑤 (𝑢,𝑣)).

Let Γ𝑣 be a set that contains all possible 𝑣 th entry of the optimal solution, i.e.,
Γ𝑣 ⊇ {𝜓(𝑤, 𝑦)𝑣 | 𝑤 ∈ W, 𝑦 ∈ Y}. We additionally assume that for any 𝑣 ∈ V′

and 𝑒 = (𝑢, 𝑣) ∈ E′, the cost functions satisfies

∇𝑤𝑣∇𝑥𝑣 𝑓𝑣 (𝑥𝑣;𝑤𝑣)

 ≤ ℓ𝑤, if 𝑥𝑣 ∈ Γ𝑣, (3.47)

∇𝑤𝑒∇(𝑥𝑢,𝑥𝑣)𝑐𝑒 (𝑥𝑢, 𝑥𝑣;𝑤𝑒)

 ≤ ℓ𝑤, if 𝑥𝑢 ∈ Γ𝑢 and 𝑥𝑣 ∈ Γ𝑣 . (3.48)

Then, we have that for any vertex 𝑢0 ∈ V′ \ 𝑆, the following inequality holds for all
𝑦 ∈ Y, 𝑤 ∈ W

𝜓(𝑤, 𝑦)𝑢0 − 𝜓(𝑤′, 𝑦′)𝑢0




≤ 𝐶

∑︁
𝑣∈𝑆

𝜆𝑑G′ (𝑢0,𝑣)−1

𝑦𝑣 − 𝑦′𝑣


+ 𝐶𝑤 ©­«

∑︁
𝑒∈𝐸0∪𝐸1

𝜆𝑑G′ (𝑢0,𝑒)−1

𝑤𝑒 − 𝑤′𝑒

 + ∑︁
𝑣∈V′\𝑆

𝜆𝑑G′ (𝑢0,𝑣)


𝑤𝑣 − 𝑤′𝑣

ª®¬ , where
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𝐶 := (2ℓΔ′)/𝜇, 𝐶𝑤 := (2ℓ𝑤)/𝜇, and 𝜆 := 1 − 2 ·
(√︁

1 + (Δ′ℓ/𝜇) + 1
)−1

.

Here, Δ′ denote the maximum degree of any vertex 𝑣 ∈ V′ in graph G′. For
𝑒 = (𝑢, 𝑣) ∈ E′, we define 𝑑G′ (𝑢0, 𝑒) := min{𝑑G′ (𝑢0, 𝑢), 𝑑G′ (𝑢0, 𝑣)}.

To show Theorem 3.D.2, we establish the first order equations using the optimality
conditions of the optimization problem. The equation shows the way how a small
perturbation affects the optimal solution vector relates to the inverse of the Hessian
matrix of the objective function. Note that the objective function has a special
structure that it is the sum of local costs, and each local cost can couple at most
two neighboring decision variables. Thus, the Hessian is a 1-banded matrix with
respect to graph G′, so we can leverage Lemma 3.D.1 to show the exponentially
decaying property of its entries. Combining the exponentially decaying property of
the inverse of the Hessian with the first order equations finishes the proof.

Proof of Theorem 3.D.2. Let 𝑒 = [𝜋⊤, 𝜖⊤]⊤ be a perturbation vector where 𝜖 =

{𝜖𝑣}𝑣∈𝑆 for 𝜖𝑣 ∈ R𝑝𝑣 and 𝜋 =
(
{𝜋𝑣}𝑣∈V′\𝑆, {𝜋𝑒}𝑒∈𝐸0∪𝐸1

)
, for 𝜋𝑒 ∈ R𝑞. Let 𝜃 be

an arbitrary real number. Define function ℎ̂ : R
∑
𝑣∈V′\𝑆 𝑝𝑣 × R( |V

′ |−|𝑆 |+|𝐸0 |+|𝐸1 |)×𝑞 ×
R

∑
𝑣∈𝑆 𝑝𝑣 → R≥0 as

ℎ̂(𝑥, 𝑤, 𝑦) =
∑︁

𝑣∈V′\𝑆
𝑓𝑣 (𝑥𝑣)+

∑︁
(𝑢,𝑣)∈𝐸0

𝑐(𝑢,𝑣) (𝑥𝑢, 𝑥𝑣;𝑤 (𝑢,𝑣))+
∑︁
(𝑢,𝑣)∈𝐸1

𝑐(𝑢,𝑣) (𝑥𝑢, 𝑦𝑣;𝑤 (𝑢,𝑣)).

To simplify the notation, we use 𝜁 to denote the tuple of system parameters, i.e.,

𝜁 := (𝑤, 𝑦).

From our construction, we know that ℎ̂ is 𝜇-strongly convex in 𝑥, so we use the
decomposition ℎ̂ = ℎ̂𝑎 + ℎ̂𝑏, where

ℎ̂𝑎 (𝑥, 𝜁) =
∑︁

𝑣∈V′\𝑆

𝜇

2
∥𝑥𝑣 ∥2 +

∑︁
(𝑢,𝑣)∈𝐸0

𝑐(𝑢,𝑣) (𝑥𝑢, 𝑥𝑣;𝑤 (𝑢,𝑣))

+
∑︁
(𝑢,𝑣)∈𝐸1

𝑐(𝑢,𝑣) (𝑥𝑢, 𝑦𝑣;𝑤 (𝑢,𝑣)),

ℎ̂𝑏 (𝑥, 𝜁) =
∑︁

𝑣∈V′\𝑆

(
𝑓𝑣 (𝑥𝑣;𝑤𝑣) −

𝜇

2
∥𝑥𝑣 ∥2

)
.

Since 𝜓(𝜁 + 𝜃𝑒) is the minimizer of convex function ℎ̂(·, 𝜁 + 𝜃𝑒), we see that

∇𝑥 ℎ̂(𝜓(𝜁 + 𝜃𝑒), 𝜁 + 𝜃𝑒) = 0.
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Taking the derivative with respect to 𝜃 gives that

∇2
𝑥 ℎ̂(𝜓(𝜁 + 𝜃𝑒), 𝜁 + 𝜃𝑒)

𝑑

𝑑𝜃
𝜓(𝜁 + 𝜃𝑒) = −

∑︁
𝑣∈𝑆
∇𝑦𝑣∇𝑥 ℎ̂(𝜓(𝜁 + 𝜃𝑒), 𝜁 + 𝜃𝑒)𝜖𝑣

−
∑︁

𝑒∈𝐸1∪𝐸2

∇𝑤𝑒∇𝑥 ℎ̂(𝜓(𝜁 + 𝜃𝑒), 𝜁 + 𝜃𝑒)𝜋𝑒

−
∑︁

𝑣∈V′\𝑆
∇𝑤𝑣∇𝑥 ℎ̂(𝜓(𝜁 + 𝜃𝑒), 𝜁 + 𝜃𝑒)𝜋𝑣 .

To simplify the notation, we define

𝑀 := ∇2
𝑥 ℎ̂(𝜓(𝜁 + 𝜃𝑒), 𝜁 + 𝜃𝑒), a |V′ \ 𝑆 | × |V′ \ 𝑆 | block matrix,

𝑅(𝑣) := −∇𝑦𝑣∇𝑥 ℎ̂(𝜓(𝜁 + 𝜃𝑒), 𝜁 + 𝜃𝑒),∀𝑣 ∈ 𝑆, |V′ \ 𝑆 | × 1 block matrices,

𝐾 (𝑒) := −∇𝑤𝑒∇𝑥 ℎ̂(𝜓(𝜁 + 𝜃𝑒), 𝜁 + 𝜃𝑒),∀𝑒 ∈ 𝐸0 ∪ 𝐸1, |V′ \ 𝑆 | × 1 block matrices,

𝑄 (𝑣) := −∇𝑤𝑣∇𝑥 ℎ̂(𝜓(𝜁 + 𝜃𝑒), 𝜁 + 𝜃𝑒),∀𝑣 ∈ V \ 𝑆, |V′ \ 𝑆 | × 1 block matrices,

where in 𝑀 , the block size is 𝑝𝑢 × 𝑝𝑣,∀(𝑢, 𝑣) ∈ (V′ \ 𝑆)2; in 𝑅(𝑣) , the block size is
𝑝𝑢 × 𝑝𝑣,∀𝑢 ∈ V′ \ 𝑆; in 𝐾 (𝑒) and𝑄 (𝑣) , the block size is 𝑝𝑢 × 𝑞,∀𝑢 ∈ V′ \ 𝑆. Hence
we can write

𝑑

𝑑𝜃
𝜓(𝜁 + 𝜃𝑒) = 𝑀−1 ©­«

∑︁
𝑣∈𝑆

𝑅(𝑣)𝜖𝑣 +
∑︁

𝑒∈𝐸1∪𝐸2

𝐾 (𝑒)𝜋𝑒 +
∑︁

𝑣∈V′\𝑆
𝑄 (𝑣)𝜋𝑣

ª®¬ .
Recall that {𝑅(𝑣)}𝑣∈𝑆 are |V′ \ 𝑆 | × 1 block matrices with block size 𝑝𝑢 × 𝑝𝑣,∀𝑢 ∈
V′ \ 𝑆; {𝐾 (𝑒)}𝑒∈𝐸0∪𝐸1 and {𝑄 (𝑣)}𝑣∈V′\𝑆 are |V′ \ 𝑆 | × 1 block matrices with block
size 𝑝𝑢 × 𝑞,∀𝑢 ∈ V′ \ 𝑆. Let 𝑁 (𝑣) denote the set of neighbors of vertex 𝑣 on G′.
For 𝑅(𝑣) , 𝑣 ∈ 𝑆, the (𝑢, 1)-th block can be non-zero only if 𝑢 ∈ (V′ \ 𝑆) ∩𝑁 (𝑣). For
𝐾 (𝑒) , 𝑒 ∈ 𝐸0 ∪ 𝐸1, the (𝑢, 1)-th block can be non-zero only if 𝑢 ∈ 𝑒 and 𝑢 ∈ V′ \ 𝑆.
For 𝑄 (𝑣) , 𝑣 ∈ V′ \ 𝑆, the (𝑢, 1)-th block can be non-zero only if 𝑢 = 𝑣. Hence we
see that

𝑑

𝑑𝜃
𝜓(𝜁 + 𝜃𝑒)𝑢0 =

∑︁
𝑣∈𝑆
(𝑀−1)𝑢0,(V′\𝑆)∩𝑁 (𝑣)𝑅

(𝑣)
(V′\𝑆)∩𝑁 (𝑣),1𝜖𝑣

+
∑︁

𝑒∈𝐸0∪𝐸1

(𝑀−1)𝑢0,{𝑢∈𝑒 |𝑢∈V′\𝑆}𝐾
(𝑒)
{𝑢∈𝑒 |𝑢∈V′\𝑆},1𝜋𝑒

+
∑︁

𝑣∈V′\𝑆
(𝑀−1)𝑢0,𝑣𝑄

(𝑣)
𝑣 𝜋𝑣 .

Since we assume the edge costs 𝑐𝑒 (𝑥𝑢, 𝑥𝑣;𝑤𝑒) are ℓ-strongly smooth in (𝑥𝑢, 𝑥𝑣),
we know that the norms of {𝑅(𝑣)(V′\𝑆)∩𝑁 (𝑣),1}𝑣∈𝑆 are upper bounded by Δ′ℓ. Simi-
larly, by (3.47) and (3.47), we know that the norms of {𝐾 (𝜏){𝑢∈𝑒 |𝑢∈V′\𝑆},1}𝑒∈𝐸0∪𝐸1 and



97

{𝑄 (𝑣)𝑣 }V′\𝑆 are upper bounded by ℓ𝑤. Taking norms on both sides of the above
equation gives that



 𝑑𝑑𝜃𝜓(𝜁 + 𝜃𝑒)𝑢0





 ≤ ∑︁
𝑣∈𝑆

ℓ


(𝑀−1)𝑢0,(V′\𝑆)∩𝑁 (𝑣)



∥𝜖𝑣 ∥
+

∑︁
𝑒∈𝐸0∪𝐸1

ℓ𝑤


(𝑀−1)𝑢0,{𝑢∈𝑒 |𝑢∈V′\𝑆}



∥𝜋𝑒∥
+

∑︁
𝑣∈V′\𝑆

ℓ𝑤


(𝑀−1)𝑢0,𝑣



∥𝜋𝑣 ∥. (3.49)

Note that 𝑀 can be decomposed as 𝑀 = 𝑀𝑎 + 𝑀𝑏, where

𝑀𝑎 := ∇2
𝑥 ℎ̂𝑎 (𝜓(𝜁 + 𝜃𝑒), 𝜁 + 𝜃𝑒),

𝑀𝑏 := ∇2
𝑥 ℎ̂𝑏 (𝜓(𝜁 + 𝜃𝑒), 𝜁 + 𝜃𝑒).

Since 𝑀𝑎 is block tri-diagonal and satisfies (𝜇+Δ′ℓ)𝐼 ⪰ 𝑀𝑎 ⪰ 𝜇𝐼 , and 𝑀𝑏 is block
diagonal and satisfies 𝑀𝑏 ⪰ 0, we obtain the following using Lemma 3.D.1:

(𝑀−1)𝑢0,(V′\𝑆)∩𝑁 (𝑣)



 ≤ 2
𝜇
𝜆𝑑G′ (𝑢0,𝑣)−1,



(𝑀−1)𝑢0,{𝑢∈𝑒 |𝑢∈V′\𝑆}


 ≤ 2

𝜇
𝜆𝑑G′ (𝑢0,𝑒)−1, and

(𝑀−1)𝑢0,𝑣



 ≤ 2
𝜇
𝜆𝑑G′ (𝑢0,𝑣) .

where 𝜆 := (
√︁
𝑐𝑜𝑛𝑑 (𝑀𝑎) − 1)/(

√︁
𝑐𝑜𝑛𝑑 (𝑀𝑎) + 1) = 1 − 2 ·

(√︁
1 + (2ℓ/𝜇) + 1

)−1
.

Substituting this into (3.49), we see that



 𝑑𝑑𝜃𝜓(𝜁 + 𝜃𝑒)𝑢0





 ≤ 𝐶∑︁
𝑣∈𝑆

𝜆𝑑G′ (𝑢0,𝑣)−1∥𝜖𝑣 ∥

+ 𝐶𝑤 ©­«
∑︁

𝑒∈𝐸0∪𝐸1

𝜆𝑑G′ (𝑢0,𝑒)−1∥𝜋𝑒∥ +
∑︁

𝑣∈V′\𝑆
𝜆𝑑G′ (𝑢0,𝑣) ∥𝜋𝑣 ∥ª®¬ ,

where 𝐶 = (2ℓ)/𝜇 and 𝐶𝑤 = (2ℓ𝑤)/𝜇.

Finally, by integration we can complete the proof of Theorem 3.D.2:

𝜓(𝜁)𝑢0 − 𝜓(𝜁 + 𝑒)𝑢0




=





∫ 1

0

𝑑

𝑑𝜃
𝜓(𝜁 + 𝜃𝑒)𝑢0𝑑𝜃






≤

∫ 1

0





 𝑑𝑑𝜃𝜓(𝜁 + 𝜃𝑒)𝑢0





𝑑𝜃
≤ 𝐶

∑︁
𝑣∈𝑆

𝜆𝑑G′ (𝑢0,𝑣)−1∥𝜖𝑣 ∥ + 𝐶𝑤 ©­«
∑︁

𝑒∈𝐸0∪𝐸1

𝜆𝑑G′ (𝑢0,𝑒)−1∥𝜋𝑒∥ +
∑︁

𝑣∈V′\𝑆
𝜆𝑑G′ (𝑢0,𝑣) ∥𝜋𝑣 ∥ª®¬ .
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Now we return to the proof of Theorem 3.3.9. For simplicity, we temporarily assume
the individual decision points are unconstrained, i.e., 𝐷𝑣

𝑡 = R𝑛. We discuss how to
relax this assumption later in this section.

We first consider the case when
(
{𝑦𝑢
𝑡−1}, {𝑧

𝑢
𝜏}; 𝜉

(𝑘,𝑟)
(𝑡,𝑣)

)
and

(
{𝑦𝑢
𝑡−1}, {(𝑧

𝑢
𝜏)′}; (𝜉

(𝑘,𝑟)
(𝑡,𝑣) )

′
)

only differ at one entry 𝑧𝑢𝜏, 𝜔𝑢𝜏, 𝛼𝑢𝜏 , or 𝛽𝑒𝜏. If the difference is at 𝑧𝑢𝜏, by viewing each
subset {𝜏} × 𝑁𝑟𝑣 for 𝜏 ∈ {𝑡 − 1, 𝑡, . . . , 𝑡 + 𝑘} in the original problem as a vertex in
the new graph G′ and applying Theorem 3.D.2, we obtain that

𝑥𝑣𝑡 − (𝑥𝑣𝑡 )′

 ≤ 𝐶0

1 · (𝜌
0
𝑇 )
|𝑡−𝜏 |

𝑧𝑢𝜏 − (𝑧𝑢𝜏)′

, (3.50)

where 𝐶0
1 = (2ℓ𝑇 )/𝜇 and 𝜌0

𝑇
= 1 − 2 ·

(√︁
1 + (2ℓ𝑇/𝜇) + 1

)−1
. On the other hand, by

viewing each subset {𝜏 | 𝑡 − 1 ≤ 𝜏 < 𝑡 + 𝑘} × {𝑢} for 𝑢 ∈ 𝑁𝑟𝑣 in the original problem
as a vertex in the new graph G′ and applying Theorem 3.D.2, we obtain that

𝑥𝑣𝑡 − (𝑥𝑣𝑡 )′

 ≤ 𝐶1

1 · (𝜌
0
𝑆)
𝑑G (𝑢,𝑣)



𝑧𝑢𝜏 − (𝑧𝑢𝜏)′

, (3.51)

where 𝐶1
1 = (2Δℓ𝑆)/𝜇 and 𝜌0

𝑆
= 1 − 2 ·

(√︁
1 + (2Δℓ𝑆/𝜇)

)−1
. Combining (3.50) and

(3.51) gives that

𝑥𝑣𝑡 − (𝑥𝑣𝑡 )′

 ≤ min{𝐶0
1 · (𝜌

0
𝑇 )
|𝑡−𝜏 |, 𝐶1

1 · (𝜌
0
𝑆)
𝑑G (𝑢,𝑣)} ·



𝑧𝑢𝜏 − (𝑧𝑢𝜏)′


≤

√︃
𝐶0

1 · 𝐶
1
1 · (𝜌

0
𝑇 )
|𝑡−𝜏 |/2 · (𝜌0

𝑆)
𝑑G (𝑢,𝑣)/2 ·



𝑧𝑢𝜏 − (𝑧𝑢𝜏)′


≤ 𝐶1 · 𝜌 |𝑡−𝜏 |𝑇

𝜌
𝑑G (𝑣,𝑢)
𝑆



𝑧𝑢𝜏 − (𝑧𝑢𝜏)′

 (3.52)

when
(
{𝑦𝑢
𝑡−1}, {𝑧

𝑢
𝜏}; 𝜉

(𝑘,𝑟)
(𝑡,𝑣)

)
and

(
{𝑦𝑢
𝑡−1}, {(𝑧

𝑢
𝜏)′}; (𝜉

(𝑘,𝑟)
(𝑡,𝑣) )

′
)

only differ at one en-

try 𝑧𝑢𝜏 for (𝜏, 𝑢) ∈ 𝜕𝑁
(𝑘,𝑟)
(𝑡,𝑣) . We can use the same method to show that when(

{𝑦𝑢
𝑡−1}, {𝑧

𝑢
𝜏}; 𝜉

(𝑘,𝑟)
(𝑡,𝑣)

)
and

(
{𝑦𝑢
𝑡−1}, {(𝑧

𝑢
𝜏)′}; (𝜉

(𝑘,𝑟)
(𝑡,𝑣) )

′
)

only differ at another entry at
𝜔𝑢𝜏, 𝛼

𝑢
𝜏 , or 𝛽𝑒𝜏, we have

𝑥𝑣𝑡 − (𝑥𝑣𝑡 )′

 ≤ 𝐶3𝜌

|𝑡−𝜏 |
𝑇

𝜌
𝑑G (𝑣,𝑢)
𝑆



𝜔𝑢𝜏 − (𝜔𝑢𝜏)′

, if they differ at 𝜇𝑢𝜏 ,

𝑥𝑣𝑡 − (𝑥𝑣𝑡 )′

 ≤ 𝐶3𝜌
|𝑡−𝜏 |
𝑇

𝜌
𝑑G (𝑣0,𝑢)
𝑆



𝛼𝑢𝜏 − (𝛼𝑢𝜏)′

, if they differ at 𝛼𝑢𝜏 ,

𝑥𝑣𝑡 − (𝑥𝑣𝑡 )′

 ≤ 𝐶3𝜌
|𝑡−𝜏 |
𝑇

𝜌
𝑑G (𝑣,𝑒)
𝑆



𝛽𝑒𝜏 − (𝛽𝑒𝜏)′

, if they differ at 𝛽𝑒𝜏 . (3.53)

In the general case where
(
{𝑦𝑢
𝑡−1}, {𝑧

𝑢
𝜏}; 𝜉

(𝑘,𝑟)
(𝑡,𝑣)

)
and

(
{(𝑦𝑢

𝑡−1)
′}, {(𝑧𝑢𝜏)′}; (𝜉

(𝑘,𝑟)
(𝑡,𝑣) )

′
)

differ not only at one entry, we can perturb the entries of parameters one at a time
and apply the triangle inequality. Then, the conclusion of Theorem 3.3.9 follows
from (3.52) and (3.53). One can use the same approach to show Theorem 3.3.3.
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Proof of Theorem 3.3.4
Step 1. Establishing first order equations

Given any parameter 𝜁 = {𝑧𝑢𝜏 | (𝜏, 𝑢) ∈ 𝜕𝑁
(𝑘,𝑟)
(𝑡,𝑣) }, the objective function ℎ̂ can be

written as:

ℎ̂(𝑥1:𝑘−1, 𝜁) =
𝑘−1∑︁
𝑖=1

∑︁
𝑢∈𝑁𝑟−1

𝑣

𝑓 𝑢𝑡−1+𝑖 (𝑥
𝑢
𝑖 ) +

𝑘−1∑︁
𝑖=1

∑︁
(𝑢,𝑢′)∈E(𝑁𝑟𝑣 )

𝑠
(𝑢,𝑢′)
𝑡−1+𝑖 (𝑥

𝑢
𝑖 , 𝑥

𝑢′
𝑖 )

+
𝑘∑︁
𝑖=1

∑︁
𝑢∈𝑁𝑟𝑣

𝑐𝑢𝑡−1+𝑖 (𝑥
𝑢
𝑖 , 𝑥

𝑢
𝑖−1), where

𝑥𝑢0 = 𝑦𝑢𝑡−1, ∀𝑢 ∈ 𝑁
𝑟
𝑣 ; 𝑥𝑢𝑘 = 𝑧

𝑢
𝑘 , ∀𝑢 ∈ 𝑁

𝑟
𝑣 ;

𝑥𝑢𝑖 = 𝑧
𝑢
𝑖 , ∀𝑖 ∈ {1, . . . , 𝑘 − 1}, 𝑢 ∈ 𝜕𝑁𝑟𝑣 .

Given 𝜃 ∈ R, 𝜓(𝜁 + 𝜃𝑒) is the global minimizer of convex function ℎ̂(·, 𝜁 + 𝜃𝑒), and
hence we have

∇𝑥1:𝑘−1 ℎ̂(𝜓(𝜁 + 𝜃𝑒), 𝜁 + 𝜃𝑒) = 0.

Taking the derivative with respect to 𝜃, we establish the following set of equations:

∇2
𝑥1:𝑘−1

ℎ̂(𝜓(𝜁 + 𝜃𝑒), 𝜁 + 𝜃𝑒) 𝑑
𝑑𝜃
𝜓(𝜁 + 𝜃𝑒)

= − ∇𝑧𝑘∇𝑥1:𝑘−1 ℎ̂(𝜓(𝜁 + 𝜃𝑒), 𝜁 + 𝜃𝑒)𝑒𝑘

−
𝑘−1∑︁
𝜏=1
∇𝑧𝜏∇𝑥1:𝑘−1 ℎ̂(𝜓(𝜁 + 𝜃𝑒), 𝜁 + 𝜃𝑒)𝑒𝜏 .

(3.54)

We adopt the following short-hand notation:

• 𝑀 := ∇2
𝑥1:𝑘−1

ℎ̂(𝜓(𝜁 + 𝜃𝑒), 𝜁 + 𝜃𝑒), which is a hierarchical block matrix with
the first level of dimension (𝑘 − 1) × (𝑘 − 1), the second level of dimension
|𝑁𝑟−1
𝑣 | × |𝑁𝑟−1

𝑣 | and the third level of dimension 𝑛 × 𝑛.

• 𝑅(𝑘) := −∇𝑧𝑘∇𝑥1:𝑘−1 ℎ̂(𝜓(𝜁 + 𝜃𝑒), 𝜁 + 𝜃𝑒), which is also a hierarchical block
matrix with the first level of dimension (𝑘 − 1) × 1, the second level of
dimension |𝑁𝑟−1

𝑣 | × |𝑁𝑟𝑣 | and the third level of dimension 𝑛 × 𝑛.

• For 𝜏 = 1, . . . , 𝑘 − 1, 𝐾 (𝜏) := −∇𝑧𝜏∇𝑥1:𝑘−1 ℎ̂(𝜓(𝜁 + 𝜃𝑒), 𝜁 + 𝜃𝑒), which is also
a hierarchical block matrix with the first level of dimension (𝑘 − 1) × 1. the
second level of dimension |𝑁𝑟−1

𝑣 | × |𝜕𝑁𝑟𝑣 | and the third level of dimension
𝑛 × 𝑛.
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Using the above, we can rewrite (3.54) as follows:

𝑑

𝑑𝜃
𝜓(𝜁 + 𝜃𝑒) = 𝑀−1

(
𝑅(𝑘)𝑒𝑘 +

𝑘−1∑︁
𝜏=1

𝐾 (𝜏)𝑒𝜏

)
.

Due to the structure of temporal interaction cost functions, for 𝑅(𝑘) , only when the
first level index is 𝑘 −1, the lower level block matrix is non-zero; due to the structure
of spatial interaction cost functions, for 𝐾 (𝜏) , only when the first level index is 𝜏, the
lower level block matrix is non-zero. Hence, for 1 ≤ 𝜏′ ≤ 𝑘 − 1, we have(

𝑑

𝑑𝜃
𝜓(𝜁 + 𝜃𝑒)

)
𝜏′
= (𝑀−1)𝜏′,𝑘−1𝑅

(𝑘)
𝑘−1𝑒𝑘 +

𝑘−1∑︁
𝜏=1
(𝑀−1)𝜏′,𝜏𝐾 (𝜏)𝜏 𝑒𝜏, (3.55)

where the subscripts on the right hand side denote the first level index of hierarchical
block matrices 𝑀 , 𝑅(1) , 𝑅(𝑘−1) and 𝐾 (𝜏) .

Step 2. Decomposing 𝑀−1 as infinite series

We decompose 𝑀 to block diagonal matrix 𝐷 and tri-diagonal block matrix 𝐴 such
that 𝑀 = 𝐷 + 𝐴. We denote each diagonal block in 𝐷 as 𝐷𝑖,𝑖 for 1 ≤ 𝑖 ≤ 𝑘 − 1.
Other blocks in 𝐷 are zero matrices.

𝐷 :=



∗ 0 · · · ∗
0 ∗ 0
...

. . .

∗ 0 · · · ∗
∗ 0 · · · ∗
0 ∗ 0
...

. . .

∗ 0 · · · ∗
. . .

∗ 0 · · · ∗
0 ∗ 0
...

. . .

∗ 0 · · · ∗


Each non-zero block in 𝐴 is a diagonal block matrix, which captures the Hessian of
temporal interaction cost between consecutive time steps. Denote each block as 𝐴𝑖, 𝑗
for 1 ≤ 𝑖, 𝑗 ≤ 𝑘 − 1. The structure of matrix 𝐴 is given below, where the diagonal
blocks are all zeros.
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𝐴 :=



∗ 0 · · · 0
0 ∗ 0
...

. . .

0 0 · · · ∗
∗ 0 · · · 0
0 ∗ 0
...

. . .

0 0 · · · ∗

∗ 0 · · · 0
0 ∗ 0
...

. . .

0 0 · · · ∗

. . .

∗ 0 · · · 0
0 ∗ 0
...

. . .

0 0 · · · ∗
∗ 0 · · · 0
0 ∗ 0
...

. . .

0 0 · · · ∗


We rewrite the inverse of 𝑀 as follows:

𝑀−1 = (𝐷 + 𝐴)−1 = 𝐷−1(𝐼 + 𝐴𝐷−1)−1 = 𝐷−1𝑃−1.

Now we present the proof of Lemma 3.C.2.

Proof of Lemma 3.C.2. Recall that 𝑃 = 𝐼 + 𝐴𝐷−1 = (𝐷 + 𝐴)𝐷−1. We claim that all
eigenvalues of 𝑃 are contained in the set {𝜆 ∈ C| |𝜆− 𝑧 | ≤ 𝑅} for some 𝑅 ∈ R>0 and
𝑧 ∈ C \ {0} such that 𝑅 < |𝑧 |. We first establish Lemma 3.C.2 based on the claim
and then prove the claim.

We follow the argument as in the proof of Thm 4 in Shin, Zavala, and Anitescu
(2020). Since any eigenvalue 𝜆 of 𝑃 satisfies |𝜆 − 𝑧 | ≤ 𝑅, |𝜆/𝑧 − 1| ≤ 𝑅/|𝑧 | < 1.
Thus, the eigenvalues of 𝐼 − (1/𝑧)𝑃 lie on {𝜆̃ ∈ C : |𝜆̃ | ≤ 𝑅/|𝑧 |}, which guarantees
𝜌(𝐼 − (1/𝑧)𝑃) < 1. Therefore,

𝑃−1 =
1
𝑧

(
𝐼 − (𝐼 − 1

𝑧
𝑃)

)−1

=
1
𝑧

∑︁
𝑞≥0
(𝐼 − 1

𝑧
𝑃)𝑞 .

Now we show the claim that all eigenvalues of 𝑃 are contained in the set {𝜆 ∈
C| |𝜆 − 𝑧 | ≤ 𝑅} holds if we let 𝑧 = 1 and 𝑅 =

2ℓ𝑇
𝜇

. Our proof utilizes Gershgorin
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circle theorem for block matrices and its implications (see Theorem 1.13.1 and
Remark 1.13.2 of Tretter (2008)), which we present in Theorem 3.D.3.

Theorem 3.D.3. Consider K = (𝐾𝑖 𝑗 ) ∈ R𝑑𝑚×𝑑𝑚 (𝑑, 𝑚 ≥ 1) where 𝐾𝑖 𝑗 ∈ R𝑑×𝑑 for
𝑖, 𝑗 ∈ {1, . . . , 𝑚} and 𝐾𝑖𝑖 is symmetric for 𝑖 ∈ {1, . . . , 𝑚}. Let 𝜎(·) denotes the
spectrum of a matrix. Define set

𝐺𝑖 := 𝜎(𝐾𝑖𝑖) ∪
{
∪𝑑𝑞=1 𝐵

(
𝜆𝑞 (𝐾𝑖𝑖),

∑︁
𝑗≠𝑖



𝐾𝑖 𝑗

)}
where 𝐵(·, ·) denotes a disk 𝐵(𝑐, 𝑟) = {𝜆 : ∥𝜆 − 𝑐∥ ≤ 𝑟} and 𝜆𝑞 is the 𝑞-th smallest
eigenvalues of 𝐾𝑖𝑖. Then,

𝜎(K) ∈ ∪𝑛𝑖=1𝐺𝑖 .

Next, we use the above fact to find a superset of 𝜎(𝑃). Every diagonal block of 𝑃 is
𝐼. Moreover, 𝑃𝑖, 𝑗 = 0 for |𝑖 − 𝑗 | > 1, 𝑃𝑖,𝑖−1 = 𝐴𝑖,𝑖−1𝐷

−1
𝑖−1,𝑖−1, 𝑃𝑖,𝑖+1 = 𝐴𝑖,𝑖+1𝐷−1

𝑖+1,𝑖+1.
Hence we have∑︁

𝑗≠𝑖



𝑃𝑖, 𝑗

 ≤ 

𝐴𝑖,𝑖−1





𝐷−1

𝑖−1,𝑖−1




 + 

𝐴𝑖,𝑖+1




𝐷−1
𝑖+1,𝑖+1




 ≤ 2ℓ𝑇
𝜇
.

The last inequality holds because the problem instance 𝑝 ∈ P(𝜇, ℓ 𝑓 , ℓ𝑇 , ℓ𝑆,Δ, ℎ).
Therefore, 𝐺𝑖 = 𝐵(1, 2ℓ𝑇

𝜇
). This implies all eigenvalues of 𝑃 are in 𝐵(1, 2ℓ𝑇

𝜇
).

To further simplify the notation in the power series expansion, we define 𝐽 :=
𝐴𝐷−1 = 𝑃 − 𝐼. Given any period indices 𝜏′ and 𝜏, we have

(𝑀−1)𝜏′,𝜏 = (𝐷−1)𝜏′,𝜏′ (𝑃−1)𝜏′,𝜏 = (𝐷−1)𝜏′,𝜏′ ×
∑︁
ℓ≥0
(−𝐽)ℓ𝜏′,𝜏, (3.56)

where the first equality is since 𝐷−1 is a diagonal block matrix, the second equality
is due to Lemma 3.C.2.

Step 3: Showing exponential-decay properties are preserved through matrix
multiplications

This step simply requires proving Lemma 3.C.3.
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Proof of Lemma 3.C.3. Under the assumptions, we see that∑︁
𝑞

( 1
𝜆′
)𝑑M (𝑢,𝑞)



(𝐴1𝐴2 · · · 𝐴ℓ)𝑢,𝑞




=
∑︁
𝑞

( 1
𝜆′
)𝑑M (𝑢,𝑞)






 ∑︁
𝑠1,··· ,𝑠ℓ−1

(𝐴1)𝑢,𝑠1 (𝐴2)𝑠1,𝑠2 · · · (𝐴ℓ)𝑠ℓ−1,𝑞







≤

∑︁
𝑞

( 1
𝜆′
)𝑑M (𝑢,𝑞)

∑︁
𝑠1,··· ,𝑠ℓ−1

(𝐶1𝜆
𝑑M (𝑢,𝑠1)) (𝐶2𝜆

𝑑M (𝑠1,𝑠2)) · · · (𝐶ℓ𝜆𝑑M (𝑠ℓ−1,𝑞))

≤
∑︁
𝑞

∑︁
𝑠1,··· ,𝑠ℓ−1

ℓ∏
𝑖=1

𝐶𝑖 (
𝜆

𝜆′
)𝑑M (𝑢,𝑠1)+𝑑M (𝑠1,𝑠2)+···+𝑑M (𝑠ℓ−1,𝑞)

≤ (𝑎̃)ℓ
ℓ∏
𝑖=1

𝐶𝑖 .

(3.57)

Hence, we obtain that 




( ℓ∏
𝑖=1

𝐴𝑖)𝑢,𝑞






 ≤ 𝐶′(𝜆′)𝑑𝑀 (𝑢,𝑞) .

Step 4: Establishing exponential decay properties of matrix 𝑀−1

In this step, we use the property developed for general exponential-decay matrices
on 𝑀 and derive the perturbation bound in the Theorem 3.3.4.

Lemma 3.D.4. For ℓ ≥ 1, period index 𝑖, 𝑗 ≥ 1, 𝐽ℓ has the following properties:

• (𝐽ℓ)𝑖, 𝑗 = 0 if ℓ < |𝑖 − 𝑗 | or ℓ − |𝑖 − 𝑗 | is odd.

• (𝐽ℓ)𝑖, 𝑗 is a summation of terms
∏ℓ
𝑘=1 𝐴 𝑗𝑘 ,𝑖𝑘𝐷

−1
𝑖𝑘 ,𝑖𝑘

and the number of such terms
is bounded by

( ℓ
(ℓ−|𝑖− 𝑗 |)/2

)
.

Note for integers 𝑚, 𝑘 ≥ 1, we define
( 𝑚
𝑘/2

)
= 0 if 𝑘 is odd.

Proof of 3.D.4. Since 𝐽 is a tri-diagonal banded matrix, 𝐽ℓ
𝑖, 𝑗

= 0 for ℓ < |𝑖 − 𝑗 |. We
prove the rest of properties of 𝐽 by induction on ℓ.

When ℓ = 1,

𝐽𝑖,𝑖 = 0, 𝐽𝑖,𝑖−1 = 𝐴𝑖,𝑖−1𝐷
−1
𝑖−1,𝑖−1, 𝐽𝑖,𝑖+1 = 𝐴𝑖,𝑖+1𝐷

−1
𝑖+1,𝑖+1.
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Lemma 3.D.4 holds for the base case. Suppose Lemma 3.D.4 holds for 𝐽𝑞 for
𝑞 ≤ ℓ − 1. Let 𝑞 = ℓ, then

𝐽ℓ𝑖, 𝑗 =
∑︁
𝑘

𝐽ℓ−1
𝑖,𝑘 𝐽𝑘, 𝑗 = 𝐽

ℓ−1
𝑖, 𝑗−1𝐴 𝑗−1, 𝑗𝐷

−1
𝑗 , 𝑗 + 𝐽ℓ−1

𝑖, 𝑗+1𝐴 𝑗+1, 𝑗𝐷
−1
𝑗 , 𝑗 .

By induction hypothesis, 𝐽ℓ−1
𝑖, 𝑗

is a summation of terms
∏ℓ−1
𝑘=1 𝐴 𝑗𝑘 ,𝑖𝑘𝐷

−1
𝑖𝑘 ,𝑖𝑘

. Moreover,
the number of such terms is bounded by

( ℓ−1
(ℓ−1−|𝑖− 𝑗−1|)/2

)
+

( ℓ−1
(ℓ−1−|𝑖− 𝑗+1|)/2

)
. Next we

will show
( ℓ−1
(ℓ−1−|𝑖− 𝑗−1|)/2

)
+

( ℓ−1
(ℓ−1−|𝑖− 𝑗+1|)/2

)
=

( ℓ
(ℓ−|𝑖− 𝑗 |)/2

)
case by case.

Case 1: ℓ − |𝑖 − 𝑗 | is odd.

If ℓ − |𝑖 − 𝑗 | is odd, then ℓ − 1− |𝑖 − 𝑗 − 1| and ℓ − 1− |𝑖 − 𝑗 + 1| are both odd. Under
this case, (

ℓ − 1
(ℓ − 1 − |𝑖 − 𝑗 − 1|)/2

)
+

(
ℓ − 1

(ℓ − 1 − |𝑖 − 𝑗 + 1|)/2

)
= 0,

which is equal to
( ℓ
(ℓ−|𝑖− 𝑗 |)/2

)
.

Case 2: ℓ − |𝑖 − 𝑗 | is even and 𝑖 = 𝑗 . Under this case, we have(
ℓ − 1

(ℓ − 1 − |𝑖 − 𝑗 − 1|)/2

)
+

(
ℓ − 1

(ℓ − 1 − |𝑖 − 𝑗 + 1|)/2

)
=

(
ℓ − 1
ℓ/2 − 1

)
+

(
ℓ − 1
ℓ/2 − 1

)
.

Since ℓ is even,
( ℓ−1
ℓ/2−1

)
+

( ℓ−1
ℓ/2−1

)
=

( ℓ
ℓ/2

)
=

( ℓ
(ℓ−|𝑖− 𝑗 |)/2

)
.

Case 3: ℓ − |𝑖 − 𝑗 | is even and 𝑖 ≠ 𝑗 .

If ℓ − |𝑖 − 𝑗 | is even, then ℓ − 1 − |𝑖 − 𝑗 − 1| and ℓ − 1 − |𝑖 − 𝑗 + 1| are both even.
We denote (ℓ − |𝑖 − 𝑗 |)/2 as 𝑘0. By triangle inequality, (ℓ − 1 − |𝑖 − 𝑗 − 1|)/2 and
(ℓ − 1 − |𝑖 − 𝑗 + 1|)/2 are in {𝑘0 − 1, 𝑘0}. Since 𝑖 ≠ 𝑗 ,(

ℓ − 1
(ℓ − 1 − |𝑖 − 𝑗 − 1|)/2

)
+

(
ℓ − 1

(ℓ − 1 − |𝑖 − 𝑗 + 1|)/2

)
=

(
ℓ − 1
𝑘0 − 1

)
+

(
ℓ − 1
𝑘0

)
,

which sums to
( ℓ
𝑘0

)
by Pascal’s triangle.

Next we present the proof of Lemma 3.C.4.

Proof of Lemma 3.C.4. By Lemma 3.D.4, (𝐽ℓ)𝑖, 𝑗 equals to the summation of terms∏ℓ
𝑘=1 𝐴 𝑗𝑘 ,𝑖𝑘𝐷

−1
𝑖𝑘 ,𝑖𝑘

and the number of such terms is bounded by
( ℓ
(ℓ−|𝑖− 𝑗 |)/2

)
.
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Define 𝐵𝑘 := 𝐴 𝑗𝑘 ,𝑖𝑘𝐷
−1
𝑖𝑘 ,𝑖𝑘

. Recall 𝐴 𝑗𝑘 ,𝑖𝑘 is a diagonal matrix and 𝐷𝑖𝑘 ,𝑖𝑘 is a graph-
induced banded matrix.

(𝐵𝑘 )𝑢,𝑞

 = 

(𝐴 𝑗𝑘 ,𝑖𝑘𝐷−1

𝑖𝑘 ,𝑖𝑘
)𝑢,𝑞



 = 

(𝐴 𝑗𝑘 ,𝑖𝑘 )𝑢,𝑢 (𝐷−1
𝑖𝑘 ,𝑖𝑘
)𝑢,𝑞



 ≤ ℓ𝑇

(𝐷−1
𝑖𝑘 ,𝑖𝑘
)𝑢,𝑣




≤ 2ℓ𝑇

𝜇
𝛾
𝑑G (𝑢,𝑣)
𝑆

.

where the last inequality is by using Lemma 3.D.1 on 𝐷𝑖𝑘 ,𝑖𝑘 .

Under the condition 𝑏 < ∞, we can use Lemma 3.C.3 to obtain the following bound,




( ℓ∏
𝑘=1

𝐴 𝑗𝑘 ,𝑖𝑘𝐷
−1
𝑖𝑘
)𝑢,𝑣






 ≤ (𝑏2ℓ𝑇
𝜇
)ℓ (𝛾′𝑆)

𝑑G (𝑢,𝑣) .

Since the number of such terms is bounded by
( ℓ
(ℓ−|𝑖− 𝑗 |)/2

)
, we have

((𝐽ℓ)𝑖, 𝑗 )𝑢,𝑞

 ≤ (

ℓ

(ℓ − |𝑖 − 𝑗 |)/2

)
(𝑏2ℓ𝑇

𝜇
)ℓ (𝛾′𝑆)

𝑑G (𝑢,𝑣) .

Proof of 3.C.5. Given 1 ≤ 𝜏, 𝜏′ ≤ 𝑘−1 and 𝑣0 ∈ 𝑁𝑟−1
𝑣 , since𝑀−1 = 𝐷−1 ∑

ℓ≥0(−𝐽)ℓ,
we have 






(
(𝑀)−1

𝜏′,𝜏𝐾
(𝜏)
𝜏 𝑦

)
𝑣0






 =






(
𝐷−1
𝜏′,𝜏′

∑︁
ℓ≥0
(−𝐽)ℓ𝜏′,𝜏𝐾

(𝜏)
𝜏 𝑦

)
𝑣0






. (3.58)

With slight abuse of notation, we use 𝐾 to denote 𝐾 (𝜏)𝜏 , and 𝑄−1 to denote 𝐷−1
𝜏′,𝜏′

in this proof from now. We can rewrite the right hand side of (3.58) using the new
notation as follows:






(
𝑄−1

∑︁
ℓ≥0
(−𝐽)ℓ𝜏′,𝜏𝐾𝑦

)
𝑣0






 ≤∑︁
ℓ≥0







(
𝑄−1(−𝐽)ℓ𝜏′,𝜏𝐾𝑦

)
𝑣0







=

∑︁
ℓ≥0







 ∑︁
𝑞∈𝑁𝑟−1

𝑣

(
𝑄−1(−𝐽)ℓ𝜏′,𝜏

)
𝑣0,𝑞

(𝐾𝑦)𝑞








≤

∑︁
ℓ≥0

∑︁
𝑞∈𝑁𝑟−1

𝑣








(
𝑄−1(−𝐽)ℓ𝜏′,𝜏

)
𝑣0,𝑞









(𝐾𝑦)𝑞

.
(3.59)

For a given 𝑞 ∈ 𝑁𝑟−1
𝑣 and 𝑦 ∈ R|𝜕𝑁𝑟𝑣 |𝑑 ,



(𝐾𝑦)𝑞

 =






 ∑︁
𝑢∈𝜕𝑁𝑟𝑣

𝐾𝑞,𝑢𝑦𝑢







 =






 ∑︁
𝑢∈𝜕𝑁𝑟𝑣∩𝑁1

𝑞

𝐾𝑞,𝑢𝑦𝑢







.
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where the last equality is since spacial interaction costs are only among neighboring
nodes.

For a given 𝑢 ∈ 𝜕𝑁𝑟𝑣 , since the spacial interaction cost for each edge is ℓ𝑆 smooth,

𝐾𝑞,𝑢𝑦𝑢

 ≤ 

𝐾𝑞,𝑢

∥𝑦𝑢∥ ≤ ℓ𝑆∥𝑦𝑢∥,
which gives 

(𝐾𝑦)𝑞

 ≤ ∑︁

𝑢∈𝜕𝑁𝑟𝑣∩𝑁1
𝑞

ℓ𝑆∥𝑦𝑢∥.

Therefore,





(
𝑄−1

∑︁
ℓ≥0
(−𝐽)ℓ𝜏′,𝜏𝐾𝑦

)
𝑣0






 ≤ ℓ𝑆 ∑︁
ℓ≥0

∑︁
𝑞∈𝑁𝑟−1

𝑣








(
𝑄−1(−𝐽)ℓ𝜏′,𝜏

)
𝑣0,𝑞







 ∑︁
𝑢∈𝜕𝑁𝑟𝑣∩𝑁1

𝑞

∥𝑦𝑢∥.

(3.60)

By Lemma 3.C.4, (−𝐽)ℓ
𝜏′,𝜏 satisfies the following exponential decay properties: for

any 𝑢, 𝑞 ∈ 𝑁𝑟−1
𝑣 ,

((𝐽ℓ)𝜏′,𝜏)𝑢,𝑞

 ≤ (

ℓ

(ℓ − |𝜏′ − 𝜏 |)/2

)
(𝑎̃2ℓ𝑇

𝜇
)ℓ (𝛾′𝑆)

𝑑G (𝑢,𝑞) ,

where we choose 𝛿 = 𝑏1 · 𝛾𝑆, 𝛾′𝑆 = (1 + 𝑏1)𝛾𝑆 and 𝑎̃ =
∑
𝛾≥0( 1

1+𝑏1
)𝛾ℎ(𝛾).

Moreover, 𝑄−1 (which denotes 𝐷−1
𝜏′,𝜏′) is the inverse of a graph-induced banded

matrix. 𝑄−1 satisfies: for any 𝑢, 𝑞 ∈ 𝑁𝑟−1
𝑣 ,

(𝑄−1)𝑢,𝑞



 ≤ 2
𝜇
𝛾
𝑑G (𝑢,𝑞)
𝑆

<
2
𝜇
(𝛾′𝑆)

𝑑G (𝑢,𝑞) ,

where the first inequality is again by using Lemma 3.D.1 on 𝐷𝜏′,𝜏′ .

Applying Lemma 3.C.3 on 𝑄−1 and


((𝐽ℓ)𝜏′,𝜏)

, we have for any 𝑢, 𝑞 ∈ 𝑁𝑟−1

𝑣 , and
ℓ ≥ 1, 







(
𝑄−1(−𝐽)ℓ𝜏′,𝜏

)
𝑢,𝑞







 ≤ 𝑎2 2
𝜇

(
ℓ

(ℓ − |𝜏′ − 𝜏 |)/2

)
(𝑎̃2ℓ𝑇

𝜇
)ℓ (𝜆′)𝑑G (𝑢,𝑞) ,

where 𝜆′ := 𝛾′
𝑆
+ 𝑏2 · 𝛾𝑆 < 1 and 𝑎 :=

∑
𝛾≥0( 1+𝑏1

1+𝑏1+𝑏2
)𝛾ℎ(𝛾). Note that 𝐽0 := 𝐼, it is

straightforward to verify that the above inequality holds when ℓ = 0.
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With the exponential decay properties of 𝑄−1(−𝐽)ℓ
𝜏′,𝜏, we have






(
𝑄−1

∑︁
ℓ≥0
(−𝐽)ℓ𝜏′,𝜏𝐾𝑦

)
𝑣0







≤ ℓ𝑆𝑎2 2

𝜇

∑︁
ℓ≥0

(
ℓ

(ℓ − |𝜏′ − 𝜏 |)/2

)
(𝑎̃2ℓ𝑇

𝜇
)ℓ

∑︁
𝑞∈𝑁𝑟−1

𝑣

(𝜆′)𝑑G (𝑣0,𝑞)
∑︁

𝑢∈𝜕𝑁𝑟𝑣∪𝑁1
𝑞

∥𝑦𝑢∥

≤ ℓ𝑆𝑎2 2
𝜇

∑︁
ℓ≥|𝜏′−𝜏 |

(
ℓ

(ℓ − |𝜏′ − 𝜏 |)/2

)
(𝑎̃2ℓ𝑇

𝜇
)ℓ

∑︁
𝑢∈𝜕𝑁𝑟𝑣

Δ(𝜆′)𝑑G (𝑣0,𝑢)−1∥𝑦𝑢∥

≤ Δℓ𝑆𝑎
2 2
𝜇

∑︁
ℓ≥|𝜏′−𝜏 |

(4𝑎̃ℓ𝑇
𝜇
)ℓ

∑︁
𝑢∈𝜕𝑁𝑟𝑣

(𝜆′)𝑑G (𝑣0,𝑢)−1∥𝑦𝑢∥

≤ 2Δℓ𝑆𝑎2

𝜇 − 4𝑎̃ℓ𝑇
(4𝑎̃ℓ𝑇
𝜇
) |𝜏′−𝜏 |

∑︁
𝑢∈𝜕𝑁𝑟𝑣

(𝜆′)𝑑G (𝑣0,𝑢)−1∥𝑦𝑢∥

=
2Δℓ𝑆𝑎2

𝜆′(𝜇 − 4𝑎̃ℓ𝑇 )
(4𝑎̃ℓ𝑇
𝜇
) |𝜏′−𝜏 |

∑︁
𝑢∈𝜕𝑁𝑟𝑣

(𝜆′)𝑑G (𝑣0,𝑢) ∥𝑦𝑢∥.

(3.61)

The third inequality uses
( ℓ
(ℓ−|𝜏′−𝜏 |)/2

)
≤ 2ℓ, which can be proved using the following

version of Stirling’s approximation: For all 𝑛 ≥ 1, 𝑒 denotes the natural number,
√

2𝜋𝑛(𝑛/𝑒)𝑛𝑒1/(12𝑛+1) < 𝑛! <
√

2𝜋𝑛(𝑛/𝑒)𝑛𝑒1/(12𝑛) .

Similarly, consider



((𝑀−1)𝜏′,𝑖)𝑅(𝑖)𝑖 𝑒)𝑣0




 for 𝑖 ∈ {1, 𝑘 − 1}. With slight abuse of

notation, in this proof, we use 𝑅 to denote 𝑅(𝑖)
𝑖

and use the notation 𝑄−1 to denote
𝐷−1
𝜏′,𝜏′ . Following the same steps as before, we have






(
(𝑀−1)𝜏′,𝑖)𝑅(𝑖)𝑖 𝑒

)
𝑣0






 ≤∑︁
ℓ≥0

∑︁
𝑞∈𝑁𝑟𝑣








(
𝑄−1(−𝐽)ℓ𝜏′,𝑖

)
𝑣0,𝑞









(𝑅𝑒)𝑞

. (3.62)

Since temporal interactions occurs for the same node under consecutive time steps,
𝑅 is a diagonal block matrix. Hence,

(𝑅𝑒)𝑞

 = 

𝑅𝑞,𝑞𝑒𝑞

 ≤ ℓ𝑇

𝑒𝑞

.
Moreover, using the exponential decay properties of 𝑄−1(−𝐽)ℓ

𝜏′,𝑖, we have for 𝑢, 𝑞 ∈
𝑁𝑟−1
𝑣 , 







(
𝑄−1(−𝐽)ℓ𝜏′,𝑖

)
𝑢,𝑞







 ≤ 𝑎2 2
𝜇

(
ℓ

(ℓ − |𝜏′ − 𝑖 |)/2

)
(𝑎̃2ℓ𝑇

𝜇
)ℓ (𝜆′)𝑑G (𝑢,𝑞) .
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Therefore,


((𝑀−1)𝜏′,𝑖)𝑅(𝑖)𝑖 𝑒)𝑣0





≤

∑︁
ℓ≥0

∑︁
𝑞∈𝑁𝑟𝑣

𝑎2 2
𝜇

(
ℓ

(ℓ − |𝜏′ − 𝑖 |)/2

)
(𝑎̃2ℓ𝑇

𝜇
)ℓ (𝜆′)𝑑G (𝑣0,𝑞)ℓ𝑇



𝑒𝑞


≤

∑︁
ℓ≥|𝜏′−𝑖 |

∑︁
𝑞∈𝑁𝑟𝑣

𝑎2 2
𝜇

(
ℓ

(ℓ − |𝜏′ − 𝑖 |)/2

)
(𝑎̃2ℓ𝑇

𝜇
)ℓ (𝜆′)𝑑G (𝑣0,𝑞)ℓ𝑇



𝑒𝑞


≤ 2ℓ𝑇𝑎2

𝜇

∑︁
ℓ≥|𝜏′−𝑖 |

(4𝑎̃ℓ𝑇
𝜇
)ℓ

∑︁
𝑞∈𝑁𝑟𝑣

(𝜆′)𝑑G (𝑣0,𝑞)

𝑒𝑞


≤ 2ℓ𝑇𝑎2

𝜇 − 4𝑎̃ℓ𝑇
(4𝑎̃ℓ𝑇
𝜇
) |𝜏′−𝑖 |

∑︁
𝑞∈𝑁𝑟𝑣

(𝜆′)𝑑G (𝑣0,𝑞)


𝑒𝑞



=
𝑎2𝜇

2𝑎̃(𝜇 − 4𝑎̃ℓ𝑇 )
(4𝑎̃ℓ𝑇
𝜇
) |𝜏′−𝑖 |+1

∑︁
𝑞∈𝑁𝑟𝑣

(𝜆′)𝑑G (𝑣0,𝑞)


𝑒𝑞

.

(3.63)

Given time index 1 ≤ 𝜏′ ≤ 𝑘 − 1, node 𝑣0 ∈ 𝑁𝑟−1
𝑣 , and perturbation vector

𝑒 = (𝑒0, 𝑒1, · · · , 𝑒𝑘 ),



( 𝑑𝑑𝜃𝜓(𝜁 + 𝜃𝑒))𝜏′,𝑣0






≤







(
𝑀−1
𝜏′,1𝑅

(1)
1 𝑒0

)
𝑣0






 +






(
𝑀−1
𝜏′,𝑘−1𝑅

(𝑘−1)
𝑘−1 𝑒𝑘

)
𝑣0






 + 𝑘−1∑︁
𝜏=1







(
𝑀−1
𝜏′,𝜏𝐾

(𝜏)
𝜏 𝑒𝜏

)
𝑣0







≤ 𝑎2𝜇

2𝑎̃(𝜇 − 4𝑎̃ℓ𝑇 )

[
𝜌𝜏
′

𝑇

∑︁
𝑞∈𝑁𝑟𝑣

𝜌
𝑑G (𝑣0,𝑞)
𝑆



(𝑒0)𝑞


 + 𝜌𝑘−𝜏′𝑇

∑︁
𝑞∈𝑁𝑟𝑣

𝜌
𝑑G (𝑣0,𝑞)
𝑆



(𝑒𝑘 )𝑞

]
+
𝑘−1∑︁
𝜏=1

2Δℓ𝑆𝑎2

𝜆′(𝜇 − 4𝑎̃ℓ𝑇 )
𝜌
|𝜏′−𝜏 |
𝑇

∑︁
𝑢∈𝜕𝑁𝑟𝑣

(𝜌𝑆)𝑑G (𝑣0,𝑢) ∥(𝑒𝜏)𝑢∥

where 𝜌𝑇 =
4𝑎̃ℓ𝑇
𝜇

and 𝜌𝑆 = 𝜆′ = (1 + 𝑏1 + 𝑏2)𝛾𝑆 . We let

𝐶 = max{ 𝑎2

2𝑎̃(1 − 4𝑎̃ℓ𝑇/𝜇)
,

2𝑎2Δℓ𝑆/𝜇
𝛾𝑆 (1 + 𝑏1 + 𝑏2) (1 − 4𝑎̃ℓ𝑇/𝜇)

}.

Under the condition 𝜇 ≥ max{8𝑎̃ℓ𝑇 ,Δℓ𝑆 (𝑏1 + 𝑏2)/4}, 𝜌𝑇 < 1 and 𝜌𝑆 < 1.

Then, 



( 𝑑𝑑𝜃𝜓(𝜁 + 𝜃𝑒))𝜏′,𝑣0
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≤ 𝐶
[
𝜌𝜏
′

𝑇

∑︁
𝑞∈𝑁𝑟𝑣

𝜌
𝑑G (𝑣0,𝑞)
𝑆



(𝑒0)𝑞


 + 𝜌𝑘−𝜏′𝑇

∑︁
𝑞∈𝑁𝑟𝑣

𝜌
𝑑G (𝑣0,𝑞)
𝑆



(𝑒𝑘 )𝑞


+
𝑘−1∑︁
𝜏=1

𝜌
|𝜏′−𝜏 |
𝑇

∑︁
𝑢∈𝜕𝑁𝑟𝑣

(𝜌𝑆)𝑑G (𝑣0,𝑢) ∥(𝑒𝜏)𝑢∥
]
.

Finally, let 𝜁 = {𝑦𝑢
𝑡−1, 𝑧

𝑢
𝜏 | (𝜏, 𝑢) ∈ 𝜕𝑁

(𝑘,𝑟)
(𝑣,𝑡) } and 𝑒 = {(𝑦𝑢

𝑡−1)
′ − 𝑦𝑢

𝑡−1, (𝑧
𝑢
𝜏)′ − 𝑧𝑢𝜏}. By

integration,


𝜓 (𝑘,𝑟)
𝑝,(𝑡,𝑣)

(
{𝑦𝑢𝑡−1}, {𝑧

𝑢
𝜏}

)
(𝑡0,𝑣0) − (𝜓

(𝑘,𝑟)
𝑝,(𝑡,𝑣)

(
{(𝑦𝑢𝑡−1)

′}, {(𝑧𝑢𝜏)′}
)
(𝑡0,𝑣0)





≤

∫ 1

0





( 𝑑𝑑𝜃𝜓(𝜁 + 𝜃𝑒))𝑡0,𝑣0





𝑑𝜃,
which is bounded by

𝐶
∑︁
𝑢∈𝑁𝑟𝑣

𝜌
𝑡0−(𝑡−1)
𝑇

𝜌
𝑑G (𝑣0,𝑢)
𝑆



𝑦𝑢𝑡−1 − (𝑦
𝑢
𝑡−1)
′

 + 𝐶 ∑︁

(𝑢,𝜏)∈𝜕𝑁 (𝑘,𝑟 )(𝑡 ,𝑣)

𝜌
|𝑡0−𝜏 |
𝑇

𝜌
𝑑G (𝑣0,𝑢)
𝑆



𝑧𝑢𝜏 − (𝑧𝑢𝜏)′

.
Adding Constraints to Perturbation Bounds
Recall that we have shown Theorem 3.3.3 and Theorem 3.3.4 under the assumption
that the individual decisions are unconstrained to simplify the analysis. In this
section, we present a general way to relax this assumption by incorporating logarithm
barrier functions, which also applies for Theorem 3.C.6.

Recall that in Assumption 3.3.1, we assume that 𝐷𝑣
𝑡 is convex with a non-empty

interior, and can be expressed as

𝐷𝑣
𝑡 := {𝑥𝑣𝑡 ∈ R𝑛 | (𝑔𝑣𝑡 )𝑖 (𝑥𝑣𝑡 ) ≤ 0,∀1 ≤ 𝑖 ≤ 𝑚𝑣𝑡 },

where the 𝑖 th constraint (𝑔𝑣𝑡 )𝑖 : R𝑛 → R is a convex function in 𝐶2. For any
time-vertex pair (𝜏, 𝑣), we can approximate the individual constraints

(𝑔𝑣𝜏)𝑖 (𝑥𝑣𝜏) ≤ 0,∀1 ≤ 𝑖 ≤ 𝑚𝑣𝜏,

by adding the logarithmic barrier function −𝜆∑𝑚𝑣𝜏
𝑖=1 ln (−(𝑔𝑣𝜏)𝑖 (𝑥𝑣𝜏)) to the original

node cost function 𝑓 𝑣𝜏 . Here, parameter 𝜇 is a positive real number that controls
how “good” the barrier function approximates the indicator function

I𝐷𝑣𝜏 (𝑥
𝑣
𝜏) =


0 if (𝑔𝑣𝜏)𝑖 (𝑥𝑣𝜏) ≤ 0,∀1 ≤ 𝑖 ≤ 𝑚𝑣𝜏,

+∞ otherwise.



110

The approximation improves as parameter 𝜇 becomes closer to 0. Thus, the new
node cost function will be

𝐵𝑣𝜏 (𝑥𝑣𝜏; 𝜇) := 𝑓 𝑣𝜏 (𝑥𝑣𝜏) − 𝜆
𝑚𝑣𝜏∑︁
𝑖=1

ln (−(𝑔𝑣𝜏)𝑖 (𝑥𝑣𝜏)).

As an extension of the original notation, we use 𝜓 (𝑘,𝑟)
𝑝,(𝑡,𝑣) ({𝑦

𝑢
𝑡−1}, {𝑧

𝑢
𝜏};𝜆) to denote

the optimal solution of the following optimization problem defined on a Networked
OCO problem instance 𝑝:

arg min
{𝑥𝑢𝜏 }

𝑡+𝑘−1∑︁
𝜏=𝑡

©­«
∑︁
𝑢∈𝑁𝑟

𝑣

𝐵𝑢𝜏 (𝑥𝑢𝜏 ;𝜆) +
∑︁
𝑢∈𝑁𝑟

𝑣

𝑐𝑢𝜏 (𝑥𝑢𝜏 , 𝑥𝑢𝜏−1) +
∑︁

(𝑢,𝑞) ∈E (𝑁𝑟
𝑣 )
𝑔
(𝑢,𝑞)
𝑡 (𝑥𝑢𝑡 , 𝑥

𝑞
𝑡 )

ª®¬
s.t. 𝑥𝑢𝑡−1 = 𝑦𝑢𝑡−1,∀𝑢 ∈ 𝑁

𝑟
𝑣 ,

𝑥𝑢𝜏 = 𝑧
𝑢
𝜏 ,∀(𝜏, 𝑢) ∈ 𝜕𝑁

(𝑘,𝑟 )
(𝑡 ,𝑣) .

Compared with𝜓 (𝑘,𝑟)
𝑝,(𝑡,𝑣) ({𝑦

𝑢
𝑡−1}, {𝑧

𝑢
𝜏}) defined in Section 3.3, the constraints 𝑥𝑢𝜏 ∈ 𝐷𝑢

𝜏

are removed and the node costs 𝑓 𝑢𝜏 (𝑥𝑢𝜏) are replaced with 𝐵𝑢𝜏 (𝑥𝜏;𝜆).

A key observation we need to point out is that the perturbation bounds we have
shown do not depend on the smoothness constant ℓ 𝑓 of node cost functions. That
means the perturbation bound


𝜓 (𝑘,𝑟)

𝑝,(𝑡,𝑣)
(
{𝑦𝑢𝑡−1}, {𝑧

𝑢
𝜏};𝜆

)
(𝑡,𝑣) − 𝜓

(𝑘,𝑟)
𝑝,(𝑡,𝑣)

(
{𝑦𝑢𝑡−1}, {(𝑧

𝑢
𝜏)′};𝜆

)
(𝑡,𝑣)





≤ 𝐶1

∑︁
(𝑢,𝜏)∈𝜕𝑁 (𝑘,𝑟 )(𝑡 ,𝑣)

𝜌
|𝑡−𝜏 |
𝑇

𝜌
𝑑G (𝑣,𝑢)
𝑆



𝑧𝑢𝜏 − (𝑧𝑢𝜏)′


holds for arbitrary 𝜆, where 𝐶1, 𝜌𝑆, 𝜌𝑇 are specified in Theorem 3.3.3 or Theo-
rem 3.3.4 and are independent of parameter 𝜆. Theorem 3.10 in Forsgren, Gill,
and Wright (2002) guarantees that the solutions 𝜓 (𝑘,𝑟)

𝑝,(𝑡,𝑣) ({𝑦
𝑢
𝑡−1}, {𝑧

𝑢
𝜏};𝜆𝑘 ) converge

to 𝜓 (𝑘,𝑟)
𝑝,(𝑡,𝑣) ({𝑦

𝑢
𝑡−1}, {𝑧

𝑢
𝜏}) for any positive sequence {𝜆𝑘 }∞𝑘=1 that tends to zero. Thus

the above perturbation bound also holds for 𝜓 (𝑘,𝑟)
𝑝,(𝑡,𝑣) ({𝑦

𝑢
𝑡−1}, {𝑧

𝑢
𝜏}) which includes the

constraints on individual decisions.

Note that the argument we present in this section also works for Theorems 3.C.6
and 3.3.9.

Proof of Theorem 3.C.8
We first derive an upper bound on the distance between 𝑥𝑡 and 𝑥∗𝑡 .

Note that for any period 𝑡, we have

𝑥𝑡 − 𝜓̃𝑡 (𝑥𝑡−1)𝑡


 ≤ 𝑒𝑡 . (3.64)
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Thus we see that

𝑥𝑡 − 𝑥∗𝑡 

 = 

𝑥𝑡 − 𝜓̃1(𝑥0)𝑡




≤


𝑥𝑡 − 𝜓̃𝑡 (𝑥𝑡−1)𝑡



 + 𝑡−1∑︁
𝑖=1



𝜓̃𝑡−𝑖+1(𝑥𝑡−𝑖)𝑡 − 𝜓̃𝑡−𝑖 (𝑥𝑡−𝑖−1)𝑡




≤


𝑥𝑡 − 𝜓̃𝑡 (𝑥𝑡−1)𝑡



 + 𝑡−1∑︁
𝑖=1

𝐶𝐺𝜌
𝑖
𝐺



𝑥𝑡−𝑖 − 𝜓̃𝑡−𝑖 (𝑥𝑡−𝑖−1)𝑡−𝑖


 (3.65a)

≤
𝑡−1∑︁
𝑖=0

𝐶0𝜌
𝑖
𝐺



𝑥𝑡−𝑖 − 𝜓̃𝑡−𝑖 (𝑥𝑡−𝑖−1)𝑡−𝑖


 (3.65b)

≤
𝑡∑︁
𝑖=1

𝐶0𝜌
𝑡−𝑖
𝐺 𝑒𝑖, (3.65c)

where in (3.65a), we used Theorem 3.C.6 and the fact that 𝜓̃𝑡−𝑖 (𝑥𝑡−𝑖−1)𝑡 can be
written as

𝜓̃𝑡−𝑖 (𝑥𝑡−𝑖−1)𝑡 = 𝜓̃𝑡−𝑖+1
(
𝜓̃𝑡−𝑖 (𝑥𝑡−𝑖−1)𝑡−𝑖

)
𝑡
.

We also used 𝐶0 := max{1, 𝐶𝐺} in (3.65b) and (3.64) in (3.65c).

By (3.65) and the Cauchy-Schwarz Inequality, we see that

𝑥𝑡 − 𝑥∗𝑡 

2 ≤ 𝐶2
0

(
𝑡∑︁
𝑖=1

𝜌𝑡−𝑖𝐺 𝑒𝑖

)2

≤ 𝐶2
0

(
𝑡∑︁
𝑖=1

𝜌𝑡−𝑖𝐺

)
·
(
𝑡∑︁
𝑖=1

𝜌𝑡−𝑖𝐺 𝑒2
𝑖

)
≤

𝐶2
0

1 − 𝜌𝐺
·
(
𝑡∑︁
𝑖=1

𝜌𝑡−𝑖𝐺 𝑒2
𝑖

)
.

Summing up over 𝑡 gives that
𝐻∑︁
𝑡=1



𝑥𝑡 − 𝑥∗𝑡 

2 ≤
𝐶2

0
(1 − 𝜌𝐺)2

·
𝐻∑︁
𝑡=1

𝑒2
𝑡 .

Proof of Lemma 3.C.7
In this section, we show Lemma 3.C.7 holds with following specific constants:

𝑒2
𝑡 :=




𝑥𝑡 − 𝑥∗𝑡 |𝑡−1




2

≤ 4𝐶2
1𝐶

2
0

(
ℎ(𝑟)2𝜌2

𝐺

(1 − 𝜌𝑇 ) (1 − 𝜌2
𝐺
𝜌𝑇 )
· 𝜌2𝑟

𝑆 + 𝐶3(𝑟)2 · 𝜌2(𝑘−1)
𝑇

· 𝜌2𝑘
𝐺

) 

𝑥𝑡−1 − 𝑥∗𝑡−1


2

+
8𝐶2

1
𝜇

(
ℎ(𝑟)2

1 − 𝜌𝑇
· 𝜌2𝑟

𝑆

𝑡+𝑘−1∑︁
𝜏=𝑡

𝜌𝜏−𝑡𝑇 𝑓𝜏 (𝑥∗𝜏) + 𝐶3(𝑟)2 · 𝜌2(𝑘−1)
𝑇

𝑓𝑡+𝑘−1(𝑥∗𝑡+𝑘−1)
)
.

(3.66)

Note that, by the principle of optimality, we have

𝑥𝑣𝑡 = 𝜓
(𝑘,𝑟)
𝑝,(𝑡,𝑣)

(
{𝑥𝑢𝑡−1}, {𝜃

𝑢
𝜏}

)
(𝑡,𝑣) ,



112

(𝑥𝑣
𝑡 |𝑡−1)

∗ = 𝜓 (𝑘,𝑟)
𝑝,(𝑡,𝑣)

(
{𝑥𝑢𝑡−1}, {(𝑥

𝑢
𝜏 |𝑡−1)

∗}
)
(𝑡,𝑣)

.

Recall that we define the quantity 𝐶3(𝑟) :=
∑𝑟
𝛾=0 ℎ(𝛾) · 𝜌

𝛾

𝑆
to simplify the notation.

Since the exponentially decaying local perturbation bound holds in Definition 3.3.4,
we see that


𝑥𝑣𝑡 − (𝑥𝑣𝑡 |𝑡−1)

∗



 ≤ 𝐶1𝜌

𝑟
𝑆

𝑡+𝑘−1∑︁
𝜏=𝑡

𝜌𝜏−𝑡𝑇

∑︁
𝑢∈𝜕𝑁𝑟𝑣




(𝑥𝑢𝜏 |𝑡−1)
∗ − 𝜃𝑢𝜏





+ 𝐶1𝜌

𝑘−1
𝑇

∑︁
𝑢∈𝑁𝑟𝑣

𝜌
𝑑G (𝑢,𝑣)
𝑆




(𝑥𝑢𝑡+𝑘−1|𝑡−1)
∗ − 𝜃𝑢𝑡+𝑘−1




, (3.67)

which implies that


𝑥𝑣𝑡 − (𝑥𝑣𝑡 |𝑡−1)
∗



2

≤ 2𝐶2
1 𝜌

2𝑟
𝑆

©­«
𝑡+𝑘−1∑︁
𝜏=𝑡

𝜌𝜏−𝑡𝑇

∑︁
𝑢∈𝜕𝑁𝑟𝑣




(𝑥𝑢𝜏 |𝑡−1)
∗ − 𝜃𝑢𝜏




ª®¬
2

+ 2𝐶2
1 𝜌

2(𝑘−1)
𝑇

©­«
∑︁
𝑢∈𝑁𝑟𝑣

𝜌
𝑑G (𝑢,𝑣)
𝑆




(𝑥𝑢𝑡+𝑘−1|𝑡−1)
∗ − 𝜃𝑢𝑡+𝑘−1




ª®¬
2

(3.68a)

≤ 2𝐶2
1 𝜌

2𝑟
𝑆

©­«
𝑡+𝑘−1∑︁
𝜏=𝑡

𝜌𝜏−𝑡𝑇

∑︁
𝑢∈𝜕𝑁𝑟𝑣

1ª®¬ ©­«
𝑡+𝑘−1∑︁
𝜏=𝑡

𝜌𝜏−𝑡𝑇

∑︁
𝑢∈𝜕𝑁𝑟𝑣




(𝑥𝑢𝜏 |𝑡−1)
∗ − 𝜃𝑢𝜏




2ª®¬
+ 2𝐶2

1 𝜌
2(𝑘−1)
𝑇

©­«
∑︁
𝑢∈𝑁𝑟𝑣

𝜌
𝑑G (𝑢,𝑣)
𝑆

ª®¬ ©­«
∑︁
𝑢∈𝑁𝑟𝑣

𝜌
𝑑G (𝑢,𝑣)
𝑆




(𝑥𝑢𝑡+𝑘−1|𝑡−1)
∗ − 𝜃𝑢𝑡+𝑘−1




2ª®¬ (3.68b)

≤
2𝐶2

1ℎ(𝑟)
1 − 𝜌𝑇

· 𝜌2𝑟
𝑆

©­«
𝑡+𝑘−1∑︁
𝜏=𝑡

𝜌𝜏−𝑡𝑇

∑︁
𝑢∈𝜕𝑁𝑟𝑣




(𝑥𝑢𝜏 |𝑡−1)
∗ − 𝜃𝑢𝜏




2ª®¬
+ 2𝐶2

1𝐶3(𝑟) · 𝜌2(𝑘−1)
𝑇

©­«
∑︁
𝑢∈𝑁𝑟𝑣

𝜌
𝑑G (𝑢,𝑣)
𝑆




(𝑥𝑢𝑡+𝑘−1|𝑡−1)
∗ − 𝜃𝑢𝑡+𝑘−1




2ª®¬ , (3.68c)

where we used the AM-GM Inequality in (3.68a); we used the Cauchy-Schwarz
Inequality in (3.68b); we used the definitions of functions ℎ(𝑟) and𝐶3(𝑟) in (3.68c).

Summing up (3.68) over all 𝑣 ∈ V and reorganizing terms gives∑︁
𝑣∈V




𝑥𝑣𝑡 − (𝑥𝑣𝑡 |𝑡−1)
∗



2

≤
2𝐶2

1ℎ(𝑟)
1 − 𝜌𝑇

· 𝜌2𝑟
𝑆

∑︁
𝑣∈V

©­«
𝑡+𝑘−1∑︁
𝜏=𝑡

𝜌𝜏−𝑡𝑇

∑︁
𝑢∈𝜕𝑁𝑟𝑣




(𝑥𝑢𝜏 |𝑡−1)
∗ − 𝜃𝑢𝜏




2ª®¬
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+ 2𝐶2
1𝐶3(𝑟) · 𝜌2(𝑘−1)

𝑇

∑︁
𝑣∈V

©­«
∑︁
𝑢∈𝑁𝑟𝑣

𝜌
𝑑G (𝑢,𝑣)
𝑆




(𝑥𝑢𝑡+𝑘−1|𝑡−1)
∗ − 𝜃𝑢𝑡+𝑘−1




2ª®¬
≤

2𝐶2
1ℎ(𝑟)

2

1 − 𝜌𝑇
· 𝜌2𝑟

𝑆

𝑡+𝑘−1∑︁
𝜏=𝑡

𝜌𝜏−𝑡𝑇




𝑥∗𝜏 |𝑡−1 − 𝜃𝜏



2

+ 2𝐶2
1𝐶3(𝑟)2 · 𝜌2(𝑘−1)

𝑇




𝑥∗𝑡+𝑘−1|𝑡−1 − 𝜃𝑡+𝑘−1




2
, (3.69)

where we used the facts that∑︁
𝑣∈V

∑︁
𝑢∈𝜕𝑁𝑟𝑣




(𝑥𝑢𝜏 |𝑡−1)
∗ − 𝜃𝑢𝜏




2
≤ ℎ(𝑟)

∑︁
𝑣∈V




(𝑥𝑣𝜏 |𝑡−1)
∗ − 𝜃𝑣𝜏




2
= ℎ(𝑟) ·




𝑥∗𝜏 |𝑡−1 − 𝜃𝜏



2
,

and∑︁
𝑣∈V

∑︁
𝑢∈𝜕𝑁𝑟𝑣

𝜌
𝑑G (𝑢,𝑣)
𝑆




(𝑥𝑢𝑡+𝑘−1|𝑡−1)
∗ − 𝜃𝑢𝑡+𝑘−1




2
≤ 𝐶3(𝑟)

∑︁
𝑣∈V




(𝑥𝑣𝑡+𝑘−1|𝑡−1)
∗ − 𝜃𝑣𝑡+𝑘−1




2

= 𝐶3(𝑟) ·



𝑥∗𝑡+𝑘−1|𝑡−1 − 𝜃𝑡+𝑘−1




2
.

We also note that by the principle of optimality, the following equations hold for all
𝜏 ≥ 𝑡:

𝑥∗
𝜏 |𝑡−1 = 𝜓̃𝑡 (𝑥𝑡−1)𝜏 ,

𝑥∗𝜏 = 𝜓̃𝑡
(
𝑥∗𝑡−1

)
𝜏
.

Recall that 𝐶0 := max{1, 𝐶𝐺}. By Theorem 3.C.6, we see that


𝑥∗𝜏 |𝑡−1 − 𝑥
∗
𝜏




 ≤ 𝐶0𝜌
𝜏−𝑡+1
𝐺



𝑥𝑡−1 − 𝑥∗𝑡−1


, (3.70)

which implies


𝑥∗𝜏 |𝑡−1 − 𝜃𝜏



2
≤ 2




𝑥∗𝜏 |𝑡−1 − 𝑥
∗
𝜏




2
+ 2



𝑥∗𝜏 − 𝜃𝜏

2 (3.71a)

≤ 2𝐶2
0 𝜌

2(𝜏−𝑡+1)
𝐺



𝑥𝑡−1 − 𝑥∗𝑡−1


2 + 2



𝑥∗𝜏 − 𝜃𝜏

2
, (3.71b)

where we used the triangle inequality and the AM-GM inequality in (3.71a); we
used (3.70) in (3.71b).

Substituting (3.71) into (3.69) gives∑︁
𝑣∈V




𝑥𝑣𝑡 − (𝑥𝑣𝑡 |𝑡−1)
∗



2

≤ 4𝐶2
1𝐶

2
0

(
ℎ(𝑟)2𝜌2

𝐺

(1 − 𝜌𝑇 ) (1 − 𝜌2
𝐺
𝜌𝑇 )
· 𝜌2𝑟

𝑆 + 𝐶3(𝑟)2 · 𝜌2(𝑘−1)
𝑇

· 𝜌2𝑘
𝐺

) 

𝑥𝑡−1 − 𝑥∗𝑡−1


2
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+ 4𝐶2
1

(
ℎ(𝑟)2

1 − 𝜌𝑇
· 𝜌2𝑟

𝑆

𝑡+𝑘−1∑︁
𝜏=𝑡

𝜌𝜏−𝑡𝑇



𝑥∗𝜏 − 𝜃𝜏

2 + 𝐶3(𝑟)2 · 𝜌2(𝑘−1)
𝑇



𝑥∗𝑡+𝑘−1 − 𝜃𝑡+𝑘−1


2

)
≤ 4𝐶2

1𝐶
2
0

(
ℎ(𝑟)2𝜌2

𝐺

(1 − 𝜌𝑇 ) (1 − 𝜌2
𝐺
𝜌𝑇 )
· 𝜌2𝑟

𝑆 + 𝐶3(𝑟)2 · 𝜌2(𝑘−1)
𝑇

· 𝜌2𝑘
𝐺

) 

𝑥𝑡−1 − 𝑥∗𝑡−1


2

+
8𝐶2

1
𝜇

(
ℎ(𝑟)2

1 − 𝜌𝑇
· 𝜌2𝑟

𝑆

𝑡+𝑘−1∑︁
𝜏=𝑡

𝜌𝜏−𝑡𝑇 𝑓𝜏 (𝑥∗𝜏) + 𝐶3(𝑟)2 · 𝜌2(𝑘−1)
𝑇

𝑓𝑡+𝑘−1(𝑥∗𝑡+𝑘−1)
)
,

(3.72)

where we used the fact that the node cost function 𝑓 𝑣𝜏 is non-negative and 𝜇-strongly
convex for all 𝜏, 𝑣, thus

𝑓𝜏 (𝑥∗𝜏) ≥
∑︁
𝑣∈V

𝑓 𝑣𝜏 ((𝑥𝑣𝜏)∗) ≥
𝜇

2

∑︁
𝑣∈V



(𝑥𝑣𝜏)∗ − 𝜃𝑣𝜏

2
=
𝜇

2


𝑥∗𝜏 − 𝜃𝜏

2

.

Note that
∑
𝑣∈V




𝑥𝑣𝑡 − (𝑥𝑣𝑡 |𝑡−1)
∗



2

=




𝑥𝑡 − 𝑥∗𝑡 |𝑡−1




2
= 𝑒2

𝑡 . Thus we have finished the
proof of (3.66).

Proof of Lemma 3.C.9
In this section, we show Lemma 3.C.9 holds with following specific constants:

𝑒2
𝑡 :=




𝑥𝑡 − 𝑥∗𝑡 |𝑡−1




2

≤ 12𝐶2
1𝐶

2
0

(
ℎ(𝑟)2𝜌2

𝐺

(1 − 𝜌𝑇 ) (1 − 𝜌2
𝐺
𝜌𝑇 )
· 𝜌2𝑟

𝑆 + 𝐶3(𝑟)2 · 𝜌2(𝑘−1)
𝑇

· 𝜌2𝑘
𝐺

) 

𝑥𝑡−1 − 𝑥∗𝑡−1


2

+
24𝐶2

1
𝜇

(
ℎ(𝑟)2

1 − 𝜌𝑇
· 𝜌2𝑟

𝑆

𝑡+𝑘−1∑︁
𝜏=𝑡

𝜌𝜏−𝑡𝑇 𝑓𝜏 (𝑥∗𝜏) + 𝐶3(𝑟)2 · 𝜌2(𝑘−1)
𝑇

𝑓𝑡+𝑘−1(𝑥∗𝑡+𝑘−1)
)

+
(

9𝐶2
2 (1 + Δ

2)𝐶3(𝑟)2

1 − 𝜌𝑇
+

12𝐶2
1𝐶3(𝑟)2ℓ𝑤
𝜇

+
12𝐶2

1ℎ(𝑟)
2ℓ𝑤

𝜇(1 − 𝜌𝑇 )
· 𝜌2𝑟

𝑆

)
·

PredictionError𝑝,(𝑡,𝑘) . (3.73)

Note that, by the principle of optimality, we have

𝑥𝑣𝑡 = 𝜓
(𝑘,𝑟)
𝑝,(𝑡,𝑣)

(
{𝑥𝑢𝑡−1}, {𝜃

𝑢
𝜏 |𝑡}; 𝜉

(𝑘,𝑟)
(𝑡,𝑣)

)
(𝑡,𝑣)

,

(𝑥𝑣
𝑡 |𝑡−1)

∗ = 𝜓 (𝑘,𝑟)
𝑝,(𝑡,𝑣)

(
{𝑥𝑢𝑡−1}, {(𝑥

𝑢
𝜏 |𝑡−1)

∗}; (𝜉 (𝑘,𝑟)(𝑡,𝑣) )
∗
)
(𝑡,𝑣)

,

where we recall that 𝜃𝑢
𝜏 |𝑡 := arg min𝑦∈𝐷𝑢𝜏 𝑓

𝑢
𝜏 (𝑦; 𝜇𝑢

𝜏 |𝑡) in Algorithm 3 and 𝜃𝑢𝜏 :=
arg min𝑦∈𝐷𝑢𝜏 𝑓

𝑢
𝜏 (𝑦).
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Since the exponentially decaying local perturbation bound holds in Definition 3.3.7,
we see that 


𝑥𝑣𝑡 − (𝑥𝑣𝑡 |𝑡−1)

∗





≤ 𝐶1𝜌
𝑟
𝑆

𝑡+𝑘−1∑︁
𝜏=𝑡

𝜌𝜏−𝑡𝑇

∑︁
𝑢∈𝜕𝑁𝑟𝑣




(𝑥𝑢𝜏 |𝑡−1)
∗ − 𝜃𝑢

𝜏 |𝑡




︸                                     ︷︷                                     ︸
Term 1

+ 𝐶1𝜌
𝑘−1
𝑇

∑︁
𝑢∈𝑁𝑟𝑣

𝜌
𝑑G (𝑢,𝑣)
𝑆




(𝑥𝑢𝑡+𝑘−1|𝑡−1)
∗ − 𝜃𝑢

𝑡+𝑘−1|𝑡




︸                                           ︷︷                                           ︸
Term 2

+ 𝐶2 · dist𝑝
(
𝜉
(𝑘,𝑟)
(𝑡,𝑣) ,

(
𝜉
(𝑘,𝑟)
(𝑡,𝑣)

)∗)
. (3.74)

Note that the square of Term 1 in (3.74) can be upper bounded by

(Term 1)2

≤ ©­«
𝑡+𝑘−1∑︁
𝜏=𝑡

𝜌𝜏−𝑡𝑇

∑︁
𝑢∈𝜕𝑁𝑟

𝑣

1ª®¬ ©­«
𝑡+𝑘−1∑︁
𝜏=𝑡

𝜌𝜏−𝑡𝑇

∑︁
𝑢∈𝜕𝑁𝑟

𝑣




(𝑥𝑢𝜏 |𝑡−1)
∗ − 𝜃𝑢

𝜏 |𝑡




2ª®¬ (3.75a)

≤ ℎ(𝑟)
1 − 𝜌𝑇

©­«
𝑡+𝑘−1∑︁
𝜏=𝑡

𝜌𝜏−𝑡𝑇

∑︁
𝑢∈𝜕𝑁𝑟

𝑣




(𝑥𝑢𝜏 |𝑡−1)
∗ − 𝜃𝑢

𝜏 |𝑡




2ª®¬ (3.75b)

≤ 2ℎ(𝑟)
1 − 𝜌𝑇

©­«
𝑡+𝑘−1∑︁
𝜏=𝑡

𝜌𝜏−𝑡𝑇

∑︁
𝑢∈𝜕𝑁𝑟

𝑣




(𝑥𝑢𝜏 |𝑡−1)
∗ − 𝜃𝑢𝜏




2
+
𝑡+𝑘−1∑︁
𝜏=𝑡

𝜌𝜏−𝑡𝑇

∑︁
𝑢∈𝜕𝑁𝑟

𝑣




𝜃𝑢𝜏 |𝑡 − 𝜃𝑢𝜏


2ª®¬ (3.75c)

≤ 2ℎ(𝑟)
1 − 𝜌𝑇

©­«
𝑡+𝑘−1∑︁
𝜏=𝑡

𝜌𝜏−𝑡𝑇

∑︁
𝑢∈𝜕𝑁𝑟

𝑣




(𝑥𝑢𝜏 |𝑡−1)
∗ − 𝜃𝑢𝜏




2
+ 2ℓ𝑤

𝜇

𝑡+𝑘−1∑︁
𝜏=𝑡

𝜌𝜏−𝑡𝑇

∑︁
𝑢∈𝜕𝑁𝑟

𝑣




𝜔𝑢𝜏 |𝑡 − (𝜔𝑢𝜏)∗


2ª®¬ ,
(3.75d)

where we used the Cauchy-Schwarz Inequality in (3.75a); we used the definition
of ℎ(𝑟) in (3.75b); we used the triangle inequality and the AM-GM inequality
in (3.75c); we used the special case of generalized exponentially decaying local
perturbation bound when the graph is a single node in (3.75d). We also see that

(Term 2)2

≤ ©­«
∑︁
𝑢∈𝑁𝑟𝑣

𝜌
𝑑G (𝑢,𝑣)
𝑆

ª®¬ ©­«
∑︁
𝑢∈𝑁𝑟𝑣

𝜌
𝑑G (𝑢,𝑣)
𝑆




(𝑥𝑢𝑡+𝑘−1|𝑡−1)
∗ − 𝜃𝑢

𝑡+𝑘−1|𝑡




2ª®¬ (3.76a)

≤ 𝐶3(𝑟) · ©­«
∑︁
𝑢∈𝑁𝑟𝑣

𝜌
𝑑G (𝑢,𝑣)
𝑆




(𝑥𝑢𝑡+𝑘−1|𝑡−1)
∗ − 𝜃𝑢

𝑡+𝑘−1|𝑡




2ª®¬ (3.76b)
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≤ 2𝐶3(𝑟) ·
( ∑︁
𝑢∈𝑁𝑟𝑣

𝜌
𝑑G (𝑢,𝑣)
𝑆




(𝑥𝑢𝑡+𝑘−1|𝑡−1)
∗ − 𝜃𝑢𝑡+𝑘−1




2

+
∑︁
𝑢∈𝑁𝑟𝑣

𝜌
𝑑G (𝑢,𝑣)
𝑆




𝜃𝑢𝑡+𝑘−1|𝑡 − 𝜃
𝑢
𝑡+𝑘−1




2
)

(3.76c)

≤ 2𝐶3(𝑟) ·
( ∑︁
𝑢∈𝑁𝑟𝑣

𝜌
𝑑G (𝑢,𝑣)
𝑆




(𝑥𝑢𝑡+𝑘−1|𝑡−1)
∗ − 𝜃𝑢𝑡+𝑘−1




2

+ 2ℓ𝑤
𝜇

∑︁
𝑢∈𝑁𝑟𝑣

𝜌
𝑑G (𝑢,𝑣)
𝑆




𝜔𝑢𝑡+𝑘−1|𝑡 − (𝜔
𝑢
𝑡+𝑘−1)

∗



2

)
, (3.76d)

where we used Cauchy-Schwarz Inequality in (3.76a); we used the definition of
𝐶3(𝑟) in (3.76b); we used the triangle inequality and the AM-GM inequality in
(3.76c); we used the special case of generalized exponentially decaying local per-
turbation bound when the graph is a single node in (3.76d). Note that the square of
dist

(
𝜉
(𝑘,𝑟)
(𝑡,𝑣) ,

(
𝜉
(𝑘,𝑟)
(𝑡,𝑣)

)∗)
can also be bounded by

dist
(
𝜉
(𝑘,𝑟)
(𝑡,𝑣) ,

(
𝜉
(𝑘,𝑟)
(𝑡,𝑣)

)∗)2

≤ 3
©­­«

∑︁
(𝑢,𝜏)∈𝑁 (𝑘−1,𝑟−1)

(𝑡 ,𝑣)

𝜌
|𝑡−𝜏 |
𝑇

𝜌
𝑑G (𝑣,𝑢)
𝑆

ª®®¬
©­­«

∑︁
(𝑢,𝜏)∈𝑁 (𝑘−1,𝑟−1)

(𝑡 ,𝑣)

𝜌
|𝑡−𝜏 |
𝑇

𝜌
𝑑G (𝑣,𝑢)
𝑆




𝜔𝑢𝜏 |𝑡 − (𝜔𝑢𝜏)∗


2ª®®¬
+ 3

©­­«
∑︁

(𝑢,𝜏)∈𝑁 (𝑘,𝑟 )(𝑡 ,𝑣)

𝜌
|𝑡−𝜏 |
𝑇

𝜌
𝑑G (𝑣,𝑢)
𝑆

ª®®¬
©­­«

∑︁
(𝑢,𝜏)∈𝑁 (𝑘,𝑟 )(𝑡 ,𝑣)

𝜌
|𝑡−𝜏 |
𝑇

𝜌
𝑑G (𝑣,𝑢)
𝑆




𝛼𝑢𝜏 |𝑡 − (𝛼𝑢𝜏)∗


2ª®®¬
+ 3 ©­«

𝑡+𝑘∑︁
𝜏=𝑡

∑︁
𝑒∈E(𝑁𝑟𝑣 )

𝜌
|𝑡−𝜏 |
𝑇

𝜌
𝑑G (𝑣,𝑒)
𝑆

ª®¬ ©­«
𝑡+𝑘∑︁
𝜏=𝑡

∑︁
𝑒∈E(𝑁𝑟𝑣 )

𝜌
|𝑡−𝜏 |
𝑇

𝜌
𝑑G (𝑣,𝑒)
𝑆




𝛽𝑒𝜏 |𝑡 − (𝛽𝑒𝜏)∗


2ª®¬
(3.77a)

≤ 3𝐶3(𝑟)
1 − 𝜌𝑇

·
( ∑︁
(𝑢,𝜏)∈𝑁 (𝑘−1,𝑟−1)

(𝑡 ,𝑣)

𝜌
|𝑡−𝜏 |
𝑇

𝜌
𝑑G (𝑣,𝑢)
𝑆




𝜔𝑢𝜏 |𝑡 − (𝜔𝑢𝜏)∗


2

+
∑︁

(𝑢,𝜏)∈𝑁 (𝑘,𝑟 )(𝑡 ,𝑣)

𝜌
|𝑡−𝜏 |
𝑇

𝜌
𝑑G (𝑣,𝑢)
𝑆




𝛼𝑢𝜏 |𝑡 − (𝛼𝑢𝜏)∗


2
)

+ 3Δ𝐶3(𝑟)
1 − 𝜌𝑇

·
𝑡+𝑘∑︁
𝜏=𝑡

∑︁
𝑒∈E(𝑁𝑟𝑣 )

𝜌
|𝑡−𝜏 |
𝑇

𝜌
𝑑G (𝑣,𝑒)
𝑆




𝛽𝑒𝜏 |𝑡 − (𝛽𝑒𝜏)∗


2
, (3.77b)

where we used Cauchy-Schwarz Inequality in (3.77a); we used the definition of
𝐶4(𝑟) in (3.77b).
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Substituting (3.75), (3.76), and (3.77) into (3.74) gives that


𝑥𝑣𝑡 − (𝑥𝑣𝑡 |𝑡−1)
∗



2

≤ 3𝐶2
1 𝜌

2𝑟
𝑆 (Term 1)2 + 3𝐶2

1 𝜌
2(𝑘−1)
𝑇

(Term 2)2 + 3𝐶2
2dist𝑝

(
𝜉
(𝑘,𝑟)
(𝑡,𝑣) ,

(
𝜉
(𝑘,𝑟)
(𝑡,𝑣)

)∗)2

≤
6𝐶2

1ℎ(𝑟) · 𝜌
2𝑟
𝑆

1 − 𝜌𝑇

(
𝑡+𝑘−1∑︁
𝜏=𝑡

𝜌𝜏−𝑡𝑇

∑︁
𝑢∈𝜕𝑁𝑟𝑣




(𝑥𝑢𝜏 |𝑡−1)
∗ − 𝜃𝑢𝜏




2

+ 2ℓ𝑤
𝜇

𝑡+𝑘−1∑︁
𝜏=𝑡

𝜌𝜏−𝑡𝑇

∑︁
𝑢∈𝜕𝑁𝑟𝑣




𝜔𝑢𝜏 |𝑡 − (𝜔𝑢𝜏)∗


2
)

+ 6𝐶2
1𝐶3(𝑟) · 𝜌2(𝑘−1)

𝑇

( ∑︁
𝑢∈𝑁𝑟𝑣

𝜌
𝑑G (𝑢,𝑣)
𝑆




(𝑥𝑢𝑡+𝑘−1|𝑡−1)
∗ − 𝜃𝑢𝑡+𝑘−1




2

+ 2ℓ𝑤
𝜇

∑︁
𝑢∈𝑁𝑟𝑣

𝜌
𝑑G (𝑢,𝑣)
𝑆




𝜔𝑢𝑡+𝑘−1|𝑡 − (𝜔
𝑢
𝑡+𝑘−1)

∗



2

)
+

9𝐶2
2𝐶3(𝑟)

1 − 𝜌𝑇
·
( ∑︁
(𝑢,𝜏)∈𝑁 (𝑘−1,𝑟−1)

(𝑡 ,𝑣)

𝜌
|𝑡−𝜏 |
𝑇

𝜌
𝑑G (𝑣,𝑢)
𝑆




𝜇𝑢𝜏 |𝑡 − (𝜇𝑢𝜏)∗


2

+
∑︁

(𝑢,𝜏)∈𝑁 (𝑘,𝑟 )(𝑡 ,𝑣)

𝜌
|𝑡−𝜏 |
𝑇

𝜌
𝑑G (𝑣,𝑢)
𝑆




𝛼𝑢𝜏 |𝑡 − (𝛼𝑢𝜏)∗


2
)

+
9𝐶2

2Δ𝐶3(𝑟)
1 − 𝜌𝑇

·
𝑡+𝑘∑︁
𝜏=𝑡

∑︁
𝑒∈E(𝑁𝑟𝑣 )

𝜌
|𝑡−𝜏 |
𝑇

𝜌
𝑑G (𝑣,𝑒)
𝑆




𝛽𝑒𝜏 |𝑡 − (𝛽𝑒𝜏)∗


2
. (3.78)

Summing up (3.78) for all 𝑣 ∈ V and reorganizing terms gives∑︁
𝑣∈V




𝑥𝑣𝑡 − (𝑥𝑣𝑡 |𝑡−1)
∗



2

≤
6𝐶2

1ℎ(𝑟)
2

1 − 𝜌𝑇
· 𝜌2𝑟

𝑆

𝑡+𝑘−1∑︁
𝜏=𝑡

𝜌𝜏−𝑡𝑇




𝑥∗𝜏 |𝑡−1 − 𝜃𝜏



2
+ 6𝐶2

1𝐶3(𝑟)2 · 𝜌2(𝑘−1)
𝑇




𝑥∗𝑡+𝑘−1|𝑡−1 − 𝜃𝑡+𝑘−1




2

+
12𝐶2

1ℎ(𝑟)
2ℓ𝑤

𝜇(1 − 𝜌𝑇 )
· 𝜌2𝑟

𝑆

𝑡+𝑘−1∑︁
𝜏=𝑡

𝜌𝜏−𝑡𝑇



𝜔𝜏 |𝑡 − 𝜔∗𝜏

2

+
12𝐶2

1𝐶3(𝑟)2ℓ𝑤
𝜇

· 𝜌2(𝑘−1)
𝑇



𝜔𝑡+𝑘−1|𝑡 − 𝜔∗𝑡+𝑘−1


2

+
9𝐶2

5𝐶3(𝑟)2

1 − 𝜌𝑇
·
𝑡+𝑘−1∑︁
𝜏=𝑡

𝜌𝜏−𝑡𝑇



𝜔𝜏 |𝑡 − 𝜔∗𝜏

2 +
9𝐶2

2𝐶3(𝑟)2

1 − 𝜌𝑇
·
𝑡+𝑘−1∑︁
𝜏=𝑡

𝜌𝜏−𝑡𝑇




𝛼V𝜏 |𝑡 − (𝛼V𝜏 )∗


2

+
9𝐶2

2Δ
2𝐶3(𝑟)2

1 − 𝜌𝑇

𝑡+𝑘∑︁
𝜏=𝑡

𝜌𝜏−𝑡𝑇




𝛽E𝜏 |𝑡 − (𝛽E𝜏 )∗


2
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≤
6𝐶2

1ℎ(𝑟)
2

1 − 𝜌𝑇
· 𝜌2𝑟

𝑆

𝑡+𝑘−1∑︁
𝜏=𝑡

𝜌𝜏−𝑡𝑇




𝑥∗𝜏 |𝑡−1 − 𝜃𝜏



2

+ 6𝐶2
1𝐶3(𝑟)2 · 𝜌2(𝑘−1)

𝑇




𝑥∗𝑡+𝑘−1|𝑡−1 − 𝜃𝑡+𝑘−1




2

+
(

9𝐶2
2 (1 + Δ

2)𝐶3(𝑟)2

1 − 𝜌𝑇
+

12𝐶2
1𝐶3(𝑟)2ℓ𝑤
𝜇

+
12𝐶2

1ℎ(𝑟)
2ℓ𝑤

𝜇(1 − 𝜌𝑇 )
· 𝜌2𝑟

𝑆

)
· PredictionError𝑝,(𝑡,𝑘) , (3.79)

where we used the facts that∑︁
𝑣∈V

∑︁
𝑢∈𝜕𝑁𝑟𝑣




(𝑥𝑢𝜏 |𝑡−1)
∗ − 𝜃𝑢𝜏




2
≤ ℎ(𝑟)

∑︁
𝑣∈V




(𝑥𝑣𝜏 |𝑡−1)
∗ − 𝜃𝑣𝜏




2
= ℎ(𝑟) ·




𝑥∗𝜏 |𝑡−1 − 𝜃𝜏



2
,

and∑︁
𝑣∈V

∑︁
𝑢∈𝜕𝑁𝑟𝑣

𝜌
𝑑G (𝑢,𝑣)
𝑆




(𝑥𝑢𝑡+𝑘−1|𝑡−1)
∗ − 𝜃𝑢𝑡+𝑘−1




2
≤ 𝐶3(𝑟)

∑︁
𝑣∈V




(𝑥𝑣𝑡+𝑘−1|𝑡−1)
∗ − 𝜃𝑣𝑡+𝑘−1




2

= 𝐶3(𝑟) ·



𝑥∗𝑡+𝑘−1|𝑡−1 − 𝜃𝑡+𝑘−1




2
.

We also note that by the principle of optimality, the following equations hold for all
𝜏 ≥ 𝑡:

𝑥∗
𝜏 |𝑡−1 = 𝜓̃𝑡 (𝑥𝑡−1)𝜏 , 𝑥∗𝜏 = 𝜓̃𝑡

(
𝑥∗𝑡−1

)
𝜏
.

Recall that 𝐶0 := max{1, 𝐶𝐺}. By Theorem 3.C.6, we see that


𝑥∗𝜏 |𝑡−1 − 𝑥
∗
𝜏




 ≤ 𝐶0𝜌
𝜏−𝑡+1
𝐺



𝑥𝑡−1 − 𝑥∗𝑡−1


, (3.80)

which implies


𝑥∗𝜏 |𝑡−1 − 𝜃𝜏



2
≤ 2




𝑥∗𝜏 |𝑡−1 − 𝑥
∗
𝜏




2
+ 2



𝑥∗𝜏 − 𝜃𝜏

2 (3.81a)

≤ 2𝐶2
0 𝜌

2(𝜏−𝑡+1)
𝐺



𝑥𝑡−1 − 𝑥∗𝑡−1


2 + 2



𝑥∗𝜏 − 𝜃𝜏

2
, (3.81b)

where we used the triangle inequality and the AM-GM inequality in (3.81a); we
used (3.80) in (3.81b).

Substituting (3.81) into (3.79) gives∑︁
𝑣∈V




𝑥𝑣𝑡 − (𝑥𝑣𝑡 |𝑡−1)
∗



2

≤ 12𝐶2
1𝐶

2
0

(
ℎ(𝑟)2𝜌2

𝐺

(1 − 𝜌𝑇 ) (1 − 𝜌2
𝐺
𝜌𝑇 )
· 𝜌2𝑟

𝑆 + 𝐶3(𝑟)2 · 𝜌2(𝑘−1)
𝑇

· 𝜌2𝑘
𝐺

) 

𝑥𝑡−1 − 𝑥∗𝑡−1


2
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+ 12𝐶2
1

(
ℎ(𝑟)2

1 − 𝜌𝑇
· 𝜌2𝑟

𝑆

𝑡+𝑘−1∑︁
𝜏=𝑡

𝜌𝜏−𝑡𝑇



𝑥∗𝜏 − 𝜃𝜏

2 + 𝐶3(𝑟)2 · 𝜌2(𝑘−1)
𝑇



𝑥∗𝑡+𝑘−1 − 𝜃𝑡+𝑘−1


2

)
+

(
9𝐶2

2 (1 + Δ
2)𝐶3(𝑟)2

1 − 𝜌𝑇
+

12𝐶2
1𝐶3(𝑟)2ℓ𝑤
𝜇

+
12𝐶2

1ℎ(𝑟)
2ℓ𝑤

𝜇(1 − 𝜌𝑇 )
· 𝜌2𝑟

𝑆

)
· PredictionError𝑝,(𝑡,𝑘)

≤ 12𝐶2
1𝐶

2
0

(
ℎ(𝑟)2𝜌2

𝐺

(1 − 𝜌𝑇 ) (1 − 𝜌2
𝐺
𝜌𝑇 )
· 𝜌2𝑟

𝑆 + 𝐶3(𝑟)2 · 𝜌2(𝑘−1)
𝑇

· 𝜌2𝑘
𝐺

) 

𝑥𝑡−1 − 𝑥∗𝑡−1


2

+
24𝐶2

1
𝜇

(
ℎ(𝑟)2

1 − 𝜌𝑇
· 𝜌2𝑟

𝑆

𝑡+𝑘−1∑︁
𝜏=𝑡

𝜌𝜏−𝑡𝑇 𝑓𝜏 (𝑥∗𝜏) + 𝐶3(𝑟)2 · 𝜌2(𝑘−1)
𝑇

𝑓𝑡+𝑘−1(𝑥∗𝑡+𝑘−1)
)

+
(

9𝐶2
2 (1 + Δ

2)𝐶3(𝑟)2

1 − 𝜌𝑇
+

12𝐶2
1𝐶3(𝑟)2ℓ𝑤
𝜇

+
12𝐶2

1ℎ(𝑟)
2ℓ𝑤

𝜇(1 − 𝜌𝑇 )
· 𝜌2𝑟

𝑆

)
· PredictionError𝑝,(𝑡,𝑘) , (3.82)

where we used the fact that the node cost function 𝑓 𝑣𝜏 is non-negative and 𝜇-strongly
convex for all 𝜏, 𝑣, thus

𝑓𝜏 (𝑥∗𝜏) ≥
∑︁
𝑣∈V

𝑓 𝑣𝜏 ((𝑥𝑣𝜏)∗) ≥
𝜇

2

∑︁
𝑣∈V



(𝑥𝑣𝜏)∗ − 𝜃𝑣𝜏

2
=
𝜇

2


𝑥∗𝜏 − 𝜃𝜏

2

.

Note that
∑
𝑣∈V




𝑥𝑣𝑡 − (𝑥𝑣𝑡 |𝑡−1)
∗



2

=




𝑥𝑡 − 𝑥∗𝑡 |𝑡−1




2
= 𝑒2

𝑡 . Thus we have finished the
proof of (3.74).

Proof of Theorem 3.3.5
In this section, we show Theorem 3.3.5 holds with the following specific constants:

1 +
(
1 +

32𝐶2
0𝐶

2
1 (ℓ 𝑓 + Δℓ𝑆 + 2ℓ𝑇 ) · ℎ(𝑟)2

𝜇(1 − 𝜌𝐺)2(1 − 𝜌𝑇 )2

)
· 𝜌𝑟𝑆

+
(
1 +

32𝐶2
0𝐶

2
1 (ℓ 𝑓 + Δℓ𝑆 + 2ℓ𝑇 )𝐶3(𝑟)2

𝜇(1 − 𝜌𝐺)2

)
𝜌𝑘−1
𝑇 (3.83)

under the assumption that

4𝐶2
1𝐶

4
0

(1 − 𝜌𝐺)2

(
ℎ(𝑟)2𝜌2

𝐺

(1 − 𝜌𝑇 ) (1 − 𝜌2
𝐺
𝜌𝑇 )
· 𝜌2𝑟

𝑆 + 𝐶3(𝑟)2 · 𝜌2(𝑘−1)
𝑇

· 𝜌2𝑘
𝐺

)
≤ 1

2
. (3.84)

Recall that 𝐶0 is defined in Theorem 3.C.8. Note that Theorems 3.3.3 and 3.C.6
hold for P(𝜇, ℓ 𝑓 , ℓ𝑇 , ℓ𝑆,Δ, ℎ). One can check that𝐶0, 𝐶1, (1− 𝜌𝐺)−1, and (1− 𝜌𝑇 )−1

are bounded by polynomials of ℓ 𝑓 /𝜇, ℓ𝑇/𝜇, and (Δℓ𝑆)/𝜇.
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In the proof, we need to use Lemma F.2 in Lin, Hu, Shi, et al. (2021) to bound
LPC’s total cost by a weighted sum of the offline optimal cost and the sum of
squared distances between their trajectories. For completeness, we present Lemma
F.2 in Lin, Hu, Shi, et al. (2021) below:

Lemma 3.D.5. For a fixed dimension 𝑚 ∈ Z+, assume a function ℎ : R𝑚 → R≥0 is
convex, ℓ-smooth and continuously differentiable. For all 𝑥, 𝑦 ∈ R𝑚, for all 𝜂 > 0,
we have

ℎ(𝑥) ≤ (1 + 𝜂)ℎ(𝑦) + ℓ
2

(
1 + 1

𝜂

)
∥𝑥 − 𝑦∥2.

Now we come back to the proof of Theorem 3.3.5. We first bound the sum of
squared distances between LPC’s trajectory and the offline optimal trajectory:

𝐻∑︁
𝑡=1



𝑥𝑡 − 𝑥∗𝑡 

2

≤
𝐶2

0
(1 − 𝜌𝐺)2

𝐻∑︁
𝑡=1

𝑒2
𝑡 (3.85a)

≤
4𝐶2

1𝐶
4
0

(1 − 𝜌𝐺)2

(
ℎ(𝑟)2𝜌2

𝐺

(1 − 𝜌𝑇 ) (1 − 𝜌2
𝐺
𝜌𝑇 )
· 𝜌2𝑟

𝑆 + 𝐶3(𝑟)2 · 𝜌2(𝑘−1)
𝑇

· 𝜌2𝑘
𝐺

)
𝐻∑︁
𝑡=1



𝑥𝑡−1 − 𝑥∗𝑡−1


2

+
8𝐶2

0𝐶
2
1

𝜇(1 − 𝜌𝐺)2
𝐻∑︁
𝑡=1

(
ℎ(𝑟)2

1 − 𝜌𝑇
· 𝜌2𝑟

𝑆

𝑡+𝑘−1∑︁
𝜏=𝑡

𝜌𝜏−𝑡𝑇 𝑓𝜏 (𝑥∗𝜏)

+ 𝐶3(𝑟)2 · 𝜌2(𝑘−1)
𝑇

𝑓𝑡+𝑘−1(𝑥∗𝑡+𝑘−1)
)
, (3.85b)

where we used Theorem 3.C.8 in (3.85a); we used Lemma 3.C.7 with the specific
constants given in Section 3.D in (3.85b).

Recall that in (3.84), we assume 𝑟 and 𝑘 are sufficient large so that the coefficient of
the first term in (3.85) satisfies

4𝐶2
1𝐶

4
0

(1 − 𝜌𝐺)2

(
ℎ(𝑟)2𝜌2

𝐺

(1 − 𝜌𝑇 ) (1 − 𝜌2
𝐺
𝜌𝑇 )
· 𝜌2𝑟

𝑆 + 𝐶3(𝑟)2 · 𝜌2(𝑘−1)
𝑇

· 𝜌2𝑘
𝐺

)
≤ 1

2
.

Substituting this bound into (3.85) gives that

𝐻∑︁
𝑡=1



𝑥𝑡 − 𝑥∗𝑡 

2 ≤
16𝐶2

0𝐶
2
1

𝜇(1 − 𝜌𝐺)2

(
ℎ(𝑟)2
(1 − 𝜌𝑇 )2

· 𝜌2𝑟
𝑆 + 𝐶3(𝑟)2 · 𝜌2(𝑘−1)

𝑇

)
·
𝐻∑︁
𝑡=1

𝑓𝑡 (𝑥∗𝑡 ).

(3.86)
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By Lemma 3.D.5, since 𝑓𝑡 is (ℓ 𝑓 + Δℓ𝑆)-smooth, convex, and non-negative on R𝑛,
and 𝑐𝑡 is ℓ𝑇 -smooth, convex, and non-negative on R𝑛 × R𝑛, we know that

𝑓𝑡 (𝑥𝑡 ) ≤ (1 + 𝜂) 𝑓𝑡 (𝑥∗𝑡 ) +
ℓ 𝑓 + Δℓ𝑆

2

(
1 + 1

𝜂

) 

𝑥𝑡 − 𝑥∗𝑡 

2

𝑐𝑡 (𝑥𝑡 , 𝑥𝑡−1) ≤ (1 + 𝜂)𝑐𝑡 (𝑥∗𝑡 , 𝑥∗𝑡−1) +
ℓ𝑇

2

(
1 + 1

𝜂

) (

𝑥𝑡 − 𝑥∗𝑡 

2 +


𝑥𝑡−1 − 𝑥∗𝑡−1



2
)

(3.87)

holds for any 𝜂 > 0. Summing the above inequality over 𝑡 gives
𝐻∑︁
𝑡=1
( 𝑓𝑡 (𝑥𝑡) + 𝑐𝑡 (𝑥𝑡 , 𝑥𝑡−1))

≤ (1 + 𝜂)
𝐻∑︁
𝑡=1

(
𝑓𝑡 (𝑥∗𝑡 ) + 𝑐𝑡 (𝑥∗𝑡 , 𝑥∗𝑡−1)

)
+
(ℓ 𝑓 + Δℓ𝑆 + 2ℓ𝑇 )

2

(
1 + 1

𝜂

) 𝐻∑︁
𝑡=1



𝑥𝑡 − 𝑥∗𝑡 

2

≤ (1 + 𝜂)cost𝑝 (OPT)

+
(
1 + 1

𝜂

) 16𝐶2
0𝐶

2
1 (ℓ 𝑓 + Δℓ𝑆 + 2ℓ𝑇 )
𝜇(1 − 𝜌𝐺)2

(
ℎ(𝑟)2
(1 − 𝜌𝑇 )2

· 𝜌2𝑟
𝑆 + 𝐶3(𝑟)2 · 𝜌2(𝑘−1)

𝑇

)
· cost𝑝 (OPT), (3.88)

where we used (3.86) and
∑𝐻
𝑡=1 𝑓𝑡 (𝑥∗𝑡 ) ≤ cost𝑝 (OPT) in the last inequality. Setting

𝜂 = 𝜌𝑟
𝑆
+ 𝜌𝑘−1

𝑇
in (3.88) finishes the proof of (3.83).

As a remark, we require the local cost function
(
𝑓 𝑣𝑡 , 𝑐

𝑣
𝑡 , 𝑠

𝑒
𝑡

)
to be non-negative,

convex, and smooth in the whole Euclidean spaces (R𝑛,R𝑛 × R𝑛,R𝑛 × R𝑛) in As-
sumption 3.3.1 because we want to apply Lemma 3.D.5 in (3.87).

Proof of Theorem 3.3.10
In this section, we show Theorem 3.3.10 holds with the following specific constants:
Under the assumption that the following inequality holds

12𝐶2
1𝐶

4
0

(1 − 𝜌𝐺)2

(
ℎ(𝑟)2𝜌2

𝐺

(1 − 𝜌𝑇 ) (1 − 𝜌2
𝐺
𝜌𝑇 )
· 𝜌2𝑟

𝑆 + 𝐶3(𝑟)2 · 𝜌2(𝑘−1)
𝑇

· 𝜌2𝑘
𝐺

)
≤ 1

2
, (3.89)

the coefficient before cost𝑝 (OPT) is given by(
1 +

96𝐶2
0𝐶

2
1 (ℓ 𝑓 + Δℓ𝑆 + 2ℓ𝑇 ) · ℎ(𝑟)2

𝜇(1 − 𝜌𝐺)2(1 − 𝜌𝑇 )2

)
𝜌𝑟𝑆 +

(
1 +

96𝐶2
0𝐶

2
1 (ℓ 𝑓 + Δℓ𝑆 + 2ℓ𝑇 )𝐶3(𝑟)2

𝜇(1 − 𝜌𝐺)2

)
𝜌𝑘−1
𝑇 ,

(3.90)

and the additive term is(
18𝐶2

5 (1 + Δ
2)𝐶3(𝑟)2

1 − 𝜌𝑇
+

24𝐶2
1𝐶3(𝑟)2ℓ𝑤
𝜇

+
24𝐶2

1ℎ(𝑟)
2ℓ𝑤

𝜇(1 − 𝜌𝑇 )
· 𝜌2𝑟

𝑆

)
·
𝑘−1∑︁
𝜏=0

𝜌𝜏𝑇Γ𝜏 (𝑝).

(3.91)
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Recall that𝐶0 is defined in Theorem 3.C.8. Note that Theorems 3.C.6 and 3.3.9 hold
for P(𝜇, ℓ 𝑓 , ℓ𝑇 , ℓ𝑆, ℓ𝑤,Δ, ℎ). One can check that 𝐶0, 𝐶1, (1− 𝜌𝐺)−1, and (1− 𝜌𝑇 )−1

are bounded by polynomials of ℓ 𝑓 /𝜇, ℓ𝑇/𝜇, and (Δℓ𝑆)/𝜇.

In the proof, we need to use Lemma F.2 in Lin, Hu, Shi, et al. (2021) to bound
LPC’s total cost by a weighted sum of the offline optimal cost and the sum of
squared distances between their trajectories. For completeness, we present Lemma
F.2 in Lin, Hu, Shi, et al. (2021) below:

Lemma 3.D.6. For a fixed dimension 𝑚 ∈ Z+, assume a function ℎ : R𝑚 → R≥0 is
convex, ℓ-smooth and continuously differentiable. For all 𝑥, 𝑦 ∈ R𝑚, for all 𝜂 > 0,
we have

ℎ(𝑥) ≤ (1 + 𝜂)ℎ(𝑦) + ℓ
2

(
1 + 1

𝜂

)
∥𝑥 − 𝑦∥2.

Now we come back to the proof of Theorem 3.3.10. We first bound the sum of
squared distances between LPC’s trajectory and the offline optimal trajectory:

𝐻∑︁
𝑡=1



𝑥𝑡 − 𝑥∗𝑡 

2

≤
𝐶2

0
(1 − 𝜌𝐺)2

𝐻∑︁
𝑡=1

𝑒2
𝑡 (3.92a)

≤
12𝐶2

1𝐶
4
0

(1 − 𝜌𝐺)2

(
ℎ(𝑟)2𝜌2

𝐺

(1 − 𝜌𝑇 ) (1 − 𝜌2
𝐺
𝜌𝑇 )
· 𝜌2𝑟
𝑆 + 𝐶3(𝑟)2 · 𝜌2(𝑘−1)

𝑇
· 𝜌2𝑘
𝐺

)
𝐻∑︁
𝑡=1



𝑥𝑡−1 − 𝑥∗𝑡−1


2

+
24𝐶2

0𝐶
2
1

𝜇(1 − 𝜌𝐺)2
𝐻∑︁
𝑡=1

(
ℎ(𝑟)2

1 − 𝜌𝑇
· 𝜌2𝑟
𝑆

𝑡+𝑘−1∑︁
𝜏=𝑡

𝜌𝜏−𝑡𝑇 𝑓𝜏 (𝑥∗𝜏) + 𝐶3(𝑟)2 · 𝜌2(𝑘−1)
𝑇

𝑓𝑡+𝑘−1(𝑥∗𝑡+𝑘−1)
)

+
(

9𝐶2
5 (1 + Δ

2)𝐶3(𝑟)2

1 − 𝜌𝑇
+

12𝐶2
1𝐶3(𝑟)2ℓ𝑤
𝜇

+
12𝐶2

1ℎ(𝑟)
2ℓ𝑤

𝜇(1 − 𝜌𝑇 )
· 𝜌2𝑟
𝑆

)
·
𝑘−1∑︁
𝜏=0

𝜌𝜏𝑇Γ𝜏 (𝑝),

(3.92b)

where we used Theorem 3.C.8 in (3.92a); we used Lemma 3.C.7 with the specific
constants given in Section 3.D in (3.92b).

Recall that in (3.89), we assume 𝑟 and 𝑘 are sufficient large so that the coefficient of
the first term in (3.92) satisfies

12𝐶2
1𝐶

4
0

(1 − 𝜌𝐺)2

(
ℎ(𝑟)2𝜌2

𝐺

(1 − 𝜌𝑇 ) (1 − 𝜌2
𝐺
𝜌𝑇 )
· 𝜌2𝑟

𝑆 + 𝐶3(𝑟)2 · 𝜌2(𝑘−1)
𝑇

· 𝜌2𝑘
𝐺

)
≤ 1

2
.

Substituting this bound into (3.92) gives that
𝐻∑︁
𝑡=1



𝑥𝑡 − 𝑥∗𝑡 

2
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≤
48𝐶2

0𝐶
2
1

𝜇(1 − 𝜌𝐺)2

(
ℎ(𝑟)2
(1 − 𝜌𝑇 )2

· 𝜌2𝑟
𝑆 + 𝐶3(𝑟)2 · 𝜌2(𝑘−1)

𝑇

)
·
𝐻∑︁
𝑡=1

𝑓𝑡 (𝑥∗𝑡 )

+
(

18𝐶2
5 (1 + Δ

2)𝐶3(𝑟)2

1 − 𝜌𝑇
+

24𝐶2
1𝐶3(𝑟)2ℓ𝑤
𝜇

+
24𝐶2

1ℎ(𝑟)
2ℓ𝑤

𝜇(1 − 𝜌𝑇 )
· 𝜌2𝑟

𝑆

)
·
𝑘−1∑︁
𝜏=0

𝜌𝜏𝑇Γ𝜏 (𝑝).

(3.93)

By Lemma 3.D.6, since 𝑓𝑡 is (ℓ 𝑓 + Δℓ𝑆)-smooth, convex, and non-negative on R𝑛,
and 𝑐𝑡 is ℓ𝑇 -smooth, convex, and non-negative on R𝑛 × R𝑛, we know that

𝑓𝑡 (𝑥𝑡) ≤ (1 + 𝜂) 𝑓𝑡 (𝑥∗𝑡 ) +
ℓ 𝑓 + Δℓ𝑆

2

(
1 + 1

𝜂

) 

𝑥𝑡 − 𝑥∗𝑡 

2

𝑐𝑡 (𝑥𝑡 , 𝑥𝑡−1) ≤ (1 + 𝜂)𝑐𝑡 (𝑥∗𝑡 , 𝑥∗𝑡−1) +
ℓ𝑇

2

(
1 + 1

𝜂

) (

𝑥𝑡 − 𝑥∗𝑡 

2 +


𝑥𝑡−1 − 𝑥∗𝑡−1



2
)

(3.94)

holds for any 𝜂 > 0. Summing the above inequality over 𝑡 gives

𝐻∑︁
𝑡=1
( 𝑓𝑡 (𝑥𝑡) + 𝑐𝑡 (𝑥𝑡 , 𝑥𝑡−1))

≤ (1 + 𝜂)
𝐻∑︁
𝑡=1

(
𝑓𝑡 (𝑥∗𝑡 ) + 𝑐𝑡 (𝑥∗𝑡 , 𝑥∗𝑡−1)

)
+
(ℓ 𝑓 + Δℓ𝑆 + 2ℓ𝑇 )

2

(
1 + 1

𝜂

) 𝐻∑︁
𝑡=1



𝑥𝑡 − 𝑥∗𝑡 

2

≤ (1 + 𝜂)cost𝑝 (OPT)

+
(
1 + 1

𝜂

) 16𝐶2
0𝐶

2
1 (ℓ 𝑓 + Δℓ𝑆 + 2ℓ𝑇 )
𝜇(1 − 𝜌𝐺)2

(
ℎ(𝑟)2
(1 − 𝜌𝑇 )2

· 𝜌2𝑟
𝑆 + 𝐶3(𝑟)2 · 𝜌2(𝑘−1)

𝑇

)
· cost(OPT)

+
(

18𝐶2
5 (1 + Δ

2)𝐶3(𝑟)2

1 − 𝜌𝑇
+

24𝐶2
1𝐶3(𝑟)2ℓ𝑤
𝜇

+
24𝐶2

1ℎ(𝑟)
2ℓ𝑤

𝜇(1 − 𝜌𝑇 )
· 𝜌2𝑟

𝑆

)
·
𝑘−1∑︁
𝜏=0

𝜌𝜏𝑇Υ𝜏,

(3.95)

where we used (3.93) and
∑𝐻
𝑡=1 𝑓𝑡 (𝑥∗𝑡 ) ≤ cost𝑝 (OPT) in the last inequality. Setting

𝜂 = 𝜌𝑟
𝑆
+ 𝜌𝑘−1

𝑇
in (3.95) finishes the proof of (3.90).

As a remark, we require the local cost function
(
𝑓 𝑣𝑡 , 𝑐

𝑣
𝑡 , 𝑠

𝑒
𝑡

)
to be non-negative,

convex, and smooth in the whole Euclidean spaces (R𝑛,R𝑛 × R𝑛,R𝑛 × R𝑛) in As-
sumption 3.3.1 because we want to apply Lemma 3.D.6 in (3.94).
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Proof of Corollary 3.3.1
Under the assumptions, by Theorem 3.3.3 in Section 3.D, we see that the exponen-
tially decaying local perturbation bound (Definition 3.3.4) holds with

𝜌𝑇 =

√︂
1 − 2

(√︁
1 + (2ℓ𝑇/𝜇) + 1

)−1
≤ 1

2
, 𝜌𝑆 =

√︂
1 − 2

(√︁
1 + (Δℓ𝑆/𝜇) + 1

)−1
≤ 1

4
,

and 𝐶1 = 2
√︁
(Δℓ𝑆/𝜇) (ℓ𝑇/𝜇) ≤ 0.702. We also see that

𝜌𝐺 = 1 − 2
(√︁

1 + (2ℓ𝑇/𝜇) + 1
)−1
≤ 1

4
, and

𝐶3(𝑟) =
𝑟∑︁
𝛾=0

ℎ(𝛾) · 𝜌𝛾
𝑆
≤ 𝐶

𝑟∑︁
𝛾=0

2−
3
2𝛾 ≤ 4𝐶

4 −
√

2
.

Substituting these bounds into (3.83) and (3.84) in the proof of Theorem 3.3.5
finishes the proof of Corollary 3.3.1, where the numerical constants are 𝐶′1 =

782, 𝐶′2 = 936.

Proof of Corollary 3.3.2
We apply Theorem 3.3.4 and set 𝑏1 = 2Δ − 1 and 𝑏2 = 4Δ2 − 2Δ. Since we have
ℎ(𝛾) ≤ Δ𝛾, we see that 𝑎 ≤ 2 and 𝑎̃ ≤ 2. We also see that

max{8𝑎̃ℓ𝑇/𝜇,Δℓ𝑆 (𝑏1 + 𝑏2)/(4𝜇)} ≤ 1.

Thus, by Theorem 3.3.4, we see that the exponentially decaying local perturbation
bound holds with

𝜌𝑇 ≤
1
2
, 𝜌𝑆 ≤ Δ−4, 𝐶1 ≤ 2.

We also see that

𝜌𝐺 = 1 − 2
(√︁

1 + (2ℓ𝑇/𝜇) + 1
)−1
≤ 1

32
, and

𝐶3(𝑟) =
𝑟∑︁
𝛾=0

ℎ(𝛾) · 𝜌𝛾
𝑆
≤

𝑟∑︁
𝛾=0

Δ−3𝛾 ≤ 2.

Substituting these bounds into (3.83) and (3.84) in the proof of Theorem 3.3.5
finishes the proof of Corollary 3.3.1, where the numerical constants are 𝐶′1 =

546, 𝐶′2 = 1092.

Proof of Theorem 3.3.6
In this section we prove a lower bound on the competitive ratio of any online
algorithm. Our proof focuses on temporal and spatial lower bounds separately first,
and then combines them.
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Step 1: Temporal Lower Bounds We first show that the competitive ratio of any
online algorithm with 𝑘 steps of future predictions is lower bounded by 1 + Ω(𝜆𝑘

𝑇
).

To show this, we consider the special case when there are no spatial interaction
costs (i.e., 𝑠𝑒𝑡 ≡ 0 for all 𝑡 and 𝑒). In this case, since all agents are independent
with each other, it suffices to assume there is only one agent in the network G.
Thus we will drop the agent index in the following analysis. To further simplify
the problem, we assume dimension 𝑛 = 1, 𝑐𝑡 (𝑥𝑡 , 𝑥𝑡−1) = ℓ𝑇

2 (𝑥𝑡 − 𝑥𝑡−1)2, and the
feasible set is 𝐷𝑡 ≡ 𝐷 = [0, 1] for all 𝑡. Let 𝑅 denote the diameter of 𝐷, i.e.,
𝑅 = sup𝑥,𝑦∈𝐷 |𝑥 − 𝑦 | = 1.

By Theorem 2 in Li, Qu, and Li (2021) and Case 1 in its proof, we know that for any
online algorithm 𝐴𝐿𝐺 with 𝑘-period future predictions and 𝐿𝑇 ∈ (2𝑅, 𝑅𝐻), there
exists a problem instance with quadratic functions 𝑓1, 𝑓2, . . . , 𝑓𝐻 that have the form
𝑓𝑡 (𝑥𝑡) = 𝜇

2 (𝑥𝑡 − 𝜃𝑡)
2, 𝜃𝑡 ∈ 𝐷 such that

cost𝑝 (ALG) − cost𝑝 (OPT) ≥ 𝜇3(1 −
√
𝜆𝑇 )2

96(𝜇 + 1)2
· 𝜆𝑘𝑇 · 𝑅 · 𝐿𝐻 , (3.96)

where 𝐿𝐻 ≥
∑𝐻
𝑡=1 |𝜃𝑡 − 𝜃𝑡−1 |. Note that

𝑅 · 𝐿𝑇 ≥
𝐻∑︁
𝑡=1
|𝑣𝑡 − 𝑣𝑡−1 |2 =

2
ℓ𝑇
·
𝐻∑︁
𝑡=1
( 𝑓𝑡 (𝑣𝑡) + 𝑐𝑡 (𝑣𝑡 , 𝑣𝑡−1)) ≥

2
ℓ𝑇
· cost𝑝 (OPT).

Substituting this into (3.96) gives

cost𝑝 (ALG) ≥
(
1 + 𝜇

3(1 −
√
𝜆𝑇 )2

48(𝜇 + 1)2ℓ𝑇
· 𝜆𝑘𝑇

)
· cost𝑝 (OPT). (3.97)

Note that (3.96) implies cost𝑝 (ALG) > 0, hence the competitive ratio can be
unbounded if cost𝑝 (OPT) = 0.

Step 2: Spatial Lower Bounds We next show that the competitive ratio of any
online algorithm that can communicate within 𝑟-hop neighborhood according to the
scheme defined in Section 3.3 is lower bounded by 1+Ω(𝜆𝑟

𝑆
). To show this, we will

construct a special Networked OCO instance with random cost functions and show
there exists a realization that achieves the lower bound by probabilistic methods.

Theorem 3.D.7. Under the assumption that Δ ≥ 3, the competitive ratio of any de-
centralized online algorithm 𝐴𝐿𝐺 with communication radius 𝑟 is lower bounded by
1+Ω(𝜆𝑟

𝑆
), whereΩ(·) notation hides factors that depend polynomially on 1/𝜇, ℓ𝑇 , ℓ𝑆,



126

andΔ. Depending on the value of 𝛿ℓ𝑆/𝜇, the decay factor 𝜆𝑆 is given by the following
equations:

𝜆𝑆 =


(Δℓ𝑆/𝜇)

3+3(Δℓ𝑆/𝜇) if Δℓ𝑆/𝜇 < 48,

max
(
(Δℓ𝑆/𝜇)

3+3(Δℓ𝑆/𝜇) ,
(
1 − 4

√
3 · (Δℓ𝑆/𝜇)−

1
2

)2
)

otherwise.
(3.98)

Proof of Theorem 3.D.7. In the proof, we assume the online game only lasts one
period before it ends, i.e., 𝐻 = 1. Note that when 𝐻 > 1, the same counterexample
can be constructed repeatedly by letting the temporal interaction costs 𝑐𝑣𝑡 ≡ 0 for
every node 𝑣 and period 𝑡. To simplify the notation, we define ℓ := ℓ𝑆/𝜇 and
𝑑 := [Δ/2]. Without the loss of generality, we assume V = {1, 2, · · · , 𝑛} so that
each node has a positive integer index.

We consider the case where the node cost function for each node 𝑖 is (𝑥𝑖+𝑤𝑖)2 and the
spatial interaction cost between two neighboring nodes 𝑖 and 𝑗 is ℓ(𝑥𝑖 − 𝑥 𝑗 )2. Here,
𝑥𝑖 ∈ R is the scalar action of node 𝑖, and parameter 𝑤𝑖 ∈ R is a local information
that corresponds to node 𝑖. The parameters {𝑤𝑖}𝑛𝑖=1 are sampled i.i.d. from some
distribution D, which we will discuss later.

For a general graph G = (V, E) of nodes, let 𝐿 denote its graph Laplacian matrix.
Recall that the graph Laplacian matrix 𝐿 ∈ V ×V is a symmetric 𝑛 × 𝑛 matrix and
it is defined as

𝐿𝑖, 𝑗 =


𝑑𝑒𝑔(𝑖) if 𝑖 = 𝑗 ,

−1 if 𝑖 ≠ 𝑗 and (𝑖, 𝑗) ∈ E,

0 otherwise,

for nodes 𝑖, 𝑗 ∈ V. Here 𝑑𝑒𝑔(·) denotes the degree of a node in graph G. We know
that 𝐿 is a symmetric semi-definite positive semi-definite and has bandwidth 1 w.r.t.
to G. The centralized optimization problem can be expressed as

cost𝑝 (OPT) = min
𝑥∈R𝑛
(𝑥 + 𝑤)⊤(𝑥 + 𝑤) + ℓ · 𝑥⊤𝐿𝑥

= min
𝑥∈R𝑛




(𝐼 + ℓ · 𝐿) 1
2 𝑥 + (𝐼 + ℓ · 𝐿)− 1

2𝑤




2
+ 𝑤⊤(𝐼 − (𝐼 + ℓ · 𝐿)−1)𝑤

= 𝑤⊤(𝐼 − (𝐼 + ℓ · 𝐿)−1)𝑤,

where the minimum is attained at 𝑥∗ = (𝐼 + ℓ · 𝐿)−1𝑤. Since each node 𝑖 only has
an observation radius of 𝑟, it can only observe the part of 𝑤 that is within 𝑁𝑟

𝑖
. To
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simplify the notation, we define the mask operator 𝜙𝑆 : R𝑛 → R𝑛 with respect to a
subset of nodes 𝑆 ⊆ V as

𝜙𝑆 (𝑤)𝑖 =

𝑤𝑖 if 𝑖 ∈ 𝑆,

0 otherwise,

for 𝑖 ∈ V. The local policy of node 𝑖 (denote as 𝜋𝑖) is a mapping from 𝑤𝑁𝑟
𝑖

to the
local decision 𝑥𝑖.

Suppose the distribution D of each local parameters 𝑤𝑖 is a mean-zero distribution
with support on R. For every node 𝑖 ∈ V, we see that

E𝑤
��𝑥𝑖 (𝑤) − 𝑥∗𝑖 (𝑤)��2 = min

𝜋𝑖
E𝑤

��𝜋𝑖 (𝑤𝑁𝑟
𝑖
) − 𝑥∗𝑖 (𝑤)

��2
≥ E𝑤

��E[𝑥∗𝑖 (𝑤) | 𝑤𝑁𝑟𝑖 ] − 𝑥∗𝑖 (𝑤)��2 (3.99a)

= E𝑤
���E[ ((𝐼 + ℓ · 𝐿)−1𝑤

)
𝑖
| 𝑤𝑁𝑟

𝑖
] −

(
(𝐼 + ℓ · 𝐿)−1𝑤

)
𝑖

���2
= E𝑤

���((𝐼 + ℓ · 𝐿)−1𝜙𝑁𝑟
𝑖
(𝑤)

)
𝑖
−

(
(𝐼 + ℓ · 𝐿)−1𝑤

)
𝑖

���2 (3.99b)

= E𝑤
���((𝐼 + ℓ · 𝐿)−1𝜙𝑁𝑟−𝑖 (𝑤)

)
𝑖

���2, (3.99c)

where we use the fact that conditional expectations minimize the mean square
prediction error in (3.99a); we use the requirement that the distribution of 𝑤 is
mean-zero in (3.99b).

To bound the variance term in (3.99c), we need the following lemma to lower bound
the magnitude of every entry in the exponential decaying matrix (𝐼 + ℓ · 𝐿)−1:

Lemma 3.D.8. There exists a finite graph G with maximum degree 2𝑑 that satisfies
the following conditions: For any two vertices 𝑖, 𝑗 such that 𝑑G (𝑖, 𝑗) ≥ 3, the
following inequality holds:(

(𝐼 + ℓ · 𝐿)−1
)
𝑖 𝑗
≥

𝑑G (𝑖, 𝑗)
𝑑2(2𝑑ℓ + 1)

·
(

𝑑ℓ

2𝑑ℓ + 1

)𝑑G (𝑖, 𝑗)
.

If we make the additional assumption that ℓ > 16
𝑑

, we have that(
(𝐼 + ℓ · 𝐿)−1

)
𝑖 𝑗
≥ 1

4
√︃
𝜋 · 𝑑G (𝑖, 𝑗) ·

√
𝑑ℓ · 𝑑2(2𝑑ℓ + 1)

·
(
1 − 4(𝑑ℓ)− 1

2

)𝑑G (𝑖, 𝑗)
.

We defer the proof of Lemma 3.D.8 to the end of this section. Note that Lemma 3.D.8
implies that there exists a graph G that satisfies

(
(𝐼 + ℓ · 𝐿)−1)

𝑖, 𝑗
= Ω

(
𝜆𝑟
𝑆

)
, where
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Ω(·) notation hides factors that depend polynomially on 1/𝜇, ℓ𝑇 , ℓ𝑆, and Δ, and 𝜆𝑆
is as defined in (3.98). We assume the nodes are located in this graph G for the rest
of the proof.

Using Lemma 3.D.8, we can derive the following lower bound of the variance term
in (3.99b):

E𝑤
���((𝐼 + ℓ · 𝐿)−1𝜙𝑁𝑟−𝑖 (𝑤)

)
𝑖

���2 = E𝑤
©­«

∑︁
𝑗∈𝑁𝑟−𝑖

(
(𝐼 + ℓ · 𝐿)−1

)
𝑖 𝑗
𝑤 𝑗

ª®¬
2

=
∑︁
𝑗∈𝑁𝑟−𝑖

(
(𝐼 + ℓ · 𝐿)−1

)2

𝑖 𝑗
Var

[
𝑤 𝑗

]
≥

∑︁
𝑗∈𝜕𝑁𝑟+1

𝑖

(
(𝐼 + ℓ · 𝐿)−1

)2

𝑖 𝑗
Var

[
𝑤 𝑗

]
≥ Θ

(
𝜆𝑟𝑆 · Var [𝑤𝑖]

)
. (3.100)

Substituting (3.100) into (3.99) and summing over all vertices 𝑖, we obtain that

E𝑤 ∥𝑥(𝑤) − 𝑥∗(𝑤)∥2 ≥
𝑛∑︁
𝑖=1

E𝑤
��𝑥𝑖 (𝑤) − 𝑥∗𝑖 (𝑤)��2 ≥ Θ

(
𝑛 · 𝜆𝑟𝑆 · Var [𝑤𝑖]

)
.

We also see that

E𝑤 [cost𝑝 (OPT)] = E𝑤
[
𝑤⊤(𝐼 − (𝐼 + ℓ · 𝐿)−1)𝑤

]
= 𝑂 (𝑛 · Var [𝑤𝑖]). (3.101)

Note that the global objective function (𝑥+𝑤)⊤(𝑥+𝑤)+ℓ ·𝑥⊤𝐿𝑥 is 1-strongly convex,
and 𝑥∗(𝑤) is minimizer of this function. Thus, we have that for any outcome of 𝑤,

cost𝑝 (ALG) − cost𝑝 (OPT) ≥ 1
2
∥𝑥(𝑤) − 𝑥∗(𝑤)∥2.

Taking expectations on both sides w.r.t. 𝑤 gives that

E𝑤cost𝑝 (ALG) − E𝑤cost𝑝 (OPT) ≥ 1
2
E𝑤 ∥𝑥(𝑤) − 𝑥∗(𝑤)∥2 ≥ Θ

(
𝑛 · 𝜆𝑟𝑆 · Var [𝑤𝑖]

)
.

(3.102)

Dividing (3.102) by (3.101), we obtain that
E𝑤cost𝑝 (ALG)
E𝑤cost𝑝 (OPT) ≥ 1 +Ω

(
𝜆𝑟𝑆

)
.

Note that P𝑤
[
cost𝑝 (OPT) = 0

]
= 0. Thus, there must exist an instance of 𝑤 such

that cost𝑝 (OPT) > 0 and

cost𝑝 (ALG)
cost𝑝 (OPT) ≥ 1 +Ω

(
𝜆𝑟𝑆

)
.
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Before we present the proof of Lemma 3.D.8, we first need to introduce two tech-
nical lemmas that will be used in the proof of Lemma 3.D.8. The first lemma
(Lemma 3.D.9) provides a lower bound for binomial coefficient

((2+𝜖)𝑚
𝑚

)
.

Lemma 3.D.9. For any positive integer 𝑚 and 𝜖 ∈ R≥0 such that 𝜖𝑚 is an integer,
the following inequality holds:(

(2 + 𝜖)𝑚
𝑚

)
>

1
√

2𝜋
𝑚−

1
2 · (2 + 𝜖)

(2+𝜖)𝑚+ 1
2

(1 + 𝜖) (1+𝜖)𝑚+ 1
2
· 𝑒− 1

6𝑚 .

Proof of Lemma 3.D.9. By Lemma 2.1 in Stanica, 2001, we know for any 𝑛 ∈ Z+,

𝑛! =
√

2𝜋𝑛𝑛+
1
2 𝑒−𝑛+𝑟 (𝑛) ,

where 𝑟 (𝑛) satisfies 1
12𝑛+1 < 𝑟 (𝑛) <

1
12𝑛 . Thus we see that

√
2𝜋𝑛𝑛+

1
2 𝑒−𝑛+

1
12𝑛+1 < 𝑛! <

√
2𝜋𝑛𝑛+

1
2 𝑒−𝑛+

1
12𝑛 ,∀𝑛 ∈ Z+.

Therefore, we can lower bound
((2+𝜖)𝑚

𝑚

)
by(

(2 + 𝜖)𝑚
𝑚

)
=
((2 + 𝜖)𝑚)!

𝑚! · ((1 + 𝜖)𝑚)!

>

√
2𝜋((2 + 𝜖)𝑚) (2+𝜖)𝑚+ 1

2 𝑒
−(2+𝜖)𝑚+ 1

12(2+𝜖 )𝑚+1

√
2𝜋𝑚𝑚+ 1

2 𝑒−𝑚+
1

12𝑚 ·
√

2𝜋((1 + 𝜖)𝑚) (1+𝜖)𝑚+ 1
2 𝑒
−(1+𝜖)𝑚+ 1

12(1+𝜖 )𝑚

=
1
√

2𝜋
𝑚−

1
2 · (2 + 𝜖)

(2+𝜖)𝑚+ 1
2

(1 + 𝜖) (1+𝜖)𝑚+ 1
2
· 𝑒

1
12(2+𝜖 )𝑚+1−

1
12𝑚−

1
12(1+𝜖 )𝑚

>
1
√

2𝜋
𝑚−

1
2 · (2 + 𝜖)

(2+𝜖)𝑚+ 1
2

(1 + 𝜖) (1+𝜖)𝑚+ 1
2
· 𝑒− 1

6𝑚 .

The second technical lemma (Lemma 3.D.10) will be used to simplify the decay
factor in the proof of Lemma 3.D.8.

Lemma 3.D.10. For all 𝜖 ∈ [0,
√

2), the following inequality holds

2 + 𝜖
2 · (1 + 𝜖) 1+𝜖

2+𝜖
≥ 1 − 𝜖

2

2
.

Proof of Lemma 3.D.10. By taking logarithm on both sides, we see the original
inequality is equivalent to

ln
(
1 + 𝜖

2

)
− 1 + 𝜖

2 + 𝜖 ln(1 + 𝜖) ≥ ln
(
1 − 1

2
𝜖2

)
, thus
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ln
(
1 + 𝜖

2

)
− 1 + 𝜖

2 + 𝜖 ln(1 + 𝜖) − ln
(
1 − 1

2
𝜖2

)
≥ 0. (3.103)

Note that the LHS can be lower bounded by

ln
(
1 + 𝜖

2

)
− 1 + 𝜖

2 + 𝜖 ln(1 + 𝜖) − ln
(
1 − 1

2
𝜖2

)
≥ ln

(
1 + 𝜖

2

)
− 1 + 𝜖

2
ln(1 + 𝜖) − ln

(
1 − 1

2
𝜖2

)
=: 𝑔(𝜖).

Function 𝑔 satisfies that 𝑔(0) = 0, and its derivative is

𝑔′(𝜖) = 1
2 + 𝜖 −

1
2
− 1

2
ln(1 + 𝜖) + 𝜖

1 − 1
2𝜖

2

≥ 1
2 + 𝜖 −

1
2
− 𝜖

2
+ 𝜖

=
2 − (2 + 𝜖) (1 − 𝜖)

2(2 + 𝜖)

=
𝜖 + 𝜖2

2(2 + 𝜖) ≥ 0.

Thus, 𝑔(𝜖) ≥ 0 for all 𝜖 ∈ [0,
√

2). Hence (3.103) holds for all 𝜖 ∈ [0,
√

2).

Now we are ready to present the proof of Lemma 3.D.8.

Proof of Lemma 3.D.8. Consider the graph G constructed as Figure 3.11: Let 𝑁 be
a positive integer that is sufficiently large. 𝑁 blocks form a ring, where each block
contains 𝑑 nodes. Every pair of blocks are connected by a complete bipartite graph.
The graph Laplacian of G can be decomposed as 𝐿 = 2𝑑𝐼 − 𝑀 , where 𝑀 is the
adjacency matrix of G. We see that

(𝐼 + ℓ · 𝐿)−1 = ((2𝑑ℓ + 1)𝐼 − ℓ · 𝑀)−1

=
1

2𝑑ℓ + 1

(
𝐼 − ℓ

2𝑑ℓ + 1
𝑀

)−1

=
1

2𝑑ℓ + 1

∞∑︁
𝑡=0

ℓ𝑡

(2𝑑ℓ + 1)𝑡𝑀
𝑡 .

Fix two nodes 𝑖 and 𝑗 and denote 𝜅 := 𝑑G (𝑖, 𝑗) and assume 𝜅 ≥ 3. Without the loss
of generality, we can assume 𝑗 is on the clockwise direction of 𝑖. We see that(

(𝐼 + ℓ · 𝐿)−1
)
𝑖 𝑗
=

1
2𝑑ℓ + 1

∞∑︁
𝑡=0

ℓ𝑡

(2𝑑ℓ + 1)𝑡 (𝑀
𝑡)𝑖 𝑗
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Figure 3.11: Graph structure of G to obtain the lower bound: 𝑁 blocks form a ring.
Each block contains 𝑑 nodes.

=
ℓ𝜅

(2𝑑ℓ + 1)𝜅+1
∞∑︁
𝑚=0

ℓ2𝑚

(2𝑑ℓ + 1)2𝑚
(𝑀 𝜅+2𝑚)𝑖 𝑗 . (3.104)

Note that (𝑀 𝜅+2𝑚)𝑖 𝑗 denotes the number of paths from 𝑖 to 𝑗 with length 𝜅 + 2𝑚
in graph G. Note that the shortest paths from 𝑖 to 𝑗 have length 𝜅. To pick a path
with length (𝜅 + 2𝑚) from 𝑖 to 𝑗 , we can first pick a path on the level of blocks:
The number of possible block-level paths is lower bounded by

(𝜅+2𝑚
𝑚

)
because we

can choose 𝑚 in (𝜅 + 2𝑚) steps to go in the counter-clockwise direction. After a
block-level path is fixed, we can choose which specific nodes in the blocks we want
to land at, and there are 𝑑𝜅+2𝑚−2 choices. Thus we see that

(𝑀 𝜅+2𝑚)𝑖 𝑗 ≥
(
𝜅 + 2𝑚
𝑚

)
𝑑𝜅+2𝑚−2.

Substituting this into (3.104) gives(
(𝐼 + ℓ · 𝐿)−1

)
𝑖 𝑗
≥ ℓ𝜅𝑑𝜅−2

(2𝑑ℓ + 1)𝜅+1
∞∑︁
𝑚=0

ℓ2𝑚𝑑2𝑚

(2𝑑ℓ + 1)2𝑚

(
𝜅 + 2𝑚
𝑚

)
. (3.105)

Let𝑚 = 0 will give that
(
(𝐼 + ℓ · 𝐿)−1)

𝑖 𝑗
≥ 𝜅

𝑑2 (2𝑑ℓ+1) ·
(

𝑑ℓ
2𝑑ℓ+1

) 𝜅
, which shows the first

claim of Lemma 3.D.8. Now we proceed to show the second claim of Lemma 3.D.8.
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By Lemma 3.D.9, we know that when 𝜅 = 𝜖𝑚, we have that the following inequality
holds: (

𝜅 + 2𝑚
𝑚

)
=

(
(2 + 𝜖)𝑚

𝑚

)
>

1
√

2𝜋
𝑒−

1
6𝑚𝑚−

1
2
(2 + 𝜖) (2+𝜖)𝑚

(1 + 𝜖) (1+𝜖)𝑚
·
(
2 + 𝜖
1 + 𝜖

) 1
2

≥ 1
2
√

2𝜋
𝑚−

1
2

(
2 + 𝜖
(1 + 𝜖) 1+𝜖

2+𝜖

) (2+𝜖)𝑚
.

For any 𝑚 > 𝜅, the inequality we just showed can help us bound a term in the
summation of (3.105) below:

ℓ𝜅𝑑𝜅−2

(2𝑑ℓ + 1)𝜅+1
· ℓ2𝑚𝑑2𝑚

(2𝑑ℓ + 1)2𝑚

(
𝜅 + 2𝑚
𝑚

)
≥ 1
𝑑2(2𝑑ℓ + 1)

· 1
2𝜅+2𝑚

(
𝜅 + 2𝑚
𝑚

)
·
(
1 − 1

2𝑑ℓ + 1

) 𝜅+2𝑚
≥ 1

2
√

2𝜋 ·
√︁
𝜅
𝜖
· 𝑑2(2𝑑ℓ + 1)

·
(

2 + 𝜖
2 · (1 + 𝜖) 1+𝜖

2+𝜖

) (2+𝜖)𝜅/𝜖
·
(
1 − 1

2𝑑ℓ + 1

) (1+ 2
𝜖
)𝜅

≥ 1
2
√

2𝜋 ·
√︁
𝜅
𝜖
· 𝑑2(2𝑑ℓ + 1)

·
((

1 − 𝜖
2

2

) 1
𝜖

·
(
1 − 1

2𝑑ℓ + 1

) 1
𝜖

) (2+𝜖)𝜅
,

where the last line follows from Lemma 3.D.10.

Thus, we obtain that the following inequality holds for arbitrary 𝜖 ∈ (0, 1):(
(𝐼 + 𝐿)−1

)
𝑖 𝑗
≥ 1

2
√

2𝜋 ·
√︁
𝜅
𝜖
· 𝑑2(2𝑑ℓ + 1)

·
((

1 − 𝜖
2

2

) 2
𝜖
+1
·
(
1 − 1

2𝑑ℓ + 1

) 2
𝜖
+1

) 𝜅
.

(3.106)

By setting 𝜖 such that 1/𝜖 =
[
2(𝑑ℓ) 1

2

]
in (3.106), we obtain that:(

(𝐼 + ℓ · 𝐿)−1
)
𝑖 𝑗

≥ 1

2
√

2𝜋 ·
√︁

2𝜅 ·
√
𝑑ℓ · 𝑑2(2𝑑ℓ + 1)

·
((

1 − 1
2𝑑ℓ

)4
√
𝑑ℓ+1
·
(
1 − 1

2𝑑ℓ + 1

)4
√
𝑑ℓ+1

) 𝜅
≥ 1

4
√︁
𝜋 · 𝜅 ·

√
𝑑ℓ · 𝑑2(2𝑑ℓ + 1)

·
((

1 − 4
√
𝑑ℓ + 1
2𝑑ℓ

)
·
(
1 − 4

√
𝑑ℓ + 1

2𝑑ℓ + 1

)) 𝜅
≥ 1

4
√︁
𝜋 · 𝜅 ·

√
𝑑ℓ · 𝑑2(2𝑑ℓ + 1)

·
(
1 − 4
√
𝑑ℓ

) 𝜅
. (3.107)
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Step 3: Combine Temporal and Spatial Lower Bounds Combining the results
of Steps 1 and 2 together, we know that the competitive ratio of any decentralized
online algorithm is lower bounded by

max{1 + 𝜇
3(1 −

√
𝜆𝑇 )2

48(𝜇 + 1)2ℓ𝑇
· 𝜆𝑘𝑇 , 1 +Ω(𝜆

𝑟
𝑆)} = 1 +Ω(𝜆𝑘 ) +Ω(𝜆𝑟𝑆).

Proof of Corollary 3.3.7
In this appendix we prove a resource augmentation bound for LPC. To simplify the
notation, we define the shorthand 𝑎𝑇 := ℓ𝑇/𝜇 and 𝑎𝑆 := ℓ𝑆/𝜇. 𝑎𝑇 and 𝑎𝑆 are positive
real numbers. We first show two lemmas about the relationships between the decay
factors 𝜌𝑇 and 𝜆𝑇 , and 𝜌𝑆 and 𝜆𝑆.

Lemma 3.D.11. Under the assumptions of Theorem 3.3.3, we have 𝜌4
𝑇
≤ 𝜆𝑇 ≤ 𝜌2

𝑇
.

Proof of Lemma 3.D.11. Recall that 𝜌𝑇 is given by

𝜌𝑇 =

√︄
1 − 2
√

1 + 2𝑎𝑇 + 1

in Theorem 3.3.3. Thus we see that

𝜌4
𝑇 =

(
1 − 2
√

1 + 2𝑎𝑇 + 1

)2
≤

(
1 − 2
√

1 + 4𝑎𝑇 + 1

)2
= 𝜆𝑇 .

On the other hand, we have that

𝜆𝑇 − 𝜌2
𝑇 =

(
1 − 2
√

1 + 4𝑎𝑇 + 1

)2
− 1 + 2

√
1 + 2𝑎𝑇 + 1

=

4
√︁
(1 + 2𝑎𝑇 )

(√
1 + 2𝑎𝑇 −

√
1 + 4𝑎𝑇

)
(√

1 + 2𝑎𝑇 + 1
) (√

1 + 4𝑎𝑇 + 1
)2 ≤ 0.

Lemma 3.D.12. Under the assumptions of Theorem 3.3.3, we have 𝜌8Δ logΔ
𝑆

≤ 𝜆𝑆.

Proof of Lemma 3.D.12. Recall that 𝜌𝑇 is given by

𝜌𝑆 =

√︄
1 − 2
√

1 + Δ𝑎𝑆 + 1

in Theorem 3.3.3. We consider the following 3 cases separately.
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Case 1: 𝑎𝑆 ≥ 16Δ − 8.

We first show that the following inequality holds for any 𝑥 ∈ [0, 1/(2Δ)]:

(1 − 𝑥)2Δ ≤ 1 − Δ𝑥. (3.108)

To see this, define function 𝑔(𝑥) = (1 − 𝑥)2Δ + Δ𝑥 − 1. Note that 𝑔 is a convex
function with 𝑔(0) = 0 and

𝑔

(
1

2Δ

)
=

(
1 − 1

2Δ

)2Δ
− 1

2
≤ 𝑒−1 − 1

2
< 0.

Thus, we see that 𝑔(𝑥) ≤ 0 holds for all 𝑥 ∈ [0, 1/(2Δ)]. Hence (3.108) holds.

Note that under the assumption 𝑎𝑆 ≥ 16Δ − 8, we have

0 ≤ 2
√

1 + Δ𝑎𝑆 + 1
≤ 1

2Δ
.

Thus substituting 𝑥 = 2√
1+Δ𝑎𝑆+1

≤ 1
2Δ gives

𝜌4Δ
𝑆 =

(
1 − 2
√

1 + Δ𝑎𝑆 + 1

)2Δ
≤ 1 − 2Δ

√
1 + Δ𝑎𝑆 + 1

≤ 1 − 2
√

1 + 4𝑎𝑆 + 1
= 𝜆𝑆 .

Case 2: 𝑎𝑆 ≤ Δ2

(Δ2−1)2 . Recall that Δ ≥ 2. Thus, in this case, we have 𝑎𝑆 < 1 and√︁
𝜆𝑆 = 1 − 2

√
1 + 4𝑎𝑆 + 1

≤ 1
Δ2 .

Note that

𝜌2
𝑆 =
(
√

1 + Δ𝑎𝑆 − 1)2
Δ𝑎𝑆

≤ Δ𝑎𝑆

4
= Δ ·

(
√︃

1 + 2𝑎𝑆 + 𝑎2
𝑆
− 1)2

4𝑎𝑆
≤ Δ · (

√
1 + 4𝑎𝑆 − 1)2

4𝑎𝑆
= Δ

√︁
𝜆𝑆 .

Thus we see that
𝜌4
𝑆 ≤ (Δ

2 · 𝜆𝑆) · 𝜆𝑆 ≤ 𝜆𝑆 .

Case 3: Δ2

(Δ2−1)2 < 𝑎𝑆 < 16Δ − 8.

In this case, we have

𝜆𝑆 =

(
1 − 2
√

1 + 4𝑎𝑆 + 1

)2
≥ 1

Δ4 ,

𝜌𝑆 =

(
1 − 2
√

1 + Δ𝑎𝑆 + 1

) 1
2

≤
√︂

1 − 1
2Δ
.

Since (1 − 1/(2Δ))2Δ < 𝑒−1, we see that 𝜌8Δ log(Δ)
𝑆

≤ 𝜆𝑆.
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Now we come back to the proof of Corollary 3.3.7. By Theorem 3.3.5 and Theo-
rem 3.3.6, we know that the optimal competitive ratio is lower bounded by

𝑐(𝑘∗, 𝑟∗) ≥ 1 + 𝐶𝜆
(
𝜆𝑘
∗

𝑇 + 𝜆
𝑟∗

𝑆

)
and LPC’s competitive ratio is upper bounded by

CRP(𝑣) (LPC) := 1 + 𝐶𝜌
(
𝐶3(𝑟)2 · 𝜌𝑘𝑇 + ℎ(𝑟)

2 · 𝜌𝑟𝑆
)
,

where 𝐶𝜆 and 𝐶𝜌 are some positive constants. To achieve 𝑐𝐿𝑃𝐶 (𝑘, 𝑟) ≤ 𝑐(𝑘∗, 𝑟∗), it
suffices to guarantee that

𝐶𝜌 · 𝐶3(𝑟)2 · 𝜌𝑘𝑇 ≤ 𝐶𝜆𝜆
𝑘∗

𝑇 and 𝐶𝜌 · ℎ(𝑟)2 · 𝜌𝑟𝑆 ≤ 𝐶𝜆𝜆
𝑟∗

𝑆 .

Note that 𝐶3(𝑟) can be upper bounded by some constant and ℎ(𝑟)2 ≤ 𝑝𝑜𝑙𝑦(𝑟) · 𝜌−
𝑟
2

𝑆

under our assumptions. Applying Lemma 3.D.11 and Lemma 3.D.12 finishes the
proof.

Proof of Corollary 3.3.8
By Corollary 3.3.2 and Theorem 3.3.6, we see the competitive ratio of LPC with
prediction horizon 𝑘 and observation radius 𝑟 will be less than or equal to 𝑐(𝑘∗, 𝑟∗)
if the following two inequalities holds:(

2 + 𝐶′4 ·
ℓ 𝑓 + Δℓ𝑆 + 2ℓ𝑇

𝜇

)
·
(
8ℓ𝑇
𝜇

) 𝑘
≤ 𝜇3(1 −

√
𝜆𝑇 )2

96(𝜇 + 1)2ℓ𝑇
· 𝜆𝑘∗𝑇 , (3.109)(

1 + 𝐶′3 ·
ℓ 𝑓 + Δℓ𝑆 + 2ℓ𝑇

𝜇

)
·
(
Δ3ℓ𝑆
𝜇

) 𝑟
2

≤ 𝜇3(1 −
√
𝜆𝑆)2

96(𝜇 + 1)2ℓ𝑆
· 𝜆𝑟∗+1𝑆 , (3.110)

where

𝜆𝑇 =

(
1 − 2

(√︁
1 + (4ℓ𝑇/𝜇) + 1

)−1
)2
, and 𝜆𝑆 =

(Δℓ𝑆/𝜇)
3 + 3(Δℓ𝑆/𝜇)

.

Note that we have

1
2
𝜆

1
2
𝑇
=

2ℓ𝑇/𝜇
(
√︁

1 + 4ℓ𝑇/𝜇 + 1)2
≥ 8(
√

5 − 2)2 · ℓ𝑇
𝜇
≥

(
8ℓ𝑇
𝜇

)1+𝑐1 log(𝜇/(8ℓ𝑇 ))

for some positive constant 𝑐1 < ∞. We also have that

1
2
𝜆𝑆 ≥

(Δℓ𝑆/𝜇)
8

≥
(
Δ3ℓ𝑆
𝜇

)1+𝑐2 log(𝜇/(Δ3ℓ𝑆))
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holds for some positive constant 𝑐2 = 𝑐2(Δ) < ∞. Therefore, we see that there
exists 𝐶 = 𝐶 (Δ) < ∞ such that(

8ℓ𝑇
𝜇

) (2+𝐶 log(𝜇/(8ℓ𝑇 )))𝑘∗

≤
(
1
2

) 𝑘∗
·𝜆𝑘∗𝑇 , and

(
Δ3ℓ𝑆
𝜇

) 1
2 ·(2+𝐶 log(𝜇/(Δ3ℓ𝑆)))𝑟∗

≤
(
1
2

)𝑟∗
·𝜆𝑟∗𝑆 .

Therefore, let 𝑘 = (2 + 𝐶 log(𝜇/(8ℓ𝑇 )))𝑘∗ and 𝑟 = (2 + 𝐶 log
(
𝜇/(Δ3ℓ𝑆)

)
)𝑟∗. We

know that (3.109) and (3.110) hold when 𝑘∗ and 𝑟∗ are sufficiently large.

3.E Proofs for Adaptive Video Streaming
We first introduce the notation used to define the performance metrics and the variant
of SODA studied in our theoretical analysis. To make the formulation of the video
streaming problem closer to a classic control problem, we define the “control action”
𝑢𝑡 as the inverse of the bitrate (i.e., 𝑢𝑡 = 1

𝑟𝑡
). Recall that we set 𝑣(𝑟) = 1

𝑟
in our

theoretical analysis. Thus, we can write down a general form of the optimization
problem solved by SODA and use 𝜓𝑡+𝑝𝑡

(
(𝜎𝑡−1, 𝜈𝑡−1); 𝜔̂𝑡:𝑡+𝑝; 𝐹

)
to denote its optimal

solution:

arg min
𝑥𝑡:𝑡+𝑝 ,𝑢𝑡+1:𝑡+𝑝

𝑡+𝑝∑︁
𝜏=𝑡

𝜔̂𝜏𝑢
2
𝜏 + 𝛽

𝑡+𝑝∑︁
𝜏=𝑡

𝑏(𝑥𝜏) + 𝛾
𝑡+𝑝+1∑︁
𝜏=𝑡

|𝑢𝜏 − 𝑢𝜏−1 |2 + 𝐹 (𝑥𝑡+𝑝, 𝑢𝑡+𝑝+1)

(3.111a)

s.t. 𝑥𝜏 = 𝑥𝜏−1 + 𝜔̂𝜏𝑢𝜏 − 1, for 𝜏 = 𝑡, . . . , 𝑡 + 𝑝, (3.111b)

0 ≤ 𝑥𝜏 ≤ 𝑥max,
1
𝑟max

≤ 𝑢𝜏 ≤
1
𝑟min

, for 𝜏 = 𝑡, . . . , 𝑡 + 𝑝, (3.111c)

𝑥𝑡−1 = 𝜎𝑡−1, 𝑢𝑡−1 = 𝜈𝑡−1. (3.111d)

Here, 𝜓𝑡+𝑝𝑡

(
(𝜎𝑡−1, 𝜈𝑡−1); 𝜔̂𝑡:𝑡+𝑝; 𝐹

)
is defined to be a vector that contains the states

𝑥𝑡:𝑡+𝑝 and control actions 𝑢𝑡+1:𝑡+𝑝 in the optimal solution. The initial condition
(𝜎𝑡−1, 𝜈𝑡−1), bandwidth sequence 𝜔̂𝑡:𝑡+𝑝, and terminal cost function 𝐹 are the pa-
rameters of the optimization problem. For the terminal costs, we consider two types
of functions: (1) The zero function 𝐹 = 0, i.e., 𝐹 (𝑥, 𝑢) = 0 for all 𝑥, 𝑢; (2) The
indicator function 𝐹 = I𝜎,𝜈, which is defined as

𝐹 (𝑥, 𝑢) = I𝜎,𝜈 (𝑥, 𝑢) =


0 if 𝑥 = 𝜎, 𝑢 = 𝜈,

+∞ otherwise.

The first type of terminal cost will be used to define the performance metrics
(competitive ratio and dynamic regret), and the second type will be used in the
algorithm design. Since we will use the indicator terminal cost frequently, we
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introduce the shorthand 𝜓̃
𝑡+𝑝
𝑡

(
(𝜎𝑡−1, 𝜈𝑡−1); 𝜔̂𝑡:𝑡+𝑝; (𝜎𝑡+𝑝, 𝜈𝑡+𝑝+1)

)
, which denotes

𝜓̃
𝑡+𝑝
𝑡

(
(𝜎𝑡−1, 𝜈𝑡−1); 𝜔̂𝑡:𝑡+𝑝; I𝜎𝑡+𝑝 ,𝜈𝑡+𝑝+1

)
. We use 𝜄𝑡+𝑝𝑡

(
(𝜎𝑡−1, 𝜈𝑡−1); 𝜔̂𝑡:𝑡+𝑝; 𝐹

)
to denote

the optimal objective value of the optimization problem (3.111).

Proof of Theorem 3.4.1
In this section, we establish the critical exponentially decaying perturbation bounds
(Definition 3.4.1). Instead of just focusing on the video streaming application
itself, we establish the perturbation bound for a more general SOCO with memory
framework.

Specifically, we consider the following finite-time optimal control problem with
memory 𝐻.

𝜓(𝑦, 𝑧; 𝜇, 𝑤, 𝛿) = arg min
𝑥−𝐻+1:𝑝+𝐻−1

𝑝∑︁
𝑡=0

𝑓𝑡 (𝑥𝑡 ; 𝜇𝑡) +
𝑝+𝐻−1∑︁
𝑡=0

𝑐𝑡 (𝑥𝑡:𝑡−𝐻+1;𝑤𝑡) (3.112a)

s.t. 𝑥𝑡 ∈ [0, 𝑥max] ⊆ R,∀0 ≤ 𝑡 ≤ 𝑝, (3.112b)

𝑥𝑡 − 𝑥𝑡−1 ≥ −𝛿𝑡 ,∀0 ≤ 𝑡 ≤ 𝑝 + 1, (3.112c)

𝑥−𝐻+1:−1 = 𝑦, 𝑥𝑝+1:𝑝+𝐻−1 = 𝑧, (3.112d)

where 𝑦, 𝑧 ∈ [0, 𝑥max]𝐻−1, 𝜇 ∈ [0, 𝑥max] 𝑝+1, 𝑤 ∈ W 𝑝+𝐻 , 𝛿 ∈ Δ𝑝+2. Here, the
objective function (3.112a) contains the hitting costs 𝑓𝑡 (𝑥𝑡 ; 𝜇𝑡) (parameterized by 𝜇𝑡)
and the switching costs 𝑐𝑡 (𝑥𝑡:𝑡−𝐻+1;𝑤𝑡) (parameterized by 𝑤𝑡). For the constraints,
(3.112b) imposes a box constraint on each decision variable 𝑥𝑡 ; (3.112c) imposes
a constraint on how much 𝑥𝑡 can decrease at each time step; and (3.112d) specifies
the boundary conditions of the optimization problem.

In the special case of video streaming, the decision is on the buffer level 𝑥𝑡 . Given
the buffer levels, the inverse of the bitrate 𝑢𝑡 := 1/𝑟𝑡 is uniquely decided by the
equation

𝑢𝑡 = (𝑥𝑡 − 𝑥𝑡−1 + 1)/𝜔𝑡 ,

where 𝜔𝑡 denotes the bandwidth. The memory length 𝐻 = 3. For the hitting cost,
we have 𝜇𝑡 ≡ 𝑥, and

𝑓𝑡 (𝑥; 𝜇𝑡) = 𝛽𝑏(𝑥) =

𝛽(𝑥 − 𝑥)2, if 𝑥 ≤ 𝑥,

𝜖 𝛽(𝑥 − 𝑥)2, otherwise.

For the switching cost, we have 𝑤𝑡 = (𝜔𝑡 , 𝜔𝑡−1) and

𝑐𝑡 (𝑥𝑡:𝑡−2;𝑤𝑡)
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= 𝜔𝑡𝑢
2
𝑡 + 𝛾(𝑢𝑡 − 𝑢𝑡−1)2

=
(𝑥𝑡 − 𝑥𝑡−1 + 1)2

𝜔𝑡
+ 𝛾 (𝜔𝑡−1𝑥𝑡 + 𝜔𝑡𝑥𝑡−2 − (𝜔𝑡 + 𝜔𝑡−1)𝑥𝑡−1 + (𝜔𝑡−1 − 𝜔𝑡))2

𝜔2
𝑡 𝜔

2
𝑡−1

.

The first constraint 𝑥𝑡 ∈ [0, 𝑥max] of (3.112) matches the buffer constraint of the
video streaming problem exactly.

The second constraint 𝑥𝑡 − 𝑥𝑡−1 ≥ −𝛿𝑡 corresponds to the constraint that 𝑢𝑡 ≥ 1
𝑟max

in (3.111). Thus, when applying (3.112) to video streaming, we have 𝛿𝑡 = 1 − 𝜔𝑡
𝑟max

.
By Assumption 3.4.1, we have 𝛿𝑡 ≥ 𝛿 > 0.

Given the relationship between SOCO with memory problem and adaptive video
streaming problem, we only need to establish the exponentially decaying pertur-
bation bound for the more general SOCO with memory problem. To show this
perturbation bound, we need the following assumption about the objective function
and constraints:

Assumption 3.5.1. We need the following assumption on the optimization problem
(3.112) for the exponentially decaying perturbation property to hold:

1. 𝑓𝑡 (·; 𝜇𝑡) : R → R is strongly convex for all 𝑡 and 𝜇𝑡 ∈ [0, 𝑥max]. We
further assume there exists two 𝑚 𝑓 -strongly convex and ℓ 𝑓 -smooth functions
𝑓
(0)
𝑡 (·; 𝜇𝑡), 𝑓

(1)
𝑡 (·; 𝜇𝑡) : R → R in C2 such that 𝑓𝑡 (𝑥𝑡 ; 𝜇𝑡) = 𝑓

(0)
𝑡 (𝑥𝑡 ; 𝜇𝑡) for

𝑥𝑡 ∈ [0, 𝜇𝑡] and 𝑓𝑡 (𝑥𝑡) = 𝑓
(1)
𝑡 (𝑥𝑡 ; 𝜇𝑡) for 𝑥𝑡 ∈ [𝜇𝑡 , 𝑥max]. We also assume that

for 𝑗 = 1, 2, 𝑓 ( 𝑗)𝑡 satisfies that for all 𝑥𝑡 , 𝜇𝑡 ∈ [0, 𝑥max],


∇𝑥𝑡 𝑓 ( 𝑗)𝑡 (𝑥𝑡 ; 𝜇𝑡)



 + 


∇𝜇𝑡 𝑓 ( 𝑗)𝑡 (𝑥𝑡 ; 𝜇𝑡)




 ≤ 𝐿 𝑓 , and



∇𝜇𝑡∇𝑥𝑡 𝑓 ( 𝑗)𝑡 (𝑥𝑡 ; 𝜇𝑡)




 ≤ ℓ𝜇 .
2. 𝑐𝑡 (·;𝑤𝑡) : R𝐻 → R is convex and ℓ𝑐-smooth for all 𝑡 and 𝑤𝑡 ∈ W ⊂ R𝑞.
𝑐𝑡 (·;𝑤𝑡) is in C2 on [0, 𝑥max]𝐻 . We also assume that for all 𝑤𝑡 ∈ W and
feasible 𝑥𝑡:𝑡−𝐻+1, we have

∇𝑥𝑡:𝑡−𝐻+1𝑐𝑡 (𝑥𝑡:𝑡−𝐻+1;𝑤𝑡)



 + 

∇𝑤𝑡 𝑐𝑡 (𝑥𝑡:𝑡−𝐻+1;𝑤𝑡)


 ≤ 𝐿𝑐, and

∇𝑤𝑡∇𝑥𝑡:𝑡−𝐻+1𝑐𝑡 (𝑥𝑡:𝑡−𝐻+1;𝑤𝑡)



 ≤ ℓ𝑤 .
3. We have 𝛿𝑡 ∈ Δ holds for all 𝑡, where Δ is a closed interval on R and is

bounded below by some positive constant 𝛿. Denote 𝑑 := ⌈𝑥max/𝛿⌉.

In the special case of the video streaming problem, Assumption 3.5.1 is satisfied
with the parameters 𝑚 𝑓 = 𝜖 𝛽, ℓ 𝑓 = ℓ𝜇 = 𝛽, ℓ𝑐 =

2(𝜔min+3)
𝜔2

min
, ℓ𝑤 =

4𝑥max (𝜔min+8𝛾)
𝜔3

min
. In

addition, both 𝐿 𝑓 and 𝐿𝑐 are bounded.
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We state the exponentially decaying perturbation bound for the SOCO with memory
problem formally in Theorem 3.5.1 and defer its proof to Appendix 3.4.

Theorem 3.5.1. Under Assumption 3.5.1, if 𝑝 ≥ 𝑑, the inequality

∥𝜓(𝑦, 𝑧; 𝜇, 𝑤, 𝛿)𝑡 − 𝜓(𝑦′, 𝑧′; 𝜇′, 𝑤′, 𝛿′)𝑡 ∥
≤ 𝐶

(
𝜌𝑡 ∥𝑦 − 𝑦′∥ + 𝜌𝑝−𝑡 ∥𝑧 − 𝑧′∥

)
+ 𝐶

(
𝑝∑︁
𝜏=0

𝜌 |𝑡−𝜏 |
��𝜇𝜏 − 𝜇′𝜏�� + 𝑝+𝐻−1∑︁

𝜏=0
𝜌 |𝑡−𝜏 |



𝑤𝜏 − 𝑤′𝜏

 + 𝑝+1∑︁
𝜏=0

𝜌 |𝑡−𝜏 |


𝛿𝜏 − 𝛿′𝜏

)

(3.113)

holds for all 𝑡 ∈ [0, 𝑝] and 𝑦, 𝑧 ∈ [𝑥, 𝑥]𝐻−1. Here,

𝜌 =

(
1 − 2

1 +
√︁

1 + (ℓ/𝑚 𝑓 )

) 1
𝐻 (𝐻+𝑑)

, 𝐶 =
2ℓ

𝑚 𝑓 𝜌
(𝐻−2) (𝐻+𝑑) ,

where ℓ := max{𝐻ℓ𝑐, ℓ𝑤} and ℓ̄ := max{𝐻ℓ 𝑓 , ℓ𝜇, ℓ}.

In the special case of the video streaming, we see that

ℓ = max{3ℓ𝑐, ℓ𝑤} =
max{6𝜔min(𝜔min + 3), 4𝑥max(𝜔min + 8𝛾)}

𝜔3
min

.

Therefore, we have

𝜌 =

©­­­­«
1 − 2

1 +
√︂

1 + max{6𝜔min (𝜔min+3),4𝑥max (𝜔min+8𝛾)}
𝜔3

min𝜖 𝛽

ª®®®®¬
1

3(3+⌈𝑥max/𝛿⌉ )

.

The coefficient 𝐶 is bounded by

𝐶 ≤
3𝛽𝜔3

min +max{6𝜔min(𝜔min + 3), 4𝑥max(𝜔min + 8𝛾)}
𝜔3

min𝜌
3+⌈𝑥max/𝛿⌉

.

Discussion about different distortion costs. Note that Assumption 3.5.1 still holds
if we replace the distortion cost function 𝑣(𝑟) = 1

𝑟
by 𝑣(𝑟) = log(𝑟max/𝑟). This is

because the new switching cost

𝑐′𝑡 (𝑥𝑡:𝑡−2;𝑤𝑡) = 𝜔𝑡𝑢𝑡 log(𝑟max𝑢𝑡) + 𝛾(𝑢𝑡 − 𝑢𝑡−1)2

= (𝑥𝑡 − 𝑥𝑡−1 + 1) log
(
𝑟max(𝑥𝑡 − 𝑥𝑡−1 + 1)

𝜔𝑡

)
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+ 𝛾 (𝜔𝑡−1𝑥𝑡 + 𝜔𝑡𝑥𝑡−2 − (𝜔𝑡 + 𝜔𝑡−1)𝑥𝑡−1 + (𝜔𝑡−1 − 𝜔𝑡))2

𝜔2
𝑡 𝜔

2
𝑡−1

also satisfies Assumption 3.5.1 for any 𝑤𝑡 = (𝜔𝑡 , 𝜔𝑡−1) ∈ [𝜔min, 𝜔max]2 and feasible
𝑥𝑡:𝑡−2.

Proof of Theorem 3.5.1
To show Theorem 3.5.1, we first need to define indicators of active constraints,
denoted as 𝜉 ∈ {0, 1}4𝑝+5. Specifically, given the unique optimal solution 𝑥0:𝑝 =

𝜓(𝑦, 𝑧; 𝜇, 𝑤, 𝛿) under a tuple of parameters (𝑦, 𝑧; 𝜇, 𝑤, 𝛿), we consider whether the
following equality conditions hold:

𝜉1,𝑡 = 1{𝑥𝑡 = 0},∀0 ≤ 𝑡 ≤ 𝑝;

𝜉2,𝑡 = 1{𝑥𝑡 = 𝑥max},∀0 ≤ 𝑡 ≤ 𝑝;

𝜉3,𝑡 = 1{𝑥𝑡 = 𝜇𝑡},∀0 ≤ 𝑡 ≤ 𝑝;

𝜉4,𝑡 = 1{𝑥𝑡 − 𝑥𝑡−1 = −𝛿𝑡},∀0 ≤ 𝑡 ≤ 𝑝 + 1.

And we define indicators of the sides (denoted as 𝜎 ∈ {0, 1}𝑝+1) as the following:

𝜎𝑡 = 1{𝑥𝑡 ∈ [𝜇𝑡 , 𝑥max]},∀0 ≤ 𝑡 ≤ 𝑝.

To simplify the notation, we let 𝜃 := (𝜇, 𝑤, 𝛿) ∈ Θ := [0, 𝑥max] 𝑝+1 ×W 𝑝+𝐻 × Δ𝑝+2.
While 𝜓(𝑦, 𝑧; 𝜃) can decide a unique pair of (𝜉, 𝜎), we can also define a new
equality-constrained optimization problem using (𝑦, 𝑧; 𝜃) and (𝜉, 𝜎):

Definition 3.5.1. Define the equality-constrained optimization problem

𝜓̂(𝑦, 𝑧; 𝜃; 𝜉, 𝜎) = arg min
𝑥−𝐻+1:𝑝+𝐻−1

𝑝∑︁
𝑡=0

𝑓
(𝜎𝑡 )
𝑡 (𝑥𝑡 ; 𝜇𝑡) +

𝑝+𝐻−1∑︁
𝑡=0

𝑐𝑡 (𝑥𝑡:𝑡−𝐻+1;𝑤𝑡) (3.114a)

s.t. 𝑥𝑡 =


0, if 𝜉1,𝑡 = 1

𝑥max, if 𝜉2,𝑡 = 1

𝜇𝑡 , if 𝜉3,𝑡 = 1

,∀0 ≤ 𝑡 ≤ 𝑝, (3.114b)

𝑥𝑡 − 𝑥𝑡−1 = −𝛿𝑡 , if 𝜉4,𝑡 = 1,∀0 ≤ 𝑡 ≤ 𝑝 + 1, (3.114c)

𝑥−𝐻+1:−1 = 𝑦, 𝑥𝑝+1:𝑝+𝐻−1 = 𝑧. (3.114d)

Note that it is possible that the optimization problem 𝜓̂(𝑦, 𝑧; 𝜃; 𝜉, 𝜎) for some
parameters and constraint configurations. We use 𝜄(𝑦, 𝑧; 𝜃; 𝜉, 𝜎) to denote the
optimal value of this optimization problem. The following lemma states that the
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optimal solution of (3.112) will not change if we remove all inactive inequality
constraints and leave active constraints as equality constraints.

Lemma 3.5.2. Suppose Assumption 3.5.1 holds and 𝑝 ≥ 𝑑. For 𝑦, 𝑧 ∈ [0, 𝑥max]𝐻−1

and 𝜃 ∈ Θ, let 𝜉, 𝜎 be the corresponding indicators of active constraints/sides.
Then, we have

𝜓(𝑦, 𝑧; 𝜃) = 𝜓̂(𝑦, 𝑧; 𝜃; 𝜉, 𝜎) and 𝜄(𝑦, 𝑧; 𝜃) = 𝜄(𝑦, 𝑧; 𝜃; 𝜉, 𝜎).

Proof of Lemma 3.5.2. Note that

𝜄 (𝑦, 𝑧; 𝜃) ≥ 𝜄 (𝑦, 𝑧; 𝜃; 𝜉, 𝜎)

because the optimization problem on the RHS has less constraints. If the inequality
holds with equality, we must have 𝜓(𝑦, 𝑧; 𝜃) = 𝜓̂(𝑦, 𝑧; 𝜃; 𝜉, 𝜎) since the optimal
solution for the LHS is feasible for the RHS by the assumption on active constraints,
and the optimization problem on the RHS has a unique solution. Otherwise, we
must have

𝜓 (𝑦, 𝑧; 𝜃) ≠ 𝜓̂ (𝑦, 𝑧; 𝜃; 𝜉, 𝜎) , and 𝜄 (𝑦, 𝑧; 𝜃) > 𝜄 (𝑦, 𝑧; 𝜃; 𝜉, 𝜎) .

Consider the convex combination 𝜁 (𝜂) for 𝜂 ∈ [0, 1] defined as

𝜁 (𝜂) = (1 − 𝜂)𝜓 (𝑦, 𝑧; 𝜃) + 𝜂𝜓̂ (𝑦, 𝑧; 𝜃; 𝜉, 𝜎) .

Note that 𝜁 (𝜂) satisfies all the active constraints and sides as specified by (𝜉, 𝜎)
because they are active for all 𝜂 ∈ [0, 1]. Since the constraints of (3.112) that are not
in (𝜉, 𝜎) are inactive at 𝜂 = 0, there must exist 𝜂 > 0 such that 𝜁 (𝜂) is also feasible
for (3.112). 𝜁 (𝜂) achieves a strictly smaller objective than 𝜁 (0) = 𝜓 (𝑦, 𝑧; 𝜃), which
leads to a contradiction.

Lemma 3.5.2 establishes that given any feasible tuple of (𝑦, 𝑧; 𝜃), one can find at
least one pair of (𝜉, 𝜎) such that 𝜓(𝑦, 𝑧; 𝜃) = 𝜓̂(𝑦, 𝑧; 𝜃; 𝜉, 𝜎), while there can be
other (𝜉′, 𝜎′) that satisfies 𝜓(𝑦, 𝑧; 𝜃) = 𝜓̂(𝑦, 𝑧; 𝜃; 𝜉′, 𝜎′).

Lemma 3.5.3. Suppose Assumption 3.5.1 holds and 𝑝 ≥ 𝑑. If both 𝜓̂(𝑦, 𝑧; 𝜃; 𝜉, 𝜎)
and 𝜓̂(𝑦′, 𝑧′; 𝜃′; 𝜉, 𝜎) exist for 𝑦, 𝑧, 𝑦′, 𝑧′ ∈ [0, 𝑥max]𝐻−1 and (𝜉, 𝜎), then we have

𝜓̂(𝑦, 𝑧; 𝜃; 𝜉, 𝜎)𝑡 − 𝜓̂(𝑦′, 𝑧′; 𝜃′; 𝜉, 𝜎)𝑡




≤ 𝐶

(
𝜌𝑡 ∥𝑦 − 𝑦′∥ + 𝜌𝑝−𝑡 ∥𝑧 − 𝑧′∥

)
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+ 𝐶
(
𝑝∑︁
𝜏=0

𝜌 |𝑡−𝜏 |
��𝜇𝜏 − 𝜇′𝜏�� + 𝑝+𝐻−1∑︁

𝜏=0
𝜌 |𝑡−𝜏 |



𝑤𝜏 − 𝑤′𝜏

 + 𝑝+1∑︁
𝜏=0

𝜌 |𝑡−𝜏 |
��𝛿𝜏 − 𝛿′𝜏��) ,

(3.115)

where

𝜌 =

(
1 − 2

1 +
√︁

1 + (ℓ/𝑚 𝑓 )

) 1
𝐻 (𝐻+𝑑)

, 𝐶 =
2ℓ̄

𝑚 𝑓 𝜌
(𝐻−2) (𝐻+𝑑) .

Here, ℓ := max{𝐻ℓ𝑐, ℓ𝑤} and ℓ̄ := max{𝐻ℓ 𝑓 , ℓ𝜇, ℓ}.

Proof of Lemma 3.5.3. We do a variable change to eliminate all constraints in the
equality-constrained optimization problem. After the elimination, we get an un-
constrained optimization problem with the free variables 𝑥𝑡0 , 𝑥𝑡1 , . . . , 𝑥𝑡𝑞 where the
indices satisfy 0 ≤ 𝑡0 < 𝑡1 < . . . < 𝑡𝑞 ≤ 𝑝. To simplify the notation, we let 𝑡−1 = −1
and 𝑡𝑞+1 = 𝑝+1. For 𝜏 that satisfies 𝑡𝑖 < 𝜏 < 𝑡𝑖+1, we have either 𝑥𝜏 = 𝑥𝑡𝑖−

∑𝜏
𝛾=𝑡𝑖+1 𝛿𝛾

or 𝑥𝜏 is some constant. Without loss of generality, we can assume 𝑡𝑖+1 ≤ 𝑡𝑖 + 𝑑 + 𝐻,
because otherwise we can find 𝜏 ∈ (𝑡𝑖, 𝑡𝑖+1 − 𝐻] such that 𝑥𝜏:𝜏+𝐻−1 are constants,
which means the free variables after 𝑥𝑡𝑖+1 will not change, regardless of how we
perturb 𝑦, and the free variables before 𝑥𝑡𝑖 will not change, regardless of how we
perturb 𝑧. Thus, we can decompose the perturbation to the left side and the right
side and derive them separately.

After the change of variable, the objective becomes a function ℎ̂ of 𝑥𝑡0 , 𝑥𝑡1 , . . . , 𝑥𝑡𝑞 .
To simplify the notation, we let 𝑥𝜏 := 𝑥𝑡𝜏 , where 𝜏 = 0, . . . , 𝑞. We can decompose
ℎ̂ as

ℎ̂(𝑥0:𝑞; 𝜁) = ℎ̂𝑎 (𝑥0:𝑞; 𝜇) + ℎ̂𝑏 (𝑥0:𝑞; 𝜁),

where 𝜁 = (𝑦, 𝑧, 𝜃), ℎ̂𝑎 is the sum of the original hitting costs minus 𝑚 𝑓

2


𝑥0:𝑞



2, and
ℎ̂𝑏 is the sum of the original switching costs plus 𝑚 𝑓

2


𝑥0:𝑞



2. By Assumption 3.5.1,
we see that

∇2
𝑥0:𝑞
ℎ̂𝑎 (𝑥0:𝑞; 𝜇) ⪰ 0, (𝑚 𝑓 + 𝐻ℓ𝑐)𝐼 ⪰ ∇2

𝑥0:𝑞
ℎ̂𝑏 (𝑥0:𝑞; 𝜁) ⪰ 𝑚 𝑓 𝐼 . (3.116)

We also note that ∇2
𝑥0:𝑞
ℎ̂𝑎 (𝑥0:𝑞; 𝜇) is a diagonal matrix and ∇2

𝑥0:𝑞
ℎ̂𝑏 (𝑥0:𝑞; 𝜁) is a

2𝐻-banded matrix.

We can follow a similar procedure as Theorem 3.1 in Lin, Hu, Shi, et al., 2021 to
show

𝜓̂(𝑦, 𝑧; 𝜃; 𝜉, 𝜎)𝑡𝜏 − 𝜓̂(𝑦′, 𝑧′; 𝜃′; 𝜉, 𝜎)𝑡𝜏
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≤ 𝐶0

(
𝜌𝜏0 ∥𝑦 − 𝑦

′∥ + 𝜌𝑞−𝜏0 ∥𝑧 − 𝑧′∥
)

+ 𝐶0

(
𝑝∑︁
𝑖=0

𝜌
|𝜙(𝑖)−𝜏 |
0

��𝜇𝑖 − 𝜇′𝑖 �� + 𝑝+𝐻−1∑︁
𝑖=0

𝜌
|𝜙(𝑖)−𝜏 |
0



𝑤𝑖 − 𝑤′𝑖

 + 𝑝+1∑︁
𝑖=0

𝜌
|𝜙(𝑖)−𝜏 |
0



𝛿𝑖 − 𝛿′𝑖

) ,
(3.117)

where 𝜙(𝑖) denotes the integer 𝑗 that satisfies 𝑡 𝑗 ≤ 𝑖 < 𝑡 𝑗+1 and

𝜌0 =

(
1 − 2√︁

1 + (ℓ/𝑚 𝑓 )

) 1
𝐻

, 𝐶0 =
2ℓ̄

𝑚 𝑓 𝜌
𝐻−2
0

.

Here, ℓ := max{𝐻ℓ𝑐, ℓ𝑤} and ℓ̄ := max{𝐻ℓ 𝑓 , ℓ𝜇, ℓ}. For completeness, we give the
detailed proof below: Let 𝑒 be a vector such that both 𝜁 and 𝜁 + 𝑒 are inY ×Z×Θ.
Consider the function

𝜓(𝜁 + 𝜂𝑒) := 𝜓̂(𝜁 + 𝜂𝑒; 𝜉, 𝜎)𝑡0:𝑞 ,

which is implicitly determined by the equation

∇𝑥0:𝑞 ℎ̂(𝜓(𝜁 + 𝜂𝑒), 𝜁 + 𝜂𝑒) = 0.

By the implicit function theorem we know that the function 𝜓 is differentiable.
Taking the derivative with respect to 𝜃 gives that

∇2
𝑥0:𝑞
ℎ̂(𝜓(𝜁 + 𝜂𝑒), 𝜁 + 𝜂𝑒) 𝑑

𝑑𝜂
𝜓(𝜁 + 𝜂𝑒)

= − ∇𝑦∇𝑥0:𝑞 ℎ̂(𝜓(𝜁 + 𝜂𝑒), 𝜁 + 𝜂𝑒)𝑒𝑦 − ∇𝑧∇𝑥0:𝑞 ℎ̂(𝜓(𝜁 + 𝜂𝑒), 𝜁 + 𝜂𝑒)𝑒𝑧

−
𝑝∑︁
𝑡=0
∇𝜇𝑡∇𝑥0:𝑞 ℎ̂(𝜓(𝜁 + 𝜂𝑒), 𝜁 + 𝜂𝑒)𝑒𝜇𝑡 −

𝑝+𝐻−1∑︁
𝑡=0
∇𝑤𝑡∇𝑥0:𝑞 ℎ̂(𝜓(𝜁 + 𝜂𝑒), 𝜁 + 𝜂𝑒)𝑒𝑤𝑡

−
𝑝∑︁
𝑡=0
∇𝛿𝑡∇𝑥0:𝑞 ℎ̂(𝜓(𝜁 + 𝜂𝑒), 𝜁 + 𝜂𝑒)𝑒𝛿𝑡 .

To simplify the notation, we define

𝑀 := ∇2
𝑥0:𝑞
ℎ̂(𝜓(𝜁 + 𝜂𝑒), 𝜁 + 𝜂𝑒),which is a (𝑞 + 1) × (𝑞 + 1) matrix,

𝑅(𝑦) := −∇𝑦∇𝑥0:𝑞 ℎ̂(𝜓(𝜁 + 𝜂𝑒), 𝜁 + 𝜂𝑒),which is a (𝑞 + 1) × (𝐻 − 1) matrix,

𝑅(𝑧) := −∇𝑧∇𝑥0:𝑞 ℎ̂(𝜓(𝜁 + 𝜂𝑒), 𝜁 + 𝜂𝑒),which is a (𝑞 + 1) × (𝐻 − 1) matrix,

𝑅(𝜇𝑡 ) := −∇𝜇𝑡∇𝑥0:𝑞 ℎ̂(𝜓(𝜁 + 𝜂𝑒), 𝜁 + 𝜂𝑒),which is a (𝑞 + 1) × 1 matrix,

𝑅(𝑤𝑡 ) := −∇𝑤𝑡∇𝑥0:𝑞 ℎ̂(𝜓(𝜁 + 𝜂𝑒), 𝜁 + 𝜂𝑒),which is a (𝑞 + 1) × 𝑑 matrix,

𝑅(𝛿𝑡 ) := −∇𝛿𝑡∇𝑥0:𝑞 ℎ̂(𝜓(𝜁 + 𝜂𝑒), 𝜁 + 𝜂𝑒),which is a (𝑞 + 1) × 1 matrix.
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Hence we can write

𝑑

𝑑𝜃
𝜓(𝜁 + 𝜂𝑒) = 𝑀−1

(
𝑅 (𝑦)𝑒𝑦 + 𝑅 (𝑧)𝑒𝑧 +

𝑝∑︁
𝑡=0

𝑅 (𝜇𝑡 )𝑒𝜇𝑡 +
𝑝+𝐻−1∑︁
𝑡=0

𝑅 (𝑤𝑡 )𝑒𝑤𝑡
+

𝑝∑︁
𝑡=0

𝑅 (𝛿𝑡 )𝑒𝛿𝑡

)
.

Recall that 𝑅(𝑦) , 𝑅(𝑧) are (𝑞 + 1) × (𝐻 − 1) matrices. For 𝑅(𝑦) , only the first 𝐻 − 1
rows are non-zero. For 𝑅(𝑧) , only the last 𝐻 − 1 rows are non-zero. Hence we see
that

𝑑

𝑑𝜂
𝜓(𝜁 + 𝜂𝑒)𝜏

= (𝑀−1)𝜏,0:𝐻−2𝑅
(𝑦)
0:𝐻−2,:𝑒𝑦 + (𝑀

−1)𝜏,𝑞−𝐻+2:𝑞𝑅
(𝑧)
𝑞−𝐻+2:𝑞,:𝑒𝑧

+
𝑞∑︁
𝑗=0

𝑡 𝑗+1−1∑︁
𝑖=𝑡 𝑗

(𝑀−1)𝜏, 𝑗𝑅(𝜇𝑖)𝑗 ,: 𝑒𝜇𝑖 +
𝑞+1∑︁
𝑗=0

𝑡 𝑗+1−1∑︁
𝑖=𝑡 𝑗

(𝑀−1)𝜏, 𝑗−𝐻+1: 𝑗+𝐻−1𝑅
(𝑤𝑖)
𝑗−𝐻+1: 𝑗+𝐻−1,:𝑒𝑤𝑖

+
𝑞∑︁
𝑗=0

𝑡 𝑗+1−1∑︁
𝑖=𝑡 𝑗

(𝑀−1)𝜏, 𝑗𝑅(𝛿𝑖)𝑗 ,: 𝑒𝛿𝑖 . (3.118)

Recall that ℓ̄ := max{𝐻ℓ𝑐, 𝐻ℓ 𝑓 , ℓ𝜇, ℓ𝑤}. We know that the norms of

𝑅
(𝑦)
0:𝐻−2,:, 𝑅

(𝑧)
𝑞−𝐻+2:𝑞,:, 𝑅

(𝜇𝑖)
𝑗 ,: , 𝑅

(𝑤𝑖)
𝑗−𝐻+1: 𝑗+𝐻−1,:, and 𝑅(𝛿𝑖)

𝑗 ,:

are all upper bounded by ℓ̄. Taking norm on both sides of (3.118) gives



 𝑑𝑑𝜃𝜓(𝜁 + 𝜂𝑒)𝜏




≤ ℓ̄



(𝑀−1)𝜏,0:𝐻−2




𝑒𝑦

 + ℓ̄

(𝑀−1)𝜏,𝑞−𝐻+2:𝑞



∥𝑒𝑧∥
+ ℓ̄

𝑞∑︁
𝑗=0

𝑡 𝑗+1−1∑︁
𝑖=𝑡 𝑗



(𝑀−1)𝜏, 𝑗




𝑒𝜇𝑖

 + ℓ̄ 𝑞+1∑︁

𝑗=0

𝑡 𝑗+1−1∑︁
𝑖=𝑡 𝑗



(𝑀−1)𝜏, 𝑗−𝐻+1: 𝑗+𝐻−1




𝑒𝑤𝑖



+ ℓ̄
𝑞∑︁
𝑗=0

𝑡 𝑗+1−1∑︁
𝑖=𝑡 𝑗



(𝑀−1)𝜏, 𝑗




𝑒𝛿𝑖

. (3.119)

Note that 𝑀 can be decomposed as 𝑀 = 𝑀𝑎 + 𝑀𝑏, where

𝑀𝑎 := ∇2
𝑥0:𝑞
ℎ̂𝑎 (𝜓(𝜁 + 𝜂𝑒), 𝜁 + 𝜂𝑒),

𝑀𝑏 := ∇2
𝑥0:𝑞
ℎ̂𝑏 (𝜓(𝜁 + 𝜂𝑒), 𝜁 + 𝜂𝑒).

Since 𝑀𝑎 is a diagonal (𝑞 + 1) × (𝑞 + 1) matrix and satisfies 𝑀𝑎 ⪰ 0, and 𝑀𝑏 is
2𝐻-banded and satisfies (𝑚 𝑓 + ℓ)𝐼 ⪰ 𝑀𝑏 ⪰ 𝑚 𝑓 𝐼, we obtain the following with
Lemma B.1 in Lin, Hu, Shi, et al., 2021:

(𝑀−1)𝜏,0:𝐻−2



 ≤ 2
𝑚 𝑓

𝜌
𝜏−(𝐻−2)
0 ,



(𝑀−1)𝜏,𝑞−𝐻+2:𝑞


 ≤ 2

𝑚 𝑓

𝜌
𝑞−𝜏−(𝐻−2)
0
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(𝑀−1)𝜏, 𝑗


 ≤ 2

𝑚 𝑓

𝜌
|𝜏− 𝑗 |
0 ,



(𝑀−1)𝜏, 𝑗−𝐻+1: 𝑗+𝐻−1


 ≤ 2

𝑚 𝑓

𝜌
|𝜏− 𝑗 |−(𝐻−1)
0 ,

where 𝜌0 := (
√︁
𝑐𝑜𝑛𝑑 (𝑀𝑏) − 1)/(

√︁
𝑐𝑜𝑛𝑑 (𝑀𝑏) + 1) = 1 − 2 ·

(√︁
1 + (ℓ/𝜇) + 1

)−1
.

Substituting this into (3.119), we see that



 𝑑𝑑𝜃𝜓(𝜁 + 𝜃𝑒)𝜏




≤ 𝐶0

(
𝜌𝜏0



𝑒𝑦

 + 𝜌𝑞−𝜏0 ∥𝑒𝑧∥ +
𝑝∑︁
𝑖=0

𝜌
|𝜙(𝑖)−𝜏 |
0



𝑒𝜇𝑖

 + 𝑝+𝐻−1∑︁
𝑖=0

𝜌
|𝜙(𝑖)−𝜏 |
0



𝑒𝑤𝑖


+

𝑝∑︁
𝑖=0

𝜌
|𝜙(𝑖)−𝜏 |
0



𝑒𝛿𝑖

) .
Hence we obtain

𝜓(𝜁)𝜏 − 𝜓(𝜁 + 𝑒)𝜏



=





∫ 1

0

𝑑

𝑑𝜂
𝜓(𝜁 + 𝜂𝑒)𝜏𝑑𝜂






≤

∫ 1

0





 𝑑𝑑𝜂𝜓(𝜁 + 𝜂𝑒)𝜏



𝑑𝜂
≤ 𝐶0

(
𝜌𝜏0



𝑒𝑦

 + 𝜌𝑞−𝜏0 ∥𝑒𝑧∥ +
𝑝∑︁
𝑖=0

𝜌
|𝜙(𝑖)−𝜏 |
0



𝑒𝜇𝑖

 + 𝑝+𝐻−1∑︁
𝑖=0

𝜌
|𝜙(𝑖)−𝜏 |
0



𝑒𝑤𝑖


+

𝑝∑︁
𝑖=0

𝜌
|𝜙(𝑖)−𝜏 |
0



𝑒𝛿𝑖

) .
This finishes the proof of (3.117). Recall that we have 𝑡𝑖 < 𝑡𝑖+1 ≤ 𝑡𝑖 + 𝑑 + 𝐻.
Therefore, (3.117) implies (3.115).

In the next lemma, we show a continuity property of the “equality-constrained
labeling” method.

Lemma 3.5.4. Suppose Assumption 3.5.1 holds and 𝑝 ≥ 𝑑. For a pair of (𝜉, 𝜎), if
any tuple in the sequence {(𝑦𝑞, 𝑧𝑞; 𝜃𝑞)}∞𝑞=1 satisfies𝜓(𝑦𝑞, 𝑧𝑞; 𝜃𝑞) = 𝜓̂(𝑦𝑞, 𝑧𝑞; 𝜃𝑞; 𝜉, 𝜎)
and lim𝑞→∞(𝑦𝑞, 𝑧𝑞, 𝜃𝑞) = (𝑦, 𝑧, 𝜃), then we have

𝜓(𝑦, 𝑧; 𝜃) = 𝜓̂(𝑦, 𝑧; 𝜃; 𝜉, 𝜎).

Proof of Lemma 3.5.4. Note that the perturbation bound in Lemma 3.5.3 also es-
tablishes the continuity of the function 𝜓̂(·, ·; ·; 𝜉, 𝜎). Therefore, we see that

lim
𝑞→∞

𝜓(𝑦𝑞, 𝑧𝑞; 𝜃𝑞) = lim
𝑞→∞

𝜓̂(𝑦𝑞, 𝑧𝑞; 𝜃𝑞; 𝜉, 𝜎) = 𝜓̂(𝑦, 𝑧; 𝜃; 𝜉, 𝜎).
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Since the constraint set of (3.112) is closed, we know 𝜓̂(𝑦, 𝑧; 𝜃; 𝜉, 𝜎) is a feasible
solution of (3.112).

For the sake of contradiction, we assume 𝜓(𝑦, 𝑧; 𝜃) ≠ 𝜓̂(𝑦, 𝑧; 𝜃; 𝜉, 𝜎). In this case,
since 𝜓̂(𝑦, 𝑧; 𝜃; 𝜉, 𝜎) is feasible for (3.112), we must have

𝜄(𝑦, 𝑧; 𝜃) < 𝜄(𝑦, 𝑧; 𝜃; 𝜉, 𝜎).

Define the optimality gap as Λ := 𝜄(𝑦, 𝑧; 𝜃; 𝜉, 𝜎) − 𝜄(𝑦, 𝑧; 𝜃).

Since lim𝑞→∞(𝑦𝑞, 𝑧𝑞; 𝜃𝑞) = (𝑦, 𝑧; 𝜃), for an arbitrary small positive real number 𝜖 ,
we can find a positive integer 𝑞 such that

𝑦𝑞 − 𝑦

 + 

𝑧𝑞 − 𝑧

 + 𝑑𝑖𝑠𝑡 (𝜃, 𝜃𝑞) < 𝜖,
where 𝑑𝑖𝑠𝑡 (𝜃, 𝜃′) = ∑𝑝

𝑖=0

��𝜇𝑖 − 𝜇′𝑖 �� + ∑𝑝+𝐻−1
𝑖=0



𝑤𝑖 − 𝑤′𝑖

 + ∑𝑝+1
𝑖=0

��𝛿𝑖 − 𝛿′𝑖 ��. Based on
𝑥−𝐻+1:𝑝+𝐻−1 := 𝜓(𝑦, 𝑧; 𝜃), we construct a feasible solution 𝑥′−𝐻+1:𝑝+𝐻−1 =: 𝑥′ for
the optimization problem (3.112) with parameters (𝑦𝑞, 𝑧𝑞; 𝜃𝑞) as following: Let
𝑥′0:𝑝 = 𝑥0:𝑝, 𝑥−𝐻+1:−1 = 𝑦, 𝑥𝑝+1:𝑝+𝐻−1 = 𝑧. For 𝑡 = 0, 1, . . ., if 𝑥′𝑡 − 𝑥′𝑡−1 < −𝛿

(𝑞)
𝑡 , we

increase 𝑥′𝑡 such that 𝑥′𝑡 = 𝑥′𝑡−1 − 𝛿
(𝑞)
𝑡 . Then, for 𝑡 = 𝑝, 𝑝 − 1, . . ., if 𝑥′

𝑡+1 − 𝑥
′
𝑡 < −𝛿

(𝑞)
𝑡+1,

we decrease 𝑥′𝑡 such that 𝑥′𝑡 = 𝑥′𝑡+1 + 𝛿
(𝑞)
𝑡+1. Note that this procedure can guarantee that

𝑥′ is a feasible solution for (3.112), and their distance are upper bounded by

∥𝜓(𝑦, 𝑧; 𝜃) − 𝑥′∥ ≤ (2𝑑 + 1)𝜖 . (3.120)

Since the objective function of (3.112) is Lipschitz in (𝑥, 𝑦, 𝑧, 𝜃), by (3.120), we
know there exists some positive constant 𝑐0 such that

𝜄(𝑦𝑞, 𝑧𝑞; 𝜃𝑞) − 𝜄(𝑦, 𝑧; 𝜃) ≤ 𝑐0 (∥𝑥′ − 𝜓(𝑦, 𝑧; 𝜃)∥ + 𝜖) ≤ (2𝑑 + 2)𝑐0𝜖 . (3.121)

On the other hand, by Lemma 3.5.3, we see that

𝜓̂(𝑦𝑞, 𝑧𝑞; 𝜃𝑞; 𝜉, 𝜎) − 𝜓̂(𝑦, 𝑧; 𝜃; 𝜉, 𝜎)


 ≤ (

𝐶

1 − 𝜌 + 1
)
𝜖 . (3.122)

Since the objective function of (3.112) is smooth in (𝑥, 𝑦, 𝑧, 𝜃), by (3.122), we see
that ��𝜄(𝑦𝑞, 𝑧𝑞; 𝜃𝑞; 𝜉, 𝜎) − 𝜄(𝑦, 𝑧; 𝜃; 𝜉, 𝜎)

�� ≤ 𝑐0

(
𝐶

1 − 𝜌 + 2
)
𝜖 . (3.123)

Therefore, we see that

𝜄(𝑦𝑞, 𝑧𝑞; 𝜃𝑞; 𝜉, 𝜎) − 𝜄(𝑦𝑞, 𝑧𝑞; 𝜃𝑞) (3.124a)

≥ −
��𝜄(𝑦𝑞, 𝑧𝑞; 𝜃𝑞; 𝜉, 𝜎) − 𝜄(𝑦, 𝑧; 𝜃; 𝜉, 𝜎)

�� + (𝜄(𝑦, 𝑧; 𝜃; 𝜉, 𝜎) − 𝜄(𝑦, 𝑧; 𝜃))
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+ (𝜄(𝑦, 𝑧; 𝜃) − 𝜄(𝑦𝑞, 𝑧𝑞; 𝜃𝑞))

≥ − 𝑐0

(
𝐶

1 − 𝜌 + 2
)
𝜖 + Λ − 𝑐0(2𝑑 + 2)𝜖 (3.124b)

= Λ − 𝑐0

(
𝐶

1 − 𝜌 + 2𝑑 + 4
)
𝜖,

where we used (3.121) and (3.123) in (3.124b). Let 𝜖 := 1
2Λ𝑐

−1
0

(
𝐶

1−𝜌 + 2𝑑 + 4
)−1

leads to a contradiction with the assumption that 𝜄(𝑦𝑞, 𝑧𝑞; 𝜃𝑞; 𝜉, 𝜎) = 𝜄(𝑦𝑞, 𝑧𝑞; 𝜃𝑞).
Therefore, we have shown that 𝜓(𝑦, 𝑧; 𝜃) = 𝜓̂(𝑦, 𝑧; 𝜃; 𝜉, 𝜎).

With the above technical lemmas, we are ready to finish the proof of Theorem 3.5.1.

Proof of Theorem 3.5.1. Consider the segment

((1 − 𝜂)𝑦 + 𝜂𝑦′, (1 − 𝜂)𝑧 + 𝜂𝑧′; (1 − 𝜂)𝜃 + 𝜂𝜃′) , 𝜂 ∈ [0, 1] .

Note that since (1 − 𝜂)𝜓(𝑦, 𝑧; 𝜃) + 𝜂𝜓(𝑦′, 𝑧′; 𝜃′) is a feasible solution for the opti-
mization problem (3.112) parameterized by

((1 − 𝜂)𝑦 + 𝜂𝑦′, (1 − 𝜂)𝑧 + 𝜂𝑧′; (1 − 𝜂)𝜃 + 𝜂𝜃′) ,

we know that the corresponding optimization problem is feasible. With some slight
abuse of notation, we use (𝜉, 𝜎) (𝜂) ⊆ Ξ×Σ to denote the set of indicators of active
constraints and sides such that

𝜓 ((1 − 𝜂)𝑦 + 𝜂𝑦′, (1 − 𝜂)𝑧 + 𝜂𝑧′; (1 − 𝜂)𝜃 + 𝜂𝜃′)
= 𝜓̂ ((1 − 𝜂)𝑦 + 𝜂𝑦′, (1 − 𝜂)𝑧 + 𝜂𝑧′; (1 − 𝜂)𝜃 + 𝜂𝜃′; 𝜉, 𝜎) ,∀(𝜉, 𝜎) ∈ (𝜉, 𝜎) (𝜂).

By Lemma 3.5.2, we know this set is not empty for any 𝜂 ∈ [0, 1].

We can divide the interval [0, 1] into 0 = 𝜂0 < 𝜂1 < . . . < 𝜂𝑞 = 1 for some positive
integer 𝑞 ≤ 25𝑝+6 such that there exists a sequence of different indicators of active
constraints and sides (𝜉, 𝜎)0:𝑞−1 which satisfies

𝜓 ((1 − 𝜂𝑖) (𝑦, 𝑧; 𝜃) + 𝜂𝑖 (𝑦′, 𝑧′; 𝜃′)) = 𝜓̂ ((1 − 𝜂𝑖) (𝑦, 𝑧; 𝜃) + 𝜂𝑖 (𝑦′, 𝑧′; 𝜃′); (𝜉, 𝜎)𝑖) ,
𝜓 ((1 − 𝜂𝑖+1) (𝑦, 𝑧; 𝜃) + 𝜂𝑖+1(𝑦′, 𝑧′; 𝜃′)) = 𝜓̂ ((1 − 𝜂𝑖+1) (𝑦, 𝑧; 𝜃) + 𝜂𝑖+1(𝑦′, 𝑧′; 𝜃′); (𝜉, 𝜎)𝑖)

for all 0 ≤ 𝑖 ≤ 𝑞 − 1. Note that this requires (𝜉, 𝜎) (𝜂𝑖) to contain both (𝜉, 𝜎)𝑖−1 and
(𝜉, 𝜎)𝑖 for 𝑖 = 1, . . . , 𝑞 − 1. To construct the sequence 𝜂0:𝑞 and (𝜉, 𝜎)0:𝑞−1, we first
have 𝜂0 = 0 and let (𝜉, 𝜎)0 be any pair (𝜉, 𝜎) ∈ (𝜉, 𝜎) (𝜂0) such that

sup{𝜂 ∈ [0, 1] | 𝜓 ((1 − 𝜂) (𝑦, 𝑧; 𝜃) + 𝜂(𝑦′, 𝑧′; 𝜃′))
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= 𝜓̂ ((1 − 𝜂) (𝑦, 𝑧; 𝜃) + 𝜂(𝑦′, 𝑧′; 𝜃′); 𝜉, 𝜎)} > 0,

and let 𝜂1 be the supremum value above. Since 0 = inf (0, 1] and (𝜉, 𝜎) (𝜂) ⊆ Ξ×Σ
is nonempty for every 𝜂 ∈ (0, 1], we know such (𝜉, 𝜎)0 exists by Lemma 3.5.4.
Suppose we have already constructed 𝜂0:𝑖, (𝜉, 𝜎)0:𝑖−1, and 𝜂𝑖 < 1. Then we select
(𝜉, 𝜎)𝑖 to be any pair (𝜉, 𝜎) such that

sup{𝜂 ∈ [0, 1] | 𝜓 ((1 − 𝜂) (𝑦, 𝑧; 𝜃) + 𝜂(𝑦′, 𝑧′; 𝜃′))
= 𝜓̂ ((1 − 𝜂) (𝑦, 𝑧; 𝜃) + 𝜂(𝑦′, 𝑧′; 𝜃′); 𝜉, 𝜎)} > 𝜂𝑖,

and let 𝜂𝑖+1 be the supremum value above. We can repeat this construction and stop
when 𝜂𝑖+1 = 1. By the construction, we know all pairs in the sequence (𝜉, 𝜎)0:𝑖−1

are distinct, thus the construction will terminate in finite time. Hence, we have a
finite index 𝑞 such that 𝜂𝑞 = 1.

By Lemma 3.5.3, we know that

𝜓 ((1 − 𝜂𝑖) (𝑦, 𝑧; 𝜃) + 𝜂𝑖 (𝑦′, 𝑧′; 𝜃′))𝑡 − 𝜓 ((1 − 𝜂𝑖+1) (𝑦, 𝑧; 𝜃) + 𝜂𝑖+1(𝑦′, 𝑧′; 𝜃′))𝑡


≤ (𝜂𝑖+1 − 𝜂𝑖)𝐶

(
𝜌𝑡 ∥𝑦 − 𝑦′∥ + 𝜌𝑝−𝑡 ∥𝑧 − 𝑧′∥

)
(3.125)

+ (𝜂𝑖+1 − 𝜂𝑖)𝐶
(
𝑝∑︁
𝜏=0

𝜌 |𝑡−𝜏 |
��𝜇𝜏 − 𝜇′𝜏 �� + 𝑝+𝐻−1∑︁

𝜏=0
𝜌 |𝑡−𝜏 |



𝑤𝜏 − 𝑤′𝜏

 + 𝑝+1∑︁
𝜏=0

𝜌 |𝑡−𝜏 |


𝛿𝜏 − 𝛿′𝜏

) .

(3.126)

Summing (3.125) over 𝑖 = 0, 1, . . . , 𝑞 − 1 finishes the proof.
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C h a p t e r 4

STOCHASTIC PREDICTIONS

The results in Chapter 3 provide performance guarantees for MPC-style policies
under potentially adversarial ways to generate the predictions under constraints such
as prediction error bounds. Although such worst-case guarantees are important for
many safety-critical or risk-averse scenarios, it may be overly-conservative in other
applications where we care about the performance in expectation. The adversarial
prediction model can be insufficient to characterize the benefit of predictive control
because it overlooks the stochastic dependence between predictions and unknown
problem parameters. In addition, instead of asking what a standard predictive policy
like MPC can achieve, we seek to answer a more fundamental question:

What is the maximum achievable cost improvement under the optimal policy to
leverage predictions relative to the no-prediction scenario?

As we will show in this chapter, the optimal predictive policy can be expressed
equivalently as MPC in specific problem settings, but this equivalence does not hold
in general.

In this chapter, we introduce a stochastic prediction model and define prediction
power as the maximum cost improvement in the above question. We show that
prediction power is always non-negative and establish a lower bound under two suf-
ficient conditions, characterizing the fundamental benefit of incorporating stochastic
predictions. We instantiate this in two settings: (i) in linear quadratic regulator, we
derive a closed-form prediction power expression and reveal a mismatch between
prediction accuracy and control cost, and (ii) for non-quadratic costs, we show that
even weakly dependent predictions yield significant performance gains.

This chapter is based on the following paper:

[Lin, Chen, et al., 2025] Lin, Yiheng, Zaiwei Chen, Christopher Yeh, and Adam
Wierman. “Maximizing the value of stochastic prediction in control: Accuracy is
not enough.” Under submission.
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4.1 Problem Setting
We consider a finite-horizon discrete-time optimal control problem with time-
varying dynamics and cost functions, where state transitions are subject to random
disturbances:

Control dynamics: 𝑋𝑡+1 = 𝑓𝑡 (𝑋𝑡 ,𝑈𝑡 ;𝑊𝑡) , 0 ≤ 𝑡 < 𝑇, with 𝑋0 = 𝑥0;

Stage cost: ℎ𝑡 (𝑋𝑡 ,𝑈𝑡), 0 ≤ 𝑡 < 𝑇, and terminal cost: ℎ𝑇 (𝑋𝑇 ). (4.1)

At each time step 𝑡, we let 𝑋𝑡 denote the system state and 𝑈𝑡 denote the control
action chosen by an agent. The function 𝑓𝑡 : R𝑛 × R𝑚 × R𝑘 → R𝑛 defines how the
next state 𝑋𝑡+1 depends on the current state 𝑋𝑡 , the control action𝑈𝑡 , and the random
disturbance 𝑊𝑡 . The agent incurs a stage cost ℎ𝑡 (𝑋𝑡 ,𝑈𝑡) at each intermediate time
step 𝑡 < 𝑇 and a terminal cost ℎ𝑇 (𝑋𝑇 ) at the final time step 𝑇 . At each time step 𝑡,
the controller observes the past disturbance𝑊𝑡−1 and a (possibly random) prediction
vector𝑉𝑡 (𝜃) ∈ R𝑑 before selecting a control action𝑈𝑡 , where 𝜃 is a parameter of the
predictor generating the prediction. We formally define the concept of predictions
and the parameter 𝜃 in the following.

Definition 4.1.1 (Predictions). At each time step 𝑡, the predictor with parameter
𝜃 ∈ Θ generates a prediction𝑉𝑡 (𝜃), where Θ denotes the set of all possible predictor
parameters. The predictions {𝑉0:𝑇−1(𝜃)}𝜃∈Θ and the disturbances𝑊0:𝑇−1 live in the
same probability space.

Compared with previous works (Lin, Hu, Shi, et al., 2021; Li, Yang, Qu, Shi, et
al., 2022) that assume predictions targeting specific disturbances, Definition 4.1.1
focuses on the stochastic relationship between predictions and system uncertainties,
yielding a unified framework for comparing different forms of prediction based on
their effectiveness for control—even if their precise nature is unknown. Because
predictions and disturbances share the same probability space, we can compare
prediction sequences 𝑉0:𝑇−1(𝜃) and 𝑉0:𝑇−1(𝜃′), generated by different predictors
with parameters 𝜃 and 𝜃′.

Observe that the disturbances𝑊0:𝑇−1 and predictions in Definition 4.1.1 do not de-
pend on the current state or past trajectory, reflecting their exogenous nature. For ex-
ample, consider the problem of quadcopter control in windy conditions (O’Connell
et al., 2022). In this case, the wind disturbances are not influenced by the quad-
copter’s state or control inputs. Under this causal relationship, we define the problem
instance as Ξ =

(
𝑊0:𝑇−1, {𝑉0:𝑇−1(𝜃)}𝜃∈Θ

)
, and make the following assumption.
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Assumption 4.1.1. The generation of the problem instance Ξ is oblivious—i.e., the
process of sampling Ξ from the distribution of problem instances is not affected by
the agent’s states or actions.

Let 𝜉 =
(
𝑤0:𝑇−1, {𝑣0:𝑇−1(𝜃)}𝜃∈Θ

)
denote a realization of the problem instance,

including disturbances and all parameterized predictions. Under Assumption 4.1.1,
Ξ is viewed as realized to 𝜉 before control begins, although the agent observes
each disturbance and prediction step by step. Similar assumptions about oblivious
environments or predictions appear in online optimization (Hazan, 2016; Rutten
et al., 2023), ensuring that future disturbances or predictions remain unchanged by
past states or actions. Hence, for a fixed predictor parameter 𝜃, we define a predictive
policy as a mapping from the current state and past disturbances and predictions to
a control action.

Definition 4.1.2 (Predictive policy). Consider a fixed predictor parameter 𝜃. For
each time step 𝑡, let 𝐼𝑡 (𝜃) := (𝑊0:𝑡−1, 𝑉0:𝑡 (𝜃)) denote the history of past disturbances
and predictions, and let F𝑡 (𝜃) := 𝜎(𝐼𝑡 (𝜃))1. A predictive policy that applies to
the predictor with parameter 𝜃 is a sequence of functions 𝜋0:𝑇−1, where 𝜋𝑡 maps a
state/history pair to a control action.

Given a fixed predictive policy sequence 𝜋 = 𝜋0:𝑇−1 for a predictor parameter 𝜃, we
evaluate its performance via the expected total cost over Ξ:

𝐽𝜋 (𝜃) := E[
𝑇−1∑︁
𝑡=0

ℎ𝑡 (𝑋𝑡 ,𝑈𝑡) + ℎ𝑇 (𝑋𝑇 )],

where 𝑋0 = 𝑥0, 𝑋𝑡+1 = 𝑓𝑡 (𝑋𝑡 ,𝑈𝑡 ;𝑊𝑡), 𝑈𝑡 = 𝜋𝑡 (𝑋𝑡 ; 𝐼𝑡 (𝜃)), for 𝑡 = 0, . . . , 𝑇 − 1. The
optimal cost under 𝜃 is defined as 𝐽∗(𝜃) = min𝜋 𝐽𝜋 (𝜃), where the minimum is over
all predictive policies that use the predictor parameter 𝜃.

Following prior works on the benefits of using predictions in online decision making
(Yu et al., 2020), we define prediction power by comparing against a baseline that
provides minimal information (e.g., no prediction). Without loss of generality, let
0 ∈ Θ be the baseline predictor parameter so that any 𝜃 ≠ 0 provides at least as much
information as 0, i.e., F𝑡 (𝜃) ⊇ F𝑡 (0). Based on this baseline, we define prediction
power as the maximum possible cost improvement achieved by using predictions
under 𝜃 relative to the baseline, formally stated in Definition 4.1.3.

1For any random variable 𝑌 , we use 𝜎(𝑌 ) to denote the 𝜎-algebra it generates.
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Definition 4.1.3 (Prediction power). For a predictor with parameter 𝜃, its prediction
power in the optimal control problem (4.1) is 𝑃(𝜃) := 𝐽∗(0) − 𝐽∗(𝜃).

Our definition of prediction power is based on the optimal control policy under a
given predictor parameter and, therefore, is independent of any specific policy class.
Many previous works have considered prediction-enabled improvement within a
specific policy class (Li, Qu, and Li, 2018; Li, Chen, and Li, 2019; Chen, Agarwal,
et al., 2015), where they focus on changes in 𝐽𝜋 (𝜃) rather than 𝐽∗(𝜃). In other
works, policies include parameters that can be tuned to perform optimally under
a specific predictor; that is, min𝜋∈a policy class 𝐽

𝜋 (𝜃). While these approaches are
useful in specific application scenarios, our definition, based on the general optimal
policy, is more universal because: (1) imposing policy class constraints may lead to
performance loss, and (2) the extent of improvement can depend on policy design and
parameterization, which shifts the focus away from valuing predictions themselves.

4.2 Sufficient Conditions for Characterization
Our main results characterize prediction power 𝑃(𝜃) to help determine whether and
which predictions yield better performance. If a lower bound of 𝑃(𝜃) is greater
than the cost of obtaining the predictor with parameter 𝜃, it is beneficial to use the
predictor, assuming that we can design or learn a near-optimal predictive policy.

Throughout this paper, let 𝜋̄ = 𝜋̄0:𝑇−1 denote the optimal policy for the predictor
with parameter 0 and 𝜋𝜃 = 𝜋𝜃0:𝑇−1 denote the optimal policy for the predictor with
parameter 𝜃. In other words, 𝐽 𝜋̄ (0) = 𝐽∗(0) and 𝐽𝜋𝜃 (𝜃) = 𝐽∗(𝜃). To compare
the policies 𝜋𝜃 and 𝜋̄, we introduce a function that we call the instance-dependent
Q function, inspired by the Q function in the study of Markov decision processes
(MDPs). For a given state-action pair (𝑥, 𝑢) and problem instance 𝜉, the instance-
dependent Q function for a policy 𝜋 evaluates the remaining cost incurred by taking
action 𝑢 from state 𝑥 and then following policy 𝜋 for all future time steps. Using 𝜄𝜏 (𝜃)
to denote the realization of 𝐼𝜏 (𝜃), for any 𝜏 = 0, . . . , 𝑇 − 1, the instance-dependent
Q function is defined as

𝑄𝜋𝜃

𝑡 (𝑥, 𝑢; 𝜉) =
𝑇−1∑︁
𝜏=𝑡

ℎ𝜏 (𝑥𝜏, 𝑢𝜏) + ℎ𝑇 (𝑥𝑇 ), where 𝑥𝑡 = 𝑥, 𝑢𝑡 = 𝑢, and

𝑥𝜏+1 = 𝑓𝜏 (𝑥𝜏, 𝑢𝜏;𝑤𝜏), for 𝑡 ≤ 𝜏 < 𝑇 ; 𝑢𝜏 = 𝜋𝜃𝜏 (𝑥𝜏; 𝜄𝜏 (𝜃)) , for 𝑡 < 𝜏 < 𝑇. (4.2)

The disturbance𝑤𝜏 and the history 𝜄𝜏 (𝜃) in (4.2) are decided by the problem instance
𝜉, which is an input to 𝑄𝜋𝜃

𝑡 . Similarly, we can define 𝑄 𝜋̄
𝑡 (𝑥, 𝑢; 𝜉) by replacing 𝜃
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with 0 and 𝜋𝜃 with 𝜋̄ in (4.2). Importantly, our instance-dependent Q function is
different from the classical definition of the Q function for MDPs or reinforcement
learning (RL), where it is the expectation of the cost to go. The instance-dependent
Q function denotes the actual remaining cost, which is a 𝜎(Ξ)-measurable random
variable. The classic definition of the Q function can be recovered by taking the
conditional expectation, i.e., E

[
𝑄𝜋𝜃

𝑡 (𝑥, 𝑢;Ξ) | 𝐼𝑡 (𝜃) = 𝜄𝑡 (𝜃)
]
. It is worth noting that

our instance-dependent Q function is about the cost instead of the reward, so lower
values are better.

With this definition of the instance-dependent Q function, the optimal policies 𝜋̄
and 𝜋𝜃 can be expressed as recursively minimizing the corresponding expected Q
functions conditioned on the available history. Starting with 𝐶𝜋𝜃

𝑇
(𝑥; 𝜉) = ℎ𝑇 (𝑥), for

time step 𝑡 = 𝑇 − 1, . . . , 0, we have

𝑄𝜋𝜃

𝑡 (𝑥, 𝑢; 𝜉) := ℎ𝑡 (𝑥, 𝑢) + 𝐶𝜋
𝜃

𝑡+1( 𝑓𝑡 (𝑥, 𝑢;𝑤𝑡); 𝜉), for 𝑥 ∈ R𝑛, 𝑢 ∈ R𝑚, and 𝜉;

𝜋𝜃𝑡 (𝑥; 𝜄𝑡 (𝜃)) := arg min
𝑢∈R𝑚

E
[
𝑄𝜋𝜃

𝑡 (𝑥, 𝑢;Ξ) | 𝐼𝑡 (𝜃) = 𝜄𝑡 (𝜃)
]
, for 𝑥 ∈ R𝑛 and 𝜄𝑡 (𝜃);

𝐶𝜋
𝜃

𝑡 (𝑥; 𝜉) := 𝑄𝜋𝜃

𝑡 (𝑥, 𝜋𝜃𝑡 (𝑥; 𝜄𝑡 (𝜃)); 𝜉), for 𝑥 ∈ R𝑛 and problem instance 𝜉. (4.3)

Similar recursive relationships also defines the optimal policy 𝜋̄ for the baseline
predictions, and we only need to replace 𝜃 with 0 and 𝜋𝜃 with 𝜋̄ in the above
equations. The recursive equations in (4.3) can be viewed as a generalization of the
classical Bellman optimality equation for general MDPs.

We are now ready to introduce our main result, which is a lower bound on the
prediction power 𝑃(𝜃). Our result relies on two conditions about a growth property
of the expected Q function under 𝜋𝜃 and the covariance of the optimal policy’s action
when conditioned on the 𝜎-algebra F𝑡 (0) of the baseline. We state these conditions
formally and provide intuitive explanations.

Condition 4.2.1. For a sequence of positive semi-definite matrices 𝑀0:𝑇−1, the
following inequality holds for all time steps 0 ≤ 𝑡 < 𝑇: For any 𝑥 ∈ R𝑛, 𝑢 ∈ R𝑚,
and history 𝜄𝑡 (𝜃),

E
[
𝑄𝜋𝜃

𝑡 (𝑥, 𝑢;Ξ) − 𝐶𝜋𝜃𝑡 (𝑥;Ξ) | 𝐼𝑡 (𝜃) = 𝜄𝑡 (𝜃)
]

≥ (𝑢 − 𝜋𝜃𝑡 (𝑥; 𝜄𝑡 (𝜃)))⊤𝑀𝑡 (𝑢 − 𝜋𝜃𝑡 (𝑥; 𝜄𝑡 (𝜃))). (4.4)

Condition 4.2.1 states that conditioned on any history 𝜄𝑡 (𝜃), the expected Q function
of policy 𝜋𝜃 grows at least quadratically as the action 𝑢 deviates from the optimal
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policy’s action. Note that one can always pick 𝑀𝑡 to be the all-zeros matrix to make
Condition 4.2.1 hold, but the choice of 𝑀𝑡 will affect the prediction power bound
in Theorem 4.2.3. When 𝑀𝑡 ≻ 0, deviating from the action of policy 𝜋𝜃 causes a
non-negligible loss. The loss is characterized by the difference between the resulting
Q function value and the cost-to-go function value. When this condition does not
hold with any non-zero matrix 𝑀𝑡 , one can construct an extreme case when 𝑄𝜋𝜃

𝑡 is
a constant by letting all cost functions ℎ0:𝑇 be constants; in this case, the prediction
power must be zero because every policy achieves the same total cost no matter
what predictions they use.

Condition 4.2.2. One of the following holds for the optimal policy 𝜋𝜃:

(a) For positive semi-definite matrices Σ0:𝑇−1, the following holds for all time steps
0 ≤ 𝑡 < 𝑇:

E
[
Cov

[
𝜋𝜃𝑡 (𝑋; 𝐼𝑡 (𝜃)) | 𝐼𝑡 (0)

] ]
⪰ Σ𝑡 , for any F𝑡 (0)-measurable 𝑋. (4.5)

(b) For nonnegative scalars𝜎0:𝑇−1, the following holds for all time steps 0 ≤ 𝑡 < 𝑇:

E
[
Tr

{
Cov

[
𝜋𝜃𝑡 (𝑋; 𝐼𝑡 (𝜃)) | 𝐼𝑡 (0)

]}]
≥ 𝜎𝑡 , for any F𝑡 (0)-measurable 𝑋.

(4.6)

Before discussing the details, we note that by setting𝜎𝑡 = Tr(Σ𝑡), Condition 4.2.2 (a)
implies (and is therefore stronger than) Condition 4.2.2 (b). Similar to Condi-
tion 4.2.1, one can always pickΣ𝑡 to be all-zeros matrix to satisfy Condition 4.2.2 (a),
but it will affect the prediction power bound in Theorem 4.2.3.

Condition 4.2.2 (a) states that conditioned on the history 𝐼𝑡 (0) from the baseline,
the covariance matrix of policy 𝜋𝜃’s action from any F𝑡 (0)-measurable state is
positive semi-definite in expectation. Recall that F𝑡 (0) = 𝜎(𝐼𝑡 (0)). To understand
this, suppose that the agent only has access to the baseline information. Then,
the agent cannot predict the action that policy 𝜋𝜃 would take. This should usually
hold because the action 𝜋𝜃𝑡 (𝑋; 𝐼𝑡 (𝜃)) is not F𝑡 (0)-measurable, and the lower bound
in (4.5) implies the mean-square prediction error cannot improve below a certain
threshold. When this condition does not hold with non-zero matrix Σ𝑡 (or scalar
𝜎𝑡), one can design a policy 𝜋̄′ that always picks the same action as 𝜋𝜃 but only
requires access to the baseline information 𝐼𝑡 (0), which implies 𝑃(𝜃) = 0 because
𝐽∗(0) ≤ 𝐽 𝜋̄

′ (0) = 𝐽∗(𝜃). This can happen, for example, when all disturbances
𝑊0:𝑇−1 are deterministic.
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Note it is possible that the optimal action at different states has a positive variance
in different directions, but there is no non-trivial lower bound on the covariance
matrix as required by Condition 4.2.2 (a). In this case, Condition 4.2.2 (b) provides
a weaker alternative and would be useful when we can only establish a lower bound
on the trace of the optimal action’s covariance matrix.

Theorem 4.2.3. If Conditions 4.2.1 and 4.2.2 (a) hold with matrices 𝑀0:𝑇−1 and
Σ0:𝑇−1, then 𝑃(𝜃) ≥ ∑𝑇−1

𝑡=0 Tr{𝑀𝑡Σ𝑡}. Alternatively, if Conditions 4.2.1 and 4.2.2 (b)
hold with matrices 𝑀0:𝑇−1 and scalars 𝜎0:𝑇−1, then 𝑃(𝜃) ≥ ∑𝑇−1

𝑡=0 𝜇min(𝑀𝑡) · 𝜎𝑡 ,
where 𝜇min(·) returns the smallest eigenvalue.

We defer the proof of Theorem 4.2.3 to Section 4.A. There are two main takeaways
of Theorem 4.2.3. First, recall that one can always pick 𝑀𝑡 and Σ𝑡 to be the all-zeros
matrices to satisfy Conditions 4.2.1 and 4.2.2. In this case, Theorem 4.2.3 states
that 𝑃(𝜃) ≥ 0, which means that having predictions, no matter how weak they are,
does not hurt. Second, to characterize the improvement in having predictions, the
two Conditions 4.2.1 and 4.2.2 can establish a lower bound for the prediction power
that is strictly positive if Tr{𝑀𝑡Σ𝑡} > 0 or 𝜇min(𝑀𝑡)𝜎𝑡 > 0. We provide an example
to help illustrate how Conditions 4.2.1 and 4.2.2 (a) can work together to ensure that
the predictions can lead to a strict improvement on the control cost (see Figure 4.1
for an illustration).

Example 4.2.4. Consider the following optimal control problem

Dynamics: 𝑋𝑡+1 = 𝑈𝑡 +𝑊𝑡 , Stage cost: ℎ𝑡 (𝑥, 𝑢) = 𝑥2, Terminal cost: ℎ𝑇 (𝑥) = 𝑥2,

where each disturbance 𝑊𝑡 is sampled independently according to P(𝑊𝑡 = −1) =
P(𝑊𝑡 = 1) = 1

2 . Suppose that the predictor with parameter 𝜃 can predict𝑊𝑡 exactly
(i.e., 𝑉𝑡 (𝜃) = 𝑊𝑡), while the baseline predictor is uninformative (e.g., 𝑉𝑡 (0) = 0).
The Q functions, cumulative cost, and optimal actions under each predictor are

𝑄𝜋𝜃

𝑡 (𝑥, 𝑢;Ξ) = 𝑥2 + (𝑢 +𝑉𝑡 (𝜃))2, 𝑄 𝜋̄
𝑡 (𝑥, 𝑢;Ξ) = 𝑥2 + (𝑢 +𝑊𝑡)2 + (𝑇 − 𝑡 − 1),

𝐶𝜋
𝜃

𝑡 (𝑥;Ξ) = 𝑥2, 𝐶 𝜋̄𝑡 (𝑥;Ξ) = 𝑥2 + (𝑇 − 𝑡),
𝜋𝜃𝑡 (𝑥; 𝐼𝑡 (𝜃)) = −𝑉𝑡 (𝜃) = −𝑊𝑡 , 𝜋̄𝑡 (𝑥; 𝐼𝑡 (0)) = 0.

The Q function 𝑄𝜋𝜃

𝑡 is strongly convex in 𝑢, with Condition 4.2.1 holding for any
𝑀𝑡 ∈ [0, 1]. Furthermore, the optimal action has positive variance, with Condition
4.2.2 (a) holding for any Σ𝑡 ∈ [0, 1]. Thus, by Theorem 4.2.3, the prediction power
satisfies 𝑃(𝜃) ≥ 𝑇 . Indeed, by comparing the cumulative cost functions, we see
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Figure 4.1: An illustration of why predictions are helpful, corresponding to Ex-
ample 4.2.4. The expected Q functions with perfect predictions (green and orange
lines) have lower minima than the expected Q function with uninformative predic-
tions (blue line).

that the predictor with parameter 𝜃 incurs a lower cumulative cost by exactly 𝑇 (as
expected by Theorem 4.3.1).

Figure 4.1 illustrates the expected Q functions at time 𝑡 = 𝑇 − 1 and 𝑥 = 0,
which the policies 𝜋𝜃𝑡 (𝑥; 𝐼𝑡 (𝜃)) and 𝜋̄𝑡 (𝑥; 𝐼𝑡 (0)) seek to minimize. The expected Q
functions with perfect predictions have lower minima than the expected Q function
with uninformative predictions.

Theorem 4.2.3 provides a useful tool to characterize the prediction power by reducing
the problem of comparing two policies 𝜋𝜃 and 𝜋̄ over the whole horizon to studying
the properties of one policy 𝜋𝜃 at each time step. Our proof of Theorem 4.2.3 follows
the same intuition as the widely-used performance difference lemma in RL (see
Lemma 6.1 in Kakade and Langford (2002)), comparing the per-step “advantage”
of 𝜋𝜃 along the trajectory of 𝜋̄. When only the baseline information is available, the
agent must pick a suboptimal action (4.5) and incur a loss (4.4) at each time step.
The per-step losses accumulate to the total cost difference.

While Theorem 4.2.3 applies to the general dynamical system and cost functions in
(4.1), the two conditions with their key coefficients 𝑀𝑡 and Σ𝑡 (or 𝜎𝑡) still depend on
the optimal Q function and the optimal policy that are implicitly defined through the
recursive equations (4.3). To instantiate Theorem 4.2.3, we need to derive explicit
expressions of 𝑀𝑡 and Σ𝑡 under more specific dynamics/costs. We study two cases
in the rest of the paper. In Section 4.3, we first study the linear-quadratic regulator
(LQR) problem to characterize the key factors for deciding the prediction power.
In this setting, the optimal Q functions and the optimal policy have closed-form
solutions. We obtain 𝑀𝑡 and Σ𝑡 that characterize the exact prediction power 𝑃(𝜃).
Then, we study a time-varying linear system with general well-conditioned cost
functions, where the optimal Q functions and the optimal policy do not have closed-
form solutions. In this case, we can still verify that Conditions 4.2.1 and 4.2.2 (b)
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hold with nonzero 𝑀𝑡 and 𝜎𝑡 , which yields a non-trivial lower bound of 𝑃(𝜃).

4.3 Applications: Linear Quadratic Regulator and Beyond
LTV Dynamics with Quadratic Costs. Consider a linear time-varying (LTV)
dynamical system with quadratic costs:

Control dynamics: 𝑋𝑡+1 = 𝐴𝑡𝑋𝑡 + 𝐵𝑡𝑈𝑡 +𝑊𝑡 , for 0 ≤ 𝑡 < 𝑇 ;

stage cost: 𝑋⊤𝑡 𝑄𝑡𝑋𝑡 +𝑈⊤𝑡 𝑅𝑡𝑈𝑡 , for 0 ≤ 𝑡 < 𝑇 ; and terminal cost: 𝑋⊤𝑇 𝑃𝑇𝑋𝑇 , (4.7)

where 𝑄0:𝑇−1, 𝑅0:𝑇−1, and 𝑃𝑇 are symmetric positive definite. The classic linear
quadratic regulator (LQR) problem, along with its time-varying variant that we
consider, has been used widely as a benchmark setting in the learning-for-control
literature. It also serves as a good approximation of nonlinear systems near equilib-
rium points, making it amenable to standard analytical tools.

To apply Theorem 4.2.3, we first derive closed-form expressions for the optimal Q
function, 𝑄𝜋𝜃 , and the optimal policy, 𝜋𝜃 , which are used to verify Conditions 4.2.1
and 4.2.2 (a). We begin by defining key quantities that will be useful for stating the
main results in this section.

Definition 4.3.1. For 𝑡 = 𝑇 − 1, . . . , 0, we define the matrices 𝐻𝑡 , 𝑃𝑡 , and 𝐾𝑡

recursively according to

𝐻𝑡 = 𝐵𝑡 (𝑅𝑡 + 𝐵⊤𝑡 𝑃𝑡+1𝐵𝑡)−1𝐵⊤𝑡 , 𝑃𝑡 = 𝑄𝑡 + 𝐴⊤𝑡 𝑃𝑡+1𝐴𝑡 − 𝐴⊤𝑡 𝑃𝑡+1𝐻𝑡𝑃𝑡+1𝐴𝑡 , and

𝐾𝑡 = (𝑅𝑡 + 𝐵⊤𝑡 𝑃𝑡+1𝐵𝑡)−1(𝐵⊤𝑡 𝑃𝑡+1𝐴𝑡). (4.8)

Moreover, we define the transition matrix Φ𝑡2,𝑡1 as Φ𝑡2,𝑡1 = 𝐼 if 𝑡2 ≤ 𝑡1 and

Φ𝑡2,𝑡1 = (𝐴𝑡2−1 − 𝐵𝑡2−1𝐾𝑡2−1) (𝐴𝑡2−2 − 𝐵𝑡2−2𝐾𝑡2−2) · · · (𝐴𝑡1 − 𝐵𝑡1𝐾𝑡1), if 𝑡2 > 𝑡1.
(4.9)

The matrix 𝐾𝑡 is the feedback gain matrix in the optimal policy, and 𝑃𝑡 is the
matrix that defines the quadratic term in the optimal cost-to-go function. To
simplify notation, we define the shorthands 𝑊 𝜃

𝜏 |𝑡 := E [𝑊𝜏 | 𝐼𝑡 (𝜃)] and 𝑤𝜃
𝜏 |𝑡 :=

E [𝑊𝜏 | 𝐼𝑡 (𝜃) = 𝜄𝑡 (𝜃)].

Proposition 4.3.1. In the case of LTV dynamics with quadratic costs, the condi-
tional expectation of the optimal Q function E

[
𝑄𝜋𝜃

𝑡 (𝑥, 𝑢;Ξ) | 𝐼𝑡 (𝜃) = 𝜄𝑡 (𝜃)
]

can be
expressed as(

𝑢 + 𝐾𝑡𝑥 − 𝑢̄𝜃𝑡 (𝜄𝑡 (𝜃))
)⊤
(𝑅𝑡 + 𝐵⊤𝑡 𝑃𝑡+1𝐵𝑡)

(
𝑢 + 𝐾𝑡𝑥 − 𝑢̄𝜃𝑡 (𝜄𝑡 (𝜃))

)
+ 𝜓𝜋𝜃𝑡 (𝑥; 𝜄𝑡 (𝜃)),
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where 𝜓𝜋𝜃𝑡 (𝑥; 𝜄𝑡 (𝜃)) is a function of the state 𝑥 and the history 𝜄𝑡 (𝜃) that does not
depend on the control action 𝑢. Here,

𝑢̄𝜃𝑡 (𝜄𝑡 (𝜃)) := −(𝑅𝑡 + 𝐵⊤𝑡 𝑃𝑡+1𝐵𝑡)−1𝐵⊤𝑡

𝑇−1∑︁
𝜏=𝑡

Φ⊤𝜏+1,𝑡+1𝑃𝜏+1𝑤
𝜃
𝜏 |𝑡 .

And the optimal policy can be expressed as 𝜋𝜃𝑡 (𝑥; 𝜄𝑡 (𝜃)) = −𝐾𝑡𝑥 + 𝑢̄𝜃𝑡 (𝜄𝑡 (𝜃)).

We derive the closed-form expressions in Proposition 4.3.1 by induction following
the backward recursive equations in (4.3); the full proof is deferred to Section 4.C.
With these expressions, we can verify Conditions 4.2.1 and 4.2.2 (a) to obtain a
closed-form expression of the prediction power.

Theorem 4.3.1. In the case of LTV dynamics with quadratic costs, the prediction
power of the predictor with parameter 𝜃 is 𝑃(𝜃) = ∑𝑇−1

𝑡=0 Tr{𝑀𝑡Σ𝑡}, where 𝑀𝑡 :=
𝑅𝑡 + 𝐵⊤𝑡 𝑃𝑡+1𝐵𝑡 , and Σ𝑡 = E

[
Cov

[
𝑢̄𝜃𝑡 (𝐼𝑡 (𝜃)) | F𝑡 (0)

] ]
.

As a remark, the prediction power in Theorem 4.3.1 holds with equality due to the
special structure of LQR. We provide a detailed discussion in the proof of Theorem
4.3.1 in Section 4.C.

While the optimal policy in Proposition 4.3.1 is restricted to the LQR case, we
can interpret the optimal policy as planning according the conditional expectation
following the idea of model predictive control (MPC) (Yu et al., 2020), which is
easier to generalize. The agent needs to solve an optimization problem and re-plan
at every time step. At time step 𝑡, the agent solves

arg min
𝑢𝑡:𝑇−1

E

[
𝑇−1∑︁
𝜏=𝑡

ℎ𝜏 (𝑋𝜏, 𝑢𝜏) + ℎ𝑇 (𝑋𝑇 )
����� 𝐼𝑡 (𝜃) = 𝜄𝑡 (𝜃)

]
s.t. 𝑋𝜏+1 = 𝑓𝜏 (𝑋𝜏, 𝑢𝜏;𝑊𝜏), for 𝜏 ≥ 𝑡, and 𝑋𝑡 = 𝑥.

(4.10)

Then, the agent commits to the first entry 𝑢𝑡 |𝑡 of the optimal solution as 𝜋𝜃𝑡 (𝑥; 𝜄𝑡 (𝜃)).
In the LQR setting, we can further simplify it to be planning according to 𝑤𝜃

𝜏 |𝑡 (see
Section 4.C).

The MPC forms of the optimal policy in (4.10) extends the result in Yu et al. (2020),
which shows that MPC is the optimal predictive policy under the accurate prediction
model in time-variant LQR. When the predictions are inaccurate and the system is
time-varying, MPC is still optimal if we solve the predictive optimal control problem
in expectation (4.10).
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Prediction Power ≠ Accuracy. As Proposition 4.3.1 suggests, one way to implement
the optimal policy is to predict each of the future disturbances𝑊𝑡:𝑇−1 and generate the
estimations 𝑤𝜃(𝑡:𝑇−1) |𝑡 in deciding the action at time step 𝑡. However, two controllers
with the same estimation error (as measured by mean squared error (MSE)) can
have very different control costs. Because of this reason, the control cost bounds
depend on the estimation errors in previous works (Zhang, Li, and Li, 2021; Yu
et al., 2022; Lin, Hu, Qu, et al., 2022) must be loose, so one cannot rely on them to
infer or compare the values of different predictors.

To illustrate this point, we provide an example where the prediction power can
change significantly when the prediction accuracy does not change.

Example 4.3.2. Consider the time-invariant LQR setting, i.e., assume 𝐴𝑡 = 𝐴, 𝐵𝑡 =
𝐵,𝑄𝑡 = 𝑄, 𝑅𝑡 = 𝑅 for all 𝑡 and 𝑃𝑇 = 𝑃 is the solution to Discrete-time Riccati
Equation (DARE) in (4.7). Suppose the disturbance is sampled 𝑊𝑡

i.i.d.∼ 𝑁 (0, 𝐼)
at every time step 𝑡. Let 𝜌 ∈ [0,

√
2

2 ] be a fixed coefficient. We construct a
class of predictors from the disturbances {𝑊𝑡} by applying the affine transformation
𝑉𝑡 (𝜃) ≔ 𝜌𝜃𝑊𝑡+𝜖𝑡 (𝜌, 𝜃) for 𝜃 ∈ R2×2 that satisfies 𝜃𝜃⊤ ⪯ 1

2 𝐼, where the random noise
𝜖𝑡 (𝜌, 𝜃) is independently sampled from a Gaussian distribution 𝑁 (0, 𝐼 − 𝜌2𝜃𝜃⊤).

We can construct 𝜃 such that 𝑉𝑡 (𝜃) and 𝑉𝑡 (𝐼) achieve the same mean-square error
(MSE) when predicting each individual entry of𝑊𝑡 , yet 𝑃(𝐼) > 𝑃(𝜃). To construct
𝜃, note that (𝑊𝑡 , 𝑉𝑡 (𝜃)) satisfies E [𝑊𝑡 | 𝑉𝑡 (𝜃)] = 𝜌𝜃⊤𝑉𝑡 and Cov [𝑊𝑡 | 𝑉𝑡 (𝜃)] =
𝐼 − 𝜌2𝜃⊤𝜃. Thus, we can change 𝜃 without affecting the MSE of predicting each
individual entry as long as the diagonal entries of 𝜃⊤𝜃 remain the same. However,
by Theorem 4.3.1, we know the prediction power is equal to 𝜌2𝑇 · Tr{𝜃⊤𝜃𝑃𝐻𝑃},
where 𝐻 = 𝐵(𝑅+𝐵⊤𝑃𝐵)−1𝐵⊤. Thus, the off-diagonal entries of 𝜃⊤𝜃 can also affect
the value of Tr{𝜃⊤𝜃𝑃𝐻𝑃}. We instantiate this example with a 2-D double-integrator
dynamical system in Section 4.B: the predictors with parameters 𝐼 and 𝜃 shares the
same MSE but their prediction powers are significantly different.

Example 4.3.2 shows how prediction power can vary even when the accuracy of
predicting each entry of the disturbance𝑊𝑡 remains the same, where the construction
leverages the covariance between the predictions for different entries of 𝑊𝑡 . While
the construction in Example 4.3.2 requires 𝑛 ≥ 2, we also provide an example with
𝑛 = 1 and multiple steps of predictions in Section 4.B. From these examples, it is
clear that one should not use the MSEs of predicting future disturbances to infer the
prediction power. The intuition behind this mismatch is that MSE does not depend
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on matrices (𝐴, 𝐵, 𝑄, 𝑅), but the prediction power does. The mismatch also relates
to the findings in the decision-focused learning literature, which we discuss in detail
in Related Works.

Prediction Power Evaluation. In this section, we propose an algorithm (cf. Algo-
rithm 4) to evaluate the prediction power efficiently given a set of historical problem
instances {𝜉𝑛}𝑁𝑛=1. We start with defining a quantity whose estimation error is closely
related to the policy’s performance:

𝑢̄∗𝑡 (Ξ) := −(𝑅𝑡 + 𝐵⊤𝑡 𝑃𝑡+1𝐵𝑡)−1𝐵⊤𝑡

𝑇−1∑︁
𝜏=𝑡

Φ⊤𝜏+1,𝑡+1𝑃𝜏+1𝑊𝜏 . (4.11)

We call 𝑢̄∗𝑡 (Ξ) the surrogate-optimal action, because it is the optimal action that
an agent should take with the oracle knowledge of all future disturbances at time
𝑡. In the prediction power given by Theorem 4.3.1, we can express 𝑢̄𝜃𝑡 (𝐼𝑡 (𝜃)) as
E

[
𝑢̄∗𝑡 (Ξ) | 𝐼𝑡 (𝜃)

]
, which is the expectation of 𝑢̄∗𝑡 (Ξ) condition on the the history at

time step 𝑡.

Now we come back to the design of Algorithm 4. While iterating backward
from time step 𝑇 − 1 to 0, the algorithm first constructs a dataset of the surro-
gate optimal action 𝑢̄∗𝑡 (Ξ) as the fitting target. Then, the algorithm estimates the
covariance of 𝑢̄∗𝑡 (Ξ) when conditioning on 𝐼𝑡 (0) and 𝐼𝑡 (𝜃), respectively, using a
subroutine (see Algorithm 5 in Section 4.C). The last step of Algorithm 4 gives
the prediction power because E

[
Cov

[
𝑢̄𝜃𝑡 (𝐼𝑡 (𝜃)) | F𝑡 (0)

] ]
can be decomposed as

E
[
Cov

[
𝑢̄∗𝑡 (Ξ) | 𝐼𝑡 (0)

] ]
− E

[
Cov

[
𝑢̄∗𝑡 (Ξ) | 𝐼𝑡 (𝜃)

] ]
, and we defer the proof to Sec-

tion 4.C.

LTV Dynamics with General Costs Consider a system with linear time-varying
dynamics and more general cost functions that depend on the states and control
actions.

Control dynamics: 𝑋𝑡+1 = 𝐴𝑡𝑋𝑡 + 𝐵𝑡𝑈𝑡 +𝑊𝑡 , for 0 ≤ 𝑡 < 𝑇 ;

stage cost: ℎ𝑥𝑡 (𝑋𝑡) + ℎ𝑢𝑡 (𝑈𝑡), for 0 ≤ 𝑡 < 𝑇 ; and terminal cost: ℎ𝑥𝑇 (𝑋𝑇 ). (4.12)

The LTV system with quadratic cost functions studied in the previous section is a
special case of (4.12). The generality of (4.12) leads to more challenging because
the optimal Q function 𝑄𝜋𝜃 and the optimal policy 𝜋𝜃 no longer have closed-form
expressions like Proposition 4.3.1. While one may consider using the MPC policy
in (4.10) to evaluate the prediction power, we can construct an example where this
policy is suboptimal for non-quadratic costs (see Section 4.B for details).
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Algorithm 4: Prediction Power Evaluation
Require: Dataset 𝐷 of problem instances {𝜉𝑛}𝑁𝑛=1.
for 𝑡 = 𝑇 − 1, 𝑇 − 2, . . . , 0 do

Compute 𝑃𝑡 , 𝐻𝑡 , 𝐾𝑡 and {Φ𝑡,𝑡′}𝑡′≥𝑡 according to (4.8) and (4.9).
Compute 𝑀𝑡 = 𝑅𝑡 + 𝐵⊤𝑡 𝑃𝑡+1𝐵𝑡 .
for 𝑛 = 1, 2, . . . , 𝑁 do

Compute 𝑢̄∗𝑡 (𝜉𝑛) according to (4.11) in problem instance 𝜉𝑛.
end
Call Algorithm 5 to estimate Σ0

𝑡 := E
[
Cov

[
𝑢̄∗𝑡 (Ξ) | 𝐼𝑡 (0)

] ]
using

{(𝑢̄∗𝑡 (𝜉𝑛), 𝜄𝑛𝑡 (0))}𝑁𝑛=1.
Call Algorithm 5 to estimate Σ𝜃𝑡 := E

[
Cov

[
𝑢̄∗𝑡 (Ξ) | 𝐼𝑡 (𝜃)

] ]
using

{(𝑢̄∗𝑡 (𝜉𝑛), 𝜄𝑛𝑡 (𝜃))}𝑁𝑛=1.
end
return 𝑃(𝜃) = ∑𝑇−1

𝑡=0 Tr
{
Σ0
𝑡 𝑀𝑡

}
−∑𝑇−1

𝑡=0 Tr
{
Σ𝜃𝑡 𝑀𝑡

}
We follow the recursive equations (4.3) to establish Conditions 4.2.1 and 4.2.2 (b).
We make the following assumptions about the cost functions and dynamical matri-
ces:

Assumption 4.3.1. For every time step 𝑡, ℎ𝑥𝑡 is 𝜇𝑥-strongly convex and ℓ𝑥-smooth;
ℎ𝑢𝑡 is 𝜇𝑢-strongly convex and ℓ𝑢-smooth; The dynamical matrices satisfy that 𝜇𝐴𝐼 ⪯
𝐴⊤𝑡 𝐴𝑡 ⪯ ℓ𝐴𝐼 and 𝜇𝐵𝐼 ⪯ 𝐵⊤𝑡 𝐵𝑡 ⪯ ℓ𝐵𝐼. Further, we assume ℓ𝐴 < 1.

The first two requirements about the well-conditioned cost functions in Assumption
4.3.1 are standard in the literature of online optimization and control (Lin, Hu, Shi, et
al., 2021; Lin, Hu, Qu, et al., 2022). For the last requirement, we additionally require
ℓ𝐴 < 1, which implies that the system is open-loop stable. Under Assumption 4.3.1,
the expected cost-to-go function is a well-conditioned function, which is important
for establishing Conditions 4.2.1 and 4.2.2 (b). We state this result formally in
Lemma 4.3.3.

Lemma 4.3.3. Under Assumption 4.3.1, Condition 4.2.1 holds with 𝑀𝑡 = 𝜇𝑢 𝐼.
Further, conditional expectation E[𝐶𝜋𝜃𝑡 (𝑥;Ξ) | 𝐼𝑡 (𝜃) = 𝜄𝑡 (𝜃)] as a function of 𝑥 is
𝜇𝑡-strongly convex and ℓ𝑡-smooth for any history 𝜄𝑡 (𝜃), where 𝜇𝑡 and ℓ𝑡 are defined
as following: Let 𝜇𝑇 = 𝜇𝑥 and ℓ𝑇 = ℓ𝑥 ,

𝜇𝑡 = 𝜇𝑥 + 𝜇𝐴 ·
𝜇𝑢𝜇𝑡+1

𝜇𝑢 + 𝑏2𝜇𝑡+1
, and ℓ𝑡 = ℓ𝑥 + ℓ𝐴 · ℓ𝑡+1, for time 𝑡 = 𝑇 − 1, . . . , 0.

(4.13)



162

As a remark, 𝜇𝑡 is uniformly bounded below by 𝜇𝑥 and ℓ𝑡 is uniformly bounded
above by ℓ𝑥

1−ℓ𝐴 . We present a proof sketch of Lemma 4.3.3 and defer the formal
proof to Section 4.D.

Starting from time step 𝑇 , we know the cost-to-go 𝐶𝜋𝜃
𝑇
(𝑥;Ξ) equals to the terminal

cost ℎ𝑥𝑡 (𝑥). It satisfies the strong convexity/smoothness directly by Assumption
4.3.1. We repeat the following induction iterations: Given E

[
𝐶𝜋

𝜃

𝑡+1(𝑥;Ξ) | 𝐼𝑡+1(𝜃)
]

at time 𝑡 + 1,we define an auxiliary function that adds in the disturbance residual
𝑊𝑡 −𝑊 𝜃

𝑡 |𝑡 and condition on the history at time 𝑡:

𝐶̄𝜋
𝜃

𝑡+1(𝑥; 𝜄𝑡 (𝜃)) := E
[
𝐶𝜋

𝜃

𝑡+1(𝑥 +𝑊𝑡 −𝑊 𝜃
𝑡 |𝑡 ;Ξ) | 𝐼𝑡 (𝜃) = 𝜄𝑡 (𝜃)

]
. (4.14)

It can be expressed as E
[
E

[
𝐶𝜋

𝜃

𝑡+1(𝑥 +𝑊𝑡 −𝑊 𝜃
𝑡 |𝑡 ;Ξ) | 𝐼𝑡+1(𝜃)

] ��� 𝐼𝑡 (𝜃) = 𝜄𝑡 (𝜃)] by the

towering rule. Thus, we know function 𝐶̄𝜋𝜃
𝑡+1 is strongly convex and smooth in

𝑥 because these properties are preserved after taking the expectation. Then, we
can obtain the expected cost-to-go function E

[
𝐶𝜋

𝜃

𝑡 (𝑥;Ξ) | 𝐼𝑡 (𝜃) = 𝜄𝑡 (𝜃)
]
= ℎ𝑥𝑡 (𝑥) +

min𝑢
(
ℎ𝑢𝑡 (𝑢) + 𝐶̄𝜋

𝜃

𝑡+1(𝐴𝑡𝑥 + 𝐵𝑡𝑢 + 𝑤
𝜃
𝑡 |𝑡 ; 𝜄𝑡 (𝜃))

)
. We use an existing tool called infimal

convolution to study the optimal value of the this optimization problem as a function
of 𝑥. Specifically, define an operator □𝐵:2

( 𝑓□𝐵𝜔) (𝑥) := min
𝑢∈R𝑚
{ 𝑓 (𝑢) + 𝜔(𝑥 − 𝐵𝑢)} for 𝑓 : R𝑚 → R and 𝜔 : R𝑛 → R.

(4.15)

One can show that if 𝑓 and 𝜔 are well-conditioned functions, then ( 𝑓□𝐵𝜔) is also
well-conditioned (see Section 4.D for the formal statement and proof). We can use
this result to show the expected cost-to-go function E

[
𝐶𝜋

𝜃

𝑡 (𝑥;Ξ) | 𝐼𝑡 (𝜃) = 𝜄𝑡 (𝜃)
]
=

ℎ𝑥𝑡 (𝑥) + (ℎ𝑢𝑡 □(−𝐵𝑡 )𝐶̄𝜋
𝜃

𝑡+1) (𝐴𝑡𝑥 + 𝑤
𝜃
𝑡 |𝑡 ; 𝜄𝑡 (𝜃)), is also well-conditioned in 𝑥 at time step

𝑡, which completes the induction.

To establish the second condition about the covariance of the optimal policy’s action,
we make the following assumption about the joint distribution of the disturbances
and the predictions:

Assumption 4.3.2. The disturbances and predictions can be grouped as pairs
{(𝑊𝑡 , 𝑉𝑡 (𝜃))}𝑇−1

𝑡=0 , where (𝑊𝑡 , 𝑉𝑡 (𝜃)) is joint Gaussian, and it is independent with
(𝑊𝑡′ , 𝑉𝑡′ (𝜃)) when 𝑡 ≠ 𝑡′. Further, assume that the baseline is no prediction,
i.e., 𝑉𝑡 (0) = 0. And for 𝜃 ∈ Θ, there exists 𝜆𝑡 (𝜃) ∈ R≥0 such that Cov [𝑊𝑡] −
Cov [𝑊𝑡 | 𝑉𝑡 (𝜃)] ⪰ 𝜆𝑡 (𝜃)𝐼, for any 0 ≤ 𝑡 < 𝑇.

2If 𝜔 takes an additional parameter 𝑤, we denote ( 𝑓□𝐵𝜔) (𝑥;𝑤) :=
min𝑢∈R𝑚 { 𝑓 (𝑢) + 𝜔(𝑥 − 𝐵𝑢;𝑤)}
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Note that 𝜆𝑡 (𝜃) should be positive as long as 𝑉𝑡 (𝜃) has some weak correlation with
𝑊𝑡 . Under Assumption 4.3.2, we can express the optimal policy as

𝜋𝜃𝑡 (𝑥; 𝐼𝑡 (𝜃)) := arg min
𝑢

(
ℎ𝑢𝑡 (𝑢) + 𝐶̄𝜋

𝜃

𝑡+1(𝐴𝑡𝑥 + 𝐵𝑡𝑢 +𝑊
𝜃
𝑡 |𝑡)

)
. (4.16)

While the original definition of 𝐶̄𝜋𝜃
𝑡+1 in (4.14) requires the history 𝜄𝑡 (𝜃) as an input,

it no longer depends on the history under Assumption 4.3.2. We defer the proof to
Section 4.D.

We can express 𝜋𝜃𝑡 (𝑥; 𝐼𝑡 (𝜃)) as the solution to (ℎ𝑢𝑡 □(−𝐵𝑡 )𝐶̄𝜋
𝜃

𝑡+1) (𝐴𝑡𝑥 +𝑊𝑡 |𝑡). For some
distributions including Gaussian, the covariance in the input of an infimal convolu-
tion will be passed through to its optimal solution. Specifically, let 𝑢( 𝑓□𝐵𝜔) (𝑥) denote
the solution to the optimization problem (4.15). When𝜔 and 𝑓 are well-conditioned,
we can derive a lower bound on the trace of the covariance Tr

{
Cov

[
𝑢( 𝑓□𝐵𝜔) (𝑋)

]}
that depends on the covariance of 𝑋 . Due to space limit, we defer the formal state-
ment of this result and its proof to Lemma 4.D.2 in Section 4.D. Using this property
and the observation that 𝜋𝜃𝑡 (𝑥; 𝐼𝑡 (𝜃)) can be expressed as 𝑢(ℎ𝑢𝑡 □−𝐵𝑡 𝐶̄ 𝜋𝜃𝑡+1 )

(𝐴𝑡𝑥 +𝑊 𝜃
𝑡 |𝑡),

we can directly verify that Condition 4.2.2 (b) holds with

Tr
{
Cov

[
𝜋𝜃𝑡 (𝑥; 𝐼𝑡 (𝜃)) | F𝑡 (0)

]}
≥ 𝜎𝑡 :=

𝑛𝜆𝑡 (𝜃)𝜇2
𝑡+1 · 𝜇𝐵

2(ℓ𝑢 + ℓ𝑡+1
√
ℓ𝐵)2

. (4.17)

Since Lemma 4.3.3 and (4.17) imply that Conditions 4.2.1 and 4.2.2 (b) hold with
𝑀𝑡 = 𝜇𝑡 𝐼 and 𝜎𝑡 , respectively, we obtain a lower bound on the prediction power by
Theorem 4.2.3.

Theorem 4.3.4. In the case of LTV dynamics with well-conditioned costs, suppose
Assumptions 4.3.1 and 4.3.2 hold. The prediction power of the predictor with
parameter 𝜃 is lower bounded by 𝑃(𝜃) ≥ ∑𝑇−1

𝑡=0 𝜇𝑢𝜎𝑡 , where 𝜎𝑡 is defined in (4.17).

As a remark, the lower bound of the prediction power in Theorem 4.3.4 shows that
even weak predictions (i.e., small 𝜆𝑡 (𝜃) in Assumption 4.3.2) can help improve the
control cost compared with the no-prediction baseline. Although Assumption 4.3.2
limits𝑉𝑡 (𝜃) to be only correlated with𝑊𝑡 , we provide a roadmap about how to relax
it so 𝑉𝑡 (𝜃) can depend on all future𝑊𝑡:𝑇−1 in Section 4.D.

4.4 Related Works
Online control with predictions. Our work is closely related to the line of works
that study how to use predictions in online control. Our definition of the prediction
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power is inspired by Yu et al. (2020): the authors first define the prediction power as
the maximum control cost improvement enabled by 𝑘 steps of accurate predictions
about future disturbances and characterize it in a time-invariant LQR setting. Com-
pared with Yu et al. (2020), we extend the notion of prediction power to allow general
dependencies between predictions and disturbances and characterize it under more
general dynamics/costs. Rather than focusing on the prediction power, many works
study the power of a certain policy class such as MPC (Yu et al., 2022; Lin, Hu,
Shi, et al., 2021; Zhang, Li, and Li, 2021; Lin, Hu, Qu, et al., 2022), Averaging
Fixed Horizon Control (AFHC) (Chen, Agarwal, et al., 2015; Chen, Comden, et al.,
2016), Receding Horizon Gradient Descent (RHGD) (Li, Qu, and Li, 2018; Li,
Chen, and Li, 2019), and others (Lin, Goel, and Wierman, 2020). While one can
say the power of MPC equals to the prediction power in the LQR setting (Yu et al.,
2020) (generalized in Section 4.3), we show they are not the same in general (see
Section 4.B).

Decision-focused learning. Our work is, in part, motivated by both empirical and
theoretical findings in the decision-focused learning (DFL) literature that multiple
prediction models may have the same prediction accuracy, yet their predictions
can lead to very different decision costs (see Mandi et al., 2024 for a recent sur-
vey). Research on DFL typically considers predictions given as point estimates of
some uncertain input to decision-makers modeled as optimization problems, such as
stochastic optimization (Donti, Amos, and Kolter, 2017), linear programs (Elmach-
toub and Grigas, 2022), or model predictive control (Amos et al., 2018), although
more recent works have started exploring other forms of predictions such as predic-
tion sets (Yeh et al., 2024; Wang et al., 2023). In contrast, our work does not require
any particular form of decision-maker; instead, our main result characterizes the
benefit of optimally leveraging predictions, for whatever form an optimal controller
may take. Whereas DFL aims to design procedures for training prediction models
that reduce downstream control costs, our contribution answers a more fundamental
question: how much gain in performance is even possible with better predictions?
We believe that it may be possible to leverage our theoretical insights about predic-
tion power to design more general decision-focused learning algorithms in future
work.
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4.A Proof of Theorem 4.2.3
Since we assume 𝑥0 is the initial state (deterministic) and 𝜋𝜃 is the optimal policy
under the predictor with parameter 𝜃, we have

E
[
𝐶𝜋

𝜃

0 (𝑥0;Ξ)
]
= 𝐽𝜋

𝜃 (𝜃) = 𝐽∗(𝜃).

Similarly, we also have that

E
[
𝐶 𝜋̄0 (𝑥0;Ξ)

]
= 𝐽 𝜋̄ (0) = 𝐽∗(0).

Let {𝑋̄0:𝑇 , 𝑈̄0:𝑇−1} be the trajectory of the baseline controller 𝜋̄0:𝑇−1 under instance
Ξ starting from 𝑋̄0 = 𝑥0. First, we will prove by backwards induction that the
difference in cumulative costs between the optimal controller 𝜋𝜃 and 𝜋̄ has the
following decomposition:

𝐶𝜋
𝜃

0 (𝑥0;Ξ) − 𝐶 𝜋̄0 (𝑥0;Ξ) =
𝑇−1∑︁
𝑡=0

(
𝐶𝜋

𝜃

𝑡 ( 𝑋̄𝑡 ;Ξ) −𝑄𝜋𝜃

𝑡 ( 𝑋̄𝑡 , 𝑈̄𝑡 ;Ξ)
)
. (4.18)

For the base case at time 𝑇 − 1, we apply the definition of 𝐶 𝜋̄
𝑇−1 to get

𝐶𝜋
𝜃

𝑇−1( 𝑋̄𝑇−1;Ξ) − 𝐶 𝜋̄𝑇−1( 𝑋̄𝑇−1;Ξ) = 𝐶𝜋𝜃𝑇−1( 𝑋̄𝑇−1;Ξ) −𝑄𝜋𝜃

𝑇−1( 𝑋̄𝑇−1, 𝑈̄𝑇−1;Ξ).

For the inductive step, suppose that

𝐶𝜋
𝜃

𝜏+1( 𝑋̄𝜏+1;Ξ) − 𝐶 𝜋̄𝜏+1( 𝑋̄𝜏+1;Ξ) =
𝑇−1∑︁
𝑡=𝜏+1

(
𝐶𝜋

𝜃

𝑡 ( 𝑋̄𝑡 ;Ξ) −𝑄𝜋𝜃

𝑡 ( 𝑋̄𝑡 , 𝑈̄𝑡 ;Ξ)
)
.

Note that for any 𝑡 < 𝑇 ,

𝑄 𝜋̄
𝑡 ( 𝑋̄𝑡 , 𝑈̄𝑡 ;Ξ) = 𝑄𝜋𝜃

𝑡 ( 𝑋̄𝑡 , 𝑈̄𝑡 ;Ξ) −
(
𝐶𝜋

𝜃

𝑡+1( 𝑋̄𝑡+1;Ξ) − 𝐶 𝜋̄𝑡+1( 𝑋̄𝑡+1;Ξ)
)
.

Therefore,

𝐶𝜋
𝜃

𝜏 ( 𝑋̄𝜏;Ξ) − 𝐶 𝜋̄𝜏 ( 𝑋̄𝜏;Ξ)
= 𝐶𝜋

𝜃

𝜏 ( 𝑋̄𝜏;Ξ) −𝑄 𝜋̄
𝜏 ( 𝑋̄𝜏, 𝑈̄𝜏;Ξ)

= 𝐶𝜋
𝜃

𝜏 ( 𝑋̄𝜏;Ξ) −
[
𝑄𝜋𝜃

𝜏 ( 𝑋̄𝜏, 𝑈̄𝜏;Ξ) −
(
𝐶𝜋

𝜃

𝜏+1( 𝑋̄𝜏+1;Ξ) − 𝐶 𝜋̄𝜏+1( 𝑋̄𝜏+1;Ξ)
)]

= 𝐶𝜋
𝜃

𝜏 ( 𝑋̄𝜏;Ξ) −𝑄𝜋𝜃

𝜏 ( 𝑋̄𝜏, 𝑈̄𝜏;Ξ) +
𝑇−1∑︁
𝑡=𝜏+1

(
𝐶𝜋

𝜃

𝑡 ( 𝑋̄𝑡 ;Ξ) −𝑄𝜋𝜃

𝑡 ( 𝑋̄𝑡 , 𝑈̄𝑡 ;Ξ)
)

=

𝑇−1∑︁
𝑡=𝜏

(
𝐶𝜋

𝜃

𝑡 ( 𝑋̄𝑡 ;Ξ) −𝑄𝜋𝜃

𝑡 ( 𝑋̄𝑡 , 𝑈̄𝑡 ;Ξ)
)
.
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This completes the induction. Next, define 𝑈𝑡 ≔ 𝜋𝜃𝑡 ( 𝑋̄𝑡 ; 𝐼𝑡 (𝜃)). Note that 𝑈𝑡 is
F𝑡 (𝜃)-measurable, and 𝑈̄𝑡 is F𝑡 (0)-measurable and therefore also F𝑡 (𝜃)-measurable.
Because we assume the matrices 𝑀0:𝑇−1 satisfy Condition 4.2.1,

E
[
𝐶𝜋

𝜃

𝑡 ( 𝑋̄𝑡 ;Ξ) | 𝐼𝑡 (𝜃)
]
≤ E

[
𝑄𝜋𝜃

𝑡 ( 𝑋̄𝑡 , 𝑈̄𝑡 ;Ξ) | 𝐼𝑡 (𝜃)
]
−Tr

{
𝑀𝑡 (𝑈̄𝑡 −𝑈𝑡) (𝑈̄𝑡 −𝑈𝑡)⊤

}
.

(4.19)

Let 𝑈̃𝑡 := E [𝑈𝑡 | 𝐼𝑡 (0)]. We see that

E
[
(𝑈̄𝑡 −𝑈𝑡) (𝑈̄𝑡 −𝑈𝑡)⊤ | 𝐼𝑡 (0)

]
= E

[
(𝑈̃𝑡 −𝑈𝑡) (𝑈̃𝑡 −𝑈𝑡)⊤ | 𝐼𝑡 (0)

]
+ E

[
(𝑈̃𝑡 −𝑈𝑡) (𝑈̄𝑡 − 𝑈̃𝑡)⊤ | 𝐼𝑡 (0)

]
+ E

[
(𝑈̄𝑡 − 𝑈̃𝑡) (𝑈̃𝑡 −𝑈𝑡)⊤ | 𝐼𝑡 (0)

]
+ E

[
(𝑈̄𝑡 − 𝑈̃𝑡) (𝑈̄𝑡 − 𝑈̃𝑡)⊤ | 𝐼𝑡 (0)

]
= Cov

[
𝜋𝜃𝑡 ( 𝑋̄𝑡 ; 𝐼𝑡 (𝜃)) | 𝐼𝑡 (0)

]
+ E

[
𝑈̃𝑡 −𝑈𝑡 | 𝐼𝑡 (0)

]
(𝑈̄𝑡 − 𝑈̃𝑡)⊤

+ (𝑈̄𝑡 − 𝑈̃𝑡)E
[
𝑈̃𝑡 −𝑈𝑡 | 𝐼𝑡 (0)

]⊤ + (𝑈̄𝑡 − 𝑈̃𝑡) (𝑈̄𝑡 − 𝑈̃𝑡)⊤ (4.20a)

= Cov
[
𝜋𝜃𝑡 ( 𝑋̄𝑡 ; 𝐼𝑡 (𝜃)) | 𝐼𝑡 (0)

]
+ (𝑈̄𝑡 − 𝑈̃𝑡) (𝑈̄𝑡 − 𝑈̃𝑡)⊤, (4.20b)

where we use (𝑈̄𝑡 − 𝑈̃𝑡) is F𝑡 (0)-measurable in (4.20a); we use the definition of 𝑈̃𝑡
in (4.20b).

Applying the towering rule in (4.18) and substituting in (4.19) gives that

E
[
𝐶𝜋

𝜃

0 (𝑥0;Ξ) − 𝐶 𝜋̄0 (𝑥0;Ξ)
]

=

𝑇−1∑︁
𝑡=0

E
[
𝐶𝜋

𝜃

𝑡 ( 𝑋̄𝑡 ;Ξ) −𝑄𝜋𝜃

𝑡 ( 𝑋̄𝑡 , 𝑈̄𝑡 ;Ξ)
]

=

𝑇−1∑︁
𝑡=0

E
[
E

[
𝐶𝜋

𝜃

𝑡 ( 𝑋̄𝑡 ;Ξ) | 𝐼𝑡 (𝜃)
]
− E

[
𝑄𝜋𝜃

𝑡 ( 𝑋̄𝑡 , 𝑈̄𝑡 ;Ξ) | 𝐼𝑡 (𝜃)
] ]

≤ −
𝑇−1∑︁
𝑡=0

E
[
Tr

{
𝑀𝑡 (𝑈̄𝑡 −𝑈𝑡) (𝑈̄𝑡 −𝑈𝑡)⊤

}]
,

= −
𝑇−1∑︁
𝑡=0

Tr
{
𝑀𝑡E

[
(𝑈̄𝑡 −𝑈𝑡) (𝑈̄𝑡 −𝑈𝑡)⊤

]}
. (4.21)

If the stronger Condition 4.2.2 (a) holds, by (4.20), since 𝑋̄𝑡 is F𝑡 (0)-measurable,
we have

E
[
(𝑈̄𝑡 −𝑈𝑡) (𝑈̄𝑡 −𝑈𝑡)⊤

]
= E

[
E

[
(𝑈̄𝑡 −𝑈𝑡) (𝑈̄𝑡 −𝑈𝑡)⊤ | 𝐼𝑡 (0)

] ]
⪰ E

[
Cov

[
𝜋𝜃𝑡 ( 𝑋̄𝑡 ; 𝐼𝑡 (𝜃)) | 𝐼𝑡 (0)

] ]
⪰ Σ𝑡 . (4.22)
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Therefore, we can apply (4.22) in (4.21) to obtain that the first statement of Theorem
4.2.3 holds:

E
[
𝐶𝜋

𝜃

0 (𝑥0;Ξ) − 𝐶 𝜋̄0 (𝑥0;Ξ)
]
≤ −

𝑇−1∑︁
𝑡=0

Tr{𝑀𝑡Σ𝑡}. (4.23)

Else, if the weaker Condition 4.2.2 (b) holds, by (4.20), since 𝑋̄𝑡 isF𝑡 (0)-measurable,
we have

Tr
{
E

[
(𝑈̄𝑡 −𝑈𝑡) (𝑈̄𝑡 −𝑈𝑡)⊤

]}
= E

[
Tr

{
E

[
(𝑈̄𝑡 −𝑈𝑡) (𝑈̄𝑡 −𝑈𝑡)⊤ | 𝐼𝑡 (0)

]}]
≥ E

[
Tr

{
Cov

[
𝜋𝜃𝑡 ( 𝑋̄𝑡 ; 𝐼𝑡 (𝜃)) | 𝐼𝑡 (0)

]}]
≥ 𝜎𝑡 . (4.24)

Note that for any positive semi-definite matrices 𝐴, 𝐵, 𝐶 such that 𝐴 ⪰ 𝐶 ⪰ 0, we
have

Tr{𝐴𝐵} = Tr{𝐶𝐵} + Tr{(𝐴 − 𝐶)𝐵} ≥ Tr{𝐶𝐵}.

Since 𝑀𝑡 ⪰ 𝜇min(𝑀𝑡)𝐼, we can apply (4.24) in (4.21) to obtain that

E
[
𝐶𝜋

𝜃

0 (𝑥0;Ξ) − 𝐶 𝜋̄0 (𝑥0;Ξ)
]
≤ −

𝑇−1∑︁
𝑡=0

Tr
{
𝜇min(𝑀𝑡)𝐼 · E

[
(𝑈̄𝑡 −𝑈𝑡) (𝑈̄𝑡 −𝑈𝑡)⊤

]}
≤ −

𝑇−1∑︁
𝑡=0

𝜇min(𝑀𝑡)𝜎𝑡 .

4.B Examples
Instantiation of Example 4.3.2
We instantiate Example 4.3.2 with the following parameters:

𝐴 =

[
1 0.1
0 1

]
, 𝐵 =

(
0

0.1

)
, 𝑄 =

(
1

1

)
, 𝑅 = (1), and 𝜃 :=

[
1 0.8
0 0.6

]
.

Under different values of coefficient 𝜌, we train a linear regressor to predict each en-
try of𝑊𝑡 from𝑉𝑡 (𝜃) (or𝑉𝑡 (𝐼)) over a train dataset with 64, 000 independent samples.
We plot in the MSE - 𝜌 curve on a test dataset with 16, 000 independent samples
in Figure 4.2. From the plot, we see that the predictors 𝑉𝑡 (𝜃) and 𝑉𝑡 (𝐼) achieve the
same MSE when predicting each entry of𝑊𝑡 under each 𝜌 ∈ {0, 0.1, . . . , 0.7}.

Then, we use the trained linear regressors as𝑊 𝜃
𝑡 |𝑡 and𝑊 𝐼

𝑡 |𝑡 to implement the optimal
policy in Proposition 4.3.1. We plot the averaged total cost over 16, 000 trajectories
with horizon 𝑇 = 100 in Figure 4.3. From the plot, we see that the optimal policies
under the predictors 𝑉𝑡 (𝜃) and 𝑉𝑡 (𝐼) achieve significantly different control costs
when 𝜌 > 0. We also plot the theoretical expected control cost in Figure 4.3 to
verify this cost difference.
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Figure 4.2: Example 4.3.2: MSE—𝜌

curve.
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Figure 4.3: Example 4.3.2: Control
cost—𝜌 curve.

An One-dimension Example
We also provide an example with 𝑛 = 1, where the prediction 𝑉𝑡 (𝜃) is correlated
with two steps of future disturbances𝑊𝑡 and𝑊𝑡+1.

Example 4.B.1. Suppose the disturbance at each time step can be decomposed
as 𝑊𝑡 =

∑2
𝑖=0𝑊

(𝑖)
𝑡 , where the {𝑊 (𝑖)𝑡 }2𝑖=0 are independently sampled from three

mean-zero distributions. We compare two predictors: 𝑉𝑡 (1) =
(
𝑊
(1)
𝑡 ,𝑊

(0)
𝑡+1

)
and

𝑉𝑡 (2) = 𝑃

(
𝑊
(0)
𝑡 +𝑊

(1)
𝑡

)
+ (𝐴⊤ − 𝐴⊤𝑃𝐻)𝑃𝑊 (0)

𝑡+1. They have the same prediction
power when used in the control problem because

𝑢̄2
𝑡 (𝐼𝑡 (2)) = 𝑃

(
𝑊
(0)
𝑡 +𝑊

(1)
𝑡

)
+ (𝐴⊤ − 𝐴⊤𝑃𝐻)𝑃𝑊 (1)

𝑡+1 = 𝑢̄1
𝑡 (𝐼𝑡 (1)).

However, we know that F𝑡 (1) is a strict super set of F𝑡 (2), thus 𝑉𝑡 (1) can achieve a
better MSE than𝑉𝑡 (2) when predicting the disturbances. This is empirically verified
in a 1D LQR problem with 𝐴 = 𝐵 = 𝑄 = 𝑅 = (1) and 𝑊 (𝑖)𝑡

i.i.d.∼ 𝑁 (0, 1), as we plot
in Figures 4.4. In the simulation, we train linear regressors to predict𝑊𝑡 and𝑊𝑡+1

with the history 𝐼𝑡 (1) or 𝐼𝑡 (2) for each time step 𝑡 < 𝑇 = 100 over a train dataset of
size 160, 000. Then, we plot the MSE - time curve on a test dataset of size 40, 000.

Example: MPC can be suboptimal
We first highlight the challenge by showing that MPC can be suboptimal, i.e., only
planning and optimizing based on the current information might be suboptimal when
the cost functions are not quadratic.

Consider a 2-step optimal control problem (1-dimension):

𝑋1 = 𝑋0 +𝑈0, and 𝑋2 = 𝑋1 +𝑈1 +𝑊1.
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Figure 4.4: Example 4.B.1: MSE—time curve.

To construct the counterexample, we define the cost functions ℎ0(𝑥, 𝑢), ℎ1(𝑥, 𝑢), and
ℎ2 as following:

ℎ0(𝑥, 𝑢) = 𝑥2 + 𝑢2, ℎ1(𝑥, 𝑢) = 𝑥2 + 𝑢2, and ℎ2(𝑥) =

𝑥2, if 𝑥 ≤ 0,

+∞, otherwise.

Suppose𝑊1 is a random variable that satisfiesP(𝑊1 = 1) = 𝑝 andP(𝑊1 = 0) = 1−𝑝,
where 0 < 𝑝 < 1. At time 0, we do not have any knowledge about 𝑊1 (i.e., 𝑊1

is independent with 𝐼0(𝜃)). However, at time 1, we can predict 𝑊1 exactly, which
means 𝜎(𝑊1) ⊆ F1(𝜃).

Suppose the system starts at 𝑥0 = 0. At time step 0, MPC (4.10) solves the
optimization

min
𝑢0,𝑢1

E [ℎ0(𝑋0, 𝑢0) + ℎ1(𝑋1, 𝑢1) + ℎ2(𝑋2) | 𝐼0(𝜃)]

s.t. 𝑋0 = 0, 𝑋1 = 𝑋0 + 𝑢0, 𝑋2 = 𝑋1 + 𝑢1 +𝑊1. (4.25)

Since 𝐼0(𝜃) is independent with 𝑊1, the optimization problem can be expressed
equivalently as

min
𝑢0,𝑢1

𝑢2
0 + (𝑢

2
0 + 𝑢

2
1) + E [ℎ2(𝑢0 + 𝑢1 +𝑊1)]

= min
𝑢0,𝑢1

2𝑢2
0 + 𝑢

2
1 + 1, s.t. 𝑢0 + 𝑢1 = −1.

The equation holds because the planned trajectory must avoid the huge cost at time
step 2. Solving this gives that 𝑢0 = −1

3 . Thus, implementing MPC incurs a total
cost that is at least 2𝑢2

0 = 2
9 . In contrast, if one just pick 𝑢0 = 0, the agent can pick

𝑢1 based on the prediction revealed at time step 2:

𝑢1 =


0 if𝑊1 = 0,

−1 otherwise.
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In this case, the expected cost incurred is 𝑝. Thus, we can claim that MPC is not
the optimal policy when 𝑝 < 2

9 . The underlying reason that MPC is suboptimal is
because it does not consider what information may be available when we make the
decision in the future. In this specific example, since 𝑊1 is revealed at time 1, we
do not need to verify about the small probability event that leads to a huge loss.

We dive deeper into the reason why MPC (4.10) is optimal in the LQR setting
(Section 4.3). Note that the expected optimal cost-to-go function at time step 1 is

E
[
𝐶𝜋

𝜃

1 (𝑥;Ξ)
��� 𝐼1(𝜃)] = min

𝑢1
E [ℎ1(𝑥, 𝑢1) + ℎ2(𝑋2) | 𝐼1(𝜃)] , s.t. 𝑋2 = 𝑥 + 𝑢1 +𝑊1.

(4.26)

Here, 𝑢1 is F1(𝜃)-measurable. And the true optimal policy at time 0 is decided by
solving

min
𝑢0

ℎ0(𝑥, 𝑢0) + E
[
𝐶𝜋

𝜃

1 (𝑋1;Ξ) | 𝐼0(𝜃)
]
, s.t. 𝑋1 = 𝑥 + 𝑢0.

In general, we cannot use

min
𝑢1

E [ℎ1(𝑋1, 𝑢1) + ℎ2(𝑋2) | 𝐼0(𝜃)] , s.t. 𝑋2 = 𝑋1 + 𝑢1 +𝑊1, (4.27)

to replace E
[
𝐶𝜋

𝜃

1 (𝑋1;Ξ)
��� 𝐼0(𝜃)] like what MPC does in (4.25) because here 𝑢1 is

F0(𝜃)-measurable in (4.27). Recall that 𝑢1 is F1(𝜃)-measurable in (4.26) and F0(𝜃)
is a subset of F1(𝜃). However, in the LQR setting, as the closed-form expression
(4.28), the part of E

[
𝐶𝜋

𝜃

1 (𝑋1;Ξ) | 𝐼0(𝜃)
]

that depends on 𝑋1 will not change even if
F1(𝜃) changes. Thus, we can assume F1(𝜃) = F0(𝜃) without affecting the optimal
action at time 0. Therefore, MPC’s replacement of E

[
𝐶𝜋

𝜃

1 (𝑋1;Ξ) | 𝐼0(𝜃)
]

with
(4.27) is valid in the LQR setting.

4.C Proofs for LTV Dynamics with Quadratic Costs
Proof of Proposition 4.3.1
To simplify notation, we introduce the shorthand

𝑊 𝜃
𝜏 |𝑡 = E [𝑊𝜏 | 𝐼𝑡 (𝜃)] .

We show by induction that

E
[
𝑄𝜋𝜃

𝑡 (𝑥, 𝑢;Ξ) | 𝐼𝑡 (𝜃)
]

=

(
𝑢 + 𝐾𝑡𝑥 − 𝑢̄𝜃𝑡 (𝐼𝑡 (𝜃))

)⊤
(𝑅𝑡 + 𝐵⊤𝑡 𝑃𝑡+1𝐵𝑡)

(
𝑢 + 𝐾𝑡𝑥 − 𝑢̄𝜃𝑡 (𝐼𝑡 (𝜃))

)
+ 𝜓𝜋𝜃𝑡 (𝑥; 𝐼𝑡 (𝜃)),
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𝜋𝜃𝑡 (𝑥; 𝐼𝑡 (𝜃)) = −𝐾𝑡𝑥 + 𝑢̄𝜃𝑡 (𝐼𝑡 (𝜃)),

together with the expression of the optimal cost-to-go function

E
[
𝐶𝜋

𝜃

𝑡 (𝑥;Ξ) | 𝐼𝑡 (𝜃)
]
= 𝑥⊤𝑃𝑡𝑥 + 2

(
𝑇−1∑︁
𝜏=𝑡

Φ⊤𝜏+1,𝑡𝑃𝜏+1𝑊
𝜃
𝜏 |𝑡

)⊤
𝑥 + Ψ𝑡 (𝐼𝑡 (𝜃)), (4.28)

where recall that for 𝑡2 > 𝑡1,

Φ⊤𝑡2,𝑡1 ≔ (𝐴𝑡1 − 𝐵𝑡1𝐾𝑡1)
⊤ · · · (𝐴𝑡2−1 − 𝐵𝑡2−1𝐾𝑡2−1)⊤

= (𝐴⊤𝑡1 − 𝐴
⊤
𝑡1𝑃𝑡1+1𝐻𝑡1) · · · (𝐴

⊤
𝑡2−1 − 𝐴

⊤
𝑡2−1𝑃𝑡2𝐻𝑡2−1),

and Ψ𝑡 (𝐼𝑡 (𝜃)) is a function of the history observations/predictions which does not
depend on 𝑥. Note that (4.28) holds when 𝑡 = 𝑇 because 𝐶𝜋𝜃

𝑇
(𝑥;Ξ) = 𝑥⊤𝑃𝑇𝑥.

Suppose that (4.28) holds for 𝑡 + 1. Then, we have

E
[
𝐶𝜋

𝜃

𝑡+1(𝑥 +𝑊𝑡 ;Ξ) | 𝐼𝑡 (𝜃)
]

= E
[
E

[
𝐶𝜋

𝜃

𝑡+1(𝑥 +𝑊𝑡 ;Ξ) | 𝐼𝑡+1(𝜃)
]
| 𝐼𝑡 (𝜃)

]
= E

[
(𝑥 +𝑊𝑡)⊤ 𝑃𝑡+1 (𝑥 +𝑊𝑡)

�� 𝐼𝑡 (𝜃)] + 2E

[
𝑇−1∑︁
𝜏=𝑡+1

Φ⊤𝜏,𝑡+1𝑃𝜏+1𝑊
𝜃
𝜏 |𝑡+1

����� 𝐼𝑡 (𝜃)
]⊤
𝑥

+ 2E

(
𝑇−1∑︁
𝜏=𝑡+1

Φ⊤𝜏,𝑡+1𝑃𝜏+1𝑊
𝜃
𝜏 |𝑡+1

)⊤
𝑊𝑡

������ 𝐼𝑡 (𝜃)
 + E [Ψ𝑡+1(𝐼𝑡+1(𝜃)) | 𝐼𝑡 (𝜃)]

= 𝑥⊤𝑃𝑡+1𝑥 + 2

(
𝑃𝑡+1𝑊

𝜃
𝑡 |𝑡 +

𝑇−1∑︁
𝜏=𝑡+1

Φ⊤𝜏,𝑡+1𝑃𝜏+1𝑊
𝜃
𝜏 |𝑡

)⊤
𝑥 + Tr{𝑃𝑡+1 · Cov [𝑊𝑡 | 𝐼𝑡 (𝜃)]}

+ 2E

(
𝑇−1∑︁
𝜏=𝑡+1

Φ⊤𝜏,𝑡+1𝑃𝜏+1𝑊
𝜃
𝜏 |𝑡+1

)⊤
𝑊𝑡

������ 𝐼𝑡 (𝜃)
 + E [Ψ𝑡+1(𝐼𝑡+1(𝜃)) | 𝐼𝑡 (𝜃)] .

To simplify the notation, let

𝜓̄𝑡+1(𝐼𝑡 (𝜃)) := Tr{𝑃𝑡+1 · Cov [𝑊𝑡 | 𝐼𝑡 (𝜃)]} + 2E

(
𝑇−1∑︁
𝜏=𝑡+1

Φ⊤𝜏,𝑡+1𝑃𝜏+1𝑊
𝜃
𝜏 |𝑡+1

)⊤
𝑊𝑡

������ 𝐼𝑡 (𝜃)


+ E [Ψ𝑡+1(𝐼𝑡+1(𝜃)) | 𝐼𝑡 (𝜃)] .

We see that the expected Q function is given by

E
[
𝑄𝜋𝜃

𝑡 (𝑥, 𝑢;Ξ) | 𝐼𝑡 (𝜃)
]
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= 𝑥⊤𝑄𝑡𝑥 + 𝑢⊤𝑅𝑡𝑢 + E
[
𝐶𝜋

𝜃

𝑡+1(𝐴𝑡𝑥 + 𝐵𝑡𝑢 +𝑊𝑡 ;Ξ) | 𝐼𝑡 (𝜃)
]

= 𝑥⊤𝑄𝑡𝑥 + 𝑢⊤𝑅𝑡𝑢 + (𝐴𝑡𝑥 + 𝐵𝑡𝑢)⊤𝑃𝑡+1(𝐴𝑡𝑥 + 𝐵𝑡𝑢)

+ 2

(
𝑃𝑡+1𝑊

𝜃
𝑡 |𝑡 +

𝑇−1∑︁
𝜏=𝑡+1

Φ⊤𝜏,𝑡+1𝑃𝜏+1𝑊
𝜃
𝜏 |𝑡

)⊤
(𝐴𝑡𝑥 + 𝐵𝑡𝑢) + 𝜓̄𝑡+1(𝐼𝑡 (𝜃))

= 𝑢⊤(𝑅𝑡 + 𝐵⊤𝑡 𝑃𝑡+1𝐵𝑡)𝑢 + 2

(
𝑃𝑡+1𝐴𝑡𝑥 + 𝑃𝑡+1𝑊 𝜃

𝑡 |𝑡 +
𝑇−1∑︁
𝜏=𝑡+1

Φ⊤𝜏,𝑡+1𝑃𝜏+1𝑊
𝜃
𝜏 |𝑡

)⊤
𝐵𝑡𝑢

+ 𝑥⊤(𝑄𝑡 + 𝐴⊤𝑡 𝑃𝑡+1𝐴𝑡)𝑥 + 2

(
𝑃𝑡+1𝑊

𝜃
𝑡 |𝑡 +

𝑇−1∑︁
𝜏=𝑡+1

Φ⊤𝜏,𝑡+1𝑃𝜏+1𝑊
𝜃
𝜏 |𝑡

)⊤
𝐴𝑡𝑥 + 𝜓̄𝑡+1(𝐼𝑡 (𝜃))

=

(
𝑢 + 𝐾𝑡𝑥 − 𝑢̄𝜃𝑡 (𝐼𝑡 (𝜃))

)⊤
(𝑅𝑡 + 𝐵⊤𝑡 𝑃𝑡+1𝐵𝑡)

(
𝑢 + 𝐾𝑡𝑥 − 𝑢̄𝜃𝑡 (𝐼𝑡 (𝜃))

)
+ 𝜓𝜋𝜃𝑡 (𝑥; 𝐼𝑡 (𝜃)),

where 𝜓𝜋𝜃𝑡 (𝑥; 𝐼𝑡 (𝜃)) is given by

𝑥⊤(𝑄𝑡 + 𝐴⊤𝑡 𝑃𝑡+1𝐴𝑡)𝑥 + 2

(
𝑃𝑡+1𝑊

𝜃
𝑡 |𝑡 +

𝑇−1∑︁
𝜏=𝑡+1

Φ⊤𝜏,𝑡+1𝑃𝜏+1𝑊
𝜃
𝜏 |𝑡

)⊤
𝐴𝑡𝑥 + 𝜓̄𝑡+1(𝐼𝑡 (𝜃))

+
(
𝐾𝑡𝑥 − 𝑢̄𝜃𝑡 (𝐼𝑡 (𝜃))

)⊤
(𝑅𝑡 + 𝐵⊤𝑡 𝑃𝑡+1𝐵𝑡)

(
𝐾𝑡𝑥 − 𝑢̄𝜃𝑡 (𝐼𝑡 (𝜃))

)
.

Using the expected Q function, we know that the optimal policy will pick the action

𝜋𝑡 (𝑥; 𝐼𝑡 (𝜃)) = arg min
𝑢

E
[
𝑄𝜋𝜃

𝑡 (𝑥, 𝑢;Ξ) | 𝐼𝑡 (𝜃)
]
= −𝐾𝑡𝑥 + 𝑢̄𝜃𝑡 (𝐼𝑡 (𝜃)).

Therefore, we see the optimal cost-to-go function at time step 𝑡 is given by

E
[
𝐶𝜋

𝜃

𝑡 (𝑥;Ξ) | 𝐼𝑡 (𝜃)
]

= 𝑥⊤𝑄𝑡𝑥 + (𝐾𝑡𝑥 − 𝑢̄𝜃𝑡 (𝐼𝑡 (𝜃)))⊤𝑅𝑡 (𝐾𝑡𝑥 − 𝑢̄𝜃𝑡 (𝐼𝑡 (𝜃)))
+ ((𝐴𝑡 − 𝐵𝑡𝐾𝑡)𝑥 + 𝐵𝑡 𝑢̄𝜃𝑡 (𝐼𝑡 (𝜃)))⊤𝑃𝑡+1((𝐴𝑡 − 𝐵𝑡𝐾𝑡)𝑥 + 𝐵𝑡 𝑢̄𝜃𝑡 (𝐼𝑡 (𝜃)))

+ 2

(
𝑃𝑡+1𝑊

𝜃
𝑡 |𝑡 +

𝑇−1∑︁
𝜏=𝑡+1

Φ⊤𝜏,𝑡+1𝑃𝜏+1𝑊
𝜃
𝜏 |𝑡

)⊤
((𝐴𝑡 − 𝐵𝑡𝐾𝑡)𝑥 + 𝐵𝑡 𝑢̄𝜃𝑡 (𝐼𝑡 (𝜃))) + 𝜓̄𝑡+1(𝐼𝑡 (𝜃))

= 𝑥⊤(𝑄𝑡 + 𝐾⊤𝑡 𝑅𝑡𝐾𝑡 + (𝐴𝑡 − 𝐵𝑡𝐾𝑡)⊤𝑃𝑡+1(𝐴𝑡 − 𝐵𝑡𝐾𝑡))𝑥 − 2𝑢̄𝜃𝑡 (𝐼𝑡 (𝜃))⊤𝑅𝑡𝐾𝑡𝑥
+ 2𝑢̄𝜃𝑡 (𝐼𝑡 (𝜃))⊤𝐵⊤𝑡 𝑃𝑡+1(𝐴𝑡 − 𝐵𝑡𝐾𝑡)𝑥

+ 2

(
𝑃𝑡+1𝑊

𝜃
𝑡 |𝑡 +

𝑇−1∑︁
𝜏=𝑡+1

Φ⊤𝜏,𝑡+1𝑃𝜏+1𝑊
𝜃
𝜏 |𝑡

)⊤
(𝐴𝑡 − 𝐵𝑡𝐾𝑡)𝑥

+ 𝑢̄𝜃𝑡 (𝐼𝑡 (𝜃))⊤(𝑅𝑡 + 𝐵⊤𝑡 𝑃𝑡+1𝐵𝑡)𝑢̄𝜃𝑡 (𝐼𝑡 (𝜃))

+ 2

(
𝑃𝑡+1𝑊

𝜃
𝑡 |𝑡 +

𝑇−1∑︁
𝜏=𝑡+1

Φ⊤𝜏,𝑡+1𝑃𝜏+1𝑊
𝜃
𝜏 |𝑡

)⊤
𝐵𝑡 𝑢̄

𝜃
𝑡 (𝐼𝑡 (𝜃)) + 𝜓̄𝑡+1(𝐼𝑡 (𝜃)).
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Note that the term −2𝑢̄𝜃𝑡 (𝐼𝑡 (𝜃))⊤𝑅𝑡𝐾𝑡𝑥 and the term +2𝑢̄𝜃𝑡 (𝐼𝑡 (𝜃))⊤𝐵⊤𝑡 𝑃𝑡+1(𝐴𝑡 −
𝐵𝑡𝐾𝑡)𝑥 cancel out because 𝑅𝑡𝐾𝑡 = 𝐵⊤𝑡 𝑃𝑡+1(𝐴𝑡 − 𝐵𝑡𝐾𝑡). We also note that the matrix
in the first quadratic term can be simplified to

𝑄𝑡 + 𝐾⊤𝑡 𝑅𝑡𝐾𝑡 + (𝐴𝑡 − 𝐵𝑡𝐾𝑡)⊤𝑃𝑡+1(𝐴𝑡 − 𝐵𝑡𝐾𝑡)
= 𝑄𝑡 + 𝐾⊤𝑡 𝐵⊤𝑡 𝑃𝑡+1(𝐴𝑡 − 𝐵𝑡𝐾𝑡) + (𝐴𝑡 − 𝐵𝑡𝐾𝑡)⊤𝑃𝑡+1(𝐴𝑡 − 𝐵𝑡𝐾𝑡)
= 𝑄𝑡 + 𝐴⊤𝑡 𝑃𝑡+1(𝐴𝑡 − 𝐵𝑡𝐾𝑡)
= 𝑄𝑡 + 𝐴⊤𝑡 𝑃𝑡+1𝐴𝑡 − 𝐴⊤𝑡 𝑃𝑡+1𝐵𝑡𝐾𝑡
= 𝑄𝑡 + 𝐴⊤𝑡 𝑃𝑡+1𝐴𝑡 − 𝐴⊤𝑡 𝑃𝑡+1𝐻𝑡𝑃𝑡+1𝐴𝑡
= 𝑃𝑡 ,

where the last equation follows by the definition of 𝑃𝑡 in (4.8).

Therefore, we obtain that

E
[
𝐶𝜋

𝜃

𝑡 (𝑥;Ξ) | 𝐼𝑡 (𝜃)
]

= 𝑥⊤𝑃𝑡𝑥 + 2

(
(𝐴⊤𝑡 − 𝐴⊤𝑡 𝑃𝑡+1𝐻𝑡) (𝑃𝑡+1𝑊 𝜃

𝑡 |𝑡 +
𝑇−1∑︁
𝜏=𝑡+1

Φ⊤𝜏,𝑡+1𝑃𝜏+1𝑊
𝜃
𝜏 |𝑡)

)⊤
𝑥

+ 𝑢̄𝜃𝑡 (𝐼𝑡 (𝜃))⊤(𝑅𝑡 + 𝐵⊤𝑡 𝑃𝑡+1𝐵𝑡)𝑢̄𝜃𝑡 (𝐼𝑡 (𝜃))

+ 2

(
𝑃𝑡+1𝑊

𝜃
𝑡 |𝑡 +

𝑇−1∑︁
𝜏=𝑡+1

Φ⊤𝜏,𝑡+1𝑃𝜏+1𝑊
𝜃
𝜏 |𝑡

)⊤
𝐵𝑡 𝑢̄

𝜃
𝑡 (𝐼𝑡 (𝜃)) + 𝜓̄𝑡+1(𝐼𝑡 (𝜃))

= 𝑥⊤𝑃𝑡𝑥 + 2

(
𝑇−1∑︁
𝜏=𝑡

Φ⊤𝜏,𝑡𝑃𝜏+1𝑊
𝜃
𝜏 |𝑡

)⊤
𝑥 + 𝜓̄𝑡 (𝐼𝑡 (𝜃)),

where the residual term 𝜓̄𝑡 (𝐼𝑡 (𝜃)) is given by

𝜓̄𝑡 (𝐼𝑡 (𝜃)) = 𝑢̄𝜃𝑡 (𝐼𝑡 (𝜃))⊤(𝑅𝑡 + 𝐵⊤𝑡 𝑃𝑡+1𝐵𝑡)𝑢̄𝜃𝑡 (𝐼𝑡 (𝜃))

+ 2

(
𝑃𝑡+1𝑊

𝜃
𝑡 |𝑡 +

𝑇−1∑︁
𝜏=𝑡+1

Φ⊤𝜏,𝑡+1𝑃𝜏+1𝑊
𝜃
𝜏 |𝑡

)⊤
𝐵𝑡 𝑢̄

𝜃
𝑡 (𝐼𝑡 (𝜃)) + 𝜓̄𝑡+1(𝐼𝑡 (𝜃)).

Thus, we have shown the statement of Proposition 4.3.1 and 4.28 by induction.

Proof of Theorem 4.3.1
By Proposition 4.3.1, we see Condition 4.2.1 holds with equality:

E
[
𝑄𝜋𝜃

𝑡 (𝑥, 𝑢;Ξ) − 𝐶𝜋𝜃𝑡 (𝑥;Ξ) | 𝐼𝑡 (𝜃) = 𝜄𝑡 (𝜃)
]

= (𝑢 − 𝜋𝜃𝑡 (𝑥; 𝜄𝑡 (𝜃)))⊤𝑀𝑡 (𝑢 − 𝜋𝜃𝑡 (𝑥; 𝜄𝑡 (𝜃))), (4.29)
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where 𝑀𝑡 is defined in Theorem 4.3.1. We also see that Condition 4.2.2 (a) holds
with equality:

E
[
Cov

[
𝜋𝜃𝑡 (𝑋; 𝐼𝑡 (𝜃)) | F𝑡 (0)

] ]
= Σ𝑡 . (4.30)

By Theorem 4.2.3, we obtain that 𝑃(𝜃) ≥ ∑𝑇−1
𝑡=0 Tr{𝑀𝑡Σ𝑡}, but the lower bound

is tight in this case. To see this, we go through the proof of Theorem 4.2.3 in
Section 4.A and check each inequality: (4.19) holds with equality because of (4.29),
which implies that (4.19) also holds with equality. (4.22) holds with equality because
of (4.30) and the relationship that

𝑈̄𝑡 = − 𝐾𝑡 𝑋̄𝑡 − (𝑅𝑡 + 𝐵⊤𝑡 𝑃𝑡+1𝐵𝑡)−1𝐵⊤𝑡

𝑇−1∑︁
𝜏=𝑡

Φ⊤𝜏+1,𝑡+1𝑃𝜏+1𝑊
0
𝜏 |𝑡

= − 𝐾𝑡 𝑋̄𝑡 − (𝑅𝑡 + 𝐵⊤𝑡 𝑃𝑡+1𝐵𝑡)−1𝐵⊤𝑡

𝑇−1∑︁
𝜏=𝑡

Φ⊤𝜏+1,𝑡+1𝑃𝜏+1E
[
𝑊 𝜃
𝜏 |𝑡

��� 𝐼𝑡 (0)]
= E [𝑈𝑡 | 𝐼𝑡 (0)] = 𝑈̃𝑡 .

Therefore, we know that (4.23) also holds with equality, so 𝑃(𝜃) = ∑𝑇−1
𝑡=0 Tr{𝑀𝑡Σ𝑡}.

Proof of the MPC form
In the LQR setting, we can further simplify the MPC policy (4.10) to be planning
according to 𝑤𝜃

𝜏 |𝑡 :

arg min
𝑢𝑡:𝑇−1

𝑇−1∑︁
𝜏=𝑡

ℎ𝜏 (𝑥𝜏, 𝑢𝜏) + ℎ𝑇 (𝑥𝑇 )

s.t. 𝑥𝜏+1 = 𝑓𝜏 (𝑥𝜏, 𝑢𝜏;𝑤𝜃𝜏 |𝑡), for 𝜏 ≥ 𝑡, and 𝑥𝑡 = 𝑥.

(4.31)

We show the MPC policies defined in (4.10) and (4.31) are equivalent to the optimal
policy in Proposition 4.3.1.

To simplify the notation, we define the large vectors

®𝑥 :=


𝑥𝑡

𝑥𝑡+1
...

𝑥𝑇


, ®𝑢 :=


𝑢𝑡

𝑢𝑡+1
...

𝑢𝑇−1


, and ®𝑤 :=


𝑤𝑡

𝑤𝑡+1
...

𝑤𝑇−1


.

Follow the approach of system level thesis, we know the constraints that

𝑥𝜏+1 := 𝐴𝜏𝑥𝜏 + 𝐵𝜏𝑢𝜏 + 𝑤𝜏, for 𝜏 ≥ 𝑡, and 𝑥𝑡 = 𝑥
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can be expressed equivalently by the affine relationship

®𝑥 := Φ𝑥𝑥 +Φ𝑢 ®𝑢 +Φ𝑤 ®𝑤.

Let ®𝑄 = Diag(𝑄𝑡 , . . . , 𝑄𝑇−1, 𝑃𝑇 ) and ®𝑅 = Diag(𝑅𝑡 , . . . , 𝑅𝑇−1). We know the
objective function (with equality constraints)

𝑇−1∑︁
𝜏=𝑡

ℎ𝜏 (𝑥𝜏, 𝑢𝜏) + ℎ𝑇 (𝑥𝑇 )

s.t. 𝑥𝜏+1 = 𝑓𝜏 (𝑥𝜏, 𝑢𝜏;𝑤𝑡), for 𝜏 ≥ 𝑡, and 𝑥𝑡 = 𝑥, (4.32)

can be written equivalently in the unconstrained form

(Φ𝑥𝑥 +Φ𝑢 ®𝑢 +Φ𝑤 ®𝑤)⊤ ®𝑄(Φ𝑥𝑥 +Φ𝑢 ®𝑢 +Φ𝑤 ®𝑤) + ®𝑢⊤ ®𝑅®𝑢. (4.33)

We introduce the notations

®𝑊 :=


𝑊𝑡

𝑊𝑡+1
...

𝑊𝑇−1


, ®𝑊 𝜃
·|𝑡 :=


𝑊 𝜃
𝑡 |𝑡

𝑊 𝜃
𝑡+1|𝑡
...

𝑊 𝜃
𝑇−1|𝑡


, and ®𝑤𝜃·|𝑡 :=


𝑤𝜃
𝑡 |𝑡

𝑤𝜃
𝑡+1|𝑡
...

𝑤𝜃
𝑇−1|𝑡


.

The MPC policy in (4.10) can be expressed as

min
®𝑢

E
[
(Φ𝑥𝑥 +Φ𝑢 ®𝑢 +Φ𝑤

®𝑊)⊤ ®𝑄(Φ𝑥𝑥 +Φ𝑢 ®𝑢 +Φ𝑤
®𝑊) + ®𝑢⊤ ®𝑅®𝑢

��� 𝐼𝑡 (𝜃) = 𝜄𝑡 (𝜃)] .
Because the objective function can be reduced to

E
[
(Φ𝑥𝑥 +Φ𝑢 ®𝑢 +Φ𝑤

®𝑊)⊤ ®𝑄(Φ𝑥𝑥 +Φ𝑢 ®𝑢 +Φ𝑤
®𝑊) + ®𝑢⊤ ®𝑅®𝑢

��� 𝐼𝑡 (𝜃) = 𝜄𝑡 (𝜃)]
= (Φ𝑥𝑥 +Φ𝑢 ®𝑢 +Φ𝑤 ®𝑤𝜃·|𝑡)

⊤ ®𝑄(Φ𝑥𝑥 +Φ𝑢 ®𝑢 +Φ𝑤 ®𝑤𝜃·|𝑡) + ®𝑢
⊤ ®𝑅®𝑢

+ E
[
(Φ𝑤 ( ®𝑊 − ®𝑊 𝜃

·|𝑡))
⊤ ®𝑄Φ𝑤 ( ®𝑊 − ®𝑊 𝜃

·|𝑡)
��� 𝐼𝑡 (𝜃) = 𝜄𝑡 (𝜃)] ,

where the last term is independent with 𝑥 and ®𝑢. Thus, the MPC policy in (4.10) is
equivalent to

E
[
(Φ𝑥𝑥 +Φ𝑢 ®𝑢 +Φ𝑤

®𝑊)⊤ ®𝑄(Φ𝑥𝑥 +Φ𝑢 ®𝑢 +Φ𝑤
®𝑊) + ®𝑢⊤ ®𝑅®𝑢

��� 𝐼𝑡 (𝜃) = 𝜄𝑡 (𝜃)] ,
which is the MPC policy in (4.31).

Now, we show that (4.31) is equivalent to the optimal policy in Proposition 4.3.1.
For any sequence 𝑤𝑡:𝑇−1, let MPC(𝑥, 𝑤𝑡:𝑇−1) denote the first entry of the solution to

arg min
𝑢𝑡:𝑇−1

𝑇−1∑︁
𝜏=𝑡

ℎ𝜏 (𝑥𝜏, 𝑢𝜏) + ℎ𝑇 (𝑥𝑇 )
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s.t. 𝑥𝜏+1 = 𝑓𝜏 (𝑥𝜏, 𝑢𝜏;𝑤𝑡), for 𝜏 ≥ 𝑡, and 𝑥𝑡 = 𝑥. (4.34)

To show that (4.31) is equivalent to the optimal policy in Proposition 4.3.1, we only
need to show that

MPC(𝑥, 𝑤𝑡:𝑇−1) = −𝐾𝑡𝑥 − (𝑅𝑡 + 𝐵⊤𝑡 𝑃𝑡+1𝐵𝑡)−1𝐵⊤𝑡

𝑇−1∑︁
𝜏=𝑡

Φ⊤𝜏+1,𝑡+1𝑃𝜏+1𝑤𝑡 (4.35)

holds for any sequence 𝑤𝑡:𝑇−1. To see this, we consider the case when 𝑤𝑡:𝑇−1

are deterministic disturbances on and after time step 𝑡, i.e., the agent knows
𝑤𝑡:𝑇−1 exactly at time step 𝑡. In this scenario, we know the optimal policy
is to follow the planned trajectory according to MPC in (4.32). On the other
hand, by Proposition 4.3.1, we know the optimal action to take at time 𝑡 is
−𝐾𝑡𝑥− (𝑅𝑡 +𝐵⊤𝑡 𝑃𝑡+1𝐵𝑡)−1𝐵⊤𝑡

∑𝑇−1
𝜏=𝑡 Φ

⊤
𝜏+1,𝑡+1𝑃𝜏+1𝑤𝑡 . Therefore, the first step planned

by MPC must be identical with −𝐾𝑡𝑥 − (𝑅𝑡 + 𝐵⊤𝑡 𝑃𝑡+1𝐵𝑡)−1𝐵⊤𝑡
∑𝑇−1
𝜏=𝑡 Φ

⊤
𝜏+1,𝑡+1𝑃𝜏+1𝑤𝑡 .

Thus, (4.35) holds. And replacing 𝑤𝑡:(𝑇−1) with 𝑤𝜃
𝑡:(𝑇−1) |𝑡 finishes the proof.

Evaluation of the Expected Conditional Covariance
For two general random variables 𝑋 and 𝑌 , we follow a standard procedure to eval-
uate the expectation of their conditional covariance E [Cov [𝑌 | 𝑋]] using a dataset
{(𝑥𝑛, 𝑦𝑛)} that is independently sampled from the joint distribution of (𝑋,𝑌 ) (Al-
gorithm 5). The algorithm first train a regressor 𝜓 that approximates the conditional
expectation E [𝑋 | 𝑌 ], where we use the definition:

E [𝑌 | 𝑋] = min
𝜓 is any function.

E
[
∥𝑌 − 𝜓(𝑋)∥22

]
.

Then, 𝜓 is used for evaluating the conditional covariance. During training, we split
the dataset to the train, validation, and test datasets in order to prevent overfitting.

Algorithm 5: Expected Conditional Covariance Estimator (ECCE)
Require: Dataset 𝐷 that consists input/output pair (𝑥𝑛, 𝑦𝑛).
Split the dataset 𝐷 to 𝐷train, 𝐷val, and 𝐷test.
Initialize a regressor 𝜓 with input 𝑥 and target output 𝑦.
Fit 𝜓 to 𝐷train with MSE and use 𝐷val to prevent over-fit.
return Σ := 1

|𝐷test |
∑
𝑛∈𝐷test (𝑦𝑛 − 𝜓(𝑥𝑛)) (𝑦𝑛 − 𝜓(𝑥𝑛))⊤

4.D Proofs for LTV Dynamics with General Costs
Infimal Convolution Properties
The first result states that the variant of infimal convolution preserves the strong
convexity/smoothness of the input functions.
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Lemma 4.D.1. Consider a variant of infimal convolution where the optimization
variable is multiplied by a matrix 𝐵:

( 𝑓□𝐵𝜔) (𝑥) = min
𝑢
{ 𝑓 (𝑢) + 𝜔(𝑥 − 𝐵𝑢)} , (4.36)

where 𝑓 : R𝑚 → R, 𝜔 : R𝑛 → R, and 𝐵 ∈ R𝑛×𝑚 is a matrix. Suppose that 𝑓 is a
𝜇 𝑓 -strongly convex function, and𝜔 is a 𝜇𝜔-strongly convex and ℓ𝜔-smooth function.
Then, 𝑓□𝐵𝜔 is a

(
𝜇𝜔𝜇 𝑓

𝜇 𝑓 +∥𝐵∥2𝜇𝜔

)
-strongly convex and ℓ𝜔-smooth function. We also

have ∇( 𝑓□𝐵𝜔) (𝑥) = ∇𝜔(𝑥 − 𝐵𝑢(𝑥)).

The second result is about the optimal solution of the variant of infimal convolution.
It states that for some distributions, the covariance on the input will induce a variance
on the optimal solution. We state it in Lemma 4.D.2 and provide the proof later in
this section.

Lemma 4.D.2. Let 𝑢( 𝑓□𝐵𝜔) (𝑥) denote the solution to the optimization problem
(4.15). Suppose function 𝑓 is 𝜇 𝑓 -strongly convex. Function 𝜔 is 𝜇𝜔-strongly
convex and ℓ𝜔-smooth. Suppose 𝑋 is a random vector with bounded mean and
Cov [𝑋] = Σ ⪰ 𝜎0𝐼. Further, there exists a constant 𝐶 > 0 such that for any
positive integer 𝑁 , 𝑋 can be decomposed as 𝑋 =

∑𝑁
𝑖=1 𝑋𝑖 for i.i.d. random vectors

𝑋𝑖 that satisfies E
[
∥𝑋𝑖∥4

]
≤ 𝐶 · 𝑁−2. Then,

Tr
{
Cov

[
𝑢( 𝑓□𝐵𝜔) (𝑋)

]}
≥
𝑛𝜎0𝜇

2
𝜔 · 𝜎min(𝐵)2

2(ℓ 𝑓 + ℓ𝜔∥𝐵∥)2
.

As a remark, examples of 𝑋 that satisfies the assumptions include:

• Normal distribution 𝑋 ∼ 𝑁 (0, Σ). We have 𝑋𝑖 ∼ 𝑁 (0, Σ/𝑁), thusE
[
∥𝑋𝑖∥4

]
≤

3 Tr{Σ}𝑁−2.

• Poisson distribution (1D) with parameter 𝑎. We have Var [𝑋] = 𝑎 and 𝑋𝑖
follows Poisson distribution with parameter 𝑎/𝑁 . Thus, E

[
𝑋4
𝑖

]
= 𝑎4𝑁−4.

The next result (Lemma 4.D.3) considers the case when there is an additional
input 𝑤 to function 𝜔 in the infimal convolution. When this additional parameter
causes a covariance on the gradient ∇1𝜔(𝑥,𝑊), the optimal solution of the infimal
convolution will also have a nonzero variance.
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Lemma 4.D.3. Suppose that 𝜔(𝑥, 𝑤) satisfies that 𝜔(·, 𝑤) is an ℓ𝜔-smooth convex
function for all 𝑤. For a random variable𝑊 , suppose that the following inequality
holds for arbitrary fixed vector 𝑥 ∈ R𝑛,

Cov [∇1𝜔(𝑥,𝑊)] ⪰ 𝜎0𝐼 .

Suppose that 𝑓 : R𝑚 → R is a 𝜇 𝑓 -strongly convex and ℓ 𝑓 -smooth function (𝑚 ≤ 𝑛).
Let 𝐵 be a matrix in R𝑛×𝑚. Then, the optimal solution of the infimal convolution

𝑢( 𝑓□𝐵𝜔) (𝑥, 𝑤) := arg min
𝑢

( 𝑓 (𝑢) + 𝜔(𝑥 − 𝐵𝑢, 𝑤))

satisfies that

Tr
{
Cov

[
𝑢( 𝑓□𝐵𝜔) (𝑥,𝑊)

]}
≥ 𝑛𝜎0 · 𝜎min(𝐵)2

2(ℓ 𝑓 + ℓ𝜔∥𝐵∥)2

holds for arbitrary fixed vector 𝑥, where 𝜎min(𝐵) denotes the minimum singular
value of 𝐵.

Lemma 4.D.3 is useful for showing Lemma 4.D.2. We provide its proof later in this
section.

Proof of Lemma 4.3.3
We use induction to show that E

[
𝐶𝜋

𝜃

𝑡 (𝑥;Ξ) | 𝐼𝑡 (𝜃) = 𝜄𝑡 (𝜃)
]

is a 𝜇𝑡-strongly convex
and ℓ𝑡-smooth function for any 𝜄𝑡 (𝜃), where the coefficients 𝜇𝑡 and ℓ𝑡 are defined
recursively in (4.13). To simplify the notation, we will omit “𝐼𝑡 (𝜃) =” in the
conditional expectations throughout this proof when conditioning on a realization
of the history 𝜄𝑡 (𝜃).

Note that the statement holds for 𝑡 = 𝑇 , because E
[
𝐶𝜋

𝜃

𝑇
(𝑥;Ξ) | 𝜄𝑇 (𝜃)

]
= ℎ𝑥

𝑇
(𝑥) and

the terminal cost ℎ𝑥
𝑇

is 𝜇𝑥-strongly convex and ℓ𝑥-smooth.

Suppose the statement holds for 𝑡 + 1. We see that

E
[
𝐶𝜋

𝜃

𝑡 (𝑥;Ξ) | 𝜄𝑡 (𝜃)
]
= ℎ𝑥𝑡 (𝑥) +min

𝑢

(
ℎ𝑢𝑡 (𝑢) + E

[
𝐶𝜋

𝜃

𝑡+1(𝐴𝑡𝑥 + 𝐵𝑡𝑢 +𝑊𝑡 ;Ξ) | 𝜄𝑡 (𝜃)
] )
.

By the induction assumption, we know that E
[
𝐶𝜋

𝜃

𝑡+1(·;Ξ) | 𝜄𝑡+1(𝜃)
]

is a 𝜇𝑡+1-strongly

convex and ℓ𝑡+1-smooth function for any 𝜄𝑡+1(𝜃). Thus, E
[
𝐶𝜋

𝜃

𝑡+1(· +𝑊𝑡 ;Ξ) | 𝜄𝑡 (𝜃)
]

is also a 𝜇𝑡+1-strongly convex and ℓ𝑡+1-smooth function. Therefore,

min
𝑢

(
ℎ𝑢𝑡 (𝑢) + E

[
𝐶𝜋

𝜃

𝑡+1(𝑥 + 𝐵𝑡𝑢 +𝑊𝑡 ;Ξ) | 𝜄𝑡 (𝜃)
] )
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is a 𝜇𝑢𝜇𝑡+1
𝜇𝑢+𝑏2𝜇𝑡+1

-strongly convex and ℓ𝑡+1-smooth function of 𝑥 by Lemma 4.D.1. By
changing the variable from 𝑥 to 𝐴𝑡𝑥, we see that

min
𝑢

(
ℎ𝑢𝑡 (𝑢) + E

[
𝐶𝜋

𝜃

𝑡+1(𝐴𝑡𝑥 + 𝐵𝑡𝑢 +𝑊𝑡 ;Ξ) | 𝜄𝑡 (𝜃)
] )

is a 𝜇𝐴 · 𝜇𝑢𝜇𝑡+1
𝜇𝑢+𝑏2𝜇𝑡+1

-strongly convex and ℓ𝐴 · ℓ𝑡+1-smooth function by Assumption
4.3.1. Since ℎ𝑥𝑡 is a 𝜇𝑥-strongly convex and ℓ𝑥-smooth function, we see that
E

[
𝐶𝜋

𝜃

𝑡 (𝑥;Ξ) | 𝜄𝑡 (𝜃)
]

is also a 𝜇𝑡-strongly convex and ℓ𝑡-smooth function because

𝜇𝑡 = 𝜇𝑥 + 𝜇𝐴 ·
𝜇𝑢𝜇𝑡+1

𝜇𝑢 + 𝑏2𝜇𝑡+1
, and ℓ𝑡 = ℓ𝑥 + ℓ𝐴 · ℓ𝑡+1.

Proof of Theorem 4.3.4
Note that the optimal action at time step 𝑡 is determined by

𝜋𝜃𝑡 (𝑥; 𝐼𝑡 (𝜃)) := arg min
𝑢

(
ℎ𝑢𝑡 (𝑢) + E

[
𝐶𝜋

𝜃

𝑡+1(𝐴𝑡𝑥 + 𝐵𝑡𝑢 +𝑊𝑡 ;Ξ) | 𝐼𝑡 (𝜃)
] )
. (4.37)

This can be further simplified to

𝜋𝜃𝑡 (𝑥; 𝐼𝑡 (𝜃)) := arg min
𝑢

(
ℎ𝑢𝑡 (𝑢) + 𝐶̄𝜋

𝜃

𝑡+1(𝐴𝑡𝑥 + 𝐵𝑡𝑢 +𝑊
𝜃
𝑡 |𝑡)

)
.

The additional input 𝐼𝑡 (𝜃) is not required for 𝐶̄𝜋𝜃
𝑡+1 because the function 𝐶̄𝜋𝜃

𝑡+1(𝑥; 𝜄𝑡 (𝜃))
does not change with the history 𝜄𝑡 (𝜃) under Assumption 4.3.2. The reason is
that 𝑊𝑡 − 𝑊 𝜃

𝑡 |𝑡 and all future predictions and disturbances 𝑊𝑡+1:𝑇−1, 𝑉
𝜃
𝑡+1:𝑇−1 are

independent with the history 𝐼𝑡 (𝜃).

By (4.16), we see that

𝜋𝜃𝑡 (𝑥; 𝐼𝑡 (𝜃)) = 𝑢(ℎ𝑢𝑡 □−𝐵𝑡 𝐶̄ 𝜋𝜃𝑡+1 ) (𝐴𝑡𝑥 +𝑊
𝜃
𝑡 |𝑡).

Under Assumption 4.3.2, we see that

Cov
[
𝑊 𝜃
𝑡 |𝑡

]
= Cov [𝑊𝑡] − Cov [𝑊𝑡 | 𝑉𝑡 (𝜃)] ⪰ 𝜆𝑡 (𝜃)𝐼

and𝑊 𝜃
𝑡 |𝑡 is Gaussian. Therefore, we can apply Lemma 4.D.2 to obtain that

Tr
{
Cov

[
𝜋𝜃𝑡 (𝑥; 𝐼𝑡 (𝜃)) | F𝑡 (0)

]}
≥ 𝜎𝑡 :=

𝑛𝜆𝑡 (𝜃)𝜇2
𝑡+1 · 𝜇𝐵

2(ℓ𝑢 + ℓ𝑡+1
√
ℓ𝐵)2

.

Thus, Condition 4.2.2 (b) holds with 𝜎𝑡 .

On the other hand, Condition 4.2.1 holds with 𝑀𝑡 = 𝜇𝑡 𝐼 by Lemma 4.3.3. Therefore,
by Theorem 4.2.3, we obtain that 𝑃(𝜃) ≥ ∑𝑇−1

𝑡=0 𝜇𝑢𝜎𝑡 .
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Proof of Lemma 4.D.1
By the definition of conjugate, we see that

( 𝑓□𝐵𝜔)∗ (𝑦) = max
𝑥

{
⟨𝑦, 𝑥⟩ −min

𝑢
{ 𝑓 (𝑢) + 𝜔(𝑥 − 𝐵𝑢)}

}
(4.38a)

= max
𝑥

max
𝑢
{⟨𝑦, 𝑥⟩ − 𝑓 (𝑢) − 𝜔(𝑥 − 𝐵𝑢)}

= max
𝑥

max
𝑢
{⟨𝑦, 𝑥 − 𝐵𝑢⟩ + ⟨𝑦, 𝐵𝑢⟩ − 𝑓 (𝑢) − 𝜔(𝑥 − 𝐵𝑢)}

= max
𝑢

max
𝑥

{
(⟨𝑦, 𝑥 − 𝐵𝑢⟩ − 𝜔(𝑥 − 𝐵𝑢)) +

(
⟨𝐵⊤𝑦, 𝑢⟩ − 𝑓 (𝑢)

)}
(4.38b)

= max
𝑢

{
max
𝑥
{⟨𝑦, 𝑥 − 𝐵𝑢⟩ − 𝜔(𝑥 − 𝐵𝑢)} + ⟨𝐵⊤𝑦, 𝑢⟩ − 𝑓 (𝑢)

}
= max

𝑢

{
𝜔∗(𝑦) + ⟨𝐵⊤𝑦, 𝑢⟩ − 𝑓 (𝑢)

}
(4.38c)

= 𝜔∗(𝑦) + 𝑓 ∗(𝐵⊤𝑦), (4.38d)

where we use the definition of 𝑓□𝐵𝜔 in (4.38a); we change the order of taking the
maximum and use ⟨𝑦, 𝐵𝑢⟩ = ⟨𝐵⊤𝑦, 𝑢⟩ in (4.38b); we use the definition of 𝜔∗ in
(4.38c); we use the definition of 𝑓 ∗ in (4.38d).

Since 𝑓□𝐵𝜔 is convex, by Theorem 4.8 in Beck, 2017, we know that

( 𝑓□𝐵𝜔) (𝑦) =
(
𝜔∗(𝑦) + 𝑓 ∗(𝐵⊤𝑦)

)∗
. (4.39)

Since 𝜔 is a 𝜇𝜔-strongly convex and ℓ𝜔-smooth function, we know 𝜔∗ is an 1
ℓ𝜔

-
strongly convex and 1

𝜇𝜔
-smooth function by the conjugate correspondence theorem

(Beck, 2017). Similarly, we know that 𝑓 ∗ is a 1
𝜇 𝑓

-smooth convex function. Thus,

we know that 𝜔∗(𝑦) + 𝑓 ∗(𝐵⊤𝑦) is an 1
ℓ𝜔

-strongly convex and
(

1
𝜇𝜔
+ ∥𝐵∥

2

𝜇 𝑓

)
-smooth

function. Therefore, by the conjugate correspondence theorem, we know that 𝑓□𝐵𝜔
is a

(
𝜇𝜔𝜇 𝑓

𝜇 𝑓 +∥𝐵∥2𝜇𝜔

)
-strongly convex and ℓ𝜔-smooth function.

Now, we show that

∇( 𝑓□𝐵𝜔) (𝑥) = ∇𝜔(𝑥 − 𝐵𝑢(𝑥)). (4.40)

Following a similar approach with the proof of Theorem 5.30 in Beck, 2017, we
define 𝑧 = ∇𝜔(𝑥 − 𝐵𝑢(𝑥)). Define function 𝜙(𝜉) := ( 𝑓□𝐵𝜔) (𝑥 + 𝜉) − ( 𝑓□𝐵𝜔) (𝑥) −
⟨𝜉, 𝑧⟩. We see that

𝜙(𝜉) = ( 𝑓□𝐵𝜔) (𝑥 + 𝜉) − ( 𝑓□𝐵𝜔) (𝑥) − ⟨𝜉, 𝑧⟩
≤ 𝜔(𝑥 + 𝜉 − 𝐵𝑢(𝑥)) − 𝜔(𝑥 − 𝐵𝑢(𝑥)) − ⟨𝜉, 𝑧⟩ (4.41a)
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≤ ⟨𝜉,∇𝜔(𝑥 + 𝜉 − 𝐵𝑢(𝑥))⟩ − ⟨𝜉, 𝑧⟩ (4.41b)

= ⟨𝜉,∇𝜔(𝑥 + 𝜉 − 𝐵𝑢(𝑥)) − ∇𝜔(𝑥 − 𝐵𝑢(𝑥))⟩
≤ ∥𝜉∥ · ∥∇𝜔(𝑥 + 𝜉 − 𝐵𝑢(𝑥)) − ∇𝜔(𝑥 − 𝐵𝑢(𝑥))∥ (4.41c)

≤ ℓ𝜔∥𝜉∥2, (4.41d)

where in (4.41a), we use

( 𝑓□𝐵𝜔) (𝑥 + 𝜉) ≤ 𝑓 (𝑢(𝑥)) + 𝜔(𝑥 + 𝜉 − 𝐵𝑢(𝑥)), and

( 𝑓□𝐵𝜔) (𝑥) = 𝑓 (𝑢(𝑥)) + 𝜔(𝑥 − 𝐵𝑢(𝑥));

we use the convexity of 𝜔 in (4.41b); we use the Cauchy-Schwarz inequality in
(4.41c); we use the assumption that 𝜔 is ℓ𝜔-smooth in (4.41d).

Since ( 𝑓□𝐵𝜔) is a convex function, 𝜙 is also convex, thus we see that

𝜙(𝜉) ≥ 2𝜙(0) − 𝜙(−𝜉) = −𝜙(−𝜉) ≥ −ℓ𝜔∥𝜉∥2.

Combining this with (4.41), we conclude that lim∥𝜉∥→0 |𝜙(𝜉) |/∥𝜉∥ = 0. Thus,
(4.40) holds.

Proof of Lemma 4.D.2
By Theorem 4.D.5, we see that

Cov [∇𝜔(𝑋)] ≥ 𝜎0𝜇
2
𝜔.

Then, we apply Lemma 4.D.3 with the second function input to the infimal convo-
lution as 𝜔̃(𝑥, 𝑤) := 𝜔(𝑥 + 𝑤). In the context of Lemma 4.D.3, we set 𝑊 = 𝑋 , so
the assumption about the covariance of the gradient holds with

Cov [∇1𝜔̃(𝑥,𝑊)] ⪰ 𝜎0𝜇
2
𝜔.

Note that for any fixed 𝑤, 𝜔̃(·, 𝑤) is 𝜇𝜔-strongly convex. Therefore, we obtain that

Tr
{
Cov

[
𝑢( 𝑓□𝐵𝜔) (𝑋)

]}
= Tr

{
Cov

[
𝑢( 𝑓□𝐵𝜔̃) (0,𝑊)

]}
≥
𝑛𝜎0𝜇

2
𝜔 · 𝜎min(𝐵)2

2(ℓ 𝑓 + ℓ𝜔∥𝐵∥)2
.

Proof of Lemma 4.D.3
Because function 𝑐 is ℓ𝑐-smooth, we have

∥∇𝑐(𝑢(𝑥, 𝑤)) − ∇𝑐(𝑢(𝑥, 𝑤′))∥ ≤ ℓ𝑐∥𝑢(𝑥, 𝑤) − 𝑢(𝑥, 𝑤′)∥. (4.42)
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Using the assumption that function 𝑓 is ℓ 𝑓 -smooth, we obtain the following inequal-
ities:

𝐵⊤∇1 𝑓 (𝑥 − 𝐵𝑢(𝑥, 𝑤), 𝑤) − 𝐵⊤∇1 𝑓 (𝑥 − 𝐵𝑢(𝑥, 𝑤′), 𝑤′)




≥



𝐵⊤∇1 𝑓 (𝑥 − 𝐵 · E𝑊 [𝑢(𝑥,𝑊)] , 𝑤) − 𝐵⊤∇1 𝑓 (𝑥 − 𝐵 · E𝑊 [𝑢(𝑥,𝑊)] , 𝑤′)




−


𝐵⊤∇1 𝑓 (𝑥 − 𝐵 · 𝑢(𝑥, 𝑤), 𝑤) − 𝐵⊤∇1 𝑓 (𝑥 − 𝐵 · E𝑊 [𝑢(𝑥,𝑊)] , 𝑤)




−



𝐵⊤∇1 𝑓 (𝑥 − 𝐵 · 𝑢(𝑥, 𝑤′), 𝑤′) − 𝐵⊤∇1 𝑓 (𝑥 − 𝐵 · E𝑊 [𝑢(𝑥,𝑊)] , 𝑤′)


 (4.43a)

≥


𝐵⊤∇1 𝑓 (𝑥 − 𝐵 · E𝑊 [𝑢(𝑥,𝑊)] , 𝑤) − 𝐵⊤∇1 𝑓 (𝑥 − 𝐵 · E𝑊 [𝑢(𝑥,𝑊)] , 𝑤′)




− ℓ 𝑓 ∥𝐵∥ · (∥𝑢(𝑥, 𝑤) − E𝑊 [𝑢(𝑥,𝑊)] ∥ + ∥𝑢(𝑥, 𝑤′) − E𝑊 [𝑢(𝑥,𝑊)] ∥) , (4.43b)

where we use the triangle inequality in (4.43a); we use the smoothness of 𝑓 in
(4.43b).

Note that by the first-order optimality condition, we have

∇𝑐(𝑢(𝑥, 𝑤)) − 𝐵⊤∇1 𝑓 (𝑥 − 𝐵 · 𝑢(𝑥, 𝑤), 𝑤) = 0.

Therefore, for any 𝑤, 𝑤′, we have that

∇𝑐(𝑢(𝑥, 𝑤)) − ∇𝑐(𝑢(𝑥, 𝑤′))
= 𝐵⊤∇1 𝑓 (𝑥 − 𝐵 · 𝑢(𝑥, 𝑤), 𝑤) − 𝐵⊤∇1 𝑓 (𝑥 − 𝐵 · 𝑢(𝑥, 𝑤′), 𝑤′). (4.44)

By combining (4.44) with (4.42) and (4.43), we obtain that

ℓ𝑐∥𝑢(𝑥, 𝑤) − 𝑢(𝑥, 𝑤′)∥
+ ℓ 𝑓 · ∥𝐵∥ · (∥𝑢(𝑥, 𝑤) − E𝑊 [𝑢(𝑥,𝑊)] ∥ + ∥𝑢(𝑥, 𝑤′) − E𝑊 [𝑢(𝑥,𝑊)] ∥)

≥


𝐵⊤∇1 𝑓 (𝑥 − 𝐵 · E𝑊 [𝑢(𝑥,𝑊)] , 𝑤) − 𝐵⊤∇1 𝑓 (𝑥 − 𝐵 · E𝑊 [𝑢(𝑥,𝑊)] , 𝑤′)




holds for arbitrary 𝑤 and 𝑤′. Let𝑊′ be a random vector independent of𝑊 and have
the same distribution. By replacing 𝑤/𝑤′ with𝑊/𝑊′, respectively, we see

ℓ𝑐∥𝑢(𝑥,𝑊) − 𝑢(𝑥,𝑊′)∥
+ ℓ 𝑓 · ∥𝐵∥ · (∥𝑢(𝑥,𝑊) − E𝑊 [𝑢(𝑥,𝑊)] ∥ + ∥𝑢(𝑥,𝑊′) − E𝑊 [𝑢(𝑥,𝑊)] ∥)

≥


𝐵⊤∇1 𝑓 (𝑥 − 𝐵 · E𝑊 [𝑢(𝑥,𝑊)] ,𝑊) − 𝐵⊤∇1 𝑓 (𝑥 − 𝐵 · E𝑊 [𝑢(𝑥,𝑊)] ,𝑊′)



,
which implies

(ℓ𝑐 + ℓ 𝑓 ∥𝐵∥) (∥𝑢(𝑥,𝑊) − E𝑊 [𝑢(𝑥,𝑊)] ∥ + ∥𝑢(𝑥,𝑊′) − E𝑊 [𝑢(𝑥,𝑊)] ∥)
≥



𝐵⊤∇1 𝑓 (𝑥 − 𝐵 · E𝑊 [𝑢(𝑥,𝑊)] ,𝑊) − 𝐵⊤∇1 𝑓 (𝑥 − 𝐵 · E𝑊 [𝑢(𝑥,𝑊)] ,𝑊′)




(4.45)
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by the triangle inequality. Taking the square of both sides of (4.45) and applying
the AM-GM inequality gives that

2(ℓ𝑐 + ℓ 𝑓 ∥𝐵∥)2∥𝑢(𝑥,𝑊) − E𝑊 [𝑢(𝑥,𝑊)] ∥2

+ 2(ℓ𝑐 + ℓ 𝑓 ∥𝐵∥)2∥𝑢(𝑥,𝑊′) − E𝑊 [𝑢(𝑥,𝑊)] ∥2

≥


𝐵⊤∇1 𝑓 (𝑥 − 𝐵 · E𝑊 [𝑢(𝑥,𝑊)] ,𝑊) − 𝐵⊤∇1 𝑓 (𝑥 − 𝐵 · E𝑊 [𝑢(𝑥,𝑊)] ,𝑊′)



2
.

(4.46)

Let 𝑌 := ∇1 𝑓 (𝑥 − 𝐵 · E𝑊 [𝑢(𝑥,𝑊)] ,𝑊) − ∇1 𝑓 (𝑥 − 𝐵 · E𝑊 [𝑢(𝑥,𝑊)] ,𝑊′). Note
that the right-hand side of (4.46) can be expressed as ∥𝐵⊤𝑌 ∥2 = Tr{𝐵⊤(𝑌𝑌⊤)𝐵}.
By taking the expectations of both sides, we obtain that

4(ℓ𝑐 + ℓ 𝑓 ∥𝐵∥)2 Tr{Cov [𝑢(𝑥,𝑊)]}
≥ 2 Tr

{
𝐵⊤Cov [∇1 𝑓 (𝑥 − 𝐵E𝑊 [𝑢(𝑥,𝑊)] ,𝑊)] 𝐵

}
≥ 2𝑛𝜎0𝜎min(𝐵)2.

In the last inequality, we use the property that the trace of a positive semi-definite
matrix equals the sum of its eigenvalues. Thus, it is greater than or equal to 𝑛 times
the smallest eigenvalue 𝜎0𝜎min(𝐵)2. Rearranging the terms finishes the proof.

Useful Technical Results
In this section, we summarize some useful technical results about the random
variables. We first state a lemma that justifies the decomposition

E
[
Cov

[
𝑢̄𝜃𝑡 (𝐼𝑡 (𝜃)) | F𝑡 (0)

] ]
= E

[
Cov

[
𝑢̄∗𝑡 (Ξ) | 𝐼𝑡 (0)

] ]
− E

[
Cov

[
𝑢̄∗𝑡 (Ξ) | 𝐼𝑡 (𝜃)

] ]
that is used to derive the prediction power in the last step of Algorithm 4. This de-
composition is helpful because otherwise, we would need to evaluate the conditional
expectation inside another conditional expectation. Specifically, 𝑢̄𝜃𝑡 (𝐼𝑡 (𝜃)) needs to
be approximated by a learned regressor (say, 𝜙) that takes 𝐼𝑡 (𝜃) as an input. Then,
to evaluate E

[
Cov

[
𝑢̄𝜃𝑡 (𝐼𝑡 (𝜃)) | F𝑡 (0)

] ]
, we would need to train another regressor

to predict the output of 𝜙. Our decomposition avoids this hierarchical dependence.

Lemma 4.D.4. For any random variables 𝑋 and two 𝜎-algebras F ⊆ F ′, the
following equation holds

E [Cov [E [𝑋 | F ′] | F ]] = E [Cov [𝑋 | F ]] − E [Cov [𝑋 | F ′]] .

Proof of Lemma 4.D.4. By the law of total covariance, we see that

Cov [𝑋 |F ] = Cov [E [𝑋 | F ′] | F ] + E [Cov [𝑋 |F ′] | F ] .
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Taking expectation on both sides, we obtain the following equation, which is equiv-
alent to the statement of Lemma 4.D.4:

E [Cov [𝑋 | F ]] = E [Cov [E [𝑋 | F ′] | F ]] + E [Cov [𝑋 | F ′]] .

We state a useful result about what functions can pass the covariance of its input to
the output in Theorem 4.D.5.

Theorem 4.D.5. Suppose that a function 𝑔 : R𝑑 → R𝑑 satisfies

⟨𝑔(𝑥) − 𝑔(𝑥′), 𝑥 − 𝑥′⟩ ≥ 𝛾∥𝑥 − 𝑥′∥2, and

∥𝑔(𝑥) − 𝑔(𝑥′)∥ ≤ 𝐿∥𝑥 − 𝑥′∥, ∀ 𝑥, 𝑥′ ∈ R𝑑 . (4.47)

Additionally, there exists a positive constant ℓ such that

−ℓ𝐼 ⪯ ∇2𝑔𝑖 (𝑥) ⪯ ℓ𝐼, ∀ 𝑥 ∈ R𝑑 , 𝑖 ∈ [𝑑] . (4.48)

Suppose 𝑋 is a random vector that satisfies |E [𝑋] | < ∞ and Cov [𝑋] = Σ ⪰ 𝜇𝐼.
Further, there exists a constant 𝐶 > 0 such that for any positive integer 𝑁 , 𝑋
can be decomposed as 𝑋 =

∑𝑁
𝑖=1 𝑋𝑖 for i.i.d. random vectors 𝑋𝑖 that satisfies

E
[
∥𝑋𝑖∥4

]
≤ 𝐶 · 𝑁−2. Then, we have

Cov [𝑔(𝑋)] ⪰ 𝜇𝛾2𝐼 .

As a remark, the gradient of a well-conditioned function satisfies the conditions in
(4.47).

Proof of Theorem 4.D.5. Without any loss of generality, we assume E [𝑋] = 0
because we can view 𝑔(E [𝑋] + ·) as the function and subtract the mean from the
random variables. The assumptions about 𝑔 and 𝑋 in Theorem 4.D.5 still hold.

For any 𝑖 ∈ [𝑑] and 𝜖 ∈ R𝑑 , we have the Taylor series expansion Lagrangian form
(see Chapter 3.2 of Marsden and Tromba, 2003)

𝑔𝑖 (𝑥 + 𝜖) = 𝑔𝑖 (𝑥) + ∇𝑔𝑖 (𝑥)⊤𝜖 +
1
2
𝜖⊤∇2𝑔𝑖 (𝑥 (𝑖))𝜖, (4.49)

where 𝑥 (𝑖) is a point on the line segment between 𝑥 and 𝑥 + 𝜖 . For notational
convenience, let

∇𝑔(𝑥) :=


∇𝑔1(𝑥)⊤

...

∇𝑔𝑑 (𝑥)⊤

 ∈ R
𝑑×𝑑 , and 𝑣1(𝑥, 𝜖) :=


𝜖⊤∇2𝑔1(𝑥 (1))𝜖

...

𝜖⊤∇2𝑔𝑑 (𝑥 (𝑑))𝜖

 ∈ R
𝑑 .
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Using the above notation, Eq. (4.49) can be equivalently written in the following
vector form:

𝑔(𝑥 + 𝜖) − 𝑔(𝑥) = ∇𝑔(𝑥) · 𝜖 + 1
2
𝑣1(𝑥, 𝜖). (4.50)

From Eq. (4.48), we know that |𝑣(𝑥, 𝜖)𝑖 | ≤ ℓ∥𝜖 ∥2, which implies

∥𝑣1(𝑥, 𝜖)∥ ≤ ℓ
√
𝑑∥𝜖 ∥2. (4.51)

In addition, by Eq. (4.47), we see that

⟨𝑔(𝑥 + 𝜖) − 𝑔(𝑥), 𝜖⟩ ≥ 𝛾∥𝜖 ∥2.

Substituting Eq. (4.50) into the above equation and rearranging the terms, we obtain

𝜖⊤ · ∇𝑔(𝑥) · 𝜖 ≥ 𝛾∥𝜖 ∥2 − 𝜖⊤ · 𝑣1(𝑥, 𝜖),

which is equivalent to

𝜖⊤ · ∇𝑔(𝑥) + ∇𝑔(𝑥)
⊤

2
· 𝜖 ≥ 𝛾∥𝜖 ∥2 − 𝜖⊤ · 𝑣1(𝑥, 𝜖).

Observe that the term subtracted from the right-hand side satisfies |𝜖⊤ · 𝑣1(𝑥, 𝜖) | ≤
ℓ
√
𝑑∥𝜖 ∥3, which follows from Cauchy–Schwarz inequality and Eq. (4.51). There-

fore, since the previous inequality holds for any 𝜖 ∈ R𝑑 , taking 𝜖 → 0 gives that

∇𝑔(𝑥) + ∇𝑔(𝑥)⊤
2

⪰ 𝛾𝐼. (4.52)

Before we proceed, we first state and prove a lemma that can convert the summation
in Eq. (4.52) into a product form.

Lemma 4.D.6. Let 𝑀 ∈ R𝑑×𝑑 be a real-valued matrix satisfying 𝑀 + 𝑀⊤ ⪰ 2𝛾𝐼.
Then, for any positive definite matrix Σ ⪰ 𝜇𝐼, we have 𝑀Σ𝑀⊤ ⪰ 𝜇𝛾2𝐼.

Proof of Lemma 4.D.6. Since 𝑀 + 𝑀⊤ ⪰ 2𝛾𝐼, we have for any 𝑥 ∈ R𝑑 that

2𝛾∥𝑥∥2 ≤ 2𝑥⊤𝑀⊤𝑥 = 2𝑥⊤Σ−1/2Σ1/2𝑀⊤𝑥 ≤ 2∥Σ−1/2𝑥∥∥Σ1/2𝑀⊤𝑥∥
≤ 2𝜇−1/2∥𝑥∥∥Σ1/2𝑀⊤𝑥∥,

where the last inequality follows from Σ ⪰ 𝜇𝐼 ⇒ ∥Σ−1/2𝑥∥ =
√
𝑥⊤Σ−1𝑥 ≤

𝜇−1/2∥𝑥∥. Rearranging terms, we obtain

𝛾𝜇1/2∥𝑥∥ ≤ ∥Σ1/2𝑀⊤𝑥∥.

Squaring both sides concludes the proof.
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Next, we state and prove a lemma about the lower bound of the covariance induced
by an additive random noise on the input that is useful when the noise is sufficiently
small.

Lemma 4.D.7. Let 𝜀 be a mean-zero random vector inR𝑑 that satisfies 𝛿𝐼 ⪯ Cov [𝜀]
and E

[
∥𝜀∥4

]
≤ 𝛾. Let 𝑔 be a function that satisfies (4.47) and (4.48). Then, for

arbitrary fixed real vector 𝑥 ∈ R𝑑 , we have

Cov [𝑔(𝑥 + 𝜀)] ⪰
(
𝛾2𝛿 − 2𝐿ℓ𝑑2 · 𝛾

3
4 − ℓ2𝑑𝛾

)
𝐼 .

Proof of Lemma 4.D.7. We first derive bounds on the 𝑖 th moment of ∥𝜀∥ (𝑖 =

1, 2, 3). By Jensen’s inequality, we have

E
[
∥𝜀∥2

]
= E

[(
∥𝜀∥4

) 1
2
]
≤

(
E

[
∥𝜀∥4

] ) 1
2 ≤ 𝛾

1
2 . (4.53)

Using Jensen’e inequality again, we obtain that

E [∥𝜀∥] ≤
(
E

[
∥𝜀∥2

] ) 1
2 ≤ 𝛾

1
4 . (4.54)

Lastly, by the Cauchy-Schwartz inequality, we see that

E
[
∥𝜀∥3

]
≤

(
E

[
∥𝜀∥4

]
· E

[
∥𝜀∥2

] ) 1
2 ≤ 𝛾

3
4 . (4.55)

Note that by (4.50), we have

Cov [𝑔(𝑥 + 𝜀)] = Cov [𝑔(𝑥 + 𝜀) − 𝑔(𝑥)] = Cov
[
∇𝑔(𝑥) · 𝜀 + 1

2
𝑣1(𝑥, 𝜀)

]
. (4.56)

Since E [𝜀] = 0, we can further decompose (4.56) as

Cov
[
∇𝑔(𝑥) · 𝜀 + 1

2
𝑣1(𝑥, 𝜀)

]
= E

[ (
∇𝑔(𝑥) · 𝜀 + 1

2
𝑣1(𝑥, 𝜀) −

1
2
E [𝑣1(𝑥, 𝜀)]

)
·(

∇𝑔(𝑥) · 𝜀 + 1
2
𝑣1(𝑥, 𝜀) −

1
2
E [𝑣1(𝑥, 𝜀)]

)⊤ ]
= ∇𝑔(𝑥) · Cov [𝜀] · ∇𝑔(𝑥)⊤ + ∇𝑔(𝑥) · E

[
𝜀 ·

(
1
2
𝑣1(𝑥, 𝜀) −

1
2
E [𝑣1(𝑥, 𝜀)]

)⊤]
+ E

[(
1
2
𝑣1(𝑥, 𝜀) −

1
2
E [𝑣1(𝑥, 𝜀)]

)
· 𝜀⊤

]
· ∇𝑔(𝑥)⊤ + 1

4
Cov [𝑣1(𝑥, 𝜀)] . (4.57)
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By Lemma 4.D.6 and (4.52), we know that the first term in (4.57) can be lower
bounded by

∇𝑔(𝑥) · Cov [𝜀] · ∇𝑔(𝑥)⊤ ⪰ 𝛾2𝛿𝐼. (4.58)

Define the residual term as the sum of the last 3 terms in (4.57):

𝑅 := ∇𝑔(𝑥) · E
[
𝜀 ·

(
1
2
𝑣1(𝑥, 𝜀) −

1
2
E [𝑣1(𝑥, 𝜀)]

)⊤]
+ E

[(
1
2
𝑣1(𝑥, 𝜀) −

1
2
E [𝑣1(𝑥, 𝜀)]

)
· 𝜀⊤

]
· ∇𝑔(𝑥)⊤ + 1

4
Cov [𝑣1(𝑥, 𝜀)] . (4.59)

To show Lemma 4.D.7, we only need to show

∥𝑅∥ ≤ 2𝐿ℓ𝑑2 · 𝛾
3
4 + ℓ2𝑑𝛾. (4.60)

To see this, note that



∇𝑔(𝑥) · E [
𝜀 ·

(
1
2
𝑣1(𝑥, 𝜀) −

1
2
E [𝑣1(𝑥, 𝜀)]

)⊤]




≤ ∥∇𝑔(𝑥)∥ ·





E [
𝜀 ·

(
1
2
𝑣1(𝑥, 𝜀) −

1
2
E [𝑣1(𝑥, 𝜀)]

)⊤]



 (4.61a)

≤ 𝐿
2

(

E [
𝜀 · 𝑣1(𝑥, 𝜀)⊤

]

 + 

E [𝜀] · E [𝑣1(𝑥, 𝜀)]⊤


) (4.61b)

≤ 𝐿
2

(
E

[

𝜀 · 𝑣1(𝑥, 𝜀)⊤


] + ∥E [𝜀] ∥ · ∥E [𝑣1(𝑥, 𝜀)] ∥

)
(4.61c)

≤ 𝐿
2
(E [∥𝜀∥ · ∥𝑣1(𝑥, 𝜀)∥] + E [∥𝜀∥] · E [∥𝑣1(𝑥, 𝜀)∥]) (4.61d)

≤ 𝐿ℓ
√
𝑑

2
·
(
E

[
∥𝜀∥3

]
+ E [∥𝜀∥] · E

[
∥𝜀∥2

] )
(4.61e)

≤ 𝐿ℓ𝑑2 · 𝛾
3
4 , (4.61f)

where we use the definition of the induced matrix norm in (4.61a); we use (4.47) and
the triangle inequality in (4.61b); we use the Jensen’s inequality and the definition
of the induced matrix norm in (4.61c) and (4.61d); we use (4.51) in (4.61e); we use
the bounds on the moments of ∥𝜀∥ (4.53), (4.54), and (4.55) in (4.61f).

On the other hand, we know that Cov [𝑣1(𝑥, 𝜀)] is a positive semi-definite matrix
that satisfies

Cov [𝑣1(𝑥, 𝜀)] = E
[
𝑣1(𝑥, 𝜀)𝑣1(𝑥, 𝜀)⊤

]
− E [𝑣1(𝑥, 𝜀)] · E [𝑣1(𝑥, 𝜀)]⊤

⪯ E
[
𝑣1(𝑥, 𝜀)𝑣1(𝑥, 𝜀)⊤

]
.
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Therefore, we see that its induced matrix norm can be upper bounded by the expec-
tation of squared norm:

∥Cov [𝑣1(𝑥, 𝜀)] ∥ ≤


E [

𝑣1(𝑥, 𝜀)𝑣1(𝑥, 𝜀)⊤
]

 ≤ E

[

𝑣1(𝑥, 𝜀)𝑣1(𝑥, 𝜀)⊤


]

≤ E
[
∥𝑣1(𝑥, 𝜀)∥2

]
.

Using the bound of ∥𝑣1(𝑥, 𝜀)∥ in (4.51) and the 4 th moment bound of ∥𝜀∥, we
obtain that

∥Cov [𝑣1(𝑥, 𝜀)] ∥ ≤ ℓ2𝑑E
[
∥𝜀∥4

]
≤ ℓ2𝑑𝛾. (4.62)

Note that the norm of 𝑅 (Equation (4.60)) can be upper bounded by the sum of the
norms of the 3 separate terms. Thus, by combining the (4.61) and (4.62), we see
that (4.60) holds.

Lastly, we consider the case when the input of 𝑔 can be expressed as the sum of a
sequence of mutual independent random vectors.

Lemma 4.D.8. Let {𝑋𝑖}1≤𝑖≤𝑁 be a sequence of mean-zero random vectors in R𝑑

that are mutually independent and satisfies 𝛿𝐼 ⪯ Cov [𝑋𝑖] and E
[
∥𝑋𝑖∥4

]
≤ 𝛾. Let

𝑔 be a function that satisfies (4.47) and (4.48). Then, for any positive integer 𝑁 , we
have

Cov

[
𝑔

(
𝑁∑︁
𝑖=1

𝑋𝑖

)]
⪰ 𝑁

(
𝛾2𝛿 − 2𝐿ℓ𝑑2 · 𝛾

3
4 − ℓ2𝑑𝛾

)
𝐼 . (4.63)

Proof of Lemma 4.D.8. We use an induction on 𝑁 to show that (4.63) holds.

When 𝑁 = 1, (4.63) holds by setting 𝑥 = 0 and 𝜀 = 𝑋1 in Lemma 4.D.7.

Suppose (4.63) holds for 𝑁 − 1. Then, for 𝑁 , by the law of total variance, we see
that

Cov

[
𝑔

(
𝑁∑︁
𝑖=1

𝑋𝑖

)]
= Cov

[
E

[
𝑔

(
𝑁∑︁
𝑖=1

𝑋𝑖

)����� 𝑁−1∑︁
𝑖=1

𝑋𝑖

] ]
+ E

[
Cov

[
𝑔

(
𝑁∑︁
𝑖=1

𝑋𝑖

)����� 𝑁−1∑︁
𝑖=1

𝑋𝑖

] ]
.

(4.64)

For the first term in (4.64), we define a new function

𝑔̄(𝑥) := E [𝑔(𝑥 + 𝑋𝑁 )] .
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Since the random variables {𝑋𝑖}1≤𝑖≤𝑁 are mutually independent, we observe that
the conditional expectation can be written as

E

[
𝑔

(
𝑁∑︁
𝑖=1

𝑋𝑖

)����� 𝑁−1∑︁
𝑖=1

𝑋𝑖

]
= 𝑔̄

[
𝑁−1∑︁
𝑖=1

𝑋𝑖

]
.

One can verify that if 𝑔 satisfies the conditions in (4.47) and (4.48), then 𝑔̄ also
satisfies the same conditions as 𝑔 because

∥𝑔̄(𝑥) − 𝑔̄(𝑥′)∥ = ∥E [𝑔(𝑥 + 𝑋𝑁 ) − 𝑔(𝑥′ + 𝑋𝑁 )] ∥ ≤ E [∥𝑔(𝑥 + 𝑋𝑁 ) − 𝑔(𝑥′ + 𝑋𝑁 )∥]
≤ 𝐿∥𝑥 − 𝑥′∥.

On the other hand, we have

⟨𝑔̄(𝑥) − 𝑔̄(𝑥′), 𝑥 − 𝑥′⟩ = ⟨E [𝑔(𝑥 + 𝑋𝑁 ) − 𝑔(𝑥′ + 𝑋𝑁 )] , 𝑥 − 𝑥′⟩
= E [⟨𝑔(𝑥 + 𝑋𝑁 ) − 𝑔(𝑥′ + 𝑋𝑁 ), 𝑥 − 𝑥′⟩] ≥ 𝛾∥𝑥 − 𝑥′∥2.

For the Hessian upper/lower bounds, because ∇2𝑔̄𝑖 (𝑥) = ∇2E [𝑔𝑖 (𝑥 + 𝑋𝑁 )] =

E
[
∇2𝑔𝑖 (𝑥 + 𝑋𝑁 )

]
,

−ℓ𝐼 ⪯ 𝑔̄𝑖 (𝑥) ⪯ ℓ𝐼.

Therefore, by the induction assumption, we see that

Cov

[
E

[
𝑔

(
𝑁∑︁
𝑖=1

𝑋𝑖

)����� 𝑁−1∑︁
𝑖=1

𝑋𝑖

] ]
= Cov

[
𝑔̄

[
𝑁−1∑︁
𝑖=1

𝑋𝑖

] ]
⪰ (𝑁 − 1)

(
𝛾2𝛿 − 2𝐿ℓ𝑑2 · 𝛾

3
4 − ℓ2𝑑𝛾

)
𝐼 . (4.65)

For the second term in (4.64), we note that for any realization 𝑥 of
∑𝑁−1
𝑖=1 𝑋𝑖, we have

Cov

[
𝑔

(
𝑁∑︁
𝑖=1

𝑋𝑖

)����� 𝑁−1∑︁
𝑖=1

𝑋𝑖 = 𝑥

]
= Cov

[
𝑔 (𝑥 + 𝑋𝑁 ) |

𝑁−1∑︁
𝑖=1

𝑋𝑖 = 𝑥

]
= Cov [𝑔(𝑥 + 𝑋𝑁 )]

⪰
(
𝛾2𝛿 − 2𝐿ℓ𝑑2 · 𝛾

3
4 − ℓ2𝑑𝛾

)
𝐼,

where the conditioning can be removed in the second step because the random
variables {𝑋𝑖}1≤𝑖≤𝑁 are mutually independent, so 𝑔(𝑥 + 𝑋𝑁 ) is independent with∑𝑁−1
𝑖=1 𝑋𝑖; and we use Lemma 4.D.7 in the last inequality. Therefore, we obtain that

E

[
Cov

[
𝑔

(
𝑁∑︁
𝑖=1

𝑋𝑖

)����� 𝑁−1∑︁
𝑖=1

𝑋𝑖

] ]
⪰

(
𝛾2𝛿 − 2𝐿ℓ𝑑2 · 𝛾

3
4 − ℓ2𝑑𝛾

)
𝐼 . (4.66)

Substituting (4.65) and (4.66) into (4.64) shows that (4.63) still holds for 𝑁 . Thus,
we have proved Lemma 4.D.8 by induction.
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Now we come back to the proof of Theorem 4.D.5. By the assumption, we know
the distribution of 𝑋 is identical with the distribution of

∑𝑁
𝑖=1 𝑋𝑖, where 𝑋𝑖 are i.i.d.

random vectors that satisfies E
[
∥𝑋𝑖∥4

]
≤ 𝐶 · 𝑁−2. Thus, we have

Cov [𝑔(𝑋)] = Cov

[
𝑔

(
𝑁∑︁
𝑖=1

𝑋𝑖

)]
.

Note that each 𝑋𝑖 satisfies that Cov [𝑋𝑖] = 1
𝑁

Cov [𝑋] ⪰ 𝜇

𝑁
𝐼. Applying Lemma

4.D.8 gives that

Cov [𝑔(𝑋)] ⪰
(
𝜇𝛾2 − 𝐶

3/4
√
𝑁
· 2𝐿ℓ𝑑2 − 𝐶

𝑁
· ℓ2𝑑𝛾

)
· 𝐼 .

By letting 𝑁 tends to infinity in the above inequality, we finishes the proof of
Theorem 4.D.5.

Roadmap to Multi-step Prediction under Well-Conditioned Costs
A limitation of Assumption 4.3.2 in Section 4.3 is that it only allows the prediction
𝑉𝑡 (𝜃) to depend on the disturbance𝑊𝑡 at time step 𝑡. A natural question is whether
we can relax the assumption by allowing 𝑉𝑡 (𝜃) to depend on all future disturbances
𝑊𝑡:(𝑇−1) . In this section, we present a roadmap towards this generalization and
discuss about the potential challenges.

First, we show that the expected cost-to-go function E
[
𝐶𝜋

𝜃

𝑡 (𝑥;Ξ) | 𝐼𝑡 (𝜃)
]

can be
expressed as a function that only depends on the conditional expectations 𝑊 𝜃

𝜏 |𝑡 for
all 𝜏 ≥ 𝑡, i.e., there exists a function 𝐶̃𝜋𝜃𝑡 that satisfies

𝐶̃𝜋
𝜃

𝑡 (𝑥;𝑊 𝜃
𝑡:(𝑇−1) |𝑡) = E

[
𝐶𝜋

𝜃

𝑡 (𝑥;Ξ) | 𝐼𝑡 (𝜃)
]
. (4.67)

We show (4.67) by induction on 𝑡 = 𝑇,𝑇 − 1, . . . , 0. Note that the statement holds
for 𝑇 . Suppose it holds for 𝑡 + 1, by (4.14), we have

𝐶̄𝜋
𝜃

𝑡+1(𝑥; 𝐼𝑡 (𝜃)) = E
[
𝐶𝜋

𝜃

𝑡+1(𝑥 +𝑊𝑡 −𝑊 𝜃
𝑡 |𝑡 ;Ξ) | 𝐼𝑡 (𝜃)

]
= E

[
𝐶̃𝜋

𝜃

𝑡+1(𝑥 +𝑊𝑡 −𝑊 𝜃
𝑡 |𝑡 ;𝑊

𝜃
(𝑡+1):(𝑇−1) |𝑡+1)

��� 𝐼𝑡 (𝜃)] ,
where we use the induction assumption in the last equation. Define the random
variables 𝜀𝜃

𝑡 |𝑡 := 𝑊𝑡 −𝑊 𝜃
𝑡 |𝑡 and 𝜀𝜃

𝜏 |𝑡 := 𝑊 𝜃
𝜏 | (𝑡+1) −𝑊

𝜃
𝜏 |𝑡 . Using the properties of joint

Gaussian distribution, we know that 𝜀𝜃
𝑡:(𝑇−1) |𝑡 are independent with 𝐼𝑡 (𝜃). Therefore,

𝐶̄𝜋
𝜃

𝑡+1(𝑥; 𝐼𝑡 (𝜃)) = E
[
𝐶̃𝜋

𝜃

𝑡+1(𝑥 + 𝜀
𝜃
𝑡 |𝑡 ;𝑊

𝜃
(𝑡+1):(𝑇−1) |𝑡 + 𝜀

𝜃
(𝑡+1):(𝑇−1) |𝑡)

��� 𝐼𝑡 (𝜃)]
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= E𝜀𝜃
𝑡:(𝑇−1) |𝑡

[
𝐶̃𝜋

𝜃

𝑡+1(𝑥 + 𝜀
𝜃
𝑡 |𝑡 ;𝑊

𝜃
(𝑡+1):(𝑇−1) |𝑡 + 𝜀

𝜃
(𝑡+1):(𝑇−1) |𝑡)

]
.

Thus, 𝐶̄𝜋𝜃
𝑡+1(𝑥; 𝐼𝑡 (𝜃)) can be expressed as a function of 𝑥 and 𝑊 𝜃

(𝑡+1):(𝑇−1) |𝑡 , and we
denote it as

˜̄𝐶𝑡+1(𝑥;𝑊 𝜃
(𝑡+1):(𝑇−1) |𝑡) := 𝐶̄𝜋

𝜃

𝑡+1(𝑥; 𝐼𝑡 (𝜃)). (4.68)

Therefore, we obtain that

E
[
𝐶𝜋

𝜃

𝑡 (𝑥;Ξ) | 𝐼𝑡 (𝜃)
]
= ℎ𝑥𝑡 (𝑥) + (ℎ𝑢𝑡 □(−𝐵𝑡 )𝐶̄𝜋

𝜃

𝑡+1) (𝐴𝑡𝑥 +𝑊
𝜃
𝑡 |𝑡 ; 𝐼𝑡 (𝜃))

= ℎ𝑥𝑡 (𝑥) + (ℎ𝑢𝑡 □(−𝐵𝑡 ) ˜̄𝐶𝜋
𝜃

𝑡+1) (𝐴𝑡𝑥 +𝑊
𝜃
𝑡 |𝑡 ;𝑊

𝜃
(𝑡+1):(𝑇−1) |𝑡).

Therefore,E
[
𝐶𝜋

𝜃

𝑡 (𝑥;Ξ) | 𝐼𝑡 (𝜃)
]

can also be expressed in the form 𝐶̃𝜋
𝜃

𝑡 (𝑥;𝑊 𝜃
𝑡:(𝑇−1) |𝑡).

Thus, we have shown (4.67) by induction, with (4.68) as an intermediate result.

Note that the optimal policy is given by

𝜋𝜃𝑡 (𝑥; 𝐼𝑡 (𝜃)) := arg min
𝑢

(
ℎ𝑢𝑡 (𝑢) + 𝐶̄𝜋

𝜃

𝑡+1(𝐴𝑡𝑥 + 𝐵𝑡𝑢 +𝑊
𝜃
𝑡 |𝑡 ; 𝐼𝑡 (𝜃))

)
= arg min

𝑢

(
ℎ𝑢𝑡 (𝑢) + ˜̄𝐶𝜋

𝜃

𝑡+1(𝐴𝑡𝑥 + 𝐵𝑡𝑢 +𝑊
𝜃
𝑡 |𝑡 ;𝑊

𝜃
(𝑡+1):(𝑇−1) |𝑡)

)
= 𝑢(ℎ𝑢𝑡 □−𝐵𝑡 ˜̄𝐶 𝜋𝜃

𝑡+1 )
(𝐴𝑡𝑥 +𝑊 𝜃

𝑡 |𝑡 ;𝑊
𝜃
(𝑡+1):(𝑇−1) |𝑡).

Therefore, by Lemma 4.D.3, we need to establish a covariance lower bound of the
gradient

∇𝑥 ˜̄𝐶𝜋
𝜃

𝑡+1(𝑥 +𝑊
𝜃
𝑡 |𝑡 ;𝑊

𝜃
(𝑡+1):(𝑇−1) |𝑡)

in order to derive a lower bound for the trace of the covariance matrix of 𝜋𝜃𝑡 (𝑥; 𝐼𝑡 (𝜃)).
While this is relatively straightforward when we only have 𝑊 𝜃

𝑡 |𝑡 because it is added
directly with 𝑥, it is much more challenging to also consider the covariance caused
by 𝑊 𝜃

(𝑡+1):(𝑇−1) |𝑡 . This is because they affect ˜̄𝐶𝜋𝜃
𝑡+1 through multiple steps of infimal

convolutions. Nevertheless, we feel the approach that we describe here is promising
if we can derive more properties that are preserved through the infimal convolution
operators. We leave this direction as future work.
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C h a p t e r 5

SINGLE-TRAJECTORY ONLINE POLICY OPTIMIZATION

The results on prediction power in Part II provide strong motivations for studying
policy optimization. First, a standard predictive policy cannot achieve near-optimal
performance in all scenarios. For example, as prediction quality gets worse, we
should not stick to the standard MPC policy, which trusts the given predictions
completely when solving the predictive optimization problem. Second, even if
the optimal predictive policy has a closed-form solution (e.g., Proposition 4.3.1 in
Chapter 4), it may have complicated dependence on distributions and parameters,
making it intractable to solve in practice. These challenges motivates us to study the
problem of finding/tracking the optimal policy with limited feedback/observations
online.

In this chapter, we study online policy optimization with time-varying costs and
dynamics, which allows general policy classes that include predictive policies as
a special case. We identify a critical property called contractive perturbation
that makes the problem tractable and generalizes many existing results. When
the Jacobians of the dynamics are known, we develop the Memoryless Gradient-
based Adaptive Policy Selection (M-GAPS) algorithm together with an analytical
framework that connects it with classic online optimization. When the Jacobians are
unknown, we propose a meta-framework that can combine M-GAPS with an online
estimator of the dynamical model. We demonstrate the effectiveness of M-GAPS
by applying it in quadcopter control.

The results in this chapter are based on the following papers:

[Lin, Preiss, Anand, et al., 2023] Lin, Yiheng, James A. Preiss, Emile Anand,
Yingying Li, Yisong Yue, and Adam Wierman. “Online adaptive policy selection
in time-varying systems: No-regret via contractive perturbations.” Advances in
Neural Information Processing Systems 36 (2023): 53508-53521.

[Lin, Preiss, Xie, et al., 2024] Lin, Yiheng, James A. Preiss, Fengze Xie, Emile
Anand, Soon-Jo Chung, Yisong Yue, and Adam Wierman. “Online policy optimiza-
tion in unknown nonlinear systems.” In The Thirty Seventh Annual Conference on
Learning Theory, pp. 3475-3522. Proceedings of Machine Learning Research,
2024.
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𝑥0 𝑥1 𝑥2

𝑢0 𝑢1

𝜃0 𝜃1

𝑐0 𝑐1 𝑐𝑡

𝑥𝑡 𝑥𝑡+1

𝑢𝑡

𝜃𝑡

𝜋𝑡

𝑔𝑡

ℎ𝑡

Figure 5.1: Diagram of the causal relationships between states, policy parameters,
control inputs, and costs.

[Preiss et al., 2025] Preiss, James A., Fengze Xie, Yiheng Lin, Adam Wierman, and
Yisong Yue. “Fast non-episodic adaptive tuning of robot controllers with model-
based online policy optimization.” Under submission.

5.1 Problem Setting
We consider online policy selection on a single trajectory. The setting is a discrete-
time dynamical system with state 𝑥𝑡 ∈ R𝑛 for time index 𝑡 ∈ T := [0 : 𝑇 − 1]. At
time step 𝑡 ∈ T , the policy picks a control action 𝑢𝑡 ∈ R𝑚, and the next state and the
incurred cost are given by:

Dynamics: 𝑥𝑡+1 = 𝑔𝑡 (𝑥𝑡 , 𝑢𝑡), Cost: 𝑐𝑡 := ℎ𝑡 (𝑥𝑡 , 𝑢𝑡),

respectively, where 𝑔𝑡 (·, ·) is a time-varying dynamics function and ℎ𝑡 (·, ·) is a
time-varying stage cost. The goal is to minimize the total cost

∑𝑇−1
𝑡=0 𝑐𝑡 .

We consider parameterized time-varying policies of the form of 𝑢𝑡 = 𝜋𝑡 (𝑥𝑡 , 𝜃𝑡),
where 𝑥𝑡 is the current state at time step 𝑡 and 𝜃𝑡 ∈ Θ is the current policy parameter.
Θ is a closed convex subset of R𝑑 . We assume the dynamics, cost, and policy
functions {𝑔𝑡 , ℎ𝑡 , 𝜋𝑡}𝑡∈T are oblivious, meaning they are fixed before the game
begins. The online policy selection algorithm optimizes the total cost by selecting
𝜃𝑡 sequentially. We illustrate how the policy parameter sequence 𝜃0:𝑇−1 affects the
trajectory {𝑥𝑡 , 𝑢𝑡}𝑡∈T and per-step costs 𝑐0:𝑇−1 in Figure 5.1. The online algorithm
has access to the partial derivatives of the dynamics 𝑔𝑡 and cost ℎ𝑡 along the visited
trajectory, but does not have oracle access to the 𝑔𝑡 , ℎ𝑡 for arbitrary states and
actions.

We provide two motivating examples for our setting. The first example is MPC with
confidence coefficients, a generalization of Li, Qu, and Li (2021).

Example 5.1.1 (MPC with Confidence Coefficients). Consider a linear time-varying
(LTV) system 𝑔𝑡 (𝑥𝑡 , 𝑢𝑡) = 𝐴𝑡𝑥𝑡 + 𝐵𝑡𝑢𝑡 + 𝑤𝑡 , with time-varying costs ℎ𝑡 (𝑥𝑡 , 𝑢𝑡) =
𝑞(𝑥𝑡 , 𝑄𝑡) + 𝑞(𝑢𝑡 , 𝑅𝑡). At time 𝑡, the policy observes
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{𝐴𝑡:𝑡+𝑘−1, 𝐵𝑡:𝑡+𝑘−1, 𝑄𝑡:𝑡+𝑘−1, 𝑅𝑡:𝑡+𝑘−1, 𝑤𝑡:𝑡+𝑘−1|𝑡},

where 𝑤𝜏 |𝑡 is a (noisy) prediction of the future disturbance 𝑤𝜏. Then, 𝜋𝑡 (𝑥𝑡 , 𝜃𝑡)
commits the first entry of

arg min
𝑢𝑡:𝑡+𝑘−1 |𝑡

𝑡+𝑘−1∑︁
𝜏=𝑡

ℎ𝜏 (𝑥𝜏 |𝑡 , 𝑢𝜏 |𝑡) + 𝑞(𝑥𝑡+𝑘 |𝑡 , 𝑄̃)

s. t. 𝑥𝑡 |𝑡 = 𝑥𝑡 , 𝑥𝜏+1|𝑡 = 𝐴𝜏𝑥𝜏 |𝑡 + 𝐵𝜏𝑢𝜏 |𝑡 + 𝜆[𝜏−𝑡]𝑡 𝑤𝜏 |𝑡 : 𝑡 ≤ 𝜏 < 𝑡+𝑘,
(5.1)

where 𝜃𝑡 =
(
𝜆
[0]
𝑡 , 𝜆

[1]
𝑡 , . . . , 𝜆

[𝑘−1]
𝑡

)
,Θ = [0, 1]𝑘 and 𝑄̃ is a fixed positive-definite ma-

trix. Intuitively, 𝜆[𝑖]𝑡 represents our level of confidence in the disturbance prediction
𝑖 steps into the future at time step 𝑡, with entry 1 being fully confident and 0 being
not confident at all.

The second example studies a nonlinear control model motivated by Li, Yang, Qu,
Lin, et al., 2023; Qu, Yu, et al., 2021.

Example 5.1.2 (Linear Feedback Control in Nonlinear Systems). Consider a time-
varying nonlinear control problem with dynamics 𝑔𝑡 (𝑥𝑡 , 𝑢𝑡) = 𝐴𝑥𝑡 + 𝐵𝑢𝑡 + 𝛿𝑡 (𝑥𝑡 , 𝑢𝑡)
and costs ℎ𝑡 (𝑥𝑡 , 𝑢𝑡) = 𝑞(𝑥𝑡 , 𝑄) + 𝑞(𝑢𝑡 , 𝑅). Here, the nonlinear residual 𝛿𝑡 comes
from linearization and is assumed to be sufficiently small and Lipschitz. Inspired by
Qu, Yu, et al., 2021, we construct an online policy based on the optimal controller
𝑢𝑡 = −𝐾̄𝑥𝑡 for the linear-quadratic regulator LQR(𝐴, 𝐵, 𝑄, 𝑅). Specifically, we let
𝜋𝑡 (𝑥𝑡 , 𝜃𝑡) = −𝐾 (𝜃𝑡)𝑥𝑡 where 𝐾 is a mapping from Θ to R𝑛×𝑚 such that



𝐾 (𝜃𝑡) − 𝐾̄


is uniformly bounded.

Policy Class and Performance Metrics

In our setting, the state 𝑥𝑡 at time 𝑡 is uniquely determined by the combination of 1) a
state 𝑥𝜏 at a previous time 𝜏 < 𝑡, and 2) the parameter sequence 𝜃𝜏:𝑡−1. Similarly, the
cost at time 𝑡 is uniquely determined by 𝑥𝜏 and 𝜃𝜏:𝑡 . Since we use these properties
often, we introduce the following notation.

Definition 5.1.1 (Multi-Step Dynamics and Cost). The multi-step dynamics 𝑔𝑡 |𝜏
between two time steps 𝜏 ≤ 𝑡 specifies the state 𝑥𝑡 as a function of the previous state
𝑥𝜏 and previous policy parameters 𝜃𝜏:𝑡−1. It is defined recursively, with the base
case 𝑔𝜏 |𝜏 (𝑥𝜏) := 𝑥𝜏 and the recursive case

𝑔𝑡+1|𝜏 (𝑥𝜏, 𝜃𝜏:𝑡) = 𝑔𝑡 (𝑧𝑡 , 𝜋𝑡 (𝑧𝑡 , 𝜃𝑡)) , ∀ 𝑡 ≥ 𝜏,
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in which 𝑧𝑡 := 𝑔𝑡 |𝜏 (𝑥𝜏, 𝜃𝜏:𝑡−1).1 The multi-step cost ℎ𝑡 |𝜏 specifies the cost 𝑐𝑡 as
function of 𝑥𝜏 and 𝜃𝜏:𝑡 . It is defined as ℎ𝑡 |𝜏 (𝑥𝜏, 𝜃𝜏:𝑡) := ℎ𝑡 (𝑧𝑡 , 𝜋𝑡 (𝑧𝑡 , 𝜃𝑡)) .

In this paper, we frequently compare the trajectory of our algorithm against the
trajectory that would arise from applying a fixed parameter 𝜃 since time step 0,
which we denote as 𝑥𝑡 (𝜃) := 𝑔𝑡 |0(𝑥0, 𝜃×𝑡) and 𝑢̂𝑡 (𝜃) := 𝜋𝑡 (𝑥𝑡 (𝜃), 𝜃). A related
concept that is heavily used is the surrogate cost 𝐹𝑡 , which maps a single policy
parameter to a real number.

Definition 5.1.2 (Surrogate Cost). The surrogate cost function is defined as 𝐹𝑡 (𝜃) :=
ℎ𝑡 (𝑥𝑡 (𝜃), 𝑢̂𝑡 (𝜃)).

Figure 5.1 shows the overall causal structure, from which these concepts follow.

To measure the performance of an online algorithm, we adopt the objective of
adaptive policy regret, which has been used by Hazan and Seshadhri (2007) and
Gradu, Hazan, and Minasyan (2023). It is a stronger benchmark than the static
policy regret (Agarwal et al., 2019; Chen and Hazan, 2021) and is more suited to
time-varying environments. We use {𝑥𝑡 , 𝑢𝑡 , 𝜃𝑡}𝑡∈T to denote the trajectory of the
online algorithm throughout the paper. The adaptive policy regret 𝑅𝐴 (𝑇) is defined
as the maximum difference between the cost of the online policy and the cost of the
optimal fixed-parameter policy over any sub-interval of the whole horizon T , i.e.,

𝑅𝐴 (𝑇) := max𝐼=[𝑡1:𝑡2]⊆T (
∑
𝑡∈𝐼 ℎ𝑡 (𝑥𝑡 , 𝑢𝑡) − inf𝜃∈Θ

∑
𝑡∈𝐼 𝐹𝑡 (𝜃)) . (5.2)

In contrast, the (static) policy regret defined in Chen and Hazan, 2021; Agarwal
et al., 2019 restricts the time interval 𝐼 to be the whole horizon T . Thus, a
bound on adaptive regret is strictly stronger than the same bound on static regret.
Adaptive regret is particularly useful in time-varying environments like Examples
5.1.1 and 5.1.2 because an online algorithm must adapt quickly to compete against
a comparator policy parameter that can change indefinitely with every time interval
(Hazan, 2016, Section 10.2).

In the general case when surrogate costs 𝐹0:𝑇−1 are nonconvex, it is difficult (if
not impossible) for online algorithms to achieve meaningful guarantees on classic
regret metrics like 𝑅𝐴 (𝑇) or static policy regret because they do not have oracle
optimization solvers or even the exact knowledge of the surrogate costs. Therefore,

1𝑧𝑡 is an auxiliary variable to denote the state at 𝑡 under initial state 𝑥𝜏 and parameters 𝜃𝜏:𝑡 .
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we introduce the metric of local regret, which bounds the sum of squared gradient
norms over the whole horizon:

𝑅𝐿 (𝑇) :=
∑𝑇−1
𝑡=0 ∥∇𝐹𝑡 (𝜃𝑡)∥

2. (5.3)

Similar metrics have been adopted by previous works on online nonconvex optimiza-
tion (Hazan, Singh, and Zhang, 2017). Intuitively, 𝑅𝐿 (𝑇) measures how well the
online agent chases the (changing) stationary point of the surrogate cost sequence
𝐹0:𝑇−1. Since the surrogate cost functions are changing over time, the bound on
𝑅𝐿 (𝑇) will depend on how much the system {𝑔𝑡 , 𝑓𝑡 , 𝜋𝑡}𝑡∈T changes over the whole
horizon T . We defer the details to Section 5.3.

5.2 Contractive Perturbation and Stability
In this section, we introduce two key properties needed for our sub-linear regret
guarantees in adaptive online policy selection. We define both with respect to
trajectories generated by “slowly” time-varying parameters, which are easier to
analyze than arbitrary parameter sequences.

Definition 5.2.1. We denote the set of policy parameter sequences with 𝜀-constrained
step size by

𝑆𝜀 (𝑡1 : 𝑡2) := {𝜃𝑡1:𝑡2 ∈ Θ𝑡2−𝑡1+1 | ∥𝜃𝜏+1 − 𝜃𝜏∥ ≤ 𝜀,∀𝜏 ∈ [𝑡1 : 𝑡2 − 1]}.

The first property we require is an exponentially decaying, or “contractive,” pertur-
bation property of the closed-loop dynamics of the system with the policy class. We
now formalize this property.

Definition 5.2.2 (𝜀-Time-varying Contractive Perturbation). The 𝜀-time-varying
contractive perturbation property holds for 𝑅𝐶 > 0, 𝐶 > 0, 𝜌 ∈ (0, 1), and 𝜀 ≥ 0
if, for any 𝜃𝜏:𝑡−1 ∈ 𝑆𝜀 (𝜏 : 𝑡 − 1),

𝑔𝑡 |𝜏 (𝑥𝜏, 𝜃𝜏:𝑡−1) − 𝑔𝑡 |𝜏 (𝑥′𝜏, 𝜃𝜏:𝑡−1)



 ≤ 𝐶𝜌𝑡−𝜏

𝑥𝜏 − 𝑥′𝜏


holds for arbitrary 𝑥𝜏, 𝑥′𝜏 ∈ 𝐵𝑛 (0, 𝑅𝐶) and time steps 𝜏 ≤ 𝑡.

Intuitively, 𝜀-time-varying contractive perturbation requires two trajectories starting
from different states (in a bounded ball) to converge towards each other if they adopt
the same slowly time-varying policy parameter sequence. We call the special case
of 𝜀 = 0 time-invariant contractive perturbation, meaning the policy parameter
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is fixed. Although it may be difficult to verify the time-varying property directly
since it allows the policy parameters to change, we show in Lemma 5.2.1 that time-
invariant contractive perturbation implies that the time-varying version also holds
for some small 𝜀 > 0.

The time-invariant contractive perturbation property is closely related to discrete-
time incremental stability (e.g., Bayer, Bürger, and Allgöwer, 2013) and contraction
theory (e.g., Tsukamoto, Chung, and Slotine, 2021), which have been studied in
control theory. While some specific policies including DAC and MPC satisfy 𝜀-
time-varying contractive perturbation globally in linear systems, in other cases it
is hard to verify. Our property is local and thus is easier to establish for broader
applications in nonlinear systems (e.g., Example 5.1.2).

Besides contractive perturbation, another important property we need is the stability
of the policy class, which requires 𝜋0:𝑇−1 can stabilize the system starting from the
zero state as long as the policy parameter varies slowly. This property is stated
formally below:

Definition 5.2.3 (𝜀-Time-varying Stability). The 𝜀-time-varying stability property
holds for 𝑅𝑆 > 0 and 𝜀 ≥ 0 if, for any 𝜃𝜏:𝑡−1 ∈ 𝑆𝜀 (𝜏 : 𝑡 − 1),



𝑔𝑡 |𝜏 (0, 𝜃𝜏:𝑡−1)


 ≤ 𝑅𝑆

holds for any time steps 𝑡 ≥ 𝜏.

Intuitively, 𝜀-time-varying stability guarantees that the policy class 𝜋0:𝑇−1 can
achieve stability if the policy parameters 𝜃0:𝑇−1 vary slowly.2 Similarly to con-
tractive perturbation, one only needs to verify time-invariant stability (i.e., 𝜀 = 0
and the policy parameter is fixed) to claim time-varying stability holds for some
strictly positive 𝜀 (see Lemma 5.2.1). The reason we still use the time-varying con-
tractive perturbation and stability in our assumptions is that they hold for 𝜀 = +∞
in some cases, including DAC and MPC with confidence coefficients. Applying
Lemma 5.2.1 for those systems will lead to a small, overly pessimistic 𝜀.

Key Assumptions
We make two assumptions about the online policy selection problem to achieve
regret guarantees.

Assumption 5.2.1. The dynamics 𝑔0:𝑇−1, policies 𝜋0:𝑇−1, and costs ℎ0:𝑇−1 are
differentiable at every time step and satisfy that, for any convex compact sets

2This property is standard in online control and is satisfied by DAC Agarwal et al., 2019; Hazan,
Kakade, and Singh, 2020; Chen and Hazan, 2021; Simchowitz, Singh, and Hazan, 2020; Gradu,
Hazan, and Minasyan, 2023 as well as Examples 5.1.1 & 5.1.2.
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X ⊆ R𝑛,U ⊆ R𝑚, one can find Lipschitzness/smoothness constants (can depend on
X andU) such that:

1. The dynamics 𝑔𝑡 (𝑥, 𝑢) is (𝐿𝑔,𝑥 , 𝐿𝑔,𝑢)-Lipschitz and (ℓ𝑔,𝑥 , ℓ𝑔,𝑢)-smooth in (𝑥, 𝑢)
on X ×U.
2. The policy function 𝜋𝑡 (𝑥, 𝜃) is (𝐿𝜋,𝑥 , 𝐿𝜋,𝜃)-Lipschitz and (ℓ𝜋,𝑥 , ℓ𝜋,𝜃)-smooth in
(𝑥, 𝜃) on X × Θ.
3. The stage cost function ℎ𝑡 (𝑥, 𝑢) is (𝐿ℎ, 𝐿ℎ)-Lipschitz and (ℓℎ,𝑥 , ℓℎ,𝑢)-smooth in
(𝑥, 𝑢) on X ×U.

Assumption 5.2.1 is general because we only require the Lipschitzness/smoothness
of 𝑔𝑡 and ℎ𝑡 to hold for bounded states/actions withinX andU, where the coefficients
may depend onX andU. Similar assumptions are common in the literature of online
control/optimization (Lin, Hu, Shi, et al., 2021; Shi et al., 2020; Li, Yang, Qu, Lin,
et al., 2023).

Our second assumption is on the contractive perturbation and the stability of the
closed-loop dynamics induced by a slowly time-varying policy parameter sequence.

Assumption 5.2.2. Let G denote the set of all possible dynamics/policy sequences
{𝑔𝑡 , 𝜋𝑡}𝑡∈T the environment/policy class may provide. For a fixed 𝜀 ∈ R≥0, the
𝜀-time-varying contractive perturbation (Definition 5.2.2) holds with (𝑅𝐶 , 𝐶, 𝜌)
for any sequence in G. The 𝜀-time-varying stability (Definition 5.2.3) holds with
𝑅𝑆 < 𝑅𝐶 for any sequence in G. We assume that the initial state satisfies ∥𝑥0∥ <
(𝑅𝐶 − 𝑅𝑆)/𝐶. Further, we assume that if {𝑔, 𝜋} is the dynamics/policy at an
intermediate time step of a sequence in G, then the time-invariant sequence {𝑔, 𝜋}×𝑇
is also in G.3

Note that Assumption 5.2.2 is on the joint properties of both the dynamical system
and the policy class when composed together in a closed loop. The motivation is to
generalize two key properties of linear systems under typical reasonable controllers:
1) the effect of past decisions on the current state decays exponentially fast, and 2)
if the system is initialized near the origin, it remains near the origin. We generalize
these properties via 𝜀-time-varying contractive perturbation (Definition 5.2.2) and
𝜀-time-varying stability (Definition 5.2.3), respectively. Although Assumption 5.2.2

3For {𝑔, 𝜋}×𝑇 to be in G, it must satisfy other assumptions about contractive perturbation and
stability that we impose on G but does not need to occur in real problem instances. We only use
this assumption in the proof of Theorem 5.3.4, and it can be made without the loss of generality for
time-invariant dynamics and policy classes.
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may seem complicated to understand, it is less restrictive than the assumptions in
the most closely related work (e.g., Agarwal et al., 2019; Hazan, Kakade, and Singh,
2020; Gradu, Hazan, and Minasyan, 2023) that focus on linear dynamics.

Compared to other settings where contractive perturbation holds globally (Agarwal
et al., 2019; Simchowitz, Singh, and Hazan, 2020; Zhang, Li, and Li, 2021),
Assumption 5.2.2 only requires it to hold locally in a bounded ball 𝐵(0, 𝑅𝐶), which
becomes important in nonlinear settings. This brings a new challenge because
we need to guarantee that the starting state stays within 𝐵(0, 𝑅𝐶) whenever we
apply this property in the proof. Therefore, in Assumption 5.2.2, we assume
𝑅𝐶 > 𝑅𝑆 + 𝐶∥𝑥0∥. Similarly, to leverage the Lipschitzness/smoothness property,
we require X ⊇ 𝐵(0, 𝑅𝑥) where 𝑅𝑥 ≥ 𝐶 (𝑅𝑆 + 𝐶∥𝑥0∥) + 𝑅𝑆 andU = {𝜋(𝑥, 𝜃) | 𝑥 ∈
X, 𝜃 ∈ Θ, 𝜋 ∈ G}. Since the coefficients in Assumption 5.2.1 depend on X andU,
we will set X = 𝐵(0, 𝑅𝑥) and 𝑅𝑥 = 𝐶 (𝑅𝑆 +𝐶∥𝑥0∥) + 𝑅𝑆 by default when presenting
these constants. The goal is to ensure that the controller never leaves the region
where contractive perturbation applies, which is critical for our analysis and again
generalizes properties found in the literature (e.g., Examples 5.1.1 and 5.1.2).

For some systems, verifying Assumption 5.2.2 is straightforward (e.g., Example
5.1.1). In other cases, we can rely on the following lemma, which can convert a
time-invariant version of the property to general time-varying one. We defer its
proof to Section 5.A.

Lemma 5.2.1. Suppose Assumption 5.2.2 holds for 𝜀 = 0 and (𝑅𝐶 , 𝐶, 𝜌, 𝑅𝑆),
which satisfies 𝑅𝐶 > (𝐶 + 1)𝑅𝑆. Suppose Assumption 5.2.1 also holds and let
X := 𝐵(0, 𝑅𝑥), where 𝑅𝑥 = (𝐶 + 1)2𝑅𝑆. Then, Assumption 5.2.2 also holds for
𝜀 > 0, (𝑅̂𝐶 , 𝐶̂, 𝜌̂, 𝑅̂𝑆), and 𝑥0 that satisfies (𝑅̂𝐶 − 𝑅̂𝑆)/𝐶. Here, 𝑅̂𝑆, 𝑅̂𝐶 , 𝜌̂ are
arbitrary constants that satisfies 𝑅𝑆 < 𝑅̂𝑆 < 𝑅̂𝐶 < 𝑅𝐶/(𝐶 + 1) and 𝜌 < 𝜌̂ < 1. The
positive constants 𝜀 and 𝐶̂ are given detailed expressions in Section 5.A.

Remark 5.2.2. Lemma 5.2.1 can also be useful when applied to some parameter-
ized controllers for time-invariant nonlinear systems. For example, the well-known
“computed torque control” feedback linearization controllers for robotic manipu-
lators (see, e.g., Slotine, Li, et al., 1991) renders the closed-loop dynamics expo-
nentially stable about an equilibrium, and the feedback gains can be parameterized.
Thus, it satisfies Assumption 5.2.2 in a neighborhood about the equilibrium, via
Lemma 5.2.1. Even with time-invariant dynamics, the time-varying costs (such as
tracking a trajectory determined online) provide a setting where selecting the policy
parameters online can be beneficial.
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5.3 Memoryless Gradient-based Adaptive Policy Selection
Memoryless Gradient-Based Adaptive Policy Selection (M-GAPS) is inspired by
the classic online gradient descent (OGD) algorithm (Hazan, 2016; Bansal and
Gupta, 2019), with a novel approach for approximating the gradient of the surrogate
stage cost 𝐹𝑡 . It is an improved version of Gradient-Based Adaptive Policy Selection
(GAPS) in (Lin, Preiss, Anand, et al., 2023) with a better computational complexity.
In the context of online optimization, OGD works as follows. At each time 𝑡, the
current stage cost describes how good the learner’s current decision 𝜃𝑡 is. The learner
updates its decision by taking a gradient step with respect to this cost. Mapping
this intuition to online policy selection, the ideal OGD update rule would be the
following.

Definition 5.3.1 (Ideal OGD Update). At time step 𝑡, update 𝜃𝑡+1 =
∏

Θ(𝜃𝑡 −
𝜂∇𝐹𝑡 (𝜃𝑡)).

This is because the surrogate cost 𝐹𝑡 (Definition 5.1.2) characterizes how good 𝜃𝑡
is for time 𝑡 if we had applied 𝜃𝑡 from the start, i.e., without the impact of other
historical policy parameters 𝜃0:𝑡−1. However, since the complexity of computing
∇𝐹𝑡 exactly grows proportionally to 𝑡, the ideal OGD becomes intractable when the
horizon 𝑇 is large.

As outlined in Algorithm 6, M-GAPS uses 𝐺 𝑡 to approximate ∇𝐹𝑡 (𝜃𝑡) efficiently.
To see this, we compare the decompositions, with key differences highlighted in
colored text:

∇𝐹𝑡 (𝜃𝑡) =
𝑡∑︁
𝑏=0

𝜕ℎ𝑡 |0
𝜕𝜃𝑡−𝑏

����
𝑥0,(𝜃𝑡 )×(𝑡+1)

and 𝐺 𝑡 =

𝑡∑︁
𝑏=0

𝜕ℎ𝑡 |0
𝜕𝜃𝑡−𝑏

����
𝑥0,𝜃0:𝑡

. (5.4)

GAPS efficiently approximates ∇𝐹𝑡 (𝜃𝑡). by replacing the ideal sequence (𝜃𝑡)×(𝑡+1)
by the actual sequence 𝜃0:𝑡 . This enables computing gradients along the actual
trajectory experienced by the online policy without re-simulating the trajectory
under 𝜃𝑡 . 𝜀-time-varying contractive perturbation is the key to bound the bias of𝐺 𝑡 :
Intuitively, although 𝜃𝜏 becomes more different with 𝜃𝑡 as 𝜏 decreases, its impact on
𝑓𝑡 |0 decays more quickly (exponentially). We provide a rigorous bound of the bias
in Theorem 5.3.1 and a proof outline in Section 5.B.

Although the expression of 𝐺 𝑡 in (5.4) decomposes it as the sum of 𝑡 + 1 partial
derivatives, we can compute 𝐺 𝑡 efficiently by maintaining an auxiliary variable
defined as the partial derivative of the current state with respect to all past policy
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Algorithm 6: Memoryless Gradient-based Adaptive Policy Selection (M-GAPS,
for ALG)
Parameters: Learning rate 𝜂, initial parameter 𝜃0.
Initialize: Policy parameter 𝜃0; Internal state 𝑦0 = 0.
for 𝑡 = 0, 1, . . . , 𝑇 − 1 do

Take inputs 𝑥𝑡 , 𝑔𝑡 , 𝜋𝑡 , ℎ𝑡 , and 𝑓𝑡 .
Update 𝑦𝑡+1 ←

𝜕𝑔𝑡+1 |𝑡
𝜕𝑥𝑡

���
𝑥𝑡 ,𝜃𝑡
· 𝑦𝑡 +

𝜕𝑔𝑡+1 |𝑡
𝜕𝜃𝑡

���
𝑥𝑡 ,𝜃𝑡

. /* Update partial

derivatives accumulator. */

Let 𝐺 𝑡 ←
𝜕ℎ𝑡 |𝑡
𝜕𝑥𝑡

���
𝑥𝑡 ,𝜃𝑡
· 𝑦𝑡 +

𝜕ℎ𝑡 |𝑡
𝜕𝜃𝑡

���
𝑥𝑡 ,𝜃𝑡

.

Update and output 𝜃𝑡+1 ←
∏

Θ (𝜃𝑡 − 𝜂𝐺 𝑡). /* ΠΘ is the Euclidean
projection to Θ. */

end

parameters, i.e., 𝑦𝑡 :=
∑𝑡
𝑏=0

𝜕𝑔𝑡 |0
𝜕𝜃𝑡−𝑏

���
𝑥0,𝜃0:𝑡

. Since we can update 𝑦𝑡 with the chain rule,
we provide the time- and space-efficient implementation of M-GAPS in Algorithm
6.

Compared to many previous online control algorithms that take a reduction approach
based on OCO with Memory, our algorithm can be much more computationally
efficient (see Section 5.B for an empirical comparison). Specifically, these works
(Agarwal et al., 2019; Hazan, Kakade, and Singh, 2020; Chen and Hazan, 2021)
take a different finite-memory reduction approach toward reducing the online control
problem to OCO with Memory (Anava, Hazan, and Mannor, 2015) by completely
removing the dependence on policy parameters before time step 𝑡 − 𝐵 for a fixed
memory length 𝐵. In the finite-memory reduction, one must “imaginarily” reset the
state at time 𝑡 − 𝐵 to be 0 and then use the 𝐵-step truncated multi-step cost function
ℎ𝑡 |𝑡−𝐵 (0, 𝜃𝑡−𝐵:𝑡) in the OGD with Memory algorithm (Agarwal et al., 2019). When
applied to our setting, this is equivalent to replacing 𝐺 𝑡 in (5.4) by

𝐺′𝑡 =
𝐵−1∑︁
𝑏=0

𝜕ℎ𝑡 |𝑡−𝐵
𝜕𝜃𝑡−𝑏

|0,(𝜃𝑡 )×(𝐵+1) .

However, the estimator 𝐺′𝑡 has limitations compared with 𝐺 𝑡 in M-GAPS. First,
computing 𝐺′𝑡 requires oracle access to the partial derivatives of the dynamics and
cost functions for arbitrary state and actions. Second, even if those are available,
𝐺′𝑡 is less computationally efficient than 𝐺 𝑡 in GAPS, especially when the policy is
expensive to execute. Taking MPC (Example 5.1.1) as an example, computing𝐺′𝑡 at
every time step requires solving 𝐵 MPC optimization problems when re-simulating
the system, where 𝐵 = Ω(log𝑇). In contrast, computing 𝐺 𝑡 in GAPS only requires
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solving one MPC optimization problem and 𝑂 (1) matrix multiplications to update
the partial derivatives.

Bounds on Truncation Error
We now present the first part of our main result, which states that the actual stage
cost ℎ𝑡 (𝑥𝑡 , 𝑢𝑡) incurred by GAPS is close to the ideal surrogate cost 𝐹𝑡 (𝜃𝑡), and the
approximated gradient 𝐺 𝑡 is close to the ideal gradient ∇𝐹𝑡 (𝜃𝑡). In other words,
GAPS mimics the ideal OGD update (Definition 5.3.1).

Theorem 5.3.1. Suppose Assumptions 5.2.1 and 5.2.2 hold. Let {(𝑥𝑡 , 𝑢𝑡 , 𝜃𝑡)}𝑡∈T
denote the trajectory of M-GAPS with learning rate 𝜂 ≤ Ω ((1 − 𝜌)𝜀). Then, we
have

|ℎ𝑡 (𝑥𝑡 , 𝑢𝑡) − 𝐹𝑡 (𝜃𝑡) | = 𝑂
(
(1 − 𝜌)−3𝜂

)
and ∥𝐺 𝑡 − ∇𝐹𝑡 (𝜃𝑡)∥ = 𝑂

(
(1 − 𝜌)−5𝜂

)
,

where Ω(·) and 𝑂 (·) hide the dependence on the Lipschitz/smoothness constants
defined in Assumption 5.2.1 and the constant 𝐶 in contractive perturbation.

We defer the proof of Theorem 5.3.1 to Section 5.B. Note that this result does not
require any convexity assumptions on the surrogate cost 𝐹𝑡 .

Regret Bounds for M-GAPS: Convex Surrogate Cost
The second part of our main result studies the case when the surrogate cost 𝐹𝑡 is
a convex function. This assumption is explicitly required or satisfied by the policy
classes and dynamical systems in many prior works on online control and online
policy selection (Agarwal et al., 2019; Hazan, Kakade, and Singh, 2020; Zhang, Li,
and Li, 2021; Chen and Hazan, 2021).

The error bounds in Theorem 5.3.1 can reduce the problem of GAPS’ regret bound
in control to the problem of OGD’s regret bound in online optimization, where the
following result is well known: When the surrogate cost functions 𝐹𝑡 are convex,
the ideal OGD update (Definition 5.3.1) achieves the regret bound

∑𝑇−1
𝑡=0 𝐹𝑡 (𝜃𝑡) −

min𝜃∈Θ
∑𝑇−1
𝑡=0 𝐹𝑡 (𝜃) = 𝑂 (

√
𝑇), when the step size 𝜂 is of the order 1/

√
𝑇 (Hazan,

2016). By taking the biases on the stage costs and the gradients into consideration,
we derive the adaptive regret bound in Theorem 5.3.2. Besides the adaptive regret,
one can use a similar reduction approach to “transfer” other regret guarantees for
OGD in online optimization to GAPS in control. We include the derivation of a
dynamic regret bound as an example in Section 5.B.
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Theorem 5.3.2. Under the same assumptions as Theorem 5.3.1, if we additionally
assume 𝐹𝑡 is convex for every time 𝑡 and diam(Θ) is bounded by a constant 𝐷, then
GAPS achieves adaptive regret

𝑅𝐴 (𝑇) = 𝑂
(
𝜂−1 + (1 − 𝜌)−5𝜂𝑇 + (1 − 𝜌)−10𝜂3𝑇

)
,

where 𝑂 (·) hides the same constants as in Theorem 5.3.1 and 𝐷.

We discuss how to choose the learning rate and the regret it achieves in the following
corollary.

Corollary 5.3.3. Under the same assumptions as Theorem 5.3.2, suppose the hori-
zon length 𝑇 ≫ 1

1−𝜌 . If we set 𝜂 = (1− 𝜌) 5
2𝑇−

1
2 , then GAPS achieves adaptive regret

𝑅𝐴 (𝑇) = 𝑂
(
(1 − 𝜌)− 5

2𝑇
1
2

)
.

We defer the proof of Theorem 5.3.2 to Section 5.B. Compared to the (static) policy
regret bounds of Agarwal et al. (2019) and Hazan, Kakade, and Singh (2020),
our bound is tighter by a factor of log𝑇 . The key observation is that the impact
of a past policy parameter 𝜃𝑡−𝑏 on the current stage cost 𝑐𝑡 decays exponentially
with respect to 𝑏 (see Section 5.B for details). In comparison, the reduction-based
approach first approximates 𝑐𝑡 with 𝑐𝑡 that depends on 𝜃𝑡−𝐵+1:𝑡 , and then applies
general OCO with memory results on 𝑐𝑡 (Agarwal et al., 2019; Hazan, Kakade,
and Singh, 2020). General OCO with memory cannot distinguish the different
magnitudes of the contributions that 𝜃𝑡−𝐵+1:𝑡 make to 𝑐𝑡 , which leads to the regret
gap of 𝐵 = 𝑂 (log𝑇).

In the more restrictive setting of linear time-invariant dynamics with the DAC pol-
icy class, the results of a concurrent work (Kumar, Dean, and Kleinberg, 2023)
can also be used to close the log𝑇 gap on static regret of online policy selection.
In comparison, Theorem 5.3.2 considers more general time-varying dynamics and
adopts the stronger metric of adaptive regret. As a practical matter, the follow-the-
regularized-leader type of algorithm used by Kumar, Dean, and Kleinberg (2023)
is often (much) less computationally efficient than a gradient-based algorithm like
GAPS. Nevertheless, Kumar, Dean, and Kleinberg (2023) made distinct contribu-
tions by allowing the state space to be a general Banach space and providing a lower
bound for OCO with unbounded memory.
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Regret Bounds for M-GAPS: Nonconvex Surrogate Cost
The third part of our main result studies the case when the surrogate cost 𝐹𝑡 is
nonconvex. Before presenting the result, we formally define the variation intensity
that measures how much the system changes over the whole horizon.

Definition 5.3.2 (Variation Intensity). Let {𝑔𝑡 , 𝜋𝑡 , ℎ𝑡}𝑡∈T be a sequence of dynam-
ics/policy/cost functions that the environment provides. The variation intensity 𝑉 of
this sequence is defined as

𝑇−1∑︁
𝑡=1

(
sup

𝑥∈X,𝑢∈U
∥𝑔𝑡 (𝑥, 𝑢) − 𝑔𝑡−1(𝑥, 𝑢)∥ + sup

𝑥∈X,𝜃∈Θ
∥𝜋𝑡 (𝑥, 𝜃) − 𝜋𝑡−1(𝑥, 𝜃)∥

+ sup
𝑥∈X,𝑢∈U

|ℎ𝑡 (𝑥, 𝑢) − ℎ𝑡−1(𝑥, 𝑢) |
)
.

Variation intensity is used as a measure of hardness for changing environments in
the literature of online optimization that often appear in regret upper bounds (see
Mokhtari et al., 2016 for an overview). Definition 5.3.2 generalizes one of the
standard definitions to online policy selection. Using this definition, we present our
main result for GAPS applied to nonconvex surrogate costs using the metric of local
regret (5.3).

Theorem 5.3.4. Under the same assumptions as Theorem 5.3.1, if we additionally
assume that Θ = R𝑑 for some integer 𝑑, then M-GAPS satisfies local regret

𝑅𝐿 (𝑇) = 𝑂
(

1 +𝑉
(1 − 𝜌)3𝜂

+ 𝜂𝑇

(1 − 𝜌)6
+ 𝜂3𝑇

(1 − 𝜌)13

)
,

where 𝑂 (·) hides the same constants as in Theorem 5.3.1.

We defer the detailed expressions and the proof of Theorem 5.3.4 to Theorem 5.B.13
in Section 5.B. Note that the local regret will be sublinear in 𝑇 if the variation
intensity 𝑉 = 𝑜(𝑇). To derive the local regret guarantee in Theorem 5.3.4, we
address additional challenges compared to the convex case. First, we derive a local
regret guarantee for OGD in online nonconvex optimization. We cannot directly
apply results from the literature because they do not use ordinary OGD, and it is
difficult to apply algorithms like Follow-the-Perturbed-Leader (e.g., Suggala and
Netrapalli, 2020) to online policy selection due to constraints on information and
step size. Then, to transfer the regret bound from online optimization to online
policy selection, we show how to convert the measure of variation defined on 𝐹0:𝑇−1

to our variation intensity 𝑉 defined on {𝑔𝑡 , 𝜋𝑡 , ℎ𝑡}𝑡∈T .
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A limitation of Theorem 5.3.4 is that we need to assume Θ is a whole Euclidean
space so that GAPS will not converge to a point at the boundary of Θ that is not a
stationary point.

5.4 Meta-Framework for Unknown Dynamics
We consider online policy optimization in a discrete-time dynamical system that
varies over time with dynamics 𝑥𝑡+1 = 𝑔𝑡

(
𝑥𝑡 , 𝑢𝑡 , 𝑓𝑡 (𝑥𝑡 , 𝑎∗𝑡 )

)
+ 𝑤𝑡 , where 𝑥𝑡 ∈ R𝑛

denotes the system state, 𝑢𝑡 ∈ R𝑚 denotes the control input, and 𝑔𝑡 is the dynamical
function. Here, 𝑓𝑡 (𝑥𝑡 , 𝑎∗𝑡 ) ∈ R𝑘 is a nonlinear residual term of which the online agent
can make (noisy) observations. It has a known function form 𝑓𝑡 and an unknown
parameter 𝑎∗𝑡 ∈ A ⊆ R𝑝. The disturbance term 𝑤𝑡 ∈ W ⊆ R𝑛 does not depend on
the states or the control inputs.

To control this system, the online agent adopts a time-varying control policy 𝜋𝑡 that
is parameterized by a policy parameter 𝜃𝑡 and depends on its current estimation of
the nonlinear residual. Specifically, the online agent picks the control input from
the policy class 𝑢𝑡 = 𝜋𝑡

(
𝑥𝑡 , 𝜃𝑡 , 𝑓𝑡 (𝑥𝑡 , 𝑎̂𝑡)). Here, function 𝑓𝑡 (·, 𝑎̂𝑡) reflects the online

agent’s current estimation of the ground true nonlinear residual function 𝑓𝑡 (·, 𝑎∗𝑡 ) at
time step 𝑡. Intuitively, we assume the policy class 𝜋𝑡 cares about predicting the
true nonlinear residual 𝑓𝑡 (𝑥𝑡 , 𝑎∗𝑡 ) rather than the unknown model parameter 𝑎∗𝑡 . The
objective of the online agent is to minimize the total cost

∑𝑇−1
𝑡=0 𝑐𝑡 incurred over a

finite horizon, where the stage cost at time step 𝑡 is given by 𝑐𝑡 = ℎ𝑡 (𝑥𝑡 , 𝑢𝑡 , 𝜃𝑡).

We provide a simple nonlinear control example that can be captured by our online
policy optimization framework to help the readers understand the concepts we
discussed.

Example 5.4.1. Consider the problem of controlling a scalar discrete-time nonlin-
ear dynamical system:

𝑥𝑡+1 = 𝑥𝑡 + Δ
(
𝑢𝑡 + 𝑓𝑡 (𝑥𝑡 , 𝑎∗𝑡 ) + 𝑤𝑡

)
, where 𝑓𝑡 (𝑥𝑡 , 𝑎∗𝑡 ) = 𝜙(𝑥𝑡) · 𝑎∗𝑡 . (5.5)

In this equation, Δ is the discretization step size. The nonlinear residual takes the
form 𝜙(𝑥𝑡) ·𝑎∗𝑡 , where 𝜙 : R→ R𝑘 is a (nonlinear) feature map and 𝑎∗𝑡 is the unknown
model parameter. To control this system, the online agent with an estimated model
parameter 𝑎̂𝑡 can adopt the policy class:

𝑢𝑡 = −𝑘𝑡𝑥𝑡 − 𝑓𝑡 (𝑥𝑡 , 𝑎̂𝑡), where 𝑓𝑡 (𝑥𝑡 , 𝑎̂𝑡) = 𝜙(𝑥𝑡) · 𝑎̂𝑡 , and 𝑘𝑡 = 𝜃𝑡 . (5.6)

Here, the goal of the second term − 𝑓𝑡 (𝑥𝑡 , 𝑎̂𝑡) is to cancel out the true nonlinear
residual 𝑓𝑡 (𝑥𝑡 , 𝑎∗𝑡 ). In an ideal case where the online agent has access to the true
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𝑢𝑡 𝑓𝑡
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𝑥𝑡 𝜃𝑡 𝑎̂𝑡

𝑥𝑡+1 𝜃𝑡+1 𝑎̂𝑡+1

Figure 5.2: The meta-framework.

Policy

𝑢𝑡

Env ALG

𝑥𝑡 𝜃𝑡 𝑎∗𝑡

𝑥𝑡+1 𝜃𝑡+1

𝜁𝑡

Figure 5.3: Theoretical comparand:
ALG∗ with perturbations.

model parameter 𝑎∗𝑡 , policy (5.6) achieves the effect of removing the nonlinear
residual and directly doing feedback control, resulting in the closed-loop dynamics
𝑥𝑡+1 = 𝑥𝑡 + Δ (−𝑘𝑡𝑥𝑡 + 𝑤𝑡) . In this case, the problem reduces to finding the optimal
policy parameters (gains) {𝜃𝑡} in a known time-varying dynamical system.

Performance Metrics
Although local regret is useful for measuring the performance of an online policy
optimization algorithm under nonconvex surrogate costs, a limitation of applying it
alone to our setting with unknown dynamical models is that the surrogate cost 𝐹𝑡
is defined in terms of ALG’s behavior with known true dynamics. To address this
limitation, in addition to bounding the local regret of the policy parameters 𝜃0:𝑇−1,
we also bound the distance between the actual trajectory of the online agent and
the trajectory it would achieve with the same policy parameters 𝜃0:𝑇−1 and exact
knowledge of true model parameters 𝑎∗0:𝑇−1.

Main Results
Our approach is outlined in Algorithm 7, where two modules ALG and EST work
together to update the policy and estimated model parameter at each time step (see
Figure 5.2 for an illustration). ALG and EST are responsible for optimizing the
policy parameters 𝜃0:𝑇−1 and learning the unknown model parameters 𝑎∗0:𝑇−1 of the
nonlinear residual terms, respectively:

• ALG: At time step 𝑡, ALG receives the current state 𝑥𝑡 , policy parameter 𝜃𝑡 , and the
known part of the time-varying system 𝜋𝑡 , 𝑔𝑡 , ℎ𝑡 , 𝑓𝑡 . It also receives the current
estimation 𝑎̂𝑡 of the unknown model parameter 𝑎∗𝑡 . Then, ALG outputs the new
policy parameter 𝜃𝑡+1. Note that we allow ALG to leverage/memorize history by
maintaining an internal state 𝑦𝑡 .
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• EST: At time step 𝑡, EST receives the current state 𝑥𝑡 and a (noisy) observation
𝑓𝑡 of the unknown component 𝑓𝑡 (𝑥𝑡 , 𝑎∗𝑡 ). Then, EST outputs the new estimation
𝑎̂𝑡+1. Like ALG, we allow EST to keep internal state/memory (e.g., to memorize
historical input data). We require EST to minimize the trajectory-dependent model
mismatches:

Zeroth-order model mismatch: 𝜀𝑡 (𝑥𝑡 , 𝑎̂𝑡 , 𝑎∗𝑡 ) :=


 𝑓𝑡 (𝑥𝑡 , 𝑎̂𝑡) − 𝑓𝑡 (𝑥𝑡 , 𝑎∗𝑡 )

, (5.7a)

First-order model mismatch: 𝜀′𝑡 (𝑥𝑡 , 𝑎̂𝑡 , 𝑎∗𝑡 ) :=


∇𝑥 𝑓𝑡 (𝑥𝑡 , 𝑎̂𝑡) − ∇𝑥 𝑓𝑡 (𝑥𝑡 , 𝑎∗𝑡 )

𝐹 .

(5.7b)

We adopt the shorthand 𝜀𝑡 = 𝜀𝑡 (𝑥𝑡 , 𝑎̂𝑡 , 𝑎∗𝑡 ) and 𝜀′𝑡 = 𝜀′𝑡 (𝑥𝑡 , 𝑎̂𝑡 , 𝑎∗𝑡 ) when the context
is clear.

Algorithm 7: Meta-Framework
Require: ALG and EST
Require: Knowing functions {𝜋𝑡 , 𝑔𝑡 , ℎ𝑡 , 𝑓𝑡} at each time step 𝑡
Initialize: State 𝑥0; Policy parameter 𝜃0; Model parameter estimation 𝑎̂0.
for 𝑡 = 0, 1, . . . , 𝑇 − 1 do

Decide control input 𝑢𝑡 = 𝜋𝑡 (𝑥𝑡 , 𝜃𝑡 , 𝑓𝑡 (𝑥𝑡 , 𝑎̂𝑡)).
Incur stage cost ℎ𝑡 (𝑥𝑡 , 𝑢𝑡 , 𝜃𝑡).
𝜃𝑡+1 ← ALG.update(𝑥𝑡 , 𝜃𝑡 , 𝜋𝑡 , 𝑔𝑡 , ℎ𝑡 , 𝑓𝑡 , 𝑎̂𝑡). /* ALG can have internal
memory. */

System evolves to 𝑥𝑡+1 = 𝑔𝑡 (𝑥𝑡 , 𝑢𝑡 , 𝑓𝑡 (𝑥𝑡 , 𝑎∗𝑡 )) + 𝑤𝑡 .
Receive a (noisy) observation 𝑓𝑡 of 𝑓𝑡 (𝑥𝑡 , 𝑎∗𝑡 ).
𝑎̂𝑡+1 ← EST.update(𝑥𝑡 , 𝑓𝑡 , 𝑎̂𝑡). /* EST can have internal memory.
*/

end

The key idea in analyzing our meta-framework (Algorithm 7) is to characterize how
the inexact model estimations generated by EST affect the behavior ALG. We start
by considering the “ideal” dynamics of applying ALG with exact model parameters
𝑎∗0:𝑇−1, which we denote as ALG∗, and compare them with the actual dynamics of
ALG that performs the update with estimated model parameters 𝑎̂0:𝑇−1. We state
the key insight of our analysis in the informal lemma below, which connects the
performance of the meta-framework with ALG∗ and the model mismatches.

Lemma 5.4.2 (Informal). Suppose ALG∗ satisfies the desired properties in the next
subsection. Then, the meta-framework (Algorithm 7) generates the same policy
parameters as ALG∗ with perturbation 𝜁𝑡 on the update of 𝜃𝑡+1 (see Figure 5.3).
Further,

∑𝑇−1
𝑡=0 ∥𝜁𝑡 ∥ = 𝑂

(∑𝑇−1
𝑡=0 𝜀𝑡 +

∑𝑇−1
𝑡=0 𝜀

′
𝑡

)
.
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The formal statement of Lemma 5.4.2 can be found in Theorem 5.4.3.

The rest of this section is organized as following: First, we specify the properties of
ALG∗ that enables the meta-framework to be robust against inexact model parameters
in the policy parameter update. Then, we formulate EST’s task of learning 𝑓𝑡 (𝑥𝑡 , 𝑎∗𝑡 )
as an online optimization problem, where we view the state 𝑥𝑡 as picked by an
adaptive adversary. We also discuss how this problem reduces to existing results on
online optimization.

Online Policy Optimization
In this section, we take a perspective that views the updates performed by ALG as part
of a joint dynamics formed together with the original dynamical system. Compared
to the common approach of analyzing ALG separately from the dynamical system
to which it applies, our dynamical view enables us to compare the differences
of applying ALG under different external inputs (i.e., different 𝑎̂𝑡 estimates) more
efficiently.

We consider the class of online policy optimization algorithms whose joint dynamics
with the original system can be written in the following form: When the model
parameter 𝑎𝑡 is given as the input to ALG at time step 𝑡, the joint dynamics can be
written as

©­­«
𝑥𝑡+1

𝑦𝑡+1

𝜃𝑡+1

ª®®¬ = 𝑞𝑡 (𝑥𝑡 , 𝑦𝑡 , 𝜃𝑡 , 𝑎𝑡) =
©­­«
𝑞𝑥𝑡 (𝑥𝑡 , 𝑦𝑡 , 𝜃𝑡 , 𝑎𝑡)
𝑞
𝑦
𝑡 (𝑥𝑡 , 𝑦𝑡 , 𝜃𝑡 , 𝑎𝑡)
𝑞𝜃𝑡 (𝑥𝑡 , 𝑦𝑡 , 𝜃𝑡 , 𝑎𝑡)

ª®®¬ , for 𝑥𝑡 ∈ R𝑛, 𝑦𝑡 ∈ R𝑝, 𝜃𝑡 ∈ Θ ⊂ R𝑑 .

(5.8)

Here, 𝑦𝑡 ∈ R𝑝 is an auxiliary state that ALG can use to store something besides
the system state 𝑥𝑡 and the policy parameter 𝜃𝑡 to help it perform the update. For
example, 𝑦𝑡 can be a finite memory buffer that stores information from the past. It
can also be the integral of past states in an integral controller. Thus, we introduce
𝑦𝑡 to allow broader classes of online policy optimization algorithms, and a concrete
example of 𝑦𝑡 is the auxiliary state in M-GAPS.

The goal of formulating joint dynamics (5.8) is to compare the behaviors of the meta-
framework and ALG∗ with perturbations on policy parameter updates. Specifically,
recall that 𝑎̂0:𝑇−1 denote the estimated model parameters of EST. The actual trajectory
of the meta-framework is

Meta-framework: (𝑥𝑡+1, 𝑦𝑡+1, 𝜃𝑡+1)⊤ = 𝑞𝑡 (𝑥𝑡 , 𝑦𝑡 , 𝜃𝑡 , 𝑎̂𝑡). (5.9)
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We compare it with the joint dynamics of ALG∗ (see Figure 5.3). Recall that ALG∗

denotes the scenario when ALG has access to exact model parameters 𝑎∗0:𝑇−1:

ALG∗ with perturbations: (𝑥𝑡+1, 𝑦𝑡+1, 𝜃𝑡+1)⊤ = 𝑞𝑡 (𝑥𝑡 , 𝑦𝑡 , 𝜃𝑡 , 𝑎∗𝑡 ) + (0, 0, 𝜁𝑡)⊤.
(5.10)

Here, 𝜁𝑡 is an additive perturbation on the update equation of policy parameter 𝜃𝑡+1.
To understand (5.10) intuitively, it is helpful to draw connections with the process
of using a gradient-based optimizer to update the parameter 𝜃𝑡 in ML, where 𝜁𝑡 ≡ 0
corresponds to the case when exact gradients are available. In contrast, nonzero
perturbations correspond to the more practical case when the optimizer can only use
biased estimations of the gradient, which still performs well in general.

Note that the estimated model parameters 𝑎̂0:𝑇−1 generated by ESTmay also depend
on the state 𝑥𝑡 and other parts of the dynamical system. Thus, a natural question is
whether we should also incorporate the update rule of EST into the joint dynamical
system in (5.9), where we include 𝑎̂𝑡 as another element of the joint state. However,
we still choose to model 𝑎̂𝑡 as an external input in (5.9) and handle the update of
𝑎̂𝑡 separately. This is because our approach requires comparing the actual joint
dynamics with (5.10). Since 𝑎∗𝑡 is an external input decided by the environment in
(5.10), keeping the joint state space identical in (5.9) makes the comparison easier.
Further, a strength of our proof framework based on the joint dynamics is that we
can show the actual trajectory (5.9) will stay close to (5.10). However, we know that
the estimated model parameter sequence {𝑎̂𝑡} will not converge to the true sequence
{𝑎∗𝑡 } in general.

We state three important properties of the joint dynamics induced by ALG. The first
property is about the Lipschitzness with respect to the model mismatches 𝜀𝑡 and 𝜀′𝑡 .

Property 5.4.1. [Lipschitzness] For any 𝑥𝑡 , 𝑦𝑡 , 𝜃𝑡 , 𝑎̂𝑡 that satisfies ∥𝑥𝑡 ∥ ≤ 𝑅𝑥 , ∥𝑦𝑡 ∥ ≤
𝑅𝑦, 𝜃𝑡 ∈ Θ, 𝑎̂𝑡 ∈ A, the following Lipschitzness conditions hold:

𝑞𝑥𝑡 (𝑥𝑡 , 𝑦𝑡 , 𝜃𝑡 , 𝑎∗𝑡 ) − 𝑞𝑥𝑡 (𝑥𝑡 , 𝑦𝑡 , 𝜃𝑡 , 𝑎̂𝑡)

 ≤ 𝛼𝑥𝜀𝑡 (𝑥𝑡 , 𝑎̂𝑡 , 𝑎∗𝑡 ) + 𝛽𝑥𝜀′𝑡 (𝑥𝑡 , 𝑎̂𝑡 , 𝑎∗𝑡 ),

𝑞𝑦𝑡 (𝑥𝑡 , 𝑦𝑡 , 𝜃𝑡 , 𝑎∗𝑡 ) − 𝑞𝑦𝑡 (𝑥𝑡 , 𝑦𝑡 , 𝜃𝑡 , 𝑎̂𝑡)

 ≤ 𝛼𝑦𝜀𝑡 (𝑥𝑡 , 𝑎̂𝑡 , 𝑎∗𝑡 ) + 𝛽𝑦𝜀′𝑡 (𝑥𝑡 , 𝑎̂𝑡 , 𝑎∗𝑡 ),

𝑞𝜃𝑡 (𝑥𝑡 , 𝑦𝑡 , 𝜃𝑡 , 𝑎∗𝑡 ) − 𝑞𝜃𝑡 (𝑥𝑡 , 𝑦𝑡 , 𝜃𝑡 , 𝑎̂𝑡)

 ≤ 𝛼𝜃𝜀𝑡 (𝑥𝑡 , 𝑎̂𝑡 , 𝑎∗𝑡 ) + 𝛽𝜃𝜀′𝑡 (𝑥𝑡 , 𝑎̂𝑡 , 𝑎∗𝑡 ).
Further, 𝑞𝜃𝑡 (𝑥, 𝑦, 𝜃, 𝑎∗𝑡 ) is (𝐿𝜃,𝑥 , 𝐿𝜃,𝑦)-Lipschitz in (𝑥, 𝑦).

Intuitively, Property 5.4.1 says that the error brought by the inexact model parameters
only “distort” the ideal joint dynamics (5.10) in the form of zeroth-order and first-
order prediction errors. Therefore, to bound the error injected into the joint dynamics
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at every step, EST only needs to minimize 𝜀𝑡 and 𝜀′𝑡 on the actual state trajectory
𝑥0:𝑇−1 that the online agent visits. Note that this property can be viewed as a
standard assumption about Lipschitzness if ALG is a gradient-based algorithm. This
is because all terms that involve the unknown model parameter will take the form
𝑓𝑡 (𝑥𝑡 , 𝑎̂𝑡) and ∇𝑥 𝑓𝑡 (𝑥𝑡 , 𝑎̂𝑡) in the joint dynamics.

The second property is about contraction stability of 𝑥𝑡 and 𝑦𝑡 under exact model
parameters 𝑎∗0:𝑇−1. As we show in Theorem 5.4.3, this property guarantees that the
dynamical updates of states 𝑥𝑡 and 𝑦𝑡 in the joint dynamics are robust to the model
mismatches {𝜀𝑡 , 𝜀′𝑡}0:𝑇−1.

Property 5.4.2. [Contraction Stability] For any sequence 𝜃0:𝑇−1 that satisfies the
slowly time-varying constraint that ∥𝜃𝑡 − 𝜃𝑡−1∥ ≤ 𝜖𝜃 for all time step 𝑡, the partial
dynamical system

𝑥𝑡+1 = 𝑞𝑥𝑡 (𝑥𝑡 , 𝑦𝑡 , 𝜃𝑡 , 𝑎∗𝑡 ), 𝑦𝑡+1 = 𝑞
𝑦
𝑡 (𝑥𝑡 , 𝑦𝑡 , 𝜃𝑡 , 𝑎∗𝑡 ) (5.11)

satisfies that ∥𝑥𝑡 ∥ ≤ 𝑅∗𝑥 < 𝑅𝑥 and ∥𝑦𝑡 ∥ ≤ 𝑅∗𝑦 < 𝑅𝑦 always hold if the system starts
from (𝑥𝜏, 𝑦𝜏) = (0, 0). Further, for some function 𝛾 : Z≥0 → R≥0 that satisfies∑∞
𝑡=0 𝛾(𝑡) ≤ 𝐶, from any initial states (𝑥𝜏, 𝑦𝜏), (𝑥′𝜏, 𝑦′𝜏) that satisfy ∥𝑥𝜏∥,



𝑥′𝜏

 ≤ 𝑅𝑥
and ∥𝑦𝜏∥,



𝑦′𝜏

 ≤ 𝑅𝑦, the trajectory satisfies


(𝑥𝜏+𝑡 , 𝑦𝜏+𝑡) − (𝑥′𝜏+𝑡 , 𝑦′𝜏+𝑡)

 ≤ 𝛾(𝑡) ·

(𝑥𝜏, 𝑦𝜏) − (𝑥′𝜏, 𝑦′𝜏)

.

Note that Property 5.4.2 is different with the contraction assumption of Lin, Preiss,
Anand, et al. (2023) because it also considers the internal state 𝑦𝑡 of ALG besides
the system state 𝑥𝑡 . The requirement that

∑∞
𝑡=0 𝛾(𝑡) ≤ 𝐶 is also weaker than the

exponential decay rate in Lin, Preiss, Anand, et al. (2023).

Intuitively, Property 5.4.2 guarantees that when the exact model parameters {𝑎∗𝑡 }
are replaced by inexact {𝑎̂𝑡}, the resulting trajectory {(𝑥𝑡 , 𝑦𝑡)} still stays close to
the trajectory that 𝜃0:𝑇−1 would achieve under exact predictions once the mismatch
errors 𝜀𝑡 , 𝜀′𝑡 are small or bounded. Property 5.4.2 can be viewed as an extension
of the time-varying stability and contractive perturbation property in Lin, Preiss,
Anand, et al., 2023 to include state 𝑦𝑡 maintained by ALG. This is required in our
framework because 𝑦𝑡 can be affected by the prediction errors and it is involved in
the dynamics of updating 𝜃𝑡 .

The third property we need is the robustness of the update rule of the policy parameter
𝜃𝑡 . Specifically, it requires the regret guarantee achieved by ALG to be robust against
a certain level of adversarial disturbances {𝜁𝑡} on the update dynamics of 𝜃𝑡 .
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Property 5.4.3. [Robustness] Consider the joint dynamics in (5.10). When ∥𝜁𝑡 ∥ ≤
𝜁 holds for all 𝑡, the resulting {𝜃𝑡} satisfies the slowly-time-varying constraint
∥𝜃𝑡 − 𝜃𝑡−1∥ ≤ 𝜖𝜃 for all time 𝑡. Further, ALG∗ with perturbations (5.10) can achieve
a regret guarantee 𝑅(𝑇,∑𝑇−1

𝑡=0 ∥𝜁𝑡 ∥) that depends on the total magnitude of the
perturbation sequence 𝜁0:𝑇−1.

To understand Property 5.4.3, we can think about online gradient descent (OGD)
in online optimization problems without state or dynamics. It is known that this
approach is robust to (biased) disturbances on the gradient estimation, and the total
amount of added disturbances will affect the final regret bound (see, for example,
Theorem 5.B.10).

Now, we present our main results about the stability of applying ALG with inexact
model parameters and the regret bound in Theorem 5.4.3. Besides, Theorem 5.4.3
also bounds the distances between the actual trajectory and the trajectory achieved
by applying the same policy parameter sequence with the exact model parameter
sequence.

Theorem 5.4.3. Suppose Properties 5.4.1, 5.4.2, and 5.4.3 hold. Let 𝜉 = {𝑥𝑡 , 𝑦𝑡 , 𝜃𝑡}
be the trajectory of the meta-framework (Algorithm 7). If the prediction errors
{𝜀𝑡 , 𝜀′𝑡}0:𝑇−1 are uniformly bounded such that the following inequalities hold for all
time step 𝑡: 𝛼𝜃𝜀𝑡 + 𝛽𝜃𝜀′𝑡 ≤ 𝜁/2, and

(𝛼𝑥 + 𝛼𝑦)𝜀𝑡 + (𝛽𝑥 + 𝛽𝑦)𝜀′𝑡 ≤ min

{ √
2𝜁

4(𝐿𝜃,𝑥 + 𝐿𝜃,𝑦)𝐶
,

min{𝑅𝑥 − 𝑅∗𝑥 , 𝑅𝑦 − 𝑅∗𝑦}
𝐶

}
,

then the trajectory 𝜉 satisfies ∥𝑥𝑡 ∥ ≤ 𝑅𝑥 , ∥𝑦𝑡 ∥ ≤ 𝑅𝑦, and ∥𝜃𝑡 − 𝜃𝑡−1∥ ≤ 𝜖𝜃 for all
time steps 𝑡. Further, define 𝜉 := {𝑥𝑡 , 𝑦̃𝑡 , 𝜃𝑡}0:𝑇−1, where {𝑥𝑡 , 𝑦̃𝑡}0:𝑇−1 are obtained
by implementing the policy parameters 𝜃0:𝑇−1 with exact model parameters 𝑎∗0:𝑇−1,
i.e., the trajectory of partial joint dynamics (5.11). The trajectory 𝜉 achieves the
regret 𝑅(𝑇,∑𝑇−1

𝑡=0 ∥𝜁𝑡 ∥) with
∑𝑇−1
𝑡=0 ∥𝜁𝑡 ∥ upper bounded by(

𝛼𝜃 +
√

2𝐶 (𝐿𝜃,𝑥 + 𝐿𝜃,𝑦) (𝛼𝑥 + 𝛼𝑦)
) 𝑇−1∑︁
𝑡=0

𝜀𝑡

+
(
𝛽𝜃 +
√

2𝐶 (𝐿𝜃,𝑥 + 𝐿𝜃,𝑦) (𝛽𝑥 + 𝛽𝑦)
) 𝑇−1∑︁
𝑡=0

𝜀′𝑡 .

The total distances between the states on the trajectories 𝜉 and 𝜉 satisfies that
𝑇∑︁
𝑡=1
∥(𝑥𝑡 , 𝑦𝑡) − (𝑥𝑡 , 𝑦̃𝑡)∥ ≤ 𝐶

(
(𝛼𝑥 + 𝛼𝑦)

𝑇−1∑︁
𝑡=0

𝜀𝑡 + (𝛽𝑥 + 𝛽𝑦)
𝑇−1∑︁
𝑡=0

𝜀′𝑡

)
.
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We defer the proof of Theorem 5.4.3 to Section 5.E. Intuitively, Theorem 5.4.3 states
that when the prediction error terms {𝜀𝑡 , 𝜀′𝑡}0:𝑇−1 are uniformly bounded, the actual
trajectory 𝜉 of applying ALGwith inexact model parameters 𝑎̂0:𝑇−1 will be uniformly
bounded. Further, if the actual parameter sequence of 𝜃0:𝑇−1 is applied with exact
model parameters 𝑎∗0:𝑇−1, the resulting trajectory 𝜉 achieves a regret guarantee that
depends on the magnitudes of the prediction errors. It is worth noticing that the
regret in Theorem 5.4.3 can be any regret that depends on the trajectory 𝜉. And as
we discussed before, we evaluate the regret on trajectory 𝜉 rather than 𝜉 because the
metrics like the local regret are designed for evaluating the actual policy parameters
𝜃0:𝑇−1 rather than the whole trajectory 𝜉. The distances between 𝜉 and 𝜉 are bounded
in the last inequality in Theorem 5.4.3.

To show Theorem 5.4.3, the key idea is to fit the trajectory 𝜉 into the dynamical
equation (5.10), where we design 𝜁𝑡 to compensate the difference between the update
rules 𝑞𝑡 (𝑥𝑡 , 𝑦̃𝑡 , 𝜃𝑡 , 𝑎∗𝑡 ) and 𝑞𝑡 (𝑥𝑡 , 𝑦𝑡 , 𝜃𝑡 , 𝑎̂𝑡). To leverage Property 5.4.3, we show the
perturbations 𝜁0:𝑇−1 we constructed are uniformly bounded by 𝜁 . We bound 𝜁𝑡 and
the distances between 𝜉 and 𝜉 by induction. The induction is important because
the magnitude of 𝜁𝑡 depends on the distance between {𝑥𝑡 , 𝑦𝑡}0:𝑇−1 and {𝑥𝑡 , 𝑦̃𝑡}0:𝑇−1

in the past time steps. On the other hand, to bound the distance between {𝑥𝑡 , 𝑦𝑡}
and {𝑥𝑡 , 𝑦̃𝑡}, we need to leverage the contraction property in Property 5.2.2, which
relies on ∥𝜁𝑡 ∥ ≤ 𝜁 so that 𝜃0:𝑇−1 is slowly time-varying. Lastly, we conclude the
proof with the bounds on the distance between 𝜉 and 𝜉 as well as the norm of 𝜁𝑡 that
depend on the model mismatches {𝜀𝑡 , 𝜀′𝑡}0:𝑇−1.

Online Parameter Estimation
The second part of our meta framework focuses on predicting the unknown model pa-
rameter based on possibly noisy observations of the true nonlinear residual 𝑓𝑡 (𝑥𝑡 , 𝑎∗𝑡 ).
A critical difference with prior works on system identification or model-based learn-
ing (e.g., Dean et al., 2020) is that we only seek to optimize the zeroth-order and
first-order model mismatches {𝜀𝑡 , 𝜀′𝑡} (defined in (5.7)) on the actual trajectory that
the online agent experiences. It is worth noticing that, although learning the ground-
truth model parameter 𝑎∗𝑡 is impossible for a general nonlinear residual, minimizing
the sum of zeroth-order model mismatches incurred on the actual trajectory can be
formulated as a classic online regression problem, which we discuss below:

Online regression problem: At the beginning, the environment commits a sequence
of error functions 𝑒𝑡 : R𝑛 × A → R, 𝑡 = 0, . . . , 𝑇 − 1, which are defined as
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𝑒𝑡 (𝑥, 𝑎) := 𝑓𝑡 (𝑥, 𝑎∗𝑡 ) − 𝑓𝑡 (𝑥, 𝑎) for 𝑡 = 0, . . . , 𝑇 − 1. 4 The relationship between
the error function 𝑒𝑡 and the model mismatches {𝜀𝑡 , 𝜀′𝑡} is 𝜀𝑡 = ∥𝑒𝑡 (𝑥𝑡 , 𝑎̂𝑡)∥, and
𝜀′𝑡 = ∥∇𝑥𝑒𝑡 (𝑥𝑡 , 𝑎̂𝑡)∥. At each time step 𝑡, the online parameter estimator EST predicts
𝑎̂𝑡 = EST(𝑥0:𝑡−1, 𝑎̂0:𝑡−1) ∈ A, which means the estimation 𝑎̂𝑡 can be a general
function of the historical states and estimations. Then, the environment reveals
𝑥𝑡 ∈ 𝐵𝑛 (0, 𝑅𝑥) that can depend on the history 𝑥0:𝑡−1 and 𝑎̂0:𝑡−1. We define the stage
loss of EST as ℓ𝑡 = ∥𝑒𝑡 (𝑥𝑡 , 𝑎̂𝑡)∥2, which is equal to the squared ℓ2-norm of the model
mismatch 𝑒𝑡 (𝑥𝑡 , 𝑎̂𝑡).

Under different sets of assumptions on the error functions and the sequence of true
model parameters {𝑎∗𝑡 }, existing online algorithms can achieve regret guarantees.
We consider a general form of expected regret bound: E

[∑𝑇
𝑡=1 ℓ𝑡

]
≤ 𝑅ℓ0(𝑇), where

the expectation is taken over the randomness of implementing EST and generating
𝑥𝑡 . While different assumptions and designs of EST can achieve different bounds
on 𝑅ℓ0(𝑇), we will provide an example later where a simple gradient estimator can
achieve sublinear 𝑅ℓ0(𝑇) under certain assumptions about the nonlinear residual and
the path length

∑𝑇−1
𝑡=1



𝑎∗
𝑡+1 − 𝑎

∗
𝑡



.
While most prior works focus on minimizing the magnitude of the zeroth-order
model mismatch 𝑒𝑡 (𝑥𝑡 , 𝑎̂𝑡), we also need to bound the first-order model mismatch
∇𝑥𝑒𝑡 (𝑥𝑡 , 𝑎̂𝑡) because it contributes to the regret bound in Theorem 5.4.3 (recall
that ∥∇𝑥𝑒𝑡 (𝑥𝑡 , 𝑎̂𝑡)∥𝐹 = 𝜀′𝑡). Our main result in this section is about an automatic
reduction from the regret bound 𝑅ℓ0(𝑇) to a bound on the expected sum of the
squared gradients E

[∑𝑇
𝑡=1 ∥∇𝑥𝑒𝑡 (𝑥𝑡 , 𝑎̂𝑡)∥

2
𝐹

]
.

Remark 5.4.4. Besides the online policy optimization problem for control, the regret
bound that concerns ∥∇𝑥𝑒𝑡 (𝑥𝑡 , 𝑎̂𝑡)∥ can be of independent interest for the problem
of online regression, because it characterizes how sensitive the regression loss is to
any perturbations on the input sequence 𝑥0:𝑇−1 under the same estimations 𝑎̂0:𝑇−1.
Intuitively, if gradients of the error functions are small, the estimations 𝑎̂0:𝑇−1 will
be robust to small perturbations on the input sequence.

To enable a reduction from the regret bound 𝑅ℓ0(𝑇) to the gradient error bound,
we employ Property 5.4.4 about the dynamical system that generates the state 𝑥𝑡 .
Specifically, we require there to be at least a small level of randomness when
choosing 𝑥𝑡 . Recall that 𝑎̂𝑡+1 is decided based on the history 𝑥0:𝑡 and 𝑎̂0:𝑡 . We

4Thus, the error functions 𝑒0:𝑇−1 will not adapt to the inputs and online decisions.
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define the filtrations F𝑡 := 𝜎 (𝑥1:𝑡 , 𝑎̂1:𝑡) and F ′𝑡 := 𝜎 (𝑥1:𝑡 , 𝑎̂1:𝑡+1), which satisfy
F𝑡 ⊆ F ′𝑡 ⊆ F𝑡+1.

Property 5.4.4. There is a certain level of random disturbances when generating
each state 𝑥𝑡 , i.e., for some 𝜖 > 0 and 𝜎 > 0, one can find a 𝜎-algebra G𝑡 such that
F ′𝑡 ⊆ G𝑡 ⊆ F𝑡+1 and ∥𝑥𝑡+1 − E[𝑥𝑡+1 | G𝑡] ∥ ≤ 𝜖, Cov(𝑥𝑡+1 | G𝑡) ⪰ 𝜎𝐼.

Intuitively, the randomness enforced by Property 5.4.4 will “force” EST to also
minimize the gradient of the error functions. To see this, suppose an input state 𝑥𝑡
is given by 𝑥𝑡 + 𝑣𝑡 , where 𝑥𝑡 is the mean and 𝑣𝑡 is a random disturbance. When the
disturbance 𝑣𝑡 is sufficiently small, we know that 𝑒𝑡 (𝑥𝑡 , 𝑎̂𝑡) ≈ 𝑒𝑡 (𝑥𝑡 , 𝑎̂𝑡)+∇𝑥𝑒𝑡 (𝑥𝑡 , 𝑎̂𝑡) ·
𝑣𝑡 by Taylor’s expansion. Since we can pick 𝑣𝑡 randomly in different directions,
we know the zeroth-order loss E[𝑒𝑡 (𝑥𝑡 , 𝑎̂𝑡)2] cannot converge to zero unless the
magnitude of the gradient ∇𝑥𝑒𝑡 (𝑥𝑡 , 𝑎̂𝑡) converges to zero. We follow this intuition
to show the reduction from the regret bound 𝑅ℓ0(𝑇) to the total gradient error in
Theorem 5.4.5.

Theorem 5.4.5. Suppose that for all time 𝑡, each dimension 𝑖 ∈ [𝑘] of the error
function satisfies

∥∇𝑥𝑒𝑡 (𝑥, 𝑎)𝑖∥ ≤ 𝛽𝑒, and


∇2

𝑥𝑒𝑡 (𝑥, 𝑎)𝑖


 ≤ 𝛾𝑒, for any 𝑥 ∈ 𝐵(0, 𝑅𝑥) and 𝑎 ∈ A.

Suppose Property 5.4.4 holds with 𝜖 ≤ min{ 1
4 ,

1
2𝛾𝑒 ,

1
4𝛽𝑒𝛾𝑒 } and 𝜎 > 0. If EST

achieves the zeroth-order regret E
[∑𝑇

𝑡=1 ℓ𝑡
]
≤ 𝑅ℓ0(𝑇) ≤ 𝜖3𝑇 , the expected total

squared gradient loss satisfies that

E

[
𝑇∑︁
𝑡=1
∥∇𝑥𝑒𝑡 (𝑥𝑡 , 𝑎̂𝑡)∥2𝐹

]
≤ 2𝑘
𝜎
(1 + 𝛾𝑒 + 𝛽𝑒𝛾𝑒)𝜖3𝑇 + 2𝑘𝛾2

𝑒𝜖
2𝑇.

Recall that 𝑘 is the dimension of the unknown component 𝑓𝑡 (𝑥𝑡 , 𝑎∗𝑡 ). We defer the
proof of Theorem 5.4.5 to Section 5.E. We provide the following corollary to help
the readers understand this result in a special case when 𝑅ℓ0(𝑇) is 𝑂 (

√
𝑇). For

example, a gradient estimator can achieve this regret bound if ℓ𝑡 is convex in 𝑎.

Corollary 5.4.6. Under the same assumptions as Theorem 5.4.5, if EST achieves
𝑅ℓ0(𝑇) = 𝑂 (

√
𝑇) and Property 5.4.4 holds with 𝜖 = 𝜃 (𝑇1/6) and 𝜎 = Ω(𝜖2), then

the expected total squared gradient loss is bounded by E
[∑𝑇

𝑡=1 ∥∇𝑥𝑒𝑡 (𝑥𝑡 , 𝑎̂𝑡)∥
2
𝐹

]
=

𝑂 (𝑘𝑇5/6).
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In summary, with the help of Theorem 5.4.5, we reduce the problem of bounding the
total squared first-order prediction errors

∑𝑇−1
𝑡=0 (𝜀′𝑡)2 to the standard online optimiza-

tion problem. By substituting the bounds on 𝜀0:𝑇−1 and 𝜀′0:𝑇−1 into Theorem 5.4.3,
one can derive the local regret bound for the actual joint dynamics and bound the
distance between trajectories 𝜉 and 𝜉.

Application: Matched Disturbance
In this section, we consider an instantiation of our setting to demonstrate the ef-
fectiveness of our meta-framework. Specifically, we study the matched-disturbance
dynamics (Ferguson et al., 2020; Sinha et al., 2022; Garofalo, Ott, and Albu-
Schäffer, 2012), where the controller can choose a control input to “cancel out” the
nonlinear residual term 𝑓𝑡 (𝑥𝑡 , 𝑎∗𝑡 ) when the exact model parameter 𝑎∗𝑡 is available.
The dynamics have the form

𝑥𝑡+1 = 𝑔𝑡 (𝑥𝑡 , 𝑢𝑡 , 𝑓𝑡 (𝑥𝑡 , 𝑎∗𝑡 )) + 𝑤𝑡 = 𝜙𝑡 (𝑥𝑡 , 𝑢𝑡 + 𝑓𝑡 (𝑥𝑡 , 𝑎∗𝑡 )) + 𝑤𝑡 . (5.12)

A ubiquitous application of the matched disturbance dynamics is the general joint-
space dynamics of robotic manipulators (Siciliano et al., 2008) when the system
has actuators for every joint. The matched-disturbance structure also appears in
tilted-rotor rotorcraft (Rajappa et al., 2015; Zheng et al., 2020), which can move in
six degrees of freedom. In both cases, due to the second-order structure of the rigid-
body dynamics, all external disturbances are equivalent to additional joint torque
(resp. rotor tilt/thrust) inputs. Our Example 5.4.1 also fits into the framework of
(5.12). To control a matched-disturbance system, a natural policy class is to first
cancel out the nonlinear residual with − 𝑓𝑡 (𝑥𝑡 , 𝑎̂𝑡) and then apply an actuation term
𝜓𝑡 (𝑥𝑡 , 𝜃𝑡) to achieve the optimal costs. This policy class can be expressed as

𝑢𝑡 = 𝜋𝑡 (𝑥𝑡 , 𝜃𝑡 , 𝑓𝑡 (𝑥𝑡 , 𝑎̂𝑡)) = − 𝑓𝑡 (𝑥𝑡 , 𝑎̂𝑡) + 𝜓𝑡 (𝑥𝑡 , 𝜃𝑡). (5.13)

To derive local regret for the meta-framework, we need assumptions (Assumptions
5.2.1-5.D.4) on the system that includes the dynamics, policy classes, and costs,
which we discuss in detail in Section 5.E. Note that the matched-disturbance dy-
namics/policy class we consider can recover the setting (Lin, Preiss, Anand, et al.,
2023) as a special case when 𝑓𝑡 and 𝑤𝑡 are always zero (so there is no need to
estimate 𝑎∗𝑡 ). We recover the same regret bound as Lin, Preiss, Anand, et al., 2023
in that special case (see Lemma 5.4.7).

Online Policy Optimization. M-GAPS can serves as ALG in our meta-framework.
M-GAPS use 𝑎̂𝑡 to estimate how the current state 𝑥𝑡 and policy parameter 𝜃𝑡 would
affect the next state 𝑥𝑡+1 and the current cost. The estimations are characterized by
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𝑔̂𝑡+1|𝑡 (𝑥𝑡 , 𝜃𝑡) := 𝑔𝑡 (𝑥𝑡 , 𝜋𝑡 (𝑥𝑡 , 𝜃𝑡 , 𝑓𝑡 (𝑥𝑡 , 𝑎̂𝑡)), 𝑓𝑡 (𝑥𝑡 , 𝑎̂𝑡)), and (5.14a)

ℎ̂𝑡 |𝑡 (𝑥𝑡 , 𝜃𝑡) := ℎ𝑡 (𝑥𝑡 , 𝜋𝑡 (𝑥𝑡 , 𝜃𝑡 , 𝑓𝑡 (𝑥𝑡 , 𝑎̂𝑡)) , 𝜃𝑡) . (5.14b)

Although M-GAPS can be applied to any online policy optimization problems that fit
into the setting of Section 5.4 in general, we focus on its application to disturbance-
matched dynamics and policy class for theoretical analysis. We verify that the joint
dynamics of M-GAPS satisfy the required properties of our meta-framework to
derive a concrete regret bound in Section 5.E.

Algorithm 8: Memoryless Gradient-based Adaptive Policy Selection (M-GAPS,
for ALG)
Parameters: Learning rate 𝜂, initial parameter 𝜃0.
Initialize: Policy parameter 𝜃0; Internal state 𝑦0 = 0.
for 𝑡 = 0, 1, . . . , 𝑇 − 1 do

Take inputs 𝑥𝑡 , 𝑔𝑡 , 𝜋𝑡 , ℎ𝑡 , 𝑓𝑡 and 𝑎̂𝑡 . /* Inputs given when
meta-framework calls ALG.update. */

Use 𝑎̂𝑡 to obtain 𝑔̂𝑡+1|𝑡 and ℎ̂𝑡 |𝑡 .
Update 𝑦𝑡+1 ←

𝜕𝑔̂𝑡+1 |𝑡
𝜕𝑥𝑡

���
𝑥𝑡 ,𝜃𝑡
· 𝑦𝑡 +

𝜕𝑔̂𝑡+1 |𝑡
𝜕𝜃𝑡

���
𝑥𝑡 ,𝜃𝑡

. /* Update partial

derivatives accumulator. */

Let 𝐺 𝑡 ←
𝜕ℎ̂𝑡 |𝑡
𝜕𝑥𝑡

���
𝑥𝑡 ,𝜃𝑡
· 𝑦𝑡 +

𝜕ℎ̂𝑡 |𝑡
𝜕𝜃𝑡

���
𝑥𝑡 ,𝜃𝑡

.

Update and output 𝜃𝑡+1 ←
∏

Θ (𝜃𝑡 − 𝜂𝐺 𝑡). /* ΠΘ is the Euclidean
projection to Θ. */

end

A key step of our proof shows that, when exact model parameters 𝑎∗0:𝑇−1 are available,
M-GAPS is robust against perturbations on policy parameter updates as required by
Property 5.4.3.

Lemma 5.4.7. Under Assumptions 5.2.1 and 5.2.2, Property 5.4.3 holds when 𝜂 ≤ 𝜂
for some positive constant 𝜂 and

𝑅𝐿𝜂 (𝑇,
𝑇−1∑︁
𝑡=0
∥𝜁𝑡 ∥) = 𝑂

(
1
𝜂
(1 +𝑉sys +𝑉𝑤) + 𝜂𝑇 + 𝜂3𝑇 + 1

𝜂

𝑇−1∑︁
𝑡=1
∥𝜁𝑡 ∥

)
,

where the variation intensities are defined as 𝑉𝑤 =
∑𝑇−1
𝑡=1 ∥𝑤𝑡 − 𝑤𝑡−1∥ and

𝑉sys =

𝑇−1∑︁
𝑡=1

(
sup

𝑥∈X,𝑢∈U
∥𝜙𝑡 (𝑥, 𝑢) − 𝜙𝑡−1(𝑥, 𝑢)∥ + sup

𝑥∈X,𝜃∈Θ
∥𝜓𝑡 (𝑥, 𝜃) − 𝜓𝑡−1(𝑥, 𝜃)∥

+ sup
𝑥∈X,𝑢∈U,𝜃∈Θ

|ℎ𝑡 (𝑥, 𝑢, 𝜃) − ℎ𝑡−1(𝑥, 𝑢, 𝜃) |
)
.
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The formal statement and proof of Lemma 5.4.7 can be found in Section 5.E. Note
that in the special case of Lin, Preiss, Anand, et al., 2023, we have Θ = R𝑑 , 𝑉𝑤 = 0,
and

∑𝑇−1
𝑡=1 ∥𝜁𝑡 ∥ = 0. The local regret bound 𝑅𝐿𝜂 (𝑇, 0) of M-GAPS given by Lemma

5.4.7 matches the local regret bound of GAPS in Lin, Preiss, Anand, et al., 2023,
because the projected gradients are identical with the gradients when Θ = R𝑑 .

Online Parameter Estimation. In the application of matched-disturbance dynamics,
we assume the online parameter estimator EST can make a noisy observation 𝑓𝑡 of
the true nonlinear residual 𝑓𝑡 (𝑥𝑡 , 𝑎∗𝑡 ) after it decides 𝑎̂𝑡 at each time step 𝑡. Recall
that the prediction error function is defined as 𝑒𝑡 (𝑥, 𝑎) := 𝑓𝑡 (𝑥, 𝑎) − 𝑓𝑡 (𝑥, 𝑎∗𝑡 ) and
the true prediction loss at time step 𝑡 as ℓ𝑡 := ∥𝑒𝑡 (𝑥𝑡 , 𝑎̂𝑡)∥2. We instantiate EST with
the gradient estimator (Algorithm 9), where 𝑓𝑡 is a (noisy) observation of 𝑓𝑡 (𝑥𝑡 , 𝑎∗𝑡 )
provided by the environment. It performs online gradient descent on an estimated
prediction loss function constructed from 𝑓𝑡 .

Algorithm 9: Gradient Estimator (for EST)
Parameters: Learning rate 𝜄; Initialize: Model parameter estimation 𝑎̂0.
for 𝑡 = 0, 1, . . . , 𝑇 − 1 do

Take inputs 𝑥𝑡 and 𝑓𝑡 . /* Inputs given when meta-framework
calls EST.update. */

Incur loss ℓ̃𝑡 (𝑥𝑡 , 𝑎̂𝑡 , 𝑓𝑡) := ∥ 𝑓𝑡 (𝑥𝑡 , 𝑎̂𝑡) − 𝑓𝑡 ∥2.
Update and output 𝑎̂𝑡+1 ←

∏
A

(
𝑎̂𝑡 − 𝜄 · 𝜕ℓ𝑡/𝜕𝑎𝑡 |𝑥𝑡 ,𝑎̂𝑡 , 𝑓𝑡

)
.

end

Using Theorems 5.4.3 and 5.4.5, we show a local regret guarantee of our meta-
framework in Theorem 5.4.8 and test it numerically in the setting of Example 5.4.1.
Due to space limit, we defer the proof of Theorem 5.4.8 and the simulation results
to Section 5.E.

Theorem 5.4.8. Under Assumptions 5.2.1-5.D.4, if we use M-GAPS for ALG and
Gradient Estimator for EST, the trajectory 𝜉 = {𝑥𝑡 , 𝑦𝑡 , 𝜃𝑡} achieves an expected local
regret 5 of

𝑂

(
𝜂−1(1 +𝑉𝑠𝑦𝑠 + 𝜖 · 𝑇) + 𝜂𝑇 + (

√
𝑚𝜖 + 𝑚𝜖) · 𝑇

)
,

where 𝑉𝑠𝑦𝑠 is the total variation of the system and 𝜖 is the magnitude of the random
disturbance 𝑤𝑡 (see Section 5.E for detailed definitions). Under the same definition
of 𝜉 as Theorem 5.4.3, the expected total distance between 𝜉 and 𝜉 is bounded by

5We change the gradient ∇𝐹𝑡 (𝜃𝑡 ) to the projected gradient ∇𝜂,Θ𝐹𝑡 (𝜃𝑡 ) (see Definition 5.C.2 in
Section 5.E) in the local regret. This metric is introduced by Hazan, Singh, and Zhang, 2017 for
online nonconvex optimization with constraints.
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E

[
𝑇−1∑︁
𝑡=0
(∥𝑥𝑡 − 𝑥𝑡 ∥ + ∥𝑦𝑡 − 𝑦̃𝑡 ∥)

]
= 𝑂

(
𝑇3/4 +

√
𝑚𝜖 · 𝑇

)
.

5.5 Application: Using Predictions Adaptively
Our example about Model Predictive Control (MPC) with Confidence Coefficients
generalizes the 𝜆-confident policy proposed by Li, Yang, Qu, Shi, et al. (2022). In
this setting, some policy parameter 𝜃 (𝑐) ∈ Θ can achieve near-optimal performance
when the predictions of the future are accurate (consistency), and another policy
parameter 𝜃 (𝑟) ∈ Θ has a worst-case guarantee even when the predictions are
unreliable (robustness). Minimizing regret in this setting implies that the online
policy is both robust and consistent.

Recall that in this example, MPC selects the current control action by solving the
optimization problem

arg min
𝑢𝑡:𝑡+𝑘−1 |𝑡

𝑡+𝑘−1∑︁
𝜏=𝑡

𝑓𝜏 (𝑥𝜏 |𝑡 , 𝑢𝜏 |𝑡) + 𝑞(𝑥𝑡+𝑘 |𝑡 , 𝑄̃)

s. t. 𝑥𝑡 |𝑡 = 𝑥𝑡 , (5.15)

𝑥𝜏+1|𝑡 = 𝐴𝜏𝑥𝜏 |𝑡 + 𝐵𝜏𝑢𝜏 |𝑡 + 𝜆[𝜏−𝑡]𝑡 𝑤𝜏 |𝑡 : 𝑡 ≤ 𝜏 < 𝑡+𝑘,

where 𝜃𝑡 =
(
𝜆
[0]
𝑡 , 𝜆

[1]
𝑡 , . . . , 𝜆

[𝑘−1]
𝑡

)
, Θ ⊆ [0, 1]𝑘 . Thus, Θ is a convex compact set

with diameter
√
𝑘 .

For this example to satisfy Assumptions 5.2.1 and 5.2.2, we make two standard
assumptions that are also required by prior works on online control with MPC (Lin,
Hu, Shi, et al., 2021; Lin, Hu, Qu, et al., 2022). The first assumption is about the
uniform bounds on the dynamical matrices, cost function matrices, and disturbances.

Assumption 5.5.1. For any time step 𝑡 ∈ T , we have ∥𝐴𝑡 ∥ ≤ 𝑎, ∥𝐵𝑡 ∥ ≤ 𝑏, ∥𝑤𝑡 ∥ ≤
𝑤̄, and

𝜇𝐼𝑛 ⪯ 𝑄𝑡 ⪯ ℓ𝐼𝑛, 𝜇𝐼𝑚 ⪯ 𝑅𝑡 ⪯ ℓ𝐼𝑚, 𝜇𝐼𝑛 ⪯ 𝑄̃ ⪯ ℓ𝐼𝑛.

We also assume that


𝑤𝜏 |𝑡

 ≤ 𝑤̄ for predicted disturbances.

The second assumption is about the uniform controllability of the LTV system:

Assumption 5.5.2. We define the transition matrix in this LTV system as

Φ(𝑡2, 𝑡1) :=

𝐴𝑡2−1 · · · 𝐴𝑡1 , if 𝑡2 > 𝑡1,

𝐼, otherwise.
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For any two time steps 𝑡′ > 𝑡, we define the controllability matrix in this LTV system
as following:

Ξ𝑡,𝑡′ = [Φ(𝑡′, 𝑡 + 1)𝐵𝑡 ,Φ(𝑡′, 𝑡 + 2)𝐵𝑡+1, . . . ,Φ(𝑡′, 𝑡′)𝐵𝑡′] .

We assume that there exists a positive integer 𝑑0 such that the smallest singular
value of the matrix Ξ𝑡,𝑡′ is uniformly lower bounded by some positive constant 𝜎
when 𝑡′ ≥ 𝑡 + 𝑑0, i.e., 𝜎𝑚𝑖𝑛

(
Ξ𝑡,𝑡′

)
≥ 𝜎 holds for any 𝑡′ ≥ 𝑡 + 𝑑0, where 𝜎min(·)

denotes the smallest singular value of a matrix.

Before we proceed to show that Assumptions 5.2.1 and 5.2.2 hold in this example,
we first define an auxiliary parameterized optimal problem control problem that will
be used in our analysis: For any two time steps 𝑡 < 𝑡′, let 𝜓𝑡′𝑡 (𝑦𝑡 , 𝑣𝑡:𝑡′ ; 𝑃𝑡′) denote
the optimal trajectory planned according to initial state 𝑦𝑡 , disturbances 𝑣𝑡:𝑡′ , and
terminal cost matrix 𝑃𝑡′ , i.e.,

𝜓𝑡
′
𝑡 (𝑦𝑡 , 𝑣𝑡:𝑡′ ; 𝑃𝑡′) = arg min

𝑥𝑡:𝑡′ ,𝑢𝑡:(𝑡′−1)

𝑡′−1∑︁
𝜏=𝑡

𝑓𝜏 (𝑥𝜏, 𝑢𝜏) +
1
2
𝑥⊤𝑡′𝑃𝑡′𝑥𝑡′

s.t. 𝑥𝜏+1 = 𝐴𝜏𝑥𝜏 + 𝐵𝜏𝑢𝜏 + 𝑣𝜏,∀𝜏 ∈ [𝑡 : 𝑡′ − 1];
𝑥𝑡 = 𝑦𝑡 .

Using this notation, we can express MPC with confidence coefficients as

𝜋𝑡 (𝑥𝑡 , 𝜃𝑡) = 𝜓𝑡+𝑘𝑡 (𝑥𝑡 , {𝜆
[𝜏−𝑡]
𝑡 𝑤𝜏 |𝑡}𝜏∈[𝑡:𝑡+𝑘−1] ; 𝑄̃)𝑢𝑡 ,

where the index 𝑢𝑡 denotes the corresponding entry in the predictive optimal solution.
The perturbation bound in Lin, Hu, Shi, et al., 2021, Theorem 3.3 states that for any
𝜏 ∈ [𝑡, 𝑡′], we have


𝜓𝑡′𝑡 (𝑦𝑡 , 𝑣𝑡:𝑡′ ; 𝑄̃)𝑢𝜏 − 𝜓𝑡′𝑡 (𝑦′𝑡 , 𝑣′𝑡:𝑡′ ; 𝑄̃)𝑢𝜏


 ≤ 𝐶0

(
𝜌𝜏−𝑡0



𝑦𝑡 − 𝑦′𝑡

 + 𝑡′∑︁
𝑗=𝑡

𝜌
|𝜏− 𝑗 |
0




𝑣 𝑗 − 𝑣′𝑗


) ,
(5.16)

where 𝐶0 > 0, 𝜌0 ∈ (0, 1) are constants that depends on the system parameters
including 𝑎, 𝑏, 𝜇, ℓ, 𝜎, and 𝑑0. And the inequality (5.16) still holds if we replace the
index 𝑢𝜏 on the left hand side by 𝑥𝜏. Therefore, we know that 𝜓𝑡+𝑘𝑡 (𝑦𝑡 , 𝑣𝑡:𝑡+𝑘 ; 𝑄̃)𝑢𝑡
is bounded Lipschitz in 𝑦𝑡 and 𝑣𝑡:𝑡+𝑘 . Note that 𝜋𝑡 (𝑥𝑡 , 𝜃𝑡) is an affine function in its
inputs (𝑥𝑡 , 𝜃𝑡), i.e., ALG𝑡 (𝑥𝑡 , 𝜃𝑡) can be expressed equivalently as

ALG𝑡 (𝑥𝑡 , 𝜃𝑡) = −𝐾̄ (𝑘)𝑡 𝑥𝑡 −
𝑡+𝑘−1∑︁
𝜏=𝑡

𝜆
[𝜏−𝑡]
𝑡 𝐾̄

(𝑘,𝜏)
𝑡 𝑤𝜏 |𝑡 , (5.17)



221

where the matrices 𝐾̄ (𝑘)𝑡 , 𝐾̄
(𝑘,𝜏)
𝑡 only depends on {(𝐴𝑡 , 𝐵𝑡 , 𝑄𝑡 , 𝑅𝑡)}𝑡∈T and 𝑄̃ (Zhang,

Li, and Li, 2021; Yu et al., 2020). The superscript 𝑘 denotes the prediction horizon of
the MPC we adopt, thus 𝑘 = 𝑇 will give MPC future predictions all the way to the end
of the online policy selection game. So the smoothness constants ℓ𝜋,𝑥 = ℓ𝜋,𝜃 = 0.
Thus, we see that Assumption 5.2.1 holds. We also see that the surrogate cost
function 𝐹𝑡 is convex.

Next, we show a lemma about contractive perturbation and stability. We defer the
proof of Lemma 5.5.1 to Section 5.F.

Lemma 5.5.1. Suppose Assumptions 5.5.1 and 5.5.2 hold. Recall that 𝐶0 and 𝜌0

are given in (5.16). Then, for any 𝜌 ∈ (𝜌0, 1), if the prediction horizon satisfies

𝑘 ≥ 1
2

log
(
𝐶3

0𝑎𝑏𝜌0/(𝜌 − 𝜌0)
)
/log(1/𝜌0),

the MPC with confidence coefficients policy class satisfies 𝜀-time-varying contrac-
tive perturbation with 𝜀 = +∞, 𝑅𝐶 = +∞, 𝐶 = 𝐶0 and decay factor 𝜌. It also
satisfies 𝜀-time-varying stability with 𝜀 = +∞ and 𝑅𝑆 = 𝐶0 (1−𝜌0+𝐶0)𝑤̄

(1−𝜌0) (1−𝜌) .
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Figure 5.4: Comparing GAPS and baseline (Li, Yang, Qu, Shi, et al., 2022) for
online adaptation of a confidence parameter for MPC with disturbance predictions.
Left: Confidence parameter. Right: Per-step cost. Shaded bands show 10%-90%
quantile range over randomized disturbance properties. See body for details.

MPC confidence parameter. We compare GAPS to the follow-the-leader-type
method of Li, Yang, Qu, Shi, et al. (2022) for tuning a scalar confidence parameter
in model-predictive control with noisy disturbance predictions. The setting is close
to Example 5.1.1 but restricted to satisfy the conditions of the theoretical guarantees
in Li, Yang, Qu, Shi, et al. (2022). We consider the scalar system 𝑥𝑡+1 = 2𝑥𝑡 +𝑢𝑡 +𝑤𝑡
under non-stochastic disturbances 𝑤𝑡 with the cost 𝑓𝑡 (𝑥𝑡 , 𝑢𝑡) = 𝑥2

𝑡 + 𝑢2
𝑡 . For 𝑡 = 0 to

100, the predictions of 𝑤𝑡 are corrupted by a large amount of noise. After 𝑡 > 100,
the prediction noise is instantly reduced by a factor of 100. In this setup, an ideal
algorithm should learn to decrease confidence level at first to account for the noise,
but then increase to 𝜆 ≈ 1 when the predictions become accurate.
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Figure 5.4 shows the values of the confidence parameter 𝜆 and the per-timestep cost
generated by each algorithm. Both methods are initialized to 𝜆 = 1. The method
of Li, Yang, Qu, Shi, et al. (2022) rapidly adjusts to an appropriate confidence level
at first, while GAPS adjusts more slowly but eventually reaches the same value.
However, when the accuracy changes, GAPS adapts more quickly and obtains lower
costs towards the end of the simulation. In other words, we see that GAPS behaves
essentially like an instance of Ideal OGD with constant step size, which is consistent
with our theoretical results (Theorem 5.3.1).

Recover the optimal policy under the stochastic prediction model. Consider a
policy class that performs linear-feedback on the past predictions:

𝑢𝑡 = −𝐾𝑥𝑡 +
𝑚∑︁
𝜏=0

𝑀
(𝜏)
𝑡 · 𝑣𝑡−𝜏 (𝜃),

where the matrix 𝑀 (𝜏)𝑡 ∈ R2×2 is the policy parameter. To find the optimal policy
parameter 𝑀𝜃 for a predictor 𝑣𝑡 (𝜃), we can adopt M-GAPS to tune 𝑀𝑡 . By the
results of Lin, Preiss, Anand, et al., 2023, the averaged cost incurred by M-GAPS
will converge towards the optimal average cost (up to an error of 𝑂 (𝜂), where 𝜂 is
the learning rate). Thus, an alternative approach to compare two predictors is to run
a policy optimizer directly and compare the average cost.

In Figures 5.5 and 5.6, we plot the effect of applying M-GAPS to Example 4.3.2 with
𝜌 = 0.5 and the predictions𝑉𝑡 (𝐼). We see that M-GAPS can learn an approximation
of the optimal predictive policy and the average cost converges to the optimal average
cost over time (without the knowledge of the joint distribution). We repeat the
same experiment with the predictions 𝑉𝑡 (𝜃) and M-GAPS also finds a near-optimal
predictive policy over time. As shown in Figure 5.9, the prediction power matches the
long-term performance gain of online policy optimization with a stronger predictor.

5.6 Application: Quadcopter Control
Dynamics and Representation. We represent the quadcopter state at time step 𝑡 as a
tuple

(𝑝𝑡 , 𝑣𝑡 , 𝑟𝑡 , 𝜔𝑡), for 𝑝𝑡 ∈ R3, 𝑣𝑡 ∈ R3, 𝑟𝑡 ∈ 𝔰𝔬(3), 𝜔𝑡 ∈ 𝔰𝔬(3),

where 𝑝𝑡 is the position; 𝑣𝑡 is the velocity; 𝑟𝑡 is the logarithmic coordinate, so exp(𝑟𝑡)
rotates from the body frame to the inertial frame; and 𝜔𝑡 is the angular in the body
frame. The control input is a tuple
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Figure 5.5: Example: Recover the op-
timal policy. Average cost over time.
𝜌 = 0.5 and prediction 𝑉𝑡 (𝐼). M-GAPS
learning rate 1 × 10−4.

Figure 5.6: Example: Recover the op-
timal policy. Learned policy. 𝜌 = 0.5
and prediction𝑉𝑡 (𝐼). M-GAPS learning
rate 1 × 10−4.

Figure 5.7: Example: Recover the op-
timal policy. Average cost over time.
𝜌 = 0.5 and prediction 𝑉𝑡 (𝜃). M-GAPS
learning rate 1 × 10−4.

Figure 5.8: Example: Recover the op-
timal policy. Learned policy. 𝜌 = 0.5
and prediction𝑉𝑡 (𝜃). M-GAPS learning
rate 1 × 10−4.

Figure 5.9: Prediction power and the average cost difference of running M-GAPS
with predictions 𝑉𝑡 (𝐼) or 𝑉𝑡 (𝜃).
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𝑢𝑡 = (𝜉𝑡 , 𝜏𝑡), for 𝜉𝑡 ∈ R≥0 and 𝜏𝑡 =
[
𝜏
(𝑟)
𝑡 , 𝜏

(𝑝)
𝑡 , 𝜏

(𝑦)
𝑡

]⊤
∈ R3,

where 𝜉𝑡 is a mass-normalized thrust and 𝜏𝑡 is the desired angular acceleration in
the body frame. The discrete-time dynamics of the quadcopter are given by

𝑝𝑡+1 = 𝑝𝑡 + 𝛿𝑣𝑡 , (5.18a)

𝑣𝑡+1 = 𝑣𝑡 + 𝛿(𝜉𝑡 exp(𝑟𝑡)𝑒𝑧 − 𝑔), (5.18b)

𝑟𝑡+1 = log (exp(𝑟𝑡) exp(𝛿𝜔𝑡)) , (5.18c)

𝜔𝑡+1 = 𝜔𝑡 + 𝛿𝜏𝑡 , (5.18d)

where 𝛿 > 0 is the time interval for discretization and 𝑔 is a 3D vector that denotes
the gravitational constant (so the entries at dimensions 𝑥 and 𝑦 are zeros). Here, we
use 𝑒𝑥 , 𝑒𝑦, 𝑒𝑧 to denote the standard basis vectors of R3. As a remark, elements of
𝔰𝔬(3) are skew-symmetric matrices, i.e.,

𝔰𝔬(3) = {𝐴 ∈ R3×3 | 𝐴 = −𝐴⊤},

which we interpret as 3D angular velocities. In (5.18d), the map 𝑣 → 𝑣̂ is the
canonical (natural) isomorphism from R3 to 𝔰𝔬(3):

ˆ : R3 → 𝔰𝔬(3), 𝑣̂ =
©­­«

0 −𝑣3 𝑣2

𝑣3 0 −𝑣1

−𝑣2 𝑣1 0

ª®®¬ for 𝑣 = (𝑣1, 𝑣2, 𝑣3)⊤.

Note that by expressing the dynamics as (5.18), we implicitly assume that the control
input 𝑢𝑡 can be realized.

We use 𝑝𝑑𝑡 to denote the target position trajectory (and define 𝑣𝑑𝑡 , 𝑎𝑑𝑡 , and 𝜔𝑑𝑡 for the
desired velocity, acceleration, and angular velocity similarly). To incorporate the
integral of the tracking error into our policy class, we add a virtual state 𝑖𝑡+1 with
the dynamics

𝑖𝑡+1 = 𝑖𝑡 + 𝛿(𝑝𝑡 − 𝑝𝑑𝑡 ) for 𝑡 ≥ 0,

where the initial state 𝑖0 = 0. Therefore, the full state of the quadcopter is expressed
as 𝑥𝑡 = (𝑖𝑡 , 𝑝𝑡 , 𝑣𝑡 , 𝑟𝑡 , 𝜔𝑡).

Policy Class. Our control policy is formed by an outer loop that calculates a desired
mass-normalized thrust vector 𝑧𝑡 ∈ R3 and an inner loop that orients the quadcopter’s
body towards 𝑧𝑡 . The outer-loop law is given by

𝑧𝑡 = −𝐾 (𝑖)𝑡 𝑖𝑡 − 𝐾
(𝑝)
𝑡

(
𝑝𝑡 − 𝑝𝑑𝑡

)
− 𝐾 (𝑣)𝑡 (𝑣𝑡 − 𝑣𝑑𝑡 ) + 𝑎𝑑𝑡 + 𝑔𝑒𝑧, (5.19)
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where the gain matrices 𝐾 (𝑖)𝑡 , 𝐾
(𝑝)
𝑡 , 𝐾

(𝑣)
𝑡 are diagonal and positive definite. We

compute the thrust command 𝜉𝑡 ∈ R≥0 by projecting 𝑧𝑡 onto the body thrust axis:

𝜉𝑡 = 𝑧
⊤
𝑡 exp(𝑟𝑡)𝑒𝑧 .

The inner loop first constructs a desired attitude 𝑟𝑑𝑡 ∈ 𝔰𝔬(3) as the shortest rotation
that takes 𝑒𝑧 to the direction of 𝑧, which is

𝑟𝑑𝑡 =


cos−1

(
𝑒𝑧 · 𝑧𝑡

∥𝑧𝑡 ∥

) �( 𝑒𝑧×𝑧
∥𝑒𝑧×𝑧∥

)
, if 𝑒𝑧 × 𝑧 ≠ 0,

0 otherwise.

Recall thatˆmaps R3 to 𝔰𝔬(3). In our setting, ∥𝑧∥ > 0 because the acceleration and
error terms in (5.19) are sufficiently small. And we simplify the problem by not
considering the desired heading (yaw). The controller decides the desired angular
acceleration 𝜏𝑡 by

𝜏′𝑡 = −𝐾
(𝑟)
𝑡 log

(
exp(𝑟𝑡) exp

(
−𝑟𝑑𝑡

))
− 𝐾 (𝜔)𝑡 (𝜔𝑡 − 𝜔𝑑𝑡 ), (5.20a)

𝜏𝑡 = softclamp
(
𝜏′𝑡 , [𝐵(𝑥𝑦) , 𝐵(𝑥𝑦) , 𝐵(𝑧)]⊤

)
, (5.20b)

where the gain matrices 𝐾 (𝑟)𝑡 and 𝐾
(𝜔)
𝑡 are diagonal and positive definite. The

softclamp function

softclamp(𝑥, 𝐵) = 𝐵 tanh(𝑥/𝐵)

is critical for maintaining the stability, and it is applied elementwise in (5.20b).

In summary, the policy parameters that are updated in the online policy optimization
include

𝐾
(𝑖)
𝑡 = diag(𝑘 (𝑖,𝑥𝑦)𝑡 , 𝑘

(𝑖,𝑥𝑦)
𝑡 , 𝑘

(𝑖,𝑧)
𝑡 ), 𝐾

(𝑝)
𝑡 = diag(𝑘 (𝑝,𝑥𝑦)𝑡 , 𝑘

(𝑝,𝑥𝑦)
𝑡 , 𝑘

(𝑝,𝑧)
𝑡 ),

𝐾
(𝑣)
𝑡 = diag(𝑘 (𝑣,𝑥𝑦)𝑡 , 𝑘

(𝑣,𝑥𝑦)
𝑡 , 𝑘

(𝑣,𝑧)
𝑡 ), 𝐾 (𝑟)𝑡 = diag(𝑘 (𝑟,𝑥𝑦)𝑡 , 𝑘

(𝑟,𝑥𝑦)
𝑡 , 𝑘

(𝑟,𝑧)
𝑡 ),

𝐾
(𝜔)
𝑡 = diag(𝑘 (𝜔,𝑥𝑦)𝑡 , 𝑘

(𝜔,𝑥𝑦)
𝑡 , 𝑘

(𝜔,𝑧)
𝑡 ),

where we use equal gains for the two horizontal axes 𝑥 and 𝑦. Thus, the “raw” policy
parameter 𝜗𝑡 is

𝜗𝑡 =

(
𝑘
(𝑖,𝑥𝑦)
𝑡 , 𝑘

(𝑖,𝑧)
𝑡 , 𝑘

(𝑝,𝑥𝑦)
𝑡 , 𝑘

(𝑝,𝑧)
𝑡 , 𝑘

(𝑣,𝑥𝑦)
𝑡 , 𝑘

(𝑣,𝑧)
𝑡 , 𝑘

(𝑟,𝑥𝑦)
𝑡 , 𝑘

(𝑟,𝑧)
𝑡 , 𝑘

(𝜔,𝑥𝑦)
𝑡 , 𝑘

(𝜔,𝑧)
𝑡

)
∈ R10

>0.

In the experiment, we use the reparameterization 𝜃𝑡 = log(𝜗𝑡) and optimize the
parameter 𝜃𝑡 because it improves the optimization landscape.
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Figure 5.10: Trajectories of a quadrotor tracking an aggressive figure-8 trajectory
under online policy optimization algorithms. Dotted line shows target. Color
changes from blue (beginning) to red (end) over time. Expert: 𝜃𝑡 = 𝜃𝑚 ∀𝑡. Detune:
𝜃𝑡 = 𝜃

𝑚 − log 2 ∀𝑡. All algorithms initialized with detune parameter.

Experiments
In the experiment, we use a a Bitcraze Crazyflie 2.0 with the manufacturer’s thrust
upgrade bundle and an upgraded battery. We conduct three trajectory tracking ex-
periments to compare M-GAPS with other policy optimization algorithms (DiffTune
(Cheng et al., 2024) and ORPF (Zhang, Zhou, et al., 2024)) and benchmarks. In
the first experiment, we start with a scenario where the disturbances are small. The
expert-tuned policy parameter 𝜃𝑚 is near-optimal in this case, so we test if M-GAPS
can improve the control performance from a bad initialization. Then, in the next two
experiments, we want to demonstrate the necessity of online policy optimization by
ruling out the possibility that 𝜃𝑚 is near-optimal in all scenarios. To achieve this
goal, we introduce heavy payload or time-varying wind and test whether M-GAPS
can outperform 𝜃𝑚 in such settings.

Suboptimal initialization. We simulate the process of controller tuning by ini-
tializing each online policy optimization algorithm with the “detuned” parameter
𝜃0 = 𝜃𝑚 − log 2, which decrease the feedback gains by a half under the logarithmic
policy parameterization. We plot the trajectories of the expert parameter 𝜃𝑚, the
detuned parameter 𝜃0, and each candidate online policy optimization algorithm in
Figure 5.10. We note that M-GAPS starts near Detune but quickly gets closer to
Expert after 2-3 laps.

In Figure 5.11, we plot the cost difference of each candidate/benchmark with the
expert policy 𝜃𝑚, which is near-optimal in this case. We see that the cumulative cost
of M-GAPS converges towards a constant level, and it is lower than other episodic
policy optimization algorithms.

Heavy payload. The original mass of the quadcopter is 39g. We attached an
additional 23g steel weight near its center, which can be viewed as a large, near-
constant disturbance in the dynamics. Note that 𝜃𝑚 is not tuned to handle this
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Figure 5.11: Cumulative cost difference versus expert-tuned parameters 𝜃𝑚 in figure-
8 tracking experiment with detuned initialization. Error bars indicate ±1 standard
deviation over 5 trials. See caption of Figure 5.10 for legend key.
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Figure 5.12: Position tracking error under M-GAPS for heavy payload disturbance.
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Figure 5.13: Position tracking error under M-GAPS for periodic fan disturbance.
Error is averaged per “lap” due to substantial variance within each lap from fan
airflow pattern.

scenario. We compare the position tracking error of M-GAPS and the export 𝜃𝑚 in
Figure 5.12. The results verifies our conjecture that 𝜃𝑚 is suboptimal, and deploying
an online policy optimization algorithm like M-GAPS can effectively reduce the
tracking error compared with 𝜃𝑚.

Time-varying wind. As an addition to the second experiment, we use periodic
wind from three household box fans to test if M-GAPS can adapt quickly. We attach
a cardboard panel to the quadcopter to magnify the effect of wind disturbances. The
quadcopter flies back-and-forth pattern with each lap takes about 4 seconds. To
create the periodic disturbance, we toggle the fan power every 12 seconds. We plot
the tracking error of M-GAPS and compare it against the expert 𝜃𝑚 in Figure 5.13.
The results show that M-GAPS outperforms the expert, and it confirms that M-GAPS
can adapt quickly to environment changes on the scale of about ten seconds.
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5.A Proof of Contractive Perturbation and Stability
Proof of Lemma 5.2.1
We first restate Lemma 5.2.1 with detailed coefficients in Lemma 5.A.1:

Lemma 5.A.1. Suppose Assumption 5.2.2 holds for 𝜀 = 0 and (𝑅𝐶 , 𝐶, 𝜌, 𝑅𝑆),
which satisfies 𝑅𝐶 > (𝐶 + 1)𝑅𝑆. Suppose Assumption 5.2.1 also holds and let
X := 𝐵𝑛 (0, 𝑅𝑥), where 𝑅𝑥 = (𝐶 + 1)2𝑅𝑆. Then, Assumption 5.2.2 also holds for
𝜀 > 0, (𝑅̂𝐶 , 𝐶̂, 𝜌̂, 𝑅̂𝑆), and 𝑥0 that satisfies the inequality ∥𝑥0∥ ≤ (𝑅̂𝐶 − 𝑅̂𝑆)/𝐶.
Here, 𝑅̂𝑆, 𝑅̂𝐶 , 𝜌̂ are arbitrary constants that satisfies 𝑅𝑆 < 𝑅̂𝑆 < 𝑅̂𝐶 < 𝑅𝐶/(𝐶 + 1)
and 𝜌 < 𝜌̂ < 1. Other coefficients are given by

𝐶̂ =
(
(1 + 𝐿𝜋,𝑥)

(
ℓ𝑔,𝑥 + ℓ𝑔,𝑢𝐿𝜋,𝑥

)
+ 𝐿𝑔,𝑢ℓ𝜋,𝑥

)
·(

1 + 𝐿𝑔,𝑥 + 𝐿𝑔,𝑢𝐿𝜋,𝑥
)2ℎ

𝜌̂−ℎ,

𝜀 = min

{
( 𝜌̂ℎ − 𝐶𝜌ℎ) (1 − 𝜌)2

𝐶 · 𝐶′𝜌
(
1 + 𝐿𝑔,𝑥 + 𝐿𝑔,𝑢𝐿𝜋,𝑥

)2ℎ ,
(1 − 𝜌)2(𝑅̂𝑆 − 𝑅𝑆)

𝐶𝐿𝑔,𝑢𝐿𝜋,𝜃

}
, where

𝐶′ =

(
(1 + 𝐿𝜋,𝑥)

(
ℓ𝑔,𝑥 + ℓ𝑔,𝑢 · (𝐿𝜋,𝑥 + 𝐿𝜋,𝜃)

)
+ 𝐿𝑔,𝑢 · (ℓ𝜋,𝑥 + ℓ𝜋,𝜃)

)
·

(𝐿𝑔,𝑢𝐿𝜋,𝜃 + 1),

where ℎ is a constant integer that satisfies 𝐶𝜌ℎ < min{ 𝜌̂ℎ, 1 − 𝑅̂𝑆/𝑅̂𝐶}.

Before showing Lemma 5.A.1, we first show that the composition of Lipschitz and
smooth functions is still Lipschitz and smooth in the following technical lemma:

Lemma 5.A.2. Suppose the sequence of functions 𝜄1:𝑡 satisfies that 𝜄𝑖 : 𝐷𝑖 → 𝐷𝑖+1

is 𝐿-Lipschitz and ℓ-smooth for all 𝑖 ∈ {1, 2, · · · , 𝑡}. Then, their composition
(𝜄𝑡 ◦ 𝜄𝑡−1 ◦ · · · ◦ 𝜄1) is 𝐿𝑡-Lipschitz and ℓ(1 + 𝐿)2𝑡-smooth.

Proof of Lemma 5.A.2. We show the conclusion by induction. For 𝑡 = 1, 𝜄1 is
𝐿-Lipschitz and ℓ(1 + 𝐿)-smooth.

Suppose we have shown that (𝜄𝑡 ◦ 𝜄𝑡−1◦· · ·◦ 𝜄1) is 𝐿𝑡-Lipschitz and ℓ(1+𝐿)2𝑡-smooth
for any 𝑡 functions that satisfies the assumptions of Lemma 5.A.2. For 𝑡 + 1, we
simplify the notation by defining 𝜄 := (𝜄𝑡+1 ◦ 𝜄𝑡 ◦ · · · ◦ 𝜄2). Our goal is to show (𝜄 ◦ 𝜄1)
is 𝐿𝑡+1-Lipschitz and ℓ(1 + 𝐿)2(𝑡+1)-smooth. Note that

∥(𝜄 ◦ 𝜄1) (𝑥) − (𝜄 ◦ 𝜄1) (𝑥′)∥ ≤ 𝐿𝑡 ∥𝜄1(𝑥) − 𝜄1(𝑥′)∥ ≤ 𝐿𝑡+1∥𝑥 − 𝑥′∥,
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where we use the induction assumption in the first inequality and the assumption of
Lemma 5.A.2 in the second inequality. We also see that



 𝜕 (𝜄 ◦ 𝜄1)𝜕𝑥

����
𝑥

− 𝜕 (𝜄 ◦ 𝜄1)
𝜕𝑥

����
𝑥′






=






 𝜕𝜄𝜕𝑦 ����𝜄1 (𝑥) · 𝜕𝜄1𝜕𝑥
����
𝑥

− 𝜕𝜄

𝜕𝑦

����
𝜄1 (𝑥′)
· 𝜕𝜄1
𝜕𝑥

����
𝑥′






 (5.21a)

≤





 𝜕𝜄𝜕𝑦 ����𝜄1 (𝑥) − 𝜕𝜄

𝜕𝑦

����
𝜄1 (𝑥′)






 · 



 𝜕𝜄1𝜕𝑥 ����
𝑥





 + 




 𝜕𝜄𝜕𝑦 ����𝜄1 (𝑥′)





 · 



 𝜕𝜄1𝜕𝑥 ����

𝑥

− 𝜕𝜄1
𝜕𝑥

����
𝑥′






≤ ℓ(1 + 𝐿)2𝑡 ∥𝜄1(𝑥) − 𝜄1(𝑥′)∥ · 𝐿 + 𝐿𝑡 · ℓ∥𝑥 − 𝑥′∥ (5.21b)

≤ ℓ
(
𝐿2(1 + 𝐿)2𝑡 + 𝐿𝑡

)
∥𝑥 − 𝑥′∥ (5.21c)

≤ ℓ(1 + 𝐿)2(𝑡+1) ∥𝑥 − 𝑥′∥,

where we use the chain rule decomposition in (5.21a); we use the induction assump-
tion in (5.21b); we use the assumption that 𝜄1 is 𝐿-Lipschitz in (5.21c).

Therefore, we have shown Lemma 5.A.2 by induction.

Now we are ready to show Lemma 5.A.1.

We first discuss the intuition behind the proof. Since the multi-step dynamics
is differentiable under Assumption 5.2.1, we only need to show an upper bound

of




 𝜕𝑔𝑡 |𝜏𝜕𝑥𝜏

���
𝑥𝜏 ,𝜃𝜏:𝑡−1





 that is exponentially decaying. Intuitively, we use the chain

rule to decompose the partial derivative 𝜕𝑔𝑡 |𝜏
𝜕𝑥𝜏

���
𝑥𝜏 ,𝜃𝜏:𝑡−1

as the product of multiple

partial derivatives 𝜕𝑔𝑡𝑖+1 |𝑡𝑖
𝜕𝑥𝑡𝑖

���
𝑥𝑡𝑖 ,𝜃𝑡𝑖 :𝑡𝑖+1−1

, where each time interval [𝑡𝑖 : 𝑡𝑖+1 − 1] has

(approximately) length ℎ. By the time-invariant contractive property, we know
the norm of 𝜕𝑔𝑡𝑖+1 |𝑡𝑖

𝜕𝑥𝑡𝑖
can be upper bounded by 𝐶𝜌ℎ once it is realized on the tra-

jectory {𝑥𝑡𝑖 , (𝜃𝑡𝑖 )×ℎ}, where the policy parameter is repeating. By the smooth-
ness guarantee derived in Lemma 5.A.2, we can show the difference between
𝜕𝑔𝑡𝑖+1 |𝑡𝑖
𝜕𝑥𝑡𝑖

���
𝑥𝑡𝑖 ,𝜃𝑡𝑖 :𝑡𝑖+1−1

and 𝜕𝑔𝑡𝑖+1 |𝑡𝑖
𝜕𝑥𝑡𝑖

���
𝑥𝑡𝑖 ,(𝜃𝑡𝑖 )×ℎ

is in the order of 𝑂 (𝜀). This implies that

the norm of 𝜕𝑔𝑡𝑖+1 |𝑡𝑖
𝜕𝑥𝑡𝑖

���
𝑥𝑡𝑖 ,𝜃𝑡𝑖 :𝑡𝑖+1−1

can be bounded by 𝜌̂ℎ once 𝜀 is sufficiently small with

respect to the gap
(
𝜌̂ℎ − 𝐶𝜌ℎ

)
.

We present the formal proof of Lemma 5.A.1 below.
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Proof of Lemma 5.A.1. We first show that, under a time-invariant policy parameter
𝜃, starting from an arbitrary 𝑥𝜏 that satisfies ∥𝑥𝜏∥ ≤ 𝑅𝐶 , we have ∥𝑥𝑡 ∥ ≤ 𝑅𝑆 +
𝐶𝜌𝑡−𝜏∥𝑥𝜏∥ for all 𝑡 ≥ 𝜏.

To see this, note that by time-invariant contractive perturbation, we have

𝑔𝑡 |𝜏 (𝑥𝜏, 𝜃×(𝑡−𝜏))

 ≤ 

𝑔𝑡 |𝜏 (𝑥𝜏, 𝜃×(𝑡−𝜏)) − 𝑔𝑡 |𝜏 (0, 𝜃×(𝑡−𝜏))

 + 

𝑔𝑡 |𝜏 (0, 𝜃×(𝑡−𝜏))


≤ 𝐶𝜌𝑡−𝜏∥𝑥𝜏∥ + 𝑅𝑆 .

Now, we show that if starting from 𝑥𝜏 that satisfies ∥𝑥𝜏∥ ≤ 𝑅̂𝐶 , the trajectory induced
by an 𝜀-time-varying parameter sequence satisfies that ∥𝑥𝑡 ∥ ≤ 𝑅̂𝑆 + 𝐶𝜌𝑡−𝜏∥𝑥𝜏∥ for
all 𝑡 ≥ 𝜏. Since this ball is contained in 𝐵(0, 𝑅𝐶), we know the time-invariant
contractive perturbation always apply.

We show this statement by induction. Suppose the statement holds for all time steps
𝜏, . . . , 𝑡 − 1. We see that

𝑔𝑡 |𝜏 (𝑥𝜏, 𝜃𝜏:𝑡−1) − 𝑔𝑡 |𝜏 (𝑥𝜏, 𝜃×(𝑡−𝜏))




≤

𝑡∑︁
𝑗=𝜏



𝑔𝑡 |𝜏 (𝑥𝜏, 𝜃𝜏: 𝑗 , (𝜃𝑡)×(𝑡− 𝑗−1)) − 𝑔𝑡 |𝜏 (𝑥𝜏, 𝜃𝜏: 𝑗−1, (𝜃𝑡)×(𝑡− 𝑗))




≤ 𝐶𝐿𝑔,𝑢𝐿𝜋,𝜃
𝑡∑︁
𝑗=𝜏

𝜌𝑡− 𝑗−1

𝜃𝑡 − 𝜃 𝑗

 ≤ 𝐶𝐿𝑔,𝑢𝐿𝜋,𝜃𝜀(1 − 𝜌)2
.

Therefore, we see that

𝑔𝑡 |𝜏 (𝑥𝜏, 𝜃𝜏:𝑡−1)


 ≤ 

𝑔𝑡 |𝜏 (𝑥𝜏, 𝜃×(𝑡−𝜏))

 + 𝐶𝐿𝑔,𝑢𝐿𝜋,𝜃𝜀(1 − 𝜌)2

≤ 𝐶𝜌𝑡−𝜏∥𝑥𝜏∥ + 𝑅𝑆 +
𝐶𝐿𝑔,𝑢𝐿𝜋,𝜃𝜀

(1 − 𝜌)2

= 𝐶𝜌𝑡−𝜏∥𝑥𝜏∥ + 𝑅̂𝑆 .

This finishes the proof of 𝜀-time-varying stability with 𝜀 and 𝑅̂𝑆.

Note that we can decompose the partial derivative 𝜕𝑔𝑡 |𝜏
𝜕𝑥𝜏

���
𝑥𝜏 ,𝜃𝜏:𝑡−1

as

𝜕𝑔𝑡 |𝜏
𝜕𝑥𝜏

����
𝑥𝜏 ,𝜃𝜏:𝑡−1

=
𝜕𝑔𝑡𝑝 |𝑡𝑝−1

𝜕𝑥𝑡𝑝−1

����
𝑥𝑡𝑝−1 ,𝜃𝑡𝑝−1:𝑡𝑝−1

·
𝜕𝑔𝑡𝑝−1 |𝑡𝑝−2

𝜕𝑥𝑡𝑝−2

����
𝑥𝑡𝑝−2 ,𝜃𝑡𝑝−2:𝑡𝑝−1−1

· · ·
𝜕𝑔𝑡1 |𝑡0
𝜕𝑥𝑡0

����
𝑥𝑡0 ,𝜃𝑡0:𝑡1−1

, (5.22)

where 𝑡0 = 𝜏, 𝑡𝑝 = 𝑡; 𝑡𝑖 = 𝑡𝑖−1 + ℎ holds for 𝑖 = 1, . . . , 𝑝−1, and 𝑡𝑝−1 < 𝑡𝑝 ≤ 𝑡𝑝−1 + ℎ.
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For 𝑖 ∈ [0, 𝑝−2], we obtain the following bounds on the bias of the partial derivatives
of the multi-step dynamics:




 𝜕𝑔𝑡𝑖+1 |𝑡𝑖𝜕𝑥𝑡𝑖

����
𝑥𝑡𝑖 ,𝜃𝑡𝑖 :𝑡𝑖+1−1

−
𝜕𝑔𝑡𝑖+1 |𝑡𝑖
𝜕𝑥𝑡𝑖

����
𝑥𝑡𝑖 ,(𝜃𝑡𝑖 )×ℎ







≤

ℎ−1∑︁
𝑗=0






 𝜕𝑔𝑡𝑖+1 |𝑡𝑖𝜕𝑥𝑡𝑖

����
𝑥𝑡𝑖 ,(𝜃𝑡𝑖 )× 𝑗 ,𝜃𝑡𝑖+ 𝑗;𝑡𝑖+1−1

−
𝜕𝑔𝑡𝑖+1 |𝑡𝑖
𝜕𝑥𝑡𝑖

����
𝑥𝑡𝑖 ,(𝜃𝑡𝑖 )×( 𝑗+1) ,𝜃𝑡𝑖+ 𝑗+1;𝑡𝑖+1−1






 (5.23a)

≤
ℎ−1∑︁
𝑗=0






 𝜕𝑔𝑡𝑖+ 𝑗𝜕𝑥𝑡𝑖

����
𝑥𝑡𝑖 ,(𝜃𝑡𝑖 )× 𝑗






·




 𝜕𝑔𝑡𝑖+1 | (𝑡𝑖+ 𝑗)𝜕𝑥𝑡𝑖+ 𝑗

����
𝑥𝑡𝑖+ 𝑗 ,𝜃𝑡𝑖+ 𝑗;𝑡𝑖+1−1

−
𝜕𝑔𝑡𝑖+1 | (𝑡𝑖+ 𝑗)
𝜕𝑥𝑡𝑖+ 𝑗

����
𝑥𝑡𝑖+ 𝑗 ,𝜃𝑡𝑖 ,𝜃𝑡𝑖+ 𝑗+1;𝑡𝑖+1−1






 (5.23b)

≤ 𝐶
ℎ−1∑︁
𝑗=0

𝜌 𝑗






 𝜕𝑔𝑡𝑖+1 | (𝑡𝑖+ 𝑗)𝜕𝑥𝑡𝑖+ 𝑗

����
𝑥𝑡𝑖+ 𝑗 ,𝜃𝑡𝑖+ 𝑗;𝑡𝑖+1−1

−
𝜕𝑔𝑡𝑖+1 | (𝑡𝑖+ 𝑗)
𝜕𝑥𝑡𝑖+ 𝑗

����
𝑥𝑡𝑖+ 𝑗 ,𝜃𝑡𝑖 ,𝜃𝑡𝑖+ 𝑗+1;𝑡𝑖+1−1






, (5.23c)

where we use the shorthand notation 𝑥𝑡𝑖+ 𝑗 = 𝑔𝑡𝑖+ 𝑗 |𝑡𝑖 (𝑥𝑡𝑖 , (𝜃𝑡𝑖 )× 𝑗 ). We use the triangle
inequality in (5.23a), the chain rule decomposition in (5.23b). In (5.23c), we can
apply the time-invariant contractive perturbation property because ∥𝑥𝜏∥ ≤ 𝑅̂𝐶 ,
which implies that



𝑥𝑡𝑖

 ≤ 𝑅𝐶 . Note that




 𝜕𝑔𝑡𝑖+1 | (𝑡𝑖+ 𝑗)𝜕𝑥𝑡𝑖+ 𝑗

����
𝑥𝑡𝑖+ 𝑗 ,𝜃𝑡𝑖+ 𝑗;𝑡𝑖+1−1

−
𝜕𝑔𝑡𝑖+1 | (𝑡𝑖+ 𝑗)
𝜕𝑥𝑡𝑖+ 𝑗

����
𝑥𝑡𝑖+ 𝑗 ,𝜃𝑡𝑖 ,𝜃𝑡𝑖+ 𝑗+1;𝑡𝑖+1−1







≤






 𝜕𝑔𝑡𝑖+1 | (𝑡𝑖+ 𝑗+1)𝜕𝑥𝑡𝑖+ 𝑗+1

����
𝑥𝑡𝑖+ 𝑗+1,𝜃𝑡𝑖+ 𝑗+1;𝑡𝑖+1−1






·




 𝜕𝑔(𝑡𝑖+ 𝑗+1) | (𝑡𝑖+ 𝑗)𝜕𝑥𝑡𝑖+ 𝑗

����
𝑥𝑡𝑖+ 𝑗 ,𝜃𝑡𝑖+ 𝑗

−
𝜕𝑔(𝑡𝑖+ 𝑗+1) | (𝑡𝑖+ 𝑗)

𝜕𝑥𝑡𝑖+ 𝑗

����
𝑥𝑡𝑖+ 𝑗 ,𝜃𝑡𝑖







+







 𝜕𝑔𝑡𝑖+1 | (𝑡𝑖+ 𝑗+1)𝜕𝑥𝑡𝑖+ 𝑗+1

����
𝑥𝑡𝑖+ 𝑗+1,𝜃𝑡𝑖+ 𝑗+1;𝑡𝑖+1−1

−
𝜕𝑔𝑡𝑖+1 | (𝑡𝑖+ 𝑗+1)
𝜕𝑥𝑡𝑖+ 𝑗+1

����
𝑥′
𝑡𝑖+ 𝑗+1

,𝜃𝑡𝑖+ 𝑗+1;𝑡𝑖+1−1







·




 𝜕𝑔(𝑡𝑖+ 𝑗+1) | (𝑡𝑖+ 𝑗)𝜕𝑥𝑡𝑖+ 𝑗

����
𝑥𝑡𝑖+ 𝑗 ,𝜃𝑡𝑖+ 𝑗







≤

(
𝐿𝑔,𝑥 + 𝐿𝑔,𝑢𝐿𝜋,𝑥

)ℎ− 𝑗−1 ·
(
(1 + 𝐿𝜋,𝑥)ℓ𝑔,𝑢𝐿𝜋,𝜃 + 𝐿𝑔,𝑢ℓ𝜋,𝜃

) 

𝜃𝑡𝑖+ 𝑗 − 𝜃𝑡𝑖


+

(
(1 + 𝐿𝜋,𝑥)

(
ℓ𝑔,𝑥 + ℓ𝑔,𝑢 · 𝐿𝜋,𝑥

)
+ 𝐿𝑔,𝑢 · ℓ𝜋,𝑥

)
·(

1 + 𝐿𝑔,𝑥 + 𝐿𝑔,𝑢𝐿𝜋,𝑥
)2(ℎ− 𝑗) · 𝐿𝑔,𝑢𝐿𝜋,𝜃



𝜃𝑡𝑖+ 𝑗 − 𝜃𝑡𝑖


≤ 𝐶′

(
1 + 𝐿𝑔,𝑥 + 𝐿𝑔,𝑢𝐿𝜋,𝑥

)2ℎ · 𝑗𝜀,
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where we adopt the shorthand 𝑥′
𝑡𝑖+ 𝑗+1 := 𝑔𝑡𝑖+ 𝑗+1|𝑡𝑖+ 𝑗 (𝑥𝑡𝑖+ 𝑗 , 𝜃𝑡𝑖+ 𝑗 ), and we define the

coefficient 𝐶′ as

𝐶′ =
(
(1 + 𝐿𝜋,𝑥)

(
ℓ𝑔,𝑥 + ℓ𝑔,𝑢 · (𝐿𝜋,𝑥 + 𝐿𝜋,𝜃)

)
+ 𝐿𝑔,𝑢 · (ℓ𝜋,𝑥 + ℓ𝜋,𝜃)

)
·

(𝐿𝑔,𝑢𝐿𝜋,𝜃 + 1).

Here, we use the chain rule and the triangle inequality in the first inequality. We can
apply Lemma 5.A.2 and


𝑥′𝑡𝑖+ 𝑗+1 − 𝑥𝑡𝑖+ 𝑗+1


 ≤ 𝐿𝑔,𝑢𝐿𝜋,𝜃

𝜃𝑡𝑖+ 𝑗 − 𝜃𝑡𝑖


in the second inequality because the trajectory induced by (𝜃𝑡𝑖 )× 𝑗 , 𝜃𝑡𝑖+ 𝑗 :𝑡𝑖+1−1 al-
ways stay within the ball 𝐵(0, 𝑅𝑥) where the Lipschitzness/smoothness of dynam-
ics/policies hold. Substituting this into (5.23) gives




 𝜕𝑔𝑡𝑖+1 |𝑡𝑖𝜕𝑥𝑡𝑖

����
𝑥𝑡𝑖 ,𝜃𝑡𝑖 :𝑡𝑖+1−1

−
𝜕𝑔𝑡𝑖+1 |𝑡𝑖
𝜕𝑥𝑡𝑖

����
𝑥𝑡𝑖 ,(𝜃𝑡𝑖 )×ℎ







≤ 𝐶𝐶′

(
1 + 𝐿𝑔,𝑥 + 𝐿𝑔,𝑢𝐿𝜋,𝑥

)2ℎ
𝜀

ℎ−1∑︁
𝑗=0

𝜌 𝑗 · 𝑗

≤
𝐶𝐶′𝜌

(
1 + 𝐿𝑔,𝑥 + 𝐿𝑔,𝑢𝐿𝜋,𝑥

)2ℎ

(1 − 𝜌)2
· 𝜀

≤ 𝜌̂ℎ − 𝐶𝜌ℎ. (5.24)

Therefore, by (5.22), we see that




 𝜕𝑔𝑡 |𝜏𝜕𝑥𝜏

����
𝑥𝜏 ,𝜃𝜏:𝑡−1







≤







 𝜕𝑔𝑡𝑝 |𝑡𝑝−1

𝜕𝑥𝑡𝑝−1

����
𝑥𝑡𝑝−1 ,𝜃𝑡𝑝−1:𝑡𝑝−1







 ·






 𝜕𝑔𝑡𝑝−1 |𝑡𝑝−2

𝜕𝑥𝑡𝑝−2

����
𝑥𝑡𝑝−2 ,𝜃𝑡𝑝−2:𝑡𝑝−1−1







 · · ·





 𝜕𝑔𝑡1 |𝑡0𝜕𝑥𝑡0

����
𝑥𝑡0 ,𝜃𝑡0:𝑡1−1







≤

(
(1 + 𝐿𝜋,𝑥)

(
ℓ𝑔,𝑥 + ℓ𝑔,𝑢 · 𝐿𝜋,𝑥

)
+ 𝐿𝑔,𝑢 · ℓ𝜋,𝑥

)
·
(
1 + 𝐿𝑔,𝑥 + 𝐿𝑔,𝑢𝐿𝜋,𝑥

)2ℎ

· ( 𝜌̂ℎ)𝑝−1 (5.25a)

≤ 𝐶̂ ( 𝜌̂)𝑡−𝜏, (5.25b)

where we use (5.24) in (5.25a); we use the definition of 𝐶̂ in (5.25b). This finishes
the proof of 𝜀-time-varying contractive perturbation with 𝜖, 𝑅̂𝐶 , 𝐶̂, 𝜌̂.

5.B Proof of M-GAPS
Regret of M-GAPS under Convex Surrogate Costs
In this section, we provide a proof outline of the adaptive regret bound for GAPS. As
we discussed in Section 5.3, the intuition behind GAPS is to mimic the ideal OGD
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update 𝜃𝑡+1 =
∏

Θ(𝜃𝑡 − 𝜂𝑡∇𝐹𝑡 (𝜃𝑡)) with limited memory size and computational
complexity. While the existing literature of OCO guarantees that the ideal OGD
update with constant step size 𝜂 of the order 1/

√
𝑇 achieves a policy regret of

𝑂

(√
𝑇

)
, GAPS incurs an approximation error at every time step since it uses 𝐺 𝑡

(Algorithm 6) instead of ∇𝐹𝑡 (𝜃𝑡) to implement gradient descent. We characterize
how a per-step bias in the gradient estimation may affect the regret guarantee of the
OGD in Theorem 5.B.1. We provide the proof later in this section.

Theorem 5.B.1. Consider the update rule 𝜃𝑡+1 =
∏

Θ(𝜃𝑡 − 𝜂𝐺 𝑡). Suppose Θ is
a convex compact set with diameter 𝐷. If 𝐹𝑡 is convex and ∥∇𝐹𝑡 (𝜃)∥ ≤ 𝑊 for
all 𝜃 ∈ Θ, and ∥∇𝐹𝑡 (𝜃𝑡) − 𝐺 𝑡 ∥ ≤ 𝛼 holds for all time steps 𝑡, then, for arbitrary
𝐼 = [𝑟 : 𝑠] ⊆ T ,

𝑠∑︁
𝑡=𝑟

𝐹𝑡 (𝜃𝑡) − min
𝜃𝐼∈Θ

𝑠∑︁
𝑡=𝑟

𝐹𝑡 (𝜃 𝐼) ≤ 𝛼𝐷𝑇 + (𝑊2 + 𝛼2)𝜂𝑇 + 𝐷
2

2𝜂
.

With Theorem 5.B.1, obtaining the policy regret bounds for GAPS reduces to
showing both |ℎ𝑡 (𝑥𝑡 , 𝑢𝑡) − 𝐹𝑡 (𝜃𝑡) | and ∥∇𝐹𝑡 (𝜃𝑡) − 𝐺 𝑡 ∥ are in the order of𝑂 (1/

√
𝑇).

Here, we only consider the order of magnitude with respect to the horizon 𝑇 for
clarity. As we will show in Theorem 5.B.5 and Theorem 5.B.6, both of these
quantities are in the order of 𝑂 (𝜂) when GAPS adopts the learning rate 𝜂.

To obtain these results, we first show a lemma about the stability of the trajectory
achieved by an 𝜀-time-varying policy parameter sequence.

Lemma 5.B.2. Suppose Assumptions 5.2.1 and 5.2.2 hold. For any starting state
𝑥𝜏 ∈ 𝐵𝑛 (0, 𝑅𝑆 +𝐶∥𝑥0∥) and 𝜃𝜏:𝑡−1 ∈ 𝑆𝜀 (𝜏 : 𝑡−1), the final state 𝑥𝑡 := 𝑔𝑡 |𝜏 (𝑥𝜏, 𝜃𝜏:𝑡−1)
satisfies ∥𝑥𝑡 ∥ ≤ 𝐶𝜌𝑡−𝜏∥𝑥𝜏∥ + 𝑅𝑆.

Proof of Lemma 5.B.2. By 𝜀-time-varying contractive perturbation, we see that

𝑥𝑡 − 𝑔𝑡 |𝜏 (0, 𝜃𝜏:𝑡−1)


 ≤ 𝐶𝜌𝑡−𝜏∥𝑥𝜏∥.

Thus, by the triangle inequality, we see that

∥𝑥𝑡 ∥ ≤


𝑥𝑡 − 𝑔𝑡 |𝜏 (0, 𝜃𝜏:𝑡−1)



 + 

𝑔𝑡 |𝜏 (0, 𝜃𝜏:𝑡−1)


 ≤ 𝐶𝜌𝑡−𝜏∥𝑥𝜏∥ + 𝑅𝑆,

where we use 𝜀-time-varying stability in the last inequality.

Next, we show a lemma about the contractive property of the partial derivatives of
the multi-step dynamics.
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Lemma 5.B.3 (Lipschitzness/Smoothness of the Multi-Step Dynamics). Suppose
Assumptions 5.2.1 and 5.2.2 hold. Given two time steps 𝑡 > 𝜏, for any 𝑥𝜏, 𝑥′𝜏 ∈
𝐵𝑛 (0, 𝑅𝑆+𝐶∥𝑥0∥) and 𝜃𝜏, 𝜃′𝜏 ∈ Θ, 𝜃𝜏+1:𝑡−1 ∈ 𝑆𝜀 (𝜏+1 : 𝑡−1), if 𝑥′

𝜏+1 := 𝑔𝜏+1|𝜏 (𝑥′𝜏, 𝜃′𝜏)
is also in 𝐵𝑛 (0, 𝑅𝑆 + 𝐶∥𝑥0∥), the multi-step dynamical function 𝑔𝑡 |𝜏 satisfies that




 𝜕𝑔𝑡 |𝜏𝜕𝑥𝜏

����
𝑥𝜏 ,𝜃𝜏:𝑡−1






 ≤ 𝐶𝐿,𝑔,𝑥𝜌𝑡−𝜏, and




 𝜕𝑔𝑡 |𝜏𝜕𝜃𝜏

����
𝑥𝜏 ,𝜃𝜏:𝑡−1






 ≤ 𝐶𝐿,𝑔,𝜃𝜌𝑡−𝜏,∀𝜃𝜏:𝑡−1 ∈ 𝑆𝜀 (𝜏 : 𝑡 − 1),




 𝜕𝑔𝑡 |𝜏𝜕𝑥𝜏

����
𝑥𝜏 ,𝜃𝜏:𝑡−1

−
𝜕𝑔𝑡 |𝜏
𝜕𝑥𝜏

����
𝑥′𝜏 ,𝜃

′
𝜏 ,𝜃𝜏+1:𝑡−1







≤ 𝐶ℓ,𝑔,(𝑥,𝑥)𝜌𝑡−𝜏



𝑥𝜏 − 𝑥′𝜏

 + 𝐶ℓ,𝑔,(𝑥,𝜃)𝜌𝑡−𝜏

𝜃𝜏 − 𝜃′𝜏

,




 𝜕𝑔𝑡 |𝜏𝜕𝜃𝜏

����
𝑥𝜏 ,𝜃𝜏:𝑡−1

−
𝜕𝑔𝑡 |𝜏
𝜕𝜃𝜏

����
𝑥′𝜏 ,𝜃

′
𝜏 ,𝜃𝜏+1:𝑡−1







≤ 𝐶ℓ,𝑔,(𝜃,𝑥)𝜌𝑡−𝜏



𝑥𝜏 − 𝑥′𝜏

 + 𝐶ℓ,𝑔,(𝜃,𝜃)𝜌𝑡−𝜏

𝜃𝜏 − 𝜃′𝜏

,
where 𝐶𝐿,𝑔,𝑥 = 𝐶,𝐶𝐿,𝑔,𝜃 =

𝐶𝐿𝑔,𝑢𝐿 𝜋,𝜃
𝜌

, and

𝐶ℓ,𝑔,(𝑥,𝑥) =
(
(1 + 𝐿𝜋,𝑥)

(
ℓ𝑔,𝑥 + ℓ𝑔,𝑢𝐿𝜋,𝑥

)
+ 𝐿𝑔,𝑥ℓ𝜋,𝑥

)
𝐶3𝜌−1(1 − 𝜌)−1,

𝐶ℓ,𝑔,(𝑥,𝜃) =
(
(1 + 𝐿𝜋,𝑥)

(
ℓ𝑔,𝑥 + ℓ𝑔,𝑢𝐿𝜋,𝑥

)
+ 𝐿𝑔,𝑥ℓ𝜋,𝑥

)
𝐶3𝐿𝑔,𝑢𝐿𝜋,𝜃 ·

𝜌−1(1 − 𝜌)−1 +
(
(1 + 𝐿𝜋,𝑥)ℓ𝑔,𝑢𝐿𝜋,𝜃 + 𝐿𝑔,𝑢ℓ𝜋,𝜃

)
𝐶𝜌−1(1 − 𝜌)−1,

𝐶ℓ,𝑔,(𝜃,𝑥) =
(
(1 + 𝐿𝜋,𝑥)

(
ℓ𝑔,𝑥 + ℓ𝑔,𝑢𝐿𝜋,𝑥

)
+ 𝐿𝑔,𝑥ℓ𝜋,𝑥

)
(𝐿𝑔,𝑥 + 𝐿𝑔,𝑢𝐿𝜋,𝑥)·

𝐶3𝐿𝑔,𝑢𝐿𝜋,𝜃𝜌
−2(1 − 𝜌)−1

+ 𝐶
(
𝐿𝜋,𝜃 (ℓ𝑔,𝑥 + ℓ𝑔,𝑢𝐿𝜋,𝑥) + 𝐿𝑔,𝑢ℓ𝜋,𝑥

)
𝜌−1,

𝐶ℓ,𝑔,(𝜃,𝜃) =
(
(1 + 𝐿𝜋,𝑥)

(
ℓ𝑔,𝑥 + ℓ𝑔,𝑢 · 𝐿𝜋,𝑥

)
+ 𝐿𝑔,𝑥 · ℓ𝜋,𝑥

)
𝐿2
𝑔,𝑢𝐿

2
𝜋,𝜃𝐶

3·

𝜌−2(1 − 𝜌)−1 +
(
𝐿𝑔,𝑢ℓ𝜋,𝜃 + ℓ𝑔,𝑢𝐿2

𝜋,𝜃

)
𝐶𝜌−1.

Intuitively, Lemma 5.B.3 shows that the dependence of the state 𝑥𝑡 on the previ-
ous state 𝑥𝜏 and 𝜃𝜏 decays exponentially with respect to their time distance 𝑡 − 𝜏.
Specifically, recall that the multi-step dynamics 𝑔𝑡 |𝜏 writes 𝑥𝑡 as a function of 𝑥𝜏 and
𝜃𝜏:𝑡−1. When other variables are fixed, the Lipschitzness and smoothness constants
with respect to 𝑥𝜏 and 𝜃𝜏 are both 𝑂 (𝜌𝑡−𝜏). While the contractive Lipschitzness
on 𝑥𝜏 is automatically guaranteed by 𝜀-time-varying contractive perturbation (Def-
inition 5.2.2), we use this property and the chain rule decomposition to show the
Lipschitzness on 𝜃𝜏 and the smoothness.
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The first inequality in Lemma 5.B.3 directly follows from 𝜀-time-varying contractive
perturbation. To reflect the main technical difficulty, we show the third inequality
here with the assumption that the first two inequalities hold. We provide the proof
of other inequalities later in this section.

Proof of the 3rd inequality in Lemma 5.B.3. Note that we have the chain rule de-
composition

𝜕𝑔𝑡 |𝜏
𝜕𝑥𝜏

����
𝑥𝜏 ,𝜃𝜏 ,𝜃𝜏+1:𝑡−1

=
𝜕𝑔𝑡 |𝑡−1

𝜕𝑥𝑡−1

����
𝑥𝑡−1,𝜃𝑡−1

·
𝜕𝑔𝑡−1|𝑡−2

𝜕𝑥𝑡−2
|𝑥𝑡−2,𝜃𝑡−2 · · ·

𝜕𝑔𝜏+1|𝜏
𝜕𝑥𝜏

����
𝑥𝜏 ,𝜃𝜏

,

𝜕𝑔𝑡 |𝜏
𝜕𝑥𝜏

����
𝑥′𝜏 ,𝜃

′
𝜏 ,𝜃𝜏+1:𝑡−1

=
𝜕𝑔𝑡 |𝑡−1

𝜕𝑥𝑡−1

����
𝑥′
𝑡−1,𝜃𝑡−1

·
𝜕𝑔𝑡−1|𝑡−2

𝜕𝑥𝑡−2

����
𝑥′
𝑡−2,𝜃𝑡−2

· · ·
𝜕𝑔𝜏+1|𝜏
𝜕𝑥𝜏

����
𝑥′𝜏 ,𝜃

′
𝜏

, (5.26)

where we use the notation 𝑥𝜏′ = 𝑔𝜏′ |𝜏 (𝑥𝜏, 𝜃𝜏:𝜏′−1) and 𝑥′
𝜏′ = 𝑔𝜏′ |𝜏 (𝑥′𝜏, 𝜃′𝜏, 𝜃𝜏+1:𝜏′−1)

for 𝜏′ ∈ [𝜏 + 1 : 𝑡 − 1].

Note that for any 𝑖 ∈ [1 : 𝑡 − 𝜏] and any 𝜃′
𝑡−𝑖 ∈ Θ, we have the decomposition

𝜕𝑔𝑡−𝑖+1|𝑡−𝑖
𝜕𝑥𝑡−𝑖

����
𝑥𝑡−𝑖 ,𝜃𝑡−𝑖

−
𝜕𝑔𝑡−𝑖+1|𝑡−𝑖
𝜕𝑥𝑡−𝑖

����
𝑥′
𝑡−𝑖 ,𝜃

′
𝑡−𝑖

=
𝜕𝑔𝑡−𝑖
𝜕𝑥𝑡−𝑖

����
𝑥𝑡−𝑖 ,𝑢𝑡−𝑖

− 𝜕𝑔𝑡−𝑖
𝜕𝑥𝑡−𝑖

����
𝑥′
𝑡−𝑖 ,𝑢

′
𝑡−𝑖

+ 𝜕𝑔𝑡−𝑖
𝜕𝑢𝑡−𝑖

����
𝑥𝑡−𝑖 ,𝑢𝑡−𝑖

𝜕𝜋𝑡−𝑖
𝜕𝑥𝑡−𝑖

����
𝑥𝑡−𝑖 ,𝜃𝑡−𝑖

− 𝜕𝑔𝑡−𝑖
𝜕𝑥𝑡−𝑖

����
𝑥′
𝑡−𝑖 ,𝑢

′
𝑡−𝑖

𝜕𝜋𝑡−𝑖
𝜕𝑥𝑡−𝑖

����
𝑥′
𝑡−𝑖 ,𝜃

′
𝑡−𝑖

=
𝜕𝑔𝑡−𝑖
𝜕𝑥𝑡−𝑖

����
𝑥𝑡−𝑖 ,𝑢𝑡−𝑖

− 𝜕𝑔𝑡−𝑖
𝜕𝑥𝑡−𝑖

����
𝑥′
𝑡−𝑖 ,𝑢

′
𝑡−𝑖

+
(
𝜕𝑔𝑡−𝑖
𝜕𝑢𝑡−𝑖

����
𝑥𝑡−𝑖 ,𝑢𝑡−𝑖

− 𝜕𝑔𝑡−𝑖
𝜕𝑢𝑡−𝑖

����
𝑥′
𝑡−𝑖 ,𝑢

′
𝑡−𝑖

)
𝜕𝜋𝑡−𝑖
𝜕𝑥𝑡−𝑖

����
𝑥𝑡−𝑖 ,𝜃𝑡−𝑖

+ 𝜕𝑔𝑡−𝑖
𝜕𝑢𝑡−𝑖

����
𝑥′
𝑡−𝑖 ,𝑢

′
𝑡−𝑖

(
𝜕𝜋𝑡−𝑖
𝜕𝑥𝑡−𝑖

����
𝑥𝑡−𝑖 ,𝜃𝑡−𝑖

− 𝜕𝜋𝑡−𝑖
𝜕𝑥𝑡−𝑖

����
𝑥′
𝑡−𝑖 ,𝜃

′
𝑡−𝑖

)
,

where we use the notation 𝑢𝑡−𝑖 = 𝜋𝑡−𝑖 (𝑥𝑡−𝑖, 𝜃𝑡−𝑖), 𝑢′𝑡−𝑖 = 𝜋𝑡−𝑖 (𝑥′𝑡−𝑖, 𝜃′𝑡−𝑖). Taking
norms on both sides of the equation and applying the triangle inequality gives




 𝜕𝑔𝑡−𝑖+1|𝑡−𝑖𝜕𝑥𝑡−𝑖

����
𝑥𝑡−𝑖 ,𝜃𝑡−𝑖

−
𝜕𝑔𝑡−𝑖+1|𝑡−𝑖
𝜕𝑥𝑡−𝑖

����
𝑥′
𝑡−𝑖 ,𝜃

′
𝑡−𝑖







≤ ℓ𝑔,𝑥



𝑥𝑡−𝑖 − 𝑥′𝑡−𝑖

 + ℓ𝑔,𝑢

𝜋𝑡−𝑖 (𝑥𝑡−𝑖, 𝜃𝑡−𝑖) − 𝜋𝑡−𝑖 (𝑥′𝑡−𝑖, 𝜃′𝑡−𝑖)


+ 𝐿𝜋,𝑥

(
ℓ𝑔,𝑥



𝑥𝑡−𝑖 − 𝑥′𝑡−𝑖

 + ℓ𝑔,𝑢

𝜋𝑡−𝑖 (𝑥𝑡−𝑖, 𝜃𝑡−𝑖) − 𝜋𝑡−𝑖 (𝑥′𝑡−𝑖, 𝜃′𝑡−𝑖)

)
+ 𝐿𝑔,𝑢 ·

(
ℓ𝜋,𝑥



𝑥𝑡−𝑖 − 𝑥′𝑡−𝑖

 + ℓ𝜋,𝜃

𝜃𝑡−𝑖 − 𝜃′𝑡−𝑖

) (5.27a)

≤
(
(1 + 𝐿𝜋,𝑥)

(
ℓ𝑔,𝑥 + ℓ𝑔,𝑢 · 𝐿𝜋,𝑥

)
+ 𝐿𝑔,𝑢 · ℓ𝜋,𝑥

) 

𝑥𝑡−𝑖 − 𝑥′𝑡−𝑖


+

(
(1 + 𝐿𝜋,𝑥)ℓ𝑔,𝑢𝐿𝜋,𝜃 + 𝐿𝑔,𝑢ℓ𝜋,𝜃

) 

𝜃𝑡−𝑖 − 𝜃′𝑡−𝑖

, (5.27b)
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where we use Assumption 5.2.1 and the definition of 𝑢𝑡−𝑖, 𝑢′𝑡−𝑖 in (5.27a); and
Assumption 5.2.1 in (5.27b). Therefore, by (5.26) and (5.27), we see that




 𝜕𝑔𝑡 |𝜏𝜕𝑥𝜏

����
𝑥𝜏 ,𝜃𝜏:𝑡−1

−
𝜕𝑔𝑡 |𝜏
𝜕𝑥𝜏

����
𝑥′𝜏 ,𝜃𝜏:𝑡−1







≤

𝑡−𝜏−1∑︁
𝑖=1

(




 𝑖−1∏
𝜏′=1

𝜕𝑔𝑡−𝜏′+1|𝑡−𝜏′

𝜕𝑥𝑡−𝜏′

����
𝑥′
𝑡−𝜏′ ,𝜃𝑡−𝜏′






 ·





 𝜕𝑔𝑡−𝑖+1|𝑡−𝑖𝜕𝑥𝑡−𝑖

����
𝑥𝑡−𝑖 ,𝜃𝑡−𝑖

−
𝜕𝑔𝑡−𝑖+1|𝑡−𝑖
𝜕𝑥𝑡−𝑖

����
𝑥′
𝑡−𝑖 ,𝜃𝑡−𝑖






·




 𝑡−𝜏∏
𝜏′=𝑖+1

𝜕𝑔𝑡−𝜏′+1|𝑡−𝜏′

𝜕𝑥𝑡−𝜏′

����
𝑥𝑡−𝜏′ ,𝜃𝑡−𝜏′







)

+





𝑡−𝜏−1∏
𝜏′=1

𝜕𝑔𝑡−𝜏′+1|𝑡−𝜏′

𝜕𝑥𝑡−𝜏′

����
𝑥′
𝑡−𝜏′ ,𝜃𝑡−𝜏′






 ·





 𝜕𝑔𝜏+1|𝜏𝜕𝑥𝜏

����
𝑥𝜏 ,𝜃𝜏

−
𝜕𝑔𝜏+1|𝜏
𝜕𝑥𝜏

����
𝑥′𝜏 ,𝜃

′
𝜏







≤

𝑡−𝜏∑︁
𝑖=1
(𝐶𝜌𝑖−1) ·

(
(1 + 𝐿𝜋,𝑥)

(
ℓ𝑔,𝑥 + ℓ𝑔,𝑢 · 𝐿𝜋,𝑥

)
+ 𝐿𝑔,𝑥 · ℓ𝜋,𝑥

) 

𝑥𝑡−𝑖 − 𝑥′𝑡−𝑖

·
(𝐶𝜌𝑡−𝜏−𝑖) + 𝐶𝜌𝑡−𝜏−1 ·

(
(1 + 𝐿𝜋,𝑥)ℓ𝑔,𝑢𝐿𝜋,𝜃 + 𝐿𝑔,𝑢ℓ𝜋,𝜃

) 

𝜃𝜏 − 𝜃′𝜏

 (5.28a)

=
(
(1 + 𝐿𝜋,𝑥)

(
ℓ𝑔,𝑥 + ℓ𝑔,𝑢 · 𝐿𝜋,𝑥

)
+ 𝐿𝑔,𝑥 · ℓ𝜋,𝑥

)
𝐶2 · 𝜌𝑡−𝜏−1

𝑡−𝜏∑︁
𝑖=1



𝑥𝑡−𝑖 − 𝑥′𝑡−𝑖


+ 𝐶𝜌𝑡−𝜏−1 ·

(
(1 + 𝐿𝜋,𝑥)ℓ𝑔,𝑢𝐿𝜋,𝜃 + 𝐿𝑔,𝑢ℓ𝜋,𝜃

) 

𝜃𝜏 − 𝜃′𝜏


≤ 𝐶ℓ,𝑔,(𝑥,𝑥) · 𝜌𝑡−𝜏



𝑥𝜏 − 𝑥′𝜏

 + 𝐶ℓ,𝑔,(𝑥,𝜃) · 𝜌𝑡−𝜏

𝜃𝜏 − 𝜃′𝜏

, (5.28b)

where we use the 𝜀-time-varying contractive perturbation property and (5.27) in
(5.28a); we use the first two inequalities to bound



𝑥𝑡−𝑖 − 𝑥′𝑡−𝑖

 ≤ 𝐶𝜌𝑡−𝑖−𝜏

𝑥𝜏 − 𝑥′𝜏

+
𝐶𝐿𝑔,𝑢𝐿 𝜋,𝜃

𝜌
· 𝜌𝑡−𝑖−𝜏



𝜃𝜏 − 𝜃′𝜏

 in (5.28b).

Since we will need more general forms of policy sequence later to bound ∥𝐺 𝑡 − ∇𝐹𝑡 ∥
than the sequence with small step sizes, we state the contractive Lipschitzness
and smoothness of the multi-step cost function ℎ𝑡 |𝜏. This is an implication of
Lemma 5.B.3 because for any 𝜏 < 𝑡, the previous state 𝑥𝜏 and previous policy
parameter 𝜃𝜏 can only affect the current stage cost 𝑐𝑡 by affecting the current state
𝑥𝑡 . We formalize this result in Corollary 5.B.4 and provide the detailed proof later
in this section.

Corollary 5.B.4 (Lipschitzness/Smoothness of the Multi-Step Costs). Under the
same assumptions as Lemma 5.B.3, let

𝑥𝑡 := 𝑔𝑡 |𝜏 (𝑥𝜏, 𝜃𝜏:𝑡−1), 𝑢𝑡 := 𝜋𝑡 (𝑥𝑡 , 𝜃𝑡); and

𝑥′𝑡 := 𝑔𝑡 |𝜏 (𝑥′𝜏, 𝜃′𝜏, 𝜃𝜏+1:𝑡−1), 𝑢′𝑡 := 𝜋𝑡 (𝑥′𝑡 , 𝜃𝑡).
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Then, the partial derivatives of the multi-step cost function ℎ𝑡 |𝜏 satisfy the following
inequalities: 




 𝜕ℎ𝑡 |𝜏𝜕𝑥𝜏

����
𝑥𝜏 ,𝜃𝜏:𝑡






 ≤ 𝐶𝐿,ℎ,𝑥𝜌𝑡−𝜏,





 𝜕ℎ𝑡 |𝜏𝜕𝜃𝜏

����
𝑥𝜏 ,𝜃𝜏:𝑡






 ≤ 𝐶𝐿,ℎ,𝜃𝜌𝑡−𝜏,




 𝜕ℎ𝑡 |𝜏𝜕𝑥𝜏

����
𝑥𝜏 ,𝜃𝜏 ,𝜃𝜏+1:𝑡

−
𝜕ℎ𝑡 |𝜏
𝜕𝑥𝜏

����
𝑥′𝜏 ,𝜃

′
𝜏 ,𝜃𝜏+1:𝑡







≤ 𝐶ℓ,ℎ,(𝑥,𝑥)𝜌𝑡−𝜏



𝑥𝜏 − 𝑥′𝜏

 + 𝐶ℓ,ℎ,(𝑥,𝜃)𝜌𝑡−𝜏

𝜃𝜏 − 𝜃′𝜏

,




 𝜕ℎ𝑡 |𝜏𝜕𝜃𝜏

����
𝑥𝜏 ,𝜃𝜏 ,𝜃𝜏+1:𝑡

−
𝜕ℎ𝑡 |𝜏
𝜕𝜃𝜏

����
𝑥′𝜏 ,𝜃

′
𝜏 ,𝜃𝜏+1:𝑡







≤ 𝐶ℓ,ℎ,(𝜃,𝑥)𝜌𝑡−𝜏



𝑥𝜏 − 𝑥′𝜏

 + 𝐶ℓ,ℎ,(𝜃,𝜃)𝜌𝑡−𝜏

𝜃𝜏 − 𝜃′𝜏

,
where 𝐶𝐿,ℎ,𝑥 = 𝐿ℎ𝐶 (1 + 𝐿𝜋,𝑥), 𝐶𝐿,ℎ,𝜃 = 𝐿ℎ max{𝐶𝐿,𝑔,𝜃 (1 + 𝐿𝜋,𝑥), 𝐿𝜋,𝜃}, and

𝐶ℓ,ℎ,(𝑥,𝑥) = 𝐿ℎ (1 + 𝐿𝜋,𝑥)𝐶ℓ,𝑔,(𝑥,𝑥)
+ ((ℓ 𝑓 ,𝑥 + ℓ 𝑓 ,𝑢𝐿𝜋,𝑥) (1 + 𝐿𝜋,𝑥) + 𝐿ℎℓ𝜋,𝑥)𝐶2

𝐿,𝑔,𝑥 ,

𝐶ℓ,ℎ,(𝑥,𝜃) = 𝐿ℎ (1 + 𝐿𝜋,𝑥)𝐶ℓ,𝑔,(𝑥,𝜃) + ((ℓ 𝑓 ,𝑥 + ℓ 𝑓 ,𝑢𝐿𝜋,𝑥) (1 + 𝐿𝜋,𝑥)
+ 𝐿ℎℓ𝜋,𝑥)𝐶𝐿,𝑔,𝑥𝐶𝐿,𝑔,𝜃 ,

𝐶ℓ,ℎ,(𝜃,𝑥) = 𝐿ℎ (1 + 𝐿𝜋,𝑥)𝐶ℓ,𝑔,(𝜃,𝑥)
+ ((ℓ 𝑓 ,𝑥 + ℓ 𝑓 ,𝑢𝐿𝜋,𝑥) (1 + 𝐿𝜋,𝑥) + 𝐿ℎℓ𝜋,𝑥)𝐶𝐿,𝑔,𝑥𝐶𝐿,𝑔,𝜃 ,

𝐶ℓ,ℎ,(𝜃,𝜃) = 𝐿ℎ (1 + 𝐿𝜋,𝑥)𝐶ℓ,𝑔,(𝜃,𝜃)
+ ((ℓ 𝑓 ,𝑥 + ℓ 𝑓 ,𝑢𝐿𝜋,𝑥) (1 + 𝐿𝜋,𝑥) + 𝐿ℎℓ𝜋,𝑥)𝐶2

𝐿,𝑔,𝜃 .

With the help of Lemma 5.B.3 and Corollary 5.B.4, we first bound the cost differ-
ence |ℎ𝑡 (𝑥𝑡 , 𝑢𝑡) − 𝐹𝑡 (𝜃𝑡) | in Theorem 5.B.5. This inequality bounds the difference
between the actual stage cost ℎ𝑡 (𝑥𝑡 , 𝑢𝑡) incurred by GAPS and the ideal cost 𝐹𝑡 (𝜃𝑡).
Besides this inequality, in Theorem 5.B.5, we also bound the distance between
GAPS’ trajectory and the imaginary trajectory if the same policy parameter 𝜃𝑡 had
been used from time 0 to time 𝑡, which will be useful for showing Theorem 5.B.6
later in this section.

Theorem 5.B.5. Suppose Assumptions 5.2.1 and 5.2.2 hold. Let {𝑥𝑡 , 𝑢𝑡 , 𝜃𝑡}𝑡∈T
denote the trajectory of M-GAPS (Algorithm 6) with a constant learning rate 𝜂 ≤
(1−𝜌)𝜀
𝐶𝐿,ℎ, 𝜃

. Then, both ∥𝐺 𝑡 ∥ and ∥∇𝐹𝑡 (𝜃𝑡)∥ are upper bounded by 𝐶𝐿,ℎ, 𝜃
1−𝜌 , and the

following inequalities holds for any two time steps 𝜏, 𝑡 (𝜏 ≤ 𝑡):

∥𝜃𝑡 − 𝜃𝜏∥ ≤
𝐶𝐿,ℎ,𝜃

1 − 𝜌 · (𝑡 − 𝜏)𝜂, and
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∥𝑥𝜏 − 𝑥𝜏 (𝜃𝑡)∥ ≤
𝐶𝐿,ℎ,𝜃𝐶𝐿,𝑔,𝜃𝜌

(1 − 𝜌)2

(
(𝑡 − 𝜏) + 1

1 − 𝜌

)
· 𝜂,

where we use the notation 𝑥𝜏 (𝜃) := 𝑔0,𝜏 (𝑥0, 𝜃×(𝜏+1)),∀𝜃 ∈ Θ. Further, we have that

|ℎ𝑡 (𝑥𝑡 , 𝑢𝑡) − 𝐹𝑡 (𝜃𝑡) | ≤
𝐶𝐿,ℎ,𝜃𝐶𝐿,𝑔,𝜃𝐿ℎ (1 + 𝐿𝜋,𝑥)𝜌

(1 − 𝜌)3
· 𝜂.

In addition, for any parameter sequence 𝜃0:𝑡 ∈ Θ𝑡+1, let 𝑥𝑡 and 𝑢̃𝑡 be the state/control
action achieved by this sequence 𝑥𝑡 := 𝑔𝑡 |0(𝑥0, 𝜃0:𝑡−1) and 𝑢̃𝑡 := 𝜋𝑡 (𝑥𝑡 , 𝜃𝑡). If
∥𝑥𝑡 ∥ ≤ min{𝑅𝐶 , 𝑅𝑥} holds for all 𝑡, then the following inequality holds for all time
𝑡: ��ℎ𝑡 (𝑥𝑡 , 𝑢̃𝑡) − 𝐹𝑡 (𝜃𝑡)�� ≤ 𝐶𝐿𝜋,𝜃𝐿𝑔,𝑥𝐿ℎ (1 + 𝐿𝜋,𝑥)1 − 𝜌

𝑡−1∑︁
𝜏=0

𝜌𝑡−𝜏−1

𝜃𝜏+1 − 𝜃𝜏

.
To show Theorem 5.B.5, we first derive a uniform upper bound on the norm the
estimated gradient 𝐺 𝑡 , which implies that the policy parameter sequence does not
vary too quickly, i.e., it is in the same order as the constant learning rate 𝜂. We then
leverage strong contractive perturbation to bound ∥𝑥𝜏 − 𝑥𝜏 (𝜃𝑡)∥ and use it to bound
|ℎ𝑡 (𝑥𝑡 , 𝑢𝑡) − 𝐹𝑡 (𝜃𝑡) | by the Lipschitzness of ℎ𝑡 . We provide the detailed proof later
in this section.

In Theorem 5.B.6 below, we bound the difference between the estimated gradient
𝐺 𝑡 used by GAPS and the ideal gradient ∇𝐹𝑡 (𝜃𝑡) used by the ideal OGD.

Theorem 5.B.6 (Gradient Bias). Suppose Assumptions 5.2.1 and 5.2.2 hold. Let
{𝑥𝑡 , 𝑢𝑡 , 𝜃𝑡}𝑡∈T denote the trajectory of M-GAPS (Algorithm 6) with learning rate
𝜂 ≤ (1−𝜌)𝜀

𝐶𝐿,ℎ, 𝜃
. Then, the following holds for all 𝜏 ≤ 𝑡:




 𝜕ℎ𝑡 |0𝜕𝜃𝜏

����
𝑥0,𝜃0:𝑡

−
𝜕ℎ𝑡 |0
𝜕𝜃𝜏

����
𝑥0,(𝜃𝑡 )×(𝑡+1)






 = 𝑂 ((
1

(1 − 𝜌)4
+ 𝑡 − 𝜏
(1 − 𝜌)3

+ (𝑡 − 𝜏)
2

(1 − 𝜌)2

)
𝜌𝑡−𝜏 · 𝜂

)
,

Further, we see that

∥𝐺 𝑡 − ∇𝐹𝑡 (𝜃𝑡)∥ ≤ 𝑂
(

𝜂

(1 − 𝜌)5

)
.

(See Theorem 5.B.9 for the detailed expressions.)

The key technique we used to show Theorem 5.B.6 is a sequential decomposition
of the error based on the triangle inequality. Specifically, note that Corollary 5.B.4
only allow us to compare the partial derivatives when 𝜃𝜏+1:𝑡 are fixed and the only
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perturbations are on 𝑥𝜏 and 𝜃𝜏. To compare the partial derivatives realized on two
trajectory instances (𝑥𝜏 (𝜃𝑡), (𝜃𝑡)×(𝑡−𝜏+1)) and (𝑥𝜏, 𝜃𝜏:𝑡), we change the parameters
sequentially one by one, following the path

(𝑥𝜏 (𝜃𝑡), (𝜃𝑡)×(𝑡−𝜏+1)) → (𝑥𝜏, 𝜃𝜏, (𝜃𝑡)×(𝑡−𝜏)) → (𝑥𝜏, 𝜃𝜏:𝜏+1, (𝜃𝑡)×(𝑡−𝜏−1)) → · · ·
→ (𝑥𝜏, 𝜃𝜏:𝑡).

The bounds in Theorems 5.B.5 and 5.B.6 show that we can achieve our desired
bounds |ℎ𝑡 (𝑥𝑡 , 𝑢𝑡) − 𝐹𝑡 (𝜃𝑡) | = 𝑂 (1/

√
𝑇) and ∥∇𝐹𝑡 (𝜃𝑡) − 𝐺 𝑡 ∥ = 𝑂 (1/

√
𝑇) if we set

the learning rate and the buffer length to be 𝑂 (1/
√
𝑇) and 𝑂 (log𝑇), respectively.

Substituting these bounds into Theorem 5.B.1 with a more careful analysis on the
order of the factor 1/(1 − 𝜌) will finish the proof of Theorem 5.3.2. The detailed
proof can be found in the next subsection.

Detailed Statement and Proofs of Theorems 5.3.1 and 5.3.2
We restate Theorem 5.3.1 with detailed expressions in Theorem 5.B.7.

Theorem 5.B.7. Suppose Assumptions 5.2.1 and 5.2.2 hold. Let {𝑥𝑡 , 𝑢𝑡 , 𝜃𝑡}𝑡∈T
denote the trajectory of M-GAPS (Algorithm 6) with buffer size 𝐵 and learning rate
𝜂𝑡 = 𝜂 ≤ (1−𝜌)𝜀𝐶𝐿,ℎ, 𝜃

, where 𝐶𝐿,ℎ,𝜃 is defined in Corollary 5.B.4. Then, we have

|ℎ𝑡 (𝑥𝑡 , 𝑢𝑡) − 𝐹𝑡 (𝜃𝑡) | ≤
𝐶𝐿,ℎ,𝜃𝐶𝐿,𝑔,𝜃𝐿ℎ (1 + 𝐿𝜋,𝑥)𝜌

(1 − 𝜌)3
· 𝜂, and

∥𝐺 𝑡 − ∇𝐹𝑡 (𝜃𝑡)∥ ≤
(
𝐶̂0(1 − 𝜌)−1 + (𝐶̂1 + 𝐶̂2) (1 − 𝜌)−2 + 𝐶̂2(1 − 𝜌)−3

)
𝜂,

(5.29)

where 𝐶̂0, 𝐶̂1, 𝐶̂2 are defined in Theorem 5.B.9.

Proof of Theorem 5.B.7. Theorem 5.B.7 directly followed from Theorems 5.B.5
and 5.B.6.

We restate Theorem 5.3.2 with detailed expressions in Theorem 5.B.8.

Theorem 5.B.8. Under the same assumptions as Theorem 5.3.1, if we additionally
assume the surrogate stage cost 𝐹𝑡 is convex for every time step 𝑡, then M-GAPS
achieves the adaptive regret bound

𝑅𝐴 (𝑇) ≤
(
𝐶2
𝐿,ℎ,𝜃

(1 − 𝜌)3
+

(
𝐶̂0

1 − 𝜌 +
𝐶̂1 + 𝐶̂2

(1 − 𝜌)2
+ 𝐶̂2

(1 − 𝜌)3

)
𝐷

)
𝜂𝑇 + 𝐷

2

2𝜂
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+ 2
(
𝐶̂0

1 − 𝜌 +
𝐶̂1 + 𝐶̂2

(1 − 𝜌)2
+ 𝐶̂2

(1 − 𝜌)3

)2

𝐷2𝜂3𝑇.

Proof of Theorem 5.B.8. The first two inequalities are shown in Theorem 5.B.5 and
Theorem 5.B.6. Thus, we focus on the adaptive regret part here in the proof.

Fix a time interval 𝐼 = [𝑟 : 𝑠] ⊆ T and let 𝜃 𝐼 be an arbitrary policy parameter
in Θ. By Theorem 5.B.1 and Theorem 5.B.6, we see that the sequence of policy
parameters of the online policy satisfies that

𝑠∑︁
𝑡=𝑟

𝐹𝑡 (𝜃𝑡) −
𝑠∑︁
𝑡=𝑟

𝐹𝑡 (𝜃 𝐼) ≤ (𝑊2 + 𝛼2)𝜂𝑇 + 𝐷
2

2𝜂
+ 𝛼𝐷𝑇, (5.30)

where𝑊 =
𝐶𝐿,ℎ, 𝜃

1−𝜌 by Theorem 5.B.5 and 𝛼 =

(
𝐶̂0

1−𝜌 +
𝐶̂1+𝐶̂2
(1−𝜌)2 +

𝐶̂2
(1−𝜌)3

)
𝜂.

Note that by definition, we have 𝐹𝑡 (𝜃 𝐼) = ℎ𝑡 (𝑥𝑡 (𝜃 𝐼), 𝑢̂𝑡 (𝜃 𝐼)) and by Theorem 5.B.5,
we have

|ℎ𝑡 (𝑥𝑡 , 𝑢𝑡) − 𝐹𝑡 (𝜃𝑡) | ≤
𝐶𝐿,ℎ,𝜃𝐶𝐿,𝑔,𝜃𝐿ℎ (1 + 𝐿𝜋,𝑥)𝜌

(1 − 𝜌)3
· 𝜂. (5.31)

Substituting these into (5.30) gives that

𝑠∑︁
𝑡=𝑟

ℎ𝑡 (𝑥𝑡 , 𝑢𝑡) −
𝑠∑︁
𝑡=𝑟

ℎ𝑡 (𝑥𝑡 (𝜃 𝐼), 𝑢̂𝑡 (𝜃 𝐼))

≤
(
𝑠∑︁
𝑡=𝑟

𝐹𝑡 (𝜃𝑡) −
𝑠∑︁
𝑡=𝑟

𝐹𝑡 (𝜃 𝐼)
)
+

𝑠∑︁
𝑡=𝑟

|ℎ𝑡 (𝑥𝑡 , 𝑢𝑡) − 𝐹𝑡 (𝜃𝑡) |

≤ 𝐷
2

2𝜂
+ 𝛼𝐷𝑇 +

(
𝑊2 + 𝛼2 +

𝐶𝐿,ℎ,𝜃𝐶𝐿,𝑔,𝜃𝐿ℎ (1 + 𝐿𝜋,𝑥)𝜌
(1 − 𝜌)3

)
· 𝜂𝑇

≤
(
𝐶2
𝐿,ℎ,𝜃

(1 − 𝜌)3
+

(
𝐶̂0

1 − 𝜌 +
𝐶̂1 + 𝐶̂2

(1 − 𝜌)2
+ 𝐶̂2

(1 − 𝜌)3

)
𝐷

)
𝜂𝑇 + 𝐷

2

2𝜂

+ 2
(
𝐶̂0

1 − 𝜌 +
𝐶̂1 + 𝐶̂2

(1 − 𝜌)2
+ 𝐶̂2

(1 − 𝜌)3

)2

𝐷2𝜂3𝑇,

where we used (5.30) and (5.31) in the second inequality.

Proof of Theorem 5.B.1
Our proof is inspired by the proof of Theorem 2.1 in Bansal and Gupta, 2019.
For a fixed time interval 𝐼 = [𝑟 : 𝑠] ⊆ T and 𝜃 𝐼 ∈ Θ, we consider the potential
function Φ𝑡 = 1

2𝜂 ∥𝜃𝑡 − 𝜃 𝐼 ∥
2. Note that 𝜃 𝐼 satisfies ∥𝜃𝑟 − 𝜃 𝐼 ∥ ≤ 𝐷 because we

assume diam(Θ) ≤ 𝐷. To simplify the notation, we define 𝜃′
𝑡+1 = 𝜃𝑡 − 𝜂𝐺 𝑡 .
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By proposition 2.2 in Bansal and Gupta, 2019, we see that the potential change
between two consecutive steps can be bounded by

1
2
(∥𝜃𝑡+1 − 𝜃 𝐼 ∥2 − ∥𝜃𝑡 − 𝜃 𝐼 ∥2) ≤

1
2
(


𝜃′𝑡+1 − 𝜃 𝐼

2 − ∥𝜃𝑡 − 𝜃 𝐼 ∥2)

= ⟨𝜃′𝑡+1 − 𝜃𝑡 , 𝜃𝑡 − 𝜃 𝐼⟩ +
1
2


𝜃′𝑡+1 − 𝜃𝑡

2

= 𝜂⟨𝐺 𝑡 , 𝜃 𝐼 − 𝜃𝑡⟩ +
𝜂2

2
∥𝐺 𝑡 ∥2.

Using this inequality, we see that

𝐹𝑡 (𝜃𝑡) − 𝐹𝑡 (𝜃 𝐼) +Φ𝑡+1 −Φ𝑡

= 𝐹𝑡 (𝜃𝑡) − 𝐹𝑡 (𝜃 𝐼) + ⟨𝐺 𝑡 , 𝜃 𝐼 − 𝜃𝑡⟩ +
𝜂

2
∥𝐺 𝑡 ∥2

= 𝐹𝑡 (𝜃𝑡) − 𝐹𝑡 (𝜃 𝐼) + ⟨∇𝐹𝑡 (𝜃𝑡) + (𝐺 𝑡 − ∇𝐹𝑡 (𝜃𝑡)), 𝜃 𝐼 − 𝜃𝑡⟩

+ 𝜂
2
∥∇𝐹𝑡 (𝜃𝑡) + (𝐺 𝑡 − ∇𝐹𝑡 (𝜃𝑡))∥2

≤ 𝐹𝑡 (𝜃𝑡) − 𝐹𝑡 (𝜃 𝐼) + ⟨∇𝐹𝑡 (𝜃𝑡), 𝜃 𝐼 − 𝜃𝑡⟩ + ⟨𝐺 𝑡 − ∇𝐹𝑡 (𝜃𝑡), 𝜃 𝐼 − 𝜃𝑡⟩ + 𝜂∥∇𝐹𝑡 (𝜃𝑡)∥2

+ 𝜂∥𝐺 𝑡 − ∇𝐹𝑡 (𝜃𝑡)∥2 (5.32a)

≤ 0 + ∥𝐺 𝑡 − ∇𝐹𝑡 (𝜃𝑡)∥ · ∥𝜃 𝐼 − 𝜃𝑡 ∥ + 𝜂∥∇𝐹𝑡 (𝜃𝑡)∥2 + 𝜂𝛼2 (5.32b)

≤ 𝛼𝐷 +𝑊2𝜂 + 𝜂𝛼2, (5.32c)

where we used the triangle inequality and the AM-GM inequality in (5.32a); we
used the assumption that 𝐹𝑡 is convex, ∥𝐺 𝑡 − ∇𝐹𝑡 (𝜃𝑡)∥ ≤ 𝛼, and the Cauchy-
Schwarz inequality in (5.32b); and we used the assumptions ∥𝐺 𝑡 − ∇𝐹𝑡 (𝜃𝑡)∥ ≤ 𝛼,
diam(Θ) ≤ 𝐷, ∥∇𝐹𝑡 (𝜃𝑡)∥ ≤ 𝑊 in (5.32c).

Summing (5.32) over the time interval [𝑟 : 𝑠] gives that
𝑠∑︁
𝑡=𝑟

(𝐹𝑡 (𝜃𝑡) − 𝐹𝑡 (𝜃 𝐼)) ≤ (𝑠 − 𝑟) ·
(
𝛼𝐷 +𝑊2𝜂 + 𝜂𝛼2

)
+ (Φ𝑟 −Φ𝑠+1)

≤
(
𝛼𝐷 +𝑊2𝜂 + 𝜂𝛼2

)
𝑇 + 𝐷

2

2𝜂
,

where we used diam(Θ) ≤ 𝐷 and Φ𝑠+1 ≥ 0 in the last inequality. Since this
inequality holds for any time interval 𝐼 = [𝑟 : 𝑠] and 𝜃 𝐼 ∈ Θ, this finishes the proof
of the first part of Theorem 5.B.1.

Proof of Inequalities 1,2, and 4 in Lemma 5.B.3
The first inequality directly follows from 𝜀-time-varying contractive perturbation
(Definition 5.2.2). For the second inequality, when 𝑡 = 𝜏+1, note that 𝜕𝑔𝜏+1 |𝜏

𝜕𝜃𝜏

���
𝑥𝜏 ,𝜃𝜏

=
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𝜕𝑔𝜏
𝜕𝑢𝜏

���
𝑥𝜏 ,𝑢𝜏

· 𝜕𝜋𝜏
𝜕𝜃𝜏

���
𝑥𝜏 ,𝜃𝜏

, where 𝑢𝜏 = 𝜋𝜏 (𝑥𝜏, 𝜃𝜏). Taking norms of both sides of the
equation gives




 𝜕𝑔𝜏+1|𝜏𝜕𝜃𝜏

����
𝑥𝜏 ,𝜃𝜏






 =





 𝜕𝑔𝜏𝜕𝑢𝜏

����
𝑥𝜏 ,𝑢𝜏

· 𝜕𝜋𝜏
𝜕𝜃𝜏

����
𝑥𝜏 ,𝜃𝜏






 ≤





 𝜕𝑔𝜏𝜕𝑢𝜏

����
𝑥𝜏 ,𝑢𝜏






 ·





 𝜕𝜋𝜏𝜕𝜃𝜏

����
𝑥𝜏 ,𝜃𝜏






 ≤ 𝐿𝑔,𝑢𝐿𝜋,𝜃 .
When 𝑡 > 𝜏 + 1, we see that




 𝜕𝑔𝑡 |𝜏𝜕𝜃𝜏

����
𝑥𝜏 ,𝜃𝜏:𝑡−1






 =





 𝜕𝑔𝑡 |𝜏+1𝜕𝑥𝜏+1

����
𝑥𝜏+1,𝜃𝜏+1:𝑡−1

·
𝜕𝑔𝜏+1|𝜏
𝜕𝜃𝜏

����
𝑥𝜏 ,𝜃𝜏







≤






 𝜕𝑔𝑡 |𝜏+1𝜕𝑥𝜏+1

����
𝑥𝜏+1,𝜃𝜏+1:𝑡−1






 ·





 𝜕𝑔𝜏+1|𝜏𝜕𝜃𝜏

����
𝑥𝜏 ,𝜃𝜏






 ≤ 𝐶0𝐿𝑔,𝑢𝐿𝜋,𝜃

𝜌
· 𝜌𝑡−𝜏,

where 𝑥𝜏+1 = 𝑔𝜏+1|𝜏 (𝑥𝜏, 𝜃𝜏).

For the last inequality of Lemma 5.B.3, when 𝑡 = 𝜏 + 1, we see that




 𝜕𝑔𝜏+1|𝜏𝜕𝜃𝜏

����
𝑥𝜏 ,𝜃𝜏

−
𝜕𝑔𝜏+1|𝜏
𝜕𝜃𝜏

����
𝑥′𝜏 ,𝜃

′
𝜏







=






 𝜕𝑔𝜏𝜕𝑢𝜏

����
𝑥𝜏 ,𝑢𝜏

· 𝜕𝜋𝜏
𝜕𝜃𝜏

����
𝑥𝜏 ,𝜃𝜏

− 𝜕𝑔𝜏

𝜕𝑢𝜏

����
𝑥′𝜏 ,𝑢

′
𝜏

· 𝜕𝜋𝜏
𝜕𝜃𝜏

����
𝑥′𝜏 ,𝜃

′
𝜏







≤







(
𝜕𝑔𝜏

𝜕𝑢𝜏

����
𝑥𝜏 ,𝑢𝜏

− 𝜕𝑔𝜏

𝜕𝑢𝜏

����
𝑥′𝜏 ,𝑢

′
𝜏

)
· 𝜕𝜋𝜏
𝜕𝜃𝜏

����
𝑥𝜏 ,𝜃𝜏






 +





 𝜕𝑔𝜏𝜕𝑢𝜏

����
𝑥′𝜏 ,𝑢

′
𝜏

(
𝜕𝜋𝜏

𝜕𝜃𝜏

����
𝑥𝜏 ,𝜃𝜏

− 𝜕𝜋𝜏
𝜕𝜃𝜏

����
𝑥′𝜏 ,𝜃

′
𝜏

)





(5.33a)

≤ 𝐿𝜋,𝜃
(
ℓ𝑔,𝑥



𝑥𝜏 − 𝑥′𝜏

 + ℓ𝑔,𝑢

𝑢𝜏 − 𝑢′𝜏

) + 𝐿𝑔,𝑢 (
ℓ𝜋,𝑥



𝑥𝜏 − 𝑥′𝜏

 + ℓ𝜋,𝜃

𝜃𝜏 − 𝜃′𝜏

)
(5.33b)

≤
(
𝐿𝜋,𝜃 (ℓ𝑔,𝑥 + ℓ𝑔,𝑢𝐿𝜋,𝑥) + 𝐿𝑔,𝑢ℓ𝜋,𝑥

) 

𝑥𝜏 − 𝑥′𝜏

 + (𝐿2
𝜋,𝜃ℓ𝑔,𝑢 + 𝐿𝑔,𝑢ℓ𝜋,𝜃)



𝜃𝜏 − 𝜃′𝜏

,
(5.33c)

where we use the notations 𝑢𝜏 = 𝜋𝜏 (𝑥𝜏, 𝜃𝜏), 𝑢′𝜏 = 𝜋𝜏 (𝑥𝜏, 𝜃′𝜏). We use the triangle
inequality in (5.33a); we use Assumption 5.2.1 in both (5.33b) and (5.33c).

When 𝑡 > 𝜏 + 1, we see that




 𝜕𝑔𝑡 |𝜏𝜕𝜃𝜏

����
𝑥𝜏 ,𝜃𝜏 ,𝜃𝜏+1:𝑡−1

−
𝜕𝑔𝑡 |𝜏
𝜕𝜃𝜏

����
𝑥′𝜏 ,𝜃

′
𝜏 ,𝜃𝜏+1:𝑡−1







≤






 𝜕𝑔𝑡 |𝜏+1𝜕𝑥𝜏+1

����
𝑥𝜏+1,𝜃𝜏+1:𝑡−1

·
𝜕𝑔𝜏+1|𝜏
𝜕𝜃𝜏

����
𝑥𝜏 ,𝜃𝜏

−
𝜕𝑔𝑡 |𝜏+1
𝜕𝑥𝜏+1

����
𝑥′
𝜏+1,𝜃𝜏+1:𝑡−1

·
𝜕𝑔𝜏+1|𝜏
𝜕𝜃𝜏

����
𝑥′𝜏 ,𝜃

′
𝜏






 (5.34a)

≤






(
𝜕𝑔𝑡 |𝜏+1
𝜕𝑥𝜏+1

����
𝑥𝜏+1,𝜃𝜏+1:𝑡−1

−
𝜕𝑔𝑡 |𝜏+1
𝜕𝑥𝜏+1

����
𝑥′
𝜏+1,𝜃𝜏+1:𝑡−1

)
𝜕𝑔𝜏+1|𝜏
𝜕𝜃𝜏

����
𝑥𝜏 ,𝜃𝜏
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+





 𝜕𝑔𝑡 |𝜏+1𝜕𝑥𝜏+1

����
𝑥′
𝜏+1,𝜃𝜏+1:𝑡−1

·
(
𝜕𝑔𝜏+1|𝜏
𝜕𝜃𝜏

����
𝑥𝜏 ,𝜃𝜏

−
𝜕𝑔𝜏+1|𝜏
𝜕𝜃𝜏

����
𝑥′𝜏 ,𝜃

′
𝜏

)




 (5.34b)

≤





 𝜕𝑔𝑡 |𝜏+1𝜕𝑥𝜏+1

����
𝑥𝜏+1,𝜃𝜏+1:𝑡−1

−
𝜕𝑔𝑡 |𝜏+1
𝜕𝑥𝜏+1

����
𝑥′
𝜏+1,𝜃𝜏+1:𝑡−1






 ·





 𝜕𝑔𝜏+1|𝜏𝜕𝜃𝜏

����
𝑥𝜏 ,𝜃𝜏







+






 𝜕𝑔𝑡 |𝜏+1𝜕𝑥𝜏+1

����
𝑥′
𝜏+1,𝜃𝜏+1:𝑡−1






 ·





 𝜕𝑔𝜏+1|𝜏𝜕𝜃𝜏

����
𝑥𝜏 ,𝜃𝜏

−
𝜕𝑔𝜏+1|𝜏
𝜕𝜃𝜏

����
𝑥′𝜏 ,𝜃

′
𝜏







≤

(
(1 + 𝐿𝜋,𝑥)

(
ℓ𝑔,𝑥 + ℓ𝑔,𝑢 · 𝐿𝜋,𝑥

)
+ 𝐿𝑔,𝑥 · ℓ𝜋,𝑥

)
𝐶3

0
𝜌(1 − 𝜌) · 𝜌𝑡−𝜏−1 ·



𝑥𝜏+1 − 𝑥′𝜏+1

 · 𝐿𝑔,𝑢𝐿𝜋,𝜃
+ 𝐶0 · 𝜌𝑡−𝜏−1 ·

(
𝐿𝜋,𝜃 (ℓ𝑔,𝑥 + ℓ𝑔,𝑢𝐿𝜋,𝑥) + 𝐿𝑔,𝑢ℓ𝜋,𝑥

) 

𝑥𝜏 − 𝑥′𝜏


+ 𝐶0 · 𝜌𝑡−𝜏−1 · (𝐿2

𝜋,𝜃ℓ𝑔,𝑢 + 𝐿𝑔,𝑢ℓ𝜋,𝜃)


𝜃𝜏 − 𝜃′𝜏

 (5.34c)

≤ 𝐶ℓ,𝑔,(𝜃,𝑥)𝜌𝑡−𝜏


𝑥𝜏 − 𝑥′𝜏

 + 𝐶ℓ,𝑔,(𝜃,𝜃)𝜌𝑡−𝜏

𝜃𝜏 − 𝜃′𝜏

, (5.34d)

where we use the notations 𝑥𝜏+1 = 𝑔𝜏+1|𝜏 (𝑥𝜏, 𝜃𝜏), 𝑥′𝜏+1 = 𝑔𝜏+1|𝜏 (𝑥𝜏, 𝜃′𝜏). We use the
chain rule decomposition in (5.34a); we use the triangle inequality in (5.34b); we
use the first and the third inequality of Lemma 5.B.3 as well as (5.33) in (5.34c); we
use the first two inequalities of Lemma 5.B.3 in (5.34d).

Proof of Corollary 5.B.4
To show the first inequality, note that

𝜕ℎ𝑡 |𝜏
𝜕𝑥𝜏

����
𝑥𝜏 ,𝜃𝜏:𝑡

=

(
𝜕ℎ𝑡

𝜕𝑥𝑡

����
𝑥𝑡 ,𝑢𝑡

+ 𝜕ℎ𝑡
𝜕𝑢𝑡

����
𝑥𝑡 ,𝑢𝑡

· 𝜕𝜋𝑡
𝜕𝑥𝑡

����
𝑥𝑡 ,𝜃𝑡

)
·
𝜕𝑔𝑡 |𝜏
𝜕𝑥𝜏

����
𝑥𝜏 ,𝜃𝜏:𝑡−1

, (5.35)

where 𝑥𝑡 = 𝑔𝑡 |𝜏 (𝑥𝜏, 𝜃𝜏:𝑡−1), 𝑢𝑡 = 𝜋𝑡 (𝑥𝑡 , 𝜃𝑡). Thus, by 𝜀-time-varying contractive
perturbation, we see that




 𝜕ℎ𝑡 |𝜏𝜕𝑥𝜏

����
𝑥𝜏 ,𝜃𝜏:𝑡






 ≤
(




 𝜕ℎ𝑡𝜕𝑥𝑡

����
𝑥𝑡 ,𝑢𝑡






 +





 𝜕ℎ𝑡𝜕𝑢𝑡

����
𝑥𝑡 ,𝑢𝑡






 ·





 𝜕𝜋𝑡𝜕𝑥𝑡

����
𝑥𝑡 ,𝜃𝑡







)
·





 𝜕𝑔𝑡 |𝜏𝜕𝑥𝜏

����
𝑥𝜏 ,𝜃𝜏:𝑡−1







≤ 𝐿ℎ (1 + 𝐿𝜋,𝑥) · 𝐶𝜌𝑡−𝜏 .

For the second inequality, when 𝜏 = 𝑡, since 𝑥𝑡 ∈ 𝐵𝑛 (0, 𝑅′𝑥) and 𝑢𝑡 ∈ 𝐵𝑚 (0, 𝑅′𝑢), we
see that




 𝜕ℎ𝑡 |𝑡𝜕𝜃𝑡

����
𝑥𝑡 ,𝜃𝑡






 =





 𝜕ℎ𝑡𝜕𝑢𝑡

����
𝑥𝑡 ,𝑢𝑡

· 𝜕𝜋𝑡
𝜕𝜃𝑡

����
𝑥𝑡 ,𝜃𝑡






 ≤





 𝜕ℎ𝑡𝜕𝑢𝑡

����
𝑥𝑡 ,𝑢𝑡






 ·





 𝜕𝜋𝑡𝜕𝜃𝑡

����
𝑥𝑡 ,𝜃𝑡






 ≤ 𝐿ℎ𝐿𝜋,𝜃 .
When 𝜏 < 𝑡, the second inequality can be shown similarly with the first inequality
in Corollary 5.B.4 because we have the chain-rule decomposition

𝜕ℎ𝑡 |𝜏
𝜕𝜃𝜏

����
𝑥𝜏 ,𝜃𝜏:𝑡

=

(
𝜕ℎ𝑡

𝜕𝑥𝑡

����
𝑥𝑡 ,𝑢𝑡

+ 𝜕ℎ𝑡
𝜕𝑢𝑡

����
𝑥𝑡 ,𝑢𝑡

· 𝜕𝜋𝑡
𝜕𝑥𝑡

����
𝑥𝑡 ,𝜃𝑡

)
·
𝜕𝑔𝑡 |𝜏
𝜕𝜃𝜏

����
𝑥𝜏 ,𝜃𝜏:𝑡−1

. (5.36)
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Applying Lemma 5.B.3 gives that𝐶𝐿,ℎ,𝜃 = 𝐿ℎ𝐶𝐿,𝑔,𝜃 (1+𝐿𝜋,𝑥). Thus, we have proved
the first two inequalities.

For the third inequality, using (5.35), we see that




 𝜕ℎ𝑡 |𝜏𝜕𝑥𝜏

����
𝑥𝜏 ,𝜃𝜏 ,𝜃𝜏+1:𝑡

−
𝜕ℎ𝑡 |𝜏
𝜕𝑥𝜏

����
𝑥′𝜏 ,𝜃

′
𝜏 ,𝜃𝜏+1:𝑡







≤






 𝜕ℎ𝑡𝜕𝑥𝑡

����
𝑥𝑡 ,𝑢𝑡

·
(
𝜕𝑔𝑡 |𝜏
𝜕𝑥𝜏

����
𝑥𝜏 ,𝜃𝜏 ,𝜃𝜏+1:𝑡−1

−
𝜕𝑔𝑡 |𝜏
𝜕𝑥𝜏

����
𝑥′𝜏 ,𝜃

′
𝜏 ,𝜃𝜏+1:𝑡−1

)





+







(
𝜕ℎ𝑡

𝜕𝑥𝑡

����
𝑥𝑡 ,𝑢𝑡

− 𝜕ℎ𝑡
𝜕𝑥𝑡

����
𝑥′𝑡 ,𝑢

′
𝑡

)
·
𝜕𝑔𝑡 |𝜏
𝜕𝑥𝜏

����
𝑥′𝜏 ,𝜃

′
𝜏 ,𝜃𝜏+1:𝑡−1







+






 𝜕ℎ𝑡𝜕𝑢𝑡

����
𝑥𝑡 ,𝑢𝑡

· 𝜕𝜋𝑡
𝜕𝑥𝑡

����
𝑥𝑡 ,𝜃𝑡

·
(
𝜕𝑔𝑡 |𝜏
𝜕𝑥𝜏

����
𝑥𝜏 ,𝜃𝜏 ,𝜃𝜏+1:𝑡−1

−
𝜕𝑔𝑡 |𝜏
𝜕𝑥𝜏

����
𝑥′𝜏 ,𝜃

′
𝜏 ,𝜃𝜏+1:𝑡−1

)





+






 𝜕ℎ𝑡𝜕𝑢𝑡

����
𝑥𝑡 ,𝑢𝑡

·
(
𝜕𝜋𝑡

𝜕𝑥𝑡

����
𝑥𝑡 ,𝜃𝑡

− 𝜕𝜋𝑡
𝜕𝑥𝑡

����
𝑥′𝑡 ,𝜃𝑡

)
·
𝜕𝑔𝑡 |𝜏
𝜕𝑥𝜏

����
𝑥′𝜏 ,𝜃

′
𝜏 ,𝜃𝜏+1:𝑡−1







+







(
𝜕ℎ𝑡

𝜕𝑢𝑡

����
𝑥𝑡 ,𝑢𝑡

− 𝜕ℎ𝑡
𝜕𝑢𝑡

����
𝑥′𝑡 ,𝑢

′
𝑡

)
· 𝜕𝜋𝑡
𝜕𝑥𝑡

����
𝑥′𝑡 ,𝜃𝑡

·
𝜕𝑔𝑡 |𝜏
𝜕𝑥𝜏

����
𝑥′𝜏 ,𝜃

′
𝜏 ,𝜃𝜏+1:𝑡−1






 (5.37a)

≤ 𝐿ℎ𝜌𝑡−𝜏
(
𝐶ℓ,𝑔,(𝑥,𝑥)



𝑥𝜏 − 𝑥′𝜏

 + 𝐶ℓ,𝑔,(𝑥,𝜃)

𝜃𝜏 − 𝜃′𝜏

)
+ (ℓ 𝑓 ,𝑥



𝑥𝑡 − 𝑥′𝑡

 + ℓ 𝑓 ,𝑢

𝑢𝑡 − 𝑢′𝑡

) · 𝐶𝐿,𝑔,𝑥𝜌𝑡−𝜏
+ 𝐿ℎ𝐿𝜋,𝑥𝜌𝑡−𝜏

(
𝐶ℓ,𝑔,(𝑥,𝑥)



𝑥𝜏 − 𝑥′𝜏

 + 𝐶ℓ,𝑔,(𝑥,𝜃)

𝜃𝜏 − 𝜃′𝜏

)
+ 𝐿ℎℓ𝜋,𝑥



𝑥𝑡 − 𝑥′𝑡

 · 𝐶𝐿,𝑔,𝑥𝜌𝑡−𝜏 + (ℓ 𝑓 ,𝑥

𝑥𝑡 − 𝑥′𝑡

 + ℓ 𝑓 ,𝑢

𝑢𝑡 − 𝑢′𝑡

) · 𝐿𝜋,𝑥𝐶𝐿,𝑔,𝑥𝜌𝑡−𝜏,
(5.37b)

where we use the notations 𝑥𝑡 = 𝑔𝑡 |𝜏 (𝑥𝜏, 𝜃𝜏:𝑡−1), 𝑥′𝑡 = 𝑔𝑡 |𝜏 (𝑥′𝜏, 𝜃𝜏:𝑡−1), 𝑢𝑡 = 𝜋𝑡 (𝑥𝑡 , 𝜃𝑡),
and 𝑢′𝑡 = 𝜋𝑡 (𝑥′𝑡 , 𝜃𝑡). We use (5.35) and the triangle inequality in (5.37a); we use
Lemma 5.B.3 in (5.37b). Note that by the first two inequalities in Lemma 5.B.3, we
have 

𝑥𝑡 − 𝑥′𝑡

 ≤ 𝜌𝑡−𝜏 (

𝐶𝐿,𝑔,𝑥


𝑥𝜏 − 𝑥′𝜏

 + 𝐶𝐿,𝑔,𝜃

𝜃𝜏 − 𝜃′𝜏

) ,

𝑢𝑡 − 𝑢′𝑡

 ≤ 𝐿𝜋,𝑥𝜌𝑡−𝜏 (
𝐶𝐿,𝑔,𝑥



𝑥𝜏 − 𝑥′𝜏

 + 𝐶𝐿,𝑔,𝜃

𝜃𝜏 − 𝜃′𝜏

) .
Substituting these two inequalities into (5.37) finishes the proof of the third inequal-
ity.

For the last inequality, when 𝜏 = 𝑡, we have that




 𝜕ℎ𝑡,𝑡𝜕𝜃𝑡

����
𝑥𝑡 ,𝜃𝑡

− 𝜕ℎ𝑡,𝑡
𝜕𝜃𝑡

����
𝑥′𝑡 ,𝜃

′
𝑡
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=






 𝜕ℎ𝑡𝜕𝑢𝑡

����
𝑥𝑡 ,𝑢𝑡

· 𝜕𝜋𝑡
𝜕𝜃𝑡

����
𝑥𝑡 ,𝜃𝑡

− 𝜕ℎ𝑡
𝜕𝑢𝑡

����
𝑥′𝑡 ,𝑢

′
𝑡

· 𝜕𝜋𝑡
𝜕𝜃𝑡

����
𝑥′𝑡 ,𝜃

′
𝑡






 (5.38a)

≤





 𝜕ℎ𝑡𝜕𝑢𝑡

����
𝑥𝑡 ,𝑢𝑡

·
(
𝜕𝜋𝑡

𝜕𝜃𝑡

����
𝑥𝑡 ,𝜃𝑡

− 𝜕𝜋𝑡
𝜕𝜃𝑡

����
𝑥′𝑡 ,𝜃

′
𝑡

)




 +






(
𝜕ℎ𝑡

𝜕𝑢𝑡

����
𝑥𝑡 ,𝑢𝑡

− 𝜕ℎ𝑡
𝜕𝑢𝑡

����
𝑥′𝑡 ,𝑢

′
𝑡

)
· 𝜕𝜋𝑡
𝜕𝜃𝑡

����
𝑥′𝑡 ,𝜃

′
𝑡







(5.38b)

≤ 𝐿ℎ
(
ℓ𝜋,𝜃



𝜃𝑡 − 𝜃′𝑡

 + ℓ𝜋,𝑥

𝑥𝑡 − 𝑥′𝑡

) + (
ℓ 𝑓 ,𝑥



𝑥𝑡 − 𝑥′𝑡

 + ℓ 𝑓 ,𝑢

𝑢𝑡 − 𝑢′𝑡

) · 𝐿𝜋,𝜃 (5.38c)

≤
(
𝐿ℎℓ𝜋,𝜃 + (ℓ 𝑓 ,𝑥 + ℓ 𝑓 ,𝑢𝐿𝜋,𝑥)𝐿𝜋,𝜃

) 

𝑥𝑡 − 𝑥′𝑡

 + (
𝐿ℎℓ𝜋,𝜃 + ℓ 𝑓 ,𝑢𝐿2

𝜋,𝜃

) 

𝜃𝑡 − 𝜃′𝑡

,
(5.38d)

where we use the chain rule decomposition in (5.38a); we use the triangle inequality
in (5.38b); we use Assumption 5.2.1 in both (5.38c) and (5.38d).

When 𝜏 < 𝑡, by (5.36), we have that




 𝜕ℎ𝑡 |𝜏𝜕𝜃𝜏

����
𝑥𝜏 ,𝜃𝜏 ,𝜃𝜏+1:𝑡

−
𝜕ℎ𝑡 |𝜏
𝜕𝜃𝜏

����
𝑥′𝜏 ,𝜃

′
𝜏 ,𝜃𝜏+1:𝑡







≤






 𝜕ℎ𝑡𝜕𝑥𝑡

����
𝑥𝑡 ,𝑢𝑡

·
(
𝜕𝑔𝑡 |𝜏
𝜕𝜃𝜏

����
𝑥𝜏 ,𝜃𝜏 ,𝜃𝜏+1:𝑡−1

−
𝜕𝑔𝑡 |𝜏
𝜕𝜃𝜏

����
𝑥′𝜏 ,𝜃

′
𝜏 ,𝜃𝜏+1:𝑡−1

)





+







(
𝜕ℎ𝑡

𝜕𝑥𝑡

����
𝑥𝑡 ,𝑢𝑡

− 𝜕ℎ𝑡
𝜕𝑥𝑡

����
𝑥′𝑡 ,𝑢

′
𝑡

)
·
𝜕𝑔𝑡 |𝜏
𝜕𝜃𝜏

����
𝑥′𝜏 ,𝜃

′
𝜏 ,𝜃𝜏+1:𝑡−1







+






 𝜕ℎ𝑡𝜕𝑢𝑡

����
𝑥𝑡 ,𝑢𝑡

· 𝜕𝜋𝑡
𝜕𝑥𝑡

����
𝑥𝑡 ,𝜃𝑡

·
(
𝜕𝑔𝑡 |𝜏
𝜕𝜃𝜏

����
𝑥𝜏 ,𝜃𝜏 ,𝜃𝜏+1:𝑡−1

−
𝜕𝑔𝑡 |𝜏
𝜕𝜃𝜏

����
𝑥′𝜏 ,𝜃

′
𝜏 ,𝜃𝜏+1:𝑡−1

)





+






 𝜕ℎ𝑡𝜕𝑢𝑡

����
𝑥𝑡 ,𝑢𝑡

·
(
𝜕𝜋𝑡

𝜕𝑥𝑡

����
𝑥𝑡 ,𝜃𝑡

− 𝜕𝜋𝑡
𝜕𝑥𝑡

����
𝑥′𝑡 ,𝜃𝑡

)
·
𝜕𝑔𝑡 |𝜏
𝜕𝜃𝜏

����
𝑥′𝜏 ,𝜃

′
𝜏 ,𝜃𝜏+1:𝑡−1







+







(
𝜕ℎ𝑡

𝜕𝑢𝑡

����
𝑥𝑡 ,𝑢𝑡

− 𝜕ℎ𝑡
𝜕𝑢𝑡

����
𝑥′𝑡 ,𝑢

′
𝑡

)
· 𝜕𝜋𝑡
𝜕𝑥𝑡

����
𝑥′𝑡 ,𝜃𝑡

·
𝜕𝑔𝑡 |𝜏
𝜕𝜃𝜏

����
𝑥′𝜏 ,𝜃

′
𝜏 ,𝜃𝜏+1:𝑡−1






 (5.39a)

≤ 𝐿ℎ𝜌𝑡−𝜏
(
𝐶ℓ,𝑔,(𝜃,𝑥)



𝑥𝜏 − 𝑥′𝜏

 + 𝐶ℓ,𝑔,(𝜃,𝜃)

𝜃𝜏 − 𝜃′𝜏

)
+ (ℓ 𝑓 ,𝑥



𝑥𝑡 − 𝑥′𝑡

 + ℓ 𝑓 ,𝑢

𝑢𝑡 − 𝑢′𝑡

) · 𝐶𝐿,𝑔,𝜃𝜌𝑡−𝜏
+ 𝐿ℎ𝐿𝜋,𝑥𝜌𝑡−𝜏

(
𝐶ℓ,𝑔,(𝜃,𝑥)



𝑥𝜏 − 𝑥′𝜏

 + 𝐶ℓ,𝑔,(𝜃,𝜃)

𝜃𝜏 − 𝜃′𝜏

)
+ 𝐿ℎℓ𝜋,𝑥



𝑥𝑡 − 𝑥′𝑡

 · 𝐶𝐿,𝑔,𝜃𝜌𝑡−𝜏 + (ℓ 𝑓 ,𝑥

𝑥𝑡 − 𝑥′𝑡

 + ℓ 𝑓 ,𝑢

𝑢𝑡 − 𝑢′𝑡

) · 𝐿𝜋,𝑥𝐶𝐿,𝑔,𝜃𝜌𝑡−𝜏,
(5.39b)

where we use (5.36) and the triangle inequality in (5.39a); we use Assumption 5.2.1
in (5.39b). Note that by the first two inequalities in Lemma 5.B.3, we have

𝑥𝑡 − 𝑥′𝑡

 ≤ 𝜌𝑡−𝜏 (

𝐶𝐿,𝑔,𝑥


𝑥𝜏 − 𝑥′𝜏

 + 𝐶𝐿,𝑔,𝜃

𝜃𝜏 − 𝜃′𝜏

) ,
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𝑢𝑡 − 𝑢′𝑡

 ≤ 𝐿𝜋,𝑥𝜌𝑡−𝜏 (
𝐶𝐿,𝑔,𝑥



𝑥𝜏 − 𝑥′𝜏

 + 𝐶𝐿,𝑔,𝜃

𝜃𝜏 − 𝜃′𝜏

) .
Substituting these into (5.39) finishes the proof of the fourth inequality.

Proof of Theorem 5.B.5
To simplify the notation, we use the shorthand 𝑥𝜏 (𝜃) := 𝑔𝜏 |0(𝑥0, 𝜃×𝜏) and 𝑢̂𝜏 (𝜃) =
𝜋𝜏 (𝑥𝜏 (𝜃), 𝜃) for any time 𝜏 and policy parameter 𝜃.

We first derive an upper bound of 𝐺 𝑡 in order to bound the difference between 𝜃𝑡
and 𝜃𝑡+1. Recall that

𝐺 𝑡 :=
𝑡∑︁
𝜏=0

𝜕ℎ𝑡 |0
𝜕𝜃𝑡−𝜏

����
𝑥0,𝜃0:𝑡

=

𝑡∑︁
𝜏=0

𝜕ℎ𝑡 |𝑡−𝜏
𝜕𝜃𝑡−𝜏

����
𝑥𝑡−𝜏 ,𝜃𝑡−𝜏:𝑡

. (5.40)

Now we use induction to show that for all time step 𝑡 ∈ T ,

∥𝐺 𝑡 ∥ ≤
𝐶𝐿,ℎ,𝜃

1 − 𝜌 , 𝑥𝑡 ∈ 𝐵𝑛 (0, 𝑅𝑆 + 𝐶∥𝑥0∥), 𝑢𝑡 ∈ U, and ∥𝜃𝑡+1 − 𝜃𝑡 ∥ ≤ 𝜀. (5.41)

Note that ∥𝐺0∥ ≤ 𝐶𝐿,ℎ,𝜃 ≤ 𝐶𝐿,ℎ, 𝜃
1−𝜌 by Corollary 5.B.4. We also have 𝑥0 ∈ 𝐵𝑛 (0, 𝑅𝑆 +

𝐶∥𝑥0∥) and 𝑢0 ∈ U.

Suppose ∥𝐺 𝑡−1∥ ≤ 𝐶𝐿,ℎ, 𝜃
1−𝜌 for some 𝑡 ≥ 1. Then, since 𝜂 ≤ (1−𝜌)𝜀

𝐶𝐿,ℎ, 𝜃
and the projection

onto Θ is a contraction (see Theorem 1.2.1 in Schneider, 2014), we see that

∥𝜃𝑡 − 𝜃𝑡−1∥ ≤ ∥𝜂𝐺 𝑡−1∥ ≤ 𝜀.

Suppose ∥𝜃𝜏 − 𝜃𝜏−1∥ ≤ 𝜀 holds for all 𝜏 ≤ 𝑡, i.e., 𝜃0:𝑡 ∈ 𝑆𝜀 (0 : 𝑡). By Lemma 5.B.2,
we see that

𝑥𝑡 ∈ 𝐵𝑛 (0, 𝑅𝑆 + 𝐶∥𝑥0∥), and 𝑢𝑡 ∈ U.

Taking norm on both sides of (5.40), we see that

∥𝐺 𝑡 ∥ =





 𝑡∑︁
𝜏=0

𝜕ℎ𝑡 |𝑡−𝜏
𝜕𝜃𝑡−𝜏

����
𝑥𝑡−𝜏 ,𝜃𝑡−𝜏:𝑡







≤

𝑡∑︁
𝜏=0






 𝜕ℎ𝑡 |𝑡−𝜏𝜕𝜃𝑡−𝜏

����
𝑥𝑡−𝜏 ,𝜃𝑡−𝜏:𝑡






 (5.42a)

≤
𝑡∑︁
𝜏=0

𝐶𝐿,ℎ,𝜃𝜌
𝜏 (5.42b)

≤ 𝐶𝐿,ℎ,𝜃
1 − 𝜌 ,
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where we use the triangle inequality in (5.42a) and Corollary 5.B.4 in (5.42b). Note
that we can apply Corollary 5.B.4 because 𝑥𝑡 ∈ 𝐵𝑛 (0, 𝑅𝑆 + 𝐶∥𝑥0∥). Therefore, we
have shown (5.41) by induction. One can use the same technique as (5.42) to show
∥∇𝐹𝑡 (𝜃𝑡)∥ ≤ 𝐶𝐿,ℎ, 𝜃

1−𝜌 .

Since the projection onto the set Θ is a contraction, we obtain that for any 𝑡 > 𝜏,

∥𝜃𝑡 − 𝜃𝜏∥ ≤
𝐶𝐿,ℎ,𝜃𝜂(𝑡 − 𝜏)

1 − 𝜌 . (5.43)

Now we bound the distance between 𝑥𝜏 and 𝑥𝜏 (𝜃𝑡) for 𝜏 ≤ 𝑡. We see that

∥𝑥𝜏 − 𝑥𝜏 (𝜃𝑡)∥ =


𝑔𝜏 |0(𝑥0, 𝜃0:𝜏−1) − 𝑔𝜏 |0(𝑥0, (𝜃𝑡)×𝜏)




≤

𝜏−1∑︁
𝜏′=0



𝑔𝜏 |0(𝑥0, 𝜃0:𝜏′ , (𝜃𝑡)×(𝜏−𝜏′−1)) − 𝑔𝜏 |0(𝑥0, 𝜃0:𝜏′−1, (𝜃𝑡)×(𝜏−𝜏′))




(5.44a)

≤
𝜏−1∑︁
𝜏′=0



𝑔𝜏 |𝜏′ (𝑥𝜏′ , 𝜃𝜏′ , (𝜃𝑡)×(𝜏−𝜏′−1)) − 𝑔𝜏 |𝜏′ (𝑥𝜏′ , (𝜃𝑡)×(𝜏−𝜏′))




(5.44b)

≤
𝜏−1∑︁
𝜏′=0

𝐶𝐿,𝑔,𝜃𝜌
𝜏−𝜏′ ∥𝜃𝑡 − 𝜃𝜏′ ∥ (5.44c)

≤
𝐶𝐿,ℎ,𝜃𝐶𝐿,𝑔,𝜃𝜂

1 − 𝜌

𝜏−1∑︁
𝜏′=0
(𝑡 − 𝜏′)𝜌𝜏−𝜏′ (5.44d)

≤
𝐶𝐿,ℎ,𝜃𝐶𝐿,𝑔,𝜃𝜌

(1 − 𝜌)2

(
(𝑡 − 𝜏) + 1

1 − 𝜌

)
· 𝜂,

where we use the triangle inequality in (5.44a); we use the definition of multi-step
dynamics in (5.44b); we use Lemma 5.B.3 in (5.44c); we use (5.43) in (5.44d).

Similarly, since (5.40) guarantees that 𝑥𝑡 ∈ 𝐵𝑛 (0, 𝑅𝑆 + 𝐶∥𝑥0∥) and we also see that
𝑥𝑡 (𝜃𝑡) ∈ 𝐵𝑛 (0, 𝑅𝑆 + 𝐶∥𝑥0∥), we obtain that

|ℎ𝑡 (𝑥𝑡 , 𝑢𝑡) − 𝐹𝑡 (𝜃𝑡) | = |ℎ𝑡 (𝑥𝑡 , 𝑢𝑡) − ℎ𝑡 (𝑥𝑡 (𝜃𝑡), 𝑢̂𝑡 (𝜃𝑡)) |
≤ 𝐿ℎ (∥𝑥𝑡 − 𝑥𝑡 (𝜃𝑡)∥ + ∥𝑢𝑡 − 𝑢̂𝑡 (𝜃𝑡)∥) (5.45a)

= 𝐿ℎ (∥𝑥𝑡 − 𝑥𝑡 (𝜃𝑡)∥ + ∥𝜋𝑡 (𝑥𝑡 , 𝜃𝑡) − 𝜋𝑡 (𝑥𝑡 (𝜃𝑡), 𝜃𝑡)∥)
≤ 𝐿ℎ (1 + 𝐿𝜋,𝑥)∥𝑥𝑡 − 𝑥𝑡 (𝜃𝑡)∥ (5.45b)

≤
𝐶𝐿,ℎ,𝜃𝐶𝐿,𝑔,𝜃𝐿ℎ (1 + 𝐿𝜋,𝑥)𝜌

(1 − 𝜌)3
· 𝜂, (5.45c)

where we use Assumption 5.2.1 in (5.45a) and (5.45b); we use (5.44) in (5.45c).



248

To show the last inequality in Theorem 5.B.5, note that we have

𝑥𝑡 − 𝑥𝑡 (𝜃𝑡)

 ≤ 𝑡−1∑︁
𝜏=0



𝑔𝑡 |0 (
𝑥0, 𝜃0:𝜏−1, (𝜃𝑡)×(𝑡−𝜏)

)
− 𝑔𝑡 |0

(
𝑥0, 𝜃0:𝜏, (𝜃𝑡)×(𝑡−𝜏−1)

)


(5.46a)

≤ 𝐶𝐿𝜋,𝜃𝐿𝑔,𝑥
𝑡−1∑︁
𝜏=0

𝜌𝑡−𝜏−1

𝜃𝑡 − 𝜃𝜏

 (5.46b)

≤ 𝐶𝐿𝜋,𝜃𝐿𝑔,𝑥
𝑡−1∑︁
𝜏=0

𝜌𝑡−𝜏−1
𝑡−1∑︁
𝜏′=𝜏



𝜃𝜏′+1 − 𝜃𝜏′

 (5.46c)

≤
𝐶𝐿𝜋,𝜃𝐿𝑔,𝑥

1 − 𝜌

𝑡−1∑︁
𝜏=0

𝜌𝑡−𝜏−1

𝜃𝜏+1 − 𝜃𝜏

, (5.46d)

where we use the triangle inequality in (5.46a) and (5.46c); we use the assumption
that ∥𝑥𝑡 ∥ ≤ min{𝑅𝐶 , 𝑅𝑥} and the time-invariant contractive perturbation property
in (5.46b); we rearrange the terms and use

∑∞
𝜏=0 𝜌

𝜏 ≤ 1
1−𝜌 in (5.46d).

Therefore, since 𝑥𝑡 , 𝑥𝑡 (𝜃𝑡) ∈ X and 𝑢̃𝑡 , 𝑢̂𝑡 (𝜃𝑡) ∈ U, we see that��ℎ𝑡 (𝑥𝑡 , 𝑢̃𝑡) − 𝐹𝑡 (𝜃𝑡)�� = ��ℎ𝑡 (𝑥𝑡 , 𝑢̃𝑡) − ℎ𝑡 (𝑥𝑡 (𝜃𝑡), 𝑢̂𝑡 (𝜃𝑡))��
≤ 𝐿ℎ

(

𝑥𝑡 − 𝑥𝑡 (𝜃𝑡)

 + 

𝑢̃𝑡 − 𝑢̂𝑡 (𝜃𝑡)

) (5.47a)

= 𝐿ℎ
(

𝑥𝑡 − 𝑥𝑡 (𝜃𝑡)

 + 

𝜋𝑡 (𝑥𝑡 , 𝜃𝑡) − 𝜋𝑡 (𝑥𝑡 (𝜃𝑡), 𝜃𝑡)

)

≤ 𝐿ℎ (1 + 𝐿𝜋,𝑥)


𝑥𝑡 − 𝑥𝑡 (𝜃𝑡)

 (5.47b)

≤
𝐶𝐿𝜋,𝜃𝐿𝑔,𝑥𝐿ℎ (1 + 𝐿𝜋,𝑥)

1 − 𝜌

𝑡−1∑︁
𝜏=0

𝜌𝑡−𝜏−1

𝜃𝜏+1 − 𝜃𝜏

, (5.47c)

where we use Assumption 5.2.1 in (5.47a) and (5.47b); we use (5.46) in (5.47c).

Proof of Theorem 5.B.6

Theorem 5.B.9 (Gradient Bias). Suppose Assumptions 5.2.1 and 5.2.2 hold. Let
{𝑥𝑡 , 𝑢𝑡 , 𝜃𝑡}𝑡∈T denote the trajectory of M-GAPS (Algorithm 6) with learning rate
𝜂 ≤ (1−𝜌)𝜀

𝐶𝐿,ℎ, 𝜃
. Then, the following holds for all 𝜏 ≤ 𝑡:




 𝜕ℎ𝑡 |0𝜕𝜃𝜏

����
𝑥0,𝜃0:𝑡

−
𝜕ℎ𝑡 |0
𝜕𝜃𝜏

����
𝑥0,(𝜃𝑡 )×(𝑡+1)






 ≤ (
𝐶̂0 + 𝐶̂1(𝑡 − 𝜏) + 𝐶̂2(𝑡 − 𝜏)2

)
𝜌𝑡−𝜏 · 𝜂,

for

𝐶̂0 =
𝜌𝐶𝐿,ℎ,𝜃𝐶𝐿,𝑔,𝜃𝐶ℓ,ℎ,(𝜃,𝑥)

(1 − 𝜌)3
, 𝐶̂1 =

(1 − 𝜌)𝐶𝐿,ℎ,𝜃𝐶ℓ,ℎ,(𝜃,𝑥) + 𝜌𝐶𝐿,ℎ,𝜃𝐶𝐿,𝑔,𝜃𝐶ℓ,ℎ,(𝜃,𝜃)
(1 − 𝜌)2

,
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𝐶̂2 =
𝐶ℓ,ℎ,(𝑥,𝜃)𝐶𝐿,𝑔, 𝜃𝐶𝐿,ℎ, 𝜃

1 − 𝜌 .

Next,

∥𝐺 𝑡 − ∇𝐹𝑡 (𝜃𝑡)∥ ≤
(
𝐶̂0

1 − 𝜌 +
𝐶̂1 + 𝐶̂2

(1 − 𝜌)2
+ 𝐶̂2

(1 − 𝜌)3

)
𝜂.

Proof of Theorem 5.B.9. To simplify the notation, we adopt the shorthand notations
𝑥𝜏 (𝜃) := 𝑔𝜏 |0(𝑥0, 𝜃×𝜏) and 𝑢̂𝜏 (𝜃) := 𝜋𝜏 (𝑥𝜏 (𝜃), 𝜃) throughout the proof.

As we discussed below Theorem 5.B.6 in the proof outline, we use the triangle
inequality to do the decomposition




 𝜕ℎ𝑡 |0𝜕𝜃𝜏

����
𝑥0,𝜃0:𝑡

−
𝜕ℎ𝑡 |0
𝜕𝜃𝜏

����
𝑥0,(𝜃𝑡 )×(𝑡+1)







=






 𝜕ℎ𝑡 |𝜏𝜕𝜃𝜏

����
𝑥𝜏 ,𝜃𝜏:𝑡

−
𝜕ℎ𝑡 |𝜏
𝜕𝜃𝜏

����
𝑥𝜏 (𝜃𝑡 ),(𝜃𝑡 )×(𝑡−𝜏+1)







≤






 𝜕ℎ𝑡 |𝜏𝜕𝜃𝜏

����
𝑥𝜏 ,𝜃𝜏 ,(𝜃𝑡 )×(𝑡−𝜏 )

−
𝜕ℎ𝑡 |𝜏
𝜕𝜃𝜏

����
𝑥𝜏 (𝜃𝑡 ),(𝜃𝑡 )×(𝑡−𝜏+1)







+

𝑡−1∑︁
𝜏′=𝜏+1






 𝜕ℎ𝑡 |𝜏𝜕𝜃𝜏

����
𝑥𝜏 ,𝜃𝜏:𝜏′ ,(𝜃𝑡 )×(𝑡−𝜏′ )

−
𝜕ℎ𝑡 |𝜏
𝜕𝜃𝜏

����
𝑥𝜏 ,𝜃𝜏:𝜏′−1,(𝜃𝑡 )×(𝑡−𝜏′+1)






. (5.48)

Note that we can apply Corollary 5.B.4 to bound each term in (5.48). For the first
term in (5.48), since 𝑥𝜏, 𝑥𝜏 (𝜃𝑡), 𝑥𝜏+1 ∈ 𝐵𝑛 (0, 𝑅𝑆 + 𝐶∥𝑥0∥), we see that




 𝜕ℎ𝑡 |𝜏𝜕𝜃𝜏

����
𝑥𝜏 ,𝜃𝜏 ,(𝜃𝑡 )×(𝑡−𝜏 )

−
𝜕ℎ𝑡 |𝜏
𝜕𝜃𝜏

����
𝑥𝜏 (𝜃𝑡 ),(𝜃𝑡 )×(𝑡−𝜏+1)







≤ 𝜌𝑡−𝜏

(
𝐶ℓ,ℎ,(𝜃,𝑥) ∥𝑥𝜏 − 𝑥𝜏 (𝜃𝑡)∥ + 𝐶ℓ,ℎ,(𝜃,𝜃) ∥𝜃𝑡 − 𝜃𝜏∥

)
(5.49a)

≤
(1 − 𝜌)𝐶𝐿,ℎ,𝜃𝐶ℓ,ℎ,(𝜃,𝑥) + 𝜌𝐶𝐿,ℎ,𝜃𝐶𝐿,𝑔,𝜃𝐶ℓ,ℎ,(𝜃,𝜃)

(1 − 𝜌)2
· (𝑡 − 𝜏)𝜌𝑡−𝜏 · 𝜂

+
𝜌𝐶𝐿,ℎ,𝜃𝐶𝐿,𝑔,𝜃𝐶ℓ,ℎ,(𝜃,𝑥)

(1 − 𝜌)3
· 𝜌𝑡−𝜏 · 𝜂, (5.49b)

where we use Corollary 5.B.4 in (5.49a) and Theorem 5.B.5 in (5.49b).

For any 𝜏′ ∈ [𝜏 + 1 : 𝑡 − 1], since 𝑥𝜏′ , 𝑥𝜏′+1 ∈ 𝐵𝑛 (0, 𝑅𝑆 + 𝐶∥𝑥0∥), we see that




 𝜕ℎ𝑡 |𝜏𝜕𝜃𝜏

����
𝑥𝜏 ,𝜃𝜏:𝜏′ ,(𝜃𝑡 )×(𝑡−𝜏′ )

−
𝜕ℎ𝑡 |𝜏
𝜕𝜃𝜏

����
𝑥𝜏 ,𝜃𝜏:𝜏′−1,(𝜃𝑡 )×(𝑡−𝜏′+1)







=







(
𝜕ℎ𝑡 |𝜏′

𝜕𝑥𝜏′

����
𝑥𝜏′ ,𝜃𝜏′ ,(𝜃𝑡 )×(𝑡−𝜏′ )

−
𝜕ℎ𝑡 |𝜏′

𝜕𝑥𝜏′

����
𝑥𝜏′ ,(𝜃𝑡 )×(𝑡−𝜏′+1)

)
𝜕𝑔𝜏′ |𝜏
𝜕𝜃𝜏

����
𝑥𝜏 ,𝜃𝜏:𝜏′−1
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≤





 𝜕ℎ𝑡 |𝜏′𝜕𝑥𝜏′

����
𝑥𝜏′ ,𝜃𝜏′ ,(𝜃𝑡 )×(𝑡−𝜏′ )

−
𝜕ℎ𝑡 |𝜏′

𝜕𝑥𝜏′

����
𝑥𝜏′ ,(𝜃𝑡 )×(𝑡−𝜏′+1)






 ·





 𝜕𝑔𝜏′ |𝜏𝜕𝜃𝜏

����
𝑥𝜏 ,𝜃𝜏:𝜏′−1







≤ 𝐶ℓ,ℎ,(𝑥,𝜃)𝜌𝑡−𝜏

′ ∥𝜃𝑡 − 𝜃𝜏′ ∥ · 𝐶𝐿,𝑔,𝜃𝜌𝜏
′−𝜏 (5.50a)

≤
𝐶ℓ,ℎ,(𝑥,𝜃)𝐶𝐿,𝑔, 𝜃𝐶𝐿,ℎ, 𝜃

1 − 𝜌 · (𝑡 − 𝜏)𝜌𝑡−𝜏 · 𝜂, (5.50b)

where we use Lemma 5.B.3 and Corollary 5.B.4 in (5.50a); we use Theorem 5.B.5
in (5.50b). Substituting (5.49) and (5.50) into (5.48) finishes the proof of the first
inequality.

For the second inequality, recall that 𝐺 𝑡 and ∇ℓ𝑡 (𝜃𝑡) are given by

𝐺 𝑡 :=
𝑡∑︁
𝜏=0

𝜕ℎ𝑡 |0
𝜕𝜃𝑡−𝜏

����
𝑥0,𝜃0:𝑡

,∇ℓ𝑡 (𝜃𝑡) =
𝑡∑︁
𝜏=0

𝜕ℎ𝑡 |0
𝜕𝜃𝑡−𝜏

����
𝑥0,(𝜃𝑡 )×(𝑡+1)

.

Therefore, we see that

∥𝐺 𝑡 − ∇𝐹𝑡 (𝜃𝑡)∥ =





 𝑡∑︁
𝜏=0

𝜕ℎ𝑡 |0
𝜕𝜃𝑡−𝜏

����
𝑥0,𝜃0:𝑡

−
𝑡∑︁
𝜏=0

𝜕ℎ𝑡 |0
𝜕𝜃𝑡−𝜏

����
𝑥0,(𝜃𝑡 )×(𝑡+1)







≤

𝑡∑︁
𝜏=0






 𝜕ℎ𝑡 |0𝜕𝜃𝑡−𝜏

����
𝑥0,𝜃0:𝑡

−
𝜕ℎ𝑡 |0
𝜕𝜃𝑡−𝜏

����
𝑥0,(𝜃𝑡 )×(𝑡+1)






 (5.51a)

≤
𝑡∑︁
𝜏=0

(
𝐶̂0 + 𝐶̂1𝜏 + 𝐶̂2𝜏

2
)
𝜌𝜏𝜂 (5.51b)

≤
(
𝐶̂0

1 − 𝜌 +
𝐶̂1 + 𝐶̂2

(1 − 𝜌)2
+ 𝐶̂2

(1 − 𝜌)3

)
𝜂,

where we use the triangle inequality in (5.51a); we use the first inequality in Theo-
rem 5.B.6 that we have shown and Corollary 5.B.4 in (5.51b).

Regret of M-GAPS under Nonconvex Surrogate Costs
To derive the local regret bound for GAPS in online policy selection, we first bound
the local regret for OGD (with biased gradients) in online nonconvex optimization.

Theorem 5.B.10. Suppose Θ = R𝑑 . Consider the biased OGD update rule 𝜃𝑡+1 =

𝜃𝑡 − 𝜂𝐺 𝑡 , where 𝐺 𝑡 satisfies ∥𝐺 𝑡 − ∇𝐹𝑡 (𝜃𝑡)∥ ≤ 𝛽. Suppose at every time 𝑡, 𝐹𝑡 is
𝐿𝐹-Lipschitz and ℓ𝐹-smooth. If the learning rate 𝜂 < 1

ℓ𝐹
, we have that

𝑇−1∑︁
𝑡=0
∥∇𝐹𝑡 (𝜃𝑡)∥2 ≤

2
𝜂

(
𝐹0(𝜃0) +

𝑇−1∑︁
𝑡=1

dist𝑠 (𝐹𝑡 , 𝐹𝑡−1)
)
+
(
2(1 − ℓ𝐹𝜂)𝐿𝐹𝛽 + ℓ𝐹𝜂 · 𝛽2

)
𝑇,

where dist𝑠 (𝐹, 𝐹′) := sup𝜃∈Θ |𝐹 (𝜃) − 𝐹′(𝜃) |.
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We provide the proof of Theorem 5.B.10 later in this section. Our proof is inspired by
the analysis for (stochastic) gradient descent in offline nonconvex optimization (see,
e.g., Ghadimi and Lan, 2013) with the additional step to handle the time-varying
function sequence 𝐹0:𝑇−1 via the measure of variation dist𝑠 (𝐹𝑡 , 𝐹𝑡−1).

Our approximation error bound (Theorem 5.3.1) guarantees that the bias 𝛽 =

𝑂 (1/
√
𝑇) if we set the learning rate 𝜂 = 𝑂 (1/

√
𝑇). Therefore, the remain-

ing task is to bound the measure of variation in online nonconvex optimization∑𝑇−1
𝑡=1 dist𝑠 (𝐹𝑡 , 𝐹𝑡−1) by the variation intensity in online policy selection 𝑉 (Defini-

tion 5.3.2). To derive this bound, we need to show a convergence result on applying
a fixed policy parameter in a time-invariant system. We begin with a definition that
characterize this (imaginary) dynamical process.

Definition 5.B.1. For fixed dynamics function 𝑔, policy function 𝜋, and policy
parameter 𝜃, we define 𝑥 (𝑔,𝜋)𝜏 (𝜃) recursively by the equation

𝑥
(𝑔,𝜋)
𝜏+1 (𝜃) = 𝑔

(
𝑥
(𝑔,𝜋)
𝜏 (𝜃), 𝜋

(
𝑥
(𝑔,𝜋)
𝜏 (𝜃), 𝜃

))
,∀𝜏 ≥ 0, where 𝑥 (𝑔,𝜋)0 (𝜃) = 𝑥0.

Compared with 𝑥𝑡 (𝜃) we defined before Definition 5.1.2, the state 𝑥 (𝑔,𝜋)
𝜏+1 (𝜃) is pro-

duced by a time-invariant dynamical system induced by 𝑔 and 𝜋, while 𝑥𝑡 (𝜃) is
produced by the actual time-varying dynamics induced by 𝑔0:𝑡−1 and 𝜋0:𝑡−1.

We show the time-invariant evolution 𝑥 (𝑔,𝜋)𝜏 has a unique limitation point as 𝜏 tends
to infinity. This limit is also a fixed point, and the states will converge to the limit
exponentially fast with respect to 𝜏. We state this result formally in Lemma 5.B.11.

Lemma 5.B.11. Suppose Assumptions 5.2.1 and 5.2.2 hold, and (𝑔, 𝜋) ∈ G. The
limit lim𝜏→∞ 𝑥

(𝑔,𝜋)
𝜏 (𝜃) exists. Let 𝑥 (𝑔,𝜋)∞ (𝜃) := lim𝜏→∞ 𝑥

(𝑔,𝜋)
𝜏 (𝜃). Further, we also

have that


𝑥 (𝑔,𝜋)𝜏 (𝜃) − 𝑥 (𝑔,𝜋)∞ (𝜃)



 ≤ 𝐶𝜌𝜏


𝑥0 − 𝑥 (𝑔,𝜋)∞ (𝜃)




 ≤ 𝐶𝜌𝜏 · diam(X),

where diam(X) = 2𝐶 (𝑅𝑆 + 𝐶∥𝑥0∥) + 2𝑅𝑆.

We provide the proof of Lemma 5.B.11 later in this section. With the fixed
point and convergence result in Lemma 5.B.11, we bound the measure of varia-
tion based on 𝐹0:𝑇−1 by the variation intensity 𝑉 based on 𝑔0:𝑇−1, 𝜋0:𝑇−1, and ℎ0:𝑇−1

in Lemma 5.B.12.
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Lemma 5.B.12. Suppose Assumptions 5.2.1 and 5.2.2 hold. Then, we have
𝑇−1∑︁
𝑡=1

dist𝑠 (𝐹𝑡 , 𝐹𝑡−1) ≤
2𝐶𝐿ℎ (1 + 𝐿𝜋,𝑥) (1 + 𝐿𝑔,𝑢)

(1 − 𝜌)2𝜌
· 𝑉 + 2𝐶𝐿ℎ (1 + 𝐿𝜋,𝑥)

1 − 𝜌 · diam(X),

where diam(X) = 2𝐶 (𝑅𝑆 + 𝐶∥𝑥0∥) + 2𝑅𝑆.

With these auxiliary results, we restate Theorem 5.3.4 with complete expressions
and present the proof.

Theorem 5.B.13. Under the same assumptions as Theorem 5.3.1, if we additionally
assume that Θ = R𝑑 for some integer 𝑑, then GAPS satisfies local regret

𝑅𝐿 (𝑇) ≤ 2
𝜂

(
𝑐0 +

2𝐶𝐿𝐹𝐿ℎ (1 + 𝐿𝜋,𝑥)
1 − 𝜌

( (1 + 𝐿𝑔,𝑢)𝑉
(1 − 𝜌)𝜌 + 2𝐶 (𝑅𝑆 + 𝐶∥𝑥0∥) + 2𝑅𝑆

))
+ 2(1 − ℓ𝐹𝜂)𝐿𝐹

(
𝐶̂0

1 − 𝜌 +
𝐶̂1 + 𝐶̂2

(1 − 𝜌)2
+ 𝐶̂2

(1 − 𝜌)3

)
𝜂𝑇

+ 2ℓ𝐹
(
𝐶̂0

1 − 𝜌 +
𝐶̂1 + 𝐶̂2

(1 − 𝜌)2
+ 𝐶̂2

(1 − 𝜌)3

)2

𝜂3𝑇, (5.52)

where 𝐶̂0, 𝐶̂1, 𝐶̂2 are defined in Theorem 5.B.9, 𝑐0 = 𝑓0(𝑥0, 𝜋0(𝑥0, 𝜃0)), and

𝐿𝐹 =
𝐶𝐿,ℎ,𝜃

1 − 𝜌 , ℓ𝐹 =
𝐶𝐿𝑔,𝑢𝐿𝜋,𝜃𝐶ℓ,ℎ,(𝜃,𝑥) + 𝜌𝐶ℓ,ℎ,(𝑥,𝜃)𝐶𝐿,𝑔,𝜃

(1 − 𝜌)2
.

Proof of Theorem 5.B.13. By Theorem 5.B.10 and Theorem 5.3.1, we know the
parameter sequence of GAPS satisfies that
𝑇−1∑︁
𝑡=0
∥∇𝐹𝑡 (𝜃𝑡)∥2 ≤

2
𝜂

(
𝐹0(𝜃0) +

𝑇−1∑︁
𝑡=1

dist𝑠 (𝐹𝑡 , 𝐹𝑡−1)
)
+

(
2(1 − ℓ𝐹𝜂)𝐿𝐹𝛽 + ℓ𝐹𝜂 · 𝛽2

)
𝑇,

(5.53)

where 𝛽 =

(
𝐶̂0(1 − 𝜌)−1 + (𝐶̂1 + 𝐶̂2) (1 − 𝜌)−2 + 𝐶̂2(1 − 𝜌)−3

)
𝜂 +𝐶𝐿,ℎ,𝜃 (1 − 𝜌)−1 ·

𝜌𝐵. Here, 𝐶̂0, 𝐶̂1, 𝐶̂2 are defined in Theorem 5.B.9.

Note that 𝐿𝐹 =
𝐶𝐿,ℎ, 𝜃

1−𝜌 by Theorem 5.B.5. Now we show that we can set

ℓ𝐹 =
𝐶𝐿𝑔,𝑢𝐿𝜋,𝜃𝐶ℓ,ℎ,(𝜃,𝑥) + 𝜌𝐶ℓ,ℎ,(𝑥,𝜃)𝐶𝐿,𝑔,𝜃

(1 − 𝜌)2
.

To see this, by Lemma 5.B.3, we obtain that the following inequality holds for every
time step 𝑡,

∥∇𝐹𝑡 (𝜃) − ∇𝐹𝑡 (𝜃′)∥ =





 𝑡∑︁
𝜏=0

𝜕ℎ𝑡 |𝜏
𝜕𝜃𝜏

����
𝑥𝜏 (𝜃),𝜃×(𝑡−𝜏+1)

−
𝑡∑︁
𝜏=0

𝜕ℎ𝑡 |𝜏
𝜕𝜃𝜏

����
𝑥𝜏 (𝜃′),𝜃′×(𝑡−𝜏+1)






 (5.54a)



253

≤
𝑡∑︁
𝜏=0






 𝜕ℎ𝑡 |𝜏𝜕𝜃𝜏

����
𝑥𝜏 (𝜃),𝜃×(𝑡−𝜏+1)

−
𝜕ℎ𝑡 |𝜏
𝜕𝜃𝜏

����
𝑥𝜏 (𝜃′),𝜃′×(𝑡−𝜏+1)






, (5.54b)

where we use the definition of surrogate cost functions in (5.54a); we use the triangle
inequality in (5.54b).

Note that for each term in (5.54), we can decompose it as




 𝜕ℎ𝑡 |𝜏𝜕𝜃𝜏

����
𝑥𝜏 (𝜃),𝜃×(𝑡−𝜏+1)

−
𝜕ℎ𝑡 |𝜏
𝜕𝜃𝜏

����
𝑥𝜏 (𝜃′),𝜃′×(𝑡−𝜏+1)







≤






 𝜕ℎ𝑡 |𝜏𝜕𝜃𝜏

����
𝑥𝜏 (𝜃),𝜃×(𝑡−𝜏+1)

−
𝜕ℎ𝑡 |𝜏
𝜕𝜃𝜏

����
𝑥𝜏 (𝜃′),𝜃×(𝑡−𝜏+1)







+

𝑡∑︁
𝑗=𝜏






 𝜕ℎ𝑡 |𝜏𝜕𝜃𝜏

����
𝑥𝜏 (𝜃′),𝜃′×( 𝑗−𝜏 ) ,𝜃×(𝑡− 𝑗+1)

−
𝜕ℎ𝑡 |𝜏
𝜕𝜃𝜏

����
𝑥𝜏 (𝜃′),𝜃′×( 𝑗−𝜏+1) ,𝜃×(𝑡− 𝑗 )






. (5.55)

Note that for any time step 𝜏, by the triangle inequality, we have

∥𝑥𝜏 (𝜃) − 𝑥𝜏 (𝜃′)∥ ≤
𝜏−1∑︁
𝑗=0




𝑔𝜏 |0(𝑥0, 𝜃× 𝑗 , 𝜃
′
×(𝜏− 𝑗)) − 𝑔𝜏 |0(𝑥0, 𝜃×( 𝑗+1) , 𝜃

′
×(𝜏− 𝑗−1))





≤

𝜏−1∑︁
𝑗=0
𝐶𝜌𝜏− 𝑗−1 · 𝐿𝑔,𝑢𝐿𝜋,𝜃 ∥𝜃 − 𝜃′∥ ≤

𝐶𝐿𝑔,𝑢𝐿𝜋,𝜃

1 − 𝜌 · ∥𝜃 − 𝜃′∥,

where we apply the time-invariant contractive perturbation in the last inequality.
Therefore, by Corollary 5.B.4, we obtain that




 𝜕ℎ𝑡 |𝜏𝜕𝜃𝜏

����
𝑥𝜏 (𝜃),𝜃×(𝑡−𝜏+1)

−
𝜕ℎ𝑡 |𝜏
𝜕𝜃𝜏

����
𝑥𝜏 (𝜃′),𝜃×(𝑡−𝜏+1)







≤ 𝐶ℓ,ℎ,(𝜃,𝑥)𝜌𝑡−𝜏∥𝑥𝜏 (𝜃) − 𝑥𝜏 (𝜃′)∥ ≤

𝐶𝐿𝑔,𝑢𝐿𝜋,𝜃𝐶ℓ,ℎ,(𝜃,𝑥)
1 − 𝜌 · 𝜌𝑡−𝜏 · ∥𝜃 − 𝜃′∥. (5.56)

We also see that




 𝜕ℎ𝑡 |𝜏𝜕𝜃𝜏

����
𝑥𝜏 (𝜃′),𝜃′×( 𝑗−𝜏 ) ,𝜃×(𝑡− 𝑗+1)

−
𝜕ℎ𝑡 |𝜏
𝜕𝜃𝜏

����
𝑥𝜏 (𝜃′),𝜃′×( 𝑗−𝜏+1) ,𝜃×(𝑡− 𝑗 )







=







(
𝜕ℎ𝑡 | 𝑗
𝜕𝑥 𝑗

����
𝑥 𝑗 (𝜃′),𝜃×(𝑡− 𝑗+1)

−
𝜕ℎ𝑡 | 𝑗
𝜕𝜃 𝑗

����
𝑥 𝑗 (𝜃′),𝜃′,𝜃×(𝑡− 𝑗 )

)
𝜕𝑔 𝑗 |𝜏
𝜕𝜃𝜏

����
𝑥𝜏 (𝜃′),𝜃′×( 𝑗−𝜏 )







≤






 𝜕ℎ𝑡 | 𝑗𝜕𝑥 𝑗

����
𝑥 𝑗 (𝜃′),𝜃×(𝑡− 𝑗+1)

−
𝜕ℎ𝑡 | 𝑗
𝜕𝜃 𝑗

����
𝑥 𝑗 (𝜃′),𝜃′,𝜃×(𝑡− 𝑗 )






 ·





 𝜕𝑔 𝑗 |𝜏𝜕𝜃𝜏

����
𝑥𝜏 (𝜃′),𝜃′×( 𝑗−𝜏 )







≤ 𝐶ℓ,ℎ,(𝑥,𝜃)𝜌𝑡− 𝑗 ∥𝜃 − 𝜃′∥ · 𝐶𝐿,𝑔,𝜃𝜌 𝑗−𝜏 = 𝐶ℓ,ℎ,(𝑥,𝜃)𝐶𝐿,𝑔,𝜃𝜌𝑡−𝜏∥𝜃 − 𝜃′∥. (5.57)
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Substituting (5.56) and (5.57) into (5.55) gives that




 𝜕ℎ𝑡 |𝜏𝜕𝜃𝜏

����
𝑥𝜏 (𝜃),𝜃×(𝑡−𝜏+1)

−
𝜕ℎ𝑡 |𝜏
𝜕𝜃𝜏

����
𝑥𝜏 (𝜃′),𝜃′×(𝑡−𝜏+1)







≤

(
𝐶𝐿𝑔,𝑢𝐿𝜋,𝜃𝐶ℓ,ℎ,(𝜃,𝑥)

1 − 𝜌 + (𝑡 − 𝜏)𝐶ℓ,ℎ,(𝑥,𝜃)𝐶𝐿,𝑔,𝜃
)
· 𝜌𝑡−𝜏∥𝜃 − 𝜃′∥.

Substituting this inequality into (5.54) gives that

∥∇𝐹𝑡 (𝜃) − ∇𝐹𝑡 (𝜃′)∥

≤
𝑡∑︁
𝜏=0

(
𝐶𝐿𝑔,𝑢𝐿𝜋,𝜃𝐶ℓ,ℎ,(𝜃,𝑥)

1 − 𝜌 + (𝑡 − 𝜏)𝐶ℓ,ℎ,(𝑥,𝜃)𝐶𝐿,𝑔,𝜃
)
· 𝜌𝑡−𝜏∥𝜃 − 𝜃′∥

≤
𝐶𝐿𝑔,𝑢𝐿𝜋,𝜃𝐶ℓ,ℎ,(𝜃,𝑥) + 𝜌𝐶ℓ,ℎ,(𝑥,𝜃)𝐶𝐿,𝑔,𝜃

(1 − 𝜌)2
· ∥𝜃 − 𝜃′∥.

Therefore, we can set ℓ𝐹 =
𝐶𝐿𝑔,𝑢𝐿 𝜋,𝜃𝐶ℓ,ℎ, (𝜃,𝑥 )+𝜌𝐶ℓ,ℎ, (𝑥, 𝜃 )𝐶𝐿,𝑔, 𝜃

(1−𝜌)2 .

Recall that the notation dist𝑠 is defined in Theorem 5.B.10. By Lemma 5.B.12, we
know that

𝑇−1∑︁
𝑡=1

dist𝑠 (𝐹𝑡 , 𝐹𝑡−1)

≤
2𝐶𝐿ℎ (1 + 𝐿𝜋,𝑥) (1 + 𝐿𝑔,𝑢)

(1 − 𝜌)2𝜌
· 𝑉 + 4𝐶𝐿ℎ (1 + 𝐿𝜋,𝑥) (𝐶 (𝑅𝑆 + 𝐶∥𝑥0∥) + 𝑅𝑆)

1 − 𝜌 .

Substituting this inequality and the expressions of 𝐿𝐹 , ℓ𝐹 into (5.53) finishes the
proof.

Proof of Theorem 5.B.10
By the smoothness of 𝐹𝑡 (·), we see that

𝐹𝑡 (𝜃𝑡+1) ≤ 𝐹𝑡 (𝜃𝑡) + ⟨∇𝐹𝑡 (𝜃𝑡), 𝜃𝑡+1 − 𝜃𝑡⟩ +
ℓ𝐹

2
∥𝜃𝑡+1 − 𝜃𝑡 ∥2

= 𝐹𝑡 (𝜃𝑡) − 𝜂⟨∇𝐹𝑡 (𝜃𝑡), 𝐺 𝑡⟩ +
ℓ𝐹𝜂

2

2
∥𝐺 𝑡 ∥2

= 𝐹𝑡 (𝜃𝑡) − 𝜂⟨∇𝐹𝑡 (𝜃𝑡),∇𝐹𝑡 (𝜃𝑡)⟩ +
ℓ𝐹𝜂

2

2
∥∇𝐹𝑡 (𝜃𝑡)∥2

− 𝜂⟨∇𝐹𝑡 (𝜃𝑡), 𝐺 𝑡 − ∇𝐹𝑡 (𝜃𝑡)⟩ + ℓ𝐹𝜂2⟨∇𝐹𝑡 (𝜃𝑡), 𝐺 𝑡 − ∇𝐹 (𝜃𝑡)⟩

+ ℓ𝐹𝜂
2

2
∥∇𝐹𝑡 (𝜃𝑡) − 𝐺 𝑡 ∥2

≤ 𝐹𝑡 (𝜃𝑡) − 𝜂
(
1 − ℓ𝐹𝜂

2

)
∥∇𝐹𝑡 (𝜃𝑡)∥2 + 𝜂(1 − ℓ𝐹𝜂)𝐿𝐹𝛽 +

ℓ𝐹𝜂
2

2
· 𝛽2.

(5.58)
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Summing (5.58) over 𝑡 = 0, 1, . . . , 𝑇−1 and rearranging the terms gives the following
inequalities:

𝜂

(
1 − ℓ𝐹𝜂

2

) 𝑇−1∑︁
𝑡=0
∥∇𝐹𝑡 (𝜃𝑡)∥2

≤
𝑇−1∑︁
𝑡=0
(𝐹𝑡 (𝜃𝑡) − 𝐹𝑡 (𝜃𝑡+1)) +

(
𝜂(1 − ℓ𝐹𝜂)𝐿𝐹𝛽 +

ℓ𝐹𝜂
2

2
· 𝛽2

)
𝑇

≤ 𝐹0(𝜃0) +
𝑇−1∑︁
𝑡=1
(𝐹𝑡 (𝜃𝑡) − 𝐹𝑡−1(𝜃𝑡)) +

(
𝜂(1 − ℓ𝐹𝜂)𝐿𝐹𝛽 +

ℓ𝐹𝜂
2

2
· 𝛽2

)
𝑇

≤ 𝐹0(𝜃0) +
𝑇−1∑︁
𝑡=1

dist𝑠 (𝐹𝑡 , 𝐹𝑡−1) +
(
𝜂(1 − ℓ𝐹𝜂)𝐿𝐹𝛽 +

ℓ𝐹𝜂
2

2
· 𝛽2

)
𝑇. (5.59)

Proof of Lemma 5.B.11
We first show the limit lim𝜏→∞ 𝑥

(𝑔,𝜋)
𝜏 (𝜃) exists. It suffices to show that {𝑥 (𝑔,𝜋)𝜏 (𝜃)}

is a Cauchy sequence. Note that for 𝜏′ > 𝜏 ≥ 0, we have


𝑥 (𝑔,𝜋)𝜏′ (𝜃) − 𝑥
(𝑔,𝜋)
𝜏 (𝜃)




 ≤ 𝜏′−1∑︁
𝑗=𝜏




𝑥 (𝑔,𝜋)
𝑗+1 (𝜃) − 𝑥

(𝑔,𝜋)
𝑗
(𝜃)




 (5.60a)

≤
𝜏′−1∑︁
𝑗=𝜏

𝐶𝜌 𝑗



𝑥 (𝑔,𝜋)1 (𝜃) − 𝑥0




 (5.60b)

≤ 𝐶𝜌𝜏

1 − 𝜌 ·



𝑥 (𝑔,𝜋)1 (𝜃) − 𝑥0




,
where we use the triangle inequality in (5.60a) and Assumption 5.2.2 in (5.60b).
Therefore, we see the limit lim𝜏→∞ 𝑥

(𝑔,𝜋)
𝜏 (𝜃) exists because {𝑥 (𝑔,𝜋)𝜏 (𝜃)} is a Cauchy

sequence and we denote 𝑥 (𝑔,𝜋)∞ (𝜃) := lim𝜏→∞ 𝑥
(𝑔,𝜋)
𝜏 (𝜃).

Now, we show that 𝑥 (𝑔,𝜋)∞ (𝜃) is a fixed point of the time-invariant closed-loop
dynamics induced by (𝑔, 𝜋, 𝜃). To see this, note that

𝑔

(
𝑥
(𝑔,𝜋)
∞ (𝜃), 𝜋(𝑥 (𝑔,𝜋)∞ (𝜃), 𝜃)

)
= 𝑔

(
lim
𝜏→∞

𝑥
(𝑔,𝜋)
𝜏 (𝜃), 𝜋( lim

𝜏→∞
𝑥
(𝑔,𝜋)
𝜏 (𝜃), 𝜃)

)
= lim

𝜏→∞
𝑔

(
𝑥
(𝑔,𝜋)
𝜏 (𝜃), 𝜋(𝑥 (𝑔,𝜋)𝜏 (𝜃), 𝜃)

)
= lim

𝜏→∞
𝑥
(𝑔,𝜋)
𝜏+1 (𝜃) = 𝑥

(𝑔,𝜋)
∞ (𝜃),

where we can pull out lim𝜏→∞ in the second equation because the right hand side is
a continuous function of 𝑥 (𝑔,𝜋)𝜏 (𝜃) at the point 𝑥 (𝑔,𝜋)∞ (𝜃) by Assumption 5.2.1.

Therefore, applying the contractive perturbation property in Assumption 5.2.2 gives
that 


𝑥 (𝑔,𝜋)𝜏 (𝜃) − 𝑥 (𝑔,𝜋)∞ (𝜃)




 ≤ 𝐶𝜌𝜏


𝑥0 − 𝑥 (𝑔,𝜋)∞ (𝜃)



 ≤ 𝐶𝜌𝜏diam(X).



256

Proof of Lemma 5.B.12
To simplify the notation, we introduce the notations

dist𝑑 (𝑔, 𝑔′) := sup
𝑥∈X,𝑢∈U

∥𝑔(𝑥, 𝑢) − 𝑔′(𝑥, 𝑢)∥,

dist𝑝 (𝜋, 𝜋′) := sup
𝑥∈X,𝜃∈Θ

∥𝜋(𝑥, 𝜃) − 𝜋′(𝑥, 𝜃)∥,

dist𝑐 (ℎ, ℎ′) := sup
𝑥∈X,𝑢∈U

|ℎ(𝑥, 𝑢) − ℎ′(𝑥, 𝑢) |.

For any 𝜃 ∈ Θ, we see that

|𝐹𝑡 (𝜃) − 𝐹𝑡−1(𝜃) |
= |ℎ𝑡 (𝑥𝑡 (𝜃), 𝜋𝑡 (𝑥𝑡 (𝜃), 𝜃)) − ℎ𝑡−1 (𝑥𝑡−1(𝜃), 𝜋𝑡−1(𝑥𝑡−1(𝜃), 𝜃)) | (5.61a)

≤ |ℎ𝑡 (𝑥𝑡 (𝜃), 𝜋𝑡 (𝑥𝑡 (𝜃), 𝜃)) − ℎ𝑡 (𝑥𝑡−1(𝜃), 𝜋𝑡−1(𝑥𝑡−1(𝜃), 𝜃)) | + dist𝑐 (ℎ𝑡 , ℎ𝑡−1)
(5.61b)

≤ 𝐿ℎ (∥𝑥𝑡 (𝜃) − 𝑥𝑡−1(𝜃)∥ + ∥𝜋𝑡 (𝑥𝑡 (𝜃), 𝜃) − 𝜋𝑡−1(𝑥𝑡−1(𝜃), 𝜃)∥) + dist𝑐 (ℎ𝑡 , ℎ𝑡−1)
(5.61c)

≤ 𝐿ℎ (∥𝑥𝑡 (𝜃) − 𝑥𝑡−1(𝜃)∥ + ∥𝜋𝑡 (𝑥𝑡 (𝜃), 𝜃) − 𝜋𝑡 (𝑥𝑡−1(𝜃), 𝜃)∥)
+ (𝐿ℎdist𝑝 (𝜋𝑡 , 𝜋𝑡−1) + dist𝑐 (ℎ𝑡 , ℎ𝑡−1)) (5.61d)

≤ 𝐿ℎ (1 + 𝐿𝜋,𝑥)∥𝑥𝑡 (𝜃) − 𝑥𝑡−1(𝜃)∥ + (𝐿ℎdist𝑝 (𝜋𝑡 , 𝜋𝑡−1) + dist𝑐 (ℎ𝑡 , ℎ𝑡−1)), (5.61e)

where we use the definition of the surrogate cost in (5.61a); we use the definition of
dist𝑐 in (5.61b); we use the assumption that ℎ𝑡 is Lipschitz in (5.61c); we use the
definition of dist𝜋 on (5.61d); we use the assumption that 𝜋𝑡 is Lipschitz in (5.61e).

To bound ∥𝑥𝑡 (𝜃) − 𝑥𝑡−1(𝜃)∥, we first bound the difference between 𝑥𝑡 (𝜃) and
𝑥
(𝑔,𝜋)
𝑡 (𝜃) for arbitrary (𝑔, 𝜋) ∈ G. Note that 𝑥𝑡 (𝜃) = 𝑔𝑡 |0

(
𝑥
(𝑔,𝜋)
0 , 𝜃×𝑡

)
, thus




𝑥𝑡 (𝜃) − 𝑥 (𝑔,𝜋)𝑡 (𝜃)



 ≤ 𝑡−1∑︁

𝜏=0




𝑔𝑡 |𝜏+1 (
𝑥
(𝑔,𝜋)
𝜏+1 (𝜃), 𝜃×(𝑡−𝜏−1)

)
− 𝑔𝑡 |𝜏

(
𝑥
(𝑔,𝜋)
𝜏 (𝜃), 𝜃×(𝑡−𝜏)

)



(5.62a)

≤ 𝐶
𝑡−1∑︁
𝜏=0

𝜌𝑡−𝜏−1



𝑥 (𝑔,𝜋)
𝜏+1 (𝜃) − 𝑔𝜏+1|𝜏

(
𝑥
(𝑔,𝜋)
𝜏+1 (𝜃), 𝜃

)


 (5.62b)

≤ 𝐶
𝑡−1∑︁
𝜏=0

𝜌𝑡−𝜏−1 (
dist𝑑 (𝑔𝜏, 𝑔) + 𝐿𝑔,𝑢dist𝑝 (𝜋𝜏, 𝜋)

)
, (5.62c)

where we use the triangle inequality in (5.62a); we use the contractive perturbation
property in (5.62b); we use the definitions of dist𝑑 and dist𝑝 in (5.62c).
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Therefore, we can decompose the distance between 𝑥𝑡 (𝜃) and 𝑥𝑡−1(𝜃), and bound it
by the total variation of dynamics and policies:

∥𝑥𝑡 (𝜃) − 𝑥𝑡−1(𝜃)∥ ≤



𝑥𝑡 (𝜃) − 𝑥 (𝑔𝑡 ,𝜋𝑡 )𝑡 (𝜃)




 + 


𝑥𝑡−1(𝜃) − 𝑥 (𝑔𝑡 ,𝜋𝑡 )𝑡−1 (𝜃)





+



𝑥 (𝑔𝑡 ,𝜋𝑡 )𝑡 (𝜃) − 𝑥 (𝑔𝑡 ,𝜋𝑡 )∞ (𝜃)




 + 


𝑥 (𝑔𝑡 ,𝜋𝑡 )
𝑡−1 (𝜃) − 𝑥 (𝑔𝑡 ,𝜋𝑡 )∞ (𝜃)





(5.63a)

≤ 𝐶
𝑡−1∑︁
𝜏=0

𝜌𝑡−𝜏−1 (
dist𝑑 (𝑔𝜏, 𝑔𝑡) + 𝐿𝑔,𝑢dist𝑝 (𝜋𝜏, 𝜋𝑡)

)
+ 𝐶

𝑡−2∑︁
𝜏=0

𝜌𝑡−𝜏−2 (
dist𝑑 (𝑔𝜏, 𝑔𝑡) + 𝐿𝑔,𝑢dist𝑝 (𝜋𝜏, 𝜋𝑡)

)
+ 𝐶𝜌𝑡diam(X) + 𝐶𝜌𝑡−1diam(X) (5.63b)

≤ 2𝐶
1 − 𝜌 ·

𝑡−1∑︁
𝜏=0

𝜌𝑡−𝜏−2 (
dist𝑑 (𝑔𝜏, 𝑔𝜏+1) + 𝐿𝑔,𝑢dist𝑝 (𝜋𝜏, 𝜋𝜏+1)

)
+ 2𝐶𝜌𝑡−1diam(X), (5.63c)

where we use the triangle inequality in (5.63a); in (5.63b), we use the bound we
derived in (5.62); in (5.63c), we use the triangle inequality decomposition

dist𝑑 (𝑔𝜏, 𝑔𝑡) ≤
𝑡−1∑︁
𝑗=𝜏

dist𝑑 (𝑔 𝑗+1, 𝑔 𝑗 ), and dist𝑝 (𝜋𝜏, 𝜋𝑡) ≤
𝑡−1∑︁
𝑗=𝜏

dist𝑝 (𝜋 𝑗+1, 𝜋 𝑗 ).

Substituting this into (5.61) gives that

dist𝑠 (𝐹𝑡 , 𝐹𝑡−1)

≤ 2𝐶𝐿ℎ (1 + 𝐿𝜋,𝑥)
1 − 𝜌 ·

𝑡−1∑︁
𝜏=0

𝜌𝑡−𝜏−2 (
dist𝑑 (𝑔𝜏, 𝑔𝜏+1) + 𝐿𝑔,𝑢dist𝑝 (𝜋𝜏, 𝜋𝜏+1)

)
+ 2𝐶𝐿ℎ (1 + 𝐿𝜋,𝑥)𝜌𝑡−1diam(X) + (𝐿ℎdist𝑝 (𝜋𝑡 , 𝜋𝑡−1) + dist𝑐 (ℎ𝑡 , ℎ𝑡−1)) (5.64)

because (5.63) holds for arbitrary 𝜃 ∈ Θ.

Summing (5.64) over 𝑡 = 1, . . . , 𝑇 − 1 and rearranging the terms give that
𝑇−1∑︁
𝑡=1

dist𝑠 (𝐹𝑡 , 𝐹𝑡−1)

≤ 2𝐶𝐿ℎ (1 + 𝐿𝜋,𝑥)
1 − 𝜌 ·

𝑇−1∑︁
𝑡=1

𝑡−1∑︁
𝜏=0

𝜌𝑡−𝜏−2 (
dist𝑑 (𝑔𝜏, 𝑔𝜏+1) + 𝐿𝑔,𝑢dist𝑝 (𝜋𝜏, 𝜋𝜏+1)

)
+ 2𝐶𝐿ℎ (1 + 𝐿𝜋,𝑥)

𝑇−1∑︁
𝑡=1

𝜌𝑡−1diam(X) +
𝑇−1∑︁
𝑡=1
(𝐿ℎdist𝑝 (𝜋𝑡 , 𝜋𝑡−1) + dist𝑐 (ℎ𝑡 , ℎ𝑡−1))
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Table 5.1: Important notations in Section 5.4.

Notation Meaning
𝑡1 : 𝑡2 The integer sequence {𝑡1, . . . , 𝑡2};
𝑎𝑡1:𝑡2 A sequence of variables {𝑎𝑡}𝑡=𝑡1,...,𝑡2;
∥ · ∥ ℓ2 (Euclidean) norm;
∥ · ∥𝐹 Frobenius norm;
∥ · ∥𝑃 Norm induced by matrix 𝑃;
Z≥0 The set of non-negative integers;
R≥0 The set of non-negative reals;

𝜎(𝑧1:𝑡 , 𝑧
′
1:𝑡) Product sigma-algebra generated by sequences 𝑧1:𝑡 and 𝑧′1:𝑡 ;

𝑥𝑡 𝑥𝑡 ∈ R𝑛 is the system state;
𝑢𝑡 𝑢𝑡 ∈ R𝑚 is the control input;
𝑤𝑡 𝑤𝑡 ∈ W ⊆ R𝑛 is a disturbance term;

𝑓𝑡 (𝑥𝑡 , 𝑎∗𝑡 ) 𝑓𝑡 is a nonlinear residual term where the online agent makes
(noisy) observations;

𝑎∗𝑡 𝑎∗𝑡 ∈ A ⊆ R𝑝 is the unknown parameter in 𝑓𝑡
𝑓𝑡 (·, 𝑎̂𝑡) An estimation of the true nonlinear residual function 𝑓𝑡 (·, 𝑎∗𝑡 );

𝑞𝑡 (𝑥𝑡 , 𝑦𝑡 , 𝜃𝑡 , 𝑎∗𝑡 ) The joint dynamics of the system at time 𝑡;
ΠΘ(𝑦) Euclidean projection of 𝑦 to set Θ;

≤
2𝐶𝐿ℎ (1 + 𝐿𝜋,𝑥) (1 + 𝐿𝑔,𝑢)

(1 − 𝜌)2𝜌
· 𝑃T +

2𝐶𝐿ℎ (1 + 𝐿𝜋,𝑥)
1 − 𝜌 · diam(X).

5.C Notations and Definitions of Meta-Framework for Unknown Dynamics
We provide a notation table (Table 5.1) that summarizes the important notations in
Section 5.4.

A key concept that we explore in this paper is how to compare the actual trajectory
of our meta-framework with an “ideal” trajectory that the agent could achieve with
exact knowledge of the true model parameters 𝑎∗0:𝑇−1, we introduce the important
notations of multi-step dynamics/cost that characterize how the system would evolve
under a sequence of policy parameters 𝜃0:𝑇−1 when 𝑎∗0:𝑇−1 is known. The concepts
of multi-step dynamics/cost are first introduced in Lin, Preiss, Anand, et al., 2023,
which studies online policy selection with known dynamical systems. In this work,
we replace all estimated 𝑎̂𝑡 in the policy classes with true 𝑎∗𝑡 to reproduce the same
definition as Lin, Preiss, Anand, et al., 2023.

Definition 5.C.1 (Multi-Step Dynamics and Cost). The multi-step dynamics 𝑔∗
𝑡 |𝜏

between two time steps 𝜏 ≤ 𝑡 specifies the state 𝑥𝑡 as a function of the previous state
𝑥𝜏 and previous policy parameters 𝜃𝜏:𝑡−1 under exact predictions {𝑎∗𝑡 }. It is defined
recursively, with the base case 𝑔∗

𝜏 |𝜏 (𝑥𝜏) := 𝑥𝜏 and the recursive case
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𝑔∗
𝑡+1|𝜏 (𝑥𝜏, 𝜃𝜏:𝑡) = 𝑔𝑡

(
𝑧𝑡 , 𝜋𝑡

(
𝑧𝑡 , 𝜃𝑡 , 𝑓𝑡 (𝑧𝑡 , 𝑎∗𝑡 )

)
, 𝑓𝑡 (𝑧𝑡 , 𝑎∗𝑡 )

)
+ 𝑤𝑡 , ∀ 𝑡 ≥ 𝜏,

in which 𝑧𝑡 := 𝑔∗
𝑡 |𝜏 (𝑥𝜏, 𝜃𝜏:𝑡−1).6 The multi-step cost ℎ∗

𝑡 |𝜏 specifies the cost 𝑐𝑡 as
function of 𝑥𝜏 and 𝜃𝜏:𝑡 . It is defined as

ℎ∗
𝑡 |𝜏 (𝑥𝜏, 𝜃𝜏:𝑡) := ℎ𝑡

(
𝑧𝑡 , 𝜋𝑡

(
𝑧𝑡 , 𝜃𝑡 , 𝑓𝑡 (𝑧𝑡 , 𝑎∗𝑡 )

)
, 𝜃𝑡

)
.

It is worth emphasizing that, in our work, the concepts of multi-step dynamics/cost
are only used for the theoretical analysis, because their definitions involve true
model parameters that are unknown to the online agent. When doing online policy
optimization, the online agent may use the estimations 𝑔̂𝑡+1|𝑡 and ℎ̂𝑡 |𝑡 (see (5.14)) as
the estimations of 𝑔∗

𝑡+1|𝑡 and ℎ∗
𝑡 |𝑡 , respectively. Note that this is different than the case

when true dynamics are known (Lin, Preiss, Anand, et al., 2023), where the online
agent can directly construct multi-step dynamics/cost (𝑔∗

𝑡+1|𝑡 and ℎ∗
𝑡 |𝑡) or compute

the exact Jacobian matrices.

Another important definition that we require is the projected gradient, which is
introduced in Hazan, Singh, and Zhang, 2017 to accommodate the challenge of
converging to stationary points on a constrained set.

Definition 5.C.2 (Projected gradient). Let 𝐹 : Θ → R be a differentiable function
on a closed convex set Θ ⊆ R𝑑 . For 𝜂 > 0, the (Θ, 𝜂)-projected gradient of 𝐹 is
defined as

∇Θ,𝜂𝐹 (𝜃) :=
1
𝜂
(𝜃 − ΠΘ(𝜃 − 𝜂∇𝐹 (𝜃))) .

When Θ is equal to the whole Euclidean space R𝑑 (unconstrained), the project
gradient in Definition 5.C.2 will be identical with the normal gradient ∇𝐹 (𝜃). This
concept of projected gradient is used to define the local regret in Theorem 5.4.8 and
Appendix 5.E to study online gradient descent for online nonconvex optimization
with constraints.

5.D Assumptions of Meta-Framework for Unknown Dynamics
We state our key assumptions below: Assumption 5.2.1 is about the Lipschitz-
ness/smoothness properties of the dynamics, policy, nonlinear residual, and the cost
functions.

6𝑧𝑡 is an auxiliary variable to denote the state at 𝑡 under initial state 𝑥𝜏 and parameters 𝜃𝜏:𝑡 .
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Assumption 5.D.1. The dynamics 𝜙0:𝑇−1, policies 𝜓0:𝑇−1, residuals 𝑓0:𝑇−1, and
costs ℎ0:𝑇−1 are differentiable at every time step and satisfy that, for any convex
compact sets X ⊆ R𝑛,U ⊆ R𝑚, one can find Lipschitzness/smoothness constants
(can depend on X andU) such that:

1. 𝜙𝑡 (𝑥, 𝑢) is (𝐿𝜙,𝑥 , 𝐿𝜙,𝑢)-Lipschitz and (ℓ𝜙,𝑥 , ℓ𝜙,𝑢)-smooth in (𝑥, 𝑢) on X ×U.
2. 𝜓𝑡 (𝑥, 𝜃) is (𝐿𝜓,𝑥 , 𝐿𝜓,𝜃)-Lipschitz and (ℓ𝜓,𝑥 , ℓ𝜓,𝜃)-smooth in (𝑥, 𝜃) on X × Θ.
3. 𝑓𝑡 (𝑥, 𝑎) is (𝐿 𝑓 ,𝑥 , 𝐿 𝑓 ,𝑎)-Lipschitz and (ℓ 𝑓 ,𝑥 , ℓ 𝑓 ,𝑎)-smooth in (𝑥, 𝑎) on X × A.
4. ℎ𝑡 (𝑥, 𝑢, 𝜃) is (𝐿ℎ,𝑥 , 𝐿ℎ,𝑢, 𝐿ℎ,𝜃)-Lipschitz and (ℓℎ,𝑥 , ℓℎ,𝑢, ℓℎ,𝜃)-smooth in (𝑥, 𝑢, 𝜃)
on X ×U × Θ.

Compared with Assumption 2.1 in Lin, Preiss, Anand, et al., 2023, our Assump-
tion 5.2.1 additionally assumes the Lipschitzness and smoothness of the nonlinear
residual function 𝑓𝑡 , which is part of our dynamics and policy classes. The second
assumption (Assumption 5.D.2) is on the contractive perturbation and the stability
of the multi-step dynamics 𝑔∗

𝑡 |𝜏.

Assumption 5.D.2. Let G denote the set of all possible sequences {𝜙𝑡 , 𝑓𝑡 , 𝑤𝑡 , 𝜓𝑡}𝑡∈T
the environment may provide. For a fixed 𝜖𝜃 ∈ R≥0, the 𝜖𝜃-time-varying contractive
perturbation holds with (𝑅𝐶 , 𝐶̄, 𝜌) for any sequence in G. The 𝜖𝜃-time-varying
stability holds with 𝑅𝑆 < 𝑅𝐶 for any sequence in G. We assume that the initial
state satisfies ∥𝑥0∥ < (𝑅𝐶 − 𝑅𝑆)/𝐶̄. Further, we assume that if {𝜙, 𝑓 , 𝑤, 𝜓} is the
dynamics/residual/disturbance/policy at an intermediate time step of a sequence in
G, then the time-invariant sequence {𝜙, 𝑓 , 𝑤, 𝜓}×𝑇 is also in G.7

Compared with Assumption 2.2 in Lin, Preiss, Anand, et al., 2023, our Assumption
5.D.2 also includes the disturbance 𝑤𝑡 as a part of the system configuration. This is
because for every time 𝑡, 𝑔∗

𝑡+1|𝑡 is formed by 𝜙𝑡 , 𝜋𝑡 , and 𝑤𝑡 together. While 𝑤𝑡 can
also be viewed as a part of the dynamics 𝜙𝑡 , we choose to represent it separately
because we will leverage the randomness of 𝑤𝑡 to bound the first-order model
mismatches of EST. Like Lin, Preiss, Anand, et al., 2023, in Assumption 5.D.2, we
assume there exists a positive real number 𝑅̄𝐶 such that 𝑅𝐶 > 𝑅̄𝐶 > 𝑅𝑆 + 𝐶̄∥𝑥0∥.
Here, we introduce the real constant 𝑅̄𝐶 because 𝑅𝐶 can be +∞ when time-varying
contractive perturbation (Definition 5.2.2) holds globally. Similarly, to leverage the

7For {𝜙, 𝑓 , 𝑤, 𝜓}×𝑇 to be in G, it must satisfy other assumptions about contractive perturbation
and stability that we impose on G but does not need to occur in real problem instances. This
assumption can be made without the loss of generality for time-invariant dynamics and policy
classes.
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Lipschitzness/smoothness property, we requireX ⊇ 𝐵(0, 𝑅𝑥) where 𝑅𝑥 ≥ 𝐶̄ 𝑅̄𝐶 +𝑅𝑆
and U = {− 𝑓 (𝑥, 𝑎) + 𝜋(𝑥, 𝜃) | 𝑥 ∈ X, 𝜃 ∈ Θ, 𝑎 ∈ A, 𝜋, 𝑓 ∈ G}. Since the
coefficients in Assumption 5.2.1 depend on X and U, we will set X = 𝐵𝑛 (0, 𝑅𝑥)
and 𝑅𝑥 = 𝐶̄ 𝑅̄𝐶 + 𝑅𝑆 by default when presenting these constants. We also set
Y = 𝐵𝑝 (0, 𝑅𝑦) with 𝑅𝑦 =

𝐶̄𝐿𝜙,𝑢𝐿𝜓,𝜃
𝜌(1−𝜌) , so that the internal state 𝑦𝑡 will stay in Y.

It is straightforward to verify that the joint dynamics of M-GAPS satisfy the three
properties required by the meta-framework. We state this result in Lemma 5.D.1.

Lemma 5.D.1. Under Assumptions 5.2.1 and 5.D.2, M-GAPS (Algorithm 6) satisfy
Properties 5.4.1, 5.4.2, and 5.4.3 when applied to dynamics (5.12) and policy class
(5.13).

We present the specific constants and the formal proof of Lemma 5.D.1 in Sec-
tion 5.E.

For the part of EST that is instantiated with the gradient estimator (Algorithm 9),
we first introduce an assumption about the magnitude of the nonlinear residual
to guarantee that (several) bad estimations of the unknown model parameters will
not destabilize the system or violate the constraints of the contractive perturbation
property.

Assumption 5.D.3. The set of all possible model parameterA is a convex compact
subset of R𝑘 . For any fixed 𝑥 ∈ 𝐵𝑛 (0, 𝑅𝑥), 𝑓𝑡 (𝑥, ·) : A → R𝑚 is an affine
function whose gradient is uniformly bounded, i.e., for some positive constant 𝐷′

𝑓
,

∥∇𝑥 𝑓𝑡 (𝑥, 𝑎)∥ ≤ 𝐷′𝑓 hold for all 𝑎 ∈ A. It also satisfies that for any 𝑎, 𝑎′ ∈ A,

∥ 𝑓𝑡 (𝑥, 𝑎) − 𝑓𝑡 (𝑥, 𝑎′)∥ ≤ 𝐶 𝑓 , ∥∇𝑥 𝑓𝑡 (𝑥, 𝑎) − ∇𝑥 𝑓𝑡 (𝑥, 𝑎′)∥𝐹 ≤ 𝛽 ≤ 𝐶′𝑓 , and

∇2
𝑥 𝑓𝑡 (𝑥, 𝑎)𝑖 − ∇2

𝑥 𝑓𝑡 (𝑥, 𝑎′)𝑖



𝐹
≤ 𝛾, for any dimension 𝑖 ∈ [1 : 𝑚]

hold with some positive constants 𝛽, 𝛾, and the upper bounds 𝐶 𝑓 and 𝐶′
𝑓

are given
by

𝐶 𝑓 = min

{ √
2𝜁

4(𝐿𝜃,𝑥 + 𝐿𝜃,𝑦)𝐶𝛼𝑥
,

min{𝑅𝑥 − 𝑅∗𝑥 , 𝑅𝑦 − 𝑅∗𝑦}
𝐶𝛼𝑥

,
𝜁

2𝛼𝜃

}
,

𝐶′𝑓 = min

{ √
2𝜁

4(𝐿𝜃,𝑥 + 𝐿𝜃,𝑦)𝐶𝛽𝑥
,

min{𝑅𝑥 − 𝑅∗𝑥 , 𝑅𝑦 − 𝑅∗𝑦}
𝐶𝛽𝑥

,
𝜁

2𝛽𝜃

}
.

The expressions of 𝛼𝑥 , 𝛽𝑥 , 𝛼𝜃 , 𝛽𝜃 , 𝐿𝜃,𝑥 , 𝐿𝜃,𝑦, 𝑅∗𝑥 , 𝑅∗𝑦, and 𝜁 are given in Section 5.E.
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Note that we need Assumption 5.D.3 to bound the prediction errors uniformly
because even if an online parameter estimator performs well in the long term (e.g.,
achieving a regret bound on the total prediction errors), it may incur a large error
at a single time step that can potentially destabilize the system especially when
𝑎∗𝑡 changes abruptly. Our simulation (see Appendix A in Lin, Preiss, Xie, et al.,
2024) provides a good illustration of this intuition: The model prediction error
may increase dramatically right after the system switches to a different true model
parameter 𝑎∗𝑡 ; Then, the error converges back to near zero as the gradient estimator
learns the model. Addressing this challenge with other assumptions like slowly
time-varying 𝑎∗𝑡 is an interesting future direction.

The second assumption we need is about the randomness provided by the environ-
ment:

Assumption 5.D.4. The total path length of the true model parameters satisfies

1 +
𝑇−1∑︁
𝑡=1



𝑎∗𝑡 − 𝑎∗𝑡−1


 ≤ 𝐶𝑝

for some positive constant 𝐶𝑝. At every time step 𝑡, the noisy observation 𝑓𝑡 satisfies
that 

 𝑓𝑡 − 𝑓𝑡 (𝑥𝑡 , 𝑎∗𝑡 )

 ≤ 𝑒 𝑓 , and E[ 𝑓𝑡 | F𝑡] = 𝑓𝑡 (𝑥𝑡 , 𝑎∗𝑡 ).

Further, the random disturbance 𝑤𝑡 in the dynamical system (5.12) satisfies that

∥𝑤𝑡 ∥ ≤ 𝜖, E[𝑤𝑡 | F ′𝑡 ] = 0, and Cov(𝑤𝑡 | F ′𝑡 ) ⪰ 𝑐𝜖2𝐼 .

Here, 𝜖 satisfies that

(𝐶 𝑓 + 𝑒 𝑓 )
(
2𝐷′𝑓

√︃
3𝐶𝑝/𝑇

) 1
3

≤ 𝜖 ≤ min{1
4
,

1
2𝛾
,

1
4𝛽𝛾
},

where 𝛽 and 𝛾 are defined in Assumption 5.D.3.

Intuitively, Assumption 5.D.4 put requirements on both the lower and upper bounds
of the level of randomness in the system. The lower bound 𝜖 = Ω(𝑇−1/6) is required
due to the condition 𝑅ℓ0(𝑇) ≤ 𝜖

3𝑇 in Theorem 5.4.5. This guarantees that the zeroth-
order regret is sufficiently small to be used for bounding the first-order gradients in
Taylor’s expansion, which are multiplied by 𝜖2 when we take the square. The upper
bound of 𝜖 is required to ignore the higher-order terms in Taylor’s expansion. With
these assumptions, we show the following guarantee on the total prediction error
achieved by the gradient estimator (Algorithm 9).
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Lemma 5.D.2. Under Assumptions 5.D.3 and 5.D.4, the total squared zeroth-order
prediction errors of the gradient estimator can be bounded by E

[∑𝑇−1
𝑡=0 𝜀

2
𝑡

]
≤

2
√

3(𝐶 𝑓 + 𝑒 𝑓 )3𝐷′𝑓
√︁
𝐶𝑝𝑇.

We defer the proof of Lemma 5.D.2 to Section 5.E. Note that our meta-framework
only requires us to bound the total squared zeroth-order prediction error incurred
by an instantiation of EST. Under Assumptions 5.D.3 and 5.D.4, we can apply The-
orem 5.4.5 in the meta-framework to bound the total squared first-order prediction
error of the gradient estimator by E

[∑𝑇−1
𝑡=0 (𝜀′𝑡)2

]
= 𝑂 (𝑚𝜖𝑇). Recall that 𝑚 is the

dimension of the unknown component, which is identical with the control input in
this application.

In Lemmas 5.D.1 and 5.D.2, we have shown that M-GAPS and the gradient es-
timator satisfy all the required properties for ALG and EST, respectively, in our
meta-framework. Therefore, we can obtain the local regret guarantees for instantiat-
ing our meta-framework with M-GAPS and the gradient estimator in the application
with matched-disturbance dynamics (Theorem 5.4.8).

5.E Proof of Meta-Framework for Unknown Dynamics
Proof of Theorem 5.4.3
To simplify the notation, we define

𝜀 := min

{ √
2𝜁

4(𝐿𝜃,𝑥 + 𝐿𝜃,𝑦)𝐶
,

min{𝑅𝑥 − 𝑅∗𝑥 , 𝑅𝑦 − 𝑅∗𝑦}
𝐶

}
.

By the assumption, we know that the following inequality holds for all time step 𝑡:

(𝛼𝑥 + 𝛼𝑦)𝜀𝑡 + (𝛽𝑥 + 𝛽𝑦)𝜀′𝑡 ≤ 𝜀. (5.65)

Now we show that ∥𝑥𝑡 ∥ ≤ 𝑅𝑥 , ∥𝑦𝑡 ∥ ≤ 𝑅𝑦, and ∥𝜃𝑡 − 𝜃𝑡−1∥ ≤ 𝜖𝜃 by induction. These
inequalities hold for time step 0. Suppose they hold for all time steps 𝜏 ≤ 𝑡. Then,
for time step 𝑡 + 1, by Property 5.4.2, we see that

∥𝑥𝑡+1∥ ≤ 𝑅∗𝑥 , and ∥ 𝑦̃𝑡+1∥ ≤ 𝑅∗𝑦 . (5.66)

By Property 5.4.2 about the contraction of states 𝑥𝑡 and 𝑦𝑡 under policy parameters
𝜃0:𝑡 , we see that

∥(𝑥𝑡+1, 𝑦𝑡+1) − (𝑥𝑡+1, 𝑦̃𝑡+1)∥

≤
𝑡∑︁
𝜏=0




𝑞 (𝑥,𝑦)∗
𝑡+1|𝑡+1−𝜏 (𝑥𝑡+1−𝜏, 𝑦𝑡+1−𝜏, 𝜃𝑡+1−𝜏:𝑡) − 𝑞 (𝑥,𝑦)∗𝑡+1|𝑡−𝜏 (𝑥𝑡−𝜏, 𝑦𝑡−𝜏, 𝜃𝑡−𝜏:𝑡)




 (5.67a)
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≤
𝑡∑︁
𝜏=0

𝛾(𝜏)



(𝑥𝑡+1−𝜏, 𝑦𝑡+1−𝜏) − 𝑞 (𝑥,𝑦)∗𝑡+1−𝜏 |𝑡−𝜏 (𝑥𝑡−𝜏, 𝑦𝑡−𝜏, 𝜃𝑡−𝜏)




 (5.67b)

≤
𝑡∑︁
𝜏=0

𝛾(𝜏)
(
(𝛼𝑥 + 𝛼𝑦)𝜀𝑡−𝜏 + (𝛽𝑥 + 𝛽𝑦)𝜀′𝑡−𝜏

)
(5.67c)

≤
𝑡∑︁
𝜏=0

𝛾(𝜏)𝜀 ≤ 𝐶𝜀 (5.67d)

≤ min{𝑅𝑥 − 𝑅∗𝑥 , 𝑅𝑦 − 𝑅∗𝑦}, (5.67e)

where we use the triangle inequality in (5.67a); we use the contractive perturbation
property in Property 5.4.2 in (5.67b); we use the induction assumption and Prop-
erty 5.4.1 in (5.67c); we use (5.65) in (5.67d) and the definition of 𝜀 in (5.67e). By
(5.66) and (5.67), we see that

∥𝑥𝑡+1∥ ≤ ∥𝑥𝑡+1∥ + ∥𝑥𝑡+1 − 𝑥𝑡+1∥ ≤ 𝑅𝑥 , and

∥𝑦𝑡+1∥ ≤ ∥ 𝑦̃𝑡+1∥ + ∥ 𝑦̃𝑡+1 − 𝑦𝑡+1∥ ≤ 𝑅𝑦 . (5.68)

Note that we can construct the disturbance sequence {𝜁𝑡} in Property 5.4.3 such that
the dynamics

©­­«
𝑥𝑡+1

𝑦̃𝑡+1

𝜃𝑡+1

ª®®¬ = 𝑞𝑡 (𝑥𝑡 , 𝑦̃𝑡 , 𝜃𝑡 , 𝑎∗𝑡 ) +
©­­«

0
0
𝜁𝑡

ª®®¬
produce the same policy parameter sequence {𝜃𝑡} as the dynamics

©­­«
𝑥𝑡+1

𝑦𝑡+1

𝜃𝑡+1

ª®®¬ = 𝑞𝑡 (𝑥𝑡 , 𝑦𝑡 , 𝜃𝑡 , 𝑎̂𝑡).

Therefore, under this construction, we see that

∥𝜁𝑡 ∥ ≤


𝜃𝑡+1 − 𝑞𝜃𝑡 (𝑥𝑡 , 𝑦̃𝑡 , 𝜃𝑡 , 𝑎∗𝑡 )



=


𝑞𝜃𝑡 (𝑥𝑡 , 𝑦𝑡 , 𝜃𝑡 , 𝑎̂𝑡) − 𝑞𝜃𝑡 (𝑥𝑡 , 𝑦̃𝑡 , 𝜃𝑡 , 𝑎∗𝑡 )


≤



𝑞𝜃𝑡 (𝑥𝑡 , 𝑦𝑡 , 𝜃𝑡 , 𝑎̂𝑡) − 𝑞𝜃𝑡 (𝑥𝑡 , 𝑦𝑡 , 𝜃𝑡 , 𝑎∗𝑡 )


+



𝑞𝜃𝑡 (𝑥𝑡 , 𝑦𝑡 , 𝜃𝑡 , 𝑎∗𝑡 ) − 𝑞𝜃𝑡 (𝑥𝑡 , 𝑦̃𝑡 , 𝜃𝑡 , 𝑎∗𝑡 )

 (5.69a)

≤ 𝛼𝜃𝜀𝑡 + 𝛽𝜃𝜀′𝑡 + 𝐿𝜃,𝑥 ∥𝑥𝑡 − 𝑥𝑡 ∥ + 𝐿𝜃,𝑦∥𝑦𝑡 − 𝑦̃𝑡 ∥ (5.69b)

≤ 𝛼𝜃𝜀𝑡 + 𝛽𝜃𝜀′𝑡 +
√

2(𝐿𝜃,𝑥 + 𝐿𝜃,𝑦)∥(𝑥𝑡 , 𝑦𝑡) − (𝑥𝑡 , 𝑦̃𝑡)∥ (5.69c)

≤ 𝛼𝜃𝜀𝑡 + 𝛽𝜃𝜀′𝑡 +
√

2𝐶𝜀(𝐿𝜃,𝑥 + 𝐿𝜃,𝑦) ≤ 𝜁, (5.69d)
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where we use the triangle inequality in (5.69a); we use Property 5.4.1 in (5.69b);
we use the inequality

∥𝑥𝑡 − 𝑥𝑡 ∥ + ∥𝑦𝑡 − 𝑦̃𝑡 ∥ ≤
√

2∥(𝑥𝑡 , 𝑦𝑡) − (𝑥𝑡 , 𝑦̃𝑡)∥

in (5.69c) and (5.67d) in (5.69d). Thus, by Property 5.4.3, we see that ∥𝜃𝑡+1 − 𝜃𝑡 ∥ ≤
𝜖𝜃 . Therefore, we have shown that

∥𝑥𝑡 ∥ ≤ 𝑅𝑥 , ∥𝑦𝑡 ∥ ≤ 𝑅𝑦, and ∥𝜃𝑡 − 𝜃𝑡−1∥ ≤ 𝜖𝜃

hold for all time step 𝑡 by induction.

By (5.69c) and (5.67c), we also see that

∥𝜁𝑡 ∥ ≤ 𝛼𝜃𝜀𝑡 + 𝛽𝜃𝜀′𝑡 +
√

2(𝐿𝜃,𝑥 + 𝐿𝜃,𝑦)∥(𝑥𝑡 , 𝑦𝑡) − (𝑥𝑡 , 𝑦̃𝑡)∥
≤ 𝛼𝜃𝜀𝑡 + 𝛽𝜃𝜀′𝑡

+
√

2(𝐿𝜃,𝑥 + 𝐿𝜃,𝑦)
𝑡−1∑︁
𝜏=0

𝛾(𝜏)
(
(𝛼𝑥 + 𝛼𝑦)𝜀𝑡−1−𝜏 + (𝛽𝑥 + 𝛽𝑦)𝜀′𝑡−1−𝜏

)
. (5.70)

Summing (5.70) over 𝑡 = 0, 1, . . . , 𝑇 − 1 gives that

𝑇−1∑︁
𝑡=0
∥𝜁𝑡 ∥ ≤

(
𝛼𝜃 +
√

2𝐶 (𝐿𝜃,𝑥 + 𝐿𝜃,𝑦) (𝛼𝑥 + 𝛼𝑦)
) 𝑇−1∑︁
𝑡=0

𝜀𝑡

+
(
𝛽𝜃 +
√

2𝐶 (𝐿𝜃,𝑥 + 𝐿𝜃,𝑦) (𝛽𝑥 + 𝛽𝑦)
) 𝑇−1∑︁
𝑡=0

𝜀′𝑡 .

Summing (5.67c) over 𝑡 = 0, 1, . . . , 𝑇 − 1 gives that

𝑇∑︁
𝑡=1
∥(𝑥𝑡 , 𝑦𝑡) − (𝑥𝑡 , 𝑦̃𝑡)∥ ≤ 𝐶

(
(𝛼𝑥 + 𝛼𝑦)

𝑇−1∑︁
𝑡=0

𝜀𝑡 + (𝛽𝑥 + 𝛽𝑦)
𝑇−1∑︁
𝑡=0

𝜀′𝑡

)
.

Proof of Theorem 5.4.5
To simplify the notation, we let 𝑥𝑡+1 := E[𝑥𝑡+1 | G𝑡] and let 𝜄𝑡+1 := 𝑥𝑡+1 − 𝑥𝑡+1.

We first focus on one dimension 𝑖 of the model mismatch. By Taylor’s expansion,
we see that

𝑒𝑡 (𝑥𝑡 , 𝑎̂𝑡)𝑖 = 𝑒𝑡 (𝑥𝑡 , 𝑎̂𝑡)𝑖 + ∇𝑥𝑒𝑡 (𝑥𝑡 , 𝑎̂𝑡)𝑖 𝜄𝑡 +
1
2
𝜄⊤𝑡 ∇2

𝑥𝑒𝑡 (𝑥𝑡 , 𝑎̂𝑡)𝑖 𝜄𝑡 , (5.71)

where 𝑥𝑡 = 𝜔𝑥𝑡 + (1 − 𝜔)𝑥𝑡 for some 𝜔 ∈ [0, 1]. Note that we have

E [𝑒𝑡 (𝑥𝑡 , 𝑎̂𝑡)𝑖∇𝑥𝑒𝑡 (𝑥𝑡 , 𝑎̂𝑡)𝑖 𝜄𝑡 | G𝑡−1] = 𝑒𝑡 (𝑥𝑡 , 𝑎̂𝑡)𝑖∇𝑥𝑒𝑡 (𝑥𝑡 , 𝑎̂𝑡)𝑖E [𝜄𝑡 | G𝑡−1] = 0.
(5.72)
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Therefore, we see that the conditional expectation of the squared estimation error of
one dimension 𝑖 can be bounded by

E
[
𝑒𝑡 (𝑥𝑡 , 𝑎̂𝑡)2𝑖 | G𝑡−1

]
≥ 𝑒𝑡 (𝑥𝑡 , 𝑎̂𝑡)2𝑖 + ∇𝑥𝑒𝑡 (𝑥𝑡 , 𝑎̂𝑡)⊤𝑖 Cov(𝜄𝑡 | G𝑡−1)∇𝑥𝑒𝑡 (𝑥𝑡 , 𝑎̂𝑡)𝑖
− 𝜖2𝛾𝑒 |𝑒𝑡 (𝑥𝑡 , 𝑎̂𝑡)𝑖 | − 𝜖3𝛽𝑒𝛾𝑒 (5.73a)

≥ 𝑒𝑡 (𝑥𝑡 , 𝑎̂𝑡)2𝑖 + 𝜎∥∇𝑥𝑒𝑡 (𝑥𝑡 , 𝑎̂𝑡)𝑖∥2 − 𝜖2𝛾𝑒 |𝑒𝑡 (𝑥𝑡 , 𝑎̂𝑡)𝑖 | − 𝜖3𝛽𝑒𝛾𝑒 . (5.73b)

Summing over 𝑡 = 1, . . . , 𝑇 and taking expectation on both sides gives that

𝑅ℓ0(𝑇) ≥ E

[
𝑇∑︁
𝑡=1

𝑒𝑡 (𝑥𝑡 , 𝑎̂𝑡)2𝑖

]
+ 𝜎E

[
𝑇∑︁
𝑡=1
∥∇𝑥𝑒𝑡 (𝑥𝑡 , 𝑎̂𝑡)∥2𝑖

]
− 𝜖2𝛾𝑒E

[
𝑇∑︁
𝑡=1
|𝑒𝑡 (𝑥𝑡 , 𝑎̂𝑡)𝑖 |

]
− 𝜖3𝛽𝑒𝛾𝑒𝑇. (5.74)

Now we show thatE
[∑𝑇

𝑡=1 𝑒𝑡 (𝑥𝑡 , 𝑎̂𝑡)2𝑖
]
≤ 𝜖2𝑇 . For the sake of contradiction, suppose

E

[
𝑇∑︁
𝑡=1

𝑒𝑡 (𝑥𝑡 , 𝑎̂𝑡)2𝑖

]
> 𝜖2𝑇.

By (5.74), we see that

𝑅ℓ0(𝑇) ≥ E

[
𝑇∑︁
𝑡=1

𝑒𝑡 (𝑥𝑡 , 𝑎̂𝑡)2𝑖

]
− 𝜖2𝛾𝑒E

[
𝑇∑︁
𝑡=1
|𝑒𝑡 (𝑥𝑡 , 𝑎̂𝑡)𝑖 |

]
− 𝜖3𝛽𝑒𝛾𝑒𝑇

≥ E

[
𝑇∑︁
𝑡=1

𝑒𝑡 (𝑥𝑡 , 𝑎̂𝑡)2𝑖

]
− 𝜖2𝛾𝑒

√√√√√
E


(
𝑇∑︁
𝑡=1
|𝑒𝑡 (𝑥𝑡 , 𝑎̂𝑡)𝑖 |

)2 − 𝜖3𝛽𝑒𝛾𝑒𝑇 (5.75a)

≥ E

[
𝑇∑︁
𝑡=1

𝑒𝑡 (𝑥𝑡 , 𝑎̂𝑡)2𝑖

]
− 𝜖2𝛾𝑒

√√√
𝑇 · E

[
𝑇∑︁
𝑡=1

𝑒𝑡 (𝑥𝑡 , 𝑎̂𝑡)2𝑖

]
− 𝜖3𝛽𝑒𝛾𝑒𝑇 (5.75b)

=

√√√
E

[
𝑇∑︁
𝑡=1

𝑒𝑡 (𝑥𝑡 , 𝑎̂𝑡)2𝑖

]
· ©­«

√√√
E

[
𝑇∑︁
𝑡=1

𝑒𝑡 (𝑥𝑡 , 𝑎̂𝑡)2𝑖

]
− 𝜖2𝛾𝑒

√
𝑇
ª®¬ − 𝜖3𝛽𝑒𝛾𝑒𝑇

>
1
4
𝜖2𝑇, (5.75c)

where we use Jensen’s inequality in (5.75a); we use Cauchy-Schwarz inequality in
(5.75b); we use the assumptions that 𝜖𝛾𝑒 ≤ 1

2 and 𝜖 𝛽𝑒𝛾𝑒 ≤ 1
4 in (5.75c). (5.75)

contradicts with our assumption that 𝑅(𝑇) ≤ 𝜖3𝑇 . Thus, we have shown that
E

[∑𝑇
𝑡=1 𝑒𝑡 (𝑥𝑡 , 𝑎̂𝑡)2𝑖

]
≤ 𝜖2𝑇 .
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Using the same argument as (5.75a) and (5.75b), we see that the expectation of the
total estimation error can be upper bounded by

E

[
𝑇∑︁
𝑡=1
|𝑒𝑡 (𝑥𝑡 , 𝑎̂𝑡)𝑖 |

]
≤

√√√
𝑇 · E

[
𝑇∑︁
𝑡=1

𝑒𝑡 (𝑥𝑡 , 𝑎̂𝑡)2𝑖

]
≤ 𝜖𝑇 . (5.76)

Substituting (5.76) into (5.74) gives that

𝜎E

[
𝑇∑︁
𝑡=1
∥∇𝑥𝑒𝑡 (𝑥𝑡 , 𝑎̂𝑡)𝑖∥2

]
≤ 𝑅(𝑇) + 𝜖2𝛾𝑒E

[
𝑇∑︁
𝑡=1
|𝑒𝑡 (𝑥𝑡 , 𝑎̂𝑡)𝑖 |

]
+ 𝜖3𝛽𝑒𝛾𝑒𝑇

≤ (1 + 𝛾𝑒 + 𝛽𝑒𝛾𝑒)𝜖3𝑇.

Therefore, we see that

E

[
𝑇∑︁
𝑡=1
∥∇𝑥𝑒𝑡 (𝑥𝑡 , 𝑎̂𝑡)𝑖∥2

]
≤ 2E

[
𝑇∑︁
𝑡=1
∥∇𝑥𝑒𝑡 (𝑥𝑡 , 𝑎̂𝑡)𝑖∥2

]
+ 2E

[
𝑇∑︁
𝑡=1
∥∇𝑥𝑒𝑡 (𝑥𝑡 , 𝑎̂𝑡)𝑖 − ∇𝑥𝑒𝑡 (𝑥𝑡 , 𝑎̂𝑡)𝑖∥2

]
≤ 2
𝜎
(1 + 𝛾𝑒 + 𝛽𝑒𝛾𝑒)𝜖3𝑇 + 2𝛾2

𝑒𝜖
2𝑇. (5.77)

Summing (5.77) over dimensions 𝑖 ∈ [1 : 𝑘] finishes the proof of Theorem 5.4.5.

Proof of Lemma 5.D.1
When applied to the dynamical system (5.12) and the policy class (5.13), the joint
dynamics induced by applying M-GAPS with exact model parameters 𝑎∗0:𝑇−1 are
given by

𝑥𝑡+1 = 𝑞𝑥𝑡 (𝑥𝑡 , 𝑦𝑡 , 𝜃𝑡 , 𝑎∗𝑡 ) = 𝜙𝑡 (𝑥𝑡 , 𝜓𝑡 (𝑥𝑡 , 𝜃𝑡)) + 𝑤𝑡 , (5.78a)

𝑦𝑡+1 = 𝑞
𝑦
𝑡 (𝑥𝑡 , 𝑦𝑡 , 𝜃𝑡 , 𝑎∗𝑡 ) =

𝜕𝑔∗
𝑡+1|𝑡
𝜕𝑥𝑡

�����
𝑥𝑡 ,𝜃𝑡

· 𝑦𝑡 +
𝜕𝑔∗

𝑡+1|𝑡
𝜕𝜃𝑡

�����
𝑥𝑡 ,𝜃𝑡

, (5.78b)

𝜃𝑡+1 = 𝑞𝜃𝑡 (𝑥𝑡 , 𝑦𝑡 , 𝜃𝑡 , 𝑎∗𝑡 ) = ΠΘ

(
𝜃𝑡+1 − 𝜂

(
𝜕ℎ∗

𝑡 |𝑡
𝜕𝑥𝑡

�����
𝑥𝑡 ,𝜃𝑡

· 𝑦𝑡 +
𝜕ℎ∗

𝑡 |𝑡
𝜕𝜃𝑡

�����
𝑥𝑡 ,𝜃𝑡

))
. (5.78c)

The joint dynamics induced by applying M-GAPS with inexact parameters 𝑎̂0:𝑇−1

are given by

𝑥𝑡+1 = 𝑞𝑥𝑡 (𝑥𝑡 , 𝑦𝑡 , 𝜃𝑡 , 𝑎̂𝑡) = 𝜙𝑡 (𝑥𝑡 , 𝜓𝑡 (𝑥𝑡 , 𝜃𝑡) + 𝑓𝑡 (𝑥𝑡 , 𝑎∗𝑡 ) − 𝑓𝑡 (𝑥𝑡 , 𝑎̂𝑡)) + 𝑤𝑡 , (5.79a)
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𝑦𝑡+1 = 𝑞
𝑦
𝑡 (𝑥𝑡 , 𝑦𝑡 , 𝜃𝑡 , 𝑎̂𝑡) =

𝜕𝑔∗
𝑡+1|𝑡
𝜕𝑥𝑡

�����
𝑥𝑡 ,𝜃𝑡

· 𝑦𝑡 +
𝜕𝑔∗

𝑡+1|𝑡
𝜕𝜃𝑡

�����
𝑥𝑡 ,𝜃𝑡

, (5.79b)

𝜃𝑡+1 = 𝑞𝜃𝑡 (𝑥𝑡 , 𝑦𝑡 , 𝜃𝑡 , 𝑎̂𝑡) = ΠΘ

(
𝜃𝑡+1 − 𝜂

(
𝜕ℎ̂𝑡 |𝑡
𝜕𝑥𝑡

�����
𝑥𝑡 ,𝜃𝑡

· 𝑦𝑡 +
𝜕ℎ̂𝑡 |𝑡
𝜕𝜃𝑡

�����
𝑥𝑡 ,𝜃𝑡

))
, (5.79c)

where recall that we view 𝑎̂0:𝑇−1 as external inputs as discussed in Section 5.4.

Since Lemma 5.D.1 consists three properties, we show them separately in Lemmas
5.E.1-5.E.3.

Lemma 5.E.1. Consider the dynamical system

𝑥𝑡+1 = 𝑞𝑥𝑡 (𝑥𝑡 , 𝑦𝑡 , 𝜃𝑡 , 𝑎∗𝑡 ) = 𝜙𝑡 (𝑥𝑡 , 𝜓𝑡 (𝑥𝑡 , 𝜃𝑡)) + 𝑤𝑡 ,

𝑦𝑡+1 = 𝑞
𝑦
𝑡 (𝑥𝑡 , 𝑦𝑡 , 𝜃𝑡 , 𝑎∗𝑡 ) =

𝜕𝑔∗
𝑡+1|𝑡
𝜕𝑥𝑡

�����
𝑥𝑡 ,𝜃𝑡

· 𝑦𝑡 +
𝜕𝑔∗

𝑡+1|𝑡
𝜕𝜃𝑡

�����
𝑥𝑡 ,𝜃𝑡

,

𝜃𝑡+1 = 𝑞𝜃𝑡 (𝑥𝑡 , 𝑦𝑡 , 𝜃𝑡 , 𝑎∗𝑡 ) = ΠΘ

(
𝜃𝑡+1 − 𝜂

(
𝜕ℎ∗

𝑡 |𝑡
𝜕𝑥𝑡

�����
𝑥𝑡 ,𝜃𝑡

· 𝑦𝑡 +
𝜕ℎ∗

𝑡 |𝑡
𝜕𝜃𝑡

�����
𝑥𝑡 ,𝜃𝑡

))
.

For any 𝑥𝑡 , 𝑦𝑡 , 𝜃𝑡 , 𝑎̂𝑡 that satisfies

∥𝑥𝑡 ∥ ≤ 𝑅𝑥 , ∥𝑦𝑡 ∥ ≤ 𝑅𝑦, 𝜃𝑡 ∈ Θ, 𝑎̂𝑡 ∈ A,

the following Lipschitzness conditions hold:

𝑞𝑥𝑡 (𝑥𝑡 , 𝑦𝑡 , 𝜃𝑡 , 𝑎∗𝑡 ) − 𝑞𝑥𝑡 (𝑥𝑡 , 𝑦𝑡 , 𝜃𝑡 , 𝑎̂𝑡)

 ≤ 𝛼𝑥𝜀𝑡 (𝑥𝑡 , 𝑎̂𝑡 , 𝑎∗𝑡 ) + 𝛽𝑥𝜀′𝑡 (𝑥𝑡 , 𝑎̂𝑡 , 𝑎∗𝑡 ),

𝑞𝑦𝑡 (𝑥𝑡 , 𝑦𝑡 , 𝜃𝑡 , 𝑎∗𝑡 ) − 𝑞𝑦𝑡 (𝑥𝑡 , 𝑦𝑡 , 𝜃𝑡 , 𝑎̂𝑡)

 ≤ 𝛼𝑦𝜀𝑡 (𝑥𝑡 , 𝑎̂𝑡 , 𝑎∗𝑡 ) + 𝛽𝑦𝜀′𝑡 (𝑥𝑡 , 𝑎̂𝑡 , 𝑎∗𝑡 ),

𝑞𝜃𝑡 (𝑥𝑡 , 𝑦𝑡 , 𝜃𝑡 , 𝑎∗𝑡 ) − 𝑞𝜃𝑡 (𝑥𝑡 , 𝑦𝑡 , 𝜃𝑡 , 𝑎̂𝑡)

 ≤ 𝛼𝜃𝜀𝑡 (𝑥𝑡 , 𝑎̂𝑡 , 𝑎∗𝑡 ) + 𝛽𝜃𝜀′𝑡 (𝑥𝑡 , 𝑎̂𝑡 , 𝑎∗𝑡 ),
where

𝛼𝑥 = ℓℎ,𝑢𝐿𝜓,𝜃 , 𝛽𝑥 = 𝛼𝑦 = 𝛽𝑦 = 0,

𝛼𝜃 = 𝜂
(
𝑅𝑦 (ℓℎ,𝑥 + ℓℎ,𝑢𝐿 𝑓 ,𝑥 + ℓℎ,𝑢𝐿𝜓,𝑥) + ℓℎ,𝑢𝐿𝜓,𝜃

)
, 𝛽𝜃 = 𝜂𝑅𝑦𝐿ℎ,𝑢 .

Further, 𝑞𝜃𝑡 (𝑥, 𝑦, 𝜃, 𝑎∗𝑡 ) is (𝐿𝜃,𝑥 , 𝐿𝜃,𝑦)-Lipschitz in (𝑥, 𝑦), where

𝐿𝜃,𝑥 = 𝜂𝑅𝑦
(
(ℓℎ,𝑥 + ℓℎ,𝑢 (𝐿 𝑓 ,𝑥 + 𝐿𝜓,𝑥)) (1 + 𝐿 𝑓 ,𝑥 + 𝐿𝜓,𝑥) + 𝐿ℎ,𝑢 (ℓ 𝑓 ,𝑥 + ℓ𝜓,𝑥)

)
+ 𝜂

(
ℓℎ,𝑥𝐿𝜓,𝜃 + 𝐿ℎ,𝑢ℓ𝜓,𝑥 + ℓℎ,𝑢𝐿𝜓,𝜃 (𝐿 𝑓 ,𝑥 + 𝐿𝜓,𝑥)

)
,

𝐿𝜃,𝑦 = 𝜂(𝐿ℎ,𝑥 + 𝐿ℎ,𝑢 (𝐿 𝑓 ,𝑥 + 𝐿𝜓,𝑥)).

We provide the proof of Lemma 5.E.1 later in this section.
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Lemma 5.E.2. Suppose the sequence 𝜃0:𝑇−1 is given and it satisfies the constraint
that ∥𝜃𝑡 − 𝜃𝑡−1∥ ≤ 𝜖𝜃 for all time step 𝑡. Consider the dynamical system

𝑥𝑡+1 = 𝑞𝑥𝑡 (𝑥𝑡 , 𝑦𝑡 , 𝜃𝑡 , 𝑎∗𝑡 ) = 𝜙𝑡 (𝑥𝑡 , 𝜓𝑡 (𝑥𝑡 , 𝜃𝑡)) + 𝑤𝑡 ,

𝑦𝑡+1 = 𝑞
𝑦
𝑡 (𝑥𝑡 , 𝑦𝑡 , 𝜃𝑡 , 𝑎∗𝑡 ) =

𝜕𝑔∗
𝑡+1|𝑡
𝜕𝑥𝑡

�����
𝑥𝑡 ,𝜃𝑡

· 𝑦𝑡 +
𝜕𝑔∗

𝑡+1|𝑡
𝜕𝜃𝑡

�����
𝑥𝑡 ,𝜃𝑡

.

We have that ∥𝑥𝑡 ∥ ≤ 𝑅∗𝑥 < 𝑅𝑥 , ∥𝑦𝑡 ∥ ≤ 𝑅∗𝑦 < 𝑅𝑦 always hold if the system starts from
(𝑥𝜏, 𝑦𝜏) = (0, 0). Here,

𝑅∗𝑥 = 𝑅𝑆, and 𝑅∗𝑦 =
𝐶𝐿,𝑔,𝜃

1 − 𝜌 ,

where recall that 𝜌 is the decay factor defined in Assumption 5.D.2. Further, from
any initial states (𝑥𝜏, 𝑦𝜏), (𝑥′𝜏, 𝑦′𝜏) that satisfy ∥𝑥𝜏∥,



𝑥′𝜏

 ≤ 𝑅𝑥 and ∥𝑦𝜏∥,


𝑦′𝜏

 ≤ 𝑅𝑦,

the trajectory satisfies

(𝑥𝑡 , 𝑦𝑡) − (𝑥′𝑡 , 𝑦′𝑡)

 ≤ 𝛾(𝑡 − 𝜏) · 

(𝑥𝜏, 𝑦𝜏) − (𝑥′𝜏, 𝑦′𝜏)

,
where

𝛾(𝜏) =
(
𝐶̄ + 𝐶ℓ,𝑔,(𝑥,𝑥)𝑅𝑦 + 𝐶ℓ,𝑔,(𝜃,𝑥)𝐶̄𝜏

)
𝜌𝜏 .

Note that 𝛾 satisfies
∞∑︁
𝜏=0

𝛾(𝜏) ≤ 𝐶, where 𝐶 =
𝐶̄ + 𝐶ℓ,𝑔,(𝑥,𝑥)𝑅𝑦

1 − 𝜌 +
𝐶ℓ,𝑔,(𝜃,𝑥)𝐶̄

(1 − 𝜌)2
.

The definitions of the coefficients 𝐶𝐿,𝑔,𝜃 , 𝐶ℓ,𝑔,(𝑥,𝑥) , 𝐶ℓ,𝑔,(𝜃,𝑥) can be found in Lemma
5.B.3 in Section 5.B. And the proof of Lemma 5.E.2 can be found in Appendix 5.E.

Lemma 5.E.3. Consider the dynamical system

𝑥𝑡+1 = 𝑞𝑥𝑡 (𝑥𝑡 , 𝑦𝑡 , 𝜃𝑡 , 𝑎∗𝑡 ) = 𝜙𝑡 (𝑥𝑡 , 𝜓𝑡 (𝑥𝑡 , 𝜃𝑡)) + 𝑤𝑡 ,

𝑦𝑡+1 = 𝑞
𝑦
𝑡 (𝑥𝑡 , 𝑦𝑡 , 𝜃𝑡 , 𝑎∗𝑡 ) =

𝜕𝑔∗
𝑡+1|𝑡
𝜕𝑥𝑡

�����
𝑥𝑡 ,𝜃𝑡

· 𝑦𝑡 +
𝜕𝑔∗

𝑡+1|𝑡
𝜕𝜃𝑡

�����
𝑥𝑡 ,𝜃𝑡

,

𝜃𝑡+1 = 𝑞𝜃𝑡 (𝑥𝑡 , 𝑦𝑡 , 𝜃𝑡 , 𝑎∗𝑡 ) = ΠΘ

(
𝜃𝑡+1 − 𝜂

(
𝜕ℎ∗

𝑡 |𝑡
𝜕𝑥𝑡

�����
𝑥𝑡 ,𝜃𝑡

· 𝑦𝑡 +
𝜕ℎ∗

𝑡 |𝑡
𝜕𝜃𝑡

�����
𝑥𝑡 ,𝜃𝑡

))
+ 𝜁𝑡 . (5.80)

Suppose the learning rate 𝜂 satisfies 𝜂 < min
{
(1−𝜌)𝜖𝜃
𝐶𝐿,ℎ, 𝜃

,
1−𝜌

2𝐶ℓ,ℎ, (𝜃, 𝜃 )

}
. When ∥𝜁𝑡 ∥ ≤

𝜁 := min{1, 𝜖𝜃 − 𝐶𝐿,ℎ, 𝜃𝜂

1−𝜌 } holds for all 𝑡, the resulting {𝜃𝑡} satisfies the slowly-time-
varying constraint ∥𝜃𝑡 − 𝜃𝑡−1∥ ≤ 𝜖𝜃 . Further, the trajectory {𝜃𝑡} achieves the local
regret guarantee
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𝑅𝐿𝜂 (𝑇, {∥𝜁𝑡 ∥}0≤𝑡≤𝑇−1) ≤
2
𝜂
(𝐹0(𝜃0) + 𝑆0) +

2
1 − 𝜌 (𝐶𝐿,ℎ,𝜃𝑆1 + 𝐶ℓ,ℎ,(𝜃,𝜃)𝜂𝑆2), where

𝑆0 :=
2𝐶̄𝐿ℎ (1 + 𝐿𝜓,𝑥 + 𝐿 𝑓 ,𝑥) (1 + 𝐿𝜙,𝑢)

(1 − 𝜌)2𝜌
· (𝑉𝑠𝑦𝑠 +𝑉𝑤)

+
2𝐶̄𝐿ℎ (1 + 𝐿𝜓,𝑥 + 𝐿 𝑓 ,𝑥)

1 − 𝜌 ·
(
2𝐶̄ 𝑅̄𝐶 + 2𝑅𝑆

)
,

𝑆1 :=
(

1
𝜂
+ 𝐶̂3 + 𝐶̂5

(1 − 𝜌)2
+ 𝐶̂4

(1 − 𝜌)3

) 𝑇−1∑︁
𝑡=0
∥𝜁𝑡 ∥ +

(
𝐶̂0

1 − 𝜌 +
𝐶̂1 + 𝐶̂2

(1 − 𝜌)2
+ 𝐶̂2

(1 − 𝜌)3

)
𝜂𝑇,

𝑆2 :=
(
1 + 𝐶̂0

1 − 𝜌 +
𝐶̂1 + 𝐶̂2 + 𝐶̂3 + 𝐶̂5

(1 − 𝜌)2
+ 𝐶̂2 + 𝐶̂4

(1 − 𝜌)3

)
·[(

1
𝜂2 +

𝐶̂3 + 𝐶̂5

(1 − 𝜌)2
+ 𝐶̂4

(1 − 𝜌)3

) 𝑇−1∑︁
𝑡=0
∥𝜁𝑡 ∥2 +

(
𝐶̂0

1 − 𝜌 +
𝐶̂1 + 𝐶̂2

(1 − 𝜌)2
+ 𝐶̂2

(1 − 𝜌)3

)
𝜂2𝑇

]
.

Here, the variation intensity is defined as

𝑉sys =

𝑇−1∑︁
𝑡=1

(
sup

𝑥∈X,𝑢∈U
∥𝜙𝑡 (𝑥, 𝑢) − 𝜙𝑡−1(𝑥, 𝑢)∥ + sup

𝑥∈X,𝜃∈Θ
∥𝜓𝑡 (𝑥, 𝜃) − 𝜓𝑡−1(𝑥, 𝜃)∥

+ sup
𝑥∈X,𝑢∈U,𝜃∈Θ

|ℎ𝑡 (𝑥, 𝑢, 𝜃) − ℎ𝑡−1(𝑥, 𝑢, 𝜃) |
)
, and

𝑉𝑤 =

𝑇−1∑︁
𝑡=1
∥𝑤𝑡 − 𝑤𝑡−1∥.

The bound can be simplified to

𝑅𝐿𝜂 (𝑇, {∥𝜁𝑡 ∥}0≤𝑡≤𝑇−1) = 𝑂
(

1
𝜂
(1 +𝑉sys +𝑉𝑤) + 𝜂𝑇 + 𝜂3𝑇 + 1

𝜂

𝑇−1∑︁
𝑡=1
∥𝜁𝑡 ∥

)
,

where the 𝑂 (·) notation hides dependence on 1
1−𝜌 , 𝑅𝑥 , 𝑅𝑦, 𝐶̄, and the Lipchitz-

ness/smoothness coefficients defined in Assumption 5.D.1.

The definition of the coefficient𝐶𝐿,ℎ,𝜃 can be found in Corollary 5.B.4 in Section 5.B.
We provide the proof of Lemma 5.E.3 later in this section.

Proof of Lemma 5.D.2
By Assumptions 5.D.3 and 5.D.4, we see that for any 𝑎 ∈ A,

ℓ̃𝑡 (𝑥𝑡 , 𝑎, 𝑓𝑡) ≤
(
𝑓𝑡 (𝑥𝑡 , 𝑎) − 𝑓𝑡

)2

=
(
( 𝑓𝑡 (𝑥𝑡 , 𝑎) − 𝑓𝑡 (𝑥𝑡 , 𝑎∗𝑡 )) − ( 𝑓𝑡 − 𝑓𝑡 (𝑥𝑡 , 𝑎∗𝑡 ))

)2 ≤ (𝐶 𝑓 + 𝑒 𝑓 )2.
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We also see that the gradient of the loss ℓ̃𝑡 with respect to 𝑎 can be bounded above
by 

∇𝑎 ℓ̃𝑡 (𝑥𝑡 , 𝑎, 𝑓𝑡)

 ≤ 2∥∇𝑎 𝑓𝑡 (𝑥𝑡 , 𝑎)∥ ·

�� 𝑓𝑡 (𝑥𝑡 , 𝑎) − 𝑓𝑡 �� ≤ 2𝐷′𝑓 (𝐶 𝑓 + 𝑒 𝑓 ).

By Theorem 10.1 in Hazan, 2016, we know that Algorithm 9 with the learning rate

𝜄 =
𝐶 𝑓 +𝑒 𝑓
𝐷′
𝑓

·
√︃
𝐶𝑝
𝑇

always achieves the guarantee that

𝑇−1∑︁
𝑡=0

ℓ̃𝑡 (𝑥𝑡 , 𝑎̂𝑡 , 𝑓𝑡) −
𝑇−1∑︁
𝑡=0

ℓ̃𝑡 (𝑥𝑡 , 𝑎∗𝑡 , 𝑓𝑡) ≤ 𝑅ℓ0(𝑇) := 2
√

3(𝐶 𝑓 + 𝑒 𝑓 )3𝐷′𝑓
√︁
𝐶𝑝𝑇. (5.81)

Let 𝑣𝑡 := 𝑓𝑡 − 𝑓𝑡 (𝑥𝑡 , 𝑎∗𝑡 ). We see that

E
[
ℓ̃𝑡 (𝑥𝑡 , 𝑎̂𝑡 , 𝑓𝑡) − ℓ̃𝑡 (𝑥𝑡 , 𝑎∗𝑡 , 𝑓𝑡) | F𝑡

]
= E

[

( 𝑓𝑡 (𝑥𝑡 , 𝑎̂𝑡) − 𝑓𝑡 (𝑥𝑡 , 𝑎∗𝑡 )) − 𝑣𝑡

2 − ∥𝑣𝑡 ∥2 | F𝑡
]

=


 𝑓𝑡 (𝑥𝑡 , 𝑎̂𝑡) − 𝑓𝑡 (𝑥𝑡 , 𝑎∗𝑡 )

2 − 2

(
𝑓𝑡 (𝑥𝑡 , 𝑎̂𝑡) − 𝑓𝑡 (𝑥𝑡 , 𝑎∗𝑡 )

)⊤ E [𝑣𝑡 | F𝑡]
=



 𝑓𝑡 (𝑥𝑡 , 𝑎̂𝑡) − 𝑓𝑡 (𝑥𝑡 , 𝑎∗𝑡 )

2
= 𝜀2

𝑡 .

Therefore, we obtain that

E

[
𝑇−1∑︁
𝑡=0

ℓ̃𝑡 (𝑥𝑡 , 𝑎̂𝑡 , 𝑓𝑡) −
𝑇−1∑︁
𝑡=0

ℓ̃𝑡 (𝑥𝑡 , 𝑎∗𝑡 , 𝑓𝑡)
]

=

𝑇−1∑︁
𝑡=0

E
[
ℓ̃𝑡 (𝑥𝑡 , 𝑎̂𝑡 , 𝑓𝑡) − ℓ̃𝑡 (𝑥𝑡 , 𝑎∗𝑡 , 𝑓𝑡)

]
=

𝑇−1∑︁
𝑡=0

E
[
E

[
ℓ̃𝑡 (𝑥𝑡 , 𝑎̂𝑡 , 𝑓𝑡) − ℓ̃𝑡 (𝑥𝑡 , 𝑎∗𝑡 , 𝑓𝑡) | F𝑡

] ]
=

𝑇−1∑︁
𝑡=0

E
[
𝜀2
𝑡

]
= E

[
𝑇−1∑︁
𝑡=0

𝜀2
𝑡

]
.

Combining this with (5.81) gives that

E

[
𝑇−1∑︁
𝑡=0

𝜀2
𝑡

]
≤ 2
√

3(𝐶 𝑓 + 𝑒 𝑓 )3𝐷′𝑓
√︁
𝐶𝑝𝑇.

Then, we can apply Theorem 5.4.5 to conclude that

E

[
𝑇−1∑︁
𝑡=0
(𝜀′𝑡)2

]
≤ 2𝑚

𝑐
(1 + 𝛾 + 𝛽𝛾)𝜖𝑇 + 2𝑚𝛾2𝜖2𝑇.
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Proof of Theorem 5.4.8
By Lemma 5.D.2 and Theorem 5.4.5, we know that the expected total prediction
errors achieved by the gradient estimator satisfy that

E

[
𝑇−1∑︁
𝑡=0

𝜀2
𝑡

]
≤ 2
√

3(𝐶 𝑓 + 𝑒 𝑓 )3𝐷′𝑓
√︁
𝐶𝑝𝑇, and

E

[
𝑇−1∑︁
𝑡=0
(𝜀′𝑡)2

]
≤ 2𝑚

𝑐
(1 + 𝛾 + 𝛽𝛾)𝜖𝑇 + 2𝑚𝛾2𝜖2𝑇. (5.82)

By Hölder’s inequality, we see that

E

[
𝑇−1∑︁
𝑡=0

𝜀𝑡

]
≤ 4√12(𝐶 𝑓 + 𝑒 𝑓 )

3
2 (𝐷′𝑓 )

1
2𝐶

1
4
𝑝𝑇

3
4 , and

E

[
𝑇−1∑︁
𝑡=0

𝜀′𝑡

]
≤

√︂
2
𝑐
(1 + 𝛾 + 𝛽𝛾) + 2𝛾2𝜖 ·

√
𝑚𝜖 · 𝑇. (5.83)

By Lemma 5.D.1, we know that trajectory 𝜉 achieves the local regret

𝑅𝐿 (𝑇, {∥𝜁𝑡 ∥}0≤𝑡≤𝑇−1) = 𝑂
(

1
𝜂
(1 +𝑉sys +𝑉𝑤) + 𝜂𝑇 + 𝜂3𝑇 + 1

𝜂

𝑇−1∑︁
𝑡=1
∥𝜁𝑡 ∥

)
. (5.84)

By Theorem 5.4.3 and Lemma 5.E.1, we know that

E

[
𝑇−1∑︁
𝑡=0
∥𝜁𝑡 ∥

]
≤

(
𝛼𝜃 +
√

2𝐶 (𝐿𝜃,𝑥 + 𝐿𝜃,𝑦) (𝛼𝑥 + 𝛼𝑦)
)
E

[
𝑇−1∑︁
𝑡=0

𝜀𝑡

]
+

(
𝛽𝜃 +
√

2𝐶 (𝐿𝜃,𝑥 + 𝐿𝜃,𝑦) (𝛽𝑥 + 𝛽𝑦)
)
E

[
𝑇−1∑︁
𝑡=0

𝜀′𝑡

]
≤ 𝐶0𝜂E

[
𝑇−1∑︁
𝑡=0

𝜀𝑡

]
+ 𝑅𝑦𝐿ℎ,𝑢 · 𝜂E

[
𝑇−1∑︁
𝑡=0

𝜀′𝑡

]
, (5.85)

where 𝐶 =
𝐶̄+𝐶ℓ,𝑔, (𝑥,𝑥 )𝑅𝑦

1−𝜌 + 𝐶ℓ,𝑔, (𝜃,𝑥 ) 𝐶̄

(1−𝜌)2 by Lemma 5.E.2 and

𝐶0 = 𝑅𝑦 (ℓℎ,𝑥 + ℓℎ,𝑢𝐿 𝑓 ,𝑥 + ℓℎ,𝑢𝐿𝜓,𝑥) + ℓℎ,𝑢𝐿𝜓,𝜃

+
√

2𝐶ℓℎ,𝑢𝐿𝜓,𝜃

(
𝑅𝑦

(
(ℓℎ,𝑥 + ℓℎ,𝑢 (𝐿 𝑓 ,𝑥 + 𝐿𝜓,𝑥)) (1 + 𝐿 𝑓 ,𝑥 + 𝐿𝜓,𝑥)

+ 𝐿ℎ,𝑢 (ℓ 𝑓 ,𝑥 + ℓ𝜓,𝑥)
)

+ ℓℎ,𝑥𝐿𝜓,𝜃 + 𝐿ℎ,𝑢ℓ𝜓,𝑥 + ℓℎ,𝑢𝐿𝜓,𝜃 (𝐿 𝑓 ,𝑥 + 𝐿𝜓,𝑥) + 𝐿ℎ,𝑥 + 𝐿ℎ,𝑢 (𝐿 𝑓 ,𝑥 + 𝐿𝜓,𝑥)
)
.
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Substituting (5.85) into (5.84) and applying (5.82) and (5.83) give us the following
bound:

𝑅𝐿 (𝑇, {∥𝜁𝑡 ∥}0≤𝑡≤𝑇−1) = 𝑂
(

1
𝜂
(1 +𝑉𝑠𝑦𝑠 + 𝜖 · 𝑇) + 𝜂𝑇 + (

√
𝑚𝜖 + 𝑚𝜖) · 𝑇

)
.

Further, by the last statement of Theorem 5.4.3, we obtain that

E

[
𝑇−1∑︁
𝑡=0
(∥𝑥𝑡 − 𝑥𝑡 ∥ + ∥𝑦𝑡 − 𝑦̃𝑡 ∥)

]
= 𝑂

(
𝑇3/4 +

√
𝑚𝜖 · 𝑇

)
.

Proof of Lemma 5.E.1
By Assumption 5.D.1, we see that

𝑞𝑥𝑡 (𝑥𝑡 , 𝑦𝑡 , 𝜃𝑡 , 𝑎̂𝑡) − 𝑞𝑥𝑡 (𝑥𝑡 , 𝑦𝑡 , 𝜃𝑡 , 𝑎∗𝑡 )

 ≤ 𝐿𝜙,𝑢

 𝑓𝑡 (𝑥𝑡 , 𝑎∗𝑡 ) − 𝑓𝑡 (𝑥𝑡 , 𝑎̂𝑡)

 = 𝐿𝜙,𝑢𝜀𝑡 .

(5.86)

We also have that

𝑞
𝑦
𝑡 (𝑥𝑡 , 𝑦𝑡 , 𝜃𝑡 , 𝑎̂𝑡) = 𝑞

𝑦
𝑡 (𝑥𝑡 , 𝑦𝑡 , 𝜃𝑡 , 𝑎∗𝑡 ). (5.87)

Note that

ℎ∗
𝑡 |𝑡 (𝑥𝑡 , 𝜃𝑡) = ℎ𝑡 (𝑥𝑡 , 𝑢

1
𝑡 , 𝜃𝑡), where 𝑢1

𝑡 = − 𝑓𝑡 (𝑥𝑡 , 𝑎∗𝑡 ) + 𝜓𝑡 (𝑥𝑡 , 𝜃𝑡),

ℎ̂𝑡 |𝑡 (𝑥𝑡 , 𝜃𝑡) = ℎ𝑡 (𝑥𝑡 , 𝑢2
𝑡 , 𝜃𝑡), where 𝑢2

𝑡 = − 𝑓𝑡 (𝑥𝑡 , 𝑎̂𝑡) + 𝜓𝑡 (𝑥𝑡 , 𝜃𝑡).

Therefore, we see that




 𝜕ℎ∗𝑡 |𝑡𝜕𝑥𝑡

�����
𝑥𝑡 ,𝜃𝑡

−
𝜕ℎ̂𝑡 |𝑡
𝜕𝑥𝑡

�����
𝑥𝑡 ,𝜃𝑡







≤






 𝜕ℎ𝑡𝜕𝑥𝑡

����
𝑥𝑡 ,𝑢

1
𝑡 ,𝜃𝑡

− 𝜕ℎ𝑡
𝜕𝑥𝑡

����
𝑥𝑡 ,𝑢

2
𝑡 ,𝜃𝑡






 +





 𝜕ℎ𝑡𝜕𝑢𝑡

����
𝑥𝑡 ,𝑢

1
𝑡 ,𝜃𝑡

· 𝜕 𝑓𝑡
𝜕𝑥𝑡

����
𝑥𝑡 ,𝑎

∗
𝑡

− 𝜕ℎ𝑡
𝜕𝑢𝑡

����
𝑥𝑡 ,𝑢

2
𝑡 ,𝜃𝑡

· 𝜕 𝑓𝑡
𝜕𝑥𝑡

����
𝑥𝑡 ,𝑎̂𝑡







+






 𝜕ℎ𝑡𝜕𝑢𝑡

����
𝑥𝑡 ,𝑢

1
𝑡 ,𝜃𝑡

· 𝜕𝜓𝑡
𝜕𝑥𝑡

����
𝑥𝑡 ,𝜃𝑡

− 𝜕ℎ𝑡
𝜕𝑢𝑡

����
𝑥𝑡 ,𝑢

2
𝑡 ,𝜃𝑡

· 𝜕𝜓𝑡
𝜕𝑥𝑡

����
𝑥𝑡 ,𝜃𝑡






 (5.88a)

≤ ℓℎ,𝑥𝜀𝑡 + (ℓℎ,𝑢𝐿 𝑓 ,𝑥𝜀𝑡 + 𝐿ℎ,𝑢𝜀′𝑡) + ℓℎ,𝑢𝐿𝜓,𝑥𝜀𝑡 (5.88b)

= (ℓℎ,𝑥 + ℓℎ,𝑢𝐿 𝑓 ,𝑥 + ℓℎ,𝑢𝐿𝜓,𝑥)𝜀𝑡 + 𝐿ℎ,𝑢𝜀′𝑡 ,

where we use the chain rule and the triangle inequality in (5.88a); we use Assumption
5.D.1 in (5.88b). Similarly, we also see that




 𝜕ℎ∗𝑡 |𝑡𝜕𝜃𝑡

�����
𝑥𝑡 ,𝜃𝑡

−
𝜕ℎ̂𝑡 |𝑡
𝜕𝜃𝑡

�����
𝑥𝑡 ,𝜃𝑡






 =





 𝜕ℎ𝑡𝜕𝑢𝑡

����
𝑥𝑡 ,𝑢

1
𝑡 ,𝜃𝑡

· 𝜕𝜓𝑡
𝜕𝜃𝑡

����
𝑥𝑡 ,𝜃𝑡

− 𝜕ℎ𝑡
𝜕𝑢𝑡

����
𝑥𝑡 ,𝑢

2
𝑡 ,𝜃𝑡

· 𝜕𝜓𝑡
𝜕𝜃𝑡

����
𝑥𝑡 ,𝜃𝑡







(5.89a)
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≤ ℓℎ,𝑢𝐿𝜓,𝜃𝜀𝑡 , (5.89b)

where we use the chain rule in (5.89a) and Assumption 5.D.1 in (5.89b).

For 𝑞𝜃𝑡 , we see that

𝑞𝜃𝑡 (𝑥𝑡 , 𝑦𝑡 , 𝜃𝑡 , 𝑎̂𝑡) − 𝑞𝜃𝑡 (𝑥𝑡 , 𝑦𝑡 , 𝜃𝑡 , 𝑎∗𝑡 )


≤ 𝜂







(
𝜕ℎ∗

𝑡 |𝑡
𝜕𝑥𝑡

�����
𝑥𝑡 ,𝜃𝑡

−
𝜕ℎ̂𝑡 |𝑡
𝜕𝑥𝑡

�����
𝑥𝑡 ,𝜃𝑡

)
· 𝑦𝑡 +

(
𝜕ℎ∗

𝑡 |𝑡
𝜕𝜃𝑡

�����
𝑥𝑡 ,𝜃𝑡

−
𝜕ℎ̂𝑡 |𝑡
𝜕𝜃𝑡

�����
𝑥𝑡 ,𝜃𝑡

)




 (5.90a)

≤ 𝜂
(
𝑅𝑦 (ℓℎ,𝑥 + ℓℎ,𝑢𝐿 𝑓 ,𝑥 + ℓℎ,𝑢𝐿𝜓,𝑥) + ℓℎ,𝑢𝐿𝜓,𝜃

)
𝜀𝑡 + 𝜂𝑅𝑦𝐿ℎ,𝑢𝜀′𝑡 , (5.90b)

where we use the property that projection onto Θ is contractive in (5.90a); we use
(5.88) and (5.89) in (5.90b). We also see that

𝑞𝜃𝑡 (𝑥𝑡 , 𝑦𝑡 , 𝜃𝑡 , 𝑎∗𝑡 ) − 𝑞𝜃𝑡 (𝑥′𝑡 , 𝑦′𝑡 , 𝜃𝑡 , 𝑎∗𝑡 )



≤ 𝜂







 𝜕ℎ
∗
𝑡 |𝑡

𝜕𝑥𝑡

�����
𝑥𝑡 ,𝜃𝑡

· 𝑦𝑡 −
𝜕ℎ∗

𝑡 |𝑡
𝜕𝑥𝑡

�����
𝑥′𝑡 ,𝜃𝑡

· 𝑦′𝑡 +
𝜕ℎ∗

𝑡 |𝑡
𝜕𝜃𝑡

�����
𝑥𝑡 ,𝜃𝑡

−
𝜕ℎ∗

𝑡 |𝑡
𝜕𝜃𝑡

�����
𝑥′𝑡 ,𝜃𝑡







 (5.91a)

≤ 𝜂







 𝜕ℎ
∗
𝑡 |𝑡

𝜕𝑥𝑡

�����
𝑥𝑡 ,𝜃𝑡

−
𝜕ℎ∗

𝑡 |𝑡
𝜕𝑥𝑡

�����
𝑥′𝑡 ,𝜃𝑡







 · ∥𝑦𝑡 ∥ + 𝜂






 𝜕ℎ

∗
𝑡 |𝑡

𝜕𝑥𝑡

�����
𝑥′𝑡 ,𝜃𝑡







 · 

𝑦𝑡 − 𝑦′𝑡


+ 𝜂







 𝜕ℎ
∗
𝑡 |𝑡

𝜕𝜃𝑡

�����
𝑥𝑡 ,𝜃𝑡

−
𝜕ℎ∗

𝑡 |𝑡
𝜕𝜃𝑡

�����
𝑥′𝑡 ,𝜃𝑡







, (5.91b)

where we use the property that projection onto Θ is contractive in (5.91a), and apply
the triangle inequality in (5.91b). Note that

ℎ∗
𝑡 |𝑡 (𝑥𝑡 , 𝜃𝑡) = ℎ𝑡 (𝑥𝑡 , 𝑢𝑡 , 𝜃𝑡), where 𝑢𝑡 = − 𝑓𝑡 (𝑥𝑡 , 𝑎∗𝑡 ) + 𝜓𝑡 (𝑥𝑡 , 𝜃𝑡),

ℎ∗
𝑡 |𝑡 (𝑥

′
𝑡 , 𝜃𝑡) = ℎ𝑡 (𝑥′𝑡 , 𝑢′𝑡 , 𝜃𝑡), where 𝑢′𝑡 = − 𝑓𝑡 (𝑥′𝑡 , 𝑎∗𝑡 ) + 𝜓𝑡 (𝑥′𝑡 , 𝜃𝑡).

Therefore, we see that





 𝜕ℎ
∗
𝑡 |𝑡

𝜕𝑥𝑡

�����
𝑥𝑡 ,𝜃𝑡

−
𝜕ℎ∗

𝑡 |𝑡
𝜕𝑥𝑡

�����
𝑥′𝑡 ,𝜃𝑡








≤






 𝜕ℎ𝑡𝜕𝑥𝑡

����
𝑥𝑡 ,𝑢𝑡 ,𝜃𝑡

− 𝜕ℎ𝑡
𝜕𝑥𝑡

����
𝑥′𝑡 ,𝑢

′
𝑡 ,𝜃𝑡






 +





 𝜕ℎ𝑡𝜕𝑢𝑡

����
𝑥𝑡 ,𝑢𝑡 ,𝜃𝑡

· 𝜕 𝑓𝑡
𝜕𝑥𝑡

����
𝑥𝑡 ,𝑎

∗
𝑡

− 𝜕ℎ𝑡
𝜕𝑢𝑡

����
𝑥′𝑡 ,𝑢

′
𝑡 ,𝜃𝑡

· 𝜕 𝑓𝑡
𝜕𝑥𝑡

����
𝑥′𝑡 ,𝑎

∗
𝑡







+






 𝜕ℎ𝑡𝜕𝑢𝑡

����
𝑥𝑡 ,𝑢𝑡 ,𝜃𝑡

· 𝜕𝜓𝑡
𝜕𝑥𝑡

����
𝑥𝑡 ,𝜃𝑡

− 𝜕ℎ𝑡
𝜕𝑢𝑡

����
𝑥′𝑡 ,𝑢

′
𝑡 ,𝜃𝑡

· 𝜕𝜓𝑡
𝜕𝑥𝑡

����
𝑥′𝑡 ,𝜃𝑡






 (5.92a)
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≤





 𝜕ℎ𝑡𝜕𝑥𝑡

����
𝑥𝑡 ,𝑢𝑡 ,𝜃𝑡

− 𝜕ℎ𝑡
𝜕𝑥𝑡

����
𝑥′𝑡 ,𝑢

′
𝑡 ,𝜃𝑡






 +





 𝜕ℎ𝑡𝜕𝑢𝑡

����
𝑥𝑡 ,𝑢𝑡 ,𝜃𝑡

− 𝜕ℎ𝑡
𝜕𝑢𝑡

����
𝑥′𝑡 ,𝑢

′
𝑡 ,𝜃𝑡






 ·





 𝜕 𝑓𝑡𝜕𝑥𝑡

����
𝑥𝑡 ,𝑎

∗
𝑡







+






 𝜕ℎ𝑡𝜕𝑢𝑡

����
𝑥′𝑡 ,𝑢

′
𝑡 ,𝜃𝑡






 ·





 𝜕 𝑓𝑡𝜕𝑥𝑡

����
𝑥𝑡 ,𝑎

∗
𝑡

− 𝜕 𝑓𝑡
𝜕𝑥𝑡

����
𝑥′𝑡 ,𝑎

∗
𝑡






 +





 𝜕ℎ𝑡𝜕𝑢𝑡

����
𝑥𝑡 ,𝑢𝑡 ,𝜃𝑡

− 𝜕ℎ𝑡
𝜕𝑢𝑡

����
𝑥′𝑡 ,𝑢

′
𝑡 ,𝜃𝑡






 ·





 𝜕𝜓𝑡𝜕𝑥𝑡

����
𝑥𝑡 ,𝜃𝑡







+






 𝜕ℎ𝑡𝜕𝑢𝑡

����
𝑥′𝑡 ,𝑢

′
𝑡 ,𝜃𝑡






 ·





 𝜕𝜓𝑡𝜕𝑥𝑡

����
𝑥𝑡 ,𝜃𝑡

− 𝜕𝜓𝑡
𝜕𝑥𝑡

����
𝑥′𝑡 ,𝜃𝑡






 (5.92b)

≤ ℓℎ,𝑥


𝑥𝑡 − 𝑥′𝑡

 + ℓℎ,𝑢

𝑢𝑡 − 𝑢′𝑡

 + 𝐿 𝑓 ,𝑥 (

ℓℎ,𝑥


𝑥𝑡 − 𝑥′𝑡

 + ℓℎ,𝑢

𝑢𝑡 − 𝑢′𝑡

)

+ 𝐿ℎ,𝑢ℓ 𝑓 ,𝑥


𝑥𝑡 − 𝑥′𝑡

 + 𝐿𝜓,𝑥 (

ℓℎ,𝑥


𝑥𝑡 − 𝑥′𝑡

 + ℓℎ,𝑢

𝑢𝑡 − 𝑢′𝑡

) + 𝐿ℎ,𝑢ℓ𝜓,𝑥

𝑥𝑡 − 𝑥′𝑡



(5.92c)

=
(
ℓℎ,𝑥 (1 + 𝐿 𝑓 ,𝑥 + 𝐿𝜓,𝑥) + 𝐿ℎ,𝑢 (ℓ 𝑓 ,𝑥 + ℓ𝜓,𝑥)

) 

𝑥𝑡 − 𝑥′𝑡


+ ℓℎ,𝑢 (1 + 𝐿 𝑓 ,𝑥 + 𝐿𝜓,𝑥)



𝑢𝑡 − 𝑢′𝑡


≤

(
(ℓℎ,𝑥 + ℓℎ,𝑢 (𝐿 𝑓 ,𝑥 + 𝐿𝜓,𝑥)) (1 + 𝐿 𝑓 ,𝑥 + 𝐿𝜓,𝑥) + 𝐿ℎ,𝑢 (ℓ 𝑓 ,𝑥 + ℓ𝜓,𝑥)

) 

𝑥𝑡 − 𝑥′𝑡

,
(5.92d)

where we use the triangle inequality in (5.92a) and (5.92b); we use Assumption
5.D.1 in (5.92c) and (5.92d). Similarly, we also see that





 𝜕ℎ

∗
𝑡 |𝑡

𝜕𝜃𝑡

�����
𝑥𝑡 ,𝜃𝑡

−
𝜕ℎ∗

𝑡 |𝑡
𝜕𝜃𝑡

�����
𝑥′𝑡 ,𝜃𝑡








=






 𝜕ℎ𝑡𝜕𝑢𝑡

����
𝑥𝑡 ,𝑢𝑡 ,𝜃𝑡

· 𝜕𝜓𝑡
𝜕𝜃𝑡

����
𝑥𝑡 ,𝜃𝑡

− 𝜕ℎ𝑡
𝜕𝑢𝑡

����
𝑥′𝑡 ,𝑢

′
𝑡 ,𝜃𝑡

· 𝜕𝜓𝑡
𝜕𝜃𝑡

����
𝑥′𝑡 ,𝜃𝑡






 (5.93a)

≤





 𝜕ℎ𝑡𝜕𝑢𝑡

����
𝑥𝑡 ,𝑢𝑡 ,𝜃𝑡

− 𝜕ℎ𝑡
𝜕𝑢𝑡

����
𝑥′𝑡 ,𝑢

′
𝑡 ,𝜃𝑡






 ·





 𝜕𝜓𝑡𝜕𝜃𝑡

����
𝑥𝑡 ,𝜃𝑡






 +





 𝜕ℎ𝑡𝜕𝑢𝑡

����
𝑥′𝑡 ,𝑢

′
𝑡 ,𝜃𝑡






 ·





 𝜕𝜓𝑡𝜕𝜃𝑡

����
𝑥𝑡 ,𝜃𝑡

− 𝜕𝜓𝑡
𝜕𝜃𝑡

����
𝑥′𝑡 ,𝜃𝑡







(5.93b)

≤
(
ℓℎ,𝑥𝐿𝜓,𝜃 + 𝐿ℎ,𝑢ℓ𝜓,𝑥

) 

𝑥𝑡 − 𝑥′𝑡

 + ℓℎ,𝑢𝐿𝜓,𝜃

𝑢𝑡 − 𝑢′𝑡

, (5.93c)

≤
(
ℓℎ,𝑥𝐿𝜓,𝜃 + 𝐿ℎ,𝑢ℓ𝜓,𝑥 + ℓℎ,𝑢𝐿𝜓,𝜃 (𝐿 𝑓 ,𝑥 + 𝐿𝜓,𝑥)

) 

𝑥𝑡 − 𝑥′𝑡

, (5.93d)

where we use the chain rule in (5.93a); we use the triangle inequality in (5.93b); we
use Assumption 5.D.1 in (5.93c). Substituting (5.92) and (5.93) into (5.91) gives
that 

𝑞𝜃𝑡 (𝑥𝑡 , 𝑦𝑡 , 𝜃𝑡 , 𝑎∗𝑡 ) − 𝑞𝜃𝑡 (𝑥′𝑡 , 𝑦′𝑡 , 𝜃𝑡 , 𝑎∗𝑡 )


≤ 𝜂𝑅𝑦

(
(ℓℎ,𝑥 + ℓℎ,𝑢 (𝐿 𝑓 ,𝑥 + 𝐿𝜓,𝑥)) (1 + 𝐿 𝑓 ,𝑥 + 𝐿𝜓,𝑥) + 𝐿ℎ,𝑢 (ℓ 𝑓 ,𝑥 + ℓ𝜓,𝑥)

) 

𝑥𝑡 − 𝑥′𝑡


+ 𝜂(𝐿ℎ,𝑥 + 𝐿ℎ,𝑢 (𝐿 𝑓 ,𝑥 + 𝐿𝜓,𝑥))



𝑦𝑡 − 𝑦′𝑡


+ 𝜂

(
ℓℎ,𝑥𝐿𝜓,𝜃 + 𝐿ℎ,𝑢ℓ𝜓,𝑥 + ℓℎ,𝑢𝐿𝜓,𝜃 (𝐿 𝑓 ,𝑥 + 𝐿𝜓,𝑥)

) 

𝑥𝑡 − 𝑥′𝑡
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≤ 𝐿𝜃,𝑥


𝑥𝑡 − 𝑥′𝑡

 + 𝐿𝜃,𝑦

𝑦𝑡 − 𝑦′𝑡

. (5.94)

Proof of Lemma 5.E.2
Consider two trajectories {𝑥𝑡1:𝑡2 , 𝑦𝑡1:𝑡2} and {𝑥′𝑡1:𝑡2 , 𝑦

′
𝑡1:𝑡2} given by

𝑥𝜏+1 = 𝜙𝜏 (𝑥𝜏, 𝜓𝑡 (𝑥𝜏, 𝜃𝜏)) + 𝑤𝜏,

𝑦𝜏+1 =
𝜕𝑔∗

𝜏+1|𝜏
𝜕𝑥𝜏

�����
𝑥𝜏 ,𝜃𝜏

· 𝑦𝜏 +
𝜕𝑔∗

𝜏+1|𝜏
𝜕𝜃𝜏

�����
𝑥𝜏 ,𝜃𝜏

,

and

𝑥′𝜏+1 = 𝜙𝜏 (𝑥′𝜏, 𝜓𝑡 (𝑥′𝜏, 𝜃𝜏)) + 𝑤𝜏,

𝑦′𝜏+1 =
𝜕𝑔∗

𝜏+1|𝜏
𝜕𝑥𝜏

�����
𝑥′𝜏 ,𝜃𝜏

· 𝑦′𝜏 +
𝜕𝑔∗

𝜏+1|𝜏
𝜕𝜃𝜏

�����
𝑥′𝜏 ,𝜃𝜏

,

where 𝜏 = 𝑡1, 𝑡1 +1, . . . , 𝑡2. Note that by Assumption 5.D.2, we have that


𝑥𝑡2

 ≤ 𝑅𝑆

and for any 𝑥𝑡1 , 𝑥′𝑡1 whose norms are upper bounded by 𝑅𝐶

𝑥𝑡2 − 𝑥′𝑡2

 ≤ 𝐶̄𝜌𝑡2−𝑡1

𝑥𝑡1 − 𝑥′𝑡1

, (5.95)

where 𝜌 is the decay factor of the contractive perturbation property defined in
Assumption 5.D.2. For the 𝑦 sequence, note that 𝑦𝑡2 and 𝑦′𝑡2 can be expressed
equivalently as

𝑦𝑡2 =
𝜕𝑔∗

𝑡2 |𝑡1
𝜕𝑥𝑡1

�����
𝑥𝑡1 ,𝜃𝑡1:𝑡2−1

· 𝑦𝑡1 +
𝑡2−1∑︁
𝜏=𝑡1

𝜕𝑔∗
𝑡2 |𝜏

𝜕𝜃𝜏

�����
𝑥𝜏 ,𝜃𝜏:𝑡2−1

, (5.96a)

𝑦′𝑡2 =
𝜕𝑔∗

𝑡2 |𝑡1
𝜕𝑥𝑡1

�����
𝑥′𝑡1 ,𝜃𝑡1:𝑡2−1

· 𝑦′𝑡1 +
𝑡2−1∑︁
𝜏=𝑡1

𝜕𝑔∗
𝑡2 |𝜏

𝜕𝜃𝜏

�����
𝑥′𝜏 ,𝜃𝜏:𝑡2−1

. (5.96b)

By Lemma 5.B.3, we see that if 𝑦𝑡1 = 0, then



𝑦𝑡2

 =






𝑡2−1∑︁
𝜏=𝑡1

𝜕𝑔∗
𝑡2 |𝜏

𝜕𝜃𝜏

�����
𝑥𝜏 ,𝜃𝜏:𝑡2−1







 ≤ 𝑡2−1∑︁
𝜏=𝑡1







 𝜕𝑔
∗
𝑡2 |𝜏

𝜕𝜃𝜏

�����
𝑥𝜏 ,𝜃𝜏:𝑡2−1







 ≤ 𝑡2−1∑︁
𝜏=𝑡1

𝐶𝐿,𝑔,𝜃𝜌
𝑡2−𝜏 =

𝐶𝐿,𝑔,𝜃

1 − 𝜌 .

(5.97)

We also see that

𝑦𝑡2 − 𝑦′𝑡2


=







©­«
𝜕𝑔∗

𝑡2 |𝑡1
𝜕𝑥𝑡1

�����
𝑥𝑡1 ,𝜃𝑡1:𝑡2−1

−
𝜕𝑔∗

𝑡2 |𝑡1
𝜕𝑥𝑡1

�����
𝑥′𝑡1 ,𝜃𝑡1:𝑡2−1

ª®¬ · 𝑦𝑡1






 +







 𝜕𝑔
∗
𝑡2 |𝑡1

𝜕𝑥𝑡1

�����
𝑥′𝑡1 ,𝜃𝑡1:𝑡2−1

· (𝑦𝑡1 − 𝑦′𝑡1)
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+
𝑡2−1∑︁
𝜏=𝑡1







 𝜕𝑔
∗
𝑡2 |𝜏

𝜕𝜃𝜏

�����
𝑥𝜏 ,𝜃𝜏:𝑡2−1

−
𝜕𝑔∗

𝑡2 |𝜏
𝜕𝜃𝜏

�����
𝑥′𝜏 ,𝜃𝜏:𝑡2−1







 (5.98a)

≤ 𝐶ℓ,𝑔,(𝑥,𝑥)𝜌𝑡2−𝑡1


𝑥𝑡1 − 𝑥′𝑡1

 · 𝑅𝑦 + 𝐶𝐿,𝑔,𝑥𝜌𝑡2−𝑡1

𝑦𝑡1 − 𝑦′𝑡1



+ 𝐶ℓ,𝑔,(𝜃,𝑥)
𝑡2−1∑︁
𝜏=𝑡1

𝜌𝑡2−𝜏


𝑥𝜏 − 𝑥′𝜏

 (5.98b)

≤ 𝐶ℓ,𝑔,(𝑥,𝑥)𝜌𝑡2−𝑡1


𝑥𝑡1 − 𝑥′𝑡1

 · 𝑅𝑦 + 𝐶𝐿,𝑔,𝑥𝜌𝑡2−𝑡1

𝑦𝑡1 − 𝑦′𝑡1



+ 𝐶ℓ,𝑔,(𝜃,𝑥)
𝑡2−1∑︁
𝜏=𝑡1

𝜌𝑡2−𝜏 · 𝐶̄𝜌𝜏−𝑡1


𝑥𝑡1 − 𝑥′𝑡1

 (5.98c)

≤
(
𝐶ℓ,𝑔,(𝑥,𝑥)𝑅𝑦 + 𝐶ℓ,𝑔,(𝜃,𝑥)𝐶̄ (𝑡2 − 𝑡1)

)
𝜌𝑡2−𝑡1



𝑥𝑡1 − 𝑥′𝑡1

 + 𝐶𝐿,𝑔,𝑥𝜌𝑡2−𝑡1

𝑦𝑡1 − 𝑦′𝑡1

.
(5.98d)

Therefore, we see that

(𝑥𝑡2 , 𝑦𝑡2) − (𝑥′𝑡2 , 𝑦′𝑡2)


≤



𝑥𝑡2 − 𝑥′𝑡2

 + 

𝑦𝑡2 − 𝑦′𝑡2

 (5.99a)

≤ 𝐶̄𝜌𝑡2−𝑡1


𝑥𝑡1 − 𝑥′𝑡1

 + (

𝐶ℓ,𝑔,(𝑥,𝑥)𝑅𝑦 + 𝐶ℓ,𝑔,(𝜃,𝑥)𝐶̄ (𝑡2 − 𝑡1)
)
𝜌𝑡2−𝑡1



𝑥𝑡1 − 𝑥′𝑡1


+ 𝐶̄𝜌𝑡2−𝑡1



𝑦𝑡1 − 𝑦′𝑡1

 (5.99b)

≤ 𝛾(𝑡2 − 𝑡1)


(𝑥𝑡1 , 𝑦𝑡1) − (𝑥′𝑡1 , 𝑦′𝑡1)

, (5.99c)

where we use the triangle inequality in (5.99a); we use (5.95) and (5.98) and
𝐶̄ = 𝐶𝐿,𝑔,𝑥 in (5.99b); we use the inequality that

𝑥𝑡1 − 𝑥′𝑡1

 + 

𝑦𝑡1 − 𝑦′𝑡1

 ≤ √2



(𝑥𝑡1 , 𝑦𝑡1) − (𝑥′𝑡1 , 𝑦′𝑡1)


and the definition of 𝛾(·) in (5.99c).

Proof of Lemma 5.E.3
We compare the dynamical system (5.80) with the Ideal OGD update rule:

𝜃𝑡+1 = ΠΘ(𝜃𝑡 − 𝜂∇𝐹𝑡 (𝜃𝑡)). (5.100)

Note that the update on 𝜃𝑡 that the dynamical system (5.80) performs can be written
equivalently as

𝜃𝑡+1 = ΠΘ(𝜃𝑡 − 𝜂𝐺 𝑡) + 𝜁𝑡 , (5.101)

where

𝐺 𝑡 :=
𝑡∑︁
𝜏=0

𝜕ℎ∗
𝑡 |0

𝜕𝜃𝑡−𝜏

�����
𝑥0,𝜃0:𝑡

. (5.102)
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By Theorem 5.E.7, we know that the bias of the gradient estimator 𝐺 𝑡 compared
with the surrogate cost’s gradient ∇𝐹𝑡 can be bounded by

∥𝐺 𝑡 − ∇𝐹𝑡 (𝜃𝑡)∥ ≤
(
𝐶̂0

1 − 𝜌 +
𝐶̂1 + 𝐶̂2

(1 − 𝜌)2
+ 𝐶̂2

(1 − 𝜌)3

)
𝜂

+
𝑡−1∑︁
𝜏=0

(
𝐶̂3

1 − 𝜌 +
𝐶̂4

(1 − 𝜌)2
+ 𝐶̂5(𝑡 − 𝜏)

)
𝜌𝑡−𝜏∥𝜁𝜏∥,

where the constants 𝐶̂0:5 are given in Theorem 5.E.7. Let 𝜃𝑡+1 be the actual next
policy parameter (following the update rule (5.101)). By Lemma 5.E.5, we see that

∥𝜃𝑡+1 − ΠΘ(𝜃𝑡 − 𝜂∇𝐹𝑡 (𝜃𝑡))∥ ≤ 𝜂∥𝐺 𝑡 − ∇𝐹𝑡 (𝜃𝑡)∥ + ∥𝜁𝑡 ∥

≤ ∥𝜁𝑡 ∥ +
(
𝐶̂0

1 − 𝜌 +
𝐶̂1 + 𝐶̂2

(1 − 𝜌)2
+ 𝐶̂2

(1 − 𝜌)3

)
𝜂2

+ 𝜂
𝑡−1∑︁
𝜏=0

(
𝐶̂3

1 − 𝜌 +
𝐶̂4

(1 − 𝜌)2
+ 𝐶̂5(𝑡 − 𝜏)

)
𝜌𝑡−𝜏∥𝜁𝜏∥.

Then, we can apply Theorem 5.E.4 to obtain that

𝑇−1∑︁
𝑡=0



∇Θ,𝜂𝐹𝑡 (𝜃𝑡)

2 ≤ 1
𝜂(1 − 𝜂ℓ𝐹)

(
𝐹0(𝜃0) +

𝑇−1∑︁
𝑡=1

dist𝑠 (𝐹𝑡 , 𝐹𝑡−1)
)
+ 𝐿𝐹𝑆1 + ℓ𝐹𝜂𝑆2

1 − 𝜂ℓ𝐹
,

(5.103)

where dist𝑆 is a metric that measures the distance between two surrogate cost
functions (see Theorem 5.E.4 for definition), and 𝑆1 and 𝑆2 are given by

𝑆1 :=
(

1
𝜂
+ 𝐶̂3 + 𝐶̂5

(1 − 𝜌)2
+ 𝐶̂4

(1 − 𝜌)3

) 𝑇−1∑︁
𝑡=0
∥𝜁𝑡 ∥ +

(
𝐶̂0

1 − 𝜌 +
𝐶̂1 + 𝐶̂2

(1 − 𝜌)2
+ 𝐶̂2

(1 − 𝜌)3

)
𝜂𝑇,

𝑆2 :=
(
1 + 𝐶̂0

1 − 𝜌 +
𝐶̂1 + 𝐶̂2 + 𝐶̂3 + 𝐶̂5

(1 − 𝜌)2
+ 𝐶̂2 + 𝐶̂4

(1 − 𝜌)3

)
·[(

1
𝜂2 +

𝐶̂3 + 𝐶̂5

(1 − 𝜌)2
+ 𝐶̂4

(1 − 𝜌)3

) 𝑇−1∑︁
𝑡=0
∥𝜁𝑡 ∥2 +

(
𝐶̂0

1 − 𝜌 +
𝐶̂1 + 𝐶̂2

(1 − 𝜌)2
+ 𝐶̂2

(1 − 𝜌)3

)
𝜂2𝑇

]
.

By applying Lemma F.4 in Lin, Preiss, Anand, et al., 2023, we can bound the total
variational intensity on the surrogate costs by

𝑇−1∑︁
𝑡=1

dist𝑠 (𝐹𝑡 , 𝐹𝑡−1) ≤
2𝐶̄𝐿ℎ (1 + 𝐿𝜓,𝑥 + 𝐿 𝑓 ,𝑥) (1 + 𝐿𝜙,𝑢)

(1 − 𝜌)2𝜌
· (𝑉𝑠𝑦𝑠 +𝑉𝑤)



279

+
2𝐶̄𝐿ℎ (1 + 𝐿𝜓,𝑥 + 𝐿 𝑓 ,𝑥)

1 − 𝜌 ·
(
2𝐶̄ 𝑅̄𝐶 + 2𝑅𝑆

)
.

Substituting the above inequality and 𝐿𝐹 =
𝐶𝐿, 𝑓 , 𝜃

1−𝜌 , ℓ𝐹 =
𝐶ℓ,ℎ, (𝜃, 𝜃 )

1−𝜌 into (5.103) finishes
the proof.

Local Regret of Online Gradient Descent

Theorem 5.E.4. Consider the parameter sequence {𝜃𝑡} that satisfies

𝜃𝑡+1 − (𝜃𝑡 − 𝜂∇Θ,𝜂𝐹𝑡 (𝜃𝑡))

 ≤ 𝜂𝛽𝑡 , for all 𝑡 ≥ 0.

Suppose at every time 𝑡, 𝐹𝑡 is ℓ𝐹-smooth and 𝐿𝐹-Lipschitz in Θ. If the learning rate
𝜂 ≤ 1

ℓ𝐹
, then the local regret

∑𝑇−1
𝑡=0



∇Θ,𝜂𝐹𝑡 (𝜃𝑡)

2 is upper bounded by

1
𝜂(1 − 𝜂ℓ𝐹)

(
𝐹0(𝜃0) +

𝑇−1∑︁
𝑡=1

dist𝑠 (𝐹𝑡 , 𝐹𝑡−1)
)
+
𝐿𝐹

∑𝑇−1
𝑡=0 𝛽𝑡 + ℓ𝐹𝜂

∑𝑇−1
𝑡=0 𝛽

2
𝑡

1 − 𝜂ℓ𝐹
,

where dist𝑠 (𝐹, 𝐹′) := sup𝜃∈Θ |𝐹 (𝜃) − 𝐹′(𝜃) |.

Next, we state a property of projection onto the compact convex set Θ ∈ R𝑑 in
Lemma 5.E.5. This is a classic result in convex optimization (see, for example,
Theorem 1.2.1 in Schneider, 2014).

Lemma 5.E.5. Let 𝑞 and 𝑞′ be arbitrary points in R𝑑 . Let 𝑝 = ΠΘ(𝑞) and
𝑝′ = ΠΘ(𝑞′). Then, the following inequality holds:

∥𝑝 − 𝑝′∥ ≤ ∥𝑞 − 𝑞′∥.

Now we come back to the proof of Theorem 5.E.4.

Define the quantity

𝜖𝑡 :=
1
𝜂

(
𝜃𝑡+1 − (𝜃𝑡 − 𝜂∇Θ,𝜂𝐹𝑡 (𝜃𝑡))

)
.

We see that

𝜃𝑡+1 − 𝜃𝑡 = −𝜂∇Θ,𝜂𝐹𝑡 (𝜃𝑡) + 𝜂𝜖𝑡 . (5.104)

By the smoothness of 𝐹𝑡 (·), we see that

𝐹𝑡 (𝜃𝑡+1) ≤ 𝐹𝑡 (𝜃𝑡) + ⟨∇𝐹𝑡 (𝜃𝑡), 𝜃𝑡+1 − 𝜃𝑡⟩ +
ℓ𝐹

2
∥𝜃𝑡+1 − 𝜃𝑡 ∥2
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= 𝐹𝑡 (𝜃𝑡) − 𝜂⟨∇𝐹𝑡 (𝜃𝑡),∇Θ,𝜂𝐹𝑡 (𝜃𝑡) − 𝜖𝑡⟩ +
ℓ𝐹𝜂

2

2


∇Θ,𝜂𝐹𝑡 (𝜃𝑡) − 𝜖𝑡

2

(5.105a)

= 𝐹𝑡 (𝜃𝑡) − 𝜂⟨∇𝐹𝑡 (𝜃𝑡),∇Θ,𝜂𝐹𝑡 (𝜃𝑡)⟩ +
ℓ𝐹𝜂

2

2


∇Θ,𝜂𝐹𝑡 (𝜃𝑡)

2

+ 𝜂⟨∇𝐹𝑡 (𝜃𝑡), 𝜖𝑡⟩ − ℓ𝐹𝜂2⟨∇Θ,𝜂𝐹𝑡 (𝜃𝑡), 𝜖𝑡⟩ +
ℓ𝐹𝜂

2

2
∥𝜖𝑡 ∥2, (5.105b)

where we use (5.104) in (5.105a). Recall that Θ is a closed convex subset of R𝑑 .
Since 𝜃𝑡 −𝜂∇Θ,𝜂𝐹𝑡 (𝜃𝑡) is the projection of 𝜃𝑡 −𝜂∇𝐹𝑡 (𝜃𝑡) onto Θ and 𝜃𝑡 ∈ Θ, we have

⟨(𝜃𝑡 − 𝜂∇𝐹𝑡 (𝜃𝑡)) − (𝜃𝑡 − 𝜂∇Θ,𝜂𝐹𝑡 (𝜃𝑡)), 𝜃𝑡 − (𝜃𝑡 − 𝜂∇Θ,𝜂𝐹𝑡 (𝜃𝑡))⟩ ≤ 0.

Rearranging terms gives that

⟨∇𝐹𝑡 (𝜃𝑡),∇Θ,𝜂𝐹𝑡 (𝜃𝑡)⟩ ≥


∇Θ,𝜂𝐹𝑡 (𝜃𝑡)

2

.

Substituting this inequality into (5.105) gives that

𝐹𝑡 (𝜃𝑡+1) ≤ 𝐹𝑡 (𝜃𝑡) − 𝜂


∇Θ,𝜂𝐹𝑡 (𝜃𝑡)

2 + ℓ𝐹𝜂

2

2


∇Θ,𝜂𝐹𝑡 (𝜃𝑡)

2

+ 𝜂⟨∇𝐹𝑡 (𝜃𝑡), 𝜖𝑡⟩ − ℓ𝐹𝜂2⟨∇Θ,𝜂𝐹𝑡 (𝜃𝑡), 𝜖𝑡⟩ +
ℓ𝐹𝜂

2

2
∥𝜖𝑡 ∥2

≤ 𝐹𝑡 (𝜃𝑡) − 𝜂(1 − ℓ𝐹𝜂)


∇Θ,𝜂𝐹𝑡 (𝜃𝑡)

2 + 𝜂∥∇𝐹𝑡 (𝜃𝑡)∥ · ∥𝜖𝑡 ∥

− ℓ𝐹𝜂
2

2


∇Θ,𝜂𝐹𝑡 (𝜃𝑡) + 𝜖𝑡

2 + ℓ𝐹𝜂2∥𝜖𝑡 ∥2 (5.106a)

≤ 𝐹𝑡 (𝜃𝑡) − 𝜂(1 − ℓ𝐹𝜂)


∇Θ,𝜂𝐹𝑡 (𝜃𝑡)

2 + 𝜂𝐿𝐹𝛽𝑡 + ℓ𝐹𝜂2𝛽2

𝑡 , (5.106b)

where we rearrange the terms and use the Cauchy-Schwarz inequality in (5.106a); In
(5.106b), we use the assumption ∥𝜖𝑡 ∥ ≤ 𝛽𝑡 . Summing (5.106) over 𝑡 = 0, 1, . . . , 𝑇−1
gives that

𝜂(1 − ℓ𝐹𝜂)
𝑇−1∑︁
𝑡=0



∇Θ,𝜂𝐹𝑡 (𝜃𝑡)

2

≤
𝑇−1∑︁
𝑡=0
(𝐹𝑡 (𝜃𝑡) − 𝐹𝑡 (𝜃𝑡+1)) + 𝜂𝐿𝐹

𝑇−1∑︁
𝑡=0

𝛽𝑡 + ℓ𝐹𝜂2
𝑇−1∑︁
𝑡=0

𝛽2
𝑡

≤ 𝐹0(𝜃0) +
𝑇−1∑︁
𝑡=1
(𝐹𝑡 (𝜃𝑡) − 𝐹𝑡−1(𝜃𝑡)) +

𝑇−1∑︁
𝑡=1

dist𝑠 (𝐹𝑡 , 𝐹𝑡−1) + 𝜂𝐿𝐹
𝑇−1∑︁
𝑡=0

𝛽𝑡 + ℓ𝐹𝜂2
𝑇−1∑︁
𝑡=0

𝛽2
𝑡

(5.107a)

≤ 𝐹0(𝜃0) +
𝑇−1∑︁
𝑡=1

dist𝑠 (𝐹𝑡 , 𝐹𝑡−1) + 𝜂𝐿𝐹
𝑇−1∑︁
𝑡=0

𝛽𝑡 + ℓ𝐹𝜂2
𝑇−1∑︁
𝑡=0

𝛽2
𝑡 , (5.107b)

where we rearrange the terms and use 𝐹𝑇−1(𝜃𝑇 ) ≥ 0 in (5.107a); we use the definition
of dist𝑠 (·, ·) in (5.107b).
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Useful Lemmas
Theorem 5.E.6 bounds the distances between the trajectory of M-GAPS with the
imaginary trajectory achieved by using 𝜃𝑡 repeatedly from time step 0. It can be
shown using a similar approach as Theorem D.5 in Lin, Preiss, Anand, et al., 2023,
while a difference is that we consider an additional disturbance 𝜁𝑡 in the update rule
of policy parameters. We include the proof of Theorem 5.E.6 in Appendix 5.E for
completeness.

Theorem 5.E.6. Suppose Assumptions 5.D.1 and 5.D.2 hold. Let {𝑥𝑡 , 𝑢𝑡 , 𝜃𝑡}𝑡∈T
denote the trajectory of

𝑥𝑡+1 = 𝑞𝑥𝑡 (𝑥𝑡 , 𝑦𝑡 , 𝜃𝑡 , 𝑎∗𝑡 ) = 𝜙𝑡 (𝑥𝑡 , 𝜓𝑡 (𝑥𝑡 , 𝜃𝑡)) + 𝑤𝑡 , (5.108a)

𝑦𝑡+1 = 𝑞
𝑦
𝑡 (𝑥𝑡 , 𝑦𝑡 , 𝜃𝑡 , 𝑎∗𝑡 ) =

𝜕𝑔∗
𝑡+1|𝑡
𝜕𝑥𝑡

�����
𝑥𝑡 ,𝜃𝑡

· 𝑦𝑡 +
𝜕𝑔∗

𝑡+1|𝑡
𝜕𝜃𝑡

�����
𝑥𝑡 ,𝜃𝑡

, (5.108b)

𝜃𝑡+1 = 𝑞𝜃𝑡 (𝑥𝑡 , 𝑦𝑡 , 𝜃𝑡 , 𝑎∗𝑡 ) = ΠΘ

(
𝜃𝑡+1 − 𝜂

(
𝜕ℎ∗

𝑡 |𝑡
𝜕𝑥𝑡

�����
𝑥𝑡 ,𝜃𝑡

· 𝑦𝑡 +
𝜕ℎ∗

𝑡 |𝑡
𝜕𝜃𝑡

�����
𝑥𝑡 ,𝜃𝑡

))
+ 𝜁𝑡 .

(5.108c)

Suppose 𝜂 and 𝜁 satisfy the constraint that 𝜀 := 𝐶𝐿,ℎ, 𝜃𝜂

1−𝜌 + 𝜁 ≤ 𝜀. Then, both ∥𝐺 𝑡 ∥
and ∥∇𝐹𝑡 (𝜃𝑡)∥ are upper bounded by 𝐶𝐿,ℎ, 𝜃

1−𝜌 , and the following inequalities holds for
any two time steps 𝜏, 𝑡 (𝜏 ≤ 𝑡):

∥𝜃𝑡 − 𝜃𝜏∥ ≤
𝐶𝐿,ℎ,𝜃

1 − 𝜌 · (𝑡 − 𝜏)𝜂 +
𝑡−1∑︁
𝜏′=𝜏

∥𝜁𝜏′ ∥, and ∥𝑥𝜏 − 𝑥𝜏 (𝜃𝑡)∥ ≤

𝐶𝐿,ℎ,𝜃𝐶𝐿,𝜙,𝜃𝜌

(1 − 𝜌)2

(
(𝑡 − 𝜏) + 1

1 − 𝜌

)
· 𝜂 +

𝐶𝐿,𝜙,𝜃𝜌

1 − 𝜌 ·
(
𝑡−1∑︁
𝜏′=𝜏

∥𝜁𝜏′ ∥ +
𝜏−1∑︁
𝜏′=0

𝜌𝜏−𝜏
′ ∥𝜁𝜏′ ∥

)
,

where we use the notation 𝑥𝜏 (𝜃) := 𝑔∗
𝜏 |0(𝑥0, 𝜃×(𝜏+1)),∀𝜃 ∈ Θ. Further, we have that

|ℎ𝑡 (𝑥𝑡 , 𝑢𝑡 , 𝜃𝑡) − 𝐹𝑡 (𝜃𝑡) | ≤
𝐶𝐿,ℎ,𝜃𝐶𝐿,𝜙,𝜃𝐿ℎ (1 + 𝐿𝜓,𝑥 + 𝐿 𝑓 ,𝑥)𝜌

(1 − 𝜌)3
· 𝜂

+
𝐶𝐿,𝜙,𝜃𝐿ℎ (1 + 𝐿𝜓,𝑥 + 𝐿 𝑓 ,𝑥)𝜌

1 − 𝜌 ·
𝑡−1∑︁
𝜏=0

𝜌𝑡−𝜏∥𝜁𝜏∥.

Recall that we define the gradient approximation 𝐺 𝑡 for M-GAPS in Algorithm
8. Using this notation, the update rule of 𝜃0:𝑇−1 in joint dynamics (5.108) can be
simplified as

𝜃𝑡+1 = ΠΘ (𝜃𝑡+1 − 𝜂𝐺 𝑡) + 𝜁𝑡 .
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To compare the trajectory of M-GAPS with the trajectory achieved by the online
gradient descent trajectory 𝜃𝑡+1 = ΠΘ(𝜃𝑡 − 𝜂∇𝐹𝑡 (𝜃𝑡)), we bound the difference
between 𝐺 𝑡 and ∇𝐹𝑡 (𝜃𝑡) in Theorem 5.E.7. We provide its proof in Appendix 5.E
for completeness.

Theorem 5.E.7 (Gradient Bias). Suppose Assumptions 5.D.1 and 5.D.2 hold. Let
{𝑥𝑡 , 𝑢𝑡 , 𝜃𝑡}𝑡∈T denote the trajectory of (5.108). Suppose 𝜂 and 𝜁 satisfy the constraint
that 𝜀 := 𝐶𝐿,ℎ, 𝜃𝜂

1−𝜌 + 𝜁 ≤ 𝜀. Then, the following holds for all 𝜏 ≤ 𝑡:





 𝜕ℎ
∗
𝑡 |0

𝜕𝜃𝜏

�����
𝑥0,𝜃0:𝑡

−
𝜕ℎ∗

𝑡 |0
𝜕𝜃𝜏

�����
𝑥0,(𝜃𝑡 )×(𝑡+1)








≤

(
𝐶̂0 + 𝐶̂1(𝑡 − 𝜏) + 𝐶̂2(𝑡 − 𝜏)2

)
𝜌𝑡−𝜏 · 𝜂

+
(
𝐶̂3

𝑡−1∑︁
𝜏′=𝜏

∥𝜁𝜏′ ∥ + 𝐶̂4

𝑡−1∑︁
𝜏′=𝜏

(𝜏′ − 𝜏)∥𝜁𝜏′ ∥
)
· 𝜌𝑡−𝜏

+ 𝐶̂5

𝜏−1∑︁
𝜏′=0

𝜌𝑡−𝜏
′ ∥𝜁𝜏′ ∥.

for

𝐶̂0 =
𝜌𝐶𝐿,ℎ,𝜃𝐶𝐿,𝜙,𝜃𝐶ℓ,ℎ,(𝜃,𝑥)

(1 − 𝜌)3
, 𝐶̂1 =

(1 − 𝜌)𝐶𝐿,ℎ,𝜃𝐶ℓ,ℎ,(𝜃,𝑥) + 𝜌𝐶𝐿,ℎ,𝜃𝐶𝐿,𝜙,𝜃𝐶ℓ,ℎ,(𝜃,𝜃)
(1 − 𝜌)2

,

𝐶̂2 =
𝐶𝐿,ℎ,𝜃𝐶ℓ,ℎ,(𝑥,𝜃)𝐶𝐿,𝜙,𝜃

1 − 𝜌 , 𝐶̂3 =
𝐶𝐿,𝜙,𝜃𝐶ℓ,ℎ,(𝜃,𝑥)𝜌

1 − 𝜌 ,

𝐶̂4 = 𝐶ℓ,ℎ,(𝑥,𝜃)𝐶𝐿,𝜙,𝜃 , 𝐶̂5 =
𝐶𝐿,𝜙,𝜃𝐶ℓ,ℎ,(𝜃,𝑥)𝜌

1 − 𝜌 .

Next,

∥𝐺 𝑡 − ∇𝐹𝑡 (𝜃𝑡)∥ ≤
(
𝐶̂0

1 − 𝜌 +
𝐶̂1 + 𝐶̂2

(1 − 𝜌)2
+ 𝐶̂2

(1 − 𝜌)3

)
𝜂

+
𝑡−1∑︁
𝜏=0

(
𝐶̂3

1 − 𝜌 +
𝐶̂4

(1 − 𝜌)2
+ 𝐶̂5(𝑡 − 𝜏)

)
𝜌𝑡−𝜏∥𝜁𝜏∥.

Proof of Theorem 5.E.6
We first use induction to show that for all time step 𝑡 ∈ T ,

∥𝐺 𝑡 ∥ ≤
𝐶𝐿,ℎ,𝜃

1 − 𝜌 , 𝑥𝑡 ∈ 𝐵𝑛 (0, 𝑅𝑆 + 𝐶̄∥𝑥0∥), 𝑢𝑡 ∈ U, and ∥𝜃𝑡+1 − 𝜃𝑡 ∥ ≤ 𝜖𝜃 , (5.109)

whereU = {𝜓(𝑥, 𝜃) − 𝑓 (𝑥, 𝑎) | 𝑥 ∈ 𝐵𝑛 (0, 𝑅𝑥), 𝜃 ∈ Θ, 𝑎 ∈ A, (𝜓, 𝑓 ) ∈ G}.
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Note that ∥𝐺0∥ ≤ 𝐶𝐿,ℎ,𝜃 ≤ 𝐶𝐿,ℎ, 𝜃
1−𝜌 by Corollary 5.B.4. We also have 𝑥0 ∈ 𝐵𝑛 (0, 𝑅𝑆 +

𝐶∥𝑥0∥) and 𝑢0 ∈ U.

Suppose ∥𝐺 𝑡−1∥ ≤ 𝐶𝐿,ℎ, 𝜃
1−𝜌 for some 𝑡 ≥ 1. Then, since 𝜂 ≤ (1−𝜌)𝜖𝜃

𝐶𝐿,ℎ, 𝜃
and the projection

onto Θ is a contraction, we see that

∥𝜃𝑡 − 𝜃𝑡−1∥ ≤ ∥𝜂𝐺 𝑡−1∥ + ∥𝜁𝑡 ∥ ≤ 𝜖𝜃 .

Suppose ∥𝜃𝜏 − 𝜃𝜏−1∥ ≤ 𝜖𝜃 holds for all 𝜏 ≤ 𝑡, i.e., 𝜃0:𝑡 ∈ 𝑆𝜖𝜃 (0 : 𝑡). By Lemma D.2
in Lin, Preiss, Anand, et al., 2023, we see that

𝑥𝑡 ∈ 𝐵𝑛 (0, 𝑅𝑆 + 𝐶∥𝑥0∥), and 𝑢𝑡 ∈ U.

Therefore, by taking norm on both sides of the expression of 𝐺 𝑡 , we see that

∥𝐺 𝑡 ∥ =





 𝑡∑︁
𝜏=0

𝜕ℎ𝑡 |𝑡−𝜏
𝜕𝜃𝑡−𝜏

����
𝑥𝑡−𝜏 ,𝜃𝑡−𝜏:𝑡







≤

𝑡∑︁
𝜏=0






 𝜕ℎ𝑡 |𝑡−𝜏𝜕𝜃𝑡−𝜏

����
𝑥𝑡−𝜏 ,𝜃𝑡−𝜏:𝑡






 (5.110a)

≤
𝑡∑︁
𝜏=0

𝐶𝐿,ℎ,𝜃𝜌
𝜏 (5.110b)

≤ 𝐶𝐿,ℎ,𝜃
1 − 𝜌 ,

where we use the triangle inequality in (5.110a) and Corollary 5.B.4 in (5.110b).
Note that we can apply Corollary 5.B.4 because 𝑥𝑡 ∈ 𝐵𝑛 (0, 𝑅𝑆 +𝐶∥𝑥0∥). Therefore,
we have shown (5.109) by induction. One can use the same technique as (5.110) to
show ∥∇𝐹𝑡 (𝜃𝑡)∥ ≤

𝐶𝐿, 𝑓 , 𝜃
1−𝜌 .

Since the projection onto the set Θ is a contraction, we obtain that for any 𝑡 > 𝜏,

∥𝜃𝑡 − 𝜃𝜏∥ ≤
𝐶𝐿,ℎ,𝜃

1 − 𝜌 · (𝑡 − 𝜏)𝜂 +
𝑡−1∑︁
𝜏′=𝜏

∥𝜁𝜏′ ∥. (5.111)

Now we bound the distance between 𝑥𝜏 and 𝑥𝜏 (𝜃𝑡) for 𝜏 ≤ 𝑡. We see that

∥𝑥𝜏 − 𝑥𝜏 (𝜃𝑡)∥ =



𝑔∗𝜏 |0(𝑥0, 𝜃0:𝜏−1) − 𝑔∗𝜏 |0(𝑥0, (𝜃𝑡)×𝜏)





≤

𝜏−1∑︁
𝜏′=0




𝑔∗𝜏 |0(𝑥0, 𝜃0:𝜏′ , (𝜃𝑡)×(𝜏−𝜏′−1)) − 𝑔∗𝜏 |0(𝑥0, 𝜃0:𝜏′−1, (𝜃𝑡)×(𝜏−𝜏′))





(5.112a)
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≤
𝜏−1∑︁
𝜏′=0




𝑔∗𝜏 |𝜏′ (𝑥𝜏′ , 𝜃𝜏′ , (𝜃𝑡)×(𝜏−𝜏′−1)) − 𝑔∗𝜏 |𝜏′ (𝑥𝜏′ , (𝜃𝑡)×(𝜏−𝜏′))




(5.112b)

≤
𝜏−1∑︁
𝜏′=0

𝐶𝐿,𝑔,𝜃𝜌
𝜏−𝜏′ ∥𝜃𝑡 − 𝜃𝜏′ ∥ (5.112c)

≤
𝐶𝐿,ℎ,𝜃𝐶𝐿,𝑔,𝜃𝜂

1 − 𝜌

𝜏−1∑︁
𝜏′=0

(
𝐶𝐿,ℎ,𝜃

1 − 𝜌 · (𝑡 − 𝜏
′)𝜂 +

𝑡−1∑︁
𝜏′′=𝜏′

∥𝜁𝜏′′ ∥
)

(5.112d)

≤
𝐶𝐿,ℎ,𝜃𝐶𝐿,𝜙,𝜃𝜌

(1 − 𝜌)2

(
(𝑡 − 𝜏) + 1

1 − 𝜌

)
· 𝜂

+
𝐶𝐿,𝜙,𝜃𝜌

1 − 𝜌 ·
(
𝑡−1∑︁
𝜏′=𝜏

∥𝜁𝜏′ ∥ +
𝜏−1∑︁
𝜏′=0

𝜌𝜏−𝜏
′ ∥𝜁𝜏′ ∥

)
,

where we use the triangle inequality in (5.112a); we use the definition of multi-step
dynamics in (5.112b); we use Lemma 5.B.3 in (5.112c); we use (5.111) in (5.112d).

Similarly, since 𝑥𝑡 ∈ 𝐵𝑛 (0, 𝑅𝑆 + 𝐶∥𝑥0∥) and we also see that 𝑥𝑡 (𝜃𝑡) ∈ 𝐵𝑛 (0, 𝑅𝑆 +
𝐶∥𝑥0∥), we obtain that

|ℎ𝑡 (𝑥𝑡 , 𝑢𝑡 , 𝜃𝑡) − 𝐹𝑡 (𝜃𝑡) | = |ℎ𝑡 (𝑥𝑡 , 𝑢𝑡 , 𝜃𝑡) − ℎ𝑡 (𝑥𝑡 (𝜃𝑡), 𝑢̂𝑡 (𝜃𝑡), 𝜃𝑡) |
≤ 𝐿ℎ (∥𝑥𝑡 − 𝑥𝑡 (𝜃𝑡)∥ + ∥𝑢𝑡 − 𝑢̂𝑡 (𝜃𝑡)∥) (5.113a)

≤ 𝐿ℎ (1 + 𝐿𝜓,𝑥 + 𝐿 𝑓 ,𝑥)∥𝑥𝑡 − 𝑥𝑡 (𝜃𝑡)∥ (5.113b)

≤
𝐶𝐿,ℎ,𝜃𝐶𝐿,𝜙,𝜃𝐿ℎ (1 + 𝐿𝜓,𝑥 + 𝐿 𝑓 ,𝑥)𝜌

(1 − 𝜌)3
· 𝜂

+
𝐶𝐿,𝜙,𝜃𝐿ℎ (1 + 𝐿𝜓,𝑥 + 𝐿 𝑓 ,𝑥)𝜌

1 − 𝜌 ·
𝑡−1∑︁
𝜏=0

𝜌𝑡−𝜏∥𝜁𝜏∥, (5.113c)

where we use Assumption 5.D.1 in (5.113a) and (5.113b); we use (5.112) in (5.113c).

Proof of Theorem 5.E.7
To simplify the notation, we adopt the shorthand notations 𝑥𝜏 (𝜃) := 𝑔∗

𝜏 |0(𝑥0, 𝜃×𝜏)
and 𝑢̂𝜏 (𝜃) := 𝜋𝜏 (𝑥𝜏 (𝜃), 𝜃) throughout the proof.

We use the triangle inequality to do the decomposition





 𝜕ℎ
∗
𝑡 |0

𝜕𝜃𝜏

�����
𝑥0,𝜃0:𝑡

−
𝜕ℎ∗

𝑡 |0
𝜕𝜃𝜏

�����
𝑥0,(𝜃𝑡 )×(𝑡+1)








=







 𝜕ℎ
∗
𝑡 |𝜏

𝜕𝜃𝜏

�����
𝑥𝜏 ,𝜃𝜏:𝑡

−
𝜕ℎ∗

𝑡 |𝜏
𝜕𝜃𝜏

�����
𝑥𝜏 (𝜃𝑡 ),(𝜃𝑡 )×(𝑡−𝜏+1)











285

≤







 𝜕ℎ
∗
𝑡 |𝜏

𝜕𝜃𝜏

�����
𝑥𝜏 ,𝜃𝜏 ,(𝜃𝑡 )×(𝑡−𝜏 )

−
𝜕ℎ∗

𝑡 |𝜏
𝜕𝜃𝜏

�����
𝑥𝜏 (𝜃𝑡 ),(𝜃𝑡 )×(𝑡−𝜏+1)








+

𝑡−1∑︁
𝜏′=𝜏+1







 𝜕ℎ
∗
𝑡 |𝜏

𝜕𝜃𝜏

�����
𝑥𝜏 ,𝜃𝜏:𝜏′ ,(𝜃𝑡 )×(𝑡−𝜏′ )

−
𝜕ℎ∗

𝑡 |𝜏
𝜕𝜃𝜏

�����
𝑥𝜏 ,𝜃𝜏:𝜏′−1,(𝜃𝑡 )×(𝑡−𝜏′+1)







. (5.114)

Note that we can apply Corollary 5.B.4 to bound each term in (5.114). For the first
term in (5.114), since 𝑥𝜏, 𝑥𝜏 (𝜃𝑡), 𝑥𝜏+1 ∈ 𝐵𝑛 (0, 𝑅̄𝐶), we see that





 𝜕ℎ

∗
𝑡 |𝜏

𝜕𝜃𝜏

�����
𝑥𝜏 ,𝜃𝜏 ,(𝜃𝑡 )×(𝑡−𝜏 )

−
𝜕ℎ∗

𝑡 |𝜏
𝜕𝜃𝜏

�����
𝑥𝜏 (𝜃𝑡 ),(𝜃𝑡 )×(𝑡−𝜏+1)








≤ 𝜌𝑡−𝜏

(
𝐶ℓ,ℎ,(𝜃,𝑥) ∥𝑥𝜏 − 𝑥𝜏 (𝜃𝑡)∥ + 𝐶ℓ,ℎ,(𝜃,𝜃) ∥𝜃𝑡 − 𝜃𝜏∥

)
(5.115a)

≤
(1 − 𝜌)𝐶𝐿,ℎ,𝜃𝐶ℓ,ℎ,(𝜃,𝑥) + 𝜌𝐶𝐿,ℎ,𝜃𝐶𝐿,𝜙,𝜃𝐶ℓ,ℎ,(𝜃,𝜃)

(1 − 𝜌)2
· (𝑡 − 𝜏)𝜌𝑡−𝜏 · 𝜂

+
𝜌𝐶𝐿,ℎ,𝜃𝐶𝐿,𝜙,𝜃𝐶ℓ,ℎ,(𝜃,𝑥)

(1 − 𝜌)3
· 𝜌𝑡−𝜏 · 𝜂

+
𝐶𝐿,𝜙,𝜃𝐶ℓ,ℎ,(𝜃,𝑥)𝜌

1 − 𝜌 ·
(
𝑡−1∑︁
𝜏′=𝜏

∥𝜁𝜏′ ∥ +
𝜏−1∑︁
𝜏′=0

𝜌𝜏−𝜏
′ ∥𝜁𝜏′ ∥

)
· 𝜌𝑡−𝜏, (5.115b)

where we use Corollary 5.B.4 in (5.115a) and Theorem 5.E.6 in (5.115b).

For any 𝜏′ ∈ [𝜏 + 1 : 𝑡 − 1], since 𝑥𝜏′ , 𝑥𝜏′+1 ∈ 𝐵𝑛 (0, 𝑅̄𝐶), we see that





 𝜕ℎ
∗
𝑡 |𝜏

𝜕𝜃𝜏

�����
𝑥𝜏 ,𝜃𝜏:𝜏′ ,(𝜃𝑡 )×(𝑡−𝜏′ )

−
𝜕ℎ∗

𝑡 |𝜏
𝜕𝜃𝜏

�����
𝑥𝜏 ,𝜃𝜏:𝜏′−1,(𝜃𝑡 )×(𝑡−𝜏′+1)








=







©­«
𝜕ℎ∗

𝑡 |𝜏′

𝜕𝑥𝜏′

�����
𝑥𝜏′ ,𝜃𝜏′ ,(𝜃𝑡 )×(𝑡−𝜏′ )

−
𝜕ℎ∗

𝑡 |𝜏′

𝜕𝑥𝜏′

�����
𝑥𝜏′ ,(𝜃𝑡 )×(𝑡−𝜏′+1)

ª®¬
𝜕𝑔∗

𝜏′ |𝜏
𝜕𝜃𝜏

�����
𝑥𝜏 ,𝜃𝜏:𝜏′−1








≤







 𝜕ℎ
∗
𝑡 |𝜏′

𝜕𝑥𝜏′

�����
𝑥𝜏′ ,𝜃𝜏′ ,(𝜃𝑡 )×(𝑡−𝜏′ )

−
𝜕ℎ∗

𝑡 |𝜏′

𝜕𝑥𝜏′

�����
𝑥𝜏′ ,(𝜃𝑡 )×(𝑡−𝜏′+1)







 ·






 𝜕𝑔

∗
𝜏′ |𝜏
𝜕𝜃𝜏

�����
𝑥𝜏 ,𝜃𝜏:𝜏′−1








≤ 𝐶ℓ,ℎ,(𝑥,𝜃)𝜌𝑡−𝜏

′ ∥𝜃𝑡 − 𝜃𝜏′ ∥ · 𝐶𝐿,𝜙,𝜃𝜌𝜏
′−𝜏 (5.116a)

≤ 𝐶ℓ,ℎ,(𝑥,𝜃)𝐶𝐿,𝜙,𝜃 · 𝜌𝑡−𝜏 ·
(
𝐶𝐿,ℎ,𝜃

1 − 𝜌 · (𝑡 − 𝜏
′)𝜂 +

𝑡−1∑︁
𝜏′′=𝜏′

∥𝜁𝜏′′ ∥
)
, (5.116b)

where we use Lemma 5.B.3 and Corollary 5.B.4 in (5.116a); we use Theorem 5.E.6
in (5.116b). Substituting (5.115) and (5.116) into (5.114) finishes the proof of the
first inequality.
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For the second inequality, recall that 𝐺 𝑡 and ∇𝐹𝑡 (𝜃𝑡) are given by

𝐺 𝑡 :=
𝑡∑︁
𝜏=0

𝜕ℎ∗
𝑡 |0

𝜕𝜃𝑡−𝜏

�����
𝑥0,𝜃0:𝑡

,∇𝐹𝑡 (𝜃𝑡) =
𝑡∑︁
𝜏=0

𝜕ℎ∗
𝑡 |0

𝜕𝜃𝑡−𝜏

�����
𝑥0,(𝜃𝑡 )×(𝑡+1)

.

Therefore, we see that

∥𝐺 𝑡 − ∇𝐹𝑡 (𝜃𝑡)∥ =







 𝑡∑︁
𝜏=0

𝜕ℎ∗
𝑡 |0

𝜕𝜃𝑡−𝜏

�����
𝑥0,𝜃0:𝑡

−
𝑡∑︁
𝜏=0

𝜕ℎ∗
𝑡 |0

𝜕𝜃𝑡−𝜏

�����
𝑥0,(𝜃𝑡 )×(𝑡+1)








≤

𝑡∑︁
𝜏=0







 𝜕ℎ
∗
𝑡 |0

𝜕𝜃𝑡−𝜏

�����
𝑥0,𝜃0:𝑡

−
𝜕ℎ∗

𝑡 |0
𝜕𝜃𝑡−𝜏

�����
𝑥0,(𝜃𝑡 )×(𝑡+1)







 (5.117a)

≤
𝑡∑︁
𝜏=0

(
𝐶̂0 + 𝐶̂1𝜏 + 𝐶̂2𝜏

2
)
𝜌𝜏𝜂 (5.117b)

+
𝑡−1∑︁
𝜏=0

(
𝐶̂3

𝑡−1∑︁
𝜏′=𝜏

∥𝜁𝜏′ ∥ + 𝐶̂4

𝑡−1∑︁
𝜏′=𝜏

(𝜏′ − 𝜏)∥𝜁𝜏′ ∥
)
· 𝜌𝑡−𝜏

+ 𝐶̂5

𝑡−1∑︁
𝜏=0

𝜏−1∑︁
𝜏′=0

𝜌𝑡−𝜏
′ ∥𝜁𝜏′ ∥ (5.117c)

≤
(
𝐶̂0

1 − 𝜌 +
𝐶̂1 + 𝐶̂2

(1 − 𝜌)2
+ 𝐶̂2

(1 − 𝜌)3

)
𝜂

+
𝑡−1∑︁
𝜏=0

(
𝐶̂3

1 − 𝜌 +
𝐶̂4

(1 − 𝜌)2
+ 𝐶̂5(𝑡 − 𝜏)

)
𝜌𝑡−𝜏∥𝜁𝜏∥,

where we use the triangle inequality in (5.117a); we use the first inequality in
Theorem 5.E.7 that we have shown and Corollary 5.B.4 in (5.117c).

5.F Proof of Application: Using Predictions Adaptively
Proof of Lemma 5.5.1
By the perturbation bound in (5.16), we see that for any 𝑡′ > 𝑡,

𝜓𝑇𝑡 (𝑦𝑡 , 0×(𝑇−𝑡); 𝑄̃)𝑥𝑡′ − 𝜓𝑇𝑡 (𝑦′𝑡 , 0×(𝑇−𝑡); 𝑄̃)𝑥𝑡′

 ≤ 𝐶0𝜌

𝑡′−𝑡
0



𝑦𝑡 − 𝑦′𝑡

.
Therefore, we obtain that for any 𝑡′ > 𝑡,


(𝐴𝑡′−1 − 𝐵𝑡′−1𝐾̄

(𝑇)
𝑡′−1) (𝐴𝑡′−2 − 𝐵𝑡′−2𝐾̄

(𝑇)
𝑡′−2) · · · (𝐴𝑡 − 𝐵𝑡𝐾̄

(𝑇)
𝑡 )




 ≤ 𝐶0𝜌
𝑡′−𝑡
0 . (5.118)

Now we show that


(𝐴𝑡′−1 − 𝐵𝑡′−1𝐾̄
(𝑘)
𝑡′−1) (𝐴𝑡′−2 − 𝐵𝑡′−2𝐾̄

(𝑘)
𝑡′−2) · · · (𝐴𝑡 − 𝐵𝑡𝐾̄

(𝑘)
𝑡 )




 ≤ 𝐶0𝜌
𝑡′−𝑡 . (5.119)
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To see this, we construct a sequence 𝑣̂𝑡:𝑇−1 such that 𝑣̂𝑡+𝑘 = −𝐴𝑡+𝑘𝜓𝑡+𝑘𝑡 (𝑥𝑡 , 0×𝑘 ; 𝑄̃)𝑥𝑡+𝑘
and 𝑣̂𝜏 = 0 for 𝜏 ≠ 𝑡 + 𝑘, 𝜏 ∈ [𝑡 : 𝑇 − 1]. We observe that

𝜓𝑡+𝑘𝑡 (𝑥𝑡 , 0×𝑘 ; 𝑄̃) − 𝜓𝑇𝑡 (𝑥𝑡 , 0×(𝑇−𝑡); 𝑄̃)



=


𝜓𝑇𝑡 (𝑥𝑡 , 𝑣̂𝑡:𝑇−1; 𝑄̃) − 𝜓𝑇𝑡 (𝑥𝑡 , 0×(𝑇−𝑡); 𝑄̃)




≤ 𝐶0𝜌

𝑘
0 ∥𝑣̂𝑡+𝑘 ∥ ≤ 𝐶

2
0𝑎𝜌

2𝑘
0 ∥𝑥𝑡 ∥,

where we use (5.16) in the last line. To simplify the notation, we define 𝑀 (𝑝)𝜏 :=
𝐴𝜏 − 𝐵𝜏𝐾̄ (𝑝)𝜏 and 𝛼 := 𝐶2

0 𝜌
2𝑘
0 𝑎𝑏. By the above inequality, we see that


𝑀 (𝑘)𝜏 − 𝑀 (𝑇)𝜏




 ≤ 𝛼,∀𝜏 ∈ T . (5.120)

Therefore, we obtain that


𝑀 (𝑘)
𝑡′−1𝑀

(𝑘)
𝑡′−2 · · ·𝑀

(𝑘)
𝑡




 ≤ 𝑡′−𝑡∑︁
𝑗=0

(
𝑡′ − 𝑡
𝑗

)
𝐶
𝑗+1
0 𝜌𝑡

′−𝑡
0 𝛼 𝑗 (5.121a)

≤ 𝐶0𝜌
𝑡′−𝑡
0 (1 + 𝐶0𝛼)𝑡

′−𝑡 ≤ 𝐶0𝜌
𝑡′−𝑡 , (5.121b)

where we use the decomposition 𝑀 (𝑘)𝜏 = 𝑀
(𝑇)
𝜏 + (𝑀 (𝑘)𝜏 − 𝑀 (𝑇)𝜏 ), the triangle in-

equality, and (5.120) in (5.121a); we use the condition that

𝑘 ≥ 1
2

log
(
𝐶3

0𝑎𝑏𝜌0/(𝜌 − 𝜌0)
)
/log(1/𝜌0)

in (5.121b). This finishes the proof of (5.119).

Now we consider two trajectories that apply the same policy parameter sequence
but start from different states 𝑥𝜏 and 𝑥′𝜏. For arbitrary 𝜃𝜏:𝑡−1 = Θ𝑡−𝜏, we see that

𝑔𝑡 |𝜏 (𝑥𝜏, 𝜃𝜏:𝑡−1) − 𝑔𝑡 |𝜏 (𝑥′𝜏, 𝜃𝜏:𝑡−1)




=




(𝐴𝑡−1 − 𝐵𝑡−1𝐾̄
(𝑘)
𝑡−1) (𝐴𝑡−2 − 𝐵𝑡−2𝐾̄

(𝑘)
𝑡−2) · · · (𝐴𝜏 − 𝐵𝜏𝐾̄

(𝑘)
𝜏 ) (𝑥𝜏 − 𝑥′𝜏)




 (5.122a)

≤ 𝐶0𝜌
𝑡−𝜏

𝑥𝜏 − 𝑥′𝜏

, (5.122b)

where we use the affine expression of 𝜋𝑡 (5.17) and the fact that these two trajectories
experience the same sequence of disturbances and predictions. This finishes the
proof of 𝜀-time-varying contractive perturbation with 𝜀 = +∞ and 𝑅𝐶 = +∞.

By the perturbation bound in (5.16), we also see that



𝜓𝑡+𝑘𝑡 (0, 𝑣𝑡:𝑡+𝑘−1; 𝑄̃)𝑢𝑡 − 𝜓𝑡+𝑘𝑡 (0, 𝑣′𝑡:𝑡+𝑘−1; 𝑄̃)𝑢𝑡


 ≤ 𝐶0

𝑡+𝑘−1∑︁
𝜏=𝑡

𝜌𝜏−𝑡0


𝑣𝜏 − 𝑣′𝜏

.
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Combining this inequality with the affine relationship in (5.118), we see that


𝐾̄ (𝑘,𝜏)𝑡




 ≤ 𝐶0𝜌
𝜏−𝑡
0 . (5.123)

Therefore, we obtain that

𝑔𝑡 |𝜏 (0, 𝜃𝜏:𝑡−1)




=






 𝑡−1∑︁
𝑖=𝜏

(𝐴𝑡−1 − 𝐵𝑡−1𝐾̄
(𝑘)
𝑡−1) · · · (𝐴𝑖+1 − 𝐵𝑖+1𝐾̄

(𝑘)
𝑖+1 )

(
𝑤𝑖 −

𝑖+𝑘−1∑︁
𝑗=𝑖

𝜆
[ 𝑗−𝑖]
𝑖

𝐾̄
(𝑘, 𝑗)
𝑖

𝑤 𝑗 |𝑖

)





≤

𝑡−1∑︁
𝑖=𝜏

𝐶0𝜌
𝑡−1−𝑖






𝑤𝑖 − 𝑖+𝑘−1∑︁
𝑗=𝑖

𝜆
[ 𝑗−𝑖]
𝑖

𝐾̄
(𝑘, 𝑗)
𝑖

𝑤 𝑗 |𝑖






 (5.124a)

≤
𝑡−1∑︁
𝑖=𝜏

𝐶0𝜌
𝑡−1−𝑖

(
𝑤̄ +

𝑖+𝑘−1∑︁
𝑗=𝑖

𝐶0𝜌
𝑗−𝑖
0 𝑤̄

)
(5.124b)

≤ 𝐶0(1 − 𝜌0 + 𝐶0)𝑤̄
(1 − 𝜌0) (1 − 𝜌)

,

where we use the triangle inequality and (5.119) in (5.124a); we use the trian-
gle inequality and (5.123) in (5.124b). This finishes the proof of 𝜀-time-varying
stability.
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C h a p t e r 6

REINFORCEMENT LEARNING IN NETWORKED SYSTEMS

The policy optimization setting that we study in Chapter 5 only involves a single
agent. However, a practical challenge of policy optimization may arise when we
apply it to a large-scale network formed by a team of agents: We cannot afford
to gather global information for policy evaluation or gradient approximation. In
this chapter, we demonstrate how such challenges can be overcome in a class of
networked MARL problems with stochastic, nonlocal dependency structures. Key
to our approach is the identification of a structural decay property, which says that
the local Q-function of each agent 𝑖 depends mainly on the states of the agents who
are near 𝑖 in the network. We leverage this decay property to design a scalable
actor-critic algorithm with provable finite-time error bound. We discuss the core
technical innovation underlying our theoretical analysis and test our algorithm in the
applications of wireless networks and spreading networks.

The results in this chapter are based on the following paper:

[Lin, Qu, et al., 2021] Lin, Yiheng, Guannan Qu, Longbo Huang, and Adam
Wierman. “Multi-agent reinforcement learning in stochastic networked systems.”
Advances in Neural Information Processing Systems 34 (2021): 7825-7837.

6.1 Problem Setting
We consider a network of agents that are associated with an underlying undirected
graph G = (N , E), where N = {1, 2, · · · , 𝑛} denotes the set of agents and E ⊆
N ×N denotes the set of edges. The distance 𝑑G (𝑖, 𝑗) between two agents 𝑖 and 𝑗 is
defined as the number of edges on the shortest path that connects them on graph G.
Each agent is associated with its local state 𝑠𝑖 ∈ S𝑖 and local action 𝑎𝑖 ∈ A𝑖 where
S𝑖 and A𝑖 are finite sets. The global state/action is defined as the combination
of all local states/actions, i.e., 𝑠 = (𝑠1, · · · , 𝑠𝑛) ∈ S := S1 × · · · × S𝑛, and 𝑎 =

(𝑎1, · · · , 𝑎𝑛) ∈ A := A1 × · · · × A𝑛. We use 𝑁 𝜅
𝑖

to denote the 𝜅-hop neighborhood
of agent 𝑖 on G, i.e., 𝑁 𝜅

𝑖
:= { 𝑗 ∈ N | 𝑑G (𝑖, 𝑗) ≤ 𝜅}. Let 𝑓 (𝜅) := sup𝑖

��𝑁 𝜅
𝑖

��. For a
subset 𝑀 ⊆ N , let 𝑠𝑀/𝑎𝑀 denote the states/actions of agents in 𝑀 .

Before we define the transitions and rewards, we first define the notion of active
link sets, which are directed graphs on the agents N and they characterize the
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interaction structure among the agents. More specifically, an active link set is a
set of directed edges that contains all self-loops, i.e., a subset of N × N and a
super set of {(𝑖, 𝑖) | 𝑖 ∈ N}. Generally speaking, ( 𝑗 , 𝑖) ∈ 𝐿 means agent 𝑗 can
affect agent 𝑖 in the active link set 𝐿. Given an active link set 𝐿, we also use
𝑁𝑖 (𝐿) := { 𝑗 ∈ N | ( 𝑗 , 𝑖) ∈ 𝐿} to denote the set of all agents (include itself) who can
affect agent 𝑖 in the active link set 𝐿. In this paper, we consider a pair of active link
sets (𝐿𝑠𝑡 , 𝐿𝑟𝑡 ) that is independently drawn from some joint distribution D at each
time step 𝑡,1 where the distribution D will be defined using the underlying graph G
later in Section 6.2. The role of 𝐿𝑠𝑡 /𝐿𝑟𝑡 is that they define the dependence structure
of state transition/reward at time 𝑡, which we detail below.

Transitions. At time 𝑡, given the current state, action 𝑠(𝑡), 𝑎(𝑡) and the active link set
𝐿𝑠𝑡 , the next individual state 𝑠𝑖 (𝑡 + 1) is independently generated and only depends
on the state/action of the agents in 𝑁𝑖 (𝐿𝑠𝑡 ). In other words, we have,

𝑃(𝑠(𝑡 + 1) |𝑠(𝑡), 𝑎(𝑡), 𝐿𝑠𝑡 ) =
∏
𝑖∈N

𝑃𝑖 (𝑠𝑖 (𝑡 + 1) |𝑠𝑁𝑖 (𝐿𝑠𝑡 ) (𝑡), 𝑎𝑁𝑖 (𝐿𝑠𝑡 ) (𝑡), 𝐿
𝑠
𝑡 ). (6.1)

Rewards. Each agent is associated with a local reward function 𝑟𝑖. At time 𝑡, it is a
function of 𝐿𝑟𝑡 and the state/action of agents in 𝑁𝑖 (𝐿𝑟𝑡 ): 𝑟𝑖 (𝐿𝑟𝑡 , 𝑠𝑁𝑖 (𝐿𝑟𝑡 ) (𝑡), 𝑎𝑁𝑖 (𝐿𝑟𝑡 ) (𝑡)).
The global reward 𝑟 (𝑡) is defined to be the summation of the local rewards 𝑟𝑖 (𝑡).

Policy. Each agent follows a localized policy that depends on its 𝛽-hop neighbor-
hood, where 𝛽 ≥ 0 is a fixed integer. Specifically, at time step 𝑡, given the global state
𝑠(𝑡), agent 𝑖 adopts a local policy 𝜁𝑖 parameterized by 𝜃𝑖 to decide the distribution
of 𝑎𝑖 (𝑡) based on the the states of agents in 𝑁 𝛽

𝑖
.

Our objective is for all the agents to cooperatively maximize the discounted global

reward, i.e., 𝐽 (𝜃) = E𝑠∼𝜋0

[ ∑∞
𝑡=0 𝛾

𝑡𝑟 (𝑠(𝑡), 𝑎(𝑡)) | 𝑠(0) = 𝑠

]
, where 𝜋0 is a given

distribution on the initial global state, and we recall 𝑟 (𝑠(𝑡), 𝑎(𝑡)) is the global stage
reward defined as the sum of all local rewards at time 𝑡.

Examples. To highlight the applicability of the general model, we include two
examples of networked systems that feature the dependence structure captured by
our model in Section 6.4: a wireless communication example and an example of
controlling a process that spreads over a network.

Note that a limitation of our setting is that the dependence structure we consider
is stationary, in the sense that dependencies are sampled i.i.d. from the distribution

1Here, correlations between 𝐿𝑠𝑡 and 𝐿𝑟𝑡 are possible.
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D. It is important to consider more general time-varying forms (e.g., Markovian)
in future research.

Background. Before moving on, we review a few key concepts in RL which will be
useful in the rest of the section. We use 𝜋𝜃𝑡 to denote the distribution of 𝑠(𝑡) under
policy 𝜃 given that 𝑠(0) ∼ 𝜋0. A well-known result (Sutton et al., 1999) is that the
gradient of the objective ∇𝐽 (𝜃) can be computed by

1
1 − 𝛾E𝑠∼𝜋𝜃 ,𝑎∼𝜁 𝜃 (·|𝑠)𝑄

𝜃 (𝑠, 𝑎)∇ log 𝜁 𝜃 (𝑎 | 𝑠), (6.2)

where distribution 𝜋𝜃 (𝑠) = (1 − 𝛾)∑∞𝑡=0 𝛾
𝑡𝜋𝜃𝑡 (𝑠) is the discounted state visitation

distribution. Evaluating the 𝑄-function 𝑄𝜃 (𝑠, 𝑎) plays a key role in approximat-
ing ∇𝐽 (𝜃). The local 𝑄-function for agent 𝑖 is the discounted local reward, i.e.,

𝑄𝜃
𝑖
(𝑠, 𝑎) = E𝜁 𝜃

[ ∑∞
𝑡=0 𝛾

𝑡𝑟𝑖 (𝑡) | 𝑠(0) = 𝑠, 𝑎(0) = 𝑎
]
, where we use 𝑟𝑖 (𝑡) to denote the

local reward of agent 𝑖 at time step 𝑡. Using local 𝑄-functions, we can decompose
the global 𝑄-function as 𝑄𝜃 (𝑠, 𝑎) = 1

𝑛

∑𝑛
𝑖=1𝑄

𝜃
𝑖
(𝑠, 𝑎), which allows each node to

evaluate its local 𝑄-function separately.

A key challenge in our MARL setting is that directly estimating the 𝑄-functions is
not scalable since the size of the𝑄-functions is exponentially large in the number of
agents. Therefore, in Section 6.2, we study structural properties of the 𝑄-functions
resulting from the dependence structure in the transition (6.1), which enables us to
design a scalable RL algorithm in Section 6.3.

6.2 Decay Properties of Local Q Functions
One of the core challenges for MARL is that the size of the 𝑄 function is expo-
nentially large in the number of agents. The key to our algorithm and its analysis
is the identification of a novel structural decay property for the 𝑄-function, which
says that the local 𝑄-function of each agent 𝑖 is mainly decided by the states of the
agents who are near 𝑖. This property is critical for the design of scalable algorithms
because it enables the agents to reduce the dimension of the𝑄-function by truncating
its dependence of the states and actions of far away agents. Recently, exponential
decay has been shown to hold in networked MARL when the network is static (Qu,
Wierman, and Li, 2020; Qu, Lin, et al., 2020), which is exploited to design a scalable
RL algorithm. However, in stochastic network settings it is too much to hope for
exponential decay in general (Easley, Kleinberg, et al., 2012), and so we introduce
the more general notion of 𝜇-decay here, where 𝜇 is a function that converges to 0
as 𝜅 tends to infinity. The case of exponential decay that has been studied previously
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corresponds to 𝜇(𝜅) = 𝛾𝜅/(1− 𝛾). The formal definition of 𝜇-decay is given below,
where for simplicity, we use 𝑖 𝐿−→ 𝑗 to denote (𝑖, 𝑗) ∈ 𝐿 and denote 𝑁 𝜅−𝑖 := N \ 𝑁 𝜅

𝑖
.

Definition 6.2.1. For a function 𝜇 : N → R+ that satisfies lim𝜅→+∞ 𝜇(𝜅) = 0, the
𝜇-decay property holds if for any policy 𝜃 and any 𝑖 ∈ N , the local 𝑄 function
𝑄𝜃
𝑖

satisfies
��𝑄𝜃
𝑖
(𝑠, 𝑎) −𝑄𝜃

𝑖
(𝑠′, 𝑎′)

�� ≤ 𝜇(𝜅) for any (𝑠, 𝑎), (𝑠′, 𝑎′) that are identical
within 𝑁 𝜅

𝑖
, i.e., 𝑠𝑁 𝜅

𝑖
= 𝑠′

𝑁 𝜅
𝑖

, 𝑎𝑁 𝜅
𝑖
= 𝑎′

𝑁 𝜅
𝑖

.

Intuitively, if the 𝜇-decay property holds and 𝜇(𝜅) decays quickly as 𝜅 increases, we
can approximately decompose the global𝑄 function as𝑄𝜃 (𝑠, 𝑎) = 1

𝑛

∑𝑛
𝑖=1𝑄

𝜃
𝑖
(𝑠, 𝑎) ≈

1
𝑛

∑𝑛
𝑖=1 𝑄̂

𝜃
𝑖
(𝑠𝑁 𝜅

𝑖
, 𝑎𝑁 𝜅

𝑖
), where 𝑄̂𝑖 only depends on the states and actions within the

𝜅-hop neighborhood of agent 𝑖. Before our work, Sunehag et al., 2018 empirically
showed that such a value decomposition allows efficient training of MARL. Under
the assumption that such decomposition exists, Sunehag et al., 2018 propose an
approach to learn this decomposition. In contrast, as we prove in this section,
the 𝜇 decay property holds provably and therefore, the global 𝑄 function can be
directly decomposed in the networked MARL model and that the error of such
decomposition is provably small.

Our first result is Theorem 6.2.1 which shows the relationship between the random
active link sets and the 𝜇-decay property. The proof of Theorem 6.2.1 is deferred to
Section 6.A.

Theorem 6.2.1. Define 𝐿𝑎 as the static active link set that contains all pairs (𝑖, 𝑗)
whose graph distance on G is less than or equal to 𝛽, which is the dependency of
local policy. Let random variable 𝑋𝑖 (𝜅) denote the smallest 𝑡 ∈ N such that there
exists a chain of agents

𝑗𝑎0
𝐿𝑠

0−−→ 𝑗 𝑠1
𝐿𝑎

−−→ 𝑗𝑎1
𝐿𝑠

1−−→ · · ·
𝐿𝑠
𝑡−1−−−→ 𝑗 𝑠𝑡

𝐿𝑎

−−→ 𝑗𝑎𝑡 ,

that satisfies 𝑗𝑎0 ∈ 𝑁
𝜅
−𝑖 and 𝑗𝑎𝑡

𝐿𝑟𝑡−−→ 𝑖. The 𝜇-decay property holds for 𝜇(𝜅) =
1

1−𝛾E
[
𝛾𝑋𝑖 (𝜅)

]
.

To make the 𝜇-decay result more concrete, we provide several scenarios that yield
different upper bounds on the term E

[
𝛾𝑋𝑖 (𝜅)

]
. In the first scenario, we study the

case where long range links do not exist in Corollary 6.2.2. In this case, we obtain
an exponential decay property that generalizes the result in Qu, Wierman, and Li,
2020. A proof is in Section 6.A.
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Corollary 6.2.2 (Exponential Decay). Consider a distribution D of active link sets
that satisfies

𝑃(𝐿𝑠 ,𝐿𝑟 )∼D{(𝑖, 𝑗) ∈ 𝐿𝑠} = 0, for all 𝑖, 𝑗 ∈ N s.t. 𝑑G (𝑖, 𝑗) ≥ 𝛼1,

𝑃(𝐿𝑠 ,𝐿𝑟 )∼D{(𝑖, 𝑗) ∈ 𝐿𝑟 } = 0, for all 𝑖, 𝑗 ∈ N s.t. 𝑑G (𝑖, 𝑗) ≥ 𝛼2.

Then, E
[
𝛾𝑋𝑖 (𝜅)

]
≤ 𝐶𝜌𝜅, where 𝜌 = 𝛾1/(𝛼1+𝛽) , 𝐶 = 𝛾−𝛼2/(𝛼1+𝛽) .

In the second scenario, long range active links can occur, but with exponentially
small probability with respect to their distance. In this case, we can obtain a near-
exponential decay property where 𝜇(𝜅) = 𝑂 (𝜌𝜅/log 𝜅)) for some 𝜌 ∈ (0, 1). A proof
can be found in Section 6.A.

Theorem 6.2.3 (Near-Exponential Decay). Suppose the distribution D of active
link sets satisfies

𝑃(𝐿𝑠 ,𝐿𝑟 )∼D{(𝑖, 𝑗) ∈ 𝐿𝑠 ∪ 𝐿𝑟 } ≤ 𝑐𝜆𝑑G (𝑖, 𝑗 ) , for all 𝑖, 𝑗 ∈ N ,

where 𝑐 ≥ 1, 1 > 𝜆 > 0 are constants. If the largest size of the 𝜅 neighborhood in
the underlying graph G can be bounded by a polynomial of 𝜅, i.e., there exists some
constants 𝑐0 ≥ 1, 𝑛0 ∈ N such that

��{ 𝑗 ∈ N | 𝑑G (𝑖, 𝑗) = 𝜅}�� ≤ 𝑐0(𝜅 + 1)𝑛0 holds for
all 𝑖, then E

[
𝛾𝑋𝑖 (𝜅−1)] ≤ 𝐶𝜌𝜅/(1+ln(𝜅+1)) for some positive constant𝐶 and decay rate

𝜌 < 1. 2

It is interesting to compare the result above with models of the so-called “small
world phenomena" in social networks, e.g., Easley, Kleinberg, et al., 2012. In these
models, a link (𝑖, 𝑗) occurs with probability 1/poly(𝑑G (𝑖, 𝑗)), as opposed to the
exponential dependence in Lemma 6.2.3. In this case, one can see function 𝜇(𝜅) is
lower bounded by 1/poly(𝜅), which leads us to conjecture that 𝜇(𝜅) is also upper
bounded by 𝑂 (1/poly(𝜅)). Thus, when information spreads “slowly” it helps a
localized algorithm to learn efficiently.

6.3 Learning with Localized Observations
Motivated by the 𝜇-decay property of the 𝑄-functions, we design a novel Scal-
able Actor Critic algorithm (Algorithm 10) for networked MARL problem, which
exploits the 𝜇-decay result in the previous section. The Critic part uses the local
trajectory {(𝑠𝑁 𝜅

𝑖
, 𝑎𝑁 𝜅

𝑖
, 𝑟𝑖)} to evaluate the local 𝑄-functions under parameter 𝜃 (𝑚).

Intuitively, the 𝜇-decay property guarantees that we can achieve good approximation
2The explicit expression of 𝐶 and 𝜌 can be found in Section 6.A.
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Algorithm 10: Scalable Actor Critic
for 𝑚 = 0, 1, 2, · · · do

Sample initial global state 𝑠(0) ∼ 𝜋0.
Each node 𝑖 takes action 𝑎𝑖 (0) ∼ 𝜁 𝜃𝑖 (𝑚)𝑖

(· | 𝑠
𝑁
𝛽

𝑖

(0)) to obtain the global
state 𝑠(1).

Each node 𝑖 records 𝑠𝑁 𝜅
𝑖
(0), 𝑎𝑁 𝜅

𝑖
(0), 𝑟𝑖 (0) and initialize 𝑄̂0

𝑖
to be all zero

vector.
for 𝑡 = 1, · · · , 𝑇 do

Each node 𝑖 takes action 𝑎𝑖 (𝑡) ∼ 𝜁 𝜃𝑖 (𝑚)𝑖
(· | 𝑠

𝑁
𝛽

𝑖

(𝑡)) to obtain the global
state 𝑠(𝑡 + 1).

Each node 𝑖 update the local estimation 𝑄̂𝑖 with step size 𝛼𝑡−1 = 𝐻
𝑡−1+𝑡0 ,

𝑄̂𝑡𝑖

(
𝑠𝑁 𝜅

𝑖
(𝑡 − 1), 𝑎𝑁 𝜅

𝑖
(𝑡 − 1)

)
= (1 − 𝛼𝑡−1)𝑄̂𝑡−1

𝑖

(
𝑠𝑁 𝜅

𝑖
(𝑡 − 1), 𝑎𝑁 𝜅

𝑖
(𝑡 − 1)

)
+ 𝛼𝑡−1

(
𝑟𝑖 (𝑡) + 𝛾𝑄̂𝑡−1

𝑖

(
𝑠𝑁 𝜅

𝑖
(𝑡), 𝑎𝑁 𝜅

𝑖
(𝑡)

))
,

and for
(
𝑠𝑁 𝜅

𝑖
, 𝑎𝑁 𝜅

𝑖

)
≠

(
𝑠𝑁 𝜅

𝑖
(𝑡 − 1), 𝑎𝑁 𝜅

𝑖
(𝑡 − 1)

)
, let

𝑄̂𝑡𝑖

(
𝑠𝑁 𝜅

𝑖
, 𝑎𝑁 𝜅

𝑖

)
= 𝑄̂𝑡−1

𝑖

(
𝑠𝑁 𝜅

𝑖
, 𝑎𝑁 𝜅

𝑖

)
.

end
Each node 𝑖 approximate ∇𝜃𝑖𝐽 (𝜃) by

𝑔̂𝑖 (𝑚) =
𝑇∑︁
𝑡=0

𝛾𝑡
1
𝑛

∑︁
𝑗∈𝑁 𝜅

𝑖

𝑄̂𝑇𝑗
(
𝑠𝑁 𝜅

𝑗
(𝑡), 𝑎𝑁 𝜅

𝑗
(𝑡)

)
∇𝜃𝑖 log 𝜁 𝜃𝑖 (𝑚)

𝑖

(
𝑎𝑖 (𝑡) | 𝑠𝑁 𝛽

𝑖

(𝑡)
)
.

Each node 𝑖 conducts gradient ascent by 𝜃𝑖 (𝑚 + 1) = 𝜃𝑖 (𝑚) + 𝜂𝑚 𝑔̂𝑖 (𝑚).
end

error even when 𝜅 is not large. The Actor part computes the estimated partial deriva-
tive using the estimated local 𝑄-functions, and uses the partial derivative to update
local parameter 𝜃𝑖. Compared with the Scalable Actor Critic algorithm proposed in
Qu, Wierman, and Li, 2020, Algorithm 10 extends the policy dependency structure
considered. No longer is the dependency completely local; it now extends to all
agents within the 𝛽-hop neighborhood. Interestingly, the time-varying dependencies
do not add complexity into the algorithm (though the analysis is more complex).

Algorithm 10 is highly scalable. Each agent 𝑖 needs only to query and store the infor-
mation within its 𝜅-hop neighborhood during the learning process. The parameter 𝜅
can be set to balance accuracy and complexity. Specifically, as 𝜅 increases, the error
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bound becomes tighter at the expense of increasing computation, communication,
and space complexity.

Error Bounds of the Critic Part
We first describe the assumption needed in our result. It focuses on the Markov
chain formed by the global state-action pair (𝑠, 𝑎) under a fixed policy parameter
𝜃 and is standard for finite-time convergence results in RL, e.g., Srikant and Ying,
2019; Brémaud, 2001; Qu and Wierman, 2020.

Assumption 6.3.1. Under any fixed policy 𝜃, {𝑧(𝑡) := (𝑠(𝑡), 𝑎(𝑡))} is an aperiodic
and irreducible Markov chain on state spaceZ := S × A with a unique stationary
distribution 𝑑𝜃 = (𝑑𝜃𝑧 , 𝑧 ∈ Z), which satisfies 𝑑𝜃𝑧 > 0,∀𝑧 ∈ Z. Define 𝑑𝜃 (𝑧′) =∑
𝑧∈Z:𝑧𝑁𝜅

𝑖
=𝑧′ 𝑑

𝜃 (𝑧) and 𝜎′(𝜅) := inf𝑧′∈Z𝑁𝜅
𝑖

𝑑𝜃 (𝑧′). There exists positive constants
𝐾1, 𝐾2 such that 𝐾2 ≥ 1 and ∀𝑧′ ∈ Z,∀𝑡 ≥ 0,

sup
K⊆Z

�����∑︁
𝑧∈K

𝑑𝜃𝑧 −
∑︁
𝑧∈K

P(𝑧(𝑡) = 𝑧 | 𝑧(0) = 𝑧′)
����� ≤ 𝐾1𝑒

−𝑡/𝐾2 .

We next analyze the Critic part of Algorithm 10 within a given outer loop iteration
𝑚. Since the policy is fixed in the inner loop, the global state/action pair (𝑠, 𝑎) in the
original MDP can be viewed as the state of a Markov chain. We observe that each
local estimate 𝑄̂𝑡

𝑖

(
𝑠𝑁 𝜅

𝑖
, 𝑎𝑁 𝜅

𝑖

)
can be viewed as a form of state aggregation, where

the global state (𝑠, 𝑎) is “compressed” to ℎ(𝑠, 𝑎) := (𝑠𝑁 𝜅
𝑖
, 𝑎𝑁 𝜅

𝑖
). Broadly speaking,

the technique of state aggregation is one of the easiest-to-deploy schemes for state
space compression (Jiang, 2018; Singh, Jaakkola, and Jordan, 1995), while its final
performance relies heavily on whether the state aggregation map ℎ only aggregates
“similar” states. To have a good approximate equivalence, we need to find a good
ℎ, i.e., if two states are mapped to the same abstract state, their value functions are
required to be close (to be discussed in Theorem 6.3.3). In the context of networked
MARL, the 𝜇 decay property (Definition 6.2.1) provides a natural mapping for state
aggregation ℎ(𝑠, 𝑎) := (𝑠𝑁 𝜅

𝑖
, 𝑎𝑁 𝜅

𝑖
) which we defined earlier. This mapping ℎ maps

the global state/action to the local states/actions in agent 𝑖’s 𝜅-hop neighborhood
and the 𝜇-decay property guarantees that if ℎ(𝑠, 𝑎) = ℎ(𝑠′, 𝑎′), the difference in
their𝑄-functions is upper bounded by 𝜇(𝜅), which is vanishing as 𝜅 increases. This
shows that the mapping ℎ we used is “good” in the sense it aggregates very similar
global state-action pairs. This idea leads to the following theorem about the Critic
part of Scalable Actor Critic (Algorithm 10).
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Theorem 6.3.1. Suppose Assumption 6.3.1 and 𝜇-decay property (Definition 6.2.1)
hold. Let the step size be 𝛼𝑡 = 𝐻

𝑡+𝑡0 with 𝑡0 = max(4𝐻, 2𝐾2 log𝑇), and 𝐻 ≥
2

(1−𝛾)𝜎′ (𝜅) . Define constant 𝐶𝑏 := 4𝐾1(1 + 2𝐾2 + 4𝐻). Then, inside outer loop
iteration 𝑚, for each 𝑖 ∈ N , with probability at least 1 − 𝛿, we have

sup
(𝑠,𝑎)∈S×A

���𝑄𝜃 (𝑚)
𝑖
(𝑠, 𝑎) − 𝑄̂𝑇𝑖 (𝑠𝑁 𝜅𝑖 , 𝑎𝑁 𝜅𝑖 )

��� ≤ 𝐶𝑎√
𝑇 + 𝑡0

+
𝐶′𝑎
𝑇 + 𝑡0

+ 𝜇(𝜅)
1 − 𝛾 ,

where the constants are given by𝐶𝑎 = 40𝐻
(1−𝛾)2

√︂
𝐾2 log𝑇

(
log

(
4 𝑓 (𝜅)𝐾2𝑇

𝛿

)
+ log log𝑇

)
and 𝐶′𝑎 = 8

(1−𝛾)2 max{ 144𝐾2𝐻 log𝑇
𝜎′ (𝜅) + 𝐶𝑏, 2𝐾2 log𝑇 + 𝑡0}.

The proof of Theorem 6.3.1 can be found in Section 6.B. The most related result
in the literature to Theorem 6.3.1 is Theorem 7 in Qu, Wierman, and Li, 2020. In
comparison, Theorem 6.3.1 applies for more general, potentially non-local, depen-
dencies and, also, improves the constant term by a factor of 1/(1 − 𝛾).

Proof Idea: Stochastic Approximation and State Aggregation
In this section, we present the key technical innovation underlying our results on
MARL in Theorem 6.3.1: a new finite-time analysis of a general asynchronous
stochastic approximation (SA) scheme. The truncation enabled by 𝜇-decay provides
a form of state aggregation, which we analyze via a general SA scheme. Further, this
SA scheme is of interest more broadly, e.g., to the settings of TD learning with state
aggregation and asynchronous 𝑄-learning with state aggregation (see Section 6.B).

Stochastic Approximation. Consider a finite-state Markov chain whose state space
is given by N = {1, 2, · · · , 𝑛}. Let {𝑖𝑡}∞𝑡=0 be the sequence of states visited by
this Markov chain. Our focus is generalizing the following asynchronous stochastic
approximation (SA) scheme, which is studied in Tsitsiklis, 1994; Shah and Xie,
2018; Wainwright, 2019: Let parameter 𝑥 ∈ RN , and 𝐹 : RN → RN be a 𝛾-
contraction in the infinity norm. The update rule of the SA scheme is given by

𝑥𝑖𝑡 (𝑡 + 1) = 𝑥𝑖𝑡 (𝑡) + 𝛼𝑡
(
𝐹𝑖𝑡 (𝑥(𝑡)) − 𝑥𝑖𝑡 (𝑡) + 𝑤(𝑡)

)
,

𝑥 𝑗 (𝑡 + 1) = 𝑥 𝑗 (𝑡) for 𝑗 ≠ 𝑖𝑡 , 𝑗 ∈ N ,
(6.3)

where𝑤(𝑡) is a noise sequence. It is shown in Qu and Wierman, 2020 that parameter
𝑥(𝑡) converges to the unique fixed point of 𝐹 at the rate of 𝑂

(
1/
√
𝑡

)
.

While general, in many cases, including networked MARL, we do not wish to
calculate an entry for every state inN in parameter 𝑥, but instead, wish to calculate
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“aggregated entries.” Specifically, at each time step, after 𝑖𝑡 is generated, we use
a surjection ℎ to decide which dimension of parameter 𝑥 should be updated. This
technique, referred to as state aggregation, is one of the easiest-to-deploy schemes
for state space compression in the RL literature (Jiang, 2018; Singh, Jaakkola,
and Jordan, 1995). In the generalized SA scheme, our objective is to specify the
convergence point as well as obtain a finite-time error bound.

Formally, to define the generalization of (6.3), letN = {1, · · · , 𝑛} be the state space
of {𝑖𝑡} andM = {1, · · · , 𝑚}, (𝑚 ≤ 𝑛) be the abstract state space. The surjection
ℎ : N → M is used to convert every state in N to its abstraction in M. Given
parameter 𝑥 ∈ RM and function 𝐹 : RN → RN , we consider the generalized SA
scheme that updates 𝑥(𝑡) ∈ RM starting from 𝑥(0) = 0,

𝑥ℎ(𝑖𝑡 ) (𝑡 + 1) = 𝑥ℎ(𝑖𝑡 ) (𝑡) + 𝛼𝑡
(
𝐹𝑖𝑡 (Φ𝑥(𝑡)) − 𝑥ℎ(𝑖𝑡 ) (𝑡) + 𝑤(𝑡)

)
,

𝑥 𝑗 (𝑡 + 1) = 𝑥 𝑗 (𝑡) for 𝑗 ≠ ℎ(𝑖𝑡), 𝑗 ∈ M,
(6.4)

where the feature matrix Φ ∈ RN×M is defined as

Φ𝑖 𝑗 =


1 if ℎ(𝑖) = 𝑗

0 otherwise
,∀𝑖 ∈ N , 𝑗 ∈ M . (6.5)

In order to state our main result characterizing the convergence of (6.4), we must
first state a few definitions and assumptions. To begin, we define the weighted
infinity norm as in Qu and Wierman, 2020, except that we extend its definition so
as to define the contraction of function 𝐹. The reason we use the weighted infinity
norm as opposed to the standard infinity norm is that its generality can be used in
certain settings for undiscounted RL, as shown in Tsitsiklis, 1994; Bertsekas, 2007.

Definition 6.3.1 (Weighted Infinity Norm). Fix a positive vector 𝑣 ∈ RM . For
𝑥 ∈ RM , we define ∥𝑥∥𝑣 := sup𝑖∈M

|𝑥𝑖 |
𝑣𝑖

. For 𝑥 ∈ RN , we define ∥𝑥∥𝑣 := sup𝑖∈N
|𝑥𝑖 |
𝑣ℎ (𝑖)

.

Next, we state our assumption on the mixing rate of the Markov chain {𝑖𝑡}, which is
common in the literature (Tsitsiklis and Van Roy, 1996; Srikant and Ying, 2019). It
holds for any finite-state Markov chain which is aperiodic and irreducible (Brémaud,
2001).

Assumption 6.3.2 (Stationary Distribution and Geometric Mixing Rate). {𝑖𝑡} is an
aperiodic and irreducible Markov chain on state space N with stationary distribu-
tion 𝑑 = (𝑑1, 𝑑2, · · · , 𝑑𝑛). Let 𝑑′

𝑗
=

∑
𝑖∈ℎ−1 ( 𝑗) 𝑑𝑖 and 𝜎′ = inf 𝑗∈M 𝑑′

𝑗
. There exists

positive constants 𝐾1, 𝐾2 which satisfy that
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sup
S⊆N

�����∑︁
𝑖∈S

𝑑𝑖 −
∑︁
𝑖∈S

P(𝑖𝑡 = 𝑖 | 𝑖0 = 𝑗)
����� ≤ 𝐾1 exp(−𝑡/𝐾2),∀ 𝑗 ∈ N ,

for all 𝑡 ≥ 0 and 𝐾2 ≥ 1.

Our next assumption ensures contraction of 𝐹. It is also standard, e.g., Tsitsiklis,
1994; Wainwright, 2019; Qu and Wierman, 2020, and ensures that 𝐹 has a unique
fixed point 𝑦∗.

Assumption 6.3.3 (Contraction). Operator 𝐹 is a 𝛾 contraction in ∥·∥𝑣, i.e., for
any 𝑥, 𝑦 ∈ RN , we have ∥𝐹 (𝑥) − 𝐹 (𝑦)∥𝑣 ≤ 𝛾∥𝑥 − 𝑦∥𝑣 . Further, there exists some
constant 𝐶 > 0 such that for any 𝑥 ∈ RN , we have ∥𝐹 (𝑥)∥𝑣 ≤ 𝛾∥𝑥∥𝑣 + 𝐶.

In Assumption 6.3.3, notice that the first sentence directly implies the second with
𝐶 = (1 + 𝛾)∥𝑦∗∥𝑣, where 𝑦∗ ∈ RN is the unique fixed point of 𝐹. Further, while
Assumption 6.3.3 implies that 𝐹 has a unique fixed point 𝑦∗, we do not expect
our stochastic approximation scheme to converge to it. Instead, we show that the
convergence is to the unique 𝑥∗ that solves

Π𝐹 (Φ𝑥∗) = 𝑥∗, where Π :=
(
Φ⊤𝐷Φ

)−1
Φ⊤𝐷. (6.6)

Here 𝐷 = 𝑑𝑖𝑎𝑔(𝑑1, 𝑑2, · · · , 𝑑𝑛) denotes the steady-state probabilities for the process
{𝑖𝑡}. Note that 𝑥∗ is well-defined because the operator Π𝐹 (Φ·), which defines a
mapping from RM to RM , is also a contraction in ∥·∥𝑣. We state and prove this as
Proposition 6.B.2 in Section 6.B.

Our last assumption is on the noise sequence 𝑤(𝑡). It is also standard, e.g., Shah
and Xie (2018) and Qu and Wierman (2020).

Assumption 6.3.4 (Martingale Difference Sequence). 𝑤𝑡 is F𝑡+1 measurable and
satisfies E𝑤(𝑡) | F𝑡 = 0. Further, |𝑤(𝑡) | ≤ 𝑤̄ almost surely for constant 𝑤̄.

We are now ready to state our finite-time convergence result for stochastic approxi-
mation.

Theorem 6.3.2. Suppose Assumptions 6.3.2, 6.3.3, 6.3.4 hold. Further, assume
there exists constant 𝑥 ≥ ∥𝑥∗∥𝑣 such that ∀𝑡, ∥𝑥(𝑡)∥𝑣 ≤ 𝑥 almost surely.3 Let the

3The assumption on 𝑥 follows from Assumptions 6.3.3 and 6.3.4. See Proposition 6.B.1 in
Section 6.B.
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step size be 𝛼𝑡 = 𝐻
𝑡+𝑡0 with 𝑡0 = max(4𝐻, 2𝐾2 log𝑇), and 𝐻 ≥ 2

𝜎′ (1−𝛾) . Let 𝑥∗

be the unique solution of equation Π𝐹 (Φ𝑥∗) = 𝑥∗, and define constants 𝐶1 :=
2𝑥 + 𝐶 + 𝑤̄

𝑣
, 𝐶2 := 4𝑥 + 2𝐶 + 𝑤̄

𝑣
, 𝐶3 := 2𝐾1(2𝑥 + 𝐶) (1 + 2𝐾2 + 4𝐻). Then, with

probability at least 1 − 𝛿,

∥𝑥(𝑇) − 𝑥∗∥𝑣 ≤
𝐶𝑎√
𝑇 + 𝑡0

+ 𝐶′𝑎
𝑇 + 𝑡0

= 𝑂̃

(
1
√
𝑇

)
,

where the constants are given by 𝐶𝑎 =
4𝐻𝐶2
1−𝛾

√︂
𝐾2 log𝑇

(
log

(
4𝑚𝐾2𝑇
𝛿

)
+ log log𝑇

)
and 𝐶′𝑎 = 4 max{ 48𝐾2𝐶1𝐻 log𝑇+𝜎′𝐶3

(1−𝛾)𝜎′ ,
2𝑥(2𝐾2 log𝑇+𝑡0)

1−𝛾 }.

A proof of Theorem 6.3.2 can be found in Section 6.B. Compared with Theorem 4 in
Qu and Wierman, 2020, Theorem 6.3.2 holds for a more general SA scheme where
state aggregation is used to reduce the dimension of the parameter 𝑥. The proof
technique used in Qu and Wierman, 2020 does not apply to our setting because our
stationary point 𝑥∗ has a more complex form (6.5). To do the generalization, we
need to use a different error decomposition method compared to Qu and Wierman,
2020 that leverages the stationary distribution 𝐷 rather than the distribution of 𝑖𝑡
condition on 𝑖𝑡−𝜏 (see Section 6.B for details). Because of this generality, Theorem
6.3.2 requires a stronger but standard assumption on the mixing rate of the Markov
chain {𝑖𝑡}.

State Aggregation. To illustrate the impact of our analysis of SA (Theorem 6.3.2)
beyond the network setting, we study a simpler application to the cases of TD-
learning and 𝑄-learning with state aggregation in this section. Understanding state
aggregation methods is a foundational goal of analysis in the RL literature and
it has been studied in many previous works, e.g., Li, Walsh, and Littman, 2006;
Jong and Stone, 2005; Jiang, Kulesza, and Singh, 2015; Dann et al., 2018; Singh,
Jaakkola, and Jordan, 1995. Further, the result is extremely useful in the analysis in
networked MARL that follows since the 𝜇-decay property we introduce (Definition
6.2.1) provides a natural state aggregation in the network setting (see Corollary
6.3.1). Due to space constraints, in this section we only introduce the results on
TD-learning; the results on 𝑄-learning are given in Section 6.B.

In TD learning with state aggregation Singh, Jaakkola, and Jordan, 1995; Tsitsiklis
and Van Roy, 1997, given the sequence of states visited by the Markov chain is {𝑖𝑡},
the update rule of TD(0) is given by

𝜃ℎ(𝑖𝑡 ) (𝑡 + 1) = 𝜃ℎ(𝑖𝑡 ) (𝑡) + 𝛼𝑡
(
𝑟𝑡 + 𝛾𝜃ℎ(𝑖𝑡+1) (𝑡) − 𝜃ℎ(𝑖𝑡 ) (𝑡)

)
,

𝜃 𝑗 (𝑡 + 1) = 𝜃 𝑗 (𝑡) for 𝑗 ≠ ℎ(𝑖𝑡), 𝑗 ∈ M,
(6.7)
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where ℎ : N → M is a surjection that maps each state in N to an abstract state in
M and 𝑟𝑡 is the reward at time step 𝑡 such that E[𝑟𝑡] = 𝑟 (𝑖𝑡 , 𝑖𝑡+1).

Taking 𝐹 as the Bellman Policy Operator, i.e., the 𝑖’th dimension of function 𝐹 is
given by

𝐹𝑖 (𝑉) = E𝑖′∼P(·|𝑖) [𝑟 (𝑖, 𝑖′) + 𝛾𝑉𝑖′] ,∀𝑖 ∈ N , 𝑉 ∈ RN .

The value function (vector) 𝑉∗ is defined as 𝑉∗
𝑖
= E

[∑∞
𝑡=0 𝛾

𝑡𝑟 (𝑖𝑡 , 𝑖𝑡+1) | 𝑖0 = 𝑖
]
, 𝑖 ∈

N (Tsitsiklis and Van Roy, 1997). By defining the feature matrix Φ as (6.5) and the
noise sequence as

𝑤(𝑡) = 𝑟𝑡 + 𝛾𝜃ℎ(𝑖𝑡+1) (𝑡) − E𝑖′∼P(·|𝑖𝑡 ) [𝑟 (𝑖𝑡 , 𝑖′) + 𝛾𝜃ℎ(𝑖′) (𝑡)],

we can rewrite the update rule of TD(0) in (6.7) in the form of an SA scheme
(6.4). Therefore, we can apply Theorem 6.3.2 to obtain a finite-time error bound
for TD learning with state aggregation. A proof of Theorem 6.3.3 can be found in
Section 6.B.

Theorem 6.3.3. Let Assumption 6.3.2 hold for the Markov chain {𝑖𝑡} and let the
stage reward 𝑟𝑡 be upper bounded by 𝑟 almost surely. Assume that if ℎ(𝑖) = ℎ(𝑖′)
for 𝑖, 𝑖′ ∈ N , we have

��𝑉∗
𝑖
−𝑉∗

𝑖′
�� ≤ 𝜁 for a constant 𝜁 . Consider TD(0) with the step

size 𝛼𝑡 = 𝐻
𝑡+𝑡0 , where 𝑡0 = max(4𝐻, 2𝐾2 log𝑇) and 𝐻 ≥ 2

𝜎′ (1−𝛾) . Define constant
𝐶4 := 4𝐾1(1 + 2𝐾2 + 4𝐻). Then, with probability at least 1 − 𝛿,

∥Φ · 𝜃 (𝑇) −𝑉∗∥∞ ≤
𝐶𝑎√
𝑇 + 𝑡0

+ 𝐶′𝑎
𝑇 + 𝑡0

+ 𝜁

1 − 𝛾 ,

where the constants are given by 𝐶𝑎 = 40𝐻𝑟
(1−𝛾)2

√︂
𝐾2 log𝑇

(
log

(
4𝑚𝐾2𝑇
𝛿

)
+ log log𝑇

)
and

𝐶′𝑎 =
8𝑟
(1−𝛾)2 max{ 144𝐾2𝐻 log𝑇

𝜎′ + 𝐶4, 2𝐾2 log𝑇 + 𝑡0}.

The most related prior results to Theorem 6.3.3 are Srikant and Ying, 2019; Bhan-
dari, Russo, and Singal, 2018. In contrast to these, Theorem 6.3.3 considers the
infinity norm, which is more natural for measuring error when using state aggrega-
tion. Further, our analysis is different and extends to the case of 𝑄-learning with
state aggregation (see Section 6.B), where we obtain the first finite-time error bound.
Moreover, unlike Bhandari, Russo, and Singal, 2018, our TD-learning algorithm
does not require a projection step.

6.4 Applications: Wireless and Spreading Networks
Wireless Networks
We consider a wireless network with multiple access points setting shown in Fig. 6.1,
where a set of user nodes in a wireless network, denoted by 𝑈 = {𝑢1, 𝑢2, · · · , 𝑢𝑛},
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share a set of access points 𝑌 = {𝑦1, 𝑦2, · · · , 𝑦𝑚} (Zocca, 2019). Each access point
𝑦𝑖 is associated with a probability 𝑝𝑖 of successful transmission. Each user node
𝑢𝑖 only has access to a subset 𝑌𝑖 ⊆ 𝑌 of the access points. Typically, this available
set is determined by each user node’s physical connections to the access points. To
apply the networked MARL model, we identify the set of user nodes𝑈 as the set of
agents N . The underlying graph 𝐺 = (N , E) is defined as the conflict graph, i.e.,
edge (𝑢𝑖, 𝑢 𝑗 ) ∈ E if and only if 𝑌𝑖 ∩ 𝑌 𝑗 ≠ ∅.

Figure 6.1: An example setup of wireless networks. Each user node can send
packets to the access points at the corners of its grid.

At each time step 𝑡, each user 𝑢𝑖 receives a packet with initial life span 𝑑 with
probability 𝑞. Each user maintains a queue to cache the packets it receives. At each
time step, if the packet is successfully sent to an access point, it will be removed
from the queue. Otherwise, its life span will decrease by 1. A packet is discarded
from the queue immediately if its remaining life span is 0. At each time step 𝑡, a
user node 𝑢𝑖 can choose to send one of the packets in its queue to one of the access
point 𝑦𝑖,𝑡 ∈ 𝑌𝑖. If no other user node sends packets to access point 𝑦𝑖,𝑡 at time step 𝑡,
the packet from user 𝑖 can be delivered successfully with probability 𝑝𝑖. Otherwise,
the sending action will fail. A user 𝑢𝑖 receives a local reward of 𝑟𝑖,𝑡 = 1 immediately
after successfully sending a packet at time step 𝑡, and receives 𝑟𝑖,𝑡 = 0 otherwise.
Our objective is to find a policy that maximizes the global discounted reward under
a discounted factor 0 ≤ 𝛾 < 1:

E

[
𝑛∑︁
𝑖=1

∞∑︁
𝑡=0

𝛾𝑡𝑟𝑖,𝑡

]
.

To see how this setting fits into our model, we first define the local state/action and
specify the parameters. Since each packet has a life span of 𝑑, and each user node
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Figure 6.2: Discounted reward in
the training process. 5× 5 grid, 1
user per grid.

Figure 6.3: Discounted reward in
the training process. 3× 4 grid, 2
users per grid.

receives at most one packet at a time step, we use a 𝑑-tuple 𝑠𝑖 = (𝑒1, 𝑒2, · · · , 𝑒𝑑) ∈
S𝑖 := {0, 1}𝑑 to denote the local state of user node 𝑖. Specifically, 𝑒 𝑗 indicates
whether user node 𝑢𝑖 has a packet with remaining life span 𝑗 in its queue. A
local action of user node 𝑢𝑖 is 2-tuple (𝑙, 𝑦), which means sending the packet with
remaining life span 𝑙 ∈ {1, 2, · · · , 𝑑} to an access point 𝑦 ∈ 𝑌𝑖. Note that we define
an empty action that does nothing at all. If a user node performs an action (𝑙, 𝑦)
when there is no packet with life span 𝑙 in its queue, we view this as an empty action.
This setting falls into the category we studied in Corollary 6.2.2, where long range
links do not exist. Specifically, in this setting, the next local state of user node 𝑢𝑖
depends on the current local states/actions in its 1-hop neighborhood (𝛼1 = 1 in
Corollary 6.2.2). We assume each user node can choose its action only based on its
current local state (𝛽 = 0). Due to potential collisions, the local reward of user 𝑢𝑖
also depends on the states/actions in its 1-hop neighborhood (𝛼2 = 1 in Corollary
6.2.2). Though this is a static setting, note that the results of Qu, Wierman, and Li,
2020 do not apply.

The detailed setting we use is as follows. We consider the setting where the user
nodes are located in ℎ × 𝑤 grids (see Fig. 6.1). There are 𝑐 user nodes in each grid,
and each user can send packets to an access point on the corner of its grid. We
set the initial life span 𝑑 = 2, the arrival probability 𝑞 = 0.5, and the discounted
factor 𝛾 = 0.7. The successful transmission probability 𝑝𝑖 for each access point
𝑦𝑖 is sampled uniformly randomly from [0, 1]. We run the Scalable Actor Critic
algorithm with parameter 𝜅 = 1 to learn a localized stochastic policy in two cases
(ℎ, 𝑤, 𝑐) = (5, 5, 1) (see Fig. 6.2) and (ℎ, 𝑤, 𝑐) = (3, 4, 2) (see Fig. 6.3). For
comparison, we use a benchmark based on the localized ALOHA protocol Roberts,
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1975. Specifically, the benchmark policy works as following: At time step 𝑡, each
user node 𝑢𝑖 takes the empty action with a certain probability 𝑝′; otherwise, it sends
the packet with the minimum remaining life span to a random access point in 𝑌𝑖,
with the probability proportional to the successful transmission probability of this
access point and inverse proportional to the number of users sharing this access
point. In Fig. 6.2 and Fig. 6.3, we have tuned the parameter 𝑝′ to find the one with
the highest discounted reward.

As shown in Fig. 6.2 and Fig. 6.3, starting from the initial policy that chooses an lo-
cal action uniformly at random, the Scalable Actor Critic algorithm with parameter
𝜅 = 1 can learn a policy that performs better than the benchmark. As a remark, the
benchmark policy requires the set {𝑝𝑖}1≤𝑖≤𝑚, the probability of successful transmis-
sion, as input. Moreover, in the benchmark policy, the probability of performing an
empty action also needs to be tuned manually. In contrast, the Scalable Actor Critic
algorithm can learn a better policy without these specific inputs by interacting with
the system.

Spreading Networks
We consider a spreading network with 𝑛 agents and an underlying graph G. See
Fig. 6.4 for an illustration of 𝑛 = 𝑤ℎ agents on a 𝑤 × ℎ grid network. For each agent
𝑖, the local state/action space is given by S𝑖 = {0, 1} and A𝑖 = {0, 1}. To make
the discussion more concrete, in the following we present the spreading network
model in the context of SIS epidemic network. This version of the SIS model has
been studied in, for example, Ruhi, Thrampoulidis, and Hassibi, 2016. Our setting
is more general and can be generalized to other types of spreading networks like
opinion networks, social networks, etc. At time step 𝑡, the local state 𝑠𝑖 (𝑡) = 0
means agent 𝑖 is “susceptible,” while the local state 𝑠𝑖 (𝑡) = 1 means the agent 𝑖 is
“infected.” By taking action 𝑎𝑖 (𝑡) = 1, agent 𝑖 can suppress its infection probability
at the expense of incurring an action cost. In the meantime, agent 𝑖 will incur an
infection cost if 𝑠𝑖 (𝑡) = 1. The interaction among agents is modeled by a set of
undirected links, where two agents can affect each other if they are connected by a
link. To model the influence of physical distance on the pattern of social contact,
we assume the short range links occur more frequently than long range links. An
illustration of the spreading network is shown in Fig. 6.4 (a), where the black nodes
denote the agents with state 1; the white nodes denote the agents with state 0; the
blue edges denote the set of active links at some time step.
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Figure 6.4: An illustration of the spreading network with 25 agents on a 5 × 5
grid network. The black nodes denote “infected” agents; The white nodes denote
“susceptible” agents; The blue edges denote the active links at some time step.

Mathematically, the model can be described as follows. At each time step 𝑡, each
agent 𝑖 can decide her/his local action 𝑎𝑖 (𝑡) based on the information of local states
in the 1-hop neighborhood 𝑁1

𝑖
, i.e., 𝛽 = 1. The local reward 𝑟𝑖 (𝑡) is a function of

the local state 𝑠𝑖 (𝑡) and the local action 𝑎𝑖 (𝑡), i.e., 𝐿𝑟𝑡 is static and only contains self
loops. Specifically, we define

𝑟𝑖 (𝑡) = −𝑐(𝑎)𝑖 1(𝑎𝑖 (𝑡) = 1) − 𝑐(𝑠)
𝑖

1(𝑠𝑖 (𝑡) = 1),

where
(
𝑐
(𝑠)
𝑖
, 𝑐
(𝑎)
𝑖

)
are parameters associated with agent 𝑖 and can be different among

agents. As mentioned earlier, 𝑐(𝑠)
𝑖

penalizes the agent for being “infected,” while
𝑐
(𝑎)
𝑖

is the cost of taking epidemic control measure. The stage reward is the sum of
these two costs.

To describe the state transition rule, we first define the way the active link set 𝐿𝑠𝑡
is generated: independently for each pair of agents (𝑖, 𝑗) ∈ N × N with 𝑖 ≠ 𝑗 ,
with probability 2−𝑑G (𝑖, 𝑗) , we include edges (𝑖, 𝑗) and ( 𝑗 , 𝑖) in the set 𝐿𝑠𝑡 ; otherwise,
neither edge is included in the set, i.e., (𝑖, 𝑗), ( 𝑗 , 𝑖) ∉ 𝐿𝑠𝑡 . Given 𝐿𝑠𝑡 , the next local
state 𝑠𝑖 (𝑡 + 1) is sampled from a distribution that depends on the local states in
𝑁𝑖 (𝐿𝑠𝑡 ). Specifically, define the quantities

𝑛𝑖 (𝑡) =
��{ 𝑗 | 𝑗 ∈ 𝑁𝑖 (𝐿𝑡) \ {𝑖}, 𝑠 𝑗 (𝑡) = 1, 𝑎 𝑗 (𝑡) = 0}

��,
𝑚𝑖 (𝑡) =

��{ 𝑗 | 𝑗 ∈ 𝑁𝑖 (𝐿𝑡) \ {𝑖}, 𝑠 𝑗 (𝑡) = 1, 𝑎 𝑗 (𝑡) = 1}
��.
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Figure 6.5: Discounted reward in the training process. 5 × 5 grid.

Then, with different local state and action pairs, the probability that the next local
state 𝑠𝑖 (𝑡 + 1) = 0 is given by

𝑃(𝑠𝑖 (𝑡 + 1) = 0 | 𝑠𝑁𝑖 (𝐿𝑡 ) , 𝑎𝑁𝑖 (𝐿𝑡 ))

=


𝑝
(𝑟)
𝑖

if 𝑠𝑖 (𝑡) = 1;(
1 − 𝑝 (ℎ)

𝑖

)𝑛𝑖 (𝑡) (
1 − 𝑝 (𝑚)

𝑖

)𝑚𝑖 (𝑡)
if 𝑠𝑖 (𝑡) = 0, 𝑎𝑖 (𝑡) = 1;(

1 − 𝑝 (𝑚)
𝑖

)𝑛𝑖 (𝑡) (
1 − 𝑝 (𝑙)

𝑖

)𝑚𝑖 (𝑡)
if 𝑠𝑖 (𝑡) = 0, 𝑎𝑖 (𝑡) = 0,

where
(
𝑝
(𝑟)
𝑖
, 𝑝
(ℎ)
𝑖
, 𝑝
(𝑚)
𝑖
, 𝑝
(𝑙)
𝑖

)
are parameters associated with agent 𝑖 and can be

different among agents. Due to control actions, we assume 𝑝 (ℎ)
𝑖

> 𝑝
(𝑚)
𝑖

> 𝑝
(𝑙)
𝑖

. This
provides the transition rule, and the underlying intuition is that the local state of
agent 𝑖 turns from “infected” (𝑠𝑖 (𝑡) = 1) to “susceptible” (𝑠𝑖 (𝑡 + 1) = 0) with a fixed
recovering probability 𝑝

(𝑟)
𝑖

; the probability that agent 𝑖 turns from “susceptible”
(𝑠𝑖 (𝑡) = 0) to “infected” (𝑠𝑖 (𝑡 + 1) = 1) depends on the number of neighboring
agents in the active link set that are already infected, and further, whether agent
𝑖 or the nearby agents 𝑗 take epidemic control measures (𝑎𝑖 (𝑡) = 1, 𝑎 𝑗 (𝑡) = 1) or
not. Roughly speaking, the more nearby infected agents, the more likely agent 𝑖 will
become infected; however, if epidemic control measures are taken by agent 𝑖 and
nearby agents in 𝑁𝑖 (𝐿𝑠𝑡 ), the probability of agent 𝑖 getting infected will be smaller.

We run the Scalable Actor Critic algorithm with parameter 𝜅 = 1 to learn a localized
stochastic policy in the case (ℎ, 𝑤) = (5, 5) (Fig. 6.5). For each agent 𝑖, parameters(
𝑐
(𝑠)
𝑖
, 𝑐
(𝑎)
𝑖
, 𝑝
(𝑟)
𝑖
, 𝑝
(ℎ)
𝑖

)
are sampled independently from the distribution

𝑐
(𝑠)
𝑖
∼ 𝑈 [1.0, 3.0], 𝑐(𝑎)

𝑖
∼ 𝑈 [0.01, 0.20], 𝑝 (𝑟)

𝑖
∼ 𝑈 [0.1, 0.5], 𝑝 (ℎ)

𝑖
∼ 𝑈 [0.5, 0.9],
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and we set 𝑝 (𝑚)
𝑖

= 𝑝
(ℎ)
𝑖
/4, 𝑝 (𝑙)

𝑖
= 𝑝

(𝑚)
𝑖
/4. At time step 0, for each 𝑖 ∈ N , we initialize

local state 𝑠𝑖 (0) to be 1 with probability 0.3.

6.A Proof of Decay Properties
Proof of Theorem 6.2.1
For ease of exposition, let 𝐴, 𝐵 be two subsets of the agent setN and we use 𝐴 𝜏−→ 𝐵

to denote the event that there exists a chain

𝑗𝑎0
𝐿𝑠0−−→ 𝑗 𝑠1

𝐿𝑎−−→ 𝑗𝑎1
𝐿𝑠1−−→ · · ·

𝐿𝑠
𝜏−1−−−→ 𝑗 𝑠𝜏

𝐿𝑎−−→ 𝑗𝑎𝜏 ,

whose head and tail satisfies 𝑗𝑎0 ∈ 𝐴 and 𝑗𝑎𝜏 ∈ 𝐵.

Given a sequence of active link sets {𝐿𝑠𝑡 }∞𝑡=0 and under fixed global policy 𝜃, we
say the information at set 𝐴 ⊆ N spread to another set 𝐵 ⊆ N in 𝜏 time steps
(denoted by 𝐼 (𝐴) 𝜏−→ 𝐼 (𝐵)) if there exists (𝑠, 𝑎) and (𝑠′, 𝑎′) such that (𝑠N\𝐴, 𝑎N\𝐴) =
(𝑠′N\𝐴, 𝑎

′
N\𝐴) and the distribution of (𝑠𝐵 (𝜏), 𝑎𝐵 (𝜏)) given (𝑠(0), 𝑎(0)) = (𝑠, 𝑎) is

different with that given (𝑠(0), 𝑎(0)) = (𝑠′, 𝑎′).

We show by induction that 𝐼 (𝐴) 𝜏−→ 𝐼 (𝐵) happens only if 𝐴 𝜏−→ 𝐵 happens.

If 𝜏 = 0, since 𝐼 (𝐴) 0−→ 𝐼 (𝐵), we see that 𝐴 ∩ 𝐵 ≠ ∅. Therefore, we can let 𝑗𝑎0 be

any agent in 𝐴 ∩ 𝐵. Hence we also have 𝐴 0−→ 𝐵.

Suppose the statement holds for 𝜏 = 𝑡. When 𝜏 = 𝑡 +1, suppose that 𝐼 (𝐴) 𝑡+1−−→ 𝐼 (𝐵).
Define sets

𝐵′ := { 𝑗 ∈ N | ∃𝑘 ∈ 𝐵, 𝑠.𝑡. 𝑗 𝐿𝑎−−→ 𝑘}, 𝐵′′ := { 𝑗 ∈ N | ∃𝑘 ∈ 𝐵′, 𝑠.𝑡. 𝑗
𝐿𝑠𝑡−−→ 𝑘}.

Notice that 𝐵 ⊆ 𝐵′ ⊆ 𝐵′′. By the definition of transition probability and policy
dependence, we know that the distribution of 𝑎𝐵 (𝑡 + 1) is decided by 𝑠𝐵′ (𝑡 + 1),
and the distribution of 𝑠𝐵′ (𝑡 + 1) is decided by (𝑠𝐵′′ (𝑡), 𝑎𝐵′′ (𝑡)). Therefore, we must
have 𝐼 (𝐴) 𝑡−→ 𝐼 (𝐵′′). By the induction hypothesis, we have 𝐴 𝑡−→ 𝐵′′, which further
implies 𝐴 𝑡+1−−→ 𝐵. This finishes the induction.

Given a sequence of active link sets {(𝐿𝑠𝑡 , 𝐿𝑟𝑡 )}, we use 𝜋𝑡,𝑖 to denote the distribution
of(
𝑠𝑁𝑖 (𝐿𝑟𝑡 ) (𝑡), 𝑎𝑁𝑖 (𝐿𝑟𝑡 ) (𝑡)

)
given that (𝑠(0), 𝑎(0)) = (𝑠, 𝑎); we use 𝜋′

𝑡,𝑖
to denote the

distribution of
(
𝑠𝑁𝑖 (𝐿𝑟𝑡 ) (𝑡), 𝑎𝑁𝑖 (𝐿𝑟𝑡 ) (𝑡)

)
given that (𝑠(0), 𝑎(0)) = (𝑠′, 𝑎′). We notice

that 𝜋𝑡,𝑖 ≠ 𝜋′
𝑡,𝑖

happens only if 𝐼 (𝑁 𝜅−𝑖)
𝑡−→ 𝐼 (𝑁𝑖 (𝐿𝑟𝑡 )), which is true only if 𝑁 𝜅−𝑖

𝑡−→
𝑁𝑖 (𝐿𝑟𝑡 ). Recall that 𝑋𝑖 (𝜅) is defined as the smallest 𝑡 such that 𝑁 𝜅−𝑖

𝑡−→ 𝑁𝑖 (𝐿𝑟𝑡 ) holds.
Hence, we obtain that
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��𝑄𝜃
𝑖 (𝑠, 𝑎) −𝑄𝜃

𝑖 (𝑠′, 𝑎′)
��

≤ E{(𝐿𝑠𝑡 ,𝐿𝑟𝑡 )}
∞∑︁
𝑡=0

���𝛾𝑡E𝜋𝑡 ,𝑖𝑟𝑖 (𝑠𝑁𝑖 (𝐿𝑟𝑡 ) , 𝑎𝑁𝑖 (𝐿𝑟𝑡 )) − 𝛾𝑡E𝜋′𝑡 ,𝑖𝑟𝑖 (𝑠𝑁𝑖 (𝐿𝑟𝑡 ) , 𝑎𝑁𝑖 (𝐿𝑟𝑡 ))���
≤ E{(𝐿𝑠𝑡 ,𝐿𝑟𝑡 )}

∞∑︁
𝑡=𝑋𝑖 (𝜅)

���𝛾𝑡E𝜋𝑡 ,𝑖𝑟𝑖 (𝑠𝑁𝑖 (𝐿𝑟𝑡 ) , 𝑎𝑁𝑖 (𝐿𝑟𝑡 )) − 𝛾𝑡E𝜋′𝑡 ,𝑖𝑟𝑖 (𝑠𝑁𝑖 (𝐿𝑟𝑡 ) , 𝑎𝑁𝑖 (𝐿𝑟𝑡 ))���
≤ 1

1 − 𝛾E
[
𝛾𝑋𝑖 (𝜅)

]
,

where we use the definition of 𝑋𝑖 (𝜅) in the second step.

Proof of Corollary 6.2.2
Given a sequence of active link sets {(𝐿𝑠𝑡 , 𝐿𝑟𝑡 )}, let 𝑡 = 𝑋𝑖 (𝜅). By the definition of
𝑋𝑖 (𝜅), we assume that a chain of agents

𝑗𝑎0
𝐿𝑠0−−→ 𝑗 𝑠1

𝐿𝑎−−→ 𝑗𝑎1
𝐿𝑠1−−→ · · ·

𝐿𝑠
𝑡−1−−−→ 𝑗 𝑠𝑡

𝐿𝑎−−→ 𝑗𝑎𝑡

satisfies 𝑗𝑎0 ∈ 𝑁
𝜅
−𝑖 and 𝑗𝑎𝑡

𝐿𝑟𝑡−−→ 𝑖.

By the triangle inequality and the assumptions of Lemma 6.2.2, we obtain that

𝑑G ( 𝑗𝑎0 , 𝑖) ≤
𝑡−1∑︁
𝜏=0

(
𝑑G ( 𝑗𝑎𝜏 , 𝑗 𝑠𝜏+1) + 𝑑G ( 𝑗

𝑠
𝜏+1, 𝑗

𝑎
𝜏+1)

)
+ 𝑑G ( 𝑗𝑎𝑡 , 𝑖)

≤ 𝑡 (𝛽 + 𝛼1) + 𝛼2.

Therefore, we see that 𝑡 is lower bounded by 𝜅−𝛼2
𝛽+𝛼1

, which also gives a lower bound
of 𝑋𝑖 (𝜅).

Proof of Theorem 6.2.3
To simplify notation, we adopt the same notations as in the proof of Theorem 6.2.1.
Specifically, recall that we use 𝐴 𝜏−→ 𝐵 to denote the event that there exists a chain

𝑗𝑎0
𝐿𝑠0−−→ 𝑗 𝑠1

𝐿𝑎−−→ 𝑗𝑎1
𝐿𝑠1−−→ · · ·

𝐿𝑠
𝜏−1−−−→ 𝑗 𝑠𝜏

𝐿𝑎−−→ 𝑗𝑎𝜏 ,

whose head and tail satisfies 𝑗𝑎0 ∈ 𝐴 and 𝑗𝑎𝜏 ∈ 𝐵. We will use 𝜕𝑁 𝜅
𝑖

to denote the set of
neighbors whose distance to 𝑖 is 𝜅, i.e., 𝜕𝑁 𝜅

𝑖
:= { 𝑗 ∈ N | 𝑑G (𝑖, 𝑗) = 𝜅} = 𝑁 𝜅𝑖 \𝑁 𝜅−1

𝑖
.

Define 𝑎𝜅 := E
[
𝛾𝑋𝑖 (𝜅−1)] . Define function 𝑐𝑎𝑡 (concatenation) such that for a pair

of active link sets (𝐿𝑠, 𝐿𝑎), (𝑥, 𝑦) ∈ 𝑐𝑎𝑡 (𝐿𝑠, 𝐿𝑎) if and only if ∃𝑧 ∈ N such that
𝑥

𝐿𝑠−−→ 𝑧
𝐿𝑎−−→ 𝑦.
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Before proving Theorem 6.2.3, we first give an upper bound for the sum of an infinite
sequence {𝑝𝑜𝑙𝑦(𝑘 + 𝑖) · 𝜈𝑖}𝑖∈N, where 𝜈 < 1 is a positive constant. This result is
helpful for showing an upper bound of 𝑃(𝑁 𝜅−𝑖 → 𝑁

𝑗

𝑖
).

Lemma 6.A.1. If 𝑚 ∈ N∗ and 0 < 𝜈 < 1 are constants, for all 𝑘 ≥ 2𝑚
ln(1/𝜈) , we have

∞∑︁
𝑖=0
(𝑘 + 𝑖)𝑚𝜈𝑖 ≤ 1

1 −
√
𝜈
· 𝑘𝑚 .

Proof of Lemma 6.A.1. Define function 𝑓 : R+ ∪ {0} → R+ as

𝑓 (𝑡) = (𝑘 + 𝑡)𝑚 · 𝜈𝑡/2.

The derivative of function 𝑓 is given by

𝑓 ′(𝑡) = (𝑘 + 𝑡)𝑚−1 · 𝜈𝑡/2
(
𝑚 + 1

2
ln 𝜈 · (𝑘 + 𝑡)

)
.

Since 𝑘 ≥ 2𝑚
ln(1/𝜈) , 𝑓

′(𝑡) ≤ 0 holds for all 𝑡 ≥ 0, hence we have 𝑓 (𝑡) ≤ 𝑓 (0) = 𝑘𝑚.

Therefore, we obtain that
∞∑︁
𝑖=0
(𝑘 + 𝑖)𝑚𝜈𝑖 ≤

∞∑︁
𝑖=0

𝑓 (𝑖) · 𝜈𝑖/2

≤ 𝑘𝑚
∞∑︁
𝑖=0

𝜈𝑖/2

≤ 1
1 −
√
𝜈
· 𝑘𝑚 .

Now we come back to the proof of Theorem 6.2.3.

By union bound, we derive an upper bound of the probability that a link (𝑥, 𝑦) is
in 𝑐𝑎𝑡 (𝐿𝑠, 𝐿𝑎). Suppose 𝑑 ∈ N is constant that satisfies 𝑑G (𝑥, 𝑦) ≥ 𝑑, and the
probability 𝑃 is taken over (𝐿𝑠, 𝐿𝑟) ∼ D:

𝑃 ((𝑥, 𝑦) ∈ 𝑐𝑎𝑡 (𝐿𝑠, 𝐿𝑎)) = 𝑃 (∃𝑧 ∈ N , (𝑥, 𝑧) ∈ 𝐿𝑠 ∧ (𝑧, 𝑦) ∈ 𝐿𝑎)
≤

∑︁
𝑧:𝑑G (𝑧,𝑦)≤𝛽

𝑃 ((𝑥, 𝑧) ∈ 𝐿𝑠)

≤ 𝑐0(𝛽 + 1)𝑛0+1 · 𝑐𝜆𝑑−𝛽

= 𝑐𝑔𝜆
𝑑 , (6.8)



309

where recall that 𝜆 the decay factor defined by the assumption of Theorem 6.2.3,
and constant 𝑐𝑔 is defined as 𝑐0𝑐(𝛽 + 1)𝑛0+1𝜆−𝛽.

By the assumption on the size of 𝜅-hop neighborhood, we know that for some
constant 𝑐0 and 𝑛0 ∈ N∗,

��𝜕𝑁 𝜅
𝑖

�� ≤ 𝑐0(𝜅+1)𝑛0 holds for all 𝜅 ≥ 1. Let 𝑛1 := 2𝑛0. With

the help of Lemma 6.A.1, we show that for some constant 𝑐2 > 0, 𝑃
(
𝑁 𝜅−1
−𝑖

1−→ 𝜕𝑁
𝑗

𝑖

)
is upper bounded by 𝑐2(𝜅 + 1)𝑛1𝜆𝜅− 𝑗 for all 𝑗 ≤ 𝜅 − 1 when 𝜅 ≥ 2𝑛0

ln(1/𝜆) :

𝑃

(
𝑁 𝜅−1
−𝑖

1−→ 𝜕𝑁
𝑗

𝑖

)
≤ 𝑃

(
∃𝑥 ∈ 𝑁 𝜅−1

−𝑖 , 𝑦 ∈ 𝜕𝑁
𝑗

𝑖
s.t. (𝑥, 𝑦) ∈ 𝑐𝑎𝑡 (𝐿𝑠, 𝐿𝑎)

)
(6.9a)

≤
∞∑︁
𝑞=0

𝑃

(
∃𝑥 ∈ 𝜕𝑁 𝜅+𝑞

𝑖
, 𝑦 ∈ 𝜕𝑁 𝑗

𝑖
s.t. (𝑥, 𝑦) ∈ 𝑐𝑎𝑡 (𝐿𝑠, 𝐿𝑎)

)
(6.9b)

≤
∞∑︁
𝑞=0

∑︁
𝑥∈𝜕𝑁 𝜅+𝑞

𝑖
,𝑦∈𝜕𝑁 𝑗

𝑖

𝑃 ((𝑥, 𝑦) ∈ 𝑐𝑎𝑡 (𝐿𝑠, 𝐿𝑎)) (6.9c)

≤
∞∑︁
𝑞=0

∑︁
𝑥∈𝜕𝑁 𝜅+𝑞

𝑖
,𝑦∈𝜕𝑁 𝑗

𝑖

𝑐𝑔𝜆
(𝜅+𝑞− 𝑗) (6.9d)

≤ 𝑐𝑔𝜆𝜅− 𝑗
∞∑︁
𝑞=0

��𝜕𝑁 𝜅+𝑞
𝑖

�� · ���𝜕𝑁 𝑗

𝑖

��� · 𝜆𝑞
≤ 𝑐𝑔𝑐2

0(𝜅 + 1)𝑛0𝜆𝜅− 𝑗
∞∑︁
𝑞=0
(𝜅 + 𝑞 + 1)𝑛0𝜆𝑞 (6.9e)

≤ 𝑐2(𝜅 + 1)𝑛1𝜆𝜅− 𝑗 , (6.9f)

where we use the definition of 𝑁 𝜅−1
−𝑖

1−→ 𝜕𝑁
𝑗

𝑖
in (6.9a); we use union bound in (6.9b)

and (6.9c); we use the fact that 𝑑G (𝑥, 𝑦) ≥ 𝜅 + 𝑞− 𝑗 ,∀𝑥 ∈ 𝜕𝑁 𝜅+𝑞𝑖
, 𝑦 ∈ 𝜕𝑁 𝑗

𝑖
and (6.8)

in (6.9d); we use the bounds
���𝜕𝑁 𝑗

𝑖

��� ≤ 𝑐0 𝑗
𝑛0 ≤ 𝑐0𝜅

𝑛0 and
��𝜕𝑁 𝜅+𝑞

𝑖

�� ≤ 𝑐0(𝜅 + 𝑞)𝑛0 in

(6.9e); we define 𝑐2 := 𝑐𝑔𝑐
2
0

1−
√
𝜆

and use Lemma 6.A.1 in (6.9f).

Let constants 𝑐3 and 𝑞 be defined as

𝑐3 :=
1
2

4√
𝜆(1 −

√
𝜆)

(
1
√
𝛾
− 1

)
,

𝑞 :=
1

ln(1/𝜆) max{(ln 𝑐2 − ln 𝑐3 − 2 ln
(
1 − √𝛾

)
), (2𝑛1 + 4)},

and define function 𝑝(𝜅) := [𝑞(1 + ln(𝜅 + 1))] + 1. We can find 𝜅0 ∈ Z+ such that
𝑝(𝜅) ≥ 𝜅 for all 𝜅 ≤ 𝜅0, and 𝑝(𝜅) > 𝜅 for all 𝜅 > 𝜅0.
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Let 𝜌 be a constant such that 1 > 𝜌 > max{𝛾1/(2𝑞) , 4√
𝜆}. Let 𝐶 := 𝜌−max{𝑞+1, 2𝑛0

ln(1/𝜆) }.
Recall that we define 𝑎𝜅 := E

[
𝛾𝑋𝑖 (𝜅−1)] , where 𝑋𝑖 (𝜅−1) denotes the smallest 𝑡 such

that 𝑁 𝜅−1
−𝑖

𝑡−→ 𝑁𝑖 (𝐿𝑟𝑡 ) holds. Now we show by induction that

𝑎𝜅 ≤ 𝐶𝜌𝜅/(1+ln(𝜅+1)) ,∀𝜅 ≥ 1. (6.10)

Since 𝑎𝜅 ≤ 1, (6.10) clearly holds when 𝜅 ≤ 𝜅0. To see this, recall that we have
𝜅 ≤ 𝑝(𝜅) and 𝐶 ≥ 𝜌−(𝑞+1) by definition, thus the right hand side of (6.10) can be
lower bounded by

𝐶𝜌𝜅/(1+ln(𝜅+1)) ≥ 𝜌−(𝑞+1) · 𝜌𝑝(𝜅)/(1+ln(𝜅+1)) ≥ 𝜌−(𝑞+1) · 𝜌𝑞+1 = 1.

When 𝜅 > 𝜅0, we have 𝜅 > 𝑝(𝜅). Recall that 𝑎𝜅 := E
[
𝛾𝑋𝑖 (𝜅−1)] . Notice that

𝑋𝑖 (𝜅 − 1) = 0 if and only if 𝑁 𝜅−1
−𝑖 ∩ 𝑁𝑖 (𝐿𝑟0) ≠ ∅. To simplify the notation, we

denote the event 𝑁 𝜅−1
−𝑖 ∩ 𝑁𝑖 (𝐿𝑟0) ≠ ∅ by 𝐸0. Using this and the idea of dynamic

programming, we see that

𝑎𝜅 ≤ 𝛾
(
𝑃{

(
¬𝑁 𝜅−1
−𝑖

1−→ 𝑁 𝜅−1
𝑖

)
∧ ¬𝐸0}𝑎𝜅

+
𝜅−1∑︁
𝑗=0

𝑃{
(
𝑁 𝜅−𝑖

1−→ 𝜕𝑁
𝑗

𝑖

)
∧

(
¬𝑁 𝜅−𝑖

1−→ 𝑁
𝑗−1
𝑖

)
∧ ¬𝐸0}𝑎 𝑗

)
+ 𝑃(𝐸0)

≤ 𝛾
(
𝑃{¬𝑁 𝜅−1

−𝑖
1−→ 𝑁 𝜅−1

𝑖 }𝑎𝜅

+
𝜅−1∑︁
𝑗=0

𝑃{
(
𝑁 𝜅−𝑖

1−→ 𝜕𝑁
𝑗

𝑖

)
∧

(
¬𝑁 𝜅−𝑖

1−→ 𝑁
𝑗−1
𝑖

)
}𝑎 𝑗

)
+ 𝑃(𝐸0), (6.11)

where the probability 𝑃 are taken over (𝐿𝑠0, 𝐿
𝑟
0) ∼ 𝐷.

Since 𝜅 ≥ 𝑝(𝜅) ≥ 𝑞 ≥ 2𝑛1
ln(1/𝜆) ≥

2𝑛0
ln(1/𝜆) , by Lemma 6.A.1, we see that

𝑃(𝐸0) = 𝑃{∃ 𝑗 ∈ 𝑁 𝜅−1
−𝑖 s.t. ( 𝑗 , 𝑖) ∈ 𝐿𝑟} ≤

∞∑︁
𝑞=0

𝑐𝑐0(𝜅 + 𝑞 + 1)𝑛0𝜆𝜅+𝑞

≤ 𝑐𝑐0

1 −
√
𝜆
(𝜅 + 1)𝑛0+1𝜆𝜅 .

Substituting this into (6.11) and rearranging the terms gives(
1 − 𝛾𝑃{¬𝑁 𝜅−1

−𝑖
1−→ 𝑁 𝜅−1

𝑖 }
)
𝑎𝜅

≤ 𝛾
𝜅−1∑︁

𝑗=𝜅−𝑝(𝜅)+1
𝑃{

(
𝑁 𝜅−1
−𝑖

1−→ 𝜕𝑁
𝑗

𝑖

)
∧

(
¬𝑁 𝜅−1
−𝑖

1−→ 𝑁
𝑗−1
𝑖

)
}𝑎 𝑗
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+ 𝛾
𝜅−𝑝(𝜅)∑︁
𝑗=0

𝑃{
(
𝑁 𝜅−1
−𝑖

1−→ 𝜕𝑁
𝑗

𝑖

)
∧

(
¬𝑁 𝜅−1
−𝑖

1−→ 𝑁
𝑗−1
𝑖

)
}𝑎 𝑗

+ 𝑐𝑐0

1 −
√
𝜆
(𝜅 + 1)𝑛0+1𝜆𝜅 . (6.12)

For simplicity, we define 𝜌𝜅 := 𝜌1/(1+ln(𝜅+1)) . By the induction assumption, we have
that

𝑎 𝑗 ≤ 𝐶𝜌 𝑗/(ln( 𝑗+1)+1) ≤ 𝐶𝜌 𝑗/(ln(𝜅+1)+1) = 𝐶𝜌 𝑗𝜅 .

Substituting this into (6.12) gives that(
1 − 𝛾𝑃{¬𝑁 𝜅−1

−𝑖
1−→ 𝑁 𝜅−1

𝑖 }
)
𝑎𝜅

≤ 𝐶𝛾
𝜅−1∑︁

𝑗=𝜅−𝑝(𝜅)+1
𝑃{

(
𝑁 𝜅−1
−𝑖

1−→ 𝜕𝑁
𝑗

𝑖

)
∧

(
¬𝑁 𝜅−1
−𝑖

1−→ 𝑁
𝑗−1
𝑖

)
}𝜌 𝑗𝜅

+ 𝐶𝛾
𝜅−𝑝(𝜅)∑︁
𝑗=0

𝑃{
(
𝑁 𝜅−1
−𝑖

1−→ 𝜕𝑁
𝑗

𝑖

)
∧

(
¬𝑁 𝜅−1
−𝑖

1−→ 𝑁
𝑗−1
𝑖

)
}𝜌 𝑗𝜅

+ 𝑐0

1 −
√
𝜆
(𝜅 + 1)𝑛0+1𝜆𝜅 . (6.13)

By the definition of 𝑝(𝜅) and 𝑞, we see that

𝜆−𝑝(𝜅) ≥ 𝜆−𝑞(1+ln(𝜅+1)) = 𝜆−𝑞 · (𝜅 + 1)𝑞 ln(1/𝜆) ≥ 𝑐2

𝑐3(1 −
√
𝛾)2
· (𝜅 + 1)𝑛1

≥ 𝑐2
𝑐3(1 − 𝛾)

· (𝜅 + 1)𝑛1 .

Therefore, we obtain the upper bound

𝑃{
(
𝑁 𝜅−1
−𝑖

1−→ 𝜕𝑁
𝑗

𝑖

)
∧

(
¬𝑁 𝜅−𝑖

1−→ 𝑁
𝑗−1
𝑖

)
} ≤ 𝑃{𝑁 𝜅−1

−𝑖
1−→ 𝜕𝑁

𝑗

𝑖
}

≤ 𝑐2(𝜅 + 1)𝑛1𝜆(𝜅− 𝑗)

≤ (1 − 𝛾)𝑐3𝜆
(𝜅−𝑝(𝜅)− 𝑗) .

Using this and divide both sides of (6.13) by
(
1 − 𝛾𝑃{¬𝑁 𝜅−𝑖

1−→ 𝑁 𝜅−1
𝑖
}
)
, we see that

𝑎𝜅 ≤ 𝛾
(
𝐶𝜌

𝜅−𝑝(𝜅)+1
𝜅 + 𝐶𝑐3(𝜌𝜅−𝑝(𝜅)𝜅 + 𝜆1 · 𝜌𝜅−𝑝(𝜅)−1

𝜅 + 𝜆2 · 𝜌𝜅−𝑝(𝜅)−2
𝜅 + · · · )

)
+ 𝑐0

(1 − 𝛾) (1 −
√
𝜆)
(𝜅 + 1)𝑛0+1𝜆𝜅, (6.14)

where we also use the fact that
𝜅−1∑︁

𝑗=𝜅−𝑝+1
𝑃{

(
𝑁 𝜅−1
−𝑖

1−→ 𝜕𝑁
𝑗

𝑖

)
∧

(
¬𝑁 𝜅−1
−𝑖

1−→ 𝑁
𝑗−1
𝑖

)
} ≤ 1 − 𝛾𝑃{¬𝑁 𝜅−1

−𝑖
1−→ 𝑁 𝜅−1

𝑖 }.
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By the definition of 𝑝(𝜅), 𝑞 and 𝑐2, we see that the following inequalities about the
exponent of 𝜆 holds:

𝜆
𝜅
4 ≤ 𝜆

𝑝 (𝜅 )
4 ≤ (𝜅 + 1)−

𝑞 ln(1/𝜆)
4 ≤ (𝜅 + 1)−𝑛0−1

and

𝜆
𝜅
2 ≤ 𝜆

𝑝 (𝜅 )
2 ≤ 𝜆

𝑞

2 ≤
(1 − √𝛾) (1 − 𝛾) (1 −

√
𝜆)

2𝑐0
,

which implies

𝜆
3𝜅
4 ≤
(1 − √𝛾) (1 − 𝛾) (1 −

√
𝜆)

2𝑐0(𝜅 + 1)𝑛0+1
. (6.15)

Dividing both sides of (6.14) by 𝐶𝜌𝜅𝜅 gives that

𝑎𝜅

𝐶𝜌𝜅𝜅
≤ 𝛾

(
1

𝜌
𝑝(𝜅)−1
𝜅

+ 𝑐3

𝜌
𝑝(𝜅)
𝜅

· 1
1 − (𝜆/𝜌𝜅)

)
+ 𝑐0

(1 − 𝛾) (1 −
√
𝜆)
(𝜅 + 1)𝑛0+1𝜆

3𝜅
4

(6.16a)

≤ 𝛾
(

1
𝜌𝑞
+ 1
𝜌𝑞+1

· 𝑐3

1 −
√
𝜆

)
+ 1

2
(1 − √𝛾) (6.16b)

=
𝛾

𝜌𝑞

(
1 + 𝑐3

𝜌(1 −
√
𝜆)

)
+ 1

2
(1 − √𝛾)

≤ √𝛾 · 1
2

(
1 + 1
√
𝛾

)
+ 1

2
(1 − √𝛾) (6.16c)

= 1,

where we use 𝜌𝜅 = 𝜌1/(1+ln 𝜅) ≥ 𝜌 ≥ 4√
𝜆 in (6.16a); we use 𝜌𝜅 ≥ 4√

𝜆, 𝑝 =

[𝑞(1 + ln 𝜅)] + 1, and (6.15) in (6.16b); we use 𝑐3 =
√
𝜆(1 −

√
𝜆) (√𝛾 − 1) ≤

𝜌(1 −
√
𝜆) (√𝛾 − 1) and 𝜌 ≥ 𝛾1/(2𝑞) in (6.16c).

6.B Proof of Learning with Localized Observations
Proposition 6.B.1. Suppose Assumptions 6.3.3 and 6.3.4 hold. Then for all 𝑡,

∥𝑥(𝑡)∥𝑣 ≤
1

1 − 𝛾

(
(1 + 𝛾)∥𝑦∗∥𝑣 +

𝑤̄

𝑣

)
holds almost surely, where 𝑦∗ ∈ RN is the stationary point of 𝐹.

Proof of Proposition 6.B.1. By Assumption 6.3.3, we have that for all 𝑥 ∈ RM ,

∥𝐹 (Φ𝑥)∥𝑣 ≤ ∥𝐹 (Φ𝑥) − 𝐹 (𝑦∗)∥𝑣 + ∥𝐹 (𝑦∗)∥𝑣 (6.17a)

≤ 𝛾∥Φ𝑥 − 𝑦∗∥𝑣 + ∥𝑦∗∥𝑣 (6.17b)
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≤ 𝛾∥𝑥∥𝑣 + (1 + 𝛾)∥𝑦∗∥𝑣, (6.17c)

where we use the triangle inequality in (6.17a) and (6.17c); we use Assumption
6.3.3 in (6.17b).

Let 𝑥 = 1
1−𝛾

(
(1 + 𝛾)∥𝑦∗∥𝑣 + 𝑤̄

𝑣

)
. We prove ∥𝑥(𝑡)∥𝑣 ≤ 𝑥 by induction on 𝑡. Since

we initialize 𝑥(0) to be 0, the statement is true for 𝑡 = 0.

Suppose the statement is true for 𝑡. By the update rule of 𝑥, we see that

1
𝑣ℎ(𝑖𝑡 )

��𝑥ℎ(𝑖𝑡 ) (𝑡 + 1)
�� ≤ (1 − 𝛼𝑡) 1

𝑣ℎ(𝑖𝑡 )

��𝑥ℎ(𝑖𝑡 ) (𝑡)�� + 𝛼𝑡 ( 1
𝑣ℎ(𝑖𝑡 )

��𝐹𝑖𝑡 (Φ𝑥(𝑡))�� + 1
𝑣ℎ(𝑖𝑡 )

|𝑤(𝑡) |
)

≤ (1 − 𝛼𝑡)∥𝑥(𝑡)∥𝑣 + 𝛼𝑡
(
∥𝐹 (Φ𝑥(𝑡))∥𝑣 +

𝑤̄

𝑣

)
(6.18a)

≤ (1 − 𝛼𝑡)∥𝑥(𝑡)∥𝑣 + 𝛼𝑡
(
𝛾∥𝑥(𝑡)∥𝑣 + (1 + 𝛾)∥𝑦∗∥𝑣 +

𝑤̄

𝑣

)
(6.18b)

≤ (1 − 𝛼𝑡)𝑥 + 𝛼𝑡
(
𝛾𝑥 + (1 + 𝛾)∥𝑦∗∥𝑣 +

𝑤̄

𝑣

)
(6.18c)

= 𝑥,

where we use Assumption 6.3.4 in (6.18a); (6.17) in (6.18b); the induction assump-
tion in (6.18c).

For 𝑗 ≠ ℎ(𝑖𝑡), 𝑗 ∈ M, we have that

1
𝑣 𝑗

��𝑥 𝑗 (𝑡 + 1)
�� = 1

𝑣 𝑗

��𝑥 𝑗 (𝑡)�� ≤ ∥𝑥(𝑡)∥𝑣 ≤ 𝑥. (6.19)

Combining (6.18) and (6.19), we see that the statement also holds for 𝑡 + 1. Hence
we have showed ∥𝑥(𝑡)∥𝑣 ≤ 𝑥 by induction.

Proof of Theorem 6.3.1
In the Critic part of Algorithm 10, since the policy is fixed to be 𝜃 (𝑚), the pair (𝑠, 𝑎)
can be viewed as the state of a Markov chain C, and𝑄𝜃 (𝑚) (𝑠, 𝑎) in the original MDP
corresponds to the value function 𝑉∗((𝑠, 𝑎)) on C. Define the state aggregation
map ℎ such that ℎ((𝑠, 𝑎)) = (𝑠𝑁 𝜅

𝑖
, 𝑎𝑁 𝜅

𝑖
). By the 𝜇-decay property, we see that if

ℎ((𝑠, 𝑎)) = ℎ((𝑠′, 𝑎′)), then

|𝑉∗((𝑠, 𝑎)) −𝑉∗((𝑠′, 𝑎′)) | =
���𝑄𝜃 (𝑚) (𝑠, 𝑎) −𝑄𝜃 (𝑚) (𝑠′, 𝑎′)

��� ≤ 𝜇(𝜅).
Note that Assumption 6.3.1 implies that Assumption 6.3.2 holds for C. Thus, we
can apply Theorem 6.3.3 to finish the proof of Theorem 6.3.1.
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Contraction of the Update Operator
To show that the equation Π𝐹 (Φ𝑥) = 𝑥 has a unique solution 𝑥∗, by the Ba-
nach–Caccioppoli fixed-point theorem, it suffices to show that operator Π𝐹 (Φ·) is
a 𝛾-contraction in ∥·∥𝑣.

Proposition 6.B.2. If Assumption 6.3.3 holds, operator Π𝐹 (Φ·) is a contraction in
∥·∥𝑣, i.e., for any 𝑥, 𝑦 ∈ RM , ∥Π𝐹 (Φ𝑥) − Π𝐹 (Φ𝑦)∥𝑣 ≤ 𝛾∥𝑥 − 𝑦∥𝑣 .

To prove this proposition, we first show both operator Π and operator Φ are non-
expansive in ∥·∥𝑣 before combining them with 𝐹.

Proof of Proposition 6.B.2. We first show that operator Π is non-expansive in ∥·∥𝑣,
i.e., for any 𝑥, 𝑦 ∈ RN , we have

∥Π𝑥 − Π𝑦∥𝑣 ≤ ∥𝑥 − 𝑦∥𝑣 . (6.20)

Since Π is a linear operator, it suffices to show that for any 𝑥 ∈ RN , ∥Π𝑥∥𝑣 ≤ ∥𝑥∥𝑣.

Recall that ∀ 𝑗 ∈ M, ℎ−1( 𝑗) := {𝑖 ∈ N | ℎ(𝑖) = 𝑗}. Using this notation, the 𝑗 th
element of vector Π𝑥 is given by

(Π𝑥) 𝑗 =
1∑

𝑖∈ℎ−1 ( 𝑗) 𝑑𝑖

(
Φ⊤𝐷𝑥

)
𝑗
=

1∑
𝑖∈ℎ−1 ( 𝑗) 𝑑𝑖

·
∑︁

𝑖∈ℎ−1 ( 𝑗)
𝑑𝑖𝑥𝑖 .

Hence we see that��(Π𝑥) 𝑗 ��
𝑣 𝑗

≤ 1∑
𝑖∈ℎ−1 ( 𝑗) 𝑑𝑖

·
∑︁

𝑖∈ℎ−1 ( 𝑗)
𝑑𝑖
|𝑥𝑖 |
𝑣 𝑗
≤ sup
𝑖∈ℎ−1 ( 𝑗)

|𝑥𝑖 |
𝑣 𝑗
. (6.21)

By taking sup 𝑗 on both sides of (6.21), we see that

∥Π𝑥∥𝑣 = sup
𝑗∈M

��(Π𝑥) 𝑗 ��
𝑣 𝑗

≤ sup
𝑗∈M

sup
𝑖∈ℎ−1 ( 𝑗)

|𝑥𝑖 |
𝑣 𝑗

= sup
𝑖∈N

|𝑥𝑖 |
𝑣ℎ(𝑖)

= ∥𝑥∥𝑣, (6.22)

where we use the definition of ∥·∥𝑣 on RN in the last equation. Hence we have
shown that Π is non-expansive in ∥·∥𝑣 (inequality (6.20)).

We can also show that for any 𝑥, 𝑦 ∈ RM , we have

∥Φ𝑥 −Φ𝑦∥𝑣 = ∥𝑥 − 𝑦∥𝑣 . (6.23)

Since Φ is a linear operator, we only need to show that for any 𝑥 ∈ RM , ∥Φ𝑥∥𝑣 =
∥𝑥∥𝑣.
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Since (Φ𝑥)𝑖 = 𝑥ℎ(𝑖) ,∀𝑖 ∈ N , by the definition of ∥·∥𝑣 on RN , we see that the norm
remains unchanged after applying Φ:

∥Φ𝑥∥𝑣 = sup
𝑖∈N

| (Φ𝑥)𝑖 |
𝑣ℎ(𝑖)

= sup
𝑖∈N

��𝑥ℎ(𝑖) ��
𝑣ℎ(𝑖)

= sup
𝑗∈M

��𝑥 𝑗 ��
𝑣 𝑗

= ∥𝑥∥𝑣 .

Hence we have shown that Φ is non-expansive in ∥·∥𝑣 (equation (6.23)).

Therefore, for any 𝑥, 𝑦 ∈ RM , we have

∥Π𝐹 (Φ𝑥) − Π𝐹 (Φ𝑦)∥𝑣 ≤ ∥𝐹 (Φ𝑥) − 𝐹 (Φ𝑦)∥𝑣 (6.24a)

≤ 𝛾∥Φ𝑥 −Φ𝑦∥𝑣 (6.24b)

= 𝛾∥𝑥 − 𝑦∥𝑣, (6.24c)

where we use (6.20) in (6.24a); Assumption 6.3.3 in (6.24b); (6.23) in (6.24c).

Proof of Theorem 6.3.2
The proof approach of Theorem 6.3.2 is similar to the proof of Theorem 4 in Qu
and Wierman, 2020. Specifically, we show an upper bound for ∥𝑥(𝑡) − 𝑥∗∥𝑣 by
induction on time step 𝑡. To do so, we divide the whole proof into three steps: In
Step 1, we manipulate the update rule (6.4) so that it can be written in a recursive
form of sequence ∥𝑥(𝑡) − 𝑥∗∥𝑣 (see Lemma 6.B.1); In Step 2, we bound the effect
of noise terms in the recursive form we obtained in Step 1; In Step 3, we combine
the first two steps to finish the induction.

For simplicity of notation, we use 𝑒𝑖 to denote the indicator vector in R𝑛, i.e., the 𝑖
th entry is 1 and all other entries are 0. We also use 𝜉𝑖 to denote the indicator vector
in R𝑚.

One of the main proof techniques used in Qu and Wierman, 2020 is to consider 𝐷𝑡 =

E𝑒𝑖𝑡 𝑒
⊤
𝑖𝑡
| F𝑡−𝜏, which is the distribution of 𝑖𝑡 condition on F𝑡−𝜏, in the coefficients

of the recursive relationship of sequence ∥𝑥(𝑡) − 𝑥∗∥𝑣. However, this approach
does not work in the more general setting we consider because 𝑥∗ may not be
the stationary point of operator (Φ⊤𝐷𝑡Φ)−1𝜙⊤𝐷𝑡𝐹 (Φ·). As a result, we cannot
decompose ∥𝑥(𝑡) − 𝑥∗∥𝑣 recursively if we use 𝐷𝑡 in the coefficients. To overcome
this difficulty, we use 𝐷 = 𝑑𝑖𝑎𝑔(𝑑1, · · · , 𝑑𝑛), which is the stationary distribution of
𝑖𝑡 , in the coefficients of the recursive relationship (Lemma 6.B.1).

Now we begin the technical part of our proof.

Step 1: Decomposition of Error. Let 𝐷𝑡 = E𝑒𝑖𝑡 𝑒
⊤
𝑖𝑡
| F𝑡−𝜏, where 𝜏 is a parameter

that we will tune later. Then𝐷𝑡 is aF𝑡−𝜏-measurable 𝑛-by-𝑛 diagonal random matrix,
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with its 𝑖’th entry being 𝑑𝑡,𝑖 = P(𝑖𝑡 = 𝑖 | F𝑡−𝜏). Recall that 𝐷 = 𝑑𝑖𝑎𝑔(𝑑1, · · · , 𝑑𝑛),
where 𝑑 is the stationary distribution of the Markov Chain {𝑖𝑡}.

Notice that for all 𝑖 ∈ N , we have 𝜉ℎ(𝑖) = Φ⊤𝑒𝑖 . We can rewrite the update rule as

𝑥(𝑡 + 1) = 𝑥(𝑡) + 𝛼𝑡 [𝑒⊤𝑖𝑡 𝐹 (Φ𝑥(𝑡)) − 𝜉
⊤
ℎ(𝑖𝑡 )𝑥(𝑡) + 𝑤(𝑡)]𝜉ℎ(𝑖𝑡 )

= 𝑥(𝑡) + 𝛼𝑡 [𝜉ℎ(𝑖𝑡 )𝑒⊤𝑖𝑡 𝐹 (Φ𝑥(𝑡)) − 𝜉ℎ(𝑖𝑡 )𝜉
⊤
ℎ(𝑖𝑡 )𝑥(𝑡) + 𝑤(𝑡)𝜉ℎ(𝑖𝑡 )]

= 𝑥(𝑡) + 𝛼𝑡Φ⊤
[
𝑒𝑖𝑡 𝑒
⊤
𝑖𝑡
(𝐹 (Φ𝑥(𝑡)) −Φ𝑥(𝑡)) + 𝑤(𝑡)𝑒𝑖𝑡

]
(6.25a)

= 𝑥(𝑡) + 𝛼𝑡
[
Φ⊤𝐷𝐹 (Φ𝑥(𝑡)) −Φ⊤𝐷Φ𝑥(𝑡)

]
+ 𝛼𝑡Φ⊤

[
(𝑒𝑖𝑡 𝑒⊤𝑖𝑡 − 𝐷) (𝐹 (Φ𝑥(𝑡)) −Φ𝑥(𝑡)) + 𝑤(𝑡)𝑒𝑖𝑡

]
= 𝑥(𝑡) + 𝛼𝑡

[
Φ⊤𝐷𝐹 (Φ𝑥(𝑡)) −Φ⊤𝐷Φ𝑥(𝑡)

]
+ 𝛼𝑡Φ⊤

[
(𝑒𝑖𝑡 𝑒⊤𝑖𝑡 − 𝐷) (𝐹 (Φ𝑥(𝑡 − 𝜏)) −Φ𝑥(𝑡 − 𝜏)) + 𝑤(𝑡)𝑒𝑖𝑡

]
+ 𝛼𝑡Φ⊤(𝑒𝑖𝑡 𝑒⊤𝑖𝑡 − 𝐷) [𝐹 (Φ𝑥(𝑡)) − 𝐹 (Φ𝑥(𝑡 − 𝜏)) −Φ(𝑥(𝑡) − 𝑥(𝑡 − 𝜏))]

= (𝐼 − 𝛼𝑡Φ⊤𝐷Φ)𝑥(𝑡) + 𝛼𝑡Φ⊤𝐷𝐹 (Φ𝑥(𝑡)) + 𝛼𝑡 (𝜖 (𝑡) + 𝜓(𝑡)), (6.25b)

where in (6.25a), we use 𝜉ℎ(𝑖𝑡 ) = Φ⊤𝑒𝑖𝑡 . Additionally, in (6.25b), we define

𝜖 (𝑡) = Φ⊤
[
(𝑒𝑖𝑡 𝑒⊤𝑖𝑡 − 𝐷) (𝐹 (Φ𝑥(𝑡 − 𝜏)) −Φ𝑥(𝑡 − 𝜏)) + 𝑤(𝑡)𝑒𝑖𝑡

]
and

𝜓(𝑡) = Φ⊤(𝑒𝑖𝑡 𝑒⊤𝑖𝑡 − 𝐷) [𝐹 (Φ𝑥(𝑡)) − 𝐹 (Φ𝑥(𝑡 − 𝜏)) −Φ(𝑥(𝑡) − 𝑥(𝑡 − 𝜏))] .

We further decompose 𝜖 (𝑡) as 𝜖 (𝑡) = 𝜖1(𝑡) + 𝜖2(𝑡), where 𝜖1(𝑡) and 𝜖2(𝑡) are defined
as

𝜖1(𝑡) = Φ⊤
[
(𝑒𝑖𝑡 𝑒⊤𝑖𝑡 − 𝐷𝑡) (𝐹 (Φ𝑥(𝑡 − 𝜏)) −Φ𝑥(𝑡 − 𝜏)) + 𝑤(𝑡)𝑒𝑖𝑡

]
and

𝜖2(𝑡) = Φ⊤(𝐷𝑡 − 𝐷) (𝐹 (Φ𝑥(𝑡 − 𝜏)) −Φ𝑥(𝑡 − 𝜏)) .

We see that condition on F𝑡−𝜏, the expected value of 𝜖1(𝑡) is zero, i.e.,

E𝜖1(𝑡) | F𝑡−𝜏
= Φ⊤E

[
(𝑒𝑖𝑡 𝑒⊤𝑖𝑡 − 𝐷𝑡) | F𝑡−𝜏

]
[𝐹 (Φ𝑥(𝑡 − 𝜏)) −Φ𝑥(𝑡 − 𝜏)]

+Φ⊤E
[
E[𝑤(𝑡) | F𝑡]𝑒𝑖𝑡 | F𝑡−𝜏

]
= 0.

Recall that matrix Π is defined as

Π =
(
Φ⊤𝐷Φ

)−1
Φ⊤𝐷.
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By expanding (6.25) recursively, we obtain that

𝑥(𝑡 + 1) =
𝑡∏
𝑘=𝜏

(
𝐼 − 𝛼𝑘Φ⊤𝐷Φ

)
𝑥(𝜏) +

𝑡∑︁
𝑘=𝜏

𝛼𝑘

(
𝑡∏

𝑙=𝑘+1
(𝐼 − 𝛼𝑙Φ⊤𝐷Φ)

)
Φ⊤𝐷𝐹 (Φ𝑥(𝑘))

+
𝑡∑︁
𝑘=𝜏

𝛼𝑘

(
𝑡∏

𝑙=𝑘+1
(𝐼 − 𝛼𝑙Φ⊤𝐷Φ)

)
(𝜖 (𝑘) + 𝜓(𝑘))

= 𝐵̃𝜏−1,𝑡𝑥(𝜏) +
𝑡∑︁
𝑘=𝜏

𝐵𝑘,𝑡Π𝐹 (Φ𝑥(𝑘)) +
𝑡∑︁
𝑘=𝜏

𝛼𝑘 𝐵̃𝑘,𝑡 (𝜖 (𝑘) + 𝜓(𝑘)), (6.26)

where 𝐵𝑘,𝑡 = 𝛼𝑘 (Φ⊤𝐷Φ)
∏𝑡
𝑙=𝑘+1(𝐼−𝛼𝑙Φ⊤𝐷Φ) and 𝐵̃𝑘,𝑡 =

∏𝑡
𝑙=𝑘+1 (𝐼 − 𝛼𝑙Φ⊤𝐷Φ) .

For simplicity of notation, we define 𝐷′ = Φ⊤𝐷Φ ∈ RM×M . Notice that 𝐷′ is a
diagonal matrix in RM×M with the 𝑗’th entry 𝑑′

𝑗
=

∑
𝑗∈ℎ−1 (𝑖) 𝑑𝑖 . Clearly, 𝐵𝑘,𝑡 and

𝐵̃𝑘,𝑡 are 𝑚-by-𝑚 diagonal matrices, with the 𝑖’th diagonal entry given by 𝑏𝑘,𝑡,𝑖 and
𝑏̃𝑘,𝑡,𝑖, where 𝑏𝑘,𝑡,𝑖 = 𝛼𝑘𝑑′𝑖

∏𝑡
𝑙=𝑘+1(1−𝛼𝑙𝑑′𝑖) and 𝑏̃𝑘,𝑡,𝑖 =

∏𝑡
𝑙=𝑘+1(1−𝛼𝑙𝑑′𝑖). Therefore,

for any 𝑖 ∈ M, we have

𝑏̃𝜏−1,𝑡,𝑖 +
𝑡∑︁
𝑘=𝜏

𝑏𝑘,𝑡,𝑖 = 1. (6.27)

Also, by the definition of 𝜎′, we have that for any 𝑖, almost surely

𝑏𝑘,𝑡,𝑖 ≤ 𝛽𝑘,𝑡 := 𝛼𝑘
𝑡∏

𝑙=𝑘+1
(1 − 𝛼𝑙𝜎′), 𝑏̃𝑘,𝑡,𝑖 ≤ 𝛽𝑘,𝑡 =

𝑡∏
𝑙=𝑘+1
(1 − 𝛼𝑙𝜎′),

where 𝜎′ = min{𝑑′1, · · · , 𝑑
′
𝑚}.

Recall that 𝑥∗ is the unique solution of the equation Π𝐹 (Φ𝑥∗) = 𝑥∗. Lemma 6.B.1
shows that we can expand the error term ∥𝑥(𝑡) − 𝑥∗∥𝑣 recursively.

Lemma 6.B.1. Let Υ𝑡 = ∥𝑥(𝑡) − 𝑥∗∥𝑣, we have almost surely,

Υ𝑡+1 ≤ 𝛽𝜏−1,𝑡Υ𝜏 + 𝛾 sup
𝑖∈M

𝑡∑︁
𝑘=𝜏

𝑏𝑘,𝑡,𝑖Υ𝑘 +





 𝑡∑︁
𝑘=𝜏

𝛼𝑘 𝐵̃𝑘,𝑡𝜖 (𝑘)






𝑣

+





 𝑡∑︁
𝑘=𝜏

𝛼𝑘 𝐵̃𝑘,𝑡𝜓(𝑘)






𝑣

.

Proof of Lemma 6.B.1. By (6.26) and the triangle inequality of ∥·∥𝑣, we have

∥𝑥(𝑡 + 1) − 𝑥∗∥𝑣

≤ sup
𝑖∈M

1
𝑣𝑖

�����𝑏̃𝜏−1,𝑡,𝑖𝑥𝑖 (𝜏) +
𝑡∑︁
𝑘=𝜏

𝑏𝑘,𝑡,𝑖 (Π𝐹 (Φ𝑥(𝑘)))𝑖 − 𝑥∗𝑖

�����
+






 𝑡∑︁
𝑘=𝜏

𝛼𝑘 𝐵̃𝑘,𝑡𝜖 (𝑘)






𝑣

+





 𝑡∑︁
𝑘=𝜏

𝛼𝑘 𝐵̃𝑘,𝑡𝜓(𝑘)






𝑣

. (6.28)
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We also see that for each 𝑖 ∈ M,

1
𝑣𝑖

�����𝑏̃𝜏−1,𝑡,𝑖𝑥𝑖 (𝜏) +
𝑡∑︁
𝑘=𝜏

𝑏𝑘,𝑡,𝑖 (Π𝐹 (Φ𝑥(𝑘)))𝑖 − 𝑥∗𝑖

�����
≤ 𝑏̃𝜏−1,𝑡,𝑖

1
𝑣𝑖

��𝑥𝑖 (𝜏) − 𝑥∗𝑖 �� + 𝑡∑︁
𝑘=𝜏

𝑏𝑘,𝑡,𝑖
1
𝑣𝑖

��(Π𝐹 (Φ𝑥(𝑘)))𝑖 − 𝑥∗𝑖 �� (6.29a)

≤ 𝑏̃𝜏−1,𝑡,𝑖∥𝑥(𝜏) − 𝑥∗∥𝑣 +
𝑡∑︁
𝑘=𝜏

𝑏𝑘,𝑡,𝑖∥(Π𝐹 (Φ𝑥(𝑘))) − 𝑥∗∥𝑣

≤ 𝑏̃𝜏−1,𝑡,𝑖∥𝑥(𝜏) − 𝑥∗∥𝑣 + 𝛾
𝑡∑︁
𝑘=𝜏

𝑏𝑘,𝑡,𝑖∥𝑥(𝑘) − 𝑥∗∥𝑣, (6.29b)

where in (6.29a), we use (6.27) which says 𝑏̃𝜏−1,𝑡,𝑖 +
∑𝑡
𝑘=𝜏 𝑏𝑘,𝑡,𝑖 = 1 holds for all

𝑖 ∈ M; in (6.29b), we use Proposition 6.B.2, which says Π𝐹 (Φ·) is 𝛾-contraction
in ∥·∥𝑣 with fixed point 𝑥∗.

Therefore, by substituting (6.29) into (6.28), we obtain that

Υ𝑡+1 ≤ 𝛽𝜏−1,𝑡Υ𝜏 + 𝛾 sup
𝑖∈M

𝑡∑︁
𝑘=𝜏

𝑏𝑘,𝑡,𝑖Υ𝑘 +





 𝑡∑︁
𝑘=𝜏

𝛼𝑘 𝐵̃𝑘,𝑡𝜖 (𝑘)






𝑣

+





 𝑡∑︁
𝑘=𝜏

𝛼𝑘 𝐵̃𝑘,𝑡𝜓(𝑘)






𝑣

.

Step 2: Bounding


∑𝑡

𝑘=𝜏 𝛼𝑘 𝐵̃𝑘,𝑡𝜖 (𝑘)



𝑣

and


∑𝑡

𝑘=𝜏 𝛼𝑘 𝐵̃𝑘,𝑡𝜓(𝑘)



𝑣
.

We start with a bound on each individual 𝜖1(𝑘), 𝜖2(𝑘), and 𝜓(𝑘) in Lemma 6.B.2.
For simplicity of notation, we define 𝑣 := inf 𝑗∈M 𝑣 𝑗 .

Lemma 6.B.2. The following bounds hold almost surely.

1. ∥𝜖1(𝑡)∥𝑣 ≤ 4𝑥 + 2𝐶 + 𝑤̄
𝑣

:= 𝜖 .

2. ∥𝜖2(𝑡)∥𝑣 ≤ (2𝑥 + 𝐶) · 2𝐾1 exp(−𝜏/𝐾2).

3. ∥𝜓(𝑡)∥𝑣 ≤ 3
(
2𝑥 + 𝐶 + 𝑤̄

𝑣

) ∑𝑡
𝑘=𝑡−𝜏+1 𝛼𝑘−1.

Proof of Lemma 6.B.2. By the definition of ∥·∥𝑣 in RM and its extension to RN ,
the induced matrix norm of ∥·∥ for a matrix 𝐴 = [𝑎𝑖 𝑗 ]𝑖∈M, 𝑗∈N is given by ∥𝐴∥𝑣 =
sup𝑖∈M

∑
𝑗∈N

𝑣ℎ ( 𝑗 )
𝑣𝑖

��𝑎𝑖 𝑗 ��. Recall that the 𝑖’th entry of the diagonal matrix 𝐷𝑡 is given
by 𝑑𝑡,𝑖 = P (𝑖𝑡 = 𝑖 | F𝑡−𝜏). Hence we have that

Φ⊤(𝑒𝑖𝑡 𝑒⊤𝑖𝑡 − 𝐷𝑡)




𝑣
= sup
𝑗∈M

∑︁
𝑖∈N

1(ℎ(𝑖) = 𝑗) ·
��1(𝑖 = 𝑖𝑡) − 𝑑𝑡,𝑖�� ≤ 2. (6.30)
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Therefore, we can upper bound ∥𝜖1(𝑡)∥𝑣 by

∥𝜖1(𝑡)∥𝑣 =


Φ⊤ [

(𝑒𝑖𝑡 𝑒⊤𝑖𝑡 − 𝐷𝑡) (𝐹 (Φ𝑥(𝑡 − 𝜏)) −Φ𝑥(𝑡 − 𝜏)) + 𝑤(𝑡)𝑒𝑖𝑡
]


𝑣

≤


Φ⊤(𝑒𝑖𝑡 𝑒⊤𝑖𝑡 − 𝐷𝑡)




𝑣
∥𝐹 (Φ𝑥(𝑡 − 𝜏)) −Φ𝑥(𝑡 − 𝜏)∥𝑣 + |𝑤(𝑡) |



Φ⊤𝑒𝑖𝑡

𝑣
≤ 2∥𝐹 (Φ𝑥(𝑡 − 𝜏)) −Φ𝑥(𝑡 − 𝜏)∥𝑣 + |𝑤(𝑡) |



Φ⊤𝑒𝑖𝑡

𝑣 (6.31a)

≤ 2∥𝐹 (Φ𝑥(𝑡 − 𝜏))∥𝑣 + 2∥𝑥(𝑡 − 𝜏)∥𝑣 +
𝑤̄

𝑣
(6.31b)

≤ 4𝑥 + 2𝐶 + 𝑤̄
𝑣
, (6.31c)

where we use (6.30) in (6.31a); the triangle inequality, the definition of 𝑣̄, and
Assumption 6.3.4 in (6.31b); Assumption 6.3.3 in (6.31c).

For ∥𝜖2(𝑡)∥𝑣, recall that

∥𝜖2(𝑡)∥𝑣 =


Φ⊤(𝐷𝑡 − 𝐷) (𝐹 (Φ𝑥(𝑡 − 𝜏)) −Φ𝑥(𝑡 − 𝜏))




𝑣

= sup
𝑗∈M

1
𝑣 𝑗

�����∑︁
𝑖∈N

1(ℎ(𝑖) = 𝑗) (𝑑𝑡,𝑖 − 𝑑𝑖) (𝐹 (Φ𝑥(𝑡 − 𝜏)) −Φ𝑥(𝑡 − 𝜏))𝑖

�����
= sup

𝑗∈M

1
𝑣 𝑗

������ ∑︁
𝑖∈ℎ−1 ( 𝑗)

(𝑑𝑡,𝑖 − 𝑑𝑖) (𝐹 (Φ𝑥(𝑡 − 𝜏)) −Φ𝑥(𝑡 − 𝜏))𝑖

������. (6.32)

By Assumption 6.3.2, we have that

sup
S⊆N

�����∑︁
𝑖∈S

𝑑𝑖 −
∑︁
𝑖∈S

𝑑𝑡,𝑖

����� ≤ 𝐾1 exp(−𝜏/𝐾2). (6.33)

Our objective is to bound the following term in (6.32) for all 𝑗 ∈ M:������ ∑︁
𝑖∈ℎ−1 ( 𝑗)

(𝑑𝑡,𝑖 − 𝑑𝑖) (𝐹 (Φ𝑥(𝑡 − 𝜏)) −Φ𝑥(𝑡 − 𝜏))𝑖

������.
Let 𝑀 𝑗 := sup𝑖∈ℎ−1 ( 𝑗) | (𝐹 (Φ𝑥(𝑡 − 𝜏)) −Φ𝑥(𝑡 − 𝜏))𝑖 |. Define function

𝑔 : [−𝑀 𝑗 , 𝑀 𝑗 ]N → R, 𝑔(𝑦) =

������ ∑︁
𝑖∈ℎ−1 ( 𝑗)

(𝑑𝑡,𝑖 − 𝑑𝑖)𝑦𝑖

������.
Suppose 𝑦𝑚𝑎𝑥 ∈ arg max𝑦 𝑔(𝑦). We know that for 𝑖 ∈ ℎ−1( 𝑗), (𝑦𝑚𝑎𝑥)𝑖 is either 𝑀 𝑗

or −𝑀 𝑗 if 𝑑𝑡,𝑖 − 𝑑𝑖 ≠ 0. Let 𝑆 𝑗 := {𝑖 ∈ ℎ−1( 𝑗) | (𝑦𝑚𝑎𝑥)𝑖 = 𝑀 𝑗 } and 𝑆′
𝑗

:= {𝑖 ∈
ℎ−1( 𝑗) | (𝑦𝑚𝑎𝑥)𝑖 = −𝑀 𝑗 }.
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Therefore, we see that������ ∑︁
𝑖∈ℎ−1 ( 𝑗)

(𝑑𝑡,𝑖 − 𝑑𝑖) (𝐹 (Φ𝑥(𝑡 − 𝜏)) −Φ𝑥(𝑡 − 𝜏))𝑖

������
≤ max

𝑦∈[−𝑀 𝑗 ,𝑀 𝑗 ]N
𝑔(𝑦) (6.34a)

=

������∑︁𝑖∈𝑆 𝑗 (𝑑𝑡,𝑖 − 𝑑𝑖)
������𝑀 𝑗 +

������∑︁𝑖∈𝑆′
𝑗

(𝑑𝑡,𝑖 − 𝑑𝑖)

������𝑀 𝑗

≤ 2𝐾1 exp(−𝜏/𝐾2)𝑀 𝑗 , (6.34b)

where we use the definition of function 𝑔 in (6.34a); we use (6.33) in (6.34b).

Substituting (6.34) into (6.32) gives that

∥𝜖2(𝑡)∥𝑣 ≤ ∥𝐹 (Φ𝑥(𝑡 − 𝜏)) −Φ𝑥(𝑡 − 𝜏)∥𝑣 · 2𝐾1 exp(−𝜏/𝐾2)
≤

(
∥𝐹 (Φ𝑥(𝑡 − 𝜏))∥𝑣 + ∥Φ𝑥(𝑡 − 𝜏)∥𝑣

)
· 2𝐾1 exp(−𝜏/𝐾2) (6.35a)

≤ (2𝑥 + 𝐶) · 2𝐾1 exp(−𝜏/𝐾2), (6.35b)

where we use the triangle inequality in (6.35a); we use Assumption 6.3.3 in (6.35b).

As for ∥𝜓(𝑡)∥𝑣, we have the following bound

∥𝜓(𝑡)∥𝑣
=



Φ⊤(𝑒𝑖𝑡 𝑒⊤𝑖𝑡 − 𝐷) (𝐹 (Φ𝑥(𝑡)) − 𝐹 (Φ𝑥(𝑡 − 𝜏))) −Φ⊤(𝑒𝑖𝑡 𝑒⊤𝑖𝑡 − 𝐷)Φ (𝑥(𝑡) − 𝑥(𝑡 − 𝜏))

𝑣
≤



Φ⊤(𝑒𝑖𝑡 𝑒⊤𝑖𝑡 − 𝐷) (𝐹 (Φ𝑥(𝑡)) − 𝐹 (Φ𝑥(𝑡 − 𝜏)))

𝑣
+



Φ⊤(𝑒𝑖𝑡 𝑒⊤𝑖𝑡 − 𝐷)Φ (𝑥(𝑡) − 𝑥(𝑡 − 𝜏))

𝑣
≤



Φ⊤(𝑒𝑖𝑡 𝑒⊤𝑖𝑡 − 𝐷)

𝑣 · ∥ (𝐹 (Φ𝑥(𝑡)) − 𝐹 (Φ𝑥(𝑡 − 𝜏)))∥𝑣
+



Φ⊤(𝑒𝑖𝑡 𝑒⊤𝑖𝑡 − 𝐷)Φ


𝑣
· ∥ (𝑥(𝑡) − 𝑥(𝑡 − 𝜏))∥𝑣 . (6.36)

Notice that

Φ⊤(𝑒𝑖𝑡 𝑒⊤𝑖𝑡 − 𝐷)Φ


𝑣
=




𝜉ℎ(𝑖𝑡 )𝜉⊤ℎ(𝑖𝑡 ) − 𝐷′


𝑣 = sup
𝑗∈M

���1(ℎ(𝑖𝑡) = 𝑗) − 𝑑′𝑗
��� ≤ 1.

Substituting this into (6.36) and use (6.30), we obtain that

∥𝜓(𝑡)∥𝑣 ≤ 2∥𝐹 (Φ𝑥(𝑡)) − 𝐹 (Φ𝑥(𝑡 − 𝜏))∥𝑣 + ∥𝑥(𝑡) − 𝑥(𝑡 − 𝜏)∥𝑣
≤ 3∥𝑥(𝑡) − 𝑥(𝑡 − 𝜏)∥𝑣

≤ 3
𝑡∑︁

𝑘=𝑡−𝜏+1
∥𝑥(𝑘) − 𝑥(𝑘 − 1)∥𝑣 . (6.37)
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By the update rule of 𝑥 and Assumption 6.3.3, we have that

∥𝑥(𝑡) − 𝑥(𝑡 − 1)∥𝑣 ≤ 𝛼𝑡−1

(
∥𝐹 (Φ𝑥(𝑡 − 1))∥𝑣 + ∥𝑥(𝑡 − 1)∥𝑣 +

𝑤̄

𝑣

)
≤ 𝛼𝑡−1

(
2𝑥 + 𝐶 + 𝑤̄

𝑣

)
. (6.38)

Substituting (6.38) into (6.37), we obtain that

∥𝜓(𝑡)∥𝑣 ≤ 3
(
2𝑥 + 𝐶 + 𝑤̄

𝑣

) 𝑡∑︁
𝑘=𝑡−𝜏+1

𝛼𝑘−1.

Lemma 6.B.3. If 𝛼𝑡 = 𝐻
𝑡+𝑡0 , where 𝐻 > 2

𝜎′ and 𝑡0 ≥ max(4𝐻, 𝜏), then 𝛽𝑘,𝑡 , 𝛽𝑘,𝑡

satisfies the following

1. 𝛽𝑘,𝑡 ≤ 𝐻
𝑘+𝑡0

(
𝑘+1+𝑡0
𝑡+1+𝑡0

)𝜎′𝐻
, 𝛽𝑘,𝑡 ≤

(
𝑘+1+𝑡0
𝑡+1+𝑡0

)𝜎′𝐻
.

2.
∑𝑡
𝑘=1 𝛽

2
𝑘,𝑡
≤ 2𝐻

𝜎′
1

𝑡+1+𝑡0 .

3.
∑𝑡
𝑘=𝜏 𝛽𝑘,𝑡

∑𝑘
𝑙=𝑘−𝜏+1 𝛼𝑙−1 ≤ 8𝐻𝜏

𝜎′
1

𝑡+1+𝑡0 .

Proof of Lemma 6.B.3. To show Lemma 6.B.3, we only need to substitute 𝜎′ for 𝜎
in the proof of Qu and Wierman, 2020[Lemma 10].

Lemma 6.B.4. The following inequality holds almost surely




 𝑡∑︁
𝑘=𝜏

𝛼𝑘 𝐵̃𝑘,𝑡𝜓(𝑘)






𝑣

≤
24

(
2𝑥 + 𝐶 + 𝑤̄

𝑣

)
𝐻𝜏

𝜎′
1

𝑡 + 1 + 𝑡0
:= 𝐶𝜓

1
𝑡 + 1 + 𝑡0

.

Proof of Lemma 6.B.4. We have that




 𝑡∑︁
𝑘=𝜏

𝛼𝑘 𝐵̃𝑘,𝑡𝜓(𝑘)






𝑣

≤
𝑡∑︁
𝑘=𝜏

𝛼𝑘


𝐵̃𝑘,𝑡

𝑣 ∥𝜓(𝑘)∥𝑣

≤ 3
(
2𝑥 + 𝐶 + 𝑤̄

𝑣

) 𝑡∑︁
𝑘=𝜏

𝛽𝑘,𝑡

𝑘∑︁
𝑙=𝑘−𝜏+1

𝛼𝑙−1 (6.39a)

≤
24

(
2𝑥 + 𝐶 + 𝑤̄

𝑣

)
𝐻𝜏

𝜎′
1

𝑡 + 1 + 𝑡0
, (6.39b)

where we use Lemma 6.B.2 in (6.39a); Lemma 6.B.3 in (6.39b).
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Lemma 6.B.5. For each 𝑡, with probability at least 1 − 𝛿, we have




 𝑡∑︁
𝑘=𝜏

𝛼𝑘 𝐵̃𝑘,𝑡𝜖1(𝑘)






𝑣

≤ 𝐻𝜖

𝑡 + 𝑡0

√︄
2𝜏𝑡 log

(
2𝜏𝑚
𝛿

)
.

To show Lemma 6.B.5, we need to use Lemma 6.B.6, which is Lemma 13 in Qu
and Wierman, 2020.

Lemma 6.B.6. Let 𝑋𝑡 be a F𝑡-adapted stochastic process which satisfies E𝑋𝑡 |
F𝑡−𝜏 = 0. Further, |𝑋𝑡 | ≤ 𝑋̄𝑡 almost surely. Then with probability 1 − 𝛿, we have,��∑𝑡

𝑘=0 𝑋𝑡
�� ≤ √︂

2𝜏
∑𝑡
𝑘=0 𝑋̄

2
𝑘

log
(

2𝜏
𝛿

)
.

Proof of Lemma 6.B.5. Recall that
∑
𝑘=𝜏 𝛼𝑘 𝐵̃𝑘,𝑡𝜖1(𝑘) is a random vector in RM ,

with its 𝑖’th entry
𝑡∑︁
𝑘=𝜏

𝛼𝑘 (𝜖1)𝑖 (𝑘)
𝑡∏

𝑙=𝑘+1
(1 − 𝛼𝑙𝑑′𝑖).

Since step sizes {𝛼𝑙} are deterministic, we see that

E

[
𝛼𝑘 (𝜖1)𝑖 (𝑘)

𝑡∏
𝑙=𝑘+1
(1 − 𝛼𝑙𝑑′𝑖) | F𝑘−𝜏

]
= 𝛼𝑘

𝑡∏
𝑙=𝑘+1
(1 − 𝛼𝑙𝑑′𝑖)E [(𝜖1)𝑖 (𝑘) | F𝑘−𝜏] = 0.

Notice that

𝛼𝑘

𝑡∏
𝑙=𝑘+1
(1 − 𝛼𝑙𝑑′𝑖) =

𝐻

𝑘 + 𝑡0

𝑡∏
𝑙=𝑘+1

(
1 −

𝐻𝑑′
𝑖

𝑙 + 𝑡0

)
(6.40a)

≤ 𝐻

𝑘 + 𝑡0

𝑡∏
𝑙=𝑘+1

(
1 − 2

𝑙 + 𝑡0

)
(6.40b)

≤ 𝐻

𝑘 + 𝑡0

𝑡∏
𝑙=𝑘+1

(
1 − 1

𝑙 + 𝑡0

)
≤ 𝐻

𝑡 + 𝑡0
,

where we use 𝛼𝑙 = 𝐻
𝑙+𝑡0 in (6.40a); we use 𝐻 > 2

𝜎′ in (6.40b).

By the definition of 𝜖 , we also see that | (𝜖1)𝑖 (𝑘) | ≤ 𝑣𝑖𝜖 . Therefore, by Lemma 6.B.6,
we obtain that����� 𝑡∑︁

𝑘=𝜏

𝛼𝑘 (𝜖1)𝑖 (𝑘)
𝑡∏

𝑙=𝑘+1
(1 − 𝛼𝑙𝑑′𝑖)

����� ≤ 𝐻𝑣𝑖𝜖𝑡 + 𝑡0

√︄
2𝜏𝑡 log

(
2𝜏
𝛿

)
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holds with probability at least 1 − 𝛿. By union bound, we see that with probability
at least 1 − 𝛿, 




 𝑡∑︁

𝑘=𝜏

𝛼𝑘 𝐵̃𝑘,𝑡𝜖1(𝑘)






𝑣

≤ 𝐻𝜖

𝑡 + 𝑡0

√︄
2𝜏𝑡 log

(
2𝜏𝑚
𝛿

)
.

Lemma 6.B.7. If we set 𝜏 to be an integer such that

𝜏 ≥ 2𝐾2 max (log 𝑡, 1) ,

we have that 




 𝑡∑︁
𝑘=𝜏

𝛼𝑘 𝐵̃𝑘,𝑡𝜖2(𝑘)






𝑣

≤
𝐶𝜖2

𝑡 + 𝑡0 + 1
,

where 𝑡0 = max(𝜏, 4𝐻) and 𝐶𝜖2 = (2𝑥 + 𝐶) · 2𝐾1(1 + 2𝐾2 + 4𝐻).

Proof of Lemma 6.B.7. Since 𝐾2 ≥ 1, the bound is trivial when 𝑡 = 1. We consider
the case when 𝑡 ≥ 2 below.

Since 𝛼𝑘 𝐵̃𝑘,𝑡 is a diagonal matrix and its entries are positive and less than 1, we have
that 




 𝑡∑︁

𝑘=𝜏

𝛼𝑘 𝐵̃𝑘,𝑡𝜖2(𝑘)






𝑣

≤
𝑡∑︁
𝑘=𝜏



𝛼𝑘 𝐵̃𝑘,𝑡

𝑣 · ∥𝜖2(𝑘)∥𝑣

≤ 𝑡∥𝜖2(𝑘)∥𝑣 (6.41a)

≤ 𝑡 (2𝑥 + 𝐶) · 2𝐾1 exp(−𝜏/𝐾2), (6.41b)

where we use


𝛼𝑘 𝐵̃𝑘,𝑡

𝑣 ≤ 1 in (6.41a); Lemma 6.B.2 in (6.41b).

To show Lemma 6.B.7, we only need to show

𝑡 (2𝑥 + 𝐶) · 2𝐾1(𝑡 + 𝜏 + 4𝐻) exp(−𝜏/𝐾2) ≤ 𝐶𝜖2 (6.42)

holds for all 𝜏 ≥ 2𝐾2 log 𝑡 because 𝑡 + 𝑡0 + 1 ≤ 𝑡 + 𝜏 + 4𝐻.

To study how the left hand side of (6.42) changes with 𝜏, we define function

𝑔(𝜏) = (𝜏 + 𝑡 + 4𝐻) exp(−𝜏/𝐾2).

Notice that we view 𝜏 as real number in function 𝑔, so we can get the derivative of
𝑔:

𝑔′(𝜏) = exp(−𝜏/𝐾2)
𝐾2

(𝐾2 − 𝑡 − 4𝐻 − 𝜏).
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Therefore, when 𝜏 ≥ 2𝐾2 log 𝑡, we always have 𝑔′(𝜏) < 0. Hence we obtain that

𝑔(𝜏) ≤ 𝑔(2𝐾2 log 𝑡) = 2𝐾2 log 𝑡 + 𝑡 + 4𝐻
𝑡2

≤ 1 + 2𝐾2 + 4𝐻
𝑡

(6.43)

holds for all 𝜏 ≥ 2𝐾2 log 𝑡.

Substituting (6.43) into (6.42) finishes the proof.

Step 3: Bounding the error sequence. Based on the recursive relationship we
derived in Lemma 6.B.1 and the bounds we obtained in Step 2, we want to show
that, with probability 1 − 𝛿,

Υ𝑡 ≤
𝐶𝑎√
𝑡 + 𝑡0

+
𝐶′𝑎
𝑡 + 𝑡0

, (6.44)

holds for all 𝜏 ≤ 𝑡 ≤ 𝑇 , where

𝐶𝑎 =
2𝐻𝜖
1 − 𝛾

√︄
2𝜏 log

(
2𝜏𝑚𝑇
𝛿

)
, 𝐶′𝑎 =

4
1 − 𝛾 max

(
𝐶𝜓 + 𝐶𝜖2 , 2𝑥(𝜏 + 𝑡0)

)
.

Notice that 𝐶𝑎 and 𝐶′𝑎 are independent of 𝑡 but may dependent on 𝑇 . We set
𝜏 = 2𝐾2 log𝑇.

By applying union bound to Lemma 6.B.5, we see that with probability at least 1−𝛿,
for any 𝑡 ≤ 𝑇 , 




 𝑡∑︁

𝑘=𝜏

𝛼𝑘 𝐵̃𝑘,𝑡𝜖1(𝑘)






𝑣

≤
𝐶𝜖1√

𝑡 + 1 + 𝑡0
,

where 𝐶𝜖1 = 𝐻𝜖

√︂
2𝜏 log

(
2𝜏𝑚𝑇
𝛿

)
.

Therefore, we get with probability 1 − 𝛿, (6.45) holds for all 𝜏 ≤ 𝑡 ≤ 𝑇 :

Υ𝑡+1 ≤ 𝛽𝜏−1,𝑡Υ𝜏 + 𝛾 sup
𝑖∈M

𝑡∑︁
𝑘=𝜏

𝑏𝑘,𝑡,𝑖Υ𝑘 +
𝐶𝜖1√

𝑡 + 1 + 𝑡0
+
𝐶𝜓 + 𝐶𝜖2

𝑡 + 1 + 𝑡0
. (6.45)

We now condition on (6.45) to show (6.44) by induction. (6.44) is true for 𝑡 = 𝜏, as
𝐶′𝑎
𝜏+𝑡0 ≥

8
1−𝛾𝑥 ≥ Υ𝜏, where we have used Υ𝜏 = ∥𝑥(𝜏) − 𝑥∗∥𝑣 ≤ ∥𝑥(𝜏)∥𝑣 + ∥𝑥∗∥𝑣 ≤ 2𝑥.

Then, assuming (6.44) is true for up to 𝑘 ≤ 𝑡. By (6.45), we have that

Υ𝑡+1 ≤ 𝛽𝜏−1,𝑡Υ𝜏 + 𝛾 sup
𝑖∈M

𝑡∑︁
𝑘=𝜏

𝑏𝑘,𝑡,𝑖

[
𝐶𝑎√
𝑘 + 𝑡0

+
𝐶′𝑎
𝑘 + 𝑡0

]
+

𝐶𝜖1√
𝑡 + 1 + 𝑡0

+
𝐶𝜓 + 𝐶𝜖2

𝑡 + 1 + 𝑡0

≤ 𝛽𝜏−1,𝑡Υ𝜏 + 𝛾𝐶𝑎 sup
𝑖∈M

𝑡∑︁
𝑘=𝜏

𝑏𝑘,𝑡,𝑖
1

√
𝑘 + 𝑡0

+ 𝛾𝐶′𝑎 sup
𝑖∈M

𝑡∑︁
𝑘=𝜏

1
𝑘 + 𝑡0

𝑏𝑘,𝑡,𝑖
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+
𝐶𝜖1√

𝑡 + 1 + 𝑡0
+
𝐶𝜓 + 𝐶𝜖2

𝑡 + 1 + 𝑡0
. (6.46)

We use the following auxiliary lemma to handle the second and the third term in
(6.46).

Lemma 6.B.8. If 𝜎′𝐻 (1 − √𝛾) ≥ 1, 𝑡0 ≥ 1, and 𝛼0 ≤ 1
2 , then, for any 𝑖 ∈ N , and

any 0 < 𝜔 ≤ 1, we have

𝑡∑︁
𝑘=𝜏

𝑏𝑘,𝑡,𝑖
1

(𝑘 + 𝑡0)𝜔
≤ 1
√
𝛾(𝑡 + 1 + 𝑡0)𝜔

.

Proof of Lemma 6.B.8. Recall that 𝛼𝑘 = 𝐻
𝑘+𝑡0 , and 𝑏𝑘,𝑡,𝑖 = 𝛼𝑘𝑑

′
𝑖

∏𝑡
𝑙=𝑘+1(1 − 𝛼𝑙𝑑′𝑖),

where 𝑑′
𝑖
≥ 𝜎′.

Define 𝑒𝑡 =
∑𝑡
𝑘=𝜏 𝑏𝑘,𝑡,𝑖

1
(𝑘+𝑡0)𝜔 . We use induction on 𝑡 to show that 𝑒𝑡 ≤ 1√

𝛾(𝑡+1+𝑡0)𝜔 .

The statement is clearly true for 𝑡 = 𝜏. Assume it is true for 𝑡 − 1. Notice that

𝑒𝑡 =

𝑡−1∑︁
𝑘=𝜏

𝑏𝑘,𝑡,𝑖
1

(𝑘 + 𝑡0)𝜔
+ 𝑏𝑡,𝑡,𝑖

1
(𝑡 + 𝑡0)𝜔

= (1 − 𝛼𝑡𝑑′𝑖)
𝑡−1∑︁
𝑘=𝜏

𝑏𝑘,𝑡−1,𝑖
1

(𝑘 + 𝑡0)𝜔
+ 𝛼𝑡𝑑′𝑖

1
(𝑡 + 𝑡0)𝜔

(6.47a)

= (1 − 𝛼𝑡𝑑′𝑖)𝑒𝑡−1 + 𝛼𝑡𝑑′𝑖
1

(𝑡 + 𝑡0)𝜔

≤ (1 − 𝛼𝑡𝑑′𝑖)
1

√
𝛾(𝑡 + 𝑡0)𝜔

+ 𝛼𝑡𝑑′𝑖
1

(𝑡 + 𝑡0)𝜔
(6.47b)

=
[
1 − 𝛼𝑡𝑑′𝑖 (1 −

√
𝛾)

] 1
√
𝛾(𝑡 + 𝑡0)𝜔

,

where we use 𝑏𝑡,𝑡,𝑖 = 𝛼𝑡𝑑′𝑖 in (6.47a); we use the induction assumption in (6.47b).

Plugging in 𝛼𝑡 = 𝐻
𝑡+𝑡0 , we see that

𝑒𝑡 ≤
[
1 − 𝜎′𝐻

𝑡 + 𝑡0
(1 − √𝛾)

]
1

√
𝛾(𝑡 + 𝑡0)𝜔

(6.48a)

=

[
1 − 𝜎′𝐻

𝑡 + 𝑡0
(1 − √𝛾)

] (
1 + 1

𝑡 + 𝑡0

)𝜔 1
√
𝛾(𝑡 + 1 + 𝑡0)𝜔

≤
(
1 − 1

𝑡 + 𝑡0

) (
1 + 1

𝑡 + 𝑡0

)𝜔 1
√
𝛾(𝑡 + 1 + 𝑡0)𝜔

(6.48b)

≤
(
1 − 1

𝑡 + 𝑡0

) (
1 + 1

𝑡 + 𝑡0

)
1

√
𝛾(𝑡 + 1 + 𝑡0)𝜔

(6.48c)
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≤ 1
√
𝛾(𝑡 + 1 + 𝑡0)𝜔

,

where we use 𝑑′
𝑖
≥ 𝜎′ in (6.48a); we use the assumption that 𝜎′𝐻 (1 − √𝛾) ≥ 1 in

(6.48b); we use 0 < 𝜔 ≤ 1 in (6.48c).

Applying Lemma 6.B.8 to (6.46), we see that

Υ𝑡+1 ≤ 𝛽𝜏−1,𝑡Υ𝜏 +
√
𝛾𝐶𝑎

1
√
𝑡 + 1 + 𝑡0

+ √𝛾𝐶′𝑎
1

𝑡 + 1 + 𝑡0

+ 𝐶𝜖1

1
√
𝑡 + 1 + 𝑡0

+ (𝐶𝜓 + 𝐶𝜖2)
1

𝑡 + 1 + 𝑡0
(6.49a)

≤
(
√
𝛾𝐶𝑎

1
√
𝑡 + 1 + 𝑡0

+ 𝐶𝜖1

1
√
𝑡 + 1 + 𝑡0

)
+

(
√
𝛾𝐶′𝑎

1
𝑡 + 1 + 𝑡0

+ (𝐶𝜓 + 𝐶𝜖2)
1

𝑡 + 1 + 𝑡0
+

(
𝜏 + 𝑡0

𝑡 + 1 + 𝑡0

)𝜎′𝐻
Υ𝜏

)
, (6.49b)

where we use Lemma 6.B.8 in (6.49a); we use the bound on 𝛽𝜏−1,𝑡 in Lemma 6.B.3
in (6.49b).

To bound the two terms in (6.49b), we define

𝜒𝑡 :=
√
𝛾𝐶𝑎

1
√
𝑡 + 1 + 𝑡0

+ 𝐶𝜖1

1
√
𝑡 + 1 + 𝑡0

and

𝜒′𝑡 =
√
𝛾𝐶′𝑎

1
𝑡 + 1 + 𝑡0

+ (𝐶𝜓 + 𝐶𝜖2)
1

𝑡 + 1 + 𝑡0
+

(
𝜏 + 𝑡0

𝑡 + 1 + 𝑡0

)𝜎′𝐻
𝑎𝜏 .

To finish the induction, it suffices to show that 𝜒𝑡 ≤ 𝐶𝑎√
𝑡+1+𝑡0

and 𝜒′𝑡 ≤
𝐶′𝑎

𝑡+1+𝑡0 . To see
this

𝜒𝑡

√
𝑡 + 1 + 𝑡0
𝐶𝑎

=
√
𝛾 +

𝐶𝜖1

𝐶𝑎
,

𝜒′𝑡
𝑡 + 1 + 𝑡0
𝐶′𝑎

=
√
𝛾 +

𝐶𝜓 + 𝐶𝜖2

𝐶′𝑎
+ Υ𝜏 (𝜏 + 𝑡0)

𝐶′𝑎

(
𝜏 + 𝑡0

𝑡 + 1 + 𝑡0

)𝜎′𝐻−1
.

It suffices to show that 𝐶𝜖1
𝐶𝑎
≤ 1 − √𝛾, 𝐶𝜓+𝐶𝜖2

𝐶′𝑎
≤ 1−√𝛾

2 , and Υ𝜏 (𝜏+𝑡0)
𝐶′𝑎

≤ 1−√𝛾
2 . Recall

that

𝐶𝑎 =
2𝐻𝜖
1 − 𝛾

√︄
2𝜏 log

(
2𝜏𝑚𝑇
𝛿

)
, 𝐶′𝑎 =

4
1 − 𝛾 max

(
𝐶𝜓 + 𝐶𝜖2 , 2𝑥(𝜏 + 𝑡0)

)
,

and

𝐶𝜖1 = 𝐻𝜖

√︄
2𝜏 log

(
2𝜏𝑚𝑇
𝛿

)
.

Using thatΥ𝜏 ≤ 2𝑥, one can check that𝐶𝑎 and𝐶′𝑎 satisfy the above three inequalities.
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Asymptotic Convergence of TD Learning with State Aggregation
Our asymptotic convergence result for TD learning with state aggregation builds
upon the asymptotic convergence result for TD learning with linear function approx-
imation shown in Tsitsiklis and Van Roy, 1997. For completeness, we first present
the main result of Tsitsiklis and Van Roy, 1997 in Theorem 6.B.9. In order to do
this, we must first state a few definitions and assumptions made in Tsitsiklis and Van
Roy, 1997.

We use 𝜙(𝑖) ∈ R𝑚 to denote the feature vector associated with state 𝑖 ∈ N . Feature
matrix Φ is a 𝑛-by-𝑚 matrix whose 𝑖’th row is 𝜙(𝑖)⊤. Starting from 𝜃 (0) = 0, the
𝑇𝐷 (𝜆) algorithm keeps updating 𝜃, 𝜓 by the following update rule,

𝜃 (𝑡 + 1) = 𝜃 (𝑡) + 𝛼𝑡𝑑𝑡𝜓𝑡 ,
𝜓𝑡+1 = 𝛾𝜆𝜓𝑡 + 𝜙(𝑖𝑡+1),

where 𝜓𝑡 is named eligible vector in Tsitsiklis and Van Roy, 1997 and satisfies
𝜓0 = 𝜙(𝑖0).

Recall that 𝐷 = 𝑑𝑖𝑎𝑔(𝑑1, 𝑑2, · · · , 𝑑𝑛) denotes the stationary distribution of Markov
chain {𝑖𝑡}. For vectors 𝑥, 𝑦 ∈ R𝑛, we define inner product ⟨𝑥, 𝑦⟩ = 𝑥⊤𝐷𝑦. The
induced norm of this inner product is ∥·∥𝐷 =

√︁
⟨·, ·⟩𝐷 . Let 𝐿2(N , 𝐷) denote the set

of vectors 𝑉 ∈ R𝑛 such that ∥𝑉 ∥𝐷 is finite.

Recall that we define Π = (Φ⊤𝐷Φ)−1Φ⊤𝐷. As shown in Tsitsiklis and Van
Roy, 1997, the projection matrix that projects an arbitrary vector in R𝑛 to the set
{Φ𝜃 | 𝜃 ∈ R𝑚} is given by ΦΠ, i.e. for any 𝑉 ∈ 𝐿2(N , 𝐷), we have

ΦΠ𝑉 = arg min
𝑉̄∈{Φ𝜃 |𝜃∈R𝑚}



𝑉 − 𝑉̄


𝐷
.

Notice that our definition of matrix Π is slightly different with Tsitsiklis and Van
Roy, 1997 because we want to be consistent with Section 6.3.

To characterize the TD(𝜆) algorithm’s dynamics, Tsitsiklis and Van Roy, 1997
defines 𝑇 (𝜆) : 𝐿2(N , 𝐷) → 𝐿2(N , 𝐷) operator as following: for all 𝑉 ∈ R𝑛, let the
𝑖’th dimension of

(
𝑇 (𝜆)𝑉

)
be defined as

(
𝑇 (𝜆)𝑉

)
𝑖
=


(1 − 𝜆)∑∞𝑚=0 𝜆

𝑚E
[∑𝑚

𝑡=0 𝛾
𝑡𝑟 (𝑖𝑡 , 𝑖𝑡+1) + 𝛾𝑚+1𝑉𝑖𝑚+1 | 𝑖0 = 𝑖

]
if 𝜆 < 1

E
[∑∞

𝑡=0 𝛾
𝑡𝑟 (𝑖𝑡 , 𝑖𝑡+1) | 𝑖0 = 𝑖

]
if 𝜆 = 1.

If𝑉 is an approximation of the value function𝑉∗, 𝑇 (𝜆) can be viewed as an improved
approximation to 𝑉∗. Notice that when 𝜆 = 0, 𝑇 (𝜆) is identical with the Bellman
operator.
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Formally, Tsitsiklis and Van Roy, 1997 made four necessary assumptions for their
main result (Theorem 6.B.9). We omit the third assumption (Tsitsiklis and Van Roy,
1997[Assumption 3]) in our summary because it must hold when the state spaceN
is finite.

The first assumption (Tsitsiklis and Van Roy, 1997[Assumption 1]) concerns the
stationary distribution and the reward function of the Markov chain {𝑖𝑡}. It must
hold when Assumption 6.3.2 holds and every stage reward 𝑟𝑡 is upper bounded by
𝑟, as assumed by Theorem 6.3.3.

Assumption 6.B.1. The transition probability and cost function satisfies the follow-
ing two conditions:

1. The Markov chain {𝑖𝑡} is irreducible and aperiodic. Furthermore, there is a
unique distribution 𝑑 that satisfies 𝑑⊤𝑃 = 𝑑⊤ with 𝑑𝑖 > 0 for all 𝑖 ∈ N . Let
E0 stand for expectation with respect to this distribution.

2. The reward function 𝑟 (𝑖𝑡 , 𝑖𝑡+1) satisfies E0
[
𝑟2(𝑖𝑡 , 𝑖𝑡+1)

]
< ∞.

The second assumption (Tsitsiklis and Van Roy, 1997[Assumption 2]) concerns the
feature vectors and the feature matrix. It must hold when Φ is defined as (6.5).

Assumption 6.B.2. The following two conditions hold for Φ:

1. The matrix Φ has full column rank; that is, the 𝑚 columns (named basis
functions in Tsitsiklis and Van Roy, 1997) {𝜙𝑘 | 𝑘 = 1, · · · , 𝑚} are linearly
independent.

2. For every 𝑘 , the basis function 𝜙𝑘 satisfies E0
[
𝜙2
𝑘
(𝑖𝑡)

]
< ∞.

The third assumption (Tsitsiklis and Van Roy, 1997[Assumption 4]) concerns the
learning step size. It must hold if the learning step sizes are as defined in Theorem
6.3.3.

Assumption 6.B.3. The step sizes𝛼𝑡 are positive, nonincreasing, and chosen prior to
execution of the algorithm. Furthermore, they satisfy

∑∞
𝑡=0 𝛼𝑡 = ∞ and

∑∞
𝑡=0 𝛼

2
𝑡 < ∞.

Now we are ready to present the main asymptotic convergence result given in
Tsitsiklis and Van Roy, 1997.
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Theorem 6.B.9. Under Assumptions 6.B.1, 6.B.2, 6.B.3, the following hold.

1. The value function 𝑉 is in 𝐿2(N , 𝐷).

2. For any 𝜆 ∈ [0, 1], the TD(𝜆) algorithm with linear function approximation
converges with probability one.

3. The limit of convergence 𝜃∗ is the unique solution of the equation

Π𝑇 (𝜆) (Φ𝜃∗) = 𝜃∗.

4. Furthermore, 𝜃∗ satisfies

∥Φ𝜃∗ −𝑉∗∥𝐷 ≤
1 − 𝜆𝛾
1 − 𝛾 ∥ΦΠ𝑉∗ −𝑉∗∥𝐷 . (6.50)

Notice that (6.50) is not exactly the result we want to obtain. Specifically, we want
the both sides of (6.50) to be in ∥·∥∞ instead of ∥·∥𝐷 . Although this kind of result
is not obtainable for general TD learning with linear function approximation, we
can leverage the special assumptions for state aggregation, which are summarized
below:

Assumption 6.B.4. ℎ : N → M is a surjective function from set N to M. The
feature matrix Φ is as defined in (6.5), i.e., the feature vector associated with state
𝑖 ∈ N is given by

𝜙𝑘 (𝑖) =


1 if 𝑘 = ℎ(𝑖)

0 otherwise
,∀𝑘 ∈ M .

Further, if ℎ(𝑖) = ℎ(𝑖′) for 𝑖, 𝑖′ ∈ N , we have |𝑉∗(𝑖) −𝑉∗(𝑖′) | ≤ 𝜁 for a fixed positive
constant 𝜁 .

Under Assumption 6.B.4, we can show the asymptotic error bound in the infinity
norm as we desired:

Theorem 6.B.10. Under Assumptions 6.B.1, 6.B.2, 6.B.3, if Assumption 6.B.4 also
holds, the limit of convergence 𝜃∗ of the 𝑇𝐷 (𝜆) algorithm satisfies

∥Φ𝜃∗ −𝑉∗∥∞ ≤
(1 − 𝜆𝛾)

1 − 𝛾 ∥ΦΠ𝑉∗ −𝑉∗∥∞ ≤
(1 − 𝜆𝛾)

1 − 𝛾 𝜁 .

To show Theorem 6.B.10, we need to prove several auxiliary lemmas first.
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Lemma 6.B.11. Under Assumption 6.B.1, for any𝑉 ∈ 𝐿2(N , 𝐷), we have ∥𝑃𝑉 ∥∞ ≤
∥𝑉 ∥∞.

Proof of Lemma 6.B.11. This lemma holds because the transition matrix 𝑃 is non-
expansive in infinity norm.

Lemma 6.B.12. Under Assumption 6.B.1, for any 𝑉, 𝑉̄ ∈ 𝐿2(N , 𝐷), we have


𝑇 (𝜆)𝑉 − 𝑇 (𝜆)𝑉̄



∞
≤ 𝛾(1 − 𝜆)

1 − 𝛾𝜆


𝑉 − 𝑉̄



∞.

Proof of Lemma 6.B.12. By the definition of 𝑇 (𝜆) , we have that


𝑇 (𝜆)𝑉 − 𝑇 (𝜆)𝑉̄



∞
=






(1 − 𝜆) ∞∑︁
𝑚=0

𝜆𝑚 (𝛾𝑃)𝑚+1
(
𝑉 − 𝑉̄

)





∞

≤ (1 − 𝜆)
∞∑︁
𝑚=0

𝜆𝑚𝛾𝑚+1


𝑉 − 𝑉̄



∞ (6.51a)

𝛾(1 − 𝜆)
1 − 𝛾𝜆



𝑉 − 𝑉̄


∞,

where inequality (6.51a) holds because


𝑉 − 𝑉̄



∞ < ∞ so we use Lemma 6.B.11.

Lemma 6.B.13. Under Assumption 6.B.1 and 6.B.4, we have

∥ΦΠ𝑉∗ −𝑉∗∥∞ ≤ 𝜁 (6.52)

and for any 𝑉 ∈ 𝐿2(N , 𝐷)
∥ΦΠ𝑉 ∥∞ ≤ ∥𝑉 ∥∞. (6.53)

Proof of Lemma 6.B.13. For 𝑗 ∈ M, we use ℎ−1( 𝑗) ⊆ N to denote all the elements
in N whose feature is 𝑒 𝑗 , i.e., ℎ−1( 𝑗) = {𝑖 | 𝑖 ∈ N , ℎ(𝑖) = 𝑗}. Since ℎ is surjection,
ℎ−1( 𝑗) ≠ ∅,∀ 𝑗 ∈ M . Since ΦΠ is the projection matrix that projects a vector in R𝑛

to the set {Φ𝜃 | 𝜃 ∈ R𝑚}, we have

Π𝑉 = arg min
𝜃∈R𝑚

∑︁
𝑗∈M

∑︁
𝑖∈ℎ−1 ( 𝑗)

𝑑𝑖
(
𝑉𝑖 − 𝜃 𝑗

)
.

Hence the optimal 𝜃 𝑗 must be in the range
[
min𝑖∈ℎ−1 ( 𝑗) 𝑉𝑖,max𝑖∈ℎ−1 ( 𝑗) 𝑉𝑖

]
. Therefore,

we see that
| (ΦΠ𝑉)𝑖 | =

��(Π𝑉)ℎ(𝑖) �� ≤ max
𝑖′∈ℎ−1 (ℎ(𝑖))

|𝑉𝑖′ |,
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which shows (6.53). Besides, we also have

| (ΦΠ𝑉)𝑖 −𝑉𝑖 | ≤ max
(���� min
𝑖′∈ℎ−1 (ℎ(𝑖))

𝑉𝑖′ −𝑉𝑖
����, ���� max
𝑖′∈ℎ−1 (ℎ(𝑖))

𝑉𝑖′ −𝑉𝑖
����) . (6.54)

holds for all 𝑧 ∈ Z. Let𝑉 = 𝑉∗ and use Assumption 6.B.4 in (6.54) gives (6.52).

Now we come back to the proof of Theorem 6.B.10.

Notice that

∥Φ𝜃∗ −𝑉∗∥∞ ≤ ∥Φ𝜃∗ −ΦΠ𝑉∗∥∞ + ∥ΦΠ𝑉∗ −𝑉∗∥∞ (6.55a)

=




ΦΠ𝑇 (𝜆) (Φ𝜃∗) −ΦΠ𝑉∗




∞
+ ∥ΦΠ𝑉∗ −𝑉∗∥∞ (6.55b)

≤



𝑇 (𝜆) (Φ𝜃∗) −𝑉∗




∞
+ ∥ΦΠ𝑉∗ −𝑉∗∥∞ (6.55c)

≤ 𝛾(1 − 𝜆)
1 − 𝛾𝜆 ∥Φ𝜃

∗ −𝑉∗∥∞ + ∥ΦΠ𝑉∗ −𝑉∗∥∞, (6.55d)

where we use the triangle inequality in (6.55a); Theorem 6.B.9 in (6.55b); Lemma
6.B.13 in (6.55c); Lemma 6.B.12 in (6.55d).

Therefore, we obtain that

∥Φ𝜃∗ −𝑉∗∥∞ ≤
(1 − 𝜆𝛾)

1 − 𝛾 ∥Π𝑉
∗ −𝑉∗∥∞ ≤

(1 − 𝜆𝛾)
1 − 𝛾 𝜁,

where we use Lemma 6.B.13 in the second inequality.

Proof of Theorem 6.3.3
Before presenting the proof of Theorem 6.3.3, we first show two upper bounds that
are needed in the assumptions of Theorem 6.3.2.

Proposition 6.B.3. Under the same assumptions as Theorem 6.3.3, we have ∥𝜃 (𝑡)∥∞ ≤
𝜃 := 𝑟

1−𝛾 holds for all 𝑡 almost surely and ∥𝜃∗∥∞ ≤ 𝜃. |𝑤(𝑡) | ≤ 𝑤̄ := 2𝑟
1−𝛾 also holds

for all 𝑡 almost surely.

Proof of Proposition 6.B.3. We show ∥𝜃 (𝑡)∥∞ ≤ 𝑟
1−𝛾 by induction on 𝑡. The state-

ment holds for 𝑡 = 0 because we initialize 𝜃 (0) = 0. Suppose the statement holds
for 𝑡. By the induction assumption, we see that

𝜃ℎ(𝑖𝑡 ) (𝑡 + 1) = (1 − 𝛼𝑡)𝜃ℎ(𝑖𝑡 ) (𝑡) + 𝛼𝑡
[
𝑟𝑡 + 𝛾𝜃ℎ(𝑖𝑡+1) (𝑡)

]
≤ (1 − 𝛼𝑡)∥𝜃 (𝑡)∥∞ + 𝛼𝑡 [𝑟𝑡 + 𝛾∥𝜃 (𝑡)∥∞]

≤ (1 − 𝛼𝑡)
𝑟

1 − 𝛾 + 𝛼𝑡
[
𝑟𝑡 + 𝛾 ·

𝑟

1 − 𝛾

]
≤ 𝑟

1 − 𝛾 .
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For 𝑗 ≠ ℎ(𝑖𝑡), 𝑗 ∈ M, we have that

𝜃 𝑗 (𝑡 + 1) = 𝜃 𝑗 (𝑡) ≤ ∥𝜃 (𝑡)∥∞ ≤
𝑟

1 − 𝛾 .

Hence the statement also holds for 𝑡 + 1. Therefore, we have showed ∥𝜃 (𝑡)∥∞ ≤ 𝑟
1−𝛾

by induction.

By Theorem 6.B.9, we know 𝜃∗ = lim𝑡→∞ 𝜃 (𝑡). Since we have already shown that
∥𝜃 (𝑡)∥∞ ≤ 𝑟

1−𝛾 holds for all 𝑡, we must have ∥𝜃∗∥∞ ≤ 𝑟
1−𝛾 .

Using ∥𝜃 (𝑡)∥∞ ≤ 𝑟
1−𝛾 , we see that

|𝑤(𝑡) | ≤ |𝑟𝑡 | + 𝛾
��𝜃ℎ(𝑖𝑡+1) (𝑡)�� − ��E𝑖′∼P(·|𝑖𝑡 ) [𝑟 (𝑖𝑡 , 𝑖′) + 𝛾𝜃ℎ(𝑖′) (𝑡)] ��

≤ 2𝑟 + 2𝛾𝜃

=
2𝑟

1 − 𝛾 .

Now we come back to the proof of Theorem 6.3.3. Recall that we define 𝐹 as the
Bellman Policy Operator and the noise sequence 𝑤(𝑡) as

𝑤(𝑡) = 𝑟𝑡 + 𝛾𝜃ℎ(𝑖𝑡+1) (𝑡) − E𝑖′∼P(·|𝑖𝑡 )
[
𝑟 (𝑖𝑡 , 𝑖′) + 𝛾𝜃ℎ(𝑖′) (𝑡)

]
.

Let 𝜃∗ be the unique solution of the equation

Π𝐹 (Φ𝜃∗) = 𝜃∗.

By the triangle inequality, we have that

∥Φ · 𝜃 (𝑇) −𝑉∗∥∞ ≤ ∥Φ · 𝜃 (𝑇) −Φ · 𝜃∗∥∞ + ∥Φ · 𝜃∗ −𝑉∗∥∞
≤ ∥𝜃 (𝑇) − 𝜃∗∥∞ + ∥Φ · 𝜃∗ −𝑉∗∥∞. (6.56)

We first bound the first term of (6.56) by Theorem 6.3.2. To do this, we first rewrite
the update rule of TD learning with state aggregation (6.7) in the form of the SA
update rule (6.4):

𝜃ℎ(𝑖𝑡 ) (𝑡 + 1) = 𝜃ℎ(𝑖𝑡 ) (𝑡) + 𝛼𝑡
(
𝐹𝑖𝑡 (Φ𝜃 (𝑡)) − 𝜃ℎ(𝑖𝑡 ) (𝑡) + 𝑤(𝑡)

)
,

𝜃 𝑗 (𝑡 + 1) = 𝜃 𝑗 (𝑡) for 𝑗 ≠ ℎ(𝑖𝑡), 𝑗 ∈ M .

Now we verify all the assumptions of Theorem 6.3.2. Assumption 6.3.2 is assumed
to be satisfied in the body of Theorem 6.3.3. As for Assumption 6.3.3, 𝐹 is 𝛾-
contraction in the infinity norm because it is the Bellman operator, and we can set



333

𝐶 = 2𝑟
1−𝛾 so that 𝐶 ≥ (1 + 𝛾)∥𝑦∗∥∞ (see the discussion below Assumption 6.3.3).

As for Assumption 6.3.4, by the definition of noise sequence 𝑤(𝑡), we see that

E [𝑤(𝑡) | F𝑡] = E
[
𝑟𝑡 + 𝛾𝜃ℎ(𝑖𝑡+1) (𝑡) − E𝑖′∼P(·|𝑖𝑡 )

[
𝑟 (𝑖𝑡 , 𝑖′) + 𝛾𝜃ℎ(𝑖′) (𝑡)

]
| F𝑡

]
= E

[
𝑟𝑡 + 𝛾𝜃ℎ(𝑖𝑡+1) (𝑡) | F𝑡

]
− E𝑖′∼P(·|𝑖𝑡 )

[
𝑟 (𝑖𝑡 , 𝑖′) + 𝛾𝜃ℎ(𝑖′) (𝑡)

]
= 0.

In addition, we can set 𝑤̄ = 2𝑟
1−𝛾 according to Proposition 6.B.3. Finally, we can set

𝜃 = 𝑟
1−𝛾 according to Proposition 6.B.3.

Therefore, by Theorem 6.3.2, we see that

∥𝜃 (𝑇) − 𝜃∗∥∞ ≤
𝐶𝑎√
𝑇 + 𝑡0

+
𝐶′𝑎
𝑇 + 𝑡0

, where (6.57)

𝐶𝑎 =
40𝐻𝑟
(1 − 𝛾)2

√︁
𝐾2 log𝑇 ·

√︄
log𝑇 + log log𝑇 + log

(
4𝑚𝐾2
𝛿

)
,

𝐶′𝑎 =
8𝑟

(1 − 𝛾)2
max

(
144𝐾2𝐻 log𝑇

𝜎′
+ 4𝐾1(1 + 2𝐾2 + 4𝐻), 2𝐾2 log𝑇 + 𝑡0

)
.

As for the second term of (6.56), by Theorem 6.B.10, we have that

∥Φ · 𝜃∗ −𝑉∗∥∞ ≤
𝜁

1 − 𝛾 . (6.58)

Substituting (6.57) and (6.58) into (6.56) finishes the proof.

Application of the SA Scheme to Q-learning with State and Action Aggregation
We study 𝑄-learning with state and action aggregation in a setting that is a gener-
alization of the tabular setting studied in Qu and Wierman, 2020. Specifically, we
consider an MDP 𝑀 with a finite state space S and finite action space A. Suppose
the transition probability is given by P(𝑠𝑡+1 = 𝑠′ | 𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎) = P(𝑠′ | 𝑠, 𝑎), and
the stage reward at time step 𝑡 is a random variable 𝑟𝑡 with its expectation given by
𝑅𝑠𝑡 ,𝑎𝑡 . Under a stochastic policy 𝜋, the𝑄 function (vector)𝑄𝜋 ∈ RS×A is defined as

𝑄𝜋
𝑠,𝑎 = E𝜋

[ ∞∑︁
𝑡=0

𝛾𝑡𝑟𝑡

���(𝑠0, 𝑎0) = (𝑠, 𝑎)
]
,

where 0 ≤ 𝛾 < 1 is the discounting factor. We use 𝑄∗ to denote the 𝑄 function
corresponding to the optimal policy 𝜋∗.
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Similar to Qu and Wierman, 2020, we assume the trajectory {(𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡)}∞𝑡=0 is
sampled by implementing a fixed behavioral stochastic policy 𝜋. In𝑄-learning with
state and action aggregation, the state abstraction 𝜓1 operates on the state space S
and the action abstraction 𝜓2 operates on action spaceA. For simplicity of notation,
we define the abstraction space asM = 𝜓1(S) ×𝜓2(A) and the abstraction operator
ℎ : S × A →M as ℎ(𝑠, 𝑎) = (𝜓1(𝑠), 𝜓2(𝑎)). The update rule for 𝑄-learning with
state and action aggregation is then given by

𝜃ℎ(𝑠𝑡 ,𝑎𝑡 ) (𝑡 + 1) = (1 − 𝛼𝑡)𝜃ℎ(𝑠𝑡 ,𝑎𝑡 ) (𝑡) + 𝛼𝑡
[
𝑟𝑡 + 𝛾max

𝑎∈A
𝜃ℎ(𝑠𝑡+1,𝑎) (𝑡)

]
,

𝜃 𝑗 (𝑡 + 1) = 𝜃 𝑗 (𝑡) for 𝑗 ≠ ℎ(𝑠𝑡 , 𝑎𝑡).
(6.59)

As a remark, some previous work considers abstraction on the state space S but
does not compress the action space (see Jiang, 2018). In contrast, our setting also
compresses the action space, and when 𝜓2 is the identity map, our setting reduces
to the case with only state aggregation.

We define function 𝐹 as the Bellman Optimality Operator, i.e.,

𝐹𝑠,𝑎 (𝑄) = 𝑅𝑠,𝑎 + 𝛾E𝑠′∼P(·|𝑠,𝑎) max
𝑎′∈A

𝑄𝑠′,𝑎′ .

It is shown in Bertsekas and Tsitsiklis, 1996 that 𝑄∗ is the unique fixed point of
function 𝐹. By viewing S ×A asN , we can define matrix Φ ∈ N ×M as in (6.5).
We can rewrite the update rule (6.59) as

𝜃ℎ(𝑠𝑡 ,𝑎𝑡 ) (𝑡 + 1) = 𝜃ℎ(𝑠𝑡 ,𝑎𝑡 ) (𝑡) + 𝛼𝑡
[
𝐹𝑠𝑡 ,𝑎𝑡 (Φ𝜃 (𝑡)) − 𝜃ℎ(𝑠𝑡 ,𝑎𝑡 ) (𝑡) + 𝑤(𝑡)

]
,

𝜃 𝑗 (𝑡 + 1) = 𝜃 𝑗 (𝑡) for 𝑗 ≠ ℎ(𝑠𝑡 , 𝑎𝑡),

where

𝑤(𝑡) = 𝑟𝑡 + 𝛾max
𝑎∈A

𝜃ℎ(𝑠𝑡+1,𝑎) (𝑡) − 𝐹𝑠𝑡 ,𝑎𝑡 (Φ𝜃 (𝑡))

= (𝑟𝑡 − 𝑅𝑠𝑡 ,𝑎𝑡 ) + 𝛾
[
max
𝑎∈A

𝜃ℎ(𝑠𝑡+1,𝑎) (𝑡) − E𝑠′∼P(·|𝑠𝑡 ,𝑎𝑡 ) max
𝑎′∈A

𝜃ℎ(𝑠′,𝑎′) (𝑡)
]
.

Hence we have E[𝑤(𝑡) | F𝑡] = 0. In order to apply Theorem 6.3.2, we need the
following assumption on the induced Markov chain of stochastic policy 𝜋 which is
standard, cf. Qu and Wierman, 2020.

Assumption 6.B.5. The following conditions hold:

1. For each time step 𝑡, the stage reward 𝑟𝑡 satisfies |𝑟𝑡 | ≤ 𝑟 almost surely.



335

2. Under the behavioral policy 𝜋, the induced Markov chain (𝑠𝑡 , 𝑎𝑡) with state
space S × A satisfies Assumption 6.3.2 with stationary distribution 𝑑 and
parameters 𝜎′, 𝐾1, 𝐾2.

The next assumption is approximate 𝑄∗-irrelevant abstraction, which measures the
quality of the abstraction map and is standard in the literature (see Jiang, 2018).

Assumption 6.B.6. There exists an abstract 𝑄 function 𝑞 : M → R such that
∥Φ𝑞 −𝑄∗∥∞ ≤ 𝜖𝑄∗ .

We can now state our theorem for 𝑄-learning with state aggregation.

Theorem 6.B.14. Under Assumption 6.B.5 and 6.B.6, suppose the step size of 𝑄-
learning with state aggregation is given by𝛼𝑡 = 𝐻

𝑡+𝑡0 , where 𝑡0 = max(4𝐻, 2𝐾2 log𝑇)
and 𝐻 ≥ 2

𝜎′ (1−𝛾) . Then, with probability at least 1 − 𝛿,

∥Φ · 𝜃 (𝑇) −𝑄∗∥∞ ≤
𝐶𝑎√
𝑇 + 𝑡0

+ 𝐶′𝑎
𝑇 + 𝑡0

+
2𝜖𝑄∗
1 − 𝛾 , where

𝐶𝑎 =
40𝐻𝑟
(1 − 𝛾)2

√︁
𝐾2 log𝑇 ·

√︄
log𝑇 + log log𝑇 + log

(
4𝑚𝐾2
𝛿

)
,

𝐶′𝑎 =
8𝑟

(1 − 𝛾)2
max

(
144𝐾2𝐻 log𝑇

𝜎′
+ 4𝐾1(1 + 2𝐾2 + 4𝐻), 2𝐾2 log𝑇 + 𝑡0

)
.

Proof of Theorem 6.B.14. Define 𝜃∗ as the unique solution of equation 𝜃 = Π𝐹 (Φ𝜃),
where the definition of Π is given in (6.6). Under Assumption 6.B.5, we see that
∥𝜃∗∥∞ ≤ 𝑟

1−𝛾 : otherwise, by assuming that
��𝜃∗
𝑖

�� = ∥𝜃∗∥∞ > 𝑟
1−𝛾 , we can derive

a contradiction that ∥Π𝐹 (Φ𝜃∗)∥∞ <
��𝜃∗
𝑖

��. To see this, recall that linear opera-
tors Π and Φ are non-expansions in the infinity norm (see Proposition 6.B.2), and
∥𝐹 (𝑣)∥∞ < ∥𝑣∥∞ for a vector 𝑣 ∈ RN if ∥𝑣∥∞ > 𝑟

1−𝛾 .

Further, using a similar approach with the proof of Proposition 6.B.3, we also see
that

∥𝜃 (𝑡)∥∞ ≤ 𝜃 :=
𝑟

1 − 𝛾 , |𝑤(𝑡) | ≤ 𝑤̄
:=

2𝑟
1 − 𝛾

hold for all 𝑡 almost surely.

Therefore, by Theorem 6.3.2, we obtain that

∥𝜃 (𝑇) − 𝜃∗∥∞ ≤
𝐶𝑎√
𝑇 + 𝑡0

+
𝐶′𝑎
𝑇 + 𝑡0

. (6.60)
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To finish the proof of Theorem 6.B.14, we only need to show that

∥Φ𝜃∗ −𝑄∗∥ ≤
2𝜖𝑄∗
1 − 𝛾 . (6.61)

Given the behavioral policy 𝜋, we use {𝑑𝑠,𝑎 | (𝑠, 𝑎) ∈ S×A} to denote the stationary
distribution under policy 𝜋. Recall that we defineM = 𝜓1(S) × 𝜓2(A). For each
abstract state-action pair (𝑥, 𝑦) ∈ M, we define a distribution 𝑝 (𝑥,𝑦) over ℎ−1(𝑥, 𝑦)
such that

𝑝 (𝑥,𝑦) (𝑠, 𝑎) =
𝑑𝑠,𝑎∑

(𝑠,𝑎̃)∈ℎ−1 (𝑥,𝑦) 𝑑𝑠,𝑎̃
,∀(𝑠, 𝑎) ∈ ℎ−1(𝑥, 𝑦).

Using the set of distributions {𝑝 (𝑥,𝑦) | (𝑥, 𝑦) ∈ M}, we define two new MDPs:

𝑀𝜓 =
(
𝜓1(S), 𝜓2(A), 𝑃𝜓 , 𝑅𝜓 , 𝛾

)
, (6.62)

where (𝑅𝜓)𝑥,𝑦 = E(𝑠,𝑎)∼𝑝 (𝑥,𝑦) [𝑅𝑠,𝑎], and 𝑃𝜓 (𝑥′ | 𝑥, 𝑦) = E(𝑠,𝑎)∼𝑝 (𝑥,𝑦) [𝑃(𝑥′ | 𝑠, 𝑎)];
and

𝑀′𝜓 = (S,A, 𝑃′𝜓 , 𝑅′𝜓 , 𝛾), (6.63)

where (𝑅′
𝜓
)𝑠,𝑎 = E(𝑠,𝑎̃)∼𝑝ℎ (𝑠,𝑎) [𝑅𝑠,𝑎̃], 𝑃′𝜓 (𝑠′ | 𝑠, 𝑎) = E(𝑠,𝑎̃)∼𝑝ℎ (𝑠,𝑎) [𝑃(𝑠′ | 𝑠, 𝑎̃)] .

We use Γ to denote the Bellman Optimality Operator. For simplicity, we use the
subscript to distinguish the value functions (𝑉∗), the state-action value functions
(𝑄∗), and the Bellman Optimality Operators (Γ) of the three MDPs 𝑀, 𝑀𝜓 and 𝑀′

𝜓
.

Notice that Γ𝑀 is identical with 𝐹.

We can show that 𝜃∗ is identical with the state-action value function of 𝑀𝜓 , i.e.,

𝜃∗ = 𝑄∗𝑀𝜓
. (6.64)

To see this, we notice that (Φ𝜃∗)𝑠,𝑎 = 𝜃∗ℎ(𝑠,𝑎) . Hence we get that

𝐹 (Φ𝜃∗)𝑠,𝑎 = [Γ𝑀Φ𝜃∗]𝑠,𝑎

= 𝑅𝑠,𝑎 + E𝑠′∼𝑃(𝑠,𝑎)
[
max
𝑎
(Φ𝜃∗)𝑠′,𝑎

]
= 𝑅𝑠,𝑎 + E𝑠′∼𝑃(𝑠,𝑎)

[
max
𝑎
𝜃∗
ℎ(𝑠′,𝑎)

]
.

Using this, we further obtain that

(Π𝐹 (Φ𝜃∗))𝑥,𝑦 =
∑︁

(𝑠,𝑎)∈ℎ−1 (𝑥,𝑦)

𝑑𝑠,𝑎∑
(𝑠,𝑎̃)∈ℎ−1 (𝑥,𝑦) 𝑑𝑠,𝑎̃

(
𝑅𝑠,𝑎 + E𝑠′∼𝑃(𝑠,𝑎)

[
max
𝑎
𝜃∗
ℎ(𝑠′,𝑎)

] )
=

∑︁
(𝑠,𝑎)∈ℎ−1 (𝑥,𝑦)

𝑝 (𝑥,𝑦) (𝑠, 𝑎)
(
𝑅𝑠,𝑎 + E𝑠′∼𝑃(𝑠,𝑎)

[
max
𝑎
𝜃∗
ℎ(𝑠′,𝑎)

] )
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= (𝑅𝜓)𝑥,𝑦 +
∑︁

(𝑠,𝑎)∈ℎ−1 (𝑥,𝑦)
𝑝 (𝑥,𝑦) (𝑠, 𝑎)

∑︁
𝑥′∈𝜓1 (S)

𝑃(𝑥′ | 𝑠, 𝑎)max
𝑎
𝜃∗
𝑥′,𝜓2 (𝑎)

= (𝑅𝜓)𝑥,𝑦 +
∑︁

𝑥′∈𝜓1 (S)
𝑃𝜓 (𝑥′ | 𝑥, 𝑦)max

𝑦′
𝜃∗𝑥′,𝑦′

= [Γ𝑀𝜓
𝜃∗]𝑥,𝑦 .

Since we have Π𝐹 (Φ𝜃∗) = 𝜃∗ by definition, we see that

[Γ𝑀𝜓
𝜃∗]𝑥,𝑦 = 𝜃∗𝑥,𝑦,∀(𝑥, 𝑦) ∈ M .

Thus we have shown that 𝜃∗ = 𝑄∗
𝑀𝜓

.

Next, we observe that the state-value function of MDP 𝑀′
𝜓

is given by

𝑄∗𝑀 ′
𝜓
= Φ𝑄∗𝑀𝜓

. (6.65)

This is because(
Γ𝑀 ′

𝜓
(Φ𝑄∗𝑀𝜓

)
)
𝑠,𝑎

= (𝑅′𝜓)𝑠,𝑎 + 𝛾
∑︁
𝑠′∈S

𝑃′𝜓 (𝑠′ | 𝑠, 𝑎)max
𝑎′
(Φ𝑄∗𝑀𝜓

)𝑠′,𝑎′

= (𝑅′𝜓)𝑠,𝑎 + 𝛾⟨𝑃′𝜓 (𝑠, 𝑎),Φ𝑉∗𝑀𝜓
⟩

=
∑︁

(𝑠,𝑎̃)∈ℎ−1 (ℎ(𝑠,𝑎))
𝑝ℎ(𝑠,𝑎) (𝑠, 𝑎̃)

(
𝑅𝑠,𝑎̃ + 𝛾⟨𝑃(𝑠, 𝑎̃),Φ𝑉∗𝑀𝜓

⟩
)

(6.66a)

=
∑︁

(𝑠,𝑎̃)∈ℎ−1 (ℎ(𝑠,𝑎))
𝑝ℎ(𝑠,𝑎) (𝑠, 𝑎̃)𝑅𝑠,𝑎̃

+
∑︁

(𝑠,𝑎̃)∈ℎ−1 (ℎ(𝑠,𝑎))
𝑝ℎ(𝑠,𝑎) (𝑠, 𝑎̃)𝛾⟨𝑃(𝑠, 𝑎̃),Φ𝑉∗𝑀𝜓

⟩

= (𝑅𝜓)ℎ(𝑠,𝑎) + 𝛾⟨𝑃𝜓 (ℎ(𝑠, 𝑎)), 𝑉∗𝑀𝜓
⟩ (6.66b)

= (𝑄∗𝑀𝜓
)ℎ(𝑠,𝑎)

= (Φ𝑄∗𝑀𝜓
)𝑠,𝑎,

where we use the definition of 𝑀′
𝜓

(see (6.63)) in (6.66a); we use the definition of
𝑀𝜓 (see (6.62)) in (6.66b).

By (6.65), we see that


Φ𝑄∗𝑀𝜓
−𝑄∗𝑀





∞
=




𝑄∗𝑀 ′
𝜓
−𝑄∗𝑀





∞
≤ 1

1 − 𝛾




Γ𝑀 ′
𝜓
𝑄∗𝑀 −𝑄∗𝑀





∞
. (6.67)

We further notice that���(Γ∗𝑀𝜓
𝑄∗𝑀)𝑠,𝑎 − (𝑄∗𝑀)𝑠,𝑎

���
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=

���(𝑅′𝜓)𝑠,𝑎 + 𝛾⟨𝑃𝜓 (𝑠, 𝑎), 𝑉∗𝑀⟩ − (𝑄∗𝑀)𝑠,𝑎���
=

������©­«
∑︁

(𝑠,𝑎̃)∈ℎ−1 (ℎ(𝑠,𝑎))
𝑝ℎ(𝑠,𝑎) (𝑠, 𝑎̃) (𝑅𝑠,𝑎̃ + 𝛾⟨𝑃(𝑠, 𝑎̃), 𝑉∗𝑀⟩)

ª®¬ − (𝑄∗𝑀)𝑠,𝑎
������ (6.68a)

=

������ ∑︁
(𝑠,𝑎̃)∈ℎ−1 (ℎ(𝑠,𝑎))

𝑝ℎ(𝑠,𝑎) (𝑠, 𝑎̃)
(
(𝑄∗𝑀)𝑠,𝑎̃ − (𝑄∗𝑀)𝑠,𝑎

) ������
≤

∑︁
(𝑠,𝑎̃)∈ℎ−1 (ℎ(𝑠,𝑎))

𝑝ℎ(𝑠,𝑎) (𝑠, 𝑎̃)
��(𝑄∗𝑀)𝑠,𝑎̃ − (𝑄∗𝑀)𝑠,𝑎��

≤
∑︁

(𝑠,𝑎̃)∈ℎ−1 (ℎ(𝑠,𝑎))
𝑝ℎ(𝑠,𝑎) (𝑠, 𝑎̃) (2𝜖𝑄∗) (6.68b)

= 2𝜖𝑄∗ ,

where we use the definition of 𝑀𝜓 in (6.68a); we use Assumption 6.B.6 in (6.68b).

Substituting (6.68) into (6.67) gives that


Φ𝑄∗𝑀𝜓
−𝑄∗𝑀





∞
≤

2𝜖𝑄∗
1 − 𝛾 . (6.69)

Combining (6.64) and (6.69) finishes the proof.
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C h a p t e r 7

CONCLUSIONS AND FUTURE DIRECTIONS

To leverage the groundbreaking advances on ML-based predictors in real-world
online decision making tasks, it is critical to build a strong theoretical foundation
for understanding why the predictions help and how to use them optimally. The goal
of this thesis is to provide analytical frameworks for characterizing the benefit of
using predictions in control under general prediction/dynamical models and propose
efficient/scalable policy optimization algorithms with provable guarantees.

The first part of this thesis investigates the benefits of leveraging predictions in
online decision making under two predictive modeling paradigms: the adversar-
ial model and the stochastic model. Under the adversarial model, we focus on
MPC-style approaches and quantify the improvements in worst-case performance
metrics—such as dynamic regret and competitive ratio—relative to settings without
predictions. In contrast, under the stochastic model, we analyze the structure of
the optimal predictive control policy and establish sufficient conditions under which
the prediction power admits meaningful lower bounds. These results collectively
provide a theoretical foundation for understanding when and how predictions can
improve decision-making performance across a range of problem settings.

The second part of this thesis focuses on policy optimization for general policy
classes in both online settings and multi-agent networked systems—encompassing
the problem of finding or tracking the optimal predictive policy as a special case. In
the online setting, we consider a single-trajectory framework, where key challenges
stem from time-varying environments and limited feedback. In contrast, our study
of policy optimization in networked systems adopts an episodic setting, where
scalability arises as the primary concern in large-scale cooperation. Together,
these contributions address core practical challenges in learning effective decision
policies, thereby enabling users to better realize the potential benefits of prediction
in online decision making.

7.1 Summary of Chapters
In Chapter 3, we present a proof framework for MPC-style predictive control based
on the perturbation analysis under an adversarial prediction model. If one can
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establish a exponentially decaying perturbation bound for the underlying optimal
control problem, the framework helps derive finite-time performance guarantees for
the MPC policy. Our results highlight the insight that, while it becomes harder to
predict system parameters (e.g., disturbances) further into the future, the parameters
also become less important for approximating the current optimal decision in a
wide class of settings. We further extend the perturbation-based proof framework
to online convex optimization in networked systems, and we demonstrate how to
use the theoretical insight for algorithm design in the application of adaptive bitrate
streaming.

Chapter 4 studies the prediction power under a stochastic prediction model. The
goal is to characterize the benefit of leveraging “weak” predictions, whose potential
be overlooked by the adversarial prediction model in Chapter 3. In a general setting,
we provide sufficient conditions under which we can derive a meaningful lower
bound of the prediction power. We demonstrate the effectiveness of this general
lower bound by instantiating it in more specific online control problem such as LQR.
For prediction power evaluation, we provide examples to show that using standard
accuracy metrics like the mean-squared error is not enough, because one should
also consider the specific online control problem.

Chapter 5 considers online policy optimization on a single trajectory. The theoretical
foundation of our results is the contractive perturbation property, which enables us to
evaluate the current policy without the need to re-simulate what would happen if we
keep using the same policy from time 0. Under contractive perturbation, we design
an efficient policy optimization algorithm, M-GAPS, by differentiating through the
actual trajectory experienced by the controller. We first show M-GAPS can adapt
quickly in changing environments with provable guarantees when the Jacobians
of the dynamics are known. When the Jacobians are unknown, we propose a
meta-framework that can combine an online policy optimization algorithm like
M-GAPS with an online estimator of the unknown component in the dynamical
model. Lastly, we demonstrate the effectiveness of M-GAPS in the application of
quadcopter control, which involves multiple challenges such as nonlinear dynamics,
periodic disturbances, and limited computing hardware.

In Chapter 6, we study policy optimization in the setting of MARL in networked
systems. We exploit the localized interaction structure among agents to show a decay
property of each agent’s local Q function. As a result, each agent only needs to gather
information within its 𝜅-hop neighborhood to evaluate the current joint policy. We
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leverage the decay property to design a scalable actor-critic algorithm with finite-
time sample complexity bounds. Our results also reveal a trade-off between the
observation radius 𝜅 and the sub-optimality gap of the learned policy. We test the
proposed algorithm in the applications of wireless networks and spreading networks.

7.2 Future Directions
The results presented in this thesis on prediction power characterization and online
policy optimization focus on settings with continuous state and action spaces under
controllable dynamics, where stability is not the primary concern. The analysis
further relies on structural properties such as exponentially decaying or contrac-
tive perturbations, which facilitate both theoretical analysis and algorithm design.
However, these properties may not hold in many real-world systems, which often
involve discontinuities, partial controllability, or complex dynamics. Extending the
theoretical framework to address such complexities represents an important and
challenging future direction in general.

In the following, we outline concrete challenges that aim to extend the scope and
applicability of our results on prediction power and policy optimization, respectively.

Prediction power. There are multiple interesting future directions based on our
results for prediction power in Part II. First, we have studied how to evaluate the
prediction power of a certain prediction sequence in Chapter 4, and a natural next step
is to develop an end-to-end approach to select the predictive model that works best for
a specific online control task. Second, the sufficient conditions for characterizing the
prediction power in Theorem 4.2.3 relies on the properties of the optimal predictive
policy, which could be challenging to verify beyond linear dynamics and quadratic
costs. It is desirable to further relax these conditions to be based on an arbitrary
predictive policy that may be sub-optimal (e.g., MPC). Third, our networked online
convex optimization setting in Chapter 3 does not consider the underlying states
and dynamics. Given the recent advances on decentralized control (Shin, Lin, et
al., 2023; Zhang, Li, and Li, 2023), it is promising to generalize our setting and
perturbation analysis to allow such dynamical constraints, where a node’s next local
state can be affected by its direct neighbors’ current state.

Policy optimization. There are many future directions for improving our results
on policy optimization in Part III. First, our theoretical guarantees for M-GAPS rely
on the contractive perturbation as well as other properties such as the stability. As
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we have seen in the application of quadcopter control, the theoretical verification
of such properties becomes challenging as the dynamics/policy class get more
complicated. Inspired by the approach of Li, Preiss, et al., 2023, a potential solution
could be monitoring whether the desired properties holds online and eliminate a
policy parameter if a property is violated. This is an interesting direction for the
future research. Second, M-GAPS is model-based because it requires the (exact or
approximate) Jacobians of the dynamics to compute the gradients of the surrogate
costs. Zeroth-order gradient estimation provides a model-free way for evaluating
the gradients. Potential combination of zeroth-order optimization and M-GAPS is
a direction that worth exploring. Finally, a limitation of our results for networked
MARL in Chapter 6 is that the underlying network G which defines the distance
metric between any two nodes must be fixed, so the 𝜅-hop neighborhood of each node
cannot change throughout the learning process. However, in real-world applications,
the neighborhood relationships may change, for example, as each user moves around
different locations in the wireless network example in Section 6.4. Therefore,
studying more general time-varying networks is an interesting future direction.
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