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ABSTRACT

Optimization provides a worst-case framework for quantifying uncertainty in sta-
tistical inference, delivering robust and transparent performance guarantees. While
this approach provides rigorous bounds, it cannot easily incorporate large-scale data
or produce estimates at a prescribed confidence level. To bridge this gap, this thesis
develops optimization-based methods that assimilate data while retaining worst-case
robustness, exploring three different contexts: Ill-posed inverse problems, Bayesian
inference with unknown priors, and Gaussian process regression.

In the first, we introduce a new framework for frequentist, optimization-based inter-
vals that provably achieves desired coverage. The framework unifies many previously
proposed optimization-based intervals and disproves a conjecture dating back to
1965. In the second, we introduce data-likelihood constraints in Wald’s two-player
zero-sum game, which renders the game computationally tractable and provides
explicit certificates of minimax optimality. In the third, we develop new Gaussian
process (GP) based methods for learning and solving partial differential equations
and operator learning. In each setting, our GP algorithms achieve stronger con-
vergence guarantees than existing machine-learning techniques without sacrificing
predictive accuracy.

Across these three settings, estimates for the unknown quantity (a finite-dimensional
parameter, a prior distribution, or a function, respectively) are obtained as the
solution to an optimization problem that characterizes either worst-case or minimax
optimality, therefore contributing towards a single optimization-centric view of
uncertainty quantification.
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3.1 (Left) A particular quantile surface, 𝑄𝒙 (1 − 𝛼), where 𝒙 ≥ 0 and
𝛼 = 0.32. This surface was obtained via Monte Carlo sampling the
LLR test statistic over a grid of 𝒙’s defined by the two-dimensional
constrained-Gaussian scenario similar to that in Section 3.6, but with
𝒉 :=

(
1 1

)⊤
. (Right-Top) An illustration of the Berger–Boos set and

other, a 1− 𝜂 confidence set for 𝒙∗, which prevents having to contend
with an unbounded parameter space. Additionally, it can eliminate
“worst-case” parameter settings in X that are far from the data, thus
potentially making the resulting intervals less conservative. (Right-
Bottom) An illustration of an LLR test statistic curve, 𝜆(𝜇, 𝒚), over
the QoI domain and the interval endpoints that result from using
either Equation (3.5) for the “Sliced” interval or Equation (3.6) for
the “Global” interval. . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.2 Numerical illustrations of the VGS Sampler’s infeasibility in high
dimensional regimes. The left panel shows the computed acceptance
probability of a point drawn by the VGS Sampler with data generated
from a non-negatively constrained Gaussian noise model. Crucially,
at only 30 dimensions, the acceptance probability is already less than
10−4 for this particular setup. The right panel shows the computed
probability mass function for the number of non-negative constraint
complying coordinates of a VGS sample with data generated from a
non-negatively constrained linear Gaussian model in 40 dimensions
with a non-identity forward model. Since this is an example using
a forward model with a large condition number (≈ 1.6 × 104), we
critically note that there is empirically zero probability of generating
a sample within the non-negativity constraints. . . . . . . . . . . . . 93

3.3 Polytope sampler output for a realization of the 80-dimensional ill-
posed inverse problem studied in Section 3.6. The left panel contains
a histogram of sampled functional values which both span and cover
well the range of 𝐼BB(𝒚) (shown by the dashed gray lines in both
plots). The right panel contains trace plots of the 14 Vaidya walks
(each indicated by a different color) which together constitute the
full sample. Our heuristic for choosing starting points along the lines
connecting the parameter settings generating the endpoints of 𝐼BB(𝒚)
and the Chebyshev center of the polytope provides a good initial
spread of starting functional values. . . . . . . . . . . . . . . . . . . 98
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3.4 Estimated coverages and expected lengths across all four interval
constructions and OSB for comparison at the 68% level for the two-
dimensional constrained Gaussian setting. All four of our interval
constructions are comparable to OSB with respect to coverage, but
OSB shows better-expected length performance, aside from our two
sliced interval constructions. Although the OSB intervals are defined
using the global max-quantile (𝑄max

1−𝛼) and therefore can potentially
be improved upon by limiting the considered parameter space via
the Berger–Boos set, due to the rapidity with which the 𝛼-quantile
surface meets the 𝜒2

1,𝛼 quantile (see Figure 5.3 in (Batlle, Stanley,
et al., 2023)), the OSB interval lengths are difficult to beat in practice. 103

3.5 (Left) Four realizations of the data-generating process where the ob-
servations are shown in red. For each realization, the blue points are
uniformly distributed samples from its Berger–Boos set, sampled us-
ing the VGS sampler. (Center) For a realization of the data-generating
process, we plot the distribution of 𝛾-quantiles for the points sam-
pled by the VGS sampler. Notably, a non-trivial percent of these are
above 𝜒2

1,𝛼 defining the OSB interval. (Right) For the same realiza-
tion, we plot the estimated sliced max-quantile function, 𝑚𝛾 (𝜇) in
orange alongside 𝜒2

1,𝛼 in red. The blue points correspond to sampled
parameter values, each of which has a functional and quantile value,
while the solid blue line shows the LLR over the functional varies.
All intervals can be read immediately from this image by inspecting
where the blue LLR curve intersects the sampled points. . . . . . . . 104

3.6 Estimated coverage and expected length across all four interval con-
structions and OSB for comparison at the 68% level for the three-
dimensional constrained Gaussian example. All four of our interval
constructions achieve nominal coverage while the OSB interval does
not. While the Global interval constructions pay a steep price in ex-
pected length compared to OSB, the Sliced constructions are only
slightly longer than OSB. . . . . . . . . . . . . . . . . . . . . . . . . 104



xvii

3.7 Confidence interval lengths in the Berger–Boos setting, averaged over
values of 𝒚, for varying 𝜂 and 𝒙∗. The minimum average length occurs
at a small 𝜂 > 0, showing that the construction is beneficial if 𝜂 is
tuned correctly. This occurs because even for moderately small 𝜂,
the Berger–Boos set, which is a three-dimensional sphere intersected
with the non-negative orthant, avoids the point with the highest 1−𝛼
quantile. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

3.8 Parameter values for the smooth and adversarial settings for 𝒙∗ used
to illustrate our interval construction versus the OSB interval. The
adversarial setting is made more difficult by the sharp jumps in pa-
rameter values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

3.9 Estimated coverage and expected length across all four interval con-
structions and OSB at the 68% level for the smooth wide-bin decon-
volution experiment. While the Global interval constructions over-
cover like the OSB interval, the Sliced interval constructions reduce
both over-coverage and expected interval length. . . . . . . . . . . . 108

3.10 Estimated coverage and expected length across all four interval con-
structions and OSB at the 68% level for the adversarial wide-bin
deconvolution experiment. While the OSB interval fails to achieve
nominal coverage, all four of our interval constructions do. Interest-
ingly, the Sliced interval constructions are meaningfully shorter than
the OSB interval while also providing coverage. . . . . . . . . . . . . 109

3.11 When sampling points using Algorithm 6, the vast majority of sam-
ples are found closer to the non-negativity constraint boundary. The
true parameter setting is shown by the red point, while the parameter
settings sampled by Algorithm 6 are shown by the blue points. This
sampling prioritization helps adequately sample the regions of the
Berger–Boos set where the quantile surface is larger than 𝜒2

1,𝛼. Fur-
thermore, the vast majority of sampled points lie within the Berger–
Boos set with some lying outside within the bounding polytope. . . . 116



xviii

3.12 The importance-like sampler described by Algorithm 6 is more effec-
tive than the Polytope sampler described by Algorithm 5 at sampling
parameter settings with 𝛾-quantile greater than 1.1. Each parameter
setting sampled by Algorithm 6 is shown by a blue point. This im-
proved ability helps ensure the coverage guarantee shown in the left
panel of Figure 3.6. . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.1 The Uncertainty Quantification (UQ) problem. Here, Θ is the space
of parameters, 𝜃† is the true unknown parameter, 𝜑 a quantity of
interest, and 𝑃 is the physical model determining the distribution 𝑝
from which the data 𝑥 is observed . . . . . . . . . . . . . . . . . . . 119

4.2 Example of the minimum enclosing ball 𝐵 about the image 𝜑(Θ𝑥 (𝛼))
(in green) with radius 𝑅 and center 𝑑 = 𝑧∗. An optimal discrete
measure 𝜇 :=

∑
𝑤𝑖δ𝑧𝑖 (𝑧𝑖 = 𝜑(𝜃𝑖)) on the range of 𝜑 for the maximum

variance problem is characterized by the fact that it is supported on
the intersection of 𝜑(Θ𝑥 (𝛼)) and 𝜕𝐵 and 𝑑 = 𝑧∗ =

∑
𝑤𝑖𝑧𝑖 is the center

of mass of the measure 𝜇. The size of the solid red balls indicates the
size of the corresponding weights 𝑤𝑖. . . . . . . . . . . . . . . . . . 122

4.3 𝛼 − 𝛽 relation, likelihood level sets, risk value and decision for dif-
ferent choices of 𝛼 (and consequently 𝛽) for the 1 coin problem after
observing four heads and one tail. Three different values in the 𝛼 − 𝛽
curve are highlighted across the plots . . . . . . . . . . . . . . . . . 125

4.4 2D likelihood level sets and minimum enclosing balls for different
values of 𝛼, visualized as level sets of the likelihood function (left)
and projected onto a 2D plane (right) . . . . . . . . . . . . . . . . . 126

4.5 Curse of dimensionality in discretizing the prior. The data is of the
form 𝑥 = 𝑚(𝜃) + 𝜖N(0, 1) where 𝑚 is deterministic and 𝜖N(0, 1) is
small noise. (a) For the continuous prior, the posterior concentrates
around M := {𝜃 ∈ Θ|𝑚(𝜃) = 𝑥}. (b) For the discretized prior, the
posterior concentrates on the delta Dirac that is the closest toM. . . 129

4.6 𝛼− 𝛽 relation, likelihood level sets, risk value and decision for differ-
ent choices of 𝛼 (and consequently 𝛽) for the normal mean estimation
problem with 𝜏 = 3 and observed value 𝑥 = 1.5. Three different val-
ues in the 𝛼 − 𝛽 curve are highlighted across the plots . . . . . . . . 150



xix

4.7 Quadratic model results: (left-top) 𝛽𝛼 vs 𝛼, (right-top) risk vs 𝛽𝛼,
(left-bottom) the supporting surfaces with the decision points at
the center of each surface and (right-bottom) maximum-likelihood
solution and supporting points of the minimum enclosing ball for
𝛽𝛼 = 𝛽∗ = .05 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

4.8 (Top image) DataD := 𝒙 (𝑡) , 𝑡 ∈ 𝑇 , generated, according to the Gaus-
sian noise model (4.83): solid red is the prey component and solid
blue the predator component of the generated data 𝒙 (𝑡) , the dotted
red and dotted blue are the prey-predator components of the Lotka-
Volterra solution 𝒎(𝑡, 𝜽∗) for 𝑡 ∈ 𝑇 . (Bottom image) Uncertainty in
the population dynamics corresponding to the worst-case measure:
(1) red is prey and blue is predator, (2) solid line is the Lotka-Volterra
evolution 𝒎(𝑡, 𝜽∗), 𝑡 ∈ 𝑇 , fine dots 𝒎(𝑡, 𝜽1), 𝑡 ∈ 𝑇, and coarse dots
𝒎(𝑡, 𝜽2), where 𝑆 := {𝜽1, 𝜽2} is the set of support points of the worst
case (posterior) measure (located on the boundary of the minimum
enclosing ball). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

4.9 Minimum enclosing ball for the Lotka-Volterra Model: (left) the
dashed line indicates the boundary of the likelihood region ΘD (𝛼),
the solid circle its minimum enclosing ball, the red point the data
generating value 𝜽∗ and the blue point the center of the minimum
enclosing ball and the optimal estimate of 𝜽∗. The two yellow points
comprise the set 𝑆 := {𝜽1, 𝜽2}. (right) a projected view with the
yellow columns indicating the weights (.5, .5) of the set 𝑆 in their
determination of a worst-case (posterior) measure. . . . . . . . . . . 155

4.10 Monte Carlo numerically confirms the result from Theorem 4.4.1
in both the quadratic function estimation (left image) and Lotka-
Volterra (right image) examples. . . . . . . . . . . . . . . . . . . . 155

5.1 Commutative diagram of our operator learning setup. . . . . . . . . . 175
5.2 Example of training data and test prediction and pointwise errors for

the Darcy flow problem (5.3). . . . . . . . . . . . . . . . . . . . . . 179
5.3 Generalization of fig. 5.1 to the mesh invariant setting where the

measurement functionals are different at test time. . . . . . . . . . . 189
5.4 Example of training data and test prediction and pointwise errors for

the Burger’s equation (5.49). . . . . . . . . . . . . . . . . . . . . . . 201
5.5 Example of training data and test prediction and pointwise errors for

the Advection problem (5.50)-I. . . . . . . . . . . . . . . . . . . . . 202



xx

5.6 Example of training data and test prediction and pointwise errors for
the Advection problem (5.50)-II. . . . . . . . . . . . . . . . . . . . . 203

5.7 Example of training data and test prediction and pointwise errors for
the Helmholtz problem (5.53). . . . . . . . . . . . . . . . . . . . . . 203

5.8 Example of training data and test prediction and pointwise errors for
the Structural Mechanics problem (5.54). . . . . . . . . . . . . . . . 204

5.9 Example of training data and test prediction and pointwise errors for
the Navier-Stokes problem (5.55). . . . . . . . . . . . . . . . . . . . 205

5.10 Accuracy complexity tradeoff achieved in the problems in (De Hoop
et al., 2022). Data for NNs was obtained from the aforementioned
article. Linear model refers to the linear kernel, vanilla GP is our im-
plementation with the nonlinear kernels and minimal preprocessing,
GP+PCA corresponds to preprocessing through PCA both the input
and the output to reduce complexity. . . . . . . . . . . . . . . . . . . 207

6.1 A summary of the main steps in our proof of convergence rates
outlined in Theorems 6.3.1, 6.3.2, 6.3.4 and 6.3.6. The 1–4 norms
denote arbitrary norms on appropriate Banach spaces while the ∥ · ∥U-
norm can be chosen as an RKHS norm or another desired norm with
respect to which the numerical algorithm is stable. . . . . . . . . . . 220

6.2 𝐿2 test errors of solutions to Problem (6.39) as a function of the
number of collocation points. Left: 𝛽 = 1; right: 𝛽 = 4. In both cases,
we choose Matérn kernel with 𝜈 = 7/2. Reported slopes in the legend
denote empirical convergence rates. . . . . . . . . . . . . . . . . . . 247

6.3 𝐿2 test errors of solutions to Problem (6.39) as a function of the
number of collocation points with 𝛽 = 4. Left: Matérn kernel with
𝜈 = 5/2; right: Matérn kernel with 𝜈 = 9/2. Reported slopes in the
legend denote empirical convergence rates. . . . . . . . . . . . . . . 248

6.4 𝐿2 test error of solutions to Problem (6.41) as a function of the number
of collocation points. Left: vanilla gaussian kernel; Right: Gaussian
kernel adapted to the regularity of 𝐴. Reported slopes in the legend
denote empirical convergence rates. . . . . . . . . . . . . . . . . . . 250

7.1 The three levels of complexity of function approximation. . . . . . . 257
7.2 Ancestors identification in Type 3 problem. . . . . . . . . . . . . . . 259
7.3 (a-d) The Fermi-Pasta-Ulam-Tsingou system. (e-k) The Google Covid

19 open data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263



xxi

7.4 (a-c) Chemical reaction network. (d-g) Algebraic equations. (h-j) Cell
signaling network. . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

7.5 (a) Cell signaling network comparisons. (b-h) The BCR reaction
benchmark. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268

7.6 Histogram of the eigenvalues of 𝐷𝛾=(7.11) for 𝛾 = 10−2 (good
choice) and 𝛾 = 10−6 (bad choice). . . . . . . . . . . . . . . . . . . . 273

7.7 Formal description of Type 2 problems. . . . . . . . . . . . . . . . . 277
7.8 (a) Electric circuit. (b) Resistance, capacitance, and inductances are

nonlinear functions of currents and voltages (c) Measurements. (d)
Kirchhoff’s circuit laws. (e) The computational graph with unknown
functions represented as red edges. (f) Recovered functions. . . . . . 279

7.9 Computational Hypergraph Discovery with three variables . . . . . . 280
7.10 The structure of the hypergraph is identifiable in (a), (b), and non-identifiable

in (c). The relationship between variables is implicit in (d). . . . . . . . . 281
7.11 (a) CHD formulation as a manifold discovery problem and hyper-

graph representation, (b) The hypergraph representation of an affine
manifold is equivalent to its Row Echelon Form Reduction. . . . . . . 283

7.12 Feature map generalization . . . . . . . . . . . . . . . . . . . . . . . 285
7.13 Iterating by removing the least active modes from the signal . . . . . 294
7.14 Computing the ancestors of the variable ¤𝑥0 in the Fermi-Pasta-Ulam-

Tsingou problem. (a) Noise-to-Signal Ratio, denoted as V(𝑛)
V(𝑠)+V(𝑛) (𝑞),

with respect to the number of proposed ancestors, represented by 𝑞.
Additionally, we include a visualization of the quantiles derived from
the 𝑍-test, as described in Section 7.7. Notably, when there is no signal
present, the noise-to-signal ratio is expected to fall within the shaded
area with a probability of 0.9. (b) Increments in the Noise-to-Signal
Ratio, defined as V(𝑛)

V(𝑠)+V(𝑛) (𝑞) −
V(𝑛)

V(𝑠)+V(𝑛) (𝑞 − 1), as a function of
the number of ancestors, denoted as 𝑞. The horizontal axis represents
the number of proposed ancestors for ¤𝑥0. Determining an appropriate
stopping point based solely on absolute noise-to-signal ratio levels
can be challenging. In contrast, the increments in the noise-to-signal
ratio clearly exhibit a discernible maximum, offering a practical point
for decision-making. . . . . . . . . . . . . . . . . . . . . . . . . . . 295



xxii

LIST OF TABLES

Number Page
3.1 Summary of methods based on global and sliced max quantile, and

whether they are optimization-based or inversion-based. . . . . . . . 88
4.1 Comparison of the three previous approaches to uncertainty quantifi-

cation with our proposed method in Section 4.3 . . . . . . . . . . . . 130
5.1 The 𝐿2 relative test error of the Darcy flow problem in our running

example. The kernel approach is compared with variations of Deep-
ONet and FNO. Results of our kernel method are presented below
the dashed line with the pertinent choice of the kernel 𝑆. . . . . . . . 179

5.2 Summary of datasets used for benchmarking. The first three examples
were considered in (L. Lu, X. Meng, et al., 2022), and the last four
were taken from (De Hoop et al., 2022). . . . . . . . . . . . . . . . . 199

5.3 Summary of numerical results: we report the 𝐿2 relative test error
of our numerical experiments and compare the kernel approach with
variations of DeepONet , FNO, PCA-Net, and PARA-Net. We con-
sidered two choices of the kernel 𝑆, the rational quadratic and the
Matérn, but we observed little difference between the two. . . . . . . 206

5.4 Comparison between Cholesky preconditioning and PCA dimension-
ality reduction on three examples for our vanilla kernel implementa-
tion with the Matérn kernel. . . . . . . . . . . . . . . . . . . . . . . 207

6.1 A qualitative comparison of the properties of traditional PDE solvers
(such as FEM, FVM, FDM, spectral methods, etc.) against kernel
methods and ANNs. . . . . . . . . . . . . . . . . . . . . . . . . . . 223

6.2 Numerical results for the HJB equation (6.42), computing the quantity
𝑉 (𝒙0, 0). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251



1

C h a p t e r 1

INTRODUCTION

A crucial part of the scientific process is the combination of observations of real-
world data with previously known knowledge about a given physical process, to
obtain a theory that can generalize and predict future events. Given the current
scale of available computing power and data, classical scientific discovery has been
increasingly complemented with computational and data-driven statistical tools. In
this context, statistical inference methodologies aim to provide uncertainty estimates
in the process of recovering unknowns from a combination of data and previous
information.

This thesis explores theory and applications of optimization-based perspectives on
statistical inference, extending its original formulation in the context of worst-case
Uncertainty Quantification into a more modern setup in which it aims to produce
statistical estimates while preserving the certification properties of the optimization-
based method.

We consider different statistical inference problems and applications that can be
described with the additive noise model 𝑦 = 𝐹 (𝑥∗) + 𝜀, in which 𝑦 is the observed
experimental data, 𝐹 (the forward model) is a physical process, dependent on a state
of the world or parameter 𝑥∗, and 𝜀 ∼ 𝜇 is some experimental or measurement noise.

The scientist’s knowledge about the different elements of the problem is application-
dependent. Statistical techniques vary depending on which elements we aim to infer
from which others, and under which assumptions/knowledge of 𝐹, 𝑥∗ and 𝜇, the
distribution of 𝜀, we aim to perform such inference. For example, distribution-free
methods make no assumptions about the distribution of 𝜀, frequentist methods make
distribution assumptions on 𝜀 but not on 𝑥∗, constrained inference methods further
assume 𝑥∗ ∈ X, and Bayesian methods assume 𝑥∗ ∼ 𝜈 for a given, known 𝜈. For
all the elements present (including the prior distribution 𝜈, whenever included as
part of the model), a range of assumptions is possible, including fully unknown,
knowledge of a constraint set, and fully known.

There is an inherent tradeoff between accuracy and robustness in Uncertainty Quan-
tification methods, illustrated in this context by the strength of the assumptions any
particular method uses: methods with few assumptions are robust, but may overcover
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if they are unable to capture all that is known from a problem, while methods with
many assumptions can be much more accurate, but might suffer from brittleness and
undercover if any of the assumed knowledge is even slightly wrong (H. Owhadi,
C. Scovel, and T. Sullivan, 2015b).

In real applications, overcovering leads to the extra economic cost of preparing
against scenarios that were not needed, and undercovering leads to taking unneces-
sary risks. Given these potential consequences of over-assuming and under-assuming
in inference problems, and given that many real problems have partial knowledge
about the unknowns, this thesis aims to build optimization-based methods that are
able to include such partial knowledge, without relying on extra information that is
not available to the decision problem.

An example inference problem that will help illustrate the importance of assumptions
is the particle unfolding problem (Spano, 2014), illustrated in Figure 1.1. The
distribution of particle counts with respect to a quantity of interest (usually, energy)
in certain particle physics cannot be observed directly, but is observed through a
noisy measurement of a known “blurring” process 𝐹 that destroys some part of the
signal. We refer to this as an ill-posed inverse problem because, even with a noiseless
measurement, we would not be able to recover the totality of 𝑥∗. It is nevertheless
of scientific interest to estimate a function of 𝑥∗, referred to as 𝜑(𝑥∗) (for example,
the number of particles over a given energy threshold), given the data 𝑦.

In this problem, we can model 𝐹 and the distribution of 𝜀 as known (we assume that
the measurement device can be calibrated in-lab before the experiment), but a prior
distribution on 𝑥∗, which is a common regularization technique for ill-posedness in
inverse problems, might not necessarily be available. Early works dating back to the
1960s proposed using the known constraint 𝑥∗ ≥ 0 to obtain meaningful inference
without prior regularization (W. R. Burrus, 1965), a problem which we consider
in more generality in Chapters 2 and 3. In this setup, not being able to include the
constraint 𝑥∗ ≥ 0 (under-assuming) can make the given function of interest 𝜑(𝑥∗)
hard or even impossible to infer, and adding a prior distribution (over-assuming)
might lead to intervals without the proper coverage if such a prior is not correct,
as observed in a related application (Patil, Kuusela, and Hobbs, 2022). It is hence
crucial to develop algorithms that can make use of “what we know, and only what
we know”.

More precisely, in Chapters 2 and 3, we consider building frequentist confidence
intervals for functionals of interest in constrained inverse problems, which corre-
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Figure 1.1: Setup of the particle unfolding inference problem. In it, we are aiming
to recover a function 𝜑 of a discrete distribution of particle counts 𝑥∗, given a
distribution 𝑦 of blurred particle counts obtained by a noisy measurement 𝑦 =

𝐹 (𝑥∗) + 𝜀.

sponds to using the data y and knowledge of 𝐹, the distribution of 𝜀 and some
constraints 𝑥∗ ∈ X to calibrate in a frequentist sense a confidence interval for a
quantity of interest 𝜑(𝑥∗). In this problem, standard worst-case analysis shows that
before observing any data, it holds that

𝜑(𝑥∗) ∈
[

inf
𝑥∈X

𝜑(𝑥), sup
𝑥∈X

𝜑(𝑥)
]
∀𝑥∗ ∈ X. (1.1)

If we were to observe the data 𝑦 = 𝐹 (𝑥) without noise, defining C(𝑦) := {𝑥 : 𝐹 (𝑥) =
𝑦} we would be able to certify that

𝜑(𝑥∗) ∈
[

inf
𝑥∈X∩C(𝑦)

𝜑(𝑥), sup
𝑥∈X∩C(𝑦)

𝜑(𝑥)
]
∀𝑥∗ ∈ X. (1.2)

In the noisy case, in which we observe 𝑦 = 𝐹 (𝑥) + 𝜀, with 𝜀 sampled from a noise
distribution, the main problem addressed in Chapters 2 and 3 is how to build an
equivalent set C(𝑦;𝛼) such that the property (1.2) holds with probability 1 − 𝛼 i.e.

P𝑦∼𝑃𝑥∗

(
𝜑(𝑥∗) ∈

[
inf

𝑥∈X∩C(𝑦;𝛼)
𝜑(𝑥), sup

𝑥∈X∩C(𝑦;𝛼)
𝜑(𝑥)

])
≥ 1 − 𝛼 ∀𝑥∗ ∈ X. (1.3)
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Figure 1.2: In optimization-based methods, the observation of the data can be used
to shrink the constraint set of the optimization programs considered

while having the resulting interval be as small as possible. We note that we treat 𝑥∗

as a fixed unknown and the probability is only taken with respect to the randomness
induced by 𝜀. Figure 1.2 illustrates how the process of data observation leads to
a shrinkage of the set we are optimizing over, from X to X ∩ C(𝑦;𝛼), leading to
potentially tighter Uncertainty Quantification. Chapter 2, published as (Batlle, Stan-
ley, et al., 2023), focuses on the theoretical background of this problem, illustrating
the connections with hypothesis test inversion of many different previously used
techniques (W. R. Burrus, 1965; Philip B. Stark, 1992a; Philip B. Stark, 1994) and
disproving a conjecture originally stated in (W. R. Burrus, 1965) claiming that a
particular construction of C(𝑦;𝛼) has correct 1−𝛼 frequentist coverage. Chapter 3,
published as (Stanley, Batlle, et al., 2025), focuses on building a sampling algorithm
that scales to higher-dimensional problems, by leveraging quantile regression tech-
niques and maximization of p-values over confidence sets, a theoretical technique
pioneered originally by (Roger L. Berger and Boos, 1994).

In Chapter 4, published as (Bajgiran et al., 2022a), inverse problems are considered
from a Bayesian and decision-theoretical perspective, with optimization and certi-
fication being performed with respect to an unknown prior distribution. This is, we
consider that, before sampling our data, 𝑥∗ ∼ 𝜇 for some unknown distribution 𝜇,
and we aim to find certificates similar to (1.3).

As opposed to the worst-case approach with respect to measures developed in (H.
Owhadi, C. Scovel, T. J. Sullivan, et al., 2013b), we aim to find minimax opti-
mal certificates in the setting of the classical decision-theoretical framework of (A.
Wald, 1945), in which a prior distribution is chosen by nature adversarially to the
decision-maker as a randomized strategy for a zero-sum game. In such a game, we
introduce likelihood constraints after seeing the data. This corresponds to a novel
perspective in Uncertainty Quantification, which we name of the fourth kind (in
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Figure 1.3: In Optimization-based methods, the observation of the data can be used
to shrink the constraint set of the optimization programs considered

reference to the three previous families: worst-case, Bayesian, and the aforemen-
tioned Wald’s decision-theoretical), which consists of formulating and solving a
two-player zero-sum data-dependent game subject to likelihood constraints. Figure
1.3 illustrates the main differences between the classical decision-theoretical UQ
and our new approach. This algorithm has been later used in (Kaveh et al., 2024) for
the quantification of uncertainty in the number of earthquakes induced by reservoir
operations for gas extraction in the Groningen region in the Netherlands.

In Chapters 5, 6, and 7, published as (Batlle, Darcy, et al., 2023; Batlle, Yifan Chen,
et al., 2023; Bourdais et al., 2023) respectively, three different functional regression
settings are considered, in which we aim to recover the forward model 𝐹 based
on pairs of {𝑥𝑖, 𝑦𝑖 = 𝐹 (𝑥𝑖) + 𝜀𝑖}𝑖∈I data. In all the situations, we consider kernel
methods, which emerge in the context of optimization-based statistical inference as
solutions of an optimal recovery game in a Banach space B. In particular, letting an
unknown 𝑢 ∈ B we consider the problem of recovering it from linear measurements
Φ(𝑢) := ( [𝜙1, 𝑢], . . . , [𝜙𝑚, 𝑢]) ∈ R𝑚, with an estimator Ψ(Φ(𝑢)) ∈ B. If we pose

this as a zero-sum game with loss function E(𝑢,Ψ) = ∥𝑢 − Ψ(Φ(𝑢))∥B∥𝑢∥B
(which the

decision maker aims to minimize by choosing Ψ, and nature aims to minimize by
adversarially choosing 𝑢), Gaussian processes conditioned on the data, equivalently
thought of as kernel methods by seeing kernels as Gaussian process covariance



6

functions, arise as minimax optimal solutions of the randomized version of the
optimal recovery game (Houman Owhadi and Clint Scovel, 2019a).

Chapter 5 considers using kernel methods for operator learning, the task of learning
an operator between Banach spaces of functions. In Chapter 6, error estimates for
the use of kernel methods to solve partial differential equations are developed, and
in Chapter 7, we use Gaussian processes as a sensing tool to discover functional
relationships between data. This task can be thought of as recovering particular
properties about the unknown 𝑓 , in cases in which recovering the full 𝑓 is unfeasible
due to the quantity or quality of the available data. In the sequel, each chapter defines
distinct notation within its content.



7

C h a p t e r 2

OPTIMIZATION-BASED FREQUENTIST CONFIDENCE
INTERVALS FOR FUNCTIONALS IN CONSTRAINED INVERSE

PROBLEMS: RESOLVING THE BURRUS CONJECTURE

We present an optimization-based framework to construct confidence intervals for
functionals in constrained inverse problems, ensuring valid one-at-a-time frequen-
tist coverage guarantees. Our approach builds upon the now-called strict bounds
intervals, originally pioneered by (W. R. Burrus, 1965; Burt W. Rust and Walter R.
Burrus, 1972), which offer ways to directly incorporate any side information about
the parameters during inference without introducing external biases. This family of
methods allows for uncertainty quantification in ill-posed inverse problems with-
out needing to select a regularizing prior. By tying optimization-based intervals to
an inversion of a constrained likelihood ratio test, we translate interval coverage
guarantees into type I error control and characterize the resulting interval via so-
lutions to optimization problems. Along the way, we refute the Burrus conjecture,
which posited that, for possibly rank-deficient linear Gaussian models with positivity
constraints, a correction based on the quantile of the chi-squared distribution with
one degree of freedom suffices to shorten intervals while maintaining frequentist
coverage guarantees. Our framework provides a novel approach to analyzing the
conjecture, and we construct a counterexample employing a stochastic dominance
argument, which we also use to disprove a general form of the conjecture. We il-
lustrate our framework with several numerical examples and provide directions for
extensions beyond the Rust–Burrus method for nonlinear, non-Gaussian settings
with general constraints.

2.1 Introduction
Advances in data collection and computational power in recent years have led to
an increase in the prevalence of high-dimensional, ill-posed inverse problems, es-
pecially within the physical sciences. These challenges are particularly evident in
domains such as remote sensing and data assimilation, where uncertainty quan-
tification (UQ) in inverse problems is of paramount importance. Many of these
inverse problems also come with inherent physical constraints on their parameters.
This paper focuses on constrained inverse problems for which the noise model is
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known, and the forward model, defined on a finite-dimensional parameter space, can
be computationally evaluated. Our primary objective is to construct a confidence
interval for a functional of the forward model parameters.

Formally, we consider statistical models of the form 𝒚 ∼ 𝑃𝒙∗ , where 𝒚 ∈ R𝑚 is
sampled according to a parametric probability distribution. Here 𝒙∗ ∈ R𝑝 is a fixed
unknown parameter, which we know a priori lies within the set X; see Figure 2.1
for an illustration. Our goal is to construct confidence intervals for a known one-
dimensional functional 𝜑(𝒙∗) ∈ R. Ideally, we want the length of these intervals to
be as small as possible, while still maintaining a nonasymptotic frequentist coverage
guarantee. In other words, given a prescribed coverage level 1−𝛼 for some𝛼 ∈ (0, 1),
we want to construct functions of the data 𝐼−(𝒚) and 𝐼+(𝒚) such that the following
coverage guarantee holds in finite sample1:

inf
𝒙∈X

P𝒚∼𝑃𝒙

(
𝜑(𝒙) ∈ [𝐼−(𝒚), 𝐼+(𝒚)]

)
≥ 1 − 𝛼. (2.1)

While the requirement (2.1) requires that we maintain at least 1−𝛼 coverage, we also
want it to be approximately accurate by minimizing the slack in the inequality. En-
suring such proper calibration, namely, confidence intervals that do not undercover
(fail to meet the 1 − 𝛼 guarantee for some 𝒙 ∈ X) or overcover (are too large and
therefore exceed the required coverage) is paramount in practical applications. This
is especially true in contexts that require stringent safety and certification standards.
Intervals that undercover yield unreliable inferences that may expose the system
to unforeseen risks. Conversely, intervals that overcover might lead to excessive
economic costs by needing to guard against scenarios that are unlikely to occur.

In many applied contexts, Bayesian methods constitute a primary set of techniques
for uncertainty quantification. These methods leverage a prior for regularization,
derived either from the intrinsic details of the problem or introduced externally. A
key advantage of this regularization approach is the natural UQ that emerges from
the Bayesian statistical framework. Specifically, the combination of a predefined
prior and data likelihood results in a posterior distribution via Bayes’ theorem. This
distribution can subsequently be used to derive the intended posterior UQ. However,
there is a caveat: Bayesian methods can offer marginal coverage (probability over 𝒙
and 𝒚) if the prior is correctly specified. They do not necessarily provide conditional
coverage (probability over 𝒚 given 𝒙). The former notion of coverage is weaker (and,

1This form of “simple” interval is only for expositional simplicity. One can consider more general
forms of confidence setsI(𝒚) beyond simple intervals, which we will do when describing the general
framework in Section 2.3.
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Figure 2.1: Illustration of the problem setup. We seek to construct confidence inter-
vals [𝐼−(𝒚), 𝐼+(𝒚)] ⊆ R for 𝜑(𝒙∗) ∈ R from an observation 𝒚 ∈ R𝑚 sampled from
𝑃𝒙∗ that satisfies a frequentist coverage guarantee in finite sample while being as
small (in length) as possible.

in particular, the latter implies the former, but the converse may not be true), as it
replaces the infimum in the coverage requirement (2.1) with a probability distribution
over 𝒙. Generally, Bayesian methods may not align with the analyst’s expectations
due to inherent bias (Kuusela, 2016; Patil, Kuusela, and Hobbs, 2022). While, in
theory, priors present an effective mechanism to incorporate scientific knowledge
into UQ, they can inadvertently introduce extraneous information (Philip B. Stark,
2015) and a lack of robustness in the resulting estimates (Houman Owhadi, Clint
Scovel, and Tim Sullivan, 2015a; Houman Owhadi, Clint Scovel, and Tim Sullivan,
2015b; H. Owhadi and C. Scovel, 2017b).

On the other hand, we could consider a basic worst-case approach that is rooted in
the simple observation that

𝜑(𝒙∗) ∈
[

inf
𝒙∈X

𝜑(𝒙), sup
𝒙∈X

𝜑(𝒙)
]
. (2.2)

Of course, this method is inherently conservative given the absence of assumptions
and any specific knowledge regarding data generation. More importantly, the method
does not use observations 𝑦 in any way to calibrate the confidence set. This means that
the sets cannot be fine-tuned to approximately achieve the desired 1 − 𝛼 coverage
level. Nevertheless, they illustrate the essential idea of constructing a confidence
interval based on the outcomes of two boundary optimization problems, an approach
that the more sophisticated methods that we will study in this paper build on. We
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shall henceforth refer to such intervals with the notation:

inf
𝒙
/sup

𝒙
𝜑(𝒙)

st 𝒙 ∈ X
:=

[
inf
𝒙∈X

𝜑(𝒙), sup
𝒙∈X

𝜑(𝒙)
]
.

An example of such a more sophisticated method is the so-called “simultaneous”
approach (Philip B. Stark, 1992a; Philip B. Stark, 1994), which provides intervals
with at least 1 − 𝛼 frequentist coverage for the functional of interest 𝜑(𝒙∗) from
confidence sets for the parameter 𝒙∗. The approach can be summarized in three
steps (see Figure 2.2 for an illustration):

Step 1. Construct a set C(𝒚) ∈ R𝑝 that is a 1 − 𝛼 confidence set for 𝒙∗.

Step 2. Intersect this set C(𝒚) with the constraint set X.

Step 3. Project this intersection through the functional of interest 𝜑.

The term “simultaneous” refers to Steps 1 and 2 being independent of the quantity
of interest 𝜑, so the resulting set from Step 2 can be simultaneously projected to
different quantities of interest. Under mild assumptions, the resulting intervals can
be equivalently written as

ISSB(𝒚) :=
[

inf
𝒙∈X∩C(𝒚)

𝜑(𝒙), sup
𝒙∈X∩C(𝒚)

𝜑(𝒙)
]
=

inf
𝒙
/sup

𝒙
𝜑(𝒙)

st 𝒙 ∈ X ∩ C(𝒚).
(2.3)

This illustrates how the simultaneous approach is a refinement of the basic worst-
case method (2.2): the observation of the data 𝒚 shrinks the “pre-data set” X into a
smaller “post-data set” X ∩C(𝒚), which is then projected through 𝜑 in a worst-case
manner. Given that this simultaneous framework is broadly encapsulated in (Philip
B. Stark, 1992a) as “strict bounds,” we label these intervals as “simultaneous strict
bounds” or SSB intervals, for short.

Unlike methods that rely on explicit regularization through a prior, the techniques
outlined above leverage only the physical constraints and the functional of inter-
est to address the underlying ill-posedness of the inverse problem. This approach
allows for uncertainty quantification without the need to assume a prior distribu-
tion, circumventing potential biases and miscalibrated coverage issues previously
mentioned.

Although the interval (2.3) has guaranteed coverage for 𝜑(𝒙∗) inherited from the
coverage of C(𝒚), this method generally suffers from overcoverage, especially when
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Figure 2.2: Illustration of the simultaneous approach for confidence interval building,
which works generically for anyX, 𝜑, and 𝑃. The intersection ofX and C(𝒚) occurs
in the original parameter spaceR𝑝, and is then projected via the functional of interest
function into the real line. The confidence interval is then constructed using the
minimum and maximum of the quantity of interest 𝜑 over the intersectionX∩C(𝒚).

the dimension of X is large (Patil, Kuusela, and Hobbs, 2022; Stanley, Patil, and
Kuusela, 2022; Kuusela and Philip B. Stark, 2017a). This happens due to two
main factors: (i) its generality cannot account for the specific structure of 𝑃, 𝜑,
and X; and (ii) while the set C(𝒚) being a 1 − 𝛼 confidence set is a sufficient
condition, it is not necessary for (2.3) to ensure accurate coverage, which implies
that smaller sets might also produce valid confidence intervals. Consequently, an
important research direction has been constructing confidence intervals that are
shorter than the simultaneous approach, but still maintain nominal coverage for a
given 𝜑. Sometimes, this is achieved by assuming that 𝑃, 𝜑, and X come from a
particular class (Philip B. Stark, 1994; Burt W. Rust and Walter R. Burrus, 1972;
Tenorio, Fleck, and Moses, 2007; Patil, Kuusela, and Hobbs, 2022; Stanley, Patil,
and Kuusela, 2022). In the sequel, we discuss one such special class.

The Burrus conjecture
The Gaussian linear forward model with nonnegativity constraints and a linear
functional of interest is a setting that has attracted significant attention, going back to
the works of (W. R. Burrus, 1965; Burt W. Rust and Walter R. Burrus, 1972). These
foundational studies consider the applied problem of unfolding gamma-ray and
neutron spectra from pulse-height distributions under rank-deficient linear systems.
They demonstrated that incorporating the nonnegativity physical constraint allowed
for the computation of nontrivial (i.e., finite length) intervals for linear functionals of
the parameters. In order to describe the construction of these intervals, consider the
canonical form of the Gaussian linear model with nonnegativity constraints, along
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with a linear functional of interest:

𝒚 = 𝑲𝒙∗ + 𝜺, 𝜺 ∼ N(0, 𝑰𝑚)︸                                 ︷︷                                 ︸
model

, with 𝒙∗ ≥ 0︸ ︷︷ ︸
constraints

and 𝜑(𝒙∗) = 𝒉⊤𝒙∗︸           ︷︷           ︸
functional

. (2.4)

Here, 𝑲 ∈ R𝑚×𝑝 is the forward operator2, 𝒙∗ ∈ R𝑝 is the true parameter vector,
and 𝒉 ∈ R𝑝 contains weights for the functional of interest. In this setting, (W. R.
Burrus, 1965; Burt W. Rust and Walter R. Burrus, 1972) posed that the following
interval construction yields valid 1 − 𝛼 confidence intervals, a result now known as
the Burrus conjecture (Bert W. Rust and O’Leary, 1994):

IOSB(𝒚) :=

min
𝒙
/max

𝒙
𝒉⊤𝒙

st ∥𝒚 − 𝑲𝒙∥22 ≤ 𝜓
2
𝛼 (𝒚),

𝒙 ≥ 0,

(2.5)

where 𝜓2
𝛼 = 𝑧2

𝛼/2 + 𝑠
2(𝒚). Here 𝑧𝛼 is the upper quantile of standard normal such

that P(𝑍 > 𝑧𝛼) = 𝛼 for 𝑍 ∼ N(0, 1), and 𝑠2(𝒚) is defined through an optimization
problem as follows:

𝑠2(𝒚) :=

{
min
𝒙

∥𝒚 − 𝑲𝒙∥22
st 𝒙 ≥ 0.

(2.6)

Comparison of (2.5) with (2.3) shows that Rust and Burrus proposed a “simultaneous-
like” construction. In this construction, the set {𝒙 : ∥𝒚 − 𝑲𝒙∥22 ≤ 𝜓

2
𝛼 (𝒚)} plays the

role of C(𝒚). It typically does not represent a 1−𝛼 confidence set for 𝒙∗, thus relaxing
the stringent assumption of the SSB interval construction. Furthermore, a possible
simultaneous interval for this setting can be built by observing that ∥𝒚−𝑲𝒙∗∥22 ∼ 𝜒

2
𝑚.

This yields the following valid 1 − 𝛼 interval:

min
𝒙
/max

𝒙
𝒉⊤𝒙

st ∥𝒚 − 𝑲𝒙∥22 ≤ 𝑄𝜒2
𝑚
(1 − 𝛼)

𝒙 ≥ 0.

(2.7)

Here, 𝑄𝜒2
𝑚

is the quantile function of a 𝜒2
𝑚 distribution. It should be noted that the

data-dependent term 𝜓2
𝛼 (𝒚) in (2.5) could be considerably smaller than𝑄𝜒2

𝑚
(1−𝛼),

especially when 𝑚 is large and 𝛼 is small. So if the Burrus conjecture were true,
2Note that the forward operator 𝑲 is allowed to be column rank deficient and the overparameter-

ized setting when 𝑝 > 𝑚 is allowed.
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it would provide a significant reduction in the length of the interval for problems
in the class (2.4). For instance, assuming 𝛼 = 0.05 (so that we are after a 95%
coverage level), (Stanley, Patil, and Kuusela, 2022) observe an expected length
reduction of about a factor of two across a variety of functionals in a particle
unfolding application. The gain in the interval length originates from the fact that
these intervals take into account that we are only required to guarantee coverage for
one specific functional. Given that intervals of the form (2.5) are designed to provide
coverage for one functional at a time, following the nomenclature of (Stanley, Patil,
and Kuusela, 2022), we refer to these intervals as “one-at-a-time strict bounds” or
OSB intervals, for short3.

(Burt W. Rust and Walter R. Burrus, 1972) and subsequently (Bert W. Rust and
O’Leary, 1994) investigated the conjecture posed in (W. R. Burrus, 1965), with
(Bert W. Rust and O’Leary, 1994) purpoting to have found definitive proof for
the conjecture’s validity. However, this claim was later refuted by (Tenorio, Fleck,
and Moses, 2007) through a two-dimensional counterexample. In this work, we
demonstrate that, in fact, this two-dimensional counterexample proposed in (Tenorio,
Fleck, and Moses, 2007) is not a valid counterexample. However, we present and
prove another counterexample that refutes the conjecture and we propose ways to fix
the previous faulty results by reinterpreting the conjecture. We achieve this through
a novel hypothesis test-based framework that not only revisits but also broadens the
scope beyond the linear Gaussian setting paired with positivity constraints in which
the conjecture was originally proposed.

Summary and outline
In this paper, we frame the problem of confidence interval construction for function-
als in constrained, ill-posed problems through the inversion of a particular likelihood
ratio test. This perspective allows us to reinterpret the interval coverage guarantee
in terms of type-I error control associated with the test and, subsequently, the dis-
tribution of the log-likelihood ratio under the null hypothesis. We also establish
connections between different fields of hypothesis testing with likelihood ratio tests,
optimization-based confidence intervals, and chance-constrained optimization. A
detailed summary of contributions in this paper along with an outline for the paper

3(Patil, Kuusela, and Hobbs, 2022; Stanley, Patil, and Kuusela, 2022) also extend the setting and
the conjecture to encompass linear constraints of the form 𝑨𝒙 ≤ 𝒃. Such constraints are of interest in
practical applications such as XCO2 retrieval and particle unfolding. For simplicity, we present only
the positivity constraint case here. However, our counterexample based on positivity constraints in
Section 2.4 will also be sufficient to disprove the conjecture in this general case.
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is given below.

(1) Strict bounds intervals from test inversion. In Section 2.2, we present a
general framework to construct strict bounds intervals through test inversion,
resulting in two optimization problems for the interval endpoints. This approach
generalizes the Rust–Burrus-type interval technique to potentially nonlinear and
non-Gaussian settings. Our main result in Theorem 2.2.4 proves coverage of the
test inversion construction and Proposition 2.2.5 provides sufficient conditions
under which the coverage is tight. Examples in Section 2.2 provide straightfor-
ward but concrete analytical illustrations of our framework.

(2) General interval construction methodology. In Section 2.3, we present a
general methodology for computing confidence intervals that builds on the
framework in Section 2.2. We outline the methodology in Algorithm 1 and dis-
cuss two key components: the chance-constrained optimization problem and the
stochastic dominance argument in Section 2.3 and Section 2.3, respectively. The
chance-constrained optimization problem allows us to obtain optimal decision
values for the proposed framework, while the stochastic dominance argument
provides a theoretical tool to find provable upper bounds.

(3) Refuting the Burrus conjecture. In Section 2.4, we demonstrate that our
method successfully recovers previously proposed OSB intervals for the lin-
ear Gaussian setting. In Theorem 2.4.1, we leverage this novel interpretation
to disprove the Burrus conjecture (Burt W. Rust and Walter R. Burrus, 1972;
Bert W. Rust and O’Leary, 1994) in the general case, by refuting a previously
proposed counterexample and providing a new, provably correct counterexam-
ple in Lemma 2.4.5. Furthermore, we provide a negative result that disproves
a natural generalization of the original conjecture in Proposition 2.4.6. Our
proof technique provides a method to detect when the Rust–Burrus approach
is effective and when it falls short and introduces a means to rectify the earlier
erroneous examples.

(4) Illustrative numerical examples. In Section 2.5, we elucidate our findings
through a suite of numerical illustrations. These span various scenarios, includ-
ing the counterexample to the Burrus conjecture. We show that test inversion-
based intervals, which have provable guarantees, achieve better coverage cali-
bration than previous approaches.
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Other related work
Given the effectiveness of the strict bounds methodology in high-dimensional ill-
posed inverse problems, this paper seeks to deepen our understanding of these
intervals and provide related perspectives by connecting them with the broader
statistical literature. Specifically, we relate these intervals to the well-developed
areas of likelihood ratio tests, test inversions, and constrained inference, enabling us
to make rigorous statements about their properties and generalize the methodology
beyond its earlier confines. We provide a brief overview of earlier work in this area
below.

Confidence intervals in penalized inverse problems Various optimization-based
strategies exist for constructing confidence intervals for functionals in linear inverse
problems with constraints. A first connection between optimization and inference
in inverse problems is given by classical approaches seeking to optimize an ob-
jective function to balance data misfit with regularization, while adhering to prior
constraints (Hansen, 1992; Hansen and O’Leary, 1993). It is then common to use
the variability of the minimizer to quantify uncertainty. Another closely related
strategy employs Bayesian methods to estimate the posterior distribution of model
parameters given a regularizing prior and subsequently constructs credible intervals
from marginal distributions (Tarantola, 2005; Andrew M. Stuart, 2010). Since these
methods effectively quantify uncertainty around the expectation of the regularized
estimator, their coverage is highly dependent on the precision of prior information
and strength of regularization (Patil, Kuusela, and Hobbs, 2022; Kuusela, 2016;
Kuusela and Victor M Panaretos, 2015a). A recent line of work starting with (Javan-
mard and Montanari, 2014) attempts to improve the coverage of confidence intervals
derived from penalized estimators by “de-biasing” the regularized estimators; how-
ever, in practice, guarantees can only be obtained asymptotically and finite-sample
performance depends on the choice of tuning parameters.

An alternative line of work in optimization-based confidence intervals focuses on
ensuring correct frequentist finite-sample coverage. This approach is more resistant
to the aforementioned challenges associated with relying heavily on prior assump-
tions or de-biasing and offers a robust framework for uncertainty quantification. In
the following section, we will describe these optimization-based methods in more
detail.



16

Optimization-based confidence intervals and the Burrus conjecture This pa-
per is largely motivated by the literature (Burt W. Rust and Walter R. Burrus, 1972;
O’Leary and Bert W. Rust, 1986; Bert W. Rust and O’Leary, 1994; Tenorio, Fleck,
and Moses, 2007; Patil, Kuusela, and Hobbs, 2022; Stanley, Patil, and Kuusela,
2022) surrounding the Burrus conjecture (see Section 2.4 for further discussion),
which makes a claim about how to set a calibration parameter in an optimization-
based confidence interval construction so that the resulting interval has a desired
level of coverage for a single functional. For intervals with a simultaneous coverage
guarantee for an arbitrary collection of functionals, (Philip B. Stark, 1992b) pro-
vides the most general optimization-based confidence interval construction. While
these intervals provide the desired coverage, they are overly conservative in terms
of length when compared to intervals calibrated for a specific functional (Stanley,
Patil, and Kuusela, 2022). These prior works consider only the Gaussian linear
inverse problem and can thus be seen as a particular instance of the more general
optimization-based confidence intervals treated in this paper.

Inverting likelihood ratio tests and constrained inference Traditionally, optimization-
based confidence interval constructions in inverse problems have developed some-
what independently of the broader statistical literature, often overlooking the duality
between confidence intervals and hypothesis testing (George Casella and Roger L.
Berger, 2002; Wasserman, 2004; Lehmann and Romano, 2008). Our work rein-
terprets these optimization-based confidence intervals from the inverse problem
literature as inverted hypothesis tests and situates them within the realm of con-
strained testing and inference; see, e.g., (Gouriéroux, Holly, and Monfort, 1982;
Wolak, 1987; Robertson, F. T. Wright, and Dykstra, 1988; Alexander Shapiro, 1988;
Wolak, 1989; Molenberghs and Verbeke, 2007), among others.

The constrained inference literature often employs the 𝜒̄2 distribution, a convex
combination of 𝜒2 distributions with different degrees of freedom, dictated by the
problem constraints. Recent work in (M. Yu, Gupta, and Kolar, 2019) has extended
these constrained testing frameworks to high-dimensional settings with linear in-
equality constraints, examining both sparse and non-sparse scenarios. Although such
tests can be more powerful than their unconstrained counterparts, their definitions
typically limit the null hypothesis to linear subspaces, complicating their use in test
inversion scenarios (Silvapulle and Sen, 2011).

Although there have been applications of constrained test inversion (Feldman and
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Cousins, 1998), these are limited in scope due to grid-based inversion approaches.
The statistics literature contains other approaches to inverting likelihood ratio tests
(LRTs), which center around sampling procedures (Cash, 1979; Venzon and Mool-
gavkar, 1988; Garthwaite and Buckland, 1992; Murphy, 1995; Neale and Miller,
1997; Schweiger et al., 2018). Alternatively, one can sample from the parameter
space and the forward model to generate training data for a quantile regression,
which can then be used to invert an LRT (Niccolò Dalmasso, Izbicki, and A. B.
Lee, 2020; Masserano, Dorigo, et al., 2023; Niccolò Dalmasso, Masserano, et al.,
2023; Fisher, Schweiger, and Rosset, 2020). Since these latter approaches require
sampling points in the parameter space, they are practically limited to compact pa-
rameter spaces and may encounter difficulties with high-dimensional parameters.
In scenarios where the data can be split, approaches such as Universal Inference
(Wasserman, Ramdas, and Balakrishnan, 2020) offer a way to obtain confidence
sets for irregular likelihoods with nonasymptotic coverage.

Worst-case and likelihood-free methods Most of the approaches and methods
referenced and described above make strong assumptions about the underlying
data-generating distribution (e.g., linear forward model and Gaussian noise). To
generalize these assumptions, one can either take a worst-case approach within the
model class (e.g., (Donoho, 1994) which looks at worst-case confidence intervals for
linear inverse problems) or remove distribution assumptions altogether. For example,
Optimal Uncertainty Quantification (OUQ) (see, e.g., (H. Owhadi, C. Scovel, T. J.
Sullivan, et al., 2013a)) does not assume a particular likelihood function to perform
statistical inference by relying instead on worst-case bounds. If one is willing to
make boundedness assumptions on the parameter space, simulation-based inference
approaches such as (Gutmann and Corander, 2015; O. Thomas et al., 2022; Niccolò
Dalmasso, Izbicki, and A. B. Lee, 2020; Masserano, Dorigo, et al., 2023; Niccolò
Dalmasso, Masserano, et al., 2023; Cranmer, Brehmer, and Louppe, 2020; Cranmer,
Pavez, and Louppe, 2016) explore the use of sampling-only access to the likelihood,
typically through a simulator, which has found particular relevance in the physical
sciences. While these likelihood-free methods are advantageous in contexts where
the likelihood is uncertain, unknown, or accessible only through a simulator, they
tend to yield conservative estimates when a well-defined likelihood is available.
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2.2 Strict bounds intervals from test inversion
Suppose that we observe data 𝒚 ∈ R𝑚 according to a data-generating process
𝒚 ∼ 𝑃𝒙∗ . Here, 𝑃𝒙∗ is a distribution that depends on a fixed but unknown parameter
𝒙∗ ∈ R𝑝. Furthermore, suppose that we have prior knowledge that this parameter
𝒙∗ lies in a constraint set X ⊆ R𝑝, namely 𝒙∗ ∈ X. Given a nominal coverage level
1 − 𝛼, where 𝛼 ∈ (0, 1), this paper investigates methods for constructing a 1 − 𝛼
confidence interval for 𝜑(𝒙∗), where 𝜑 : R𝑝 → R is a known one-dimensional
quantity of interest4 (we will also refer to 𝜑 as a functional of interest). More
precisely, we are interested in constructing an interval I𝛼 (𝒚) ⊆ R for 𝜑(𝒙∗) that
satisfies the following coverage requirement:

P𝒚∼𝑃𝒙∗
(
𝜑(𝒙∗) ∈ I𝛼 (𝒚)

)
≥ 1 − 𝛼, for all 𝒙∗ ∈ X. (2.8)

Our primary focus lies in intervals that (i) effectively utilize the information that
𝒙∗ ∈ X, (ii) are valid (i.e., satisfying the coverage requirement in (2.8)) in the finite
data and noisy regimes (rather than, e.g., in the large system or noiseless limits), (iii)
do not make overly restrictive assumptions (e.g., identifiability) about the structure
of the parametric model 𝑃𝒙∗ , and (iv) are short in length5. We view the observation
vector 𝒚 as a single observation in R𝑚 drawn from a multivariate distribution 𝑃𝒙∗ .
This may include the case of repeated sampling (i.i.d. or not) from an experiment
and aggregating the samples in a vector. In this case, 𝑃𝒙∗ is then defined as the
measure that accounts for all the observations.6

Review: classical test inversion for simple null hypotheses
We briefly review the concept of test inversion and the duality between hypothesis
testing and confidence sets upon which the subsequent subsections will be built.
After observing 𝒚 ∼ 𝑃𝒙∗ , two classical statistical tasks emerge: (i) determining
whether 𝒙∗ = 𝒙 for a particular 𝒙 ∈ X at a significance level 𝛼 (hypothesis testing),
and (ii) constructing a subset of X that contains 𝒙∗ with a coverage level 1 − 𝛼
(confidence set building). In hypothesis testing, for a given parameter 𝒙, one can

4Confidence sets of several functionals of interest with guarantees can be constructed by using
the proposed method with, e.g., Bonferroni correction, but studying the performance of that approach
is beyond the scope of this work

5Note that length will, in general, depend on the unknown parameter 𝒙∗. There are several notions
for the “optimality” of the method with respect to length, such as minimax length (Donoho, 1994;
Schafer and Philip B. Stark, 2009) or expected length (Stanley, Patil, and Kuusela, 2022), among
others.

6For example, in the typical case where a 𝑑 dimensional vector is observed a total of 𝑛 times, we
aggregate the results in an 𝑚 = 𝑛 × 𝑑 dimensional vector. Throughout, we use 𝑚 to denote the total
dimensionality of the observation vector.
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consider the hypothesis test:

𝐻0 : 𝒙∗ = 𝒙 versus 𝐻1 : 𝒙∗ ≠ 𝒙. (2.9)

We then build an acceptance region 𝐴(𝒙) in the data space (the space in which the
observations 𝒚 live) corresponding to the observations that would not reject 𝐻0,
with the condition that 𝐻0 is rejected with probability at most 𝛼 when it is true. In
confidence set building, one builds a subset in parameter space (the space in which
the parameters 𝒙 live) as a function of the data, C(𝒚), such that it contains 𝒙∗ with
probability at least 1 − 𝛼 (over repeated samples of 𝒚 ∼ 𝑃𝒙∗).

Lifting to the product space of the data and parameter spaces (see Figure 2.3 for an
illustration), both tasks amount to the construction of a compatibility region S. For
a fixed observation 𝒚, a confidence set is given by C(𝒚) = {𝒙 : (𝒚, 𝒙) ∈ S}, and for
a fixed parameter 𝒙, the acceptance region is given by A(𝒙) = {𝒚 : (𝒚, 𝒙) ∈ S}.
Observe that P(𝒚 ∈ A(𝒙)) = P(𝒙 ∈ C(𝒚)). Therefore, a procedure that forms
confidence sets with coverage 1− 𝛼 for any possible data 𝒚 also creates a procedure
that yields valid hypothesis tests at the level 𝛼 for any possible parameter value 𝒙,
and vice versa. This observation can be used to create confidence sets as the set
of parameter values that would not be rejected by a hypothesis test, a construction
known as test inversion (see, e.g., Chapter 7 of (George Casella and Roger L. Berger,
2002) or Chapter 5 of (Victor M. Panaretos, 2016)).

Figure 2.3: Illustration of the classical duality between hypothesis testing and con-
fidence set building as seen in the product space of the data and parameter spaces.
Pairs of the dual hypothesis test and the confidence set can be viewed as a set S
in the product space (the compatibility region). For fixed data 𝒚, a confidence set
is given by C(𝒚) = {𝒙 : (𝒚, 𝒙) ∈ S}, and for a fixed parameter 𝒙, the acceptance
region is given by A(𝒙) = {𝒚 : (𝒚, 𝒙) ∈ S}.
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Formulation and inversion of constrained likelihood ratio tests
The starting point of this work is the inversion of specific hypothesis tests that can
incorporate the constraint information X and the functional of interest 𝜑. We will
establish that the test inversion can be achieved by solving two endpoint optimization
problems. We note that unlike the simple null versus composite alternative tests (2.9)
described in Section 2.2, the tests we will consider have composite nulls. We focus
on the continuous case and assume that the Lebesgue measure dominates the set of
distributions P := {𝑃𝒙 | 𝒙 ∈ X}. However, a discrete analog can also be constructed
using a similar approach as in (Feldman and Cousins, 1998). Let 𝐿𝒙 be the density
of 𝑃𝒙 , and let ℓ𝒙 := log 𝐿𝒙 . For any 𝜇 ∈ R, denote the level sets of the quantity of
interest 𝜑 by Φ𝜇. These are defined as follows:

Φ𝜇 := {𝒙 : 𝜑(𝒙) = 𝜇} ⊆ R𝑝 . (2.10)

Subsequently, define a hypothesis test 𝑇𝜇 as follows:

𝐻0 : 𝒙∗ ∈ Φ𝜇 ∩ X versus 𝐻1 : 𝒙∗ ∈ X \Φ𝜇 . (2.11)

We can test hypothesis (2.11) (for a fixed 𝜇) with a Likelihood Ratio (LR) test
statistic defined as the following function of the observed data 𝒚:

Λ(𝜇, 𝒚) :=
sup

𝒙∈Φ𝜇∩X
𝐿𝒙 (𝒚)

sup
𝒙∈X

𝐿𝒙 (𝒚)
. (2.12)

The corresponding log-likelihood ratio (LLR) statistic 𝜆(𝜇, 𝒚) is given by

𝜆(𝜇, 𝒚) = −2 logΛ(𝜇, 𝒚) = −2
{

sup
𝒙∈Φ𝜇∩X

ℓ𝒙 (𝒚) − sup
𝒙∈X

ℓ𝒙 (𝒚)
}

(2.13)

= inf
𝒙∈Φ𝜇∩X

− 2ℓ𝒙 (𝒚) − inf
𝒙∈X
− 2ℓ𝒙 (𝒚).

As is standard (see, e.g., (George Casella and Roger L. Berger, 2002; Wasserman,
2004)), we use the supremum over all X in the denominator of (2.12), instead of
over X \Φ𝜇

7. The factor of −2 helps connect with the standard likelihood ratio test
in the context of Wilks’ theorem and is needed, together with the optimization being
over the whole space, to reinterpret the previous constrained inference intervals as
coming from the inversion of this test (see Section 2.4).

7(Schervish, 1995) provides conditions for the equality of both test statistics.
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Motivation behind the choice of test and test statistic In addition to the reinter-
pretation of the previous constrained inference intervals as a result of inverting this
test, there are other theoretical and practical reasons that make it a reasonable choice
for this work. Theoretically, the LR emerges as the optimal test statistic (resulting in
the most powerful level-𝛼 test) in the simple versus simple hypothesis testing set-
ting via the Neyman–Pearson Lemma (George Casella and Roger L. Berger, 2002;
Lehmann and Romano, 2008). Although uniformly most powerful tests do not exist
in general, LR tests have been effective in several contexts. For example, (Abraham
Wald, 1943) provides some optimality properties for the likelihood ratio test in terms
of its asymptotic average power. Although our test of interest does not fall under the
simple versus simple paradigm and we are interested in nonasymptotic properties,
these two properties support the sensibility of adopting the LR-based test. Further-
more, the literature on constrained inference (Robertson, F. T. Wright, and Dykstra,
1988; Silvapulle and Sen, 2011) extensively uses the LR, deriving both asymptotic
and nonasymptotic log-likelihood ratio (LLR) distributions in various scenarios,
often leading to the 𝜒̄2 distribution. These characterizations indicate that, in very
specific situations, it is possible to obtain the distribution of the test statistic under
the null hypothesis, either exactly or in an asymptotic sense. Our setting extends well
beyond those situations because our setup is general, and we do not make particular
assumptions on the likelihood model or the constraint set.

The distribution of the LLR and test inversion In hypothesis testing, we reject
the null hypothesis when the values of 𝜆(𝜇, 𝒚) exceed a threshold. This indicates
that there is substantial evidence against the data being generated by a distribution
in the composite null defined by 𝜇. To choose a rejection region, we next study
the distribution of the LLR, denoted as 𝜆(𝜇, 𝒚), in the context where 𝜇 = 𝜑(𝒙)
(pertaining to the null hypothesis) and 𝒚 ∼ 𝑃𝒙 , a data sampling model, across
various values of 𝒙 ∈ X. Let 𝐹𝒙 denote the distribution of 𝜆(𝜑(𝒙), 𝒚) for any 𝒙 ∈ X,
where 𝒚 ∼ 𝑃𝒙 . To simplify the notation, we will write 𝜆 ∼ 𝐹𝒙 to indicate that an
LLR is sampled following the procedure described above.

To ensure an 𝛼-level test for test inversion, we need to control the distribution of the
test statistic under the null hypothesis. Since the null is composite, the false positive
rate must hold for any parameter under the null hypothesis 𝐻0.

Suppose that we are conducting a test 𝑇𝜇 to determine whether 𝜇∗ = 𝜑(𝒙∗) equals
a particular 𝜇 ∈ 𝜑(X) ⊆ R, that is, 𝒙∗ ∈ Φ𝜇 ∩ X. We use 𝜆 > 𝑞𝛼 as the rejection
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region, where 𝑞𝛼 is a predetermined decision threshold. Under the null hypothesis,
if the decision threshold satisfies

sup
𝒙∈Φ𝜇∩X

P𝜆∼𝐹𝒙 (𝜆 > 𝑞𝛼) ≤ 𝛼 (2.14)

for all 𝛼 ∈ (0, 1), then we say 𝑇𝜇 is a level-𝛼 test.8

Inverting the test with respect to 𝜇 will require choosing an appropriate 𝑞𝛼 for all 𝜇;
henceforth we will denote it as 𝑞𝛼 (𝜇).

We seek to invert this test using a methodology similar to that outlined in Section 2.2,
but adapted to accommodate the composite null hypothesis. The acceptance region
is formally defined as:

A𝛼 (𝜇) := {𝒚 : 𝜆(𝜇, 𝒚) ≤ 𝑞𝛼 (𝜇)} . (2.15)

Subsequently, we define the proposed confidence set for 𝜇∗ = 𝜑(𝒙∗) ∈ R through
test inversion as follows:

C𝛼 (𝒚) := {𝜇 : 𝜆(𝜇, 𝒚) ≤ 𝑞𝛼 (𝜇)}. (2.16)

We prove in Lemma 2.2.1 that if (2.14) is satisfied for 𝜇∗ := 𝜑(𝒙∗) (that is, 𝑇𝜇∗ is a
level-𝛼 test), the resulting confidence set will have the desired 1 − 𝛼 coverage, thus
extending the classical test inversion framework to our specific case.

Lemma 2.2.1 (Coverage of the inverted test). Let 𝛼 ∈ (0, 1). Let 𝒙∗ be the true
parameter value and 𝜇∗ its image under 𝜑. If 𝑇𝜇∗ is a level-𝛼 test, then

P𝒚∼𝑃𝒙∗ (𝜇
∗ ∈ C𝛼 (𝒚)) ≥ 1 − 𝛼.

Proof sketch. The proof is based on a straightforward test inversion argument. For
a detailed proof, see Section 2.7. □

To ensure that condition (2.14) holds in practice, when 𝒙∗ and therefore 𝜇∗ are
both unknown, we need to satisfy this condition for all possible null hypotheses.

8Here 𝑞𝛼 is the decision value corresponding to intervals with a coverage probability of 1-𝛼,
aligning with classical textbook notation (see, e.g., (George Casella and Roger L. Berger, 2002),
(Wasserman, 2004)). For any random variable 𝑍 , we will denote with the subscript 𝛼 the cutoff
points that satisfy P(𝑍 > 𝑧𝛼) = 𝛼.
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Specifically, we choose an appropriate 𝑞𝛼 (𝜇) for each 𝜇 to ensure that all hypothesis
tests 𝑇𝜇 are level-𝛼. Formally, this is expressed as:

sup
𝜇∈𝜑(X)

sup
𝒙∈Φ𝜇∩X

P𝜆∼𝐹𝒙 (𝜆 > 𝑞𝛼 (𝜇)) ≤ 𝛼. (2.17)

This condition is equivalent9 to

sup
𝒙∈X

P𝜆∼𝐹𝒙 (𝜆 > 𝑞𝛼 (𝜑(𝒙))) ≤ 𝛼. (2.18)

Although (2.18) lacks the interpretation of (2.17) of having hypothesis tests for each
different 𝜇 ∈ 𝜑(X), it simplifies the calculations. We refer to a set of values 𝑞𝛼 (𝜇)
that satisfy (2.18) (or equivalently (2.17)) as valid values. Since 𝜇 in (2.17) is equal
to 𝜑(𝒙) as 𝒙 ∈ Φ𝜇, we can use 𝑞𝛼 (𝜇) and 𝑞𝛼 (𝜑(𝒙)) interchangeably.

From Lemma 2.2.1, we know that valid values can be used in (2.16) to construct a
confidence set for 𝜇∗ with the correct 1 − 𝛼 coverage. Moreover, as argued in the
proof of Lemma 2.2.1, the probability that the set (2.16) covers the unknown 𝜇∗ is
given by

P𝒚∼𝑃𝒙∗ (𝜇
∗ ∈ C𝛼 (𝒚)) = 1 − P𝜆∼𝐹𝒙∗ (𝜆 > 𝑞𝛼 (𝜇

∗)) , (2.19)

which is guaranteed to be at least 1 − 𝛼 by the condition (2.17). To obtain intervals
with the smallest possible size while maintaining coverage, we aim to find the optimal
decision values 𝑞𝛼 (𝜇), which are solutions to optimization problems involving the
quantiles 𝑄𝐹𝒙 : [0, 1] → R of the distributions of the family {𝐹𝒙 , 𝒙 ∈ X}.

Lemma 2.2.2 (Optimal decision values). The optimal (smallest valid) value of 𝑞𝛼 (𝜇)
is given by the maximum quantile (MQ) optimization problem:

𝑄max
𝜇,1−𝛼 := sup

𝒙∈Φ𝜇∩X
𝑄𝐹𝒙 (1 − 𝛼). (2.20)

Furthermore, if one wants to choose a single 𝑞𝛼 for all 𝜇, then the optimal value is
given by

𝑄max
1−𝛼 := sup

𝜇∈𝜑(X)
𝑄max
𝜇,1−𝛼 = sup

𝒙∈X
𝑄𝐹𝒙 (1 − 𝛼). (2.21)

Proof sketch. It can be directly checked that the proposed quantities are valid and
that using any smaller decision value leads to intervals with undercoverage for at
least one point. See Section 2.7 for more details. □

9Note that every 𝒙 ∈ X is accounted for in (2.17) since 𝜇 = 𝜑(𝒙).
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In the event that only an upper bound on the quantities defined in Lemma 2.2.2 can
be obtained, those can also be used as valid decision values, as stated precisely in
the following corollary.

Corollary 2.2.3. For every 𝜇 ∈ R, 𝜈(𝜇) ≥ 𝑄max
𝜇,1−𝛼 (as defined in Lemma 2.2.2)

if and only if 𝜈(𝜇) is a valid decision value for 𝑇𝜇 for a particular 𝛼. In addition,
𝜈 ≥ 𝑄max

1−𝛼 if and only if 𝜈 is a valid decision value for𝑇𝜇 for all 𝜇 ∈ R for a particular
𝛼.

The result follows immediately from substituting the proposed 𝜈 values into the
probability statements in Lemma 2.2.2. Theoretical and computational methods for
obtaining valid 𝑞𝛼 (𝜇) are discussed in Section 2.3, and we investigate the compu-
tation of C𝛼 (𝒚) via optimization techniques in the next subsection, assuming valid
𝑞𝛼 (𝜇) are known.

Characterizing the inverted confidence set via optimization problems
The set defined in (2.16) produces a random collection of real numbers that contains
the true functional value with a probability of at least 1− 𝛼. Although this set is not
necessarily an interval, it is contained within an interval whose (possibly infinite)
extremes are computable through optimization techniques.

Given a valid 𝑞𝛼 (𝜇), which satisfies either (2.17) or (2.18), let us define the following
sets:

D(𝒚) := {𝒙 : − 2ℓ𝒙 (𝒚) ≤ 𝑞𝛼 (𝜑(𝒙)) + inf
𝒙′∈X
−2ℓ𝒙′ (𝒚)} ⊆ R𝑝, (2.22)

X̄𝛼 (𝒚) := X ∩ D(𝒚). (2.23)

If X̄𝛼 (𝒚) ≠ ∅, we further define:

I𝛼 (𝒚) :=
[

inf
𝒙∈X̄𝛼 (𝒚)

𝜑(𝒙), sup
𝒙∈X̄𝛼 (𝒚)

𝜑(𝒙)
]
. (2.24)

If X̄𝛼 (𝒚) = ∅, let I𝛼 (𝒚) be the empty interval.

Theorem 2.2.4 (From test inversion to optimization-based intervals). For any 𝛼 ∈
(0, 1), and for any 𝒙 ∈ X, let I𝛼 (𝒚) be the interval constructed according to (2.24).
It holds that

P𝒚∼𝑃𝒙 (𝜑(𝒙) ∈ I𝛼 (𝒚)) ≥ 1 − 𝛼.

In other words, I𝛼 (𝒚) is a valid 1 − 𝛼 confidence interval for 𝜑(𝒙∗).
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Proof sketch. We prove that[
inf

𝜆(𝜇,𝒚)≤𝑞𝛼 (𝜇)
𝜇, sup

𝜆(𝜇,𝒚)≤𝑞𝛼 (𝜇)
𝜇

]
= I𝛼 (𝒚). (2.25)

The object on the left-hand side is defined by enclosing C𝛼 (𝒚) within the smallest
possible interval that contains it, and therefore, it has guaranteed coverage. The
equality arises from the equivalence between the optimization problems under con-
sideration. For a complete proof, see Section 2.7. □

Remark 1 (Comparison with the simultaneous strict bound intervals). Observe that
the construction of I𝛼 (𝒚) follows the form outlined in (2.3) for the simultaneous
strict bound intervals. However, a key distinction lies in not requiring thatD(𝒚) ⊆ X
serves as a 1 − 𝛼 confidence set for 𝒙. This relaxation will translate into shorter
intervals when 𝑞𝛼 is chosen appropriately.

Remark 2 (Handling empty constrained sets). If 𝛼 is chosen such that 1−𝛼 becomes
too small, the set X̄𝛼 (𝑦) can be empty. In that case, we default to the empty interval,
under the interpretation that there are no parameter values that simultaneously agree
with the constraint and the observed data (at a particular level 𝛼). However, the
actual interval produced under this circumstance does not compromise the 1 − 𝛼
coverage level provided by the theorem. If a point estimate inside the constraint
region is desired, an option is to choose the closest point from X to D. This point
specifically ensures the continuity of the interval with respect to 𝛼 in many standard
scenarios. Generally, an empty set X̄𝛼 (𝒚) should inform one of three possibilities:
either (i) an outlier event has been observed, or (ii) the initial assumption that 𝒙 ∈ X
is flawed, or (iii) the forward model 𝑃𝒙 is misspecified. Here, the definition of an
“outlier” is intrinsically linked to the choice of 𝛼. A larger 𝛼 will make such events
more frequent, as it broadens the range of data considered as outliers.

We also present a partial converse result, stating that the interval coverage implies
the validity of 𝑞𝛼, subject to appropriate assumptions on 𝜑, 𝑃, and X. This result
will be instrumental in refuting the coverage claims of the Rust–Burrus intervals,
and consequently, the Burrus conjecture, as discussed in Section 2.4.

Proposition 2.2.5 (Coverage implies validity of quantile levels). Assume that X
forms a convex cone, ℓ𝒙 (𝒚) is a concave function, and 𝜑(𝒙) is linear. Define I𝛼 (𝒚)
as in Theorem 2.2.4, for a particular choice of 𝑞𝛼 (𝜇). If I𝛼 (𝒚) is a valid 1 − 𝛼
confidence interval for all 𝒙, then the values of 𝑞𝛼 (𝜇) are valid.
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Proof sketch. Generally, the values of 𝑞𝛼 (𝜇) are valid if and only ifC𝛼 (𝒚) constitutes
a 1−𝛼 set. SinceI𝛼 (𝒚) is the smallest interval that containsC𝛼 (𝒚), ifC𝛼 (𝒚) is already
an interval, then the result holds. The assumptions on X, ℓ𝒙 (𝒚), and 𝜑 ensure that
this is the case by the convexity of the function

𝜇 ↦→ inf
𝜑(𝒙)=𝜇
𝒙∈X

−2ℓ𝒙 (𝒚)

for any 𝒚. For a detailed proof, see Section 2.7. □

Finally, we remark that the construction presented in this paper provides an approach
to uncertainty quantification that does not rely on a specific point estimator, distin-
guishing it from many other UQ procedures. However, if one wishes to obtain a point
estimator, it is worth noting that the midpoint of the interval can be justified from
a decision-theoretic perspective. This idea has been discussed in previous works by
(Micchelli and Rivlin, 1977; Bajgiran et al., 2022b), among others.

Illustrative examples
To elucidate the general methodology outlined in Theorem 2.2.4, we offer two
simple illustrative examples where the LLR and its distribution are explicitly com-
putable: a one-dimensional constrained Gaussian scenario and an unconstrained
linear Gaussian case.

Constrained Gaussian in one dimension As a tangible example, consider the
following one-dimensional model:

𝑦 = 𝑥∗ + 𝜀, 𝜀 ∼ N(0, 1)︸                            ︷︷                            ︸
model

with 𝑥∗ ≥ 0︸ ︷︷ ︸
constraints

and 𝜑(𝑥∗) = 𝑥∗︸       ︷︷       ︸
functional

. (2.26)

In this case, the distribution of the LLR is precisely known. Hence, a confidence
interval can be constructed without resorting to the techniques introduced in Sec-
tion 2.3, which are otherwise necessary when such information is not available.

The form of the hypothesis test 𝑇𝜇, as given in (2.11), is as follows:

𝐻0 : 𝑥∗ = 𝜇 versus 𝐻1 : 𝑥∗ ≠ 𝜇 and 𝑥∗ ≥ 0. (2.27)

The LLR as defined in (2.13) for the test (2.27) is given by

𝜆(𝜇, 𝑦) = inf
𝑥=𝜇,𝑥≥0

(𝑦 − 𝑥)2 − inf
𝑥≥0
(𝑦 − 𝑥)2

=


(𝑦 − 𝜇)2, 𝑦 ≥ 0,

(𝑦 − 𝜇)2 − 𝑦2, 𝑦 < 0.
(2.28)
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We can also derive its distribution under the null hypothesis (i.e., when 𝑥∗ = 𝜇,
leading to 𝑦 = 𝜇 + 𝜀) for any 𝜇 ∈ [0,∞), as formalized below.

Example 2.2.6 (Distribution of the LLR statistic for a constrained Gaussian in one
dimension). For 𝜆(𝜇, 𝑦) as defined in (2.28) with 𝜇 ≥ 0, when 𝑦 ∼ N(𝜇, 1) (null
hypothesis), for all 𝑐 > 0, we have

P(𝜆(𝜇, 𝑦) ≤ 𝑐) =

𝜒2

1 (𝑐) +
1
2 , 𝜇 = 0

𝜒2
1 (𝑐) · 1{𝑐 < 𝜇

2} + {Φ(
√
𝑐) −Φ((−𝜇2 − 𝑐)/(2𝜇))} · 1{𝑐 ≥ 𝜇2}, 𝜇 > 0,

where 𝜒2
1 and Φ are the CDFs of a 𝜒2

1 and a standard Gaussian, respectively.

Proof. See Section 2.7. □

The expression for 𝜆(𝜇, 𝑦), with the appropriately scaled log transformation, is
equivalent to Equation (4.3) in (Feldman and Cousins, 1998) where the Neyman
confidence interval construction for the same problem is considered. (Feldman and
Cousins, 1998) characterizes this quantity as a likelihood ordering for determining
an acceptance region.

By virtue of the previous result and Lemma 2.2.2, we can take 𝑄𝜇 (1 − 𝛼), where
𝑄𝜇 is the quantile of the distribution of 𝜆(𝜇, 𝑦) when 𝜇 is fixed, as 𝑞𝛼 (𝜇) satisfying
(2.14). A direct computation shows

𝑞𝛼 (𝜇) = 𝑄𝜇 (1 − 𝛼) =

𝑄𝜒2

1
(1 − 𝛼), 1 − 𝛼 < 𝜒2

1 (𝜇
2),

𝑟𝜇,𝛼, 1 − 𝛼 ≥ 𝜒2
1 (𝜇

2),
(2.29)

where 𝑟𝜇,𝛼 is the unique nonnegative root of the function 𝑥 ↦→ Φ(
√
𝑥)−Φ((−𝜇2 − 𝑥)/(2𝜇))−

(1−𝛼), which can be found using numerical methods. Therefore,D = {𝑥 : (𝑦−𝑥)2 ≤
𝑞𝛼 (𝑥) +min𝑥′≥0(𝑦 − 𝑥′)2} and the final form of the confidence interval becomes

I𝛼 (𝑦) =
[

min
𝑥∈D
𝑥≥0

𝑥, max
𝑥∈D
𝑥≥0

𝑥

]
.

For a numerical comparison of this interval with alternative methods, we refer the
reader to Section 2.5.

Unconstrained Gaussian linear model Consider the following problem setup:

𝒚 = 𝑲𝒙∗ + 𝜺, 𝜺 ∼ N(0, 𝑰𝑚)︸                                 ︷︷                                 ︸
model

and 𝜑(𝒙∗) = 𝒉⊤𝒙∗︸           ︷︷           ︸
functional

. (2.30)
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Assume 𝑲 ∈ R𝑚×𝑝 has full column rank. The assumption Cov(𝒚) = 𝑰𝑚 is without
loss of generality as it is equivalent to assuming a known positive definite covariance
for 𝒚 and performing a basis change with the Cholesky factor. Note that this setup
is the same as (2.4) but the parameter space is not constrained, that is, X = R𝑝, and
the forward model 𝑲 is assumed to be full rank.

Using the framework established in Section 2.2, our aim is to invert the following
family of hypothesis tests:

𝐻0 : 𝒉⊤𝒙∗ = 𝜇 versus 𝐻1 : 𝒉⊤𝒙∗ ≠ 𝜇. (2.31)

The LLR as defined in (2.13) for the test (2.31) takes the form

𝜆(𝜇, 𝒚) := min
𝒙 : 𝒉⊤𝒙=𝜇

∥𝒚 − 𝑲𝒙∥22 −min
𝒙
∥𝒚 − 𝑲𝒙∥22. (2.32)

In this particular scenario, the LLR admits a closed-form expression and has a
straightforward distribution, as formalized below:

Example 2.2.7 (Distribution of the LLR statistic for the unconstrained Gaussian
linear model). 𝜆(𝜇, 𝒚) for the unconstrained full column rank Gaussian linear model
(2.32) can be expressed in closed form as

𝜆(𝜇, 𝒚) = (𝒉
⊤(𝑲⊤𝑲)−1𝑲⊤𝒚 − 𝜇)2

𝒉⊤(𝑲⊤𝑲)−1𝒉
. (2.33)

Furthermore, for any 𝒙∗, whenever 𝒚 ∼ N(𝑲𝒙∗, 𝑰𝑚), 𝜆(𝒉⊤𝒙∗, 𝒚) is distributed as a
chi-squared distribution with 1 degree of freedom.

Proof. See Section 2.7. □

Using the above results, we can set 𝑞𝛼 (𝜇) = 𝑄𝜒2
1
(1 − 𝛼) for all values of 𝜇. Here,

𝑄𝜒2
1

represents the quantile function of a chi-squared distribution with 1 degree of
freedom. Consequently, we can express the interval in (2.24) as:

I𝛼 (𝒚) =
[

min
𝒙∈D(𝒚)

𝒉⊤𝒙, max
𝒙∈D(𝒚)

𝒉⊤𝒙

]
, (2.34)

where we defineD(𝒚) := {𝒙 : ∥𝒚−𝑲𝒙∥22 ≤ 𝑄𝜒2
1
(1−𝛼)+min𝒙′ ∥𝒚−𝑲𝒙′∥22}. Similarly,

let us define 𝑧𝛼 = Φ−1(1 − 𝛼), where Φ is the cumulative distribution function of
the standard normal distribution. Using the equivalence 𝑧2

𝛼/2 = 𝑄𝜒2
1
(1 − 𝛼), we

can rewrite the expression in terms of the standard normal. Moreover, as shown
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in Appendix A of (Patil, Kuusela, and Hobbs, 2022), the endpoints of the above
interval can be calculated in closed form and are given by

I𝛼 (𝒚) =
[
𝒉⊤𝒙̂ − 𝑧𝛼/2

√︃
𝒉⊤ (𝑲⊤𝑲)−1 𝒉, 𝒉⊤𝒙̂ + 𝑧𝛼/2

√︃
𝒉⊤ (𝑲⊤𝑲)−1 𝒉

]
, (2.35)

where we define the least-squares estimator 𝒙̂ = (𝑲⊤𝑲)−1𝑲⊤𝒚. This interval is
equivalent to the one derived from observing that 𝒙̂ ∼ N(𝒙∗, (𝑲⊤𝑲)−1). Therefore,
we have 𝒉⊤𝒙̂ ∼ N(𝒉⊤𝒙∗, 𝒉⊤(𝑲⊤𝑲)−1𝒉). The interval in (2.35) is thus a standard
construction of a Gaussian 1 − 𝛼 confidence interval. Our construction therefore
coincides with the classical interval in this case where a guaranteed-coverage interval
can be obtained with standard manipulations; however, our framework remains valid
in constrained, rank-deficient, non-Gaussian and/or nonlinear problems where few
alternative approaches are available.

2.3 General interval construction methodology
In this section, we outline the core practical methodology for constructing intervals
derived from Theorem 2.2.4. To summarize the preceding, Lemma 2.2.1 asserts
that if we know 𝑞𝛼 (𝜇) satisfying (2.18), we can invert the hypothesis test with a
composite null hypothesis defined in (2.11) to yield a valid 1−𝛼 confidence interval.
Lemma 2.2.2 poses two optimization problems that, if solved, yield valid decision
values. The optimization problems in Lemma 2.2.2 give rise to two approaches of
increasing complexity: (𝑖) finding a single 𝑞𝛼 that is valid for any 𝜇 and (𝑖𝑖) finding
valid 𝑞𝛼 (𝜇) dependent on 𝜇 ∈ 𝜑(X). While approach (𝑖𝑖) can lead to tighter inter-
vals, it is usually at the cost of more complex theoretical analysis and computations,
including the computational complexity of solving the optimization problems in
(2.24). In particular, when we reinterpret previously proposed optimization-based
methods in Section 2.4, we will observe that these previously proposed methods are
of type (𝑖), which this work expands to accommodate type (𝑖𝑖) generalizations. In
this section, we briefly analyze the hardness of the optimization problems (2.20) and
(2.21) by connecting them to the chance-constrained optimization literature. In case
solving these problems is impractical, in Section 2.3, we describe using stochastic
dominance as a theoretical tool that can be used to create and analyze provable
upper bounds to the optimization problems. Stochastic dominance will also be used
in Section 2.4 as the main technique to disprove coverage of the previously proposed
Rust–Burrus intervals. This section is summarized in a meta-algorithm, detailed in
Section 2.3.
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Maximum quantile problems as chance-constrained optimization
Lemma 2.2.2 presents optimization problems for finding the maximum quantiles,
which are crucial for the proposed hypothesis test inversion procedure. We show
that these problems, of the form sup𝒙∈Φ𝜇∩X 𝑄𝐹𝒙 (1−𝛼) and sup𝒙∈X 𝑄𝐹𝒙 (1−𝛼), can
be formulated as chance-constrained optimization (CCO) problems (see (Geng and
Xie, 2019a) for a review of theory and applications of CCO).

Lemma 2.3.1 (Chance constrained characterization of the max quantile problems).
Let S ⊆ X. Then the max quantile optimization problem sup𝒙∈S 𝑄𝐹𝒙 (1 − 𝛼) can be
equivalently written as the chance constrained optimization problem:

sup
𝑞,𝒙

𝑞

st 𝒙 ∈ S
𝑞 ∈ R
P𝑢∼U([0,1]) (F (𝒙, 𝑢) ≤ 𝑞) ≤ 1 − 𝛼,

(2.36)

where F (𝒙, 𝑢) = 𝐹−1
𝒙 (𝑢), with 𝐹−1

𝒙 being the (possibly generalized) inverse CDF of
𝐹𝒙

Proof. By using the definition of (1−𝛼)-quantile of 𝑋 as the maximum 𝑞 such that
P(𝑋 ≤ 𝑞) ≤ 1 − 𝛼, and 𝜆 ∼ 𝐹𝒙

𝑑
= F (𝒙, 𝑢 ∼ U([0, 1]) □

Note that Lemma 2.3.1 applies to both (2.20) and (2.21) by choosing appropriate
S. In general, CCO problems are known to be strongly NP-hard (Geng and Xie,
2019a), even with convexity assumptions for F . Although various algorithms ex-
ist for general chance-constrained optimization, we leave the development of an
algorithm specific to this problem and comparison with the aforementioned algo-
rithms for future work. In our numerical examples (see Section 2.5), we solve these
problems using gradient-free optimizers that do not exploit the chance-constrained
structure but instead see the quantile function as a noisy black-box function to be
optimized, with evaluations performed by estimating quantiles from large amount
of samples. In higher dimensional scenarios, more advanced techniques tailored to
the chance-constrained structure might be required. One can also write optimiza-
tion problem (2.36) and the interval optimization problem (2.24) jointly as one
chance-constrained optimization problem; see Section 2.8.
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Analytical ways to obtain quantile levels via stochastic dominance
In this subsection, we develop an analytical tool to find valid 𝑞𝛼 that allows for
a straightforward evaluation for any confidence level 1 − 𝛼 ∈ (0, 1). We first
consider the case where we aim to choose a valid 𝑞𝛼 for all 𝜇. We propose taking
𝑞𝛼 = 𝑄𝑋 (1 − 𝛼), where 𝑄𝑋 is the quantile function of a random variable 𝑋 with a
known, easy-to-compute distribution. We establish that for the resulting confidence
interval to maintain a 1 − 𝛼 coverage guarantee for any 𝛼, 𝑋 must stochastically
dominate the random variable with distribution 𝐹𝒙∗ , i.e., 𝜆(𝜇∗, 𝒚) where 𝒚 is a
random variable with distribution 𝑃𝒙∗ . This is denoted as 𝑋 ⪰ 𝜆(𝜇∗, 𝒚) or, with
slight abuse of notation, as 𝑋 ⪰ 𝐹𝒙∗ . Following the classical definition of stochastic
dominance for real-valued random variables (see, e.g., (Shaked and Shanthikumar,
2007)), we say that 𝑋 ⪰ 𝑌 if and only if P(𝑋 ≥ 𝑧) ≥ P(𝑌 ≥ 𝑧) 10 for all 𝑧 ∈ R

Lemma 2.3.2 (Valid quantile level via stochastic dominance). 𝑄𝑋 (1− 𝛼) serves as
a valid (in the sense of (2.18)) choice for 𝑞𝛼 for all 𝛼 if and only if 𝑋 ⪰ 𝜆(𝜇∗, 𝒚),
where 𝒚 ∼ 𝑃𝒙∗ .

Proof. See Section 2.8. □

Remark 3 (Partial validity of quantile levels). If 𝑋 does not stochastically dominate
𝜆(𝜇∗, 𝒚), a valid 𝑞𝛼 can still be identified for specific 𝛼 levels, provided that certain
conditions are met. Specifically, 𝑧 can serve as a valid 𝑞𝛼 where𝛼 = 1−𝐹𝑋 (𝑧) and 𝐹𝑋
being the cumulative distribution function of 𝑋 , if and only if P(𝑋 ≤ 𝑧) ≤ P(𝑌 ≤ 𝑧)
for some value of 𝑧.

Remark 4 (Support restriction). Candidates for 𝑋 can be restricted to the range
[0,∞) without loss of generality, as 𝜆(𝜇∗, 𝒚) is supported on this range by moving
the mass a candidate 𝑋 might have in (−∞, 0) to 0.

An economic interpretation of our result is that agents with nondecreasing utility
functions would prefer a reward drawn from 𝑋 over one from 𝜆(𝜇∗, 𝒚). In practi-
cal scenarios where the true parameter 𝒙∗ is unknown, it is required to establish
stochastic dominance for the entire family of distributions 𝐹𝒙 , where 𝒙 ∈ X.

Although all stochastically dominant distributions provide correct coverage when
used to obtain 𝑞𝛼, a larger stochastic dominance gap provides more conservative

10One can equivalently define stochastic dominance with strict inequalities 𝑋 > 𝑧 and 𝑌 > 𝑧; see
(Shaked and Shanthikumar, 2007)
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(a) (b)

Figure 2.4: Comparison of quantile functions and CDFs for LLRs with different true
parameter values. The left panel provides the true values of the quantile function as
a function of 𝑥∗ across different confidence levels. As proven in Example 2.3.3, the
quantile of 𝜒2

1 is greater than the true quantile for all 𝑥∗ and all levels. The right panel
shows the CDFs for LLRs under different values of the true parameters, 𝑥∗. From
Example 2.3.3, as the true parameter increases, the CDF is increasingly dominated
by its 𝜒2

1 component, so it follows that as 𝑥∗ increases, the CDF approaches the 𝜒2
1

CDF. This figure also provides a visual explanation of why using the true quantile or
the true quantile function to compute the interval in (2.24) produces shorter intervals
compared to those computed with the 𝜒2

1 quantile.

bounds. Furthermore, if 𝑋1, 𝑋2 both stochastically dominate the family 𝐹𝒙 for all
𝒙 ∈ X, we can take the pointwise minimum 𝑞𝛼 = min{𝑄𝑋1 (1 − 𝛼), 𝑄𝑋2 (1 − 𝛼)}
which will be no worse than using either 𝑋1 or 𝑋2.

The perspective of stochastic dominance also enables the use of coupling arguments
to identify stochastically dominating distributions. For instance, one approach to find
stochastically dominating distributions to a given 𝐹𝒙 is finding a function 𝑔(𝜑(𝒙), 𝒚)
such that for all 𝑧,

P(𝑔(𝜑(𝒙), 𝒚) ≥ 𝑧) ≥ P(𝜆(𝜑(𝒙), 𝒚) ≥ 𝑧),

where the randomness is from 𝒚 ∼ 𝑃𝒙 . A particular case is that of nonrandom
bounds. If 𝑔(𝜑(𝒙), 𝒚) ≥ 𝜆(𝜑(𝒙), 𝒚) almost surely in 𝒚 (as opposed to when 𝒚 ∼ 𝑃𝒙),
then this implies a coupling of random variables once 𝒚 is sampled that implies
stochastic dominance (see e.g. Theorem 4.2.3 in (Roch, 2024)).

This technique can be generalized to find 𝑞𝛼 (𝜇). Instead of finding a stochastic
dominant variable 𝑋 such that 𝑋 ⪰ 𝐹𝒙 for all 𝒙 ∈ X, we aim to find a distribution
𝑋𝜇 for each 𝜇, such that 𝑋𝜇 ⪰ 𝐹𝒙 for all 𝒙 ∈ Φ𝜇∩X, and then set 𝑞𝛼 (𝜇) = 𝑄𝑋𝜇 (1−𝛼).
This ensures that 𝑄𝑋𝜇∗ ⪰ 𝐹𝒙∗ , providing the desired coverage guarantees.
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As an illustration, we revisit the one-dimensional constrained example discussed in
Section 2.2. We consider the model 𝑦 = 𝑥∗ + 𝜀, where 𝜀 ∼ N(0, 1), 𝑥∗ ≥ 0, and
𝜑(𝑥) = 𝑥. We recall that we have 𝜆(𝜇, 𝑦) = (𝑦 − 𝜇)2 − 1(𝑦 < 0)𝑦2 and an analytical
solution for the quantile of the distribution of 𝜆(𝜇, 𝑦) for every 𝜇, which we can
use as valid 𝑞𝛼. We extend the results in Example 2.2.6 below to prove that the
distribution of 𝜆(𝜇, 𝑦) is stochastically dominated by a 𝜒2

1 . See Figure 2.4 for an
illustration.

Example 2.3.3 (Stochastic dominance for LLR for constrained Gaussian in one
dimension). For the LLR 𝜆(𝜇, 𝑦), when 𝑦 ∼ N(𝜇, 1) under the null hypothesis, we
have that, for 𝑍 ∼ 𝜒2

1 , 𝑍 ⪰ 𝜆(𝜇, 𝑦) for all 𝜇 ≥ 0.

Proof. See Section 2.8. □

For this example, given the stochastic dominance result, we can define 1 − 𝛼 confi-
dence intervals using 𝜒2

1,1−𝛼 instead of using 𝑞𝛼 (𝜇). This produces larger intervals
than using the true quantile, but the true quantile in the closed form will generally be
unavailable in more complex examples, while the presented stochastic dominance
tools can still be used. The intervals using the 𝜒2

1 quantile are

I𝛼 (𝑦) :=

min
𝑥
/max

𝑥
𝑥

st 𝑥 ≥ 0

(𝑥 − 𝑦)2 ≤ 𝜒2
1,1−𝛼 +min

𝑥′≥0
(𝑥′ − 𝑦)2.

(2.37)

General confidence interval construction
In this section, we present our meta-algorithm that uses the methodologies described
in the preceding sections. The goal of this meta-algorithm is to construct a 1 − 𝛼
confidence interval for a given quantity of interest 𝜑(𝒙∗). The algorithmic steps are
outlined in Algorithm 1.

It is worth noting that the optimization problems defined in (2.39) and (2.40) may
not always be convex or straightforward to solve. However, their dual formulations
can be constructed, offering provably valid confidence intervals for any feasible
dual solution (Philip B. Stark, 1992b). We defer the exploration of specialized
optimization techniques specifically tailored to solve (2.39) and (2.40) to future
work.
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Algorithm 1 Meta-algorithm for confidence interval construction
Input: Observed data 𝒚, log-likelihood model ℓ𝒙 (𝒚), quantity of interest functional

𝜑, constraint set X, miscoverage level 𝛼.

1: Test statistic: Write down the LLR test statistic

𝜆(𝜇, 𝒚) = inf
𝒙∈Φ𝜇∩X

− 2ℓ𝒙 (𝒚) − inf
𝒙∈X
− 2ℓ𝒙 (𝒚). (2.38)

2: Distribution control: Control 𝐹𝒙 , the distribution of 𝜆(𝜑(𝒙), 𝒚) where 𝒚 ∼ 𝑃𝒙 ,
for all 𝒙 ∈ X, by either:

A. Explicit solution: Obtain 𝐹𝒙 explicitly, and let 𝑞𝛼 (𝜇) := sup𝒙∈Φ𝜇∩X 𝑄𝐹𝒙 (1−
𝛼).

B. Computational way to directly find valid 𝑞𝛼 (Section 2.3): Solve
sup𝒙∈Φ𝜇∩X 𝑄𝐹𝒙 (1 − 𝛼) (to set 𝑞𝛼 (𝜇)) or sup𝒙∈X 𝑄𝐹𝒙 (1 − 𝛼) (to set 𝑞𝛼)
numerically.

C. Analytical way using stochastic dominance (Section 2.3): Construct a
distribution 𝑋 that stochastically dominates 𝐹𝒙 for all 𝒙 ∈ X, and let
𝑞𝛼 := 𝑄𝑋 (1 − 𝛼), or construct distributions 𝑋𝜇 that stochastically dom-
inate 𝐹𝒙 for all 𝒙 ∈ Φ𝜇 ∩ X and let 𝑞𝛼 (𝜇) := 𝑄𝑋𝜇 (1 − 𝛼).

3: Confidence interval calculation: Obtain the confidence intervals by solving
the pair of optimization problems that is easier in the particular case:

I. Parameter space formulation:

min
𝒙
/max

𝒙
𝜑(𝒙)

st 𝒙 ∈ X
− 2ℓ𝒙 (𝒚) ≤ 𝑞𝛼 (𝜑(𝒙)) + inf

𝒙′∈X
−2ℓ𝒙′ (𝒚).

(2.39)

II. Functional space formulation:

min
𝜇
/max

𝜇
𝜇

st 𝜇 ∈ 𝜑(X) ⊆ R

inf
𝒙∈Φ𝜇∩X

− 2ℓ𝒙 (𝒚) − inf
𝒙∈X
− 2ℓ𝒙 (𝒚) ≤ 𝑞𝛼 (𝜇).

(2.40)

Output: Confidence interval with coverage 1 − 𝛼.

2.4 Refuting the Burrus conjecture
As discussed in Section 2.1, the family of constrained problems that has received
the most attention is the positivity-constrained version of the problem as described
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in Section 2.2. To recap, the model is defined as follows:

𝒚 ∼ N(𝑲𝒙∗, 𝑰𝑚) with X = {𝒙 : 𝒙 ≥ 0} and 𝜑(𝒙∗) = 𝒉⊤𝒙∗. (2.41)

Here 𝑲 ∈ R𝑚×𝑝 is the forward linear operator. We again emphasize here that 𝑲
need not have full column rank, so we can for example have 𝑝 > 𝑚. It was initially
conjectured in (W. R. Burrus, 1965; Burt W. Rust and Walter R. Burrus, 1972) that
a valid 1 − 𝛼 confidence interval could be obtained as

min
𝒙
/max

𝒙
𝒉⊤𝒙

st ∥𝒚 − 𝑲𝒙∥22 ≤ 𝜓
2
𝛼

𝒙 ≥ 0.

(2.42)

Here, 𝜓2
𝛼 = 𝑧2

𝛼/2 + 𝑠
2(𝒚), with 𝑧𝛼/2 being the previously defined standard Gaussian

quantile, and 𝑠2(𝒚) is defined as the optimal value of

min
𝒙
∥𝒚 − 𝑲𝒙∥22

st 𝒙 ≥ 0.

Although initially believed to be proved in (Bert W. Rust and O’Leary, 1994), an
error in the proof was later identified in (Tenorio, Fleck, and Moses, 2007), along
with a counterexample. However, we demonstrate that this counterexample actually
satisfies the conjecture, leaving the conjecture unresolved until now prior to our
work, to the best of our knowledge.

The main result of this section is the construction of a new valid counterexample
using the test inversion perspective developed in Section 2.2 and the stochastic
dominance approach of Section 2.3, disproving the conjecture.

Theorem 2.4.1 (Refutation of the Burrus conjecture). The Burrus conjecture is
false in general. The two-dimensional example previously proposed of a particular
instance of (2.41) in (Tenorio, Fleck, and Moses, 2007),

𝑲 = 𝑰2 and 𝒉 = (1,−1)⊤ with 𝒙∗ = (𝑎, 𝑎)⊤ such that 𝑎 ≥ 0,

does not constitute a valid counterexample to the Burrus conjecture. However, the
following constitutes a valid counterexample for the Burrus conjecture:

𝑲 = 𝑰3 and 𝒉 = (1, 1,−1)⊤ with 𝒙∗ = (0, 0, 1)⊤.
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The main idea of the proof is to first connect the conjecture to our framework,
identifying the conjectured intervals as a particular case of our construction with a
particular choice of 𝑞𝛼. We then apply Proposition 2.2.5 to show that coverage is
equivalent to a valid choice of 𝑞𝛼. Finally, we present a counterexample to prove that
the proposed 𝑞𝛼 is not universally valid. The proof is divided into several lemmas
for clarity.

Our approach is novel in that it diverges from previous geometric perspectives
on the Gaussian likelihood (Burt W. Rust and Walter R. Burrus, 1972; Bert W.
Rust and O’Leary, 1994; O’Leary and Bert W. Rust, 1986), instead leveraging the
test inversion and stochastic dominance perspectives developed in Section 2.2 and
Section 2.3.

Proof outline of Theorem 2.4.1
This subsection provides a structured outline of the proof for Theorem 2.4.1, which
refutes the Burrus conjecture. We break down the proof into several key lemmas.

Lemma 2.4.2 (Framing the Burrus conjecture as test inversion). The construction
of intervals in (2.42) for a particular instance of the problem (𝒙∗, 𝑲, 𝒉) is equivalent
to the general construction in Theorem 2.2.4 for the model 𝒚 ∼ N(𝑲𝒙∗, 𝑰𝑚), with
𝒙∗ ≥ 0 component wise, and 𝜑(𝒙) = 𝒉⊤𝒙, using the threshold 𝑞𝛼 (𝜇) = 𝑧2

𝛼/2
independent of 𝜇. Therefore, it is equivalent to inverting a hypothesis test 𝐻0 :
𝒉⊤𝒙 = 𝜇 versus 𝐻1 : 𝒉⊤𝒙 ≠ 𝜇 with LLR

𝜆(𝜇, 𝒚) := min
𝒉⊤𝒙=𝜇
𝒙≥0

∥𝒚 − 𝑲𝒙∥22 −min
𝒙≥0
∥𝒚 − 𝑲𝒙∥22. (2.43)

Furthermore, the interval has correct coverage if and only if 𝑞𝛼 = 𝑧2
𝛼/2 is valid in

the sense of satisfying the false positive guarantee (2.17).

Proof. See Section 2.9. □

Lemma 2.4.3 (Reducing the Burrus conjecture to stochastic dominance). The con-
struction of intervals in (2.42) has the right coverage for any 𝛼 (and hence the
conjecture holds) for a particular instance of the problem (𝒙∗, 𝑲, 𝒉) if and only if
the log-likelihood ratio test statistic

𝜆(𝜇 = 𝒉⊤𝒙∗, 𝒚) := min
𝒉⊤𝒙=𝒉⊤𝒙∗

𝒙≥0

∥𝒚 − 𝑲𝒙∥22 −min
𝒙≥0
∥𝒚 − 𝑲𝒙∥22

is stochastically dominated by a 𝜒2
1 distribution whenever 𝒚 ∼ N(𝑲𝒙∗, 𝑰𝑚).
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Proof. See Section 2.9. □

As an example, the constrained one-dimensional example considered in Section 2.2
satisfies the stochastic dominance result and hence the conjecture. Furthermore, us-
ing Example 2.2.7, an alternative characterization of the conjecture is the stochastic
dominance of the unconstrained LLR test statistic min𝒉⊤𝒙=𝒉⊤𝒙∗ ∥𝒚−𝑲𝒙∥22−min𝒙 ∥𝒚−
𝑲𝒙∥22 over the constrained test statistic min𝒉⊤𝒙=𝒉⊤𝒙∗

𝒙≥0
∥𝒚 − 𝑲𝒙∥22 −min𝒙≥0∥𝒚 − 𝑲𝒙∥22.

We use Lemma 2.4.3 to prove both that the example in (Tenorio, Fleck, and Moses,
2007) obeys the conjecture and that our new counterexample does not.

Invalidity of a previous counterexample in two dimensions The previously pro-
posed counterexample from (Tenorio, Fleck, and Moses, 2007) is a two-dimensional
problem with 𝑲 = 𝑰2, 𝒙∗ = (𝑎, 𝑎)⊤ with 𝑎 ≥ 0, 𝒉 = (1,−1)⊤ (and therefore
𝜇∗ = 𝒉⊤𝒙∗ = 0). The LLR test statistic is

𝜆(𝜇∗ = 0, 𝒚) = min
𝑥1=𝑥2
𝒙≥0
∥𝒙 − 𝒚∥22 −min

𝒙≥0
∥𝒙 − 𝒚∥22

which, after solving the optimization problems, is equal to

𝜆(𝜇∗, 𝒚) =

𝑦2

1 + 𝑦
2
2 − (𝑦1 −max(𝑦1, 0))2 − (𝑦2 −max(𝑦2, 0))2, 𝑦1 + 𝑦2 < 0,

1
2 (𝑦1 − 𝑦2)2 − (𝑦1 −max(𝑦1, 0))2 − (𝑦2 −max(𝑦2, 0))2, 𝑦1 + 𝑦2 ≥ 0,

which we can equivalently write as

𝜆(𝜇∗, 𝒚) = (𝑦2
1 + 𝑦

2
2)1{𝑦1 + 𝑦2 < 0} + 1

2
(𝑦1 − 𝑦2)21{𝑦1 + 𝑦2 ≥ 0} (2.44)

− 𝑦2
11{𝑦1 < 0} − 𝑦2

21{𝑦2 < 0}.

Lemma 2.4.4 (Invalidity of a previous counterexample). The LLR statistic 𝜆(𝜇∗, 𝒚)
in (2.44) is stochastically dominated by a 𝜒2

1 random variable whenever 𝒚 ∼
N(𝒙∗, 𝑰2), 𝒙∗ = (𝑎, 𝑎)⊤ for 𝑎 ≥ 0, and 𝒉 = (1,−1)⊤. Therefore, it does not
constitute a valid counterexample to the conjecture.

Proof sketch. The proof follows from a coupling argument between the LLR and a
𝜒2

1 random variable. See Section 2.9 for proof details. □

In summary, we used Lemma 2.4.3 to demonstrate that the previously proposed
counterexample actually satisfies the conjecture.



38

A new provably valid counterexample in three dimensions We now present a
new counterexample in R3 to refute the Burrus conjecture. Specifically, we consider
𝑲 = 𝑰3, 𝒙∗ = (0, 0, 1)⊤, and 𝒉 = (1, 1,−1)⊤, yielding 𝜇∗ = −1. We prove that 𝜒2

1
does not stochastically dominate 𝜆(𝜇∗, 𝒚), which in this case is

𝜆(𝜇∗ = −1, 𝒚) = min
𝑥1+𝑥2−𝑥3=−1

𝒙≥0

∥𝒙 − 𝒚∥22 −min
𝒙≥0
∥𝒙 − 𝒚∥22. (2.45)

We prove that E[𝜆(𝜇∗, 𝒚)] > E[𝜒2
1] = 1. Here, the expectation is taken with respect

to 𝒚 ∼ N(𝒙∗, 𝑰3), and the inequality is a general sufficient condition to refute
stochastic dominance and hence for the conjecture to break.

Lemma 2.4.5 (Validity of a new counterexample). 𝜆(𝜇∗, 𝒚) in (2.45) is not stochas-
tically dominated by a 𝜒2

1 random variable whenever 𝒚 ∼ N(𝒙∗, 𝑰3) with 𝒙∗ =

(0, 0, 1)⊤. Therefore, it constitutes a valid counterexample to the general conjecture.

Proof sketch. We compute the expected value and show that it is greater than 1 (the
expected value of a 𝜒2

1), therefore proving stochastic dominance. See Section 2.9 for
the proof details. □

Remark 5 (A more general counterexample). The validity of the counterexample
does not hinge on 𝒙∗ being on the boundary of the constraint set. In fact, the example
remains valid for 𝒙∗ = (𝜀, 𝜀, 1)⊤ with 𝜀 > 0 sufficiently small. We choose 𝜀 = 0
for the simplicity of the proof. See Figure 2.10 for numerical evidence, where the
quantiles over the dashed line correspond to valid counterexamples.

Figure 2.5 shows the difference between the two examples. By plotting the difference
between the CDF of 𝜆 (obtained numerically with 𝑁 = 106 samples) and the CDF
of a 𝜒2

1 distribution, we observe stochastic dominance for the two-dimensional
example in Figure 2.5 (left panel) and no stochastic dominance (hence breaking
of the conjecture) for the three-dimensional example in Figure 2.5 (right panel).
Section 2.5 contains numerical coverage studies for both scenarios agreeing with
the observation made here.

A negative result in high dimensions
After establishing that the 𝜒2

1 distribution fails to stochastically dominate the con-
strained log-likelihood ratio, a natural question arises: Is there another distribution,
possibly within the 𝜒2

𝑘
family, that can stochastically dominate the constrained LLR?

If such a distribution exists, it would allow us to redefine𝜓2
𝛼 in (2.42) as 𝑠2+𝑄𝑋 (1−𝛼),
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Figure 2.5: Difference of cumulative distribution functions between the LLR test
statistic and 𝜒2

1 distribution for the statistics defined in (2.44) (left) and (2.45) (right).
Stochastic dominance, which is equivalent to the Burrus conjecture, is broken in the
right example only. There is a direct correspondence between the points at which
the CDF difference is negative and confidence levels 1 − 𝛼 that fail to hold (see
Remark 3).

making the 𝑄𝑋 term in the optimization problem dimension independent, leading
to intervals with shorter length in large dimensions. It is worth noting that in the
unconstrained scenario, the LLR distribution is precisely 𝜒2

1 , regardless of the di-
mensionality of the problem. However, the following proposition shows that no such
dimension-independent distribution exists for the constrained case.

Proposition 2.4.6 (A negative result in high dimensions). The family of constrained
LLRs for general 𝑲, 𝒉 in arbitrary dimensions, defined as

𝜆(𝜇 = 𝒉⊤𝒙∗, 𝒚) = min
𝒉⊤𝒙=𝒉⊤𝒙∗

𝒙≥0

∥𝒚 − 𝑲𝒙∥22 −min
𝒙≥0
∥𝒚 − 𝑲𝒙∥22,

cannot be stochastically dominated a dimension-independent way by any finite-mean
distribution (including all 𝜒2

𝑘
for 𝑘 ≥ 1).

Proof sketch. We construct a sequence of examples with increasing dimensions and
demonstrate that the expected value of the constrained LLR grows unbounded as
the dimension increases. This result negates the possibility of stochastic dominance
by any finite-mean distribution. For a detailed proof, see Section 2.9. □

2.5 Numerical examples
In this section, we provide numerical illustrations for the procedures and theoretical
results described above. In particular, we analyze coverage properties of four types
of intervals. The first two intervals come from previous works: ISSB (2.3), which
has provably correct coverage but is known to overcover when inferring a single
functional, and IOSB (2.5), which comes from the Burrus conjecture and, as we
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proved in this work, does not correctly cover in general. The last two are the interval
constructions described in this work by solving the max quantile problems (2.20)
and (2.21) to find 𝑞𝛼 (𝜇) (Section 2.3): IMQ (where 𝑞𝛼 does not depend on 𝜇) and the
more refined IMQ𝜇 (where 𝑞𝛼 depends on 𝜇). Both of these intervals have provable
coverage.

We analyze four settings in which the Burrus conjecture applies, including a one-
dimensional example in Section 2.5, the previously proposed invalid counterexample
in Section 2.5 (for which we prove in Lemma 2.4.4 that IOSB correctly covers), our
proposed counterexample in Section 2.5 (for which we prove in Lemma 2.4.5 that
IOSB does not cover for at least some level 1 − 𝛼 and a certain 𝒙∗), and a setting
with a bounded constraint set11 X in Section 2.5.

Throughout the examples, the observed coverage (or lack thereof) agrees with the
developed theoretical results, and we observe that our interval IMQ𝜇 consistently
fixes the miscalibration of the other interval types: when IOSB undercovers, IMQ𝜇 is
on average longer than IOSB to obtain coverage, and when IOSB overcovers, IMQ𝜇

is on average shorter than IOSB with coverage closer to the prescribed level 1 − 𝛼.

Constrained Gaussian in one dimension
We revisit the constrained Gaussian model in one dimension (2.26) described in
Section 2.2, 𝑦 = 𝑥∗ + 𝜀, 𝜀 ∼ N(0, 1), 𝑥∗ ≥ 0, and 𝜑(𝑥) = 𝑥. We perform a simula-
tion experiment using six true parameter settings of 𝑥∗ ∈ {0, 2−3, 2−2, 2−1, 20, 21}.
We focus on settings closer to the boundary since that is where the biggest differ-
ences between the considered intervals exist. For each of these settings, we simulate
105 observations according to the model (2.26) and compute three different 95%
confidence intervals for each sample: interval (2.24) using the actual quantile func-
tion given in (2.29) (IMQ𝜇

12), interval (2.24) using the stochastically dominating
𝑄𝜒2

1
(1−𝛼) quantile (IOSB, which in this problem is equal to IMQ), and the standard

Truncated Gaussian interval, which equals the SSB interval in this case (ISSB). The
11Strictly speaking, this setting is not included in the original Burrus conjecture but is later

extended in (Patil, Kuusela, and Hobbs, 2022; Stanley, Patil, and Kuusela, 2022).
12Since this is a one-dimensional problem with 𝜑(𝑥) = 𝑥, this is equivalent to being able to solve

all the 𝜇−dependant quantile optimization problems
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intervals computed with the true quantile function are characterized by:

IMQ𝜇
(𝑦) := min

𝑥
/max

𝑥
𝑥

st 𝑥 ≥ 0

(𝑥 − 𝑦)2 ≤ 𝑞𝛼 (𝑥) +min
𝑥≥0
(𝑥 − 𝑦)2,

(2.46)

where 𝑞𝛼 (𝑥) is given by (2.29). For the stochastically dominating 𝑄𝜒2
1
(1 − 𝛼), the

interval in (2.24) becomes:

IOSB(𝑦) = min
𝑥
/max

𝑥
𝑥

st 𝑥 ≥ 0

(𝑥 − 𝑦)2 ≤ 𝑄𝜒2
1
(1 − 𝛼) +min

𝑥≥0
(𝑥 − 𝑦)2.

(2.47)

Finally, the truncated Gaussian interval, which is shown below to be equivalent to
the SSB interval in this case, is defined as:

ISSB(𝑦) :=
[
𝑦 − 𝑧𝛼/2, 𝑦 + 𝑧𝛼/2

]
∩ R≥0. (2.48)

Observe that (2.47) admits an explicit solution:

IOSB(𝑦) =

[𝑦 −

√︃
𝑄𝜒2

1
(1 − 𝛼), 𝑦 +

√︃
𝑄𝜒2

1
(1 − 𝛼)] ∩ R≥0, 𝑦 ≥ 0

[𝑦 −
√︃
𝑄𝜒2

1
(1 − 𝛼) + 𝑦2, 𝑦 +

√︃
𝑄𝜒2

1
(1 − 𝛼) + 𝑦2] ∩ R≥0, 𝑦 < 0.

(2.49)

Furthermore, note that
√︃
𝑄𝜒2

1
(1 − 𝛼) = 𝑧𝛼/2, so that (2.49) is always larger than or

equal to (2.48). Conversely, we can express (2.48) as the solution to optimization
problems, illustrating that the truncated Gaussian interval is equivalent to the SSB
interval for this case:

ISSB(𝑦) = min
𝑥
/max

𝑥
𝑥

st 𝑥 ≥ 0

(𝑥 − 𝑦)2 ≤ 𝑧2
𝛼/2.

(2.50)

To empirically estimate coverage, for each 𝑥∗ setting and each interval type, we
compute 105 intervals and keep track of their coverage of the true parameter. The
left panel in Figure 2.6 shows how IOSB based on 𝑄𝜒2

1
(1 − 𝛼) over-covers when

the true parameter is on the boundary, which makes sense as this setting of 𝑞𝛼
holds for all 𝑥∗, and therefore is a conservative quantile. As expected, the interval
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computed with 𝑞𝛼 (𝑥) maintains the nominal 95% coverage over all considered 𝑥∗

values. This shows that knowing the quantile function means that we can compute an
interval with exact nominal coverage that is adaptive to the unknown true parameter
value. Additionally, we note that as 𝑥∗ grows, the estimated coverage values across
these methods converge, illustrating the intuition that when 𝑥∗ gets sufficiently far
from the constraint boundary, the problem is essentially unconstrained, and all
considered methods produce nearly identical results. The right panel in Figure 2.6
shows each interval’s expected length as a function of 𝑥∗. Again, we observe the
tightness of the interval (2.24) constructed with the true quantile function 𝑞𝛼 (𝑥)
compared to the interval constructed with the stochastically dominating quantile,
𝑄𝜒2

1
(1−𝛼). Similarly to coverage, as 𝑥∗ grows, the expected interval lengths ofIMQ𝜇

and IOSB converge, and the methods become indistinguishable. Also, observe that
the truncated Gaussian intervals have a smaller expected length compared to the
intervals computed with 𝑞𝛼 (𝑥). We note that this length observation is particular to
this one-dimensional example, as OSB intervals have been shown to be shorter than
SSB intervals in higher dimensional problems (O’Leary and Bert W. Rust, 1986;
Burt W. Rust and Walter R. Burrus, 1972; Stanley, Patil, and Kuusela, 2022).

Constrained Gaussian in two dimensions
We consider the Gaussian linear model in (2.4) with 𝑲 = 𝑰2, 𝜑(𝒙) = 𝒉⊤𝒙 =

𝑥1 − 𝑥2 and X = {𝒙 ∈ R2 : 𝒙 ≥ 0}. The work (Tenorio, Fleck, and Moses, 2007)
proposes this scenario as a counterexample to the Burrus conjecture, but as shown in
Lemma 2.4.4, it is in fact a case where the 𝜒2

1 distribution stochastically dominates
the LLR for all true 𝒙∗ ∈ {𝒙 : 𝒉⊤𝒙 = 0, 𝒙 ≥ 0}, so the OSB intervals proposed by
the conjecture have provably correct coverage for 𝒙∗ in this set.

We estimate interval coverage with 1 − 𝛼 = 0.95 for the four types of intervals
(ISSB, IOSB, IMQ and IMQ𝜇) for three true parameter values, two of them inside the
{𝒙 : 𝒉⊤𝒙 = 0, 𝒙 ≥ 0} region in which Lemma 2.4.4 applies, and one outside. In this
and all the examples that follow, we solve the max quantile optimization problems
(2.20), (2.21) using the Bayesian Optimization package BayesOpt (Martinez-Cantin,
2014) (see fig. 2.8 for an illustration of the quantile function being optimized in
this particular example). We solve the outer optimization problems with the convex
optimization package CVXPY (Diamond and Boyd, 2016; Agrawal et al., 2018) (for
the convex problems in ISSB, IOSB and IMQ) or root-finding numerical algorithms
(in the case of IMQ𝜇, where we use the functional space formulation in algorithm 1
and look for those 𝜇 satisfying the constraint as equality).
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Figure 2.6: The (left) figure shows estimated coverage for each 95% confidence
interval and each true 𝑥∗ for the one-dimensional constrained Gaussian model.
Both the Truncated Gaussian (SSB) and OSB intervals overcover when 𝑥∗ = 0
while the MQ𝜇 interval predictably achieves nominal coverage. All the coverage
values converge as 𝑥∗ gets larger, as the problem moves toward the unconstrained
problem where all the intervals are effectively the same. The intervals surrounding
the estimated values are 95% Clopper–Pearson intervals, expressing the Monte Carlo
uncertainty of each coverage estimate. The (right) figure shows an estimate of the
expected interval length for each method (with 95% confidence intervals that are
nearly length zero since the standard error of each estimate is nearly zero with
105 realizations each). Similarly to the coverage results in the left panel, as 𝑥∗ gets
larger, the expected OSB and MQ𝜇 interval lengths converge while the SSB intervals
remain slightly larger.

For each parameter value and all intervals, coverage and expected length are esti-
mated by drawing 5×104 observations from the data generating process, computing
all interval types for each generated observation, and then checking coverage and
length. The coverage confidence intervals are 95% Clopper–Pearson intervals for a
binomial parameter, whereas the length confidence intervals are standard asymptotic
Gaussian intervals using sample means and standard errors.

The results are shown in fig. 2.7. We observe correct coverage for the OSB in-
tervals, in agreement with Lemma 2.4.4 (which applies for 𝒙∗ = (0, 0)⊤ and
𝒙∗ = (0.33, 0.33)⊤). We observe that the SSB intervals are the longest on aver-
age and tend to overcover, and that the MQ and MQ𝜇 intervals have nearly identical
properties to the OSB intervals. This is because, for this problem setting, solving
the optimization problems (2.20) and (2.21) recovers the 𝜒2

1 quantile (up to the
numerical precision of the optimization solvers) of the Burrus conjecture as the
maximum quantile (both for all X and for 𝒉⊤𝒙 = 𝜇 for any 𝜇), so both of those
intervals actually recover the OSB intervals in this case.
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Figure 2.7: Estimated interval coverage (left) and expected lengths (right) for 95%
intervals resulting from the SSB, OSB, MQ, and MQ𝜇 methods for the Gaussian
linear model in (2.4) with 𝑲 = 𝑰2, 𝜑(𝒙) = 𝒉⊤𝒙 = 𝑥1−𝑥2, andX = {𝒙 ∈ R2 : 𝒙 ≥ 0}.

Figure 2.8: Estimated 95th quantiles from the LLR test statistic null distributions
in the region [0, 1]2 ⊂ R2

+ where color shows the estimated quantiles. In contrast
to the unconstrained case, the quantile is dependent on the true parameter, and the
quantile surface is non-trivial.

Constrained Gaussian in three dimensions
We use the three-dimensional counterexample of the Burrus conjecture from Sec-
tion 2.4 to numerically show that the IOSB intervals undercover in this example and
that the max-quantile intervals are able to fix the undercoverage. Concretely, we
consider the Gaussian linear model in (2.4) with 𝑲 = 𝑰3, 𝜑(𝒙) = 𝒉⊤𝒙 = 𝑥1 + 𝑥2 − 𝑥3

andX = {𝒙 ∈ R3 : 𝒙 ≥ 0}. We repeat the same experimental setup as in Section 2.5,
comparing the four interval types for 𝒙∗ = (0, 0, 0)⊤ and 𝒙∗ = (0, 0, 1)⊤; this last
parameter value is the one analyzed in Lemma 2.4.5 and for which we know the OSB
interval can undercover for some 𝛼. Figure 2.9 shows the results for 1−𝛼 = 0.68 (one
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Figure 2.9: Estimated interval coverage (left) and expected lengths (right) for 68%
intervals resulting from the SSB, OSB, MQ, and MQ𝜇 methods for the Gaussian
linear model in (2.4) with 𝑲 = 𝑰3, 𝜑(𝒙) = 𝒉⊤𝒙 = 𝑥1 + 𝑥2 − 𝑥3, and X = {𝒙 ∈ R3 :
𝒙 ≥ 0}.

sigma interval coverage), and we include in Section 2.10 the results for 1−𝛼 = 0.95,
which lead to the same conclusions. Furthermore, to illustrate that the conjecture
breaks in an area around the studied point (0, 0, 1)⊤ in Figure 2.10, we plot the
numerically estimated 68% LLR test statistic quantiles for parameters of the form
(𝑡, 𝑡, 1), showing that there is a range of points with a larger quantile than the 𝜒2

1
quantile, implying undercoverage.

The results agree with our theoretical findings in Lemma 2.4.5, as we observe
that the OSB intervals undercover both at 95% and 68% confidence levels, thus
invalidating the Burrus conjecture. In contrast, the SSB, MQ and MQ𝜇 intervals all
have provable coverage in this scenario, which is reflected in the estimated coverage
values. Notably, the MQ𝜇 intervals are not much longer than the OSB intervals, but
they obtain the required coverage, enlarging the conjectured intervals just enough.
The simpler MQ intervals overcover a bit more, which illustrates the benefit of
solving (2.21) over (2.20) when computationally feasible. Nevertheless, their length
is not much larger than MQ𝜇 and significantly smaller than for SSB, the other simple
method with coverage guarantees.

Bounded constraint set in two dimensions
As a last case study, we consider a modification of the example in Section 2.5 in
which the constraint set is chosen to be the bounded set X = [0, 1]2. While not in
the original scope of the Burrus conjecture, which only considers X = {𝒙 : 𝒙 ≥ 0},
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Figure 2.10: For the numerical example in Section 2.5, considering 𝒙∗ ∈
{𝒙∗(𝑡) = (𝑡, 𝑡, 1)⊤ : 0 < 𝑡 ≤ 𝑒} ⊂ R3, we estimate the 68% LLR test statistic quan-
tiles along with 95% nonparametric (NP) confidence intervals for percentiles (Hahn
and Meeker, 1991). The test statistic quantiles exceeding 𝜒2

1,0.32 correspond to the
Burrus conjecture failing in this scenario. We note that for this example, the Burrus
conjecture fails close to the constraint boundary while the 𝑄𝜒2

1
(0.68) quantile be-

comes valid once sufficiently far from the boundary.

as mentioned in Section 2.1, the IOSB interval construction has since then been
used with constraints of the form A𝒙 ≤ b by replacing 𝒙 ≥ 0 with A𝒙 ≤ b in the
optimization problems (2.5) and (2.6) (Patil, Kuusela, and Hobbs, 2022; Stanley,
Patil, and Kuusela, 2022). We use the same experimental setup as in Section 2.5,
taking into account that the change in X affects both the interval optimization
problem and the optimizations required for 𝑞𝛼 (𝜇) (since the LLR statistic changes
as well).

The results are shown in Figure 2.11. We observe that in this setting, as opposed to
the previous three-dimensional problem, the OSB intervals overcover, because the
maximum quantile of the LLR test statistic over the constraint set is smaller than
the 𝜒2

1 quantile. Furthermore, our intervals MQ, and especially MQ𝜇, are able to
exploit this fact to obtain shorter intervals than OSB with coverage closer to 1 − 𝛼
by using the actual max quantiles over X instead of the 𝜒2

1 quantile used by OSB.

2.6 Discussion
This paper presents a framework for constructing confidence intervals with guar-
anteed frequentist coverage for a given functional of forward model parameters in
the presence of constraints. For the specific case of the Gaussian linear forward
model with nonnegativity constraints, we refute the Burrus conjecture (W. R. Bur-
rus, 1965) by providing a counterexample and propose a more general approach
for interval construction. Our approach hinges on the inversion of a specific like-
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Figure 2.11: Estimated interval coverage (left) and expected lengths (right) for 95%
intervals resulting from the SSB, OSB, MQ, and MQ𝜇 methods for the Gaussian
linear model in (2.4) with 𝑲 = 𝑰2, 𝜑(𝒙) = 𝒉⊤𝒙 = 𝑥1 − 𝑥2, and X = [0, 1]2 ⊂ R2.

lihood ratio test, and we offer theoretical and practical insights into the properties
of the constructed intervals via illustrative examples. Our framework is versatile,
accommodating potentially nonlinear, non-Gaussian, and rank-deficient settings.

At a high level, the practical effectiveness of UQ methods depends on the (sometimes
implicit) assumptions of the method. Different methods come into play depending
on what we assume or know, be it the likelihood, the constraints, or the prior in
Bayesian settings. In classical statistics, confidence intervals serve as a valuable tool
for UQ, especially for one-dimensional quantities of interest. These intervals are
constructed to offer guaranteed coverage under repeated sampling, aligning with
frequentist principles. While frequentist coverage guarantees are a useful criterion,
especially in contexts where repeatability is essential, we acknowledge that the “best”
UQ method is often context-dependent. For example, this frequentist approach is
the most natural in applications like remote sensing (Patil, Kuusela, and Hobbs,
2022), where repeatability is a key requirement. Conversely, when it is natural to
think of the parameter as arising from a prior distribution, Bayesian methods are
well-motivated and have desirable properties.

A key aim of this paper is to serve as a basis for the future development of these
UQ procedures. We conclude this paper by discussing a few possible directions for
future work:

• Data-adaptive calibration procedure. We saw in Section 2.5 that MQ is valid
where OSB is not and can leverage smaller quantiles to produce tighter intervals.
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In the event that one does not have the assumed true parameter bounding box,
it may be possible to create a data-generated one and adjust the error budget
accordingly. Such a procedure would enable us to expand the use of the MQ
intervals to scenarios with unbounded parameter constraints. We are currently
investigating this approach, which will be the subject of a future follow-up paper.

• Exploration of high-dimensional problems. A key benefit of the optimization-
based interval construction is that it promises to provide a solution to uncertainty
quantification in high-dimensional and ultra-high-dimensional problems, where
most alternative approaches (including sampling-based ones) are infeasible. For
example, in (Stanley, Patil, and Kuusela, 2022), we applied a precursor of the
methods presented here in a problem where 𝑝 = 80, and we are currently
exploring the use of these methods in a data-assimilation setting where 𝑝 ≈ 104.
Indeed, optimization is one of the only computational techniques known to work
in ultra-high-dimensional problems, such as those in 4DVar data assimilation
(Kalmikov and Heimbach, 2014; Forget et al., 2015; J. Liu, Bowman, Meemong,
et al., 2016). While optimization has been successfully used for point estimation
in such problems, the approaches developed here may enable modifying the
existing programs to obtain confidence intervals in addition to point estimates.

• Joint confidence sets for multiple functionals. Since our framework is de-
vised for UQ of a single functional, its application to collections of functionals
(a higher-dimensional quantity of interest), would be a natural and desirable
extension. Trivially, given a collection of 𝐾 functionals, one could apply this
methodology 𝐾 times and use the Bonferroni correction to adjust the confidence
levels so that they all cover at the desired coverage level. Although this approach
might be practically reasonable when𝐾 is small, it becomes markedly inefficient
as 𝐾 becomes large. Furthermore, this approach would create a 𝐾-dimensional
hyper-rectangle for the quantity of interest, which may not be the optimal ge-
ometry for bounding the quantity of interest. As such, extending the framework
of Section 2.3 to simultaneously consider the 𝐾 functionals of interest would be
the first step to creating a more nuanced approach. One way this can be achieved
is by appropriately adjusting the definition of 𝐻0 in the hypothesis test in (2.11).

• Choice of test statistics beyond LLR. The log-likelihood ratio test statis-
tic considered in this work connects with the Rust–Burrus intervals and is
observed to perform well in practice, but other choices can be explored in
future work. While the LLR is a natural choice for the generic problem, im-
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proving the interval length on particular families of problems with different
test statistics might be possible. Since the main theoretical machinery comes
from the test inversion framework, which is independent of the actual form
of the test statistic, alternate versions of Theorem 2.2.4 can be constructed as
long as the test statistic constructs valid level-𝛼 hypothesis tests; the result-
ing intervals of which could be explored theoretically and numerically. For
instance, the construction of confidence intervals in Section 2.2, originally writ-
ten for 𝜆(𝜇, 𝒚) = inf𝒙∈Φ𝜇∩X −2ℓ𝒙 (𝒚) − inf𝒙∈X −2ℓ𝒙 (𝒚), readily generalizes to
test statistics of the form 𝜆 𝑓 ,𝑔 (𝜇, 𝒚) = inf𝒙∈Φ𝜇∩X 𝑓 (𝒙, 𝒚) − 𝑔(𝒚). In that case,
(2.22) becomes {𝒙 : 𝑓 (𝒙, 𝒚) ≤ 𝑞𝛼 (𝜑(𝒙))+𝑔(𝒚)}, where 𝑞𝛼 must be valid for the
particular choice of 𝑓 and 𝑔, and can be obtained by analyzing the distribution
of 𝜆 𝑓 ,𝑔.

• Generalization to simulation-based problems. An extension of our method-
ology to settings in which the likelihood is not exactly known can be consid-
ered, ranging from only partial knowledge of the form of the likelihood to full
simulation-based (likelihood-free) settings where the likelihood is not known
explicitly but can be sampled from. A possible avenue is to develop robust worst-
case approaches with respect to possible likelihoods. In a fully likelihood-free
setting, approaches such as (Niccolò Dalmasso, Izbicki, and A. B. Lee, 2020;
Heinrich, 2022; Masserano, Dorigo, et al., 2023; Niccolò Dalmasso, Masserano,
et al., 2023) provide ways to invert hypothesis tests to obtain confidence sets in
these scenarios in multidimensional parameter spaces. Projections of these sets
could produce confidence intervals for a functional of the model parameters, as
seen for the SSB intervals. However, as we have explored, orienting the hypoth-
esis test to the given functional of interest can have dramatic length benefits for
the resulting confidence interval (as seen for the OSB and MQ intervals). Since
the log-likelihood plays a key role in the definition of our intervals, extensions
providing ways to relax that dependence would be a necessary first step.
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2.7 Proofs in Section 2.2
Proof of Lemma 2.2.1
To prove the lemma, we need to show that the probability of 𝜇∗ being in the
confidence set C𝛼 (𝒚) is at least 1 − 𝛼. Towards this end, observe that

P𝒚∼𝑃𝒙∗ (𝜇
∗ ∈ C𝛼 (𝒚)) = P𝒚∼𝑃𝒙∗ (𝒚 ∈ 𝐴𝛼 (𝜇

∗))
= 1 − P𝒚∼𝑃𝒙∗ (𝒚 ∉ 𝐴𝛼 (𝜇∗))
≥ 1 − sup

𝒙∈Φ𝜇∗∩X
P𝒚∼𝑃𝒙 (𝒚 ∉ 𝐴𝛼 (𝜇∗))

≥ 1 − 𝛼,

as desired. This completes the proof.

Proof of Lemma 2.2.2
The value 𝑄max

𝜇 is a valid decision value for any given 𝜇, since for all 𝒙 ∈ Φ𝜇 ∩X it
holds that

P𝜆∼𝐹𝒙

(
𝜆 > sup

𝒙′∈Φ𝜇∩X
𝑄𝐹𝒙′ (1 − 𝛼)

)
≤ P𝜆∼𝐹𝒙

(
𝜆 > 𝑄𝐹𝒙 (1 − 𝛼)

)
= 𝛼. (2.51)

For any 𝑣 < 𝑄max
𝜇 that one could use as a decision value, there exists 𝒙̃ ∈ Φ𝜇 ∩ X

such that 𝑄𝐹𝒙̃ (1 − 𝛼) > 𝑣. Therefore, P𝜆∼𝐹𝒙̃ (𝜆 > 𝑣) > 𝛼, and thus 𝑣 is not a valid
decision value. 𝑄max is clearly valid for all 𝜇, and a similar argument shows that
choosing any smaller 𝑣 would make it not valid, as there exists a 𝒙̃ ∈ X with a larger
quantile than 𝑣, making 𝑣 invalid as a decision value for 𝜇 = 𝜑(𝒙̃). The equality
between the two formulations comes from the same argument that shows (2.17) is
equivalent to (2.18).

Proof of Theorem 2.2.4
Assume X̄𝛼 (𝒚) is nonempty and write as shorthand inf𝒙∈X/sup𝒙∈X 𝑓 (𝒙) for the
interval [

inf
𝒙∈X

𝑓 (𝒙), sup
𝒙∈X

𝑓 (𝒙)
]
.

Observe that
C𝛼 (𝒚) ⊆ inf

𝜇∈C𝛼 (𝒚)
/ sup
𝜇∈C𝛼 (𝒚)

𝜇. (2.52)

From Lemma 2.2.1, C𝛼 (𝒚) ⊆ I𝛼 (𝒚) implies that I𝛼 (𝒚) is also a 1 − 𝛼 confidence
interval. We prove this interval exactly equals the definedI𝛼 (𝒚) in (2.24). Unpacking
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the definition of C𝛼 (𝒚), we write the interval

inf
𝜇
/sup
𝜇

𝜇

st 𝜇 ∈ R
− 2 logΛ(𝜇, 𝒚) ≤ 𝑞𝛼 (𝜇).

(2.53)

We can write different optimization problems which are equivalent to the optimiza-
tion problem (2.53). First, we use the definition of Λ to write:

inf
𝜇
/sup
𝜇

𝜇

st 𝜇 ∈ R
inf

𝜑(𝒙)=𝜇,𝒙∈X
−2ℓ𝒙 (𝒚) − inf

𝒙∈X
−2ℓ𝒙 (𝒚) ≤ 𝑞𝛼 (𝜇).

(2.54)

Notice that we can rewrite the feasibility condition of 𝜇 as follows:

inf
𝜑(𝒙)=𝜇,𝒙∈X

−2ℓ𝒙 (𝒚) ≤ 𝑞𝛼 (𝜇) + inf
𝒙∈X
−2ℓ𝒙 (𝒚)

as there exists 𝒙 ∈ X such that 𝜑(𝒙) = 𝜇 and

−2ℓ𝒙 (𝒚) ≤ 𝑞𝛼 (𝜇) + inf
𝒙∈X
−2ℓ𝒙 (𝒚).

Therefore, the optimization problem can be rewritten with 𝒙 and 𝜇 as the optimiza-
tion variables:

inf
𝜇,𝒙
/sup
𝜇,𝒙

𝜇

st 𝒙 ∈ X, 𝜇 ∈ R
𝜑(𝒙) = 𝜇
− 2ℓ𝒙 (𝒚) ≤ 𝑞𝛼 (𝜇) + inf

𝒙∈X
−2ℓ𝒙 (𝒚).

(2.55)

And 𝜇 can be eliminated using the constraint, yielding

inf
𝒙
/sup

𝒙
𝜑(𝒙)

st 𝒙 ∈ X
− 2ℓ𝒙 (𝒚) ≤ 𝑞𝛼 (𝜑(𝒙)) + inf

𝒙∈X
−2ℓ𝒙 (𝒚),

(2.56)

that is, inf𝒙∈X̄𝛼 (𝒚)/sup𝒙∈X̄𝛼 (𝒚) 𝜑(𝒙). The choice when X̄𝛼 (𝒚) is empty does not affect
coverage properties. An alternative proof comes by observing the set equality 𝜑({𝒙 ∈
X : −2ℓ𝒙 (𝒚) ≤ 𝑞𝛼 (𝜑(𝒙))+inf𝒙∈X −2ℓ𝒙 (𝒚)}) = {𝜇 ∈ 𝜑(X) : inf𝜑(𝒙)=𝜇,𝒙∈X −2ℓ𝒙 (𝒚)−
inf𝒙∈X −2ℓ𝒙 (𝒚) ≤ 𝑞𝛼 (𝜇)}, and the result follows. This finishes the proof.
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Proof of Proposition 2.2.5
We have, by definition and test inversion, that 𝑞𝛼 (𝜇) are valid if and only if

C𝛼 (𝒚) := {𝜇 : 𝜆(𝜇, 𝒚) ≤ 𝑞𝛼 (𝜇)}

is a valid 1−𝛼 confidence interval for any 𝒙 ∈ X. SinceI𝛼 (𝒚) is the smallest interval
that contains C𝛼 (𝒚), we aim to prove that C𝛼 (𝒚) is already an interval (including
singletons or empty sets), so that C𝛼 (𝒚) = I𝛼 (𝒚) and the result holds. Define the
function:

𝜇 ↦→ F (𝜇) = inf
𝜑(𝒙)=𝜇
𝒙∈X

−2ℓ𝒙 (𝒚) (2.57)

for a given 𝒚, supported in all 𝜇 such that Φ𝜇 ∩X ≠ ∅. Write C𝛼 (𝒚) explicitly using
(2.13), we get

C𝛼 (𝒚) :=

{
𝜇 : inf

𝜑(𝒙)=𝜇
𝒙∈X

− 2ℓ𝒙 (𝒚) − inf
𝒙∈X
− 2ℓ𝒙 (𝒚) ≤ 𝑞𝛼

}
. (2.58)

The second term on the left-hand side does not depend on 𝜇, so it is enough to
prove that any set of the form {𝜇 : F (𝜇) ≤ 𝑧} is an interval, which is implied by the
function F (𝜇) being convex in 𝜇 (for a fixed 𝒚). Indeed, if the set is not an interval,
we have 𝜇− < 𝜇 < 𝜇+ with 𝜇−, 𝜇+ ∈ C𝛼 (𝒚) and 𝜇 ∉ C𝛼 (𝒚) which contradicts
convexity, since

F (𝜇) ≥ 𝑧 > 𝛾F (𝜇−) + (1 − 𝛾)F (𝜇+).

To see convexity and finish the proof, let 𝜇1 ≠ 𝜇2 and let G(𝒙) := −2ℓ𝒙 (𝒚), a convex
function by assumption. Write for 𝑖 = 1, 2:

𝑥𝑖 ∈ argmin𝜑(𝒙)=𝜇
𝒙∈X

− 2ℓ𝒙 (𝒚),

with 𝑥𝑖 being any possible element in the set of minimizers, so that F (𝜇𝑖) = G(𝒙𝑖).
For any 0 < 𝛾 < 1, 𝛾𝒙1 + (1 − 𝛾)𝒙2 ∈ X since X is a convex cone and

𝜑(𝛾𝒙1 + (1 − 𝛾)𝒙2) = 𝛾𝜇1 + (1 − 𝛾)𝜇2,

since 𝜑 is linear, so 𝛾𝒙1 + (1 − 𝛾)𝒙2 is a feasible point of the optimization problem

inf
𝜑(𝒙)=𝛾𝜇1+(1−𝛾)𝜇2

𝒙∈X

−2ℓ𝒙 (𝒚),

that has optimal value F (𝛾𝜇1 + (1 − 𝛾)𝜇2). Therefore, by convexity of G and
definition of the 𝒙𝑖, we have that:

F (𝛾𝜇1+(1−𝛾)𝜇2) ≤ G(𝛾𝒙1+(1−𝛾)𝒙2) ≤ 𝛾G(𝒙1)+(1−𝛾)G(𝒙2) = 𝛾F (𝜇1)+(1−𝛾)F (𝜇2).
(2.59)

This completes the proof.
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Proof of Example 2.2.6
Since the case when 𝜇∗ = 0 is of particular interest, we show the result in this
specific case and then generalize to the case of 𝜇∗ > 0.

Case of 𝜇∗ = 0 When 𝜇∗ = 0, we can argue from symmetry of the standard Gaus-
sian about the origin to write down the CDF in closed form. For 𝑐 ≥ 0, we have

P𝜇0 (ℓ0 ≤ 𝑐) = P𝜇0 (ℓ0 ≤ 𝑐, 𝑦 < 0) + P𝜇0 (ℓ0 ≤ 𝑐, 𝑦 ≥ 0)
= P𝜇0 (ℓ0 ≤ 𝑐 | 𝑦 < 0) P𝜇0 (𝑦 < 0) + P𝜇0 (ℓ0 ≤ 𝑐 | 𝑦 ≥ 0) P𝜇0 (𝑦 ≥ 0).

(2.60)

By definition, P𝜇0 (𝑦 < 0) = P𝜇0 (𝑦 ≥ 0) = 1
2 , so only the conditional probabilities

remain. By (2.28), we have

P𝜇0 (ℓ0 ≤ 𝑐 | 𝑦 < 0) = P𝜇0 (0 ≤ 𝑐 | 𝑦 < 0) = 1

P𝜇0 (ℓ0 ≤ 𝑐 | 𝑦 ≥ 0) = P𝜇0

(
𝑦2 ≤ 𝑐 | 𝑦 ≥ 0

)
. (2.61)

In (2.61), we immediately observe that

P𝜇0

(
𝑦2 ≤ 𝑐 | 𝑦 ≥ 0

)
= P𝜇0

(
𝑦2 ≤ 𝑐, 𝑦 ≥ 0

)
P𝜇0 (𝑦 ≥ 0)−1 = 2P𝜇0

(
0 ≤ 𝑦 ≤

√
𝑐
)
= 2Φ(

√
𝑐)−1.

(2.62)
But we also have that

P𝜇0

(
𝑦2 ≤ 𝑐

)
= P𝜇0

(
−
√
𝑐 ≤ 𝑦 ≤

√
𝑐
)
= 2Φ(

√
𝑐) − 1.

So we have
P𝜇0

(
𝑦2 ≤ 𝑐 | 𝑦 ≥ 0

)
= P𝜇0

(
𝑦2 ≤ 𝑐

)
.

Hence, we obtain
P𝜇0 (ℓ0 ≤ 𝑐 | 𝑦 ≥ 0) = 𝜒2

1 (𝑐).

Note this independence on the sign of 𝑦 means that the magnitude of 𝑦 is statistically
independent of its direction. Thus, when 𝜇0 = 0, the log-likelihood ratio has the
following distribution:

ℓ0 ∼
1
2
+ 1

2
𝜒2

1 . (2.63)

This completes the case when 𝜇∗ = 0.
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Case of 𝜇∗ > 0 When 𝜇 > 0, the closed-form solution to the CDF of ℓ0 becomes
more complicated, as we can no longer use symmetry around the origin. Picking up
at (2.60), we first note that when 𝑦 ∼ N(𝜇0, 1), we have

P𝜇0 (𝑦 < 0) = Φ(−𝜇0) and P𝜇0 (𝑦 ≥ 0) = Φ(𝜇0).

Next, we must find the conditional probabilities. Starting with the case when {𝑦 < 0},
we obtain

P𝜇0

(
(𝑦 − 𝜇0)2 − 𝑦2 ≤ 𝑐 | 𝑦 < 0

)
(2.64)

= P𝜇0

(
−2𝑦𝜇0 + 𝜇2

0 ≤ 𝑐 | 𝑦 < 0
)

= P𝜇0

(
𝑦 ≥

𝜇2
0 − 𝑐
2𝜇0

| 𝑦 < 0

)
= Φ(−𝜇0)−1P𝜇0

(
𝑦 ≥

𝜇2
0 − 𝑐
2𝜇0

, 𝑦 < 0

)
= Φ(−𝜇0)−1

{
0 · 1{𝑐 ≤ 𝜇2

0} + P𝜇0

(
𝜇2

0 − 𝑐
2𝜇0

≤ 𝑦 ≤ 0

)
1{𝑐 > 𝜇2

0}
}

= Φ(−𝜇0)−1P𝜇0

(
−𝜇2

0 − 𝑐
2𝜇0

≤ 𝑦 − 𝜇0 ≤ −𝜇0

)
1{𝑐 > 𝜇2

0}

= Φ(−𝜇0)−1

{
Φ(−𝜇0) −Φ

(
−𝜇2

0 − 𝑐
2𝜇0

)}
1{𝑐 > 𝜇2

0}. (2.65)

Then, when {𝑦 ≥ 0}, we have

P𝜇0

(
(𝑦 − 𝜇0)2 ≤ 𝑐 | 𝑦 ≥ 0

)
(2.66)

= P𝜇0

(
−
√
𝑐 ≤ 𝑦 − 𝜇0 ≤

√
𝑐 | 𝑦 ≥ 0

)
= Φ(𝜇0)−1P𝜇0

(
−
√
𝑐 ≤ 𝑦 − 𝜇0 ≤

√
𝑐, 𝑦 ≥ 0

)
= Φ(𝜇0)−1P𝜇0

(
0 ≤ 𝑦 ≤

√
𝑐 + 𝜇0

)
1{−
√
𝑐 + 𝜇0 ≤ 0}

+Φ(𝜇0)−1P𝜇0

(
−
√
𝑐 + 𝜇0 ≤ 𝑦 ≤

√
𝑐 + 𝜇0

)
1{−
√
𝑐 + 𝜇0 > 0}

= Φ(𝜇0)−1 {(
Φ(
√
𝑐) −Φ(−𝜇0)

)
1{𝑐 ≥ 𝜇2

0} + (2Φ(
√
𝑐) − 1)1{𝑐 < 𝜇2

0}
}
. (2.67)

Putting together (2.65) and (2.67), we obtain the following CDF:

P𝜇0 (ℓ0 ≤ 𝑐) = 𝜒2
1 (𝑐) · 1{𝑐 < 𝜇

2
0} +

{
Φ(
√
𝑐) −Φ

(
−𝜇2

0 − 𝑐
2𝜇0

)}
· 1{𝑐 ≥ 𝜇2

0}. (2.68)

This completes the case of 𝜇∗ > 0.
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Proof of Example 2.2.7
We derive this result using a duality argument inspired by (Gouriéroux, Holly, and
Monfort, 1982). By definition, we have

𝜆(𝜇∗, 𝒚) = min
𝒙:𝜑(𝒙)=𝜇∗

∥𝒚 − 𝑲𝒙∥22 −min
𝒙
∥𝒚 − 𝑲𝒙∥22. (2.69)

For ease of notation, let 𝒙̂∗ = argmin
𝒙 : 𝒉⊤𝒙=𝜇∗

∥𝒚 − 𝑲𝒙∥22. Consider the Lagrangian for the

first optimization in (2.69):

𝐿 (𝒙, 𝜆) = ∥𝒚 − 𝑲𝒙∥22 + 𝜆(𝒉
⊤𝒙 − 𝜇∗). (2.70)

First-order optimality allows solving for 𝒙̂∗ as a function of the dual variable 𝜆:

∇𝒙𝐿 (𝒙, 𝜆) = −2𝑲⊤(𝒚 − 𝑲𝒙) + 𝜆𝒉 = 0

=⇒ −2𝑲⊤𝒚 + 2𝑲⊤𝑲𝒙 + 𝜆𝒉 = 0

=⇒ 𝒙̂∗ = (𝑲⊤𝑲)−1𝑲⊤𝒚 − 1
2
𝜆(𝑲⊤𝑲)−1𝒉

=⇒ 𝒙̂∗ = 𝒙̂ − 1
2
𝜆(𝑲⊤𝑲)−1𝒉.

Substituting back into the LLR, we obtain

𝜆(𝜇∗, 𝒚) = ∥𝒚 − 𝑲𝒙̂∗∥22 − ∥𝒚 − 𝑲𝒙̂∥22

= ∥𝒚 − 𝑲𝒙̂ + 1
2
𝜆𝑲 (𝑲⊤𝑲)−1𝒉∥22 − ∥𝒚 − 𝑲𝒙̂∥22. (2.71)

Performing some algebra, we note that

∥𝒚 − 𝑲𝒙̂ + 1
2
𝜆𝑲 (𝑲⊤𝑲)−1𝒉∥22 = ∥𝒚 − 𝑲𝒙̂∥22

+ 𝜆(𝒚 − 𝑲𝒙̂)⊤𝑲 (𝑲⊤𝑲)−1𝒉 + 1
4
𝜆2𝒉⊤(𝑲⊤𝑲)−1𝒉.

Thus, we have

𝜆(𝒚 − 𝑲𝒙̂)⊤𝑲 (𝑲⊤𝑲)−1𝒉 = 𝜆𝒚⊤𝑲 (𝑲⊤𝑲)−1𝒉 − 𝜆𝒙̂⊤𝑲⊤𝑲 (𝑲⊤𝑲)−1𝒉

= 𝜆𝒙̂⊤𝒉 − 𝜆𝒙̂⊤𝒉
= 0.

So the substitution in (2.71) can be further simplified such that:

𝜆(𝜇∗, 𝒚) = 1
4
𝜆2𝒉⊤(𝑲⊤𝑲)−1𝒉. (2.72)
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We now turn our attention to finding 𝜆. Note that this optimization defining the
Lagrangian (2.70) is convex with an affine equality constraint. Therefore, strong
duality holds. We then define the dual function as follows:

𝑔(𝜆) = min
𝒙
𝐿 (𝒙, 𝜆) = 𝐿 (𝒙̂∗, 𝜆)

= ∥𝒚 − 𝑲𝒙̂∗∥22 + 𝜆(𝒉
⊤𝒙̂∗ − 𝜇∗)

= ∥𝒚 − 𝑲𝒙̂ + 1
2
𝜆𝑲 (𝑲⊤𝑲)−1𝒉∥22 + 𝜆

(
𝒉⊤𝒙̂ − 1

2
𝜆𝒉⊤(𝑲⊤𝑲)−1𝒉 − 𝜇∗

)
. (2.73)

We note that we can make many of the same simplifications above to arrive at the
simplified dual function:

𝑔(𝜆) = ∥𝒚 − 𝑲𝒙̂∥22 + 𝜆𝒉
⊤ − 1

4
𝜆2𝒉⊤(𝑲⊤𝑲)−1𝒉 + 𝜆𝒉⊤𝒙̂ − 𝜆𝜇∗. (2.74)

To maximize 𝑔(𝜆), we again use the following first order optimality condition:
𝑑𝑔

𝑑𝜆
= −1

2
𝜆𝒉⊤(𝑲⊤𝑲)−1𝒉 + 𝒉⊤𝒙̂ − 𝜇∗ = 0

=⇒ 𝜆 =
2 (𝒉⊤𝒙̂ − 𝜇∗)
𝒉⊤(𝑲⊤𝑲)−1𝒉

. (2.75)

Substituting (2.75) back into (2.72), we obtain

𝜆(𝜇∗, 𝒚) = 1
4

(
2 (𝒉⊤𝒙̂ − 𝜇∗)
𝒉⊤(𝑲⊤𝑲)−1𝒉

)2
𝒉⊤(𝑲⊤𝑲)−1𝒉

=
(𝒉⊤𝒙̂ − 𝜇∗)2
𝒉⊤(𝑲⊤𝑲)−1𝒉

.

For the second part, observe that when 𝒚 ∼ N(𝑲𝒙∗, 𝑰𝑚), we have

𝒉⊤(𝑲⊤𝑲)−1𝑲⊤𝒚 ∼ N(𝒉⊤𝒙∗, 𝒉⊤(𝑲⊤𝑲)−1𝒉),

hence (2.33) is the square of a one-dimensional standard Gaussian distribution. This
finishes the proof.

2.8 Proofs in Section 2.3
Proof of Lemma 2.3.2
Let 𝑌 := 𝜆(𝒚, 𝜇∗). Recall the validity of 𝑞𝛼 can be written as P(𝑌 ≤ 𝑞𝛼) ≥ 1 − 𝛼
from (2.14) as:

𝑋 ⪰ 𝑌 ⇐⇒ P(𝑋 ≥ 𝛾) ≥ P(𝑌 ≥ 𝛾), for all 𝛾

⇐⇒ 𝛼 = P(𝑋 ≥ 𝑄𝑋 (1 − 𝛼)) ≥ P(𝑌 ≥ 𝑄𝑋 (1 − 𝛼)), for all 𝛼

⇐⇒ 1 − 𝛼 = P(𝑋 ≤ 𝑄𝑋 (1 − 𝛼)) ≤ P(𝑌 ≤ 𝑄𝑋 (1 − 𝛼)), for all 𝛼

⇐⇒ 𝑄𝑋 (1 − 𝛼) is a valid 𝑞𝛼for all 𝛼.

This finishes the proof.



57

Joint formulation of change-constrained optimization problem (2.36)
In this section, we provide details on formulating the optimization problem (2.36) and
the interval optimization problem (2.24) as a single chance-constrained optimization
problem. By joining (2.36) and (2.24) as a single optimization problem, we can use
a similar argument as in the proof of Theorem 2.2.4. Starting with problem (2.54):

inf
𝜇
/sup
𝜇

𝜇

st 𝜇 ∈ R
inf

𝜑(𝒙)=𝜇,𝒙∈X
−2ℓ𝒙 (𝒚) − inf

𝒙∈X
−2ℓ𝒙 (𝒚) ≤ 𝑞𝛼 (𝜇),

(2.76)

and substituting 𝑞𝛼 (𝜇) = sup𝒙∈Φ𝜇∩X 𝑄𝐹𝒙 (1 − 𝛼) = − inf𝒙∈Φ𝜇∩X −𝑄𝐹𝒙 (1 − 𝛼), we
obtain:

inf
𝜇
/sup
𝜇

𝜇

st 𝜇 ∈ R

inf
𝜑(𝒙1)=𝜇,𝒙1∈X,
𝜑(𝒙2)=𝜇,𝒙2∈X

[
−2ℓ𝒙1 (𝒚) −𝑄𝐹𝒙2

(1 − 𝛼)
]
≤ inf

𝒙∈X
−2ℓ𝒙 (𝒚),

(2.77)

which can be transformed to parameter space as:

inf
𝒙1,𝒙2
/ sup
𝒙1,𝒙2

𝜑(𝒙1)

st 𝒙1, 𝒙2 ∈ X
𝜑(𝒙1) = 𝜑(𝒙2)
− 2ℓ𝒙1 (𝒚) −𝑄𝐹𝒙2

(1 − 𝛼) ≤ inf
𝒙∈X
−2ℓ𝒙 (𝒚).

(2.78)

Further unpacking𝑄𝐹𝒙2
(1−𝛼) as in Lemma 2.3.1, we obtain the chance-constrained

optimization problem:

inf
𝒙1,𝒙2,𝑞

/ sup
𝒙1,𝒙2,𝑞

𝜑(𝒙1)

st 𝒙1, 𝒙2 ∈ X
𝜑(𝒙1) = 𝜑(𝒙2)
− 2ℓ𝒙1 (𝒚) ≤ inf

𝒙∈X
−2ℓ𝒙 (𝒚) + 𝑞

P𝑢∼U([0,1]) (F (𝒙2, 𝑢) ≤ 𝑞) ≤ 1 − 𝛼,

(2.79)

where F (𝒙, 𝑢) = 𝐹−1
𝒙 (𝑢).
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Proof of Example 2.3.3
Similar to Example 2.2.6 in Section 2.7, this proof is divided into two cases.

Case of 𝜇∗ = 0 Since the case when 𝜇∗ = 0 is of particular interest, we show the
result in this specific case and then generalize. Thus, when 𝜇0 = 0, the log-likelihood
ratio has the following distribution:

ℓ0 ∼
1
2
+ 1

2
𝜒2

1 . (2.80)

Additionally, this distribution implies the following stochastic dominance:

P𝜇0 (ℓ0 ≤ 𝑐) =
1
2

(
1 + 𝜒2

1 (𝑐)
)
≥ 𝜒2

1 (𝑐), (2.81)

that is, the log-likelihood ratio CDF is stochastically dominated by the chi-squared
with one degree of freedom distribution. This means that the type-I error of the test
can be controlled at the 𝛼 level.

When 𝜇 > 0, the closed-form solution to the CDF of ℓ0 becomes more compli-
cated, as we can no longer use symmetry around the origin. From the result of
Example 2.2.6, we have the following CDF:

P𝜇0 (ℓ0 ≤ 𝑐) = 𝜒2
1 (𝑐) · 1{𝑐 < 𝜇

2
0} +

{
Φ(
√
𝑐) −Φ

(
−𝜇2

0 − 𝑐
2𝜇0

)}
· 1{𝑐 ≥ 𝜇2

0}. (2.82)

Note, a quick check of (2.82) when 𝜇0 = 0 reveals agreement with (2.81) such that

P𝜇0 (ℓ0 ≤ 𝑐) = Φ(
√
𝑐) = Φ(

√
𝑐) − 1

2
+ 1

2
=

1
2

(
2Φ(
√
𝑐) − 1

)
+ 1

2
=

1
2
𝜒2

1 (𝑐) +
1
2
.

(2.83)
This completes the case of 𝜇∗ = 0.

Case of 𝜇∗ > 0 We already demonstrated above the chi-squared with one degree
of freedom dominates the log-likelihood ratio when 𝜇0 = 0. We now show that the
dominance holds when 𝜇0 > 0. Clearly, when 𝑐 < 𝜇2

0, P𝜇0 (ℓ0 ≤ 0) = 𝜒2
1 (𝑐), making

it in fact equal to the chi-squared with one degree of freedom. Suppose 𝑐 ≥ 𝜇2
0.

Define

ℎ(𝑐) := Φ(
√
𝑐) −Φ

(
−𝜇2

0 − 𝑐
2𝜇0

)
− 𝜒2

1 (𝑐).

The stochastic dominance occurs if and only if ℎ(𝑐) ≥ 0 for all 𝑐 ≥ 𝜇2
0.
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Note first that 𝜒2
1 (𝑐) = Φ(

√
𝑐)−Φ(−

√
𝑐) and therefore ℎ(𝑐) = Φ(−

√
𝑐)−Φ

(−𝜇2
0−𝑐

2𝜇0

)
.

Since Φ(·) is a monotonically increasing function, it is sufficient to show that
−
√
𝑐 − −𝜇

2
0−𝑐

2𝜇0
≥ 0 for all 𝑐 ≥ 𝜇2

0. We do so below.

Define a function 𝑓 as follows:

𝑓 (𝑐) = −
√
𝑐 −
−𝜇2

0 − 𝑐
2𝜇0

.

Observe that when 𝑐 = 𝜇2
0, 𝑓 (𝑐) = 0. Consider when 𝑐 > 𝜇2

0. We obtain the
following first and second derivatives:

𝑓 ′(𝑐) = −𝜇0 +
√
𝑐

2𝜇0
√
𝑐

and 𝑓 ′′(𝑐) = 1
4
𝑐−3/2.

By the constraint 𝑐 > 𝜇2
0, it follows that −𝜇0 +

√
𝑐 > 0, and therefore, 𝑓 ′(𝑐) > 0

for all 𝑐 > 𝜇2
0. Additionally, 𝑓 ′′(𝑐) > 0 for all 𝑐 > 𝜇2

0, so 𝑓 is convex. Hence, we
conclude that 𝑓 is a monotonically increasing function for 𝑐 > 𝜇2

0, which starts at 0
when 𝑐 = 𝜇2

0, and thus 𝑓 (𝑐) ≥ 0 for all 𝑐 ≥ 𝜇2
0. It therefore follows that

Φ(−
√
𝑐) ≥ Φ

(
−𝜇2

0 − 𝑐
2𝜇0

)
,

and hence ℎ(𝑐) ≥ 0 for all 𝑐 ≥ 𝜇2
0. As such, we conclude that P𝜇0 (ℓ0 ≤ 𝑐) ≥ 𝜒2

1 (𝑐)
for all 𝑐 ≥ 0. In other words, that the sampling distribution for the log-likelihood
ratio is stochastically dominated by a chi-squared distribution with one degree of
freedom. This completes the case of 𝜇∗ > 0.

2.9 Proofs in Section 2.4
Proof of Theorem 2.4.1
The proof follows by combining Lemmas 2.4.2 and 2.4.3.

Proof of Lemma 2.4.2
The proof follows by direct inspection and substitution of 𝑞𝛼 and −2ℓ𝒙 (𝒚) = ∥𝒚 −
𝑲𝒙∥22. The interval has the coverage if the 𝑞𝛼 is valid by Theorem 2.2.4 and only if
by Proposition 2.2.5.

Proof of Lemma 2.4.3
The proof follows by observing 𝑧2

𝛼/2 = 𝑄𝜒2
1
(1 − 𝛼) and applying Lemma 2.3.2
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Proof of Lemma 2.4.4
We argue by coupling. Note that 1

2 (𝑦1 − 𝑦2)2 ∼ 𝜒2
1 , so that it suffices to show

𝜆 ≤ 1
2 (𝑦1 − 𝑦2)2 for every 𝑦 to constitute a valid coupling that proves stochastic

dominance. This is clearly true when 𝑦1 + 𝑦2 ≥ 0, since 𝜆 − 1
2 (𝑦1 − 𝑦2)2 is equal

to non-positive terms only. When 𝑦1 + 𝑦2 < 0, if both are strictly negative, then
𝜆 = 0 ≤ 1

2 (𝑦1− 𝑦2)2. Then assume without loss of generality that 𝑦1 is non-negative,
then 𝑦2 has to be negative. Then 𝜆 = 𝑦2

1, but 𝑦1 ≥ 0, 𝑦2 < 0 and 𝑦1 < −𝑦2 imply that
|𝑦1 − 𝑦2 | = 𝑦1 − 𝑦2 ≥ 2𝑦1 ≥

√
2𝑦1, squaring both sides gives 1

2 (𝑦1 − 𝑦2)2 < 𝑦2
1 = 𝜆.

This finishes the proof.

Proof of Lemma 2.4.5
Consider the LLR

𝜆(𝜇∗ = −1, 𝒚) = min
𝑥1+𝑥2−𝑥3=−1

𝒙≥0

∥𝒙 − 𝒚∥22 −min
𝒙≥0
∥𝒙 − 𝒚∥22. (2.84)

The goal of this proof is to show that 𝜒2
1 does not stochastically dominate (2.84)

when 𝒚 ∼ N(𝑥∗ = (0, 0, 1), 𝑰3). By Corollary 4.26 in (Roch, 2024), 𝑋 ⪰ 𝑌 implies
E[𝑥] > E[𝑦], so it suffices to show that

E[𝜆(𝜇∗ = −1, 𝒚)] > E[𝜒2
1] = 1

to complete the proof.

Observe that

E[𝜆(𝜇∗ = −1, 𝒚)] = E
[

min
𝒉⊤𝒙=−1
𝒙≥0

∥𝒙 − 𝒚∥22
]
− E

[
min
𝒙≥0
∥𝒙 − 𝒚∥22

]
. (2.85)

We begin by computing the second term. Since

min
𝒙≥0
∥𝒙 − 𝒚∥22 =

3∑︁
𝑖=1
(𝑦𝑖 −max{𝑦𝑖, 0})2,

we have

E
[

min
𝒙≥0
∥𝒙 − 𝒚∥22

]
=

3∑︁
𝑖=1

E
[
(𝑦𝑖 −max{𝑦𝑖, 0})2

]
= 2E𝑧∼N(0,1)

[
(𝑧 −max{𝑧, 0})2

]
+ E𝑧∼N(1,1)

[
(𝑧 −max{𝑧, 0})2

]
.

Let 𝑔(𝑧) := (𝑧 −max{𝑧, 0})2. Using in both cases, we obtain

E[𝑔(𝑧)] = E[𝑔(𝑧) | 𝑧 ≥ 0]︸             ︷︷             ︸
0

· P(𝑧 ≥ 0) + E[𝑔(𝑧) | 𝑧 < 0] · P(𝑧 < 0) = E[𝑧2 | 𝑧 < 0] · P(𝑧 < 0).
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Note that

E[𝑧2 | 𝑧 < 0] = (E[𝑧 | 𝑧 < 0])2 + Var[𝑧 | 𝑧 < 0]

=


(
− 𝜙(0)

Φ(0)

)2
+

(
1 −

(
𝜙(0)
Φ(0)

)2
)
, 𝑧 ∼ N(0, 1)(

1 − 𝜙(−1)
Φ(−1)

)2
+ 1 + 𝜙(−1)

Φ(−1) −
(
𝜙(−1)
Φ(−1)

)2
, 𝑧 ∼ N(1, 1)

=


1, 𝑧 ∼ N(0, 1)

2 − 𝜙(−1)
Φ(−1) , 𝑧 ∼ N(1, 1),

where we used the formulas for mean and variance of a truncated Gaussian. Finally,

E
[

min
𝒙≥0
∥𝒙 − 𝒚∥22

]
= 2 · 1/2 · 1 + (2 − 𝜙(−1)/Φ(−1)) · (Φ(−1))

= 1 + 2Φ(−1) − 𝜙(−1)
≈ 1.0753.

It suffices to prove that

E
[

min
𝒉⊤𝒙=−1
𝒙≥0

∥𝒙 − 𝒚∥22
]
> 2 + 2Φ(−1) − 𝜙(−1) ≈ 2.0753.

We will prove that

E
[

min
𝒉⊤𝒙=−1
𝒙≥0

∥𝒙 − 𝒚∥22
]
= 13/6 ≈ 2.166.

Note that the intersection of the plane 𝒉⊤𝒙 = 𝑥1 + 𝑥2 − 𝑥3 = −1 and 𝒙 ≥ 0 is the
parametric surface S = {(𝑢, 𝑣, 𝑢 + 𝑣 + 1), 𝑢 ≥ 0, 𝑣 ≥ 0}, so we can write

min
𝒙∈S
∥𝒙 − 𝒚∥22 = min

𝑢≥0,𝑣≥0
(𝑦1 − 𝑢)2 + (𝑦2 − 𝑣)2 + (𝑦3 − 𝑢 − 𝑣 − 1)2. (2.86)

It is convenient to define a new variable 𝑧3 = 1− 𝑦3 ∼ N(0, 1), so that (𝑦1, 𝑦2, 𝑧3) is
sampled from a standard three dimensional Gaussian. Abusing notation we will still
write 𝑦3 for 𝑧3 and then 𝒚 ∼ N((0, 0, 0), 𝑰). The optimization problem becomes:

min
𝑢≥0,𝑣≥0

(𝑦1 − 𝑢)2 + (𝑦2 − 𝑣)2 + (−𝑦3 − 𝑢 − 𝑣)2. (2.87)
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This can be explicitly solved to yield

min
𝒉⊤𝒙=−1
𝒙≥0

∥𝒙 − 𝒚∥22 =



𝑦2
1 + 𝑦

2
2 + 𝑦

2
3 𝑦1 − 𝑦3 ≤ 0 and 𝑦2 − 𝑦3 ≤ 0

1
2

(
𝑦2

1 + 2𝑦1𝑦3 + 2𝑦2
2 + 𝑦

2
3

)
𝑦1 − 𝑦3 ≥ 0 and 𝑦1 − 2𝑦2 + 𝑦3 ≥ 0

1
2

(
2𝑦2

1 + 𝑦
2
2 + 2𝑦2𝑦3 + 𝑦2

3

)
𝑦2 − 𝑦3 ≥ 0 and 2𝑦1 − 𝑦2 − 𝑦3 ≤ 0

1
3 (𝑦1 + 𝑦2 + 𝑦3)2


2𝑦1 − 𝑦3 ≥ 𝑦2 ≥ max{𝑦1, 𝑦3}

2𝑦2 − 𝑦3 ≥ 𝑦1 ≥ max{𝑦2, 𝑦3}
.

(2.88)

We split ∫
R3

min
𝒉⊤𝒙=−1
𝒙≥0

∥𝒙 − 𝒚∥22 𝜙(𝑦1)𝜙(𝑦2)𝜙(𝑦3) d𝑦

into the different domains given by (2.88), with the value of the expectation being
equal to the sum of the different integrals, which we proceed to compute.

Region 1:

𝐼1 =

∫
𝑦3≥𝑦1,𝑦3≥𝑦2

𝑒−
1
2 (𝑦

2
1+𝑦

2
2+𝑦

2
3)

2
√

2𝜋3/2
(𝑦2

1 + 𝑦
2
2 + 𝑦

2
3) d𝑦.

Note that by symmetry of the variables in the integrand, we have

𝐼1 =

∫
𝑦2≥𝑦1,𝑦2≥𝑦3

𝑒−
1
2 (𝑦

2
1+𝑦

2
2+𝑦

2
3)

2
√

2𝜋3/2
(𝑦2

1 + 𝑦
2
2 + 𝑦

2
3) d𝑦

=

∫
𝑦1≥𝑦3,𝑦1≥𝑦2

𝑒−
1
2 (𝑦

2
1+𝑦

2
2+𝑦

2
3)

2
√

2𝜋3/2
(𝑦2

1 + 𝑦
2
2 + 𝑦

2
3) d𝑦.

And since one of the 𝑦𝑖 will always be the largest one, the sum of the domains is R3

(modulo measure zero intersections that do not affect integration) and we can write

𝐼1 =
1
3

∫
R3

𝑒−
1
2 (𝑦

2
1+𝑦

2
2+𝑦

2
3)

2
√

2𝜋3/2
(𝑦2

1 + 𝑦
2
2 + 𝑦

2
3) d𝑦 =

1
3
· 3 = 1.

Here we used that the integral is the expected value of 𝑦2
1 + 𝑦

2
2 + 𝑦

2
3, which is 3 since

the 𝑦𝑖 are centered with unit variance.

Region 2:

𝐼2 =

∫
𝑦1−𝑦3≥0,𝑦1−2𝑦2+𝑦3≥0

𝑒−
1
2 (𝑦

2
1+𝑦

2
2+𝑦

2
3)

4
√

2𝜋3/2

(
𝑦2

1 + 2𝑦1𝑦3 + 2𝑦2
2 + 𝑦

2
3

)
d𝑦. (2.89)
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Partition R3 in four spaces with measure zero intersection, and we aim to argue that
the integral of the integrand in (2.89) has the same value when integrating over any
of them:

𝐴 :=
{
𝒚 : 𝑦1 ≥ 𝑦3, 𝑦2 ≥

𝑦1 + 𝑦3
2

}
𝐵 :=

{
𝒚 : 𝑦1 ≥ 𝑦3, 𝑦2 ≤

𝑦1 + 𝑦3
2

}
𝐶 :=

{
𝒚 : 𝑦1 ≤ 𝑦3, 𝑦2 ≥

𝑦1 + 𝑦3
2

}
𝐷 :=

{
𝒚 : 𝑦1 ≤ 𝑦3, 𝑦2 ≤

𝑦1 + 𝑦3
2

}
.

Clearly 𝐼2 = 𝐼𝐵 =
∫
𝐴
𝒉(𝑦1, 𝑦2, 𝑦3) d𝑦. Since 𝒉 satisfies 𝒉(𝑥1, 𝑥2, 𝑥3) = 𝒉(𝑥3, 𝑥2, 𝑥1),

we can exchange 𝑦1 and 𝑦3 in the definitions of the sets, so 𝐼𝐴 = 𝐼𝐶 and 𝐼𝐵 = 𝐼𝐷 . And
since 𝒉 is even with respect to 𝑥2 and odd with respect to 𝑥1, 𝑥3 we can exchange 𝑦𝑖
to −𝑦𝑖 for 𝑖 = 1, 2, 3 without the result changing. This flips both inequalities, proving
𝐼𝐴 = 𝐼𝐷 and 𝐼𝐵 = 𝐼𝐶 . We therefore have

𝐼2 =
1
4

∫
R3

𝑒−
1
2 (𝑦

2
1+𝑦

2
2+𝑦

2
3)

4
√

2𝜋3/2

(
𝑦2

1 + 2𝑦1𝑦3 + 2𝑦2
2 + 𝑦

2
3

)
d𝑦 =

1
4
· 2 =

1
2
.

Here, in the integral, we factor out the sum and using that, the expected value of
𝑦𝑖𝑦 𝑗 is 𝛿𝑖 𝑗 .

Region 3:

𝐼3 =

∫
𝑦2−𝑦3≥0,𝑦2−2𝑦1+𝑦3≥0

𝑒−
1
2 (𝑦

2
1+𝑦

2
2+𝑦

2
3)

4
√

2𝜋3/2

(
2𝑦2

1 + 2𝑦2𝑦3 + 𝑦2
2 + 𝑦

2
3

)
d𝑦.

This is exactly the same integral as 𝐼2 by switching 𝑦2 with 𝑦1, so 𝐼3 =
1
2

.

Region 4:

𝐼4 =

∫
2𝑦1−𝑦3≥𝑦2≥max(𝑦1,𝑦3)

𝑒−
1
2 (𝑦

2
1+𝑦

2
2+𝑦

2
3)

6
√

2𝜋3/2
(𝑦1 + 𝑦2 + 𝑦3)2 d𝑦

+
∫

2𝑦2−𝑦3≥𝑦1≥max(𝑦2,𝑦3)

𝑒−
1
2 (𝑦

2
1+𝑦

2
2+𝑦

2
3)

6
√

2𝜋3/2
(𝑦1 + 𝑦2 + 𝑦3)2 d𝑦. (2.90)

We partitionR3 in 12 subspaces with measure 0 intersection and we aim to argue that
the integral of the integrand in (2.90) (considering one of the integrals only) has the
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same value when integrating over any of them. For 𝜎 a permutation of (𝑦1, 𝑦2, 𝑦3),
we define the first six subsets as:

{𝒚 : 2𝑦𝜎(1) − 𝑦𝜎(2) ≥ 𝑦𝜎(3) ≥ max{𝑦𝜎(1) , 𝑦𝜎(2)}},

and the last six subsets as:

{𝒚 : 2𝑦𝜎(1) − 𝑦𝜎(2) ≤ 𝑦𝜎(3) ≤ min{𝑦𝜎(1) , 𝑦𝜎(2)}}.

We need to prove that the integral has the same value in any of the 12 subsets. Since
that the integrand

𝒉(𝑦1, 𝑦2, 𝑦3) :=
𝑒−

1
2 (𝑦

2
1+𝑦

2
2+𝑦

2
3)

6
√

2𝜋3/2
(𝑦1 + 𝑦2 + 𝑦3)2

satisfies 𝒉(𝑦1, 𝑦2, 𝑦3) = 𝒉(𝑦𝜎(1) , 𝑦𝜎(2) , 𝑦𝜎(3)) for all permutations 𝜎, the value of
the integral in between the first and second groups of 6 subsets is the same. For a
fixed 𝜎 (say, the identity), since 𝒉(𝑦1, 𝑦2, 𝑦3) = 𝒉(−𝑦1,−𝑦2,−𝑦3), the value over

{𝒚 : 2𝑦1 − 𝑦2 ≥ 𝑦3 ≥ max{𝑦1, 𝑦2}}

is the same as the value over

{𝒚 : −2𝑦1 + 𝑦2 ≥ −𝑦3 ≥ max{−𝑦1,−𝑦2}} = {𝒚 : 2𝑦1 − 𝑦2 ≤ 𝑦3 ≤ min{𝑦1, 𝑦2}},

so the value over the 12 sets is complete.

It remains to be seen that for a generic 𝒚 = (𝑦1, 𝑦2, 𝑦3), 𝑦1 ≠ 𝑦2 ≠ 𝑦3 ≠ 𝑦1

(which can be assumed with probability 1 without affecting the integral), the point
belongs to one and just one of the sets. Assume without loss of generality that 𝑦1

is the greater of the three and 𝑦3 is the smallest. Then since 𝑦1 > max{𝑦2, 𝑦3} and
𝑦3 < min{𝑦1, 𝑦2} the only subsets that 𝒚 can belong to are:

𝐴 := {𝒚 : 2𝑦2 − 𝑦3 ≥ 𝑦1 ≥ max{𝑦2, 𝑦3}}
𝐵 := {𝒚 : 2𝑦3 − 𝑦2 ≥ 𝑦1 ≥ max{𝑦2, 𝑦3}}
𝐶 := {𝒚 : 2𝑦1 − 𝑦2 ≤ 𝑦3 ≤ min{𝑦1, 𝑦2}}
𝐷 := {𝒚 : 2𝑦2 − 𝑦1 ≤ 𝑦3 ≤ min{𝑦1, 𝑦2}}.

But 𝒚 is not in 𝐵 because that would require 𝑦3 ≥ 𝑦1+𝑦2
2 but 𝑦3 < 𝑦1 and 𝑦3 < 𝑦2, and

it is also not in 𝐶 because that would require 𝑦1 ≤ 𝑦2+𝑦3
2 and 𝑦1 > 𝑦2 and 𝑦1 > 𝑦3.

𝒚 will be in 𝐴 if 𝑦2 >
𝑦1+𝑦3

2 and in 𝐷 if, on the contrary, 𝑦2 <
𝑦1+𝑦3

2 , both of which
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are possible, but not at the same time. We conclude by identifying 𝐼4 as the sum of
two integrals over subsets that we have defined, and therefore

𝐼4 =
2

12

∫
R3

𝑒−
1
2 (𝑦

2
1+𝑦

2
2+𝑦

2
3)

6
√

2𝜋3/2
(𝑦1 + 𝑦2 + 𝑦3)2 d𝑦 =

1
6
· 1 =

1
6
.

Here we expand the sum and use again that the expected value of 𝑦𝑖𝑦 𝑗 is 𝛿𝑖 𝑗 . The
proof concludes by adding up

E
[

min
𝒉⊤𝒙=−1
𝒙≥0

∥𝒙 − 𝒚∥22
]
= 𝐼1 + 𝐼2 + 𝐼3 + 𝐼4 =

13
6
.

Proof of Proposition 2.4.6
We construct a series of counterexamples, indexed by the dimension 𝑝, and prove
that as 𝑝 →∞, the expected value of the LLR diverges. Since stochastic dominance
implies inequality of expectations (when expectations are finite), we conclude that
the distribution can not be stochastically dominated. For all 𝑝 ∈ N, consider the
example in R𝑝 (= R𝑚), 𝑲 = 𝑰𝑝, 𝒙∗ = (0, . . . , 0, 1), 𝒉 = (1, . . . , 1,−1) (such that
𝜇∗ = −1). Let

𝜆𝑛 (𝜇∗ = −1, 𝒚) = min∑𝑝−1
𝑖=1 𝑥𝑖−𝑥𝑝=−1

𝒙≥0

∥𝒙 − 𝒚∥22 −min
𝒙≥0
∥𝒙 − 𝒚∥22. (2.91)

And compute

E𝒚∼N(𝒙∗,𝑰𝑛) [𝜆𝑛 (−1, 𝒚)] = E𝒚∼N(𝒙∗,𝑰𝑛)

[
min∑𝑝−1

𝑖=1 𝑥𝑖−𝑥𝑝=−1
𝒙≥0

∥𝒙−𝒚∥22
]
−E𝒚∼N(𝒙∗,𝑰𝑛)

[
min
𝒙≥0
∥𝒙−𝒚∥22

]
.

(2.92)
For the second term, we have

E
[

min
𝒙≥0
∥𝒙 − 𝒚∥22

]
=

𝑝∑︁
𝑖=1

E
[
(𝑦𝑖 −max{𝑦𝑖, 0})2

]
= (𝑝 − 1)E𝑧∼N(0,1)

[
(𝑧 −max{𝑧, 0})2

]
+ E𝑧∼N(1,1)

[
(𝑧 −max{𝑧, 0})2

]
= (𝑝 − 1) 1

2
+ (2 − 𝜙(−1)/Φ(−1)) · (Φ(−1)),

using similar arguments as the proof in Section 2.9. We will lower bound the first
term using duality. For simplicity, define 𝒛 = (𝑦1, . . . , 𝑦𝑝−1, 𝑦𝑛 −1) ∼ N (0, 𝑰𝑛), and
equivalently optimize

min∑𝑝−1
𝑖=1 𝑥𝑖=𝑥𝑝
𝒙≥0

∥𝒙 − 𝒛∥22, (2.93)
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where we defined the feasible 𝒙̃ = (𝑥1, . . . , 𝑥𝑛 − 1 =
∑𝑝−1
𝑖=1 𝑥𝑖) and replaced 𝒙̃ by 𝒙,

abusing notation. Using Fenchel duality, we have that

min∑𝑝−1
𝑖=1 𝑥𝑖=𝑥𝑝
𝒙≥0

∥𝒙 − 𝒛∥22 ≥ sup
𝝃∈R𝑝
(− 𝑓 ∗(𝝃) − 𝑔∗(−𝝃)), (2.94)

where we have noted by 𝑓 ∗ the convex conjugate of 𝑓 (𝒙) := ∥𝒙 − 𝒛∥22 and, letting 𝑆
be the feasible set, we denoted by 𝑔∗ the convex conjugate of

𝑔(𝒙) =


0 if 𝒙 ∈ 𝑆

∞ if 𝒙 ∉ 𝑆.
(2.95)

Note that with these definitions, min∑𝑝−1
𝑖=1 𝑥𝑖=𝑥𝑝
𝒙≥0

∥𝒙 − 𝒛∥22 = inf𝒙 ( 𝑓 (𝑥) + 𝑔(𝑥)) so the

weak Fenchel duality applies. We compute 𝑓 ∗(𝝃) = 1
4 ∥𝝃∥

2
2 + 𝒛

⊤𝝃 − 𝒛⊤𝒛, and

𝑔∗(𝝃) =


0 if 𝜉𝑖 + 𝜉𝑝 ≤ 0 for 𝑖 ∈ [𝑝 − 1]

∞ otherwise,
(2.96)

so that

sup
𝝃∈R𝑝
(− 𝑓 ∗(𝝃) − 𝑔∗(−𝝃)) = sup

𝜉𝑖+𝜉𝑛≥0, for all 𝑖∈[𝑝−1]

[
− 1

4
∥𝝃∥22 − 𝒛⊤𝝃 + 𝒛⊤𝒛

]
(2.97)

≥ sup
𝜉𝑖+𝜉𝑛≥0, for all 𝑖∈[𝑝−1]

[
− 1

4
∥𝝃∥22 − 𝒛⊤𝝃

]
. (2.98)

Since the supremum is lower bounded by any feasible point, we can further bound
by picking a feasible 𝝃∗ for each possible 𝒛. We define the following:

𝝃∗(𝒛) =

−𝒛 if − 𝒛 is feasible (−𝑧𝑖 ≥ 𝑧𝑛 for all 𝑖)

(−𝑧1, . . . ,−𝑧𝑝−1,max𝑖∈[𝑝−1] 𝑧𝑖) otherwise.
(2.99)

Observe that

min∑𝑝−1
𝑖=1 𝑥𝑖=𝑥𝑝
𝒙≥0

∥𝒙 − 𝒛∥22

≥ −1
4
∥𝝃∗(𝒛)∥22 − 𝒛⊤𝝃∗(𝒛)

=


3
4 ∥𝒛∥

2 if − 𝒛 is feasible (−𝑧𝑖 ≥ 𝑧𝑛 for all 𝑖)
3
4
∑𝑝−1
𝑖=1 𝑧

2
𝑖
+ 𝑧𝑛 max𝑖∈[𝑝−1] 𝑧𝑖 − 1

4

(
max𝑖∈[𝑝−1] 𝑧𝑖

)2
otherwise.
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We note that −𝒛 is feasible with probability 1/𝑝, by symmetry. Taking expected
value over the inequality and using the law of total expectation yields

E
[

min∑𝑝−1
𝑖=1 𝑥𝑖=𝑥𝑝
𝒙≥0

∥𝒙 − 𝒛∥22
]

≥ 1
𝑝
× 3

4
E
[
∥𝑧∥22

]
+ 𝑝 − 1

𝑝

{
E
[
3
4

𝑝−1∑︁
𝑖=1

𝑧2
𝑖

]
+ E

[
𝑧𝑛 max

𝑖∈[𝑝−1])
𝑧𝑖

]
− 1

4
E
[(

max
𝑖∈[𝑝−1]

𝑧𝑖

)2
]}

=
3
4
+ 𝑝 − 1

𝑝

{
3(𝑝 − 1)

4
+ 0 − 1

4
E
[(

max
𝑖∈[𝑝−1]

𝑧𝑖

)2
]}
.

To bound the last term, we use

E
[(

max
𝑖∈[𝑝−1]

𝑧𝑖

)2
]
= E

[
max
𝑖∈[𝑝−1]

𝑧𝑖

]
+ Var

[
max
𝑖∈[𝑝−1]

𝑧𝑖

]
≤

√︁
2 log(𝑝 − 1) + 1,

where the moment bounds are standard results: the expectation bound can be found
using Jensen’s inequality on exp(

√︁
2 log 𝑝max𝑖 𝑧𝑖) and then bounding max𝑖 𝑧𝑖 ≤∑

𝑖 𝑧𝑖, and the variance bound with Poincaré’s inequality applied to a smooth max-
imum, even though it can be refined (Boucheron and M. Thomas, 2012). Putting
everything together, we obtain

E𝒚∼N(𝒙∗,𝑰𝑛) [𝜆𝑛 (−1, 𝒚)] ≥ 𝑝 − 1
𝑝

{
3(𝑝 − 1)

4
− 1

4
√︁

2 log(𝑝 − 1)
}
− 𝑝

2
+ O(1),

which is O(𝑝) and therefore tends to∞ as 𝑝 →∞. This completes the proof.

2.10 Additional numerical illustrations in Section 2.5
Constrained Gaussian in three dimensions
We include the analog of Figure 2.9 with 1 − 𝛼 = 0.95 in Figure 2.12.
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Figure 2.12: Estimated interval coverage (left) and expected lengths (right) for 95%
intervals resulting from the SSB, OSB, MQ, and MQ𝜇 methods for the Gaussian
linear model in (2.4) with 𝑲 = 𝑰3, 𝜑(𝒙) = 𝒉⊤𝒙 = 𝑥1 + 𝑥2 − 𝑥3, and X = {𝒙 ∈ R3 :
𝒙 ≥ 0}.
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C h a p t e r 3

CONFIDENCE INTERVALS FOR FUNCTIONALS IN
CONSTRAINED INVERSE PROBLEMS VIA DATA-ADAPTIVE

SAMPLING-BASED CALIBRATION

We address functional uncertainty quantification for ill-posed inverse problems
where it is possible to evaluate a possibly rank-deficient forward model, the ob-
servation noise distribution is known, and there are known parameter constraints.
We present four constraint-aware confidence interval constructions extending the
theoretical test inversion framework in (Batlle, Stanley, et al., 2023) by making the
intervals both computationally feasible and less conservative. Our approach first
shrinks the potentially unbounded constraint set compact in a data-adaptive way,
obtains samples of the relevant test statistic inside this set to estimate a quantile
function, and then uses these computed quantities to produce the constraint-aware
confidence intervals. Our approach to bounding the constraint set in a data-adaptive
way is based on the approach by (Roger L. Berger and Boos, 1994), and involves
defining a subset of the constraint set where the true parameter is guaranteed to exist
with high probability. The probabilistic guarantee of this compact subset is then
incorporated into the final coverage guarantee in the form of an uncertainty bud-
get. We then propose custom sampling algorithms to efficiently sample from this
subset, even when the parameter space is high-dimensional. Optimization-based
interval methods formulate confidence interval computation as two endpoint opti-
mizations, where the optimization constraints can be set to achieve different types
of interval calibration while seamlessly incorporating parameter constraints. How-
ever, choosing optimization constraints to obtain coverage for a single functional
has been elusive. We show that all four proposed intervals achieve nominal coverage
for a particular functional both theoretically and in practice, with several numerical
examples demonstrating superior performance of our intervals over the OSB inter-
val in terms of both coverage and expected interval length. In particular, we show
the superior performance of our intervals in a realistic unfolding simulation from
high-energy physics that is severely ill-posed and involves a rank-deficient forward
model.
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3.1 Introduction
This paper proposes a novel uncertainty quantification (UQ) approach for ill-posed
inverse problems characterized by a known parametric forward model1 𝑓 : R𝑝 →
R𝑛 mapping a parameter 𝒙 ∈ R𝑝 to an observation 𝑓 (𝒙) ∈ R𝑛, additive noise
with a known distribution 𝜺 ∼ N(0,𝚺), and constraints on the forward model
parameters denoted by 𝒙 ∈ X, where X is primarily assumed to be of the form
𝑨𝒙 ≤ 𝒃. We consider scenarios where the parameter space dimension 𝑝 may exceed
the observation space dimension 𝑛, which often results in an ill-posed problem.
Additionally, we do not require the forward model 𝑓 to be injective, allowing for
the possibility that 𝑓 is many-to-one. We assume observations are generated by
𝒚 = 𝑓 (𝒙∗) + 𝜺, where 𝒙∗ ∈ X is the true but unknown model parameter. Our UQ
object of interest is a confidence interval2, C𝛼 (𝒚), on a one-dimensional quantity of
interest (QoI) derived from 𝑥∗ by 𝜑 : X → R. Our approach produces constraint-
aware intervals with a finite-sample frequentist coverage guarantee, namely, for each
𝛼 ∈ (0, 1)

P(𝜑(𝒙∗) ∈ C𝛼 (𝒚)) ≥ 1 − 𝛼 for all 𝒙∗ ∈ X. (3.1)

The probability in the coverage guarantee (3.1) is taken over the distribution of the
observation 𝒚 = 𝑓 (𝒙∗) + 𝜺, where 𝜺 is the additive noise. The level 𝛼 ∈ (0, 1)
corresponds to the desired coverage probability, meaning that the interval C𝛼 (𝒚)
will contain the true value 𝜑(𝒙∗) with probability at least 1 − 𝛼 for any realization
of the noise 𝜺.

This paper builds on the confidence interval framework of (Batlle, Stanley, et al.,
2023), which posits a more general data-generating process, 𝒚 ∼ 𝑃𝒙∗ , and proposes
a novel test-inversion framework for constructing constraint-aware confidence in-
tervals for inverse problem QoI’s. By proposing a testing framework to evaluate if
𝒙∗ ∈ Φ𝜇 := {𝒙 ∈ X : 𝜑(𝒙) = 𝜇} via the test statistic 𝜆(𝜇, 𝒚), (Batlle, Stanley, et al.,
2023) construct a confidence set as follows (see Equation (2.9)),

C𝛼 (𝒚) := {𝜇 : 𝜆(𝜇, 𝒚) ≤ 𝑞𝛼 (𝜇)}. (3.2)

As shown in Lemma 2.2 of (Batlle, Stanley, et al., 2023), there are two ways to set
𝑞𝛼 (𝜇) using a supremum over a particular quantile function, 𝑄𝒙 (1 − 𝛼) (we show a
particular realization of such a quantile function in the left-most panel of Figure 3.1),

1Even though we write the forward model as a known function 𝑓 , we only require evaluation
access to the map throughout the paper.

2We interchangeably use the terms “confidence set” and “confidence interval” since the latter
may be obtained by the former by simply retaining the set endpoints.
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such that C𝛼 (𝒚) achieves the desired coverage,

𝑄max
𝜇,1−𝛼 := sup

𝒙∈Φ𝜇∩X
𝑄𝒙 (1 − 𝛼), (3.3)

𝑄max
1−𝛼 := sup

𝒙∈𝜑(X)
𝑄max
𝜇,1−𝛼 = sup

𝒙∈X
𝑄𝒙 (1 − 𝛼). (3.4)

In practice, not only are Equations (3.3) and (3.4) difficult to compute because𝑄𝒙 (1−
𝛼) is typically only accessible via sampling, but the optimizations can be expressed
equivalently as chance-constrained programs (see Lemma 3.1 in (Batlle, Stanley, et
al., 2023)), which are typically challenging to solve. Furthermore, although 𝑄max

𝜇,1−𝛼

Figure 3.1: (Left) A particular quantile surface, 𝑄𝒙 (1 − 𝛼), where 𝒙 ≥ 0 and
𝛼 = 0.32. This surface was obtained via Monte Carlo sampling the LLR test statistic
over a grid of 𝒙’s defined by the two-dimensional constrained-Gaussian scenario
similar to that in Section 3.6, but with 𝒉 :=

(
1 1

)⊤. (Right-Top) An illustration of
the Berger–Boos set and other, a 1−𝜂 confidence set for 𝒙∗, which prevents having to
contend with an unbounded parameter space. Additionally, it can eliminate “worst-
case” parameter settings in X that are far from the data, thus potentially making the
resulting intervals less conservative. (Right-Bottom) An illustration of an LLR test
statistic curve, 𝜆(𝜇, 𝒚), over the QoI domain and the interval endpoints that result
from using either Equation (3.5) for the “Sliced” interval or Equation (3.6) for the
“Global” interval.

and 𝑄max
1−𝛼 are optimal with respect to the setup in which they are analyzed, they can

still produce overly conservative (larger than necessary) confidence sets if the true
𝒙∗ is far away from the worst-case 𝒙 against which the above maximum quantiles
protect. This paper addresses these practical and statistical challenges by including
a bounded data-informed subset of the parameter space, B𝜂 with 𝜂 ∈ (0, 1), such
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that P
(
𝒙∗ ∈ B𝜂

)
≥ 1 − 𝜂 (see Section 3.3). We refer to B𝜂 as the “Berger–Boos” set

due to its inspiration from (Roger L. Berger and Boos, 1994). We show that we can
reformulate Equations (3.3) and (3.4) to be constrained over B𝜂 ⊂ X if we also use a
slightly larger quantile level, 1−𝛾 for 𝛾 ∈ (𝛼, 1), and such that 1−𝛼 = (1−𝜂) (1−𝛾),
producing the following maximum quantiles:

𝑞𝛾,𝜂 (𝜇) := sup
𝒙∈Φ𝜇∩B𝜂

𝑄𝒙 (1 − 𝛾), (3.5)

𝑞𝛾,𝜂 := sup
𝒙∈B𝜂

𝑄𝒙 (1 − 𝛾). (3.6)

Since 𝑞𝛾,𝜂 (𝜇) and 𝑞𝛾,𝜂 are defined over bounded subsets of X, we can propose
a novel sampling procedure to obtain design points covering B𝜂 and use quantile
regression to estimate the desired quantile surface,𝑄𝒙 (1−𝛾). The estimated quantile
surface is then used to produce estimates of either 𝑞𝛾,𝜂 (𝜇) or 𝑞𝛾,𝜂 and constructs a
confidence set using a set definition similar to Equation (3.2),

𝐶𝛼 (𝒚;B𝜂) := {𝜇 : 𝜆(𝜇, 𝒚) ≤ 𝑞}, (3.7)

where 𝑞 is set to one of 𝑞𝛾,𝜂 (𝜇) or 𝑞𝛾,𝜂 to obtain the desired interval. We present a
variety of ways to perform the sampling and compare the different confidence set
formulations and computations.

Context and related work
With advances in data collection and computational processing, high-dimensional
ill-posed inverse problems have become more prevalent, especially in fields like
remote sensing and data assimilation. This setting includes a wide array of physical
science applications, spanning Earth science (Rodgers, 2000), atmospheric science
and remote sensing (J. Liu, Bowman, Meemong, et al., 2016; Patil, Kuusela, and
Hobbs, 2022), and high energy physics (Kuusela, 2016; Stanley, Patil, and Kuusela,
2022), among many others. Providing guarantees for UQ in parameter inference
from indirect observations is essential for assessing the precision of scientific in-
ferences made in these contexts. However, the inherent ill-posed nature of these
problems often leads to inferences that are highly sensitive to noise, posing signif-
icant challenges for UQ. Namely, the ill-posedness leads to an identifiability issue
in which statistical inference is impossible without providing some form of regu-
larization, which usually takes either a deterministic (e.g., SVD truncation (Höcker
and Kartvelishvili, 1996) and Tikhonov regularization (Schmitt, 2012)) or proba-
bilistic (e.g., priors and Bayesian inference) form. Under some assumptions, these
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two approaches are mathematically equivalent and are therefore subject to the same
pitfalls, such as a disruption of the coverage guarantees of downstream intervals
as a result of the incurred regularization bias as thoroughly discussed in (Kuusela,
2016). Our method’s focus on one-dimensional QoI’s and incorporation of param-
eter constraints allows for implicit regularization and therefore produces intervals
with the promised coverage guarantee while avoiding the problem of regularization
bias altogether.

Although including parameter constraints provides implicit regularization and en-
ables handling non-trivial null spaces, it shifts complexity to statistical inference
under constraints, a non-trivial problem in even elementary settings (Gouriéroux,
Holly, and Monfort, 1982; Wolak, 1987; Robertson, F. T. Wright, and Dykstra,
1988; Alexander Shapiro, 1988; Wolak, 1989; Molenberghs and Verbeke, 2007).
One elegant solution to this problem originates in what we refer to as optimization-
based UQ, originating in the work of (W. R. Burrus, 1965) and (Burt W. Rust and
Walter R. Burrus, 1972). (Philip B. Stark, 1992b) extended and generalized their
approach, calling this method strict bounds, since it produced guaranteed simultane-
ous coverage interval estimators complying with known physical constraints on the
model parameters. This collection of work defines endpoint optimization problems
over the physically constrained parameter space to directly compute confidence
intervals for one-dimensional QoI’s. Not only does the optimization form of the
confidence interval computation shift statistical inference complexity to numerical
optimization, but it also allows known physical constraints to be directly included
in the endpoint optimizations. This practical advantage is dulled by the difficulty of
proving the coverage properties of the intervals resulting from the defined endpoint
optimizations in the one-at-a-time setting. Even under the relatively strong assump-
tions in (Burt W. Rust and Walter R. Burrus, 1972) of a linear forward model,
non-negativity parameter constraints and linear QoI, the authors were only able to
conjecture the coverage of their interval (known as the Burrus Conjecture). The
interval coverage was unsuccessfully proven in (O’Leary and Bert W. Rust, 1986)
(the error pointed out in (Tenorio, Fleck, and Moses, 2007)) and finally generally
refuted in (Batlle, Stanley, et al., 2023). These optimized-based intervals that have
gained recent attention take the form

I(𝜓2
𝛼, 𝒚) :=

[
𝜑𝑙 (𝜓2

𝛼, 𝒚), 𝜑𝑢 (𝜓2
𝛼, 𝒚)

]
=

[
min

𝒙∈𝐷 (𝜓2
𝛼,𝒚)

𝜑(𝒙), max
𝒙∈𝐷 (𝜓2

𝛼,𝒚)
𝜑(𝒙)

]
, (3.8)

where
𝐷 (𝜓2

𝛼, 𝒚) :=
{
𝒙 ∈ X : ∥𝒚 − 𝑓 (𝒙)∥22 ≤ 𝜓

2
𝛼

}
. (3.9)
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The statistical challenge for intervals of this form is the choosing of 𝜓2
𝛼 such that

I(𝜓2
𝛼, 𝒚) has the desired coverage guarantee. It is important to note that the definition

of 𝐷 (𝜓2
𝛼, 𝒚) assumes that the noise has been standardized; in other words, the

covariance matrix of the noise has been transformed to the identity matrix.

The literature proposes two settings to guarantee coverage. One approach is to set
𝜓2
𝛼 such that 𝐷 (𝜓2

𝛼, 𝒚) is itself a confidence set for 𝒙∗ in the parameter space. Since
this choice would then automatically guarantee coverage for I(𝜓2

𝛼, 𝒚) regardless of
the chosen QoI, this setting has been called “simultaneous” in (O’Leary and Bert W.
Rust, 1986), and “Simultaneous Strict Bounds” (SSB) in (Stanley, Patil, and Kuusela,
2022; Batlle, Stanley, et al., 2023) since it also aligns with the setting of the strict
bounds construction in (Philip B. Stark, 1992b). Under the Gaussian assumption,
this can be achieved by setting 𝜓2

𝑆𝑆𝐵,𝛼
:= 𝜒2

𝑛,𝛼, where 𝜒2
𝑛,𝛼 is the upper 𝛼-quantile

for a chi-squared distribution with 𝑛 degrees of freedom. Although this approach
is relatively simple and obtains the desired coverage guarantee, it is conservative
since the guarantee holds for all possible QoI choices simultaneously. To tailor
the interval to one particular QoI, there is the “one-at-a-time” setting as described
in (Burt W. Rust and Walter R. Burrus, 1972; O’Leary and Bert W. Rust, 1986),
or “one-at-a-time strict bounds” (OSB) as called in (Stanley, Patil, and Kuusela,
2022; Batlle, Stanley, et al., 2023). Under the Gaussian assumption this proposed
setting was 𝜓2

𝑂𝑆𝐵,𝛼
= 𝜒2

1,𝛼 + 𝑠(𝒚)
2, where 𝑠(𝒚)2 := min𝒙∈X ∥𝒚 − 𝑓 (𝒙)∥22. Unlike the

simultaneous setting, 𝐷 (𝜓2
𝑂𝑆𝐵,𝛼

, 𝒚) is not a 1−𝛼 confidence set for 𝒙∗, which makes
proving its coverage guarantee difficult. The validity of this claim was proposed
by the Burrus conjecture (Burt W. Rust and Walter R. Burrus, 1972) and generally
disproven by (Batlle, Stanley, et al., 2023).

To address the challenge of calibrating strict bounds and optimization-based con-
fidence intervals, (Batlle, Stanley, et al., 2023) approached these intervals as an
inverted likelihood ratio test as shown in Equation (3.2). The distribution of the
log-likelihood ratio (LLR) statistic is non-standard due to the presence of the con-
straints, adding to the complexity of controlling the type-I error of the test. This
framework development allowed for the general disproving of the long-standing
Burrus conjecture, invalidating the general calibration of the intervals proposed by
(Burt W. Rust and Walter R. Burrus, 1972). However, the framework revealed that
the characterization of 𝑄𝒙 (1 − 𝛼) allowed for proper interval calibration via Equa-
tions (3.3) or (3.4) in much more general settings than those in which the Burrus
conjecture applied (linear forward model, Gaussian noise, and linear functional).



75

Our approach and contributions
To address the computational challenges and statistical conservatism following from
the use of quantiles (3.3) or (3.4) in confidence set (3.2), this paper develops anal-
ogous maximum quantiles over the bounded Berger–Boos set (quantiles (3.5) and
(3.6)) for the altered confidence set (3.7). We refer to the confidence intervals pro-
duced by quantile (3.5) as “Sliced”, since it considers the maximum quantile along
slices of the Berger–Boos set as defined by level-sets of the QoI. We refer to the
confidence intervals produced by quantile (3.6) as “Global”, since it considers the
maximum quantile over the entire Berger–Boos set. For both the sliced and global
forms of the confidence interval, we present and develop both optimization and sam-
pling approaches. In total, these confidence interval construction options produce
four different interval varieties.

To validate the coverage guarantees of these interval varieties, we conduct a series
of numerical experiments to demonstrate the effectiveness of the intervals in various
scenarios. Since the OSB interval described in (Patil, Kuusela, and Hobbs, 2022)
and (Stanley, Patil, and Kuusela, 2022) is the current standard approach in this
setting, it is our primary point of comparison. First, we present low-dimensional
examples. The first example is a two-dimensional constrained Gaussian noise model,
a well-studied case in the literature (see (Tenorio, Fleck, and Moses, 2007), (Batlle,
Stanley, et al., 2023)), illustrating how our intervals are competitive with the OSB
interval in a scenario where the OSB interval is known to achieve nominal coverage.
The second example is a three-dimensional constrained Gaussian noise model,
illustrating the advantage of our method in achieving nominal coverage where the
OSB interval fails. Second, we apply our method to a simulated version of particle
unfolding from high-energy physics (see (Stanley, Patil, and Kuusela, 2022)), a
binned deconvolution problem, in an 80-dimensional parameter space with a rank-
deficient linear forward model. We use the previously studied realistic setting from
(Stanley, Patil, and Kuusela, 2022) where the OSB interval is known to provide
coverage to show that our Sliced intervals substantially outperform OSB in terms
of expected length. Then, we use a parameter setting where the OSB interval does
not achieve nominal coverage, but our intervals do, with the Sliced intervals still
out-performing OSB in terms of expected length. This application highlights the
practical significance of our approach, with our confidence intervals consistently
achieving nominal coverage and often outperforming existing methods in terms of
expected interval length.
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The contributions of this work are both methodological and computational. Method-
ologically, we propose new confidence interval constructions for the setting de-
scribed at the beginning of the section. Although the use of the Berger–Boos set is
inspired by (Roger L. Berger and Boos, 1994), they originally applied it in a hypoth-
esis testing setting for handling nuisance parameters. (Masserano, A. Shen, et al.,
2024) applied a similar idea to nuisance parameters in a classification setting, but
to the best of our knowledge, our paper is the first to apply the idea in the ill-posed
inverse problem UQ setting. Inspired by the methods used in simulation-based in-
ference (Niccolò Dalmasso, Izbicki, and A. B. Lee, 2020; Niccolo Dalmasso et al.,
2024; Masserano, Dorigo, et al., 2023) we apply the approach of estimating the
quantile function of a test statistic using simulated data. However, this work differs
in the underlying model assumptions and composite nature of the null hypotheses.
In addition, the prior work assumed bounded and relatively low-dimensional pa-
rameter spaces. The search for confidence interval endpoints is sometimes done via
the Robbins-Monro (RM) procedure, which iteratively refines estimates to achieve
desired coverage probabilities (Garthwaite and Buckland, 1992; Carpenter, 1999).
Methods based on quantile regression (Roger Koenker, 2005) have been proposed
to improve accuracy. For instance, (Fisher, Schweiger, and Rosset, 2020) introduced
a technique that inverts estimated quantiles to determine the endpoints of the con-
fidence intervals. This work is the first to combine test inversion, sampling, and
quantile regression to estimate calibrated constraint-aware confidence intervals.

Computationally, we propose two custom sampling methods designed specifically to
draw design points within the defined Berger–Boos set. This set can be particularly
challenging to sample since it is the intersection between a pre-image based on the
observed data and linear parameter constraints, which can produce sharp edges and
corners. This set is also elongated due to the ill-posedness of the underlying inverse
problem. While there are some approaches to handle similar scenarios arising in
more traditional MCMC sampling (e.g., nested sampling (Skilling, 2004; Buch-
ner, 2023) and Hamiltonian Monte Carlo sampling with constraints (Pakman and
Paninski, 2014)), these algorithms can be intricate, so we develop the following alter-
natives. In the low-dimensional setting (𝑝 < 10) where the forward model is linear
and the noise distribution is Gaussian, we design an accept-reject sampler based on
sampling from 𝑝–balls as described in (Voelker, Gosmann, and Stewart, 2017). Al-
though the approach in (Voelker, Gosmann, and Stewart, 2017) can rapidly sample
from the pre-image ellipsoids as defined by the data-generating model assumptions,
with even a simple non-negativity constraint on the parameters, the proportion of
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rejected points quickly get impractically large for even moderate dimensions. For
moderate and higher dimensional settings (𝑝 ≥ 10), we leverage the Vaidya walk
MCMC algorithm from (Yuansi Chen et al., 2018) to generate random walks about
a polytope enclosing the Berger–Boos set. Using the Chebyshev ball center to define
a notion of polytope centrality along with the extreme points of the Berger–Boos set
with respect to the QoI, we create two lines along which starting positions are de-
fined to generate a collection of parallel Markov chains. The design points resulting
from these chains are then combined to create the complete set of sampled design
points spanning the full range of the QoI values over the Berger–Boos set.

The rest of the paper proceeds as follows. In Section 3.2, we recapitulate the frame-
work and theoretical components of (Batlle, Stanley, et al., 2023) upon which this
paper’s work is built. Section 3.3 then presents the theoretical Global and Sliced in-
tervals under the Berger–Boos set formulation, along with the four interval construc-
tions and theoretical justifications to guarantee that the constructed sampling-based
intervals converge in probability to their theoretical counterparts. In Section 3.4,
we give theoretical results regarding our proposed methods. Section 3.5 presents
the custom sampling algorithms along with a brief description of how quantile re-
gression works in our intervals. Section 3.6 presents four numerical experiments
to demonstrate the coverage and length advantages of our intervals over the OSB
interval. Finally, Section 3.7 provides some discussion and conclusions.

3.2 Background
A key part of the approach in (Batlle, Stanley, et al., 2023) was to view the
optimization-based intervals shown by Equation (3.8) as inverted hypothesis tests,
more specifically, a particular inverted likelihood ratio test. This change in perspec-
tive allowed for interval analysis through the lens of the properties of a particular
log-likelihood ratio (LLR) test. We summarize this connection here, as it is critical
to our method development carried out in Section 3.3. Although the numerical ex-
amples in Section 3.6 focus on the linear-Gaussian version of the data-generating
process, we follow the more general exposition of (Batlle, Stanley, et al., 2023) to
indicate that this framework is not limited to that scenario.

Suppose 𝒚 ∼ 𝑃𝒙∗ , where 𝑃𝒙∗ is a distribution parameterized by a fixed but unknown
𝒙∗ ∈ R𝑝. Let ℓ𝒙 (𝒚) denote the log-likelihood of 𝒙 evaluated at 𝒚. We furthermore
suppose we know a set X ⊆ R𝑝 such that 𝒙∗ ∈ X.

The duality between hypothesis tests and confidence sets is well known in statistics
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(see, e.g., Chapter 7 of (George Casella and Roger L. Berger, 2002) or Chapter 5 of
(Victor M. Panaretos, 2016)). We invert the following hypothesis test:

𝐻0 : 𝒙∗ ∈ Φ𝜇 ∩ X versus 𝐻1 : 𝒙∗ ∈ X −Φ𝜇, (3.10)

where Φ𝜇 := {𝒙 : 𝜑(𝒙) = 𝜇}. Since we are looking to obtain a confidence interval
on the real line, it makes sense that each hypothesis test is defined by 𝜇 ∈ R. Notice
that the composite structure of the null hypothesis includes all parameter settings
within the 𝜇-level set of the functional of interest.

We define the following test statistic to evaluate Test (3.10):

𝜆(𝜇, 𝒚) :=


inf

𝒙∈Φ𝜇∩X

(
−2ℓ𝒙 (𝒚)

)
− inf

𝒙∈X

(
−2ℓ𝒙 (𝒚)

)
, if Φ𝜇 ∩ X ≠ ∅,

∞, otherwise,
(3.11)

where 𝜇 denotes the level set of the null hypothesis, 𝒚 is the observed data, and X
is the constraint set that is known to contain the parameter. The test is rejected if
the test statistic is large, and hence we automatically reject the null if Φ𝜇 ∩ X = ∅
independently of the observed data. Alternatively, we can consider the test (3.10)
only for 𝜇 ∈ 𝜑(X) to perform test inversion. We control the behavior of this test
statistic, and therefore the test, by bounding from above the probability of erroneously
rejecting the null hypothesis (i.e., type-1 error). As such, we consider the distribution
of 𝜆(𝜇, 𝒚) under the null. For each 𝒙 ∈ X, let 𝜇 = 𝜑(𝒙). Define 𝑄𝒙 : (0, 1) → R

such that, for all 𝛼 ∈ (0, 1),

P (𝜆(𝜇, 𝒚) ≤ 𝑄𝒙 (1 − 𝛼)) = 1 − 𝛼, (3.12)

where the probability is over 𝒚 ∼ 𝑃𝒙 . We refer to 𝑄𝒙 as the quantile function of
the LLR under the null hypothesis at (𝒙, 𝜑(𝒙) = 𝜇). Since the null hypothesis is
composite, using this quantile function to define a cutoff is not enough to control
type-1 error. Thus, we use the sliced maximum quantile function over the level-set
under consideration:

𝑄max
𝜇,1−𝛼 := sup

𝒙∈Φ𝜇∩X
𝑄𝒙 (1 − 𝛼). (3.13)

Note, we refer to this version as “sliced” since we are considering the maximum
of the quantile function defined by the level-set of the functional which defines a
slice through the constrained parameter space. 𝑄max

𝜇,1−𝛼 as defined above controls the
type-1 error for a specific value of 𝜇. We can define a more conservative confidence
set using the following global maximum quantile:

𝑄max
1−𝛼 := sup

𝜇∈𝜑(X)
𝑄max
𝜇,1−𝛼 = sup

𝒙∈X
𝑄𝒙 (1 − 𝛼). (3.14)
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By Lemma 2.1 in (Batlle, Stanley, et al., 2023), the set

C𝜇𝛼 (𝒚;X) := {𝜇 : 𝜆(𝜇, 𝒚) ≤ 𝑄max
𝜇,1−𝛼} ⊂ R (3.15)

defines a 1 − 𝛼 confidence set for the true functional value, 𝜇∗ = 𝜑(𝒙∗).The global
quantile (3.14) is more conservative than the sliced quantile (3.13) since it holds for
all null hypotheses, and therefore the set

C𝛼 (𝒚;X) := {𝜇 : 𝜆(𝜇, 𝒚) ≤ 𝑄max
1−𝛼} ⊂ R (3.16)

is also a 1 − 𝛼 confidence set.

To connect this framework back to Interval (3.8), suppose the data generating process
is of the form, 𝑃𝒙 = N(𝑲𝒙, 𝑰). The LLR test statistic is then

𝜆(𝜇, 𝒚) = min
𝒙∈Φ𝜇∩X

∥𝒚 − 𝑲𝒙∥22 −min
𝒙∈X
∥𝒚 − 𝑲𝒙∥22. (3.17)

(Batlle, Stanley, et al., 2023) (Theorem 2.4) proved that[
inf

𝜇:𝜆(𝜇,𝒚)≤𝑄max
1−𝛼

𝜇, sup
𝜇:𝜆(𝜇,𝒚)≤𝑄max

1−𝛼

𝜇

]
=

[
inf

𝒙∈𝐷 (𝑄max
1−𝛼+𝑠(𝒚)2,𝒚)

𝜑(𝒙), sup
𝒙∈𝐷 (𝑄max

1−𝛼+𝑠(𝒚)2,𝒚)
𝜑(𝒙)

]
,

(3.18)
where 𝐷 (·, 𝒚) is defined by Equation (3.9). This equivalence asserts that by setting
𝜓2
𝛼 := 𝑄max

1−𝛼 + 𝑠(𝒚)
2, where 𝑠(𝒚)2 := min𝒙∈X ∥𝒚 − 𝑲𝒙∥22, we guarantee coverage for

Interval (3.8). Furthermore, it asserts that the original OSB interval formulation is
only valid if and only if 𝜒2

1,𝛼 ≥ 𝑄
max
1−𝛼 (see Lemma 2.2 and Corollary 2.3). (Batlle,

Stanley, et al., 2023) showed that this inequality does not hold in general.

As explored in (Batlle, Stanley, et al., 2023) and reiterated above, Interval (3.8)
can be calibrated by computing 𝑄max

𝜇,1−𝛼 or 𝑄max
1−𝛼. However, pursuing calibration in

this way is computationally challenging and statistically conservative. Both of these
values require the ability to evaluate𝑄𝒙 . Without parameter constraints, this quantile
function can be constant under Gaussian-linear assumptions (Batlle, Stanley, et
al., 2023), i.e., the test statistic is pivotal. But even with a relatively simple two-
dimensional Gaussian noise model with non-negativity constraints, this quantile
function becomes non-trivial (e.g., see Figure 5.3 in (Batlle, Stanley, et al., 2023)).
Beyond the practical difficulty of dealing with the underlying quantile function, both
(3.13) and (3.14) can be expressed as chance-constrained optimization problems,
which are known to be NP-hard in general and would need to be solved over
an unbounded constraint set (Geng and Xie, 2019b; Pena-Ordieres, Luedtke, and
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Wachter, 2020; Batlle, Stanley, et al., 2023). Statistically, since both (3.13) and
(3.14) are the largest quantile function values subject to their respective constraints,
they are by definition conservative, especially in scenarios where the true 𝒙∗ is far
from these most conservative points. Since we do not know 𝒙∗, this conservatism is
necessary under the framework of (Batlle, Stanley, et al., 2023).

As we see in Section 3.3, our method addresses both of these challenges. In scenarios
where evaluating 𝑄𝒙 is difficult, we sample a collection of design points in a
bounded subset of the constraint set, sample the LLR under the null at each design
point and use quantile regression to estimate the quantile surface. Furthermore, we
can potentially remove these most conservative points from consideration by only
considering parameter values that are not unlikely given the observed data.

3.3 Interval constructions
In this section, we present four related interval constructions to build on the the-
ory developed in (Batlle, Stanley, et al., 2023) by addressing the key aforemen-
tioned challenges. The first implementation challenge is to handle the potentially
unbounded constraint set, for which we define and apply the “Berger–Boos” set to
create a data-dependent subset of the original constraint set. This set leads to our
four interval definitions, which follow a two-stage taxonomy: Global versus Sliced
and Inverted versus Optimized. The second implementation challenge is computing
these interval constructions in practice, which we achieve using a combination of
novel sampling algorithms and quantile regression. We will cover this in a later
section (Section 3.5).

We rewrite the data-generating process articulated in the introduction:

𝒚 = 𝑓 (𝒙∗) + 𝜺, 𝜺 ∼ N(0, 𝑰), 𝒙∗ ∈ X, (3.19)

where 𝑓 : R𝑝 → R𝑛 is a known forward model and Cov(𝜺) = 𝑰, without loss of
generality. Let 𝑓 −1(𝐴) := {𝒙 : 𝑓 (𝒙) ∈ 𝐴} be the pre-image of a set 𝐴 ⊂ R𝑛 under
the forward map 𝑓 .

Although the assumed data-generating process given by Equation (3.19) is less
general than that of 𝒚 ∼ 𝑃𝒙∗ assumed in Section 3.2, it is still sufficiently general to
contain the application areas mentioned in Section 3.1. Slightly generalizing the form
of the additive noise distribution would make the construction of the Berger–Boos
set more complicated, but is possible in principle.
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Global and sliced confidence sets using the Berger–Boos set
Both 𝑄max

𝜇,1−𝛼 and 𝑄max
1−𝛼 in Section 3.2 suffer from the same theoretical and practical

concerns. Theoretically, they are both conservative in the sense that they must control
type-1 error probability under the worst case for the truth (i.e., the parameter setting
with the largest quantile). Practically, not only can 𝑄𝒙 be difficult to compute, but if
the constraint setX is unbounded, computing the aforementioned quantiles becomes
even more difficult. These challenges both stem from the composite nature of the null
hypothesis. (Roger L. Berger and Boos, 1994) introduce a compelling solution in the
context of hypothesis testing with nuisance parameters (a special case of hypothesis
testing on 𝜑(𝒙)), which is to control type-1 error only over a data-informed region
of the parameter space. Following their construction, we build a confidence interval
that, instead of using the maximum 1 − 𝛼 quantile over X in (3.14) (or X ∩ Φ𝜇

in (3.13)), uses a larger quantile (1 − 𝛾 with 𝛾 < 𝛼) but that is maximized over a
smaller set. The construction follows a three-step process:

(1) Choose 𝜂 ∈ [0, 𝛼] and build a 1 − 𝜂 confidence interval for 𝑥∗, B𝜂. Under the
additive Gaussian noise assumption in Equation (3.19), letting Γ𝜂 (𝒚) := {𝒚′ ∈ R𝑛 :
∥𝒚 − 𝒚′∥22 ≤ 𝜒

2
𝑛,𝜂} we have P

(
𝑓 (𝒙∗) ∈ Γ𝜂 (𝒚)

)
= 1 − 𝜂, and hence

B𝜂 := 𝑓 −1(Γ𝜂 (𝒚)) ∩ X = {𝒙 ∈ X : ∥𝒚 − 𝑓 (𝒙)∥22 ≤ 𝜒
2
𝑛,𝜂} (3.20)

is a 1 − 𝜂 confidence set for 𝑥∗3. We refer to this pre-image confidence set, B𝜂, as
the “Berger–Boos” set.

(2) Optimize the 1 − 𝛾 quantile of the test statistic only over B𝜂 (or B𝜂 ∩ Φ𝜇),
instead of X (or X ∩ Φ𝜇) . Here, 𝛾 < 𝛼 is chosen to ensure calibration. As proved
in lemma 3.3.1, 𝛾 = 𝛼 − 𝜂 is a valid choice.

(3) Use the obtained quantiles, which we define as

𝑞𝛾,𝜂 (𝜇) := sup
𝒙∈B𝜂∩Φ𝜇

𝑄𝒙 (1 − 𝛾), (3.21)

𝑞𝛾,𝜂 := sup
𝒙∈B𝜂

𝑄𝒙 (1 − 𝛾), (3.22)

that are used to construct the following sliced (sl) and global (gl) confidence sets:

𝐶sl
𝛼 (𝒚;B𝜂) := {𝜇 : 𝜆(𝜇, 𝒚) ≤ 𝑞𝛾,𝜂 (𝜇)}, (3.23)

𝐶
gl
𝛼 (𝒚;B𝜂) := {𝜇 : 𝜆(𝜇, 𝒚) ≤ 𝑞𝛾,𝜂}. (3.24)

3Intersecting the pre-image 𝑓 −1 (Γ𝜂 (𝒚)) with the constraint set X does not change the coverage
probability since we know 𝒙∗ ∈ X.
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Analogous to the presentation in (Batlle, Stanley, et al., 2023), we define sliced and
global max-quantiles that include the Berger–Boos set to control the type-1 error
probability of Test (3.10). Both of these max-quantiles maximize a larger 𝛾-quantile
over the set of interest instead of the 𝛼-quantile as shown in (3.13) and (3.14).

The following Lemma (analogous to Lemma 2.1 in (Batlle, Stanley, et al., 2023))
gives a sufficient condition to select the values 𝛾 and 𝜂 to ensure a 1 − 𝛼 coverage.

Lemma 3.3.1 (Setting 𝜂 and 𝛾 to guarantee 1 − 𝛼 coverage). Let 𝛼 ∈ (0, 1) and
define 𝑞𝛾,𝜂 (𝜇) according (3.21) and 𝐶sl

𝛼 (𝒚;B𝜂) according to (3.23). For 𝜂 ∈ (0, 𝛼),
𝐶sl
𝛼 (𝒚;B𝜂) is a 1 − 𝛼 confidence set for 𝜇∗ = 𝜑(𝒙∗) if 𝛾 ≤ 𝛼 − 𝜂. The length of the

obtained interval is a non-increasing function of 𝛾 so the tightest interval will be
obtained when equality is satisfied.

Proof. See Section 3.8. □

The coverage guarantee implied by Lemma 3.3.1 also implies coverage for𝐶gl
𝛼 (𝒚;B𝜂),

as shown in the following corollary.

Corollary 3.3.2. In the setting of Lemma 3.3.1. 𝐶gl
𝛼 (𝒚;B𝜂) is a 1− 𝛼 confidence set

for 𝜇∗ = 𝜑(𝒙∗) if 𝛾 ≤ 𝛼 − 𝜂.

Proof. See Section 3.8. □

Remark 6. Following the generality of the original construction, Lemma 3.3.1
generalizes to any 1−𝜂 confidence set of 𝑥∗ and test statistic calibrated with the 1−𝛾
quantile. In our particular case, since both the confidence set B𝜂 and the test statistic
𝜆(𝜇, 𝑦) depend on the Gaussian log-likelihood ∥𝒚 − 𝑓 (𝒙)∥22, there is a stronger
interpretation of the Berger-Boos construction. Whenever B𝜂 ∩Φ𝜇 ≠ ∅, the Berger-
Boos construction is equivalent to a data-dependant reduction of the constraint set,
replacing X for B𝜂 both in the test statistic and the quantile optimization problems.
Since this is done after seeing the data, the optimized quantile needs to increase to
1 − 𝛼 + 𝜂 to maintain 1 − 𝛼 coverage.

Navigating the Berger–Boos parameter choices and trade-offs. Setting 𝜂 = 0
in 𝐶gl

𝛼 (𝒚;B𝜂) we maximize 𝑄𝒙 (1 − 𝛾) = 𝑄𝒙 (1 − 𝛼) over X, which returns 𝑄max
1−𝛼

from Equation (3.14). For 𝜂 > 0, the Berger–Boos construction restricts the quantile
maximization to a smaller subset of the parameter space while maximizing a larger
1 − 𝛾 quantile to maintain the desired 1 − 𝛼 confidence level of the final confidence
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set. Fundamentally, the choice of 𝜂 reflects a trade-off between these two opposing
effects: as we increase 𝜂 from 0, the set over which the quantile function is optimized
shrinks, but the quantile level is increased. In Section 3.6, we perform a numerical
experiment comparing average interval length for different values of 𝜂, showing that
a small 𝜂 > 0 can be beneficial not only numerically (since in certain cases it allows
sampling over a bounded set) but also in terms of the average length of the resulting
interval.

Interval constructions
There are possibly many ways to compute 𝐶gl

𝛼 (𝒚;B𝜂) and 𝐶sl
𝛼 (𝒚;B𝜂) in practice.

Obtaining either set comes down to the computation of 𝑞𝛾,𝜂 (𝜇) and 𝑞𝛾,𝜂. If the
quantile function 𝑄𝒙 and its gradient ∇𝒙𝑄𝒙 could be evaluated, computing these
quantities could potentially be achieved using a first-order numerical optimizer.
However, we emphasize that since the sliced max-quantile, 𝑞𝛾,𝜂 (𝜇), is a function
of the level-set parameter, 𝜇, such an optimization would have to be done for each
possible functional value. Since such easy function and gradient evaluations rarely
exist (see (Batlle, Stanley, et al., 2023) for some examples where such evaluations are
possible), this paper develops a sampling-based approach to estimate these quantities
to construct Confidence Sets (3.23) and (3.24). As we demonstrate below, once we
estimate 𝑞𝛾,𝜂 (𝜇) and 𝑞𝛾,𝜂, we can either use the output from the sampling algorithm
to compute the Global or Sliced interval via classical test inversion, or we can use the
estimated max-quantiles in optimizations similar to those in Interval (3.18). As such,
we introduce four interval constructions: Global Inverted, Global Optimized, Sliced
Inverted, and Sliced Optimized. These four options are summarized in Section 3.3.

We leverage our ability to sample 𝜆(𝜇, 𝒚) by sampling 𝒚 ∼ N( 𝑓 (𝒙), 𝑰) to estimate
the desired max-quantiles. We present two algorithms, both of which first generate a
random set of design points from the Berger–Boos set. If we can directly efficiently
compute the desired quantile at each design point, this capability is leveraged in
Algorithm 2. If we cannot afford such a computation, Algorithm 3 presents an
alternative, which first samples one realization of the LLR test statistic at each
sampled design point, and then performs quantile regression with the generated
pairs of design points and LLR values to estimate the underlying quantile surface.
The sampled design points and either the exact or estimated quantiles at the design
points are then used to produce the final intervals.

Both algorithms start by sampling B𝜂 uniformly at random to generate a collection
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of 𝑀 design points across the Berger–Boos set, i.e., 𝒙̄1, 𝒙̄2, . . . , 𝒙̄𝑀 ∼ U
(
B𝜂

)
. Even

under the additive Gaussian noise assumption where the pre-image 𝑓 −1(Γ𝜂 (𝒚)) is
an ellipsoid, this step is non-trivial since the ill-posedness can produce an extremely
narrow or unbounded ellipsoid, resulting in sharp boundaries when intersected
with the known constraints in addition to a large portion of the pre-image lying
outside of X, making rejection-sampling challenging. We address these sampling
challenges in Section 3.5. If computing 𝜆(𝜇, 𝒚) for a given 𝜇 and 𝒚 is inexpensive,
Algorithm 2 directly estimates the quantile function at each design point. This
computation is most likely inexpensive when there are closed-form solutions to
the LLR’s subordinate optimizations. As shown in Algorithm 2, an easy way to
estimate each design point’s quantile is to sample its test statistic 𝑁 times and
take the appropriate percentile. More often, computing 𝜆(𝜇, 𝒚) is expensive since it
involves two constrained optimizations which are possibly non-convex due to either
the constraints or the forward model, or just numerically challenging due to the
ill-posedness of the problem. In this scenario, one can use Algorithm 3 to sample
one realization of the test statistic at each design point and estimate the quantile
function over the Berger–Boos set using quantile regression. While Algorithm 2
relies upon computational strength to compute the LLR 𝑁 × 𝑀 times, Algorithm 3
shifts complexity to the quantile regression and relieves the computational burden by
assuming that there is information to be shared about the quantile surface between
design points (namely that the quantile surface is smooth). The emphasis on the
quantile regression further necessitates that the quantile regression be performed
well. We discuss some considerations to this end in Section 3.5. We note that
although Algorithm 2 and Algorithm 3 make use of the additive Gaussian noise
assumption, they are not necessarily limited to this assumption given the proper
adjustments to the Berger–Boos set, assuming one still has the ability to sample
from the data-generating process. Since these approaches are sampling-based, it is
necessary to show convergence as the number of samples gets large.

The approach of Algorithm 3 is inspired by recent uncertainty quantification ap-
proaches in likelihood-free inference where one can sample from a likelihood but
cannot easily compute it. Specifically, we draw inspiration from the use of quantile
regression in (Niccolò Dalmasso, Izbicki, and A. B. Lee, 2020; Niccolo Dalmasso
et al., 2024; Masserano, Dorigo, et al., 2023; Masserano, A. Shen, et al., 2024). Al-
though these approaches differ in detail and implementation from our approach (e.g.,
they typically focus on settings with low-dimensional 𝒙), they overlap in the sam-
pling and quantile regression perspectives, which effectively allow machine learning
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to supplement for computationally intensive or intractable forward models. Namely,
rather than assuming a purely stochastic forward model and therefore only being
able to sample from the likelihood, we assume 𝑓 is a deterministic function involved
in 𝜆(𝜇, 𝒚), which is a random quantity due to the additive noise. Since Algorithm 3
involves training a quantile regressor, it includes separate training and testing sets
of design points over the Berger–Boos set and samples from their respective test
statistics.

Algorithm 2 Direct estimation of quantiles
Input: 𝛼, 𝛾, 𝜂 ∈ (0, 1) such that 𝛾 = 𝛼 − 𝜂, 𝑀, 𝑁 ∈ N.

1: Construct Berger–Boos confidence set: Create Γ𝜂 (𝒚) ⊆ R𝑛 such that
P

(
𝑓 (𝒙∗) ∈ Γ𝜂 (𝒚)

)
≥ 1 − 𝜂. 𝑓 −1 (Γ(𝒚)) is also a 1 − 𝜂 confidence set for 𝒙∗, as

is B𝜂 = 𝑓 −1(Γ𝜂 (𝒚)) ∩ X.
2: Sample from the Berger–Boos confidence set, B𝜂: Sample 𝒙̄1, . . . , 𝒙̄𝑀 ∼
U

(
B𝜂

)
.

3: for 𝑘 = 1, 2, . . . , 𝑀 do
4: Sample noise realizations: Sample 𝑁 noise realizations: 𝜺1, . . . , 𝜺𝑁 ∼

N (0, 𝑰).
5: Sample from the LLR distribution: Create an ensemble of LLR draws

under 𝒙̄𝑘 : {𝜆𝑖}𝑁𝑖=1, where 𝜆𝑖 := 𝜆 (𝜑(𝒙̄𝑘 ), 𝑓 (𝒙̄𝑘 ) + 𝜺𝑖;X).
6: Compute percentile estimate of the 𝛾-quantile: Compute the (1− 𝛾) × 100

percentile of the LLR samples for the data generating process under 𝒙̄𝑘 ,
i.e., 𝑞𝑘𝛾 := 𝜆({(1−𝛾)𝑁}) , where {·} denotes the nearest whole number and 𝜆(𝑖)
denotes the 𝑖-th order statistic.

7: end for
Output: Pairs of sampled design points and their respective 𝛾-quantiles, i.e.,
{(𝒙̄𝑘 , 𝑞𝑘𝛾)}𝑀𝑘=1.

With the generated pairs from Algorithms (2) and (3), we present two strategies
to estimate each of 𝐶gl

𝛼 (𝒚;B𝜂) and 𝐶sl
𝛼 (𝒚;B𝜂). To streamline notation, let

(
𝒙𝑘 , 𝑞

𝑘
𝛾

)
denote the 𝑘-th pair from either algorithm. This is notationally helpful since Algo-
rithm 2 only generates one set of parameter samples, whereas Algorithm 3 generates
two. That is, using Algorithm 2, 𝒙𝑘 := 𝒙̄𝑘 and 𝑞𝑘𝛾 := 𝑞𝑘𝛾 and using Algorithm 3,
𝒙𝑘 := 𝒙̃𝑘 and 𝑞𝑘𝛾 := 𝑞𝛾 (𝒙̃𝑘 ).

To estimate the global confidence set, we estimate 𝑞𝛾,𝜂 using the empirical maximum,
𝑞 := max𝑘 𝑞𝑘𝛾. This results in the following two interval constructions:

𝐶
gl
opt(𝒚) := min/max

{
𝜑(𝒙) : 𝒙 ∈ 𝐷 (𝑞 + 𝑠(𝒚)2, 𝒚)

}
(3.25)

𝐶
gl
inv(𝒚) := min/max

{
𝜑(𝒙𝑘 ) : 𝑘 = 1, . . . , 𝑀 and 𝜆(𝜑(𝒙𝑘 ), 𝒚;X) ≤ 𝑞

}
. (3.26)
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Algorithm 3 Quantile regression estimate of quantile surface
Input: 𝛼, 𝛾, 𝜂 ∈ (0, 1) such that 𝛾 = 𝛼 − 𝜂; 𝑀tr, 𝑀 ∈ N.

1: Construct Berger–Boos confidence set: Create Γ𝜂 (𝒚) ⊆ R𝑛 such that
P

(
𝑓 (𝒙∗) ∈ Γ𝜂 (𝒚)

)
≥ 1 − 𝜂. 𝑓 −1 (Γ(𝒚)) is also a 1 − 𝜂 confidence set for 𝒙∗, as

is B𝜂 = 𝑓 −1(Γ𝜂 (𝒚)) ∩ X.
2: Sample from the Berger–Boos confidence set B𝜂: Sample 𝒙̄1, . . . , 𝒙̄𝑀tr ∼
U

(
B𝜂

)
design points to train the quantile regressor and 𝒙̃1, . . . , 𝒙̃𝑀 ∼ U

(
B𝜂

)
test points to invert the interval, generating 𝑀tr +𝑀 total samples. Since the test
points are used for the interval inversion, they are used as out-of-sample points
for the quantile regressor.

3: for 𝑘 = 1, 2, . . . , 𝑀tr do
4: Sample a noise realization: Sample a noise realization: 𝜺𝑘 ∼ N (0, 𝑰).
5: Sample from the LLR distribution: Compute the LLR under 𝒙̄𝑘 with sam-

pled noise 𝜺𝑘 : 𝜆𝑘 := 𝜆 (𝜑(𝒙̄𝑘 ), 𝑓 (𝒙̄𝑘 ) + 𝜺𝑘 ;X).
6: end for
7: Estimate the quantile function using quantile regression: Using the gen-

erated pairs {(𝒙̄𝑘 , 𝜆𝑘 )}𝑀tr
𝑘=1, estimate the upper 𝛾-conditional quantile function,

𝑞𝛾 (𝒙), using quantile regression.
Output: Generate 𝛾-quantile predictions at out-of-sample test points,{(

𝒙̃𝑘 , 𝑞𝛾 (𝒙̃𝑘 )
)}𝑀
𝑘=1.

We refer to Interval (3.26) as the Global Inverted interval construction since it is
endpoints defined by only those sampled parameter values that comport with the
maximum estimated quantile LLR cutoff. We refer to Interval (3.25) as the Global
Optimized interval since its endpoints are defined by the extreme functional values
of a feasible region defined by 𝑞. Although, 𝐶gl

inv(𝒚) ≠ 𝐶
gl
opt(𝒚) due to finite sample,

they are asymptotically equal and in practice show similar performance in terms of
coverage and expected length, as shown in Section 3.6. We prove the consistency of
the interval constructed via inversion and via optimization in Theorem 3.4.1. Since
the endpoints of both the inverted and optimized intervals converge in probability
to the endpoints of 𝐶gl

𝛼 (𝒚;B𝜂), the two interval constructions are asymptotically
equivalent.

To estimate the sliced set, we estimate 𝑞𝛾,𝜂 (𝜇) using a rolling maximum of the
sampled 𝑞𝑘𝛾 values, as ordered by the sampled functional values, and directly accept
or reject functional values based on their estimated quantile. These approaches result
in two interval constructions:

𝐶sl
opt(𝒚) := min/max

{
𝜇 ∈ R : 𝜆(𝜑(𝜇), 𝒚;X) ≤ 𝑚𝛾 (𝜇)

}
, (3.27)

𝐶sl
inv(𝒚) := min/max

{
𝜑(𝒙𝑘 ) : 𝑘 = 1, . . . , 𝑀 and 𝜆(𝜑(𝒙𝑘 , 𝒚;X) ≤ 𝑞𝑘𝛾)

}
, (3.28)
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where 𝑚𝛾 (𝜇) denotes rolling estimate of 𝑞𝛾,𝜂 (𝜇) defined as follows. We refer to
𝐼sl(𝒚) as the “sliced” index set, i.e., those indices for which the LLR at a particular
functional value is less than the estimated quantile at a design point generating that
functional value.

The rolling maximum quantile is defined using estimated quantiles ordered by the
sampled functional values. Choose “rolling” parameter,𝑇 ∈ N, and let𝜎(1), 𝜎(2), . . . , 𝜎(𝑀)
define an ordering such that 𝜇𝜎(𝑘) ≤ 𝜇𝜎(𝑘+1) for all 𝑘 = 1, . . . , 𝑀 − 1. Define 𝑄𝑘 :=
{𝑞𝜎(𝑘)𝛾 , 𝑞

𝜎(𝑘−1)
𝛾 , . . . , 𝑞

𝜎(𝑘−𝑇)
𝛾 }Then, for a given 𝜇 ∈

[
min𝒙∈B𝜂 𝜑(𝒙),max𝒙∈B𝜂 𝜑(𝒙)

]
,

define 𝑘∗(𝜇) := argmin𝑘 |𝜇 − 𝜇𝜎(𝑘) | and define 𝑚𝛾 (𝜇) := max{𝑞 ∈ 𝑄𝑘∗ (𝜇)}. Using
the rolling maximum quantile is one possible way to estimate 𝑞𝛾,𝜂 (𝜇). One could
also bin the quantiles by functional value, compute the maximum predicted quantile
in each bin, and then fit a nonparametric regression to fit the maximum binned
quantiles to the functional values.

This estimator choice for𝑚𝛾 (𝜇) affects how one computes𝐶sl
opt(𝒚). To see why, note

that we can re-express 𝐶sl
opt(𝒚) as follows:

𝐶sl
opt(𝒚) := min/max

{
𝜑(𝒙) : 𝒙 ∈ 𝐷 (𝑚𝛾 (𝜑(𝒙)) + 𝑠(𝒚)2, 𝒚)

}
. (3.29)

As such, one could substitute the estimated 𝑚𝛾 (·) into each endpoint optimization.
However, this estimated curve is likely not convex in 𝒙 and therefore complicates
the optimizations. One could also pursue a root-finding approach to find the set of
𝜇 such that 𝜆(𝜇, 𝒚) = 𝑚𝛾 (𝜇) since these intersection points define a set of accepted
functional values. This approach can also be complex in proportion to the complexity
of the estimated curve. In our view, the most pragmatic approach is to simply
determine all 𝜇𝑘 such that 𝜆(𝜇𝑘 , 𝒚;X) ≤ 𝑚𝛾 (𝜇𝑘 ), and then define the endpoints of
𝐶sl

opt(𝒚) to be the minimum and maximum of those accepted sampled values. The
consistency of the computed endpoints for both the inverted and optimized sliced
intervals is proven in Theorem 3.4.1. Similar to the global interval constructions,
the consistency of both constructions to 𝐶sl

𝛼 (𝒚;B𝜂) also establishes the asymptotic
equivalent of the inverted and optimized approaches.

Although both Algorithms 2 and 3 can produce a quantile estimate, it is worth
noting a few key differences between the two. First, Algorithm 2 involves a nested
sampling loop. Thus, any statistical guarantee regarding the validity of its output has
the two moving parts of the accuracy of 𝑞𝑘𝛾 as 𝑁 gets large and the proximity of the
approximated quantile to the true maximum quantile function value over B𝜂 as 𝑀
gets large. By contrast, Algorithm 3 only has one sampling loop and estimates the
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Table 3.1: Summary of methods based on global and sliced max quantile, and
whether they are optimization-based or inversion-based.

Category Global max quantile Sliced max quantile

Inversion-based methods Interval (3.26) Interval (3.28)
Optimization-based
methods

Interval (3.25) Interval (3.27)

full quantile function surface over B𝜂, producing an estimate of the maximum as a
consequence, but is reliant on smoothness to do an accurate regression with finitely
many data points.

3.4 Theoretical justification
In this section, we provide convergence results for the interval constructions of the
previous section. We prove that, under certain assumptions, whenever Algorithm 2
or Algorithm 3 are used to estimate the maximum quantiles, the global interval
constructions (3.25) and (3.26) converge in probability to the true global interval
𝐶

gl
𝛼 (𝒚;B𝜂) in (3.24), and the sliced interval constructions (3.27) and (3.28) con-

verge in probability to the true sliced interval 𝐶sl
𝛼 (𝒚;B𝜂) in (3.23). Although our

approach involving quantile regression is inspired by the approaches in (Niccolò
Dalmasso, Izbicki, and A. B. Lee, 2020; Niccolo Dalmasso et al., 2024; Masserano,
Dorigo, et al., 2023) and therefore requires similar theoretical results to connect
the consistency of the quantile estimation with the interval validity, our approach
is sufficiently different and requires novel theoretical insights. First, the inversion
of a hypothesis test with a composite null adds a layer of complexity to the proofs.
(Niccolo Dalmasso et al., 2024) does address composite null hypotheses, but in the
context of nuisance parameters where they use a profile likelihood approach. Second
and more fundamentally, (Niccolo Dalmasso et al., 2024; Masserano, Dorigo, et al.,
2023) construct confidence sets which are shown to achieve the desired coverage
level asymptotically in the number of samples used to train the quantile regressor.
By contrast, we show that our computed intervals converge in probability to the
theoretical Intervals (3.23) and (3.24) which achieve the correct coverage by defini-
tion. Third and finally, since we use the sampled points to invert the interval, it is
insufficient to show that the cutoff is consistent as the results in (Niccolò Dalmasso,
Izbicki, and A. B. Lee, 2020; Niccolo Dalmasso et al., 2024; Masserano, Dorigo,
et al., 2023) show. Our inverted intervals require proof that the samplers can get
arbitrarily close to the true endpoint boundaries.
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Throughout the following results, we assume that for fixed 𝛾 ∈ (0, 1), 𝑄𝒙 (1 − 𝛾)
is a continuous function of 𝒙. We refer the reader to (Kibzun and Kan, 1997) for a
full analysis of the properties of parametrized quantile functions. We furthermore
assume thatB𝜂 is a compact set without isolated points, so that the sampling methods
eventually sample close to every point.

Theorem 3.4.1. Assume that 𝑄𝒙 (1 − 𝛾) is a continuous function of 𝒙, and let B𝜂
be compact and without isolated points. Let the quantile regression in Algorithm 2
be consistent for all 𝒙, i.e, such that P( |𝑞𝛾 (𝒙) −𝑄𝒙 (1 − 𝛾) | > 𝜀) → 0 as 𝑀𝑡𝑟 →∞
is satisfied ∀𝜀 > 0. We will write

p
−→ for convergence in probability, understood as

𝑁, 𝑀 → ∞ if Algorithm 1 is used and as 𝑀𝑡𝑟 , 𝑀 → ∞ if Algorithm 2 is used. For
either algorithm, we have, for a given observation 𝒚:

1. 𝐶gl
inv(𝒚)

p
−→ 𝐶

gl
𝛼 (𝒚),

2. 𝐶sl
inv(𝒚)

p
−→ 𝐶sl

𝛼 (𝒚).

Further assume that there exists a point 𝜇̄ ∈ 𝜑(B𝜂) satisfying 𝜆( 𝜇̄, 𝒚;X) < 𝑞𝛾,𝜂,
and then

3. 𝐶gl
opt(𝒚)

p
−→ 𝐶

gl
𝛼 (𝒚).

Finally, further assuming technical conditions discussed in Section 3.9, and then

4. 𝐶sl
opt(𝒚)

p
−→ 𝐶sl

𝛼 (𝒚).

Proof. See Section 3.9. □

Note that if 𝜆(𝜇, 𝒚) is convex in 𝜇, as it is for linear forward models and quantities of
interest (Batlle, Stanley, et al., 2023, Proposition 2.5), the condition of the existence
of 𝜇̄ satisfying 𝜆( 𝜇̄, 𝒚;X) < 𝑞𝛾,𝜂 is equivalent to the interval not being empty. For
nonlinear forward models, it is a slightly stronger condition. For the convergence of
the sliced optimized version, one needs to show that inf𝜇:𝜆(𝜇,𝒚)≤𝑚𝛾 (𝜇) 𝜇 converges
to inf𝜇:𝜆(𝜇,𝒚)≤𝑚𝛾 (𝜇) 𝜇 as 𝑚𝛾 (𝜇) converges to 𝑚𝛾 (𝜇). In order to do so, we study the
convergence of optimization problems of the form inf

𝜇: 𝑓̂ (𝜇)≥0 𝜇 to inf𝜇: 𝑓 (𝜇)≥0 𝜇 as
𝑓̂ converges to 𝑓 . Although the result is not true in general, we provide sufficient
technical conditions about 𝑓 and the uniformness of convergence of 𝑓̂ to 𝑓 for the
result to hold. We discuss the details in Section 3.9.
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3.5 Implementation methodology
Sampling the pre-image Berger–Boos set
The viability of this method directly relies upon our ability to sample from the
Berger–Boos set, B𝜂 = 𝑓 −1(Γ𝜂 (𝒚)) ∩X. Under the assumed data generating process
in Equation (3.19), the Berger–Boos set is defined as follows:

B𝜂 = 𝑓 −1(Γ𝜂 (𝒚)) ∩ X =
{
𝒙 ∈ X : (𝒚 − 𝑓 (𝒙))⊤𝚺−1(𝒚 − 𝑓 (𝒙)) ≤ 𝜒2

𝑛,𝜂

}
, (3.30)

where we have generalized to a non-identity covariance matrix, 𝚺, to make the
following exposition more general. This set is equivalent to the set over which the
strict bounds intervals are optimized in (Philip B. Stark, 1992a), also called “SSB”
intervals in (Stanley, Patil, and Kuusela, 2022; Batlle, Stanley, et al., 2023). Note,
however, that one would use 𝜒2

𝑛,𝛼 instead of 𝜒2
𝑛,𝜂 for 1 − 𝛼 interval computation in

that scenario.

We discuss sampling B𝜂 in the linear-Gaussian case, where 𝑓 (𝒙) = 𝑲𝒙, as this sce-
nario aligns with the numerical experiments presented in Section 3.6. We present
two sampling approaches: the “Voelker-Gossman-Stewart” (VGS) algorithm based
on (Voelker, Gosmann, and Stewart, 2017) for efficiently sampling ellipsoids uni-
formly at random in low-dimensional scenarios and an MCMC-based algorithm we
call the Polytope sampler based on the Vaidya walk presented in (Yuansi Chen et al.,
2018). When 𝑓 is linear and has full column rank, B𝜂 is an ellipsoid intersected with
the constraint set, making the VGS algorithm an effective option in low-dimensional
settings (see Section 3.5). In all other scenarios, especially higher dimensional ones,
the Polytope sampler is a better option, as naive accept-reject algorithms become
intractable (see Section 3.5).

VGS Sampler for low-dimensional and full column rank settings

Under the linear-Gaussian assumptions, when 𝑲 has full column rank, it can be
shown that

B𝜂 =
{
𝒙 ∈ X : (𝒙 − 𝒙̂)⊤𝑲⊤𝚺−1𝑲 (𝒙 − 𝒙̂) ≤ 𝜒2

𝑛,𝜂

}
, (3.31)

where 𝒙̂ is the Generalized Least-Squares (GLS) estimator. Equation (3.31) describes
an ellipsoid in R𝑝 intersected withX with axis directions and lengths determined by
𝜒2
𝑛,𝜂 and the eigenvectors and eigenvalues of 𝑲⊤𝚺−1𝑲, respectively (see (Burt W.

Rust and Walter R. Burrus, 1972) for more details). An ellipsoid is nothing but
a deformed ball. As such, we can sample uniformly at random from the ellipsoid
in R𝑝 using an algorithm sampling uniformly at random from a 𝑝–ball, followed
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by an appropriate linear transformation and translation. We can then include an
additional accept-reject step to account for the constraint setX. Note, all subsequent
discussions of spheres and balls assume unit radii and centering at the origin. Also
note that because the ellipsoid in (3.31) is centered around the GLS estimator, we
can sample points first from within an ellipsoid of the same shape centered at the
origin, and then translate those points by 𝒙̂.

(Voelker, Gosmann, and Stewart, 2017) propose a particularly efficient and clever
algorithm to sample uniformly at random from the 𝑝–ball by proving a connection
between uniform sampling on the (𝑝+1)-sphere (i.e., the surface of the ball in R𝑝+2)
and uniform sampling within the 𝑝–ball (i.e., within the unit ball in R𝑝). Namely,
one can sample a Gaussian 𝒛̃ ∼ N(0, 𝑰𝑝+2) and normalize 𝒛 := 𝒛̃/∥ 𝒛̃∥2 to sample
a point uniformly at random from the (𝑝 + 1)-sphere. Next, one simply drops the
last two elements of 𝒛 to obtain a point that is uniformly sampled from within a
𝑝–ball. The validity of this approach is substantiated by Lemma 1 and Theorem
1 in (Voelker, Gosmann, and Stewart, 2017) and relies upon a distribution result
about the ratio of chi-squared distributions and preservation of distribution under
an orthogonal transformation. To denote sampling a point following this procedure,
we use the notation 𝒙 ∼ VGS(𝑝).

To sample from our desired ellipsoid in (3.31), first consider the eigendecomposition
of 𝑲⊤𝚺−1𝑲 = 𝑷𝛀𝑷⊤, where 𝛀 = diag

(
𝜔2

1, 𝜔
2
2, . . . , 𝜔

2
𝑝

)
, 𝜔𝑖 is the 𝑖-th eigenvalue

of 𝑲⊤𝚺−1𝑲 and 𝑷 is an orthonormal matrix where the columns vectors are the
eigenvectors of 𝑲⊤𝚺−1𝑲. Denote 𝛀1/2 = diag

(
𝜔1, 𝜔2, . . . , 𝜔𝑝

)
and by extension,

𝛀−1/2 = diag
(
𝜔−1

1 , 𝜔
−1
2 , . . . , 𝜔

−1
𝑝

)
when 𝜔𝑖 > 0 for all 𝑖. These decompositions

imply the correct transformation to apply to points sampled from the 𝑝–ball via
𝒙 ∼ VGS(𝑝). Namely, define 𝒘 :=

√︃
𝜒2
𝑛,𝜂𝑷𝛀

−1/2𝒙. To know that 𝒘 is sampled from
the correct ellipsoid, it should be the case that 𝒘⊤𝑲⊤𝚺−1𝑲𝒘 ≤ 𝜒2

𝑛,𝜂, as then we can
simply make the update 𝒘 ← 𝒘 + 𝒙̂ to ensure that we have a point sampled from
(3.31). This guarantee is verified as follows:

𝒘⊤𝑲⊤𝚺−1𝑲𝒘 = 𝒘⊤𝑷𝛀1/2𝛀1/2𝑷⊤𝒘

= 𝜒2
𝑛,𝜂 · 𝒙⊤𝛀−1/2𝑷⊤𝑷𝛀1/2𝛀1/2𝑷⊤𝑷𝛀−1/2𝒙 (3.32)

= 𝜒2
𝑛,𝜂 · 𝒙⊤𝒙 ≤ 𝜒2

𝑛,𝜂,

where 𝑷⊤𝑷 = 𝑰 by definition and the last line follows since we know 𝒙 is sampled
from the 𝑝–ball and therefore 𝒙⊤𝒙 ≤ 1. Equation (3.32) justifies that the 𝒘 samples
lie within the desired ellipsoid, and their uniform distribution follows from the
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uniform distribution of 𝒙 in the 𝑝–ball since the distribution is preserved under a
linear transformation. Finally, we accept 𝒘 if 𝒘 ∈ X and reject if 𝒘 ∉ X. This
procedure for sampling at random from B𝜂 is summarized in Algorithm 4.

Algorithm 4 VGS Sampler

Input: 𝑝 ∈ N, 𝑀 ∈ N, 𝑷, 𝛀−1/2, 𝒙̂, 𝜒2
𝑛,𝜂.

1: Define S := {} to be the initialized set in which the sampled points are to be
placed.

2: for 𝑘 = 1, 2, . . . , 𝑀 do
3: Sample from the 𝑝–ball using VGS: 𝒙𝑘 := 𝒛1:𝑝/∥𝒛∥2, where 𝒛 ∼ N(0, 𝑰𝑝+2)

and 𝒛1:𝑝 denotes taking the first through 𝑝-th indices (inclusive).
4: Transform VGS output: 𝒘𝑘 :=

√︃
𝜒2
𝑛,𝜂𝑷𝛀

−1/2𝒙𝑘 .
5: Translate 𝒘𝑘 by the GLS estimator: 𝒘𝑘 ← 𝒘𝑘 + 𝒙̂.
6: Accept-Reject to incorporate constraints: If 𝒘𝑘 ∈ X, then add S ← S ∪

{𝒘𝑘 }, else start loop iteration 𝑘 again.
7: end for

Output: S containing uniformly sampled points over B𝜂 (as defined in (3.31)).

Generating samples using the VGS Sampler is efficient, but its feasibility diminishes
in high dimensions because of the accept-reject step. To illustrate this point, consider
the simple scenario where X = R𝑝+ , i.e., the non-negative orthant of R𝑝 and suppose
we sample from the 𝑝–ball intersected with R𝑝+ by sampling 𝒙 ∼ VGS(𝑝) where
𝑷 = 𝛀 = 𝑰, 𝒙̂ = 0 and we use 1 instead of 𝜒2

𝑛,𝜂. Then, P(𝒙 ∈ R𝑝+) = 2−𝑝 and the
acceptance probability of each sample goes to zero exponentially in 𝑝. To make this
point slightly more general, we generate data 𝒚 ∼ N(𝒙∗𝑝, 𝑰𝑝) where 𝒙∗𝑝 ∈ R

𝑝
+ and is a

vector of ones. For a collection of dimensions 𝑝 ∈ [2, 30], we sample 𝒙 ∼ VGS(𝑝)
with 𝑷 = 𝛀 = 𝑰 and 𝒙̂ = 𝒚 to estimate the probability that 𝒙 is in R𝑝+ and plot
the results in the left panel of Figure 3.2. Since the acceptance probability decays
exponentially (under 10−4 for 30 dimensions), it becomes clear that this algorithm
is inefficient in dimensions larger than 10, since the acceptance probability quickly
becomes prohibitively small in regimes where a larger sample size is even more
important.

Dimension is only one of two primary complicating factors. Not only is there
less of a (potentially) shifted 𝑝–ball’s volume in the non-negative orthant as 𝑝
grows but if our data are generated via 𝒚 ∼ N(𝑲𝒙∗, 𝑰𝑝) with 𝒙∗ ∈ R𝑝+ where
the condition number of 𝑲 is large, it is possible that even less of the ellipsoid
from which the VGS Sampler draws points intersects with the parameter constraint.
To illustrate this point, we generate a single observation from the aforementioned
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model using a 𝑲 ∈ R40×40 as described in Section 3.6. The 𝒙∗ ∈ R40
+ is created in

the same way as that of Section 3.6. The right panel of Figure 3.2 shows a computed
probability mass function for the number of coordinates in a VGS Sampler draw
(with 𝑷 and 𝛀 defined such that 𝑲⊤𝑲 = 𝑷𝛀𝑷⊤) complying with the non–negativity
parameter constraints. Equivalently, the right panel of Figure 3.2 shows the computed
probability mass function for the number of coordinates lying within the Berger–
Boos set. For this particular setup, we critically note that out of 5×104 draws from the
VGS Sampler, none of the draws had all coordinates comply with the non-negativity
constraint. By contrast, for the aforementioned noise model where we more simply
sample from the 𝑝–ball intersected with the non-negative orthant, the computed
acceptance probability is approximately 3.35× 10−6, in both cases emphasizing the
VGS Sampler’s poor performance in high-dimensional and ill-conditioned forward
model regimes.

Figure 3.2: Numerical illustrations of the VGS Sampler’s infeasibility in high di-
mensional regimes. The left panel shows the computed acceptance probability of a
point drawn by the VGS Sampler with data generated from a non-negatively con-
strained Gaussian noise model. Crucially, at only 30 dimensions, the acceptance
probability is already less than 10−4 for this particular setup. The right panel shows
the computed probability mass function for the number of non-negative constraint
complying coordinates of a VGS sample with data generated from a non-negatively
constrained linear Gaussian model in 40 dimensions with a non-identity forward
model. Since this is an example using a forward model with a large condition num-
ber (≈ 1.6 × 104), we critically note that there is empirically zero probability of
generating a sample within the non-negativity constraints.

Polytope sampler for general settings

In settings where the forward model is not linear and full column rank, Algorithm 4
fails. The ineffectiveness of this algorithm expands if the condition number of the
linear forward model is large such that most of the pre-image ellipsoid defining
the Berger–Boos set lies outside of the constraint set. Although these scenarios
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induce particular geometric challenges, in the linear-Gaussian case with convex
X we are still fundamentally sampling a convex set for which there is a vast lit-
erature. For example, there is a vast sampling literature for computing Bayesian
posteriors in high dimensions via nested sampling (Skilling, 2004; Ashton et al.,
2022; Buchner, 2023). In particular, nested sampling has been successfully applied
in high-dimensional cosmology settings using sophisticated approaches to strate-
gically sample the parameter space by restricting prior sampling in various ways
(Buchner, 2023; Montel, Alvey, and Weniger, 2023). Although these approaches
provide tools addressing a sampling setting similar to ours (i.e., the Berger–Boos
set can be viewed as a portion of the parameter space defined by a cutoff on the
likelihood) they are ultimately aimed at sampling from a particular distribution (i.e.,
the posterior), which is a stronger criterion than required here. For sampling general
convex sets, simple algorithms like Hit-and-Run are available (Smith, 1984; Lovasz,
1999; Lovasz and Vempala, 2006). However, in the particular case considered here,
more sophisticated and efficient algorithms can be devised. In particular, there exists
a deep literature on random walks over polytopes such that the asymptotic stationary
distribution of the walk is a uniform distribution over the polytope of interest (Kan-
nan and Narayanan, 2012; Narayanan, 2016; Yuansi Chen et al., 2018). As such,
we propose to first construct a bounding polytope, P𝑑 composed of 𝑑 half-spaces
around B𝜂, sample 𝐶 random walks within the Berger–Boos set using the Vaidya
walk as described in (Yuansi Chen et al., 2018) each starting at a point from a
collection of strategically chosen locations, and then combine the parallel chains to
create the final sample set. The detailed algorithm can be seen in Algorithm 5.

Although MCMC algorithms are typically evaluated using trace plots on individual
dimensions of the parameter space, given the high-dimensionality of the problem
and the final step combining several MCMC chains in the parameter space started
from different positions, it is more meaningful to evaluate this algorithm’s ability
to sample fully from the functional space. Namely, we can solve for the largest and
smallest values the functional can take within the Berger–Boos set as follows:

𝐼BB(𝒚) :=
[
𝜇𝑙BB, 𝜇

𝑢
BB

]
=

[
min
𝒙∈B𝜂

𝜑(𝒙),max
𝒙∈B𝜂

𝜑(𝒙)
]
. (3.33)

When 𝜑(𝒙) = 𝒉⊤𝒙 for some 𝒉 ∈ R𝑝, 𝐼BB(𝒚) corresponds to the SSB interval in
(Stanley, Patil, and Kuusela, 2022). Computing the sets 𝐶sl

𝛼 (𝒚;B𝜂) and 𝐶gl
𝛼 (𝒚;B𝜂)

well is then contingent upon sampling functional values within 𝐼BB(𝒚) well since
a functional value can only be included in the inverted set if the sampler has a
non-zero probability of sampling arbitrarily close to it. By “well”, we informally
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mean that the sampled functional values range at least between the endpoints of
𝐼BB(𝒚) and that if we partition 𝐼BB(𝒚) into 𝑛 sub–intervals, that most if not all of
the sub–intervals contain at least one sample. In practice, it will often be the case
that the sampled functional values can lie outside the endpoints of 𝐼BB(𝒚) since the
MCMC chains are sampling a bounding polytope of the Berger–Boos set.

Choosing the bounding polytope. Any bounded polytope ofB𝜂 is the intersection
of a finite number of half-spaces defined in R𝑝. The task of constructing a bounding
polytope is then equivalent to choosing a collection of 𝑑 hyperplanes in R𝑝 to
construct a set P𝑑 := {𝒙 ∈ R𝑝 : 𝑨𝒙 ≤ 𝒃} such that B𝜂 ⊆ P𝑑 , where 𝑨 ∈ R𝑑×𝑝

and 𝒃 ∈ R𝑑 . Let 𝒂⊤
𝑖
∈ R𝑝 denote the 𝑖-th row vector of 𝑨. We compute 𝑏𝑖 (the 𝑖-th

element of 𝒃) as
𝑏𝑖 = max

𝒙∈B𝜂
𝒂⊤𝑖 𝒙. (3.34)

This construction ensures the necessary inclusion. We consider three approaches to
pick the vectors 𝒂𝑖: (i) using the constraints X, (ii) using the known eigenvectors
defining the bounded directions of the pre-image ellipsoid, and (iii) randomly. In
practice, we combine these approaches to ensure that we consider only parameter
settings in agreement with our physical constraints, and to tighten the bounding
Berger–Boos set polytope as much as possible. There is a tradeoff with respect to
the latter consideration since the mixing time and computational cost for the Vaidya
walk increase with the number of hyperplanes (Yuansi Chen et al., 2018).

To incorporate the known parameter constraints, consider the non-negativity con-
straint used in Section 3.6, i.e., 𝒙 ∈ R𝑝+ . To enforce non-negativity, we set 𝒂𝑖 = −𝒆𝑖
for 𝑖 = 1, . . . , 𝑝, where 𝒆𝑖 is defined by its 𝑖-th element set to one and the rest of its
elements set to zero and 𝑏𝑖 = 0. These choices produce 𝑝 rows in 𝑨 corresponding
to the desired lower bounds (i.e., 𝑥𝑖 ≥ 0 for all 𝑖), but we can compute an additional
𝑝 constraints using (3.34) with 𝒂𝑖 := 𝒆𝑖 for 𝑖 = 𝑝 + 1, . . . 2𝑝. These 2𝑝 constraints
define a hyperrectangle enclosing the Berger–Boos set in the parameter space. To
incorporate polytope constraints based upon the forward model, we use the ellip-
soidal definition of the pre-image as shown in (3.31) and eigendecomposition of
𝑲⊤𝚺−1𝑲 = 𝑷𝛀𝑷⊤ shown in (3.32). Note that this ellipsoid form is valid under the
linear-Gaussian noise assumption and for all 𝑲. In the event that 𝑲 is not full column
rank, the ellipsoid defined by Equation (3.31) is still defined via the pseudo–inverse
of of 𝑲⊤𝚺𝑲 but where the ellipsoid is unbounded in some directions. The column
vectors of 𝑷 corresponding to the non-zero entries on the diagonal of 𝛀 are the
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eigenvectors corresponding to the bounded principal axes. As such, both 𝒑𝑖 and
− 𝒑𝑖 for 𝑖 = 1, . . . , 𝑝 (the column vectors of 𝑷) can be used as rows of 𝑨 with their
corresponding bounds defined by (3.34). Finally, to further tighten the polytope
around the Berger–Boos set, we sample a multivariate Gaussian, i.e., 𝒂𝑖 ∼ N(0, 𝑰𝑝)
to include random hyperplanes. Note, it is possible that the unbounded directions of
the ellipsoid defined by Equation (3.31) are not bounded when intersecting with the
parameter constraint set and hence there is no bounding polytope. In this case, our
interval construction should be unbounded since there is not enough information to
produce a bounded confidence set for the quantity of interest.

Once the components (𝑨, 𝒃) have been defined using some or all of the above
hyperplane generation strategies, the Vaidya walk can immediately be employed to
perform a random walk around the polytope. The primary intuitive requirement we
wish to satisfy with any sampling scheme in this context is that every region of
the Berger–Boos set has a non-zero probability of being sampled. Asymptotically,
the Vaidya walk samples the desired polytope uniformly at random, which satisfies
a stronger requirement. In practice, the need to sample non-uniformly can arise
if there are particularly meaningful parameter settings in regions that are difficult
for the random walk to reach. We explore such a case in Section 3.6. Additionally,
although the asymptotic distribution of the Vaidya sampler is theoretically sufficient,
in practice it often has some difficulty reaching the corners of the generated polytope.
Although MCMC chain mixing is typically evaluated by looking at trace plots, this
diagnostic is insufficient here because the dimension is high and the defined polytope
can make different dimensions difficult to compare. Instead, we consider how well
the sampler samples the functional values 𝜑(𝒙). This motivates taking a collection of
starting points between the SSB endpoints and the Chebyshev center of the polytope,
as described in the following section.

Constructing the parallel chain starting points. Although the random walks
defined in (Yuansi Chen et al., 2018) asymptotically sample uniformly over P𝑑 ,
given the long and thin shape of the pre-image, running the Vaidya walk from
even a “good” starting position does not consistently sample the functional space
well. Instead, we use the following heuristic to construct several parallel chains that
constitute a complete sample when combined. We define an even number of starting
points, 𝐶 ∈ 2N, to roughly span the Berger–Boos set, run the Vaidya walk for
𝑀𝑝 steps from each starting point to collect parameter settings {𝒙̃1, . . . , 𝒙̃𝑀𝑝

}, and
combine the samples from each walk, resulting in𝐶 ×𝑀𝑝 total samples. In practice,
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𝐶 and 𝑀𝑝 are chosen to yield a total of 𝑀 samples as desired for Algorithm 2 or
Algorithm 3. Since we have designed this process to avoid the neccessity of any
individual chain reaching its asymptotic distribution, we do not need a burn–in
period for any chain as long as we are confident that the union of the sampled points
sufficiently covers Interval (3.33) so that we may accept or reject any quantity of
interest value in that interval. We define the collection of starting points using the
line segments defined by the parameters generating the endpoints of 𝐼BB(𝒚) and
the Chebyshev center of P𝑑 as defined in (Boyd and Vandenberghe, 2004), and
denoted by 𝒙𝑐. This point is the center of the largest ball contained within P𝑑 and
therefore acts as a way to characterize the center of P𝑑 . We denote the parameter
settings generating the endpoints of 𝐼BB(𝒚) by 𝒙̂𝑙 for the lower endpoint and 𝒙̂𝑢

for the upper endpoint. We then define a uniform grid of values {𝜏𝑙}𝐶/2𝑙=1 such that
𝜏𝑙 ∈ (0, 1) and 𝜏𝑙 < 𝜏𝑙+1 for all 𝑙. For each 𝑘 ∈ [𝐶], define 𝑘′ := ⌈𝑘/2⌉ and
set 𝒙𝑠𝑡𝑎𝑟𝑡

𝑘
:= 𝜏𝑘 ′ 𝒙̂

𝑙 + (1 − 𝜏𝑘 ′)𝒙𝑐 if 𝑘 is odd and 𝒙𝑠𝑡𝑎𝑟𝑡
𝑘

:= 𝜏𝑘 ′ 𝒙̂
𝑢 + (1 − 𝜏𝑘 ′)𝒙𝑐 if

𝑘 is even. Creating starting positions along the lines connecting these endpoints
and the Chebyshev center accommodates the chosen polytope while helping ensure
that samples are chosen spanning the range of possible functional values over the
Berger–Boos set.

The empirical performance of the Polytope sampler can be seen in Figure 3.3,
showing (left) a histogram of the functional values sampled and (right) a trace plot
for the sampled Vaidya walks starting from points constructed as described above.
These plots are generated for one observation from the 80-dimensional ill-posed
inverse problem in the coverage study performed in Section 3.6. Critically, the
histogram shows that the Polytope sampler samples the functional space well and
the trace plot shows that our starting point construction heuristic performs well in
practice.

Sampling from the Berger–Boos set. With P𝑑 and the starting positions defined,
we construct a sample S := {𝒙̃1, . . . , 𝒙̃𝐶×𝑀𝑝

}. We leave the details of the Vaidya
walk to the original paper Yuansi Chen et al. (2018), but note an essential radius
tuning parameter of the algorithm that must be chosen. This radius impacts the
spread of a Gaussian proposal distribution for the walk and thus affects a new
proposed point’s acceptance probability. Choosing a too large radius results in a
low acceptance rate of proposed steps, thus creating walk that does not mix well. In
contrast, choosing a too small radius results in a high acceptance rate with relatively
small step sizes. In practice, we find a radius setting of 0.5 works well as it produces
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Figure 3.3: Polytope sampler output for a realization of the 80-dimensional ill-
posed inverse problem studied in Section 3.6. The left panel contains a histogram
of sampled functional values which both span and cover well the range of 𝐼BB(𝒚)
(shown by the dashed gray lines in both plots). The right panel contains trace plots
of the 14 Vaidya walks (each indicated by a different color) which together constitute
the full sample. Our heuristic for choosing starting points along the lines connecting
the parameter settings generating the endpoints of 𝐼BB(𝒚) and the Chebyshev center
of the polytope provides a good initial spread of starting functional values.

an acceptance probability of ≈ 33.3%, producing a reasonable trade-off between
taking meaningful steps and not rejecting too many steps.

Quantile regression
Algorithm 3 explained in Section 3.3 involves using quantile regression to learn a
quantile surface from a collection of pairs of design points and samples from the
LLR test statistic. As previously mentioned, similar approaches have been taken in
(Niccolò Dalmasso, Izbicki, and A. B. Lee, 2020; Niccolo Dalmasso et al., 2024;
Masserano, Dorigo, et al., 2023; Masserano, A. Shen, et al., 2024), and since quantile
regression is a technique facilitating our interval constructions, we will only give
a brief overview of quantile regression and some different ways to implement it.
Fundamentally, given a one-dimension random variable 𝑧 ∼ 𝑃𝒙 that depends on
the parameter 𝒙 ∈ R𝑝, we are interested in the upper 𝛾-quantile at every parameter
setting, i.e.,

P𝒙 (𝑧 > 𝑄𝒙 (1 − 𝛾)) = 𝛾. (3.36)

We note that the quantile surface itself is not random, so we can use draws from
the distribution 𝑃𝒙 to estimate 𝑄𝒙 at a given parameter setting 𝒙. However, as noted
in Section 3.3, performing such an estimate is not always computationally feasible,
and intuitively, we might expect quantiles to vary smoothly over the parameter
space, which would imply that information about a quantile at 𝒙1 should be related
to a quantile at 𝒙2 if these points are close. In statistics literature, estimating 𝑄𝒙 is
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Algorithm 5 Polytope sampler

Input: 𝑀𝑝 ∈ N and 𝐶 ∈ 2N. 𝑨 ∈ R𝑑×𝑝, 𝒃 ∈ R𝑑 . {𝜏𝑙}𝐶/2𝑙=1 , where 𝜏𝑙 ∈ (0, 1) and
𝜏𝑙 < 𝜏𝑙+1 for all 𝑙.

1: Let S := {} be the set in which we store all sampled parameter settings.
2: Construct Chebyshev center: Solve for 𝒙𝑐 using the following optimization.

maximize
𝒙𝑐 ,𝑟

𝑟

subject to 𝒂⊤𝑖 𝒙𝑐 + 𝑟 ∥𝒂𝑖∥2 ≤ 𝑏𝑖, 𝑖 = 1, . . . , 𝑑.

3: Compute 𝜑 extremes of Berger–Boos set: Extreme points are computed with
respect to the functional of interest:

𝒙̂𝑙 := argmin 𝜑(𝒙) subject to 𝒙 ∈ B𝜂,
𝒙̂𝑢 := argmax 𝜑(𝒙) subject to 𝒙 ∈ B𝜂 . (3.35)

4: for 𝑘 = 1, 2, . . . , 𝐶 do
5: Construct starting point: Define 𝑘′ := ⌈𝑘/2⌉. Define 𝒙𝑠𝑡𝑎𝑟𝑡

𝑘
= 𝜏𝑘 ′ 𝒙̂

𝑙 + (1 −
𝜏𝑘 ′)𝒙𝑐 if 𝑘 is odd and 𝒙𝑠𝑡𝑎𝑟𝑡

𝑘
= 𝜏𝑘 ′ 𝒙̂

𝑢 + (1 − 𝜏𝑘 ′)𝒙𝑐 if 𝑘 is even.
6: Run the Vaidya walk for 𝑀𝑝 steps: Collect samples {𝒙̃1, . . . , 𝒙̃𝑀𝑝

} and add
them to S.

7: end for
Output: S containing sampled points over B𝜂.

framed as estimating a quantile function conditional on known covariates and is often
thought of as a generalization of estimating the conditional median (Roger Koenker
and Hallock, 2001). Just as conditional mean and conditional median estimation can
be accomplished by using an appropriate loss function (sum of squares and absolute
differences, respectively), estimating conditional quantiles can be accomplished by
minimizing the pinball loss defined as follows:

𝐿𝛾 (𝑧, 𝑞) :=

(1 − 𝛾) (𝑞 − 𝑧), 𝑧 < 𝑞,

−𝛾(𝑧 − 𝑞), 𝑧 ≥ 𝑞,
(3.37)

(Roger Koenker, 2005; Steinwart and Christmann, 2011). As such, estimating the
quantile surface can be framed as a risk-minimization problem, leaving only stan-
dard modeling choices to fill in for 𝑞 in (3.37). Although initial efforts were focused
on linear parametric quantile regressors (R. Koenker and Bassett Jr, 1978), in recent
years, modeling efforts have focused on nonparametric varieties. (Meinshausen,
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2006) adapted random forests to quantile regression. (Takeuchi et al., 2006) lever-
aged Reproducing Kernel Hilbert Spaces to construct smooth quantile regressors.
Closer to our application, (Masserano, Dorigo, et al., 2023) used neural networks to
optimize the pinball loss to learn the quantile surface for their application.

Using the design points in the Berger–Boos set as sampled via the VGS or Polytope
samplers, Algorithm 3 shows how we sample from the test statistic distribution
defined at each design point to define a data set to fit a quantile regressor. We use the
Gradient Boosting Regressor implemented in scikit-learn (Pedregosa et al., 2011)
with the “quantile” loss function (i.e., pinball loss defined in eq. (3.37)) to fit the
quantile surface for our numerical examples in Section 3.6. This algorithm involves
a collection of hyperparameters (i.e., the minimum number of samples required to
split an internal node, the minimum number of samples required to be a leaf node,
the maximum depth of any individual estimator, the learning rate, and the number of
estimators) which we determine using 10-fold cross validation in a pilot study ahead
of our simulation experiments in Section 3.6. Although one may use any quantile
regression approach to estimate the quantile surface, we emphasize the importance
of choosing an approach that can accommodate a nonlinear surface in the parameters
(such as the Gradient Boosting Regressor) as the parameter constraints are known
to produce nonlinear quantile surfaces in even simple examples as seen in (Batlle,
Stanley, et al., 2023).

3.6 Numerical experiments
For scenarios within the linear-Gaussian case of data-generating process (3.19),
the OSB interval can be regarded as the previous the state-of-the-art option for
computing constraint-aware confidence intervals. Although these intervals have
empirically achieved nominal coverage in applications (Patil, Kuusela, and Hobbs,
2022; Stanley, Patil, and Kuusela, 2022), they generally do not guarantee coverage
(Batlle, Stanley, et al., 2023). As such, we use the OSB interval in the following
numerical experiments as a main comparison point to the intervals defined in this
paper. In scenarios where the OSB interval achieves at least nominal coverage, we
show that our intervals are either competitive or better in terms of expected interval
length. In scenarios where the OSB interval does not achieve nominal coverage, our
intervals do achieve nominal coverage and can have shorter expected length. We
provide four numerical experiments to make these points. The first set of two uses
a constrained Gaussian noise model setup in two or three dimensions. These two
experiments illustrate the aforementioned points in addition to constituent parts of
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the interval computation process due to the relatively low dimensions. The second
set of two considers a wide-bin deconvolution setup inspired by particle unfolding
in high-energy physics (Stanley, Patil, and Kuusela, 2022). This setup features an
80-dimensional parameter space with a rank-deficient forward model and is thus
a substantially more complicated computational scenario compared to the two or
three-dimensional Gaussian noise models. These examples demonstrate the superior
performance of our intervals over OSB in terms of both coverage and expected length.

In the following experiments, we form 68% confidence intervals, set 𝜂 = 0.01
and compute 𝛾 according to Lemma 3.3.1. We draw 103 observations from each
data-generating process to estimate both coverage and expected interval length for
our four interval constructions and the OSB interval. We additionally provide 95%
confidence intervals in the form of orange line segments to characterize statistical
error for both coverage and expected length estimates. The coverage confidence
intervals are Clopper-Pearson intervals for the success probability parameter of a
binomial distribution, while the expected length confidence intervals are the average
length plus/minus the appropriately scaled standard error of the mean.

Constrained Gaussian in two dimensions
The two-dimensional Gaussian noise model is defined as follows:

𝒚 = 𝒙∗ + 𝜺, 𝜺 ∼ N (0, 𝑰2) , 𝒙∗ ∈ R2
+, (3.38)

where 𝜑(𝒙) = 𝑥1 − 𝑥2 and 𝒙∗ =
(
0.5 0.5

)⊤
. The LLR is then given as follows:

𝜆(𝜇, 𝒚) = min
𝑥1−𝑥2=𝜇
𝒙∈R2

+

∥𝒚 − 𝒙∥22 − min
𝒙∈R2

+

∥𝒚 − 𝒙∥22. (3.39)

This example first appeared in (Tenorio, Fleck, and Moses, 2007) as a case where the
OSB interval allegedly fails to achieve nominal coverage when the true parameter
𝒙∗ is such that 𝜑(𝒙∗) = 0. However, (Batlle, Stanley, et al., 2023) overturned this
result by proving OSB validity in this case. As such, this example is important to
include because of its historical context and OSB interval validity. The proof that the
OSB interval covers in this particular example relies upon showing that𝑄max

1−𝛼 = 𝜒2
1,𝛼

for all 𝛼 ∈ (0, 1), where 𝜒2
1,𝛼 is the upper 𝛼-quantile of a chi-squared distribution

with one degree of freedom. Alternatively stated, it holds that 𝜆(𝜑(𝒙∗), 𝒚;R2
+) is

stochastically dominated by 𝜒2
1 . This result is shown in Lemma 4.4 of (Batlle,

Stanley, et al., 2023).

Estimated coverage and length results are shown in Figure 3.4. We note that all four
of our interval constructions are competitive with OSB in terms of coverage, while



102

all of our interval constructions have higher estimated expected length, apart from
the Sliced constructions which are within statistical error of OSB. Since the OSB
interval is defined using 𝑄max

1−𝛼 = 𝜒2
1,𝛼 and the 𝛼-quantile surface of the LLR rapidly

approaches this global max-quantile as one moves away from the origin (see Figure
5.3 in (Batlle, Stanley, et al., 2023)), the OSB interval lengths are difficult to beat in
practice with intervals based on the Berger–Boos sets since these sets likely contain
parameter settings with quantiles near 𝜒2

1,𝛼. The left panel of Figure 3.5 shows four
realizations of the data-generating process with the observations shown as red points.
For each observation, the blue points show uniformly distributed draws within its
Berger–Boos set, sampled using the VGS sampler. Cross-referencing the spread of
the Berger–Boos set samples in Figure 3.5 with Figure 5.3 in (Batlle, Stanley, et al.,
2023), it is clear that there are always samples in the parameter space where the
quantile surface is nearly the same as the 𝜒2

1,𝛼 quantile. Further, when including
the Berger–Boos set in the interval construction, we instead construct our intervals
using the 𝛾-quantile, where 𝛾 < 𝛼, as the LLR cutoff, resulting in a more relaxed
constraint. This fact can be clearly observed in the central panel of Figure 3.5,
showing the sampled 𝛾-quantiles within the Berger–Boos set of one observation
from the data generating process. Since a non-trivial portion of this distribution is
above 𝜒2

1,𝛼, the longer average length of the Global intervals is explained. In the right
panel of Figure 3.5, for the same observation, we show the estimated sliced max-
quantile function, 𝑚𝛾 (𝜇), in orange alongside 𝜒2

1,𝛼. Since this estimated function is
above 𝜒2

1,𝛼 at their intersection points with the underlying LLR function shown in the
solid blue line, it further makes sense that the Sliced interval constructions provide
no additional length improvement compared to the OSB interval in this particular
setting.

Constrained Gaussian in three dimensions
As seen in the previous example, in a case where the OSB interval is known to
achieve nominal coverage, its expected length can be difficult to beat. However,
OSB coverage guarantee can be difficult to prove or disprove, since it amounts to
proving stochastic dominance on the non-trivial LLR statistic. In such situations,
our intervals immediately provide a clear theoretical advantage. One such case
involving a three-dimensional constrained Gaussian case was explored in (Batlle,
Stanley, et al., 2023), to which we now apply our four interval constructions. The
three-dimensional Gaussian noise model is defined as follows:

𝒚 = 𝒙∗ + 𝜺, 𝜺 ∼ N (0, 𝑰3) , 𝒙∗ ∈ R3
+, (3.40)
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Figure 3.4: Estimated coverages and expected lengths across all four interval con-
structions and OSB for comparison at the 68% level for the two-dimensional con-
strained Gaussian setting. All four of our interval constructions are comparable to
OSB with respect to coverage, but OSB shows better-expected length performance,
aside from our two sliced interval constructions. Although the OSB intervals are
defined using the global max-quantile (𝑄max

1−𝛼) and therefore can potentially be im-
proved upon by limiting the considered parameter space via the Berger–Boos set,
due to the rapidity with which the 𝛼-quantile surface meets the 𝜒2

1,𝛼 quantile (see
Figure 5.3 in (Batlle, Stanley, et al., 2023)), the OSB interval lengths are difficult to
beat in practice.

where 𝜑(𝒙) = 𝑥1 + 𝑥2 − 𝑥3 and 𝒙∗ =
(
0.03 0.03 1

)⊤
. The LLR is then defined as

follows:
𝜆(𝜇, 𝒚) = min

𝑥1+𝑥2−𝑥3=𝜇
𝒙∈R3

+

∥𝒚 − 𝒙∥22 − min
𝒙∈R3

+

∥𝒚 − 𝒙∥22. (3.41)

Figure 3.6 shows estimated coverage and expected length across all four interval
constructions and the OSB interval. While the OSB interval fails to attain nominal
coverage in this example, all four of our interval constructions do, with the Sliced
constructions providing the best calibration. While the Global constructions pay a
fairly steep price for coverage in expected interval length, the Sliced constructions
navigate the trade-off well, paying for coverage with only slightly longer intervals
compared to the OSB interval.

The setting of 𝒙∗ used here is slightly different than that of (Batlle, Stanley, et
al., 2023), where 𝒙∗ =

(
0 0 1

)⊤
was used. In (Batlle, Stanley, et al., 2023),

this setting was used as a counter-example for OSB coverage, since 𝑄𝒙∗ (1 − 𝛼) >
𝜒2

1,𝛼 for at least some 𝛼 ∈ (0, 1). However, as shown in Figure 5.5 of (Batlle,

Stanley, et al., 2023), when 𝛼 = 0.05, 𝑄𝒙∗ (1 − 𝛼) ≤ 𝜒2
1,𝛼 for 𝒙∗ =

(
𝑡 𝑡 1

)⊤
when 𝑡 is approximately greater than 𝑒−2 ≈ 0.135, which indicates that parameter
settings violating stochastic dominance by 𝜒2

1 exist close to the parameter constraint
boundary. The location of these key parameter settings presents a challenge for the



104

Figure 3.5: (Left) Four realizations of the data-generating process where the ob-
servations are shown in red. For each realization, the blue points are uniformly
distributed samples from its Berger–Boos set, sampled using the VGS sampler.
(Center) For a realization of the data-generating process, we plot the distribution
of 𝛾-quantiles for the points sampled by the VGS sampler. Notably, a non-trivial
percent of these are above 𝜒2

1,𝛼 defining the OSB interval. (Right) For the same
realization, we plot the estimated sliced max-quantile function, 𝑚𝛾 (𝜇) in orange
alongside 𝜒2

1,𝛼 in red. The blue points correspond to sampled parameter values, each
of which has a functional and quantile value, while the solid blue line shows the LLR
over the functional varies. All intervals can be read immediately from this image by
inspecting where the blue LLR curve intersects the sampled points.

Figure 3.6: Estimated coverage and expected length across all four interval construc-
tions and OSB for comparison at the 68% level for the three-dimensional constrained
Gaussian example. All four of our interval constructions achieve nominal coverage
while the OSB interval does not. While the Global interval constructions pay a steep
price in expected length compared to OSB, the Sliced constructions are only slightly
longer than OSB.

Polytope sampler described by Algorithm 5. In Section 3.10, Algorithm 6 presents
a modified version of Algorithm 5 that better handles sampling in this example.

Berger–Boos set experiment. For this model, we investigate the effect of changing
the parameter 𝜂 that controls the Berger–Boos construction in the global interval.
We compute intervals for different 𝒚 and fixed 𝒙∗ = (2, 2, 0), 𝒙∗ = (3, 3, 0) and
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𝒙∗ = (5, 5, 0) as 𝜂 ranges between 0 and 𝛼 = 0.32. The lengths of such intervals,
averaged over the data 𝒚, are shown in Figure 3.7. In this example the maximum
quantile is achieved at 𝒙 = (0, 0, 𝑡) for large 𝑡, and, as expected, the benefit of using
a small 𝜂 > 0 becomes more pronounced as the true 𝒙∗ becomes farther from the
point that achieves the maximum quantile. However, as 𝜂 grows too close to 𝛼 the
downside of optimizing the 1−𝛼 + 𝜂 quantile instead of 1−𝛼 outweighs the benefit
of optimizing it over a smaller set, resulting in larger intervals. This suggests that a
small 𝜂 > 0 is a reasonable default, as suggested originally by (Roger L. Berger and
Boos, 1994).

Figure 3.7: Confidence interval lengths in the Berger–Boos setting, averaged over
values of 𝒚, for varying 𝜂 and 𝒙∗. The minimum average length occurs at a small
𝜂 > 0, showing that the construction is beneficial if 𝜂 is tuned correctly. This
occurs because even for moderately small 𝜂, the Berger–Boos set, which is a three-
dimensional sphere intersected with the non-negative orthant, avoids the point with
the highest 1 − 𝛼 quantile.

Wide-bin deconvolution
While the numerical experiments in Sections (3.6) and (3.6) show that our interval
constructions are competitive with the OSB interval in scenarios where it is known
to provide coverage and superior to the OSB interval by achieving nominal coverage
when OSB does not, this section shows the superior performance of our interval
constructions relative to OSB in a more complex high-dimensional setting. We
consider the problem of computing a confidence interval for the sum of adjacent
bins of a deconvolved histogram as described in (Stanley, Patil, and Kuusela, 2022).
This problem is a core statistical problem of particle unfolding in high-energy
physics. For more detailed information, we refer the reader to (Kuusela and Victor
M. Panaretos, 2015b; Kuusela, 2016; Kuusela and Philip B. Stark, 2017b; CMS
Collaboration, 2016; CMS Collaboration, 2019).
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The data-generating process is linear with Gaussian noise,

𝒚 = 𝑲𝒙∗ + 𝜺, 𝜺 ∼ N(0, 𝑰), 𝒙∗ ≥ 0, (3.42)

where 𝑲 ∈ R40×80 and 𝜑(𝒙) = 𝒉⊤𝒙. The vector 𝒉 defines the bin-adjacent aggre-
gation. In particle unfolding, the vectors 𝒙∗ and 𝒚 represent particle counts within
discretized bins. A collection of 𝒉 vectors can act to sum the contents of adjacent
bins to effectively lower the resolution of the inference problem. The LLR is then
defined as follows:

𝜆(𝜇, 𝒚) = min
𝒉⊤𝒙=𝜇
𝒙∈R80

+

∥𝒚 − 𝑲𝒙∥22 − min
𝒙∈R80

+

∥𝒚 − 𝑲𝒙∥22. (3.43)

We emphasize two features of this setup that complicate the task of computing con-
fidence intervals for 𝜑(𝒙). First, the forward model, 𝑲, has a non-trivial null space
and a large condition number, making any inverse problem point estimation and
UQ markedly challenging. Typically, this sort of ill-posedness is handled with reg-
ularization of some kind, but as is well-known in the inverse problem literature and
specifically shown in (Kuusela, 2016), including such regularization induces a bias,
which can undercut desired statistical guarantees (e.g., coverage) of the inference
object of interest. Including constraints and focusing on a particular functional of
the parameter vector implicitly regularizes the problem (Patil, Kuusela, and Hobbs,
2022; Stanley, Patil, and Kuusela, 2022), but shifts the problem difficulty to inference
with constraints. Although (Batlle, Stanley, et al., 2023) and this paper proposes a
theoretical framework to perform inference with constraints, the second challenge
is in the practical implementation due to the high-dimensional parameter space in
scenarios like this example. As we show in the following sections, the Polytope sam-
pler described by Algorithm 5 and quantile regression do an adequate job producing
samples and fitting quantile surfaces in this high-dimensional space to ensure the
desired coverage of the interval constructions.

As extensively discussed in (Stanley, Patil, and Kuusela, 2022), the OSB interval (i.e.,
using 𝜒2

1,0.05 in the optimization-based interval construction) produces empirically
valid confidence intervals in all tested scenarios, albeit typically with over-coverage.
In the scenarios considered in (Stanley, Patil, and Kuusela, 2022), the underlying
function generating the true histogram means (𝒙∗ ∈ R80

+ ) was relatively smooth,
likely contributing to the over-coverage. As such, we present two true parameter set-
tings for 𝒙∗ in (3.42) to highlight two advantages of our interval constructions over
the OSB interval. First, we use the original smooth parameter setting from (Stanley,
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Patil, and Kuusela, 2022) to show how our intervals improve over-coverage relative
to the OSB interval by reducing the expected interval length. Second, we present
an “adversarial” setting where our interval constructions achieve nominal coverage
while the OSB interval does not. Figure 3.8 shows the smooth and adversarial set-
tings for 𝒙∗. We constructed the adversarial setting by first computing our interval
constructions on the smooth setting and then looking at the maximum out-of-sample
predicted quantile for a generated observation with a large predicted quantile. For
each observation drawn within both settings, we draw 2.1 × 104 samples using the
Polytope sampler as described by Algorithm 5.

Figure 3.8: Parameter values for the smooth and adversarial settings for 𝒙∗ used to
illustrate our interval construction versus the OSB interval. The adversarial setting
is made more difficult by the sharp jumps in parameter values.

Smooth setting

Using the smooth 𝒙∗ shown in Figure 3.8, (Stanley, Patil, and Kuusela, 2022) showed
that the OSB interval over-covers at the 95% level. Furthermore, it was shown
that the OSB interval was the shortest across a range of other interval options,
including SSB, prior optimized, and minimax. As such, for this setting, we show
that our interval constructions not only achieve nominal coverage, but the sliced
constructions dramatically reduce over-coverage compared to OSB by producing
substantially shorter intervals on average. Estimated coverage and expected interval
lengths are shown in Figure 3.9.

Both Global interval constructions and OSB dramatically over-cover which high-
lights the conservatism of the Global constructions. These estimated coverage values
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indicate that within each observation’s Berger–Boos set, there is a parameter setting
against which the method has to protect that is substantially more difficult to cover
than the true realistic parameter setting. Interestingly, both Global constructions
produce markedly longer intervals on average compared with the OSB interval.
Aligning with the intuition from the Global and Sliced construction definitions, the
Sliced intervals are less conservative as seen by their lower over-coverage and signif-
icantly smaller average lengths. Importantly, both Sliced constructions are shorter on
average compared to the OSB interval, with the Sliced Inverted showing an 18.7%
reduction in average length and the Sliced Optimized showing a 11.1% reduction in
average length.

Figure 3.9: Estimated coverage and expected length across all four interval construc-
tions and OSB at the 68% level for the smooth wide-bin deconvolution experiment.
While the Global interval constructions over-cover like the OSB interval, the Sliced
interval constructions reduce both over-coverage and expected interval length.

Adversarial setting

The key result in Section 3.6 is that the Sliced interval constructions both reduce
over-coverage and expected interval length compared with the OSB interval. In this
section, we show that for the adversarial parameter setting the OSB interval does not
achieve nominal coverage, whereas all four of our interval constructions do achieve
nominal coverage while still reducing the expected interval length in the case of
the Sliced interval constructions compared to the OSB interval. The corresponding
estimated coverage and expected length results are shown in Figure 3.10.

Both Global interval constructions and the Sliced Optimized interval over-cover,
with the Sliced Optimized over-covering to a lesser extent than the Global inter-
vals. The Sliced Inverted interval achieves nominal coverage within the statistical
uncertainty. The estimated expected lengths tell a story similar to that of the smooth
example, with the Global intervals showing the longest average interval lengths, the
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Sliced intervals showing the shortest, and the OSB interval being between the two.
Importantly, the Sliced intervals are again significantly shorter than the OSB inter-
val, even though the OSB interval does not achieve nominal coverage. The Sliced
Inverted interval shows a 18.9% average interval length reduction over OSB while
the Sliced Optimized interval shows an 11.4% average interval length reduction.

Figure 3.10: Estimated coverage and expected length across all four interval con-
structions and OSB at the 68% level for the adversarial wide-bin deconvolution
experiment. While the OSB interval fails to achieve nominal coverage, all four of
our interval constructions do. Interestingly, the Sliced interval constructions are
meaningfully shorter than the OSB interval while also providing coverage.

For both the smooth and adversarial experiments, we note the differences in coverage
and expected length between the two Sliced interval constructions. Although both
approaches theoretically compute the same interval, significant differences can arise
from their construction. For instance, the Sliced Inverted intervals are constructed
by accepting individual functional values, which makes each point’s acceptance
dependent upon the quality of the quantile regressor at that point. By contrast,
since the Sliced Optimized intervals essentially smooth over the max quantiles as
a function of the functional space, the intervals are less sensitive to the quantile
regressor’s performance at any individual point. In the above simulation studies,
there were realizations of the data for which the Sliced Inverted construction only
accepted a single functional value sample, thereby making the confidence interval
a single point. We found the Sliced Optimized construction to be more robust in
these settings as the max quantile values were shared in a sliding window over the
functional space.

3.7 Conclusion
This paper proposes several confidence interval constructions for functionals in
constrained ill-posed inverse problems. Our approach is based on two key ideas:
data-adaptive constraints using a Berger–Boos construction and sampling-based



110

inversion. Two independent decisions when constructing intervals provide four dif-
ferent valid intervals: Global versus Sliced, using the quantile function either over
the entire or along level-set slices of the Berger–Boos set and Inverted versus Opti-
mized, constructing the interval either by individually accepted functional values via
the estimated quantile function or using the estimated quantile function in endpoint
optimizations. All of the constructions are built upon the preliminary constraint by
the data-informed Berger–Boos set, followed by a sampling procedure to estimate a
quantile function that can be used to invert or optimize the interval endpoints. We
have validated the method (including all four aforementioned interval constructions)
through several numerical examples, demonstrating its ability to provide correct cov-
erage, better calibration, and comparable or shorter interval length compared to the
OSB interval baseline. Overall, our approach offers a flexible framework that can
incorporate constraints directly and can be tailored to various types of inverse prob-
lems. The main takeaway is that data–adaptive constraining helps improve the length
of the resulting confidence intervals, and enables sampling which makes it feasible
to carry out the test inversion needed to construct confidence intervals with a desired
nominal coverage.

There are several promising directions for future work. One direction is to find ways
to extend our method to even higher-dimensional problems, which are more chal-
lenging. This would involve developing improved techniques to handle the curse
of dimensionality and exploring the trade-off between accuracy and computational
complexity. For the approaches in this paper in particular, this extension would
require a more tailored sampling approach. Another direction is to leverage more
sophisticated machine learning algorithms (deep learning models or ensemble meth-
ods) to improve the estimate of the quantile function and thus improve the accuracy
and efficiency of our confidence intervals. Additionally, applying our approach to
other applications involving ill-posed inverse problems, such as medical imaging or
geophysics, would provide further validation of the effectiveness of our approach.
Finally, it is of interest to conduct a further theoretical analysis of our approach un-
der different constraints and noise conditions to better understand its limitations and
strengths. This would involve studying the statistical properties of our confidence
intervals and investigating the impact of various assumptions on their performance.
Of particular interest are relaxations of the linear forward model and Gaussian
noise assumptions to extend our method’s application domain. Although the origi-
nal theoretical foundation developed in (Batlle, Stanley, et al., 2023) does not make
these assumptions, our implementation relies upon them for the tractability of the



111

sampling algorithms. Overall, these future research directions have the potential to
demonstrate the applicability and robustness of our approach in a wide range of
domains.

3.8 Proofs in Section 3.3
Proof of Lemma 3.3.1
We reproduce the original argument in (Roger L. Berger and Boos, 1994), originally
stated in terms of p-values, translated into our quantile setting. Fix any 𝒙∗ ∈ X and
consider the sets:

• 𝐴1 = {𝒚 : 𝐵𝜂 (𝒚) ∋ 𝒙∗}

• 𝐴2 = {𝒚 : 𝜆(𝜇∗, 𝒚) ≤ 𝑄𝒙 (1 − 𝛾)}

• 𝐴3 = {𝒚 : 𝜆(𝜇∗, 𝒚) ≤ 𝑞𝛾,𝜂 (𝜇∗)} = {𝒚 : 𝜆(𝜇∗, 𝒚) ≤ sup𝒙∈B𝜂∩Φ𝜇∗ 𝑄𝒙 (1 − 𝛾)}

We now have that P(𝒚 ∈ 𝐴1) = 1 − 𝜂, P(𝒚 ∈ 𝐴2) = 1 − 𝛾, and that (𝐴1 ∩ 𝐴2) ⊂
(𝐴1 ∩ 𝐴3). Therefore,

P(𝒚 ∉ 𝐴3) = P(𝒚 ∉ 𝐴3, 𝒚 ∈ 𝐴1) + P(𝒚 ∉ 𝐴3, 𝒚 ∉ 𝐴1) (3.44)

≤ P(𝒚 ∉ 𝐴2, 𝒚 ∈ 𝐴1) + P(𝒚 ∉ 𝐴1) (3.45)

≤ P(𝒚 ∉ 𝐴2) + P(𝒚 ∉ 𝐴1) (3.46)

= 𝛾 + 𝜂 (3.47)

so that P(𝒚 ∈ 𝐴3) ≥ 1 − 𝛾 − 𝜂. Imposing 1 − 𝛾 − 𝜂 ≥ 1 − 𝛼 gives the desired result.

Proof of Corollary 3.3.2
By definition, 𝑞𝜇𝛾,𝜂 ≤ 𝑞𝛾,𝜂 for all 𝜇 ∈ R. Therefore, 𝐶sl

𝛼 (𝒚;B𝜂) ⊆ 𝐶gl
𝛼 (𝒚;B𝜂), and

thus
P𝒙∗

(
𝜇∗ ∈ 𝐶gl

𝛼 (𝒚;B𝜂)
)
≥ P𝒙∗

(
𝜇∗ ∈ 𝐶sl

𝛼 (𝒚;B𝜂)
)
≥ 1 − 𝛼. (3.48)

3.9 Proof of Theorem 3.4.1
Throughout the proof, we make use of the following lemma:

Lemma 3.9.1. Let 𝑓 : R𝑛 → R and X ⊂ R𝑛 such that min
𝒙∈X

𝑓 (𝒙) is achieved, and at
least one of the minimizers 𝒙∗ satisfies:

1. 𝑓 is continuous at 𝒙∗,
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2. 𝒙∗ is not an isolated point of X (i.e., ∀𝛿 > 0, 𝐵𝛿 (𝒙∗) ∩ X ≠ ∅).

Let 𝜇 be a measure on X such that 𝜇(𝐵) > 0 for all 𝐵 ⊆ X such that 𝜆Leb(𝐵) >
0 (where 𝜆Leb(𝐵) refers here to the Lebesgue measure of the set 𝐵). Let 𝑌𝑚 =

min
𝑖=1,...,𝑚

𝑓 (𝒙𝑖), where 𝒙𝑖 are i.i.d. samples from 𝜇. Then 𝑌𝑚
𝑝
−→ 𝑓 (𝒙∗).

Proof. Fix 𝜀 > 0 and let us show that P( |𝑌𝑚 − 𝑓 (𝒙∗) | > 𝜀) → 0. Since 𝑓 is
continuous at 𝒙∗ there exists a 𝛿 > 0 such that 𝑓 (𝐵𝛿 (𝒙∗)) ⊂ 𝐵𝜀 ( 𝑓 (𝒙∗)) so that

P( |𝑌𝑚 − 𝑓 (𝒙∗) | ≥ 𝜀) ≤ P(𝒙𝑖 ∉ 𝐵𝛿 (𝒙∗), ∀𝑖 = 1, . . . , 𝑚) = (P𝒙∼𝜇 (𝒙 ∉ 𝐵𝛿 (𝒙∗)))𝑚 .
(3.49)

Since 𝒙∗ is not an isolated point, we have 𝜆Leb(𝐵𝛿 (𝒙∗) ∩ X) > 0 and therefore
P𝒙∼𝜇 (𝒙 ∉ 𝐵𝛿 (𝒙∗)) < 1 and P( |𝑌𝑚 − 𝑓 (𝒙∗) | ≥ 𝜀) → 0. □

We begin by proving that the empirical maximums of the quantiles obtained both
by Algorithm 1 and Algorithm 2 (assuming the quantile regressor is consistent)
converge to the true max quantile.

Algorithm 1 Let 𝑞de
𝛾,𝜂 := max

𝑖=1,...,𝑀
𝑞𝑖𝛾 (𝑁), where we explicitly write the dependence

with the number of samples and the index 𝑖 refers to the quantile estimated at the 𝑖-th
sampled point 𝒙𝑖. We aim to show that 𝑞de

𝛾,𝜂

p
−→ 𝑞𝛾,𝜂. We know that 𝑞𝑖𝛾 (𝑁) converges

in probability to 𝑄𝑃𝒙𝑖
(1 − 𝛾) as 𝑁 →∞. We have

��𝑞de
𝛾,𝜂 − 𝑞𝛾,𝜂

�� ≤ ����𝑞de
𝛾,𝜂 − max

𝑖=1,...,𝑀
𝑄𝑃𝒙𝑖
(1 − 𝛾)

���� + ���� max
𝑖=1,...,𝑀

𝑄𝑃𝒙𝑖
(1 − 𝛾) − 𝑞𝛾,𝜂

���� . (3.50)

The first term can be made smaller than 𝜀/2 as 𝑁 →∞ by convergence of the esti-
mator, and the second term can be made smaller than 𝜀/2 as 𝑀 →∞ by application
of Lemma 3.9.1 to the quantile function (maximizing instead of minimizing).

Algortihm 2 The proof is identical to that of Algorithm 1, with the only difference
of replacing the quantiles estimated via Monte Carlo sampling to those estimated
by the quantile regression, and 𝑁 to 𝑀tr, the number of samples needed to train the
quantile regression. Since the quantile regression is assumed to be consistent, the
first term can be made arbitrarily small as 𝑀𝑡𝑟 grows, and the result follows.

Since identical convergence results apply for both algorithms, henceforth we will
not explicitly distinguish: the proof is written in terms of 𝑁 , which can be replaced
by 𝑀𝑡𝑟 .
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Proof of Statement 1 (Global Inverted)
Recall,

𝐶
gl
inv(𝒚) =

[
min

𝑘∈{1,...,𝑀}:𝜆(𝜑(𝒙𝑘),𝒚)≤𝑞(𝑁)
𝜑(𝒙𝑘 ), max

𝑘:𝜆(𝜑(𝒙𝑘),𝒚)≤𝑞(𝑁)
𝜑(𝒙𝑘 )

]
(3.51)

=

[
min

𝑘∈{1,...,𝑀}:𝜆(𝜇𝑘 ,𝒚)≤𝑞(𝑁)
𝜇𝑘 , max

𝑘:𝜆(𝜇𝑘 ,𝒚)≤𝑞(𝑁)
𝜇𝑘

]
, (3.52)

where 𝑞(𝑁) := max
𝑖=1,...,𝑀

𝑞𝑖𝛾 (𝑁), the estimated quantiles of the sampled 𝒙𝑖 ∈ B𝜂 and

𝜇𝑖 := 𝜑(𝒙𝑖). Note that 𝜇𝑖 are samples in 𝜑(B𝜂) ⊂ R. Also note that we have more
explicitly written out the interval definition (i.e., Equation (3.26)) to emphasize
clarity rather than presentation.

Consider the left extreme of the interval, a similar argument follows from the right
extreme. Consider three quantities:

𝜇1(𝑁, 𝑀) := min 𝜇𝑘 s.t. 𝑘 = 1, . . . , 𝑀 and 𝜆(𝜇𝑘 , 𝒚) ≤ 𝑞(𝑁) (3.53)

𝜇2(𝑀) := min 𝜇𝑘 s.t. 𝑘 = 1, . . . , 𝑀 and 𝜆(𝜇𝑘 , 𝒚) ≤ 𝑞𝛾,𝜂 (3.54)

𝜇3 := min 𝜇 s.t. 𝜇 ∈ 𝜑
(
B𝜂

)
and 𝜆(𝜇, 𝒚) ≤ 𝑞𝛾,𝜂, (3.55)

Our goal is to show that as 𝑁, 𝑀 →∞, 𝜇1
p
−→ 𝜇3. Lemma 3.9.1 shows that 𝜇2

p
−→ 𝜇3.

Indeed, the minimization over the indices 𝑘 such that the condition is satisfied can
be seen as a rejection sampling strategy in which all accepted samples are samples
of the feasible region of the optimization in 𝜇3. As 𝑀 grows, since the sampler
eventually samples all areas of 𝜑(B𝜂), some samples are guaranteed to be close
to the optimum with high probability. Finally, for fixed 𝑀 and 𝑁 going to infinity,
𝜇1

p
−→ 𝜇2. This follows from the continuity of the optimization problem with respect

to the right-hand side of the constraint, and the fact that max
𝑖=1,...,𝑀

𝑞(𝒙𝑖)
p
−→ 𝑞𝛾,𝜂. It

follows that as 𝑁, 𝑀 →∞, 𝜇1
p
−→ 𝜇3.

Proof of Statement 2 (Sliced Inverted)
The proof technique is similar to the one of Statement 1, replacing 𝑞(𝑁) :=

max
𝑖=1,...,𝑀

𝑞𝑖𝛾 (𝑁) for 𝑞𝑘𝛾 (𝑁). Defined then, similarly as in the previous proof:

𝜇1(𝑁, 𝑀) := min 𝜇𝑘 s.t. 𝑘 = 1, . . . , 𝑀 and 𝜆(𝜇𝑘 , 𝒚) ≤ 𝑞𝑘𝛾 (𝑁) (3.56)

𝜇2(𝑀) := min 𝜇𝑘 s.t. 𝑘 = 1, . . . , 𝑀 and 𝜆(𝜇𝑘 , 𝒚) ≤ 𝑞𝛾,𝜂 (𝜇𝑘 ) (3.57)

𝜇3 := min 𝜇 s.t. 𝜇 ∈ 𝜑
(
B𝜂

)
and 𝜆(𝜇, 𝒚) ≤ 𝑞𝛾,𝜂 (𝜇) (3.58)
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where 𝑞𝛾,𝜂 (𝜇) = max𝒙∈Φ𝜇∩B𝜂 𝑄𝒙 (1 − 𝛾). As 𝑁 → ∞, 𝑞𝑘𝛾 (𝑁) → 𝑄𝒙𝑘 (1 − 𝛾).
Lemma 3.9.1 can be used to show 𝜇2

p
−→ 𝜇3, because the sampler strategy used that

first samples 𝒙𝑘 and then accepts 𝜇𝑘 = 𝜑(𝒙𝑘 ) as a sample if 𝜆(𝜑(𝒙𝑘 ), 𝒚) < 𝑞𝑘𝛾, it
can be shown that for every feasible point 𝜇, there is eventually a sample close to it.

Finally, 𝜇1 will become arbitrarily close to 𝜇2 as 𝑀 grows large, since both are
taking the minimum over samples that are sampled densely from the feasible set,
meaning accepted 𝜇𝑘 will eventually be close to 𝜇3 for both the case of 𝜇1 and the
case of 𝜇2

Proof of Statement 3 (Global Optimized)
We prove the continuity of the optimization problem,

max
𝜇∈𝜑(B𝜂)

𝜇 s.t. 𝜆(𝜇, 𝒚) ≤ 𝑞, (3.59)

as a function of 𝑞 in the positive measure interval (𝜆( 𝜇̄, 𝒚), 𝑞𝛾,𝜂]. Therefore, con-
vergence in probability follows as we have convergence in probability to 𝑞𝛾,𝜂 as
𝑁, 𝑀 → ∞, which in particular implies that the maximum quantile estimate is in
the interval (𝜆( 𝜇̄, 𝒚), 𝑞𝛾,𝜂] almost surely. We do so by appealing to the maximum
theorem (Ok, 2007, S E.3), which, in general, guarantees continuity of functions
of the form 𝑓 ∗(𝜃) = sup{ 𝑓 (𝑥, 𝜃) : 𝑥 ∈ 𝐶 (𝜃)} as long as 𝑓 is continuous, 𝐶 is a
continuous compact-valued correspondence and 𝐶 (𝜃) is non-empty for all 𝜃 ∈ Θ.
The continuity of 𝐶 comes from the continuity of the LLR, 𝑓 is equal to the identity
and the strict feasibility condition ensures 𝐶 is non-empty in Θ := (𝜆( 𝜇̄, 𝒚), 𝑞𝛾,𝜂].

Proof of Statement 3 (Sliced Optimized)
We will prove sufficient conditions for convergence of inf

𝜇: 𝑓̂𝑘 (𝜇)≥0
𝜇 to inf

𝜇: 𝑓 (𝜇)≥0
𝜇 as 𝑓̂𝑘

converges to 𝑓 , and the result will follow by taking 𝑓̂𝑘 (𝜇) = 𝑚𝛾 (𝜇) − 𝜆(𝜇, 𝒚) and
𝑓 (𝜇) = 𝑚𝛾 (𝜇) − 𝜆(𝜇, 𝒚). A similar argument can be repeated for the supremum.
Use use the notation 𝑓̂𝑘 to indicate that 𝑘 sampled points are used to estimate this
function via the definition of 𝑚𝛾 (𝜇) (see Section 3.3).

Lemma 3.9.2. Let 𝑓 : R→ R be a function, and let 𝑓𝑘 be a sequence of functions
𝑓𝑘 : R → R. Let 𝜇∗ = inf

𝑓 (𝜇)≥0
𝜇 and 𝜇𝑘 = inf

𝑓𝑘 (𝜇)≥0
𝜇. Let the sequence of functions

{ 𝑓𝑘 } be such that for all 𝛿 > 0,

P
(
sup
𝜇

| 𝑓𝑘 (𝜇) − 𝑓 (𝜇) | > 𝛿
)
→ 0 as 𝑘 →∞, (3.60)
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namely, 𝑓𝑘 converges in probability uniformly to 𝑓 . Furthermore, let 𝑓 be such that
for all 𝜀 > 0, there exists 𝛿′ > 0 such that | 𝑓 (𝜇) | > 𝛿′ if and only if |𝜇 − 𝜇∗ | < 𝜀.
Then, we have 𝜇𝑘

p
−→ 𝜇∗.

We then have 𝜇𝑘
𝑝
−→ 𝜇∗.

Proof. Assume for the sake of contradiction that there exists 𝜀 > 0 such that
P ( |𝜇𝑘 − 𝜇∗ | ≥ 𝜀) does not go to 0. Then, by the condition on 𝑓 , it must follow that
P ( | 𝑓 (𝜇𝑘 ) | > 𝛿) does not go to 0. But,

P ( | 𝑓 (𝜇𝑘 ) | > 𝛿) ≤ P ( | 𝑓 (𝜇𝑘 ) − 𝑓𝑘 (𝜇𝑘 ) | > 𝛿) + P ( | 𝑓𝑘 (𝜇𝑘 ) | > 𝛿) , (3.61)

and the right-hand side goes to 0 by uniform convergence in probability (first term)
and by feasibility of 𝜇𝑘 (second term). □

3.10 Additional details and illustrations in Section 3.6
Importance-like sampler for the three-dimensional example in Section 3.6
Since the parameter settings with quantiles meaningfully larger than 𝜒2

1,𝛼 are located
close to the constraint boundary, a sampling challenge is presented. Using the
samplers as described in Section 3.5 results in under-sampling of this large-quantile
region since both samplers provide uniform random samples over the Berger–Boos
set. Algorithm 6 presents a modified version of Algorithm 2, an importance-like
sampler to increase the probability mass of samples close to the constraint boundary.
Note, we say “importance-like” because we do not provide any theoretical guarantee
regarding this sampler’s ability to produce draws from a particular target distribution.
We tailored Algorithm 6 to settings with a non–negativity constraint and hand-tuned
the length scale parameter to the particular three-dimensional example in Section 3.6.

The key to Algorithm 6 is the additional accept/reject step where the 𝑘-th sample
is accepted with probability 𝑝𝑘 . Additionally, by setting 𝑞 ∈ (0, 1), we prioritize
retaining samples closer to the non-negativity boundary. This effect can be seen in
Figure 3.11, where the vast majority of samples are found closer to the constraint
boundary. The ability of Algorithm 6 to better sample the high-quantile regions of
the Berger–Boos set can be seen in Figure 3.12. In particular, for the functional
values 𝜇 ∈ (−4,−2), the importance-like sampler is substantially more effective
than the Polytope sampler at finding parameter setting with 𝛾-quantiles greater than
1.1.
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Figure 3.11: When sampling points using Algorithm 6, the vast majority of samples
are found closer to the non-negativity constraint boundary. The true parameter setting
is shown by the red point, while the parameter settings sampled by Algorithm 6 are
shown by the blue points. This sampling prioritization helps adequately sample
the regions of the Berger–Boos set where the quantile surface is larger than 𝜒2

1,𝛼.
Furthermore, the vast majority of sampled points lie within the Berger–Boos set
with some lying outside within the bounding polytope.

Figure 3.12: The importance-like sampler described by Algorithm 6 is more effective
than the Polytope sampler described by Algorithm 5 at sampling parameter settings
with 𝛾-quantile greater than 1.1. Each parameter setting sampled by Algorithm 6 is
shown by a blue point. This improved ability helps ensure the coverage guarantee
shown in the left panel of Figure 3.6.
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Algorithm 6 Importance-like sampler for three-dimensional constrained Gaussian
Input: Number of samples: 𝑀 ∈ N, inverse length scale: 𝛾𝑝, and order of norm:

𝑞 ∈ (0, 1).
1: Instantiate a list S of length 𝑀 to store sampled points.
2: while |S| < 𝑀 do
3: Draw 𝑀 − |S| realizations from Algorithm 5: 𝒙̃1, . . . , 𝒙̃𝑀−|S|
4: for 𝑘 = 1, . . . , 𝑀 − |S|: do
5: Compute the probability of accepting the 𝑘-th draw: 𝑝𝑘 :=

exp
(
−𝛾𝑝 ∥𝒙̃𝑘 ∥𝑞

)
.

6: Draw 𝑧𝑘 ∼ Bernoulli(𝑝𝑘 ).
7: if 𝑧𝑘 = 1 then
8: S[𝑘] ← 𝒙̃𝑘
9: end if

10: end for
11: end while
Output: Sampled parameters in Berger–Boos set S.
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C h a p t e r 4

UNCERTAINTY QUANTIFICATION OF THE 4TH KIND;
OPTIMAL POSTERIOR ACCURACY-UNCERTAINTY

TRADEOFF WITH THE MINIMUM ENCLOSING BALL

Uncertainty quantification (UQ) is, broadly, the task of determining appropriate
uncertainties to model predictions. There are essentially three kinds of approaches
to Uncertainty Quantification: (A) robust optimization (min and max), (B) Bayesian
(conditional average), and (C) decision theory (minmax). Although (A) is robust, it
is unfavorable with respect to accuracy and data assimilation. (B) requires a prior, it
is generally non-robust (brittle) with respect to the choice of that prior, and posterior
estimations can be slow. Although (C) leads to the identification of an optimal prior,
its approximation suffers from the curse of dimensionality and the notion of loss/risk
used to identify the prior is one that is averaged with respect to the distribution of
the data. We introduce a fourth kind which is a hybrid between (A), (B), (C), and
hypothesis testing. It can be summarized as, after observing a sample 𝑥, (1) defining
a likelihood region through the relative likelihood and (2) playing a minmax game
in that region to define optimal estimators and their risk. The resulting method
has several desirable properties: (a) an optimal prior is identified after measuring
the data and the notion of loss/risk is a posterior one, (b) the determination of the
optimal estimate and its risk can be reduced to computing the minimum enclosing
ball of the image of the likelihood region under the quantity of interest map (such
computations are fast and do not suffer from the curse of dimensionality). The
method is characterized by a parameter in [0, 1] acting as an assumed lower bound
on the rarity of the observed data (the relative likelihood). When that parameter is
near 1, the method produces a posterior distribution concentrated around a maximum
likelihood estimate (MLE) with tight but low confidence UQ estimates. When that
parameter is near 0, the method produces a maximal risk posterior distribution with
high confidence UQ estimates. In addition to navigating the accuracy-uncertainty
tradeoff, the proposed method addresses the brittleness of Bayesian inference by
navigating the robustness-accuracy tradeoff associated with data assimilation.
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4.1 Introduction
The past century has seen a steady increase in the need of estimating and predicting
complex systems and making (possibly critical) decisions with limited information
(H. Owhadi and C. Scovel, 2017c). These decisions are currently being formed based
on increasingly complex models with imperfectly known parameters estimated based
on available (limited) data whose distribution depends on the unknown/imperfectly
known parameters of the model (if the model is well specified, i.e., if the distribu-
tion of the data belongs to the parametric family of distributions represented by the
model). Making decisions and assessing the risk of these decisions requires identify-
ing methods for data assimilation (estimating the parameters of the model based on
data) and quantifying the risk/uncertainties of these decisions/parametric models.
Such UQ methods are not unique, and they essentially differ through assumptions
made on the generation of the true parameter of the model. In all inference/UQ meth-
ods, there is a tradeoff between robustness and accuracy (H. Owhadi and C. Scovel,
2017b), and these assumptions lead to the accuracy of the underlying method when
they hold true but also to their lack of robustness when they do not hold true. In
this paper, we introduce a new and rigorous UQ method that navigates (in a Pareto
optimal manner) this tradeoff between accuracy and robustness in data assimilation
and UQ for parametric models.

Figure 4.1: The Uncertainty Quantification (UQ) problem. Here, Θ is the space of
parameters, 𝜃† is the true unknown parameter, 𝜑 a quantity of interest, and 𝑃 is the
physical model determining the distribution 𝑝 from which the data 𝑥 is observed
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The problem
To describe this method we formalize the underlying UQ problem as follows (see
Fig. 4.1). Given a parameter space Θ and a quantity of interest 𝜑 : Θ → 𝑉 we
seek to estimate 𝜑(𝜃†), where 𝜃† ∈ Θ is an unknown parameter, based on the
observation of some data 𝑥 ∈ 𝑋 sampled from a probability distribution 𝑝(·|𝜃†)
(given by our model 𝑃) depending on the unknown parameter 𝜃†. Note that if our
goal is to recover 𝜃† itself, then we can let 𝜑 be the identity function. A simple
example (detailed in Sec. 4.1) is to recover the probability 𝜃† that a coin lands
on heads, given the observation 𝑥 = (𝑥1, . . . , 𝑥𝑛) ∈ {𝐻,𝑇}𝑛 of 𝑛 tosses of that
coin. Note that this general setup combines parametric uncertainty (𝜃† is unknown)
with aleatoric uncertainty (the 𝑥 data is a sample from a random variable whose
distribution depends on 𝜃†), and they need be merged to estimate 𝜑(𝜃†) and quantify
the uncertainty/risk of the estimation.

The three main approaches to UQ
There are currently three main approaches (detailed in Sec. 4.2) to addressing
this UQ problem. The worst case (robust optimization) approach is (if 𝜑 is real-
valued) to compute, the minimum and maximum possible value of 𝜑(𝜃) over all
possible values the parameter 𝜃 ∈ Θ. Although the data may be incorporated through
empirical distribution inequalities (H. Owhadi and C. Scovel, 2017a), the worst-case
approach is conservative and, due to its lack of assumptions on the generation of 𝜃†,
it is at the robust end of the tradeoff between accuracy and robustness. Indeed this
approach is simply based on the observation that

𝜑(𝜃†) ∈
[

min
𝜃∈Θ

𝜑(𝜃),max
𝜃∈Θ

𝜑(𝜃)
]
. (4.1)

The Bayesian approach is to assume that 𝜃† is a sample from a prior distribution
𝜋 on Θ, then estimate 𝜑(𝜃†) and quantify the uncertainty of that estimation by
computing the posterior distribution of 𝜃† given the data 𝑥. Writing 𝑑 (𝑥) for the
estimation of 𝜑(𝜃†) (𝑑 : 𝑋 → 𝑉), the Bayesian decision theoretic variant of the
Bayesian approach is to introduce a loss/cost

L(𝜃, 𝑑) = E𝑥∼𝑃(·|𝜃)E
[
∥𝜑(𝜃) − 𝑑 (𝑥)∥2

]
(4.2)

for the choice of the estimator 𝑑 if the true value of unknown parameter is 𝜃,
assume that 𝜃† is sampled from a known prior distribution 𝜋 and identify an optimal
estimator 𝑑𝜋 as a minimizer

𝑑𝜋 = argmin𝑑E𝜃∼𝜋
[
L(𝜃, 𝑑)

]
, (4.3)
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of the 𝜋-averaged loss E𝜃∼𝜋
[
L(𝜃, 𝑑)

]
, whose value at the minimum defines the risk

of that estimator. Due to the strength of the assumption that 𝜃† is sampled from a
known prior distribution, the Bayesian approach is at the accurate end of the tradeoff
between accuracy and robustness: in particular, it is brittle to the choice of prior
(H. Owhadi and C. Scovel, 2017b; H. Owhadi, C. Scovel, and T. Sullivan, 2015b;
H. Owhadi, C. Scovel, and T. Sullivan, 2015a; H. Owhadi and C. Scovel, 2016).
The game/decision theoretic approach formulates the underlying UQ problem as
a zero-sum game in which 𝜃 is chosen by an adversarial player (Player I) seeking
to maximize the loss L(𝜃, 𝑑) and 𝑑 is chosen by Player II seeking to minimize that
loss. As in classical game theory (Neumann, 1928), identifying a Nash equilibrium
requires lifting this game by letting Player I randomize the selection of 𝜃 according
to some mixed strategy/prior distribution 𝜋 on Θ and considering the average loss,

L(𝜋, 𝑑) = E𝜃∼𝜋,𝑥∼𝑃(·|𝜃)E
[
∥𝜑(𝜃) − 𝑑 (𝑥)∥2

]
, 𝜋 ∈ P(Θ) , 𝑑 : 𝑋 → 𝑉 . (4.4)

A saddle point (𝜋∗, 𝑑𝜋∗) for (4.4) is then identified by letting 𝑑𝜋 be the best Bayesian
response (4.3) to 𝜋 and 𝜋∗ be a maximizer of the average-loss E𝜃∼𝜋

[
L(𝜃, 𝑑𝜋)

]
, i.e.,

𝜋∗ ∈ argmax𝜃∈ΘE𝜃∼𝜋
[
L(𝜃, 𝑑𝜋)

]
. (4.5)

Although this approach achieves a balance in the accuracy/robustness tradeoff by
relaxing the assumption that 𝜃 is sampled from a known distribution, it does not
explicitly enable a navigation of that tradeoff. Furthermore, (1) the numerical ap-
proximation of an optimal mixed strategy for Player II suffers from the curse of
dimensionality, and (2) 𝑑𝜋 is the best response to a data-averaged notion of risk
rather than a data-given notion of risk.

Our new approach to UQ
In this paper, we present a new approach that does not suffer from weaknesses
present in previous UQ methods such as brittleness and curse of dimensionality
and that explicitly navigates the tradeoff between accuracy and robustness in the
estimation of the quantity of interest. Motivated by the fact that the main cause of
brittleness in inference is the possible rarity of the observed data (H. Owhadi and
C. Scovel, 2017b; H. Owhadi, C. Scovel, and T. Sullivan, 2015b; H. Owhadi, C.
Scovel, and T. Sullivan, 2015a; H. Owhadi and C. Scovel, 2016), the first step of
this approach is to make the hypothesis that the parameter 𝜃 that has generated the
data is such that the data is not rare and bound the probability that this hypothesis
is false. To describe this, given the observation 𝑥, for 𝛼 ∈ [0, 1] let Θ𝑥 (𝛼) be the set
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Figure 4.2: Example of the minimum enclosing ball 𝐵 about the image 𝜑(Θ𝑥 (𝛼)) (in
green) with radius 𝑅 and center 𝑑 = 𝑧∗. An optimal discrete measure 𝜇 :=

∑
𝑤𝑖δ𝑧𝑖

(𝑧𝑖 = 𝜑(𝜃𝑖)) on the range of 𝜑 for the maximum variance problem is characterized
by the fact that it is supported on the intersection of 𝜑(Θ𝑥 (𝛼)) and 𝜕𝐵 and 𝑑 =

𝑧∗ =
∑
𝑤𝑖𝑧𝑖 is the center of mass of the measure 𝜇. The size of the solid red balls

indicates the size of the corresponding weights 𝑤𝑖.

of parameters 𝜃 ∈ Θ whose relative likelihood

𝑝(𝑥 |𝜃) :=
𝑝(𝑥 |𝜃)

sup𝜃′ 𝑝(𝑥 |𝜃′)
(4.6)

exceeds the threshold 𝛼, i.e.,

Θ𝑥 (𝛼) :=
{
𝜃 ∈ Θ : 𝑝(𝑥 |𝜃) ≥ 𝛼

}
(4.7)

and let 𝛽𝛼 be the maximum (over 𝜃 ∈ Θ) probability that 𝜃 does not belong to Θ𝑥 (𝛼)
when 𝑥 is randomized according to the model 𝑝(·|𝜃), i.e.,

𝛽𝛼 := sup
𝜃∈Θ

𝑃

({
𝑥′ ∈ 𝑋 : 𝜃 ∉ Θ𝑥′ (𝛼)

}���𝜃) . (4.8)

𝛽𝛼 is interpreted as the significan/p-value of the hypothesis that 𝜃† ∈ Θ𝑥 (𝛼). In
particular, for 𝛼 close to one Θ𝑥 (𝛼) concentrates around the Maximum Likelihood
Estimators of 𝜃† and the probability 𝛽𝛼 that the hypothesis is true goes to zero (which
corresponds to accurate side of the tradeoff between accuracy and robustness). For
𝛼 close to zero, Θ𝑥 (𝛼) stretches over the whole set Θ, and the probability 𝛽𝛼 that the
hypothesis is true goes to one (which corresponds to the robust side of the tradeoff).
The next step of this approach is to employ the game/decision theoretic approach
with Θ replaced by the smaller set Θ𝑥 (𝛼), i.e., replace (4.4) with

L(𝜋, 𝑑) = E𝜃∼𝜋,𝑥∼𝑃(·|𝜃)E
[
∥𝜑(𝜃) − 𝑑 (𝑥)∥2

]
, 𝜋 ∈ P(Θ𝑥 (𝛼)) , 𝑑 : 𝑋 → 𝑉 , (4.9)
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compute a saddle point (𝜋𝛼, 𝑑𝛼) for (4.9) (𝑑𝛼 = 𝑑𝜋𝛼), and identify the optimal
estimator as 𝑑𝛼 and its risk/uncertainty R(𝑑𝛼) as the value of the game:

R(𝑑𝛼) := L(𝜋𝛼, 𝑑𝛼) . (4.10)

Main result
One of our main results (Theorems 4.3.3 and 4.3.5) is that this optimal decision
and its associated risk/uncertainty (defined as the value of the game at the Nash
equilibrium) can be identified as the center and the radius of the smallest ball en-
closing the image of Θ𝑥 (𝛼) under 𝜑 (see Fig. 4.2). Furthermore, we present rigorous
and practical algorithms (Algorithms 7 and 8)1 with approximation accuracy guar-
antees for computing that minimum enclosing ball based on the observation that
optimal mixed strategies (priors) 𝜋 for Player I can be restricted to be supported at
a maximum of dim(𝑉) + 1 points located on the boundary of that ball.

Coin toss
At the cost of some forward referencing, we will now describe an application of our
proposed problem to the estimation of the probability that a coin lands on heads
based on the observation of 𝑛 independent tosses of that coin.

𝑛 tosses of a single coin.

In this example, we estimate the probability that a biased coin lands on heads
from the observation of 𝑛 independent tosses of that coin. Specifically, we consider
flipping a coin 𝑌 which has an unknown probability 𝜃† of coming heads (𝑌 = 1)
and probability 1 − 𝜃† coming up tails (𝑌 = 0). Here Θ := [0, 1], 𝑋 = {0, 1}, and
the model 𝑃 : Θ→ P({0, 1}) is 𝑃(𝑌 = 1|𝜃) = 𝜃 and 𝑃(𝑌 = 0|𝜃) = 1 − 𝜃. We toss
the coin 𝑛 times, generating a sequence of i.i.d. Bernoulli variables (𝑌1, . . . , 𝑌𝑛) all
with the same unknown parameter 𝜃† ∈ [0, 1], and let 𝑥 := (𝑥1, . . . , 𝑥𝑛) ∈ {0, 1}𝑛

denote the outcome of the experiment. Let ℎ =
∑𝑛
𝑖=1 𝑥𝑖 denote the number of heads

observed and 𝑡 = 𝑛 − ℎ the number of tails. Then the model for the 𝑛-fold toss is

𝑃(𝑥 |𝜃) =
𝑛∏
𝑖=1

𝜃𝑥𝑖 (1 − 𝜃)1−𝑥𝑖 = 𝜃ℎ (1 − 𝜃)𝑡 (4.11)

1Python implementation for these algorithms can be found in https://github.com/JPLMLIA/
UQ4K

https://github.com/JPLMLIA/UQ4K
https://github.com/JPLMLIA/UQ4K
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and, given an observation 𝑥, the MLE is 𝜃 = ℎ
𝑛

so that the relative likelihood (4.6)
is2

𝑝(𝑥 |𝜃) = 𝜃ℎ (1 − 𝜃)𝑡(
ℎ
𝑛

)ℎ ( 𝑡
𝑛

) 𝑡 . (4.12)

We seek to estimate 𝜃, so let 𝑉 = R and let the quantity of interest 𝜑 : Θ → 𝑉 be
the identity function 𝜑(𝜃) = 𝜃. In this case, given 𝛼 ∈ [0, 1], the likelihood region

Θ𝑥 (𝛼) =
{
𝜃 ∈ [0, 1] :

𝜃ℎ (1 − 𝜃)𝑡(
ℎ
𝑛

)ℎ ( 𝑡
𝑛

) 𝑡 ≥ 𝛼} (4.13)

constrains the support of priors to points with relative likelihood larger than 𝛼. Using
Theorem 4.3.5 with 𝑚 = 𝑑𝑖𝑚(𝑉) + 1 = 2, one can compute a saddle point (𝜋𝛼, 𝑑𝛼)
of the game (4.9) as

𝜋𝛼 = 𝑤δ𝜃1 + (1 − 𝑤)δ𝜃2 and 𝑑𝛼 = 𝑤𝜃1 + (1 − 𝑤)𝜃2, (4.14)

where 𝑤, 𝜃1, 𝜃2 maximize the variance
Maximize 𝑤𝜃2

1 + (1 − 𝑤)𝜃
2
2 − (𝑤𝜃1 + (1 − 𝑤)𝜃2)2

over 0 ≤ 𝑤 ≤ 1, 𝜃1, 𝜃2 ∈ [0, 1]

subject to 𝜃ℎ
𝑖
(1−𝜃𝑖)𝑡(
ℎ
𝑛

) ℎ (
𝑡
𝑛

) 𝑡 ≥ 𝛼, 𝑖 = 1, 2 .
(4.15)

Equation (4.8) allows us to compute 𝛽 ∈ [0, 1] as a function of 𝛼 ∈ [0, 1]. The
solution of the optimization problem can be found by finding the minimum enclosing
ball of the set Θ𝑥 (𝛼), which in this 1-D case is also subinterval of the interval [0, 1].
For 𝑛 = 5 tosses resulting in ℎ = 4 heads and 𝑡 = 1 tails, Figure 4.3 plots (1) 𝛽, the
relative likelihood, its level sets and minimum enclosing balls as a function of 𝛼,
and (2) The risk R(𝑑𝛼) =(4.10) and optimal decision 𝑑𝛼 as a function of 𝛽. Three
different points in the 𝛼 − 𝛽 curve are highlighted. Note that as 𝛼 goes from 0 to
1, the relative likelihood region Θ𝑥 (𝛼) gets smaller (it shrinks towards the MLE),
the optimal estimator 𝑑𝛼 goes from the center of the worst case interval to the
MLE estimate, the risk (variance) of the estimator shrinks (which corresponds to
an increase in accuracy), but the confidence 1 − 𝛽(𝛼) in that risk (the probability
𝛽(𝛼) that 𝜃† ∈ Θ𝑥 (𝛼)) also shrinks towards zero (which corresponds to a loss of
robustness).

2Although the fact that 𝑝(𝑥 |0) = 𝑝(𝑥 |1) = 0 violates our positivity assumptions (described in
Sec. 4.2) on the model in our framework, in this case this technical restriction can be removed, so we
can still use this example as an illustration.
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Figure 4.3: 𝛼 − 𝛽 relation, likelihood level sets, risk value and decision for different
choices of 𝛼 (and consequently 𝛽) for the 1 coin problem after observing four heads
and one tail. Three different values in the 𝛼 − 𝛽 curve are highlighted across the
plots

𝑛1 and 𝑛2 tosses of two coins.

We now consider the same problem with two independent coins with unknown
probabilities 𝜃†1, 𝜃

†
2. After tossing each coin 𝑖 𝑛𝑖 times, the observation 𝑥 consists

of ℎ𝑖 heads and 𝑡𝑖 tails for each 𝑖, produce a 2D relative likelihood function on
Θ = [0, 1]2 given by

𝑝(𝑥 |𝜃1, 𝜃2) =
𝜃
ℎ1
1 (1 − 𝜃1)𝑡1( ℎ1
𝑛1

)ℎ1 ( 𝑡1
𝑛1

) 𝑡1 𝜃ℎ2
2 (1 − 𝜃2)𝑡2( ℎ2
𝑛2

)ℎ2 ( 𝑡2
𝑛2

) 𝑡2 . (4.16)

Figure 4.4 illustrates the level sets 𝑝(𝑥 |𝜃1, 𝜃2) ≥ 𝛼 and their corresponding bounding
balls for ℎ1 = 1, 𝑡1 = 3, ℎ2 = 5, 𝑡2 = 1 and different values of 𝛼 ∈ [0, 1].

Structure of the paper
This article is organized as follows: In Sec. 4.2, we formalize the UQ problem and
review the three previous approaches to the problem, emphasizing the limitations
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Figure 4.4: 2D likelihood level sets and minimum enclosing balls for different values
of 𝛼, visualized as level sets of the likelihood function (left) and projected onto a
2D plane (right)

addressed with our method. In Sec. 4.3, we introduce a new kind of uncertainty
quantification based on the minimum enclosing ball, and in Sections 4.4 and 4.5 we
introduce the computational framework and our minimum enclosing ball algorithms.
Sec. 4.6 presents numerical illustrations of the efficacy and scope of our approach.
Sec. 4.7 generalizes the loss and rarity assumptions. Sec. 4.8 presents supporting
theorems and proofs.

4.2 Previous approaches to UQ
We begin by formalizing the UQ problem introduced in the previous section. Let
𝜑 : Θ → 𝑉 be a quantity of interest, where 𝑉 (the space of predictions) is a finite-
dimensional vector space and Θ (the space of parameters) is a compact set. Let 𝑋
(the space of data) be a measurable space and write P(𝑋) for the set of probability
distributions on 𝑋 . Consider a model 𝑃 : Θ→ P(𝑋) representing the dependence
of the distribution of a data point 𝑥 ∼ 𝑃(·|𝜃) on the value of the parameter 𝜃 ∈ Θ.
Throughout, we use ∥ · ∥ to denote the Euclidean norm. We are then interested in
solving the following problem.

Problem 1. Let 𝜃† be an unknown element of Θ. Given an observation 𝑥 ∼ 𝑃(·|𝜃†)
of data, estimate 𝜑(𝜃†) and quantify the uncertainty (accuracy/risk) of the estimate.

We assume that we can write a probability density function for any 𝑃(·|𝜃). More
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formally, we assume that 𝑃 is a dominated model with positive densities, that is, for
each 𝜃 ∈ Θ, 𝑃(·|𝜃) is defined by a (strictly) positive density 𝑝(·|𝜃) : 𝑋 → R>0 with
respect to a measure 𝜈 ∈ P(𝑋), such that, for each measurable subset 𝐴 of 𝑋 ,

𝑃(𝐴|𝜃) =
∫
𝐴

𝑝(𝑥′|𝜃)𝑑𝜈(𝑥′), 𝜃 ∈ Θ. (4.17)

The three main approaches to UQ
Problem 1 is a fundamental Uncertainty Quantification (UQ) problem, and there are
essentially three main approaches for solving it. We now describe them when 𝑉 is a
Euclidean space with the ℓ2 loss function.

Worst-case

In a different setting, essentially where the set Θ consists of probability measures,
the OUQ framework (H. Owhadi, C. Scovel, T. J. Sullivan, et al., 2013b) provides a
worst-case analysis for providing rigorous uncertainty bounds. In the setting of this
paper, in the absence of data (or ignoring the data 𝑥), the (vanilla) worst-case (or
robust optimization) answer is to estimate 𝜑(𝜃†) with the minimizer 𝑑∗ ∈ 𝑉 of the
worst-case error

R(𝑑) := max
𝜃∈Θ

[
∥𝜑(𝜃) − 𝑑∥2

]
. (4.18)

In that approach, (𝑑∗,R(𝑑∗)) are therefore identified as the center and squared radius
of the minimum enclosing ball of 𝜑(Θ).

Bayesian

The (vanilla) Bayesian (decision theory) approach (see e.g. Berger (J. O. Berger,
2013, Sec. 4.4)) is to assume that 𝜃 is sampled from a prior distribution 𝜋 ∈ P(Θ),
and approximate 𝜑(𝜃†) with the minimizer 𝑑𝜋 (𝑥) ∈ 𝑉 of the Bayesian posterior risk

R𝜋 (𝑑) := E𝜃∼𝜋𝑥
[
∥𝜑(𝜃) − 𝑑∥2

]
, 𝑑 ∈ 𝑉, (4.19)

associated with the decision 𝑑 ∈ 𝑉 , where

𝜋𝑥 :=
𝑝(𝑥 |·)𝜋∫

Θ
𝑝(𝑥 |𝜃)𝑑𝜋(𝜃)

(4.20)

is the posterior measure determined by the likelihood 𝑝(𝑥 |·), the prior 𝜋 and the
observation 𝑥. The minimizer 𝑑𝜋 (𝑥) of (4.19) is the posterior distribution mean

𝑑𝜋 (𝑥) := E𝜃∼𝜋𝑥 [𝜑(𝜃)] (4.21)



128

and the uncertainty is quantified by the posterior variance

R𝜋 (𝑑𝜋 (𝑥)) := E𝜃∼𝜋𝑥
[
∥𝜑(𝜃) − 𝑑𝜋 (𝑥)∥2

]
. (4.22)

Game/decision theoretic

The Wald’s game/decision theoretic approach is to consider a two-player zero-
sum game where player I selects 𝜃 ∈ Θ, and player II selects a decision function
𝑑 : 𝑋 → 𝑉 which estimates the quantity of interest 𝜑(𝜃) (given the data 𝑥 ∈ 𝑋),
resulting in the loss

L(𝜃, 𝑑) := E𝑥∼𝑃(·|𝜃)
[
∥𝜑(𝜃) − 𝑑 (𝑥)∥2

]
, 𝜃 ∈ Θ, 𝑑 : 𝑋 → 𝑉, (4.23)

for player II. Such a game will normally not have a saddle point, so following
von Neumann’s approach (Neumann, 1928), one randomizes both players’ plays to
identify a Nash equilibrium. To that end, first observe that, for the quadratic loss
considered here (for ease of presentation), because of the convexity of the loss in
𝑑, only the choice of player I needs to be randomized. Letting 𝜋 ∈ P(Θ) be a
probability measure randomizing the play of player I, we consider the lift

L(𝜋, 𝑑) := E𝜃∼𝜋E𝑥∼𝑃(·|𝜃)
[
∥𝜑(𝜃) − 𝑑 (𝑥)∥2

]
, 𝜋 ∈ P(Θ), 𝑑 : 𝑋 → 𝑉, (4.24)

of the game (4.23). A minmax optimal estimate of 𝜑(𝜃†) is then obtained by identi-
fying a Nash equilibrium (a saddle point) for (4.24), i.e. 𝜋∗ ∈ P(Θ) and 𝑑∗ : 𝑋 → 𝑉

satisfying

L(𝜋, 𝑑∗) ≤ L(𝜋∗, 𝑑∗) ≤ L(𝜋∗, 𝑑), 𝜋 ∈ P(Θ), 𝑑 : 𝑋 → 𝑉. (4.25)

Consequently, an optimal strategy of player II is then the posterior mean 𝑑𝜋∗ (𝑥) of
the form (4.21) determined by a worst-case measure and optimal randomized/mixed
strategy for player I

𝜋∗ :∈ arg max
𝜋∈P(Θ)

E𝜃∼𝜋,𝑥∼𝑃(·,𝜃)
[
∥𝜑(𝜃) − 𝑑𝜋 (𝑥)∥2

]
. (4.26)

To connect with the Bayesian framework we observe (by changing the order of
integration) that the Wald’s risk (4.24) can be written as the average

L(𝜋, 𝑑) := E𝑥∼𝑋𝜋
[
R𝜋 (𝑑 (𝑥))

]
(4.27)

of the Bayesian decision risk R𝜋 (𝑑 (𝑥)) (=(4.19) for 𝑑 = 𝑑 (𝑥)) determined by the
prior 𝜋 and decision 𝑑 (𝑥) with respect to the 𝑋-marginal distribution

𝑋𝜋 :=
∫
Θ

𝑃(·|𝜃)𝑑𝜋(𝜃) (4.28)
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associated with the prior 𝜋 and the model 𝑃. Therefore, the Wald framework iden-
tifies a worst-case prior (4.26), while the prior used in Bayesian decision theory is
specified by the practitioner.

Figure 4.5: Curse of dimensionality in discretizing the prior. The data is of the form
𝑥 = 𝑚(𝜃) + 𝜖N(0, 1) where 𝑚 is deterministic and 𝜖N(0, 1) is small noise. (a) For
the continuous prior, the posterior concentrates aroundM := {𝜃 ∈ Θ|𝑚(𝜃) = 𝑥}.
(b) For the discretized prior, the posterior concentrates on the delta Dirac that is the
closest toM.

Limitations of the three main approaches to UQ
All three approaches described in Section 4.2 have limitations in terms of accu-
racy, robustness, and computational complexity. Although the worst-case approach
is robust, it appears unfavorable in terms of accuracy and data assimilation. The
Bayesian approach, on the other hand, suffers from the computational complexity of
estimating the posterior distribution and from brittleness (H. Owhadi, C. Scovel, and
T. Sullivan, 2015b) with respect to the choice of prior along with Stark’s admonition
(P. Stark, 2020) “your prior can bite you on the posterior.” Although Kempthorne
(Kempthorne, 1987) develops a rigorous numerical procedure with convergence
guarantees for solving the equations of Wald’s statistical decision theory which ap-
pears amenable to computational complexity analysis, it suffers from the curse of
dimensionality (see Fig. 4.5). This can be understood from the fact that the risk
associated with the worst-case measure in the Wald framework is an average over
the observational variable 𝑥 ∈ 𝑋 of the conditional risk, conditioned on the obser-
vation 𝑥. Consequently, for a discrete approximation of a worst-case measure, after
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an observation is made, there may be insufficient mass near the places where the
conditioning will provide a good estimate of the appropriate conditional measure.
Indeed, in the proposal (H. Owhadi and C. Scovel, 2017c) to develop Wald’s sta-
tistical decision theory along the lines of Machine Learning, with its dual focus on
performance and computation, it was observed that

“Although Wald’s theory of Optimal Statistical Decisions has resulted
in many important statistical discoveries, looking through the three
Lehmann symposia of Rojo and Pérez-Abreu (Rojo and Pérez-Abreu,
2004) in 2004, and Rojo (Rojo, 2006; Rojo, 2009) in 2006 and 2009,
it is clear that the incorporation of the analysis of the computational
algorithm, both in terms of its computational efficiency and its statistical
optimality, has not begun.”

Moreover, one might ask why, after seeing the data, one is choosing a worst-case
measure which optimizes the average (4.27) of the Bayesian risk (4.22), instead of
choosing it to optimize the value of the riskR𝜋 (𝑑𝜋 (𝑥)) at the value of the observation
𝑥. It is therefore desirable for an approach to UQ to successfully assimilate the
observed data, to avoid requiring having to manually select a prior and to have a
data-dependent notion of risk. In Section 4.3, we will propose a framework with all
these properties. A comparison of the properties of all the mentioned methods can
be found in Table 4.1.

Makes use of
the observed data

No need to
manually specify prior

Risk depends
on the observed data

Worst case × ✓ ×
Bayesian ✓ × ✓

Decision Theory ✓ ✓ ×
UQ4K (Section 4.3) ✓ ✓ ✓

Table 4.1: Comparison of the three previous approaches to uncertainty quantification
with our proposed method in Section 4.3

4.3 Uncertainty Quantification of the 4th Kind
Basic definitions
In this paper, we introduce a framework which is a hybrid between Wald’s statistical
decision theory (A. Wald and Wolfowitz, 1951), Bayesian decision theory (J. O.
Berger, 2013, Sec. 4.4), robust optimization, and hypothesis testing. Here we de-
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scribe its components for simplicity when the loss function is the ℓ2 loss. Later in
Section 4.7 we develop the framework for general loss functions.

Rarity assumption on the data

In (H. Owhadi, C. Scovel, and T. Sullivan, 2015b, Pg. 576) it was demonstrated that
one could alleviate the brittleness of Bayesian inference (see (H. Owhadi, C. Scovel,
and T. Sullivan, 2015a; H. Owhadi and C. Scovel, 2016)) by restricting to priors 𝜋
for which the observed data 𝑥 is not rare, that is,

𝑝(𝑥) :=
∫
Θ

𝑝(𝑥 |𝜃)𝑑𝜋(𝜃) ≥ 𝛼 (4.29)

according to the density of the 𝑋-marginal determined by 𝜋 and the model 𝑃, for
some 𝛼 > 0. In the proposed framework, we consider playing a game after observing
the data 𝑥 whose loss function is defined by the Bayesian decision riskR𝜋 (𝑑) (4.19),
where player I selects a prior 𝜋 subject to a rarity assumption (𝜋 ∈ P𝑥 (𝛼)) and player
II selects a decision 𝑑 ∈ 𝑉 . The rarity assumption considered here is

P𝑥 (𝛼) :=
{
𝜋 ∈ P(Θ) : support(𝜋) ⊂

{
𝜃 ∈ Θ : 𝑝(𝑥 |𝜃) ≥ 𝛼

}}
. (4.30)

Since 𝑝(𝑥 |𝜃) ≥ 𝛼 for all 𝜃 in the support of any 𝜋 ∈ P𝑥 (𝛼) it follows that such a 𝜋
satisfies (4.29) and therefore is sufficient to prevent Bayesian brittleness.

The relative likelihood for the rarity assumption

Observe in (4.20) that the map from the prior 𝜋 to posterior 𝜋𝑥 is scale-invariant
in the likelihood 𝑝(𝑥 |·) and that the effects of scaling the likelihood in the rarity
assumption can be undone by modifying 𝛼. Consequently, we scale the likelihood
function

𝑝(𝑥 |𝜃) :=
𝑝(𝑥 |𝜃)

sup𝜃∈Θ 𝑝(𝑥 |𝜃)
, 𝜃 ∈ Θ, (4.31)

to its relative likelihood function

𝑝(𝑥 |·) : Θ→ (0, 1] . (4.32)

According to Sprott (Sprott, 2008, Sec. 2.4), the relative likelihood measures the
plausibility of any parameter value 𝜃 relative to a maximum likely 𝜃 and summarizes
the information about 𝜃 contained in the sample 𝑥. See Rossi (Rossi, 2018, p. 267)
for its large sample connection with the X2

1 distribution and several examples of the
relationship between likelihood regions and confidence intervals.
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For 𝑥 ∈ 𝑋 and 𝛼 ∈ [0, 1], let (4.7) denote the corresponding likelihood region and,
updating (4.30), redefine the rarity assumption by

P𝑥 (𝛼) := P
(
Θ𝑥 (𝛼)

)
. (4.33)

That is, the rarity constraintP𝑥 (𝛼) constrains priors to have support on the likelihood
region Θ𝑥 (𝛼). We will now define the confidence level of the family Θ𝑥 (𝛼), 𝑥 ∈ 𝑋 .

Significance/confidence level

For a given 𝛼, let the significance 𝛽𝛼 at the value 𝛼 be the maximum (over 𝜃 ∈ Θ)
of the probability that a data 𝑥′ ∼ 𝑃(·|𝜃) does not satisfy the rarity assumption
𝑝(𝑥′|𝜃) ≥ 𝛼, i.e.,

𝛽𝛼 := sup
𝜃∈Θ

∫
1{𝑝(·|𝜃)<𝛼} (𝑥′)𝑝(𝑥′|𝜃)𝑑𝜈(𝑥′) , (4.34)

where, for fixed 𝜃, 1{𝑝(·|𝜃)<𝛼} is the indicator function of the set {𝑥′ ∈ 𝑋 : 𝑝(𝑥′|𝜃) <
𝛼}. Observe that, in the setting of hypothesis testing, (1) 𝛽𝛼 can be interpreted as
the p-value associated with the hypothesis that the rarity assumption is not satisfied
(i.e. the hypothesis that 𝜃 does not belongs to the set (4.7)), and (2) 1 − 𝛽𝛼 can be
interpreted as the confidence level associated with the rarity assumption (i.e. the
smallest probability that 𝜃 belongs to the set (4.7)). Therefore, to select 𝛼 ∈ [0, 1],
we set a significance level 𝛽∗ (e.g. 𝛽∗ = 0.05) and choose 𝛼 to be the largest value
such that the significance at 𝛼 satisfies 𝛽𝛼 ≤ 𝛽∗.

Connection to the Likelihood Ratio Test

The connection of the likelihood region we are defining and confidence sets can
be more explicitly seen via the likelihood ratio test and the inversion of that test to
produce a confidence set. Namely, we define a hypothesis test,

𝐻0 : 𝜃 = 𝜃0 versus 𝐻1 : 𝜃 ≠ 𝜃0, 𝜃 ∈ Θ. (4.35)

The likelihood ratio test statistic is defined by

Λ(𝜃0, 𝑥) =
𝑝(𝑥 |𝜃0)

sup𝜃∈Θ 𝑝(𝑥 |𝜃)
. (4.36)

Note, Λ(𝜃0, 𝑥) = 𝑝(𝑥 |𝜃), i.e., Equation (4.31) and Equation (4.36) are equivalent.
In the hypothesis testing setting, one would next define a critical value, 𝑐 > 0, such
that when Λ(𝜃0, 𝑥) ≤ 𝑐, the null in test (4.35) is rejected. Ideally, 𝑐 is chosen such
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that the probability of false rejection under the null hypothesis is capped at some
probability, 𝛼 ∈ (0, 1), defining an 𝛼-level test. The type 1 error probability control
is mathematically characterized as

𝑃 (Λ(𝜃0, 𝑥) ≤ 𝑐 |𝜃0) ≤ 𝛼. (4.37)

The error control criterion of Equation (4.37) can be used to define an acceptance
region in the sample space defined as follows:

𝐴(𝜃0, 𝑐) = {𝑥 ∈ 𝑋 : Λ(𝜃0, 𝑥) ≥ 𝑐}. (4.38)

The type 1 error control then implies 𝑃(𝑥 ∈ 𝐴(𝜃0, 𝑐) |𝜃0) ≥ 1 − 𝛼 and acts in a
similar way to the control exerted by 𝛽𝛼 in Equation (4.34). In that equation, 𝛼 is
chosen as the supremum over 𝜃 ∈ Θ of 𝑃 (Λ(𝜃, 𝑥) ≤ 𝑐 |𝜃), thus making 𝛼 a constant
independent of 𝜃. A viable alternative is to consider a curve 𝛼(𝜃), where

𝑃 (Λ(𝜃0, 𝑥) ≤ 𝑐 |𝜃0) ≤ 𝛼(𝜃0) ∀ 𝜃0, (4.39)

and then redefining (4.7) accordingly. In this work we consider the fixed 𝛼 model
for simplicity.

In some cases, the false rejection control can be done cleanly. For instance, in the
context of a noise model where 𝑥 = 𝜃 + 𝜀, 𝜀 ∼ 𝑁 (0, 𝐼), 𝜃 ∈ R𝑛, it can be shown
that the log-likelihood ratio follows the distribution,

−2 logΛ(𝜃0, 𝑥) ∼ 𝜒2
𝑛 , (4.40)

i.e., the log-likelihood ratio is distributed as a chi-squared distribution with 𝑛 degrees
of freedom, allowing 𝑐 to be exactly chosen. In the event the test statistic distribution
cannot be exactly known, asymptotic results such as that shown in Theorem 4.4.1
can provide similar results.

As discussed in Chapter 9 of Casella/Berger (G. Casella and R. L. Berger, 2002),
one can think about inverting an 𝛼-level hypothesis test such as Test (4.35) to obtain
a 1 − 𝛼 confidence set 𝐶 (𝑥) ⊂ Θ, such that 𝑃 (𝜃∗ ∈ 𝐶 (𝑥) |𝜃∗) ≥ 1 − 𝛼, where 𝜃∗ is
the true parameter value. The inverting is performed with the acceptance region of
Equation (4.38) and the set is defined as follows:

𝐶 (𝑥) = {𝜃0 ∈ Θ : 𝑥 ∈ 𝐴(𝜃0, 𝑐)}, (4.41)

Note the equivalence between Equation (4.41) directly above and Equation (4.7)
from the previous section. By the type 1 error control, we have

𝑃(𝜃∗ ∈ 𝐶 (𝑥) |𝜃∗) = 𝑃(𝑥 ∈ 𝐴(𝜃∗, 𝑐) |𝜃∗) ≥ 1 − 𝛼, (4.42)
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implying,
𝑃(𝜃∗ ∉ 𝐶 (𝑥) |𝜃∗) ≤ 𝛼, (4.43)

providing an additional view of the equivalence with Equation (4.34). As such, the
relative likelihood and rarity condition can be seen through the more traditional
statistical lens of the likelihood ratio and type 1 error control in the classical
hypothesis testing setting.

Remark 4.3.1. For models where the maximum of the likelihood function

𝑀 (𝑥′) := sup
𝜃∈Θ

𝑝(𝑥′|𝜃), 𝑥′ ∈ 𝑋,

is expensive to compute but for which there exists an efficiently computable upper
approximation 𝑀′(𝑥′) ≥ 𝑀 (𝑥′), 𝑥′ ∈ 𝑋 available, the surrogate

𝑝′(𝑥′|𝜃) :=
𝑝(𝑥′|𝜃)
𝑀′(𝑥′) , 𝑥′ ∈ 𝑋, (4.44)

to the relative likelihood may be used in place of (4.31). If we let 𝛽′𝛼 denote
the value determined in (4.34) using the surrogate (4.44) and Θ′𝑥 (𝛼) denote the
corresponding likelihood region, then we have 𝛽𝛼 ≤ 𝛽′𝛼 and Θ′𝑥 (𝛼) ⊂ Θ𝑥 (𝛼), 𝛼 ∈
[0, 1]. Consequently, obtaining 𝛽′𝛼 ≤ 𝛽∗ for significance level 𝛽∗ implies that 𝛽𝛼 ≤
𝛽∗.

As an example, for an𝑁-dimensional Gaussian model with 𝑝(𝑥′|𝜃) = 1
(𝜎
√

2𝜋)𝑁
𝑒
− 1

2𝜎2 ∥𝑥′−𝜃∥2

with Θ := [−𝜏, 𝜏]𝑁 , the elementary upper bound

𝑀 (𝑥′) := sup
𝜃∈Θ

𝑝(𝑥 |𝜃) ≤ 1
(𝜎
√

2𝜋)𝑁

the surrogate relative likelihood defined in (4.44) becomes

𝑝′(𝑥′|𝜃) := 𝑒−
1

2𝜎2 ∥𝑥′−𝜃∥2 .

Posterior game and risk

After observing 𝑥 ∈ 𝑋 , we now consider playing a game using the loss

L(𝜋, 𝑑) := E𝜃∼𝜋𝑥
[
∥𝜑(𝜃) − 𝑑∥2

]
, 𝜋 ∈ P𝑥 (𝛼), 𝑑 ∈ 𝑉, (4.45)

where 𝜋𝑥 is the posterior (4.20). In (4.45), we think about the maximizing player
as choosing the prior 𝜋 and then the loss function depends on the posterior 𝜋𝑥 .
Since the likelihood 𝑝(𝑥 |·) is positive and the data 𝑥 is fixed, we have support(𝜋𝑥) =
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support(𝜋) and the map (4.20) mapping the prior 𝜋 to the posterior 𝜋𝑥 is bijective.
Therefore one can equivalently consider the choice of the maximizing player to be
directly maximizing the posterior 𝜋𝑥 instead of the prior 𝜋 that is later mapped to
the posterior using the data. The optimal choices of these two games can then be
mapped by (4.20) and its inverse. Using the invariance of posterior (4.20) under
the scaling of the likelihood function 𝑝(𝑥 |·) we write the posterior in terms of the
relative likelihood (4.31) as

𝜋𝑥 :=
𝑝(𝑥 |·)𝜋∫

Θ
𝑝(𝑥 |𝜃)𝑑𝜋(𝜃)

. (4.46)

Therefore for simplicity one directly considers a game using the loss

L(𝜋, 𝑑) := E𝜃∼𝜋
[
∥𝜑(𝜃) − 𝑑∥2

]
, 𝜋 ∈ P𝑥 (𝛼), 𝑑 ∈ 𝑉. (4.47)

Recall that a pair (𝜋𝛼, 𝑑𝛼) ∈ P𝑥 (𝛼) ×𝑉 is a saddle point of the game (4.47) if

L(𝜋, 𝑑𝛼) ≤ L(𝜋𝛼, 𝑑𝛼) ≤ L(𝜋𝛼, 𝑑), 𝜋 ∈ P𝑥 (𝛼), 𝑑 ∈ 𝑉.

We then have the following theorem.

Theorem 4.3.2. Consider 𝑥 ∈ 𝑋 , 𝛼 ∈ [0, 1], and suppose that the relative likelihood
𝑝(𝑥 |·) and the quantity of interest 𝜑 : Θ → 𝑉 are continuous. The loss function L
for the game (4.9) (=(4.86)) has saddle points and a pair (𝜋𝛼, 𝑑𝛼) ∈ P𝑥 (𝛼) × 𝑉 is a
saddle point for L if and only if

𝑑𝛼 := E𝜋𝛼 [𝜑] (4.48)

and
𝜋𝛼 ∈ arg max

𝜋∈P𝑥 (𝛼)
E𝜋

[
∥𝜑 − E𝜋 [𝜑] ∥2

]
. (4.49)

Furthermore the associated risk (the value of the two person game (4.9) (=(4.86)) )

R(𝑑𝛼) := L(𝜋𝛼, 𝑑𝛼) = E𝜋𝛼
[
∥𝜑 − E𝜋𝛼 [𝜑] ∥2

]
(4.50)

is the same for all saddle points of L. Moreover, the second component 𝑑𝛼 of the set
of saddle points is unique and the set O𝑥 (𝛼) ⊂ P𝑥 (𝛼) of first components of saddle
points is convex, providing a convex ridge O𝑥 (𝛼) × {𝑑𝛼} of saddle points.

Duality with the minimum enclosing ball
Although the Lagrangian duality between the maximum variance problem and the
minimum enclosing ball problem on finite sets is known, see Yildirim (Yildirim,
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2008), we now analyze the infinite case. Utilizing the recent generalization of the
one-dimensional result of Popoviciu (Popoviciu, 1935) regarding the relationship
between variance maximization and the minimum enclosing ball by Lim and Mc-
Cann (Lim and McCann, 2021, Thm. 1), the following theorem demonstrates that
essentially the maximum variance problem (4.49) determining a worst-case mea-
sure is the Lagrangian dual of the minimum enclosing ball problem on the image
𝜑(Θ𝑥 (𝛼)). Let 𝜑∗ : P

(
Θ𝑥 (𝛼)

)
→ P(𝜑(Θ𝑥 (𝛼)) denote the pushforward map (change

of variables) defined by (𝜑∗𝜋) (𝐴) := 𝜋(𝜑−1(𝐴)) for every Borel set 𝐴, mapping
probability measures on Θ𝑥 (𝛼) to probability measures on 𝜑

(
Θ𝑥 (𝛼)

)
.

Theorem 4.3.3. For 𝑥 ∈ 𝑋 , 𝛼 ∈ [0, 1], suppose the relative likelihood 𝑝(𝑥 |·)
and the quantity of interest 𝜑 : Θ → 𝑉 are continuous. Consider a saddle point
(𝜋𝛼, 𝑑𝛼) of the game (4.9) (=(4.86)). The optimal decision 𝑑𝛼 and its associated
risk R(𝑑𝛼) =(4.10) are equal to the center and squared radius, respectively, of the
minimum enclosing ball of 𝜑(Θ𝑥 (𝛼)), i.e. the minimizer 𝑧∗ and the value 𝑅2 of the
minimum enclosing ball optimization problem

Minimize 𝑟2

Subject to 𝑟 ∈ R, 𝑧 ∈ 𝜑(Θ𝑥 (𝛼)),

∥𝑥 − 𝑧∥2 ≤ 𝑟2, 𝑥 ∈ 𝜑(Θ𝑥 (𝛼)).

(4.51)

Moreover, the variance maximization problem onP𝑥 (𝛼) (4.49) pushes forward to the
variance maximization problem on the image of the likelihood region P(𝜑(Θ𝑥 (𝛼)))
under 𝜑, giving the identity

E𝜋
[
∥𝜑 − E𝜋 [𝜑] ∥2

]
= E𝜑∗𝜋

[
∥𝑣 − E𝜋′ [𝑣] ∥2

]
, 𝜋 ∈ P𝑥 (𝛼),

and the latter is the Lagrangian dual to the minimum enclosing ball problem (4.51)
on the image 𝜑(Θ𝑥 (𝛼)). Finally, let 𝐵, with center 𝑧∗, denote the minimum en-
closing ball of 𝜑(Θ𝑥 (𝛼)). Then a measure 𝜋𝛼 ∈ P𝑥 (𝛼) is optimal for the variance
maximization problem (4.49) if and only if

𝜑∗𝜋
𝛼
(
𝜑(Θ𝑥 (𝛼)) ∩ 𝜕𝐵

)
= 1

and
𝑧∗ =

∫
𝑉

𝑣𝑑 (𝜑∗𝜋𝛼) (𝑣),

that is, all the mass of 𝜑∗𝜋𝛼 lives on the intersection 𝜑(Θ𝑥 (𝛼)) ∩ 𝜕𝐵 of the image
𝜑(Θ𝑥 (𝛼)) of the likelihood region and the boundary 𝜕𝐵 of its minimum enclosing
ball and the center of mass of the measure 𝜑∗𝜋𝛼 is the center 𝑧∗ of 𝐵.
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Remark 4.3.4. Note that once 𝛼, and thereforeΘ𝑥 (𝛼), is determined that the compu-
tation of the risk and the minmax estimator is determined by the minimum enclosing
ball about 𝜑(Θ𝑥 (𝛼)), which is also determined by the worst-case optimization prob-
lem (4.18) for Θ := Θ𝑥 (𝛼).

Theorem 4.3.3 introduces the possibility of primal-dual algorithms, in particular, the
availability of rigorous stopping criteria for the maximum variance problem (4.49).
To that end, for a feasible measure 𝜋 ∈ P𝑥 (𝛼), let Var(𝜋) := E𝜋

[
∥𝜑 − E𝜋 [𝜑] ∥2

]
denote its variance and denote by Var∗ := sup𝜋∈P𝑥 (𝛼) Var(𝜋) =(4.50) the optimal
variance. Let (𝑟, 𝑧) be feasible for the minimum enclosing ball problem (4.51). Then
the inequality Var∗ = 𝑅2 ≤ 𝑟2 implies the rigorous bound

Var∗ −Var(𝜋) ≤ 𝑟2 − Var(𝜋) (4.52)

quantifying the suboptimality of the measure 𝜋 in terms of known quantities 𝑟 and
Var(𝜋).

Finite-dimensional reduction
Let Δ𝑚 (Θ) denote the set of convex sums of 𝑚 Dirac measures located in Θ and, let
P𝑚𝑥 (𝛼) ⊂ P𝑥 (𝛼) defined by

P𝑚𝑥 (𝛼) := Δ𝑚 (Θ) ∩ P𝑥 (𝛼) (4.53)

denote the finite-dimensional subset of the rarity assumption set P𝑥 (𝛼) consisting
of the convex combinations of 𝑚 Dirac measures supported in Θ𝑥 (𝛼).

Theorem 4.3.5. Let 𝛼 ∈ [0, 1] and 𝑥 ∈ 𝑋 , and suppose that the likelihood function
𝑝(𝑥 |·) and quantity of interest 𝜑 : Θ → 𝑉 are continuous. Then for any 𝑚 ≥
𝑑𝑖𝑚(𝑉) + 1, the variance maximization problem (4.49) has the finite-dimensional
reduction

max
𝜋∈P𝑥 (𝛼)

E𝜋
[
∥𝜑 − E𝜋 [𝜑] ∥2

]
= max
𝜋∈P𝑚𝑥 (𝛼)

E𝜋
[
∥𝜑 − E𝜋 [𝜑] ∥2

]
. (4.54)

Therefore one can compute a saddle point (𝑑𝛼, 𝜋𝛼) of the game (4.9) (=(4.86)) as

𝜋𝛼 =

𝑚∑︁
𝑖=1

𝑤𝑖δ𝜃𝑖 and 𝑑𝛼 =

𝑚∑︁
𝑖=1

𝑤𝑖𝜑(𝜃𝑖), (4.55)

where 𝑤𝑖 ≥ 0, 𝜃𝑖 ∈ Θ, 𝑖 = 1, . . . , 𝑚 maximize
Maximize

∑𝑚
𝑖=1 𝑤𝑖



𝜑(𝜃𝑖)

2 −


∑𝑚

𝑖=1 𝑤𝑖𝜑(𝜃𝑖)


2

Subject to 𝑤𝑖 ≥ 0, 𝜃𝑖 ∈ Θ, 𝑖 = 1, . . . , 𝑚,
∑𝑚
𝑖=1 𝑤𝑖 = 1

𝑝(𝑥 |𝜃𝑖) ≥ 𝛼, 𝑖 = 1, . . . , 𝑚 .

(4.56)
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As a consequence of Theorems 4.3.3 and 4.3.5, a measure with finite support
𝜇 :=

∑
𝑤𝑖δ𝑧𝑖 on 𝑉 is the pushforward under 𝜑 : Θ → 𝑉 of an optimal measure

𝜋𝛼 for the maximum variance problem (4.49) if and only if, as illustrated in Figure
4.2, it is supported on the intersection of 𝜑(Θ𝑥 (𝛼)) and the boundary 𝜕𝐵 of the
minimum enclosing ball of 𝜑(Θ𝑥 (𝛼)) and the center 𝑧∗ of 𝐵 is the center of mass
𝑧∗ =

∑
𝑤𝑖𝑧𝑖 of the measure 𝜇.

Relaxing MLE with an accuracy/robustness tradeoff
For fixed 𝑥 ∈ 𝑋 , assume that the model 𝑃 is such that the maximum likelihood
estimate (MLE)

𝜃∗ := arg max
𝜃∈Θ

𝑝(𝑥 |𝜃) (4.57)

of 𝜃† exists and is unique.

Observe that for 𝛼 near one (1) the support of 𝜋𝛼 and 𝑑𝛼 concentrate around the
MLE 𝜃∗ and 𝜑(𝜃∗), (2) the risk R(𝑑𝛼) =(4.10) concentrates around zero, and (3) the
confidence 1− 𝛽𝛼 associated with the rarity assumption 𝜃† ∈ Θ𝑥 (𝛼) is the smallest.
In that limit, our estimator inherits the accuracy and lack of robustness of the MLE
approach to estimating the quantity of interest.

Conversely for 𝛼 near zero, since by (4.7) Θ𝑥 (𝛼) ≈ Θ, (1) the support of the pushfor-
ward of 𝜋𝛼 by 𝜑 concentrates on the boundary of 𝜑(Θ) and 𝑑𝛼 concentrate around
the center of the minimum enclosing ball of 𝜑(Θ), (2) the risk R(𝑑𝛼) =(4.50) is the
highest and concentrates around the worst-case risk (4.18), and (3) the confidence
1− 𝛽𝛼 associated with the rarity assumption 𝜃† ∈ Θ𝑥 (𝛼) is the highest. In that limit,
our estimator inherits the robustness and lack of accuracy of the worst-case approach
to estimating the quantity of interest.

For 𝛼 between 0 and 1, the proposed game-theoretic approach induces a minmax
optimal tradeoff between the accuracy of MLE and the robustness of the worst case.

4.4 Computational framework
The introduction developed this framework in the context of a model 𝑃 with den-
sity 𝑝 in terms of a single sample 𝑥. In Section 4.1, the single sample case was
extended to 𝑁 i.i.d. samples by defining the multisample D := (𝑥1, . . . , 𝑥𝑁 ) and
defining the product model density 𝑝(D|𝜃) := Π𝑁

𝑖=1𝑝(𝑥𝑖 |𝜃). Extensions incorporat-
ing correlations in the samples, such as Markov or other stochastic processes can
easily be developed. Here we continue this development for the general model of
the introduction for the ℓ2 loss and also develop more fully a Gaussian noise model.
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Later, in Sections 4.6 and 4.6 these models will be tested on estimating a quadratic
function and a Lotka-Volterra predator-prey model based on noisy observations. In
Section 4.7 the framework will be generalized to more general loss functions and
rarity assumptions, which much of the current section generalizes to.

Let the possible states of nature be a compact subset Θ ⊂ R𝑘 , the decision space be
𝑉 := R𝑛 and the elements of the 𝑁-fold multisample

D := (𝒙1, . . . , 𝒙𝑁 )

lie in 𝑋 , that is, D lies in the multisample space 𝑋𝑁 . Let the 𝑛 components of
the quantity of interest 𝜑 : Θ → R𝑛 be indicated by 𝜑𝑡 : Θ → R, 𝑡 = 1, . . . 𝑛.
Here, using the i.i.d. product model 𝑃(·|𝜃) with density 𝑝(D|𝜃) := Π𝑁

𝑖=1𝑝(𝑥𝑖 |𝜃),
the definition of 𝛽𝛼 in (4.34) becomes

𝛽𝛼 := sup
𝜃∈Θ

𝑃

({
D′ ∈ 𝑋𝑁 : 𝜃 ∉ ΘD′ (𝛼)

}���𝜃)
= sup

𝜃∈Θ

∫
1{𝑝(·|𝜃)<𝛼} (D′)𝑝(D′|𝜃)𝑑𝜈𝑁 (D′) , (4.58)

where, for fixed 𝜃, 1{𝑝(·|𝜃)<𝛼} is the indicator function of the set {D′ ∈ 𝑋𝑁 :
𝑝(D′|𝜃) < 𝛼}. We use boldface, such as 𝒙𝑖 or 𝜽 , to emphasize the vector nature of
variables and functions in the computational framework.

In this notation, the finite dimensional reduction guaranteed by Theorem 4.3.5 in
(4.55) and (4.56) of the optimization problem (4.49) defining a worst-case measure
of the form 𝜋𝛼 :=

∑𝑚
𝑖=1 𝑤𝑖δ𝜽𝒊 takes the form

maximize
{(𝑤𝑖 ,𝜽𝑖)}𝑚𝑖=1

∑𝑛
𝑡=1

(∑𝑚
𝑖=1 𝜑

2
𝑡 (𝜽𝑖) 𝑤𝑖 −

∑𝑚
𝑖, 𝑗=1 𝑤𝑖𝜑𝑡 (𝜽𝑖) 𝜑𝑡

(
𝜽 𝑗

)
𝑤 𝑗

)
𝑠.𝑡. 𝜽𝑖 ∈ Θ, 𝑤𝑖 ⩾ 0, 𝑖 = 1, . . . , 𝑚∑𝑚

𝑖=1 𝑤𝑖 = 1,
𝑝 (D|𝜽𝑖) ⩾ 𝛼, 𝑖 = 1, . . . , 𝑚,

(4.59)

where the component of the objective function

𝑣𝑎𝑟 (𝜑𝑡) :=
𝑚∑︁
𝑖=1

𝜑2
𝑡 (𝜽𝑖) 𝑤𝑖 −

𝑚∑︁
𝑖, 𝑗=1

𝑤𝑖𝜑𝑡 (𝜽𝑖) 𝜑𝑡
(
𝜽 𝑗

)
𝑤 𝑗

is the variance of the random variable 𝜑𝑡 : Θ → R under the measure 𝜋 :=∑𝑚
𝑖=1 𝑤𝑖δ𝜽𝑖 .
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Algorithm for solving the game
We are now prepared to develop an algorithm for player II (the decision maker) to
play the game (4.47), using the saddle point Theorem 4.3.2 and the finite dimensional
reduction Theorem 4.3.5 after selecting the rarity parameter 𝛼 quantifying the rarity
assumption (4.7) in terms of the relative likelihood (4.31) or a surrogate as described
in Remark 4.3.1, to be the largest 𝛼 such that the significance 𝛽𝛼 (4.58) at 𝛼 satisfies
𝛽𝛼 ≤ 𝛽∗, the significance level.

At a high level the algorithm for computing a worst-case measure, its resulting risk
(variance) and optimal estimator is as follows:

1. Observe a multisample D.

2. Find the largest 𝛼 such that 𝛽𝛼 defined in (4.58) satisfies 𝛽𝛼 ≤ 𝛽∗.

3. Solve (4.59) determining a worst-case measure 𝜋𝛼 :=
∑𝑚
𝑖=1 𝑤𝑖δ𝜽𝑖 .

4. Output the Risk as the value of (4.59).

5. Output optimal decision 𝑑𝛼 :=
∑𝑚
𝑖=1 𝑤𝑖𝜑(𝜽𝑖).

To solve (4.59) in Step 3 we apply the duality of the variance maximization problem
with the minimum enclosing ball problem, Theorem 4.3.3, to obtain the following
complete algorithm. It uses Algorithm 8 for computing the minimum enclosing ball
about the (generally) infinite set 𝜑(Θ𝑥 (𝛼)), which in turn uses a minimum enclosing
ball algorithm Miniball applied to sets of size at most 𝑑𝑖𝑚(𝑉) + 2, see e.g. Welzl
(Welzl, 1991), Yildirim (Yildirim, 2008) and Gartner (Gärtner, 1999). Here we
use that of Welzl (Welzl, 1991). See Section 4.5 for a discussion and a proof in
Theorem 4.5.1 of the convergence of Algorithm 8. Theorem 4.5.1 also establishes
a convergence proof when the distance maximization Step 8a in Algorithm 7 is
performed approximately. Note that the likelihood region ΘD (𝛼) is defined by

ΘD (𝛼) :=
{
𝜽 ∈ Θ : 𝑝(D|𝜽) ≥ 𝛼 𝑝(D|𝜽∗)

}
,

where
𝜽∗ ∈ arg max

𝜽
𝑝
(
D|𝜽

)
is a MLE.
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Algorithm 7 UQ4K algorithm
1. Inputs:

a) Multisample D := (𝒙1, . . . , 𝒙𝑁 )
b) 𝜀0

c) Significance level 𝛽∗

2. Find MLE 𝜽∗ by 𝜽∗ ∈ arg max
𝜽

𝑝
(
D|𝜽

)
3. Find the largest 𝛼 such that 𝛽𝛼 defined in (4.58) satisfies 𝛽𝛼 ≤ 𝛽∗

4. 𝒄 ← 𝝋 (𝜽∗)

5. 𝑆 ← {𝝋 (𝜽∗)}

6. 𝜌0 ← 0

7. 𝑒 ← 2𝜀0

8. While 𝑒 ⩾ 𝜀0

a)
𝜽 ∈ arg max

𝜽
∥𝝋 (𝜽) − 𝒄∥2

𝑠.𝑡. 𝑝(D|𝜽) ≥ 𝛼 𝑝(D|𝜽∗)
b) if



𝝋 (
𝜽
)
− 𝒄



 ⩾ 𝜌0

i. 𝑆 ← 𝑆 ∪
{
𝝋

(
𝜽
)}

c) 𝒄, 𝜌 ← 𝑀𝑖𝑛𝑖𝑏𝑎𝑙𝑙 (𝑆)
d) 𝑒 = |𝜌 − 𝜌0 |
e) 𝜌0 ← 𝜌

f) if |𝑆 | > 𝑛 + 1
i. find subset 𝑆′ ⊂ 𝑆 of size 𝑛 + 1 such that 𝑀𝑖𝑛𝑖𝑏𝑎𝑙𝑙 (𝑆′) =

𝑀𝑖𝑛𝑖𝑏𝑎𝑙𝑙 (𝑆)
ii. 𝑆 ← 𝑆′

9. Find {𝑤𝑖}𝑛+1𝑖=1 from maximize
{𝑤𝑖}𝑛+1𝑖=1

∑𝑛
𝑡=1

(∑𝑛+1
𝑖=1 𝜑

2
𝑡 (𝜽𝑖) 𝑤𝑖 −

∑𝑛+1
𝑖, 𝑗=1 𝑤𝑖𝜑𝑡 (𝜽𝑖) 𝜑𝑡

(
𝜽 𝑗

)
𝑤 𝑗

)
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Large sample simplifications

Here we demonstrate that when the number of samples 𝑁 is large, under classic
regularity assumptions, the significance 𝛽𝛼 is approximated by the value of a chi-
squared distribution, substantially simplifying the determination of 𝛼 in Step 3 of
Algorithm 7.

Let Θ ⊆ R𝑘 and let data be generated by the model at the value 𝜃 ∈ Θ. Under
standard regularity conditions, check (G. Casella and R. L. Berger, 2002, Sec. 10.6.2
& Thm. 10.1.12), the maximum likelihood estimator (MLE), 𝜃̂𝑁 , is asymptotically
efficient for 𝜃. That is as the sample size 𝑁 →∞

√
𝑁 (𝜃̂𝑁 − 𝜃)

d−→ 𝑁 (0, 𝐼 (𝜃)−1) , (4.60)

where 𝐼 (𝜃) is the Fisher information matrix. Therefore, standard arguments, see (G.
Casella and R. L. Berger, 2002, Thm. 10.3.1), for the asymptotic distribution of the
likelihood ratio test result in the following approximation of 𝛽𝛼.

Theorem 4.4.1. Let Θ ⊆ R𝑘 and assume that the model density 𝑝 satisfies the
regularity conditions of (G. Casella and R. L. Berger, 2002, Section. 10.6.2). Then

𝛽𝛼 → 1 − 𝜒2
𝑘

(
2 ln

1
𝛼

)
(4.61)

as 𝑁 →∞, where 𝜒2
𝑘

is the chi-square distribution with 𝑘 degrees of freedom.

Consequently, under these conditions Step 3 of Algorithm 7 can take the simple
form

(Step 3): Solve for 𝛼 satisfying 𝛽𝛼 := 1 − 𝜒2
𝑘

(
2 ln 1

𝛼

)
= 𝛽∗.

Algorithm 7 for a Gaussian noise model
Consider a Gaussian noise model where, 𝑋 = R𝑟 and for 𝜽 ∈ Θ, the components
of the multisample D := (𝒙1, . . . , 𝒙𝑁 ) ∈ R𝑟𝑁 are i.i.d. samples from the Gaussian
distribution N(𝒎 (𝜽) , 𝜎2𝐼𝑟), with mean 𝒎 (𝜽) and covariance 𝜎2𝐼𝑟 , where 𝒎 :
Θ → R𝑟 is a measurement function, 𝜎 > 0 and 𝐼𝑟 is the 𝑟-dimensional identity
matrix. The measurement function 𝒎 is a function such that the its value 𝒎(𝜃) can
be computed when the model parameter 𝜽 is known. Therefore the i.i.d. multisample
D := (𝒙1, . . . , 𝒙𝑁 ) is drawn from

(
N(𝒎 (𝜽) , 𝜎2𝐼𝑟)

)𝑁 and so has the probability
density

𝑝 (D|𝜽) = 1(
𝜎
√

2𝜋
)𝑟𝑁 exp ©­«− 1

2𝜎2

𝑁∑︁
𝑗=1



𝒙 𝑗 − 𝒎 (𝜽)


2ª®¬ (4.62)
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with respect to the Lebesgue measure 𝜈 on 𝑋 := R𝑟𝑁 , and defining
(
𝜎
√

2𝜋
)𝑟𝑁

times
the maximum likelihood

𝑀 (D) := exp ©­«− 1
2𝜎2 inf

𝜽∈Θ

( 𝑁∑︁
𝑗=1



𝒙 𝑗 − 𝒎 (𝜽)


2

)ª®¬ , (4.63)

the relative likelihood (4.31) is

𝑝 (D|𝜽) =
exp

(
− 1

2𝜎2
∑𝑁
𝑗=1



𝒙 𝑗 − 𝒎 (𝜽)


2

)
𝑀 (D) . (4.64)

Taking the logarithm of the constraint 𝑝 (D|𝜽𝑖) ⩾ 𝛼 defining the likelihood region
ΘD (𝛼), using (4.64) we obtain

ΘD (𝛼) =
{
𝜽 ∈ Θ :

𝑁∑︁
𝑗=1



𝒙 𝑗 − 𝒎 (𝜽)


2

⩽ 𝑀𝛼

}
(4.65)

in terms of

𝑀𝛼 := inf
𝜽∈Θ

𝑁∑︁
𝑗=1



𝒙 𝑗 − 𝒎 (𝜽)


2 + 2𝜎2 ln

1
𝛼
. (4.66)

Consequently, for the Gaussian case, the worst-case measure optimization problem
(4.59) becomes

maximize
{(𝑤𝑖 ,𝜽𝑖)}𝑚𝑖=1

∑𝑛
𝑡=1

(∑𝑚
𝑖=1 𝜑

2
𝑡 (𝜽𝑖) 𝑤𝑖 −

∑𝑚
𝑖, 𝑗=1 𝑤𝑖𝜑𝑡 (𝜽𝑖) 𝜑𝑡

(
𝜽 𝑗

)
𝑤 𝑗

)
𝑠.𝑡. 𝜽𝑖 ∈ Θ, 𝑤𝑖 ⩾ 0, 𝑖 = 1, . . . , 𝑚∑𝑚

𝑖=1 𝑤𝑖 = 1,∑𝑁
𝑗=1



𝒙 𝑗 − 𝒎 (𝜽𝑖)


2

⩽ 𝑀𝛼, 𝑖 = 1, . . . , 𝑚.

(4.67)

Consequently, in the Gaussian noise case, Algorithm 7 appears with these modifi-
cations:

1. (Step 2): Find MLE 𝜽∗ by 𝜽∗ ∈ arg min
𝜽

∑𝑁
𝑗=1



𝒙 𝑗 − 𝒎 (𝜽)


2

2. (Step 8a): Solve

𝜽 ∈ arg max
𝜽
∥𝝋 (𝜽) − 𝒄∥2

𝑠.𝑡.
∑𝑁
𝑗=1



𝒙 𝑗 − 𝒎 (𝜽)


2

⩽ 𝑀𝛼 .
(4.68)
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Farthest point optimization in the Gaussian model

In Step 8a of Algorithm 7 we seek the farthest point 𝜽 from a center 𝒄:

𝜽 ∈ arg max
𝜽
∥𝝋 (𝜽) − 𝒄∥2

𝑠.𝑡.
∑𝑁
𝑗=1



𝒙 𝑗 − 𝒎 (𝜽)


2

⩽ 𝑀𝛼 .
(4.69)

To solve this optimization, we use the merit function technique (Nocedal and S.
Wright, 2006) as follows:

minimize
𝜽

− ∥𝝋 (𝜽) − 𝒄∥2 + 𝜇max
0,

𝑁∑︁
𝑗=1



𝒙 𝑗 − 𝒎 (𝜽)


2 − 𝑀𝛼

 . (4.70)

In implementation, one should start with a small value of 𝜇 and increase it to find the
optimum (Nocedal and S. Wright, 2006). The first term in (4.70) intends to increase
the distance from the center 𝒄 and the second term keeps the solution feasible. Any
algorithm picked to solve (4.70) must be able to slide near the feasibility region∑𝑁
𝑗=1



𝒙 𝑗 − 𝒎 (𝜽)


2

⩽ 𝑀𝛼 to guarantee a better performance. Suggestions of such
algorithms are the gradient descent (Kingma and Ba, 2014), if the gradients are
available and differential evolution (Storn and Price, 1997) if gradients are not
available.

Surrogate relative likelihoods

Although the computation of the maximum likelihood 𝜽∗ in Step 2 of Algorithm 7
is only done once; for the observed dataD, the computation of 𝛽𝛼 in Step 3 requires
it to be computed for all data D′ generated by the statistical model. Simplification
of this computation can be obtained by large sample 𝑁 approximations (see Section
4.4) or the utilization of a surrogate relative likelihood as discussed in Remark 4.3.1,
which we now address.

Let the generic multisample be D′ := (𝑥′1, . . . , 𝑥
′
𝑁
) in the computation of 𝛽𝛼 in

(4.58), and consider the upper bound on the maximum likelihood of the Gaussian



145

noise model (4.62)

sup
𝜃∈Θ

𝑝 (D′|𝜽) =
1(

𝜎
√

2𝜋
)𝑟𝑁 sup

𝜃∈Θ
exp ©­«− 1

2𝜎2

𝑁∑︁
𝑗=1



𝒙′𝑗 − 𝒎 (𝜽)


2ª®¬

≤ 1(
𝜎
√

2𝜋
)𝑟𝑁 sup

𝒎∈R𝑟
exp ©­«− 1

2𝜎2

𝑁∑︁
𝑗=1



𝒙′𝑗 − 𝒎


2ª®¬

=
1(

𝜎
√

2𝜋
)𝑟𝑁 exp ©­«− 1

2𝜎2

𝑁∑︁
𝑗=1



𝒙′𝑗 − 1
𝑁

𝑁∑︁
𝑘=1

𝒙′𝑘


2ª®¬ ,

so that the resulting surrogate relative likelihood (using the same symbol as the
relative likelihood) discussed in Remark 4.3.1 becomes

𝑝 (D′|𝜽) =
exp

(
− 1

2𝜎2
∑𝑁
𝑗=1



𝒙′
𝑗
− 𝒎 (𝜽)



2
)

exp
(
− 1

2𝜎2
∑𝑁
𝑗=1



𝒙′
𝑗
− 1

𝑁

∑𝑁
𝑘=1 𝒙

′
𝑘



2
) , (4.71)

and therefore the condition 𝑝 (·|𝜽) < 𝛼 in the computation of the surrogate signifi-
cance 𝛽′𝛼 ≥ 𝛽𝛼 defined in (4.58) in terms of the surrogate relative likelihood (4.71)
in Step 3 appears as

𝑁∑︁
𝑗=1



𝒙′𝑗 − 𝒎 (𝜽)


2 −

𝑁∑︁
𝑗=1



𝒙′𝑗 − 1
𝑁

𝑁∑︁
𝑘=1

𝒙′𝑘


2
> 2𝜎2 ln

1
𝛼
. (4.72)

Rewriting in terms of the 𝑁 (0, 𝜎2𝐼𝑟) Gaussian random variables

𝜖𝑖 := 𝒙′𝑗 − 𝒎(𝜽), 𝑖 = 1, . . . , 𝑁

we obtain
𝑁∑︁
𝑗=1



𝒙′𝑗 − 𝒎 (𝜽)


2 −

𝑁∑︁
𝑗=1



𝒙′𝑗 − 1
𝑁

𝑁∑︁
𝑘=1

𝒙′𝑘


2

=

𝑁∑︁
𝑗=1



𝜖 𝑗

2 −
𝑁∑︁
𝑗=1



𝜖 𝑗 − 1
𝑁

𝑁∑︁
𝑘=1

𝜖𝑘


2

= 2
𝑁∑︁
𝑗=1

〈
𝜖 𝑗 ,

1
𝑁

𝑁∑︁
𝑘=1

𝜖𝑘⟩ −


 1
𝑁

𝑁∑︁
𝑘=1

𝜖𝑘


2

= (2𝑁 − 1)



 1
𝑁

𝑁∑︁
𝑘=1

𝜖𝑘




2
,

that is
𝑁∑︁
𝑗=1



𝒙′𝑗 − 𝒎 (𝜽)


2 −

𝑁∑︁
𝑗=1



𝒙′𝑗 − 1
𝑁

𝑁∑︁
𝑘=1

𝒙′𝑘


2

= (2𝑁 − 1)∥𝑣∥2, (4.73)
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where

𝑣 :=
1
𝑁

𝑁∑︁
𝑘=1

𝜖𝑘

is Gaussian with mean zero and, since the 𝜖𝑘 are i.i.d, have covariance 𝜎2𝐼𝑟 , that
is 𝑣 ∈ 𝑁 (0, 𝜎2

𝑁
𝐼𝑟). Since Schott (Schott, 2016, Thm. 9.9) implies that 𝑁

𝜎2 ∥𝑣∥2 is
distributed as 𝜒2

𝑟 , it follows from (4.72), (4.73) and the definition of the surrogate
significance 𝛽′𝛼 (4.58) that

𝛽′𝛼 = 1 − 𝜒2
𝑟

( 2𝑁
2𝑁 − 1

ln
1
𝛼

)
≥ 𝛽𝛼 . (4.74)

Consequently, removing the prime indicating the surrogate significance 𝛽′𝛼, denoting
it as 𝛽𝛼, the modifications (4.68) to Algorithm 7 are augmented to

1. (Step 2): Find MLE 𝜽∗ by 𝜽∗ ∈ arg min
𝜽

∑𝑁
𝑗=1



𝒙 𝑗 − 𝒎 (𝜽)


2

2. (Step 3): Solve for 𝛼 satisfying 𝛽𝛼 := 1 − 𝜒2
𝑟

( 2𝑁
2𝑁−1 ln 1

𝛼

)
= 𝛽∗

3. (Step 8a): Solve

𝜽 ∈ arg max
𝜽
∥𝝋 (𝜽) − 𝒄∥2

𝑠.𝑡.
∑𝑁
𝑗=1



𝒙 𝑗 − 𝒎 (𝜽)


2

⩽ 𝑀𝛼 .
(4.75)

Stochastic processes
We now consider the case where Θ ⊆ R𝑘 and the data is the multisample D :=
(𝑥1, . . . , 𝑥𝑁 ) with 𝑥𝑖 = (𝑦𝑖, 𝑡𝑖) ∈ Y ×T where 𝑦𝑖 corresponds to the observation of a
stochastic process at time 𝑡𝑖. Letting 𝜃 parameterize the distribution of the stochastic
process and assuming the 𝑦𝑖 to be independent given 𝜃 and the 𝑡𝑖, the model density
takes the form (A) 𝑝(D|𝜃) := Π𝑁

𝑖=1𝑝(𝑥𝑖 |𝜃, 𝑡𝑖)𝑞(𝑡𝑖) if the 𝑡𝑖 are assumed to be i.i.d.
with distribution 𝑄 (and density 𝑞 with respect to some given base measure on T ),
(B) and 𝑝

(
(𝑥1, . . . , 𝑥𝑁 )

��𝜃, (𝑡1, . . . , 𝑡𝑁 )) := Π𝑁
𝑖=1𝑝(𝑥𝑖 |𝜃, 𝑡𝑖) if the 𝑡𝑖 are assumed to be

arbitrary. Observe that the model densities for cases (A) and (B) are proportional
and, as a consequence, given the 𝑡𝑖 (arbitrary or sampled), they share the same
likelihood region ΘD (𝛼) =

{
𝜃 ∈ Θ : Π𝑁

𝑖=1𝑝(𝑦𝑖 |𝜃, 𝑡𝑖) ≥ 𝛼 sup𝜃′ Π𝑁
𝑖=1𝑝(𝑦𝑖 |𝜃

′, 𝑡𝑖)
}
.

Let 𝑄𝑁 := δ𝑡1+···+δ𝑡𝑁
𝑁

∈ P(T ) be the empirical probability distribution defined by
(𝑡1, . . . , 𝑡𝑛), and assume T to be a compact subset of a finite dimensional Euclidean
space. The following theorem indicates the result of Theorem 4.4.1 remains valid
in case (B) if 𝑄𝑁 → 𝑄 (e.g. when T = [0, 1] and 𝑄 is the uniform distribution and
the 𝑡𝑖 = 𝑖/𝑁).
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Theorem 4.4.2. Assume that the model density (𝑦, 𝑡) → 𝑝(𝑦 |𝜃, 𝑡)𝑞(𝑡) satisfies the
regularity conditions of (G. Casella and R. L. Berger, 2002, Section. 10.6.2), and
that 𝑄𝑁 → 𝑄 (in the sense of weak convergence) as 𝑁 → ∞. Then in both cases
(A) and (B) the limit 𝛽𝛼 → 1 − 𝜒2

𝑘

(
2 ln 1

𝛼

)
holds true as 𝑁 →∞.

4.5 Minimum enclosing ball algorithm
Let 𝐾 ⊂ R𝑛 be a compact subset and let 𝐵 ⊃ 𝐾 , with center 𝑧 and radius 𝑅, be
the smallest closed ball containing 𝐾 . Together Theorem 4.3.3 and Theorem 4.7.2
demonstrate that the minimum enclosing ball exists and is unique. The problem
of computing the minimum enclosing ball has received a considerable amount of
attention, beginning with Sylvester (Sylvester, 1857) in 1857. Probably the most cited
method is that of Welzl (Welzl, 1991), which, by (Welzl, 1991, Thm. 2), achieves
the solution in expected O((𝑛 + 1) (𝑛 + 1)!|𝐾 |) time, where |𝐾 | is the cardinality
of the set 𝐾 . Yildirim (Yildirim, 2008) provides two algorithms which converge to
an 𝜖-approximate minimum enclosing ball in O( |𝐾 |𝑛

𝜖
) computations and provides a

historical review of the literature along with extensive references.

Although Yildirim does address the infinite𝐾 situation, we provide a new algorithm,
Algorithm 8, based on that of Bădoiu, Har-Peled and Indyk (Bădoiu, Har-Peled,
and Indyk, 2002, p. 251), to approximately compute the minimum enclosing ball
𝐵 containing a (possibly infinite) compact set 𝐾 in R𝑛, using the approximate
computation of maximal distances from the set 𝐾 to fixed points in R𝑛. To that end,
let MINIBALL denote an existing algorithm for computing the minimum enclosing
ball for sets of size ≤ 𝑛 + 2. As we will demonstrate, the FOR loop in Algorithm
8 always gets broken at Step 10 for some 𝑥 since, by Caratheodory’s theorem (
see e.g. (Rockafellar, 1970)) a minimum enclosing ball in 𝑛 dimensions is always
determined by 𝑛 + 1 points.

For 𝛿 ≥ 0, and a function 𝑓 : 𝑋 → R, let arg max𝛿 𝑓 denote a 𝛿-approximate
maximizer in the following sense; 𝑥∗ ∈ arg max𝛿 𝑓 if

𝑓 (𝑥∗) ≥ 1
1 + 𝛿 sup

𝑥∈𝑋
𝑓 (𝑥).

For, 𝜖 > 0, the 𝜖-enlargement 𝐵(1+𝜖) (𝑥, 𝑟) of a closed ball 𝐵(𝑥, 𝑟) with center 𝑥
and radius 𝑟 is the closed ball 𝐵(𝑥, (1 + 𝜖)𝑟). In the following algorithm, 𝛿 is a
parameter quantifying the degree of optimality of distance maximizations and 𝜖
is a parameter specifying the accuracy required of the produced estimate to the
minimum enclosing ball. The following theorem demonstrates that Algorithm 8
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Algorithm 8 Miniball algorithm
1: Inputs: 𝜖 ∈ [0, 1), 𝛿 ≥ 0 , 𝐾 and MINIBALL for sets of size ≤ 𝑛 + 2
2: (𝑥𝛼, 𝑥𝛽) ← arg max𝛿

𝑥,𝑥′∈𝐾 ∥𝑥 − 𝑥
′∥

3: 𝐴0 ← {𝑥𝛼, 𝑥𝛽}
4: 0← 𝑘 (iteration counter)
5: repeat
6: 𝐵𝑘 ← MINIBALL(𝐴𝑘 )
7: while |𝐴𝑘 | > 𝑛 + 1 do
8: for 𝑥 ∈ 𝐴𝑘 do
9: 𝐵𝑥

𝑘
← MINIBALL(𝐴𝑘 \ {𝑥})

10: if 𝐵𝑥
𝑘
= 𝐵𝑘 then 𝐴𝑘 ← 𝐴𝑘 \ {𝑥} and break loop

11: end for
12: end while
13: 𝑧𝑘 ← Center(𝐵𝑘 )
14: 𝑥𝑘+1 ← arg max𝛿

𝑥∈𝐾 ∥𝑥 − 𝑧𝑘 ∥
15: 𝐴𝑘+1 ← 𝐴𝑘 ∪ {𝑥𝑘+1}
16: 𝑘 ← 𝑘 + 1
17: until 𝑥𝑘 ∈ 𝐵(1+𝜖)𝑘−1
18: return 𝐵

(1+𝜖) (1+𝛿)
𝑘−1 , 𝐴𝑘−1

produces an approximation with guaranteed accuracy to the minimum enclosing
ball in a quantified finite number of steps.

Theorem 4.5.1. For a compact subset 𝐾 ⊂ R𝑛, let 𝑅 denote the radius of the
minimum enclosing ball of 𝐾 . Then, for 𝜖 ∈ [0, 1), 𝛿 ≥ 0, Algorithm 8 converges
to a ball 𝐵∗, satisfying

𝐵∗ ⊃ 𝐾

and
𝑅
(
𝐵∗

)
≤ (1 + 𝜖) (1 + 𝛿)𝑅

in at most 16
𝜖2 (1 + 2𝛿) steps of the REPEAT loop. Moreover, the size of the working

set 𝐴𝑘 is bounded by

|𝐴𝑘 | ≤ min
(
2 + 16

𝜖2 (1 + 2𝛿), 𝑛 + 2
)

for all 𝑘 .

4.6 Examples
Gaussian Mean Estimation
Consider the problem of estimating the mean 𝜃† of a Gaussian distributionN(𝜃†, 𝜎2)
with known variance 𝜎2 > 0 from the observation of one sample 𝑥 from that
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distribution and from the information that 𝜃† ∈ [−𝜏, 𝜏] for some given 𝜏 > 0.
Note that this problem can be formulated in the setting of Problem 1 by letting (1)
𝑃(·|𝜃) be the Gaussian distribution on 𝑋 := R with mean 𝜃 and variance 𝜎2, (2)
Θ := [−𝜏, 𝜏] and 𝑉 := R and (3) 𝜑 : Θ → 𝑉 be the identity map 𝜑(𝜃) = 𝜃. The
relative likelihood (4.31) is

𝑝(𝑥 |𝜃) = 𝑒
− 1

2𝜎2 |𝑥−𝜃 |2

sup𝜃∈Θ 𝑒
− 1

2𝜎2 |𝑥−𝜃 |2
(4.76)

with the supremum in the denominator achieved at the closest 𝜃 ∈ Θ to 𝑥 (𝑥 itself if
𝑥 ∈ [−𝜏, 𝜏]). This defines the likelihood region Θ𝑥 (𝛼) := {𝜃 ∈ Θ : 𝑝(𝑥 |𝜃) ≥ 𝛼}. A
simple calculation yields, for the case 𝑥 ∈ [−𝜏, 𝜏]

Θ𝑥 (𝛼) =
[
max

(
−𝜏, 𝑥 −

√︁
2𝜎2 ln(1/𝛼)

)
, min

(
𝜏, 𝑥 +

√︁
2𝜎2 ln(1/𝛼)

) ]
. (4.77)

Using Theorem 4.3.5 with 𝑚 = 𝑑𝑖𝑚(𝑉) + 1 = 2, for 𝛼 ∈ [0, 1], one can compute a
saddle point (𝜋𝛼, 𝑑𝛼) of the game (4.47) as

𝜋𝛼 = 𝑤δ𝜃1 + (1 − 𝑤)δ𝜃2 and 𝑑𝛼 = 𝑤𝜃1 + (1 − 𝑤)𝜃2, (4.78)

where 𝑤, 𝜃1, 𝜃2 maximize the variance
Maximize 𝑤𝜃2

1 + (1 − 𝑤)𝜃
2
2 − (𝑤𝜃1 + (1 − 𝑤)𝜃2)2

over 0 ≤ 𝑤 ≤ 1, 𝜃1, 𝜃2 ∈ [−𝜏, 𝜏]

subject to (𝑥−𝜃𝑖)2
2𝜎2 ≤ ln 1

𝛼
, 𝑖 = 1, 2,

(4.79)

where the last two constraints are equivalent to the rarity assumption 𝜃𝑖 ∈ Θ𝑥 (𝛼).

Hence for 𝛼 near 0, Θ𝑥 (𝛼) = Θ = [−𝜏, 𝜏], and by Theorem 4.3.3, the variance is
maximized by placing each Dirac on each boundary point of the region Θ, each
receiving half of the total probability mass, that is by 𝜃1 = −𝜏, 𝜃2 = 𝜏 and 𝑤 = 1/2,
in which case Var 𝜋𝛼 = 𝜏2 and 𝑑𝛼 = 0. For 𝛼 = 1, the rarity constraint implies
𝜃1 = 𝜃2 = 𝑥 when 𝑥 ∈ [−𝜏, 𝜏], leading to the MLE 𝑑𝛼 = 𝑥 with Var 𝜋𝛼 = 0. Note
that from (4.34) we have

𝛽𝛼 = sup
𝜃∈[−𝜏,𝜏]

P𝑥′∼N(𝜃,𝜎2)
[
𝑝(𝑥′|𝜃) < 𝛼

]
which can be computed analytically for this example using 4.76 and separating into
the three cases 𝑥 < −𝜏, 𝑥 ∈ [−𝜏, 𝜏] and 𝑥 > 𝜏. We illustrate in Figure 4.6 the
different results of solving the optimization problem (4.79) in the case 𝜎2 = 1,
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Figure 4.6: 𝛼 − 𝛽 relation, likelihood level sets, risk value and decision for different
choices of 𝛼 (and consequently 𝛽) for the normal mean estimation problem with
𝜏 = 3 and observed value 𝑥 = 1.5. Three different values in the 𝛼 − 𝛽 curve are
highlighted across the plots

𝑥 = 1.5 and 𝜏 = 3. We plot the 𝛼 − 𝛽 curve (top left), the likelihood of the model in
[−𝜏, 𝜏] and the 𝛼−level sets (top right), and the evolutions of the risk with 𝛽 (bottom
left), and the optimal decision with 𝛽 (bottom right). Since, by Theorem 4.3.3, the
optimal decision is the midpoint of the interval with extremes in either the 𝛼−level
sets or ±𝜏, we observe that for low 𝛽, our optimal decision does not coincide with
the MLE.

Estimation of a quadratic function
The measurement function 𝒎 of Section 4.6, being defined as the solution of the
Lotka-Volterra predator-prey model as a function of its parameters 𝜽 ∈ Θ, does not
appear simple to differentiate and therefore SciPy’s version of Storn and Price’s
(Storn and Price, 1997) Differential Evolution optimizer (Virtanen et al., 2020) was
used to perform the farthest point optimization problem in Step 8a in Algorithm 7.
In this section, we test this framework on a problem which does not possess this
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complication: estimating the parameters 𝜽 := (𝜃0, 𝜃1, 𝜃2) of a quadratic function

𝒎(𝑡; 𝜽) := 𝜃0 + 𝜃1𝑡 + 𝜃2𝑡
2

on a uniform grid 𝑇 of the interval (0, 5) consisting of 100 points, using noisy
observational data. In this case, we can use automatic differentiation in the merit
function technique of Section 4.4 to perform the farthest point optimization problem
in Step 8a using gradient descent methods via automatic differentiating modules
available in packages like autograd, or computing the gradient and applying a
gradient descent method.

We proceed as in Section 4.6 with Θ := [−30, 30]3 and assume that, given 𝜽 ∈ Θ, a
single sample pathD := {𝒙} :=

(
𝒙 (𝑡)

)100
𝑡=1 is generated on the grid 𝑇 to the stochastic

process
𝒙 (𝑡) = 𝒎(𝑡; 𝜽) + 𝜖𝑡 , 𝜖𝑡 ∼ N(0, 𝜎2), 𝑡 ∈ 𝑇, (4.80)

with 𝜎2 := 10. Consequently 𝑋 := R100. We let the decision space be 𝑉 = R3 and
the quantity of interest 𝜑 : Θ→ R3 be the identity function.

For the experiment, we generate a single (𝑁 := 1) full sample path D := {𝒙} :=(
𝒙 (𝑡)

)100
𝑡=1 according to (4.80) at the unknown values 𝜽∗ := (𝜃∗1, 𝜃

∗
2, 𝜃
∗
3) = (1, .5, 1).

As discussed in Section 4.4, we tune 𝜇 in the merit function (4.70), and set gradi-
ent descent with adaptive moment estimation optimizer (Paszke et al., 2019) with
parameters (e.g. learning rate = 0.001, max epochs=50,000) to achieve full conver-
gence. We observe the convergence plots for the increment of 𝜃s from the ball center
as diagnostic.

Figure 4.7 shows the 𝛽 vs 𝛼 relationship defined by the surrogate significance (4.74)
derived from the surrogate likelihood method with 𝑁 := 1 and 𝑟 := 100, the risk
as function of 𝛼, and the likelihood regions, their minimum enclosing balls and the
optimal decisions (centers of the balls), for 𝛼 ∈ [0, 1]. As can be seen the optimal
decisions, being the centers of the minimum enclosing balls, do not move and only
the size of the minimum enclosing balls change, resulting in various risk values
associated with the same optimal estimates.

Finally, Figure 4.7 shows the results for the maximum likelihood solution and the two
supporting points of the minimum enclosing balls for the case that 𝛽𝛼 = 𝛽∗ = 0.05.
From this experiment, we obtained the optimal decision 𝑑∗ = (0.24, 1.22, 0.89)
along with the two support points 𝑆 =

{
(−2.27, 3.52, 0.48), (2.75,−1.10, 1.31)

}
of

the minimum enclosing ball. For the sake of comparison, we also performed the
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same experimentation with SciPy’s version of Storn and Price’s (Storn and Price,
1997) Differential Evolution optimizer (Virtanen et al., 2020) at the default settings,
to perform the farthest point optimization problem in Step 8a in Algorithm 7, using
the merit function (4.70) of Section 4.4, and obtained similar results.

Figure 4.7: Quadratic model results: (left-top) 𝛽𝛼 vs 𝛼, (right-top) risk vs 𝛽𝛼,
(left-bottom) the supporting surfaces with the decision points at the center of each
surface and (right-bottom) maximum-likelihood solution and supporting points of
the minimum enclosing ball for 𝛽𝛼 = 𝛽∗ = .05

Estimation of a Lotka-Volterra predator-prey model
Here we implement Algorithm 7 for the Gaussian noise model of Section 4.4, where
the measurement function (𝜃1, 𝜃2) ↦→ 𝒎(𝜃1, 𝜃2) is defined as the solution map of
the Lotka-Volterra (Lotka, 1920) predator-prey model

𝑑𝑥

𝑑𝑡
= 𝜃1𝑥 − 𝜂𝑥𝑦 (4.81)

𝑑𝑦

𝑑𝑡
= 𝜉𝑥𝑦 − 𝜃2𝑦, (4.82)

evaluated on the uniform time grid 𝑇 := {𝑡𝑖}200
𝑖=1 such that 𝑡0 = 0 and 𝑡200 = 20, with

fixed and known parameters 𝜂, 𝜉 and initial data 𝑥0, 𝑦0, describing the evolution of a
prey population with variable 𝑥 and a predator population with variable 𝑦. As such,
denoting 𝜽 := (𝜃1, 𝜃2) ∈ Θ, we denote the solution map

𝜽 ↦→ 𝒎(𝑡; 𝜽), 𝑡 ∈ 𝑇,
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by 𝒎 : Θ → (R2)𝑇 . For the probabilistic model, we let Θ := [−5, 5]2 and assume
the Gaussian model (4.64) with 𝑁 = 1, where the dataD consists of a single sample
path D := {𝒙} :=

(
𝒙 (𝑡)

)200
𝑡=1 of the 𝑇-indexed stochastic process

𝒙 (𝑡) =

[
𝑥𝑡

𝑦𝑡

]
= 𝒎(𝑡; 𝜽) + 𝜖𝑡 , 𝜖𝑡 ∼ N(0, 𝜎2I), 𝑡 ∈ 𝑇, (4.83)

where I ∈ R2×2 is the identity matrix and 𝜎 = 5. Note that in the notation of (4.64)
we have

∥𝒙 − 𝒎 (𝜽) ∥2 =
∑︁
𝑡∈𝑇
∥𝒙 (𝑡) − 𝒎 (𝑡; 𝜽) ∥2.

Let the decision space be 𝑉 := R2 and let the quantity of interest 𝜑 : Θ → R2

be the identity. For the experiment, we generate one sample path D := {𝒙} :=(
𝒙 (𝑡)

)200
𝑡=1 according to (4.83) at the unknown values 𝜽∗ := (𝜃∗1, 𝜃

∗
2) = (0.55, 0.8),

with 𝑥0 = 30, 𝑦0 = 10, 𝜂 = 0.025 and 𝜉 = 0.02 known. We consider the evolution
𝑡 ↦→ 𝒎(𝑡; 𝜽∗), 𝑡 ∈ 𝑇, the true predator-prey values and the sample path

(
𝒙 (𝑡)

)200
𝑡=1 as

noisy observations of it. The resulting time series D is shown in the top image of
Figure 4.8.

For 𝛼 ∈ [0, 1], by taking the logarithm of the defining relation (4.7) of the likelihood
region ΘD (𝛼), we obtain the representation (4.65),

ΘD (𝛼) =
{
𝜽 ∈ Θ :

∑︁
𝑡∈𝑇



𝒙 (𝑡) − 𝒎 (𝑡; 𝜽)


2

⩽ 𝑀𝛼

}
in terms of

𝑀𝛼 := inf
𝜽∈Θ

∑︁
𝑡∈𝑇



𝒙 (𝑡) − 𝒎 (𝑡; 𝜽)


2 + 2𝜎2 ln

1
𝛼
,

for the likelihood region ΘD (𝛼) in terms of the data D.

To determine 𝛼 at significance level 𝛽∗ := .05, we approximate the significance 𝛽𝛼
defined in (4.34) using the chi-squared approximation (4.74) and then select 𝛼 to
be the value such that this approximation yields 𝛽𝛼 = 𝛽∗ = .05. The validity of this
approximation for this example is additionally demonstrated in the right image of
Figure 4.10, which shows via Monte Carlo simulation that the 1− 𝛽𝛼 versus 𝛼 curve
is well characterized by the 𝜒2

2 distribution.

Having selected 𝛼, to implement Algorithm 7, we need to select an optimizer
for Step 8a. Instead of computing the Jacobian of the solution map 𝒎, here we
utilize the gradient-free method of SciPy’s version of Storn and Price’s (Storn and
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Price, 1997) Differential Evolution optimizer (Virtanen et al., 2020) at the default
settings. Given the data generating value 𝜽∗ = (0.55, 0.8), the primary feasible
region Θ := [−5, 5]2 is sufficiently non-suggestive of the the data generating value
𝜽∗. Finally, since 𝑑𝑖𝑚(𝑉) = 2, Algorithm 7 produces: a set 𝑆 of at most three
boundary points of ΘD (𝛼), the minimum enclosing ball 𝐵 of ΘD (𝛼), its center as
the optimal estimate of 𝜽∗, and the weights of the set 𝑆 corresponding to a worst-
case measure, optimal for the variance maximization problem (4.49). The results
are displayed in Figure 4.9.

Figure 4.8: (Top image) DataD := 𝒙 (𝑡) , 𝑡 ∈ 𝑇 , generated, according to the Gaussian
noise model (4.83): solid red is the prey component and solid blue the predator
component of the generated data 𝒙 (𝑡) , the dotted red and dotted blue are the prey-
predator components of the Lotka-Volterra solution 𝒎(𝑡, 𝜽∗) for 𝑡 ∈ 𝑇 . (Bottom
image) Uncertainty in the population dynamics corresponding to the worst-case
measure: (1) red is prey and blue is predator, (2) solid line is the Lotka-Volterra
evolution 𝒎(𝑡, 𝜽∗), 𝑡 ∈ 𝑇 , fine dots 𝒎(𝑡, 𝜽1), 𝑡 ∈ 𝑇, and coarse dots 𝒎(𝑡, 𝜽2), where
𝑆 := {𝜽1, 𝜽2} is the set of support points of the worst case (posterior) measure
(located on the boundary of the minimum enclosing ball).

To get a sense of the output uncertainty of 𝒎(·) with these optimized results, we
plot the predator and prey population dynamics associated with each optimized
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Figure 4.9: Minimum enclosing ball for the Lotka-Volterra Model: (left) the dashed
line indicates the boundary of the likelihood region ΘD (𝛼), the solid circle its
minimum enclosing ball, the red point the data generating value 𝜽∗ and the blue
point the center of the minimum enclosing ball and the optimal estimate of 𝜽∗. The
two yellow points comprise the set 𝑆 := {𝜽1, 𝜽2}. (right) a projected view with the
yellow columns indicating the weights (.5, .5) of the set 𝑆 in their determination of
a worst-case (posterior) measure.

Figure 4.10: Monte Carlo numerically confirms the result from Theorem 4.4.1 in
both the quadratic function estimation (left image) and Lotka-Volterra (right image)
examples.
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boundary point of ΘD (𝛼) in Figure 4.8. This figure shows that with significance
value 𝛽𝛼 = 0.05, the optimized boundary points create population dynamics in a
tight band around the true population dynamics.

4.7 General loss functions and rarity assumptions
Here we generalize the framework introduced in Section 4.2 to allow more general
loss functions than the ℓ2 loss, in for example Equations (4.18), (4.19), and (4.23),
and more general rarity assumptions than (4.33).

The discussions of worst-case, robust Bayes, and Wald’s statistical decision theory
generalize in a straightforward manner, so we focus on generalizing the current UQ
of the 4th kind. Let ℓ : 𝑉 ×𝑉 → R+ be a loss function. In addition to the pointwise
rarity assumption (4.33), consider an integral rarity assumption PΨ

𝑥 (𝛼) ⊂ P(Θ)
determined by a real-valued function Ψ, defined by

PΨ
𝑥 (𝛼) :=

{
𝜋 ∈ P(Θ) :

∫
Θ

Ψ
(
𝑝(𝑥 |𝜃)

)
𝑑𝜋(𝜃) ≥ 𝛼

}
(4.84)

generalizing (4.29). Note that for Ψ the identity function P𝑥 (𝛼) ⊂ PΨ
𝑥 (𝛼) and by

comparison with (4.29) it follows from the following remark that such integral rarity
assumptions can also alleviate the brittleness of Bayesian inference.

Remark 4.7.1. Jensen’s inequality implies that

Ψ

(∫
Θ

𝑝(𝑥 |𝜃)𝑑𝜋(𝜃)
)
≤

∫
Θ

Ψ
(
𝑝(𝑥 |𝜃))

)
𝑑𝜋(𝜃)

when the function Ψ is convex, and

Ψ

(∫
Θ

𝑝(𝑥 |𝜃)𝑑𝜋(𝜃)
)
≥

∫
Θ

Ψ
(
𝑝(𝑥 |𝜃))

)
𝑑𝜋(𝜃)

when the function Ψ is concave, such as when Ψ is a logarithm. Consequently, when
Ψ is concave and strictly increasing, the assumption∫

Θ

Ψ
(
𝑝(𝑥 |𝜃)

)
𝑑𝜋(𝜃) ≥ 𝛼

implies that the denominator in the conditional measure (4.46) satisfies∫
Θ

𝑝(𝑥 |𝜃)𝑑𝜋(𝜃) ≥ Ψ−1(𝛼) .

Consequently, such constraints, by keeping the denominator in the conditional mea-
sure bound away from zero, stabilize the numerical computation of the conditional
measure in the numerical computation of a worst-case measure.
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The following applies equally as well for the pointwise rarity assumption (4.33) and
the integral rarity assumption (4.84). For simplicity of exposition, we restrict to the
pointwise rarity assumption. Generalizing (4.45), consider playing a game using the
loss

L(𝜋, 𝑑) := E𝜃∼𝜋𝑥
[
ℓ(𝜑(𝜃), 𝑑)

]
, 𝜋 ∈ P𝑥 (𝛼), 𝑑 ∈ 𝑉 . (4.85)

For the pointwise rarity assumption, the same logic following (4.45) implies that
this game is equivalent to the generalization (4.47) to a game using the loss

L(𝜋, 𝑑) := E𝜃∼𝜋
[
ℓ(𝜑(𝜃), 𝑑)

]
, 𝜋 ∈ P𝑥 (𝛼), 𝑑 ∈ 𝑉 . (4.86)

For the integral rarity assumption, we maintain the form (4.85). 𝛽𝛼 is defined before
as in (4.34) and the selection of 𝛼 ∈ [0, 1] is as before.

Under the mild conditions of Theorem 4.8.1, we can show that, for each 𝛼 ∈ [0, 1], a
maxmin optimal solution 𝜋𝛼 of max𝜋∈P𝑥 (𝛼) min𝑑∈𝑉 L(𝜋, 𝑑) can be computed. More-
over, by Theorem 4.8.1, it also follows that the saddle function L in (4.86) satisfies
the conditions of Sion’s minmax theorem (Sion, 1958), resulting in a minmax result
for the game (4.86):

min
𝑑∈𝑉

max
𝜋∈P𝑥 (𝛼)

L(𝜋, 𝑑) = max
𝜋∈P𝑥 (𝛼)

min
𝑑∈𝑉
L(𝜋, 𝑑) . (4.87)

Consequently if, for each 𝜋 ∈ P𝑥 (𝛼), we select

𝑑𝜋 ∈ arg min
𝑑∈𝑉
L(𝜋, 𝑑), (4.88)

then a worst-case measure for the game (4.86), solving the maxmin problem on the
right-hand side of (4.87), satisfies

𝜋𝛼 ∈ arg max
𝜋∈P𝑥 (𝛼)

L(𝜋, 𝑑𝜋) . (4.89)

Moreover let 𝑑𝛼 ∈ arg min𝑑∈𝑉 max𝜋∈P𝑥 (𝛼) L(𝜋, 𝑑) denote any solution to the min-
max problem on the left-hand side of (4.87). Then it is well known that the minmax
equality (4.87) implies that the pair (𝜋𝛼, 𝑑𝛼) is a saddle point of L in that

L(𝜋, 𝑑𝛼) ≤ L(𝜋𝛼, 𝑑𝛼) ≤ L(𝜋𝛼, 𝑑), 𝜋 ∈ P𝑥 (𝛼), 𝑑 ∈ 𝑉 . (4.90)

Since the solution to
𝑑𝜋𝛼 := arg min

𝑑∈𝑉
L(𝜋𝛼, 𝑑) (4.91)
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is uniquely defined under the conditions of Theorem 4.7.2 (identical to those of
Theorem 4.8.1), it follows from the right-hand side of the saddle equation (4.3) that
𝑑𝜋𝛼 = 𝑑𝛼 and (𝜋𝛼, 𝑑𝜋𝛼) is a saddle point of L, that is we have

L(𝜋, 𝑑𝜋𝛼) ≤ L(𝜋𝛼, 𝑑𝜋𝛼) ≤ L(𝜋𝛼, 𝑑), 𝜋 ∈ P𝑥 (𝛼), 𝑑 ∈ 𝑉 . (4.92)

Moreover, its associated risk is the value

R(𝑑𝜋𝛼) := L(𝜋𝛼, 𝑑𝜋𝛼) (4.93)

in (4.92) of the two person game defined in (4.86), which is the same for all saddle
points of L.

Finite-dimensional reduction
Let Δ𝑚 (Θ) denote the set of convex sums of 𝑚 Dirac measures located in Θ and, let
P𝑚𝑥 (𝛼) ⊂ P𝑥 (𝛼) defined by

P𝑚𝑥 (𝛼) :=
{
𝜋 ∈ Δ𝑚 (Θ) ∩ P𝑥 (𝛼)

}
, (4.94)

denote the finite-dimensional subset of the rarity assumption set consisting of the
convex combinations of 𝑚 Dirac measures in P𝑥 (𝛼). Then the following reduction
Theorem 4.7.2 asserts that

max
𝜋∈P𝑥 (𝛼)

min
𝑑∈𝑉
L(𝜋, 𝑑) = max

𝜋∈P𝑚𝑥 (𝛼)
min
𝑑∈𝑉
L(𝜋, 𝑑), (4.95)

for any 𝑚 ≥ 𝑑𝑖𝑚(𝑉) + 2. We note that the improvement to 𝑚 ≥ 𝑑𝑖𝑚(𝑉) + 1 when
the loss is the ℓ2 loss follows from the Lagrangian duality, Theorem 4.3.3, of the
maximization problem (4.95) with the minimum enclosing ball and Caratheodory’s
theorem.

In the following theorem, applicable to both pointwise and integral rarity assump-
tions, we provide sufficient conditions that the computation of a worst-case measure
in the optimization problem (4.89) can be reduced to a finite-dimensional one.

Theorem 4.7.2. Let Θ be compact, 𝑋 be a measurable space, P be a positive
dominated model such that, for each 𝑥, its likelihood function is continuous, and
let 𝜑 : Θ → R be continuous. Let 𝑉 be a finite-dimensional Euclidean space and
let ℓ : 𝑉 × 𝑉 → R+ be continuously differentiable, strictly convex and coercive
in its second variable and vanishing along the diagonal. Let Δ𝑚 (Θ) denote the set
of convex sums of 𝑚 Dirac measures located in Θ and, for Ψ : (0, 1] → R upper
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semicontinuous and 𝑥 ∈ 𝑋 , consider both the pointwise rarity assumption subset
P𝑚𝑥 (𝛼) ⊂ P𝑥 (𝛼) defined by

P𝑚𝑥 (𝛼) :=
{
𝜋 ∈ Δ𝑚 (Θ) ∩ P𝑥 (𝛼)

}
, (4.96)

and the integral rarity assumption subset PΨ,𝑚
𝑥 (𝛼) ⊂ PΨ

𝑥 (𝛼), defined by

PΨ,𝑚
𝑥 (𝛼) :=

{
𝜋 ∈ Δ𝑚 (Θ) :

∫
Θ

Ψ
(
𝑝(𝑥 |𝜃)

)
𝑑𝜋(𝜃) ≥ 𝛼

}
, (4.97)

where 𝑝(𝑥 |·) : Θ→ (0, 1] is the relative likelihood. Then we have

max
𝜋∈P𝑥 (𝛼)

min
𝑑∈𝑉
L(𝜋, 𝑑) = max

𝜋∈P𝑚𝑥 (𝛼)
min
𝑑∈𝑉
L(𝜋, 𝑑), (4.98)

for any 𝑚 ≥ 𝑑𝑖𝑚(𝑉) + 2, and

max
𝜋∈PΨ

𝑥 (𝛼)
min
𝑑∈𝑉
L(𝜋, 𝑑) = max

𝜋∈PΨ,𝑚
𝑥 (𝛼)

min
𝑑∈𝑉
L(𝜋, 𝑑), (4.99)

for any 𝑚 ≥ 𝑑𝑖𝑚(𝑉) + 3, unless Ψ is the identity function, when 𝑚 ≥ 𝑑𝑖𝑚(𝑉) + 2.

Remark 4.7.3. Theorem 4.7.2 easily generalizes to vector integral functions Ψ

of more general form than (4.97), where the number of Diracs required is then
𝑚 ≥ 𝑑𝑖𝑚(𝑉) + dim(Ψ) + 1 and 𝑚 ≥ 𝑑𝑖𝑚(𝑉) + dim(Ψ) + 2 for the pointwise and
integral cases, respectively.

(A. Shapiro and Kleywegt, 2002, Thm.2.1) implies one can generalize Theorem
4.7.2 to the more general class of loss functions ℓ which are coercive and convex
in the second argument, but require more, (3

(
dim(𝑉) + 1)

)
) Dirac measures in the

integral case. See (A. Shapiro and Kleywegt, 2002, Prop. 3.1).

The following theorem generalizes the duality Theorem 4.3.3 to more general convex
loss functions.

Theorem 4.7.4. Let 𝜑 : Θ𝑥 (𝛼) → 𝑉 be continuous and suppose that the loss
function satisfies function ℓ(𝑣1, 𝑣2) = 𝑊 (𝑣1 − 𝑣2), where 𝑊 : 𝑉 → R+ is non-
negative, convex, and coercive. For 𝑥 ∈ 𝑋 and 𝛼 ∈ [0, 1], suppose that Θ𝑥 (𝛼) is
compact. Then 𝜑

(
Θ𝑥 (𝛼)

)
⊂ 𝑉 is compact. Let 𝜆 ≥ 0 be the smallest value such that

there exists a 𝑧 ∈ 𝑉 with

𝜑(Θ𝑥 (𝛼)) + 𝑧 ⊂ 𝑊−1( [0, 𝜆]).

Then 𝜆 is the value of the maxmin problem defined by the game (4.86)

𝜆 = max
𝜋∈P𝑥 (𝛼)

min
𝑑∈𝑉

E𝜃∼𝜋
[
ℓ(𝜑(𝜃), 𝑑)

]
, (4.100)
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and 𝜋∗ is maxmin optimal for it if and only if there exists

𝑑∗ ∈ argmin𝑑∈𝑉E𝜃∼𝜋∗
[
ℓ(𝜑(𝜃), 𝑑)

]
with

support(𝜑∗𝜋∗) ⊂ 𝑊−1(𝜆) − 𝑑∗.

Remark 4.7.5. Pass (Pass, 2020) generalizes these results to the case where the
decision space 𝑉 is a not-necessarily affine metric space and the ℓ2 distance is
replaced by the metric.

4.8 Supporting theorems and proofs
Minmax theorem

Theorem 4.8.1. Consider the saddle function (4.86) for the pointwise and (4.85)
for the integral rarity assumptions, respectively. Given the assumptions of Theorem
4.7.2 we have

min
𝑑∈𝑉

max
𝜋∈P𝑥 (𝛼)

L(𝜋, 𝑑) = max
𝜋∈P𝑥 (𝛼)

min
𝑑∈𝑉
L(𝜋, 𝑑)

and
min
𝑑∈𝑉

max
𝜋∈PΨ

𝑥 (𝛼)
L(𝜋, 𝑑) = max

𝜋∈PΨ
𝑥 (𝛼)

min
𝑑∈𝑉
L(𝜋, 𝑑)

for the pointwise and integral rarity assumptions, respectively.

Proof. We prove the result for the integral rarity assumption case only, the pointwise
case being much simpler. The assumptions imply Ψ(𝑝(𝑥 |·)) is upper semicontinu-
ous, implying that PΨ

𝑥 (𝛼) ⊂ P(Θ) is closed, see e.g. (Aliprantis and Border, 2006,
Thm. 15.5). Since P(Θ) is a compact subset of the space of signed measures in
the weak topology, see e.g. (Aliprantis and Border, 2006, Thm. 15.22), it follows
that PΨ

𝑥 (𝛼) ⊂ P(Θ) is compact. Consequently, to apply Sion’s minmax theorem
(Sion, 1958) it is sufficient to establish that the map L(·, 𝑑) : P(Θ) → R is upper
semicontinuous and quasiconcave for each 𝑑 ∈ 𝑉 and the map L(𝜋, ·) : 𝑉 → R
is lower semicontinuous and quasiconvex for each 𝜋 ∈ P(Θ). To that end, observe
that since 𝜙 is continuous and Θ compact, the function ℓ(𝜙(·), 𝑑) is bounded and
continuous for each 𝑑 ∈ 𝑉 . Fixing 𝑑, observe the positivity of the likelihood function
implies that the set{
𝜋 ∈ P(Θ) : E𝜃∼𝜋𝑥 [ℓ(𝜙(𝜃), 𝑑)] ≥ 𝑟

}
=

{
𝜋 ∈ P(Θ) : E𝜃∼𝜋 [𝑝(𝑥 |·)ℓ(𝜙(𝜃), 𝑑)] ≥ 𝑟E𝜃∼𝜋 [𝑝(𝑥 |·)]

}
is closed by the continuity of ℓ(𝜙(·), 𝑑) and 𝑝(𝑥 |·), see e.g. (Aliprantis and Border,
2006, Thm. 15.5). Moreover, one can show that the reverse inequality also produces
a closed set. Additionally, since it is a linear condition it is convex and therefore the
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function L(·, 𝑑) : P(Θ) → R is upper and lower semicontinuous and quasiconcave
for each 𝑑 ∈ 𝑉 . Moreover, fixing 𝜋 ∈ P(Θ), since the function ℓ is continuous and
Θ is compact and 𝜙 is continuous, it follows that the function L(𝜋, ·) : 𝑉 → R

is continuous and convex and therefore lower semicontinuous and quasiconvex.
Consequently, Sion (Sion, 1958, Cor. 3.3) implies that

inf
𝑑∈𝑉

sup
𝜋∈PΨ

𝑥 (𝛼)
L(𝜋, 𝑑) = sup

𝜋∈PΨ
𝑥 (𝛼)

inf
𝑑∈𝑉
L(𝜋, 𝑑).

Since, for fixed 𝑑, inner optimization sup𝜋∈PΨ
𝑥 (𝛼) L(𝜋, 𝑑) is over of an upper semi-

continuous function over a compact set, it achieves its supremum. Since have es-
tablished in the proof of Theorem 4.7.2 that the inner optimization inf𝑑∈𝑣 L(𝜋, 𝑑)
achieves its infimum, we can write

inf
𝑑∈𝑉

max
𝜋∈PΨ

𝑥 (𝛼)
L(𝜋, 𝑑) = sup

𝜋∈PΨ
𝑥 (𝛼)

min
𝑑∈𝑉
L(𝜋, 𝑑)

Since the inner minimum min𝑑∈𝑣 L(𝜋, 𝑑) is the minimum of a family upper semicon-
tinuous functions, it produces an upper semicontinuous function, see e.g. (Aliprantis
and Border, 2006, Lem. 2.41), since the maximization of the outer loop is over the
compact set PΨ

𝑥 (𝛼), we conclude that the supremum on the righthand side is at-
tained. Moreover, since the inner maximum max𝜋∈PΨ

𝑥 (𝛼) L(𝜋, 𝑑) is the maximum
over a family of continuous functions, and therefore lower semicontinuous func-
tions, it follows that it produces a lower semicontinuous function. Restricting to the
compact subset 𝑉∗ from the proof of Theorem 4.7.2 we conclude the outer infimum
is attained, thus establishing the assertion. □

Proof of Theorem 4.3.2
Since the ℓ2 loss (𝑣1, 𝑣2) ↦→ ∥𝑣1 − 𝑣2∥2 is strictly convex and coercive in its second
argument and vanishes on the diagonal, the assumptions imply that the saddle
function L(𝜋, 𝑑) := E𝜃∼𝜋

[
∥𝜑(𝜃) − 𝑑∥2

]
, 𝜋 ∈ P𝑥 (𝛼), 𝑑 ∈ 𝑉, (4.47) satisfies the

conditions of Theorem 4.7.2, so that it follows from Theorem 4.8.1 that L satisfies
the minmax equality, in particular establishing the existence of a worst-case measure

𝜋∗ ∈ arg max
𝜋∈P𝑥 (𝛼)

inf
𝑑∈𝑉
L(𝜋, 𝑑) (4.101)

and a worst-case decision

𝑑∗ ∈ arg min
𝑑∈𝑉

sup
𝜋∈P𝑥 (𝛼)

L(𝜋, 𝑑). (4.102)
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In addition to establishing the existence of saddle points, where a pair
(
𝜋∗, 𝑑∗

)
∈

P𝑥 (𝛼) ×𝑉 is a saddle point of L if we have

L(𝜋, 𝑑∗) ≤ L(𝜋∗, 𝑑∗) ≤ L(𝜋∗, 𝑑), 𝜋 ∈ P𝑥 (𝛼), 𝑑 ∈ 𝑉, (4.103)

observe that Bertsekas et al. (Bertsekas, Nedić, and Ozdaglar, 2003, Prop. 2.6.1)
assert that a pair (𝜋∗, 𝑑∗) ∈ P𝑥 (𝛼) × 𝑉 is a saddle point if and only if they are a
worst-case measure and worst-case decision, respectively, as defined in (4.101) and
(4.102).

Now let (𝜋∗, 𝑑∗) be a saddle point. As demonstrated in the proof of Theorem 4.7.2,
since the function 𝑑 ↦→ ∥𝜑(𝜃) − 𝑑∥2 is strictly convex for all 𝜃, it follows that its
expectation 𝑑 ↦→ L(𝜋, 𝑑) := E𝜃∼𝜋

[
∥𝜑(𝜃) − 𝑑∥2

]
is strictly convex. Moreover a

minimizer
𝑑∗∗ ∈ arg min

𝑑∈𝑉
L(𝜋∗, 𝑑)

exists and by strict convexity it is necessarily unique; see e.g. (Rockafellar and
Wets, 1998). Consequently, by the right-hand side of the definition (4.103) of a
saddle point it follows that 𝑑∗∗ = 𝑑∗. Since 𝜋∗ satisfying (4.101) is equivalent to it
satisfying (4.48) and 𝑑∗ satisfying the right-hand side of the definition (4.103) of
a saddle point is equivalent to it satisfying (4.49), the assertion regarding the form
(4.48) and (4.49) for saddle points is proved.

Let (𝜋1, 𝑑1) and (𝜋2, 𝑑2) be two saddle points. Then by the saddle relation (4.103)
we have

𝐿 (𝜋2, 𝑑2) ≤ L(𝜋2, 𝑑1) ≤ L(𝜋1, 𝑑1) ≤ L(𝜋1, 𝑑2) ≤ L(𝜋2, 𝑑2),

establishing equality of the value of the risk (4.50) for all saddle points.

Finally, since 𝑑 ↦→ L(𝜋, 𝑑) is strictly convex it follows that its maximum 𝑑 ↦→
sup𝜋∈P𝑥 (𝛼) L(𝜋, 𝑑) is strictly convex, demonstrating the uniqueness of solutions
to (4.102). Moreover, since P𝑥 (𝛼) is convex, the mapping 𝜋 ↦→ L(𝜋, 𝑑) :=
E𝜃∼𝜋

[
∥𝜑(𝜃) − 𝑑∥2

]
is affine and therefore concave for all 𝑑 ∈ 𝑉 , and therefore

its minimum 𝜋 ↦→ inf𝑑∈𝑉 L(𝜋, 𝑑) is also concave. Consequently, the set of all
worst-case measures, that is, maximizers of (4.101), is convex, establishing the final
assertion.

Proof of Theorem 4.3.3
Since the relative likelihood is continuous, the likelihood regionΘ𝑥 (𝛼) is closed and
therefore compact, and since 𝜑 is continuous, it follows that 𝜑

(
Θ𝑥 (𝛼)

)
is compact
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and therefore measurable. According to Bonnans and Shapiro (Bonnans and A.
Shapiro, 2000, Sec. 5.4.1), because the constraint function (𝑟, 𝑧, 𝑥) ↦→ ∥𝑥 − 𝑧∥2 − 𝑟2

is continuous, the Lagrangian of the minimum enclosing ball problem (4.51) is

𝐿 (𝑟, 𝑧; 𝜇) := 𝑟2+
∫
𝜑(Θ𝑥 (𝛼))

(
∥𝑥 − 𝑧∥2 − 𝑟2)𝑑𝜇(𝑥), 𝑟 ∈ R, 𝑧 ∈ 𝑉, 𝜇 ∈ M

(
𝜑(Θ𝑥 (𝛼))

)
.

(4.104)
Define

Ψ(𝜇) := inf
𝑟∈R,𝑧∈𝑉

𝐿 (𝑟, 𝑧; 𝜇)

and observe that

inf
𝑟∈R

𝐿 (𝑟, 𝑧; 𝜇) =

∫
𝜑(Θ𝑥 (𝛼)) ∥𝑥 − 𝑧∥

2𝑑𝜇(𝑥),
∫
𝑑𝜇 = 1

−∞,
∫
𝑑𝜇 ≠ 1

so that

Ψ(𝜇) := inf
𝑟∈R,𝑧∈𝑉

𝐿 (𝑟, 𝑧; 𝜇) =

∫
𝜑(Θ𝑥 (𝛼))



𝑥 − E𝜇 [𝑥]

2
𝑑𝜇(𝑥),

∫
𝑑𝜇 = 1

−∞,
∫
𝑑𝜇 ≠ 1

and therefore the dual problem to the minimum enclosing ball problem (4.51) is

max
𝜇∈M(𝜑(Θ𝑥 (𝛼)))

Ψ(𝜇) = max
𝜇∈P(𝜑(Θ𝑥 (𝛼)))

E𝜇
[
∥𝑥 − E𝜇 [𝑥] ∥2

]
,

establishing the Lagrangian duality assertion.

Moreover, since Θ𝑥 (𝛼) is compact it is Polish, that is Hausdorff and completely
metrizable, and since 𝜑 : Θ𝑥 (𝛼) → 𝜑

(
Θ𝑥 (𝛼)

)
is continuous (Aliprantis and Border,

2006, Thm. 15.14) asserts that 𝜑∗ : P
(
Θ𝑥 (𝛼)

)
→ P(𝜑(Θ𝑥 (𝛼))) is surjective. The

change of variables formula (Aliprantis and Border, 2006, Thm. 13.46) establishes
that the objective function of (4.49) satisfies

E𝜋
[
∥𝜑 − E𝜋 [𝜑] ∥2

]
= E𝜑∗𝜋

[
∥𝑣 − E𝜑∗𝜋 [𝑣] ∥2

]
,

so that the surjectivity of 𝜑∗ implies that the value of (4.49) is equal to

max
𝜈∈P(𝜑(Θ𝑥 (𝛼)))

E𝜈
[
∥𝑣 − E𝜈 [𝑣] ∥2

]
. (4.105)

The primary assertions then follow from Lim and McCann’s (Lim and McCann,
2021, Thm. 1) generalization of the one-dimensional result of Popoviciu (Popoviciu,
1935) regarding the relationship between variance maximization and the minimum
enclosing ball of the domain 𝜑(Θ𝑥 (𝛼)) ⊂ 𝑉 .
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Proof of Theorem 4.3.5
The proof of Theorem 4.7.2 using rarity assumptions of the current form (4.33)
does not require that the likelihood function 𝑝(𝑥′, ·) be continuous for all 𝑥′ ∈ 𝑋
but only at 𝑥. It asserts the finite-dimensional reduction (4.54) for 𝑚 ≥ 𝑑𝑖𝑚(𝑉) + 2
Dirac measures. On the other hand, the duality Theorem 4.3.3 implies that the
optimality of such a measure 𝜋 :=

∑𝑚
𝑖=1 𝑤𝑖δ𝜃𝑖 is equivalent to the images of these

Diracs δ𝜑(𝜃𝑖) , 𝑖 = 1, . . . , 𝑚 lying on the intersection 𝜑(Θ𝑥 (𝛼)) ∩ 𝜕𝐵 of the image of
the likelihood region and the boundary of its minimum enclosing ball 𝐵, and that
the weights of these Diracs determine that the center of mass of this image measure
𝜑∗𝜋 is the center 𝑑𝛼 of the ball 𝐵, expressed as the right-hand side of (4.55).
Consequently, the center 𝑑𝛼 is in the convex hull of the 𝑚 points 𝜑(𝜃𝑖), 𝑖 = 1, . . . , 𝑚
and by Caratheodory’s theorem, see e.g. (Rockafellar, 1970), 𝑑𝛼 is in the convex
hull of 𝑑𝑖𝑚(𝑉) + 1 of these points. Let 𝑆 ⊂ {1, . . . , 𝑚} correspond to such a subset.
Then by the if and only if characterization of duality Theorem 4.3.3 it follows that
the subset 𝜑(𝜃𝑖), 𝑖 ∈ 𝑆 of 𝑑𝑖𝑚(𝑉) + 1 image points, using the weights 𝑤′

𝑖
, 𝑖 ∈ 𝑆

defining this convex combination to be the center 𝑑𝛼, corresponds to an optimal
measure 𝜋′ :=

∑
𝑖∈𝑆 𝑤

′
𝑖
δ𝜃𝑖 , thus establishing the assertion.

Proof of Theorem 4.4.1
The following are standard results in the statistics literature, see (G. Casella and
R. L. Berger, 2002). The idea is to write the Taylor expansion of the log-likelihood
around the MLE, then consider properties of the MLE, and finally apply the law of
large numbers and Slutsky’s theorem.

For simplicity, first let 𝜃 ∈ Θ ⊆ R. Since the second term on the right-hand side in
the Taylor expansion

𝑁∑︁
𝑖=1

ln 𝑝(𝑥𝑖 |𝜃) =
𝑁∑︁
𝑖=1

ln 𝑝(𝑥𝑖 |𝜃̂𝑁 ) +
𝑁∑︁
𝑖=1

𝜕

𝜕𝜃
ln 𝑝(𝑥𝑖 |𝜃)𝜃=𝜃̂𝑁 (𝜃 − 𝜃̂𝑁 )

+ 1
2

𝑁∑︁
𝑖=1

𝜕2

𝜕𝜃2 ln 𝑝(𝑥𝑖 |𝜃)𝜃=𝜃̂𝑁 (𝜃 − 𝜃̂𝑁 )
2 + 𝑜𝑝 (1)

of the log-likelihood around the MLE, 𝜃̂𝑁 , vanishes by the first order condition of
the MLE, we obtain

𝑁∑︁
𝑖=1

ln 𝑝(𝑥𝑖 |𝜃) −
𝑁∑︁
𝑖=1

ln 𝑝(𝑥𝑖 |𝜃̂𝑁 ) =
1
2

𝑁∑︁
𝑖=1

𝜕2

𝜕𝜃2 ln 𝑝(𝑥𝑖 |𝜃)𝜃=𝜃̂𝑁 (𝜃 − 𝜃̂𝑁 )
2 + 𝑜𝑝 (1),
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which we write as

−2
𝑁∑︁
𝑖=1

ln
( 𝑝(𝑥𝑖 |𝜃)
𝑝(𝑥𝑖 |𝜃̂𝑁 )

)
= − 1

𝑁

𝑁∑︁
𝑖=1

𝜕2

𝜕𝜃2 ln 𝑝(𝑥𝑖 |𝜃)𝜃=𝜃̂𝑁 (
√
𝑁 (𝜃 − 𝜃̂𝑁 ))2 + 𝑜𝑝 (1).

By the law of large numbers and the consistency of the MLE we have

− 1
𝑁

𝑁∑︁
𝑖=1

𝜕2

𝜕𝜃2 ln 𝑝(𝑥𝑖 |𝜃)𝜃=𝜃̂𝑁
P−→ −𝐸𝑋∼𝑃(·|𝜃)

𝜕2

𝜕𝜃2 ln 𝑝(𝑋 |𝜃) = 𝐼 (𝜃), (4.106)

where 𝐼 (𝜃) := −𝐸𝑋∼𝑃(·|𝜃) 𝜕
2

𝜕𝜃2 ln 𝑝(𝑋 |𝜃) is the Fisher information and P−→ represents
convergence in probability. By the asymptotic efficiency of the MLE (under our
regularity assumptions), the variance 𝑉0(𝜃) of the MLE 𝜃̂𝑁 is the inverse of the
Fisher information. That is

𝐼 (𝜃) = (𝑉0(𝜃))−1 .

Moreover, under the regularity conditions of (G. Casella and R. L. Berger, 2002,
Section. 10.6.2), we have

√
𝑁 (𝜃̂𝑁 − 𝜃)√︁
𝑉0(𝜃)

d−→ 𝑁 (0, 1),

where d−→ represents convergence in distribution, and therefore Slutsky’s theorem
implies

−2 ln 𝑝(D|𝜃) = −2
𝑁∑︁
𝑖=1

ln
(
𝑝(𝑥𝑖 |𝜃)
𝑝(𝑥𝑖 |𝜃̂𝑁 )

)
d−→ 𝜒2

1 .

In the more general case Θ ⊂ R𝑘 , under the regularity conditions of (G. Casella and
R. L. Berger, 2002, Section. 10.6.2), we have

√
𝑁 (𝜃̂𝑁 − 𝜃)

d−→ 𝑁 (0, 𝐼 (𝜃)−1) , (4.107)

where 𝐼 (𝜃) is the Fisher information matrix, and the same argument goes through
obtaining

−2 ln 𝑝(D|𝜃) 𝑎= 𝑁 (𝜃 − 𝜃̂𝑁 )𝐼 (𝜃)−1(𝜃 − 𝜃̂𝑁 )
d−→ 𝜒2

𝑘 ,

where 𝑎
= represents asymptotic equality. Therefore, for large sample sizes, one may

use the following approximation:

−2 ln 𝑝(D|𝜃) ≈ 𝜒2
𝑘 .
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Finally, the condition 𝑝(D|𝜃) < 𝛼 in the computation of 𝛽𝛼 is the same as

−2 ln 𝑝(D|𝜃) > 2 ln( 1
𝛼
) ,

so that consequently, for large sample sizes, 𝛽𝛼 may be approximated by

𝛽𝛼 ≈ 1 − 𝜒2
𝑘

(
2 ln( 1

𝛼
)
)
.

Proof of Theorem 4.4.2
For case (A) the proof is an application of Theorem 4.4.1. Case (B) follows from
a direct adaptation of the proof of Theorem 4.4.1. The first main step (in this
adaptation) is to use the convergence of 𝑄𝑁 and the Independence of the 𝑦𝑖 given
the 𝑡𝑖 to replace (4.106) by

− 1
𝑁

𝑁∑︁
𝑖=1

𝜕2

𝜕𝜃2 ln 𝑝(𝑦𝑖 |𝜃, 𝑡𝑖)𝜃=𝜃̂𝑁
P−→ −𝐸𝑡∼𝑄,𝑦∼𝑃(·|𝜃,𝑡)

𝜕2

𝜕𝜃2 ln 𝑝(𝑦 |𝜃, 𝑡) . (4.108)

The second main step is to derive the asymptotic consistency and normality (4.107)
of the MLE in case (B). This can be done by adapting the proofs of (Dudley, 2009,
Lec. 5).

Proof of Theorem 4.7.2
We prove the theorem for the integral rarity case only, the pointwise rarity case
being much simpler. First note that Theorem 4.8.1 asserts that the saddle function L
satisfies a minmax equality, in particular, that the inner loop min𝑑∈𝑉 L(𝜋, 𝑑) of the
primary assertion (4.99) indeed has a solution. To analyze such a solution, recall,
by (4.85), that L(𝜋, 𝑑) is the expectation

L(𝜋, 𝑑) := E𝜃∼𝜋𝑥 [ℓ(𝜙(𝜃), 𝑑)] . (4.109)

It is easy to show that the expectation of a family of strictly convex functions
is strictly convex, so that it follows, for fixed 𝜋, that L(𝜋, 𝑑) is strictly convex.
Since 𝜙 is continuous and Θ is compact, it follows that the image 𝜙(Θ) ⊂ 𝑉 is
compact and since ℓ is coercive in its second variable, continuous in its first and
𝜙(Θ) is compact, it follows that ℓ is uniformly coercive in 𝜃; that is, for every
𝑦 ∈ R+, there exists an 𝑅 ∈ R+ such that |𝑑 | ≥ 𝑅 =⇒ ℓ(𝜙(𝜃), 𝑑) ≥ 𝑦, 𝜃 ∈ Θ.
It follows that L(𝜋, 𝑑) ≥ 𝑦, |𝑑 | ≥ 𝑅, 𝜋 ∈ P(Θ). Since 𝑦 is arbitrary and L is
convex, it follows that L achieves its minimum and since it is strictly convex this
minimum is achieved at a unique point 𝑑𝜋; see e.g. (Rockafellar and Wets, 1998).
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Since ℓ is continuous in its first variable, 𝜙 is continuous, and Θ compact, it follows
that ℓ(𝜙(𝜃), 0) is uniformly bounded in 𝜃 and therefore implies a uniform bound
on L(𝜋, 0), 𝜋 ∈ P(Θ). Consequently, the coerciveness of L implies that we can
uniformly bound the unique optima 𝑑𝜋, 𝜋 ∈ P(Θ).

Let 𝑉∗ ⊃ 𝜙(Θ) be a closed cube in 𝑉 containing an open neighborhood of the
image 𝜙(Θ) and this feasible set of optima just discussed. Since 𝜙 is continuous,
Θ is compact, and ℓ is continuously differentiable, it follows that ∇𝑑ℓ(𝜙(𝜃), 𝑑) is
uniformly bounded in both 𝜃 and 𝑑 ∈ 𝑉∗. Consequently, the Leibniz theorem for
differentiation under the integral sign, (see e.g. (Aliprantis and Burkinshaw, 1998,
Thm. 24.5)), implies, for fixed 𝜋, that

∇𝑑L(𝜋, 𝑑) := E𝜃∼𝜋𝑥
[
∇𝑑ℓ(𝜙(𝜃), 𝑑)

]
, 𝑑 ∈ 𝑉∗ . (4.110)

Consequently, the relation 0 = ∇𝑑L(𝜋, 𝑑𝜋) at the unique minimum 𝑑𝜋 of min𝑑∈𝑉 L(𝜋, 𝑑)
implies that

E𝜃∼𝜋𝑥
[
∇𝑑ℓ(𝜙(𝜃), 𝑑𝜋)

]
= 0, 𝜋 ∈ P(Θ) . (4.111)

The formula (4.46) for the conditional measure and the positivity of its denominator
imply that we can write (4.111) as

1∫
Θ
𝑝(𝑥 |·)𝑑𝜋

E𝜃∼𝜋
[
𝑝(𝑥 |𝜃)∇𝑑ℓ(𝜙(𝜃), 𝑑𝜋)

]
= 0 (4.112)

which is equivalent to

E𝜃∼𝜋
[
𝑝(𝑥 |𝜃)∇𝑑ℓ(𝜙(𝜃), 𝑑𝜋)

]
= 0 . (4.113)

Consequently, adding the constraint (4.113), equivalent to the minimization problem,
the maxmin problem on the left-hand side of (4.99) can be written

Maximize L(𝜋, 𝑑)

Subject to 𝜋 ∈ PΨ
𝑥 (𝛼), 𝑑 ∈ 𝑉∗

E𝜃∼𝜋
[
𝑝(𝑥 |𝜃)∇𝑑ℓ(𝜙(𝜃), 𝑑)

]
= 0

(4.114)

which again using the conditional formula (4.46) and the definition of L(𝜋, 𝑑) can
be written 

Maximize 1∫
Θ
𝑝(𝑥 |𝜃)𝑑𝜋(𝜃)E𝜃∼𝜋

[
𝑝(𝑥 |𝜃)ℓ(𝜙(𝜃), 𝑑)

]
Subject to 𝜋 ∈ PΨ

𝑥 (𝛼), 𝑑 ∈ 𝑉∗

E𝜃∼𝜋
[
𝑝(𝑥 |𝜃)∇𝑑ℓ(𝜙(𝜃), 𝑑)

]
= 0

(4.115)
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which, introducing a new variable, can be written
Maximize 1

𝜖
E𝜃∼𝜋

[
𝑝(𝑥 |𝜃)ℓ(𝜙(𝜃), 𝑑)

]
Subject to 𝜋 ∈ PΨ

𝑥 (𝛼), 𝑑 ∈ 𝑉∗, 𝜖 > 0

E𝜃∼𝜋
[
𝑝(𝑥 |𝜃)∇𝑑ℓ(𝜙(𝜃), 𝑑)

]
= 0, 𝜖 = E𝜃∼𝜋 [𝑝(𝑥 |𝜃)] .

(4.116)

Now fix 𝜖 > 0 and 𝑑 ∈ 𝑉∗ and consider the inner maximization loop
Maximize 1

𝜖
E𝜃∼𝜋

[
𝑝(𝑥 |𝜃)ℓ(𝜙(𝜃), 𝑑)

]
Subject to 𝜋 ∈ PΨ

𝑥 (𝛼),

E𝜃∼𝜋
[
𝑝(𝑥 |𝜃)∇𝑑ℓ(𝜙(𝜃), 𝑑)

]
= 0, 𝜖 = E𝜃∼𝜋 [𝑝(𝑥 |𝜃)] .

(4.117)

Since this is linear optimization of the integration of a non-negative, and thus inte-
grable function, with possible integral value +∞ for all 𝜋, over the full simplex of
probability measures subject to dim(𝑉) + 1 linear equality constraints defined by in-
tegration against measurable functions, plus one linear inequality constraint defined
by integration against a measurable function, (H. Owhadi, C. Scovel, T. J. Sulli-
van, et al., 2013b, Thm. 4.1), which uses von Weizsacker and Winkler (Weizsäcker
and Winkler, 1979, Cor. 3) (see also (Karr, 1983)) which is applicable under more
assumptions on the model P, implies this optimization problem can be reduced to
optimization over the convex combination of 𝑑𝑖𝑚(𝑉) + 3 Dirac measures supported
on Θ. Since the full problem is the supremum of such problems, using the com-
pactness of the space PΨ,𝑚

𝑥 (𝛼) in the weak topology, the primary assertion follows.
When Ψ is the identity function one of the constraints disappears, and the assertion
in that case follows.

Proof of Theorem 4.7.4
The proof follows from the invariance of the variance under 𝜑∗ and the equality of
their maximum variance problems established in the proof of Theorem 4.3.3 and
Lim and McCann’s (Lim and McCann, 2021, Thm. 2) generalization of their ℓ2

result (Lim and McCann, 2021, Thm. 1).

Proof of Theorem 4.5.1
First consider the 𝜖 > 0 case. Our proof will use results from Bădoiu, Har-Peled
and Indyk (Bădoiu, Har-Peled, and Indyk, 2002). Consider the REPEAT loop. As
previously mentioned, the FOR loop always gets broken at Step 10 for some 𝑥 since,
by Theorem 4.3.3, the center of the ball must lie in the convex hull of the 𝑛 + 2
points, but by Caratheodory’s theorem this center also lies in the convex hull of 𝑛+1
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of those points, and Theorem 4.3.3 then asserts that this ball is also the minimum
enclosing ball of those 𝑛 + 1 points. Clearly, the breaking of the step implies that
the elimination of the point does not change the current ball. Consequently, the only
change in the current ball is through the discovery in Step 14 of a distant point and
its addition to the working set 𝐴𝑘 followed by the calculation in Step 6 of a new
minimum ball containing this enlarged working set. Let 𝐵(𝐴𝑘 ) denote the minimum
enclosing ball of 𝐴𝑘 , 𝑅(𝐴𝑘 ) denote its radius, and, overloading notation, let us denote
𝑅(𝐴𝑘 ) := 𝑅(𝐵𝑘 ). Then when a new point is added to 𝐴𝑘 to obtain 𝐴𝑘+1, it follows
from 𝐴𝑘 ⊂ 𝐴𝑘+1 that 𝐵(𝐴𝑘+1) ⊃ 𝐴𝑘+1 ⊃ 𝐴𝑘 and therefore 𝑅(𝐴𝑘+1) ≥ 𝑅(𝐴𝑘 ).
Likewise 𝐴𝑘 ⊂ 𝐾 implies that 𝑅(𝐴𝑘 ) ≤ 𝑅, the radius of the minimum enclosing
ball 𝐵 of 𝐾 . Consequently the sequence 𝑅(𝐴𝑘 ) ≤ 𝑅 of the radii of the balls is
monotonically increasing and bounded by 𝑅. Moreover, (Bădoiu, Har-Peled, and
Indyk, 2002, pp. Clm. 2.4), using (Bădoiu, Har-Peled, and Indyk, 2002, Lem. 2.2)
from Goel et al. (Goel, Indyk, and Varadarajan, 2001), implies that, until the stopping
criterion in Step 17 is satisfied, we have

𝑅(𝐴𝑘+1) ≥
(
1 + 𝜖

2

16
)
𝑅(𝐴𝑘 ), (4.118)

and when the stopping criterion is satisfied it follows from Step 14 that the output
in Step 18 satisfies

𝐵
(1+𝜖) (1+𝛿)
𝑘−1 ⊃ 𝐾. (4.119)

Observe that we have 𝑅 ≤ Δ where Δ := diam(𝐾) and the initialization implies that
𝑅(𝐴0) ≥ 1

2(1+𝛿)Δ. Consequently (4.118) implies that the radius 𝑅(𝐴𝑘 ) increases by
at least 𝜖2

32((1+𝛿)Δ at each step. Since the sequence is bounded by 𝑅 ≤ Δ it follows
that at most 16

𝜖2 (1 + 2𝛿) of the REPEAT loop can be taken before terminating at
Step 17. Upon termination the returned ball 𝐵∗ := 𝐵(1+𝜖) (1+𝛿)

𝑘−1 in Step 18, by (4.119),
satisfies

𝐵∗ ⊃ 𝐾,

and since

𝑅(𝐵(1+𝜖) (1+𝛿)
𝑘−1 ) = (1 + 𝜖) (1 + 𝛿)𝑅(𝐵𝑘−1) ≤ (1 + 𝜖) (1 + 𝛿)𝑅

we obtain
𝑅
(
𝐵∗

)
≤ (1 + 𝜖) (1 + 𝛿)𝑅,

establishing the primary assertion. Since each step in the REPEAT loop adds at most
one new point to the working set 𝐴𝑘 , it follows that the working set size is bounded
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by 2 plus the number of steps in the REPEAT loop, that is 2 + 16
𝜖2 (1 + 2𝛿). Since the

WHILE loop keeps the bound ≤ 𝑛 + 2, the proof is finished.

Now consider the 𝜖 = 0 case. First let 𝛿 = 0. By compactness of the set 𝐾 , there
exists a sub-sequence (𝐴𝑡1), indexed by 𝑇1 ⊆ N, of (𝐴𝑡) such that 𝐶 (𝐴𝑡1) → 𝐶1, in
our notation whenever the algorithm stops or we reach to a fixed point the sequence
repeats the last set of points. For every 𝑡1 ∈ 𝑇1, let 𝑦𝑡1 be the point selected as a
furthest point from 𝐵(𝐴𝑡1) in the algorithm to form 𝐴𝑡1+1. Again by compactness of
the set𝐾 , there exists a sub-sequence (𝑦𝑡2), indexed by𝑇2 ⊆ 𝑇1 ⊆ N, of (𝑦𝑡1) such that
𝑦𝑡2 → 𝑦∗. By another application of compactness of 𝐾 , there exists a sub-sequence
(𝐴𝑡3), indexed by 𝑇3 ⊆ 𝑇2 ⊆ 𝑇1 ⊆ N, of (𝐴𝑡2) such that 𝐶 (𝐴𝑡3 ∪ {𝑦𝑡3}) → 𝐶2.
Since 𝐶 (𝐴𝑡3) → 𝐶1 and 𝑅(𝐴𝑡3) ↑ 𝑅0 ≤ 𝑅(𝐾) as 𝑡3 ∈ 𝑇3 → ∞, it follows that
𝐵(𝐴𝑡3) → 𝐵(𝐶1, 𝑅0).

To complete the proof it is sufficient to show that 𝐾 ⊆ 𝐵(𝐶1, 𝑅0), since then
𝑅0 ≤ 𝑅(𝐾) implies that 𝐵(𝐶1, 𝑅0) = 𝐵(𝐾). To that end, we demonstrate that

𝑑 := max
𝑥∈𝐾

𝑑𝑖𝑠𝑡 (𝑥, 𝐵(𝐶1, 𝑅0)) = 0.

Since 𝑑𝑖𝑠𝑡 () is a continuous function in both of its arguments, 𝐵(𝐴𝑡3) → 𝐵(𝐶1, 𝑅0)
as 𝑡3 ∈ 𝑇3 → ∞, 𝑦𝑡𝑘3 ∈ argmax𝑥∈𝐾 𝑑𝑖𝑠𝑡 (𝑥, 𝐵(𝐴𝑡𝑘3 )) for every 𝑡𝑘3 ∈ 𝑇3 and 𝑦𝑡𝑘3 → 𝑦∗,
it follows that

𝑑𝑖𝑠𝑡 (𝑦∗, 𝐵(𝐶1, 𝑅0)) = 𝑑 . (4.120)

By the choice of 𝑇3, 𝑦𝑡3 → 𝑦∗, 𝐵(𝐴𝑡3) → 𝐵(𝐶1, 𝑅0), and 𝐵(𝐴𝑡3 ∪ {𝑦𝑡3}) →
𝐵(𝐶2, 𝑅0). Therefore, for 𝜖1 > 0, there exists a large number 𝑁𝜖1 ∈ N, such that for
all 𝑡3 ∈ 𝑇3 with 𝑡3 ≥ 𝑁𝜖1 , we have

𝐴𝑡3 ⊆ 𝐵(𝐶1, 𝑅0 + 𝜖1) and 𝐴𝑡3 ∪ {𝑦𝑡3} ∪ 𝑦∗ ⊆ 𝐵(𝐶2, 𝑅0 + 𝜖1). (4.121)

Consequently (4.120), (4.121), and the triangle inequality imply

𝑑𝑖𝑠𝑡 (𝐶1, 𝐶2) ≥ 𝑑𝑖𝑠𝑡 (𝑦∗, 𝐶1) − 𝑑𝑖𝑠𝑡 (𝑦∗, 𝐶2) ≥ (𝑑 + 𝑅0) − (𝑅0 + 𝜖1) = 𝑑 − 𝜖1

and
𝐴𝑡3 ⊆ 𝐵(𝐶1, 𝑅0 + 𝜖1) ∩ 𝐵(𝐶2, 𝑅0 + 𝜖1), 𝑡3 ∈ 𝑇3, 𝑡3 ≥ 𝑁𝜖1 .

Let 𝐶̄ =
𝐶1+𝐶2

2 and consider the hyperplane orthogonal to the vector 𝐶1 − 𝐶2

passing through 𝐶̄. By Pythagoras’ Theorem, 𝐵(𝐶1, 𝑅0 + 𝜖1) ∩ 𝐵(𝐶2, 𝑅0 + 𝜖1) ⊆
𝐵(𝐶̄,

√︃
(𝑅0 + 𝜖1)2 − ( 𝑑−𝜖1

2 )2) and therefore, 𝐴𝑡3 ⊆ 𝐵(𝐶̄,
√︃
(𝑅0 + 𝜖1)2 − ( 𝑑−𝜖1

2 )2),
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which implies that 𝑅(𝐴𝑡3) ≤
√︃
(𝑅0 + 𝜖1)2 − ( 𝑑−𝜖1

2 )2 for all 𝑡3 ∈ 𝑇3 with 𝑡3 ≥ 𝑁𝜖1 .

By sending 𝜖1 to zero, we obtain that 𝑅(𝐴𝑡3) ≤
√︃
(𝑅0)2 − ( 𝑑2 )2 as 𝑡3 ∈ 𝑇3 →∞, but

𝑅(𝐴𝑡3) ↑ 𝑅0 implies 𝑑 = 0, which completes the proof.

For the general case 𝛿 ≥ 0, we can use the same technique. Let 𝐾′ = (𝑦𝑡)𝑡∈N be a
sequence of points selected as the furthest point in Step 14 (with the relative error
size of 𝛿) in one complete execution of the algorithm. Using the result and the
language of the case 𝛿 = 0 applied to the set 𝐾′, we obtain that 𝐵(𝐾′) = 𝐵(𝐶1, 𝑅0),
where 𝐶1 and 𝑅0 are the center and radius returned by the algorithm as 𝑡 →∞, with
the convention that whenever the algorithm stops we repeat the last set of points up
to infinity.

Note that max𝑥∈𝐾 𝑑𝑖𝑠𝑡 (𝐶1, 𝑥) ≤ (1 + 𝛿)𝑅0, since otherwise the algorithm would
have not converged to 𝐶1, and therefore, 𝐾 ⊆ 𝐵(𝐶1, (1 + 𝛿)𝑅0) which implies that
𝑅(𝐾) ≤ (1+𝛿)𝑅0. Moreover, by 𝐾′ ⊆ 𝐾 we have 𝑅0 = 𝑅(𝐾′) ≤ 𝑅(𝐾) and therefore
𝑅0 ≤ 𝑅(𝐾) ≤ (1 + 𝛿)𝑅0, completing the proof.
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C h a p t e r 5

KERNEL METHODS ARE COMPETITIVE FOR OPERATOR
LEARNING

We present a general kernel-based framework for learning operators between Ba-
nach spaces along with a priori error analysis and comprehensive numerical com-
parisons with popular neural net (NN) approaches such as Deep Operator Networks
(DeepONet) (L. Lu, Jin, et al., 2021) and Fourier Neural Operator (FNO) (Li, Ko-
vachki, Azizzadenesheli, B. Liu, et al., 2020). We consider the setting where the
input/output spaces of target operator G† : U → V are reproducing kernel Hilbert
spaces (RKHS), the data comes in the form of partial observations 𝜙(𝑢𝑖), 𝜑(𝑣𝑖)
of input/output functions 𝑣𝑖 = G†(𝑢𝑖) (𝑖 = 1, . . . , 𝑁), and the measurement oper-
ators 𝜙 : U → R𝑛 and 𝜑 : V → R𝑚 are linear. Writing 𝜓 : R𝑛 → U and
𝜒 : R𝑚 → V for the optimal recovery maps associated with 𝜙 and 𝜑, we approx-
imate G† with Ḡ = 𝜒 ◦ 𝑓 ◦ 𝜙 where 𝑓 is an optimal recovery approximation of
𝑓 † := 𝜑 ◦ G† ◦ 𝜓 : R𝑛 → R𝑚. We show that, even when using vanilla kernels
(e.g., linear or Matérn), our approach is competitive in terms of cost-accuracy trade-
off and either matches or beats the performance of NN methods on a majority of
benchmarks. Additionally, our framework offers several advantages inherited from
kernel methods: simplicity, interpretability, convergence guarantees, a priori error
estimates, and Bayesian uncertainty quantification. As such, it can serve as a natural
benchmark for operator learning.

5.1 Introduction
Operator learning is a well-established field going back at least to the 1970s with the
articles (Almroth, Stern, and Brogan, 1978; Noor and J. M. Peters, 1980) who intro-
duced the reduced basis method as a way speeding up expensive model evaluations.
In the most broad sense operator learning arises in the solution of stochastic PDEs
(Ghanem and Spanos, 2003), emulation of computer codes (Kennedy and O’Hagan,
2001), reduced order modeling (ROM) (Lucia, Beran, and Silva, 2004), and numer-
ical homogenization (Houman Owhadi and Clint Scovel, 2019a). In recent years,
and with the rise of machine learning, operator learning has become the focus of
extensive research with the development of neural net (NN) methods such as Deep
Operator Nets (L. Lu, Jin, et al., 2021) and Fourier Neural Nets (Li, Kovachki,
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Azizzadenesheli, B. Liu, et al., 2020) among many others. While these NN methods
are often benchmarked against each other (L. Lu, X. Meng, et al., 2022), they are
rarely compared with the aforementioned classical approaches. Furthermore, the
theoretical analysis of NN methods is often limited to density/universal approxima-
tion results, showing the existence of a network of a requisite size achieving a certain
error rate, without guarantees whether this network is computable in practice (see
for example (Deng et al., 2022; Kovachki, Lanthaler, and Mishra, 2021)).

In order to alleviate the aforementioned shortcomings we present a mathematical
framework for approximation of mappings between Banach spaces using the theory
of operator valued reproducing Kernel Hilbert spaces (RKHS) and Gaussian Pro-
cesses (GPs). Our abstract framework is (1) mathematically simple and interpretable,
(2) convenient to implement, (3) encompasses some of the classical approaches such
as linear methods, and (4) comes with a priori error analysis and convergence theory.
We further present extensive benchmarking of our kernel method with the Deep-
ONet and FNO approaches and show that the kernel approach either matches or
outperforms NN methods in most benchmark examples.

In the remainder of this section we give a summary of our methodology and results:
we pose the operator learning problem in Section 5.1 before presenting a running
example in Section 5.1 which is used to outline our proposed framework and main
theoretical results in Section 5.1 as well as brief numerical results in Section 5.1. Our
main contributions are summarized in Section 5.1 followed by a literature review in
Section 5.1.

The operator learning problem
Let U and V be two (possibly infinite-dimensional) separable Banach spaces and
suppose that

G† : U → V (5.1)

is an arbitrary (possibly nonlinear) operator. Then, broadly speaking, the goal of
operator learning is to approximate G† from a finite number 𝑁 of input/output data
on G†. For our framework, we consider the setting where the input/output data are
only partially observed through a finite collection of linear measurements which we
formalize as follows:

Problem 2. Let {𝑢𝑖, 𝑣𝑖}𝑁𝑖=1 be 𝑁 elements ofU ×V such that

G†(𝑢𝑖) = 𝑣𝑖, for 𝑖 = 1, . . . , 𝑁 . (5.2)
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Let 𝜙 : U → R𝑛 and 𝜑 : V → R𝑚 be bounded linear operators. Given the data
{𝜙(𝑢𝑖), 𝜑(𝑣𝑖)}𝑁𝑖=1 approximate G†.

Running example
To give context to the above problem and our solution method we briefly outline a
running example to which the reader can refer to throughout the rest of this section.
Consider the following elliptic PDE, which is of broad interest in geosciences and
material science: {

−div 𝑒𝑢 ∇𝑣 = 𝑤, in Ω,

𝑣 = 0, on 𝜕Ω ,
(5.3)

where Ω = (0, 1)2, 𝑢 ∈ 𝐻3(Ω), 𝑤 ∈ 𝐻1(Ω) and 𝑣 ∈ 𝐻3(Ω) ∩ 𝐻1
0 (Ω). For a

fixed forcing term 𝑤, we wish to approximate the nonlinear operator mapping the
diffusion coefficient 𝑢 to the solution 𝑣, i.e., G† : 𝑢 ↦→ 𝑣. In this case we may take
U ≡ 𝐻3(Ω) and V ≡ 𝐻3(Ω) ∩ 𝐻1

0 (Ω). We further assume that a training data set
is available in the form of limited observations of input-out pairs. As a canonical
example, consider the evaluation bounded and linear operators

𝜙 : 𝑢 ↦→ (𝑢(𝑋1), 𝑢(𝑋2), . . . , 𝑢(𝑋𝑛))𝑇 and 𝜑 : 𝑣 ↦→ (𝑣(𝑌1), 𝑣(𝑌2), . . . , 𝑣(𝑌𝑚))𝑇 ,
(5.4)

where the {𝑋 𝑗 }𝑛𝑗=1 and {𝑌 𝑗 }𝑚𝑗=1 are distinct collocation points in the domain Ω as
well as pairs {𝑢𝑖, 𝑣𝑖}𝑁𝑖=1 that satisfy the PDE (5.3). Then our goal is to approximate
G† from the training data set {𝜙(𝑢𝑖), 𝜑(𝑣𝑖)}𝑁𝑖=1

1.

The proposed solution
Our setup naturally gives rise to a commutative diagram depicted in Figure 5.1. Here
the map 𝑓 † : R𝑛 → R𝑚 explicitely defined as

𝑓 † := 𝜑 ◦ G† ◦ 𝜓 (5.5)

is a mapping between finite-dimensional Euclidean spaces, and is therefore amenable
to numerical approximation. However, in order to approximate G† we also need the
reconstruction maps 𝜓 : R𝑛 →U and 𝜒 : R𝑚 →V.

Our proposed solution is to endow U and V with an RKHS structure and use
kernel/GP regression to identify the maps 𝜓 and 𝜒. As a prototypical example we
consider the situation where U is an RKHS of functions 𝑢 : Ω → R defined by a

1Choosing 𝜙, 𝜑 as pointwise evaluation functionals is common to many applications, although
our abstract framework readily accommodates other choices such as integral operators and basis
projections
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U V

R𝑛 R𝑚

G†

𝑓 †
𝜙𝜓 𝜑𝜒

Figure 5.1: Commutative diagram of our operator learning setup.

kernel 𝑄 : Ω × Ω → R and V is an RKHS of functions 𝑢 : 𝐷 → R defined by
a kernel 𝐾 : 𝐷 × 𝐷 → R. For our running example, we have 𝐷 = Ω, and we can
take 𝑄 and 𝐾 to be Matérn like kernels, e.g., the Green’s function of elliptic PDEs
(possibly on Ω or restricted to Ω) with appropriate regularity. One can also choose
𝑄, 𝐾 to be smoother kernels such that their RKHSs are embedded inU andV.

We then define 𝜓 and 𝜒 as the following optimal recovery maps 2 :

𝜓(𝑈) := argmin𝑤∈U ∥𝑤∥𝑄 s.t. 𝜙(𝑤) = 𝑈,
𝜒(𝑉) := argmin𝑤∈V ∥𝑤∥𝐾 s.t. 𝜑(𝑤) = 𝑉,

(5.6)

where ∥ · ∥𝑄 and ∥ · ∥𝐾 are the RKHS norms arising from their pertinent kernels.

In the case where 𝜙 and 𝜑 are pointwise evaluation maps (𝜙(𝑢) = (𝑢(𝑋1), . . . , 𝑢(𝑋𝑛))
and 𝜑(𝑣) = (𝑣(𝑌1), . . . , 𝑣(𝑌𝑚)) where the 𝑋𝑖 and𝑌 𝑗 are pairwise distinct collocation
points in Ω and 𝐷), our optimal recovery maps can be expressed in closed form
using standard representer theorems for kernel interpolation (Schölkopf, Herbrich,
and Alex J. Smola, 2001):

𝜓(𝑈) (𝑥) = 𝑄(𝑥, 𝑋)𝑄(𝑋, 𝑋)−1𝑈, 𝜒(𝑉) (𝑦) = 𝐾 (𝑦,𝑌 )𝐾 (𝑌,𝑌 )−1𝑉, (5.7)

where𝑄(𝑋, 𝑋) and 𝐾 (𝑌,𝑌 ) are kernel matrices with entries𝑄(𝑋, 𝑋)𝑖 𝑗 = 𝑄(𝑋𝑖, 𝑋 𝑗 )
and 𝐾 (𝑌,𝑌 )𝑖 𝑗 = 𝐾 (𝑌𝑖, 𝑌 𝑗 ) respectively, while 𝑄(𝑥, 𝑋) and 𝐾 (𝑦,𝑌 ) denote row-
vector fields with entries 𝑄(𝑥, 𝑋)𝑖 = 𝑄(𝑥, 𝑋𝑖) and 𝐾 (𝑦,𝑌 )𝑖 = 𝐾 (𝑦,𝑌𝑖).

We further propose to approximate 𝑓 † by optimal recovery in a vector-valued RKHS.
Let Γ : R𝑛×R𝑛 → L(R𝑚) be a matrix valued kernel (Alvarez, Rosasco, Lawrence,
et al., 2012); here L(R𝑚) is the space of 𝑚 ×𝑚 matrices) with RKHSHΓ equipped
with the norm ∥ · ∥Γ 3 and proceed to approximate 𝑓 † by the map 𝑓 defined as

𝑓 := argmin 𝑓 ∈HΓ
∥ 𝑓 ∥Γ s.t. 𝑓 (𝜙(𝑢𝑖)) = 𝜑(𝑣𝑖) for 𝑖 = 1, . . . , 𝑁.

2It is possible to define the optimal recovery maps𝜓, 𝜒 in the setting where 𝜙 and𝜓 are nonlinear,
following the general framework of (Yifan Chen, Hosseini, et al., 2021a; Houman Owhadi, 2022;
Houman Owhadi, 2023a). However, in this setting the closed form formulae (5.7) no longer hold.

3See Section 5.6 for a review of operator-valued kernels or the reference (Kadri et al., 2016).
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A simple and practical choice for Γ is the diagonal kernel

Γ(𝑈,𝑈′) = 𝑆(𝑈,𝑈′)𝐼, (5.8)

where 𝑆 : R𝑛 × R𝑛 → R is an arbitrary scalar-valued kernel, such as RBF, Laplace,
or Matérn, and 𝐼 is the 𝑚 × 𝑚 identity matrix. More complicated choices, such as
sums of kernels or replacing the identity matrix for a fixed positive definite matrix,
implying correlations between various input or output correlations, are also possible.
However, these may lead to greater computational cost and we observe empirically
that the simple choice of the identity matrix already provides good performance.
Then we can approximate the components of 𝑓 via the independent optimal recovery
problems

𝑓 𝑗 := argmin𝑔∈H𝑆 ∥𝑔∥𝑆 s.t. 𝑔(𝜙(𝑢𝑖)) = 𝜑 𝑗 (𝑣𝑖), for 𝑖 = 1, . . . , 𝑁 (5.9)

for 𝑗 = 1, . . . , 𝑚. Here we wrote 𝜑 𝑗 (𝑣𝑖) for the entry 𝑗 of the vector 𝜑(𝑣𝑖) and, as
our notation suggests, H𝑆 is the RKHS of 𝑆 equipped with the norm ∥ · ∥𝑆. Since
(5.9) is a standard optimal recovery problem, each 𝑓 𝑗 can be identified by the usual
representer formula:

𝑓 𝑗 (𝑈) = 𝑆(𝑈,U)𝑆(U,U)−1V·, 𝑗 , (5.10)

where U := (𝜙(𝑢1), . . . , 𝜙(𝑢𝑁 )) and V·, 𝑗 := (𝜑 𝑗 (𝑣1), . . . , 𝜑 𝑗 (𝑣𝑁 ))𝑇 and 𝑆(𝑈,U)
is a block-vector and 𝑆(U,U) is a block-matrix defined in an analogous manner to
those in (5.7). By combining equations (5.7) and (5.10) we obtain the operator

Ḡ := 𝜒 ◦ 𝑓 ◦ 𝜙 (5.11)

as an approximation to G†. We provide further details and generalize the proposed
framework in Section 5.2 to the setting where 𝜙 and 𝜑 are obtained from arbitrary
linear measurements (e.g., integral operators as in tomography) andU andV may
not be spaces of continuous functions.

Convergence guarantee
Under suitable regularity assumptions on G†, our method comes with worst-case
convergence guarantees as the number of data points 𝑁 , i.e., input-output pairs
and the number of collocations points 𝑛 and 𝑚 go to infinity. We present here a
condensed version of this result and defer the proof to Section 5.3. Below we write
𝐵𝑅 (H) for the ball of radius 𝑅 > 0 in a normed spaceH .

Theorem 5.1.1 (Condensed version of Thm. 5.3.4). Suppose it holds that:
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(5.1.1.1) (Regularity of the domains Ω and 𝐷) Ω and 𝐷 are compact sets of finite
dimensions 𝑑Ω and 𝑑𝐷 and with Lipschitz boundary.

(5.1.1.2) (Regularity of the kernels 𝑄 and 𝐾). Assume that H𝑄 ⊂ 𝐻𝑠 (Ω) and H𝐾 ⊂
𝐻𝑡 (𝐷) for some 𝑠 > 𝑑Ω/2 and some 𝑡 > 𝑑𝐷/2 with inclusions indicating
continuous embeddings.

(5.1.1.3) (Space filling property of collocation points) The fill distance between the
collocation points {𝑋𝑖}𝑛𝑖=1 ⊂ Ω and the {𝑌 𝑗 }𝑚𝑗=1 ⊂ 𝐷 goes to zero as 𝑛 → ∞
and 𝑚 →∞.

(5.1.1.4) (Regularity of the operator G†) The operator G† is continuous from 𝐻𝑠′ (Ω) to
H𝐾 for some 𝑠′ ∈ (0, 𝑠) as well as fromU toV and all its Fréchet derivatives
are bounded on 𝐵𝑅 (H𝑄) for any 𝑅 > 0.

(5.1.1.5) (Regularity of the kernels 𝑆𝑛) Assume that for any 𝑛 ≥ 1 and any compact
subset Υ of R𝑛, the RKHS of 𝑆𝑛 restricted to Υ is contained in 𝐻𝑟 (Υ) for
some 𝑟 > 𝑛/2 and contains 𝐻𝑟 ′ (Υ) for some 𝑟′ > 0 that may depend on 𝑛.

(5.1.1.6) (Resolution and space-filling property of the data) Assume that for 𝑛 suffi-
ciently large, the data points (𝑢𝑖)𝑁𝑖=1 ⊂ 𝐵𝑅 (H𝑄) belong to the range of 𝜓𝑛

and are space filling in the sense that they become dense in 𝜙𝑛 (𝐵𝑅 (H𝑄)) as
𝑁 →∞.

Then, for all 𝑡′ ∈ (0, 𝑡),

lim
𝑛,𝑚→∞

lim
𝑁→∞

sup
𝑢∈𝐵𝑅 (H𝑄)

∥G†(𝑢) − 𝜒𝑚 ◦ 𝑓 𝑚,𝑛
𝑁
◦ 𝜙𝑛 (𝑢)∥𝐻𝑡′ (𝐷) → 0 , (5.12)

where our notation makes the dependence of 𝜓, 𝜙, 𝜒, 𝑆, and 𝑓 on 𝑛, 𝑚, and 𝑁

explicit.

We note that Assumptions (5.1.1.1)–(5.1.1.3) are standard, and concern the accuracy
of the optimal recovery maps 𝜙𝑛 and 𝜒𝑚 as 𝑛, 𝑚 → ∞. Assumptions (5.1.1.4)–
(5.1.1.5) are less standard and amount to regularity assumptions on the map G†

while Assumption (5.1.1.6) concerns the acquisition and regularity of the training
data set.

In Section 5.3 we also present Theorem 5.3.3 as the quantitative analogue of the
above result which characterizes how the speed of convergence depends on the
regularity of the operator G† and the choice of 𝜙 and 𝜑 in the setting of pointwise
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measurement operators. We also comment on how this analysis could be extended
to other linear measurements.

Numerical Framework
Returning to our running example, we implement the proposed framework for learn-
ing the non-linear operator mapping 𝑢 to 𝑣 in (5.3). We consider 1,000 inputs and
outputs of 𝑢 and 𝑣. The data is taken from (L. Lu, X. Meng, et al., 2022) and the
experimental setup is discussed further in Remark 8. We take 𝜑 to be of the form
(5.4) with 𝑚 = 841 while we define 𝜙 through a PCA pre-processing step. More
precisely, let 𝜙pointwise be of the form (5.4) with 𝑛 = 841. Choose 𝑛PCA = 202 (this
value captures 95% of the empirical variance of our training data) and define

𝜙(𝑢) = ΠPCA ◦ 𝜙pointwise(𝑢) ∈ R202. (5.13)

In other words, we take our 𝜙 map to be the linear map that computes the first 202
PCA coefficients of the input functions 𝑢 given on a uniform grid; observe that we
do not use PCA pre-processing on the output data here, although we do this for some
of our other examples in Section 5.4 for better performance.

With 𝜙 and 𝜑 identified (recall Figure 5.1) we proceed to implement our kernel
method using the simple choice of a diagonal kernel 𝑆(𝑈,𝑈′)𝐼 where 𝑆 is a rational
quadratic (RQ) kernel (see Section 5.8). This choice transforms the problem into
841 independent kernel regression problems, each corresponding to one component
of 𝑓 † (i.e., the 𝑓 †

𝑗
’s).

We used the PCA and kernel regression modules of the scikit-learn Python
library (Pedregosa et al., 2011) to implement our algorithm. This implementa-
tion automatically selects the best kernel parameters by maximizing the marginal
likelihood function (Rasmussen and Williams, 2006) jointly for all problems. Our
proposed method can therefore be implemented conveniently using off-the-shelf
software. Figure 5.2 illustrates examples of the inputs and outputs of our operator
learning problem. Despite the simple implementation of our method, we are able to
obtain competitive accuracy as shown in Table 5.1 where the relative testing 𝐿2 loss
of our method is compared to other popular algorithms. Moreover, our approach is
amenable to well-known numerical analysis techniques, such as sparse or low-rank
approximation of kernel matrices, to reduce its complexity. For the present example
(and those in Section 5.4) we only consider “vanilla” kernel methods which compute
(5.10) by computing the full Cholesky factors of the matrix 𝑆(U,U).



179

0 2 4 6
x1

0

2

4

6

x
2

−0.25

0.00

0.25

(a) Training input

0 2 4 6
x1

0

2

4

6

x
2

0.0

0.5

1.0

(b) Training
output

0 2 4 6
x1

0

2

4

6

x
2

0.0

0.5

1.0

1.5

(c) True test

0 2 4 6
x1

0

2

4

6

x
2

0.0

0.5

1.0

1.5

(d) Predicted test

0 2 4 6
x1

0

2

4

6

x
2

0.00

0.02

0.04

0.06

(e) Pointwise
error

Figure 5.2: Example of training data and test prediction and pointwise errors for the
Darcy flow problem (5.3).

Method Accuracy
DeepONet 2.91 %
FNO 2.41 %
POD-DeepONet 2.32 %
Linear 6.74 %
Rational quadratic 2.87%

Table 5.1: The 𝐿2 relative test error of the Darcy flow problem in our running
example. The kernel approach is compared with variations of DeepONet and FNO.
Results of our kernel method are presented below the dashed line with the pertinent
choice of the kernel 𝑆.

Summary of contributions
The main results of the article concern the properties, performance, and error analysis
of the map Ḡ defined in (5.11). Our contributions can be summarized under four
categories:

1. An abstract kernel framework for operator learning: In Section 5.2, we
propose a framework for operator learning using kernel methods with sev-
eral desirable properties. A family of methods of increasing complexity is
proposed that includes linear models and diagonal kernels as well as non-
diagonal kernels which capture output correlations. These properties make
our approach ideal for benchmarking purposes. Furthermore, the method-
ology is (i) applicable to any choice of the linear functionals 𝜑 and 𝜙, (ii)
minimax optimal with respect to an implicitly defined operator-valued kernel,
and (iii) is mesh-invariant. We emphasize in remark 7 that our optimal recov-
ery maps can be applied to any operator learning after training to obtain a
mesh-invariant pipeline.

2. Error analysis and convergence rates for Ḡ: In Section 5.3, we develop
rigorous worst-case a priori error bounds and convergence guarantees for
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our method: Theorem 5.3.3 provides quantitative error bounds while Theo-
rem 5.3.4 (the detailed version of Theorem 5.3.3) shows the convergence of
Ḡ → G under appropriate conditions.

3. A simple to use vanilla kernel method: While our abstract kernel method is
quite general, our numerical implementation in Section 5.4 focuses on a sim-
ple, easy-to-implement version using diagonal kernels of the form (5.8). Off-
the-shelf software, such as the kernel regression modules of scikit-learn,
can be employed for this task. We empirically observe low training times and
robust choice of hyperparameters. These properties further suggest that kernel
methods are a good baseline for benchmarking of more complex methods.

4. Competitive performance. In Section 5.4 we present a series of numerical
experiments on benchmark PDE problems from the literature and observe that
our simple implementation of the kernel approach is competitive in terms of
complexity-accuracy tradeoffs in comparison to several NN-based methods.
Since kernel methods can be interpreted as an infinite-width, one-layer NN,
the results raise the question of how much of a role the depth of a deep NN
plays in the performance of algorithms for the purposes of operator learning.

Review of relevant literature
In the most broad sense, operator learning is the problem of approximating a mapping
between two infinite-dimensional function spaces (Bhattacharya et al., 2021; De
Hoop et al., 2022). In recent years, this problem has become an area of intense
research in the scientific machine learning community with a particular focus on
parametric or stochastic PDEs. However, the approximation of such a parameter to
solution maps has been an area of intense research in the computational mathematics
and engineering communities, going back at least to the reduced basis method
introduced in the 1970s (Almroth, Stern, and Brogan, 1978; Noor and J. M. Peters,
1980) as a way of speeding up the solution of families of parametric PDEs in
applications that require many PDE solves such as design (Economon et al., 2016;
Martins and Lambe, 2013; Bendsoe and Sigmund, 2003; Boncoraglio and Farhat,
2021), uncertainty quantification (UQ) (Sudret, Marelli, and Wiart, 2017; Martin et
al., 2012; Huang, Schneider, and Andrew M Stuart, 2022), and multi-scale modeling
(Weinan, 2011; Fish et al., 1997; Feyel and Chaboche, 2000; Kovachki, B. Liu,
et al., 2022). In what follows we give a brief summary of the various areas and
methodologies that overlap with operator learning; we cannot provide an exhaustive
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list of references due to space, but refer the reader to key contributions and surveys
where further references can be found.

Deep learning techniques The use of NNs for operator learning goes back at least
to the 90s and the seminal works of Chen and Chen (T. Chen and H. Chen, 1995b;
T. Chen and H. Chen, 1995a) who proved a universal approximation theorem for NN
approximations to operators. The use and design of NNs for operator learning has
become popular in the last five years as a consequence of growing interest in NNs for
scientific computing starting with the article (Zhu and Zabaras, 2018) which used
autoencoders to build surrogates for UQ of subsurface flow models. Since then many
different approaches have been proposed, some of which use specific architectures
or target particular families of PDEs (J. Hesthaven and Ubbiali, 2018; Khoo and
Ying, 2019; Li, Kovachki, Azizzadenesheli, B. Liu, et al., 2020; Khoo, J. Lu, and
Ying, 2021; L. Lu, Jin, et al., 2021; Gin et al., 2021; Boullé and Townsend, 2022;
Kröpfl, Maier, and Peterseim, 2022; Kissas et al., 2022). The most relevant of among
these methods to our proposed framework are the DeepONet family (L. Lu, Jin, et
al., 2021; S. Wang, H. Wang, and Perdikaris, 2021; L. Lu, X. Meng, et al., 2022;
S. Wang, H. Wang, and Perdikaris, 2022), FNO (Li, Kovachki, Azizzadenesheli,
B. Liu, et al., 2020), and PCA-Net (J. Hesthaven and Ubbiali, 2018; Bhattacharya
et al., 2021) where the main novelty appears to be the use of novel, flexible, and
expressive NN architectures that allow the algorithm to learn and adapt the bases
that are selected for the input and outputs of the solution map as well as possible
nonlinear dependencies between the basis coefficients. Although not part of our
comparisons, we note that (Fan, Bohorquez, and Ying, 2019; Fan, Feliu-Faba, et al.,
2019; Fan, Lin, et al., 2019) obtained competitive accuracy by using deep neural
networks with architectures inspired by conventional fast solvers.

Classical numerical approximation methods Operator learning has been the
subject of intense research in the computational mathematics literature in the context
of stochastic Galerkin methods (Ghanem and Spanos, 2003; Xiu and J. Shen, 2009),
polynomial chaos (Xiu, 2010; Xiu and George Em Karniadakis, 2002), reduced
basis methods (Noor and J. M. Peters, 1980; Maday, Patera, and Turinici, 2002)
and numerical homogenization (Houman Owhadi and L. Zhang, 2007; Houman
Owhadi, 2015a; Houman Owhadi and Clint Scovel, 2019a; Altmann, Henning,
and Peterseim, 2021). In the setting of stochastic and parametric PDEs, the the
goal is often to approximate the solution of a PDE as a function of a random or
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uncertain parameter. The well-established approach to such problems is to pick or
construct appropriate bases for the input parameter and the solution of the PDE and
then construct a parametric, high-dimensional map that transforms the input basis
coefficients to the output coefficients. Well-established methods such as polynomial
chaos, stochastic finite element methods, and reduced basis methods (Ghanem and
Spanos, 2003; Xiu, 2010; Cohen and DeVore, 2015; J. S. Hesthaven, Rozza, Stamm,
et al., 2016; Lucia, Beran, and Silva, 2004) fall within this category. A vast amount of
literature in applied mathematics exists on this subject, and the theoretical analysis
of these methods is extensive; see for example (Beck et al., 2012; Chkifa, Cohen,
DeVore, et al., 2012; Chkifa, Cohen, and Schwab, 2014; Nobile, Raúl Tempone, and
Webster, 2008; Nobile, Raul Tempone, and Webster, 2008; Gunzburger, Webster,
and G. Zhang, 2014) and references therein.

Operator compression For solving PDEs, the objectives of operator learning are
also similar to those of operator compression (Feischl and Peterseim, 2020; Kröpfl,
Maier, and Peterseim, 2022) as formulated in numerical homogenization (Houman
Owhadi and Clint Scovel, 2019a; Altmann, Henning, and Peterseim, 2021) and
reduced order modeling (ROM) (Amsallem and Farhat, 2008; Lucia, Beran, and
Silva, 2004), i.e., the approximation of the solution operator from pairs of solutions
and source/forcing terms. While both ROM and numerical homogenization seek
operator compression through the identification of reduced basis functions that are
as accurate as possible (this translates into low-rank approximations with SVD and
its variants (Boullé and Townsend, 2022)), numerical homogenization also requires
those functions to be as localized as possible (Målqvist and Peterseim, 2014) and
in turn leverages both low rank and sparse approximations. These localized reduced
basis functions are known as Wannier functions in the physics literature (Marzari
et al., 2012), and can be interpreted as linear combinations of eigenfunctions that
are localized in both frequency space and the physical domain, akin to wavelets.
The hierarchical generalization of numerical homogenization (Houman Owhadi,
2017) (gamblets) has led to the current state-of-the-art for operator compression
of linear elliptic (Schaäfer, Katzfuss, and Houman Owhadi, 2021; Florian Schäfer,
Timothy John Sullivan, and Houman Owhadi, 2021a) and parabolic/hyperbolic
PDEs (Houman Owhadi and L. Zhang, 2017). In particular, for arbitrary (and
possibly unknown) elliptic PDEs (Florian Schäfer and Houman Owhadi, 2021)
shows that the solution operator (i.e., the Green’s function) can be approximated in
near-linear complexity to accuracy 𝜖 from only O(log𝑑+1( 1

𝜖
)) solutions of the PDE.
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GP emulators In the case where the range of the operator of interest is finite
dimensional, then operator learning coincides with surrogate modeling techniques
that were developed in the UQ literature, such as GP surrogate modeling/emulation
(Kennedy and O’Hagan, 2001; Bastos and O’hagan, 2009). When the kernels of
the underlying GPs are also learned from data (Houman Owhadi and Yoo, 2019a;
Yifan Chen, Houman Owhadi, and A. Stuart, 2021b), GP surrogate modeling has
been shown to offer a simple, low-cost, and accurate solution to learning dynami-
cal systems (Hamzi and Houman Owhadi, 2021), geophysical forecasting (Hamzi,
Maulik, and Houman Owhadi, 2021a), and radiative transfer emulation (Susiluoto
et al., 2021), and the inference of the structure of convective storms from passive mi-
crowave observations (Prasanth et al., 2021). Indeed, our proposed kernel framework
for operator learning can be interpreted as an extension of these well-established GP
surrogates to the setting where the range of the operator is a function space.

Outline of the article
The remainder of the article is organized as follows: we present our operator learning
framework in Section 5.2 for the generalized setting where 𝜙, 𝜑 can be any collection
of bounded and linear operators along with an interpretation of our method from
the GP perspective. Our convergence analysis and quantitative error bounds are
presented in Section 5.3 where we present the full version of Theorem 5.3.4. Our
numerical experiments, implementation details, and benchmarks against FNO and
DeepONet are collected in Section 5.4. We discuss future directions and open
problems in Section 5.5. The appendix collects a review of operator valued kernels
and GPs along with other auxiliary details.

5.2 The RKHS/GP framework for operator learning
We now present our general kernel framework for operator learning, i.e., the pro-
posed solution to Problem 2. We emphasize that here we do not require the spaces
U andV to be spaces of continuous functions and in particular, we do not require
the maps 𝜙 and 𝜑 to be obtained from pointwise measurements. To describe this, we
will introduce the dual spaces ofU andV to define optimal recovery with respect
to kernel operators rather than just kernel functions.

WriteU∗ andV∗ for the duals ofU andV, and write [·, ·] for the pertinent duality
pairings. Assume thatU is endowed with a quadratic norm ∥ · ∥𝑄 , i.e., there exists a
linear bijection 𝑄 : U∗ → U that is symmetric ([𝜙𝑎, 𝑄𝜙𝑏] = [𝜙𝑏, 𝑄𝜙𝑎]), positive
([𝜙𝑎, 𝑄𝜙𝑎] > 0 for 𝜙𝑎 ≠ 0), and such that ∥𝑢∥2

𝑄
= [𝑄−1𝑢, 𝑢], ∀𝑢 ∈ U .
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As in (Houman Owhadi and Clint Scovel, 2019a, Ch. 11), although U and U∗

are also Hilbert spaces under ∥ · ∥𝑄 and its dual norm ∥ · ∥∗
𝑄

(with inner products〈
𝑢, 𝑣

〉
𝑄
= [𝑄−1𝑢, 𝑣] and

〈
𝜙𝑎, 𝜙𝑏

〉∗
𝑄
= [𝜙𝑎, 𝑄𝜙𝑏]), we will keep using the Banach

space terminology to emphasize the fact that our dual pairings will not be based
on the inner product through the Riesz representation theorem, but on a different
realization of the dual space, as this setting is more practical.

IfU is a space of continuous functions on a subset Ω ⊂ R𝑑Ω thenU∗ contains delta
Dirac functions and, to simplify notations, we also write 𝑄(𝑥, 𝑦) := [δ𝑥 , 𝑄δ𝑦] for
𝑥, 𝑦 ∈ R𝑑Ω to denote the kernel induced by the operator 𝑄. Note that in that case,U
is a RKHS with norm ∥ · ∥𝑄 induced by the kernel𝑄. Since 𝜙 is bounded and linear,
its entries 𝜙𝑖 (write 𝜙 := (𝜙1, . . . , 𝜙𝑛)) must be elements of U∗. We assume those
elements to be linearly independent. Write 𝜓 : R𝑛 → U for the linear operator
defined by

𝜓(𝑌 ) := (𝑄𝜙)𝑄(𝜙, 𝜙)−1𝑌 for 𝑌 ∈ R𝑛, (5.14)

where we write𝑄(𝜙, 𝜙) for the 𝑛× 𝑛 symmetric positive definite (SPD) matrix with
entries𝑄(𝜙𝑖, 𝜙 𝑗 ) := [𝜙𝑖, 𝑄𝜙 𝑗 ] 4 and𝑄𝜙 for (𝑄𝜙1, . . . , 𝑄𝜙𝑛) ∈ U𝑛. As described in
(Houman Owhadi and Clint Scovel, 2019a, Chap. 11), for 𝑢 ∈ U, given 𝜙(𝑢) = 𝑌 ,
𝜓(𝑌 ) is the minmax optimal recovery of 𝑢when using the relative error in ∥·∥𝑄-norm
as a loss.

Similarly, assume that V is endowed with a quadratic norm ∥ · ∥𝐾 , defined by the
symmetric positive linear bijection 𝐾 : V∗ → V. Write 𝜑 := (𝜑1, . . . , 𝜑𝑚) and
assume the entries of 𝜑 to be linearly independent elements ofV∗. Using the same
notations as in (5.14) write 𝜒 : R𝑚 →V for the linear operator defined by

𝜒(𝑍) := (𝐾𝜑) 𝐾 (𝜑, 𝜑)−1𝑍 for 𝑍 ∈ R𝑚 . (5.15)

Then, as above, for 𝑣 ∈ V, given 𝜑(𝑣) = 𝑍 , 𝜒(𝑍) is the minmax optimal recovery
of 𝑣 when using the relative error in ∥ · ∥𝐾-norm as a loss.

Write L(R𝑚) for the space of bounded linear operators mapping R𝑚 to itself , i.e.,
𝑚 × 𝑚 matrices. Let Γ : R𝑛 × R𝑛 → L(R𝑚) be a matrix-valued kernel (Alvarez,
Rosasco, Lawrence, et al., 2012) defining an RKHS HΓ of continuous functions
𝑓 : R𝑛 → R𝑚 equipped with an RKHS norm ∥ · ∥Γ. For 𝑖 ∈ {1, . . . , 𝑁}, write
𝑈𝑖 := 𝜙(𝑢𝑖) and𝑉𝑖 := 𝜑(𝑣𝑖). Write U and V for the block-vectors with entries𝑈𝑖 and

4For linear measurements involving derivatives the computation of these kernel matrices requires
the computation of derivatives of the kernels; see (Yifan Chen, Hosseini, et al., 2021a) for practical
examples and considerations.
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𝑉𝑖. Write Γ(U,U) for the 𝑁 × 𝑁 block-matrix with entries Γ(𝑈𝑖,𝑈 𝑗 ) and assume
Γ(𝑈,𝑈) to be invertible (which is satisfied if Γ is non-degenerate and 𝑈𝑖 ≠ 𝑈 𝑗 for
𝑖 ≠ 𝑗). Let 𝑓 † be an element ofHΓ and write 𝑓 †(U) for the block vector with entries
𝑓 †(𝑈𝑖). Then given 𝑓 †(U) = V it follows that

𝑓 (𝑈) := Γ(𝑈,U)Γ(U,U)−1V , (5.16)

is the minimax optimal recovery of 𝑓 †, where Γ(·,U) is the block-vector with entries
Γ(·,𝑈𝑖).

To this end, we propose to approximate the ground truth operator G† with

Ḡ := 𝜒 ◦ 𝑓 ◦ 𝜙 , (5.17)

also recall Figure 5.1. Combining (5.15) and (5.16) we further infer that Ḡ admits
the following explicit representer formula

Ḡ(𝑢) = (𝐾𝜑) 𝐾 (𝜑, 𝜑)−1Γ(𝜙(𝑢),U)Γ(U,U)−1V. (5.18)

In the remainder of this section we will provide more details and observations
regarding our approximate operator Ḡ that is useful later in Section 5.3 and of
independent interest.

The kernel and RKHS associated with Ḡ
The explicit formula (5.18) suggests that the operator Ḡ is an element of an RKHS
defined by an operator-valued kernel, which we now characterize. For 𝑢1, 𝑢2 ∈ U
and 𝑣 ∈ V write

𝐺 (𝑢1, 𝑢2)𝑣 := (𝐾𝜑) (𝐾 (𝜑, 𝜑))−1Γ(𝜙(𝑢1), 𝜙(𝑢2)) (𝐾 (𝜑, 𝜑))−1𝜑(𝑣). (5.19)

It turns out that 𝐺 : U × U → L(V) is a well-defined operator-valued kernel
whose RKHS contains operators of the form Ḡ.

Proposition 5.2.1. The kernel 𝐺 in (5.19) is an operator-valued kernel. Write H𝐺
for its RKHS and ∥ · ∥𝐺 for the associated norm. Then it holds that G ∈ H𝐺 if and
only if G = 𝜒 ◦ 𝑓 ◦ 𝜙 for 𝑓 = 𝜑 ◦ G ◦ 𝜓 ∈ HΓ and ∥G∥𝐺 = ∥ 𝑓 ∥Γ .

Proof. Since 𝐺 is Hermitian and positive, we deduce that 𝐺 is an operator-valued
kernel. Indeed for 𝑢̃1, . . . , 𝑢̃𝑚 ∈ U and 𝑣̃1, . . . , 𝑣̃𝑚 ∈ V, using

〈
𝑣̃𝑖, 𝐾𝜑𝑠

〉
𝐾
= 𝜑𝑠 (𝑣̃𝑖)

and the fact that Γ is a matrix-valued kernel we have〈
𝑣̃𝑖, 𝐺 (𝑢̃𝑖, 𝑢̃ 𝑗 )𝑣̃ 𝑗

〉
𝐾
= 𝜑(𝑣̃𝑖)𝑇 (𝐾𝜑) (𝐾 (𝜑, 𝜑))−1Γ(𝜙(𝑢̃𝑖), 𝜙(𝑢̃ 𝑗 )) (𝐾 (𝜑, 𝜑))−1𝜑(𝑣̃ 𝑗 )
=

〈
𝐺 (𝑢̃ 𝑗 , 𝑢̃𝑖)𝑣̃𝑖, 𝑣̃ 𝑗

〉
𝐾
,

(5.20)
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where we used
〈
𝑣̃𝑖, 𝐾𝜑𝑠

〉
𝐾
= 𝜑𝑠 (𝑣̃𝑖) and the fact that Γ is a matrix-valued kernel.

Furthermore, summing (5.20), we deduce that
∑𝑚
𝑖, 𝑗=1

〈
𝑣̃𝑖, 𝐺 (𝑢̃𝑖, 𝑢̃ 𝑗 )𝑣̃ 𝑗

〉
𝐾
≥ 0. From

(5.19) we infer
𝑚∑︁
𝑗=1
𝐺 (𝑢, 𝑢̃ 𝑗 )𝑣̃ 𝑗 = 𝜒 ◦ 𝑓 ◦ 𝜙(𝑢) (5.21)

with the function

𝑓 (𝑈) =
𝑚∑︁
𝑗=1

Γ(𝑈, 𝜙(𝑢̃ 𝑗 )) (𝐾 (𝜑, 𝜑))−1𝜑(𝑣 𝑗 ) . (5.22)

Furthermore using the reproducing property of𝐺 and (5.20) we have



∑𝑚

𝑗=1𝐺 (𝑢, 𝑢̃ 𝑗 )𝑣̃ 𝑗



2

𝐺
=

∥ 𝑓 ∥2
Γ
. Therefore the closure of the space of operators of the form (5.21) with respect

to the RKHS norm induced by 𝐺 is the space of functions of the form 𝜒 ◦ 𝑓 ◦ 𝜙
where 𝑓 lives in the closure of functions of the form (5.22) with respect to the RKHS
norm induced by Γ. We deduce that H𝐺 = {𝜒 ◦ 𝑓 ◦ 𝜙 | 𝑓 ∈ HΓ}. The uniqueness
of 𝑓 in the representation G = 𝜒 ◦ 𝑓 ◦ 𝜙 for 𝑓 ∈ H𝐺 follows from 𝑓 = 𝜑 ◦ G ◦ 𝜓
following the identities 𝜑 ◦ 𝜒 = 𝐼𝑑 and 𝜙 ◦ 𝜓 = 𝐼𝑑 . □

Using the above result we can further characterize Ḡ and 𝑓 via optimal recovery
problems in H𝐺 and HΓ respectively. In what follows we will write u for the 𝑁
vector whose entries are the 𝑢𝑖, and G(u) for the 𝑁 vector whose entries are G†(𝑢𝑖).

Proposition 5.2.2. The operator Ḡ is the minimizer of
Minimize ∥G∥2

𝐺

Over G ∈ H𝐺 such that 𝜑 ◦ G(u) = 𝜑 ◦ G†(u)
(5.23)

while the map 𝑓 is the minimizer of
Minimize ∥ 𝑓 ∥2

Γ

Over 𝑓 ∈ HΓ such that 𝑓 ◦ 𝜙(u) = 𝜑 ◦ G†(u) .
(5.24)

Proof. By Proposition 5.2.1 𝐺̄ is completely identified by 𝑓 and ∥𝐺̄∥𝐺 = ∥ 𝑓 ∥Γ.
Then solving (5.23) is equivalent to solving (5.24). The statement regarding 𝑓

follows directly from representer formulae for optimal recovery with matrix-valued
kernels. □



187

Regularizing 𝐺̄ by operator regression
As is often the case with optimal recovery/kernel regression the estimator for 𝑓 in
(5.16) is susceptible to numerical error due to ill-conditioning of the kernel matrix
Γ(U,U). To overcome this issue we regularize our estimator by adding a small
diagonal perturbation to this matrix. More precisely, let 𝛾 > 0 and write 𝐼 for the
identity matrix. We then define the regularized map

𝑓𝛾 (𝑈) := Γ(𝑈,U)
(
Γ(U,U) + 𝛾𝐼

)−1V . (5.25)

This regularized map gives rise to the regularized approximate operator

Ḡ𝛾 := 𝜒 ◦ 𝑓𝛾 ◦ 𝜙 ,

which admits the following representer formula:

Ḡ𝛾 (𝑢) = (𝐾𝜑) 𝐾 (𝜑, 𝜑)−1Γ(𝜙(𝑢),U)
(
Γ(U,U) + 𝛾𝐼

)−1V . (5.26)

We can further characterize this operator as the solution to an operator regression
problem.

Proposition 5.2.3. Ḡ𝛾 is the solution to

Minimize G∈H𝐺 ∥G∥2𝐺 + 𝛾
−1 |𝜑 ◦ G(u) − 𝜑 ◦ G†(u) |2. (5.27)

Proof. By Proposition 5.2.1, G = 𝜒 ◦ 𝑓 ◦ 𝜙 solves (5.27) if and if 𝑓 solves

Minimize 𝑓 ∈HΓ
∥ 𝑓 ∥2Γ + 𝛾−1 | 𝑓 (U) − V|2 . (5.28)

It then follows by standard representer theorems for matrix-valued kernel regression
(see Section 5.6) that 𝑓𝛾 is the minimizer of (5.28). □

Interpretation as conditioned operator valued GPs
Our kernel approach to operator learning has a natural GP regression interpretation
that is compatible with Bayesian inference and UQ pipelines. We present some facts
and observations in this direction.

Write 𝜉 ∼ N(0, 𝐺) for the centered operator-valued GP with covariance kernel 𝐺
5 and 𝜁 ∼ N(0, Γ) for a centered vector valued GP with covariance kernel Γ. Then
it is straightforward to show that the law of 𝜉 is equivalent to that of 𝜒 ◦ 𝜁 ◦ 𝜙. Let

5See Section 5.6 for a review of operator valued GPs.
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𝑍 = (𝑍1, . . . , 𝑍𝑁 ) be a random block-vector, independent from 𝜉, with i.i.d. entries
𝑍 𝑗 ∼ N(0, 𝛾𝐼𝑚) for 𝑗 = 1, . . . , 𝑁; here 𝛾 ≥ 0 and 𝐼𝑚 is the 𝑚 × 𝑚 identity matrix.

Then 𝜉 conditioned on 𝜑 ◦ 𝜉 (u) = 𝜑(v) + 𝑍 is an operator-valued GP with mean Ḡ𝛾,
as in (5.26), and conditional covariance kernel

𝐺⊥(𝑢, 𝑢′)𝑣 = (𝐾𝜑) (𝐾 (𝜑, 𝜑))−1Γ(𝜙(𝑢1), 𝜙(𝑢2))(
Γ(𝜙(𝑢), 𝜙(𝑢′)) − Γ(𝜙(𝑢),U) (Γ(U,U) + 𝛾𝐼)−1Γ(U, 𝜙(𝑢′))

)
(𝐾 (𝜑, 𝜑))−1𝜑(𝑣).

Furthermore, the law of 𝜉 conditioned on 𝜑 ◦ 𝜉 (u) = 𝜑(v) + 𝑍 is equivalent to that
of 𝜒 ◦ 𝜁⊥ ◦ 𝜙 where 𝜁⊥ ∼ N( 𝑓𝛾, Γ⊥) is the GP 𝜁 conditioned on 𝜁 (U) = V + 𝑍′,
whose mean is 𝑓𝛾 as in (5.25) and conditional covariance kernel is

Γ⊥(𝑈,𝑈′) = Γ(𝑈,𝑈′) − Γ(𝑈,U) (Γ(U,U) + 𝛾𝐼)−1Γ(U,𝑈′).

We also use the GP approach to derive an alternative regularization of (5.27) in
Section 5.7.

Measurement and mesh invariance
As argued in (Li, Kovachki, Azizzadenesheli, B. Liu, et al., 2020), mesh invariance
is a key property for operator learning methods, i.e, the learned operator should be
generalizable at test time beyond the specific discretization that was used during
training. In our framework, this translates to being able to predict the output of a
test input function 𝑢̃ given only a linear measurement 𝜙(𝑢̃), where 𝜙 was unknown
at training time. For example 𝜙 could be of the same form as 𝜙 (say (5.4)) but
on a finer or coarser grid. Similarly, we may choose to output with an operator 𝜑
which is a coarse/fine version of 𝜑. Our proposed framework can easily provide
mesh invariance using additional optimal recovery and measurement operators at
the input and outputs of the operator Ḡ as depicted in Figure 5.3. In fact, we can not
only accommodate modification of the grid but completely different measurement
operators at testing time. For example, while 𝜙, 𝜑 may be of the form (5.4) we may
take 𝜙 and 𝜑 to be integral operators such as Fourier or Radon transforms.

Let us describe our approach to mesh invariance in detail. Given bounded and
linear operators 𝜙 : U → R𝑛̃ and 𝜑 : V → R𝑚 we can approximate 𝜑(G†(𝑢̃))
using the map 𝑓 obtained from (5.16) defined in terms of our training. To achieve
mesh invariance we simply need a consistent approach to interpolate/extend the
testing measurment operators to those used for training and we achieve this using
the optimal recovery map 𝜓 that is defined from 𝜙 analogously to 𝜓 in (5.14).
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U V

R𝑛 R𝑚

R𝑛̃ R𝑚

G†

𝑓 †

ℎ† := 𝜑 ◦ 𝜒 ◦ 𝑓 † ◦ 𝜙 ◦ 𝜓

𝜙𝜓 𝜑𝜒

𝜒̃

𝜑𝜓

𝜙

Figure 5.3: Generalization of fig. 5.1 to the mesh invariant setting where the mea-
surement functionals are different at test time.

This setup gives rise to a natural approximation of G† in terms of the function
ℎ† : R𝑛̃ → R𝑚 depicted in Figure 5.3 which in turn can be approximated with
ℎ̄ := 𝜑 ◦ 𝜒 ◦ 𝑓 ◦ 𝜙 ◦ 𝜓 ≡ 𝜑 ◦ Ḡ ◦ 𝜓. This expression further gives rise to another
approximation to G† given by the operator G̃ = 𝜒̃ ◦ ℎ̄ ◦ 𝜙.

Remark 7. Observe that the definition of ℎ̄ (and consequently Ḡ) is independent of
the fact that 𝑓 is constructed using the kernel approach. Thus, the optimal recovery
maps 𝜒 and 𝜓 can be used to retrofit any fixed-mesh operator learning algorithm, to
become mesh-invariant and able to use arbitrary linear measurements of the function
𝑢̃ at test time.

5.3 Convergence and error analysis
In this section, we present convergence guarantees and rigorous a priori error bounds
for our proposed kernel method for operator learning and give a detailed statement
and proof of Theorem 5.3.3. We assume thatH𝑄 is a space of continuous functions
from Ω ⊂ R𝑑Ω and that H𝐾 is a space of continuous functions from 𝐷 ⊂ R𝑑𝐷 .
Abusing notations we write 𝑄 : Ω × Ω → R𝑑Ω and 𝐾 : 𝐷 × 𝐷 → R𝑑𝐷 for
the kernels induced by the operators 𝑄 and 𝐾 . Let 𝑋 = (𝑋1, . . . , 𝑋𝑛) ⊂ Ω and
𝑌 = (𝑌1, . . . , 𝑌𝑚) ⊂ 𝐷 be distinct collections of points and define their fill-distances

ℎ𝑋 := max
𝑥′∈Ω

min
𝑥∈𝑋
|𝑥 − 𝑥′|, ℎ𝑌 := max

𝑦′∈𝐷
min
𝑦∈𝑌
|𝑦 − 𝑦′|.

This section focuses on operators 𝜙 and 𝜑 that are linear combinations of pointwise
measurements in 𝑋 and 𝑌 . The presented results can be extended by using analogs
of the sampling inequalities for other linear measurements; see (Houman Owhadi
and Clint Scovel, 2019a, Theorem 4.11, Lemma 14.34) for a general framework that
allows one to obtain such inequalities.
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Let 𝐿𝑄 and 𝐿𝐾 be invertible 𝑛 × 𝑛 and 𝑚 × 𝑚 matrices. For 𝑢 ∈ H𝑄 write 𝑢(𝑋) for
the 𝑛-vector with entries 𝑢(𝑋𝑖) and let 𝜙 : H𝑄 → R𝑛 be the bounded linear map
defined by

𝜙(𝑢) = 𝐿𝑄𝑢(𝑋) . (5.29)

For 𝑣 ∈ H𝐾 write 𝑣(𝑌 ) for the 𝑚-vector with entries 𝑣(𝑌 𝑗 ) and let 𝜑 : H𝐾 → R𝑚

be the bounded linear map defined by

𝜑(𝑣) = 𝐿𝐾𝑣(𝑌 ) . (5.30)

Write ∥𝜙∥ := sup𝑢∈H𝑄 |𝜙(𝑢) |/∥𝑢∥𝑄 and ∥𝜓∥ := sup𝑈′∈R𝑛 ∥𝜓(𝑈′)∥𝑄/|𝑈′|, and sim-
ilarly ∥𝜑∥ := sup𝑣∈H𝐾 |𝜑(𝑣) |/∥𝑣∥𝐾 and ∥𝜒∥ := sup𝑉 ′∈R𝑚 ∥𝜒(𝑉 ′)∥𝐾/|𝑉 ′|. We will
also assume the following regularity conditions on the domains Ω, 𝐷, the kernels
𝑄, 𝐾 , and the operator G†.

Condition 5.3.1. Assume that the following conditions hold.

(5.3.1.1) Ω and 𝐷 are compact sets with Lipschitz boundary.

(5.3.1.2) There exist indices 𝑠 > 𝑑Ω/2 and 𝑡 > 𝑑𝐷/2 so that H𝑄 ⊂ 𝐻𝑠 (Ω) and
H𝐾 ⊂ 𝐻𝑡 (𝐷), with inclusions indicating continuous embeddings.

(5.3.1.3) G† is a (possibly) nonlinear operator from 𝐻𝑠′ (Ω) to H𝐾 with 𝑠′ < 𝑠 that
satisfies

∥G†(𝑢) − G†(𝑣)∥𝐾 ≤ 𝜔
(
∥𝑢 − 𝑣∥𝐻𝑠′ (Ω)

)
, (5.31)

where 𝜔 : R→ R+ is the modulus of continuity of G†.

Note that conditions (5.3.1.2) and (5.3.1.3) imply

∥G†∥𝐵𝑅 (H𝑄)→H𝐾 := sup
𝑢∈𝐵𝑅 (H𝑄)

∥G†(𝑢)∥𝐾 < +∞ .

Proposition 5.3.1. Suppose that Condition 5.3.1 holds. Let 0 < 𝑡′ < 𝑡. Then there
exist constants ℎΩ, ℎ𝐷 , 𝐶Ω, 𝐶𝐷 > 0 such that if ℎ𝑋 < ℎΩ and ℎ𝑌 < ℎ𝐷 , then

∥G†(𝑢)−𝜒◦ 𝑓 †◦𝜙(𝑢)∥𝐻𝑡′ (𝐷) ≤ 𝐶𝐷 𝜔
(
𝐶Ωℎ

𝑠−𝑠′
𝑋 𝑅

)
+𝐶𝐷 ℎ𝑡−𝑡

′

𝑌

(
∥G†(0)∥𝐾+𝜔(𝐶Ω𝑅)

)
,

for any 𝑢 ∈ 𝐵𝑅 (H𝑄), where 𝑓 † is defined as in (5.5).
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Proof. By the definition of 𝑓 † and the triangle inequality we have

∥G†(𝑢) − 𝜒 ◦ 𝜑 ◦ G† ◦ 𝜓† ◦ 𝜙(𝑢)∥𝐻𝑡′ (Γ) ≤∥G†(𝑢) − G† ◦ 𝜓 ◦ 𝜙(𝑢)∥𝐻𝑡′ (Γ)
+ ∥G† ◦ 𝜓 ◦ 𝜙(𝑢) − 𝜒 ◦ 𝜑 ◦ G† ◦ 𝜓 ◦ 𝜙(𝑢)∥𝐻𝑡′ (Γ)
=: 𝑇1 + 𝑇2.

Let us first bound 𝑇1: By conditions (5.3.1.2) and (5.3.1.3), we have

𝑇1 ≤ 𝐶𝐷 ∥G†(𝑢) − G† ◦ 𝜓 ◦ 𝜙(𝑢)∥𝐾 ≤ 𝐶𝐷𝜔
(
∥𝑢 − 𝜓 ◦ 𝜙(𝑢)∥𝐻𝑠′ (Ω)

)
.

At the same time, since (𝑢−𝜓 ◦ 𝜙(𝑢)) (𝑋) = 0, condition (5.3.1.1) and the sampling
inequality for interpolation in Sobolev spaces (Arcangéli, López de Silanes, and
Torrens, 2007, Thm. 4.1), and condition (5.3.1.2) imply that there exists a constant
ℎΩ > 0 so that if ℎ𝑋 < ℎΩ then

∥𝑢 − 𝜓 ◦ 𝜙(𝑢)∥𝐻𝑠′ (Ω) ≤ 𝐶′Ωℎ
𝑠−𝑠′
𝑋 ∥𝑢 − 𝜓 ◦ 𝜙(𝑢)∥𝐻𝑠 (Ω) ≤ 𝐶Ωℎ

𝑠−𝑠′
𝑋 ∥𝑢 − 𝜓 ◦ 𝜙(𝑢)∥𝑄 ,

(5.32)
where𝐶′

Ω
, 𝐶Ω > 0 are constants that are independent of 𝑢. Using ∥𝑢−𝜓 ◦𝜙(𝑢)∥𝑄 ≤

∥𝑢∥𝑄 (Houman Owhadi and Clint Scovel, 2019a, Thm. 12.3) we deduce the desired
bound

𝑇1 ≤ 𝐶𝐷𝜔
(
𝐶Ωℎ

𝑠−𝑠′
Ω ∥𝑢∥𝑄

)
. (5.33)

Let us now bound𝑇2: once again, by the continuous embedding of condition (5.3.1.2)
and the sampling inequality for interpolation in Sobolev spaces, we have that there
exists ℎ𝐷 > 0 so that if ℎ𝑌 < ℎ𝐷 , then for any 𝑣 ∈ 𝐻𝑡 (𝐷) it holds that

∥𝑣−𝜒◦𝜑(𝑣)∥𝐻𝑡′ (𝐷) ≤ 𝐶′𝐷ℎ𝑡−𝑡
′

𝑌 ∥𝑣−𝜒◦𝜑(𝑣)∥𝐻𝑡 (𝐷) ≤ 𝐶𝐷ℎ
𝑡−𝑡′
𝑌 ∥𝑣−𝜒◦𝜑(𝑣)∥𝐾 ≤ 𝐶𝐷ℎ

𝑡−𝑡′
𝑌 ∥𝑣∥𝐾 .

Taking 𝑣 ≡ G† ◦ 𝜓 ◦ 𝜙(𝑢), we deduce that

𝑇2 ≤ 𝐶𝐷ℎ𝑡−𝑡
′

𝑌 ∥G
† ◦ 𝜓 ◦ 𝜙(𝑢)∥𝐾 ,

≤ 𝐶𝐷ℎ𝑡−𝑡
′

𝑌

(
∥G†(0)∥𝐾 + 𝜔(∥𝜓 ◦ 𝜙(𝑢)∥𝐻𝑠′ (Ω))

)
.

Using ∥𝜓 ◦ 𝜙(𝑢)∥𝐻𝑠′ (Ω) ≤ 𝐶Ω∥𝜓 ◦ 𝜙(𝑢)∥𝑄 ≤ 𝐶Ω∥𝑢∥𝑄 concludes the proof. □

While Proposition 5.3.1 gives an error bound for the distance between the maps G†

and 𝜑 ◦ 𝑓 † ◦ 𝜙, we can never compute this map when 𝑁 < ∞ and so we have to
approximate this map as well. Given the kernel Γ, our optimal recovery approximant
for the map 𝑓 † is 𝑓 as in (5.16), which we recall is the minimizer of (5.24).
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To proceed, we need to consider another intermediary problem that defines an
approximation 𝑓̂ to the map 𝑓 †:

𝑓̂ :=


Minimize ∥ 𝑓 ∥2
Γ

Over 𝑓 ∈ HΓ such that 𝑓 ◦ 𝜙(u) = 𝑓 † ◦ 𝜙(u) .
(5.34)

We emphasize that the difference between the problems (5.24) and (5.34) is simply
in the training data that is injected in the equality constraints, and this difference is
quite subtle:

In practical applications, observations may be taken from G†(𝑢𝑖), which is different
from 𝑓 † ◦ 𝜙(𝑢𝑖) ≡ 𝜑 ◦ G† ◦ 𝜓 ◦ 𝜙(𝑢𝑖). To make our analysis simple, henceforth we
assume the following condition on our input data.

Condition 5.3.2. The input data points 𝑢𝑖 satisfy

𝑢𝑖 = 𝜓 ◦ 𝜙(𝑢𝑖) for 𝑖 = 1, . . . , 𝑁 .

We observe that this condition implies G†(𝑢𝑖) = 𝑓 † ◦ 𝜙(𝑢𝑖) and 𝑓 = 𝑓̂ . Removing
this assumption requires bounding some norm of the error 𝑓 † − 𝑓 , and we postpone
that analysis to a sequel paper as this step can become very technical.

The next step in our convergence analysis is then to control the error between the
maps 𝑓̂ and 𝑓 † which we will achieve using similar arguments as in the proof of
Proposition 5.3.1. For our analysis, we take Γ to be a diagonal, matrix-valued kernel,
of the form (5.8) which we recall for reference

Γ(𝑈,𝑈′) = 𝑆(𝑈,𝑈′)𝐼, (5.35)

where 𝐼 is the 𝑚 × 𝑚 identity matrix and 𝑆 : R𝑛 × R𝑛 → R is a real valued kernel.

Proposition 5.3.2. Suppose that Condition 5.3.2 holds. Let Υ ⊂ R𝑛 be a compact
set with Lipschitz boundary and consider𝑈 = (𝑈1, . . . ,𝑈𝑁 ) ⊂ Υ with fill distance

ℎΥ := max
𝑈′∈Υ

min
1≤𝑖≤𝑁

|𝑈𝑖 −𝑈′|.

Let Γ be of the form (5.35), with 𝑆 restricted to the set Υ, and supposeH𝑆 ⊂ 𝐻𝑟 (Υ)
for 𝑟 > 𝑛/2 and that 𝑓 †

𝑗
∈ H𝑆 for 𝑗 = 1, . . . , 𝑚. Then there exist constants ℎ′

Υ
, 𝐶Υ > 0

so that whenever ℎΥ < ℎ′Υ then for any 𝑟′ < 𝑟 it holds that

∥ 𝑓 †
𝑗
− 𝑓̂ 𝑗 ∥𝐻𝑟′ (Υ) ≤ 𝐶Υℎ

𝑟−𝑟 ′
Υ ∥ 𝑓 †

𝑗
∥𝑆 .



193

Proof. The proof is a direct consequence of the fact that the components of 𝑓̂

are given by the optimal recovery problems (5.34) and the sampling inequality for
interpolation in Sobolev spaces (Arcangéli, López de Silanes, and Torrens, 2007,
Thm. 4.1) following the same arguments used in the proof of Theorem 5.3.1. □

We can now combine the above results to obtain the following theorem.

Theorem 5.3.3. Suppose that Conditions 5.3.1 and 5.3.2 hold in addition to those of
Proposition 5.3.2 with a set of inputs (𝑢𝑖)𝑁𝑖=1 ⊂ 𝐵𝑅 (H𝑄), the set Υ = 𝜙

(
𝐵𝑅 (H𝑄)

)
,

and index 𝑛/2 < 𝑟′ < 𝑟. Then for any 𝑢 ∈ 𝐵𝑅 (H𝑄), it holds that

∥G†(𝑢) − 𝜒 ◦ 𝑓 ◦ 𝜙(𝑢)∥𝐻𝑡′ (𝐷) ≤𝐶𝐷 𝜔
(
𝐶Ωℎ

𝑠−𝑠′
𝑋 𝑅

)
+ 𝐶𝐷 ℎ𝑡−𝑡

′

𝑌

(
∥G†(0)∥𝐾 + 𝜔(𝐶Ω𝑅)

)
+
√
𝑚𝐶𝐷𝐶Υ∥𝜒∥ℎ(𝑟−𝑟

′)
Υ

max
1≤ 𝑗≤𝑚

∥ 𝑓 †
𝑗
∥𝑆 .

(5.36)

Proof. An application of the triangle inequality yields

∥G†(𝑢) − 𝜒 ◦ 𝑓 ◦ 𝜙(𝑢)∥𝐻𝑡′ (𝐷) ≤∥G†(𝑢) − 𝜒 ◦ 𝑓 † ◦ 𝜙(𝑢)∥𝐻𝑡′ (𝐷)
+ ∥𝜒 ◦ 𝑓 † ◦ 𝜙(𝑢) − 𝜒 ◦ 𝑓̂ ◦ 𝜙(𝑢)∥𝐻𝑡′ (𝐷)
+ ∥𝜒 ◦ 𝑓̂ ◦ 𝜙(𝑢) − 𝜒 ◦ 𝑓 ◦ 𝜙(𝑢)∥𝐻𝑡′ (𝐷) =: 𝐼1 + 𝐼2 + 𝐼3.

We can bound 𝐼1 immediately using Proposition 5.3.1. Furthermore, by Condi-
tion 5.3.2 we have that 𝐼3 = 0. So it remains for us to bound 𝐼2: by the continuous
embedding ofH𝐾 into 𝐻𝑡′ (𝐷) we can write

𝐼2 ≤ 𝐶𝐷 ∥𝜒 ◦ 𝑓 † ◦ 𝜙(𝑢) − 𝜒 ◦ 𝑓̂ ◦ 𝜙(𝑢)∥𝐾 ≤ 𝐶𝐷 ∥𝜒∥| 𝑓 † ◦ 𝜙(𝑢) − 𝑓̂ ◦ 𝜙(𝑢) |

≤ 𝐶𝐷 ∥𝜒∥

√√√ 𝑚∑︁
𝑗=1
∥ 𝑓 †

𝑗
− 𝑓̂ 𝑗 ∥2

𝐻𝑟
′ (Υ) ,

where the last line follows from the Sobolev embedding theorem and the assumption
that 𝑟′ > 𝑛/2. Then an application of Proposition 5.3.2 yields

𝐼2 ≤
√
𝑚𝐶𝐷𝐶Υ∥𝜒∥ℎ(𝑟−𝑟

′)
Υ

max
1≤ 𝑗≤𝑚

∥ 𝑓 †
𝑗
∥𝑆 .

□

Convergence theorem
Our next step will be to consider the limits 𝑁, 𝑛, 𝑚 →∞ and show the convergence
of Ḡ to G†. To obtain this result we first need to make assumptions on the regularity
of the true operator G†.
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For 𝑘 ≥ 1 write 𝐷𝑘G† for the functional derivative of G† of order 𝑘 . Recall
that for 𝑢 ∈ H𝑄 , 𝐷𝑘G†(𝑢) is a multilinear operator mapping ⊗𝑘

𝑖=1H𝑄 to H𝐾 .
For 𝑤1, . . . , 𝑤𝑘 ∈ H𝑄 write [𝐷𝑘G†(𝑢), ⊗𝑘

𝑖=1𝑤𝑖] for the (multilinear) action of
𝐷𝑘G†(𝑢) on ⊗𝑘

𝑖=1𝑤𝑖 and write ∥𝐷𝑘G†(𝑢)∥ for the smallest constant such that for
𝑤1, . . . , 𝑤𝑘 ∈ H𝑄 ,



[𝐷𝑘G†(𝑢), ⊗𝑘𝑖=1𝑤𝑖]



H𝐾 ≤ ∥𝐷

𝑘G†(𝑢)∥
𝑘∏
𝑖=1
∥𝑤𝑖∥H𝑄 , (5.37)

Similarly, for 𝑘 ≥ 1 write 𝐷𝑘 𝑓 † for the derivation tensor of 𝑓 † of order 𝑘 (the
gradient for 𝑘 = 1 and the Hessian for 𝑘 = 2, etc). Recall that for 𝑈 ∈ R𝑛,
𝐷𝑘 𝑓 †(𝑈) is a multilinear operator mapping ⊗𝑘

𝑖=1R
𝑛 to R𝑚. For 𝑊1, . . . ,𝑊𝑘 ∈ R𝑛

write [𝐷𝑘 𝑓 †(𝑈), ⊗𝑘
𝑖=1𝑊𝑖] for the (multilinear) action of 𝐷𝑘 𝑓 †(𝑈) on ⊗𝑘

𝑖=1𝑊𝑖 and
write ∥𝐷𝑘 𝑓 †(𝑈)∥ for the smallest constant such that for𝑊1, . . . ,𝑊𝑘 ∈ R𝑛,��[𝐷𝑘 𝑓 †(𝑈), ⊗𝑘𝑖=1𝑊𝑖]

�� ≤ ∥𝐷𝑘 𝑓 †(𝑈)∥
𝑘∏
𝑖=1
|𝑊𝑖 |. (5.38)

where | · | is the Euclidean norm.

Lemma 5.3.3. It holds true that ∥𝐷𝑘 𝑓 †(𝑈)∥ ≤ ∥𝜑∥∥𝜓∥𝑘 ∥𝐷𝑘G†◦𝜓(𝑈)∥, ∀𝑈 ∈ R𝑛.

Proof. The chain rule and the linearity of 𝜑 and 𝜓 imply that

[𝐷𝑘 𝑓 †(𝑈), ⊗𝑘𝑖=1𝑊𝑖] = 𝜑[𝐷𝑘G† ◦ 𝜓(𝑈), ⊗𝑘𝑖=1𝜓(𝑊𝑖)] .

We then conclude the proof by writing

��[𝐷𝑘 𝑓 †(𝑈), ⊗𝑘𝑖=1𝑊𝑖]
�� ≤ ∥𝜑∥∥𝐷𝑘G† ◦ 𝜓(𝑈)∥

𝑘∏
𝑖=1
∥𝜓(𝑊𝑖)∥H𝑄

≤ ∥𝜑∥∥𝜓∥𝑘 ∥𝐷𝑘G† ◦ 𝜓(𝑈)∥
𝑘∏
𝑖=1
|𝑊𝑖 | .

□

Let us now consider an infinite and dense sequence of points 𝑋1, 𝑋2, 𝑋3, . . . of Ω,
such that the closure of ∪∞

𝑖=1{𝑋𝑖} is the closure of Ω. Write 𝑋𝑛 for the 𝑛-vector
formed by the first 𝑛 points, i.e.,

𝑋𝑛 := (𝑋1, . . . , 𝑋𝑛) (5.39)
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and let 𝐿𝑛
𝑄

be an arbitrary invertible 𝑛 × 𝑛 matrix. Further let 𝜙𝑛 : H𝑄 → R𝑛 be
defined by

𝜙𝑛 (𝑢) = 𝐿𝑛𝑄𝑢(𝑋
𝑛) . (5.40)

Write 𝜓𝑛 for the corresponding optimal recovery 𝜓-map. Similarly, we assume that
we are given an infinite and dense sequence of points 𝑌1, 𝑌2, 𝑌3, . . . of 𝐷, such that
the closure of ∪∞

𝑖=1{𝑌𝑖} is the closure of 𝐷. Write 𝑌𝑚 for the 𝑚-vector formed by the
first 𝑚 points, i.e.,

𝑌𝑚 := (𝑌1, . . . , 𝑌𝑚) . (5.41)

Let 𝐿𝑚
𝐾

be an arbitrary invertible 𝑚 × 𝑚 matrix and let 𝜑𝑚 : H𝐾 → R𝑚 be defined
by

𝜑𝑚 (𝑣) = 𝐿𝑚𝐾𝑢(𝑌
𝑚) . (5.42)

Write 𝜒𝑚 for the corresponding optimal recovery 𝜒-map. We also assume that we
are given a sequence of diagonal matrix-valued kernels Γ𝑚,𝑛 : R𝑛 × R𝑛 → L(R𝑚)
with scalar-valued kernels 𝑆𝑛 : R𝑛 × R𝑛 → R as diagonal entries. Write 𝑓

𝑚,𝑛

𝑁
for

the corresponding minimizer of (5.24) (also identified by the formula (5.16)) for the
above setup.

Theorem 5.3.4. Let 𝑚, 𝑛 be the dimensionality of the input and output observations
𝜙 : U → R𝑛 and 𝜑 : V → R𝑚. Suppose that the closure of lim𝑛↑∞ ∪𝑛𝑖=1{𝑋𝑖} is equal
to the closure of Ω and that the closure of lim𝑚↑∞ ∪𝑚𝑖=1{𝑌𝑖} is equal to the closure of
𝐷. Suppose Condition 5.3.1 is satisfied and that

sup
𝑢∈𝐵𝑅 (H𝑄)



[𝐷𝑘G†(𝑢)∥ < ∞ for all 𝑘 ≥ 1 , (5.43)

for an arbitrary 𝑅 > 0. Assume that for any 𝑛 ≥ 1 and any compact set Υ of R𝑛,
the RKHS of 𝑆𝑛 restricted to Υ (which we write H𝑆𝑛 (Υ)) is contained in 𝐻𝑟 (Υ)
for some 𝑟 > 𝑛/2 and contains 𝐻𝑟 ′ (Υ) for some 𝑟′ > 0 that may depend on 𝑛. Let
(𝑢𝑖)𝑁𝑖=1 be a sequence of inputs in 𝐵𝑅 (H𝑄). Assume that there exists an integer 𝑛0

such that for 𝑛 ≥ 𝑛0, the data points (𝑢𝑖)𝑁𝑖=1 satisfy Condition 5.3.2, i.e., they satisfy
𝑢𝑖 = 𝜓𝑛 ◦ 𝜙𝑛 (𝑢𝑖) for all 𝑖 ≥ 1. Further assume that the (𝜙𝑛 (𝑢𝑖))1≤𝑖≤𝑁 are space
filling in the sense that for any 𝑛 ≥ 𝑛0 we have

lim
𝑁→∞

sup
𝑢∈𝐵𝑅 (H𝑄)

min
1≤𝑖≤𝑁

��𝑢𝑖 (𝑋𝑛) − 𝑢(𝑋𝑛) | = 0 . (5.44)

Then for any 𝑡′ ∈ (0, 𝑡), it holds that

lim
𝑛,𝑚→∞

lim
𝑁→∞

sup
𝑢∈𝐵𝑅 (H𝑄)

∥G†(𝑢) − 𝜒𝑚 ◦ 𝑓 𝑚,𝑛
𝑁
◦ 𝜙𝑛 (𝑢)∥𝐻𝑡′ (𝐷) = 0. (5.45)
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Proof. Following (Houman Owhadi and Clint Scovel, 2019a, Chap. 12.1) define
the projection 𝑃U𝑛 = 𝜓𝑛 ◦ 𝜙𝑛 onto the range of 𝜓𝑛. Since the points 𝑋𝑖 and 𝑌 𝑗 are
dense in Ω and 𝐷 we have ℎ𝑋𝑛 ↓ 0 as 𝑛→∞ and ℎ𝑌𝑚 ↓ 0 as 𝑚 →∞. Given 𝑛, take
Υ = 𝜙𝑛

(
𝐵𝑅 (H𝑄)

)
. Then Lemma 5.3.3 and (5.43) imply that 𝑓 𝑚,𝑛

𝑗
∈ 𝐻𝑟 ′ (Υ) for all

𝑟′ ≥ 0. Therefore 𝑓 𝑚,𝑛
𝑗
∈ H𝑆𝑛 (Υ). Now (5.44) implies that for any 𝑛, the fill distance,

in 𝜙𝑛
(
𝐵𝑅 (H𝑄)

)
, between the points (𝜙𝑛 (𝑢𝑖))1≤𝑖≤𝑁 goes to zero as 𝑁 → ∞. Since

the conditions of Proposition 5.3.2 are satisfied, we conclude by taking the limit
𝑁 →∞ in (5.36) before taking the limit 𝑚, 𝑛→∞. □

The effect of the 𝐿𝑄 and 𝐿𝐾 preconditioners
We conclude this section and our discussion of convergence results by highlighting
the importance of the choice of the matrices 𝐿𝑛

𝑄
and 𝐿𝑚

𝐾
in (5.40) and (5.42). It is

clear from the bounds (5.36) and (5.38) that our error estimates depend on the norms
of the linear operators 𝜑𝑚, 𝜓𝑛 and 𝜒𝑚. To ensure that those norms do not blow up
as 𝑛, 𝑚 → ∞ we can select the matrices 𝐿𝑛

𝑄
and 𝐿𝑚

𝐾
to be the Cholesky factors of

the precision matrices obtained from pointwise measurements of the kernels 𝑄 and
𝐾 , i.e.,

𝐿𝑛𝑄 (𝐿
𝑛
𝑄)
𝑇 = 𝑄(𝑋𝑛, 𝑋𝑛)−1 and 𝐿𝑚𝐾 (𝐿

𝑚
𝐾 )
𝑇 = 𝐾 (𝑌𝑚, 𝑌𝑚)−1. (5.46)

We now obtain the following proposition.

Proposition 5.3.4. If 𝜙𝑛 is as in (5.40) and 𝐿𝑛
𝑄

as in (5.46), then ∥𝜙𝑛∥ = 1 and
∥𝜓𝑛∥ = 1. If 𝜑𝑚 is as in (5.30) and 𝐿𝑚

𝐾
as in (5.46), then ∥𝜑𝑚 ∥ = 1 and ∥𝜒𝑚 ∥ = 1.

Proof. For 𝑢 ∈ H𝑄 , |𝜙𝑛 (𝑢) |2 = 𝑢(𝑋𝑛)𝑇𝑄(𝑋𝑛, 𝑋𝑛)−1𝑢(𝑋𝑛) = ∥𝜓𝑛 ◦ 𝜙𝑛 (𝑢)∥2
𝑄

. Since
𝜓𝑛 ◦ 𝜙𝑛 is a projection (Houman Owhadi and Clint Scovel, 2019a, Chap. 12.1) we
deduce that ∥𝜙𝑛∥ = 1. Using 𝜓𝑛 (𝑈′) = 𝑄(·, 𝑋𝑛)𝐿𝑛

𝑄
𝑈′ leads to ∥𝜓𝑛 (𝑈′)∥2

𝑄
= |𝑈′|2

and ∥𝜓𝑛∥ = 1. The proof of ∥𝜑𝑛∥ = 1 and ∥𝜒𝑛∥ = 1 is similar. □

We note that although useful for obtaining tighter approximation errors, this partic-
ular choice for the matrices 𝐿𝑛

𝑄
and 𝐿𝑚

𝐾
is not required for convergence if one first

takes the limit 𝑁 → ∞ as in Theorem 5.3.4, which does not put any requirements
on the matrices 𝐿𝑛

𝑄
and 𝐿𝑚

𝐾
beyond invertibility.

5.4 Numerics
In this section, we present numerical experiments and benchmarks that compare a
straightforward implementation of our kernel operator learning framework to state-
of-the-art NN-based techniques. We discuss some implementation details of our
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method in Section 5.4 followed by the setup of experiments and test problems in
Section 5.4 and remark 8. A detailed discussion of our findings is presented in
Remark 8.

Implementation considerations
Below we summarize some of the key details in the implementation of our kernel
approach for operator learning for benchmark examples. Our code to reproduce the
experiments can be found in a public repository6.

Choice of the kernel Γ

Following our theoretical discussions in Sections 5.2 and 5.3, we primarily take Γ

to be a diagonal kernel of the form (5.35). This implies that our estimation of 𝑓 can
be split into independent problems for each of its components 𝑓 𝑗 in the RKHS of the
scalar kernel 𝑆. In our experiments, we investigate different choices of 𝑆 belonging
to the families of the linear kernel, rational quadratic, and Matérn; see Section 5.8
for detailed expressions of these kernels. The rational quadratic kernel has two
parameters: the lengthscale 𝑙 and the exponent 𝛼. We tuned these parameters using
standard cross validation or log marginal likelihood maximization over the training
data (see (Rasmussen and Williams, 2006, p.112) for a detailed description). The
Matérn kernel is parameterized by two positive parameters: a smoothness parameter
𝜈 and the length scale 𝑙. The smoothness parameter 𝜈 controls the regularity of the
RKHS and we considered 𝜈 ∈

{ 1
2 ,

3
2 ,

5
2 ,

7
2 ,∞

}
. In practice we found that 𝜈 = 5

2 almost
always had the best performance. For a fixed choice of 𝜈 we tuned the length scale 𝑙
similarly to the rational quadratic kernel. We implemented the kernel regressions of
the 𝑓 𝑗 and parameter tuning algorithms in scikit-learn for low-dimensional examples
and manually in JAX for high-dimensional examples.

Preconditioning and dimensionality reduction

Following (5.29) and (5.30) and the discussion in Section 5.3, we consider two pre-
conditioning strategies for our pointwise measurements, i.e., choices of the matrices
𝐿𝑄 and 𝐿𝐾 : (1) we consider the Cholesky factors of the underlying covariance ma-
trices as in (5.46), and (2) we use PCA projection matrices of the input and output
functions computed from the training data. We truncated the PCA expansions to
preserve (0.90, 0.95, 0.99) of the variance. The use of PCA in learning mappings

6https://github.com/MatthieuDarcy/KernelsOperatorLearning/

https://github.com/MatthieuDarcy/KernelsOperatorLearning/
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between infinite dimensional spaces was proposed in (Krischer et al., 1993) and
recently revisited in (Bhattacharya et al., 2021; J. Hesthaven and Ubbiali, 2018).

Experimental setup
We compare the test performance of our method with different choices of the kernel 𝑆
of increasing complexity using the examples in (De Hoop et al., 2022) and (L. Lu, X.
Meng, et al., 2022) and their reported test relative 𝐿2 loss (see eq. (5.48) below). We
use the data provided by these papers for the training set and the test set7. Both articles
provide performance comparisons between different variants of Neural Operators
(most notably FNO and DeepONet) on a variety of PDE operator learning tasks,
where the data is sampled independently from a distribution (𝐼𝑑,G†)#𝜇 supported
onU ×V, where 𝜇 is a specified (input) distribution onU. The example problems
are outlined in detail in Remark 8; a summary of the specific PDEs, problem type,
and distribution 𝜇 for each test is given in table 5.2. In some instances the train-test
split of the data was not clear from the available online repositories in which case
we re-sampled them from the assumed distribution 𝜇. The datasets from (L. Lu,
X. Meng, et al., 2022) contain 1,000 training data-points per problem (which we
will refer to as the “low-data regime”), whereas the datasets from (De Hoop et al.,
2022) contain 20000 training data-points (which we will refer to as the “high-data”
regime). We make this distinction because the complexity of kernel methods, unlike
that of neural networks, may depend on the number of data-points.

Following the suggestion of (De Hoop et al., 2022) we not only compare test
errors and training complexity but also the complexity of operator learning at the
inference/evaluation stage in Section 5.4. For the examples in (De Hoop et al., 2022),
we investigate the accuracy-complexity trade-off of our method against the reported
values of that article.

7See https://github.com/Zhengyu-Huang/Operator-Learning and https://github.
com/lu-group/deeponet-fno, respectively, for the data

https://github.com/Zhengyu-Huang/Operator-Learning
https://github.com/lu-group/deeponet-fno
https://github.com/lu-group/deeponet-fno
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Equation Input Output Input Distribution 𝜇
Burger’s Initial condition Solution at time 𝑇 Gaussian field (GF)
Darcy problem Coefficient Solution Binary function of GF
Advection I Initial condition Solution at time 𝑇 Random square waves
Advection II Initial condition Solution at time 𝑇 Binary function of GF
Helmholtz Coefficient Solution Function of Gaussian field
Structural mechanics Initial force Stress field Gaussian field
Navier Stokes Forcing term Solution at time 𝑇 Gaussian field

Table 5.2: Summary of datasets used for benchmarking. The first three examples
were considered in (L. Lu, X. Meng, et al., 2022), and the last four were taken from
(De Hoop et al., 2022).

Measures of accuracy

As our first performance metric we measured the accuracy of models by a relative
loss on the output spaceV:

R(G) = E𝑢∼𝜇

[
| |G†(𝑢) − G(𝑢) | |V
| |G†(𝑢) | |V

]
, (5.47)

where G† is true operator and G is a candidate operator. Following previous works,
we often took | |𝑢 | |V = | |𝑢 | |𝐿2 := (

∫
𝑢(𝑥)2𝑑𝑥) 1

2 , which in turn is discretized using the
trapezoidal rule. In practice, we do not have the access to the underlying probability
measure 𝜇 and we compute the empirical loss on a withheld test set:

R𝑁 (G) =
1
𝑁

𝑁∑︁
𝑛=1

[
| |G†(𝑢𝑛) − G(𝑢𝑛) | |V
| |G†(𝑢𝑛) | |V

]
, 𝑢𝑖 ∼ 𝜇. (5.48)

Measures of complexity

For our second performance metric we considered the complexity of operator learn-
ing algorithms at the inference stage (i.e., evaluating the learned operator). Com-
plexity at inference time is the main metric used in (De Hoop et al., 2022) to compare
numerical methods for operator learning. The motivation is that training of the meth-
ods can be performed in an offline fashion, and therefore the cost per test example
dominates in the limit of many test queries. In particular, they compare the online
evaluation costs of the neural networks by computing the requisite floating point
operations (FLOPs) per test example. We adopt this metric as well for the methods
not based on neural networks that we develop in this work, and we compare, when
available, the cost-accuracy tradeoff with the numbers reported in (De Hoop et al.,
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2022). We computed the FLOPs with the same assumptions as in the original work:
a matrix-vector product where the input vector is in R𝑛 and the output vector is in
R𝑚 amounts to 𝑚(2 − 1) flops, and non-linear functions with 𝑛-dimensional inputs
(activation functions for neural networks, kernel computations for kernel methods)
are assumed to have cost O(𝑛).

Remark 8 (Training complexity). While the inference complexity of a model even-
tually dominates the cost of training during applications, the training cost cannot
be ignored since the allocated computational resources during this stage may still
be limited and the resulting errors will have a profound impact on the quality and
performance of the learned operators. Therefore numerical methods in which the
offline data assimilation step is cheaper, faster, and more robust will always be
preferred. Computing the exact number of FLOPs at training time is difficult to
estimate for NN methods, as it depends on the optimization algorithms used, the hy-
perparameters and the optimization over such hyperparameters, among many other
factors. Therefore in this work we limit the training complexity evaluation to the
qualitative observation that kernel methods provided in this work are significantly
simpler at training time, as they have no NN weights, they do not require the use of
stochastic gradient descent, and have few or no hyperparameters which can be tuned
using standard methods such as grid search or gradient descent in a low-dimensional
space.

Test problems and qualitative results
Below we outline the setup of each of our benchmark problems. In all cases,U and
V are spaces of real-valued functions with input domains Ω, 𝐷 ⊂ R𝑘 for 𝑘 = 1 or
2. Whenever Ω = 𝐷, we simply write D for both.

Burger’s equation

Consider the one-dimensional Burger’s equation:

𝜕𝑤

𝜕𝑡
+ 𝑤𝜕𝑤

𝜕𝑥
= 𝜈

𝜕2𝑤

𝜕𝑥2 , (𝑥, 𝑡) ∈ (0, 1) × (0, 1],

𝑤(𝑥, 0) = 𝑢(𝑥), 𝑥 ∈ (0, 1)
(5.49)

with D = (0, 1), and periodic boundary conditions. The viscosity parameter 𝜈 is
set to 0.1. We learn the operator mapping the initial condition 𝑢 to 𝑣 = 𝑤(·, 1), the
solution at time 𝑡 = 1, i.e., G† : 𝑤(·, 0) ↦→ 𝑤(·, 1).
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The training data is generated by sampling the initial condition 𝑢 from a GP with
a Riesz kernel, denoted by 𝜇 = GP(0, 625(−Δ + 25𝐼)−2)). As in (L. Lu, X. Meng,
et al., 2022), we used a spatial resolution with 128 grid points to represent the input
and output functions, and used 1,000 instances for training and 200 instances for
testing. Figure 5.4 shows an example of training input and output pairs as well as a
test example along with its pointwise error.
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Figure 5.4: Example of training data and test prediction and pointwise errors for the
Burger’s equation (5.49).

Darcy flow

Consider the two-dimensional Darcy flow problem (5.3). Recall that in this example,
we are interested in learning the mapping from the permeability field 𝑢 to the
solution 𝑣 and the source term 𝑤 is assumed to be fixed, and henceD ≡ Ω = (0, 1)2

and G† : 𝑢 ↦→ 𝑣. The coefficient 𝑢 is sampled by setting 𝑢 ∼ log ◦ℎ♯𝜇 where
𝜇 = GP(0, (−Δ + 9𝐼)−2) is a GP and ℎ is binary function mapping positive inputs
to 12 and negative inputs to 3. The resulting permeability/diffusion coefficient 𝑒𝑢

is therefore piecewise constant. As in (L. Lu, X. Meng, et al., 2022), we use a
discretized grid of resolution 29 × 29, with the data generated by the MATLAB
PDE Toolbox. We use 1,000 points for training and 200 points for testing. Figure 5.2
shows an example of training input and output of the map G†, and an example of
predictions along with pointwise error at the test stage.

Advection equations (I and II)

Consider the one-dimensional advection equation:

𝜕𝑤

𝜕𝑡
+ 𝜕𝑤
𝜕𝑥

= 0 𝑥 ∈ (0, 1), 𝑡 ∈ (0, 1]

𝑤(𝑥, 0) = 𝑢(𝑥) 𝑥 ∈ (0, 1)
(5.50)

with D = (0, 1) and periodic boundary conditions. Similar to the example for
Burgers’ equation, we learn the mapping from the initial condition 𝑢 to 𝑣 = 𝑤(·, 0.5),
the solution at 𝑡 = 0.5, i.e., G† : 𝑤(·, 0) ↦→ 𝑤(·, 0.5).
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This problem was considered in (L. Lu, X. Meng, et al., 2022; De Hoop et al., 2022)
with different distributions 𝜇 for the initial condition. We will show in the following
section how these different distributions lead to different performances. In (L. Lu,
X. Meng, et al., 2022), henceforth referred to as Advection I, the initial condition is
a square wave centered at 𝑥 = 𝑐 of width 𝑏 and height ℎ:

𝑢(𝑥) = ℎ1{𝑐− 𝑏2 ,𝑐+ 𝑏2 }, (5.51)

where the parameters (𝑐, 𝑏, ℎ) ∼ U([0.3, 0.7] × [0.3, 06] × [1, 2]). In (De Hoop
et al., 2022), henceforth referred to as Advection II, the initial condition is

𝑢 = −1 + 21{𝑢̃0 ≥ 0}, (5.52)

where 𝑢̃0 ∼ GP(0, (−Δ + 32𝐼)−2).

For Advection I, the spatial grid was of resolution 40, and we used 1,000 instances
for training and 200 instances for testing. For Advection II, the resolution was of 200
and we used 20,000 training and test instances, following (De Hoop et al., 2022).

Figures 5.5 and 5.6 show an example of training input and output for Advection
the I and II problems, respectively. Observe that the functional samples from the
distribution in Advection I will have exactly two discontinuities almost surely, but the
samples for Advection II can have many more jumps. We observe that prediction is
challenging around discontinuities, and hence Advection II is a significantly harder
problem (across all benchmarked methods) than Advection I. Figures 5.5 and 5.6
also show an instance of a test sample, along with a prediction and the pointwise
errors.
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Figure 5.5: Example of training data and test prediction and pointwise errors for the
Advection problem (5.50)-I.
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Figure 5.6: Example of training data and test prediction and pointwise errors for the
Advection problem (5.50)-II.

Helmholtz’s equation

For a given frequency 𝜔 and wavespeed field 𝑢 : D → R, with D = (0, 1)2, the
excitation field 𝑣 : D → R solves(
−Δ − 𝜔2

𝑢2(𝑥)

)
𝑣 = 0, 𝑥 ∈ (0, 1)2

𝜕𝑣

𝜕𝑛
= 0, 𝑥 ∈ {0, 1} × [0, 1] ∪ [0, 1] × {0} and

𝜕𝑣

𝜕𝑛
= 𝑣𝑁 , 𝑥 ∈ [0, 1] × {1}

(5.53)
In the results that follow, we take 𝜔 = 103, 𝑣𝑁 = 1{0.35≤𝑥≤0.65}, and we aim to learn
the map G : 𝑢 ↦→ 𝑣, i.e., the mapping from the wavespeed field to the excitation
field. The distribution 𝜇 is specified as the law of 𝑢(𝑥) = 20+ tanh(𝑢̃(𝑥)), where 𝑢̃ is
drawn from the GP, GP(0, (−Δ+ 32𝐼)−2). The training and test data were generated
by solving (5.53) with a Finite Element Method on a discretization of size 100×100
of the unit square. Figure 5.7 shows an example of training input and output, a test
prediction, and pointwise errors.
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Figure 5.7: Example of training data and test prediction and pointwise errors for the
Helmholtz problem (5.53).

Structural mechanics

We let Ω = [0, 1] 𝐷 = [0, 1]2, the equation that governs the displacement vector 𝑤
in an elastic solid undergoing infinitesimal deformations is

∇ · 𝜎 = 0 in (0, 1)2, 𝑤 = 𝑤̄, on Γ𝑤, ∇ · 𝑛 = 𝑢 on Γ𝑢, (5.54)
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where the boundary 𝜕𝐷 is split in [0, 1] × 1 = Γ𝑡 (the part of the boundary subject
to stress) and its complement Γ𝑢.

The goal is to learn the operator that maps the one-dimensional load 𝑢 on Γ𝑢 to
the two-dimensional von Mises stress field 𝑣 on Ω, i.e., G : 𝑢 ↦→ 𝑣. Here the
distribution 𝜇 is GP(100, 4002(−Δ+32𝐼)−1), with Δ being the Laplacian subject to
homogeneous Neumann boundary conditions on the space of zero-mean functions.
The function 𝑣 was obtained by a finite element code; see (De Hoop et al., 2022)
for implementation details and the constitutive model used. Figure 5.8 shows an
example of training input and outputs, a test prediction, and pointwise errors.
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Figure 5.8: Example of training data and test prediction and pointwise errors for the
Structural Mechanics problem (5.54).

Navier-Stokes equations

Consider the vorticity-stream (𝜔, 𝜓) formulation of the incompressible Navier-
Stokes equations:

𝜕𝜔

𝜕𝑡
+ (𝑐 · ∇)𝜔 − 𝜈Δ𝜔 = 𝑢, 𝜔 = −Δ𝜓,

∫
𝐷

𝜓 = 0, 𝑐 =

(
𝜕𝜓

𝜕𝑥2
,− 𝜕𝜓
𝜕𝑥1

)
,

(5.55)
where D = [0, 2𝜋]2, periodic boundary conditions are considered and the initial
condition 𝑤(·, 0) is fixed. Here we are interested in the mapping from the forcing
term 𝑢 to 𝑣 = 𝜔(·, 𝑇), the vorticity field at a given time 𝑡 = 𝑇 , i.e., G† : 𝑢 ↦→ 𝜔(·, 𝑇).

The distribution 𝜇 isGP(0, (−Δ+32𝐼)−4). The viscosity 𝜈 is fixed and equal to 0.025,
and the equation is solved on a 64×64 grid with a pseudo-spectral method and Crank-
Nicholson time integration; see (De Hoop et al., 2022) for further implementation
details. Figure 5.9 shows an example of input and output in the test set, along with
an example of test prediction and pointwise errors.
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Figure 5.9: Example of training data and test prediction and pointwise errors for the
Navier-Stokes problem (5.55).

Results and discussion
Below we discuss our main findings in benchmarking our kernel method against
state-of-the-art NN based techniques.

Performance against NNs

Table 5.3 summarizes the 𝐿2 relative test error of our vanilla implementation of the
kernel method along with those of DeepONet, FNO, PCA-Net, and PARA-Net. We
observed that our vanilla kernel method was reliable in terms of accuracy across
all examples. In particular, observe that between the Matérn or rational quadratic
kernel, we always managed to get close to the other methods, see for example the
results for the Burgers’ equation or Darcy problem, and even outperform them in
several examples such as Navier-Stokes and Helmholtz. Overall we observed that
the performance of the kernel method is stable across all examples, suggesting that
our method is reliable and provides a good baseline for a large class of problems.
Moreover, we did not observe a significant difference in performance in terms of the
choice of the particular kernel family once the hyper-parameters were tuned. This
indicates that a large class of kernels are effective for these problems. Furthermore,
we found the hyper-parameter tuning to be robust, i.e., results were consistent in a
reasonable range of parameters such as length scales.

In the high data regime, we found the vanilla kernel method to be the most accurate,
although this comes with a greater cost, as seen in Figure 5.10. However, the
kernel method appears to provide the highest accuracy for its level of complexity
as the accuracy of NNs typically stagnates or even decreases after a certain level of
complexity; see the Navier-Stokes and Helmholtz panels of Figure 5.10 where most
of the NN methods seem to plateau after a certain complexity level.

We also observed that the linear model did not provide the best accuracy as it quickly
saturated in performance. Nonetheless, it provided surprisingly good accuracy at low
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levels of complexity: for example, in the case of Navier-Stokes, the linear kernel
provided the best accuracy below 106 FLOPS of complexity. This indicates that
while simple, the linear model can be a valuable low-complexity model. Another
notable example is the Advection equation (both I and II), where the operator G† is
linear. In this case, the linear kernel had the best accuracy and the best complexity-
accuracy tradeoff. We note, however, that while the linear model was close to
machine precision on Advection I (error on the order 10−13%), its performance
was significantly worse on Advection II (error on the order of 10%). Moreover, the
gap between the linear kernel and all other models was significantly smaller for
Advection I; we conjecture this difference in performance is likely due to the setup
of these problems.

Finally, we note that the most challenging problem for our kernel method was the
Structural Mechanics example. In this case, the vanilla kernel method has higher
complexity but did not beat the NNs. In fact, the NNs seem to be able to reduce
complexity without loss of accuracy compared to our method.

Low-data regime High-data regime
Burger’s Darcy problem Advection I Advection II Hemholtz Structural Mechanics Navier Stokes

DeepONet 2.15% 2.91% 0.66% 15.24% 5.88% 5.20% 3.63%
POD-DeepONet 1.94% 2.32% 0.04% n/a n/a n/a n/a
FNO 1.93% 2.41% 0.22% 13.49% 1.86% 4.76% 0.26%
PCA-Net n/a n/a n/a 12.53% 2.13% 4.67% 2.65%
PARA-Net n/a n/a n/a 16.64% 12.54% 4.55% 4.09%
Linear 36.24% 6.74% 2.15 × 10−13% 11.28% 10.59% 27.11% 5.41%
Best of Matérn/RQ 2.15% 2.75% 2.75 × 10−3% 11.44% 1.00% 5.18% 0.12%

Table 5.3: Summary of numerical results: we report the 𝐿2 relative test error of
our numerical experiments and compare the kernel approach with variations of
DeepONet , FNO, PCA-Net, and PARA-Net. We considered two choices of the
kernel 𝑆, the rational quadratic and the Matérn, but we observed little difference
between the two.

Effect of preconditioners

Table 5.4 compares the performance of our method with the Matérn kernel fam-
ily using various preconditioning steps. Overall we observed that both PCA and
Cholesky preconditioning improved the performance of our vanilla kernel method.

The Cholesky preconditioning generally offers the greatest improvement. However,
we observed that getting the best results from the Cholesky approach required
careful tuning of the parameters of the kernels 𝐾 and 𝑄 which we did using cross-
validation. While tuning the parameters does not increase the inference complexity,
it does increase the training complexity.
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Figure 5.10: Accuracy complexity tradeoff achieved in the problems in (De Hoop
et al., 2022). Data for NNs was obtained from the aforementioned article. Linear
model refers to the linear kernel, vanilla GP is our implementation with the nonlinear
kernels and minimal preprocessing, GP+PCA corresponds to preprocessing through
PCA both the input and the output to reduce complexity.

On the other hand, the PCA approach was more robust to changes in hyperparame-
ters, i.e., the number of PCA components following Section 5.4. We observed that
applying PCA on the input and output reduces complexity and has varying levels of
effectiveness in providing a better cost-accuracy tradeoff. For example, for Navier-
Stokes, it greatly reduced the complexity without affecting accuracy. But for the
Helmholtz and Advection equations, PCA reduced the accuracy while remaining
competitive with NN models. For structural mechanics, however, PCA significantly
reduced accuracy and was worse than other models. We hypothesize that the loss in
accuracy can be related to the decay of the eigenvalues of the PCA matrix in that
example.

Advection II Burger’s Darcy problem
No preprocessing 14.37% 3.04% 4.47%
PCA 14.50% 2.41% 2.89%
Cholesky 11.44% 2.15% 2.75%

Table 5.4: Comparison between Cholesky preconditioning and PCA dimensionality
reduction on three examples for our vanilla kernel implementation with the Matérn
kernel.

5.5 Conclusions
In this work we presented a kernel/GP framework for the learning of operators
between function spaces. We presented an abstract formulation of our kernel frame-
work along with convergence proofs and error bounds in certain asymptotic limits.
Numerical experiments and benchmarking against popular NN based algorithms
revealed that our vanilla implementation of the kernel approach is competitive and
either matches the performance of NN methods or beats them in several benchmarks.
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Due to simplicity of implementation, flexibility, and the empirical results, we suggest
that the proposed kernel methods are a good benchmark for future, perhaps more
sophisticated, algorithms. Furthermore, these methods can be used to guide prac-
titioners in the design of new and challenging benchmarks (e.g, identify problems
where vanilla kernel methods do not perform well). Numerous directions of future
research exist. In the theoretical direction it is interesting to remove the stringent
Condition 5.3.2 and we anticipate this to require a particular selection of the kernel
employed to obtain the map 𝑓 . Moreover, obtaining error bounds for more general
measurement functionals beyond pointwise evaluations would be interesting. One
could also adapt our framework to non-vanilla kernel methods such as random fea-
tures or inducing point methods to provide a low-complexity alternative to NNs in
the large-data regime. Finally, since the proposed approach is essentially a gener-
alization of GP Regression to the infinite-dimensional setting, we anticipate that
some of the hierarchical techniques of (Houman Owhadi, 2017; Schaäfer, Katzfuss,
and Houman Owhadi, 2021; Florian Schäfer, Timothy John Sullivan, and Houman
Owhadi, 2021a) could be extended to this setting and provide a better cost-accuracy
trade-off than current methods.

5.6 Review of operator valued kernels and GPs
We review the theory of operator valued kernels and GPs (Houman Owhadi, 2023a)
as these are utilized throughout the article. Operator-valued kernels were introduced
in (Kadri et al., 2016) as a generalization of vector-valued kernels (Alvarez, Rosasco,
Lawrence, et al., 2012).

Operator valued kernels
Let U and V be separable Hilbert spaces endowed with the inner products

〈
·, ·

〉
U

and
〈
·, ·

〉
V . Write L(V) for the set of bounded linear operators mappingV toV.

Definition 5.6.1. We call 𝐺 : U ×U → L(V) an “operator-valued kernel” if

1. 𝐺 is Hermitian, i.e. 𝐺 (𝑢, 𝑢′) = 𝐺 (𝑢′, 𝑢)𝑇 for all 𝑢, 𝑢′ ∈ U , writing 𝐴𝑇 for the
adjoint of the operator 𝐴 with respect to

〈
·, ·

〉
V .

2. 𝐺 is non-negative, i.e., for all𝑚 ∈ N and any set of points (𝑢𝑖, 𝑣𝑖)𝑚𝑖=1 ⊂ U×V
it holds that

∑𝑚
𝑖, 𝑗=1

〈
𝑣𝑖, 𝐺 (𝑢𝑖, 𝑢 𝑗 )𝑣 𝑗

〉
V ≥ 0.

We call 𝐺 non-degenerate if
∑𝑚
𝑖, 𝑗=1

〈
𝑣𝑖, 𝐺 (𝑢𝑖, 𝑢 𝑗 )𝑣 𝑗

〉
V = 0 implies 𝑣𝑖 = 0 for all 𝑖

whenever 𝑢𝑖 ≠ 𝑢 𝑗 for 𝑖 ≠ 𝑗 .
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RKHSs
Each non-degenerate, locally bounded and separately continuous operator-valued
kernel 𝐺 is in one to one correspondence with an RKHSH of continuous operators
G : U → V obtained as the closure of the linear span of the maps 𝑧 ↦→ 𝐺 (𝑧, 𝑢)𝑣
with respect to the inner product identified by the reproducing property〈

𝑔, 𝐺 (·, 𝑢)𝑣
〉
H =

〈
𝑔(𝑢), 𝑣

〉
V . (5.56)

Feature maps
Let F be a separable Hilbert space (with inner product

〈
·, ·

〉
F and norm ∥ · ∥F )

and let 𝜓 : U → L(V, F ) be a continuous function mapping U to the space of
bounded linear operators fromV to F .

Definition 5.6.2. We say that F and 𝜓 : U → L(V, F ) are a feature space and a
feature map for the kernel 𝐺 if, for all (𝑢, 𝑢′, 𝑣, 𝑣′) ∈ U2 ×V2,〈

𝑣, 𝐺 (𝑢, 𝑢′)𝑣′
〉
=

〈
𝜓(𝑢)𝑣, 𝜓(𝑢′)𝑣′

〉
F .

Write 𝜓𝑇 (𝑢), for the adjoint of 𝜓(𝑢) defined as the linear function mapping F toV
satisfying 〈

𝜓(𝑢)𝑣, 𝛼
〉
F =

〈
𝑣, 𝜓𝑇 (𝑢)𝛼

〉
V

for 𝑢, 𝑣, 𝛼 ∈ U × V × F . Note that 𝜓𝑇 : U → L(F ,V) is therefore a function
mappingU to the space of bounded linear functions from F toV. Writing 𝛼𝑇𝛼′ :=〈
𝛼, 𝛼′

〉
F for the inner product in F we can ease our notations by writing

𝐺 (𝑢, 𝑢′) = 𝜓𝑇 (𝑢)𝜓(𝑢′) (5.57)

which is consistent with the finite-dimensional setting and 𝑣𝑇𝐺 (𝑢, 𝑢′)𝑣′ = (𝜓(𝑢)𝑣)𝑇 (𝜓(𝑢′)𝑣′)
(writing 𝑣𝑇𝑣′ for the inner product in V). For 𝛼 ∈ F write 𝜓𝑇𝛼 for the function
U → V mapping 𝑢 ∈ U to the element 𝑣 ∈ V such that〈

𝑣′, 𝑣
〉
V =

〈
𝑣′, 𝜓𝑇 (𝑢)𝛼

〉
V =

〈
𝜓(𝑢)𝑣′, 𝛼

〉
F for all 𝑣′ ∈ V .

We can, without loss of generality, restrict F to be the range of (𝑢, 𝑣) → 𝜓(𝑢)𝑣 so
that the RKHS H defined by 𝐺 is the closure of the pre-Hilbert space spanned by
𝜓𝑇𝛼 for 𝛼 ∈ F . Note that the reproducing property (5.56) implies that for 𝛼 ∈ F〈

𝜓𝑇 (·)𝛼, 𝜓𝑇 (·)𝜓(𝑢)𝑣
〉
H =

〈
𝜓𝑇 (𝑢)𝛼, 𝑣

〉
V =

〈
𝛼, 𝜓(𝑢)𝑣

〉
F

for all 𝑢, 𝑣 ∈ U ×V, which leads to the following theorem.
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Theorem 5.6.3. The RKHSH defined by the kernel (5.57) is the linear span of 𝜓𝑇𝛼
over 𝛼 ∈ F such that ∥𝛼∥F < ∞. Furthermore,

〈
𝜓𝑇 (·)𝛼, 𝜓𝑇 (·)𝛼′

〉
H =

〈
𝛼, 𝛼′

〉
F

and
∥𝜓𝑇 (·)𝛼∥2H = ∥𝛼∥2F for 𝛼, 𝛼′ ∈ F .

Interpolation
Let us consider the interpolation problem in operator valued RKHSs.

Problem 3. Let G† be an unknown continuous operator mapping U to V. Given
the information8 G†(u) = v with the data (u, v) ∈ U𝑁 ×V𝑁 , approximate G†.

Using the relative error in ∥ · ∥H -norm as a loss, the minimax optimal recovery
solution of Problem 3 is, by (Houman Owhadi and Clint Scovel, 2019a, Thm. 12.4,
12.5), given by 

Minimize ∥G∥2H
subject to G(u) = v.

(5.58)

The minimizer is then of the form G(·) = ∑𝑁
𝑗=1𝐺 (·, 𝑢 𝑗 )𝑤 𝑗 , where the coefficients

𝑤 𝑗 ∈ V are identified by solving the system of linear equations
∑𝑁
𝑗=1𝐺 (𝑢𝑖, 𝑢 𝑗 )𝑤 𝑗 =

𝑣𝑖 for all 𝑖 ∈ {1, . . . , 𝑁} . Using our compressed notation we can rewrite this equa-
tion as 𝐺 (u, u)w = v where w = (𝑤1, . . . , 𝑤𝑁 ), v = (𝑣1, . . . , 𝑣𝑁 ) ∈ V𝑁 and
𝐺 (u, u) is the 𝑁 × 𝑁 block-operator matrix 9 with entries 𝐺 (𝑢𝑖, 𝑢 𝑗 ). Therefore,
writing 𝐺 (·, u) for the vector (𝐺 (·, 𝑢1), . . . , 𝐺 (·, 𝑢𝑁 )) ∈ H𝑁 , the optimal recovery
interpolant is given by

Ḡ(·) = 𝐺 (·, u)𝐺 (u, u)−1v , (5.59)

which implies that the value of (5.58) at the minimum is

∥Ḡ∥2H = v𝑇𝐺 (u, u)−1v , (5.60)

where 𝐺 (u, u)−1 is the inverse of 𝐺 (u, u), whose existence is implied by the non-
degeneracy of 𝐺 combined with 𝑢𝑖 ≠ 𝑢 𝑗 for 𝑖 ≠ 𝑗 .

8For a 𝑁-vector u = (𝑢1, . . . , 𝑢𝑁 ) ∈ U𝑁 and a function G : U → V, write G(u) for the 𝑁
vector with entries

(
G(𝑢1), . . . ,G(𝑢𝑁 )

)
.

9For 𝑁 ≥ 1 let V𝑁 be the N-fold product space endowed with the inner-product
〈
v,w

〉
V𝑁 :=∑𝑁

𝑖, 𝑗=1
〈
𝑣𝑖 , 𝑤 𝑗

〉
V for v = (𝑣1, . . . , 𝑣𝑁 ),w = (𝑤1, . . . , 𝑤𝑁 ) ∈ V𝑁 . A ∈ L(V𝑁 ) given by A =©­­«

𝐴1,1 · · · 𝐴1,𝑁
...

...

𝐴𝑁,1 · · · 𝐴𝑁,𝑁

ª®®¬ where 𝐴𝑖, 𝑗 ∈ L(V), is called a block-operator matrix. Its adjoint AT with

respect to
〈
·, ·

〉
V𝑁 is the block-operator matrix with entries (𝐴𝑇 )𝑖, 𝑗 = (𝐴 𝑗 ,𝑖)𝑇 .
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Ridge regression
Let 𝛾 > 0. A ridge regression (approximate) solution to Problem 3 can be found as
the minimizer of

inf
G∈H

𝜆 ∥G∥2H + 𝛾
−1

𝑁∑︁
𝑖=1
∥𝑣𝑖 − G(𝑢𝑖)∥2V . (5.61)

This minimizer is given by the formula

Ḡ(𝑢) = 𝐺 (𝑢, u)
(
𝐺 (u, u) + 𝛾𝐼

)−1v , (5.62)

writing 𝐼 for the identity matrix. We can further compute directly

∥Ḡ∥2H = v𝑇
(
𝐺 (u, u) + 𝛾𝐼

)−1v .

Operator-valued GPs
The following definition of operator-valued Gaussian processes is a natural extension
of scalar-valued Gaussian fields (Houman Owhadi and Clint Scovel, 2019a).

Definition 5.6.4. (Houman Owhadi, 2023a, Def. 5.1) Let 𝐺 : U × U → L(V)
be an operator-valued kernel. Let 𝑚 be a function mapping U to V. We call
𝜉 : U → L(V,H) an operator-valued GP if 𝜉 is a function mapping 𝑢 ∈ U to
𝜉 (𝑢) ∈ L(V,H) where H is a Gaussian space andL(V,H) is the space of bounded
linear operators from V to H. Abusing notations we write

〈
𝜉 (𝑢), 𝑣

〉
V for 𝜉 (𝑢)𝑣.

We say that 𝜉 has mean 𝑚 and covariance kernel 𝐺 and write 𝜉 ∼ N(𝑚,𝐺) if〈
𝜉 (𝑢), 𝑣

〉
V ∼ N

(
𝑚(𝑢), 𝑣𝑇𝐺 (𝑢, 𝑢)𝑣

)
and

Cov
(〈
𝜉 (𝑢), 𝑣

〉
V ,

〈
𝜉 (𝑢′), 𝑣′

〉
V

)
= 𝑣𝑇𝐺 (𝑢, 𝑢′)𝑣′ . (5.63)

We say that 𝜉 is centered if it is of zero mean.

If 𝐺 (𝑢, 𝑢) is trace class (Tr[𝐺 (𝑢, 𝑢)] < ∞) then 𝜉 (𝑢) defines a measure on V, i.e.
aV-valued random variable 10.

Theorem 5.6.5. (Houman Owhadi, 2023a, Thm. 5.2) The law of an operator-valued
GP is uniquely determined by its mean𝑚 and covariance kernel𝐺. Conversely given
𝑚 and 𝐺 there exists an operator-valued GP having mean 𝑚 and covariance kernel
𝐺. In particular if 𝐺 has feature space F and map 𝜓, the 𝑒𝑖 form an orthonormal
basis of F , and the 𝑍𝑖 are i.i.d. N(0, 1) random variables, then 𝜉 = 𝑚 +∑

𝑖 𝑍𝑖𝜓
𝑇𝑒𝑖

is an operator-valued GP with mean 𝑚 and covariance kernel 𝐺.
10Otherwise it only defines a (weak) cylinder-measure in the sense of Gaussian fields.
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Theorem 5.6.6. (Houman Owhadi, 2023a, Thm. 5.3) Let 𝜉 be a centered operator-
valued GP with covariance kernel 𝐺 : U × U → L(V). Let u, v ∈ U𝑁 × V𝑁 .
Let 𝑍 = (𝑍1, . . . , 𝑍𝑁 ) be a random Gaussian vector, independent from 𝜉, with i.i.d.
N(0, 𝛾𝐼V) entries (𝛾 ≥ 0 and 𝐼V is the identity map onV). Then 𝜉 conditioned on
𝜉 (u) + 𝑍 is an operator-valued GP with mean

E
[
𝜉 (𝑢)

��𝜉 (u) + 𝑍 = v
]
= 𝐺 (𝑢, u)

(
𝐺 (u, u) + 𝛾𝐼V

)−1v = (5.62) (5.64)

and conditional covariance operator

𝐺⊥(𝑢, 𝑢′) := 𝐺 (𝑢, 𝑢′) − 𝐺 (𝑢, u)
(
𝐺 (u, u) + 𝛾𝐼V

)−1
𝐺 (u, 𝑢′) . (5.65)

In particular, if 𝐺 is trace class, then

𝜎2(𝑢) := E
[

𝜉 (𝑢) − E[𝜉 (𝑢) |𝜉 (u) + 𝑍 = v]



2
V

���𝜉 (u) + 𝑍 = v
]
= Tr

[
𝐺⊥(𝑢, 𝑢)

]
.

(5.66)

Deterministic error estimates for operator-valued regression
The following theorem shows that the standard deviation (5.66) provides determinis-
tic a prior error bounds on the accuracy of the ridge regressor (5.64) toG† in Problem
3. Local error estimates such as (5.67) below are classical in the Kriging literature
(Wu and Schaback, 1993) where 𝜎2(𝑢) is known as the power function/kriging
variance; see also (Houman Owhadi, 2015a)[Thm. 5.1] for applications to PDEs.

Theorem 5.6.7. (Houman Owhadi, 2023a, Thm. 5.4) Let G† be the unknown func-
tion of Problem 3 and let G(𝑢) = (5.64) = (5.62) be its ridge regressor. Let H be
the RKHS associated with 𝐺 and let H𝛾 be the RKHS associated with the kernel
𝐺𝛾 := 𝐺 + 𝛾𝐼V . It holds true that

G†(𝑢) − G(𝑢)

V ≤ 𝜎(𝑢)∥G†∥H (5.67)

and 

G†(𝑢) − G(𝑢)

V ≤ √︁
𝜎2(𝑢) + 𝛾 dim(V)∥G†∥H𝛾 , (5.68)

where 𝜎(𝑢) is the standard deviation (5.66).

5.7 An alternative regularization of operator regression
For 𝛾 > 0, the regularization implied by (5.27) is equivalent to adding noise on the
𝜑(v) measurements. If one could observe v (and not just 𝜑(v)), then an alternative
approach to regularizing the problem is to add noise to 𝜉 (u). To describe this let
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𝑍′ = (𝑍′1, . . . , 𝑍
′
𝑁
) be a random block-vector, independent from 𝜉, with i.i.d. entries

𝑍′
𝑗
∼ N(0, 𝛾𝐼V) for 𝑗 = 1, . . . , 𝑁 (where 𝐼V denotes the identity map on V).

Then the GP 𝜉 conditioned on 𝜉 (u) = v + 𝑍′ is a GP with conditional covariance
kernel (5.65) and conditional mean G̃𝛾=(5.62) that is also the minimizer of (5.61).
Observing11 that 𝜑(𝑍′

𝑖
) ∼ N (0, 𝛾𝐾 (𝜑, 𝜑)) , we deduce that G̃𝛾 = 𝜒 ◦ 𝑓̃𝛾 ◦ 𝜙 where

𝑓̃𝛾 minimizes
Minimize ∥ 𝑓 ∥2

Γ
+ 𝛾−1 ∑𝑁

𝑖=1( 𝑓 (𝑈𝑖) −𝑉𝑖)𝑇𝐾 (𝜑, 𝜑)−1( 𝑓 (𝑈𝑖) −𝑉𝑖) .

Over 𝑓 ∈ HΓ .
(5.69)

Furthermore, the distribution of 𝜉 conditioned on 𝜉 (u) = v + 𝑍′ is that of 𝜒 ◦ 𝜁⊥ ◦ 𝜙
where 𝜁⊥ ∼ N( 𝑓̃𝛾, Γ̃⊥) is the GP 𝜁 conditioned on 𝜁 (U) = V+𝜑(𝑍′), whose mean is
𝑓̃𝛾 and conditional covariance kernel is Γ̃⊥(𝑈,𝑈′) = Γ(𝑈,𝑈′) −Γ(𝑈,U) (Γ(U,U) +
𝛾𝐴)−1Γ(U,𝑈′) where 𝐴 is a 𝑁 ×𝑁 block diagonal matrix with 𝐾 (𝜑, 𝜑) as diagonal
entries.

5.8 Expressions for the kernels used in experiments
Below we collect the expressions for the kernels that were referred to in the article
or utilized for our numerical experiments. These can be found in many standard
textbooks on GPs such as (Rasmussen and Williams, 2006).

The linear kernel
The linear kernel has the simple expression 𝐾linear(𝑥, 𝑥′) =

〈
𝑥, 𝑥′

〉
and may be

defined on any inner product space. It has no hyper-parameters.

The rational quadratic kernel
The rational quadratic kernel has the expression 𝐾 (𝑥, 𝑥′) = 𝑘RQ(∥𝑥 − 𝑥′∥) where

𝑘RQ(𝑟) =
(
1 + 𝑟

2

2𝑙2

)−𝛼
. (5.70)

It has hyper-parameters 𝛼 > 0 and 𝑙.

The Matérn parametric family
The Matérn kernel family is of the form 𝐾 (𝑥, 𝑥′) = 𝑘 (∥𝑥 − 𝑥′∥ where

𝑘𝜈 (𝑟) = exp
(
−
√

2𝜈𝑟
𝑙

)
Γ(𝑝 + 1)
Γ(2𝑝 + 1)

𝑝∑︁
𝑖=0

(𝑝 + 1)!
𝑖!(𝑝 − 𝑖)!

(√
8𝜈𝑟
𝑙

) 𝑝−𝑖
, (5.71)

11This follows from 𝜑(𝑍 ′
𝑖
) ∼ N (0, 𝛾𝜑𝜑𝑇 ) where 𝜑𝑇 is the adjoint of 𝜑 identified as the linear

map from R𝑚 toV satisfying
〈
𝑊, 𝜑(𝑤)

〉
R𝑚 =

〈
𝜑⊥𝑊, 𝑤

〉
V for 𝑤 ∈ V and𝑊 ∈ R𝑚 (i.e., 𝜑𝑇 (𝑊) =

(𝐾𝜑)𝑊).
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for 𝜈 = 𝑝+ 1
2 . This kernel has hyper-parameters 𝑝 ∈ Z+ and 𝑙 > 0. In the limiting case

where 𝜈 → ∞, the Matérn kernel, we obtain the Gaussian or squared exponential
kernel:

𝑘∞(𝑟) = exp
(
− 𝑟2

2𝑙2

)
, (5.72)

with hyper-parameter 𝑙 > 0.
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C h a p t e r 6

ERROR ANALYSIS OF KERNEL/GP METHODS FOR
NONLINEAR AND PARAMETRIC PDES

We introduce a priori Sobolev-space error estimates for the solution of arbitrary
nonlinear, and possibly parametric, PDEs that are defined in the strong sense, using
Gaussian process and kernel based methods. The primary assumptions are (1) a
continuous embedding of the reproducing kernel Hilbert space of the kernel into a
Sobolev space of sufficient regularity, and (2) the stability of the differential operator
and the solution map of the PDE between corresponding Sobolev spaces. The proof
is articulated around Sobolev norm error estimates for kernel interpolants and relies
on the minimizing norm property of the solution. The error estimates demonstrate
dimension-benign convergence rates if the solution space of the PDE is smooth
enough. We illustrate these points with applications to high-dimensional nonlin-
ear elliptic PDEs and parametric PDEs. Although some recent machine learning
methods have been presented as breaking the curse of dimensionality in solving
high-dimensional PDEs, our analysis suggests a more nuanced picture: there is a
trade-off between the regularity of the solution and the presence of the curse of
dimensionality. Therefore, our results are in line with the understanding that the
curse is absent when the solution is regular enough.

6.1 Introduction
In recent years the adoption of machine learning in the natural sciences and en-
gineering has led to the development of new methods for solving PDEs (Raissi,
Perdikaris, and George E Karniadakis, 2019; Weinan, Han, and Jentzen, 2017;
Weinan and B. Yu, 2018; Li, Kovachki, Azizzadenesheli, Bhattacharya, et al., 2020;
L. Lu, Jin, et al., 2021). The majority of these methods rely on the approximation
power of artificial neural networks (ANNs) either as a function class to approximate
the solution of the PDE or as a high-dimensional function class to approximate the
solution map of the PDE. Despite the empirical success of the aforementioned ANN
based methods, current theoretical understanding of these PDE solvers is scarce and,
beyond particular PDEs (e.g., (Shin, Darbon, and George Em Karniadakis, 2020;
Y. Lu et al., 2021; De Ryck and Mishra, 2022)), results are oftentimes limited to
existence results rather than convergence guarantees or rates.
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Similar to ANNs, kernel methods and Gaussian processes (GPs) have been very
effective in scientific computing and machine learning (Scholkopf and Alexander J
Smola, 2018; Muandet et al., 2017; Berlinet and Thomas-Agnan, 2011; Williams and
Rasmussen, 2006) and at the same time they are supported by rigorous theoretical
foundation (Berlinet and Thomas-Agnan, 2011; Wendland, 2004; Houman Owhadi
and Clint Scovel, 2019b). Recently in (Yifan Chen, Hosseini, et al., 2021b), the
authors introduced a kernel collocation method for solving arbitrary nonlinear PDEs
with a rigorous convergence guarantee. The theory presented in that work was based
on the assumptions that (1) the solution belongs to the reproducing kernel Hilbert
space (RKHS) defined by the underlying kernel which in turn is embedded in the
Sobolev space 𝐻𝑠 for 𝑠 > 𝑑/2 +“order of the PDE” (where 𝑑 is the dimension of
the domain of the PDE) and (2) the fill-distance between collocation points goes
to zero. Convergence was proved via a compactness argument but no convergence
rates were provided.

The goal of this article is to provide quantitative convergence rates for the PDE
solver introduced in (Yifan Chen, Hosseini, et al., 2021b). Our quantitaitve rates
also reveal the interplay between the regularity of the solution of the PDE and
the dimension 𝑑 of the problem. At the same time we make improvements to the
methodology of (Yifan Chen, Hosseini, et al., 2021b) and extend it to the case of
parametric PDEs. In the rest of this section we summarize our main contributions
in Section 6.1 followed by a review of the relevant literature in Section 6.1, and an
outline of the article in Section 6.1.

Significance of Contributions
The use of meshless, collocation methods with radial basis functions for solving
PDEs dates back to the 1990s (Kansa, 1990a; Kansa, 1990b; Franke and Schaback,
1998b; Fasshauer, 1999). Typical approaches include symmetric collocation (Franke
and Schaback, 1998b; Fasshauer, 1999) and unsymmetric collocation methods (also
known as the Kansa method (Kansa, 1990a; Kansa, 1990b)); see (Schaback and
Wendland, 2006; Fornberg and Flyer, 2015) for reviews. It is recognized that the
unsymmetric collocation approach may encounter instability issues and require
additional techniques (Ling, Opfer, and Schaback, 2006; Schaback, 2007; Ling
and Schaback, 2008; Cheung, Ling, and Schaback, 2018), whereas the symmetric
collocation approach always yields positive definite symmetric matrices and is
stable. The reason is that the symmetric collocation approach includes higher-
order derivatives of the kernel as basis functions and leads to solutions that can be
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identified as optimal recovery (worst case minimax optimal) solutions. This optimal
recovery property makes the algorithm generally applicable for any well-posed linear
PDEs (Hon and Schaback, 2008; Schaback, 2015; Schaback, 2016). Furthermore
the analysis becomes straightforward because of this optimality; see (Franke and
Schaback, 1998a; Franke and Schaback, 1998b) for linear PDEs and (Böhmer and
Schaback, 2013; Böhmer and Schaback, 2020) for some degree of generalization to
quasi-linear/nonlinear problems. Note that the optimality has long been recognized,
but not extensively acknowledged however, as highlighted in (Schaback, 2015): “This
technique has been around since at least 1998, but its optimality properties went
unnoticed.” The GP-PDE methodology proposed in (Yifan Chen, Hosseini, et al.,
2021b) can be seen as a nonlinear generalization of the optimal recovery approach
to solving (and learning) arbitrary classically/strongly defined nonlinear PDEs.
This paper aims to offer a simple and transparent theoretical error analysis of this
nonlinear optimal recovery method. This analysis extends the linear setting (Giesl
and Wendland, 2007) and shares conceptual steps (in terms of the role of stability
and sampling inequalities) with (Böhmer and Schaback, 2013) while explicitly
focusing on optimal recovery solutions rather than solutions obtained from finite-
dimensional trial spaces and residual minimization. Such theoretical analyses are
notably rare within the sphere of machine learning-based PDE solutions (where
theoretical guarantees are typically limited to existence results). Furthermore, while
there is no general theory for strongly defined arbitrary nonlinear PDEs, the optimal
recovery approach provides a way of obtaining general theoretical guarantee for
the numerical approximation of such PDEs. Beyond its wide scope, the proposed
analysis also lays the groundwork for developing rigorous, efficient, and scalable
(near-linear complexity) learning-based methods for arbitrary nonlinear PDEs. This
can be achieved by integrating the proposed error estimates with the fast algorithms
developed in (Yifan Chen, Houman Owhadi, and Florian Schäfer, 2024) for kernel
matrices whose entries contain higher-order derivatives of the kernel, a setting
well suited for the optimal recovery approach. We note that the analysis in the
paper is focused on the minimizer of a loss function induced by kernel and GP
methods. Understanding theoretically how iterative algorithms are able to achieve
this minimizer represents another crucial stride towards our ultimate objective; this
could be potentially done by combining analysis results for iterative linerization, for
example the work in (Becker et al., 2023).
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Summary of Contributions
Throughout the article we consider parametric PDEs of the form{

P(𝑢★) (𝒙; 𝜽) = 𝑓 (𝒙; 𝜽), (𝒙, 𝜽) ∈ Ω × Θ,
B(𝑢★) (𝒙; 𝜽) = 𝑔(𝒙; 𝜽), (𝒙, 𝜽) ∈ 𝜕Ω × Θ,

(6.1)

where Ω ⊂ R𝑑 is a bounded connected domain with an appropriately smooth
boundary 𝜕Ω, P and B are the interior and boundary differential operators that
define the PDE and 𝑓 , 𝑔 are the source and boundary data. 𝒙 denotes the spatial
variable with 𝜽 denoting a parameter belonging to a compact set Θ ⊂ R𝑝. The
function 𝑢★ denotes the exact, strong solution of this PDE.

We view the solution 𝑢★ as a function on Ω×Θ and approximate it in an appropriate
RKHS by imposing the PDE as a constraint on a set of collocation points in the
product space Ω × Θ. Our main contributions are four-fold as summarized below:

1. We extend the kernel PDE solver of (Yifan Chen, Hosseini, et al., 2021b) to
the case of the parametric PDE (6.1). This extension follows by viewing the
solution 𝑢★(𝒙; 𝜃) as a continuous function defined onΩ×Θ and approximating
it with a function 𝑢† in an appropriate RKHS U after imposing the PDE as
a constraint on a set of collocation points. At the same time we improve
the efficacy and performance of the Gauss-Newton (GN) algorithm of (Yifan
Chen, Hosseini, et al., 2021b) through an approach of “linearize first then
apply the kernel solver”. For many prototypical PDEs this new approach leads
to smaller kernel matrices that can be factored or inverted more efficiently.
These numerical strategies are outlined in Section 6.2, and our proposed
methodology is summarized in Algorithms 9 and 10.

2. We provide explicit a priori convergence rates for the kernel estimator 𝑢† ∈ U
to the true solution 𝑢★. Our proof relies on three assumptions: (1) the RKHS
U ⊂ 𝐻𝑠 (Ω) for 𝑠 > (𝑑 + 𝑝)/2 + “order of the PDE”, (2) the true unique
solution 𝑢★ ∈ U, and (3) the forward PDE operator and the associated solution
map of the PDE are Lipschitz stable. Our error estimates are of the general
form

∥𝑢† − 𝑢★∥𝐿2 (Ω) ≲ ℎ𝑠∥𝑢★∥U , (6.2)

where ℎ is the fill-distance (mesh-norm) of our collocation points. Indeed, if
expressed in terms of 𝑁 , the number of collocation points, the rate will read
as O(𝑁−𝑠/(𝑑+𝑝)). The above rate indicates a trade-off between the regularity
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of the solution space and the dimension 𝑑 + 𝑝 of Ω × Θ stating that the
convergence rate is dimension-benign so long as the solution 𝑢★ is sufficiently
regular; these results are outlined in Section 6.3.

3. In fact, our method for proving the rate (6.2) is more general than the case
of PDEs (see Figure 6.1 for the road map of the proof technique). The proof
can be viewed as a recipe for convergence analysis of solutions to nonlinear
functional equations of the form P(𝑢) = 𝑓 where 𝑢, 𝑓 belong to sufficiently
regular function spaces and P is invertible (at least locally). Then the Lip-
schitz stability of P and P−1 plus RKHS interpolation bounds on 𝑓 yield
convergence rates for 𝑢. Results at this level of generality are presented in
(Schaback, 2016) for linear maps P which are then extended to nonlinear
problems in (Böhmer and Schaback, 2013; Böhmer and Schaback, 2020). In
these works, the stability of the discretization method is furthermore assumed.
In the GP methodology, this property is guaranteed, due to the minimal RKHS
norm and optimal recovery property of the solution. This has been pointed
out in (Schaback, 2016, Sec. 10) for linear PDEs. Our theory can be seen as a
generalization of the result in (Schaback, 2016) to the nonlinear case.

4. We present a suite of numerical experiments that elucidate and extend our
theoretical analysis in item 2. We present an example of a nonlinear elliptic
PDE with a prescribed solution of varying regularity in various dimensions.
We then explore the interplay between regularity and dimensionality as well as
the rate in (6.2). We further verify our result for a one dimensional parametric
PDE by varying 𝑝, the dimension of the parameter space Θ. Because of this
trade-off between regularity and dimensionality, showing that a numerical
method remains accurate for a high dimensional PDE may not be an indication
that it is breaking the curse of dimensionality but simply an indication that
the problem being solved is very regular; see our experiments in Section 6.4
and in particular Section 6.4.

Literature Review
Below we present a brief review of the literature relevant to the current work.

Kernel and Gaussian Process Solvers for PDEs

As mentioned earlier our algorithmic and theoretical developments are focused on
the kernel method introduced in (Yifan Chen, Hosseini, et al., 2021b) and extending
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Figure 6.1: A summary of the main steps in our proof of convergence rates outlined
in Theorems 6.3.1, 6.3.2, 6.3.4 and 6.3.6. The 1–4 norms denote arbitrary norms on
appropriate Banach spaces while the ∥ · ∥U-norm can be chosen as an RKHS norm
or another desired norm with respect to which the numerical algorithm is stable.

that approach to parametric PDEs. Further extensions and applications of the afore-
mentioned framework can also be found in (Mou, Yang, and Zhou, 2022; R. Meng
and Yang, 2022; Long, Mrvaljevic, et al., 2022; Yifan Chen, Houman Owhadi, and
Florian Schäfer, 2024). When applied to linear PDEs our kernel method coincides
with the so-called symmetric collocation method (Schaback and Wendland, 2006,
Sec. 14) and is closely associated with radial basis function (RBF) PDE solvers
(Fornberg and Flyer, 2015; Fasshauer, 1999; Franke and Schaback, 1998b). Various
error analyses for RBF collocation methods can be found in (Franke and Schaback,
1998a; Franke and Schaback, 1998b). In particular, the article (Giesl and Wendland,
2007) is the closest to our work and their rates coincide with ours in the linear
PDE setting. The articles (Ling, Opfer, and Schaback, 2006; Schaback, 2007; Ling
and Schaback, 2008; Cheung, Ling, and Schaback, 2018) present similar bounds
for the so-called Kansa method (Kansa, 1990a; Kansa, 1990b), a non-symmetric
RBF collocation PDE solver. Finally, (Schaback, 2016) presents an abstract set of
convergence rates for RBF interpolation of “well-posed” linear maps between reg-
ular function spaces that includes RBF PDE solvers as a special case. All of the
aforementioned analyses consider linear PDEs and some generalizations to nonlin-
ear problems are studied in (Böhmer and Schaback, 2013; Böhmer and Schaback,
2020).

The deep connection of Kernels and RKHSs to the theory of GPs (Bogachev, 1998;
Larkin, 1972; Williams and Rasmussen, 2006; Vaart and Zanten, 2008) suggests that
kernel PDE solvers can be viewed from lens of probability theory as a conditioning
problem for GPs. While not as extensively developed as the kernel solvers mentioned
earlier, this direction has been explored for the solution of linear PDEs as well as
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nonlinear ODEs (O. A. Chkrebtii et al., 2016; Cockayne, C. J. Oates, et al., 2019;
Houman Owhadi, 2015b; Särkkä, 2011; Swiler et al., 2020) and recent works have
extended this idea to some nonlinear and time-dependent PDEs (Cockayne, C. Oates,
et al., 2017; Raissi, Perdikaris, and George Em Karniadakis, 2018; J. Wang et al.,
2021). The GP interpretation is attractive due to the ability to provide rigorous
uncertainty estimates along with the solution to the PDE. The idea here is that the
uncertainties can serve as a posterior or a priori error indicators for the PDE solver.
Some ideas related to this direction were discussed in (Yifan Chen, Hosseini, et al.,
2021b; Cockayne, C. Oates, et al., 2017). A fully probabilistic GP interpretation of
our kernel framework for linear PDEs can be found in (Houman Owhadi, 2015b;
Cockayne, C. Oates, et al., 2017; Houman Owhadi and Clint Scovel, 2019b) but
the case of nonlinear PDEs remains partially investigated (Yifan Chen, Hosseini,
et al., 2021b; R. Meng and Yang, 2022; Mou, Yang, and Zhou, 2022; Long, Z.
Wang, et al., 2022). Moreover we note that in the GP framework, hierarchical Bayes
learning can be used to select kernels to get better convergence rates (Yifan Chen,
Houman Owhadi, and A. Stuart, 2021a; Wilson et al., 2016; Houman Owhadi and
Yoo, 2019b; Darcy et al., 2023).

Parametric and High-dimensional PDEs

Parametric PDEs are ubiquitous is physical sciences and engineering and in particu-
lar in the context of uncertainty quantification (UQ) and solution of stochastic PDEs
(SPDEs) (Cialenco, Fasshauer, and Ye, 2012; Ghanem and Spanos, 2003; Le Maitre
and Knio, 2010; Ye, 2013). A vast literature exists on the subject, connecting it to
reduced basis models (Almroth, Stern, and Brogan, 1978; Noor and J. M. Peters,
1980), emulation of computer codes (Kennedy and O’Hagan, 2001), reduced order
models (Lucia, Beran, and Silva, 2004), and numerical homogenization (Houman
Owhadi and Clint Scovel, 2019b); for settings that most closely resemble our prob-
lems we refer the reader to (Ghanem and Spanos, 2003; Xiu, 2010; Cohen and
DeVore, 2015) for a general overview. Broadly speaking, the dominant approaches
for approximation of high-dimensional and parametric solution maps include poly-
nomial/Taylor approximation methods (Beck et al., 2012; Chkifa, Cohen, DeVore,
et al., 2012; Chkifa, Cohen, and Schwab, 2014; Nobile, Raúl Tempone, and Webster,
2008; Nobile, Raul Tempone, and Webster, 2008); Galerkin methods (Gunzburger,
Webster, and G. Zhang, 2014; Cohen, DeVore, and Schwab, 2010); reduced basis
methods (J. S. Hesthaven, Rozza, Stamm, et al., 2016); and more recently ANN
operator learning techniques such as (Li, Kovachki, Azizzadenesheli, Bhattacharya,
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et al., 2020; L. Lu, Jin, et al., 2021). In comparison to the aforementioned works we
propose to directly approximate the solution of the parametric PDE as a function
on the tensor product space of the physical and parameter domains in a similar
spirit as (Kempf, Wendland, and Rieger, 2019). The recent article (Batlle, Darcy,
et al., 2023) also presents a kernel based operator learning approach to various PDE
problems including parametric PDEs.

The Curse of Dimensionality

Although the trade-off between regularity and accuracy is well understood in nu-
merical approximation/integration, where it has led to the development of the Kol-
mogorov 𝑁-width and stress tests for finite-element methods (Pinkus, 2012; Me-
lenk, 2000; Babuška and Osborn, 2000), its impact is oftentimes overlooked when
communicating the convergence of Machine Learning and Deep Learning methods
for high-dimensional PDEs. In particular, since artificial neural networks (ANNs)
can be interpreted as kernel methods (Neal, 1996; J. Lee et al., 2017; Houman
Owhadi, 2023b) with data-dependent parameterized kernels, our results raise the
further question of understanding whether the (empirically observed) convergence
of ANN-based methods for high-dimensional PDEs is an indication of the absence
of the curse (i.e., the regularity of the solution in selected numerical experiments
is high) or the breaking of that curse. In particular, empirically observing numer-
ical accuracy for an algorithm and particular solutions is insufficient to prove that
the curse of dimensionality is broken, and one must also show that the underlying
problem and those solutions are not too regular. We emphasize that the curse of
dimensionality referred to here is the one associated with the worsening of the accu-
racy of a numerical approximation algorithm as a function of the dimension of the
domain of the PDE as opposed to the impact of the curse on the number of degrees
of freedom in the implementation level (e.g., finite difference methods suffer from
that second curse but ANN/kernel based methods do not).

The Potential Value of Kernel/GP Methods
The proposed work aims to further develop Gaussian Process (GP) and kernel
methods for solving PDEs. We are motivated to do so because GP methods have
the potential to offer the best of both worlds by combining the profound theory
underlying traditional methods (and in particular finite element methods) with the
ease of implementation of emerging Deep Learning (DL) methods. They also come
equipped with automatic uncertainty quantification (UQ) capabilities, not readily
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available in either traditional or deep-learning based methods. And finally they
provide easily implementable meshless methods that can be used to benchmark
other machine learning based algorithms such as PINNs (Raissi, Perdikaris, and
George E Karniadakis, 2019).

Compared to traditional methods (such as finite element methods (FEM), finite
volume methods (FVM), finite difference methods (FDM), spectral methods, etc),
GP methods generalize meshless, RBF, optimal recovery methods and are flexible
and applicable in high dimensions. Compared to DL methods that use an expres-
sive neural network representation, GPs offer transparent methods that are easy to
reproduce and analyze. Furthermore the natural probabilistic interpretation of GPs
enables convenient UQ and also facilitates the process of scientific discovery itself
(Houman Owhadi and Clint Scovel, 2019b); FEM and DL methods do not inter-
face so cleanly with UQ. Moreover, with hierarchical kernel learning (Yifan Chen,
Houman Owhadi, and A. Stuart, 2021a; Wilson et al., 2016; Houman Owhadi and
Yoo, 2019b; Darcy et al., 2023), GP methods can also be made highly expressive.
In fact, as shown in the table below, GP methods can offer many advantages over
traditional and DL methods. In the context of PDEs these advantages include greater
flexibility, applicability in high dimensions, provable guarantees, near-linear com-
plexity computation, Occam’s razor principle in the design of statistical models,
mathematical transparency and interpretability, and ease of reproducibility; see Ta-
ble 6.1. Although software support for GPs is currently not as advanced as that for
DL and traditional methods, GPs are still easy to program and can be seamlessly
integrated into an engineering pipeline. Table 6.1 should be interpreted in this light:
as an argument for further deployment and development of software infrastructure
for GP-PDE based methods.

Method
Ease of

implementation
in high-dimensions

Provable
guarantees

Near
linear

complexity

Occam’s
razor Transparent Ease of

reproducibility
Built-in

UQ
Software
support

Trad. ✗ ✓ ✓ ✓ ✓ ✓ ✗ ✓

Kernel ✓ ✓ ✓ ✓ ✓ ✓ ✓ Limited
ANN ✓ Limited ✗ ✗ ✗ Limited ✗ ✓

Table 6.1: A qualitative comparison of the properties of traditional PDE solvers
(such as FEM, FVM, FDM, spectral methods, etc.) against kernel methods and
ANNs.

Given their long training times, ANN-based methods may not be competitive with
FEM in low dimensions (Grossmann et al., 2023). In contrast, GP-based methods



224

can achieve near-linear complexity when combined with fast algorithms for ker-
nel methods such as the sparse Cholesky factorization (Florian Schäfer, Katzfuss,
and Houman Owhadi, 2021; Florian Schäfer, Timothy John Sullivan, and Houman
Owhadi, 2021b; Yifan Chen, Houman Owhadi, and Florian Schäfer, 2024). In some
applications, these algorithms can be competitive (both in terms of complexity and
accuracy) even when compared to highly optimized algebraic multigrid solvers such
as AMGCL and Trilinos (J. Chen et al., 2021). GP methods are naturally amenable
to analysis and come with simple provable guarantees, while ANN-based methods
involve complicated optimizations and many heuristics, which can make them hard
to understand. GP methods fit Occam’s razor, offering a clarity of purpose in their
structure. We can understand why and when they work, which is of scientific im-
portance (Feynman, 1998). Therefore, it is of potential value to benchmark deep
learning methods against kernel-based methods to ensure that the deep part of a DL
method serves a significant purpose beyond adding complexity.

Outline of the Article
The rest of the article is organized as follows: Ww present a brief overview of our
GP and kernel approach for solving nonlinear and parametric PDEs in Section 6.2;
our error analysis is outlined in Section 6.3, followed by numerical experiments
in Section 6.4 and conclusions in Section 6.5. Auxiliary results are collected in
Sections 6.6 to 6.8.

6.2 Kernel Methods for Parametric PDEs
In this section we extend the kernel methodology of (Yifan Chen, Hosseini, et al.,
2021b) to the case of parametric PDEs as outlined in Section 6.2. Some numerical
strategies and ideas for improving the efficiency of the solver are discussed in
Section 6.2.

Solving Parametric PDEs
Let us consider bounded connected domains Ω ∈ R𝑑 with a Lipschitz boundary for
𝑑 ≥ 1 and Θ ⊂ R𝑝 for 𝑝 ≥ 1. We consider nonlinear and parametric PDEs of the
form {

P(𝑢★) (𝒙; 𝜽) = 𝑓 (𝒙; 𝜽), (𝒙, 𝜽) ∈ Ω × Θ,
B(𝑢★) (𝒙; 𝜽) = 𝑔(𝒙; 𝜽), (𝒙, 𝜽) ∈ 𝜕Ω × Θ,

(6.3)

where P,B are nonlinear differential operators in the interior and boundary of Ω,
𝜽 is a parameter, and 𝑓 , 𝑔 are the PDE source and boundary data. For now we
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assume that the above PDE is well-posed and has a unique solution 𝑢★(𝒙; 𝜽) which
is assumed to exist in the strong sense over Ω and for all values of 𝜽 ∈ Θ. In (Yifan
Chen, Hosseini, et al., 2021b) the authors introduced a GP/kernel method for solving
nonlinear PDEs of the form (6.3) without parametric dependence. Here we extend
that approach to the parametric case.

Let Υ := Ω×Θ and 𝜕Υ := 𝜕Ω×Θ and write s := (𝒙, 𝜽). Choose 𝑀 ≥ 1 collocation
points {s𝑚}𝑀𝑚=1 ∈ Υ such that {s𝑚}𝑀Ω

𝑚=1 ∈ Υ and {s𝑚}𝑀𝑚=𝑀Ω+1 ∈ 𝜕Υ
1 and consider

a kernel 𝐾 : Υ × Υ → R with its corresponding RKHS denoted by U and norm
∥ · ∥U . We then propose to approximate 𝑢★(s) by solving the optimization problem

minimize
𝑢∈U

∥𝑢∥U

st P(𝑢) (s𝑚) = 𝑓 (s𝑚), 𝑚 = 1, . . . , 𝑀Ω,

B(𝑢) (s𝑚) = 𝑔(s𝑚), 𝑚 = 𝑀Ω + 1, . . . , 𝑀.

(6.4)

Observe that our approach above approximates the solution 𝑢 as a function defined
on the set product set Υ which is different from previous works (Beck et al., 2012;
Chkifa, Cohen, DeVore, et al., 2012; Chkifa, Cohen, and Schwab, 2014; Nobile,
Raúl Tempone, and Webster, 2008; Nobile, Raul Tempone, and Webster, 2008)
where the solution map 𝜽 → 𝑢★(·; 𝜽), as a mapping from Θ to an appropriate
function space, is characterized and approximated. The latter approach requires
different discretization methods for the 𝜽 parameter and the functions 𝑢★(·; 𝜽) while
our approach leads to a meshless collocation method on the product space which
is desirable and convenient at the level of implementation, following (Yifan Chen,
Hosseini, et al., 2021b, Sec. 3.1) (see also (Giesl and Wendland, 2007)).

We make the following assumption on the differential operators P,B.

Assumption 1. There exist bounded and linear operators 𝐿1, . . . , 𝐿𝑄Ω
∈ L

(
U;𝐶 (Υ)

)
and 𝐿𝑄Ω+1, . . . , 𝐿𝑄 ∈ L

(
U;𝐶 (𝜕Υ)

)
for some 1 ≤ 𝑄Ω < 𝑄 together with maps

𝑃 : R𝑄Ω → R and 𝐵 : R𝑄−𝑄Ω → R, which may be nonlinear, so that P,B can be
written as

P(𝑢) (s) = 𝑃
(
𝐿1(𝑢) (s), . . . , 𝐿𝑄Ω

(𝑢) (s)
)

∀s ∈ Υ,

B(𝑢) (s) = 𝐵
(
𝐿𝑄Ω+1(𝑢) (s), . . . , 𝐿𝑄 (𝑢) (s)

)
∀s ∈ 𝜕Υ.

(6.5)

We briefly introduce a running example of a parametric PDE for which the above
assumptions can be verified easily.

1Note that we do not specifically ask for collocation points on 𝜕Ω × 𝜕Θ since we may not have
boundary data on the 𝜽 parameter.



226

Example 6.2.1 (Nonlinear Darcy flow). Consider the nonlinear Darcy flow PDE{
−div𝒙

(
exp(𝑎(𝒙, 𝜽))∇𝑢

)
(𝒙) + 𝜏(𝑢(𝒙)) = 1, 𝒙 ∈ Ω,

𝑢(𝒙) = 0, 𝒙 ∈ 𝜕Ω,
(6.6)

where Ω ⊂ R𝑑 is a bounded domain with a Lipschitz boundary and 𝜏 : R →
R is a continuous and nonlinear map. We assume that the permeability field is
parameterized as

𝑎(𝒙, 𝜽) =
𝑝∑︁
𝑗=1
𝜃 𝑗𝜓 𝑗 (𝒙), (6.7)

where 𝜃 𝑗 ∈ (0, 1) so that Θ = (0, 1)𝑝 and 𝜓 𝑗 ∈ 𝐶 (Ω). Substituting into the PDE
and expanding the differential operator we can rewrite our nonlinear PDE as

− exp ©­«
𝑝∑︁
𝑗=1
𝜃 𝑗𝜓 𝑗 (𝒙)

ª®¬
𝑝∑︁
𝑗=1
𝜃 𝑗∇𝒙𝜓 𝑗 (𝒙) · ∇𝒙𝑢(𝒙; 𝜽)

− exp ©­«
𝑝∑︁
𝑗=1
𝜃 𝑗𝜓 𝑗 (𝒙)ª®¬Δ𝒙𝑢(𝒙; 𝜽) + 𝜏(𝑢(𝒙; 𝜽)) = 1, (𝒙, 𝜽) ∈ Ω × Θ,

𝑢(𝒙; 𝜽) = 0, (𝒙, 𝜽) ∈ 𝜕Ω × Θ,

where we used subscripts on the differential operators to highlight that derivatives
are computed for the 𝒙 variable only and not 𝜽 . We also did not use the compact
notation s ≡ (𝒙, 𝜽) since it is more helpful to be able to distinguish between the
𝒙 and 𝜽 variables in this example. We can directly verify Assumption 1 with the
bounded and linear operators

𝐿1 : 𝑢(𝒙; 𝜽) ↦→ 𝑢(𝒙; 𝜽),

𝐿2 : 𝑢(𝒙; 𝜽) ↦→ exp ©­«
𝑝∑︁
𝑗=1
𝜃 𝑗𝜓 𝑗 (𝒙)ª®¬

𝑝∑︁
𝑗=1
𝜃 𝑗∇𝒙𝜓 𝑗 (𝒙) · ∇𝒙𝑢(𝒙; 𝜽),

𝐿3 : 𝑢(𝒙; 𝜽) ↦→ exp ©­«
𝑝∑︁
𝑗=1
𝜃 𝑗𝜓 𝑗 (𝒙)ª®¬Δ𝒙𝑢(𝒙; 𝜽)

𝐿4 : 𝑢(𝒙; 𝜽) ↦→ 𝑢(𝒙; 𝜽).

Note that operators 𝐿1, 𝐿4 are the same here since the point values of 𝑢 appear in
both the interior and boundary conditions. Thus we have𝑄Ω = 3 and𝑄 = 4 and the
maps

𝑃(𝑡1, 𝑡2, 𝑡3) = −𝑡2 − 𝑡3 + 𝜏(𝑡1), 𝐵(𝑡1) = 𝑡1.
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If U is sufficiently regular and Assumption 1 holds, then we can define the func-
tionals 𝜙𝑞𝑚 ∈ U∗ for 1 ≤ 𝑞 ≤ 𝑄 as

𝜙
𝑞
𝑚 := 𝛿(s𝑚) ◦ 𝐿𝑞, where

{
1 ≤ 𝑚 ≤ 𝑀Ω if 1 ≤ 𝑞 ≤ 𝑄Ω

𝑀Ω + 1 ≤ 𝑚 ≤ 𝑀 if 𝑄Ω+1 ≤ 𝑞 ≤ 𝑄.
(6.8)

In what follows we write [𝜙, 𝑢] to denote the duality pairing betweenU andU∗ and
further use the shorthand notation 𝝓(𝑞) to denote the vector of dual elements 𝜙𝑞𝑚 for
a fixed index 𝑞. Note that 𝝓(𝑞) ∈ (U∗)⊗𝑀Ω if 𝑞 ≤ 𝑄Ω but 𝝓(𝑞) ∈ (U∗)⊗(𝑀−𝑀Ω) if
𝑞 > 𝑄Ω in order to accommodate different differential operators defining the PDE
and the boundary conditions. We further write 𝑁 = 𝑀Ω𝑄Ω + (𝑀 − 𝑀Ω) (𝑄 − 𝑄Ω)
and define

𝝓 =
(
𝝓(1) , . . . , 𝝓(𝑄)

)
∈ (U∗)⊗𝑁 .

Henceforth we write 𝜙𝑛 for 𝑛 = 1, . . . , 𝑁 to denote the entries of the vector 𝝓 and
write [𝝓, 𝑢] = ( [𝜙1, 𝑢], . . . , [𝜙𝑁 , 𝑢]) ∈ R𝑁 . With this notation we rewrite problem
(6.4) as {

minimize ∥𝑢∥U
st 𝐹 ( [𝝓, 𝑢]) = 𝒚,

where the data vector 𝒚 ∈ R𝑀 has entries

𝑦𝑚 :=

{
𝑓 (s𝑚), if 1 ≤ 𝑚 ≤ 𝑀Ω,

𝑔(s𝑚), if 𝑀Ω + 1 ≤ 𝑚 ≤ 𝑀,

and 𝐹 : R𝑁 → R𝑀 is a nonlinear map whose output components are defined as

(
𝐹 ( [𝝓, 𝑢])

)
𝑚

:=

𝑃

(
[𝜙1
𝑚, 𝑢], . . . , [𝜙

𝑄Ω
𝑚 , 𝑢]

)
if 1 ≤ 𝑚 ≤ 𝑀Ω,

𝐵

(
[𝜙𝑄Ω+1
𝑚 , 𝑢], . . . , [𝜙𝑄𝑚, 𝑢]

)
if 𝑀Ω + 1 ≤ 𝑚 ≤ 𝑀.

(6.9)

Further define the kernel vector field

𝐾 (·, 𝝓) : Υ→U𝑁 , 𝐾 (s, 𝝓)𝑘 := [𝜙𝑘 , 𝐾 (s, ·)] (6.10)

and the kernel matrix

𝐾 (𝝓, 𝝓) ∈ R𝑁×𝑁 , 𝐾 (𝝓, 𝝓)𝑛𝑘 := [𝜙𝑛, 𝐾 (·, 𝝓)𝑘 ] . (6.11)

We can then characterize the minimizers of (6.4) via the following representer
theorem which is a direct consequence of (Yifan Chen, Hosseini, et al., 2021b,
Prop. 2.3):
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Proposition 6.2.2. Suppose Assumption 1 holds and 𝐾 (𝝓, 𝝓) is invertible. Then a
function 𝑢† : Υ→ R is a minimizer of (6.4) if and only if

𝑢†(s) = 𝐾 (s, 𝝓)𝐾 (𝝓, 𝝓)−1𝒛†, (6.12)

where 𝒛† ∈ R𝑁 solves 
minimize

𝒛∈R𝑁
𝒛𝑇𝐾 (𝝓, 𝝓)−1𝒛,

st 𝐹 (𝒛) = 𝒚,
(6.13)

with the nonlinear map 𝐹 defined in (6.9).

This result allows us to reduce the infinite-dimensional optimization problem (6.4)
to a finite-dimensional optimization problem without incurring any approximation
errors; it is an instance of the well-known family of representer theorems (Scholkopf
and Alexander J Smola, 2018, Sec. 4.2). Thus, to find an approximation to 𝑢★ we
simply need to solve (6.13) and apply the formula (6.12); algorithms for this task
are discussed next.

Numerical Strategies
We now summarize various numerical strategies for solution of (6.13). These strate-
gies are naturally applicable to non-parametric PDEs as they can be viewed as a
special case of (6.3) with a fixed parameter. In Section 6.2 we summarize a Gauss-
Newton algorithm that was introduced in (Yifan Chen, Hosseini, et al., 2021b)
followed by a new and, often, more efficient strategy that linearizes the PDE first
before formulating the optimization problem in Section 6.2.

Gauss-Newton

To solve the optimization problem (6.13), a Gauss-Newton algorithm was proposed
in (Yifan Chen, Hosseini, et al., 2021b) which we recall briefly. The equality con-
straints can be dealt with either by elimination or relaxation. Suppose that there
exists a map 𝐹 : R𝑁−𝑀 × R𝑀 → R𝑁 so that

𝐹 (𝒛) = 𝒚 if and only if 𝒛 = 𝐹 (𝒘, 𝒚), for a unique 𝒘 ∈ R𝑁−𝑀 .

Then, we rewrite (6.13) as the unconstrained optimization problem

minimize
𝒘∈R𝑁−𝑀

𝐹 (𝒘, 𝒚)𝑇𝐾 (𝝓, 𝝓)−1𝐹 (𝒘, 𝒚) . (6.14)
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Then a minimizer 𝒘† of (6.14) can be approximated with a sequence of elements
𝒘ℓ defined iteratively via 𝒘ℓ+1 = 𝒘ℓ + 𝛼ℓ𝛿𝒘ℓ, where 𝛼ℓ > 0 is an appropriate step
size while 𝛿𝒘ℓ is the minimizer of the optimization problem

minimize
𝛿𝒘∈R𝑁−𝑀

(
𝐹 (𝒘ℓ, 𝒚) + ∇𝒘𝐹 (𝒘ℓ, 𝒚)𝛿𝒘

)𝑇
𝐾 (𝝓, 𝝓)−1

(
𝐹 (𝒘ℓ, 𝒚) + ∇𝒘𝐹 (𝒘ℓ, 𝒚)𝛿𝒘

)
.

Alternatively, if the map 𝐹 does not exist or is hard to compute, i.e., eliminating the
constraints is not feasible, then we consider the relaxed problem

minimize
𝒛∈R𝑁

1
2
𝒛𝑇𝐾 (𝝓, 𝝓)−1𝒛 + 1

2𝛽2 |𝐹 (𝒛) − 𝒚 |2,

for a sufficiently small parameter 𝛽 > 0. Here ∥ · ∥ is the 𝐿2 norm of the vector. A
minimizer 𝒛†

𝛽
of the above problem can be approximated with a sequence 𝒛ℓ where

𝒛ℓ+1 = 𝒛ℓ + 𝛼ℓ𝛿𝒛ℓ where 𝛿𝒛ℓ is the minimizer of

minimize
𝛿𝒛∈R𝑁

𝛿𝒛𝑇𝐾 (𝝓, 𝝓)−1𝒛ℓ + 1
2𝛽2 |𝐹 (𝒛

ℓ) + ∇𝐹 (𝒛ℓ)𝛿𝒛 − 𝒚 |2.

We summarize the proposed Gauss-Newton algorithm for solution of parametric
PDEs in Algorithm 9.

Algorithm 9 Kernel Methods for Parametric PDEs using Gauss-Newton (Sec-
tion 6.2)
Input: PDE of the form Equation (6.3) defined on Υ = Ω × Θ with boundary condition on

𝜕Υ = 𝜕Ω × Θ, 𝑀 ≥ 1 collocation points in Υ, and kernel 𝐾 : Υ × Υ→ R
Output: Approximation 𝑢†(𝑠) to exact solution 𝑢∗(𝑠)

1: 𝑁 ← 𝑀Ω𝑄Ω + (𝑀 − 𝑀Ω) (𝑄 −𝑄Ω)
2: for 𝑖 = 1 to 𝑁 {Build kernel matrix 𝐾 (𝝓, 𝝓)} do
3: for 𝑗 = 1 to 𝑁 do
4: 𝐾 (𝝓, 𝝓)𝑖, 𝑗 ← [𝜙𝑖 , 𝐾 (·, 𝝓) 𝑗]
5: end for
6: end for
7: while not converged do
8: 𝛿𝒘ℓ ← arg min𝛿𝒘

(
𝐹 (𝒘ℓ , 𝒚) + ∇𝒘𝐹 (𝒘ℓ , 𝒚)𝛿𝒘

)𝑇
9: ·𝐾 (𝝓, 𝝓)−1

(
𝐹 (𝒘ℓ , 𝒚) + ∇𝒘𝐹 (𝒘ℓ , 𝒚)𝛿𝒘

)
10: 𝒘ℓ+1 ← 𝒘ℓ + 𝛼ℓ𝛿𝒘ℓ
11: end while
12: 𝒛† ← 𝐹 (𝒘, 𝒚)
13: 𝑢†(s) ← 𝐾 (s, 𝝓)𝐾 (𝝓, 𝝓)−1𝒛† {Apply representer formula}
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Linearize then Optimize

The Gauss-Newton approach of Section 6.2 is applicable to wide families of nonlin-
ear PDEs. The primary computational bottleneck of that approach is the construction
and factorization of the kernel matrix 𝐾 (𝝓, 𝝓) which for some PDEs can be pro-
hibitively large. To get around this difficulty we propose an alternative approach to
approximating the solution of (6.4) by first linearizing the PDE operators before
applying Proposition 6.2.2. The resulting approach is more intrusive in comparison
to the Gauss-Newton method as it requires explicit calculations involving the PDE
but often leads to smaller kernel matrices and better performance. This method can
also be viewed as applying the methodology of (Yifan Chen, Hosseini, et al., 2021b;
Giesl and Wendland, 2007) to discretize successive linearizations of the PDE.

Let 𝑢† denote the minimizer of (6.4) as before. Assuming that the operators P and
B are Fréchet differentiable we then approximate 𝑢† with a sequence of elements 𝑢ℓ

obtained by solving the problem
minimize

𝑢∈U
∥𝑢∥U

st
(
P(𝑢ℓ−1) + P′(𝑢ℓ−1) (𝑢 − 𝑢ℓ−1)

)
|s𝑚 = 𝑓 (s𝑚), 𝑚 = 1, . . . , 𝑀Ω,(

B(𝑢ℓ−1) + B′(𝑢ℓ−1) (𝑢 − 𝑢ℓ−1)
)
|s𝑚 = 𝑔(s𝑚), 𝑚 = 𝑀Ω + 1, . . . , 𝑀,

(6.15)
where P′ and B′ are the Fréchet derivatives of P and B.

Let us further suppose that Assumption 1 holds. Observing that the constraints in
(6.15) are linear in 𝑢 we obtain an explicit formula for 𝑢ℓ by (Yifan Chen, Hosseini,
et al., 2021b, Prop. 2.2):

𝑢ℓ (s) = 𝐾 (s, 𝝓ℓ−1)𝐾 (𝝓ℓ−1, 𝝓ℓ−1)−1𝒛ℓ−1, (6.16)

where 𝒛ℓ−1 = (𝑧ℓ−1
1 , . . . , 𝑧ℓ−1

𝑀
)𝑇 has entries

𝑧ℓ−1
𝑚 =


(
𝑓 − P(𝑢ℓ−1) + P′(𝑢ℓ−1)𝑢ℓ−1

)
|s𝑚 , if 1 ≤ 𝑚 ≤ 𝑀Ω,(

𝑓 − P(𝑢ℓ−1) + B′(𝑢ℓ−1)𝑢ℓ−1
)
|s𝑚 , if 𝑀Ω + 1 ≤ 𝑚 ≤ 𝑀.

(6.17)

The vectors 𝝓ℓ−1 ∈ (U∗)⊗𝑀 are obtained by concatenating the dual elements

𝜙ℓ−1
𝑚 :=

{
𝛿(s𝑚) ◦ P′(𝑢ℓ−1), if 1 ≤ 𝑚 ≤ 𝑀Ω,

𝛿(s𝑚) ◦ B′(𝑢ℓ−1), if 𝑀Ω + 1 ≤ 𝑚 ≤ 𝑀.
(6.18)

We note that the above scheme implicitly assumes thatU is sufficiently regular so that
the derivatives P′(𝑢ℓ−1) and B′(𝑢ℓ−1) can be regarded as linear operators mapping
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U to 𝐶 (Υ) where pointwise evaluation is well-defined. The most important feature
of the linearize-then-optimize approach is that the kernel matrices 𝐾 (𝝓ℓ−1, 𝝓ℓ−1)
are of size 𝑀 × 𝑀 while the kernel matrix 𝐾 (𝝓, 𝝓), used in the Gauss-Newton
approach of Section 6.2, is of size 𝑁 × 𝑁 . Note that 𝑁/𝑀 ≈ 𝑄Ω and for instance,
in Example 6.2.1, 𝑄Ω = 3 so there is an approximately 3× reduction in the kernel
matrix size. Thus, the linearize-then-optimize approach requires the inversion of
much smaller kernel matrices at each iteration but these matrices need to be updated
successively since the 𝝓ℓ depend on the previous solution 𝑢ℓ−1. In the case where
Assumption 1 holds and 𝑃, 𝐵 are differentiable, then the P′(𝑢) and B′(𝑢) operators
can be written explicitly as

P′(𝑢ℓ−1) : 𝑢 ↦→ ∇𝑃
(
𝐿1(𝑢ℓ−1), . . . , 𝐿𝑄Ω

(𝑢ℓ−1)
)𝑇 

𝐿1(𝑢)
...

𝐿𝑄Ω
(𝑢)

 ,
B′(𝑢ℓ−1) : 𝑢 ↦→ ∇𝐵

(
𝐿𝑄Ω+1(𝑢ℓ−1), . . . , 𝐿𝑄 (𝑢ℓ−1)

)𝑇 
𝐿𝑄Ω+1(𝑢)

...

𝐿𝑄 (𝑢)

 .
We note that while the “linearize then optimize” approach can reduce the size
of kernel matrices by a constant factor, which is significant in practice, the size
still scales with the number of collocation points. For very large-scale problems
requiring many collocation points, we can further employ fast algorithms for these
kernel matrices; see for example (Yifan Chen, Houman Owhadi, and Florian Schäfer,
2024).

Remark 9. The “linearize then optimize” approach performs linearization first at
the continuous level, while the Gauss-Newton iteration linearizes at the discrete level
after applying the representor theorem and transforming the optimization problem
into an unconstrained form, either through elimination or relaxation. The “linearize
then optimize” approach and the Gauss-Newton iteration are mathematically equiv-
alent if the latter is implemented using elimination with a specific choice of 𝐹. This
equivalence is demonstrated in (Yifan Chen, Houman Owhadi, and Florian Schäfer,
2024, Sec. 5.1) for a nonlinear elliptic example, where the algorithm is also shown
to be equivalent to a sequential quadratic programming approach for solving (6.13).
In general, these approaches may differ in how the nonlinear operators P,B, or the
nonlinear map 𝐹 are represented
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Finally, we summarize our linearize-then-optimize approach as a pseudo-algorithm
within Algorithm 10.

Algorithm 10 The linearize-then-optimize approach to parametric PDEs
Input: PDE of the form Equation (6.3) defined on Υ = Ω × Θ with boundary condition on

𝜕Υ = 𝜕Ω × Θ, 𝑀 ≥ 1 collocation points in Υ, and kernel 𝐾 : Υ × Υ→ R
Output: Approximation 𝑢†(𝑠) to exact solution 𝑢∗(𝑠)

1: while not converged {Iteratively approximate 𝑢†} do
2: For 𝑚 = 1, . . . , 𝑀:

3: 𝑧ℓ−1
𝑚 ←


(
𝑓 − P(𝑢ℓ−1) + P′(𝑢ℓ−1)𝑢ℓ−1

)
(s𝑚), if 𝑚 ≤ 𝑀Ω(

𝑓 − P(𝑢ℓ−1) + B′(𝑢ℓ−1)𝑢ℓ−1
)
(s𝑚), if 𝑚 > 𝑀Ω

{Build 𝒛ℓ−1}

4: For 𝑚 = 1, . . . , 𝑀:

5: 𝜙ℓ−1
𝑚 ←

{
𝛿 (s𝑚 ) ◦ P′(𝑢ℓ−1), if 𝑚 ≤ 𝑀Ω

𝛿 (s𝑚 ) ◦ B′(𝑢ℓ−1), if 𝑚 > 𝑀Ω

{Build 𝝓ℓ−1}

6: 𝑢ℓ (s) ← 𝐾 (s, 𝝓ℓ−1)𝐾 (𝝓ℓ−1, 𝝓ℓ−1)−1𝒛ℓ−1

7: end while

6.3 Error Analyses
We now present our main theoretical results concerning convergence rates for the
minimizers 𝑢† of (6.4) to the respective true solutions 𝑢★. We start in Section 6.3
by articulating the abstract framework, main theorem, and proof. We then consider
the simple setting of a nonlinear PDE in Section 6.3 where the RKHS U already
satisfies the boundary conditions of the PDE to convey the main ideas of the proof in
a simple setting. Non-trivial boundary conditions are then considered in Section 6.3
followed by the case of parametric PDEs in Section 6.3. Our proof technique is a
generalization of the results of (Giesl and Wendland, 2007; Schaback, 2016) to the
case of nonlinear and parametric PDEs that are Lipschitz stable and well-posed.

An Abstract Framework for Obtaining Convergence Rates
We present here an abstract theoretical result that allows us to obtain convergence
rates for nonlinear operator equations. Our error analyses concerning the numerical
solutions 𝑢† and the true solution to the PDE 𝑢★ then follow as applications of
this abstract result. Our main result here can also be viewed as a generalization of
the results of (Schaback, 2016, Sec. 10), which focused on linear operators, to the
nonlinear case.

Let us consider operator equations of the form

T (𝑣★) = 𝑤★, (6.19)
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where 𝑣★, 𝑤★ are elements of appropriate Banach spaces and T is a nonlinear map.
In the setting of PDEs the map T is defined by the differential operator of the PDE,
𝑣★ coincides with the solution and 𝑤★ is the source/boundary data. Broadly speaking
our goal is to approximate the solution 𝑣★ under assumptions on its regularity and
the stability properties of the map T . To this end, we present a general result that
allows us to control the error of approximating 𝑣★ given an appropriate candidate
𝑣†. Henceforth we write 𝐵𝑟 (𝑉) to denote the ball of radius 𝑟 centered at zero in a
Banach space 𝑉 .

Theorem 6.3.1. Consider abstract Banach spaces (𝑉𝑖, ∥·∥𝑖)4𝑖=1 as well as (U, ∥·∥U).
Suppose the following conditions are satisfied for any choice of 𝑟 > 0 (all the
appeared constants 𝐶 (𝑟) are non-decreasing regarding 𝑟):

(A1) For any pair 𝑣, 𝑣′ ∈ 𝐵𝑟 (𝑉1) there exists a constant 𝐶 = 𝐶 (𝑟) > 0 so that

∥𝑣 − 𝑣′∥1 ≤ 𝐶∥T (𝑣) − T (𝑣′)∥2. (6.20)

(A2) For any pair 𝑣, 𝑣′ ∈ 𝐵𝑟 (𝑉4) there exists a constant 𝐶 = 𝐶 (𝑟) > 0 so that

∥T (𝑣) − T (𝑣′)∥3 ≤ 𝐶∥𝑣 − 𝑣′∥4. (6.21)

(A3) For any 𝑣 ∈ 𝑉4, there exists a constant 𝐶 > 0 so that

∥𝑣∥4 ≤ 𝐶∥𝑣∥U .

(A4) There exists a set 𝑉 ⊂ 𝑉2 ∩𝑉3 and a constant 𝜀 > 0, so that for all 𝑤, 𝑤′ ∈ 𝑉
it holds that

∥𝑤 − 𝑤′∥2 ≤ 𝜀∥𝑤 − 𝑤′∥3. (6.22)

Suppose problem (6.19) is uniquely solvable with 𝑣★ ∈ U and let 𝑣† ∈ U be any
other function such that

(A5) T (𝑣★),T (𝑣†) ∈ 𝑉 .
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(A6) There exists a constant 𝐶 > 0, independent of 𝑣★ and 𝑣†, so that

∥𝑣†∥U ≤ 𝐶∥𝑣★∥U . (6.23)

Then there exists a constant 𝐶 > 0, depending only on ∥𝑣★∥U , such that

∥𝑣† − 𝑣★∥1 ≤ 𝐶𝜀∥𝑣★∥U .

Proof. By (A1) we have that

∥𝑣† − 𝑣★∥1 ≤ 𝐶∥T (𝑣†) − T (𝑣★)∥2. (6.24)

Then (A4) and (A5) imply that ∥T (𝑣†) − T (𝑣★)∥2 ≤ 𝐶𝜀∥T (𝑣†) − T (𝑣★)∥3. By
the triangle inequality we have ∥T (𝑣†) − T (𝑣★)∥3 ≤ ∥T (𝑣†) − T (0)∥3 + ∥T (𝑣★) −
T (0)∥3. Using (A2), (A3), and (A6) in that order, we get ∥T (𝑣†) − T (0)∥3 ≤
𝐶∥𝑣†∥4 ≤ 𝐶∥𝑣†∥U ≤ 𝐶∥𝑣★∥U . Similarly, we have ∥T (𝑣★) − T (0)∥3 ≤ 𝐶∥𝑣★∥U .
Combining these bounds we obtain ∥T (𝑣†) − T (𝑣★)∥3 ≤ 𝐶𝜀∥𝑣★∥U which yields
the desired result due to (6.24). □

Let us provide some remarks regarding the assumptions of the theorem. In our
PDE examples we often take the 𝑉𝑖 spaces to be Sobolev spaces of appropriate
smoothness whileU is taken as an RKHS that is sufficiently smooth and so 𝑣★ ∈ U
amounts to an assumption on the regularity of the true solution to the problem.
Conditions (A1) and (A2) amount to forward and inverse Lipschitz stability of the
operator T while (A4) is often given by a sampling/Poincaré-type inequality for our
numerical method. We treat the constant 𝜀 separately from the other constants in the
theorem since in practice 𝜀 often coincides with some power of the resolution (fill-
distance/meshnorm) of our numerical scheme, constituting the rate of convergence
of the method. Assumption (A3) also concerns the regularity of the RKHS and the
choice of the space𝑉4 (we simply ask forU to be continuously embedded in𝑉4) and
is a matter of the setup of the problem. Condition (A6) is less natural as it requires
the norm of the approximate solution 𝑣† to be controlled by the norm of 𝑣★. While
this condition does not hold for many numerical approximation schemes, we will
see that it follows easily from the setup of our collocation/optimal recovery scheme.

In plain words, the most important message of Theorem 6.3.1 is that: given Con-
dition (6.23) and the Lipschitz-continuity of T and its inverse, it follows that the
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approximation error between 𝑣† and 𝑣★ is bounded by the approximation error
between T (𝑣†) and T (𝑣★). This result can be applied to both GP/kernel and ANN
based collocation methods, since both seek to minimize the error between T (𝑣†)
and T (𝑣★) at collocation points. This Condition (6.23) is automatically satisfied for
our GP/Kernel based methods that solve problems of the form

𝑣† = argmin∥𝑣∥U s.t. [𝜙𝑖,T (𝑣)] = [𝜙𝑖,T (𝑣★)], 𝑖 = 1, . . . , 𝑀,

with T denoting the differential operator of a PDE and 𝜙𝑖 denoting a set of dual
elements (e.g. pointwise evaluations at collocation points). Then since the true
solution 𝑣★ satisfies the PDE for an infinite collection of dual elements (e.g. pointwise
within a set, or in a weak sense) then we immediately have that ∥𝑣†∥U ≤ ∥𝑣★∥U .
One can also takeU to be a Barron space (indeed the 𝑉𝑖 norms could be arbitrary)
to obtain an analogous result for ANNs, but it is unclear if this setup coincides with
(or leads to) any practical algorithms.

The Case of Second Order Nonlinear PDEs
We begin our error analysis in the case where (6.3) does not depend on the parameter
𝜽 and homogeneous Dirichlet boundary conditions are imposed, i.e., nonlinear
second order PDEs of the form{

P(𝑢★) (𝒙) = 𝑓 (𝒙), 𝒙 ∈ Ω,
𝑢★(𝒙) = 0, 𝒙 ∈ 𝜕Ω.

(6.25)

The choice of Dirichlet boundary conditions is only made for simplicity here and
can be replaced with other conditions of interest. We will also consider approximate
boundary conditions in Section 6.3. We further assume that the kernel 𝐾 is chosen
so that the elements of U readily satisfy the boundary conditions of the PDE and
consider optimization problems of the form

minimize
𝑢∈U

∥𝑢∥U

st P(𝑢) (𝒙𝑚) = 𝑓 (𝒙𝑚), 𝑚 = 1, . . . , 𝑀Ω,

𝑢(𝒙) = 0, 𝒙 ∈ 𝜕Ω,

(6.26)

where 𝑋Ω := {𝒙𝑚}𝑀Ω

𝑚=1 ⊂ Ω are a set of collocation points. We need to impose
appropriate assumptions on the RKHSU, the domain Ω and the PDE operator P.

Assumption 2. The following conditions hold:
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(B1) (Regularity of the domain)Ω ⊂ R𝑑 is a compact set with a Lipschitz boundary.

(B2) (Stability of P) There exist indices 𝛾 > 0 and 𝑘 ∈ N satisfying 𝑑/2 < 𝑘 + 𝛾
and 𝑠 ≥ 1, ℓ ∈ R, so that for any 𝑟 > 0 it holds that

∥𝑢1 − 𝑢2∥𝐻ℓ (Ω) ≤ 𝐶∥P(𝑢1) − P(𝑢2)∥𝐻𝑘 (Ω) , ∀𝑢1, 𝑢2 ∈ 𝐵𝑟 (𝐻ℓ (Ω) ∩ 𝐻1
0 (Ω))

(6.27)

∥P(𝑢1) − P(𝑢2)∥𝐻𝑘+𝛾 (Ω) ≤ 𝐶∥𝑢1 − 𝑢2∥𝐻𝑠 (Ω) , ∀𝑢1, 𝑢2 ∈ 𝐵𝑟 (𝐻𝑠 (Ω) ∩ 𝐻1
0 (Ω))

(6.28)

where 𝐶 = 𝐶 (𝑟) > 0 is independent of the 𝑢𝑖’s. The space 𝐻𝑠 (Ω) ∩ 𝐻1
0 (Ω)

can be equipped with the norm ∥ · ∥𝐻𝑠 (Ω) , which is used to define the balls
above.

(B3) U is continuously embedded in 𝐻𝑠 (Ω) ∩ 𝐻1
0 (Ω).

Item (B1) is standard while (B3) dictates the choice of the RKHSU, and in turn the
kernel, which should be made based on a priori knowledge about regularity of the
strong solution 𝑢★. We highlight that, asking elements ofU to satisfy the boundary
conditions is only practical for simple domains and boundary conditions such as
periodic, Dirichlet, or Neumann conditions on hypercubes or spheres. Assumption
(B2) on the other hand is a question in the analysis of nonlinear PDEs and is
independent of our numerical scheme; simply put we require the PDE to be Lipschitz
well-posed with respect to the right hand side/source term.

We are now ready to present our first theoretical result characterizing the convergence
of the minimizer 𝑢† of (6.26) to 𝑢★ the strong solution of (6.25).

Theorem 6.3.2. Suppose Assumption 2 is satisfied and let 𝑢★ ∈ U denote the unique
strong solution of (6.25). Let 𝑢† be a minimizer of (6.26) with a set of collocation
points 𝑋Ω ⊂ Ω and define their fill-distance

ℎΩ := sup
𝒙′∈Ω

inf
𝒙∈𝑋Ω
|𝒙′ − 𝒙 |.

Then there exists a constant ℎ0 > 0 so that if ℎΩ < ℎ0 then

∥𝑢† − 𝑢★∥𝐻ℓ (Ω) ≤ 𝐶ℎ
𝛾

Ω
∥𝑢★∥U ,

where the constant 𝐶 > 0 is independent of 𝑢†, and ℎΩ.
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Proof. We will obtain the result by applying Theorem 6.3.1 with the map T ≡ P
and the spaces 𝑉1 ≡ 𝐻ℓ (Ω), 𝑉2 ≡ 𝐻𝑘 (Ω), 𝑉3 ≡ 𝐻𝑘+𝛾 (Ω), and 𝑉4 ≡ 𝐻𝑠 (Ω). With
this setup we proceed to verify the conditions of Theorem 6.3.1: Condition (A1)
follows from (6.27), (A2) follows from (6.28), and (A3) follows from (B3).

Condition (A6) holds since 𝑢† is a minimizer of (6.26) and so ∥𝑢†∥U ≤ ∥𝑢★∥U ,
since 𝑢★ is feasible but satisfies additional constraints compared with 𝑢†, i.e., it
solves the PDE over the entire set Ω. Thus, (6.23) is verified with constant 𝐶 = 1.

It remains to verify (A4): Let 𝑓 = P(𝑢†) − P(𝑢★) and observe that 𝑓 (𝒙) = 0 for all
𝒙 ∈ 𝑋Ω. Thus 𝑓 ∈ 𝐻𝑘+𝛾 (Ω) is zero on 𝑋Ω and an application of Proposition 6.6.1
yields the existence of a constant ℎ0 > 0 so that whenever ℎΩ < ℎ0 then ∥ 𝑓 ∥𝐻𝑘 (Ω) ≤
𝐶ℎ

𝛾

Ω
∥ 𝑓 ∥𝐻𝑘+𝛾 (Ω) . This verifies (6.22) with 𝜀 ≡ 𝐶ℎ𝛾

Ω
. □

Remark 10. We note that Item (B2) and in turn Theorem 6.3.2 can easily be
modified to a local version where the stability estimates (6.28) and (6.28) are stated
for 𝑢1, 𝑢2 belonging to a ball of radius 𝑟 > 0 around the true solution 𝑢★. Then one
can obtain an asymptotic rate for ∥𝑢† − 𝑢★∥𝐻ℓ (Ω) under the additional assumption
that 𝑢† is sufficiently close to 𝑢★.

Remark 11. The assumptions and results of Assumption 2 are analogous to the
one used to obtain error estimates in numerical homogenization for elliptic PDEs
(Houman Owhadi and Clint Scovel, 2019b). In particular Theorem 6.3.2 can be
extended to the setting where measurements on the PDE are not pointwise but
involve integral operators and where the coefficients may be rough.

We now present a brief example where Assumption 2 can be verified and so The-
orem 6.3.2 is applicable to obtain convergence rates for our GP/kernel collocation
solver.

Example 6.3.3 (Nonlinear Darcy flow continued). Let us consider the nonlinear
Darcy flow PDE (6.6) and assume thatΩ has a smooth boundary and 𝑎(𝒙) ∈ 𝐶∞(Ω)
is fixed and satisfies 𝑎(𝒙) ≥ 1. Further suppose 𝜏(𝑧) = 1 + tanh(𝛽𝑧) for a fixed
constant 𝛽 > 0 to be determined. Now pick 𝑘 = ⌈𝑑/2 + 𝛼⌉ from which it follows
that 𝐻𝑘 (Ω) is continuously embedded in 𝐶𝛼 (Ω̄) (Gilbarg and Trudinger, 1977,
Thm. 7.26) and fix an integer 𝛾 > 02. It is then straightforward to verify (6.28)
with 𝑠 = 𝑘 + 𝛾 + 2 as well as Assumption 2(iii) by choosing the kernel 𝐾 to be the

2We only assume the exponents are integers for simplicity but our arguments can be generalized
to the case of non-integer indices
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Green’s function of the operator (−Δ)𝑠 on the domain Ω, subject to homogeneous
Dirichlet boundary conditions. We note that approximating this Green’s function
can be expensive in practice and in Section 6.3 we propose a way around this step
by using collocation points on the boundary ofΩ to impose the boundary conditions.

Furthermore our assumptions on 𝑎 and 𝜏 imply that P is uniformly elliptic in Ω̄

(see (Gilbarg and Trudinger, 1977, Part II) for definition of ellipticity for nonlinear
elliptic PDEs). Since 𝜏 is smooth it follows from (Gilbarg and Trudinger, 1977,
Thm. 13.8) that, for any 𝛼 ∈ (0, 1) and 𝑓 ∈ 𝐶𝛼 (Ω̄), the PDE{

−div
(
exp(𝑎)∇𝑢

)
+ 𝜏(𝑢) = 𝑓 , 𝒙 ∈ Ω,

𝑢 = 0, 𝒙 ∈ 𝜕Ω,
(6.29)

has a solution 𝑢 ∈ 𝐶2(Ω̄). Now pick 𝑓1, 𝑓2 ∈ 𝐻𝑘 (Ω) which, by the aforementioned
Sobolev embedding result, belong to 𝐶𝛼 (Ω̄). Write 𝑢1, 𝑢2 ∈ 𝐶2(Ω̄) for the solution
of the PDE with both right hand sides and observe that the difference 𝑤 := 𝑢1 − 𝑢2

solves the PDE

−div
(
exp(𝑎)∇𝑤

)
= 𝑓1 − 𝑓2 + 𝜏(𝑢2) − 𝜏(𝑢1).

Standard stability results for linear elliptic PDEs then imply the bound

∥𝑤∥𝐻2 (Ω) ≤ 𝐵
(
∥ 𝑓1 − 𝑓2∥𝐿2 (Ω) + ∥𝜏(𝑢2) − 𝜏(𝑢1)∥𝐿2 (Ω)

)
,

for a constant 𝐵 > 0 independent of 𝑤, 𝑓1, 𝑓2, 𝑢1, 𝑢2. Since 𝜏 is globally 𝛽-Lipschitz
we infer that ∥𝜏(𝑢1) −𝜏(𝑢2)∥𝐿2 (Ω) ≤ 𝛽∥𝑤∥𝐿2 (Ω) which, together with the subsequent
bound, yields

∥𝑤∥𝐻2 (Ω) ≤
𝐵

1 − 𝐵𝛽 ∥ 𝑓1 − 𝑓2∥𝐿2 (Ω) .

Thus, assumption (6.27) is satisfied with ℓ = 2 as long as 𝛽𝐵 < 1.

Handling Boundary Conditions
We now turn our attention to the case where (6.3) is still independent of the 𝜽

parameter but involves non-trivial boundary conditions, i.e.,{
P(𝑢★) (𝒙) = 𝑓 (𝒙), 𝒙 ∈ Ω,
B(𝑢★) (𝒙) = 𝑔(𝒙), 𝒙 ∈ 𝜕Ω.

(6.30)

We will further assume that the elements of U do not satisfy the boundary condi-
tions exactly and so boundary collocation points are utilized to approximate those
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conditions leading to the problem
minimize

𝑢∈U
∥𝑢∥U

st P(𝑢) (𝒙𝑚) = 𝑓 (𝒙𝑚), 𝑚 = 1, . . . , 𝑀Ω,

B(𝑢) (𝒙𝑚) = 𝑔(𝒙𝑚), 𝑚 = 𝑀Ω + 1, . . . , 𝑀,

(6.31)

where 𝑋Ω := {𝒙𝑚}𝑀Ω

𝑚=1 ⊂ Ω are the interior collocation points as before and
𝑋𝜕Ω := {𝒙𝑚}𝑀𝑚=𝑀Ω+1 ⊂ 𝜕Ω are the boundary collocation points. We will state
our assumptions and results for PDEs in 𝑑 > 1 dimensions since in the 1D case we
can, in principle, impose the boundary conditions exactly by placing some colloca-
tion points on boundary. The main difference, in comparison to Theorem 6.3.2, is
that here we need to impose new assumptions on the PDE operators P andB and the
boundary ofΩ to be able to use Proposition 6.6.1 (sampling inequality on manifolds)
in the final step of the proof to obtain approximation rates for the boundary data.

Assumption 3. The following conditions hold:

(C1) (Regularity of the domain and its boundary) Ω ⊂ R𝑑 with 𝑑 > 1 is a compact
set and 𝜕Ω is a smooth connected Riemannian manifold of dimension 𝑑 − 1
endowed with a geodesic distance 𝜌𝜕Ω.

(C2) (Stability of the PDE)

There exist 𝛾 > 0 and 𝑘, 𝑡 ∈ N satisfying 𝑑/2 < 𝑘 + 𝛾 and (𝑑 − 1)/2 < 𝑡 + 𝛾,
and 𝑠, ℓ ∈ R, so that for any 𝑟 > 0 it holds that

∥𝑢1 − 𝑢2∥𝐻ℓ (Ω) ≤𝐶
(
∥P(𝑢1) − P(𝑢2)∥𝐻𝑘 (Ω)
+ ∥B(𝑢1) − B(𝑢2)∥𝐻𝑡 (𝜕Ω)

)
∀𝑢1, 𝑢2 ∈ 𝐵𝑟 (𝐻ℓ (Ω)),

(6.32)
∥P(𝑢1) − P(𝑢2)∥𝐻𝑘+𝛾 (Ω) + ∥B(𝑢1) − B(𝑢2)∥𝐻𝑡+𝛾 (𝜕Ω)

≤ 𝐶∥𝑢1 − 𝑢2∥𝐻𝑠 (Ω) , ∀𝑢1, 𝑢2 ∈ 𝐵𝑟 (𝐻𝑠 (Ω)),
(6.33)

where 𝐶 = 𝐶 (𝑟) > 0 is a constant independent of the 𝑢𝑖.

(C3) U is continuously embedded in 𝐻𝑠 (Ω).

Observe that the above assumptions are analogous to Assumption 2 with the excep-
tion that we no longer work with the restricted Sobolev spaces 𝐻𝑘

0 since we do not
need to impose the boundary conditions. However, we need to state our stability re-
sults for both P andB. We emphasize that the verification of condition (C2) remains
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a question in the analysis of PDEs. We are now ready to extend Theorem 6.3.2 to
the case of non-trivial boundary conditions.

Theorem 6.3.4. Suppose Assumption 3 is satisfied and let 𝑢★ ∈ U denote the unique
strong solution of (6.25). Let 𝑢† be a minimizer of (6.26) with a set of collocation
points 𝑋 ⊂ Ω where 𝑋Ω ⊂ 𝑋 denotes the collocation points in the interior of Ω and
𝑋𝜕Ω denotes the collocation points on the boundary 𝜕Ω. Define the fill-distances

ℎΩ := sup
𝒙′∈Ω

inf
𝒙∈𝑋Ω
|𝒙′ − 𝒙 |, ℎ𝜕Ω := sup

𝒙′∈𝜕Ω
inf

𝒙∈𝑋𝜕Ω
𝜌𝜕Ω(𝒙′, 𝒙),

where 𝜌𝜕Ω : 𝜕Ω×𝜕Ω→ R+ is the geodesic distance defined on 𝜕Ω (see Section 6.6),
and set ℎ̄ := max{ℎΩ, ℎ𝜕Ω}. Then there exists a constant ℎ0 > 0 so that if ℎ̄ < ℎ0

then
∥𝑢† − 𝑢★∥𝐻𝑠 (Ω) ≤ 𝐶ℎ̄𝛾 ∥𝑢★∥U ,

where 𝐶 > 0 is independent of 𝑢† and ℎ̄.

Proof. The proof follows an identical approach to Theorem 6.3.2 and applies Theo-
rem 6.3.1 with the appropriate setup. We take the operator T : 𝑢 ↦→

(
P(𝑢),B(𝑢)

)
.

We then choose the spaces 𝑉1 ≡ 𝐻ℓ (Ω), 𝑉2 ≡ 𝐻𝑘 (Ω) × 𝐻𝑡 (𝜕Ω), 𝑉3 ≡ 𝐻𝑘+𝛾 (Ω) ×
𝐻𝑡+𝛾 (Ω), and𝑉4 ≡ 𝐻𝑠 (Ω)where we equip𝑉2 with the norm ∥( 𝑓 , 𝑔)∥2 := ∥ 𝑓 ∥𝐻𝑘 (Ω)+
∥𝑔∥𝐻𝑡 (𝜕Ω) and similarly for 𝑉3 with the 𝐻𝑘 (Ω) and 𝐻𝑡 (𝜕Ω) norms replaced by
𝐻𝑘+𝛾 (Ω) and 𝐻𝑡+𝛾 (𝜕Ω) norms.

Analogously to the proof of Theorem 6.3.2, we can verify Conditions (A1), (A2),
and (A3) by the hypothesis of the theorem. Condition (A6) is also satisfied since
𝑢† is a minimizer of (6.31) and so ∥𝑢†∥U ≤ ∥𝑢★∥U as 𝑢† satisfies more relaxed
constraints.

It remains for us to verify (A4). Repeating the same argument as in the proof of
Theorem 6.3.2, in the interior of Ω, yields the bound

∥P(𝑢†) − P(𝑢★)∥𝐻𝑘 (Ω) ≤ 𝐶ℎ
𝛾

Ω
∥P(𝑢†) − P(𝑢★)∥𝐻𝑘+𝛾 (Ω) , (6.34)

whenever ℎΩ < ℎ1 and ℎ1 is a sufficiently small constant that is independent of 𝑢†

and 𝑢★.

Let 𝑔̄ = B(𝑢†)−B(𝑢★)which satisfies 𝑔̄(𝒙) = 0 for all 𝒙 ∈ 𝑋𝜕Ω and so 𝑔̄ ∈ 𝐻𝑡+𝛾 (𝜕Ω)
is zero on the set 𝑋𝜕Ω. Then Proposition 6.6.1 implies the existence of a constant
ℎ2 > 0 so that whenever ℎ𝜕Ω < ℎ2 we have

∥𝑔̄∥𝐻𝑡 (𝜕Ω) ≤ 𝐶ℎ𝛾𝜕Ω∥𝑔̄∥𝐻𝑡+𝛾 (𝜕Ω) .
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Now take ℎ0 = min{ℎ1, ℎ2} and combine the above bound with (6.34), and substitute
the definition of 𝑔̄ to get

∥P(𝑢†) − P(𝑢★)∥𝐻𝑘 (Ω) + ∥B(𝑢†) − B(𝑢★)∥𝐻𝑡 (𝜕Ω)
≤ 𝐶ℎ̄𝛾

(
∥P(𝑢†) − P(𝑢★)∥𝐻𝑘+𝛾 (Ω) + ∥B(𝑢†) − B(𝑢★)∥𝐻𝑡+𝛾 (𝜕Ω)

)
,

whenever ℎ̄ < ℎ0. This verifies (A4) with 𝜀 ≡ 𝐶ℎ̄𝛾. □

Remark 12. We highlight that our statement of Theorem 6.3.4 can easily be extended
to PDEs with mixed boundary conditions simply by modifying the norm that is
chosen on the boundary, i.e., the spaces 𝑉2 and 𝑉4, so long as we can prove the
requisite stability estimates in condition (C2). In particular, this idea will allow us to
obtain errors for time-dependent PDEs, cast as a static PDE in a space-time domain
Ω with the initial and boundary conditions imposed as mixed conditions on 𝜕Ω. In
fact, in the case of time-dependent PDEs we do not need to impose the boundary
conditions on all of 𝜕Ω but only on a subset.

We now return to our running example to verify Assumption 3 for the Darcy flow
PDE.

Example 6.3.5 (Nonlinear Darcy flow continued). Consider the PDE (6.29) but this
time with the boundary condition 𝑢 = 𝑔 on 𝜕Ω for a function 𝑔 ∈ 𝐻𝑡+𝛾 (𝜕Ω) with
𝑡 > min{3/2, (𝑑 − 1)/2} and 𝛾 > 0. Now fix a function 𝜑 ∈ 𝐻𝑡+𝛾+1/2(Ω) so that
its trace coincides with 𝑔 and define 𝑣 = 𝑢 − 𝜑 and observe that 𝑢 solves the above
PDE if 𝑣 solves {

−div
(
exp(𝑎)∇𝑣

)
+ 𝜏′(𝑣) = 𝑓 ′, 𝒙 ∈ Ω,

𝑣 = 0, 𝒙 ∈ 𝜕Ω,

where we defined 𝜏′(𝑣) := 𝜏(𝑣 +𝜑) and 𝑓 ′ := 𝑓 +div
(
exp(𝑎)∇𝜑

)
. Now observe that

the functions 𝜏′ and 𝑓 ′ still satisfy the same conditions as 𝜏, 𝑓 in Example 6.3.3 and
so we obtain existence and uniqueness of the solutions 𝑣 and in turn 𝑢.

Now consider two solutions 𝑢1, 𝑢2 arising from source terms 𝑓1, 𝑓2 and boundary
data 𝑔1, 𝑔2. Then the error 𝑤 = 𝑢1 − 𝑢2 solves the PDE{

−div
(
exp(𝑎)∇𝑤

)
= 𝑓 + 𝜏(𝑢2) − 𝜏(𝑢1), 𝒙 ∈ Ω,

𝑤 = 𝑔1 − 𝑔2, 𝒙 ∈ 𝜕Ω.

By standard stability results for linear elliptic PDEs (McLean, 2000, Thm. 4.18) we
have

∥𝑤∥𝐻2 (Ω) ≤ 𝐵(∥ 𝑓1 − 𝑓2∥𝐿2 (Ω) + ∥𝜏(𝑢1) − 𝜏(𝑢2)∥𝐿2 (Ω) + ∥𝑔1 − 𝑔2∥𝐻3/2 (Ω)).
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We can now repeat the same argument as in the final steps of Example 6.3.3 to get
the bound

∥𝑤∥𝐻2 (Ω) ≤
𝐵

1 − 𝐵𝛽

(
∥ 𝑓1 − 𝑓2∥𝐻2 (Ω) + ∥𝑔1 − 𝑔2∥𝐻3/2 (Ω)

)
,

which verifies Assumption 3(ii) with 𝑠 = 2 provided that 𝛽𝐵 < 1.

The Case of Parametric PDEs
We now consider the setting of the parametric PDE (6.3). Our error estimates can
be viewed as further extending Theorem 6.3.4 with additional assumptions due to
the fact that we will need to approximate the solutions on the set Υ = Ω × Θ as
well as its relevant boundary which needs to be sufficiently regular for us to apply
Proposition 6.6.1. Beyond this technical point, the statement and proof of the result
for parametric PDEs is identically to PDEs with boundary conditions and so we
state our results succinctly, starting with the requisite assumptions on the parametric
PDE.

Assumption 4. The following conditions hold:

(D1) Ω ⊂ R𝑑 and Θ ⊂ R𝑝 are compact sets such that 𝜕Ω and 𝜕Θ are smooth
Riemannian manifolds of dimensions 𝑑 − 1 and 𝑝 − 1 respectively.

(D2) (Stability of the parametric PDE) There exist 𝛾 > 0 and 𝑘, 𝑡 ∈ N satisfying
(𝑑 + 𝑝)/2 < 𝑘 + 𝛾 and (𝑑 + 𝑝 − 1)/2 < 𝑡 + 𝛾, and Banach spaces 𝑉1 and 𝑉4

so that for any 𝑟 > 0 it holds that

∥𝑢1 − 𝑢2∥1
≤ 𝐶

(
∥P(𝑢1) − P(𝑢2)∥𝐻𝑘 (Υ) + ∥B(𝑢1) − B(𝑢2)∥𝐻𝑡 (𝜕Υ)

)
∀𝑢1, 𝑢2 ∈ 𝐵𝑟 (𝑉1),

(6.35)
∥P(𝑢1) − P(𝑢2)∥𝐻𝑘+𝛾 (Υ) + ∥B(𝑢1) − B(𝑢2)∥𝐻𝑡+𝛾 (𝜕Υ)

≤ 𝐶∥𝑢1 − 𝑢2∥4, ∀𝑢1, 𝑢2 ∈ 𝐵𝑟 (𝑉4),
(6.36)

where 𝐶 = 𝐶 (𝑟) > 0 is a constant independent of the 𝑢𝑖.

(D3) U is continuously embedded in 𝑉4.

Unlike Assumptions 2 and 3 here we left the function spaces 𝑉1 and 𝑉4 as generic
Banach spaces of functions 𝑢 : Υ ↦→ R since, for parametric PDEs, we can often
obtain the desired stability results in non-standard norms, such as the mixed norm in
Example 6.3.7 below, as opposed to the Sobolev norms used for the non-parametric
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PDE setting. More generally, one may also impose 𝑉2, 𝑉3 to be generic Banach
spaces rather than the standard Sobolev spaces. The Sobolev space setting suffices
for applications in this paper.

With the above assumptions we can now present our main result for the parametric
PDE setting. The proof is omitted since it is identical to that of Theorem 6.3.4 except
that (1) the argument on 𝜕Ω is now repeated for 𝜕Υ = 𝜕Ω × Θ which is in general
a smooth manifold with boundary but this modification does not affect any of the
steps in the proof, and (2) the results are stated in terms of the norm on the space𝑉1.

Theorem 6.3.6. Suppose Assumption 4 is satisfied and let 𝑢★ ∈ U denote the unique
strong solution of (6.3). Let 𝑢† be a minimizer of (6.4) with a set of collocation
points 𝑆 ⊂ Υ∪ 𝜕Υ where 𝑆Υ ⊂ 𝑆 denotes the collocation points in the interior of Υ
and 𝑆𝜕Υ denotes the collocation points on the boundary 𝜕Υ. Define the fill-distances

ℎΥ := sup
s′∈Υ

inf
s∈𝑆Υ
|s′ − s|, ℎ𝜕Υ := sup

s′∈𝜕Υ
inf

s∈𝑆𝜕Υ
𝜌𝜕Υ(s′, s),

where 𝜌𝜕Υ : 𝜕Υ×𝜕Υ→ R+ is the geodesic distance defined on 𝜕Υ (see Section 6.6),
and set ℎ̄ := max{ℎΥ, ℎ𝜕Υ}. Then there exists a constant ℎ0 > 0 so that if ℎ̄ < ℎ0

then
∥𝑢† − 𝑢★∥1 ≤ 𝐶ℎ̄𝛾 ∥𝑢★∥U ,

where 𝐶 > 0 is independent of 𝑢† and ℎ̄.

We end this section by returning to our example of the Darcy flow PDE but this
time in the setting where the coefficient 𝑎 and the source 𝑓 are dependent on a finite
dimensional parameter 𝜽 . We will show that Assumption 4 can be verified in this
case, with𝑉1 and𝑉4 taken as Banach spaces with mixed Sobolev and 𝐿2 norms, and
so Theorem 6.3.6 is applicable.

Example 6.3.7 (1D Parametric Darcy flow PDE). Consider the parametric elliptic
PDE {

−div
(
𝐴(𝒙, 𝜽)∇𝑢

)
= 𝑓 (𝒙, 𝜽) 𝒙 ∈ Ω,

𝑢 = 0, 𝒙 ∈ 𝜕Ω,
over a compact domain Ω and 𝜽 ∈ Θ where both Ω and Θ are assumed to satisfy
condition (D1); e.g., take Ω and Θ to be unit balls. For simplicity we are ignoring
the boundary operator in this case and imposing homogeneous Dirichlet boundary
conditions. In this example we assume 𝑎 is smooth in both 𝒙 and 𝜽 , and there
exists 𝑚, 𝑀 > 0 such that 𝑚 ≤ 𝐴(𝒙, 𝜽) ≤ 𝑀 . As a concrete example we may take
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𝐴(𝒙, 𝜽) = ∑𝑝

𝑗=1 𝜃 𝑗𝜓 𝑗 (𝒙) where the 𝜓 𝑗 are a set of smooth functions on Ω that are
uniformly bounded from below.

First, the boundness of the operator P is straightforward to obtain, since 𝑎 is smooth
and its derivatives will be bounded in the bounded domain Ω × Θ. More precisely,
for any 𝛾 > 0, since 𝑓 = −div

(
𝐴(𝒙, 𝜽)∇𝑢

)
= −∇𝒙𝐴 · ∇𝒙𝑢 − 𝐴Δ𝒙𝑢, there exists some

constant 𝐶 independent of 𝑢 and 𝑓 such that

∥ 𝑓 ∥𝐻𝛾 (Ω×Θ) ≤ 𝐶∥𝑢∥𝐻𝛾+2 (Ω×Θ) .

Due to the linearity of the equation, by replacing 𝑢 by 𝑢1 − 𝑢2 and noting that
𝑓 = P𝑢 = P𝑢1 − P𝑢2, we obtain the forward stability

∥P𝑢1 − P𝑢2∥𝐻𝛾 (Ω×Θ) ≤ 𝐶∥𝑢1 − 𝑢2∥𝐻𝛾+2 (Ω×Θ) . (6.37)

For the backward stability estimate, via intergation by parts, we have∫
Υ

𝐴(𝒙, 𝜽) |∇𝒙𝑢(𝒙, 𝜽) |2 d𝒙d𝜽 =

∫
Υ

𝑢(𝒙, 𝜽) 𝑓 (𝒙, 𝜽) d𝒙d𝜽

≤
∫
Θ

∥𝑢(·, 𝜽)∥𝐿2 (Ω) ∥ 𝑓 (·, 𝜽)∥𝐿2 (Ω) d𝜽

≤ 𝐶0

∫
Θ

∥∇𝒙𝑢(·, 𝜽)∥𝐿2 (Ω) ∥ 𝑓 (·, 𝜽)∥𝐿2 (Ω) d𝜽

≤ 𝐶1∥𝑢∥𝐿2 (Θ,𝐻1
0 (Ω))
∥ 𝑓 ∥𝐿2 (Θ,𝐿2 (Ω)) ,

where in the first and third inequalities, we used the Cauchy-Schwarz inequality;
in the second inequality, we used the Poincaré inequality as 𝑢(·, 𝜽) is zero on 𝜕Ω.
Here we used the notation:

∥𝑢∥2
𝐿2 (Θ,𝐻1

0 (Ω))
:=

∫
Θ

∥𝑢(·, 𝜽)∥2
𝐻1

0 (Ω)
d𝜽 and ∥ 𝑓 ∥2

𝐿2 (Θ,𝐿2 (Ω)) :=
∫
Θ

∥ 𝑓 (·, 𝜽)∥2
𝐿2 (Ω)d𝜽 .

Note that the 𝐿2(Θ, 𝐿2(Ω)) norm is also equivalent to the 𝐿2(Ω × Θ) norm. Now,
using the bound on 𝐴, we obtain that there exists a constant 𝐶 such that

∥𝑢∥𝐿2 (Θ,𝐻1 (Ω)) ≤ 𝐶∥ 𝑓 ∥𝐿2 (Ω×Θ) .

Similar to the proof for the forward stability, the backward stability follows by the
linearity of the equation. We have

∥𝑢1 − 𝑢2∥𝐿2 (Θ,𝐻1 (Ω)) ≤ 𝐶∥P𝑢1 − P𝑢2∥𝐿2 (Ω×Θ) . (6.38)

Thus it follows that we can verify condition (6.35) with the norm ∥ · ∥1 ≡ ∥ ·
∥𝐿2 (Θ,𝐻1

0 (Ω))
, ∥ · ∥4 = ∥ · ∥𝐻𝛾+2 (Ω×Θ) , and 𝑘 = 0.
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Bounding Fill-distances
Our bounds in Theorems 6.3.2 and 6.3.6 are given in terms of the fill distances
ℎ of our collocation points. In this section, we provide an upper bound of these
fill-in distances in terms of the number of collocation points, under the assumptions
that the points are randomly drawn according to uniform distributions both in the
interior of the domains and their pertinent boundaries. Throughout this section we
only consider the case of non-parametric PDEs, and hence we work withΩ, assumed
to be a compact subset ofR𝑑 with boundary 𝜕Ωwhich is a compact smooth manifold
of dimension 𝑑 − 1. We focus on the non-parametric setting for simplicity and our
results can easily be extended to the parametric PDE setting by simply replacing Ω

with Υ as a compact subset of R𝑑+𝑝.

Proposition 6.3.8. Suppose we sample 𝑀Ω points in Ω and 𝑀𝜕Ω points on 𝜕Ω,
uniformly with respect to the canonical volume and surface measures. Let 𝛿 > 0.
Then, with probability at least 1 − 𝛿, the fill-in distances ℎΩ and ℎ𝜕Ω satisfy

ℎΩ ≤ 𝐶
(
log(𝑀Ω/𝛿)

𝑀Ω

)1/𝑑
, ℎ𝜕Ω ≤ 𝐶

(
log(𝑀𝜕Ω/𝛿)

𝑀𝜕Ω

)1/(𝑑−1)
,

where 𝐶 is a constant independent of 𝑀Ω, 𝑀𝜕Ω, and 𝛿.

The proof of Proposition 6.3.8 can be found in Section 6.7.

Let’s combine Proposition 6.3.8 and previous error estimates to get error bounds
regarding the number of collocation points. In the case of Theorem 6.3.2 where
there is no boundary, we get

∥𝑢† − 𝑢★∥𝐻𝑠 (Ω) ≤ 𝐶
(
log(𝑀Ω/𝛿)

𝑀Ω

)𝛾/𝑑
∥𝑢★∥U ,

while in the case of Theorem 6.3.4 where boundary is considered, we have

∥𝑢† − 𝑢★∥𝐻𝑠 (Ω) ≤ 𝐶
((

log(𝑀Ω/𝛿)
𝑀Ω

)𝛾/𝑑
+

(
log(𝑀𝜕Ω/𝛿)

𝑀𝜕Ω

)𝛾/(𝑑−1)
)
∥𝑢★∥U .

More generally, we note that the bounds in Proposition 6.3.8 can be applied to the
abstract setting in Theorem 6.3.1 when 𝜖 depends on the fill-in distance.

If 𝑠 and 𝛾 are appropriately chosen such that the required assumptions hold, and
𝛾 ≥ 𝑑/2, then the convergence rate is at least as fast as the Monte Carlo rate, for
uniformly sampled collocation points. There is no curse of dimensionality in this
case.
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6.4 Numerical Experiments
In this section, we study several numerical examples to demonstrate the interplay
between the dimensionality of the problem and the regularity of the solution. Our
theory demonstrates that this interplay is central to determining the convergence
rate, and hence accuracy, of the methodology studied in this paper.

In Section 6.4, we consider a high dimensional elliptic PDE with smooth solutions.
By varying the dimension of the problem and the frequency of the solution, we
demonstrate dimension-benign convergence rates, and in particular the accuracy is
better when the frequency of the solution is lower. In Section 6.4, we consider a
high dimensional parametric PDE problem to illustrate the importance of choosing
kernels that adapted to the regularity of the solution. In Section 6.4, we present
a high dimensional Hamilton-Jacobi-Bellman (HJB) equation, which goes beyond
our theory and demonstrates the interplay between dimensionality and regularity.

High Dimensional PDEs
Consider the variable coefficient nonlinear elliptic PDEs{

−∇ · (𝐴∇𝑢) + 𝑢3 = 𝑓 , in Ω,

𝑢 = 𝑔, on 𝜕Ω.
(6.39)

We set 𝐴(𝒙) = exp
(
sin

(∑𝑑
𝑗=1 cos(𝑥 𝑗 )

))
, and the ground truth solution

𝑢★(𝒙; 𝛽) = exp(sin(𝛽
𝑑∑︁
𝑗=1

cos(𝑥 𝑗 ))) ,

where we have a parameter 𝛽 to control the frequency of 𝑢. The right hand side and
boundary data are obtained using 𝐴 and 𝑢★.

In the experiment, we choose the domain Ω to be the unit ball in R𝑑 for 𝑑 =

2, 3, . . . , 6. We sample 𝑀Ω = 1000, 2000, 4000, 8000 points uniformly in the inte-
rior, and respectively 𝑀𝜕Ω = 200, 400, 800, 1600 points uniformly on the boundary.

After selecting the kernel function, the number of iteration steps in our algorithm
is set to be 3 with initial solution 0. We sample another set of 𝑀Ω test points and
evaluate the 𝐿2 error of the solution on these points. The results are averaged over
10 independent draws of the uniform collocation points.

In the first experiment, we choose the Matérn kernel with 𝜈 = 7/2 and with length-
scale 𝜎 = 0.25

√
𝑑. We choose 𝛽 = 1, 4, to compare the convergence given ground
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truth with different frequencies. The results are shown in fig. 6.2. It is clear that
when 𝛽 is small, the accuracy is better. The slopes of convergence curves also have
a tendency to improve for 𝑑 ≥ 3 if we increase 𝛽.
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Figure 6.2: 𝐿2 test errors of solutions to Problem (6.39) as a function of the number
of collocation points. Left: 𝛽 = 1; right: 𝛽 = 4. In both cases, we choose Matérn
kernel with 𝜈 = 7/2. Reported slopes in the legend denote empirical convergence
rates.

In the second experiment, we fix 𝛽 = 4, and choose the Matérn kernel with
𝜈 = 5/2, 9/2 and with lengthscale 𝜎 = 0.25

√
𝑑. Results are shown in Figure 6.3.

Comparing 𝜈 = 5/2, 9/2 and 𝜈 = 7/2 in the last example, we observe that increasing
𝜈 leads to faster convergence. This is due to the fact that the true solution is smooth.
In dimension 𝑑 = 2, we can identify the exact convergence rate as 𝜈 − 1. In all di-
mensions, the rate is faster than the Monte Carlo rate. We observe that the regularity
of the solution softens the effect of the curse of dimensionality, i.e., convergence
rates are better in higher dimensions when 𝛽 is smaller.
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Figure 6.3: 𝐿2 test errors of solutions to Problem (6.39) as a function of the number
of collocation points with 𝛽 = 4. Left: Matérn kernel with 𝜈 = 5/2; right: Matérn
kernel with 𝜈 = 9/2. Reported slopes in the legend denote empirical convergence
rates.

Parametric PDEs
We consider a parametric version of the linear (𝜏 = 0) darcy flow problem in
example 6.2.1: {

−div
(
exp(𝑎(𝒙, 𝜽))∇𝑢

)
(𝒙) = 𝑓 (𝒙), 𝒙 ∈ Ω,
𝑢(𝒙) = 𝑔(𝒙), 𝒙 ∈ 𝜕Ω.

(6.40)

Following the general form eq. (6.3), we aim to obtain the solution as a function
taking values in the product spaceΥ. eq. (6.40) can be rewritten in terms of s = (𝒙, 𝜽)
with new forcing terms 𝑓̂ and 𝑔̂ depending only on the first coordinate of s

{
−div𝒙

(
𝐴(s)∇𝒙𝑢(s)

)
(s) = 𝑓̂ (s) = 𝑓 (𝒙), s ∈ Υ,
𝑢(s) = 𝑔̂(s) = 𝑔(𝒙), s ∈ 𝜕Υ.

(6.41)



249

Recall that we defined 𝜕Υ = 𝜕Ω × Θ. For our numerical example, we let 𝑑 = 1 and
vary 𝑝. We set 𝐴(𝑥, 𝜃) = 2 + 𝜃0 +

∑𝑝

𝑗=1
𝜃 𝑗

𝑗 𝑘
sin(𝜋𝑥 + 𝑗), 𝑓 (𝑥) = 𝑥 and 𝑔(𝑥) = 0, a

similar setting as in (Chkifa, Cohen, DeVore, et al., 2012). We choose Ω = [0, 1],
and Θ = [0, 1] 𝑝, for 𝑝 = 2, 3, . . . , 6. Note 1 ≤ 𝐴(s) ≤ 4 since the sum is in [−1, 1]
for all 𝑝 and 𝜃 ∈ Θ, matching the setting of example 6.3.7.

We sample different 𝑀Ω points uniformly in the interior, and 𝑀𝜕Ω = 𝑀Ω/10 points
uniformly on the boundary of 𝑥. We do two experiments with different choices of
kernel, in the first (fig. 6.4, left), a vanilla Gaussian kernel with different length scales
for the 𝑥 and 𝜃 dimension, and with a scaling of the length scale in 𝜃 proportional to
√
𝑝. In the second one (fig. 6.4, right), we adapt the Gaussian kernel to the decay in

𝐴(𝑥, 𝜃), by including the decay of 1/ 𝑗 𝑘 in the norm in 𝜃 space used by the kernel. We
see significant improvement in test error using this adaptation in high dimensions,
which suggests future research directions of kernel adaptation to the specific form
of the PDE. In all cases, we use a cross-validation procedure for hyperparameter
tuning and we observe the average 𝐿2 test error on an independent set of test points
for different values of 𝑝 and 𝑀Ω. Since 𝑑 = 1 we computed our ground truth solution
by numerically integrating Equation eq. (6.41) using quadrature.

As mentioned, this problem was also explored by (Chkifa, Cohen, DeVore, et al.,
2012), in which sparse multivariate polynomials are used to estimate the solution
with a rate independent of the number of parameters, provided the decay of the
coefficient functions is large enough (in ℓ𝑝 for some 0 < 𝑝 < 1). While this as-
sumption is satisfied in this example, our method’s convergence rate greatly depends
on the dimension of 𝜃 when the kernel is not adapted to the particular equations
and coefficients 𝐴(𝑥, 𝜃). Our results indicate improvement in the dependence of
convergence rates on dimension when the kernel is adapted to the regularity of
𝐴. It remains open whether our kernel based approach (which is not specific to
parametric equations) can achieve the same dimension independent convergence
rates as the ones in (Chkifa, Cohen, DeVore, et al., 2012) (which apply even in the
countably infinite dimensional case and which they refer to as breaking the curse
of dimensionality) for parametric elliptic PDEs with rapidly decreasing parametric
dependence as specified above (this assumption implies a finite number of effective
parameters).
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Figure 6.4: 𝐿2 test error of solutions to Problem (6.41) as a function of the number
of collocation points. Left: vanilla gaussian kernel; Right: Gaussian kernel adapted
to the regularity of 𝐴. Reported slopes in the legend denote empirical convergence
rates.

High Dimensional HJB Equation
Consider a prototypical HJB equation:

(𝜕𝑡 + Δ)𝑉 (𝒙, 𝑡) − |∇𝑉 (𝒙, 𝑡) |2 = 0

𝑉 (𝒙, 𝑇) = 𝑔(𝒙) ,
(6.42)

where 𝑔(𝒙) = log( 12 +
1
2 |𝒙 |

2), 𝒙 ∈ R𝑑 , 𝑡 ∈ [0, 𝑇]. We are interested in solving
𝑉 (𝒙0, 0) for some 𝒙0 ∈ R𝑑 . We adopt the stochastic differential equation (SDE)
formula for representing the solution of the PDEs, following (Weinan, Han, and
Jentzen, 2017; Richter, Sallandt, and Nüsken, 2021). More specifically, consider the
SDE

𝑑𝑋𝑠 =
√

2𝑑𝑊𝑠, 𝑋0 = 𝒙0 . (6.43)

We define 𝑌𝑠 = 𝑉 (𝑋𝑠, 𝑠), 𝑍𝑠 =
√

2∇𝑉 (𝑋𝑠, 𝑠). By Ito’s formula, one obtains

𝑑𝑌𝑠 =
1
2
|𝑍𝑠 |2𝑑𝑠 + 𝑍𝑠 · 𝑑𝑊𝑠 . (6.44)

The strategy is to integrate the above SDE backward to 𝑌0. An implicit3 Euler
discretization from time 𝑡𝑛+1 to 𝑡𝑛 (Δ𝑡 = 𝑡𝑛+1 − 𝑡𝑛) leads to the following equation:

𝑉 (𝑋𝑡𝑛+1 , 𝑡𝑛+1) = 𝑉 (𝑋𝑡𝑛 , 𝑡𝑛) + |∇𝑉 (𝑋𝑡𝑛 , 𝑡𝑛) |2Δ𝑡 +
√

2∇𝑉 (𝑋𝑡𝑛 , 𝑡𝑛) · 𝜉𝑛+1
√
Δ𝑡 . (6.45)

3Implicit because are integrating backwards in time.
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Algorithmically, we sample 𝐽 different paths of the forward SDE in (6.43), namely
𝑋
( 𝑗)
𝑡𝑛
, 1 ≤ 𝑗 ≤ 𝐽, using the Euler–Maruyama scheme. Then, backward in time, we

apply our kernel method, namely to solve the following optimization problem
minimize

𝑢∈U
∥𝑢∥U

st 𝑢(𝑋 ( 𝑗)𝑡𝑛 , 𝑡𝑛) + |∇𝑢(𝑋
( 𝑗)
𝑡𝑛
, 𝑡𝑛) |2Δ𝑡 +

√
2∇𝑢(𝑋 ( 𝑗)𝑡𝑛 , 𝑡𝑛) · 𝜉𝑛+1

√
Δ𝑡 = 𝑉 (𝑋 ( 𝑗)𝑡𝑛+1 , 𝑡𝑛+1)

(6.46)
to get the solution𝑉 (·, 𝑡𝑛), assuming𝑉 (·, 𝑡𝑛+1) has been solved. Iterating this process,
we end up with the solution 𝑉 (𝒙0, 0). We can understand the algorithm as applying
our kernel method iteratively with the sample path as the collocation points.

Experimentally, we consider 𝑑 = 100 as in (Weinan, Han, and Jentzen, 2017;
Richter, Sallandt, and Nüsken, 2021). We aim to solve 𝑉 (𝒙0, 0) for 𝒙0 = 0. The
ground truth is 𝑉 (𝒙0, 0) = 4.589992 provided in (Weinan, Han, and Jentzen,
2017). We sample 𝐽 = 2000 paths from 𝒙0 and choose the inverse quadratic ker-

nel 𝑘 (𝒙, 𝒚;𝜎) =
(
∥𝒙−𝒚∥2
2𝑑𝜎2 + 1

)−1
. We use the “linearize-then-optimize" approach to

compute an approximate solution to (6.46). The nugget term is set to be 𝜂 = 10−3.
The result is shown in Table 6.2.

𝜎 10 25 50 100 200
Computed solution 𝑉 (𝒙0, 0) 5.6042 4.6366 4.6039 4.6021 4.6021
Relative accuracy 22.10% 1.0154% 0.303% 0.2638% 0.2638%

Table 6.2: Numerical results for the HJB equation (6.42), computing the quantity
𝑉 (𝒙0, 0).

We observe that a suitable choice of the lengthscale of the kernel is crucial to
obtain an accurate solution. Compared to the relative accuracy of 0.171% (reported
in (Richter, Sallandt, and Nüsken, 2021)) using neural networks (DenseNet like
architecture with four hidden layers) to solve (6.45), the accuracy of using kernel
methods with a simple quadratic kernel is comparable. Moreover, the lengthscale of
the kernel is very large, indicating that the solution behavior of this HJB equation is
very smooth; similar “blessings of dimensionality” have been reported and discussed
in (Richter, Sallandt, and Nüsken, 2021), where they used a constant function (and
the terminal function 𝑔) as ansatz to solve (6.45) and obtained very high accuracy4.
Thus, this HJB example in dimension 100 demonstrates again the trade-off between
the smoothness of the solution and the curse of dimensionality.

4We anticipate that using the feature map perspective of kernel methods with constants and 𝑔
as features will achieve a similar accuracy as in (Richter, Sallandt, and Nüsken, 2021). We did not
pursue this here to avoid using strong prior information on the solution beyond regularity.
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6.5 Conclusions
In this paper, we conducted an error analysis of GP and kernel based methods
for solving PDEs. We provided convergence rates under the assumptions that (1)
the solution belongs to the RKHS which is embedding to some Sobolev space of
sufficient regularity, and (2) the underlying forward and inverse PDE operator is
stable in corresponding Sobolev spaces.

Our analysis relies on the crucial minimizing norm property of the numerical solution
in the kernel/GP methodology. The analysis could be seamlessly generalized to the
function class of NNs and other norms such as non-quadratic norms if we can
formulate the training process as a minimization problem over the related norm.

We emphasize that our convergence rates hold for the exact minimizer of the min-
imization problem. In practice, finding such a minimizer algorithmically can be a
separate and challenging problem. Our numerical experience suggests that Gauss-
Newton iterations usually perform well, and typically, 2-5 iterations are sufficient
for convergence. Therefore, we can combine the error analysis in this paper and the
fast implementation of the algorithm in (Yifan Chen, Houman Owhadi, and Florian
Schäfer, 2024) to obtain a near-linear complexity solver for nonlinear PDEs with
rigorous accuracy guarantee.

It is worth mentioning that this paper focuses only on analyzing the MAP estimator
within the GP interpretation. Exploring the posterior distribution of the GP can
provide a means for quantifying uncertainty in the solution. In particular, analyzing
the posterior contraction is an interesting direction for future research.
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6.6 Sobolev Sampling Inequalities on Manifolds
Below we collect useful sampling inequalities for Sobolev functions defined on
smooth manifolds with corners. Following (J. M. Lee, 2012, Chs. 1, 16) we consider
a smooth, compact Riemannian manifoldM ⊂ R𝑑 of dimension 𝑘 ≤ 𝑑 with corners,
i.e., a Riemannian manifold with a smooth structure with corners; see (J. M. Lee,
2012, Ch. 16). On such a manifold we define the natural geodesic distance

𝜌M :M ×M → R, 𝜌M (𝑥, 𝑦) := inf
∫ 1

0
∥ ¤ℓ(𝑡)∥𝑑𝑡,

where the infimum is taken over all piecewise smooth paths ℓ : [0, 1] ↦→ M
satisfying the boundary conditions ℓ(0) = 𝑥 and ℓ(1) = 𝑦, and ∥ ¤ℓ(𝑡)∥ is the length
of the tangent vector ¤ℓ(𝑇) under the Riemannian metric.

Following (Fuselier and G. B. Wright, 2012) (see also (Taylor, 2013, Sec. 4.3)) we
further consider the Sobolev spaces 𝐻𝑘 (M) of functions defined onM as follows:
Let A = {𝑀 𝑗 ,Ψ 𝑗 }𝑁𝑗=1 be an atlas forM and let {𝜅 𝑗 } be a partition of unity ofM,
subordinate to 𝑀 𝑗 . Then given functions 𝑢 :M → R we define the Sobolev norms
and the associated Sobolev spaces 𝐻𝑠 (M) as

𝐻𝑠 (M) := {𝑢 :M → R | ∥𝑢∥𝐻𝑠 (M) < +∞}, ∥𝑢∥𝐻𝑠 (M) := ©­«
𝑁∑︁
𝑗=1
∥𝜋 𝑗 (𝑢)∥2𝐻𝑠 (Ξ 𝑗 )

ª®¬
1/2

,

where the maps 𝜋 𝑗 are defined as

𝜋 𝑗 ( 𝑓 ) :=

{
𝜅 𝑗 ( 𝑓 (Ψ−1

𝑗 (𝑦))), if 𝑦 ∈ Ψ 𝑗 (𝑀 𝑗 ),
0 otherwise.

and the sets Ξ 𝑗 are given by

Ξ 𝑗 :=


R𝑘 if Ψ 𝑗 is an interior chart,

{(𝑥1, . . . , 𝑥𝑘 ) ∈ R𝑘 |𝑥1 ≥ 0} if Ψ 𝑗 is a boundary chart,

{(𝑥1, . . . , 𝑥𝑘 ) ∈ R𝑘 |𝑥1 ≥ 0, . . . , 𝑥𝑘 ≥ 0} if Ψ 𝑗 is a corner chart.

Put simply, the Sobolev spaces 𝐻𝑠 (M) are functions onM that, locally after the
flattening of the manifold belong to the standard Sobolev spaces 𝐻𝑠. With these
notions at hand we then recall the following result of (Fuselier and G. B. Wright,
2012), which was proven by those authors for smooth embedded manifolds without
boundary or corners. However, a brief investiation of the proof of that result reveals
that it can immediately be generalized to our setting with manifolds with corners. In
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fact, the idea of the proof is to use the atlas to locally flatten the manifold and apply
classic sampling theorems such as (Arcangéli, López de Silanes, and Torrens, 2007,
Thm. 4.1) on each patch. The only difference in the case of manifolds with corners
is that the patches do not only map to R𝑘 but rather to the subspaces Ξ 𝑗 depending
on whether the corresponding chart is an interior, boundary, or corner chart.

Proposition 6.6.1 ((Fuselier and G. B. Wright, 2012, Lem. 10)). SupposeM ⊂ R𝑑

is a smooth, compact, Riemannian manifold with corners, of dimension 𝑘 and let
𝑠 > 𝑘/2 and 𝑟 ∈ N satisfy 0 ≤ 𝑟 ≤ ⌈𝑠⌉ − 1. Let 𝑋 ⊂ M be a discrete set with mesh
norm ℎM defined as

ℎM := sup
𝑥′∈M

inf
𝑥∈𝑋

𝜌M (𝑥, 𝑥′).

Then there is a constant ℎ0 > 0 depending only onM such that if ℎM < ℎ0 and if
𝑢 ∈ 𝐻𝑠 (M) satisfies 𝑢 |𝑋 = 0 then

∥𝑢∥𝐻𝑟 (M) ≤ 𝐶ℎ𝑠−𝑟M ∥𝑢∥𝐻𝑠 (M) .

Here 𝐶 > 0 is a constant independent of ℎM and 𝑢.

6.7 Bounds on Fill Distances
This section collects a result from (Reznikov and Saff, 2016) for bounding the fill-in
distance for randomly distributed points on a manifold.

Assume (M, 𝜌) is a metric space, and 𝜇 is a finite positive Borel measure supported
onM. Let 𝑋 = {𝑥1, ..., 𝑥𝑁 } be a set of 𝑁 points, independently and randomly drawn
from 𝜇. Define the fill-in distance

ℎM = sup
𝑥′∈M

inf
𝑥∈𝑋

𝜌(𝑥, 𝑥′) . (6.47)

Then, (Reznikov and Saff, 2016, Thm. 2.1) implies the following,

Proposition 6.7.1. SupposeΦ is a continuous non-negative strictly increasing func-
tion on (0,∞) satisfying Φ(𝑟) → 0 as 𝑟 → 0+. If there exists a positive number 𝑟0

such that 𝜇(𝐵(𝑥, 𝑟)) ≥ Φ(𝑟) holds for all 𝑥 ∈ M and every 𝑟 < 𝑟0, then there exist
positive constants 𝑐1, 𝑐2, 𝑐3, and 𝛼0 such that for any 𝛼 > 𝛼0, we have

P
[
ℎM ≥ 𝑐1Φ

−1
(
𝛼 log 𝑁
𝑁

)]
≤ 𝑐2𝑁

1−𝑐3𝛼 . (6.48)

We use this proposition to prove Proposition 6.3.8.
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Proof of Proposition 6.3.8. We apply Proposition 6.7.1. For the bounded domain
Ω ⊂ R𝑑 , we know that there exists a constant 𝐶 such that Φ(𝑟) = 𝐶𝑟𝑑 will satisfy
the assumption in Proposition 6.7.1. Moreover, we choose 𝛼 such that 𝑐2𝑀

1−𝑐3𝛼
Ω

≤ 𝛿.
This implies that 𝛼 ≥ 1

𝑐3 log𝑀Ω
log(𝑐2𝑀Ω/𝛿). Pick 𝛼 = 𝐶′

𝑐3 log𝑀Ω
log(𝑐2𝑀Ω/𝛿) for

some 𝐶′ ≥ 1 such that 𝛼 ≥ 𝛼0. Then Proposition 6.7.1 shows that with probability
at least 1 − 𝛿,

ℎΩ ≤ 𝑐1Φ
−1

(
𝛼 log𝑀Ω

𝑀Ω

)
≤ 𝐶′′

(
log(𝑀Ω/𝛿)

𝑀Ω

)1/𝑑
,

where 𝐶′′ is a constant independent of 𝑀Ω and 𝛿. The bound on ℎ𝜕Ω can be proved
similarly by choosing Φ(𝑟) = 𝐶𝑟𝑑−1. □

6.8 The Choice of Nugget Terms
For numerical stability, we add a diagonal adaptive nugget term to the kernel matrix
in our computation, such that

𝑢ℓ+1(𝑥) = 𝐾 (𝑥, 𝝓𝑙) [𝐾 (𝝓𝑙 , 𝝓𝑙) + 𝜂diag(𝐾 (𝝓𝑙 , 𝝓𝑙))]−1

( (
𝑓 − 𝑢ℓ + P′(𝑢ℓ)𝑢ℓ

)
|sΩ(

𝑔 − 𝑢ℓ + B′(𝑢ℓ)𝑢ℓ
)
|s𝜕Ω .

)
Typically 𝜂 = 10−10. This nugget term is similar to the adaptive nugget term proposed
in (Yifan Chen, Hosseini, et al., 2021b). It is much more effective than the naive
choice of𝐾 (𝝓𝑙 , 𝝓𝑙)+𝜂𝐼, since the conditioning of the interior block and the boundary
block in the kernel matrix differs dramatically.
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C h a p t e r 7

DISCOVERING GRAPHICAL STRUCTURE AND FUNCTIONAL
RELATIONSHIPS WITHIN DATA

Most problems within and beyond the scientific domain can be framed into one
of the following three levels of complexity of function approximation. Type 1:
Approximate an unknown function given input/output data. Type 2: Consider a
collection of variables and functions, some of which are unknown, indexed by the
nodes and hyperedges of a hypergraph (a generalized graph where edges can connect
more than two vertices). Given partial observations of the variables of the hypergraph
(satisfying the functional dependencies imposed by its structure), approximate all the
unobserved variables and unknown functions. Type 3: Expanding on Type 2, if the
hypergraph structure itself is unknown, use partial observations of the variables of the
hypergraph to discover its structure and approximate its unknown functions. These
hypergraphs offer a natural platform for organizing, communicating, and processing
computational knowledge. While most scientific problems can be framed as the
data-driven discovery of unknown functions in a computational hypergraph whose
structure is known (Type 2), many require the data-driven discovery of the structure
(connectivity) of the hypergraph itself (Type 3). We introduce an interpretable
Gaussian Process (GP) framework for such (Type 3) problems that does not require
randomization of the data, nor access to or control over its sampling, nor sparsity
of the unknown functions in a known or learned basis. Its polynomial complexity,
which contrasts sharply with the super-exponential complexity of causal inference
methods, is enabled by the nonlinear analysis of variance capabilities of GPs used
as a sensing mechanism.

Introduction
The three levels of complexity of function approximation.
As illustrated in Fig. 7.1.(a-c), Type 1, Type 2 and Type 3 problems can be formulated
as completing or discovering hypergraphs where nodes represent variables and edges
represent functional dependencies. The graph in Type 1 has only two variables and
one unknown function. The graph in Type 2 has multiple variables and (some
possibly unknown) functions, and the connectivity of the graph is known. The graph
in Type 3 has an unknown connectivity (functional dependencies between variables
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may be unknown) and this is the focus of this work. Current methods for solving
Type 1 and 2 problems include Deep Learning (DL) methods, which benefit from
extensive hardware and software support but have limited guarantees. Despite their
prevalence, Type 3 challenges have been largely overlooked due to their inherent
complexity. Causal inference methods (Morgan and Winship, 2015; M. Glymour,
Pearl, and Jewell, 2016) and probabilistic graphs (Stegle et al., 2010; Lopez-Paz
et al., 2015) and sparse regression methods (Doostan and Houman Owhadi, 2011;
Brunton, Proctor, and Kutz, 2016), offer potential avenues for addressing Type 3
problems. However, it is important to note that their application to these problems
necessitates additional assumptions. Causal inference models, for instance, typically
assume randomized data and some level of access to the data generation process
or its underlying distributions. Sparse regression methods, on the other hand, rely
on the assumption that functional dependencies have a sparse representation within
a known basis. In this paper, we do not impose these assumptions, and thus, these
particular techniques may not be applicable. Furthermore while the complexity of
Bayesian causal inference methods may grow super-exponentially with the number
𝑑 of variables, the complexity of our method is that of 𝑑 parallel computations of
polynomial complexities bounded betweenO(𝑑) (best case) andO(𝑑4) (worst case).

Figure 7.1: The three levels of complexity of function approximation.

Generalizing Gaussian Process methods.
Although Gaussian Process (GP) methods are sometimes perceived as a well-
founded but old technology limited to curve fitting (Type 1 problems), they have
recently been generalized, beyond Type 1 problems, to an interpretable framework
(Computational Graph Completion or CGC (Houman Owhadi, 2022)) for solving
Type 2 problems (Houman Owhadi, 2023a; Yifan Chen, Hosseini, et al., 2021c;
Batlle, Yifan Chen, et al., 2023; Yifan Chen, Houman Owhadi, and Florian Schäfer,
2024; Darcy et al., 2023; Hamzi, Houman Owhadi, and Kevrekidis, 2023), all while
maintaining the simple and transparent theoretical and computational guarantees
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of kernel/optimal recovery methods (Micchelli and Rivlin, 1977; H. Owhadi and
C. Scovel, 2019). This paper introduces a comprehensive GP framework for solving
Type 3 problems, which is interpretable and amenable to analysis. This framework
leverages the Uncertainty Quantification (UQ) properties of GP methods, which do
not have an immediate natural counterpart in DL methods. It is based on a kernel
generalization (Wahba, 2003; Houman Owhadi, Clint Scovel, and Yoo, 2021) of
variance-based sensitivity analysis guiding the discovery of the structure of the hy-
pergraph. Here, variables are linked via GPs, and those contributing to the highest
data variance unveil the hypergraph’s structure. This GP variance decomposition of
the data leads to signal-to-noise and a Z-score that can be employed to determine
whether a given variable can be approximated as a nonlinear function of a subset of
other variables.

The scope of Type 1, 2 and 3 problems.
The scope of Type 1, 2 and 3 problems is immense. Numerical approximation (H.
Owhadi and C. Scovel, 2019; H. Owhadi, C. Scovel, and F. Schäfer, 2019; Flo-
rian Schäfer, Timothy John Sullivan, and Houman Owhadi, 2021c; Florian Schäfer
and Houman Owhadi, 2021), Supervised Learning, and Operator Learning (Hamzi,
Maulik, and Houman Owhadi, 2021b; Hamzi and Houman Owhadi, 2021; Flo-
rian Schäfer and Houman Owhadi, 2023; Batlle, Darcy, et al., 2023) can all be
formulated as Type 1 problems, i.e., as approximating unknown functions given
(possibly with noisy and infinite/high-dimensional) inputs/output data. The common
GP based solution to these problems is to replace the underlying unknown function
by a GP and compute its MAP estimator given available data. Type 2 problems
include (Fig. 7.1.(d-h)) solving and learning (possibly stochastic) ordinary or par-
tial differential equations (Yifan Chen, Hosseini, et al., 2021c; Darcy et al., 2023),
Deep Learning (Houman Owhadi, 2023a), dimension reduction, reduced-ordered
modeling, system identification (Houman Owhadi, 2022), closure modeling, etc.
Indeed, all these problems can be formulated as completing a computational graph
(Houman Owhadi, 2022). In this formulation, variables and functions are repre-
sented by the nodes and the edges of the graph whose structure corresponds to the
functional dependencies between variables. Some of the functions and variables may
be unknown, and by completing, we mean approximating the unknown functions
(colored in red in Fig. 7.1) given samples from the observed variables. The common
GP-based solution to Type 2 problems is to simply replace unknown functions by
GPs and compute their MAP/MLE estimators given available data and constraints
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imposed by the structure of the graph (Houman Owhadi, 2022). While most prob-
lems in Computational Sciences and Engineering (CSE) and Scientific Machine
Learning (SciML) can be framed as Type 1 and Type 2 challenges, many problems
in science can only be categorized as Type 3 problems, i.e., discovering the struc-
ture/connectivity of the graph itself from data prior to its completion. Indeed the
scope of Type 3 problems extends well beyond Type 2 problems and includes equa-
tion discovery (Fig. 7.1.(i)); the modeling of land surface interactions in weather
prediction (Fig. 7.1.(j) from (Dirmeyer et al., 2019), discovering possibly hidden
functional dependencies between state variables for a finite number of snapshots of
those variables); social network analysis (Fig. 7.1.(k) from (Gittell and Ali, 2021),
discovering functional dependencies between quantitative markers associated with
each individual in situations where the connectivity of the network may be hidden);
economic network analysis (Fig. 7.1.(m) from (Schweitzer et al., 2009), discovering
functional dependencies between the economic markers of different agents or com-
panies, which is significant to systemic risk analysis); and computational biology
(Fig. 7.1.(l) from (Sachs et al., 2005), identifying pathways and interactions between
genes from their expression levels).

Figure 7.2: Ancestors identification in Type 3 problem.

Overview of the proposed approach for Type 3 problems.
We first present an algorithmic overview of the proposed GP-based approach for
Type 3 problems. For ease of presentation, we consider the simple setting of
Fig. 7.2.(a) where we are given 𝑁 samples on the variables 𝑥1, . . . , 𝑥6. After mea-
surements/collection, these variables are normalized to have zero mean and unit
variance. Our objective is to uncover the underlying dependencies between them.

A signal-to-noise ratio to decide whether or not a node has ancestors.
Our algorithm’s core concept is the identification of ancestors for each node in the
graph. Let’s explore this idea in the context of a specific node, say 𝑥1, as depicted
in Fig. 7.2(b). Determining whether 𝑥1 has ancestors is akin to asking if 𝑥1 can be
expressed as a function of 𝑥2, 𝑥3, . . . , 𝑥6. In other words, can we find a function 𝑓
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(living in a pre-specified space of functions that could be of controlled regularity)
such that

𝑥1 ≈ 𝑓 (𝑥2, . . . , 𝑥6) ? (7.1)

To answer this question we regress 𝑓 with a centered GP 𝜉 ∼ N(0, Γ) whose
covariance function Γ is an additive kernel of the form Γ = 𝐾𝑠 + 𝛾δ(𝑥 − 𝑦) , where
𝐾𝑠 is a smoothing kernel, 𝛾 > 0 is a regularization parameter and δ(𝑥 − 𝑦) is
the white noise covariance operator. This is equivalent to assuming the GP 𝜉 to
be the sum of two independent GPs, i.e., 𝜉 = 𝜉𝑠 + 𝜉𝑛 where 𝜉𝑠 ∼ N(0, 𝐾𝑠) is a
smoothing/signal GP and 𝜉𝑛 ∼ N

(
0, 𝛾δ(𝑥 − 𝑦)

)
is a noise GP. WritingH𝐾𝑠 for the

Reproducing Kernel Hilbert Space (RKHS) induced by the kernel 𝐾𝑠, this is also
equivalent to approximating 𝑓 with a minimizer of

inf
𝑓 ∈H𝐾𝑠

∥ 𝑓 ∥2𝐾𝑠 +
1
𝛾



 𝑓 (𝑋) − 𝑌

2
R𝑁 , (7.2)

where ∥ · ∥2
R𝑁

is the Euclidean norm on R𝑁 , 𝑋 is the input data on 𝑓 obtained as an
𝑁 × 5-matrix whose rows 𝑋𝑖 are the samples on 𝑥2, . . . , 𝑥6, 𝑌 is the output data on
𝑓 obtained as an 𝑁-vector whose entries are obtained from the samples on 𝑥1, and
𝑓 (𝑋) is a 𝑁-vector whose entries are the evaluations 𝑓 (𝑋𝑖). At the minimum

V(𝑠) := ∥ 𝑓 ∥2𝐾𝑠 (7.3)

quantifies the data variance explained by the signal GP 𝜉𝑠 and

V(𝑛) :=
1
𝛾



 𝑓 (𝑋) − 𝑌

2
R𝑁 (7.4)

quantifies the data variance explained by the noise GP 𝜉𝑛 (Houman Owhadi, Clint
Scovel, and Yoo, 2021). This allows us to define the signal-to-noise ratio

V(𝑠)
V(𝑠) + V(𝑛) ∈ [0, 1] . (7.5)

If V(𝑠)
V(𝑠)+V(𝑛) < 0.51, then, as illustrated in Fig. 7.2.(c), we deduce that 𝑥1 has no

ancestors, i.e., 𝑥1 cannot be approximated as function of 𝑥2, . . . , 𝑥6. Conversely if
V(𝑠)

V(𝑠)+V(𝑛) > 0.5, then, we deduce that 𝑥1 has ancestors, i.e., 𝑥1 can be approximated
as function of 𝑥2, . . . , 𝑥6.

1We will later present a version with a more sophisticated method for pruning, but we keep the
0.5 threshold in this example for simplicity.
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Selecting the signal kernel 𝐾𝑠
This process is repeated by selecting the kernel 𝐾𝑠 to be linear (𝐾𝑠 (𝑥, 𝑥′) = 1 +
𝛽1

∑
𝑖 𝑥𝑖𝑥

′
𝑖
), quadratic (𝐾𝑠 (𝑥, 𝑥′) = 1+𝛽1

∑
𝑖 𝑥𝑖𝑥

′
𝑖
+𝛽2

∑
𝑖≤ 𝑗 𝑥𝑖𝑥 𝑗𝑥

′
𝑖
𝑥′
𝑗
) or fully nonlinear

to identify 𝑓 as linear, quadratic, or nonlinear. In the case of a nonlinear kernel, we
employ

𝐾𝑠 (𝑥, 𝑥′) = 1 + 𝛽1
∑︁
𝑖

𝑥𝑖𝑥
′
𝑖 + 𝛽2

∑︁
𝑖≤ 𝑗

𝑥𝑖𝑥 𝑗𝑥
′
𝑖𝑥
′
𝑗 + 𝛽3

∏
𝑖

(1 + 𝑘 (𝑥𝑖, 𝑥′𝑖)). (7.6)

where 𝑘 is a universal kernel, such as a Gaussian or a Matérn kernel, with all
parameters set to 1, and 𝛽𝑖 assigned the default value 0.1. We select 𝐾𝑠 as the
first kernel that surpasses a signal-to-noise ratio of 0.5. If no kernel reaches this
threshold, we conclude that 𝑥1 lacks ancestors.

Pruning ancestors based on signal-to-noise ratio.
Once we establish that 𝑥1 has ancestors, the next step is to prune its set of ances-
tors iteratively. We remove nodes with the least contribution to the signal-to-noise
ratio and stop before that ratio drops below 0.5 as illustrated in Fig. 7.2.(d). To
describe this, assume that 𝐾𝑠 is as in (7.6). Then 𝐾𝑠 is an additive kernel that can be
decomposed into two parts:

𝐾𝑠 = 𝐾1 + 𝐾2 , (7.7)

where 𝐾1 = 1+ 𝛽1
∑
𝑖≠1,2 𝑥𝑖𝑥

′
𝑖
+ 𝛽2

∑
𝑖≤ 𝑗 ,𝑖, 𝑗≠1,2 𝑥𝑖𝑥 𝑗𝑥

′
𝑖
𝑥′
𝑗
+ 𝛽3

∏
𝑖≠1,2(1+ 𝑘 (𝑥𝑖, 𝑥′𝑖)) does

not depend on 𝑥2 and 𝐾2 = 𝐾𝑠 −𝐾1 depends on 𝑥2. This decomposition allows us to
express 𝑓 as the sum of two components:

𝑓 = 𝑓1 + 𝑓2 , (7.8)

where 𝑓1 does not depend on 𝑥2, 𝑓2 depends on 𝑥2 and ( 𝑓1, 𝑓2) = argmin(𝑔1,𝑔2)∈H𝐾1×H𝐾2 s.t. 𝑔1+𝑔2= 𝑓
∥𝑔1∥2𝐾1

+

∥𝑔2∥2𝐾2
. Furthermore, ∥ 𝑓 ∥2

𝐾𝑠
= ∥ 𝑓1∥2𝐾1

+ ∥ 𝑓2∥2𝐾2
, and

∥ 𝑓2∥2𝐾1
∥ 𝑓 ∥2

𝐾𝑠

∈ [0, 1] quantifies the
contribution of 𝑥2 to the signal data variance. Following the procedure illustrated
in Fig. 7.2.(d), if, for example, 𝑥4 is found to have the least contribution to the
signal data variance, we recompute the signal-to-noise ratio without 𝑥4 in the set
of ancestors for 𝑥1. If that ratio is below 0.5, we do not remove 𝑥4 from the list of
ancestors, and 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6 is the final set of ancestors of 𝑥1. If this ratio remains
above 0.5, we proceed with the removal. This iterative process continues, and we
stop before the signal-to-noise ratio drops below 0.5 to identify the final list of
ancestors of 𝑥1. The most efficient version of our proposed algorithm does not use a
threshold of 0.5 on the signal-to-noise ratio to prune ancestors, but it rather employs
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an inflection point in the noise-to-signal ratio V(𝑛)
V(𝑠)+V(𝑛) (𝑞) as a function of the

number 𝑞 of ancestors (Fig. 7.3.(d)). To put it simply, after ordering the ancestors in
decreasing contribution to the signal, the final number 𝑞 of ancestors is determined
as the maximizer of V(𝑛)

V(𝑠)+V(𝑛) (𝑞 + 1) − V(𝑛)
V(𝑠)+V(𝑛) (𝑞).

Computational complexity
We will now present a detailed analysis of the computational demands of the pro-
posed method as a function of the number of variables, denoted as 𝑑, and the number
of samples, 𝑁 , pertaining to these variables. In the worst case, the proposed approach
necessitates, for each of the 𝑑 variables: for 𝑖 = 1, . . . , 𝑑 − 1, regressing a function
mapping 𝑑 − 𝑖 variables to the variable of interest and performing a mode decompo-
sition, as exemplified in (7.8), to identify the variable with the minimal contribution
to the signal. Since these two steps have the same cost, it follows that, in the worst
case, the total computational complexity of the proposed method is O(d2N3) which
corresponds to product of the number of double-looping operations, 𝑑2, and the cost
of kernel regression from 𝑁 samples which, without acceleration, is 𝑁3 (i.e., the cost
of inverting a 𝑁 × 𝑁 dense kernel matrix). However, if kernel scalability techniques
are utilized, such as when the kernel has a rank 𝑘 (for example, 𝑘 = 𝑑 if the kernel
is linear) or is approximated by a kernel of rank 𝑘 (e.g., via a random feature map),
then this worst-case bound can be reduced to O(d2Nk2) by reducing the complexity
of each regression step from O(𝑁3) to O(𝑁𝑘2). Note that the statistical accuracy
of the proposed approach requires that 𝑁 > 𝑑 if the dependence of the unknown
functions on their inputs is not sparse. Moreover, in the absence of kernel scalability
techniques, the worst-case memory footprint of the method is O(𝑁2) due to the
necessity of handling dense kernel matrices. However, once the functional ancestors
of each variable are determined, these matrices can be discarded. Consequently,
only one such matrix needs to be retained in memory at any given time.

Results
The following examples and experiments illustrate the proposed approach.

The Fermi-Pasta-Ulam-Tsingou system
The Fermi-Pasta-Ulam-Tsingou (FPUT) system (Palais, 1997) is a prototypical
chaotic dynamical system. It is composed of𝑀masses indexed by 𝑗 ∈ {0, . . . , 𝑀−1}
with equilibrium position 𝑗 ℎwith ℎ = 1/𝑀 . Each mass is tethered to its two adjacent
masses by a nonlinear spring, and the displacement of the mass 𝑥 𝑗 adheres to the
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Figure 7.3: (a-d) The Fermi-Pasta-Ulam-Tsingou system. (e-k) The Google Covid
19 open data.

equation:

¥𝑥 𝑗 =
𝑐2

ℎ2 (𝑥 𝑗+1 + 𝑥 𝑗−1 − 2𝑥 𝑗 )
(
1 + 𝛼(𝑥 𝑗+1 − 𝑥 𝑗−1)

)
, (7.9)

where 𝛼(𝑥) = 𝑥2, 𝑐 = 1 and 𝑀 = 10. We use fixed boundary conditions by adding
two more masses, with 𝑥−1 = 𝑥𝑀 = 0. We take a total of 1000 snapshots from
multiple trajectories and the observed variables are the positions, velocities, and
accelerations of all the underlying masses. In the graph discovery phase, every other
node is initially deemed a potential ancestor for a specified node of interest. We then
proceed to iteratively remove the node with the least signal contribution. The step
resulting in the largest surge in the noise-to-signal ratio is inferred as one eliminating
a crucial ancestor, thereby pinpointing the final ancestor set. Fig. 7.3.(c) shows a plot
of the noise-to-signal ratio V(𝑛)

V(𝑠)+V(𝑛) (𝑞) as a function of the number 𝑞 of proposed
ancestors for the variable ¥𝑥7 and with 𝑍-test quantiles (in the absence of signal,
the noise-to-signal ratio should fall within the shaded area with probability 0.9).
Removing a node essential to the equation of interest causes the noise-to-signal
ratio to markedly jump from approximately 25% to 99%. Fig. 7.3.(d) shows a plot of
the noise-to-signal ratio increments V(𝑛)

V(𝑠)+V(𝑛) (𝑞) −
V(𝑛)

V(𝑠)+V(𝑛) (𝑞−1) as a function of
the number 𝑞 of ancestors for the variable ¥𝑥7. Note that the increase in the noise-to-
signal ratio is significantly higher compared to previous removals when an essential
node was removed. Therefore, while solely relying on a fixed threshold to decide
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when to cease the removals might prove challenging, evaluating the increments in
noise-to-signal ratios offers a clear guideline for efficiently and reliably pruning
ancestors. The recovered full graph, depicted in Fig. 7.3.(a), is remarkably accurate
despite the nonlinear nature of the model and the fact that our prior only encodes that
the nonlinearity is smooth. Therefore, our algorithm does not require a dictionary
or extensive knowledge of the structure of the unknown functions. Notably, velocity
variables are accurately identified as non-essential and omitted from the ancestors of
position and acceleration variables. Fig. 7.3.(b), which omits velocity variables for
clarity, further elucidates the accurate recovery of dependencies. The dependencies
are the simplest and clearest possible. They match exactly those of the original
equations except for the boundary particles for which we recover valid equivalent
equations.

The Google Covid 19 open data.
Consider the COVID-19 data from Google2. We focus on a single country, France,
to ensure consistency in the data and avoid considering cross-border variations that
are not directly reflected in the data. We select 31 variables that describe the state
of the country during the pandemic, spanning over 500 data points, with each data
point corresponding to a single day. These variables are categorized as the follow-
ing datasets: (1) Epidemiology dataset: Includes quantities such as new infections,
cumulative deaths, etc. (2) Hospital dataset: Provides information on the number
of admitted patients, patients in intensive care, etc. (3) Vaccine dataset: Indicates
the number of vaccinated individuals, etc. (4) Policy dataset: Consists of indicators
related to government responses, such as school closures or lockdown measures, etc.
Some of these variables are illustrated in Fig. 7.3.(e). The problem is then to analyze
this data and identify possible hidden functional relations between these variables.
Fig. 7.3.(f) shows the noise-to-signal ratio (and its increments) as function of the
number of ancestors of the “cumulative number of hospitalized patients” variable.
Even for this real dataset, the proposed approach gives a clear signal for stopping
the pruning process. Fig. 7.3.(g) shows the full recovered graph, which is highly
clustered. Fig. 7.3.(h) shows the cluster corresponding to the variable “schools clos-
ing” revealing that the government either implemented multiple restrictive measures
simultaneously or lifted them in unison (except for mask mandates that were on the
verge of being identified as noise). The vaccination cluster (Fig. 7.3.(j)) reveals
a linear relationship between variables (signaling redundant information) and the

2The dataset can be accessed here

https://health.google.com/covid-19/open-data/raw-data
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hospitalization cluster (Fig. 7.3.(i)) reveals a nonlinear one. Eliminating redundant
nodes leads to the sparse graph shown in Fig. 7.3.(k), which is interpretable and
amenable to (both quantitative and qualitative) analysis,

Figure 7.4: (a-c) Chemical reaction network. (d-g) Algebraic equations. (h-j) Cell
signaling network.

Chemical reaction network.
In this example, we consider the recovery of a chemical reaction network from
concentration snapshots. The reaction network, illustrated in Fig. 7.4.(a) is that of
the hydrogenation of ethylene (C2H4) into ethane (C2H6). The problem is that of
recovering the underlying chemical reaction network from snapshots (illustrated
in Fig. 7.4.(b)) of concentrations [𝐻2], [𝐻], [𝐶2𝐻4], and [𝐶2𝐻5] and their time
derivatives. 𝑑 [𝐻2]

𝑑𝑡
, 𝑑 [𝐻]

𝑑𝑡
, 𝑑 [𝐶2𝐻4]

𝑑𝑡
, and 𝑑 [𝐶2𝐻5]

𝑑𝑡
. The proposed approach leads to a

perfect recovery of the computational graph (shown in Fig. 7.4.(c)) and a correct
identification of quadratic functional dependencies between variables.

Algebraic equations.
Fig. 7.4.(a-d) illustrate the application of the proposed approach to the recovery
of functional dependencies from data satisfying hidden algebraic equations. In all
these examples, we have 𝑑 = 6 or 𝑑 = 7 variables and 𝑁 = 1000 samples from
those variables. For 𝑑 = 6 the variables are 𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑥1, 𝑥2. For 𝑑 = 7 the
variables are 𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑥1, 𝑥2, 𝑥3. The samples from the variables 𝑤1 to 𝑤4 are
i.i.d. N(0, 1) random variables, and the samples from 𝑥1, 𝑥2 (and 𝑥3 for 𝑑 = 7) are
functionally dependent on the other variables. In the first example, 𝑑 = 6 and the
samples from 𝑥1 and 𝑥2 satisfy the equations 𝑥1 = 𝑤1 and 𝑥2 = 𝑤2. The algorithm
selects the linear kernel and Fig. 7.4.(a) shows the recovered graph (which is exact).
In the second example, 𝑑 = 7 and the samples from 𝑥1, 𝑥2 and 𝑥3 satisfy the equations
𝑥1 = 𝑤1, 𝑥2 = 𝑥2

1+1+0.1𝑤2, and 𝑥3 = 𝑤3. The algorithm selects the quadratic kernel
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and Fig. 7.4.(b) shows the recovered graph (which is exact). Even though 𝑥2 can trace
back its origin to either 𝑥1 and 𝑤2 or 𝑤1 and 𝑤2, the algorithm recognizes 𝑥1, 𝑤1, and
𝑤2 as its ancestors underscoring the importance of eliminating redundant variables
when aiming at deriving the sparsest graph. In the third example, 𝑑 = 6 and the
samples from 𝑥1 and 𝑥2 satisfy the equations 𝑥1 = 𝑤1𝑤2 and 𝑥2 = 𝑤2 sin(𝑤4). The
algorithm selects the nonlinear kernel and Fig. 7.4.(c) shows the recovered graph
(which is exact). In the fourth example, 𝑑 = 7 and the samples from 𝑥1, 𝑥2 and 𝑥3

satisfy the equations 𝑥1 = 𝑤1, 𝑥2 = 𝑥3
1 + 1 + 0.1𝑤2 and 𝑥3 = (𝑥1 + 2)3 + 0.1𝑤3.

Although these equations appear to be cubic, the algorithm correctly selects the
quadratic kernel and makes an exact recovery of the graph shown in Fig. 7.4. (d)
revealing hidden quadratic dependencies between variables.

Cell signaling network
Next, we apply the proposed framework to the example illustrated in Fig. 7.1.(l)
from (Sachs et al., 2005) and discover a hierarchy of functional dependencies in
biological cellular signaling networks. We use single-cell data consisting of the
𝑑 = 11 phosphoproteins and phospholipids levels in the human immune system
T-cells that were measured using flow cytometry. This dataset was studied from a
probabilistic modeling perspective in previous works. While (Sachs et al., 2005)
learned a directed acyclic graph to encode causal dependencies, (Friedman, Hastie,
and Tibshirani, 2008) learned an undirected graph of conditional independencies
between the 𝑑molecule levels by assuming the underlying data follows a multivariate
Gaussian distribution. The latter analysis encodes acyclic dependencies but does not
identify directions. In this work, we aim to identify the functional dependencies
without imposing strong distributional assumptions on the data. We simply use
𝑁 = 2, 000 samples chosen uniformly at random from the dataset consisting of
11 proteins and 7446 samples of their expressions. We apply the algorithm in two
stages. The first stage of the algorithm uses only linear and quadratic kernels and
recovers the graph shown in Fig. 7.4.(h). It consists of four disconnected clusters
where the molecule levels in each cluster are closely related by linear or quadratic
dependencies (all connections are linear except for the connection between Akt
and PKA, which is quadratic). These edges match a subset of the edges found in
the gold standard model identified in (Sachs et al., 2005). With perfect noiseless
dependencies, one can define constraints that reduce the total number of variables
in the system. Second, we learn the connections between groups of variables within
each cluster with nonlinear kernels and obtain the graph shown in Fig. 7.4.(i) in which
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solid arrows indicate strong intra-cluster connections identified in the first level, and
dashed lines indicate weaker connections between nodes and clusters identified in
the second level. The width and grayscale intensities of each edge correspond to its
signal-to-noise ratio. We emphasize that while causal graph recovery methods rely
on the control of the sampling of the underlying variables (i.e., the simultaneous
measurement of multiple phosphorylated protein and phospholipid components in
thousands of individual primary human immune system cells, and perturbing these
cells with molecular interventions), the reconstruction obtained by our method did
not use this information and recovered functional dependencies rather than causal
dependencies. Interestingly, the information recovered through our method appears
to complement and enhance the findings presented in (Sachs et al., 2005) (e.g.,
the linear and noiseless dependencies between variables in the JNK cluster is not
something that could easily be inferred from the graph produced in (Sachs et al.,
2005) shown in Fig. 7.1.(j) where we have colored the clusters for comparison).
Comparisons. Using the expected graph reported in (Sachs et al., 2005) as the
ground truth (acknowledging that it may not be entirely accurate), we compare the
edges our approach incrementally added to the true graph. Figure 7.5.(a) reports the
number of additional edges that have been added and are not present in the ground
truth (false positives) and edges removed that are present in the ground truth graph
(false negatives). The added edges are based on the two-stage procedure described
above, where we first add the ten intra-cluster connections, followed by inter-cluster
connections. Edges are added in decreasing order of signal-to-noise ratio, starting
with the strongest. In the reported results, we do not account for the recovery of
the direction of ground-truth edges. We note that, up to direction, all intra-cluster
connections, along with the inter-cluster connections with the strongest signals are
found in the ground truth graph, leading to the initial decrease in false negatives with
only one false positive edge (the linear connection P38→ Jnk that is not reported in
the true graph). With the addition of the remaining (possibly non-spurious) edges,
the number of false negatives drops to one, having recovered all edges, except for
the one between PKC and Raf, which is identified to be statistically non-informative
in our approach.

A large-scale chemical reaction network: the BCR reaction benchmark
Lastly, we stress-test the scalability of our approach by applying it to a large-scale
chemical reaction network: the BCR reaction benchmark from (Loman et al., 2023),
which encompasses 1122 species. The dataset comprises 2,400 snapshots of species
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Figure 7.5: (a) Cell signaling network comparisons. (b-h) The BCR reaction bench-
mark.

concentrations and their corresponding time derivatives. We leveraged JAX’s in-
herent parallelization capabilities (Bradbury et al., 2018) to accelerate our compu-
tations, allowing for the simultaneous pruning of multiple nodes while abstracting
the complexity of parallel execution. While the scaling with respect to the number
of data points is straightforward, scaling with the number of variables introduces
a trade-off between computational speed and memory footprint. Specifically, the
process of identifying the ancestors of various nodes can be expedited by storing
a large array for all nodes. Using a DGX workstation equipped with four Nvidia
V100 GPUs, each with 32GB of memory, pruning 190 nodes took approximately
three days, projecting a total experiment duration of around one month. Nonetheless,
we can mitigate this computational burden by optimizing the computation of terms
of the form 𝑦𝑇𝐾𝑦 for the specific quadratic kernel identified for this example. We
include the details of such optimization in the supplementary material. By imple-
menting this optimization, the duration of the entire experiment was reduced to just
one hour.

In the first experiment, we simulated five trajectories of the associated system of
ODEs, recording 1000 snapshots per trajectory. Out of these 5000 snapshots, 2,400
were randomly selected as training data, and 2600 as testing data. Writing TP, TN, FP
and FN for True/False Positives/Negatives and using the metrics True Positive Rate
(TPR=TP/(TP+FN)), False Positive Rate (FPR=FP/(FP+TN)), and False Discovery
Rate (FDR=FP/(TP+FP)), we observed a TPR of 39.9%, an FPR of 16.4%, and an
FDR of 97.2% (indicating that 97.2% of predicted positives are false). This high
FDR can be attributed to the limited exploration of the full variable range—1,122 in
total—by the five trajectories. The trajectories explored a subset of the possible space
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(near a limit cycle attractor), which led to the recovery of functional dependencies
that represent both the chemical reactions and the specific subspace visited. Fur-
thermore, with 1,122 variables, the 630,003 coefficients of the underlying quadratic
equations are vastly under-determined with only 2,400 data points. Despite the high
FDR in the recovered graph, as illustrated in Fig. 7.5.(b-c), the CHD pruning process
vastly improves the accuracy (by orders of magnitude) of the estimated functions
on the 2600 unseen snapshots by reducing the dimension of the regression problem
whenever possible. We denote 𝑦𝑖 as an observed data point, 𝜎2 as the variance of the
observed data, 𝑦̂𝑖 for a predicted data point without pruning, and 𝑦̄𝑖 for a predicted
data point post-pruning. Fig. 7.5.(b) illustrates the histogram of the log-normalized
squared errors before and after pruning, expressed as log10

(
|𝑦𝑖 − 𝑦̂𝑖 |2/𝜎2) and

log10
(
|𝑦𝑖 − 𝑦̄𝑖 |2/𝜎2) . The 99th percentile of the normalized squared error is less

than 10−2 for all species. Fig. 7.5.(c) displays the histogram of the log-normalized
squared error improvements due to pruning, calculated as log10

(
|𝑦𝑖− 𝑦̂𝑖 |2/|𝑦𝑖− 𝑦̄𝑖 |2

)
.

Fig. 7.5.(d-e) display the quantiles of the histograms post-pruning, conditioned on
the noise-to-signal ratio observed at the final pruning step. These plots reveal a clear
trend: a higher noise-to-signal ratio at the time of pruning correlates with increased
error and diminished improvements in accuracy.

In a second experiment, we formed the data by randomly sampling concentrations
uniformly in [0, 1] (independently across species and snapshots) and recorded the
resulting time derivatives. While this sampling increased the variability of the 2,400
snapshots, the model remained vastly underdetermined. The noise-to-signal and
bootstrapped (Z-test) ratios remained close to 0.5, suggesting insufficient data for
statistically significant variable importance assessments. Nonetheless, as depicted in
Fig. 7.5.(f-h), significant insights can still be gleaned from the activations, showing
notable improvements when comparing the histograms of the values of TPR, FPR,
and FDR obtained with pruning based on these ratios and pruning at random. This
analysis reveals that even with high dimensionality and scarce data, between 10%
and 80% of the true ancestors can still be accurately identified.

Discussions
Limitations
In its present form, the proposed approach is limited by several factors. (1) Without
access to the sampling of the data, the direction of some edges may not be identifiable.
For instance the functional relationship 𝑥 − 2𝑦 = 0 can be represented as both
𝑦 = 2𝑥 (𝑥 → 𝑦) and 𝑥 = 𝑦/2 (𝑦 → 𝑥). (2) It assumes an additive noise 𝑊
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on the functional relationship 𝑦 = 𝑓 (𝑥) + 𝑊 between the variables 𝑥 and 𝑦. In
a fully probabilistic setting, this structure may be non-additive, i.e., of the form
𝑦 = 𝑓 (𝑥,𝑊), which implies discovering a general transition kernel, i.e., a non-
Gaussian generative model. Although our method achieves polynomial complexity,
in settings where one has access to the distribution of the data, the price to pay, when
compared with information-theoretic methods, is a reduction in generality imposed
by the stronger assumption made on the data-generating process. Furthermore, the
price to pay for the weaker data requirements (i.e., the absence of interventional
data) is that our method recovers functional relationships rather than causal ones or
conditional dependencies. (3) If the (noisy) functional relationship 𝑦 = 𝑓 (𝑥) +𝑊
is associated with a non-regular (e.g., discontinuous) function 𝑓 then the kernels
discussed above (linear, quadratic, and fully nonlinear) will be misspecified and may
lead to false negatives. The kernel selection and hyperparameter tuning problems in
misspecified settings require further work. (4) As demonstrated in the BCR reaction
application, while the method scales well computationally with an increase in the
number of variables, it may still be impacted by the curse of dimensionality. This
occurs particularly if the dataset only covers a limited subset of the full range of
variable values. Given the results displayed in Fig. 7.5.(b-h) we suspect that this
impact could be mitigated by adopting more advanced strategies in place of our
current top-down pruning method. Such strategies could involve grouping variables
and integrating both top-down and bottom-up iterative approaches.

Conclusions
We have developed a comprehensive Gaussian Process framework for solving Type
3 (hypergraph discovery) problems, which is interpretable and amenable to anal-
ysis. The breadth and complexity of Type 3 problems significantly surpass those
encountered in Type 2 (hypergraph completion), and the initial numerical examples
we present serve as a motivation for the scope of Type 3 problems and the broader
applications made possible by this approach. Our proposed algorithm is designed
to be fully autonomous, yet it offers the flexibility for manual adjustments to re-
fine the graph’s structure recovery. We emphasize that our proposed approach is
not intended to supplant causal inference methods (Pearl, 2009); see Methods for a
complete overview. Instead, it aims to incorporate a distinct kind of information into
the graph’s structure, namely, the functional dependencies among variables rather
than their causal relationships. Additionally, our method eliminates the need for a
predetermined ordering of variables, a common requirement in acyclic probabilistic
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models where determining an optimal order is an NP-hard problem usually tackled
using heuristic approaches. Furthermore, our approach can actually be utilized to
generate such an ordering by quantifying the strength of the connections it recovers.
The Uncertainty Quantification properties of the underlying Gaussian Processes are
integral to the method and could also be employed to quantify uncertainties in the
structure of the recovered graph. We also observe that forming clusters from highly
interdependent variables helps to obtain a sparser graph. Additionally, the preci-
sion of the pruning process is enhanced by avoiding the division of node activation
within the cluster among its separate constituents. We employed this strategy in the
recovery of the gene expression graph in Fig. 7.4.(i). Given the polynomial com-
plexity of our method, promising avenues for future work include applications to
large datasets in genomics and in systems biology, particularly in the reconstruction
and intervention of metabolic pathways. These applications benefit from the ability
to handle large-scale datasets efficiently, enabling the analysis of complex biological
networks.
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Supplementary information
This supplementary document provides an overview of refinements and general-
izations on our proposed approach (Sec. 7.1) detailed in subsequent sections. It
includes a summary of the principal components of our algorithm (Sec. 7.2). It
includes a reminder on Type 2 problems (Sec. 7.3) and their common GP-based so-
lutions. It discusses the hardness of Type 3 problems, presents an overview of causal
inference methods, and a well-posed formulation of Type 3 problems (Sec. 7.4). Ad-
ditionally, this document offers an in-depth description of our developed GP-based
solution specifically designed for Type 3 problems (Section 7.5), along with the
corresponding algorithmic pseudo-codes (Section 7.6). It also includes an analysis
of the signal-to-noise ratio (SNR) test that is integral to our method (Section 7.7),
and furnishes supplementary details concerning the examples discussed in the main
manuscript (Section 7.8).

7.1 Additional details on our proposed approach.
The efficacy of our proposed approach is enhanced through a series of refinements
(implemented in all our examples), which are summarized below and detailed in
sections 7.5, 7.6, and 7.7.

Ancestor pruning.
As discussed earlier, rather than using a threshold on the signal-to-noise ratio to
prune ancestors, we order the ancestors in decreasing contribution to the signal, the
final number 𝑞 of ancestors is determined as the maximizer of noise to signal ratio
increment V(𝑛)

V(𝑠)+V(𝑛) (𝑞 + 1) − V(𝑛)
V(𝑠)+V(𝑛) (𝑞).

Figure 7.6: Histogram of the eigenvalues of 𝐷𝛾=(7.11) for 𝛾 = 10−2 (good choice)
and 𝛾 = 10−6 (bad choice).

Parameter Selection.
The choice of the parameter 𝛾 in (7.2) is a critical aspect of our proposed approach.
We provide a structured approach for selecting 𝛾 based on the characteristics of
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the kernel matrix 𝐾𝑠. Specifically, when 𝐾𝑠 is derived from a finite-dimensional
feature map 𝜓 (i.e., when 𝐾𝑠 (𝑥, 𝑥′) := 𝜓(𝑥)𝑇𝜓(𝑥′) where the range of 𝜓 is finite-
dimensional) and the data cannot be interpolated exactly with 𝐾𝑠 (the dimension of
the range of 𝜓 is smaller than the number of data points), we employ the regression
residual to determine 𝛾 as follows:

𝛾 = min
𝑣



𝑣𝑇𝜓(𝑋) − 𝑌

2
R𝑁 . (7.10)

Write 𝐾𝑠 (𝑋, 𝑋) for the 𝑁 × 𝑁 matrix with entries 𝐾𝑠 (𝑋𝑖, 𝑋 𝑗 ). Alternatively, when
the data can be interpolated exactly with 𝐾𝑠 (e.g., when 𝐾𝑠 is a universal kernel),
we select 𝛾 (see Fig. 7.6) by maximizing the variance of the eigenvalue histogram
of the 𝑁 × 𝑁 matrix

𝐷𝛾 := 𝛾
(
𝐾𝑠 (𝑋, 𝑋) + 𝛾𝐼

)−1
, (7.11)

whose eigenvalues are bounded between 0 and 1 and converge towards 0 as 𝛾 ↓ 0
and towards 1 as 𝛾 ↑ ∞. We can also select 𝛾 as the median of the eigenvalues of
𝐷𝛾.

Z-test quantiles.
The noise-to-signal ratio V(𝑛)

V(𝑠)+V(𝑛) associated with (7.2) admits the representer

formula 𝑌𝑇𝐷2
𝛾𝑌

𝑌𝑇𝐷𝛾𝑌
. Therefore if the data is only composed of noise (if 𝑌 ∼ 𝜎2𝑍 where

𝑍 is a random vector with i.i.d. N(0, 1) entries), then the distribution of the noise-
to-signal ratio follows that of the random variable

𝐵 :=
𝑍𝑇𝐷2

𝛾𝑍

𝑍𝑇𝐷𝛾𝑍
. (7.12)

Therefore, the quantiles of 𝐵 can be used as an interval of confidence on the noise-
to-signal ratio if 𝑌 ∼ 𝜎2𝑍 . Fig. 7.3.(c) shows these 𝑍-test quantiles (in the absence
of signal, the noise-to-signal ratio should fall within the shaded area with probability
0.9).

Generalizations on our proposed approach.
Complexity Reduction with Kernel PCA Variant.

Write 𝐾 for the kernel associated with the RKHS H in Problem 4. We use a
variant of Kernel PCA (Mika et al., 1998) to significantly reduces the computational
complexity of our proposed method, making it primarily dependent on the number
of principal nonlinear components in the kernel matrix 𝐾 (𝑋, 𝑋) (the 𝑁 × 𝑁 matrix
with entries 𝐾 (𝑋𝑖, 𝑋 𝑗 )) rather than the number of data points. To describe this
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write 𝜆1 ≥ · · · ≥ 𝜆𝑟 > 0 for the nonzero eigenvalues of 𝐾 (𝑋, 𝑋) indexed in
decreasing order and write 𝛼·,𝑖 for the corresponding unit-normalized eigenvectors,
i.e. 𝐾 (𝑋, 𝑋)𝛼·,𝑖 = 𝜆𝑖𝛼·,𝑖. Then | 𝑓 (𝑋) |2 = | 𝑓 (𝜙) |2, where 𝑓 (𝜙) is the 𝑟 vector with
entries 𝑓 (𝜙𝑖) :=

∑𝑁
𝑠=1 𝑓 (𝑋𝑠)𝛼𝑠,𝑖. Furthermore, writing 𝑟′ ≤ 𝑟 for the smallest index

𝑖 such that 𝜆𝑖/𝜆1 < 𝜖 where 𝜖 > 0 is some small threshold, the complexity of
the problem can be further reduced (as in PCA) by truncating 𝑓 (𝜙) to 𝑓 (𝜙′) =
( 𝑓 (𝜙1), . . . , 𝑓 (𝜙𝑟 ′)) and approximating F with the space of functions 𝑓 ∈ H such
that | 𝑓 (𝜙′) |2 ≈ 0.

Generalizing Descendants and Ancestors with Kernel Mode Decomposition.

We can extend the concept of descendants and ancestors to cover more complex
functional dependencies between variables, including implicit ones. This general-
ization is achieved through a Kernel-based adaptation of Row Echelon Form Reduc-
tion (REFR), initially designed for affine systems, and leveraging the principles of
Kernel Mode Decomposition (Houman Owhadi, Clint Scovel, and Yoo, 2021). To
describe the connection with REFR consider the example in whichM is the mani-
fold of R3 defined by the affine equations 𝑥1 + 𝑥2 + 3𝑥3 − 2 = 0 and 𝑥1 − 𝑥2 + 𝑥3 = 0,
which is equivalent to selecting F = span{ 𝑓1, 𝑓2} with 𝑓1(𝑥) = 𝑥1 + 𝑥2 + 3𝑥3 − 2
and 𝑓2(𝑥) = 𝑥1 − 𝑥2 + 𝑥3 in the problem formulation 4. Then, irrespective of how we
recover the manifold from data, the hypergraph representation of that manifold is
equivalent to the row echelon form reduction of the affine system, and this represen-
tation and this reduction require a possibly arbitrary choice of free and dependent
variables. So, for instance, if we declare 𝑥3 to be the free variables and 𝑥1 and 𝑥2

to be the dependent variables, then we can represent the manifold via the equations
𝑥1 = 1 − 2𝑥3 and 𝑥2 = 1 − 𝑥3 which have the hypergraph representation depicted in
Fig. 7.11.(b). To describe the kernel generalization of REFR assume that the kernel
𝐾 can be decomposed as the additive kernel

𝐾 = 𝐾𝑎 + 𝐾𝑠 + 𝐾𝑧 , (7.13)

and write H𝑎, H𝑠, and H𝑧 for the RKHS induced by the kernels 𝐾𝑎, 𝐾𝑠, 𝐾𝑧. Then
a function 𝑓 ∈ H can be decomposed as 𝑓 = 𝑓𝑎 + 𝑓𝑠 + 𝑓𝑧 with ( 𝑓𝑎, 𝑓𝑠, 𝑓𝑧) ∈
H𝑎 × H𝑠 × H𝑧. Then, generalizing REFR we can approximate the manifoldM via
a manifold parametrized by equations of the form

𝑓𝑎 + 𝑓𝑠 + 𝑓𝑧 = 0⇔ 𝑔𝑎 = 𝑓𝑠 , (7.14)

where 𝑓𝑎 = −𝑔𝑎 and 𝑔𝑎 is a given function in H𝑎 representing a dependent mode,
𝑓𝑧 = 0 represents a zero mode, and 𝑓𝑠 ∈ H𝑠 is identified (regularized) as the
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minimizer of the following variational problem

min
𝑓𝑠∈H𝑠

∥ 𝑓𝑠∥2𝐾𝑠 +
1
𝛾

��(−𝑔𝑎 + 𝑓𝑠) (𝜙)��2 . (7.15)

Taking 𝑔𝑎 (𝑥) = 𝑥1 and H𝑠 + H𝑧 to be a space of functions that does not depend
on 𝑥1 recovers our initial example (7.1) (with the pruning process encoded into the
selection ofH𝑧). This generalization is motivated by its potential to recover implicit
equations. For example, consider the implicit equation 𝑥2

1 + 𝑥
2
2 = 1, which can be

retrieved by setting the mode of interest to be 𝑔𝑎 (𝑥) = 𝑥2
1 and allowing 𝑓𝑠 to depend

only on the variable 𝑥2.

7.2 Algorithm Overview for Type 3 problems: An Informal Summary
In this section, we provide an accessible overview of our algorithm’s key com-
ponents, which are further detailed in Algorithms 11 and 12 in Section 7.6. Our
method focuses on determining the edges within a hypergraph. To achieve this, we
consider each node individually, finding its ancestors and establishing edges from
these ancestors to the node in question. While we present the algorithm for a single
node, it can be applied iteratively to all nodes within the graph.

Algorithm for finding the ancestors of a node:

1. Initialization: We start by assuming that all other nodes are potential ancestors
of the current node.

2. Selecting a Kernel: We choose a kernel function, such as linear, quadratic, or
fully nonlinear kernels (refer to Example 7.5.4). The kernel selection process
is analogous to the subsequent pruning steps, involving the determination of
a parameter 𝛾, regression analysis, and evaluation based on signal-to-noise
ratios.

• Kernel Selection Method: The choice of kernel follows a process sim-
ilar to the subsequent pruning steps, including 𝛾 selection, regression
analysis, and signal-to-noise ratio evaluation.

• Low Signal-to-Noise Ratio for All Kernels: If the signal-to-noise ratio
is insufficient for all possible kernels, the algorithm terminates, indicat-
ing that the node has no ancestors.

3. Pruning Process: While there are potential ancestors left to consider (details
in Section 7.5):
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a) Identify the Least Important Ancestor: Ancestors are ranked based
on their contribution to the signal (see Sec. 7.5).

b) Noise prior: Determine the value of 𝛾 (see Section 7.7).

c) Regression Analysis: Predict the node’s value using the current set
of ancestors, excluding the least active one (i.e., the one contributing
the least to the signal). We employ Kernel Ridge Regression with the
selected kernel function and parameter 𝛾 (see Sec. 7.5 and 7.5).

d) Evaluate Removal: Compute the regression signal-to-noise ratio (see
Sec. 7.5 and 7.7):

• Low Signal-to-Noise Ratio: If the signal-to-noise ratio falls below
a certain threshold, terminate the algorithm and return the current
set of ancestors (see Section 7.5).

• Adequate Signal-to-Noise Ratio: If the signal-to-noise ratio is
sufficient, remove the least active ancestor and continue the pruning
process.

Figure 7.7: Formal description of Type 2 problems.

7.3 Type 2 problems: Formal description and GP-based Computational Graph
Completion

Formal description of Type 2 problems
Consider a computational graph (as illustrated in Fig. 7.7.(a)) where nodes represent
variables and edges are directed and they represent functions. These functions may
be known or unknown. In Fig. 7.7.(a), edges associated with unknown functions
( 𝑓5,1, 𝑓1,2, 𝑓3,6) are colored in red, and those associated with known functions ( 𝑓2,5)
are colored in black. Round nodes are utilized to symbolize variables, which are
derived from the concatenation of other variables (e.g, in Fig. 7.7.(a), 𝑥3 = (𝑥2, 𝑥4)).
Therefore, the underlying graph is, in fact, a hypergraph where functions may
map groups of variables to other groups of variables, and we use round nodes to
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illustrate the grouping step. Given partial observations derived from 𝑁 samples of
the graph’s variables, we introduce a problem, termed a Type 2 problem, focused on
approximating all unobserved variables and unknown functions. Using Fig. 7.7.(a)-
(b) as an illustration we call a vector (𝑋𝑠,1, . . . , 𝑋𝑠,6) a sample from the graph
if its entries are variables satisfying the functional dependencies imposed by the
structure of the graph (i.e., 𝑋𝑠,1 = 𝑓5,1(𝑋𝑠,5), 𝑋𝑠,2 = 𝑓1,2(𝑋2,𝑠), 𝑋𝑠,3 = (𝑋𝑠,2, 𝑋𝑠,4),
𝑋𝑠,5 = 𝑓𝑠,5(𝑋𝑠,𝑠), and 𝑋𝑠,6 = 𝑓3,6(𝑋𝑠,3). These samples can be seen as the rows of
given matrix 𝑋 illustrated in Fig. 7.7.(b) for 𝑁 = 3. By partial observations, we
mean that only a subset of the entries of each row may be observed, as illustrated
in Fig. 7.7.(b)-(c). Note that a Type 2 problem combines a regression problem
(approximating the unknown functions of the graph) with a matrix completion/data
imputation problem (approximating the unobserved entries of the matrix 𝑋).

Reminder on Computational Graph Completion for Type 2 problems
Within the context of Sec. 7.3, the proposed GP solution to Type 2 problems is to
simply replace unknown functions by GPs and compute their Maximum A Posteriori
(MAP)/Maximum Likelihood Estimation (MLE) estimators given available data and
constraints imposed by the structure of the graph. Taking into account the example
depicted in Fig. 7.7, and substituting 𝑓5,1, 𝑓1,2, and 𝑓3,6 with independent GPs, each
with kernels 𝐾,𝐺, and Γ respectively, the objective of this MAP solution becomes
minimizing ∥ 𝑓5,1∥2𝐾 + ∥ 𝑓1,2∥2𝐺 + ∥ 𝑓3,6∥

2
Γ

(writing ∥ 𝑓 ∥𝐾 for the RKHS norm of 𝑓
induced by the kernel 𝐾) subject to the constraints imposed by the data and the
functional dependencies encoded into the structure of the graph.

A system identification example.
In order to exemplify Computational Graphical Completion (CGC), consider the
system identification problem depicted in Fig. 7.8, sourced from (Houman Owhadi,
2022). Our objective is to identify a nonlinear electric circuit, as illustrated in
Fig. 7.8.(a), from scarce measurement data. The nonlinearity of the circuit emanates
from the resistance, capacitance, and inductances, which are nonlinear functions of
currents and voltages, as shown in Fig. 7.8.(b). Assuming these functions to be un-
known, along with all currents and voltages as unknown time-dependent functions,
we operate the circuit between times 0 and 10. Measurements of a subset of variables,
representing the system’s state, are taken at times 𝑡𝑠 = 𝑠/10 for 𝑠 ∈ 0, . . . , 99. Given
these measurements, the challenge arises in approximating all unknown functions
that define currents and voltages as time functions, capacitance as a voltage function,
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Figure 7.8: (a) Electric circuit. (b) Resistance, capacitance, and inductances are
nonlinear functions of currents and voltages (c) Measurements. (d) Kirchhoff’s
circuit laws. (e) The computational graph with unknown functions represented as
red edges. (f) Recovered functions.

and inductances and resistance as current functions. Fig. 7.8.(c) displays the avail-
able measurements, which are notably sparse, preventing us from reconstructing the
underlying unknown functions independently. Thus, their interdependencies must
be utilized for approximation. It is crucial to note that the system’s state variables are
interconnected through functional relations, as per Kirchhoff’s laws for this nonlin-
ear electric circuit, illustrated in Fig. 7.8.(d). These functional dependencies can be
conceptualized as a computational graph, depicted in Fig. 7.8.(e), where nodes rep-
resent variables and directed edges represent functions. Known functions are colored
in black, unknown functions in red, and round nodes aggregate variables, meaning
edges map groups of variables, forming a hypergraph. The CGC solution involves
substituting the graph’s unknown functions with Gaussian Processes (GPs), which
may be independent or correlated, and then approximating the unknown functions
with their Maximum A Posteriori (MAP) estimators, given the available data and the
functional dependencies embedded in the graph’s structure. Fig. 7.8.(f) showcases
the true and recovered functions, demonstrating a notably accurate approximation
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despite the data’s scarcity.

This simple example generalizes to an abstract framework detailed in (Houman
Owhadi, 2022). This framework has a wide range of applications because most
problems in CSE can also be formulated as completing computational graphs rep-
resenting dependencies between functions and variables, and they can be solved
in a similar manner by replacing unknown functions with GPs and by computing
their MAP/EB estimator given the data. These problems include those illustrated in
Fig. 7.1.(d-h).

7.4 Hardness and well-posed formulation of Type 3 problems.
In this subsection, we describe why Type 3 problems are challenging and why they
can even be intractable if not formalized and approached properly.

Curse of combinatorial complexity.
First, the problem suffers from the curse of combinatorial complexity in the sense
that the number of hypergraphs associated with 𝑁 nodes blows up rapidly with 𝑁 .
As an illustration, Fig. 7.9 shows some of the hypergraphs associated with only three
nodes. A lower bound on that number is the A003180 sequence, which answers the
following question (Ishihara, 2001): given 𝑁 unlabeled vertices, how many different
hypergraphs in total can be realized on them by counting the equivalent hypergraphs
only once? For 𝑁 = 8, this lower bound is ≈ 2.78 × 1073.

Figure 7.9: Computational Hypergraph Discovery with three variables

Nonidentifiability and implicit dependencies.
Secondly, it is important to note that, even with an infinite amount of data, the exact
structure of the hypergraph might not be identifiable. To illustrate this point, let’s
consider a problem where we have 𝑁 samples from a computational graph with
variables 𝑥 and 𝑦. The task is to determine the direction of functional dependency
between 𝑥 and 𝑦. Does it go from 𝑥 to 𝑦 (represented as 𝑥 𝑦

𝑓 ), or from 𝑦 to 𝑥
(represented as 𝑦 𝑥

𝑓 )?

If we refer to Fig. 7.10.(a), we can make a decision because 𝑦 can only be expressed
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as a function of 𝑥. In contrast, if we examine Fig. 7.10.(b), the decision is also
straightforward because 𝑥 can solely be written as a function of 𝑦. However, if the
data mirrors the scenario in Fig. 7.10.(c), it becomes challenging to decide as we
can write both 𝑦 as a function of 𝑥 and 𝑥 as a function of 𝑦. Further complicating
matters is the possibility of implicit dependencies between variables. As illustrated
in Fig. 7.10.(d), there might be instances where neither 𝑦 can be derived as a function
of 𝑥, nor 𝑥 can be represented as a function of 𝑦.

Figure 7.10: The structure of the hypergraph is identifiable in (a), (b), and non-identifiable
in (c). The relationship between variables is implicit in (d).

Causal inference and probabilistic graphs.
Causal inference methods broadly consist of two approaches: constraint and score-
based methods. While constraint-based approaches are asymptotically consistent,
they only learn the graph up to an equivalence class (Spirtes and C. Glymour, 1991).
Instead, score-based methods resolve ambiguities in the graph’s edges by evaluating
the likelihood of the observed data for each graphical model. For instance, they
may assign a higher evidence to 𝑦 → 𝑥 over 𝑥 → 𝑦 if the conditional distribu-
tion 𝑥 |𝑦 exhibits less complexity than 𝑦 |𝑥. The complexity of searching over all
possible graphs, however, grows super-exponentially with the number of variables.
Thus, it is often necessary to use approximate, but more tractable, search-based
methods (Chickering, 2002; J. Peters, Janzing, and Schölkopf, 2017) or alternative
criteria based on sensitivity analysis (Data et al., 2016). For example, the preference
could lean towards 𝑦 → 𝑥 rather than 𝑥 → 𝑦 if 𝑦 demonstrates less sensitivity to
errors or perturbations in 𝑥. In contrast, our proposed GP method avoids the growth
in complexity by performing a guided pruning process that assesses the contribu-
tion of each node to the signal. We also emphasize that our method is not limited to
learning acyclic graph structures as it can identify feedback loops between variables.
Alternatively, methods for learning probabilistic undirected graphical models, also
known as Markov networks, identify the graph structure by assuming the data is
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randomly drawn from some probability distribution (Drton and Maathuis, 2017).
In this case, edges in the graph (or lack thereof) encode conditional dependencies
between the nodes. A common approach learns the graph structure by modeling the
data as being drawn from a multivariate Gaussian distribution with a sparse inverse
covariance matrix, whose zero entries indicate pairwise conditional independen-
cies (Friedman, Hastie, and Tibshirani, 2008). Recently, this approach has been
extended using models for non-Gaussian distributions, e.g., in (Baptista et al., 2021;
Ren et al., 2021), as well as kernel-based conditional independence tests (K. Zhang
et al., 2011). In this work, we learn functional dependencies rather than causality
or probabilistic dependence. We emphasize that we also do not assume the data is
randomized or impose strong assumptions, such as additive noise models, in the
data-generating process.

We complete this paragraph by comparing the hypergraph discovery framework to
structure learning for Bayesian networks and structural equation models (SEM).
Let 𝑥 ∈ R𝑑 be a random variable with probability density function 𝑝 that follows
the autoregressive factorization 𝑝(𝑥) = ∏𝑑

𝑖=1 𝑝𝑖 (𝑥𝑖 |𝑥1, . . . , 𝑥𝑖−1) given a prescribed
variable ordering. Structure learning for Bayesian networks aims to find the ances-
tors of variable 𝑥𝑖, often referred to as the set of parents 𝑃𝑎(𝑖) ⊆ {1, . . . , 𝑖 − 1},
in the sense that 𝑝𝑖 (𝑥𝑖 |𝑥1, . . . , 𝑥𝑖−1) = 𝑝𝑖 (𝑥𝑖 |𝑥𝑃𝑎(𝑖)). Thus, the variable dependence
of the conditional density 𝑝𝑖 is identified by finding the parent set so that 𝑥𝑖 is
conditionally independent of all remaining preceding variables given its parents,
i.e., 𝑥𝑖 ⊥ 𝑥1:𝑖−1\𝑃𝑎(𝑖) |𝑥𝑃𝑎(𝑖) . Finding ancestors that satisfy this condition requires
performing conditional independence tests, which are computationally expensive
for general distributions (SHAH and PETERS, 2020). Alternatively, SEMs assume
that each variable 𝑥𝑖 is drawn as a function of its ancestors with additive noise, i.e.
𝑥𝑖 = 𝑓 (𝑥𝑃𝑎(𝑖))+𝜖𝑖 for some function 𝑓 and noise 𝜖 (J. Peters, Janzing, and Schölkopf,
2017). For Gaussian noise 𝜖𝑖 ∼ N(0, 𝜎2), each marginal conditional distribution in a
Bayesian network is given by 𝑝𝑖 (𝑥𝑖 |𝑥1:𝑖−1) ∝ exp(− 1

2𝜎2 ∥𝑥𝑖− 𝑓 (𝑥1:𝑖−1)∥2). Thus, find-
ing the parents for such a model by maximum likelihood estimation corresponds to
finding the parents that minimize the expected mean-squared error ∥𝑥𝑖− 𝑓 (𝑥𝑃𝑎(𝑖))∥2.
Our approach minimizes a related objective, without imposing the strong probabilis-
tic assumptions that are required in SEMs and Bayesian Networks. We also observe
that while the graph structure identified in Bayesian networks is influenced by the
specific sequence in which variables are arranged (a concept exploited in numeri-
cal linear algebra (Florian Schäfer, Timothy John Sullivan, and Houman Owhadi,
2021c; Florian Schäfer and Houman Owhadi, 2021) where Schur complementation
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is equivalent to conditioning GPs and a carefully ordering leads to the accuracy
of the Vecchia approximation 𝑝𝑖 (𝑥𝑖 |𝑥1, . . . , 𝑥𝑖−1) ≈ 𝑝𝑖 (𝑥𝑖 |𝑥𝑖−𝑘 , . . . , 𝑥𝑖−1) (Vecchia,
1988)), the graph recovered by our approach remains unaffected by any predeter-
mined ordering of those variables.

Figure 7.11: (a) CHD formulation as a manifold discovery problem and hypergraph
representation, (b) The hypergraph representation of an affine manifold is equivalent
to its Row Echelon Form Reduction.

Well-posed formulation of the problem.
In this paper, we focus on a formulation of the problem that remains well-posed even
when the data is not randomized, i.e., we formulate the problem as the following
manifold learning/discovery problem.

Problem 4. Let H be a Reproducing Kernel Hilbert Space (RKHS) of functions
mapping R𝑑 to R. Let F be a closed linear subspace ofH and letM be a subset of
R𝑑 such that 𝑥 ∈ M if and only if 𝑓 (𝑥) = 0 for all 𝑓 ∈ F . Given the (possibly noisy
and nonrandom) observation of 𝑁 elements, 𝑋1, . . . , 𝑋𝑁 , ofM approximateM.

To understand why problem 4 serves as the appropriate formulation for hypergraph
discovery, consider a manifold M ⊂ R𝑑 . Suppose this manifold can be repre-
sented by a set of equations, expressed as a collection of functions ( 𝑓𝑘 )𝑘 satisfying
∀𝑥 ∈ M, 𝑓𝑘 (𝑥) = 0. To keep the problem tractable, we assume a certain level of
regularity for these functions, necessitating they belong to a RKHS H , ensuring
the applicability of kernel methods for our framework. Given that any linear com-
bination of the 𝑓𝑘 will also be evaluated to zero onM, the relevant functions are
those within the span of the 𝑓𝑘 , forming a closed linear subspace of H denoted
as F . The manifoldM can be subsequently represented by a graph or hypergraph
(see Fig. 7.11.(a)), whose ambiguity can be resolved through a deliberate decision
to classify some variables as free and others as dependent. This selection could be
arbitrary, informed by expert knowledge, or derived from probabilistic models or
sensitivity analysis.
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7.5 A Gaussian Process method for Type 3 problems
Affine case and Row Echelon Form Reduction.
To describe the proposed solution to Problem 4, we start with a simple example. In
this exampleH is a space of affine functions 𝑓 of the form

𝑓 (𝑥) = 𝑣𝑇𝜓(𝑥) with 𝜓(𝑥) :=

(
1
𝑥

)
and 𝑣 ∈ R𝑑+1 . (7.16)

As a particular instantiation (see Fig. 7.11.(b)), we assumeM to be the manifold of
R3 (𝑑 = 3) defined by the affine equations

M =

{
𝑥 ∈ R3

����� 
𝑥1 + 𝑥2 + 3𝑥3 − 2 = 0

𝑥1 − 𝑥2 + 𝑥3 = 0

}
, (7.17)

which is equivalent to selecting F = span{ 𝑓1, 𝑓2} with 𝑓1(𝑥) = 𝑥1 + 𝑥2 + 3𝑥3 − 2 and
𝑓2(𝑥) = 𝑥1 − 𝑥2 + 𝑥3 in the problem formulation 4.

Then, irrespective of how we recover the manifold from data, the hypergraph rep-
resentation of that manifold is equivalent to the row echelon form reduction of the
affine system, and this representation and this reduction require a possibly arbitrary
choice of free and dependent variables. So, for instance, for the system (7.17), if we
declare 𝑥3 to be the free variables and 𝑥1 and 𝑥2 to be the dependent variables, then
we can represent the manifold via the equations

M =

{
𝑥 ∈ R3

����� 
𝑥1 = 1 − 2𝑥3

𝑥2 = 1 − 𝑥3

}
, (7.18)

which have the hypergraph representation depicted in Fig. 7.11.(b).

Now, in the 𝑁 > 𝑑 regime where the number of data points is larger than the number
of variables, the manifold can simply be approximated via a variant of PCA. Take
𝑓 ∗ ∈ F , we have 𝑓 ∗(𝑥) = 𝑣∗𝑇𝜓(𝑥) for a certain 𝑣∗ ∈ R𝑑+1. Then for 𝑋𝑠 ∈ M,
𝑓 ∗(𝑋𝑠) = 𝜓(𝑋𝑠)𝑇𝑣∗ = 0. Defining

𝐶𝑁 :=
𝑁∑︁
𝑠=1

𝜓(𝑋𝑠)𝜓(𝑋𝑠)𝑇 (7.19)

we see that 𝑓 ∗(𝑋𝑠) = 0 for all 𝑋𝑠 is equivalent to 𝐶𝑁𝑣∗ = 0. Since 𝑁 > 𝑑, we can
thus identify F exactly as {𝑣𝑇𝜓 for 𝑣 ∈ 𝐾𝑒𝑟 (𝐶𝑁 )}. We then obtain the manifold

M𝑁 =
{
𝑥 ∈ R𝑑 | 𝑣𝑇𝜓(𝑥) = 0 for 𝑣 ∈ Span(𝑣𝑟+1, . . . , 𝑣𝑑+1)

}
, (7.20)
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where Span(𝑣𝑟+1, . . . , 𝑣𝑑+1) is the zero-eigenspace of𝐶𝑁 . Here we write 𝜆1 ≥ · · · ≥
𝜆𝑟 > 0 = 𝜆𝑟+1 = · · · = 𝜆𝑑+1 for the eigenvalues of 𝐶𝑁 (in decreasing order),
and 𝑣1, . . . , 𝑣𝑑+1 for the corresponding eigenvectors (𝐶𝑁𝑣𝑖 = 𝜆𝑖𝑣𝑖). The proposed
approach extends to the noisy case (when the data points are perturbations of
elements of the manifold) by simply replacing the zero-eigenspace of the covariance
matrix by the linear span of the eigenvectors associated with eigenvalues that are
smaller than some threshold 𝜖 > 0, i.e., by approximatingM with (7.20) where 𝑟
is such that 𝜆1 ≥ · · · ≥ 𝜆𝑟 ≥ 𝜖 > 𝜆𝑟+1 ≥ · · · ≥ 𝜆𝑑+1. In this affine setting (7.20)
allows us to estimateM directly without RKHS norm minimization/regularization
because linear regression does not require regularization in the sufficiently large
data regime. Furthermore the process of pruning ancestors can be replaced by that
of identifying sparse elements 𝑣 ∈ Span(𝑣𝑟+1, . . . , 𝑣𝑑+1) such that 𝑣𝑖 = 1.

Figure 7.12: Feature map generalization

Feature map generalization.
This simple approach can be generalized by generalizing the underlying feature map
𝜓 used to define the space of functions (writing 𝑑S for the dimension of the range
of 𝜓)

H =
{
𝑓 (𝑥) = 𝑣𝑇𝜓(𝑥) | 𝑣 ∈ R𝑑S

}
. (7.21)

For instance, if we use the feature map

𝜓(𝑥) :=
(
1, . . . , 𝑥𝑖, . . . , 𝑥𝑖𝑥 𝑗 , . . .

)𝑇 (7.22)

thenH becomes a space of quadratic polynomials on R𝑑 , i.e.,

H =

{
𝑓 (𝑥) = 𝑣0 +

∑︁
𝑖

𝑣𝑖𝑥𝑖 +
∑︁
𝑖≤ 𝑗

𝑣𝑖, 𝑗𝑥𝑖𝑥 𝑗 | 𝑣 ∈ R𝑑S
}
, (7.23)

and, in the large data regime (𝑁 > 𝑑S), identifying quadratic dependencies between
variables becomes equivalent to (1) adding nodes to the hypergraph corresponding to
secondary variables obtained from primary variables 𝑥𝑖 through known functions (for
(7.22), these secondary variables are the quadratic monomials 𝑥𝑖𝑥 𝑗 , see Fig. 7.12.(a)),
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and (2) identifying affine dependencies between the variables of the augmented
hypergraph. The problem can, therefore, be reduced to the previous affine case.
Indeed, as in the affine case, the manifold can then be approximated in the regime
where the number of data points is larger than the dimension 𝑑S of the feature map
by (7.20), where 𝑣𝑟 , . . . , 𝑣𝑁 are the eigenvectors of 𝐶𝑁 =(7.19) whose eigenvalues
are zero (noiseless case) or smaller than some threshold 𝜖 > 0 (noisy case).

Furthermore, the hypergraph representation of the manifold is equivalent to a fea-
ture map generalization of Row Echelon Form Reduction to nonlinear systems of
equations. For instance, choosing 𝑥3 as the dependent variable and 𝑥1, 𝑥2 as the free
variables, M = {𝑥 ∈ R3 | 𝑥3 − 5𝑥2

1 + 𝑥
2
2 − 𝑥1𝑥2 = 0} can be represented as in

Fig. 7.12.(b) where the round node represents the concatenated variable (𝑥1, 𝑥2) and
the red arrow represents a quadratic function. The generalization also enables the
representation of implicit equations by selecting secondary variables as free vari-
ables. For instance, selecting 𝑥2

3 as the free variable and 𝑥1, 𝑥2 as the free variables,
M = {𝑥 ∈ R3 | 𝑥2

1 + 𝑥
2
2 + 𝑥

2
3 − 1 = 0} can be represented as in Fig. 7.12.(c).

Kernel generalization and regularization.
This feature-map extension of the previously discussed affine case can evidently be
generalized to arbitrary degree polynomials and to other basis functions. However,
as the dimension 𝑑S of the range of the feature map 𝜓 increases beyond the number
𝑁 of data points, the problem becomes underdetermined: the data only provides
partial information about the manifold, i.e., it is not sufficient to uniquely determine
the manifold. Furthermore, if the dimension of the feature map is infinite, then we
are always in that low data regime, and we have the additional difficulty that we
cannot directly compute with that feature map. On the other hand, if 𝑑S is finite
(i.e., if the dictionary of basis functions is finite), then some elements of F (some
constraints defining the manifoldM) may not be representable or well approximated
as equations of the form 𝑣𝑇𝜓(𝑥) = 0. To address these conflicting requirements, we
need to kernelize and regularize the proposed approach (as done in interpolation).

The kernel associated with the feature map.

To describe this kernelization, we assume that the feature map 𝜓 maps R𝑑 to some
Hilbert space S that could be infinite-dimensional, and we write 𝐾 for the kernel
defined by that feature map. To be precise, we now consider the setting where the
feature map 𝜓 is a function from R𝑑 to a (possibly infinite-dimensional separable)
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Hilbert (feature) space S endowed with the inner product
〈
·, ·

〉
S . To simplify nota-

tions, we will still write 𝑣𝑇𝑤 for
〈
𝑣, 𝑤

〉
S and 𝑣𝑤𝑇 for the linear operator mapping

𝑣′ to 𝑣
〈
𝑤, 𝑣′

〉
S . Let

H := {𝑣𝑇𝜓(𝑥) | 𝑣 ∈ S} (7.24)

be the space of functions mapping R𝑑 to R defined by the feature map 𝜓. To avoid
ambiguity, assume (without loss of generality) that the identity 𝑣𝑇𝜓(𝑥) = 𝑤𝑇𝜓(𝑥)
holds for all 𝑥 ∈ R𝑑 if and only if 𝑣 = 𝑤. It follows that for 𝑓 ∈ H there exists a
unique 𝑣 ∈ S such that 𝑓 = 𝑣𝑇𝜓. For 𝑓 , 𝑔 ∈ H with 𝑓 = 𝑣𝑇𝜓 and 𝑔 = 𝑤𝑇𝜓, we can
then define 〈

𝑓 , 𝑔
〉
H := 𝑣𝑇𝑤 . (7.25)

Observe that H is a Hilbert space endowed with the inner product
〈
·, ·

〉
H . For

𝑥, 𝑥′ ∈ X, write
𝐾 (𝑥, 𝑥′) := 𝜓(𝑥)𝑇𝜓(𝑥′) , (7.26)

for the kernel defined by 𝜓 and observe that (H ,
〈
·, ·

〉
H ) is the RKHS defined by

the kernel 𝐾 (which is assumed to contain F in Problem 4). Observe in particular
that for 𝑓 = 𝑣𝑇𝜓 ∈ H , 𝐾 satisfies the reproducing property〈

𝑓 , 𝐾 (𝑥, ·)
〉
H = 𝑣𝑇𝜓(𝑥) = 𝑓 (𝑥) . (7.27)

Complexity Reduction with Kernel PCA Variant.

We will now show that the previous feature-map PCA variant (characterizing the
subspace of 𝑓 ∈ H such that 𝑓 (𝑋) = 0) can be kernelized as a variant of kernel PCA
(Mika et al., 1998). To describe this write 𝐾 (𝑋, 𝑋) for the 𝑁 ×𝑁 matrix with entries
𝐾 (𝑋𝑖, 𝑋 𝑗 ). Write 𝜆1 ≥ 𝜆2 ≥ · · · ≥ 𝜆𝑟 > 0 for the nonzero eigenvalues of 𝐾 (𝑋, 𝑋)
indexed in decreasing order and write 𝛼·,𝑖 for the corresponding unit-normalized
eigenvectors, i.e.

𝐾 (𝑋, 𝑋)𝛼·,𝑖 = 𝜆𝑖𝛼·,𝑖 and |𝛼·,𝑖 | = 1 . (7.28)

Write 𝑓 (𝑋) for the 𝑁 vector with entries 𝑓 (𝑋𝑠). For 𝑖 ≤ 𝑟, write

𝜙𝑖 :=
𝑁∑︁
𝑠=1

δ𝑋𝑠𝛼𝑠,𝑖 (7.29)

and

𝑓 (𝜙𝑖) :=
𝑁∑︁
𝑠=1

𝑓 (𝑋𝑠)𝛼𝑠,𝑖 . (7.30)

Write 𝑓 (𝜙) for the 𝑟 vector with entries 𝑓 (𝜙𝑖).

Then, we have the following proposition.
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Proposition 7.5.1. The subspace of functions 𝑓 ∈ H such that 𝑓 (𝜙) = 0 is equal
to the subspace of 𝑓 ∈ H such that 𝑓 (𝑋) = 0. Furthermore for 𝑓 ∈ H with feature
map representation 𝑓 = 𝑣𝑇𝜓 with 𝑣 ∈ S we have the identity (where 𝐶𝑁 =(7.19))

𝑣𝑇𝐶𝑁𝑣 = | 𝑓 (𝜙) |2 = | 𝑓 (𝑋) |2 . (7.31)

Proof. Write 𝜆1 ≥ 𝜆2 ≥ · · · ≥ 𝜆𝑟̂ > 0 for the nonzero eigenvalues of 𝐶𝑁 =(7.19)
indexed in decreasing order. Write 𝑣1, . . . , 𝑣𝑟 for the corresponding eigenvectors,
i.e.,

𝐶𝑁𝑣𝑖 = 𝜆𝑖𝑣𝑖 . (7.32)

Observing that

𝐶𝑁 =

𝑟∑︁
𝑖=1

𝜆𝑖𝑣𝑖𝑣
𝑇
𝑖 (7.33)

we deduce that the zero-eigenspace of 𝐶𝑁 is the set of vectors 𝑣 ∈ S such that
𝑣𝑇𝑣𝑖 = 0 for 𝑖 = 1, . . . , 𝑟 . Write 𝑓𝑖 := 𝑣𝑇

𝑖
𝜓. Observe that for 𝑓 = 𝑣𝑇𝜓, we have

𝑣𝑇
𝑖
𝑣 =

〈
𝑓𝑖, 𝑓

〉
𝐾

. Multiplying (7.32) by 𝜓𝑇 (𝑥) implies
𝑁∑︁
𝑠=1

𝐾 (𝑥, 𝑋𝑠) 𝑓𝑖 (𝑋𝑠) = 𝜆𝑖 𝑓𝑖 (𝑥) (7.34)

(7.34) implies that for 𝑓 = 𝑣𝑇𝜓

𝑣𝑇𝑖 𝑣 =

𝑁∑︁
𝑠=1

𝜆−1
𝑖 𝑓𝑖 (𝑋𝑠)

〈
𝐾 (·, 𝑋𝑠), 𝑓

〉
𝐾
=

𝑁∑︁
𝑠=1

𝜆−1
𝑖 𝑓𝑖 (𝑋𝑠) 𝑓 (𝑋𝑠), (7.35)

where we have used the reproducing property (7.27) of 𝐾 in the last identity. Write

𝛼̂𝑠,𝑖 := 𝜆−1/2
𝑖

𝑓𝑖 (𝑋𝑠) . (7.36)

Using (7.34) with 𝑥 = 𝑋𝑠′ implies that 𝛼̂·,𝑖 is an eigenvector of the 𝑁 × 𝑁 matrix
𝐾 (𝑋, 𝑋) with eigenvalue 𝜆𝑖. Taking 𝑓 = 𝑓𝑖 in (7.35) implies that 1 = 𝑣𝑇

𝑖
𝑣𝑖 = |𝛼̂·,𝑖 |2.

Therefore, the 𝛼̂·,𝑖 are unit-normalized. Summarizing, this analysis (closely related to
the one found in kernel PCA (Mika et al., 1998)) shows that the nonzero eigenvalues
of 𝐾 (𝑋, 𝑋) coincide with those of 𝐶𝑁 and we have 𝑟̂ = 𝑟, 𝜆𝑖 = 𝜆𝑖 and 𝛼̂·,𝑖 = 𝛼·,𝑖.
Furthermore, (7.35) and (7.36) imply that for 𝑖 ≤ 𝑟, 𝑣 ∈ S and 𝑓 = 𝑣𝑇𝜓, we have

𝑣𝑇𝑖 𝑣 = 𝜆
−1/2
𝑖

𝑓 (𝑋)𝛼·,𝑖 . (7.37)

The identity (7.37) then implies (7.31). □

Remark 7.5.2. As in PCA the dimension/complexity of the problem can be further
reduced by truncating 𝜙 to 𝜙′ = (𝜙1, . . . , 𝜙𝑟 ′) where 𝑟′ ≤ 𝑟 is identified as the
smallest index 𝑖 such that 𝜆𝑖/𝜆1 < 𝜖 where 𝜖 > 0 is some small threshold.
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Kernel Mode Decomposition.

When the feature map 𝜓 is infinite-dimensional, the data only provides partial
information about the constraints defining the manifold in the sense that 𝑓 (𝑋) = 0
or equivalently 𝑓 (𝜙) = 0 is a necessary but not sufficient condition for the zero level
set of 𝑓 to be a valid constraint for the manifold (for 𝑓 to be such that 𝑓 (𝑥) = 0 for
all 𝑥 ∈ M). So we are faced with the following problems: (1) How to regularize?
(2) How do we identify free and dependent variables? (3) How do we identify
valid constraints for the manifold? The proposed solution will be based on the
Kernel Mode Decomposition (KMD) framework introduced in (Houman Owhadi,
Clint Scovel, and Yoo, 2021) (which shares conceptual foundations with Smoothing
Spline ANOVA (Wahba, 2003)).

Reminder on KMD We will now present a quick reminder on KMD in the setting
of the following mode decomposition problem. So, in this problem, we have an
unknown function 𝑓 † mapping some input space X to the real line R. We assume
that this function can be written as a sum of 𝑚 other unknown functions 𝑓 †

𝑖
which

we will call modes, i.e.,

𝑓 † =
𝑚∑︁
𝑖=1

𝑓
†
𝑖
. (7.38)

We assume each mode 𝑓 †
𝑖

to be an unknown element of some RKHSH𝐾𝑖 defined by
some kernel 𝐾𝑖. Then we consider the problem in which given the data 𝑓 †(𝑋) = 𝑌
(with (𝑋,𝑌 ) ∈ X𝑁 ×R𝑁 ) we seek to approximate the𝑚 modes composing the target
function 𝑓 †. Then, we have the following theorem.

Theorem 7.5.3. (Houman Owhadi, Clint Scovel, and Yoo, 2021) Using the relative
error in the product norm ∥( 𝑓1, . . . , 𝑓𝑚)∥2 :=

∑𝑚
𝑖=1 ∥ 𝑓𝑖∥2𝐾𝑖 as a loss, the minimax

optimal recovery of ( 𝑓 †1 , . . . , 𝑓
†
𝑚) is ( 𝑓1, . . . , 𝑓𝑚) with

𝑓𝑖 (𝑥) = 𝐾𝑖 (𝑥, 𝑋)𝐾 (𝑋, 𝑋)−1𝑌 , (7.39)

where 𝐾 is the additive kernel

𝐾 =

𝑚∑︁
𝑖=1

𝐾𝑖 . (7.40)

The GP interpretation of this optimal recovery result is as follows. Let 𝜉𝑖 ∼ N(0, 𝐾𝑖)
be 𝑚 independent centered GPs with kernels 𝐾𝑖. Write 𝜉 for the additive GP 𝜉 :=∑𝑚
𝑖=1 𝜉𝑖. (7.39) can be recovered by replacing the modes 𝑓 †

𝑖
by independent centered



290

GPs 𝜉𝑖 ∼ N(0, 𝐾𝑖) with kernels 𝐾𝑖 and approximating the mode 𝑖 by conditioning
𝜉𝑖 on the available data 𝜉 (𝑋) = 𝑌 where 𝜉 :=

∑𝑚
𝑖=1 𝜉𝑖 is the additive GP obtained by

summing the independent GPs 𝜉𝑖, i.e.,

𝑓𝑖 (𝑥) = E
[
𝜉𝑖 (𝑥) | 𝜉 (𝑋) = 𝑌

]
. (7.41)

Furthermore ( 𝑓1, . . . , 𝑓𝑚) can also be identified as the minimizer of
Minimize

∑𝑚
𝑖=1 ∥ 𝑓𝑖∥2𝐾𝑖

over ( 𝑓1, . . . , 𝑓𝑚) ∈ H𝐾1 × · · · × H𝐾𝑚
s. t. (∑𝑚

𝑖=1 𝑓𝑖) (𝑋) = 𝑌 .

(7.42)

The variational formulation (7.42) can be interpreted as a generalization of Tikhonov
regularization which can be recovered by selecting 𝑚 = 2, 𝐾1 to be a smoothing
kernel (such as a Matérn kernel) and 𝐾2(𝑥, 𝑦) = 𝜎2δ(𝑥 − 𝑦) to be a white noise
kernel.

Now, this abstract KMD approach (Houman Owhadi, Clint Scovel, and Yoo, 2021)
is associated with a quantification of how much each mode contributes to the overall
data or how much each individual GP 𝜉𝑖 explains the data. More precisely, the
activation of the mode 𝑖 or GP 𝜉𝑖 can be quantified as

𝑝(𝑖) =
∥ 𝑓𝑖∥2𝐾𝑖
∥ 𝑓 ∥2

𝐾

, (7.43)

where 𝑓 =
∑𝑚
𝑖=1 𝑓𝑖. These activations 𝑝(𝑖) satisfy 𝑝(𝑖) ∈ [0, 1] and

∑𝑚
𝑖=1 𝑝(𝑖) = 1

they can be thought of as a generalization of Sobol sensitivity indices (Sobol, 2001;
Soboĺ, 1993; Owen, 2013) to the nonlinear setting in the sense that they are associated
with the following variance representation/decomposition (Houman Owhadi, Clint
Scovel, and Yoo, 2021) (writing

〈
·, ·

〉
𝐾

for the RKHS inner product induced by 𝐾):

Var
[〈
𝜉, 𝑓

〉
𝐾

]
= ∥ 𝑓 ∥2𝐾 =

𝑚∑︁
𝑖=1
∥ 𝑓𝑖∥2𝐾𝑖 =

𝑚∑︁
𝑖=1

Var
[〈
𝜉𝑖, 𝑓

〉
𝐾

]
. (7.44)

Application to CHD, general case. Now, let us return to our original manifold
approximation problem 4 in the kernelized setting of (7.26). Given the data 𝑋

we cannot regress an element 𝑓 ∈ F directly since the minimizer of ∥ 𝑓 ∥2
𝐾
+

𝛾−1∥ 𝑓 (𝑋)∥2
R𝑁

is the null function. To identify the functions 𝑓 ∈ F , we need to
decompose them into modes that can be interpreted as a generalization of the notion
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of free and dependent variables. To describe this, assume that the kernel 𝐾 can be
decomposed as the additive kernel

𝐾 = 𝐾𝑎 + 𝐾𝑠 + 𝐾𝑧 . (7.45)

Then H𝐾 = H𝐾𝑎 + H𝐾𝑠 + H𝐾𝑧 implies that for all function 𝑓 ∈ H𝐾 , 𝑓 can be
decomposed as 𝑓 = 𝑓𝑎 + 𝑓𝑠 + 𝑓𝑧 with ( 𝑓𝑎, 𝑓𝑠, 𝑓𝑧) ∈ H𝑎 ×H𝑠 ×H𝑧.

Example 7.5.4. As a running example, take 𝐾 to be the following additive kernel

𝐾 (𝑥, 𝑥′) = 1 + 𝛽1
∑︁
𝑖

𝑥𝑖𝑥
′
𝑖 + 𝛽2

∑︁
𝑖≤ 𝑗

𝑥𝑖𝑥 𝑗𝑥
′
𝑖𝑥
′
𝑗 + 𝛽3

∏
𝑖

(1 + 𝑘 (𝑥𝑖, 𝑥′𝑖)) , (7.46)

that is the sum of a linear kernel, a quadratic kernel, and a fully nonlinear kernel.
Take 𝐾𝑎 to be the part of the linear kernel that depends only on 𝑥1, i.e.,

𝐾𝑎 (𝑥, 𝑥′) = 𝛽1𝑥1𝑥
′
1 . (7.47)

Take 𝐾𝑠 to be the part of the kernel that does not depend on 𝑥1, i.e.,

𝐾𝑠 = 1 + 𝛽1
∑︁
𝑖≠1

𝑥𝑖𝑥
′
𝑖 + 𝛽2

∑︁
𝑖≤ 𝑗 ,𝑖, 𝑗≠1

𝑥𝑖𝑥 𝑗𝑥
′
𝑖𝑥
′
𝑗 + 𝛽3

∏
𝑖≠1
(1 + 𝑘 (𝑥𝑖, 𝑥′𝑖)) . (7.48)

And take 𝐾𝑧 to be the remaining portion,

𝐾𝑧 = 𝐾 − 𝐾𝑎 − 𝐾𝑠 . (7.49)

Therefore the following questions are equivalent:

• Given a function 𝑔𝑎 in the RKHS H𝐾𝑎 defined by the kernel 𝐾𝑎 is there a
function 𝑓𝑠 in the RKHSH𝐾𝑠 defined by the kernel 𝐾𝑠 such that 𝑔𝑎 (𝑥) ≈ 𝑓𝑠 (𝑥)
for 𝑥 ∈ M?

• Given a function 𝑔𝑎 ∈ H𝐾𝑎 is there a function 𝑓 in the RKHSH𝐾 defined by
the kernel 𝐾 such that 𝑓 (𝑥) ≈ 0 for 𝑥 ∈ M and such that its 𝑓𝑎 mode is −𝑔𝑎
and its 𝑓𝑧 mode is zero?

Then, the natural answer to the questions is to identify the modes of the constraint
𝑓 = 𝑓𝑎 + 𝑓𝑠 + 𝑓𝑧 ∈ H (such that 𝑓 (𝑥) ≈ 0 for 𝑥 ∈ M ) such that 𝑓𝑎 = −𝑔𝑎 and 𝑓𝑧 = 0
by selecting 𝑓𝑠 to be the minimizer of the following variational problem

min
𝑓𝑠∈H𝑠

∥ 𝑓𝑠∥2𝐾𝑠 +
1
𝛾

��(−𝑔𝑎 + 𝑓𝑠) (𝜙)��2 . (7.50)
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This is equivalent to introducing the additive GP 𝜉 = 𝜉𝑎 + 𝜉𝑠 + 𝜉𝑧 + 𝜉𝑛 whose
modes are the independent GPs 𝜉𝑎 ∼ N(0, 𝐾𝑎), 𝜉𝑠 ∼ N(0, 𝐾𝑠), 𝜉𝑧 ∼ N(0, 𝐾𝑧),
𝜉𝑛 ∼ N(0, 𝛾δ(𝑥 − 𝑦)) (we use the label “n” in reference to “noise”), and then
recovering 𝑓𝑠 as

𝑓𝑠 = E
[
𝜉𝑠 | 𝜉 (𝑋) = 0, 𝜉𝑎 = −𝑔𝑎, 𝜉𝑧 = 0

]
. (7.51)

Application to CHD, particular case. Taking 𝑔𝑎 (𝑥) = 𝑥1 for our running example
7.5.4, the previous questions are, as illustrated in Fig. 7.2(b), equivalent to asking
whether there exists a function 𝑓𝑠 ∈ H𝐾𝑠 that does not depend on 𝑥1 (since 𝐾𝑠 does
not depend on 𝑥1) such that

𝑥1 ≈ 𝑓𝑠 (𝑥2, . . . , 𝑥𝑑) for 𝑥 ∈ M . (7.52)

Therefore, the mode 𝑓𝑎 can be thought of as a dependent mode (we use the label
“a” in reference to “ancestors”), the mode 𝑓𝑠 as a free mode (we use the label “s” in
reference to “signal”), the mode 𝑓𝑧 as a zero mode.

While our numerical illustrations have primarily focused on the scenario where
𝑔𝑎 takes the form of 𝑔𝑎 (𝑥) = 𝑥𝑖, and we aim to express 𝑥𝑖 as a function of other
variables, the generality of our framework is motivated by its potential to recover
implicit equations. For example, consider the implicit equation 𝑥2

1 + 𝑥
2
2 = 1, which

can be retrieved by setting the mode of interest to be 𝑔𝑎 (𝑥) = 𝑥2
1 and allowing 𝑓𝑠 to

depend only on the variable 𝑥2.

Signal-to-noise ratio.

Now, we are led to the following question: since the mode 𝑓𝑠 (the minimizer of
(7.50)) always exists and is always unique, how do we know that it leads to a valid
constraint? To answer that question, we compute the activation of the GPs used to
regress the data. We write

V(𝑠) := ∥ 𝑓𝑠∥2𝐾𝑠 , (7.53)

for the activation of the signal GP 𝜉𝑠 and

V(𝑛) :=
1
𝛾

��(−𝑔𝑎 + 𝑓𝑠) (𝑋)��2 (7.54)

for the activation of the noise GP 𝜉𝑛, and then these allow us to define a signal-to-
noise ratio defined as

V(𝑠)
V(𝑠) + V(𝑛) . (7.55)
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Note that this corresponds to activation ratio of the noise GP defined in (7.43).
This ratio can then be used to test the validity of the constraint in the sense that if
𝑉 (𝑠)/(𝑉 (𝑠) + 𝑉 (𝑛)) > 𝜏 (with 𝜏 = 0.5 as a prototypical example), then the data is
mostly explained by the signal GP and the constraint is valid. If𝑉 (𝑠)/(𝑉 (𝑠)+𝑉 (𝑛)) <
𝜏, then the data is mostly explained by the noise GP and the constraint is not valid.

Iterating by removing the least active modes from the signal.

If the constraint is valid, then we can next compute the activation of the modes com-
posing the signal. To describe this, we assume that the kernel 𝐾𝑠 can be decomposed
as the additive kernel

𝐾𝑠 = 𝐾𝑠,1 + · · · + 𝐾𝑠,𝑚 , (7.56)

which results inH𝐾𝑠 = H𝐾𝑠,1 + · · · + H𝐾𝑠,𝑚 , which results in the fact that ∀ 𝑓𝑠 ∈ H𝑠,
𝑓𝑠 can be decomposed as

𝑓𝑠 = 𝑓𝑠,1 + · · · + 𝑓𝑠,𝑚 , (7.57)

with 𝑓𝑠,𝑖 ∈ H𝐾𝑠,𝑖 . The activation of the mode 𝑖 can then be quantified as 𝑝(𝑖) =
∥ 𝑓𝑠,𝑖∥2𝐾𝑠,𝑖/∥ 𝑓𝑠∥

2
𝐾𝑠

, which combined with ∥ 𝑓𝑠∥2𝐾𝑠 =
∑𝑚
𝑖=1 ∥ 𝑓𝑠,𝑖∥2𝐾𝑠,𝑖 leads to

∑𝑚
𝑖=1 𝑝(𝑖) =

1.

As our running example 7.5.4, we can decompose 𝐾𝑠 =(7.48) as the sum of an
affine kernel, a quadratic kernel, and a fully nonlinear kernel, i.e., 𝑚 = 3, 𝐾𝑠,1 =

1 + 𝛽1
∑
𝑖≠1 𝑥𝑖𝑥

′
𝑖
, 𝐾𝑠,2 = 𝛽2

∑
𝑖≤ 𝑗 ,𝑖, 𝑗≠1 𝑥𝑖𝑥 𝑗𝑥

′
𝑖
𝑥′
𝑗

and 𝐾𝑠,3 = 𝛽3
∏
𝑖≠1(1 + 𝑘 (𝑥𝑖, 𝑥′𝑖)).

As another example for our running example, we can take 𝐾𝑠 to be the sum of the
portion of the kernel that does not depend on 𝑥1 and 𝑥2 and the remaining portion,
i.e.,𝑚 = 2, 𝐾𝑠,1 = 1+𝛽1

∑
𝑖≠1,2 𝑥𝑖𝑥

′
𝑖
+𝛽2

∑
𝑖≤ 𝑗 ,𝑖, 𝑗≠1,2 𝑥𝑖𝑥 𝑗𝑥

′
𝑖
𝑥′
𝑗
+𝛽3

∏
𝑖≠1,2(1+𝑘 (𝑥𝑖, 𝑥′𝑖))

and 𝐾𝑠,2 = 𝐾𝑠 − 𝐾𝑠,1.

Then, we can order these sub-modes from most active to least active and create a new
kernel 𝐾𝑠 by removing the least active modes from the signal and adding them to the
mode that is set to be zero (see Fig. 7.13). To describe this, let 𝜋(1), · · · , 𝜋(𝑚) be an
ordering of the modes by their activation, i.e., ∥ 𝑓𝑠,𝜋(1) ∥2𝐾𝑠, 𝜋 (1) ≥ ∥ 𝑓𝑠,𝜋(2) ∥

2
𝐾𝑠, 𝜋 (2)

≥ · · · .

Writing 𝐾𝑡 =
∑𝑚
𝑖=𝑟+1 𝐾𝑠,𝜋(𝑖) for the additive kernel obtained from the least active

modes (with 𝑟 + 1 = 𝑚 as the value used for our numerical implementations), we
update the kernels 𝐾𝑠 and 𝐾𝑧 by assigning the least active modes from 𝐾𝑠 to 𝐾𝑧, i.e.,
𝐾𝑠 − 𝐾𝑡 → 𝐾𝑠 and 𝐾𝑧 + 𝐾𝑡 → 𝐾𝑧 (we zero the least active modes).
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Figure 7.13: Iterating by removing the least active modes from the signal

Finally, we can iterate the process. This iteration can be thought of as identifying
the structure of the hypergraph by placing too many hyperedges and removing them
according to the activation of the underlying GPs.

For our running example 7.5.4, where we try to identify the ancestors of the variable
𝑥1, if the sub-mode associated with the variable 𝑥2 is found to be least active, then
we can try to remove 𝑥2 from the list of ancestors and try to identify 𝑥1 as a function
of 𝑥3 to 𝑥𝑑 . This is equivalent to selecting 𝐾𝑎 (𝑥, 𝑥′) = 𝛽1𝑥1𝑥

′
1,

𝐾𝑠/𝑡 = 1 + 𝛽1
∑︁
𝑖≠1,2

𝑥𝑖𝑥
′
𝑖 + 𝛽2

∑︁
𝑖≤ 𝑗 ,𝑖, 𝑗≠1,2

𝑥𝑖𝑥 𝑗𝑥
′
𝑖𝑥
′
𝑗 + 𝛽3

∏
𝑖≠1,2
(1 + 𝑘 (𝑥𝑖, 𝑥′𝑖)) , (7.58)

and 𝐾𝑧∪𝑡 = 𝐾 − 𝐾𝑎 − 𝐾𝑠/𝑡 to assess whether there exists a function 𝑓𝑠 ∈ H𝐾 that
does not depend on 𝑥1 and 𝑥2 s.t. 𝑥1 ≈ 𝑓𝑠 (𝑥3, . . . , 𝑥𝑑) for 𝑥 ∈ M.

Alternative determination of the list of ancestors.

Our initial approach to determining the list of ancestors of a given node is to use a
fixed threshold (e.g., 𝜏 = 0.5) to prune nodes. We propose a refined approach that
mimics the strategy employed in Principal Component Analysis (PCA) for deciding
which modes should be kept and which ones should be removed. The PCA approach
is to order the modes in decreasing order of eigenvalues/variance and (1) either
keep the smallest number modes holding/explaining a given fraction (e.g., 90%) of
the variance in the data, (2) or use an inflection point/sharp drop in the decay of
the eigenvalues to select which modes should be kept. Here, we propose a similar
strategy. First we employ an alternative determination of the least active mode: we
iteratively remove the mode that leads to the smallest increase in noise-to-signal
ratio, i.e., we remove the mode 𝑡 such that

𝑡 = argmint
V(𝑛)

V(𝑠/𝑡) + V(𝑛) . (7.59)

For our running example 7.5.4 in which we try to find the ancestors of the variable
𝑥1 this is equivalent to removing the variables or node 𝑡 whose removal leads to
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Figure 7.14: Computing the ancestors of the variable ¤𝑥0 in the Fermi-Pasta-Ulam-
Tsingou problem. (a) Noise-to-Signal Ratio, denoted as V(𝑛)

V(𝑠)+V(𝑛) (𝑞), with respect
to the number of proposed ancestors, represented by 𝑞. Additionally, we include a
visualization of the quantiles derived from the 𝑍-test, as described in Section 7.7.
Notably, when there is no signal present, the noise-to-signal ratio is expected to
fall within the shaded area with a probability of 0.9. (b) Increments in the Noise-
to-Signal Ratio, defined as V(𝑛)

V(𝑠)+V(𝑛) (𝑞) −
V(𝑛)

V(𝑠)+V(𝑛) (𝑞 − 1), as a function of the
number of ancestors, denoted as 𝑞. The horizontal axis represents the number of
proposed ancestors for ¤𝑥0. Determining an appropriate stopping point based solely on
absolute noise-to-signal ratio levels can be challenging. In contrast, the increments in
the noise-to-signal ratio clearly exhibit a discernible maximum, offering a practical
point for decision-making.

the smallest loss in signal-to-noise ratio (or increase in noise-to-signal ratio) by
selecting

𝐾𝑠/𝑡 = 1 + 𝛽1
∑︁
𝑖≠1,𝑡

𝑥𝑖𝑥
′
𝑖 + 𝛽2

∑︁
𝑖≤ 𝑗 ,𝑖, 𝑗≠1,𝑡

𝑥𝑖𝑥 𝑗𝑥
′
𝑖𝑥
′
𝑗 + 𝛽3

∏
𝑖≠1,𝑡
(1 + 𝑘 (𝑥𝑖, 𝑥′𝑖)) .

Next, we iterate this process, and we plot (a) the noise-to-signal ratio, and (b) the
increase in noise-to-signal ratio as a function of the number of ancestors ordered
according to this iteration. Fig. 7.14 illustrates this process and shows that the
removal of an essential node leads to a sharp spike in increase in the noise-to-signal
ratio (the noise-to-signal ratio jumps from approximately 50-60% to 99%). The
identification of this inflection point can be used as a method for effectively and
reliably pruning ancestors.

7.6 Algorithm pseudocode.
Our overall method is summarized in the pseudocode Alg. 11 and Alg. 12 that we
will now describe. Alg. 11 takes the data 𝐷 (encoded into the samples 𝑋1, . . . , 𝑋𝑁

of Problem 4) and the set of nodes 𝑉 as an input and produces, as described in
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Algorithm 11 CHD by thresholding the signal-to-noise ratio
Input: Data 𝐷, set of nodes 𝑉 , threshold 𝜏 (default 𝜏 = 0.5)
Output: Learned hypergraph Set of ancestors for each node

1: 𝐷 ← NormalizeData(𝐷) Normalize the data
2: for each 𝑣 ∈ 𝑉 do
3: for each kernel in {"linear", "quadratic", "nonlinear"} Find the

kernel do
4: SetOfAncestors(𝑣) ← all other nodes
5: SignalToNoiseRatio← ComputeSignalToNoiseRatio(kernel, node, 𝐷)
6: if SignalToNoiseRatio > 𝜏 then
7: Choose that kernel and exit the for loop
8: else
9: Remove all ancestors from node

10: end if
11: end for
12: while SignalToNoiseRatio > 𝜏 Prune ancestors do
13: Find least important ancestor
14: Recompute SignalToNoiseRatio without that ancestor
15: if SignalToNoiseRatio > 𝜏 then
16: Remove that ancestor
17: end if
18: end while
19: end for

Sec. 7.5, for each node 𝑖 ∈ 𝑉 its set of minimal ancestors 𝐴𝑖 and the simplest
possible function 𝑓𝑖 such that 𝑥𝑖 ≈ 𝑓𝑖

(
(𝑥 𝑗 ) 𝑗∈𝐴𝑖

)
. It employs the default threshold of

0.5 on the signal-to-noise ratios for its operations. Line 1 normalizes the data (via
an affine transformation) so that the samples 𝑋𝑖 are of mean zero and variance 1.
Given a node with index 𝑖 = 1 in Line 2 (𝑖 runs through the set of nodes, and we
select 𝑖 = 1 for ease of presentation), the command in Line 3 refers to selecting a
signal kernel of the form 𝐾𝑠 =(7.48) (where 𝑘 is selected to be a vanilla RBF kernel
such as Gaussian or Matérn), with 1 ≥ 𝛽1 > 0 = 𝛽2 = 𝛽3 for the linear kernel,
1 ≥ 𝛽1 ≥ 𝛽2 > 0 = 𝛽3 for the quadratic kernel and 1 ≥ 𝛽1 ≥ 𝛽2 ≥ 𝛽3 > 0 for the
fully nonlinear (interpolative) kernel. The ComputeSignalToNoiseRatio function
in Line 5 computes the signal-to-noise ratio with 𝑔𝑎 (𝑥) = 𝑥1 and with the kernel
selected in Line 3. The value of 𝛾 is selected automatically by maximizing the
variance of the histogram of eigenvalues of 𝐷𝛾 as described in Sec. 7.7 (with the
kernel 𝐾 = 𝐾𝑠 =(7.48) selected in Line 3 and 𝑌 = 𝑔𝑎 (𝑋) with 𝑔𝑎 (𝑥) = 𝑥1). The
value of 𝛾 is re-computed whenever a node is removed from the list of ancestors,
and 𝐾𝑠 is nonlinear. Lines 13, 14 and 16 are described in Sec. 7.5. They correspond
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to iteratively identifying the ancestor node 𝑡 contributing the least to the signal and
removing that node from the set of ancestors of the node 1 if the removal of that
node 𝑡 does not send the signal-to-noise ratio below the default threshold 0.5.

Algorithm 12 CHD by inflection point in the noise-to-signal ratio
Input: Data 𝐷, set of nodes 𝑉 , threshold 𝜏 (default 𝜏 = 0.5)
Output: Learned hypergraph Set of ancestors for each node

1: 𝐷 ← NormalizeData(𝐷) Normalize the data
2: for each node 𝑣 ∈ 𝑉 do
3: for each kernel in {"linear", "quadratic", "nonlinear"} Find the

kernel do
4: SetOfAncestors← all other nodes
5: SignalToNoiseRatio← ComputeSignalToNoiseRatio(kernel, node, 𝐷)
6: if SignalToNoiseRatio > 𝜏 then
7: Choose that kernel and exit the for loop
8: else
9: Remove all ancestors from node

10: end if
11: end for
12: 𝑞 ← Cardinal(all other nodes)
13: SetOfAncestors(𝑞) ← all other nodes
14: while 𝑞 ≥ 1 do
15: NoiseToSignalRatio(𝑞) ←ComputeNoiseToSignalRatio(kernel, node, 𝐷)

16: LeastImportantAncestor ← Find least important ancestor in
SetOfAncestors(𝑞)

17: SetOfAncestors(𝑞 − 1) ← SetOfAncestors(𝑞)\ LeastImportantAncestor
18: 𝑞 ← 𝑞 − 1
19: end while
20: 𝑞† ← inflection point in 𝑞 → NoiseToSignalRatio(𝑞)

or spike in 𝑞 → NoiseToSignalRatio(𝑞)−NoiseToSignalRatio(𝑞 − 1)
21: FinalSetOfAncestors(𝑣) ← SetOfAncestors(𝑞†)
22: end for

Algorithm 12 distinguishes itself from Algorithm 11 in its approach to pruning
ancestors based on signal-to-noise ratios. Instead of using a default threshold of 0.5
like Algorithm 11, Algorithm 12 computes the noise-to-signal ratio, represented as
V(𝑛)

V(𝑠)+V(𝑛) (𝑞). This ratio is calculated as a function of the number 𝑞 of ancestors,
which are ordered based on their decreasing contribution to the signal. The detailed
methodology behind this computation can be found in Section 7.5 and is visually
depicted in Figure 7.14. The final number 𝑞 of ancestors is then determined by
finding the value that maximizes the difference between successive noise-to-signal
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ratios, V(𝑛)
V(𝑠)+V(𝑛) (𝑞 + 1) − V(𝑛)

V(𝑠)+V(𝑛) (𝑞).

7.7 Analysis of the signal-to-noise ratio test.
The signal-to-noise ratio depends on the prior on the level of noise.
The signal-to-noise ratio (7.55) depends on the value of 𝛾, which is the variance
prior on the level of noise. The goal of this subsection is to answer the following
two questions: (1) How do we select 𝛾? (2) How do we obtain a confidence level
for the presence of a signal? Or equivalently for a hyperedge of the hypergraph?
To answer these questions, we will now analyze the signal-to-noise ratio in the
following regression problem in which we seek to approximate the unknown function
𝑓 † : X → R based on noisy observations

𝑓 †(𝑋) + 𝜎𝑍 = 𝑌 (7.60)

of its values at collocation points 𝑋𝑖 ((𝑋,𝑌 ) ∈ X𝑁×R𝑁 , 𝑍 ∈ R𝑁 , and the entries 𝑍𝑖 of
𝑍 are i.i.d N(0, 1)). Assuming 𝜎2 to be unknown and writing 𝛾 for a candidate for its
value, recall that the GP solution to this problem is approximate 𝑓 † by interpolating
the data with the sum of two independent GPs, i.e.,

𝑓 (𝑥) = E[𝜉 (𝑥) |𝜉 (𝑋) + √𝛾𝑍 = 𝑌 ] , (7.61)

where 𝜉 ∼ N(0, 𝐾) is the GP prior for the signal 𝑓 † and √𝛾𝑍 ∼ N(0, 𝛾𝐼𝑁 ) is the
GP prior for the noise 𝜎𝑍 in the measurements. Following Sec. 7.5 𝑓 can also be
identified as a minimizer of

minimize 𝑓 ′ ∥ 𝑓 ′∥2𝐾 +
1
𝛾
∥ 𝑓 ′(𝑋) − 𝑌 ∥2R𝑁 , (7.62)

the activation of the signal GP can be quantified as 𝑠 = ∥ 𝑓 ∥2
𝐾

, the activation of the
noise GP can be quantified as V(𝑛) = 1

𝛾
∥ 𝑓 (𝑋) − 𝑌 ∥2

R𝑁
. We can then define the

noise to signal ratio V(𝑛)
V(𝑠)+V(𝑛) , which admits the following representer formula:

V(𝑛)
V(𝑠) + V(𝑛) = 𝛾

𝑌𝑇
(
𝐾 (𝑋, 𝑋) + 𝛾𝐼

)−2
𝑌

𝑌𝑇
(
𝐾 (𝑋, 𝑋) + 𝛾𝐼

)−1
𝑌
. (7.63)

Observe that when applied to the setting of Sec. 7.5, this signal-to-noise ratio is
calculated with 𝐾 = 𝐾𝑠 and 𝑌 = 𝑔𝑎 (𝑋).

Now we have the following proposition, which follows from (7.63).

Proposition 7.7.1. It holds true that V(𝑛)
V(𝑠)+V(𝑛) ∈ [0, 1], and if 𝐾 (𝑋, 𝑋) has full

rank,
lim
𝛾↓0

V(𝑛)
V(𝑠) + V(𝑛) = 0 and lim

𝛾↑∞

V(𝑛)
V(𝑠) + V(𝑛) = 1 . (7.64)
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Therefore, we are led to the following question: if the signal 𝑓 † and the level of
noise 𝜎2 are both unknown, how do we select 𝛾 to decide whether the data is mostly
signal or noise?

How do we select the prior on the level of noise?
Our answer to this question depends on whether the feature-map associated with the
base kernel 𝐾 is finite-dimensional or not.

When the kernel is linear, quadratic, or associated with a finite-dimensional
feature map.

If the feature-map associated with the base kernel 𝐾 is finite-dimensional, then 𝛾 can
be estimated from the data itself when the number of data-points is sufficiently large
(at least larger than the dimension of the feature-space S). A prototypical example
(when trying to identify the ancestors of the variable 𝑥1) is 𝐾 = 𝐾𝑠=(7.48) with
𝛽3 = 0. In the general setting assume that 𝐾 (𝑥, 𝑥′) := 𝜓(𝑥)𝑇𝜓(𝑥′) where the range
S of 𝜓 is finite-dimensional. Assume that 𝑓 † belongs to the RKHS defined by 𝜓,
i.e., assume that it is of the form 𝑓 † = 𝑣𝑇𝜓 for some 𝑣 in the feature-space. Then
(7.60) reduces to

𝑣𝑇𝜓(𝑋) + 𝜎𝑍 = 𝑌 , (7.65)

and, in the large data regime, 𝜎2 can be estimated by

𝜎̄2 :=
1
𝑁

inf
𝑤∈S



𝑤𝑇𝜓(𝑋) − 𝑌

2
R𝑁 . (7.66)

Our strategy, when the feature map is finite-dimensional, is then to select

𝛾 = 𝑁𝜎̄2 = inf
𝑤∈S



𝑤𝑇𝜓(𝑋) − 𝑌

2
R𝑁 . (7.67)

When the kernel is interpolatory (associated with an infinite-dimensional
feature map).

If the feature-map associated with the base kernel 𝐾 is infinite-dimensional (or has
more dimensions than we have data points) then it can interpolate the data exactly
and the previous strategy cannot be employed since the minimum of (7.66) is zero.
A prototypical example (when trying to identify the ancestors of the variable 𝑥1)
is 𝐾 = 𝐾𝑠=(7.48) with 𝛽3 > 0. In this situation, we do not attempt to estimate the
level of noise 𝜎 but select a prior 𝛾 such that the resulting noise-to-signal ratio
can effectively differentiate noise from signal. To describe this, observe that the
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noise-to-signal ratio (7.63) admits the representer formula

V(𝑛)
V(𝑠) + V(𝑛) =

𝑌𝑇𝐷2
𝛾𝑌

𝑌𝑇𝐷𝛾𝑌
, (7.68)

involving the 𝑁 × 𝑁 matrix

𝐷𝛾 := 𝛾
(
𝐾 (𝑋, 𝑋) + 𝛾𝐼

)−1
. (7.69)

Observe that 0 ≤ 𝐷𝛾 ≤ 𝐼, and

lim
𝛾↓0

𝐷𝛾 = 0 and lim
𝛾↑∞

𝐷𝛾 = 𝐼 . (7.70)

Write (𝜆𝑖, 𝑒𝑖) for the eigenpairs of 𝐾 (𝑋, 𝑋) (𝐾 (𝑋, 𝑋)𝑒𝑖 = 𝜆𝑖𝑒𝑖) where the 𝜆𝑖 are
ordered in decreasing order. Then the eigenpairs of 𝐷𝛾 are (𝜔𝑖, 𝑒𝑖) where

𝜔𝑖 :=
𝛾

𝛾 + 𝜆𝑖
. (7.71)

Note that the 𝜔𝑖 are contained in [0, 1] and also ordered in decreasing order.

Writing 𝑌𝑖 for the orthogonal projection of 𝑌 onto 𝑒𝑖, we have

V(𝑛)
V(𝑠) + V(𝑛) =

∑𝑛
𝑖=1 𝜔

2
𝑖
𝑌2
𝑖∑𝑛

𝑖=1 𝜔𝑖𝑌
2
𝑖

. (7.72)

It follows that if the histogram of the eigenvalues of 𝐷𝛾 is concentrated near 0 or near
1, then the noise-to-signal ratio is non-informative since the prior 𝛾 dominates it. To
avoid this phenomenon, we select 𝛾 so that the eigenvalues of 𝐷𝛾 are well spread out
in the sense that the histogram of its eigenvalues has maximum or near-maximum
variance (see Fig. 7.6 for a good choice and a bad choice for 𝛾). If the eigenvalues
have an algebraic decay, then this is equivalent to taking 𝛾 to be the geometric mean
of those eigenvalues.
In practice, we use an off-the-shelf optimizer to obtain 𝛾 by maximizing the sample
variance of (𝜔𝑖)𝑛𝑖=1. If this optimization fails, we default to the median of the
eigenvalues. This ensures a balanced, well-spread spectrum for 𝐷𝛾, with half of
the eigenvalues 𝜆𝑖 being lower and half being higher than the median.

Rationale for the choices of 𝛾

The purpose of this section is to present a rationale for the proposed choices for 𝛾 in
Sec. 7.7 and 7.7. For the choice Sec. 7.7, we present an asymptotic analysis of the
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signal-to-noise ratio in the setting of a simple linear regression problem. According
to (7.67), 𝛾 must scale linearly in 𝑁; this scaling is necessary to achieve a ratio
that represents the signal-to-noise per sample. Without it (if 𝛾 remains bounded as
a function of 𝑁), this scaling of the signal-to-noise would converge towards 0 as
𝑁 → ∞. To see how we will now consider a simple example in which we seek to
linearly regress the variable 𝑦 as a function of the variable 𝑥, both taken to be scalar
(in which case 𝜓(𝑥) = 𝑥). Assume that the samples are of the form 𝑌𝑖 = 𝑎𝑋𝑖 + 𝜎𝑍𝑖
for 𝑖 = 1, . . . , 𝑁 , where 𝑎, 𝜎 ≠ 0, the 𝑍𝑖 are i.i.d. N(0, 1) random variables, and
the 𝑋𝑖 satisfy 1

𝑁

∑𝑁
𝑖=1 𝑋𝑖 = 0 and 1

𝑁

∑𝑁
𝑖=1 𝑋

2
𝑖
= 1. Then, the signal-to-noise ratio is

V(𝑠)
V(𝑠)+V(𝑛) withV(𝑠) = |𝑣 |2 andV(𝑛) = 1

𝛾

∑𝑁
𝑖=1 |𝑣𝑋𝑖 − 𝑌𝑖 |2 and 𝑣 is a minimizer of

min
𝑣∈R
|𝑣 |2 + 1

𝛾

𝑁∑︁
𝑖=1
|𝑣𝑋𝑖 − 𝑌𝑖 |2 . (7.73)

In asymptotic 𝑁 →∞ regime, we have 𝑣 ≈ 𝑎𝑁
𝛾+𝑁 and

V(𝑠)
V(𝑠) + V(𝑛) ≈

𝛾

𝑁
𝑎2

−𝑎2(𝛾/𝑁 + 1) + (𝑎2 + 𝜎2) (𝛾/𝑁 + 1)2
. (7.74)

If 𝛾 is bounded independently from 𝑁 , then V(𝑠)
V(𝑠)+V(𝑛) converges towards zero as

𝑁 → ∞, which is undesirable as it does not represent a signal-to-noise ratio per
sample. If 𝛾 = 𝑁 , then V(𝑠)

V(𝑠)+V(𝑛) ≈
𝑎2

4𝜎2+2𝑎2 , which does not converge to 1 as 𝑎 →∞
and 𝜎 → 0, which is also undesirable. If 𝛾 is taken as in (7.67), then 𝛾 ≈ 𝑁𝜎2 and

V(𝑠)
V(𝑠) + V(𝑛) ≈

𝑎2

(𝜎2 + 1) (𝑎2 + 𝜎2 + 1)
, (7.75)

which converges towards 0 as 𝜎 → ∞ and towards 1/(1 + 𝜎2) as 𝑎 → ∞, which
has, therefore, the desired properties.

Moving to Sec. 7.7, because the kernel can interpolate the data exactly we can no
longer use (7.66) to estimate the level of noise 𝜎. For a finite-dimensional feature
map 𝜓, with data (𝑋,𝑌 ), we can decompose 𝑌 = 𝑣𝑇𝜓(𝑋) +𝜎𝑍 into a signal part 𝑌𝑠
and noise part𝑌𝑠, s.t.𝑌 = 𝑌𝑠 +𝑌𝑛. While𝑌𝑠 belongs to the linear span of eigenvectors
of 𝐾 (𝑋, 𝑋) associated with non-zero eigenvalues, 𝑌𝑛 also activates the eigenvectors
associated with with the null space of 𝐾 (𝑋, 𝑋) and the projection of 𝑌 onto that
null-space is what allows us to derive 𝛾 in Sec. 7.7. Since in the interpolatory case, all
eigenvalues are strictly positive, we need to choose which eigenvalues are associated
with noise differently, as is described in the previous section. With a fixed 𝛾, we
see that if 𝜆𝑖 ≫ 𝛾, then 𝜔𝑖 ≈ 0, which contributes in (7.72) to yield a low noise-
to-signal ratio. Similarly, if 𝜆𝑖 ≪ 𝛾, this eigenvalue yields a high noise-to-signal
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ratio. Thus, we see that the choice of 𝛾 assigns a noise level to each eigenvalue.
While in the finite-dimensional feature map setting, this assignment is binary, here
we perform soft thresholding using 𝜆 ↦→ 𝛾/(𝛾 + 𝜆) to indicate the level of noise
of each eigenvalue. This interpretation sheds light on the selection of 𝛾 in equation
(7.67). Let 𝜓 represent the feature map associated with 𝐾 . Assuming the empirical
mean of 𝜓(𝑋𝑖) is zero, the matrix 𝐾 (𝑋, 𝑋) corresponds to an unnormalized kernel
covariance matrix𝜓𝑇 (𝑋)𝜓(𝑋). Consequently, its eigenvalues correspond to 𝑁 times
the variances of the 𝜓(𝑋𝑖) across various eigenspaces. After conducting Ordinary
Least Squares regression in the feature space, if the noise variance is estimated
as 𝜎̄2, then any eigenspace of the normalized covariance matrix whose eigenvalue
is lower than 𝜎̄2 cannot be recovered due to the noise. Given this, we set the soft
thresholding cutoff to be 𝛾 = 𝑁𝜎̄2 for the unnormalized covariance matrix 𝐾 (𝑋, 𝑋).

Z-score/quantile bounds on the noise-to-signal ratio.
If the data is only composed of noise, then an interval of confidence can be obtained
on the noise-to-signal ratio. To describe this consider the problem of testing the
null hypothesis H0 : 𝑓 † ≡ 0 (there is no signal) against the alternative hypothesis
H1 : 𝑓 † . 0 (there is a signal). Under the null hypothesis H0, the distribution of the
noise-to-signal ratio (7.68) is known and it follows that of the random variable

𝐵 :=
𝑍𝑇𝐷2

𝛾𝑍

𝑍𝑇𝐷𝛾𝑍
. (7.76)

Therefore, the quantiles of 𝐵 can be used as an interval of confidence on the noise-
to-signal ratio if H0 is true. More precisely, selecting 𝛽 such that P[𝐵 ≤ 𝛽𝛼] ≈ 𝛼
with 𝛼 = 0.05 as a prototypical example, we expect the noise to signal ratio (7.68)
to be, under H0, to be larger than 𝛽𝛼 with probability ≈ 1 − 𝛼. The estimation of 𝛽
requires Monte-Carlo sampling.

An alternative approach (in the large data regime) to using the quantile 𝛽𝛼 is to use
the Z-score

Z :=

𝑌𝑇𝐷2
𝛾𝑌

𝑌𝑇𝐷𝛾𝑌
− E[𝐵]√︁

Var[𝐵]
, (7.77)

after estimating E[𝐵] and Var[𝐵] via Monte-Carlo sampling. In particular if H0 is
true then |Z| ≥ 𝑧𝛼 should occur with probability ≈ 𝛼 with 𝑧0.1 = 1.65, 𝑧0.05 = 1.96
and 𝑧0.01 = 2.58.

Remark 7.7.2. Although the quantile 𝛽𝛼 or the Z-score Z can be employed to
produce an interval of confidence on the noise-to-signal ratio under H0 we cannot
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use them as thresholds for removing nodes from the list of ancestors as discussed
in Sec. 7.5 Indeed, observing a noise-to-signal ratio (7.68) below the threshold 𝛽𝛼
does not imply that all the signal has been captured by the kernel; it only implies that
some signal has been captured by the kernel 𝐾 . To illustrate this point, consider the
setting where one tries to approximate the variable 𝑥1 as a function of the variable
𝑥2. If 𝑥1 is not a function of 𝑥2, but of 𝑥2 and 𝑥3, as in 𝑥1 = cos(𝑥2) + sin(𝑥3), then
applying the proposed approach with 𝑌 encoding the values of 𝑥1, 𝑋 encoding the
values of 𝑥2, and the kernel 𝐾 depending on 𝑥2 could lead to a noise-to-signal ratio
below 𝛽𝛼 due to the presence of a signal in 𝑥2. Therefore, although we are missing
the variable 𝑥3 in the kernel 𝐾 , we would still observe a possibly low noise-to-signal
ratio due to the presence of some signal in the data. Summarizing if the data only
contains noise then V(𝑛)

V(𝑠)+V(𝑛) ≥ 𝛽𝛼 should occur with probability 1 − 𝛼. If the
event V(𝑛)

V(𝑠)+V(𝑛) < 𝛽𝛼 is observed in the setting of 𝐾 = 𝐾𝑠/𝑡=(7.58) where we try to
identify the ancestors of 𝑥1, then we can only deduce that 𝑥3, . . . , 𝑥𝑑 contain some
signal but perhaps not all of it (we can use this a criterion for pruning 𝑥2).

7.8 Supplementary information on examples.
Algebraic equations.
Although we have used Alg. 12 for the algebraic equations examples presented in
Fig. 7.4, Alg. 11 yields the same results with the default signal-to-noise threshold
𝜏 = 0.5.

The chemical reaction network.
Consider the chemical reaction network example illustrated in Fig. 7.4.(a). The
proposed mechanism for the hydrogenation of ethylene (C2H4) to ethane (C2H6),
is (writing [𝐻] for the concentration of 𝐻) modeled by the following system of
differential equations:

𝑑 [𝐻2]
𝑑𝑡

= −𝑘1 [𝐻2] + 𝑘−1 [𝐻]2

𝑑 [𝐻]
𝑑𝑡

= 2𝑘1 [𝐻2] − 2𝑘−1 [𝐻]2 − 𝑘2 [𝐶2𝐻4] [𝐻] − 𝑘3 [𝐶2𝐻5] [𝐻]
𝑑 [𝐶2𝐻4]

𝑑𝑡
= −𝑘2 [𝐶2𝐻4] [𝐻]

𝑑 [𝐶2𝐻5]
𝑑𝑡

= 𝑘2 [𝐶2𝐻4] [𝐻] − 𝑘3 [𝐶2𝐻5] [𝐻] .

(7.78)

The primary variables are the concentrations [𝐻2], [𝐻], [𝐶2𝐻4], and [𝐶2𝐻5] and
their time derivatives 𝑑 [𝐻2]

𝑑𝑡
, 𝑑 [𝐻]

𝑑𝑡
, 𝑑 [𝐶2𝐻4]

𝑑𝑡
, and 𝑑 [𝐶2𝐻5]

𝑑𝑡
. The computational hyper-

graph encodes the functional dependencies (7.78) associated with the chemical
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reactions. The hyperedges of the hypergraph are assumed to be unknown and the
primary variables are assumed to be known. Given 𝑁 samples from the graph of the
form (

[𝐻2] (𝑡𝑖), [𝐻] (𝑡𝑖), [𝐶2𝐻4] (𝑡𝑖), [𝐶2𝐻5] (𝑡𝑖)
)
𝑖=1,...,𝑁 , (7.79)

our objective is to recover the structure of the hypergraph given by (7.78), represent-
ing the functions by hyperedges. We create a dataset of the form (7.79) by integrating
50 trajectories of (7.78) for different initial conditions, and each equispaced 50 times
from 𝑡 = 0 to 𝑡 = 5. The dataset is represented in Fig. 7.4.(b) (the time derivatives
of concentrations are estimated by taking the derivatives of the interpolants of those
concentrations). We impose the information that the derivative variables are func-
tion of the non-derivative variables to avoid ambiguity in the recovery, as (7.78) is
not the unique representation of the functional relation between nodes in the graph.
We implement Alg. 11 with weights 𝛽 = [0.1, 0.01, 0.001] for linear, quadratic, and
nonlinear, respectively (Alg. 12 recovers the same hypergraph). The output graph
can be seen in Fig. 7.4.(b). We obtain a perfect recovery of the computational graph
and a correct identification of the relations being quadratic.

The Google Covid 19 open data.
Consider the example illustrated in Fig. 7.3.(e-k). Categorical data are treated as
scalar values, with all variables scaled to achieve a mean of 0 and a variance
of 1. We implement three distinct kernel types: linear, quadratic, and Gaussian,
with a length scale of 1 for the latter. A weight ratio of 1/10 is assigned between
kernels, signifying that the quadratic kernel is weighted ten times less than the
linear kernel. Lastly, the noise parameter, 𝛾, is determined using the optimal value
outlined in Sec. 7.7. Initially, a complete graph is constructed using all variables,
depicted in Fig. 7.3.(g). This construction is done using only linear and quadratic
kernels. The full graph is highly clustered and redundant information is eliminated
by selecting representative nodes for each cluster. Eliminating redundant nodes is
important for two reasons: firstly, it improves the graph’s readability, especially with
31 variables; secondly, it avoids hindering graph discovery. In an extreme case,
treating two identical variables as distinct would result in one variable’s ancestor
simply being its duplicate, yielding an uninformative graph. Subsequently, the graph
discovery algorithm is rerun, with reduced variables due to eliminating redundancy,
ushering us into a predominantly noisy regime. With fewer variables available, we
use additionally the nonlinear kernel. Two indicators are employed to navigate our
discovery process: the signal-to-noise ratio and the Z-test. The former quantifies the



305

degree to which our regression is influenced by noise, while the latter signals the
existence of any signal. We follow the procedure in algorithm 12, resulting in the
graph presented in Fig. 7.3.(k).

Cell signaling network
Consider the example Fig. 7.1.(l) from (Sachs et al., 2005) and Fig. 7.4.(h-j). To
identify the ancestors of each node, we apply the algorithm in two stages. First, we
learn the dependencies using only linear and quadratic kernels. Fig. 7.4.(h) identifies
the resulting graph learned given a subset of 𝑁 = 2, 000 samples chosen uniformly
at random from the dataset. We observe that the graph identified by the algorithm
consists of four disconnected clusters where the molecule levels in each cluster are
closely related by linear or quadratic dependencies (all connections are linear except
for the connection between Akt and PKA, which is quadratic). These edges match
a subset of the edges found in the gold standard model identified in (Sachs et al.,
2005). With perfect dependencies that have no noise, one can define constraints
that reduce the total number of variables in the system. For this noisy dataset, we
treat these dependencies as forming groups of similar variables and introduce a
hierarchical approach to learn the connections between groups. Second, we run
the graph discovery algorithm after grouping the molecules into clusters. For each
node in the graph, we identified the ancestors of each node by constraining the
dependence to be a subset of the clusters. In other words, when identifying the
ancestors of a given node 𝑖 in cluster 𝐶, the algorithm is only permitted to (1)
use ancestors that do not belong to cluster 𝐶, and (2) include all or none of the
variables in each cluster ( 𝑗 in cluster 𝐷 ≠ 𝐶 is listed as an ancestor if and only
if all other nodes 𝑗 ′ in cluster 𝐷 are also listed as ancestors). The ancestors were
identified using a Gaussian (fully nonlinear) kernel and the number of ancestors
were selected manually based on the inflection point in the noise-to-signal ratio.
The resulting graph is depicted in Fig. 7.4.(i). Each edge is weighted based on its
signal-to-noise ratio. We observe that there is a stronger dependence of the Jnk,
PKC, and P38 cluster on the PIP3, Plcg, and PIP2 cluster, which closely matches the
gold standard model. As compared to approaches based on acyclic DAGs, however,
the graph identified by our algorithm also contains feedback loops between the
various molecule levels. Fig. 7.4.(i-j) displays a side-by-side comparison between
the graph identified with our method and the graph generated in (Sachs et al., 2005).
To aid in this comparison, we have highlighted different clusters in distinct colors.
We emphasize that while the Bayesian network analysis in (Sachs et al., 2005)
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relied on the control of the sampling of the underlying variables (the simultaneous
measurement of multiple phosphorylated protein and phospholipid components in
thousands of individual primary human immune system cells, and perturbing these
cells with molecular interventions), the reconstruction obtained by our method did
not use this information and recovered functional dependencies rather than causal
dependencies. Interestingly, the information recovered through our method appears
to complement and enhance the findings presented in (Sachs et al., 2005) (e.g.,
the linear and noiseless dependencies between variables in the JNK cluster is not
something that could easily be inferred from the graph produced in (Sachs et al.,
2005)).

BCR reaction network
In the high-dimensional example of the BCR reaction network, the computations of
terms of the form 𝑦𝑇 𝑘𝑜 (𝑋, 𝑋)𝑦 (i.e., the activations), where 𝑦 ∈ R𝑛 and 𝑘𝑜 (𝑋, 𝑋) is
the 𝑜-th coordinate of the quadratic kernel (𝑘 (𝑥𝑖, 𝑥 𝑗 ) = (1 + ⟨𝑥𝑖, 𝑥 𝑗 ⟩)2) becomes the
computational bottleneck of our method. If we let 𝑥1, . . . , 𝑥𝑛 ∈ R𝑝 be the points and
𝑥𝑜
𝑖

be the 𝑜-th coordinate of 𝑥𝑖, we can compute the activation of the 𝑜−th coordinate
using

𝑘𝑜 (𝑥𝑖, 𝑥 𝑗 ) = (1 + 𝑥𝑜𝑖 𝑥𝑜𝑗 )2 − 1 + 2𝑥𝑜𝑖 𝑥
𝑜
𝑗 ⟨𝑥−𝑜𝑖 , 𝑥−𝑜𝑗 ⟩, (7.80)

where 𝑘𝑜 is the 𝑜−th coordinate of the kernel and 𝑥−𝑜
𝑖

represents the remaining
coordinates of 𝑥𝑖. To compute the 𝑛 × 𝑛 kernel matrix of 𝑘𝑜 for each 𝑜 ∈ {1, .., 𝑝},
we must compute 𝑝 × 𝑛× 𝑛 inner products in R𝑝, which is a very large computation.
Instead, we may use the following reformulation to speed up computations. Notice
⟨𝑥𝑖, 𝑥 𝑗 ⟩ = 𝑥𝑜

𝑖
𝑥𝑜
𝑗
+ ⟨𝑥−𝑜

𝑖
, 𝑥−𝑜

𝑗
⟩, and therefore 𝑘𝑜 (𝑥𝑖, 𝑥 𝑗 ) = 2𝑥𝑜

𝑖
𝑥𝑜
𝑗
⟨𝑥𝑖, 𝑥 𝑗 ⟩ + 2𝑥𝑜

𝑖
𝑥𝑜
𝑗
−

(𝑥𝑜
𝑖
𝑥𝑜
𝑗
)2. Now, define 𝑣𝑜 = (𝑥𝑜

𝑖
𝑦𝑖)𝑝𝑖=1 and 𝑤𝑜 = ((𝑥𝑜

𝑖
)2𝑦𝑖)𝑝𝑖=1, and note that

𝑦𝑇𝐾𝑜𝑦 =
∑︁
𝑖, 𝑗

2𝑦𝑖𝑥𝑜𝑖 𝑦 𝑗𝑥
𝑜
𝑗 (1 + ⟨𝑥𝑖, 𝑥 𝑗 ⟩) −

∑︁
𝑖, 𝑗

𝑦𝑖𝑦 𝑗 (𝑥𝑜𝑖 𝑥𝑜𝑗 )2 (7.81)

and so defining 𝐾 = (2(1 + ⟨𝑥𝑖, 𝑥 𝑗 ⟩))𝑛𝑖, 𝑗=1 we have that

𝑦𝑇𝐾𝑜𝑦 = 𝑣
𝑜𝑇𝐾𝑣𝑜 −

(
𝑝∑︁
𝑖=1

𝑤𝑜𝑖

)2

. (7.82)

Note that 𝐾 is computed just once for all 𝑝, and only 𝑣𝑜 and 𝑤𝑜 change for every
ancestor calculation, which is where the main computational gain comes from. One
may find in the GitHub repository of the paper a comparison of the two methods
of computations and observe a tenfold speedup. This speedup is even larger in

https://github.com/TheoBourdais/ComputationalHypergraphDiscovery/blob/main/examples/faster_activation_computation.ipynb
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our implementation of the BCR example, as GPU acceleration enables the second
method to run even faster.
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