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ABSTRACT iv

Percolation on a transitive graph is an idealized mathematical model for a homogeneous system
undergoing a phase transition. We will investigate how the geometry of an infinite transitive
graph determines whether percolation undergoes a phase transition, and if so, at what critical point.
Building on these ideas, we will develop a new theory of percolation on finite transitive graphs. This
theory unifies the percolation phase transition on infinite transitive graphs with the giant-cluster

phase transition in the celebrated ErdGs-Rényi model from combinatorics.



Chapter 1 1

INTRODUCTION

Phase transitions appear in our lives in both obvious and subtle ways. The most vivid examples
come from physics: as temperature slowly increases past certain critical points, ice suddenly melts
and magnets lose their magnetism. The example that received the most news coverage during the
recent Covid pandemic concerned the so-called Ry-value: whether Ry < 1 or Ry > 1 would predict
whether the number of infected individuals would decay or grow exponentially. More hidden phase
transitions are present in the formation of traffic jams and the average-case computing time required

by an algorithm.

Phase transitions are in fact a very typical occurence anytime one assembles many tiny identical
components (picture: atoms arranged in a lattice) in which each component is only allowed
to interact with its neighbouring components and one varies this “local” interaction strength.

Percolation is the mathematician’s caricature of this setup.

1.1 Percolation

We will model an assembly of tiny components by a graph G = (V, E). We will always assume
that graphs are connected, undirected, simple, have countably many vertices, and that each vertex
has at most finitely many neighbours. To model that all of the tiny components are identical,
we will require that G is (vertex-)transitive, meaning that for all vertices u and v, there exists an
automorphism ¢ of G such that ¢(u) = v. This includes, for example, the usual Eucliean lattices

Z4, regular trees, and more generally, any Cayley graph of a finitely generated group.

Fix a parameter p € [0, 1], which will be our “local” interaction strength. Build a random spanning
subgraph w C G by independently choosing, for each edge e € E, whether to include e (with
probability p) or delete e (with probability 1 — p). (See figure [[.1]) The law of w is called
(Bernoulli bond) percolation. We denote this law by P,,. To find the phase transition in this model,
track the clusters (i.e. connected components) of w while varying p. For simplicity, let us start by
assuming that G is infinite. By Kolmogorov’s 0-1 law and the monotonicity of this model with

respect to p, there is always some critical parameter p.(G) € [0, 1] such that

: o 0, ifp<pec
P, (w contains an infinite cluster) =

1, ifp>p..



From a utilitarian perspective, a good reason to study percolation is that this toy model provides a
testing ground for new techniques, which often trickle down to more intricate, physically-relevant
models some years later. From an aesthetic perspective, percolation provides many simple-to-state
yet challenging-to-solve problems that require mathematicians to exercise their creativity. This is
best-illustrated by the most notorious open problem in the area: prove that when G is the Euclidean
lattice Z3,

P,. (w contains an infinite cluster) = 0.

This model was first introduced by Broadbent and Hammersley in 1957 to model the flow of a
fluid through a porous medium. In their setup, the graph G is a Euclidean lattice like Z¢, and
indeed, most work on percolation has traditionally taken G to be such a lattice or to be a tree. The
scope widened in 1996, when Benjamini and Schramm launched an influential research programme
to systematically study percolation on general infinite transitive graphs. This programme is the
context in which the present thesis should be understood. None of the results in this thesis are
new for Euclidean lattices or trees, nor are we concerned with any other particular transitive graph;
our goal has been to understand basic features of the percolation phase transition that hold for all

transitive graphs.

*—0
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Figure 1.1: Example of a graph G (left) and a spanning subgraph w (right).

1.2 Transitive graphs

In this section, we will take a tour of the zoo that is the space of transitive graphs. Given a transitive
graph G = (V, E), we will always write o to denote an arbitrary vertex. (Statements will always
hold independently of the choice of o because G is transitive.) We write dist = distg to denote
the graph metric on G. Given n > 1 and u € V, we write B,(u) = BS (u) to denote both the set
{v € V : dist(u, v) < n} and the subgraph of G that this set of vertices induces. Hopefully it will



always be clear from context which of these definitions is intended. We also adopt the convention
that B, := B,(0).

Local and global similarity

It helps to think of the geometry of a given infinite transitive graph G in two parts: the small-scale,
local structure and the large-scale, global structure. Indeed, an important principle in the study
of percolation on transitive graphs is that certain key features such as the behaviour of the model
around the critical point, or the value of the critical point itself, should be entirely determined by
one part or the other. Rather than attempt to intrinsically define what the “local” and “global”
structure are of a given infinite transitive graph G, let us instead define what it means for a given

pair of graphs to have similar global or local structures.

The local metric on the space of transitive graphs is given by, for each pair G, H of transitive graphs,
diStloc (G, H) =0 sup{nZl:BnG EB,’;’},

where BS = B means that the corresponding rooted subgraphs (rooted at o) are isomorphic.
The topology this induces on the space of all transitive graphs is called the local (aka Benjamini-
Schramm) topology. For example, the sequence of tori ((Z/nZ)2 n2> 1) and the sequence of

cylinders (Z x (Z/nZ) : n > 1) both converge locally to the square lattice Z?.

On the other hand, quasi-isometry provides a way to measure the global similarity of graphs. Given
metric spaces (Vi, dy) and (V3, d»), and given constants C, D > 0, we say that d; is (C, D)-quasi-

isometric to d, if there exists a function ¢ : Vi — V, such that for all u,v € Vi,
1
Edl(”,v) - D < dy (¢p(u), p(v)) < Cdy(u,v) + D,

and for every vertex x € V,, there exists some u € V| with d,(x, ¢(u)) < D. In other words,
¢ roughly preserves distances and is roughly surjective. We simply say that that d; and d; are
quasi-isometric if there exists C, D > 0 such that d; is (C, D)-quasi-isometric to d,, and it can be
easily verified that this defines an equivalence relation. We naturally extend all of these definitions
to graphs by identifying each graph with its graph metric. For example, the square lattice (graph)
Z, is quasi-isometric to the plane R? (with its usual metric), and the cylinder (Z x (Z/100Z)) is

quasi-isometric to the line Z.

When working with infinite transitive graphs, we will not be so interested in the constants of quasi-
isometries, and we simply regard two quasi-isometric infinite transitive graphs as having “the same”

global structure. However, this notion is not useful when working with finite transitive graphs, since
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all finite graphs are quasi-isometric to each other. Instead, the more relevant way to measure the

global similarity of two non-trivial compact metric spaces (Vy, d;) and (V», d3) (such as the graph

metrics of two finite graphs) is to first normalise, i.e. consider the metrics dy := ma’ 1 on Vi and
dy = mdz on d> (where diam denotes the diameter of a metric space) then take the Gromov-

Hausdorff distance distGH(d~1, d~2). Recall that this Gromov-Hausdorftf distanceﬂ 1s defined to be
the infimum & > 0 such that there exists a third metric space (V3, d3) and isometric embeddings
¢1: (V,dy) = (V3,d3) and ¢, : (V,,dp) — (V3,d3) such that the Hausdorff distance with respect

to d3 between the images ¢ (V) and ¢,(V3) in V3 is at most €. For example, the diameter-rescaled
2
sequence of tori (27”2/ nZ) :n > 1| (where, given a graph G and a constant ¢ > 0, we write ¢cG

for the graph metric on G where all distances are scaled by ¢) Gromov-Hausdorff converges to the
torus S' x S! with the L' metric.

Growth rates
Let G be the set of all infinite transitive graphs. An important way to begin classifying the elements
of G is according to their growth rate, i.e. the asymptotic behaviour of the function Gr : N — N

sending Gr : n — |B,|, where |B,| denotes the number of vertices in B,,.

In an ideal world, we would have a classification of all possible global geometries of infinite
transitive graphs, similar in spirit to the classification of all finite simple groups. For example,
we might wish for a family of easy to describe infinite transitive graphs such that every infinite
transitive graph is quasi-isometric to one in this list. Unfortunately, this is not the case, and no one

expects that such a classification would ever be possible.

However, spectacularly, there is a kind of classification if we restrict to those G € G with polynomial
growth, i.e. those for which there there exist C, D < oo such that Gr(n) < CnP for all n. Indeed,
thanks to deep, classical work of Gromov and Trofimov, every infinite transitive graph of polynomial
growth is quasi-isometric to the Cayley graph of a special kind of group called a nilpotent group.
While we will not define what it means to be a nilpotent group here, let us simply say that it is a

generalisation of being abelian, so for example, the group Z¢ is always nilpotent.

Thanks to this so-called structure theory for infinite transitive graphs of polynomial growth, certain
important results about probability on general infinite transitive graphs proceed by a structure vs
expansion dichotomy: either the graph has polynomial growth, in which case we can apply this

detailed structure theory, or the graph has super-polynomial growth, in which case this fast growth

'Up to doubling &, the same notion can be expressed in terms of quasi-isometries with constants, although this
latter definition is less commonly used.



can itself be exploited directly.

At the other extreme from polynomial growth, we say that an infinite transitive graph G has
exponential growth if there exist ¢, > 0 such that Gr(n) > ce%” for all n. For example, this
includes the d-regular tree for every d > 3. The hypothesis of exponential growth can itself be
helpful when studying percolation. For example, the analogue of the “notorious open problem”
about critical percolation on Z> was proved for all graphs of exponential growth. There also exist
mysterious transitive graphs that have neither polynomial growth nor exponential growth, and are

therefore said to have intermediate growth (e.g. the “Grigorchuk group”).

Expansion

One way that having a fast growth rate (“expansion” in the “structure vs expansion” dichotomy)
can be exploited is as follows: for transitive graphs, a fast growth rate implies good isoperimetric
properties; good isoperimetric properties imply that a random walk on the graph has good escape
properties; and these escape properties can be used to prove geometric facts about a graph that
serve percolation arguments. This is a common theme running through the heart of both our work

on non-triviality and locality (discussed in later sections), for example.

Let us be more precise about what we mean by “good isoperimetric and escape properties”. Let
G = (V, E) be an infinite graph with bounded vertex degrees. Given a set of vertices S C V, let 95
be the edge boundary of S, i.e. the set of all edges having one endpoint in S and the other in V'\S.
Given d > 1, we say that G satisfies a d-dimensional isoperimetric inequality if there exists ¢ > 0

such that for every finite set of vertices S,
d-1
0S| > c|S] 7 .
Correspondingly, we define the isoperimetric dimension of G to be
Dim G :=sup{d > 1 : G satisfies a d-dimensional isoperimetric inequality} .

For example, DimZ? = d for all d > 1. Some classical results about random walks on general
graphs are that if Dim G > 2, then simple random walk is transient (i.e. has a positive probability
to never return to its starting point.), and if Dim G > 4, then the paths of two independent simple

random walks have a positive probability to never intersect.

An important consequence of the aforementioned structure theory for polynomial growth is that
an infinite transitive graph G has polynomial growth if and only if Dim G < oo. In particular, if a
graph does not have polynomial growth, then Dim G = oo and hence, for example, simple random

walk on G is transient.



Another notion of good isoperimetry, which is stronger than having Dim G = oo and which also
plays an important role in percolation, is nonamenability. We say that G is nonamenable if there

exists ¢ > 0 such that for every finite set of vertices S,
|0S| > c|S].

This is the infinite-graph analogue of being an expander graph. A graph that is not nonamenable
is said to be amenable. A fundamental result in the study of percolation on general graphs is that

if G is amenable, then
P, (w contains at least two infinite clusters) = 0 forall p € [0, 1],

and a major open conjecture is that the converse is true too.

1.3 Non-triviality

The first basic question when embarking on a general study of percolation on arbitrary infinite
transitive graphs is to understand for which graphs percolation undergoes a non-trivial phase
transition, meaning that the critical point p. is strictly between 0 and 1. It is easy to show
(exercise!) that p. > 0, and indeed this holds for every infinite (not necessarily transitive) graph
whose vertex degrees are bounded above uniformly. So the real question is to understand when
pe < 1. This question about whether percolation on a given graph undergoes a non-trivial phase
transition is actually equivalent to the analogous questions for many other statistical mechanics

models on the same graph, most notably for the Ising model of magnetism.

General graphs
Before restricting to transitive graphs, let us start by considering a more general setup. Let G be

any infinite (not necessarily transitive) graplﬂ
Does “p.(G) < 1” have a geometric counterpart?

A celebrated argument from 1930s physics gives a geometric condition P that is sufficient (but a
priori not necessary) for p. < 1, defined in terms of cutsets. Given a vertex v, we say that a set
of edges I is a cutset from v to oo if v belongs to a finite component of the graph (V, E\IT). We
say that a cutset IT from v to oo is minimal if I1 does not contain a proper subset I1’ that is also
a minimal cutset from v to co. Consider the exponential growth rate for the number of minimal

cutsets of size n:

k(G) = supsup [{IT : IT is a minimal cutset from v to co of size n}ll/" ,

n>1 veV

ZAs always, we assume that G is connected, undirected, etc.
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and consider the following uniform analogue of p.(G):
po(G) :==inf{p € [0,1] : in"f; P, (v is in an infinite component) > 0}.
ve

Note that in general, p:(G) > p.(G), and if G happens to be transitive, then p’(G) = p.(G). Now

the so-called Peierls argument establishes the following:

Theorem 1.3.1 (Peierls, 1936). For every infinite graph, if k < oo then p;. < 1.

With Severo and Tassion, we recently established that the converse holds too:

Theorem 1.3.2 (Easo, Severo, Tassion). For every infinite graph, k < oo if (and only if) p;. < 1.

Transitive graphs

It is easy to see that the line Z satisfies p. = 1, and indeed, so does every infinite transitive graph
that is quasi-isometric to Z. In their original work introducing percolation on general transitive
graphs, Benjamini and Schramm conjectured that conversely, these are in fact the only infinite

transitive graphs with p, = 1.

Conjecture 1.3.3 (Benjamini and Schramm 1996). Every infinite transitive graph that is not quasi-

isometric to Z satisfies p. < 1.

Babson and Benjamini then made the following (a priori) stronger conjecture, which is actually

completely deterministic.

Conjecture 1.3.4 (Babson and BenjaminiE] 1999). Every infinite transitive graph that is not quasi-

isometric to Z satisfies k < oo.

Babson and Benjamini proved their own conjecture in the special case of Cayley graphs of finitely
presented groups, and Timar later showed that the property “k < oo’ is invariant under quasi-
isometries. By the structure theory of polynomial growth, these results imply that for every infinite
transitive graph G satisfying Dim G < oo, if G is not quasi-isometric to Z, then « < oo and (hence)
pe < 1. In particular, to prove either of the above conjectures, it suffices to work with graphs

satisfying Dim G = co.

In a breakthrough work, Duminil-Copin, Goswami, Raoufi, Severo, and Yadin resolved the p. < 1

conjecture of Benjamini and Schramm. More precisely, they proved the following theorem, and

3To be historically accurate, they made this conjecture in the case of Cayley graphs, and Benjamini later asked
about arbitrary transitive graphs more generally.



by the previous paragraph, this was sufficient to resolve the conjecture. Their proof involved an
intricate multi-scale interpolation scheme comparing probabilities of certain events for percolation

to those of a percolation-like model arising from the Gaussian free field.

Theorem 1.3.5 (Duminil-Copin, Goswami, Raoufi, Severo, and Yadin). Every infinite graph with
Dim G > 4 satisfies p. < 1.

Our proof of Theorem can be tweaked to also prove the following theorem. This yields a
much simpler and shorter proof of Theorem [I.3.5] and resolves the x < co conjecture of Babson

and Benjamini. It remains open to extend this result to Dim G > 1.

Theorem 1.3.6 (Easo, Severo, Tassion). Every infinite graph with Dim G > 2 satisfies k < oo.

1.4 Locality

As explained in the previous section, p. is strictly between 0 and 1 for every infinite transitive
graph that is not quasi-isometric to Z. A natural follow-up question is: what is the value of p.
exactly? Unfortunately, there is no reason in general to expect a simple formula for p., even in
natural examples like the three-dimensional lattice Z>. (There are a few spectacular exceptions to
this rule.)

A weaker question 1s: which aspect of the geometry of G 1is responsible for determining the value
of p.? Schramm’s locality conjecture asserted that when p. is strictly between 0 and 1, the exact
value of p. should be entirely determined by the local geometry of G. More precisely, for any
g > 0, there should exist n > 1 such that for every pair of infinite transitive graphs G and H,
neither of which is quasi-isometric to Z, if B¢ is isomorphic to BZ, then |p.(G) — p.(H)| < e.
Equivalently, letting 9 denote the set of all infinite transitive graphs that are not quasi-isometric to
Z, endowed with the local topology, the function p. : H — (0, 1) should be continuous. Thanks
to fundamental work of Grimmett and Marstrand (which preceded Schramm’s conjecture about
general transitive graphs), this was know in the special case of Euclidean lattices. In particular, it
follows from their work that for every d > 2, the sequence of graphs (Zd X (Z/nZ) : n > 1), which

Zd+l

converges locally to , satisfies

De (Zd X (Z/nZ)) - pe (Zd“) asn — oo,
Various authors verified special cases of Schramm’s locality conjecture (and some variants to others

models). Most notably, by exploiting the structure theory discussed earlier, Contreras, Martineau,

and Tassion proved Schramm’s locality conjecture for all infinite transitive graphs of polynomial

8



growth. Building on this work and new ideas, Hutchcroft and I were able to resolve Schramm’s

locality conjecture in its entirety.

Theorem 1.4.1 (Easo and Hutchcroft). The function p. : H — (0, 1) is continuous.

This theorem, which in this formulation appears quite abstract, can in fact be reduced to a more
concrete statement about propagating connnection bounds. Very roughly, it suffices to prove that
the statement P (&, n, p) that “every pair of vertices at distance < n apart are connected under P,

with probability at least £” satisfies a general implication of the form
Pe,n,p) — P,n',p+0),

where 6 > 0, &’ < g, n’ > n, and which is quantitatively strong, i.e. ¢ is small, n’ is large, and &’ is

not too small. (The actual implication we end up proving is quite a bit more intricate.)

To prove such an implication, we split into various cases depending on the way that the graph looks
around the current scale n, exploiting a kind of “structure vs expansion” dichotomy as mentioned
earlier. In one case, we apply a refinement of the structure theory for transitive graphs of polynomial
growth in order to implement the methods of Contreras, Martineau, and Tassion. (In fact, we had
to engage with this structure theory more substantially than did previous works on percolation, and
in particular, Hutchcroft and I ended up writing a companion paper about groups of polynomial
growth.) In another case, we exploit the hypothesis that |B,| is large in order to implement a
new percolation argument that works more efficiently when we have “more vertices packed in a
smaller space”. In a third case, we use the trajectories of random walks to probabilistically prove
deterministic facts about the geometry of G around scale n. These deterministic facts then play
the role that structure theory did in the first case, again allowing us to implement the methods of

Contreras, Martineau, and Tassion.

The two key difficulties were that (1) different transitive graphs can have very different geometric
properties, e.g. a regular tree and a Euclidean lattice, and therefore require different arguments, and
(2) a single transitive graph can have very different geometric properties from one scale to the next,
e.g. a graph with (eventually) polynomial growth may look like a tree up to a large finite scale, so

we need to thriftily exploit geometric hypotheses that can only be assumed to hold at a single scale.

1.5 Finite graphs
The story of percolation theory on infinite transitive graphs is only one half of the story of this

model. In 1960, roughly when Broadbent and Hammersley introduced so-called percolation



theory on Euclidean lattices, Erdds and Rényi introduced percolation on the complete graph K,
with n vertices. This is the well-known Erdds-Rényi model (or simply random graph) model in
combinatorics. In this setting, one studies the threshold for the emergence of a giant (as opposed
to infinite) cluster under percolation. The fundamental result is that percolation on K, undergoes a

phase transition around p = % in the sense that for every fixed € > 0, there exists 6 > 0 such that

Kn
I+&
n

lim P (the largest cluster contains > dn vertices) = 1,
n—oo

whereas for every 6 > 0,

lim PI& (the largest cluster contains > on vertices) = 0.

n—oo

We say that the sequence (1/n),s; is the percolation threshold for the sequence of complete
graphs. (While we call this the threshold, note that a percolation threshold is only ever unique up

to multiplication by 1 + o(1).)

There has since been a tremendous amount of work on this model and on percolation on the
sequence of hypercubes ({0, 1}"),>1. Note that hypercubes and complete graphs are both examples
of transitive graphsﬂ We have been working to develop a theory of percolation on general finite
transitive graphs that forms a bridge between these canonical finite graph models and the rich
theory of percolation on infinite transitive graphs. As in the Erd6s-Rényi model, in this theory, we

study the phase transition for the emergence of a giant cluster.

Roughly speaking, we can think of the theory of percolation on infinite transitive graphs as the
theory of percolation on microscopic (i.e. O(1)) scales in bounded-degree finite transitive graphs.
In this sense, the finite graph theory generalises the infinite graph theory. (A limitation of this
maxim is that not every infinite transitive graph can be locally approximated by finite transitive
graphs.) In particular, certain basic questions in the finite graph theory have no natural analogues
in the infinite graph theory. For example, the uniqueness/non-uniqueness of giant clusters is not
directly related to the uniqueness/non-uniqueness of infinite clusters, which is instead related to the

microscopic metric distortion of giant clusters.

Hutchceroft and I established the basic features of the supercritical phase of percolation on finite
transitive graphs. Together, we showed that the giant cluster is almost surely unique (except in
the trivial cases), resolving a conjecture of Benjamini from 2001. Our argument has already

been applied by others to spherical Gaussian ensembles, and with Hutchcroft, we are extending

“There has also been a great deal of work on families of finite graphs that are not necessarily transitive, e.g.
arbitrary dense graphs.

10



our arguments to establish results about the Potts model that are new even for tori. In a sequel
to this work on uniqueness, with Hutchcroft we established that the density of this unique giant
concentrates around some limit and fully characterised those graphs for which this limiting density
i1s mean-field (meaning like on a tree). Our argument in this sequel relies on a new application
of sharp-threshold theory, applied (unusually) to study events that obviously do not have sharp
thresholds.

This analysis of the supercritical phase did not address the basic question of whether, (in the
language of Bollobds, Borgs, Chayes, Riordan for example), percolation on finite transitive graphs
has a phase transition, meaning that a giant cluster emerges suddenly at some threshold. By
combining the supercritical analysis with Vanneuville’s new proof of an old result about infinite
graphs, we proved that such a phase transition does always occur (except in the trivial cases). Note
that this result (and those about the supercritical phase in the previous paragraph) hold for all finite
transitive graphs, with possibly diverging vertex degrees. In particular, this result recovers the
classical fact that percolation on large complete graphs or hypercubes undergoes a phase transition

but via very soft and general arguments.

The theory of percolation on finite transitive graphs is intimately linked with the theory on infinite
transitive graphs if we restrict our study to families of finite transitive graphs with uniformly
bounded vertex degrees. Indeed, with respect to the local topology, every infinite set G of finite
transitive graphs with bounded degrees is relatively compact, and every graph in the boundary
of G is infinite. Our very recent work combined several ideas from the works discussed above
about finite graphs and about Schramm’s locality conjecture to establish that in some sense the
sudden emergence of a giant cluster for percolation on bounded-degree finite transitive graphs is
“the same” phase transition as the usual emergence of an infinite cluster for percolation on infinite
transitive graphs. More precisely, we considered the following pair of questions, which are actually

equivalent:

1. Does percolation on a large bounded-degree finite transitive graph G have a sharp phase
transition? This means that in the subcritical phase of percolation, the largest cluster is with

high probability not just sublinear but logarithmic in the total number of vertices in G.

2. If a finite transitive graph G and an infinite transitive graph H are close in the local sense,
does the critical point for the emergence of a giant cluster in G approximately coincide with

the critical point for the emergence of an infinite cluster in H?

11



Unfortunately, the answer to both of these questions in general is no. For example, take the
sequence (Z, X Z f(n)):;l for any f : N — N growing fast. This sequence always converges locally
to Z2, where the critical point for the emergence of an infinite cluster is p, = % On the other
hand, provided that f grows sufficiently fast, the threshold for the emergence of a giant cluster in
Zp X Ly Will be as in the sequence of cycles, around p. = 1. Moreover, for percolation of any
fixed parameter p € (%, 1) on Z,, X Z¢(n), the order of the largest cluster will then typically be
much larger than logarithmic but much smaller than linear in the total number of vertices. The
problem is that these graphs are long and thin, coarsely resembling long cycles. In particular,
after suitably rescaling, their graph metrics (rapidly) converge in the Gromov-Hausdorff metric to
the unit circle. We proved that this is in fact the only possible obstacle. This theorem provides a
direct way to translate results and conjectures about percolation on general (non-one-dimensional)
infinite transitive graphs into statements about percolation on general (non-one-dimensional) finite

transitive graphs.
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PAPERS INCLUDED

The first paper explores the question: when does percolation on an infinite graph G undergo a

non-trivial phase transition?

1. Counting minimal cutsets and p,. < 1

Joint with Severo and Tassion

The next two papers resolve Schramm’s locality conjecture that the value of the critical point for
percolation on a given infinite transitive graph G is typically entirely determined by the local (i.e.
microscopic) geometry of G. The first paper gives the proof itself, and the second paper establishes

a required ingredient about groups of polynomial growth.

2. The critical percolation probability is local

Joint with Hutchcroft

3. Uniform finite presentation for groups of polynomial growth
Joint with Hutchcroft

(Published in Discrete Analysis: https://doi.org/10.19086/da.127778)

The next two papers establish the basic features of the giant clusters that form in the supercritical

phase of percolation on finite transitive graphs.

4. Supercritical percolation on finite transitive graphs I: Uniqueness of the giant compo-

nent
Joint with Hutchcroft
(Published in Duke Mathematical Journal: https://doi.org/10.1215/00127094-2023-0066)
5. Supercritical percolation on finite transitive graphs II: Concentration, locality, and
equicontinuity of the giant’s density

Joint with Hutchcroft

The next paper establishes that percolation on a finite transitive graph typically undergoes a phase

transition in the sense that a giant cluster emerges suddenly around a single critical point.



6. Existence of a percolation threshold on finite transitive graphs

(Published in International Mathematics Research Notices: https://doi.org/10.1093/imrn/rnad222)

The next paper establishes that this phase transition for percolation on a bounded-degree finite
transitive graph G is typically sharp in the sense that the subcritical clusters are logarithmically
small. Equivalently, if G approximates an infinite transitive graph H, then the critical point for the
emergence of a giant cluster in G approximately coincides with the critical point for the emergence

of an infinite cluster in H.

7. Sharpness and locality for percolation on finite transitive graphs
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Chapter 2 15

COUNTING MINIMAL CUTSETS AND p. < 1

Joint work with Franco Severo and Vincent Tassion

Abstract

We prove two results concerning percolation on general graphs.

* We establish the converse of the classical Peierls argument: if the critical parameter for (uniform)
percolation satisfies p. < 1, then the number of minimal cutsets of size n separating a given
vertex from infinity is bounded above exponentially in n. This resolves a conjecture of Babson

and Benjamini from 1999.

* We prove that p. < 1 for every uniformly transient graph. This solves a problem raised by
Duminil-Copin, Goswami, Raoufi, Severo and Yadin, and provides a new proof that p. < 1 for

every transitive graph of superlinear growth.

2.1 Main results

Let G = (V, E) be an infinite, connected, locally finite graph. A set of edges F C E is called a
cutset from a vertex v to oo if v belongs to a finite connected component of (V, E \ F). A cutset is
called minimal if no proper subset of it is a cutset. Let Q,(v) be the set of minimal cutsets from v
to oo of cardinality n and consider the quantity

gn = sup |Q,(v)|. (2.1.1)
veV

Here || := 0. We emphasize that g,, = oo is possible, for example for G = Z and n = 2. In this
paper, we are interested in cases where the number of cutsets g, grows at most exponentially with
n, and we define

«(G) := supq./". (2.1.2)

n>1
Let P, denote (Bernoulli bond) percolation of parameter p € [0, 1] on G, where each edge is
open with probability p independently of the other edges. Consider the percolation probabilities
0,(p) :=P,(v < o0), where v <> oo denotes the event that v belongs to an infinite open connected

component. We define the critical parameter for uniform percolation as

po(G) :=inf{p € [0,1] : 6" (p) > O}, (2.1.3)



where 6%(p) :=inf,cy 6, (p).

By the classical Peierls argument [Pei36a]] if k(G) < oo, then percolation on G has a uniformly

percolating phase in the sense that p7(G) < 1. Our first theorem establishes the converse.

For every infinite, connected, locally finite graph G we have

piG) <1 & k(G) < . (2.1.4)

Currently, the geometric condition x(G) < oo is not well understood. Our second result gives a
sufficient condition based on the simple random walk. Given a vertex v, let P, be the law of a

simple random walk (X;);°; on G starting at v. We say that G is uniformly transient if
in‘f/ [dy-P,(Vt>1: X, #v)] >0, (2.1.5)
ve

where d, denotes the degree of v.

Let G be an infinite, connected, locally finite graph. If G is uniformly transient, then x(G) < oo.

2.2 Consequences and comments

In this section, all graphs are assumed to be infinite, connected, and locally finite. Given a set of
vertices S in a graph G = (V, E), we define the boundary dS to be the set of all edges {u,v} € E
such that u € S but v ¢ S, and we define the weight |S|; := > ,c5 du. The isoperimetric dimension
of G is given by

S
Dim(G) :=supqd >1: inf | dJl >0
Scv e
0<IS|<e0 IS¢

1. We remark that the uniform critical parameter p7(G) slightly differs from the most classical
(non-uniform) one given by p.(G) :=inf{p € [0, 1] : 6(p) > 0}, where O(p) :=sup, .y 6, (p).
However, these notions often coincide, such as for (quasi-)transitive graphs. See the introduction
of [Dum+20a] for a survey of the rich history of the “p. < 17 question and its place in statistical
mechanics. Let us just recall that all of the results about percolation here can be translated into

analogous statements about many other models, most notably the Ising model.

2. Duminil-Copin, Goswami, Raoufi, Severo, and Yadin proved that every quasi-transitive graph
of superlinear growth satisfies p. < 1 [Dum+20a]. This had previously been a long-standing

conjecture of Benjamini and Schramm [BS96a]. In fact, the authors of [Dum+20a] established
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that p. < 1 forevery (not necessarily transitive) bounded degree graph G satisfying Dim(G) > 4,
and this was known to imply the conjecture about transitive graphs by the classical works of
Gromov [Gro81al] and Trofimov [Tro84al.

3. Theorem establishes that p> < 1 for every graph G satisfying Dim(G) > 2, since such
graphs are uniformly transient (see e.g. [LP16a, Theorem 6.41]). We therefore obtain stronger
results than [Dum+20al], through a completely new proof. Theorem [2.1] fully realises the idea at
the heart of [Dum+20a]] to exploit the transience of a simple random walk to prove p. < 1. In

particular, we resolve [Dum+20a, Problem 1.4].

4. Our proofs of Theorems 1 and 2 can also be run on finite graphs to establish the analogous
results about giant clusters. (See [H121e] for background.) In this setting, to define g,, one
should instead count the number of minimal cutsets of cardinality n from a vertex v to another
vertex u (and take the supremum over all choices for distinct # and v). The corresponding notion
of uniform transience for a given family of finite graphs is that there exists a constant C < oo

such that every graph G = (V, E) in the family satisfies
max R (u,v) < C,
u,vev

where R¢ (u, v) denotes the effective resistance from u to v in the graph G.

5. Babson and Benjamini conjectured that x < oo for every transitiv graph of superlinear growth
[BB99a]|. Notice that this purely geometric conjecture is a priori stronger than the above p. < 1
conjecture of Benjamini and Schramm. Babson and Benjamini verified their conjecture in the
special case of Cayley graphs of finitely presented groups by establishing that minimal cutsets
in such graphs are coarsely connected. By [Tim07;|Gro81a; Tro84a] (see also [CMT24, Lemma
2.1]), this extends to all transitive graphs satisfying Dim(G) < oco. Given these results, it suffices
to show that k < co for every transitive graph satisfying Dim(G) = co. Theorem [2.1] therefore
resolves the k < oo conjecture of Babson and Benjamini. (Alternatively, taking the results of

[Dum+20al] for granted, this conjecture follows from Theorem [2.1])

6. We establish the existence of a universal constant £ > 0 such that every transitive graph G

satisfies p. = 1 or p. < 1 —&. When G is recurrent, this follows from the proof of [HI21e,

'In fact, Babson and Benjamini originally made this conjecture in the case of Cayley graphs, and Benjamini later
extended this conjecture to allow arbitrary transitive graphs.
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Theorem 1.7], and when G is transient, this follows from our proof of Theorem[2.T|because there
exists a universal constant ¢ > 0 such that a simple random walk in any transient transitive graph
has probability at least ¢ never to return to where it started [1'T20al, Corollary 1.3]. Previous
works had established this result if ¢ is allowed to depend on the degree of vertices in G [HI21e,
Theorem 1.7], or if we instead consider site percolation on a Cayley graph [PS23a; Lyo+23a].
By the proof of Theorem [2.1] we also obtain a universal constant K < co such that k < K for

every transitive graph of superlinear growth.

7. Much work has been motivated by a desire to find a sharp geometric criterion for a graph G to
satisfy p. < 1. Indeed, a well-known open conjecture of Benjamini and Schramm is that every
(not necessarily transitive) graph G with Dim(G) > 1 satisfies p. < 1 [BS96a]. We were very
surprised to find that the geometric criterion x < co (which is arguably simpler and more natural
than the isoperimetric criterion) is not just sharp but exact. Nevertheless, in light of Theorem
[2.1] and this conjecture of Benjamini and Schramm, we encourage the reader to investigate the

following: Every graph G with Dim(G) > 1 satisfies k < oo.

The Peierls argument can be used to deduce results that are (a priori) much stronger than p. < 1.

To explore these, it helps to consider the isoperimetric profile  of a graph G = (V, E), given by

U(n) = ;rcl"f/ |0S] .

n<|S|g<oo

8. Every graph G = (V, E) satisfying k < co admits a strongly percolating phase in the sense that
for all p € (1 — 1/«, 1], there is a constant ¢ > 0 such that
P,(S & o) < e~ (ISD for every finite set S C V; 221
P,(n <|C)| < o) < e~V foreveryn > landv € V. o
Thus our work resolves [Dum+20a, Problem 1.6] and implies that percolation on every transitive
graph of superlinear growth has a strongly percolating phase. It remains an important open
problem to establish that on these graphs, such bounds hold for all p € (p., 1]. Indeed, this is
the “upper bound” half of [HH21b, Conjecture 5.1].

9. Conversely, our proof of Theorem (more precisely, Proposition [2.5.1) can be used to show

that for every transitive graph G = (V, E) and for every p > p., there is a constant ¢ > 0 such
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10.

1.

12.

that
P,(n <|C)| < 00) > e~V foreveryn > landv e V.

This establishes the “lower bound” half of [HH21b, Conjecture 5.1].

A major motivation for studying anchored isoperimetric inequalities for graphs and manifolds
is the belief that — unlike (uniform) isoperimetric inequalities — anchored inequalities should
typically be robust under small perturbations of the space [BLS99, Section 6]. We obtain
the following concrete statement to this effect by combining Theorem [2.1] with an argument
of Pete [PetO8, Theorem 4.1]: for every graph G satisfying p’(G) < 1, there exists & > 0
such that if G satisfies a d-dimensional anchored isoperimetric inequality for any d > 1 (or f-
anchored isoperimetric inequality for any function f) then so does every infinite cluster formed

by percolation of parameter 1 — €.

By combining the previous item with Theorem 2 and results of Thomassen [[Tho92|] and Pemantle
and Peres [PP96], we deduce that for every graph G = (V, E) with Dim(G) > 2, and for every
probability measure u on (0, o), the random weighted network (V,C) with C = (C(e) : e €
E) ~ u®F is almost surely transient. (This was previously known if Dim(G) > 4 [Hut23al.)

A standard analysis of Karger’s algorithm from computer science establishes that every finite
graph G = (V, E) with exactly n vertices contains at most (g) minimum cuts, i.e. sets of edges
F such that (V, E\F) is disconnected but there is no set of edges F’ with |F’| < |F| such that
(V, E\F’) is also disconnected. In the same spirit, in the present paper, we design randomized

algorithms to instead count minimal cutsets.

Acknowledgements: We are very grateful to Benny Sudakov for telling us about Karger’s

algorithm from computer science. This seed is what prompted us to investigate probabilistic

approaches to bounding the number of minimal cutsets, ultimately leading to the present work. We
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by the European Research Council (ERC) under the European Union’s Horizon 2020 research and

innovation program (grant agreement No 851565). FS was supported by the ERC grant Vortex (No
101043450).
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2.3 Background and notation

In this section, we fix G = (V, E) a locally finite, connected graph.

Paths and connectivity

Let S c V,u,v € S. A path from u to v in § is a finite sequence y = (yo,¥1,...,Ye) of distinct
vertices of S such that yo = u, yp = v and {y;_1,v;} € E forevery i € {1,...,¢}. When such a
path exists, we say that u is connected to v in S. By extension, a set A is said to be connected to a
set B in § if there exists a vertex of A that is connected to a vertex of B in S. A path from u to co in
S is an infinite sequence of distinct vertices Y, ¥1, . .. in S such that yop = u and {y;_1,y;} € E for

every i € {1,2,...}. When such a path exists, we say that u is connected to oo in S.

Exposed boundary

Let S c V be a finite set. The exposed boundary of S is the set 0., of all the edges {u, v} such that
u € S and v is connected to co in V' \ S. Notice that the exposed boundary is a subset of the standard
boundary defined at the beginning of Section 2.2} for every finite set S C V, we have d..S C 5.

Percolation configurations

An element w € {0, 1}£ is called a percolation configuration. Given such a configuration, an edge
e € E is said to be open if w(e) = 1 and closed if w(e) = 0. By extension, a path is said to be open
if all its edges are open. The cluster of a vertex u € V is the connected component of u in the graph
(V,{e € E : w(e)=1}).

Percolation events

A measurable subset A C {0, 1}E is called a percolation event. Given S C V and u,v € §, we
N ) ) ) .

denote by u «— v the event that there exists an open path from u to v in S, and simply write u < v

when § = V. Finally, u <> oo denotes the event that there exists an open path from u to co in V.

Percolation measures
A percolation measure on G is a probability measure on the product space {0, 1}£. For p € [0, 1],
we denote by P, the standard Bernoulli percolation measure, under which each edge is open with

probability p independently of the other edges.

Positive association
A percolation event & is called increasing if for all percolation configurations w, & satisfying w < &

for the standard product (partial) ordering, we have w € & — ¢ € &. Typical examples of
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. . . N . .
increasing events are the connection events (such as u «— v) introduced above. A percolation

measure P is said to be positively associated if
P[ENF] > P[E]P[F] (2.3.1)

for all increasing events &, ¥. This property is often referred to as the FKG inequality. We will
use that Bernoulli percolation P, is positively associated (for every fixed p € [0, 1]) as established
by Harris [[Har60].

2.4 Exposed boundaries and cutsets

In this section, we fix G = (V, E) an infinite, connected, locally finite graph. In our paper, we will
use that minimal cutsets can be obtained by considering the exposed boundary of finite connected
sets. In this section, we recall some well-known facts relating the two notions. The first elementary

result is that the exposed boundary of a finite connected set is a minimal cutset.

Lemma 2.4.1. Let S C V be a finite connected set. For every u € S, 05 is a minimal cutset from

u to oo.

Proof. Any path from u to co in V must traverse an edge in d..S (consider the last edge traversed
by this path intersecting S). Therefore, .S is a cutset from u to co. To prove that it is minimal,
consider an edge e € d-S. Since S is connected, there exists a path from u to an endpoint of e
in S and by definition of the exposed boundary, there must exist a path from the other endpoint of
e to oo in V' \ S. The concatenation of these two paths with e connects u to co without using any

edges of d.,S other than e. Hence 0,5 \ {e} is not a cutset from u to co. O

The second elementary result identifies the exposed boundary under some simple conditions.

Lemma?2.4.2. Letu € V, let Il be a minimal cutset from u to co. Let A be the connected component
ofuin (V,E\II) and B = {e N A, e € I1} be the set of inner vertices of II. For every set S of
vertices, we have

(BcScA) = (05 =1). (2.4.1)

Proof. Since A is a maximal connected set in (V, E \ IT), all the edges at the boundary of A belong
to I1, and therefore 0,A € A c II. By Lemma|2.4.1} d-A is a cutset from u to oo, hence, by the

minimality of I1, the two inclusions above must be equalities:

OeA = A =TI. (2.4.2)
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Now, let S be a set satisfying B ¢ § € A. Lete € II. Since e € 0+ A, one endpoint of e must belong
to B and the other endpoint is connected to co in V' \ A. Therefore, by hypothesis, one endpoint of

e belongs to S and the other endpoint is connected to co in V' \ S. This proves the inclusion
IT C 0. (2.4.3)

Let e € 0-S. Let u be the endpoint of e in S, and let v be the endpoint of e connected to oo in
V\S. Then, by hypothesis, u € A and v is connected to co in V\B. Since I1 = dA, every edge in I1
intersects A and hence intersects B. Therefore, there must exist an infinite path starting at v in the
subgraph (V, E\II). In particular, v ¢ A, and hence e € dA = I1. This proves that the inclusion

above must be an equality.

2.5 Full connectivity via positive association

In this section, we consider the following problem: Let B be a finite set in a graph, and P be a
percolation measure. What is the probability that all the vertices of B are all connected to each
other? Or, in other words, what is the probability that all the vertices of B lie in the same cluster?
We prove that this probability is at least exponential in the size of B when the measure is positively
associated, and the probability for a point to be connected to B is uniformly lower bounded. This

result, formally stated below, will allow us to construct random sets with a prescribed boundary.

Proposition 2.5.1. Let G = (V, E) be a finite, connected graph. Let P be a positively associated
percolation measure on G. Let B c V, let 0, p € (0, 1] and suppose that P(u < B) > 0 for every
u €V,and P(e is open) > p for every e € E. Then for every o € V,

P(ﬂ{o o b}) > clBl,

beB

3/6
where ¢ := (p_29) .

Proof. Say that a finite sequence of vertices x1, . . ., X is chained if x; = o and foralli € {2, ..., k},
po 0
~ SP(x,-<—>{x1,...,x,-_1}) < - (Pl)
2 2
Since there exists at least one chained sequence (take k = 1) and V is finite, there must exist a
chained sequence xi, ..., x; that is maximal in the sense that for every vertex xx., the sequence
X1,...,Xk+] 18 not chained. Fix a maximal chained sequence xy, ..., x;, and let X := {x,...,x¢}.
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We claim that, in addition to (PI)), this sequence satisfies the following two properties, where
n = |B|:

0
YueV Pue X)> oh (P2)
2n
k< —. P3
<7 (P3)

To prove (P2), consider the set of vertices W C V that are connected to X with probability at least
0/2 and suppose for contradiction that W # V. Since W is non empty (because X C V) and G is

connected, we can consider an edge {u, v} such that u € W and v ¢ W. By positive association,

6
6/2 > P(v & X) > P({u, v} is open) - P(u < X) > %.

In particular, xy, ..., xk, v is a chained sequence, contradicting the maximality of x1, ..., xg.
We now prove (P3). To this aim, for eachi € {1,..., k}, let N; denote the number of clusters that
intersect both {xy,...,x;} and B. Foreveryi € {2,...,k}, the increment N; — N;_; is equal to 1
if x; is connected to B but not to the previous points {xy,...,x;—1}, and it is equal to O otherwise.
Therefore, for every i € {2, ..., k}, we have the deterministic inequality

Ni—=Nij-1 = lxi<—>B - 1x,»<—>{x1,...,xi,1}- (2.5.1)

Taking the expectation, using our hypothesis and (PI)), for every i € {2, ..., k}, we get

E(N;) — E(Ni_;) = P(x; & B) —P(x; & {x1,...,xi.1}) > 6/2. (2.5.2)

>0 <6/2

Summing over i € {2,...,k} and using E(N;) = P(x; & B) > 0 > 0/2, we get E[Ny] > gk.

Since Ny is deterministically bounded above by |B| = n, this concludes the proof of (P3).

We now explain how the three properties above of the chained sequence imply the desired lower
bound in the proposition. First, we estimate the event that all the vertices of X are connected to o:
By (PI)), (P3)) and positive association, we have

2n

k 20\ (po\F
P(ﬂ{o o u}) > DP(xl- o x> (7) > (7) . (2.5.3)

ueX

Second, we estimate the event that all the vertices of B are connected to X: By (P2)) and positive

P(ﬂ{b o X} > (g)

beB

association, we have
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If all the vertices of X are connected to o and all the vertices of B are connected to X, then all

the vertices of B are connected to 0. Hence, by the two displayed equations above and positive

o\% (6)"
e

3/6
where ¢ := (p—g) . O

association, we obtain

P (ﬂ{o o b}) > P (ﬂ{o N u}) -P(ﬂ{b o X}

beB ueX beB

2

2.6 Proof of Theorem 2.1]
Let G = (V, E) be an infinite, connected, locally finite graph. In this section, we prove Theorem|2.1]

in the following form.

(Ap<130>0VueV Pyueo0)20) & (AK<coVueVV¥nx1 |Q,(u)<K").
(2.6.1)

The implication < is well-known, and follows from the Peierls argument [Ben13a, Theorem 4.11],
which we now recall for completeness. Let u € V. If the cluster of u is finite, then by Lemma[2.4.1]
its exposed boundary is a finite minimal cutset from u to co, and all its edges are closed. Hence, by

the union bound, for every p € [0, 1] we have
Pp(ICul < ) < > ga(1-p)". (2.6.2)
n>1

If g, < K" for some constant K < oo, then the right hand side above converges to 0 as p tends to

1. Since the bound is uniform in u, there exists p < 1 such that

Vu eV Py(uo o) >1/2. (2.6.3)

We now prove the implication =. Fix 6, p € (0, 1) such that P,(u <> o0) > 6 for every u € V. Fix
o € Vandn > 1. Writing C for the cluster of o, we show that for every minimal cutset Il from o
to oo with |I1| = n,

P,(0,C =11) > 1/K", (2.6.4)

where K = K(p, ) € (0,0) is a finite constant depending on p and 6 only (in particular it does

not depend on the chosen vertex o). This concludes the proof since

12 ) Pp(0.C=10) 63 Q. (0)|/K". (2.6.5)
e, (o)
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Let us now prove the lower bound (2.6.4). As in Lemma[2.4.2] let A be the connected component
of o in (V, E \ II) and B the set of inner vertices of II. Since any infinite open path from a vertex

u € A must intersect B before exiting A, the hypothesis P, (u <> o0) > 6 implies
VueA P,(usB)>0. (2.6.6)

Let & be the event that every vertex in B is connected to o by an open path in A. By Proposition[2.5.1]
applied to the finite subgraph of G induced by A, we have P,(&) > ¢", where ¢ = (p6/ 2)3/% > 0.
Let F be the event that all the edges of II are closed. By independence, we have

P,(ENF) =P,(E)P,(F) = ¢"(1-p)". (2.6.7)

If the event & N ¥ occurs, then the cluster C of o satisfies B ¢ C ¢ A. Hence, by Lemma we
must have d.,C = II. This concludes that

P,(0C =1I) 2 P,(ENF) = ¢"(1 - p)", (2.6.8)

1

which establishes the desired lower bound (2.6.4) with K = C(ll_p) = Ga)

2.7 A covering lemma for Markov chains

In this section, we give conditions under which a killed Markov chain survives long enough to
visit every state and then return to its initial stateﬂ We will apply this in the next section to prove
Theorem 2.1, Here [n] denotes the set {1,...,n}.

Lemma 2.7.1. Letn > 1. Let P = (p; ;)i je[»] b€ a symmetric matrix of non-negative entries such
tha 2jen P(i,j) < 1foralli € [n]. Let I' be the set of all sequences ¥ = (y0,¥1,...,Y) in
[n] (for any & > 1) with yo = 1 such that the unique element i € [k] satisfying both y; = 1 and
{v0,71,...,vi} = [n] isi = k. For every such sequence 7y, define

k
p(y) = l_l P (Yi—1,7i) -
i=1

For each & > 0, if every non-empty proper subset / of [n] satisfies

>0 bl zs @.7.1)

il je[n\I

%In fact, we lower bound the probability that this occurs in < 2n — 2 steps (which is optimal), where 7 is the
number of states. Contrast this with [BGM13; DK21], both called Linear cover time is exponential unlikely; we give
conditions under which linear cover time is exponentially likely.

3We can think of P as the transition matrix of a Markov chain which is killed at i with probability 1 — Y, ;P ).
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2
. _E& .
then 6 := 7 satisfies

D p(y) 26"

yell

Proof. Let ey, ..., ex— € [n]> U {0} be an iid sequence of random variables such that for all

u,v € [n],

P (e; = (u,v)) = ”(”;’V).

Such random variables exist because these probabilities sum to at most 1. Let H be the undirected
multigraph with vertex set [] and edges e, . . ., e2,—2. Even though [n]? consists of ordered pairs,
we think of each e; € [n]? as encoding an undirected edge, loops allowed. (When e; = 0, we

simply do not include an edge.)

Consider the iid spanning subgraphs H; and H, of H that contain only the edges eq,..., e,
and e,, ..., ex,-2, respectively. We will lower bound the probability that each of these graphs is
connected. Consider any k € [n — 1]. Suppose that we are given all of the connected components
Cy,...,C, of the spanning subgraph of H that contains only the edges ey, ..., ex_1. If r > 2, then

the conditional probability that e; connects two of these components is

22 Z P(Zj)@%.

=1 ieC, je[n]\C,

Therefore by induction on &, and by using the elementary bound ’;—T < e" in the third inequality,

n
re nl-g"_g"
P (H; is connected) > l_[ — > > —. (2.7.2)
n n" e
r=2
Let ¥ = (y0,71,...,Yx) be a sequence in I'. Say that y is present if there exists an injection

o : [k] — [2n - 2] such that for every i € [k], we have e, ;) = (¥i-1,¥:) or (¥i,¥i-1). Assume
that k < 2n — 2, and note that y cannot be present otherwise. There are at most (21 — 2)* choices
of o, and given o, for each i, the probability that e, ;) = (¥i-1,7¥;) is the same as the probability
that e, ;) = (¥:, vi-1), both given by %p(%_l, Vi) = %p(yi, vi—1). So by a union bound,

1~

. 2 n
P(yis present) < (2n=2)" | | =p (vi-1,7:) < 4" p(y) <47'p(). (2.7.3)

i=1
On the other hand, when H; is connected and H; is connected, then some y € I must be present

in H because every multigraph that contains two edge-disjoint spanning trees must also contain a
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spanning subgraph that is connected and Eulerian [Cat92]"] Thanks to (27.2), this occurs with

probability at least £ /e?". So by a union bound,

2n
e .
T < Z P(y is present) < 42" Z p(y). (2.7.4)
yell yer
The conclusion follows by rearranging. m|

2.8 Proof of Theorem 2.1]

Let G = (V, E) be an infinite, connected, locally finite graph such that for some constant & > 0, for

oo

oo On G started at v satisfies

every vertex v € V, the simple random walk (X,
d,P,(Vt > 1: X; #v) > &.

Let G’ = (V',E’) be the graplﬂ obtained from G by replacing each edge by a path of length 2.
View V as a subset of V’, and let m : E — V' map each edge to its midpoint. Let P/, be the law of
simple random walk in G’ started from a given vertex u, and let 7 := sup{r > 0 : X; = Xo}. We
claim that for all z € V’,

dP(t=0)>¢ = 42_58. (2.8.1)
This is trivial when z € V, even with | = £/2, because simple random walk on G’ induces lazy

simple random walk on G. Otherwise, when z = m({u, v}) for some {u, v} € E, this follows from
the corresponding bounds for # and v by rearranging the following elementary calculation, where
O =|{t =20:X; =x}:

1 / n _ _ i _
Pr=0) HZZOPZ(T >0)" =E|[&] = ) Pl(X,=2)

t>0
/ 1 o 1
=1+ Z PL(Xi1 =) - — +PL(Xim = v) - —
u v
t>1
L ElG] E6)
dI/t dV
E, ¢ E[€ 1 1
<1+ ”["]+V[V]:l+ - + .
dy d, d,P,(r=0) d,P,(r=0)
“4This general fact can be proved directly as follows: Let E be the set of edges in the multigraph, and let 7} and T»
be the two trees. Let oy, ..., 0k be the vertices that have odd degree in 7. Since the sum of the degrees of all of the

vertices in a given graph is always even, we can write k = 2/ for some non-negative integer /. For each i € [/], pick
a path P; in T from 05;_; to 0y;. Then, viewing T; and each P; as elements of the Z/2Z-vector space {0, 1}£, the
required subgraph is given by 71 + P + - - - + P;.

>This construction is a technicality that is only necessary if G has unbounded vertex degrees.
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LetC:={X;:0<t<t}andd :={eNC : e € 0,C}. Fix o € V, and pick a neighbour 0o’ € m(FE)
of 0 in G’. Fix a finite minimal cutset I1 from o to oo in G, and set n := |II|. We will show that for

some finite constant K = K (&) € (0, o) depending only on &,
P, (0 =m(I)) > 1/K". (2.8.2)

This implies that x(G) < oo because forallo € Vandn > 1,

12 ) P, (d=m() 1Q.(0)| /K"

e, (o)

Let A be the connected component of o in (V, E\IT), let U := m(IT) U{o’}, andlet I := AUm({e €
E:ecA}). Forallu,v e UU I, let

p(u,v) =P (Ft>1:Xy,....X-1 € \{u}and X, =v) .

Extend this to sets of vertices by p(L, R) := X,c1.,eg P(u, V), and similarly, p(u, L) := p({u}, L)
and p(L,u) := p(L,{u}). We would like to apply Lemma [2.7.1to the matrix P := (p(u, V))uvev-
By time-reversing trajectories, we have p(u,v) = p(v,u) whenever d,, = d,,, which is for example
the case when u,v € U. So P is symmetric, and clearly the entries of P are non-negative and sum

to at most 1 along each row. We claim that for every non-trivial partition U = L U R,
p(L,R) > & := £1/64. (2.8.3)
Indeed, for each x € U U I, consider the function (the unit voltage)
F(x):=P. (3t >0:Xp,...,X;-1 ¢ Land X; € R) .

Given u € L, there existf]x € A such that {u,x} € E’, and if F(x) > 1/2, then we are done
because
p(u,R) > P (X;=x)-F(x) >1/2-1/2 > &,.

In particular, we may assume that there exists x € A with F(x) < 1/2. By a similar argument, we
may assume that there exists y € A with F(y) > 1/2. Since A is connected in G, we can therefore
find {x’,y’} € E satistying F(x") < 1/2 < F(y’). Let z := m({x’, y'}), which has degree 2. Note
that

F(z) 2 PL(X1 =) - F(y') 2 1/2-1/2,

If u = o', take x := 0. If u = m(e) where e € II, take x where {x} = ¢ N A, which exists by Lemmam
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and by a union bound,

p(z R) €ED p(z,R)
Pl(r=0) ~ &/2

F() < ) Pt >0)'p(z,R) =
n=0

So by rearranging, p(z,R) > &1/8. By a similar argument (i.e. by replacing F by 1 — F,
which switches the roles of L and R, and by recalling that p(L,z) = p(z, L)), we deduce that
p(L,z) = &1/8. Now (2.8.3) follows because p(L,R) > p(L,z)p(z, R).

Therefore by Lemma [2.7.1] the event & that the random walk visits every vertex in U then returns

to o’ before exiting U U [ satisfies
P, (&) > el > it (2.8.4)

for some constant £3 > 0 depending only on &,. So by Lemma [2.4.2] and the strong Markov

property,
P, (0=m(0) =P, (&) P, (r=0) mé@ el gy /2. (2.8.5)

By expanding the definitions of &1, &, £3 we deduce that (2.8.2)) holds with K := 2%0/g5.

2.9 Alternative proof of Theorem 2.1 using the Gaussian free field

Here we sketch an alternative, slightly less elementary proof of Theorem [2.1] along the lines of
the proof of Theorem Let G be an infinite, connected, locally finite graph that is uniformly
transient. Consider the graph G = (V, E) obtained by replacing each edge by a path of length
3. Similarly to the proof in Section one can prove that G is also uniformly transient. Let
@ € RY with law P be the (centered) Gaussian free field (GFF) on G - see e.g. [BP24] for the
required background and definitions. Uniform transience implies that there exists & > 0 such that
Var(¢(x)) < 1/e foreveryx € V.

Fix 0 € V and let C be the cluster of o in the percolation model induced by the excursion set
{¢ >0} :={x e V: ¢o(x) > 0}. Given every edge e of G, we associate the corresponding
mid-edge ¢ in G, with both endpoints of degree 2. For a subset IT of edges in G, we denote by IT
the associated set of mid-edges in G. We claim that there exists ¢ = c¢(g) > 0, depending only on
&, such that for every Il € Q,(0),

P(0oC =T11) > c". (2.9.1)
Similarly to the previous sections, Theorem [2.1| follows readily from (2.9.1).

We now proceed to prove (2.9.1)). Enumerate I1 by é; = {x;, y;}, 1 <i < n, where x; and y; are the

inner and outer endpoints, respectively. We first observe that, for some constant ¢y = c¢;(g) > 0,

P(e(yi) € [-2,~1] and @(x;) € [1,2] VO <i <n) > . (2.9.2)
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Indeed, this follows by successively demanding the desired event at each vertex. Here we use
the Markov property of the GFF (see [BP24]) and the fact that the conditional variance of the
next vertex given the previous ones is between 1/2 (since they have degree 2) and 1/, while the

conditional mean remains bounded between —2 and 2.

Let ¥ be the event in (2.9.2)) and A be the component of o in (V, E \ IT). Notice that
0}nA - >0}NA
P(0uC = T1) >P(7—‘)P(ﬂ{o AL ,}|¢) > P ( {omxi}‘y—*).
i=1

By the Markov property, conditionally on ¥, the process {¢ > 0} N A stochastically dominates
{oa = —1}, where ¢4 is the centered GFF on A (i.e. associated to the random walk on A killed
when reaching dA = {xi,...,x,}). Therefore, it is enough to prove that, for some constant

cr =co(e) >0,
P (ﬂ{o ALZEIA xi}) > . (2.9.3)
i=1

Indeed, since the GFF is positively associated (see [BP24]), the desired inequality (2.9.3) follows
readily from Proposition and the following inequality

>-1
Pu <227, 54) > B(san(pa(u) + 1)) > cs, (2.9.4)
for some constant c3 = c¢3(g) > 0. The latter follows easily from the Markov property of the GFF.
Indeed, let S be the union of all clusters of {¢4 > —1} intersecting 0A and note that its closure

S (i.e. the union of S with its neighbours) is a stopping set. Clearly, one has sgn(p4(u) +1) =1
almost surely on the event G := {u M 0A} = {u € §}. On the complementary event G and
conditionally on the field on S, the Markov property implies that we have a GFF on A \ § with
boundary conditions < —1. In particular, sgn(¢a (u#) + 1) has a negative conditional expectation on
G°. These observations readily imply the first inequality of (2.9.4). The second inequality follows

from the fact that the variance of ¢4 () is at most 1/¢.
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Chapter 3 31

THE CRITICAL PERCOLATION PROBABILITY IS LOCAL

Joint work with Tom Hutchcroft

Abstract

We prove Schramm’s locality conjecture for Bernoulli bond percolation on transitive graphs: If
(Gn)u>1 1s a sequence of infinite vertex-transitive graphs converging locally to a vertex-transitive
graph G and p.(G,) # 1 for every n > 1 then lim,_,o, p.(G,) = p.(G). Equivalently, the critical
probability p. defines a continuous function on the space G* of infinite vertex-transitive graphs
that are not one-dimensional. As a corollary of the proof, we obtain a new proof that p.(G) < 1

for every infinite vertex-transitive graph that is not one-dimensional.

3.1 Introduction

In Bernoulli bond percolation, the edges of a connected, locally finite graph G are chosen to be
either retained (open) or deleted (closed) independently at random, with probability p € [0, 1]
of retention. The law of the resulting random subgraph is denoted P, = PIC,;. Percolation theory
is concerned primarily with the geometry of the connected components of this random subgraph,
which are known as clusters. Much of the interest in the model arises from the fact that it undergoes

a phase transition: If we define the critical probability
pc(G) = inf { p € [0, 1] : there exists an infinite cluster P,-almost surely}

then “most” interesting graphs have p.(G) strictly between 0 and 1, so that there is a non-trivial
phase where infinite clusters do not exist followed by non-trivial phase where they do exist. We
will be primarily interested in percolation on (vertex-)transitive graphs, i.e., graphs for which any
vertex can be mapped to any other vertex by an automorphism of the graph. We allow our graphs
to contain loops and multiple edges, and make the implicit assumption throughout the paper that

all transitive graphs are connected and locally finite (i.e. have finite vertex degrees).

Many interesting features of percolation on an infinite transitive graph at and near the critical point
are expected to be universal, meaning that they depend only on the graph’s large-scale geometry
and not its microscopic structure. For example, the critical exponents governing the power-law

behaviour of various interesting quantities at and near criticality are believed to depend only on



the volume-growth dimension of the graph, and should therefore take the same values on e.g. the
square and triangular lattice. In contrast, Schramm conjectured around 2008 [BNP11a, Conjecture
1.2] that the value of the critical probability p.(G) should be entirely determined by the local
(microscopic) geometry of the graph, subject to the global constraint that p.(G) < 1. More
precisely, he conjectured that if G, is a sequence of infinite transitive graphs converging to an
infinite transitive graph G in the local topology (defined below) and lim sup,_,,, p.(G,) < 1 then
pc(Gn) = pc(G) as n — oco. The assumption that limsup,_,, p.(G) < 1 is needed to rule
out degenerate one-dimensional examples such as the cylinder Z X (Z/nZ) (which converges to
the square grid Z? but which has p.(Z x (Z/nZ)) = 1 -+ p.(Z*) = 1/2), and is now known
to be equivalent to the graphs G, having superlinear volume growth for all sufficiently large n
[DGRSY20; HT21a]. The fact that p. is lower semi-continuous follows straightforwardly from
standard facts about percolation on transitive graphs as observed in [Pet, §14.2] and [DT16a, p.4]
and does not require the assumption that the graphs are not one-dimensional; the difficult part of

the conjecture is to prove upper semi-continuity.

The locality conjecture has inspired a great deal of subsequent work, including both partial progress
on the original conjecture [BNP11a; MT17; Hut20a; HH21a; CMT23a], which we review in detail
below, and analogous results in other settings including self-avoiding walk [GL17; |GL1§]|, the
random cluster model [DT19], finite random graphs [BNP11a; KLS20; Sar21a; Hof21; RS22a;
ABS22; BZ23; ABS23]], and geometric random graphs [HM?22; LLMS23].

In this paper we give a complete proof of Schramm’s locality conjecture.

Theorem 3.1.1. Let G* be the set of all infinite transitive graphs that are not one-dimensional,

endowed with the local topology. Then the function p. : G* — (0, 1) is continuous.

Here, the local topology (a.k.a. the Benjamini-Schramm topology) on the space of transitive
1,

the balls of radius r in G,, and G are isomorphic as rooted graphs for all sufficiently large n. We

graphs, denoted by G, is defined so that (G,);?, converges to G if and only if, for each r >
say that an infinite transitive graph is one-dimensional if it has linear volume growth (i.e., if its
balls B,, satisfy |B,| = O(n) as n — o0); it follows from (a simple special case of) the structure
theory of transitive graphs of polynomial growth that an infinite transitive graph is one-dimensional
if and only if it is rough-isometric to Z [TY16], while the results of [DGRSY20] imply that an
infinite transitive graph has p, < 1 if and only if it is not one-dimensional. (In fact the proof of

Theorem [8.1.1]also yields a new proof of this theorem as we discuss in detail in Section [3.3])
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Remark 3.1.1. In our forthcoming paper [EH23+a]], we prove related results on the locality of the
density of the infinite cluster, implying in particular that the percolation probability 6(p,G) =
Pg(o < ©00) is a continuous function of (G, p) in the supercritical set {(G,p) : G € G*,p >
pc(G)}. (Theorem [8.1.1]implies that this set is open.) An alternative proof of this result using the
methods developed in the present paper is sketched in Section

Previous work

In this section we overview previous work on locality, the p. < 1 problem, and the structure theory
of transitive graphs of polynomial growth. Our proof will employ many ideas and methods from
these earlier papers, including most notably the works [Hut20a; Hut20e; CMT22] and the structure
theory developed in [BGT12a; TT21a].

Euclidean lattices. Well before the formulation of Schramm’s conjecture, the first significant
work on locality was carried out in the seminal work of Grimmett and Marstrand [GM90a], who
proved that the critical probability for percolation on a “slab” Z4=% x {0,...,n}* converges to
pe(Z%) as n — oo provided that d — k > 2. (In this context Z¢ and Z¢~* x {0, ..., n}* refer to the
Cayley graphs of these groups with their standard generating sets.) This theorem and the methods
developed to prove it are of central importance to the study of supercritical percolation in three
and more dimensions. (Moreover, one of the motivations for the work of Grimmett and Marstrand
was to get closer to proving that the percolation phase transition on Z¢ is continuous, and indeed
similar methods were used in [BGNO91] to prove continuity for half-spaces.) Although it is not
strictly an instance of Schramm’s conjecture since slabs are not transitive, the Grimmett—Marstrand
theorem trivially implies that the analogous statement holds for “slabs with periodic boundary
conditions” (i.e., Z¢~* x (Z/nZ)* with its standard generating set), which are transitive. The proof
of the Grimmett—Marstrand theorem relies heavily on renormalization techniques exploiting the full
symmetries of Z¢ and scale-invariance of Euclidean space R?, and does not readily generalize to
other transitive graphs. Let us also mention that a quantitative version of the Grimmett—Marstand
theorem was proven in the more recent work of Duminil-Copin, Kozma, and Tassion [DKT21]

which was very influential in both our work and [[CMT22].

Remark 3.1.2. A further classical Euclidean result in the spirit of the locality conjecture was
established by Kesten [Kes90], who proved that p.(Z%) ~ 1/(2d — 1) as d — oo. See [ABS04a]
for a simple proof and [S1a06] for more refined results. While not strictly an instance of the locality
conjecture since Z¢ does not converge in the local topology, the intuitive reason for this result to
hold is that Z¢ is “locally tree-like” when d — oo in the sense that small cycles have a negligible

effect on the behaviour of the percolation model, so that one can define a kind of “local limit” of 74
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as d — oo (in a different technical sense to the one we consider here) in terms of Aldous’s Poisson
weighted infinite tree (PWIT) [ASO4]].

Progress on locality. Previous works on the locality conjecture can be divided into two strains, with
completely different set of methods and domains of application associated to them: The first strain
concerns graphs that satisfy various strong, “infinite-dimensional” expansion conditions, while the
second concerns “finite-dimensional” graphs (i.e., graphs of polynomial volume growth) where one
can hope to develop appropriate generalizations of Grimmett—Marstrand theory. The first strain
splits further into two cases according to whether or not the graphs in question are unimodular,
a technical conditio that holds for most familiar examples of transitive graphs including every
Cayley graph and every amenable transitive graph [SW88|]. Although nonunimodular graphs are
often considered to be ‘“pathological” compared to their unimodular cousins, it turns out that
nonunimodularity is actually a very helpful assumption: in [Hut20e] the second author carried
out a very detailed analysis of critical percolation on nonunimodular transitive graphs, which he
then used to prove the nonunimodular case of locality in [Hut20a]. Moreover, it was proven in
[Hut20a, Corollary 5.5] that the set of nonunimodular transitive graphs is both closed and open in
G, so that to prove Theorem 8.1.1]it now suffices to consider the case that all graphs in question are

unimodular.

Let us now discuss previous results for unimodular graphs in the “infinite-dimensional” setting.
The first result in this direction was due to Benjamini, Nachmias, and Peres [BNPI11al], who
proved the conjecture for nonamenable graph sequences satisfying a certain high girth condition
(e.g., uniformly nonamenable graph sequences of divergent girth; unimodularity is not required).
More recently, the second author [Hut20a] proved the conjecture for graph sequences of uniform
exponential growth (meaning that the balls of radius r in the graphs G, all have volume lower-
bounded by e“” for some constant ¢ independent of n and r), and Hermon and the second author
[HH21a] proved the conjecture for sequences of graphs satisfying a certain uniform stretched-
exponential heat kernel upper bound, a class that includes certain examples of intermediate volume
growth (i.e., volume growth that is superpolynomial but subexponential; note however that the
spectral condition of [HH21a] is not implied by any growth condition). The works [Hut20aj; Hut20e;
HH21al] all establish locality for the families of graphs they consider by proving quantitative tail

estimates on critical percolation clusters that hold uniformly for all graphs in the family, yielding

'Here is the definition: A transitive graph G = (V, E) is unimodular if it satisfies the mass-transport principle,
meaning that Y, F(0,x) = Y. F(x,0) for every F : V> — [0, 0] that is diagonally invariant in the sense that
F(x,y) = F(yx,vyy) for every automorphism y of G. We will not directly engage with unimodularity in this paper, but
it will appear as a hypothesis in many of our intermediate results since it is needed to apply the two-ghost inequality
of [Hut20a.
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much more than just locality. (In particular, they also imply that the graphs in question have

continuous percolation phase transitions.)

Remark 3.1.3. Although the techniques developed in [Hut20a; HH21al] have yet to be made to work
for nearest-neighbour percolation models in finite dimension, versions of these arguments have been
used in [Hut21a] to analyze certain long-range percolation models in finite-dimensional spaces.
The results of [Hut21a] can be used to prove versions of the locality conjecture for certain large
families of long-range percolation models on unimodular transitive graphs (under the assumption
that the long-range edge kernel has a sufficiently heavy tail uniformly throughout the sequence).

Further results on locality for long-range percolation can be found in [MS96; |Ber(2].

Polynomial growth and structure theory. We now discuss the second strain of results, concerning
graphs of polynomial volume growth. Let us first briefly review the structure theory of transitive
graphs of polynomial growth, which plays an important role in these developments. Recall that G
is the space of all infinite transitive graphs and that G € G is said to have polynomial growth if
for some positive reals C and d, the number of vertices contained in a ball of radius n, denoted
Gr(n) = |B,(0)|, satisfies Gr(n) < Cn? for all n > 1. The geometry of such graphs is highly
constrained: it is a consequence of Gromov’s theorem [Gro81b] and Trofimov’s theorem [Tro84b]
that every G € G with polynomial growth is necessarily quasi-isometric to the Cayley graph of
a nilpotent group. In particular, for every such graph G, there is a positive real C and a unique
positive integer d such that C"'n? < Gr(n) < Cn? for all n > 1. The integer d is called the
(volume growth) dimension of G; it coincides with the isoperimetric dimension and spectral
dimension of G by a theorem of Coulhon and Saloff-Coste [[CS93|]. These results are often used
in the study of probability on transitive graphs as part of a “structure vs. expansion dichotomy”,
wherein each graph either satisfies a high-dimensional isoperimetric inequality (which is often a
helpful assumption) or else is quasi-isometric to a nilpotent group of bounded step and rank (which
is useful because these graphs are highly explicit and well-behaved); a detailed overview of the
structure theory of transitive graphs of polynomial growth and its applications to probability is

given in the introduction to [EH23d].

More recently, finitary versions of these results have been established, first for groups in the
landmark work of Breuillard, Green, and Tao [BGT12a], then for transitive graphs by Tessera and
Tointon [[TT21a]]. These results imply, for instance, that for each constant K < oo there exists N < oo
such that if we observe that Gr(3n) < K Gr(n) for some n > N, then G is (1, Cn)-quasi isometric
the Cayley graph of a virtually nilpotent group where the constant C along with the rank, step, and
index of the nilpotent subgroup are all bounded above by some function of K (see Section [3.5] for
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further details). This finitary structure theory is extremely useful in applications to problems such
as locality in which one wishes to argue in a way that is uniform over some family of graphs. For
example, it follows from [TT21al Corollary 1.5] that for each d > 1 the set of transitive graphs of
polynomial growth with dimension at most d is an open subset of G, and moreover thatif G, — G
with G of polynomial growth of dimension d then there exists ng < oo and a constant C such that
the ball of radius r in G, has volume at most Cr? for every n > ng, with constants independent of
n. As such, to prove locality in the case that the limit has polynomial growth, it suffices to consider
the case that all graphs in the sequence satisfy a uniform polynomial upper bound on their growth

as well as various other forms of strong uniform control on their geometry.

Besides the original work of Grimmett and Marstrand, the first result on locality for graphs of
polynomial growth was due to Martineau and Tassion [MT17], who proved that locality holds for
Cayley graphs of abelian groups. Their proof employs a variation on the Grimmett—Marstrand
argument, overcoming significant technical difficulties arising due to the loss of rotational and
reflection symmetry. This result was greatly extended in the recent work of Contreras, Martineau,
and Tassion, who developed a version of Grimmett—Marstrand theory for transitive graphs of
polynomial growth in [CMT22]] and used this theory together with the finitary structure theory
discussed above to deduce the polynomial growth case of the locality conjecture in [CMT23al]. As
with the aforementioned works in the infinite-dimensional setting, the works [CMT22; (CMT23a]
establish not just locality but also many further strong quantitative results about percolation on
the classes of graphs they consider. However, while [Hut20a; HH21a] established quantitative
estimates on finite clusters in critical percolation, [CMT22; (CMT23a]] instead establish strong
results about the geometry of the infinite cluster in supercritical percolation. This reflects a
fundamental distinction between the two approaches, with the analysis of the polynomial growth
case involving estimates on uniqueness of annuli crossings etc. that are simply not true for “big”

graphs like the 3-regular tree.

What challenges remain? Given the previous results discussed above, it appears that there are
two main cases of the locality conjecture left to consider: arbitrary sequences of superpolynomial
growth transitive graphs converging to a superpolynomial growth graph, and the “diagonal” case in
which a sequence of polynomial-growth graphs converges to a graph of superpolynomial growth.
Moreover, the second case might be split further according to whether the graphs in the sequence
have bounded or divergent dimension. (As we will soon explain, our proof will in fact work
through a different and less obvious kind of case analysis.) In the first case, a key difficulty is

that the geometry of transitive graphs of superpolynomial growth can be highly arbitrary, with
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the space of all such graphs being an ineffably complex object in some senses: the challenge is
precisely that we need an argument that is robust enough to work for all possible transitive graphs,
for which there is nothing like a general classification. Moreover, the best known uniform lower
bound on the growth of groups of superpolynomial growth, due to Shalom and Tao [ST10b], is
of the form n(1°21°¢™° for a small constant ¢ > 0. This growth lower bound (which has not yet
been proven for transitive graphs that are not Cayley) is vastly weakelﬂ than the assumptions used
in the works [BNP11a; Hut20a; [HH21a] discussed above. In the diagonal case, one must contend
with these same difficulties again together with the total incompatibility of the methods that have
thus far been used to handle the high-growth and polynomial growth cases. As such, while the
main difficulties in the locality conjecture arise from “unknown enemies” hiding deep within the
unknowable expanse of the space of all transitive graphs, there are also explicit examples that seem
difficult to handle within existing frameworks. (One such example is the standard Cayley graph of
the free step-s nilpotent group on two generators, which converges to a 4-regular tree as s — oo

but has finite dimension for each finite s.)

Parallels with p. < 1. Before we begin to describe our proof of the locality conjecture, let us first
discuss how its history closely parallels the (older) history of the p. < 1 problem. It follows from
the classical work of Peierls [Pei36b] that p.(Z?) < 1 for every d > 2. In their highly influential
work [BS96b|], Benjamini and Schramm conjectured that p. < 1 for every transitive graph that is
not one-dimensional. Benjamini and Schramm also proved in the same paper that p. < 1 for every
(not necessarily transitive) nonamenable graph, while earlier results of Lyons [Lyo95]] implied that
exponential growth suffices in the transitive case. On the other hand, it is a simple consequence
of the structure theory that every transitive graph of polynomial volume growth that is not one-
dimensional contains a subgraph that is quasi-isometric to Z2, which easily implies that every such
graph has p. < 1 (see e.g. [HT21al Section 3.4] for details). As such, for many years the problem
remained open only for groups of intermediate growth. Even in this case the problem was solved for
most “known” examples of graphs of intermediate growth, such as the Grigorchuk group [MPO1;
RY17], with the main remaining difficulty coming from “unknown enemies” as discussed above.
See the introduction of [DGRSY20] for a detailed account of this partial progress including several

further references.

The p. < 1 problem was eventually solved in full generality by Duminil-Copin, Goswami, Raoufi,

Severo, and Yadin [DGRSY?20]. More precisely, they established that p. < 1 for any (not necessarily

2While a well-known conjecture of Grigorchuk [Gril4] states that every superpolynomial growth transitive graph
has growth at least exp[cn'/?], this conjecture is completely open, somewhat controversial, and in any case would still
require a significant advance on the methods of [Hut20a; [HH21a] to be applicable towards the locality conjecture.
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transitive) bounded degree graph satisfying a (4 + £)-dimensional isoperimetric inequality, with the
structure theory and classical results above handling all remaining transitive graphs. Their proof
uses a comparison between percolation and the Gaussian free field which works only for values
of p very close to 1, making their methods unsuitable for the locality problem. A finitary version
of the results of [DGRSY?20] was developed by the second author and Tointon in [HT21a], who
proved in particular that sequences of finite transitive graphs have a non-trivial phase in which
a giant cluster exists provided that they are “not one dimensional” in an appropriate quantitative
sense. This finitary approach also allowed them to prove a uniform version of the main result of
[DGRSY?20], stating that for each d > 1 there exists & > 0 such that every infinite transitive graph
that has degree at most d and is not one-dimensional has p. < 1 — &. (For Cayley graphs it is now
known that & can be taken independently of the degree [PS23b]; see Section [3.7] for some related

conjectures.)

Can we do something similar? Continuing to follow the path set by this previous work on the
pe < 1 problem, one might hope to prove locality via a similar dichotomy, finding some method
that handles all graphs that are “high-dimensional” in some sense, then using the structure theory
to separately analyze the remaining “low-dimensional” examples. One technical problem with this
approach, which was already a major hurdle in [HT21a]], is that one is forced to consider sequences
of graphs that may look high-dimensional up to some divergently large scale then switch to looking
low-dimensional, meaning that one must find a way to “patch together” the outputs of the two
different case analyses at the crossover scale. A more fundamental problem, however, is that to
date there have simply been no viable approaches to prove locality under the assumption that the

graphs are high dimensional.

As we will see, our proof will instead follow a more subtle approach in which we first dichotomize
into two much less obvious cases according to whether or not the graph has quasi-polynomial
growth on the relevant scale. (Here, a function is said to have quasi-polynomial growth if it is
bounded by a function of the form exp[(logn)?"].) In the low growth case, we then employ a
second, subordinate dichotomization according to whether the rate of growth on the relevant scale
is low-dimensional or high-dimensional; it is in this second dichotomy that we can make use of
the structure theory. A key technical difficulty when arguing this way is that (as far as we know
with the current structure theory), the same graph might oscillate between the quasi-polynomial
and super-quasi-polynomial regimes infinitely many times as we go up the scales, so that any “case
analysis” we do via this dichotomy must be able to handle this oscillation. Moreover, the delicate

nature of our proof leads us to engage with the structure theory literature in a deeper way than had
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previously been necessary in applications to probability. Indeed, our proof relies in part on our
structure-theoretic companion paper [EH23d]] in which we prove a “uniform finite presentation”
theorem for groups of polynomial volume growth which we use to make some of the arguments
from [CMT22] finitary. Besides this, we must also contend with the fact that the assumption of
quasi-polynomial growth is highly non-standard, so that we must spend a significant amount of
the paper studying the deterministic geometry of transitive graphs of quasi-polynomial growth (at
some scale) with a view to eventually generalizing the methods of [CMT22] from polynomial to

quasi-polynomial growth.

Interestingly, our proof of locality yields as an immediate corollary a new proof that p. < 1 for
transitive graphs that are not one-dimensional, recovering the main result of [DGRSY20]. This
proof works directly with Bernoulli percolation and does not rely on the comparison to the GFF in

any way. (On the other hand it is also much more complicated than the original proof!)

About the proof

In this section we give an overview of our proof. Let us first establish some relevant notation
that will be used throughout the paper. Recall that G denotes the space of all (vertex-)transitive
graphs (which we always take to be connected and locally finite) and that G* C G is the space of
infinite transitive graphs that are not one-dimensional. We also write U C G for the space of all
unimodular transitive graphs and write U* = U N G*. Given d € N, we write G4, G, and U, for
the subsets of these spaces in which every graph has degree d. Given sets of vertices A and B in a
graph, we write {A < B} for the event that there is a path from A to B in the given configuration.
We also use the notation A <> oo to mean that there is an infinite cluster that intersects A. When
A = {u} and B = {v} are singletons, we may simply write # < v and u < co instead. For each
transitive graph G we will write o for an arbitrarily chosen root vertex of G which we will refer to
as the origin. We write B, for the graph-distance ball of radius n around o in G and write S,, for

the set of vertices at distance exactly n from o.

Uniform estimates and finite-size criteria. Recall that percolation is said to undergo a continuous
phase transition on an infinite graph G if the function 6 : p — Pg (0 & o) is continuous (it is a
theorem of Schonmann [Sch99] that 6 is always continuous at every point other than p.). One of
the best-known conjectures in the study of percolation on general infinite transitive graphs is that
percolation should undergo a continuous phase transition on every G € G* [BS96b, Conjecture 4];
this is famously still open when G is the three-dimensional cubic lattice. Although it might not be
obvious from their statements, the locality conjecture and the continuity conjecture are very closely

related. To see why, let us give two equivalent formulations of Theorem [8.1.1] which will inform
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the remainder of our analysis. (For notational convenience we define P, := Py when p > 1.)

Reformulation of the locality conjecture 1. For each d € N and ,6 > 0, there exists r € N such
that
Pi(oe 8)>26 = PJ.(0eo0)>0 (3.1.1)

forevery G € G and p € [0, 1].

Reformulation of the locality conjecture 2. For each d € N and & > 0, there exists a function
he = hge : N — (0, 00) with ho(r) — 0 as r — oo such that

PS (0 & Sy) < he(r) (3.1.2)

JoreveryG € G andr > 1.

These two reformulations are trivially equivalent to one another (the difference amounts to consider-
ing either A, (n) or its inverse), but we find the two different viewpoints on the same statement to be
illuminating: the first is formulated in terms of a “finite-size criterion for not being very subcritical”
while the second is formulated in terms of “uniform estimates on subcritical percolation”. In either
formulation, the &€ = 0 analogue of the same statement would imply both the locality conjecture and
a strengthened, “uniform in G” version of the conjecture concerning the continuity of the phase
transition; this is precisely what the arguments of [Hut20a; HH21al] establish for the classes of
graphs they consider. (In fact this uniform version of continuity is implied by locality together with
the non-uniform version of continuity by a simple compactness argument.) This suggests a close
connection between the two problems, while the freedom to use “sprinkling” (i.e., to increase p by

small amounts in an appropriate manner) may make locality significantly more tractable.

Let us now briefly explain why Reformulation [I]is equivalent to the locality conjecture (or more
accurately to the upper semi-continuity of p., which is the difficult part of locality). In one direction,
suppose that G, — G and that p > p.(G). Since p > p.(G), the connection probability Pg(o “
S,) does not decay as r — oco. Since for each fixed r we also have that Pg" (0 S,) = Pg(o < S,)
for every sufficiently large n by the definition of local convergence, we may apply Reformulation [I]
with € = Pg(o < 00) > 0 and § an arbitrary positive number to deduce that p.(G,) < p+9
for all sufficiently large n. This implies the desired upper semi-continuity since p > p.(G) and
§ > 0 were arbitrary. In the other direction, suppose that Reformulation [I] is false, so that there
exists d € N, & > 0, and 6 > 0 such that for each r > 1 there exists G, € G and p, € [0, 1] with
pc(G,) > p,+¢€and Pg’(o < §,) = 6. Since G} is compact, there exists a subsequence along

which G, converges locally to some transitive graph G € G and p, converges to some p € [0, 1],
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which must satisfy Pg(o < r) > ¢ for every r > 1 and hence that p.(G) < p. Since the lim

inf of p.(G,) along this subsequence is at least p + £ we deduce that p. is not continuous on G*,

completing the proof of the equivalence.

Remark 3.1.4. The lower semi-continuity of p. follows by a very similar argument to the deduction
of upper semi-continuity from Reformulation 1| that we just gave, but where the relevant finite-size
criteria or uniform bounds follow easily from standard facts about the sharpness of the phase
transition: The argument of [DT164a] is formulated in terms of finite-size criteria for subcriticality,

while that of [Pet] is formulated in terms of uniform bounds on supercritical percolation.

Remark 3.1.5. Although the perspective on the locality problem we have just discussed is highly
influential on our approach, we will in fact follow a slightly different approach in order to circumvent
some technical problems related to estimating the “burn-in”, i.e., the amount of sprinkling needed
to perform the base case of our multi-scale induction scheme. As such, we do not obtain an explicit
function A, as in Reformulation [2]in this paper. The additional steps required to make our argument
completely quantitative and obtain an explicit bound on the function A, will be carried out in a
forthcoming companion paper [EH23+b|.

A non-trivial reformulation. Let us now begin to go into more detail about our methods of proof.
As discussed above, the results of [Hut20a; Hut20e|] completely resolve the nonunimodular case
of the conjecture, and since the space U™ is both closed and open in G* we may restrict from now
on to the case that all graphs are unimodular. In this case, the sharpness of the phase transition
[Men86; AB87a; DT16a]] together with the methods of [Hut20a] allow us to further reformulate
Theorem [8.1.1] as follows.

Reformulation of the locality conjecture 3. For all d € N and all €,6 > 0, there exists n € N
such that

1
min P,(u &v)>e = lim —logP,.s(0 < S,) =0
M,VGBn m—oo m

forevery G € U} and p € [0, 1].

The fact that we can replace the statement that 6(p + 6) > 0 appearing on the right hand side of
Reformulation [I| with the statement that the radius has a subexponential tail appearing on the right
hand side of Reformulation 3| follows directly from the sharpness of the phase transition [Men86;
AB87a; DT16al], which implies that the radius has an exponential tail whenever p < p.. (This
does not require unimodularity.) The fact that we can replace the lower bound on the tail of the

radius appearing on the left hand side of Reformulation [I] with the lower bound on point-to-point
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connection probabilities appearing on the left hand side of Reformulationis amuch less obviou
fact and is the main content of [Hut20al]. (Indeed, in the exponential growth setting studied in
[Hut20a]], a uniform upper bound on critical point-to-point connection probabilities was already
established in [Hut16].) The argument needed to see that Reformulation [3| implies Theorem [8.1.1]
is explained in more detail in Sections [3.2]and

Sprinkled renormalization of the two-point function. We now explain our unconditional prooiﬂ
of Reformulation [3] which occupies the bulk of the paper. At a very high level, we will use a
“sprinkled multi-scale induction argument”, in which we start with estimates concerning percolation
on some scale and deduce similar estimates at a much larger scale after increasing p by some
appropriately small amount; if we can do this efficiently enough, so that the total sprinkling is
small when we start at a large scale, we can carry the induction up to infinitely many scales and
(hopefully) prove that the resulting slightly larger parameter is supercritical (or at least that it is not

subcritical).

Since our actual induction hypothesis is rather complicated, let us first illustrate how such an
argument might work in principle. Let d > 1 be fixed and suppose that we were able to prove an
implication of the form

. G . G
MR E ez = mn BL@onznm 61

held for all G € U;, p € [0,1], and n > 1, where ¢ : N — N is strictly increasing and
g,0,n: N — (0, 1] are decreasing. We claim that such an implication would suffice to prove locality
provided that sufficiently strong quantitative relationships hold between the various functions that
appear. For example, the argument would work provided that n(n) > 6(¢4(n)), that 6(n) is
subexponentially small as a function of n, and that 377, e(¢*(n)) < oo, where ¢* denotes the k-
fold convolution of ¢. (Consider for example ¢(n) = (n+1)%, 6(n) = (logn)™', n(n) = (2logn)~!,
and £(n) = (loglogn)~2.) To see this, note that if we define the sequence (nx)x=1 by 1o = 1 and
ni+1 = ¢(ny) for each k > 1 then, under this assumption, the implication (3.1.3) implies that

min Pg(u o) >o(ng) = min P¢

uev)=>on
u,veBy, URES: P p+8(nk)( ) ( k+])

3Indeed, unlike the tail of the radius, it is possible that point-to-point connection probabilities continue to decay
in the supercritical regime, as is the case on the 3-regular tree. This breaks the argument that Reformulation [T]implies
Theorem [8.1.T| that we gave above.

4As discussed in Remark we do not quite proceed via Reformulation [3| in order to circumvent certain
technical obstacles. Despite these caveats, we still think of our argument to be best understood as “morally” going via
Reformulation [3| which in any case is implied by Theorem[8.1.1}
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and hence by induction that

min P[?(u & v) >d(n;) forsomek > 1
u,vEBnk

= u’vmeitrglni P;Zj«;}c g(nj)(u o v) > 06(ngy) foreveryi > k.
Since the conclusion on the right hand side implies that connection probability are subexponential
in the distance at p + Z;‘;k g(n;), it would follow from (3.1.3) that if miny,yep,, Pg (u > v) > 8(ng)
for some k then p. < p + Z;’;k g(n;). The assumption that Z;io £(n;) ensures that the tail sum

appearing here is small, verifying Reformulation

Following this approach, we are led to the problem of how to extend point-to-point connection
lower bounds from one scale to a much larger scale after sprinkling by a small amount. More
specifically, we want to do this as efficiently as possible, with the hope of obtaining an inductive

statement that is sufficiently strong to imply locality.

Snowballing. In Section |3.4] we develop a new method based on Talagrand’s theory of sharp
thresholds [Tal94]] and “cluster repulsion” inequalities inspired by the work of Aizenman-Kesten-
Newman [[AKN87b]| that allows us to prove a bootstrapping implication of the form (3.1.3]), where
the function ¢ depends on the volume of the ball of radius n. While the basic idea of using
Talagrand together with Aizenman-Kesten-Newman is already present in [DKT21; CMT22]] (both
in the polynomial growth case), we find a new way of both implementing and applyingE] this
argument using ghost fields that works directly in infinite volume and uses the two-ghost inequality
of [Hut20a]] rather than the classical Aizenman-Kesten-Newman inequality. We call this the
snowballing method. While the methods of [DKT21; |(CMT22] needed upper bounds on the
growth to work, our method actually becomes more efficient as the growth gets larger; if the growth
is large enough, the bootstrapping implication we obtain (which is of the form (3.1.3)) is strong
enough to prove locality by the argument outlined above. Optimizing the snowballing argument
as much as we could (see Remark [3.4.5)), we found that this method could prove locality for graph
sequences satisfying a uniform growth lower bound of the form nc(oglog M for some universal

constant C and any ¢ > 0.

For Cayley graphs, the hypothesis needed for this argument to work is of course frustratingly close

to the Shalom-Tao bound Gr(n) > exp(clogn(loglogn)¢) [ST10b|], where c is a small universal

>In particular, the argument we use to efficiently extend two-point estimates to a higher scale given the outputs of
this sharp threshold argument is also novel.
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constant, which holds for every Cayley graph of superpolynomial growth. Thus, even a modest
improvement to Shalom-Tao or the snowballing argument would allow us to prove locality for all
sequences of superpolynomial growth via this method. Since we were not able to improve either
argument to the required extent (and in any case must also deal with the “diagonal” case of locality),
we will instead attack the locality conjecture in a “pincer movement”, where we push the polynomial
growth methods of [CMT22] to handle all growths that are too slow to be treated by the snowballing
argument. In fact we will push these methods to handle all graphs of quasi-polynomial growth
Gr(n) < exp((logn)©), so that there is a considerable overlap in the growth regimes handled by the
two methods. As mentioned above, a key technical difficulty is that (as far as we know) the same
graph may oscillate between the two growth regimes infinitely often, so that the two methods must

be harmonized in some way to allow for this.

Chaining via orange peeling. A well-known general approach to efficiently extend connection
lower bounds from one scale to another is by a method we will call chaining. Consider the event
&y that Sg <> Siog and the event %% that there is at most one cluster intersecting both S and Ssg.

Suppose we knew that for some large R and small £ > 0,
P,(&)>1-¢e and P,(%)=>1-e¢. (3.1.4)

Then, by Harris’ inequality and a union bound, we could deduce that any pair of vertices u# and v
at distance kR satisfy

P,(u <> v) > min P,(u &) [1-ke] - ke. (3.1.5)

u’ v €BioR

If we also had a way to use (3.1.5)) to deduce a version of (3.1.4)) at scale kR in place of R (possibly
after a small increase of p), and this argument is sufficiently efficient quantitatively, we might be
able to formulate an inductive argument yielding both connection lower bounds and uniqueness of

annuli crossings at all scales. (Of course such an argument cannot work on e.g. the 3-regular tree.)

This is roughly what is done in [CMT22]| (although they consider supercritical percolation, so that
crossing probabilities do not decay a priori), who establish that %/ holds with high probability
when G has polynomial growth and R — oo. Their method, which (following [[Gri99]) they refer
to as orange peelingﬁ and is inspired by the earlier work [BT17]], relies on knowing a two-point
lower bound within annuli of the form Bz.a\Bg for all large R and some appropriate A(R) < R.
This information needs to be proven using information at lower scales, so that the argument is a

kind of multi-scale induction or coarse-grained renormalization. The idea is to argue that as two

®We do not completely understand the metaphor; perhaps onion peeling would be more appropriate?
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clusters cross the thick annulus Bsg\Bag, they are very likely to become connected to each other
because they have to cross many disjoint annuli of the form Bg:4a\Bpg/, and in each such annulus
they have a good probability to become connected to each other after sprinkling. If there are enough
opportunities for any two crossing clusters to merge then all crossing clusters will have merged
by the time they reach the outer sphere. The full argument of [CMT?22] is highly technical and
sophisticated, with the discussion in this paragraph presenting only a simplified cartoon version of

some selected parts of their argument.

Working with quasi-polynomial growth. To run the something like the above “orange peeling”
method, it is helpful to know that annuli Bg,\Bg, are in some sense well-connected. For example,
in the setting of [CMT22], the authors used the fact that for any pair of vertices u, v in the exposed
sphere S%, which is a certain subset of the usual sphere Sg, there is a path from u to v that
stays within Bgia\Br-a. To prove this they used the structure theory of graphs of polynomial
growth (i.e. the fact that such graphs are finitely presented and are one-ended when they are not
one-dimensional). As such, this method does not easily generalize to other graphs. (Indeed, any
reasonable connectivity-of-annuli statement cannot hold in complete generality — annuli in regular
trees are as poorly connected as sets at a given distance can possibly be.) We will prove that a
weak connectivity property of annuli does hold if we assume that a quasi-polynomial growth upper
bound Gr(R) < exp((log R)€) holds around the relevant scales. This statement, which we call the
polylog-plentiful tubes condition, says that for any two sets of vertices A and B crossing a thick
annulus B3g\Bg, we can find many (i.e., at least (log R)*(1)) paths from A to B that are not too
long (i.e., have length at most R(log R)°") and that are well-separated from each other (i.e., any
two paths in the set have distance at least (log R)*(!))). The proof of this polylog-plentiful tubes
condition will exploit a structure vs. randomness dichotomy, where we use the structure theory
of [EH23d] to handle the low-dimensional case and handle the high-dimensional case by building
the required disjoint tubes using coupled families of random walks. Once this polylog-plentiful
tubes condition is verified, we then show it can be used to push the methods of [CMT22] to handle
graphs of quasi-polynomial growth. (This requires significant technical changes throughout their

entire argument, with the proofs of some intermediate steps being completely different.)

We might hope that the low- and high-growth arguments both imply a common statement similar to
(3.1.3). Unfortunately our induction statement is more involved than this. The issue is that our low-
growth argument works with point-to-point connections within finite sets such as balls and tubes,
while the high-growth argument works directly in infinite volume, and our induction hypothesis

must be able to handle oscillation between these two cases. Our actual induction statement, which
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we explain in detail in Section [3.3] therefore has two parts: a lower bound on the full-space (infinite
volume) two-point function, with no restriction on the geometry of the graph at the relevant scale,
together with a lower-bound on connection probabilities inside tubes that holds only when the
thickness of the tube happens to belong to a quasi-polynomial growth scale. (The length of these
tubes are permitted to be quasi-polynomial in their thickness, so that this estimate tells us not just
about quasi-polynomial growth scales but also many subsequent larger scales.) Thus, we are able to
formulate a multi-scale inductive implication that holds in all growth regimes and is strong enough

to imply Theorem 8.1.1

Organization and overview

We now outline the structure of the rest of the paper.

Section 2: In this section we review both the classical Aizenman-Kesten-Newman inequality
[AKNS7b]] and its consequences for the “uniqueness zone” as derived in [CMT22|] as well as the
two-ghost inequality of [Hut20al], which is a kind of infinite-volume version of Aizenman-Kesten-
Newman analyzing volumes of clusters rather than their diameters. We also state a useful lemma

of [Hut20a] that applies this inequality and that leads to Reformulation [3above.

Section 3: In this section we formulate the multi-scale induction framework used to prove locality,
stating the induction step as Proposition [3.3.1] We then explain how this technical proposition
both implies Theorem [8.1.1] and leads to a new proof of p. < 1 for transitive graphs that are not

one-dimensional as originally proven in [DGRSY20].

Section 4: In this section we develop a new method of deducing two-point function lower bounds at
a large scale from lower bounds at a smaller scale, which we call snowballing. This is based in part
on an idea already present in [DKT21; |CMT22], in which one uses Aizenman-Kesten-Newman
bounds as an input to Talagrand’s sharp threshold theorem [Tal94]. Unlike those works, we use the
two-ghost formulation of Aizenman-Kesten-Newman from [Hut20a] to work directly with volumes
of clusters and prove bounds that hold in arbitrary unimodular transitive graphs; this causes the
inequalities we derive to become vastly more efficient as the growth of the graph gets larger. The
proof of the main snowballing proposition also involves a novel ghost-based chaining argument to
convert this sharp threshold statement into a statement about extending point-to-point connection
probabilities. All the arguments in this section work more efficiently as the growth gets larger, but
still have content in the polynomial growth case. In Section 2.2, we explain how the snowballing
method implies part of the main multi-scale induction step and also easily implies the full locality

conjecture for graphs satisfying a mild superpolynomial growth lower bound. (Here the growth
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assumption is needed only to ensure that the total amount of sprinkling is small when we start at
a large scale and induct up to infinity; no further geometric properties of graphs of high growth
are used.) The tools we develop in Section 2.1 also play an indispensable role in our low-growth

arguments in Section 3.6

Section 5: In this section we establish deterministic geometric features of transitive graphs of
quasi-polynomial growth (at some scale) that will be used to analyze percolation on these graphs
in Section [3.6] The main question addressed is as follows: how can one harness low — but
not necessarily polynomial — volume growth to establish that annuli are well-connected? Here,
the “well-connectedness” of annuli is made precise via what we call the polylog-plentiful tubes
condition. The proof that the polylog-plentiful tubes condition holds for graphs of quasi-polynomial
growth uses a “structure vs. expansion” dichotomy according to whether the rate of growth on the
relevant scale is low or high dimensional; in the low-dimensional case we employ the structure
theory of [BGT12aj; T'T21a; EH23d] while in the high-dimensional case we construct large families
of disjoint tubes using certain coupled random walks; the quasi-polynomial growth assumption
is used to ensure that we can couple two walks started at distance n to coalesce within distance
n(logn)®W. (The low dimensional case of the analysis is the only place where we directly use the
fact that our graphs are not one-dimensional, where it is needed to ensure that “exposed spheres”

are well-connected in a certain sense.)

Section 6: Using the polylog-plentiful tubes condition, we run a chaining argument for graphs
of quasi-polynomial growth (on some scale) that is inspired by [CMT22]]. Many changes to their
argument are required to deal with this new geometric setting, and our arguments in this section
also make use of the snowballing method developed in Section[3.4] We then use the outputs of this
analysis to complete the proof of the induction step and hence of Theorem [8.1.1]

Section 7: In this section we first briefly sketch how the methods of Section[3.4]can be used to prove
locality of the density of the infinite cluster in the supercritical phase; a significant generalization
of this result is proven in full detail (via a different method) in our forthcoming paper [EH23+a].

We finish by discussing some open problems in Section [3.7]

3.2 Cluster repulsion and the a priori uniqueness zone

In this section we review various bounds on the probability that two large clusters either meet
at a single edge or both intersect a small ball, together with some important consequences of
these inequalities. These inequalities originate inexplicitly in the work of Aizenman, Kesten, and

Newman [AKNS87b] and were brought to the wider attention of the community in the work of Cerf
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[Cerl5]. These inequalities come in two flavours: finite-volume estimates that work with the radii
of clusters, and infinite-volume estimates that work with the volume of clusters. The first kind of
inequality, which is closer to the original vision of [AKNS7bj; (Cerl5]], works best under a low-
growth assumption and plays an important role in Contreras, Martineau, and Tassion’s analysis of
percolation on transitive graphs of polynomial growth [CMT22; CMT23a], while the second kind
of inequality, introduced in [Hut20a] and known as two-ghost inequalities, become more useful the
faster the graph grows. We will also review the argument of [Hut20a] which allows us to deduce

locality of p. from uniform bounds on the two-point function using the two-ghost inequality.

Aizenman-Kesten-Newman and the a priori uniqueness zone

We now review the finite-volume Aizenman-Kesten-Newman inequality as presented in [Cerl5;
CMT22].

Finite-volume two-arm estimates. Given m,n € (0, c0) with m < n, we define Piv[m, n] to be
the event that there exist two distinct clusters in w N B, that each intersect both spheres S, and S,,.
(That is, Piv[m, n] is the event that there is more than one cluster crossing the annulus from m to

n.) The following lemma is a minor variation on [CMT22, Proposition 4.1].

Proposition 3.2.1. For each 0 < € < 1/2, 0 < n < 1, and d > 1 there exists a constant

C = C(g,n,d) such that if G is a connected, transitive graph of vertex degree d then

P, (Piv[1,n]) < C Mr—g,

n

forevery p € [n,1] andn > 1.

To deduce this proposition from the proof of [CMT22, Proposition 4.1], we will require the
following elementary fact about the growth of balls. Here dB,,(0) denotes the set of edges that

have one endpoint in B, (o) and the other endpoint in the complement of B, (0).

Lemma 3.2.2. For each d > 1 there exists a constant C; such that the following holds. Let G be
a graph of maximum vertex degree at most d, and let o be a vertex of G. For each integer n > 1

there exists an integer n < m < 2n — 1 such that

0B (o) _ C
———— < —log|Ba, .
B0 < loglBuo)

Proof of Lemma|[3.2.2] Write Gr(m) := |B,(0)| for every m € N. Since G has vertex de-
grees bounded above by d, we have that |0B,,(0)| < d(Gr(m + 1) — Gr(m)) and hence that
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|0B,,(0)| /Gr(m) < d(Gr(m + 1)/Gr(m) — 1). It follows that

2"21 0B (0)] _ 2"21 (Gr(m +1) 1)
Bu(o) ¢ £4\ "Gr(m) |
Now, since we also have that Gé(r’(”,;)l ) < d, there exists a constant C = C,; such that
G 1 G 1
Gr(m) Gr(m)
for every m > 0. As such, it follows that
2n-1 2n-1
|GB (0)| Gr(m+1) Gr(2n)
dcC log —— =d(Cy1
Z Bu(o)] ~ ¢ mZ %8 " Gr(m) 1% Gr(n)
which is easily seen to imply the claim. O

Proof of Proposition[3.2.1} This follows by exactly the same proof as [CMT22| Proposition 4.1]
except that we use our Lemma [3.2.2] instead of their Lemma 4.2 (which is the same estimate

specialized to the polynomial growth setting). O

The a priori uniqueness zone. We now discuss how two-arm bounds at a single edge can be used
to deduce bounds on the probability of having multiple clusters crossing an annulus. The following
lemma, essentially due to Cerf [[Cer15]], lets us apply Proposition [3.2.1] to bound the probability

that there are two distinct crossings of an annulus.

Lemma 3.2.3 ((CMT22, Lemma 6.2]). Let G be a connected transitive graph. Then

2
P, (Piv[r,n]) <P, (Piv[1,n/2]) - 15,17 - Gr(m) (3.2.1)

mina,beS, Pp (a (ﬁ) b)

foreveryr,m,n € (1,00) withr <m < n/2 and every p € (0, 1).

Remark 3.2.1. The authors of [CMT22] stated this lemma in their context of infinite graphs with
polynomial growth. However, their proof works exactly the same for arbitrary connected transitive
graphs. (The statement given in [[CMT22] has By, in place of B,, — which is slightly stronger —
but this appears to be a typo.)

Since any geodesics from o to two vertices a, b € B,, are both open with probability at least p>" and
the growth satisfies the trivial upper bound Gr(m) < d"™*!, the quantity multiplying the probability
P, (Piv[1,n/2]) on the right hand side of (3:2.I) is at most exponential in m when p is bounded
away from 0. Proposition[3.2.TJand Lemma[3.2.3|therefore have the following immediate corollary.
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Corollary 3.2.4 (Trivial a priori uniqueness zone). Let G be a connected, unimodular transitive
graph with vertex degree d and let e, € (0,1). There exist positive constants ¢ = c(d,n, &),
C=C(d,n,e), and ny = no(d, n, €) such that

loo G 1/2—¢
P,(Piv[clogn,n]) < C og—r(n)]

n

foreveryn > nyand p € n, 1].

In other words, if G has subexponential growth then the probability of having two distinct crossings
of the annulus from c log n to n is always small for an appropriately small constant ¢. (The restriction
that p is small could be removed by noting that it is very unlikely for there to be any crossings of
the annulus when p < 1/d.)

The two-ghost inequality

We now recall the two-ghost inequality of [Hut20al], a form of the Aizenman-Kesten-Newman
bound that holds for any unimodular transitive graph, without any growth assumptions. (This
version of the bound does not imply uniqueness of the infinite cluster since it requires at least one
of the clusters to be finite.) Let G = (V, E) be a graph. For each edge ¢ of G and n > 1 we define
7. n to be the event that e is closed and that the endpoints of e are in distinct clusters, each of which

has volume at least n and at least one of which is finite.

Theorem 3.2.5 (‘Two-ghost inequality). Let G be a unimodular transitive graph of degree d. There

exists a constant C; such that

1—p 1/2
Py(Fen) < Cq [ ] (3.2.2)
pn

foreverye € E(G), p € (0,1] andn > 1.

Proof. This is an immediate consequence of [Hut20a, Corollary 1.7]: The statement given there
concerns the edge volume rather than the vertex volume, but this only makes the statement stronger.

O

Theorem [3.2.5] has the following useful consequence concerning the probability that two large
distinct clusters come close to one another; this lets us convert bounds on the two-point function
into bounds on the tail of the volume and underlies the fact that Reformulation |3| implies the
unimodular case of Theorem
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Lemma 3.2.6. Let G be an infinite, connected, unimodular transitive graph with vertex degree d.

There exists a constant Cy such that
P,(|Ku| 2 nand |K,| > nbutu < v) < Cq-d(u, y)p =1y =172,

foreveryu,v e V(G),n > 1, and p < p.(G).

Proof. This follows from Theorem by the same argument used to prove equation (4.2) of
[Hut20a]. (Again, the only difference is that we are using vertex volumes rather than edge volumes.)

—d(u,v)-1 d(u,v) i+l

arises as a simple upper bound on ((1 — p)/p)l/2 2o, P O

The quantity d(u,v)p

3.3 The multi-scale induction step

In this section we state our key technical proposition, Proposition [3.3.1] which encapsulates the
multi-scale induction used to prove Theorem[8.1.1} We introduce relevant definitions in Section[3.3]
give the statement of the proposition in Section [3.3] and explain how it implies our main theorem
in Section [3.3] In Section [3.3] we also explain how Proposition [3.3.1] yields a new proof of the fact

that p. < 1 for all infinite, connected, transitive graphs that are not one-dimensional.

Definitions

In this section we establish the notation necessary to state the main multi-scale induction proposition
in Section 3.3

Natural coordinates for sprinkling. We define the sprinkling function Spr : (0,1) xR — (0, 1)
by
Spr(p;A) = 1-(1-p)"  sothat  (1=Spr(p; ) = (1-p)°".

The sprinkling functions (Spr( -; 1))er form a semigroup in the sense that
Spr(p; A+ p) = Spr(Spr(p; A); )
for every A, u € Rand p € (0,1). Foreach 0 < p,g < 1 we define

log(1 — max{p, q})
log(1 = min{p, q})

o(p,q) =log ] so that max{p, g} = Spr(min{p, g};(p, q)).

Note that if p > 1/d, as we will assume throughout most of the paper, then for each D < oo there

exists a positive constant ¢ = ¢(d, D) such that

2d -1
2d

9
(1-Spr(p:6)) = (1-p)*" (1 - p) < ( ) (1-p)<(T-c6)(1-p) (3.3.1)
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for every 0 < 6 < D, so that Bernoulli bond percolation with parameter Spr(p; ) stochastically
dominates the independent union of a Bernoulli-p bond percolation configuration and a Bernoulli-
(cd) bond percolation configuration. (Note however that 1 — Spr(p;d) is much smaller than

(1 =co)(1 - p) when piscloseto 1.)

The corridor function. Given a path vy, we write len(y) for its length. Given a path y and some
r € (0, c0), we define B, (y) := U:.i%(y) B, (7y:), and call a set of this form a tube. We refer to len(y)
and r as the length and thickness of the tube respectively. (Note that these parameters depend
on the choice of representation of the tube B, (y), and are not determined by the tube as a set of

vertices.) Following [CMT22], we define the corridor function by

. Bu(y)
Kp (m,n) := inf Pp ()’0 — ylen(y))
y:len(y)<m

for each p € (0,1) and n,m > 1, so that k,(m,n) measures the difficulty of connecting points
within tubes of thickness n and length at most m. We may also take n = oo in the definition of
the corridor function, where the restriction for connections to lie in a tube disappears and we have
simply that

kp(m, o) = kp(m) =inf{P,(x & y) : d(x,y) < m}.

Note that the corridor function «,(m, n) is increasing in p and n and decreasing in m.

Low growth scales. Given a transitive graph G and a parameter D > 0, we define the set of low
growth scales to be

Z(G,D) = {n > 1 : log Gr(m) < (logm)? forallm € [n1/3,n]},
so that
{n > 1:1ogGr(n) < 3_D(logn)D} c Z4(G,D) c {n > 1:1ogGr(n) < (logn)D}.

(We will sometimes call these quasi-polynomial growth scales since the function exp[(logx)¢]
is sometimes known as a quasi-polynomial.) For the purposes of the proof of the main theorem,

we will apply this definition only with the (somewhat arbitrary) choice of constant D = 20.

The burn-in sprinkle. The first step of our induction will have a different form to the others,
which necessitates a possibly larger amount of sprinkling. We now introduce notation describing

this initial amount of sprinkling. Given a transitive graph G, p € (0, 1), and m > 1 define
— — . l 1/3 : 1/3 -1
b(m)=b(m,p) =maxibeN:1<b < 3" and P, (Piv[4b,m '°]) < (logm)™" ¢,
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setting b(m) = 0 if the set being maximized over is empty, and define the burn-in to be

Burn(n, p) = Burn(G, n, p)

3 loglogm 174 ' 12
_max{(min Toom e Gripyy) ™€ £(G-200 [(1ogn) n] ,

setting Burn(n, p) = 0 if the set being maximized over is empty and setting Burn(n, p) = oo if
there exists m belonging to the set for which b(m) < 1. (If b(m) > 1 then log Gr(b(m)) and
log m are both positive.) Note that Burn(G, n, p) is determined by the ball of radius » in G, so that

two graphs whose balls of this radius are isomorphic have the same value of Burn(n, p) for each
p € (0,1).

Statement of the induction step
We are now ready to state our main multi-scale induction proposition. We recall that, when applied
to logical propositions, the symbol “V” means “or” while the symbol “A” means “and”. The

condition ny > 16 appearing in the proposition ensures that loglogng > 1.

Proposition 3.3.1 (The main multi-scale induction step). For each d € N there exist constants
K = K(d) and N = N(d) > 16 such that the following holds. Let G be an infinite, connected,
unimodular transitive graph with vertex degree d that is not one-dimensional, let py € (0, 1), and
let ng > 16. Let n_y = (logng)'/?, let

1

=—— + K -Burn(ng, po),
0= Toglogno) 72 (n0, po)

define sequences (n;);>1 and (6;);>1 recursively by
“1/2 _

n; .= exp((logni_1)°) = exp™ (log03 (ng) +ilog 9) and §; := (loglogn;) = 37" (loglog no)

and let (p;)i>1 be an increasing sequence of probabilities satisfying pi+1 = Spr(p;;6;) for each
i > 0. Foreachi > 0 define the statement

FuLL-SPACE(i) = (Pp,.(u V) > exp [—(log log ni)l/z] forallu,v € B,

and for each i > 1 define the statement

-1/2

CoRRIDOR (i) = (Kpi(e[logm] v, m) > exp [—(loglog ni)l/z] foreverym € £(G,20) N [ni—z, ni—1] |
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Ifng = N, po = 1/d, and 69 < 1 then the implications

FuLL-Sprace(0) = -CORRIDOR(I) Vi(pr = pc)], (Co)

i i
[FULL-SPACE(i) A /\CORRIDOR(k)] = |CorRRIDOR(i + 1) V (piy1 = pc)], and  (C)
k=1 )

[FULL-SPACE(j) A CORRIDOR(j + 1)] = »FULL-SPACE(j +1)V(pj+ = pc)] (F)
hold for everyi > 1 and j > 0.

Remark 3.3.1. Note that CorripOR (1) has a significantly different form than Corripor(7) fori > 2
since n_1 is much smaller than the natural extrapolation of the sequence (n;);>o toi = —1.

Remark 3.3.2. The condition p > 1/d appearing in the hypotheses of Proposition is in fact

redundant: An elementary path counting argument yields that

P,(u < v) < P,(there is a simple open path of length at least d(u, v) starting from u)

d 1
< . C(p(d — 1))dw)
< T Ty PE D)

forevery p < 1/(d—1) and u,v € V(G), so that if n is sufficiently large and FuLL-Spacge(0) holds
then p > 1/d. We include this redundant assumption anyway to clarify the structure of the proof.

Remark 3.3.3. In the statement CorRRIDOR (i), the tubes that arise in the relevant corridor function

logm]!

Kpi(e[ O,m) have thickness given by the low-growth scale m, but can have length equal to

the much larger value ellogm]!?

. As such, the statement CorRIDOR(i) gives us strong control of
percolation not just at low-growth scales but at a large range of scales above each low-growth scale.
. ) . . 1/3 . T
In particular, provided n; is sufficiently large that ellog(n; ' 5 o (logni)” _ ni+1, the implication (F)

holds trivially whenever n; € .2 (G, 20).
Remark 3.3.4. The “V(piy1 > p.)” that appears on the right hand side of the implications (Cy),

(@), and (F) can be removed if one assumes that G is amenable, or if one works with "wired"
connections as discussed in Section[3.7} This would be useful if one wished to use (a modification

of) our methods to study the geometry of the infinite cluster in graphs of low growth, extending the
results of [CMT22; |[Hut23b] to this setting.

Most of the paper is dedicated to proving Proposition [3.3.1f The implication (F)) is proven in
Section [3.4] while the implications and (C) are proven in Sections [3.5]and [3.6]
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Deduction of the main theorem from the induction step
In this section we deduce our main theorem, Theorem from Proposition We write
Poo = lim;_,, p; for the limit of the parameters (p;);>o defined recursively by p;+1 = Spr(p;; 6;), so
that -
Poo = Spr(Po; Z 5,~) < Spr(po; 2(loglogng) "2 + K - Burn(no,po)).
i=0
We will apply Proposition [3.3.1] via the following corollary, which is a consequence of Proposi-

tion [3.3.1] together with the sharpness of the phase transition.

Corollary3.3.2. Letd > 1 andlet K = K(d) and N = N(d) be the constants from Proposition|3.3. 1|
Let G be an infinite, connected, unimodular transitive graph with vertex degree d that is not one-

dimensional. Then the implication

([Pp(u ov) > o~ (loglogm)'/? for everyu,v € Bn] A [0 < 1])

- [pC(G) < Spr(p; 2(loglogn)_1/2 +K- Burn(n,p))] ,

holds for everyn > N and p > 1/d.

Proof of Corollary[3.3.2] given Proposition It suffices to prove that p,. < p. whenevern > N
and p > 1/d are such that P,(u < v) > ¢~ (loglogm ' g4, every u,v € B, and 69 < 1. Fix one
such n and p. Set ng = n and define (n;);>0 as in Proposition[3.3.1} Since FurL-Space(0) holds by
assumption, it follows from Proposition [3.3.1] that either p; > p, for some i > 1 or FuLL-SPACE(()
and Corripor (i) hold for every i > 1. In the former case we may trivially conclude that p, < pe,

while in the latter case we have that

)1/2

Pp. (u & v) > ¢~ (oglogn; for every i > 0 and every u,v € B,,. (3.3.2)

On the other hand, it follows from the sharpness of the phase transition [Men86; ABS87a] that
for each p < p. there exists a positive constant ¢, such that P,(u < v) < e~<rdY) for every
u,v € V(G). This is incompatible with the (very) subexponential lower bound (3.3.2), so that
Poo = Pe in this case also. |

We now apply Corollary [3.3.2] to prove Theorem [8.1.1] The proof we give here will rely on the
results of both [Hut20a; Hut20e]] (to deal with the nonunimodular case) and [CMT22; (CM'T23al|
(to deal with the case that the limit has polynomial growth). We remark that the quantitative

proof of the theorem given in [EH23+b]] yields a completely self-contained and “uniform in the
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graph” deduction of locality from Proposition [3.3.1]in the unimodular case that does not rely on
the result of [CMT22; |CMT23a]]. (Doing this requires non-trivial bounds on the burn-in which
can be avoided in the case that the limit has superpolynomial growth as we will see below.)

Proof of Theorem [8.1.1] given Proposition[3.3.1} Let (G,,)n>1 be a sequence of infinite, connected,
transitive graphs converging locally to some infinite transitive graph G, and suppose that the graphs
G, all have superlinear growth. We want to prove that p.(G,,) — p.(G). If G is nonunimodular
the claim follows from the results of [Hut20a; Hut20e| (specifically [Hut20a, Theorem 5.6]), while
if G has polynomial growth the result follows from the main result of [CMT23al]. Thus, we may
assume that G is unimodular and has superpolynomial growth. Since the set of nonunimodular
graphs is both closed and open in G [Hut20a, Corollary 5.5], we may assume that the graphs
(Gp)n>1 are all unimodular. We may also assume that the graphs G,, and G all have the same vertex
degree d. Let Ny = N;(d) and K = K(d) be the constants from Proposition [3.3.1]

Suppose for contradiction that p.(G,,) does not converge to p.(G). Since p. is lower semi-
continuous ([Pet, §14.2] and [DT16a, p.4]), we have that liminf,, . p.(G,,) = p.(G). Thus, by
taking a subsequence, we may assume that inf,,;>1 p.(G,;) = p« > pc(G). Let pg = (p.(G)+p.)/2
so that p.(G) < pg < p«. For each n > 1, let m(n) be minimal such that the balls of radius » are
isomorphic in G, and G for all m > m(n). Let ¢ > 0 be the constant from Corollary Since
G has superpolynomial growth, we have by [[Gro81b; Tro84b] that

lim loglogn _
n—eo log Gr(clogn; G)

)

where Gr(m; G) denotes the volume of the ball of radius m in G, and it follows from Corollary
that
lim sup sup Burn(G,,n,p)=0. (3.3.3)

= phe[1/d,1] m>m(n)
In particular, there exists N > N; (depending on the superpolynomial graph G and the sequence
(G)) such that if ng > N> then (loglogng)~'/? + K - Burn(G,,, ng, po) < 1 and

Spr(po; 2(loglog no)_l/2 + K - Burn(G,, no, po)) < ps«

for every m > m(ngp). Thus, it follows from Corollary that for every ng > N, and m > m(ng)

there exist vertices # and v in the ball of radius ng in G, such that

Pg)m(u © V) < exp [—(log log no)l/z] .

70f course many of the proof techniques remain closely inspired by these works!

56



Applying Lemma [3.2.6] we deduce that there exists a constant C; such that
Pgo'"(|K| > k)% < Clnopaz"ok_l/2 + exp [—(log log no)l/z]

for every ng > N, m > m(ng), and k > 1. Taking ny = [c;log k] for an appropriately small
constant ¢, (which makes the first term O(k_l/ 4), say, and hence of lower order than the second

term), it follows that there exist positive constants C; and c3 such that
PG (K| > k) < Crexp [—c3(logloglog k)'/?| (3.3.4)

for every ny > Ny and m > m(ng). Since pg > p.(G), the probability Pgo(o <> 00) is positive and
it follows from (3.3.4) there exist k¢ and mg such that

1
Pho (IK| = ko) < 5P} (0 > o) (3.3.5)

for every m > mg. On the other hand, if m is sufficiently large that balls of radius k¢ are isomorphic
in G,, and G then

PO (K| 2 ko) 2 PGr(o & B ) =B (0 & B ) 2 P (0 & o),

which contradicts the upper bound of (3.3.5). o

Let us now explain how Proposition [3.3.1] yields a new proof of the p. < 1 theorem as originally
established in [DGRSY?20]. Recall that G* is the space of all infinite, connected, transitive graphs

that are not one-dimensional.

Theorem 3.3.3. Every graph G € G* satisfies p.(G) < 1.

Proof of Theorem [3.3.3| given Proposition[3.3.1} If G has exponential growth then sharpness of the
phase transition easily implies that p. < (lim,_e Gr(r)™'/") < 1 (see also [Hut16; Lyo95]). Since
every nonunimodular transitive graph is nonamenable and therefore has exponential growth, it
suffices to consider the case that G is unimodular. On the other hand, if G has polynomial growth,
then it is well-known that p.(G) < 1 follows from the fact that p.(Z?) < 1 and the structure theory

of transitive graphs of polynomial growth as explained in detail in [HT21al Section 3.4].

We now consider the case that G is unimodular and has superpolynomial growth. Let d denote the
vertex degree of G and let N| = N{(d) and K = K(d) be the constants from Proposition It
follows by the same reasoning as we gave for (3.3.3)) that for every n > 0 there exists a constant
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M (d,n) such that b(m, p) < n for every m € £ (G,20) with m > M and every p > 1/d. Since
we also have trivially that Gr(n) > n for every n > 1 since G is infinite, it follows that there exists
a constant Ny = N;(d) such that

(loglog n) Y2+ K -Burn(n, p) < 1 forevery p > 1/d and n > N;. (3.3.6)

Let ng = no(d) = Ny V N. Since P,(u < v) > p®™Y) for every u,v € V and p € [0, 1], there

exists a constant 2
1 (loglog ng)
-t k)
no
satisfying 1/d < po < 1 such that P, (u <> v) > exp(—(loglog ng)'/?) for every u, v € B,. Since

nyg = N1 V Na, it follows from Corollary[3.3.2]and (3.3.6) that

Pe(G) < Spr{po; 2(loglog no) ™2+ K Burn(no, po)) < Spr(po; 2).

The claim follows since the right hand side is strictly less than one. O

3.4 Making connections via sharp threshold theory

In this section we describe a powerful new way to extend point-to-point connection lower bounds
from one scale to another, which we call the “snowballing method”. We develop this method
in Section [3.4] then apply it to prove the implication (F) of Proposition [3.3.1in Section [3.4] In
Section [3.4] we will also explain how the method allows us to conclude the proof of locality for

unimodular graphs satisfying a mild uniform superpolynomial growth assumption.

Snowballing
We now begin to develop the snowballing method. This method is primarily encapsulated through
the following proposition, whose proof is the main goal of this section, but the intermediate lemmas
used in its proof can be used to prove results of indepedent interest as discussed in Section
Given (not necessarily finite) non-empty sets of vertices A, B, and A in a graph G = (V,E) and a
parameter p € [0, 1], we define

T;,\(A, B) := minP, (a & b) ,

i

where we recall that {a A b} denotes the event that a is connected to b by an open path all of
whose vertices belong to A. We will also write T;,\(A) = T][)\(A, A) and 7,(A, B) = T]‘J/(A, B).
We also use the notion of distance d(p, g) between two parameters p,qg € (0, 1) as defined in
Section
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Proposition 3.4.1 (Snowballing). For each d > 1 and D < oo there exist positive constants
c1 = c1(D) and hy = ho(d, D), and universal positive constants c, and c3 such that the following
holds. Let G = (V, E) be a unimodular transitive graph with vertex degree d, let Ay, ..., A, be
non-empty sets of vertices in G, and suppose that 0 < py < py < 1 are such that there is at most
one infinite cluster P,-almost surely for every p € [p1, p2]. Let h > (min; |A;)~" and let r be a
positive integer with hr > 1 such that P,(Piv[1, hr]) < h for every p € [p1,p2]. If p1 > 1/d,
6 =06(p1,p2) <D, and h < hg then the implication

(h"163 < c3n”! and 7117\1 (Ai U A1) 2 4hclé4f0” everyi=1,....n~ 1)

= (7 ™M(41,40) 2 oth (AN (4] G4
holds for every non-empty set of vertices A in G. In particular, taking A =V yields the implication

(hc“s3 < csn'and Ty, (A U Ajyr) 2 4h0164f0r everyi=1,...,n— 1)
- (sz(Al,An) > CQTpl(Al)Tpl(An)) (3.4.2)
whenever p1 > 1/d, 6§ = 6(p1, p2) < D, and h < hy.

Remark 3.4.1. The fact that we can always find an integer r such that P, (Piv[1, hr]) < h for every
P € [p1, p2] can be deduced from the fact that there is at most one infinite cluster P,-almost surely

for every p € [p1, p2] by an easy compactness argument.

Remark 3.4.2. The A =V case of this lemma stated in (3.4.2)) already allows us to easily deduce
that p.(G,) — p.(G) when the transitive graphs in the sequence (G,),>1 all satisfy a uniform
superpolynomial growth lower bound of the form Gr(r) > rcloglog N This is explained in
detail in Section [3.4, Working within finite domains as in will be useful when we apply

Proposition [3.4.1] at low-growth scales in Section 3.6

The basic idea underlying Proposition [3.4.1] which is inspired by earlier works including [CMT22;
DK'T21]], is that one can use the universal two-arm estimates derived from the work of Aizenman,
Kesten, and Newman [AKN87b]| as reviewed in Section [3.2] to bound the maximum influence of
an edge on certain connection events, which can then be used as an input in Talagrand’s sharp
threshold theorem [Tal94|]. Compared to those works, our primary additional insight is that these
methods can be made vastly more efficient (especially in the high-growth case) by working with
ghost field connection events instead of more obvious connection events. Intuitively, these ghost
field connection events are “smoother” than ordinary connection events, making it easier to bound

the maximum influence of an edge. Moreover, the influence bound we get by using the two-ghost
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inequality of [Hut20a] gets better as the size of the relevant sets increases, so that we get extremely

strong sharp threshold estimates when the graph has high growth.

Given a set of vertices A in a graph G and a parameter i € [0, 1], the ghost field of intensity h
on A is the random subset ¥4 of A in which each vertex is included independently at random with
probabilityﬂ h. We denote the law of ¥4 by GZ‘. We record the following reformulation of the
two-ghost inequality of [Hut20a]].

Lemma 3.4.2. Let G be a unimodular transitive graph of vertex degree d. There exists a constant
C = C(d) such that

1 —
G‘;?@Gf@]?p({x<—>§4A}ﬂ{yH%B}ﬂ{xeﬁy}ﬂ{xmooorye—)oo})SC _TPy

for every h € [0, 1], every pair of neighbouring vertices x,y € V(G), every two sets of vertices
A,B C V(G), and every p € (0, 1).

Proof. 1t suffices without loss of generality to consider the case A = B = V since the relevant
probability is increasing in A and B. In this case, the probability is the same as if we had a single
ghost field instead of two independent ghost fields, since the restrictions of a ghost field to the
clusters of x and y are independent when these clusters are disjoint. This version of the lemma
then follows easily from Theorem Alternatively, one can deduce the desired estimate from
[Hut20a, Theorem 1.6]. (The only difference is that in that paper the ghost fields are parameterised
by 1 — e~" and are random sets of edges rather than vertices. As with Theorem this is not a

problem since the edge version of the statement is stronger than the vertex version.) O

The following lemma states roughly that the probability that two low-intensity ghost fields are
connected in a region A undergoes a sharp threshold with respect to the percolation parameter p.
This rough statement has two caveats: as we increase the percolation parameter, we also have to
increase the ghost field intensity and thicken the region A. Although the argument using ghost field
connections is new, the way we adapt it to run inside a given domain A (when A is not the whole

vertex set) is inspired by the analysis of [CMT22, Section 5].

Lemma 3.4.3 (Sharp threshold for ghost connections). For each d > 1 and D < oo there exists
a positive constant ¢ = c¢(d, D) such that the following holds. Let G = (V, E) be a unimodular

81n the literature one often takes this probability to be 1 — e ™", which makes certain calculations more convenient.
The distinction makes little difference since 1 — e = h + O(h?) as h — 0.
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transitive graph with vertex degree d, let A, B be non-empty sets of vertices in G, and suppose that

0 < p1 < pa < 1 are such that either

(i) there is at most one infinite cluster P,-almost surely for every p € [p1, p2], or

(ii) B has finite complement.

If p1 2 1/d and 5(p1, p2) < D then the implication

A B.(A
(01 ©GE @B, (91 & @) 2 K00 = (G @ GE. ® B, (%4 gy s 1 Ee)
holds for every h < 1/d and every set A C V, where r is the minimum positive integer such that

P,(Piv[1, hr]) < h for every p € [p1, p2].

Remark 3.4.3. To prove Proposition we will apply this lemma only under the hypothesis (i).
The version with hypothesis (ii) can be used as part of an alternative of the joint continuity of

6(p, G) in the supercritical region, as discussed in Section[3.7]

Before proving Lemma [3.4.3| we first recall Talagrand’s inequality [Tal94]], which (in combination
with Russo’s formula [Rus78]) states that there exists a universal positive constant ¢ such that if

A € {0, 1}F is an increasing event in a finite product space then

-1

d 1
e e e

for every p € (0,1).

Proof of Lemma We may assume without loss of generality that A, B, and A are finite,
exhausting by finite sets and taking a limit otherwise. Since we want to apply Talagrand’s inequality
to the inhomogeneousﬂ product measure G‘,;‘ ® Gf ® P,, we will first encode a random variable with

this law as a function of i.i.d. random bits. Define

. { log(1 - p1)
" Llog((@=1)/d)

9The fact that Talagrand’s inequality for homogeneneous product measures implies a version for inhomogeneous
measures with parameters close to zero was already observed in [DT22, Appendix A]. In our setting we have some
parameters that may be close to zero and others that may be close to 1.

|, gi:i=1-(=p)"""e, and ¢qp:=1-(1=py)t/me.
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The assumption that p; > 1/d ensures that mg > 1, while it follows from the definitions that
(1 =g1)"" = (1= p1), that (1 - g2)"* = (1 — p2), and that

1 log(1-p1) [\ 2d-1 2
S‘“:1_‘”qo(({log«d—1};1/d>|) 1°g(1_’”))S R

(Here we used only that x/2 < |x] < x forx > 1.) We also define
{ log h |
meg = )
log g1

which satisfies mg > 1 since h < 1/d < q. For each g € (0, 1), let P, be the law of a random

variable

whose constituent random bits are independent Bernoulli random variables of parameter g. Given

BITS = (BITS4, BITS, BITS,,) € {0, 1}, we define (¥4, %5, w) as a function of BITS by

mg mg mg

Yr(a) = 1—[ BITSA (A, 1), ¥p(b) = 1_[ BITSg(b,i), and w(e)=1- l_[(l — BITSy (e, 1)),
i=1

i=1 i=1

so that the triple (¥4, ¥3, w) has law G;‘mG ® Ggmc ® P1_(1-¢)me. The choice of parameter mg
ensures that q’I"G > h and hence that

By (G4 & G5) > GA@GE @B, (94 <> D).

Note moreover that if A C {0, 1} x {0, 1}8 x {0, 1} is an increasing event, e € E is an edge, and
1 < k < mg then (e, k) is a closed pivotal for the event {BITs : (¥4, 95, w) € A} if and only if e

is a closed pivotal for the event A in the configuration w, so that

(1= q)P,((e, k) pivotal for {BITs : (44,9, w) € A})
= (1= q)"*Gling ® Gpng ® P1_(1-gyne (Piv[A]). (3.4.4)

On the other hand, an element (x, k) of A X {1,...,m¢} can only possibly be an open pivotal if
BITSA(x, j) = 1 for every j € {1,...,mg}. Similar considerations also apply with A replaced by

B, so that we obtain the coarse bound
qP,((x, k) pivotal for {BITs : (%4, 9B, w) € A}) < ¢"°¢ (3.4.5)
foreveryx e AUBand 1 < k < mg.
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Let £ := |h~'| and for each i = 1, ..., £ define the event
Birn(A
8,’ = {gA <L> gg}

We want to bound the maximum influence of an element of (E X {1, ... ,mg})U(AX{],...,mg})U
(BxA{l,...,mg}) onthe event &;. For elements of (AX{1,...,mg})U(Bx{l,...,mg}) it will
suffice to use the trivial bound of (3.4.3), so that it remains only to bound the pivotality probability
max, G, ® G}, ® P, (Piv.[&;]) where (1 — p) = (1 — ¢)™= and h’ = g"¢. Following [CMT22],
we will do this not for every i but instead show that an influence bound of the desired form must
hold for an average choice of i. (Note that if we are working directly in the case A = V then
this issue does not arise.) More precisely, we claim that for each ¢ € [g, g»] there exists a set
I(g) € {1,...,¢} with |I| > 1/(3h) such that

max max g (1 - q)G, ® GB @ P, (Piv.[&;]) < Ca(h)'2, (3.4.6)

4SS ec

where Cy is a constant depending only on the degree d. There are two separate cases to consider:
Edges both of whose endpoints belong to B(;_1),,(A) (bulk edges) and edges with at least one
endpoint not in B(;_1),,(A) (boundary edges).

Bulk edges. First consider an edge e both of whose endpoints x and y belong to B(;_1).4(A). If w

1s such that e is pivotal for the event &; then at least one of the following two events must occur:

(i) The endpoints x and y of e belong to distinct w-clusters, one of which intersects ¢4 but not
“p and the other of which intersects ¢g but not ¢4,; at least one of these clusters must be
finite almost surely by the hypotheses of the lemma, which allows us to bound the relevant

probability using the two-ghost inequality.

(i) The endpoints x and y of e are both w-connected to the boundary of B;,(A) but are not
w-connected to each other within B;,,(A), so that Piv[1, ri4](x) and Piv[1, rh](y) both hold.

Thus, it follows by the two-ghost inequality as stated in Lemma [3.4.2] and the definition of r that

= . (1 _p)1/2 n1/2 ni
q(1 = q)P¢(Pive[&;]) < q(1-q) CIT(}Z) +h| < C(h)2, (3.4.7)

for every g € [q1,¢2] and 1 < i < ¢, where C| and C; are constants depending only on d and we
used that p > 1/d.

Boundary edges. An edge e not having both its endpoints in B;.,(A) cannot possibly be pivotal
for &;; we need only bound P, (Piv,[&;]) for edges e with both endpoints in B;;,(A) and with
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at least one endpoint not in B(;_1),;(A). Rather than bound this maximum influence uniformly
in i, we will bound it on average. Fix g € [q1,q2] and, for each i € {1,..., ¢}, pick an edge
e; = ¢;(q) € Bjy;(A) with at least one endpoint not in B(;_),,(A) that maximises Pq(Pivei [E])
over all such edges. Notice that the events Piv,. [&E;] N {w(e;) = 1} fori € {1,...,{} are pairwise
disjoint. Indeed, if Piv,,[&;] N {w(e;) = 1} occurs then e; must belong to every path connecting

4 to 9p in Bjr,(A), and such a path cannot possibly include e; if j > i. It follows in particular

that
¢
Z B, (Piv,, [&
i=1 i=1

(PlVe | N{w(e;) =1}) < 1.

MN

By Markov’s inequality, it follows that we can find a subset I(g) C {1,...,¢} with || > h such
that
max qP,(Piv, [E]) < 6h < 6(h')\/?
1€

as required. This concludes the proof of (3.4.6).

Now, the assumption that 6(pi, p2) < D implies that (1 — p) > (1 — pl)eD and hence that
1-¢g, > (1- ql)eD > ((2d - l)/(2d))eD > 0, so that g and ¢, are bounded away from 0 and 1
by constants depending only on d and D. As such, Talagrand’s inequality (which is valid to use in
our setting since all our events only depend on the status of finitely many bits) together with (3.4.6)
yields that .

d [ Pq(ai)
—log | ———— _—
dg = [1-Pu (&) Caq™e/?

for every g1 < g < g, and every i € I(q), where ¢y, ¢2, and c3 are positive constants depending

1
} > c1log > comg log — > c3log —
q1 h

only on d and D. Since £ < h~! and the derivative is non-negative for every i, we can sum over i
to obtain that , .
1 d P,(&; 1
—Z—log [M] > S og -
¢ — dq 1 -Py (&) 3 h
for every g1 < q < g». Integrating this differential inequality yields that
’ _
23 [ | e [ ) 1
- —log | —F———"—= —qu—chllog—
¢ Z Py, (&) Py, (&) h
and hence that there exists i € {1, ..., ¢} such that

max {1og [;} log [ ! ]} - {log [ Fup(&) ] o l Py (8) ]}
1 -Py, (&) Py, (&) 1 =Py, (&) 1-B,,(8)

C
> 22
6

1
lg2 — gq1]log 7

64



Figure 3.1: Schematic illustration of the event whose probability is estimated in Lemma[3.4.4 when
A = V: If any two points in A have a reasonable probability to be connected in w,,, then it is
unlikely that X is connected to a weak ghost field on A in w,, and Y is connected to a weak ghost
field on A in w, but that X and Y are not connected in w,.

The claim follows easily from this together with the inequality

1 1 log((d—1)/d) log((d-1)/d)
g2 = a1l = 1(1 = p2) /" = (1= py)"E] 2 |(1 = po) BFr” = (1= py) BaTr
d-1 log(1 - p2) d-1
== |1- ———=— —1|log —— || = c46(p1, p2),
7 [ eXp((log(l m— 0g— c46(p1, p2)
which holds by calculus with the constant ¢4 depending only on d and D. O

Our next goal is to run a chaining-like argument but with ghost fields. In this analogy, the previous
lemma can be thought of as an existence statement whereas the next lemma can be thought of as
a uniqueness statement. (Note that our proof of the next lemma relies crucially on the previous

lemma.) We work with the standard monotone coupling (w),)e[0,1] of Bernoulli bond percolation,

. A . . . . .
write {A «— B} for the event that A is connected to B by a path that is contained in A and open in
p

. A .
wp, and write {A < B} for the event that A is not connected to B by any such path.
p

Lemma 3.4.4 (Gluing ghost connections). Foreachd > 1 and D < oo there exist positive constants
¢y = c1(d, D) and ¢ = c2(d, D) such that the following holds. Let G = (V, E) be a unimodular
transitive graph with vertex degree d, let A, X, and Y be non-empty sets of vertices in G, and
suppose that 0 < py < pa < 1 are such that there is at most one infinite cluster P,-almost surely

forevery p € [p1,p2]. If p1 = 1/d and 5 = 6(p1, p2) < D then the implication

B, (A B, (A
TI/,\I(A) > hC“s] = 62 ®P(X &8, Gy andY MR Ga but X Falo! Y) < 3hc253]
P2 P1 P2

65



holds for every h < 1/d and every set A C V, where r is the minimum positive integer such that

P,(Piv[1, hr]) < h for every p € [p1, p2].

An illustration of the event whose probability this lemma estimates is given in Figure [3.1]

Remark 3.4.4. Several of the calculations in the following proof can be simplified significantly if
one allows the constants to depend on how small 1 — p; is. Getting the constants to be independent
of the choice of p is important when using our methods to deduce that p. < 1 for transitive graphs

of superlinear volume growth.

Proof of Lemma It suffices to prove the claim with 372" replaced by max{h¢19, 349"}, as
the latter can be bounded by the former after an appropriate decrease of the relevant constant. We
write p4/3 and ps,3 for the parameters defined by p4/3 = Spr(p1;6/3) and ps;3 = Spr(p1;26/3),
so that p1 < p4/3 < ps/3 < p2. To lighten notation we write w1 = wp,, W43 = Wp, 5, W53 = Wps35
and wy = wp,. We will write <, X, and > for equalities and inequalities holding to within positive
multiplicative constants depending only on d and D. We also use the asymptotic big-O and big-Q
notation with all implicit constants depending only on d and D.

Let co = co(d, D) be the constant from Lemma|[3.4.3] We will prove the claim with ¢; = (coA1)/9.
Assume to this end that ‘r;,‘1 (A) > h“1%. Let Kx(2,r) be the set of vertices that are connected to X
by an wy-open path in B,(A) and let Ky(1,0) be the set of vertices that are connected to Y by an
wi-open path in A. Suppose that there exist two disjoint, connected sets of vertices Cy 2 X and
Cy 2 Y such that P(Kx(2,7) = Cx, Ky(1,0) = Cy) > 0 and

min{GZ‘(gA NCx # 0),@2(%,4 NCy #0)}

B, (A
>GloP (X <——]§2—)—> G, % Y | Kx(2,7) = Cx, Ky(1,0) = Cy| > h9'%; (3.4.8)

If no such pair of sets exists then the conclusion holds trivially (since we are proving a modified
version of the claim with max{h¢°, 3h“2‘54} on the right hand side of the implication). For such Cx

and Cy we have that
Cx Cy A Cx Cy . A
G oG, ®]P(%X ?»%Y) >GX®G, " (YcyNA+0and Y, NA # m)glegp(u A~ V)

= GAM@4 0 Cx # 0)GA (4 0 Cy # 0) min P(u <> v)
u,veA P1

> hcl5 X hC15 . hC1(5 — h3C15 > h%o5
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Thus, since 6 (p1, paj3) = %6(;91 , P2), it follows from Lemma (applied with py and p4/3 rather
than p; and p;) that

B, (A B, (A <
P(CX (L) CY) S GCX ®GCY ®P(gCX (L) gCy) S h

Paj3 he0 he0 Paj3

w|S

I (3.4.9)

Let M denote the maximum cardinality of a set of edge-disjoint paths from Cx to Cy that are
contained in B,(A) and are open in ws;3 with the possible exception of their first and last edges.
(We stress that Cy and Cy are not random, but are fixed sets satisfying (3.4.8).) By Menger’s
theorem, M is equal to the minimum size of a set of edges separating Cx from Cy in the subgraph
of B, (A) spanned by those edges that are either ws;3-open or have at least one endpoint in Cx U Cy.
Observe that M is independent of the event {Kx(2,7) = Cx, Ky(1,0) = Cy} since M depends only
on edges with neither endpoint in Cx U Cy while the latter event depends only on edges with at
least one endpoint in Cx U Cy. Conditional on ws/3, each edge that is open in ws;3 is closed in

w43 With probability
P53~ P43
. Ps/3 '
It follows that
B, (A) N
P|ICx «——> Cy | M<N| =28
P4s3

for every N > 0 and hence by (3.4.9)) and the aforementioned independence that
P(M < N | Kx(2,r) = Cx, Ky(1,0) = Cy) =P (M < N) < gVp39 (3.4.10)

for every N > 0. Let Ky(5/3,r) be the set of vertices that are connected to ¥ by an ws;3-open
path in B,(A). Conditioned on the event {Kx(2,7) = Cx and Ky(1,0) = Cy} and the value of M,
the size of the boundary |0Kx (2, r) N dKy(5/3,r)| stochastically dominates a sum of M Bernoulli

random variables of parameter

Indeed, if we take some maximal-cardinality set of paths as in the definition of M, then the edge
adjacent to Cy of each path in the set is open in ws/3 with this probability, and the size of the
relevant boundary is at least the number of these edges that are open in ws,3. Letting Z be a sum of

N Bernoulli random variables each of parameter 1 — @1, we have that there exist constants c¢3 and
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c4 depending only on d and D such that
P(|8KX(2, )0 0Ky (5/3,1)| < %N ‘ Kx(2.r) = Cx, Ky(1,0) = Cy, M > N)

2—a/1 _ aq
SP(ZZ 7 N)—P(ZZ (1+m)EZ)

<o 2—a/110 2—a ay N
X J— —_— —
= eXp > %224 2

(3.4.11)

for every N > 1, where the final inequality follows from the Chernoff bound P(Z > (1 + x)EZ) <

(e (1 +x)'**)~BZ_ which holds for all sums of independent Bernoulli random variables.

We will now apply (3.4.10) and (3.4.11)) with

oo 1 N, Qs D5
—— log—|, that h3° < hw
2log(1/5) h| sothat A

to prove the inequality

P|0Kx (2.r) N 0Ky (5/3.7)] < o €019

!
Blog(1/p) 0 | Kx(2.7) = Cx, Ky(1,0) = Cy

< 2120 (3.4.12)

To do this, we will make repeated use of the elementary estimates

-5/3 —8/3_
pspB=(1=ps;3) " = (1=ps;3)=(1-psa)((1-psz) " =1

> (1= ps;3)((1 = ps;3) 20 1) = 6(1 - ps3) log

1 —=pss
(3.4.13)
and

_p-26/3

ar=1-(1-pss;)! =1-(1-ps;3)°9, (3.4.14)

where we recall that the implicit constant appearing here depends only on d and D. First suppose
that N > 1, so that the rounding in the definition of N reduces its size by a factor of at most 1/2.
In this case, (3.4.10) and (3.4.11)) yield that there exist positive constants C|, ¢s and c¢ depending
only on d and D such that

coa10 1
P(|0Kx(2,7) NOKy(5/3,r)| < mlogﬂlfx(lr) = Cx, Ky(1,0) = Cy)

005 2—a1 o 2—a1 a’1
210g(1/B) " 2 82_2a; 2

C 1
< neo + exp [— )log h] . (34.15)
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We claim that
006 2 — aq 2 - aq (€3]

1
24108(1/8) \_ 2 B
We prove this by a case analysis according to whether 1 — ps/3 < e O If 1 - ps B =e
follows from (3.4.13) that log 1/8 = O(5) (where we stress again that the implicit constants depend
only on d and D). On the other hand, since p; > 1/d, we have that @ = ¢, and together with the

-2 =54 3.4.16
2-2a; 2]° ( )

—1/6’ lt

elementary inequality
2 —a o 2 - aq a
2 %3229, 2
this yields that if 1 — ps/3 > ¢~1/9 then

cod 2—0/110 2 - a
2log(1/B) " 2 222, 2

v
0’7|°')
o,
g
S,

as claimed. On the other hand, if 1 — p5/3 < e Yothenl - a >1- e W = 1 50 that

2 - (03] | 2 — aq (03] o1 1 e 51
0 -—=xlo 0 .
2 ®2-24; 27 %®1-q g1—1175/3
We have under the same assumption that
1
log(1/B) = log :
1 =ps3

and it follows that if 1 — ps;3 < e~!/9 then

C()5 2—(1’1 o 2—61’1 (03]
2410g(1/B) " 2 22-2a; 2

This completes the proof of (3.4.16), which together with (3.4.15)) yields the claimed inequality
(3.4.12)) in the case that N > 1. Now suppose that N = 0, so that

)>52>63

5 1
(|8KX 2 i") ﬁﬁKy 5/3 r | < 48160;%105;%‘1()((2#) = CX, KY(LO) :CY)
—p (|8KX(2, r) 09Ky (5/3,7)| = O‘Kx(2, r) = Cy, Ky(1,0) = Cy) <h¥ 4 (1-a),

(3.4.17)

where, as in (3.4.11]), the first term on the right hand side of the second line bounds the probability
that M = 0 and the second bounds the probability of the appropriate event conditional on M > 1.
We will once again prove (3.4.12) via case analysis according to whether or not 1 — ps/3 > e!/%.

If1-ps;3 > e~ 1/9 then log(1/8) = O(5), and since N = 0 it follows that / = e=06™)  Ag such,
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in this case there exists a positive constant cs such that 2" > 1/2, and the desired inequality

1/6 and

(3.4.12) follows trivially since probabilities are bounded by 1. Otherwise, 1 — ps5/3 < e~
1-a; < (1-ps;3)?9. Since N = 0, we also have that h > (1 - p5/3)0(6_1) and hence that
o = (1 —a)®D. As such, is stronger than the claimed inequality (3.4.12) when N = 0

regardless of the value of 1 — ps/3. This completes the proof of the inequality (3.4.12)).

Since the sets Cy and Cy were arbitrary sets such that P(Kx(2,7) = Cx, Ky(1,0) = Cy) > 0 and

that satisfy (3.4.8)), it follows from (3.4.12)) that

)A ¥
GQ@P(XA%AYbutXAY < b9 4 220
P2 pP1 P2
C()CZ](S 1 B, (A)
+P(|0Kx(2,7) N Ky (5/3, Bloa(1/5 1087 bUX —= Y|, (34.18
(I x(2,r) N OKy (5/3,1)] 2 Jor- (l/ﬁ) ut X — ( )

where the first term 419 accounts for the possibility that Kx (2, r) and Ky(1,0) are equal to some
sets Cx and Cy that do not satisfy (3.4.8). It remains to bound the final term appearing on the
right hand side of (3.4.18). Notice that we can replace the set Kx (2, r) appearing in (3.4.18) by
the set Ky of vertices that are connected to X by an w,-open path using only edges that have both

endpoints in B,(A) and neither endpoint in Ky(5/3,r), since the two sets Kx(2,7) and Kx are

equal when X <L> Y. Now let Cx 2 X and Cy 2 Y be connected sets of vertices that are disjoint

P2
from each other such that P(Kx = Cx, Ky(5/3,r) = Cy) > 0 and

C()a’15 o l
= W8log(1/B) T
If no such sets exist then the last term on the right hand side of (3.4.18)) is zero. Each edge that is

[0Cx N ACy| >

closed in ws/3 is open in w; with probability

P2 = P5/3
ay = ——,
1 =ps;3

and we have by independence that

B, (A
P (X Sy | Ry = Cy. Ky(5/3.7) = Cy) < (1 = ap)l9xNIGy|
P2

< exp |- 1 log — | < hRO),
—eXp[ (4810g(1/,8) Ogl—az) Ogh] =

where the final inequality follows by a similar calculation used to prove (3.4.16) above. Thus,

summing over all choices of Cx and Cy, we obtain that

B, (M) coa16 1 Qs
p(x & Y‘@K MoKy (5/3,1)| 2 Zorot < | < B 3.4.19
( |0Kx v(5/3,7)] Rlog(1/8) 7 ) ( )

and the claim follows from (3.4.18) and (3.4.19). o
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We now apply Lemmas [3.4.3|and [3.4.4] to prove Proposition [3.4.1]

Proof of Proposition To lighten notation, for each p € [0, 1] define Q, := ®?=1 Gﬁi, and for
each i write & := ¥,,. Let c| = c(d, D) be the constant from Lemma [3.4.3]and let ¢, = ¢»(d, D)
and c3 = ¢3(d, D) be the constants from Lemma (that are called ¢; and c; in the statement
of that lemma). Define ¢ = ¢(d, D) = (2D)(c1 A 1)(ca A 1)(c3 A 1). Let h > (min; |A;])7",
noting that GZ“'(% #0) > 1— (1 - (min; |A;])"")4! > 1 — 1/e > 1/2 for every i, and let r be the

minimum positive integer such that P, (Piv[1, hr]) < h for every p € [p1, p2].
Fix u € Ay and v € A,, and suppose that
D (AU Amr) = 40" foralll <i<n—1.

We want to bound from below the probability under P, that u and v are connected inside By, (A).
Let 1 <i < n—1 be arbitrary. Note that

2
1
Qi ®P (%- > %1) > Qu(% # OQu( %1 # 0)7)) (Ai Ait) 2 45 - (5) > h112, (3.4.20)
1
and similarly that

1 1
Qn ®P(u % 541) > ET[/)\I(Al) and Q,®P (gn % v) > ET[[,\I (A). (3.4.21)

Let p3/2 = Spr(p1;6/2), so that 6(p1, p3/2) = %5. Using (3.4.20), Lemma implies that
Br(A) c16/2 s
Qe ®P(Y =5 Gruy) > 1 = K912 > 1 — <0, (3.4.22)
P3/2
Since we also have by choice of ¢ that
TN (A) 2 T8 (A) 2 T8 (AU Ay = 4R > (he)e00?,

we may apply Lemma (with [p1, p2, h, X, Y, A, A] := [p3)2, p2, K", {u}, v, Ai, By (A)]) to
deduce that if 7! < 1/d then

Boy(A) _ Bi(A By (A
Qe 0P (u 2 4 BN burn N g ) < 4(re) @D Z4ped® . (3.4.23)
D2 P3)2 P2

where ¢4 = c4(d,D) = (cy - ¢3)/8. (Note that using h°! instead of i changes the hypotheses
on r, but this is not a problem since the hypotheses on r associated to h“' are weaker than
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those associated to h.) A similar application of Lemma (with [p1, p2, h, X, Y, A, A] =
[P3/2, P2, K", {u}, {v}, An, Br(A)]) yields that if 2! < 1/d then

By, B, By,
Qper @ P [u =2 @ Z ybut u 2 v < 4h640”, (3.4.24)
P2 P32 P2

Now, we have by a union bound that

Boy (A B, (A B (A B (A B, (A
p(uAv)thq@P(u W), g BN, B0 “v)

P2 P32 P32 P32 P32
n—1
By (A B, (A By, (A
-2, ®P(u 2 4 O G but &%1)
par) P2 P32 P2
By, (A B, (A By, (A
—th@)P(u 2B, o ()vbutu&w). (3.4.25)
p2 P32 P2

Using (3.4.21), (3.4.22)), and the Harris-FKG inequality to bound the first term and (3.4.23)) and
(3.4.24) to control the error terms, we obtain that there exists a universal positive constant ¢s and

positive constants cg and C depending only on d and D such that if 2° < 1/d then

3
U —— vy n - 4h¢40

P2

A A
By (A) Tpl(Al) s n—1 Tpl(A}’l)
P( ) > Lo (1) P
> es 1= Cnh®| T (AT (AW,

where we used that TI{,\1 (A )TI’)\1 (Ay) = h2es* > pe1ess®/2" o absorb the error term into the prefactor.

The proposition follows easily since the vertices u € A} and v € A,, were arbitrary. m|

Graphs of high growth and the implication (F)
We now apply Proposition [3.4.1] to prove the implication (F) of the main induction step Proposi-
tion [3.3.1] We state the implication without including the burn-in term in dy; this will not cause

problems since the statement is stronger without this term than with it.

Proposition 3.4.5 (The implication (F)). For each d € N there exists a constant N = N(d) > 16
such that the following holds. Let G be an infinite, connected, unimodular transitive graph with

1/2

vertex degree d, let py € (0, 1), and let ng > 16. Let 59 = (loglogng) ™'/, define sequences (n;)i>1

and (0;);>1 recursively by

n; = exp> (10g°3(n0) +ilog 9) and &; := (loglogn;)~'/?
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and let (p;)i>1 be an increasing sequence of probabilities satisfying piv1 > Spr(p;; 6;) for each
i >0. Let n_y := (logng)'/%. For each i > 0 define the statement

FuLL-Spaci(i) = (Ppi(u © V) > exp [—(loglogni)l/z] forallu,v € Bn,.)
and for each i > 1 define the statement
CorrIDOR(7) = (Kpi(e[logm] 10, m) > exp [—(log log ni)l/z] foreverym € £(G,20) N [ni-y, ni_l]).

Ifng > N and po > 1/d then the implication
[FULL—SPACE(i) A CORRIDOR (i + 1)] = [FULL—SPACE(i +1)V (piy1 = pc)] )

holds for every i > 0.

Proof of Proposition Fix i > 0 and suppose that FuLL-Spaci(7) and CorrIDOR(i + 1) both
hold. If n; € #(G,20), then e108m)" > 25, = 2¢(02m)” whenever N is larger than some

. . 10
universal constant, so that if u,v € B, then d(u,v) < 2n;41 < e(02m)'® and

Ni+1
110 _ . 1/2
Py (u & v) > kp,, (e[log”l] ,ni) > ¢~ (loglognicy) for every u,v € B

Nit1*

That is, CorrIDOR(i + 1) trivially implies FuLL-SPACE(i + 1) whenever n; € Z(G,20). Now
suppose that n; ¢ .Z (G, 20) and suppose that FuLL-Spacg(i) holds, so that

Gr(n;) > exp((log(n}ﬂ))zo) =h and T, (Bn(u;)) > exp [—(log log n,-)l/z] .

Fix two arbitrary vertices u,v € By,,, and let u = uy,ua,...,u; = v be the vertices in a geodesic

from u to v. It follows from the Harris-FKG inequality that for all j,
T, (Bu(uj) U By(uj1)) 2 7, (Buat (7)) 2 pip, (Bue1 (1)) = d™ exp [~ (loglogny)'/?] .

Let ¢y, ¢, c3 and hy = ho(d) be the constants from Proposition applied with D = 1 (so that
c1, ¢2, and c3 are universal) and let N| = N;(d) be sufficiently large that exp(—(log n)*°) < h for
every n > N;. There exists a constant Ny = Na(d) > Nj such that if n; > ng > N, then

20
018 _ _c1 (logn;) i
P = exp 320 (log log n;)3/? S €3l
and for all j,
T (B (I/t) UB (u 1)) > d_ZCXp [—(10g10gn~)1/2] > 4exp _i(l()g—l’ll)zo — 4h615?
e T l - 3%0 (log log n;)? .
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Thus, if ng > N, then Proposition (applied with D = 1 and A; = B, (u;)) implies that for all j,

P (u e v) =1, (B (1), By (v) = 21, (B, (1)) 7y, (Bn, (V) = c2exp [—2(log log ni)l/z] ,

where the final inequality follows from the assumption that FurLL-Space(7) holds. Since u and v
were arbitrary vertices in B, ,, it follows that there exists a constant N3 = N3(d) > N such that if

n; > ng > N3 then FuLL-Space(i + 1) holds as claimed. O

As mentioned in the introduction, Proposition [3.4.5| already allows us to conclude the proofs of

Theorems [3.3.3|and [8.1.T| under a mild uniform superpolynomial growth assumption.

Corollary 3.4.6. Let G be an infinite, connected, unimodular transitive graph. If log Gr(r) >
(log r)?° for all sufficiently large r then p.(G) < 1.

Corollary 3.4.7. Let (G,),>1 be a sequence of infinite, connected, unimodular transitive graphs
converging to some transitive graph G, and suppose that there exists R such that log Gr(r; G,) >
(logr)?° for everyr > R and n > 1. Then p.(G,) — p.(G)

Proof of Corollaries[3.4.6land[3.4.7] Observe that if G satisfies log Gr(r; G) > (log r)?° for every
r > ng then the statement CorrIDOR (i) holds vacuously for every i since .Z (G, 20) N [ng, o) is

empty. Thus, these two corollaries follow from Proposition [3.4.5| by the same argument used to
deduce Theorems [3.3.3]and [8.1.1]from Proposition[3.3.1] (In fact the proof is slightly simpler since
one no longer needs to control the burn-in.) O

Remark 3.4.5 (Weaker growth conditions and the gap conjecture). The proof of Corollaries [3.4.6|
and extends straightforwardly to (sequences of) graphs satisfying much weaker growth con-
ditions, such as

log Gr(r) > clog r(loglogr)'. (3.4.26)

It is plausible that this class (and indeed the class treated by Corollaries [3.4.6 and [3.4.7) includes

every transitive graph of superpolynomial growth, so that the methods of this section would suffice

to prove locality and non-triviality of p. for unimodular transitive graphs of superpolynomial
growth. (One would still need the remainder of the paper to handle sequences of graphs of
polynomial growth converging to a graph of superpolynomial growth, such as the Cayley graphs
of the free step-s nilpotent groups, which converge to trees as s — 00.) Indeed, one formulation of
Grigorchuk’s gap conjecture (see [Gri114]]) states that there exist universal positive constants ¢ and y
such that if G is a Cayley graph of superpolynomial growth then Gr(r) > e for every r > 1, and

it seems reasonable to extend this conjecture to transitive graphs. Thus, the lower bound (3.4.26))
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required for our arguments to work is much smaller than what might plausibly hold universally for
all transitive graphs of superpolynomial growth. On the other hand, the best known bound for the
gap conjecture, due to Shalom and Tao [ST10b]], states that there exists a universal constant ¢ such
that

log Gr(r) > clogr(loglogr)© (3.4.27)

for every Cayley graph of superpolynomial growth and every r > 1. (The authors claim their
proof should yield this estimate with the constant ¢ = 0.01, but do not carry out the necessary
bookkeeping in the paper.) Even if the strong form of the gap conjecture is false, there does not
seem to be any reason to believe that the Shalom-Tao bound is optimal, so that (3.4.26))

may very well hold for all transitive graphs of superpolynomial growth.

3.5 Quasi-polynomial growth I: Building disjoint tubes

In this section we prove the geometric facts that we will later use to analyze percolation in the
low-growth (a.k.a. quasi-polynomial growth) regime. Letd > 1,1let G € G}, andlet D > 1 be a
fixed parameter. We recall that the set of low growth scales .2 (G, D) is defined to be

Z(G,D) = {n > 1 : log Gr(m) < (logm)P for all m € [n1/3,n]}.

It would suffice for all our applications to take e.g. D = 20; we keep D as a parameter for now to

emphasize that the analysis carried out in this section and Section [3.6| works for arbitrarily large D.

Recall that a tube is defined to be a set of the form B,(y) = U, B,(y;) where v is a path and
r € (0, 00) is a parameter we call the thickness of the tube; we call len(y) the length of the tube.
We will also sometimes write B(y,r) = B,(y) to avoid writing large expressions in the subscript.
(Strictly speaking the length and thickness of a tube depends on the pair (7, ) used to represent it,
but we will not belabour this point further.) We would like to show that whenever 7 is in the low
growth regime, for all suitable sets (A, B) of vertices at scale n, we can find many disjoint tubes

from A to B that are reasonably thick and not unreasonably long.

Definition 3.5.1. Let G be a connected transitive graph. Given k,r,¢ > 1 (which need not be
integers) and n > 1, we say that G has (k, r, ¢)-plentiful radial tubes at scale n if there exists a

family of paths I' in G with || > k satisfying all of the following properties:

* Every path y € I" starts in the sphere §,, and ends in the sphere S4,;

* For every two distinct paths y,y’” € T, the tubes B(y, r) and B(y’, r) are disjoint.
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Figure 3.2: Schematic illustration of radial and annular tubes. Left: The (k, r, €)-plentiful radial
tubes condition means that we can find k disjoint tubes crossing the annulus that all have thickness
r and length at most €. Right: the (k, r, ¢)-plentiful annular tubes condition means that for any two
crossings of the annulus, we can find k disjoint tubes connecting the two crossings that all have
thickness r and length at most ¢; these tubes are not required to stay inside the annulus.

* Every path y € I' has length at most ¢;

(In particular, the parameter k controls the number of tubes, the parameter r controls the thickness
of the tubes, and the parameter ¢ controls the length of the tubes.) Given m > n > 1, we say that a
set of vertices A C V is an (n, m) crossing if it contains a path from S, to S,,,. We say that G has
(k, r, €)-plentiful annular tubes at scale 7 if for every pair of sets of vertices (A, B) that are both
(n,3n) Crossingﬂ there exists a family of paths I' in G with |I'| > k satisfying all of the following

properties:

* Every path y € I' starts in A and ends in B;
* For every two distinct paths y,y” € T, the tubes B(7y, r) and B(y’, r) are disjoint;

* Every path y € I' has length at most ¢.

We say that G has (k, r, £)-plentiful tubes at scale n if G has both (k, r, €)-plentiful annular tubes
and (k, r, £)-plentiful radial tubes at scale n. See Figure for an illustration. Given parameters

10The constant 3 that appears here could safely be replaced by any constant strictly larger than 2. We need the
constant to be strictly larger than 2 to not cause problems with our application of Proposition @
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¢, A > 0, we say that G has (c, 1)-polylog-plentiful tubes at scale » if it has (k, r, £)-plentiful tubes
with k = (logn)“Y, r = n(logn)~Y¢, and € = n(log n)*/¢. (NB: These tubes are very thick!)

Remark 3.5.1. The property of having (k, r, £)-plentiful tubes at scale n gets stronger as k and r
increase and gets weaker as ¢ increases; the property of having (c, 4)-polylog-plentiful tubes at
scale n gets stronger as ¢ increases but has no obvious monotonicity in the parameter A. There is
of course a trade-off between the number of tubes and their thicknesses, since e.g. if the (n, 3n)
crossings A and B are segments of geodesics from the origin between distances n and 3n then we
cannot have more than 2n/r disjoint tubes of thickness r connecting A and B. In our applications
in Section we will want to use families of tubes that have thickness n(logn)~?") and length
n(logn)°M, which is why we phrase Propositionin terms of polylog-plentiful tubes. As will
be clear later in the section, our constructions allow for many other possible trade-offs between k

and r which may be useful in future applications.

Ideally, we would like to say that there is some constant ¢ € (0, 1) such that for every A, G has
(¢, 1)-polylog-plentiful tubes at every sufficiently large scale n € £ (G, D). This is, however,
slightly stronger than what we have been able to prove. (Fortunately it is also stronger than we
need for our applications!) We instead establish the slightly weaker statement that for every scale
n € Z(G, D), there exists a large interval of scales not much smaller than n on which we have
plentiful tubes. We now give the precise statement, the proof of which takes up the rest of this

section.

Proposition 3.5.2 (Quasi-polynomial growth yields a large range of consecutive scales with poly-
log-plentiful tubes). For each D € [1,0), 1 € [1,0), and d > 1 there exist positive constants
c(d,D) € (0,1) and ng = no(d, D, A) such that the following holds. Let G be an infinite, connected,
unimodular transitive graph with vertex degree d that is not one-dimensional. For each integer
n > nog withn € £ (G, D) there exist integers n'B < my <my < nwithmy > mi” such that G

has (c, A)-polylog-plentiful tubes at every scale m; < m < m.

The constant ¢ = ¢(d, D) can be thought of as an “exchange rate”, governing the cost to trade
between the number of tubes and their thicknesses, while A is the parameter we vary to make this

trade. It is very important that the constant ¢ does not depend on A!

Remark 3.5.2. No non-trivial statements about plentiful annular tubes can be made without some
kind of growth upper bound (or other geometric assumption), since the 3-regular tree does not
have plentiful (k,r,€)-plentiful annular tubes for any k,r,¢ > 1. Similarly, the assumption that

the graph is not one-dimensional is needed since the line graph Z does not have (k, r, £)-plentiful
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radial or annular tubes for any k,r,€ > 1. (On the other hand, the assumption of unimodularity is
redundant since it is implied by the existence of large scales with subexponential growth [Hut20a,
Section 5.1].)

To prove this proposition, we split into two cases according to the rate of change of growth in the
given interval. More precisely, we will split according to whether or not there exists n in a suitable
initial segment of the interval such that G satisfies the small-tripling condition Gr(3n) < 3° Gr(n)
at scale n, where the constant 5 could be replaced by any other constant strictly larger than 4.
(This is related to the fact that four is the critical dimension for two independent random walks to
intersect infinitely often almost surely.) Our proofs in the two cases are completely different from

one another.

In the first case, when there does exist such an n, we will build our disjoint tubes by applying
the structure theory of transitive graphs of polynomial volume growth [BGT12a; T'T21a; EH23d].
Informally, this theory guarantees that, for a large interval of scales, our graph looks approximately
like the Cayley graph of a finitely presented group whose relations are generated by cycles of
diameter much smaller than the given scale. We will use these techniques to prove the following

proposition.

Proposition 3.5.3 (Slow tripling yields plentiful tubes). For each d > 1 and k < oo there exist
positive constants ¢ = c(d, k), C = C(d,«), and no = no(d, k) such that if G is an infinite,
connected, transitive graph of vertex degree d that is not one-dimensional and n > ny is such that
Gr(3n) < 3“Gr(n), then there exists a set A C [n, o) with |A| < C such that for each k > 1, G
has (ck, ck='m, Ck€m)-plentiful tubes at every scale m > Ckn such that m ¢ \J,c4a, 2kal.

In the second case, when there does not exist such a scale n with small tripling, we will prove
that the desired plentiful tubes condition holds using random walks. More specifically, we will
apply an estimate of [BDKY'15]], which can be thought of as a “quantitative weak elliptic Harnack
inequality” for graphs of subexponential growth. Under our low-growth assumption, this inequality

implies that two random walks on G started at distance n’ € [n'/3,n%?]

, say, can be coupled to
coincide with good probability by the time they reach distance n’(log Gr(n’))°()). On the other
hand, the assumption that the growth is rapidly increasing (in an at-least-five-dimensional fashion)
lets us prove that two independent pairs of these coupled random walks are unlikely to have their
tubes intersect. (This will be proven using fairly standard random walk techniques, most notably the
1soperimetric inequality of Coulhon and Saloft-Coste [CS93|] and the heat kernel bounds resulting

from this inequality together with the work of Morris and Peres [MPO05].) Unfortunately these
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walks will have length of order (n”)?(log Gr(n’))°"), which is larger than we want by a factor of
n’. This can be fixed by a simple coarse-graining argument, using the diffusivity of random walks
on low-growth graphs, to replace the random walk by a shorter path with essentially the same tube

around it. We will use these techniques to prove the following proposition.

Proposition 3.5.4 (Fast tripling and quasi-polynomial growth yield plentiful tubes). Let G be an
infinite connected unimodular transitive graph with vertex degree d, let D,A > 1 and let € > 0.

There exist positive constants ¢ = c¢(d, D, €) and ny = no(d, D, A, €) such that if n > ng satisfies
Gr(m) < elloem®  yng Gr(3m) > 3° Gr(3m) foreveryn'™® < m < n'*®

then G has (c, 1)-polylog-plentiful tubes at scale n.

We prove Proposition [3.5.3]in Section [3.5]and Proposition [3.5.4]in Section [3.5] Before doing this,

we note that Proposition [3.5.2]follows easily from these two propositions.

Proof of Proposition[3.5.2] given Propositions[3.5.3|and[3.5.4] Let ¢;(d,5), C(d,5), and n,(d,5)
be the constants from Proposition with ¥ := 5. Let ¢p(d, D,0.1) and ny(d, D, 1,0.1) be
the constants from Proposition with £ := 0.1. We may assume that ¢; V ¢, < 1/2 and
C > 2. Suppose that some n € Z(G, D) is large with respect to d, D, A, satisfying in particular
n > (n1 V na)3. If there exists n’ € [n'/3,n'%1] such that Gr(3n’) < 3° Gr(n’), then we may
apply Propositionwith k := (log n)* to obtain an interval of scales [m, ma] C [n'/3,n] with
my > m}'l on which G has (1/(2C), 1)-polylog-plentiful tubes on every scale. Otherwise, since
each n’ € [n%%, n08] satisfies [(n’), (n')"'] C [n'/3,n'%11], we can apply Proposition [3.5.4]to

each such scale to obtain that G has (c1, 1)-plentiful tubes at every scale in the interval [n%4, n%-8].

This is easily seen to imply the claim in either case. O

Using the structure theory of approximate groups

The goal of this subsection is to prove Proposition [3.5.3] Let us first give some relevant context.
Given a graph G, a vertex v € V(G), and aradius r > 0, we define the exposed sphere S°(v) to be
the set of vertices u € S, (v) such that there exists an infinite self-avoiding path started at u that never
returns to B, (v) after its first step. When G is transitive, we set S;° := S7°(0). In [CMT22], the
authors applied results of Timar [Tim07] to obtain geometric control of exposed spheres in transitive
graphs of polynomial growth using the fact that (by Gromov’s theorem [Gro81b]] and Trofimov’s
theorem [Tro84b]) these graphs are quasi-isometric to Cayley graphs of nilpotent groups, which
are finitely presented.
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In this section, we will run a similar argument to build our disjoint tubes under the hypotheses of
Proposition [3.5.3] While these hypotheses suffice to guarantee polynomial growth by the results
of [BGT12a; TT21a] (discussed in detail below), a key technical difference between our analysis
and that of [CMT22] is that we must run all our arguments in a more finitary, quantitative way; we
need to build our disjoint tubes at a scale not much larger than the scale where we are assumed
to witness relative polynomial growth. This requires us to engage more deeply with the structure
theory of approximate groups than was necessary in [CMT22]. Indeed, rather than using Gromov’s
theorem and Trofimov’s theorem, we will instead apply finitary versions of these theorems due to
Breuillard, Green, and Tao [BGT12al] and Tessera and Tointon [TT21al]. Moreover, we will also
apply a new structure theoretic result proven in our paper [EH23d], which can be thought of as a

“uniform” version of the statement that groups of polynomial growth are finitely presented.

Remark 3.5.3. It will be convenient in this section to let I" denote a group. This will not conflict

with the I" used to denote a set of disjoint tubes, which we will not use in this section.

Structure theory. We now state the main structure-theoretic results we will use after reviewing
some relevant definitions. We begin with Tessera and Tointon’s finitary structure theorem for
vertex-transitive graphs of low growth [TT21a]; this theorem builds on Breuillard, Green, and
Tao’s structure theorem for approximate groups [BGT12a] as well as Carolino’s extension of this
theorem to locally compact approximate groups [Carl5|]. Recall that a function ¢ : V| — V;
between the vertex sets of two graphs G| = (V1, E;) and G, = (V,, E») is said to be an («, B)-
quasi-isometry (a.k.a. rough isometry) if

a”ld(x,y) - B < d(¢(x),6(») < ad(x,y) +S

for every x,y € V| and every vertex z € V; is within distance at most 8 of ¢(V}); note that the
second property holds automatically if ¢ is surjective. Given a transitive graph G and a subgroup
H C Aut(G), we write G/H for the associated quotient graph. If H is a normal subgroup of
Aut(G) then the action of Aut(G) on G descends to a transitive action of Aut(G) on G/H (see
[TT21a, Section 3]), and we write Aut(G )¢, for the image of Aut(G) in Aut(G/T") induced by this
action. Note that we view Aut(G) as a topological group where convergence is given by pointwise

convergence (see [IT'T21a, §4]).

Theorem 3.5.5 (Finitary structure theory of transitive graphs of polynomial growth). For each
K > 1 there exist constants ny = no(K) and C = C(K) such that the following holds. Let G be a

connected (locally finite) (vertex-)transitive graph with a distinguished vertex o, and suppose that
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there exists n > ng such that Gr(3n) < K Gr(n). Then there exists a compact normal subgroup
H < Aut(G) such that:

1. Every fibre of the projection © : G — G [H has diameter at most Cn.

2. Aut(G)g/u can be canonically identified with Aut(G)/H.

3. Aut(G)/H has a nilpotent normal subgroup N of rank, step and index at most C.

4. The set S = {g € Aut(G)g/n : dg/u(g(Ho), Ho) < 1} is a finite symmetric generating set
for Aut(G)/H.

5. Every vertex stabiliser of the action of Aut(G)/H on G /H has cardinality at most C.

6. If for each v € G we let g, € Aut(G)/H be such that g,(n(e)) = n(v) then v — g, is a
(1, Cn)-quasi-isometry from G to Cay(Aut(G)/H, S).

7. If Gr’ denotes the growth function of the Cayley graph Cay(Aut(G)/H, S) then

Gr(my) < Gr'(m3) < C Gr(my + Cn)
CGr(m;+Cn) = Gr'(m;) ~ Gr(my)

for every my,my € N.

8. The growth bound Gr(m>) < C(m»/m1)€ Gr(my) holds for every my > m; > m.

Proof of Theorem[3.5.5] The first five items of the theorem are essentially equivalent to [TT21al
Theorem 2.3] (although that theorem is slightly more general as it allows one to replace Aut(G)
with any other transitive group of automorphisms of G). In their original statement of the theorem,
Tessera and Tointon do not explicitly identify the rough isometry from G to Cay(Aut(G)/H, S),
but the fact we can take it to be of the form above is implicit in their proof. Item 7 is implied by
[TT21a, Proposition 9.1], while Item 8 follows from Item 7 together with [BT16, Theorem 1.1]. O

Remark 3.5.4. The set S has size equal to the union of the stabilizers of the vertices {u € G/H :
u ~ v}, sothat |S| < C(deg(o) +1).

Remark 3.5.5. For K = 3% with « an integer, the growth bound Gr(m,) < C(my/m;)¢ Gr(m;) can
be improved to the sharp bound Gr(m;) < C(my/m;)* Gr(m) under the stronger assumption that
the graph satisifes an absolute growth bound of the form Gr(n) < exn**! at a sufficiently large
scale and for a sufficiently small constant ex > 0 [TT21a, Corollary 1.5]. This strong bound is

not implied by the small-tripling condition (which is the relevant condition for our applications) as
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shown in [Taol7a, Example 1.11]. (Indeed, this example suggests that the small-tripling condition
Gr(3m) < 3“Gr(m) should not imply any bound on the limiting growth dimension stronger than
O(k?). Optimal bounds on growth implied by small tripling will be established in forthcoming

work of Tessera and Tointon.)

Uniform finite presentation. We next state our theorem on uniform finite presentation proven in
[EH23d]]. Given a set of elements A in a group I', we define ((A)) to be the normal subgroup of
I" generated by A and define A = A U {id} U A~!. Consider a group I' with a finite generating
set S, let Fs be the free group on § and let 7 : Fs — G be the associated group homomorphism
with kernel R. Since I' = Fg/R, we can think of the sequence of quotients (I';),>; defined by
I, := Fg/({S" N R)) as being finitely presented approximations to I', since I'. admits a finite
presentation I', = (S | R,) = Fg/{(R,)) with R, = S" " R C §". These approximations have the
property that the Cayley graphs Cay(I',, ) and Cay(I', S) have isomorphic ((r/2) — 1)-balls. We
record this fact in the following lemma, which is taken from [EH23d, Lemma 5.6]. (Although it is

stated there only in the case that r is a power of 2, the same proof works for arbitrary r.)

Lemma 3.5.6. Let I be a group with a finite generating set S. For all i > 1, the quotient map
I, — @' induces a map of the associated Cayley graphs that restricts to an isomorphism between
the balls of radius |r/2] — 1.

The main result of [EH23d] can be stated as follows.

Theorem 3.5.7 ([EH23d], Theorem 1.1). For each K,d < oo there exist constants ng = ny(K) and
C = C(K,d) such that if T is a group and S is a finite generating set for I with |S| < d whose

growth function Gr satisfies Gr(3n) < K Gr(n) for some integer n > n then

#{k €N : k > logyn and ((Ryn)) # <<R2k>>} <cC.

For our purposes, the main output of Theorems[3.5.5]and[3.5.7]is that if the small tripling condition

Gr(3n) < K Gr(n) holds at some sufficiently large n, then at “most” scales r > n the graph “looks
like” the Cayley graph of a finitely presented group with relations generated by words of length

much smaller than r.

Using the structure theory to build disjoint tubes. It remains to apply Theorems|3.5.5(and|3.5.7
to prove Proposition [3.5.3] When working with a group I" and a finite generating set S of I", we

will continue to use the notation (I',),>; and (R, ),>1 as defined above.
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Let us introduce some more definitions. Let G = (V, E) be a graph, and consider the set {0, 1}*
with addition modulo 2 as a vector space over Z,. If G = Cay(I", S) for some group I' = (S|R)
with finite generating set S and (not necessarily finitely generated) relation group R < Fs, then we
can identify every oriented cycle started at the origin with a word in R. Under this identification,
we see that if R is generated as a normal subgroup by words of length at most r in Fj, then every
cycle in G can be written as a mod-2 sum of cycles of length at most r. Note that this leads to a
notion of finite presentation for graphs that are not Cayley graphs, namely that their cycle space is
generated as a Z,-vector space by the cycles of some finite length r < oo; see [T1mO7] for further
details.

We will rely crucially on the following lemma, which is essentially due to Timar [TimO7]. Recall
that an infinite graph G = (V, E) is one-ended if for every finite set of vertices W C V, the graph
G \W has exactly one infinite component; groups of polynomial growth are one-ended if and only if
they are not one-dimensional. (Note that when G is the Cayley graph of an infinite finitely-generated
group, the property of being one-ended is independent of the choice of finite generating set, so that

one can sensibly refer to a group as being one-ended without specifying a generating set.)

Lemma 3.5.8. Let G be an infinite, connected, one-ended transitive graph. If r € N has the
property that every cycle in G is equal to a sum of cycles of length at most r, then for every k,n € N
withr < k < nandeveryu,v € S, there exists a path from u to v that is contained in | J,eg= By (X)

and has length at most 3k |Bs,| /|Bx|.

Proof. This statement is implicit in the proofs of [CMT22, Lemma 2.1 and 2.7], and is an easy

consequence of [Tim07, Theorem 5.1]. ]

We will also need two more elementary geometric facts. The first states that if a path travels from
a sphere S, to S2,+1, then it must pass through the exposed sphere S;°.

Proposition 3.5.9 ([FGO15, Proposition 5]). Let G be an infinite connected transitive graph and
let r € N. Every path that starts in S, and ends in Sy,+1 contains a vertex in S;°.

The next lemma lets us pass disjoint tubes through quasi-isometries with all relevant quantities

changing in a controlled way.

Lemma 3.5.10. Let G = (V,E) and G’ = (V', E’) be two graphs and let ¢ : V — V' be an («, B)-
quasi isometry for some a,8 > 1. Let u,v € V and suppose that x,y € V' satisfy d(x, ¢(u)) < B
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and d(y, ¢(v)) < B. For each path vy’ from x to y in G’, there exists a path y from u to v in G such
that len(y) < 10a(len(y’) + B) and

¢(Br (7)) < Bar+(5a/2+2),8 (71)

for everyr > 0.

Proof of Lemma[3.5.10, Let  : V' — V be a function such that ¥ (x) = u, ¥(y) = v, and
d(¢(¥(z)),z) < B for every z € V; such a function exists by the definition of an («, 8)-quasi-
isometry and our assumptions on u, v, x, and y. Let £ = [len(y’)/[B]], and let the sequence
(n; f:o be defined by n; = [B]i fori < ¢ and n; = len(y’). Foreach 0 <i < ¢ letx; =y, and let
u; = ¥(x;), so that ug = u and uy = v. For each 0 < i < ¢, the points x; and x;;; have distance
at most [B] < 2B in G’, so that ¢(u;) and ¢(u;;) have distance at most 48 in G’. Since ¢ is an
(a, B)-quasi-isometry, it follows that u; and u;,| have distance at most S8 in G. Let y be formed
by concatenating geodesics between u; and u;4 for each O < i < £. The path y clearly has length
at most SaB[len(y’)/[B]] < 10a(len(y’) + B). Moreover, given r > 1, each point in B,(y) has
distance at most Saf + r from one of the points u;, whose image under ¢ has distance at most 3
from one of the points of y’. Using the definition of an («, 8)-quasi-isometry again, this implies
that every point in ¢(B,(y)) has distance at most a(5af + r) + 2 from a point of y’, which is
equivalent to the desired set inclusion. O

We now have everything we need to prove Proposition

Proof of Proposition[3.5.3] Fix k < oo and let ng = no(x) and C; = Ci(«) be the constants from
Theorem applied with K = 3. Suppose that G is an infinite, connected, transitive graph
of vertex degree d that is not one-dimensional and that n > ng is such that Gr(3n) < 3“Gr(n).
Let H be the normal subgroup of Aut(G) that is guaranteed to exist by Theorem let S
be the generating set for Aut(G)/H from Item 4 of Theorem and write I' := Aut(G)/H.
Letting Gr’ denote the growth function of the Cayley graph Cay(I", S), we have by Items 7 and 8 of

Theorem [3.5.5] that
Gr’(3n) - C1Gr(3n+ Cn)

Gr'(n) ~ Gr(n)
Moreover, as discussed in Remark the generating set S has at most C(d + 1) elements. Thus,
if we take ) = nj(x) > ng and C, = C2(«, d) to be the constants from Theorem [3.5.7]applied with
K=C}3+C)) " andd = Ci(d +1), we have that if n > n; then

< C12(3 + C])Cl.

#{i e N:i >log,n and ((Ryi+1)) # ((Ry))} < Oy, (3.5.1)

84



where Ry is the set of relations of I" that have word length at most k and ((Ry)) is the smallest normal
subgroup of the free group Fg generated by R;. Let G’ = (V’, E’) be the Cayley graph Cay (T, S),
let ¢ : V — V' be the (1, Cin)-quasi-isometry that is guaranteed to exist by Theorem [3.5.5](which
we may assume maps o to the identity of I', which we denote by id), and let v : V' — V be such
that d(¢(¥(x)),x) < Cyn for every x € V’, such a function being guaranteed to exist since ¢ is
a (1, Cin)-quasi-isometry. This function ¢ is easily seen to be a (1, Cszn)-quasi-isometry for an
appropriate choice of constant C3 = C3(k). For each k > 1 let G be the Cayley graph Cay (I, S)
of the group I'y defined by I'y = (S | R).

Fix n > n; and consider the set A = {2 : i > log, n and ((R,is)) # ({Ry))}. This set contains
at most five times as many elements as the set considered in (3.5.1)), so that |A| < 5C,. Fix
define a(m) = sup{a € A : a < m} then a(m) < m/2k. The definition of A ensures that
((R2a(m))) = ((Ri6m)) and hence by Lemma that the Cayley graphs G’ and G’ , . have

a(m)
isomorphic (8m — 1)-balls. For each r < 4m we write (S;°)” for the exposed spheres in G’ and

k > n and suppose that m > 2kn does not belong to [a,2ka] for any a € A, so that if we

G (m)? which can be identified by Proposition We also identify the balls B/.(x) in G’ and
G (m) for points x of distance at most 4m from the identity and all » < m, where the prime on

B!.(x) reminds us that we are working with G’ rather than G.

Now, since I,y has its group of relations generated by its relations of length at most a(m) < m/2k,
it follows from Lemma that for each m/2k < m; < my < 3m and each u,v € (S,;,) there

’

exists a path from u to v in Ga(m)

that is contained in (J,( S5, B, (x) and has length at most
3m1 Gr(3m3)/Gr(m1), where all sets and growth functions are identical in the two groups I’y
and I" by the restrictions placed on k and m. Since these paths are entirely contained within the ball
for which G’ and G’a (m) 1€ identical, they exist in G” also. Moreover, since my > m; > m/2k > n,

we have by Item 9 of Theorem [3.5.5]as above that

Gr(3my) ¢ (m2\©
—— < Ci3+C)' |—
Gr'(m1) 1B+ m
so that the length of this path is at most 3C7(3 + C1)<" (ma/m)“'my =: C4(ma/m;)“'m;. (Every-
thing discussed in this paragraph is still under the assumption that m > 2kn does not belong to

[a,2ka] forany a € A.)

We now use the existence of these paths in G’ to guarantee the desired plentiful tube conditions in

the original graph G. More concretely, we will prove that there exist positive constants ¢ = c¢(«, d),
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C = C(k,d), and ny = ny(k) > np such that if n > n, then G has (ck, ck, Ck¢m)-plentiful tubes

on each scale m > Ckn such that m does not belong to [a, 2ka] for any a € A.

We begin by constructing annular tubes. It suffices to construct tubes in the case that the two
(m,3m) crossings are both the vertex sets of paths 7,7, from S,, to S3, since any crossing
contains the vertex set of such a path. Fix m > 2kn and two paths n7; and 7, from §,, to S3,, in G,
and suppose that m does not belong to [a,2ka] for any a € A. Apply Lemma with each of
these paths and the (1, C3n)-quasi-isometry ¢ : V' — V (taking u and v to be the endpoints of 1;, x
to be ¢(u) and y to be ¢(v)) to obtain two paths 1} and 17, in G". Using the (1, Cin)-quasi-isometry
property of ¢, each of these paths starts at distance at most m + Cn from ¢(0) = id and ends at
distance at least 3m — Cyn from id. If m > 9Cn then both paths start at distance at most 19—0m
from id and end at distance at least %m from id. As such, it follows from Proposition that if
m > 9Cyn then the paths 777 and 7, both intersect the exposed sphere (S,,,)" in G for each integer
iel:=7ZnN [19—0m, l,ﬁzm]. (The only property of these numbers we will need is that 12 > 10 and
12 < 26/2.) Fix m; = [m/2k] < m and for each integer i € I let x; be a point of | belonging to
(S;°)" and let y; be a point of 7} belonging to (S;°)". If m > max{9Cn,2kn} then, since m was
assumed not to belong to [a, 2ka] for any a € A, it follows from Lemma [3.5.8|as discussed above
that for each such i there exists a path y; from x; to y; that is contained in [ J sy B’2m1 (x) and has
length at most Cy4(i/m1)'m,. Since i < 3m, the length of this path can be bounded by Csk¢'~'m
for an appropriate constant Cs = Cs(k). Moreover, if r > 1 and i and j are two integers i, j € [
satisfying |i — j| > 4m + 2r then the tubes of radius r around y; and y}. in G’ are disjoint since

they are contained in disjoint annuli [ J gy B’2ml (X)) and (g B’Zm1 ().
i J

Since Lemma guaranteed that the paths 7] and 7} have images under i contained in the
4Cn-neighbourhoods of 777 and 7, respectively, we can for each i € I find points u; and v; in ; and
12 respectively such that d(x;, ¢(u;)) and d(y;, ¢(v;)) are at most 6Cn. Applying Lemma [3.5.10]
to each of the paths ] (with the quasi-isometry ¢, the points u; and v; in G, the points x; and y;
in G’, and the quasi-isometry constants @ = 1 and 8 = 6C}n), it follows that there exist constants
Cs = Cg(k) and C7 = C7(k) such that for each i € I there exists a path y; from u; to v; of length at
most Cek©1~! such that if i, j € I satisfy |i — j| > C7m, then the tubes of radius m; around y; and
v, are disjoint. The claim about annular tubes follows easily by taking a C7m-separated subset
of I (i.e., a subset of I in which all distinct pairs of integers have distance at least C7m ), since
such a set may be taken to have size at least //Cym; > ¢k for some positive constant ¢; = ¢ (k)
whenever n is larger than some constant n, = ny(«x) > nj. (The freedom to increase n; to n; lets us

make sure that every real number we round down is at least 1, so that rounding cannot reduce any
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relevant quantities by more than a factor of 1/2.)

We now briefly argue that the same construction also yields radial tubes crossing a shifted annulus.
Run the above construction again with 77; and 7, taken to be the two portions crossing from S,,
to S12, of a doubly-infinite geodesic passing through o, so that every point in 77; has distance at
least 2m from every point in 777, but with various constants changed appropriately since we are now
working with (m, 12m) crossings instead of (m,3m) crossings. In particular, the interval I can
now be taken to be Z N [8m, 10m], with various other constants changing to reflect this change.
Consider the point u in r77 that has distance 9m from 0. When we perform the above construction to
build paths between 71 and 172, each path 7y; starts at distance at most m from u and ends at distance
at least 11m from u. Thus, since G is transitive, the family of paths we have constructed verifies the
(ck,ck,C kcm)—plentiful radial tubes condition holds at the scale m as desired, for some constants
¢ = c(k,d) and C = C(k,d). As before, this works under the assumption that n > n, for some

ny = ny(k) and that m > Ckn does not belong to [a,2ka] for any a € A. O

Using random walk trajectories

In this section we prove Proposition [3.5.4] which verifies the plentiful tubes condition for graphs
that have quasi-polynomial absolute growth but a fast rate of relative growth over an appropriate
range of scales. As discussed above, we will construct the required collections of disjoint tubes by
modifying certain conditioned random walk trajectories. To avoid parity issues, we work with lazy
random walks throughout the section. We will spend most of the section proving general bounds
on the behaviour of random walk on some scale in terms of the growth of the graph at that scale,
specializing to the setting of Proposition [3.5.4] only at the very end of the proof. Given a graph G
and a vertex u of G, let P, denote the law of the lazy random walk started from u, which at each
step either stays in place with probability 1/2 or else crosses a uniform random edge emanating

from its current position, and let the heat kernel p,(u, v) be defined by p,(u,v) = P,(X; = v).

We begin by recalling two important facts about random walks on graphs of quasi-polynomial
growth that will be used in the proof: the Varopoulos-Carne inequality [Var85; Car85]], which
implies near-diffusive estimates on the rate of escape, and the total variation inequality of [Yad23,
Chapter 7.5], which implies that two walks started from different vertices can be coupled to coalesce

by the time they reach a distance that is near-linear in their starting distance.

Diffusive estimates from Varopoulos-Carne. We now state the Varopoulos-Carne inequality,

which gives Gaussian-like bounds on the n-step transition probabilities between two specific ver-
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tices; see e.g. [LP16c, Chapter 13.2] for a modern treatment. This inequality does not require

transitivity, and holds for the random walk on any graph.

Theorem 3.5.11 (Varopoulos-Carne). Let G = (V, E) be a (locally finite) graph. Then

puluy) <2, S8 oy [—d(”’v)z] ,

deg(u) 2t

foreveryt > 1 and every u,v € V.

The Varopoulos-Carne inequality easily implies that the random walk on a graph of quasi-
polynomial growth is very unlikely to be at a distance much larger than r'/2(log7)°() from its

starting point.

Corollary 3.5.12. Let G = (V, E) be a (locally finite) transitive graph and let o be a vertex of G.
Then

2
P, [ max d(o, X;) > n| <2(t+ 1) Gr(n) exp [_n_]
0<k<t 2t

for everyt,n > 1.

Proof of Corollary[3.5.121 1f maxo<i<; d(0, X)) > n then there exists 0 < k < ¢ such that Xj has
distance exactly n from o. Since the number of points at distance n from o it at most Gr(n), the

claim follows from Theorem [3.5.11] by taking a union bound over the possible values of k and
X O

Remark 3.5.6. For transitive graphs of polynomial growth, Varopoulos-Carne implies a displace-
ment upper bound of the form \/@ while the true displacement is of order V¢ with high
probability. (This sharp upper bound on the displacement can be proven using a (highly nontrivial)
improvement of the Varopoulos-Carne inequality due to Hebisch and Saloff-Coste [HS93]].) As
such, our reliance on Varopoulos-Carne leads to all of the estimates in this section having poly-
log terms that are known to be unnecessary for transitive graphs of polynomial growth and are

presumably non-optimal for transitive graphs of quasi-polynomial growth also.
Coupling from low growth. We now explain how low growth can be used to couple two walks to

coalesce within time not much larger than quadratic in their starting distance; we will eventually

concatenate these pairs of coupled random walks to build annular tubes. We first recall some
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relevant definitions. Given two probability measures ¢ and v on a countable set €, the total

variation distance ||u — v||Ty between u and v is defined by

1
I = vllry = sup |pu(A) —v(A)] = 5 Z lu(w) - v(w)|.
ACQ weQ
The total variation distance is indeed a distance in the sense that it defines a metric on the space of
probability measures on . The total variation distance is related to coupling (and to the theory of

optimal transport) by the variational formula
g = v|ITv = inf{P(X #Y) : X,Y random variables with X ~ g and Y ~ v}.

In particular, given two vertices x and y in a graph, we can couple the lazy random walks started at x
and y to coincide at time m with probability 1 —[|P,(X,, = -) =P, (X,, = -)|ITv. Note that if the two
walks coincide at time m then we can trivially couple them to remain equal at all subsequent times,
so that [P, (X,, = -) = Py(X,, = -)||ITv is a decreasing function of m when x and y are fixed. These

couplings will be used when we construct annular tubes using pairs of coupled random walks.

Given a (locally finite) transitive graph G = (V, E), the Shannon entropy H, of the tth step of the

lazy random walk is defined to be

H; = -E, [IOg pi(o, Xt)] == Z p:(0,x)log pi(0,x).
xevV
Since the Shannon entropy of any random variable taking values in a set of size n is at most log n,
the quantity H, satisfies the trivial inequality H; < logGr(z). The following extremely useful
inequalityE] relates the total variation distance to the increments of the Shannon entropy; versions
of this inequality have been rediscovered independently in the works [EK10; BDKY15;|0zal8]] as
discussed in detail in [[Yad23, Chapter 7.5].

Theorem 3.5.13. If G is a (locally finite) transitive graph and o is a vertex of G then

1
deg(o)

DUIP(X, =) = Pe(Xe1 = )lfy < Hy = Hiy
X~0
foreveryt > 1.

To apply this inequality, we will need to bound the entropy in terms of the growth. While we

always have the trivial bound H; < log Gr(), it is also possible to bound the entropy in terms of

known in some circles as “the cool inequality”.
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[log Gr(¢'/?)]?, which is a significantly better bound when the growth is much larger on scale ¢ than
scale 1'/2. (While this bound is worse than the trivial bound when the growth is subexponential and
sufficiently regular, it better fits into our philosophy of understanding the behaviour of the random

walk at some scale from the growth of the graph at that scale alone.)

Lemma 3.5.14. For each d > 1 there exists a constant C = C(d) such that if G is a (locally finite)
transitive graph of degree d then

H, < C(log Gr(tl/z))2

foreveryt > 1.

Proof of Lemma[3.3.14, We may assume that the diameter of G is at least #'/2, the claim being
trivial otherwise since H; < log |V|. Recall that if X and Y are two random variables defined on the

same probability space, the conditional entropy H(X | Y) is defined to be the expected entropy of

the conditional law of X given Y. Bayes’ rule for the conditional entropy states that
H(X)=HY)+H(X|Y)-HY|X) <HY)+H(X|Y).

Applying this inequality with X = X; and Y = 1(X; € B,), and using that the entropy of a random

variable supported on a set of size N is at most log N, we obtain that

2

r ] log Gr(t)

H; < log2+log Gr(r)+[log Gr(¢)|P,(X; ¢ B,) < log2+log Gr(r)+2(t+1) Gr(r) exp [—Z

for every r,t > 1. Using the fact that the growth is submultiplicative and that Gr(n) < d"™*!, we
obtain that if n := ['/2] divides r then

2
H, < log2+ Zlog Gr(n) + 2d(1 + 1)* exp [f log Gr(n) — %] ,
n n

and the claim follows by taking r to be a multiple of n closest to C log[¢ Gr(n)] for an appropriately
large constant C = C(d). (Note that log[7 Gr(n)] and log Gr(n) are of the same order since the

diameter of G is at least #'/? and hence Gr(n) > n.) O

This inequality easily implies the following simple bound on the total variation distance in terms
of the growth, yielding in particular that the total variation distance is small whenever ¢ is much
larger than d(x, y)? log Gr('/?)2.
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Corollary 3.5.15. For each d > 1 there exists a constant C = C(d) such that if G = (V,E) is a
(locally finite) transitive graph of degree d then

Clog Gr(1'/?)
IPL(X; =) =Py (X, = v < —— 17— d(x,)

foreveryt > 1landx,y € V.

Proof of Corollary[3.5.15] 1t follows by a standard computation that the total variation distance
between a Binomial(n, 1/2) distribution and a Binomial(n + 1, 1/2) distribution is of order n~'/2.
Indeed, if we let u be the Binomial(n, 1/2) distribution and let v be the Binomial(n + 1,1/2)

distribution then u is absolutely continuous with respect to v with density

uk)  2(n—-k+1)
v(k) n+1

forevery0 < k <n+1,

and we have by an easy computation (using e.g. Jensen’s inequality and the linearity of the variance)

that

2k+1

n+l n+l
k) 1' (k) = 22 v(k) = 0(n”11?)

e = viey = 221(@

as claimed. Since the conditional laws of the lazy random walks X; and X;;; are the same given

that the number of non-lazy steps are the same, it follows that
IPc(X; =) = Pu(Xim1 = )llpy < Cor™'/2

for every + > 1 and x € V, where C; is a universal constant. Putting this together with The-

orem [3.5.13] yields that if x and y are neighbouring vertices on a transitive graph of degree d

then
Py (X, =) = Py(X, = )||py < VAd(H, — H_y) + 1172

for every + > 1. Since the left hand side is increasing in ¢ and, by Lemma [3.5.14] there exists
t/2 < k <t with Hy — Hy_y < 2H, < % log Gr(¢'/2)? for some constant C» = C»(d), it follows
that

4Crd
||Px(Xt =) =-Py(X; = )”TV <74 \/ 2 log Gr(t!/2)2

for every pair of adjacent vertices x and y and every ¢ > 1. The analogous bound for arbitrary pairs

of vertices follows from this and the triangle inequality for the total variation distance. O

Hitting probabilities of balls. We now want to argue that tubes around independent random

walks started at distant vertices are likely to be disjoint under the assumption that our graph “looks
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at least five dimensional” on all relevant scales. In fact we will prove more general versions of
these estimates in which “five” is replaced by an arbitrary constant k > 4. We begin by noting
the following simple analytic consequence of the results of Coulhon and Saloft-Coste [CS93]] and

Morris and Peres [MPOS], which lets us convert growth bounds into bounds on the heat kernel
pe(u,v).
Lemma 3.5.16. For each integer d > 1 there exists a positive constant ¢ = c(d) € (0, 1] such that
if G = (V, E) is an infinite unimodular transitive graph with vertex degree d then

1
Gr (ctl/2 [log Gr (¢'/2)] _1/2)

pl(u’v) S

for every integer t > 4 and every pair of vertices u,v in G.

Proof of Lemma It suffices to prove an inequality of the form
1
12 172y171/2
¢ Gr (ct'/2 [log Gr (11/2)

pu(u,v) < (3.5.2)

for every integer ¢t > 4 and every u, v € V, where ¢ = c(d) is a positive constant depending only on

the degree. Indeed, odd values of ¢ can then be handled using the inequality

1 4 4
parni(u,v) < — ;pzt(u, V') < max py (u. V'),
while the constant outside of the growth function can be absorbed into the constant inside the
growth function using the inequality Gr(3nm) > n Gr(m), which holds for all positive integers n, m

in any infinite transitive graph as an elementary consequence of the triangle inequality.

We now prove an estimate of the form (3.5.2). Let the inverse growth function Gr™! be defined
by Gr!(x) := inf{n : Gr(n) > x} and recall that the isoperimetric profile of G is the function
®: [1,0) — [0, d] defined by

ow
®(x) :=inf {ﬁ :WCV(G)and 0 < |W| < x} . (3.5.3)
For transitive unimodular graphs, the isoperimetric profile and the growth are related by the
inequality
1
D(x) > ————, 3.54)
2 2Gr!(2x) (
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which was proven for Cayley graphs by Coulhon and Saloff-Coste [CS93|] and extended to unimod-
ular transitive graphs by Saloff-Coste [Sal95] and Lyons, Morris, and Schramm [LMSO0S]]; we use
the statement given in [LP16c, Theorem 10.46]. To make use of this inequality, we will apply the
results of Morris and Peres [MP0S5]], which imply that there exists a constant ¢(d) € (0, 1) such

that
1

c1 sup {y : /1y de < clt}

for every integer t > 1 and every u,v € V. Using (3.5.4) to estimate the integral that appears here,

pa(u,v) <

we have for each y € [1, o0) that

| Y 4Gr ! (8x)? Y1
/ —dx s/ 26 875, < 4Gr—1(8y)2/ —dx =4Gr ' (8y)%log(y).
1 xCI>(4x)2 1 X 1 X

Thus, to prove an estimate of the form (3.5.2)) it suffices to verify that

1
if y > 1 satisfies y < — Gr 1
41og Gr(t2)

2
t
C—‘] then  4Gr'(8y)2log(y) < cif. (3.5.5)

This follows straightforwardly by noting that 8y < Gr(4/c1t/(4logy)) whenever y satisfies the
upper bound on the left hand side of (3.5.5). O

Lemma3.5.16]has the following elementary corollary, which we will apply only in situations where

log Gr(t!/?) is much smaller than n='¢!/2.

Corollary 3.5.17 (Leaving a ball). For each integer d > 1 and real number k > 1 there exists
a constant C = C(d, k) such that if G = (V, E) is an infinite, connected, unimodular transitive
graph with vertex degree d and n,t > 1 are integers such that Gr(3m) > 3 Gr(m) for every

n<m< %tl/z then
t K (n? «/2
P.(X; € B,(v)) <C [logmax {—2Gr(n)}] (7)
n

for every pair of vertices u and v in G.

(Note that this corollary holds vacuously when ¢ < n?.)

Remark 3.5.7. This estimate is quite similar to that appearing in e.g. [Lyo+20]; the important
distinction is that we only assume the tripling condition Gr(3m) > 3% Gr(m) for m = O(t'/?) rather

than for all sufficiently large scales.
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Proof of Corollary[3.5.17] Since max, P,(X; € B,(v)) is a decreasing function of 7, it suffices to
prove the claim under the slightly stronger assumption that Gr(3m) > 3% Gr(m) for every n < m <
t'/2. Fix n,t > 1 and let ¢ be the constant from Lemma We have by submultiplicativity of
the growth function that

~110e Gr (/2 1/2
GIV(II/Z)SGr(ctl/2 [logGr(11/2)]_l/2)c [log Gr(+)]

and hence that

-1/2 c[log Gr(r'/?
Gr (ctl/2 [logGr (tl/z)] ) > Gr (t1/2) | (12)]

-1/2

= exp [c,/log Gr (tl/z)] . (3.5.6)

-1/2
Applying Lemma 3.5.16}, it follows that if r := ct!/? [log Gr (tl/z)] < n then

2t1/z]

el S —
n

1
pt(u,v) < Gr—(r) < exp

for every u, v € V. It follows by a union bound that if » < n then

12

P,(X; € B,(v)) <exp —CZIT] Gr(n),

which is stronger than the desired inequality. Now suppose that r > n. The assumption Gr(3m) >

3% Gr(m) for every n < m < t'/? guarantees that
[logs(r/n)] ;
Gr(3'n) ro\K
Gr(r) > Gr(n) | | G 2 (5) Gr(n).

i=1

We deduce from Lemma[3.5.16] that there exists a constant C such that

3n4flog Gr (/2 1
< min exp [—C\/k’g Gr (tl/z)]

Gr(r) ct!/2 Gr(n)’

p[(l/l,V) S

n? t «/2 1
<C (TIOgmax {E,Gr(n)}) Gy’

where the second inequality follows since min{Ax*, e} < A(1 Vv log(1/A))“ for every A,x > 0
(as can be checked by case analysis according to whether x > log(1/A)). O

We next analyze the probability of hitting a ball whose radius is much smaller than its distance
from the starting point. For transitive graphs of polynomial growth, a similar estimate without the

logarithmic term can be proven by a similar calculation as in [Hut201, Lemma 4.4].
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Lemma 3.5.18 (Hitting a distant ball). For each integer d > 1 and real number k > 2 there exists
a constant C = C(d, k) such that if G is an infinite, connected, unimodular transitive graph with
vertex degree d and n,t > 1 are integers such that t > n* and Gr(3m) > 3¥Gr(m) for every
n<m<t'/?then

k=2
P, (hit B, (v) before time ¢) < C [log max {d(u,v),Gr(2n)}] (Grr2)/2 (d(: v))

for every pair of vertices u and v with d(u,v) > 2n.

Proof of Lemma(3.5.18] For each 1 < s < t, let A, be the event that the random walk hits B,,(v)
between times s and ¢. (We will optimize over the choice of s at the end of the proof.) It follows
from Corollary [3.5.17)that there exist constants C; and C, depending only on d and « such that

2t K k/2
E, [#{s <k<2t:X€ an(v)}] < C kZ:; [logmax {%,Gr(Zn)}] (%2)

K

S K n
<G [1ogmax{;,Gr(2n)H e 357

where the second inequality follows by calculus. On the other hand, it follows from Corollary[3.5.12]

and a straightforward calculation that
n2

1
P, (XHk € By, forevery k < m) > 3

< 2t it follows by the strong Markov property that

. n?
for every w € B, (v), and since 1 + gr-Gr0

l’l2

E, [#{s <k <2t: X € Bo(v)} | As] > 6Toa G (3.5.8)

Putting together the estimates (3.5.7) and (3.5.8)) yields that

E, [#{s <k<2:X € an(v)}] 2 g2

S22

P.(A,) < <G [log max {%,Gr(Zn)H

E, [#{s <k <20 Xg € Bay(0)} | AS]

while, since every point in B,(v) has distance at least d(u,v)/2 from u, it follows from the
Varopoulos-Carne inequality and a union bound as in the proof of Corollary [3.5.12] that

d(u,v)?
8s ] '

P, (hit B,,(v) before time s) < 25 Gr(n) exp [—
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Putting together these estimates yields that

k=2

K+2
P, (hit B,,(v) before time 1) < C3 [log max {%, Gr(2n) }] % +25 Gr(n) exp [—
n S

d(u,v)?
8s ] ’

and the claimed inequality follows by taking s = ¢’d(u, v)*(log Gr(n))~! for an appropriately small

constant ¢’. O

Disjoint tubes from coarse-grained random walks. As noted above, a naive construction of
disjoint tubes using random walks is not appropriate for our plentiful tubes condition, since the
two walks will couple at a time roughly quadratic in their starting distance rather than roughly
linear. To circumvent this issue, we will instead consider tubes around certain coarse-grained
versions of the random walk defined through what we call ironing, where we replace portions of
the random walk with geodesics between their endpoints. This process will also be useful when we
analyze intersections between random walk tubes, as the ironing process allows us to circumvent

overcounting issues that would arise in a naive first-moment argument.

We now define the ironing procedure formally; see fig. [3.3] for an illustration. Let G be a graph.
For every pair of distinct vertices u, v € V(G), fix a geodesic {(u,v) in G from u to v. (The choice
of  is irrelevant to our arguments; we need only that it is done deterministically for every pair of
vertices before we start running any random walks.) Fix » > 0 and let vy be a finite path in G. We
define a sequence (7;);>0 recursively as follows: Let 79 = 0. For eachi > O, if d(y+,,yx) < r for
every 7; < k < len(y) we set 7,41 = len(y) and stop. Otherwise, we set 7;;; to be the minimal
time k after 7; that d(y-,, yx) > r. We define the crease number cr(y) = cr,(y) to be the number
of non-zero terms in this sequence, so that 7. (,) = len(y), call the points {y, : 0 < i < cr,(y)}
crease points, and define the ironed path iron(y) = iron, (y) by concatenating geodesics between

crease points
iI'Ol’lr(’)/) = {(77'0’ 7T1) © §(7T1’ )/Tz) ©---0 g(Tcr(y)—la Tcr(y))-

Thus, the ironed path iron(y) is a finite path in G which has the same start and end points as vy, has

length at most r - cr(7y), and satisfies the containment of tubes

B,(iron,(v) € By (y)  and  By(y) € By({ys : 0 i < cr,(y)}) € Boy(iron, (7).

For graphs of quasi-polynomial growth, we can use the Varopoulos-Carne inequality to show
that the length of an ironed random walk iron,(X") is of order at most r~'#(log7)°") with high
probability when r = O(+/t). We write X for the path formed by the first ¢ steps of the random

walk.
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Figure 3.3: Schematic illustration of the ironing procedure applied to a path: The original path is
in black, from left to right. The black dots are crease points. A new crease point is formed every
time the path leaves a fixed-radius ball centered at the previous crease point. The straight blue
line segments are geodesics between consecutive crease points (together with the final point of the
walk). The ironed path is formed by concatenating these geodesics.

Lemma 3.5.19. Let G be a (locally finite) transitive graph and let u be a vertex of G. Then
" t r?
P, (crr(X ) > —) < 2tm Gr(r) exp [—=—
m 2m
foreveryr,t,A > 1.

Proof. In order for the inequality crr((X,-)l?:O) > t/m to hold, there must exist 0 < i < ¢ such that
d(X;, Xi+m) = r. As such, the claim follows from Corollary|3.5.12/and a union bound. |

We now analyze intersections between independent random walk tubes. Given two vertices u and
v, we write P, ® P, for the law of a pair of independent lazy random walks X and Y started at u

and v respectively.

Lemma 3.5.20 (Intersections of random walk tubes). For each integer d > 1 and real number
k > 4 there exists a constant C = C(d, k) such that if G = (V,E) is an infinite, connected,
unimodular transitive graph with vertex degree d and n,t > 1 are integers such that t > r> and
Gr(3m) > 3% Gr(m) for every r < m < t'/% then

P,®P, (there exist 0 < i, j <t such that d(X;,Y;) < r)

t
c— "~
d(u,v)?

k—4
[log max {d(u, v), Gr(4r) }] (3k+4)/2 (d(l:’, v)) ,
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for every u,v € Vwith d(u,v) > 4r.

Remark 3.5.8. Although it will suffice for all our applications, we note that this bound is very
wasteful when ¢ is much larger than d(u, v). A more careful analysis would use that Yz, is typically

very far from u when k is large.

Proof of Lemma[3.5.20} Let A be the event that there exists w € V with d(u,w) > $d(u,v) and
1 <i,j < tsuchthat d(X;,w),d(Y;,w) < r. It suffices by symmetry to prove that there exists a
constant C = C(d, k) such that

k=2
P, P, () < €5 flogmax {d(u ). Grfar)}| 0 )

Let 19, .. ., Ter, (yr) be the stopping times used to define the ironed walk iron, (Y”), and observe that

if A holds then there must exist 0 < k < cr,.(Y") and 0 < i < ¢ such that

1 1
d(Yr,v) > Ed(u,v) —-r > Zd(u,v) and d(X;,Yr) <2r.

Thus, it follows from Lemma [3.5.18|and a union bound that there exists a constant C; = C(d, k)
such that

P,®P,(A)

t t 1
< Pv(crr(Y’) > —) + — max {Pu (hit B>, (w) before time t) w eV, du,w) > Zd(u, v)}
m! m

2
< 2tm Gr(r) exp [ 7

m

k=2
€1 flog max {da ). Grfar) ] 2

and the claim follows by taking m = ¢’r*(log max{d(u,v),Gr(r)})~! for an appropriately small
constant ¢’ = ¢’(d, k). O

We now have everything we need to prove Proposition [3.5.4]

Proof of Proposition We will prove the claim concerning annular tubes (which is harder);
the changes to the proof needed to establish the claim concerning radial tubes are straightforward

and will be explained briefly at the end of the proof.

We will prove a general condition for G to have (k, r, £)-plentiful annular tubes on scale n in terms
of the growth of G, which we specialize to give the claim about scales of quasi-polynomial growth

at the end of the proof. Fixn > 1, k < n/2,r < n,t > n and two (n, 3n) crossings A and B as in
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the definition of plentiful annular tubes, so that A and B each contain points at every distance from

o between n and 3n. We will carry out our analysis under the hypotheses that
Gr(3m) > 3“Gr(m) foreveryr <m <t (3.5.9)
and
IPy(X; =) = Py(X; =)ty < i for every x, y € Bj,. (3.5.10)

We will return to the question of when suitable ¢ and r satisfying these hypotheses can be chosen

at the end of the proof.

Since A and B each contain at least one point at each distance from o between n and 3n, and since
n/2k > 1, we may choose for each 1 < i < k points a; € A and b; € B such that

n+ (4i —4)% < d(o,a;) < n+ (4i - 3)% and  n+ (4 2)% < d(o,b;) < n+ (4i - 1)%
for every 1 < i < k, so that the set of points {a;} U {b;} is (n/k)-separated (i.e., any two distinct
points in the set have distance at least n/k). For each i, let Q; be the joint law of a random walk
(Xim)m>o started at a; and a random walk (Y;,,)m>0 started at b;, coupled so that X; = ¥; with
probability at least 3/4 (such a coupling exists by the hypothesis (3.5.10) imposed on the value of
t),and let Q = ® Q; be the law of the collection { X, Y;n : 1 <i < k,m > 0} in which the pairs
((Xim)m=0> (Yim)m>0) are sampled independently for each 1 <i < k. Foreach 1 <i < k, consider

the events

16¢
A ={Xiy =Yis} and B, = {len(iron,(Xt)),len(ironr(Yt)) < — lothr(r)} :

r

The event A; has probability at least 3/4 for every 1 < i < k by construction. Meanwhile,

Lemma [3.5.19]implies that

c ; 16t
Q(B) < 2P, |crp(X') > — log max{z, Gr(r)}
r

< 41r?[log max{z, Gr(r)}] Gr(r) exp [-8 log max{z, Gr(r)}],
which is less than 1/4 if 7 is larger than some universal constant 7y. Now, for each 1 < i, j < k let
I j = {B2(X]) U By, (Y;) has non-empty intersection with By, (X}) U Ba,(Y})}.
We have by a union bound that if ; and j are distinct then
Q(Z;;) < 4max {Pu ® P, (B2 (X") N By (Y) #0) 1 d(u,v) > %}

2 rk

n

< Ctk

< C— [log max {n, Gr(8r)}] Grad/2 (
n

k=4
) =a=alntk,r).
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Thus, if for each 1 < i < k we define the event
C: = {there exist at most 4ak values of 1 < j < k with j # i such that 7; ; holds}

then Q(C;) > % by Markov’s inequality. It follows by a union bound that Q(A; N B; N C;) > 1/4,

and hence that if we define

then Q&) > 0.

IS

&=#{1 <i<k:ANB NC holds} >
Consider the random set of indices
I={1<i<k:ANBNC, holds but ; ; does not hold for any j < i for which A; N B; N C; holds}.

On the event &, the set I has size at least [(k/4)/(1 + 4ak)] > % min{k, @~ '}. Moreover, on this
event, the set of paths formed by concatenating iron,(X') and the reversal of iron,(Y/) for each
i € I have the property that each such path has length at most 32¢/r logt Gr(r), and the tubes of
thickness r around distinct such paths are disjoint. Since this event has positive probability, there
must exist a set of paths with this property. Since the sets A and B were arbitrary, it follows that
there exists a positive constant ¢ = ¢(d, ) such that G has

n

2 k=4 32t
(c min {k, ;{—2 [log max{n, Gr(8r)}]_(3’(+4)/2 ( k) } , r, — log max{t, Gr(r)} | -plentiful
r r

annular tubes on scale n for each 1 < r, k < n/2 and t > n? satisfying (3.5.9) and (3.3.10).

We now specialize to the setting of the proposition. Let D,4 > 1 and 0 < £ < 1 and suppose
that n > 1 satisfies Gr(m) < e(loem® and Gr(3m) > 3° Gr(m) for every n'=% < m < n'*¢. Let
k = (logn)!, r = n(logn)™2°P1, and t = n®(logn)*’. There exists ng = no(d, D, A, ) such
that if n > ng then n'=¢ < r,t'/2 < nl*¢, so that (3.5.9) holds. Moreover, since log Gr(1'/?) <
(log t'/?)P < (1+¢&)%(logn)P, it follows from Corollarymthatm holds whenever n > n;
for some constant n; = ni(d, D, A,&) > ng. It follows that there exists a constant C such that if

n > nj then G has

(c min {(log n)*, (log n)(zm_%)D_’l} , n(logn)™2°P1, C(log n)(3+20’1)D) -plentiful

annular tubes on scale n. Since the plentiful annular tubes condition is monotone increasing in
the number and thickness parameters and monotone decreasing in the length parameter, it follows
that there exists a constant n, = ny(d, D, A,&) > n; such that if n > n, then G has (1/40D, A)-
polylog-plentiful annular tubes on scale n as claimed (where we used the assumption that » is large

to absorb the constant prefactors into the exponents of the logarithms).

100



For the claim concerning radial tubes, one uses random walks started at k equidistant points along
a geodesic from o to §,. Corollary implies that each of these random walks has a good
probability not to belong to B3, at times of order n”(log Gr(n))*, so that we can obtain tubes from
Sy to S3, using segments of the resulting ironed paths. The analysis of the number, thickness, and
lengths we can take these walks to have with the resulting tubes being disjoint is similar to the
annular case above. (Indeed, the analysis is somewhat simpler since we use single walks instead of
coupled pairs of walks. This also makes the dependence on the growth better than in the annular

case.) O

3.6 Quasi-polynomial growth II: Analysis of percolation

In this section, we analyze percolation in the low-growth regime, i.e., on scales n where Gr(n) <
elenl” for a constant D. Our goal is to show that a lower bound on (full-space) connection
probabilities at some low-growth scale n implies a lower bound on connection probabilities within
a tube at a much larger scale after sprinkling. This analysis will employ both the polylog-plentiful
tubes condition from Proposition [3.5.2] and the outputs of the ghost field technology developed in

Proposition [3.4.1]

Recall that U} is the space of infinite, connected, unimodular transitive graphs of degree d that are

not one-dimensional.

Proposition 3.6.1 (Inductive analysis of percolation in the low-growth regime.). Foreachd,D > 1
there exist positive constants Ao = Ao(d, D) and ¢ = c(d, D) such that for each A > A there exist
constants K| = K{(d, D, 1) and ng = no(d, D, ) such that if K > K| and n > ng then the following
holds: If G € U}, and for each 1 < b < n we define

K loglogn )1/4

d(b,n) =0k(b,n) = (min{log n,log Gr(b)}

then the implication

12

(n € (G, D), kp, (n,00) > e~logloen' 'p (piy[ap n'/3]) < (logn)™, and 6(b,n) < 1)
N (PZ > p. OF Kp, (e(logn)‘”l’n) > e—3(10g10gn)1/2) (3.6.1)

holds for every n > ng, b < %nm, and p > p1 > 1/d with py > Spr(p1,6(b,n)).

The parameter A controls how far a connection probability lower bound is propagated by sprinkling,

namely from scale n to scale e(1°2 m! where c is independent of A. Proposition morally says
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that for any choice of A, if we sprinkle by a sufficient amount at a sufficiently large scale, we
can achieve this propagation from scale n to scale e(logm! (Note that since the conclusion
of Proposition [3.6.1] gets stronger as A increases, the 4 > Ao condition is redundant; we have

nevertheless included it because some of our working is simpler if we can assume that A is large.)

The overall strategy of this section is closely inspired by [[CMT22]]. A key insight of that paper
was that if one is working in the supercritical phase of percolation, then one can sometimes deduce
positive information (e.g. a lower bound on set-to-set connection probabilities) from negative
information (e.g. an upper bound on set-to-set connection probabilities). Thus, one can analyze the
supercritical phase by a case analysis according to whether or not certain point-to-point connection
lower bounds hold: both assumptions are useful. This only makes sense because being in the
supercritical phase is already a positive hypothesis. For our purposes, we cannot assume that we
are in the supercritical phase. However, we can assume that we have a two-point lower bound at
some large scale n, which lets us pretend that we are supercritical when working with scales much
smaller than n. The positive information that this lets us deduce by working with scales smaller
than n is so strong that it implies set-to-set connection lower bounds even at scales much larger

than n.

Besides this, there are two main complications we need to address when adapting the methods of
[CMT22] in this section. First, our quasi-polynomial growth and plentiful tubes conditions are
rather different than the polynomial growth and connectivity of exposed spheres used in [CMT22],
and many details of the argument must change to accommodate this. Second, and more seriously,
we must use methods that use the growth upper bound at one scale only, since that is all we can
assume; this is very different from [CMT22] where their graphs are assumed to have polynomial

growth at all scales and many of the arguments work by inducting up from scale 1.

We now begin to work towards the proof of Proposition We begin by recording various
notations and important constants that will be used throughout the proof. First, we let A(b, n, p1) =
Ap k(b,n, p1; G) be the statement on the left hand side of the implication (3.6.1):

12

A(b,n, p1) = (n € Z(G,D), kp,(n,00) > e~10el0e™ 'p_ (Piv[4b,n']) < (logn)™" and §(b,n) < 1).

We will always assume that 6(p1, p») is larger than the quantity § := §(b, n) = dx (b, n) introduced
in Proposition@ We regard the choicesof d e N, D > 1,K > 1,and A > 20, as well as the graph
G € U}, as being fixed for the remainder of the section. We write p3> := Spr(p1;6(p1, p2)/2),
so that p» = Spr(p3/2;6(p1, p2)/2) by the semigroup property of our sprinkling operation, and let
ci=ci(d,D) >0and N = N(d, D, ) be the constants guaranteed to exist by Proposition
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Inspired by [CMT22]], we will split the proof of Proposition [3.6.1]into two cases according to how
easy it is to connect points at certain well-chosen intermediate scales. For each 1 < m < n we

define the two-point zone

tz(m) = tz(m, n) := sup {r >0: 711,33";2(8,) > (log n)‘l},

where we recall that T[f’ (A) is the quantity defined by ‘r[? (A) :==inf, yea Pp(x A v). We stress that
the two-point zone tz(m) is defined using the intermediate parameter p3;;. Knowing the value of
tz(m) for some m provides us with both positive information (on scales smaller than tz(m)) and

negative information (on scales larger than tz(m)).

For each n € .Z(G, D) withn > N, let n'/3 < m; < my < n'/0+¢) be such that my > m}+c‘ and
G has (cy, 4)-polylog-plentiful tubes at every scale m; < m < my (such m; and m, existing by
Proposition3.5.2)), and let .7 (n) = Sy p.a(n) = {m e N : m}+(cl/4) <m< mi+(3cl/4)}. From now

on we will mostly work at scales m € .¥’(n), so that G has plentiful tubes not just at these scales

but at a large range of consecutive scales on either side of every such scale. Let ¢; = ¢(d) be the
minimum of the four constants appearing in Proposition [3.4.1] with ‘D’ equal to 1 (known in the
statement of that proposition as cy, ¢, c3, and hg; the proposition becomes weaker if we replace

all four constants by their minimum), define ¢3 = ¢3(d) := 2™%¢, and consider the statement

B(n, p32) = Ba.p.ak(n, p3)
= (there exists m € .%’(n) such that tz (%) [log n]*X > m(log n)M/Cl).
We think of B(n, p3/2) as our “positive assumption” about percolation on scale n: it means that

there is a “good” scale m € .¥’(n) such that points in a ball of radius not much smaller than m can

be connected with reasonable probability within the ball of radius m/2 when p = p35.

Notational conventions and standing assumptions: Recall that the choices of d € N, D > 1,
K > 1,4 > 20, and G € U are considered to be fixed for the remainder of the section.
The constants N, ci, ¢, and c3 used to define .¥(n) and B(n, p) will be used with the same
meaning throughout this section. We also define c_; = c_;(d) to be a positive constant such
that Spr(p;8) > p+c_16 forevery p > 1/d and 0 < 6 < 1, which exists by (3.3.1)). Finally, we
fix Ko = Ko(d, D) = 2" (c3' v ¢} Vv 1) throughout the section: all subsequent lemmas in this
section will include K > K as an implicit hypothesis. These conventions do not apply outside

of this section (Section |3.6).

Proposition [3.6.1] follows trivially from the following two lemmas.
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Lemma 3.6.2 (Concluding from a positive assumption). There exists a constant 1y = Ao(d, D)
such that if A > Ay then there exists a constant ng = no(d, D, A) > N such that the implication

Ap.x(b,n,p1) AN Bypak(n,psp) = (Pz > pe OF Kp, (e(log")qd/‘l,n) > 6_3(10g1°gn)1/2) (3.6.2)

holds for everyn > ng, b < %n1/3

(5K(b, I’l)

, and every pair of probabilities py > p1 > 1/d with 6(p1, p2) >

Lemma 3.6.3 (Concluding from a negative assumption). There exists a constant 1o = Ay(d, D)
such that if A > A then there exist constants K| = K|(d, D, 1) > Ky and ny = no(d,D,1) > N
such that if K > K| and n > ny then the implication

Apx(bn,p1) A (= Bapak(npsp) = (p2 = pe or &y, (W 1) > ¢ 3oglogn'
; p DA, P32 p2=2p P2

(3.6.3)
holds for everyn > ng, b < %n1/3, and every pair of probabilities p, > py > 1/d with §(p1, p2) =
5K(b,n).

Concluding from a positive assumption

Our next goal is to prove Lemma([3.6.2] We begin with the following lemma, which will later allow
us to use the positive assumption B(n, p) to deduce lower bounds on the corridor function after
sprinkling. Note that we are not yet using the polylog-plentiful tubes condition or the assumption
B(n, p), so that the parameter A does not appear in this lemma. (Recall our standing assumption
throughout this section that K > Ky = Ko(d, D).)

We define p7/4 = Spr(pi; %5(1)1,192)) = Spr(p3/2; ié(pl,pz)), and remind the reader that the

two-point zone tz(m) was defined with respect to the parameter p3;.

Lemma 3.6.4. There exist a constant ng = no(d, D) > N and a universal constant c4 such that if

n > ng then the implication

Apx(b,n,p1) = (Kp7/4 (tz (%) [log n]C3K,m) > C4e_2(1°g1°g”)1/2f0r everyn'3 <m < n)

holds for every n > ng, b < %nm, and p; > 1/d.

Proof of Lemma[3.6.4) Fix n'/3 < m < n and a path y starting at some vertex u, ending at some
vertex v, and with leny < tz (%) (log n)“3X . Pick a subsequence u = uy, uo, . ..,ux = v of y with
k < 5(logn)*k and dist(u;, u;41) < ‘l‘tz (%) for every 1 < i < k. (There are rounding issues that

may prevent such a sequence existing when tz (%) is small, but this is not a problem when 7 is
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large.) We claim that %tz (%) > b. Indeed, the hypothesis b < %nl/ 3 guarantees that 4b < m/2,

and we have by a union bound that

T2 (Bay) = 12" (Bap) 2 Kp,(n,00) = By, (Piv[4b,n'/3])

1/2 1/2

> e—(lOglOg”) _ [logn]_l > %e_[loglogn] (3.64)

for every n larger than some universal constant. It follows in particular that T p;;'z/z (Bsp) > (logn)~!
for every n larger than some universal constant ng, and hence that A—l‘tz (%) = b when n > ng by

maximality of tz (%).

Let & = ¢, max{Gr(b)~", n"1/15}, so that if ng > 3 (to guarantee that n'/1> > log n) then
c Kloglogn
28 logh

by the definition of 6k (b, n) and the assumption that K > K,. We want to apply Proposition [3.4.1]
where ‘n’ is k, the sets ‘A;” are the balls (Bb(ui))le, the superset ‘A’ is the tube By, />(y), the ghost

RO < pe2@* < exn [log b - = (logn) >k < (logn)~? (3.6.5)

field intensity ‘A’ is equal to &, ‘py’ is p3/2, and the sprinkling amount ‘6" is 6/4. To do this, it

suffices to verify that if n is sufficiently large then

R0/ < cok ! and p;;’z/Z(Y)(Bb(u NUBp (ti41)) > 4120/ for every l <i<k-1.

(The assumption that 4 is sufficiently small holds automatically since we defined ¢, to be the
minimum of the constants appearing in Proposition [3.4.T] and set & < ¢;.) The inequality (3.6.5))
implies that the first required inequality 4¢2(%/ 9’ < c2k~! holds whenever n is larger than some
constant depending only on d, since R0/ < (logn)=2K k < 5(logn)“*X and c3K > 2. For
the second required inequality, note that for every such i and for every u € By (u;) and v € By (u;41),

we have u, v € By, (u/2)-1(u;) and hence that

p3r72/2(y)(Bb(u ) U Bb(ul+l)) > Tp3/2 (Btz(m/Z) 1) > (IOgI’Z) 1

for all n larger than some universal constant by (3.6.4). Let no = no(d, D) > N be the maximum

of these two constants and N.

Let r be the minimum positive integer such that P, (Piv[1, rh]) < hforevery g € [p3/2, Spr(p3;2;6/4)].

The previous paragraph shows that if n >

no then the hypotheses of Proposition [3.4.1] are met.
Thus, since p7/4 > Spr(p3;2;6/4)], we obtain from that proposition that for a universal constant
c >0,

Biujae2r (¥)

PP7/4 (M — V) > CTP;;TZ/Z(Y) (Bp(u)) - L '"/2(7)(Bb (v)) > 26—2(10g10gn)

12
32 :
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Since y was arbitrary, this implies that if n > ng then

n 5k M C  _2(loglogn)!/?
Kpaya (tZ (E) [10gn]°3K, 5 +2r) > é_le (loglogn)™ /=

All that remains is to verify that 2r < m/2 when n is sufficiently large.

Let g € [p3/2, Spr(p3/2;6/4)] be arbitrary. Since 2/5 < 1/2, Proposition yields that there

exists a constant C; such that

log Gr((m/4)h)]2/5 e, [4log Gr(m)r/5 |

P, (Piv[1, (m/4)h]) < Cq4 [ (m/4)h mh

Since & > n~V1 13 < m < n,logGr(m) < (logm)?, and (2/5) - (4/15) > 1/15, it follows that
there exists a constant n, = ny(d, D) such that if n > n, then

2/5

4(logn)P <n V15 <

By (Pivll, (m/4)h]) < Ca | 75— 755

and hence that » < m/4 as claimed. This completes the proof. O
We now apply Lemma|[3.6.4Jtogether with the polylog-plentiful tubes condition to prove Lemma[3.6.2]

Proof of Lemma[3.6.2] Let ng = no(d, D) and the universal constant c4 be as in Lemma [3.6.4
Suppose that n > ng, b < %nm, and p; € [1/d, 1] are such that Ap x (b, n, p1) holds, and write
0 = (b, n). We have by Lemma that

Kp1/a (tZ (%) [log n]C3K,m) > c;;e_z(k’glog")l/2 for every n'P<m<n
and in particular that if B4 p 1 x (n, p) holds then there exists m € .’(n) = .%; p.1(n) such that
Kpyyo(m(logn)*/t,m) > (logn)™! (3.6.6)

whenever ng is larger than a suitable universal constant. (Note that we have not yet put any

restrictions on the parameter A.)

Suppose that m € . (n) satisfies (3.6.6) and let » = m[logn]3¥/ (<), 5o that if n > 2 we have the

inclusion of intervals
9
I—Or(log r)_d/“l,r(logr)’l/cl] c [m,m(logn)w/c1 . (3.6.7)

Since 19—0r € [my,my] (where m; and m, are as in the definition of .%(n) above), G has (¢, A)-

polylog-plentiful radial tubes at scale l%r. Let I" be a family of paths witnessing this fact (which
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cross the annulus from S, t0 S4.(0.9r) = S3.6-) and let (T,,),cr be the associated family of tubes
given by 7, := B(y, %r[log(%r)]"{/ “1). Since each tube T, has thickness at least m and length
leny < r(logr)Ycr < m(logn)3¥/1, it follows from (3.6.6) that

T
IPp7/4(S0.9r <_y> SS.6r) 2 (log n)_l

for every v € I' and hence that there exists a constant n; = ny(d, D, ) > ng such that if c;1 > 4

and n > n; then

Py (Soor © S36) 21— ﬂ Py, (So.or Ly §36) 2 1= (1 = (log n)~"ylogla )1t
yell
> 1 —exp(37(logn)“"™1) > 1 — exp(~(log n)*>11/%), (3.6.8)

where we used that 1 — x < e in the second line.

We next use the fact that G also has (¢, 4)-polylog-plentiful annular tubes at scale r. (We will no
longer use the paths and tubes from the radial case that we defined in the previous paragraph, so
it is not a problem to reuse the same notation for the annular tubes we consider in the rest of the
proof.) We will work with the standard monotone coupling (w,)pe[0,1] of percolation at different
parameters. To lighten notation, we write w) = Wy, W32 = Wp,,, W7/4 = Wp,,,, ANd W2 = Wp,.
Let u,v € S, and consider the event A, , = {u < S3, and v < S3, in the configuration w7/4}.
Define C, = K, (w7/4) and C, := K, (w7/4), so that the event A, , is entirely determined by the
pair (Cy, Cy). Whenever A, , holds, let I" be a family of paths from C, to C, that is guaranteed
to exist by the fact that G has (¢, A)-polylog-plentiful annular tubes at scale r (choosing these
paths as a function of (C,,C,)), and let (T}),cr be the associated family of tubes, noting that
Uyer Ty € B(2r[log r]¥/¢1). Define the configurations

a = wyN(0gC, UIeC,) N B(2r[log r]ten and B = (w74\C, U C,) N B(2r[log rlien),

where we recall that C,, U C, denotes the set of edges with at least one endpoint in C,, U C,.. In
order for C, to be connected to C,, in the configuration (@ U 8) N T, it suffices that in at least one
of the tubes T, there is a §-path from an endpoints of an a-open edge in 0z C, to an endpoint of
an a-open edge in dgC,. The estimate (3.6.6) together with the interval inclusion therefore
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yields that

T;
P(C 5 €, 1€ C) = 1A - |1 - [ [B(C 2% ¢, [ € C)
yell

[log(n'/3)]<14

[ 2
> 1(Auy) - 1—(1—[0‘416] [logn]_l)

> I(Au,v) . 1 — exp (_3—61/1(10gn)01/1—2)] ,

where we used that ¢c_16 > 4(log n)_l/ 2 (which holds by definition of ¢ and Kj) in the final
inequality. As such, there exist constants 1o = Ao(d, D) and ny = ny(d, D,A) > n; such that if
A > Ay, n > ny,and c;A > 4 then

3cia/4

P(Ce <25 ¢, | G Cy) 2 1(Ay,y) - |1 - e logn]

Since & U B C wy N B(2r[log r]4/¢1), it follows that

B(2r[logr]/<1
P(C, R, € | Ayy) 2 1 - e7lloen

3c1a/4

under the same conditions. Letting U be the event that all w7,4-clusters that intersect both S, and
S3, are contained in a single w> N B(2r[log r]*/¢1)-cluster, it follows by a union bound that there
exists A1 = A;1(d, D) > Agp such thatif 1 > A; and n > n, then

P(U) > 1 Z P(A n{c wrNB(2r[log r]¥/en) c })
= u, u :

Uves,
> 1 — Gr(r)2e Hogn™ 1" 5 1 _ pllogn]?? g=llognP 11 1y _ p=llogn]®1? = (36 gy

For each vertex x, let &, be the event that Spo,(x) is w7/4-connected to S36,(x) and let U,
be the event that all wy/4-clusters that intersect both S,(x) and S3,(x) are contained in a single
wy N B(x,2r[logr]/¢1)-cluster. Observe that if ¢ is a path in G then we have the inclusion of

events

len¢
(&5 S & s )y 0 v 2 5,003 0 ﬂ(ﬂg N&Eg,).
t=0

Thus, it follows by the Harris-FKG inequality and a union bound that there exists a constant
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/4

n3 = n3(d, D, ) > ny such that if 1 > Ay, n > n3, and the path ¢ satisfies len 7 < e!°2”1”"" then
(() len¢ len¢
P (1 s ) > Py, (€ Sp () - P (v 6 Su(1)) - ﬂ P(E,) - Z P(UE,)

301/1/4

> (orteren ) 1 len@,«)e-u%nrcw] - fen(g)etoer

3[log10gn]1/2

IV

The claimed lower bound on the corridor function follows since { was an arbitrary path of length

c1/4
at most ellogn1*, O

Concluding from a negative assumption

The next lemma explains how to use the negative information encapsulated in an upper bound on
the two-point zone tz(m) to find a set of vertices for which point-to-point connection probabilities
within a ball are uniformly small. This lemma plays an analogous role to that of Section 7.2 in
[CMT22], but our proof is completely different and relies on the machinery developed in Section

Note that this lemma does not use the plentiful tubes condition.

Lemma 3.6.5. There exists a constant ny = no(d, D) such that if n > ny and b < %nl/ 3 satisfy
Ap.x(b,n) then for every n'’> < m < n, there exists a subset U C Biy(m) with |[U| > (log n)<:k
such that

By,
P, (u —5 v) < (logn) 3K

for all distinct u,v € U.

(Reminder: The implicit assumption K > K remains in force.)

Proof of Lemma[3.6.3] Fix n and b < in'/® such that Ap x (b, n) holds. We will assume that the

claim is false for some particular n'/3

< m < n, and show that this implies a contradiction when
n is sufficiently large. By definition of the two-point zone tz(m) = tz(m,n), there exist vertices
U,v € By such that Py, (u LN v) < (logn)~!. Let y be a geodesic in By (m) from u to v.
Recursively pick a sequence of indices 0 = iy < i; < ... < i} = leny starting with iy := 0 and for

each j > O with i; < lenvy setting
. . . B —c3K
ij41 = max{leny, 1+max{z >i;: Py (u;; & u;) > (logn)™ }}

To lighten notation, define v; := u;; for every 0 < j < k. This sequence has the property that

P, (v & vj) = p1(logn)=X for every 0 < j < k and Py (v; & ve) < (log n)~*X for every
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distinct O < j,¢ < k. (The last connection probability, from v¢_; to vi = v, may be larger.) As

such, our assumption guarantees that k < (logn)3X.

To conclude the proof, it suffices to show that P, , (u <> v) > (log n)~! when 7 is sufficiently large.
To this end, we would like to apply Proposition where the sets ‘A;’ are the balls B, (v;), the
superset ‘A’ is the bigger ball B,, />, the ghost field intensity ‘4’ is & := min{logn, Gr(b)}~!, and
the sprinkling amount ‘6’ is ¢/2. To do this, we need to verify that

R/ < g and  7,"2(Bp(vj) U By(vjs1)) = 4h20/" (3.6.10)

forevery 0 < j < k —1 when n is sufficiently large. We have by definition of ¢ (and the assumption

K > Kp) that if n is larger than some universal constant then
h2 0 < 4p20" < 4(logn) 2K < ¢; [(logn) K +1]. (3.6.11)

Since k < (log n)“3X, this is easily seen to imply that the first inequality of (3.6.10) holds. Moreover,
we have by the same calculation performed in (3.6.4) that

" (By) = Lp-tloglozn) 5 (104 )1 (3.6.12)

for all n larger than some universal constant, and it follows by the Harris-FKG inequality that if n

is larger than some constant depending only on d then

7,72 (By(v) U Bp(vj41)) = m/z(Bb(Vj)) Pp, (v, 2, vieD) - T (B (va1)

> (logn)~!- ﬁ(log n)~K | (logn)™! > (logn)™ (=3 (3.6.13)

for every 0 < j < k — 1. The estimates (3.6.11) and together yield that there exists a
constant ny = ng(d) > N such that the required estimates (3.6.10) hold whenever n > ng. Thus,
Proposition[3.4.1|and (3.6.12)) yield that there exists a constant n; = n;(d) > ng such thatif K > K|

and n > n; and we define r to be the minimum positive integer such that P, (Piv[1,rh]) < h for

every g € [p1, p3j2] then (since p3/» > Spr(pi1;6/2))

Bjo12r

Pp3/2 (u — v) > C2T) / (Bb(u)) m/z(Bb(V)) > 42 —2[log10gn]l/2.

Finally, the same argument as in the proof of Lemma yields that 2r < m /2 when n is larger than
some constant depending on d and D, and it follows that there exists a constant ny = n(d, D) > ny

. By, ..
such thatif n > ny then P, , (u «— v) > (log n)~! — a contradiction. O
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We now use the existence of this set of poorly connected vertices (negative information) to prove
that Si,(,) is very likely to be connected to the boundary of S, /> (positive information). This only
works because we are working under the positive hypothesis of a two-point lower bound at scale .
This step is essentially the same as Section 7 in [CMT22], with our two-point lower bound at scale

n playing the role of ‘being in the supercritical regime’ in their setting.

Lemma 3.6.6. There exists a constant ny = I’lo(d, D) such that lfn > ngand b < % 1/3 satis
v (D,K(b, n) then 2 n :
IE1’73/2 (StZ(m) > Sm/z) >1- e—(logn)“3K—1

for every m € . (n).

Note that we are not actually assuming a negative information assumption (such as =8(n, p)) in
the hypotheses of this lemma. The lemma holds without any such assumption, but is stronger when
tz(m) is small. The proof of Lemma will apply the following proposition.

Proposition 3.6.7. Let G be a finite connected graph, let p € [0,1], and let A,B C V(G). If
0 € (0, 1) is such that

inP B)>60>2]A P ,
min »(x © B) | Igaéﬁ p(x &)

XFEY

then Py(A & B) > 1 — e W29l for every g € (p, 1).

Proof of Proposition[3.6.7] This proposition is essentially the same as [CMT22, Proposition 7.2],
except that it is stated in terms of our sprinkling coordinates introduced in Section [3.3| (which are
natural from the perspective of Talagrand’s inequality) and we get a factor ¢ rather than 26 in the
exponential in the conclusion. Both versions of the proposition are elementary consequences of

the differential inequality

d
%(— logP,(A)) > E,, [Hamming distance from w to A],

1
p(1-p)
which holds for every finite graph and every decreasing event A [Gri06, Theorem 2.53]. In our
coordinates, this inequality reads
log 1/(1 = Spr(p; 1))

Spr(p; 1)
In our case the prefactor —(log(1 — Spr(p;t)))/Spr(p;t) is at least 1 whereas in the original

Espr(p:r) [Hamming distance from w to A] .

d
E (_ log PSpr(p;t) (A)) =

inequality the prefactor 1/(p(1 — p)) is at least 2, leading to the difference between our two

conclusions. O
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b < %nl/ 3 are such that A(b, n) holds. Let U C By, (m) be the set of vertices guaranteed to exist
by Lemma 3.6.5] and let A be a subset of U with |A| = [[log n]3X~1/2]. Since A (b, n) holds, we
have that

Proof of Lemma(3.6.6] Let ng = no(d, D) be as in Lemma [3.6.5] and suppose that n > ng and

. —[loglogn]'/?
I)glI?Pm(x & Spp2) = Kp (n,00) > e [loglogn} ™=

while our choice of A guarantees that

By,
2 |A| max Py, (x Pl y) < 2|'(10gn)c3k‘1/2] (logn)™K < o~ (loglogn)!/2
X,y€

X£Yy

whenever 7 is larger than some constant n; = ny(d, D) > ng. (This constant does not depend on K
since c3K > ¢3Kp > 2 > 1/2.) Thus, applying Proposition with @ = ¢~ lloglogn]'/? yields that
(since p3;2 > Spr(p1,0/2))

Ppsp(Bim) € Smp2) 2 P

)
p3/2(A o Sm/2) >1- exp (_Ee—[loglogn]l/z |A|) . (3614)

On the other hand, the definition of & ensures that § > [logn]~'/4 and hence that there exists a

constant ny = np(d, D) > n; such that

ge—[loglogn]l/2 |A| > %e—[loglogn]l/z(log n)C3K—1/2—1/4 > (log n)C3K—1
whenever n > ny, which implies the claim in conjunction with (3.6.14). o

The next lemma is completely elementary. It tells us that we can find two nearby reals m and m’

where tz(m) is close to tz(m’).

Lemma 3.6.8. Let R > 1. There exists a constant ny = no(d, D, R) such that if n > ny V N then
there exists m € . (n) such that m(logn)™® € .7 (n) and

tz(m)
tz(m(logn)~

8R/
R < (logn)°™/*t,

Proof of Lemma(3.6.8] Let n > N so that .(n) is defined. Let s and ¢ denote the left and right
endpoints of .#(n), and define

c1log(my) | . { cilogn |

k=11 t =
I_Og[logn]R( /)] {ZR log log 1 6R loglogn
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1/3

where n'/° < m; < nis as in the definition of .¥(n). If a suitable m € .%’(n) does not exist then,

using the trivial inequalities tz(¢) < ¢ < n and tz(s) > 1, we must have that

tz(s[log n]*®)
n 2 tz(t) 2 tz(s) 1—[ tz(s[logn] (i=1R)
k 8R 1
> tz(s) ([log n]SR/“) > exp (: {%| -loglog n) :

Since 8 > 6, this yields a contradiction when 7 is larger than some constant ng = ng(d, D, R)

(allowing us to approximately remove the effect of rounding down). O

We will now combine our lemmas to prove Lemma[3.6.3] The idea here is inspired by the uniqueness
via sprinkling argument from [CMT22, Section 8], which itself used ideas from [BT17]. Our
approach is different because we do not know that exposed spheres are well-connected. Instead, we
have the polylog-plentiful tubes condition. This is a much weaker geometric control because the
tubes are not constrained to lie within narrow annuli. The main step is to use the strong connectivity
bound from Lemma 3.6.6]to deduce that with high probability, every w7/4-cluster crossing a thick
annulus is contained in a single wy-cluster. (As before we abbreviate w; = w), and so on.) In
[CMT22], the analogous step was carried out by dividing the thick annulus into thinner annuli
before showing that if two clusters cross multiple annuli, then, after sprinkling in those annuli,
the clusters will merge with high probability. This works because in every thin annulus, there is
some good probability that the clusters will merge after sprinkling in the annulus, thanks to the
connectivity of exposed spheres. In our case, we also track how many clusters survive un-merged
as they cross through multiple annuli. The difference is that we will have to sprinkle everywhere
each time we cross a thin annulus. Nevertheless, we will sprinkle so little at each stage that the net

effect is to sprinkle by less than /4, as required.

Proof of Lemma[3.6.3] Let K| = K;(d,D,1) = max{Ko,404(c; V 1)~ 2051,4C3I(D v 1)} and
suppose that K > Kj and n > N. Fix R := 51/c; and let ng = no(d, D, R) be the constant from
Lemma which by our choice of R depends only on d, D, and 4. We also let n; = ny(d, D)
and c4 be the constants from Lemma[3.6.4]

Suppose that n > np = na(d,D,A) = ngVn; VN Ve and b < %n% are such that A(b, n, p)
holds, and let m € .#(n) be the element guaranteed to exist by Lemma [3.6.8| applied with this
2% guarantees that m /2 > m(log n) R and hence that m/2 € .¥(n) when

n > ny. Since n > ny, we have by Lemma [3.6.4] that

value of R. Taking ny > e

Kp1/a (tZ(m(10g ”l)_R)(IOg n)C3K,2m(log n)_R) > C4e_2[10g10g”]]/2.
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On the other hand, our choice of R and m ensure that there exists a constant n3 = n3(d, D, 1) > ny

such that if n > n3 then we have the inclusion of intervals
(2m [log n] K, tz(m[log n] ) [log n]C3K) > (% [og m] V<1, 2 tz(m/2) + 2),

so that

1/2

Kpa (2 2(m/2) +2, %[log m] —‘W“) > ¢ye2lloglogn] (3.6.15)

Note that this estimate holds as a consequence of A (b, n, p) alone: we have not yet made use of

the negative information —8(n, p).

Now suppose that =8(n, p) holds. Since K > K| > 12c§1011/1, there exists a constant n3 =
n3(d, D, A) > n3 such that if n > nj3 then

]3/l/c1—C3K

tz(m/2) < m[logn < m(log n) 3K/ < %(log m)~c3K/2 (3.6.16)

for every m € .#(n).

Our next goal is to prove a good upper bound on the probability of the non-uniqueness event
Pivp, . p,[m/16,m/8], where Piv, ,[m,n] denotes the event that there are at least two distinct
wp-clusters that each intersect both B,, and S, but that are not connected to each other by any path
in B, Nw,. We will do this using a variation on the “orange peeling” argument of [CMT22]], where

we iteratively sprinkle and zoom in closer to m /16 over a number of steps.

Let k :=2| (logn)?|, € := (logn)~P*V and for each i € {0, ..., k} set

m im
,‘::———l -D
r g 4O[ogn]

and qi = Spr(p7/4;i€).

Note that r; € [m/16,m/8] and g; € [p7,4, p2] for every 0 < i < k. We work with the standard
monotone coupling (wg)4e[0,1], and write w(;) = wy, for each i € {0, ..., k}. (Be careful not to
confuse this with our previous notational shorthand w = w,,, w2 = w,,.) Given the family of
configurations (wy)ge[o,1], recursively define a set of B,,/3 N w;)-clusters ¢; for each i € {0, ..., k}

as follows:

1. Let 6y be the set of all B,,/3 N w(p)-clusters that contain a vertex in S,.

2. Given ¢; for some i < k, let 6,1 be the set of B,,/3 N w;.1)-clusters C such that there exists
C'eéwithC’'cCandC'NS,,,, #0.
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Figure 3.4: Schematic illustration of the construction of %;;; from %;: The black, purple, and
green circles represent the spheres S,,, S,,, and S,,,, respectively. The purple regions in the left
figure represent the clusters making up ;. By construction each of these is a B,, N w;-cluster
that connects S, to §,,. The green regions in the middle figure represent the B,; N w(;41) clusters
that contain some cluster in C;. Finally, the green regions remaining in the third figure represent
the subset of these clusters that happen to intersect S,,,,; these make up %,.

See fig. for an illustration. This definition ensures that the cardinality |%;| is a decreasing

function of i and that we have the inclusion of events
Piv,, . p.[m/16,m/8] € {€; € {0,1}}. (3.6.17)

Roughly speaking, our goal is to show that, for each i, if %; is not a singleton then the cardinality

|%;+1] is smaller than |%;| by a factor of roughly 1/2 with high probability under P.

Ideally, we would like to show that, with high probability on the event {|%;| > 1}, every cluster in

¢; that intersects S,,,, is B,/ N w(+1)-connected to a distinct cluster in ;. This is what we will

i+1
prove, except that we will allow one distinguished cluster to go un-merged. For every non-empty
set of clusters .%, permanently fix a choice of element min(.%#) € .% such that dist(o, min(.%#)) =

dist(o, | .#). Foreach 0 <i < k — 1, consider the event

/8 NW(i+1)

& = (% = 0pufc S DD, | J(6ALCY) for every € € 6\ {min())} with dist(o, C) < rist}.

We will prove the following lemma at the end of the section after explaining how it may be used to
conclude the proof of Lemma [3.6.3|(and hence of Proposition [3.6.1).

Lemma 3.6.9 (Merging clusters). There exists a constant n1; = ny1(d, D, 1) > ny4 such that if

n > ny then
c11/2

P(&;) > 1 — ¢ llognl ™, (3.6.18)

forevery) <i <k-1.
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(We name this constant n;; to leave room for the constants ng through n1¢ that will appear in the

proof of this claim.)

Let us now conclude the proof of Lemma [3.6.3| given Lemma[3.6.9] On the event &; we have that
Gl -1
i | +1.

|Cgi+1| < B

Since |%6y| < |Sro| < e0gn” and k := 2|[logn]P], it follows that |%;| € {0,1} on the event
%' &:. Tt follows by a union bound that there exists a constant ng = ng(d, D, 1) > ns such that if
n > ng then

k-1
P (Pin7/4,p2 [m/16, m/8]) < Z P,,(Sf) < 2(log n)De_(logn)cM/z < e—(logn)clxl/3. (3.6.19)
i=0

On the other hand, (3.6.16) ensures that if n > ng then tz(m/2) < m/17, and it follows from
Lemma [3.6.6|applied to m/2 that

P (Sm/17 € Spya) = 1= o~ (logm)117?

if n > ng. It follows in particular that there exists n; = ny(d, D, A1) > ng such that
llogn]€1 V4]

Pps (Smj17 © Smya) >3 (3.6.20)

if n > n7; this will be used to form a chain of connected annuli using the Harris-FKG inequality.

We now apply (3.6.19) and (3.6.20) to bound the corridor function. Let y be a path of length at

-1 /4 . .
most e!°271“"" “starting at some vertex u and ending at some vertex v, and observe that we have

the inclusion of events

fu &0 1 1 B s b v 55,0030
leny
() ({8m1700) 5 Swiard} O Pivy s [m/16,m/81(7))

r=1
Applying the Harris-FKG inequality and a union bound, we deduce that there exists a constant
ng = ng(d, D, ) such that if n > ng then

Bn(y) 2
Pp,(u e v) > Ppm(o < Sp) ’PP7/4 (Sm/17 « Sm/4)

—Tlen(y) - (1 =P (Pivpm,p2 [m/16,m/8]))

_ 1/2 cia/4 _ c11/3
e 2(loglogn)'/= _ e(logn) e (logn)

len(y)

\%
| =

1/2

b

—3[loglogn]

v
Y
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where we used the assumption that A(b, n, p) holds to bound Py, (0 < S,) > kp,(n,0) >

e~(loglogn)' " The claimed lower bound on the corridor function follows since v was an arbitrary

c1a/4

path of length at most el'°2”] O

It remains only to prove Lemma[3.6.9]

Proof of Lemma(3.6.9 We continue to use the notation from the proof of Lemma [3.6.3] and in
particular will use the constants K| = K;(d, D, 1) and nqy = n4(d, D, 1) defined in that proof.
Consider the event Q defined by

w32
Q= ﬂ {Stz(my2)y(u) < S,/8}.

MEBm/g

It follows by Lemma (applied to m/2) and a union bound that there exists a constant ns =
ns(d, D, ) > nq4 such that if n > ns then

P(Q) > 1 - Gr(m) sup Py, (Siz(m/2)(u) < Siys)

MGBm/g
> 1 =Gr(m) sup Py, (Sumy2)(u) & Spyja(u))
uEBm/g
> 1 — ollogm)? ,=(logm)3K=1 o 1 —(logm3K/2 (3.6.21)

where we used that K > K > 4c3'(D Vv 1) in the final inequality.

ForeachO <i < k —1,letF; bethe setF; = {.¥ : P(%; = .% | Q) > 0}. (Note that F; is a set of

sets of sets of vertices.) It follows from the definitions that

d(u, U C) < tz(m/2) for every u € B,,;3 and .7 € F;. (3.6.22)

CeF

By (3.6.21) and a union bound, it suffices to prove that there exists nj; = n(d, D, 1) > ns such
that

_ c11/2
¢~ llogn]!

P& |€=F)>1- (3.6.23)

M| —

forevery 0 <i < k — 1 and every .# € F;.

Before doing this, we will need to prove a purely geometric preliminary claim. Let 0 < i
k—1,1let .# € F;, and let C € #\{min(.%#)}. We claim that there exists a constant ng
ng(d,D,A) > ns such that if n > ng and dist(o,C) < r;y; then there exists a set of vertices

U C B(ris1 + m(logm)~Y<") with |U| > %(log m)“11 such that the following hold:

IA

117



(i) U is m(logm)~*V/¢1_separated. That is, pairwise distances between distinct points in U are

at least m(log m) /<1,

(ii) For each u € U, the ball By, /2)+1(u) intersects both C and | J(F\{C}).

(As before, we name this constant ng to leave room for the constants ng and n7 that will appear in
the proof of this claim.) We let 7 := m(log m)~24/¢1 and split the proof of this claim into two cases

according to whether dist(o, C) is smaller or larger than r.

Case 1: (dist(o,C) < r.) Since C # min(.%#), we have that dist(o, | J(:#\{C})) < dist(o,C) < r
also. Let I be the family of paths from B3, N C to B3, N |J(-#\{C}) that is guaranteed to exist by
the fact that G has (¢, A)-polylog-plentiful annular tubes at scale r. We now observe that for each

y € I, there exists a vertex u,, on the path y satisfying the ball-intersection condition (ii):

* If max, dist(C, y;) < tz(m/2) then we may take u, to be the final vertex of y.

* Otherwise, if max, dist(C,y;) > tz(m/2), we may take u, = y,, where f, is the maximum
index such that dist(C,y;) < tz(m/2). To see that this choice of u, satisfies (ii), note that

dist(y;,+1,C) > tz(m/2) and hence by (3.6.22)) that dist(y,+1, U(F\{C})) < tz(m/2).

Now define U := {u, : y € I'}. Since the family I' is 2r(log r)~4/¢1_separated (and r was defined
to be r = m(logm)~24/<1), it follows that there exists a constant ng = ng(d, D, 1) > ns such that if
n > ng then U is m(logm)~*Y/¢1-separated and

1
|U| = || > (logr)** > 5(1ogm)cﬂ.

Moreover, since every path in I was contained in B(3r + r[logr]¥/1), there exists a constant
n7 = n7(d, D, ) > ng such that if n > ny then 3r + r[logr]¥*" < m/16 < risy +m(logm) =/
and hence U C B(riy1 + m(logm)=4/<1).

Case 2: (dist(o,C) > r.) Let v € C be such that dist(o,v) = dist(o, C), let y* be a path in C
from v to S, (v), and let ¥* be the portion of a geodesic from v to o starting at a neighbour u of
v with dist(o, u) < dist(o,v) and ending at the first intersection with S,(v). These path are both
finite, start in S;(v) and end in S,(v), and are contained in C and disjoint from C respectively.
Let T be the family of paths from y“ to y” that is guaranteed to exist by the fact that G has
(c1, A)-polylog-plentiful annular tubes at scale r/3. We can construct the desired set U by picking

a vertex u, in y satisfying the condition (ii) for each y € I'; the fact that such a vertex exists for each
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v follows by the same argument used in case 1 above. Moreover, it follows by the same argument
used in the first case that there exists a constant ng = ng(d, D, 1) > ny such that if n > ng then the
required bounds on the cardinality and separation of the set U = {u, : v € I'} hold, as well as the

containment U C B(ry + m(logm)~/¢1). This concludes the proof of the geometric claim.

We now use this geometric claim to establish the estimate (3.6.23]), which will complete the
proof of the lemma. Leti € {0,...,k — 1} and let .% € F; be arbitrary. Consider also an arbitrary
C € Z#\{min(%)} with dist(o, C) < r;41, and let U be the corresponding set of vertices guaranteed
to exist by the geometric claim above. For each u € U, let 8, := B(u; Z(logm)™*Y¢1) n W(isl)-
Consider an arbitrary vertex u € U. By construction of U, there exists a path y that starts in C,
ends in J(#\{C}), is contained in B(u;tz(m/2) + 1), and has length at most 2 tz(m/2) + 2. The
estimate eq. yields the existence of a constant ng = ng(d, D, 1) > ng such that if n > ng
then
[tz(m/2) + 1] + %(log m)~4er < %(log m) =4,

so that the tube B(y; 5 (log m)~*/¢1) associated to this path y is contained in the ball B(u; Z (log m)~*4/¢1).
Thus, if n > ng, the estimate (3.6.15)) yields that

P (C &, U(ﬁ\{C})) > C4e_2[1°g1°g”]1/2.

We stress that the C and .# appearing in this inequality are deterministic, and do not depend on
the configuration 8,. Under P, the conditional law of S, given that 4; = .% is simply (inho-
mogeneous) bond percolation on B(u; 2 (log m)~*Y/¢1) where every edge has probability at least
c_1& of being open, and every edge that does not touch | J.# has probability g;;; of being open.
In particular, recalling that £ = §(gis1, i) = (logn)~P+V it follows that there exists a constant
nio = nio(d, D, 1) > ng such that if n > n;o then

P (C Loy U(d@\{C}) | 6, = ﬁ) > 2, 52eqe 2I0ERN ™ S (1o ) 203

Notice that under P, the configurations (8,),cy are independent. Moreover, this still holds after
conditioning on the event that 4; = .%. So, by independence, there exist constants g = o(d, D) =
86‘1_1(21) +3) and ny; = nyi1(d, D, ) > njo such that if 1 > Ag and n > ny; then

P(C‘MU(?\{C” '%:y) . 1-I—IP(Cﬂ>U(9‘\{C}> 16 =5
uclU
>1-(1-(log m)—ZD—3)%(logm)Cl/l

_ c11/2
>1l—¢ 2(logn) )
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Finally, since || < |Sr0| < ellog ”)D, we have by a union bound that if 4 > Ag and n > ny; then

P& |Ci=F) =21~ elogn? j=2(logm) 12 o %e—(logn)vm/z‘
Since .# was arbitrary, this implies the claimed bound (3.6.23)), completing the proof. 0

Completing the proof of the main theorem: The implications and (C)

In this section we apply Proposition to complete the proof of the Proposition{3.3.1/and hence
of Theorem[8.1.1] Given Proposition[3.4.5] what remains is to verify the implications and (C).

Proof of Proposition[3.3.1] Let D := 20, and accordingly let 1o(d, D) and ¢ = c(d, D) be the
constants from Proposition with this value of D. Let A := max{Ay, 10/c}, and let K(d, D, 1)
and M (d, D, 1) be the corresponding constants from Proposition that are there called K; and
no. (We want to avoid reusing the label ng.) We claim that if we define d¢ using this value of
K, then the implications and (for all i > 1) hold whenever pg > 1/d, 9 < 1, and ng
is sufficiently large with respect to d, which in particular guarantees that ny > max{16, M}. The
implication is immediate (i.e., is a direct consequence of Proposition [3.6.1]after unpacking the
definitions), so we will just explain how to prove the implication (C).

Fix i > 1 and assume that FuLL-sPAcE(7) holds and that CorriDOR(k) holds for all 1 < k < i.
Our goal is to establish that CorriDOR(i + 1) holds provided that ng is sufficiently large with
respect to d. This follows immediately from Proposition [3.6.1] if we can show that for every
n € %(G,20) N [n;_1, n;] there exists some b < %nm such that

1/4

Klogl
g 08" < (loglogn) ™" and B, (Piv[4b,n'?]) < (logn) ™. (3.624)

min{logn, log Gr(b)}

Consider an arbitrary n € Z(G,20) N [n;-1,n;] (assuming one exists; the claim is vacuous if
not). We split into two cases according to whether (logn)?? € #(G,20). First suppose that
(logn)?? ¢ £(G,20), so in particular

Gr((logn)?3) > (g™
By Corollary [3.2.4] provided nj is sufficiently large with respect to d, we know that
P, (Piv[4(logn)2/3,nl/3]) < (logn)™".

So in this case both conditions in (3:6.24) are satisfied for b = (logn)*/® < gn'/? provided that ng

is sufficiently large with respect to d.
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Now instead suppose that (log n)*/3 € .£(G,20). Note that we can always find some k € {1,...,i}

1/2 a5 small as we did in

such that (logn)*/® € [ny_», nx—1]. (This is why we took n_; = (logng)
the statement of the proposition.) So by our hypothesis that CorrIDOR (k) holds for this particular

value of k, we have that

Kp, (eUOg(“"g"]” 91 [log n]2/3) > ¢~ (oglogn)'? (3.6.25)

We now claim that b := £ min{e(l¢!°2 n” Gr!(e(loem""")Y satisfies both conditions from eq. (3.6.24

1/2 again holds trivially

provided that ng is sufficiently large with respect to d. The inequality b < %n
when ny is large. The definition of b ensures that log Gr(b) > %log Gr(5b) > %(log logn)®, so
that the first condition also trivially holds when ny is large. To see that the second condition holds,

we apply Lemma [3.2.3] and Proposition [3.2.1] to obtain that there exists a constant C such that

|Sap|* Gr(5b)

. Bsp,
mlna,b€S4h ((1 A b)

1/4
<C ((log n)20) eS(logn)l/lo+(loglognk)l/2
n

P,, (Piv[4b,n'?]) < P, (Piv[1,n'/3/2]) -

< (logn)™!

whenever ny is sufficiently large with respect to d, where we used the estimate (3.6.23)) and the fact

that 4b < ellog([logn]* 1"

B
ming pes,, (a PRbLN b). This completes the proof. |

and 5b > (logn)?/® (when ny is sufficiently large) to bound the term

3.7 Closing discussion and open problems

Joint continuity of the supercritical infinite cluster density

Recall that G* is the space of all infinite, connected, transitive graphs that are not one-dimenional,
which we endow with the local topology, and recall that for all p € (0,1) and G € G*, the
infinite cluster density is defined to be 6(G, p) := Pg(o < 00). Consider a sequence (G,);>1
in G* converging to some G € G*. The main result of the present paper Theorem [8.1.1] states
that p.(G,) — p.(G). One could ask the following more refined question: does #%» — 6¢
pointwise? (One can observe from the mean-field lower bound, say, that a positive answer to this
question would imply our result that p.(G,) — p.(G).) For p < p.(G), it follows immediately
from the lower semi-continuity of p. that (G, p) — 6(G, p) = 0, so the only non-trivial cases
are when p = p.(G) and p > p.(G). The case p = p.(G) appears to be hard. Indeed, if one
could prove this result in the case of toroidal slabs (Z? x Z/nZ),s converging to the cubic grid
Z3, then it would follow from the main result of [DST16] that 6(Z>, p.(Z?)) = 0, a notorious open
question. We have nothing interesting to say about this case. However, in our other work [EH23+a]
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we prove the following theorem, which together with Theorem [8.1.1] completely resolves the case

when p > p.(G).

Theorem 3.7.1 ([EH23+al]). Let (G,),>1 be a sequence in G* that converges in the local topology
to some G € G*. Then 0(G,, p) — 0(G, p) as n — oo for every p > limsup,_,,, pc(Gp).

Note that the main theorem of [EH23+a]] is much more general than this and also establishes a form
of locality for the density of the giant cluster on finite transitive graphs that may have divergent

degree. Together with Theorem this theorem yields the following elementary corollary.

Corollary 3.7.2. (G, p) is continuous on the open set {(G,p) : G € G*,p > p.(G)}. Moreover,
if (G,)ns11s a sequence in G* that converges in the local topology to some G € G* then 6(p, G,) —
6(p,G) as n — oo for each p € [0, 1]\{p.(G)}.

Let us roughly indicate how the tools built in Section[3.4]could be used to give an alternative proof
of Theorem [3.7.1] This alternative proof is less general and (arguably) more involved and than the
one given in [EH23+a], but the result is quantitatively stronger: it can be used to prove that 6(G, p)
is not just continuous but even locally Holder continuous on the supercritical set (with the power

in the definition of Holder continuity possibly degenerating near the boundary of the set).

Let G denote the set of infinite transitive graphs with vertex degree exactly d that are not one-
dimensional. As explained in detail in [EH23+a]], it suffices to prove a tail estimate on the size of
finite clusters in supercritical percolation that is uniform over G for each d, i.e. it suffices to prove
that

lim sup sup PY(m <|K,| <o0)=0 foralle>0andd > 1, (3.7.1)
M=® GeGh pzpc(G)+e

where we recall that K, denotes the cluster of the root vertex 0. We will focus on proving an
estimate of this form for the set of unimodular graphs U} instead of G; in the nonunimodular case
much stronger results (with optimal dependence on p — p. and m) can be proven by invoking the
results of [Hut20e}; Hut22]] as explained in detail in [EH23+a]. Our proof will yield quantitatively
that for every € > 0 and d > 1 there exist constants C and ¢ such that

sup  sup Pg(m < |K,| < ) < Cm™;

GeU}; pzp.(G)+e
running the proof of continuity with this quantitative estimate yields the aforementioned local
Holder continuity of (G, p). This bound is quantitatively much better than the bound coming

from the proof in [EH23+a]. On the other hand, it is also much worse than the conjectured
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optimal bounds, which are stretched exponential in m (see Section 5.3 of [HH21cf]). Having any
superpolynomial tail bound would imply that 8(G, p) is a smooth function of p € (p.(G), 1] for
each fixed G; for Z¢ and for nonamenable graphs it is known that the density is not just smooth but
real analytic on this set [HH21c; GP23].

Lete >0,d 21, G € U, p > pe(G) +€&, m > 1, and n > 0 be arbitrary, and suppose
that Pg(m < |K,| < o) > n. It suffices to prove that m is necessarily bounded above by
some constant M (e, d,n) < co. Let P denote the canonical monotone coupling (wy)qe(o,1] of the
percolation measures (Pg)qe[o, 1]. By the mean-field lower bound and transitivity, one can find

vertices u, v € V(G) such that

> 12

—_ b

P(|Ku(w[,_£/2)| > m and |Kv(a)p)| > mbutu < v)

where K, (w,_/2) denotes the cluster of u in w,_/». In particular, writing Gy, for the law of a
ghost-field ¢ of intensity 1/m on the whole vertex set V(G),

2
IR

wp wp
GiL®Pue—— Y «>vbutu «—v)>|(1-- 72
m e
Assume for now that G is amenable so that there is at most one infinite cluster Pg—almost surely for
every g € [p—¢&/2, p]. Then by Lemma with (X, A,Y) := ({u},V(G), {v}), one can deduce

that for some constants c3(g,d) > 0 and C(g,d) < oo,

Wp-g/2 Wp Wp _
G1L®P(u—— 4 «— vbutu «—v) < Cm . (3.7.3)

By combining (3.7.2) and (3.7.3), we deduce that m < M (e, d,n) := (8C/(ne))'/3, as required.

Finally, to handle the case when G is nonamenable (but still unimodular), one can still run essentially
the same argument as above but with some technical modifications to handle the possible existence
of multiple infinite clusters. The key difference is that instead of tracking connections u < v as

. . . wired
usual, we instead track wired connections u «—— v where

ired
{u<£>v} ={u o viU{u e coandv & oo},
One can verify that the proof of Lemma [3.4.4] works just as well with this alternative notion of
connnectivity, without requiring the hypothesis about the uniqueness of the infinite cluster. The rest
of the argument explained above can then be adapted to work with this wired notion of connectivity

also.
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As explained in [EH23+al], the estimate (6.1.2)) has the following nice interpretation. Consider the
space (0, 1) x G* — (0, 1) with the product topology, and consider the function 6 : (0,1) X G* —
(0,1) mapping (p,G) — 6%(p). It is natural to ask whether @ is continuous as a function
of two variables. One can show that a priori, 6 is continuous if and only if the conclusion of
Theorem [8.1.1] holds (locality of p.), the estimate holds (i.e., there is a uniform tail bound
on supercritical finite clusters), and (G, p.(G)) = 0 for every G € G* (continuity of the phase
transition), the last statement being one of the most important open conjectures in the general study
of percolation in G*. (In this decomposition, handles the interior of the supercritical region
S ={(p,G) : p > p.(G)}, Theorem implies that this region is open, and the continuity
conjecture handles the boundary values.)

Finite graphs. As mentioned above, in [EH23+a] we prove versions of Theorem (3.7.1] and
eq. (6.1.2) that also apply to families of bounded-degree finite transitive graphs. The above
sketches work just as well in this context too; we have stated things in terms of infinite graphs
purely for simplicity. Moreover, the above sketch can be used to give an alternative proof that for
supercritical percolation on bounded-degree finite transitive graphs, the giant cluster is unique and
has concentrated density, recovering the results of our two papers [EH21a; EH23+a] in this case.
Note however that all of the tools from Section [3.4] break down rather badly when working with
families of finite graphs that have large vertex degrees (e.g. vertex degrees that grow at least as
a power of the total number of vertices), partly because for such graphs the emergence of a giant
cluster can occur around values of p close to 0. To handle this more general setting of arbitrary
finite transitive graphs, we know of no alternative proofs of the uniqueness or concentration of the

supercritical giant cluster to those we give in [EH21a; EH23+a].

The p. gap and its witnesses

Since G is compact for each d > 1, it is a consequence of Theorem that p. attains its
maximum on G for each d > 1. In [PS23b], Panagiotis and Severo improved upon the results of
[DGRSY?20; HT21a]] to establish that there exists a universal € > 0 (independent of the degree)
such that every Cayley graph with p. < 1 has p. < 1 — g; Lyons, Mann, Tessera, and Tointon
[LMTT23] give the explicit bound & > exp(—exp(17 exp(100-8'9))). Presumably a similar result
holds for transitive graphs that are not Cayley. The following natural conjecture would strengthen
this result, and would also imply by Theorem that p. attains its global maximum on G*.

Conjecture 3.7.3. There exists a universal constant C such that if G is an infinite, connected,

transitive, simple graph of vertex degree d that is not one-dimensional, then p.(G) < C/d.
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Figure 3.5: The transitive graph formed by laying out copies of K4, in an infinite square grid as
above has p. > (4log2 — o(1))/deg as n — oo as can be seen by coupling with bond percolation
on Z? and using a Poisson approximation. Since 4log2 ~ 1.2 > 1, this shows that the asymptotic
estimate p. ~ 1/deg can fail for high-degree vertex-transitive graphs even when these graphs
are not one-dimensional in any sense. An exact asymptotic estimate p. ~ C/deg can be proven
with a little further work. (Indeed, the constant C ~ 3.095 is the unique solution to the equation
C(1+C'W[-e€C])? = 41log2 where W is the Lambert W function.)

For many natural families of high-degree graphs we have the stronger statement that p. ~ 1/deg
as the degree diverges. For example, this holds for Z¢ as d — oo by a theorem of Kesten [Kes90)]
(see also [ABSO4al]). Moreover, this is not just a high-dimensional phenomenon: Penrose [Pen93]]
proved that a similar-estimate holds for the “spread-out” d-dimensional lattice, in which x, y € Z¢
are connected by an edge whenever ||x — y|| < R, when d is fixed and R — co. On the other
hand, the example illustrated in fig. [3.5|shows that high-degree transitive graphs do not always have

pe ~ 1/deg even when they are not one-dimensional in any sense.

Once one knows that p,. attains a maximum (either globally on G* or on QZ,), it becomes interesting
to understand which graphs attain this maximum. Martineau and Severo [MS19] proved that p, is
strictly increasing under quotients, so that any maximal graph must have no non-trivial quotients
in G*. It seems reasonable to believe that the maximal graph would be a lattice of low degree
and in low dimension. Consulting tables of numerical values of p,. for these lattices (as can be
found on https://en.wikipedia.org/wiki/Percolation_threshold) leads to the highly

speculative conjecture that p. is maximized by the so-called super-kagome lattice (a.k.a. 3-12
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Figure 3.6: The 3-12 (a.k.a. super-kagome) lattice is the current best candidate for the transitive
graph with the highest non-trivial value of p. for bond percolation. Its critical value p,. = 0.7404 . ..
has been estimated to great precision numerically in [SJ20]. The transitive graph with the next
highest value of p. to have been investigated numerically is the truncated trihexagonal lattice,
which has p,. = 0.6937.

lattice); see fig. [3.6|for an illustration.

Problem 3.7.4. Investigate the transitive graphs in G, that maximize p. for each degree d, as well
as the global maximum in G* if this maximum exists. Are these maxima uniquely attained? Does
pe - GF — [0, 1] attain its maximum uniquely at the 3-12 lattice (a.k.a. super-kagome lattice),
which has p. = 0.7404207? When restricted to edge-transitive graphs, does p. attain its unique
maximum at the hexagonal lattice, which has p. = 0.65270...=1—2sin(x/18)?

One may wish to restrict attention to simple graphs. Similar questions have been investigated for
self-avoiding walk by Grimmett and Li [GL20].
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Chapter 4 127

UNIFORM FINITE PRESENTATION FOR GROUPS OF POLYNOMIAL
GROWTH

Joint with Tom Hutchcroft

Abstract

We prove a quantitative refinement of the statement that groups of polynomial growth are finitely
presented. Let G be a group with finite generating set S and let Gr(r) be the volume of the ball of
radius r in the associated Cayley graph. For each k > 0, let R, be the set of words of length at most
2% in the free group Fs that are equal to the identity in G, and let ((R;)) be the normal subgroup
of Fg generated by Ry, so that the quotient map Fs/{(Ry)) — G induces a covering map of the
associated Cayley graphs that has injectivity radius at least 2¢~! — 1. Given a non-negative integer
k, we say that (G, S) has a new relation on scale k if ((Ri.1)) # ((Rr)). We prove that for each
K < oo there exist constants ng and C depending only on K and |S| such that if Gr(3n) < K Gr(n)
for some n > ng, then there exist at most C scales k > log,(n) on which G has a new relation.
We apply this result in another paper as part of our proof of Schramm’s locality conjecture in

percolation theory.

4.1 Introduction

Itis a seminal theorem of Gromov [[Gro81c] (see also [Kle10;/0Ozal8]) that a finitely generated group
has polynomial volume growth if and only if it is virtually nilpotent. This theorem and its extension
to transitive graphs due to Trofimov [Tro85] are of foundational importance in the study of geometry
and probability on transitive graphs, implying in particular that every transitive graph of polynomial
growth has a well-defined volume growth dimension and that this dimension is an integer. In
probability, these theorems are often used together with the isoperimetric inequality of Coulhon
and Saloff-Coste [[CS93]] to prove results for general transitive graphs via a “structure vs. expansion”
dichotomy: that is, proceeding by a case analysis according to whether the graph is virtually
nilpotent or satisfies a d-dimensional isoperimetric inequality for every d < oco. Important results
in probability employing the structure theory of transitive graphs in this way include Varopoulos’s
theorem [Var86] that an infinite transitive graph is recurrent for simple random walks if and only

if it has linear or quadratic volume growth, and Duminil-Copin, Goswami, Severo, Raoufi, and



Yadin’s proof that transitive graphs admit a percolation phase transition if and only if they have

superlinear growth [Dum+20c].

Over the last twenty years, an extensive literature in approximate group theory has been developed
establishing finitary versions of Gromov’s theorem and Trofimov’s theorem, highlights of which
include [BGT12b; (ST10a; Hrul2; TT21b; BGT11]]. See [Brel4] for a detailed overview, [[To120a]
for a textbook introduction, and [Toi120b]] for a concise survey. For groups, this theory culminated
in the celebrated work of Breuillard, Green, and Tao [BGT12b]], a special case of whose results can
be state as follows. Given a group G and a finite generating set S, we write Gr(r) = Grg s(r) for
the cardinality of the ball of radius r in the Cayley graph Cay(G, S).

Theorem 4.1.1 (Breuillard, Green, and Tao 2012). For each K > 1 there exist constants ro = ro(K)
and C = C(K) such that the following holds. Let G be a group with finite generating set S, and
suppose that there exists r > ro such that Gr(3r) < K Gr(r). Then Gr(mr) < m© Gr(r) for every
m > 3 and there exists a finite normal subgroup Q < G such that:

1. Every fibre of the projection m : G — G /Q has diameter at most Cr.

2. G/Q has a nilpotent normal subgroup N of rank, step and index at most C.

3. The projection x — n(x) is a (1, Cr)-quasi-isometry from Cay(G, S) to Cay(G/Q, n(S)).

Here, we recall that a function ¢ : V| — V, between the vertex sets of two graphs G| = (Vy, E})

and G, = (V,, E») is said to be an (a, 8)-quasi-isometry (a.k.a. rough isometry) if

o d(x,y) - B < d(¢(x), $(y)) < ad(x,y) +p

for every x,y € Vi, and every vertex z € V; is within distance at most 8 of ¢(V;). (The second
property holds automatically if ¢ is surjective.)

Informally, the Breuillard-Green-Tao theorem states that polynomial growth at one sufficiently
large scale forces the group to have polynomial growth at every subsequent scale, and moreover

to be metrically “well-modelled” by a nilpotent group at all larger scales. Similar theorems for

'We state their theorem in a ‘metric’ form that is convenient for our applications, and which is adapted from Tessera
and Tointon’s structure theorem for vertex-transitive graphs of polynomial growth [TT21b, Theorem 2.3]. Indeed, the
statement given below is equivalent to the special case of their theorem in which the graph I' is the Cayley graph of G,
together with the growth bound of [BGT12bl Corollary 11.9].
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vertex-transitive graphs that are not necessarily Cayley graphs have recently been established in the
work of Tessera and Tointon [TT21b; [TT18].

These results have recently found many probabilistic applications, particularly for problems con-
cerning families of transitive graphs (such as sequences of finite transitive graphs converging to
an infinite graph); such problems often require estimates that are “uniform in the graph”, so that
structure theoretic results invoked in their solutions must typically be finitary. Results proven using
finitary structure theory include a finite-graph version of Varopoulos’s theorem [TT20b], univer-
sality theorems for cover time fluctuations [BHT22], locality of the critical probability for graphs
of polynomial growth [CMT23b|], non-triviality of the supercritical phase for percolation on finite
transitive graphs [HT21b], and “gap at 17 theorems for the critical probability on infinite vertex
transitive graphs [HT21bj Lyo+23b; |PS23b]]. Several of these works exploit finitary versions of the
“structure vs. expansion” dichotomy provided by the finitary structure theory of [BGT12bj; TT21b],
with key technical difficulties arising from the fact that the same graph may exhibit different sides

of this dichotomy at different scales.

Uniform finite presentation

Since virtually nilpotent groups are finitely presented, it is a consequence of Gromov’s theorem that
every group of polynomial volume growth is finitely presented. The purpose of this paper is to prove
a uniform version of this fact, stating roughly that every group of polynomial growth has a bounded
number of scales witnessing a new relation after the first scale that polynomial growth is witnessed.
This result is used in our work [EH23c] as part of our proof of Schramm’s locality conjecture for
Bernoulli bond percolation [BNP11al], where it plays an important part in our “uniformization” of
the methods of Contreras, Martineau, and Tassion [CMT21]]. A comparison of our results with the

previous literature is given at the end of this section.

Let us now state our result formally. Let G be a group with finite generating set S, so that G = Fg/R
for some normal subgroup R of Fs. For each n > 0, let R, be the set of words of length at most 2"
in the free group Fj that are equal to the identity in G, and let ((R,)) be the normal subgroup of Fg
generated by R, so that the quotient map Fs/{(R,)) — G induces a covering map of the associated
Cayley graphs that has injectivity radius at least 2"~ — 1 (see Lemrna. We say that (G, S) has
a new relation on scale n if ((R,+1)) # ((R,)). A finitely generated group G is finitely presented
if and only if it has a new relation on at most finitely many scales, so that the following theorem can

indeed be thought of as stating that groups of polynomial growth are “uniformly finitely presented".
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Theorem 4.1.2. For each K, k < oo there exist constants ro = ro(K) and C = C(K, k) such that if
G is a group and S is a finite generating set for G with |S| < k whose growth function Gr satisfies
Gr(3r) < K Gr(r) for some integer r > rg then

#{n e N:n >log,(r) and (G, S) has a new relation on scale n} <C.

Remark 4.1.1. Considering the abelian group Hfle (Z/n;Z) with its standard generating set, where
ni,...,n; are arbitrary, we see that it is not possible to control on which scales we find a new

relation; we only claim that the total number of scales on which we find a new relation is bounded.

We will prove the following theorem about the number of times we find an “unexpected element”
during a breadth-first exploration of a (not necessarily normal) subgroup of a group of polynomial

growth; we will see in Section [4.5|that this theorem easily implies Theorem [8.1.1]

Theorem 4.1.3 (Breadth-first exploration of subgroups). For each K and k there exist constants
ro = ro(K) and C = C(K, k) such that the following holds. Let G be a group with finite generating
set S satisfying |S| < k, let H be a subgroup of G, and for each n > 1 let H, be the subgroup
of H generated by elements that have word length at most 2" in (G,S). If r > rg is such that
Gr(3r) < K Gr(r) then

#{n >log,r : Hyy1 # Hy} < C.

Remark 4.1.2. We believe that it should be possible to take the constants in Theorems[d.1.3]and[8.1.1]

to be independent of the size of the generating set. We do not pursue this here.

Other previous results. A more classical way to quantify the sense in which a presentation is finite
is through Dehn functions, filling length functions, and so-called isoperimetric functions (which do
not refer to the same kind of isoperimetry mentioned in our above discussion of the structure vs.
expansion dichotomy); see [Bri02] for an overview and [GHRO3] for results on nilpotent groups.
As far as we can tell, however, the literature on these notions focusses on asymptotic properties
of a fixed group and is not suitable for the kind of uniform-in-the-group results we wish to prove.
Besides this, the notion of uniform finite presentation we consider is also rather different from these

notions in terms of Dehn functions etc.

There is a striking resemblance between our theorem and the following theorem of Tao [Taol7b]
(see also [TT17, Appendix A]), which also relies on the structure theory of Breuillard, Green, and
Tao.
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Theorem 4.1.4 {Tao17b], Theorem 1.9). For each non-negative integer d there exist constants m
and C depending only on d such that if G is a group, S is a finite, symmetric generating set for G
containing the identity and satisfying |S™| < m“|S"| for some integers n > 1 and m > my then
there exists a continuous, piecewise-linear, non-decreasing function f : [0,00) — [0, c0) with
f(0) = 0 that has at most C pieces, each of which has slope equal to an integer bounded by C, such

that
|Sknm |

||

log - f(logk)| < C

for every integer k > 1.

Informally, this theorem states that, once we witness polynomial growth on a sufficiently large
scale, the log-log plot of the growth function is well-approximated by a continuous, piecewise-
linear function with bounded, integer valued slopes and a bounded number of “kinks” connecting

the different pieces.

Naively, one might hope that our bounded number of scales on which a new relation occurs are in
correspondence with Tao’s bounded number of scales on which the growth function has a “kink”
in its log-log plot. Unfortunately this is not the case, at least when one allows generating sets of
unbounded size: one can have a new relation without having a kink, and can have a kink without

having a new relation. Indeed, as explained in [Taol7b, Example 1.11], taking

1 Z Z 1 [-N,N] [-N3 N3]
G=|0 1 Z and S=1]0 1 [-N, N]
00 1 0 0 1

for a large integer N yields

157 3logn + 0(1) I1<n<N
N 4logn —logN +0(1) n> N,

log

so that this example’s growth function has a kink at scale log, N. On the other hand the pair (G, S)
does not have a new relation at any at k > 3, and in particular does not have a new relation on the
scale where it has a kink when N is large. Indeed, the relations of (G, S) are generated by the usual

relations for the Heisenberg group
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together with the following three sets of relations relating the extra generators in S to the standard

|
|
[

These relations all have word length at most five in (G, S), so that the example has the desired

generators:

—_
—o O

ca,b e [-N,N],ce [—N3,N3]},

SO~
O—H
—S 0
Il
oo
o=
—S 0
o=t

1% a,b e [-N,N],ce [—N3,N3]},

O—=Q
S
—F o
—

Il
SO~
oo

1
0
0

SO
o=

»—!io
SO

[
—

O—=Q
—H
Il
co~
o—2a
—0

) égi(l)l ca,be[-N,N],ce [—N3,N3]}.

properties. Conversely, taking the direct product G X Z/N with generating set S X {—1,0, 1} yields
an example where there is a new relation at scale log, N but where the growth function does not

have any kinks.

About the proof. It is natural to describe the proof of Theorems [.1.3] and [8.1.1] “backwards”,
as a sequence of reductions, although we have written it “forwards” as a sequence of extensions

and generalizations. In this backwards description, the “first” step (which is the last part of the
paper) is to reduce from groups of polynomial growth to nilpotent groups of bounded step using
the Breuillard-Green-Tao theorem. Next, this statement about nilpotent groups is in turn reduced
to an analogous statement about breadth-first exploration of discrete subgroups in a Carnot group,
a simply connected nilpotent Lie group carrying the additional structure of a stratification and
homogeneous left-invariant metric. Nilpotent groups are related to Carnot groups for example by
Pansu’s theorem [Pan83; BL13|], which states roughly that the large-scale geometry of a finitely
generated nilpotent group is well-modelled by an appropriate Carnot group equipped with a left-
invariant homogeneous metric. Finally, this statement about Carnot groups is reduced to a statement
about vector spaces using the close connection between the discrete subgroups of a simply connected
nilpotent Lie group and the additive bracket-closed subgroups of its associated Lie algebra. This
step of the reduction is the most involved part of the paper, with the connection between additive and
multiplicative lattices being developed at length in Section 4.4l This ends the chain of reductions,
and leaves us with a problem we must actually solve directly: Bounding the number of times we
find an “unexpected element” of a discrete subgroup of R¢ as we explore the subgroup with an
increasing family of convex, symmetric sets. This is done in Section [4.3] as an application of

Minkowski’s second theorem, a classical result in the geometry of numbers.

Let us stress again that we have described the argument here in the opposite order to the way we

carry it out, so that the result about subgroups of R¢ is the first thing we prove.
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Disclaimer: Neither author is an expert in approximate groups, Lie theory, or the geometry of
numbers. As such, it is likely that we have included a larger amount of detail in the proofs than
would be considered necessary by experts, or have re-derived known results from scratch. While
we have attempted to provide appropriate attribution to the intermediate results of the paper as

much as possible, we would be happy to receive comments and corrections from experts.

Remark 4.1.3. Since the present paper first appeared, two relevant papers by Tessera and Tointon
have since appeared. The first paper [TT24] establishes a stronger version of Theorem [8.1.1as a
corollary, with optimal bounds on the number of scales at which new relations appear that do not

depend on the degree. The proof is very different than that given here. The second paper [TT23]

allows us to replace the “small tripling” hypothesis Gr(3r) < K Gr(r) in Theorems4.1.3|and [8.1.1]

with the more natural hypothesis of “small doubling” Gr(2r) < K Gr(r) because, as the title of the

paper says: Small doubling implies small tripling on large scales.

4.2 Background on nilpotent groups and Lie groups
In this section we review the relevant background material and establish some notational conven-
tions. We have included a rather thorough account of the basic theory with the hope that our paper

can be easily understood by probabilists.

Given a group G, the commutator of two elements x, y € G is defined by [x, y] = xyx~!y~!. The
lower central series of G is defined recursively by G; = G and G4 = [G;,G] for eachi > 1,
where we write [A, B] := {[a,b] : a € A, b € B} for subsets A and B of G. The group G is said
to be nilpotent if G;;; = {id} for all sufficiently large i, with the minimal such i denoted by s and
known as the step of G. A group is said to be virtually nilpotent if it has a nilpotent subgroup
of finite index. Given s > 1 and a set S, the free step s nilpotent group N; s is defined to be
the quotient of the free group Fs by the step-s nilpotency relations, which state that all iterated
commutators of length at least s + 1 are equal to the identity. The free step s nilpotent group Ny g
can also be defined up to unique S-preserving isomorphism by the universal property that it is
nilpotent of step at most s, contains S, and every function from § to a nilpotent group of step at

most s can be uniquely extended to a homomorphism from Nj g to that group.

(Nilpotent) Lie groups and the Baker-Campbell-Hausdorff formula

Recall that a (real) Lie group is a group that is also a finite-dimensional real smooth manifold, in
such a way that the group operations of multiplication and inversion are smooth maps G X G — G
and G — G. By Gleason, Montgomery, and Zippin’s solution to Hilbert’s fifth problem [MZ52;

Gle52|], one can equivalently define a Lie group as a group that is also a finite-dimensional
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topological manifold with continuous multiplication and inversion operations; such a group carries
aunique smooth structure compatible with its algebraic structure. More generally, Yamabe [ Yam50]
proved that every locally compact, connected topological group is a projective limit of Lie groups
(possibly of divergent dimension). These facts underlie the ubiquity of Lie groups in the scaling
limit theory of discrete groups, and in particular are used directly in Gromov’s original proof of his
polynomial growth theorem [Gro81c|]. Further background on these topics can be found in [Tao14].
For our purposes, Lie groups become relevant primarily via a theorem of Pansu, which allows us
to approximate the balls in the Cayley graph of a nilpotent group in terms of the balls in a certain

left-invariant homogeneous metric on a Carnot group; this is explained in Section {.2]

Lie algebras. A Lie algebra g is a vector space equipped with a binary operation, the Lie bracket
[-,-] : ¢ X g — g, that is bilinear, antisymmetric ([X,Y] = —[Y, X] for all X,Y € @), and satisfies
the Jacobi identity ([ X, [V, Z]] +[Y, [Z, X]] +[Z,[X.,Y]] =0forall X,Y,Z € g). A subset A of a
Lie algebra is said to be bracket-closed if [X,Y] € A for every X,Y € A. For ease of reading, we
will loosely follow the convention that points in a Lie algebra are denoted using upper-case letters,
while points in a Lie group are denoted using lower-case letters. We will also assume without

further comment that all Lie algebras are finite-dimensional.

To each Lie group G, we can associate a Lie algebra g arising from the tangent space at the identity;
the details of this construction are not important to us and can be found in any textbook on the
subject. In the concrete case that G is a Lie subgroup of a general linear group GL,, for some n > 1,
the affine space I + g is precisely the tangent space at the identity to G in the space of all n X n
matrices, so that g is a Lie subalgebra (i.e. a bracket-closed linear subspace) of the Lie algebra gl,
of all n X n matrices with Lie bracket defined by the commutator [ X, Y] = XY — Y X. (In particular,
gl,, is the Lie algebra associated to the Lie group GL,.) In fact this case is not particularly special:
Ado’s theorem states that every Lie algebra is isomorphic to a Lie subalgebra of gl,, for some n > 1
[Tao14, Chapter 2.3]. (Ado’s theorem does not imply that every Lie group is isomorphic to a Lie

subgroup of a general linear group, although it does imply a “local” version of the same claim.)

The fundamental theorems of Lie (see e.g. [Taol4, Chapter 2.5.1]) state in particular that there is a
one-to-one correspondence between (isomorphism classes of) Lie algebras and simply connected
Lie groups. On the other hand, Lie groups that are connected but not simply connected have

universal covers which are simply connected Lie groups with the same Lie algebra.

The lower central series of the Lie algebra g is defined recursively by g; = g and ;11 = [g;, g] for
eachi > 1, where if A and B are two subsets of g then we write [A, B] = {[a,b] : a € A,b € B}.
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It is a simple consequence of the Jacobi identity that [g;,g;] € g;+; for every i,j > 1 [Wan23,
Lemma 1.4.3]. The Lie algebra g is said to be nilpotent if g;;; = {0} for all sufficiently large i; the
minimal such i is called the step of g and is usually denoted s. Nilpotence of a Lie group is defined
as for any other group (meaning that the lower central series terminates at the identity subgroup);

a connected Lie group is nilpotent if and only if its corresponding Lie algebra is nilpotent.

Lie polynomials. A Lie monomial of degree d in the terms Xy, X, ..., X, € g is an expression
obtained by taking iterated Lie brackets of these terms in some way, so that the sum over i of the
total number of times X; appears is d. In other words, a Lie monomial of degree 1 in the terms
X1,..., X, is an expression of the form L(Xi,...,X,) = X; for some 1 < i < n, while each
Lie monomial of degree d can be written L(X1,...,X,) = [L1(X1,...,Xn), L2(X1, ..., X,)] for
some Lie monomials L and L, whose degrees sum to d. A Lie polynomial P(X;, X>, ..., X,) in
elements X1, X», ..., X, € gisalinear combination of Lie monomials; it is said to be homogeneous
of degree d if every Lie monomial in the linear combination has degree d. Thus, homogeneous Lie

polynomials of degree d obey the scaling transformation P(1X1,...,1X,) = /ldP(Xl ooy Xn).

The exponential map. Given a Lie group G and associated Lie algebra g, there is a canonically
defined exponential map exp : ¢ — G, which for Lie subgroups of GL, coincides with ordinary
matrix exponentiation. (We will omit the general definition of the exponential map; everything
we need to know about it will be captured by the Baker-Campbell-Hausdorff formula.) The
exponential map is smooth, and is a diffeomorphism in a neighbourhood of the identity, but might
not be injective or surjective. The Baker-Campbell-Hausdorff (BCH) formula [Taol4, Chapter
1.2.5] states that if G is a Lie group with Lie algebra g then there exists an open neighbourhood U
of the origin such that
log [expXexpY]|=X+Y + l[X,Y] + i[X, [X,Y]] - i[Y, [X,Y]]+---= iLl-(X,Y)
2 12 12 =

for all X,Y € U, where each L; is a homogeneous Lie polynomial of degree i with rational
coefficients and where we write log for the inverse of the exponential map on exp(U). (The Lie
polynomials L; appearing in the BCH formula are universal and do not depend on the choice of Lie
group G.) When G is a simply connected nilpotent Lie group, all terms with i > s are identically
zero, the exponential function exp : ¢ — G 1is defined globally, and the BCH formula holds for all
X,Y € g. This lets us define the BCH product on the Lie algebra g as

1 1 1
XoY:=logle¥e'| =X +Y + - [X,Y] + —=[X, [X,Y]]

2 12 _E[Y’[X’Y]]+‘..,
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so that (g, ¢) is isomorphic to G as a Lie group. Note that (aX) ¢ (bX) = (a+b)X forevery X € g
and a, b € R, so that 0 is both the additive and BCH identity and that (—X) is both the additive and
BCH inverse of X.

Example 4.2.1. The Heisenberg group H and its Lie algebra ) are given by

1 R R 0 RR
H=]0 1 R and hb=]10 0 RJ,
0 0 1 0 0O
with exponential map and logarithm
0 a c 1 a c+% I a c 0 a c—%
exp|0 O H|=|0 1 b and log|0 1 b|=(0 O b
00O 00 1 0 0 1 00 0

Note that the exponential map here is just the usual matrix exponential, which for X € [ satisfies
eX = I+ X + 1 X?. The Lie bracket on b is given by

Since H is step-2 nilpotent, the BCH multiplication on }) is given by

0 a c 0 x z 0 a c 0 x z 0 a c\ [0 x z
00b000y200b+00y+%00b,00y
0 00 0 00 000 0 0O 0 0 0/ \0 0O
Oa+xc+z+ay;bx
={0 O b+y
0 O 0

We will see in Example that the non-integer rational coefficient 1 /2 appearing in this expression

leads to complications when comparing lattices in H and b.

Remark 4.2.1. It follows from the BCH formula that
1 1
log[e®e"e™ e ] = [X, Y]+ S [X, [X, Y]] + S [Y, [X, Y]] +---

for X and Y in a neighbourhood of the origin in g (all of g when G is nilpotent and simply
connected). As such, the BCH commutator and the Lie bracket agree to first order as X,Y — 0,

but are not exactly equal unless G is nilpotent of step at most 2.
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We will also make use of the Zassenhaus formula [CMN12], a dual form of the BCH formula

which states in particular that if G is s-step nilpotent then

XHY = X oY =1 [XY] g QIVIXYIIIX, XY D) o 33 (LY LXLX3[IXYLXLY I3 [IX YLYLYD) |

_ eXeYeZZ(X,Y)el:_g(X,Y) L eis(x,y) (4.2.1)
forevery X,Y € g, where L; is a homogeneous Lie polynomial of degree i with rational coefficients
foreachi > 2.

Subgroups and lattices. Let G be a simply connected nilpotent Lie group with Lie algebra g.
For each set A C g, we define .Z(A) to be the smallest Lie subalgebra of g containing A. The
exponential map identifies closed connected subgroups of G with Lie subalgebras of g, so that every
closed connected subgroup of G is itself a simply connected nilpotent Lie group. (For general Lie
groups, the image under the exponential map of a Lie subalgebra might not be closed, but for simply
connected nilpotent groups it is always closed since the exponential map is a diffeomorphism.) As
such, for each subset A of G, the intersection of all closed connected subgroups of G containing
A is a closed connected subgroup of G that is equal to exp(.Z (log A)). We write € (A) for this

minimal closed connected subgroup of G containing A.

Theorem 4.2.2 (Mal’cev). If G is a simply connected nilpotent Lie group and H is a closed subgroup
of G then G | H is compact if and only if H is not contained in any proper closed connected subgroup
of G. In particular, € (H)/H is compact.

(The quotients G/H and ¢ (H)/H appearing here are topological spaces, and do not carry group
structures in general.) We call a subgroup I" of a simply connected nilpotent Lie group G a lattice
in G if it is discrete with compact quotient G/I". (Note that discrete subgroups of Hausdorff

topological groups are automatically closed.)

Remark 4.2.2. For a general Lie group, a lattice is defined to be a discrete subgroup for which the
quotient admits a finite left-invariant measure (a.k.a. Haar measure); for simply connected nilpotent
Lie groups this is equivalent to G /T" being compact by Mal’cev’s theorem. This theorem also gives
several further characterisations of a discrete subgroup being a lattice that we omit since we do not

use them.

A further theorem of Mal’cev [Rag72, Theorem 2.12] states that a simply connected nilpotent Lie
group G admits a lattice if and only if its Lie algebra g admits a basis ey, ..., es for which the

structure constants (le ].),-, j.k» defined by [e;, e;] = X, Tl.’fjek, are rational. It is a consequence of
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this theorem [Wan23| Proposition 2.3.7] that if I" is a lattice in a simply connected nilpotent Lie
group then there exist (additive) lattices A~ and A* in g such that A~ C logI" € A*. We will prove
significantly stronger versions of this fact in Section #.4]

Carnot groups and Pansu’s theorem
A Carnot group is a simply connected nilpotent Lie group G of some step s whose Lie algebra g
is equipped with a decomposition

g=VieV,---dV;

for some non-trivial linear subspaces Vi, ...,V such that [V}, V;] = V;; forevery 1 <i < s and
[V1, V] = {0}. It can be shown that for such a decomposition we have moreover that [V;, V;] € V4 ;
foreveryi, j > 1, where Vi, ; := {0} fori+j > s. A decompositiong = V| @---®V; satisfying these
conditions is known as a stratification of g; the subspace V;, which generates g as a Lie algebra, is
known as the horizontal subspace. Not every nilpotent lie algebra admits a stratification. While a
Carnot group consists of both a nilpotent Lie group and a choice of stratification of its Lie algebra,

we will nevertheless write e.g. “let G be a Carnot group” when this does not cause confusion.

Given a Carnot group G and a real number A > 0 the dilation maps 6, : g > gand D, : G —- G

are defined by
(X1 +x0 4 +x5) = Axg + x4 Uy and D (x) = exp(81(log(x))),

where we write x = x1 +x3 + - - - + x; for the decomposition of x € g associated to the stratification
g=Vi®V,®---®V;. These dilation maps satisfy the semigroup properties 6,, = 6,6, = 6,6, and
D, =D,;D, = D,D, for every A, u > 0. It is a consequence of the Baker-Campbell-Hausdorff
formula and the fact that [V;, V;] € Vi, that D, is a Lie group automorphism of G for every 4 > 0.

A metric d : G X G — [0, 00) on a Carnot group is said to be left-invariant and homogeneous if
d(zx,zy) =d(x,y)  and  d(Dax,D,y) = Ad(x,y)

for every x,y,z € G and A > 0. Note that the abelian group R? is a Carnot group with V; = R¢,
and the left-invariant homogeneous metrics on R¢ seen as a Carnot group are equivalent to norms
on R?. In general, left-invariant homogeneous metrics are closely analogous to norms, and also

have the property that they are determined by the unit ball B around the origin:
d(x,y) =inf{1: x 'y € D(B)}.
In particular, the ball {x : d(0,x) < A} is equal to D (B).
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We now introduce the free step-s nilpotent Lie algebra and the free step-s Carnot group, referring
the reader to [BLUO7, Chapter 14.1] for proofs the objects we discuss here are well-defined. Let
S be a finite set. The free step-s nilpotent Lie algebra f, 5 is defined to be the unique-up-to-S-
preserving-isomorphism nilpotent Lie algebra of step s that is generated by S and is such that if g is
any nilpotent Lie algebra of step at most s and ¢ : § — g is any function, then there exists a unique
Lie algebra homomorphism f; s — g extending ¢. The Lie algebra f; s may be equipped with a
canonical stratification defined in terms of Hall bases, making its associated BCH-multiplication
Lie group G5 = (fs.s, ¢) into a Carnot group known as the free step-s Carnot group or free step-s
nilpotent Lie group over S; see [BLUO7, Chapters 14.1 and 14.2] for details. (It is convenient to
define the free step-s nilpotent Lie group over S via BCH multiplication so that it contains the set
S.) Moreover, this stratification f; s = V| @ - - - @ V; has the property that V; is equal to the linear
span of S. Finally, if we define I'; s to be the subgroup of G ¢ generated by S, then I'y s is a lattice
in G, s that is isomorphic (via an S-preserving isomorphism) to the discrete free step-s nilpotent
group N s. Indeed, the fact that I'y g is discrete in G g can be proven using Mal’cev’s theorem on
rational structure constants, since the structure constants in the Hall basis are all equal to 1, while
I" is a lattice since S generates G s as a Lie group. (The fact that I'y g is discrete can also be proven
using the techniques of Section @) Finally, the fact that I'; 5 is isomorphic to N s can be deduced
straightforwardly from the relevant universal properties since every torsion-free finitely generated
nilpotent group can be embedded as a lattice in a nilpotent Lie group, sometimes known as the
Mal’cev completion of the group [Rag72, Theorem 2.18].

In his thesis [Pan83]], Pansu proved that Cayley graphs of finitely generated nilpotent groups converge
under rescaling to Carnot groups equipped with certain left-invariant homogeneous metrics known
as sub-Finsler metrics. (We will not need the definition of sub-Finsler metrics in this paper.) Note
that the Carnot group arising in this limit might not be isomorphic to the Mal’cev completion of
the relevant nilpotent group, and indeed the Mal’cev completion might not admit a stratification.
However, if N is a torsion-free nilpotent group with finite generating set S and the lie algebra g of the
Mal’cev completion G happens to be simply connected and admit a stratificationg =V @ --- @ V;

with log § C Vi, then there exists a left-invariant homogeneous metric dg on G such that
ds(x,y) = (1 xo(1))dg(x,y)  asds(x,y) — oo, (4.2.2)

where dg denotes the word metric on N. It follows in particular that (N, %ds) converges to
(G, dg) in the Gromov-Hausdorff sense as n — oco. See [BL13; Tas22] for details and quantitative

refinements of this theorem.
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4.3 Exploring abelian lattices with convex sets
In this section we prove the following theorem, which will eventually be used to prove our main

theorems by reduction to the abelian case.

Theorem 4.3.1. Let d > 1, let A be a discrete subgroup of R%, and let Ky € K, C --- be
an increasing sequence of non-empty, symmetric, convex sets in R%. For each n > 1 let A, =

spang (A N K,) so that A\; € Ay C --- is an increasing sequence of subgroups of A. Then

d
#n:Apy £A) <d+1 +Z|_log2€!J.
=1
Remark 4.3.1. By Stirling’s formula, the upper bound appearing here is asymptotic to %dz log, d

as d — oo. We have not investigated the optimality of this bound.

We will deduce this theorem as a consequence of Minkowski’s second theorem [Cas97, p. 203],
which states that if A is a lattice in R? with d > 1 and K is a non-empty, symmetric convex subset

of R then
vol(R4/A)

B 2dV01(K) sz:l /li(A’ K) -

d!, 4.3.1)
where
A;(A,K) = inf {/1 > (0 : AK N A contains at least i linearly independent Vectors}

for each 1 < i < d. For our purposes, the most important feature of (4.3.)) is that the expression
29 vol(K) ]_[14=1 A;(A, K) is determined by K and A N K whenever A N K has real span equal to R.
Indeed, if A is a lattice in R? then every fundamental domain for A has volume vol(R¢/A) and if

A; C A; are two lattices in R then A is a finite-index subgroup of A, with index

_ Vvol(RY/Ay)

[A2 . A]] = m

Thus, if A € A, are two lattices and K is a symmetric convex set such that A; N K and A, N K
are equal and both have real linear span equal to R¢ then Minkowski’s second theorem implies
that [Ar : A1] < d!.

Proof of Theorem[d.3.1] Tt suffices to prove that if K; € K> C --- C K, is an increasing sequence
of non-empty, symmetric convex subsets of R? and A is a discrete subgroup of R? such that the
subgroups A; := spany (ANK;) satisfy A4 # A;forevery 1 <i <nthenn < d+1 +Z?=0 [log, £!].

We may also assume without loss of generality that A = A,, is a lattice in R?, replacing A with A,
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and R? with the subspace spanned by A, otherwise. Fix such a pair A and (K1, ..., K,) and for
each 0 < ¢ < d let i, be minimal such that the real span of A;, has dimension at least ¢, setting
ig+1 = n + 1 for notational convenience. Since A, # A, we must have that iy = 1 and i; € {1, 2}.
For each 1 < ¢ < d define V; to be the real span of A;,, so that A; is a lattice in V; for every
1 <¢{<dandiy < j <ips1. (Note that Vp might have dimension strictly larger than £, in which
case i¢41 = i¢.) Suppose that 0 < ¢ < d is such that igy; > i + 2. In this case, the subgroups A;,
and A;,,, -1 are both lattices in V, with A;, N K;, = A;,,,-1 N K;, and with A;, N K;, having real span
equal to V. As such, it follows by Minkowski’s second theorem that

vol(Ve/A,) <0
vol(Ve/Aiyy-1)

for each 1 < ¢ < d such that iz > iy + 2. Now, using that

[Aij, -1t A, ] =

ipr1—2
Aif] = l_[ [Aj+1 :Aj] > Diev1=1=i¢

J=ie

[Ai£+1—1 :
it follows that ip. —ip < 1 + [log, £!] for every 1 < ¢ < d such that iz; > i¢ + 2. Since the same

inequality also holds trivially when iz < ip + 2, it follows that

d d
n=igy —ip= Z(i£+1 —ig) <d+1 +ZUngf!J
£=0 =1
as claimed. O

4.4 Additive and multiplicative subgroups of nilpotent Lie algebras

Our goal in this section is to clarify the relationship between lattices in a simply connected nilpotent
Lie group and its associated Lie algebra. As mentioned above, closed, connected subgroups of a
simply connected nilpotent Lie group G are in bijection with Lie subalgebras of the Lie algebra
g, which are precisely the closed, connected, bracket-closed additive subgroups of g. Without the
assumption of connectivity, the exponential map need not interact this nicely with the subgroup
structure of G: it is possible to have subgroups H of G for which log H is not an additive subgroup
of g and to have bracket-closed additive subgroups of g whose image under the exponential is not

a subgroup of G.
Example 4.4.1. Let the Heisenberg group H and its Lie algebra b be as in Example The set
of all elements of H whose matrix entries are integers is a lattice in H whose logarithm is given by
1 Z2 Z 0 a c :
log|0 1 Z|=4(0 0 b :a,beZ,ceEZ, 2¢ = ab mod 2
0 0 1 0 0O
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This is not an additive subgroup of ) since

010 0 00 010 1 Z Z
0 0 O[+]0 O 1|(=]0 O 1|¢log|lO 1 Z].
00O 00O 00O 0 0 1

Similarly, the set of all elements of f) whose matrix entries are integers is a bracket-closed additive

subgroup of ) whose exponential is not a subgroup of H.

We call a subgroup H of G harmonious if log H is an additive subgroup of g that is bracket-closed in
the sense that [log x, log y] € log H for every x,y € H. (This terminology is not standard.) Thus,
harmonious subgroups of G are those that most closely mimic the behaviour of the connected
subgroups of G under the exponential map. We call a lattice in G that is also a harmonious
subgroup of G a harmonious lattice in G, noting that if I" is a harmonious lattice in G then

A =log!I is a bracket-closed lattice in g.

The remainder of this section is devoted to proving the following theorem, which states intuitively
that subgroups of G and bracket-closed additive subgroups of g are, in some sense, “equivalent
up to bounded index”. This result allows us to deduce various statements about lattices in simply
connected nilpotent Lie groups from analogous statements for vector spaces (i.e., statements in the
geometry of numbers), which are classical. Note that the theorem does not require I" to be discrete.
Recall that if A C g and A € R then we define A - A = {1a : a € A}, so that if A is an additive
subgroup of g then (mA) - A C A - A for every 4 € R and m € Z. We also write #(A) for the

smallest bracket-closed set containing A.

Theorem 4.4.2. Let G be a simply connected nilpotent Lie group of step s with Lie algebra g.
There exist positive integers C and C, depending only on s such that if I is a subgroup of G then

the sets
(1) = exp(C1 - spany (log F)) and H6.(T) :=exp (C1 - A (CL - spany (log F)))
1

are harmonious subgroups of G such that

1
C; -logI' Clog s (I') ClogI' C log #(I") C o -logT.
2

In corollary 4.4.13| we show moreover that if I is discrete then the harmonious subgroups 72 (I")
and 77, (I') have index bounded by a constant depending only on the step and dimension of G.
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Example 4.4.3. We continue to analyze the Heisenberg group as studied in Examples and
Although the subgroup I'" of H consisting of those elements of H with integer matrix entries is not

harmonious, we can write

1 2Z 2 1z 27\ (1272 3z
0 1 2zZ|cr=[0 1 Z|c|0 1 Z
0 0 1 001/ \oo 1

with the two outer two lattices being harmonious subgroups of H. Moreover, these subgroups arise

naturally from the original subgroup I" as

122 Z 1 Z 3z
0 1 2Z|=-exp(spany(2-logI))and 0 1 Z |=exp(spany(logl)).
0O 0 1 0 0 1

Similar remarks apply to the bracket-closed additive lattice in f) consisting of those elements of f

with integer matrix entries.

The methods used to prove Theorem [4.4.2] are based on those of Breuillard and Green [BGI]. In
particular, we will make use of the following lemma of Tessera and Tointon [TT18] that is also
proved using the methods of [BG11].

Lemma 4.4.4. Let G be a simply connected nilpotent Lie group of step s with Lie algebra g. There
exists an integer constant C = C(s) such that if A is a bracket-closed additive subgroup of the Lie

algebra g then exp(C - A) is a harmonious subgroup of G.

Proof. This is essentially [TT18, Lemma 4.3]. It is not stated that C - A is bracket-closed, but this
is obvious since [C - A,C - A] =C?- [A,A] C C - A. O

Remark 4.4.1. The constant C; appearing in Theorem (4.4.2| will be taken to be a multiple of the
constant C appearing in lemma This will be important in the proof of proposition4.5.1

We begin by stating the following lemma of Lazard [Laz54]] as presented in [BG11, Lemmas 5.2
and 5.3]. This lemma was first applied to the structure theory of approximate groups in the work
of Fisher, Katz, and Peng [FKP(09]. Given a simply connected nilpotent Lie group G, we define

x* =exp(alogx) forevery x € G and a € R.

Lemma 4.4.5 (Lazard). Let G be a simply connected nilpotent Lie group of step s with Lie algebra

g. There exists £ > 1 and sequences of rational numbers «y,...,a¢, B1,...,B8¢ Vi,---,Ye, and
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1, ...,0¢ depending only on s such that
eXp(lOgX + IOg y) = _xalleZ .. .xaé’yﬁf

and

01 ¢

eXP([IOgX, logy]) = x71y .. .x’)’t’y

forevery x,y € G.

Corollary 4.4.6 (Expansion of sums). Let G be a simply connected nilpotent Lie group of step s
with Lie algebra g. For each n > 2 there exists £ > 1, a sequence of rational numbers a1, .. ., ay,

and a sequence of indices iy, ...,i¢ € {1,...,n}, all depending only on s and n, such that

(C %) e
XL e X
I n

exp(logx; +logxy +---+logx,) =x iv

for every xq,...,x, € G.

Corollary 4.4.77. Let G be a simply connected nilpotent Lie group of step s with Lie algebra g, let
I" be a subgroup of G and let A = logI'. For each n > 1, there exists a natural number C = C(s, n)
such thatif Xy,...,X,, € C-Athen X;i+---+ X, € A.

Proof. LetC = C(s, n) be the least common multiple of the denominators of the numbers «/, . . ., @y

appearing in corollary .4.6| when written in reduced form. ]

Lemma 4.4.8. Let G be a simply connected nilpotent Lie group of step s with Lie algebra g, let I
be a subgroup of G and let A = logI". There exists a natural number C = C(s) such that

{L(Xl,...,X,,):Xl,...,X,, o ~A} C A,

for every multilinear Lie monomial L.

(A Lie monomial L(X{, ..., X,) is multilinear when each variable appears at most once.)
Proof. Let C = C(s) be the least common multiple of the denominators of the numbers yy, ..., y¢
and 01, . . ., O appearing in Lazard’s lemma when written in reduced form. We will prove the claim

by induction on n, the case n = 1 being vacuous. If n > 1 then

L(X1,...,X0) = [L1(Xe(1ys - - Xn()s L2(Xr(ja1)s - - s Xn(n)) ]
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for some 1 < j < n, some multilinear Lie monomials L, L, and some permutation 7 :
{1,...,n} — {1,...,n}. We may assume without loss of generality that r is the identity permuta-
tion. By the induction hypothesis, if Xi, ..., X,, € C"2-Athen L (X, . .. X)), La(Xjs1, ..., Xy) €
A. As such, if X;,...,X, € C"! . A then we have by multlilinearity that

Li(Xy,....,X;)=C/Li(C"'Xy,...,C7'X)) e ¢/ -ACC-A

and
Ly(Xjsts- s Xn) = C"VLy(C ' X4y, ..., C7'X,) e C"7 - AC C - A,

On the other hand, if X,Y € C - A then e?/X, %Y e I" forevery 1 < j < £, so that
exp([X,Y]) = VXS L v X 0¥ o

and hence that [X,Y] € A. It follows that if X;,...,X, € C" ' - A then L(Xi,...,X,) € A as

claimed. o

Corollary 4.4.9. Let G be a simply connected nilpotent Lie group of step s with Lie algebra g, let
I" be a subgroup of G and let A = logI". There exists a natural number C = C(s) such that

{L(Xl,...,Xn):Xl,...,Xn €A, X; e CU4D A for some 1 siSn} C A,

for every Lie monomial L of degree d that depends on every variable.

Proof. It suffices without loss of generality to consider the case that L is multilinear. Let C be
the constant from lemma Let Xi,...,X, € A, and let L(X,...,X,) be a multlilinear Lie
monomial depending on every variable. Such a Lie monomial necessarily has degree d = n. For

each 1 < i < n we can write
L(Xy,....X,) = L(C" VX, ...,cmVx,_,c=Dx, c-Dx,,,, ... ,cDx,).

If X; € C"0=1) . A = C=D* (=) | A then C~("=D’X; € C("=D) . A, so that the claim follows from
lemma[4.4.8] O

Lemma 4.4.10. Let G be a simply connected nilpotent Lie group of step s with Lie algebra g. There
exists a constant C depending only on s such that if I" is a subgroup of G and we write A = logI’
then C - A is bracket-closed and X +Y € Aforevery X € C-Aand Y € A.
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Proof. We recall the Zassenhaus formula, which states for simply connected nilpotent Lie groups

that
exp(X +7) = eXel el2(X1 La(XY) L pLs(XY)

for every X,Y € g, where, for eachi > 1, L; is a homogeneous Lie polynomial of degree i of the

form
vy

Li(X,Y) = Z aijLij(X,Y),
J=1
where a; ; are rational numbers and L, ; are Lie monomials depending on both variables. Let C be
the least common multiple of the denominators of the rational numbers a; ; and let C; be the least
common multiple of the constants C(s,2), C(s,3), ..., C(2, max; r;) appearing in corollary
By corollary there exists a constant C3 = C3(s) such that if X € C3- A and Y € A then
Lij(X,Y)e Aforevery ] <i<sand1 < j <r;. Let C = CiC2Cs. Since L;; depends on
X, it follows that if X € C - A then L; ;(X,Y) = (C1C2)%L; ;((C1C2) 71X, Y) € (C1C2) - A for
every y € A, where d; ; is the degree of X in L; ;. It follows in particular that if X € C - A then
aijLij(X,Y) € Co-Aforevery 1 <i < sand 1 < j < r; and hence by corollary that
Li(X,Y) € Aforevery X € C-Aand Y € A. Since I' is a subgroup of G, it follows by the
Zassenhaus formula that X +Y € A forevery X € C- A and Y € A as claimed. Moreover, if
X,Y € C-Athen [X,Y] =C[X,C7'Y] € C-Asince [X',Y’] € Aforevery X’ € C-AandY’ € A,

so that C - A is bracket-closed as claimed. O
We are now ready to prove Theorem4.4.2]

Proof of Theoremd.4.2] We begin by proving the claim concerning 7 (I'). Let C_; = C_;(s)
be the constant from lemma let Cop = Cp(s) be the constant from lemma and let
Cy = C_1Cy. Let G be a simply connected nilpotent Lie group of step s, let g be the Lie algebra of
G, let I be a subgroup of G and let A = logT'". lemmaf4.4.10]implies that C; - A is bracket-closed
and that C_; - A+ A C A, and it follows by induction on the number of terms in a linear combination
that span, (C_; - A) = C_; - span;(A) is contained in A. Since the Z-span of a bracket-closed set is
bracket-closed, it follows that span,(C_; - A) is a bracket-closed additive subgroup of g and hence
by lemma [.4.4]that span;(C; - A) = Cp - spany(C_; - A) is a bracket-closed additive subgroup of
g whose exponential .7 (I") is a harmonious subgroup of G satisfying the required set inclusion
Ci-logI' Clog 2 (I") C logT.

Now consider the set 775 (I") defined by

() :==exp (C1 - B (L . spanZ(A))) = exp (C1 - spany & (i A)) .
C1 Cl
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Since span;, %A (CL1 . A) is a bracket-closed additive subgroup of g and Cy divides Cj, lemma4.4.4

implies that 7 (I") is a harmonious subgroup of G. Moreover, log .77 (I") trivially contains
spany A. As such, it remains only to prove that there exists a constant C; = C(s) such that
log 74.(T") C Clz - A. Since C; - spany (A) is bracket-closed and [g;, g;] € gi+; we have that

o PN
Clznm

for every pair of integers n,m > 0 and 1 < i, j < s. Thus, it follows by induction on i that

N Qi+

1 1
[(; : spanz(/\)) N g, (% ' SPanZ(A)) ng;

1 1
B|— - AN|Nng S ——- -(ANng;

for every i > 1 and hence that

1

35-2
Cl

- AL

1
B (C_l . spanZ(A)) C

This implies that the claim holds with C, = C;¢™". o

Comparing additive and multiplicative indices
In this section we prove bounds on the index [ (") : 5Z2(I")]. We will deduce these bounds
from the following proposition, which lets us compare additive and multiplicative indices in the

Lie algebra of a simply connected nilpotent Lie group.

Proposition 4.4.11 (Index sandwich). Let I'j C I, be lattices in a simply connected nilpotent Lie

group G with Lie algebra g, and suppose that A; C A, are additive lattices in g.

1. If Ay ClogI'y Clogl’; C Apthen [I : TT] < [Az: Aq].

2. Iflogl'y € Ay C Ay ClogIthen [I : T ] > [Az : Aq].

In particular, if I'; and I'; are harmonious in G then [I; : T'1] = [logI» : logI'].

The proof of this proposition will require the following classical fact.

Proposition 4.4.12 (Compatibility of Haar measures). Let G be a simply connected nilpotent Lie
group and let g be the Lie algebra of G. If u is a translation-invariant, locally finite measure on g
(i.e., a Lebesgue measure) then the pushforward of u by the exponential map is a locally finite

measure on G that is both left and right invariant (i.e., a bi-invariant Haar measure).
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Proof of proposition[4.4.12] 1t suffices to prove that for every X € g, the maps {x : ¥ — X oY
and ry : Y — Y o X preserve the Lebesgue measure on g. For this, it suffices to prove that the
total derivatives D€y and Dryx have | det(D{x)| = |det(Drx)| = 1 atevery Y € g. To prove this, it
suffices to prove that both D{x and Dry can be expressed as the sum of the identity and a nilpotent
linear transformation, which can be done via an explicit computation with the BCH formula. For

details see e.g. [Wan23, Proposition 2.1.1]. O

Proof of proposition We start by constructing large sets in g that have “small boundary-to-
volume ratio” in both the additive and multiplicative senses. (That is, the sets we construct will
yield a Fglner sequence for both addition and BCH multiplication on g.) If G were assumed to be a
Carnot group we could use the logarithms of balls in a homogeneous left-invariant metric; we will
perform a similar construction for a general Lie group. Let (g;);>0 be the lower central series of g,
and for eachi > O let V; be such that g; = V; & g;41, sothat we can write g =V, @V, & --- & V,.
For notational convenience we also write V; = {0} fori > 5. In contrast to the Carnot case, it is not
necessarily the case that V| generates g as a Lie algebra or that [V;, V;] € Vi, ;, but we do have that
[Vi,Vi] € [6i,68,] € @i+ = @2:14;‘ Vi for every i, j > 1. Fix an isomorphism of vector spaces

g = RY for some d > 1 and let || - || be the associated co-norm on g. For each A > 0 let
Fp:={X eg:maxA"||Xi|lo < 1} = {X € g : max ||X,~||(1x{i < A},
l 1

where we write X = }; X; for the decomposition of X induced by the decompositiong =V, &V, @
--- @ V,. The volume of F satisfies
vol(F)) = A1

for an integer ¢ > 1, which can be expressed as g = Zle i dim(V;) (this is equal to the homogeneous

dimension of G). For each X € g we define
(X)) =inf{a > 0: X € F;} = max || X;[|'/",
1
so that (X)) < ||X||i<fi forevery 1 <i < s and X € g; with equality if X € V;. Note that this is not a
norm on g since it does not satisfy (1X)) = A((X)) for all X € g and A > 0. (Rather, it scales under
a certain graded dilation map as in the Carnot case.) Moreover, unlike the metrics we considered

on Carnot groups, ((-)) will not be left-invariant in general. Nevertheless, it does trivially satisfy

the triangle inequality in the form

(X +Y) = max || X; + ¥ 120" < max([|Xilleo + [¥illoo)

< max (X114 + %11l < (0) + (V). @4.1)
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As with norms, writing (X)) = (X +Y) —Y)) yields the reverse inequality

(X +Y)) = (X)) - (V). (4.4.2)

sothat Fy_(y) € Fa+Y C Fyy(y) foreveryY € gand 4 > ((Y)).

We will need similar inequalities for the BCH product (X ¢ Y)). Since the Lie bracket is bilinear
and g is finite-dimensional, there exists a constant C; such that ||[[X,Y]]lce < Ci||X|leo||Y ||co for

every X,Y € g. This implies that there exists a constant C, such that
1/(i+j 1/(i+j 1/(i+j 1/(i+j i/ (i+7 i/ (i+7
(X Y1) < 11X YL < /DI L5y 105 < Co(x) ) (v )/ @)

for every X; € V; and Y; € V;. Together with (.4.1) this implies that there exists a constant C3 such
that

(IX.Y]) < G5 max{«x»l-e«y»(’ : 1 <6< 1}

for every X, Y € g. It follows by induction on k > 2 that if L(X,Y) is any Lie monomial of degree
k > 2 then, writing L(X,Y) = [L(X,Y), L(X,Y)] for two Lie monomials of degree a, k —a < k,

(L(X.Y)) < C; maX{((Ll(X,Y)))l_e((Lz(X, MY <e<t 1}

k-1 1-6 6.1 o1
< C} max{((X)) (09) 33593 ok }

forevery X,Y € g. (The case that one of the monomials L; or L; has degree one, and so is equal to
X or Y, must be checked separately.) We deduce from this together with (4.4.1)) and the definition

of BCH multiplication that there exists a constant Cy4 such that

<0<

1 i | (4.4.3)

SS

(X oY) < (X)+(¥) +Cy maX{((X))l_e((Y))e :

N

forevery X,Y € g. Since —Y is both the additive and BCH inverse of Y, we can write X = XoYo(-Y)
to obtain that there exists a constant Cs such that the complementary inequality

(X) < (X o) + (V) + Camax{(X o 1) (1)’ : Lepts 1}

SS S SS
2s _
< (X oY) + Cs((V) + Cs max{ (X))~ (1) : S% <0< ! | (4.4.4)

holds for every X,Y € g.

We now use the sets F to prove the claim about indices. Suppose that A is an additive lattice in g

and that I" is a lattice in G. Let K be a fundamental domain for A in g and let K be a fundamental
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domain for I"in G. Since K Ulog K is compact, max{((Y)) : Y € K5 Ulog Kr} is finite. As such,
it follows from (4.4.1)) and (4.4.2)) that there exist positive constants C and & (depending on K and
Kr) such that

(X)) -C<(X+Y) < (X)+C

and
(X)) -CUX)'F-C<(XoY) <(X)+C(X)'F+C
forevery x € gand y € K) Ulog Kr. Since the sets (X+ K : X € A) and (X ologKr : X € logT)
each cover g (with distinct sets having measure-zero intersection), it follows that
Fi_c C U (X +Kp) € Fac
XeF)NA

and

Fy_ca-s—c U (X ologKr) € Fpicat-s4c
XeFnlogI'

for every A > 1 such that  — CA'~% — C > 0. Taking volumes and using that addition and BCH

multiplication are both measure-preserving, we deduce that

(A1-0C) < |FynA|-vol(Kp) = Vol( U (X+Kp) | < @A+0)1

XeFnA

and
(1-CA'™¢ - )7 < |FynlogT| - vol(log Kr) = vol U (X ologKr) | < (1+CA'7% +C)1
XeFnlogI'

for every A > 1 such that A — CA'=¢ — C > 0, so that
A4 A4

1(Kyp) = li d I(log Kr) = lim ——. 4.4.5
vol(Ka) = lim -y an vollog Kr) = lim e T (44.5)
This is easily seen to imply the claim. O

Corollary 4.4.13. Let G be a simply connected nilpotent Lie group of step s and dimension d, and
let the constants C; = C(s) and C, = C»(s) be as in Theorem[d.4.2] If I' is a discrete subgroup of
G then the harmonious subgroups 77 (I") and 72 (I") satisfy the index bounds

[#.(0) : T][[: A#2(D)] = [A(T) : ()] < (G,

Proof. We may assume without loss of generality that I" is a lattice, replacing G by % (I") otherwise.
Since log #,.(I") C C|C, - log #.(T") we have that [log #.(T") : log #2.(T')] < (C1C3)¢, and the
claim follows from proposition 4.4.11] m|
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4.5 Proof of the main theorems

In this section we prove our main theorems, Theorems 4.1.3|and [8.1.1] We begin by proving the

following proposition, which is a direct analogue of Theorem §.3.1|for Carnot groups.

Proposition 4.5.1. Let G be a Carnot group with Lie algebra g, let dg be a left-invariant homo-
geneous metric on G, and for each r > 0 let B, be the ball of radius r around id in (G, dg).
Then

sup {#{(H N By«) : k € Z} : H a discrete subgroup of G} < co.

It will suffice for our applications that all relevant constants depend on the pair (G, dg) in an

arbitrary fashion.

Proof of proposition[d.5.1] Since dg is consistent with the usual topology of G, the (closed) ball

B, is a compact subset of G containing a neighbourhood of the identity for each r > 0. In

particular, there exists a convex, symmetric subset K of g and a constant Cp > 1 such that
K ClogB; € CoK C 6¢,(K), where (6,),>0 is the dilation semigroup on the stratified Lie algebra

g. Thus, the balls B, are sandwiched between the exponentials of the dilates of K:
0,(K) € log B, C ¢, (K) (4.5.1)

for every r > 0. The sets 6,(K) are all convex and symmetric since they are linear images of
the convex symmetric set K; this will allow us to apply Theorem [4.3.1|to an appropriately chosen

additive subgroup of g.

Let A = log H, and for each k € Z let H; = (H N B,«) and Ay = log H;. By Theorem §.4.2] there
exists an integer constant C; such that A := spany(Cj - A) is an additive, bracket-closed lattice in g
whose exponential 7#Z (H) is a harmonious subgroup of G that is contained in H. It follows by a

direct application of Theorem [4.3.1] that there exists a constant C, such that
#{spany (AN 61(K)) : 1 > 0} < Co.

For each k > 0 we have trivially that H; N Box = H N By« and hence that Ax N (K) = AN (K).
In particular,
AN 6u(K) C AN By € AN By =Ag N By

On the other hand, letting m = [log, Cy], we also have by (4.5.1) that

AN ym(K) 2 AN By 2 (C1-A) N By 2 Cp - (AN Byk) = Cy - (Ag N By).
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Thus, if we define A; = span (A N 6, (K)) for each k > 0 then
C1 - spang (Ag—m N Byr-m) C A C spany (Ax N Byk) 4.5.2)
for every k € Z.

Consider an interval [a, b] N Z such that A does not change as k varies over [a, b] N Z. Then we

have by (4.5.2) that

Ci - spang (Ap—m N Byb-m) € spany (A, N Baa)

and hence that
[spany (Ap—m N Byp-m) : spany (A, N Bra)] < Cf.

Since strict sublattices have an index of at least 2, this in turn implies that
#{span; (Ax N Byx) : k € [a,b]} < m +#{span;(Ax N Byx) : k € [a,b —m]} < m+dlog, C;.

Since [a, b] was an arbitrary interval over which A; remained constant, it follows that there exist

constants C3 and Cy4 such that
#{spany (Ar N By) : k € Z} < C3#{A; : k € Z} < Cy.

Now, for each k, (since the constant C; divides the constant appearing in lemma [4.4.4) the set
C- spanZ(,%’(Ci](Ak N Byx)) C log 74 (Hy) is an additive, bracket-closed subgroup of g whose
exponential is a subgroup of G that contains a generating set for Hy, so that

1
Ay € Cy - spany (%’ (C—(Ak N sz))) C log 74, (Hy)
1

for every k. As such, if [a, b] N Z is an interval such that span; (A N B,x) does not change as k
varies over [a, b] N Z then we have that

1
Ay € Ap € Cy - spany (%‘ (C_(A“ N Bza))) C log 4. (Ay)
1

and hence by corollary 4.4.13(that [H), : H,] < Cs for some constant Cs. Arguing as above, this

implies that there exist constants Cg and C7 such that
#{Hy : k € Z} < Ce#t{spang(Ax N Byr) : k € Z} < (7,

completing the proof. m|
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Our next goal is to use proposition 4.5.1] to prove the special case of Theorem 4.1.3]in which the

group is nilpotent of bounded step.

Proposition 4.5.2 (Exploring subgroups of nilpotent groups). For each s,k > 1 there exists a
constant C(s, k) such that the following holds. Let N be a nilpotent group of step s generated by
some set S with |S| < k, let H be a subgroup of N, and for each n > 1 let H,, be the subgroup of H
generated by elements that have word length at most 2" in (G, S). Then

#{n:H, # H,} <C.

Proof of Proposition We first argue that it suffices to consider the case that N is equal to the
free step-s nilpotent group Ny s. Let N, S, and (H,),>0 be as in the statement of the theorem. Let
N; s be the free step-s nilpotent group over S and let G ¢ be the free step-s nilpotent Lie group
over S, so that N 5 can be identified with the subgroup of G, s generated by S. By the universal
property of Nj g, there exists a homomorphism 7 : Ny g — N satisfying 7(x) = x for every x € S,
which is necessarily unique and surjective since S generates N. Thus, 7 maps the word metric
r-ball in (N, S) to the word metric r-ball in (N, S) for every r > 0. For each n > 0, let H,, be the
subgroup of N; s generated by the elements of 7~ (H) that have word length at most 2" in (N s, S).
Letting K denote the kernel of 7, we observe that the subgroup KH, = {kh : k € K, h € H,} of
N, s is equal to the preimage 7~'(H,): On the one hand, since K is normal in KH,, n(KH,) is a
subgroup of N that contains the set of words in H that have word length at most 2", and therefore
contains H,,. On the other hand, if x = kA is an element of then we can write h = hi1hy --- hy as a
product of elements of 77! (H) of word length at most 2" in (Ny_g, S), so that w(/;) is an element
of H of word length at most 2" in (N, S) and 7 (x) belongs to 771 (H,) as required. Since 7 is

surjective, we have the chain of implications
(I:In+l = I:In) = (KI:InH = KI:II’I) = (Hn+l = Hn)
Thus, it suffices to prove that the theorem holds with N and H replaced by Ny s and n~! (H).

From now on we assume that N = N, g and let G = G 5. Since N, G, and the embedding N — G
are determined up to isomorphism by s and |S|, we are now free to use constants that depend on
this data in an arbitrary way (but must still be independent of the choice of subgroup H C N). By
Pansu’s theorem as formulated in (4.2.2), there exists a left-invariant Carnot metric dg on G such

that
dg(id, x)

ds(id. ) -1 asx — ocoin N.
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(For the argument to work we need only that the embedding of (N, ds) into (G, dg) is a quasi-

isometry.) In particular, there exist positive constants ¢ and C such that
logN N B, C 10g(§") C log N N B¢y,
for every n > 0, where we write S = S U {id} U S~'. This implies that if H is a subgroup of N then
(HN Byr) € Hy € (H N Beox)

for every k > 0, and the claim follows easily from this together with proposition 4.5.1 O

We next deduce Theorem {.1.3|from Proposition4.5.2and the Breuillard-Green-Tao theorem. The
proof will use the following elementary lemmas, the first of which is proven in [BT16, Lemma 4.2].
Recall that we write S = S U {id} U S~

Lemma 4.5.3. Let G be a group, and let H be a subgroup of G with index at most . If S is a finite
generating set for G, then (S)2*~! N H is a generating set for H.

Lemma 4.5.4. Let G be a group, and let Hy € Hy C --- C H, and H] € H) C --- C H, be two
chains of subgroups such that H is a subgroup of H; for each 1 < i < n. Then

#HH;: 1 <i<n}<(l+]|log,(max[H;: H])|)-#{H]:1<i<n}.

Proof of lemmad.5.4) By taking a subsequence if necessary, we may assume that H,,; # H; for
every 1 <i <n. Let{ =#{H]:1<i < n}andforeach 0 < k < ¢let i, be the kth time H]
changes, so thatip = 1 and iy = min{i > iy : H] # Hlfk} foreach1 < k <{. Wealsosetiy=n+1
for notational convenience. Since H;H = Hlfk_
that

| 18 a subgroup of H;,_, foreach 1 < k < ¢, we have

[Hik—l “H;, ] < [Hik—l :H;k—l] < miax[H,- : Hl/]

k-1

for every 1 < k < {. On the other hand, we also have that [H;, | : H;, || = ]—[""—2 [Hiy : Hi] >

i=ig-1
2ik=1=ik-1 for every 1 < k < ¢, and hence that

4
n= ) (k= ix-1) < £ (1+ logy(max[H, : H[])])
k=1

as claimed. O

Corollary 4.5.5. Let G be a group, let G’ be a finite-index subgroup of G, andlet Hy C H, C - - -

N

H, be an increasing sequence of subgroups of G. Then
#HH :1<i<n}<(1+log,[G:G']])-#{H,NG":1<i<n}.
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Proof. Apply lemma with H! = H; N G’ and use that [H; : H; N G'] < [G : G]. O
We now have everything we need to prove Theorem 4.1.3]

Proof of Theoremd.1.3] Let K > 1 and let ro = ro(K) and C; = C;(K) be as in Theorem [4.1.1]
Suppose thatr > rgis such that Gr(3r) < K Gr(r), and let Q<G and N<G /Q be as in Theorem[4.1.1]
Since N has index at most C; in G/Q, lemmaimplies that the set ' := 7((S)2")) N N is a
generating set for V, and the word metric associated to the pair (N, S”) is bi-Lipschitz equivalent

to the restriction of the word metric on (G/Q, n(S)) to N, with constants depending only on K.

Let H = (QH)/Q, so that H’ is a subgroup of G/Q and H := H’' N N is a subgroup of N. For each
n > 0let W, and W, be the set of the elements of H’ and H, respectively, that have word length
at most 2" with respect to (G/Q, 7(S)), and define H,, = (W) and H,, = (W,) for every n > 0.
Since [H;, : H, " N] < [G/Q : N] < Cy and W, is a finite symmetric generating set for H,, the
set (W)2€1=1 N N is a generating set for H/, N N, so that if we define m = [log,(2C; — 1)] then

H,NNCH,, CH,, NN (4.5.3)

n+m

for every n > 0.

Using the above mentioned bi-Lipschitz equivalence between the two different word metrics on N
and the fact that the step of NV and the size of the generating set S” are bounded by constants depending
only on K and k, it follows from Proposition that there exists a constant C; = C»(K, k) such
that #{H,, : n > 0} < C5. It follows from this and (#.5.3)) that there exists a constant C3 = C3(K, k)
such that #{N N H, : n > 0} < C3, and hence by corollary that there exists a constant
Cy = C4(K, k) such that #{H : n > 0} < Cy.

Now, as in the proof of Proposition we have that QH, = n~!(H) for every n > 0. Observe
that if QH,+1 = QH,, but H,,; # H, then there exist ¢, gn+1 € Q, h, € H,, and h,,,; € H,41 \ H,
such that g, h,, = gn+1h,+1, and hence that h,1+1h,_l1 = q;ilqn € 0. Since Q has diameter at most
Cr, this implies that hn+1h;1 has word length at most C;r, contradicting the assumption that
hue1 € H, if 2" > Cyr. It follows that there exists a constant Cs = Cs(K) such that

#{n>Cs+logyr: Hyp # Hy} <#{n>Cs+logyr: QHyy # QH,} < #{H, : n > 0} < Cy,

which easily implies the claim. O
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It remains only to deduce Theorem [8.1.1]from Theorem 4.1.3] We will need the following lemma
about the injectivity radius of the quotient Fs/{(R,)) — G. Foreachn > 0let G, = Fs/{{R,)).

Lemma 4.5.6. Let G be a group with a finite generating set S. The quotient map G,, — G induces
a map between Cayley graphs that restricts to an isomorphism between the balls of radius 2"~ — 1
around the identity.

Proof of Lemma It suffices to prove that the quotient map 7 : G,, — G is injective on (5)2'1_l .
(This implies that 7 (xs) = 7(y) if and only if xs = y for every s € S and x, y in the ball of radius
2"=! — 1 and hence that the balls of radius 2"~! — 1 are isomorphic.) Suppose for contradiction that
this is false. Then there exist u,v € (E)Zn_1 C Fg such that u='v € R\ ((R,)). Since u and v both
belong to (E)zn_l, the product u~'v belongs to (S)2", and since it also belongs to R it must belong
to R, by definition of R,. This contradicts the assumption that u~'v ¢ ((R,)). O

Proof of Theorem[8.1.1] Let ro = ro(K) and C = C(K, k) be the constants from Theorem 4.1.3]
Let no = [4 +log,r] and let G' = Fg/({Rp,)). The projection G’ — G induces a surjective
graph homomorphism between the Cayley graphs Cay(G’, S) and Cay(G, S) that restricts to an
isomorphism between the balls of radius 2"0~! — 1 > 4r. Let H be the subgroup of G’ generated by
Unzne (Ra/{{Ry,))) and, for each n > no, let H, be the subgroup of H generated by R, /{({Ro)). If
r > ro, we may apply Theorem[d.1.3|to G’ and H to obtain that #{H, : n > no} < C, and it follows
that
#{((Ry)) :n=no}y =#{((Hy)) :n>no} <#{H,:n>np} <C

as claimed. O
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Chapter 5 157

SUPERCRITICAL PERCOLATION ON FINITE TRANSITIVE GRAPHS I:
UNIQUENESS OF THE GIANT COMPONENT

Joint with Tom Hutchcroft

Abstract

Let (Gp)us1 = ((V, E))u>1 be a sequence of finite, connected, vertex-transitive graphs with
volume tending to infinity. We say that a sequence of parameters (p,),>1 in [0, 1] is supercritical
with respect to Bernoulli bond percolation Pg if there exists & > 0 and N < oo such that

P(Gl"_ )p (the largest cluster contains at least £|V,,| vertices) > &

for every n > N with p, < 1. We prove that if (G,),>; is sparse, meaning that the degrees
are sublinear in the number of vertices, then the supercritical giant cluster is unique with high
probability in the sense that if (p,),>1 is supercritical then

lim Pg: (the second largest cluster contains at least c|V,,| vertices) = 0

n—oo

for every ¢ > 0. This result is new even under the stronger hypothesis that (G,),>; has uniformly
bounded vertex degrees, in which case it verifies a conjecture of Benjamini (2001). Previous work
of many authors had established the same theorem for complete graphs, tori, hypercubes, and
bounded degree expander graphs, each using methods that are highly specific to the examples they
treated. We also give a complete solution to the problem of supercritical uniqueness for dense
vertex-transitive graphs, establishing a simple necessary and sufficient isoperimetric condition for

uniqueness to hold.

5.1 Introduction

Let G = (V, E) be a countable graph that is connected and vertex-transitive, meaning that for all
vertices u,v € V there is a graph automorphism ¢ € AutG with ¢(u) = v. Given p € [0, 1],
Bernoulli bond percolation Pg (abbreviated P, when the choice of G is clear from context) is the
distribution of a random spanning subgraph w formed by independently including each edge with
probability p. We identify w with an element of {0, 1} where w(e) = 1 means that the edge e

is present in w. The edges in w are called open and the rest are called closed. We are interested



primarily in the geometry of the connected components of w, which we refer to as clusters. Much
of the interest in the model stems from the existence of a phase transition: For infinite graphs,
there is typicallyﬂ a critical probability 0 < p. < 1 such that every cluster is finite almost surely
when p < p., while at least one infinite cluster exists almost surely when p > p.. For large finite
graphs, one typically observes a similar phase transition in which a giant component, containing a
positive proportion of all vertices, emerges as p is varied through a small interval. The regime in
which an infinite/giant cluster exists is known as the supercritical phase. It is now known that the
supercritical phase is always non-degenerate for bounded degree transitive graphs that are strictly
more than one-dimensional in an appropriate coarse-geometric sense: this was proven for infinite
graphs by Duminil-Copin, Goswami, Raoufi, Severo, and Yadin [Dum+20b||] and for finite graphs
by the second author and Tointon [HT21c].

Once one knows that the supercritical phase is non-degenerate, so that infinite/giant clusters exist
for sufficiently large values of p, a central problem is to understand the number of these clus-
ters. For infinite transitive graphs, this is the subject of a famous conjecture of Benjamini and
Schramm [BS96c] stating that the infinite cluster is unique for every p > p. if and only if the graph
is amenable. The ‘if’ direction of this conjecture follows from the classical work of Aizenman,
Kesten, and Newman [AKNS87a] and Burton and Keane [BK89], while the ‘only if” direction re-
mains open in general; see e.g. [MR3352259; Hut20f; |[Hut19aj; |[LP16c; [PSO0] for an overview of

what is known.

In contrast, for finite transitive graphs, Benjamini [BenO1a, Conjecture 1.2] conjectured in 2001 that
the giant cluster should always be unique in the supercritical regime, irrespective of the geometry
of the graph. Several works, some of which are very classical, have established versions of this
conjecture in special cases including for complete graphs [ER61; Bol84], hypercubes [AKSS82a;
BK1.92], Euclidean tori of fixed dimension [HRO6], and bounded degree expanders [ABS04b].
Each of these works uses methods that are very specific to the example it treats, with the analysis
of the tori (Z¢/nZ%),s in dimension d > 3 relying in particular on the important and technically
challenging work of Grimmett and Marstrand [GM90b]|. A related conjecture giving mild geometric
conditions under which it should be impossible to have multiple giant clusters both above and at
criticality was subsequently stated in the influential work of Alon, Benjamini, and Stacey [ABS04b,

Conjecture 1.1].

A central difficulty in the study of this conjecture, and in the study of percolation on finite graphs

'We keep the meaning of ‘typically’ intentionally vague. One very general conjecture [BS96¢c, Question 2] is that
pe < 1 for all (not necessarily transitive) infinite graphs with isoperimetric dimensional strictly greater than 1.
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more generally, is that many of the most important qualitative tools used to study the infinite case,
such as the ergodic theorem, break down completely in the finite case. For example, adapting
the Burton—Keane uniqueness proof to the case of finite graphs merely shows that each vertex is
unlikely to have three distinct large clusters in a small vicinity around it — a statement that need not
in general be in tension with the existence of multiple giant components in a finite graph. Indeed,
while the Burton—Keane proof applies to arbitrary insertion-tolerant automorphism-invariant per-
colation processes, it is possible to construct insertion-tolerant automorphism-invariant percolation
processes on the torus (Z/nZ)? that have multiple giant components with high probability. In fact,
for the highly asymmetric torus (Z/nZ) x (Z/2"Z) one even has multiple giant clusters with good
probability for Bernoulli percolation at appropriate values of p, although this arises as a feature
of a discontinuous phase transition rather than of the supercritical phase per se. See Section [5.5]
for further discussion of both examples. In light of these difficulties, any treatment of the unique-
ness problem for finite transitive graphs must involve new techniques and use finer properties of

supercritical percolation than in the infinite case.

In this paper we resolve Benjamini’s conjecture and hence also the supercritical case of the Alon—
Benjamini—Stacey conjecture, giving a complete solution to the problem of supercritical uniqueness
on large, finite, vertex-transitive graphs. In the forthcoming work in this series, we will prove
moreover that the density of the giant component is concentrated, local, and equicontinuous in
the supercritical regime and prove analogous theorems for the Fortuin-Kasteleyn random cluster

model, Ising model, and Potts model.

Definition 5.1.1. We will assume all graphs to be locally finite and to contain at least one vertex.
Let F be the set of all isomorphism classes of finite, connected, simple (i.e., not containing loops
or multiple edges), vertex-transitive graphs. (We will usually suppress the distinction between
graphs and their isomorphism classes as much as possible when this does not cause any confusion.)
Given an infinite set H C ¥, a function ¢ : H — R, and a € R we write limgeqs ¢(G) = « or
“¢(G) — aas G — oo in H” to mean that for each £ > 0 there exists N such that |¢(G) —a| < ¢ for
every G € H with at least NV vertices, or equivalently that ¢(G,) — « for some (and hence every)
enumeration ‘H = {G, Gy, ...} of H. Similar conventions apply to the definition of lim sup;.4,,

lim inf;cq, and limits that may be equal to +co or —co.

Let G = (V, E) be a countable graph and consider a percolation configuration w € {0, 1}£. The
connected components of w are called clusters. We write K,, to denote the cluster containing the
vertex u and write u <> v for the event that K, = K,,. Given a subset W of V, the volume of W is
the number of vertices in W, denoted |W|, while if G is finite, the density of W is defined to be the
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ratio ||W|| := |W|/|V|. We write K|, K>, ... for the clusters of w in decreasing order of volume.

(Note the slight abuse of notation: here K; does not mean the cluster of a vertex labelled ‘1°.)

Given an infinite set H{ C ¥, we say that an assignment of parameters p. : H — [0,1] is a
percolation threshold if

G

(-e)p. (IK1|| = ¢) =0 for every &, ¢ > 0, and

1. limgey P

2. For every € > 0 there exists @ > 0 such that

lim PG, (K1 > @) = 1,

G _ pG
where we set P/ =P} for p > 1.

Note that critical thresholds are not unique (when they exist), but any two percolation thresholds
Pe>Pe : H — [0, 1] must satisfy p.(G) ~ p.(G) as G — oo in H. When a percolation threshold
pe - H — [0, 1] exists, we say that p : H — [0, 1] is supercritical if H' :=={G € H : p(G) < 1}
is finite or if H” is infinite and satisfies

timinf 29 o 1.
GeH' p(G)

We generalise this definition to include the case that p. does not exist by saying that p is super-
critical if H' := {G € H : p(G) < 1} is finite or if H’ is infinite and there exists € > 0 such
that

1%1;%@8_8)[7 (1K1l = &) > e.

Note that these two definitions of supercriticality coincide when H admits a threshold function,
and in particular that the definition of supercriticality does not depend on the choice of threshold
function. (Without the (1 — &) factor in Pg o)’ these definitions would not always coincide, for
example for the highly asymmetric torus discussed in Example 5.1, which has giant clusters with
good probability at a percolation threshold bounded away from 1.) The reason for introducing
the set H’ is to ensure that every family has a supercritical sequence of parameters, namely the
constant assignment p(G) := 1 for all G. It will also be helpful to have the finitary version of this
definition: Given a single finite, connected, simple, vertex-transitive graph G = (V, E) and given
any € > 0, we say that a parameter p € [0, 1] is e-supercritical for G if P(Gl_a)p(”Kl | >¢)=>¢
and |V| > 2&73. (There is some flexibility in how to choose this latter, technical condition that |V/|

is not too small.)
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We say that H has the supercritical uniqueness property if
lim PY (|K2|| > &) =0
lim B (| > ©)

for every supercritical p : H — [0, 1] and every constant € > 0.

We begin by stating our main result in the simplest-to-state and most interesting case when we
have an infinite set { C F that is sparse, meaning that the average vertex degree d(G) :=
2|E(G)|/|V(G)| of G € H (which is the exact degree of every vertex because G is regular)
satisfies d(G) = o(|V(G)|) as G — oo in H. Note that in particular, if A has uniformly bounded
vertex degrees (i.e. supgeq d(G) < o0) then H is sparse.

Theorem 5.1.2. Let H C F be an infinite set. If H is sparse, then H has the supercritical

uniqueness property.

Remark 5.1.1. The restriction to simple graphs is not very important and could be replaced by e.g.

the assumption that there are a bounded number of parallel edges between any two vertices.

Remark 5.1.2. The Alon—Benjamini—Stacey conjecture [ABS04b, Conjecture 1.1] would follow
immediately from Theorem [5.1.2] together with the plausible claim that the percolation phase
transition is always continuous for bounded degree graph families satisfying the diam(G) =
o(|V(G)|/log|V(G)|) condition they consider. More formally, such a claim would state that if
H C F is an infinite set with uniformly bounded vertex degrees that satisfies this condition, and
p : H — [0,1] is any assignment of parameters such that liminfgcqy PS(G)(||K1|| >c) >0
for some ¢ > 0, then p is supercritical in our sense. Unfortunately such a claim seems to be
completely beyond the scope of present techniques and is a major open problem even for, e.g. the
three-dimensional torus (Z/nZ)3. Indeed, it appears to be an open problem to prove that there are

not multiple giant components at criticality in this example.

All the proofs in our paper are effective in the sense that they can in principle be used to produce
explicit bounds on, say, the expected density of the second largest cluster. While we have not kept
track of what these bounds are in all cases, we make note of the following simple explicit estimate
implying Theorem[5.1.2]in the case that the graphs in question have bounded or subalgebraic vertex

degrees.

Theorem 5.1.3. There exists a universal constant C such that if G = (V, E) is a finite, simple, con-

nected, vertex-transitive graph with vertex degrees bounded by d, and p € [0, 1] is e-supercritical
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for G for some € > 0, then

1
PY =
p log |V| A

1Kol = aeCe ™ | 1084 ) <

for every 1 > 1.

Note that this bound is only useful under the subalgebraic degree condition logd < log|V|. The
constant given by our proof is fairly large, of order around 10°.

This bound has not been optimized and is known to be very far from optimal in classical examples.
Indeed, the second largest cluster in supercritical percolation is known to be of order ®(log |V|)
with high probability on both the complete graph [ER61}; Bol84] and the hypercube [BK1.92],
while for a Euclidean torus of fixed dimension d, it is of order ©((log v/ (d‘l)) [HRO6]. Similar

results are established for a large class of dense graphs in [Bol+10al].

Remark 5.1.3. Let us now explain the relationship between our theorem and the Benjamini—
Schramm p. < p, conjecture [BS96c]. Suppose (G,),>1 is a bounded degree expander sequence
converging locally to some infinite nonamenable transitive graph G. One may deduce either from
our results or those of [ABS04b| (see also [Sar21b]) that there is always a unique giant component
with high probability for supercritical percolation on G,, a result that seems to be in tension with
the conjectured existence of a non-uniqueness phase for percolation on the limit graph G. Naively,
one might think that our definition of supercriticality for finite graphs should therefore be thought

of more properly as an analogue of the uniqueness phase (p > p,) for infinite graphs.

This is misleading. Indeed, it was proven in [BNP11a] that if (G,),> is a sequence of transitive,
bounded degree expanders converging to an infinite, transitive, nonamenable graph G, then a
sequence (p,)n>1 is supercritical if and only if lim inf p,, > p.(G). The uniqueness/non-uniqueness
transition on the limit graph G does manifest itself in the approximating finite graphs G, but as a
transition in the metric distortion of the giant component rather than its uniqueness: the length of
the path connecting two neighbouring vertices of G, given that both vertices belong to the giant is
tight as n — co when p > p,(G) and is not tight when p.(G) < p < p,(G). In the second case,
the open path connecting two such vertices in G, has good probability to be very long, thus the two
vertices become disconnected with positive probability in the limit. See [ABO7] for related results

and open problems for hypercube percolation.

The dense case. We now discuss how our results extend to dense graphs, where vertices have

degree proportional to the number of vertices. In contrast to Theorem[5.1.2] it is not true in general
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that dense graph families have the supercritical uniqueness property. Suppose for example that G,
is the Cartesian product of the complete graphs K, and K,, and that p,, = 2/n for every n > 1.
Then we have by the classical theory of Erd6s—Rényi random graphs that each copy of K, contains
a giant component with high probability, while the number of ‘horizontal’ edges connecting the
two copies of K, converges in distribution to a Poisson(2) random variable and is therefore equal
to zero with probability bounded away from zero as n — oo. Thus, the number of giant clusters in

this example is unconcentrated and can be equal to either one or two, each with good probability.

Our next main result shows that examples of roughly this form are the only transitive counterexam-

ples to the supercritical uniqueness property.

We will in fact characterise the failure of the supercritical uniqueness property for dense vertex-
transitive graphs in two equivalent ways. We say that an infinite set H C F is dense if
liminfgeq |E(G)|/|V(G)|? > 0; this is equivalent to the vertex degree d(G) growing linearly
in the number of vertices in the sense that liminf,_. d(G)/|V(G)| > 0.

Definition 5.1.4. Let H C F be a set. Givenm € {2,3, ...}, we say that H is m-molecular if it is
infinite and dense and there exists a constant C < oo such that for each G € H there exists a set of

edges F C E(G) satistying the following conditions:

1. G\ F has m connected components;
2. F is invariant under the action of AutG;
3. |F| < CIV(G)|.
These conditions imply that the m connected components of G \ F are dense, vertex-transitive,

and isomorphic to each other. For example, the family of Cartesian products {K,0K, : n > 1}

discussed above is 2-molecular. We say H is molecular if it is m-molecular for some m > 2.

Definition 5.1.5. Let G = (V, E) be a finite graph. For each set A C V, we write dg A for the set
of edges that have one endpoint in A and the other in V \ A. For each 6 € (0, 1/2], the quantity
SEPARATOR(G, ) is defined to be

SEPARATOR(G, 6) :=

min {l@EAl : HZdeg(v) < Zdeg(v) <(1-96) Zdeg(v)} i

veV VEA veV
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In other words, SEPARATOR(G, ) is the minimal number of edges needed to cut G into two pieces
of roughly equal size. We say that a set H of isomorphism classes of finite, simple graphs has

linear 0-separators if H is infinite and lim sup; .4 SEPARATOR(G, 0)/|V(G)| < co.

The following theorem provides a complete solution to the problem of supercritical uniqueness for
Bernoulli bond percolation on finite vertex-transitive graphs and implies Theorem[5.1.2]as a special

case.

Theorem 5.1.6. For every infinite set H C F, the following are equivalent:

(1) H does not have the supercritical uniqueness property;
(ii) H contains a subset that is molecular;
(iii) H contains a subset with linear 1/3-separators;

(iv) ‘H contains a dense subset with linear 0-separators for some 6 € (0, 1/2].

The dense case of this result sharpens the transitive case of a theorem of Bollobas, Borgs, Chayes,
and Riordan [Bol+10a], who proved supercritical uniqueness for any (not necessarily transitive)
dense graph sequence converging to an irreducible graphon. In our language, their result states
that a dense graph family has the supercritical uniqueness property whenever it does not have any

subquadratic separators, i.e., whenever
lim inf SeparRATOR(G, 0)/|V(G)|> > 0
GeH

for every 6 € (0, 1/2] (see [Bol+10a, Lemma 7]). In fact, since they also prove that the giant cluster
density is zero at the percolation threshold, their results imply uniqueness of the giant cluster for
all (not necessarily supercritical) assignments of parameters. The same authors also established a
formula for the limiting critical probability of dense graph sequences that we will use to prove the
implication (iv) = (i) of Theorem|8.1.1] Further comparison of our results with those of [Bol+10a]
is given in remark [5.4.2]

Remark 5.1.4. In [Eas22] the first author has built on the results of the present paper to characterise
which infinite subsets of ¥ admit a percolation threshold. The obstacle to having a percolation
threshold turns out to be the presence of molecular subsets for infinitely many values of m €
{2,3,...}. In particular, every infinite subset of ¥ that is sparse admits a percolation threshold.

So a posteriori, for Theorem [5.1.2] it suffices to work with the original (more natural) definition
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of supercritical assignments of parameters, which refers to the percolation threshold, rather than
the more general definition. Note the surprising logical order here: we first proved uniqueness of
the supercritical giant cluster (in the present paper), then this was used to prove that there exists a

percolation threshold for the emergence of a giant cluster (in [Eas22]).

About the proof and organization

We now briefly overview the structure of the paper and outline the proofs of the main steps.

Section 2: Lower bounds on point-to-point connection probabilities. In this section we prove
that for e-supercritical percolation on any finite, simple, connected, vertex-transitive graph, we
always have a uniform lower bound P, (x <> y) > ¢(&) > 0 on the probability that any two given
vertices are connected. This was previously known only in the bounded degree case, with constants
depending on the degree. Our argument starts by partitioning the vertex set into classes within
which we have such a lower bound then recursively merges these classes until a single class contains
the entire graph. The merging step makes use of a new high-degree version of insertion-tolerance,

which allows us to open a single edge in a sufficiently large random set of edges.

Section 3: Uniqueness under the sharp density property. In this section we prove that the
supercritical uniqueness property holds for any infinite set H C ¥ satisfying the sharp density
property, meaning that P, (|| K1|| > @) has a sharp threshold for every a € (0, 1] in an appropriately
uniform sense. This section is at the heart of the paper and contains the most significant new

arguments.

The proof has two parts. First, given any particular supercritical parameter p, we use the sharp
density property to (non-constructively) deduce the existence of a smaller parameter g < p such
that under P, there is a giant cluster whose density is concentrated, i.e., lies in a small interval with
high probability. The point-to-point connection probability lower bound easily implies that this
giant cluster is the unique giant cluster under P, with high probability.

The remainder of the proof consists in showing that non-uniqueness of the giant cluster under
P, would imply non-concentration of the density of the giant cluster under P,, establishing a
contradiction. To this end we introduce a new object called a sandcastle, which is a large subgraph
that is not resilient to ¢/p-bond percolation. We observe that under the hypothesis that there are
at least two giant clusters under P, with good probability, at least one of these clusters must be a
sandcastle with good probability. As we pass from P, to P, in the standard monotone coupling

of these measures, this sandcastle-cluster disintegrates into small clusters with good probability
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by definition. On this event, the giant cluster under P, is constrained to the complement of this
sandcastle-cluster from PP,,, where edges are distributed (conditionally) independently. We argue
that if this is the case then there must be a subset of V with density significantly less than 1 that has
good probability under P, to contain a cluster of approximately the same size as the typical global
size of the largest cluster in V. Finally, we use the existence of this subset together with Harris’
inequality and the point-to-point lower bound to deduce that ||K;|| is abnormally large with good

probability under P, contradicting the previously established concentration property.

In the final subsection of this section, we verify that subalgebraic degree graphs have the sharp
density property, completing the proof of the main theorems in this case and establishing the

quantitative estimate Theorem [5.1.3]

Section 4: Non-molecular graphs have the sharp density property. In this section we prove that
the only way for an infinite subset of F to fail to have the sharp density property is for it to contain

a molecular subset, completing the proof of the main theorem.

Our argument uses a theorem of Bourgain [Fr199a] formalising the heuristic that increasing events
without sharp thresholds are heavily influenced by the state of a bounded number of edges. In our
case the event is the existence of a giant cluster of a given density. We apply a delicate sprinkling
argument to iteratively reduce the size of this bounded-size set of edges until it contains a single
edge. A novel trick in this induction is that during each iteration we use the second author’s universal
tightness theorem [Hut21b]] and the high-degree analogue of insertion-tolerance from Section 2
to stick large (but not necessarily giant) clusters to both endpoints of an edge in the current set,
allowing the small number of sprinkled edges to have a disproportionately large effect. This is
the most technical part of the paper. Once the set of edges reaches a singleton, we apply Russo’s
formula to derive a contrasting lower bound on the sharpness of the threshold for our event. For
this lower bound to not contradict our original upper bound, the graph in question must be dense,
completing the proof of Theorem [5.1.2} the proof of the implication (i) = (ii) of Theorem 8.1.1]in
the dense case relies on a second, rather subtle application of the sprinkling technology we develop
to prove that the graph must in fact be molecular. Finally we show in Section[5.4|that the remaining
non-trivial implication (iv) = (i) of Theorem 8.1.1|follows easily from the results of [Bol+10a].

We end the paper with some further discussion and closing remarks in Section 5.5}
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5.2 Lower bounds on point-to-point connection probabilities

The goal of this section is to prove that point-to-point connection probabilities are uniformly
bounded away from zero in e-supercritical percolation on finite vertex-transitive graphs, where
all relevant constants depend only on the parameter £ > 0. Given a finite graph G and constants
0<a,d <1, we define

pe(@,6) = pS(a,6) =inf{p € [0,1] : P, (|Ki|| = @) > 6}, (5.2.1)

so that p is e-supercritical if and only if (1 — &)p > p.(e,&) and |V(G)| > 2e~3. By continuity
and strict monotonicity, p.(e, ¢) is equivalently the unique parameter satisfying P,_(q.5)([1K1ll >
a) =90.

Theorem 5.2.1. Let G = (V,E) be a finite, connected, simple, vertex-transitive graph and let
e>0. If|[V| =23 and p > p.(e, &) then

P,(u < v) > 7(e) :=exp [_105 ) 8_18]

foreveryu,v €V.

The exact value of this bound is not important for our purposes, and we have not attempted to
optimize the relevant constants. For bounded degree graphs, a similar estimate follows from an
argument essentially due to Schramm, which is recorded in [BenO1al] and in more detail in [HT21c,
Lemma 2.1]. This argument yields in particular that if G = (V, E) is a finite vertex-transitive graph

and p > p.(&, ) then

2 1 2 1
P,(u & v) > exp [—3 (; v ]—7) log (—2 \Y —) (5.2.2)

e p
for every u, v € V. This bound is adequate for our purposes in the bounded degree case, in which
the condition p > p.(e, &) bounds p away from zero when |V| > 2¢~3 by lemma below. As
such, readers who are already familiar with (5.2.2)) and are only interested in the bounded degree

case of our results may safely skip the remainder of this section. The estimate (5.2.2)) does nor yield
a uniform lower bound on the two-point function in the high-degree case however, making a more

refined analysis necessary at this level of generality.

Remark 5.2.1. The assumption that G is simple is not really needed for this theorem to hold: the
proof works whenever G has degree at most |V|, and yields a similar statement (with different
constants) under the assumption that the degrees are bounded by C|V| for some constant C. No
such uniform two-point lower bound holds without this assumption, as can be seen by taking the

product K,,0K; and replacing each edge of K, by a large number of parallel edges.
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Remark 5.2.2. For infinite transitive graphs, it was proven by Lyons and Schramm [LS99] (in the
unimodular case) and Tang [Tan19]] (in the nonunimodular case) that there is a unique infinite
cluster at p if and only if inf, , P, (x <> y) > 0. As such, one might naively expect that we could
deduce our main theorems on uniqueness directly from Theorem [5.2.1] via a similar argument.
This does not appear to be the case: firstly, we note that there do exist large finite transitive
graphs and values of & such that there are multiple giant components with good probability at
certain values of p > p.(&, €), despite there always being a uniform lower bound on the two-point
function at such values of p by Theorem Indeed, the product K,0K> and the elongated
torus (Z/nzZ) x (Z/2"Z) both have this property. Secondly, the proofs of [LS99; [Tan19] both
rely essentially on indistinguishability theorems that are of an ergodic-theoretic nature and do not

generalize to the finite-volume setting.

We will deduce Theorem[5.2.1]as an analytic consequence of the following inductive lemma. Recall

that we write ||A|| = |A|/|V] for the density of a set of vertices in a finite graph.

Lemma 5.2.2 (Two-point induction step). Let G = (V, E) be a finite, connected, vertex-transitive
graphand let p > 1/(2|V|). If r > 0and k > 1 are such that [[{v € V : P,(u & v) > 7}|| > 2k
for every u € V then there exists € € {0, ...,k — 1} such that

H{v eV:P,(uev)> T332k_[2_2€_10}H > 2t
foreveryu e V.

Before proving this lemma we first state and prove some general facts that will be used in the
proof. The first is a standard bound on the diameter of dense graphs whose proof we include for

completeness.

Lemma 5.2.3 (Dense graphs have bounded diameter). Let G = (V, E) be a finite, simple, connected
graph. If every vertex of G has degree at least a |V| for some a > 0 then diam G < (3 — a)/a.

Proof of Lemma Let a > 0, and let G be a finite, connected graph with minimum vertex
degree at least a |V|. Let u and v be two vertices of G and let u = ug, uy, ..., u; = v be a minimal
length path from u to v. Writing k = 3m + r where m is a positive integer and r € {0, 1,2}, it

suffices to prove that m + 1 < 1/a. Suppose for contradiction that this is not the case. Then

m
Zdeg uy > (m+1)- min degus; > |V|, (5.2.3)
Py 0<i<m
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so, by the pigeonhole principle, we can find i, j € {0,...,m} with i < j such that u3; and u3; have
a common neighbour w. It follows that ug, uy, ..., u3;, w,u3j, ... uy_1, uy is a shorter path from u

to v than uy, . . ., ux, a contradiction. O

The second ingredient we will require is a quantitative form of insertion-tolerance. In bounded
degree contexts, insertion-tolerance usually refers to the fact that the conditional probability of an
edge being included in the configuration given the status of every other edge is bounded away from
zero. Such a statement need not be valid in regimes of interest in the high-degree case, where
p may be very small. Intuitively, the following proposition instead gives conditions in which we
can insert exactly one edge into some sufficiently large set of edges with good probability. This

proposition will be used again in the proof of Lemma[5.4.9

Proposition 5.2.4 (Quantitative insertion tolerance). Let G = (V, E) be a finite graph, let p € (0, 1),
and let F C E be a collection of edges. Let A C {0,1}% be an event, let 1 > 0 and suppose that
for each configuration w € A there is a distinguished subset F|w] with Flw] C F \ w and
|Flw]| = n|F|. If we define A* == {w U {e}:w e Aande € Flw]} then

7 pIF|
-p plFl+1

Pp(AT) 2 5 -P,(A)*.

Note that the hypotheses of this proposition force there to be at most (1 —77)|F| open edges in F [w]
whenever the event A holds. The lower bound appearing here has not been optimized, and a more
careful implementation of our argument would give a P,,(A)/(-1logP,(A)) term in place of the
Py( A)? term above. The only important conclusion of this proposition for our purposes will be that
if p|F|,P,(A), and 7 are all bounded below by some constant ¢ > 0 then there exists 6 = 6(c) > 0
such that P (A*) > 6.

Proof of Proposition We will abbreviate P = Pg and E = Eg Given a set of edges H, we
write w|g for the configuration of open and closed edges in H, which by a standard abuse of notation
we will think of both as a subset of H and a function H — {0, 1}. We can sample a configuration

w with law P using the following procedure:

1. Sample the restriction w|p\r of w to E \ F.
2. Sample a uniformly random permutation 7 of the edges of F' independently of w|g\r.

3. Sample a binomial random variable N ~ Binomial(|F|, p) independently of w|g\r and 7.
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4. Setw|fp :=n({l,...N}).

Let P denote the joint measure of w, 7, and N sampled as in this procedure.

Let A and F[w] be as in the statement of the proposition. The assumption that |F[w]| = n|F| > 0
and Flw] C F \ w for every w € A guarantees that N < (1 —n)|F| < |F| on the event that w € A.
By construction we have that w = w|g\r Un({1,..., N}) so that foreachn € {1, ..., |F|} we can

rewrite

{we A} N {N =n}={wlprUr{l,....N}) € A*} 0 {N =n}

(5.2.4)
={wlprUn({l,...,n}) € AT} N{N =n}.

Note that the two events on the second line are independent. One way for the union w|g\r U
n({1,...,n}) tobelong to A" is for w|p\rUn({1,...,n—1}) to belong to A and for 7(n) to belong
to the set F’ [w|E\F unrn({l,...,n— 1})]. Since |F[v]| = n |F| for every configuration v € A, 7 (n)
belongs to this set with probability at least  conditional on w|g\r and 7({1,...,n — 1}) and we
deduce that

PweA*and N =n) 2 nP (w|lprUn({l,....,n—1}) € A)B(N =n)

3 P(N = (5.2.5)
:nP(weAandN:n—l)-~(—n).
P(N=n-1)
The ratio of probabilities appearing here is given by
P(N=n-1)  (M)pr!(1=p)Fimt  (1=pin -

and we deduce that

_ L p(IFl—n+1) -
P(cueA+)an(l_—)P(weAandN:n—l)
n=1 pn

__pn g |IFI-N
I-p N+1

‘ w e A] P(w e A), (5.2.7)

where we used that N < (1—n)|F| < |F| whenever w € A in the second line. Since (|F|—x)/(x+1)
is convex we may apply Jensen’s inequality to deduce that

pn |F|-E[N | w € A]

_ P A). 528
BN wealsl J@Ed 6-238)

P(we AY) > I
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Using again that N < (1 — 5)|F| whenever w € A and using the bound E[N | w € A] <
E[N]/P(w € A) = p|F|/P(w € A) we deduce that

2
. F
P(w € A*) > . _prlf]

P A)2, 5.2.
2 T A (w € A) (5.2.9)

concluding the proof. O
We are now ready to prove lemmal5.2.2]

Proof of lemma[5.2.2] Let G* be the graph with vertex set V in which two vertices u and v are
connected by an edge if and only if P, (u <> v) > 7. The graph G* is simple, vertex-transitive, and
is dense in the sense that its vertex degrees are all at least 27 |V|. Let C be a connected component
of G*, noting that 2% < ||C|| < 1. Applying Lemma to the subgraph of G* induced by C
implies that diam(C) < (3 = 27%/|IC|)/27*/|ICI) = B|IC|| = 27%)/27% < 3. 2¥||C]|. Thus, if
u and v belong to the same connected component of G* then there exists a sequence of vertices
U=, ui,...,u,=vwithn < 3-2K||C|| such that u; is adjacenttou;_; in G* forevery 1 <i < n.
It follows by the Harris-FKG inequality that

n
Pp(u o v) 2 [ [Bpluiy o u) 2 32160 = 7, (5.2.10)
i=1
for every u, v in the same connected component of G*. If G* is connected then ||C|| = 1 and the

claim follows with £ = 0, so we may assume that G* is disconnected and that 27! < ||C|| < 27¢
forsome £ € {1,...,k—1}.

Since G is connected there must exist at least one edge of G connecting C to V\C. Since the
connected-component equivalence relation on G* is invariant under the automorphisms of G, it
follows by vertex-transitivity of G that every vertex in C belongs to an edge from C to V\C.
Letting dr C be the set of edges of G with one endpoint in C and the other in V' \ C, it follows that
|0pC| = |C|. Since there are |V|/|C| connected components of G*, it follows by the pigeonhole
principle that there exists a connected component C’ # C of G* such that at least |C|*>/|V| edges
of |0gC| have their other endpoint in C’. Let I be the set of oriented edges e of G with tail e~ € C
and head e* € C’, so that |I| > |C|?/|V|.

Fix vertices u € C and v € C’ that are the endpoints of some edge in /. We claim that

P,(u < >>T—18||C||2 (5.2.11)
pu \% _28 . L
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Let L be the random set of oriented edges e € I such thatu <> e~ and v <> e*. For each e € I, the
Harris-FKG inequality and eq. (5.2.10) imply that P, (u <> e~ and v < e¥) > 712 and hence that
Ey|lL| > 1'12|I |. Applying Markov’s inequality to |/ \ L| we obtain that

i
P,|IL| > =|I
p(| |_2||)

1
1-P, (|1 \L| > 5(2—712)|1r|

(5.2.12)
2-217 1}

_2__2
2‘['1 2‘r1

> 7'12.

N =

2
Let A be the event that |L| > %‘|I| and that every edge of L is closed, so that {u < v} 2 {|L| >
t2|1]/2} \ A. If P, (A) < 77/4 then

72 1
P,(u < v) =P, (|L| > 71|1|) ~P,(A) = 1712, (5.2.13)

which is stronger than the claimed inequality, so we may assume that P,,(A) > 712/ 4. In this case,
applying Proposition with F =1, Flw] = L,and n = 712 /2 yields that

o 3 8 2
T |1 T 1] 0 €I

P >Py(AN) > Lo s
(= v) >P,( )_64 plIl+1 ~ 64 |I+2|V| ~ 64 |C|*+2|V|?

(5.2.14)

where we used the assumption p > ﬁ in the second inequality and the inequality |I| > |C|?/|V|
in the third. Bounding |C|? + 2|V|? by 4|V|?> completes the proof of (5.2.11)). It follows from this
inequality, (5.2.10), and a further application of Harris-FKG that

9

.
Py(u e w) = P,(u <> v)P,(v & w) > 2—‘8||C||2 (5.2.15)

for every w € C’. The same inequality also holds for every w € C by (5.2.10). Thus, recalling that
1 < ¢ < kis such that 27! < ||C|| < 27¢ and using that 7 = 732°1€1 | we deduce that

H{w EV Py (u o w) > 7332"“2—2"—10}” > lcuc| =2, (5.2.16)

completing the proof. (The reason why we have worked so hard to get an extra factor of 2 via

IIC U C’|| = 2||C]| in the final inequality above will become clear shortly.) O

lemma [5.2.2] implies the following general inequality by induction, from which we will deduce

Theorem [5.2.1]as a special case.
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Lemma 5.2.5. Let G = (V, E) be a finite, connected, vertex-transitive graph and let p > 5. If

21V
7>0and k > 0aresuchthat [{v eV :P,(u < v) > 71} > 27k for every u € V then
Py(u < v) > 79 k(59"

for every u,v € V.

Proof of lemma[5.2.5] Fix G = (V,E) and p > ﬁ Applying lemma [5.2.2| recursively implies

that there exists a decreasing sequence of non-negative integers k = ko > k; > -+ > k,, = 0 with

m < k such that if we define the sequence of positive real numbers 1y, . . ., 7, recursively by 7o = 7
and
39k;—k; Y
Ty =10 20 k=l (5.2.17)

foreach O <i <m — 1 then
{v €V :P,(u <> v) =7} =275 (5.2.18)

for each 1 <7 < m. It follows by induction on i that

) J 33(i-j)pkj—ki
3ink—k; Ay
=72 (272670) (5.2.19)
J=1
for every 0 <7 < m and hence that
m 33(m-j)ok; n 33(m=J)ok
3mnk _ o 3mnk 9
Tm=T32r|(22kf 10) ZT32H(22k10)
J=1 J=1
3mnk _ _ 3mnk ym -3j
_ 32— (2k+10)332F B 3 (5.2.20)
3mok __23 k
e S (5.2.21)

where we used the inequality (2k + 10) X', 373 < 12k - (1/26) < k for k > 1 to simplify the

final expression. The claim follows since m < k and 3 - 2 = 54. O

To deduce Theorem[5.2.1|from lemmal5.2.5|we will need the following elementary but useful lower
bound on the critical probability.

Lemma 5.2.6. If G is a finite graph with maximum degree d and & > 0 is such that |V| > 273 then
pe(e, &) = 1/2d. In particular, if p is e-supercritical then p > 1/2d.

173



Proof. Fixavertex v € V. For each r, the expected number of open simple paths of length r starting
at v is at most d(d — 1)"~! < d" and it follows that if p < 1/2d then E|K,| < YoeoP'd <2.0On
the other hand, if p > p.(&, €) then

D Bk = BylKi* > &V,
veV

so if the inequalities p < 1/2d and p > p.(&, €) both hold then |V| < 2&73. O
We are now ready to conclude the proof of Theorem [5.2.1]

Proof of Theorem|[5.2.1} Since p > p.(s,€) we have that P,(||K;|| > &) > & and hence that
P,(IKull = &) > eP,(IK1ll > &) > g% for every u € V by vertex-transitivity. It follows in

particular that 3.y P, (u < v) = E,|K,| > £3|V| and hence by Markov’s inequality that

H{v €V P (u o) > —}H % (5.2.22)

Moreover, since |V| > 273 and G is simple it follows from lemma that p > 1/2d > 1/2|V|.
Thus, applying lemma with 7 = £%/2 and k = [log,(2/&)] we deduce by elementary

calculations that

PAwaWZwﬂ(MW%W“Wg —m&@mm6®mﬁ“ﬂ

2
Zexp[ 54 . (54)1°g2(2/8)10g —54. (54)10g2(2/8)10g =

—54. (54)10gz(2/83)]

: 2
> exp [—162 - (54)l0822/2Y) o0 i (5.2.23)

for every u,v € V, where we used the inequality log(2/&?) < log,(2/&?) in the final inequality.
We have by calculus that x54° < 64%/(elog(64/54)) for every x > 0, and using that (64 -
162)/(elog(64/54)) = 22449.65 ... < 10° we deduce that

P,(u & v) > exp [-10° - &7'8] (5.2.24)

for every u,v € V as claimed. O
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5.3 Uniqueness under the sharp density property
In this section we prove supercritical uniqueness under the assumption that our infinite set H C F
satisfies the sharp density property, which we now introduce. This section is at the heart of the

paper and contains the most significant new techniques.

Definition 5.3.1. Let G = (V, E) be a finite graph and let A : (0,1) — (0, 1/2] be decreasing.
Recall from Section that for each 0 < @,8 < 1 we define p.(a,6) = p%(a,d) := inf{p €
[0,1] : P, (|IKi|l = @) > 6}. We say G has the A-sharp density property if

Cc ’1_6
M<e5 forevery0 < @ < 1 and A(a) <6 < 1/2.
pe(@,9)

Let H C ¥ be an infinite set. Given a H-indexed family (Ag)gesy of decreasing (i.e. non-
increasing) functions Ag : (0,1) — (0, 1/2] such that A¢ — 0 pointwise as G — oo in H, we
say that H has the (Ag)gegq-sharp density property if G has the Ag-sharp density property for
every G € H. We say that H has the sharp density property if there is some H-indexed family
of decreasing functions (Ag)geyr With Ag : (0,1) — (0, 1/2] and Ag — 0 pointwise as G — oo
in H such that H has the (Ag)geg-sharp density property. Equivalently, H has the sharp density
property if and only if

lim sup w =1

GeH pefa1]  PC (B, 6)

forevery0 <@ <land0 <6 < 1/2.

Graphs with subalgebraic vertex degrees can straightforwardly be shown to satisfy the sharp density
property using standard sharp threshold theorems [FK96; Bou+92; [Tal94], all of which are proven
via Fourier analysis on the hypercube. Indeed, applying these theorems in our setting leads to
the following proposition, which will be used in the proof of Theorem [5.1.3] and whose proof is
deferred to Section[5.3]

Proposition 5.3.2. There exists a universal constant C such that the following holds. LetG = (V, E)
be a finite, simple, connected vertex-transitive graph with vertex degree d. Then G has the A-sharp
density property with

1 logd - 13
A@) = 7 AN C\ g ifa > (2/[V)Y

5 otherwise.

In particular, if (G)ns1 = ((Vn, En))ns>1 is a sequence of finite, vertex-transitive graphs with

|V,,| = oo and with subalgebraic degrees d,, = |V,|°V) then (G,)n=1 has the sharp density property.
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A more general proposition stating that an infinite subset of # has the sharp density property if and
only if it does not have a molecular subsequence is proven in Section[5.4] For now we will focus
on the consequences of the sharp density property, leaving the verification of this property to later

sections.

We now state the main quantitative result of this section. When applying this theorem we will think
of € > 0 as a fixed constant, the number of vertices |V| as being large, and A(g) as being small.

We have not attempted to optimise the universal constants appearing in this theorem.

Theorem 5.3.3. Let G = (V, E) be afinite, simple, connected, vertex-transitive graph, let e € (0, 1],
and let 7(e) > 0 be as in Theorem [5.2.1) If G has the A-sharp density property for some
A:(0,1) — (0,1/2] then

P, (||K2|| > 2 (2OOA(8) 25 )) < /El

1(e)  &*r(e)|V]

for every g-supercritical parameter p and every A > 1.

Corollary 5.3.4. Let H C F be an infinite set. If H has the sharp density property, then H has

the supercritical uniqueness property.

In this proof, we think of an event as holding with high probability if the probability of its
complement is controlled by |V|™' and A(x) for some constant x. Similarly, we think of a real-
valued random variable as being concentrated if the random variable lies in an interval of width
controlled by |V|~™! and A(x) for some constant x with high probability. Fix a parameter p that is
e-supercritical with respect to G. Our plan is as follows. First, in Section we show that it is
possible to find a parameter g with p.(g,&) < g < p such that ||K;|| is concentrated in a small
window under P,. Then, in Section we deduce that ||K>|| is small with high probability under
P,. Finally, in Section we introduce the notion of sandcastles and use this notion to prove
that non-uniqueness of the giant cluster at the fixed parameter p would contradict the established

properties of percolation at the well-chosen lower parameter ¢.

Concentration at a lower parameter
Our first step is to use the sharp density property to find another parameter ¢ with p.(g,&) < g < p

such that the largest cluster under P, is a giant whose density is concentrated in a small interval.

Lemma 5.3.5. Let G = (V,E) be a finite graph with the A-sharp density property for some

A. Then for every € € (0, 1] and every e-supercritical parameter p, there exists a parameter
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q € (pc(g,€), p) and a density @ > & such that

) | ﬁ < 2A(s). (5.3.1)

Pg |IK1ll —af =

Roughly speaking, the idea behind the following proof is that if we pick g such that the median
— or any other particular quantile — of the density of the largest cluster increases slowly across a
small neighbourhood of g then the sharp density property implies that the density of the giant at
g must be concentrated; such a g can always be found since a bounded increasing function cannot

increase rapidly everywhere.

Proof of Lemma5.3.5] We may assume 4A(g) < &, the lemma being trivial otherwise. Consider
the increasing sequence of reals qo, g1, ... given by g; := e’ p (g, &) for each j > 0, and let
k be the maximum integer such that g < p. We start by finding a simple lower bound for k.
Since p is e-supercritical, we know (1 — &)~ - p.(&, &) < p and hence that k > r for any integer r
satisfying ¢>"2(®) < (1 — &)~!. It follows in particular that

. F_logl/(l—s)| S F.log(1+s)| S { £ | > £
2 A(e) 2 A(e) 4A(¢) 8A(e)

(5.3.2)

where we used the inequality 1/(1 —x) > 1 +x for 0 < x < 1 in the first inequality, the inequality
log(1+x) > x/2for0 < x < 1 in the second inequality, and the assumption 4A(&) < ¢ in the final

inequality.
Now, for each i > 0 we define the density A; of K under P, by
A = max{g € [0,1] : Py, (IK1l| = B) > &},

so that A; > Ao = € for every i > 0. Since 4; is increasing in i we have that

k k
Z |A2i = Aai—1y| = Z/lzi —Ayi—y = Aok — Ao £ 1,
i=1 i=1

and hence by the pigeonhole principle that there is some j € {1, ..., k} such that
1 8A(e)
[A2j = dagj-p)| = Azj = Ag(j-1) < k 5 e

where the final inequality follows from (5.3.2).

We will argue that the values

i+ Ay

=qoi_ and
q=492j-1 3
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satisfy the conclusions of the lemma. Indeed, by definition of A, we have that

Paon (1Kl = dajopy) =& but By, (||1<1|| >y + |V|—1) <e (5.3.3)

q2(j-1)

We also have by assumption that 4A(e) < € and & < 1/2, so that A(e) < & < 1 — A(¢) and hence
by the definiton of the A-sharp density property that

{pc (B, 1-A(e))  pc(B;&) } pe (B 1-A(8)) _ A
max R < <e
pe (B, €) pe (B, A(e)) Pe (B, A(e))
for every g € [, 1]. Applying this inequality with the values 8 = A5(;_1) and § = (Ay; + VI Al
and using that e ) g,; = g = e2(®) g,(;_y), we deduce from (5.3.3) that

P, (IKill = daj)) > 1= A(e)  and B, (||1<1|| > 1y + |V|—1) < A(s).

Since |a@ — Ay(j-1)| and |a — 45| are both bounded by 4A(e) /e, it follows that

) i) < 2A(s)

Pg (1K1l — al >
! Vi

as claimed. O

Concentration implies uniqueness
By applying Lemma with our fixed parameter p, we obtain a parameter g € (p.(&, ), 1) and
a density @ > ¢ that satisfy (5.3.1). We next argue that concentration of [|K|| under P, implies

uniqueness of the giant cluster under P,.

Lemma 5.3.6. Let G = (V, E) be a finite graph, let q € (0,1], and let T := min, ,ey P, (u < v).
The estimate

1
Py (IK2]l = 26) < [1+ ——
o (1K1l = 26) ( =

2T)Pq (1K1l = ef = 6)

holds for every a, o > 0.

The idea is that by the two-point connection property (and positive association), on any increasing
event, we can connect K and K> to form a new largest cluster K| with good probability. Thus, given
that || K| is concentrated, ||K| U K> || must be close to ||K|| with high probability. Equivalently,
|K>|| = ||K U K>|| — ||K7|| must be close to zero with high probability.

Proof of Lemma By the union bound,
Py (1K2ll 2 26 and [[Ky[| 2 @ = 6) = Py ([[K2ll 2 26) =Py ([[|Kill = | 2 6).
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On the event that ||K3|| > 26 and ||K|| > a — ¢, every pair of vertices u, v withu € K; and v € K|

has ||K, U K, || > @ + &, and there are at least 462 |V|* such pairs. So, by linearity of expectation,

1
max Py (1K UKL > 0 +0) > — DB (1K UK 2 @ +6)

u,vev

> 46% [P, (IIK2|l = 26) =B, (|IK:1ll - a| = 6)]. (5.3.4)

When ||K, UK,|| > @+ 6 and u < v, we are guaranteed to have ||K|| > a + ¢ and hence that
|||K1|| — @| = 6. It follows by Harris’s inequality that

Pq (1K1l = a| = 6) > E/ae)\qu (IKy UK, || > & +6) ’Pq (u <)

> 46%7 [P, (|IK2ll = 26) = P, (1K1l — a| = 6)], (5.3.5)
and the claim follows by rearranging. O

Proof of Theorem via sandcastles

So far we have obtained good control over ||K|| and ||K>|| under P,, where g is a well-chosen
parameter p.(&,&) < g < p. We now need to convert this into an upper bound on the probability
that the second largest cluster is large under P,. We do this by introducing an object we call a
sandcastle. This is defined in terms of the canonical monotone coupling (w,, w,) of the percolation
measures P, and P, with ¢ < p on any given graph, where each closed edge of w,, is also closed
in w, and each open edge of w), is open in w, with probability g/p. We write P, ,, for the joint law
of this coupling. (Recall that in this coupling, when we condition on w, the states of the edges in
wy are still independent of each other.) Informally, a sandcastle is a large connected subgraph of G
with the property that even knowing that the subgraph is entirely open in w,, there remains a good
condtional probability that it contains no large cluster for w,. We fix this ‘good probability’ to be

1/2 in the following definition, but we could have used any other universal constant in (0, 1).

Definition 5.3.7. Let G = (V, E) be a finite graph. Let0 < g < p < landlet0 <o, < 1. A
[(p,B) — (g, @)]-sandcastle is a connected subgraph S C G such that ||S|| > 8 and

NS

Pyp (|Ki(wgnS)||<alScw,) >
We now show that non-uniqueness of the giant cluster under P, and uniqueness of the giant cluster

under P, together imply that some cluster must be a sandcastle with good probability under the

measure P),.
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Lemma 5.3.8. Let G = (V, E) be a finite graph. Foreach0 < g < p <1,and0 < a,B < 1 there

exists a vertex u such that

P, (K, isa [(p,B) = (q,a)]-sandcastle)
> B[P, (IIKall = B) — 4B, (K2l = @)] .
Proof of Lemma[5.3.8} Consider a configuration v € {0, 1} in which ||Kz|| > B but no clusters

are [(p,B) — (g, a)]-sandcastles. Let A := K;(v) and B := K(v). Since ||A|| > B but A is not a
[(p,B) — (g, a)]-sandcastle, we know by the definition of sandcastles that

Py ([Ki(wg N A 2 alw, =v) =Py, ([Ki(wgNA)||2a | ACw,) =

| =

The same result holds for B. Since A and B are disjoint, the restrictions of w, to A and B are
conditionally independent given w,,, and hence

1

1

The edges in the boundary of A are all closed in v, disconnecting A from B. Since w,; < w,,

Pop ([Ki (w0 A)] 2 @ and [Ki(w, 0 B)| 2 @] wp=v) =

these edges are also closed in w,; when w, = v. In particular, given that w, = v, the subgraphs

Ki(wg N'A) and K1 (w4 N B) are not connected to each other in w,, and hence

Py.p (“KZ(‘Uq)” >a|wp= V)
1

> Py, (||K1(wq N A)” > « and ||K1(wq N B)|| >a|w),= v)

Letting & be the event that ||K>(w,)|| > B but no cluster in w, is a [(p, B) — (g, @)]-sandcastle,

it follows since v € & was arbitrary that

Py.p (”KZ(wq)” >a|wye) 2

FN.

It follows from this and a union bound that

Py (I1K2ll > @) > Py, ([|K2(wg)]| 2 @ | wp € E) - P, ()
1
> 2(B (1Kl 2 )
— P, (some clusteris a [(p, 8) — (g, @)]-sandcastle) |,

which rearranges to give that

P, (some cluster is a [(p, B) — (g, a@)]-sandcastle)

2P, (K2l 2 B) — 4P (I Kall 2 @) . (5.3.6)
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Every cluster that is a [(p,8) — (¢, a)]-sandcastle contains at least 8 |V| vertices by definition,

and we deduce by linearity of expectation that

max P, (K, isa [(p,B) — (g,a)]-sandcastle)
ue

> ﬁ Z P, (K, is a [(p,B) — (g, a)]-sandcastle)

uev

> BP, (some clusteris a [(p, 8) — (g, @)]-sandcastle) .

The claimed inequality follows from this and (5.3.6). o

We want to use the fact that K, is a sandcastle with good probability to contradict the concentration
of ||K1|| under P,. The rough idea is as follows: as we pass from w, to w,, with good probability
this sandcastle disintegrates into only small clusters, none of which are equal to the giant cluster
Ki(wg). Since the status of any edge that does not touch the cluster of the vertex u in w, remains
conditionally distributed as Bernoulli percolation, this implies that there exists a large set of vertices
whose complement contains, with good probability, an w, cluster whose density is close to the
typical density of the largest cluster in the whole graph. Using Harris’ inequality and uniqueness
of the giant cluster in w,, we deduce that ||K 1 (wq)” is abnormally high with good probability,

contradicting the concentration of the giant cluster’s density under P,,.

We now begin to make this argument precise. For each subgraph H of G, let H denote the set of

all edges that have at least one endpoint in the vertex set of H.

Lemma 5.3.9. Let G = (V, E) be a finite, vertex-transitive graph and let g € (0, 1]. The estimate

2BP,(IIK:ll > B) - B2
2-p2

smOmm¢@ﬁ+
holds for every subgraph H of G and every 0 < 8 < 1.

2 (K1 @\ F)]| > ) -
2
EHN) )+ 2, (1Kl = ) (537

Proof of lemma Let X be the set of vertices that are contained in clusters with density at least
B, noting that

P, (X # K1) <Py (K1l < B) +Py (||K2]l = B) (5.3.8)
and hence that
B B
Py L IIX|| = B+ EIIHII) <P (I|K1II > [+ EIIHII

+Py (1K1l < B) + Py (IK2ll 2 B) . (5.3.9)
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We have by Markov’s inequality applied to ||H \ X|| that

2 2
ey (1 i = ) =1, (1 x> (1= 5 )
g\
>1-(1-5) waie e x)
g\
=1—(1—7) P, (K.l < B). (5.3.10)

where u is an arbitrary vertex and we used vertex-transitivity in the last line. Bounding P, (||K,|| >
B) > PP, (K1l = B) we deduce that

5 2-2BPy (K1l > B)
P, (||XmH|| > 7||H||) >1- ;_ﬁz (5.3.11)
_ 28, (IK1 Il = B) - B 5312)
s 3.
and hence by Harris’ inequality that
B B
Pq (IIXII > B+ EIIHII) >Pe (IX\HI| = B) - Py (IIX NH| 2 =||H]|
= 26P4 (1K1l > B) - B2
> B, (IKi(w\ )| > B) - = — L (5303)
The claim follows by combining (5.3.9) and (5.3.13). m|

Proof of Theorem Write 7 = 7(&) and A = A(¢), fix an g-supercritical parameter p, and let
g and « satisfying @ > & be as in Lemma|[5.3.5] Define

4N 1 256  200A 25
= —+ — and Bo = =
e |V

+
gr  &gr  grv|

and fix some 8 > Bp. This value of ¢ is chosen so that
2 (|IKilI -] > 6) < 24 (53.14)

by Lemma We will refer to [(p,B) — (¢, &/2)]-sandcastles simply as sandcastles for the

remainder of the proof. It suffices to prove that

2004 Bo

827,8_8. B’

Pp(lIKa2ll = B) <
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so we will suppose for contradiction that the reverse inequality

200A

215 (5.3.15)

Pp(IK2ll = B) 2

holds. Since ||K>|| < 1, in this case we must have that 8y < 8 < 1 and hence that § < £2/25 < g/2
and A < 1/200.

Since ¢ > p.(&,€), we can apply Theorem to bound the minimal connection probability
min, , P, (u <> v) > 7 = 7(g). Thus, applying Lemma yields that

g 4 £
P (Il = 5) < (1 . E) 2 (Kl - ol > )
(5.3.16)

where we used the assumption £/2 > ¢ and eq. (5.3.14) in the second inequality. Applying
Lemmal[5.3.8] we deduce that there exists a vertex u such that

4085 _ B
gr 2

where we used the assumption (5.3.13)) in the final inequality. By vertex-transitivity, this holds for

P, (K, is a sandcastle) > P, (||K2|| > B) — P, (K2l = B), (5.3.17)

every vertex u € V. Fix a vertex u € V and let .7, be the event that K,,(w,,) is a sandcastle. Since
wy < wp, no vertex in K, (w,) is connected to a vertex of V' \ K,,(w,) in w,, and using the fact that

a— 98 > ¢g/2 (because @ > € and 6 < g/2), we have the inclusion of events

(1K1 (@ 0 Kuwp)]| < 22} 0 {K1 (@y)l] 2 @ - 5]
c {HKl (wq \ Ku(wp))H >a - 5}.
Taking probabilities and using the definition of sandcastles, we deduce that

Py.p (HKl (wyq \W)H >a-90 | Yu)

> Pgp (”Kl(‘”q N Ky (wp))| < g | yu) —Pyp ([Ki(wy)|| < @ =61 .5)

1
> 5 =Py ([Ki(wp)l| <0 =61.7). (5.3.18)

Using (5.3.1)) and (5.3.17)), we can bound the error term

b (Kol < a6 ) < FellKil —al20) (5.3.19)
q.p 1\Wyq)|| = u) = P, (K, is a sandcastle) o

4A 1
< < -
BE,([[K2ll = B) — 4

(5.3.20)
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by the assumption that P, (|[Kz|| > B) > 200A/(&*1B) > 16A/B, so that
1
E
Since the left hand side of (5.3.21)) can be written as a weighted sum of conditional probabilities

2o (|1 @0\ K@) 2 @ -6 1.4) 2 (5321)

given that K, (w)) is equal to a specific sandcastle, there must exist a sandcastle S such that
Pep (|[K1(@4\S)|| 2 @ = 8 1 Kulwy) = 5)
—_— 1
=P, (|| (@q\Kulwp)| 2 @ = 6 | Kulwy) =) = 7 (5322)

Since the event {K,(w,) = S} depends only on the status of edges in S, it is independent of the

restriction of w, to E \E, and we deduce that

. (5.3.23)

e

P, (HKl(w\E)H > - 5) =P,, (qu (wq\E)H > a -6 | Ku(wy) = S) >
On the other hand, using that A < 1/200 and hence that
2P, (1K1l = (@ = 6)) 2 2(1 -2A) 2 a -6,

lemma|5.3.9]implies that

B Y
By (K1 @\S)| 2 @ =5) < 2a- 6)Pq(||2K1||(C; aé—) 5) — (@ -0)

(o - 96)?

P, (||1<1|| ¢ (a—é,a—(5+ ,3)) +P, (K2l = @ = 6)|, (5.3.24)

and since @ — 6 > £/2 < 1/2 and 8 > 16726, and
P,(|Ky|l > @ —6) > 1—2A > 99/100,

it follows that

8
4eP, (|| K || = @ — 6) — &2

[y (IK11l - @] = 6) + By (IKall = £/2)] . (5.3.25)

P, (HKl(w\E)H >a— 5) <

Applying (5.3.14)) and (5.3.16) to control the two probabilities appearing here we obtain that
8 [ 10A ] 48A
: <

2A+ —
g2t

P, (HK1 (w\E)H > a - 5) < (5.3.26)

= 4e(1-2A - &/4) &7’

where we used that A < 1/200 < 1/8 in the final inequality. The two estimates (5.3.23) and
(5.3.26)) contradict each other since 200A/&3t < By < 1. o
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Subalgebraic degree graphs have the sharp density property

In this section we prove Proposition As stated above, this proposition is a straightforward
application of standard sharp-threshold theorems. The details of the implementation of the proof
are somewhat technical but do not contain any significant new ideas. We will apply the following
straightforward consequence of the results of Talagrand [Tal94]]. We refer the reader to [Gr1l8,
Chapter 4] and [ODo14] for general background on sharp threshold theorems.

Theorem 5.3.10. Let E be a finite set and let A C {0, 1}£ be an increasing event. Let T be a group
acting on E and for each e € E let T'e = {ye : v € I'} be the orbit of e under I'. There exists a

universal constant ¢ > 0 such that if A is invariant under the action of T on {0, 1} then

d 2 1
@PP(A) >c|p(l-p) logm P,(A)(1-P,(A))log (2 Ienell:I?I |Fe|)

for every p € (0, 1).

Proof of Theorem The influence of an edge ¢ with respect to A under P, is defined to be
I,(Ae) =P,(wU{e} €A, w){e} ¢ A).

Russo’s formula states that if A is an increasing event then
dP(A) ZI(A ) (5.3.27)
— = ,e 3.
dp ! ecE !

for every p € [0,1]. It is a theorem of Talagrand [Tal94] that there exists a universal constant

0 < ¢ < 1 such that if A is increasing then

Z b >c-Pp(A)(1-P,(A)) (5.3.28)

p(1-p) log( ) ;
p(l _p) ecE IOg p(1-p)I,(Ae)

and hence that

ZIP(A,e) > c-Pp(A)(1 - P,(A))

eeFE

| 1
——| log .
p(l—-p) p(1 = p)max, I,(A,e)

(Note that Talagrand states his inequality in terms of open pivotals, so that his expression differs

: [p(l - p)log (5.3.29)

from ours by some factors of 1/p.) Intuitively, this inequality implies that any event that does not

depend too strongly on the status of any particular edge must have a sharp threshold, i.e., must have
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probability changing rapidly from near O to near 1 over a short interval. Letting e maximize the

influence, we have by (5.3.27) and (5.3.29) that

d |
—P,(A) > —- max{lFelp(l -p),(A,e),

dp ? 1- P

P pl=p) (5.3.30)

2 1! 1
c-P,(A)(1-P,(A)) - [log—] log }
? ! p(1-p) p(1=p)I,(A,e)
Since the function f(x) = max{ax, blog1/x} attains its minimum when }Clog}c = ¢, it follows
that

d
3PP 2 s B (A) (1B (4)

2 ! el log 5=
g Sa Ty 533
[ng(l—p)] W(c-Pp(A)(l_pp(A)) ( 1)

where W is the Lambert W-function (i.e., the inverse function of xe*). The claim follows since
P,(A)(1 -=P,(A)) < 1and W is increasing and satisfies W(x) > % log x for every x > 1. O

We now apply Theorem [5.3.10]to prove Proposition[5.3.2]

Proof of Proposition Let G = (V, E) be a finite vertex-transitive graph of degree d > 2. It
follows from lemma that p.(a,8) > 1/2d for every a,6 > ap := (2/|V|)'/3. It suffices to
show that there exists a universal constant C > 1 such that
,1-6 Clogd
fa.6>a and PLCI=0 s o ey 5o [C102d (5.3.32)
pe(@,0) log [V
Fixap < @ < 1and g < 6 < 1/2 and write pg = p.(@,d) and p; = p.(a,1 =96). If po < p < p;
then P, (||IKi|| > @)(1 =P, (|IKi|| = @)) > 6(1 -0) > %6 and it follows from Theorem [5.3.10|that
there exists a universal constant ¢ > 0 such that

rr d
1>1-26 :/ —P,(|K\|| = a)dp (5.3.33)
po dp
s P 2 !
> ZPiog|v| [p(l —p)log———| dp, (5.3.34)
2 Po p(1-p)

where we used that every edge has at least |V|/2 edges in its Aut(G) orbit on any vertex-transitive

graph. To estimate this integral we first use the substitution p = ¢(x) := e*/(e* + 1), which satisfies
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dp/dx = /(e + 1)? = p(1 — p), to write

P 2 17N 2+ 1)?
/po [p(l_p)logp(l—p)] dp_/xo [log e

X1 1
> / —————dx,
v x| +log8

where we write x; = ¢~!(p;) = logp;/(1 — p;) and use the elementary bound (e* + 1)2/e* =

-1
dx

(5.3.35)

¢* +2 +e™* < 4eM in the final inequality. The logarithmic derivative of ¢(x) is 1/(e* + 1) so that

if p; > e®pg then we have that
4 P

X1 1
/ dx >0 and hence that x1 —xo = (e +1)6.
x e+l

It follows that if p; > e%pg then

xo+(eX0+1)8 1 2
[ P
e |x| +log 8 colog|V|

)

from which the claim may easily be proven via case analysis according to whether xo < 0 or
xo > 0, noting that xg > ¢~'(1/2d) > —log2d since pg > 1/2d. In the first case we use that

|x| +1log 8 < |xo| +log8 + & < |xo| + 3 for every xo < x < xg + 6 to deduce that

X0+0 2
L < / dx < when xg < 0, (5.3.36)
3 +log2d o |xo| +3 — colog|V|

while in the case xo > 0 we lower bound the integral by the minimum of the integrand times the

length of the interval to obtain that

2 (% + 1)§ 2
< h > 0. 5.3.37
2+10g8° " X+ (e +1)5+10g8 ~ colog|V| When X0 (5.3.37)
Putting together (5.3.36) and (5.3.37)) completes the proof. m|

Proof of Theorem The claim follows immediately from Theorems|[5.2.T]and[5.3.3]and Propo-
sition[5.3.2 o

5.4 Non-molecular graphs have the sharp density property
In this section we complete the proofs of our main theorems, Theorem and Theorem [8.1.1
The most important remaining step is to deduce Theorem [5.1.2 and the implication (i) = (ii) of

Theorem [8.1.1]from Corollary [5.3.4 by proving the following proposition.
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Proposition 5.4.1. Let H C F be an infinite set. If H does not have the sharp density property,

then H contains a molecular subset.

Remark 5.4.1. Tt follows from Theorem [8.1.1] and Corollary [5.3.4] that the converse of this propo-

sition also holds, that is, that molecular sequences do not have the sharp density property.

Recall from Section [5.3] that a sequence of graphs is said to have the sharp density property if
the emergence of a giant cluster of a given density always has a sharp threshold. As we saw in
Section [5.3] it is an immediate consequence of standard sharp threshold results [FK96; Bou+92;
Tal94] that this property holds whenever the graphs in question have bounded or subalgebraic
vertex degrees. Indeed, these results imply that any increasing event depending in a sufficiently
symmetric way on m i.i.d. Bernoulli-p random variables has a sharp threshold provided that this
threshold occurs around a value of p that is subalgebraically small in m; lemma[5.2.6|implies that
the latter condition is satisfied for the event {||K;|| > @} whenever G, has subalgebraic degrees.
Unfortunately it is not true in general that every symmetric increasing event has a sharp threshold
without this condition on the location of the threshold. For example, the event that the Erd6s—Rényi
graph contains a triangle has a coarse threshold on the scale p = @(n~!) and the event that the
Erdés—Rényi graph contains a tetrahedron has a coarse threshold on the scale p = @(n~2/3) [AS16,
Chapter 10.1]. Thus, to prove Proposition [5.4.1| we will need to use specific properties of the event

{IIK1|l = @} on non-molecular graphs.

Our proof will apply a theorem first established by Bourgain [Fri99al] and sharpened by Hatami
[Hat12a], which, roughly speaking, states that any event that does not have a sharp threshold must
be heavily influenced by the status of a small number of edges. Throughout this section, the prime
in e.g. P, will always refer to a p-derivative. We say that an event A is non-trivial if A # 0 and

A€ # 0. (The following theorem actually only requires that A # (.)

Theorem 5.4.2 (Hatami 2012, Corollary 2.10). Let G = (V, E) be a finite graph, and let A C
{0, 1}F be a non-trivial increasing event. For every p € (0,1/2] and € > 0, there is a set of edges
F C E such thatP, (A | F Cw) > 1-¢&and

IF| < exp (1013 [p B, (A P, (A)> 6—2) .

In particular, for each & > 0 there exists a constant C(g) < oo such that if P, (A) > & and
p-P,(A) < &1 then there is a set of edges F C E such that P, (A | F Cw) > 1 — ¢ and
|F| < C(e).
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The relevance of this theorem to sharp-threshold phenomena is made clear by the following
elementary lemma, which shows that when P, (A) does not have a sharp threshold there must be a
good supply of parameters where P, (A) is not close to 0 or 1 and p - P, (A) is not large. Note that
if A € {0, 1}* is a non-trivial increasing event then its probability P, (A) is a strictly increasing
function of p € [0,1] by [Gri99, Theorem 2.38] and hence defines an invertible increasing
homeomorphism [0, 1] — [0, 1].

Lemma 5.4.3. Let G = (V, E) be a finite graph, and let A C {0, 1}£ be a non-trivial increasing
event. Define f : [0,1] — [0,1] by f(p) := P, (A). If 751 =6) > (1 +¢&)f1(5) for some
e€(0,1]and 0 < 6 < 1/2 then

L(r'1-e),

L ({p e f6,1-6]:pf(p) < ‘—‘}) > 1
& 2

where L denotes the Lebesgue measure on [0, 1].

Proof of Lemma Let] := f~'[6, 1-6]. The function f is differentiable, as it is a polynomial,
and satisfies

/Ipf’(p) dp < f1(1-9) /If’(p) dp=(1-28)f"(1-8) < f(1-9).

On the other hand, rearranging our hypothesis f~!1(1 = 8) > (1 + &) f~1(6) gives f~1(1 - 6) <
(1 + é) [f‘l(l -0) — f‘l(é)] < %L(I) and hence that

I ,
m/lpf(l?)dpﬁ;

The result follows by applying Markov’s inequality to the normalised Lebesgue measure on /. 0O

[\

When the edges in the set F given by Theorem|[5.4.2]are open, the event A occurs with conditional
probability at least 1 — &. Since P, (A | F C w) > P, (A) by Harris’s inequality, this result is
only interesting when P, (A) is significantly smaller than 1 — . In this case, the state of F plays a
decisive role in determining whether A occurs in the sense that the event {w ¢ Abutw U F € A}
occurs with good probability. This motivates our definition of a subgraph H that activates an event

A, a generalisation of being a closed pivotal edge.

Definition 5.4.4. Let G = (V, E) be a finite graph, let H C G be a subgraph, and let A C {0, 1}E be
an increasing event. We say H activates the event A in a configuration w if w ¢ Abutw UH € A.
For every density «, we simply say H activates « to mean H activates the event {||K;|| > a}, and
we label this event Act, (H).
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Corollary 5.4.5. Foreveryd > O there exists € > O suchthat if G = (V, E) is a finite, simple, vertex-
transitive graph and a, p € (0, 1] are suchthat P, (||K1|| > @) € [6,1-6] and p-P), (|[K1]| =2 @) <
6! then there exists a subgraph H of G such that |E(H)| < e™! and P, (Act,(H)) > &.

Proof of Corollary[5.4.5] The case p < 1/2 follows trivially from Theorem Now assume
p > 1/2. Since {||K|| > a} is invariant under automorphisms of G and G is vertex-transitive we

can apply Theorem [5.3.10]to obtain that there exists a universal constant ¢ > 0 such that
P, (1Kl = @) 2 ¢ - Py (1K1l 2 @) Py (IIKi]l < @) log [V].

Plugging in our assumed bounds on p, p - P, (||Ki|| = @), and P,, (||K1|| > @) gives [V| < e2ed’,

. . 3 _ 3
in which case |E| < e*/? 4/cs® O

and the result holds trivially withe =96 A e
When the event {||K;|| > a} has a coarse (i.e., not sharp) threshold on G = (V, E), this lemma
gives us a subgraph H C G that has a good probability of activating . When H has only a single
edge e, we can use this in the other direction to establish a lower bound on the sharpness of the phase
transition. Indeed, e activates « if and only if e is closed and pivotal for the event {||K;|| > a}. So,

by Russo’s formula and lemma[5.2.6| we have that

p-P, (1Kl 2 a)p Z P, (f is pivotal for {||Ki|| = a})
feE

, |0rb(e)|

——P, (Act, ,
2 “qee G B (Acta(e)

where Orb(e) denotes the orbit of the edge e under the action of the automorphism group AutG.
Contrasting this with the assumed upper bound on the sharpness of the phase transition with which
we started, we can extract information about the underlying graph G. For example, we immediately
deduce that G is dense, and we are only one step away from concluding that G is part of a molecular
sequence. Our main challenge is to reduce to this case, that is to say, to show that we can take H to

be a subgraph with a single edge.

During the proof we will want to apply a sprinkling argument, where by slightly increasing the
parameter p we can make strict subsets of an activator H become activators. One difficulty is that
as we increase the percolation parameter, we may form a giant cluster with density at least 3, in
which case nothing can be an activator. As such, we must carefully choose the amount that we
sprinkle by at each step. To this end, we will work only with a special sequence of such values

constructed by the following lemma.
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For the remainder of this section, given a finite, connected, vertex-transitive graph G = (V, E), we
write d = deg(G) and ap = (2/|V|)!/3. Given 8 > 0 and 6 € (0, 1/2] we write I = I(G,3,6) =
[Pc(B.6),pe(B,1-6)] and Q = Q(G,B,8) ={p e I: p-P,(IKill = B) < §}.

Lemma 5.4.6 (A good sequence for sprinkling). Let G = (V, E) be a finite, connected, vertex-
transitive graph, let 6 > 0, and let 0 < B < 1. There exists a sequence (pp)n>1 in Q such
that

pust = pn 237"V LQ) and By, (IKill = B) =By, (Kl = B) < 27"

for everyn > 0.

Proof of Lemma(5.4.6] We will prove more generally that if X C [0, 1] is a non-empty closed set
and f : X — [0, 1] is an increasing (but not necessarily continuous) function then there exists a
sequence (x,)n>1 in X such that x,,; —x, > 370D £(X) and f(xu41) — f(x,) < 27" for every
n > 0. The claim is trivial if £(X) = 0 since we can take x,, constant in this case, so we may assume
that £(X) > 0. First consider the case X = [0, 1]. Let xo := 0 and define (x,),> recursively as
follows. Assume we have defined x,, for some n > 0. Set x,,; := x, + 37D for each i € {1,2,3}

and define

. ) Xn,1 iff(xn,Z) - f(xn,l) < f(xn3) - f(xn,Z)a
+1 =
! Xxn2 otherwise.

For each n > 0 write y, := x,3 so that x, < y,, forevery n > m > 0. It follows by induction that
Xp € [0, 1], Xpe1 — X, = 37D and f(y,) — f(x,) < 27" for every n > 0, and the claim follows

since f(xu41) < f(y,) forevery n > 0.

Now let X C [0, 1] be an arbitrary closed set with £(X) > 0. Since X is closed, we can define an
increasing function ¢ : [0, 1] — X such that

L([0, ¢(x)] N X) = xL(X)

for all x € [0, 1]. Construct a sequence (x,),>1 by the above procedure but for the function f o ¢
instead of f. Then the sequence (¢(x,)),>1 has the properties that ¢(x,) € X, ¢(x,41) — d(x,) =
(Xpe1—=x) L(X) = 370D £(X), and f(p(x41)) = f(d(x,)) < 27" forevery n > 0 asrequired. O

We now state our key technical sprinkling proposition.

Proposition 5.4.7 (Reducing to a single edge by sprinkling). Let G = (V, E) be a finite, simple,

connected, vertex-transitive graph, let ap < 6 < 1/2 and oy < @ < B < 1, and suppose that
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pe(B,1 —=68) > e®p.(B,5). Let (py)ns1 be as in Lemma For each € > 0 there exists
N = N(a, 6, &) such that for each n > N there exists 1, = n,(a,6,&) > 0 such that if H is a
subgraph of G with |E(H)| < ¢~ and P,, (Actg(H)) > & then there exists e € E(H) such that
P, (Actg(e)) > n, for everym > n+ N.

Note that the choice of edge e € E(H) may depend on the choice of n > N and that the constants
N and n,, are independent of G and S.

We now show how Proposition [5.4.1|follows from Corollary [5.4.5|and Proposition deferring
the proof of Proposition to Section[5.4]

Proof of Proposition given Proposition Let G = (V, E) be a finite, simple, connected,
vertex-transitive graph of degree d and let ag = (2/|V)'/3. Letag <@ < B < 1,letay < 6 < 1/2,
and suppose that

pe(B,1=6) > ¢’ pe(B, ).

It suffices to prove that there exist positive constants ¢ = c(a,6) and C = C(a,d) such that
if |V| > C then degG > c|V| and there exists an automorphism-invariant set of edges F' with
|F| < C|V|such G \ F has at most C connected components.

Let (py)n>1 be as in Lemmal[5.4.6] It follows from Corollary [5.4.5]that there exists n; = 171 (6) such
that for each p € Q there exists a subgraph H of G such that |[E(H)| < 17;1 and P, (Actg(H)) > 1.
Applying this fact with p = p,, for an appropriately large constant n, it follows from Proposition[5.4.7|
that there exist positive constants 17, = 172(@, 6) and N; = Ni(a, ) and an edge ey € E such that

Py, (Actg(eo)) = 12

for every n > Nj. Since the edge e activates S if and only if e is closed and pivotal for the event
{IIK1|l = B}, we have by Russo’s formula that

P, (1K1l = B) = > By, (e is pivotal for {||K1]| = f})

ecE

> |Orb(eo)| Pp, (Actg(ep)) = 12 |Orb(eo)|

forevery n > Nj. Since py, > p.(B,06) and @, 6 > « it follows from lemmal5.2.6|that py, > 1/2d

and hence that
, |Orb(eo)|

2d

SN

<pwn By (1K1l 2 B) <
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for every n > Nj, where the upper bound follows since p, € Q for every n > 1. Since G is

vertex-transitive |Orb(eg)| > % |V| and it follows that the constant ¢, = ¢ (@, §) = 01,/ 16 satisfies
d = c|V].

This establishes the desired density of G.

All that remains is to find an Aut G-invariant linear-sized set of edges F' C E that disconnects G
into a bounded number of components. Let C; = 6/c5, letnz =ny A Cl‘l, and let N = N(a, 9,13)
and 4 = nn,vn, (@, 8,13) be as in Proposition We claim that if we set k = N; V N + N>
then there exists a constant C, = C,(a, ¢) such that the set

F:={e € E: P, (Actg(e)) > na}

has the desired properties when |V| > C,. This set F' is clearly Aut G-invariant. Moreover, by
Russo’s formula, since py - P, (|[Ki|l > B) < % and py > 1/2d > 1/2|V|, we have that

1
|F| < a Z P,, (e is pivotal for {||K1|| > B})

ecE

1 8
=—P (|Ki|l =B) <—1V|,
e o UK = B) 5n4| |

so that |F| is at most linear in |V|. Since |F| < %IVl and d = deg G > c;|V|, we have that

16
deg(G\ F) > co|V| - —.
0174

Thus, there exists a constant Cy = Cp(a, 6) such that if |V| > C; then
deg(G \ F) > %m.

It now suffices to prove that G \ F is not connected when |V| > C,. Indeed, once this is shown
it follows automatically that G \ F has a bounded number of components since if G \ F has m
components then %lVI2 < |E| < m(|V|/m)?+|F|, and hence there exists a constant C4 = C4(a, 6)
such that m < 1+4/c, when |V| > Cy.

Suppose for contradiction that |V| > C; and that G \ F is connected. Since G \ F is connected and
deg(G \ F) > 2|V, it follows from Lemmathat diam(G \ F) < 6/c, = C;. Let P be a path
of length at most C; connecting the endpoints of eg in G \ F. If ¢( activates g then so does the set
P, and it follows that

IPl<Ci<ny' and P,y (Acts(P)) 2 Py . (Acts(en)) = 72 2 73.
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As such, it follows from the definitions of the quantities N> = N(a, ,n3) and na = ny,vn, (@, 6,13)
as in Proposition that there exists an edge e € P such that P, (Actg(e1)) > n4. This implies
that ey € F, a contradiction. O

Proof of Proposition

In this section we complete the proof of Proposition [5.4.1|by proving Proposition The proof
will proceed inductively, showing that — by changing to a different value of p € Q if necessary
— we can reduce the number of edges in the subgraph H given by Corollary [5.4.5] while keeping
P, (Act,(H)) bounded away from zero. More precisely, we will deduce Proposition as an

inductive consequence of the following lemma.

Lemma 5.4.8 (Removing one edge by sprinkling). Let G = (V, E) be a finite, simple, connected,
vertex-transitive graph, let ag < 6 < 1/2 and ay < a < B < 1, and suppose that p.(B,1 — ) >
e pe(B,0). Let (pp)ns1 be as in Lemma For each € > O there exists N = N(«, 0, €) such that
ifn > N then there exists 11, = n,(, 8, €) > 0 such that if H is a subgraph of G with |E(H)| < &'
and P,, (Actg(H)) > & then there exists a subgraph H' of H with |E(H")| < max{1, |E(H)| - 1}
such that P, (Actg(H')) > n, for every m > n.

Note that the choice of subgraph H” of H may depend on the choice of n > N and that the constants
N and n,, are independent of G and . Also, note that N and 7,, here are not the same N and 7, as
in the statemenet of Proposition

Proof of Proposition given Lemma Applying Lemmal5.4.8literatively | 1/&] times yields
the claim. o

For the remainder of this section we fix a finite, simple, connected, vertex-transitive graph G =
(V,E) of degree d, fix ap < 6 < 1/2and ag < @ < 8 < 1 such that p.(8,1-6) > e’p.(B, ), and
let (pn)n>1 be asin Lemmal[5.4.6 We also continue to write I = I(G, 8,6) = [pc(B,6), pc(B, 1-0)]
and Q = 0(G,B,8) ={p el:p-F,(IKill > ) < £}.

When G has bounded vertex degrees, and hence critical parameters are bounded away from zero,
Lemma/|5.4.8|could be proven easily by (classical) insertion-tolerance. The problem is rather more
delicate in general. The idea is to use vertex-transitivity of G to find many copies of H that each
activate 8 simultaneously, then sprinkle, i.e. open a small number of additional edges by slightly
increasing the percolation parameter, and argue that, after sprinkling, many of the copies of H

have strict subgraphs that are activators. To ensure that sprinkling reduces the number of edges

194



necessary to activate £ in a positive proportion of the copies of H, we need these copies to be
well-connected to each other in the open subgraph. We guarantee this by sticking a large cluster to

each endpoint of an edge in H, using the next lemma.

Lemma 5.4.9. For every € > 0 there exists n = n(a,d,&) > 0 such that if p € Q and H is a
subgraph of G with |[E(H)| < é and P, (Actg(H)) > & then there is an edge e € E(H) with

endpoints u and v such that

Pp (ACtﬁ(H) N{lIKull = 7} N {IKy| 2 I]d}) =1.

The proof of this lemma uses the quantitative insertion-tolerance estimate of Proposition [6.6.4]
together with the following theorem of the second author [Hut21b, Theorem 2.2], which guarantees
that the size of the largest intersection of a cluster with a fixed set of vertices is always of the same
order as its mean with high probability. We state a special case of the theorem that is adequate for

our purposes.

Theorem 5.4.10 (Universal Tightness). There exist universal constants C,c > 0 such that the
following holds. Let G = (V, E) be a countable, locally finite graph, let A C V be a finite non-
empty set of vertices, and let p € [0, 1] be a parameter. Set |M| := max{|K, N A| : v € V}.
Then

P, (IM| = @B, |M|) < Ce™* and P, (IM| < €E,|M|) < Ce

foreverya > 1and(0 < e < 1.

Proof of Lemma[5.4.9) We may assume that £ < §. We may also assume that H has no isolated
points, so that we have the bound |V(H)| < 2 |[E(H)| < % When H activates 8 we must have that
||Uuev( H) Ku” > 3 and hence by the pigeonhole principle that there exists u € V(H) such that

B ae

> —.
V(H)| — 2

I1Kull =

It follows that there exists a fixed vertex u € V(H) such that

& 82

P, (Actg(H)) > vz T (5.4.1)

P, (Actﬁ(H) N {llKull > ?}) >

1
V(H)|

Since H has no isolated points, u is the endpoint of some edge e € E(H). Let v be the other

endpoint of e, let N be the set of neighbours of v in G, and let X be an w-connected subset of N

195



(i.e. a subset of N that is contained in a single w-cluster) of maximum size. Since p > p.(«,9)

and G 1s vertex-transitive,
E, |X| > E, [|[Ki N N|] = |N|E, ||K1]| > add. 5.4.2)

Applying Theorem |5.4.10)| it follows that there exists a positive constant ¢; = c¢1(a, J, €) such that

P, (1X] £ c1d) < %2 and hence by a union bound that

82

P, (Actﬁ(H) N {||Ku|| > %} n{1X] > cld}) > = (5.4.3)
To obtain a similar bound with |K,| in place of |X|, we use insertion tolerance to open an edge
connecting v to X, which forces |K,| > |X|. Unfortunately we cannot argue this way directly since
opening this edge may produce a cluster with density at least 5, in which case Actg(H) would no
longer hold. To avoid this issue, we first claim that there exists a constant C; = C;(a, d, &) such
that if |V| > C; then

2
ae E
P, (Actﬁ(H) N {||Ku|| > 7} A{|X] = c1d) N Actﬁ(vX)C) > = (5.4.4)

where vX denotes the set of edges with one endpoint equal to v and the other in X. (Note that since
X is w-connected, each edge in vX individually activates g if and only if the entire set vX activates
B.) Indeed, suppose that (5.4.4)) does not hold. We have by (5.4.3) and a union bound that

2
P, ({IX| = c1d} N Actg(vX)) > %
and hence that
6‘182
Z P, (Actg(e)) = Ep [IX] Lacvx)] 2 e d-

ecE: edv

Applying Russo’s formula and using that G is vertex-transitive, it follows that
C1 82

16
Since p > p.(a@p, ap) we also have that p > 1/2d by lemma and hence that

P, (IKill > B) > d|vl.

2
, C1&€
p-B, (IKill 2 B) 2 —==1VI.

Since £ < ¢, this contradicts the hypothesis that p € Q whenever |V| > C; = 128/(c1%),

completing the proof of the claim.
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There are finitely many graphs with |V| < Cj, hence the lemma holds trivially in this case and we
may assume without loss of generality that (5.4.4) holds. Since we have that p > 1/2d as above,
we can use insertion tolerance Proposition [6.6.4]to open an edge in vX in the event appearing on
the left hand side of (5.4.4)), giving that

2, (Acts(H) N {IIKll = S} (1K > cid}) = 7,

for some n = n(a, d, &) > 0 as claimed. |

Once we have many copies of H that activate S and have large clusters stuck to the copies of u
and v, we use the following easy fact about equivalence relations to deduce that the copies of e
are well-connected to each other. More precisely, we will use this lemma to show that we can find
many large disjoint sets of copies of the edge ¢ in which any two copies y;(e) and y;(e) of e are

w-connected by paths yi (1) < y2(u) and y1(v) < y2(v).

Lemma 5.4.11. Let X be a non-empty finite set, let ~ be an equivalence relation on X, and let
Y C X be a non-empty subset of X. For each x € X write |x] for the equivalence class of x under
~. Ifminyey |[y]] > % then there exists a collection (Z;);c; of disjoint subsets of Y such that each

Z; is contained in an equivalence class of ~ and that satisfies the inequalities

X

| .
Zi| > —— min and Il > ——.
1z min |1y N2 o

Proof of Lemma(5.4.11] Write m = minyey |[y]| and define

Y_::{er:l[y]ﬂY|£%|[y]|} and Y, =Y \Y_.

Observe that if 4" denotes the set of equivalence classes of ~ then

2|X]| [[y]]
iy < Z TinT - Z ICIL(CNY #0) < |X|,

yeYy [ ] | Ce?%

so that |[Y_| < %|Y| and |Y,| > % |Y]. Let (Z;);e; be a maximal collection of disjoint subsets of Y,

Y]

mml foreachi € I. Every

such that each Z; is contained in an equivalence class of ~ and |Z;| = [

) 1Y)
BIE [m |[y]|} > {mm}

element y € Y, has
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So, by maximality, the union | J;c; Z; contains at least half the elements in [y] NY forevery y € Y,.

So the union | J;¢; Z; contains at least half the elements in Y,, and we deduce that

Y4 IX|

Y] ~ 4m’
kit

1] >

where we used the hypothesis m > 2||TX|| in the final inequality. O
We are now ready to complete the proof of Lemma [5.4.8] The final step to reduce the number of
edges in H is to open a small number of these well-connected copies of e by slightly increasing
the percolation parameter. When H activates 8 and u < v, H \ {e} also activates 8. Since the
copies of e are well-connected, opening this small number of edges is actually sufficient to ensure
a positive proportion of the copies of H \ {e} activate 5. By linearity of expectation, we conclude

that at this higher parameter the set H \ {e} activates 8 with good probability, as required.
Proof of Lemma Since @, § > ap we have by Lemma|[5.4.3|and Lemma [5.2.6| that

1 1 1 0
L(Q) 2 3L{U) = 5(pe(B, 1 = 8) = pe(B,6) 2 5(¢* = )pe(B,8) = 7,

where we used that ¢’ — 1 > ¢ in the final inequality. Fix € > 0 and n > 1, and suppose that H is
a finite subgraph of G with |E(H)| < &7! such that P, (Actg(H)) > . By Lemma , we can
find ] = €1(a, 8, &) and an edge e € E(H) with endpoints u and v such that the event

A = Actg(H) N {||K,|| > &1} n{|K,| > e1d} satisfies P, (A) > &1.

For each x € V, pick an automorphism ¢, € AutG such that ¢,(v) = x, so that ¢,(u) is
a neighbour of x for each x € V. These maps exist because G is vertex-transitive. Define
X :={x eV:¢;'(w) € A}. We have by linearity of expectation that Ep, IX]| =P, (A) > &1
and hence by Markov’s inequality that P, (|| X]|| > %81) > %81. We will now prove that we can

take N = [log,(8/€1)], so assume from now on that n > log,(8/¢).

Write 8 := {||X|| > %81} and consider an arbitrary configuration w € 8. Every ¢,(u) with x € X
has ||Ky )|l = €1. So, by the pigeonhole principle, we can find a subset Y € X with [|Y]| > %8%
such that {¢,(u) : x € Y} is contained in a single cluster of w. By definition of X and A, every
vertex y € Y has |K,| > ed.

We next claim that there exists a constant C; = C(«, 6, €) such thatif |V| > C| then g1d|Y| > 4|V]|.

2

Indeed, since ||Y|| > %81 , if this inequality does not hold then we must have that d < 88;3. In this
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case, since p, € Q and p, > 1/2d, and since every edge has Aut G-orbit of size at least |V| /2 by
transitivity, it follows from Theorem [5.3.10|that there exists a constant ¢; = ¢ («, , €) such that

4 /
5 2 Pn By (Kl 2 B) 2 crlog |V,

which rearranges to give the claim. Since graphs with |V| < C; can be handled trivially, we may
assume throughout the rest of the proof that |V| > C; and hence that £1d|Y| > 4|V]|.

By construction, every vertex y € Y has |Ky| > g1d. So by splitting clusters, we can find an
equivalence relation that is a refinement of < in which the equivalence class of each vertex y € Y
has between £1d/2 and & d total vertices. We now apply Lemma[5.4.11|to this equivalence relation
with the sets V and Y in place of X and Y. (The hypothesis of Lemma is met because
e1d|Y| = 4|V|.) This yields a collection of disjoint w-connected subsets (Z,),cg of Y such that for

every r,

HE

eid|y| _ &d vl v

‘]‘|‘|/| | > l? and |R| > 4|81|d > %
Whenever H activates 8 and u <> v, H \ {e} also activates 5. On the event 8 we must have that
x < yand ¢, (u) < ¢,(u) whenever x, y both belong to Z, for some r € R. Thus, on the event
B, if there exist r € R and x € Z, such that x & ¢, (u) then ¢,-(H \ {uv}) activates g for every
x' € Z,.

In view of this fact, our next step will be to increase the percolation parameter to open an edge
¢.(e) with x € Z, for a positive proportion of the indices r € R, thus making a positive proportion
of the copies ¢, (H \ {e}) with x € |, <r Z, activate 3.

Let m > n > [log,(8/e1)], and let P be the joint law of the standard monotone coupling (w, w’)
of percolation with the two parameters p,, < p,. It suffices to prove that there exists a constant
N = Nu(a@, 6, €) > 0 such that

P, (Actg(H \ {e})) > n,. (5.4.5)

Recall that the increasing sequence (p,),>1 was defined so that

1)
m— DPn > 3—(I1+1) > 3—(n+1)_
Pm —DPn 2 L(Q) > 14

and
P, (1K1l = B) = Pp, (1K1l = B) < 27!
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for every m > n. The assumption that m > n > log,(8/&1) implies that P, (||Ki|| > B) -
P,,(IIKi|l = B) < &, and since P},, (B) > %' a union bound gives that

P(w € Band [|Ki ()]l < B) 2 Py, (B) =P ([Ki(w)]l < B < IKi (o))
=P, (B)- (5.4.6)
(Bp,, (IK1()]l = B) = By, (IK1 ()]l 2 B))
€1 &1 &1l

> - - = — ST
2y T T (5.4.7)

and hence in particular that

P (K1 ()| <BlweB) = %. (5.4.8)

Consider an arbitrary configuration & € 8 and let (Z,),cg be a collection of sets as defined via
Lemma [5.4.11] above, which we take to be a function of £. (Note in particular that the index set R
depends on £.) For each r € R and x € Z, we have that
Pm = Pn _ 5 (n+1) O
P(¢i(e) € |w= §)> >3 —,
— Pn 4d
3
and since [{p,(e) : e € Z,}| = % |Z,| > f—éd (where the factor of 1/2 accounts for the distinction

between oriented and unoriented edges, with ¢, acting bijectively on the former), we deduce that

there exists € = £2(a, 9, €) > 0 such that
£3d/16

PExeZ : ¢(e) € |w=¢) 21_( 3 9 )

&35

€10

1—exp[ 3=l L |z (5.4.9)

where we used the inequality 1 — x < e in the second line. Condition on the event w = ¢ and
consider the random set J := {r € R : Z, <i/> Y}. Note that for all ri,r, € R with Z,, # Y and
Z, & Y, we have {¢x(e) :x € Z, } N {¢y(e) : x € Z,,} = 0. So by independence, it follows that
there exists a constant C, = Cp(a, 6, €) such that if |R| > C,3" then

&) _ _ﬂ
P(|J| > 237 |R |w—§) >1- 2 (5.4.10)

We will now proceed by case analysis according to whether |R(£)| > C,3" for every & € B or
|R(&)| < C,3" for some & € B. First assume that |R(&)| > C,3" for every & € B. On the event
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w € B, we write (Z,),eg and J for the corresponding sets defined with respect to w. We have by

(5.4.8) and (5.4.10) that

P (|J| > 22371 k| and |[K, ()| < B | w € B) > _ s _ g (5.4.11)
2 4783
and hence that )
&
P(w €B, |J| > %3—" IR, and [|K) ()| < ﬁ) > . (5.4.12)

Consider a pair of configurations (w, ) satisfying the event whose probability is estimated in
and pick r € J and y € Z,. Since ¢,(H) activates 8 in w and ||K;(w’)|| < B, we also have
that ¢, (H) activates 8 in w’. By definition of J, we can find x € Z, such that ¢, (e) is open in w’.
Since x,y € Z, we have by definition that x and y are connected in w, and since x,y € Y we have
by definition of Y that ¢,(u) and ¢,(u) are also connected in w. Since ¢, (e) is open in w” and
¢x(v) = x, we deduce that x, y, ¢, (u), and ¢, (u) all belong to the same cluster of w’. Since ¢, (H)
activates 8 in w” and y is connected to ¢, (u) in w’, we deduce that ¢,(H \ {e}) activates 8 in w’

also. Since this holds for every r € J and y € Z,, we have
W] :=|{x € X: o €Actg(¢:(H\ {e}}]| > |7/ min |Z,|.

8?82 _

V] n
- 37" and

3
Since |J| > 37" |R| > 37"2 7 and every Z, has |Z,| > %‘d, we have that [|[W]| >

hence that S

‘9182 -n
BIWI 2 5537

ey

Thus, it follows by vertex-transitivity that P, (Actg(H \ {e})) > w3 . This bound has the
required form, completing the proof of (5.4.5)) in this case.

It remains to consider the case that |R(&)| < Cp3" for some & € B. Since we always have
|R| > |V| /4d, we must have in this case that

V| < 4C,3"d.

Observe that if w € B and ||K;(«')|| < B then ' € B also. Thus, by (5.4.8) and the fact that
Py, (8) > 5, we have that

gl
B, (B) 2 o

On the event B, pick one of the sets Z, that are guaranteed to exist by our earlier argument, call it
Z,andletU :={x € Z: w € Actg(¢,(e))}. If
1 1
2, (80 {101 2 $1Z1}) 2 5By, (8)
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then we have by vertex-transitivity and the bound |Z| > S?d /8 that

sfd sf 6? n
By, (Acts(€) 2 By, [IUI LB 2 00 16 2 5 3
as required. Conversely, if
1 1
Ppm(za n{lIUll > 3 ||Z||}) < 5B (B),

3
then we use insertion-tolerance (Proposition [6.6.4 - using the fact that ||Z|| > 64;#) to open a
single edge in {¢,(e) : x € Z\ U} on the event BN {||U]| < % ||Z]|}. This does not create a cluster

with density at least 3, since none of the edges ¢, (e) with x € Z\ U activates 3. Arguing as before,
after opening this edge, every set ¢, (H \ {e}) with x € Z activates . Thus, it follows by the same
vertex-transitivity argument as above that there exists a positive constant £3(n) = &3(a, 9, &, n)

such that
Py, (Actg(H \ {e})) > &3.

This completes the proof. O

Completing the proof of the main theorems
In this section we complete the proof of Theorem [8.1.1)and hence of Theorem [5.1.2]

Proof of Theorem The implication (i) = (ii) follows immediately from Corollary and
Proposition [5.4.1] while the implication (iii) = (iv) is trivial. As such, it remains only to prove (ii)

= (iii) and (iv) = ().

We begin with the implication (ii) = (iii), i.e., the claim that molecular sets admit linear 1/3-
separators. To see this, note that if H is m-molecular for some m > 2 then there exists a constant C
such that for each G € H there is an automorphism-invariant set of edges F such that |F| < C|V(G)|
and F disconnects G into m > 2 connected components each of size |V(G)|/m. If we take A to
be the union of [m /2] of these components then |V(G)|/3 < |A| = [m/2]|V(G)|/m < 2|V(G)|/3
and |0gA| < |F| < C|V(G)| so that H has linear 1/3-separators as claimed.

We next prove the implication (iv) = (i). We will use the following theorem [Bol+10a] identifying

the location of the critical threshold for (not necessarily transitive) dense graph sequences.

Theorem 5.4.12 (Bollobds, Borgs, Chayes, Riordan 2010). Let (G,,) be a dense sequence of finite,
simple graphs with |V(G,)| — oo, and for each n > 1 let A,, be the largest eigenvalue of the
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adjacency matrix of G,. For each ¢ > 0
lim P (1K1l = ¢) = 0,
n—oo Ay

and for each € > 0 there exists 6 > 0 such that

] Gn —
HmEC (Kl 2 0) = 1.
Note that if A is the adjacency matrix of a finite graph then A is self-adjoint and the largest
eigenvalue (a.k.a. the Perron-Frobenius eigenvalue) of A coincides with the L? operator norm of
A. This norm satisfies ||A|| > (A1, 1)/(1, 1) = 2|E|/|V| where 1 is the constant-one function, and

hence if (G,),>1 is dense then the sequence of largest eigenvalues A, satisfies

liminf |V(G,)|™', > 0.

Suppose that H is dense and admits linear 6-separators for some 6 € (0, 1/2], so that there exists
a constant Cy such that for each G € H there exists a set A(G) C V(G) with 0|V (G)| < |A(G)] <
(1 = 0)|V(G)| and |0gA(G)| < Ci|V(G)|. For each G € H let H(G) and H(G)¢ denote the
subgraphs of G induced by A(G) and A(G)¢ respectively. Since every vertex of G has degree
2|E(G)|/IV(G)| we have that

min{|E(H(G))|. |[E(H(G))I} 2 6]E(G)| - [0 A(G)I.

For large n we have that 8|E(G)| > |0gA(G)| and hence that (H(G))gex and (H(G))gen
are both dense. Thus, it follows from Theorem [5.4.12] that there exists a constant C, such that
if we set p(G) = C,/|V(G)| for each G € H then both H(G) and H(G)¢ contain a giant
component with high probability under percolation with parameter p(G). The same also holds at
q(G) =2C,/|V(G)|, which is e-supercritical for H for an appropriate choice of £ > 0. But at this
same parameter g(G) the expected number of edges connecting A(G) and A(G)¢ is bounded by
2C1(C,, so that by Poisson approximation the probability that there are no such edges is bounded
away from zero uniformly over G € H. Thus the probability that ¢(G)-percolation on G contains
at least two giant components is bounded away from zero uniformly over G € H, and hence H
does not have the supercritical uniqueness property. It follows that the supercritical uniqueness
property fails for any set H’ with H C H’ C F, by extending ¢ from H to H’ by setting ¢(G) = 1
forall G € H'\H. m|
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Figure 5.1: Schematic illustration of the graphs discussed in remark[5.4.2]

Remark 5.4.2. The proof of (iv) = (i) above shows more generally that any sequence of finite,
simple graphs with linear minimal degree and linear 6-separators for some 6 € (0, 1/2] fails to have
the supercritical uniqueness property. On the other hand, the results of [Bol+10a]] imply that dense
graphs without subquadratic separators have the supercritical uniqueness property. It is natural
to wonder in light of Theorem [8.1.1] whether the failure of supercritical uniqueness in graphs of
linear minimal degree is always characterized by the existence of linear separators, without the

assumption of vertex-transitivity.

This is not the case. Indeed, let 0 < @ < 1/2 and suppose that we take two copies of Ky, and
one copy of K, arranged in a line with the two copies of K3, at the end and the copy of K,, in the
middle. We may glue these copies together in such a way that each vertex is connected to each of
the complete graphs adjacent to its own complete graph by between n* and 3n® edges. It is easily
verified that the smallest separators in the resulting graph sequence are of order n!*® and that there
will exist two distinct giant clusters with high probability when p = 3/4n. We focus on the second
claim, which is more involved. For such p the two copies of K5, are supercritical and each contains
a giant cluster, while the copy of K,, is subcritical and has largest cluster of order logn with high
probability. Thus, when we add in the edges between the various complete graphs, the probability
that there exists a cluster in the copy of K, that has an edge connecting it to both of its neighbouring
copies of K, is small: a K,-cluster of size m = O(logn) has both such edges adjacent to it with

2222 and since there are at most 2n such clusters the total conditional

probability of order m
probability is O((logn)?n?*~') = o(1) with high probability, yielding the claim. This gives an
example of a linear minimal-degree graph sequence that does not have linear separators but does
not have the supercritical uniqueness property either. By considering longer chains of copies of K,
connecting the two copies of K>, as in fig.[5.1] one can obtain similar examples where the minimal

size of a separator scales like an arbitrary power of n between n and n.
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5.5 Closing remarks
Counterexamples. We now discuss examples demonstrating that Theorem does not extend
to arbitrary insertion-tolerant percolation models on the torus or to critical percolation.

Example 5.5.1 (Multiple giants at criticality). The cycle Z/nZ (with its standard generating set)
has multiple giant components with good probability when p = 1 — A/n, and the set of closed
edges converges to a Poisson process on the circle as n — oo. As observed by Alon, Benjamini,
and Stacey [ABS04b], by considering the highly asymmetric torus 7}, := (Z/2"Z) x (Z/nZ) (with
its standard generating set) one can obtain similar behaviour at values of p that are bounded away

from 1.

Since these authors did not include a proof, let us now very briefly indicate how the analysis of this
example works. We assume for notational simplicity that n is a power of 2 and hence is a factor
of 2". Let X be the set of cylinders in (Z/2"Z) X (Z/nZ) of the form [kn, (k + 1)n] X (Z/nZ)
whose vertices are incident to some simple cycle of dual edges that wrap around the torus. When
p > 1/2, it follows by sharpness of the phase transition on Z? that there exists a constant ¢ p > 0 with
cp — oo as p — 1 such that each particular cylinder has probability at most e”“»" to belong to X,
this probability being bounded by the probability that a box of size n in Z? intersects a dual cluster
of diameter at least n. On the other hand, since the correlation length on Z> diverges as p T 1/2,
there exists a fixed p > 1/2 such that E,, | X| — oo as n — oo. Using this one can prove that if we
define p, to be the unique value such that E,, |X| = 1 then liminf p,, > 1/2 and limsup p, < 1. It
is fairly straightforward to prove that there are multiple giant clusters with positive probability at p,,.
Indeed, using the same exponential decay estimates one can prove that non-neighbouring cylinders
are highly de-correlated, so that E,, |X |> = O(1) and there is a good probability for X to contain
at least two elements that are well-spaced around the torus. On this event there must be at least
two giant components with high probability: since p, is bounded away from p.(Z?) = 1/2, each
vertex of the torus has good probability to belong to a cluster that wraps around the torus, and any
two such vertices can be disconnected only if there are two closed dual cut-cycles separating them.
The events that two distant vertices belong to such wrapping clusters are highly de-correlated, so
that the number of vertices belonging to wrapping clusters is linear with high probability and the

claim follows.

Example 5.5.2 (Insertion-tolerance on the torus is not enough). Consider the symmetric torus
(Z/10nZ)? with its standard generating set. Consider the model defined as follows: First, select a
pair of vertical strips of the form [k, k + n] X (Z/10nZ) and [k + 5n, k + 6n] X (Z/10nZ) uniformly
from among the n available possibilities. Declare each edge belonging to one of these strips open

with probability 1/4 and each edge not belonging to one of these strips open with probability 3/4.
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Using standard properties of subcritical and supercritical percolation on Z?, one easily obtains that
this model contains exactly two giant clusters with high probability: the two large high-density
strips will each contain a giant cluster with high probability, while there will be no clusters crossing
either of the two thin low-density strips with high probability. By also applying a random rotation in
{0, /2, ,3m/4} one obtains an automorphism invariant, uniformly insertion-tolerant, percolation-
in-random-environment model on (Z/10nZ)? with the same properties. As such, one should not
expect any uniqueness-of-the-giant-component results to hold on finite graphs at anywhere near the
same generality as found in the Burton—Keane theorem [BK89], even when restricting to symmetric
tori of fixed dimension. By taking the relative width of the low-density strips to go to zero in a
well-chosen manner as n — oo, one can construct a similar example in which the number of giant
clusters is either one or two each with good probability and any two vertices are connected with

good probability.

The supercritical existence property. Theorem can be though of a geometric characteri-
sation of the infinite sets H{ C F for which supercritical percolation has at most one giant cluster
with high probability. We now briefly address the complementary problem of whether there is at
least one giant cluster with high probability in supercritical percolation, noting that the definitions
only ensure that such a cluster exists with good probability (i.e., with probability bounded away

from zero).

Let H C ¥ be an infinite set. We say that H has the supercritical existence property if for every

supercritical assignment p : H — [0, 1] there exists a constant @ > 0 such that
lim inf P¢ o (the largest cluster contains at least « [V(G)| vertices) = 1.
GeH r(G)

Notice that the sharp density property immediately implies the supercritical existence property.
However the converse is false because (as we will show below) molecular graphs also have the
supercritical existence property. This might lead one to suspect that the supercritical existence
property always holds. In fact, this is not the case, and the counterexamples can once again
be exactly characterised in terms of molecular graphs. Let us note that the weaker supercritical
existence property

1(3101 ligle %nc P[(f(G) (the largest cluster contains at least @ |[V(G)| vertices) = 1

always holds (even without transitivity) as an immediate consequence of the universal tightness
theorem [Hut21b]. The following is a fairly straightforward consequence of our results and those
of [Bol+10a].
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Corollary 5.5.3. An infinite set H C F has the supercritical existence property if and only if it
is not the case that there exist arbitrarily large integers m for which H contains an m-molecular

subset.

Sketch of proof. Applying the results of [Bol+10a] as in the proof of Theorem [8.1.1] easily yields
that if H is m-molecular then
112[16%@3_8)41)? (e (KL < 1/m) >0

for every 0 < @, & < 1, yielding the forward implication of the claim. We now suppose H does
not have the supercritical existence property and argue that it contains m-molecular subsequences
for arbitrarily large values of m. It is an immediate consequence of Proposition that H has at
least one molecular subsequence. Suppose for contradiction that the supremal value of m such that
9H has an m-molecular subsequence is finite, and denote this supremum by M. Since H does not
have the supercritical existence property, there exists an infinite subset S C H such that

2
. G I
>
llréle?pp(l—s)’lpf(s,s) (”KIH = 4M) < 1,

and applying Proposition [5.4.1] as before we may assume that this subset is m-molecular for some
2 <m < M. By taking a further infinite subset and changing m if necessary, we may assume that
this subset has density deg(G)/|V(G)| converging to some constant ¢ > 0 and does not have a

further subset that is k-molecular for any k > m.

By definition there exists a constant C such that for each G € S there exists an automorphism-
invariant set Fg C E(G) with |Fg| < C|Vg| such that G \ Fg has m connected components. For
each G € S, let Hg be a graph isomorphic to each of the m connected components of G\ F. Since
S does not admit a subset that is k-molecular for any k > m, A := {Hg : G € S} cannot itself
contain a molecular subset. Thus, it follows from Proposition [5.4.Tand Theorem [8.1.1| that ‘A has
the sharp density property and the supercritical uniqueness property. On the other hand, the vertex
degrees of H; with G € S are asymptotically equal to those of G in the sense that the ratio tends
to 1, and Theorem [5.4.12] allows us to compute the location of the percolation thresholds for these
transitive dense graph sequences in terms of their vertex degrees. (Recall that the largest eigenvalue
for the adjacency matrix of a regular graph is equal to its vertex degree.) So any assignment
p : A — [0, 1] built from the assignment p : S — [0, 1] with p(G) := (1 —&)~1/? - p%(e, &) by
arbitrarily picking p(H) € {p(G) : Hg = H} for each H € A is itself supercritical for A. We
deduce from Theorem that
lim B G, 1K)l =0.
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In order for a vertex to belong to the largest cluster in some G € S, either it must belong to the
largest cluster in its copy of Hg, or this is not the case and there is an open edge of F; incident to
its cluster. By vertex transitivity every vertex of G is incident to at most C edges of Fg. It follows

that, writing K; for the /™ largest cluster,

ES 6 IKill < | [IKill+ > Cp(G)IKill - K

i>2

1K1l + Cp(G)[V(G)EX DK, ].

H
< By )

p(G)
Since p(G) is of order |V(G)|™! the second term tends to zero as G — co with G € S, and we
2 . ,
deduce thatEf(GG)HK] | > %Eg(c)llKlll > & forall but finitely many G € S. Define p’ : S — [0, 1]
by
P'(G):=(1-e)% p(G)=(1-&)" pl(e.e).
Since A does not have any molecular subsets, it follows by Markov’s inequality and Proposi-

tion[3.4.1] that

2

2
.. G g .. He 8_ _
haneglpr,(G) (||K1|| > _4M) > lerneglpr,(G) (||K1|| > 1 ) =1,

a contradiction. O
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Chapter 6 209

SUPERCRITICAL PERCOLATION ON FINITE TRANSITIVE GRAPHS II:
CONCENTRATION, LOCALITY, AND EQUICONTINUITY OF THE
GIANT’S DENSITY

Joint with Tom Hutchcroft

Abstract

In the previous paper of this series, we showed that supercritical percolation on a large finite
transitive graph typically has exactly one giant cluster. In the present paper, we simultaneously
establish that the density of this unique giant cluster is concentrated around its mean and that this
mean is equicontinuous with respect to the (suitably scaled) percolation parameter and is determined

by the “local geometry” (suitably interpreted) of G. For example, consider the torus
TZ = (Z/nZy)" .

Our general arguments recover the well-known fact that the supercritical giant cluster density for
(T9),»1 (d > 2 fixed) converges to the infinite cluster density on Z¢, whereas the supercritical
giant cluster density for (T%)y»1 (n > 2 fixed) converges to the survival probability of a Poisson

branching process.

Our proof relies on a new perspective on how to use sharp threshold theory in percolation: to
exploit the fact that certain events of interest (such as the event 0 < o0) do not to undergo sharp
thresholds. These arguments apply equally well to infinite transitive graphs, yielding analogous,
new results in this context too. For example, we show that for all € > 0 and d € N, the function

given by the restriction of
0G(p) =PJ(0 & ) to pe[p(G)+s,1]
is uniformly equicontinuous as G varies over all infinite transitive graphs with vertex degree d.

6.1 Introduction
This paper is the second in a series investigating the supercritical phase of Bernoulli bond percolation
on finite, connected, vertex-transitive graphs. The overarching goal of both papers is to obtain results

that hold for all such graphs, in contrast to earlier works that have focused on particular geometric



settings (such as complete graphs, tori, or expanders) and used methods specific to those examples.
In the first paper of this series, we answered the most basic question about the geometry of clusters
in this phase by showing that there is typically a unique giant cluster with high probability. In this
paper, we study the density of this giant cluster. We will show that as the volume of the graph
tends to infinity, the density of this giant cluster concentrates around a deterministic value, unless
the graph belongs to an explicit family of counterexamples known as molecular graphs which we
introduced in the first paper. We then investigate the continuity properties of this limiting density,
determining the senses in which it is determined by the local geometry of G and continuous in p.
As in [EH21a], the theory we develop applies without any constraints on the degree, but is also

new in the bounded degree case.

Setting the scene
Before stating our results, we first briefly overview the results of the first paper in the series [EH21a]
and the first author’s companion paper [Eas22]. In addition to providing important context for our

new results, this will also give us an opportunity to introduce relevant definitions and notation.

Let G be the set of all isomorphism classes of connected, simple (i.e., not containing loops or
multiple edges), locally finite, vertex-transitive graphs, and let ¥ = {G € G : G finite}. (We
work with isomorphism classes partly to make sure these really are sets; ¥ is countably infinite
while G has the cardinality of the continuum. We will usually suppress the distinction between
graphs and their isomorphism classes as much as possible when this does not cause any confusion.)
Given an infinite set H C ¥, a function ¢ : H — R, and @ € R we write limgeqy ¢(G) = a or
“¢(G) = a as G — oo in H” to mean that for each £ > 0 there exists N such that |¢(G) —a| < ¢
for every G € H with at least N vertices, or equivalently that ¢(G,) — « for some (and hence
every) enumeration H = {G1,Ga,...} of H. Similar conventions apply to define lim sup;cq,
liminfgcqy, and limits that may be equal to +oco or —co. Given two positive functions f and g on
H, we write “f(G) ~ g(G) as G — oo in H” to mean that limgeqy f(G)/g(G) = 1.

Given a countable graph G = (V, E) and p € [0, 1], we write P, = Pg for the law of Bernoulli-p
bond percolation on G, i.e., the random subgraph of G in which each edge is included independently
at random with inclusion probability p. Given a percolation configuration w € {0, 1} on G, the
connected components of w are called clusters. We write K, to denote the cluster containing the
vertex u and write u < v for the event that K, = K,. Given a subset W of V, the volume of W is
the number of vertices in W, denoted |W|, while if G is finite, the density of W is defined to be

the ratio |W|| := |W|/|V|. We write K|, K3, . .. for the clusters of w in decreasing order of volume
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(breaking ties arbitrarily).

Given an infinite set H C ¥, we say that an assignment of parameters p. : H — [0,1] is a

percolation threshold if

L. limgeq P(1-g)p. (IIK1]| = ¢) = 0 for every &, ¢ > 0, and

2. For every & > 0 there exists @ > 0 such that limpeg P14s),, (IIK1l] > @) = 1, where we set
P, =P forp > 1.

Note that critical thresholds are not unique when they exist, but any two percolation thresholds
Pe>Pe » H — [0,1] must satisfy p.(G) ~ p.(G) as G — oo in H. When a percolation
threshold p. : H — [0, 1] exists, we say that p : H — [0, 1] is supercritical if the set
H' ={G € H : p(G) < 1} is infinite and satisfies

G
tim inf 29

> 1
GeH' p.(G

or H’ is finite. We generalise this definition to include the case that a threshold p. does not exist

by saying that p is supercritical if H’ is infinite and there exists & > 0 such that
Iiminf P/ _ Ki|| > ¢) > ¢,
GeH' (1-¢)p (” 1” = 8) 2 €

or H’ is finite. Note that these two definitions of supercriticality coincide when H admits a
threshold function, and in particular that the definition of supercriticality does not depend on the
choice of threshold function. This definition also guarantees that every infinite set H C F admits
a supercritical assignment p : H — [0, 1], namely the trivial supercritical assignment p(G) = 1.
We say that H has the supercritical uniqueness property if

lim P, (||K2]| > €) =0
lim P, (K| > ©)

for every supercritical p : H — [0, 1] and every constant € > 0.

The first paper in this series [EH21a] together with the related work of the first author [Eas22]| give
simple characterizations of those transitive graph families that have the supercritical uniqueness

property and that admit percolation thresholds respectively.

Theorem 6.1.1 (([EH21a, Theorem 1.2]). An infinite set H C F has the supercritical uniqueness

property if and only if it does not contain an infinite molecular subset.
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Theorem 6.1.2 ([Eas22, Theorem 2]). An infinite set H C F admits a percolation threshold if and

only if it does not contain an infinite m-molecular subset for infinitely many values of m.

Here, given an integer m > 2, we say that an infinite set H C ¥ is m-molecular if it has the
following properties, where E(G) and V(G) denote the set of edges and the set of vertices of a
given graph G:

1. H is dense, meaning that lim inf gy —||‘]/5((GG))||2
2. There exists a constant C < oo such that for each G = (V, E) € H there exists a set of edges

F C E satistying the following conditions:

a) G \ F has exactly m connected components;
b) F is invariant under Aut(G);
c) |F| <C|V].

The stated conditions on G and F imply that the m connected components of G \ F' are dense,
vertex-transitive, and isomorphic to each other. We say that an infinite set 4 C ¥ is molecular if
it is m-molecular for some m > 2. For example, the set of Cartesian products of complete graphs
{K,OK,, : n > 1} is m-molecular for each m > 2. Applying the analysis of percolation on dense
graphs carried out in [Bol+10b], it is fairly easy to see that the supercritical uniqueness property
does not hold for molecular sets of graphs. For example, if we take p : {K,0K,, :n > 1} — [0, 1]
defined by p(K,0K,,) = 2/n then p is supercritical since each copy of K;, will contain a giant cluster
by the classical theory of Erd§s-Rényi random graphs, but the total number of edges between distinct
copies of K, converges to a Poisson random variable and hence is zero with positive probability.
The main result of [EH214a]| is that constructions of this form are the only way to get a non-unique
giant in supercritical percolation on a transitive graph.

These theorems imply in particular that if H C ¥ is an infinite set that is sparse, meaning that
limgep s
threshold function. An important example of such an infinite set H is 7, (for each d > 2), the

= 0, then H has the supercritical uniqueness property and admits a percolation

set of all (isomorphism classes of) finite, connected, simple, vertex-transitive graphs with degrees
bounded by d.

Concentration: The density is well-defined
An important quantity associated to percolation on an infinite transitive graph at a given parameter

p is the infinite cluster density, the proportion of vertices contained in infinite clusters. In this
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context, if we define the expectation 8(p, G) := IP[? (0 &> ), where o denotes an arbitrary vertex
of G, then it is easily shown that this quantity accurately captures the density of infinite clusters
in the sense that if A is any finite set of vertices then |[{x € A : x & oo}| = (6 = 0(1))|A| with
high probability when A is large. (Indeed, the variance of this random variable is easily seen to be
0(]AJ?). Getting sharp quantitative bounds on the fluctuations of this random variable in general
geometry is a very interesting problem closely related to those of [HH19, Section 5.3].) Moreover,

for percolation on Z, it is an immediate consequence of the ergodic theorem that

1

[_n’n]d

almost surely as n — oco. As such, for infinite graphs, the relationship between the almost-sure and
in-expectation density of infinite clusters is trivial, and one instead focuses on questions concerning
e.g. the dependence of the density on p, with continuity at p. being a famous open problem for

three-dimensional lattices.

For finite transitive graphs, the most natural analogue of the infinite cluster density is the giant
cluster density. In this setting, the ergodic theorem no longer applies and the analogous question
on the relation between expected and almost-sure densities become much more subtle. Of course,
the picture we would naively expect is that as p increases across some threshold value p.(G),
a unique macroscopic cluster should emerge, and the density of this macroscopic cluster should
be concentrated around its mean 6(p,G) := Pg (0 € K1). Unfortunately this is not always the
case: In the product of an n-vertex complete graph with an edge with p = A/n where 4 > 1,
it can be shown the largest cluster either has density close to either mf(A1) or %mf (1) with high
probability, where mf(1) is the limiting density of the giant cluster in the p = A1/n ErdGs-Rényi
graph, with probability approximately 1 — e mf(D)? (o have density close to mf(A); the resulting
density 0 ~ (1 - %e"l mf“)2) mf (A1) does not adequately capture the bimodal nature of this limiting
distribution. Even for bounded degree graphs, it is possible for similar behaviour to hold at the
critical point as we see on the long torus (Z/nZ) x (Z/2"Z) [EH21a, Example 5.1]. Still it seems
reasonable to conjecture that the density should be concentrated if we restrict to the supercritical

case and impose some mild geometric conditions on the graph at hand.

In order to address this question, we first introduce a relevant definition: We say that an infinite set

H C F has the supercritical concentration property if

lim 2, ([IK1 Il - Bp 1K1 2 £) =0
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for every supercritical p : H — [0, 1] and every constant € > 0. (Note that if concentration
occurs at all then it must be around the mean by the bounded convergence theorem.) As with the
uniqueness problem, it is reasonably easy to see that this property does not hold for molecular sets
of graphs, for similar reasons to the concrete example of the product of a complete graph with an
edge as discussed above. Our first main theorem states that, as with the supercritical uniqueness

property, molecular sets are the only obstruction to the supercritical concentration property.

Theorem 6.1.3. Let H be an infinite set of (isomorphism classes of) finite, simple, connected,

vertex-transitive graphs. The following are equivalent:

1. ‘H has the supercritical concentration property.
2. H has the supercritical uniqueness property.

3. ‘H does not contain an infinite molecular subset.

Note that the equivalence 2. & 3. and the implication /. = 2. were established in [EH21a, Theorem

1.2 and Lemma 3.6]; the new content of the theorem is the implication 2&3. = 1.

Corollary 6.1.4. Let H be an infinite set of (isomorphism classes of) finite, connected, vertex-

transitive graphs. If H is sparse, then it has the supercritical concentration property.

This corollary is new even for H = ¥, the set of all finite, simple, connected, vertex-transitive
graphs with degrees bounded by d. (Again, we stress that for bounded degree graphs the giant
can exist and fail to be unique or have concentrated density at the critical point, as part of a

discontinuous phase transition [EH21a, Example 5.1].)

Locality of the density

Now that we know that 6(p, G) = ]Pg(o € Kj) accurately captures the density of the supercritical
giant for large non-molecular finite transitive graphs with high-probability, we would like to un-
derstand the nature of the dependency of this quantity on p and G. In particular, we would like to
understand whether we can compute the density of the giant in terms of some appropriate local limit
object as the size of our graph diverges. Before providing our complete answer to this question, let

us introduce the analogous statements in the simpler setting of infinite transitive graphs.
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Infinite graphs The most important open problem in the theory of percolation on infinite transitive
graphs is to establish that the map 6(-, G) (i.e. p — 6(p, G)) is continuous for every fixed G € G*,
where G* is the set of all infinite transitive graphs that are not quasi-isometric to Z. This map
is always continuous on [0, 1]\{p.(G)} [Sch99], but continuity at p.(G) remains open for many
graphs, including G = Z3. In this paper, we are interested in the orthogonal question: Endow G*
with the local (Benjamini-Schramm) topology. Now is the map 6(p, -) continuous for every fixed
p? This variant of continuity arises naturally in the study of percolation on large finite transitive
graphs (see below). More generally, is the map 6 : [0,1] X G* — [0, 1] jointly continuous, as a
function of two variables? In fact, since 6(-, G) is monotone, this joint continuity is nothing more

than continuity in each argument individually.

Underlying both of these versions of continuity is the problem of showing that 6(p, G) is uniformly
well-approximated by
0,(p,G) := Pg(|K0| >n, 0« 00).

Indeed, letd € N, let G, be the (compact) subset of G* of graphs with vertex degree d, and consider
some p € [0,1] and G € Q;. Now by Dini’s theorem, the functions 6(-,G), 8(p,-), and (-, -)
are continuous if and only if 8, N uniformly on [0, 1] X {G}, {p} X G}, and [0, 1] X G,

respectively.

An obstacle to establishing the required uniform convergence on {p} X G for fixed p is that for
some choices of G, the parameter p might be supercritical (i.e. p > p.(G)), whereas for others,
p might be subcritical or critical. It is often easier to build arguments that are tailored to studying
percolation in just one of these three phases at a time. In this paper, we directly establish that
6, — 6 uniformly on the supercritical region {(p,G) : p > p.(G) + &} for every fixed € > 0.
This immediately yields the following statement. (There is no hypothesis that the graphs are not
one-dimensional because this condition does not appear in our argument and because the result

holds trivially when the graphs are one-dimensional.)

Theorem 6.1.5. Let (G,,),>1 be a sequence of infinite transitive graphs converging locally to some

infinite transitive graph G. Then

lim 6(p,G,) =0(p,G) forall p > supp.(Gy).

n>1

This theorem in particular recovers the fact that that p.(G) < liminf,_. p.(G,), and hence that
the map p. : G* — [0, 1] is lower semi-continuous. This had previously been established as a

consequence of the sharpness of the phase transition [Pet14, §14.2].
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In [EH23al], we established that 6, — 6 uniformly on the subcritical region {(p,G) : p <
pc(G) — g} for every fixed € > 0. By the same reasoning as above, this implies that the map
pe - GF — [0,1] is upper semi-continuous. Since, as mentioned, p. was known to be lower
semi-continuous, our work established that p. is continuous. The continuity of p. had been known

as Schramm’s locality conjecture.

In stark contrast to our proof of Schramm’s locality conjecture, our proof of Theorem|[6.1.5]is short
and handles all (unimodular) transitive graphs via single argument. By combining these two results,
we obtain the following concerning the continuity of 6(p, -). This corollary was previously known
in special cases such as when all of the graphs in question have polynomial growth [[CMT22]. We
were not able to remove the hypothesis that p # p.(G); if we could, then by approximating Z> by
toroidal slabs, we could also prove that (-, Z>) is continuous by applying the results of [DST14].

Corollary 6.1.6. Let (G,),>1 be a sequence of non-one-dimensional infinite transitive graphs

converging locally to some infinite transitive graph G. Then
lim 6(p,G,) =60(p,G) forallp € [0,1]\{pc(G)}.
n—->oo

Bounded-degree finite graphs Continuity-in-G questions arise naturally in the study of perco-
lation on large, bounded-degree, finite transitive graphs. Indeed, since every infinite set H of
finite transitive graphs with bounded degrees is relatively compact in the local topology, we can
for many purposes assume without loss of generality that ' converges locally to some infinite
transitive graph G. It is then natural to ask whether limgycq 0(p, H) = 6(p, G) for a fixed p. All
of our earlier discussion relating continuity properties of # to uniform convergence 8,, — 6 can be
adapted to finite graphs mutatis mutandis, where we define 6,,(p, G) = P,(,;(|Ko| >n, o¢ K

when G is a finite transitive graph. In particular, our proof of Theorem [6.1.5]yields the following
for supercritical percolation on finite transitive graphs.

Theorem 6.1.7. Let (G,),>1 be a sequence of finite transitive graphs converging locally to some
infinite transitive graph G. Let p. be a percolation threshold function for {G, : n > 1}. Then

lim 6(p,G,) =6(p,G) forall p > limsup p.(G).

h—00 n—oo
In [Eas24], the first author combined [EH23a; |[Eas22; EH21a]] to prove an analogue of Schramm’s

locality conjecture for finite graphs. The trouble here is that the non-one-dimensionality condition

becomes more subtle. We need to exclude finite graphs are long and thin, like a circle. Formally,

let distgu(S', gamc G) denote the Gromov-Hausdorft distance between the unit circle S !"and the
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graph metric on G after it has been rescaled by 37—, where diam G is the diameter of G. Now we
would like to exclude sequences of graphs for this distance tends to zero. (In fact, for the following

theorem, we may allow this distance to tend to zero, so long as it tends to zero not too quickly
t 6,(logdiamG)1/9
diam G

we obtain the following result describing the asymptotic behaviour of € on large bounded-degree

(i.e. faster tha ).) By combining this finite graph locality result with Theorem [6.1.5]

finite transitive graphs.

Corollary 6.1.8. Let (G,),>1 be a sequence of finite transitive graphs converging locally to some
infinite transitive graph G. Suppose that

T
inf distgy | S', ——G, | > 0.
nap 1 OICH ( diam G, ) g

Then
lim 6(p,Gy) =6(p,G) forall p € [0, 11\{pc(G)}.

High degree finite graphs Let us now consider an infinite set H of finite transitive graphs with
limgegr deg G = oo, such as the sequence of complete graphs or the sequence of hypercubes. We
would like to again relates the asymptotic behaviour of 6 to some kind of local limit object for H.
The problem is that since H has diverging vertex degrees, H cannot converge in the local topology.
So the continuity-in-G questions above do not readily extend. On the other hand, the (equivalent)
questions about the uniform convergence of 8,(p, G) — 6(p,G) do! For example, the analogue
of continuity-in-G is that for a given sequence of parameters p : H — [0, 1],
lim sup |6(p,G) —0,(p,G)| =0. (6.1.1)
=0 GeH
By considering a step-by-step exploration of the cluster at o, it is easy to see that for each fixed n,
as G — oo in H, the probability 6, (p, G) tends to the probability that a Poi(p - deg G) branching
process contains n vertices. In particular, writing mf(21) for the survival probability of a Poi(1)

branching process, (6.1.1)) is equivalent to having the following mean-field approximation:
lim |6(p,G) —mf(pdegG)| = 1.
GlerIfl{l (p,G) - mf(pdegG)|

Thus the analogue of the conclusion of Theorem is that this mean-field approximation holds
whenever p is a supercritical sequence of parameter. In this paper, we will characterise for which
families of finite transitive graphs this approximation holds. Since a Poi(1)-branching process is
critical at 4 = 1, the analogue of the locality of the critical point is that G — @ is the percolation
threshold for H, under some non-one-dimensionality hypothesis on G. We have nothing to say

here about this question.
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Unfortunately, the mean-field approximation does not always hold for supercritical percolation on
high-degree finite transitive graphs. For example, consider the product K,, x (Z/nZ)?* of a complete
graph with a two-dimensional torus. It is easy to see that the failure of the mean-field approximation
in this example extends to any family of graphs that can be automorphism-invariantly decomposed
into a collection of dense graphs by deleting O (|V|) edges. We call such graphs macromolecular.

Here is the precise definition. Note that every molecular graph is macromolecular.

Definition 6.1.9. We say that a finite transitive graph G = (V, E) is e-macromolecular, where
& > 0, if there exists an Aut G-invariant set of edges F C E with ¢ |F| < |V| such that (V, E\F) is
not connected, and the connected component (V’, E”) of o in (V, E\F) satisfies |[E’| > & V|2

We say that an infinite set H of finite transitive graphs is macromolecular limg; deg G = oo and

there exists a constant &€ > 0 such that all but finitely many of the graphs in # are e-macromolecular.

We will show that macromolecular graphs are in fact the only obstacles to the mean-field approxi-

mation for high degree finite transitive graphs.

Theorem 6.1.10. Let H be a set of (isomorphism classes of) finite, connected, vertex-transitive

graphs, and suppose that deg(G) — oo as G — oo in H. Then the mean-field approximation
lim |6(p,G) — mf(pdegG)| =1,
lim |6(p, G) — mf(p deg G)|

holds for every supercritical assignment p : H — [0, 1] if H does not have any infinite subsets
that are macromolecular. The converse also holds, provided that H admits least one supercritical

assignment p : H — [0, 1] that is non-trivial in the sense that liminfe 0(p,G) < 1.

What governs the asymptotic density 8 for supercritical percolation on a high-degree macromolec-
ular graph? We can think of percolation on the product of a complete graph with a torus as roughly
“simulating percolation” on the torus, by first revealing the states of the edges in the complete
graphs — producing a unique giant cluster in each complete graph — then revealing the remaining

edges. This perspective can be used to show that
0(A/n, K, X (Z/nZ)?) ~ 0(Ax,(Z/nZ)*) asn — oo,

where 1% = (1 — e™%) mf(2)%. In Section we will show that in fact for all macromolecular
graphs, the supercritical density 6 is determined “locally” by the graph obtained by contracting
each dense graph to a vertex. Note that this contraction can produce a torus (as above), and

similarly any bounded-degree graph, but also large complete graphs and hypercubes. In particular,
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the macromolecular case is at least as hard as the general bounded-degree case and the complete
graph and hypercube cases, combined. However, crucially, this contraction cannot produce a

macromolecular sequence of graphs.

Equicontinuity
Our results also yield the following general result about the equicontinuity of the supercritical giant

cluster density on any finite transitive graph. Recall that ¥ is the set of all finite transitive graphs.

Theorem 6.1.11. Let p : ¥ — [0, 1] be supercritical. For each G € F, consider the function
fe : [p,1] — [0, 1] given by fc(q) := 0(q/p,G). Then the family of functions {fc : G € F} is

uniformly equicontinuous.

By specialising to families of bounded-degree infinite transitive graphs, we also obtain the following.

(This time, we can use ¢ in place of ¢/p, since p is bounded away from zero.)

Theorem 6.1.12. Let H be an infinite set of infinite transitive graphs with uniformly bounded vertex
degrees. Let & > 0, and for each G € H, consider the function f, : [p,1] — [0, 1] given by
fc(q) :=60(q,G). Then the family of functions { fg : G € H?} is uniformly equicontinuous.

Proof sketch
Consider supercritical percolation P, on a large finite transitive graph G that is not molecular,
and say that we are tasked with proving that the giant cluster density is concentrated. The natural

subgoal is to prove the existence of a uniform tail on the distributution of non-giant clusters, i.e.

P,(|K,| = nbuto ¢ giant) ——— 0 uniformly in G. (6.1.2)

v

Indeed, all of the following implications are rather easy to prove:
Uniform tail <=  Locality @=—  Equicontinuity =  Concentration.

See Section for details. Unfortunately, both of the missing reverse implications in this chain
are false. So our strategy to prove concentration by first proving eq. (6.1.2) is doomed to fail in
general. Let us anyway see how far this plan will take us. We split into cases according to whether

the vertex degrees of G are bounded above or tending to infinity.

219



Bounded degrees

Our starting point is the elementary observation that the required uniform tail on finite clusters

holds for typical choices of p when some neighbour u of o happens to belong to the giant, i.e.

P,(|K,| = nbut o ¢ giant and u € giant 2%, 0 uniformly in G,

¢

because a simple mass-transport argument shows that

B, (o) < L2G),
n

where 6’(p, G) denotes derivative with respect to p, and this derivative must trivially be bounded
above for most choices of p because p — 6(p, G) is an increasing function taking values in [0, 1].
In principle, this approach could fail because the parameter p that we were given was carefully
chosen to belong a small set of parameters where this derivative is large. This turns out not to be a
serious obstacle: if we could prove that eq. (6.1.2)) holds whenever this derivative is bounded, we
could quite easily deduce that eq. holds in general. The real challenge is therefore to prove
that for all € > 0 there exists 6 > 0 such that

P,(0) 2 = P,(¢)20. (6.1.3)

Here is an initial, naive approach: by an easy exploration argument (in which we first reveal the

edges incident to K, then reveal the remaining edges), with probability at least

Py (©) - 6(p.G)

there is an edge uv in the boundary of K, whose outer endpoint v belongs to the giant and whose
inner endpoint u satisfies |K,| > n but does not belong to the giant. The problem is that we do not
have any control over the location of this edge uv. If only we knew that uv could be found inside

of some bounded-size, deterministic set of edges F ...

An important theme in boolean analysis is that an increasing boolean function typically undergoes a
sharp thresholcﬂ if and only if it does not depend too much on a small number of bits. In percolation
theory, the ‘only if” direction is typically applied to show that some connectivity event of interest

does undergo a sharp threshold. Our new idea is to apply the ‘if” direction to the event

{0 € giant}

ISee Section for full background, including the definition of sharp thresholds.
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which — in the cases of interest — trivially does not undergo a sharp threshold. This guarantees
the existence of a bounded-size, deterministic set of edges F such that if F is entirely open, then
o is highly likely to belong to the giant cluster. Using this and insertion tolerance, we are able to
fix the naive argument above to show a suitable edge uv can indeed be found within F with good

probability, as required.

Unbounded degrees

There are two problems with the above approach when it comes to graphs with large degrees. The
first is the use of insertion tolerance: typically, we will be working with parameters that on the
order of 1/deg G, and in particular, close to 0. Therefore, the cost to open all but one of the edges
in F is no longer constant. This turns out to be solvable by applying an adaptation of the sprinkling
and surgery argument we introduced in the previous paper of the series to prove Theorem [6.2.1]
This argument, which relies heavily on transitivity, lets us reduce the size of F to a singleton, as
required, by paying only a constant cost. A slightly technical point is that for this argument to
work, which involves repeatedly sprinkling an unboundedly large number of times, it is helpful to
work with an event that is increasing. For this reason, in section Section [6.5] we will show that
bounds on the distribution of non-giant clusters (“germs’”) — which may not be monotone in p —
can be converted into bounds on the probability that the giant cluster does not intersect given large

deterministic sets (“holes””) — which clearly is monotone in p, and vice versa.

The second problem is that the argument naively yields an upper bound on
& =P, (|K,| > ndegG, o ¢ giant)
for a large constant n, rather than on
& =P, (|IK,| > n, o ¢ giant) .

This is a more substantial problem because for macromolecular graphs, we can indeed have that
|K,| is on the order of deg G with good probability, without belonging to the giant cluster. We
will define a suitable automorphism-invariant relation on the vertices on G, called “being friends”,
where, roughly speaking, u and v are friends if it is unlikely that the giant cluster contains many of
the vertices in the neighbourhood of u but not of v, or vice versa. Then, we show that if we cannot
convert our control on &; into a control on &;, then the equivalence relation given by the transitive

closure of this “friend" relation must actually induce a macromolecular decomposition.

Thus, we can split into two cases: either we have the required control on &,, or our graph

is macromolecular. In the former case we are done as in the bounded-degree case. In the
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macromolecular case, we relate percolation on the graph G to percolation on the quotient graph
obtained by contracting each equivalence class of G to a point. This essentially reduces the problem
back to the bounded-degree, since clusters of size much larger than constant in this quotient graph
correspond to clusters of size much larger than deg G in the original graph G, which we are able
to control by ;. More precisely, we use this coupling to show that the density 8(p,G) on G
can be related to the microscopic cluster distribution in the quotient graph, and thus that this
density is uniformly equicontinuous. From this equicontinuity, we then obtain concentration via

Theorem

Note that a key challenge and novelty arising in our work, in contrast to previous works investigating
percolation on general graphs under some isoperimetric conditions, is that we do not obtain a general
bound on the size of microscopic clusters. Indeed, at our level of generality, such a bound does
not exist. (Relatedly, we cannot give a non-trivial upper bound on the variance of ||giant|| when
this density is concentrated around its mean, since by approximating molecular graphs, the rate of
convergence could be arbitrarily small.) This leads us to use a expansion-vs-structure dichotomy
— either we have good isoperimetric properties and therefore have sufficiently strong control of
small clusters, or we have some non-trivial rigid structure (being macromolecular) that we can
exploit. This is similar in spirit to the strategy often used in the study of probability on general
infinite transitive graphs, for example in our proof of Schramm’s locality conjecture, which uses an
expansion-vs-structure dichotomy with graphs with rapid volume growth having good expansion,
and graphs with slow volume growth having approximately the structure of the Cayley graph of
a nilpotent group (thanks to Gromov’s theorem about groups of polynomial growth and related

results).

Remark 6.1.1. In our first draft of this paper, we were only able to prove our results for families
of graphs uniformly bounded vertex degrees. Our proof was quite different and less elementary,
combining the second author’s two-ghost inequality with a standard application sharp threshold
theory - namely, using Talagrand’s inequality to prove that certain connectivity events do have sharp
thresholds. Realising that these methods could be relevant to Schramm’s locality conjecture, we
paused on this project to complete our proof of Schramm’s conjecture in [EH23a]. These original
methods make up [EH23al Section 2], and we sketched in [EH23a, Section 7.2] how these methods
can be used to establish uniqueness, concentration, locality, and equicontinuity for bounded-degree

finite transitive graphs.

However, these methods break down completely when trying to analyse the supercritical giant

cluster density for finite transitive graphs with large vertex degrees. More precisely, these methods
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fail to prove locality and equicontinuity as soon as graphs have even slowly diverging vertex degrees,
and they fail to prove uniqueness and concentration once the vertex degrees grow algebraically with
respect to the total number of vertices. Indeed, it is clear that these methods must fail in general

because they do not detect whether a graph is macromolecular.

6.2 Notation

Graphs Let G be a graph. For us, this means that G is an isomorphism class of connected,
simpleE], locally finite, countable graphs. When the choice of graph (or multigraph) G is clear
from context, we write V and E for the vertex and edge sets of G; when it is not clear we instead
write V(G) and E(G) to be explicit. We will adopt the convention that the volume of G is the
number of vertices in G, denoted |G| := |V(G)|. If G is (vertex-)transitive, then we write o
to denote some fixed vertex of G, which we refer to as the origin. We write dist(-,-) for the
graph metric on G and define diam G := max, , dist(u,v). Given u € V and n > 0, we define
B, (u) :={v € V : dist(u,v) < n}, and when G is transitive, we set B,, := B, (0).

Classes of graphs We write G and ¥ to denote the set of all infinite and finite transitive graphs,
respectively. Later, we will also write U and N for set of all unimodular and nonunimodular
transitive graphs, respectively. The definition of unimodularity is recalled in Section[6.4] We say
that an infinite transitive graph G € G is one-dimensional if G is roughly-isometric to Z, and we
define G* := {G € G : G is not one-dimensional}. For each d > 1, we write G, to denote the set
of all graphs in G having vertex degree exactly d, and we analogously define ¥4, Uy, Ny and G
We endow the whole of G U ¥ with the local (aka Benjamini-Schramm) topology. This obviously
makes G; compact and 7, relatively compact (for each d > 1), but in fact, the spaces Q:l‘, U,, and

N are also compact.

Dense graphs Let G = (V,E) be a finite graph. Let ¢ > 0. We say that G is e-dense if
|E| > ¢|V|*. If G is transitive, this is equivalent to degG > £|V|, where deg G denotes the
common vertex degree of G. We say that an infinite set of finite graphs H is dense if there exists

& > 0 such that all but finitely many graphs in H are e-dense, and we say that H is sparse if instead
lE(G)|
. V(6P
is sparse or dense.

limgegy = 0. Note that every infinite set of finite graphs must contain an infinite subset that

2This assumption can be replaced throughout the paper with the assumption that there are a bounded number of
edges between any two vertices. In particular, all our results about bounded degree graphs do not really require the
assumption of simplicity.

223



Macromolecular graphs Let G = (V, E) be a finite transitive graph. We say that a pair (A, B)
is a macromolecular decomposition for G if there exists a non-trivial equivalence relatioﬂ on
V that is invariant under the action of AutG such that A is the subgraph of G induced by the
equivalence class containing o, and B = G/~ is the multigraph obtained from G by contracting
each equivalence class to a (distinct) vertex. Given € > 0, an e-macromolecular decomposition for
:5((5;1 < é Say that G
is e-macromolecular if G admits an e-macromolecular decomposition. We say that an infinite set

G is a macromolecular decomposition (A, B) such that A is &-dense and

H C F is macromolecular if limgeqy deg G = oo and there exists € > 0 such that all but finitely
many graphs in H are e-macromolecular. The next lemma says that after passing to a subsequence,
there is an essentially unique best way to choose the macromolecular decompositions for these
graphs. Note that an infinite set of finite transitive graphs is molecular (defined in the introduction)
if and only if it is both dense and macromolecular. Given € > 0, say that G is g-molecular if G is
e-macromolecular and &-dense, so that an infinite set H of finite transitive graphs is molecular if
and only if there exists & > 0 such that all but finitely many graphs G € H are e-molecular.

Subgraphs LetG = (V, E) be a graph. Given u, v € V, we write uv for the unordered pair {u, v},
write u ~ v to mean that uv € E, and define neigh(u) := {v € V : u ~ v}. Given a set of vertices
X and a single vertex u, we write uX := {uv € E : v € X}. Given X that is a subgraph of G or
a subset of V, we write dH or dgH for the edge boundary 0X = {xy e E : x € Xandy ¢ X}.
Given a set of vertex W C V, we write G[W] for the subgraph of G induced by W and E[W] for
the edge set E(G[W]). Given two finite subsets W; and W, of V or a finite subsets of V, we define

the densityiz_f] of W in W, to be
Wi N W,
IWillw, = —77—
" (W2
When W, =V, then we simply write ||W|| to mean ||W;]||;. We will also apply the same notation
to subgraphs of G, in which case the density of one subgraph in another is defined to be the density

of the vertex set of one subgraph in the vertex set of the other.

Configurations and clusters Let G be a graph and let w : E — {0, 1} be a configuration. We
say that e is open or closed according to whether w(e) = 1 or w(e) = 0. We think of w as encoding
the spanning subgraph of G with edge set w~!(1). So w U X and w N X are defined by the above
conventions for X C G, X CV,or X C E. Givenu,v € V, we write u <> v or u & v to mean that

3‘Non-trivial’ means that there is more than one equivalence class.
4This definition is unrelated to the notion of dense graphs from earlier.
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u and v are w-connected, 1.e. there is a path in the graph encoded by w from u to v. We also write

v <> oo to mean that there are infinitely many vertices u satisfying u < v.

Given v € V, we define K, to be the subgraph of w spanned by {u € V : u < v} and call this the
cluster at x. We enumerate the clusters of w by K, K5, ... in such a way that |K;| > |K>| > ....
This enumeration is not well-defined when there are multiple clusters of the same volume. In this
case, we are happy to break ties arbitrarily. So to avoid this (unimportant) technicality, let us now
once and for all fix such a choice of enumeration Ky, K>, ... with |K{| > |K3| > of the clusters in

every (countable, locally finite, simple) graph.

Now suppose that G is finite. In our setting, K; will typically be the unique macroscopic cluster.
So we will sometimes use the more suggestive notation giant := K. Since w + giant(w) is not
an increasing map (with respect to inclusion), for technical reasons we will typically work with
the following proxies: for each £ > 0, define giant, to be the subgraph of w induced by the set of
vertices v satisfying ||K,|| > &. Note that the equation ‘giant = giant_’ is a convenient way to say

that there exists a unique cluster with density at least €.

Percolation P, with varying p Let G be a graph and let p € [0, 1]. We write P, = Pg for the
law of a random configuration w : E — {0, 1} where every w(e) is iid Bernoulli(p). We will write
P = P for the law of the canonical montone coupling (wg)gefo,1] of (Py)gefo,1]- Let & be an event
and suppose that p € (0, 1). Then we define P,(E) to be the derivative (if it exists) of the map
g — P, (&) evaluated at g = p.

Densities and supercriticality Let G be a transitive graph and let p € [0, 1]. If G is infinite, then
wesetd(p) = 6(p,G) :=P,(0 < o). Now suppose that G is finite. We define 6(p) =0(p,G) :=
P, (o € giant). Moreover, for each & > 0, we define 6.(p) = 6.(p, G) := P,(0 € giant,), and we
say that p is e-supercritical if 0.((1 — &) p) > &. So for an infinite set H of finite transitive graphs
and an assignment of parameters p : H — [0, 1], the assignment p is supercritical (as defined in
the introduction) if and only if there exists € > 0 such that for all but finitely many graphs G € H,

the parameter p(G) is e-supercritical for G or p = 1.

In addition to Theorem we use the following technical result from our previous work [EH21a,
Proposition 4.1 and Remark 4.2] characterising the so-called sharp density property, which we now
recall. For all G € F and B3, & € (0, 1], we define p% (8, &) to be the unique parameter satisfying

P,6 g6 (IKill = B) = &, which is well-defined by continuity and strict monotonicity of percolation
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on G. Now we say that an infinite set H C ¥ has the sharp-density property it

li p?(ﬁ’l_é) _
im sup —— =

1 foralla € (0,1) and 6 € (0, 1/2].
GeH pefat] P (B, 9)

This property in particular implies that the event {||K|| > 8} undergoes a sharp-threshold for every
fixed B > 0 when considering percolation on graphs in H.

Theorem 6.2.1. Let H be an infinite set of finite transitive graphs. Then H has the sharp-density

property if and only if H does not contain an infinite molecular subset.

Percolation thresholds We will use the notation p. both for the usual infinite-cluster percolation
threshold p.(G) = inf{p : 6(p) > 0} when G is an infinite transitive graph and for a percolation
threshold p. : H — [0, 1] when H is an infinite set of finite transitive graphs (when H admits
such a threshold), as defined in [Eas22]. It is well-known that p.(G) > deg]T for every infinite
transitive graph G. Let us record here the analogous result for finite transitive graphs, which can

be proven by the same argument as [EH21a, Lemma 2.8] or [Eas22, Proposition 5].

Lemma 6.2.2. Let H be an infinite set of finite transitive graphs. If p - H — [0, 1] is a supercritical
sequence of parameters, then liminfgeq(deg G — 1)p(G) = 1. In particular, if p. : H — [0, 1]
is a percolation threshold, then liminfgcq(deg G — 1)p.(G) > 1.

It is also well-known that every infinite transitive graph G satisfies the mean-field lower bound
0((1+¢&)pc(G)) = 1% forall & > 0. This was first proven by Menshikov [Men86] and Aizenman
and Barsky [AB87b]; various alternative simplified proofs are now available [DT16b; Hut20c;
DRT19; [Van22a]]. For future use, we state a version of this bound applying also to sets of finite
graphs without infinite molecular subsets. This was proven in [Eas22, Lemma 10] using an
adaptation of the methods of [Van22a] together with the uniqueness theorem of the first paper in
this series [EH21al.

Theorem 6.2.3. Let H be an infinite set of finite transitive graphs that does not contain an infinite
subset that is molecular, and let p. : H — [0, 1] be a percolation threshold function (which exists
by [Eas22|]). For all € € (0, 0) and all § € (0, =

> 1+e?

Iim P K|l > 6) =1.
Jim (1+8)p. UKLl = 0)
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6.3 Applications of Hatami’s theorem to percolation

Suppose for each n > 1 that A, is an increasing event depending on some finite number N,, of
independent random bits, each of which is 1 with probability p and 0 with probability 1 — p. Recall
that the sequence of events (A,),> is said to have a sharp threshold if there exists a sequence

P1, P2, ... of numbers in (0, 1) such that
lirll’IlP(l_,_g)pn (An) =1 and lirll’nP(l_g)pn(An) =0

for every & > 0 (in which case this holds with p, = min{p € [0,1] : P,(A,) = 1/2}). In this
section, we outline a new application of sharp threshold theory to percolation using theorems due to
Friedgut [Fr198]], Bourgain [Fri99b]], and Hatami [Hat12b], which have previously been overlooked

by the percolation community.

Let us first give some further background and definitions. Russo’s formula [Rus82] states that if A

is an increasing event depending on finitely many bits then

d
EPP(A) = Z P, (e is pivotal for A),
ecE
where an edge e is said to be pivotal for the (increasing) event A if w \ {e} ¢ A and w U {e} € A.
The probability that e is pivotal for A is known as the influence of e and is denoted by /,(A, e).

Talagrand’s inequality [Tal94] states that

1
(1 - p) max, Ip(A, e)’

d 2 !
%Pp(A) >c p(l—p)logm] Pp(A)(l—Pp(A))logp

so that events with small maximal influence must have large total influence. As explained in
[EH21a, Section 3.4], Talagrand’s inequality implies that increasing events that depend on n bits
in a sufficiently symmetric way automatically have sharp thresholds provided that the threshold
occurs at a value of p that is subalgebraically small in n. This condition cannot be removed in
general, since the existence of a triangle in the Erd&s-Rényi random graph G (n, p) has a coarse
threshold at p of order A/n. (Other powers of n can be obtained from the event that the ErdGs-Rényi
graph contains a complete subgraph on k vertices.) While this application of Talagrand’s inequality
is a standard part of the theory of percolation on bounded-degree and infinite graphs, we would
like to bring attention to a related but less well-known result due to Friedgut [Fri98]]. Friedgut
showed that if p is bounded away from O and 1, and %PP (A) is bounded above, then in fact A can
be approximated arbitrarily well by events determined by a bounded number of edges (where the

bound on the number of edges depends on the accuracy of the approximation). Friedgut’s theorem
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is the key to proving our results about bounded-degree graphs, where parameters of interest are

always bounded away from 0 and 1.

When p is algebraically small in n, the absence of edges of large influence is no longer sufficient
to ensure a sharp threshold, and Friedgut’s theorem does not apply, but one can instead look to
Bourgain [Fr199b] for a result of a similar flavour that is applicable. Bourgain showed that the
absence of a sharp threshold must imply the existence of sets of edges of bounded size (F};),>; for
which w U F}, is more likely to belong to A, than w by at least a constant (for infinitely many » and
appropriate choices of the parameter p). When the threshold occurs at a subalgebraically small
value of p, the conclusions of Bourgain’s theorem are strictly weaker than those of Talagrand, so
that Bourgain’s theorem is not relevant to percolation on bounded degree graphs. In this paper, we
will make use not of Bourgain’s theorem but rather a powerful strengthening of this theorem due to
Hatami [Hat12bf]. Roughly speaking, this theorem allows us to replace the conclusion that w U F,
is more likely to belong to A, than w by a constant with the conclusion that w U F,, € A, with
arbitrarily high probability. While this distinction may seem minor at first glance, it is in fact very
significant. When p is bounded away from 0 and 1, Hatami’s theorem’s is equivalent to Friedgut’s
theorem from the point of view of our applications. However, to allow for smaller values of p,

which will be necessary in later sections, we will always refer to Hatami’s theorem.

We now state Hatami’s theorem. For each positive integer n, we write [n] for the set {1,...,n},
and for each parameter p € (0, 1) write y,, for the law of a random variable x = (x;);c[,] Where the

x;’s are i.i.d. Bernoulli(p).

Theorem 6.3.1 (Hatami 2012). Ler n € N, ler f : {0, 1}"] — {0, 1} be non-constant and
increasing, and let p € (0,1/2]. For every € > 0, there exists a set S C [n] such that

[J¢(p)T?
wy(f(xX) |xi=1VieS)>1-¢ and |S|<exp|102—1"],
! l ey (f(x))?
d
where J¢(p) = 2p(1 - p)%m.
We will apply this theorem via the following corollary. We write P, (&) to denote dpglga) .

Corollary 6.3.2. Let G be a finite graph, let p € (0, 1), and let €1,&5,¢3 € (0,1). If & C {0, 1}E

is a non-trivial increasing event such that

1
P, (&) >2e1 and pP,(E) < —,
&2
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then there is a set of edges F C E such that

250
P,(WUFe&)>1~-ge3 and |F| Sexp(—z).
(£18283)
Proof of Corollary[6.3.2] The corollary is essentially immediate when p < 1/2. To allow for the
case that p > 1/2, we simulate percolation of parameter p on G by percolation of a parameter
¢(p) < 1/2 on a multigraph with more edges. This argument does not contain any surprises and

can safely be skipped on a first reading.

Fix p € (1/2,1) and let H = (V, F) be the multigraph formed from G by replacing each edge e by
¢ := [log, ﬁ] parallel edges ey, ..., e, with the same endpoints as e. For each configuration w
on H, let ®(w) be the configuration on G in which an edge e is open if and only if there is some

1 < i < ¢ for which e; is open in w. For each ¢ € (0, 1), define

g(q) =PS(A),  h(g):=Pl@'(A), and ¢(q) :=1-(1-9"",

so that g = h o ¢ and the pushforward measure <I>*Pg(q) satisfies <I>*]P’g(q) =P, By our choice of ¢,
we know that ¢(p) € (0, 1/2], allowing us to apply Theorem This guarantees that there is a

set of edges T C F such that

PH

I 2
i (w UT e cp—l(ﬂ)) >1—g; and |T] <exp (1012L) , 6.3.1)

e3(h o ¢(p))>?
where
1=2¢(p)(1 - ¢(p))(h o ¢(p)).
Since ®,.P7 = Pg, we know that Pg (WU D(T) € A) > 1—g3. Since g = h o ¢, we have by the

#(p)
chain rule that i’ o ¢ = g’/¢’. We also have by direct calculation that (¢’(p))~' = £(1 — p)(=1/¢,

and since log, ﬁ < ¢ <2log, ﬁ we deduce that
L 401 - p)log, —— <4
— < - p)log <4.
¢'(p) *1-p
Together with the simple observations that ¢(p) < p and 1 — ¢(p) < 1, this lets us simplify our
bound on |T'| from eq. (6.3.1) to

[4-2-p-g'(p)]?

IT| < exp|10'?
&3 -g(p)?

The result now follows since [x] < 2x for all x > 1, |®(7)| < |T| and, by hypothesis, g(p) > &)
and p - g’'(p) < 8—12 m|
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The key advantage of this result over the usual sharp-threshold results used in percolation theory is
that we can guarantee that w U F' € & occurs with with arbitrarily high probability. In particular,
we can force this event to have a good-probability intersection with any other event 8B such that
B\ & has good probability; usually we will apply this in the case 8 C E€. (On the other hand, this

method will tend to give estimates that are very poor quantitatively.)

Given an increasing event &, a set of edges F, and a configuration w € {0, 1}, we say that F is an
activator for £ if w ¢ E but w U F € &, and define

Actg[F] ={wUF e &E}n{w ¢ &E}

to be the event that F is an activator for &. We also write Actg[e] := Actg[{e}] when e € E is a

single edge, so that Actg|e] is the event that e is closed and pivotal for &.

Corollary 6.3.3. For all € > 0, there exists N < oo such that the following holds. Let G be a finite
graph. Let & be an increasing event. Let p € (0, 1). Suppose that

1
e<P,(&)<1-& and pP,(E)<-.
£
Let B be any event with P, (8 \ &) > &. Then there is a set of edges F' C E with |F| < N such that

P, (8 N Actg[F]) >

N M

Proof. This follows from Corollary applied with €] = &, = € and &3 = &/2. Indeed, letting
F be as in the statement of that corollary, we have that

P, (BNActg[F]) 2P, (B\E)N(wWUF €&)) >¢e-

| M
(SR

A strategy to show that events have low probability. This corollary leads to the following general
strategy for showing that an event 8 is unlikely under P,:

1. Find a suitable increasing event &.
2. Justify that for one (or many) parameters ¢ < p, the expression gPP; (&) is bounded above.

3. Show that at such g, it is unlikely that both Actg[F] and B hold simultaneously, where F is

a deterministic bounded-size set of edges.

4. Use Corollary [6.3.3|to deduce that at such ¢, the event 8 is unlikely.
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5. Finally, show that because 8 is unlikely at g, it is therefore also unlikely at p.

This is to be interpreted as a loose strategy rather than a detailed recipe: each step will involve

arguments that are specific to the event at hand. We implement a strategy in the same spirit in
Sections [6.4] and

We conclude this section by making note of the following elementary lemma, which states that we
always have many good parameters g where P is bounded above. Here £ denotes the Lebesgue

measure.

Lemma 6.3.4. Let G = (V, E) be a graph. Fix p,6 € (0, 1) such that the interval I := [p, (1+6)p]
is contained in (0, 1]. If& C {0, 1}F is an increasing event that is determined by the state of finitely

many edges then
, 1 2¢e
L ({p el:pP,(&) < —}) > (1 - —) L(I)
e 0
for every g > 0.
Proof. Let J = {p € I : pP, (&) < g1}, Since & is increasing and determined by the state

of finitely many edges, the map g — P, (&) is a polynomial that defines an increasing function
[0, 1] — [0, 1]. It follows that

1
—L(I\J)< [P (E)dg< | P, (E)dg=P & -P,(8) <1
e LUV < [ B @< [7©)da =P, (€)-F, ) <
We deduce the claim by rearranging, using that £(I) = 6p and that 6! + 1 < 2671 O

6.4 The unimodular bounded-degree case

In this section we prove our main theorems in the case that all graphs in our family are unimodular
and have uniformly bounded degrees. (Finite transitive graphs are always unimodular, so this
restriction is only relevant for infinite graphs.) All the theorems in this section are special cases of
those established in later sections; we present this case separately since it is much less technical and
will be the primary case of interest to many readers. It will also serve as a warm-up to the general
case, with several of the ideas used in this section appearing again in a more technical context later

in the paper. This section also contains all our results about infinite graphs.

For every d > 2, let us fix a consistent choice of percolation threshold function p. : ¥; — [0, 1],
which exists by Theorem In the following proposition, we write p.(G) to denote the value
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of this percolation threshold function at G when G is finite and to denote the usual infinite cluster

percolation threshold for G when G is infinite. Moreover,

E, ||giant]| if G is finite
8(p,G) := (6.4.1)
P, (0 ¢ o0) if G is infinite.

Proposition 6.4.1. Let H be an infinite set of (finite or infinite) transitive graphs converging locally

to some infinite transitive graph G «. For every constant p > lim supy p.(G),

llq_l'[l’lg(p, G) = @(p, GOO)

We now give a brief overview of (non)unimodularity, the mass-transport principle and the modular
function, referring the reader to [LP16b; [Hut20g|] for further background. Let G = (V,E) be a
connected, locally finite, transitive graph, and let Aut(G) be the automorphism group of G. The
modular function A = Ag : V> — (0, o) is defined by

| Stab,, u|

A ) = Ta .
(:7) = FSeab, vl

where Stab, = {y € Aut(G) : yv = v} is the stabilizer of v and Stab, u = {yu : y € Stab,} is
the orbit of # under Stab,. We say that G is unimodular if A = 1 and that G is nonunimodular
otherwise. Every finite transitive graph is unimodular, as is every Cayley graph and every amenable
transitive graph [SW90].

The mass-transport principle. Let G be a connected, locally finite, unimodular transitive graph.
The mass-transport principle states that

F(o,x) = F(x,0) (6.4.2)
2 2

for every F : V> — [0, co] that is invariant under the diagonal action of Aut(G) on V2, meaning
that F(yx,yy) = F(x,y) for every x,y € V and y € Aut(G). Note that this identity holds trivially

when G is finite.

Proof of Proposition [6.4.1]
In this subsection we use Hatami’s theorem to prove Proposition We will deduce this
proposition from a chain of simple lemmas, several of which do not require the bounded degree

assumption. We begin with the following immediate consequence of Corollary[6.3.3]
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Lemma 6.4.2. For every € > 0 there exists N < oo such that the following holds. Let G be a graph,
let 0 be a vertex of G, let p € (0, 1), and let m,n be integers with m < n. If

1
P, (m < |K,| <n) > &, P, (Kol 2 n) > &, and PP, (IKo| 2 1) < —
£

then there exists a set of edges F C E with |F| < N such that

P, ({IK,| = m} Nactg,>n[F]) >

(SR

Proof. This follows from Corollary with & = {|K,| > n} and B := {m < |K,| < n} C

&E°€. O

We next turn this estimate concerning activators into one concerning pivotals at a cost of p'F1/2|F|.
This estimate is much less wasteful in the bounded degree case, where the relevant values of p will

not be small, than it is in the high degree case.

Lemma 6.4.3. Let G be a graph, let o be a vertex of G, let p € (0, 1), and let m, n be integers with

m < n. For each non-empty finite set of edges F C E there exists an edge uv € F such that
|F|

P, ({IK.| = m} N actig,jsn[uv]) = %

P, ({IKo| = m} Nactig, >, [F]) .

Note that the left hand side of the inequality concerns the cluster of u while the right hand side

concerns the cluster of o.

Proof. Let ey, ..., er be an enumeration of F. Consider a configuration w € {|K,| > m} N
act|x,|>n[F] and let i < |F| be the maximum index such that |[K,(w U {ey,...,e;})| < n. We can

write e;41 = uv in such a way that
wU{er,...,e} € {|Ky| > m} Nactg,|>n[uv].

Thus, by the pigeonhole principle, there exists a non-random index i with an endpoint labelling

e;+1 = uv such that

P, (wU{e1,...,e} € {|Kul = m}Nactg, >, [uv]) P, ({IKo| = m} Nactig, >4 [F]) .

1
Z _
2|F|
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Since the event {w U {e1, ..., ¢;} € {|K,| = m} Nactg, >, [uv]} is independent of the restriction

of wto {ey,...,e;} it follows that

Py ({IKul = m} Nactig,j=n[uv])

>P, (wU{er,...,e} € {|Kul = m}Nactg, sn[uv]) Pp({e1, ..., e} € )
plfl
> mpp ({|KO| > m} N act|K0|Zn[F])
as required. O

Lemma 6.4.4. Let G be a unimodular transitive graph, and let m < n be natural numbers. Then
P, (Kol 2 1) 2m-P, ({IKul = m} N actig,|>n[uv])

forevery p € (0,1) and every edge uv € E.

Proof. The event that |K,| > n is fully determined by the state of finitely many edges. As such, the
map g — P, (|K,| > n) is differentiable at p, and, by Russo’s formula, has derivative given by

P, (1Kol 2 n) = ZPp ({IKo(w\e)| < n} N{|K,(w U e)| > n})

ecE

:—ZP ({w(e) =0} N {|K,(w)| < n} N {|K,(w U e)| = n})

eeE
Z Z » ({0 & ay nactg,sn[ab]) ,
aeV beneigh(a)

where neigh(a) denotes the set of neighbours of a. Applying the mass-transport principle to

exchange the roles of 0 and a in the last line yields that

By (Kol 2m = > By [IKol 1(actig, zal0b])]

beneigh(o)
> max E, [|K0|1(act|K |>n[0b])] > max m-P,(|K,| > m, actig,|>,[0D]),
beneigh(o) beneigh(o)
and the claim follows by transitivity. O

Lemma 6.4.5. For all d € N and € € (0, 1), there exists m = m(d, &) < oo such that if G € Uy,
p € (0,1) and n > m are such that P, (|K,| > n) > & then

L{QE[p,l]:Pq(ms|K0|<n)>g}sg,
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Recall that U, denotes the set of all (finite or infinite) unimodular transitive graphs with vertex

degree at most d.

Proof. It suffices to consider the case n > 2, the case n = 1 being vacuous. Fix G € Uy, p € (0, 1),
and integers n > m withn > 2 and suppose that P, (|K,| > n) > . We will prove the contrapositive
of the claim: There exists a constant M = M (d, &) > 2 such that

(L{qe [p,1] : Py (m < |K,| < n) >s} >¢g)=>(m<M).
Since n > 2, we know by a union bound that
e <P,(|Ky| 2 n) < ZPp(ou is open) < pd,

u~o

and hence p > 5. We may also assume that p < 1 — &, the claim being trivial otherwise. Take
J:={q € [p,1]: qP, (|Ko| 2 n) < 2&72}. Since L([p,1]\J) < & by Lemma , it suffices to
prove that there exists M = M(d, &) < oo such that

(3g € J such that P, (m < |K,| <n) > &) = (m < M). (6.4.3)

To this end, suppose that g € J is such that P, (m < |K,| < n) > &. Applying Lemma with
E ={|K,| =2 n}and B = {m < |K,| < n} C &°, we deduce that there exists N = N(g) < co and a
set of edges F C E with |F| < N such that

&
Pq ({|K0| > m} N act|K0|2n[F]) > 5

Using Lemma [6.4.3] it follows that there exists an edge uv € F such that

|F| & 81+N

2y (1Kl 2 m} Nacyonlwv]) > 375 2 ooy =i

where ¢ = ¢(d, &) is a positive constant. Since G is unimodular, we may apply Lemma to
deduce that P}, (|K,| > n) > mc. Contrasting this with the hypothesis that g € J yields that

We deduce that the implication (6.4.3) holds with M = M(d,&) = 2d/(ce?), completing the
proof. O
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In the next lemma, we write L for the Lebesgue measure. In the context of finite graphs, we used
‘giant’ to denote an arbitrary choice of largest cluster. Let us extend this definition as follows: if
there exists an least one infinite cluster, let ‘giant’ be the union of all infinite clusters. The reader
may notice that ‘giant’ is undefined when there are arbitarily large finite clusters but no infinite

clusters; we will never use the notation ‘giant’ in such a situation.

Lemma 6.4.6. Let d > 2 and € > 0, there exists m(g, ) < oo such that for all G € Uy,
.[j{p € [p.(G), 1] : Pg(|Ko| > m but o ¢ giant) > a} <e.

Proof of Lemma(6.4.6 We start by dealing with the finite graphs in 2. By the definition of a
percolation threshold, there exists ¢ > 0 such that P, _../2(|K,| > 6|V]) > ¢ for all but finitely
many of the finite graphs G € U,. Thus, by Lemma|6.4.5| there exists m € N such that

L{p € [pe(G) + g 1P, (m < |K,| < 5|V]) < g} >1-p(G)—¢ (6.4.4)

for all but finitely many (isomorphism classes of) finite graphs G € U,;. By increasing m if
necessary, we may take this estimate to hold for every finite graph G € U,. For each finite graph
G € Uy, let J(G) be the set whose Lebesgue measure is bounded in (6.4.4). By Theorems
and all but finitely many finite graphs G € H have the property that

P, (IK,| = 6 |V| but o ¢ giant) <

N M

for every p > p.(G) + £/2, and hence by a union bound that

P, (|1Ko| 2mbut0¢giant)§§+§:s

forevery p € J(G). This proves the claim for the finite graphs in U since L([p.(G), 1]\J(G)) < ¢
for every G € U,.

We now turn to the infinite graphs in U,;. By Theorem [6.2.3] there exists 6 > 0 such that

Bt (Kol 2 m) 2 Pz (000 ) 2 6

Pct3

for every infinite G € H and every n € N. So, by Lemma|6.4.5| there exists m = m(d, €) such that
the set of parameters

E
Jn:Jn(G):{pe[pc+§a1] :Pq(mS|K0|<n)S‘9}
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satisfies L ([pc + 5, 1] \Ju) < £ for every infinite G € H and every n € N. Noting that J; 2 J 2

.-+ for every infinite G € H, we deduce that the intersection J = J(G) = (,,»1 J» satisfies
£

Lpe1IV) =2

for every infinite G € Uy. This implies the claim since

P> e ¢
lin £ ([pee 31| \) < 545 =
+n1_)r£1o£ pc+2 \J 2+2 e
P, (IKo| 2 mbuto < o) = lim P, (m < |K,| <n) <&

for every infinite G € U, and every p € J(G).

O

Lemma 6.4.7. Let H be an infinite set of (infinite or finite) transitive graphs converging locally to

some infinite transitive graph G . For all p : H — [0, 1] satisfying liminfy p/p. > 1, if

lim limsupP, (|K,| > n but o ¢ giant) = 0,
n—oo (]_{

then
12{11 0(p,G) - 0(p,G)| = 0.

Proof. Forall G € H andn > 1,

©:=16(p,G) - 0(p,Go)l

(6.4.5)

< [6(p, G) =By (1Kol = m)|+[B}) (IK,| 2 n) =By (IK,| 2 n)|+ [Py (IK,| 2 n) = 6(p, Goo)| -

1 2 3
On On On

Since liminfg p/p. > 1, for all n,
limP iant| > n) =1,
im?, (|giant > n)

and hence, by Theorems|[6.1.Tand [6.2.1]

lim sup Q?,IL = lim sup Pg (|K,| = nbut o ¢ giant),
H H

(6.4.6)

which tends to zero as n tends to infinity if eq. (6.4.5)) holds. In particular, if eq. (6.4.5) holds then

lim sup © < lim sup inf (@,ll +02 4 @2)
H ¢ nxl

< lim sup lim sup (@,ll + 92+ Q?Z)

n—oo H’

< lim sup lim sup <7,1l + sup lim sup Vﬁ + lim sup 0,31 =0.

n—o0 H’ n>1 H’ n—o0
R N——
=0 by eq. (6.4.3) =0 =0
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We are now ready to complete the proof of Proposition [6.4.1] To make the proof slightly shorter,
we will invoke the following well-known result of Schonmann [Sch99]|: for every infinite transitive
graph G, the density 6(-, G) is continuous on (p.(G), 1]. This is not strictly necessary: we could
bypass this step by using Lemma|[6.5.1] (adapting its proof to all unimodular transitive graphs) and
Corollary (implying that that G, is unimodular.)

Proof of Proposition[6.4.1] Pick € > 0 such that p > limsupy, p.(G) + €. By Lemma|[6.4.6] we
can find sequences p', p%, p° : H — [0, 1] such that p! — p—¢, p> T p,and p? | pas G —
with G € H, and such that for all i € {0, 1,2},

lim limsupP,: (|K,| > nbut o ¢ giant) = 0.
H

n—oo

By Lemma for all i,
lim 0 (p'.G) -6 (p',Gw)| = 0. (6.4.7)

By Theorem [6.2.3| we have liminfy 8(p',G) > 0. So by eq. (6.4.7), limy; p' > p.(Go) and
hence p > p.(G). In particular, 6(-, G) is continuous at p by [Sch99|]. So for both i € {1,2},

lim6(p', Geo) = 0(p, Gieo). (6.4.8)
By combining eqs. (6.4.7) and (6.4.8)), for both i € {1,2},
lim6(p', G) = 6(p, Gwo),
H
which yields the desired claim by monotonicity because p is sandwiched between p' and p?>. O

6.5 Germs and Holes

In this section, let H C ¥ be an infinite set that does not contain any molecular subsequences, and
consider some assignment of positive integers M : H — N. Given an assignment of parameters
p:H — [0,1], let Germ(p) = Germ(p, M, H ) be the statement that

lim limsup P, (|K,| > nM but o ¢ giant) = 0,
n—-oo 7’{
and let Hole(p) = Hole(p, M, H) be the statement that

lim liminf inf P, (||giant||, > 1/n) = 1.
Jim liminf inf » (llgiant||, > 1/n)
|AlznM

In both equations, we use the convention that inf () := 1.
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Lemma 6.5.1. For every supercritical assignment p, if Germ(p) holds then Hole(p) holds.

Lemma 6.5.2. For every supercritical assignment p and every constant € > 0, if Hole(p) holds
then Germ((1 + &) p) holds.

Lemma 6.5.3. Let G be a graph, let u,v be vertices, and let p,q € [0, 1]. Foralln € N,

P (0 &5 u but |0K, (wp) N K, (wg)| = n) < M-l

We next state the universal tightness theorem [Hut21c, Theorem 2.2], which guarantees that the
size of the largest intersection of a cluster with a fixed set of vertices is always of the same order
as its mean with high probability. This theorem also holds for percolation on weighted graphs; we

state a special case that is adequate for our purposes.

Theorem 6.5.4 (Universal Tightness). There exist universal constants C,c > 0 such that the
following holds. Let G = (V,E) be a (countable, locally finite) graph, let A C V be a finite
non-empty set of vertices, and let p € [0, 1] be a parameter. Set |M| := max{|K, N A| : v € V}.
Then

P, (IM| > aE, |M|) < Ce™ and P, (IM| < €E, [M|) < Ce

foreverya > 1and(0 < e < 1.

Proof of Lemma Forall 6 > 0,G € ‘H,and A C V(G), by a union bound and by linearity of
expectation,

P, (||giant||A > 5) >P, (r;lea} |Kullg = 5) -P, ( max ||Kyll4 =9

ucA\ giant

1 .
> > - — > )
>P, (ILIE} |Kull4 = 6) 3 ILItlé:lIZ(Pp (|Ky| = 6 |A| but u ¢ giant)

So forall m,n € N,

O = liII}f{inf Agig(fG) P, (llgiant||, > 1/m)
|A|=nM

> liminf inf P, |max|K > 1 —limsup ma P, (|K,| = nM/m but iant) .
o e p(uefﬂ ulla /m) 7{upuev()é)m » (IKu| > nM/m but u ¢ giant)

1
Om Q71%1,n

By Theorems|6.1.1]and [6.2.1], since p is supercritical,

> 0,

liminf inf E K,
" Agl{/l(G) P [Tea/i(” ull
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and hence by Theorem |6.5.4] lim,, @}, = 1. By Theorems6.1.1|and|6.2.1} for all m,n > 1,

Q?fn,n = limsupmP, (|K,| > n but o ¢ giant) .
H

So if Germ(p) holds then lim,, C?,zn’n = 0 for all m. Therefore, if Germ(p) holds then by monotonic-
itty of 9y,

lim9,, = imlim9,,, > limo! —limlimo? =1,
n m n m m n ?

which implies that Hole(p) holds. |

Proof of Lemmal6.5.2] Let q := (1 + &)p. By Theorems [6.1.1]and [6.2.1] there is a constant &€ > 0
such that

lim B, (N) = lim By (N) = 0 (6.5.1)

where N is the complement of the event that there exists a unique cluster K satisfying ||K|| > €.
Suppose for contradiction that Hole(p) holds but Germ(q) does not. Then we can find an infinite
subset H’ C H, an assignment N : H’ — N with limg;s N/M = oo, and a constant > 0 such that
forall G € H’,

P, (N < |K,| <elV]) 2. (6.5.2)

Consider some G € H’. Trivially,
v(G) =P, (N) =E [P (wy € N | Ko(wy))],
and hence by Markov’s inequality,
P(P(wy €N | Ko(wy)) = 2v/n) <n/2.

So by eq. (6.5.2)) and a union bound, there is a deterministic set IT of possible outcomes for K,, such
that
P, (K, € IT) > /2, (6.5.3)

and every A € IT satisfies N < |A| < €|V| and

P(wy € N | Ko(wg) = A) < 2v/n. (6.5.4)

Consider some A € II. Let A be the set of all edges having at least one endpoint in A. On the event

that K, (w,) = A, since |A| < &|V| and every edge in A is w,-closed, we have w, € N if and
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only if w), \A € N. This is helpful because w P \A is independent of the event that K, (wq) = A. So

we can rewrite eq. (6.5.4) as
P (w,,\Z € N) <2v/n.

In particular, since A and G were arbitrary, by eq. (6.5.1)), Hole(p), and a union bound,

lim sup P, ({w\B € N} U N U {giantNB = 0}) = 0. (6.5.5)
H' Benl

&(B)

Now let b(A) = b(A, w) count the number of edges uv with u € A and v € V\ A such that

K, (a)\Z)‘ > e|v].

Notice that on the event &E(A), at least one such edge must be w,-open. So by independence, for
alln > 1,
P, (E(A) | b(A) <n/p) = (1-p)"P > e™ > 0. (6.5.6)

By constrasting egs. (6.5.3) and (6.5.6]), we must have for every constant n,

lim inf P, (b(A = 1. 6.5.7
im inf P, (6(A) > n/p) (6.5.7)

For all G and n, by eq. (6.5.3) and by independence,
P (b (K, (wg) ,wp) > n/p) =P, (K, € II) fi‘nlt:[IP (b (A, wp) >n/p| K, (wy) = A)
S

n .
> > flxlelgpp (b(A) >n/p).
So by eq. (6.5.7), for all n,
lirgll{ilan (b (Ko (wgq) »wp) > n/p) = n/2. (6.5.8)

For all G and n, whenever b (K, (w,),w,) > n/p, there must be at least & |V| vertices u such that

the event
T () = {o % u} 0 {[0K, () N 0K, (w,)] = n/p} (6.5.9)
holds. So by linearity of expectation, for all G and n,
1
OGn = su‘BP (T (u) > Vi Z P (T (1)) > &P (b (K, (wg) »w,) > n/p),
ue uev

and hence by eq. (6.5.8),

e en
fl fogn = —. 6.5.10
w1 e O = (0>-10)
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On the other hand, by Lemma|6.5.3] for all G and n,

OGa < e~ aPnip = p=en,

and hence,

lim sup lim sup ¢, < limsupe ™" =0,
n—oo '7—[' n—oo

contradicting eq. (6.5.10). m|

6.6 Characterizing discrete phase transitions

We now turn our attention to finite transitive graphs of divergent degree. (In fact most of what we
do will also apply in the bounded degree case, but has additional technicalities compared to that
case.) Our first goal, which we carry out in this section, is to characterise those graphs that have a

particularly degenerate kind of percolation phase transition we call a discrete phase transition.

Let H be an infinite set of finite connected transitive graphs. We say that H has a discrete
percolation phase transition if limg; 6(p, G) = 1 for every supercritical assignment p : H — [0, 1].
(Here, the word ‘discrete’ is used since this kind of phase transition, where the density jumps from
0 to 1 over a window of negligible size, is the extreme opposite of a continuous phase transition.)
When this occurs, all of our claims about concentration and continuity in the supercritical phase are
trivial. In this section we prove the following proposition, which gives a necessary and sufficient
condition for the supercritical phase to be discrete. This proposition will play an important role in
the remainder of our analysis, allowing us to focus our attention on the case that p.(G) is of order
1/deg(G).

Proposition 6.6.1. An infinite set H C F has a discrete percolation phase transition if and only if
H admits a percolation threshold function p. : H — [0, 1] satisfying

li pc(G)
m-——-—-mm:

dee G = oo. (6.6.1)
H 1-p(G) ©

The condition (6.6.1)) neatly encapsulates that a family of finite vertex-transitive graphs has a discrete
phase transition if it has a percolation threshold function that is always either very close to 1 or
much larger than the reciprocal of the degree for all large elements of the family; it includes the case
that p.(G) =1 for all but finitely many G € H. For an example where p. — 1, take the sequence
of cycles (Z,), and for an example where p. remains bounded away from 1 but p./deg — oo, take
cartesian products of complete graphs and cycles (K, X Z(,)) where f : N — N with lim f = oo is

any sufficiently slowly growing sequence. Since every set of finite transitive graphs with a discrete
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percolation phase transition admits a threshold function, the fact that the phase transition is discrete
can be phrased in terms of the convergence of 6 to a step function when rescaled by p.(G): An
infinite set H C ¥ has a discrete percolation phase transition if and only if it admits a percolation
threshold function p. : H — [0, 1] satisfying

lim 6(1p(G).G) = 1(A = 1)

for each constant 4 # 1. (The A = 1 limit of 8(Ap.(G), G) is sensitive to the precise choice of
threshold function p.(G).)

Corollary 6.6.2. For every infinite set H C F and for every supercritical assignment p : H —
[0, 1],

limpdegG = — liméd(p,G) = 1.

}}r{n p deg (o) 17511 (p.G)

Proof. Assume for contradiction that limg; p deg G = oo but that for some infinite subset H’, we
have s := supy, 0(p, G) < 1. By passing to an infinite subset if necessary, we may assume without
loss of generality that H’ is dense or sparse. In either case, as explained in [Eas22], it follows from
Theorem that H’ admits a percolation threshold p. : H" — [0, 1]. By passing to a further
infinite subset if necessary, we may assume without loss of generality that this percolation threshold
satisfies either limg; p. deg G = oo or supg, p. deg G < co. In the first case, Proposition[6.6.1|tells
us that H’ has a discrete percolation phase transition. Since p is supercritical, it follows that

limé(p,G) =1,
im6(p. G)

contradicting s < 1. In the second case, by Theorem [6.2.3] for every positive constant x,

liminf P, (1K1l = ——) = 1,
(],{/

1+x
and hence
X
liminf8(p, G) > ,
H (P, G) I+x
which contradicts s < 1 when x > &-. O

1-s
We start with the easier ‘only if” direction of Proposition[6.6.1]

Lemma 6.6.3. Let H C F. If H does not have a percolation threshold, or if it has a percolation

threshold p. : H — [0, 1] satisfying lim infy 1’_’ ;E%) deg G < oo, then the supercritical phase of

H is not discrete.
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Proof. First suppose that H does not have a percolation threshold. Then by the main theorem of
[Eas22]], H contains an infinite molecular subset H’. (In fact it contains an infinite m-molecular
subset for infinitely many m, but we will not need to use this stronger fact.) Since molecular sets

are dense, it follows by the results of [Bol+10b]] that there exists @ < oo (in fact @ = 1) such that

2a
deg G

G ﬁ is a percolation threshold for H’. Then the assignment p : G —

for H’ and satisfies

is supercritical
limsup 6(p(G),G) < limsupP,(|K,| > 1)
H’ H’
| | 2 deg G
deg G

Next suppose that H does have a percolation threshold p. : H — [0, 1] but

lim inf % deg G < co.

(6.6.2)
< 1.

< lim sup
7_{/

Then there exists an infinite subset H’ with

. pc(G)
lim sup ————
D 1= p(G)

and hence lim supy, p.(G) < 1 and lim supy, p.(G) deg G < co. Without loss of generality (i.e.

deg G < oo,

by passing to a further infinite subset if necessary), we may assume that there exist constants £ > 0

and @ < oo such that supy p.(G) < 1—gandlimg p.(G) deg G = «, and either limg deg G = oo

2a
deg G

‘H’ and satisfies eq. (6.6.2)). If supy, deg G < oo, then the assignment p : G +— 1—¢ is supercritical
for H’ and satisfies

or supg, deg G < oo. If limgy deg G = oo, then the assignment p : G +— is supercritical for

limsup #(p(G),G) < limsupP,(|K,| > 1)
7.{/ 7.{/

< limsup [1 - sdegG] <1.
(}_{/

We have shown that in all cases, we can find an infinite subset H” C H and a supercritical assignment

p: H — [0, 1] satisfying lim supy,, 6(p(G), G) < 1. Then the assignment H — [0, 1] given by

p(G) ifGeH
G-
1 if G € H\H’

is supercritical for H and satisfies lim infy; 6(p(G), G) < 1. Therefore the phase transition on H

is not discrete. m]
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The proof of Proposition will apply both the universal tightness theorem Theorem and
the following quantitative insertion tolerance estimate of [EH21al, Proposition 2.6]. Both results

will be used again several times later in the paper.

Note that for percolation on infinite graphs, “insertion tolerance’” usually refers to the fact that wU{e}
has law absolutely continuous with respect to that of w, or equivalently that P(w(e) = 1|w|g\.) > 0
almost surely. This statement is much less useful for finite graphs, particularly when p is very small
as is typical in the high-degree case. The following proposition gives conditions under which we
can force an edge to appear within a given (possibly random) set without changing the probability

of a given event too badly.

Proposition 6.6.4 (Quantitative insertion tolerance). Let G = (V, E) be a finite graph, let p € (0, 1),
and let F C E be a collection of edges. Let A C {0,1}F be an event, let 1 > 0 and suppose that
for each configuration w € A there is a distinguished subset F|w] with Flw] € F \ w and
|Flw]| = n|F|. If we define A* :=={wU{e}:we Aande € Flw]} then

7 plFl
1-p plF|l+1

P,(A") > P,(A)%.
We now begin to work towards the proof of the converse of Lemma|[6.6.3]in earnest. We begin with

the following lemma, recalling that 6.(p) = 6:(p, G) =P, (||K,|| > &).

Lemma 6.6.5. For each ¢ > 0 and A < oo, there exists 6 > 0, and C < oo such that the
following holds for every G = (V,E) € F satisfying |V| > C and degG < §|V|. If p € (0,1) is
g-supercritical and satisfies pO,.(p) < A then either p < ﬁ orf.(p)>1-e¢.

Proof of Lemma6.6.5] Let G € #. The claim is equivalent to the statement that for each £ > 0
and A < oo, there exists C = C(g,1) and 6 = (&, 1) > 0 such that if p € (0, 1) is e-supercritical
and satisfies 6,(p) < 1 — e and pO,(p) < A then either |V| < C,degG > 6|V|,or p < C/degG.

Fix p € (0, 1) thatis e-supercritical and satisfies 6. (p) < 1—gand p6.(p) < A. By Corollary|6.3.3]

there exists C; = Ci(&,4) > 1 and a set of edges F C E with |F| < C; such that

P, (actjk,|2c[F]) =

[\

Applying the pigeonhole principle twice, we deduce that there exists uv € F such that

& €
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By Theorems [6.1.1]and [6.2.1] since a sparse family of graphs can never contain an infinite macro-
molecular subset, there exists C; = Cr(g,4) < oo and § = 6(&,1) > 0 such that if |V| > C, and
deg G < ¢ |V| then

& E &
P, (— < |IK, || < 8) <P, (||1<1|| <eor Kol = 5 (6.6.4)

< .
2C 16C,
Let N be an w-connected subset of neigh(«) of maximal volume (breaking ties using some total

order on the set of subsets of neigh(u) that is chosen in advance). We have that
E,|IN| > E,|Ki N N| > edeg(G),

and hence by the universal tightness theorem (Theorem [6.5.4) that there exists a constant §; =

d1(g, ) > 0 such that
£

16C;°

P, (IN] < 01deg) <

It follows from this, by a union bound, that the event

&
& ={u »vin{[[Kl = e} N {|IN| = 61deg} N {IIKzII < 2_C1}

satisfies P, (&) > /(8C1) whenever |V| > C; and deg G < 6.

To conclude, it suffices to prove that there exists a constant C3 = C3(g, 1) < oo such thatif |[V| > C;
and deg G < 6 |V|then p < C3/degG. Let

(%) := P, (actjk, == [uN] | &),

where uN denotes the set of edges with one endpoint equal to u and the other in N. We split into

two cases according to whether (x) > % (Case 1) or (%) < % (Case 2).

Case1 Since all the vertices of N are connected in w, if act)g, > [uN] occurs then every edge
in uN is a closed pivotal for the event {||K,|| > €}. As such, by the proof of Lemma (i.e. a

simple mass-transport argument),
, 1
0.(p) = 7= 2 BolIKo[L ety ey [ob])]
b~o
01
> 5 deg GP,(&E, act|k, |z« [uN])

851
16C,

and, since pO.(p) < A, it follows that

> deg G,

16C;1
T &61degG’
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Case 2 Notice that if we start with a configuration belonging to the event &\ act|g, > [/N] and

then open an edge in u/N, we obtain a configuration in which
01degG < |K,| <elV].

So, by the quantitative insertion-tolerance estimate of Proposition [6.6.4] there exists a constant
02 = 02(&,4) > 0 such that

Py ({01degG < |Kul < e[V} N{IIK || 2 €}) = 6a.

It follows from Lemma that 07,(p) > 6102 deg G, and hence that

A
<—-".
p= (5152degG

Proof of Proposition The ‘only if” direction is Lemmal6.6.3] Suppose for contradiction that
the ‘if” direction is false, so we can find an infinite set H of finite connected transitive graphs with
a percolation threshold p, satisfying

(G
fim —2c(©)_

deg G = 6.6.5
T poc) g0 = (6.6.5)

and a supercritical sequence p satisfying
lirrql{infe(p(G),G) < 1.

Let H’ be an infinite subset of H such that supy, 0(p(G),G) < 1. If limgy p.(G) = 1, then the
only supercritical sequence for H’ (up to changing finitely many terms in the sequence) would be
the constant assignment G +— 1, which trivially satisfies limg; 6(1,G) = 1. So by passing to a

further infinite subset if necessary, we may assume without loss of generality that supy, p.(G) < 1.
Since eq. (6.6.5) holds but p.(G) is bounded away from 1 on H’, we know that

lim p.(G) deg G = co. (6.6.6)

By Lemma[6.3.4] we can find a constant £ > 0 and an g-supercritical sequence g for H’ such that
for all but finitely many G € H’, we have 6.(q) < 1 — € and ¢0.(q) < % By eq. , we know
that H’ does not contain an infinite subset of graphs with edge densities % uniformly bounded
away from zero [Bol+10b]] or vertex degrees uniformly bounded above (trivially, since p. < 1).
Lemma|6.6.5] therefore implies that

lim g (q) = oo,

which yields the required contradiction. O
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6.7 Negligibility of large holes

The goal of this section is to prove the following proposition, which states that sets of size
significantly larger than the degree have large intersection with the giant with high probability.
Recall that when W and A are two finite sets of vertices we write ||W||4 = |W N A|/|A]| for the
density of W in A, and that giant, = {v : ||K, || > &} denotes the set of vertices whose clusters have

density at least €. Recall that # denotes the set of all finite transitive graphs.

Proposition 6.7.1. For every supercritical assignment p : ¥ — [0, 1],

n—oo 7—'

lim liminf inf P iant|| , > 1/n) =1,
im limin Aglg(G) p (||g1an |4 /”)
|Alzndeg G

where inf @ ;= 1.

At the core of our proof is an induction argument that is similar to our proof of [EH21a, Proposition
4.1]in the previous paper of this series. We will start by proving Proposition[6.7.I|conditionally on a
technical lemma whose proof is deferred to Section[6.7] Before giving the proof of Proposition[6.7.1]
let us give an informal overview of the strategy. Notice that the original event {|| giant8|| a0 } is
increasing. So, if we suppose for contradiction that the proposition fails at some g-supercritical
p. then the conclusion of the proposition also fails to hold for all ¢ < p. By Lemma [6.5.2] this
implies that at every (1 —&)p < g < p, the cluster at o is mesoscopic with good probability. Thus,
we must have a whole interval I of parameters such that we reach a contradiction if we can show

that there is some g* € I where K, is unlikely to be a mesoscopic under Py:.

To find such a ¢* € I, we will use the following lemma to pick a “good” sequence (p,),>1 within
this interval /. We will then sprinkle repeatedly, moving from P, to P, to Pp, and so forth,
where (p,,)i>1 is a well-chosen subsequence of (p,),>1. As we do so, we will deduce a sequence
of increasingly strong estimates about measure P, eventually finding an n where we can prove

that ¢g* = p, has the desired properties needed for us to obtain a contradiction.

Lemma 6.7.2. For every 0 < & < 1 there exists 6(g) > 0 such that the following holds. Let
G = (V,E) € F satisfy |V| > 6. For every s-supercritical parameter p € (0, 1), there exists
an increasing sequence of parameters (pp)n=1in ((1 — §) p, p) such that the following inequalities

hold for every n > 1:

1. pn0.(py) < 871,
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2. puet = Pn 2 €373 (deg G) 7!,
3. Qs(pn+l) - Gs(pn) <27

Proof of Lemmal6.7.2] Fix G = (V,E) € ¥ and an e-supercritical parameter p € (0,1). By
Lemma the set J = {g € ((1 —&/2) p, p) : q0.(q) < 87!} has Lebesgue measure L(J) >
%sp. By Lemma(6.2.2} there exists 6 > 0 such thatif |V| > 1/6 then p > @, sothat L(J) > sés_eg'
Applying the same argument as in the proof of [EH21a, Lemma 4.7] but with ‘6. (-)” used in place of
P. ([IK:1 |l = B)’ yields asequence (p,)nz1inJ suchthat ppp1—p, = 3771 L(J) = 377 (deg G) ™!
and 0. (pu+1) — 0:(pn) < 27" for every n > 1 as required. (Indeed, this argument works for any

non-decreasing function taking values in [0, 1] as explained in the proof of [EH21a, Lemma
4.7].) O

Let us now introduce some notation that will be useful in the rest of the section. Let G € F and let

g,0 > 0. For each vertex v of G, define the event

meso’® = {% <|K,| <e |V|}.
To lighten notation, we will also adopt the shorthand act{ [F] := act|x >¢[F] for the event that a
set of edges F is an activator for the event {||K,|| > &}. The next lemma is the inductive step for
our repeated sprinkling argument. It tells us that by sprinkling along our good sequence (p,),>1,
we can iteratively shrink the size of a certain set of edges F' while maintaining a good probability
that mesog’g Nact? [F] occurs. Once F becomes a singleton, we will have found our parameter

q* = p, with which we can obtain a contradiction.

Lemma 6.7.3 (Shrinking by sprinkling). Let p,&,6 € (0,1) and G = (V,E) € F. Suppose that
p is e-supercritical and that (pp)n>1 is a sequence in ((1 - $)ps p) satisfying conditions 2 and 3
from Lemma For each (n, k, @), let A, (k, @) be the statement that there exists a set of edges
F with |F| = k satisfying

Py, (mesog"9 Nact’ [F]) > a.
Givenany k > 2 and a > 0, we can find N (g, k, @) < oo such that following holds if |V| > N deg G:

For each n > N, there exists B(¢, k, a,n) > 0 such that for all m > n,

Ak, =  Ap(k—-1,B)

We stress that the constants 8 and N appearing in Lemma are independent of the choices of
G, p, (pn)n>1, and 6. The proof of Lemma is highly technical, and is deferred to the next
subsection. By repeatedly applying Lemmal6.7.3] we obtain the following.
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Lemma 6.7.4. Let H C F be an infinite family of graphs that is sparse. Let € > 0 be a constant,
and suppose that p : H — (0, 1) is an assignment such that for every G, the parameter p(G) is

e-supercritical for G. Then

lim limsup  inf P, (mesoi/ m’s) 0.

m—o gy ge[(1-¢)p,p]
Proof. Suppose for contradiction that this is not the case. Then there exists a constant > 0
such that for all m > 1, there is an infinite subset H,, € H such that for all G € H,,, for all

q € [(1-¢)p,pl.
P, (mesoé/m’g) > 1.

Since H is sparse, we can moreover assume that for all m > 1 and for all G € H,,,

|G| > mdegG.

Consider some m > 1 and some G = (V,E) € H,. We will show that if m is sufficiently large
with respect to 17 and &, then we can force a contradiction. Let 6;(&) > 0 be the constant from
Lemmal6.7.2] Suppose that m > 1/, and let (p,)n>1 be the sequence in ((1 — &/2)p, p) that is
thereby guaranteed to exist. By Corollary|[6.3.3] there is a constant k(&,1) < oo such that for every

m > 1, there is a set of edges F' C E (which may depend on m) such that |F| < k and

min (&2, 7, £/8)
5 .

Equivalently, in the language of Lemma[6.7.3] (where the constant “6” is 1/m), A, (k, Bo) holds for
all n. Let Ny be the constant “N (&, k, By)” from Lemma Recursively define the sequence
(No, Bo), (N1,B1), - . ., (Nk—-1, Br-1), starting with (Ny, Bo) as already defined, as follows: Suppose
that we have defined N;_; and B;—; for some i € {1,...,k — 1}. Then set 3; to be the constant
“B(e,k —i+1,Bi—1, Ni—1)” from Lemmaand set N; := N A N;_; + 1 where N is the constant
“N(e,k —i,B;)” from Lemma Note that M := N;_; and &, := Bi_; are constants that
are entirely determined by & and 7. In particular, we may assume that m > M, so that for all
ie{l,....,k—1},

Pp, (meso,l,/m"9 ﬂacti[F]) > Bo =

|G| = N;degG. (6.7.1)
Claim 6.7.5. A,,, (1,62) holds.

Proof of claim. We will use induction on i to prove more generally that Ay, (k — i, 8;) holds for
every i € {0,...,k — 1}, which yields the claim as the case i = kK — 1. The base case i = 0 holds
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because A, (k, Bo) holds for every n > 1, and therefore in particular for n = Ny. For the inductive
step, suppose that Ay, (k — i, ;) holds for some i € {0, ...,k —2}. Since N; > N where N is the
constant “N (g, k —1i, 3;)” from Lemma|6.7.3] and since eq. holds, Lemma implies that
A,(k — (i+1),Bi+1) holds for every n > N;, and in particular, for n = Ny, as required. O

Pick an edge uv € E witnessing the fact that A,,, (1, 62) holds, i.e. such that
1/m,e

Py (mesoo ﬂacti[uv]) > 0.

By a union bound, we may assume without loss of generality that the endpoint u € uv satisfies

o
Ppy (meso,i/m’8 N acti[uv]) > 2,
Then by Lemma[6.4.4]
52m deg G
0. (pu) > 2=
By Lemmal|6.2.2, when m is large, we must have py; > @. Therefore,
, oom
pmO; (pm) = 5

which contradicts the first condition enumerated in Lemma when m is sufficiently large with

respect to € and 7. m|

We will now deduce Proposition[6.7.1|from Lemmal6.7.4] Note that this proof remains conditional
on Lemma|6.7.3 (through our use of Lemma [6.7.4)), which we will prove in the next subsection.

Proof of Proposition[6.7.1} Suppose for contradiction the claimed equation does not hold. For
every fixed G = (V,E) € F,

& = inf P iant||, > 1
wG =  inf B, (lgiantlly > 1/n)
|A|>ndeg G

is trivially non-decreasing with respect to n. So there must exist a constant y > 0 such that for all
n > 1 there is an infinite set H, C ¥ such that ¢, < 1 —y for all G € H,,. By picking a distinct

element from each H,,, we can build an infinite set 7 C F such that for all n > 1,

limsup¢,g <1-1v.
H

In particular, in the language of Section the set H does not have property Hole(p, d) where

d(G) = deg G. By passing to an infinite subset of H, we may assume without loss of generality
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that there is a constant £ > 0 such that for every G € H, p(G) € (0, 1) and p(G) is 2&-supercritical
for G.

For each G € H, pick a parameter ¢(G) € [(1 — &)p, p] that minimises P, (mesofl,/ m’g), which
exists by continuity. Note that ¢ : H — [0, 1] is supercritical because (1 — &)p is supercritical
because p(G) is always 2¢&-supercritical for G. By Lemmal6.7.4]

lim limsup P, (meso(l)/ ’"’8) =0.

n—oo

In particular, by Theorems [6.1.1| and [6.2.1] and since sparse families of graphs cannot contain

molecular subsequences,

lim limsup P, (|K,| > md but o ¢ giant) = 0,
n—00 (]_{

i.e. H hasthe Germ(q, d) property. By Lemmal6.5.1] it follows that /H has the Hole(q, d) property.
So by monotonicity, H also has the Hole(p, d) property, a contradiction. O

Proof of Lemma 6.7.3

LetG = (V,E) € ¥, and write d for the vertex degree of G. Let p, &, € (0, 1), and suppose that p
is e-supercritical for G. Suppose that (p,),>1 is a sequence in ((1 — £)ps p) satisfying conditions
2 and 3 from Lemmal[6.7.2] Fix k > 2 and @ > 0. Letn < m be arbitrary positive integers. Assume
that A, (k, @) holds, and let F be a set of edges witnessing this. Our goal is to find N (&, k, @) < oo
and B(&, k, @, n) > 0 such that if |V| > Nd and n > N, then A,,(k — 1, 8) must hold. Notice that
Ap(r,B) = Apu(k—1,B8)forallr € {1,...,k — 1}, since we can always extend a set of edges
witnessing A, (r, B) to a set of edges witnessing A, (k — 1, 8) by adding (k — 1) — r many arbitrary
edges.

In the following claims, we will write ¢y, ¢z, - - - € (0, 1) for small positive constants that are deter-
mined by the triple (&, k, ). When a claim involves a new constant c; that has not previously ap-
peared, we are asserting the existence of a constant c; (&, k, @) € (0, 1) with ¢; < min(cy, ..., c;i-1)
that would make the claim true. The constant ¢; is introduced in Claim 1, the constant ¢, in Claim
2, and so forth.

Claim 6.7.6. If |V| > cIld, then we can find vertices x and y with xy € F such that P, (E1) > ci
where

&1 = meso® Nact® [F] N {y € giant,}.
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Proof. Similarly to in the proof of Lemma[6.6.5] by applying the pigeonhole principle twice, there

are vertices x and y with xy € F such that

0,& & . ﬁ
Py, (mesoo Nact) [F]N{y e glantﬁ}) > 7

By Theorem and Theorem [6.2.1] there exists N (&, @, k) < co such that if |V| > Nd then

E a
p (K > K —)21——.
o (1K1 2 € and Kol < =) 21— 2

The conclusion follows by a union bound, with ¢ := N 1A ﬁ. m]

We will use x and y to denote the vertices whose existence is guaranteed by this claim throughout
the rest of the proof. Given a configuration w and a vertex u, let S(u) = S(u,w) be the largest

w-connected subset of neigh(u), breaking any ties according to an arbitrary deterministic rule.

Claim 6.7.7. If |V| > c;ld, then P, (&) > cp where

& =& N IS lneigh(r) = €2} -

Proof. Consider any vertex u. Since p, > (1—&)p and p is e-supercritical, E, giant8||

. > E.
neigh(u)
So by Markov’s inequality,
. e e
Pp, (“glanté‘”neigh(u) 2 5) z 5
There can never be more than 1/ clusters that each contains at least & |V| vertices. Therefore

&3

Epn ”S(u)”neigh(u) > Z
So by Theorem [6.5.4] there exists a universal constant C € (1, c0) such that

3

E C1 C1
Ppn ”S(M)Hneigh(u) < Z : i < ?
The conclusion follows by a union bound, with c; := %3 . g—é m]

Claim 6.7.8. If |V| > c[ld andn > cgl, then either A, (1, c3) holds or P, (E3) > c3 where

&z 1= &\ Act? [xS(x)].
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C2 . .
Proof. Supose that |V| > c;la’ and Py, (&E3) < ¢ := 3. Our goal is to show that A, (1, ¢) holds if
we assume that n > N for a sufficiently large choice of N (&, a, k). Indeed, this would establish the

claim with ¢3 := N “Thac. By a union bound,

{8}

C2 C2
Ppn(82\83) >Cy— Z > ?

On the event &,\ &3, we always have

||{u € neigh(x) : act? [xu]}“neigh(x) > (1S ()l neigh(e) = €2-

So there exists u € neigh(x) such that
0,8 & (&) _
P,, (mesoy® Nact; [xu] | > 5 2= 2c.

Let N be the smallest positive integer such that ﬁ < ¢, and assume that n > N. By the third
condition enumerated in Lemma|[6.7.2]

Oc(pm) — 0c(pn) < Z

k=n

Therefore, by a union bound and the monotone coupling of P,,, and P, ,
Py, (mesog’g Nact; [xu]) > P, (mesog’g Nact? [xu]) —(0:(pm) — 0:(pn)) =22c—c=c,
and hence A,,(1, ¢) holds. O

Claim 6.7.9. If |V| > ¢;'d and P, (E3) > c3, then P, (E) > c4 where

& =& N{|K.| = crd)} .

Proof. By Lemma there exists N (g, k, @) with N > cl_1 such that if |V| > N then p, > ﬁ
Assume that |V| > Nd, which implies that |V| > N and |V| > c[ld, and assume that P, (E3) > c3.
Our goal is to find c(e, k, @) € (0, c3] such that P, (&) > c. Indeed, then the claim holds with
c4 := N1 A c. On the event &3, we know that |S(x)| > c2d. So we are trivially done, with ¢ := 3,
ifP, (&3N{wNnxS(x) #0}) > 0—23 So by a union bound, we may instead assume without loss of
generality that

P, (&N {wnxS(x)=0}) > %
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Notice that if we start with a configuration in &3 N {w N xS(x) = 0}, then open any edge in
xS(x), we obtain a configuration in & Therefore by Proposition with F' := xneigh(x),
A =&EN{wnxS(x)=0},1n:=cy and Flw] :=xS(x),

2

¢ pnd c3\2_ o, 1]2 c3\2
P, (&) > ——. (—) > 2. (_) = c.
@) = 2 1pa1 7)) 7€

For each vertex z, pick a map ¢, € Aut G with ¢,(x) = z, which exists by transitivity, and define
&, ={wo ¢, € &E}.

Claim 6.7.10. If |V| > chd and Py, (E3) > c3, then Py, (F1) > c5 where

F1:={l{z € V : &; holds}|| > cs}

Proof. Assume that |V| > c;ld and P, (E3) > c3. By the previous claim and since every ¢, is an
automorphism,
E,, I{z € V: &; holds}|| =P, (E) > ca.

Therefore the claim follows from Markov’s inequality, with ¢5 := 3. O
For the remaining claims, we will (explicitly) assume that d is sufficiently large in order to help

with certain rounding errors. When d is not this large, we will anyway be able to easily conclude
directly.

Claim 6.7.11. If|V| > c;ld andd > cgl, then for every w € F1, there exists a collection of disjoint
sets of vertices (B; : i € I) such that all of the following hold, where B := U;c;B;:

1. we U, &

2. Foreachi € I, the set B; is w-connected.

3. {¢:(y) : z € B} is w-connected (where y is the vertex from Claim[6.7.6)).
4. c¢ < % < 4co.

5. ¢c6 < % < ¢ foreachi € I.
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Proof. Define ¢ := <%=, Assume that |V| > ¢;'d and d > cgl, and consider w € #. For
every z € V, if w € &, then ¢,(y) € giant,(w). There cannot be more than 1/ clusters that
each contains at least € |V| vertices. So there exists a set of vertices Y with ||Y]|| > cs& such that

w € U ey &; and {¢;(y) : z € Y} is w-connected.

Consider a cluster K of w with |K| > c¢pd. We claim that K can be partitioned into sets of
vertices Ay LI --- L Ay such that C%—d < |A;| < cad for every i. Indeed, it suffices to establish
this when K is the set of integers {1,..., N} for some N > cd. Let g := [c2d/2], and write
N =bg+r where b € Nand r € {1,...,q — 1}. Now take the partition into the consecutive
intervals {1,...,q},....{(b-2)g+1,...,(b—1)gq} and {(b - 1)g+1,...,N}. Each interval
has size g or g + r. Notice that thanks to our choice of cg, and since d > ¢!, we have c,d > 6, and

crd
hence | c2d/2] > =5=. Therefore,

cod
%Sqéq+r£2q£czd.
For every z € Y, since w € &;, we know that |K,(w)| > c2d. Thanks to the previous paragraph, by
splitting large clusters, there therefore exists an equivalence relation ~ on V that is a refinement of
&, such that for every z € Y, the equivalence class of z under ~, say [z], satisfies
Czd

3 < |[z]] £ c2d.

In particular, using the bound d > cgl for the second inequality, and using the bound ||Y|| > cse

for the third inequality,

min > = >
zeY |[Z]| 3

This allows us apply [EH21a, Lemma4.12] where (X, Y, ~) :=
of a collection of disjoint subsets (B; : i € I) of Y such that

R v
" Amine 12|~ dead’

—

V.Y, ~). This implies the existence

and for every i € I, the set B; is entirely contained in some equivalence class of ~ (which may
depend on 7) and satisfies

Yl .
1> — > — = =c¢d.
IBz|_2|V|rng§l|[Z]|_ > T3 ced

Since every B; is entirely contained in some equivalence class of ~, we also know that |B;| < c»d,

and therefore
< | B <
Ce < — Z (2.
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Since B; N B; = 0 for all i # j, and every B; satisfies |B;| > ced, we know that || - ced < |V|, and

therefore
ce < ﬂ < 4cy.
|| d
[
Claim 6.7.12. There exists B(&, k,a,n) > 0 such that if |V| > c;ld, n > c;l, d > cgl, and

P,.(F1) > cs, then Ay, (k — 1, 8) holds.

Proof. Assume that |V| > c;la’, d > cgl, and P,, (1) > cs. Recall that P denotes the standard
monotone coupling of percolation measures. Our goal is to find N (&, k, @) < oo and B(¢, k, a,n) >
0 such that if n > N then A,, (k — 1, 8) holds. Indeed, then the claim follows with ¢7 := N 1A ce.
On the event 7, p

c c c

|67| > é > f.

So there exists a fixed vertex z such that the event &, := F1 N {z € B} satisfies P, (E4) > %. Let
N (e, k, @) be the smallest positive integer such that 2N_1—1 < CSSC 6 and assume thatn > N. Then as in
the proof of Claim by the third condition enumerated in Lemma Oc(pm)—0:(pn) < %.

So by a union bound, since w),, € E4 implies that ¢, (0) ¢ giant, (w,,),

1Bl = 7] - min [|B;]| > [1] -
iel

C5C6

P ({wp, € 4} N {o.(0) ¢ giant, (w,,,)}) > < (6.7.2)

0,e

When w),, € E4and ¢, (0) ¢ giant, (w),, ), then by monotonicity of the coupling, w),,, € meso b.(0)"

Therefore, using the fact that ¢, is an automorphism for the first equality,

Py,, (mesog’s Nact; [xy]) =P, (meso‘;’j(o) Nactg ., [¢: (xy)])

> P ({wp, € &4} 1 {9:(0) ¢ giant, (wp,)} 1 {wp, € acts , [¢.00]}).

In particular, if

C5C6
16’

then we are done because A, (1, 8) holds, and hence A,,(k — 1, 8) holds, with 3 := %. So we

may assume that eq. is false, and therefore by eq. and a union bound, that the event

P ({wpn € &} n{p.(0) ¢ giant, (w,,)} N {a)pm € actj [</)Z(xy)]}) > (6.7.3)

Ay = {¢.(0) ¢ giant, (wp,,)} N {a)pm ¢ acty [¢z(x)’)]}
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satisfies
C5C6

P ({wp, € &} N AY) > TR

On the event that w,, € &, let B, denote the class B; from the collection (B; : i € I) (defined with

respect to w), ) that contains z, and define the event
Ay = {a)pm N{P,(xy) :u € B,} # (/)} .

Suppose we condition on w),, and find that w,, € &4, then condition on the restriction of w,,, to
E\{¢,(xy) : u € B,}. Then the events A; and A, are both increasing events of the unrevealed
edges, i.e. the restriction of w),, to {¢,(xy) : u € B,}. The conditional law of this restriction of
wp,, 1s still a product measure, and in particular almost surely satisfies the FKG inequality. Since
there are at least |B L > ng unrevealed edges, the conditional probability that A, will occur is

almost surely at least

|8+

2 ﬂ cqE
1_(1 le Pn) 21_(1_3;63(1)2 > 1 3 =,
_pn n

where the first inequality used the second condition enumerated in Lemma[6.7.2] Notice that if A;

and A, both occur after revealing the remaining edges, then (using that w,, € &4)

Wp,, € mesoj5 o) Nacty ) [ (F\{xy})].

Therefore, using that ¢, is an automorphism in the first line and applying the conditional FKG

inequality to obtain the final inequality,

Py, (meso Nact;, [F\{xy}]) Py (meso¢ 2 )ﬂact¢ ) [o (F\{xy})])

> P ({wp, € Es} N AL NA)

Bicsce
16

and hence A,,(k — 1, 8) holds. O

> 1P ({wp, €&} nA) > =: B,

We are now ready to complete the proof of the lemma. Recall that our goal is to find N (&, k, @) < oo
and B(e, k,a,n) > O such thatif |V| > Nd andn > N, then A,,(k — 1, 8) must hold. We will split
our argument into two cases according to whether or not d > cgl. (The ultimate choices of N and

[ are obtained by taking the maximum/minimum of the constants in each case.)
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First suppose that d < cgl. By Lemma there exists Ny (&, k, @) < oo such that if |V| > N;
then p, > ﬁ > 6—2" By Lemma , if p, > %ﬁ then there exists an edge uv € F such that

||

Py, (mesog"9 N act‘,‘j[uv]) > %PW (mesog"9 Nact; [F])
(%)"
> ék -a =:cg(e, k,a).

As argued in the proof of Claim by the third condition of Lemma there exists
Ni(e,k,a) < oo such that if n > N then 0.(pyw) — 0:(pn) < 3. Set N := N; V Ny, and
assume that |V| > Nd (hence |V| > N) and n > N. Then by a union bound,

(mesog’g N actj[uv]) > Py, (mesog’g N act‘j[uv]) — (Os(pm) — 0:(pn)) = cg — % = %,

and hence, by transitivity, A,, (1, ) holds (and hence A,,(k — 1, 8) holds) with 8 := 5.

Pp

m

Now suppose that d > cgl. Let B(e, k, a,n) > 0 be the constant from Claim which we may
assume satisfies 8 < c¢7. Set N := c;l, and assume that |V| > Ndandn > N. By Claim either
A (1, c3) holdsor P, (E3) > c3. If A, (1, c3) holds then A, (1, B) holds (and hence A,,(k — 1, 8)
holds), so we may instead assume that P, (€3) > ¢3. So by Claim[6.7.10, P,,, (#1) = cs. Therefore

by Claim|6.7.12 A,,(k — 1, 8) holds, as required.

6.8 The non-macromolecular case
The goal of this section is to prove the following proposition, which says that for supercritical
percolation on a high-degree non-macromolecular finite transitive graph, o is unlikely to belong to

a mesoscopic cluster.

Proposition 6.8.1. Let H C F be an infinite set of (isomorphism classes of) finite, connected,
vertex transitive graphs with limgeqy deg G = oo that contains no infinite macromolecular subsets.

Then for every supercritical p : H — [0, 1],

lim limsup P, (|K,| > n, o ¢ giant) = 0. (6.8.1)
=% GeH

Equivalently, we must show that if the convergence claimed in eq. fails, then we can construct
suitable macromolecular decompositions for infinitely many of the graphs in H. In Section
we show that we can construct these macromolecular decompositions if the giant cluster does
not behave as it should in the neighbourhood of the origin. In Section [6.8] we will then show

that if the giant cluster does behave as it should in the neighbourhood of the origin, then we
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can deduce eq. (6.8.1). Together, these yield Proposition [6.8.1] In Section [6.11] we will show
that Proposition [6.8.1] implies our main theorems in the case of high-degree non-macromolecular

graphs.

Macromolecular graphs and the neighbourhood of the origin

The goal of this subsection is to prove the following proposition. Informally, this proposition
states that if we consider supercritical percolation on a high-degree finite transitive graph that is
not macromolecular, then the giant cluster includes a positive proportion of the neighbours of the
origin with high probability. (This is not the case for macromolecular graphs, since the “local

giants” we see near the origin may fail to be included in the global giant.)

Proposition 6.8.2. Let H C F be an infinite set of (isomorphism classes of) finite, connected,
vertex transitive graphs with limgeqy deg G = oo that contains no infinite macromolecular subsets.
Then

lim lim inf B, (|| giant||eign(o) > a/) _1

al0

for every supercritical p : H — [0, 1].

When the graphs in H are dense, then the result follows easily from supercritical uniqueness
Theorem [6.1.1] So for most of the proof of this proposition, we may assume that the graphs are
sparse. The proof of this proposition will rely on the following definition. Let G = (V,E) € 7,
let x be a vertex of G, and let @, 8 € (0,1). Given a configuration w € {0, 1}¥, we say that x
is (a, B)-happy if there is an w-connected subset X C neigh(x) with ||X||,eign(x) = @ such that
X C giantg, and say that x is (a, B)-sad if there is an w-connected subset X C neigh(x) with
| Xlneigh(x) = @ such that X ¢ giants. (A vertex can be both happy and sad, or neither happy nor
sad.) Given x, y € V and parameters «, 3, y, p € (0, 1), we say that x and y are («, 3,7, p)-friends
if

Py ([{x is (@, B)-happy} N {y is (a, B)-sad}] U [{y is (@, B)-happy} N {x is (@, B)-sad}]) <y.

That is, x and y are friends if it is unlikely that one is happy while the other is sad. We will eventually
see that the subgraph spanned by edges between friends can be identified, in an appropriate sense,
with the macromolecular structure of G. Our first lemma gives conditions under which a vertex

has at most O (1) neighbours that it is not friends with.

Lemma 6.8.3. For all a,B,7y,6 € (0,1), there exists € > 0 and N < oo such that the following

holds. Let G be a finite connected transitive graph with deg > &~ that is not e-molecular. Suppose

260



that p € (0,1) satisfies 05((1 - 6)p) = 6 and p8(p) < (1—5. Then

[{x € neigh(o) : 0 and x are not (a, 8, y, p)-friends}| < N.

Proof. Let G € . Fix @, ,v,6,p € (0,1) such that 6g((1 — 6)p) > 6 and p%(p) < 1/6, and
suppose & > 0 is such that deg > £~! and that G is not e-molecular. By Lemma there exists
g0 = €0(0,B) > Osuch thatif &€ < gy then p > ﬁ. We will write that two vertices are friends to

mean that they are («, 3, v, p)-friends.

Fix an edge xy € E and assume that x and y are not friends. By a union bound, we may assume
without loss of generality (swapping x and y if necessary) that the event & that x is («, 8)-happy
but y is (a, 5)-sad satisfies P, (6) > /2. On this event, let X be an w-connected subset of
neigh(x) with ||Xlseighx) = @ that is contained in giantg, and let Y be an w-connected subset
of neigh(y) with ||¥[|ejgn(y) = @ that is not contained in giant;. By Theorem there exists
g1 =¢&1(B,v,9) € (0,80) such that if & < &1 then P, (||K>|| > B/2) < y/4, so thatif & < &1 then
by a union bound
Py (& n{lIK2ll < B/2}) = v/4.

If & occurs and y € giantg, then opening any of the edges between y and ¥ causes giant to increase
in size by at least @ deg. Thus, using transitivity, Russo’s formula implies that

/ 1 .
05(p) = EPP (8 N{ye glantﬁ}) (adeg)?,

and since p > ﬁ and p% (p) < 67! it follows that

4e
< .
a?§deg ~ a?s

P, (& N {y € giantg}) <

Thus, if &€ < & = min{ey, @*y5/32} then P,(E N {y € giantg}) < y/8 and hence by a union
bound,

P, (8 N {y ¢ giants} 0 {]IK| < ﬁ/z}) > v/8.
By applying quantitative insertion-tolerance (Proposition [6.6.4) to open an edge in yY, we deduce
that there is a constant ¢; = ¢ (@, y) > 0 such that if € < & then the event

&1 = {x is (@, B)-happy} N {y ¢ giantz} N {”Ky”neigh(y) 2 a}

satisfies P, (E1) > c1. If the event & N {x <> y} holds, then x is not connected to X, and opening
any edge between x and X causes the size of giant, to increase by at least @ deg. Thus, as above,

Russo’s formula together with transitivity imply that

a? deg 4e

P, (EiN{x & y}), sothat P, (E N{x & y}) < 5
a

pOg(p) =
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Thus, if we define £3 = min{e,, ¢;@?6/8} then by a union bound
c1
By (@10 yh 2 S

whenever € < 3. Applying quantitative insertion-tolerance to open an edge between x and X, we

deduce that there is a constant ¢; = ¢ (@, y) > 0 such that the event

E2 1= {| K llneign() = @} N {x € giantg} N {||K,| > a} N {y ¢ giantg}

neigh(y)

satisfies P, (&) > > whenever & < &3. In particular, the unordered pair xy = {x, y} satisfies

M(xy) :=E, [|Ky| ﬂaCtl|Ky||Zﬁ[xy]] +E) [lKX| ILaCtnKtzﬁ[Xy]] 2 cra deg

whenever € < g3. If we define & = {y € neigh(x) : x and y are not friends} then this estimate
holds for every x € V and y € &, provided that £ < g3. Using transitivity and summing over this

estimate, we obtain that if £ < &3 then

, 1 1 cHra
Qﬁ(p) 2 mz Z Ep [lel ﬂactHKX”Zﬁ[xy]] = mz Z M(xy) = Tdeglgal

xeV yedy xeV yeéy
Since p > 1/(2deg) and pbj(p) < 571, it follows that if & < &3 then |&,| < 4(coad)™'. This

completes the proof. O

We now investigate the subgraph spanned by edges between friends. We say that x and y are
(a, B, 7y, p)-linked if they are connected in the subgraph of G spanned by those edges of G whose
endpoints are (a, 8, ¥, p)-friends, and define pop(a, 8, y, p) by

1
pop(a, B,v,p) = Jes [{x € V:o0andx are (a, B, v, p)-linked}| .
eg

Note that this quantity can be larger than 1.

Lemma 6.8.4. Forall a,B,y,6 € (0, 1), there exists € > 0 such that the following holds. Let G be
a finite connected transitive graph with deg G > &~ that is not e-dense. Suppose that p € (0, 1)
satisfies 0g((1-06)p) > 0, p%(p) < 671 andpop(e, B,v, p) <67\ Then G is e-macromolecular.

Proof. Let G and p satisfy the given hypotheses, for some constant € > 0 to be determined. Write
pop for pop(a, B, v, p). Say that vertices x and y are linked to mean that they are («, 3, v, d)-linked,
and note that this induces an Aut G-invariant equivalence relation on V(G). First suppose that this
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equivalence relation is trivial, i.e. every vertex is linked to every other vertex. By definition of pop,
every equivalence class has size pop - deg G. Therefore,
|E(G)| degG deg G S 0
IG|? ~ 2|G|  2pop-degG T 2’

i.e. G is 0/2-dense. If € < gy := §/2, then this is impossible (since G is not &-dense), and hence
the equivalence relation of being linked must be non-trivial. Let (A, B) be the corresponding

macromolecular decomposition.

By Lemma [6.8.3] there exists €1 = (@, ,y,9) € (0,&9) and N(a,B,y,0) < oo such that if
€ < g1 then (since G being not e-dense implies that G is not e-molecular)

|[{x € neigh(o) : 0 and x are not («, B, y, p)-friends}| < N.

In particular, by transitivity, since every pair of friends is trivially linked,

EB) _ N
|G| ~— 2°
Similarly, deg A > deg G — N. Hence if € < ﬁ, which implies that deg G > 2N, then
|E(A)| deg A S degG-N _6( N >§
A2 2pop-degG ~ (2/6)degG 2 degG| ~ 4

Therefore, if £ < &7 := min (81, % %, %), then (A, B) is an e-macromolecular decomposition. O

Lemma 6.8.5. Let a,8,y,p € (0,1) and let m € N. Let G be a finite connected graph and

suppose that vy, ..., v, is a sequence of vertices such that v; and v\ are (a, B,7, p)-friends for
alli € {1,...,m—1}. Then

P, ({v1 is (a, B)-sad} N U{vi is (a/,,B)—happy}) < my.

i=2

Proof. We have by a union bound that

m m—1
Pp({vl is (a/,ﬁ)—sad}ﬁU{v,- is (a, ﬂ)—happy}) < Z P,(viis (@, B)-sad, vy is (@, B)-happy) < my
i=2 i=1

as claimed, where the second inequality follows from the definition of («, 3, y, p)-friends. |

Lemma 6.8.6. For all 8,5,n € (0,1), there exists @« > 0 such that for every finite connected
transitive graph G, for every parameter p € (0, 1), if g(p) > 6 then

P, (o is neither (a, B)-happy nor (a, 8)-sad) < 1.
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Proof. Suppose that 6g(p) > 6. Then by transitivity, E, ||giantﬂ||neigh(0) > ¢, and hence by

Markov’s inequality, P, (”giantﬁ”neigh(o) > %) > g. Now there can never be more than (1/3)-

many clusters each having density at least 5. Thus,

A= ulg\l/?é) ”Kaneigh(o)

2
satisfies P, (/1 > [3—26) > g, and in particular, E, [1] > %. So by the universal tightness theorem
(Theorem [6.5.4)), there is a universal constant C < oo such that for all @ > 0,

4a
PP(JSQ)SC’@
Now the conclusion follows by choosing a := %, noting that o is neither (a, 8)-happy nor
(a, B)-sad if and only if 4 < a. O

We next prove the following deterministic graph theory lemma, via a probabilistic argument.

Lemma 6.8.7. Forall k € N there existe > 0 and m € N such that if G is a finite, connected, regular
graph that is not e-dense and has at least one edge, then G contains a (possibly self-intersecting)
path of vertices vy, ..., Vv, satisfying

m

U neigh(v;)

i=1

> kdeg.

Proof. We claim that the result holds with m := 6k? and € := (2m)~!. Let G = (V, E) be a finite
connected regular graph that is not e-dense and has at least one edge. We will prove the claim by

case analysis according to whether diam G > 3k.

First suppose that diam G > 3k. Let vy, ..., v3; be the first 3k vertices in a geodesic path between
two points of maximal distance in G. Extend the path vy, ..., v3; in an arbitrary way to a path
V1,...,Vm, which has the correct length. (For example, repeatedly cross the edge v3x_1v3x.) Since
V1,..., V3 is a geodesic, we must have that neigh(v;) N neigh(v;) = @ for all 1 < i, j < 3k with
li —j| = 3,0

m k

U neigh(v;)| > |neigh(V3j)| =k deg

i=1 j=1

as required.
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Now suppose that diam G < 3k. Let P be the law of an independent sequence uj, ..., uz; of

vertices in V each chosen uniformly at random, so that

deg 2|E|

1
P(ve nelgh(u ) = | | Z veneigh(u) = |V| |V|2 <2e= Z

foreachv € Vand 1 <i < 2k. It follows by independence and linearity of expectation that

E |neigh(u;) N neigh(u;)| = Z P (v € neigh(u;)) P (v € neigh(u;)) = |V|

veV

(deg) deg
V]

for every i # j and hence by inclusion-exclusion that

2k
E Unelgh(ul) > 2k deg — ZE|nelgh(u,) N nelgh(u])| > 2k deg — (2k)2 > kdeg.
i=1 i£]
In particular, there is a deterministic sequence of vertices iy, . . ., fia; such that | U?:kl neigh(i;)| >

k deg. By picking a geodesic (which necessarily has length < 3k) from i; to ii;+; for each i,

then extending arbitrarily to obtain the correct length, we can find a path vy, ..., v, that contains
iy, ...,Hy as a subsequence and hence satisfies

m 2k

Uneigh(vl-) > Uneigh(ﬁi) > k deg

i:l l:1
as desired. ]

We are now ready to complete the proof of Proposition [6.8.2] In addition to the lemmas from the
present subsection, our proof will also apply Proposition from the previous section, stating

that sets of larger than degree order have large intersection with the giant with high probability.

Proof of Proposition[6.8.2] Let g : H — [0, 1] be a supercritical assignment of parameters. Our
goal is to prove that
lim lim nf 2, (|| giant|leign(o) a/) - 1. 6.8.2)

al
We may assume without loss of generality that g(G) < 1 for all G € H. In particular, we may
assume that there exists a constant 6o > 0 such that for every G € H, ¢(G) is §p-supercritical for
G. By Lemma applied to the interval I = I(G) := [(1 = 60/2)q, (1 +60/2)(1 = 60/2)q],

, 2¢e
L ({p e 1:pb 5(p) < 1/5}) > (1 - 5_/2) L(I) forallG e Handall & > 0,
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where £ denotes the Lebesgue measure. In particular, for all G € H there exists p = p(G) € I

such that p9:50 /8( p) < 1/6 where 6 := §p/8. Note that p is always §-supercritical because ¢ is
do-supercritical and p > (1 — 69/2)q. By Theorem and Theorem [6.2.1]

liqr{n P, (giant = giant,) = 1.
So by monotonicity, since p(G) < ¢(G) for all G € H, it suffices to establish that

lim lim nf 2, (llgiantyl]igno = @) = 1.

To this end, fix an arbitrary constant 7 > 0, and note that the event that ||giant5||neigh(0) > « is the
same as the event that o is («, ¢)-happy, for all @ > 0. We will find a constant @ > 0 such that for

all but finitely many G € H,

P, (o is (a, 6)-happy) > 1 —n. (6.8.3)

By Proposition|6.7.1] there exists g9 > 0 such that for all G € H, for every set of vertices A € V(G)
with [A| > &;! deg G,

P, (||giant5||A > so) >1- g

By Lemma [6.8.7] there exists £; > 0 and m € N such that every finite, connected, regular graph G
that is not £1-dense and has at least one edge must contain a path of vertices vy, ..., v,, satisfying

m

U neigh(v;)

i=1

2
> —degG.
£0

By Lemma |[6.8.6] there exists @ > 0 such that for all G € H,
P, (0 is (. 8)-happy or (e, 8)-sad) > 1 — g (6.8.4)

and by monotonicity, this inequality also holds with any @ € (0, @) in place of @y. Define
a = min(ag, 1/m) and y := % Now by Lemma there exists €, > 0 such that for all but
finitely many G € H (namely, every G € H with deg G > 1/¢; that is not &;-macromolecular),
(Case A) G is &5-dense or (Case B) G satisfies pop(a, 6,7, p) > 1/&;. We will establish eq.

in each of these two cases in turn.

Case A Note that when o is («, §)-sad, there exists a cluster K ¢ giant; satisfying

adegG  2a|E(G)]
|G| IG|?

K]l =
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In particular, if G is &>-dense and o is (@, 6)-sad then giants # giant,,,,. By Theorem and
Theorem [6.2.1], for all but finitely many G € H,

2
P, (gianthw2 # giant5) < ?77

So for all but finitely many G € H, if G is &;-dense then

P, (o is (@, 6)-happy) > P, (0 is («, 6)-happy or (a, 6)-sad) — P, (o is (a, 6)-sad)

n
>1-T_2_q_,
=737 3 g

Case B By Lemma|6.8.3| there exists N < oo such that for all but finitely many G € H (namely,

for a suitable constant £3 > 0, every G € H with deg G > 1/&3 that is not £3-macromolecular),
|[{x € neigh(o) : 0 and x are not (a, 9, y, p)-friends}| < N.
In particular, for all but finitely many G € H (those graphs that additionally satisfy deg G > 2N),

1 1
—— |{x € neigh(o) : 0 and x are («, 6,7y, p)-friends}| > =. (6.8.5)
deg G 2

Now suppose that some given G € H satisfies pop(a, d,y, p) > 1/&1, eq. (6.8.5)), and (a trivially
harmless hypothesis) deg G > 0. Consider the spanning subgraph of G containing only the edges
uv € E(G) such that u and v are (a, 6, y, p)-friends, and let A denote the connected component of

this graph containing o. Note that

|[E(A)] degA degG 1 £l
> = < = < — < £1,
|A] 2|1A] = 2|A] 2pop(a.6,y.p) — 2

and the graph A contains at least one edge because deg A > %deg G > 0. So by definition of &1,
the graph A must contain a path of vertices vy, ..., v, satisfying

2 1 "
|T| > —degA > —degG where T := U neigh(v;),
&0 &0 i=1

and without loss of generality, since A is transitive, we may choose this path such that vi = o.

Therefore, by definition of &,

P, (||giant5||T > 80) >1-n/3.
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We always have

SIe 1Oy .
Z ||g1ant5||neigh(vi) = @ Z |glan‘[(S N ne1gh(v,~)|
i=1 i=1

> e |giant; NT|

__IT
~ degG

lgianty||, > — [lgiant,|
ollT = £0 g ollT -
So if ||giant5||T > &0, then some v; with i € {1,...,m} must be (1/m,?d)-happy and hence

(a, 9)-happy. In particular, we deduce that

P, (g{vi is (a, 6)-happy}) >1- g
Now by combining this estimate with eq. (6.8.4)) and the estimate appearing in Lemma [6.8.5| via a

union bound,

P, (o is (a, B)-happy) > 1 — P, (o is neither (, §)-happy nor (a, 6)-sad)

-P, (ﬁ{vi is not (a, 6)—happy})

i=1
-P, ({v1 is (a, d)-sad} N U{v,- is (a, 6)—happy})
i=2
>1-n/3-n/3-my=1-n. ]

Negligibility of mesoscopic clusters

In this subsection, we complete the proof of Proposition [6.8.1] Given our work in the previous
subsection, it suffices to show that for supercritical percolation on a high-degree finite transitive
graph, if the giant cluster includes a positive proportion of the neighbourhood of the origin with
high probability, then eq. (6.8.1)) holds.

Proof of Proposition[6.8.1] Let H C ¥ be an infinite set with limgess deg G = co that does not
contain any infinite macromolecular subsets. Let p : H — [0, 1] be supercritical. We may assume
without loss of generality that p(G) < 1 for all G € H. In particular, we may assume that there
exists a constant & > 0 such that for every G € H, the parameter p(G) is §-supercritical for G. Fix
an arbitrary constant > 0. Our goal is to find a constant k& < oo such that for all but finitely many
graphs G € H,

P, (|Ko| > k, K, # giant) < 7. (6.8.6)
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By Theorems|6.1.1]and |6.2.1], for all but finitely many G € H,

P, (giant; # giant) < n/2.
So it suffices to find k < co such that for all but finitely many G € H,

P,(0 € M) <n/2 where M :={ue€V(G):k<|K,| <6|G|}. (6.8.7)

Define ¢(G) := (1 = 6/2)p(G) for all G € H. By Proposition |6.8.2] there exists a constant @ > 0
such that for all but finitely many G € H,

2
- n
P, (llglantllneigh(o) > a) >1- 55 (6.8.8)

By Theorems [6.1.1]and 6.2.1]| again, for all but finitely many G € H,

2

P, (giantg # giant) < ——. 6.8.
By Lemma , for all but ﬁnitely many GeH,
p(G) > . 6.8.10
( ) - 2degG ( )

We will show that if a graph in H satisfies egs. (6.8.8]) to (6.8.10) then it must also satisfy eq.
with & := 1000772567 10g(3005726~"). Indeed, suppose for contradiction that some particular
graph G = (V,E) € F satisfies egs. (6.8.8) to (6.8.10) but not eq. (6.8.7). By the negation of
eq. and Markov’s inequality, (and by transitivity and linearity of expectation)

2, (IMI = 7) > 1.

By egs. (6.8.8)) and (6.8.9), the set S :={u € V : ||giant5||neigh(u) > «} satisfies

2 2 2

n” 7 n
P S)>1-——-—"—>1-=,
(€S =1-355 30> " &

So by Markov’s inequality,

Pq(llSllzl—g)zl—g.

Recall that (wy : t € [0, 1]) ~ P denotes the standard monotone coupling of percolation measures

on G. By a union bound,

n n_n_n_n
?(IM@p)] > Tand [S@)]| > 1-F) > T-1=1. (6.8.11)
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Note that on the event being estimated in eq. (6.8.11),
M) 0 S| = [1S@y)l| + M) -1 = 2.

Moreover, we can rewrite this intersection density as

M@ 1S = o S s @

VI ueM(wp)
1 1
= — Ls(w,) (1) =
|V| ue/;wp) ’ velgwp) |K” (O)p)|
T T o
= — T Ls(w,) (u)
VI veM(wp) Ky (wp)] ueky (wp) ’
1
=i >, @il -
veM(wp)
Therefore, by transitivity and linearity of expectation,
B[S (w,) 1 (o)]—Ei > IS (@) L0
B [ A IR
P
and thus by Markov’s inequality,
77 U&
P({o € M(wp)} N {”S(wq) Ko () > ﬁ}) > TR
So by eq. (6.8.9) and a union bound,
7 2 7
P ({0 € M(a)p)} N {”S(wq) Ko(wy) > 1_28} N {glant(wq) = glant5(wq)}) > 128 ~ 300 > 300"
(6.8.12)

On the event being estimated in eq. (6.8.12), every vertex v in the unique w, -cluster of density > ¢
satisfies

|0K, (w,) N 0K, (wy)] = [S(wy) NKy(w,y)| - adeg G

- [Kotwp]- @l o, - 0 dee G
2

n
> . — . .
>k 178 adegG

Therefore, there must exist a deterministic vertex v satisfying

wp 7]25
deg G and > —.
egGando > v| > 300

an*k

(#) := P ||0K,(wp) N OK,(wy)| = 3
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On the other hand, by Lemma|[6.5.3]

an’k

128

1 an*k

5
degG| < —. : deg G| = _
°8 )—e"p( 2 2degG 128 % ) eXp(

(x) <exp|—(p—-9q)

an’dk
512

We now have a contradiction because our choice of k was large enough to ensure that

a/nzék) %6

eXp(_ 512 ) = 300

6.9 The macromolecular case

In this section, we describe the asymptotic behaviour of the density of the giant cluster for super-
critical percolation on high-degree finite transitive graphs that are macromolecular. Recall that
H C F is said to be macromolecular if limy deg G = oo and there exists a constant £ > 0 such
that all but finitely many G € H admit an e-macromolecular decomposition (A(G), B(G)). We
will often abbreviate (A, B) := ((A(G),B(G)) : G € H), noting that at most finitely many of
these pairs (A(G), B(G)) might be undefined. Let us say that H is irreducibly macromolecular
if additionally, these e-macromolecular decompositions (A(G), B(G)) can be chosen in such a
way that there does not exist an infinite subset H’ C H such that {A(G) : G € H} is macro-
molecular. In this case, let us also call (A, B) an irreducibly macromolecular decompositon. In
this section, we will focus on irreducibly macromolecular families. We will later show that every
macromolecular family contains an infinite family that is irreducibly macromolecular (and in fact,
the corresponding macromolecular decompositions are essentially uniquely determined). As such,

general macromolecular families will inherit the results of this section.

Our main goal is to prove the following proposition, which establishes that this asymptotic density

is determined by the local geometry of the quotient graphs B.

Proposition 6.9.1. Let H C ¥ be an infinite set of (isomorphism classes of) finite, connected,
vertex transitive graphs with limgcg; deg G = co. Suppose that p : H — [0, 1] is a supercritical
assignment satisfying supq p deg G < oo. For each G € ‘H, define

¥(G) = mf(p(G)degG) and p*(G) = p(G)Y(G)*.
If H is sparse and admits an irreducible macromolecular decomposition (A, B), then

lim limsup |6(p, G) -y - PL. (|K,| = n)| =0. (6.9.1)
n—oo (]_(
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In the first subsection, we will use the result of Section [6.7] to show that in the setting of this
proposition, under P, o is unlikely to belong to a mesoscopic cluster whose volume is much larger
then deg G. In the second subsection, we prove Proposition In the third subsection, we
will explain how Proposition [6.9.1] implies our main theorems concerning concentration (Theo-
rem and equicontinuity (Theorem for graphs that admit irreducible macromolecular

decompositions.

Warning: In this section, we will apply our main results about non-macromolecular graphs in
order to analyse the family of graphs A coming from an irreducibly macromolecular decomposition
(A, B). More precisely, we will apply both Proposition establishing a uniform tail on the
distribution of non-giant clusters, as well as the consequences of this proposition that are derived
in Section [6.11] namely the results in column 4 of the table in that section, establishing that the
supercritical giant cluster density is concentrated and local. The proofs of these results about
non-macromolecular graphs do not rely on the analysis of macromolecular graphs appearing in this
section, so there is no danger of circular reasoning. In fact, the analysis in this section only relies
on these results for non-macromolecular families of graphs that are also dense, since the family of
graphs A coming from a macromolecular decomposition is always dense by definition. For this
special case of dense non-macromolecular graphs, all of our results could be deduced much more
easily and directly from Theorem [6.1.1 and a refinement of Lemma [6.11.3] without having to go
through the work of Section [6.8]

Proof of Proposition (6.9.1
Our goal is to establish eq. (6.9.1). It suffices to establish that every infinite subset of H contains
a further infinite subset for which these equations hold. As such, throughout this proof we may

without loss of generality replace H by an arbitrary infinite subset of H.

We would like to apply our results from Section [6.8| concerning high-degree non-macromolecular
graphs to A := {A(G) : G € H}. It follows easily from the definition of irreducible macromolec-
ular decomposition that lim¢; deg A = co (because deg G — deg A is uniformly bounded above) and
A does not contain an infinite subset that is macromolecular. What is less obvious is that p is
supercritical for A. Strictly speaking, it does not make sense to ask whether p is supercritical for
A because graphs in A do not lie in the domain of p. To avoid this technicality, by passing to an
infinite subset of H if necessary, let us assume that the map H — A sending G — A(G) is injec-
tive and hence a bijection. This lets us identify our given assignment of parameters p : H — [0, 1]

with an assignment p : A — [0, 1].
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Claim 6.9.2. The assignment p : A — [0, 1] is supercritical for A.

Proof. Since A is a family of dense graphs, the assignment p. := 1/deg A defines a percolation
threshold for A [Bol+10b]|. (See discusson in Section . So our goal is to show that

lin%{infp deg A > 1. (6.9.2)
By Lemmal|6.2.2] since p is supercritical for H,

lin;}nfp degG > 1. (6.9.3)
Since deg G — deg A is uniformly bounded above and limg; deg G = oo,

lim deg A _
H degG

Combining eqs. (6.9.3)) and (6.9.4)) yields eq. (6.9.2). o

1. (6.9.4)

We are now able to invoke Proposition m from Section to analyse Pﬁ. We will also invoke
the main result of Section [6.8] concerning a uniform tail for non-macromolecular graphs, and its
consequences explained in Section [6.11] specifically, the validity of the mean-field approximation
and the concentration of the giant cluster cluster density for non-macromolecular graphs. Our
next step is to leverage this control of percolation on A to build a suitable coupling of ]PD;‘ and Pgi .
Informally, we want this coupling to confirm the picture that mesoscopic clusters in Pg with volume
of order |A| behave like microscopic clusters with volume of order 1 in Pg*. The idea is that these
mesocopic clusters in Pg must be essentially built from joining the “local” giant clusters from a
bounded number of the copies of A in G, and these connections between “local” giant clusters

behave like Pllf*. Let us now introduce the notation required to make this precise.

For each G € H, let u — [u] denote the class function for an Aut G-invariant equivalence relation
on V that induces the macromolecular decomposition (A, B). We naturally identify the set of
classes {[u] : u € V} with the vertex set V(B) of B. Let F be the set of all edges xy € E such that
[x] # [y]. Foreach [u] € V(B), make the following definitions: Let E[u] be the set of all edges
xy € E such that x,y € [u]. Let w[u] := w|g[,, and for each v € [u], let K, [u] := K, (w[u]).
Let F be the set of all ordered pairs (u, v) such that the corresponding unordered pairs uv = {u, v}
belongs to F. Let Q = Q¢ be the law of a random vector 8 € {0, 1}? whose entries are iid
Bernoulli(y).

Thanks to Claim after passing to an infinite subset of H if necessary, we may assume that

there exists a constant € > 0 such that for all A € A, the parameter p(A) is e-supercritical for A.
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Fix some choice of ¢ for the rest of this proof. Define m := |A| = |[0]|. For each [u] € V(B),
define
rlu] :={v € [u] : |K,[u]| = em},

and given vectors w € {0,1}F and g € {0,1}F, let E[u] be the assertion that for every pair
(x,y) € F that satisfies x € [#] and w(x,y) =1,

B(x,y)=1 ifandonlyif x €rfu].

Claim 6.9.3. For each G € H, there exists a choice of coupling P = PC of w ~ Pg and B ~ QY in

which w|f and B are independent of each other such that

li in P(&E[u]) = 1. 6.9.5
im min (&E[ul) ( )

Proof. Fixn > 0and let G € H. We will show that for all but finitely many choices for G, we can
build suitable coupling that satisfies

PE[u])>1-7

forevery [u]. Letn be alarge positive integer to be determined. Independently sample the following

families of random variables, and write P for their joint law:

1. Sample w|p ~ ) Bern(p).

2. Independently for each (u,v) € 7 sample

Vi) ~ ®Bern(p) and fB(u,v) ~ Bern(y)

E|o]

that are coupled so that

A =B, (IKo[o]l > n) —¢| =P[ {|Ks (vium)| = n} 2 {B(u,v) =1} |.

E(u,y)

3. Independently for each (u,v) € ?, sample
¢(u,v) ~ Unif (')
where I, is the set of all graph automorphisms of G that map o — u.
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4. Sample v ~ (X); Bern(p).

For each (u,v) € ?, let
Q(M,V) . E[O] — {0, 1}

be the partial function encoding the edges revealed in an exploration of the cluster at o from inside
(with respect to an arbitrary deterministic ordering of E[o]) that is halted as soon as the event
that |K0(V(u’v))| > n is determined by the states of the revealed edges. (See [Eas24, Section 2.1]
for more discussion of these partial functions and for a warm-up to the argument below.) Given
partial functions f and g, we write f U g for the override, i.e. the partial function with domain
dom( f U g) = dom(f) Udom(g) that coincides with f on dom( f)\ dom(g) and coincides with g
on dom(g)\ dom( f). Let xy, ..., x, be an enumeration of the set of all pairs (u,v) € F satisfying
w(uv) = 1, listed according to an arbitrary but deterministic total order on F that is fixed ahead of

time. Now set

w = wrU ({)x] o (le) : (er ¢x )

Observe that w and B have the required marginals and independence properties, so what remains
is to establish the required control of &[u] for every [u]. We will focus on &[o], but the same
arguments work for all [u]. Let ¥; be the event that &(u, v) holds for some (u,v) € F with
v € [o], and let F, be the event that there exist (u,v), (u’,v") € F such that v,v' € [o] and
w(uv) = w(u'v') = 1 but V(,,) o ¢, and Yy ) © ¢, ) are incompatible as partial functions,

i.e. they disagree on some portion of the intersection of their domains. Note that
Elo] € F1 U F.
So it suffices to show that P(F7), P(#2) < g

Control of 7 Let z denote the number of edges in d[o] that are open in w. By a union bound,
almost surely,
P (71| 2) < zA.

So by another union bound and by Markov’s inequality, for all 1 > 0,

P(T)<¥ AA.

Note that for some constant C < oo independent of G, we have E[z] = pdeg B < oo because
deg

supy, p deg G < oo by hypothesis, and supy 3=z < oo by definition of macromolecular decompo-

sition. Fix A := 4C/n so that [Z] 4. By cont1nu1ty of mf and by eq. (6.9.4)),

liqr{n mf (pdegG) —mf (pdegA)| =
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So by Theorems [6.1.1] and [6.2.1] and Proposition [6.8.1] and our results about non-macromolecular
graphs (specifically, (7', 4) and (L, 4) in Section [6.11)),

llim limsup [P, (IK,[o]] > 1) —y|=0.
—00 7_{

It follows that by picking our constant n to be sufficiently large, we can guarantee that A < % for
all but finitely many G. Fix such a choice of n for the rest of the proof. By combining our bounds,

we now have

P(ﬁ)sg+

I3
o3

Control of ¥, For each (u,v) € 77) consider the cluster

C(u,v) =K, ({}(u,v) © ¢(u,v)) s

ﬁ
where any edges with undefined state are treated as closed. Notice that for all x, y € F', the clusters
C and C, are independent of w|r, and if ¥, o ¢, and V, o ¢, are incompatible then C, N C, # 0.

So by a union bound and independence,

P(73) < szP(Cx NC, # 0)
X,y

where the sum is over all x = (u,v) € F and y=W,V)e F such that v,v" € [0]. Consider some
x = (u,v) and y = (u’,v"). Let K be the set of all possible outcomes for C, for any (equivalently
every) x € F. By independence, we can expand

{(f.8) e Ty xTw : f(X) Ng(Y) # 0}
|Fu| |Fu’| .

P(C:NCy#0)= Y P(Ci=X)P(Cy=Y)-
XYeK

Now by summing over all choices for x and y and exchanging the order of summation,

min % (f(X) N g(X) # 0)

deg B 2
Xy

2
P(72) < (plA] ( u

where P is the law of two independent uniformly random graph automorphisms f and g of G[o].
Recall that p deg B < C. Consider some X, Y € K. By a union bound and independence,
P(f(X)Ng(X) #0) < Z P(ue f(X)Puegl)).
uelo]
Notice that for all u € [0], we have u € f(X) if and only if f~!(u) € X, the law of f~! is the same
as the law of f, and the law of f(u) is uniform over [o]. In particular, for all u € [o],
| X| n

P(uef(X))=WSm,
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and the same is true of g(Y). So

2
P (f(X)Ng(X) #0) < W

and since X and Y were arbitrary,
C?n?
Al

which is smaller than g for all but finitely many G because limg, deg A = co.

O

Fix such a family of couplings (P¢ : G € H) for the rest of the proof. Given some G € H, we
can naturally identify F with the edge set of B. Now our coupling P induces the following pair of

percolation configurations @, ® € {0, 1} on B: forall uv € F,
Owv) == w(uv)l (W)l (v) and oOuv) = w(uv)B(u,v)B(v,u).

Note that @ only depends on w, and by construction, the law of @(u, v) is exactly Pg*. For each
[u] € V(B), let IT[u] is the set of all edges xy € F such that x € [u] and w(xy) = 1, let s[u] be
the set of all vertices v € V\[u] such that v ¢ r[v] and there exists some xy € F with x € [u] and
y € K, [v] satisfying w(xy) = 1, and let ¢ [u] be the set of all vertices v € s[u] such that there exists
x € V\([v] Ur[u]) with vx € E satisfying w(vx) = 1.

Claim 6.9.4. We have

lim limsup P, (|II[o]| > i) = 0;
1—00 (}_{

i—00

lim limsup P, (|s[o]| > i) = 0;
H
li%{an (tlo] #0) =0.
Proof. We will prove each of the three equations in turn.

First equation For all G, we have E, [[I[o]| = pdegB. As noted in the proof of the pre-

vious claim, it follows easily from the definition of macromolecular decomposition and from
supg, pdeg G < oo that

sup pdeg B < oo.

H

So by Markov’s inequality,

1
lim sup lim sup P, (|II[o]| > i) < limsup —sup pdeg G = 0. (6.9.6)

i—o0 H i—oco U
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Second equation LetG € H andi > 1. Let X be the set of all vertices y € V\[o] such that there

exists x € [o] satisfying xy € F and w(xy) = 1. The event that |s[o]| > i is contained in the union

F1(i) U F2(i)

where 7 (i) is the event that |X| > /i, and %> (i) is the event that there exists xy € I1[o] with
x € [o] and y ¢ r[y] such that |Ky [y]| > v/i. Since | X| < |IT[o]] always holds, it follows from our

analysis above of the first equation that
supE, | X| < o0
H

and
lim limsup P, (#1(j)) = 0.
Jj—oo H

By a union bound, independence, and transitivity,

Pp (ﬁ(l)) < EP

Z Lrexlig, [X]IZ\/?IX¢r[x]]
xeVvV

<E,|X| P, (|KO[0]| > Viand o ¢ r[o]) .
By Theorems [6.1.1]and [6.2.1] and Proposition [6.8.1]

lim P, (|K0[0]| > Viand o ¢ r[o]) =0,
j—o

and hence by eq. (6.9.7),
lim B, (71 (0)) = 0.
]—)OO

The conclusion now follows by a union bound.

(6.9.7)

Third equation Let 7 be the set of all edges xy € E such that [x] = [y] or {x,y} Nnr[o] # 0.
Let Y be the set of all vertices y € V\[o] such that there exists x € V\ ([y] Ur[o]) satisfying

w(xy) = 1. Note that
tflo] #0 ifandonlyif Y Nnsf[o] #0.

For all y € V, by a union bound we almost surely have

P,(yeY |wl) < p(degG —degA) = A
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because after having revealed the states of all edges in /, in order for y to ultimately belong to Y, at
least one of the at most (deg G — deg A)-many unrevealed edges e € F' with y € e must turn out to
be open. So by a union bound and since s[o] is determined by w|;, we almost surely have

Py (t[o] # 0| wl) <Bp | > Lierlyeo) | 0l

yev
= Y By (yeY|wl) < Alslo]l.
yes[o]
So by another union bound,
1
P, (t[o] # 0) < P (ls[0]| > —) +VA. (6.9.8)
p p \EK

By definition of macromolecular decomposition, deg G — deg A is bounded above uniformly in G.

Moreover, limg p = 0 because limg; deg G = oo and supy; p deg G < oo. Therefore,

limA = 0. (6.9.9)
H
In particular, thanks to our analysis above of the second equation,
limP, (|s[o]| = ! =0 (6.9.10)
i s — | =0. 9.
H P VA
The conclusion now follow by combining eqs. (6.9.8)) to (6.9.10). ]

We will now use these simple properties and a mass-transport argument to relate the distribution

of microscopic clusters in Pg* to the distribution of mesoscopic clusters in Pg. Let

k::% U K, (w)|,

ver|o]

and let Round (k) be the integer closest k, rounding up in case of a tie.
Claim 6.9.5. For every positive integer n,

lim |1P>f;' (Round(k) = n) —

Proof. Let n be a positive integer, let n > 0, and let G € H. Note that

A := P (Round(k) = n) — Ph.(|Kpo)| = n)‘ < P({Round(k) = n}a{k =n}) (6.9.11)

t}'
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where k denotes the size of the cluster of [o0] in @&, which we view as a configuration on B. Our
goal is to show that A < 5 for all but finitely many choices of G. Giveni > 1, say that [u] is i-good
if all of the following events hold:

* w|u] has a unique cluster K satisfying |K| > em.
o |rlu]l —ym| < %.

o |IIul]| <14, |s[u]| <i,and t[u] = 0.

By Theorems [6.1.1] and [6.2.1] our main results about non-macromolecular graphs (row 4 in Sec-
tion[6.11)), and Claim [6.9.4] there exists a constant i € N such that

P, ([o] is i-good) < 21 (6.9.12)
n

for all but finitely many choices for G. Fix such a choice of i for the rest of the proof, and simply
say that if [u] is good to mean that u is i-good. Let X be the cluster of [0] in @ N ©, and let Y be
the set of all edges xy € F such that [x] € X or [y] € X.

Say that an edge xy € F is intact if &[x] holds and &E[y] holds, and note that this implies that
@O(xy) = @(xy). In particular, if every edge in Y is intact, then

k =k, (6.9.13)
where & denotes the size of the cluster of [0] in . We claim that if additionally every element of X
is good then ¥ cannot hold. Indeed, if every element of X is good, then kmys, which by definition

of k equals the number of vertices w-connected to [o], satisfies
Dbl <kmy < Y (rl+IsDvID,
[VIeK|o) (@) [VIeK[o) (@)
and moreover,

1 ~ 1 ~ ~
- < < — k.
(1 16n)1,//mk < kmy < (1+ 16”)1//mk+lk

So by eq. (6.9.13) and our hypothesis that limg, m = oo, for all but finitely many choices of G,

[l - &|

IA

(1 k

By manipulating eq. (6.9.14), we have k < 2k. So by applying eq. (6.9.14) again,

ok
|k - k| < T (6.9.15)
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Notice that if k& = n, then by eq. (6.9.14), we have |k k| , and hence k = k. Similarly, if
Round(k) = n, then k < n+ 1 and hence k = k by eq. ( m So ¥ cannot hold, as claimed.

Let 7 be the event that # holds but not every element of X is good, and let %, := ¥ \¥,. By our
work above, on the event 7;, not every edge in Y is intact. For each [u] € V(B), let F [u], F1[u],
F2[u], X[u], and Y [u] be the analogues of F, 1, etc. defined with [u] in place of [0]. Given
classes [u], [v], let fi([u], [v]) € {0, 1} be the indicator for the event that F [«] holds, [v] € X[u],
and [v] is not good. Given a class [u] and an edge e € F, let f>([u],e) € {0, 1} be the indicator
for the event that %, [u] holds, e € Y[u], and e is not intact. We know that for all [u] € V(B), if
¥ [u] holds then f;([u],x) = 1 for some x and i. So by eq. and transitivity,

Z Allul, [v] +EE > Aule)| = A, (6.9.16)

1B

[u],e

F1 I_‘2

where the first sum is over all [u], [v] € V(B) and the second sum is over all [u] € V(B) and
e € F. (Recall that |B| is the number of vertices in B.) So it suffices to show that I'j, I, < 5

For every [u], on the event # [u], we have | X [u]| < n. So for every class [v], there are never more
than n classes [u] satisfying fi([u], [v]) = 1, and of course there are no such classes [u] when [v]

is good. So for all [u],

E Zfl([u], [v])| < nP ([u] is not good) < g, (6.9.17)

where the second inequality comes from eq. (6.9.12). In particular, I'] < g Similarly, for every

[u], since on the event ¥, [u] we have

Ylull< > O] <ni

[vleX[u]

because every every element of X [u] is good, it follows that for all e € F,

E|> f([ule)| < 2ni, (6.9.18)
[u]

the factor of ‘2’ arising from the fact that the classes of the endpoints of the edge e € F could

belong to two distinct @ N @-clusters. In particular, [, < 2, as required. O
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We are now ready to conclude the proof of eq. (6.9.I). Fix n > 0. By Proposition [6.7.1]
and Lemma [6.5.2] (as well as Theorems [6.1.1] and [6.2.1)), there exists a sufficiently large posi-
tive integer Ny such that for every integer N > Ny, for all but finitely many G € ‘H,

6(p. G) ~ B (1K, | > Lm)| < 7.

where L = L(N,G) := ¢ (N + %) By Theorems (6.1.1|and |6.2.1{ and Proposition |6.8.1} for all but
finitely many G,

[PS (1Kol > L) —=P§ (IK,| = Land o € rlo])| <

I3

Note that |K,| > L and 0 € r[o] if and only if kK > N and o € r[o]. By transitivity,

1 Ir[o]|
m

Pg(kzNandoer[o]):% Z PY (k> Nandu € r[o]) = ES

uelo]

li>n

By our main results for non-macromolecular graphs (row 4 in Section [6.11)), for all but finitely

many G,

rloll
m

RS [""[O]'lm
m

—y - P§ (k> N)

G
<E,

n
— < £

By Claim|[6.9.5|and the fact that ¢ is always bounded above by 1, for all but finitely many G,
G B n
‘w-Pp (k= N)—w -PE (K,| > N)’ <2
By combining our bounds, we find that for all but finitely many G,
6(0.G) ~ P& (K| = M| < .
as required.

6.10 The nonunimodular case

In this section we complete the proof of the bounded-degree case of our results by treating the
nonunimodular case. Perhaps surprisingly, following [Hut20g], percolation is much better under-
stood on nonunimodular transitive graphs than on unimodular transitive graphs. More specifically,
we will briefly explain how very strong quantitative forms of all our main results can be deduced in
the nonunimodular case from the results of [Hut20h]], which establish sharp, quantitative tail bounds
on the distribution of finite clusters under the L? boundedness condition, and [Hut20g], which imply
that this condition holds in the nonunimodular case; our main task in this section will be to outline

how uniform versions of these results can be deduced by a compactness argument. Nonunimodular
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transitive graphs cannot arise as limits of finite transitive graphs by Corollary [6.10.2] and we will

keep this section brief since it is tangential to the main focus of the paper.

For nonunimodular G, the tilted mass-transport principle states that

Z F(o,x) = Z F(x,0)A(0,x) (6.10.1)

xeV xeV

for every F : V2 — [0, co] that is invariant under the diagonal action of Aut(G) on V2.

The following proposition, established in [Hut20b, Corollary 5.4], tells us that the modular function
is determined by the local geometry of the graph. This proposition is proven using a probabilistic
interpretation of the modular function as a Radon-Nikodym cocycle (see [Hut20g; BC12]) and is

not at all obvious from the algebraic definition given above!

Proposition 6.10.1. Let (G,),>1 be a sequence of connected, locally finite transitive graphs con-
verging locally to some locally finite transitive graph G, and let (0,,),>1 and o be vertices of (G,),>1
and G respectively. For each r > 1 there exists N < oo such that for every n > N there exists an
isomorphism ¢, from the ball of radius r around o, in G, to the ball of radius r around o in G
satisfying

A, (u,v) = Ag(d(u), p(v))

for every u,v in the ball of radius r around o,, in G,,.

Together with the cocycle identity [Hut20g, Lemma 2.3], which states that A(x, z) = A(x, y)A(y, 2)
for every x, y, z € V (and hence that G is unimodular if and only if A(o,x) = 1 for every neighbour

of the origin), this proposition has the following immediate corollary.

Corollary 6.10.2. For each d > 1, let G4 be the space of all isomorphism classes of connected,
transitive graphs of degree at most d, and let Uy and Ny = G4 \ Uy be the sets of unimodular and
nonunimodular elements of G, respectively. The sets U; and Ny are both closed (and hence both

open) in G4 with respect to the local topology.

Note that the family U contains both finite and infinite graphs.
The following theorem is a “uniform in G” version of a theorem whose non-uniform version follows

from the results of [Hut20g; Hut20h]. The bound on the volume tail of finite clusters it yields is

sharp for p not too close to 0 or 1 as explained in detail in [Hut20h].
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Theorem 6.10.3. Let d > 1 and let Ny be the set of (isomorphism classes of) nonunimodular
transitive graphs of degree at most d. There exist positive constants ¢ = c(d) > 0and C = C(d) <
oo such that

PO (n < |K,| < 00) < Cn™Pexp (~clp - pefn)

foreveryn > 1, G € Ny, and p € [0, 1].

After sketching the proof of this theorem we will use it to deduce the following corollary, which is

much stronger than the equicontinuity statements proven in the other parts of the paper.

Corollary 6.10.4. Let d > 1 and let Ny be the set of (isomorphism classes of) nonunimodular
transitive graphs of degree at most d. For each G € Ny, 0(p,G) is an analytic function of p on
(pc(G), 1] and there exists a constant C = C(d) such that

d
%e(p,G) < and 0(p,G)>1-C|1-pl|¢

l-p

forevery G € Ngand p € (pc, 1].

We now introduce some relevant machinery from [Hut20g]. Let G = (V, E) be a connected, locally
finite, nonunimodular (vertex-)transitive graph, and let A = Ag : V> — (0, o) be the modular
function of G. For each A € R, the tilted susceptibility is defined to be

XP,/l :X](:,/l = ZPP(O ol X)A/I(O,X),

xeV

so that x, 0 = E,|K,| is the ordinary susceptibility. It is a consequence of the tilted mass-transport
principle that y, 1 = xp,1-1, and since x, , is also a convex function of A € R this leads to a special
role for the critically tilted susceptibility x, 12 = miny xp 1. The tiltability threshold is defined
to be

p:(G) =sup{p € [0,1] : xp,1/2 < oo}.

The following is a special case of the main theorem of [Hut20g].

Theorem 6.10.5. Let G = (V, E) be a connected, locally finite, nonunimodular (vertex-)transitive
graph. Then p.(G) < p:(G).

In order to prove Theorem[6.10.3] we will argue that Theorem[6.10.5]implies the following “uniform

in G” version of the same theorem.
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Corollary 6.10.6. For each d > 1 there exist positive constants ¢ = c¢(d) and C = C(d) such that
XpipSC and  pi(G) = pe(G) = ¢

for every G € Ny.

To deduce Corollary [6.10.6] from Theorem [6.10.5] we will also apply the following theorem of
[Hut20b], which is a consequence of the results of [Hut20g].

Theorem 6.10.7 ([Hut20b], Theorem 5.6). The critical probability p. defines a continuous function
on Ny. That is, if G, is a sequence in Ny converging to some G € Ny then p.(G,) — p.(G).

We will also require the following lemma.

Lemma 6.10.8. For each fixed p € [0,1] and A € R, the tilted susceptibility X,(j, | defines a
continuous function Ny — [0, oo]. That is, if G, is a sequence in Ny converging to some G in Ny

then /\(33 converges to Xg Lasn — .

We will prove Lemmal|6.10.8|using a tilted version of the “¢, (S) argument” of Duminil-Copin and
Tassion [DT16b|]. Let G and A be as above. For each 1 € R, p € [0, 1], and each finite set of
vertices S > o we consider the quantity ¢, 1(S) defined by

Gpa(S) = p Y Bplo > x) D Ly ¢ A 0.3) = p Y Byplo > ) 0.x) Y 1y ¢ S)A(x. ),

x€eS y~x x€S y~x

where {0 S x} denotes the event that o and x are connected by an open path only using vertices
of S and the equality between these two expressions follows from the cocycle identity A(o, y) =
A0, x)A(x, y).

Lemma 6.10.9. Let G = (V, E) be a connected, locally finite, nonunimodular (vertex-)transitive

graph, let o be a vertex of G and let S 3 o be a finite set of vertices. Then

1

s Pl
TP’A(S) Z PP(O > X)A (O,X)

xes

ZP,,(O S x)AY(0,x) < Xpa <

xes

for every p € [0,1] and A € R such that ¢, 2(S) < 1. In particular, if ¢, 2(S) < 1 for some finite

set of vertices S 3 o then y, 2 < 0.
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Proof of Lemma The first inequality is trivial; we focus on the second. If o is connected
to some vertex z by an open path in G but not in S, this path must exit S for the first time using
. . S
some edge e = xy with x € S and y ¢ S. On this event the three events {0 < x}, {e open}, and

{y & Az} occur disjointly, and we deduce from a union bound and the BK inequality that

S S
P,(0 & 2) <P,(0 &> 2) +pZZPp(0 = xX)P,(y & 2).
xeS y¢S

Let A C V be a (finite or infinite) set of vertices containing S. Multiplying both sides by A*(o, z),

summing over z € A, and using the cocycle identity yields that

> B0 2)AY(0,2)

ZEA

< ZPP(O LN x)AY (0, x) +pZZPp(0 <i>x) ZPp(y — 2)AY(0,72)

x€S X€S y¢S ZEA
S
< Y Pplo & x)AN(0,x) + ¢pa(S)sup D Bp(y o Ay, 2). (6.10.2)
x€eS yeA ZEA

If we knew that y,, 1 < oo we could conclude by rearranging ; a little care will be needed to conclude

in a non-circular manner without this assumption.

Suppose that there exists a finite set S > o with ¢, 1(S) < 1. For each finite set A C V there exists a
vertex w with Y, _cp P, (w <> 2)AY(w, 2) = SUPyep 2izen Pp(y o z)A*(y, z) and an automorphism
v of G sending o to w. Using that

Z P,(x & Z)Aﬂ(x, 7) = Z P,(x & y‘lz)A’l(x, y‘lz) = Z P,(yx e z)A’l(yx, 2)
zey 1A ZEA ZEA

for every x € V, we have that

D Bplo > At 0,2)= sup Y By(y o ANy, 2).
zey~ 1A yey'A

Thus, (6.10.2) implies the inequality

zey 1A

> Bplo = DA 0.2) £ Y Bplo > A 0.0) + 6,0(S) Y Bylo > A0, 2),

zey~IA x€S zey 1A
which, since A is finite, can be rearranged to yield that

1

s Pl
TP’A(S) Z PP(O > X)A (O,X)

xeS

Z Py(o < 2)AY0,2) <

zey 1A
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when ¢, 1(S) < 1. On the other hand, the choice of y ensures that

D P0 = 9A 0,2) < D Bylo o AN (0, 2),

ZEA zey 1A

and the claim follows by taking A to exhaust the entire vertex set V. O
We now deduce Lemma [6.10.8]from Lemma[6.10.9]and Proposition [6.10.1]

Proof of Lemma6.10.8] Fix p € [0,1] and A € R and let (G,),> be a sequence in N converging
to some G € N;. We need to prove that Xﬁjl converges to X,?, L,asn — oo. Let Bg(o,r) denote the
ball of radius r around o in G. The lower semicontinuity statement lim inf )(gj > )(g 18 immediate
from the fact that
G G Bg(0,r)
X, = Sup Z P, (o <—>x)A (0,x),
" xeBg (o,r)

since each function on the right hand side is continuous in G by Proposition [6.10.1] and any
supremum of continuous functions is lower semicontinuous. To conclude the proof it suffices to
prove that lim sup )(gj < )(g - The claim is trivial when )(g | = ©0 50 we may assume that )(g L < oo
Since the internal vertex boundaries of the balls Bg (0, r) are disjoint for different choices of r, we
have that

Bg(o,r)
Xg’/l B Zy ~0 A (0 Y) rZ(;xEBGZ(O,r) p(o 7 X)A/I(O’X) ;Aﬂ(x, y)]l(y i BG(O,r))
=5 M(o )ZW(BG(() ).

Since X;(J;/l < ooitfollowsthat ¢, 1(Bg(0,r)) — Oasr — oo. On the other hand, Proposition|6.10.1

and Lemma imply that

1 Bg(o,r) 1

lim sup)( < PY (0 «———5 x)A%(0,x)
n—oo /l 1- ¢p /l(BG(O )) EBGZ(O,r) P G

for every r such that ¢, 1(Bg(0,r)) < 1, and the claim follows since the sum on the right hand side

is bounded above by Xg forevery r > 1. O

Proof of Corollary[6.10.6] It suffices to prove the claim about y,_ 1,2, the claim about p; — p.
following from this estimate. Suppose for contradiction that the claim does not hold, so that there

exists a sequence (Gp),>1 in Ny with )(

pe(Gy)2 > X asn — oo By taking a subsequence
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if necessary, we may assume that G, converges to some G € Ny as n — oo. It follows from
Theorem [6.10.5| and Theorem that lim,, o p.(G,) = p.(G) < p,(G) and hence that there
exists g < p;(G) such that p.(G,) < g for all sufficiently large n. Lemma[6.10.8]then implies that
XZ; — X;;, 1 < oo, which contradicts the assumption that )(I?:( G P since Xz(in( G2 S )(;3

for all sufficiently large n. m|

Sketch of proof of Theorem[6.10.3] Let G = (V, E) be a connected, locally finite, transitive graph,
and for each p € [0,1] define the two-point matrix 7, € RV*Y by T,(u,v) = P,(u < v).
We define ||T,[[>—> to be the operator norm of 7, on L*(V), which is infinite if T, does not
define a bounded operator on L?(V). The main result of [Hut20g] states that if G satisfies the L?
boundedness condition, meaning that ||7),||2—> is finite, then there exists ¢ > 0

Py(n < |K,| < 00) = 172 exp [—@ (|p - pclzn)] (6.10.3)

Theorem from this and Corollary

for every p € (p. — 0,pc +0) and n > 1. The following observations allow us to deduce

1. The inequality ||7,|[>—2 < xp,a holds for every p € [0,1] and 4 € R. This is proven in
[Hut19b, Theorem 2.9]. Thus, Corollary [6.10.6/implies that the L? boundedness condition
holds uniformly for nonunimodular transitive graphs, with constants depending only on the

degree.

2. All the implicit constants in the results of [Hut20h]] can be taken to depend only on the degree
and on ||T},||2—>. (It may seem that they also depend on p., but this is redundant since p.
is bounded below by the reciprocal of the degree and bounded away from 1 by a constant
depending only on ||7},|[>—>.) Although such a claim is not made explicit in that paper, it can
be verified by going through the proof and using that all estimates derived from the triangle
condition (e.g. on the percolation probability 6 and the intrinsic one-arm) can be taken to
depend only on the degree and the value of ||T},_||2—>. This fact can in turn be seen from the
derivation of mean-field critical behaviour from the triangle condition presented in [Hut].
Indeed, [Hut, Eq. 2.1 and Lemma 2.1] yield that the susceptibility satisfies the differential
inequality

4. ! CplK] = Suwver Tp ()"
"7 =p)(og(1=p)* 7 | Xp Zuwwer Tp T, (v,w) |7

dp
and we can bound the two sums appearing here by

D Ty v) = (T 1)k < 1Tl = 1Ty l22lK]

u,vekK
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and
Z Ty(u,v)Ty(u,w) =T,1,T,1)g < ”Tp”%_QHIH%( = ”TP”§—>2|K|

u,v,wek

to obtain that )
(Xp - ||Tp||2—>2)

(1= p)(og(1 = p)2IIT, 13,
This implies that £y, _. is bounded above and below by positive constants depending only

. >
dep -

on the degree and the value of ||T},_||2—>; the fact that all other implicit constants appearing
in the consequences of the triangle condition can be taken to depend only on the degree and

|7}, ||2—2 follows from this as can be seen from [Hut; Hut20h].

3. The restriction that p € (p. — 6, p. +6) in (6.10.3)) is only really needed for the lower bound,
since the stated estimate is not sharp for p very close to 0 or 1. Indeed, the claimed upper
bound extends to all 0 < p < p. by monotonicity, and an upper bound of the same form
follows for all p.+6 < p < 1 by [Hut20h, Proposition 3.1] and the methods of either [HH19]
or [Hut23b]).

‘We omit further details. O

Remark 6.10.1. Most the analysis of [Hut20h] can be skipped if one only wishes to establish our
main results in the nonunimodular case, rather than the sharp uniform volume-tail estimate of
Theorem [6.10.3] Indeed, the proof of [Hut20h, Proposition 3.1] yields in the transitive case that

1 o(p)IS|
¥Y,(S) = —— 1(v ¢ S)P,(v &> 0 off §) > .
g l_p;; g p(l_p)ZHTP“%—Q

(6.10.4)

Since ¥, (S) is monotone in p, it follows from this together with Corollary|(6.10.6| [Hut19b, Lemma
2.4] (which bounds the effect of changing p on ||T}||>—>2), and the mean-field lower bound that

¥, (S) 2 c(p = po)ISI.

for every connected, locally finite, nonunimodular transitive graph G = (V, E) and every finite set
S C V, where c is a positive constant depending only on the degree of G. The fact that this implies
a uniform upper bound on the volume tail of the form P,(n < |K,| < o) < exp[—c(d, &)n] for

every p > p.+¢&andn > 1 can easily be deduced from the methods of either [HH19] or [Hut23b].

Proof of Corollary[6.10.4) The analyticity of 6 on (p,, 1] is already established in [HH19]]. Since

percolation with parameter 1 — (1 — p)" can be thought of as the union of n independent copies of
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percolation with parameter p, we have that
0(1-(1-p)".G) = (1-6(p,G))"

for every p € (0,1) and n > 1, which implies the claimed bound on 6(p, G) for p close to 1 in
conjunction with the mean-field lower bound and the fact that p. is bounded away from zero for
elements of N;. It remains to prove the uniform upper bound on the derivative. Given a connected,
locally finite graph G and p € [0, 1], the triangle diagram is defined by V, := >, \P,(0 <
x)P,(x < y)P,(y < 0), and satisfies the inequality V,, < ||Tp||;_)2 < )(137,1/2. The convergence of
the triangle diagram at p. is a well-known sufficient condition for mean-field percolation critical
behaviour [AN84; BA91; Hut], and in particular, it follows from the results of [Hut] thatif V,, < oo
then there exist positive constants ¢ and C depending only on V,_and the degree of G such that

c(p—pc) <0(p) <C(p-pe) (6.10.5)

for every p > p.. (Again, it may seem that these constants should also depend on p., but p. is
bounded below the reciprocal of the degree and bounded away from 1 by a quantity depending only

on V, .) Russo’s formula yields in our setting that

() = By [ (KD LIK] <] < T8, (1K1K, | < )]

for every p > p., where ¥, is defined in (6.10.4). (Note that Russo only applies directly for events
depending on at most finitely many edges, but in our setting we may easily take a limit since, by
Theorem [6.10.3] the contribution from distant edges is very small. The argument needed to do this
is standard and is omitted.) The claim follows from this together with (6.10.5]) and Theorem|[6.10.3]
which implies that E, [|K,|1(|K,| < o0)] = X7 Pp(n < |K,| < 00) < Clp - pe|™! for some

constant C depending only on the degree. O

6.11 Proofs of the main theorems

To streamline our proofs, let us introduce some language that will only be used in this subsection.
Let H be a countably infinite set of (finite or infinite) transitive graphs. Say that an assignment
p : H — [0,1] is supercritical if there is a constant £ > 0 such that for 6((1 — &)p,G) > &€
for all but finitely many G € H, where 6(p,G) is as defined in eq. (6.4.1). We say that H
has a discrete percolation phase transition if limg; 6(p, G) = 1 for every supercritical assignment
p. This generalises the definition of discrete percolation phase transition for families of finite
transitive graphs given in Section [6.6] Recall the definition of irreducibly macromolecular from
Section[6.9] Let us moreover say that H C F is irreducibly molecular if H is dense and irreducibly

macromolecular.
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Now say that H is of type...

1 ifevery graph in H is infinite and nonunimodular, and the vertex degrees in H are bounded,;

2 if every graph in H is infinite and unimodular, and the vertex degrees in H are bounded;

3 if every graph in H is finite, and the vertex degrees in H are bounded;

4 if every graph in H is finite, limg; deg G = oo, and H does not contain an infinite subset

that is either macromolecular or has a discrete percolation phase transition;

5 ifevery graph in H is finite, limg; deg G = co, H is sparse and irreducibly macromolecular,

and H does not contain an infinite subset that has a discrete percolation phase transition;

6 if every graph in H is finite,  does not have a discrete percolation phase transition, and

H is irreducibly molecular;

...and say that H satisfies property...

T if for every supercritical p,

lim limsup [0(p, G) — P, (IK,| > n)| = 0;
n—oo 7_{

L if for every supercritical p and for every infinite subset H’ C H:
— if H’ converges locally to some infinite transitive graph G, then
lim[6(p, G) = 6(p, Geo)| = 0;
— if limgy deg G = oo, then
lqi{rp |60(p,G) — mf(pdegG)| = 0;
C if for every supercritical p and for every infinite subset H’ € H N F,

limP, (lllgiant|| — 6(p, G)| > €) = 0;

E if for every supercritical p,

limsup sup |0(q,G)—-60((1-6)q,G)| =0.
0l0 gy q€[p,1]
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We will establish the validity of the following table. Formally, this means that if { has some type
i, then for every property P, if the (P,7)th entry of the following table is a tick (v'), then H has
property P, whereas if the entry is a cross (X), then H does not have property P.

NN NN
RN NN N
NI NI N O
RN

O m - A
N N\ X X | »
*x \ X X[

Starting the table
In this subsection, we continue to let { be a countably infinite set of (finite or infinite) transitive

graphs.

Lemma 6.11.1. The following portion of our table is correct.

1 2 3 4 5 6
4 4
/7

A& &~
AN

Proof.
(T,1) This follows immediately from Theorem

(L,2) and (L,3) Suppose that H is of type 2 or 3, and consider an infinite subset H’ C H that

converges locally to some infinite transitive graph G . By Proposition [6.4.1]

li;{n 0(p.G) =6(p,G)

for every constant p > p. := limsupy p.(G). In particular, 6(p,G) > O for all p > p.. So
(1] € (pc(Gw), 1], and thus by [Sch99], 6(-, G) is continuous on (p., 1]. Now consider an
arbitrary (possibly non-constant) supercritical assignment p. Since p is supercritical, there exists a
constant £ > 0 such that p € [p.+¢, 1] for all but finitely many G € H. Recall that if a sequence of
monotone functions defined on a closed and bounded interval converges pointwise to a continuous

function, then the sequence actually converges uniformly. This readily implies that as G — oo
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with G € H, the density 8(-, G) converges uniformly to 6(-, Go,) on the interval [p. + &, 1]. In
particular,
lim[6(p. G) = 6(p. Geo)| = 0.

(T,4) This follows immediately from Proposition @ and Theorems [6.1.T]and [6.2. i}

(E,5) Suppose that H has type 5. Let H’ C H be an infinite subset, and let ¢, g2 : H' — (0, 1)
be a pair of assignments satisfying lim¢ g2/g1 = 1 and ¢1,¢2 € [p, 1] for all G € H’. Since
6(-, G) is trivially continuous for each G € H, to establish E, it suffices to show that

lim|0(g2. G) = 6(q1. G)| = 0.

*»

By Lemma and Proposition [6.6.1] this holds if limg; g2 deg G € {0, o0}. So it suffices for
us to hanfdle the case when there is a constant C < oo such that g, degG € [1/C,C] for all
G € H'’. Fix an irreducibly macromolecular decomposition (A, B) for H’, and similarly to as in
the statement of Proposition [6.9.1} for each G € H’ and for both i € {1, 2}, let
¥i(G) = mf(q;(G)deg G) and ¢;(G) = qi(G)i(G)*.
ForallG € H' andn > 1,
a<olyo2io,

where for both i € {1,2},
9, 1= [0, G) =y - P, (IKo| 2 m)],

and
o 1= 2 - Py, (1Kol 2 n) =1 - By (IKo| = n)].
By Proposition|6.9.1} limg @1 = 0 for both i € {1,2}. So it suffices to prove that limg ¢, = 0.

Using that ¢ and g, are trivially bounded above by 1, for all G and #,

on < [PE (1Kol > n) = P2 (IK,| > n)|+ 12 — vl
———
ol 0?

There can never be more than n deg G closed pivotal edges for the event {|K,| > n}. So by Russo’s

formula, for all G and n, the derivative of the function
fon(p) =P8 (1Kol > n)

293



satisfies
ndeg G

l-p

for all p € (0, 1). In particular, by the mean-value theorem, for all G and n,

J6a(P) <

ndeg G

—_— 6.11.1
1-C/degG ( )

or < (q2—q1) -

Since limg; deg G = oo, we have m < 2 for all but finitely many G € H’. By plugging this

and g; < ﬁ into eq. (6.11.1}), we obtain

ol < (2—1) -2Cn,
q1

and hence limg ¢} = 0 for all n. Note that the function f : [—co,+c0] — [0,1] given by
f(x) :=mf (e*) forall x € R, f(—o0) :=0, and f(+00) := 1, is uniformly continuous. Since

ol
q1

it follows that limg; ¢ = 0. By combining this with our control of ¢!, we have limg; ¢, = 0, as

lim |1 deg G) — 1 deg G)| = li
im [log (g2 deg G) —log (g1 deg G)| = lim

required. O

Lemma 6.11.2. The following portion of our table is correct.

1 2 3 4 5 6
T X X
L
E
c\v V X

Proof.

(C,1) and (C,2) These hold vacuously because if H is of type 1 or 2, then none of the graphs in
H are finite.

(T,5) Suppose that H is of type 5. Since H does not have a discrete percolation phase transition,
by Corollary [6.6.2] there exists a supercritical assignment p satisfying

liminf p deg G < oo.
17} p deg 00
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It now follows easily from Claim [6.9.2] and the definition of macromolecular decompositions that

there exists a constant £ > 0 such that

1
limsupP, [edegG < |K,| < —degG| > &. (6.11.2)
H €

(With probability bounded away from zero, for infinitely many choices of G, every edge in the
boundary of the equivalence class of o is closed, but the cluster of o contains a positive proportion

of the vertices in the equivalence class of 0.)
Foralln > 1 and G € H, by transitivity,
OnG =0(p,G) =Py (IK,| 2 n)

= % Z (PP (V € giant) - Pp (lKvl 2 l’l))

vev
1 1 ) 1
> m Zv: (Pp (sdegG < |K,| < gdegG) -P, (|g1ant| < ;degG)) .
So by eq. (6.11.2)), Theorem|[6.2.1] and the fact that H is sparse, for all n > 1,

limsup 9,6 > €.
H

Since ¢ is independent of n, this shows that H does not have property T.

(T,6) Suppose that H is of type 6. By Theorem , H does not have the supercritical uniqueness

property. So there exists a supercritical assignment p and a constant £ > 0 such that

1
lim sup — ZPP (IKy| = €|G| butv ¢ giant) > €.
w o VI &

By arguing along the same lines as in case (T,5), it follows that for all n > 1,

limsup 9,6 > ¢,
H
and hence that H does not have property T.

(C,6) This follows immediately from [EH21a, Lemma 3.6]. ]
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Finishing the table

In this subsection, we continue to let H be a countably infinite set of (finite or infinite) transitive
graphs. We will extend the portion of our table completed in the last subsection to complete the
whole table. We will use “(P,i)” as shorthand for the statement “if H is of type i, then H has
property P”.

Recall that 7 is the subset of # of graphs with vertex degree exactly d, and recall that mf(2) is
the probability that a Poisson(A)-branching process survives forever. The following result is easy
to prove and known to experts. It is classical for percolation on complete graphs and hypercubes,
and the standard arguments extend without change to the general case. There are many elementary
ways to prove this result, so we will omit the details. (The arguments even work more generally for

high-degree regular graphs that are not necessarily transitive.)
Lemma 6.11.3. For every positive constant C,

lim limsup sup  sup |Pg (IK,| = n) — mf(pd)| = 0.
=0 oo GeFy pel0,C/d]

Proof sketch. Let P, denote the law of a Poisson(A1)-branching process, and let N be total number
of offspring. Fix C > 0. We have (e.g. by Dini’s theorem) that

Py(N > k) - mf(1) ask — oo,

uniformly over all 4 € [0,C]. Moreover, for every fixed k, we have (e.g. by comparing an
exploration of K, to a Binomial branching process, by coupling to percolation on a regular tree, or

by counting the number of trees of a given size) that
[Pajdegc (1Kol < k) =Pi (Kol < k)| >0 asG — cowithG € F,

uniformly over all 4 € [0, C]. So given any n > 0, if we first pick n sufficiently large, then pick d

sufficiently large (depending on n), we can ensure that

B, (K| 2 n) - mf(/l)’ <7
forall G € ¥5and all A € [0, C]. |
Lemma 6.11.4. For everyi € {1,...,6},

(T,i) < (L,i).

Proof.
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(T,i) = (L,i) LetH’ C H be an arbitrary infinite subset that either (1) converges locally to

some infinite transitive graph G, or (2) satisfies limg,, deg G = oo.

1. Forall G e Handn > 1,

0:=10(p,G) - 60(p,Go)|
< |0(p, G) = B (1Kol 2 m)|+[B (1Kol = ) =B (1Kol = m)|+ [~ (1Ko| 2 m) = 6(p, Geo)|.

ob 02 3

Since p 18 supercritical, for all n,
IimP iant| > n) = 1,

and hence
lim sup v, = limsupP§ (|K,| > n but o ¢ giant), (6.11.3)
H H

which tends to zero as n tends to infinity if T holds. In particular, if T holds then
lim sup © < lim sup inf (O,ll +02 4 @,31)
7_{/ 7,(/ nZ]

< lim sup lim sup (0,11 + 02+ Q?fl)

n—oo H’

< lim sup lim sup ) + sup lim sup Q?% +lim sup Q?fl =0.

n—eo  H’ n=l  H n—co
—_—
=0by T =0 =0

2. Thanks to Corollary [6.6.2] the claim is trivial if
li deg G = oo.
im p deg G = o0

So by passing to a further infinite subset if necessary, let us assume without loss of generality
that

suppdeg G < oo,

7_{/

which will allow us to invoke Lemmal|6.11.3| Forall G € H andn > 1,

0 :=10(p,G) —mf (pdeg G)|

< 0y +[PS (IK,| > n) — mf(p deg G)).

o
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In particular, if T holds then
limsup ¢ < lim sup inf (<>,11 + oﬁ)
(]_{r (]_{r n> 1

< lim sup lim sup (031 + oﬁ)

n—oo H’

< lim sup lim sup <>,11 + lim sup lim sup 05 =0.
n—oo H’ n—oo H’

=0by T =0 by Lemma|[6.11.3]

(T,i) < (L,i) Thanks toeq. (6.11.3)), our goal is to show that

lim lim©! =0,
n—oo H

or equivalently, to show that this holds for every infinite subset H” C HH that either (1) converges

locally to some infinite transitive graph G, or (2) satisfies limg, deg G = oco.

1. By a similar argument as above, forall G € H andn > 1,

So if L holds then

lim sup lim sup C?,ﬁ < lim sup © + sup lim sup Q?% +lim sup @,31 =0.

n—oo H’ H’ n>1 H’ n—oo
——— —_— ——
=0byL =0 =0

2. By a similar argument as above, forall G € H andn > 1,
ol <o +02.
So if L holds then

lim sup lim sup ©,, < lim sup ¢ + lim sup lim sup 0,% =0.

n—oo H’ H n—oo H’
————
=0by L =0 by Lemma|[6.TT3]
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Lemma 6.11.5. Foralli € {1,...,6},

(L,i)y = (E,i).

Proof. Let H’ C H be an infinite subset, and let g1, g, : H’ — (0, 1) be a pair of assignments
satisfying limyy g2/q1 = 1 and ¢q1, g2 € [p, 1] for all G € H’. To establish E, it suffices to show
that

lim 0(q2,G) — 0((q1,G)| = 0.

Q

Without loss of generality, we may further assume that either (1) H’ converges locally to some

infinite transitive graph G, or (2) limg, deg G = co.

1. Forevery G € H’,

0 <10(q2,. G) = 6(q2, Go)| +10(q2, Goo) = 0(q1, Goo)| +10(q1, Goo) = 0(q1, G)| -

@1

So if L holds then

limsup © < limsup 9y,
(l,{/ 7.{/

and since ¢ is supercritical,
b :=liminf g; > p.(Gw).
iminf g1 > pe(Geo)
So by [Sch99], the function 6(-, G ) is uniformly continuous on [b, 1]. Since

2 _4
q1

=0,

limsup g2 — g1] < limsup
H' H

it follows that limgy ©1 = 0, as required.

2. Arguing as in the case above, if L holds then

limsup © < lim sup |mf (g, deg G) — mf(g; deg G)| .
H’ H’

@2

Note that the function f : [—oo0,4+00] — [0, 1] given by f(x) := mf (¢*) for all x € R,
f(=0c0) :=0, and f(400) := 1, is uniformly continuous. Since

log (@) =0,
q1

lgp llog (g2 deg G) —log (¢1deg G)| = lqi{rp

it follows that lim supg,, ©, = 0, as required.
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Lemma 6.11.6. Foralli € {3,4,5},

(E,i) = (C,i).

Proof. Assume that H is of type 3,4, or 5. So every graph in H is finite, and H does not contain

an infinite subset that is molecular. Fix a constant € > 0. If

limsup P, (||giant|| > 6(p,G) +¢&) > 0, (6.11.4)
H

then by Theorem [6.2.1] there is a sequence ¢ : H — [0, 1] with limg,; § = O such that

lim sup P44 (||giant|| > 6(p,G) +¢&) =1,
H

and hence
limsupO((1+9)p,G) = 0(p,G) +¢&,
H

which implies that E does not hold. The same reasoning shows that E does not hold if

limsup P, (||K,|| < 0(p,G) —¢) > 0. (6.11.5)
H

If H does not have property C, then eq. (6.11.4)) or eq. (6.11.5]) must hold for some choice of £ > 0.
So, putting everything together, we have shown that if H does not have property C, then H does
not have property E either. O

Lemma 6.11.7. (C,5) A (L,5) = (E,6).

Proof. Suppose that (C,5) and (L,5) hold. Suppose that H is of type 6, and let (A, B) be
irreducibly macromolecular decomposition for H. For each G € H, let ~ be an equivalence class
inducing the macromolecular decomposition (A, B). Now the fact that H has property E follows
easily from the fact that the subgraphs induced by equivalence classes of ~ all have properties E and
C. Although this can be shown directly, for completeness, let us note that this follows for example
from Claim (Although this claim is proven in the setting that H is sparse and irreducibly

macromolecular, the hypothesis that H is sparse is not used for this claim.) O
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Proofs of the main theorems

By applying the results of Section we can extend the entries we found in Section to
establish that all 4 x 6 entries of our table are correct. To deduce our main theorems from this
table, the only non-trivial fact to check is that every infinite set of finite transitive graphs contains
an infinite subset that is of some type i € {3,4,5,6}. Even more precisely, it suffices to show that
if H is macromolecular then /H has an infinite subset that is irreducibly macromolecular. This is

the content of the following lemma.

Lemma 6.11.8. Every infinite set of finite transitive graphs that is macromolecular contains an

infinite subset that is irreducibly macromolecular.

Proof. Let H be an infinite set of finite transitive graphs that is macromolecular. Let 6. € [0, 1]
be the largest constant such that for all 6 € [0, J.] there exists a constant £ > 0 such that infinitely
many graphs in H admit a macromolecular decomposition (A, B) where A is §-dense and

E(B 1

) L
Since H is itself macromolecular, we know that 6, > 0. Now pick a constant £ > 0, an infinite
set J C H, and a collection ((A(G), B(G)) : G € T) such that A(G) is %(L—dense and |E|(GIT)| < é
for all G € 7. It suffices to show that (A(G) : G € I') does not contain an infinite subset that is

macromolecular.

Suppose for contradiction that there exists an infinite subset /' C 7 and a constant 7 > 0 such that
for each G € J, we can find an p-macromolecular decomposition (A’(G), B'(G)) for A(G). Note
that every G € J now trivially admits a macromolecular decomposition (A’, B”) where
EBM| _EB) | EB) 2 2
(& |G| Al T e 7n

We will show that for infinitely many choices of G € 7, the graph A’ is %&—dense, contradicting
the maximality of ¢.. Note that for all G € 7,

2|E(B 2

degA:degG—% >degG — —,

g

and similarly, N )
degA':degA—w ZdegA—;.

In particular, note that limge g |A’| = oo because |A’| > deg A’ for all G, and limgeg deg G = co.
So without loss of generality, let us assume that every G € 1 satisfies

16 16
+

|A| > :
g0, 1Mo
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For all G € I, since |A’| must be a non-trivial divisor of |A|, we have |A’| < % |A|. Therefore,

degA’>degG—%—%> degA 6.
A~ LA T Al 4

In particular, since A is 1%(S*-dense, A’ must be 2 - 19—05* - % = %5*-dense, as required. m]

Now Theorem[6.1.3|follows immediately from Theorem6.1.T|and row C of our table. Theorem|6.1.5]
follows from (L, 1) and (L, 2), since the set of non-unimodular infinite transitive graphs is a closed
and open subset of the set of all infinite transitive graphs. Theorem [6.1.7] follows from (L, 3) and
(for the converse) (L,4) and (L, 5). Theorem|[6.1.11]follows from row E.
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Chapter 7 303

EXISTENCE OF A PERCOLATION THRESHOLD ON FINITE TRANSITIVE
GRAPHS

Abstract
Let (G ) be a sequence of finite connected vertex-transitive graphs with volume tending to infinity.
We say that a sequence of parameters (p,) is a percolation threshold if for every £ > 0, the

proportion || K || of vertices contained in the largest cluster under bond percolation Pg satisfies both

hm P(G{ﬂrg)p (K]l 2 @) =1 for some @ > 0, and

lim Pfln op, (IKill 2@) =0 foralla>0.

We prove that (G,) has a percolation threshold if and only if (G,) does not contain a particular
infinite collection of pathological subsequences of dense graphs. Our argument uses an adaptation
of Vanneuville’s new proof of the sharpness of the phase transition for infinite graphs via couplings

[Van22b] together with our recent work with Hutchcroft on the uniqueness of the giant cluster
[EH21b]].

7.1 Introduction

Given a graph G, build a random spanning subgraph w by independently including each edge with
a fixed probability p. This model Pg is called (Bernoulli bond) percolation. In their pioneering
work on random graphs, Erdds and Rényi [ER60] proved that when G is the complete graph on n
vertices, percolation has a phase transition: as we increase p from 1%‘9 to 1;—8 for any fixed € > 0,
a giant cluster suddenly emerges containing a positive proportion of the total vertices. Since then,
there has been much interest in establishing this phenomenon for more general classes of finite
graphs. However, as remarked in [Bol+10c], progress has been slow. In this paper, we solve this
problem for arbitrary finite graphs that are (vertex-)transitive, meaning that for any two vertices
u and v, there is a graph automorphism mapping u to v. This includes all Cayley graphs, and in

particular, the complete graphs, hypercubes, and tori.

Our setting of percolation on finite transitive graphs places us at the intersection of two well-
established fields. Loosely speaking, one of these began in combinatorics with the work of Erdds
and Rényi [ERS59; ER60], whereas the other began in mathematical physics with the work of
Broadbent and Hammersley [BH57a]. In the former, a subgraph of a finite graph is said to



percolate if its largest cluster contains a positive proportion of the total vertices, whereas in the
latter, a subgraph of an infinite transitive graph is said to percolate if its largest cluster is infinite.
This leads to two different definitions of what it means to have a percolation phase transition. Let

us start by making these precise.

Here are the graph-theoretic conventions we will be using throughout: The volume of a graph

G = (V, E) is simply the number of vertices |V|. We label the clusters (i.e. connected components)

of a spanning subgraph of G in decreasing order of volume by K1, K>, .... In a slight abuse of
notation, we also write K, for the cluster containing a given vertex v. The density of a cluster K is
K| := % the proportion of vertices contained in K.

Now let (G,) be a sequence of finite graphs with volume tending to infinity. Following Bollobds,
Borgs, Chayes, and Riordan [Bol+10c]|, we say that (G,) has a percolation phase transition if there
is a sequence of parameters (p,) such that for every & > 0, botlﬂ

hrn P(l+s)p (IK1l =2 @) =1 for some « > 0, and

hm P(l " on (1K1l =2 @) =0 for all @ > 0.

This is the subject of our paper: we characterise the existence of a percolation phase transition
for finite transitive graphs. Let us mention that the question of a percolation phase transition on
general finite graphs is attributed by the above authors of [Bol+10c] to Bollobés, Kohakayawa, and
Fuksak [BKLO2].

On the other hand, when G is an infinite (locally finite) transitive graph, we define the critical
parameter

Pe i=sup { p: Pg (there exists an infinite cluster) = O} .

By Kolmogorov’s zero-one law, the probability of an infinite cluster under P[? is zero when p < p.
and one when p > p.. So in a trivial sense, G always has a percolation phase transition. The real
question is whether p. < 1. (The fact that p. > 0 is obvious by a branching argument.) So in this
context, we often say that G has a percolation phase transition to mean that p. < 1. Hutchcroft and
Tointon [HT21d]] dealt with an analogue of this question for finite transitive graphs with bounded
vertex degrees, i.e. the question of whether for a given sequence (G,,) of such graphs, there exists
6 > 0 such that IP?_”d(HK] || = &) > 6 for all n. This is not the subject of our paper. To avoid
any possible confusion, when a sequence of finite graphs (G,,) with volume tending to infinity has
a percolation phase transition in the above sense of [Bol+10c], we will instead say that it has a

percolation threshold, referring to the threshold sequence of parameters (p,,) in the definition.

'We will use the convention that P := PY if p > 1 and P§ := P§ if p < 0.
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The main result of this paper is Theorem [8.1.1] below, which characterises the existence of a
percolation threshold on a sequence of finite transitive graphs in terms of the presence of an infinite
collection of molecular subsequences. We discovered molecular sequences with Hutchcroft in
[EH21b] as the only obstacles to the supercritical giant cluster being unique. Interestingly, unlike
the usual story for percolation on a new family of graphs (as told in the introduction of [Bol+10c],
for example), uniqueness of the supercritical giant cluster came first, before the existence of
a percolation threshold, and the former is key to our proof of the latter. See Section for
more background. Here we will just recall the definition of a molecular sequence before stating
Theorem

Definition 7.1.1. Given an integer m > 2, we say that (G,) is m-molecular if it is dense, meaning
|E(Gn)
V(G
edges F,, C E(G,) satisfying the following conditions:

that liminf,,_, > 0, and there is a constant C < oo such that for every n, there is a set of

1. G,\F, has m connected components;
2. F, is invariant under the action of Aut G,;
3. |Fy| < CIV(G)I.

For example, the sequence of Cartesian products of complete graphs (K,0K},),>1 is m-molecular.

We say that (G,,) is molecular if it is m-molecular for some m > 2.

Theorem 7.1.2. A sequence of finite connected transitive graphs with volume tending to infinity has
a percolation threshold if and only if it contains an m-molecular subsequence for at most finitely

many integers m.

The condition that a sequence (G,,) contains m-molecular subsequences for infinitely many integers
m is extremely stringent. For example, we can rule it out if (G,) is either sparse or dense, i.e. the
edge density of G, either tends to zero or remains bounded away from zero. Indeed, it is clear

that a sparse sequence cannot contain any molecular subsequences, but also notice that since every
|E(Gn)l 1 .
——1- < - a dense sequence can contain an
VGl = d

m-molecular subsequence for at most finitely many integers m. In particular, our result implies the

m-molecular sequence (G,) satisfies lim sup,_,,

existence of a percolation threshold for the complete graphs, hypercubes, and tori. Our result is
new even under the additional hypothesis that the graphs have uniformly bounded vertex degreeﬂ

which is particularly relevant to percolation on infinite graphs.

20ne could imagine a family of sequences of such graphs that each has a percolation threshold but such that the
(1+&)-supercritical giant cluster density is not bounded away from zero over the entire family. Then by diagonalising,
we could construct a sequence without a percolation threshold.
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Most previous work on percolation on finite graphs treated specific sequences such as the complete
graphs, hypercubes, and tori. Indeed, many authors have remarked how little work has been done
on more general classes of finite graphs [ABSO4c; Bor+05a; Bol+10c; Ben13b]. Alon, Benjamini,
and Stacey [AB SO4C]EI studied percolation on expanders with bounded vertex degrees. In particular,
they proved that if each graph is d-regular for some fixed integer d and has girth tending to infinity,
then the sequence has a (constant) percolation threshold at p, := 1/(d — 1). Borgs, Chayes, van der
Hofstad, Slade, and Spencer [Bor+05aj; Bor+05b] and Nachmias [Nac09] analysed the emergence
of a cluster with volume of order |V (G,)|*? for percolation on finite transitive graphs satisfying
the triangle condition or a random walk return-probability condition, respectively, both of which
enforce mean-field behaviour. Frieze, Krivelevich, and Martin [FKMO4] proved that if a sequence
of finite regular graphs is pseudorandom (an eigenvalue condition forcing the graph to be like the
complete graph), then it has a percolation threshold at p,, := 1/deg(G,) where deg(G ) is the vertex
degree of the nth graph. Bollobds, Borgs, Chayes, and Riordan [Bol+10c] studied percolation on
arbitrary sequences of finite graphs (G,) that are dense, meaning that lim inf,,_,« 1EGul 5 (). The

V(G
following theorem from their paper will be used in our argument.

Theorem 7.1.3 (Bollobds, Borgs, Chayes, Riordan 2010). Let (G,,) be a sequence of finite connected
graphs with volume tending to infinity. Suppose that (G,) is dense. For each n, let A,, be the largest
eigenvalue of the adjacency matrix of G,. Then (1/4,),>1 is a percolation threshold for (G ).

Our proof of Theorem [8.1.1]does not build a percolation threshold by defining a natural candidate
for the critical parameter of a finite graph in terms of, say, its vertex degrees or the largest eigenvalue
of the adjacency matrix. In our setting, where we have no quantitative assumptions, we are forced
to use a softer and more indirect approach. In particular, our proof of Theorem [8.1.1] says little
about the rate at which the percolation probabilities tend to zero or to one. That said, as part of
our proof we do obtain explicit lower bounds on the supercritical giant cluster density, which are

analogous to the well-known mean-field lower bound for percolation on infinite graphs.

Corollary 7.1.4. Let (G,) be a sequence of finite connected transitive graphs with volume tending
to infinity that does not contain an m-molecular subsequence for any m > M, where M is some
positive integer. Let (p,,) be a percolation threshold, which exists by Theorem Then for every
>0,

P 1K1 >

(1+€)py —o(l)|=1-0(1) asn— oo

£
M(1+¢)

3Here Alon, Benjamini, and Stacey also make several conjectures about percolation on finite transitive graphs,
which may interest the reader.
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Moreover, by simply bounding a percolation threshold (p,) below by the threshold for being
dominated by a subcritical branching process and above by the threshold for connectivity, we

obtain the following optimal bounds on its location.

Proposition 7.1.5. Let (G,,) be a sequence of finite connected transitive graphs with volume tending
to infinity. Let d, denote the vertex degree of G,. If (G,) has a percolation threshold (p,), then it

satisfies

1 log |[V(G,

<pn < (2+0(1))M asn — oo,
d,—1 dy

(I-0o(1))

When (G,,) has a percolation threshold (p,) and converges locally to an infinite graph G, one might
ask how the location of (p,) relates to the critical parameter p. and the uniqueness threshold p,
of G. See Remark 1.6 in [EH21b] for a discussion of this question. Let us simply note that (p,)
typically (but not always) converges to p.. For example, this is the case when (G,,) is a sequence

of transitive expanders and G is nonamenable [BNP11b].

We conclude this discussion by explaining how our result relates to the general theory of sharp
thresholds. Consider a large collection of independent random bits b := (b;)1<;<, € {0, 1}" each
sampled according to the Bernoulli(p) distribution for some p € [0, 1]. For many natural monotone
events A C {0, 1}", the probability that b belongs to A has a sharp threshold: it increases from o(1)
to 1 —o(1) as p increases across an interval of width o(p(1—p)). There is a general philosophy that
a sharp threshold occurs if and only if A is sufficiently symmetric/global. For example, the event
that the Erdds-Rényi random graph is connected has a sharp threshold, but the event that it contains
a triangle and the event that a particular edge is present do not. Theorem[8.1.T|can be understood as
a kind of extension of this principle to the existence of a phase transition in a statistical mechanics
model. Indeed, Theorem [8.1.1] says that "having a giant cluster” typically has a threshold around
a critical parameter p with a threshold widtlﬂ o(p) whenever the underlying graph is transitive,
which is a symmetry/homogeneity condition. However, we would like to emphasise that "having a
giant cluster” is not a well-defined event, so it does not fall within the usual scope of sharp-threshold

techniques.

Molecular sequences and the supercritical phase
Let (G,) be a sequence of finite connected transitive graphs with volume tending to infinity. If

(G,) has a percolation threshold (p,), then a sequence of parameters (g,) is called supercritical if

“The threshold width fails to be o(1 — p) even for simple examples such as the sequence of cycles.
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there exist € > 0 and N < oo such that for all n > N satisfying g, < 1, we have

gn = (L +&)py.

As in [HT21d; EH21b|, we generalise this definition to the situation that there may or may not be
a percolation threshold by saying that a sequence of parameters (g,) is supercritical if there exist

&€ >0and N < oo such that for all n > N satisfying g, < 1, we have
IP)(1—‘9)11,, (”Kl” > 8) > E.

(The ‘g, < 1’ condition is a technicality that guarantees that (G,) always admits at least one

supercritical sequence of parameters, namely the sequence (p,,) with p,, := 1 for all n.)

In our work with Hutchcroft [EH21b]], we showed that not having a molecular subsequence is the
geometric counterpart to the supercritical giant cluster being unique. Here is the precise result

from that paper.

Definition 7.1.6. We say that (G,) has the supercritical uniqueness property if for every supercrit-

ical sequence of parameters (g,),
lim P{" (|Kall > @) =0 foralle > 0.
n—>0oo

Theorem 7.1.7 (Easo and Hutchcroft, 2021). A sequence of finite connected transitive graphs with
volume tending to infinity has the supercritical uniqueness property if and only if it does not contain

a molecular subsequence.

A crucial step in the proof of the above theorem is that if (G,) does not contain a molecular
subsequence, then it has the sharp-density property. To prove Theorem we only need to
recall that the sharp-density property guarantees that for every density a € (0, 1], constant & > 0,
and supercritical sequence of parameters (p;,),

.. . . . Gn
llgglfpgj (1K1l =2 @) >0 implies nh_{{)loP(Hs)pn (IK1]| = @) = 1.

This implies that the event that “there exists a cluster with density at least @” undergoes a sharp
threshold for each fixed @. Notice that this does not immediately imply the existence of a percolation
threshold. One obstruction could be how these thresholds are spaced: one could imagine that the
a-density threshold always occurs at (%)rpl’ say, in which case there would be no percolation
threshold. The implication is not clear even if we additionally require that the G,,’s have uniformly
bounded vertex degrees: see our footnote on page 3, and see Conjecture 1.2 in [Ben+12] for an

analogous situation in the context of expanders.
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Proof strategy

Most of our work goes into showing that if (G,) does not contain a molecular subsequence, then
it has a percolation threshold. In this section, we outline this step. To extend this result to the
case that (G,) contains an m-molecular subsequence for at most finitely many integers m, we apply
the same argument to a molecular sequence’s constituent sequence of atoms. We will deduce that

converse as an immediate consequence of a corollary from [EH21b].

Let (G,) be a sequence of finite connected transitive graphs with volume tending to infinity.
Suppose we want to prove that (G,,) has a percolation threshold. Although "having a giant cluster”
is not an event, we could try taking the event {||K;|| = 6,} as a proxy, where (¢,) is a sequence
tending to zero very slowly. Then as a candidate for the percolation threshold, we could take (p,)

where each p,, is defined to be the unique parameter satisfying
1
B (Kl = 60) = 5.

As a sanity check, notice that if (G,,) does have a percolation threshold, then by a diagonal argument,

there is a percolation threshold (p;,) that arises in this way.

To prove that our candidate (p,) is in fact a percolation threshold, we need two ingredients. The
first ingredient is that the emergence of a cluster of any constant density has a threshold about a
critical parameter p with a threshold width o(p). This immediately handles the subcritical half
of our task: since lim,_,o, 9, = 0, it guarantees that lim,_,c P(Gl”_g)p” (IIK1]l = @) = 0 for every
@, & > 0. As mentioned in Section[7.1] the existence of these constant-density thresholds is implied

by the sharp-density property, which holds whenever (G,,) has no molecular subsequences.

The second ingredient is a universal lower bound on the supercritical giant cluster density. This
says that for every € > 0, there exists 6 > 0 such that for every sequence of parameters (p,), if
(Gl’jr P ||[K1]| > 6. Together with the first ingredient,

this ensures that by taking (9,) to decay slowly enough, for every &£ > 0, there exists 6 > 0 with
Gn
(1+&)pn
subsequences.

liminf, . E5" [ K1]l > 0, then lim inf,_c E

lim, o P (JIK1|] = 6) = 1. We will prove that this too holds whenever (G ) has no molecular

This second ingredient is reminiscent of the mean-field lower bound from the study of percolation

on infinite graphs. This says, for example, that every vertex v in an infinite transitive graph G
satisfies

G

Flee)pe(c)

Together with the exponential decay of |K,| throughout the subcritical phase, this forms what is

£
K, is infinite) > ——.
(K, is infinite) T s

known as the sharpness of the phase transition for percolation on infinite graphs. This foundational
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result was first proved in [Men86; AB87a; CC87] but has recently been reproved by more modern
arguments in [DT16c; [DRT19; Hut20d; Van22b]. The main obstacle to adapting these proofs to
our finite setting is that they concern the event that the cluster at a vertex reaches a certain distance
or exceeds a certain volume, whereas we care about the cluster’s volume as a proportion of the total

vertices.

Moreover, while the sharpness of the phase transition is completely general —- applying to all
infinite transitive graphs — there is no universal lower bound on the supercritical giant cluster
density that applies to every finite transitive grapfﬂ So to adapt one of these proofs to our setting,
we need to include information about the underlying sequence of graphs in the argument itself, for
example, that it has the supercritical uniqueness property, or equivalently, that it has no molecular

subsequences.

Very recently, Vanneuville [Van22b|] gave a new proof of the sharpness of the phase transition
via couplings. Unlike previous arguments, this one does not rely on a differential inequality.
Vanneuville’s key insight was that by using an exploration process, we can upper bound the effect
of conditioning on a certain decreasing event, namely the event that a vertex’s cluster does not reach
a certain distance, by the effect of slightly decreasing the percolation parameter. Our strategy is to

apply this argument but with the event that a vertex’s cluster has small density.

Rather than building an exact monotone coupling of the conditioned percolation measure and the
percolation measure with a smaller parameter, which is impossible, we will construct a coupling
that is monotone outside of an error event. Then under the additional hypothesis that (G,) has the
supercritical uniqueness property, we will prove that this error event has probability tending to zero.
Just as Vanneuville’s coupling immediately yields the mean-field lower bound, our approximately
monotone coupling will tell us that for every sequence of parameters (p,,) and every constant & > 0,
if lim inf o E5" [[K1 ]| > 0, then
liminf B K| > %

Let us mention that for this step — establishing a universal lower bound on the supercritical giant
cluster density when we have the supercritical uniqueness property — it is possible to instead
adapt Hutchcroft’s proof of sharpness from [Hut20d]], rather than Vanneuville’s new proof. The
adaptation that we found of Hutchcroft’s proof is more involved than the argument presented here.

For example, it invokes the universal tightness result from [Hut21d]. Invoking this auxiliary result

>Consider the sequences (K, 0C,,),s1 for each m > 3, where K,, is a complete graph and C,,, is a cycle.
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also has the consequence that the universal lower bound we ultimately obtain is weaker than the

mean-field bound established here.

7.2 The coupling lemma

In this section, we control the effect on percolation of conditioning on the event that a vertex’s
cluster has small density. In particular, we prove that the conditioned measure approximately
stochastically dominates percolation of a slightly smaller parameter. As mentioned in Section /.1

the argument in this section is inspired by [[Van22b].

Lemma 7.2.1. Let G = (V, E) be a finite connected transitive graph with a distinguished vertex o.
Let p € (0, 1) be a parameter and a € (0, 1) a density. Define

a 2h'/?
0:=ByllKill. k=B, (IKill <aor Kl = 3). 6=
and assume that 0 + h < 1 (so that ¢ is well-defined and positive). Then there is an event A with

P, (A IKll < @) < h'/? such that
P(I—H—é)p <st Pp (wUls=- | IK]l <a),

where <y denotes stochastic domination with respect to the usual partial order < on {0,1}%, and

14 denotes the random configuration with every edge open on A and every edge closed on A°.

Proof. To lighten notation, set P := P, (- |IKoll < @) and g := (1 -6 —0) p. Our goal is to
construct an approximately monotone coupling of P, and P. We will build this in the obvious way:
by fixing an exploration process and building samples of P, and P in terms of a common collection
of E-indexed uniform random variables. The rest of the proof consists in controlling the failure of

this coupling to be monotone.

Fix an enumeration of the edge set E. Recall the following standard method for exploring a
configuration w from o: Start with all edges unrevealed. Iteratively reveal the unrevealed edge of
smallest index that is connected to o by an open path of revealed edges until there are none. Then
iteratively reveal the unrevealed edge of smallest index from among all remaining unrevealed edges
until there are none. Let py, ..., p|g| be the sequence of edges as they are revealed by this process.

Let (F7)o<<|k| be the filtration associated to this exploration, i.e.

Fii=0 (Wpyse ey wp,) -

We now use this exploration to construct a coupling of P, and P. Let (U.)ecr be a collection

of independent uniform-[0,1] random variables. Recursively define w,, =1 D for

Upts]@’(p, open |F;—
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every t to obtain a configuration w with law P, and simply take (1y,< q)e < for a configuration with
law P,. This coupling is monotone (in the direction we want) on the edges p1, p2, . . ., Pz, Where

Tryi1 1S the stopping time defined by
Tyl := Inf{z : @(p,_,_l open | 1) < q},

with the convention that inf @ := |E|. So (erSq)ee g = w almost surely when g, = [E|. Since

(IUeSq) ver = Lru<|g) holds trivially when 7g,; < [E|, we know that
Py <« P(wU 1y, <5 =-).
So it suffices to verify that P (. < |E|) < h'/2. By definition of g, we have the upper bound
P (0741 OpeN | Fryyy) < g a.5. when 1,1 < |E|. (7.2.1)
Our first step is to prove a complementary lower bound.

Say that an edge e is pivotal it || K, (w\{e})|| < @ but ||K,(w U {e})|| > a. If e is open and pivotal,
then ||K,|| > a, which is P-almost surely impossible. So

P (pz+1 OpeN | Fryyy) = P (0141 Open and not pivotal | ) a.s. when 7py < [E[. (7.2.2)

Suppose we reveal the edges pi, . .., pr,, and find that 7¢,; < |E|. Note that pr, 1 is now almost
surely determined. To finish building a sample of P, rather than continuing our exploration process,
we could first sample every unrevealed edge except pr,+1, then sample pr 41 itself. The first
stage will determine whether p,, 1 is pivotal. If it is not pivotal, then conditioning on the event
{lIK,|| < a} will have no effect in the second stage, i.e. the conditional probablity that p,,+1 is
open will simply be p. So we can rewrite eq. as

I@ (prail+1 Open | ﬁfai]) = pfp) (prai1+1 not prOtal | ﬁfail) (7 2 3)
=p (1 — P (g1 pivotal | ﬁfaﬂ)) a.s. when 7 < |E|.

As in our argument for eq. (7.2.2), since it is P-almost surely impossible for an edge to be both

open and pivotal, this further implies that

P (pge1 opPED | Fry) = P (1 — P (041 closed and pivotal | ﬁfaﬂ)) a.s. when 7 < |E| .
(7.2.4)

By combining inequality eq. (7.2.1)) with eq. (7.2.3)), we deduce that
P (pz+1 pivotal | Fr,) > 0 as. when 7py < |E| .
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So when 1 < |E|, we can almost surely label the endpoints of p,,+1 by v— and v, such that v_
is connected to o by a path of open edges among the revealed edges {p1, ..., P, }, Whereas v, is

not.

Consider a configuration w with 7g; < |E| in which p4, 41 is closed and pivotal. By the pigeonhole

principle, since ||Ky(w U {pr+1})]| = @,

(7.2.5)

Since closing pr;;+1 disconnects K,(w U {p,,+1}), the endpoints v_ and v, belong to distinct
clusters of w. In particular, since v_ € K,,, we know that v, ¢ K,. So eq. (/.2.5) implies that

1Kl =5 o K, (0\KD)]| = .

where K, := K, U 8K, and dK,, denotes the edge boundary of K,,. Now w was arbitrary, so by a

union bound,

. , A @ A — @
P (pz,+1 closed and pivotal | F7,,) <P (||Ko|| 25 | ﬁfaﬂ) +P (||KV+(w\K0)|| z 5 | ﬁfaﬂ)
a.s. when Thail < |E| .

(7.2.6)

To bound the first term in inequality |(7.2.6), notice that ||K,|| > 5 and [|K,|| < « together imply

the bad event B := {||K1|| < @ or ||K3|| > 5}. So because ||K,|| < @ occurs P-almost surely,

A a ~
p (||K0|| > 2| ﬂaﬂ) <P(B|,) as. whent <|E|. (7.2.7)

To bound the second term in inequality define a new stopping time
Tmoat := Max{z : p; € K, }.

(This is defined with respect to the standard exploration described in the second paragraph of the
current proof environment, not the modified exploration mentioned below eq. (7.2.2)).) Just after we
reveal pr, .. since conditioning on the event {||K,|| < a} no longer has any effect, the distribution

of the configuration on the unrevealed edges is simply

B (le\K_O = ﬁm) =% < P, as. (7.2.8)

When 7,5 < |E|, we showed that p,,+1 almost surely has an endpoint belonging to K,,, namely v_.

So gy < |E| implies Tj) < Tmoat almost surely. By applying this observation, inequality |(7.2.8)]
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and transitivity, we obtain
fp) (||KV+(U)\K_0)|| > % | ﬁfail) = E I:p (||KV+(w\K_0)|| 2 g | ﬁmoat) | ﬁfail:l

£[en(Id ) 17

a
=P, (||K0|| > 5) a.s. when Ti < |E|.

When ||K,|| > 5, we must have that 0 € K; or ||K>|| > 5. So by a union bound,

I/\

\

a
(||KV+(w\K e | ﬁfm) <P, (0€K))+P, (||K2|| > —)

2 (7.2.9)
<0+h as.when 1y < |E|,

where h :=P, (B) and 0 := E, ||K1||, which satisfies 6 = P, (0 € K1) by transitivity.

Plugging inequalities|(7.2.6)|, |(7.2.7)|and|(7.2.9)|int0 eq. |b gives alower bound on P (Prpa+1 open | Frp)
when Tp, < |E|. By contrasting this with upper bound ?? and expanding the definition of g, we
deduce that

2h1/2

p(l—g—h—@(Blﬁ-m]))Sp(l—g—m

) a.s. when 7g < |E| .

In particular,
hl/ 2

T 1-60-h
By the law of total expectation, we know that E [P (B | %,,)]| = P (B). So by Markov’s inequality,

(B | 7-Trfeul )

a.s. when tgy < |E| .

. hl/2 1-0-h.
P(Tfall < |E|) S P( (B | ﬁfdll) ) <

— P (B). (7.2.10)

By definition of P and h, we have the trivial bound

P,(B) h

P(B) < P, (1K, |l < @) - I_Pp(”K()“ 2 a')-

If |K,|| > @, theno € K 1 or ||Kz|| > @. So similarly to the argument for inequality [(7.2.9)] a union

bound gives P (B) < 0% 0 +. Plugging this into inequality |(7.2.10)| yields P (111 < |E]) < A2, as
required. o

7.3 Characterising the existence of a percolation threshold

In this section, we prove Theorem [8.1.1] and Corollary Our first step is to establish a
mean-field lower bound on the supercritical giant cluster density for sequences of graphs without

molecular subsequences. This is where we use the coupling lemma from Section

314



Lemma 7.3.1. Let (G,) be a sequence of finite connected transitive graphs with volume tending to
infinity that does not contain a molecular subsequence. Fix € > 0 and let (p,) be any sequence of

parameters. If liminf, EI(,;: ||[K1|| > O, then

€
11m1nfE(1+8) IK1|| > To s

Proof Suppose for contradiction that liminf, . E, ESn " |[K1]l > 0 but liminf, E(lr-ll-g)p ||Kq]| <

1. By passing to a suitable subsequence, we may assume that
limsupEC" [|K || < — 73.1
1msup (le)pn | ||<m. (7.3.1)

Pick @ > 0 such that Eg: ||K1]| = 2« for all sufficiently large n. By Markov’s inequality applied to
1 —||K1]|, this implies that Pl(,;: (IK1]| = @) > a for all sufficiently large n. Now for each n, define

0, := E°" I|K1]] and hy, = PCn

O Kill <@ or [IKall = 5).

(1+&)pn ('
Since (G,) does not contain a molecular subsequence, it has the sharp-density and supercritical
uniqueness properties from [EH21b]. (See Section [7.1] for more information.) So the fact that
liminf, 0 PS" (1K1l > @) > 0 implies that

Gn = G =) =
lim P (IKill<e)=0 and  lm Py (||K2|| > 5) =0.

So by a union bound, lim,—« 2, = 0. Together with inequality this guarantees that for
all sufficiently large n, we have 6, + h, < 1, allowing us to apply Lemma By passing to a
suitable tail of (G,), we may assume that this holds for every n. So for every n, Lemma(7.2.1|says
that there is an event A, C {0, 1}£(G») with

o (An LKl < @) < iy (732)

such that
pGn

2nl/? Sst Lt
(l—gn—m)(lﬁ-ﬁ‘)pn

(14+&) pn ((U U lAn = | ”KO” < a’) . (7.3.3)

When Pg: (IK1]] = @) = a, it follows by transitivity that PI(,;: (IIK,|l = @) > @>. On the other
hand, by inequalities [(7.3.2)|and [(7.3.3)] we know that

n 1/2
P! s (K|l = @) < hM.

2}
(1 9n—W)(1+8)Pn
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So by taking n sufficiently large that both Pg: (|IK1|] = @) = a and h,l/ 2 < a2, we can force
1/2
2h
1-0,—-——————|(1+&)p, < pa. 7.3.4
( 1—0n—hn)( g)pn < p (7.3.4)

However, by inequality [(7.3.1)|and the fact that lim,_,o &, = 0,

2h)? 1
1-6, - L >
1-6,—-h, 1l+¢
for all sufficiently large n, contradicting inequality m]

By the sharp-density property, we can convert this mean-field lower bound that holds in expectation
into one that holds with high probability.

Lemma 7.3.2. Let (G,) be a sequence of finite connected transitive graphs with volume tending to
infinity that does not contain a molecular subsequence. Fix € > 0 and let (p,) be any sequence of
parameters. If liminf,_,q Eg: ||K1]| > O, then

]PG

P>
(1'18)1," (”Kl” 2 T+ 0(1)) =1-0(l) asn— oo.

Proof. Let ¢ € (0, ) be any constant. By Lemma|7.3.1}

Gn -0

h,?_l,gle(Hs—&)pn IK1]| > Tos_3

So by Markov’s inequality applied to 1 — || K],

G g-90 o(e—-0)
" K| > > 0.
(1+&=6)pn (” 1l = 1+s) T (1+60)(1+e-9) g

liminf P (7.3.5)

Since (G,) does not contain a molecular subsequence, it has the sharp-density property from
[EH21b]. (Recall our discussion in Section[7.1]) So inequality [(7.3.5)|implies that

. G, o) _
Jm P, (”Kl” = m) =1

Since ¢ was arbitrary, the result now follows by a diagonal argument. O

Our next step is to extend a version of this lower bound to a simple kind of molecular sequence.
The idea is to break the graphs in the sequence into their constituent afoms then apply Lemma
to the sequence of atoms.
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Lemma 7.3.3. Let (G,) be a sequence of finite connected transitive graphs with volume tend-
ing to infinity. Assume that (G,) is m-molecular for some m > 2 but does not contain a k-
molecular subsequence for any k > m. Fix € > 0 and let (p,) be any sequence of parameters. If

liminf, e ES" K1l > 0, then

&
(1+8)p 1K 1||—m—0(1) =1-0(1) asn— oo

Proof. By definition of an m-molecular sequence, for every n, we can pick a set of edges F,, C
_Fal

WG 18

uniformly bounded. Let A, denote one of the connected components of G,\F,, which are all

E(G,) such that F, is AutG,-invariant, G,\F, has m connected components, and

necessarily isomorphic to each other and transitive. Notice that (A,) does not contain a molecular
subsequence. Indeed, if (A,) contained an r-molecular subsequence (Aj),c; for some r > 2, then
(Gpn)ner would be an rm-molecular subsequence of (G,). (Every automorphism of G,, acts on the

m copies of A, by permuting the copies and applying an automorphism of A, to each.)

For each finite graph G, let A(G) denote the largest eigenvalue of the adjacency matrix for G.
Recall that when G is regular, 1(G) = deg(G), the vertex degree of G. By Theorem
which is taken from [Bol+10c], since (G,) and (A,) are sequences of dense graphs, they have

percolation thresholds at (1/4(G,)),>1 and (1/2(A;)),>1 respectively. Since |V|{G"'|’)| is uniformly
deg A

bounded, lim,,_ o Tog GZ = 1, and since every A, and G, is regular (since transitive), this means
A(An)

G = 1. So for any 6 > 0, since the sequence ((1 + 8)p,,) is supercritical for (G),

that lim,,—,

it is also supercritical for (A;). In particular,

l1m1nfE(1+6) |Ki|| > 0.

Now since (A,) has no molecular subsequences, it follows by Lemma that

-0
Pg‘ﬁg)pn (||K1|| > 1+8—0(1)):1—0(1) as n — co.

Since 6 > 0 was arbitrary, a diagonal argument gives
Pl (||K1|| > i—0(1)) =1-0(1) asn— oo.
l+e&

(1+&)pn

The result follows because A, is a subgraph of G, and |V(G,)| = m |[V(A,)|. O

We now extend this lower bound to sequences of graphs that have m-molecular subsequences for

at most finitely many integers m.
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Lemma 7.3.4. Let (G,) be a sequence of finite connected transitive graphs with volume tending
to infinity that does not contain an m-molecular subsequence for any m > M, where M is some
positive integer. Fix e > 0and let (p,) be any sequence of parameters. Ifliminf,_,q El(,;: ||[K1]| >0,
then

P (||K1|| >

(1+&)pn - 0(1)) =1-0(1) asn— oo

£
M(1+e¢)
Proof. 1t is enough to show that for every subsequence (G,),e; of (G,), we can find a further

subsequence (G,),es With J C I such that
8 .
(1+e)p (” tl Zm_O(l))zl—O(l) asn — oo withn € J.

Let (Gp)ner be a subsequence of (G,). If (G,).e; does not contain a molecular subsequence, then
by Lemma|7.3.2, we know that IP(H \on (1K1l = 1 — o(1)) =1-0(1)asn — oo withn € 1. On
the other hand, if (G,),<; does contain a molecular subsequence, then we can pick a subsequence
(Gn)ney with J C I that is m-molecular with m € {2, ..., M} maximum. Then Lemma tells

us that B0 (||K1|| > - 0(1)) —1-o0(1)asn — cowithn € J. 0

We are now ready to prove that if a sequence of graphs has m-molecular subsequences for at most
finitely many integers m, then it has a percolation threshold. As outlined in Section the idea
is to prove that the threshold for the emergence of a cluster of very slightly sublinear density is a

percolation threshold.

Lemma 7.3.5. If a sequence of finite connected transitive graphs with volume tending to infinity
contains an m-molecular subsequence for at most finitely many integers m, then it has a percolation
threshold.

Proof. Let (G,) be such a sequence of graphs. Let M be a positive integer such that there are no m-
molecular subsequences with m > M. For every density ¢ € (0, 1) and each index n, define p”(9)
to be the unique parameter satisfying ng( 5) (IKq ]l = 0) = % Given any constants £,6 € (0, 1), we
know by Lemma that

E
Lim B ) (”Kl“ = m) =1

since 557 < m So by a diagonal argument, for every € € (0, 1), there exists a sequence (0%),>1

in (0, 1) with lim,_,o 6f, = 0 such that

Gn e
Jm P ) (“Kl” > 2M) L
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Now by a further diagonal argument, there exists a fixed sequence (d,) in (0, 1) with lim,,_,o, 6, =0

such that for every € € {%, %, %, .. },

. oG £\
Jim P e prsn) (”K”l = 2M) =1

We claim that the sequence of parameters (p,) given by p, := p?(d,) has the required properties.

To verify the subcritical condition, suppose for contradiction that lim,,_,, P (IK1]| = @) #0

Gn
(1_5)[7;1
for some €, @ € (0, 1). By passing to a suitable subsequence, we may assume that

li’{rl)iolng(Gl"_g)pn (K]l = @) > 0.

Then by Lemma|/.3.4
1 Gn € ) —
nhmooPp" (||K1|| > )= 1.

This contradicts the fact that for every n that is sufficiently large to ensure 0, < 557,

&
B0 (1K1l 2 o) < B9 (1K 2 6,) =

| =

To verify the supercritical condition, fix € > 0. Pick any &’ € {% %, }‘, . } with &’ < . Then by
construction of (4,),

/

g &
PG" (”Kl” > m) > P(Glr_:_g,)pn (”Klll > ZM) =1- 0(1) as n — oo, O

(1+&)pn

We now verify that these sequences of graphs — those that have m-molecular subsequences for at
most finitely many integers m — are the only sequences to have a percolation threshold. This follows
from the following corollary of Theorem from [EH21b] that characterises the supercritical

existence property.

Definition 7.3.6. We say that (G,) has the supercritical existence property if for every supercritical

sequence of parameters (g;),
lim Pgn" (IKill =2 @) =1 for some a > 0.
n—oo

Corollary 7.3.7 (Easo and Hutchcroft, 2021). A sequence of finite connected transitive graphs
with volume tending to infinity has the supercritical existence property if and only if it contains an

m-molecular subsequence for at most finitely many integers m.

Notice that if a sequence of finite connected transitive graphs with volume tending to infinity has
a percolation threshold, then it automatically has the supercritical existence property. So the ‘only

if” direction of Corollary immediately implies the following lemma.
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Lemma 7.3.8. If a sequence of finite connected transitive graphs with volume tending to infinity
contains an m-molecular subsequence for infinitely many integers m, then it does not have a

percolation threshold.

Our main result, Theorem 8.1.1], now follows by combining Lemmas|[7.3.5|and[7.3.8] We conclude
this section by deducing Corollary from Lemma

Proof of Corollary[7.1.4} For every § € (0, ), we know by definition of a percolation threshold

that lim inf,,_, Eﬁi@pn |IK1]| > 0. So by Lemma|7.3.4]
PG Kill > =2 D]=1-00
(146) pn IK1ll > m—O( )| =1-0(1) asn— oo.
Since ¢ was arbitrary, the result follows by a diagonal argument. m|

7.4 Bounding the threshold location

In this section, we give a proof of Proposition This is simply the observation that existing
arguments immediately imply bounds on the location of a percolation threshold (when it exists),
which happen to be best-possible. The lower bound is a completely standard path-counting argument
that we only include for completeness. The upper bound comes from bounding the percolation
threshold by the connectivity threshold. As explained in [GLL21]], we can estimate the connectivity
threshold thanks to an upper bound by Karger and Stein on the number of approximate minimum

cutsets in a graph [KS96].

The lower bound is sharp in the classical case of the complete graphs [ER60]. In fact, it is sharp for
a very wide range of examples, including arbitrary dense regular graphs [Bol+10c], the hypercubes
[AKSS82a]] (which are sparse yet have unbounded vertex degrees), and expanders with high girth
and bounded vertex degrees [ABSO4c|]. However, it is less obvious that the upper bound is optimal
in the sense that the constant 2’ cannot be improved. For this, see the fat cycles construction in
[GLL21].

Proof of Proposition We start with the lower bound. This argument is just an optimisation

of the proof of Lemma 2.8 in [EH21b]. Fix € € (0, 1). It suffices to check that (dl'_‘gl) | is not
n nx

supercritical along any subsequence. There are at most d,(d, — 1)"~!' simple paths of length r

starting at a particular vertex o in each G,. So for every n,

1-g\ 2
ES", Kol < Y du(d,— 1) —=| <=
T 1K Z; (dy = 1) (dn_l) -
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In particular, lim,,_,c EGlfa IK,|| = 0, and hence by transitivity, lim,,_., E loe K] = 0.
dn—1 n-

We now prove the upper bound. Every finite connected transitive graph has edge connectivity equal
to its vertex degree [Mad7/1]]. So by Theorem 4.1 from [GLL21],

G .
y nn =1.
n1—>oo P(2+0(1))W ((,() 1S CO ected)
In particular, (W) 1 is not subcritical along any subsequence. -
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Chapter 8 322

SHARPNESS AND LOCALITY FOR PERCOLATION
ON FINITE TRANSITIVE GRAPHS

Abstract

Let (G,) = ((Vy, Ey)) be a sequence of finite connected vertex-transitive graphs with uniformly
bounded vertex degrees such that |V,,| — oo as n — oo. We say that percolation on G, has a sharp
phase transition (as n — o) if, as the percolation parameter crosses some critical point, the number
of vertices contained in the largest percolation cluster jumps from logarithmic to linear order with
high probability. We prove that percolation on G, has a sharp phase transition unless, after passing
to a subsequence, the rescaled graph-metric on G, (rapidly) converges to the unit circle with respect
to the Gromov-Hausdorff metric. We deduce that under the same hypothesis, the critical point for
the emergence of a giant (i.e. linear-sized) cluster in G, coincides with the critical point for the

emergence of an infinite cluster in the Benjamini-Schramm limit of (G,), when this limit exists.

8.1 Introduction

Given a graph G, build a random spanning subgraph w by independently including each edge of
G with a fixed probability p € [0, 1]. The law of w is called (Bernoulli bond) percolation and is
denoted by Pg. This simple model often undergoes a phase transition: for many natural choices
of the underlying graph G, as p increases past some critical value p.(G), the typical behaviour of
the connnected components of w changes abruptly. The study of this phenomenon has two origins,

roughly coming from mathematical physics and combinatorics, respectively.

The first origin is the 1957 work of Broadbent and Hammersley [BHS57b] introducing percolation
on the Euclidean lattice G = Z¢ as a model for the spread of fluid through a porous medium. Note
that Euclidean lattices are always (vertex-)transitive, meaning that for all vertices u and v, there
is a graph automorphism that maps u to v. This is a way to formalise the notion that a graph
is homogeneous or that its vertices are indistinguishable. For example, every Cayley graph of a
finitely-generated group is transitive. In 1996, Benjamini and Schramm [BS96b] launched the
systematic study of percolation on general infinite transitive graphs. A cornerstone of this theory
is that percolation on an infinite transitive graph G always undergoes a sharp phase transition.

Let us recall what this means. We will write o to denote an arbitrary vertex in G and write |K,|



to denote the cardinality of its cluster, i.e. connected component in w There is a trivial sense
in which percolation on G always undergoes a phase transition: by Kolmogorov’s 0-1 law, there
exists some critical point p.(G) € [0, 1] such that Pg (there exists an infinite cluster) equals O for
all p < p.(G) and equals 1 for all p > p.(G). Now the phase transition is said to be sharp if for
all p < p.(G), not only does P§(|KO| > n) — 0 as n — oo, but in fact there exists a constant

¢(G, p) > 0 such that Pg(lKOI >n) < e " for every n > 1E| This was first proved in [AB87a;

Men86] and now has multiple modern proofs [DT16a; DRT19; Hut20d; Van24].

The second origin is the 1960 work of Erdds and Rényi [ER60] investigating percolation on the
complete graph G, with n vertices. This is the celebrated ErdGs-Rényi (or simply random graph)
model. The fundamental result is that percolation on G,, undergoes a sharp phase transition around
p = 1/n in the sense that for any fixed € > 0, the cardinality of the largest cluster of w under Pg
jumps from beingﬂ@(log n)atp = (1-&)/ntobeing ®(n) at p = (1+&)/n with high probability as
n— ooE] Analogous results have since been established for certain other families of finite graphs
with diverging degrees. For example, Ajtai, Komlos, and Szemerédi [AKS82b] and Bollobds,
Kohakayawa, and Euksak [BKE92] investigated percolation on the hypercube H; = {0, 1}¢, which
has a sharp phase transition around p = 1/d. Note that every complete graph and hypercube is
transitive. For a small sample of the vast literature on percolation on finite graphs, see, for example,
[ABSO4a; KLS20] on expanders, [FKMO04]] on pseudorandom graphs, [Bor+05a; Bor+05b; Bor+06;
Nac(09] on transitive graphs satisfying certain mean-field conditions, [Bol+10c] on dense graphs,

and [Dis+24; DK24a; DK24b] on general graphs satisfying certain isoperimetric conditions.

Between these two settings lies the less-developed theory of percolation on bounded-degree finite
transitive graphs. This theory, which started in 2001, was initiated by Benjamini [BenO1b] and by
Alon, Benjamini, and Stacey [ABSO4a]. This concerns the asymptotic properties of percolation
on a finite transitive graph G = (V, E) as |V| becomes large while the vertex degrees of G remain
bounded. As with the ErdGs-Rényi model, here we are primarily interested in the phase transition
for the emergence of a giant cluster, i.e. a cluster containing ®(|V|) vertices, and we will call
the phase transition sharp if the size of the largest cluster jumps from ®(log|V|) to ®(|V]). (See
Section [8.1] for precise definitions.) At the same time, this theory is closely related to percolation

on infinite transitive graphs via the local (Benjamini-Schramm) topology on the set of all transitive

"More generally, K,, denotes the cluster containing a vertex called u.

2Some people use sharpness to mean slightly different things e.g. the exponential decay of point-to-point connection
probabilities for p < p. together with the mean-field lower bound for p > p..

3Given functions f, g : N — (0, c0), we write f(n) = ©(g(n)) to mean that there are constants ¢ > 0 and C < oo
such that cg(n) < f(n) < Cg(n) for all n,i.e. f(n) = O(g(n)) and g(n) = O(f(n)).

“When p > 1 or p < 1, we define P, to be Py or Py respectively.
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graphs. Indeed, with respect to this topology, every infinite set G of finite transitive graphs with

bounded degrees is relatively compact, and every graph in the boundary of G is infinite.

Despite this close relation between infinite transitive graphs and bounded-degree finite transitive
graphs, our understanding of percolation on infinite transitive graphs is quite far ahead. Roughly
speaking, we can think of the theory of percolation on infinite transitive graphs as the theory of
percolation on microscopic (i.e. O(1)) scales in bounded-degree finite transitive graphs. In this
sense, the finite graph theory generalises the infinite graph theory. (A limitation of this maxim is
that not every infinite transitive graph can be locally approximated by finite transitive graphs.) In
particular, certain basic questions in the finite graph theory have no natural analogues in the infinite
graph theory. For example, the uniqueness/non-uniqueness of giant clusters is not directly related
to the uniqueness/non-uniqueness of infinite clusters, which is instead related to the microscopic

metric distortion of giant clusters [EH21a, Remark 1.6].

In this paper we investigate the following pair of closely related questions. An affirmative answer to
the second question provides a direct way to move results and conjectures about infinite transitive

graphs to finite transitive graphs.

1. Does percolation on a large bounded-degree finite transitive graph G have a sharp phase

transition?

2. If a finite transitive graph G and an infinite transitive graph H are close in the local sense,
does the critical point for the emergence of a giant cluster in G approximately coincide with

the critical point for the emergence of an infinite cluster in H?

Unfortunately, the answer to both of these questions in general is no. For example, take the
sequence (Z, X Z f(n)):’: , forany f: N — N growing fast. This sequence always converges locally
to Z?, where the critical point for the emergence of an infinite cluster is p. = % On the other
hand, provided that f grows sufficiently fast, the threshold for the emergence of a giant cluster in
Zy X Z ¢ will be as in the sequence of cycles, around p. = 1. Moreover, for percolation of any
fixed parameter p € (%, 1) on Z, X Z¢ ), the order of the largest cluster will then typically be much
larger than logarithmic but much smaller than linear in the total number of vertices. (See [EH23b,
Example 5.1] for some more discussion of these sequences.) The problem is that these graphs are
long and thin, coarsely resembling long cycles. In particular, after suitably rescaling, their graph
metrics (rapidly) converge in the Gromov-Hausdorff metric to the unit circle. In this paper we

prove that this is the only possible obstacle.
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Locality

Question (2) above is the finite analogue of Schramm’s locality conjecture. This conjecture was
(equivalently) that for all & > 0 there exists R < oo such that for every pair of infinite transitive
graphs G and H that are not one—dimensiona]E], if the ball of radius R in G is isomorphic to the ball of
radius R in H, then |p.(G) — p.(H)| < &. This conjecture formalised the idea that the critical point
of an infinite transitive graph should generally be entirely determined by the graph’s small-scale,
local geometry. By building on earlier progress, especially the work of Contreras, Martineau,
and Tassion [CMT22]], we verified this conjecture in our joint work with Hutchcroft [EH23b].
Schramm’s locality conjecture for infinite transitive graphs also spurred research on locality in
other settings, including much research on the analogue of our question (2) about locality for finite
graphs but where the hypothesis that the finite graphs are transitive is replaced by the hypothesis
that they are expanders [BNP11a;[Sar21b; RS22b; |ABS23]].

It may be surprising, from the perspective of percolation on infinite transitive graphs, that in fact
sharpness and locality for finite transitive graphs are equivalent. That is to say, if we restrict
ourselves to any particular infinite set G of bounded-degree finite transitive graphs, then the
answers to questions (1) and (2) in the introduction will always coincide. (See Proposition [8.2.9]
for a precise statement.) Indeed, if G satisfies locality, then one can easily extract sharpness for G
from the sharpness of the phase transition on every infinite transitive graph that is a local limit of
graphs in G, and the converse, that sharpness implies locality, can also be established with a little
more work. One reason that this equivalence may be surprising is because for infinite transitive
graphs, sharpness always holds, even for Z, whereas locality requires that the graphs are not one-
dimensional. To make sense of this, consider that for infinite transitive graphs, locality corresponds
to a version of sharpness that is uniform in the choice of the graph, whereas in the context of finite

transitive graphs, the only meaningful notion of sharpness is necessarily uniform.

Given the similarity between locality for finite and infinite graphs, one may wonder why the
present paper is necessary: why does the proof of locality for infinite transitive graphs not also
imply (perhaps after some additional bookkeeping) locality and hence sharpness for finite transitive
graphs? The most fundamental reason is that the approach to proving locality in [EH23b] relied
inherently on the sharpness of the phase transition, which in our setting is what we are trying to
prove! Let us be a little more precise. In the proof of [EH23b], we have an infinite transitive
graph G and a parameter p that we want to show satisfies p > p.(G). The bulk of the argument

in [EH23b] involves delicately propagating point-to-point connection lower bounds across larger

> An infinite transitive graph is one-dimensional if and only if the graph is quasi-isometric to Z.
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and larger scales to ultimately establish that for some function f : N — (0, 1) tending to zero
slower than exponentially, P, (u < v) > f(dist(u,v)) for all vertices u and v. Since point-to-point
connection probabilities are decaying slower than exponentially, the conclusion p > p.(G) then
follows from the sharpness of the phase transition on infinite transitive graphs. In a finite graph
adaptation of this argument, at this final stage we would need to invoke the sharpness of the phase
transition for finite transitive graphs, making the argument circular. One might hope to circumvent
this problem by improving the locality argument so that the function f does not tend to zero at
all. Unfortunately, f tends to zero because the propagation of point-to-point lower bounds in the
locality argument is lossy, i.e. a lower bound of &; at scale n; is propagated to a lower bound of &;4

at scale n;+1 where €;41 < g;, which seems completely unavoidable to us with current technology.

We will exploit the fact that the locality argument produces an explicit choice for f that decays much
slower than exponentially (even slower than algebraically). So for this final step, one only needs a
weaker kind of quasi-sharpness of the phase transition to conclude. The new idea in the present
paper is to directly establish this quasi-sharpness by applying quantitative versions of the proofs
of two results that are a priori quite unrelated to locality: the uniqueness of the supercritical giant
cluster [EH21al] and the existence of a percolation threshold [Eas23]] on finite transitive graphs. In
short, we can think of the existence of a percolation threshold as the weakest possible kind of quasi-
sharpness. In general, if we allow graphs to have unbounded degrees (as we did in [Eas23]), then
the implicit rates of convergence can be arbitrarily slow. Luckily, now assuming bounded degrees
as we may in the present paper, we can plug into our argument in [Eas23|] a quantitatively strong
version of the uniqueness of the supercritical giant cluster from [EH21a] to get a quantitatively

strong quasi-sharpness that suffices to conclude the proof of locality.

There are also quite serious obstacles to adapting to finite graphs the part of the proof of locality
leading up to this application of sharpness. To illustrate, say we tried to run the locality argument on
an infinite transitive graph that is one-dimensional. What would go wrong? We would encounter a
scale where we are unable to efficiently propagate connection lower bounds because two otherwise
complementary arguments simultaneously break down. The breakdown of the first argument
implies that G cannot be one-ended (G iﬁ the Cayley graph of a finitely-presented group but its
minimal cutsets are not coarsely connected), while the breakdown of the second implies that G
must have finitely many ends (G has polynomial growth because G contains a large ball with small
tripling). From this we deduce that G is two-ended, thereby successfully identifying that G was
one-dimensional. On a finite transitive graph, these end-counting arguments are not applicable.

This will require us to make the locality argument more finitary, even in the setting of infinite

STechnically this applies to a certain graph G’ that approximates G.
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transitive graphs, which is of independent interest. Unfortunately, this end-counting argument is so
deeply embedded in the proof of [EH23b] that it will take some work to reorganise the high-level
multi-scale induction in [EH23b[] in order to isolate and make explicit the relevant part. Another
obstacle is that the definition of exposed spheres, whose special connectivity properties played a
pivotal role in [CMT22; EH23b|, degenerates on finite transitive graphs. As part of our argument,
we introduce the exposed sphere in a finite transitive graph, justify our definition (Lemma8.3.19),
and thereby establish that from the perspective of part of our argument, arbitrary finite transitive
graphs can be treated like infinite transitive graphs that are one-ended. We hope that these basic
geometric objects can be of use in future work on finite transitive graphs, analogously to their

infinite counterparts.

Statement of the main result

Graphs will always be assumed to be connected, simple, countable, and locally finite. In a slight
abuse of language, we identify together all graphs that are isomorphic to each other Let G be an
infinite set of finite transitive graphs. Note that G is countable. We will write limgeg to denote
limits taken with respect to some (and hence every) enumeration of G. We may omit references to
G and G when this does not cause confusion. Given a graph G, we will also assume by default that

V and E refer to the sets of vertices and edges in G.

Given a percolation configuration w, we write | K| to denote the cardinality of the largest cluster. A
sequence p : G — (0, 1) is said to be a percolation threshold if for every constant £ > 0, we haV
IimP(145), (IK1] = @ [V]) = 1 for some constant @ > 0, whereas limP(;_), (K| > 8|V|) = 0 for
every constant 8 > 0. Note that when a percolation threshold exists, it is unique up to multiplication
by 1 + o(1). So in this sense, we may refer to the percolation threshold for G, when one exists.
Now assume that G has bounded degrees, i.e. there exists d € N such that for every G € G, every
vertex in G has degree at most d. By [Eas23|], G always has a percolation threshold, say p. We
say that percolation on G has a sharp phase transition if for every constant £ > 0, there exists a
constant A < oo such that
limP¢_;),(|K1| > Alog|V]) = 0.

Conversely, it is not hard to show in general that liminf p > ﬁ > 0 (see [Eas23} Proposition 5])

and that the complementary bound on |K;| always holds in the sense that if liminf(1 —&)p > 0

7So a “graph” G is really a graph-isomorphism equivalence class of graphs.
8This equation means that for some (and hence every) enumeration G = {G1, Ga, ...} where G,, = (V,,, E,,), we
have
lim PCn oGy (Kil = alVal) = 1.

n—oo  (l+&
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then there exists A < oo such that limP(;_), (|1K| > %log [V|) = 1 (see Proposition [8.2.6).

Given a transitive graph G, we write o to denote an arbitrary vertex, and we write BY to denote
the graph-metric ball of radius n centred at o, viewed as a rooted subgraph of G. We also write
Gr(n) for the number of vertices in BY, and define S¢ to be the sphereﬂ of radius n. The local (aka
Benjamini-Schramm) topology on the set of all transitive graphs is the metrisableF_G] topology with
respect to which a sequence (G ) converges to G if and only if for » € N, the balls BrG" and BY are
isomorphic for all sufficiently large n. For example, the sequence of tori (Zﬁ);"zl converges locally
to Z2. Given metric spaces X and Y, the Gromov-Hausdor{f distance between X and Y, denoted
distgu (X, Y), is the infimum over all £ > 0 such that there exists a metric space Z and isometric
embeddings ¢ : X — Z and ¥ : Y — Z such that the Hausdorff distance between the images of
¢ and ¥ in Z is at most €. Given a graph G and r > 0, we write rG for the rescaled graph metric
of G where all distances are multiplied by r. For example, the sequence of rescaled tori (27”2,21)2": ]
Gromov-Hausdorff converges to the continuum torus S I §! with the L! metric, where S! is the
unit circle. The scaling limits that arise like this, as a Gromov-Hausdorff limit of a sequence of

diameter-rescaled finite transitive graphs, are explored in [BFT17].

The main result of our paper resolves the problems of sharpness and locality for all bounded-degree

finite transitive graphs that are not one-dimensional in a certain coarse-geometric sense.

Theorem 8.1.1. Let G be an infinite set of finite transitive graphs with bounded degrees. Suppose
that there does not exist an infinite subset H C G such that (WG} Geg Gromov-Hausdorff
converges to the unit circle. Then both of the following statements hold:

1. Percolation on G has a sharp phase transition.

2. If G converges locally to an infinite transitive graph H, then the constant sequence p : G
pc(H) is the percolation threshold for G.

In fact, if either of these two statements is false, then there exists an infinite subset H C G such that
forevery G € H,

. 1/9
1) e(log diam G)
, -

diam G

. T
distGu (diam G

We interpret the upper bound on Gromov-Hausdorft distance as a bound on the rate of convergence

of the large scale geometry of graphs in H towards the unit circle as their diameters tend to infinity.

9We generalise these to non-integer n by setting BS := BLGn [ and by defining S$ and Gr(n) analogously.

19This topology is induced by the metric dist(G, H) := exp(— max{n : B¢ = BH}), for example.
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In this sense, graphs in H converge to the unit circle faster than do the tori {Z, X Z oz nys }ns1, and
in particular faster than do the polynomially-stretched tori {Z, X Z,c },>1 for any constant C. On
the other hand, by using arguments specific to Euclidean tori [EH21a, Example 5.1], items 1 and 2
only fail once we reach exponentially-stretched tori {Z, X Z¢n },>1 for a constant C. So our rate is
not sharp in this special case, even if we could improve the exponent 1/9, which we did not try to

optimise. Perhaps these exponentially-stretched tori are worst possible, in which case the optimal

logdiam G . ¢ (logdiam G)l/9
Same nstead of ———~—

ways that one could hope to describe the “one-dimensionality” of . (See the discussion at the
end of Section[8.1])

bound on the rate should be on the order of . There are also stronger

Previous work and strategy of the proof

Recall from our earlier discussion that sharpness and locality for finite transitive graphs are equiv-
alent. (See Proposition[8.2.9]) In this paper we will prove sharpness directly. At a high level, our
idea is to apply arguments derived from the proofs of four existing results in succession: (1) The
sharpness of the phase transition for infinite transitive graphs; (2) The locality of the critical point
for infinite transitive graphs; (3) The uniqueness of the supercritical giant cluster on finite transitive
graphs; (4) The existence of a percolation threshold on finite transitive graphs. Below we discuss

each of these works and how they feature in our argument.

To prove sharpness, we will start with a sequence p : G — (0, 1) where P, has a cluster larger than a
large multiple of log |V'| with good probability. Then given any & > 0, we will show thatPy,), hasa
giant cluster with high probability. Since inf p > 0, we can replace P(14), by P4, or equivalently,
Pp44s. We will split the jump p — p + 4¢ into four little hops p — p+& — ... — p +4e. After
each hop, we will prove something stronger about the connectivity properties of percolation at the
current parameter. Each hop is the subject of one section, discussed below, and involves one of the

four works listed above.

Large clusters — local connections

The sharpness of the phase transition for infinite transitive graphs is the statement that for every
infinite transitive graph G and every p < p.(G), there is constant c(G, p) > 0 such that Pg(|K0| >
n) < e " for every n > 1. Some people use slightly different definitions. For example, some
replace this exponential tail on |K;| by the exponential decay of connection probabilities, which is
a priori weaker, and some include the mean-field lower bound 6((1 + &)p.(G)) > 7% as part of
the definition. The analogue of the mean-field lower bound for finite transitive graphs was already

established in full generality in our earlier work [Eas23, Corollary 4]. This statement of sharpness
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for infinite transitive graphs looks similar to our definition of sharpness for an infinite set G of finite
transitive graphs with bounded degrees. Indeed, let p be the percolation threshold for G. By a simple
union bound, if for all £ > 0 there exists C(G, €) < oo such that Pg_s)p(G)(lKol > n) < Ce "€
forall n > 1 and G € G, then percolation on G has a sharp phase transition. With a little more

work (see Proposition [8.2.9)), one can show that the converse holds too.

So a natural approach towards proving sharpness for finite transitive graphs is to try to adapt an
existing proof of sharpness for infinite transitive graphs. Before explaining what is wrong with this
approach, notice that something must go wrong because these arguments are completely general,
applying to every infinite transitive graph - including Z, whereas as illustrated by the sequence of
stretched tori, some hypothesis on the geometry of finite transitive graphs is required for sharpness
to hold. The problem is not that the arguments cannot be run, but rather that they do not address the
right question. Roughly speaking, the issue is that a cluster that grows faster than every particular
microscopic scale is not automatically macroscopic. Slightly more precisely, given an infinite
graph G and parameter p, if inf,>1 P,(|K,| > n) > 0, then under P, there is an infinite cluster
almost surely. However, for an infinite set G of finite graphs and a sequence of parameters p, if
inf,>1 liminfg P, (|K,| > n) > 0, then it does not necessarily follow that under P, there is a giant

cluster with high probability.

While proofs of sharpness for infinite transitive graphs do not directly yield Theorem [8.1.1] our
first step is still to adapt and run one of these proofs on finite transitive graphs. We will also apply
Hutchcroft’s idea [Hut20al] of using his two-ghost inequality to convert point-to-sphere bounds into
point-to-point lower bounds. (This was also the first step of [EH23b].) Together, this will establish

that after the first hop, P, satisfies a point-to-point lower bound on a large constant scale.

In this section we will also use an elementary spanning tree argument to prove a kind of “reverse”
implication that if P, was instead assumed to satisfy such a point-to-point lower bound, then it
would follow that P, has a cluster much larger than log |V| with high probability. This reverse
direction is not relevant to proving Theorem but we will apply it to establish the equivalence
of different characterisations of sharpness on finite transitive graphs and in particular to prove the

equivalence of items 1 and 2 in Theorem[8.1.1]

Local connections — global connections

Earlier we discussed the proof of the locality of the critical point for infinite transitive graphs
[EH23b|] and the obstructions to using the same argument to prove locality for finite transitive

graphs. The primary obstruction was the application of sharpness, which we explained could be
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replaced by a good enough quantitative quasi-sharpness. If we had organised the argument in
the present paper as a direct proof of locality, rather than of sharpness, then this quasi-sharpness
would be supplied by the following two hops (p + 2e — p + 3e — p + 4¢). For the current hop
(p +& — p+2¢e), we will run the part of the proof of locality for infinite graphs leading up to
this application of sharpness (after dealing with the challenges that we discussed this entails) to
propagate the microscopic point-to-point lower bound at p + & to a global point-to-point lower
bound at p +2&. More precisely, we prove that if G does not contain a sequence converging rapidly
to the unit circle, then for some explicit and slowly-decaying function f : N — (0, 1), all but

finitely many graphs G € G satisfy

min Bpop(u & v) = f(IV]).

Global connections — unique large cluster

In the supercritical phase of percolation on a bounded-degree finite transitive graph, there is exactly
one giant cluster with high probability. This had been conjectured by Benjamini and was verified
in our joint work with Hutchcroft [EH21a]. It is important to note that this result actually does not
rely on the existence of a percolation threshold. To make sense of this, we need a definition of the

supercritical phase that is agnostic to the existence of a percolation threshold.

Let G be an infinite set of bounded-degree finite transitive graphs, and let ¢ : G — (0, 1) be a
sequence of parameters. If G admits a percolation threshold p, then the natural definition for ¢
being supercritical is that liminf ¢/p > 1. To make this independent of the existence of p, we say
that ¢ is supercritical if there exists a sequence ¢’ : G — (0, 1) and a constant £ > 0 such that
liminf g/q" > 1 and liminf Py (|K1| > &|V]) > &. In this language, the main result of [EH21a] is
that for every supercritical sequence ¢, the number of vertices |K;| contained in the second largest

cluster satisfies lim P, (|K>| > ¢ |[V|) = O for every constant 6 > 0.

The argument in [EH21a] is fully quantitative. In particular, if we slightly weaken the hypothesis
that ¢ is supercritical by replacing the constant £ > 0 in the definition of “g is supercritical” by a
slowly decaying sequence € : G — (0, 1), then we can still deduce that under P, the largest cluster
is much larger than all other clusters with high probability. What we need is the same conclusion but
with the alternative hypothesis that 6 := min, ,cy P, (1 < v) tends to zero slowly. This is certainly
possible in principle because by Markov’s inequality, the lower bound min, ,ey Py (u < v) > 2¢
always implies the lower bound P, (|Ki| > &|V|) > &. Unfortunately, this approach ultimately
requires that ¢ tends to zero extremely slowly, too slowly for our purposes. Fortunately, the

argument in [EH21a] turns out to run much more efficiently if we directly supply the hypothesis
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that min, ey Py (4 < v) > & rather than the hypothesis that P,/ (|Ki| > £|V|) > ¢. Indeed, a
significant loss in the proof in [EH21a] is due to the conversion of the latter into the former. We
will apply this to deduce from the global point-to-point lower bound at P>, that under P,,3,, the
largest cluster is much larger than all other clusters with high probability. However, note that a priori
this largest cluster might not be giant, i.e. we may still have |K;| = o(|V|) with high probability. In

particular, our proof is not complete at this stage, which is why we need the fourth hop.

Unique large cluster — giant cluster

Every infinite set of finite transitive graphs with bounded degrees G admits a percolation threshold.
We verified this in [Eas23]] by combining [EH21aj Van23|]. The reader may find it surprising that
the uniqueness of the supercritical giant cluster comes first, before the existence of a percolation
threshold. Indeed, this is opposite to the order in the classical story for the Erdds-Rényi model,
for example. On the other hand, the reader may suspect that the result is obvious because standard
sharp threshold techniques imply that for every sequence «, the event {|K;| > «a |V|} always has a
sharp threshold The challenge is to prove that every sequence « that decays sufficiently slowly

has a common sharp threshold.

To prove this we embedded the fact that the supercritical giant cluster is unique into Vanneuville’s
proof of the sharpness of the phase transition for infinite transitive graphs. In [Eas23], we did
not give any explicit bounds because we were working without the hypothesis that G has bounded
degrees. At this level of generality, there actually exist (very particular) sequences that do not
admit a percolation threshold, and even for those that do, the implicit rates of convergence can be
arbitrarily bad. However, our argument is itself fully quantitative. In particular, we will explain
how it can still be run under an explicit weaker version of the uniqueness of the giant cluster. This
will allow us to deduce from the global two-point lower bound under P>, and the uniqueness
of the largest cluster under P,,3, that there is a giant cluster under P4, with high probability,
completing our proof of Theorem [8.1.1]

Further discussion

Let us further explore the connection between percolation on finite and infinite transitive graphs.
First, let us remark on how to canonically define p. for finite graphs. By [Eas23]], there exists a
universal function p. : ¥ — (0, 1), where F is the set of all finite transitive graphs, such that

for every infinite set G of finite transitive graphs with bounded degrees, the restriction p.|g is the

"'We say that a sequence of events (A(G))Geg has a sharp threshold if there exists a sequence p such that
limsupg/p < 1 implies P, (A) = 0 and liminf g/p > 1 implies P,(A) = 1 for every sequence g.
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percolation threshold for G. Let us fix such a function p, for the rest of this section. Now, thanks
to Theorem [8.1.1, we can roughlyE] interpret this as the unique continuous extension with respect
to the local topology of the usual percolation threshold p,. for infinite transitive graphs to the set of

finite transitive graphs.

Let H be an infinite transitive graph, and let G be an infinite set of finite transitive graphs with
bounded degrees that does not contain a sequence approximating the unit circle in the sense that H
does in Theorem Let (V,) be an exhaustion of H by finite sets, and let K, denote the set of

vertices contained in infinite clusters. By a second-moment calculation, under Pﬁ for any p,

[Keo 0 Vil

— 0% (p) =Pl (0 & )
Val

in probability as n tends to infinity. In this sense, 87 (p) captures the density of the union of
the infinite clusters. In a finite graph G, we define the giant density to be ||K || := ﬁ |Ki]. In
conjunction with the main result of [EH23+al], Theorem[8.1.T|implies that if G converges locally to
H, then for every constant p € (0, 1)\{p.(H)}, the density || K || under Pg converges in probability
to the density 67(p) under Pg as we run through G € G. In this sense, the infinite cluster
phenomenon on infinite transitive graphs is a good model for the giant cluster phenomenon on finite

transitive graphs. Similar ideas are discussed in Benjamini’s original work [BenO1b].

In light of this, our results let us easily move statements about infinite transitive graphs to the
setting of finite transitive graphs. Here are three examples. For all three, remember that G is
assumed to be a family of graphs satisfying the hypotheses of Theorem [8.I.1] First, it is well-
known that p.(H) < 1 if (and only if) H is not one-dimensional [DGRSY?20]. By the conclusion
of Theorem it immediately followﬁ that supgeg pc(G) < 1, i.e. there exists € > 0 such that
Pi_.(|Ki| = €|V]) = e every G € G. This conclusion is not new; we simply wish to illustrate how
easily it follows from Theorem Indeed, Hutchcroft and Tointon established this fundamental
result under a weaker (essentially optimal!) version of the hypothesis that G is not one-dimensional,
(almost) fully resolving a conjecture of Alon, Benjamini, and Stacey [ABSO4c]. Second, it is a
major open conjecture that 67 (-) is continuous if (and only if) H is not one-dimensional. Following
the discussion in our previous paragraph, this conjecture would immediately imply the following
statement, which says that the giant cluster emerges gradually: Let P denote the law of the standard

monotone coupling (w, : p € [0,1]) of the percolation measures (P, : p € [0,1]), and define

121t is unique (up to o(1)) and continuous whenever we restrict to an infinite set G that is compact in the local
topology and satisfies infgeg distgu (ﬁG, Sl) > 0.
130ne just needs to verify that G cannot converge locally to a one-dimensional infinite transitive graph, e.g. by

Lemma @
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a(p) = ||K1(a)p)||. Then for all € > 0 there exists § > 0 such that

éienéP Sl;p l[a(p+06)—a(p)] <e|=1. (8.1.1)
For example, thanks to [Hutl6], we can already deduce from this relation between infinite and
finite transitive graphs that eq. holds whenever our family G has exponential growth on
microscopic scales, e.g. for the sequence (Z X Gh(n)) Where (G,) is a sequence of transitive
expanders and & : N — N tends to infinity arbitrarily slowly. (See the discussion in [EH23b,
Example 5.1] of stretched tori, in which the giant cluster does not emerge gradually.) By the
uniqueness of the supercritical giant cluster [EH21a], finite transitive graphs satisfying eq. (8.1.1)
also automatically satisfy the conclusion of [ABS0O4a, Conjecture 1.1]. This links the well-known
continuity conjecture for infinite transitive graphs to this conjecture about the uniqueness of the
largest cluster in finite transitive graphs. Third, it is conjectured that the uniqueness threshold
pu(H) satisfies p.(H) < p,(H) if and only if H is nonamenable. Again by our discussion in
previous paragraph, this conjecture would imply that if the Cheeger constant on graphs in G is
uniformly bounded below on microscopic scales, then percolation on G has a phase in which there
is a giant cluster whose metric distortion tends to infinity. (See [EH21a, Remark 1.6].) What can
be said when the Cheeger constant is uniformly bounded below on larger scales? In the limit, this

connects the p. vs p, question to the existing theory of percolation on expanders.

This opens the door to many directions for future work, adapting questions and techniques from
percolation on infinite transitive graphs to finite transitive graphs. For example, what can be said
about supercritical sharpness? Since the continuity conjecture for infinite transitive graphs would
imply the unique giant cluster conjecture of [ABS04a, Conjecture 1.1] (possibly with a weaker one-
dimensionality condition), might [ABS04al, Conjecture 1.1] be a stepping stone towards continuity
that is easier to establish? Another direction for future work is to improve the rate of convergence
in Theorem One could also explore stronger notions of one-dimensionality. The Gromov-
Hausdorff metric only considers the coarse geometry of graphs, ignoring how densely vertices
are packed (i.e. the volume growth on small scales). It is natural to expect that graphs in which
vertices are packed more densely can afford to have a more one-dimensional coarse geometry
before percolation arguments break down. For example, consider the product of a torus with a long
cycle versus the product of an expander with a long cycle. In the work of Hutchcroft and Tointon

[HT21al], one-dimensionality was characterised more stringentl in terms of the relationship of

volume to diameter, for example, by requiring that |V| < (diam G)'*¢ or 10|gV||V| = o(diam G). One

14This is indeed stronger than asking for Gromov-HausdorfF convergence to the unit circle, by the results of [BFT17].
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could also investigate questions such as sharpness without bounded degrees. For example, [EH21a;
Eas23; EH23+al] did not require this hypothesis, thus linking the story of percolation on infinite
transitive graphs to the classical Erds-Rényi model.
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8.2 Large clusters — local connections

In this section we will adapt a proof of the sharpness of the phase transition for infinite transitive
graphs to finite transitive graphs. By combining this with an idea of Hutchcroft [Hut20a]] to
convert voume-tail bounds into point-to-point bounds, we will prove the following proposition.
This roughly says that if for some percolation parameter p, the largest cluster contains much more
than log |V| vertices with good probability, then for percolation of any higher parameter p + n, we
have a uniform point-to-point lower bound on a divergently large scale. Later, in Section [8.2] we
will prove a kind of converse to this statement, and in Section [8.2] we will use this converse to give

equivalent characterisations of sharpness for finite transitive graphs.

Proposition 8.2.1. Let G be a finite transitive graph with degree d. Let n > 0. There exists
c(d,n) > 0 such that for all p € (0,1) and A > 1,
n?

1 .
P,(|Ki| > Alog|V]) > VE = min Ppin(0 & u) > TR

clog()-1
We have chosen to adapt Vanneuville’s recent proof of sharpness for infinite graphs [[Van24|]. This
involves ghost fields. Given a graph G, a ghost field of intensity g € (0, 1) is a random set of
vertices g C V distributed according to (Bernoulli) site percolation of parameter qE] We denote
its law by Q, and write P, ® Q, for the joint law of independent samples w ~ P, and g ~ Q.
One reason to introduce ghost fields is that it can be easier to work with the event {0 < g} when

g = 1/n than to work with the closely related event {|K,| > n}.

The following is [Van24, Theorem 2]. This can also be deduced from [Hut20d]] with different
constants. This says that starting from any percolation parameter p, if we decrease p by a suitable
amount, then the volume of the cluster at the origin will have an exponential tail under the new
parameter. This is proved by a variant of Vanneuville’s stochastic comparison technique from

[Van23]], which we will describe in more detail in Section [8.5]

15Some authors use a slightly different parameterisation. When we write “a ghost field of intensity g € (0, 1)”, they
write “a ghost field of intensity & > 0" for the same object, where g = 1 — ™"
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Lemma 8.2.2. Let G be a transitive graph. Given p € (0,1) and h > 0, define

Hp.h = Pp ® Q_e-n (o = g)-
Then for allm > 1,
Pp(lKol > m) o—hm

P/ K | > <
(1-pp)p ([Kol 2 m) < 1=t

Vanneuville proved this lemma when G is infinite, but his proof also works verbatim when G is
finite. The following easy corollary of this lemma says (contrapositively) that if the cluster at the
origin is much larger than log |V| with reasonable probability, then after sprinkling, the cluster at

the origin is at least mesoscopic with good probability.

Corollary 8.2.3. Let G be a finite transitive graph. For all € > 0 there exists c(g) > 0 such that
forall p € (0,1) and n, A > 1,

Pp(IKol2n) <& = P2g)p(IKo| 2 Alog|V]) <

e
c|Vln

Proof. Suppose that P,(|K,| > n) < &. We may assume that £ < 1/2, otherwise the result is

trivial. Define h := %log ﬁ and ¢ := 1 — e~". By a union bound,
fpn =Py ® Quo <> g) < Pp(IK,| = 1) +P, ® Qu0 <> g | [K,| < ).

We now bound these two terms individually. By hypothesis, P, (|K,| > n) < &. By our choice of
h and g,
P,®Qu(0¢> g | K, <n) <1—e =g

Therefore p1 , < 2&. So by Lemma[8.2.2]

PP(lKol Z /110g |V|)e—h/llog|V| < 1 |V|—§logﬁ
1-2¢ T 1-2¢ '

P1-26)p (I1Ko| 2 Alog|V]) <

So the claim holds with ¢ := min {1 - 2¢,log 7 }. O

To convert the fact that the cluster at the origin is at least mesoscopic with good probability into
a uniform point-to-point lower bound on a divergently large scale, we will apply Hutchcroft’s
volumetric two-arm bound [Hut20a, Corollary 1.7], stated below as Theorem [8.2.4] This applies
in our setting because every finite transitive graph is unimodular, and in this case we can trivially
drop the hypothesis that at least one of the clusters is finite in the definition of 7, ,. This tells us

that it is always unlikely that the endpoints of a given edge belong to distinct large clusters.
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Theorem 8.2.4. Let G be a unimodular transitive graph with degree d. There exists C(d) < oo
such that foralle € E,n > 1, and p € (0,1)

1= p]'2
Pp(%,n) S C :| B

pn

where 7., is the event that the endpoints of e belong to distinct clusters, each of which contains at

least n vertices, and at least one of which is finite.

Hutchcroft showed in [Hut20a] that this can be used to convert volume-tail bounds into point-to-
point bounds. This was also used in [EH23b]. Here is the quantitative output of his argument,

stated in the case of finite graphs.

Corollary 8.2.5. Let G be a finite transitive graph with degree d. There exists C(d) < oo such that
foralln,r > 1 and p € (0, 1),

Cr
) 2
'ﬁfelg:Pp(O o u) 2 Pp(|Ko| 2 n)” - prHigl2’

Proof. Letu € B,. By Harris’ inequality and a union bound,
P,(0 & u) > P,(|K,| > n)? -P,(|K,| > nand |K,| > nbuto & u).

The second term on the right can now be bounded by [EH23b, Lemma 2.6]. (In that lemma the
hypothesis that G is infinite and p < p. can be replaced by the hypothesis that G is finite.) O

We now combine Corollary [8.2.3]and Corollary [8.2.5]to establish Proposition [8.2.1]

Proof of Proposition[82.1] Fix p € (0,1), 4 > 1,and > 0. Let £ := T and let ¢; () > 0 be the
corresponding constant from Corollary 8.2.3l We may assume that n < %, c1 < 1,and |[V]| > 1.
Suppose that P, (|K1| > Alog|V]) = c|V|" By a union bound, P, (|K,| > Alog|V|) > ﬁ Let
n:= CM . Since <= — 1 > ¢y and (1 = 2&)(p +1n) > p, it follows by Corollarynthat

1) N
Py (|K0| > 7) 1

Let Ci(d) < oo be the constant from Corollary Letr >

lary {23,

1 be arbitrary. Then by Corol-

C]V‘

1/2°
1A
(p+n)! (—“2 )

: 17\?
mip ot 2 (3) -
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Note that » < ™" because < % So there is a constant C,(d, 1) < oo such that
Clr < C2 ‘
(M) 1/2 an/ll/Z
2

(p+n)r*l

2
Now there exists c2(d,n) > 0 such that r := ¢, log(A) — % satisfies ﬁ < %. Then by our above

work (when r > 1, otherwise the inequality anyway holds trivally),
2 2 2
. n n
> (2] - ===,
minFpey (o © u) 2 (4) 80 ~ 20
Therefore the claim holds with ¢ := min{cy, c;}. |

n

Local connections — large clusters

In this subsection we prove the following proposition. This imples that if there is a uniform point-
to-point lower bound on a divergently large scale, then the largest cluster contains much more than
log |V| vertices with high probability. This is a kind of converse to Proposition This will be

used in the next subsection to prove the equivalence of different notions of sharpness.

Proposition 8.2.6. Let G be a finite transitive graph. For all 6 > O there exists c(5) > 0 such that
forall p € (0,1) and r > 1 with |B,| < |V|'/1°,

. 1
IEIeHBI:P” (0ou)>26 = P,(IKi| =c|B/]log|V]) = 1- e

The next lemma converts point-to-point connection lower bounds on one scale into volume-tail
lower bounds on all scales. The idea is to approximately cover the graph by a large number of balls

on which the point-to-point lower bound holds then glue together large clusters from multiple balls.

Lemma 8.2.7. Let G be a finite transitive graph. For all 6 > 0 there exists c(8) > 0 such that for

all p € (0,1) and n,r > 1 satisfying n < %,

. —_n
irel}gr:Pp(o cu)>26 = P,(K,| =n)>ce Bl

Proof. Fix 6 > 0, p € (0,1), and n,r > 1. Suppose that min,cp, P,(0 < u) > 6. Let W be a
maximal (with respect to inclusion) set of vertices such that o € W and distg(u,v) > 2r for all
distinct u,v € W. Build a graph H with vertex set W by including the edge {u, v} if and only if
distg (u,v) < 5r and u # v. By maximality of W, the graph H is connected. Let 7 be a spanning
tree for H. Let f : W\{o} — W be a function encoding T where ‘f(u«) = v’ means that the edge
{u, v} is present in T and disty (o, v) < disty (o, u). Extend this to a function f : W — W by setting
f(0) := o. By Markov’s inequality, every u € V satisfies P, (|K, N B,(u)| > % |B,|) > % By
161n this proof, P, and |B, | refer to G, not to T or H.
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Harris’ inequality, every edge {u, v} in H satisfies P, (u < v) > 6°. So by Harris’ inequality again,

f(zr every u € W, the event A, thatu < f(u) and |K,, N B,(u)| > g |B,| satisfies P, (A,) > 5 - g =
5
7.

Let ¢(6) > 0 be a small constant to be determined. Suppose that n < %. By maximality of W,

the balls {B,,(u) : u € W} cover V, and hence |V| < |W| - |By,|. So provided that c is sufficiently

small,

|W| > Vi > VI > " > 2n .
| B2y |Br|2 c|By| o |B;|

In particular, we can find a 7-connected set of vertices U C W such that o € U and |U| = [ (5'25 J.
If A, holds for every u € U then |K,| > % - |By| - |U| = n. So by Harris’ inequality, provided c is

sufficiently small,

Pp (1Kol 2 n) 2 P, () Au

uelU

The following is a second-moment calculation for the number of vertices contained in large clus-
ters In the proof, it will be convenient to introduce partial functions to encode partially-revealed
percolation configurations. Recall that a partial function f : A — B is a function A” — B for some
A’ C A, i.e. for every a € A, either f(a) € B or f(a) = ‘undefined’. We denote this set A’ on
which f is defined by dom( f). Given partial functions f and g, the override f Ll g is the partial
function with dom( f LI g) = dom(f) U dom(g) that is equal to f on dom( f) and is equal to g on
dom(g)\ dom( f). We write Var, to denote the variance of a random variable under P,,.

Lemma 8.2.8. Let G be a finite transitive graph. For alln > 0 and p € (0, 1), the random set
X :={u €V : |K,| = n} satisfies

Var, |X| < n*-E, |X].

Proof. Let P be the joint law of a uniformly random automorphism of G, denoted ¢, and three
configurations w1, w», w3 sampled according to P,, where all four of these random variables are
independent. Given a configuration w : E — {0,1}, let ® : E — {0, 1} be the partial function
encoding the edges revealed in an exploration of the cluster at o from inside (with respect to an
arbitrary fixed ordering of E) that is halted as soon as the event {|K,(w)| > n} is determined by
the states of the revealed edges. Define w := (® L ¢(@7)) U w3. By transitivity, the law of ¢(0)

17"We were inspired by a weaker (degree-dependent) version of this argument that arose during joint work with
Hutchcroft towards [EH23+a], which was made redundant and thus did not appear in the final version of that work.
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is uniform on V, and by a standard cluster-exploration argument, P(w = - | ¢) = P, almost surely.
This lets us rewrite Var), | X| as
Var, |X| = Z [P,(u,v € X) =P, (u € X)-P,(veX)]
1

= VIE, X| |—
b V|

ZPP(MEXIOGX)—PP(OEX) (8.2.1)
= |VIE, |X|- [P(¢(0) € X(w) | 0 € X(w)) —=Pp(0 € X)].

Consider the sets of vertices A} := K,(®1) and A; := K, (&), which are defined purely in terms of
the open edges in @ and @; respectively, i.e. all edges with ‘undefined’ state are treated as closed.
Note that 0 € X(w) if and only if 0 € X(w;). Moreover, given that 0 € X(w), if ¢(0) € X(w)
then either 0 € X(wy) or A N ¢(A3) # 0. So by a union bound and independence,

P(¢(0) € X(w) | 0 € X(w)) <Pp(o€X)+P(A1N@p(A2) #0 |0 € X(w1)). (8.2.2)

In particular, by eq. (8.2.1), it suffices to verify that
2

P(A1N¢(A2) #0 | w1, w2, w3) < Vi

a.s. (8.2.3)
Consider arbitrary deterministic sets of vertices B| and B;. By transitivity, the law of ¢(u) for any
fixed vertex u is uniform over V. So by a union bound,

B\l _ |B1l1B)|

14 Vi

P(Bi N ¢(Bo) #0) < Y P(p(u) € By) = )

ueB, UEB,

Equation (8.2.3) now follows by applying this to the sets A; and A,, which almost surely satisfy
|A1l,|Az| < n. O

We now combine Lemmas [8.2.7] and [8.2.8] to prove Proposition[3.2.6]

Proof of Proposition[8.2.6] Let § > 0, p € (0,1), and r > 1. Suppose that |B,| < V"1 and
min,ep, Pp(o <> u) > 6. Let ¢1(5) > 0 be the constant from Lemma 8.2.7, Let n := ¢ |B,|log|V|
for a small constant ¢(8) > 0 to be determined. Since |B,|*> < |V|>/10, provided c is small,

c1|V]

n:=c|B,|log|V] < .
ORI B,

So Lemma yields

__n__ _c
P[) (|K0| 2 I’l) > cre lBrl = ¢4 |V| > ¢ |V|_1/]00,
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provided c is small. By transitivity, it follows that the random set X := {u € V : |K,| > n} satisfies
E, IX] > ¢y V2100 5 by Chebychev’s inequality and Lemma ,

Bp(Kilzm =1 -By(x|=0) 21— VXL
(B, 1X1) cr [VP1
The conclusion follows because, provided c is small,
2
2 (elgloglvl? _ (V" eVl _
c1 |V|99/1oo ‘1 |V|99/100 = l |V|99/1oo = |V|3/4.

Equivalent notions of sharpness

In this subsection we apply results from earlier in Section [8.2]to prove the following proposition.
In the statement and the proof, we take for granted that G always admits a percolation threshold
[Eas23]]. Item 2 is analogous to the standard definition of sharpness for percolation on an infinite
transitive graph. The fact that items 1 and 2 are equivalent is why we decided to label our version
of “sharpness” for finite transitive graphs as such. Item 3 is analogous to the locality of the critical
parameter for infinite transitive graphs. It is perhaps surprising that sharpness and locality are
equivalent for finite graphs but not for infinite graphs. One way to make sense of this is that locality
for infinite graphs is equivalent to a uniform (in the choice of graph) version of sharpness for infinite

graphs, and for finite graphs, the only meaningful notion of sharpness is necessarily uniform.

Proposition 8.2.9. For every infinite set G of finite transitive graphs with bounded degrees, the

following are equivalent:

1. Percolation on G has a sharp phase transition.

2. For every subcritical sequence of parameters p, there exists a constant C(G, p) < oo such
that for all G € G and alln > 1,

P, (|K,| = n) < Ce™C.

3. If an infinite subset H C G converges locally to an infinite transitive graph H, then the
constant sequence G +— p.(H) is the percolation threshold for H.

We will prove that 3 = 2 == 1 = 3. For the first step, we apply Corollary [§.2.3] and

compactness.
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Proof that item 3 implies item 2. Assume that item 3 holds. Our goal is to prove that item 2 holds.
Since G has bounded degrees, G is relatively compact in the local topology. In particular, we may
assume without loss of generality that G converges locally to some infinite transitive graph G. (If
item 2 is false, then we can find an infinite subset H C G such that item 2 is false for every sequence
in H.) Now fix a subcritical sequence p for G. By item 3, after passing to a tail of G if necessary,
there exists a constant £ > 0 such that p(G) < (1 -¢)p.(H) forevery G € G. Pick r > 1 such that
Pﬁ_g 2pe H)(|K0| > r) < g/4. By passing to a further tail of G if necessary, we may assume that
BY = BY for every G € G. Then P?l—s/Z)p(,(H)(lKOl >r) <egl/dforevery G € G. Letc(e) >0
be the constant from Corollary(8.2.3| For every n > 1 and G € G, Corollary with 4 := ;IVI
tells us that

Bl —eppe ) (Kol 2 m) < B (1K)l = n) <

(1-£/2)(1-2-¢/4)p.(H)

ceCnlr ’

Take C := r/c. The conclusion now follows by monotonicity because p(G) < (1 — &)p.(H) for
every G € G. O

The second step is a simple union bound.

Proof that item 2 implies item 1. Given a subcritical sequence p, let C(G, p) < o be the constant

guaranteed to exist by item 2. Then for every G € G,

__2Clog|V] C
Pp(lKol > 2C log [V]) < Ce ¢ = W,
and hence by a union bound,
C C
P,(IKi| <2Clog|V]) 21 -|V| —=1-—.
P s V|2 4
So limP,(|Ki| < 2Clog|V]) = 1, as required. O

We now turn to the third step, | = 3. Fix a choice of percolation threshold p. : G — (0, 1),
and think of this as an extension of the usual critical points p. for percolation on the infinite
transitive graphs that make up the boundary of G. Then our goal is to show that, assuming item 1,
the function p. is continuous as we approach the boundary of G from the interior. We split this
into two parts: upper- and lower-semicontinuity. For lower-semicontinuity, we will apply a finite
graph version of an argument of Pete [Pet, Section 14.2], which was based on the mean-field lower

bound for infinite transitive graphs. For upper-semicontinuity, we will combine Corollary [8.2.5]
and Proposition [8.2.6]
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Proof that item 1 implies item 3. Suppose for contradiction that H{ C G is an infinite subset that
converges locally to some infinite transitive graph H, but the constant sequence G +— p.(H) is
not a percolation threshold for /. By passing to a subsequence, we may assume without loss of
generality that there is a constant & > 0 such that either p.(G) < (1 —&)p.(H) for every G € H,
or p.(G) = (1+¢&)p.(H) for every G € H. Call these Case 1 and Case 2, corresponding to (a

violation of) lower- and upper-semicontinuity in our discussion above.

(Case 1) Since p. : G — (0, 1) is a percolation threshold, there exists a constant § > 0 such that
G st PG

P(l+8)p (G)(|K0| > 0|V|) = 6 forevery G € H. So by monotonicity, P(l 2)pcuq)(ll(gl >0|V]) =06

for every G € H. For every r > 1, there exists G € H such that § |V| > |[BH| and BY = B, and

hence

H
P(l 82)p (H)(lK | > r) > P(l 82)]) (H)(O « S ) > P(l 82)p (H)(lKol 2 5|V|) 2 5

In particular, P? (|Ky| = ) > 0, a contradiction.

(1-&?)pc(H)
(Case 2) Let A > 1 be a given arbitrary constant. It suffices to prove that the parameter
p = (1+¢/2)p.(H) satisfies limg Pg(|K1| > Alog|V|) =1. Seté := Pg(o < o0) > 0. Let d be
the vertex degree of H, and note that p.(H) > 1/d, as this is well-known to hold for every infinite
transitive graph. So by Corollary[8.2.5] there is a constant C(d) < co such that for all n,r > 1 and

all G € H with BS = B,
Crd”l

G 2
mlnP (0(—)14)26 —W,

ueBG

and in particular, (using that r < d” for all r > 1) the radius r(n) := log, (5223_;/22) satisfies

G 2 62 62
Py(0oou) =6 —.
ugzlalGn (0w 22
Let c(62/2) > 0 be the constant from Proposition[8.2.6] Fix n sufficiently large that ¢ - r(n) > A.

By passing to a tail of  if necessary, let us assume that B = B and |B | < |VIY10 for every
G € H. Then by Proposition[8.2.6 for all G € H,

G > 1
Pe (|K1|_c|Br(n)|log|V|)_l T

In particular, since c|B | cr(n) > A, we deduce that limg Pg(lKll > Alog|V]) =1 as

required. O
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8.3 Local connections — global connections

In this section, we will apply the proof from [EH23b] that the critical point for percolation on
(non-one-dimensional) infinite transitive graphs is local. As explained in the introduction, we need
to both make this argument more finitary and adapt it to finite transitive graphs. We can roughly
think of the proof of [EH23b] in two parts: First, if G does not satisfy certain geometric properties
around scale n, which include that G is finitely-ended, then G must satisfy a certain statement
1, about the propagation of connection bounds around scale n. Second, if G does satisfy these
geometric properties and G is one-ended, then G again satisfies J,,. Together, these two parts imply
that if G does not satisfy 7,,, then G must actually be two-ended and hence one-dimensional. By
looking at the proof of the second part, we can pinpoint where one-endedness is used, namely as a
hypothesis in [EH23b, Lemma 5.8].

[EH23b, Lemma 5.8] concerns certain (0, oo)-cutsets called exposed spheres. The lemma says that
if G satisfies nice geometric properties around scale n and is one-ended, then the exposed spheres
around scale n are in some sense well-connected. We took this from [[CMT22, Lemma 2.1 and
2.7], where the authors deduced it from a theorem of Babson and Benjamini [BB99b]. By reading
Timar’s proof [Tim07]] of this theorem of Benjamini and Babson, we see that if an exposed sphere is
not well-connected, then not only is G multiply-ended, but this is actually witnessed by the exposed
sphere itself in the sense that its removal from G would create multiple infinite components. From
this we can conclude that G must in fact start to look one-dimensional from around scale n. This is
how we will make this step from [EH23b] finitary. To adapt the argument to finite transitive graphs,
we will additionally need to introduce the notion of the exposed sphere in a finite transitive graph
and prove that finite transitive graphs can, for the purpose of part of our argument, be treated like

infinite transitive graphs that are one-ended.

Unfortunately, this application of Babson-Benjamini is deeply embedded in the proof of [EH23b]
as it is currently written. So it will take some work to restructure the multi-scale induction in
[EH23b] to isolate the relevant part. To avoid repetition, we have deferred the details of arguments
that are implicit in [EH23b]| to the appendix, thereby keeping many of the arguments in this section
high-level. Ultimately we will prove the following proposition, which contains this finite-graph
finitary refinement of locality. While we have written this for finite graphs, the same argument

yields the analogous finitary refinement for infinite graphs.

Proposition 8.3.1. Let G be a finite transitive graph with degree d. Define

T
diam G

y = distgH ( G, Sl) -diam G and  y* = elog?)’,
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For all e,n > 0 there exists A(d, ,n) < oo such that for all p € (0, 1),

. . _ +\1/2
min PP(O d I/l) > n —— min Pp+8(0 PARN l/l) >e (loglogy™) .
ueB, uEB,/+

This proof of Proposition [8.3.1]is by induction. In Section we describe the high-level structure
of this induction, which is essentially the same as in [EH23b, Section 3.2], except for two differences.
The first difference is that we have reworded the induction to say “we can keep propagating until
and unless we reach a scale where the geometry is bad”, with a separate lemma that says “if
the geometry is bad at scale n, then G starts to look one-dimensional from around scale »n”. In
contrast, the induction in the earlier work simply says “if G is not one-dimensional, then we can
keep propagating forever”. The second difference is that the induction in the earlier work is slightly
coarser in the sense that it groups multiple inductive steps of the argument we present here into
a single inductive step. The additional detail in the present version is necessary to close the gap
between the last scale from which we can propagate connection bounds and the first scale at which

we can prove that the geometry “is bad”.

The individual inductive steps are all implicit in [EH23b, Sections 4 and 6]. We will justify these
in the appendix. In Section [8.3] we will prove something like the “base case” of the induction.
This follows by a compactness argument from some intermediary results in [EH23b] and [CMT22].
In Section [8.3] we will prove that “if the geometry is bad at scale n, then G starts to look one-
dimensional from around scale n”. This subsection is a refinement of [EH23b, Section 5], but for

the reasons discussed, it will require some new ideas.

The logic of the induction

For the entirety of this subsection, fix a finite transitive graph G with degree d, and define y as
in the statement of Proposition [8.3.1] We will describe the repeated-sprinkling multi-scale induc-
tion argument used to prove Proposition [8.3.1] (which is adapted from [EH23b]) as a deterministic
colouring process evolving over time. Atevery timet € R, every scale@n € [3, c0) can be coloured
orange or green (or both, or neither — i.e. uncoloured), encoding a statementm about the connec-

tivity properties of percolation of paramete ¢(1) :=1—27¢ over distances of approximately 7.

18Tt would have been more natural to consider scales n € N rather than n € [3, ). We chose the latter to avoid
rounding issues and so that log log n is always positive.

19Formally, this colouring can be encoded as a function colour : [3,00) x R — P ({orange, green}), where P (X)
means the powerset of X. We say “n is green at time ¢” to mean that colour(n,f) > orange. Similar statements are
formalised analogously.

20This choice of parameterisation appears implicitly in [EH23b] as the natural choice for arguments that involve
repeated sprinkling. Indeed, our function ¢ is the function Spr(p; A) from [EH23b| Section 3.1] evaluated at (1/2;¢).
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To lighten notation, let §(n) := e~(°g1og M denote the standard small-quantity associated to each

scale n. Now we colour a scale n orange at time ¢ to mean that

min Py (0 < u) > 6(n).
ueB,

We also define the move-right (aka increase-scale) function R : n +— e(l"g")g, and write R¥ :=
R o ... o R for the k-fold composition of R with itself. Now to prove Proposition [8.3.1] it suffices

to prove the following lemma.

Lemma 8.3.2. For all € > 0 and ny > 3 there exists ny(d, e,ny) < oo such that for all t € R with

1 - . . . .
t < <, if [n1,n2] is orange at time t, then R(y) is orange at time t + &.

Proof of Proposition[8.3.1] given Lemma[8.3.2] Fix ¢,n > 0. Let ni(n) be the smallest integer
satisfying n; > 3 and 6(n;) < n. Let a(g) > 0 be the unique real satisfying ¢(1/a) = 1 — &. Let
na(d,@ A g,ny) < oo be the constant that is guaranteed to exist by Lemma We claim that
we can take A := np. Indeed, let p € (0, 1) and suppose that mingep,, P,(0 < u) > n. Define
t :== ' (p). The claim is trivial if p > 1 — &, so we may assume that ¢ < 1/«. By monotonicity
of the function 6(+), the interval [n;, ny] is orange at time 7. So by applying Lemma[8.3.2] R(y) is
orange at time 7 + €. Since (by calculus) ¢ is 1-Lipschitz, R(y) is also orange at time ¢! (p + &),

which is the required conclusion. O

We say that a set M C N is a certain colour if every m € M is that colour. Given a statement A about
a colouring at an implicit time ¢, we define s(A) := inf{z : A is true at time ¢} where inf () := +oo.

For example,
s ({10, 12} is orange) := inf{z : 10 and 12 are both orange at time 7} € [—o0, +00].
As a first approximation to our induction, imagine we knew that for every scale n withn < vy,
s(R(n) is orange) < s(n is orange) + & (n). (8.3.1)

Suppose for simplicity that some positive integer r satisfies R"(n) = y and that n, exceeds some

large universal constant. Then by repeatedly applying eq. (8.3.1), we could deduce that

s (R(y) is orange) — s ([n1, ny] is orange) < Z [s (Rk“(nz) is orange) - (Rk (np) is orange)]
k=0

r ad 12
<> (R" (nz)) < e (Heeloen) T < 95 (ny),
k=0 k=0
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Since 6(ny) — 0asny — oo, this would certainly imply Lemma Rather than prove something

as direct as eq. (8.3.1), we will have to bring into play a new colour, green.

k
i=0’

vertices, |v| := k for its length, and given r > 0, we write B, (v) := f:o B, (v;) for the associated
tube. Given m,n > 1 and p € (0, 1), define the corridor function (which we take from [CMT22]),

Given a finite path v = (v;)",, we write start(v) := vy and end(v) := vy for its start and end

B,
kp(m,n) := Vmgm P, | start(v) <m—(v)> end(v)].

Notice that we always have «,(m,n) < min,ep,, P,(0 < u). Let us also define the set of low-
growth scales L := {n > 3 : Gr(n) < e'lg ”)wo}. Now we colour a scale n green at time ¢ to mean
that n is orange and either n ¢ L or K¢(,)(R2(n), n) > 6(R(n)). We will use this new colour to
help us propagate orange by controlling the time taken for orange scales to turn green and for green

scales to turn nearby scales orange.

The next lemma says that green scales quickly turn nearby scales orange. If we see that n is green at
some time ¢ but n € L, then K¢(,)(R2(n), n) > §(R(n)), which trivially implies that [R(n), R*(n)]
is already orange. So the content of this lemma is that if instead n ¢ L, then we can efficiently
propagate a point-to-point connection lower bound from scale 7 to scales in [R(n), R*(n)]. The
proof of this is implicit in [EH23bl Section 4]. The argument uses some ghost-field technology

that works more efficiently around scales n where Gr(n) is large. See the appendix for details.

Lemma 8.3.3. There exists nyo(d) < oo such that for all n > ny,

s([R(n), R*(n)] is orange) < s(n is green) + 6(n).

The next lemma sometimes lets us control how long it takes for a scale n to become green after
turning orange. If n ¢ L, then this time is trivially zero. So it suffices to consider n € L. We might

hope for a statement like the following: there exists ng(d) < oo such that for all n > ng withn € L,
s(n is green) < s(n is orange) + o (n). (8.3.2)

Our next lemma is less satisfying in two waysErI First, we can only prove an upper bound like
eq. when n belongs to a particular distinguished subset T(c, ) of L. Second, our upper
bound is in terms of a mysterious quantity A rather than something explicit like 6 (7). So to use this
lemma, we will need to: (1) Deal with scales n € L\T(c, 1), and (2) Find a way to upper bound
A explicitly. For completeness, we will now define T(c, 1) and A, but the reader should feel free

2'We need to use the non-one-dimensionality hypothesis somewhere.
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to skip these definitions for now because they are not necessary to follow the high-level induction

argument being developed in this subsection.

Given constants ¢, 4 > 0, let T(c, A) be the set of scales n € L such that G has (¢, 1)-polylog plentiful
tubes at every scale in an interval of the form [m, m'*¢] that is contained in [n'/3, n!/(1+9)]. We
will recall the definition of plentiful polylog tubes, taken from [EH23b, Section 5], in Section [8.3]
Given m,n > 1, we define Piv[m, n] to be the event that in the restricted configuration w N By,
there are at least two clusters that each contain an open path from B,, to S,. For each scale n and
time ¢, let U;(n) be the uniqueness zone defined to be the maximum integer b < %nl/ 3 satisfying
Py (Piv[4b, n'3]) < (logn)~'. The associated cost is

loglogn 174

(logn) A log Gr(U;(n))

Ai(n) =

Note that the cost is small if Gr(U;(n)) > (logn)€ for a big constant C. The proof of the next
lemma is implicit in [EH23b, Section 6], where, together with Hutchcroft, we used plentiful tubes

to run an orange-peeling argument inspired by the one in [CMT22]. See the appendix for details.

Lemma 8.3.4. Forall c > 0 there exist A(d, c),no(d, c), K(d, c) < oo such that the following holds
foralln > ngwithn € T(c,A). Forallt € R, if n is orange at time t and KA;(n) < 1 then

s(nis green) <t + KA,(n).

We now turn to the problem of finding an explicit upper bound on the cost A = A;(n) of a scale n at
a time 7. Define the move-left (aka decrease-scale) function L : n — (logn)!'/?. The next lemma
provides such an upper bound if the much smaller scale L(n) happens to already be green at time ¢.
The proof of this is implicit in [EH23b, Section 6.3]. Notice that to upper bound A, (n) is to lower
bound Gr(U,(n)). It is easy to check that in the setting of this lemma, U,(n) > L(n). The proof
of the lemma establishes that when L(n) is green and n € L, either Gr(L(n)) is big (as a function
of L(n)) or we can find a better lower bound on U;(n) than the trivial bound that is L(n). See the
appendix for details.

Lemma 8.3.5. There exists no(d) < co such that the following holds for all n € L with n > ny. For
all t € R, if L(n) is green at time t then

Ai(n)

< —.
loglogn

Lemmas [8.3.4] and [8.3.5| together provide an explicit upper bound on the time it takes for a scale n

that is orange to become green if the much smaller scale L(n) happens to already be green, at least
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until we encounter a scale n € L\T(c, ). Of course, this says nothing about how long we have
to wait for for at least one orange scale to become green in the first place. We will return to this
shortly, but for now, consider the following method for rapidly propagating orange once we have a
big interval of green. Suppose that at some time ¢, some interval of the form [L(n),n] is green.
By Lemma since R~'(n) € [L(n),n], we will not have to wait long for [n, R(n)] to turn
orange. By Lemmas|8.3.4|and [8.3.5| since L(m) € [L(n), n] for every m € [n, R(n)], we will not

then have to wait long for [n, R(n)] to turn green. By Lemma|8.3.3|again, we will not then have to
wait long for [R(n), R?(n)] to turn orange, and so forth. We can repeat this indefinitely until and

unless we encounter a scale n € L\T(c, A).

In conjunction with Lemma [8.3.4] the next lemma lets us control long it takes to get this big
interval of green in the first place, starting from an even bigger interval of orange. We prove this in
Section [8.3] We will use a compactness argument to reduce this to an analogous statement about
an arbitrary infinite unimodular transitive graph G, which is then addressed by results in either

[CMT?22] or [EH23b] according to whether G has polynomial or superpolynomial growth.

Lemma 8.3.6. For all € > 0 and ny > 3, there exists ny(d,e,ny) < oo such that the following
holds for all t € R with t < é If [n1,n2] is orange at time t, then for some m satisfying

[ :=[L(m),m] C [ny,n2], we have

sup Ape(n) < e.
nelnL

At this point, the lemmas we have accumulated allow us to rapidly propagate orange, starting from a
big interval of orange, until and unless we encounter a scale n € L\T(c, A). To prove Lemma|8.3.2]
we need this propagation to keep going until we encounter the scale y. The next lemma lets us
ensure that we will encounter vy before we encounter L\T(c, 1). We will prove this in Section
This is the analogue in our setting of [EH23b, Section 5]. While the random walk arguments that
make up [EH23b, Subection 5.2] work equally well in our setting, the geometric arguments in

[EH23b, Subsection 5.1] will require some new ideas.

Lemma 8.3.7. There exist c(d) > 0 such that for all 1 > 1, there exists ny(d, 1) < oo such that

inf{n € L\T(c, 1) : n > np} > y.

Let us conclude by formalising the above sketch of the fact that Lemma [8.3.2] which we know
implies Proposition [8.3.1] can be reduced to the rest of the lemmas introduced in this subsection.

349



Proof of Lemma (8.3.2| given Lemmas|8.3.3|t0[8.3.7} Fix € > 0 and n; > 3. We may assume that
g < 1. Let ¢(d) > 0 be the constant from Lemma Let A(d),uo(d), K(d) be the constants
“A(d, c),no(d,c),K(d,c)” from Lemma [8.3.4] for this choice of ¢c. We may assume that K > 1.
Let u;(d) be the constant “ng(d)” from Lemma Let uy(d) be the constant “ng(d)” from
Lemma 8.3.5] Let u3(d) be the constant “ng(d, 1)” from Lemma [8.3.7, with the above choice of
A. Note that }}; 6 (R(3)) < oo and ); W < oo. Let ip(d, €) be the smallest non-negative

gR'(3)
integer such that

0(R'(3)) < = d - <
;; (R(3) <5 an éloglogR’G) = 5K
and set uy(d, €) := R(3). Set us(d, e,ny) = max{uo, u, us,us, us,n1}. Let ug(d, €,n;) be the
constant “zn, (d, %, u5)”fr0m Lemma We claim that the conclusion holds with n, (d, &, ny) :=
R(ug).

Lett € Rwitht < é, and suppose that [n, n;] is orange at time ¢. By Lemma _ there exists
m with [ := [L(m), m] C [us, ue] such that sup,,c;~. KAH%(n) < £ < 1. Consider the possibility
that I N (L\T(c,A)) # 0. Then by Lemma|8.3.7, y < u¢. In particular, R(7y) < ny, and hence R(y)
is already orange at time ¢. Since we are trivially done in that case, let us assume to the contrary
that I N (L\T(c, 1)) = 0. Then by Lemma(3.3.4]
2
s (Iis green) <t + s sup KA e(n) <t+ il

nelnL ° 5
Let k be the largest non-negative integer such that R¥(m) < y. (We may assume that such an
integer exists, otherwise v < ug and hence we are trivially done as above.) We claim that for all
i€f0,....,k—1},
K

loglog R'(m)"
(8.3.3)

Indeed, fix an arbitrary index i € {0, ..., k—1} and an arbitrary time s € R at which [L(m), R'(m)]
is green. By Lemma , the interval [Ri(m), Ri+1(m)] is orange at time s + & (Ri‘l(m)). By
Lemma8.3.5] since L (|R'(m), R™*'(m)]) € [L(m), R'(m)].

s ([L(m), R* (m)] is green) < s ([L(m), R'(m)] is green) + & (R"—l(m)) +

1
sup Agrs(ritgm) (1) £ ——————.
ne [Ri (m).Ri*! (m)] AL s+O (R m)) loglog R'(m)

By Lemma , we know that [Ri(m), R”l(m)] N (L\T(c,A)) = 0, and since R'(m) > ug4, we

know that [z < £ < 1. So by Lemma(8.3.4]

K

5 ([Rf(m), R* (m)] is green) <546 (R"—l(m)) L T
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establishing eq. (8.3.3). By repeated applying eq. (8.3.3)), it follows by induction that

. 26 < i
s ([L0m), RE(m)] s green) < z+§+; (5 (R m)) +m) <t+

where in the second inequality we used the fact that R=!(m) > uy. By maximality of k, we know

that R™'(y) € [L(m), R*(m)]. So by Lemma

s (R(7y) is orange) — s ([L(m), RF (m)] is green) < s ([y,R(y)] is orange) — s (R_1 (y) is green)

<5 (R_l(y)) <5 (ug) < g
Therefore, as required,
) de ¢
s(R(y)lsorange)§t+?+§:t+g. O

Base case of the induction

In this subsection we prove Lemma [8.3.6] By a compactness argument, we will reduce this to the
following simpler statement about individual infinite transitive graphs. Although we defined A, (n)
and L in the context of finite transitive graphs, let us use the exact same definitions for infinite

transitive graphs.

Lemma 8.3.8. Let G be a unimodular infinite transitive graph. For everyt € R with ¢(t) > p.(G),

lim sup Ag(n)1(n) = 0.

=00 g>¢
Our first goal is to prove this lemma. As mentioned earlier, to show that A,(n) is small, we need
to show that Gr(U,(n)) > (logn)¢ for a large constant C. The following lemm@ from [EH23b,
Corollary 2.4] tells us in particular that if Gr(n) is not too big with respect to n, then the uniqueness

zone for n is always at least of order log n. The proof of this result was essentially already contained
in [CMT?22], which in turn was inspired by [[Cer15].

Lemma 8.3.9. Let G be a unimodular transitive graph of degree d. Fixn € (0,1) and € € (0, 1/2).
There exists c(d,n,g) > 0 such that for everyn > 1 and p € [n, 1],

log Gr(n) ) L

P, (Piv[clogn,n]) < (
cn

2211 the version in [EH23b], we also required that n is larger than some constant depending on d, 17, €, but that is
redundant.
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In an infinite transitive graph, if U;(n) 2 logn then trivially Gr(U;(n)) 2 logn, and hence A;(n)
is bounded above by a (possibly large) constant. Our goal is to improve this argument so that this
constant can be made arbitrarily small. We will do this by improving either the bound on U, (n) or
the bound on Gr(U,(n)) given U,;(n). When G has superpolynomial growth, this is easy: we can
use the trivial bound on U, (n), but then use the fact that Gr(U;(n)) = (U,(n))€ for any particular
constant 617_31 When G has polynomial growth, we will apply the following more delicate result
from [CMT22, Proposition 6.1] to improve our bound on U;(n). (For background on transitive

graphs of polynomial and superpolynomial growth, see [T'T21a].)

Lemma 8.3.10. Let G be an infinite transitive graph of polynomial growth. For every p > p.(G)
there exist y (G, p) € (0,1) and C(G, p) < oo such that for everyn > 1 and q € [p, 1],

P, (Piv [e(log")x,n]) <Ccn V4,
Proof of Lemma([8.3.8] Suppose that ¢ € R satisfies ¢(t) > p.(G). Note that ¢(¢) > 1/d because

pc(G) = 1/(d — 1) (as this holds for every infinite transitive graph). Let c;(d,1/d,1/6) > 0 be
the constant from Lemma([8.3.9] Then for every sufficiently large n € L,

1_1 1
. 1o Gr(nl/S) 276 (10 n)lOO 3 1
13\ 1/3 g g
Ssng Pgs) (PlV [Cl log (” ) N ]) = ( cinl/3 < cinl/3 = logn’

and hence infy>, Us(n) > Lé—llcl log(n'/3)| = 75 logn. In particular,

1/4

lim sup sup Ay(n) 1 (n) < limsup

n—oo s>t n—oo

loglogn
(logn) Alog Gr (73 logn)

log Gr( % log n)

If G has superpolynomial growth, then —— sTogn

— oo and hence sup,., As(n)1r(n) — 0 as
n — oo. So we may assume to the contrary that G has polynomial growth. Let y (G, ¢(t)) and
C(G, ¢(1)) be the constants from Lemma(8.3.10, Then for every sufficiently large n > 1,

sup Py (Piv [ e (20D 113 ) < ()1 < L
s>t lOgl’l

and hence infy>, Ug(n) > %e(log(”m))x > ellogm?  p particular, using the trivial bound
Gr(Us(n)) = Ug(n),

1/4

logl
lim sup sup Ag(n) 1, (n) < lim sup bglogn =0.

n—oo s>t n—oo (10g l’l) A 10g (e(log n))(/Z)

2This was the idea in [EH23b, Section 3], where it sufficed to consider sequences converging to graphs of
superpolynomial growth.
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O

Next we will use a compactness argument to deduce Lemma [8.3.6| from Lemma [8.3.8] Given
d € N, let U, be the space of all unimodular transitive graphs with degree d endowed with the
local topology. Recall that every finite transitive graph is unimodular. By [Hut20al Corollary 5.5],
Uy, is a closed subset of the space 7; of all transitive graphs with degree d endowed with the local
topology. In particular (recalling that the local topology is metrisable), since 7; is compact, so is
(Hd.

Proof of Lemma(8.3.6] Suppose for contradiction that the statement is false. Then we can find
g > 0 and n; > 3 such that for all N € N there exists ty < é and a finite transitive graph Gy
with degree d such that in Gy, the interval [n|, N] is orange at time ¢y, but for every m with
[L(m),m] C [ny, N], there exists n € [L(m),m] NL(Gy) with AtGNAie(n) > &. (We write AC, U,
L(G) to denote A, U, L defined with respect to a specific graph G.) By compactness, there exists
an infinite subset M C N and a unimodular transitive graph G such that Gy — G as N — oo with

N € M.

First consider the case that G is finite. Then trivially, there exists no(G) < oo such that for all
n > ng and for all s € R, we have U% (n) = L%n'“]. In particular, lim,_,« sup,cx A% (n) = 0. So

there exists m with L(m) > n; such that

sup  supAS(n) <e.
ne[L(m),m] seR
Pick N € M sufficiently large that N > m and B,1G1N =~ BY (or even that G = Gy). Then we have a

(n) = A% _(n) > .

contradiction because there exists n € [L(m), m] such that A® trbE

INtE

So we may assume that G is infinite. We claim that

lig]ninf d(tn) = pe(G). (8.3.4)
NeM
Indeed, suppose that g € (0, p.(G)). By the sharpness of the phase transition for percolation on
infinite transitive graphs, there exists C(g, G) < oo such that Pg(o & S,) < CeCforalln > 1.
Pick m > n; such that Ce™/€ < §(m). Pick No > m such that for all N > Ny with N € M, we
have BV = BS. Then for all N > Ny with N € N,
min P§Y (0 & u) <P (0 © S,) =PS (0 & Sy) < 8(m),

G
ueB,N
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so m is not orange for Gy at time ¢~!(g), and hence g < ¢(ty). Since g was arbitrary, this
establishes eq. 1) Now by hypothesis, 1y < é forevery N > 1. So by eq. |D we know that
pc(G) < ¢(1/e) < 1. (We also know that p.(G) > 0 since this holds for every infinite transitive

graphs.) By passing to a further subsequence, we may assume that for all N € M,
-1 &
Inte>2 ¢ (p(G))+ 5= .
Note that ¢(¢) > p.(G). So by Lemma|8.3.8]

lim sup AY (n) Iy(G)(n) = 0.

=00 g>¢

Pick m with L(m) > n; such that

sup  sup AsG(n)IlL(G)(n) <e. (8.3.5)

ne[L(m),m] st

Pick N € M such that N > m and B,,G1N =~ BY. Then [L(m),m] C [n1, N], and the same inequality

as eq. (8.3.5) holds with G y in place of G. This contradicts the existence of n € [L(m), m]NL(Gy)

Gn
INtE

satisfying A" (n) > & because ty + & > t. O

The obstacles are circles
In this subsection we prove Lemma(8.3.7] Our argument is a finitary refinement of the argument in
[EH23b, Section 5]. Our first step is to isolate the part of that previous argument that needs to be

improved. For this we need to introduce the definition of plentiful tubes.

Plentiful tubes Let G be a transitive graph and fix a scale n > 1. We call the r-neighbourhood
B,(y) :=U; Br(y;) of apath y € T" a tube. Given constants k,r,[ > 1, we say that G has (k,r,[)-
plentiful tubes at scale n if the following always holds. Let A and B be sets of vertices such that
(A, B) = (S, S4p) or such that A and B both contain paths from S, to S3,. Then there is a set I" of
paths from A to B such that |['| > k, each path has length at most /, and B,(y;) N B,(y2) = 0 for
all pairs of distinct paths y;,y, € I'. Note that the property of having (k, r, [)-plentiful tubes gets
stronger as we increase k (the number of tubes), increase r (the thickness of tubes), or decrease [
(the lengths of tubes). We will be concerned mainly with the following two-parameter subset of this
three-parameter family of properties. Given constants ¢, A > 0, we say that G has (c, 1)-polylog

plentiful tubes at scale n if G has (k, r, [)-plentiful tubes at scale n with

(k,r 1) = ([1ogn]cﬂ,n[1ogn]—ﬂ/6,n[logn]ﬂ/C) .
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We think of ¢ as representing a fixed exchange rate for the tradeoff between asking for more tubes
that are long and thin vs fewer tubes that are short and thick, which we can realise by varying A.
Finally, recall from Section [8.3| that T(c, 1) is defined to be the set of all scales n > 3 such that

Gr(n) < e10em'™ (i e 5 e L) and there exists m satisfying [m, m'*¢] C [n'/3, n!/(1+9)] such that

G has (c, 1)-polylog plentiful tubes at every scale in [m, m!*<].

Now suppose in the context of proving Lemma [8.3.7] that we have a large scale n € L withn < v,
and we want to build the required plentiful tubes to establish that n € T(c,1). We split our
argument into two cases, slow growth and fast growth, according to the rate of change of Gr near
n, as measured by whether Gr(3m)/Gr(m) for m ~ n exceeds some particular constan@ The
next lemma says that if G has fast growth throughout a sufficiently large interval around scale #,
then for some fixed exchange rate ¢, we have (c, 1)-polylog plentiful tubes for every choice of A
whenever n is sufficiently large. This is [EH23b, Proposition 5.4], which was originally stated for
infinite unimodular transitive graphs, but as we will justify in the appendix, exactly the same proof

also works for finite transitive graphs.

Lemma 8.3.11. Let G be a unimodular transitive graph of degree d. Suppose that
Gr(m) < elloem®  yng Gr(3m) > 3° Gr(m)

for every m € [n'~%,n'*¢], where €, D,n > 0. Then there is a constant c(d,D, &) > 0 with the
following property. For every A > 1, there exists no(d, D, g, 1) < oo such that if n > ng then G has
(¢, A)-polylog plentiful tubes at scale n.

The next lemma says that if G has slow growth at some scale n, then outside of a bounded number
of small problematic intervals, G has plentiful tubes with good constants (k,r,[) unless G is

one-dimensional. This is equivalent to [EH23b, Proposition 5.3].

Lemma 8.3.12. Let G be an infinite transitive graph of degree d. Suppose that Gr(3n) < 3“ Gr(n),
where n, k > 0. There exists C(d, k) < oo such that the following holds if n > C:

Thereisaset A C [1, ) with|A| < C suchthat forevery k > 1 andeverym € [Ckn, o)\ Uzeala,2kal,
if G does not have (C_lk, C 'k m, Ckcm)—plentiful tubes at scale m, then G is one-dimensional.

24In [EH23b| we considered ratios of triplings Gr(3n)/Gr(n) rather than of doublings Gr(2n)/Gr(n) because only
the former was known at the time to be sufficient to invoke the structure theory of transitive graphs of polynomial
growth. Tointon and Tessera have since proved that small doublings imply small triplings [TT23], so it is now possible
to work with doublings Gr(2n) /Gr(n) instead, which is slightly more natural. However, since this does not significantly
simplify our arguments, we have chosen to stay with triplings to avoid some repetition of work from [EH23b]].
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We need to improve this lemma in two ways. First, we need the conclusion to be that “G looks
one-dimensional from around scale m”, rather than just “G is one-dimensional”. Second, we need
to allow G to be finite. Here is the modified version of Lemma [8.3.12] that we will prove [

Lemma 8.3.13. Let G be a finite transitive graph of degree d. Suppose that Gr(3n) < 3% Gr(n),
where n, k > 0. There exists C(d, k) < co such that the following holds ifn > C:

Thereisaset A C [1, 00) with|A| < C suchthat foreveryk > 1 andeverym € [Ckn, o)\ Uzecala,2kal,
if G does not have (C~'k, C~'k='m, CkCm)-plentiful tubes at scale m, then

1) Cm
<

diStGH( - il < — .
d diam G

iam G’
In the next two subsections we will prove Lemma [8.3.13] Before that, let us quickly check that
Lemmas [8.3.11] and [8.3.13] together do imply Lemma This is essentially the same as the
proof of [EH23b, Proposition 5.2] given [EH23b, Propositions 5.3 and 5.4].

Proof of Lemma8.3.7] given Lemmas[8.3.11)and[8.3.13] Let c¢(d) > 0 be a small positive constant
to be determined. Let A > 1 be arbitrary. Suppose that n > 3 satisfies n € L\T(c, ). We will

freely (and implicitly) assume that n is large with respect to d and A. Our goal is to show that if ¢

is sufficiently small, it then necessarily follows that y < n.

First consider the possibility that Gr(3m) > 3° Gr(m) for all m € [n'/3,n'/?]. Let n := 1/100, and
let ¢1 (d,101,77) > 0 be given by Lemma [8.3.11] Note that for all m € [n'/3*7, (n'/3+1)1+1] we
have [m'™", m'*7] C [n'/3,n'/?] and Gr(m) < Gr(n) < ellognl™® < pllogm]™ g by construction
of ¢, we know that G has (ci, 1)-polylog tubes at every scale m € [n!/3*1 (n!/3*1)1+1] In
particular, if we pick c¢(d) < ¢; A n, thenn € T(c, A) - a contradiction.

So we may assume that there exists m € [n'/3, n!/?] such that Gr(3m) < 3° Gr(m). Let C(d,5) < oo
be as given by Lemma [8.3.13] Without loss of generality, assume that C is an integer and C > 2.
Let A C [1,00) with |A| < C be the set guaranteed to exist for our particular small-tripling scale
m, and apply the conclusion of Lemma with k := (logn)!. Define £(d) := % log %, and
consider the sequence (u; : 1 < 1 < 3C) defined by

(1+&)!
Uu; .= (nl/z) .

23 Although we have chosen to write everything for finite graphs, our proof also yields the analogous finitary
refinement of Lemma@ when G is infinite.
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Note that thanks to our choice of &,
(1+8)3C (es)SC
Use = (n1/2) < (n1/2) _ 34

As we are assuming that n is large with respect to d and A, we also have that Ckm < uj, and for all
a € A, the interval [a, 2ka] contains at most one of the u;’s. So by the pigeonhole principle, there
exists 7 such that [u;, u;jy1] © [Ckm, o)\ U eala, 2ka]. By construction of A, we know that either
(1) for every scale [ € [u;, u;+1], the graph G has (C‘lk, C'km, Ckcm)—plentiful tubes at scale
[, and in particular (%, A)-polylog plentiful tubes at scale [, or (2) there exists [ € [u;, u;+1] such
that y < CI and hence y < n. If (1) holds, then by picking c(d) < & A %, we can guarantee that
n € T(c, A) - a contradiction. So (2) holds, i.e. y < n as required. O

Cutsets and cycles

In this subsection we reduce Lemma [8.3.13]to Lemma [8.3.16] which is a less technical statement

about cutsets and cycles. We will prove Lemma|8.3.16]in the next section.

. . . B .
Cutsets Let A, B, C be sets of vertices in a graph G. We write A <— C to mean that there exists
. ) B
a finite path (yx);_, such that yo € A; y1,...,¥n-1 € B; and y, € C, and we write A < o to
mean that there exists an infinite self-avoiding path ()2, such that yo € A and y1,y2,... € B.

We write §£> to denote the negations of these properties. Now we say that B is an (A, C)-cutset to

mean that A ﬁ» C, and we say that B is a minimal (A, C)-cutset if no proper subset of B is also an
(A, C)-cutset. We extend all of these definitions in the obvious way to allow A or C to be vertices
rather than set of vertices. Now suppose that G is an infinite transitive graph. Of course the spheres
S, for n € N are all (o, co)-cutsets, but interestingly, they are not always minimal (o, co)-cutsets
because some transitive graphs contain dead-ends, i.e. a vertex that is at least as far from o as all of
its neighbours. The exposed sphere S, is defined to be the unique minimal (o, co)-cutset contained

in the usual sphere S,, which is given concretely by

C

S¥={u€es,:ue> oo}

Thanks to the following result of Funar, Giannoudovardi, and Otera [FGO135, Proposition 5],
exposed spheres also admit the following finitary characterisation: S’ is the unique minimal
(0, Son+1)-cutset contained in S,,. We have included the short and elegant proof from their paper
for the reader to appreciate that it does not adapt well to finite graphs. Specifically, it does not yield

Lemma(8.3.19] which is what we will need. We like to call this the inflexible geodesic argument.
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Lemma 8.3.14. Let G be an infinite transitive graph. Letr € N. Then every vertex u € B _satisfies
By
U < 09,

Proof of Lemma[8.3.14} The inflexible geodesic argument. This proof uses the well-known fact
that every infinite transitive graph contains a bi-infinite geodesic y = (y,)qcz. Here is a sketch of
how to prove this: There exist geodesic segments yV = (yV )51:\’0 for every N € N. By transitivity,
we can pick these with ylj\\,’ = o for every N. Then vy is any local limit of these geodesic segments

rooted at o, which exists by compactness.

Now fix u € BS . Lety = (¥n)nez be a bi-infinite geodesic with yo = u. Suppose for contradiction
that there exist s, € N such that y_g,y; € B,. Note that dist(y_s,y;) < diam B, < 2r. Since
dist(o, u) > 2r, we have y_g, y; ¢ B,(u). Since vy is a path, it follows that s, 7 > r, and in particular,
s+t > 2r. On the other hand, since vy is a geodesic, s+ = dist(y_y, ¥;). Therefore 2r < s+t < 2r,

a contradiction. So either {y, : n > 0} or {y, : n < 0} is disjoint from B, and therefore forms a

Br
path witnessing that u «— oo. O

The usual definition of the exposed sphere is clearly inappropriate when working with finite
transitive graphs. We propose that the exposed sphere in a finite transitive graphs should instead be
defined according to this alternative finitary characterisation. Since Lemma 8.3.14]only applies to
infinite transitive graphs, there is no reason for now that the reader should believe us that this is a
good definition. We will fix this later by proving a finite graph analogue of Lemma8.3.14] namely
Lemma[8.3.19] As with (usual) spheres and balls, we extend the definition of exposed spheres to

non-integer n by setting S,° := S‘E; I

Definition 8.3.15. Let G be a transitive graph, which may be finite or infinite. Let n € N. We define
the exposed sphere S’ to be the unique minimal (o0, S2,+1)-cutset contained in S,, or equivalently,

c

S :={ueS,:ue Sy}

Cycles Let G be a graph. Recall that we identify spanning subgraphs of G with functions
E — {0, 1}. Pointwise addition and scalar multiplication of these functions makes the set of all
spanning subgraphs into a (Z/27Z)-vector space. Recall that a cycle is finite path that starts and
ends at the same vertex and visits no other vertex more than once. We identify cycles (ignoring
orientation) with spanning subgraphs and hence with elements of this (Z/27Z)-vector space. Now
let 6(G) be the minimal n € N such that every cycle can be expressed as the linear combination

of cycles having (extrinsic) diameter < n, if such an n exists, and set 6(G) := +oco otherwise. It
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is natural to ask whether cycles with diameter < 6(G) also generate every bi-infinite geodesic y
in the sense that there is a sequence (y;,),”, of cycles each having diameter < 6(G) such that
vy, — 7y pointwise as n — oo. Notice that this is equivalent to G being one-ended. Benjamini
and Babson [BB99b] (see also the proof by Timar [[TimO7]]) proved that if G is one-ended, then
forallu € Vandv € V U {oo}, every minimal (u, v)-cutset A is 6 (G)-connected in the sense that
distg (A1, Ay) < 6(G) for every non-trivial partition A = A; LI Ap. We will use this in the next

section.

We claim that Lemma [8.3.13] can be reduced to the following statement about cutsets and cycles
by applying the structure theory of groups and transitive graphs of polynomial growth. Since this
step is essentially identical to the proof of [EH23bl Proposition 5.3], we have chosen to defer the
details to the appendix. For the same reason, we will not give an overview of the rich theory of
polynomial growth or even the definition of a virtually nilpotent group. The relevant background
can be found in [EH23bj; EH23d; TT21a].

Lemma 8.3.16. Letr,n > 1. Let G be a finite transitive graph such that S, is not r-connected. Let
H be a (finite or infinite) transitive graph with 6 (H) < r that does not have infinitely many ends. If

BH EBG

son = By, then

1) _ 200n

distou ( ~ diam G’

n
diam G
Solving the reduced problem

In this section we prove Lemma[8.3.16] Benjamini and Babson [BB99b] tell us that if in an infinite
transitive graph H, the exposed sphere S, is not 6 (H) connecteﬂ then H must not be one-ended.
If H is not infinitely-ended either, then H must in fact be two-ended and hence one-dimensional.
This is how the argument (implicitly) went in [EH23b]. To make this more finitary, let us start by
noting that the proof that H not one-ended actually also tells us that this is witnessed by S’ itself
in the sense that H\S;° has multiple infinite components. Equivalently (by Lemma [8.3.14), the
exposed sphere S’ disconnect San+1. (This alternative phrasing has the benefit that it also makes
sense when H is finite.) Indeed, this follows from the next lemma with (A, B) := ({0}, S2,+1). This
is also an instance of Benjamini-Babson, just phrased slightly differently in terms of sets of vertices,

vertex cutsets, and (extrinsic) diameter rather than length of generating cycles. For completeness,

2meaning that there is a non-trivial partition §(H) = A; U A, with dist(A;, Ay) > 6(H)
2TwWe say that a set of vertices A disconnects another set of vertices B if there exist vertices b1, by € B such that

by £ b,.
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we have written Timar’s proof of Benjamini-Babson with the necessary tiny adjustments in the

appendix.

Lemma 8.3.17. Let G be a graph. Let A and B be sets of vertices. LetI1 be a minimal (A, B)-cutset
that does not disconnect A or B. Then Il is 6 (G)-connected.

The following elementary lemma lets us conclude from this that H must begin to look one-
dimensional already from scale n. We say thatapathy = (y; : t € I)isn-denseif sup,oy, distg (v, y) <
n, where distg (v, y) = distg (v, {y; : t € I}).

Lemma 8.3.18. Let G be an infinite transitive graph. Let n > 1. If G is two-ended and G\ B,, has

two infinite components, then G contains an n-dense bi-infinite geodesic.

Proof. Let A and B be the two infinite components of G\B,. For each integer N > n + 1, let
YN = (le : —ay <t < by) be a shortest path among those that start in Sy N A and end in Sy N B,
indexed such that 7(])\] € B,. By compactness, there exists a bi-infinite geodesic y = (y, : t € Z) and
a subsequence (y" : N € M) such that for every ¢ € Z, we have y, = yV for all sufficiently large
N € M. As in the inflexible geodesic argument used to prove Lemma [8.3.14] (i.e. by the triangle
inequality), a geodesic can never visit B in between two visits to B,,. It follows that there exists 79
such thaty™ := (y_, : t > tg) is entirely contained in A, and y* := (y, : t > fg) is entirely contained

in B.

Suppose for contradiction that vy is not n-dense. Pick u € V with dist(u,y) > n. Since B,(u)
does not intersect vy, the path y must be entirely contained in one of the two infinite components of
G\B,(u), say C. Since B,(0) disconnects y~ from y™*, there are at least two infinite components
in C\B,(0). So there are at least three infinite components in G\ (B,(0) U B, (u)), contradicting
the fact that G is two-ended. O

What happens if instead H is finite? Lemma still tells us that if S, is not 6(H) connected,
then S,° disconnects S»,+1. When H was infinite, this had a nice interpretation in terms of ends
because we could go back to the original infinitary definition of S;° as a minimal (o, o0)-cutset.
The problem when H is finite is that we are stuck with our artificial finitary definition of S as
a minimal (o, Sy,+1)-cutset. The next lemma justifies our definition by establishing that S7° is
automatically a minimal (o, u)-cutset for every vertex u € BY . Thanks to this lemma, it is simply

impossible that S’ is not 6 (H)-connected when H is finite.

The analogous statement for one-ended infinite transitive graphs follows from Lemma|8.3.14F% In
28This was the motivation for [FGO15] to prove Lemma|8.3.14
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this sense, Lemma|[8.3.19]lets us treat finite transitive graphs as if they were infinite transitive graphs
that are one-ended. Note that a naive finite-graph adaptation of the inflexibe geodesic argument
used to prove Lemma [8.3.14] would not yield Lemma [8.3.19] (It would just say that every vertex
in S2,41 belongs to a cluster in G\B,, of large diameter.) Our argment also yields a new proof of

Lemma

Lemma 8.3.19. Let G be a finite transitive graph. Let r € N. Then B, does not disconnect B5 .

Proof of Lemma|8.3.14|and Lemma Suppose that B, does disconnect B; . (For Lemma(8.3.19

we assume this for sake of contradiction, whereas for Lemma@ we may assume this otherwise
the conclusion is trivial.) Let C be a component of G\ B, intersecting B . It suffices to prove that
C is infinite. (For Lemma @ this establishes the required contradiction because G is finite,
whereas for Lemma|8.3.14] this is the desired conclusion.)

Suppose for contradiction that C is finite. Then we can pick a vertex u € C maximising dist(o, u).
Since dist(o,u) > 2r + 1 and (by transitivity) B,(u) disconnects By, (u)¢, there exists a vertex

By (u)° . : .
v € By, (u)€ such that o %—Su—)—> v. Since B, (u) N B,(0) = 0 and the subgraph induced by B, (0) is
By (u)° . . By (0)¢ .
connected, B,(0) 7/& v. Since G is connected, v A) B, (u). Since B,(u) N B,(0) = 0 and
B (0)¢ . :
the subgraph induced by B, (u) is connected, v <ﬂ> u, i.e. v € C. However, since every path

from o to v must visit B, (u),
dist(o, v) > dist(o, B, (u)) + dist(B,(u), v)
> (dist(o,u) —r) + (dist(u, v) —r) > dist(o, u) + 1,

contradicting the maximality of dist(o, u). O

By applying our work up to this point, under the hypothesis of Lemma [8.3.16] we can prove that
the graph H must be infinite and begin to look one-dimensional from around scale n. By the next

lemma, it follows that G looks like a circle from around scale n.

Lemma 8.3.20. Let G and H be transitive graphs. Suppose that G is finite whereas H contains an

.. . . G ~ H
n-dense bi-infinite geodesic for some n > 1. If By, = By, then

1) < 200n

distgy ( dl < — .
d diam G

iamG
Proof. Lety = (7):ez be an n-dense bi-infinite geodesic in H. Without loss of generality, assume

that yp = og. We will break our proof into a sequence of small claims.

361



Claim. BY disconnects S,
2n 2n

Proof of claim. Let{ = () tk=0 be an arbitrary path from o = y_», to {x = y2,. Since vy is n-dense,
forallt € {0, ..., k}, there exists g; € Z such that dist({;, ye,) < n. We can of course require that
go := —2n and gy := 2n. Since vy is geodesic, forall t € {0, ...,k — 1},

|gl+l - gl‘l = dist (7g;+1’ ygt)
< dist (yg,, &) + dist (1, re1) + dist (£r41, ¥,

<n+l+n=2n+1.

In particular, since gg < —(n+ 1) but gz > n + 1, there must exist # € {1,...,k — 1} such that
-n < g < n. Theny,, € B! and hence ¢; € Bgn . Since { was arbitrary, this establishes that BZ;
disconnects y_p, from y,,. Since y is a geodesic, y; € S¥ for all s € Z. So the path (yy : s > 2n)

witnesses the fact that y,, € S;’n’H . Similarly, y_,, € S;"n’H . So Bgl disconnects S;’n’H ) m]

Fix a non-trivial partition S;on’H = A U B such that Bgl is an (A, B)-cutset. Now suppose that there
is a graph isomorphism ¢ : B ~— B . Note that  induces a bijection S;’Z’G o SH In
particular, S;‘; G = y(A) Uy (B). By definition of exposed sphere, Ban does not disconnect ¥ (A)
or ¥ (B) from (Bfn)". So by Lemma Bgn isnota (¥ (A),y(B))-cutset. Consider a shortest
path from ¢ (A) to ¥ (B) that witnesses this, then connect the start and end of this path to o by
geodesics. Let 4 = (Ax)kez, be the resulting cycle, labelled such that 19 = og. We will write |s|;
for the distance from s to O in the cycle graph Z;. The next three claims establish that A is roughly

dense and geodesic.

Claim. Forall s € Z,, if |s|; > 2n then distG(/ls,Ban) =|s|; —2n

Proof of claim. Fix s € Z; with |s|; > 2n. Since Bgl isan (A, B)-cutset, the segment (A, : |t|; > 2n)

must intersect (Bfn)c (it must exit the ball Bsp,, on which G and H are isomorphic), but by

construction, this segment does not intersect BZG . So every path from y, to BzG must intersect S;’ G
n n n

In particular, by minimality in the construction of A,

distG (vs, BY,) = distg (ys, ¢ (A)) A distg (75, ¢ (B)) = |s]; = 2n. o

Claim. Forall s,t € Z;, we have |s —t|; — 4n < distg (45, 4;) < |s —1];.
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Proof of claim. The second inequality is trivial, and the first inequality is trivial when |s|; V||, < 2n.

By our previous claim, if |s|; > 2n and |¢| < 2n, then
distG (A5, A;) > distg (A5, BS) = |sl; = 2n > |s — 1], — 4n.

Similarly, the first inequality also holds if instead ||, > 2n and |s| < 2n. So let us consider s and ¢
satisfying |s|; A |t|; > 2n, and fix an arbitrary path n from A, to 4;. If n intersects Ban’ then by our

previous claim, 7 has length at least
dist(;(/ls,Bgn) + distg (44, Bgn) = (|s]; =2n) + (|t]; —2n) = |s —t|; — 4n.

If n does not intersect BGn, then by minimality in the construction of 4, the length of 7 is at least
|s — t|;. Either way, distg(As, 4;) > |s —t|; — 4n. O

Claim. A is 10n-dense

Proof of claim. Suppose for contradiction that u is a vertex with distg(u#,1) > 10n. Let v be a
vertex in A that is closest to u. Let z be a vertex in Sio,(v) that lies along a geodesic from u to
v. Since A visits og but must exit B5G0n (on which G and H are isomorphic), we know that A has
(extrinsic) diameter > 50n. By our previous claim, it follows that A visits vertices x and y in § ?On (v)
1GOn(V) such that
the distance between any pair is at least 10n. By transitivity and the fact that Bg)n ~ B

50n°
such vertices can also be found in S{{On(o), say vi, v2,v3. Since 7y is n-dense, there exist integers

satisfying distg(x,y) > 2 - 10n — 4n > 10n. Now x,y, z are three vertices in S
three
k1, k2, k3 such that disty(v;, yx,) < n for each i € {1,2,3}. Notice that since yp = oy and y is
geodesic, |k;| € [9n, 11n] for all i. So by the pigeonhole principle, either [-9n, —11n] or [9n, 11n]

contains k; for at least two distinct values of i. On the other hand, for all i # j, since 7y is geodesic,
|k,~ — kj| = distH()/k,.,ykj) > disty (v;, v;) —2n > 8n.

So an interval of width 2n can never contain k; for at least two distinct values of i, a contradiction. 0O

Thanks to the previous two claims, the map Z; — G sending ¢ — 4, is a (1, 10n)-quasi-isometry.
So (by exercise 5.10 (b) in [Pet23]], for example), distgg(Z;, G) < 10n. By the obvious 1-dense
isometric embedding of Z; into 5=S', we know that distu(Z;, &=S') < 1. Let D := diamG. By

the previous two claims |D - %| < 20n. So by considering the identity map from G to itself,

1 2 1 2
distgy (BG’ —G) < sup D distg (u,v) — 7 distg (u, v)

l u,veV(G)
1 2 40n
<D-|=-2<22
D I l
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Putting these bounds together,

2 2 2
distor (16,51) < distoy | 26, 226 | + distoy | ZZ6. L7, | + disten | Z2,. 8!
D D7 7T I
A0n 2 2
Sn-T”+T”-1on+7”-1 (8.3.6)

200n 2 1 20n/D

< —100n-2 <1000 —— = 5. 2

=7 = D 20 1—-20n/D

We may assume that D > 40n, other the conclusion of the lemma holds trivially because
distgu(A, B) < 1 for all non-empty compact metric spaces A and B each having diameter at
most 1. In particular, 2%” < % Since 1xTx < 2x for all x € [0, 1/2], it follows from eq. 1| that
distu (£G,S") <5-2-20n/D =200n/D as required. O

We now combine these lemmas to formalise this sketch of a proof of Lemma [8.3.16] thereby

concluding our proof of Proposition [8.3.1]

Proof of Lemma[8.3.16] Suppose that BS = B _ Note that S, is trivially 2n-connected. So
r < 2n. In particular, in any transitive graph, the statement “S;° is not r-connected” is determined
by the subgraph induced by Bsgp,. So S,‘f’H is not r-connected either. By definition, Sf,o’H is a
minimal (og, Sé’n ,)-cutset. So by Lemma 8.3.17, since 6(H) < r, the exposed sphere S*H must
disconnect Sgn +1- In particular, B! disconnects (Bgln )¢. So by Lemma [8.3.19, H is infinite, and
by Lemma [8.3.14, H\BY contains at least two infinite components. Since H has at most finitely
many ends, H\ B! must contain exactly two infinite components and H must be exactly two-ended.

So by Lemma [8.3.18] H contains an n-dense bi-infinite geodesic. The conclusion follows by
Lemmal8.3.20 m|

8.4 Global connections — unique large cluster

In this section we apply the methods of [EH21a]]. It will be convenient to adopt the following
notation from that paper: given a set of vertices A in a graph G, we define its density to be
||A]l := %. In [EH21a], together with Hutchcroft, we showed that the supercritical giant cluster
for percolation on bounded-degree finite transitive graphs is always unique with high probability.
More precisely, for every infinite set G of finite transitive graphs with bounded degrees, for every
supercritical sequence of parameters p, and for every constant & > 0, the density of the second
largest cluster || K> || satisfies

limP, (||Kz|| > &) = 0.
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The following proposition contains a quantitative version of this statement that is useful even if
we slightly weaken the hypothesis that p is supercritical. We think of this as saying that if at
some parameter p we have a point-to-point lower bound that is only slightly worse than constant as
|V| — oo, then after passing to p + &, we can still pretend that we are actually in the supercritical
phase and still prove that the second largest cluster is typically much smaller than the largest cluster.
Note that this largest cluster is not necessarily a giant cluster because we are not (a priori) really in

the supercritical phase””]

Proposition 8.4.1. Let G be a finite transitive graph with degree d. Define 6 := (log|V|)~1/?C.
There exists C(d) < oo such that if |V| > C, then for all p,q € (0,1) withq — p > 6,

min By(u o) 225 = B, (IKill 2 6 and K]l < 67) > 1.

u,ve
In Section we will explain why this proposition is implied by the sandcastles@] argument of
[EH214a]]. In fact, [EH21a] already explicitly contains a very similar quantitative statement, namely
[EH21a, Theorem 1.5]. Unfortunately this statement is not quantitatively strong enough for our
purposes. One could alternatively prove a version of Proposition by applying the ghost-field

technology developed in [EH23b, Section 4]. (See the discussion at the end of [EH23bl Section
7.1].) This approach would be less elementary and less generalisableEI but quantitatively stronger.

Proof via sandcastles
Let G be a finite transitive graph. In [EH21a] we made the definition of “supercritical sequence”

finitary as follows. Given a constant € > 0, we say that a parameter p € (0, 1) is e-supercritical if
Pa-ep(lKill 2 €) 2 &

and |V| > 2&73, the latter being a technical condition that the reader may like to ignore. Note that
a sequence of parameters is supercritical if and only if there exists a constant € > 0 such that all
but finitely many of the parameters are e-supercritical. On the other hand, in the present paper the
more relevant finitary notion of supercriticality concerns point-to-point connection probabilities,
ie.

ril’ivnp(l_g)p (ueov)>e.

2This is reminiscent of [EH23b, Section 6]. There we used the hypothesis of a point-to-point lower bound on a
large scale to enable us to run arguments from [CMT22], which were ostensibly about supercritical percolation, to
study subcritical percolation.

30We thank Coales for suggesting this name.

31The ghost-field arguments ultimately rely on two-arm bounds, which are not elementary and which break down
when working with graphs with rapidly diverging vertex degrees.

365



These properties are equivalent up to changing the constant €. Indeed, for every parameter p € (0, 1)

and every constant & > 0 satisfying the technical condition |V| > 2&73,

. . _105 -18
nul}VnIPp(qu)zZs = P, (Kill>e)>e = nu171Van(u<—>v)2e e

(8.4.1)
The first implication is an easy application of Markov’s inequality, and the second implication is
[EH21al, Theorem 2.1]. A version of the second implication assuming an upper bound on the degree
of G is originally due to Schramm. Notice that the second implication quantitatively loses much
more than the first. In this sense, we can think of the hypothesis “min,, P(1_),(u <> v) > &” as

being quantitatively much stronger than the hypothesis “P(;_s), (||K1[| > &) > &”.

Below is [EH21a, Theorem 1.5], which contains a finitary uniqueness statement similar to Proposi-
tionm Unfortunately, the terrible e~¢# o dependence on ¢ is not good enough for our purposes.
Fortunately, it turns out that in the proof of this theorem, the source of this poor dependence is a
conversion from the hypothesis of a giant cluster bound (implicit in p being e-supercritical) into
a point-to-point bound, i.e. an application of the second implication in eq. (8.4.1). This saves us

because in the present setting we actually start with the “stronger” hypothesis of a point-to-point
bound.

Theorem 8.4.2. Let G be a finite transitive graph with degree d. There exists C(d) < oo such that

for every € > 0, every e-supercritical parameter p, and every 1 > 1,

1/2
B, 1Kol > acCe™ (2L : <1
P log |V| A

A key ingredient in the sandcastles argument of [EH21a] is the sharp density property, which

sharp thresholds. Let A : (0,1) — (0, 1/2] be a decreasing function. For all @,6 € (0, 1), let
pcla,0) € (0, 1) be the parameter satisfying P,,_(4,5)(||K1]| > @) = 6, which is unique by the strict

measures the extent to which the events {||K;|| > a} for each @ € (0, 1) have uniformly-in-a

monotonicity of this probability with respect to p. We say that G has the A-sharp density property
ifforall@ € (0,1) and 6 € [A(a), 1/2],

pC(a’l_d) Se&
pC(aaé)

The following lemma establishes a sharp density property for graphs with bounded degrees. This
is [EH21a, Proposition 3.2] and is an easy consequence of Talagrand’s well-known sharp threshold
theorem [Tal94]].

366



Lemma 8.4.3. Let G be a finite transitive graph with degree d. There exists C(d) < oo such that
G has the A-sharp density property for the function A : (0,1) — (0, 1/2] given by

1/3
A G=m > (L)
Ala) = A (log|V])172 ifa > =
% otherwise.

The sandcastles argument combines a sharp density property with a point-to-point bound to establish

the uniqueness of the largest cluster. Here is the technical output of that argument.

Lemma 8.4.4. Let G be a finite transitive graph. Let € € (0, 1) and suppose that p € (0, 1) is

e-supercritical. Suppose that G satisfies the A-sharp density property for some decreasing function
A:(0,1) — (0,1/2]. Then forall A > 1,

200A 25
P, (||1<2|| > A( ©), )) 34

e3r g2t |V|

where

T = ril,ivnp(l_g)p(u o).

Proof. |[EH21al, Theorem 3.3] is the same statement but where 7 is instead defined to be

T = 6_1058—18’
which is the function appearing in eq. (§.4.I). We claim that the proof of [EH21a, Theorem 3.3]
actually also establishes Lemma(8.4.4] First note that in the statement of [EH21a, Lemma 3.5], we
can require that ¢ € ((1 — &) p, p) rather than just ¢ € (p.(¢, &), p). Indeed, the exact same proof
works, using ¢; = e/A®) (1 — &)p instead of ¢; := /2 p (e, &), because (1 — &)p > p.(&,8).
So in the proof of [EH21a, Theorem 3.3], we may assume that the parameter called g, which is
provided by [EH21a, Lemma 3.5], satisfies ¢ > (1 — &)p. In particular, when we later apply

S5 .—18 . .
~10°2"" " we could instead simply

[EH21a, Theorem 2.1] to lower bound min, , P,(u < v) by e
lower bound min,, , P, (u <> v) by min,, P(1_),(u <> v). Running the rest of the proof of [EH21a,
Theorem 3.3] exactly as written, except for the new definition “r := min,, P(j_g),(u <> v)” in

—1058_18’

place of “7 ;= ¢ ’, yields the desired conclusion. O

The uniqueness part of Proposition [8.4.1 will follow from Lemmas [§.4.3]and [8.4.4] The existence
part will follow from the following well-known and (again) easy consequence of Talagrand’s sharp
threshold theorem [Tal94].
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Lemma 8.4.5. Let G be a finite transitive graph. Let A be a non-trivial increasing event that is
invariant under all graph automorphisms of G. Let 0 < py < p>» < 1 and set 6 := py — p1. There

exists a universal constant ¢ > 0 such that

1
P, (A) < or P, (A)>1-——.
P1 |V|C(5 P2 |V|c5

Proof. For every edge e, let Orb(e) denote the orbit of ¢ under the action of the automorphism
group of G. By [EH21a, Theorem 3.10], there is a universal constant ¢; > 0 such that for all
p € (0, 1), the function f(p) :=P,(A) satisfies

C1

fp) 2 — S(p) (1= f(p)) - log (2rergl|0rb(e>|) .

p(1 = p)log o=
Since G is (vertex-)transitive, |Orb(e)| > % for every e € E. Also, by calculus, sup ¢ (o 1) P(1 -
p) log ﬁ < o0. Therefore, there is another universal constant ¢ > 0 such that for all p € (0, 1),
f ]' J’
=——— >2clog|V]|.
L-f] f(d-=)

The result follows by integrating this differential inequality. O

[log

Proof of Proposition Suppose that g, p € (0, 1) satisfy g — p > ¢ and min,, P,(u < v) >
26. We will assume throughout this proof that |V| is as large as we like with respect to d. Let us

start with the existence of a large cluster. Let ¢ > 0 be the universal constant from Lemma [8.4.5]
By the first implication in eq. (8.4.1]), we know that P, (||K1|| > ¢) > ¢. Since |V| is large,

§ = e~ mlogloglVl 5 ,—c(log|V])(log|V])~1/20 _ V| (8.4.2)

So by Lemma [8.4.5|with A := {||K;|| = ¢}, since 5—24 > |V|7° (by a calculation like eq. (8.4.2)),
P, (|IKi]| = 6) > 1 ! > 1 0! (8.4.3)

q = = |V|C5 - 2 : e

We now turn to the uniqueness of the largest cluster. The parameter ¢ is (§/2)-supercritical because
V| > 2(6/2)73 and

Pi-s/2)(p+o) (1K1l 2 6) 2 Pp([Kil 2 6) > 6.
By Lemma since 6/2 > (2/|V])'/3, there is a constant C;(d) < oo such that G has the
A-sharp density property for some A satisfying

Ci
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So by Lemma 8.4.4] there is a constant C»(d) < oo such that for every 4 > 1,

&Y 200 (1og|Cvl|)l/2 25 5/2
Pq ||K2|| > A UIN2 < Pq ||K2|| >A 3 + ) < —
o*(log V)Y (6/2)°-(26)  (6/2)%-(26) - |V Z
By picking 4 such that 54(102% = 6% (which satisfies 2 > 1 when |V| is large), it follows that
C, C6° o
P, (|IK2l > 6%) < = <= 8.4.4
The conclusion follows by combining egs. (8.4.3)) and (8.4.4) with a union bound. m]

8.5 Unique large cluster — giant cluster

In this section we apply the methods of [Eas23]. We will again use the notation || K[|, ||K2||
introduced in Section[8.4] Let G be an infinite set of finite transitive graphs with possibly unbounded
degrees. Recall that G is said to have a percolation threshold if there is a fixed sequence p. : G —
(0, 1) such that for every sequence p : G — (0, 1), if limsup p/p. < 1 thenlimP, (||Ki|| > &) =0
for all & > 0, and if liminf p/p, > 1 then limP,(||K1]| > &) = 1 for some & > 0. In [Eas23]
we showed that G has a percolation threshold unless and only unless G contains a very particular
family of pathological sequences of dense graphs. This might appear to be simply a matter of
proving that some nice event has a sharp threshold, perhaps by a simple application of Lemma(8.4.5|
in the bounded-degree case. The subtle problem is that “{K; is a giant}” is not an event. Really
the challenge is to prove that multiple events of the form {||K|| > a}, for different choices of «,

all have sharp thresholds that in fact coincide with each other.

The bulk of our proof consisted in proving that if the supercritical giant cluster for G is unique (as
given by [EH21al]), then we can embed this fact into Vanneuville’s new proof of the sharpness of
the phase transition for infinite transitive graphs [Van23; Van24] to deduce a kind of mean-field
lower bound for the supercritical giant cluster density. This mean-field-like lower bound implies
that for every 6 > 0 and sequence p, if there is a giant whose density exceeds some constant @ > 0
at p,i.e. limP,(|[K1|| > @) = 1, then there is a giant whose density exceeds some constant ¢(6) > 0
at (1 +0)p, i.e. imP(1,4),(||Ki|| > ¢(6)) = 1, where, crucially, c¢(6) is independent of . By
a diagonalisation argument, it is clear that @ can be allowed to decay slowly rather than remain
constant. However, in general, the slowest allowable rate of decay can be arbitrarily slo@ This
is why there was no discussion of rates of convergence in [EH23b]. Luckily, this is not the case in

our restricted setting where graphs have bounded degrees.

32Consider sequences that approximate sequences that do not have percolation thresholds.
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In the following subsection we simply note that the argument in [EH23b]] is fully quantitative in the
sense that a can decay at any particular rate provided that we supply a sufficiently strong bound
on the uniqueness of the largest (possibly non-giant) cluster. This is the content of the following

proposition.

Proposition 8.5.1. Let G be a finite transitive graph. Let p,& € (0,1) and a € (0, ;). There is a

universal constant ¢ > 0 such that the following holds whenever |V|¢ > L.

If
Ppo(|Koll >a)>a and P, (||K1|| > o and |Ky|| < %) >1-a?

then
1

Ppie (1K1l = ce) > 1 - Vi

Proof via coupled explorations

At the heart of Vanneuville’s new proof of the sharpness of the phase transition for infinite transitive
graphs is a stochastic comparison lemma. This says that starting with percolation of some parameter
p, decreasing from p to p — € for a certain € > 0 has more of an effect than conditioning on a

certain disconnection event A, roughly in the sense that
Pp—s(a) =) <g« Pp(w =-|A),

where < denotes stochastic dominance with respect to the usual partial ordering {0, 1}£. This is
proved by coupling two explorations of the cluster at the origin, sampled according to each of the
two laws. In [Eas23] we modified Vanneuville’s argument to prove the following lemma ([Eas23),
Lemma 8]). Note that here the stochastic dominance only holds approximately, i.e. only on the

complement of an event with small probability.

Lemma 8.5.2. Let G be a finite transitive graph. Let p,a € (0, 1). Define

@ 2n'/
0 =ByllKill. k=B, (IKill <aor Kl = 3). 6=

and assume that 6 + h < 1 (so that 6 is well-defined and positive). Then there is an event A with
P,(A | |IK,| < @) < h''? such that

P(I—H—é)p(w =) <g« Pp(w Ulp =-| [[Kll < a),

where 14 denotes the random configuration with every edge open on A and every edge closed on
AC.
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To prove Proposition[8.5.1] we will simply combine this lemma together with Lemma[8.4.5] which

was a standard application of Russo’s formula and Talagrand’s inequality.

Proof of Proposition[8.5.1] Define 6 and / as in Lemma Suppose that P,_. (|[K,|| > @) > @
and P, (||K1|| > @ and ||K>|| < %) > 1 —a?, ie. h < o> First consider the case that  + h > £

.
Then by hypothesis and the fact that o < {5,

2

0>—--h>=--a" > -. (8.5.1)

M| O
SR
IR

Now consider the case that § + i < §. Define ¢ as in Lemma[8.5.2] By Lemma[8.5.2} there is an
event A such that
Pii-0-6)p (1Kol = @) < Bp(A | IIK,|l < @) < h'2.

On the other hand, by our hypotheses,
W2 <a <Pps(IKoll > ).

So by monotonicity, we must have (1 — 6 —d)p < p — &. In particular, 6 + § > €. We can upper
bound ¢ by
2n'/2 20 2 2
0= 1T @+m S1-£571-°73"
2 2
where the last inequality used the fact that € € (0, 1). Therefore, again, 6 > € — ¢ > f‘p as in

eq. (8.5.1).

Let ¢ > O be the constant from Lemma m Without loss of generality, assume that ¢ <

Sle

<

1
g.
Suppose that |[V|® > é By Markov’s inequality, P, (||K1|| = £) > £ because 6 > £. Therefore,

& &
P, (IKill > ce) > P, (||K1|| > g) >% e

So by applying Lemma 8.4.5 Pp.. ([IK1|| > ce) > 1 —|V|™, as required. m|

8.6 Proof of Theorem
Let G be an infinite set of finite transitive graphs with bounded degrees. Suppose that for all but at
most finitely many G € G,

- o (log diam G)\/?
7% S) > g
Our goal is to prove that both statements (1) and (2) are true. By Proposition [8.2.9] statement (1)

distap ( (8.6.1)

implies statement (2). So it suffices to prove statement (1), i.e. percolation on G has a sharp phase
transition. We will assume without loss of generality that there exists d € N such thatevery G € G
has degree exactly d. We will again adopt the notation ||K;|| , || K2 || from Section
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Claim 8.6.1. For every constant € > 0, there exist constants c(g) > 0 and u(d, €) < oo such that

for every infinite subset H C G and every sequence p : H — (0, 1),

liminfP,(|K;| > ulog|V]) >0 = IlimP Kill >¢c)=1.
iminf P (K| > ulog|V]) lim Ppes, (1K1 > 0)

Before proving this claim, let us explain how to conclude from it. For each G € G, pick a parameter
q(G) € (0,1) satisfying Pg(G)(lKll > |V|2/3) = % We will prove that percolation on G has
a sharp phase transition with percolation threshold given by ¢ : G — (0, 1). First notice that
liminf g > ﬁ > 0. Indeed, this follows from the proof of [EH21a, Lemma 2.8], but let us explain
the elementary argument here for completeness. For every G € G and n > 1, there are at most d”

self-avoiding paths starting from o. So by a union bound, every G € G satisfies

On the other hand, by transitivity, every G € G satisfies

By 1Kol 2 VPR (1Kol 2 IVIPR) 2 IVIVPR, (1Kl > VP2

2d

Therefore for all but finitely many G € G,

1
P (IKil = VPR) <2V < 2,
2d 2

and hence by monotonicity, ¢(G) > 2171-

Now fix a constant € > 0. Since liminf g > ﬁ > 0, there exists a constant 6(&, d) > 0 such that
(1-&)g <g-06and g+ < (1+ ¢)q for all but finitely many G € G. Let ¢ (6/4) > 0 and
u(d,d/4) < oo be the constants provided by the claim. For all but finitely many G € G, we have

ulog|V|] < IVI*3. So by applying the claim with “H” being the whole of G and “p” being ¢,

lim P Kq|l > =1.
lim g+s (1K1l = ¢)

2/3

On the other hand, for all but finitely many G € G, we have ¢ [V| > |V|””. So by applying the

claim (contrapositively) with “p” being g — &, for every infinite subset H C G,
liminfP,_s(|K;| > plog|V]) = 0.
iminf Py s(|K1| = plog|V])

Equivalently, for every infinite subset H C G there exists a further infinite subset H’ € H such
that limgeq Py—5(|K1| > plog [V]) = 0. Therefore,

. . _o.
gerrgqu_(;(lKll_uloglVl) 0
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Since € > 0 was arbitrary, this establishes that percolation on G has a sharp phase transition. All

that remains is to verify the claim.

Proof of claim. Fix € > 0. Let ci(d,&) > 0 be the constant from Proposition [8.2.1f Let

2

A (d, £, g—o) < oo be the constant from Proposition [8.3.1|(with “n” set to £2/20). Let ¢, > 0 be the

universal constant from Proposition(8.5.1, We will prove that the claim holds with i := exp (cil + c%)
1

and ¢ := ce. Let H C G be an infinite subset, and let p : H — (0, 1) be a sequence satisfying
:=1liminf P, (|Ky| > ulog|V]) > 0.
n = limin p(IK1] = plog|V])

We say that a statement A holds for almost every G to mean thatthe set {G € H : A does not hold for G}

is finite. For almost every G,

n
P,(|K1| = pulog|V]) > 32 e

So by Proposition , noting that ¢y log u — i =4,

2
) e
minP,,.(0 & u) > —.
ueB)

- 20
For each G € H, define y(G) and y*(G) as in Proposition Then by Proposition|8.3.1} thanks

to our choice of A, for almost every G,

. _ +\1/2
min Ppis(o o u)>e (loglogy™) ™™ (8.6.2)
,y+

Consider a particular G € H satisfying eq. (8.6.1). Then y(G) > e(oediam®'” anq by applying
the monotone function x — ¢1°89’ o both sides, y*(G) > diam G. In particular, B;ﬂ @) is the

L_gG, %S 1) < 1, because both metric spaces

diam G

whole vertex set V(G). We trivially have distgy (

involved have diameter < 1. So conversely, y(G) < xdiam G, and hence y*(G) < {8 diamG))”
By applying these upper and lower bounds on y*(G) to eq. (8.6.2), we deduce that for almost every

G,

. - i 1/2 _ 1/2
mler‘l/PpJ,zg(u o ) > ¢ 3lloglog(mdiam G))r= - ,=3(loglog(x V)=
u,v

where the second inequality follows from the trivial bound |V| > diam G.
For each G € H, define 6(G) := (log|V])~'/?°. For every sufficiently large positive real x,

2(logx)~1/?0 = e~ loglogx o ,~3(loglog(mx))'/?
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Therefore for almost every G,
mir‘l/Pp+28(u o v) > 26. (8.6.3)
u,ve

By applying Proposition|8.4.1] it follows that for almost every G, (since ¢ < &)

Bpoae (K1l 2 6 and [1Kol] < 6%) > 1 - 6%

For almost every G, we have 6% < %, 5 < 62,6 € (0, %), |V]?¢ > L and by applying Markov’s

e Yo

inequality to eq. (8.6.3), P,42:(||Ky|| = 6) > 6. So by Proposition|8.5.1} for almost every G,

1

Ppiae (IK1 ]| 2 c28) 2 1 - Ve

In particular, limgeg Ppas (K1l > c26) = 1, as claimed. m]
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Appendix: Details for some claims in Section 8.3
In this appendix, we will explain how some of the lemmas in Section [8.3| can be established by

minor modifications of existing arguments.
Lemma (Lemma|(8.3.3)). There exists no(d) < co such that for all n > ny,

s([R(n), R*(n)] is orange) < s(n is green) + 6(n).
The following argument is essentially contained in the proof of [EH23b, Proposition 4.5].

Proof. Let n > 3 be some scale. Throughout this proof, we will assume that »n is large with
respect to d. Note that the result is trivial if » > diam G, because in that case B,, = B, for all
m € [R(n), R*(n)]. So let us assume to the contrary that S,, # 0. First consider the case that n € L.
Then at any time ¢ when n is green, we know that x4, (R2 (n),n) > §(R(n)), which implies that
[R(n), R*(n)] is already orange at time . So let us assume to the contrary that n ¢ L. Define
h = e~ Uog ”)100, which therefore satisfies # > Gr(n)~'. Pick p; € (0, 1) such that n is green at time
#»~'(p1). Note that p; > 1/d because by a union bound, using that S,, # 0 and that n is large with

respect to d,
1 n
m}ign Pija(o & u) <Pijg(o & S,) < d(d - Dt (3) <d(n).
ueB,

Define ps := ¢(¢~'(p1) + 6(n)). In the language of [EH23b, Section 3], the quantity “6(p1, p2)”
is equal to 6(n) by construction. Let u € Bga(,) be arbitrary, and let 0 = ug,uy,...,ux = u be a
path with k < R?*(n). Let ¢ (1), ho(d, 1), ca,c3 > 0 be the constants from [EH23b, Proposition
4.1] with D := 1. Since n is large with respect to d, we have h < hgy, 6(n) < 1,
)1006—3(log10gn)l/2 < c3 _ c3 < c3

T oelogmd 41 RZ(m)+1 7 k+1°

and for alli € {0, ..., k — 1}, by Harris’ inequality,

hcl(S(n)3 = ¢ €1 (logn

min {Ppl(x < y):x,y € B,(u;) U Bn(um)} >6(n)-pp-6(n)

1

> _6—2(10g10gn)1/2

—C1(logn)1()0e_4(1°gl°g”)1/2 4h015(n)4.

> 4e

So by [EH23b, Proposition 4.1], where the sets “Ay, ..., A,” are the balls B, (ug), . . ., B,(uy),
Py, (0 u) 2 26(n)* 2 6(R(n)).

Since u € Bga(,) was arbitrary, it follows that [R(n), R?(n)] is orange at time ¢~ (p»), as required.
O
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Lemma (Lemma [8.3.4). For all ¢ > 0 there exist A(d,c),no(d,c),K(d,c) < oo such that the
following holds for all n > ng with n € T(c,A). For all t € R, if n is orange at time t and
KA:(n) < 1then

s(nis green) <t + KA;(n).

This is implicit in the proof of [EH23b| Proposition 6.1]

Proof. In [EH23b], we made the following definitions: given d > 1, we wrote U, for the set of all
infinite non-one-dimensional unimodular transitive graphs with degree d, and given D > 1 and a
transitive graph G, we wrote £(G, D) for the set of all scales n > 1 such that Gr(m) < e(°2 m)?
forall m € [nl/ 3 n]. Let us now introduce the following variants of these definitions: given d > 1,
write ‘W for the set of all (possibly finite) unimodular transitive graphs with degree d, and given
D,A > 1, c > 0, and a transitive graph G, write 7 (G, D, 4, c¢) for the set all of scalesn € L(G, D)
with n < diam G such that G has (¢, A)-polylog plentiful tubes throughout an interval of the form
[m1, my] with my > m}” satisfying [my, m2] C [n'/3, n'/(1+9)]. Let [EH23b, Proposition* 6.1] be

the result of modifying the statement of [EH23b, Proposition 6.1] as follows:

1. Weaken the hypothesis that G € U, to the hypothesis that G € Wy.

2. Strengthen the hypothesis that n € £(G, D) to the hypothesis that n € 7 (G, D, A, 1/D).

Note that p.(G) in this statement refers to the usual percolation threshold for an infinite cluster, so
in particular, p.(G) := 1 if G is finite. The same proof works because the hypothesis that G was
infinite and non-one-dimensional was only used to invoke [EH23b, Proposition 5.2] to establish
that there is a constant ¢ (d, D) > 0 such that for all A, whenever n is large with respect to d, D, 4,
it n € L(G, D) then automatically n € 7 (G, D, A, c¢1). We are just circumventing this application
of [EH23b| Proposition 5.2]. Specifically, we can prove [EH23b, Proposition* 6.1] by modifying
the proof of [EH23b, Proposition 6.1] as follows:

1. Strengthen the conditionn € L(G,D)ton € 7 (G, D, A,1/D) in the definition of A.

2. Rather than define c¢; and N to be the constants guaranteed to exist by [EH23b, Proposition
5.2],setcy :=1/D and N := 3.

3. Restrict the domain of the definition of £ (n) fromalln € L(G, D) toalln € 7(G, D, A,1/D).
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4. Include the hypothesis n € 7 (G, D, A, 1/D) in the statement of [EH23b, Lemma 6.8]

Taking [EH23b), Proposition* 6.1] for granted, let us now explain how to prove Lemma[8.3.4] Recall
that G is a finite transitive graph with degree d. Let ¢ > 0 be given, and define D := 101 V (1/c).
Let A9o(d, D) and ¢ (d, D) (called “c(d, D)”) be the constants provided by [EH23b, Proposition*
6.1]. Define 4 := Ay V (100/cy). Now let K (d, D, A) and no(d, D, 1) be the corresponding
constants provided by [EH23b, Proposition* 6.1]. Define K := K 11 /4 By the same argument as in
our proof of Lemma above, there exists nj(d) < oo such that for all n; < n < diam G and
t € R, if n is orange at time ¢ then ¢(¢) > 1/d. Set np ;= ng V n; vV 3" We claim that A,n, K

have the properties required of the constants called “A, ng, K in the statement of Lemma 8.3.4]

Indeed, suppose that r € R and n > n; with n € T(c, A) are such that n is orange at time ¢ and
KA;(n) < 1. Now apply [EH23b, Proposition* 6.1] with the variables called “K, n, b, p1, p2” in
that statement set to our variables Ky, n, U;(n), ¢(t), #(t + KA,(n)). The only hypothesis that is
not immediately obvious is that n € 7 (G, D, A, 1/D). To see this, first note that since n € L and

310

1 .
n>e ,everym € [n1/3,n] satisfies

Gr(m) < Gr(n) < ellogm'™ o (log(n A1 o (logm)!®h -, (logm)®

Son € L(G,D). Second, we may assume that n < diam G, otherwise the conclusion of
Lemma is trivial. Finally, since n € T(c,1) and 1/D < ¢, and the property of having
“(x, 4)-polylog plentiful tubes” at a given scale gets weaker as we decrease x, it follows that
ne€7(G,D,A,1/D). Therefore, by applying [EH23bl Proposition* 6.1], we deduce that

c _ 1/2
K (1+K A (n)) (e(logn) M’") > e orloen

In particular, since c;4 > 100 > 81,

Kg(1+KA, (n)) (Rz(n),n) > 0(R(n)).
So s(n is green) < t + KA,(n), as required. O

Lemma (Lemma [8.3.5). There exists no(d) < co such that the following holds for all n € L with
n > ng. Forallt € R, if L(n) is green at time t then

A(n) £ ————.
loglogn

33While writing this paper, we noticed the following typo: [EH23b, Lemma 6.8] is missing the hypothesis that
ne L(G,D).
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This proof is implicit in [EH23b, Section 6.3].

Proof. Suppose that n € L. Throughout this proof we will implicitly assume that n is large
with respect to d. Let t € R and assume that L(n) is green at time f. We may assume that
|n'/3] < diam G, otherwise we trivially have U, (n) = L%nl/ 3| and hence (since 7 is assumed large)

A;(n) < (logn)~'/5. We split the proof into two cases according to whether L(n) € L.
g P P g

First suppose that L(n) ¢ L. By the same argument as in our proof of Lemma above, since
L(n) < diam G and L(n) is green at time ¢ (and since n is assumed large), ¢(t) > 1/d. So by
[EH23bl Corollary 2.4], there exist constants c(d) > 0 and C(d),no(d) < oo such that for all
m 2 no(d),

1 1/3
Py(y (Piv[clogm,m]) < C (M) |
m

In particular, since 4L(n) < clog(n!/?) and Gr(n!/?) < Gr(n) < e(osm™

(logn)IOO 1/3 3 1
nl/3 ~ logn’

Py (Piv [4L(n),n']) < €

Since we also clearly have L(n) < %nm, it follows that U,(n) > |L(n)]. Since L(n) ¢ L, this

implies that Gr(U,(n)) > el L) gg

1/4
loglogn ) < 1

Adln) < ((log 1) A (log L (1)) 100 loglogn’

Next suppose that L(n) € L. Define b := é (R o L(n) AGr™! (R‘l(n))). By [EH23b, Lemma 2.3]
(i.e. [CMT22, Lemma 6.2]), using the fact that 5 < %nm,
|Sap|* Gr(5b)

; . 1
P¢(t) (PIV [4b,n1/3]) < P¢(l) (PIV [1, 5711/3]) . — - .
MmNy yeSy, P¢(,) (x e y)

By [EH23bl, Lem 2.1] (i.e. essentially [CMT22, Proposition 4.1]), there is a constant C(d) < oo

such that
1/3

) e log Gr (%nm)

: 1 1/3
P¢(t) (PIV [1, En / ln1/3
2

By hypothesis, n € L. So we can upper bound log Gr(1n'/3) < log Gr(n) < (logn)'®. Since L(n)

is green at time 7 but L(n) € L, then KW)(RZOL(n), L(n)) = §(RoL(n)). Note that 8» < R%>oL(n)
B

and (using that L(n) € L), L(n) < b. Therefore, miny ycs,, Py, (x P y) = 6(RoL(n)), since we
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can connect any x, y € S4p, by a path contained in By, of length at most 85, and the b-thickened tube
around this path is entirely contained in Bs;,. Finally, we can upper bound |S45| < Gr(5b) < R™'(n)
by definition of b. Therefore,

<1ogn>l°°)”3 (R'm)* _ 1

P (P' 4b, 1/3)3C < :
o |Piv [4b,n' 7] %n‘/3 6(RoL(n)) ~ logn

Notice that by our choice of b, we have b < %nl/ 3 and

Gr(b) > Gr (%R o L(n)) A Gr (% Gr! (R-l(n))) > (%R ° L(n)) A (R_l(n))l/s - %R o L(n).

So
1/4

loglogn < 1
(logn) A (log [%R o L(n)]) ~ loglogn

A(n) <

Lemma (Lemmal(8.3.11). Let G be a unimodular transitive graph of degree d. Suppose that
Gr(m) < elloem®  yng Gr(3m) > 3° Gr(m)

for every m € [n'=¢,n'*¢], where &, D,n > 0. Then there is a constant c(d, D, &) > 0 with the
following property. For every A > 1, there exists no(d, D, g, 1) < oo such that if n > ng then G has
(¢, A)-polylog plentiful tubes at scale n.

[EH23b, Lemma 5.4] is the same statement but with the additional hypothesis that G is infinite.

We claim that this additional hypothesis is unnecessary.

Proof. [EH23b, Lemma 5.4] is the ultimate conclusion of [EH23b, Section 5.2]. The first result
in [EH23b, Section 5.2] that requires G to be infinite is [EH23b, Lemma 5.16]. By inspecting
the proof of [EH23b, Lemma 5.16], we see that this hypothesis is only used in order to apply the
elementary bound Gr(3mn) > n Gr(m) for all m,n > 1. In fact, in the language of that proof, since
we may assume that the constant ¢ > 0 satisfies ¢ < 1/10, say, then the proof only invokes this
elementary bound for m, n satisfying 3mn < -5t!/2. Now this holds whenever diam G > +t'/2. So
[EH23b, Lemma 5.16] holds with the hypothesis “G is infinite” replaced by the weaker hypothesis
“diam G > ll—otl/z”. When [EH23b, Lemma 5.16] is applied to establish [EH23b, Lemma 5.17],
the hypothesis “diam G > %t'/ 2 is already implied by the other hypothesis of [EH23b, Lemma
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5.17] that Gr(3m) > 3“Gr(m) foralln < m < %tl/z (and the fact that conclusion of [EH23b,
Lemma 5.17] is trivial if there is no integer in [n, %tl/ 2]). So in the statement of [EH23b, Lemma

5.17], we can simply drop the hypothesis that G is infinite.

We can also drop the hypothesis that G is infinite in [EH23b, Lemmas 5.18 and 5.20] because
[EH23b, Lemma 5.18] is deduced from [[EH23b, Lemma 5.17], and [EH23b, Lemma 5.20] is
deduced from [EH23b, Lemma 5.18]. [EH23b, Lemma 5.19] already does not require G to be
infinite. The ultimate proof of [EH23b, Lemma 5.4] only required G to be infinite in order to invoke
[EH23b, Lemma 5.20] and (in the radial case) to know that S,, # 0. The hypothesis that S,, # 0

is anyway implied by the fact that Gr(3m) > Gr(m) for some m € [n, n'*?]

, and as we explained,
we can drop the hypothesis that G is infinite in [EH23b, Lemma 5.20]. Therefore we can drop the

hypothesis that G is infinite in the statement of [EH23b, Lemma 5.4] too. O

The next claim we will justify is that Lemma implies Lemma(8.3.13| Here are the statements
of these results.

Lemma (Lemma [8.3.16). Let r,n > 1. Let G be a finite transitive graph such that S;’ is not
r-connected. Let H be a (finite or infinite) transitive graph with §(H) < r that does not have

infinitely many ends. If Bgion = BSGOn, then
dist ( r 1) < 200n
H\diamG °° ) = diam G’

Lemma (Lemma(8.3.13). Let G be an finite transitive graph of degree d. Suppose that Gr(3n) <
3% Gr(n), where n, k > 0. There exists C(d, k) < oo such that the following holds ifn > C:

Thereisaset A C [1, 00) with|A| < C suchthatforeveryk > 1andeverym € [Ckn, )\ Uzcala,2kal,
if G does not have (C™'k, C~'k~'m, CkCm)-plentiful tubes at scale m, then

G. 1)< Cm

distau ( = dam G’

V4
diam G
The proof that Lemma[8.3.16|implies Lemma(8.3.13]is essentially the same as the proof of [EH23Db,
Proposition 5.3] (i.e. Lemma 8.3.12]), except that G is now assumed to be a finite transitive graph
rather than a non-one-dimensional infinite transitive graph. For this reason, the following proof
is terse. The argument relies on the structure theory of transitive graphs of polynomial growth.
See the proof of [EH23b, Proposition 5.3] for more details and [EH23bl Section 5.1] for more
background.
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Proof of Lemma(8.3.13| given Lemma(8.3.16] Fix k > 0. Suppose that Gr(3n) < 3“Gr(n) for
some n > 1. We will implicitly assume that n is large with respect to d and «. Let H < Aut(G),
S CTI':=Aut(G)/H, and C;(K) < oo be as given by [EH23b, Theorem 5.5] (which is taken from
[TT21a]) with K := 3%. Let G’ := Cay(I, S). For each k € N, let R; be the set of all relations in I"
having word length at most &, let ((R;)) be the normal subgroup of the free group on S generated
by Ry, and let G := Cay({S | Ry), S). By items 7 and 8 of [EH23b, Theorem 5.5],

Gr’(3n) ) c
<Ci(3+Cy)-.
Gr(m =1+
In particular, by [EH23b, Theorem 5.5] again (and using that n is large), every transitive graph
whose 3n-ball is isomorphic to the 3n-ball in G’ is necessarily finite or infinite with polynomial
growth. In particular, such graphs have at most finitely many ends. Now by [EH23d, Theorem 1.1],
there exists Cp(k, d) < oo such that

|{i e N:i >log,n and ((Ryi1)) # <<R2i>>}| < (.

Let A := {2i :ieNandi > log,nand ((Ryi+0)) # ((RZ,—))}, and note that |A| < 10C;. Let k > 1
and m € [2kn, 00)\ U cala, 2ka] be arbitrary. By construction of A (and [EH23b, Lemma 5.6]),
the balls of radius (say) 50n in G, and G’ are isomorphic. Note that ¢ (G’,_n) < %, and since the
3n-ball in G’, is isomorphic to tlfe 3n-ball in G’, the graph G’, has at mokst finitely many ends.
Consider an grbitrary pair my, my € N satisfying 7+ < my < mp ks 3m. By Lemmaapplied
with the pair “(G, H)” equal to (G, G’%), either (1) the exposed sphere S, (G’) is [ 7 ]-connected,
or (2)

diStGH( dl ’ ]) < 200m2 .
diam G’ diam G’
In case (1), we deduce by the proof of [CMT22, Lemma 2.7] (which was behind [EH23b),
Lemma 5.8]) that for all u,v € S, (G’) there exists a path from u to v in G’ that is contained

(8.6.4)

in Uxeszz(G') Bop, (x) and has length at most 3m; Gr(3m,)/Gr(m;). Now consider case (2). The
existence of a (1, Cin)-quasi-isometry from G to G’ implies that |diam G — diam G’| < 3Cn and
distgg(G, G’) < Cin. (For the latter, see exercise 5.10 (b) in [Pet23], for example.) We may
assume without loss of generality that diam G > 100Cn, say, otherwise our claim is trivial. By

combining these simple bounds with eq. 1| we deduce that distGu( ;075G S h < dicailllnG for

some constant C3(«k, d) < oo.

We now run the rest of the proof of [EH23bl Proposition 5.3], after the application of [EH23b,
Lemma 5.8], as it is written. This establishes that there is a constant C4(k,d) < oo such that
for all k > 1 and m € [Cskn, o)\ Uzecala,2kal, either (A) there exists my € [lg—om, %m] such
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that S, (G’) is not [ 7 ]-connected, or (B) G has (C;lk, C;lk_l, C4k©m)-plentiful tubes at scale
m. (Technically, as written, the radial case of the proof of [EH23b, Proposition 5.3] invokes the
existence of a bi-infinite geodesic in G. All that is really required is a geodesic of length > 24m.
So it suffices to know that diam G > 24m, say, which we may anyway assume without loss of

generality otherwise the conclusion holds trivially.) By above, if case (A) holds, then case (2)

holds, and hence distgy ( dia’r;GG, S 1) < dg i;”G. Therefore the set of scales A is as required. m]

The next claim we will justify is that Timar’s proof [Tim07] of Benjamini-Babson [BB99b] yields
the following statement, which is phrased slightly differently to usual, in terms of sets of vertices,

vertex cutsets, and (extrinsic) diameter rather than length of generating cycles.

Lemma (Lemma(8.3.17). Let G be a graph. Let A and B be sets of vertices. Let 11 be a minimal
(A, B)-cutset that does not disconnect A or B. Then Il is 6(G)-connected.

Proof. Suppose that IT = I1; LI I, is a non-trivial partition of I1. By minimality of I1, there exist
paths vy avoiding I, and y; avoiding I1; that both start in A and end in B. Let y4 be a path from
the startpoint of y; to the startpoint of y, that avoids I1, and let yg be a path from the endpoint of
v1 to the endpoint of y; that avoids I1. Let {C; : i € I} be a set of cycles of diameter < §(G) such
that y; +y2 + ya + v = 27 Ci- Let J be the set of all indices i € [ such that C; visits I, and
define

§:=71+ZCi=72+7A+73+ Z Ci.

ieJ iel\J
From either expression for ¢, we see that { has exactly two odd-degree vertices, one in A and the
other in B. So { contains a path from A to B, and hence contains an edge incident to I1. From the
second expression for £, we see that £ does not contain an edge incident to II;. So { must contain
an edge incident to I1,. By construction, y; avoids I1,. So by the first expression for ¢, there must
exist a cycle C; with i € J that visit I1,. Since this C; also visits I1; (by definition of J) and has
diameter at most 6(G), it follows that dist(I1, ITy) < §(G). m|
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