Predictions and Policy Optimization
in Online Decision Making

Thesis by
Yiheng Lin

In Partial Fulfillment of the Requirements for the
Degree of
Doctor of Philosophy

Caltech

CALIFORNIA INSTITUTE OF TECHNOLOGY

Pasadena, California

2025
Defended May 13, 2025



© 2025

Yiheng Lin
ORCID: 0000-0001-6524-2877

All rights reserved

11



11

ACKNOWLEDGEMENTS

I was extremely fortunate to meet my Ph.D. advisors Adam Wierman and Yisong
Yue in 2019 and spend five years as their graduate student from 2020. Without their
invaluable guidance and enormous support, this thesis would not have been possible.
Since I started my first research project on smoothed online optimization as a junior
undergraduate student, Adam has been a constant resource of wisdom from whom I
would never hesitate to seek advice. As an advisor, Adam has done the best to prepare
me at every stage of my graduate study: Problem solving, presentation, asking the
right questions, and forming a complete thesis. His mentorship is not limited to
research. During the time with great uncertainties, Adam’s encouragements help me
build up confidence to face many unprecedented obstacles. Yisong has set up a role
model for me to conduct the most impactful research in an era of groundbreaking
Al advances. Besides providing detailed suggestions about my projects, he always
reminds me to not get bogged down in technical challenges and question the real
significance/impact before diving into a specific problem. I was deeply impressed by
his inspiring tutorial on how to find a “research vision” and build a “research taste,”
which help me gain momentum in my daily research work and communication.
Yisong generously supported several group retreats, creating a relaxing atmosphere

for group members to discuss everything from research to daily life like a big family.

I'would like to thank my thesis committee members, Eric Mazumdar and Rayadurgam
Srikant, as well as my candidacy committee member, Sicun Gao, who have devoted
much time and effort. Eric always made himself available to provide advice on
new project ideas, related literature, and presentations. I was fortunate to meet
Rayadurgam Srikant multiple times throughout my Ph.D. to present my work and
hear his insightful feedback. After years, I still got inspiration from his advice on
asking the most fundamental questions, even in complicated settings. And I also
appreciate the stimulating questions Sicun asked during my candidacy talk, which

prompted me to start new projects on policy optimization.

I want to express my sincere gratitude to my excellent collaborators. In particular,
I thank my undergraduate thesis advisor Longbo Huang for his great mentorship
during my final year at Tsinghua University. Special thanks to Gautam Goel,
Haoyuan Sun, and Guanya Shi for showing me what excellent teamwork looks like
when [ first started my research journey as a junior undergraduate student. I would

like to thank Guannan Qu, who kept providing brilliant ideas and knowledgeable



iv
suggestions in a sequence of projects on prediction power and networked MARL.
I was lucky to collaborate with James A. Preiss, Yingying Li, Tongxin Li, and
Zaiwei Chen in multiple projects on policy optimization. They shared with me
not only their expertise on research but also heartfelt experiences in their academia
careers. I would also like to thank Yash Kanoria for guiding me throughout our
Networked OCO project and providing a detailed introduction to the writing style
of the operation research community. I would like to thank Tianyu Chen for leading
our collaboration on the adaptive bitrate streaming project, and I also appreciate the
guidance provided by Ramesh K. Sitaraman, Mohammad Hajiesmaili, and Zahaib

Akhtar on this project.

My graduate study would not have been this enjoyable without my dear colleagues
and friends at Caltech. I want to thank Navid Azizan and Na (Lina) Li for hosting
my brief visit to Boston in the summer of 2023. I also want to thank Steven
Low for providing valuable advice on both research and career. Many thanks to
my friends at Caltech CMS: Jeremy Bernstein, Geeling Chau, Nico Christianson,
Lauren Conger, Wengqi Cui, Victor Dorobantu, Lu Gan, Lingi (Daniel) Guo, Tinashe
Handina, Yujia Huang, Jiaqing Jiang, Eitan Levin, Zongyi Li, Chen Liang, Ziqi Ma,
Laixi Shi, Yuanyuan Shi, Jialin Song, Peicong Song, Yu Su, Jennifer Sun, Sabera
Talukder, Xuefei (Julie) Wang, Zihui (Ray) Wu, Fengze Xie, Yiheng Xie, Changhe
Yang, Christopher Yeh, Jing Yu, Yizhou Zhang, Bingliang Zhang, Hongkai Zheng,
Fengyu Zhou, and everyone at the Wierman and Yue group. I also want to thank the
CMS administrative staff, especially Jolene Brink and Christine Ortega, for being
extremely supportive on everything big or small. I also appreciate the support from

all my other friends throughout my Ph.D. journey.

I would like to thank my parents and other family members for their unwavering
love and support throughout this journey. Their encouragement, patience, and belief
in me have been a constant source of strength, especially during challenging times.
Reaching this milestone would not have been possible without their steadfast support

and guidance.



ABSTRACT

Predictions are ubiquitous in modern systems, offering insights into how environ-
ments might evolve by encoding our prior knowledge and assumptions. Recent
advances in artificial intelligence have significantly expanded the scope and accu-
racy of such models, creating vast new opportunities across domains. At the same
time, online decision making remains a fundamental challenge in many real-world
problems, concerned with challenges such as limited information, delayed feedback,
and irrevocable actions. This dissertation focuses on the interplay between predic-
tions and online decision making—how predictive information can be effectively

leveraged to improve performance in dynamic, uncertain environments.

While incorporating predictions often enhances decision-making, the degree of
improvement can vary substantially. This variability arises from two key factors.
First, the potential benefit of using predictions is fundamentally determined by both
the nature of the predictions (e.g., their targets, errors, and distributions) and the
characteristics of the decision-making process (e.g., costs and dynamics). Second,
standard predictive policies frequently fall short of realizing such potential, espe-

cially in changing environments or when critical system parameters are unknown.

This dissertation introduces a unified theoretical framework to quantify the benefit
of leveraging predictions across a broad range of online decision-making problems.
To close the gap between the maximum potential and achievable performance, we
formulate a general policy optimization framework and design efficient algorithms
capable of tracking optimal (predictive) policies in time-varying settings. Addi-
tionally, we address practical considerations such as scalability and computational
efficiency, enabling the application of our methods in large-scale networks and on

resource-constrained devices.
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Part I

Introduction



Chapter 1

INTRODUCTION

Online decision making studies the problem of making sequential decisions under
uncertainty, where information and feedback are typically revealed over time, poten-
tially with delays. Due to limited information, a decision made at any given moment
may become suboptimal as new information emerges. As a result, predictions
about future uncertainties are extremely valuable since they expand the available in-
formation for making each decision, enabling more sophisticated decision-making
policies that may achieve better performances. Predictions are increasingly em-
ployed across a wide range of decision-making tasks. For instance, in autonomous
driving, machine learning (ML) models can predict different types of obstacles and
their potential trajectories, enabling the controller to plan maneuvers that avoid col-
lisions and ensure a smooth ride. Similarly, in video streaming, forecasts of future
network throughput allow the controller to select the bitrate of video segments that
minimizes re-buffering delays and maximizes viewing quality (see Figure [I.T] for
an illustrative example). When applied to electric vehicle charging, predictions
of future electricity prices and departure times inform the controller’s selection of
charging rates, ultimately improving the consumers’ satisfaction rate and the service
provider’s profit. Despite their broad applicability, different prediction tasks and
methods exhibit varied performance characteristics. Sophisticated ML-based pre-
dictors often excel in environments similar to those represented in their training data
or simulators, but their performance can deteriorate when faced with unexpected or
changing conditions. In contrast, simpler predictors may produce relatively larger

errors yet remain more robust under diverse real-world scenarios.

Incorporating predictions into control systems often enhances performance, yet the
extent of improvement can vary greatly across different scenarios. In many ap-
plications, even limited predictions within a short lookahead window can yield
substantial cost reductions. In contrast, there are empirical and theoretical coun-
terexamples in which more sophisticated predictive methods and controllers do not
perform well. This discrepancy raises a critical question: under what conditions do
predictions reliably improve control performance? Addressing this question would
help system designers determine whether to adopt specific predictive methods or

other alternative approaches in a control task. While prior research has studied this
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Figure 1.1: Anillustrative example of making predictions in adaptive bitrate stream-
ing: Given the observed network throughput in past ¢ seconds (blue curve), predict
the throughput for the next second (orange curve).

topic within specific combinations of prediction models, dynamical systems, and
predictive controllers, a unified analytical framework that addresses this question

more broadly across diverse settings remains a critical open challenge.

While leveraging predictions can improve the performance of online decision mak-
ing significantly, one important aspect is understanding how to develop controllers
to use predictions with time-varying reliability. For instance, ML-based predictors
often suffer from distribution shifts, meaning their reliability may change over time.
To address this challenge, we can introduce parameters to the predictive control
policies that allow us to change how we use predictions. Taking the predictive con-
trol with confidence coefficients (Li, Yang, Qu, Shi, et al.,[2022; Lin, Preiss, Anand,
et al., 2023) as an example, the adaptivity is achieved by tuning the coeflicients that
control how much the controller trusts each prediction entry. More broadly, the
problem of finding the optimal way to use predictions can be viewed as a special
case of learning the parameters of any control policy to optimize its performance.
There is a need for a general framework to optimize control policy adaptively in
time-varying environments with provable guarantees. The framework is helpful in
many real-world applications, such as quadcopters experiencing fluctuating wind
conditions or variable payloads, where a fixed control policy may fail to provide

near-optimal responses in hindsight.

For online decision making and policy optimization algorithms to be practical,
achieving scalability and efficiency in large-scale or complex systems is essential.
For instance, in a large networked system where the nodes collaborate to maximize
their average total reward, each node must rely only on localized information, as

global communication is often too costly. As another example, when deploying
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an online policy optimization algorithm on a quadcopter, minimizing memory and
computational complexity is critical due to hardware constraints and the need for
frequent updates. While many prior works focus primarily on theoretical guarantees,
they often overlook the practical challenges of scalability and efficiency. Addressing
these concerns is crucial for ensuring that proposed algorithms have significant

impacts when applied to real-world applications.

This thesis aims to provide analytical frameworks to characterize the benefit of
using predictions in control under general prediction/dynamical models and propose

efficient/scalable policy optimization algorithms with provable guarantees.

1.1 Major Challenges and Prior Work

Two key factors fundamentally shape the performance of leveraging predictions in
online decision making: the prediction power and the policy optimization process.
Prediction power characterizes the intrinsic value of the predictions themselves—the
extent to which they can improve the control performance in principle. It depends on
how the predictions relate to unknown system parameters, underlying dynamics, and
cost structures. Even highly accurate predictions may offer limited benefit if they
do not align with the decision-relevant uncertainties. Complementing this, policy
optimization focuses on how to realize the full potential of predictions in practice.
It involves identifying or tracking the optimal decision policy under constraints
such as limited feedback, computational resources, and time-varying environments.
Together, these two dimensions—what predictions can offer and how well that offer

can be harnessed—define the central challenges in this domain.

Prediction Power. We use the term prediction power to refer to the benefit of
using predictions in online decision making compared to the no-prediction case. To
attain such benefit, we rely on control policies that can leverage future predictions
in deciding the control actions, termed predictive control. Among various design
philosophies of predictive control, perhaps the most prominent approach is Model
Predictive Control (MPC), also known as receding horizon control. Generally speak-
ing, at each time step, an MPC-style controller leverages all available predictions to
solve an optimal control problem in a short horizon and commits to the first action in
the planned trajectory. MPC’s flexibility allows it to accommodate challenges from
time-varying/nonlinear dynamics and constraints on the state or control actions, and
it is known to work well in practice. Theoretically, while many classical results

are about MPC’s asymptotic behaviors (e.g., stability and convergence), there is a
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growing interest in establishing non-asymptotic learning guarantees that quantify
how the sub-optimality of MPC reduces as the predictions become more power-
ful. However, existing results are limited to linear time-invariant (LTI) dynamics
with quadratic costs because the proof approaches require explicitly writing down
optimal control actions and MPC’s control actions. Even with more flexibility al-
lowed in controller design rather than focusing on MPC-style controllers, handling

time-varying dynamics and/or constraints is still challenging.

While many works on predictive control start with the ideal model where the predic-
tions are exact, most predictions in real-world applications are imperfect. Character-
izing the impact of such inaccurate predictions is essential in two ways: 1) Showing
the robustness of a predictive control approach (e.g., MPC) against bounded (or even
adversarial) prediction errors and 2) providing guidance on how to reduce the control
cost by choosing or improving the predictions. Many prior works have taken a nat-
ural path to extend the results under an ideal exact-prediction model: They model
the observed predictions as the actual targets plus bounded adversarial perturba-
tions. These works derive regret bounds that depend on the prediction errors—the
magnitude of such perturbations—and show predictive controllers maintain similar
regret guarantees with the exact-prediction case if the prediction errors are suffi-
ciently small. However, obtaining near-accurate predictions is too much to hope
for in many applications, while weaker predictions with stochastic correlations with
their targets still proved useful. As the prediction error grows, the worst-case regret
bounds become overly conservative because they overlook the potential stochastic
dependencies between predictions and future uncertainties. Further, optimizing the

prediction accuracy does not always lead to better control costs.

Multiple practical challenges may arise when we apply predictive control to real-
world problems. First, scalability issues are significant when implementing an MPC-
based predictive control approach in large networked systems. Each node cannot
afford the complexity of gathering information from the whole network and solving
the predictive optimization problem globally. Second, critical assumptions that
lead to theoretical guarantees may break under application-specific objectives and
constraints. For example, in high-quality video streaming, the key assumption about
the exponentially decaying perturbation property of the optimal control problem
breaks due to the structure of the objectives and buffer constraints. Lastly, the
optimal predictive controller may depend on the unknown joint distribution of

predictions and disturbances or change as the environment changes. Therefore, the
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user cannot directly implement the optimal predictive controller without learning

the key system/controller parameters.

Policy Optimization. Optimization is the process of choosing the best option in
a set of feasible alternatives. Policy optimization can be viewed as a special class
of optimization problems, where the objective is the state/control cost and each
solution corresponds to a control policy. Compared with classic offline optimization
settings where the solver has full knowledge of the objective function/constraints,
the online nature of the decision-making process brings the major challenge for
policy optimization: When updating the policy at an intermediate time step, the
agent only receives incremental feedback without a “whole picture” that includes,

for example, how the costs/dynamics will change in the future.

One challenge of online policy optimization arises from the dynamical system, where
each action has impacts beyond the current time step. Prior works on online policy
optimization build on techniques from online optimization, but their results often
rely on the convexity of the objectives with respect to previous policy parameters —
an assumption that typically confines applications to linear dynamics with specific
policy classes. In practice, this convexity assumption can break down easily for

more general policy classes (e.g., state-feedback controllers) or nonlinear dynamics.

Another challenge in policy optimization is that the underlying dynamical (or tran-
sition) model is often partially or completely unknown to the control agent. In
many control applications, the user usually has some knowledge about a nominal
system, so a common approach is to follow a model-based framework. Specifically,
a standard technique is to apply random perturbations to collect data, enabling the
agent to obtain a sufficiently accurate approximation of the dynamical model with
high probability. With the learned model, one can solve the optimal policy or apply
online policy optimization algorithms that use the models to compute the gradients.
However, the approach is generally restricted to linear systems with specific policy
classes, because extrapolating from local data to approximate global models works

for time-invariant linear dynamics but not for nonlinear or time-varying systems.

Practical challenges in implementing policy optimization algorithms may arise from
complexity and scalability issues—not only due to the structure of the control policy
class, but also from the optimization process itself. Even when the policy class is
simple or low-dimensional, identifying and tracking the optimal policy can remain
computationally demanding, particularly in settings with multi-agent coordination

requirements or limited resources. Consider a large-scale networked system where
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the agents work together to maximize the global average reward. Although each
agent’s policy that we wish to optimize might only depend its local state, the optimal
policies depend on the global interaction structure in general. However, the size
of the global state/action space grows exponentially with respect to the number
of agents, so one cannot afford to run a classic policy optimization approach on
the global scale. As another example, when applying online policy optimization
on quadcopter, the limited resources onboard put constraints on complexity of the
algorithm in terms of both computation and memory. In addition, the fast-changing
environment may require the policy be updated at a high frequency, so the policy

optimization algorithm must run efficiently.

Connections between Prediction Power and Policy Optimization. To understand
the relationship between the two major parts of this thesis on a high level, we draw an
intuitive analogue with a classic optimization problem. The performance of online
decision making can be viewed as the “objective,” while each predictive control
policy corresponds to a “solution.” Under this analog, the study of prediction
power asks the question of how good an optimal solution can be. In contrast,

policy optimization aims to find/learn a (near-)optimal solution.

Policy optimization can help achieve the prediction power. Specifically, predictive
control methods such as MPC can be viewed as policy classes parameterized by how
they incorporate predictions. For example, in an MPC framework with confidence
coeflicients, the controller fully trusts the predictions when the coeflicient is one
and ignores them entirely when the coefficient is zero. To fully exploit the benefits
of available predictions, the agent must adopt the optimal predictive policy within
a suitable policy class. However, deriving closed-form optimal policies is often
intractable in time-varying or large-scale systems. Policy optimization approaches
help overcome this difficulty by learning a (near-)optimal predictive policy using

limited observations and/or computing.

On the other hand, prediction power is a fundamental quantity to characterize before
using predictions and implementing policy optimization. For example, if an evalua-
tion of prediction power suggests that the potential benefit is small, there is no need
to obtain such predictions and/or deploy policy optimization algorithms. Other-
wise, if the evaluation suggests the prediction power is large, meaning the potential
benefit could be significant, we will focus on finding the optimal predictive policy
with possible challenges from time-varying environments or unknown parameters.

Policy optimization provides powerful tools for this subsequent step.



1.2 Motivating Applications
In this section, we introduce three motivating applications of our theoretical frame-

works on prediction power and policy optimization.

Adaptive Bitrate Streaming. Adaptive bitrate streaming studies the problem of
deciding the bitrates for video download sequentially, where the controller has
access to (unreliable) predictions about network throughputs. As online video
streaming becomes increasingly popular nowadays, the users watch videos from
devices with different hardware capabilities and connect to the internet in a variety
of ways, leading to a diverse range of network conditions. In addition, the network
throughput can also be unstable due to congestion and other complicated network
issues. The goal of adaptive bitrate streaming is to enhance the users’ experience

by dynamically adjusting the video bitrate under changing network conditions.

Adaptive bitrate streaming is challenging because the controller needs to balance
multiple objectives including optimizing video quality, minimizing rebuffering fre-
quency, and reducing bitrate switching. In addition, since the buffer length is
usually short in live streaming, the controller must react quickly to fluctuating net-
work conditions and make robust decisions with volatile throughput decisions. Our
theoretical framework provides a promising approach to tackle these challenges by
formulating the problem as online optimal control: The dynamics capture the buffer
level change as the controller downloads new video segments into the buffer, and the
user consumes video segments to watch. The objective balances different metrics
that may affect the user’s experience. Using the insights from our theoretical results,
we design MPC-based policies that can leverage throughput predictions while being

robust against prediction errors.

Adaptive Tuning of Quadcopter Controllers. We consider an application of
general policy optimization for quadcopter control that does not involve predictions.
Quadcopter is a type of unmanned aerial vehicle that uses four rotating propellers
to generate lift and maneuver. It becomes increasingly popular in a variety of real-
world applications ranging from agriculture to photography. Given the diversity
of the deployment environments, the user cannot rely on a certain “expert” control
policy that is set by default when the quadcopter is produced. For example, the user
may put on additional attachments (e.g., carrying goods) or operate the quadcopter
in an unexpected (e.g., high wind) environment. The default policy may become

suboptimal in such scenarios.

Our works on policy optimization are promising for tackling the specific challenges
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arising in quadcopter control. First, our algorithms and results apply to general pol-
icy classes that satisfy the contraction properties, allowing sophisticated designs for
safety while maintaining sufficient flexibility to adapt. Second, a primary goal of our
online policy optimization framework is to adapt quickly to changes of the environ-
ment that may occur frequently during the flight (e.g., periodic wind disturbance).
Third, we design policy optimization algorithms with high computation/memory

efficiency, which make them applicable with limited computing hardware onboard.

Networked Systems. Networked systems are a class of multi-agent systems with
special interaction/reward structures. Specifically, each node in the network corre-
sponds to an individual agent, and it only interacts with its immediate neighbors.
Each node has a local reward (or cost) function, and collectively, the nodes aim to

maximize (or minimize) the sum of these local functions.

Various multi-agent systems can be captured under this general structure. One
example is Wi-Fi networks, where each user (node) transmits packets to a nearby
access point. A collision occurs if multiple users send packets to the same access
point simultaneously. In this setting, a user’s local state — namely, the packets waiting
to be transmitted before a given deadline — depends on both its own actions and those
of its neighbors. A second example is the Susceptible-Infected-Susceptible (SIS)
epidemic network, in which an agent’s state is either “susceptible” or “infected.” The
probability of transitioning from “susceptible” to “infected” depends on the number
of infected neighbors as well as on whether the agent takes a preventive action at
some cost. Lastly, consider a product network for multiple items sold on an online
retail platform. Each product’s demand is affected by its current and previous prices,
as well as by the prices of complementary or supplementary products. To fit this
setting into the networked system framework, we model each product as a node and
use edge to encode complementary or supplementary relationships. The objective
is to determine prices that maximize the platform’s total revenue in a manner that is

both efficient and interpretable.

By studying predictive control and policy optimization in networked systems, we
demonstrate how to overcome the practical challenge of scalability by exploiting the

interaction structure among nodes/agents.

1.3 Thesis Roadmap and Contributions
We introduce the basic settings of online optimization, online control, prediction

models, and the networked systems in Chapter[2] Then, we present the main results
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of this thesis in two major parts.
Part[II: Prediction Power

While the study of prediction power has received much attention recently, a novel
perspective that sets our works apart is the perturbation analysis. Specifically,
instead of analyzing the online process directly, we look at the underlying optimiza-
tion problem (offline) and study the behaviors of the optimal solution as a function
of problem parameters. Perturbation analysis plays a critical role in establishing
prediction power bounds: On the one hand, it allows us to characterize the im-
pact of having limited/inaccurate predictions at a single step; On the other hand, it
helps bound the accumulative effect of per-step impacts along the whole horizon.
Compared with prior works, our proof framework built upon perturbation analysis
significantly generalizes the scope of settings where prediction powers can be char-
acterized. It is particularly useful for MPC-style controllers, which represent the
design principle behind a class of predictive policies that are flexible and empirically

successful.

In this context, Part|lI| of this thesis focuses on characterizing the benefit of using
predictions in online decision making/control. We start by studying MPC under an
adversarial prediction model that does not rely on any distributional assumptions. In
Chapter 3] we provide a general analysis pipeline to establish finite-time optimality
guarantees for model predictive control (Lin, Hu, Shi, et al., 2021). The pipeline
reduces the study of MPC to the perturbation analysis, enabling the derivation of

regret bounds of MPC under various settings.

* In Section we first introduce the perturbation analysis for finite-time optimal
control problem and define the exponential decaying properties that we want to

establish. We discuss about its intuitions and derivations in classic settings.

* In Section[3.2] we present the main theorems of the pipeline. With the exponential
decaying properties that we have derived in perturbation analysis, we use the
pipeline to establish finite-time performance bounds for MPC. Our results show
the insight that, although it becomes harder to get near-accurate predictions when
we predict further into the future, they also have less impact on the performance

than predictions that are closer to the current step.

* In Section[3.3] we extend our proof framework based on the perturbation analysis

to online optimization in networked systems. The key observation is that we can
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establish the exponential decaying properties not only in “temporal” dimension—
the time horizon that includes the future and the past—but also in “spatial”
dimension, which implies the impact of a node on another node decays quickly
as their graph distance in the network grows. Using the generalized exponential
decaying properties, we propose a localized predictive control algorithm with
provable performance guarantees. Our results show predictions into the future and
information sharing among neighbors are both important, and the two “resources”

should be balanced to achieve the best performance bound.

* In Section [3.4] we consider the application of adaptive bitrate streaming. We use
the theoretical insight of the perturbation analysis to design the objective function
of a novel MPC-style controller so that the exponential decay property holds.
Our proposed approach achieves superior empirical performance in production

experiments, but we will focus on discussing the theoretical insights in this thesis.

A limitation of the adversarial prediction model in Chapter [3]is that it overlooks the
stochastic relationships between predictions and future uncertainties. As a result,
the performance bounds may fail to characterize the benefit of using predictions,
because the worst-case analysis is overly conservative. Therefore, in Chapter [}
we study the benefit of using predictions under a general stochastic model, under
which the predictions and environment uncertainties are sampled from a joint dis-
tribution. In this context, we seek to characterize a general notion of the prediction
power, which is the maximum cost improvement under the optimal predictive policy
compared with the no-prediction scenario. In Section 4.2] we provide sufficient
conditions for establishing the lower bound of the prediction power. The conditions
put requirements on the landscape of the cost-to-go functions and the conditional
covariance of the policy’s actions. In Section 4.3 we instantiate the general lower
bound with specific online optimal control settings such as linear quadratic regulator
(LQR). Our results highlight that even “weak” (in terms of stochastic dependencies)
predictions have the potential to provide fundamental benefit in online control, and
we provide examples to explain why strict improvements on prediction accuracy

does not necessarily reduce the total state/control cost.
Part [ITI: Policy Optimization

Our results for online policy optimization build upon a property called contractive
perturbation that makes the goal of tracking the optimal policy in a dynamic envi-

ronment tractable. Intuitively, contractive perturbation ensures each policy has its
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“preferred trajectory” and converges towards it if deployed for several steps in a row.

It generalizes a key property of many standard control policies and helps policy op-

timization by containing the impact of past explorations. In Chapter[5| we consider

online policy optimization on a single trajectory under contractive perturbation. We

propose efficient online policy optimization algorithms that can adapt quickly with

provable finite-time guarantees. This chapter is organized as following:

* In Section we define the contractive perturbation property formally and
provide examples to demonstrate its generality. Although our original def-
inition requires the property to hold for a slowly-changing policy parameter

sequence, we show it suffices to verify it under a fixed policy parameter.

In Section[5.3] we present an efficient online policy optimization algorithm—
Memoryless Gradient-based Adaptive Policy Selection (M-GAPS)—that lever-
ages the first-order derivatives of the costs/dynamics to perform gradient-
based updates on the policy parameters. Under the contractiveness assump-
tion, we show that M-GAPS approximates the behavior of an ideal online
gradient descent algorithm on the policy parameters. When convexity holds,
M-GAPS achieves the optimal policy regret. When convexity does not hold,
we establish a local regret bound for M-GAPS.

In Section [5.4] we address the challenge of implementing online policy opti-
mization when the dynamics are only partially known. Specifically, we assume
there is an unknown component in the dynamics that can be time-varying and
state-dependent. We develop a meta-framework that combines a module for
learning the unknown component in dynamics with an online policy optimiza-
tion algorithm like M-GAPS. Our theoretical results suggest that, to mimic the
behavior of an online policy optimization algorithm when the true dynamics

are known, it is unnecessary to identify the unknown component globally.

In Section[5.5] we apply M-GAPS to select the parameters in a class of predic-
tive control policies, so the controller can use the predictions adaptively based
on their qualities and/or their stochastic relationship with future uncertainties.
Intuitively, when the quality of predictions changes during the control pro-
cess, M-GAPS adjusts the confidence coefficients that determine how much
the MPC policy trusts the provided predictions. As a result, the controller
“trusts” the predictions more when they are accurate and reduces the “trust”

when they are bad. Our experiments show M-GAPS can learn the optimal
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predictive control policy and adapt quickly to changes, building connections

between online policy optimization with prediction power (Part[II).

* In Section [5.6] we present a practical implementation of M-GAPS on quad-
copter control. Focusing on the task of trajectory tracking, we use M-GAPS
to tune the feedback gains of a quadcopter controller. In hardware exper-
iments, M-GAPS can improve from a suboptimal initialization to near an
expert controller that takes several days of efforts to tune manually. Further,
we test M-GAPS with heavy payload or time-varying wind conditions. In
these scenarios, M-GAPS can rapidly adapt to the disturbances and substan-
tially reduce the cost compared with the expert controller. The experiment
results demonstrate the hardware practicality of M-GAPS.

In Chapter [6] we use multi-agent reinforcement learning (MARL) to optimize the
local policies for agents in a large-scale networked system. Classic centralized
policy optimization algorithms are intractable because their complexities grow with
the size of global state space, which is exponentially large in the number of agents. To
address this challenge, we propose a scalable actor critic algorithm. Compared with
its centralized counterpart, the most significant change is on the critic part, where we
adopt localized truncation on the state/action space to reduce the computation/space
complexity. Thus, we focus on the theoretical foundation of this key change in this
thesis. In Section [6.2] we utilize the interaction structure among agents to derive
the exponential decay property of local Q functions. With this property, we can
confirm that localized information in the truncated state/action space is sufficient
for approximating the local Q function, which depends on the global state/action in
general. In Section [6.3] we introduce the connection between our truncated critic
design and TD learning with state aggregation. Thus, we can use results on state
aggregation to show finite-sample error bounds on Q function evaluation. Lastly, in
Section [6.4] we apply our scalable actor critic algorithm to the settings of wireless
and spreading networks. The results show that the proposed algorithm can improve

the local policies effectively.
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Chapter 2

BACKGROUND

In this chapter, we summarize the underlying problem settings in this thesis with the
goal to build intuitions for our main results in Parts [[[jand [l1I. We start with the most
basic setting of online optimization (Section [2.1)) and discuss how it is generalized
to study control with dynamical systems (Section [2.2)). Then, in Section [2.3] we
introduce different methods to model predictions and their relationship with future
uncertainties. Lastly, in Section [2.4] we present two settings of networked systems

that consider continuous or discrete decisions, respectively.

2.1 Online Optimization
The basic form of online optimization is a two-player game between the online agent

and the (potentially adversarial) environment.

Classic online optimization. At each time step, the agent makes a decision x; € X.
A cost function f; : X — R is revealed, and the agent incurs the stage cost f;(x;).
The agent’s goal is to minimize the total cost Z,T:1 fi(x;). The performance is usually

evaluated by comparing against the optimal trajectory in hindsight (e.g., the static
regret Zthl fi(x;) —mingex Z,T=1 fi(x*)).

In classic online optimization, each step’s decision is independent with other steps.
However, it is common for the current step’s cost to also depends on the previous
action. For example, in data center/power system operation, additional costs are
incurred when the servers/generators are turned on or off. Thus, it is sometime
preferable to have “smoother” decision trajectories where the decisions (e.g., the
number of running servers) does not change dramatically between consecutive time
steps. These considerations motivate the extension of the classic online optimization

framework to include switching costs.

Smoothed online optimization. At each time step, a hitting cost function f; : X —
R and a switching cost function ¢; : X X X — R are revealed. The agent decides
an action x;, € X and incurs a stage cost f;(x;) + ¢;(x;,x,-1). The agent’s goal is to
minimize the total cost Zthl fi(xs) + Zthz ¢t (x¢, x;—1). To evaluate the performance,
we compare the algorithm’s trajectory with the hindsight optimal trajectory x7.,.

The difference with classic online optimization is that x].,. can change over time.
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Following the intuition to penalize changes between consecutive steps, researchers
have considered different forms of switching costs such as the norm distance
cr(xs,x0-1) = ||x¢ — x4—1]| or the squared £;-norm c;(x;, x;—1) = %th —x,_lllg. In-
deed, the switching costs can be more general as long as they satisfy some assump-
tions jointly with the hitting costs. Other generalizations consider longer coupling
with the previous time steps. For example, the switching cost ¢;(x;—.;) depends on
the decisions at k > 1 past time steps.

2.2 Online Control

In the setting of online optimization, we can choose any x; from the set X (at some
cost). However, in most control applications, we cannot steer the system to an
arbitrary state in one step. Instead, we must pick control actions that can affect the

system’s state through the dynamics.
Dynamics. We consider a discrete-time dynamical system that is given by
Xe+1 = & (g, ugs wy), where x; € X,u; € U, and w; € W. 2.1

Here, x; denotes the system’s current state; u; denotes the control action; and w;
denotes the disturbance or exogenous input. We use the star superscript to indicate
that w; is the true value (i.e., the actual disturbance experienced by the controller)
and distinguish with any predictions/estimations. The dynamical function g; :
X XUXW — X decides how the current state and control action decide the
next state x,4| together. Function g, is determined by the specific application, and
its subscript # means it may change over time. A simple example is the linear

time-invariant (LTI) dynamics, where function g; has the form
g (X, uiswy) = Axy + Buy + wy forx, e R", u, € R, and w; € R". 2.2)

Although many previous works on online control focus on the LTI dynamics in

(2.2), some real-world applications demand different generalizations. For example,

* Linear Time-Varying (LTV) Dynamics. Dynamical matrices (A, B) are re-

placed by {(A;, B;) }+=0.1.... that change over time.
* Nonlinear Dynamics. g, can be a nonlinear function of (x;, u;).

e State/Action Constraints. X and U can be bounded sets.

Policy. The way we decide the control action u, based on the state x; is called

the control policy, which is a function 7, that maps any state in X to an action in
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U. For example, a classic policy class for controlling the LTI dynamics in (2.2)
decides the control action by taking a linear feedback on the state u; = —Kx;. To
control general dynamical systems, one may consider adopting more sophisticated
optimization-based or ML-based policies that uses additional information (e.g.,
future predictions or expert advice). The problem of choosing control actions can
be converted to finding the optimal control policy. To formulate this problem

rigorously, we consider a parameterized policy class
ur = 1 (x5 6;), (2.3)

where 6; € O is the policy parameter to learn and update throughout the control
process. The policy class (-, ) together with policy parameter set ® encode all

feasible control policies that we want to consider for the purpose of cost optimization.

Costs. At each time step, after taking the control action u;, the agent incurs a stage

cost that depends on the current state/action pair (x;, u;):

¢t = filxe, uy). (2.4)

Note that the subscript ¢ allows f; to change between time steps. The objective of
online control is to minimize the total cost incurred through a finite horizon 7, i.e.,

tT:_Ol c;. Often, the cost functions f; are defined by the user, so it is common to
assume that they are known. However, if we need to consider uncertainties in costs,

one way to model them is extending the cost function to be
cr = fi(xe,ur; wy). (2.5)

Here, w; is an uncertainty parameter that combines the uncertainties at time step ¢,

so it is shared with the dynamical function x,1 = g;(x;, us; wy).

As a remark, stability is a fundamental issue in control theory, which means the
system state must be kept in a region that is “safe.” For example, the linear dynamics
approximation only holds if the state is not too far away from the equilibrium
point. However, stability guarantees are not the primary focus of online control.
Specifically, the user should design the policy class in online control carefully, so
changing the policy parameter 8; will not destabilize the system. As a result, online

policy optimization algorithms can focus on minimizing the total cost ZT:_OI Ct.

Connection with Online Optimization. Smoothed online optimization is a special

case of online control. One common approach to do the reduction is to consider a
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simple dynamics x;41 = x; + u;, where the state x; corresponds to the decision in
online optimization. The stage cost f;(x;, x; —x;_1) is also general enough to capture
different combinations of hitting/switching costs. Although online control is a more
general setting, smoothed online optimization is still important for both theory and
practice. For example, establishing the exponentially decaying perturbation property
is easier for smoothed online optimization. Meanwhile, for some dynamical systems,
one can reduce online control to smoothed online optimization with the help of

control canonical form or uniform controllability assumptions.

2.3 Prediction Models

Prediction is a general term that includes any useful information about what may
happen in the future. To model the prediction theoretically in the context of online
optimization/control, we denote the prediction that the agent receives at time step ¢
as v; € V. Intuitively, the prediction v, is provided by the environment in addition to
the original observations (e.g., state x;) that the agent can make at time #. Although
one can combine v; and x; to form a “large” state x; == (x;, v;) when designing the
control policy, we treat v, and x, separately when studying prediction power because
it is easier to characterize the incremental benefit of observing v;. Another reason
for separating v, is that the predictions are oblivious in many applications, meaning
that they come from an exogenous source. As a result, the realization of v; will not
be affected by the agent’s past actions ug.;—;. In some settings, the assumption about

oblivious predictions is critical for deriving the theoretical guarantees.

The goal of formulating the prediction models is to explain how the prediction v,
provided at time step 7 is related to the unknown future uncertainties wy.,._,. In this
thesis, we consider the following two types of prediction models.

Adyversarial prediction model. Attime step ¢, prediction v, is a vector that combines

the predictions of future uncertainties within a finite lookahead window k:

Ve = (Wt|t’ Wesl]ts -« W[+k—1|t) ) (2.6)

where w|, denotes the prediction of the true uncertainty parameter w7 at time step
t (t > t). Recall that we use w} to denote the true disturbance in dynamics
or true parameter in the stage cost (2.3) in online control. Under this model, the
predictions and the ground-truth are assumed to be chosen by an adversary subject
to certain constraints. For example, an ideal special case considers the setting
that all predictions are exact (i.e., wy; = wy for =¢,...,t+k —1). To study

the robustness of predictive controllers against prediction errors, we can relax the
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constraints to allow the adversary to provide predictions subject to some prediction
error bounds (i.e., the distance ||WT|, - wj” is upper bounded). The adversarial
is conservative because it consider the worst-case scenarios and overlooks any

stochastic relationships.

Stochastic prediction model. In stochastic prediction model, we assume the pre-
dictions v(.7-1 and the unknown parameters w.,._, are sampled together from some
joint distribution. Unlike (2.6), we do not need further assumptions on what v,
predicts about or its specific structure. Intuitively, the stochastic predictions are

useful because they contain information about future uncertainties.

Compared with the adversarial prediction model, the stochastic prediction model
is particularly useful for characterizing the benefit of “weak” predictions that are
far from accurate. For example, some predictions may be useful because they have
stochastic dependencies with the true uncertainty parameters. However, if we only
look at their prediction errors, it may be difficult to distinguish them with “useless”
predictions who contain no mutual information with future uncertainty parameters.
As a result, we cannot conclude they are useful under the adversarial prediction
model. On the other hand, one can see a limitation of the stochastic prediction model
arises from the joint distribution assumption. Even if the assumption holds, another
challenge is that the optimal predictive policy depends on the joint distribution,
which we often do not know in practice. In contrast, the adversarial prediction

model does not rely on any distributional assumptions.

2.4 Networked Systems

Networked systems is a special class of multi-agent systems that features localized
interaction/dependency structures. Specifically, for a network (undirect graph) G =
(V,E&), each node i € V represents an agent, and an edge ¢ € & between two
nodes indicate that they can directly affect each other. Each node has its own local
state/action space. We consider different forms of interaction/dependency between

nodes:

* Transition probabilities in MDP. The local state of node i at time step ¢ + 1
depends on the current local states/actions of node i’s direct neighbors:

P(si(t+1) | sw, (1), an,(t)), where N; = {j | distg (i, j) < 1}.

Here, sy, (¢), an, (t) denotes the local states/actions of the nodes in NV; at time

t, and s;(¢ + 1) denotes the local state of node i at time 7 + 1.
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* Cost functions in online optimization. For each edge ¢ = (i, j) € &, nodes
i and j share a cost s¢(x', x/) that depends on their decisions jointly, where x’

and x{ denote the local decisions of nodes i and j, respectively.

Therefore, the decision of a node i can affect any other node j because the impact

can travel through a multi-edge path from i to j even if they are not direct neighbors.

In this thesis, we focus on collaborative settings, where all nodes work together to
optimize the global cost/reward. The global cost/reward can be decomposed to be the
sum/average of local costs/rewards. Due to observation/complexity constraints, each
agent adopts a localized policy that uses information within a finite neighborhood.
Policy optimization is challenging in this setting due to the global dependence, and

a centralized approach can be intractable for large-scale networks.
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Chapter 3

ADVERSARIAL PREDICTIONS

Predictions play a important role in enhancing online control performance, par-
ticularly when dealing with uncertain or adversarial environments. In contrast to
purely stochastic models, the adversarial prediction model enables robust perfor-
mance guarantees without relying on specific probabilistic assumptions regarding
the predictions and uncertainties. Under this adversarial model, we show that the
classic MPC-style policies, requiring only a short prediction horizon, can demon-
strate near-optimal performance in a wide range of dynamical systems and cost
functions. Moreover, with exact predictions, the performances of MPC-style poli-
cies improve at an exponential rate as the prediction horizon increases. With inexact
predictions, the impact of an error for predicting further into the future decays ex-
ponentially with respect to the temporal distance. In turn, the theoretical analysis
offers valuable insights into designing better MPC-style policies in applications such

as adaptive bitrate streaming.
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video streaming.” In Proceedings of the ACM SIGCOMM 2024 Conference, pp.
613-644. 2024.

3.1 Perturbation Analysis

Perturbation analysis examines how changes in a system’s parameters—such as
initial states, dynamic functions, or cost functions—affect the solutions of a finite-
time optimal control problem. By quantifying how these solutions deviate when
parameters are perturbed, perturbation analysis provides guarantees about how errors
that come from inexact predictions or finite prediction horizons propagate through

the online process of running an MPC-style policy.

A core component of both the design of MPC-style control policies and our analysis
is the following finite-time optimal control problem (FTOCP). Given a time interval
[t1, 2], the FTOCP solves the optimal sub-trajectory subjected to the given initial
state z, terminal cost F, and a sequence of (potentially noisy) parameters &;,.,,—1, {s,,

as formalized in the following definition.

Definition 3.1.1 (FTOCP). The finite-time optimal control problem (FTOCP) over
the time horizon [t1, 2], with parameters &y, 1,1 = (24, Wi,:1,-1, {1,) and terminal
cost function F(-;-), is defined as

t—1

52 (€113 F) = min Z FfiCesuswe) + F (X405 81)

Yty =1 =
.t Xpy1 = g1 (g, U Wy), Vi <t <1y,
se(xe ui;we) <0, Vi <t <ty
Xty = 215 3.1

and a corresponding optimal solution as wff Elnnls F)-

The components of &|;, ;,; correspond to different elements in FTOCP. z;, corre-
sponds to the initial state. wy;,.,—1 correspond to the uncertainty parameters for
intermediate time steps. It is shared between the dynamics function g;, cost func-
tion f;, and the constraint function s;. {;, is the parameter of the terminal cost.
Sometimes, when we need to write down the components of &|;, ;,] and the context

is clear, we use the shorthand (z;,, w;,.;,) to denote (z;,, Wr,:1,—1, Wi, )-

As aremark, Definition[3.1.T|formulates FTOCP in a general form. In many settings,

there might be less uncertainties that we want to consider (e.g., unconstrained, or
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Figure 3.1: Illustration of the exponentially decaying perturbation.

deterministic cost functions). The FTOCP in (3.I) does not include a terminal
constraint set. To compensate for this, we allow the terminal cost F(-; {;,) to take
value +oco in some subset of R". For example, a terminal cost function that we
frequently use later is the indicator function of the terminal parameter {;,, where
{1, € R". We use I to denote such indicator terminal cost (i.e., I(ys,; {,) = 0 if

Vi, = ¢, and I(yy,; &;,) = +oo otherwise).

Theorem 3.1.1 (Meta Perturbation Bound). Consider the FTOCP defined in (3.1).

Given any parameters €[4, 1,1 = (2, Wiy:1-1, {1,) and fitlm = (23,5 W:‘11t2—1 45

‘ﬁ;f (&11,0205 F )y — l/’;f (ff;l,m];F)Xh
ty—t1—1

/UlHZtl - Z;IH + Z /llh—7|||WT _ W,T” +/lt2—t1||§t2 _ 5;2”
7=0

<C

hold for all time intervals [ty, t;].

Instantiation with SOCO

Perhaps the most straightforward instantiation of Theorem[3.1.1]is in SOCO. Recall
that the classic setting of SOCO is an online game played by an agent against an
adversary: at each time step 7, the adversary reveals a hitting cost function f;, a
switching cost function ¢;, and a disturbance (or exogenous input) w,. The agent
picks a decision point £, € R”, and incurs a stage cost of f;(£;) + & (%7, £1—1; Wr_1).
The agent seeks to minimize the total cost it incurs throughout the game. The offline
optimal cost is defined as the minimum cost if the agent has full knowledge of the
costs and disturbances at the start of the game. Instead of analyzing the performance
of an online algorithm directly, our focus is on studying how the perturbations of the
system parameters (initial state, terminal state, and disturbances) impact the offline
optimal solution. We consider the case when the terminal state is fixed to £,,, which

is given as one of the problem parameters.
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To begin, observe that when the initial state Xo, terminal state X, and the disturbances
w are given, the optimal p-step trajectory of SOCO can be obtained from the

unconstrained optimization problem

p-l p
§ (R0, 5p) = argmin 3 fr(80) + ) Eclinfeiiben). (32)
R R =1
where the objective is a convex function of the decision variables £y.,_1. Since
(3.2) is an unconstrained optimization problem, the gradient of its objective equals
zero at i (%o, W, £p). Using this, we can further show that the directional derivative
of i (%o, W, %,) along some direction e, denoted by y, satisfies the linear equation
M ) = 6, where symmetric matrix M is the Hessian of the objective and vector ¢
is determined by the direction e. A special structure of the objective of (3.2) is
that the correlations only occur in two consecutive time steps. This implies that its
Hessian M is block tri-diagonal. Such tri-diagonal structure of M has been noted
by previous work, e.g., Amos et al., 2018, and have been leveraged to solve the
linear equation My = ¢ quickly. In contrast, we focus on the exponential decay
phenomena M~! exhibits, i.e., the magnitudes of entries decay exponentially with
respect to their distances to the main diagonal (Demko, Moss, and Smith, [1984).
Bounding each entry of y = M~!§ separately gives us the following perturbation
bound.

Theorem 3.1.2. Given a tuple (X9, W, X)) that contains the initial state, the distur-

bances, and the terminal state in this order, we consider the optimal solution of the
SOCO problem

p-l p
§ (R0, W, %p) = argmin )" fr(&e) + > (e, feo1; Weo1)
M | 7=1
indexed by 1,...,p — 1. Assume f, : R" — R is u-strongly convex, ¢, : R" x

R" x R" — R is convex and €-strongly smooth, and both are twice continuously
differentiable for t = 1, ..., p, then

|67 (£0, 0, ) — G (£, ", 27|

p—1
< Co A5 ko = £gll + D A" e =il 257 I, - %II)
7=0

-1
foralll <h < p—1, where Co = (20)/pand dg=1-2- (\/1 (20 /p0) + 1) .
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We defer the formal proof of Theorem [3.1.2]to Appendix [3.A] As a remark, we do

not require the hitting cost f; to be strongly smooth, or the switching cost ¢, to be

strongly convex in Theorem [3.1.2]

Instantiations in Unconstrained LTV Systems
We study the FTOCP with LTV dynamics:

th—1 th—1

W;f(f[zl,tz]Q F) = argmin Z filxy) + Z cr (ug) + F(x1,5 41y)

Xyirgstiyin =1 =¢) 1=t

S.t. X41 = A;X; + B[ut +ws, 11 <1 <1y, (33)
xl] = Zl‘]a
where &4, 1,1 = (2, Wi-1,¢1,). Because we often set F to be the indicator

function I that is defined as I(x; ) = 0 if x = ¢ and I(x; ) = +co otherwise, we

introduce the shorthand gb;f Eln]) = g[/;f (é[41.1,13 ) to simplify the notations.

As is standard in studies of regret and competitive ratio in linear control problems,

we assume the cost functions are well-conditioned.

Assumption 3.1.1. The cost functions satisfy the following conditions:

1. fi(-) is both m g-strongly convex and {¢-strongly smooth for all t.
2. ¢4(+) is both m-strongly convex and {.-strongly smooth for all t.
3. fi() and c;(-) are twice continuously differentiable for all t.

4. f;(+) and c;(-) are non-negative, and f;(0) = ¢;(0) = 0 for all t.

5. The terminal cost function F is the indicator function 1 or satisfies that (1)
F(-; () is twice continuously differentiable and m ¢-strongly convex for all {;

(2) For a positive constant £, we have
IVeF (x50) = Vo F (x5 ) < €pllE = ¢l forall x, £, ¢

Note that assumptions (1) through (3) are quite common (Li, Chen, and Li, 2019;
Li, Qu, and Li, 2021} Goel and Wierman, 2019; Goel, Lin, et al., 2019} Shi et al.,
2020). Assumption (4) is less common, but can be satisfied via re-parameterization
without loss of generality. Specifically, when the minimizers of state cost f; and
control cost ¢; are nonzero, we perform the transformation

X, «— x; —argmin f;(x), u; < u, —argminc,(u),
X u
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Wy «— w; + A;argmin f;(x) + B, arg min ¢, (u).
X u

The intuition of this transformation is that, when the minimizer of the cost function
for the next step is known, we can always perform a translation in the state and

control space to align the minimizer with the origin.

Additionally, we need to assume the dynamics are controllable. 1t is crucial that
the dynamical system can be steered from an arbitrary initial state to an arbitrary
final state via a finite sequence of admissible control actions. For linear time-
invariant (LTI) systems, the full-rankness of the controllability matrix completely
characterizes the reachability of the state space, which is generally used as a standard
assumption for analysis (Zhang, Li, and Li, 2021; Mania, Tu, and Recht, [2019;
Astrom and Murray, 2008). This can be generalized to parallel assumptions for

LTV systems as follows. We begin with a definition.

Definition 3.1.2. For a dynamical system with linear time-varying dynamics x;+1 =
Ax;+ By +wi,t =0,...,T — 1, the transition matrix ®(t3,t1) € R™" (from time

step t| to t,) is defined as

A,2_1At2_2 . -A,l ifl‘z > 1

q)(tz,tl) = f y
iftr) <

and the controllability matrix M (t, p) € R™"P) s defined as
M(t,p) = [®(t+p,t+1)B,, ®(t+p,t +2)Bps1,...,D(t+ p,t + p)Brsp] .

The dynamical system is called controllable if there exists a constant d € Z, such
that the controllability matrix M (t, d) is of full row rank for any t = 0,...,T — d.
The smallest constant d with such property is called the controllability index of the

system.

Given the above definition, we can state the key assumption necessary for the
analysis of LTV systems. We use a slightly stronger assumption than being merely
controllable, which we refer to as (d, o)-uniform controllability. It is a natural
generalization of its counterpart for LTI systems (see Assumption 2 in Mania, Tu,
and Recht, 2019, where (d, o) is instead named as (¢, v)).

Assumption 3.1.2. There exists positive constants a, b, and b’, such that

1A\l < a, |B:|| < b, and ||B]|| < b’
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hold for all time stepst =0, ..., T —1, where BZ denotes the Moore—Penrose inverse

of matrix B;. Furthermore, there exists a positive constant o such that
Omin (M (t,d)) 2 o

holds for all time stepst =0, ...,T — d, where d denotes the controllability index.

Note that Assumption implies oyin(M(t, p)) > o for all p > d because
appending more columns to a matrix with full row rank will not reduce its minimum

singular value.

We now build upon the SOCO perturbation result to derive a perturbation result
for LTV systems. In particular, we show an exponentially-decaying perturbation
bound for our LTV system by reducing it to SOCO and apply Theorem[3.1.2] As we
have discussed, LTV systems are more difficult than SOCO because the dynamics
prevent the online agent from picking the next state x;,; freely at a given state x;,. We
overcome this obstacle by redefining the decision points as illustrated in Figure[3.2]
Specifically, given state x; at time step ¢ as the last decision point, we then ask the
online agent to decide state x,.4 at time step (¢ + d) rather than x,;; at time step
(t+1).

Since d is the controllability index, x4 can be picked freely from the whole space
R™ regardless of x;. We also utilize the principle of optimality, e.g., if X;.1k, Usk—1
is the optimal solution to /"% ((z,, Wy.+x—1, Zr+x)), then Xi:js Uizj-1 18 the optimal
solution to w{((x,-, wi.j-1,x;)) forany ¢t <i < j < t+ k. Therefore, the trajectory
between time ¢ and (7 + d) can be recovered by solving wfd((xt, Wrtrd—1>Xt4d))-
So we are able to formulate a valid SOCO problem on the sequence of time steps

tLt+d,t+2d,....

Naturally, the hitting cost at time step (z + d) remains the same, while the switching

. t+p .
cost becomes Y,”d (¢, Wes+d—1, Xr+a) ), where the function Y, is defined as

t t
Yt+p((zz, Weit4p—1» Zz+p)) = Lz+p (21, Weit+p—1» Zz+p) - ft+p(Zr+p)- (3.4)

An illustration of the reduction can be found in Figure 3.2] We would like to point
out that our reduction from optimal control to SOCO is novel in that it leverages
the principle of optimality to apply to more general LTV settings, as opposed to the
reduction via control canonical forms in Li, Chen, and L1, [2019|that is specific to LTI
systems. Unlike the switching costs in Goel, Lin, et al., 2019; Goel and Wierman,
2019; Chen, Goel, and Wierman, 2018; Argue, Gupta, and Guruganesh, 2020
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which are explicitly defined as the ¢,>-distance or squared £>-distance, the switching
cost Yfrp here is defined implicitly as the optimal value of an optimization problem.
Lemma[3.1.3|shows that the switching cost defined in (3.4)) satisfies the requirements
of Theorem [3.1.2] which allows us to obtain the desired perturbation bound.

1
Y¢ (x0. wo.a-1>%a) Y2 (xa. Wad-1, X2d) YO hya(X-1d> W=D divd-15 Xvd)
I I
¢1(X1, X0, Wo) &y (%o, X1, W) Gy (Ry, Ky, Wy-1)
Or——0c——ollo-=——"0
fl(lffl) fz(”fcz) fAv—l(”va—l)
Jfa(xa) fada(xa)  Sfoo-vaXp-1a)

Y22 (xa. Wa2d-1» X2a)

vl (d'\l Ud+1 @ Ud+2 H2d-1 e >
" . ...
calua) N Havi (uas)) NAasz (uas2) c2a-1(u2a-1)

fa(xq) Sav1 (xa+1) Sav2(xa+2) fra(x2q)

Figure 3.2: Illustration of the reduction from LTV to SOCO. Here we consider a
simple example where t = 0 and p = vd. At time step 0, the agent cannot steer the
system to an arbitrary target state at the next time step due to dynamical constraints.
However, given (d, o)-uniform controllability, the controller is able to enforce an
arbitrary target state after d time steps, which prompts the transformation to a SOCO
problem with a decision point in every d time steps.

Lemma 3.1.3. Under Assumption[3.1.1and[3.1.2] for integer p > d, we have

LW (Epap)) is Ly (p)-Lipschitz in Ejppap);

2. & (E[1:14p)) s convex and Ly (p)-strongly smooth in &(;.14p).

Here Li(p) = C(p) (1+¢€-C(p)/m.), La(p) = €- C(p)* + > - C(p)*/mc, where
¢ =max({y, L),
0(a*?) ifa>1;
C(p)=10(p? ifa=1;
o)  ifa<l.

In Lemma we use O (-) to hide quantities a, b, and 1/0; the precise expression
of C(p) and the proof of Lemma [3.1.3] can be found in Appendix Using the
reduction from LTV to SOCO, we obtain a perturbation bound for the LTV systems
in Theorem [3.1.4] the proof of which is deferred to Appendix
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Theorem 3.1.4. Consider the FTOCP defined in (3.3) and with a horizon length
p > d. Under Assumptions[3.1.1|and[3.1.2} given any parameter sets

é‘:[l,l‘+p] = (xl" Wt:t+p—1’ §t+p) and fi[,[.'.p] = (-x;7 W;Zl+p—1 ’ §;+p),

we have
e Enipls g =91 Efapps v
p-1
< C (b =il + A" e = wie [l + 477G - §z+p||) :
7=0

Here we define Ly = maXg<p<24-1 L2(p), and the constants are given by

1= (1 ) (\/1 + (2Lo/mo) + 1)_1)M_1,
-1
C:max{l,g—F}-zLO-(1—2(\/1+(2Lo/mc)+1) 1) .

mpr me

Theorem [3.1.4]allows us to bound the distance between any two trajectories so long
as they can be expressed as the optimal solutions of the FTOCP (3.3)). For example,
to bound the norm of each state in the predictive trajectory ¥/ (x, {; F), we only
need to set x” = 0, ¢’ = 0 in the first inequality because an all zero trajectory can be
expressed as y” (0, 0; F).

More examples of FTOCP exponentially decaying perturbation bounds can be found
in Lin, Hu, Qu, et al., 2022 and Chen, Lin, et al., 2024, Note that this property does
not hold for all dynamics/costs, and counterexamples are provided in Lin, Hu, Qu,
et al., 2022,

3.2 From Perturbation Bounds to Control Performance Guarantees

We first introduce the general predictive online control problem including the set-
tings, the objective, available information, and the predictive controller class. Then,
we introduce the MPC algorithm, which is a widely-used predictive controller that
we focus on. Specifically, we consider a general, finite-horizon, discrete-time opti-
mal control problem with time-varying costs, dynamics and constraints, namely

T-1
min Z Ji(xe,uis wy) + Fr(xr; wy)
X0:T,U0:T-1 =0

S.te X1 = g (Xp, Uy wy), VO<t<T,
Sl‘('xlaul;wz’f) SO, VOSZ<T’ (35)
xo = x(0).
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Here, x; € R" is the state, u; € R™ is the control input or action; f; is a time-varying
stage cost function, g, is a time-varying dynamical function, and s, is a time-varying
constraint function, all parameterized by a ground-truth parameter w; (unknown to
an online controller); and Fr is a terminal cost function parameterized by w7, that

regularizes the terminal state.

The offline optimal trajectory OPT is obtained by solving (3.5)) with the full knowl-
edge of the true parameters wy ... In contrast, an online controller can only observe
noisy estimations of the parameters in a fixed prediction horizon to decide its current
action u, at each time step ¢. For example, MPC picks u, by calculating the optimal
sub-trajectory confined to the prediction horizon. The objective is to design an
online controller that can compete against the offline optimal trajectory OPT. We
use dynamic regret as the performance metric, which is widely used to evaluate the
performance of online controllers/algorithms in the literature of online control (Lin,
Hu, Shi, et al.,[2021}; Yu et al., 2022; Zhang, Li, and Li,|2021) and online optimiza-
tion (Li, Qu, and Li, [2021}; Goel, Lin, et al., 2019; Lin, Goel, and Wierman, [2020).
Specifically, for a concrete problem instance (x(0), w;.;), let cost(OPT) denote the
total cost incurred by OPT, and cost(ALG) denote the total cost incurred by an
online controller ALG. The dynamic regret is defined as the worst-case additional
cost incurred by ALG against OPT, i.e., SUD(0) (cost(ALG) — cost(OPT)).

Model Predictive Control

We focus on Model Predictive Control (MPC), a popular predictive controller. In
this subsection, we first define the available information (predictions) as well as
its quality (prediction power), and how general predictive online controllers make

decisions. Then, we introduce MPC as a predictive online controller.

We represent the uncertainties in cost functions, dynamics, constraints, and termi-
nal costs as function families parameterized by w;: % = {fi(x, us; wy) | wy €
Wit G = {exruswe) | we € Wi, S = {si(xruiswe) | wy € Wy}, and
Fr = {Fr(xr;wr) | wr € ‘Wr}. The online controller knows the function families
Fo.r> Go-r—1, and Sp.7—1 as prior knowledge, but it does not know the true parameters
Wi € ]_[Z=O ‘W;. Instead, at time step #, the online controller has access to noisy

predictions of these parameters for the future k time steps (where k is called the

t+k
T=t

prediction horizon), represented by w;..,x; € [17Z; Wr. The parameter space W,

at each time step r may have different dimensions.

We formally define the quality of predictions by introducing the following notion of
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prediction error.

Definition 3.2.1. The prediction error is defined as p;, = ||wt+T|, - w;‘+T|| for an
integer T > 0. The power of T-step-away predictions (for parameter w) is defined

as P(1) = IT:_OT pZT.

Under this noisy prediction model, a general predictive online controller ALG de-
cides the control action based on the current state and the latest available predictions
of future parameters. We formally define the class of predictive online controllers

considered in this paper in Definition [3.2.2] which includes MPC as a special case.

Definition 3.2.2. A predictive online controller ALG is a function that takes the
current state x, and the available predictions wy...i|; as inputs at time t and outputs

. . uo ui
the current control action u;, i.e., u; = ALG(xt,w,;Hk“). We use xo — x; —

ur— , _ oy oM
. =% ur to denote the trajectory achieved by ALG, and use xo — Xy -

*

Up_
RELEEN uy. to denote the offline optimal trajectory OPT.

We formally introduce MPC using the definition of the FTOCP (Definition [3.1.1).
The pseudocode of this online controller is given in Algorithm|[I] Basically, at time
step t, MPC, solves a k-step predictive FTOCP using the latest available parameter
predictions, and commits the first control action in the solution. When there are
only fewer than k steps left, MPC; directly solves a (T — r)-step FTOCP at time ¢
until the end of the horizon, using the predicted real terminal cost Fr(-; wr;). This

MPC controller (and its variants) has a wide range of real-world applications.

Algorithm 1: Model Predictive Control (MPCy)
Require: Specify the terminal costs F; fork <t < T.

forr=0,1,...,T - 1do
t" — min{t+k,T}

Observe current state x; and obtain predictions wy.,/|;.
. . ’
Solve and commit control action u; = ¢, ((x;, Wer|); Fir ),
end

Next, we give an overview of a novel analysis pipeline that converts a perturbation
bound into a bound on the dynamic regret. We begin by highlighting the form of
perturbation bounds required in the pipeline, and then describe the 3-step process
of applying the pipeline. We apply this pipeline to obtain regret bounds for MPC in

different settings.
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Per-Step Error and Perturbation Bounds

A key challenge when comparing the performance of an online controller against
the offline optimal trajectory is that the online controller’s state x; is different from
the offline optimal state x; at time step ¢. Due to such discrepancy in states, we
cannot simply evaluate the online controller’s action u; via comparison against the
offline optimal action u;. To address this challenge, our pipeline uses the notion of
per-step error (Definition [3.2.3)) inspired by the performance difference lemma and
its proofs in reinforcement learning (RL) (Lin, Hu, Shi, et al., 2021). Specifically,

we compare u; to the clairvoyant optimal action one may adopt at the same state x;

*

if all true future parameters w;.,. are known, which leads to the definition of per-step

error as follows.

Definition 3.2.3. The per-step error e; incurred by a predictive online controller
ALG ar time step t is defined as the distance between its actual action u; and the

clairvoyant optimal action, i.e.,

e = ||ut - l/’zT((xt, W?;T);FT)u, , where u; = ALG(xt,Wz:t+k|z)-

The clairvoyant optimal trajectory starting from x; is defined as
T )
x::T|t =y (X wig)s Fr)x,q-
Note that the clairvoyant optimal trajectory can be viewed as being generated by an
MPC controller with long enough prediction horizon and exact predictions. This
notion highlights the reason why MPC can compete against the clairvoyant opti-
mal trajectory, since the per-step error in a system controlled by MPC; becomes
e; = ||l//§+k((xt, Weerak|t)s Frak)u, — I ((x, wir); FT)u,”- Intuitively, the per-step er-
ror converges to zero as the prediction horizon k increases and the quality of

Wesrkls = Wil = O

predictions improves (i.e.,

This intuition highlights the important role of perturbation bounds in comparing
online controllers against (offline) clairvoyant optimal trajectories. As we have
discussed in Section [3.1] the problem of establishing decaying perturbation bounds
for different instances of the FTOCP (3.1)) can be studied separately with the online
implementation of predictive control. Perturbation bounds may take different forms,
but for the application of our pipeline we require two types of perturbation bounds

that are both common in the literature:

(a) Perturbations of the parameters w;, ., given a fixed initial state z;,

t . r .
l//lf ((th Wl‘1:t2—19 gtz)’ F)utl - lﬁ;f ((Ztl’ W;1:t2—1’ 42), F)u

5l
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tr—1 th—1

< [ 2 =0 Jwe=will el + D aae = 10) - bwe = w

1=t 1=t

+q1(t = t1) |G = || - Nlzan| + @2(t2 = 11) - || = 2] (3.6)

where scalar functions g and g5 satisfy lim; . g;(¢) = 0, 3.2, qi(t) < C; for
constants C; > 1,7 = 1,2. This perturbation bound is useful in bounding the
per-step error e;, as we will discuss in Lemma [3.2.1]

Perturbation of the initial state z;, given fixed parameters wy,.;,:

<gqs3(t—11) ||z - 2,

lpf‘f ((le s thitz—l’ gtz); F) (xt,ul) - '70;? ((Z:‘l’ Wl] -1 th); F) (xt’u,)
, fort e [l‘l,l‘z], (3.7)

where the scalar function g3 satisfies 3;.°, g3(¢) < C3 for some constant C3 >
1. This bound is useful in preventing the accumulation of per-step errors e;
throughout the horizon (see Lemma[3.2.2). Compared with (3.6), the right hand

side of (3.7) has a simpler form.

Existing perturbation bounds usually combine the above two types ((3.6) and (3.7))

into a single equation that characterizes perturbations on z and &;,.;, simultaneously,

e.g., Lin, Hu, Shi, et al., 2021; Shin and Zavala, 2021. Here, we decompose them

into two separate types because they are used in different parts of our pipeline.

A 3-Step Pipeline from Perturbation Bounds to Regret

An overview of the pipeline is given in Figure [3.3]
which illustrates the high-level ideas of the pipeline
that starts by obtaining perturbation bounds, pro-
ceeds to bound the per-step error using perturbation
bounds, and finally combines the per-step error and
perturbation bounds to bound the dynamic regret. In

the following we describe each step in detail.

Step 1: Obtain the perturbation bounds given
in (3.6) and (3.7). The form of the perturbation
bounds depends heavily on the specific form of the
FTOCP, and thus the derivation requires case-by-
case study (e.g., see Section @) Howeyver, off-the-
shelf bounds are available in most cases, as there

has been a rich literature on perturbation analysis of

Step 1. obtain perturbation

bounds & (3.7) —
Dol 3
| e
i | Step 2. bound the per-step %'
i| error e, (Lemmal[3.2.1) :%
| =
. =
| Step 3. bound dynamic |'S
I : =
' |_regret (Lemma[3.2.2) :%

Figure 3.3: Illustrative dia-
gram of the 3-step pipeline
from perturbation analysis to

bounded regret.
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control systems (e.g., Xu and Anitescu, 2019; Na and

Anitescu, 2022; Shin, Zavala, and Anitescu, 2020;

Shin and Zavala, [2021; Lin, Hu, Shi, et al., 2021

and the references therein). The following property summarizes precisely what is
expected to be derived for bounds and in Steps 2 and 3.

Property 3.2.1. Suppose there exists a positive constant R such that the perturbation
bound (3.6) holds for the following specifications: with ty =t and t, = t + k for
t <T -k, (3.6) holds for F : R" — R" be the identity function I, and

3k . /7 _
7t € B(x/, R); Wrrrk-1 € Wirrk-1, Witik—1 =W

Lok 4 € B(x7,,,R) C R

* .
t:it+k—1°

withty = tandty =T fort > T—k, (3.6) holds for z; € B(x},R); wer € Wir,wer =
wip; F = Fr. Further, perturbation bound (3.7) holds for any z;,,z; € B(x;, R)

_ *
and Wy, = Wy, 4,

Intuitively, Property [3.2.1] states that perturbation bounds (3.6) and hold in a
small neighborhood (specifically, a ball with radius R) around the offline optimal
trajectory OPT, which is much weaker than the global exponentially decaying
perturbation bounds required by previous work (e.g., Lin, Hu, Shi, et al., 2021)
in the following sense: (i) in the general settings where the dynamical function
g 1s non-linear, or where there are constraints on states and actions, one cannot
hope the perturbation bound to hold globally for all possible parameters (Shin,
Anitescu, and Zavala, [2022; Shin and Zavala, 2021, Na and Anitescu, [2022); (ii)
the decay functions {g;};=123 are only required to converge to zero and satisfy
Z:io qi(t) < C;, which means the exponential decay rate as in Lin, Hu, Shi, et
al., 2021 is not necessary — in fact, polynomial decay rates can also satisfy these

properties, which greatly broadens the applicability of our pipeline.

Step 2: Bound the per-step error ¢;. The core of the analysis is to apply the
perturbation bounds to bound the per-step error. For MPCy, under Property
this step can be done in a universal way, as summarized in Lemma [3.2.1 below. A
complete proof of Lemma[3.2.1| can be found in Section [3.B|

Lemma 3.2.1. Let Property hold. Suppose the current state x; satisfies
x; € B(x;,R/C3) and the terminal cost Fy of MPCy is set to be the indicator

function of some state X(wyy ;) that satisfies X(Wik)) € B(x7,,,R) fort <T — k.
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Then, the per-step error of MPCy. is bounded by

k
e < Z_:‘) ((C% + Dx*) ~q1(7) + qz(T)) prr+2R ((C% + Dx*) ~q1(k) + QZ(k)) :
(3.8)

Lemma[3.2.1]is a straight-forward implication of perturbation bound (3.6) specified
in Property [3.2.1] To see this, for ¢t < T — k, note that the per-step error e; can be
bounded by

€r = ”‘/’?—k (xz5 Wt:t+k—1|r,f(wz+k|t);H)u[ - WtT(xt, W?:T; FT)uz“ (3.92)
= ‘/’tHk (xz, Wt:t+k—1|t’f(wz+k|t); I)u, - ‘ﬂ;+k (xz, W?:t+k—1’xj+k|t; I[)ul (3.9b)
k-1
< D (Il - q1(@) + q2(0)) pre
7=0
+ (Illl - 9106+ g2(0) [£Ovina) = x| (3.9¢)

Here, we apply the principle of optimality to conclude that the optimal trajectory
from x; to x7,, (ie., Wik (x,, Wkt Xkl I) in (3.9b)) is a sub-trajectory of the
clairvoyant optimal trajectory from x, (i.e., ¥ (x;, wi: Fr) in (3.9a)), and is
obtained by directly applying perturbation bound (3.6). Note that ||x,|| < C% + Dy,

and that both X (w;4x|;) and x7, . are in B(x}, ,; R) by assumption and by perturbation

bound (3.7) specified in Property[3.2.1], we conclude that (3.8) hold for# < T—k. The
case t > T — k can be shown similarly. We defer the detailed proof to Section [3.B

Step 3: Bound the dynamic regret by Z,T:_Ol e?. This final step builds upon

perturbation bound (3.7), and aims at deriving dynamic regret bounds in a universal
way, as stated in Lemma[3.2.2]below. Specifically, under the assumption that a local
decaying perturbation bound in the form of holds around the offline optimal
trajectory OPT, and the property that per-step errors e, are sufficiently small, we
can show that the online controller will not leave the “safe region” near the offline
optimal trajectory as specified in Property[3.2.1] and thus the dynamic regret of ALG
is bounded as in (3.10) (note that ALG is not confined to MPC, but is allowed to be
any algorithm with bounded per-step errors). We provide an intuitive illustration in
Figure[3.4 A complete proof of Lemma[3.2.2]can be found in Section[3.B]

Lemma 3.2.2. Let Property hold. If the per-step errors of ALG satisfy e; <
R/(C32Lg)f0r all time steps T < t, the trajectory of ALG will remain close to OPT at
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Figure 3.4: Illustration of the per-step error accumulation over time.

timet, i.e., x; € B(x;, R/C3). Further, ife; < R/(Cng)for all t < T, the dynamic
regret of ALG is upper bounded by

T-1 T-1
cost(ALG) — cost(OPT) = 0 Jcost(OPT) . Z e? + Z e . (3.10)
=0 =0

Summary. Combining Steps 2 and 3 of the pipeline yields the following Pipeline
Theorem for MPCy (see Theorem[3.2.3). Basically it states that, when the prediction
horizon k is sufficiently large and the prediction errors p; . are sufficiently small,
Lemma and Lemma can work together to make sure that MPCj never
leaves a (R/C3)-ball around the offline optimal trajectory OPT; thus we obtain a

dynamic regret bound.

Theorem 3.2.3 (The Pipeline Theorem). Let Property hold. Suppose the
terminal cost Fy.x of MPCy is set to be the indicator function of some state X(W;.x|r)
that satisfies X(Wik)1) € B(x7,,, R) for all time steps t < T — k. Further, suppose
the prediction errors p,, are sufficiently small and the prediction horizon k is

sufficiently large, such that

k R R
> ((&+2e ) a0+ 20 pros2r ([ & + 2 ant + 0] <

P
=0 G C3 Lg

Then, the trajectory of MPCy will remain close to OPT, i.e., x, € B(x}, R/C3) for
all time steps t, and the dynamic regret of MPCy. is upper bounded by

cost(MPCy) — cost(OPT) = 0 (\/cost(OPT) -E + E) , (3.11)
where E = ¥X20 (q1(7) + q2(1)) P(7) + (q1(k)* + g2(k)*) T.

The proof of Theorem [3.2.3| can be found in Section To interpret the dynamic
regret bound in (3.T1)), note that we have cost(OPT) = O(T) as a result of our model
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assumptions. Thus, the dynamic regret of ALG is in the order of VTE + E. When
there is no prediction error, the regret bound O ((q(k) + g2(k)) - T) reproduces the
result in Lin, Hu, Shi, et al.,[2021}, and the bound will degrade as the prediction error
increases. It is also worth noticing that, when the prediction power improves over
time as the online controller learns the system better and £ = Q(InT'), the dynamic

regret can be o(T).

Instantiation: Unconstrained LTV Systems
In this section, we consider the following special case of problem (3.5]), where the
dynamics is LTV and the prediction error can only occur on the disturbances w;:

T-1

min Z (f ) + f(ug)) + Fr(xr)

X0:T>U0:T-1 =0
S.t. X1 = A[xt + Btl/l[ + W::, VO<t< T, (312)
xo = x(0).

We summarize all necessary assumptions below in Assumption [3.2.1]

Assumption 3.2.1. Assume the following holds for the online control problem in-

stance (3.12):

e Cost functions: {fj }tT:_Ol, {r }tT:_Ol, Fr are nonnegative u-strongly convex and
t-smooth. And we assume f;(0) = f(0) = Fr(0) = 0 without the loss of
generality.

e Dynamical systems: The LTV system {A;, B;} is o-uniform controllable with
controllability index d and ||A;|| < a, ||B|| £ b, and IIBITH < b’ hold for all
t, where Bj denotes the Moore—Penrose inverse of matrix B;.

® Predicted quantities: ||w:|| < D,, holds for all w;, € ‘W; and all t.

Under Assumption [3.2.1] we can again apply the perturbation bounds shown in Lin,
Hu, Shi, et al., 2021|to show Property In particular, we already know that
for some constants H; > 1 and A; € (0, 1), perturbation bounds (3.6) and
hold globally for ¢1(t) = 0, g2(t) = Hi A}, and g3(¢) = H . Since both of these
perturbation bounds hold globally, radius; R in Property [3.2.1| can be set arbitrarily,

2LgH;

and we shall take R := max {Dx*, w} so that Theorem |3.2.3| can be applied

to MPCy with terminal cost Fy (3 wik;) = I(-;0). This leads to the following

dynamic regret bound:

!'Uniform controllability is defined in Assumption
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Theorem 3.2.4. In the unconstrained LTV setting (3.12), under Assumptton [3.2.1)
when the prediction horizon k is sufficiently large such that k > In ( (1H/l B ) /In(1/1y),
the dynamic regret of MPC, (Algorzthml) 1) with terminal cost Fyx (+; Wisk)r) = 1(+;0)
is bounded by

k-1 k—1
cost(MPCy) — cost(OPT) < O +|T - Z ATP(7) + A4T2 + Z ATP(7)

A complete proof of Theorem [3.2.4] can be found in Appendix When there
are no prediction errors, the bound in Theorem reduces to 0(/1’1< T), which
reproduces the result of Lin, Hu, Shi, et al., 2021} Further, it is also worth noticing
that due to the form of discounted sum Zf;é /lIP(T), prediction errors for the near

future matter more than those for the far future.

3.3 Application: Networked Online Convex Optimization

We consider online optimization in a networked system where each nodes individu-
ally decides on an action at each period and the objective is to minimize a global cost
over a finite time horizon k. Specifically, we use a graph G = (V, &) to represent
the network where V denotes the set of nodes. Two nodes v and u interact with each
other if and only if they are connected by an undirected edge (v,u) € &. At each
period t = 1,2,..., H, each node v picks an n-dimensional local action x; € D/,
where n is a positive integer and D} C R" is a convex set of feasible actions. The
global action at period ¢ is the vector of all local actions x; = {x} } ey, and incurs a

global cost, which is the sum of three types of local cost functions:

* Node costs: Each node v incurs a time-varying node cost f;"(x}), which charac-
terizes the local preference for its local action x; .

* Temporal interaction costs: Each node v incurs a time-varying temporal inter-
action cost ¢/ (xy,x}_,), that characterizes how its previous local action interacts
with the current one.

 Spatial interaction costs: Each pair of nodes (v, u) over an edge ¢ € & incurs
a time-varying spatial interaction coslﬂ s¢(x},x;"). This characterizes how their

local actions affect each other.

In our model, the node cost is the part of the cost that only depends on a node’s current

local action. If the other two types of costs are zero, each node will trivially pick the

2Since e is an undirected edge, the order in which we write the two inputs (the action of v
and the action of u) does not matter. Note that sf can be asymmetric for nodes v and u, e.g.,

sC(x), 28 = s¢(x,x)) = ”x + 2x} ||
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minimizer of its node cost. Temporal interaction costs encourage the local actions
at each period to be “compatible” with the previous local actions. For example, a
temporal interaction could be a switching cost that penalizes large deviations from
the previous action in order to make the trajectory of local actions “smooth.” Such
switching costs can be found in work on single-node online optimization, e.g., Chen,
Goel, and Wierman (2018)), Goel, Lin, et al. (2019), and Lin, Goel, and Wierman
(2020). In multi-product pricing, a general switching cost can be used to capture the
impact of the previous price on the current demand. Spatial interaction costs, on the
other hand, can be used to enforce some collective behavior among the nodes. For
example, spatial interaction can model the probability that one node’s actions affect
its neighbor’s actions in diffusion processes on social networks (Kempe, Kleinberg,
and Tardos, 2015)); or model interactions between complement/substitute products

in multiproduct pricing (Candogan, Bimpikis, and Ozdaglar, 2012).

To this point, we summarize all necessary elements that define a specific instance of
the Networked OCO problem in Definition This is useful later for defining the
class of Networked OCO problem we study and defining the performance metrics

rigorously.

Definition 3.3.1. An instance of the Networked OCO problem is characterized by
a tuple with 4 entries, (G, H,xo,{f,c{,s{,D}}ic[H],vev,ccs), that contains the
graph, the number of periods, the initial actions, and the set of all local cost

functions/constraint sets.

To study any instance of the Networked OCO problem, it is useful to separate the
global cost at each period into two parts based on whether the cost term depends
only on the current global action or whether it also depends on the previous action.
Specifically, the part that depends only on the current global action x; is the sum
of all node costs and spatial interaction costs. We refer to this component as the

(global) hitting cost and denote it as

fla) =) 0D+ >0 sl a.

veV (v,u)e&

The rest of the global cost involves the current global action x; and the previous

global action x;_;. We refer to it as the (global) switching cost and denote it as

ci(xnx) = ) el ar).

veV
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Given an instance p of the Networked OCO problem, the objective of the de-
centralized online algorithm is to minimize the total global stage costs in a finite
horizon H starting from a given initial global action x at period 0: cost,(ALG) =
Zfi 1 (fi(x) + ¢/ (x4, x,-1)) , where ALG denotes any decentralized online algorithm
used to solve the Networked OCO problem. The offline optimal cost is the clairvoy-
ant minimum cost one can incur on the same sequence of cost functions and the initial

global action xq at time step 0, i.e., cost, (OPT) := min,, ,, Zfil (fi(x) + ¢ (xpy x1-1)) -

We measure the performance of any online algorithm ALG by the competitive ratio
(CR), which is a widely-used metric in the literature of online optimization, e.g.,
Chen, Goel, and Wierman (2018)), Goel, Lin, et al. (2019), and Argue, Gupta, and
Guruganesh (2020). The competitive ratio is defined as the worst-case ratio between

cost,, (ALG) and cost, (OPT) over a class of problem instances.

Definition 3.3.2. The competitive ratio of a given online algorithm ALG for a class
of problem instances P is the supremum of cost(ALG)/cost(OPT) over problem

instances in class P, i.e.,

CRp (ALG) = sup cost, (ALG)/cost, (OPT).
pEP

Finally, we define the partial hitting and switching costs over subsets of the nodes.
In particular, for a subset of nodes S € “V, we denote the joint action over S as
x3 := {x/ | v € S} and define the partial hitting cost and partial switching cost over
S as

G N ALC O R S G N

veS (v,u)e&E(S+)
), x) ) = Z e (x/,x]_). (3.13)
veS

This notation is useful for presenting decentralized online algorithms where the

optimizations are performed over the r-hop neighborhood of each node.

Predictions and Locality

We assume that each node has access to local cost functions up to a prediction horizon
k into the future, for themselves and their neighborhood up to an observation radius
r. In more detail, recall that N, denotes the r-hop neighborhood of a node v, i.e.,
N ={u €V |dg(u,v) <r}. To pick a local action x; at period ¢, node v can use

k steps of future node costs, temporal interaction costs, and spatial interaction costs
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Figure 3.5: Illustration of available information for agent v at period ¢t with
k = 2 and r = 1, for the network with V = {uj,u»r,v,u3,us} and & =

{(u1,u2), (u2,v), (v, u3), (u2, u3), (u3,us)}).

within its 7-hop neighborhood, {{(f* ,c% ) |u € N},{s¢ | e € E(N))} hi<r<t+k »

7|t Tt T|t

and the previous local actions in Ny: {x}' , | u € Ny }. Here, f¥ ,c" ,and s_f| , denote

7|t Tl
the best predictions for the future true local cost functions f, ¢, s¢ (r > t) that we

can make at the current period ¢.

We provide an illustration of the local cost functions known to node v at period ¢
in Figure [3.5] In the figure, the black circles, blue lines, and orange lines denote
the node costs, temporal interaction costs, and spatial interaction costs, respectively.
The known functions are marked by solid lines. Note that, in addition to the local
cost functions, node v also knows the local actions in N| at period ¢ — 1, which are

not illustrated in the figure.

To ease the presentation, we first focus on the case when the k-step predictions
of cost functions are exact. Specifically, exact predictions mean f T"| =17 cZ| ;=
cZ,siV =s¢forallt <7 <t+kandu € V,e € & Then, we discuss how to

model the prediction errors when the predictions are inexact and how they affect the

performance of the proposed algorithm.

Localized Predictive Control (LPC)

The design of LPC is inspired by the classical model predictive control (MPC)
framework (Garcia, Prett, and Morari, 1989), which leverages all available infor-
mation at the current period to decide the current local action “greedily.” In our

context, when a node v decides its action x; at time #, the available information
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includes previous local actions in the r-hop neighborhood and k-period predictions
of all local node costs and temporal/spatial interaction costs. The boundaries of all

available information, which are formed by {r — 1} X N] and ON ((tk’vr)), are illustrated
in Figure [3.6]

The pseudocode for LPC is presented in Algorithm For each node v at pe-
riod ¢, LPC fixes the actions on the boundaries of available information and then
solves for the optimal actions inside the boundaries. Specifically, for an instance
p = (G, H,xo,{f,c],s{, D} }ie[H],vev,ccs) Of the Networked OCO problem, de-
fine W,(,k(:)v) ({y?_l |ue N} {27 | (t,u) € 0N(k,r)}) as the optimal solution of the

(tv)
problem

t+k—1
r—1 r r r r

7=t
s.t.x’ =y, Yu €N,
X =7 ¥(r,u) € 9N (3.14)

T (tv)?

xy e DY, V(t,u) € N(k_l’r_l),

T (t,v)

where the partial hitting cost and partial switching cost f5 and ¢ for a subset §
of nodes were defined in (3.13). When the context is clear, we use the shorthand

w;’f(’:’)v) ({y;‘_1 1, {z?}). Note that w;’f(’:’)v) ({y;‘_1 1, {z?}) is a matrix of actions (in R")
k—1,r-1)

indexed by (7,u) € N]()’ ) Once the parameters {y" |} and {z7} are fixed, the

node v can leverage its local predictions to solve the optimization problem in (3.14).
LPC fixes the parameters {y}  } to be {x;" , }, which are the previous local actions
in N, and fixes the parameters {z%} to be the minimizers of the predicted local
node cost functions at nodes in N ((tkvr)) The selection of the parameters at nodes

in N ((tkvr)) plays a similar role as the terminal cost of classical MPC in single-node

settings.

For a single-node system, MPC-style algorithms are perhaps the most prominent
approach for optimization-based control (Garcia, Prett, and Morari, |1989) because
of their simplicity and excellent performance in practice. LPC extends the ideas

of MPC to a decentralized setting in a networked system by leveraging available

3To simplify notation, in cases when the prediction horizon exceeds the whole horizon length
H, we adopt the convention that £} (x;) = %fo“z, ¢} =s¢{ =0and Dy =R" fort > H, where u
is the strongly convexity coefficient defined in Assumption[3.3.1] These extended definitions do not
affect our original problem with horizon H. Note that every node has access to exact predictions of
the local cost functions with t > H with this convention.
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predictions in both the temporal and spatial dimensions, whereas classical MPC
focuses only on the temporal dimension. This change makes our algorithm simple
and practical for applications including multi-product pricing but also leads to
significant technical challenges in the analysis. For ease of presentation, we first
study the case when all the predictions are exact and discuss how to generalize the

results to include inexact predictions.

Algorithm 2: Localized Predictive Control (for node v)

Parameters: Prediction horizon k& and observation radius r.

forr=1t0 Hdo
Receive information {x}" , | u € N} and the predictions

H( Tu|f’cl;|t) |ue Ny}, {si“ | e € E(N))}rsr<r (3.15)

Solve the optimization problem (3.14) with the predicted local cost

functions in (3.13):

k, k,

w0 (i lueND), {04 (r,w) N (DY)
where 64 = arg minyepu fT”V(y).

Choose local action x} to be the (z, v)-th element in the solution.

end

Our analysis is based on standard smoothness and convexity assumptions on the

local cost functions:

Assumption 3.3.1. Forpu > 0,7 < 00, {r < 00,5 < 00, the local cost functions and
feasible sets in an instance (G, H,xo,{ f,", ¢/, {, D{ }ie[H],veV ecs) Of the Networked
OCO problem satisfy:

e [ :R" — Ryq is u-strongly convex, {s-smooth, and in C 2.

e ¢/ : R"XR" — Ry is convex, {r-smooth, and in C 2,

e 57 : R" X R" — Ry is convex, {s-smooth, and in Cc?;

e D} C R"satisfiesint(D}]) # 0 and can be written as D] := {x} € R" | (g/)i(x]) <

0,V1 <i < m)}, where each (g!'); : R" — R is a convex function in C>.

Intuitively, under Assumption [3.3.1] the Networked OCO problem becomes easier
as the coeflicient u increases. This is because a larger u encourages each node to
choose its local action closer to the minimizer of the node cost function f;”, which
makes every node more “independent” from each other. In contrast, the problem

becomes more challenging as the coefficient {7 increases, because that strengthens
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Figure 3.6: Illustration of LPC with k& = 3,7 = 2 on a line graph (the underlying
graph is replicated over the time dimension). The orange node marks the decision
variable at (#,v). The green part denotes the actions in N at period (¢ — 1). The
blue “U” shape denotes the boundary of available predictions for node v at period t.

the need to ‘“coordinate” between the decisions at different periods. Similarly,
increasing the coefficient £g or the maximum degree A of each node also makes the
problem harder by requiring more coordination between different nodes. Therefore,
the competitive ratio bounds that we derive depend on the quantities £7/u and Afs/ u,
which characterize the difficulty of a class of Networked OCO problems.

We define the set of possible configurations for Networked OCO Y as
{(M’ ff» €T9 fSa A» h) | M € R>Oa ff € R>09 €T € R209 €S € RZO’A € N9 h:N— N}

Each configuration tuple in Y specifies a class of Networked OCO problems for
which we study the competitive ratio of LPC, and this relationship is defined formally
in Definition[3.3.3]

Definition 3.3.3. For any configuration tuple (u,ls,{r,ls,A,h) € Y, we de-
fine P(u, tr, tr, s, A, h) as the set of problem instances of Networked OCO p =

(G, H,x0,{f,c},s{, D} }ie[H] vev ece) that satisfy:
1. Assumption with (u, Ly, r, Ls);
2. degree(v) < A for every node v € V;
3. |0NC| < h(r) for every nodev € V andr € N.
Before presenting our main results in the most general form, we first provide two

examples that instantiate our competitive ratio bounds for LPC under specific pa-

rameters. The first example, Corollary [3.3.1] is a special instance of our main result
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(Theorem [3.3.5) when ¢7/u and Als/u are bounded by some specific constants. A
formal proof can be found in Section

Corollary 3.3.1. For any tuple v = (u,ly, tr,ls, A, h) € Y that satisfies A > 3,
br/u < 0.88, Als/u < 0.28, and h(y) < C -27/? for some constant C < o, if
the prediction horizon k and observation radius r are sufficiently large such that
(14 227 4234 2_4k) C? < %, then the competitive ratio of LPC for the problem

class P(v), denoted as CRp,,\(LPC), is bounded above by

ff + Afs + 201
)i

ff +Afg+2f7" . C2
)i

1+(1+C- -CZ)-z-’+(2+c§- 27k

where Ci < oo and Cé < 0o are numerical constants.

Corollary [3.3.1| shows that, if we increase the prediction horizon k and observation
radius r simultaneously, the competitive ratio of LPC improves exponentially to 1
with a decay factor of % Besides the constant upper bounds on ¢7/u and Afg/ u, this
corollary also requires the boundary of any y-hop neighborhood to not grow too fast
(i.e., h(y) = 0(2"/%)). Note that any graph such that 4(y) = poly(y) satisfies this
assumption. Corollary [3.3.1]is a special case of our general result, Theorem [3.3.5]
which holds for any ¢7/u, Als/u, and h(y) (without the constraints), with decay
factors which (instead of 1/2) are functions of ¢7/u and Afs/u. We note that the
decay factor is smaller than % for small enough £7/u and Als/u.

Our second example, Corollary [3.3.2] studies the dependence of the exponential
decay factor on the quantities ¢7/u and Afs/u as they approach zero. A formal
proof can be found in Section

Corollary 3.3.2. For any tuple v = (u,ly, tr,ls, A, h) € Y that satisfies A > 3,
tr/ip < %, ts/p < A77, if the prediction horizon k and observation radius r are
sufficiently large that A~ + 4 . 2712k < ﬁ, then the competitive ratio of LPC for

the problem class P (v), denoted as CRp () (LPC), is bounded above by

1+ |1+C5-

Cr+ Alg+20r\  [A3fc\2 O+ Al + 20 k
f § T)( KS) +(2+C&¢)(%) ,
u U 1 r

where Cg and C z,t are numerical constants.

Corollary shows that the constraint on 4 (y) can be relaxed when if the quantities
{r/u and Als/u are sufficiently small. Further, the decay factor of the competitive
ratio bound tends to zero if A is a fixed constant and both ¢7/u and €s/u tend to
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zero. While we simplify the expression in Corollary [3.3.2] by adopting the worst-
case upper bound on A(y), i.e., h(y) < A”, our general result in Theorem [3.3.4]
considers general i(7y), which can give tighter bounds for the decay factors.

Perturbation Analysis for Networked OCO

The key idea underlying our analysis of LPC is that the impact of perturbations to
the actions at the boundaries of the available predictions of a node decays quickly,
in fact exponentially fast, in the distance of the boundary from the node. This quick

decay means that small errors cannot build up to hurt algorithm performance.

In this section, we formally study such perturbations by deriving several new results
that generalize perturbation bounds for Networked OCO. Our bounds capture both
the effect of temporal interactions as well as spatial interactions between node
actions, which is a more challenging problem compared to previous literature that
only considers either temporal interactions (Lin, Hu, Shi, et al., 2021) or spatial

interactions (Shin, Anitescu, and Zavala, 2022) but not both simultaneously.

More specifically, recall that for each node v at period ¢, LPC solves an optimization
(k.r)
p(tv)

1} X NJ and ON ((tkvr))) are fixed. By the principle of optimality, we know that if the

actions on the boundaries are selected to be identical to the offline optimal actions,
(k.r)

p(tv)’
due to the limits on the prediction horizon and observation radius, LPC can only

problem ¢ where actions on the boundaries of available predictions (i.e., {f —

one can decide the optimal current action for a node by solving ¥ However,
approximate the offline optimal actions on the boundaries (we do this by using the
minimizer of node cost functions). The key idea to our analysis of the optimality
gap of LPC is by first asking: If we perturb the parameters of 1//[(7]((’:)”, i.e., the fixed
((tkvr)) , how large is the resulting change
on the local action x} in the optimal solution to (3.14), which corresponds to the

decision of LPC?

actions on the prediction boundaries N

Ideally, we would like the above impact to decay exponentially fast with respect to
either the prediction horizon k or the observation radius r. We formalize this goal
as exponentially decaying local perturbation bound in Definition [3.3.4, We then
show in Theorems and [3.3.4] that such bounds hold for the class of Networked
OCO problems in Definition[3.3.3]

Definition 3.3.4. We say an exponentially decaying local perturbation bound holds



47

for the problem class P (u, Ly, r, Us, A, h) if there exists non-negative constants

Cy=Ci(br/u, (Als)/p) < oo, pr=pr(lr/u) <1, and ps = ps((Als)/p) <1,
such that for any p € P(u,tys, lr,€s, A, h) and arbitrary, {(y} )}, {(z7)}, and
{(z%)}, we have:
(k r u u (k r u
w0 (b =) gy = 50 (A D)

DY A eny

k,
(u,T)eﬁN((t’Vr))

Note that the exponentially decaying local perturbation bound in Definition [3.3.4]
only consider the perturbations on {(z¥)}, which are caused by the limited pre-
diction/observation power. We ignore the perturbations on {(y )} because we
quantify the error of LPC at each period by comparing its decision against the
clairvoyant optimal trajectory that starts from the same previous actions {(x;_)}.
The form of exponentially decaying local perturbation bound in Definition [3.3.4]
is already sufficient to bound this per-period error, and the accumulation of past
per-period errors can be handled separately by exponentially decaying perturbation
bounds on the global scale, which previous works have established (Lin, Hu, Shi,
et al., 2021; Lin, Hu, Qu, et al., 2022).

We illustrate two important consequences of the exponentially decaying local per-
turbation bound before proving it holds for Networked OCO in the following section.
The first consequence is that when a unit of perturbation is applied to a node on
the prediction boundary, the magnitude of impact on the optimal solution decays
exponentially with respect to the temporal (or spatial) distance when the spatial (or
temporal) distance is fixed (see Figure[3.7). The second is that when we apply a unit
of perturbation at every node on the decision boundary, the impact on the decision
decays quickly when k and r are increased simultaneously. Only increasing either
one of k or r while the other is fixed cannot decrease the magnitude of the impact
significantly. We illustrate this effect in Figure[3.§]

As we discuss in Section [3.2] perturbation bounds are important because they
guarantee that (a) the online decision of predictive control is close to the clairvoyant

optimal action and (b) the past “error” does not accumulate over time.

Exponentially Decaying Perturbation Bounds
The exponentially decaying local perturbation bound defined above is similar in spirit

to two recent results, i.e., Lin, Hu, Shi, et al. (2021) derives a similar perturbation
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Figure 3.7: Simulation of exponentially decaying local perturbation bound. We
study the optimal solution to (3.14) when k = 6, r = 5. In the left figure, we perturb
the constraint at a random node in {(#,u) | u € dN]} fort =0, 1,...,4 and study
the impact at node (0, v). In the right figure, we perturb the constraint at a random
node in {(k — 1,u) | u € ON,} for j = 0,1,...,4 and study the impact at node
(0,v).

w

~

1 T T T T 1 —4.5

Figure 3.8: The aggregated impact of boundary perturbations when the prediction
horizon and observation radius are (k,r). For each (k,r) pairin {1,...,5}?, we
generate a uniform random perturbation on every boundary constraint at the nodes
in 8N((t’f’vr)) and study the impact on the decision at node (¢, v). We take log on the
impact magnitude, and lighter color means the impact is stronger. From the figure,
we see that one need to balance k and r to reduce the impact of prediction errors on

the decision boundary.
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bound for line graphs and Shin, Anitescu, and Zavala (2022) for general graphs with

local perturbations. In fact, one may attempt to derive such a bound by applying
these results directly; however, a major weakness of the direct approach is that it will
yield pr = ps, i.e., it cannot distinguish between spatial and temporal dependencies,
and the bound deteriorates as max{¢y/u, {s/u} increases. For instance, even if the
temporal interactions are weak (i.e., {7/u ~ 0), pr = ps can still be close to 1 if
Cs/u is large, leading to a large slack in the perturbation bound for small prediction

horizons k.

We overcome this limitation by redefining the action variables. Specifically, to focus
on the temporal decay effect, we regroup all local actions in {7} X N as a “large”
decision variable for period 7 (in Figure [3.5] we would group each horizontal blue
plane in N to create a new variable). After regrouping, we have (k + 1) “large”
decision variables located on a line graph, where the strength of the interactions
between consecutive variables is upper bounded by £7. On the other hand, to focus
on spatial decay, we regroup all local actionsin {7t |t —1 <7 <rt+k}Xx{v}asa
decision variable (in Figure[3.5|we would group each vertical orange line connecting
from7—1tot+k—1 to create a new variable). After regrouping, we have |V| “large”
decision variables located on G, where the strength of the interactions between two
neighbors is upper bounded by f5. Averaging over the two perturbation bounds
(since we have two valid bounds, their average is also a valid bound) provides
the following exponentially decaying local perturbation bound (see Section for
details of the proof).

Theorem 3.3.3. For any tuple (u,{s,{r,ls,A,h) € X, the exponentially de-
caying local perturbation bound (Definition holds for the problem class
P(u, Cr, br, s, A, h) with Cy = Z—VA;S"T and

o=\l -2 (VT T +1) o= 12 (VT + 1)

Note that, as £7/u (respectively €s/u) tends to zero, pr (respectively ps) in Theo-
rem also tends to zero with the scaling pr = @(\/KT_/,u) (resp. ps = G)(\/M)).
One may wonder if it is possible to derive a tighter bound on the decay factor. For
example, if we can show pr = O(f7/u) and ps = O(fs/u), the lower bound on k
and r to achieve a target competitive ratio can be decreased by half.

Next, we provide a tighter bound (through a refined analysis) for the regime where

w is much larger than {7, {s. Specifically, we establish a bound with the scaling
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or = O(lr/u) and pg = O(Ls/u). Again, it is not possible to obtain this result from

previous perturbation bounds in the literature.

Theorem 3.3.4. Consider a tuple (u,{ys,lr,ts,A,h) € Y. Given any by, by > 0,

_ 1+b ~ 1 _ 1+ALls /u—1
define a = Zyzo(Hler]bz)yh()’)» a = Zyzo(m)yh()’) and ys = m-
Suppose a,d < o and u > max{8alr, Als(b| + by)/4}. Then the exponentially

decaying local perturbation bound (Definition holds for P (u, Ly, tr, s, A, h)

: _ a 2a>Als/u
with Ct = maxX{ 55—z, 75y 35 (06, 5,) (1430 7))

4a¢
pr = 'uT, ps = (1+b1+Dby)ys.

Note that p7, ps < 1 follow from the condition on u. Also observe thatyg = ©(fs/u)
as €s/u — 0.

The main difference between this result and Theorem [3.3.3|is, instead of dividing
and redefining the action variables, we explicitly write down the perturbations along
spatial edges and along temporal edges in the original temporal-spatial graph. We
observe that per-period spatial interactions are characterized by a banded matrix and
that the inverse of the banded matrix exhibits exponential correlation decay, which
implies the exponentially decaying local perturbation bounds holds if the perturbed
boundary action and the impacted local action we consider are at the same the time
step. However, for a multi-period problem, to characterize the impact at a local
action at some time step due to perturbation at a boundary action at a different time
step is a difficult problem. To address this difficulty, the main technical contribution
of our proof is to establish that a product of exponentially decaying matrices still

satisfies exponential decay under the conditions in Theorem [3.3.4]

Our condition on a,d < oo and u > max{8afy, Als(b; + by)/4} characterizes a
tradeoff between the allowable neighborhood boundary sizes (), and how large u
needs to be compared to the interaction cost parameters {7, {s. At one extreme, if
h(y) = A7, then by setting by = 2A—1 and b, = 4A% —2A, we obtain @ = d = 2 but
must make a strong requirement on g, namely, u > max{16{7, A3fs(1 — ﬁ)} (as
we discussed in Corollary [3.3.2). At the other extreme, if 4(y) < O(poly(y)) (as
is the case if G is a grid), then a, d < oo holds for any by, b, > 0 and we can impose
a weaker requirement on u: for example, taking by = b, = 1 yields a requirement
u > max{8aly, Als/2} (where a = 2720(%)”1(7)); which grows only linearly in

A, and compares favorably with the > Q(A?) requirement which arose earlier.
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From Perturbations to Competitive Bounds
We now present our main result, which bounds the competitive ratio of LPC using

the exponentially decaying local perturbation bounds defined in the previous section.

Before presenting the result, we first provide some intuition as to why the pertur-
bation bounds are useful for deriving the competitive ratio bound. Specifically, to
bound the competitive ratio requires bounding the gap between LPC’s trajectory
and the offline optimal trajectory. This gap comes from the following two sources:
(1) the per-period error made by LPC due to its limited prediction horizon and ob-
servation radius; and (ii) the cumulative impact of all per-period errors made in the
past. Intuitively, the local perturbation bounds allow us to bound the per-period
error made jointly by all nodes in LPC. Then, we use the perturbation bounds from
Lin, Hu, Shi, et al. (2021) to help us bound the second type of cumulative errors:
Although a per-period error is incurred at every period, the impact of past errors
decays exponentially fast, so their accumulative effect does not grow with respect to

time.

We present our main result in the following theorem. A formal proof can be found
in Section

Theorem 3.3.5. For any tuple v = (u, s, r, s, A, h) € X, suppose the exponen-
tially decaying local perturbation bound (Definition holds with the decay
factors pr and ps. Define

pcg=1-2- (\/1 + 2l /p) + 1)_] , and C3(r) = Z h(y) -pg, forallr € N.

y=0

If the prediction horizon r and observation radius k are large enough such that
h(r)? -pgr +C3(r)? -p%k -pék <cir=c1(ly/u, br/u, (Als)/ ), then the competitive
ratio of LPC for the problem class P (v) is bounded above as

CRp(u)(LPC) = 1+ 0 (h(r)2 - pg) +0 (C3(r)2 : pgi) .

Here the Q(-) and O(-) notations hide factors that depend polynomially on s [ u, {7 [ 11,
and (Als)/p; see Appendix[3.D}

Recall that h(r) denotes the size of the largest r-hop boundary in G. The bound
_({-9r

in Theorem [3.3.5| implies that if /(r) can be upper bounded by poly(r) - p,

2

for some constant ¢ > 0, the competitive ratio of LPC can be upper bounded by

1+0(p5) + O(p?), because C3(r) can be upper bounded by some constant that
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depends on ¢ in this case. Therefore, the competitive ratio improves exponentially

with respect to the prediction horizon k and observation radius r (see Corollary[3.3.1]
(1-0)r
2

for an example). Note that the assumption i(r) < poly(r) - p; is not partic-
ularly restrictive: For commonly seen graphs like an m-dimensional grid, i(r) is

polynomial in r, so ¢ = 1 works.

More generally, note that pg will converge to zero as {s tends to 0. Thus, for graphs
with bounded degree A < oo, there exists 6 = §(A) > 0 such that, when {5/u < 6,
the spatial decay factor pg (from either Theorem [3.3.3] or Theorem [3.3.4) will be
small enough that, e.g., h(r) < A" = O(p;:_‘); i.e., t = 1/2 works. Therefore,
we can eliminate the dependence on A(r) and C3(r) in the competitive ratio by

making additional assumptions on €5/ u, and a concrete example has been discussed

in Corollary[3.3.2]

A Lower Bound
In this section, we show the competitive ratio in Theorem [3.3.5|is order-optimal by
deriving a lower bound on the competitive ratio of any decentralized online algorithm

with prediction horizon k and observation radius r. The specific constants and a
proof of Theorem [3.3.6]can be found in Section

Theorem 3.3.6. Consider any tuple v = (u, €y, lr, €s, A, h) € X that satisfies A > 3.
The competitive ratio of any decentralized online algorithm ALG with prediction

horizon k and observation radius r for the problem class P (v) is bounded below as

CRp()(ALG) = 1 +Q(A5) + Q(%).

_1\2
Here, the decay factor At is given by A = (l -2 (\/1 + (46r/p) + l) ) . The de-

s oi _ s/ o= (1-4v3. _1)?
cay factor Ag is givenby Ag = 373 (0Ts /1) ifACs/u < coy ds = (1 —4V3 - (Als/u)~2
otherwise, where cy =~ 267.3 is a numerical constant. The €(-) notation hides fac-

tors that depend polynomially on 1/ u, €7, and {s.

While Theorem highlights that Theorem is order-optimal, the decay
factors A7, A in the lower bound differ from their counterparts pr, ps in the upper
bound for LPC. To understand the magnitude of the difference, we compare the
bounds on graphs with bounded degree A. The decay factors are a function of the
interaction strengths, which are measured by ¢s/u and €7/u. Our lower bound on

the temporal decay factor A7 and upper bound p7 only differ by a constant factor in
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the log-scale, and the same holds for the lower/upper bound in terms of the spatial

decay factor.

To formalize this comparison, we derive a resource augmentation bound that bounds
the additional “resources” that LPC needs to outperform the optimal decentralized
online algorithm Here the prediction horizon k and the observation radius r can
be viewed as the “resources” available to a decentralized online algorithm in our
setting. We ask how large do k and r given to LPC need to be, to ensure that it
beats the optimal decentralized online algorithm given an observation radius r* and

prediction horizon k*?

We formally state our result in the following corollary and provide a proof in

Section[3.D]

Corollary 3.3.7. Consider any tuple v = (u,ly,{r,ls,A,h) € Y that satisfies
A > 3 and h(y) = poly(y) - p;)// * Wwhere the O notation hides a factor that
depends polynomially on y. Suppose the optimal decentralized online algorithm
achieves a competitive ratio of c(k*,r*) on the problem class P (v) with prediction
horizon k* and observation radius r*. There exists a mapping (k*,r*) — (k,r)
such that LPC with prediction horizon k and observation radius r is at least as
good as that of the optimal decentralized online algorithm on class P(v) and

sup,- limsup;-_,, k/k* < 4 and sup,. limsup,._,, r/r* < 32.

Note that we establish Corollary [3.3.7|based on the local perturbation bound in The-
orem [3.3.3| rather than Theorem [3.3.4] This approach does not require assumptions
on the relationship among u, {7, and £s. In contrast, Theorem [3.3.4] can give better
resource augmentation bounds under stronger assumptions on y, {7, and {s, which

we state formally below and provide a proof in Section [3.D

Corollary 3.3.8. Consider any tuple v = (u, {s, {1, s, A, h) € Y that satisfies A > 3
and Cr/pu < %, ts/u < A7, Suppose the optimal decentralized online algorithm
achieves a competitive ratio of c(k*, r*) on the problem class P (v) with prediction
horizon k* and observation radius r*. There exists a mapping (k*,r*) — (k,r)
and a positive constant C = C(A) < oo such that LPC with prediction horizon k
and observation radius r is at least as good as that of the optimal decentralized
online algorithm on class P (v) and sup,. im sup,._,, k/k* < 1+C/log(u/tr) and
Supg- lim sup,._, r/r* < 2+ C/log(u/ls).

4See, e.g., Roughgarden (2020), for an introduction to this flavor of bounds for expressing the
near-optimality of an algorithm.



54

In the extreme that the ratios {7/u and €s/u tends to 0, to match the competitive
ratios of the optimal decentralized algorithm, the resources required by LPC satisfies
k/k* — landr/r* — 2. Here, r/r* does not converge to 1 because we do not make
additional assumptions about the function %, which characterizes how fast the y-hop
neighborhood in G grows. Thus, a part of the spatial decay factor pgs is diverted to
handle the exponentially growing /. To improve the convergence limit to r/r* — 1,

we need to additionally assume the boundary size function 4 grows polynomially,
Le., h(y) = poly(y).

Inexact Predictions
In this section, we discuss how to generalize the performance bounds for LPC
(Algorithm [2)) to the case when the predictions of future cost function are inexact,

i.e., the predicted functions {f

u U
T|t’C

T|t’
{f¥, c%, s¢}. Here, we use the subscript 7 | ¢ to denote the prediction for period 7

si| [} are different from the true functions

(t > t) made at period ¢. Such cases can arise naturally in applications, for example,

when we predict the future demand functions in multi-product pricing.

Under inexact predictions, the degradation of the performance depends on the mag-
nitude of the prediction errors. To quantify such errors, we make a structural
assumption by assuming that the uncertainty on each local cost function comes
from an uncertainty parameter and the prediction error of this function is the result
of noisy estimation of its uncertainty parameter. Specifically, we introduce the
notations of generalized local cost functions

fUiRYxQ, — Rsg, & :RYXRY X A, — Ry, 5 : RY xR x B, — Ry,

which can help to put both the true and the predicted cost functions under a unified
framework. Here, {Q, },cv, { A, tuev, and {B, }.cg are convex compact subsets of
a finite-dimension Euclidean space R”. The relationship between the generalized
local cost functions and the true/predicted local cost functions are summarized in
the table below:

True cost function at period T Prediction made at period 1(t < 7 <t + k)
Node fE0xt) = s (@) U () = Fr ol
Temporal | cy(x7,xY_ ) = (xy,x)_ 5 (a))") C¥|t(x¥’x:—1) = 5¥(x¥’x¥_1§a’¥|t
Spatial sS(xH,xY) =82 (x4, xY;(B9)Y) silt(xﬁ,xﬁ) =50 (x%, xYs i\r)'

Previous works (Chen, Agarwal, et al., 2015; Chen, Comden, et al., 2016; Lin, Hu,
Qu, et al.,|2022)) also use similar ways to parameterize the prediction errors. With the
notation of generalized local cost functions, we can measure the prediction errors,

1.e., the error for predicting 7 periods into the future, by the total distance between
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true/predicted uncertainty parameters (see, e.g., I'r defined in Theorem[3.3.10). An
instance of Networked OCO with inexact predictions problem is characterized by the
generalized cost function, the ground truth uncertainty parameters, and the predicted

uncertainty parameters. We provide the formal definition in Definition[3.3.5]

Definition 3.3.5. An instance of the Networked OCO with inexact predictions is

characterized by a tuple with 7 entries,

(G, H,x0,{f. €], 5, D} }retmvev cces Qv Ay, Betveveces 1€ Hemys 1€ Herm)s

that contains the graph, the number of periods, the initial decisions, the set of all
cost functions/constraint sets, the sets of uncertainty parameters, the ground true
uncertainty parameters, and the predicted uncertainty parameters. Here, for every

t € [H], we use the notations
& = {(w))" (@), (BY) hvev.ece, and & = {w‘-;h«’ a’:“’ﬁi|,}t§r<t+k,ve’v,e68-

Based on the results we have derived for LPC with exact prediction, a critical step
in our proof is to bound the difference between the decisions of LPC with inexact
predictions and its counterpart with exact predictions in terms of the magnitude of
the prediction errors. To achieve this, we show a generalized local exponentially
decaying perturbation bound that also considers the perturbations on uncertainty
parameters. The proof of the generalized perturbation bound requires an additional
assumption that the gradients of the generalized local cost functions with respect to

decision variables are ¢,,-Lipschitz in uncertainty parameters.

Assumption 3.3.2. For u > 0,{y < oo,{y < 00,{g < 00,{,, < oo, the local cost
functions and feasible sets for allt € [H],v € V, e € & satisfy:

e foreveryve Vande € &, Q,, A,, and B, are convex compact subsets of R™.
e D} C R"satisfiesint(D;) # 0 and can be written as D] = {x} € R" | (g/)i(x/) <
0,V1 <i < m)}, where each (g!); : R" — R is a convex function in C>.
° ftv R'"XQ, — Rygisin C2. It also satisfies that
ul, < Vivf;v(xlv;w,v) < Lpl,, Vx] e R w] € Q,,
||Vw;vitvf,V(x,V;w,v)|| < 4y, Vx; € D;,w; € Q,.

o ¢ :R'"XR"XA, = Rypisin C2. It also satisfies that

0= V%XY’X,” l)E,V(xtv,x,v_l;atv) < lrhn, Vx/,x) | €R", @] € A,,

< ,Vx/,x]_, € D],a] € A,.

V(Y VLY
Vazvv(xtv,x;’_l)cz ()Ct s X 15 @ )
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® 5 :R"XR"X B, — Ry isin C2. Let e = (u,v). It also satisfies that

0= V2, ,s(x",x): B) = Lsloy, V!, x! € R", B¢ € B,,

(x}.x))

||V,3;V(x;4,xtv)sf(x;‘,x,v;ﬂf)” < l,,Vx/',x; € D}, € B,.

Intuitively, the Lipschitzness assumption we make on the generalized local cost
functions guarantees that the impact of inexact predictions of the uncertainty pa-
rameters on the optimal solution can be bounded, and the Networked OCO with
inexact problem gets more challenging as ¢,, increases. We define the set of possi-

ble configurations for Networked OCO with inexact predictions as

Y = {(, €, b, €5, Ly A ) | 1 € Rog, £ € R, b € Ry, &s € Ry, £, € R,
AeN,h:N— N}

Each configuration tuple in Y specifies a problem class of Networked OCO with
inexact predictions. We define this relationship in Definition [3.3.6]

Definition 3.3.6. For any configuration tuple v = (u, €y, tr, s, €y, A, h) € Y, we
define P (v) as the set of problem instances of Networked OCO with inexact predic-

tions

(G, H,x0, {f,€],5, D} }re[H1vev ccss 1@ Avy Behvev.eces 1€ Hetays 1€ b re[m)s

that satisfy:

1. Assumption with (u, Cr, tr, €s, €y);

2. degree(v) < A for every node v € V;

3. |0NC| < h(r) for every nodev € V andr € N.

Before picking a local action x; at time #, agent v can observe k periods of fu-
ture node costs, temporal interaction costs, and spatial interaction costs within
its r-hop neighborhood but with noisy prediction of the uncertainty parameters,
LU ), (cta) | e Niy{(s5.82,) | e € BN hsrepni » and the previ-
ous local actions in Ny {x;" | | u € Ny}. To simplify the notations, we define

A k, .
g = (! a Lu e NJY {BE, | e € E(ND) M hise<iss

which are the predicted parameters at period t;

(fz(f(’:,)v))* = {(w?)" (a7)" [u € N} {(BD)" | e € E(NY) i<r<rsks
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which are the ground true parameters. We define

k, k, k,
G0 (o T e Npp A2 | (row) € N1k

as the optimal solution of the problem

t+k—1
mn 3| 3 s 3] ettt o

=t \yeNr-! ueN;!

+ Z Q)(XT’XT”B(M (1)))

(u, 61)€5(NC"1)
s.t.x’ =y’ ,Yu €N,

t—
X =724 Y(t,u) € aN((f ’)>, (3.16)

X € D Y(t,u) € N((fv)l =,

When applied to Networked OCO with inexact predictions, LPC first construct
the local cost functions within the prediction horizon and observation radius by
treating the predicted uncertainty parameters as the true ones. Then, it follows the
same procedure as LPC with exact predictions to decide the current local action.

The pseudocode of LPC for Networked OCO with inexact predictions is given in
Algorithm 3]

Algorithm 3: Localized Predictive Control with Inexact Predictions (for node
V)

Parameters: Prediction horizon k and observation radius r. for r = 1 to H do
Receive information {x}" , | u € N} and observe

L @) (o) L€ NIL (s B9) | e € B(ND) izrera

Choose local action x} to be the (7, v)-th element in

(k) (k). glk.r)
p(w)({xt lueNg}, {04 (r.u) eaN T} 8 w)

the solution of (3.14), where 0y, = argminyepy fr'(y; o).
end

We generalize the exponentially decaying local perturbation bound in Definition[3.3.4]
to also include perturbations on the predicted uncertainty parameters. This gener-
alization is necessary to study how the magnitude of the prediction errors affect the

performance of LPC. We provide the formal definition the generalized in Defini-

tion[3.3.7
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Definition 3.3.7. We say the generalized exponentially decaying local perturba-
tion bound holds for the problem class 15(/1, Ly, br, ls, by, A, h) if for non-negative

constants
C1 = Ci(fr/p, (Als)/p) < 00,Cy = Ca(by /1) < o0,
pr = pr(tr/p) <1, ps = ps((Als)/p) < 1,

such that for any p € P(u, ty,br, s, by, A, h) and arbitrary

DAY AL E Y

we have:
(k r) uy. (k) (k r) u (k)N
p (t,v) ({yt 1} {ZT} f(tv)) p(tv) ({yt 1} {(ZT) } (é:(t v)) )(I,V)H
SO 3] e ey s -dist (65 647),

(u,T)eaN((tk Vr))

where dist,, (§ (tkvr)) (§((k Ty ) is defined as
DT AT et — @i+ DT P e ek - (et

k-1,r—1 k,
(M’T)EN((t,v) ) (u,T)EN((t!Vr;

t+k

+ >y P lBe - 8.

7=t ee&E(NY)

Using a similar approach with our proof of Theorem [3.3.3] we state the following
generalized exponentially decaying local perturbation bound for Networked OCO

with inexact predictions and defer its proof to Section

Theorem 3.3.9. For any tuple v = (u,ts,lr,ls, 0, A, h) € Y, the generalized
exponentially decaying local perturbation bound (Definition [3.3.7) holds for the

2VA€S€T C

problem class P(v) with C = = and

or = \/1 ) (\/1 T /) + 1)_1,,)5 - \/1 ) (\/1 T (Als/p) + 1)

We present our main result for LPC with inexact predictions in Theorem [3.3.10]

-1

Theorem 3.3.10. For any tuple v = (u, €y, {1, s, 4, A, h) € Y, suppose the gen-
eralized exponentially decaying local perturbation bound (Definition holds
with the decay factors pr and ps. Define

-1 r
e =1-2. (\/1 + (26 0 + 1) . and C3(r) = Y h(y) - p}. forall r € .
v=0
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If the prediction horizon r and observation radius k are large enough such that

B - p¥ + Co(r) - p3E - p2 < e2 = eally/p br/p. (Ls) /), then, for any
problem instance p in the class P(v), the total cost of LPC satisfies

cost, (LPC) — cost, (OPT)

<0 (h(r)2 P+ C3(r)? - pgi) . cost, (OPT) + 0

k-1
C3(r)* ) p;mp)) ,

=0

where I'z(p) denotes the total error for predicting T time steps into the future on p,

Le.,

w;)+r|t — (W/4r)" a,ll‘}+‘r|t —(@sr)"

I(p) = If(Z’
t=1 \veV
DN

2)
ec&

2
5
veV

ﬁf+7-|t - (ﬂle+7')*

Here the O () notation hides factors that depend polynomially on €¢ [ 1, Or [ u, (Als) [ u,
and €, | .

To interpret Theorem [3.3.10] note that the first (multiplicative) term that involves
cost(OPT) is the same up to a constant factor as the competitive ratio bound derived
in Theorem [3.3.5] for LPC with exact predictions. The second (additive) term is
a weighted sum of the total squared prediction errors I';(p) in the entire horizon.
The exponentially decaying coefficients (p7) indicate that LPC can tolerate more
error in predictions of the more distant future. This also suggests that given limited
resources to improve predictions, improving predictions of the near future may be
more valuable than improving predictions of the distant future. Specifically, for an
instance p of Networked OCO with inexact predictions, recall that I';(p) denotes
the total error of predicting 7 periods into the future on p. Depending on how I'+(p)
grows with 7, there may be an optimal prediction horizon k* under which the cost
of LPC is minimized. The problem of finding the optimal prediction horizon for
an MPC-based algorithm has been studied in the single-node setting (Lin, Preiss,
Anand, et al., |2023; Li, Preiss, et al., 2023)), and generalizing existing results to

Networked OCO with inexact predictions is an interesting topic of future research.

3.4 Application: Adaptive Video Streaming
Adaptive bitrate streaming (ABR) addresses the challenge of delivering consis-

tent high-quality video under volatile network conditions with the goal to balance
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three critical factors: maximizing visual fidelity, minimizing rebuffering events,
and avoiding abrupt bitrate switches. Although existing works make attempts to
apply model predictive control (MPC) for ABR, a straightforward application often
suffers in environments with fluctuating or uncertain throughput predictions. By
drawing on recent advances in perturbation analysis, one can show that MPC be-
comes robust to these prediction errors if the underlying optimal control formulation
satisfies exponentially decaying perturbation properties. To achieve such properties
in the setting of video streaming, we introduce a time-based ABR formulation that
explicitly encodes a buffer cost. The buffer cost follows two intuitions: Empirically,
it penalizes the agent for letting the buffer level get close to the constraint boundaries
even if it does not violate the constraint; Theoretically, it brings in a strongly convex
stage cost on the state that is critical for establishing the exponentially decaying

perturbation properties.

A Time-based ABR Formulation

Our time-based ABR formulation treats a video stream as a continuous flow rather
than a discrete sequence of segments. Consider a streaming session that consists of
N time intervals with fixed duration At in terms of clock time (not video time). The
controller’s task is to select a bitrate for each time interval from a set of available
bitrates R C [Fmin, 'max] t0 optimize for a combination of higher video quality,

shorter rebuffering time, and less frequent bitrate switching.

Let w, denote the average throughput during the n time interval, r, the selected
bitrate for that time interval, and x, the buffer level immediately after that time
interval. Our objective is to minimize the overall cost given as a linear combination

of the three QoE components:

N

Z(V(rn)' wnAt+:8'b(xn)+7'c(rnarn—l) s 3.17)

n

n=1

where

* v(ry) is the distortion cost, which should be a positive, strictly decreasing,
and convex function that models the encoding distortion, e.g., v(r,) = 1/r,. It
is then weighted by the amount of video downloaded during that time interval,
i.e., w,At/r, because the controller downloads a variable amount of video

during each fixed time interval.
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* b(xy) is the buffer cost, which aims to stabilize the buffer level around a

target level &, i.e.,

where € < 1 is a small constant. Note that we purposely do not model the
rebuffering time explicitly to avoid the pitfalls encountered by RobustMPC and

as we show later, this helps SODA achieve theoretical performance guarantees.

* c¢(ry, ry—1) is the switching cost from the previous bitrate to the current bitrate,

c.g., c(rn, rn—l) = (V(rn) - V(rn—l))z'

Coefficients 8 and vy are positive weights for the buffer and the switching cost,
respectively, based on user preferences. The choices for the distortion and switching

cost functions are flexible.

The time-based buffer dynamics are introduced into the optimization problem

through the following constraint:

w, At

Xp = Xp-1 + — At € [0, Xmax],

T'n

where w, At /r, accounts for the variable amount of video downloaded during a time
interval and At accounts for the fixed amount of buffer drained during the same
time interval. Note that we do not allow the controller to violate the buffer range
constraint during the optimization phase when determining the bitrate. Of course,
due to throughput prediction errors, this may sometimes be inevitable during the

execution phase when applying the bitrate decision.

Why a Time-Based Formulation? The time-based formulation allows a cleaner
theoretical analysis over a given throughput sequence (w1, . ..,wy). For example,
consider the throughput function shown in[Figure 3.9] In the time-based formulation,
we naturally have w; = 4, wy = 1, and w3 = wyg = {2}Mb/s given At = {1}s.
By contrast, in the segment-based formulation, the throughput sequence becomes
dependent on the bitrate sequence. Assuming the segment duration is also L = {1}s,
if the controller chooses ri = {2.0}Mb/s and ry = {2.5}Mb/s, then it takes 0.5 and
1 s to download the first and second segments, respectively, resulting in w; = 4 and
wy ={2.5}Mb/s. As such, the segment based formulation gets causally biased due
to bitrate selection ry, ..., ¥y, which in turn makes it difficult to theoretically analyze
the design (Bothra et al., 2023)).
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Figure 3.9: Sample throughput function illustrates why time-based formulation is
better for future prediction.

Incorporating Throughput Predictions

In addition to facilitating theoretical analysis, our time-based formulation is crucial
to ensuring the validity of throughput predictions over the prediction horizon. An
important observation is that bitrate decisions have no causal impact on how long the
throughput predictions are valid for. However, segment-based controllers such as
MPC (Yin et al., 2015)) and Fugu (Yan et al.,|2020) intertwine throughput predictions
and bitrate decisions in non-causal ways. In these designs, for a given available
bandwidth, the throughput prediction horizon spans shorter periods of clock time
when low bitrate is selected compared to when high bitrate is selected. In fact, their
underlying assumption about the validity of the throughput prediction horizon can

vary by "max /" min-

By contrast, the way we incorporate throughput predictions into SODA does not
suffer from this issue. Specifically, just before each time interval, the controller is
given access to a (not necessarily accurate) throughput prediction for the next K
time intervals from a black-box throughput predictor. It is always assumed that the
validity of the throughput prediction is KAt, a fixed value. In general, a throughput
predictor may output a different value for each of the next K time intervals, i.e.,
Opln-1> Dpsijn-1s - - - » Op+K-1|n-1, Where @, ,—1 (m > n) is the throughput prediction
for the m™ time interval given previous download information up until the (n — 1)®
time interval. In other words, a throughput predictor can output a piecewise constant
throughput function for the next KAt time. In practice, though, a typical throughput

predictor outputs a single value that corresponds to a constant throughput function.

Control Mechanism
Inspired by the model predictive control framework, SODA selects a bitrate for each

time interval by optimizing over the next K time intervals and then committing to the
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bitrate decision for the immediate next time interval, i.e., minimizing the following

objective function

n+K-1

d)m|n—1At
Z (V(rm) : - +B-b(xpu) +y - c(rmsrm-1)

m=n m

(Dm|n—1At

subjectto X, = Xp—1 + At,

I'm

Xm € [0,Xmax], Fm €R,

with respect to variables ry, . . ., r,+x—1 and then committing to only the first bitrate

decision r,,.

Solving this optimization problem is computationally expensive, furthermore, it
is unclear what prediction horizon should be used and how accurate throughput

predictions must be in order for SODA to perform well.

Theoretical Design Insights

Our design of SODA is motivated by recent theoretical advances at the interface of
learning and control (Lin, Hu, Shi, et al.,2021; Hazan and Singh, [2022; Agarwal et
al.,[2019; Dean et al., 2020) and smoothed online convex optimization (Chen, Goel,
and Wierman, 2018; Goel, Lin, et al., 2019; Lin, Gan, et al., [2022). In particular,
we design SODA to satisfy an exponentially decaying perturbation property that has
been shown to ensure efficient and robust use of predictions in model predictive
control policies (Lin, Hu, Shi, et al., 2021} Lin, Hu, Qu, et al., [2022). Intuitively,
this property describes the behavior of the solution to the optimization problem
defining SODA as a function of problem parameters, including bandwidth predictions
{®m|n-1}n<m<n+k and the previous buffer level/bitrate. When this property holds,
the impact of perturbing a prediction @,,|,— on the current bitrate decision r,, decays
exponentially with respect to their temporal distance (m —n). The formal definition
of exponentially decaying perturbation generalizes the intuition above to consider
the optimal trajectory and other parameters.

Definition 3.4.1 (Exponentially Decaying Perturbation Bound for ABR). We say the
exponentially decaying perturbation bound holds if there exists uniform constants

C > 0,p € (0, 1) such that the following inequalities hold:

I+ t+
. (é:[”fJfP];O)xT Rz (gfr,wp];())xf‘
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t+p

< Cp™™ (|ovr — o)y |+ i = Vi) +C ) p“—f'(caj - '), (3.18)
=
t+p . t+p , .
o Epis D)y, — (5 [t+p] I[)x ‘
t+p
< Cp (ot — o [+ = v ) + € D oy -
=
+Cp 17 ([0 = |+ Vrapet = Vi) (3.19)
where
f[t,t+p] = ((U'z—l, Vic1); d\)l:t+p; (0't+p, Vt+p+1)) >
’ . ’ ’ . oAY . ’ ’
g[[,t+p] '_ ((O-t—l’ Vt—l)’ Wr:t4p> (Ut+p’ Vt+p+l)) :

Two metrics that we use to measure SODA’s performance theoretically are dynamic
regret and competitive ratio, which are standard in the literature of online opti-
mization Lin, Hu, Shi, et al., 2021; Hazan and Singh, 2022; Agarwal et al., 2019;
Chen, Goel, and Wierman, 2018; Goel, Lin, et al.,[2019. Specifically, let cost(ALG)
denote the total cost incurred by an online algorithm ALG and cost(OPT) denote
the offline optimal cost an agent can incur if it has exact knowledge of all
future bandwidth at the beginning. We say ALG achieves a dynamic regret of R if
cost(ALG) — cost(OPT) < R always holds, and ALG achieves a competitive ratio of
C if cost(ALG) < C - cost(OPT) always holds.

The key idea of our theoretical analysis is leveraging the exponentially decaying
property to bound the per-step error of SODA against the hindsight optimal decision
and the aggregations of such errors over time. To prove the exponentially decay-
ing perturbation, we require a technical assumption that guarantees the controller

can “reach” any desired buffer level by choosing the largest/smallest bitrate (see

Assumption [3.4.1).

Assumption 3.4.1. There exists uniform constants Wyax > Wmin > 0 such that for
any time step t, we have that Wyin < Wy < Wpax holds. We also assume that

Wmin[Fmin = Xmaxs Ad Opmax [ Tmax — 1 < =6 holds for a fixed constant § > 0.

Intuitively, Assumption [3.4.1] guarantees that the controller can always fill up the
buffer at the cost of choosing the smallest bitrate or decrease the bufter level by choos-

ing the largest bitrate. This assumption is used to eliminate extreme boundary cases
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in the analysis, but SODA empirically performs well even when Assumption [3.4.1]is
not strictly satisfied. Using this assumption, we show the exponentially decaying

perturbation property holds for the video streaming problem in Theorem [3.4.1]

Theorem 3.4.1. Under Assumption the exponentially decaying perturbation

bound holds with constants

1
33+ xmax/51)
2

1+ 1+ max{6wmin(wmin+3)s4xmax(wmin+87)}
w?nineﬁ

p=|1-

and

(1 + Wmax) (3Bw? . + max{6wmin(Wmin + 3) #Xmax(Wmin + 8¥)})

3 3+ Xmax /6]
a)minp max

Exact Predictions

When the bandwidth predictions are accurate, a small prediction horizon is sufficient
for SODA to achieve near-optimal performance. In practice, it is desirable to use a
relatively small prediction horizon for a predictive controller like SODA because pre-
diction errors grow dramatically as we predict further into the future. Fortunately,
the exponential decay property that ensures good performance with only a few pre-
dictions. More formally, we present a theorem showing that a small prediction
horizon is sufficient for SODA to achieve near-optimal performance when the predic-

tions within this window are accurate (i.€., @yy-1 = Wy form =n, ..., n+ K —1).

Theorem 3.4.2. [Informal] When the predictions of the bandwidth in future K
steps are exact (i.e., Opp-1 = Wy for m = n,...,n+ K — 1) and the prediction
horizon K > O(1), SODA achieves a dynamic regret of O(pX N) and a competitive
ratio of 1 + O(pX), where p < 1 is the decay factor of the exponentially decaying
perturbation property.

The formal statement of Theorem [3.4.2]is given in Section This result implies
that SODA’s performance approaches that of the optimal sequence of decisions
exponentially fast in the prediction horizon size K; thus, only a small prediction

horizon length is necessary to obtain good performance.

Inexact Predictions
We now relax the exact prediction assumption to prove SODA’s robustness to a certain

level of prediction errors thanks to its exponentially decaying perturbation property.



66

Theorem 3.4.3. [Informal] Suppose the prediction error at each step is bounded
above. The buffer level of SODA will never hit the constraint boundary, i.e., 0 < x, <
Xmax- Further, define & = p2K N+ Zle P¥“E, where E, is the total squared error for
predicting k steps into the future. SODA achieves a dynamic regret of O(VEN + &).

The formal statement of Theorem [3.4.3]is given in Section[3.E] Theorem[3.4.3|shows
that, if the buffer costs are “steep” and the prediction errors on the bandwidth are
relatively small, SODA can achieve a sequence of buffer levels that stay safely away
from the boundaries of buffer constraint [0, xpax]. The dynamic regret of SODA
depends on the magnitude of the prediction errors and the regret improves when the
errors become smaller. SODA acquires this guarantee thanks to its maintenance of
the buffer near a target level x. In contrast, RobustMPC (Yin et al., 2015)) does not
offer the same performance guarantee, thus even small bandwidth prediction errors

can cause the video to rebuffer if the buffer level is near zero.

Computational Efficiency

Solving the predictive optimization problem to determine the exact optimal solu-
tion can be unrealistic in the application of adaptive bitrate streaming, where each
decision needs to be made in the minimum possible time. A critical observation
underlying the implementation of SODA is that it is sufficient to search only for bitrate
sequences that are increasing or decreasing monotonically. We provide a theoretical

justification in the following theorem.

Theorem 3.4.4. [Informal] Suppose SODA is given the predictions that satisfy
Opjp—1 = **+ = Opyk—1|n—1 at an intermediate time step n. Then, the bitrate trajec-
tory solved by SODA can be approximated by a feasible monotonic bitrate trajectory
; X
with an error of O (\/7)
The formal statement of Theorem [3.4.4] is given in Section Theorem [3.4.4]
shows that the true optimal solution becomes closer to monotonic as the weight y
of switching costs increases. While the theoretical bound can be conservative, we
find that even with moderate 7y, the (discrete) decision made under the monotonic

heuristic is usually identical to the true optimal solution on a real trajectory (see

Figure[3.10).
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difference probability (%)

relative switching cost weight

Figure 3.10: The probability that the bitrate decision produced by the approximate
solver is different from that produced by the brute-force solver quickly converges to
0 as switching cost weight increases.

3.A Proofs for the Perturbation Analysis

Proof of Theorem [3.1.2]

In the nextlemma we will use the notation Ag, s to denote the submatrix obtained by
selecting the blocks indexed by some set Sk X S¢ while preserving their relative order.
Specifically, consider a matrix A € R*"™“" formed by w X w blocks A; ; € R™".
Leti; < --- <ijs, be the elements in Sg C {1,...,w}, and j; <--- < jis.| be the
elements in S¢c C {1,...,w}, both in ascending order. Then Ag, 5. € RISkInx|Sc|n

is defined as a block matrix

Ail,jl Ail7j2 Ail,j|sc|
. Ai2,J'1 Aiz,jz T Aiz,j|sc|
Asg,sc = .
Aiwsm’fl Ai|SR|»J'2 Ai\sm’ﬂsc\

For a diagonal block matrix D = diag(Di,...,D,) andaset S C {1,...,w}, we
use the shorthand notation Dy = diag (D,-,,Diz, o ,D,m), where i1 < ... <

are the elements in S.

Lemma 3.A.1. Suppose A is a positive definite matrix in S®" formed by w X w

blocks A; j € R™". Assume that A is q-banded for an even positive integer q, i.e.,
Ai,j = O,Vll — ]l > q/2

Let [ag, bo] (bg > ag > 0) be the smallest interval containing the spectrum o (A).
Suppose D = diag(D;,...,D,), where D; € S" is positive semi-definite. Let
M= ((A+ D)_I)SR s as defined above, where Sg, Sc < {1,...,w}. Then we have
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IM]| < Cy‘i, where the coefficient C, the decay factor vy, and the distance d are

given by
2
2 yecond(A) — 1 fa R ) o
C=—y=|—/——— ,d= min [i—j|.
ao ycond(A) + 1 i€SR.j€Se

Here cond(A) = bg/aq denotes the condition number of matrix A.

Proof of Lemma[3.A.1} We first prove the lemma for the the special case where
D =0.

For the case d # 0, write d = vq/2+« for integers v, « satisfyingv > 0,1 < k < ¢/2.
Following the same approach as the proof of Proposition 2.2 in Demko, Moss, and

Smith, |1984, we see that there exists a polynomial p,, of degree v, where

| (1 eondim)

_1 _ . d"
|47 = pu(@)]] < a0 Zeond(a) L =7V

where the last inequality holds because cond(A) > 1.

Since p, has degree v < %‘i and A is g-banded, the matrix p,(A) satisfies
(pu(A)); ; =0foranyi € Sg and j € Sc. We then obtain

Pl =(a! - (A—l— A)
171 H( . H A,

because 2-norm of a submatrix cannot be larger than that of the original matrix.

<[l = pu(A)] < ¢4,

For the case d = 0, as ||P|| = H(A_])
holds.

sesell < ||A‘1|| — aLO < C, the result trivially

Now we show the general case (where D; = 0 for 1 < i < n) through a reduction to
the special case. Define a positive definite matrix N := (aol + D) € S"“, and then

define matrix H € S™ as follows,
1 _1
H=N2(A+D)N72.
We start by showing that I < H < z—g - I. For any x € R", we observe
x"Hx = xTN_%AN_%x +xTN_%DN_%x
Ta—L _L AL _1
>x N 2apIN 2x+x N DN 2x
= xTN"2(apl + D)N"2x

2
= Ilxll*.
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For the other inequality, we have

x"Hx = xTN_%AN_%x +xTN_%DN_%x
<xTN"ZboIN " 2x +x N :DN ix
= xTN_%(aol + D)N_%x +(by —ao)x "N~ 'x

bo—a

2 0 0 2

— - [Ix]]
aop

Thus I < H < Z—g - I, which gives cond(H) < z—g = cond(A). Note that H is also

g-banded, so we can apply the result of the special case (D; = 0,i = 1,--- ,n) to
obtain that
lE Dssell < 20 < 227,
cona(m-1) 4 o :
where yy = (m) < v. Using this inequality, we conclude that

IPIl = [|((A+ D) Vspscl = H(N—%H—lN—%)

Sr.Sc
< H(aol +Dgy) 71| - I(H Dspsell - H(aol +Ds.)?
1 _
< a—0||(H Dsrsell
< CydA.

Here we apply the fact that H(aol + DS)‘%

1 .
< Vag Since Dg = 0. O

Now we return to the proof of Theorem [3.1.2]

Proof of Theorem Lete = (ej,u",e,)" beavector where eg, ¢, € R" and

p= 1o, 1, - tp-1l,

fory; e R",i=0,1,...,p — 1. Let 8 be an arbitrary real number. Define function
B RP-Dxn o R RPXT  R™ — R, as

p-l p
R(R 11, %0, W0p1,8p) = D Frlfe) + D (e, Bei3 ).
=1 =1

To simplify the notation, we use ¢ to denote the tuple of system parameters, i.e.,

¢ = (X0, Wop—1,%p).
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From out construction, we know that / is u-strongly convex in £1.,_, so we use the

decomposition h = fza + fzb, where

p-l p
IIN 2 Hia 2 NN A
ha@1ip-1.0) = ) SR + 3 e (e femisibe),
7=1 =1

—

o (ip1.8) = ) (Fr(E) = SlleIP).

7=1

bS]

Since /(£ + 0e) is the minimizer of convex function /(-, £ + fe), we see that
Vi, B ( +0e),C +6e) = 0.
Taking the derivative with respect to 6 gives that

oy s d .~ A
V3, A +0e). 2 +00)—-i( +e)

= — VﬁOV)Ql:IFII/’\l(lﬁ(Z +0e),l +06e)ey — Vﬁprlzpilil(lﬁ(f +0e),l + Be)e,
p-1
- Z Vi Vi, h(g (¢ +6e),C +0e) .
7=0

To simplify the notation, we define

M = Vgl:pfﬁ(u}(f +0e),l +0e),whichisa (p — 1) x (p — 1) block matrix,
RO = -V Ve, h( (L +0e), £ +0e), whichis a (p — 1) x 1 block matrix,
RV = —prv)elzp_]i’\l(lﬁ(f +0e),’ +0e), whichis a (p — 1) x 1 block matrix,
KT = —VWTV£]:1,_1fz(1ﬁ(f+ fe), +6e),Y0 < T < p — 1, which are

(p = 1) x 1 block matrices,

where in M, R, R(P)_ the block size is n x n; in K7, the block size is nx r. Hence
we can write

d . =

g0l +0e) =M [ROeo+ RW)e, + > KO

=0

Recall that R, R(P) are (p—1)x1 block matrices with block size nxn. {K Yo<r<p-1
are (p — 1) x 1 block matrices with block size n x r. For R and K9, only the
(1, 1)-th blocks are non-zero. For R(”) and K~V only the (p — 1, 1)-th blocks are
non-zero. For KO, r =1,..., p — 2, only the (7, 1)-th and (7 + 1, 1)-th blocks are

non-zero. Hence we see that

d A A _ 0 _
Elﬁ(§+ Oe), = (M l)h,lRi,l)eO +(M l)h,p—lR;[i)l,leP
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+ (M~ 1)h1K11,uo+(M Dip- 1K(p11)ﬂp 1

+Z(M 1)/’ZTT+1K .2_,_1 M-

Since the switching costs ¢ (-,-,-),7 = 1,..., p are {-strongly smooth, we know

that the norms of
) plp) 0) (p=1) (1)
Rll’Rp ll’Kll’K -1,1° and{K +11}1<T<p 2

are all upper bounded by £. Taking norm on both sides gives that

< (MY pa|lleoll + €| (M) p-1][lle, |

H—W(f +6e)

+ || (M|l ol + €| (M) pt [l

p-2
+ 3 M D p |l (3.20)
=1
Note that M can be decomposed as M = M, + M}, where

M, = le { (zﬁ(f+0e) f+06)
M, =V lp 1hb(z//(g”+9e) {+9e)

Since M, is block tri-diagonal and satisfies (¢ + 2€)I = M, = ul, and M, is block
diagonal and satisfies M, = 0, we obtain the following with Lemma [3.A.T}

2 2 ,h- 2 h-t-
ol € 22 ) € 207 and [ o] € 22,

where A := (vcond(M,) — 1)/(y/cond(My) +1) =12 - (\/1 T 200 + 1)_1

Substituting this into (3.20), we see that

-1
h—7|-1 h—1
< Co |4l 1||eol|+Z/l| T el + 5™ ||e,,||)

H—lﬁ(§+ fe)y

where Cy = (20) /.

Hence we obtain

1920 = b (2 + e = H / L+ He)hdHH

1
< /
0

wp(f +0e),|ldo

p—1
h—1 h—1|-1 —h-1
< Co |5 Meoll + >~ ag ™ Mlpell + 457" eyl
7=0

This finishes the proof. 0
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Proof of Lemma

Before we prove Lemma (3.1.3] we first show two technical lemmas. The first is

about the properties of the optimal value/solution of an optimization problem.

Lemma 3.A.2. Suppose function f(x,y) is convex and L-strongly smooth in (x,y),
u-strongly convex in y, and continuously differentiable. Define functions y*(x) :=
argmin,, f(x,y) and g(x) := miny f(x,y). Then, function y* is ﬁ—Lipschitz and

function g is (L + %)—strongly smooth.

Proof of Lemma[3.A.2] Let y*(x) = argmin,, f(x,y). This function is well-defined
since the strong convexity of f(x,y) in y guarantees that y*(x) is unique. We see

that for all x, x’,

V, £,y () = 0 and Vy (', y* (x')) = 0.

Using these equalities, we obtain

0= (y"(x) =y (x), Vy f (x,y*(x)) = Vy f (X, ¥ (X))
= (") =y (), Vy f (x5, y () = Vi f (5, ¥ (X))
+ (1) =y (), Vy f ey () = Vy (L v ()
> ully* () = YOOI = ly* () =y @I - [V f 0,y () = Yy (7, 37 ()]

b

where we used the fact that a u-strongly convex function / satisfies
(a=b,Vh(a) = Vh(b)) > lla - b||*,Va, b

and the Cauchy-Schwartz inequality in the last inequality. Since f is L-strongly

smooth, we see that
* * 14 1 * / 7 * 7 L /
ly*(x) =y (I < ;||Vyf(x,y () = Vy f (&, y* ()| < ;IIx—x Il

which implies function y* is ﬁ-LipschitZ.
Note that the gradient of g is given by

9y*(x)

Vg(x) = Vaf (5,3 (2)) + Vo (3" () 2

= Vof (x, 5" (%)),

because V, f(x, y*(x)) = 0. Hence we obtain

Vg (x) = Vg(x)|
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<MV f(x,y (%) = Ve f (5, y (D))l

SNV f (e, y™ () = Ve f (3 y DI+ IV f (7, 7 () = Vi f (L y" ()l
< Lilx = x| + LIly"(x) = y* ()|

L2
< (L + —) llx — x|
u

O

The second technical lemma connects the induced 2-norm of a block matrix with

the 2-norms of individual blocks.
Lemma 3.A.3. Suppose A is a w1 X wy block matrix. Let A;; denote the (i, j) th

block of A, 1 <i < w1,1 < j < wjy. The induced 2-norm of A is upper bounded by

W]  wy

Al < ZZIIAUII

i=1 j=1

Proof of Lemma For unit vector x, we have the following:
2

w]

wy
lAx]? = Y 1> Ayx;
s
() 2
< )| 2 lAull- Il
2\ 4
w2 ) w2 )
< D 2 lAul || D Ikl
2\ 4 -
w] w7 )
:ZZMU”’
j=1

i=1

where we used the definition of the induced 2-norm in the first inequality and the

Cauchy-Schwarz inequality in the second inequality. [

Now we come back to the proof of Lemma

Proof of Lemma [3.1.3] To simplify the notation, we define the stacked state vector

y, control vector v, and disturbance vector { as

Yo Vo 4o
V1 Vi &

Yp Vp-1 {p-1
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Recall that the transition matrix ®(¢,, t1) is defined as

A,2_1A[2_2 st At1 ifty > 1
CD(tz, tl) = ) .
ift; <1

Using this, we can express the state vector y as an affine function of initial state x,

control v, and disturbance ¢:

y=8%+S"v+S5, (3.21)
where
0 0 0 ' [ ©(,1)
O(t+1,r+1) 0 0 d(t+1,1)
§C = |D(t+2,t+1) D(+2,t+2) --- 0 LS = |D(t+2,0)],
O(t+p,t+1) O(t+p,t+2) --- D(t+p,t+p) D(t+ p,t)

and S = S¢ - diag(By, . .., Bp-1).

To simplify the notation, we use the shorthand M := M (¢, p) for the controllability

matrix and
RE=[D(t+p,t+1),0(t+p,t+2),...,0(+p,t+p)]

throughout the proof. Since p is greater than the controllability index d, we know

M has full row rank. The dynamical constraints for (3.4) can be written as
Mv=z-®(t+p,t)x — R°C.

Because M has full row rank, we let M" = MT (MM T)_1 be the Moore-Penrose
pseudo-inverse of M. Let V € RP)*(mP=1) be 3 matrix whose columns constitute
an orthonormal basis of ker(M). Then, we can express all feasible control vector v
as

y= M (z _®(1 +p, 1)x — Ré’g) +Vr, (3.22)

where r is a free variable that can take any value in R"7™",

Let F denote the objective function of ff ,1.e.,

p-1
F(y’ V) = (Z ﬁ+T(yT) + Ct+T(VT—1)) + Ct+p(Vp—1)~
7=1
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Since we can express the state vector y and control vector v as linear functions of
X, z, £ and r, we can write the switching cost (3.4)) as an unconstrained optimization
problem

min F(y(x,z,¢,r),v(x,2,,71)), (3.23)

reRmp-n

where functions y(x, z, {,r) and v(x, z, £, r) are determined by

y S*—S"M'®(t+p,t) S'M' S¢—S'MTRS S'V
_ (3.24)

v ~MT®(t + p, 1) M ~MTR?¢ 1%

N N N =

Note that if a # 1, the following is due to Lemma [3.A.3}

=

2 p i

15¢]| < ZZ||¢(I,‘+Z c+DIP] <Y D a2

llj [:11:

_ Va2r2 — (p + 1)a® + P
ja> 1]

By Lemma @], we also have

x i a* -1 v 14
|S™]] < ||M || < 2' PEEER IS"Il < b[|S*]|, and
al? -1
R? <\/ <
1= a2—1 a-1"

Since the norm of a block matrix is upper bounded by the sum of norms of each

block, we see that

<C(p). (325

¥ —S"MT®(t+p,t) SMT S¢—S'MTRE SV
~MT®(t +p,1) M ~MTR? 1%

When a # 1, C(p) is given by

+1

: b(@*' +a-2) [aP—1 1+b b\/(az”+2 —(p+1)a’+p)
= . +
(P) o2(a-1) a’ -1 b |a% - 1|

[ap2 21 1
+l——— ——.
a’?-1 b

If a = 1, by Lemma[3.A.3] we see that

1
2

p i
IS < [ DS D Mg+ it + DIF| <[]

i=1 J:l i=1 ]=

<
Q
=
=
I
S
S
s
p—
N
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By Lemma [3.A.3] we also see that

+ b
IS¥]1 < Vp + 1, [|M7]| < — VP IISTl < bIISEIL 1RSIl < vp.

Therefore, for (3.25)) to hold when a = 1, we need to set
b +1
C(p) = izﬁ(\/ﬁ+2)+l) (1+b p(pT))+\/p+1-(1+\/§).
o

Since F is convex and strongly smooth in (x, ©), and both x, u are affine functions of
(v,z,7), F(x(y,z,7),u(y,z, 1)) is convex and £ - C(p)>-strongly smooth in (y, z, 7).

Since F(x,u) is m-strongly convex in u, by (3.22)), we have

VIE(x(y, 2w, 1), u(y,z,w,r)) = VIVEF (x,u)V

=mel,

where we used that |Vv|, = ||[v|,, Vv € R™™" because the columns of V are
orthonormal in the last inequality. Therefore, by Lemma|3.A.2] we know that (3.23)
is convex and L, (p)-strongly smooth in (y, z), where

- C(p)*
C

By Lemma [3.A.2] we also know that the optimal solution of (3.23):

Ly(p) =¢€-C(p)* +

r*(x,z,{) = argmin F(y(x, z,{,r),v(x,2,{,1))

reRmp-n

is € - C(p)?/mc-Lipschitz. By (3.24) and (3.23)), we see that

X
S 02) S*—S"MI®(t+p,t) S'MT SE—-S'MTRS SV z
-xa 9Z = .
! ~-MT®(t + p,1) M —~MTR¢ 1% i
re(x,z,4)

is L (p)-Lipschitz, where
Li(p) = C(p)(1+£-C(p)*/m,).

Proof of Theorem 3.1.4
The proof of Theorem [3.1.4]is based on the decision-point transformation method

that we introduce before.
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Recall that we use d to the controllability index as defined in Definition [3.1.2]
Without any loss of the generality, we only need to show the perturbation bound of
w,”p ((Xts Wr:p4p=15Xt4p) )x,,,, holds for t = 0, and the proof generalizes to other time
t. Suppose h and p satisty ud < h < (u+ 1)d and p = vd + r, where 6,v,r € N

and 0 < r < d. Now we shall select the decision points as

X0sXds " 5 X(6=1)d> Xhs X(642)d> " ** > X(v=1)d>Xp>

which are also denoted by x;,,--- ,x;,_, for simplicity. Since the distance of any
consecutive decision points falls in [d, 2d), we can apply Lemma to bound
the strong smoothness of switching costs. In the transformed SOCO problem, the
disturbance input of the (7 — 1)-th time period is a vector Wr—1 = w;,_ ;. -1 €
R™x=i=-1) " Each stage cost Yf:_l ((xi,_,»Wr—1,X;.)) is convex and Ly (i — ir—1)-
strongly smooth by Lemma [3.1.3] and is thus Lg-strongly smooth by definition.
Recall that the solution of the transformed SOCO problem is denoted by i/ (xo, W, x )
Then by Theorem [3.1.2] we have

[ oo w1 = 0 (1o

= ||t,/;(x0, W,Xp)s — 1,/;(x('), W',x;,)5||

v=2
< Co (45 o =il + D a5 e = il + 2507 vy —x;IIZ)
=0
:—2 ire1—1
< Co 457 o = sl 3 4TS i, + 45 —x;||2)
=0 J=ir
C o v=2ir41—1 o - '
< /1—0 /1’5_l°||xo —xf)”2 + Z Z Al7=s] wj—w, ) +/l’V‘1_’5||xp —x},”z)
0 =0 j=ir
p-1
= & {Aro —xgl) + 3 A = |+ 47, x;||) . (3.26)
7=0

The last inequality holds because each interval is of length at most (2d — 1). Here

the constants are

2L -1
Co = 0,/10:1—2-(\/1+(2L0/mc)+1) ,
m

c

-l
CZC()//I0=2"§JO (1—2-(\/1+(2L0/mc)+1) 1) s

c

2= (1 _2(\/%”)”)#
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The proof of the perturbation bound of 1,//tt+p ((Xts Wetap=15 C14p)s F)x,,,, 18 quite sim-
ilar. The only difference lies in the terminal cost, which can be addressed by a

two-step approach.

Again, we set 1 = 0 without any loss of the generality. First, let £, be fixed. We
append x,,x = 0 to the end of the decision point sequence, and define a zero transition
cost to the auxiliary state ¢, (x/4p, Wy, Xaux) = O (note that ¢, is trivially convex and
Lo-strongly smooth). Denote the solution of the modified version of transformed

SOCO problem by i’ (x;, W, Xaux), then by the same argument as above, we have

w8 (Cxor wop1, 203 Fhy = 0 (G w10 2003 Fy

= || (x0, W, 0)5 = " (x5, W', 0)s

p-1
Ao = x| + > A e - w;||) : (3.27)
7=0

<...<(C

where the constants are the same as previously defined. Now, we go on to bound

the distance

08 (w12 003 F s = 8 (i iy 102305 P,
To simplify the notations, we define
X = ¢g((x(’), W6:p—l’ {p); F)y,, and ¥}, := wg((xg), w{):p_l, £5)i F)x, -
By the first-order optimality condition, we see that

Ve, o ((xg, Wo.p—10%p)) + Ve F (X5 (p) = 0, (3.28a)
prtg((x{), w’OZP_l,X;,)) + V. F(X),;¢,) =0. (3.28b)

Note that the function
H(xp) = Lg((x(,), WE):p_l,xp)) + F(xp;4p)

is a mp-strongly convex in x,. Thus, we see that

me|[%, = 5| < (VH(E,) - H(Z,), %, — %) (3.292)
= (VoF(&): 8)) - VoF (&): £y). %y — ) (3.29b)
< -l gl G

< tel - G-I - 5. (3.29)
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where we use the properties of strongly convex functions in (3.293); we use (3.28))

in (3.29b)); we use Cauchy-Schwartz inequality in (3.29¢c); we use Assumption[3.1.1]
in (3.29d). Thus, we have shown that

- 4 ,
e =50l < =l = 4l (3.30)

Therefore, we obtain that

98 x5 €00 Py = 0 (O w1 23): P,

= Hw(’i ((X0s W1 Xp) i = W (X5 Wy 1K) ), (3.31a)

<C- A&, - %) (3.31b)
4 -

<t .c. &P—hngp _ (1’7 , (3.31c)

mpr

where we use the principle of optimality in (3.31a); we use the perturbation bound
with terminal constraint (3.26)) in (3.31b)); we use (3.30) in (3.31c).

Combining (3.31]) with (3.27) by the triangle inequality gives

w8 (G0 wop1. 205 Fhy = 0 (G w1 2305 Fy
< [ (o worp1, €905 Py = 0 (e Wiy 12 6005 Py

[0 (o w1 2003 Py = 0 (G W1 £33 P,

<C

p—-1
o g+ 5 0, — w4277, —4,:||)-
=0

Recall that C := max {1, ’f;—FF} This finishes the proof of Theorem|3.1.4

3.B Proofs for the Perturbation Pipeline

Proof of Lemma3.2.1]

We have already shown holds for all time step t < T — k in the main body. For
t > T — k, we see that

e = T (ke wes Fr) = o (e, wigs Fr)| (3.32a)
k
< > (bl - q1(7) + q2(7)) s (3.32b)
=0
k

IA

R
((— +Dx*) - q1(7) + q2(7)) pr.rs (3.32¢)
7 \G

=
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where we used the definition of per-step error e, in (3.32a)); we used the perturbation
bound (3.6)) specified by Property [3.2.1] in (3.32b); we used the assumption x, €
B (x;“, C%), < D,~, and the convention p; r := 0if 7+ 7 > T in (3.32¢). Thus e,
also satisfies (3.8)) fort > T — k.

*
Xy

Proof of Lemma 3.2.2]
To simplify the notation, we will use lptT (z;) as a shorthand notation of 1,//tT (zs5 Wi Fr)

in the proof of Lemma [3.2.2] since the proof only relies on the perturbation bound
(3.7).

Note that for any time step ¢ + 1, by Lipschitzness of the dynamics we have

8r(Xe, us, we) — 81 (xt’ wZ(xt)uz’ Wt)

< Lellur = o/ (x0)u, |
< Lye,. (3.33)

||'xl+1 - l’[/fT (XI)XHI

Therefore, we can show the statement thatx; € B (x;‘ , c%) holdsife,; < R /(C§Lg), V1 <

*

1 by induction. Note that this statement clearly holds for 7 = 0 since x;; = xo. Suppose
it holds for 0, 1, ...,¢ — 1. Then, we see that

bee =7 = [l = v Cro)s |

t—1
< ”Xt - ‘ﬁtT_l(xz—l)x,” + Z ”WtT_i(xt—i)xt - lﬁ;T_,'_l(xt—i—l)x,”
i=1

< ”xl - th_l(xt—l)x,

t—1
3 @3 = vl (i (B34)
i=1

-1
< Z Q3(i)||xt—i - lﬁ,T_l-_l (xt—i—l)x,_i” (3.34b)
=0
e
< Lg ». gs(ie i, (3.34¢)
i=0

where in (3.34a), we apply the perturbation bound (3.7) specified by Property
3.2.1L. To see why it can be applied, note that for i € [1,¢# — 1], x,_;—; satisfies

Xi—i-1 €8 (x* C%) by the induction assumption, thus we have

t—i—1° C;
T
wl—i—l (Xt—i—l)x,_i €B (x;k—i’ R)

because ¢3(1) < 37,¢3(t) < Cs. Therefore, we can apply the perturbation
bound (3.7) specified by Property[3.2.1|to compare the optimization solution vectors
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zﬁt ;(x;~;) and wt - (lﬁt i 1(xt—i—l)x,_,-) , and by the principle of optimality, we see
that

oL (Wt G n) = 0T (e,

We also used q3(0) > 1 in (3.34b) and (3.33) in (3.34c). Recall that we assume
e < C2 . Substituting this into (3.34)) gives that

-

R T R
< L, -

Hence we have shown x; € 8 (x;", c%) holdsif e; < R/(C32Lg),VT < t by induction.

An implication of this result is that x;, € B (x,* , C%) holds for all ¢t < T if ¢; <
R/(C3Ly) holds for all t < T.

Similar with (3.34)), we see the following inequality holds for all + < T if ¢, <
R/(C3L,), ¥t <T:

e = wf1] = flee = v G|
i1

< e = G|+ D Wi Ceridy = 0 G|
i=0
-

< ”Mt - %T(xt)ut” + Z Q3(i)||xt—i - l/’,T_,'_l(Xt—i—l)x,_,-”

i=0

et Ly ) qsenin, (3.35)

where the second inequality holds for the same reason as (3.344).

By (3.34), we see that

-1

~

2
||x, _x:”z < wa ( ‘IB(i)et—i-l)

< §( (l)) (Z%(l)et o 1) (3.36a)

Z qg(i)e?_,-_l) : (3.36b)
=0

H‘...
»—O

< C3L§

where we use the Cauchy-Schwarz inequality in (3.36a), and Zt 0q3() < C3in
(3.36h).
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Similarly, by (3.33), we see that

, -1 2
||ul | (et+Lg q3(i)er—i- 1)
i=0
t—l -1
< (1 3(1)) . (et2 + Z qg(i)elz_i_l) (3.37a)
i=0 i=0
-1
< (1 + c3L§) : (ef + Z qg(i)ef_,._l) \ (3.37b)
i=0

where we use the Cauchy-Schwarz inequality in ,and we use Y./7) ¢3(i) < Cs
in (3.37D).

Summing (3.36) and (3.37) over time steps ¢ gives that

T 5 T-1 )
2l =] +leut—u2"||
t=1
T T-1 t—1
sc3L§Z(Zq3(>e, - 1) (1+c522)- Z(e?+2q3(i>e?_,-_1)
T-

=1 _O l=0 l=0

,_.

< (1+2C3L§)-(1+c3) e, (3.38)
t=0

where we rearrange the terms and use Z;io q3(j) < Cs in the last inequality.

Since the cost function f;(-,-;w;) and Fr(-;w}) are nonnegative, convex, and ¢-
smooth in their inputs, by Lemma F.2 in Lin, Hu, Shi, et al., 2021], we see that the
following inequality holds for arbitrary n > 0:

cost(ALG) — cost(OPT)

r-1 T-1
< (Z Fi G us w)) + Fr(xr; w;>) - (Z i ufs wi) + Fr(xps wh)
t=0 =0

T-1
<7 (Z fiog i) + FT<x*T;w*T>)
t=0

(. 1)\[w
+5(”5)(;”’”‘

T-1
1
< - cost(OPT) + (1 + —) L (1 + 2c3L§) (1+C3)- Y e (3.39b)
n 2 t=0

2) (3.392)

T-1
=1 - cost(OPT) + ; 5 (1 + 2C3Lg) (1+C3) ; e;
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ﬂ
L

4 2
+§-(1+2C3Lg)-(1+C3)- e, (3.39)

t

where we apply Lemma F.2 in Lin, Hu, Shi, et al.,2021]in (3.394)), and we use (3.38))
in (3.39b)). Setting the tunable weight 7 in to be

Al S

I
(e

1
3 (1 +2C3L§) C(1+C3) - B e? 2
n= cost(OPT)

gives that

cost(ALG) — cost(OPT)

T-1
< J (g (1+2G3L3) - (1 + C3)) - cost(OPT) - » &?
t=0
f T-1
—_— 2 . 2
+> (1+2C3L ) (1+C3) ;e,. (3.40)

This finishes the proof of Lemma[3.2.2]

Proof of Theorem
We first use induction to show that the following two conditions holds for all time
stepst < T:
R
x; €8 (x;‘, —) , (3.41a)
C3

k

e < ((C5 N Dx*) (1) + 612(7)) pre +2R ((C5 + Dx*) (k) + Q2(/<)) .
0 3 3

T=

(3.41b)

At time step 0, holds because xo = x(, and (3.41b) holds by Lemma [3.2.1]

and the assumption on the terminal cost Fy of MPC;.

Suppose (3.41a) and (3.41b) hold for all time steps 7 < . For time step ¢, by the
assumption on the prediction errors p; r and prediction horizon k in Theorem[3.2.3]
we know that e; < =& holds for all 7 <  because (3.41b)) holds for all 7 < ¢. Thus,
we know that @ holds for time step by Lemma [3.2.2] Then, since (3.41a)
holds for time step ¢, and the terminal cost F;; of MPC; is set to be the indicator
R)ift <T -k, we

function of some state X (w;,|,) that satisfies X(w;1|;) € B(x},,,
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know (3.41b)) also holds for time step by Lemma[3.2.1] This finishes the induction
proof of (3.41).

To simplify the notation, let Ry = C% + D,-. Note that (3.41b) implies that

k
e; < (Z (Ro-q1(7) +q2(7)) + 2R (Ro + 1))

=0

k
: (Z (Ro - q1(7) + q2(7)) p; 1 + 2R (Ro q1(k)? + qz(k)z)) (3.42a)
=0

< (R()C] +Cy + 2R(R0 + 1))
1

k—
- (Z (Ro - q1(7) + g2(1) pEe + (2R + 1) (Ro - 1 (k) + Q2(k)2)) ,

7=0
(3.42b)

where we use the Cauchy-Schwarz inequality in (3.42a); we use the assumptions
that ¥¥_ g1(7) < C1, $X_, g2(7) < G2, and p,; < 1 in (3:420).

Since (3.41)) and (3.42) holds for all time steps t < T, we can apply Lemma[3.2.2]to
obtain that

cost(MPCy) = cost(OPT) < +/cost(OPT) - Eq + Eo,
where

Ey = (R()C1 +Ch + 2R(R0 + 1))
k-1
: Z (Ro-q1(7) +q2(7)) P(7) + 2R + 1) (Ro -q1(k)* + Q2(k)2) T) :
7=0

This finishes the proof of Theorem [3.2.3]

Proof of Theorem |3.2.4
By Theorem 3.3 in Lin, Hu, Shi, et al., 2021, we know Property [3.2.1 holds under
Assumption for arbitrary R and ¢1(¢) = 0, ¢q2(¢) = H1A", and ¢3(¢) = H A,

where Hy = H{(u, ¢, d, o,a, b,b’) > 0 is some constant, and
A =4(u,t,d,o,a,b,b") € (0,1)

is the decay rate. Here, H; corresponds to C and A; corresponds to A in Theorem
3.3 in Lin, Hu, Shi, et al., 2021l
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3

By setting R := max {Dx*, %}, we guarantee that the terminal state 0 of MPCy

is always in the closed ball B(x;“+ o R), and the condition

k R R
Z ((— + Dx*) ~q1(7) + qz(f)) prc+2R ((c_3 + Dx*) ~q1(k) + qz(k)) <

2
—\G C;Lg

3
holds once k > In (%) /In(1/4;) because p;r < 1. Therefore, we can apply
Theorem [3.2.3]to finish the proof of Theorem[3.2.4]

3.C Proof Outline for Networked Online Convex Optimization

In this section, we outline the major novelties in our proofs for the tighter exponen-
tially decaying local perturbation bound in Theorem [3.3.4and the main competitive
ratio bound for LPC in Theorem [3.3.5] The full details of the proofs of these results
are deferred to Section 3.DL

Refined Analysis of Perturbation Bounds

We begin by outlining the four-step structure we use to prove Theorem [3.3.4 Our
goal is to highlight the main ideas, while deferring a detailed proof to Section
Throughout this section, we consider a Networked OCO problem instance p €
P(u,Cr, tr, s, A, h).

Step 1. Establishing first order equations

The exponentially decaying local perturbation bounds (Definition [3.3.4) study how
(k.r)
py(t.v)

the boundary {z%|(7,u) € HN((tk’Vr))}. We combine these fixed actions into a single

the optimal solution ({y;‘_l}, {zZ}) reacts as we change the fixed actions on

vector and denote it as

£ = {=(r.u) € INGY.

Since we do not perturb the previous actions {y; | },en; in the local exponentially
decaying perturbation bound (Definition(3.3.4), we introduce the shorthand notation

v(l) = ;ﬁé{‘(’;’)v) ({y;‘_l}, 4 ) to simplify the notations when the context is clear. The

objective function of the corresponding optimization problem

tk-1 r—1 r r r r

-1

£
Xy =V, Yu € N, xi =27, V(T u) € aN((t’f’V’)),
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is a function of the previous actions {y! , },en; , the fixed actions on the boundaries ¢,
(k=1,r—1)
(t.v)

actions, we express the objective function as & ({x?l(r, u) €0 N((zkv_)l ,r—l)}, é). To

avoid writing the period index 7 repeatedly, for arbitrary i € {0, 1,..., k}, we use £

and the free variables {x¥|(7,u) € N }. Since we do not perturb the previous

to denote the decision variable x* | . for u € N’~! at period ¢ — 1 +i and introduce

t—1+i
the notations

b4y foru e N} ifie{l,...,k—1},

Al _ t—1+i

7l forueNjifi=k.
To simplify the notations, we also use the shorthand

CE= 80 forie {1, k- 1},

Using these notations, we can rewrite the objective function as f(£1.¢-1, 21.¢). The
main lemma for this step is the following.

Lemma 3.C.1. Let e = (ey, ..., ex) be the perturbation vector such that e; shares
the same dimensions as Z; fori € {1,2,...,k}. Given8 € R, optimization parameter
{ and perturbation vector e, we have

k—1
d
(g +0e) = M! (R(k)ek + Z KDe,

=1

, where

M :=V; h(y({+0e).{ +0e),
RW = _v. Ve h(y(L+6e), +0e),

—Vzrvﬁ,;k_,fl(tﬁ(§+9e),§+ Oe), fort e {l,...,k—1}.

K

The proof for Lemma([3.C.T|using first order conditions at the global optimal solution

for the convex function 4 (-, ¢ + 6¢) and then takes derivatives with respect to to 6.
See Appendix for a proof.

Step 2: Decomposing M~ as infinite series

M is a hierarchical block matrix with the first level of dimension (k — 1) X (k —
1). When fixing the first level indices (i.e., period indices) in M, the lower level

matrices are non-zero only if their difference in the period indices is < 1. Hence
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we decompose M to M = D + A, where D is a block diagonal matrix and A is a tri-
diagonal block matrix with zero matrix on the diagonal. Each diagonal block in D is
a graph-induced banded matrix, which captures the Hessian of  in a single period.
Denote each diagonal block as D;; for 1 <i < k — 1. Further, for2 <i < k -1,
A; ;-1 (similarly A; ;1) captures the temporal correlation of an individual’s action
between consecutive periods. Under this decomposition, we know that each D;; is
invertible because fl(_]\{i)l is strictly strongly convex fori = 1,...,k — 1. Thus, we
know that D! = diag({D;il}lsisk_l). And M~! can be expressed as

=+A) =D 1+AD™H.

For the ease of notation, we denote I + AD~! by P. Note that P is not necessarily a
symmetric matrix. Nevertheless, under technical conditions on P’s eigenvalues, we
have the following power series expansion (Shin, Zavala, and Anitescu, 2020). The
details are presented in the Lemma [3.C.2]in Section

Lemma 3.C.2. Let p(-) denote the spectral radius of a matrix. Under the condition
u > 26y, we have p(I — P) < 1, and

Z([ P)". (3.43)

To understand the power series in (3.43)), consider the special case where each block
A1 = A i=tp-Tfori=1,... k-2, andDil- =Q.DenoteJ :=P—-1=AD"".

Then, we have J;; = 0, J;;_1 = J; 41 = (7Q7! Jij =0 when [i — j| > 1. Intuitively,
J captures the “correlation over actions” after one period. More generally, for g > 0

and any two period indices 7/, T,

(D r=€107b(q,7,7),
where b(g, 7, 7’) is a coeflicient that is upper bounded by 27 and it equals to zero if
qg<|t-1|.

Given that Q is a graph-induced banded matrix, Q™! satisfies exponential-decay
properties, which makes it plausible that Q™7 is an exponential decay matrix with a

slower rate.

For the general case where diagonal blocks D;; are not identical and A; ;41, Aj+1.

are not equal to {7 - I, we need to bound terms such as

H(A,-MD AnnD7L A

1,01 i2,in lg-1 lq lq )uv

where ig, i1,i2, - ,ig € {1,...,k — 1}. This is the goal of Step 3.
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Step 3: Showing exponential-decay properties are preserved through matrix

multiplications

The goal of this step is to establish that, given an underlying graph, a product of a
general class of exponential decay matrices still exhibits exponential decay property

under technical conditions.

Lemma 3.C.3. Given any graph G’ = (V’,&’) and integers d,q > 1, suppose a
sequence of block matrices {A; € RIV'14xIV'ld }i<i<q all satisfy exponential decay

properties with respect to G, i.e. there exists C; > 0, and 0 < A < 1, such that
||(A,-)u,v|| < CA% ) for any nodes u,v € V’.

Suppose there exists a constant A that satisfies 1 > I’ > 1 and

a:= i(
k=0

Then, the product matrix Hf.]:l A; satisfies exponential decay properties with decay

| >

YE( 511‘1/) |ON¥)) < 0.
uevy’

’

&~

rate A, i.e.,

< C'(X)4¢' V) for any nodes u,v € V),

q
(n Ai)u,v

i=1

where C' = (a)4 H:.]:] C,.

Intuitively, Lemma [3.C.3| shows that the exponential decay properties of matrices
are preserved through matrix multiplications, though the product matrix has a worse
decay factor A’. A proof of Lemma can be found in the Section

Step 4: Establishing exponential decay properties of matrix M/~
The last step of the proof is to study the properties of M. To accomplish this, we
first show that, for period indices i, j > 1, J¢ has the following properties:

s (J9);;=0if g < i = jlorg —|i — j| is odd.

* (J?);; is a summation of terms Z:I A

{1,...,k — 1} and the number of such terms is bounded by (

) -l coe e
lk’l’lkDik,ik where i, i1, I2, Jig €

L)
(g-li=/2)"

We formally state and prove the above properties in Section We can further use
Theorem on block matrices A;, ,,;, D', , which gives the following lemma.

sk’
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1+(Als/p)-1

VI1+(Als /p)+1

that 1 > yg > ysand b = Z$:0(§)7h(7) < oo. Given positive integers q,1i, j and
N

Lemma 3.C4. Recall ys = . Suppose there exists a constant y such

u,v €V, we have

200\, .
il = (L ) (P5E]) G

Intuitively speaking, Lemma bounds the correlations over actions for node u
at period t — 1 +i and action for node ¢ at period t — 1 + j. We present its proof in
the Section

Recall that, for 1 <i,j <k -1,
(M= D > (=),
q=0

With the exponential decaying bounds on matrix J¢, we can thus bound the entries
that corresponds to node v on the RHS of the first order equations derived in
Lemma We state this result formally in Lemma [3.C.5] and present the proof

in Appendix

Lemma 3.C.5. Given 1 <i,j < k — 1, for any e € RNV e have

,
and for any e’ € RNV

_ i j—j dg(v,u)—1
MK De| | <Cipf ™ > pg el

u€IN,,

v

b

< Clpljf—(k—l)|+1 Z pglg(v,u)”e;l

ueN;

“((M_l)i,k—l)Rl({k_)le,

v

where pr = % and ps = (1 + by + by)ys. We let

a® 2a%Als/u !
2a(1 —4alr/p)" ys(1+ by +by)(1 —4atr/u)”

C; = max{

Using the first-order equations derived in Lemma[3.C.I]in Step 1, we can bound the
entry in %w({ + fe) that corresponds to node v. Then, we conclude Theorem
by integrating over 6. The detailed proofs of the results we state in this section can
be found in Section
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From Perturbation to Competitive Ratio

We now show how to use the exponentially decaying local perturbation bounds
proven in the previous section to prove our competitive ratio bounds in Theo-
rem [3.3.5] Our starting point is the assumption that the exponentially decaying
local perturbation bound in Definition [3.3.4] holds for a class of Networked OCO
problems, which is established using the proof approach outlined in the Section[3.3]

As we discussed in Section [3.3] our proof contains two key parts: (i) we bound the
per-period error of LPC (Lemma[3.C.7)); and (ii) show that the per-period error does
not accumulate to be unbounded (Theorem [3.C.8§).

A key observation that enables the above analysis approach is that the aggregation
of the local per-period error made by each agent at x; can be viewed as a global
per-period error in the joint global decision x;. Following this observation, we
first introduce a global perturbation bound that focuses on the global decision x;
rather than the local decisions x;. Recall that f; denotes the global hitting cost
(see Section [3.3). Define the optimization problem that solves the optimal global
decision trajectory from period (¢ — 1) to period (t +¢g — 1)

t+q-1
07 (y,2) = argmin ) (fr (o) + ¢ (e, xe-1)
Xtit+g-1  1=¢
St X1 = Y, Xprg-1 = 2, (3.44)

and another one that solves the optimal global decision trajectory from period (z—1)

to the end of the game

H
Ge(y) = argmin ) (fr(xe) + e (e, 2e1))

Xt:T =t

S.t. X—1 = y. (3.45)

The following global perturbation bound can be derived from Theorem 3.1 in Lin,
Hu, Shi, et al. (2021)):

Theorem 3.C.6 (Global Perturbation Bound). Forany tuple (u, €y, tr,€s, A, h) € X,
consider the problem class P (u, Lr, {1, €s, A, h). The following global perturbation
bounds hold for optimization problems (3.44) and (3.45)): For arbitrary y € D, and

Z € Dyyg-1, we have

t+q—1—-t9

= 7 ’ —t+1 ’ ’
157 (3, 2 = T || < Cape™ My = V'l + Capl Iz =2l
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fortge{t,....,t+q— 1} and

19 iy = (ol < Caply™* MMy = ¥
-1
fortye{t,...,H—1}. Here, pg =1-2- (1/1+2#ﬁ+1) andCGzzﬂﬁ.

To make the concept of per-period error at period t rigorous, we formally define it
as the distance between the actual next decision made by LPC and the clairvoyant

optimal next decision from previous decision x;_; to the end of the game:

Definition 3.C.1 (Per-period error magnitude). Consider applying LPC on an in-
stance p of the Networked OCO problem (Definition [3.3.1). At period t, given its
previous decision x;_1, LPC picks x; € D,. We define the per-period error magnitude

e; as

er = ||xt - &t(xz—l)t”- (3.46)

Using the exponentially decaying local perturbation bound in Definition |3.3.4] we
show the per-period error of LPC decays exponentially with respect to predic-
tion horizon length k and observation radius r. This result is stated formally in
Lemma[3.C.7| and the proof can be found in Section[3.D]

Lemma 3.C.7. Forany tuplev = (u, €y, {, s, A, h) € Y, suppose the exponentially
decaying local perturbation bound (Definition[3.3.4) holds with the decay factors pr
and pgs for P(v). Suppose we apply LPC with prediction horizon k and observation

radius r to an instance p € P(v). Then, the per-period error e, satisfies

r * 2
e =0 (h(n)? - p¥ + G p3 ) - i = x|
t+k—1
+0 (R p¥) Y pF () + 0 (507 ) frokor (g,
T=t

where C3(r) = Z;zo h(y) -pg and pg is defined in Theorem We use {x; }1c[H)

to denote the offline optimal global decision trajectory in the problem instance p.

Using the global perturbation bound in Theorem [3.C.6] we show the total squared
distance between LPC and the offline optimal decision trajectories can be upper
bounded by the sum of per-time-step errors of LPC in Theorem [3.C.8] The proof
can be found in Section[3.Dl
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Theorem 3.C.8. For any tuple v = (u,{y, tr,{s, A, h) € X, consider an instance
p of Networked OCO problem in the class P(v). Let xo,x’i‘,x;, e ,x}‘; denote the
offline optimal global decision trajectory and xg, X1, X2, . . . , Xg denote the decision
trajectory of LPC. The trajectory of LPC satisfies that

H
;”xt— *2— p)zzeta

where Cy := max{1l,Cg}, pc is defined in Theorem and {e;}ic(n) are the
per-period error magnitudes defined in (3.46).

To understand the bound in Theorem[3.C.8] we can set all per-period error magnitude
e; to be zero except a single period 7. We see the impact of e, on the total squared

2. .
“II” is up to some constant factor of e;. This is because the

distance Zthl ||x, -

impact of e; on ||x, -

By substituting the per-period error bound in Lemma [3.C.7| into Theorem [3.C.8

one can bound the total squared distance Zfi | ||xt - X

which can be converted to the competitive ratio bound in Theorem [3.3.5]

Generalization to Inexact Predictions

To show the performance bound in Theorem [3.3.10] we follow a similar procedure
with the proof outline for the exact prediction case discussed in Appendix [3.C} The
key observation is that Theorem [3.C.§]still applies for the inexact prediction case,
and we only need to bound the per-period error magnitude (Definition[3.C.T]) of LPC
with inexact predictions. We state this bound formally in Lemma below and
defer its proof to Section

Lemma 3.C.9. For any tuple v = (u, €y, lr, s, 6y, A, h) € Y, consider a problem
instance p € P(v). For LPC with inexact predictions (Algorithm , the per-period

error e; satisfies

. 12
=0 (h(r)2 - py +C3(r)* - p%kpé") et = x|
t+k—1

+0 (h(0? - 0¥ ) 3 P77 f@h) + 0 (G302 P fuvi (X7 )

+0 ((1+ A% C3(r)?) - PredictionError, 4,
p.(t.k)

where C3(r) := Z;zo h(y) - pg and PredictionError, (; ) is defined as

pr ( > > g Z
ueV 7154 % ee&

w?u = (w7 “?u = (o7

T|t (ﬁ‘r)

) |
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By substituting the per-period error bound in Lemma [3.C.9| into Theorem [3.C.§]

. 2 . :
one can bound the total squared distance Zfi | ||xt -Xx; || by the offline optimal cost,

which can be converted to the performance bound of LPC with inexact predictions
in Theorem [3.3.10}

3.D Proofs for Networked Online Convex Optimization
Proof of Theorem 3.3.3land Theorem
We begin with a technical lemma. Recall that for any positive integer m, S™ denotes

the set of all symmetric m X m real matrices.

Lemma 3.D.1. For a graph G' = (V’,&’), suppose A is a positive definite matrix
in SZiev' Pi formed by |V’| x |'V'| blocks, where the (i, j)-th block has dimension
pi X pj, i.e, A;j € RP*Pi. Assume that A is q-banded for an even positive integer
q; ie.,
Aij =0, Vdg (i, ]) > q/2.

Let ag denote the smallest eigenvalue value of A, and b denote the largest eigenvalue
value of A. Assume that by > aog > 0. Suppose D = diag(D1, ..., D), where
D; € SPi is positive semi-definite. Let M = ((A+D)™")
{1,...,|V’|}. Then we have ||M|| < Cy‘i, where

Co 2 Veond(A) — 1 2l 3
- ’e \Veond(A) + 1 ’

ag ’
Here cond(A) = bo/aq denotes the condition number of matrix A.

Sp.Sc” where Sg,Sc C

min dg (i, j).

ieSg,jeSc

We can show Lemma [3.D.T| using the same method as Lemma B.1 in Lin, Hu, Shi,
etal. (2021)). We only need to note that even when the size of blocks are not identical,
the m th power of a g-banded matrix is a gm-banded matrix for any positive integer

m.

With the help of Lemma [3.D.1] we can proceed to show a local perturbation bound
on a general G’ in Theorem [3.D.2] where G’ can be different from the network
G of agents in Section [3.3] Compared with Theorem 3.1 in Lin, Hu, Shi, et al.
(2021)), Theorem is more general because it considers a general network of
decision variables while Theorem 3.1 in Lin, Hu, Shi, et al. (2021) only consider the
special case of a line graph. Although Theorem[3.D.2]does not consider the temporal
dimension which features in the local perturbation bound defined in Definition
we will use it to show Theorems [3.3.3| and [3.3.9] later by redefining the variables

from two perspectives.
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Theorem 3.D.2. For a network G’ = (V’,E’) with undirected edges, suppose that
each node v € V' is associated with a decision vector X, € RPv and a cost function

A

fv i RPv X W, — Ry, and each edge e = (u,v) € &' is associated with an edge cost
Co : RPY X RPu X W, — Rsg. Here W = ({W, }yevr, {W, }eecs’) denote the set of
all possible disturbances on cost functions, where ‘W, and ‘W, are convex compact
subsets of RY for allv € V', e € &. Assume that: For allv € V', f,(%,;wy) is
u-strongly convex in X, under any fixed disturbance w,; For all e = (u,v) € &,
Co(Xy, Xy we) is convex and €-smooth in (X,,X,) under any fixed disturbance w,,

i.e., forallv € V' and e = (u,v) € &, we have
Vi h(Giwy) = 0,¥w, € Wy, and 0 XV, o 16o(fur ks we) 2 Llpyip,, Ywe € We.
For some subset S C V', define

Ey={(u,v) €& |u,v e V'\S}, and E; ={(u,v) €eE |ueV\S,veS}

For any disturbance vector w € ‘W and boundary vector y = {y,}yes € Y =
{Y, }ves where Y, is a convex subset of RPY for all v € S, let y(w,y) denote the

optimal solution defined as
Y(w,y) = arg min Z Ffo(Ryswy) + Z Clu) (X, X3 W)
{&y[veV’\S} veV\S (u,v)€Ey

+ Z é(u,v)()euayv;w(u,v))~
(u,v)eE}

Let T, be a set that contains all possible v th entry of the optimal solution, i.e.,
2 {y(w,y), | we W,y e Y} Weadditionally assume that for any v € V’

and e = (u,v) € &, the cost functions satisfies

[V, Ve, fo@iw)|| < €y, if %0 €T, (3.47)
Vi, V 52y Ce (Rus £0s we) || < €ws if fu € Ty and £, € T, (3.48)

Then, we have that for any vertex ug € V' \ S, the following inequality holds for all
veY,weW

||lﬁ(W, y)uo - lﬁ(W,a y,)uo||
<C e, - |

vesS

+C, Z /ldg/(uo,e)—lnwe . W;” " Z /ldg' (uo,V)”Wv —_ W:,|
ecEgUE, veV\S

, Where
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C = (24N)/u,Cyy = (262) /1, and A =12 - (\/1 (N ) + 1)_1 .

Here, A’ denote the maximum degree of any vertex v € V' in graph G'. For

e =(u,v) € &, we define dg (uo, e) := min{dg: (uo, u), dg (1o, v)}.

To show Theorem [3.D.2] we establish the first order equations using the optimality
conditions of the optimization problem. The equation shows the way how a small
perturbation affects the optimal solution vector relates to the inverse of the Hessian
matrix of the objective function. Note that the objective function has a special
structure that it is the sum of local costs, and each local cost can couple at most
two neighboring decision variables. Thus, the Hessian is a 1-banded matrix with
respect to graph G’, so we can leverage Lemma to show the exponentially
decaying property of its entries. Combining the exponentially decaying property of

the inverse of the Hessian with the first order equations finishes the proof.

Proof of Theorem[3.D.2] Let e = [n7,€"]" be a perturbation vector where € =
{e }ves for €, € RPY and 7 = ({7, }yens, {7e beekour, ) » for m. € R7. Let 6 be
an arbitrary real number. Define function /1 : RZvevi\s Pv x RUV'IZISHE0+EDxg 5
R2ves v — Ry as

fz()?,w,y): Z ﬁ/(ﬁ\/)‘i' Z é(u,v)()feuaﬁv;w(u,v))"' Z é\(u,v)(x/\u’yv;w(u,v))'
veV/\S (u,v)€Ey (u,v)eE

To simplify the notation, we use { to denote the tuple of system parameters, i.e.,
g=w,y).

From our construction, we know that 4 is u-strongly convex in x, so we use the

decomposition h = h, + hy, where
7 A ﬂ A A A A
ha(xa {) = Z EHXVH2 + Z C(u,v)(xu,xv;w(u,v))
veV\S (u,v)€Ey

+ Z C,'\(u,v)(jeu’)ﬁz;W(u,v)),
(u,v)EE]

B0 = Y (AEiw) - SIaIP).

veV\S

Since ¥ (¢ + fe) is the minimizer of convex function /(-, ¢ + fe), we see that

Vih(W (& +0e), L +0e) = 0.
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Taking the derivative with respect to 6 gives that

Vih(y (L +6e), ¢ + 96)%;{/({ +0e) = = >V, Veh(y(L +0e), L +0e)e,

veS

- Z Vwev)?il(lp(g'i'ge)’g"'ee)ﬂe

ecE|UE,

= > Vi Veh(W(£ +0e). L + be)m,.

veV’\S§

To simplify the notation, we define

M = V3h(y (L +6e), ¢ +0e), alV'\ S| x|V’ \ S| block matrix,
RY = —V, Vih(y({ +0e), ¢ +0e),Yv €S, |V'\ S| x 1 block matrices,
K = -V, Vh(y (L +6e),l +6e),Ye € EgUE;, |V'\ S| x 1 block matrices,
QY =V, Vih(y(L +0e),l +60e),Yv e V\S, |V'\S|x1 block matrices,

where in M, the block size is p, X py, ¥(u,v) € (V' \ S)2; in R"), the block size is
PuX py,Yu € V'\S;in K9 and Q1), the block size is p, x g, Yu € V’\ S. Hence

we can write

%¢({+9e)zM'l Y RYe+ > K97+ > 0Wn,|.

veS ecE|UE, veV’\S§

Recall that {R("},cg are [V’ \ S| x 1 block matrices with block size p, X p,,Vu €
V'\S; {K(e>}eeEouE1 and {Q(V)}VE(V’\S are |V’ \ S| x 1 block matrices with block
size p, X q,Yu € V' \ S. Let N(v) denote the set of neighbors of vertex v on G’.
For R™), v € S, the (u, 1)-th block can be non-zero only if u € (V’\ S) "N (v). For
K e e EyUE], the (u, 1)-th block can be non-zero only if u € e andu € V" \ S.
For Q"),v € V' \ S, the (u, 1)-th block can be non-zero only if u = v. Hence we

see that

d -1
%lﬂ(§+ e)u, = Z(M )uo,(’V/\S)ﬂN(v)RE(V&f\S)mN(v),lfv

vesS

-1 (e)
+ Z (M )uo,{uee|u€(V’\S}K{uee|u€(V’\S}’1ﬂe
e€EgUE;

+ > (M7,00 7,
veV’\S

Since we assume the edge costs c¢,(X,,X,;w,.) are {-strongly smooth in (%, %,),
()
(V\S)NN(v),1

larly, by (3.47) and (3.47), we know that the norms of {KE;)@'uE(V,\S}’I}eeEouE, and

we know that the norms of {R }ves are upper bounded by A’¢. Simi-
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{Q\(,v)}rvr\g are upper bounded by ¢,,. Taking norms on both sides of the above
equation gives that

< Mmoo lllel

vesS

+ Z fw”(M_l)uo,{uEeWe(V’\S}|| ||7Te ”

ecEgUE]

d
E'J/(g + Oe)uo

+ Z | (Mg 170 1. (3.49)

veV’\S
Note that M can be decomposed as M = M, + M;,, where

My = Viha (W ({ +6e), L + be),
My, := Vihy, (W (L +6e), £ + be).

Since M, is block tri-diagonal and satisfies (u+A’€)I = M, = ul , and M), is block
diagonal and satisfies M} = 0, we obtain the following using Lemma [3.D.1I}

2 2
”(M_])uo’((VI\S)mN(V)” = /:/ldg'(”o’v)—l, ||(M_l)u0,{uee|ue"V’\S}|| < ;/ldg'(”‘)’e)_], and
||(M_1)M0,v|| < z/ldgl(uo,v)‘
u

where A := (v/cond(M,) — 1)/(\Jcond(Mg) +1) =12 - (\/1 20 + 1)_1.

Substituting this into (3.49)), we see that

d ’ -
‘ LU+ 00| < C Y A0 g |
veS
w0y Y At 3T aderton) |,
e€EygUE; veVIS

where C = (2€)/u and C,, = (2¢,,) /.

Finally, by integration we can complete the proof of Theorem [3.D.2}
||w({)u() - '7[’({ + e)u()”

b d
| [ v+ tenan)
1
<)
0

<y Ao gl +c,| L A I Nn )+ A% o, |
veS ecEygUE; veV’\S

do

d
V(& +be),

O
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Now we return to the proof of Theorem[3.3.9] For simplicity, we temporarily assume
the individual decision points are unconstrained, i.e., D} = R". We discuss how to

relax this assumption later in this section.

. k, ’ k,r)\s
We first consider the case when ({yt"_l}, {z"}; g(([’v’))) and ({yt“_l}, (29} (g((wr))) )
only differ at one entry z¥, w¥, a¥, or <. If the difference is at z%, by viewing each

subset {t} X N] for 7 € {t — 1,¢,...,t+ k} in the original problem as a vertex in
the new graph G’ and applying Theorem [3.D.2] we obtain that

ey = )| < €0 (o)l - (24’

, (3.50)

-1
where C0 = (267)/p and p% = 1 -2 ( 1+ (20 /) + 1) . On the other hand, by
viewing each subset {7t | 1 —1 < 7 <t+k} X {u} for u € N] in the original problem
as a vertex in the new graph G’ and applying Theorem [3.D.2] we obtain that

It = )] < € - (P94l = (%)

, (3.51)

-1
where C! = (2Alg)/p and p2 =1 -2 (\/1 + (2ALs /u)) . Combining (3-30) and
(3.51])) gives that

by = Y[l < min{C - (o)~ CY - (o) e} - [ley = ()]
< CY-CL - (T2 (o) el — (2|

- d U u uy/
< Crpf g2 - (| (3.52)
when ({ ). {z45:£()) and ({0} A()%: (€(5))) only differ at one en-
(k.r)
()~

u u k,r u uy/ k,r)\s .
({yt_l}’ {ZT};é:((t,v))) and ({yt_l}, {(z)'}; (f((t,v))) ) only differ at another entry at
w4, a¥, or B¢, we have

try z¥% for (t,u) € ON We can use the same method to show that when

[ = (Y]] < C3pl o5 0t — (wty

, if they differ at p,

||x,v - (x,v)'” < C3p¥_7|pgg(vo’u)||a¥ — (a2 |, if they differ at /¥,
el = @[ < C3pli™ || = (LY, if they differ at 8. (3.53)

k, ’ ’ k,r)\s
In the general case where ({y!" }, {z4}:£(5y) ) and ({03 A% (605
differ not only at one entry, we can perturb the entries of parameters one at a time
and apply the triangle inequality. Then, the conclusion of Theorem follows
from (3.52)) and (3.53). One can use the same approach to show Theorem [3.3.3]
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Proof of Theorem 3.3.4
Step 1. Establishing first order equations

N(k r)

(t) }, the objective function / can be

Given any parameter { = {z¥|(T,u) € 0

written as:

h(Er1e-1, ) = Z > ftm(ﬁmZ Do s @R

i=1 yeNr-! i=1 (u,u’)e&E(NL)
u ol ol
+Z Z cp (X, %0,), where
i=1 ueN,
Xo=y' ., YueN), =2, YueN,
0 t—1° v Yk k> v
&=z, Vie{l,...,k -1}, u € ON,.

Given 0 € R, (£ +e) is the global minimizer of convex function /(-, £ + 6e), and

hence we have
Vfl:k-lil(‘//(g +0e),{+6e) =0

Taking the derivative with respect to 6, we establish the following set of equations:

d
Vi Bl +6e).+ Oe) oW (£ + Oe)

= - kavflzk—lil(w(g+9€)’§+96)ek (3.54)

k-1
- Z VgTV,;hk_llAz(g[/(f +0e),l +0e)e.
=1

We adopt the following short-hand notation:

o« M = vgl,ka(w(g +0e), ¢ + 6e), which is a hierarchical block matrix with
the first level of dimension (k — 1) X (k — 1), the second level of dimension

IN”~!| x [N"~1| and the third level of dimension 1 x n.

o« RV = —ngVflefz(w(( + 0e), { + 6e), which is also a hierarchical block
matrix with the first level of dimension (k — 1) X 1, the second level of

dimension |[N”~!| x |N”| and the third level of dimension 7 X n.

e Fort=1,...,k=1,K® = -V: Vi h(y({ +0e), ¢ +0e), which is also
a hierarchical block matrix with the first level of dimension (k — 1) X 1. the
second level of dimension |N7~!| x |ON”| and the third level of dimension

n Xn.
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Using the above, we can rewrite (3.54)) as follows:

k-1
%w(g +0e) =M (R(’%k + Z Ke,

=1

Due to the structure of temporal interaction cost functions, for R*), only when the
first level index is k — 1, the lower level block matrix is non-zero; due to the structure
of spatial interaction cost functions, for K (@), only when the first level index is 7, the

lower level block matrix is non-zero. Hence, for 1 < v/ < k — 1, we have

k-1
d _ _
(@lﬁ(f + 96)) =(M 1)1/,k—1R,((]i)lek + Z(M Do K Pey, (3.55)

v =1
where the subscripts on the right hand side denote the first level index of hierarchical
block matrices M, R, R&=1 and KO,

Step 2. Decomposing M ! as infinite series

We decompose M to block diagonal matrix D and tri-diagonal block matrix A such
that M = D + A. We denote each diagonal block in D as D;; for 1 <i < k —1.

Other blocks in D are zero matrices.

x 0 *
0 = 0
* 0 - %
x* 0 *
0 = 0
D =
x 0 - %
0
0 = 0
x 0 %

Each non-zero block in A is a diagonal block matrix, which captures the Hessian of
temporal interaction cost between consecutive time steps. Denote each block as A; ;
for 1 <i,j < k — 1. The structure of matrix A is given below, where the diagonal

blocks are all zeros.
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* 0 0
0 = 0
0O 0 - *
0 0 0O --- 0
0 = 0 0 = 0
00 * 00 *
A =
= 0 -+ 0
0 = 0
0O 0 - *
*= 0 -+ 0
0 = 0
00 - *

We rewrite the inverse of M as follows:

M'=MD+A) "' =D"'U+AD™) ' =D7'P.
Now we present the proof of Lemma [3.C.2]

Proof of Lemma Recall that P = [+ AD™! = (D + A)D~!. We claim that all
eigenvalues of P are contained in the set {1 € C||1 —z| < R} for some R € R, and
z € C\ {0} such that R < |z|. We first establish Lemma based on the claim
and then prove the claim.

We follow the argument as in the proof of Thm 4 in Shin, Zavala, and Anitescu
(2020). Since any eigenvalue A of P satisfies [ — z| < R, |1/z— 1] < R/|z] < 1.
Thus, the eigenvalues of I — (1/z)P lie on {d € C : |1| < R/|z|}, which guarantees
o(I —(1/z)P) < 1. Therefore,

-1
a1, ] _1 1
Pl = Z(I (1 ZP)) = - ;)(1 —P)".

Now we show the claim that all eigenvalues of P are contained in the set {1 €
Cll[d—z| £ R} holdsif weletz =1and R = 2%. Our proof utilizes Gershgorin
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circle theorem for block matrices and its implications (see Theorem 1.13.1 and
Remark 1.13.2 of Tretter (2008)), which we present in Theorem [3.D.3]

Theorem 3.D.3. Consider K = (K;;) € RI™dm (d m > 1) where Kij € R for

i,j €{l,...,m} and K;; is symmetric for i € {1,...,m}. Let o(-) denotes the

|

where B(-,-) denotes a disk B(c,r) = {A : ||A = c|| < r} and A, is the q-th smallest

eigenvalues of K;;. Then,

spectrum of a matrix. Define set

A4(Kii), Z 1K

G;=0o(Ki) U { UZ=1 B
J#

O'((]() € U?:lGi'

Next, we use the above fact to find a superset of o-(P). Every diagonal block of P is
1. Moreover, Pl',j =0forl|i—j| > 1, Pii1= Ai’i_lDz'_—ll,i—l’ Piiy = Ai’i+1Di_4-11,i+1'
Hence we have

2Ur

PolPal < lacll[ o |+ Asall[ o7k e
J#i

The last inequality holds because the problem instance p € P(u,{y, br, s, A, h).
Therefore, G; = B(1, %). This implies all eigenvalues of P are in B(1, %). O

To further simplify the notation in the power series expansion, we define J =

AD™! = P - I. Given any period indices 7’ and 7, we have

(M_])T’,T = (D_])T’,T'(P_])T’,T = (D_I)T’,T’ X Z(_J)f’,r’ (3.56)
>0

where the first equality is since D! is a diagonal block matrix, the second equality
is due to Lemma[3.C.2
Step 3: Showing exponential-decay properties are preserved through matrix

multiplications

This step simply requires proving Lemma[3.C.3]
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Proof of Lemma Under the assumptions, we see that

1
Z(;)dm(u,q)”(AIAZ .. 'Af)u,q”
q
EZ(MMMMMM~%MM+q

1 d
— —\dm(u,q)
¥
S1hSeol

< Z(/l')dM(u .q) Z (Cl/ldM(M Sl))(c 29Mm st Sz)) (Cg/ldM(St’ 1Q)) (3.57)

ST, 586-1

Z Z 1_[ C; (/l,)dM(u S)HAp(51,52)++d pm(Se-1,9)

q S1,.Se-1 i=
s(d)fnci.
i=1

Hence, we obtain that

14
([ [Aual| < €2yt

i=1

Step 4: Establishing exponential decay properties of matrix M/~

In this step, we use the property developed for general exponential-decay matrices

on M and derive the perturbation bound in the Theorem [3.3.4

Lemma 3.D.4. For ¢ > 1, period index i, j > 1, J has the following properties:

o (JOi;=0ift <l|i—jlort—li—jlisodd

° (J[),;j is a summation of terms ]—[i:1 Aj llekllk and the number of such terms

is bounded by ((f—lifjl)/Z)'
Note for integers m, k > 1, we define (,:72) = 0 if k is odd.

Proof of Since J is a tri-diagonal banded matrix, Jl.‘j ;= Ofort¢ < |i—j|. We

prove the rest of properties of J by induction on €.

When € =1,

Jii=0, Jij1=A D7} Lict> Jiiw1 = A i1 D7)

i+1,i+1°
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Lemma holds for the base case. Suppose Lemma holds for J9 for
qg<t-1.Letg=2{,then

r _ -1y  _ gt-1 4 -1 -1 4 -l
Ji,j = Z‘]i,k Jkj = Ji,j—lAJ—l,JDj,j +Ji,j+1AJ+1s]Dj,j'
k

By induction hypothesis, ij‘.l is a summation of terms Hi;ll A jk’ikDi_k{l'k' Moreover,

the number of such terms is bounded by ((5—1—|€:}—1|)/2) + ((t,_l_ﬁ:}+1|)/2). Next we
. -1 -1 _ t

will show ((f—l—|i—j—l|)/2) + ((f—l—|i—j+1|)/2) = ((€—|i—j|)/2) case by case.

Case 1: £ —|i — j| is odd.

If¢{—|i—jlisodd,then{—1—|i—j—1|and £ —1—|i — j+ 1] are both odd. Under

this case,

Case 2: ¢ — |i — j| is even and i = j. Under this case, we have

€1 £-1 (-1 £-1
((f—l—li—j—ll)/2)+((5—1—|i—j+1|)/2)_(5/2—1)+(5/2—1)’

. . -1 -1 ¢ ¢
Since £ is even, (6’/2—1) + (5/2—1) = (5/2) = ((€—|i—j|)/2)'
Case3: {—|i— j|isevenandi # j.
Ifé—|i—jliseven,then{ —1—|i—j—1|and £ — 1 —|i — j + 1| are both even.
We denote (¢ — |i — j|)/2 as ko. By triangle inequality, (( — 1 —|i — j — 1|)/2 and
(—1—-|i—j+1]|)/2arein {ko — 1, ko}. Sincei # J,

e-1 . £-1 _(e-Ty, (e
(C-1-li-j—1/2) \(e-1-li-j+1)p/2) \ko-1 ko )
which sums to ( /fo) by Pascal’s triangle. O

Next we present the proof of Lemma [3.C.4

Proof of Lemma By Lemma[3.D.4} (J%); ; equals to the summation of terms

i: A Dl.‘li.k and the number of such terms is bounded by ( ( f—lifjl) /2).

jk’ik i
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Define By = AJ’kikDi_,:ik' Recall Aj, ;, is a diagonal matrix and D;, ; is a graph-

induced banded matrix.

”(Bk)“’q” = ”(Afk i, lk)“ 51” ”(AJk ’k)“ “(le lk)“ q” = KT”(le lk)“ V”
< &ygzgw,v)_

u
where the last inequality is by using Lemma[3.D.Tjon D;, ;.

Under the condition b < co, we can use Lemma([3.C.3|to obtain the following bound,

4
([ [AnaDihus| <
k=1

Since the number of such terms is bounded by (| f—lifjl) 12)> We have

< (G20 (),

¢

) 2,
(C=1i=JjD/2

(i gl < ( (b—) () ds ),

O

Proof of 3.C.3} Givenl < 7,7’ < k—landvg € N7~ since M~ = D7' 3, (=J)",

we have

With slight abuse of notation, we use K to denote KET), and Q7! to denote D;,IT/

(M7 Ky D7, Z(—J)f,’TKﬁT) y

>0

(3.58)

Vo Vo

in this proof from now. We can rewrite the right hand side of (3.58)) using the new
notation as follows:

(Q" D (=D Ky

£>0

)

>0

(Q_l (_J)‘f’,TKy

:Z Z (Q—l(—J)fi,,T (Ky)q (3.59)
020 (|geny-! V0,9
<30 3 (et Joon

€>0 quC_l Vo,q

For a given g € N'~! and y € Rl

||(Ky)‘1||: Z Kf]vuyu = Z Kq,uyu .

u€dNy u€dN; NN}
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where the last equality is since spacial interaction costs are only among neighboring

nodes.
For a given u € N/, since the spacial interaction cost for each edge is {5 smooth,
||Kq,uyu|| < ||Kqu||||yu” < €S||yu||a

which gives

IRyl < D Eslvall.

uedN;NN,}
Therefore,
H(g‘Z(—J)?,TKy <ty (Q-l(—f)fi,,f) Do Il
>0 Vo 20 gen:~! vo.q ueaNCﬂqu

(3.60)

By Lemma , (-J )f, . satisfies the following exponential decay properties: for
any u,q € N1,

t

¢
||((J )T’,T)u,q” < ((5 _ |T' _ T|)/2

)<~—> (y)'e),

where we choose 6 = by - ys, ¥, = (1 +b1)ysand d = Zyzo(ﬁ)yh(y).

Moreover, Q~! (which denotes D;,IT/) is the inverse of a graph-induced banded

matrix. Q7! satisfies: for any u, g € N77!,

107 ugll < f’g(”) (y@)dg(u’q%

where the first inequality is again by using Lemma(3.D.1jon D ..

Applying Lemma on Q7!

{>1,

, we have for any u, g € NC_I, and

(Q_IH)?’T) <“22(<f 5 T|>/z)<~2£T> (xyto ),
u,q

where A" =y, +by-ys < landa = 3,50(15 35 L+h| ) h(y). Note that JO = I, it is

+b1+by
straightforward to verify that the above inequality holds when £ = 0.
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With the exponential decay properties of Q! (—J ) we have

>0 Vo
¢ 2¢ .
< fsa”~ Z(@ |T_T|>/z) D RGN SR

H o geN; ! u€dN;UN}
2 ¢ 20 ) .
<602 B (oo @D 2 80
H f>|T’ 7| uedNy;, (3 61)
4at u
<ata2 Y A S doton-tyy, |
>\t —1| uedN},
2ACsa®  Addlr .. I
< ()" 3T ()0, |
p—datr p UedN’
2ALsa®  ddlr

(7T 2 @ty

- (- 4alr) uedN’,

The third inequality uses ( ) < 2¢, which can be proved using the following

¢
(t=|r'=71)/2
version of Stirling’s approximation: For all n > 1, e denotes the natural number,

\/27Tn(n/e)nel/(12n+l) <nl < ‘/27m(n/e)”e1/(12”),

Similarly, consider H((M ‘1)7/,,-)Rl.(i)e)vo

fori € {1,k — 1}. With slight abuse of

notation, in this proof, we use R to denote Rl.(i) and use the notation Q‘1 to denote
D 1

gy Following the same steps as before, we have

<> > (Q"(—J)f,,i) [(Re),||- (3.62)
V0.9

>0 geN’,

H((M—‘)T/,I-)Rf”e)

Vo

Since temporal interactions occurs for the same node under consecutive time steps,

R is a diagonal block matrix. Hence,

”(R")q” = ”Rq,qeq” < fr||€q||-

Moreover, using the exponential decay properties of Q! (=J)¢
N

v.» We have foru, g €

(Q_l(_J)f"i) S“2§(<f_| 5 l|>/2)< 20y rydotea,
u.q
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Therefore,
[ RDe),,

2, 2.7 ( zl)/2)( =Dt

>0 geN’,

IA

2 ¢ 20
) “2‘( —i )“ D) e
£>|7'—i| geN’, (-7 —1i])/2
i d 3.63
< 2fTCl Z (4leT)f Z (/l/)dg(vo,q)”eq“ ( )
Howmy B genr
2fTaz 4&57" '
S — ( )|T il (/l’)dg(vo’q)”e ||
H— datr Jui q;\;’ q
a’u 4a€T o/ —il+1 do (o)
) ()P ]leg
" 2a(u - 4atr) q;,
H

Given time index 1 < 7 < k — 1, node vy € NC‘I, and perturbation vector

e=(ep, €1, ,ex),

H( U (L +6e))e .y,

MZ' K De,

k=1

-1 (k=1)
+ (MT,’,(_le_1 ek) +Z
=1

a’u , ’ = ’
< —26?(/1 —4at) o Z pgg(Vo q)”(eo)q” +p§~ T Z pgg(vo q)”(ek)q”]

-1 p(D)
(MT’,]R] €()

Vo Vo Vo

geN;, geN;y,
k—1 2
2Afsa |T —7] dg( )
+ I R g\vo,u u
D T dan ™ 2y 09 e

ucdNy,
where p7 = % and ps = A" = (1+ by + by)ys. We let

a? 2a°Als/u )
2a(1 —4atr/u) ys(1+ by +by)(1 —4atr/u)”

C = max{

Under the condition u > max{8afr, Als(b; + by)/4}, pr < 1 and pg < 1.

Then,

o senen
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<c p}’ Z pgg(vo,q)”(eo)q” +p§—r’ Z ng(vo’Q)||(€k)Q||

gEeN,, geN;,

+Zp|T —l Z (pS)dg(vo’u)”(e‘r)u” .

uedN,

: u u k,r u ’ u u\’ u
Finally, let £ = {y |, 24](7,u) € ON{\7)} and e = {(",)’ = ¥ |, (%) = 24}. By

integration,

o (3 42 g - (w“‘(?v) O A Y g

<

(—lﬁ({ + 96))10 Vo

which is bounded by
C Z plTo—(r—l)pcsig(VO,u)||y;4_l _ (y?_l),” +C Z p';"‘T'ng(VO’”)H — (24 ”
MENC (M,T)GBN(k’r)

(t.v)

Adding Constraints to Perturbation Bounds

Recall that we have shown Theorem [3.3.3]and Theorem [3.3.4]under the assumption
that the individual decisions are unconstrained to simplify the analysis. In this
section, we present a general way to relax this assumption by incorporating logarithm

barrier functions, which also applies for Theorem 3.C.6|

Recall that in Assumption [3.3.1, we assume that D} is convex with a non-empty

interior, and can be expressed as
D} ={x; e R" | (g/)i(x/) <0,V1 <i <m}},

where the i th constraint (g}); : R” — R is a convex function in C?. For any

time-vertex pair (7, V), we can approximate the individual constraints
(gV)i(x)) <0Vl <i <ml,

by adding the logarithmic barrier function —A Z:’j In (—(g%)i(xY)) to the original
node cost function f;’. Here, parameter u is a positive real number that controls

how “good” the barrier function approximates the indicator function

if (g2);(xY) <0,V1 <i <m’,
ID\; ()C:) — (g‘r)l( T) T
+00  otherwise.
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The approximation improves as parameter ¢ becomes closer to 0. Thus, the new

node cost function will be
nmy
BY(x)s ) = £ () = A ) In (= (gh)i(x))).
i=1

As an extension of the original notation, we use w(k(;)v)({yl 1} {25} ) to denote

the optimal solution of the following optimization problem defined on a Networked

OCO problem instance p:
t+k—1
arg min Z Z BY(x%;2) + Z (X, X))+ Z gt” q)(xt, )
{x7} 7=t \ueN/ ueNy} (u,q)€E(NY)

u r
s.t. x,_, =y, _,Yu €Ny,

u
t—
Xy =274,V (r,u) € N

(t.v) "

Compared with w;’f(’:’)v) ({y_,}, {z7}) defined in Section , the constraints x% € D
are removed and the node costs f¥(x¥) are replaced with B(x; 4).

A key observation we need to point out is that the perturbation bounds we have
shown do not depend on the smoothness constant £ of node cost functions. That

means the perturbation bound
(k.r) . (k.r) .
o (e (1) o) = 50 (I A1),
— d s
<G e e -

k,
(wr)edN )

holds for arbitrary A, where Ci, ps, pr are specified in Theorem [3.3.3] or Theo-
rem |3.3.4] and are independent of parameter A. Theorem 3.10 in Forsgren, Gill,

and Wright (2002)) guarantees that the solutions w(k( . V)({y * 128} Ak) converge
to gl/(k(:)v)({y 1} {z7}) for any positive sequence {4k}, that tends to zero. Thus
the above perturbation bound also holds for l//( ) ({y{_}, {z7}) which includes the

constraints on individual decisions.
Note that the argument we present in this section also works for Theorems [3.C.6|

and[3.3.9]

Proof of Theorem 3.C.8

We first derive an upper bound on the distance between x; and x;.

Note that for any period ¢, we have

e = & (rezr)o|| < e (3.64)
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Thus we see that
e = x7{| = |} = &1 (xo)i|

-1
< ||Xt - lf/;t(xz—l)t” + Z ||‘/;t—i+l (X1-i)s = lZ’r—i(xz—i—l)z”
i=1

=1

< e =G0l + ) Capllleii = i Cemim)ind] (3.650)
i=1
t—1 .
< > Coplg|Pxici = brierim )i (3.65b)
i=0
t
< > Coplilei (3.65¢)

i=1
where in (3.654d), we used Theorem and the fact that ¢,_;(x;_;_1); can be
written as

‘Z’t—i (X—im1)r = Yioin1 (J/z—i (xt—i—l)t—i), .
We also used Cp = max{1, Cg} in (3.65b) and (3.64)) in (3.65¢).
By (3.63) and the Cauchy-Schwarz Inequality, we see that

t . t . CZ
ch ¢ PG DR | < =
i=1 i=1 PG

Summing up over ¢ gives that

2
e = xt|| <G < Cs

Proof of Lemma 3.C.7|

In this section, we show Lemma[3.C.7 holds with following specific constants:

el =
h(r)*p¢
22 G 2 2(k 1 2k |2
o L T ) | P
pr)( PGPT)
8C2 h(l’)z t+k—1 , B .
7 Z or fr(x7)+C3(r)2'P§(k i (5, D] -

(3.66)

Note that, by the principle of optimality, we have

_ (k1)
x;’} - l!’p’(:"v) ( x?-l}’ {QZ})(Z‘,V) ’
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v * (k’r) u u *
1) =¥ (1m) ({xf‘l}’{(xﬂf‘l) })(z v)
Recall that we define the quantity C3(r) = Z;ZO h(y) - pg to simplify the notation.

Since the exponentially decaying local perturbation bound holds in Definition[3.3.4]
we see that

t+k—1
SRR BT W Z |-

d *
"‘CIPT : Z Pg g(u & (xf+k—1|z—1) _0?+k—1H’ (3.67)
ueN;
which implies that
x) — (x)
t+k—1 2
<2Ck¥ | Y pp Y e -
T=t u€dN;,
2 2(k-1) dg(u,v)
+2Cipr Z LR AV /P 1” (3.68a)
ueNy,
t+k—1 t+k—1 5
<2cipy | Yot >l D et Y e - e
T=t uedN}, T=t U€IN,,
2
2(k-1 dg(u, d
+2C12pT( : Z psg(u K g(u i ( Xk 1|¢- 1) _Otu+k—1H (3.68b)
ueN; ueN’
plon h(r) "
T Z DY H(xﬂz ) -
u€dN,,
2
2(k-1 d
£2C3C5(0) - o2 V[ oot - et (3.68¢)

ueN’

where we used the AM-GM Inequality in (3.684); we used the Cauchy-Schwarz
Inequality in (3.68b); we used the definitions of functions A(r) and C3(r) in (3.68c).

Summing up (3.68) over all v € V and reorganizing terms gives

x; — (x),_

ve

2C h(r)

= 1_— Ps Z Z Pr- H(Xﬂz D

ue N’
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2
2(k-1 d > *
+2CTC3(r) 'PT( : Z Z Psg(u i (CHRRTANY M 9?+k—1”

veV \ueNy;
2C2h(l”)2 t+k—1 5
1 2 —t{| *
S P DI IR

*

_ 2
+203C3 (% pp Vet — e (3.69)

where we used the facts that

u * u 2 1% * \% 2 * 2
DI (CN AL TR (AR VTR SR
veV uedNy, veV
and
dg () ; 2 ; 2
Z Z Pg (xzu+k—1|z—1) _9?+k—1” SC?’(F)ZH(X;+/€—I|I—I) _sz+k—1H
veV uedNy, veV

2
k
= C3(I’) NPrrk=1j-1 — 0t+k—1” .

We also note that by the principle of optimality, the following equations hold for all

T2t

xi|,_1 = J’t (X117 »
Xy =), -

Recall that Cy := max{1, Cg}. By Theorem [3.C.6] we see that

oy = x| < Copg -1 = x| (3.70)

which implies

. 2 2
le[—l _07' S 2 +2

- 0. (3.71a)

x5 =X
T|t—1 T

< 222 D iy = ||P + 2| - 6es (3.71b)

where we used the triangle inequality and the AM-GM inequality in (3.71a); we
used (3.70) in (3.71D).

Substituting (3.71) into (3.69) gives

% v * 2
Z Xp — (xt|t_1)
veV
h(”)zpz 2(k=1 )
< 4CiCy oy + G5 o T g e = x|

(1-pr)(1 = pgpr)
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) h(}/‘)z 5 t+k—1 >

+4C; 1-pr - ps ,0; _— ” +C3(r)” X = Oreie- 1”
=t
h(r)?p 2
<4cici( 5 ()()1 e e O %f'k) ee-s =i
—PT _pGp

8C? h(r)2 Sl . - .

+71 Py Z pi fe () + C3 () o7 frok (1) |

(3.72)

where we used the fact that the node cost function f} is non-negative and u-strongly

convex for all 7, v, thus

fa) = Y ) = 53 e -er =

veV
—(x),
proof of (3.66 .
Proof of Lemma [3.C.9

-0

VG(V

2
X — )c;ﬁ| r—1” = ¢2. Thus we have finished the

In this section, we show Lemma[3.C.9 holds with following specific constants:

2
e = |x, _X:V—IH
h(r)*pg 2
< 12C2C2 G 2r + C3(7')2 . pz(k—l) . ka X1 — x*_
18| s 007 |
24C [(h(r? "G L ke )
+ 1 1— ) % Z p; th(xT) + C3(’”)2 ’ PT( 1)fz+k—1(xt+k_1)
H PT py
9C;(1+AN)C3(r)*  12C{C3(r)*6,  12CTR(r)*6,
1 - + + 1= pS :
pT Jz u(1 = pr)

PredictionError,, (; 1).

(3.73)

Note that, by the principle of optimality, we have

\%
Xt =

Vv *
(xtlt—l) -

where we recall that 6*

argminycpu f7'(y).

T|t

(k r)

p (t,v) ({xt 1} {0T|l‘} é:((tkvr)))

(k.r)

AN (R RC T (fff{f) )

= arg mingepu fT”(y;,uZ| ;) in Algorithm [3| and 67 :=
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Since the exponentially decaying local perturbation bound holds in Definition[3.3.7]

we see that

v v
Xy — ()C _
t+k—1

<y Y ppt Y e e,
T=t

uedNy,

Term 1

+ CIpT Z dg(u, V)

t+k 1t— 1) t+k 1|z

Term 2

+Cy-dist, (7). (¢117)) ) (3.74)

Note that the square of Term 1 in can be upper bounded by

(Term 1)?
t+k—1 z+k 1
: Z Pr Z Z H(xm ) 93“ (3.75a)
uc€dN;
h(r) t+k—1 - )
= 1-pr Z pr’ Z (xflt D' r\t (3.75b)
7=t uedNy
2h(r) ["&! rrk=1
- Z pr Z (x5, = o7 + Z pr " Z 04, —0“ (3.75¢)
i u€dNy T=t uEAN
Zh(r) t+k—1 ~ Y . ) 2 25 l+k 1 ) 5
= 1-— Z ’0; ' Z (x‘rlt—l) - 07 +_ T ! — (W% ,
PT\ = uedNy

(3.75d)

where we used the Cauchy-Schwarz Inequality in (3.75a); we used the definition
of hA(r) in (3.75b); we used the triangle inequality and the AM-GM inequality
in (3.75c]); we used the special case of generalized exponentially decaying local

perturbation bound when the graph is a single node in (3.75d). We also see that

(Term 2)?
d (u,v) dg(u,v) 2
= g Z Ps ’ (ka 1]- 1) t+k 1)¢ (3.76a)
uEN’
d
< G(r) - g(u (67 Xvrot—1) ~ Oty (3.76b)

ueNV



<2C5(r) - ( pagtey)
ueNy

n Z dg(u,v)

ueN;

Gu

< 2C5(r) - ( pZG(u,v)
UEN,,

+ —_—
H ueN,

pgg(u,v)

t+k—1|t

t+k—1|t

( k- 1]z— 1)

" 2
0[+k—1 H

_(w” B

2
t+k IH

2
u * u
(xz+k—1|z—1) - 9t+k—1H

2
*
s
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(3.76¢)

(3.76d)

where we used Cauchy-Schwarz Inequality in (3.76a); we used the definition of
C3(r) in (3.76b); we used the triangle inequality and the AM-GM inequality in

(3.76c); we used the special case of generalized exponentially decaying local per-

turbation bound when the graph is a single node in (3.76d). Note that the square of

dist (f(k ")

(t,v) > \>(t,v)

*y\ 2
(k,r)
(fw) )

<3 Z p'Tl_Tlng(V’”)

(k=1,r=1)
(M,T)GN(t v

— d s
Z p|7€ T|psg(v i)

k,
(u,‘r)eN((l,vr))

dist (g((tkv’))

+3

t+k

Z Z pIY{—Tnglg(v,e)

7=t ec&E(NY)

+3

< 3C5(r)
1 -pr

)

(u,7)eN

(k=1,r—1)
Nty

lt—7| dg(v.u)
pr P
(k.r)
(tv)

| 3ACy(n)
1 - pr

S

7=t e€&E(NY)

S

( S plrpteenl,
(u,7)e

T|l

|t 7| dg(v e)

(§ (k’r)) ) can also be bounded by

2,

k-1,
(M,T)EN((t 0 "

2

(u, T)EN(k r)

t+k

2 2

7=t ¢c&E(NY})

T|l

— (a¥)"

Ps

T|t

d 2
|1{ T|pS§(" ) w7|t _ (wu)
1)
d
¥ Tlpsg(v ) T|l — (@Y
dg( )
|]€ Tlpsg " T|l‘ (ﬁf
(3.77a)
- (w7)"
—eol (3.77b)

where we used Cauchy-Schwarz Inequality in (3.77a); we used the definition of

Cy(r) in (3.770).
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Substituting (3.75)), (3.76), and (3.77) into (3.74)) gives that

-,

*\ 2
< 3Cip¥ (Term 1)* +3C?p (k Y(Term 2)2 + 3C3dist, (g(k ) (f(k’r)) )

(.v) > \> (2.v)
6C2]’l(7‘) - p 2r [ t+k—1 B . 5
S e DIV A H<x¢|,_1> -

L=pr =t uedN’,

2{ t+k—1 )

—_v p;l Z ‘ T|t (wu)

K T=t ucedN;,

2(k—1 d
+6C2C3(r) - p )( dol ey —9;’+k_1H
ueN’

26, dg () 12

* 7 Z pSg wtu+k—l|t — (W
UEN,,

9C2C5(r)

Z 2 lt—7| dg(v,u)
T Z Pr Ps Mz

! (u T)eN(k_l’r_l)
’ (t,v)
lt—7| dg(v,u)

* Z Pr Ps @y, — (af)" )

(u, T)EN(k r))

9C2ACs(r) 2K

TN lt—7| dg(v, e)
* 1 —pT Z Z pT pS T|l‘ (ﬁT M (3.78)

7=t e€&E(NY)

Summing up for all v € V and reorganizing terms gives

Xy = (x
veV
6C2h(r)2 t+k—1 B , (k-1 2
< 11——T 'P_zsr Z Pr ! Xrle-1 s +6C2C3(”)2 ( ) Xk 1]e-1 9t+k_]”
12C2h(7’)2€ t+k—1
ey DI R |
12C3C5(r)?¢
1 W 2(k-1) 2
+ f *Pr ”wt+k—1|t - wt+k—1||
9C2C3(r)? 5! GG N
L s Tt o
1—pr TZ‘ o7 o =il + l-pr I

N 9C3A2C3(r)? ’i
1 -pr

B, — ()"



t+k—1

b2 P

+6C2C (r) pz(k D

6C2h(r)2
<4 —

T|t 1~
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2

2
xt+k -1~ 9t+k—1”

9C;(1+AM)C3(r)*  12C{C3(r)*6,  12CTR(r)*6,
+ - Py
1-pr Ju u(l = pr)
- PredictionError, (; 1), (3.79)
where we used the facts that
D Z et o < Z S R TR TN
veV uedN.
and
dg(u,v) % *
Z Z ps’ CATIRTARD Rl 1” < G3(r) Z H(xt+k—1|t—1) _sz+k—1H
veV uedNy, veV

2
k
= C3(I’) NPrrk=1j-1 — 0t+k—1” .

We also note that by the principle of optimality, the following equations hold for all

T2>1:

T|t 1~

lﬁt(xt l)T,x —‘ﬁt( ) :

Recall that Cy := max{1, Cg}. By Theorem[3.C.6, we see that

xT|l—1 -
which implies
x5 =0 < 2|x
T|t—1 T ‘r|t 1

< Cop ™ Mfxi—t = x_||s (3.80)
(3.81a)
< 2C2 2 D iy =i |P + 2| - 6cs (3.81b)

where we used the triangle inequality and the AM-GM inequality in (3.81a); we

used (3.80) in (3.81D).
Substituting (3.8T]) into gives

x; — (x)

h(r)*pg
(1-pr)(1 = pgpr)

< 12C7C}

§+C(r)?p

2(k-1)
T

G |-t =2
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r+k=1
123 L 0-1P + Ca (12 - p25=D|[* 0 2
T T s ZpT = 6"+ G307 o et = O |
7=t

+

9C;(1+AN)C3(r)*  12C{C3(r)*6,  12CTR(r)*6,
+ + Py
1-pr H p(1l = pr)

. PredictionErrorp,(,,k)

< 12CiC3 hor) PG ¥+ ()% - p2 D o2 | ey — x|
PO\ == pgpr) te -
24C2 h(r)2 t+k—1 B . B |

+ : : P? Z p; lfr(x;) + C3 (’”)2 'p;(k 1)ft+k—1(x;+k_1)

u \l-pr S

9C;(1+AN)C3(r)*  12C{C3(r)*6,  12CTR(r)*6,

+ + Py
1 —pr 7 u(l = pr)

- PredictionError, (; 1), (3.82)

where we used the fact that the node cost function f} is non-negative and u-strongly

convex for all 7, v, thus

e = 3R = 5 e -alf =5

veV veV

X — HTHZ.

2 2
Note that )}, ||x) — (xtvh_l)* = |lx; — x:II—IH = e2. Thus we have finished the
proof of (3.74).
Proof of Theorem 3.3.5]

In this section, we show Theorem [3.3.5/holds with the following specific constants:

r

32C3CH(Ly + Als +2¢6r) - h(r)?
1+(1+ ‘ .

1(1=pa)2(1 - pr)? Ps
32C2C2(E5 + Als +26r) C3(r)?
' (1 M u(1 = pg)? a 5:53)

under the assumption that

h(r)’pg
(1 - pr)(1 - pgpr)

2 4
4C1C0
(1-pg)?

_ 1
p¥ +C3(r)? - p2hY .pgk) <5 (84

Recall that Cy is defined in Theorem Note that Theorems [3.3.3| and [3.C.6
hold for P (u, €¢, tr, €s, A, h). One can check that Cy, Cy, (1 —,oc;)‘1 ,and (1 —pT)“
are bounded by polynomials of £¢/u, {7 /u, and (Als)/u.
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In the proof, we need to use Lemma F.2 in Lin, Hu, Shi, et al. (2021) to bound
LPC’s total cost by a weighted sum of the offline optimal cost and the sum of
squared distances between their trajectories. For completeness, we present Lemma
F.2 in Lin, Hu, Shi, et al. (2021]) below:

Lemma 3.D.5. For a fixed dimension m € Z,, assume a function h : R™ — Ry is
convex, €-smooth and continuously differentiable. For all x,y € R™, for all n > 0,

we have p |
h(x) < (1+n)h(y) + 3 (1 + 5) llx = yII%.

Now we come back to the proof of Theorem [3.3.5 We first bound the sum of

squared distances between LPC’s trajectory and the offline optimal trajectory:

H
Z e -

(1 _pG)2 Z (3.85a)

4c3ct h(r)2p2 H

L0 G 2r 2 201 2k .2

= +C3(r)° - p P Xi—1 — X,
(1-pc)? (l—pT)(l—pépT) § T G ;” t 1”

8C2C2 H h(l")z t+k-1
01 2r T—t *
+ E . E X,
u(1 - pg)? (1—pr s L b o)

t=1

+C3(r)% - 25V ke (x;k_l)), (3.85b)

where we used Theorem [3.C.8|in (3.85a)); we used Lemma with the specific
constants given in Section [3.D]in (3.85D).

Recall that in (3.84)), we assume r and k are sufficient large so that the coefficient of
the first term in (3.83) satisfies

4c2ct h(r)?p2 _ 1
10 5 ¢ > . gr +C3(r)2-p%(k D -pék < -
(1 =pc)* \ (1 = pr)(1 = pgpr) 2
Substituting this bound into (3.85)) gives that
16C2C? h(r)? 5 a
(k=1) *
E X = x| < pg +C3(r)* - p )E Ji(x).
” [ t” _pG)z ((1 )2 S T - t\ Ay

(3.86)
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By Lemma 3.D.5| since f; is ({; + Als)-smooth, convex, and non-negative on R”,
and c; is {r-smooth, convex, and non-negative on R" X R”, we know that

2

fe) < (Lo i) + L2558 (1 + %) b 7

cr(xe,xi-1) < (L+m)e,(x7,x,_)) + ?T (1 + 5) (”Xz _'xtHZ + fo—l —xt_1”2) (3.87)
holds for any > 0. Summing the above inequality over ¢ gives

H
PRCACARIACHEANY)
t=1

2

H H
" v s (ff +AfS +2€T) 1 "
S(1+n);(f,(x,)+c,(xt,xl_1))+ 5 (1+E ;”x;—x,
< (1 +n)cost,(OPT)
1\ 16C2C3 (€5 + Als +2¢r) ( h(r)? 5 5 2(k—1))
+(1+— -pd +C3(r)” -
(1) e (e o+ 4}

- cost, (OPT), (3.88)

where we used (3.86]) and ZZ 1 fi(x}) < cost,(OPT) in the last inequality. Setting
n=ps+ pi‘l in (3.88)) finishes the proof of (3.83).

As a remark, we require the local cost function ( AN sf) to be non-negative,

convex, and smooth in the whole Euclidean spaces (R”,R" x R",R" X R") in As-
sumption [3.3.1] because we want to apply Lemma [3.D.5]in (3.87).

Proof of Theorem [3.3.10)
In this section, we show Theorem[3.3.10/holds with the following specific constants:
Under the assumption that the following inequality holds

12C7C; h(r)*pg
(1-pc)* \ (1 = pr)(1 = pZpr)
the coefficient before cost, (OPT) is given by

_ 1
p¥ +C3(r)? - pHY .pék) <3 (389

96C5CH(Ly + Als +2Lr) - h(r)*) | 96C;CH(Ly + Als +261)C3(r)*|
1+ 5 5 sH(1+ ) Pr
(1= pg)*(1 - pr) u(1=pg)
(3.90)

and the additive term is
18C2(1+A)C3(r)*  24C3C3(r)*6,  24C2h(r)C,,
+ +
1 - pr H p(1=pr)

k-1
-p?) Y PT(p).
7=0

(3.91)
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Recall that Cy is defined in Theorem[3.C.8] Note that Theorems[3.C.6]and[3.3.9]hold
for P(u, €y, br, Ls, €y, A, h). One can check that Cy, Cy, (1 - pg)~!, and (1 - pr)~!
are bounded by polynomials of £¢/u, {r/u, and (Als)/pu.

In the proof, we need to use Lemma F.2 in Lin, Hu, Shi, et al. (2021) to bound
LPC’s total cost by a weighted sum of the offline optimal cost and the sum of

squared distances between their trajectories. For completeness, we present Lemma
F.2 in Lin, Hu, Shi, et al. (2021) below:

Lemma 3.D.6. For a fixed dimension m € Z., assume a function h : R™ — Ry is
convex, {-smooth and continuously differentiable. For all x,y € R™, for all n > 0,

we have

) < i)+ 3 (160 =P

Now we come back to the proof of Theorem [3.3.10] We first bound the sum of
squared distances between LPC’s trajectory and the offline optimal trajectory:

H
Z (2

H
2
3.92
(1—pa>ztzef (692
12C3¢C4 h(r)*p> el
1-0 G 2r 2 2(k-1) 2k |12
=11 _ 2 ps +C3(r)” - py PG ”xt—l_xz—l“
(1-p6)* \ (1 - pr)(1 - pZpr)
G =1
24c2cz H h(l")z t+k—1 i
ﬂ(l_Op;)QZ(l_pT-pér 2, P D)+ o7 frain ()
t=1 T=t
9CI(1+AH)Cs3(r)*  12CIC3(r)*6,  12CHR(r)*6, .\ & .
PT U pu(l—pr poard

(3.92b)
where we used Theorem [3.C.8|in (3.92al); we used Lemma with the specific
constants given in Section in (3.92b).

Recall that in (3.89), we assume r and k are sufficient large so that the coefficient of
the first term in (3.92) satisfies

24 2.2

12¢3Cy h(r)“pg or 2, 20k-1) | 2k
5 s ps +CG()7 e PG

(1 =pc)* \ (1 = pr)(1 = pgpr)

Substituting this bound into (3.92)) gives that

H
2l -
=1

IA
| =
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48C3C? h(r)? H
s (s e+ a2 2 ) )
t=1

< P
u(1-pe)2 \(1-pr)? %
I18CZ(1+A%)C3(r)*  24C3C3(r)*t,  24CTR(r)*6, L\ & .
+ 3 |- > PT(p).
1-pr M u(l = pr) g

(3.93)

By Lemma since f; is (£; + Alg)-smooth, convex, and non-negative on R”,

and ¢, is {r-smooth, convex, and non-negative on R" X R”, we know that

2

fl) S (e fl) + L2208 (1 + %) e = x;

. L 1 o2 . |12
cr(xpxi1) < (L+m)e(x), x_ ;) + ET (1 + ;) (”xt X ” + ||Xz—1 _xz—1|| )
(3.94)
holds for any > 0. Summing the above inequality over ¢ gives

H
Z (fi (xe) + ¢ (xr,x021))
t=1

2

H H

. . u (€r + Als +20r) 1 i

<) D () + g, xp ) 4 22T (1+5)Z||x,_x,
=1 t=1

< (1 +n)cost,(OPT)
16C2C%(Lr + Alg + 28 2
+(1+1) 0Ci(Ly + Als T)( h(r)

2(k-1
0¥ +C3(r)? - pf ))

n u(1 - pg)? (1-pr)?
- cost(OPT)
18C2(1+A%)C3(r)?  24C3C3(r)26,  24C32h(r)*C, .\ 'S
+ + + o5 |- ) prYe,
1-pr K u(l - pr) =
(3.95)

where we used (3.93) and 3.7, f,(x}) < cost,(OPT) in the last inequality. Setting
n = ps+ pk! in (3:95) finishes the proof of (3:90).

As a remark, we require the local cost function ( A sf) to be non-negative,

convex, and smooth in the whole Euclidean spaces (R”,R" x R*,R" X R") in As-

sumption [3.3.1] because we want to apply Lemma [3.D.6|in (3.94).
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Proof of Corollary 3.3.1]
Under the assumptions, by Theorem in Section we see that the exponen-
tially decaying local perturbation bound (Definition [3.3.4)) holds with

or = \/1 ) (\/1 T /) + 1)_1 < % ps = \/1 ) (\/1 T (Als/p) + 1)_1 < %,

and C| = 2\/(A€S/u)(€T/,u) < 0.702. We also see that

1
oo =1-2 (\/1 T (26 /) + 1) < . and

Cs(r) Zr:h() 7<c22-%7< 4c
3(r) = Y) - pg < < :
y=0 4-\2

Substituting these bounds into (3.83) and (3.84) in the proof of Theorem [3.3.5]
finishes the proof of Corollary [3.3.1, where the numerical constants are C| =
782, C} = 936.

=0

Proof of Corollary 3.3.2]
We apply Theorem and set b; = 2A — 1 and by = 4A% — 2A. Since we have
h(y) < A7, we see that a < 2 and a@ < 2. We also see that

max{8aly/u, As(by +by)/(4u)} < 1.

Thus, by Theorem [3.3.4] we see that the exponentially decaying local perturbation
bound holds with .
pr <3, ps < AT, Cp <2,

We also see that
_1 1
06 = 1 —2(\/1 T 2l ) + 1) < 25 and
r r
Cs(r)= > h(y)-ph < Y A <2,
y=0 y=0

Substituting these bounds into (3.83) and (3.84) in the proof of Theorem [3.3.5]
finishes the proof of Corollary [3.3.1, where the numerical constants are C| =
546, C, = 1092,

Proof of Theorem
In this section we prove a lower bound on the competitive ratio of any online
algorithm. Our proof focuses on temporal and spatial lower bounds separately first,

and then combines them.
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Step 1: Temporal Lower Bounds We first show that the competitive ratio of any
online algorithm with & steps of future predictions is lower bounded by 1 + Q(/lé).
To show this, we consider the special case when there are no spatial interaction
costs (i.e., s; = O for all # and e). In this case, since all agents are independent
with each other, it suffices to assume there is only one agent in the network G.
Thus we will drop the agent index in the following analysis. To further simplify
the problem, we assume dimension n = 1, ¢;(x;,x,-1) = %T(x, — x;-1)%, and the
feasible set is D, = D = [0, 1] for all t. Let R denote the diameter of D, i.e.,

R=sup, yeplx—yl=1

By Theorem 2 in Li, Qu, and Li (2021) and Case 1 in its proof, we know that for any
online algorithm ALG with k-period future predictions and Ly € (2R, RH), there
exists a problem instance with quadratic functions fi, f>, ..., fy that have the form
fi(x1) = 5(x; — 0,)%, 6, € D such that

301 _ 2
cost, (ALG) — cost, (OPT) > /19(61(/1—:/11_)2) ./l’; ‘R - Ly, (3.96)

where Ly > Zfil |6; — 6;_1|. Note that

H H
2 2
R-Lp> Z v = vii]? = E . Z (five) +ci(ve,vimp)) = E - cost, (OPT).
=1 =1

Substituting this into (3.96)) gives

w3 (1 = var)?

AL 1
cost, (ALG) > ( + RGit Dy

: Ai) - cost,, (OPT). (3.97)

Note that (3.96) implies cost,(ALG) > 0, hence the competitive ratio can be
unbounded if cost, (OPT) = 0.

Step 2: Spatial Lower Bounds We next show that the competitive ratio of any
online algorithm that can communicate within r-hop neighborhood according to the
scheme defined in Sectionis lower bounded by 1 +€Q(4%). To show this, we will
construct a special Networked OCO instance with random cost functions and show

there exists a realization that achieves the lower bound by probabilistic methods.

Theorem 3.D.7. Under the assumption that A > 3, the competitive ratio of any de-
centralized online algorithm A LG with communication radius r is lower bounded by

1+Q(A%), where Q(-) notation hides factors that depend polynomially on 1/ u, Cr, s,
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and A. Depending on the value of 6{s/ i, the decay factor As is given by the following

equations:

(Als /) .
T3 if AMls/p < 48,

As = )
max (3+(3A({1AS¢{5/)#)’ (1 - 4V3. (Afs/,u)_%) ) otherwise.

(3.98)

Proof of Theorem[3.D.7} In the proof, we assume the online game only lasts one
period before it ends, i.e., H = 1. Note that when H > 1, the same counterexample
can be constructed repeatedly by letting the temporal interaction costs ¢} = 0 for
every node v and period 7. To simplify the notation, we define ¢ = {s/u and
d = [A/2]. Without the loss of generality, we assume V = {1,2,---,n} so that

each node has a positive integer index.

We consider the case where the node cost function for each node i is (x;+w;)? and the
spatial interaction cost between two neighboring nodes i and j is £(x; — x j)z_ Here,
x; € R is the scalar action of node i, and parameter w; € R is a local information
that corresponds to node i. The parameters {w;}! | are sampled i.i.d. from some
distribution 9, which we will discuss later.

For a general graph G = (V, &) of nodes, let L denote its graph Laplacian matrix.
Recall that the graph Laplacian matrix L € V XV is a symmetric n X n matrix and
it is defined as
deg(i) ifi=j,
Lij=49-1 ifi # jand (i, j) € &,
0 otherwise,

for nodes i, j € V. Here deg(-) denotes the degree of a node in graph G. We know
that L is a symmetric semi-definite positive semi-definite and has bandwidth 1 w.r.t.

to G. The centralized optimization problem can be expressed as

cost, (OPT) = rn]iRn(x +w) (x+w)+€-x"Lx
x€eR”™

2
= min H(I+€ L)ix+(I+¢C- L)—%WH +wT(I=(T+€- L) w

xeR”

=w'(I-{+¢-L) Hw,

where the minimum is attained at x* = (I + ¢ - L)~"'w. Since each node i only has

an observation radius of r, it can only observe the part of w that is within N;. To
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simplify the notation, we define the mask operator ¢5 : R” — R" with respect to a
subset of nodes S C V as

Wi ifi € S,
¢s(w)i =

0 otherwise,

for i € V. The local policy of node i (denote as 7;) is a mapping from wyr to the

local decision x;.
Suppose the distribution D of each local parameters w; is a mean-zero distribution
with support on R. For every node i € V, we see that
E, |x,-(w) - x;‘(w)|2 = Hzlrl,n EW|7T,'(WNir) - x;"(w)l2
> By [E[x} (w) [ war] —xi(w)| (3.992)
-, E[((l 40 L)_lw)l_ | war] - ((1 Ll L)_lw)l_‘z

_E, ((I+€ - L)-1¢N;(w)) - ((I+€ - L)'lw) ‘2 (3.99b)

i i

-E, ((1 4l L)_1¢Nfi(w)) (2,

i

(3.99¢)

where we use the fact that conditional expectations minimize the mean square

prediction error in (3.994); we use the requirement that the distribution of w is
mean-zero in (3.99b).

To bound the variance term in (3.99¢)), we need the following lemma to lower bound

the magnitude of every entry in the exponential decaying matrix (I + ¢ - L)™'

Lemma 3.D.8. There exists a finite graph G with maximum degree 2d that satisfies
the following conditions: For any two vertices i, j such that dg(i, j) > 3, the
Jollowing inequality holds:

((I+{’-L)'1)_. >

dg i, j) de_ %
ij d2(2d€ + 1)

2dt + 1

If we make the additional assumption that € > 8, we have that

(a+e-1)7) 2 ! (1-4w0)

Vo4 n - dg(i, j) - VdE - d2(2de + 1)

dg(i,))

We defer the proof of Lemma[3.D.8]to the end of this section. Note that Lemma[3.D.§]

implies that there exists a graph G that satisfies ((1 + ¢ - L)_l)l.,]. =Q (/lg) where
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Q(-) notation hides factors that depend polynomially on 1/u, €7, {5, and A, and Ag
is as defined in (3.98). We assume the nodes are located in this graph G for the rest
of the proof.

Using Lemma [3.D.8| we can derive the following lower bound of the variance term

in (3.99b):

EW‘((I+€.L)—1¢N£i(w))i)2:EW > ((1+5.L)—1)ijwj
JENZ;

Z ((I +£- L)'l)l_zj Var [wj]

jeN,
Z ((I+€ . L)_l).z‘ Var [wj]
jeaNTH! Y

> © (A - Var [w;]) . (3.100)

\%

Substituting (3.100) into (3.99) and summing over all vertices i, we obtain that

E,|lx(w) = x*(w)||* > Zn:EW|x,-(w) —x;k(w)|2 >0 (n- Ay - Var [w;]).
i=1
We also see that
E,[cost,(OPT)] =B, [w (I = (I+¢- L) Hhw] =O(n - Var [w;]).  (3.101)
Note that the global objective function (x+w) " (x+w)+€-x " Lx is 1-strongly convex,
and x*(w) is minimizer of this function. Thus, we have that for any outcome of w,
cost, (ALG) — cost, (OPT) > %Hx(w) —x*(w)|]%.

Taking expectations on both sides w.r.t. w gives that

E,cost,(ALG) — E,,cost,(OPT) > %Ewllx(w) —XW*=20(n- A’ - Var [w;]) .
(3.102)
Dividing (3.102) by (3.101]), we obtain that

E,.cost, (ALG)
E,.cost,(OPT)

Note that P,, [costp(OPT) = O] = (. Thus, there must exist an instance of w such
that cost, (OPT) > 0 and

> 1+Q(4%).

cost, (ALG) .
COS'[p(—OPT) >1+Q (/15) .
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Before we present the proof of Lemma [3.D.8] we first need to introduce two tech-
nical lemmas that will be used in the proof of Lemma The first lemma
(Lemma b provides a lower bound for binomial coefficient (*=*").

Lemma 3.D.9. For any positive integer m and € € Rxq such that em is an integer,

the following inequality holds:
(2 + 6)(2+6)m+% |

((2+ e)m) | 0
> —m 2 - T e 6m,
m 21 (1+ 6)(1+e)m+§

Proof of Lemma By Lemma 2.1 in Stanica, 2001}, we know for any n € Z,,
n! = wlzﬂ_nn+%e—n+r(n)’

where r(n) satisfies ﬁ <r(n) < ﬁ Thus we see that

R I gyl
V2nn"2e T < ! < V2an"t2e " Vi € Z,.

Therefore, we can lower bound (**™) b

((2+e)m) ((2+€)m)!

m

y

T om!-((1 +e€)m)!
\/271-((2 + E)m)(2+e)m+%e—(2+e)m+m

DM e T V2r((1 + é)m)(l+€)m+%e_(1+e)m+m

1 L2+ 6)(2+e)m+%

_ 2. 1

\V2r (1 + 6)(l+e)m+§

1 (2 + 6)(2+e)m+% ]

1
2. e 6m,

m (1 + 6)(1+e)m+%

1 1 1
e R2re)m+l T 2m 12(1+e)m

]

The second technical lemma (Lemma [3.D.10) will be used to simplify the decay
factor in the proof of Lemma[3.D.§]

Lemma 3.D.10. For all € € [0, V2), the following inequality holds
2+¢€ €
>1 - —

2-(1+ene 2

Proof of Lemma[3.D.10} By taking logarithm on both sides, we see the original

inequality is equivalent to

€ 1+e€ 1
1(1 —)— In(1+¢) >In|1-=¢], th
n +2 Tre n(l+e) n( 26) thus
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€ 1+€ 1 2
-] — — —_ — > . .
In (1 + 2) e In(1+€)—1In (1 26 ) 0 (3.103)

Note that the LHS can be lower bounded by

| 1
1n(1+£)—2+Eln(1+e)—ln(1—562)

2 +€
€ l+e€ I,
2ln(1+§)— In(1+¢€)—1n 1—56 = g(e€).

Function g satisfies that g(0) = 0, and its derivative is

>
T 2+€ 2 2
_2-(2+e(l-e)
B 2(2 +€)

2
_ €+e 5 0.
2(2+¢€)

Thus, g(€) > 0 for all € € [0, V2). Hence (3.103) holds for all € € [0, V2). ]
Now we are ready to present the proof of Lemma

Proof of Lemma Consider the graph G constructed as Figure[3.1T} Let N be
a positive integer that is sufficiently large. N blocks form a ring, where each block
contains d nodes. Every pair of blocks are connected by a complete bipartite graph.
The graph Laplacian of G can be decomposed as L = 2dl — M, where M is the

adjacency matrix of G. We see that

I+¢-L)y ' =(Qdt+1)I-¢-M)™!

_ I £ M_l
T 2de+1 2de + 1
t

1 = 14
= M
2de + 1 ; (2d¢ + 1)

t

Fix two nodes i and j and denote « := dg (i, j) and assume « > 3. Without the loss

of generality, we can assume j is on the clockwise direction of i. We see that

t

1 ¢
I+¢-L)7Y = M),
(( +e- D )ij 2d5+1;(245+1)t( )i
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Figure 3.11: Graph structure of G to obtain the lower bound: N blocks form a ring.
Each block contains d nodes.

o0

€2m

€K
©(2de + 1)+ n; (2dt + 1)

(M<+m),. (3.104)

Note that (M*+>™); ; denotes the number of paths from i to j with length x + 2m
in graph G. Note that the shortest paths from i to j have length x. To pick a path

with length («x + 2m) from i to j, we can first pick a path on the level of blocks:

K+2m
m

The number of possible block-level paths is lower bounded by ( ) because we
can choose m in (k + 2m) steps to go in the counter-clockwise direction. After a
block-level path is fixed, we can choose which specific nodes in the blocks we want

to land at, and there are d¥*2"=2 choices. Thus we see that
K+2m
(MK+2m)[J_ > ( N )dk+2m—2.

Substituting this into (3.104)) gives

((I+£ : L)—l) (3.105)

Cdr o AP (k+2m
o

>
ij = (2de+ 1)<t ;O (2d¢ + 1)2m

Letm = 0 will give that (I + £~ L)7"),; > POdED (zjgﬂl) , which shows the first

claim of Lemma[3.D.8] Now we proceed to show the second claim of Lemma([3.D.§]
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By Lemma[3.D.9] we know that when k = em, we have that the following inequality

holds:
k+2m\ ((2+€)m
m | m
1 1 1 Q+e)@Om (242
> ——e¢ omm 2 .
Vi (T+oman \T+e
| 54 (2+e)m
Z m_% 61+e
2V2n (1+¢€)7e

For any m > «, the inequality we just showed can help us bound a term in the

summation of (3.103) below:
£5dr? end¥™  (k+2m
2de + 1)<t (2dt+ 1)\ m

N 1 1 (k+2m 1\
= 22dt+1) 22m\ 2de+ 1

1 2he | o\ re
> . 1=
2V2r [ d2(2d0+1) \2-(1+€)%e ( 2dt+ 1)
(2+€)k

T -] (- s)
T 2V2rm -5 d2(2d + 1) 2 2dt +1
where the last line follows from Lemma [3.D.10l

Thus, we obtain that the following inequality holds for arbitrary € € (0, 1):

oo s 1 1 &2 241 1 1 241
(a+0) )u‘zx/ﬁ-\/gd%zdul)' ( _7) ( _2df+1) '

(3.106)
By setting € such that 1/e = [Z(df)%] in (3.106), we obtain that:
((r+e- 1))
ij
1 1 4Vde+1 1 4vdes1\©
e Iy
V271 - N2k - VAl - d2(2dE + 1) (( 2dt 2d+1
N 1 ((1 4x/%+1) (1 4«/%+1))K
aVrk VAl d2(2de+ 1) 2dt 2dE+1

1- i) . (3.107)

1
> )
ANr - k- Ndl - d2(2de + 1) ( Vde
0
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Step 3: Combine Temporal and Spatial Lower Bounds Combining the results
of Steps 1 and 2 together, we know that the competitive ratio of any decentralized

online algorithm is lower bounded by

3 2
w (1 —+Aar) k r k r
1+ Y7 X 14+Q0)) = 1+ Q%) +Q(A%).
max{ 180+ 2r T (45)} (4%) (As)
Proof of Corollary

In this appendix we prove a resource augmentation bound for LPC. To simplify the
notation, we define the shorthand a7 := f7/u and ag = €s/u. ar and ag are positive
real numbers. We first show two lemmas about the relationships between the decay

factors pr and A7, and pg and Ag.

Lemma 3.D.11. Under the assumptions of Theorem we have p‘} < Ar < p%.

Proof of Lemma Recall that p7 is given by

2

| P
o VT+2ar +1

in Theorem [3.3.3] Thus we see that

Ar.

2 2
=
o1 T+2ar+1) ~ T+4dar+1

On the other hand, we have that

2 )2 . 2
V1 +dar +1 V1 +2ar+1
4N(1 + 2a7) (\/1 F2ar -1 +4aT)

(VT+2ar +1) (VI +ar + 1)2

/lT—p%: (1—

]

Lemma 3.D.12. Under the assumptions of Theorem|3.3.3| we have pzA log& < As.

Proof of Lemma Recall that p7 is given by

2
- -
ps \/ VI + Ads + 1

in Theorem [3.3.3] We consider the following 3 cases separately.
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Case 1: ag > 16A - 8.
We first show that the following inequality holds for any x € [0, 1/(2A)]:
(1-x)*4<1-Ax. (3.108)

To see this, define function g(x) = (1 — x)** + Ax — 1. Note that g is a convex

function with g(0) = 0 and

1 1)1 1
—|=(1-—] —-=<el-=<0.
8 (ZA) ( 2A) p<¢ 730
Thus, we see that g(x) < 0 holds for all x € [0, 1/(2A)]. Hence (3.108)) holds.

Note that under the assumption ag > 16A — 8, we have
2 1

0 ———— < —.
Vi+Aag+1 2A

e _ 2 1
Thus substituting x = ey < 55 gives

2 24 2A 2

- — <l-———m<1-———— =
V1+Aag +1 VI+Aag + 1 V1 +4ag+1

péA = As.

Case 2: ag < ﬁ. Recall that A > 2. Thus, in this case, we have ag < 1 and

2 1
Vls=1- ——— <.
Vitdag+1 ~ A?

Note that

2 2
(VI+Bdas -1 _Aas _ (1 +2as+ag—1) . (WTHaas - 1)?
Aag -4 dag - dag

ps =
= AV 1s.

Thus we see that
pg < (A2 - As) - As < As.

Case 3: ﬁ <as < 16A - 8.

In this case, we have

2 S|
Ag= (1 - ———| > —,
VI +4dag + 1 A4

1
2 2 1
ps = (1——) <y/1-=—.
V1 +Aag+1 2A

8Alog(A)

Since (1 —1/(24))** < ™!, we see that pg

< As. U
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Now we come back to the proof of Corollary [3.3.7] By Theorem [3.3.5] and Theo-

rem [3.3.6) we know that the optimal competitive ratio is lower bounded by
(k) > 1+Cy (A?‘ +ag")
and LPC’s competitive ratio is upper bounded by
CRp () (LPC) = 1+ C, (C3(r)2 K+ h(r)? - pg) ,

where C; and C,, are some positive constants. To achieve czpc(k,r) < c(k*,r"), it

suffices to guarantee that

Cp - C3(r)? - pk <A and C, - h(r)* - p < CA5 .

[S1]

Note that C3(r) can be upper bounded by some constant and 4(r)? < poly(r) - p;

under our assumptions. Applying Lemma and Lemma finishes the
proof.

Proof of Corollary 3.3.8]
By Corollary [3.3.2] and Theorem [3.3.6] we see the competitive ratio of LPC with
prediction horizon k and observation radius » will be less than or equal to c(k*, r*)

if the following two inequalities holds:

O+ Al + 20 ser\* B -Vap? .
(2+cg-—f 3 T)-(—T) < U=V e (3.109)
u % 96(u + 1)*tr
Cr+ACs+20r\ (A3\E 131 —vIg)? .
(1+c§- /T T)( 55) < K ﬂj) A, (3.110)
u Ju 96(u +1)*Cs

where

-1\? (Als/p)
A = (1 —2(\/1 T (4 p) + 1) ) _and Ag =

3+3(Als/p)’

Note that we have

La_ 2w L s(vE_22. I s (%)Hclleg(u/(sw
2T (T abja+1)? u -

for some positive constant ¢; < co. We also have that

3

1 (Als/u) (Ast)HCZ log(u/(A3Cs))

—Ag > >
8 H
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holds for some positive constant ¢, = ¢3(A) < oo. Therefore, we see that there
exists C = C(A) < oo such that

86, (2+C log (1) (861)) k" N . A3 §-(2+Clog(u/(A3ts)))r* 0 )
o <|=z| ‘A7, and [—= <|5] As-
u 2 u 2

Therefore, let k = (2 + Clog(u/(8¢r)))k* and r = (2 + Clog(u/(A3Cs)))r*. We
know that (3.109) and (3.110) hold when k* and r* are sufficiently large.

3.E Proofs for Adaptive Video Streaming

We first introduce the notation used to define the performance metrics and the variant
of SODA studied in our theoretical analysis. To make the formulation of the video
streaming problem closer to a classic control problem, we define the “control action”
u; as the inverse of the bitrate (i.e., u; = rl—t). Recall that we set v(r) = % in our
theoretical analysis. Thus, we can write down a general form of the optimization
problem solved by SODA and use ;" ((07y-1, v-1); @r1+p; F) to denote its optimal
solution:

t+p t+p t+p+1

. N 2
argmin 3" deuZ +f ) blxe) +y 3 lue =ttt 4 F(xiap. tapar)
T=t T=t

Xet+p-Ut+lit+p 7=

(3.111a)
St Xr =X +Q;ur— 1, forr=t,...,t+p, (3.111b)
1 1
0 < x: £ Xmaxo <u; < ,fort=1t,...,t+p, (3.111¢)
"max V'min
Xi—1 = 01, U] = V1. (3.111d)

Here, wlﬁp ((0',_1, Vic1); Opaps F ) is defined to be a vector that contains the states
Xr.1+p and control actions u;y1.4, in the optimal solution. The initial condition
(07-1, vi-1), bandwidth sequence @;.;+,, and terminal cost function F are the pa-
rameters of the optimization problem. For the terminal costs, we consider two types
of functions: (1) The zero function F = 0, i.e., F(x,u) = 0 for all x,u; (2) The

indicator function F' = I, ,,, which is defined as

0 fx=0,u=v,
F(x’ l/t) = HO‘,V(X’ I/t) =
+oo  otherwise.
The first type of terminal cost will be used to define the performance metrics
(competitive ratio and dynamic regret), and the second type will be used in the

algorithm design. Since we will use the indicator terminal cost frequently, we
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. T+ A~ .
introduce the shorthand ¥,"” ((07-1, Vi=1); @r:+p; (Tr4p, Viep+1)), Which denotes
TI+p .oA . t+p LA .

; ((0’,_1, Vic1)s Oriapi Loy vieper |- Weuse ;7 ((0y-1, vi-1): @r14p3 F) to denote

the optimal objective value of the optimization problem (3.1TT).

Proof of Theorem 3.4.1]

In this section, we establish the critical exponentially decaying perturbation bounds

(Definition 3.4.1). Instead of just focusing on the video streaming application

itself, we establish the perturbation bound for a more general SOCO with memory

framework.

Specifically, we consider the following finite-time optimal control problem with

memory H.
p p+H-1
(v, 2w, 0) = argmin > fi(xp)+ > ¢Gopeiw)  (3.112a)
X—H+1:p+H-1 =0 =0
s.t. x; € [0,xmax] € R, V0 <t < p, (3.112b)
X;—X—1 = —0,V0<t < p+1, (3.112¢)
X-H+1:=1 = Y, Xp+l:p+H-1 = %, (3.112d)

where v,z € [0, xmax]?7", 1 € [0, xmax]P™, w € WP § € AP*2. Here, the
objective function (3.112a)) contains the hitting costs f; (x;; ;) (parameterized by p;)
and the switching costs ¢;(x;;—g+1; w;) (parameterized by w;). For the constraints,
(3.112b) imposes a box constraint on each decision variable x;; imposes
a constraint on how much x; can decrease at each time step; and (3.112d) specifies

the boundary conditions of the optimization problem.

In the special case of video streaming, the decision is on the buffer level x;. Given
the buffer levels, the inverse of the bitrate u, := 1/r; is uniquely decided by the
equation

u = (x; —xi-1 + 1)/ wy,

where w; denotes the bandwidth. The memory length H = 3. For the hitting cost,

we have y; = X, and

— 12 . _
) = pbx) = AP TD5ifrsy

eB(x — %)%, otherwise.

For the switching cost, we have w; = (wy, w;—1) and

ci(Xp1—23Wy)
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= wtutz +y(u; - ut—1)2

2
(X = X1 + 1)2 + y(wt—lxt + WX — (Wi + wi—1)x-1 + (Wi—1 — Wy))
Wt wtzwtz_l

The first constraint x, € [0, xmax] of (3.112)) matches the buffer constraint of the
video streaming problem exactly.

The second constraint x; — x;—; > —d, corresponds to the constraint that u, > %
max

in 3.IT1). Thus, when applying (3.1T2) to video streaming, we have 6, = 1 — ;=
By |Assumption 3.4.1, we have 6; > 6 > 0.

Given the relationship between SOCO with memory problem and adaptive video
streaming problem, we only need to establish the exponentially decaying pertur-
bation bound for the more general SOCO with memory problem. To show this
perturbation bound, we need the following assumption about the objective function

and constraints:

Assumption 3.5.1. We need the following assumption on the optimization problem
(B-112) for the exponentially decaying perturbation property to hold:

1. fi(;;u;) : R — R is strongly convex for all t and u; € [0,xXpac]. We

further assume there exists two m g-strongly convex and { ¢-smooth functions

FOCu), £V Cipe) R — Roin C2 such that £ ) = £ (s ) for
x; € [0, ] and fi(x;) = ft(l)(x,;,ut)for X: € [ty Xmax]. We also assume that
forj=1,2, ft(j) satisfies that for all x;, u; € [0, Xpax],

7227 s 0| + [ £ 3 120

2. ¢;(-;wy) : RE — R is convex and €.-smooth for all t and w, € ‘W c R4

<,

<Ly, and Hvﬂ,vx,f,”) (15 1)

ci(-swy) is in C? on [0, Xpax)®?. We also assume that for all w;, € ‘W and
feasible x;.;—p+1, we have
||Vx,;l_H+1Ct(xl:t—H+l;Wt)” + ”Vw,Ct(xz:t—HH;Wt)” < L., and
||thvxm_y+1Ct(xt:l—H+1;Wt)” <{ly.

3. We have 6, € A holds for all t, where A is a closed interval on R and is

bounded below by some positive constant 8. Denote d = [Xyax/0].

In the special case of the video streaming problem, [Assumption 3.5.1| is satisfied
2("Jmin‘*':i) f _ 4xmax(wmin+87) In
2 s YW T 3 :

min min

with the parameters my = €8, {y = €, = B, {. =
addition, both Ly and L. are bounded.
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We state the exponentially decaying perturbation bound for the SOCO with memory
problem formally in[Theorem 3.5.1] and defer its proof to Appendix [3.4]

Theorem 3.5.1. Under|Assumption 3.5.1| if p > d, the inequality

W (y,zspu,w, 8), = (Y, 251/, w', 8|
<C(Plly=yl+p"Nz=21)

)4 p+H-1 p+1
+C th—TIlMT _ Iu’T| + Z plt—TIHWT _ W;” + Zplt—‘r|||5T _ 5;”
=0 =0 7=0

(3.113)

holds for all t € [0, p] and y, z € [x,X]"7~1. Here,

| 2 o c 20
p = — s =
1++/1+(¢/my) m ¢ pH=2)(H+d)

where € = max{HC., {,,} and € := max{H{s,{,, (}.

In the special case of the video streaming, we see that

max{6wmin (wmin + 3)’ 4xmax(wmin + 8')’)}
3 .

min

{ =max{3¢.,¢{,} =

w
Therefore, we have

1
3(3+[xmax/61)
2

1 + \/1 + max{6wWmin (Wmin+3),4Xmax (Omin+8¥) }

p=|1-

3
wmine'B

The coefficient C is bounded by

- CL)3 . p3+|—xmax/6-| ’
min

Discussion about different distortion costs. Note that|Assumption 3.5.1|still holds

if we replace the distortion cost function v(r) = } by v(r) = log(rmax/r). This is

because the new switching cost

C;(xt:t—Z; Wy) = Wty 10g(Fmaxtts) +y (U — ut—l)z

rmax(xt —X—1t+ 1)

Wy

= (x; —x;-1 + 1) log
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(Wi—1X + Wi — (wr + Wi—1)x-1 + (W1 — (Uz))z

2,2
wl‘wt—l

also satisfies|Assumption 3.5.1{for any w; = (w;, w;—1) € [Wmin» Wmax ] and feasible

Xt:t—2-

Proof of

To show [Theorem 3.5.1) we first need to define indicators of active constraints,

denoted as & € {0, 1}*P*3. Specifically, given the unique optimal solution x. p =
W (y,z; 4, w, ) under a tuple of parameters (y, z; u, w, §), we consider whether the

following equality conditions hold:

&1, =1{x;=0},Y0 <t < p;
& = H{x; = xmax}, VO <t < )28
&3 =1{x; =, },V¥0 <t < p;
§4’[ = l{x[ — X1 = _6[},VO <t< P + 1
And we define indicators of the sides (denoted as o € {0, 1}7*!) as the following:

or = H{x; € [l Xmax]}, VO < 1 < p.

To simplify the notation, we let @ := (u, w, 6) € © = [0, Xpax |7+ X WPHH x AP2,
While ¥ (y, z;60) can decide a unique pair of (£,0), we can also define a new

equality-constrained optimization problem using (y, z; 6) and (&, 0):

Definition 3.5.1. Define the equality-constrained optimization problem

P p+H-1
Gy z0:6,0) = agmin > f 7 Cop) + D eCoemazw)  (3.114a)
X-H+l:p+tH-1 ;—() =0
0, lffl,z =1
St Xy = Xmax,  f €2, =1,Y0<1<p, (3.114b)
Mt ifés, =1

Xp—Xi_1 = —0p iféa, = 1LYO<t < p+1, (3.114c)

X-H+1:=1 = Y>Xp+1:p+tH-1 = 2. (3.114d)

Note that it is possible that the optimization problem (v, z;6;&,0) for some
parameters and constraint configurations. We use i(y, z;6;&,0) to denote the
optimal value of this optimization problem. The following lemma states that the



141

optimal solution of (3.112) will not change if we remove all inactive inequality

constraints and leave active constraints as equality constraints.

Lemma 3.5.2. Suppose |Assumption 3.5.1\holds and p > d. Fory, z € [0, Xpax]?~!

and 0 € O, let &,0 be the corresponding indicators of active constraints/sides.

Then, we have
w(y,2,0) = (y,2,0;&,0) and 1(y, z;0) = (v, 2,0, €, o).

Proof of[Lemma 3.5.2] Note that
L(y,2:0) 2 0(y,2:0;¢,0)

because the optimization problem on the RHS has less constraints. If the inequality
holds with equality, we must have y(y, z;0) = ¥(y, z;0;&,0) since the optimal
solution for the LHS is feasible for the RHS by the assumption on active constraints,
and the optimization problem on the RHS has a unique solution. Otherwise, we

must have

Y (y,2,0) 29 (y,2:60;€,0), and ¢ (y,2;0) > i (y, 2,60, €, 0) .

Consider the convex combination £ () for € [0, 1] defined as

) = (L= (3,2:0) + i (v, 2,0, &, 0) .

Note that £(n) satisfies all the active constraints and sides as specified by (&, o)
because they are active for all 7 € [0, 1]. Since the constraints of that are not
in (¢, o) are inactive at 7 = 0, there must exist 7 > 0 such that {(n) is also feasible
for (3.112). £(n) achieves a strictly smaller objective than £ (0) = ¢ (y, z; 6), which

leads to a contradiction. O]

Lemma 3.5.2| establishes that given any feasible tuple of (y, z; ), one can find at
least one pair of (&, ) such that Y (y,z;0) = i (y,z;0;&,0), while there can be
other (&', o) that satisfies Y/ (y, z;0) = ¥(y, z;6; &, o).

Lemma 3.5.3. Suppose|Assumption 3.5.1|holds and p > d. If both §i (v, z;0; &, o)
and tﬁ(y’, 730 &,0) exist for v,z,V', 7 € [0, Xmax) ! and (€, o), then we have

[0 (v, 2:0:€,0) = b (¥, 2306, 0)
< C(p'lly =y'll+p" Mz = 2Zll)
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» p+H-1 p+l
+C Zp|t—7||luT A Z Pl |we = W || + Zp|z—r||5T ~5|,
=0 =0 =0

(3.115)

where

| 2 o c 27
p = — , =
1+ T+ (&/m)) m pp H=2)(H+d)

Here, € := max{H¢.,{,} and € = max{H(s,{,,(}.

Proof of[Lemma 3.5.3] We do a variable change to eliminate all constraints in the
equality-constrained optimization problem. After the elimination, we get an un-
constrained optimization problem with the free variables xyy, x;,, .. ., x;, where the
indices satisfy 0 < 79 <ty < ... <ty < p. To simplify the notation, we let 7 = —1

.
)/Zl,'+1 67
or x. is some constant. Without loss of generality, we can assume #;41 < t; +d + H,

and 7,41 = p+1. For 7 that satisfies #; < 7 < t;;1, we have either x; = x;, —

because otherwise we can find 7 € (t;,t;4; — H] such that x,...y_1 are constants,
which means the free variables after x;,,, will not change, regardless of how we
perturb y, and the free variables before x;, will not change, regardless of how we
perturb z. Thus, we can decompose the perturbation to the left side and the right

side and derive them separately.

After the change of variable, the objective becomes a function h of Xtgs Xtys - -+ s Xy -
To simplify the notation, we let £; == x;,_, where 7 =0, ..., q. We can decompose
h as

I(R0:3 0) = ha(Ro:gs 1) + by (Ro.45 ),

A . . . ) .2
where ¢ = (y, z,60), h, is the sum of the original hitting costs minus %”xod , and

hy, is the sum of the original switching costs plus %”ﬁ(m”z. By Assumption|3.5.1|

we see that
ngo:q ha(Ro.gs ) =0, (my+ HE)I &= vg():qil,,()e();q; £) = myl. (3.116)

We also note that V}%O hq (%0.45 1) is a diagonal matrix and V%O hy (%0.45{) 1s a
:q q
2H-banded matrix.

We can follow a similar procedure as Theorem 3.1 in Lin, Hu, Shi, et al., [2021]to

show

(v, 2:6:,0), = b (Y, 2305, 0),
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< Co (pglly =3Il + 0§ "Nz = M)
P ) p+H—1 . P+l .
" (Z po s+ 2 o = will+ 2o =)
i=0 i=0 i=0

(3.117)

where ¢ (i) denotes the integer j that satisfies #; < i < ¢4 and

1
2 " 20
po=|(l-——e= ,Co=—.
( JT+ (ﬁ/mf)) mepl =

Here, £ := max{H¢(,,{,} and { = max{H{y,{,,}. For completeness, we give the
detailed proof below: Let e be a vector such that both £ and  +e are in Y X Z X ©.

Consider the function

Y (& +ne) =g (L +ne;é, 0,

which is implicitly determined by the equation

Vi, B (£ +1e), L +ne) = 0.

By the implicit function theorem we know that the function y is differentiable.

Taking the derivative with respect to 6 gives that

A o— d —
V3, W (¢ +ne), ¢+ 1) g (£ +me)

= =V, Vi, B (£ +7e), L +ne)ey = V Vi h(W (L +7e), L +7e)e;
p+H-1

P
= > Vi Ve A (L +ne), L +me)en = D Vi Veg AL +1e), £ +7)e,
=0 t=0

p
- Z Vo Vo MW (& +1e),  +me)es,.
=0
To simplify the notation, we define

M = V%():qu(a(g +ne), +ne),whichisa (g + 1) X (¢ + 1) matrix,
RY) = -V, Vi h(y({ +ne), ¢ +ne), whichisa (g + 1) x (H — 1) matrix,
R@ = -V, Vi h(y({ +ne), L +ne), whichisa (g +1) x (H — 1) matrix,
RW) = -V, V¢, h(W({ +ne), ¢ +ne), whichis a (g + 1) x 1 matrix,
R™) = -V,, Ve h(¥(L +ne), ¢ +ne), which is a (¢ + 1) X d matrix,
R = —V(;tVfO:qu(J({ +ne),{ +ne), whichis a (g + 1) x 1 matrix.
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Hence we can write

d— p p+H-1 »
gV (£ me) = M~ RY ey, +R%e + ZR(“')eu, + Z RM™e,, + ZR(‘Sf)ea, .
=0 =0 1=0

Recall that R™), R are (g + 1) x (H — 1) matrices. For R®), only the first H — 1
rows are non-zero. For R, only the last H — 1 rows are non-zero. Hence we see

that

d —
d—lﬂ(§+77€)r
n
= (M) omaRY) ey + (MY RY, e
T,0:H-2Rg.py_5 .€y T.q-H+2:q N g _F10:4.:¢2
tjv1—1 g+1 tj—1
+Z Z (M I)TJR(M €u; +Z Z (M I)T] -H+1:j+H-1 5 lh)f+lj+H 1,:
j=0 i=t; j=0 i=t;
Ljy1— 1
+Z Z (M) iR es,. (3.118)
j=0 i=t;

Recall that £ := max{H¢., H¢ ¢, €u, Cw}. We know that the norms of

» (2) (/h) (wi) (64)
Rim2o Ry hiog o Ry R it jup— . A R

are all upper bounded by £. Taking norm on both sides of (3.118) gives

d —
@lﬁ(f""?e)r
< (M Drra|ley|| + E] M7 g-rzzgllecl

g tnl g+l ]

{)Z Z ||(M_1)T7j||||eﬂi||+fz Z ||(M_1)T,j—H+1:j+H—1||||€Wi||
J=0 i=t; j=0 i=t;

4 tad

£ 2 I Dellles (3.119)
J=0 i=t;

Note that M can be decomposed as M = M, + M},, where

M, = V}%O:qua(ﬁ(g +ne),{ +ne),

My = V5, (& +ne), £ +ne).
Since M, is a diagonal (g + 1) X (¢ + 1) matrix and satisfies M, = 0, and M, is
2H-banded and satisfies (my + )1 = M, = mygl, we obtain the following with

Lemma B.1 in Lin, Hu, Shi, et al., 2021}

2 r—(H-
-1 q-7—-(H-2)
)T,q—H+2:q|| < pr

(M~ Dr 0.1 < —fp
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- 2 _ 2 e—jl-(H-
™0l < ™ Mmool g™,

where po := (\cond(My) — 1)/(\Jcond(Mp) +1) =12 - («/1 {0 + 1)_1.

Substituting this into (3.119)), we see that

d —
”%lﬂ(f + 96)7

P ) p+H-1 A
< Cofofllesl+ 8 Tled+ o el + Y o e
i=0 i=0

p .
- 3 e )
i=0

Hence we obtain

||E(§)T - E(g + e)T”
1 d —
= H/ d—tﬁ(£+ne)rdnH
0o an

1
<
0
)4 A p+H-1 A
< oo+ 457l + Y e+ Y o e
i=0 i=0

p .
- 3 e )
i=0

This finishes the proof of (3.117). Recall that we have t; < t;4; < t; +d + H.

Therefore, (3.117) implies (3.115). O

dn

d —
d—nlﬂ(f + 776)7'

In the next lemma, we show a continuity property of the ‘“equality-constrained

labeling” method.

Lemma 3.5.4. Suppose|Assumption 3.5.1|holds and p > d. For a pair of (¢, 0), if

any tuple in the sequence {(y, 24; Qq)};":1 satisfies Y (yq, 24 04) = iﬁ(yq, 24:04:€,0)
and limy e (yg, 24, 04) = (¥, 2, 6), then we have

U(y,2:0) =¥ (y,2:0;:€,0).

Proof of[Lemma 3.5.4] Note that the perturbation bound in Lemma [3.5.3] also es-

tablishes the continuity of the function (-, -; -; &, o). Therefore, we see that

qli_{{}O‘ﬁ(yq’Zq;Gq) = qlifgoﬁﬁ(yq’zqﬂq?f’a') = lﬁ()”ZQ;f, o).
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Since the constraint set of (3.112) is closed, we know §(y, z;0; £, ) is a feasible

solution of (3.112).

For the sake of contradiction, we assume ¥ (y, z;6) # tﬁ(y, 7;0;¢&,0). In this case,
since ¥ (y, z; 0; &, o) is feasible for (3.112), we must have

Wy, 2:0) < U(y,z:0:€,0).
Define the optimality gap as A = i(y, z;0; &, 0) — i(y, z;0).

Since limy—00 (g, 245 04) = (¥,2; 0), for an arbitrary small positive real number €,

we can find a positive integer ¢ such that
||yq - y|| + ||Zq - Z” +dist(0,60,) < e,

where dist(6,0") = Zf’zo |,ul- - ,ul’| + ZZE)H_I ||wl- - w:” + Zf:)l |(5,- - 6:| Based on

_ . . ) ,
X-H+l:p+H-1 = Y(y,2;6), we construct a feasible solution x” , HleprH-1

the optimization problem (3.112) with parameters (yq,z4;6,) as following: Let

= x’ for

xézp = X0:ps X—H+1:=1 = Ys Xpsl:p+H-1 = 2. Fort =0,1,.. ., if x; — x;_l < —6l(q), we
: _ (9) — : (9)
increase x; such thatx; = x;_, —6,". Then, fort = p,p—1,...,ifx] | —x; < =67},
Tt 652. Note that this procedure can guarantee that

x’ is a feasible solution for (3.112]), and their distance are upper bounded by

we decrease x; such that x; = x

W (y,z;0) —x'|| < (2d + D)e. (3.120)

Since the objective function of (3.112)) is Lipschitz in (x,y, z, ), by (3.120), we

know there exists some positive constant cq such that
1(yg:2¢:0¢) —1(y,2:0) < co (IX' = (y,2:0)|| +€) < (2d +2)coe.  (3.121)

On the other hand, by we see that

A A C
6 (ygs 243 0436, ) = (3, 2:6: €, 0)|| < (1 o+ 1) €. (3.122)

Since the objective function of (3.112) is smooth in (x, y, z, 0), by (3.122), we see
that

C
i(ygr 2430436, 0) = 1(y, 2:0;€,0)| < co (1 — +2) €. (3.123)
Therefore, we see that
[(¥g:24304:€,0) = 1(yg, 243 04) (3.124a)

> —|i(ygs 2430436, 0) =13, 2,0 €, 0)| + (i(y. 20 €,0) — 1(y, 2, 0))
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+ (L(y,250) — t(yg» 245 04))

> - (1 Sp +2) e+A—co(2d +2)e (3.124b)

C
:A—co(1

+2d+4)e,

-1
where we used (3.121)) and (3.123) in (3.124b). Let € = %Ac(‘)1 (& +2d + 4)
leads to a contradiction with the assumption that i(yy, 24;04:&,0) = (¥4, 24 64)-
Therefore, we have shown that (v, z;0) = ¥ (y, 2, 0; &, 7). [

With the above technical lemmas, we are ready to finish the proof of

Proof of[Theorem 3.5.1} Consider the segment
(L =my+ny’, (1 =mz+n; (1 =n)6 +n6’),n € [0,1].

Note that since (1 — )Y (y,z;60) + ny(y’, 7’;6’) is a feasible solution for the opti-
mization problem (3.112) parameterized by

(L=my+ny, (A =mz+n; (1 =n)0+nbd),

we know that the corresponding optimization problem is feasible. With some slight
abuse of notation, we use (£, 0)(n7) C E X X to denote the set of indicators of active

constraints and sides such that

g ((A=my+ny, (1-nz+n;(1-n)0+n6)
=J((L=-my+ny,(L-mz+n; (1 =)0 +nd;&,0) Y o) € (€0)(n).

By|Lemma 3.5.2 we know this set is not empty for any n € [0, 1].

We can divide the interval [0, 1] into 0 =19 <11 < ... <1y = 1 for some positive
integer g < 2°P*% such that there exists a sequence of different indicators of active

constraints and sides (£, 0)o.q—1 Which satisfies
U ((1=n)(3.z0) +ni(y,250)) =d (1 =0) (v, 2:0) + (¥, 25 0); (£, 0)i)
U ((L=n0i) (3. 20) + 001 (V. 250) =0 (1 = 7)) (3, 23.0) + i1 (', 23 0); (€, 0)1)

forall 0 < i < g — 1. Note that this requires (£, o) (1;) to contain both (&, 07);—; and
(¢,0);fori=1,...,q — 1. To construct the sequence 19.4 and (£, 0)o.4—1, we first
have 19 = 0 and let (&, o) be any pair (£, o) € (&, 0)(no) such that

sup{n € [0,1] | ¢ (1 =n)(y,z:0) +n(y',7';6))
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= (1=, z:0)+n(y,250):€,0)} >0,

and let n7; be the supremum value above. Since 0 = inf(0, 1] and (¢£,0)(n7) CEX X

is nonempty for every n € (0, 1], we know such (&, )¢ exists by [Lemma 3.5.4

Suppose we have already constructed 7¢.;, (£, 0)o:i-1, and n7; < 1. Then we select

(&, 0); to be any pair (&, o) such that

sup{n € [0, 1] | ¢ (1 =) (¥, z:60) +n(y",2":6"))
=y ((1-n)(y,2:0) +n(y,2360):€,0)} > m;,

and let ;1 be the supremum value above. We can repeat this construction and stop
when 7,41 = 1. By the construction, we know all pairs in the sequence (&, 0)o.i—1
are distinct, thus the construction will terminate in finite time. Hence, we have a

finite index g such that n, = 1.

By we know that

o (1 =ni)(y,2:0) +mi (¥, 2'50)); =0 (1 = i) (3, 2:0) + i (', 2507,

< @it —0)C (" lly = y'Il + pP "Iz = 2'll) (3.125)
P p+H-1 p+l1

+ st =m)C | D P e = |+ Y P e = wi [+ D o o = 67|
7=0 =0 =0

(3.126)

Summing (3.125)) overi =0, 1,. .., g — 1 finishes the proof. O
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Chapter 4

STOCHASTIC PREDICTIONS

The results in Chapter [3| provide performance guarantees for MPC-style policies
under potentially adversarial ways to generate the predictions under constraints such
as prediction error bounds. Although such worst-case guarantees are important for
many safety-critical or risk-averse scenarios, it may be overly-conservative in other
applications where we care about the performance in expectation. The adversarial
prediction model can be insufficient to characterize the benefit of predictive control
because it overlooks the stochastic dependence between predictions and unknown
problem parameters. In addition, instead of asking what a standard predictive policy

like MPC can achieve, we seek to answer a more fundamental question:

What is the maximum achievable cost improvement under the optimal policy to

leverage predictions relative to the no-prediction scenario?

As we will show in this chapter, the optimal predictive policy can be expressed
equivalently as MPC in specific problem settings, but this equivalence does not hold

in general.

In this chapter, we introduce a stochastic prediction model and define prediction
power as the maximum cost improvement in the above question. We show that
prediction power is always non-negative and establish a lower bound under two suf-
ficient conditions, characterizing the fundamental benefit of incorporating stochastic
predictions. We instantiate this in two settings: (i) in linear quadratic regulator, we
derive a closed-form prediction power expression and reveal a mismatch between
prediction accuracy and control cost, and (ii) for non-quadratic costs, we show that

even weakly dependent predictions yield significant performance gains.
This chapter is based on the following paper:

[Lin, Chen, et al., 2025]] Lin, Yiheng, Zaiwei Chen, Christopher Yeh, and Adam
Wierman. “Maximizing the value of stochastic prediction in control: Accuracy is

not enough.” Under submission.
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4.1 Problem Setting

We consider a finite-horizon discrete-time optimal control problem with time-
varying dynamics and cost functions, where state transitions are subject to random

disturbances:

Control dynamics: X1 = f; (X, Up; W;), 0<t<T, with Xy = xp;
Stage cost: h,(X;,U;), 0<t<T, andterminal cost: hr(Xr). 4.1)

At each time step ¢, we let X; denote the system state and U; denote the control
action chosen by an agent. The function f; : R” x R™ x Rk — R” defines how the
next state X;,; depends on the current state X;, the control action U;, and the random
disturbance W,. The agent incurs a stage cost /,(X;, U;) at each intermediate time
step t < T and a terminal cost h7(X7) at the final time step 7. At each time step 7,
the controller observes the past disturbance W;_; and a (possibly random) prediction
vector V;(6) € R? before selecting a control action U;, where 6 is a parameter of the
predictor generating the prediction. We formally define the concept of predictions

and the parameter 6 in the following.

Definition 4.1.1 (Predictions). At each time step t, the predictor with parameter
0 € O generates a prediction V;(0), where © denotes the set of all possible predictor
parameters. The predictions {Vy.7-1(0) }oco and the disturbances Wy.p—_; live in the

same probability space.

Compared with previous works (Lin, Hu, Shi, et al., [2021; Li, Yang, Qu, Shi, et
al., [2022) that assume predictions targeting specific disturbances, Definition [4.1.1]
focuses on the stochastic relationship between predictions and system uncertainties,
yielding a unified framework for comparing different forms of prediction based on
their effectiveness for control—even if their precise nature is unknown. Because
predictions and disturbances share the same probability space, we can compare
prediction sequences Vo.r—1(6) and Vy.r_1(6’), generated by different predictors

with parameters 6 and 6’.

Observe that the disturbances Wy.r—; and predictions in Definition #.1.T]do not de-
pend on the current state or past trajectory, reflecting their exogenous nature. For ex-
ample, consider the problem of quadcopter control in windy conditions (O’Connell
et al., 2022). In this case, the wind disturbances are not influenced by the quad-
copter’s state or control inputs. Under this causal relationship, we define the problem

instance as 2 = (Wo.r—1, {Vo.r-1(0) }eeo ), and make the following assumption.



151

Assumption 4.1.1. The generation of the problem instance Z is oblivious—i.e., the
process of sampling E from the distribution of problem instances is not affected by

the agent’s states or actions.

Let & = (wor-1, {vor-1(0)}geco) denote a realization of the problem instance,
including disturbances and all parameterized predictions. Under Assumptiond.1.1]
= is viewed as realized to ¢ before control begins, although the agent observes
each disturbance and prediction step by step. Similar assumptions about oblivious
environments or predictions appear in online optimization (Hazan, |2016; Rutten
et al., 2023)), ensuring that future disturbances or predictions remain unchanged by
past states or actions. Hence, for a fixed predictor parameter 6, we define a predictive
policy as a mapping from the current state and past disturbances and predictions to

a control action.

Definition 4.1.2 (Predictive policy). Consider a fixed predictor parameter 6. For
each time step t, let 1;(0) = (Wo.i—1, Vot (0)) denote the history of past disturbances
and predictions, and let F;(0) = 0'(1,(9))[11 A predictive policy that applies to
the predictor with parameter 0 is a sequence of functions no.r—1, where m; maps a

state/history pair to a control action.

Given a fixed predictive policy sequence m = mo.7—; for a predictor parameter 6, we

evaluate its performance via the expected total cost over E:

T-1
J(0) =E[Y hi(X,, Up) + hr(Xr)],
=0
where X() = X0, Xt+1 = ﬁ(X[, Ut, W[), U; = ﬂ[(Xt;I[(g)), fort = O, e ,T — 1. The
optimal cost under 6 is defined as J*(6) = min, J”(6), where the minimum is over

all predictive policies that use the predictor parameter 6.

Following prior works on the benefits of using predictions in online decision making
(Yu et al., 2020), we define prediction power by comparing against a baseline that
provides minimal information (e.g., no prediction). Without loss of generality, let
0 € O be the baseline predictor parameter so that any 6 # 0 provides at least as much
information as 0, i.e., 7(6) 2 7;(0). Based on this baseline, we define prediction
power as the maximum possible cost improvement achieved by using predictions

under 6 relative to the baseline, formally stated in Definition{4.1.3

'For any random variable Y, we use o (Y) to denote the o-algebra it generates.
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Definition 4.1.3 (Prediction power). For a predictor with parameter 6, its prediction
power in the optimal control problem [@.1)) is P(0) = J*(0) — J*(6).

Our definition of prediction power is based on the optimal control policy under a
given predictor parameter and, therefore, is independent of any specific policy class.
Many previous works have considered prediction-enabled improvement within a
specific policy class (Li, Qu, and Li, 2018; Li, Chen, and Li,|2019; Chen, Agarwal,
et al., 2015), where they focus on changes in J”(6) rather than J*(#). In other
works, policies include parameters that can be tuned to perform optimally under
a specific predictor; that is, minge, policy class J” (#). While these approaches are
useful in specific application scenarios, our definition, based on the general optimal
policy, is more universal because: (1) imposing policy class constraints may lead to
performance loss, and (2) the extent of improvement can depend on policy design and

parameterization, which shifts the focus away from valuing predictions themselves.

4.2 Sufficient Conditions for Characterization

Our main results characterize prediction power P(6) to help determine whether and
which predictions yield better performance. If a lower bound of P(6) is greater
than the cost of obtaining the predictor with parameter 6, it is beneficial to use the

predictor, assuming that we can design or learn a near-optimal predictive policy.

Throughout this paper, let # = mp.7—1 denote the optimal policy for the predictor
with parameter 0 and 7% = ng:T_l denote the optimal policy for the predictor with
parameter 6. In other words, J7(0) = J*(0) and J”G(Q) = J*(6). To compare
the policies n? and 7, we introduce a function that we call the instance-dependent
Q function, inspired by the Q function in the study of Markov decision processes
(MDPs). For a given state-action pair (x, #) and problem instance &, the instance-
dependent Q function for a policy 7 evaluates the remaining cost incurred by taking
action u from state x and then following policy 7 for all future time steps. Using ¢, (6)
to denote the realization of /;(0), for any 7 = 0,...,T — 1, the instance-dependent
Q function is defined as
T-1
Qfe(x, u, &) = Z he(xr,ur) + hy(x7), where x, = x, u, = u, and

7=t

Xee1 = fr(Xp ur;we), fort <7 <T; ur =70 (xr51:(0)), fort <7 <T. (4.2)

The disturbance w, and the history ¢, (6) in (4.2)) are decided by the problem instance
&, which is an input to QF ‘. Similarly, we can define Q7 (x,u;€) by replacing 6
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with 0 and 7% with 7 in (#2). Importantly, our instance-dependent Q function is
different from the classical definition of the Q function for MDPs or reinforcement
learning (RL), where it is the expectation of the cost to go. The instance-dependent
Q function denotes the actual remaining cost, which is a o (E)-measurable random
variable. The classic definition of the Q function can be recovered by taking the
conditional expectation, i.e., E | QF g(x, u; ) | I;(0) = ,(6)|. Itis worth noting that
our instance-dependent Q function is about the cost instead of the reward, so lower

values are better.

With this definition of the instance-dependent Q function, the optimal policies 7
and 7% can be expressed as recursively minimizing the corresponding expected Q
functions conditioned on the available history. Starting with C;e (x;¢) = hy(x), for

timesteptr =7 —-1,...,0, we have

Qfe(x,u;f) = h,(x,u) + C[’f:)l(ﬁ(x,u;w,);f), forx e R", u € R, and &;
7% (x;1,(0)) = argmin E Qfg(x,u;E) | I,(0) = 4,(0) |, for x € R" and (,(0);
ueR™

Ct’rg (x;¢) = Qfe (x, 7% (x;1,(0)); ), for x € R" and problem instance £.  (4.3)

Similar recursive relationships also defines the optimal policy 7 for the baseline
predictions, and we only need to replace # with 0 and n? with 7 in the above
equations. The recursive equations in (4.3]) can be viewed as a generalization of the
classical Bellman optimality equation for general MDPs.

We are now ready to introduce our main result, which is a lower bound on the
prediction power P(6). Our result relies on two conditions about a growth property
of the expected Q function under 7% and the covariance of the optimal policy’s action
when conditioned on the o-algebra 7;(0) of the baseline. We state these conditions

formally and provide intuitive explanations.

Condition 4.2.1. For a sequence of positive semi-definite matrices My.r—1, the
following inequality holds for all time steps 0 <t < T: For any x € R", u € R",
and history 1,(6),

B |07 (ru:8) - ' (1:E) | 1(6) = u(6)

> (u — 7 (x;0:(0))) "M, (u — 7 (x;:(6))). (4.4)

Condition[4.2.1] states that conditioned on any history ¢,(6), the expected Q function

of policy ¥ grows at least quadratically as the action u deviates from the optimal
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policy’s action. Note that one can always pick M; to be the all-zeros matrix to make
Condition [4.2.1] hold, but the choice of M, will affect the prediction power bound
in Theorem When M, »~ 0, deviating from the action of policy 7? causes a
non-negligible loss. The loss is characterized by the difference between the resulting
Q function value and the cost-to-go function value. When this condition does not
hold with any non-zero matrix M;, one can construct an extreme case when QF s
a constant by letting all cost functions /.7 be constants; in this case, the prediction
power must be zero because every policy achieves the same total cost no matter

what predictions they use.

Condition 4.2.2. One of the following holds for the optimal policy n®:

(a) For positive semi-definite matrices Xo.7—1, the following holds for all time steps
0<t<T:

E [Cov [Jrf(X;It(H)) | It(())]] = Xy, for any F;(0)-measurable X. (4.5)

(b) Fornonnegative scalars oo.r—1, the following holds for all time steps 0 <t < T:

E [Tr{COV [ﬂf(X; 1,(0)) | It(())]}] > oy, for any F;(0)-measurable X .
(4.6)

Before discussing the details, we note that by setting o = Tr(%,;), Condition
implies (and is therefore stronger than) Condition 4.2.2](b)] Similar to Condi-
tion|.2.1] one can always pick X, to be all-zeros matrix to satisfy Condition4.2.2](a)}

but it will affect the prediction power bound in Theorem@4.2.3

Condition states that conditioned on the history /,(0) from the baseline,
the covariance matrix of policy n%’s action from any #;(0)-measurable state is
positive semi-definite in expectation. Recall that 7,(0) = o-(/,;(0)). To understand
this, suppose that the agent only has access to the baseline information. Then,
the agent cannot predict the action that policy 7% would take. This should usually
hold because the action 7¥(X; I,(6)) is not #;(0)-measurable, and the lower bound
in (.5)) implies the mean-square prediction error cannot improve below a certain
threshold. When this condition does not hold with non-zero matrix %, (or scalar
07), one can design a policy &’ that always picks the same action as 7% but only
requires access to the baseline information 7;(0), which implies P(0) = 0 because
J*(0) < J¥(0) = J*(6). This can happen, for example, when all disturbances

Wo.r—1 are deterministic.
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Note it is possible that the optimal action at different states has a positive variance
in different directions, but there is no non-trivial lower bound on the covariance
matrix as required by Condition[#.2.2](a)] In this case, Condition §.2.2](b)| provides
a weaker alternative and would be useful when we can only establish a lower bound

on the trace of the optimal action’s covariance matrix.

Theorem 4.2.3. If Conditions {.2.1) and {.2.2)(a) hold with matrices My.r—, and
20.7—1, then P(0) > Zth_o] Tr{M,%,}. Alternatively, ifConditions|4.2.Zland|4.2.2||(b)|
hold with matrices My.r—y and scalars og.7—1, then P(0) > ,T:_Ol Umin(My) - o7,

where Ui (+) returns the smallest eigenvalue.

We defer the proof of Theorem [4.2.3|to Section 4. Al There are two main takeaways
of Theorem[.2.3] First, recall that one can always pick M, and X, to be the all-zeros
matrices to satisfy Conditions 4.2.1] and [4.2.2] In this case, Theorem [4.2.3] states

that P(6) > 0, which means that having predictions, no matter how weak they are,

does not hurt. Second, to characterize the improvement in having predictions, the
two Conditions 4.2.T|and 4.2.2] can establish a lower bound for the prediction power

that is strictly positive if Tr{M;X;} > 0 or pmin(M;)oy > 0. We provide an example
to help illustrate how Conditionsd.2.1T|and [4.2.2](a)| can work together to ensure that
the predictions can lead to a strict improvement on the control cost (see Figure 4.1]

for an illustration).
Example 4.2.4. Consider the following optimal control problem
Dynamics: Xi11 = Uy + Wy, Stage cost: hy(x,u) = x2, Terminal cost: hr(x) = X2,

where each disturbance W; is sampled independently according to P(W; = —1) =
P(W,=1) = % Suppose that the predictor with parameter 6 can predict W, exactly
(i.e., V;(0) = W;), while the baseline predictor is uninformative (e.g., V;(0) = 0).

The Q functions, cumulative cost, and optimal actions under each predictor are

0" (x,u;B) = x2 + (u+Vi(0)2, OF(x,uw;E) =x>+ (u+W)2+ (T —1-1),
™ (x;8) = x4, CF(x;E) =x>+ (T - 1),

7l 1,(0) = =Vi(8) = =W,  &(x;1,(0)) = 0.

The Q function Q7 “is strongly convex in u, with Condition holding for any

M; € [0, 1]. Furthermore, the optimal action has positive variance, with Condition

holding for any ¥, € [0, 1]. Thus, by Theorem the prediction power
satisfies P(0) > T. Indeed, by comparing the cumulative cost functions, we see
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3 — E[Q},(0.1:) | Vi1(0)
%25 E[QF1(0.w:2) | Vet (6) = 1]
° - E[Qgil(o‘ru; 2) | Vra(0) = 1]

P 0 1 2
Figure 4.1: An illustration of why predictions are helpful, corresponding to Ex-
ample [4.2.4] The expected Q functions with perfect predictions (green and orange

lines) have lower minima than the expected Q function with uninformative predic-
tions (blue line).

that the predictor with parameter 0 incurs a lower cumulative cost by exactly T (as

expected by Theorem[d.3.1)).

Figure illustrates the expected Q functions at time t = T — 1 and x = 0,
which the policies n%(x; 1;(9)) and 7,(x; I,(0)) seek to minimize. The expected Q
functions with perfect predictions have lower minima than the expected Q function

with uninformative predictions.

Theorem.2.3|provides a useful tool to characterize the prediction power by reducing
the problem of comparing two policies 7¢ and 7 over the whole horizon to studying
the properties of one policy 7 at each time step. Our proof of Theorem follows
the same intuition as the widely-used performance difference lemma in RL (see
Lemma 6.1 in Kakade and Langford (2002)), comparing the per-step “advantage”
of 7% along the trajectory of 7. When only the baseline information is available, the
agent must pick a suboptimal action (4.5]) and incur a loss (4.4)) at each time step.

The per-step losses accumulate to the total cost difference.

While Theorem [.2.3]applies to the general dynamical system and cost functions in
(1), the two conditions with their key coefficients M; and X, (or o) still depend on
the optimal Q function and the optimal policy that are implicitly defined through the
recursive equations (4.3)). To instantiate Theorem 4.2.3] we need to derive explicit
expressions of M, and X, under more specific dynamics/costs. We study two cases
in the rest of the paper. In Section 4.3] we first study the linear-quadratic regulator
(LQR) problem to characterize the key factors for deciding the prediction power.
In this setting, the optimal Q functions and the optimal policy have closed-form
solutions. We obtain M, and X, that characterize the exact prediction power P(6).
Then, we study a time-varying linear system with general well-conditioned cost
functions, where the optimal Q functions and the optimal policy do not have closed-
form solutions. In this case, we can still verify that Conditions {.2.1] and [4.2.2](b)|
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hold with nonzero M, and o}, which yields a non-trivial lower bound of P(68).

4.3 Applications: Linear Quadratic Regulator and Beyond
LTV Dynamics with Quadratic Costs. Consider a linear time-varying (LTV)
dynamical system with quadratic costs:

Control dynamics: X1 = A/ X; + B;U; + W, for0 <t < T;
stage cost: X,' Q;X; + U R,U,, for 0 < ¢ < T;and terminal cost: X7 PrXr, (4.7)

where Qo.r-1, Ro.r—1, and P are symmetric positive definite. The classic linear
quadratic regulator (LQR) problem, along with its time-varying variant that we
consider, has been used widely as a benchmark setting in the learning-for-control
literature. It also serves as a good approximation of nonlinear systems near equilib-

rium points, making it amenable to standard analytical tools.

To apply Theorem 4.2.3| we first derive closed-form expressions for the optimal Q
function, Q**, and the optimal policy, 7%, which are used to verify Conditions m
and[4.2.2](a)l We begin by defining key quantities that will be useful for stating the

main results in this section.

Definition 4.3.1. For t = T — 1,...,0, we define the matrices H;, P;, and K,

recursively according to

H; = B/(R; + B:Pl+lBl)_lB;ra P, =0Q;+ A;FPH]AZ - A:Pt+1Hth+1At, and
K; = (R + BZTPHIBt)_](BtTPHIAz)- (4.8)

Moreover, we define the transition matrix @, as @, ;, = 1 iftr < t; and

(I)lz,tl = (Alz—l - Btz—thz—l)(Atz—z - Blz—zKlz—Z) e (Atl - Bthll), l:ftQ > 1.
4.9)

The matrix K; is the feedback gain matrix in the optimal policy, and P; is the
matrix that defines the quadratic term in the optimal cost-to-go function. To
simplify notation, we define the shorthands Wfl .= E[W; | 1,(0)] and Wflt =
E [Wr | 1,(0) = u(0)].

Proposition 4.3.1. In the case of LTV dynamics with quadratic costs, the condi-
tional expectation of the optimal Q function E [Q;r ‘ x,u; B) | I;,(0) = LI(G)] can be

expressed as

(14 Kox = a0(0)) " (R + BT P By) (1 K = (1 (0))) + 07 (x:(0)),
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where Y7 ’ (x;¢,(0)) is a function of the state x and the history ,(0) that does not
depend on the control action u. Here,

T-1
@ (1(0)) = =(R + B] Pt B) ' B Y @1, Proaw!.

7=t

And the optimal policy can be expressed as 7% (x; 4,(0)) = —K.x + 10 (1,(6)).

We derive the closed-form expressions in Proposition 4.3.1| by induction following
the backward recursive equations in (4.3)); the full proof is deferred to Section [4.C]
With these expressions, we can verify Conditions 4.2.1] and [4.2.2](a)] to obtain a
closed-form expression of the prediction power.

Theorem 4.3.1. In the case of LTV dynamics with quadratic costs, the prediction
power of the predictor with parameter 6 is P(6) = Zth_O] Tr{M,%,}, where M, =
R, + B[ P1B;, and =, = E [Cov [d? (1,(0)) | F:(0)]].

As a remark, the prediction power in Theorem {.3.1 holds with equality due to the
special structure of LQR. We provide a detailed discussion in the proof of Theorem

in Section

While the optimal policy in Proposition {.3.1] is restricted to the LQR case, we
can interpret the optimal policy as planning according the conditional expectation
following the idea of model predictive control (MPC) (Yu et al., 2020), which is
easier to generalize. The agent needs to solve an optimization problem and re-plan

at every time step. At time step #, the agent solves

T-1
argmin B | ) he(Xe,ur) +hr(Xr) | 1:(6) = u(6)
Ur:T-1 =t (410)

sit. Xy = fr(Xr,ur; Wy), fort > ¢, and X; = x.

Then, the agent commits to the first entry u,|, of the optimal solution as 7% (x; 1,(6)).

In the LQR setting, we can further simplify it to be planning according to wf| , (see
Section 4.C).

The MPC forms of the optimal policy in (4.10) extends the result in Yu et al. (2020),
which shows that MPC is the optimal predictive policy under the accurate prediction
model in time-variant LQR. When the predictions are inaccurate and the system is

time-varying, MPC is still optimal if we solve the predictive optimal control problem
in expectation (4.10).
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Prediction Power # Accuracy. As Proposition suggests, one way to implement
the optimal policy is to predict each of the future disturbances W;.r_; and generate the

estimations w in deciding the action at time step . However, two controllers

?I:T—l)|t
with the same estimation error (as measured by mean squared error (MSE)) can
have very different control costs. Because of this reason, the control cost bounds
depend on the estimation errors in previous works (Zhang, Li, and Li, 2021; Yu
et al.,2022; Lin, Hu, Qu, et al., 2022)) must be loose, so one cannot rely on them to

infer or compare the values of different predictors.

To illustrate this point, we provide an example where the prediction power can

change significantly when the prediction accuracy does not change.

Example 4.3.2. Consider the time-invariant LOR setting, i.e., assume A; = A, B; =
B,0; = O,R; = R for all t and Pr = P is the solution to Discrete-time Riccati
Equation (DARE) in @.7). Suppose the disturbance is sampled W, Ay (0,1)
at every time step t. Let p € [0, g] be a fixed coefficient. We construct a
class of predictors from the disturbances {W;} by applying the affine transformation
Vi(0) := pOW,+€(p, 0) for 0 € R>? that satisfies 007 < %I, where the random noise

&(p, 0) is independently sampled from a Gaussian distribution N (0,1 — p>667).

We can construct 0 such that V;(6) and V;(I) achieve the same mean-square error
(MSE) when predicting each individual entry of W;, yet P(I) > P(0). To construct
0, note that (W,,V,(0)) satisfies E[W, | V,(8)] = p8"V, and Cov [W, | V,(0)] =
[ — p?6076. Thus, we can change 6 without affecting the MSE of predicting each
individual entry as long as the diagonal entries of 070 remain the same. However,
by Theorem we know the prediction power is equal to p>T - Tr{6TOPHP},
where H = B(R+BTPB)™'BT. Thus, the off-diagonal entries of 6" 0 can also affect
the value of Tr{0 TOPHP}. We instantiate this example with a 2-D double-integrator
dynamical system in Sectiond.B|: the predictors with parameters I and 0 shares the
same MSE but their prediction powers are significantly different.

Example [4.3.2] shows how prediction power can vary even when the accuracy of
predicting each entry of the disturbance W; remains the same, where the construction
leverages the covariance between the predictions for different entries of W;. While
the construction in Example d.3.2requires n > 2, we also provide an example with
n = 1 and multiple steps of predictions in Section From these examples, it is
clear that one should not use the MSEs of predicting future disturbances to infer the

prediction power. The intuition behind this mismatch is that MSE does not depend
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on matrices (A, B, Q, R), but the prediction power does. The mismatch also relates
to the findings in the decision-focused learning literature, which we discuss in detail
in Related Works.

Prediction Power Evaluation. In this section, we propose an algorithm (cf. Algo-
rithm)) to evaluate the prediction power efficiently given a set of historical problem
instances {fn}n]\’:1 . We start with defining a quantity whose estimation error is closely

related to the policy’s performance:

T-1
i} (8) = ~(R, + B PiiB) ' B > @1, ProaWr. (4.11)
T=t

We call ity (E) the surrogate-optimal action, because it is the optimal action that
an agent should take with the oracle knowledge of all future disturbances at time
t. In the prediction power given by Theorem we can express ! (1,(6)) as
E [ﬁ;‘ (B) | I,(Q)] , which is the expectation of i; (£) condition on the the history at

time step 7.

Now we come back to the design of Algorithm [ While iterating backward
from time step 7 — 1 to 0, the algorithm first constructs a dataset of the surro-
gate optimal action #; (E) as the fitting target. Then, the algorithm estimates the
covariance of it; (2) when conditioning on /;(0) and /,(0), respectively, using a
subroutine (see Algorithm [5]in Section 4.C)). The last step of Algorithm [] gives
the prediction power because E [COV [ﬁf(l,(@)) | F+ (0)]] can be decomposed as
E [Cov [L_t; (B) | It(())]] -E [COV [ﬁf(E) | It(Q)]], and we defer the proof to Sec-
tion 4.Cl

LTV Dynamics with General Costs Consider a system with linear time-varying
dynamics and more general cost functions that depend on the states and control

actions.

Control dynamics: X1 = A/ X; + BiU; + W;, for0 <t < T;
stage cost: h; (X;) + hi (U;), for 0 <t < T;and terminal cost: h.(Xr). (4.12)

The LTV system with quadratic cost functions studied in the previous section is a
special case of (#.12). The generality of (4.12) leads to more challenging because
the optimal Q function Q"G and the optimal policy 7% no longer have closed-form
expressions like Proposition While one may consider using the MPC policy
in (4.10) to evaluate the prediction power, we can construct an example where this

policy is suboptimal for non-quadratic costs (see Section for details).



161

Algorithm 4: Prediction Power Evaluation

Require: Dataset D of problem instances {.fn}nN:l.
fort=T-1,T-2,...,0do
Compute P;, H,, K; and {®, ; },>, according to (4.8) and (4.9).
Compute M; = R, + B P, B;.
forn=1,2,...,Ndo
| Compute it} (£,) according to (4.11) in problem instance &,,.
end
Call Algorithmto estimate =0 := E [Cov [it}(E) | 1,(0)]] using
(@ (), 2OV,
Call Algorithmto estimate X! = E [Cov [ﬁf(E) | I,(G)]] using
(@ (&) (O,

end
return P(0) = Z,T:_ol Tr{E?M,} - ZIT:_OI Tr{ZfMt}

We follow the recursive equations (#.3)) to establish Conditions [4.2.1] and [4.2.2J(b)]

We make the following assumptions about the cost functions and dynamical matri-

ces:

Assumption 4.3.1. For every time step t, hj is p.-strongly convex and {.-smooth;
ht is py-strongly convex and €,-smooth; The dynamical matrices satisfy that pusl =<
Al A; 2 €ul and ppl X B[ B, X {gl. Further, we assume €4 < 1.

The first two requirements about the well-conditioned cost functions in Assumption
@are standard in the literature of online optimization and control (Lin, Hu, Shi, et
al.,2021; Lin, Hu, Qu, et al., 2022). For the last requirement, we additionally require
{4 < 1, which implies that the system is open-loop stable. Under Assumption@4.3.1
the expected cost-to-go function is a well-conditioned function, which is important
for establishing Conditions @.2.1] and [4.2.2](b)l We state this result formally in
Lemma

Lemma 4.3.3. Under Assumption Condition holds with M, = 1.
Further, conditional expectation E[C,”g (x;8) | I;(0) = ,(0)] as a function of x is
uz-strongly convex and €;-smooth for any history 1,(0), where u; and ¢, are defined
as following: Let ur = u, and {r = ¢,,

My M1

M= px+ A ——>—, and €, = €, + €4 - €y, fortimet =T —1,...,0.
Hu + b7y

(4.13)
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As a remark, p; is uniformly bounded below by py and ¢; is uniformly bounded

above by lf’}A. We present a proof sketch of Lemma (4.3.3| and defer the formal
proof to Section

Starting from time step 7', we know the cost-to-go C}re (x; E) equals to the terminal

cost hy(x). It satisfies the strong convexity/smoothness directly by Assumption

4.3.1, We repeat the following induction iterations: Given E [C[’fl (X3 E) | 141(0)

at time ¢ + 1,we define an auxiliary function that adds in the disturbance residual
W, - wh

e and condition on the history at time ¢:

Cr\ (x14(0) =B |C2y (e + W, = Wi ) | 1(6) = 4(0)| . (4.14)

It can be expressed as E [E [Ct’fl (x+ W, - Wffl; ) | It+1(9)]

1,(6) = Lt(e)] by the

7 1s strongly convex and smooth in

t+1
x because these properties are preserved after taking the expectation. Then, we

can obtain the expected cost-to-go function E [C,” ‘ (x;B) | I;(9) = L,(H)] = hf (x) +

towering rule. Thus, we know function C

min, (h;‘(u) + é;fl (Ax + Byu + wf”; L,(G))) . We use an existing tool called infimal
convolution to study the optimal value of the this optimization problem as a function

of x. Specifically, define an operator O BEI
(fopw) (x) = mﬂi@n {f(u) +w(x—Bu)} for f :R"™ > Rand w : R" — R.
ueR™
4.15)

One can show that if f and w are well-conditioned functions, then ( fOpw) is also
well-conditioned (see Section for the formal statement and proof). We can use
this result to show the expected cost-to-go function E |CT ’ (xEB) | I;(0) =4(0)]| =
Y (x) + (h;‘D(_BI)C_’ZHI)(A,x + wf| +4:(0)), is also well-conditioned in x at time step

t, which completes the induction.

To establish the second condition about the covariance of the optimal policy’s action,
we make the following assumption about the joint distribution of the disturbances

and the predictions:

Assumption 4.3.2. The disturbances and predictions can be grouped as pairs
{(W, V,(G))}[TZ_OI, where (W;, V;(0)) is joint Gaussian, and it is independent with
(W, Vi (0)) when t # t'. Further, assume that the baseline is no prediction,
i.e., V/(0) = 0. And for 0 € O, there exists 1;,(0) € Rsq such that Cov [W;] —
Cov [W, | Vi(0)] = A,(O), foranyO <t <T.

’2If w takes an additional parameter w, we denote (fOpw) (x;w) =
mingegm {f(u) + w(x — Bu;w)}
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Note that A,(6) should be positive as long as V;(6) has some weak correlation with

W;. Under Assumption 4.3.2] we can express the optimal policy as

t+1

7% (x;1,(0)) := arg min (h;‘(u) +C (Aix + Biu + Wte“)) ) (4.16)

While the original definition of C_'t’fl in (4.14) requires the history ¢,(6) as an input,
it no longer depends on the history under Assumption 4.3.2] We defer the proof to

Section

We can express ¥ (x; I;(6)) as the solution to (h;‘D(_Bt)Ct’fl) (Ax+W;;). For some
distributions including Gaussian, the covariance in the input of an infimal convolu-
tion will be passed through to its optimal solution. Specifically, letu(sq,,,)(x) denote
the solution to the optimization problem (4.13)). When w and f are well-conditioned,
we can derive a lower bound on the trace of the covariance Tr{ Cov [u( fopw) (X )]}
that depends on the covariance of X. Due to space limit, we defer the formal state-
ment of this result and its proof to Lemma.D.2]in Section4.D] Using this property
o) (Ax + W0,

and the observation that 7 (x; I,(6)) can be expressed as u,, -
(n |:1_B,Cer t)t

we can directly verify that Condition d.2.2](b)| holds with

_ n/lt(e)/-llzﬂ "MUB
2(514 + €l+1\/5)2

Since Lemma 4.3.3| and @.17) imply that Conditions 4.2.1] and [.2.2](b)] hold with

M; = u,I and o7, respectively, we obtain a lower bound on the prediction power by
Theorem

Tr{Cov [} (x; 1,(8)) | Fi(0)]} > o7 : (4.17)

Theorem 4.3.4. In the case of LTV dynamics with well-conditioned costs, suppose
Assumptions U.3.1| and [{.3.2] hold. The prediction power of the predictor with
parameter 6 is lower bounded by P(0) > Zth_ol U, 0y, where oy is defined in (4.177)).

As a remark, the lower bound of the prediction power in Theorem [4.3.4] shows that
even weak predictions (i.e., small 4,(6) in Assumption can help improve the
control cost compared with the no-prediction baseline. Although Assumption{.3.2]
limits V;(6) to be only correlated with W;, we provide a roadmap about how to relax
it so V;(0) can depend on all future W;.r_; in Section

4.4 Related Works
Online control with predictions. Our work is closely related to the line of works
that study how to use predictions in online control. Our definition of the prediction
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power is inspired by Yu et al. (2020): the authors first define the prediction power as
the maximum control cost improvement enabled by k steps of accurate predictions
about future disturbances and characterize it in a time-invariant LQR setting. Com-
pared with Yu et al. (2020)), we extend the notion of prediction power to allow general
dependencies between predictions and disturbances and characterize it under more
general dynamics/costs. Rather than focusing on the prediction power, many works
study the power of a certain policy class such as MPC (Yu et al., |2022; Lin, Hu,
Shi, et al., [2021; Zhang, Li, and Li, 2021; Lin, Hu, Qu, et al., 2022}, Averaging
Fixed Horizon Control (AFHC) (Chen, Agarwal, et al., 2015} Chen, Comden, et al.,
2016), Receding Horizon Gradient Descent (RHGD) (Li, Qu, and Li, 2018} Li,
Chen, and Li, 2019)), and others (Lin, Goel, and Wierman, 2020). While one can
say the power of MPC equals to the prediction power in the LQR setting (Yu et al.,
2020) (generalized in Section [4.3), we show they are not the same in general (see

Section 4.B).

Decision-focused learning. Our work is, in part, motivated by both empirical and
theoretical findings in the decision-focused learning (DFL) literature that multiple
prediction models may have the same prediction accuracy, yet their predictions
can lead to very different decision costs (see Mandi et al., |2024 for a recent sur-
vey). Research on DFL typically considers predictions given as point estimates of
some uncertain input to decision-makers modeled as optimization problems, such as
stochastic optimization (Donti, Amos, and Kolter, 2017)), linear programs (Elmach-
toub and Grigas, [2022), or model predictive control (Amos et al., 2018), although
more recent works have started exploring other forms of predictions such as predic-
tion sets (Yeh et al., 2024; Wang et al.,2023). In contrast, our work does not require
any particular form of decision-maker; instead, our main result characterizes the
benefit of optimally leveraging predictions, for whatever form an optimal controller
may take. Whereas DFL aims to design procedures for training prediction models
that reduce downstream control costs, our contribution answers a more fundamental
question: how much gain in performance is even possible with better predictions?
We believe that it may be possible to leverage our theoretical insights about predic-
tion power to design more general decision-focused learning algorithms in future

work.
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4.A Proof of Theorem

Since we assume Xx is the initial state (deterministic) and 7 is the optimal policy

under the predictor with parameter 6, we have
n? —_ n? *
E [co (x0; .:)] = ™ (6) = J*(6).
Similarly, we also have that

E [C] (x0; E)] = J7(0) = J*(0).

Let {Xo.7, Uo.r—1} be the trajectory of the baseline controller 7o.7_; under instance
E starting from X = xo. First, we will prove by backwards induction that the
difference in cumulative costs between the optimal controller 7% and 7 has the
following decomposition:

0 — - — — 0, - 0, = -
' (0:8) - CG s ®) = ) (€7 (X®) - 0 (X 05B)) . (@418)

t

~

I
o

For the base case at time 7 — 1, we apply the definition of C¥—1 to get
4 ES — ES 9 = 0 - _
Cro\(Xr-138) = Cr_ (X713 8) = C7_ (X7-1;B) = Q7 (X7-1, Ur-1; B).

For the inductive step, suppose that

T-1
0 - _ S _ 0, - 0, = -~ _
C¢+1(XT+1;:‘) _C;-TH(XHI;:') = Z (Ctn (XtQE)_Q;r (X, Ut;:'))-

t=7+1
Note that forany r < T,
== = 0, = - _ 0 - _ - _
07 (%, Us8) = 0F (X, U5 B) - (€1 (K3 ©) - CF, (R B)).
Therefore,
0 v - T/ —_
C7 (X3 B) - C7 (X3 B)
0 v [ T/ & —
=Cl (X3 B) - 07 (X, Ups BE)
0 - 0, - - _ 0 = _ _ - _
= 2 (%) - | 0F (%, Ui B) - (€7 (Re: ) - €, (X1 D)) |
T-1

20 o e e — 20 e =
:C‘r (XT9‘:‘)_QT (XT9U‘I';:‘)+ Z (Ct (Xt;':‘)_Qt (XhUt":'))

t=1+1

~

(¢ (%:®) - 0" (.. 0,:3))

T

~
1l
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This completes the induction. Next, define U, := n%(X;;1,(6)). Note that U, is
%, (6)-measurable, and U, is 7;(0)-measurable and therefore also F; (#)-measurable.

Because we assume the matrices Mo.7—; satisfy Condition #.2.1]

B¢ (%:2) 11(0)| < 2|0F (R 0:8) | 1(0)| ~Tr{M,(T, - U)(T, - U)T}.
(4.19)

Let U, =E[U, | I,(0)]. We see that

E[(0: -~ U0 = Un)" | 1,(0)]
=E [(01 - U,)(U, -U)" | I,(())] +E [(Uz - U)(U; - Uz)T | It(o)]
+E [(Ut - Ut)(Ut -U)" | II(O)] +E [(0t - Ut)(l_]t - 0t)T | 11(0)]
= Cov [Ff()_(z;lz(g)) | It(o)] +E [ﬁz - U | It(o)] (Ut - Ut)T
+ (U, - U,)E [Uz - U, | It(O)]T + (U, =00, -0)7 (4.20a)
= Cov [{(X;; 1:(0)) | L(0)] + (T, = U)(U, - 07, (4.20b)
where we use (U, — U;) is 7;(0)-measurable in (#.20a)); we use the definition of U,
in (4.20D)).
Applying the towering rule in (4.18)) and substituting in (4.19) gives that
E [ 39 (x0; E) — CJ (xo3 E)]
T

-1

=Y E [c;f”(i,; 2) - 07" (X,. Ui E)]

=0
T-1
=Y E [E [c;f"(;‘(t;a) | 1,(9)] -E [Q?e(f(t, U E) | 11(0)”
=0
< - TZ_I E [Te{M,(U, - U)(U, - U)"}],
=0
= — 3 Tr{M,E [(Ut - U)(U, - Ut)T]}' (4.21)
=0

If the stronger Condition holds, by (#.20), since X; is 7;(0)-measurable,
we have

E [(0r - Ut)(Ut - Uz)T] =E [E [(Ut - Ut)(Ut - Ut)T | II(O)]]
= E[Cov [7?(X:; 1,(0)) | I,(0)]] = .. (4.22)
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Therefore, we can apply (#.22)) in (4.21) to obtain that the first statement of Theorem
holds:

E [Cg"(xo;E) - Cg(xo;E)] < - Tr{M,%}. (4.23)

t

~

Il
(e]

Else, if the weaker Condition[4.2.2J(b)|holds, by [@.20), since X, is 7;(0)-measurable,

we have

TT{E [(Ut - Ut)(Ut - Ut)T]} =E [TT{E [(UI - Uz)(Ut - Ut)T | 11(0)]}]
> E [Tr{Cov [7!(X:; 1,(0)) | I,(0)]}] = ov. (4.24)

Note that for any positive semi-definite matrices A, B, C such that A = C = 0, we
have

Tr{AB} = Tr{CB} + Tr{(A — C)B} > Tr{CB}.

Since M; = pimin(M;)I, we can apply (.24) in (4.21) to obtain that

-1
2|5 (0:8) - C§ (o B) | < = T {umin (M1 B [T, = Un(T, = U]}
=0

T-1
< -

[

Mmin (M) 07
=0
4.B Examples
Instantiation of Example 4.3.2]
We instantiate Example [4.3.2] with the following parameters:

oot oo Q_l R= (1), and 6 = 1 08
“lo 1P o) T ) TN g o6l

Under different values of coefficient p, we train a linear regressor to predict each en-
try of W; from V;(6) (or V(1)) over a train dataset with 64, 000 independent samples.
We plot in the MSE - p curve on a test dataset with 16,000 independent samples
in Figure From the plot, we see that the predictors V;(6) and V;([) achieve the
same MSE when predicting each entry of W, under each p € {0,0.1,...,0.7}.

Then, we use the trained linear regressors as th' ,and thl , to implement the optimal
policy in Proposition We plot the averaged total cost over 16, 000 trajectories
with horizon 7' = 100 in Figure .3] From the plot, we see that the optimal policies
under the predictors V;(8) and V;(I) achieve significantly different control costs
when p > 0. We also plot the theoretical expected control cost in Figure {.3] to

verify this cost difference.
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An One-dimension Example
We also provide an example with n = 1, where the prediction V;(6) is correlated

with two steps of future disturbances W; and W;,.

Example 4.B.1. Suppose the disturbance at each time step can be decomposed
as W, = 1-220 Wl(i), where the {Wt(i)}l.zzo are independently sampled from three

mean-zero distributions. We compare two predictors: Vi(1) = (Wt(l), Wt(ff ) and

Vi) = P(WO + W) + (AT - ATPH)PWS)

1+ They have the same prediction

power when used in the control problem because

@2(1,(2)) = P (W}‘” + W,“)) + (AT = ATPEYPWD = 7l (1,(1)).

+1

However, we know that ¥;(1) is a strict super set of F;(2), thus V;(1) can achieve a
better MSE than V,(2) when predicting the disturbances. This is empirically verified
in a 1D LOR problem with A = B =Q = R = (1) and W "%* N(0, 1), as we plot
in Figures In the simulation, we train linear regressors to predict W; and W,
with the history I,(1) or I,(2) for each time step t < T = 100 over a train dataset of
size 160, 000. Then, we plot the MSE - time curve on a test dataset of size 40, 000.

Example: MPC can be suboptimal
We first highlight the challenge by showing that MPC can be suboptimal, i.e., only
planning and optimizing based on the current information might be suboptimal when

the cost functions are not quadratic.

Consider a 2-step optimal control problem (1-dimension):

X1 =X0+U0, andXZ:X1+U1+W1.
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VA ATV WAA AN T Predictor 1 0-step forward
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Figure 4.4: Example MSE—time curve.

To construct the counterexample, we define the cost functions Ao (x, u), h;(x, u), and
h, as following:
, , X3, ifx <0,
ho(x,u) =x~+u”, hi(x,u) =x~+u~, and hy(x) =
+00, otherwise.
Suppose Wy is arandom variable that satisfiesP(W; = 1) = pand P(W; =0) = 1-p,
where 0 < p < 1. At time 0, we do not have any knowledge about W; (i.e., W,
is independent with 75(0)). However, at time 1, we can predict W; exactly, which
means o (W) C 71(0).

Suppose the system starts at xo = 0. At time step 0, MPC (@.10) solves the

optimization
IEIOHMI}E [710(Xo, uo) + h1 (X1, u1) + ha(X2) | 1n(0)]
s.t. Xo=0, X1 =Xo+ug, Xo =X, +u;+W,. (4.25)

Since Iy(#) is independent with Wy, the optimization problem can be expressed

equivalently as

min u% + (u(z) + u%) +E [hz(uo +u;+ Wl)]

uo,u1

= min2u(2)+u%+ 1, s.t. ug+u; =-1.
uop,ui

The equation holds because the planned trajectory must avoid the huge cost at time
step 2. Solving this gives that ug = —%. Thus, implementing MPC incurs a total
cost that is at least 2u(2) = %. In contrast, if one just pick ug = 0, the agent can pick
u; based on the prediction revealed at time step 2:

0 it Wy =0,

up =
—1 otherwise.
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In this case, the expected cost incurred is p. Thus, we can claim that MPC is not
the optimal policy when p < %. The underlying reason that MPC is suboptimal is
because it does not consider what information may be available when we make the
decision in the future. In this specific example, since W is revealed at time 1, we

do not need to verify about the small probability event that leads to a huge loss.
We dive deeper into the reason why MPC (@.10) is optimal in the LQR setting
(Section[4.3)). Note that the expected optimal cost-to-go function at time step 1 is
Blc (:2) ‘ 1(O)] = minE [ (x 1) + o (X0) | 1(O)], 5.t X = x4y + Wi,
ui
(4.26)

Here, u; is 71 (6)-measurable. And the true optimal policy at time 0 is decided by

solving
min ho(x, uo) + B |CT" (X1:E) | Io(0) |, s.t. X1 = x + uo.
uo
In general, we cannot use

min E [/’ll(Xl, ul) + ]’lz(Xz) | 10(9)] , st Xo =X +up + Wy, (4.27)
uj

to replace E [Cfg (X1;E) ’10(9)] like what MPC does in because here u; is
Fo(6)-measurable in (4.27). Recall that u; is F;(6)-measurable in (¢.26) and %, (0)
is a subset of F7(6). However, in the LQR setting, as the closed-form expression
(#4.23), the part of E [Cfa (X1;E8) | 10(9)] that depends on X; will not change even if
F1(60) changes. Thus, we can assume 7 (6) = %y(0) without affecting the optimal
action at time 0. Therefore, MPC’s replacement of E [Cf ’ (X1;8) | Ip(0)| with
#@.27) is valid in the LQR setting.

4.C Proofs for LTV Dynamics with Quadratic Costs
Proof of Proposition 4.3.1]

To simplify notation, we introduce the shorthand

W7, =E[W: [ 1,(0)].

We show by induction that

B |0r (v.u:2) 1 1,0)]

= (u+ Kx =@ (1(6))) " (Ri+ BT PuwaBy) (1 + Ko =l (1,(6))) + u7" (e 1,(0)),
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7l (x;1,(0)) = —Kux + i1t (1,(0)),

together with the expression of the optimal cost-to-go function

T— T
E C;Tg(x,E) | II(Q) :xTPtx+2 Z T+1,t T+1W ) x+‘Pt(I[(9)), (428)

T=t

where recall that for 15 > ¢,

d)sz T (Al‘l _BZ‘IKH)T“'(AIQ—] _Blz—lKlg—l)T
= (A;I; - AZ-EPf1+1Hll) (A -Al Ptthz—l),

t—1 ty—1

and ¥, (1;(0)) is a function of the history observations/predictions which does not
depend on x. Note that (4.28)) holds when ¢ = T because C;g (x;B) =xT Prx.

Suppose that (4.28)) holds for 7 + 1. Then, we have
B[O (x4 W B) | 1(0)]

=B [B[Ca G+ WaB) 1 1 (0)] 11:0)]

T-1 T
=E[(x+ W) Pyt (x +W,)| 1,(6)] +2E Z O, Peat Wl It(e)]
T=t+1
-
+2E Z O PratWoy | Wil 1:(0) | + B Wit (1141(0)) | 1,(0)]
T=t+1
T-1 T
=X Pt+1x+2 PH—IW + Z (DT l+1PT+1W‘fll‘) X +TI‘{P,+1 * COV [Wl‘ | It(e)]}
T=t+1
T-1 T
+2B || D@ PeaWi, | Wil 1(0)| +E W1 (1 (6)) | 1,(0)]
T=t+1

To simplify the notation, let

T-1 T
Z ®7—-|:1+1PT+1W |,+1) Wt I[(H)

T=t+1

Yi41(1(0)) = Te{Pss1 - Cov [W; | [,(6)]} + 2E

E [lPt+1(Iz+1(9)) | It(g)] .

We see that the expected Q function is given by

B|oF (v.u:8) | 1(0)
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—xTQux +u"Ru +E [C,”fl (Ax + B+ W, E) | 1,(6)

=x"Qx+u' Ru+ (Ax + But) " Pryy (Aix + Biu)
T

(Ax + Buu) + Y141 (1,(6))

T-1
+2 (P,+1Wf|t+ D@L Pea Wi,

T=t+1

T-1 T

= MT(R[ + B;rPt+1Bt)u +2 (PH_lAt.x + PH'lWlﬁt + Z (D‘I—'r,l‘+1PT+1Wf|l’) Btu
T=t+1

T-1

T
PT+1W[0|t + Z ¢7—I-—,t+1PT+]W-f|t) Atx + &l+] (If(g))

T=t+1

+xT(Q, + A;—PH]A,)X + 2

= (e + Kpx = (1(0))) " (R + BT ProaBy) (1 K = (1, (0))) + 07" (s 1,(0)),

where Mrg (x; 1;(0)) is given by

T-1 T
X (Qr+ AP A)x +2 (mefft + Z ®;t+1PT+1Wf|t) Ax + 01 (1,(6))

T=t+1

+ (K - af(l,(e)))T (R, + B} Pru1 By) (Kpx = @l (1,(0)))
Using the expected Q function, we know that the optimal policy will pick the action
7:(x: 1,(8)) = arg min E [Q;f"(x, 0. E) | 1,(9)] = —Kox + @’ (1,(0)).
Therefore, we see the optimal cost-to-go function at time step ¢ is given by

B|cr'(:3) | 10)|
= xTsz + (Kix — ﬂf(lz(g)))TRz(sz - ﬁf(],(@)))
+ ((A; = B:K)x + Btﬁtg(lt(e)))TPHl((At - B/K/)x + Btﬁf(lt(ﬁ)))

T-1 T
Pt+th0|t + Z (D:,HIPTHWTQV) ((A; = B;K;)x + Btﬁf(]t(g))) + Y1 (1(0))

T=t+1

+2

=x"(Q: + K RK; + (A; = B,K;) " Pyy1(A; — BiK)))x — Zﬁ?(lz(g))TRthx
+ Zﬁf(lt(e))TB:PHl (At - B;Kt)x

T-1 T
+2 (PHIW,"“ + Z ¢;l+1PT+1Wf|t) (A; — B;Ky)x

T=t+1

+ @l (1,(0))T (R, + B] Pr1 B)ii! (1,(6))

T-1 T
+2(Pt+1wf|,+ Z cpj’umWf't) B;ii? (I,(0)) + ¥ie1 (1,(0)).

T=t+1
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Note that the term —2it! (I,(6))" R,K,x and the term +2i?(1,(8))" B P11 (A, —
B,K;)x cancel out because R;K; = B/ P,+1(A; — B;K,). We also note that the matrix

in the first quadratic term can be simplified to

O, + K RK, + (A, — B.K;)) P41 (A, — BiK;)
=Q,+K B/ Piy1(A, — B/K,) + (A, — B;K;) " P;11(A; — B;K,)
=0+ A;rPt+1(At - B/K;)
=0, +A P A — AT P, BK,
=0, +A P A — AT P H Py A,
= Pt,

where the last equation follows by the definition of P; in (4.8).

Therefore, we obtain that

B|cr (:2) | 1(0)]

T-1 T

=x"Px+2 ((A? = ATPLaH)(Pia W], + > @] PeaWE) | x

T=1+1

+ ﬁ?(l,(@))T(Rz + B;TPHlBt)ﬁf(Iz(e))

T-1 T
+ 2 (Pl+1Wt9|t + Z ®7-r’t+]PT+1Wf|t) Btlz[e(lf(g)) + lﬁlﬁ-l(lt(g))
T=t+1
T-1 T
:xTP[X+2 Z<I)7—'r,lPT+1Wf|t) x+lﬁt(1;(9)),

T=t

where the residual term i/, (1;(6)) is given by
¥ (1,(0)) = ﬁzg(lz(g))T(Rz + B;—PHIBI)I/_‘?(II(G))

T-1 T
+2 (Pt+1Wt0|[ + Z CDTT,z+1PT+1WTO|,) Btﬁf(]t(e)) + U1 (1,(6)).

T=r+1

Thus, we have shown the statement of Proposition and [4.28| by induction.

Proof of Theorem 4.3.1]
By Proposition[4.3.T| we see Condition d.2.T] holds with equality:

B|OF (v1:E) - €' (6:8) | 1(6) = u ()|
= (u = 7] (x;1:(0)) T My (u = 7 (x; 4(6))), (4.29)
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where M, is defined in Theorem [4.3.1f We also see that Condition [4.2.2](a)] holds
with equality:

E [Cov [2Y(X;1,(0)) | F:(0)]] = =.. (4.30)

By Theorem we obtain that P(6) > ZZT:_OI Tr{M,%;}, but the lower bound
is tight in this case. To see this, we go through the proof of Theorem #.2.3] in
Section4.Aland check each inequality: (4.19) holds with equality because of (4.29),
which implies that (4.19) also holds with equality. (4.22]) holds with equality because
of (4.30) and the relationship that

T-1
U = — KX, — (R + B PrB) ' BT Z O, o Pra W,
7=t
T-1
= — KX~ (R + B PuiB) ' B] Y @7, | PruiE [Wfll It(O)]

T=t

=E[U/|1:(0)] = ﬁt~

Therefore, we know that (4.23)) also holds with equality, so P(6) = ZIT:_OI Tr{M,%,}.

Proof of the MPC form
In the LQR setting, we can further simplify the MPC policy (4.10) to be planning

according to w?, :
T|t

T-1
arg min h+ (x'r’ u‘r) + hT(xT)
o TZ:; (4.31)

_ - _
St X4l = fT(xT,uT,wT“), for r > ¢, and x; = x.

We show the MPC policies defined in (4.10) and (4.31]) are equivalent to the optimal
policy in Proposition {.3.1]

To simplify the notation, we define the large vectors

Xt Uy Wy

Xt+1 Ut R Wit
X = , U= |, andw =

Xr Ur-1 Wr-1

Follow the approach of system level thesis, we know the constraints that

Xegl = Aexe + Brur +we, fort >t, and x; = x
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can be expressed equivalently by the affine relationship
X=®Ox+D,u+d,w.

Let é = Diag(Qy,...,Q7-1,Pr) and R = Diag(R;,...,Rr—1). We know the

objective function (with equality constraints)

~

-1
h‘r (XT, MT) + hT (xT)

I
-~

T

st. Xry1 = fr(X,ur;wy), fort > ¢, and x; = x, (4.32)
can be written equivalently in the unconstrained form

(®yx + Dyii + D) TO(Prx + Dyil + D, W) +ii " Rid. (4.33)

‘We introduce the notations

[ wo ] [ o
Wi Wz|t wz|t
6 0
Wi w w
7 e t+1]t - t+1|¢
w=| |, Wﬁt =| ™| and W~9|t =
0 0
Wr-1 _WT—1|t_ _WT—1|t_

The MPC policy in (.10) can be expressed as

minE [(qnxx + @it + D W)TO(Dox + Dyii + D, W) + " Rid
u

1(0) = 4(0)] .
Because the objective function can be reduced to

E [(CI)xx + Dyt + D W) TO(Dx + Dyii + D, W) + " Rid

10) = u(0)|
= (Dx + il + d)ww’ﬂt)Té(d)xx + @i + Dy 0,) + ii" Rii
1) = u(0)|,

where the last term is independent with x and . Thus, the MPC policy in .10) is
equivalent to

(0. -G 77

E [(CI)xx + i + P W)TO(Dox + it + D, W) +ii T Rid

1) = u(0)|,
which is the MPC policy in (4.31).

Now, we show that (4.31) is equivalent to the optimal policy in Proposition 4.3.1]
For any sequence w;.7_1, let MPC(x, w;.7—1) denote the first entry of the solution to
T-1

arg min h‘r (xTa u‘r) + hT (xT)
Ur:T-1 TZ:;
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s.t. X4l = fr(Xp,ur;wy), fort > ¢, and x; = x. (4.34)

To show that (4.31) is equivalent to the optimal policy in Proposition[4.3.1] we only
need to show that

T-1
MPC(x, 1) = —Kpx = (R + B Pt B)'B] Y@L, |\ Praw, (435
T=t

holds for any sequence w,r_;. To see this, we consider the case when w;.r_;
are deterministic disturbances on and after time step ¢, i.e., the agent knows
wer—1 exactly at time step z. In this scenario, we know the optimal policy
is to follow the planned trajectory according to MPC in (#.32). On the other
hand, by Proposition {.3.1, we know the optimal action to take at time ¢ is
~Kx—(R,+B] P,y1B,)"'B] Z;tl ¢:+1,z+1PT+1Wf' Therefore, the first step planned
by MPC must be identical with —K,x — (R, + B; P;+1B,) "' B ZZ:_;I o))

T+1,1+1
Thus, (4.35)) holds. And replacing w.(r—1) with w finishes the proof.

Priywy.

0
t:(T-1)|t

Evaluation of the Expected Conditional Covariance

For two general random variables X and Y, we follow a standard procedure to eval-
uate the expectation of their conditional covariance E [Cov [Y | X]] using a dataset
{(xn, yn)} that is independently sampled from the joint distribution of (X,Y) (Al-
gorithm[5)). The algorithm first train a regressor ¢ that approximates the conditional
expectation E [ X | Y], where we use the definition:

E[Y|X]= min E[[Y-y(X)l].

Y is any function.

Then, y is used for evaluating the conditional covariance. During training, we split

the dataset to the train, validation, and test datasets in order to prevent overfitting.

Algorithm 5: Expected Conditional Covariance Estimator (ECCE)
Require: Dataset D that consists input/output pair (x,, y,).

Split the dataset D to D in, Dval, and D ;.

Initialize a regressor ¢ with input x and target output y.

Fit ¢ to D4in with MSE and use Dy, to prevent over-fit.

return X = th' ZneDw(yn =Y (x))(Yn — w(xn))—r

4.D Proofs for LTV Dynamics with General Costs
Infimal Convolution Properties
The first result states that the variant of infimal convolution preserves the strong

convexity/smoothness of the input functions.
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Lemma 4.D.1. Consider a variant of infimal convolution where the optimization

variable is multiplied by a matrix B:

(fOpw) (x) = min {f(u) + w(x — Bu)}, (4.36)

where f : R™ - R, w : R" = R, and B € R™™ is a matrix. Suppose that f is a
W p-strongly convex function, and w is a p,-strongly convex and {,-smooth function.
Then, fOpw is a (%)—stmngly convex and {,-smooth function. We also

tp+BI s
have V(fOpw)(x) = Vw(x — Bu(x)).

The second result is about the optimal solution of the variant of infimal convolution.
It states that for some distributions, the covariance on the input will induce a variance
on the optimal solution. We state it in Lemma and provide the proof later in

this section.

Lemma 4.D.2. Let u(fp,.)(x) denote the solution to the optimization problem
@.15). Suppose function f is ps-strongly convex. Function w is p-strongly
convex and {,-smooth. Suppose X is a random vector with bounded mean and
Cov [X] = X = ool. Further, there exists a constant C > 0 such that for any
positive integer N, X can be decomposed as X = Zfl | Xi for i.i.d. random vectors
X; that satisfies E [||Xl-||4] < C-N72 Then,

5 2
NOOUL, * Tmin(B)

Tr{C ) (X z ‘
t{Cov [u(royw) (X)]} 2(¢r + ,||B|)2

As a remark, examples of X that satisfies the assumptions include:

e Normal distribution X ~ N(0,X). Wehave X; ~ N(0,X/N), thus E [||X,-||4] <
3Tr{Z}N 2.

* Poisson distribution (1D) with parameter a. We have Var [X] = a and X;
follows Poisson distribution with parameter a/N. Thus, E [Xl.4 ] =a*N~*.

The next result (Lemma considers the case when there is an additional
input w to function w in the infimal convolution. When this additional parameter
causes a covariance on the gradient V w(x, W), the optimal solution of the infimal

convolution will also have a nonzero variance.
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Lemma 4.D.3. Suppose that w(x,w) satisfies that w(-,w) is an {,-smooth convex
function for all w. For a random variable W, suppose that the following inequality

holds for arbitrary fixed vector x € R",
Cov [Vlw(x, W)] = ool.

Suppose that f : R" — R is a u¢-strongly convex and { s-smooth function (m < n).

Let B be a matrix in R™™. Then, the optimal solution of the infimal convolution

U(fopw) (X, w) = argmin (f(u) + w(x — Bu,w))

satisfies that

N0 * Tpin(B)?
2(¢5 + y|1BJ|)?

Tr{COV [”(fDBw) (x, W)]} >

holds for arbitrary fixed vector x, where 0,;,(B) denotes the minimum singular
value of B.

Lemma.D.3|is useful for showing Lemmal.D.2] We provide its proof later in this

section.

Proof of Lemma
We use induction to show that E [C,”g (x;B) | I;(9) = L,(G)] is a u,-strongly convex
and £;-smooth function for any ¢,(6), where the coeflicients y, and ¢; are defined

29

recursively in (4.13). To simplify the notation, we will omit “/;(#) =" in the

conditional expectations throughout this proof when conditioning on a realization
of the history ¢,(6).

Note that the statement holds for r = T', because E [C;rg (x; E) | LT(H)] = h}.(x) and

the terminal cost A7 is p,-strongly convex and £, -smooth.

Suppose the statement holds for # + 1. We see that

B[ € (2 | 4(0)| = b (x) + min (A (u) + B €2 (Acx + B+ Wi B) [ (0)] ).

By the induction assumption, we know that E [Cl’fl (3 E) | tre1 (0)] is a {41 -strongly

convex and ¢;,1-smooth function for any ¢,,1(6). Thus, E [Cl”:)] (-+W,E) | L,(H)]

is also a py41-strongly convex and ¢;.1-smooth function. Therefore,

min (A () + B [C;fl (x + B+ W, E) | Lt(e)])
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MuMi+1
Mu+b? 41
changing the variable from x to A,x, we see that

-strongly convex and ¢;;1-smooth function of x by Lemma4.D.1} By

min (h;‘(u) +E [c;f’l (Ax + B+ W, 5) | L,(e)])
u

: MuMi+1
is a Y LI

Ha Hu+b2 i
EF] Since hy is a p,-strongly convex and {.-smooth function, we see that
E

Ccr ! (xE) | L,(G)] is also a p,-strongly convex and ¢;-smooth function because

-strongly convex and €4 - {;4+1-smooth function by Assumption

pr = gty pia - —2EEand 6 = €+ Lo - .

Hu + b2 i1

Proof of Theorem 4.3.4]

Note that the optimal action at time step ¢ is determined by

7% (x; 1,(6)) = arg min (h,“(u) +E [c;:j (Aix + Bt + Wy E) | 1,(9)]) . 437)

This can be further simplified to

6

70 (33 1,(6)) = argmin (R (u) + C) (Aux + Bt + W)

t+1

The additional input 7;(6) is not required for C t’fl because the function C t’fl (x;¢4(6))
does not change with the history ¢(#) under Assumption The reason is
that W, — Wt‘"t and all future predictions and disturbances Wyiir-1, V), ;. ,
independent with the history /,(6).

By @.16), we see that

Trle(x; Il‘(g)) = u(h?D—B,Ctn?)(Atx + WIHU)

are

Under Assumption [4.3.2] we see that

Cov [We

t)t

] = Cov [W;] — Cov [W; | V;(0)] = A,(6)]

and Wﬁ . 1s Gaussian. Therefore, we can apply Lemma@4.D.2{ to obtain that

0, _ n/lt(e)/l,zﬂ "HUB
Tr{Cov [ (L) | 71(O)]} 2 01 3= = =

Thus, Condition @.2.2](b)| holds with o7.

On the other hand, Conditiond.2.TJholds with M, = ;I by Lemma[.3.3] Therefore,
by Theorem , we obtain that P(6) > ZtT:_o] Uy Oy
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Proof of Lemma 4.D.1]

By the definition of conjugate, we see that

max {<y,x> — min {f () + w(x - Bu)}} (4.38a)

max max {(y,x) - f(u) = w(x - Bu)}

(fopw)” (y)

max max {{y,x — Bu) + (y, Bu) — f(u) — w(x — Bu)}

= max max {((y,x = Bu) — w(x = Bu)) + ((B"y,u) — f(u))}

(4.38b)
= max {max {(y,x = Bu) - w(x = Bu)} + (BTy,u) - f ()}
= max {w"(y) + (BTy,u) - f(u)} (4.38¢)
=W () + ' (BTy), (4384)

where we use the definition of fOpw in (#.38a)); we change the order of taking the

maximum and use (y, Bu) = (B"y,u) in (4.38b); we use the definition of w* in

(4.38c)); we use the definition of f* in (4.38d).

Since fOpw is convex, by Theorem 4.8 in Beck, 2017, we know that

(fOpw) (y) = (" () + f*(BTy))". (4.39)

Since w is a u,-strongly convex and ¢,-smooth function, we know w* is an {,L-
w

strongly convex and #L—smooth function by the conjugate correspondence theorem

(Beck, [2017). Similarly, we know that f* is a #—smooth convex function. Thus,

B|)?
1 LBIE ” )-smooth
How Hf

function. Therefore, by the conjugate correspondence theorem, we know that fOpw

we know that w*(y) + f*(BTy) is an i-strongly convex and (

isa (“”—“é)—strongly convex and £,,-smooth function.
urHIBI s

Now, we show that
V(fopw)(x) = Vw(x — Bu(x)). (4.40)

Following a similar approach with the proof of Theorem 5.30 in Beck, 2017, we
define z = Vw(x — Bu(x)). Define function ¢(¢) = (fOpw)(x+¢) — (fOpw) (x) —
(€, 7). We see that

¢(&) = (fOpw)(x +§) — (fOpw)(x) — (£, 2)
<w(x+&—-Bu(x)) —wx —Bu(x)) — (£, 2) (4.41a)
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< (&, Vo(x +& - Bu(x))) — (£, 2) (4.41D)
= (&, Vw(x + & — Bu(x)) — Vo (x — Bu(x)))

< [I€ll - IVw(x + € — Bu(x)) — Vw(x — Bu(x))]| (4.41¢)
< Lollél, (4.41d)

where in (4.41a)), we use

(fOpw)(x +&) < f(u(x)) + w(x +& - Bu(x)), and
(fOw)(x) = f(u(x)) + w(x - Bu(x));

we use the convexity of w in (#.41b); we use the Cauchy-Schwarz inequality in
(@.41c); we use the assumption that w is £,-smooth in (4.41d).

Since (fOpw) is a convex function, ¢ is also convex, thus we see that

B(&) > 26(0) — (=€) = —p(=€) > ~L,I€]I%.

Combining this with (#.41)), we conclude that limyg o [¢(£)]/]I€]] = 0. Thus,
(4.40) holds.

Proof of Lemma 4.D.2]
By Theorem[#.D.5] we see that

Cov [Vw(X)] > 0'0/12).

Then, we apply Lemma with the second function input to the infimal convo-
lution as @(x, w) = w(x + w). In the context of Lemma4.D.3 we set W = X, so

the assumption about the covariance of the gradient holds with
Cov [Vid(x,W)] = 0'0/13,.
Note that for any fixed w, @(-, w) is y,,-strongly convex. Therefore, we obtain that

2 2
) ) oYU, * Omin(B)
Tr{COV [u(fuga))(X)]} = Tr{COV [u(fDBw)(O’ W)]} 2 2(¢r + LolBl)?

Proof of Lemma4.D.3

Because function c is €.-smooth, we have

IVe(u(x,w)) = Ve(u(x, w)|| < Cellu(x,w) —u(x,w)]. (4.42)
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Using the assumption that function f is £s-smooth, we obtain the following inequal-
ities:
|BTV1f(x = Bu(x,w),w) = BTV, f(x — Bu(x,w’),w’)|
> ||BTV1f(x — B By [u(x,W)],w) =BV f(x = B-Ey [u(x, W)] ,w’)”
—||BTVif(x = B-u(x,w),w) = BTV f(x — B Ey [u(x, W)],w)|
—|IBTVif(x =B -u(x,w'),w’) = B"Vif(x — B-Ew [u(x, W)],w)|| (4.43a)
> ||BTV f(x - BBy [u(x,W)],w) = BTV f(x — B - By [u(x, )], w)|
= CrlIBIl - (llu(x, w) = Bw [u(x, W1l + [lu(x, w') = Ew [u(x, W)]Il), (4.43b)

where we use the triangle inequality in (4.43a)); we use the smoothness of f in

Note that by the first-order optimality condition, we have
Ve(u(x,w)) =B Vi f(x =B -u(x,w),w) =0.
Therefore, for any w, w’, we have that

Ve(u(x,w)) = Ve(u(x,w”))
=B'Vif(x =B -u(x,w),w)—=B'Vif(x—B-u(x,w),w). (4.44)

By combining (4.44) with (4.42)) and (4.43)), we obtain that

Cellu(x, w) = ulx, w)ll
+ & - IBI - (lu(x, w) = Ew [u(x, W)TI + llu(x, w') = Ew [u(x, W]
> ”BTV]f(x — B -Ey [u(x,W)],w) =BV f(x = B-Ew [u(x,W)] ,w')”

holds for arbitrary w and w’. Let W’ be a random vector independent of W and have

the same distribution. By replacing w/w’ with W/W’, respectively, we see

Cellu(x, W) = u(x, W)||
+ L - |IBIl - (lu(x, W) = Ew [u(x, W]l + [Ju(x, W) = Ew [u(x, W)]I])
> ||BTV £ (x = B-Eyw [u(x, W)],W) = BTV, f(x - B - By [u(x, W)] , W)

)

which implies

(Le + €7 1IBI) (lu(x, W) = Ew [u(x, W)]|| + [[u(x, W) = By [u(x, W)]I))
> |B"Vif(x - B-Ew [u(x,W)],W) = BTV, f(x — BBy [u(x, W)], W)
(4.45)
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by the triangle inequality. Taking the square of both sides of (4.45)) and applying
the AM-GM inequality gives that

2(Ce +€IBIN lu(x, W) = By [u(x, W)]|1?
+2(Le + LB [lu(x, W) = By [u(x, W)]|1>
> |BTV.f(x - B - By [u(x, W)],W) = BTV, f(x - B- By [u(x, W)], W)||".
(4.46)
LetY =V f(x — BBy [u(x,W)],W) =V if(x = B-Ewy [u(x,W)],W’). Note
that the right-hand side of (#.46) can be expressed as IBTY|* = Tr{B" (YYT)B).
By taking the expectations of both sides, we obtain that

4(Cc + €51 BI)> Tr{Cov [u(x, W)]}
> 2Tr{B"Cov [V, f(x — BEw [u(x, W)],W)] B}
In the last inequality, we use the property that the trace of a positive semi-definite

matrix equals the sum of its eigenvalues. Thus, it is greater than or equal to n times

the smallest eigenvalue 0gomin(B)2. Rearranging the terms finishes the proof.

Useful Technical Results
In this section, we summarize some useful technical results about the random

variables. We first state a lemma that justifies the decomposition
E [Cov [ﬁf([,(@)) | ﬁ(O)]] =E [Cov [ﬁ:‘(E) | I,(O)]] -E [Cov [ﬁf(E) | I,(H)]]

that is used to derive the prediction power in the last step of Algorithm[] This de-
composition is helpful because otherwise, we would need to evaluate the conditional
expectation inside another conditional expectation. Specifically, i (1,()) needs to
be approximated by a learned regressor (say, ¢) that takes /;(6) as an input. Then,
to evaluate E [Cov [ﬁf(lt(é))) | 7 (0)]], we would need to train another regressor

to predict the output of ¢. Our decomposition avoids this hierarchical dependence.

Lemma 4.D.4. For any random variables X and two o-algebras ¥ C F’, the

following equation holds

E[Cov[E[X |F'] | F]l =E[Cov[X | F]]-E[Cov[X | F']].

Proof of Lemma By the law of total covariance, we see that

Cov [X|F] = Cov [E[X | F] | F]+E[Cov [X|F'] | F].
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Taking expectation on both sides, we obtain the following equation, which is equiv-
alent to the statement of Lemma

E[Cov[X | F]]=E[Cov[E[X |F'] | FII+E[Cov[X | F']].
O]
We state a useful result about what functions can pass the covariance of its input to
the output in Theorem 4.D.5]
Theorem 4.D.5. Suppose that a function g : R¢ — RY satisfies
(§(0) = g()x =x) = ylx = x'II*, and
lg(x) —g(x)Il < Lllx —=x'[|, Vx,x" € RY. (4.47)
Additionally, there exists a positive constant { such that
—€I 2 V?g:(x) =2 €I, Vx e R4, i € [d]. (4.48)

Suppose X is a random vector that satisfies |E [X]| < co and Cov [X] = X = ul.
Further, there exists a constant C > 0 such that for any positive integer N, X
can be decomposed as X = Zi]\i | Xi for i.id. random vectors X; that satisfies
E [||X,~||4] < C - N72. Then, we have

Cov [g(X)] = py*I.

As a remark, the gradient of a well-conditioned function satisfies the conditions in

.47).

Proof of Theorem[d.D.5] Without any loss of generality, we assume E [X] = 0
because we can view g(E [X] + -) as the function and subtract the mean from the
random variables. The assumptions about g and X in Theorem 4.D.5|still hold.

For any i € [d] and € € R?, we have the Taylor series expansion Lagrangian form
(see Chapter 3.2 of Marsden and Tromba, 2003)

1 .
gi(x+e) =gi(x) +Vgi(x) e+ EGTVZgi(f(l))G, (4.49)

where ) is a point on the line segment between x and x + €. For notational
convenience, let
Vgi(x)" eTV2g (x()e
Vg(x) = : e R and v (x,€) = ; e R%.
Vga(x)" €"V2g,(xD)e
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Using the above notation, Eq. (4.49) can be equivalently written in the following

vector form:

glx+e€)—g(x)=Vg(x) -e+%v1(x, €). (4.50)
From Eq. @#48), we know that |v(x, €);| < £||€||*, which implies

Ivi(x, )l < eVdlel. (4.51)
In addition, by Eq. (#.47), we see that
(g(x+e€) —g(x),€) = vl
Substituting Eq. into the above equation and rearranging the terms, we obtain
€ -Vg(x) ez ylell’ - € -vilxe),

which is equivalent to

o Ve + V()
2

e > ylell* — € vix, e).

Observe that the term subtracted from the right-hand side satisfies €T - v{(x, €)| <
£Vd||€e]|?, which follows from Cauchy—Schwarz inequality and Eq. |b There-
fore, since the previous inequality holds for any € € R, taking € — 0 gives that

Vg(x) +2Vg(x)T -~ (4.52)

Before we proceed, we first state and prove a lemma that can convert the summation
in Eq. (¢.52)) into a product form.

Lemma 4.D.6. Let M € R4 be a real-valued matrix satisfying M + MT = 2yI.
Then, for any positive definite matrix ¥ = ul, we have MEIM™ = py?*I.

Proof of Lemma Since M + M™ » 2yI, we have for any x € R¢ that

2y|lx)1? < 2xTMTx = 2x TSP T < 2|72k |12 P M T x|
< 2u” P |IxlIZ 2 M ],

where the last inequality follows from ¥ = ul = ||[Z7/2x| = VaTZ1x <

1~ '72||x||. Rearranging terms, we obtain
yu'Pllxll < 1='2M x|

Squaring both sides concludes the proof. 0
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Next, we state and prove a lemma about the lower bound of the covariance induced
by an additive random noise on the input that is useful when the noise is sufficiently

small.

Lemma4.D.7. Let & be a mean-zero random vector in R? that satisfies 5I < Cov [&]
and E [”8”4] < ¥. Let g be a function that satisfies (4.47) and @.48)). Then, for

arbitrary fixed real vector x € RY, we have

Cov [g(x+2)] = (y2Q _oLtd® 7 - fzd?) I

Proof of Lemma{d.D.7) We first derive bounds on the i th moment of ||¢|| (i =
1,2, 3). By Jensen’s inequality, we have

E[llell’] = E

1 1
(||g||4)2] < (2[lel*])” <7 (4.53)
Using Jensen’e inequality again, we obtain that

B[l < (B [Ie1P])” <7+ (4.54)

Lastly, by the Cauchy-Schwartz inequality, we see that
1
13
B [llelF] < (E[llel*] - B [Ie1?] ) <7, (4.55)
Note that by (4.50), we have

Covig(x+e)] =Covig(x+e)—g(x)] =Cov |Vg(x) -+ %vl(x, e)|. (4.56)

Since E [¢] = 0, we can further decompose (4.56)) as

Cov

Vg(x)-e+ %vl(x,s)]

=E

(Vg(x) -E&+ %vl(x, g) — %E [vi(x, 8)]) .
1 1 i
(Vg(x) '8+§V1(X,8) _EE [vl(x,s)]) ]

=Vg(x)-Cov[e] -Vg(x)" +Vg(x)-E|&- (%vl(x, £) — 1]E, [vi(x, 8)]) ]

2

+E

(%vl(x, g) — %E [vi(x, 8)]) . ST] -Vg(x)T + %COV [vix,e)]. 4.57)
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By Lemma [4.D.6| and (4.52), we know that the first term in (4.57) can be lower
bounded by

Vg(x)-Cov[e] - Vg(x)T = yzél. (4.58)

Define the residual term as the sum of the last 3 terms in (4.57)):

R=Vg(x)-E [s- (%vl(x, g) — %E [vi(x, 8)]) ]

+E V()T + iCOV [vi(x,&)]. (4.59)

(%vl(x,s) - %E [vi(x, 8)]) >y

To show Lemma[4.D.7], we only need to show
IR|| < 2Ltd? - 57 + 2. (4.60)

To see this, note that

HVg(x) -B [8 . (%vl(x, g) - %E [vi(x, 5)]) ]

< I9gol- ] (541000~ 52 [v1<x,s>])T] @6l
< % ([ [& - vitx,&)7][| + [E [£] - E [vi (x, )]7]) (4.61b)
< % (E [lle - vitr. o) T[] + IE L]l - 1B [vi(x, )]1) (4.610)
< %(E el - v G ) +ELllell] - B[Ivie)ll)  @.61d)
< %@ (B[] +E [l - E 11217 (4.61e)
< Ltd* -3, (4.61f)

where we use the definition of the induced matrix norm in (4.61a)); we use (4.47) and
the triangle inequality in (4.61b)); we use the Jensen’s inequality and the definition

of the induced matrix norm in and (4.61d); we use (#.51) in (.61¢)); we use
the bounds on the moments of ||&|| @.53)), @.54), and (#.53) in {.611).

On the other hand, we know that Cov [v;(x, )] is a positive semi-definite matrix

that satisfies

Cov [vi(x,e)] =E [vl(x, e)vi(x, s)T] ~E[vi(x,e)] -E[vi(x,e)]"

<E [vl(x, e)vi(x, S)T] .
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Therefore, we see that its induced matrix norm can be upper bounded by the expec-

tation of squared norm:

[|Cov [vi(x,&)]|l < ||E [vl(x, e)vi(x, S)T]” <E [||v1(x, e)vi(x, S)T”]
<E[vi(xo)IP] .

Using the bound of ||vi(x,&)|| in (#.51) and the 4 th moment bound of |||, we
obtain that

[Cov [vi(x,&)]|l < (*dE [||||*] < dy. (4.62)

Note that the norm of R (Equation (4.60)) can be upper bounded by the sum of the
norms of the 3 separate terms. Thus, by combining the (4.61)) and (#.62), we see
that (4.60) holds. O

Lastly, we consider the case when the input of g can be expressed as the sum of a

sequence of mutual independent random vectors.

Lemma 4.D.8. Let {X;}1<i<y be a sequence of mean-zero random vectors in R?
that are mutually independent and satisfies 61 < Cov [X;] and E [||X,-||4] <%y. Let
g be a function that satisfies (4.47) and @.48)). Then, for any positive integer N, we

have

N

S

i=1

Cov | ¢ > N (72§ _oLEd? -y - €2d7) I. (4.63)

Proof of Lemma We use an induction on N to show that (#.63)) holds.
When N = 1, (¢.63)) holds by setting x = 0 and &£ = X; in Lemma[@.D.7]

Suppose (4.63) holds for N — 1. Then, for N, by the law of total variance, we see
that

N-1

2%

1

N
ZX,‘ +E

i=1

Cov =Cov |E

8 8

N
S

i=1

For the first term in (4.64), we define a new function

g(x) =E[g(x+Xy)].
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Since the random variables {X;}<;<y are mutually independent, we observe that
the conditional expectation can be written as
N

N-1
Z Xl' Z Xi
i=1 i=1

One can verify that if g satisfies the conditions in (4.47)) and (4.48), then g also
satisfies the same conditions as g because

N-1

> x

i=1

Elg =g .

18(x) = &N = lIE [g(x + Xn) — g(x" + Xn)]Il < E [llg(x + Xn) — g(x" + Xn)ll]

< L|x-x|.
On the other hand, we have

(§(x) —g(x'),x —x)y = (B [g(x + Xn) — g(x" + Xn)] ,x = x")
=E[(g(x+Xy) — g’ + Xn), x —x)] = yllx - x'|%.

For the Hessian upper/lower bounds, because V?g;(x) = VZE[g;(x + Xy)] =
E [V2gi(x + Xn)],

= = g,-(x) <.
Therefore, by the induction assumption, we see that

N
2%
i=1

N-1

2%

i=1

N-1

2%

i=1
= (N-1) (yzé _oLed? -5 - €2d7) I (4.65)

Cov |E|g =Cov (g

For the second term in (4.64), we note that for any realization x of Zfl ]1 X;, we have

N
S
i=1

N-—

Z:le-:x

i=1

N-1

gx+Xn) ) X =x

i=1

> (yzé _oLed? -y - 5%{7) I,

Cov = Cov = Cov [g(x + Xy)]

8

where the conditioning can be removed in the second step because the random
variables {X;}<;<y are mutually independent, so g(x + Xy) is independent with
Zf\; Il X;; and we use Lemma in the last inequality. Therefore, we obtain that

N

S

i=1
Substituting (4.65)) and (4.66) into (4.64) shows that (4.63) still holds for N. Thus,
we have proved Lemma by induction. O

N-1

S

i=1

E|Cov| g > ()/ZQ _oLed® -7 - 5%17) I. (4.66)
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Now we come back to the proof of Theorem #.D.5] By the assumption, we know
the distribution of X is identical with the distribution of Zfi | Xi, where X; are i.i.d.
random vectors that satisfies E [||X,~||4] < C - N72. Thus, we have

>

=1
Note that each X; satisfies that Cov [X;] = %COV [X] = &I. Applying Lemma
gives that

Cov [g(X)] =Cov |g

Cov [g(X)] >( »_ aed® - € é’zd_) I

By letting N tends to infinity in the above inequality, we finishes the proof of
Theorem 4.D.3l L

Roadmap to Multi-step Prediction under Well-Conditioned Costs

A limitation of Assumption[4.3.2]in Section 4.3]is that it only allows the prediction
V;(0) to depend on the disturbance W, at time step ¢. A natural question is whether
we can relax the assumption by allowing V;(6) to depend on all future disturbances
Wi.(r-1). In this section, we present a roadmap towards this generalization and

discuss about the potential challenges.

First, we show that the expected cost-to-go function E [C[” ! (x;8) | I,(H)] can be
expressed as a function that only depends on the conditional expectations Wfl , for
all T > ¢, i.e., there exists a function C’,” ? that satisfies

Cr (W ) _E[C;T”(x;a) | It(H)]. (4.67)

We show by inductionon ¢t = T,T — 1,...,0. Note that the statement holds
for T. Suppose it holds for 7 + 1, by (4.14)), we have

Cry(: 1:(6)) = B | €l (x + Wy = Wi B) | 1:(0)]

=Ee|cr,

0
(x+ W, =W, W(t+1) (T—1)[1+1)

1©)].

where we use the induction assumption in the last equation. Define the random

variables 8[| = W- Wl| ,and gl o = W‘Q| (1+1) - w? Tl Using the properties of joint
Gaussian distribution, we know that &7 (11| AT€ independent with 7;(6). Therefore,
L _ 0 0
Cr(x: 1,(6) = B | Ty (x + £ Wiear-ne * Eestr-nie) It(e)]
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_ 0 . b 0
= Esﬁ(T_W 4 (x + &5 Wiy r—nye + 8(1+1):(T—1)|t) :

Thus, C’r 1(x 1;(0)) can be expressed as a function of x and W(r+1) D) and we

denote it as

Ct+1(x W(t+1) (T- 1)|,) = C+1(x 1,(0)). (4.68)

Therefore, we obtain that

B [CF (6 2) | 1:0)] = 7 (o) + (W0, G ) (Ax + Wiy 1,(0))

= 1 (x) + (h'D-p) CT ) (Apx + W ; Wity r—n0)-

l‘|t’

Therefore, E [C,”e (x;8) | I (9)] can also be expressed in the form C’r (x; WH(T 1)|t)
Thus, we have shown by induction, with (4.68) as an intermediate result.

Note that the optimal policy is given by
70 (e 1,(6)) = arg min (h”(u) + C5 (Ax + B + WY 1,(9)))

= arg min (h”(u) + C 1(A,x + Byu + WY W8+1) (T- 1)|t))

t|t’

_ ) 0
= Upea_y, c:;rfl’)(Atx + W Wesn)r—n)-

Therefore, by Lemma 4.D.3| we need to establish a covariance lower bound of the
gradient

0 .0
v C+1(X+W W)

t|t’

in order to derive a lower bound for the trace of the covariance matrix of 7% (x; 1,(6)).

While this is relatively straightforward when we only have Wﬁ , because it is added
directly with x, it is much more challenging to also consider the covariance caused
by Wz )T This is because they affect C x’ , through multiple steps of infimal
convolutions. Nevertheless, we feel the approach that we describe here is promising
if we can derive more properties that are preserved through the infimal convolution

operators. We leave this direction as future work.
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Chapter 5

SINGLE-TRAJECTORY ONLINE POLICY OPTIMIZATION

The results on prediction power in Part |lI| provide strong motivations for studying
policy optimization. First, a standard predictive policy cannot achieve near-optimal
performance in all scenarios. For example, as prediction quality gets worse, we
should not stick to the standard MPC policy, which trusts the given predictions
completely when solving the predictive optimization problem. Second, even if
the optimal predictive policy has a closed-form solution (e.g., Proposition #.3.1]in
Chapter [), it may have complicated dependence on distributions and parameters,
making it intractable to solve in practice. These challenges motivates us to study the
problem of finding/tracking the optimal policy with limited feedback/observations

online.

In this chapter, we study online policy optimization with time-varying costs and
dynamics, which allows general policy classes that include predictive policies as
a special case. We identify a critical property called contractive perturbation
that makes the problem tractable and generalizes many existing results. When
the Jacobians of the dynamics are known, we develop the Memoryless Gradient-
based Adaptive Policy Selection (M-GAPS) algorithm together with an analytical
framework that connects it with classic online optimization. When the Jacobians are
unknown, we propose a meta-framework that can combine M-GAPS with an online
estimator of the dynamical model. We demonstrate the effectiveness of M-GAPS

by applying it in quadcopter control.
The results in this chapter are based on the following papers:

[Lin, Preiss, Anand, et al., 2023|] Lin, Yiheng, James A. Preiss, Emile Anand,
Yingying Li, Yisong Yue, and Adam Wierman. “Online adaptive policy selection
in time-varying systems: No-regret via contractive perturbations.” Advances in
Neural Information Processing Systems 36 (2023): 53508-53521.

[Lin, Preiss, Xie, et al., 2024] Lin, Yiheng, James A. Preiss, Fengze Xie, Emile
Anand, Soon-Jo Chung, Yisong Yue, and Adam Wierman. “Online policy optimiza-
tion in unknown nonlinear systems.” In The Thirty Seventh Annual Conference on
Learning Theory, pp. 3475-3522. Proceedings of Machine Learning Research,
2024.
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Figure 5.1: Diagram of the causal relationships between states, policy parameters,
control inputs, and costs.

[Preiss et al., 2025]] Preiss, James A., Fengze Xie, Yiheng Lin, Adam Wierman, and
Yisong Yue. “Fast non-episodic adaptive tuning of robot controllers with model-

based online policy optimization.” Under submission.

5.1 Problem Setting

We consider online policy selection on a single trajectory. The setting is a discrete-
time dynamical system with state x, € R” for time index t € 7 = [0: T - 1]. At
time step t € 7, the policy picks a control action u; € R”, and the next state and the

incurred cost are given by:
Dynamics: x;41 = g/(x/, ), Cost: ¢; = hy(x;, uy),

respectively, where g;(-,-) is a time-varying dynamics function and /#,(-,-) is a

time-varying stage cost. The goal is to minimize the total cost IT:_OI Ct.

We consider parameterized time-varying policies of the form of u, = m,(x;, ;),
where x; is the current state at time step ¢ and 8, € © is the current policy parameter.
® is a closed convex subset of R?. We assume the dynamics, cost, and policy
functions {g;, h;, 1 };e are oblivious, meaning they are fixed before the game
begins. The online policy selection algorithm optimizes the total cost by selecting
0, sequentially. We illustrate how the policy parameter sequence 6y.7—; affects the
trajectory {x;, u; };e7 and per-step costs co.r—; in Figure The online algorithm
has access to the partial derivatives of the dynamics g; and cost h; along the visited
trajectory, but does not have oracle access to the g,, h, for arbitrary states and

actions.

We provide two motivating examples for our setting. The first example is MPC with

confidence coeflicients, a generalization of Li, Qu, and Li (2021]).

Example 5.1.1 (MPC with Confidence Coefficients). Consider a linear time-varying
(LTV) system g;(x;,u;) = Aixy + Byuy + wy, with time-varying costs hy(x;,u;) =

q(xs, Q1) + q(us, Ry). At time t, the policy observes
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{Art4k=1, Brsk-1, Qrtek—15 Retek—1, Wt:t+k—1|t}’
where wo; is a (noisy) prediction of the future disturbance wr. Then, n;(x;,6;)
commits the first entry of

t+k—1

arg min Z hr(xﬂz, ur|z) + Q(xl+k|t’ Q)
Uptvk-1t 7= (51)

S.t. xt|t = X¢, .x-,—+1|t = A-rx-[-|t + BTMT|, + /ll[T_t] WT|I 171 < t+k,

_ (101 4 (1] [k=1] _ k oF L : 3
where 6, = (4; ", 4, ', ..., 4, '),0 = [0,1]* and Q is a fixed positive-definite ma
trix. Intuitively, /lt[i] represents our level of confidence in the disturbance prediction
i steps into the future at time step t, with entry 1 being fully confident and 0 being

not confident at all.

The second example studies a nonlinear control model motivated by Li, Yang, Qu,
Lin, et al.,2023; Qu, Yu, et al., 2021..

Example 5.1.2 (Linear Feedback Control in Nonlinear Systems). Consider a time-
varying nonlinear control problem with dynamics g;(x;, u;) = Ax; + Bu; + 6;(x;, uy)
and costs hy(xq, u;) = q(xs, Q) + q(us, R). Here, the nonlinear residual 6, comes
from linearization and is assumed to be sufficiently small and Lipschitz. Inspired by
Qu, Yu, et al., |2021, we construct an online policy based on the optimal controller
u; = —Kx; for the linear-quadratic regulator LQR(A, B, Q, R). Specifically, we let
7 (xs, 0;) = —K(0;)x; where K is a mapping from © to R™™ such that ||K(9,) - K||

is uniformly bounded.

Policy Class and Performance Metrics

In our setting, the state x; at time ¢ is uniquely determined by the combination of 1) a
state x, at a previous time 7 < t, and 2) the parameter sequence 6..,_1. Similarly, the
cost at time 7 is uniquely determined by x; and 6.,. Since we use these properties

often, we introduce the following notation.

Definition 5.1.1 (Multi-Step Dynamics and Cost). The multi-step dynamics g
between two time steps T < t specifies the state x; as a function of the previous state
xr and previous policy parameters 0,,_1. It is defined recursively, with the base

case gz (x7) = xr and the recursive case

gt+1|T(xTa Or:1) = &t (26,71 (24,601)), VE 2> 7,



196

in which z; = g¢(xs, 9,;,_1). The multi-step cost hy, specifies the cost c; as
function of x; and 0. It is defined as hy(x-,07) = h; (24, 7 (24, 61))

In this paper, we frequently compare the trajectory of our algorithm against the
trajectory that would arise from applying a fixed parameter 6 since time step 0,
which we denote as X;(0) = gso(xo0,0x;) and @;(0) = m;(X;(0),6). A related
concept that is heavily used is the surrogate cost F;, which maps a single policy

parameter to a real number.

Definition 5.1.2 (Surrogate Cost). The surrogate cost function is defined as F;(0) =
hy(%,(0), 4, (6)).

Figure shows the overall causal structure, from which these concepts follow.

To measure the performance of an online algorithm, we adopt the objective of
adaptive policy regret, which has been used by Hazan and Seshadhri (2007)) and
Gradu, Hazan, and Minasyan (2023)). It is a stronger benchmark than the static
policy regret (Agarwal et al., [2019; Chen and Hazan, 2021) and is more suited to
time-varying environments. We use {x;, u;, 6; };c5 to denote the trajectory of the
online algorithm throughout the paper. The adaptive policy regret R4 (T') is defined
as the maximum difference between the cost of the online policy and the cost of the

optimal fixed-parameter policy over any sub-interval of the whole horizon 77, i.e.,

RA(T) = MaXy=[s:1,]CT (Zzel hi(x;, us) — infge@ Disel F(0)) . (5.2)

In contrast, the (static) policy regret defined in Chen and Hazan, 2021} Agarwal
et al., 2019 restricts the time interval I to be the whole horizon 7. Thus, a
bound on adaptive regret is strictly stronger than the same bound on static regret.
Adaptive regret is particularly useful in time-varying environments like Examples

5.1.1]and [5.1.2] because an online algorithm must adapt quickly to compete against

a comparator policy parameter that can change indefinitely with every time interval
(Hazan, [2016, Section 10.2).

In the general case when surrogate costs Fp.7—; are nonconvex, it is difficult (if
not impossible) for online algorithms to achieve meaningful guarantees on classic
regret metrics like R4(T) or static policy regret because they do not have oracle

optimization solvers or even the exact knowledge of the surrogate costs. Therefore,

1, isan auxiliary variable to denote the state at 7 under initial state x, and parameters 6.;.
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we introduce the metric of local regret, which bounds the sum of squared gradient

norms over the whole horizon:
RU(T) = X IVE(0)]. (5.3)

Similar metrics have been adopted by previous works on online nonconvex optimiza-
tion (Hazan, Singh, and Zhang, 2017). Intuitively, RL(T) measures how well the
online agent chases the (changing) stationary point of the surrogate cost sequence
Fo.r—1. Since the surrogate cost functions are changing over time, the bound on
RL(T) will depend on how much the system {g;, f;, 7; },e7 changes over the whole
horizon 7. We defer the details to Section 5.3

5.2 Contractive Perturbation and Stability

In this section, we introduce two key properties needed for our sub-linear regret
guarantees in adaptive online policy selection. We define both with respect to
trajectories generated by “slowly” time-varying parameters, which are easier to

analyze than arbitrary parameter sequences.

Definition 5.2.1. We denote the set of policy parameter sequences with e-constrained

step size by

Se(t1:12) =A{0n, € e~ | [10z41 = 0| < &, YT € [t1: 12— 1]}.

The first property we require is an exponentially decaying, or “contractive,” pertur-
bation property of the closed-loop dynamics of the system with the policy class. We

now formalize this property.

Definition 5.2.2 (e-Time-varying Contractive Perturbation). The e-time-varying
contractive perturbation property holds for Rc > 0,C > 0, p € (0,1), and e > 0
if, forany 01 € Sc(1t:t—1),

||gt|'r(x‘r’ Or:-1) — gt|-r(x;’ Qm_1)|| < Cpt_T”xT - x’T”

holds for arbitrary x.,x, € B,(0, Rc) and time steps T < t.

Intuitively, e-time-varying contractive perturbation requires two trajectories starting
from different states (in a bounded ball) to converge towards each other if they adopt
the same slowly time-varying policy parameter sequence. We call the special case

of € = 0 time-invariant contractive perturbation, meaning the policy parameter
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is fixed. Although it may be difficult to verify the time-varying property directly
since it allows the policy parameters to change, we show in Lemma [5.2.1] that time-
invariant contractive perturbation implies that the time-varying version also holds

for some small £ > 0.

The time-invariant contractive perturbation property is closely related to discrete-
time incremental stability (e.g., Bayer, Biirger, and Allgéwer, 2013) and contraction
theory (e.g., Tsukamoto, Chung, and Slotine, 2021}, which have been studied in
control theory. While some specific policies including DAC and MPC satisty &-
time-varying contractive perturbation globally in linear systems, in other cases it
is hard to verify. Our property is local and thus is easier to establish for broader

applications in nonlinear systems (e.g., Example[5.1.2)).

Besides contractive perturbation, another important property we need is the stability
of the policy class, which requires mo.7_; can stabilize the system starting from the
zero state as long as the policy parameter varies slowly. This property is stated

formally below:

Definition 5.2.3 (e-Time-varying Stability). The e-time-varying stability property
holds for Rs > 0 and € > 0 if, for any 6.,—1 € Sc(t : 1t - 1), ||g,|T(0, HT;,_l)” < Ry
holds for any time stepst > 1.

Intuitively, e-time-varying stability guarantees that the policy class mp.7—1 can
achieve stability if the policy parameters 6g.7—; vary slowlyE] Similarly to con-
tractive perturbation, one only needs to verify time-invariant stability (i.e., € = 0
and the policy parameter is fixed) to claim time-varying stability holds for some
strictly positive £ (see Lemmal[5.2.T)). The reason we still use the time-varying con-
tractive perturbation and stability in our assumptions is that they hold for £ = +co
in some cases, including DAC and MPC with confidence coefficients. Applying
Lemma 5.2.1] for those systems will lead to a small, overly pessimistic &.

Key Assumptions
We make two assumptions about the online policy selection problem to achieve

regret guarantees.

Assumption 5.2.1. The dynamics go.r-1, policies my.r-1, and costs hy.r-1 are

differentiable at every time step and satisfy that, for any convex compact sets

2This property is standard in online control and is satisfied by DAC Agarwal et al., 2019; Hazan,
Kakade, and Singh, 2020; Chen and Hazan, 2021} Simchowitz, Singh, and Hazan, 2020; Gradu,

Hazan, and Minasyan, [2023|as well as Examples[5.I.1|&[5.1.2]
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X CR", U C R™, one can find Lipschitzness/smoothness constants (can depend on

X and U) such that:

1. The dynamics g;(x,u) is (Lgx, Lgu)-Lipschitz and (€, €, ,)-smooth in (x,u)
on X XU.

2. The policy function nt;(x,80) is (Lxx, Lz g)-Lipschitz and (€rx, €y g)-smooth in
(x,60) on X X O.

3. The stage cost function h;(x,u) is (Ly, Ly)-Lipschitz and (£, Chy)-smooth in
(x,u) on X X U.

Assumption is general because we only require the Lipschitzness/smoothness
of g, and h; to hold for bounded states/actions within X and U, where the coefficients
may depend on X and Y. Similar assumptions are common in the literature of online
control/optimization (Lin, Hu, Shi, et al., 2021} Shi et al., [2020; Li, Yang, Qu, Lin,
et al.,2023|).

Our second assumption is on the contractive perturbation and the stability of the

closed-loop dynamics induced by a slowly time-varying policy parameter sequence.

Assumption 5.2.2. Let G denote the set of all possible dynamics/policy sequences
{g:, 71 }1eq the environment/policy class may provide. For a fixed € € Rsq, the
e-time-varying contractive perturbation (Definition holds with (R¢,C, p)
for any sequence in G. The e-time-varying stability (Definition holds with
Rs < Rc¢ for any sequence in G. We assume that the initial state satisfies ||xo|| <
(Rc — Rs)/C. Further, we assume that if {g,n} is the dynamics/policy at an
intermediate time step of a sequence in G, then the time-invariant sequence {g, 7 }xr
is also in QEI

Note that Assumption is on the joint properties of both the dynamical system
and the policy class when composed together in a closed loop. The motivation is to
generalize two key properties of linear systems under typical reasonable controllers:
1) the effect of past decisions on the current state decays exponentially fast, and 2)
if the system is initialized near the origin, it remains near the origin. We generalize
these properties via e-time-varying contractive perturbation (Definition [5.2.2)) and
e-time-varying stability (Definition[5.2.3), respectively. Although Assumption[5.2.2]

3For {g, m}xr to be in G, it must satisfy other assumptions about contractive perturbation and
stability that we impose on G but does not need to occur in real problem instances. We only use
this assumption in the proof of Theorem [5.3.4] and it can be made without the loss of generality for
time-invariant dynamics and policy classes.
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may seem complicated to understand, it is less restrictive than the assumptions in
the most closely related work (e.g., Agarwal et al., 2019; Hazan, Kakade, and Singh,
2020; Gradu, Hazan, and Minasyan, |2023) that focus on linear dynamics.

Compared to other settings where contractive perturbation holds globally (Agarwal
et al., 2019; Simchowitz, Singh, and Hazan, 2020; Zhang, Li, and Li, [2021),
Assumption only requires it to hold locally in a bounded ball B(0, R¢), which
becomes important in nonlinear settings. This brings a new challenge because
we need to guarantee that the starting state stays within B(0, R¢) whenever we
apply this property in the proof. Therefore, in Assumption [5.2.2] we assume
Rc > Rgs + C||xo||. Similarly, to leverage the Lipschitzness/smoothness property,
we require X 2 B(0, R,) where R, > C(Rgs + C||x¢||) + Rs and U = {n(x,0) | x €
X,0 € O, € G}. Since the coeflicients in Assumption depend on X and U,
we will set X = B(0, R,) and R, = C(Rg+ C||xo]|) + Rs by default when presenting
these constants. The goal is to ensure that the controller never leaves the region
where contractive perturbation applies, which is critical for our analysis and again

generalizes properties found in the literature (e.g., Examples[5.1.T]and [5.1.2]).

For some systems, verifying Assumption [5.2.2] is straightforward (e.g., Example
[5.1.I). In other cases, we can rely on the following lemma, which can convert a
time-invariant version of the property to general time-varying one. We defer its
proof to Section[5.A]

Lemma 5.2.1. Suppose Assumption holds for € = 0 and (Rc,C, p, Ry),
which satisfies Rc > (C + 1)Rg. Suppose Assumption also holds and let
X = B(0,Ry), where R, = (C + 1)>Rs. Then, Assumption also holds for
g >0, (Iéc,CA',/S,IéS), and xq that satisfies (Iéc - Iés)/C. Here, Iés,léc,,é are
arbitrary constants that satisfies Rs < Ry < Re < Rc/(C+1)andp < p < 1. The
positive constants € and C are given detailed expressions in Section

Remark 5.2.2. Lemma can also be useful when applied to some parameter-
ized controllers for time-invariant nonlinear systems. For example, the well-known
“computed torque control” feedback linearization controllers for robotic manipu-
lators (see, e.g., Slotine, Li, et al., 1991) renders the closed-loop dynamics expo-
nentially stable about an equilibrium, and the feedback gains can be parameterized.
Thus, it satisfies Assumption in a neighborhood about the equilibrium, via
Lemma Even with time-invariant dynamics, the time-varying costs (such as
tracking a trajectory determined online) provide a setting where selecting the policy

parameters online can be beneficial.
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5.3 Memoryless Gradient-based Adaptive Policy Selection

Memoryless Gradient-Based Adaptive Policy Selection (M-GAPS) is inspired by
the classic online gradient descent (OGD) algorithm (Hazan, 2016; Bansal and
Gupta, 2019), with a novel approach for approximating the gradient of the surrogate
stage cost F;. Itis an improved version of Gradient-Based Adaptive Policy Selection
(GAPS) in (Lin, Preiss, Anand, et al., 2023)) with a better computational complexity.
In the context of online optimization, OGD works as follows. At each time ¢, the
current stage cost describes how good the learner’s current decision 6, is. The learner
updates its decision by taking a gradient step with respect to this cost. Mapping
this intuition to online policy selection, the ideal OGD update rule would be the

following.

Definition 5.3.1 (Ideal OGD Update). At time step t, update 0,11 = [lg(6; —
nVF(6,)).

This is because the surrogate cost F; (Definition [5.1.2)) characterizes how good 6,
is for time ¢ if we had applied 6, from the start, i.e., without the impact of other
historical policy parameters 6y.;—;. However, since the complexity of computing
VF; exactly grows proportionally to ¢, the ideal OGD becomes intractable when the
horizon T is large.

As outlined in Algorithm [6] M-GAPS uses G, to approximate VF;(6,) efficiently.
To see this, we compare the decompositions, with key differences highlighted in

colored text:

! 6h[|0
£ 991

Ly Oh
and Gt:Z 10

VFt(gt) =
X0,(01)x (1+1) b=0 90:-p

5.4)

X0,00:¢

GAPS efficiently approximates VF;(6;). by replacing the ideal sequence (6;)x(+1)
by the actual sequence 6y;. This enables computing gradients along the actual
trajectory experienced by the online policy without re-simulating the trajectory
under 6,. e-time-varying contractive perturbation is the key to bound the bias of G,:
Intuitively, although 6, becomes more different with 8, as T decreases, its impact on
Jfijo decays more quickly (exponentially). We provide a rigorous bound of the bias
in Theorem [5.3.1] and a proof outline in Section [5.B]

Although the expression of G; in (5.4) decomposes it as the sum of ¢ + 1 partial
derivatives, we can compute G, efficiently by maintaining an auxiliary variable

defined as the partial derivative of the current state with respect to all past policy
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Algorithm 6: Memoryless Gradient-based Adaptive Policy Selection (M-GAPS,
for ALG)

Parameters: Learning rate 7, initial parameter 6.

Initialize: Policy parameter 6; Internal state yo = 0.

forr=0,1,..., 7T - 1do

Take inputs x;, g;, 71s, h;, and f;.

d d
Update yiu = 25| .y, 2ot
X150t

derivatives accumulator. */

Ohy);
Let G[ — _axl * YVt + 30,
X0

Update and output 6,1 < [[g (6; —nG;). /* Ilg is the Euclidean
projection to ®. */

/* Update partial

X¢,0;

end

. d . . .
parameters, i.e., y; = ZZ:O aegl "2 . Since we can update y, with the chain rule,
=7 1xq,00:

we provide the time- and space-efficient implementation of M-GAPS in Algorithm

6l

Compared to many previous online control algorithms that take a reduction approach
based on OCO with Memory, our algorithm can be much more computationally
efficient (see Section for an empirical comparison). Specifically, these works
(Agarwal et al., 2019; Hazan, Kakade, and Singh, [2020; Chen and Hazan, 2021)
take a different finite-memory reduction approach toward reducing the online control
problem to OCO with Memory (Anava, Hazan, and Mannor, 2015) by completely
removing the dependence on policy parameters before time step ¢ — B for a fixed
memory length B. In the finite-memory reduction, one must “imaginarily” reset the
state at time ¢ — B to be 0 and then use the B-step truncated multi-step cost function
hy:-g(0, 6;—p.;) in the OGD with Memory algorithm (Agarwal et al., 2019). When
applied to our setting, this is equivalent to replacing G, in (5.4) by

B-1
, 8ht|t—B
Gt - bZO 59t—b |0,(9r)><(3+1) :

However, the estimator G; has limitations compared with G; in M-GAPS. First,

computing G; requires oracle access to the partial derivatives of the dynamics and
cost functions for arbitrary state and actions. Second, even if those are available,
G is less computationally efficient than G, in GAPS, especially when the policy is
expensive to execute. Taking MPC (Example[5.1.1)) as an example, computing G at
every time step requires solving B MPC optimization problems when re-simulating

the system, where B = Q(logT'). In contrast, computing G; in GAPS only requires



203

solving one MPC optimization problem and O(1) matrix multiplications to update

the partial derivatives.

Bounds on Truncation Error

We now present the first part of our main result, which states that the actual stage
cost h;(x;, u;) incurred by GAPS is close to the ideal surrogate cost F;(6;), and the
approximated gradient G, is close to the ideal gradient VF;(6;). In other words,
GAPS mimics the ideal OGD update (Definition [5.3.1).

Theorem 5.3.1. Suppose Assumptions |5.2.1| and |5.2.2| hold. Let {(x;, us, 0;) }req
denote the trajectory of M-GAPS with learning rate n < Q ((1 — p)e). Then, we

have

s s ) = F(8)] = O (1= p)n) and |G, = VE(8)]| = 0 (1= p) ).

where Q(-) and O(-) hide the dependence on the Lipschitz/smoothness constants
defined in Assumption and the constant C in contractive perturbation.

We defer the proof of Theorem [5.3.1]to Section Note that this result does not

require any convexity assumptions on the surrogate cost F;.

Regret Bounds for M-GAPS: Convex Surrogate Cost

The second part of our main result studies the case when the surrogate cost F; is
a convex function. This assumption is explicitly required or satisfied by the policy
classes and dynamical systems in many prior works on online control and online
policy selection (Agarwal et al., 2019; Hazan, Kakade, and Singh, 2020; Zhang, Li,
and Li, 2021; Chen and Hazan, 2021)).

The error bounds in Theorem|[5.3.T| can reduce the problem of GAPS’ regret bound
in control to the problem of OGD’s regret bound in online optimization, where the
following result is well known: When the surrogate cost functions F; are convex,
the ideal OGD update (Definition achieves the regret bound ,T:_Ol F,(6,) —
Mmingeg ZtT:_O] F,(0) = O(NT), when the step size 7 is of the order 1/VT (Hazan,
2016)). By taking the biases on the stage costs and the gradients into consideration,
we derive the adaptive regret bound in Theorem[5.3.2] Besides the adaptive regret,
one can use a similar reduction approach to “transfer” other regret guarantees for
OGD in online optimization to GAPS in control. We include the derivation of a

dynamic regret bound as an example in Section
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Theorem 5.3.2. Under the same assumptions as Theorem if we additionally

assume F; is convex for every time t and diam(®) is bounded by a constant D, then

GAPS achieves adaptive regret
RYT)=0(n"' +(1-p)7nT+(1-p)~'7°T),

where O(+) hides the same constants as in Theorem and D.

We discuss how to choose the learning rate and the regret it achieves in the following

corollary.

Corollary 5.3.3. Under the same assumptions as Theorem suppose the hori-
zon length T > ﬁ. Ifwe setn = (1- p)%T_%, then GAPS achieves adaptive regret

RMT) =0 ((1 —p)—%T%).

We defer the proof of Theorem|[5.3.2]to Section[5.B] Compared to the (static) policy
regret bounds of Agarwal et al. (2019) and Hazan, Kakade, and Singh (2020),
our bound is tighter by a factor of log7. The key observation is that the impact
of a past policy parameter 6,_;, on the current stage cost ¢; decays exponentially
with respect to b (see Section [5.B]|for details). In comparison, the reduction-based
approach first approximates ¢, with ¢; that depends on 6;_p,1.;, and then applies
general OCO with memory results on ¢; (Agarwal et al., 2019; Hazan, Kakade,
and Singh, 2020). General OCO with memory cannot distinguish the different
magnitudes of the contributions that 6,_p,1., make to ¢;, which leads to the regret
gap of B=0(logT).

In the more restrictive setting of linear time-invariant dynamics with the DAC pol-
icy class, the results of a concurrent work (Kumar, Dean, and Kleinberg, [2023)
can also be used to close the log T gap on static regret of online policy selection.
In comparison, Theorem [5.3.2] considers more general time-varying dynamics and
adopts the stronger metric of adaptive regret. As a practical matter, the follow-the-
regularized-leader type of algorithm used by Kumar, Dean, and Kleinberg (2023)
is often (much) less computationally efficient than a gradient-based algorithm like
GAPS. Nevertheless, Kumar, Dean, and Kleinberg (2023) made distinct contribu-
tions by allowing the state space to be a general Banach space and providing a lower

bound for OCO with unbounded memory.
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Regret Bounds for M-GAPS: Nonconvex Surrogate Cost

The third part of our main result studies the case when the surrogate cost F; is
nonconvex. Before presenting the result, we formally define the variation intensity

that measures how much the system changes over the whole horizon.

Definition 5.3.2 (Variation Intensity). Let {g;, 7;, h: }se7 be a sequence of dynam-
ics/policy/cost functions that the environment provides. The variation intensity V of

this sequence is defined as

T-1
Z( sup lgi(x, u) = gr-1(x, )|l + sup |7 (x, ) = 71 (x, O)|
=1 \XeX.uel xeX,0€0

+ sup A (x,u) — b1 (x,u)]|.
xeX,uel
Variation intensity is used as a measure of hardness for changing environments in
the literature of online optimization that often appear in regret upper bounds (see
Mokhtari et al., 2016 for an overview). Definition [5.3.2] generalizes one of the
standard definitions to online policy selection. Using this definition, we present our

main result for GAPS applied to nonconvex surrogate costs using the metric of local
regret (5.3).
Theorem 5.3.4. Under the same assumptions as Theorem if we additionally
assume that ® = R? for some integer d, then M-GAPS satisfies local regret

1+V T ’T

3, ! st ! 13

(I=-p)n (1-p)° (A-p)
where O(-) hides the same constants as in Theorem[5.3.1]

RE(T) =0

We defer the detailed expressions and the proof of Theorem([5.3.4]to Theorem[5.B.13|
in Section Note that the local regret will be sublinear in 7 if the variation
intensity V = o(T). To derive the local regret guarantee in Theorem we
address additional challenges compared to the convex case. First, we derive a local
regret guarantee for OGD in online nonconvex optimization. We cannot directly
apply results from the literature because they do not use ordinary OGD, and it is
difficult to apply algorithms like Follow-the-Perturbed-Leader (e.g., Suggala and
Netrapalli, 2020) to online policy selection due to constraints on information and
step size. Then, to transfer the regret bound from online optimization to online
policy selection, we show how to convert the measure of variation defined on Fy.7—;

to our variation intensity V defined on {g;, 7;, hs }rer
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A limitation of Theorem [5.3.4] is that we need to assume O is a whole Euclidean
space so that GAPS will not converge to a point at the boundary of ® that is not a

stationary point.

5.4 Meta-Framework for Unknown Dynamics

We consider online policy optimization in a discrete-time dynamical system that
varies over time with dynamics x.1 = g(xs, uy, fi(x;, a})) + w,, where x, € R"
denotes the system state, u; € R™ denotes the control input, and g; is the dynamical
function. Here, f;(x;,a’) € R¥is anonlinear residual term of which the online agent
can make (noisy) observations. It has a known function form f; and an unknown
parameter a; € A C RP. The disturbance term w, € W C R" does not depend on

the states or the control inputs.

To control this system, the online agent adopts a time-varying control policy x; that
is parameterized by a policy parameter 6, and depends on its current estimation of
the nonlinear residual. Specifically, the online agent picks the control input from
the policy class u; = 7, (x,, 0;, f;(xs,d;)). Here, function f;(-, d,) reflects the online
agent’s current estimation of the ground true nonlinear residual function f;(-, a;) at
time step ¢. Intuitively, we assume the policy class mr; cares about predicting the
true nonlinear residual f;(x;, a;) rather than the unknown model parameter a;. The
objective of the online agent is to minimize the total cost lT:_Ol ¢; incurred over a

finite horizon, where the stage cost at time step ¢ is given by ¢; = h;(x;, u;, 0;).

We provide a simple nonlinear control example that can be captured by our online
policy optimization framework to help the readers understand the concepts we

discussed.

Example 5.4.1. Consider the problem of controlling a scalar discrete-time nonlin-

ear dynamical system:
Xee1 = X+ A (ug + fi(x,a)) +wy) , where fi(x,a;) = ¢(x;) - aj. (5.5)

In this equation, A is the discretization step size. The nonlinear residual takes the
form ¢(x;)-a’, where ¢ : R — R¥ is a (nonlinear) feature map and a; is the unknown
model parameter. To control this system, the online agent with an estimated model

parameter d, can adopt the policy class:
Ur = —k[xt — ﬁ(.xt, d;), where f,(x,, d;) = ¢(Xt) . d\[, and kl = 9[. (56)

Here, the goal of the second term — f;(x;,d;) is to cancel out the true nonlinear

residual f;(x;,a;). In an ideal case where the online agent has access to the true
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Figure 5.2: The meta-framework. Figure 5.3: Theoretical comparand:
ALG" with perturbations.

model parameter a;, policy (5.6) achieves the effect of removing the nonlinear
residual and directly doing feedback control, resulting in the closed-loop dynamics
Xeel = Xt + A (—kxp + wy) . In this case, the problem reduces to finding the optimal

policy parameters (gains) {6} in a known time-varying dynamical system.

Performance Metrics

Although local regret is useful for measuring the performance of an online policy
optimization algorithm under nonconvex surrogate costs, a limitation of applying it
alone to our setting with unknown dynamical models is that the surrogate cost F;
is defined in terms of ALG’s behavior with known true dynamics. To address this
limitation, in addition to bounding the local regret of the policy parameters 6¢.7—1,
we also bound the distance between the actual trajectory of the online agent and

the trajectory it would achieve with the same policy parameters 6o.r—; and exact

*

knowledge of true model parameters a, ,._;-

Main Results

Our approach is outlined in Algorithm [/, where two modules ALG and EST work
together to update the policy and estimated model parameter at each time step (see
Figure for an illustration). ALG and EST are responsible for optimizing the
policy parameters 6o.7—; and learning the unknown model parameters a;,,._, of the

nonlinear residual terms, respectively:

* ALG: At time step ¢, ALG receives the current state x;, policy parameter 6;, and the
known part of the time-varying system m;, g;, h;, f;. It also receives the current
estimation d; of the unknown model parameter a;. Then, ALG outputs the new
policy parameter 6,,;. Note that we allow ALG to leverage/memorize history by

maintaining an internal state y;.
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» EST: At time step ¢, EST receives the current state x; and a (noisy) observation
f; of the unknown component f;(x;, a;). Then, EST outputs the new estimation
ds+1. Like ALG, we allow EST to keep internal state/memory (e.g., to memorize

historical input data). We require EST to minimize the trajectory-dependent model

mismatches:
Zeroth-order model mismatch: &,(x;,d;, a;) = ||f,(x,,ci,) - fi(x, a))|, (5.7a)
First-order model mismatch: &}(x;,d;, a;) = ||fo,(x,, a;) =V, fi(x;, a;")”F.
(5.7b)

We adopt the shorthand &; = &;(x;, d;, a;) and &; = &;(x;, d;, a;) when the context

is clear.

Algorithm 7: Meta-Framework

Require: ALG and EST

Require: Knowing functions {x;, g;, h;, f;} at each time step ¢

Initialize: State xo; Policy parameter 6y; Model parameter estimation dy.

fortr=0,1,...,T - 1do

Decide control input u, = m;(x;, 6;, f;(xs, dy)).

Incur stage cost A (x;, uy, 0;).

0;+1 < ALG.update(x;, 0;, 7wy, g, hy, fi,d;). /* ALG can have internal
memory. */

System evolves to x;41 = g;(xs, us, fi(xs,a;)) +wy.

Receive a (noisy) observation f; of f;(x;, a’).

441 « EST.update(x;, f;,d,). /* EST can have internal memory.

/

end

The key idea in analyzing our meta-framework (Algorithm|[7)) is to characterize how
the inexact model estimations generated by EST affect the behavior ALG. We start
by considering the “ideal” dynamics of applying ALG with exact model parameters
ay.r_;» which we denote as ALG", and compare them with the actual dynamics of
ALG that performs the update with estimated model parameters do.7—;. We state
the key insight of our analysis in the informal lemma below, which connects the

performance of the meta-framework with ALG* and the model mismatches.

Lemma 5.4.2 (Informal). Suppose ALG" satisfies the desired properties in the next
subsection. Then, the meta-framework (Algorithm [/) generates the same policy
parameters as ALG" with perturbation {; on the update of 0,.1 (see Figure .
Further, ZtT:_Ol I:]] = O ( tT:_Ol &+ ZtT:_Ol 8;)
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The formal statement of Lemma[5.4.2] can be found in Theorem

The rest of this section is organized as following: First, we specify the properties of
ALG" that enables the meta-framework to be robust against inexact model parameters
in the policy parameter update. Then, we formulate EST’s task of learning f; (x;, ay)
as an online optimization problem, where we view the state x; as picked by an
adaptive adversary. We also discuss how this problem reduces to existing results on

online optimization.

Online Policy Optimization

In this section, we take a perspective that views the updates performed by ALG as part
of a joint dynamics formed together with the original dynamical system. Compared
to the common approach of analyzing ALG separately from the dynamical system
to which it applies, our dynamical view enables us to compare the differences
of applying ALG under different external inputs (i.e., different d; estimates) more

efficiently.

We consider the class of online policy optimization algorithms whose joint dynamics
with the original system can be written in the following form: When the model
parameter a, is given as the input to ALG at time step ¢, the joint dynamics can be

written as

Xr+1 Qf(xt’)’t’ 0:,a;)
Vel | = @i (X0, y1, 61, a0) = qty(xt,)’t, O, a;) |, forx; eR", y; € R, 6, €O C R,
0141 q?(x,,y,,@,,a,)

(5.8)

Here, y;, € R? is an auxiliary state that ALG can use to store something besides
the system state x; and the policy parameter 6, to help it perform the update. For
example, y; can be a finite memory buffer that stores information from the past. It
can also be the integral of past states in an integral controller. Thus, we introduce
y; to allow broader classes of online policy optimization algorithms, and a concrete

example of y; is the auxiliary state in M-GAPS.

The goal of formulating joint dynamics (5.8) is to compare the behaviors of the meta-
framework and ALG" with perturbations on policy parameter updates. Specifically,
recall that do.7—; denote the estimated model parameters of EST. The actual trajectory

of the meta-framework is

Meta-framework: (x;+1, yr+1, 9t+1)T = q¢(xt, 1,01, 4y). (5.9
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We compare it with the joint dynamics of ALG* (see Figure [5.3)). Recall that ALG*

denotes the scenario when ALG has access to exact model parameters a

*

0:7-1°
ALG" with perturbations: (x;+1, Yr+1,6r+1) " = qr (X1, ¥1, 65, a7) + (0,0, ) "
(5.10)

Here, {; is an additive perturbation on the update equation of policy parameter ;..
To understand (5.10)) intuitively, it is helpful to draw connections with the process
of using a gradient-based optimizer to update the parameter 6, in ML, where {; = 0
corresponds to the case when exact gradients are available. In contrast, nonzero
perturbations correspond to the more practical case when the optimizer can only use

biased estimations of the gradient, which still performs well in general.

Note that the estimated model parameters do.7—; generated by EST may also depend
on the state x; and other parts of the dynamical system. Thus, a natural question is
whether we should also incorporate the update rule of EST into the joint dynamical
system in (3.9), where we include d, as another element of the joint state. However,
we still choose to model @, as an external input in (5.9) and handle the update of
a, separately. This is because our approach requires comparing the actual joint
dynamics with (5.10). Since a; is an external input decided by the environment in
(5.10), keeping the joint state space identical in (5.9) makes the comparison easier.
Further, a strength of our proof framework based on the joint dynamics is that we
can show the actual trajectory (5.9) will stay close to (5.10). However, we know that
the estimated model parameter sequence {d,} will not converge to the true sequence
{a;} in general.

We state three important properties of the joint dynamics induced by ALG. The first

property is about the Lipschitzness with respect to the model mismatches &, and &;.

Property 5.4.1. [Lipschitzness] For any x;, y;, 6;, 4, that satisfies ||x;|| < Ry, ||y]| <
R,,0; € ©,d; € A, the following Lipschitzness conditions hold:

||qf(xl’ )’t, 91" a::) - Qf(-x[, )’t’ 9[? aAl‘)” < a’xgt(xt» aAl‘s a;k) +,8x3;(xt’ aAl" Cl::),
||Qi7(xl" Yt gl" a;‘k) - ql%)(-xl, Yt Hl’ dl)” < aygl(xl, él\l? a;‘k) +:8y3;(xt7 dl’ Cl?),
||Q?(xt, Vi, 0s, af) - Q?(xz, Vi, 01, &z)” < ape (x4, dy, a;k) + ﬁeSQ(Xz, as, Clt*)-
Further, qf(x, y,0,a;) is (Lo, Ly y)-Lipschitz in (x, y).
Intuitively, Property[5.4.1]says that the error brought by the inexact model parameters

only “distort” the ideal joint dynamics (5.10) in the form of zeroth-order and first-

order prediction errors. Therefore, to bound the error injected into the joint dynamics
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at every step, EST only needs to minimize & and &; on the actual state trajectory
xo.;7—1 that the online agent visits. Note that this property can be viewed as a
standard assumption about Lipschitzness if ALG is a gradient-based algorithm. This
is because all terms that involve the unknown model parameter will take the form

fi(xs,d;) and V, f;(x;, ;) in the joint dynamics.

The second property is about contraction stability of x; and y; under exact model
parameters d;;_,. As we show in Theorem 5.4.3] this property guarantees that the
dynamical updates of states x; and y, in the joint dynamics are robust to the model

mismatches {&;, & }o.7-1.

Property 5.4.2. [Contraction Stability] For any sequence 6y.r—1 that satisfies the
slowly time-varying constraint that ||0, — 6,_1|| < €g for all time step t, the partial

dynamical system

X+l = (]?(xz, Vi, 04, a;k), Vi+l = C]Zv(xt, Vi, 04, a:) (5.11)

satisfies that ||x|| < Ry < Ry and ||y/|| < R} < Ry always hold if the system starts
from (x;,y;) = (0,0). Further, for some function y : Zso — Rsq that satisfies
2| < Ry

Yoo ¥ (t) < C, from any initial states (X, y+), (x, y7) that satisfy ||x-||,
and ||y-|l, ||y4|| < Ry, the trajectory satisfies ||(xrars Yerr) = (Xppps Yerr)|| < ¥(2) -
||(x‘r’ yo) = (X7, y,r)”

Note that Property is different with the contraction assumption of Lin, Preiss,
Anand, et al. (2023) because it also considers the internal state y; of ALG besides
the system state x,. The requirement that 3. y(¢) < C is also weaker than the

exponential decay rate in Lin, Preiss, Anand, et al. (2023)).

Intuitively, Property guarantees that when the exact model parameters {a;}
are replaced by inexact {d,}, the resulting trajectory {(x;, y;)} still stays close to
the trajectory that 8yp.7—; would achieve under exact predictions once the mismatch
errors &;, &; are small or bounded. Property can be viewed as an extension
of the time-varying stability and contractive perturbation property in Lin, Preiss,
Anand, et al., 2023| to include state y, maintained by ALG. This is required in our
framework because y; can be affected by the prediction errors and it is involved in

the dynamics of updating 6;.

The third property we need is the robustness of the update rule of the policy parameter
;. Specifically, it requires the regret guarantee achieved by ALG to be robust against

a certain level of adversarial disturbances {{;} on the update dynamics of 6;.
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Property 5.4.3. [Robustness] Consider the joint dynamics in (5.10). When ||;|| <
{ holds for all t, the resulting {6} satisfies the slowly-time-varying constraint
10, — 6;,-11| < €p for all time t. Further, ALG* with perturbations (5.10) can achieve
a regret guarantee R(T, ZtT:_ol ||Z:|]) that depends on the total magnitude of the

perturbation sequence {y.T-1.

To understand Property [5.4.3] we can think about online gradient descent (OGD)
in online optimization problems without state or dynamics. It is known that this
approach is robust to (biased) disturbances on the gradient estimation, and the total

amount of added disturbances will affect the final regret bound (see, for example,

Theorem [5.B.10).

Now, we present our main results about the stability of applying ALG with inexact
model parameters and the regret bound in Theorem[5.4.3] Besides, Theorem [5.4.3|
also bounds the distances between the actual trajectory and the trajectory achieved
by applying the same policy parameter sequence with the exact model parameter

sequence.

Theorem 5.4.3. Suppose Properties|5.4.1}15.4.2| and|5.4.3\hold. Let & = {x;, y;, 6}
be the trajectory of the meta-framework (Algorithm [7). If the prediction errors

{&1, &1 }o.7—1 are uniformly bounded such that the following inequalities hold for all
time step t: age; + By, < /2, and

Y4 min{R, — R}, R, — R;}}

(ax + ))& + (Br + By)e; < min {4(L6,x +Lg,y)C’ ¢

then the trajectory ¢ satisfies ||x;|| < Ry, ||yl < Ry, and ||6; — 6,_1|| < € for all

time steps t. Further, define & = {%;, ¥:,0;Yo-7—1, where {%, ¥;}o.r—1 are obtained

*

0:7-1’
i.e., the trajectory of partial joint dynamics (5.11). The trajectory & achieves the

regret R(T, th_Ol [Z¢]]) with th_Ol ¢ || upper bounded by

by implementing the policy parameters 0o.r_1 with exact model parameters a

T-1

(ag + \/EC(LG,X + Lgy)(ax + ay)) Z &

=

N o

+ (,6’9 + \/EC(LQ’X +Lgy)(Bx + ,By)) &;.

t

Il
o

The total distances between the states on the trajectories & and & satisfies that

T-1 T-1
(ax + a’y) Z &+ (Bx +ﬁy) Z 5;) .
=0 t=0

T
Dl y) = G0l < €
t=1
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We defer the proof of Theorem|[5.4.3|to Section[5.E] Intuitively, Theorem[5.4.3]states

that when the prediction error terms {&;, €;}o.7—1 are uniformly bounded, the actual
trajectory & of applying ALG with inexact model parameters dg.7—; will be uniformly

bounded. Further, if the actual parameter sequence of 6.7 is applied with exact

*

0:7-1°
depends on the magnitudes of the prediction errors. It is worth noticing that the

regret in Theorem can be any regret that depends on the trajectory £. And as

model parameters a the resulting trajectory £ achieves a regret guarantee that

we discussed before, we evaluate the regret on trajectory £ rather than & because the
metrics like the local regret are designed for evaluating the actual policy parameters
0o.7—1 rather than the whole trajectory £. The distances between & and £ are bounded
in the last inequality in Theorem [5.4.3]

To show Theorem the key idea is to fit the trajectory & into the dynamical
equation (5.10]), where we design {; to compensate the difference between the update
rules q;(%;, §;, 6;, a;) and q;(x;, y;, 6, d;). To leverage Property we show the
perturbations /o.7_; we constructed are uniformly bounded by /. We bound /; and
the distances between & and & by induction. The induction is important because
the magnitude of {; depends on the distance between {x;, y; }o.7—1 and {X;, J; }o.7-1
in the past time steps. On the other hand, to bound the distance between {x;, y;}
and {%;, ¥;}, we need to leverage the contraction property in Property which
relies on ||£;]| < £ so that fg.r_; is slowly time-varying. Lastly, we conclude the
proof with the bounds on the distance between & and £ as well as the norm of /; that

depend on the model mismatches {&;, &/ }o.7—1.

Online Parameter Estimation

The second part of our meta framework focuses on predicting the unknown model pa-
rameter based on possibly noisy observations of the true nonlinear residual f; (x;, a;).
A critical difference with prior works on system identification or model-based learn-
ing (e.g., Dean et al., 2020) is that we only seek to optimize the zeroth-order and
first-order model mismatches {&;, £;} (defined in (5.7)) on the actual trajectory that
the online agent experiences. It is worth noticing that, although learning the ground-
truth model parameter a; is impossible for a general nonlinear residual, minimizing
the sum of zeroth-order model mismatches incurred on the actual trajectory can be

formulated as a classic online regression problem, which we discuss below:

Online regression problem: Atthe beginning, the environment commits a sequence

of error functions ¢; : R" X A — R,t = 0,...,T — 1, which are defined as
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ei(x,a) = fi(x,a;) — fi(x,a) fort =0,...,T - 1. E| The relationship between

the error function e, and the model mismatches {&, e/} is & = ||e;(x;, d;)||, and
&) = ||Vyes(xs,dy)||. At each time step ¢, the online parameter estimator EST predicts
d; = EST(xgy-1,d0os—1) € A, which means the estimation d; can be a general
function of the historical states and estimations. Then, the environment reveals
x; € B, (0, Ry) that can depend on the history xo.,—; and dg.;—;. We define the stage
loss of EST as &, = ||e;(x;, d,)||>, which is equal to the squared ¢;-norm of the model

mismatch e, (x;, d;).

Under different sets of assumptions on the error functions and the sequence of true
model parameters {a;}, existing online algorithms can achieve regret guarantees.
We consider a general form of expected regret bound: E [Zthl ft] < Rg(T), where
the expectation is taken over the randomness of implementing EST and generating
x;. While different assumptions and designs of EST can achieve different bounds
on RS(T), we will provide an example later where a simple gradient estimator can
achieve sublinear Rg( T') under certain assumptions about the nonlinear residual and
the path length ZZT:_II

* *
at+1 a;

While most prior works focus on minimizing the magnitude of the zeroth-order
model mismatch e;(x;, d;), we also need to bound the first-order model mismatch
V.e;(x;,d;) because it contributes to the regret bound in Theorem (recall
that ||Vye;(xs,d;)||p = &;). Our main result in this section is about an automatic
reduction from the regret bound RS(T) to a bound on the expected sum of the

squared gradients E | L 1IVrer(xs, d,)ll%] .

Remark 5.4.4. Besides the online policy optimization problem for control, the regret
bound that concerns ||Vye;(x;, d;)|| can be of independent interest for the problem
of online regression, because it characterizes how sensitive the regression loss is to
any perturbations on the input sequence xo.7—1 under the same estimations do.7—1.
Intuitively, if gradients of the error functions are small, the estimations do.7—1 will

be robust to small perturbations on the input sequence.

To enable a reduction from the regret bound Rg(T) to the gradient error bound,
we employ Property [5.4.4] about the dynamical system that generates the state x;.
Specifically, we require there to be at least a small level of randomness when

choosing x;. Recall that d;;; is decided based on the history xo., and do.;. We

4Thus, the error functions eg.7—; will not adapt to the inputs and online decisions.
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define the filtrations ¥; = o (x14,d1,) and 7, = 0 (X14,d1:441), Which satisfy

F CF/ C Fia.

Property 5.4.4. There is a certain level of random disturbances when generating
each state x;, i.e., for some € > 0 and o > 0, one can find a o-algebra G; such that
F € G € Fr1 and ||xp41 — E[x41 | Gill <€ Cov(xpr | Gi) = ol

Intuitively, the randomness enforced by Property will “force” EST to also
minimize the gradient of the error functions. To see this, suppose an input state x;
is given by X; + v;, where X; is the mean and v; is a random disturbance. When the
disturbance v, is sufficiently small, we know that e, (x;, d;) = e;(X;, 4;)+Vye; (X, 4;)-
v; by Taylor’s expansion. Since we can pick v, randomly in different directions,
we know the zeroth-order loss E[e;(x;,d;)?] cannot converge to zero unless the
magnitude of the gradient V.e,(X;, d,;) converges to zero. We follow this intuition

to show the reduction from the regret bound Rg(T) to the total gradient error in
Theorem 15.4.5]

Theorem 5.4.5. Suppose that for all time t, each dimension i € [k] of the error

function satisfies

IVye:(x,a)|l < Be, and ||V§et(x, a),-” < Ye, forany x € B(0,R,) and a € A.

Suppose Property 5.4.4| holds with € < min{%, i, 4/3#} and o > 0. If EST

achieves the zeroth-order regret E [Zszl f,] < Rg(T) < €T, the expected total

squared gradient loss satisfies that

E

=1

T
2k

> 11Veei(xr, a»n%l < (147 + Beye) ET + 2kyeT.
g

Recall that k is the dimension of the unknown component f;(x;, a;). We defer the
proof of Theorem [5.4.5|to Section [S.E| We provide the following corollary to help
the readers understand this result in a special case when RS(T) is O(NT). For

example, a gradient estimator can achieve this regret bound if ¢; is convex in a.

Corollary 5.4.6. Under the same assumptions as Theorem if EST achieves
Rg(T) = O(NT) and Property holds with € = 0(T'/%) and o = Q(&?), then
the expected total squared gradient loss is bounded by E [Zszl Ve, (x;, ay) ||%] =
O (kT5/9).
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In summary, with the help of Theorem[5.4.5] we reduce the problem of bounding the
total squared first-order prediction errors Zsz_Ol (£])? to the standard online optimiza-
tion problem. By substituting the bounds on £o.7—; and 8{”_1 into Theorem
one can derive the local regret bound for the actual joint dynamics and bound the

distance between trajectories & and £.

Application: Matched Disturbance

In this section, we consider an instantiation of our setting to demonstrate the ef-
fectiveness of our meta-framework. Specifically, we study the matched-disturbance
dynamics (Ferguson et al., [2020; Sinha et al., [2022; Garofalo, Ott, and Albu-
Schiffer, 2012), where the controller can choose a control input to “cancel out” the
nonlinear residual term f;(x;, a;) when the exact model parameter a; is available.

The dynamics have the form

Xer1 = 81 (Xy, g, fi (X, aj)) +wr = ¢ (X, up + fi(xy, a;ﬁ)) + Wy (5.12)

A ubiquitous application of the matched disturbance dynamics is the general joint-
space dynamics of robotic manipulators (Siciliano et al., 2008) when the system
has actuators for every joint. The matched-disturbance structure also appears in
tilted-rotor rotorcraft (Rajappa et al., 2015; Zheng et al., 2020), which can move in
six degrees of freedom. In both cases, due to the second-order structure of the rigid-
body dynamics, all external disturbances are equivalent to additional joint torque
(resp. rotor tilt/thrust) inputs. Our Example [5.4.1] also fits into the framework of
(5.12). To control a matched-disturbance system, a natural policy class is to first
cancel out the nonlinear residual with —f;(x;, d;) and then apply an actuation term

W (x;, 8;) to achieve the optimal costs. This policy class can be expressed as

uy = 1 (xg, 01, fr(x1,4r)) = = fr (X1, 4¢) + (1, 01). (5.13)

To derive local regret for the meta-framework, we need assumptions (Assumptions
.D.4) on the system that includes the dynamics, policy classes, and costs,
which we discuss in detail in Section Note that the matched-disturbance dy-
namics/policy class we consider can recover the setting (Lin, Preiss, Anand, et al.,
2023) as a special case when f; and w; are always zero (so there is no need to
estimate a;). We recover the same regret bound as Lin, Preiss, Anand, et al., 2023
in that special case (see Lemma/[5.4.7).

Online Policy Optimization. M-GAPS can serves as ALG in our meta-framework.
M-GAPS use 4, to estimate how the current state x; and policy parameter 6, would

affect the next state x;, and the current cost. The estimations are characterized by
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§t+l|t(xt» 0:) = g1 (xs, (X1, 04, f1 (X4, 41)), fi (x4, 4s)), and (5.14a)
ilt|t(xt» 0:) = hy (x¢, 70 (x4, 6y, fi(x1,41)) 5 6;) (5.14b)

Although M-GAPS can be applied to any online policy optimization problems that fit
into the setting of Section[5.4]in general, we focus on its application to disturbance-
matched dynamics and policy class for theoretical analysis. We verify that the joint
dynamics of M-GAPS satisfy the required properties of our meta-framework to

derive a concrete regret bound in Section [5.E]

Algorithm 8: Memoryless Gradient-based Adaptive Policy Selection (M-GAPS,

for ALG)

Parameters: Learning rate n, initial parameter 6.

Initialize: Policy parameter 6; Internal state yo = 0.

fort=0,1,...,T—1do

Take inputs x;, g;, 7s, hy, f; and d;. /% Inputs given when
meta-framework calls ALG.update. */

Use 4, to obtain g.,1|; and fz,|,.

agt+l\t a§z+1|t
Update y;41 « “ox, et —5g,

/* Update partial

x¢,0; Xt,0;

derivatives accumulator. */

ah oh
Let Gl — dL t dL .
o Yt g, -

Update and output 6,11 < [lg (6; —nG;). /* Ilg is the Euclidean
projection to ®. */

end

Akey step of our proof shows that, when exact model parameters a,.,._, are available,

M-GAPS is robust against perturbations on policy parameter updates as required by

Property [5.4.3]
Lemma 5.4.7. Under Assumptions and Property holds whenn <1

for some positive constant 17 and

T-1
RE(T, Y N4l =0
t=0

-1
1 1
5(1 + Vi + Vi) + T +1°T + ; Z ||§t||) ;

=1

where the variation intensities are defined as V,, = ZZT:_II llw; — w,_1|| and

T-1
Vas= o ( sup llgx,u) = i (eall+ sup Il (x,0) = 1 (x, )]
=1 xeXueU xeX,0€0

+ sup |h,(x,u,9)—ht_l(x,u,0)|).
xeX,ueU,0e®
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The formal statement and proof of Lemma|5.4.7|can be found in Section [5.E] Note
that in the special case of Lin, Preiss, Anand, et al.,[2023, we have ® = R4, V,, =0,
and tT:_ll ;|| = 0. The local regret bound R,?(T, 0) of M-GAPS given by Lemma
[5.4.7| matches the local regret bound of GAPS in Lin, Preiss, Anand, et al., 2023

because the projected gradients are identical with the gradients when ® = R¢.

Online Parameter Estimation. In the application of matched-disturbance dynamics,
we assume the online parameter estimator EST can make a noisy observation f; of
the true nonlinear residual f;(x;, a;) after it decides d; at each time step ¢. Recall
that the prediction error function is defined as e;(x,a) = fi(x,a) — fi(x,a;) and
the true prediction loss at time step 7 as ; = ||le;(x;, d;)||*. We instantiate EST with
the gradient estimator (Algorithm |§[) where f, is a (noisy) observation of f;(x;, ay)
provided by the environment. It performs online gradient descent on an estimated

prediction loss function constructed from f;.

Algorithm 9: Gradient Estimator (for EST)
Parameters: Learning rate ¢; Initialize: Model parameter estimation do.
fortr=0,1,...,T—1do
Take inputs x; and f;. /* Inputs given when meta-framework
calls EST.update. */

Incur loss & (x;, dy, fi) = | fi(xs, dr) — fill*.
Update and output d;11 < [[ 4 (d, — - 0t /day|

xtﬁz,fz :

end

Using Theorems [5.4.3] and [5.4.5] we show a local regret guarantee of our meta-
framework in Theorem[5.4.8]and test it numerically in the setting of Example[5.4.1]
Due to space limit, we defer the proof of Theorem [5.4.8]and the simulation results
to Section 5.El

Theorem 5.4.8. Under Assumptions if we use M-GAPS for ALG and
Gradient Estimator for EST, the trajectory & = {x;, y;, 0;} achieves an expected local
regretE] of

0 (77_1(1 +Viys+€-T)+nT + (Vmé + mé) -T),

where Vs is the total variation of the system and € is the magnitude of the random
disturbance w, (see Section 5.E|for detailed definitions). Under the same definition
of € as Theorem the expected total distance between & and & is bounded by

SWe change the gradient VF, (6;) to the projected gradient V,, o F;(6;) (see Definition in
Section [5.E)) in the local regret. This metric is introduced by Hazan, Singh, and Zhang, [2017| for
online nonconvex optimization with constraints.
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T-1
B (=%l + [y = 5
t=0

:0(T3/4+\/m€-T).

5.5 Application: Using Predictions Adaptively

Our example about Model Predictive Control (MPC) with Confidence Coeflicients
generalizes the A-confident policy proposed by Li, Yang, Qu, Shi, et al. (2022). In
this setting, some policy parameter #(°) € ® can achieve near-optimal performance
when the predictions of the future are accurate (consistency), and another policy
parameter ) € @ has a worst-case guarantee even when the predictions are
unreliable (robustness). Minimizing regret in this setting implies that the online

policy is both robust and consistent.

Recall that in this example, MPC selects the current control action by solving the

optimization problem

t+k—1

arg min Z f'r(xﬂt’ uT|t) + Q(xt+k|t’ Q)

Urtvk-1t  7=¢

S. t. thl = Xz, (5.15)

- [7—1] .
.XT+1|[ - A-[-x7-|[ + BTMT|[ +/1t WTll 17 < t+k,

where 0; = (/lt[o],/lt[l], ... ,/lt[k_”), ® C [0,1]%. Thus, © is a convex compact set
with diameter Vk.

For this example to satisfy Assumptions [5.2.1] and [5.2.2] we make two standard
assumptions that are also required by prior works on online control with MPC (Lin,
Hu, Shi, et al., 2021} Lin, Hu, Qu, et al., 2022). The first assumption is about the

uniform bounds on the dynamical matrices, cost function matrices, and disturbances.

Assumption 5.5.1. For any time step t € T, we have ||A;|| < a, ||B;|| < b, ||w/]| <
w, and
uly 2 Qp 2 €y, uly < Ry 2 €Ly, ul, < 0 < L,

We also assume that ||wT|t|| < w for predicted disturbances.

The second assumption is about the uniform controllability of the LTV system:

Assumption 5.5.2. We define the transition matrix in this LTV system as

Atg—l"'Alla l:ft2>tl9
(12, 11) =

1, otherwise.
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For any two time steps t' > t, we define the controllability matrix in this LTV system

as following:
By =[O, t+1)B;, ®(t',t +2)Bsyy, ..., 0, t')By] .

We assume that there exists a positive integer do such that the smallest singular
value of the matrix B, is uniformly lower bounded by some positive constant o
when t' > t + dy, i.e., Omin (E,,ﬂ) > o holds for any t' > t + dy, where omin(-)

denotes the smallest singular value of a matrix.

Before we proceed to show that Assumptions [5.2.1]and [5.2.2] hold in this example,
we first define an auxiliary parameterized optimal problem control problem that will

be used in our analysis: For any two time steps ¢ < t’, let t//f' (y¢, Ve Py) denote
the optimal trajectory planned according to initial state y;, disturbances v, and
terminal cost matrix Py, 1.e.,

-1
1
t . _ : T
/s (Y, Ve Py) = argmin Z fr (xr,uz) + Ex;/ Pyxy
Xet/ U (1 -1) 1=t

St Xry1 = Agxr + Brug +v V1 € [t —1];
Xt = Yt-
Using this notation, we can express MPC with confidence coeflicients as

(x4, 0;) = ¢§+k (x1, {/lt[T_t]WTlt}Te[t:Hk—l] > Q)u,,

where the index u; denotes the corresponding entry in the predictive optimal solution.
The perturbation bound in Lin, Hu, Shi, et al., 2021, Theorem 3.3 states that for any

t/
o5 e =yill+ pg'j'”vj‘ - ) ;
=

(5.16)

T € [t,¢'], we have

<Gy

'701{ (yt, Vit Q)MT - lﬁf (y;, V;;[/; Q)MT

where Cy > 0,p9 € (0, 1) are constants that depends on the system parameters
including a, b, 1, ¢, o, and dp. And the inequality (5.16) still holds if we replace the
index u, on the left hand side by x;. Therefore, we know that l//f”‘ (Ve Vesraks Q~)u,
is bounded Lipschitz in y, and v;.;+x. Note that 7;(x;, 6;) is an affine function in its
inputs (x;, 8,), i.e., ALG;(x;, ;) can be expressed equivalently as

t+k—1
ALG(x,, 0;) = =K Vx, = > AR Dy, (5.17)

7=t
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where the matrices Kt(k), IZt(k’T) only depends on {(A;, B;, O, R;) }:e7 and O (Zhang,
Li, and Li, 2021} Yuetal.,[2020). The superscript k denotes the prediction horizon of
the MPC we adopt, thus k = 7" will give MPC future predictions all the way to the end
of the online policy selection game. So the smoothness constants £y = €79 = 0.
Thus, we see that Assumption [5.2.1 holds. We also see that the surrogate cost

function F; is convex.

Next, we show a lemma about contractive perturbation and stability. We defer the
proof of Lemma [5.5.1]to Section

Lemma 5.5.1. Suppose Assumptions[5.5.1| and[5.5.2| hold. Recall that Cy and p
are given in (5.16). Then, for any p € (po, 1), if the prediction horizon satisfies

k= 3 log (Clabpol (p - po)) log(1/po)

the MPC with confidence coefficients policy class satisfies e-time-varying contrac-

tive perturbation with € = +co, Rc = +o00, C = Cy and decay factor p. It also
Co(1-po+Co)W

satisfies e-time-varying stability with € = +co and Rg = =po) (1=p) "

—— GAPS (ours)
o4t W A-confident

m—— (i becomes accurate

confidence A
(=] —
o o
cost
= (=2}

3

=3

.

0.0 - 1 T T 1 0 u T T —
0 100 200 300 400 0 100 200 300 400
time time

Figure 5.4: Comparing GAPS and baseline (Li, Yang, Qu, Shi, et al., 2022) for
online adaptation of a confidence parameter for MPC with disturbance predictions.
Left: Confidence parameter. Right: Per-step cost. Shaded bands show 10%-90%
quantile range over randomized disturbance properties. See body for details.

MPC confidence parameter. We compare GAPS to the follow-the-leader-type
method of Li, Yang, Qu, Shi, et al. (2022) for tuning a scalar confidence parameter
in model-predictive control with noisy disturbance predictions. The setting is close
to Example[5.1.T|but restricted to satisfy the conditions of the theoretical guarantees
in Li, Yang, Qu, Shi, et al. (2022). We consider the scalar system x;41 = 2x; +u; +w;
under non-stochastic disturbances w, with the cost f;(x;, u;) = xt2 + utz. Fort=0to
100, the predictions of w; are corrupted by a large amount of noise. Afterz > 100,
the prediction noise is instantly reduced by a factor of 100. In this setup, an ideal
algorithm should learn to decrease confidence level at first to account for the noise,

but then increase to 4 ~ 1 when the predictions become accurate.
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Figure[5.4]shows the values of the confidence parameter A and the per-timestep cost
generated by each algorithm. Both methods are initialized to 4 = 1. The method
of Li, Yang, Qu, Shi, et al. (2022) rapidly adjusts to an appropriate confidence level
at first, while GAPS adjusts more slowly but eventually reaches the same value.
However, when the accuracy changes, GAPS adapts more quickly and obtains lower
costs towards the end of the simulation. In other words, we see that GAPS behaves
essentially like an instance of Ideal OGD with constant step size, which is consistent
with our theoretical results (Theorem [5.3.1)).

Recover the optimal policy under the stochastic prediction model. Consider a

policy class that performs linear-feedback on the past predictions:

m
u; = —Kx; + Z M,(T) -vi—(6),
=0

where the matrix MI(T) € R is the policy parameter. To find the optimal policy
parameter MY for a predictor v,(#), we can adopt M-GAPS to tune M,. By the
results of Lin, Preiss, Anand, et al., 2023} the averaged cost incurred by M-GAPS
will converge towards the optimal average cost (up to an error of O(7), where 7 is
the learning rate). Thus, an alternative approach to compare two predictors is to run

a policy optimizer directly and compare the average cost.

In Figures[5.5]and[5.6] we plot the effect of applying M-GAPS to Example[.3.2|with
o = 0.5 and the predictions V; (/). We see that M-GAPS can learn an approximation
of the optimal predictive policy and the average cost converges to the optimal average
cost over time (without the knowledge of the joint distribution). We repeat the
same experiment with the predictions V;(6) and M-GAPS also finds a near-optimal
predictive policy over time. As shown in Figure[5.9] the prediction power matches the

long-term performance gain of online policy optimization with a stronger predictor.

5.6 Application: Quadcopter Control
Dynamics and Representation. We represent the quadcopter state at time step ¢ as a

tuple
(p,,vt, re, a)t), for Pt € R3,V[ € R3, ry € 50(3),6{); € 50(3),

where p, is the position; v, is the velocity; r; is the logarithmic coordinate, so exp(r;)
rotates from the body frame to the inertial frame; and w; is the angular in the body

frame. The control input is a tuple
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Figure 5.5: Example: Recover the op-
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learning rate 1 x 1074,
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Figure 5.6: Example: Recover the op-
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Figure 5.8: Example: Recover the op-
timal policy. Learned policy. p = 0.5
and prediction V;(6). M-GAPS learning
rate 1 x 107%.
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with predictions V; (1) or V;(6).
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.
ur = (&.7), for& e Rygand 7, = |70, 77 2P| e R3,

where &; is a mass-normalized thrust and 1; is the desired angular acceleration in

the body frame. The discrete-time dynamics of the quadcopter are given by

P+l = Pr + 0V, (5.18a)
Vel = v+ 6(&rexp(ri)e; — g), (5.18b)
ri+1 = log (exp(ry) exp(dwy)) , (5.18¢)
W] = Wy + 07, (5.18d)

where 6 > 0 is the time interval for discretization and g is a 3D vector that denotes
the gravitational constant (so the entries at dimensions x and y are zeros). Here, we
use ey, ey, e, to denote the standard basis vectors of R3. As a remark, elements of

s0(3) are skew-symmetric matrices, i.e.,
50(3) = {A e R¥ | A=-AT}),

which we interpret as 3D angular velocities. In (5.18d), the map v — ¥ is the
canonical (natural) isomorphism from R? to s0(3):

0 —V3 1 %)
“MRP > s0(3), 0= vs 0 —vi|forv=(vi,va,v3)T.

-V Vi 0

Note that by expressing the dynamics as (5.18]), we implicitly assume that the control

input u; can be realized.

We use p¢ to denote the target position trajectory (and define vf ,a?, and wf for the
desired velocity, acceleration, and angular velocity similarly). To incorporate the
integral of the tracking error into our policy class, we add a virtual state 7;;; with

the dynamics
th+1 = th + 6(pt - p?) fort > 0,

where the initial state ip = 0. Therefore, the full state of the quadcopter is expressed

as x; = (iy, P> Vs Tt wy).

Policy Class. Our control policy is formed by an outer loop that calculates a desired
mass-normalized thrust vector z; € R? and an inner loop that orients the quadcopter’s

body towards z;. The outer-loop law is given by

2 = —Kt(i)z, - Kt(p) (pt - ptd) - K,(V)(v, - vfl) + afl +ge,, (5.19)
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where the gain matrices K,(i),K,(p ),K,(V) are diagonal and positive definite. We
compute the thrust command &; € Ry by projecting z; onto the body thrust axis:

& =z exp(re:.

The inner loop first constructs a desired attitude r,d € s0(3) as the shortest rotation
that takes e, to the direction of z, which is

-1 z e;Xz .
cos (eZ . m) (—”ezxzu), ife, xz#0,

0 otherwise.

d _
r, =

Recall that"maps R3 to so(3). In our setting, ||z|| > 0 because the acceleration and
error terms in (5.19) are sufficiently small. And we simplify the problem by not
considering the desired heading (yaw). The controller decides the desired angular

acceleration 7; by
T/ = —K[(r) log (exp(rt) exp(—rtd)) - Kt(w)(a)t - a)f), (5.20a)
7, = softclamp (T;, [BOY), G B(Z)]T) , (5.20b)

where the gain matrices K,(r) and Kt(‘“) are diagonal and positive definite. The

softclamp function
softclamp(x, B) = Btanh(x/B)

is critical for maintaining the stability, and it is applied elementwise in (5.20D).
In summary, the policy parameters that are updated in the online policy optimization
include

Kt(i) _ diag(kt(i’xy), kl(i,xy)’ kt(i,Z)), Kt(p) — diag(k,(p’xy), kl(p,xy), kl(m))’

K" = diag(k"™, k", k), K = diag (k™ kY k59,

K = diag(k{™, k), k{9,

where we use equal gains for the two horizontal axes x and y. Thus, the “raw” policy

parameter ; is
9, = (kt(i,xy), kt(i,z)’ kt(p,xy)’ kt(p,z)’ kt(v,xy)’ kt(v,z)’ kt(r,xy)’ kt(r,z)’ kt(w,xy)’ kt(w,z)) c Ri%

In the experiment, we use the reparameterization 6, = log(#¥;) and optimize the

parameter 6; because it improves the optimization landscape.
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Figure 5.10: Trajectories of a quadrotor tracking an aggressive figure-8 trajectory
under online policy optimization algorithms. Dotted line shows target. Color
changes from blue (beginning) to red (end) over time. Expert: 6; = 8™ Vt. Detune:
0, = 0™ —log?2 Vt. All algorithms initialized with detune parameter.

Experiments

In the experiment, we use a a Bitcraze Crazyflie 2.0 with the manufacturer’s thrust
upgrade bundle and an upgraded battery. We conduct three trajectory tracking ex-
periments to compare M-GAPS with other policy optimization algorithms (Diff Tune
(Cheng et al., 2024) and ORPF (Zhang, Zhou, et al., 2024)) and benchmarks. In
the first experiment, we start with a scenario where the disturbances are small. The
expert-tuned policy parameter 6™ is near-optimal in this case, so we test if M-GAPS
can improve the control performance from a bad initialization. Then, in the next two
experiments, we want to demonstrate the necessity of online policy optimization by
ruling out the possibility that 6 is near-optimal in all scenarios. To achieve this
goal, we introduce heavy payload or time-varying wind and test whether M-GAPS

can outperform 6" in such settings.

Suboptimal initialization. We simulate the process of controller tuning by ini-
tializing each online policy optimization algorithm with the “detuned” parameter
6y = 0™ —log 2, which decrease the feedback gains by a half under the logarithmic
policy parameterization. We plot the trajectories of the expert parameter 6, the
detuned parameter 6y, and each candidate online policy optimization algorithm in
Figure [5.10l We note that M-GAPS starts near Derune but quickly gets closer to
Expert after 2-3 laps.

In Figure [5.11] we plot the cost difference of each candidate/benchmark with the
expert policy 8, which is near-optimal in this case. We see that the cumulative cost
of M-GAPS converges towards a constant level, and it is lower than other episodic

policy optimization algorithms.

Heavy payload. The original mass of the quadcopter is 39g. We attached an
additional 23g steel weight near its center, which can be viewed as a large, near-

constant disturbance in the dynamics. Note that 6" is not tuned to handle this
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Figure 5.11: Cumulative cost difference versus expert-tuned parameters 6" in figure-
8 tracking experiment with detuned initialization. Error bars indicate +1 standard
deviation over 5 trials. See caption of Figure for legend key.
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Figure 5.12: Position tracking error under M-GAPS for heavy payload disturbance.

fan on

optimizer

expert
—— M-GAPS

mean error (cm)

12 24 36
lap

Figure 5.13: Position tracking error under M-GAPS for periodic fan disturbance.
Error is averaged per “lap” due to substantial variance within each lap from fan
airflow pattern.

scenario. We compare the position tracking error of M-GAPS and the export 8 in
Figure The results verifies our conjecture that 8 is suboptimal, and deploying
an online policy optimization algorithm like M-GAPS can effectively reduce the

tracking error compared with 6™.

Time-varying wind. As an addition to the second experiment, we use periodic
wind from three household box fans to test if M-GAPS can adapt quickly. We attach
a cardboard panel to the quadcopter to magnify the effect of wind disturbances. The
quadcopter flies back-and-forth pattern with each lap takes about 4 seconds. To
create the periodic disturbance, we toggle the fan power every 12 seconds. We plot
the tracking error of M-GAPS and compare it against the expert 8™ in Figure [5.13]
The results show that M-GAPS outperforms the expert, and it confirms that M-GAPS

can adapt quickly to environment changes on the scale of about ten seconds.
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5.A Proof of Contractive Perturbation and Stability
Proof of Lemma
We first restate Lemma[5.2.1] with detailed coeflicients in Lemma[5.A 1t

Lemma 5.A.1. Suppose Assumption holds for € = 0 and (R¢,C, p, Rys),
which satisfies Rc > (C + 1)Rs. Suppose Assumption also holds and let
X = B,(0,R,), where R, = (C + 1)?Rs. Then, Assumption also holds for
& >0, (Re,C, p,Rs), and xo that satisfies the inequality ||xo| < (Rc — Rs)/C.
Here, Ry, Iéc,ﬁ are arbitrary constants that satisfies Rg < Rg < Re < Rc/(C+1)

and p < p < 1. Other coefficients are given by

C= ((1+ L) (Cox + CouLln) + Louln) -

(14 Lo+ LouLry)™" p7,

L (p" - Cp" (1 -p)? (1-p)*(Rs — Ry)
£ = min TR , where
C-Cp(1+Lgyx+LgyLyy) CLguLrp

C, = ((l + Ln,x) (gg,x + gg,u . (Ln,x + Ln,@)) + Lg,u . (KIT,X + fﬂ,@))'

(Lg,uLn,é) + 1),

where h is a constant integer that satisfies Cp" < min{p”, 1 — Rs/Rc¢}.

Before showing Lemma [5.A.T] we first show that the composition of Lipschitz and

smooth functions is still Lipschitz and smooth in the following technical lemma:

Lemma 5.A.2. Suppose the sequence of functions ty.; satisfies that t; : D; — Dy
is L-Lipschitz and €-smooth for all i € {1,2,---,t}. Then, their composition
(t; 04—y 0 ---01y) is L'-Lipschitz and (1 + L)*-smooth.

Proof of Lemma|5.A.2] We show the conclusion by induction. For t = 1, ¢ is
L-Lipschitz and £(1 + L)-smooth.

Suppose we have shown that (¢;0¢,_1 0- - -o¢) is L'-Lipschitz and £(1+ L)% -smooth
for any ¢ functions that satisfies the assumptions of Lemma [5.A.2] For ¢ + 1, we
simplify the notation by defining ¢ := (¢41 0¢; 0+ -+ 01p). Our goal is to show (fo¢)
is L'*!-Lipschitz and £(1 + L)**D-smooth. Note that

(Gou)(x) = Eou)@) < L'la(x) —u ) < L™ x - x|,
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where we use the induction assumption in the first inequality and the assumption of

Lemma[5.A.2)in the second inequality. We also see that

d(iou)| d(tou)
ox |, ox |,

ot 0 ot 0
= o oy ot S (5.21a)

ay 0 () ox|, 0y 0 Ox |,/
- ot ot oy ot ‘ oy oy
- ay 0 (x) ay 0 (x") ox X ay 0 (x) ox X ox X
<tA+L)"|lt(x) —aG)] - L+L-€)x - x| (5.21b)
< f(L2(1 +L)2f+Lf) I = x| (5.21¢)

< C(1+ LDk - x|,
where we use the chain rule decomposition in (5.2Ta); we use the induction assump-
tion in (5.21D)); we use the assumption that ¢; is L-Lipschitz in (5.21c).

Therefore, we have shown Lemma[5.A.2] by induction. O

Now we are ready to show Lemma[5.A 1]

We first discuss the intuition behind the proof. Since the multi-step dynamics

is differentiable under Assumption [5.2.1) we only need to show an upper bound

of

that is exponentially decaying. Intuitively, we use the chain

xTaeTZl—l

. . . 0811+
rule to decompose the partial derivative (f;'

as the product of multiple

T X071
partial derivatives g(;;—*f"" . , where each time interval [#; : ;41 — 1] has
i X008, -1
(approximately) length 4. By the time-invariant contractive property, we know

Agr v . .
the norm of %ﬁ"’ can be upper bounded by Cp” once it is realized on the tra-

jectory {x:, (6;)xn}, where the policy parameter is repeating. By the smooth-

ness guarantee derived in Lemma we can show the difference between

0gs. | 11: 08t 1 1t: .. . .
6"7”'” and 6"7““’ is in the order of O(g). This implies that
iy O, -1 i xy, (04 )xh
08t 1 1t: n . . .
the norm of atthm can be bounded by /" once ¢ is sufficiently small with
e

respect to the gap (6" — Cp").

We present the formal proof of Lemma [5.A.T|below.



230
Proof of Lemma We first show that, under a time-invariant policy parameter

6, starting from an arbitrary x, that satisfies ||x;|| < R¢, we have ||x/]| < Rg +
Cp' T||x|| forall > 7.

To see this, note that by time-invariant contractive perturbation, we have

lgeie (ers Oxr—o)|| < ||geir (Kes Oxr=1)) = 8112(0, Oxe—r))|| + || 811 (0, O (i)
< Cp" " lx|l + Rs.

Now, we show that if starting from x, that satisfies ||x;|| < R, the trajectory induced
by an &-time-varying parameter sequence satisfies that ||x;|| < Rg + Cp'~||x+|| for
all + > 7. Since this ball is contained in B(0, R¢), we know the time-invariant

contractive perturbation always apply.

We show this statement by induction. Suppose the statement holds for all time steps
T7,...,t— 1. We see that

||g;|T(XT, Orit-1) = i (Xe, 9><(t—7'))||

t
< Z ”gtIT(xﬁ erzj’ (Gt)x(t—j—l)) - gt|T(XT’ 97:]’—1’ (Gt)x(t—j))”

Jj=T
t A
—j- CLgyLygé
< CLoalng Yo 0 - 0)] < St
j=t (1-p)
Therefore, we see that
CLg,Lngé
||gt|T(XTa GT:I—I)” < ||gt|7(x7’9><(t—r))|| + ﬁ
CL,,L;pé
< Cp'T||xs || + Ry + —22207
' (1-p)?

= Cp""llxcll + Rs.

This finishes the proof of &-time-varying stability with & and Ry.

. . . 08|t
Note that we can decompose the partial derivative 65;‘

as

T xr,0r-1

6gtl'r
0)(7- X7,07:-1
agtpr—l . 8glp—1|tp—2 o agl‘1|l‘0 (5 22)
axt (9x; Xt ’ '
p-l xtl,_lﬁtp_l:tp—l p-2 xtp_zaorp_zzrp_l—l 0 1xeg019:1y -1

wheretg = 7,1, =t;t; =t,_y+hholdsfori=1,...,p—1,andt, | <1, <1, +h.
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Fori € [0, p—2], we obtain the following bounds on the bias of the partial derivatives

of the multi-step dynamics:

08111 B 08t
Oxy, iy Oty 1 Oxy, X1, (67, )xh
. < || 081 _ 98ualu (5.23a)
=0 axli Y15 (01 )x >0+t -1 axli X135 (01 )x (1) Bttty -1
< i 8gl[+]
Jj=0 Oxy, e (0%
081;.11(11+7) _ 98tltit)) (5.23b)
0xr,~+j S A axt“—j Ery b1y Ot jrtiagy 1
<c hzi | O8teaaltriei) _ 98unltini) . (5.230)
=0 axt’ﬂ Erp4j Ot ity -1 axli+j Ktjj Ot Ot 1514 -1

where we use the shorthand notation ;.4 ; = g4/, (x;;» (6,)x;). We use the triangle

inequality in (5.23a)), the chain rule decomposition in (5.23b). In (5.23c)), we can
apply the time-invariant contractive perturbation property because ||xr|| < Rc,
which implies that ||xti|| < R¢. Note that

agti+1|(ti+j) _ 6gli+1|(li+j)

OXty4j Kiia Oty -1 Ox1;+j Tty Ot 01415174, -1
< agti+1|(ti+j+1)
8xti+j+1 Xty jrl Ol -1
08 (1+j+1)(11+)) 08 j+1)I (1)
OXty4j Tpya o0 OxX1;4f Ty
081, |(1r+j+1) 081 (4+1)
8xfi+j+1 Frpajr1: Ot it g -1 axti+j+] X Oty -1
08 (1+j+1) | (11+))
Oy Ripaj Ot
< (Lg,x + Lg,uLﬂ,x)h_j_l : ((1 + Lﬂ,x)fg,uLn,B + Lg,ufﬂ,e) ||0ti+j - gti”

+((1+ Lyy) (g +€ou - Lax) + Loy - rx) -
(1+Lgx+ Lg,ume)Z(h_j) : Lg,uLﬂﬁ”etﬁj - 9&-“

C' (14 Lgx+LyuLrs)” - je,

IA
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/

where we adopt the shorthand x L]

= Gr+j+1)t+j X4/, Or,47), and we define the
coefficient C’ as
Cl = ((1 + Ln,x) (fg,x + fg,u : (Lﬂ,x + Lnﬁ)) + Lg,u : (fﬂ,x + fﬂ,&)) :
(LguLrp+1).

Here, we use the chain rule and the triangle inequality in the first inequality. We can
apply Lemma|[5.A.2]and

< LguLro||01+ — 04|

X;l—+j+1 = Xtjj+l
in the second inequality because the trajectory induced by (6;,)x;, 0s4j:1,,,-1 al-
ways stay within the ball B(0, R,) where the Lipschitzness/smoothness of dynam-
ics/policies hold. Substituting this into (5.23)) gives

agmllti _ agti+l|ti
axti xli ’G[i:[i+l_l axti xt,’v(eti)Xh
h-1
SCC' (1+Lgy+ Lg,uL,r,x)Zh £ Z ol
Jj=0
’ 2h
CC'p (1+Lgx+ Lgulnx)™ N
- (1-p)?
< ph—cp". (5.24)
Therefore, by (5.22)), we see that
agt|'r
8xT x‘raa‘r:t—l
< agtl’hl’*l ag’pfl|tpf2 agllllo "
axlp_l xtp7170tp71:tp—1 axlp_z Xt 7239lp722tp71—1 0xt() X’O’H’O”I*l
2h
< ((V+Lny) (Cgx + o Lux) + Loy - Cnx) - (14 Loy + Lo yLrx)
- (pMP! (5.25a)
<C(p)T, (5.25b)

where we use (5.24) in (5.25a); we use the definition of C in (5.23b). This finishes

the proof of &-time-varying contractive perturbation with &, Rc, C, p. [l

5.B Proof of M-GAPS

Regret of M-GAPS under Convex Surrogate Costs

In this section, we provide a proof outline of the adaptive regret bound for GAPS. As
we discussed in Section [5.3] the intuition behind GAPS is to mimic the ideal OGD
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update 0,11 = [[g(0; — n;VF;(6;)) with limited memory size and computational
complexity. While the existing literature of OCO guarantees that the ideal OGD
update with constant step size 7 of the order 1/VT achieves a policy regret of
o (\/T ), GAPS incurs an approximation error at every time step since it uses G;
(Algorithm [6]) instead of VF,(6;) to implement gradient descent. We characterize
how a per-step bias in the gradient estimation may affect the regret guarantee of the
OGD in Theorem We provide the proof later in this section.

Theorem 5.B.1. Consider the update rule 6,1 = [lg(6; — nG;). Suppose © is
a convex compact set with diameter D. If F; is convex and |VF;(0)|| < W for
all 0 € ©, and ||VF,(6;) — G{|| < a holds for all time steps t, then, for arbitrary
I=[r:s]CT,

A S D2
Z F(6:) ~ min Z Fi(6)) < aDT + (W2 + o®)nT + —.
! t=r

2n
With Theorem obtaining the policy regret bounds for GAPS reduces to
showing both |h, (x;, u;) — F;(8;)| and ||VF;(6,) — G,|| are in the order of O(1/VT).
Here, we only consider the order of magnitude with respect to the horizon T for
clarity. As we will show in Theorem and Theorem both of these
quantities are in the order of O () when GAPS adopts the learning rate 7.

To obtain these results, we first show a lemma about the stability of the trajectory

achieved by an e-time-varying policy parameter sequence.

Lemma 5.B.2. Suppose Assumptions|5.2.1|and |5.2.2| hold. For any starting state
xr € By(0, Rs+Cl||xoll) and 0-.,—1 € Sg( : t—1), the final state x; = g (xr, Or4-1)
satisfies ||x;|| < Cp" ||lx;|| + Rs.

Proof of Lemma By e-time-varying contractive perturbation, we see that

||xt - gll‘r(o’ H‘r:t—l)” < Cpt_T”xTH-

Thus, by the triangle inequality, we see that

llxe]l < ||xt - &11(0, gTit—l)” + ||gt|‘r(0’ gTit—l)” < Cp" x|l + Rs,

where we use e-time-varying stability in the last inequality. [

Next, we show a lemma about the contractive property of the partial derivatives of

the multi-step dynamics.
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Lemma 5.B.3 (Lipschitzness/Smoothness of the Multi-Step Dynamics). Suppose
Assumptions 5.2.1| and |5.2.2| hold. Given two time steps t > T, for any x,,x. €
B}’l(o’ RS+C||-X0||) and gTa 9;— € ®’ 9T+12[—1 € SS(T+1 : t_l)) l:f-x.lr.+1 = gT+1|T('x;—a 9;)
is also in B,(0, Rs + Cl||xol|), the multi-step dynamical function g satisfies that

0811r
| < CpLoxp' ™", and
axT x‘r’grzt—l
0811r
(99| < CL,g,le_T’ VOr.,-1 € SS(T = 1)’
T Ixz,07:-1
agt|‘r agt|‘r
axT Xz,07:-1 axT X7,07,0r41:0-1
- -
< Crgxp' " |Per = 2l + Crg.rarp 102 = 07
agt|T 0gl‘|T
89T Xz,07:-1 697 X7 ,07,0r41:0-1

< Crg (0P " |Per = X2|| + Ce g (0.00" 7|6 — 67

b

CLg,uLﬂ,H

, and
)

where Cp g, =C,Crgg =

Crgv) = (1 + L) (box + Coulnx) + Loxlny) CPp~ (1= p)7",
Crgx.0) = (14 Lay) (Coux + CouLnx) + Lgxlny) CPLg Ly
p (1= p) "+ ((1+ Lax)louLng + Loulrg) Co™ (1= p)7",
Cra00) = ((1+Lay) (Cox + Coulny) + Lgxlr) (Lgx+ LouLr.y)-
CLguLrop™>(1-p)"
+C (Lao(Lo + Coulny) + Louley)p ™",
Crg0.0) = ((1+ L) (Cgx + o * Lry) + Lo * Crx) L2 L2 ,C*

g.u—n0
-2 -1 2 -1
p(l-p) + (Lg,ufﬂﬁ + gg,uLn,e) Cp .

Intuitively, Lemma shows that the dependence of the state x; on the previ-
ous state x; and 6, decays exponentially with respect to their time distance ¢ — 7.
Specifically, recall that the multi-step dynamics g, writes x; as a function of x, and
0+..—1. When other variables are fixed, the Lipschitzness and smoothness constants
with respect to x, and 6, are both O(p'~"). While the contractive Lipschitzness
on x is automatically guaranteed by e-time-varying contractive perturbation (Def-
inition [5.2.2), we use this property and the chain rule decomposition to show the

Lipschitzness on 8, and the smoothness.



235

The first inequality in Lemmal[5.B.3|directly follows from e-time-varying contractive
perturbation. To reflect the main technical difficulty, we show the third inequality
here with the assumption that the first two inequalities hold. We provide the proof

of other inequalities later in this section.

Proof of the 3rd inequality in Lemma Note that we have the chain rule de-

composition

0gi|c 081111 0gi-1)1-2 0841z

Ox = ox Ox b2 ez 7 Ox ’
T Ixz,07,0741:-1 =1 Xr-1,01-1 =2 T X701

agt|‘r agt|t—1 58t—1|t—2 ag‘r+1|‘r

d "9 x| 7o 620
Xt X7,07,0r41:0-1 Xi-1 x;,lﬁr—l X1-2 X;,zﬁt—z Xz x7.0%

where we use the notation xr» = gr|r (X7, 0r:r—1) and x7, = g (X7, 07, Ory1:0-1)

fort/ e[r+1:t-1].

Note that for any i € [1: ¢ - 7] and any 6;_, € ©, we have the decomposition

OxXi-i v, 10, Oxi g 0,
_ O8-i _ 08i-i 4 081 Omioi

0% X —isUr—i 01— Xp ity O Hr—isli—i Oxi-i Ki-isOr-i

3 08— On;—;
axt—i X)_ ol axt_i X0

08— 08— + ( 081-i _ 08— ) O

0x;—; Xp—ity—i 0x;— X, Oty Xi—isllr—i Outs-i XUy O Xi=iB1-i
0gi-i (aﬂ't—i _ Omy )
Oty Xy 01— Xe—is0r-i 01— X0 ,

’

where we use the notation u;; = m;_;(x;—, 0;—),u;_,

= mi(x;_;,07_;). Taking

t=i’

norms on both sides of the equation and applying the triangle inequality gives

agt—i+1|t—i
0x;—i

6gt—i+l|t—i
0x;—i

’ ’
Xt—is0r—i X,_i,et

—i

IA

Couellri—i = x| + Coullimi (i, 61-0) = mii (3], 67|

+ Liree (Gguxl i = 21| + ol imi i, 61-0) = mumi (3], 6,2}

+Lgu - (fﬂ,xuxf—i - x;—i” + fﬂﬂ”gt—i - 9;—1'”) (5.27a)
(1 L) (Ggr + Lo~ L) + L - ) [Pxe—i = x1_|

+ (1 + Lax)lguLno + Loutro) |0:-i = 6,

IA

(5.27b)
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where we use Assumption and the definition of u,_;,u/_; in (5.27a); and
Assumption[5.2.T]in (5.27b). Therefore, by (5.26) and (5.27), we see that

agtlr _ agth’
BXT Xz,07:0-1 axT X071
< 5! ﬁ 08—/ +1)t—1 ‘ O8r—it1)i—i B O8r—iv1i—i
i=1 7/=1 O R 01 X201 i 0X;-i 0=
ﬁ 6gt—‘r/+1|t—‘r’
oeiv 0% L e
’ﬁl Og—r/+1)1— || 08esiie]  O8raipe
B L ] | A MR N
-7
< D (€O (1 L) (Ggox + o - L) + L - ) i = x|
i=1
(Co" ™)+ Cp" N (1 + L) g uLn + Loulrg) |6 — 62| (5.28a)
-7
= ((1 + Lﬂ,x) (fg,x + fg,u : Ln,x) + Lg,x : fﬂ,x) C2 : pt_T_l Z ||xl‘—i - x;—i”
i=1
+ Cpt_T_l . ((1 + Lzr,x)fg,uLn,Q + Lg,ugﬂﬁ) ||9T - H;H
< Crg o - P |Por = X2 ]|+ Crg o) - 07710 = 6], (5.28b)

where we use the e-time-varying contractive perturbation property and (5.27) in
(5-28a); we use the first two inequalities to bound ||x,—; — x/_|| < Cp'=||x; — x2||+
CLguLnr, e .

CLeatzs . i|lo. - 67| in (G28D). =

Since we will need more general forms of policy sequence later to bound ||G; — VF;||
than the sequence with small step sizes, we state the contractive Lipschitzness
and smoothness of the multi-step cost function h.. This is an implication of
Lemma [5.B.3] because for any 7 < ¢, the previous state x, and previous policy
parameter 6, can only affect the current stage cost ¢, by affecting the current state
x;. We formalize this result in Corollary and provide the detailed proof later

in this section.

Corollary 5.B.4 (Lipschitzness/Smoothness of the Multi-Step Costs). Under the
same assumptions as Lemma let

X = Grjr (X, Orp—1), uy = 1y (X1, 0;); and

x; = gl|T(x-lr’ 9-,1-’ 0T+12l—1)7 M:‘ = ﬂt(x;’ 0[)-
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Then, the partial derivatives of the multi-step cost function hy|; satisfy the following

inequalities:
Ol oh
t-1 il -7
3 < Craxp ', 58 < CrLhep ',
Xt X7,07: T Ix7,07:¢
aht|‘r ahth’
axT X7,07,0741: 8)C-,— X7 ,0%,0c41:

Xt — X;“ + Cé’,h,(x,e)pt_T”Q‘r - 9; |a
_ ahth‘

00,

< C[,h,(x,x)pt_7|
aht|‘r

’ ’
X,07,0741:1 X7,07.0 741

< Crno0P " |le = x|+ Congo.rp |0 — 05].

where CL,h,x = Lhc(l + Lﬂ,x), CL,h,H =Ly maX{CL,g,G(l + Lﬂ,x), Ln,&}, and

Cenxx) = Lin(1+ Lz x)Crg (x.x)
+ ((Efox+ CruLax)(1+ Lay) + Lilr )l 4 .
Cen(x0) = Ln(1+ Lrx)Crg (x0) + (L x + Cpulinx) (1 + L)
+ Lplr x)Cr g xClr g6
Cenox) = Ln(1+ Lax)Crg (6.x)
+ ((Cpp+CruLlny)(1+ L) + Lipln x)Cr g xCr g6
Cen0.6) = Ln(1+ Lax)Crg.(0.6)
+ ((Cra+ CruLas)(1+ Lr ) + Lilr 2)CT 4 4.

With the help of Lemma and Corollary we first bound the cost differ-
ence |h;(x;, u;) — F;(6;)| in Theorem This inequality bounds the difference
between the actual stage cost 4;(x;, u;) incurred by GAPS and the ideal cost F;(6;).
Besides this inequality, in Theorem we also bound the distance between
GAPS’ trajectory and the imaginary trajectory if the same policy parameter 6; had
been used from time O to time ¢, which will be useful for showing Theorem [5.B.6]

later in this section.

Theorem 5.B.5. Suppose Assumptions |5.2.1| and |5.2.2| hold. Let {x;,u;, 0;}cq
denote the trajectory of M-GAPS (Algorithm |6)) with a constant learning rate n <
%. Then, both ||G,|| and ||VF,(8,)|| are upper bounded by CIL;};(’, and the
following inequalities holds for any two time steps T,t (T < t):

c
16, ~6cll < 72

-(t—=71)n, and
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Cr.noC 1
Lho L,g2,9p ((t o+ ) o
(1-p) l-p

where we use the notation 2 (0) ‘= 0.+ (x0, Ox(r+1)), V0 € ©. Further, we have that

llxz = £ (0| <

CrnoCrgoLln(1+ Lyy)p -
(1-p)3

In addition, for any parameter sequence 0o € ©' 1 let X, and ii, be the state/control

|he (xg ur) — F1(6;)] <

action achieved by this sequence X, = g,|0(x0,9~0;t_1) and ii; = m,(%,0,). If
|%]] < min{R¢, R, } holds for all t, then the following inequality holds for all time

t:
CL, HLngh(l +L7Tx) 2

| (%, ) — Fi(6))] < P T |frsr = 6c]]-

7=0

To show Theorem we first derive a uniform upper bound on the norm the
estimated gradient G,, which implies that the policy parameter sequence does not
vary too quickly, i.e., it is in the same order as the constant learning rate . We then
leverage strong contractive perturbation to bound ||x; — £;(6;)|| and use it to bound
|hy(xs, u;) — Fy(6;)| by the Lipschitzness of i;. We provide the detailed proof later

in this section.

In Theorem below, we bound the difference between the estimated gradient
G, used by GAPS and the ideal gradient VF;(6,) used by the ideal OGD.

Theorem 5.B.6 (Gradient Bias). Suppose Assumptions |5.2.1\and |5.2.2| hold. Let
{x¢, us, 0, }1e7 denote the trajectory of M-GAPS (Algorithm [6]) with learning rate
n < L2 Then, the following holds for all T < t:

B 1 t—71 (I—T)Z) —r )
‘0((<1—p>4+<1—p>3+<1—p>2 Uk

0ht|0
00,

00

x0,00:¢ X0,(01)x (141

Further, we see that

n
1G: = VE@)]| < 0 ((1_—[))5)

(See Theorem for the detailed expressions.)

The key technique we used to show Theorem is a sequential decomposition
of the error based on the triangle inequality. Specifically, note that Corollary [5.B.4]

only allow us to compare the partial derivatives when 6., are fixed and the only
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perturbations are on x, and 6;. To compare the partial derivatives realized on two
trajectory instances (£:(6;), (6;)x(—r+1)) and (xr, 67,), we change the parameters

sequentially one by one, following the path

(727(91), (et)x(t—‘rﬂ)) - (-xT’ 0z, (el)x(t—r)) - (-xT’ Or:41, (Gt)x(t—‘r—l)) —

- (XT, Or:t).

The bounds in Theorems and show that we can achieve our desired
bounds |h; (x;, u;) — F,(6;)| = O(1/NT) and ||VF,(6,) — G,|| = O(1/NT) if we set
the learning rate and the buffer length to be O(1/VT) and O(logT), respectively.
Substituting these bounds into Theorem with a more careful analysis on the
order of the factor 1/(1 — p) will finish the proof of Theorem The detailed

proof can be found in the next subsection.

Detailed Statement and Proofs of Theorems[5.3.1land 5.3.2]
We restate Theorem [5.3.1 with detailed expressions in Theorem[5.B.7]

Theorem 5.B.7. Suppose Assumptions [5.2.1| and |5.2.2| hold. Let {x;,u;, 0;}icq

denote the trajectory of M-GAPS (Algorithm|6) with buffer size B and learning rate
(1-p)e

n=1n=

CrL.he’

where Cp p¢ is defined in Corollary|5.B.4] Then, we have

CrinoCrgoLln(l+ Ly,)p
(1-p)? |

1G = VE@)I < (Co(1 = p) ™+ (Cr +E(1 = p) 2+ Co(1 = p) ),

(5.29)

| (xp,up) — F1(6;)] < n, and

where Cy, C1, C, are defined in Theorem

Proof of Theorem[5.B.7] Theorem directly followed from Theorems
and O

We restate Theorem [5.3.2 with detailed expressions in Theorem [5.B.§]

Theorem 5.B.8. Under the same assumptions as Theorem if we additionally
assume the surrogate stage cost F; is convex for every time step t, then M-GAPS
achieves the adaptive regret bound

D2

T+—

Cc? A A A A
RA(T) < L6 ( Co Ci+C 8)) )D

(1-pp \T=p " U=p2 " (1-p)
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¢ G +C ¢
) 22+ 2 | DT,
l-p (1-p)F (Q-p)
Proof of Theorem The first two inequalities are shown in Theorem[5.B.5]and
Theorem Thus, we focus on the adaptive regret part here in the proof.

Fix a time interval [ = [r : s] C 7 and let 6; be an arbitrary policy parameter
in ©. By Theorem [5.B.T] and Theorem [5.B.6] we see that the sequence of policy

parameters of the online policy satisfies that

S N D2
Z Fi(6,) - Z Fi(6) < (W2 +oa)nT + = +aDT, (5.30)
2n

t=r t=r

_ Crne _( & C1+6, (&)
where W = === by Theorem|5.B.5|and @ = ( + et (1—p)3) n.

Note that by definition, we have F;(6;) = h;(%,(6;), i#,(6;)) and by Theorem|[5.B.5|

we have

CL,h,HCL,g,GLh(l + Lﬂ,x)p n

| (xr, up) — F1(6,)] < (1-p)3

(5.31)

Substituting these into (5.30) gives that

Z he (e, up) — Z h: (£,(01), 1, (61))

Z F,(6) - Z F(0r)] +

DZ
— +aDT + (W2+a2+
2n

IA

Z |y (xr, ) = Fi(6,)]

CrnoCrgoLln(1+Lyy)p

3 T
(I-p)

2 ~ ~ ~ A~

2., +( G G+ 6 ¢, ) ) D2

IA

+ + D|nT + —
(1-p)3 \l-p (1-p)? (1-p)} 2n
2

G G +C ¢
+2( 0, G+ 2 )D2n3T,

+
l-p (1-p? (1-p)?
where we used (5.30) and (5.31)) in the second inequality. ]

Proof of Theorem 5.B.1]

Our proof is inspired by the proof of Theorem 2.1 in Bansal and Gupta, 2019.
For a fixed time interval / = [r : s] € 7 and 6; € O, we consider the potential
function ®, = %H@t —0;]|>. Note that 6; satisfies ||6, — 8;]] < D because we

assume diam(®) < D. To simplify the notation, we define /., = 6, — nG,.
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By proposition 2.2 in Bansal and Gupta, 2019, we see that the potential change

between two consecutive steps can be bounded by

t+1

1 1 , 2
561 = 61117 = 116 = 0:11%) < (|6, = 6| = 116 = 6:11%)

, Ly 2
= (04 — 01,0, —6p) + EHQHI - Hf”
n* 2
=1(G, 01 — 0;) + ?”Gt” .
Using this inequality, we see that
Fi(6;) — F(01) + @y — Dy
= Fi(6) = Fi(67) +(G1. 6, = 6) + 2G|
= F1(6;) — F1(01) +(VF(6;) + (G, = VF(6,)),61 — 6,)
+ 2IIVE(6,) + (G, - VE(6)]”

< Fi(6;) — F(6;) +(VF(6:),601 = 6;) +{G; = VF(6;),01 — 6;) + '7||VF1(9t)||2

+nl|G, - VFt(Qt)”z (5.32a)
<0+ G, = VE(O) - 116, = 6:l + nlIVE (611 + na? (5.32b)
<aD+ Wzn + na/z, (5.32¢)

where we used the triangle inequality and the AM-GM inequality in (5.32a); we
used the assumption that F; is convex, ||G;— VF;(6;)|| < @, and the Cauchy-

Schwarz inequality in (5.32b)); and we used the assumptions |G, — VF;(6,)|| < a,
diam(®) < D, |[VF,(6))]| < W in (5329).

Summing (5.32) over the time interval [r : 5] gives that

S (F6) = E01) < (s =) - (aD+ Won +70%) + (@, ~ @)

t=r
D2
< (a/D + W277 + naz) T+ —,
2n
where we used diam(®) < D and ®,,; > O in the last inequality. Since this

inequality holds for any time interval / = [r : s] and 6; € O, this finishes the proof
of the first part of Theorem

Proof of Inequalities 1,2, and 4 in Lemma [5.B.

The first inequality directly follows from &-time-varying contractive perturbation

ag‘r+1\‘r
00+

(Definition|5.2.2). For the second inequality, when ¢ = 7+ 1, note that

X707
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on

dur ot 00,

equation gives

, where u; = m:(x;,6;). Taking norms of both sides of the

Xr,07

6g‘r+l|'r (9g7 (971'7- ag‘r (971'T <l L
= aulem,6-
697- xTaeT auT X7,Ur 697‘ X-r T auT Xr,Ur 607 X-r,e‘r ¢
When t > 7 + 1, we see that

aglh 6gl|‘r+1 (9gT+l|T

807 Xz,07:-1 6x7+1 Xra1,0741:0-1 807 X7,0¢
agl|T+l ag‘r+l|7 < COLg,LtLﬂ',H ) -1
ax‘r+1 Xr+1,07+1:-1 69‘{ X7,07 p

where X741 = griijr (X1, 07).

For the last inequality of Lemma[5.B.3] when 7 = 7 + 1, we see that

Ogestle|  08esifr
697 x‘rsg‘r 607- Xfr,g;

— agT . 671'7- _ ag‘r ) 877'7-

Oz X7z 06: x7,07 Ot XU’ 90 x7,0%
< 8gr _ agr (97!} N agT aﬂ"r ~ 671'1'
[\ Our XUz Our X7.UT 607 X7,07 Ot XU 90, X7,07 90, x7,0%

(5.33a)

< L (Cox|per = x| + Couljur — w2||) + Lo (Crx|jxe — x| + €r0]|0r — 6%]))

(5.33b)

IA

(Lrg(Lox + ouLny) + Lo ulry) |Jxr —x ||+(Lﬂ9€gu+L ulr)||0- — 6
(5.33¢)

where we use the notations u,; = n,(x,0:), u> = n:(x;,6,). We use the triangle

inequality in (5.33a); we use Assumption [5.2.T]in both (5.33b) and (5.33c).

When ¢t > 7+ 1, we see that

agl|‘r _ agtIT
96 X7,07,0741:0-1 90; X070 411
< agz|T+1 . agr+l|‘r B agl|T+l . agr+1|r (5.34a)
|| 9xen Xr+1,0741:0-1 90; xr,07 Oxzr41 X Ot 90 x7,0%
< (agzlrﬂ 3 agt|7+1 ) ag‘r+l|~r
- Oxrs1 Xr1,0741:0-1 Oxrs1 X O 96 x7.,07




243

0 0 0
8t|r+1 ) 81+t _ 81+t (534]3)
axT+1 X;Hse‘rﬂ:t—l 697- x‘rse‘r 697 x;,@;
agt|‘r+l _ agt|'r+l i agT+1|‘r
- axT+] X‘r+1s9‘r+l:t—l axT+1 x;+]a0‘r+1:t—l 697- XT,HT
agt|T+1 ) 6g'r+l|'r _ 6g‘r+1|'r
axT+1 x;+1797+l:l—1 (907- x‘rsg‘r 397 X;-,H;-
((1+ L) (g + Cou * Lrx) + Lo - brd) G,
< o(1-p) 'pl - ”xT"'l _x;+1|| ’ Lg»MLﬂsQ
+ CO : ,DZ_T_1 : (er,G(fg,x + fg,qur,x) + Lg,ugﬂ,x) ||x‘r - x;”
+Co- p  (LE ylou + Loulno)||6- — 67 (5.34¢)

< Ct’,g,(@,x)pt_T”-xT - X;.” + Cf,g,(@,@)p[_T”QT - 9;— 5 (534(1)

where we use the notations xr41 = gr41jr (X7, 07), X, | = &r+1jr (X7, 07). We use the
chain rule decomposition in (5.34a); we use the triangle inequality in (5.34D)); we

use the first and the third inequality of Lemma[5.B.3]as well as (5.33)) in (5.34c); we
use the first two inequalities of Lemma[5.B.3|in (5.34d).

Proof of Corollary
To show the first inequality, note that

Oy _[on 08
Xz,0:1 - axt X¢,0; axT

0x;
where x; = g (X7, 074-1),u; = m;(x;,6;). Thus, by e-time-varying contractive

For the second inequality, when 7 = ¢, since x; € B,(0, R}) and u; € B,,,(0, R},), we

b,

+ 87Tt
aut

. , 5.35
O, (5.35)

Xz,07:-1

Xt Ut XUt

perturbation, we see that

|

< Lh(l + Ln,x) ) Cpt_T~

h
0)6;

oh;

au,

om
axt

X707 XesUt XUt Xt,0; X071

see that
Ohae| | | Ohel Ol ) OB Oy
80t xl‘vgl 61/{[ xlaut 69[ xt’gt aut xt’u’ 69[ xt’gt

When 7 < ¢, the second inequality can be shown similarly with the first inequality

in Corollary because we have the chain-rule decomposition
0 ht|T _ % % ag tlr
B axz* xtagt (9(97-

; om
au,

. (5.36)

00,

Xz,07:1 XUt Xt Ut X7,07:0-1
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Applying Lemma givesthat Cy j 9 = LyCr 46(1+Ly ). Thus, we have proved
the first two inequalities.

For the third inequality, using (5.35)), we see that

e _ e
0%t i 0 0ms 0T 1000010
< % ) (aglh _ agtIT )
- axt Xt,Ut axT X7,07,0741:0-1 axT X705 .07 41:0-1
axt Xp Uy axt X ,u, 3)67- X000 0 41:0-1
+ % ) % . (agtIT _ agth’ )H
Auy X5l ox; Xt,0; Oxy X7,07,0741:0-1 Oxy X707 07410 -1
|| ((?71, o, ) O
duy Xp Uty 0x; x7,0; 9x; x;,6; Ox+ X500 04101
oh, dh; om 081|r
T 2 I Pl B (5.37a)
(a“t s O x;,u;) 0x; X0, N N

< Lip"™ (Cog e |[or = X5 + Cr.x0)]|6- = 62]))

+ (Cpallee = xill + pallr = i]]) - Crgap™

+ LiLaxp'™ (Crg o |re = x7l| + Crg e ||02 = 07

+ Lilr x| = xi|| - Crogup’™™ + (Cr |l = || + Er.uljus — w))) - LaxCrgxp'™,

(5.37b)

where we use the notations x; = g (Xr, Or:1-1), X; = & (X%, Or—1), Uy = 7:(x1,601),
and u, = m;(x},60;). We use (5.35) and the triangle inequality in (5.37a); we use
Lemma|[5.B.3|in (5.37b). Note that by the first two inequalities in Lemma[5.B.3] we
have

Jbee = xill = o™ (Crguelper = 27[|+ Crgollr - 07

it =] = L™ (Coelie =51+ Coaallor - 2]

Substituting these two inequalities into (3.3"/) finishes the proof of the third inequal-
ity.
For the last inequality, when 7 = ¢, we have that

Ohy;
00,

Ohy;
00,

’ ’
X¢,0; x;,0;
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_||%h)  Om)  _ Ohy)  Om (5.38a)
aut X¢ .Uy 691‘ Xz,0; auf X .u, 69[ x;.0,
- (9ut EoRTP 59; x1.6, 691 X0, (9ut EoRTy al/l; X/ 69[ /.0,
(5.38b)

< Ly (Lrg||0r = 6| + Crox|lee = x||) + (€| = x7|| + €ralfur = i) - Lo (5.38¢)
< (Libup + (rx + CruLin) Lug) i — x| + (thﬂ,g + ff,uL,%,@) l6: - o,

b

(5.38d)

where we use the chain rule decomposition in (5.38a)); we use the triangle inequality

in (5.38b)); we use Assumption [5.2.1]in both (5.38c) and (5.38d).
When 7 < t, by (5.36), we have that

ahtlT _ aht|‘r
00t 0,0 907 L 0r00mra
< % ) (agtlr _ agt|T )H
|| 9% Xp,Uy 96, x7,0r.0741:0-1 06, x7,07.0741:0-1
3)(1 X¢ Uy axl X7, 897’ X0 ,0741:-1
+ % ) % ) (aglh _ agtIT )
Otte |y, 0%l 0, \ 907 I o bmsr 997 L0y 00010s
aut X7,y axt Xz,0; 6xf x;,.0¢ (997 X000 0 41:0-1
Oh; oh; on; 0811c
T el LY I it (5.392)
(614; X¢,Us aut x;,u;) axt x7,6; 697 X200 41:0-1

< Lip'™ (Cego.0|[xr = X5 + Ceg.0.0)]60- = 6%]))

+ (Cpallee = xill + palls = wil]) - Crg o™

+ LiLacp"™ (Crg (0.0 |[ve = X7[[ + Crg0.0)[|0+ = 67])

+ Lilr|[xe = x| - CrLogop'™™ + (Crlpre = x| + € ulles — u})) - LaxCrogop'™,
(5.39b)

where we use (5.36) and the triangle inequality in (5.39a)); we use Assumption[5.2.1]
in (5.39b). Note that by the first two inequalities in Lemma [5.B.3] we have

).

s~ < 5 (Coelie x4+ Cogaller -6
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it = 1] < L™ (il =22+ Cualler ~ 2]

Substituting these into (5.39) finishes the proof of the fourth inequality.

Proof of Theorem
To simplify the notation, we use the shorthand X;(6) = g;|0(x0, 6x,) and i, (0) =

1 (X:(6), 0) for any time T and policy parameter 6.

We first derive an upper bound of G; in order to bound the difference between 6;
and 6,,1. Recall that

: (9ht|0 . ahl|t—T
G = 2 50y, ™ 24 960

“Tlxo,00: =0

(5.40)

Xt—7,0—71
Now we use induction to show that for all time step ¢ € 7,

Ch

|Gl = —— ~p , X1 € By(0, Rs + Cl|xoll), us € U, and |04 — ;]| < &.  (5.41)

Note that ||Go|| < Crpe < CIL;—”F;(’ by Corollary|5.B.4. We also have xo € B, (0, Rg +
CHXOH) and ug € U.

p)

Suppose ||G;-1]|| < L —LI8 for some t > 1. Then, since 57 < ( and the projection

onto ®1is a contractlon (see Theorem 1.2.1 in Schneider, 2014), we see that
160, — 61| < ||77Gt—1|| <e.

Suppose ||6; — 6:-1|| < eholds forall T < t,1i.e., 8y, € Sc(0 : ¢). By Lemma|5.B.2}
we see that
x; € B,(0,Rs + Cl|xol|), and u; € U.

Taking norm on both sides of (5.40), we see that

t
ahtlz—r
G.ll =
G| ZO o
|| Vs (5.42a)
=0 691‘_7 Xt—7:0t 71
t
< Y Craop (5.42b)
7=0
< L,h,0
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where we use the triangle inequality in (5.42a)) and Corollary[5.B.4]in (5.42D). Note
that we can apply Corollary because x; € B,(0, Rs + C||xo||). Therefore, we
have shown (5.41)) by induction. One can use the same technique as (5.42) to show

C
IVE(0)] < e

Since the projection onto the set © is a contraction, we obtain that for any 7 > 7,

Craon(t—1)
16: = 6:] <« —=—— (5.43)
-p
Now we bound the distance between x, and £, (6;) for T < r. We see that
llxr =2 (01| = ||gT|0(x0’ 00:7-1) — g‘r|0(x0’ (et)xr)”
-1
< Z ||gT|0(x0a Bo:7 (Qt)x(r—‘r’—l)) - g‘r|0(x0’ 00:7/-1, (GZ‘)X(T—T'))”
7/=0
(5.44a)
-1
< Z ||gT|‘r’ (x77, 07, (Ht)x(r—‘r’—l)) — 81| (X7, (Qt)x(r—r’))”
7/=0
(5.44b)
-1
= }]anm“#u@—efn (5.44c)
/=0
Cr.poC = ,
< ZLhoTLeol S-)p (5.44d)
1-p =

C C 1
< Crns L,gzﬁp ((t 4 ) o
(1-p) l-p

where we use the triangle inequality in (5.444); we use the definition of multi-step

dynamics in (5.44b)); we use Lemma[5.B.3|in (5.44¢); we use (5.43) in (5.44d).

Similarly, since (5.40) guarantees that x;, € B, (0, Rg + C||xo||) and we also see that
%:(0;) € B, (0, Rs + Cl|xo]|), we obtain that

|y (xz, tr) = Fr(0)] = [y (g, u0) = 1y (£(6,), 6,(6))]

< Ly (|lxr = £ (0] + ||y — @:(6,)1]) (5.45a)
= Ly (|lx; = X(O)|| + |7 (xs, 0;) — 7, (£:(60,), 0:)])
< Lp(1+ Ly ) llx: = X:(6) || (5.45b)
C C L,(1+L
< L,h,0“L,g,0 h( : ﬂ,x)p . (5450)
(1-p)

where we use Assumption[5.2.1in (5.45a)) and (5.45b)); we use (5.44)) in (5.45¢).
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To show the last inequality in Theorem [5.B.5] note that we have

-1
|l% = £:(8,)| < Z lge10 (X0, Bo:r-1, (B)x(r—7)) = &e10 (x0s Bo:rs (B)xr—r—1)) |

=0
(5.46a)
-1
< CLpgLgx Y 00 - 6| (5.46b)
7=0
-1 -1 _
< CLpgLgx ) p' 7 ) [0ers - B (5.46¢)
=0 T'=7
CLrgLgx O -
< %pg,x Z:;) 01 - ], (5.46d)

where we use the triangle inequality in (5.464) and (5.46c)); we use the assumption

that ||5;|| < min{R¢, Ry} and the time-invariant contractive perturbation property
in (5.46b); we rearrange the terms and use 3.7 p* L in (5.46d).

Therefore, since %, £,(6,) € X and ii;, i,(8;) € U, we see that

|\he(%e, 1) = F(0,)| = |he(Fe i) — he(£,(6,), 0:(Gy))|

< Ly (||% - £:(80)|| + ||@ — a:(8,)|) (5.47a)
=Ly (”ft - xAt(ét)” + ||7Tt(ft, ét) - ﬂt()et(ét), ét)”)
< Lyp(1+ Ly )|[% — %:(6)|| (5.47b)

CLrgLorLin(1+Ley) & o i1~ 3
< — ;)p 641 = 62|

where we use Assumption[5.2.1]in and (5.470); we use (5.40) in (5.47¢).

(5.47c¢)

Proof of Theorem

Theorem 5.B.9 (Gradient Bias). Suppose Assumptions |5.2.1| and |5.2.2| hold. Let

{x¢, us, 0: }req denote the trajectory of M-GAPS (Algorithm [6]) with learning rate

n < (é L Then, the following holds for all T < t:

0hy 0hy n R n B
| - < (Co+Cilr =)+ Cot =) oo,
T lx0,60: T 1x0,(0)x (1+1)
for
~ PCLOCL0Cn(0.x) & (1 =p)CrnoCen0.x) +PCLOCLe.0Cen 0,0)
0= 1=

(1-p)3 ’ (1-p)? ’
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n Cln(x0)CrLgoCrno
2= .
l-p

Next, . o .
Co + Ci+(C, + G
1.
l-p (1-p)2 (1-p)
Proof of Theorem To simplify the notation, we adopt the shorthand notations
%2(0) = grj0(x0, Ox7) and i1 (0) == n(%(6), 6) throughout the proof.

1G: = VE(0,)l <

As we discussed below Theorem in the proof outline, we use the triangle
inequality to do the decomposition

Ohpo| Ol
90r |y g0, 007 | e
| o Oy
90 Lo, 997 e 0.0
e Oy
99 Lo 997 100,000y
+ i % - %’Z'T (5.48)
=1+l T xe,0pi0r, (0 x (-7 T xe,0ri0r215(00) (177 41)

Note that we can apply Corollary to bound each term in (5.48)). For the first
term in (5.48)), since x;, £:(6;), xr+1 € B,(0, Rs + C||xo||), we see that

ahth _ ahtlr
aQT x‘rygTv(gt)X(t—T) 00T fr(et)a(gt)x(t—ﬂl)
< P (Conollxe = £ (01 + Cep0.0)1160: — 6-1l) (5.49a)
1-p)C C +pC C C
S( PYCLnoCrn,(6.%) PZL,h,Q LgoCh00) |y r
(1-p)
C C C
PCLRoCLgH 3€,h,(9,x)‘ I_T'U» (5.49b)
(I-p)

where we use Corollary [5.B.4]in (5.49a) and Theorem [5.B.3]in (5.49D).

Forany 7" € [T+ 1 :¢t— 1], since x/, xr7+1 € B,(0, Rg + C||x0]|), we see that

ahth

697 XTSQTZT/’(GI)X(Z_T/)
_ ( Ohyr

aht|‘r
00,

x‘rve‘r:r’—h(et)x(l_-r/_,_l)
ahth” ag‘r’|‘r
O0xps 36,

ax‘r/

x‘r’g-r:‘r’—l H

x‘r’vg‘r/’(el)x(t—‘r/) xr/v(el)x(t—‘r/ﬂ))
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aht|‘r’ _ ahtl'r’ ) ag'r’|‘r
- ax‘r’ xT"gT"(Hl)X(T—T') ax‘r, xT”(gl)X(f—T’+l) 697- X700 -1
< Coneayp’ " N0 = 0l - CrLgop™ ™ (5.50a)
C
< t’,h,(x,;))CL,g.aCL,h,e (- T)pt_T . (5.50b)

where we use Lemma and Corollary [5.B.4]in (5.50a); we use Theorem|[5.B.5]
in (5.50b). Substituting (5.49) and (5.50) into (5.48) finishes the proof of the first

inequality.

For the second inequality, recall that G, and V¢,(6,) are given by

' Oh 0
VG(0) =

= =T Ix0,00: =0 96+ X0,(01 ) (1+1)
Therefore, we see that
t t
0ho Oho
16 = VE@)I =Y, 5 =
=0 = Tlx0.000  7=0 ~ 17T lx0,(00)x (1)
t
oh oh
<> A0 _ o (5.51a)
=0 agt_T x0,60:¢ agt_‘r X0, (01)x (1+1)
t
< Z (C’o +CiT+ 6’272) o'n (5.51b)
7=0

é() é 1+ éz 62
< + 5+ 5|7
l-p (1-p) (1-p)
where we use the triangle inequality in (5.51a); we use the first inequality in Theo-
rem [5.B.6| that we have shown and Corollary [5.B.4]in (5.51b). ]

Regret of M-GAPS under Nonconvex Surrogate Costs
To derive the local regret bound for GAPS in online policy selection, we first bound

the local regret for OGD (with biased gradients) in online nonconvex optimization.

Theorem 5.B.10. Suppose ® = R%. Consider the biased OGD update rule 6,,, =
0; — nG,, where G, satisfies |G, — VF,(6,)|| < B. Suppose at every time t, F; is
Lp-Lipschitz and €p-smooth. If the learning rate n < é, we have that

~

-1 T-1
2 .
IVE@)IP < = | Fo(6) + ) dists(Fi, Fi-1)

=1

200 - G Lep+ e )T,

I
o

t

where dist;(F, F’) = supyee |F(6) — F'(6)].
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We provide the proof of Theorem[5.B.10]later in this section. Our proof is inspired by
the analysis for (stochastic) gradient descent in offline nonconvex optimization (see,
e.g., Ghadimi and Lan, [2013) with the additional step to handle the time-varying

function sequence Fy.7—1 via the measure of variation dist,(F;, F;_1).

Our approximation error bound (Theorem guarantees that the bias g =
O(1/NT) if we set the learning rate 5 = O(1/VT). Therefore, the remain-
ing task is to bound the measure of variation in online nonconvex optimization
ZtT:_ll dist(F;, F,—1) by the variation intensity in online policy selection V (Defini-
tion[5.3.2)). To derive this bound, we need to show a convergence result on applying
a fixed policy parameter in a time-invariant system. We begin with a definition that

characterize this (imaginary) dynamical process.

Definition 5.B.1. For fixed dynamics function g, policy function n, and policy

parameter 6, we define xig ) (0) recursively by the equation

¢ =g ()zﬁg’”)(e),n ()zig’”)(e), 9)) VT > 0, where )Z(()g’”)(e) = X0.

T+1

Compared with £,(6) we defined before Definition [5.1.2} the state ii‘if )(8) is pro-

duced by a time-invariant dynamical system induced by g and n, while %,(6) is

produced by the actual time-varying dynamics induced by go.,—1 and mg.;—1.

We show the time-invariant evolution xig ™ has a unique limitation point as 7 tends

to infinity. This limit is also a fixed point, and the states will converge to the limit

exponentially fast with respect to 7. We state this result formally in Lemma[5.B.T1]

Lemma 5.B.11. Suppose Assumptions|5.2.1|and |5.2.2| hold, and (g,n) € G. The

limit lim;_, oo i&g’”)(e) exists. Let fif’”)(e) = lim; 0 xﬁg’”)(e). Further, we also

have that

27 0) - 287 0)|| < cp

Xo —ngﬂ(e)H < Cp™ - diam(X),

where diam(X) = 2C(Rs + Cl|xol|) + 2Rs.

We provide the proof of Lemma later in this section. With the fixed
point and convergence result in Lemma we bound the measure of varia-
tion based on Fy.7—; by the variation intensity V based on go.r—1, mo.7-1, and hg.7—1
in Lemma
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Lemma 5.B.12. Suppose Assumptions|5.2.1\and|5.2.2|hold. Then, we have

2CLy (14 La) (14 Lgw) |, 2CLa(1+ L)
(1-p)p I-p

where diam(X) = 2C(Rs + Cl|xol|) + 2Rs.

T-1
Z dist, (F,, Fi_1) < - diam(X),
t=1

With these auxiliary results, we restate Theorem [5.3.4] with complete expressions

and present the proof.

Theorem 5.B.13. Under the same assumptions as Theorem[5.3.1} if we additionally
assume that ©® = R? for some integer d, then GAPS satisfies local regret
2 2CLpLy(1+ L, 1+L,,)V
RAT) < _(CO+ PLi(1 + La) (( )
n l-p (1-p)p
éo él + éz 62
+ 2 T 37
l-p (A-p) (A-p)

C'o él+éz 6'2 )2 3
nit,

+2C(Rs + Cllxol]) + 2RS))

+ 2(1 - fFﬂ)LF (

T T U=p2 T U=pp (5:32)

where Cy, Cy, C, are defined in Theorem co = fo(xo, mo(x0,60)), and

+2€F(

Crho CLguLr0Crn0x) +PClnx6)CLg0
= N €F = 2 .
l-p (1-p)

Proof of Theorem[5.B.13] By Theorem and Theorem we know the

parameter sequence of GAPS satisfies that

Lp

T-1 2
DUIVE@)I* < =
t=0 n

T-1
Fo(60) + ) dist,(F;, Fi-1)
=1

+ (2(1 - fFT])LFﬁ + an . ,32) T,
(5.53)

where 8 = (CAO(1 —p) T+ (Cr+C)(1-p) 2+ (1 - P)_3) n+Crpo(l-p)~"-
oB. Here, Cy, C, C, are defined in Theorem

Note that Ly = Cf;—”p’” by Theorem|[5.B.5| Now we show that we can set

_ CLguLroCon0.x) + PCtix,0)CLyg.0
(1-p)? '
To see this, by Lemma[5.B.3] we obtain that the following inequality holds for every

tr

time step t,

. ahtlr
00,

IVF(6) = VF(6)]] =

(5.54a)

Ztl ahl|‘r
=0 697- XAT(Q/),G’

X(t—7+1)

)eT(g)vGX(t—T+|) =0
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aht|‘r
00,

aht|‘r
00,

,  (5.54b)

1
<)
=0

where we use the definition of surrogate cost functions in (5.54a); we use the triangle
inequality in (5.54b).

Note that for each term in (5.54)), we can decompose it as

%:(07),0

X(t—7+1)

Xr (9)76X(Z—T+1)

ahm _ 6ht|T
00 e @)0nieey 907 L0y, ..,
997 @00y 997 (00000
S
= T IR0 (0).0 j_pyOx(i-j) T (005 oy Oxa-i)

Note that for any time step 7, by the triangle inequality, we have

-1
1£0(6) = 261 < 3. 81000, B Be3)) = 80100 By, €y )|
Jj=0
= i—1 CLg uL7r6
S P L el A
=0

where we apply the time-invariant contractive perturbation in the last inequality.
Therefore, by Corollary we obtain that

aht|‘r
00,

aht|‘r
00,

£2(607).0x(1-7+1)
CLg,u ngC{’,h,(ﬁ,x) .
1 —

fr(e)sex(r—-ml)

PNl (5.56)

< Ct’,h,((),x)pl_‘r”)%r(e) - )27(9,)” <

We also see that

Ohyr _ Oy
06: (0.0 ey Oxa-j1) 0 R (0.0 (1) Oxtu=j)
) (3hz|j ~ ohyy ) 9gjir
e £7(0).0 (1~ j+1) 99; 27(07).0".0x - j) 06 e (0,85 j-m)
_|[2ha _ Ohy || %8t
9% 0000y 99 0000000 90 e (0705 o)
< ConP N0 =1l - CLgop’™ = Conro)Crgop' 16 = 6'll. (5.57)
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Substituting (5.56) and (5.57) into (5.55) gives that

Oy _ Ohye
897’ £7(0),0x (1-7+1) 691‘
< ( CLg,uLn',QCf,h,(e:x)

(0,0’

X(t—7+1)

-5 +(r - T)Cf,h,(x,O)CL,g,H) -pT6 - €.

Substituting this inequality into (5.54)) gives that
IVF(6) - VF(&)]]

<

2 (CLg,uLn,HC[,h,(H,X)
7=0 I- P

- CLgulroCrio +PCrno)Crys
= (1-p)?

_ CLguLn.0Cen,6,x)tPCe.n,(x,6)CL.g, 0
(1-p)?

Recall that the notation dist, is defined in Theorem|5.B.10. By Lemma|5.B.12} we
know that

+(t - T)Cf,h,(x,g)CL,g,e) -p'T6 =6l

-lle - o]l

Therefore, we can set £r =

T-1
ZdiSts(FtaFt—l)

C2CL (A + Lr) (14 Low) vy 2CLy(+ Lry) (C(Rs + Cllxoll) + Rs)
B (1-p)%p 1-p '
Substituting this inequality and the expressions of L, {r into (5.53) finishes the

proof. ]

Proof of Theorem |5.B.10)
By the smoothness of F;(-), we see that
¢
Fi(01s1) < Fi(00) + (VE(01). Ora1 = 0) + 10101 = 61

fFU

= F,(6,) - n{VF(6,), G;) + ——||G,|*

£
F” 0 VE 6]

— F,(6,) — n(VE,(6,), VF,(6,)) + 2L
—n{VF;(6,),G; — VF;(0;)) + fpl] (VF:(0;),G;, — VF(6,))
19 F 0 - G
< F(6) -7 (1 - "—) IVECGIP + 01— Eem)Lep+ 2.

(5.58)
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Summing (5.58) overr = 0, 1, ..., T—1 and rearranging the terms gives the following

inequalities:
ten T-1
F
n (1 - T) ||VFt(9t)||2
=0
T-1

IA

(F(6;) — F1(0:41)) + (77(1 — k)L + ,3 )
t=0
T-1

< Fo(0o) + Z (F;(6;) — Fi-1(6,)) + (77(1 —{rn)LFp + ﬁ )

t=1
T-1

< Fo(6o) + Z dists (F7, Fr-1) + ( (1 =€) Lrp + ﬁ ) (5.59)
=1

Proof of Lemma 5.B.11]

We first show the limit lim;_,e £5™ () exists. It suffices to show that {¥¢™ (§)}

is a Cauchy sequence. Note that for 7/ > 7 > 0, we have

257 (0) - 7 (0) < Z OREGIO) ICRT
< Z cpr)zﬁg’”’(e) —on (5.60b)
Jj=t

IA

C T

oo

l-p

where we use the triangle inequality in (5.60a) and Assumption [5.2.2] in (5.60Db).

Therefore, we see the limit lim;_,q, x(g )(9) exists because {x(g )(9)} is a Cauchy

sequence and we denote £ () = limy_o £57™ (6).

Now, we show that xf)f )(6?) is a fixed point of the time-invariant closed-loop

dynamics induced by (g, 7, 8). To see this, note that
¢ (247 (0), 747 (0),0)) = g (lim 757 (0), x( lim #57(0),0))

Jim g( &0 (6), (x4 (0), 9))

= lim £57(6) = 557 (0),

oo TH]

where we can pull out lim,_,, in the second equation because the right hand side is
a continuous function of ¥ (g )(9) at the point )Z(g ) (6) by Assumption m

Therefore, applying the contractive perturbation property in Assumption[5.2.2|gives
that

—xgﬂka_

|, —x§§’”>(9)H < Cp diam(X).
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Proof of Lemma

To simplify the notation, we introduce the notations

disty(g,8") = sup |lg(x,u) — g (x,u)ll,

xeX,uel
dist,(w.7') = sup _|w(x,0) — 7' (x. O)ll.
xeX,0€0
dist.(h,h") = sup |h(x,u) — K (x,u).
xeX,uel
For any 6 € ©, we see that
|Fy(0) — Fi-1(6)]
= |h; (£,(0), 7, (%,(0),0)) = hy—1 (£,-1(0), -1 (%,-1(6), 6))| (5.61a)
< hy (£(6), 71 (£:(6), 0)) — hy (£-1(0), 11 (£,-1(6), 0))| + distc (A, hy—1)
(5.61b)
< Ly (1%,(0) = %1 (O) || + |71 (%,(0), 0) — 7—1(£:-1(6), O)|I) + diste (A, hy—1)
(5.61¢)

< L (112:(0) = X1 (O) || + |17 (£,(8), 0) — 71, (£:-1 (), O)]])
+ (Lpdist, (7, 71,_1) + dist, (b, Br_1)) (5.61d)
< Lp(1+ L )1IZ(0) = £-1(O) || + (Lpdisty (77, wi-1) + diste (hy, hi-1)), (5.61e)
where we use the definition of the surrogate cost in (5.614a); we use the definition of

dist. in (5.61b); we use the assumption that /4, is Lipschitz in (5.61c); we use the
definition of dist, on (5.61d); we use the assumption that 7; is Lipschitz in (5.61¢)).

To bound ||%,(0) — X;-1(6)||, we first bound the difference between x;(6) and
)Z,(g’”)(e) for arbitrary (g, 7) € G. Note that £,(0) = g0 ()Eég’"), QX,), thus

t—1
5(0) - 5570 < 3

gilr+1 (ii‘i’f)(@), Hx(t—r—l)) - &l (fgg’")w),@x(z—r))”

(5.62a)
t—1
<y p PO - geare (£57@.0)|  s.620)
=0
t—1
<C Z p' ! (disty(gr, g) + Ly dist, (7., 7)), (5.62¢)
=0

where we use the triangle inequality in (5.62a); we use the contractive perturbation
property in (5.62b); we use the definitions of dist; and dist,, in (5.62c)).
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Therefore, we can decompose the distance between £;(6) and £;_(6), and bound it

by the total variation of dynamics and policies:

1(8) = £-1(O)]| < |[%:(6) — X&) (0)|| +

510) - 557 (0)|

+ |7 ﬂz)(e) ~(gt ”’)(Q)H ﬂr)(g) ~(gt ”z)(e)H
(5.63a)
t—1
<C Y p 7 (disty(gr, g) + Leadisty (n+, 7))
=0
-2
+C Y p 2 (disty(gr, g1) + Lyadist, (-, 7))
=0
+ Cp'diam(X) + Cp''diam(X) (5.63b)
2 S, .
< 1-p Pt 2 (dIStd(gT9gT+l) +Lg,ud|3tp(7r'r, 7TT+1))
=0
+2Cp"~tdiam(X), (5.63¢c)

where we use the triangle inequality in (5.634); in (5.63b)), we use the bound we
derived in (5.62)); in (5.63c)), we use the triangle inequality decomposition

-1 =1
dist;(gr, 1) < Z disty(g;+1,g;), and dist, (,, ;) < ZdiStp(ﬂj+1,7Tj)-

J=T j=T

Substituting this into (5.61)) gives that

dist,(F;, Fi—1)

2CL(1+ L,,x) Do
S 1 — Z t— 2 dlStd(gT9gT+l) +Lg udlst (JTT’ 7TT+1))
+2CLy(1 + L,r’x)pt—ldlam()() + (Lpdist, (7, m—1) + dist.(hy, hi—1)) (5.64)
because (5.63)) holds for arbitrary 6 € ©.

Summing (5.64) overt = 1,...,T — 1 and rearranging the terms give that

T-1
Z dist, (F;, Fi-1)

T-1 t-1

Z Z ,Dt_T_z (diStd(gT’ 8r+1) + Lg,udiStp(ﬂTa 7TT+1))

=1 =0

2CLh(1 + L,Tx)

~

T-1
+2CLy(1 + Lyy) Z o' 'diam(X) + Z(Lhdistp (17, 7i—1) + dist. (hy, hi_1))
t=1 t=1
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Table 5.1: Important notations in Section

Notation Meaning
t 1 The integer sequence {t{,...,l};
iyt A sequence of variables {a;};=;,,...+,;
|-l {» (Euclidean) norm;
|- 1lF Frobenius norm;
Il 1lp Norm induced by matrix P;
Zso The set of non-negative integers;
Rsg The set of non-negative reals;
o (214, 27.,) Product sigma-algebra generated by sequences z;;; and z}.;
X; x; € R" is the system state;
u; u; € R™ is the control input;
Wy w; € W C R" is a disturbance term;
fi(xe, ay) f 1s a nonlinear residual term where the online agent makes
(noisy) observations;
a; a; € A C R? is the unknown parameter in f;
fi(-,a) An estimation of the true nonlinear residual function f;(-, a;);
q:(x¢,y1,6;,a;) | The joint dynamics of the system at time ¢;
e (y) Euclidean projection of y to set ®;

2CLh(l + Lﬂ,x)(l + Lg,u) ZCLh(l + Ln,x)
< 5 - P+
(1-p)p l-p

5.C Notations and Definitions of Meta-Framework for Unknown Dynamics

- diam(X).

We provide a notation table (Table that summarizes the important notations in
Section[5.4]

A key concept that we explore in this paper is how to compare the actual trajectory

of our meta-framework with an “ideal” trajectory that the agent could achieve with

*

0:7-1°
notations of multi-step dynamics/cost that characterize how the system would evolve

exact knowledge of the true model parameters a we introduce the important

*

0:7T-1
of multi-step dynamics/cost are first introduced in Lin, Preiss, Anand, et al., 2023,

under a sequence of policy parameters 6y.r—; when a is known. The concepts
which studies online policy selection with known dynamical systems. In this work,
we replace all estimated d; in the policy classes with true a; to reproduce the same
definition as Lin, Preiss, Anand, et al., 2023\

Definition 5.C.1 (Multi-Step Dynamics and Cost). The multi-step dynamics g;‘IT
between two time steps T < t specifies the state x; as a function of the previous state
Xr and previous policy parameters 0., under exact predictions {a;}. It is defined

recursively, with the base case gilT(xT) = x; and the recursive case
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gf+1|T(xT, Or:) = & (Zt,ﬂt (Zt, Qt,ﬁ(Zt,a;)) 9ft(Zt,a;k)) +wy, Vi1,

in which z; = gflT(xT, Hm_l)ﬁ The multi-step cost hflT specifies the cost c; as
function of x; and 0+.,. It is defined as

;T(xn Or:1) = hy (Zt’ Ty (Zl’ s, fi(zs, a;k)) , 9;) .

It is worth emphasizing that, in our work, the concepts of multi-step dynamics/cost
are only used for the theoretical analysis, because their definitions involve true
model parameters that are unknown to the online agent. When doing online policy
optimization, the online agent may use the estimations g,1, and fzm (see (5.14)) as
the estimations of g7, | P and h; .» respectively. Note that this is different than the case
when true dynamics are known (Lin, Preiss, Anand, et al., 2023), where the online

agent can directly construct multi-step dynamics/cost (g;jr1| , and k7 ) or compute

t)t
the exact Jacobian matrices.

Another important definition that we require is the projected gradient, which is
introduced in Hazan, Singh, and Zhang, 2017 to accommodate the challenge of

converging to stationary points on a constrained set.

Definition 5.C.2 (Projected gradient). Let F : ® — R be a differentiable function
on a closed convex set ® C RY. Forn > 0, the (©,n)-projected gradient of F is
defined as

Vo, F(6) = % (6~ Tlo (6 - VF()))

When © is equal to the whole Euclidean space R? (unconstrained), the project
gradient in Definition will be identical with the normal gradient VF (). This
concept of projected gradient is used to define the local regret in Theorem[5.4.8]and
Appendix [5.E] to study online gradient descent for online nonconvex optimization

with constraints.

S5.D Assumptions of Meta-Framework for Unknown Dynamics
We state our key assumptions below: Assumption [5.2.1] is about the Lipschitz-
ness/smoothness properties of the dynamics, policy, nonlinear residual, and the cost

functions.

67, is an auxiliary variable to denote the state at # under initial state x, and parameters 6.;.
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Assumption 5.D.1. The dynamics ¢o.7—1, policies Yo.r—1, residuals fo.r-1, and
costs ho.r—1 are differentiable at every time step and satisfy that, for any convex
compact sets X € R", U C R™, one can find Lipschitzness/smoothness constants
(can depend on X and U ) such that:

1. ¢:(x,u) is (Lgy, Lyy)-Lipschitz and (Ly, Cg,)-smooth in (x,u) on X x U.

2. Y(x,0) is (Lyx, Ly g)-Lipschitz and (€y x, Ly g)-smooth in (x,0) on X X ©.

3. fi(x,a) is (Lyx, L¢q)-Lipschitz and (€fx, €y o)-smooth in (x,a) on X X A.

4. hi(x,u,0) is (Lpy, Ly, Lng)-Lipschitz and (€ x, €pus €no)-smooth in (x,u, 6)
on X XU x 6.

Compared with Assumption 2.1 in Lin, Preiss, Anand, et al., 2023} our Assump-

tion [5.2.1] additionally assumes the Lipschitzness and smoothness of the nonlinear

residual function f;, which is part of our dynamics and policy classes. The second

assumption (Assumption is on the contractive perturbation and the stability
. S

of the multi-step dynamics g e

Assumption 5.D.2. Let G denote the set of all possible sequences {d;, fr, Wi, W req
the environment may provide. For a fixed €y € R, the €y-time-varying contractive
perturbation holds with (Rc,C, p) for any sequence in G. The €g-time-varying
stability holds with Rg < Rc¢ for any sequence in G. We assume that the initial
state satisfies ||xo|| < (Rc — Rs)/C. Further, we assume that if {¢, f,w, ¢} is the
dynamics/residual/disturbance/policy at an intermediate time step of a sequence in

G, then the time-invariant sequence {¢, f,w, ¥ }xr is also in QIZ]

Compared with Assumption 2.2 in Lin, Preiss, Anand, et al.,[2023, our Assumption
[5.D.2]also includes the disturbance w; as a part of the system configuration. This is
because for every time ¢, g;“+l| . 1s formed by ¢, 7;, and w, together. While w, can
also be viewed as a part of the dynamics ¢;, we choose to represent it separately
because we will leverage the randomness of w; to bound the first-order model
mismatches of EST. Like Lin, Preiss, Anand, et al.,[2023| in Assumption we
assume there exists a positive real number R¢ such that Rc > Rc > Ry + Cllxo]l.
Here, we introduce the real constant R¢ because R¢ can be +co when time-varying
contractive perturbation (Definition[5.2.2)) holds globally. Similarly, to leverage the

TFor {#, f,w, ¥}« to be in G, it must satisfy other assumptions about contractive perturbation
and stability that we impose on G but does not need to occur in real problem instances. This
assumption can be made without the loss of generality for time-invariant dynamics and policy
classes.
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Lipschitzness/smoothness property, we require X 2 B(0, R,) where R, > CRc+Rgs
and U = {-f(x,a) +n(x,0) | x € X,0 € O,a € A,n,f € G}. Since the
coeflicients in Assumption depend on X and U, we will set X = B, (0, Ry)
and R, = CRc + Rg by default when presenting these constants. We also set

: CLyuLy,
Y = Bp(o, Ry) with Ry = p((ﬁl——p'/;é)’

so that the internal state y, will stay in V.
It is straightforward to verify that the joint dynamics of M-GAPS satisfy the three

properties required by the meta-framework. We state this result in Lemma

Lemma 5.D.1. Under Assumptions[5.2.1jand[5.D.2] M-GAPS (Algorithm|6) satisfy

Properties and when applied to dynamics (5.12) and policy class
(.13).

We present the specific constants and the formal proof of Lemma in Sec-
tion[5.El

For the part of EST that is instantiated with the gradient estimator (Algorithm [9),
we first introduce an assumption about the magnitude of the nonlinear residual
to guarantee that (several) bad estimations of the unknown model parameters will

not destabilize the system or violate the constraints of the contractive perturbation

property.

Assumption 5.D.3. The set of all possible model parameter A is a convex compact
subset of RX.  For any fixed x € B,(0,Ry), fi(x,") : A — R™ is an affine
function whose gradient is uniformly bounded, i.e., for some positive constant D’,,
IV fi(x,a)| < D} hold for all a € A. It also satisfies that for any a,a’ € A,

1fi(x,a) = fix,a)| < Cp, Vifilx,a) = Vifilx,d)lp < B < CY, and
||V§f,(x, a) — V)%ft(x, a')i”F <, for any dimensioni € [1 : m]

hold with some positive constants 3,7y, and the upper bounds Cy and C} are given
by

) \/ig_ min{R, — R;, Ry - R;} Z
Cy = min , , ,
4(L9,x + Lg,y)Cax Cozx 2&’9
- V27 ’ min{R, — R}, R, — R;}’ g .
f 4(L9,x + LO,y)Cﬁx Cﬁx 2,89

The expressions of ax, Bx, @, Bg, Lo x, Loy, R, R;, and Z are given in Section
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Note that we need Assumption [5.D.3] to bound the prediction errors uniformly
because even if an online parameter estimator performs well in the long term (e.g.,
achieving a regret bound on the total prediction errors), it may incur a large error
at a single time step that can potentially destabilize the system especially when
a; changes abruptly. Our simulation (see Appendix A in Lin, Preiss, Xie, et al.,
2024)) provides a good illustration of this intuition: The model prediction error
may increase dramatically right after the system switches to a different true model
parameter a;; Then, the error converges back to near zero as the gradient estimator
learns the model. Addressing this challenge with other assumptions like slowly

time-varying a; is an interesting future direction.

The second assumption we need is about the randomness provided by the environ-

ment:

Assumption 5.D.4. The total path length of the true model parameters satisfies
T-1

1+ Z |
r=1

Jfor some positive constant C,,. At every time step t, the noisy observation f; satisfies

that

a; —ai_|| < Cp

17 = fixisa))|| < ey, and ELf; | 7] = fixi, af).

Further, the random disturbance w, in the dynamical system (5.12)) satisfies that
Iw:|| <€ Elw, | F'] =0, and Cov(w, | F,) = cél.

Here, € satisfies that

1
/ ST I I |
(Cr+ey) (2Df\/3CP/T) <E< mln{Z, o 4"Ty},
where 3 and y are defined in Assumption[5.D.3]

Intuitively, Assumption put requirements on both the lower and upper bounds
of the level of randomness in the system. The lower bound € = Q(7~'/°) is required
due to the condition Rg(T) < &Tin Theoremm This guarantees that the zeroth-
order regret is sufficiently small to be used for bounding the first-order gradients in
Taylor’s expansion, which are multiplied by € when we take the square. The upper
bound of € is required to ignore the higher-order terms in Taylor’s expansion. With
these assumptions, we show the following guarantee on the total prediction error

achieved by the gradient estimator (Algorithm 9).
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Lemma 5.D.2. Under Assumptions[5.D.3|and[5.D.4} the total squared zeroth-order

prediction errors of the gradient estimator can be bounded by E [Zth_Ol 8,2] <

2V3(Cy +e7)’DA[C)T.

We defer the proof of Lemma to Section Note that our meta-framework
only requires us to bound the total squared zeroth-order prediction error incurred
by an instantiation of EST. Under Assumptions[5.D.3|and[5.D.4] we can apply The-
orem [5.4.5]in the meta-framework to bound the total squared first-order prediction
error of the gradient estimator by E [ZTT:_OI (8;)2] = O(méT). Recall that m is the

dimension of the unknown component, which is identical with the control input in

this application.

In Lemmas [5.D.1] and [5.D.2] we have shown that M-GAPS and the gradient es-

timator satisfy all the required properties for ALG and EST, respectively, in our

meta-framework. Therefore, we can obtain the local regret guarantees for instantiat-
ing our meta-framework with M-GAPS and the gradient estimator in the application
with matched-disturbance dynamics (Theorem [5.4.8)).

5.E Proof of Meta-Framework for Unknown Dynamics
Proof of Theorem
To simplify the notation, we define
) . \/QZ min{R, — R}, R, — R;}
£ '= min , .
4(L9,x + Lg,y)c C

By the assumption, we know that the following inequality holds for all time step #:
(ax +@y)e + (Be + By)e; < €. (5.65)

Now we show that [|x;|| < Ry, [[y:|| < Ry, and ||6; — 6;-1]| < €y by induction. These
inequalities hold for time step 0. Suppose they hold for all time steps 7 < ¢. Then,
for time step ¢ + 1, by Property [5.4.2] we see that

%11l < Ry, and [|F41]] < R, (5.66)

By Property [5.4.2]about the contraction of states x; and y, under policy parameters

6o.:, we see that

(X141, yt+1) — (%41, im) I

1
<2
=0

(x,y)= (x,y)*

qz+1|t+1—r(xt+1—7" Yt+l-15 91‘+1—T:l) - ql+1|t_T(xl‘—Ta Yt—1» GZ—TZI) (567&)




t
< Dy @ vis-0) = 45 G i O1m0)
=0
t
< y(7) ((a'x + ay)gt—r + (B +:8y)8;—-r)
=0
t
< Zy(‘r)é <Cs
=0

< min{R; - R, R, - R}},
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(5.67b)

(5.67¢c)

(5.67d)

(5.67¢)

where we use the triangle inequality in (5.67a)); we use the contractive perturbation

property in Property [5.4.2]in (5.67b); we use the induction assumption and Prop-
erty [5.4.1)in (5.67¢); we use (5.63) in (5.67d) and the definition of £ in (5.67¢). By

(5.66)) and (5.67)), we see that

Ixeet Il < (IZret Il + [[ K41 — X41]] < Ry, and

Nyt ll < NFeetll + [Tt = Yot ll < Ry.

(5.68)

Note that we can construct the disturbance sequence {{;} in Property such that

the dynamics

X4 0
Y+l | = Qt(it,f’z,@z,a;k) +10
91‘+1 él‘

produce the same policy parameter sequence {6;} as the dynamics

Xt+1
Y+l | = qi(xe,y:,6;,4y).
9t+1

Therefore, under this construction, we see that

Nl < ||9t+1 - qf(it,y,,et,af)”
= ”qte(xz’ Vi, 01, 4r) — Q?(il’ Vi, 0t a;k)”
< ||Qf(xt, Vi, 01, dr) — Qte(xt’ Vis 01, af)”
+ ||qf(x,, Vi, 0r,a7) — f]f(fz, Vi, 01, af)”
< @per + Pog; + Loxllxe — %ol + Loy|ly: — 34l
< @pe; + Pog; + ‘/E(Le,x + Loy (xz, ye) = (X1, ¥2) |l
< ape; + Boe; + \/§Cé(L9,x +Lgy) < Z,

(5.69a)
(5.69b)
(5.69¢)
(5.69d)
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where we use the triangle inequality in (5.694); we use Property [5.4.1]in (5.69D);
we use the inequality

e = %ol + lye = Fell < V201 (s y0) = o, )]

in (5.69¢)) and (5.67d)) in (5.69d)). Thus, by Property[5.4.3] we see that ||0;41 — 6| <

€g. Therefore, we have shown that

]l < R, lyell < Ry, and [|6; — 6,11 < €

hold for all time step ¢ by induction.

By (5.69¢) and (5.67¢), we also see that

121l < ags: + Bog, + V2(Lox + Loyl (xi, y1) = (%, 32)|

< ape; + Boe;

-1
+ \/E(Le,x + LG,y) Z y(7) ((ax + a’y)gt—l—r + (B +,8y)3;_1_7-) . (5.70)
=0
Summing (5.70) overt =0, 1,...,T — 1 gives that

T—

T-1
Dolall < (a0 + V2C(Lo + Loy (e +ay)) Y &

=0 =0

—

~
—

+ (B0 4+ V2C(Lox+ Loy) B+ By)) D 2.
=0
Summing overt=0,1,...,T — 1 gives that

T—

T-1
(ay + a’y) Z &+ (Bx +ﬁy) Z 8;) .
=0

=

—

T
Dl y) = G 3ol < €
t=1

Proof of Theorem 5.4.3

To simplify the notation, we let X,+1 = E[x;41 | G;] and let ¢;41 == Xz — Xp41.

We first focus on one dimension i of the model mismatch. By Taylor’s expansion,

we see that
. YA YA 1 .
er(x;, ;)i = e/(X;,ds)i + Vye (X, ap)iv + EL,TV%e,(x,, ar)its, (5.71)
where X; = wx; + (1 — w)X; for some w € [0, 1]. Note that we have

E [et(jét’ dt)ivxet(ft, dz)ilz | Gi-1] = et()zt, dz)ivxez(fz, CAlz)iE [t | Gi-1] = 0.
(5.72)
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Therefore, we see that the conditional expectation of the squared estimation error of

one dimension i can be bounded by

E [et(xt, dt)i2 | gz—l]

= et()\étaa,\t)l‘z + Vxet()zt,@t),'TCOV(Lt | Gi—1) Ve (X, dy);
- E2’)’e|et()\éh dt)il - E3),86’)% (5733)
> ei(Xr, @)} + | Vxer (B, a0ill* = Eyelen(Frn il = Eeve.  (5.73b)
Summing over t = 1,...,T and taking expectation on both sides gives that
T T T
R{T) 2 E| ) e, a)?| +E| ) [[Vee, (¥, a»ll,ﬂ — Y | ) le(E, a,),-|]
=1 =1 =1
-eB.y.T. (5.74)

Now we show that E [Zthl e, (%, d,)l.z] < €°T. For the sake of contradiction, suppose

T

Z e (X, dt)iz

=1

E > €T.

By (5.74), we see that
- .
RY(T) 2 E| ) e/, a,)}| - €y.E

L =1

T

Z les (X7, dt)i'] - E3ﬁe7eT

=1

[T ] T 2
>E|) e (%, a); —Ezye\E (Z|et<xt,au>l-|) —EBey.T (575
| =1

L =1

[ T ] T
2E|D e a)}| ~Eyey T E Ze,oz,,dt)?] ~ eyl (575b)
L =1 ) \ t=1
T T
=4|E Z er (X, &z)?] : E Z e (%, &t)?] - Ez?’eﬁ - E3Be?’eT
=1 t=1
1,
> 7 T, (5.75¢)

where we use Jensen’s inequality in (5.75a); we use Cauchy-Schwarz inequality in
(5.75b)); we use the assumptions that €y, < % and €B,y, < % in (5.75c). (5.75)

contradicts with our assumption that R(7T) < &T. Thus, we have shown that
E [217‘;1 el‘()\éh dl)lz] < E_2T
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Using the same argument as (5.75a)) and (5.75b])), we see that the expectation of the

total estimation error can be upper bounded by

T
Z le:(X¢, ap)il | < JT ‘E
t=1

Substituting into gives that

T

Z er (X, dt),-z

=1

E < €T. (5.76)

oE < R(T) +€y.E +EBey.T

T
VoA 2
D IVees (i, )il
=1

T
Z le/ (X, dp)il
t=1

< (1 +Ye +,8e7’e)€3T-

Therefore, we see that

T
E Z ||Vx€z(xz,dt)i||2]
=1
T T
< 2B | ) IIVeerE, aill® | + 2B | ) Ve (Fr, o) = Ve (i, )il
=1 t=1
2
< =1+, +,3e76)6_3T + 27§E2T- (5.77)
a

Summing (5.77) over dimensions i € [1 : k] finishes the proof of Theorem 5.4.5]

Proof of Lemma 5.D.1]
When applied to the dynamical system (5.12)) and the policy class (5.13), the joint
dynamics induced by applying M-GAPS with exact model parameters a;.,_, are

given by
Xer1 = q; (X1, Ve, 0p,a7) = e (Xp, Wi (X1, 0)) + Wy, (5.78a)
* gt*+1|z ag;k+1|t
Vil = q; (X1, Y1, 0r,a)) = o Vit | (5.78b)
Xt,0¢ X¢,0:
0 . ohy, ohy,

041 = qf (X1, ¥1,01,a;) =g | 041 — 7 Sy + . (5.78¢)

axt 0 69; p

Xt,0t Xt,0t

The joint dynamics induced by applying M-GAPS with inexact parameters do.7—1

are given by

Xil = Qf (Xt, Y1, 01, A1) = ¢ (X, i (X1, 00) + fi (2, a;k) — fi(xs,dr)) +wy,  (5.79a)
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. 841 98,
Vest = @ (e i, 00, d) = — Ly (5.79b)
(9xt (99t
X0 Xt,0;
7] ~ 8ilt|, ailm
Ore1 = q; (X1, Y1, 01, 41) =g |01 — 17 ¢ . (5.79¢)
8)6'; 09, 0
Xt,0t X501

where recall that we view do.7—; as external inputs as discussed in Section [5.4]

Since Lemma [5.D.T| consists three properties, we show them separately in Lemmas

S.E.IHS.E.3

Lemma 5.E.1. Consider the dynamical system

Xeel = q; (X6, Y1, 01, a7) = & (X0, i (X1, 61)) + Wy,

y * t+1|t t+1]t
= b b 9 b = L)
Y+l = 45 (X¢, y1, 01, ay) ox, Vi a0,
Xt,0: X¢,0¢
oh* oh*
041 = qe(xt,yzﬂz,a*) =1Ilg |041 — 1 i Vi il .
e ! ox; 80,
Xt,0+ X¢,0;

For any x;, y;, 0,, d, that satisfies
x|l < Ry, |lyell < Ry, 0, € ©,4; € A,
the following Lipschitzness conditions hold:

||Q;C(xt, Vi, 01, Cl:) - le(xt,)’t, 0:, &z)” < axe (g, dy, a;‘) +,8x8;(xt, dp, a;‘),
”qzy(xt, Vi, 04, a:) - Clty(xt,)’t, 0:, dt)” < a/yg,(x,, d, a;k) +,8y<9;(xt, dr, a;),

”‘I?(xt,)ﬁ, 0;, a;k) - %O(xt,)’t, 0:, dz)” < agei(xy, dy, a:) +ﬁ€8;(xz, dr, a?),

where

Ay = fh,MLlﬁﬁ’ ﬁx =ay= ﬁy =0,
ag =1 (Ry(Chx + ChuLpx + ChuLy ) + €hulyo) . Bo =nRyLpy.

Further, qf(x,y, 0,a;) is (Lo, Lg,y)-Lipschitz in (x,y), where

L(J,x = nRy ((fh,x + fh,u(Lf,x + L(//,x))(l + Lf,x + Lw,x) + Lh,u(ff,x + fgb,x))
+ 1 (CnxLyo+ Liulyx + ChuLyo(Lyx+ Lyy)),
LO,y = n(Lh,x + Lh,u(Lf,x + Llp,x))~

We provide the proof of Lemma later in this section.
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Lemma S5.E.2. Suppose the sequence 0o.r—1 is given and it satisfies the constraint

that 1|6, — 6,-1|| < €g for all time step t. Consider the dynamical system

Xesl = q; (X6, Y1, 0, a7) = ¢ (X1, U1 (X1, 6,)) + wy,

g:+1|t ag;k+1|t
06;

ox;

)’t+1 = q?)(xhyhgl"a;k) =

Yt

x:,0; X1,0;

We have that ||x;|| < Ry < Ry, |ly:|l < R < Ry always hold if the system starts from
(x7, yz) = (0,0). Here,

CLgo

1-p°

where recall that p is the decay factor defined in Assumption Further, from
any initial states (x-,yz), (X%, y-) that satisfy ||x||, ||x’T|| < Ry and ||y, ||y’T|| <R,

R; = Ry, and R; =

the trajectory satisfies

9

|Gers ye) = 1 y)|| < (2 =7) - || (ers y2) = (X5, ¥5)
where
¥(7) = (C+ Crg.(xx)Ry + Crg.6.)CT) p".
Note that vy satisfies

C+Crgxn)Ry . Crg.(6.0C

v(1) £ C, where C = .
; l-p (1-p)?

The definitions of the coeflicients Cy ¢ g, Cr g (xx)» Ce,g,(6,x) can be found in Lemma

[5.B.3]in Section And the proof of Lemma|5.E.2|can be found in Appendix

Lemma 5.E.3. Consider the dynamical system

Xesl = q; (X1, Y1, 01, a7) = @1 (X0, Y1 (x4, 01)) + wy,

8;. ag;
y * 141t t+1]t
= b b 0 b = b
Y+l = 45 (X1, y1, 6, a[) ox, Yt a0,
Xt,0+ X¢,0¢
0 * ah;l‘ 6h;k|[
0141 = q: (xt,yz, 0;, a;) =1Ilg | Oi+1 — n Yt + {t- (5.80)
ax, 0 (99[ 0
Xt,0t Xt,0¢

. . - J(-p)eg 1-p
Suppose the learning rate n satisfies n < mln{ Cono > Comiod } When ||| <

{ =min{l, e — CL%}”"} holds for all t, the resulting {0,} satisfies the slowly-time-
varying constraint ||0; — 0,_1|| < €g. Further, the trajectory {6,} achieves the local

regret guarantee
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2 2
Ry (T, {1&iYosi<r-1) < E(FO(QO) +80) + 1 p(CL,h,eSl + Crn(0,01152), where

2CLy(1+ Ly x+ Ly )(1+ Ly

0= '(Vss"'v)
(1-p)2p e
2CLy(1+ Ly «+Ls, .
A . v f’)-(2CRC+2RS),

1 Ci+C ¢ Ci+C ¢
s1:=(—+ : 52 3)Z||4|| ( T 3)77T,
n (I-p) -p) l-p (I-p)* (1-p)

S, = (l+ Co +C1+C2+C32+C5+C2+C4;).
I-p (1-p) (1-p)
1 G+C ¢ Ci+C ¢
e R DL R e
e (1-p) -p) l-p (I-p)* (1-p)

Here, the variation intensity is defined as

—

Vas =y ( sup llg0x,u) = i Cemll+ sup Il (x,0) = 1 (x, )
=1 YeXuel x€X,0€0
+  sup  |h(x,u,0) —ht-l(x,u,é’)l), and
xeX,ueU,0e®
T-1
Vie=") llwe = well

The bound can be simplified to

T 1

(1 # Vs + Vi) 40T+ + LS e,
t=1

Ry (T {llZYosisr-1) =

where the O(-) notation hides dependence on ﬁ,Rx,Ry,C_', and the Lipchitz-
ness/smoothness coefficients defined in Assumption[5.D.]]

The definition of the coefficient C; 5, ¢ can be found in Corollary[5.B .4]in Section[5.B]
We provide the proof of Lemma [5.E.3|later in this section.

Proof of Lemma[5.D.2]
By Assumptions [5.D.3|and [5.D.4] we see that for any a € A,

A

Lna, fi) < (fitxna) - fi)°
((fixrra) = fixnal)) = (fi = filxinal)))® < (Cp+ep)?
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We also see that the gradient of the loss ¢; with respect to a can be bounded above
by

IVl ) < 20Vafi(xrn @) - [fiCer @) = fi] < 2D (C + €.

By Theorem 10.1 in Hazan, 2016, we know that Algorithm [9] with the learning rate
L= C’;ef = % always achieves the guarantee that
/

T-

,_.

N,(xt,at,f,)—za(x,,at,f,) < RY(T) = 2V3(Cy + /)’ D)C,T.  (5.81)

=0

Letv, == f; — f,(x;,a’). We see that

E [0 dr. f1) = G Cxroals i) | 73]
=B [ ) = fiisa)) = vl = Il | 7]
= ||fi (i a0) - f; 2 (fi(xin ) = filxia;)) B v | 7]
= ||fixrn ) - fi(xioa

Therefore, we obtain that

T-1
E x[’al’ﬁ Zfl(x[’a[’ﬁ ]
t=0
T-1
= E[gl(‘xl‘aa,\la.fl) _gl(xl‘aa:a‘fl)]
t=0
T-1
= ZE [E [gl‘(xhdl"_fl) _gl(xha;k,_fl) | 7:[]]
t=0
T-1 T-1
= E [8,2] =E 8?] .
=0 =0

Combining this with (5.81)) gives that

T-1
E Z 3,2] < 2V3(Cy+ep)’D)/C,T.
=0

Then, we can apply Theorem [5.4.5|to conclude that

T-1

B> ()

t=0

< —(1 +7 + By)eTl + 2my?eT.
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Proof of Theorem

By Lemma and Theorem we know that the expected total prediction
errors achieved by the gradient estimator satisfy that

T-1

E|> &f| <2V3(Cs+e)*D}/C,T, and

=0
T-1
E

2
(e)?| < —m(l +7y + By)el + 2my*eT. (5.82)
c
t=0 |

By Holder’s inequality, we see that

(71 1
E gl < W(Cf + ef)%(D})%C;,_‘T%, and
(=0 |
(71 >
E gl < \/—(1+y+ﬁy)+272€-Vm6_-T. (5.83)
c
(=0 |

By Lemma 5.D. 1| we know that trajectory & achieves the local regret

T-1
1 1
5(1 + Viys + Vi) +nT + 773T + 5 Z ”Q”) . (5.84)

=1

R (T, {4l Yosi<r-1) = O

By Theorem [5.4.3]and Lemma we know that

r-1 T-1
E Z ||§,||] < (ag +V2C (Lo + Loy) (ax +ay)) E Zst]
=0 =0
-1
+(Bo+ V2C(Lo+ Loy) (B + B) ) B| D g;]
t=0
T-1 T-1
< ConE Ze[ +RyLy, - 7B Ze;] , (5.85)
=0 t=0

C+Cro. )Ry | Crig(0.0C

where C = = + =) by Lemma |5.E.2|and

Co=Ry(Cnx+ChuLlyx+ChuLlyx)+Chulyp

+V2C Ly (Ry((fh,x + b (L + Ly ) (1 + Lyy+Ly.)

+ Lh,u (ff,x + fw,x))

+ gh,wa,G + Lh,ugw,x + fh,uLt//,G(Lf,x + Lz//,x) + Lh,x + Lh,u(Lf,x + Lz//,x) .
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Substituting (5.85)) into (5.84) and applying (5.82) and (5.83) give us the following
bound:

Ro(T, {1 Yost<r—1) = O (%(1 + Viys + € T) + T + (Vmé + mé) - T) :

Further, by the last statement of Theorem [5.4.3] we obtain that

E

T-1
D b =%l + llye = 3l
t=0

:0(T3/4+\/m_E~T).

Proof of Lemma 5.E.1|
By Assumption we see that

”CI;C(XI, Vi, 01, A1) = q7 (X1, y1, 01, af)” < L¢7u||f,(x,, a;) — fi(xs, dt)” = Ly u&:.

(5.86)
We also have that
47 (X, Y1, 61, 41) = q7 (X1, y1, 01, a7). (5.87)
Note that
Iy, (xe, 00) = e (xe, 1/, 0,), where u; = —f;(x;, ay) + i (x1, 6r),
B (e, 0;) = hy(xp,u7, 0;), where uf = = f,(x;, Gr) + W (X1, 0y).
Therefore, we see that
ahflt _ ailtlz
0x; 0, 0x; 0
|| 9% xpul 6 0x; X1 u2,0; duy ol 0; 0x; Xp.al duy 12,0 0x; X7.0;
< Chx&r + (CnuLfx&r + Lipusl) + ChuLy <& (5.88b)

= (fh,x + fh,uLf,x + fh,uLl//,x)al + Lh,uag,

where we use the chain rule and the triangle inequality in (5.884); we use Assumption
5.D.1]in (5.88b)). Similarly, we also see that

oh’ ‘%tlt

t)t
00, 00,

on
al/l[

o

o
00,

_ )
aut

x0,u2,0, 90,

Xt,0;

(5.89a)

1
X1,0; X:,0; xull,ﬁt x¢,0;
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< ChuLy p&i, (5.89b)
where we use the chain rule in and Assumption [5.D.T]in (5.89b).
For qf, we see that
||Qf(xt, Vi, 01, dr) = Qze(xt, V> 64, a*)”
oh’ oh oh’ oh
tlt t|t tlt tlt
< - Sy + - 5.90
T ( (9)6, axt ) Ye ( 89[ 86[ ( a)
Xt,0; X¢,0¢ Xt,0; X¢,0¢
<n (Ry(fh,x + fh,uLf,x + fh,uLw,x) + thL,/,,g) &+ T]Rth,m‘:;, (5.90b)

where we use the property that projection onto ® is contractive in (5.90a)); we use

(5.88)) and

.89) in (5.90b)). We also see that

||qf(xt,y,,0,,af) - Q?(x;,)’;’gt, :

on’

t)t

(9xt

=7

on’

t)t

(9xt

Xz,0;

oh’

t)t

+ [
50,

Xts

oh* oh* oh*
t|t , t|t t|t
-y — + — 5.91
yt 8_xt yt 80[ 69t ( a)
)C;, t xtﬁt X;,GY
i Ayl | e =i
6)(1 ! 8)(,'; ! !
)C;,gf )C;,gf
_ Ot (5.91b)
00; ’ '
t X;set

where we use the property that projection onto @ is contractive in (5.91a), and apply
the triangle inequality in (5.91b). Note that

t|,(xz, 0,) = hy(x;,uy,0;), where u, =

—fi(xe, af) + ¥ (x1, 6;),
—fi(x;,a;) + i (x7, 6;).

t|z(xt’ ;) = hy(x],u;,0;), where u; =

Therefore, we see that

0h;‘|t ah;t
(9)6, 0.6, ﬁx, .0,
N — on| o] _om|  of
B axl XUz, 0; axt X ,u),0; aut XU ,0; axt X¢.af (911, x,.u}.0; axl x,.a;
oh 8 oh 8
— Wu) O o (5.92a)
aul XUz ,0; axt x;,0; aut X ,u;,0; 8)6; x;.0,
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< || 9 _ Oh o _ 9 9%
- axt Xtz ,0; 6xt X ,u},0; aut Xg,uy,0; auf X ,u;,0; axt Xp.a;
L || 2h of|  _ 9% o _ Ok 9%
u, X ,u},0; 0x; X¢.a; 0x; x;.a; du, X¢,Uy,0; 7 x,,u}.0; 0x; x¢,0;
oh Az Az
— — - — 5.92b
+ 61,” x;,u;ﬁ, ax, x1,0, axl x;,G, ' ( )
< Gl = xill + Cnallis = | + L (Enalee =i + Cnalfas = i)
Lot~ Lu (b =1+ ol ~16]) + Lt~
(5.92¢)
= (G (1+ Ly + Ly ) + Lo (Ep o+ €5.0)) e = x|
+ O (1 + Ly + Ly o) |Jur — uf
< ((Cnx + Cnu(Lyy+ Ly ))(L+ Lyy+ Ly ) + Lyu(Epx + €y ) e = x|,
(5.92d)

where we use the triangle inequality in (5.924) and (5.92b); we use Assumption
5.D.1]in (5.92¢) and (5.92d). Similarly, we also see that

om;,|  om,
00, o 00, w
Oh 0 oh 0
= || = ] - ] (5.93a)
6ut X¢,Uz,0t agt X¢,0; aut X;],u;,0; agt x7,0;
< |9 _ O A7 I P KL | _ O
B aut xt,u,ﬁ, aut X;,M;,et 80[ xl,Hl 6”[ x;,u;,@t aet x,,@, aet x;,@,
(5.93b)
< (CnxLy g+ Luuly ) e = || + Ly ol|ue — ]|, (5.93¢)
< (ChxLy g+ Liulyx + huLyo(Lyx+ Ly ) |Jx — x|, (5.93d)

where we use the chain rule in (5.93a)); we use the triangle inequality in (5.93b)); we
use Assumption [5.D.1]in (5.93c). Substituting (5.92)) and (5.93)) into (5.91) gives

that

lla? eea ye. 00.a5) = g (x]. ¥7. 61, a))
<Ry ((bnx + Cna(Lyx + Ly ) (1 + Ly + Ly ) + Liu(Crc + €y.0)) e = x|

+1(Lpx + Linu(Lyx + L)y = vi|

+ 0 (€nxLy.o + Lnulyx + CnuLlyo(Lyx+ Ly ) | — x|



< Loalfee =l + Loy [lye = ¥l

Proof of Lemma

Consider two trajectories {x;,.s,» y1,:1,} and {x,..,, ¥7,,, } given by

Xr4l = ¢‘r(xr, l//t(x‘ra QT)) +Wo,

% *
y ag7’+1|‘r T ag‘r+1|‘r
+1 =
T 0x+ ’ 00, ’
X7,07 x7,0¢
and
7 ’ ’
Xep1 = ¢T (x‘r’ wt (x‘r’ 97’)) +we,
k *
y, _ ag7+1|7 y, gT+1|T
T+1 axT ’ T 897- ) ’
X7,07 X7,0¢
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(5.94)

where 7 = t1,t1+1,...,1. Note that by Assumption we have that ||x,2 || < Ry

and for any x;,, x; whose norms are upper bounded by R¢

o ~ -1 o
o - < Co e,

2

(5.95)

where p is the decay factor of the contractive perturbation property defined in
Assumption For the y sequence, note that y,, and y;, can be expressed

equivalently as

* th—1 *
y _ agt2|t1 y " < agt2|T
I — (9— Vn E
by 00
d Xz, 5081 11— =1 R P
12Vt —1 7VT:ity—1
* 12_] *
. 81t L 8\r
yl‘z - ax y[] 69
ol g 7= R A
1Vt -1 Yty -1

By Lemma[5.B.3] we see that if y,, = 0, then

thy—1 ag*l thy—1 ag*|
”ylz“: Z (9:92: SZ 6;:

th—1

T=1] )C-,-,QT;,Z_l T=11 x‘r’gr:tz—l ™=h
We also see that
’
ylz - yt2
3k k k
_ || 28 nlt, y 8nln
= - "Vt
ax,l 8x,l , : ﬁxtl ,
X ,erl -1 X1 ,Qtlztz—l X ,9t1:t2—1

2

l’_
= Z Crgop™ " =

(5.96a)

(5.96b)

CrLgo

l-p
(5.97)
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e 8g;k2|7 g;k2|‘r
+ Z 56 - 6 (5.982)
7=t xrse-r:tz—l x{rse-r:zz—l
< Cg e P, = x4 || Ry + Crigup™ " [y, = y1 |
th—1
+Crg(om ), P [xe = x| (5.98b)
T=I|
< Crg P |xey =21, || Ry + Crigup™ ™" [y, = y1 |
th—1
+Cre(0.0) Z P> Cpm M xy, = x| (5.98¢)
T=h
< (C{f,g,(x,x)Ry + Ct’,g,(@,x)é(h - fl)) ptz_tl ||xt1 - x;I || + CL,g,xptz_tl ||yt1 - y;I ||
(5.98d)
Therefore, we see that
||('xl2’ ytz) - (xlfz’ y;z)”
< ey = x|+ [y, = 37| (5.992)

< Cp" M|y =] ||+ (Crg.vnRy + Crg 0.0 C 12 = 1)) o7 |y, = 1 |
+Cp""|yr, = 1| (5.99b)

< y(t2 = t)||Geeys ye) = (7L v (5.99¢)

where we use the triangle inequality in (5.99a); we use (5.95) and (5.98) and
C = CL g in (5.99D); we use the inequality that

||le —x;IH + ”)711 - y;IH < ‘/EH(XW)’n) - (x;py;l)”

and the definition of y(-) in (5.99¢).

Proof of Lemma
We compare the dynamical system (5.80) with the Ideal OGD update rule:
01 = Ho(0; —nVEF(6;)). (5.100)

Note that the update on 6, that the dynamical system (5.80) performs can be written
equivalently as

041 = e (6; —nG;) + &, (5.101)
where
t Oh*
0
G, = ! . 5.102
= 0. (5.102)
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By Theorem [5.E.7| we know that the bias of the gradient estimator G, compared

with the surrogate cost’s gradient VF; can be bounded by

G G +C é
||G,—VF,<91>||s( 4 S 2 )n

T—p (=p2 (1=pp

t—1 é3 é4
+ + +CAs(t—T))p"T||§TII,
; (1 -p (1-p)?

where the constants Cp.s are given in Theorem Let 6,41 be the actual next
policy parameter (following the update rule (5.101)). By Lemma|5.E.5| we see that

16r41 — e (8; —nVE(0:))| < nllG; = VFE(0)| + (|l

éo + él +éz + éz ) 2
n

l-p (1-p)2 (1-p)

+n§( &, G +C’s<r—r>)pf'fng ||
Li\1-p  (1-p)> ’

< ||§z||+(

Then, we can apply Theorem to obtain that

= 2 1 = LrS) + CrnSs
VouFi(@)|" < ———— | Fo(60) + . disty(Fy, F_y) | + 2,
2 Vo Fi (8] < YT 0(6o) 2 (Fp, Fi-1) = ntr
(5.103)

where distg is a metric that measures the distance between two surrogate cost
functions (see Theorem [5.E.4]for definition), and S and S, are given by

A A A T_l A A A A
1 C3+Cs Cy Co Ci+C &)
S ==+ >+ 3)anu( + ~ 3)77T,
n (=pp (1-pP) & [=p " (I=p? (1-p)
éo é1+éz+é3+és éz+é4)
I+ + 3 + ak
l-p (1-p) (I-p)
T-1

Sz:

2" (=02 2 —p T U=p 1-p)

By applying Lemma F.4 in Lin, Preiss, Anand, et al., 2023, we can bound the total
variational intensity on the surrogate costs by
= 2CLy(1+ Ly +Lp)(1+Lgy)

disty(F;, Fi_1) <
1= n (1-p)2p

: (Vsys + Vw)

— 1 63 + 65 64 2 é() él + 62 éz 2
—+ + + + T
. (1_p)3) > Gl + (< 7

[ ——1
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2CLy(1+ Ly +Lyy)
+
l-p

. (ZCRC + ZRS) .

i : , c C , :
Substituting the above inequality and Lp = =27, {p = =22 into (5.103) finishes

the proof.

Local Regret of Online Gradient Descent

Theorem 5.E.4. Consider the parameter sequence {0,} that satisfies

||9t+1 - (0; — UVG,nFt(Qt))” <np, forallt =2 0.

Suppose at every time t, Fy is {gp-smooth and Lg-Lipschitz in ©. If the learning rate
n< #, then the local regret ZIT:_OI ||V@,,]F,(9,)||2 is upper bounded by

-1 T-1 T-1 2

1 . LrY, o B +lrm 2,2 B;
— | Fy(80) + > disty(F,,F_) |+ = =,
n(1 — ntr) 0(6o) ; s(F, Fr-1) 1 - ntr

where dists(F, F’) = supyee |F(0) — F'(6).

Next, we state a property of projection onto the compact convex set ® € R? in
Lemma This is a classic result in convex optimization (see, for example,
Theorem 1.2.1 in Schneider, 2014).

Lemma 5.E.5. Let q and g’ be arbitrary points in RY. Let p = Tlg(q) and
p’ =Tle(q’). Then, the following inequality holds:

lp -2l <llg=4l.

Now we come back to the proof of Theorem

Define the quantity

1
€ = E (9t+1 - (6; - nV@),UFt(Qt))) :

We see that
0141 — 6, = _UVG),nFt(Qt) +né;. (5.104)
By the smoothness of F;(-), we see that

4
Fi(011) < Fi(8) + (VE(6). 6,1 = 6,) + 116101 = 6]



280

[ 2
= F;(6,) = n(VF(6,). Vo, Fi(6;) — &) + %Hv@,nme» — el
(5.105a)

£
= F,(0,) = 1{VF,(0,), Vo, F/(6,) + = F” IIV@nFt(et)ll

+1(VF(6,), &) — trn* (Ve , F,(6,), e,>+ 2 || &ll’>,  (5.105b)

where we use (5.104)) in (5.105a). Recall that © is a closed convex subset of R¢.
Since 8; —nVe,, F;(6;) is the projection of 6§, —nVF;(6;) onto ® and 6; € O, we have

((6; =nVF(6,)) — (6; - UVG),nFt(Qt)), 0; — (6, — 77V®,an(91))> <0.

Rearranging terms gives that

(VFi(0,), Vo, Fi(6) = ||[Ve, Fi (61|

Substituting this inequality into (5.105]) gives that
F(6) < F(0) = Va0 + 2 ||v@nFt(et)||

S (Y (6), &) — (Vo Fi(61), &) + 2L || &l
< F(6) = n(1 = £)||[Vo, Fi (6| +n||VFt(91)|| el
fF" L Vo Fi(6) + &l + trnPllel? (5.106a)
sF,<9,)—n<1—&n)llv@,,,Ft(et)ll +nLpBi+Cpn° B, (5.106b)

where we rearrange the terms and use the Cauchy-Schwarz inequality in (5.106a)); In

(5.106b)), we use the assumption ||&|| < B;. Summing (5.106) overz =0, 1,...,7T-1
gives that

T-1
n(1 =) Y Ve, Fi(0)]
t=0

~
—_

T-1 T-1
< D (Fi(0) = Fi(0w)) +nLr ) Bi+ e ) B
t=0 =0

t

Il
o

T-1 T-1 -1 -1
< Fo0) + ) (F(0) = Fir(00) + ) distu(Fi Fot) +n1Lr ) B+ Lol ) B
=1 t=1 =0 =0
(5.107a)
T-1 T-1 T-1
< Fol6o) + ) disty(Fo. Fre) +n1Lr ) B+ Lrm” ) B, (5.107b)
=1 =0 t=0

where we rearrange the terms and use Fr_; (67) > 0in (5.107a); we use the definition
of dist,(-, -) in (5.107D).
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Useful Lemmas

Theorem bounds the distances between the trajectory of M-GAPS with the
imaginary trajectory achieved by using 6, repeatedly from time step 0. It can be
shown using a similar approach as Theorem D.5 in Lin, Preiss, Anand, et al., 2023,
while a difference is that we consider an additional disturbance {; in the update rule
of policy parameters. We include the proof of Theorem in Appendix for
completeness.

Theorem 5.E.6. Suppose Assumptions |5.D.1| and |5.D.2| hold. Let {x;,u;, 0;}cq
denote the trajectory of

Xer1 = G (e, Ve, 0p,a7) = Py (Xp, i (X1, 0;)) + Wy, (5.108a)
o 08 08,1
Va1 = @) (v @) = —— Ly (5.108b)
6)(1‘ 69[
xlvgl X,,e;
6 * 6h;k|t ah:‘]t
01 = q; (X1, y1, 01, a7) =Tlg | 041 — 1 Vi + 4.
ﬁx, (99,
Xlsgl X;,e;
(5.108¢)

Suppose n and  satisfy the constraint that & = CLT}’:" +( < &. Then, both ||G||

and ||VF,(6,)|| are upper bounded by Cf;"p"’, and the following inequalities holds for

any two time steps T,t (T < t):

-1
CrLhe \ .
160 = 0cll < T2 (0= D)+ 3 el and |lxe = £(6))]| <
1_/? T'=1
CrnoCLgp0P ( 1 Croop [ =L
— 5 (-D+ N 1Zell+ ) o7 Il
(1-p)? I-p I-p TZT ’ Zg) ’

where we use the notation X.(0) = g:|0(x0’ Ox(z+1)), YO € O. Further, we have that

CrnoCrLooLln(1+ Ly, +L
|h[(Xt, ut, Ht)_Ft(et)l S L,h,@ L,¢,9 h( w,x f,x)p .

(1-p)3
CrooLn(1+ Ly +L =
N L.6.0Ln( Wx P 'ZPI_TH&”-
1_’0 =0

Recall that we define the gradient approximation G; for M-GAPS in Algorithm
Using this notation, the update rule of 6y.r—; in joint dynamics can be
simplified as

0141 = Mo (0141 —1Gy) + ;.
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To compare the trajectory of M-GAPS with the trajectory achieved by the online
gradient descent trajectory 0,.; = Ilg(8; — nVF;(6,)), we bound the difference

between G, and VF,(6;) in Theorem We provide its proof in Appendix
for completeness.

Theorem 5.E.7 (Gradient Bias). Suppose Assumptions|5.D.1\and |5.D.2| hold. Let
{x/, us, 0; } 17 denote the trajectory of (5.108)). Supposenand { satisfy the constraint
that &€ = C%}f" + < &. Then, the following holds for all T < t:

(?h;‘]o B 6h;‘l0
06 06
T lxo.00. ’ x0,(01)x (141

< (éo + él(t -7)+ éz(t - 7)2) o'y

=1 t—1
@2]m4+a§]f—ﬂmw)ﬁ*

T'=T

+

-1
+Cs ) o lgel.
/=0

for
¢ PCLoCLeo0Cen0x) ~ (1 =p)CrnoCrnox) +PCL0CLs.0Cen0,0)
0= , 1= s
(1-p)3 (1-p)?
» CLnoCenocros »  CreoCenonp
2 - 1 _ p 1) - 1 _ p )
. A~ Cre.oConoxp
Cs =Crpx,6)CLgp0> C5 = ¢ T Gl
—p
Next,
é() él + éz ég
G, = VE(6)|l < ( + >t 3)
l-p (1-p) (A-p)
-1, A A
C3 Cy A _
+ + +C5(t—T))Pt Nl
; ( l-p (1-p)?
Proof of Theorem

We first use induction to show that for all time step ¢ € 7,

Crno -
|G| < ﬁ,xt € B,(0,Rs + Cl|xol|]), us € U, and ||6;41 — ;|| < €9, (5.109)

where U = {y(x,0) — f(x,a) | x € B,(0,R;),0 € ©®,a € A, (¥, f) € G}.
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Note that |G| < Cp g < CIL;’;H by Corollary|5.B.4L We also have xo € B,,(0, Rs +
CHXOH) and up € U.

Suppose ||G;—1|| < L ¢ for some ¢ > 1. Then, sincen < (C& and the projection

onto ®is a contractlon, we see that
10; = Or—1ll < InGe-1ll + 112l < €.

Suppose ||6 — 0--1]| < € holds forall T <, 1i.e., 6p; € S¢,(0: 7). By Lemma D.2
in Lin, Preiss, Anand, et al., 2023 we see that

x; € B,(0,Rs + C||x0l|), and u; € U.
Therefore, by taking norm on both sides of the expression of G;, we see that

2 ahtlz—r
96, +

7=0

Z

=0

Gl =

Xt—7:0r—7:t
aht|t T
90,

(5.110a)

Xt—1.0t -1

IA

CL hop (5.110b)
7=0
CrLh
<
1—
where we use the triangle inequality in (5.110a)) and Corollary [5.B.4]in (5.110b).
Note that we can apply Corollary because x; € B, (0, Rs+ C||xp||). Therefore,

we have shown (5.109) by induction. One can use the same technique as (5.110) to

c
show ||VF;(6,)] < 1L€og'

Since the projection onto the set ® is a contraction, we obtain that for any ¢ > 7,

C
16, — 0] < —=2

(t—r)n+Z retl} (5.111)

T'=1

Now we bound the distance between x, and £,(6;) for T < r. We see that

llxr =2 (01| = gj—|0(x0, 00:r-1) — gj-|()(x0’ (01)x7)
-1
< Z gi|0(x0, 0o:1» (et)x(r—‘r’—l)) - g:|0(x0’ Bo:r-1, (GI)X(T—T'))H

/=0

(5.112a)



284

7—1
< g:|-,-' (x‘r’» 0, (et)x('r—‘r/—l)) - gih/ (X-,-', (Qt)X(T—T’))H
7/'=0
(5.112b)
7—1
< Z Crgop™ " |16 — 0| (5.112c)
7/'=0
CrnoC C
< L,hl,e_L,g,eﬂ Z 1Lh6‘ (t=7)n+ Z ”&H”) (5.112d)
/=0 =t
CrpoC
< L,hoCL,g.00P (t-1) + 1 -
(1-p)? —p
CL 0P —
- (Z 1o + Zp I ||)
T'=7

where we use the triangle inequality in (5.112a)); we use the definition of multi-step

dynamics in (5.112b)); we use Lemma[5.B.3|in (53.112¢)); we use (3.111)) in (5.112d).

Similarly, since x; € B,(0, Rs + C||xo||) and we also see that X;(6,) € B,(0, Rg +
C||xol|), we obtain that

| (xr, ug, 0;) — Fr(0,)| = e (xp, 1y, 0;) — By (:(60,),,(6;), 6;)]

< Ly (llx: = %O || + |lus — @:(0,)|]) (5.113a)
S Ly(1+Lyx+Lyy)|lx —%:(6,)]] (5.113b)
- CLnoCrpoln(1+ Ly +Lp)p
B (1-p)3
CrooLn(1+Lyx+Lysy)p L
— B o TNz (51130)

1- P =0
where we use Assumption[5.D.I|in (5.113a) and (5.113b)); we use (5.112)) in (5.113¢).

Proof of Theorem
To simplify the notation, we adopt the shorthand notations £,(6) := gjw(xo, Oxz)
and i (0) = . (%:(6), 8) throughout the proof.

We use the triangle inequality to do the decomposition

Gh:‘w Oh:‘m
00,
X0,00:¢ xo,(9t)x(z+|)
om | om,
|| 96,
X7,07:t Je‘r(gt)’(et)x(r—‘rﬂ)
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8h*

tt

on’

t|t

T

x-rﬁ‘rs(et)x(rfr) ﬁT(et),(at)X(lf‘zwl)

=1\l oh oh’
tr tt
+ —_— 5.114
,Z 90, " 90, .14
=T+l xT’HT:T’ﬂ(Qt)x(t—T’) x‘r’er:‘r’—h(et)x(t—‘r’ﬂ)

Note that we can apply Corollary to bound each term in (5.114)). For the first
term in (5.114)), since x., £;(6;), xr+1 € B,(0, Rc), we see that

o, an,
06
T x‘r»g‘ra(et)x(t—‘r) )%T(et)’(gt)x(t—‘rﬂ)
P T (Conollxe = £ (0D + Ceno,0)116: — 6-|l) (5.115a)
(1 = P)CL6Con6.0) + PCLIOCL6.6Ce 1, (6.6) =)
(1- )2 P n
o
PCLIOCLY0Ctn(00)  r .
(1-p)3
C Ceno.0)P
T (Z ||4T,||+pr e ||) (5.115b)

where we use Corollary [5.B.4]in (5.115a) and Theorem [5.E.6]in (5.115b)).

Forany 7/ € [T+ 1 : ¢ — 1], since x, xp4+1 € B, (0, Rc), we see that

ahjlr ‘9h;k|r

96 X s(0) (o) T D brer 1,00 xe—eran)
_ Ohiye B Ol 087,

0% | ity O bty 0% bty

< Ohye 6h:|r' 087,

0% | b0 B el | 9% Lt
< Conioyp' ™ N0 = 0|l - CLypop” * (5.116a)

i—r [ CLhe , !

< Cen)CLopo P - ( ) (t—=1)n+ T”ZT/ II{T//||) , (5.116b)

where we use Lemma(5.B.3]and Corollary[5.B.4]in (5.116a); we use Theorem|5.E.§|
in (5.116b). Substituting (5.113) and (5.116) into (5.114) finishes the proof of the

first inequality.
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For the second inequality, recall that G, and VF;(6,) are given by

t t
t|0 110
Gt = Z 69 ,VF;(H;) = Z 06
=0 T | xo.00. =0 ~ 7T %0, (81 )x(1+1)
Therefore, we see that
t * t o oh*
110 110
IG: = VE@)II = ||}, = -2.3
=0 =t x0.00; T=0 =T X0,(01)x (141
t || Oh* oh*
t|0 110
< Z — (5.117a)
00;_ 00,_
=0 =t x0,00:¢ =T %0,(01)x (1+1)
t
< @%+éﬂ+éﬂﬂpm (5.117b)
=0
-1 - =1
+ C3 Z (resal +C4 Z(T/_T)”{T'”) 'pt_T
=0 T'=1 =T
-1 -1
+Cs ) Z PN (5.117c)
=0 7'=

éo C1+C2 CA‘2
< + 2 T 37
l-p (1-p) (A-p)

t—1 é3 64
+ + +Cs(t —T))p”llg“fll,
TZ::‘) (1 -p (1-p)?

where we use the triangle inequality in (5.117a); we use the first inequality in
Theorem that we have shown and Corollary [5.B.4]in (5.117c).

5.F Proof of Application: Using Predictions Adaptively
Proof of Lemma[5.5.1]
By the perturbation bound in (5.16)), we see that for any ¢’ > ¢,

67 (2, 0zt Q) = UF (¥} Oxr—r); O || < Copy ™" ||ye = vi|-
Therefore, we obtain that for any ¢’ > £,
H(At,_1 — By RD ) (Ap2— By oRT)) (A, - B,IZ}”)H < Copl™. (5.118)
Now we show that

At = B R (A2 = BroREy) - (4 - BEY)| < Cop™. (5.119)
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To see this, we construct a sequence V;.7—1 such that V4 = —Azik 1,//t’+k (x7, Oxcies Q~)xt+k
and v, =0fort #t+k,7 € [t: T — 1]. We observe that

”%Hk(xt, Oxks Q) - l/’tT(xt, Ox(1-1)5 Q)”
= |l e, Der—15 Q) — ¥ (X1, Ox(r—r); O

< Copil1Peskll < Caapdt|lx|l,

where we use (5.16)) in the last line. To simplify the notation, we define MP =
Ar — BTIép )and @ = Cgp(z)kab. By the above inequality, we see that

HM,“‘) - MiT’H <aNteT. (5.120)
Therefore, we obtain that
t'—t ;.
T B () T
j=0
< Coply ™ (1+ Coa)' ™ < Cop" ™, (5.121b)

where we use the decomposition MT(k) = MT(T) + (MT(k) — MﬁT)), the triangle in-
equality, and (5.120) in (5.1214d); we use the condition that

k2 1oz (Clabpo/(p ~ po)) /log(1 /)

in (5.121b). This finishes the proof of (5.119).

Now we consider two trajectories that apply the same policy parameter sequence

but start from different states x, and x”.. For arbitrary 0,.,_; = @7, we see that

||gt|'r(xr» G‘rzt—l) - gt|'r(x-/p G‘r:t—l)”
- k —_ —_
= A = BARED (Ao = BaRE) - (A = BRE) (e - x)

(5.122a)
< Cop' |l = x4, (5.122b)
where we use the affine expression of 7, (5.17)) and the fact that these two trajectories

experience the same sequence of disturbances and predictions. This finishes the

proof of e-time-varying contractive perturbation with € = +co and R¢ = +oo.

By the perturbation bound in (5.16), we also see that

t+k—1
”%Hk(O, Versk-13 Q)u, = U1 (0, Vigako1: Q|| < Co Z Py ' [lve = Vil
T=t



288

Combining this inequality with the affine relationship in (5.118), we see that

Kt(k,f)

< Cop?™". (5.123)

Therefore, we obtain that

||gt|T (0, g'rzt—l) ||

t—1
Z(At—l - Bz—lkt(fz) -+ (A1 — Bt R
i=T

i+k-1 )
Wim D ﬂ,[]_l]lzi(k’])wfli)

i+1
J=i
-1 ‘ k=1
< > Cop' T wi = T AR, (5.124a)
=T Jj=i
t—1 ‘ i+k—1 o
< ZCop’_l_’ W+ Z Copé_lvT/) (5.124b)
i= =i

Co(1 = po + Co)w
(1-po)(1-p)°
where we use the triangle inequality and (5.119) in (5.124a)); we use the trian-

gle inequality and (5.123)) in (5.124b)). This finishes the proof of e-time-varying
stability.
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Chapter 6

REINFORCEMENT LEARNING IN NETWORKED SYSTEMS

The policy optimization setting that we study in Chapter [5] only involves a single
agent. However, a practical challenge of policy optimization may arise when we
apply it to a large-scale network formed by a team of agents: We cannot afford
to gather global information for policy evaluation or gradient approximation. In
this chapter, we demonstrate how such challenges can be overcome in a class of
networked MARL problems with stochastic, nonlocal dependency structures. Key
to our approach is the identification of a structural decay property, which says that
the local Q-function of each agent i depends mainly on the states of the agents who
are near i in the network. We leverage this decay property to design a scalable
actor-critic algorithm with provable finite-time error bound. We discuss the core
technical innovation underlying our theoretical analysis and test our algorithm in the

applications of wireless networks and spreading networks.
The results in this chapter are based on the following paper:

[Lin, Qu, et al., 2021] Lin, Yiheng, Guannan Qu, Longbo Huang, and Adam
Wierman. “Multi-agent reinforcement learning in stochastic networked systems.”
Advances in Neural Information Processing Systems 34 (2021): 7825-7837.

6.1 Problem Setting

We consider a network of agents that are associated with an underlying undirected
graph G = (N, &), where N = {1,2,---,n} denotes the set of agents and & C
N x N denotes the set of edges. The distance dg (i, j) between two agents i and j is
defined as the number of edges on the shortest path that connects them on graph G.
Each agent is associated with its local state s; € S; and local action a; € A; where
S; and A; are finite sets. The global state/action is defined as the combination
of all local states/actions, i.e., s = (51, ,5,) € S ;=81 X--- XS, and a =
(ar, - ,ap) € A=A X x A,. We use N to denote the k-hop neighborhood
of agention G, i.e., Nf := {j € N | dg(i, ) < «}. Let f(«) := sup; |le| For a

subset M C N, let s)7/ay denote the states/actions of agents in M.

Before we define the transitions and rewards, we first define the notion of active

link sets, which are directed graphs on the agents N and they characterize the
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interaction structure among the agents. More specifically, an active link set is a
set of directed edges that contains all self-loops, i.e., a subset of N X N and a
super set of {(i,i) | i € N}. Generally speaking, (j,i) € L means agent j can
affect agent i in the active link set L. Given an active link set L, we also use
N;(L) :={j € N | (j,i) € L} todenote the set of all agents (include itself) who can
affect agent 7 in the active link set L. In this paper, we consider a pair of active link
sets (L;, L}) that is independently drawn from some joint distribution O at each
time step t where the distribution O will be defined using the underlying graph G
later in Section The role of L7 /L; is that they define the dependence structure

of state transition/reward at time ¢, which we detail below.

Transitions. Attime ¢, given the current state, action s(z), a(t) and the active link set
L7, the next individual state s;(¢ + 1) is independently generated and only depends
on the state/action of the agents in N;(L;). In other words, we have,

P(s(t+1)|s(1),a(r), L)) = n Pi(si(t + Dsn s (1), anyLy) (1), Ly).  (6.1)
ieN
Rewards. Each agent is associated with a local reward function r;. At time ¢z, itis a
function of L; and the state/action of agents in N;(Lf): ri(L{, sn,Lr) (1), an;Lr)(1))-
The global reward r(¢) is defined to be the summation of the local rewards r;(¢).

Policy. Each agent follows a localized policy that depends on its S-hop neighbor-
hood, where 8 > O1is a fixed integer. Specifically, at time step ¢, given the global state
s(t), agent i adopts a local policy ¢; parameterized by 6; to decide the distribution
of a;(t) based on the the states of agents in Nl.ﬁ .

Our objective is for all the agents to cooperatively maximize the discounted global
reward, i.e., J(0) = ESN,TO[Z;’ZO Y'r(s(t),a(r)) | s(0) = s], where 7 is a given
distribution on the initial global state, and we recall r(s(z), a(t)) is the global stage

reward defined as the sum of all local rewards at time .

Examples. To highlight the applicability of the general model, we include two
examples of networked systems that feature the dependence structure captured by
our model in Section [6.4; a wireless communication example and an example of

controlling a process that spreads over a network.

Note that a limitation of our setting is that the dependence structure we consider

is stationary, in the sense that dependencies are sampled i.i.d. from the distribution

'Here, correlations between L and L are possible.
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P. It is important to consider more general time-varying forms (e.g., Markovian)

in future research.

Background. Before moving on, we review a few key concepts in RL which will be
useful in the rest of the section. We use ¥ to denote the distribution of s(¢) under
policy 6 given that s(0) ~ mg. A well-known result (Sutton et al., 1999) is that the
gradient of the objective VJ(6) can be computed by

1

mJESN,TQ,MQ(.MQ@(s, a)Vlog ¥ (a | s), (6.2)

where distribution 7%(s) = (1 — y) X2, ¥'7?(s) is the discounted state visitation
distribution. Evaluating the Q-function Q?(s, a) plays a key role in approximat-

ing VJ(6). The local Q-function for agent i is the discounted local reward, i.e.,
Qf(s, a) =Eo [ Yoo Y'ri(t) | s(0) = s5,a(0) = a|, where we use r;(z) to denote the
local reward of agent i at time step 7. Using local Q-functions, we can decompose
the global Q-function as Q(s,a) = %Zl’.’zl Qf(s, a), which allows each node to
evaluate its local Q-function separately.

A key challenge in our MARL setting is that directly estimating the Q-functions is
not scalable since the size of the Q-functions is exponentially large in the number of
agents. Therefore, in Section[6.2] we study structural properties of the Q-functions
resulting from the dependence structure in the transition (6.1), which enables us to

design a scalable RL algorithm in Section [6.3]

6.2 Decay Properties of Local Q Functions

One of the core challenges for MARL is that the size of the Q function is expo-
nentially large in the number of agents. The key to our algorithm and its analysis
is the identification of a novel structural decay property for the Q-function, which
says that the local Q-function of each agent i is mainly decided by the states of the
agents who are near i. This property is critical for the design of scalable algorithms
because it enables the agents to reduce the dimension of the Q-function by truncating
its dependence of the states and actions of far away agents. Recently, exponential
decay has been shown to hold in networked MARL when the network is static (Qu,
Wierman, and Li, 2020; Qu, Lin, et al.,|2020), which is exploited to design a scalable
RL algorithm. However, in stochastic network settings it is too much to hope for
exponential decay in general (Easley, Kleinberg, et al., 2012), and so we introduce
the more general notion of u-decay here, where u is a function that converges to 0

as « tends to infinity. The case of exponential decay that has been studied previously



292

corresponds to u(«) = y*/(1 —v). The formal definition of u-decay is given below,

. . L .o
where for simplicity, we use i — j to denote (i, j) € L and denote N¥, := N'\ N*.

Definition 6.2.1. For a function pu : N — R that satisfies limy_, oo (k) = 0, the
u-decay property holds if for any policy 6 and any i € N, the local Q function
Qf satisfies |Q?(s, a) - Q?(s’, a’)| < u(k) for any (s, a), (s’,a’) that are identical

’
Nk

13

within N, i.e., SNE = S;V{(, ans =a
1

Intuitively, if the u-decay property holds and (k) decays quickly as « increases, we
can approximately decompose the global Q functionas Q(s, a) = % i Q? (s,a) =
% 2y QA?(sNiK, a Nf)’ where Qi only depends on the states and actions within the
k-hop neighborhood of agent i. Before our work, Sunehag et al., 2018 empirically
showed that such a value decomposition allows efficient training of MARL. Under
the assumption that such decomposition exists, Sunehag et al., 2018 propose an
approach to learn this decomposition. In contrast, as we prove in this section,
the u decay property holds provably and therefore, the global Q function can be
directly decomposed in the networked MARL model and that the error of such

decomposition is provably small.

Our first result is Theorem [6.2.1| which shows the relationship between the random
active link sets and the u-decay property. The proof of Theorem [6.2.1]is deferred to
Section

Theorem 6.2.1. Define L¢ as the static active link set that contains all pairs (i, j)
whose graph distance on G is less than or equal to B, which is the dependency of
local policy. Let random variable X;(k) denote the smallest t € N such that there
exists a chain of agents

LS a LS LS a
a 0 g LY g T -1 . LY 4
e e e e Ak

Ly
that satisfies j§ € NX, and j{i — i. The u-decay property holds for u(x) =
ﬁE [»)/Xi(K)] )

To make the p-decay result more concrete, we provide several scenarios that yield
different upper bounds on the term E [7Xi (K)]. In the first scenario, we study the
case where long range links do not exist in Corollary In this case, we obtain
an exponential decay property that generalizes the result in Qu, Wierman, and Li,
2020. A proof is in Section [6.A]
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Corollary 6.2.2 (Exponential Decay). Consider a distribution D of active link sets
that satisfies

Ps.iry~o{(i,j) € L*}y =0, foralli,j e N s.t. dg(i, j) > a1,
Pps.iry-o{(i,j) € L'} =0, foralli,j € N s.t. dg(i, j) > as.

Then, E [yXi®| < Cp¥, where p = y!/(@*h) C = y~az/(@+h),

In the second scenario, long range active links can occur, but with exponentially
small probability with respect to their distance. In this case, we can obtain a near-
exponential decay property where u (k) = O(p*/'°2)) for some p € (0, 1). A proof
can be found in Section[6.Al

Theorem 6.2.3 (Near-Exponential Decay). Suppose the distribution D of active
link sets satisfies

Prs,pry~p{(i,j) e L UL} < cA% D foralli,j e N,

where ¢ > 1,1 > A1 > 0 are constants. If the largest size of the k neighborhood in
the underlying graph G can be bounded by a polynomial of k, i.e., there exists some
constants co > 1,ng € N such that |{j eN |dg(i,j) = K}| < co(k + 1) holds for
alli, then E [yxi("_l)] < Cp¥/+In(+D) g5 some positive constant C and decay rate
p <1 EI

It is interesting to compare the result above with models of the so-called “small
world phenomena" in social networks, e.g., Easley, Kleinberg, et al., 2012l In these
models, a link (i, j) occurs with probability 1/poly(dg (i, j)), as opposed to the
exponential dependence in Lemma In this case, one can see function u(«) is
lower bounded by 1/poly(«), which leads us to conjecture that u(«) is also upper
bounded by O(1/poly(x)). Thus, when information spreads “slowly” it helps a

localized algorithm to learn efficiently.

6.3 Learning with Localized Observations

Motivated by the u-decay property of the Q-functions, we design a novel Scal-
able Actor Critic algorithm (Algorithm [I0) for networked MARL problem, which
exploits the u-decay result in the previous section. The Critic part uses the local
trajectory {(snx, anx,r;)} to evaluate the local Q-functions under parameter 6(m).

Intuitively, the u-decay property guarantees that we can achieve good approximation

2The explicit expression of C and p can be found in Section
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Algorithm 10: Scalable Actor Critic

form=0,1,2,--- do
Sample initial global state s(0) ~ 7.

Each node i takes action a;(0) ~ ¢ 1.67" (m)(- | s,5(0)) to obtain the global
state s(1). l

Each node i records sy« (0), anx(0), ;(0) and initialize Q? to be all zero
vector.

forr=1,---,T do
Each node i takes action a; () ~ %™

l
state s(7+1).
Each node i update the local estimation Q; with step size a,—; =

(-]s NP (7)) to obtain the global

t—1+ty°

0! (swp (1 = Dsans (1= 1)) = (1= - 0L~ st = 1, ans (1 = 1)
+ar (ri(0) +y0f™ (s (0, ans (1)),

and for (st,aNf) # (SN;(t — D, an(t - 1))’ let

A

0; (SNl.KaaNi’() =0;™! (SNiK,aNiK) :

end
Each node i approximate Vg,J(6) by

T
gi(m) :ny% 2 OF (swy (1), ans () Vo, 1og & (ai(0) | 5, (1)

t=0 JEN

Each node i conducts gradient ascent by 6;(m + 1) = 6;(m) + n,,8;(m).
end

error even when « is not large. The Actor part computes the estimated partial deriva-
tive using the estimated local Q-functions, and uses the partial derivative to update
local parameter 6;. Compared with the Scalable Actor Critic algorithm proposed in
Qu, Wierman, and Li, 2020, Algorithm [10|extends the policy dependency structure
considered. No longer is the dependency completely local; it now extends to all
agents within the 8-hop neighborhood. Interestingly, the time-varying dependencies

do not add complexity into the algorithm (though the analysis is more complex).

Algorithm[I0]is highly scalable. Each agent i needs only to query and store the infor-
mation within its k-hop neighborhood during the learning process. The parameter «

can be set to balance accuracy and complexity. Specifically, as k increases, the error
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bound becomes tighter at the expense of increasing computation, communication,

and space complexity.

Error Bounds of the Critic Part
We first describe the assumption needed in our result. It focuses on the Markov
chain formed by the global state-action pair (s, a) under a fixed policy parameter

0 and is standard for finite-time convergence results in RL, e.g., Srikant and Ying,
2019; Brémaud, [2001; Qu and Wierman, 2020,

Assumption 6.3.1. Under any fixed policy 0, {z(t) := (s(t),a(t))} is an aperiodic
and irreducible Markov chain on state space Z := S X A with a unique stationary
distribution d° = (dg,z € ), which satisfies dg > 0,Vz € Z. Define d?(7) =
DizeZ zyk=2 d?(z) and o’ (k) = infz’eZNl_K d? (7). There exists positive constants
K1, K> such that Ko > 1 and V7 € Z,Vt > 0,

sup
KcZ

Z d - Z P(z(1) = z | 2(0) = 2)| < Kye™"/%2,

zeK zeK

We next analyze the Critic part of Algorithm[I0] within a given outer loop iteration
m. Since the policy is fixed in the inner loop, the global state/action pair (s, @) in the
original MDP can be viewed as the state of a Markov chain. We observe that each
local estimate Qf (sN’,K, a Nf) can be viewed as a form of state aggregation, where
the global state (s, a) is “compressed” to h(s,a) := (syx, anx). Broadly speaking,
the technique of state aggregation is one of the easiest-to-deploy schemes for state
space compression (Jiang, [2018}; Singh, Jaakkola, and Jordan, [1995)), while its final
performance relies heavily on whether the state aggregation map 4 only aggregates
“similar” states. To have a good approximate equivalence, we need to find a good
h, i.e., if two states are mapped to the same abstract state, their value functions are
required to be close (to be discussed in Theorem|[6.3.3). In the context of networked
MARL, the u decay property (Definition [6.2.1)) provides a natural mapping for state
aggregation h(s,a) := (snx,anx) which we defined earlier. This mapping 4 maps
the global state/action to the local states/actions in agent i’s k-hop neighborhood
and the u-decay property guarantees that if h(s,a) = h(s’,a’), the difference in
their Q-functions is upper bounded by u(«), which is vanishing as « increases. This
shows that the mapping /& we used is “good” in the sense it aggregates very similar
global state-action pairs. This idea leads to the following theorem about the Critic
part of Scalable Actor Critic (Algorithm [10).
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Theorem 6.3.1. Suppose Assumption and p-decay property (Definition
% with to = max(4H,2K,logT), and H >
Define constant Cy, := 4K (1 + 2K, + 4H). Then, inside outer loop

hold. Let the step size be a; =
2
(1-y)o" (x)°
iteration m, for each i € N, with probability at least 1 — 6, we have
’
G, G, ,u(K)’
NT+tg T+t 1-vy

sup 07" (s,a) = OF (snr. awe)
(s,a)eESXA

where the constants are given by C, = %\/Kz logT (log (w) +loglog T)

14KoH g T | ¢y, 2Ky log T + to}.

o’ (k)

and C), = (l_gy)z max{

The proof of Theorem [6.3.1] can be found in Section The most related result
in the literature to Theorem [6.3.1]is Theorem 7 in Qu, Wierman, and Li, [2020| In
comparison, Theorem [6.3.1] applies for more general, potentially non-local, depen-
dencies and, also, improves the constant term by a factor of 1/(1 — y).

Proof Idea: Stochastic Approximation and State Aggregation

In this section, we present the key technical innovation underlying our results on
MARL in Theorem [6.3.1} a new finite-time analysis of a general asynchronous
stochastic approximation (SA) scheme. The truncation enabled by u-decay provides
a form of state aggregation, which we analyze via a general SA scheme. Further, this
SA scheme is of interest more broadly, e.g., to the settings of TD learning with state

aggregation and asynchronous Q-learning with state aggregation (see Section [0.B).

Stochastic Approximation. Consider a finite-state Markov chain whose state space
is given by N' = {1,2,--- ,n}. Let {i,};2, be the sequence of states visited by
this Markov chain. Our focus is generalizing the following asynchronous stochastic
approximation (SA) scheme, which is studied in Tsitsiklis, 1994; Shah and Xie,
2018; Wainwright, 2019: Let parameter x € RN, and F : RY — RN be a %
contraction in the infinity norm. The update rule of the SA scheme is given by
X, (1 + 1) = x;,(1) + a; (F, (x(2)) = x;,(1) + w(1)) 63)
xj(t+1)=x;(t)forj#i,j €N,
where w(t) is a noise sequence. Itis shown in Qu and Wierman, 2020 that parameter
x(t) converges to the unique fixed point of F at the rate of O (1 / \ﬁ)

While general, in many cases, including networked MARL, we do not wish to

calculate an entry for every state in AV in parameter x, but instead, wish to calculate
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“aggregated entries.” Specifically, at each time step, after i; is generated, we use
a surjection & to decide which dimension of parameter x should be updated. This
technique, referred to as state aggregation, is one of the easiest-to-deploy schemes
for state space compression in the RL literature (Jiang, 2018; Singh, Jaakkola,
and Jordan, |1995). In the generalized SA scheme, our objective is to specify the

convergence point as well as obtain a finite-time error bound.

Formally, to define the generalization of (6.3), let N = {1, -- -, n} be the state space
of {i;} and M = {1,--- ,m}, (m < n) be the abstract state space. The surjection
h : N — M is used to convert every state in N to its abstraction in M. Given
parameter x € RM and function F : RN — R/, we consider the generalized SA

scheme that updates x(¢) € RM starting from x(0) = 0,

Xn(i (1 +1) = xn,) (1) + @ (Fi, (@x(1) = xp,) (1) + w(1))

(6.4)
)Cj(l+ 1) :Xj(l) fOI'j * h(ll),] eM,
where the feature matrix ® € RV*M ig defined as
Loifh() =)
(I),'j: ,VZEN,]EM. (65)

0 otherwise

In order to state our main result characterizing the convergence of (6.4), we must
first state a few definitions and assumptions. To begin, we define the weighted
infinity norm as in Qu and Wierman, 2020, except that we extend its definition so
as to define the contraction of function F. The reason we use the weighted infinity
norm as opposed to the standard infinity norm is that its generality can be used in

certain settings for undiscounted RL, as shown in Tsitsiklis, |1994}; Bertsekas, 2007,

Definition 6.3.1 (Weighted Infinity Norm). Fix a positive vector v € RM. For
|xi ]
Vhi)”

bl
Vi

x € RM, we define ||x||, := Sup;epm . Forx € RN, we define ||x]|, = SUP;en

Next, we state our assumption on the mixing rate of the Markov chain {i, }, which is
common in the literature (Tsitsiklis and Van Roy, 1996} Srikant and Ying, 2019). It
holds for any finite-state Markov chain which is aperiodic and irreducible (Brémaud,
2001)).

Assumption 6.3.2 (Stationary Distribution and Geometric Mixing Rate). {i;} is an
aperiodic and irreducible Markov chain on state space N with stationary distribu-
tiond = (dy,dy, - ,d,). Let d;. = Zieh_1(j) d; and o’ = inf je pq d}. There exists
positive constants K, Ko which satisfy that
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sup > d; = ) Bir =i |io=j)| < Kiexp(~1/K2).Yj € N.
SN [ies ieS

forallt > 0and Ky > 1.

Our next assumption ensures contraction of F. It is also standard, e.g., Tsitsiklis,
1994 Wainwright, 2019; Qu and Wierman, 2020, and ensures that F has a unique
fixed point y*.

Assumption 6.3.3 (Contraction). Operator F is a y contraction in ||-||,, i.e., for
any x,y € RN, we have ||F(x) — F(y)|l, < vllx — yll,. Further, there exists some
constant C > 0 such that for any x € RN, we have ||F(x)||, < y|lx||, + C.

In Assumption [6.3.3] notice that the first sentence directly implies the second with
C = (1 +y)|ly*ll,, where y* € RV is the unique fixed point of F. Further, while
Assumption implies that F' has a unique fixed point y*, we do not expect
our stochastic approximation scheme to converge to it. Instead, we show that the

convergence is to the unique x* that solves
MF(dx*) = x*, where IT := (®@TD®) ™' ®TD. (6.6)

Here D = diag(d;, d>, - - - , d,) denotes the steady-state probabilities for the process
{i;}. Note that x* is well-defined because the operator I1F(®-), which defines a
mapping from RM to RM, is also a contraction in ||-]|,. We state and prove this as

Proposition in Section

Our last assumption is on the noise sequence w(z). It is also standard, e.g., Shah
and Xie (2018) and Qu and Wierman (2020).

Assumption 6.3.4 (Martingale Difference Sequence). w; is ;41 measurable and

satisfies Ew(t) | 7 = 0. Further, |w(t)| < w almost surely for constant w.

We are now ready to state our finite-time convergence result for stochastic approxi-

mation.

Theorem 6.3.2. Suppose Assumptions [6.3.2] 6.3.3] [6.3.4) hold. Further, assume
there exists constant X > ||x*||, such that Vt, ||x(2)||, < X almost surely.ﬂ Let the

3The assumption on X follows from Assumptions and See Proposition in
Section|[6.B}]
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step size be a; = % with tg = max(4H,2K,logT), and H > #_7) Let x*
be the unique solution of equation I1F(®x*) = x*, and define constants C; =
28+ C+2,Cy = 48+ 2C + £,C3 = 2K (28 + C)(1 + 2K, + 4H). Then, with

probabilit); at least 1 — 9,

(1) -l < e+ 25 =0
VST T VT
where the constants are given by C, = 4{122 \/K2 logT (log (%) + loglog T)

A proof of Theorem[6.3.2]can be found in Section[6.B] Compared with Theorem 4 in
Qu and Wierman, 2020, Theorem @ holds for a more general SA scheme where
state aggregation is used to reduce the dimension of the parameter x. The proof
technique used in Qu and Wierman, 2020/ does not apply to our setting because our
stationary point x* has a more complex form (6.5). To do the generalization, we
need to use a different error decomposition method compared to Qu and Wierman,
2020 that leverages the stationary distribution D rather than the distribution of i,
condition on i;_; (see Section for details). Because of this generality, Theorem
requires a stronger but standard assumption on the mixing rate of the Markov
chain {i;}.

State Aggregation. To illustrate the impact of our analysis of SA (Theorem [6.3.2))
beyond the network setting, we study a simpler application to the cases of TD-
learning and Q-learning with state aggregation in this section. Understanding state
aggregation methods is a foundational goal of analysis in the RL literature and
it has been studied in many previous works, e.g., Li, Walsh, and Littman, 2006,
Jong and Stone, 2005} Jiang, Kulesza, and Singh, 2015; Dann et al., 2018}; Singh,
Jaakkola, and Jordan, |1995. Further, the result is extremely useful in the analysis in
networked MARL that follows since the u-decay property we introduce (Definition
[6.2.1) provides a natural state aggregation in the network setting (see Corollary
[6.3.1). Due to space constraints, in this section we only introduce the results on

TD-learning; the results on Q-learning are given in Section

In TD learning with state aggregation Singh, Jaakkola, and Jordan, |1995; Tsitsiklis
and Van Roy, 1997, given the sequence of states visited by the Markov chain is {i;},
the update rule of TD(0) is given by

On(iy (2 + 1) = Opiin (1) + @ (re + YOn(i,,0) (1) = Oy (1))
0;(1+1) = 0;(r) for j # h(iy), j € M,

(6.7)
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where h : N — M is a surjection that maps each state in /N to an abstract state in

M and r; is the reward at time step ¢ such that E[r,] = r (i, i;+1).

Taking F as the Bellman Policy Operator, i.e., the i’th dimension of function F' is
given by
Fi(V) = Bopppy [r(i, i) +yVir] ,Vie N,V e RV,

The value function (vector) V* is defined as V' = E [ZZO Yr(is, i) | io = i] ,1 €
N (Tsitsiklis and Van Roy,[1997)). By defining the feature matrix @ as (6.5]) and the

noise sequence as

w(t) =10+ Y0, (1) = Birepeip [ (i 1) + ¥Onary (1],

we can rewrite the update rule of TD(0) in (6.7) in the form of an SA scheme
(6.4). Therefore, we can apply Theorem [6.3.2] to obtain a finite-time error bound
for TD learning with state aggregation. A proof of Theorem [6.3.3|can be found in
Section [6.Bl

Theorem 6.3.3. Let Assumption hold for the Markov chain {i,} and let the
stage reward r; be upper bounded by r almost surely. Assume that if h(i) = h(i’)
fori,i" € N, we have |V — V3| < { for a constant . Consider TD(0) with the step
size a; = % where ty = max(4H,2K,1ogT) and H > #—7)
Cy :=4K (142K, +4H). Then, with probability at least 1 — 6,
Ca C, {
THn T+ 1-y
where the constants are given by C, = (10_7/?2 \/K2 logT (log (%) +loglog T) and

C, = (f;)z max{ 144Kz(:{]ogT + Cy4,2K5log T + tp}.

Define constant

[®-6(T) -Vl <

The most related prior results to Theorem @ are Srikant and Ying, 2019; Bhan-
dari, Russo, and Singal, 2018. In contrast to these, Theorem @ considers the
infinity norm, which is more natural for measuring error when using state aggrega-
tion. Further, our analysis is different and extends to the case of Q-learning with
state aggregation (see Section[0.B)), where we obtain the first finite-time error bound.
Moreover, unlike Bhandari, Russo, and Singal, 2018, our TD-learning algorithm

does not require a projection step.

6.4 Applications: Wireless and Spreading Networks
Wireless Networks
We consider a wireless network with multiple access points setting shown in Fig.[6.1]

where a set of user nodes in a wireless network, denoted by U = {uy,uy, -+ ,u,},
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share a set of access points ¥ = {yy, y2,- -+, ym} (Zocca, 2019). Each access point
y; is associated with a probability p; of successful transmission. Each user node
u; only has access to a subset ¥; C Y of the access points. Typically, this available
set is determined by each user node’s physical connections to the access points. To
apply the networked MARL model, we identify the set of user nodes U as the set of
agents N. The underlying graph G = (N, &) is defined as the conflict graph, i.e.,
edge (u;,u;) € Eifandonly if Y; NY; # 0.

o (@] o o
o o (@] o
i3 i it
o o o o
(@) o (€] o
it i3 i
(@) (@] (@) (@]
©} o o o

[l : access point
O :user node

Figure 6.1: An example setup of wireless networks. Each user node can send
packets to the access points at the corners of its grid.

At each time step ¢, each user u; receives a packet with initial life span d with
probability g. Each user maintains a queue to cache the packets it receives. At each
time step, if the packet is successfully sent to an access point, it will be removed
from the queue. Otherwise, its life span will decrease by 1. A packet is discarded
from the queue immediately if its remaining life span is 0. At each time step 7, a
user node u; can choose to send one of the packets in its queue to one of the access
point y; ; € Y;. If no other user node sends packets to access point y;; at time step ¢,
the packet from user i can be delivered successfully with probability p;. Otherwise,
the sending action will fail. A user u; receives a local reward of r;; = 1 immediately
after successfully sending a packet at time step ¢, and receives r;; = 0 otherwise.
Our objective is to find a policy that maximizes the global discounted reward under

a discounted factor 0 <y < I:

n

)
t
2,27
t=0

i=1

E

To see how this setting fits into our model, we first define the local state/action and

specify the parameters. Since each packet has a life span of d, and each user node
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Figure 6.2: Discounted reward in Figure 6.3: Discounted reward in
the training process. 5 X 5 grid, 1 the training process. 3 X 4 grid, 2
user per grid. users per grid.
receives at most one packet at a time step, we use a d-tuple s; = (e, ez, -+ ,e4) €
S; := {0, 1} to denote the local state of user node i. Specifically, e ; indicates

whether user node u; has a packet with remaining life span j in its queue. A
local action of user node u; is 2-tuple (/, y), which means sending the packet with
remaining life span / € {1,2,---,d} to an access point y € Y;. Note that we define
an empty action that does nothing at all. If a user node performs an action (/,y)
when there is no packet with life span / in its queue, we view this as an empty action.
This setting falls into the category we studied in Corollary [6.2.2] where long range
links do not exist. Specifically, in this setting, the next local state of user node u;
depends on the current local states/actions in its 1-hop neighborhood (a; = 1 in
Corollary[6.2.2)). We assume each user node can choose its action only based on its
current local state (8 = 0). Due to potential collisions, the local reward of user u;
also depends on the states/actions in its 1-hop neighborhood (@ = 1 in Corollary
@). Though this is a static setting, note that the results of Qu, Wierman, and Li,
2020|do not apply.

The detailed setting we use is as follows. We consider the setting where the user
nodes are located in 7 X w grids (see Fig.[6.1)). There are ¢ user nodes in each grid,
and each user can send packets to an access point on the corner of its grid. We
set the initial life span d = 2, the arrival probability g = 0.5, and the discounted
factor y = 0.7. The successful transmission probability p; for each access point
y;i is sampled uniformly randomly from [0, 1]. We run the Scalable Actor Critic
algorithm with parameter k = 1 to learn a localized stochastic policy in two cases
(h,w,c) = (5,5,1) (see Fig. and (h,w,c) = (3,4,2) (see Fig. [6.3). For
comparison, we use a benchmark based on the localized ALOHA protocol Roberts,
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1975, Specifically, the benchmark policy works as following: At time step ¢, each
user node u; takes the empty action with a certain probability p’; otherwise, it sends
the packet with the minimum remaining life span to a random access point in Y;,
with the probability proportional to the successful transmission probability of this
access point and inverse proportional to the number of users sharing this access
point. In Fig. and Fig. we have tuned the parameter p’ to find the one with
the highest discounted reward.

As shown in Fig.[6.2)and Fig.[6.3] starting from the initial policy that chooses an lo-
cal action uniformly at random, the Scalable Actor Critic algorithm with parameter
k =1 can learn a policy that performs better than the benchmark. As a remark, the
benchmark policy requires the set {p; }1<i<m, the probability of successful transmis-
sion, as input. Moreover, in the benchmark policy, the probability of performing an
empty action also needs to be tuned manually. In contrast, the Scalable Actor Critic
algorithm can learn a better policy without these specific inputs by interacting with

the system.

Spreading Networks

We consider a spreading network with n agents and an underlying graph G. See
Fig.[6.4]for an illustration of n = wh agents on a w X h grid network. For each agent
i, the local state/action space is given by S; = {0, 1} and A; = {0, 1}. To make
the discussion more concrete, in the following we present the spreading network
model in the context of SIS epidemic network. This version of the SIS model has
been studied in, for example, Ruhi, Thrampoulidis, and Hassibi, [2016. Our setting
1s more general and can be generalized to other types of spreading networks like
opinion networks, social networks, etc. At time step ¢, the local state s;(¢z) = 0
means agent i is “susceptible,” while the local state s;(¢) = 1 means the agent i is
“infected.” By taking action a;(¢) = 1, agent i can suppress its infection probability
at the expense of incurring an action cost. In the meantime, agent i will incur an
infection cost if s;(¢) = 1. The interaction among agents is modeled by a set of
undirected links, where two agents can affect each other if they are connected by a
link. To model the influence of physical distance on the pattern of social contact,
we assume the short range links occur more frequently than long range links. An
illustration of the spreading network is shown in Fig.[6.4](a), where the black nodes
denote the agents with state 1; the white nodes denote the agents with state O; the

blue edges denote the set of active links at some time step.
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Figure 6.4: An illustration of the spreading network with 25 agents on a 5 X 5
grid network. The black nodes denote “infected” agents; The white nodes denote
“susceptible” agents; The blue edges denote the active links at some time step.

Mathematically, the model can be described as follows. At each time step ¢, each
agent i can decide her/his local action a;(¢) based on the information of local states
in the 1-hop neighborhood Nl.l, i.e., B = 1. The local reward r;(¢) is a function of
the local state s;(¢) and the local action a;(?), i.e., L] is static and only contains self

loops. Specifically, we define
ri(0) = [ ai(0) = 1) = ¢ L(si(1) = 1),

Es), cl@) are parameters associated with agent i and can be different among

(s)

i

where (c

agents. As mentioned earlier, ¢
@

penalizes the agent for being “infected,” while
is the cost of taking epidemic control measure. The stage reward is the sum of

these two costs.

To describe the state transition rule, we first define the way the active link set L}
is generated: independently for each pair of agents (i,j) € N X N with i # J,
with probability 2796 (/) we include edges (i, j) and (j,7) in the set L¢; otherwise,
neither edge is included in the set, i.e., (i, j), (j,i) ¢ L;. Given L;, the next local
state s;(¢ + 1) is sampled from a distribution that depends on the local states in
N;(L}). Specifically, define the quantities

ni(t) = [{j | j € No(L) \ {i},s;(t) = 1,a;(¢) = 0},
mi(t) =|{j | j € Ny(L:) \ {i}, s;(t) = La; (1) = 1}].
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Figure 6.5: Discounted reward in the training process. 5 X 5 grid.

Then, with different local state and action pairs, the probability that the next local

state s;(¢ + 1) = 0 is given by

P(si(t+1) = 0] sn,(z)» an (L)
p;” if 5i() = 15
n; (1) m;(t)
= (1=p") (1=p) i) = 0.air) = 1
(") "
(1—m ) @—pi) if 5;(£) = 0, a;(1) = 0,

where (pl.(r), pl(h), pgm), pl@) are parameters associated with agent i and can be

different among agents. Due to control actions, we assume pfh) > pl.(m) > pfl). This
provides the transition rule, and the underlying intuition is that the local state of
agent i turns from “infected” (s;(¢) = 1) to “susceptible” (s;(¢ + 1) = 0) with a fixed
recovering probability pfr); the probability that agent i turns from ‘“‘susceptible”
(s;(r) = 0) to “infected” (s;(t + 1) = 1) depends on the number of neighboring
agents in the active link set that are already infected, and further, whether agent
i or the nearby agents j take epidemic control measures (a;(t) = 1,a;(t) = 1) or
not. Roughly speaking, the more nearby infected agents, the more likely agent i will
become infected; however, if epidemic control measures are taken by agent i and

nearby agents in N;(L7), the probability of agent i getting infected will be smaller.

We run the Scalable Actor Critic algorithm with parameter « = 1 to learn a localized
stochastic policy in the case (h, w) = (5,5) (Fig.[6.5). For each agent i, parameters

(cgs), cl@, pl@ , p}h)) are sampled independently from the distribution

¢ ~U[1.0,3.0],c ~ U[0.01,0.20], p\" ~ U[0.1,0.5], p\" ~ U[0.5,0.9],
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(m)

i

local state s;(0) to be 1 with probability 0.3.

andwesetp.’ = pfh)/4, pl.(l) = pfm)/4. At time step O, for each i € N, we initialize

6.A Proof of Decay Properties
Proof of Theorem

For ease of exposition, let A, B be two subsets of the agent set N and we use A 5B
to denote the event that there exists a chain

LS L4 LS LS L4
-a 0 [XY -a 1 -1 [XY -a
Jo—Ji—J{ — ——j; —Js

whose head and tail satisfies jj € A and j7 € B.

Given a sequence of active link sets {L;}7° ) and under fixed global policy 6, we
say the information at set A € N spread to another set B C N in 7 time steps
(denoted by I(A) 5 I(B)) if there exists (s, a) and (s’, a’) such that (san 4, ax\a) =
(s;V\A,a;V\A) and the distribution of (sg(7),ap(7)) given (5(0),a(0)) = (s, a) is
different with that given (s(0),a(0)) = (5", a’).

We show by induction that 1(A) SNy (B) happens only if A 5B happens.

. 0
If 7 = 0, since I(A) — I(B), we see that AN B # 0. Therefore, we can let jj be

. 0
any agent in A N B. Hence we also have A — B.

Suppose the statement holds for 7 = . When 7 = ¢+ 1, suppose that 1(A) -, I(B).

Define sets
a L.’S’
B={jeN|TkeB,stjLsk},B :={jeN|3keB, stj->k}

Notice that B € B’ C B”. By the definition of transition probability and policy
dependence, we know that the distribution of apg (¢ + 1) is decided by sp/ (¢ + 1),
and the distribution of sp: (7 + 1) is decided by (sp~ (1), ap(t)). Therefore, we must
have 1(A) 5 (B”). By the induction hypothesis, we have A 5 B”, which further

implies A -, B. This finishes the induction.

Given a sequence of active link sets { (L], L})}, we use r;; to denote the distribution
of

(SN,-(L;)(I),aN,-(L,’)(f)) given that (s(0),a(0)) = (s,a); we use ﬂ';’i to denote the
distribution of (sNi(L;)(t), aNl.(L;)(t)) given that (5(0),a(0)) = (s’,a’). We notice
that 7r,; # 7/, happens only if I(N*,) = I(N;(L})), which is true only if N, -
N;(L7). Recall that X;(k) is defined as the smallest # such that N*; 5 N;(L7) holds.

Hence, we obtain that
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|Q?(S7 Cl) - Ql‘e(sl’ Cl,)|

< Eyws.rry Z ‘)’ZER,JVI'(SN[(L{)’ anyep)) = V'Ex ri(Snyp)s anyy)
=0

< By Z (V’Em,iri(wf@:)’aM(L:))—V’En;,iri(swm’aM(L:))
1=X; ()

! Xi (k)
< = yE [7 ] ,

where we use the definition of X;(«) in the second step.

Proof of Corollary[6.2.2]
Given a sequence of active link sets {(L, L))}, let # = X;(«). By the definition of

X;(k), we assume that a chain of agents

a Lo Lt ., 4L Ly, oL .
Jo =1 — ) — >0 /I
: - X o L.
satisfies jj € N¥ and ji — i.
By the triangle inequality and the assumptions of Lemma[6.2.2] we obtain that

-1

dg(j§i) < Y (de (e, i) +dg i,y 7)) + dg (i 1)
7=0

< t(,8+a/1)+a2.

Therefore, we see that ¢ is lower bounded by ’[;Z?, which also gives a lower bound
of X;(«k).
Proof of Theorem

To simplify notation, we adopt the same notations as in the proof of Theorem[6.2.1]

Specifically, recall that we use A = B to denote the event that there exists a chain
LS a LS LS a
i = T S
whose head and tail satisfies j§ € A and j7 € B. We will use N[ to denote the set of
neighbors whose distance to i is k, i.e., AN/ := {j € N | dg(i, j) = k} = Nf \Nf‘l.
Define a, := E [yxi ("_1)]. Define function cat (concatenation) such that for a pair
of active link sets (L*, L%), (x,y) € cat(L?, L?) if and only if 3z € N such that

LS L(l
X —z7—Y.
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Before proving Theorem|[6.2.3] we first give an upper bound for the sum of an infinite
sequence {poly(k +1i) - v'};en, where v < 1 is a positive constant. This result is

helpful for showing an upper bound of P(NX, — N lj ).

Lemma 6.A.1. Ifm € N* and 0 < v < 1 are constants, for all k > m(ﬁ%’ we have

Z(k +i)™y \/_ k™,
Proof of Lemmal6.A. 1} Define function f : R* U {0} — R* as
f@) = (k+n)" -7
The derivative of function f is given by
(1) = (k+0)" 112 (m+ %lnv : (k+t)) )

Since k > mf% f(7) < 0 holds for all # > 0, hence we have f (1) < f(0) = k™

Therefore, we obtain that

Z(k+l)mv’ < Zf(z) Vil
i=0
< km Z Vi/2
i=0

1

< k™.
1—+v

Now we come back to the proof of Theorem

By union bound, we derive an upper bound of the probability that a link (x, y) is
in cat(L*, L*). Suppose d € N is constant that satisfies dg(x,y) > d, and the
probability P is taken over (L°, L") ~ D

P((x,y) €cat(L’,L*))=P(3ze N,(x,z) € L A (z,y) € L)
< Z P((x,z) € L)

z:dg(z,y)<p
< co(B+ 1)t cd-h

= cgd?, (6.8)
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where recall that A the decay factor defined by the assumption of Theorem [6.2.3]

and constant c is defined as coc (8 + 1)+t y=A,

By the assumption on the size of k-hop neighborhood, we know that for some
constant cg and ng € N¥, 6le<| < co(k+1)"™holds forall « > 1. Letn; := 2ny. With

the help of Lemma

is upper bounded by ¢»(k + 1) A<~/ for all j < x — 1 when k >

1 .
6.A.1, we show that for some constant ¢, > 0, P (Nfl.‘1 — 8NZ.J)

2ng .
1/

P (Nfi_1 4 8Nl.j) <P (Hx € Nfl-_l,y € 0Nl.j s.t. (x,y) € cat(L’, L“)) (6.9a)

s

< P (Hx € 8N;<+q,y € aNl.j s.t. (x,y) € cat(L®, L“))
q=0
(6.9b)
<> > P((ny) €ca(L,LY) (6.9¢)
q=0 xe@Nfﬂ’,yeaNij
<> D D) (6.9d)
q=0 xeaNerq,yeaNij
< o Y [N - |owi]| - as
q=0
< e (k+ 1)< Z(K +q+1)024 (6.9¢)
q=0
< cr(k+1)MAx, (6.91)

.. 1 i . .
where we use the definition of N*;! — 9N/ in (6.9a); we use union bound in (6.9b)
and (6.9¢); we use the fact that dg (x,y) > k+g—j,Vx € N,y € ON/ and (6-8)

. ] . + .
in (6.9d); we use the bounds )8Nl.]‘ < ¢0j™ < cok™ and [ON;™| < co(k +¢)™ in

2

(6.9¢); we define ¢, := —% and use Lemmal6.A.1|in (6.97).

1-vVa

Let constants c¢3 and g be defined as

c3 = %\4/1(1—‘/2) (L ),

q:

~In(1/2)

-1
VY
max{(Incy —Incz — 2In(1 — +/y)), (2n; +4)},

and define function p(«) := [¢(1 +In(x + 1))] + 1. We can find ko € Z* such that

p(k) > k for all k < kg, and p(«) > « for all k > «.
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Let p be a constant such that 1 > p > max{y!/29 V2}. Let C := p~ ">{a+]: o
Recall that we define a, := E [yX" (K_l)] , where X;(k — 1) denotes the smallest ¢ such

that Nfl.‘l 5 N;(L}) holds. Now we show by induction that
a, < Cpt/(HnD) e > 1, (6.10)

Since a, < 1, (6.10) clearly holds when k < k. To see this, recall that we have
k < p(k) and C > p~(4*D) by definition, thus the right hand side of (6.10) can be
lower bounded by

Cpk/(1+ln(l<+l)) > p—(q+1) ‘pp(K)/(1+1n(K+1)) > p—(q+l) _pq+1 =1.

When « > ko, we have k > p(k). Recall that a, := E [yXi(K_l)]. Notice that
X;(k — 1) = 0 if and only if N*;!' 0 N;(L}) # 0. To simplify the notation, we
denote the event N 'nn; (Ly) # 0 by Eo. Using this and the idea of dynamic

programming, we see that

1
a, < 7(P{(—|Nfi_1 5 N;“l) A =Eq}ay

+ Z P{( N aNf) (—|Nfl. AN N{'“) A =Eo}a; | + P(Eo)
< y(P{ﬂNfl._l 5 Ny,
+§P{(Nfi—l> aN{) A (—|Nfl.i> N{‘l)}a,- + P(Ey), 6.11)

where the probability P are taken over (L{, Lg) ~ D

Since k > p(k) 2 g > —m(zf/li) > M?I%, by Lemma |6.A.1, we see that
P(Ey) = P{3j € Nfl_] s.t. (j,i)elL"} < ZCCO(K+Q+ 1) A+
q=0

G
Substituting this into (6.11)) and rearranging the terms gives
1
(1= yPNST S N a
k—1 , ) { .
<y Y P{(Nf;1 4 aN;) A (—-Nfl.“ 4 N;‘l)}a,-
J=r=p(x)+1
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=p(®)
+y Y P{(Nf;‘ 4 (9Nl.]) A (—|ij1 4 N{‘l)}aj

7=0

€O (k4 1)+ g% (6.12)

V2
For simplicity, we define p, := p!/(+In(<+1)) By the induction assumption, we have

that
a; < ij/(ln(j+1)+1) < ij/(ln(K+1)+1) — Cp,{.

Substituting this into (6.12)) gives that

(1 —yP{-N<1 L Nf‘l}) ay

k—1
<cy Y P{(Nf;l 4 aN{) A (—|ij1 AN N{“)}pi
jox Pl
«=p() . o
+Cy Yy P{(Nf;‘ 4 aN{) A (—|Nfl.“ 4 N;‘l)}pi
j=0
(k + 1)+ %, (6.13)

=

By the definition of p(«) and g, we see that

AP0 5 gma(nGe D) — g=g (g 1)an(1/D) 5 €2 o qym
c3(1 = /7)?
(6]
> ——=—— . (k+1)".
c3(1-7y)

Therefore, we obtain the upper bound
P{(Nf;1 iR aN{) A (ﬁNf,. LN N{‘l)} < PN 5 oNY)
< ca(k + 1) A
<(1- ),)63/1(K—P(K)—j)_

Using this and divide both sides of by (1 — yP{-N¥, 5 le‘_l}), we see that

ac <y (Cpﬁ_p(K)H + CC3(pf_p(K) + 1! ',D,Ii_p(K)_l pY: _pi—p(K)—Z 4. ))
co 1,4«

+ (k + 1) 2%, (6.14)

(1-y)(1-+2)

where we also use the fact that

k—1
P{(Nf;1 iR aN;) A (—|Nfi‘1 4 N{‘l)} < 1-yP{-N1 5 Ny,
j=k—p+1
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By the definition of p(k), g and c;, we see that the following inequalities about the

exponent of A holds:

(x) In(1/2)
<A™ < (k+ 1) < (k+ 1)

and
(1= v7) (1 =y)(1 =)

200

A2 < 17T <A<

which implies
w (1= U=y -V

A4
2¢co(k + 1)"0+1

Dividing both sides of (6.14) by Cp¥ gives that

ar : P : + <0
<vy '
CPK pg(x)—l P;I:(K) 1- (/l/p/() (1 - 7)(1 - \/z)

1 1 C3 1

c 1
+p—(1—\a))+§(l_\ﬁ)

where we use p, = p!/I*0 > 5 > 1 in (6.16a); we use p, = VA, p
[¢(1+1Ink)] + 1, and (6.13) in (6.16B); we use c3 = VA(1 = VA) (7 — 1)

p(1 = V) (yy — 1) and p = y"/®? in (@T6C).

6.B Proof of Learning with Localized Observations

(k +

(6.15)

1)I’lo+l/1%<

(6.16a)

(6.16b)

(6.16¢)

IA

Proposition 6.B.1. Suppose Assumptions|6.3.3|and|[6.3.4 hold. Then for all t,

Ol < 7 (4Dl + 2

-y v

holds almost surely, where y* € RN is the stationary point of F.

Proof of Proposition By Assumption [6.3.3] we have that for all x € RM,

|F(@x)l, < |[F(Px) = F(y")I, + IFO)I,
< yll@x =y, + Iy*ll,

(6.17a)
(6.17b)
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< lixlly, + T+ (6.17¢)

where we use the triangle inequality in and (6.17¢c); we use Assumption
6.3.3]in (6.17b).

Let x = ﬁ ((1 +Y) I, + %) We prove ||x(?)||, < ¥ by induction on 7. Since

we initialize x(0) to be 0, the statement is true for ¢ = 0.

Suppose the statement is true for . By the update rule of x, we see that

1 1 1 1
a1+ D) < (1= @) —lu (0] + @ ( 7 (@x(0)]+ —|w(r>|)
V(i) V(i) Vh(ir) V(i)
w
< (1-a)lxll, +a (||F<<I>x<z>>||v + ;) (6.182)

< (I=-a)llx(ll, + e (VIIX(I)IIV +(1+) Iy, + %)

(6.18b)

< (1 -a)x+a (7)E+(1+)/)||y*||v+%) (6.18¢)

=X,
where we use Assumption[6.3.4]in (6.184); (6.17) in (6.18b)); the induction assump-
tion in (6.18c).
For j # h(i;), j € M, we have that

1 1
— i+ D) = =] )] < ()], < £ (6.19)
Vj Vi

Combining (6.18) and (6.19), we see that the statement also holds for ¢ + 1. Hence

we have showed ||x(7)|, < X by induction. H

Proof of Theorem [6.3.1]

In the Critic part of Algorithm |10} since the policy is fixed to be 6(m), the pair (s, a)
can be viewed as the state of a Markov chain C, and Q%™ (s, a) in the original MDP
corresponds to the value function V*((s,a)) on C. Define the state aggregation
map h such that h((s,a)) = (snx,anx). By the u-decay property, we see that if
h((s,a)) = h((s’,a’)), then

V*((s, @) = V*((s',a"))| = [0%"(s,0) - Q°"™ (5, d)| < u(x).

Note that Assumption [6.3.1] implies that Assumption [6.3.2 holds for C. Thus, we
can apply Theorem[6.3.3]to finish the proof of Theorem [6.3.1]
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Contraction of the Update Operator
To show that the equation I1F(®x) = x has a unique solution x*, by the Ba-
nach—Caccioppoli fixed-point theorem, it suffices to show that operator I1F (®-) is

a y-contraction in ||-|,.
Proposition 6.B.2. If Assumption holds, operator I1F (®-) is a contraction in
I-ll,» i.e., for any x,y € RM, |[TTF(®x) - TIF (®y)]], < yllx - yll,-

To prove this proposition, we first show both operator IT and operator ®@ are non-

expansive in |||, before combining them with F.

Proof of Proposition We first show that operator IT is non-expansive in |||,

1e., forany x,y € RN, we have
ITLx — ILyll, < [}x = yll,. (6.20)

Since IT is a linear operator, it suffices to show that for any x € RV, ||TLx||, < ||x|l,.

Recall that Vj € M, h~!(j) := {i € N | h(i) = j}. Using this notation, the j th

element of vector Ilx is given by

1 1
(Mx), =——— (@' Dx), = —— dix;.
T Zienrj) di ( ) Zien-1(j) di ie};:(j) ;.
Hence we see that
(Ix) 1 : :
|(M),|_ , gl o g Bl 6.21)
Vi Zien(pdi S Vi e Vi
By taking sup; on both sides of (6.21), we see that
(IMx) ; , -
el = sop T g s B g e
jemM YV jeMien-1(j) Vi ieN Vh()

where we use the definition of ||-||, on RV in the last equation. Hence we have

shown that IT is non-expansive in ||-||, (inequality (6.20)).

We can also show that for any x, y € RM, we have
[@x — @y|l, = [lx = ¥l (6.23)

Since @ is a linear operator, we only need to show that for any x € RM, ||®x||, =

[l
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Since (Px); = xp(;), Vi € N, by the definition of ||-||, on RV, we see that the norm

remains unchanged after applying ®:

|(Dx);] | /]
|®@x||, = sup —— = sup —— = sup — = ||x]|,.

ieN V(i) ieN Vh@i)  jem Vj
Hence we have shown that ® is non-expansive in ||-||, (equation (6.23))).

Therefore, for any x, y € RM, we have

ITIF (®x) — IIF (@y)l], < [|[F(Px) — F(Dy)]|, (6.24a)
< 7||®x — Dy||, (6.24b)
=yllx =yl (6.24¢)

where we use (6.20)) in (6.24al); Assumption[6.3.3]in (6.24b)); (6.23) in (6.24¢). [

Proof of Theorem

The proof approach of Theorem [6.3.2]is similar to the proof of Theorem 4 in Qu
and Wierman, 2020. Specifically, we show an upper bound for ||x(#) — x*||, by
induction on time step t. To do so, we divide the whole proof into three steps: In
Step 1, we manipulate the update rule (6.4) so that it can be written in a recursive
form of sequence ||x(r) — x*||, (see Lemma [6.B.I)); In Step 2, we bound the effect
of noise terms in the recursive form we obtained in Step 1; In Step 3, we combine

the first two steps to finish the induction.

For simplicity of notation, we use e; to denote the indicator vector in R”, i.e., the i
th entry is 1 and all other entries are 0. We also use &; to denote the indicator vector
in R™.

One of the main proof techniques used in Qu and Wierman, 2020 is to consider D; =
Eeitel.Tt | F/_+, which is the distribution of i; condition on ¥,_., in the coeflicients
of the recursive relationship of sequence ||x(¢) —x*||,. However, this approach
does not work in the more general setting we consider because x* may not be
the stationary point of operator (®'D,®)"'¢TD,F(®-). As a result, we cannot
decompose ||x() — x*||, recursively if we use D, in the coefficients. To overcome
this difficulty, we use D = diag(dy,--- , d,), which is the stationary distribution of

iz, in the coefficients of the recursive relationship (Lemma [6.B.T).
Now we begin the technical part of our proof.

Step 1: Decomposition of Error. Let D, = ]Eeitel.Tt | -+, where T is a parameter

that we will tune later. Then D, is a ;_-measurable n-by-n diagonal random matrix,
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with its i’th entry being d;; = P(i; = i | F;—;). Recall that D = diag(dy,--- ,d,),
where d is the stationary distribution of the Markov Chain {i,}.

Notice that for all i € N, we have &;(;) = @ e;. We can rewrite the update rule as

x(t+1) =x(t) + a/[[el-TtF(QDx(t)) - f;(it)x(t) +w(D)]ni)
= x(t) + a:[€ngpy el F(@x(1)) = Engipé g X (1) + w(t)éniy]
=x(t) + ;D" [eiteiTt (F(Px(1)) — Px(1)) + w(t)e;, | (6.25a)
=x(t) +a, [<I)TDF(<I)x(t)) - CDTD(I)x(t)]
+a,® [(eiteiTt — D) (F(®x(r)) — dx(1)) + w(t)eit]
=x(t) + a; [®"DF(®x(t)) - @ DDx(1)]
+a,®7 [(e,-teiTt — D) (F(®x(t - 7)) — ®x(t — 7)) + w(t)e;, |
+ a7 (ee] — D) [F(®x(1)) — F(®x(t — 1)) — ®(x(r) = x(t = 7))]
= (I - ,® " D®)x(1) + ,® DF(Dx(1)) + a, (e(t) + (1)), (6.25b)

where in (6.25a), we use &;,(;,) = ®"e;,. Additionally, in (6.25b)), we define
e(t) =7 [(e,-tel-Tt -D)(F(®x(t—71)) —Dx(t —1)) + w(t)eit]
and

Y(1) = @' (eje) — D) [F(x(1)) - F(@x(t — 7)) = @(x(1) —x(t — 7))] .

Iz

We further decompose €(¢) as €(t) = €(t) + €2(t), where € (¢) and €,(t) are defined
as
() =d" [(e,-teiT, - D) (F(®x(t—71)) —Dx(t—71)) + w(t)e,-z]

and
&) =® (D, - D) (F(®x(t—1)) —®Px(t — 1))

We see that condition on 7;_, the expected value of €, (?) is zero, i.e.,
Eei (?) | Fr-r
= ®'E [(e,e] — D)) | Fie] [F(Px(t — 7)) = Px(t - 7)]
+®E [E[w(r) | Flei, | Fir]
=0.

Recall that matrix I is defined as

M= (o Do) & D.
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By expanding (6.25)) recursively, we obtain that

t

x(t+1) = ]—[ (I — @ D®) x(7) + Z @ ( ]—[ (I - ;® DD | ®TDF(dx(k))
k=1 k=1 I=k+1
£ a ( [ |- @ Do) | (e(k) +u (k)
k=1 I=k+1

= Beoyx(1) + ) BiulIF(®x(k) + ) aBis(e(k) +y(K)),  (6.26)
k=1 k=1

where By, = i (@ D®) [1)_,,,(I-,®"D®) and By, = [T}, (I — ;@ " DD) .
For simplicity of notation, we define D’ = ®TD® € RMM_ Notice that D’ is a
diagonal matrix in RM*M with the j’th entry d;. = Xljen-1(;) di- Clearly, By, and
By are m-by-m diagonal matrices, with the i’th diagonal entry given by by ,; and
brsi, where by ;; = axd! [Ty (1-d!) and brii= [1/_;,; (1—a;d)). Therefore,

for any i € M, we have
t
broroi+ ) bisi=1. (6.27)
k=1

Also, by the definition of ¢/, we have that for any 7, almost surely

t t
Digi < Bry = ax l—[ (1 —a;0’), bi < Brs = l_[ (1-a0),

I=k+1 I=k+1
where o’ = min{d’,--- ,d},}.
Recall that x* is the unique solution of the equation ITF(®x*) = x*. Lemma|6.B.1

shows that we can expand the error term ||x(¢) — x*||, recursively.

Lemma 6.B.1. Let Y, = ||x(#) — x*||,, we have almost surely,

+

t
Za’kgk,tf(k)

k=1

1
Yiar < Bt Yo +ysup D bisiYu+
ieM k=1

t
Z ax By (k)
k=1

1% \4

Proof of Lemma By and the triangle inequality of ||||,, we have

[lx(z+ 1) = x7I,

1. . \
< sup —beoixi(7) + ) bicsi (MF(@x(k))); = x;
ieM Vi k=1
t t
[ axBiiet)|| +|1> axBiay (o) . (6.28)
k=1 v k=1 v
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We also see that for eachi € M,

1]- : )
— b1 pixi(T) + E by (IIF(®x(k))); — x;
o

! k=t
1 ! 1
< beori— () = 27|+ > b —| (N (@x(K))); X (6.29a)
Vi k=1 Vi
t
< beorpille(@) = 57l + D biadl (MF(@x(k))) = 27,
k=1
t
< beorgillx(@) = X7l +y ) braillx (k) = x°1),, (6.29b)
k=1

where in (6.29a), we use (6.27) which says br_1,; + i_. bi,; = 1 holds for all
i € M; in (6.29b), we use Proposition [6.B.2] which says ITF(®-) is y-contraction
in |||, with fixed point x*.

Therefore, by substituting (6.29) into (6.28)), we obtain that

t
Za’kgk,tf(k)

k=1

t
Yoot < Bt Ye+ysup D by iYi+
ieM k=1

+

t
> B (k)
k=1

v v

]

Step 2: Bounding |3 _, akﬁkile(k)nv and |2 _, akﬁk,tz//(k)”v.

We start with a bound on each individual € (k), €;(k), and ¥ (k) in Lemma

For simplicity of notation, we define v := inf ;e o v ;.

Lemma 6.B.2. The following bounds hold almost surely.

1. |ler (0], < 4x+2C +% ‘= E.
2. lle®)]l, £ 2x+C) - 2K; exp(—7/K3).

3@l <3(28+C+ ) Bh e,

Proof of Lemmal6.B.2] By the definition of ||-]|, in RM and its extension to RV,
the induced matrix norm of ||-|| for a matrix A = [a;;];em,jen is given by [|A], =
SUD;e A 2o jeN @|a,~ j|. Recall that the i’th entry of the diagonal matrix D, is given

by d;; =P (i; =i | i—). Hence we have that

|®7 (es,e, = D), = sup Z L(h() = j)-[1G=i) —di| < 2. (6.30)
JeEMieN
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Therefore, we can upper bound ||€; ()|, by

ler ()1l = |7 [(esef = Dy) (F(@x(r = 7)) = @x(t = 1)) + w(D)ey, |||,
< ||®T (ere] — D)|| IF(@x(1 = 1)) = Dx(t = 7)l, + Iw(D)]]|@Tes ||,

<2F(®x(t—1)) —Px(t —71)||, + |W(t)|||<I)Te,-t||v (6.31a)

<2UF(Dx(t —1))|l, +2||x(t = )]l, +% (6.31b)
_ W B

< 4x+2C+;, (6.31¢)

where we use (6.30) in (6.31al); the triangle inequality, the definition of v, and
Assumption[6.3.4]in (6.31b); Assumption [6.3.3]in (6.31c).

For ||ex(?)]|,, recall that

le()l, = |@" (D, = D) (F(®x(t — 7)) - ®x(t - 7)),

= sup —| S 1(h() = )y — di) (F(®x(t 7)) = Bx(r - 7)),
jemVij ieN

= sup — D (dyi—di) (F(@x(t =7)) - ®x(t = 7)), (6.32)
JEM VT iehT(j)

By Assumption[6.3.2] we have that

Zdi - Zdt,i

ieS ieS

sup < Kjexp(—7/K3). (6.33)

SN

Our objective is to bound the following term in (6.32)) for all j € M:
D (dyi—di) (F(®@x(t = 7)) = x(t — 7)),
ieh=(j)
Let M; := sup;e-1(;) |(F(Px(f — 7)) — @x(7 — 7));|. Define function
g: [-Mu MY SR, g =| D (dii—dy)yil.
i€h='(j)

Suppose ymax € argmax, g(y). We know that for i € W)y (Ymax)i is either M;
or =M; if d;; —d; # 0. Let S; := {i € YY) | max)i = M;} and S;. ={i €
h_l(j) | (ymax)i = _Mj}
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Therefore, we see that

D, (dii—di) (F(®x(t = 1)) = Ox(1 - 7)),

ieh™1(j)

IA

max - Ng(y) (6.34a)

yE[—Mj,MJ

= Z(d”i —d;)|M; + Z(dt,i —d;)|M;

iESj lES;
< 2K, exp(—7/K2) M, (6.34b)
where we use the definition of function g in (6.34a)); we use (6.33) in (6.34b).

Substituting (6.34) into (6.32)) gives that

le2(DIl, < [[F(®x(t — 7)) — Dx(t — 7)|], - 2K exp(—7/K2)
(IF(@x(r =), + |@x(t = 7)) - 2Ky exp(-7/K2)  (6.35a)
(2% + C) - 2K, exp(-7/K>), (6.35b)

IA

A

where we use the triangle inequality in (6.35a); we use Assumption[6.3.3]in (6.35D).

As for ||y (2)]],, we have the following bound

e Il
= ||©7 (ei,e] — D) (F(®x(1)) = F(®x(1 = 7))) = @ (ej,¢] — D)@ (x(1) —x(t = 7)),
< || (ei,e] — D) (F(®x(1)) — F(®x(t — 1)),

+][@7 (ei,e] = DY (x(1) - x(t = 1)),
< [|@7(ese] = D)||, - I(F(@x(2)) = F(@x(t = ),

+ ||<I)T(e,~teiTl - D)<I)||V N(x(t) —x(t —1))|,- (6.36)

Notice that

= sup |1(h(i) = j) —dj| < 1.
JEM

||@T(eiz€iT, - D)(D”v = Hé:h(ir)é:;(i,) - D ,
Substituting this into (6.36) and use (6.30), we obtain that

O, < 2[1F(@x(2)) = F(Px(t =), + llx(2) —x(z = 7)],
<3lx(@) —x( =7,

<3 Z lx(k) - x(k = 1)]],. (6.37)

k=t—-1+1
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By the update rule of x and Assumption[6.3.3] we have that

lle(2) = x(r = DI, < (IIF(CDX(I = D), + llx(@ = DI, + %

<a (zx +C+ K) . (6.38)
1%
Substituting (6.38)) into (6.37), we obtain that
W t
ol <3 (2x +C+ —) > e,
1%
— ! k=t—-1+1
0

where H > % and ty > max(4H, 1), then ,Bk,,,,gk’t

Lemma 6.B.3. If o, = %
satisfies the following

o’'H o’H
H k+1+tg 5 k+1+tg
L Brs < k+to (l+l+to) »Brs < <t+1+t0)

t 2 2H 1
2. Zk:l IBk,t < o’ t+l+ty

t k 8Hr 1
3. Zk:TIBkJ Zl:k—T+1 Q-1 = 75 i+1+10

Proof of Lemma To show Lemmal6.B.3| we only need to substitute o~ for o

in the proof of Qu and Wierman, 2020[Lemma 10]. O
Lemma 6.B.4. The following inequality holds almost surely
(o 2428+ C+E)H |
B k)| < — =Cy——.
kzz;ak e (K))) < o’ t+1+1g ¢t+1+t0
Proof of Lemma We have that
t 1
> B0 < > er|Bedl, w0l
k=1 v k=1
o\ < k
<3 (2;2 +C+ ;) DB ) (6.39)
=7/ k=t I=k—7+1
4 (2e+C+E)HT
< , 6.39b
N o’ t+1+1 ( )
O

where we use Lemma|6.B.2]in (6.39a)); Lemma[6.B.3|in (6.39b).
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Lemma 6.B.5. For each t, with probability at least 1 — 6, we have

He 2tm
< ——[27tlog | — .
t+1 0

To show Lemma we need to use Lemma which is Lemma 13 in Qu
and Wierman, 2020\

t
Z ay By €1 (k)

k=1

Lemma 6.B.6. Let X; be a F;-adapted stochastic process which satisfies EX; |
_r = 0. Further, |X;| < X; almost surely. Then with probability 1 — 6, we have,

Shea X < 27 Sy K7 1oe (%)

Proof of Lemma[6.B.3} Recall that Y, _, a; By € (k) is a random vector in RM,

with its i’th entry
1 1
> ar(eith) [ | (1-aid).
k=t I=k+1

Since step sizes {a;} are deterministic, we see that

Elaw(eNik) [ [ (1-ad) | Fie| = [ | (1 - ad)E [(€)i(k) | Firl =0.

I=k+1 I=k+1
Notice that
t t
H Hd'
@ ﬂ(l—a,d; = 1= (6.40a)
I=k+1 0 =k+1 0
H - 2
< . 1- oo (6.40b)
10 1 t1o
H - 1
< -
k +1g Ikt [+1
H
< —
t+1

where we use @; = % in (6.40a); we use H > 2 in (6.40D).

By the definition of €, we also see that | (€} );(k)| < v;€. Therefore, by Lemma|6.B.6]

/ 2
27t log (%)

we obtain that

D a(eith) | | (- ad)
k=1

I=k+1

<

Hvl-é
r+1
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holds with probability at least 1 — 6. By union bound, we see that with probability

at least 1 — 9,
2tm
27t
: og( i )

Lemma 6.B.7. If we set T to be an integer such that

7 > 2K, max (logt, 1),

we have that
Ce,

l+l‘0+1

deBszz(k)

where to = max(t,4H) and C,, = (2% + C) - 2K (1 +2K, +4H).
Proof of Lemma Since K> > 1, the bound is trivial when ¢ = 1. We consider
the case when t > 2 below.

Since a Ek,, is a diagonal matrix and its entries are positive and less than 1, we have
that

t t
Z a/kgk,tfz(k) < Z ||a/kgk,t||v : ”Q(k)”v
k=1 v k=1
< tllea(K)|l, (6.41a)
<t(2x+C) - 2K exp(—-7/K>), (6.41b)

where we use ”CYkEk,r”v < lin (6.41a)); Lemmain (6.410).

To show Lemma[6.B.7] we only need to show
t(2% +C) - 2K, (1 + T+ 4H) exp(—1/K3) < Ce, (6.42)

holds for all T > 2K, logt because t +tg+ 1 < t+ 7 +4H.

To study how the left hand side of (6.42)) changes with 7, we define function
g(t)=(t+t+4H) exp(-71/K3).

Notice that we view 7 as real number in function g, so we can get the derivative of

g:
exp(—7/K>)

g'(r) = 5

(K —t—4H - 7).
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Therefore, when 7 > 2K, logt, we always have g’(7) < 0. Hence we obtain that

2K logt +t+4H < 1+2K,+4H

g(1) < g(2Kylogt) = 3 ; (6.43)
holds for all T > 2K log?.
Substituting (6.43) into (6.42)) finishes the proof. O

Step 3: Bounding the error sequence. Based on the recursive relationship we
derived in Lemma and the bounds we obtained in Step 2, we want to show
that, with probability 1 — 6,

C, C
Y, < + — 6.44
! Vi+ty I+l ( )

holds for all T <t < T, where

2HE 2tmT 4
Ca=1 _;\/ZTlog (%),C; =1 M (Cy + Co 28(T +00))

Notice that C, and C;, are independent of ¢ but may dependent on 7. We set
T =2KlogT.

By applying union bound to Lemma[6.B.5] we see that with probability at least 1 —§,
foranyt < T,

Zt:akgk,tfl(k) SL,
- ) Vi+1+1

where Ce, = HE, [27 log (%)

Therefore, we get with probability 1 — &, (6.45) holds forall T <7 < T

. C Cy+C
Yii1 < Bt Ye+ysup Y braiYi+ L4 =y (6.45)
i+ < P17 yie/\rx)l; ti Tiltt, f+1+10
We now condition on (6.45)) to show ([6.44)) by induction. (6.44) is true for t = 7, as
Ca 8

e 2 Tt 2 Y., where we have used Y; = ||x(7) —x*||, < |[x(0)||, +|lx*|l, < 2%.
Then, assuming (6.44)) is true for up to k < 7. By (6.45]), we have that

1

- Ca C/ Cel Cl/’ + C52
Y41 < Bro1 Y +ysu bir.i + |+ +
i+ < Be-14 Y7 Vie/\l/)[ ; i VEtto  k+to f+i+1, t+1+19

1

1
~ 1
< Br-14Yr +yC, sup E bisi +yC,, sup Diyi
e Ciem ST Nk + 1 Ciem Skt
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+ Cel C¢+C€2
Vi+1+1 t+1+l‘o

(6.46)

We use the following auxiliary lemma to handle the second and the third term in

(6.46).

Lemma 6.B.8. If c’H(1 — +fy) > 1,190 2 1, and ap < % then, for anyi € N, and

any 0 < w < 1, we have

1 1
bi.i < .
; Mk +10)2 T A+ 1 +19)@

Proof of Lemmal6.B.8} Recall that o =

where d’ > o”.

— ’ t ’
and by ;; = akd,- l:k+1(1 - aldi),

_H_
k+to°

Define e, = ZZZT bk,t,im- We use induction on ¢ to show that e, < m

The statement is clearly true for # = 7. Assume it is true for  — 1. Notice that

P R
t = - k.t,i (k +t0)w t,t,0 (l+t0)w

t—1
1

=(1-a.d bri-1i dl——— 6.47

(1-a ,)kZ:T k-1, (k +10)® Ta; U+ 10)® (6.47a)

1

:( a,d)et 1+at lm
<(1- ! d ! (6.47b)
<O -ad) e P e |

[1-ad(1-+y)] W’

where we use b, ; = a;d; in (6.47a); we use the induction assumption in (6.47b).

Plugging in a; = lfl , we see that
< 6.48
= i1 y] (t+t)“’ (6.482)
1

T W)]( t+t) VYt + 1+ 1)@
1 1 \¢

< |1- 1 6.48b

- t+t0)( +t+t0) \/7(t+1+t0)w ( )
1 1 1

< |1- 1 6.48

- t+to)( +t+t0)\/7(l+l+t0)‘” ( ©)
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1
< ;
VY (t+1+19)®
where we use d; > o in (6.48a)); we use the assumption that o’H(1 — fy) > 1 in
(6.48D); we use 0 < w < 1 in (6.48c). O

Applying Lemma [6.B.§]to (6.46), we see that

_ 1 ,
Yio1 < Bro1 Yo+ Wcam +vC,
1

1
+Ce———+ (Cy +C,) ———— 6.49a
N ErR A (4

s(\/?

1
t+1+1

1 1
C,————+Ce) ———
Vi+1+1 1\/t+1+t0)
(e

o’'H
)

+ (Cy + Ce +
(Cy 2)t+1+t0 (t+1+t0

- , (6.49b
r+1+1 ( )

where we use Lemma in (6.494a)); we use the bound on ;1 in Lemmam
in (6.498).
To bound the two terms in (6.49b), we define

1 1
=4yCp———+ C, ———
=y Vi+1+1 1\/t+1+t0

and

! \/_C’—1 +(Cy +Cs,) : o[ X0 .
- a
Xt =NY U+ 1+t Vel Tty \t+ 1+ 10 !

To finish the induction, it suffices to show that y; < \/HCI”—HO and y; < H?—jto To see
this
XT Ca - 7 Ca s
,Jg+1+1 C¢+C€2 Y. (7 +1ty) T+1o o'H-1
Xi——— =\v+ — + - .
C, C) C) t+1+1

Ce CytCeq _ 1=y Yo (r+t 1-\¥
It suffices to show that C—a‘ <1 =4, o < ——,and (Cé 0 < >—. Recall
that

0

2tmT
Ce :H€\/2710g( T? )

Using that Y, < 2x, one can check that C, and C, satisfy the above three inequalities.

2HE 2tmT 4
C, = 1 € \/27'10g( ™ ),Cé =1, max (Cy +Ce, 2%(7 +10))
0% -

and
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Asymptotic Convergence of TD Learning with State Aggregation

Our asymptotic convergence result for TD learning with state aggregation builds
upon the asymptotic convergence result for TD learning with linear function approx-
imation shown in Tsitsiklis and Van Roy, |1997. For completeness, we first present
the main result of Tsitsiklis and Van Roy, [[997|in Theorem [6.B.9] In order to do
this, we must first state a few definitions and assumptions made in Tsitsiklis and Van
Roy, [1997.

We use ¢(i) € R™ to denote the feature vector associated with state i € N. Feature
matrix ® is a n-by-m matrix whose i’th row is ¢(i) T. Starting from (0) = 0, the

T D () algorithm keeps updating 6, ¢ by the following update rule,
0(t+1) =0(1) +a,d,,
Yis1 = YA + ¢ (i),
where Y, is named eligible vector in Tsitsiklis and Van Roy, 1997 and satisfies
Yo = ¢(io).

Recall that D = diag(d,, d>, - - - , d,) denotes the stationary distribution of Markov
chain {i,}. For vectors x,y € R", we define inner product {(x,y) = x"Dy. The
induced norm of this inner productis ||-||, = m . Let Ly(N, D) denote the set
of vectors V € R" such that ||V|| is finite.

Recall that we define IT = (®TD®)"!®TD. As shown in Tsitsiklis and Van
Roy, [1997, the projection matrix that projects an arbitrary vector in R” to the set
{®6 | 8 € R} is given by ®I1, i.e. forany V € L,(N, D), we have
@IV = argmin ||V -V|,,.
Ve{Dh|0cR™}
Notice that our definition of matrix I is slightly different with Tsitsiklis and Van

Roy, 1997 because we want to be consistent with Section @

To characterize the TD(A) algorithm’s dynamics, Tsitsiklis and Van Roy, |1997
defines TW : Ly(N, D) — Ly(N, D) operator as following: for all V € R”, let the
i’th dimension of (T“)V) be defined as

— o0 m mot.(; 7 m+ly,. P :
m= = m+
(T(/l)v) _ A=A 204 E[Z7oy'r(ins i) + Y™ Vi, lio=i] ifd <1
‘ B [Zzo Yr(is, i) | o = i] ifa=1.

If V is an approximation of the value function V*, 7Y can be viewed as an improved
approximation to V*. Notice that when A = 0, T™ is identical with the Bellman

operator.
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Formally, Tsitsiklis and Van Roy, |1997| made four necessary assumptions for their
main result (Theorem|[6.B.9). We omit the third assumption (Tsitsiklis and Van Roy,
1997[ Assumption 3]) in our summary because it must hold when the state space N

is finite.

The first assumption (Tsitsiklis and Van Roy, 1997[ Assumption 1]) concerns the
stationary distribution and the reward function of the Markov chain {7;}. It must
hold when Assumption [6.3.2] holds and every stage reward r; is upper bounded by
7, as assumed by Theorem [6.3.3]

Assumption 6.B.1. The transition probability and cost function satisfies the follow-

ing two conditions:

1. The Markov chain {i,} is irreducible and aperiodic. Furthermore, there is a
unique distribution d that satisfies d"P = d" with d; > 0 for alli € N. Let

Ey stand for expectation with respect to this distribution.
2. The reward function r(i;, i;+1) satisfies By [rz(i,, i,+1)] < 00,
The second assumption (Tsitsiklis and Van Roy, [1997[ Assumption 2]) concerns the
feature vectors and the feature matrix. It must hold when @ is defined as (6.5)).
Assumption 6.B.2. The following two conditions hold for ®:
1. The matrix ® has full column rank; that is, the m columns (named basis

functions in Tsitsiklis and Van Roy, |1997) {¢y | k = 1,--- ,m} are linearly

independent.

2. For every k, the basis function ¢y, satisfies Eg [qﬁi(i,)] < 00,

The third assumption (Tsitsiklis and Van Roy, [1997[ Assumption 4]) concerns the

learning step size. It must hold if the learning step sizes are as defined in Theorem

6.3.31

Assumption 6.B.3. The step sizes a; are positive, nonincreasing, and chosen prior to

execution of the algorithm. Furthermore, they satisfy 3..°, a; = coand 3,72, 0/,2 < 00,

Now we are ready to present the main asymptotic convergence result given in
Tsitsiklis and Van Roy, 1997,
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Theorem 6.B.9. Under Assumptions|6.B.1}[6.B.2} [6.B.3| the following hold.

1. The value function V is in Lo(N, D).

2. Forany A € [0, 1], the TD(A) algorithm with linear function approximation

converges with probability one.

3. The limit of convergence 6" is the unique solution of the equation
nrW (o6*) = 6*.

4. Furthermore, 6" satisfies

)
YoV - v¥|,. (6.50)
y

1

106" = V*lp < —

Notice that (6.50) is not exactly the result we want to obtain. Specifically, we want
the both sides of (6.50) to be in ||-||,, instead of ||-||,. Although this kind of result
is not obtainable for general TD learning with linear function approximation, we
can leverage the special assumptions for state aggregation, which are summarized

below:

Assumption 6.B.4. h : N — M is a surjective function from set N to M. The
feature matrix @ is as defined in (6.9), i.e., the feature vector associated with state
i € N is given by
1 ifk=h(@i)
o (i) = / Yk € M.

0 otherwise

Further, if h(i) = h(i’) fori,i" € N, we have |V*(i) — V*(i")| < { for a fixed positive

constant (.

Under Assumption we can show the asymptotic error bound in the infinity

norm as we desired:

Theorem 6.B.10. Under Assumptions|6.B.1}[6.B.2} [6.B.3} if Assumption also
holds, the limit of convergence 60 of the T D () algorithm satisfies

(1-21y) (1-21y)
-y -y

[®6" - V7]l < [PITV" - V7, < {.

To show Theorem [6.B.10] we need to prove several auxiliary lemmas first.
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Lemma 6.B.11. Under Assumption|6.B. 1| foranyV € Ly(N, D), we have |PV||,, <
IVl cor

Proof of Lemma This lemma holds because the transition matrix P is non-

expansive in infinity norm. [

Lemma 6.B.12. Under Assumption forany V,V € Ly(N, D), we have

HTu)V _ T(/UVH L=
o 1=
Proof of Lemma By the definition of 7, we have that

HT(A)V _ T(ﬂ)f/H _

(1=2) Y A"(yPy™ (v - V)
m=0

(o8]

< (=) ) Ay -7, (6.51a)
=0
X2 -7]
1-yA4 oo’
where inequality holds because ||V — V||, < oo so we use Lemma
[l

Lemma 6.B.13. Under Assumption|6.B.1|and |6.B.4} we have

|PITV* — V||, < ¢ (6.52)

and for any V € Ly(N, D)
IPTIV |0 < [IV]lco- (6.53)

Proof of Lemma[6.B.13] For j € M, weuse h™!(j) € N to denote all the elements
in N whose feature is e}, i.e., h='(j) ={i|i e N,h(i) = j}. Since h is surjection,
h='(j) # 0,V € M. Since ®II is the projection matrix that projects a vector in R”
to the set {®0 | 6 € R™}, we have

[TV = arg min Z Z d; (V; - 0)).

OSRT jeMien())

Hence the optimal 8; must be in the range [min,-E w1y Vis MaX;ep-1( ) V,-] . Therefore,
we see that

[(@IIV);] = |(TV)sp| < max |Vl
i’eh~1(h(i))
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which shows (6.53). Besides, we also have

b

|(®ITV); — Vi| < max(

min Vy -V; max Vp — V,D . (6.54)
i’eh~1(h(i)) i’eh~1(h(i))

holds forall z € Z.LetV = V* and use Assumption in (6.54) gives (6.52). O

Now we come back to the proof of Theorem
Notice that
|®O* — V|| < [|®O" — OIIVT|, + [|PITV* — V|| (6.55a)
- H@HTW (©6%) — OIV*

+ || OV — V¥, (6.55b)

IA

HTW (®6%) - V*
vy -4
1—vya
where we use the triangle inequality in (6.554); Theorem [6.B.9]in (6.55b)); Lemma

6.B.13|in (6.55c); Lemma|[6.B.12]in (6.55d).

Therefore, we obtain that

+ || OTIV* — V¥l (6.55¢)

IA

|D6" — V|| + ||PITV* — VF|, (6.55d)

(I—M)g

|PO" - V|, <
-y

IV =Vl <

2

(1-2y)
I-y
where we use Lemma in the second inequality.

Proof of Theorem [6.3.3]
Before presenting the proof of Theorem|[6.3.3] we first show two upper bounds that
are needed in the assumptions of Theorem[6.3.2]

Proposition 6.B.3. Under the same assumptions as Theorem|6.3.3| we have ||0(1)|| » <
0= % holds for all t almost surely and ||6*||, < 6. |w(?)| < W = lz_—r_y also holds

for all t almost surely.

Proof of Proposition We show [|0(1) || < ﬁ by induction on . The state-
ment holds for # = 0 because we initialize 6(0) = 0. Suppose the statement holds

for . By the induction assumption, we see that

Oniiny (1 +1) = (1 = @)0ni,) (1) + @ [0+ YO, (D]
<A =a)l0) oo +a; [re +yI10(1)]|o]

(1—%) :
L-vy
’7

1—7'

IA

+ a;

7
rt+')/' 1—‘)/

IA




For j # h(i;), j € M, we have that

r_

0;(1+1)=6;(1) <1100l < 7=

Hence the statement also holds for 7 + 1. Therefore, we have showed ||0(?)]|, < =

by induction.
By Theorem we know 6* = lim,_,, 6(¢). Since we have already shown that
10()]|o < ﬁ holds for all ¢, we must have ||6*||,, < %

Using |6(1) || < ﬁ we see that

WO < 1rel +Y|0n0) (D] = [Birpiiny [r e i) +¥0n0) (1)]|
< 2F +2v0
27
-y

O

Now we come back to the proof of Theorem [6.3.3] Recall that we define F as the

Bellman Policy Operator and the noise sequence w(?) as

w(1) = 1+ ¥On(i ) (1) = Birop( i) [7 (i 8) + ¥0n3iry (1)] -
Let 6* be the unique solution of the equation
I[MF(®6%) = 6™,
By the triangle inequality, we have that
1©-0(T) =Vl < 1P - 0(T) =D - 07| + [|@- 6" = V7l
<O(T) = 0|l + |© - 6" = V|- (6.56)

We first bound the first term of (6.56) by Theorem[6.3.2] To do this, we first rewrite
the update rule of TD learning with state aggregation (6.7) in the form of the SA

update rule (6.4):
Oniin) (1 + 1) = Oy (1) + s (Fi, (PO(1)) = Ongiyy (1) + w(D))
0i(t+1)=0;(1) for j # h(i;), j € M.

Now we verify all the assumptions of Theorem [6.3.2] Assumption[6.3.2]is assumed
to be satisfied in the body of Theorem [6.3.3] As for Assumption [6.3.3] F is y-

contraction in the infinity norm because it is the Bellman operator, and we can set
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C = lz_—r_y so that C > (1 +vy)||y*|l (see the discussion below Assumption |6.3.3).
As for Assumption [6.3.4] by the definition of noise sequence w(t), we see that

Ew(t) | Fl =E [re +¥0ni,.) () = Bioep(iiy |7 (s 1) + ¥0nay (D] | F]
=E [ri + ¥0ngi,.)) () | Fi| = Borwppiy) [ (s 1) + ¥ (1) ]
=0.

In addition, we can set w = 12__ry according to Proposition |6.B.3| Finally, we can set

0= ﬁ according to Proposition m

Therefore, by Theorem|[6.3.2] we see that

C C’
0(T) — 6%, < 4 2 wh 6.57
16(T) mm_VTIE+T+m where (6.57)

A40HT dmK
C, = il \/KzlogT-\/logT+loglogT+log( mé 2),

(1-y)?
, 8r 144K>,H logT
= 1) max | —————
-y

+4K (1 + 2K, +4H),2KzlogT+to) .

0./

As for the second term of (6.56), by Theorem [6.B.10] we have that

@0~V <

(6.58)

Substituting and (6.58)) into (6.56) finishes the proof.

Application of the SA Scheme to Q-learning with State and Action Aggregation
We study Q-learning with state and action aggregation in a setting that is a gener-
alization of the tabular setting studied in Qu and Wierman, 2020. Specifically, we
consider an MDP M with a finite state space S and finite action space A. Suppose
the transition probability is given by P(s;41 = 5" | s; = 5,a; = a) = P(s" | s,a), and
the stage reward at time step ¢ is a random variable r, with its expectation given by

Rs, 4,. Under a stochastic policy n, the Q function (vector) Q™ € RS*A is defined as

)

t
2,7
t=0

where 0 < y < 1 is the discounting factor. We use Q* to denote the Q function

Q;r’u = Eﬂ

(SO’ aO) = (S, a)] s

corresponding to the optimal policy ™.
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Similar to Qu and Wierman, 2020, we assume the trajectory {(s;,ar,71)};0, is
sampled by implementing a fixed behavioral stochastic policy z. In Q-learning with
state and action aggregation, the state abstraction ¢; operates on the state space S
and the action abstraction ¢, operates on action space A. For simplicity of notation,
we define the abstraction space as M = 1 (S) X2 (A) and the abstraction operator
h:SXA — Mas h(s,a) = (Y1(s),¥2(a)). The update rule for Q-learning with
state and action aggregation is then given by

Onie, an(@+1) = (1 — )05 o) (t 0 1,
h(s;, ,)( + ) ( al‘) h(s;, z)( ) +a; |y + ygle??){( h(s,+1,a)( ) (659)
8;(t +1) = 6;(¢) for j # h(ss. ap).

As a remark, some previous work considers abstraction on the state space S but
does not compress the action space (see Jiang, 2018)). In contrast, our setting also
compresses the action space, and when i, is the identity map, our setting reduces

to the case with only state aggregation.
We define function F as the Bellman Optimality Operator, i.e.,
Fs,a(Q) = Rs,a + 7E5’~P(~|s,a) max Qs/,a’-
a’eA

It is shown in Bertsekas and Tsitsiklis, 1996 that Q* is the unique fixed point of
function F. By viewing S X A as N, we can define matrix ® € N x M as in (6.5).
We can rewrite the update rule (6.59) as

Onspay)(t + 1) = Onisyan (1) + & [Fypa, (@O(1)) = Ops,.a0) (D) + w(2)]
0;(t+1) = 0;(¢) for j # h(ss. ar),

where
w(t) =r; +ymaxbOp,,, o) (1) = Fy, a0, (DPO(1))
acA
=(rr— Ry, q,) +Y max On(siora) (1) — By B |si.ap) max On(st.ay ()] -

Hence we have E[w(¢) | 7] = 0. In order to apply Theorem [6.3.2] we need the
following assumption on the induced Markov chain of stochastic policy 7 which is
standard, cf. Qu and Wierman, 2020.

Assumption 6.B.5. The following conditions hold:

1. For each time step t, the stage reward r; satisfies |r;| < 7 almost surely.
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2. Under the behavioral policy n, the induced Markov chain (s, a;) with state
space S X A satisfies Assumption with stationary distribution d and

parameters o', K1, K».

The next assumption is approximate Q*-irrelevant abstraction, which measures the

quality of the abstraction map and is standard in the literature (see Jiang, 2018)).

Assumption 6.B.6. There exists an abstract Q function q : M — R such that
[Pg — Ol < €0

We can now state our theorem for Q-learning with state aggregation.

Theorem 6.B.14. Under Assumption [6.B.5| and [6.B.6] suppose the step size of Q-
learning with state aggregation is given by a; = %, where to = max(4H, 2K, logT)
2

and H > EIgEaE Then, with probability at least 1 — 6,

C C(’J 2EQ*

" + ,
VT + 1ty T+ty 1-vy
40HF 4mK
C, = ﬁ\/KzlogT.\/logT+loglogT+log( n(zs 2),
-y

87 144K,H logT
C,= " max 27 08
(1-v)

[|®-6(T) — Q|| < where

; +4K1(1+2K2+4H),2K210gT+t0).

g

Proof of Theorem Define 6" as the unique solution of equation § = I1F (®6),
where the definition of IT is given in (6.6). Under Assumption we see that
1070 < %: otherwise, by assuming that |67| = |6, > o5+ We can derive
a contradiction that [|I1F(®6%)||,, < |67|. To see this, recall that linear opera-

tors IT and @ are non-expansions in the infinity norm (see Proposition [6.B.2)), and

7

IF()|le < IVl for a vector v € RV if ||v]|o, > %

Further, using a similar approach with the proof of Proposition we also see
that

= r _ 2r
0] < 0 = ——, W) < W= ——
-y -y
hold for all # almost surely.

Therefore, by Theorem|[6.3.2] we obtain that

C, N C,
NT+1p T+to

16(T) — 67|, < (6.60)
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To finish the proof of Theorem [6.B.14] we only need to show that

ZEQ*

oo -0l < -

(6.61)
Given the behavioral policy 7, we use {ds, | (s,a) € SXA} to denote the stationary
distribution under policy 7. Recall that we define M = ¢ {(S) X ¥ (A). For each
abstract state-action pair (x,y) € M, we define a distribution p, ) over h~(x,y)

such that
ds,a

2G.a)eh (xy) d5.a

Py (s,a) = V(s a) € hl(x, y).

Using the set of distributions {p,y) | (x,y) € M}, we define two new MDPs:
My = (1(S),¥2(A), Py, Ry, y) (6.62)

where (Rt//)x,y = E(s,a)~p(x,y) [Rs,a]a and Pl,[/(xl | X, y) = E(s,a)~p(x,y) [P(x, | s, Cl)];
and
M&, = (S,ﬂ,P://,R:b,)/), (6.63)

Where (R:ﬁ)s,a = E(f,ﬁ)~ph(‘y,a) [Rf,d]a P:ﬁ(s, | S’ Cl) = E(5,5)~ph(s,a) [P(S/ | Ea d)]

We use I" to denote the Bellman Optimality Operator. For simplicity, we use the
subscript to distinguish the value functions (V*), the state-action value functions
(Q%), and the Bellman Optimality Operators (I") of the three MDPs M, M, and lep-
Notice that I'y; is identical with F.

We can show that 6 is identical with the state-action value function of My, i.e.,
0" =0 M, (6.64)

To see this, we notice that (®0%),, = ¢, . Hence we get that

(s.0)
F(®0%)sq = [Ty ®6" ;.4
= Ry +Eyp(s.a) [mgx(cbe*)s,,a]
=Ry u+Ey-p(sa) [mglx QZ(S’,a)] )

Using this, we further obtain that

ds,a
L(5.a)eh— (xy) d5.a

(IIF(®6")), , = (Rs,a +Eyp(sa) [mgx 9}’;(5,,@])

(s.a)eh™!(x.y)

= ) Puw(sa) (Rs,a+Es’~P(s,a> [mgxe}i(sga)])
(s,a)eh=1(x,y)
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=Ry + D, Pen(sa@) ), P |samaxd),

(s,a)eh=1(x,y) x'ey1(S)
= (Ry)xy + Z Py (x| x,y) max Oy
y
X' ey (S)
= [FM¢9*]x,y-

Since we have [1F (®6*) = 6* by definition, we see that

[Ty, 0%y = 65y, V(x,y) € M.

xX,y?
Thus we have shown that 6* = Q}“Vlw.

Next, we observe that the state-value function of MDP Ml;/ is given by

O, = PQly, - (6.65)

This is because

(Far, (@03,)) = (Rp)sa+7 Y PY(s' | 5,0) max(@Q}, )y
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= (R) s + (P} (5.0), @V} )

5 w6 (R rtrs.0.07;,)
(5.a)eh=1(h(s,a))
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(6.66a)
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(5,a)eh=1(h(s,a))

(Ry)n(s.a) + ¥{Py (h(s,a)), Vi ) (6.66b)
= (Q?uw)h(s,a)
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where we use the definition of Ml/p (see (6.63)) in (6.664); we use the definition of
M, (see (6.62)) in (6.66D).

By (6.63)), we see that
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We further notice that
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(8,a4)eh=1(h(s,a))

- Z Phisa) (3.8) ((Q3)5.a — (Qip)s.a)

(5,a8)eh=1(h(s,a))

> PG A|(Q@)5a — (Qi)sal

(5,d)eh~1(h(s,a))

> P (5.8)(2eg:) (6.68b)
(5,@)eh~1(h(s,a))

IA
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= 2€Q*,

where we use the definition of M, in (6.68a); we use Assumption in (6.68b).

Substituting ([6.68)) into gives that

2€Q*
-y
Combining (6.64) and finishes the proof. O

(6.69)
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Chapter 7

CONCLUSIONS AND FUTURE DIRECTIONS

To leverage the groundbreaking advances on ML-based predictors in real-world
online decision making tasks, it is critical to build a strong theoretical foundation
for understanding why the predictions help and how to use them optimally. The goal
of this thesis is to provide analytical frameworks for characterizing the benefit of
using predictions in control under general prediction/dynamical models and propose

efficient/scalable policy optimization algorithms with provable guarantees.

The first part of this thesis investigates the benefits of leveraging predictions in
online decision making under two predictive modeling paradigms: the adversar-
ial model and the stochastic model. Under the adversarial model, we focus on
MPC-style approaches and quantify the improvements in worst-case performance
metrics—such as dynamic regret and competitive ratio—relative to settings without
predictions. In contrast, under the stochastic model, we analyze the structure of
the optimal predictive control policy and establish sufficient conditions under which
the prediction power admits meaningful lower bounds. These results collectively
provide a theoretical foundation for understanding when and how predictions can

improve decision-making performance across a range of problem settings.

The second part of this thesis focuses on policy optimization for general policy
classes in both online settings and multi-agent networked systems—encompassing
the problem of finding or tracking the optimal predictive policy as a special case. In
the online setting, we consider a single-trajectory framework, where key challenges
stem from time-varying environments and limited feedback. In contrast, our study
of policy optimization in networked systems adopts an episodic setting, where
scalability arises as the primary concern in large-scale cooperation. Together,
these contributions address core practical challenges in learning effective decision
policies, thereby enabling users to better realize the potential benefits of prediction

in online decision making.

7.1 Summary of Chapters
In Chapter 3] we present a proof framework for MPC-style predictive control based

on the perturbation analysis under an adversarial prediction model. If one can
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establish a exponentially decaying perturbation bound for the underlying optimal
control problem, the framework helps derive finite-time performance guarantees for
the MPC policy. Our results highlight the insight that, while it becomes harder to
predict system parameters (e.g., disturbances) further into the future, the parameters
also become less important for approximating the current optimal decision in a
wide class of settings. We further extend the perturbation-based proof framework
to online convex optimization in networked systems, and we demonstrate how to
use the theoretical insight for algorithm design in the application of adaptive bitrate

streaming.

Chapter [] studies the prediction power under a stochastic prediction model. The
goal is to characterize the benefit of leveraging “weak’ predictions, whose potential
be overlooked by the adversarial prediction model in Chapter[3] In a general setting,
we provide sufficient conditions under which we can derive a meaningful lower
bound of the prediction power. We demonstrate the effectiveness of this general
lower bound by instantiating it in more specific online control problem such as LQR.
For prediction power evaluation, we provide examples to show that using standard
accuracy metrics like the mean-squared error is not enough, because one should

also consider the specific online control problem.

Chapter[5|considers online policy optimization on a single trajectory. The theoretical
foundation of our results is the contractive perturbation property, which enables us to
evaluate the current policy without the need to re-simulate what would happen if we
keep using the same policy from time 0. Under contractive perturbation, we design
an efficient policy optimization algorithm, M-GAPS, by differentiating through the
actual trajectory experienced by the controller. We first show M-GAPS can adapt
quickly in changing environments with provable guarantees when the Jacobians
of the dynamics are known. When the Jacobians are unknown, we propose a
meta-framework that can combine an online policy optimization algorithm like
M-GAPS with an online estimator of the unknown component in the dynamical
model. Lastly, we demonstrate the effectiveness of M-GAPS in the application of
quadcopter control, which involves multiple challenges such as nonlinear dynamics,

periodic disturbances, and limited computing hardware.

In Chapter [6] we study policy optimization in the setting of MARL in networked
systems. We exploit the localized interaction structure among agents to show a decay
property of each agent’s local Q function. As aresult, each agent only needs to gather

information within its k-hop neighborhood to evaluate the current joint policy. We
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leverage the decay property to design a scalable actor-critic algorithm with finite-
time sample complexity bounds. Our results also reveal a trade-off between the
observation radius « and the sub-optimality gap of the learned policy. We test the

proposed algorithm in the applications of wireless networks and spreading networks.

7.2 Future Directions

The results presented in this thesis on prediction power characterization and online
policy optimization focus on settings with continuous state and action spaces under
controllable dynamics, where stability is not the primary concern. The analysis
further relies on structural properties such as exponentially decaying or contrac-
tive perturbations, which facilitate both theoretical analysis and algorithm design.
However, these properties may not hold in many real-world systems, which often
involve discontinuities, partial controllability, or complex dynamics. Extending the
theoretical framework to address such complexities represents an important and

challenging future direction in general.

In the following, we outline concrete challenges that aim to extend the scope and

applicability of our results on prediction power and policy optimization, respectively.

Prediction power. There are multiple interesting future directions based on our
results for prediction power in Part [[I} First, we have studied how to evaluate the
prediction power of a certain prediction sequence in Chapterd] and a natural next step
is to develop an end-to-end approach to select the predictive model that works best for
a specific online control task. Second, the sufficient conditions for characterizing the
prediction power in Theorem4.2.3|relies on the properties of the optimal predictive
policy, which could be challenging to verify beyond linear dynamics and quadratic
costs. It is desirable to further relax these conditions to be based on an arbitrary
predictive policy that may be sub-optimal (e.g., MPC). Third, our networked online
convex optimization setting in Chapter [3] does not consider the underlying states
and dynamics. Given the recent advances on decentralized control (Shin, Lin, et
al., 2023} Zhang, Li, and Li, 2023), it is promising to generalize our setting and
perturbation analysis to allow such dynamical constraints, where a node’s next local

state can be affected by its direct neighbors’ current state.

Policy optimization. There are many future directions for improving our results
on policy optimization in Part[[TI] First, our theoretical guarantees for M-GAPS rely

on the contractive perturbation as well as other properties such as the stability. As
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we have seen in the application of quadcopter control, the theoretical verification
of such properties becomes challenging as the dynamics/policy class get more
complicated. Inspired by the approach of Li, Preiss, et al.,[2023], a potential solution
could be monitoring whether the desired properties holds online and eliminate a
policy parameter if a property is violated. This is an interesting direction for the
future research. Second, M-GAPS is model-based because it requires the (exact or
approximate) Jacobians of the dynamics to compute the gradients of the surrogate
costs. Zeroth-order gradient estimation provides a model-free way for evaluating
the gradients. Potential combination of zeroth-order optimization and M-GAPS is
a direction that worth exploring. Finally, a limitation of our results for networked
MARL in Chapter [6] is that the underlying network G which defines the distance
metric between any two nodes must be fixed, so the k-hop neighborhood of each node
cannot change throughout the learning process. However, in real-world applications,
the neighborhood relationships may change, for example, as each user moves around
different locations in the wireless network example in Section @ Therefore,

studying more general time-varying networks is an interesting future direction.
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