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ivABSTRACT

Percolation on a transitive graph is an idealized mathematical model for a homogeneous system
undergoing a phase transition. We will investigate how the geometry of an infinite transitive
graph determines whether percolation undergoes a phase transition, and if so, at what critical point.
Building on these ideas, we will develop a new theory of percolation on finite transitive graphs. This
theory unifies the percolation phase transition on infinite transitive graphs with the giant-cluster
phase transition in the celebrated Erdős-Rényi model from combinatorics.



1C h a p t e r 1

INTRODUCTION

Phase transitions appear in our lives in both obvious and subtle ways. The most vivid examples
come from physics: as temperature slowly increases past certain critical points, ice suddenly melts
and magnets lose their magnetism. The example that received the most news coverage during the
recent Covid pandemic concerned the so-called 𝑅0-value: whether 𝑅0 < 1 or 𝑅0 > 1 would predict
whether the number of infected individuals would decay or grow exponentially. More hidden phase
transitions are present in the formation of traffic jams and the average-case computing time required
by an algorithm.

Phase transitions are in fact a very typical occurence anytime one assembles many tiny identical
components (picture: atoms arranged in a lattice) in which each component is only allowed
to interact with its neighbouring components and one varies this “local” interaction strength.
Percolation is the mathematician’s caricature of this setup.

1.1 Percolation
We will model an assembly of tiny components by a graph 𝐺 = (𝑉, 𝐸). We will always assume
that graphs are connected, undirected, simple, have countably many vertices, and that each vertex
has at most finitely many neighbours. To model that all of the tiny components are identical,
we will require that 𝐺 is (vertex-)transitive, meaning that for all vertices 𝑢 and 𝑣, there exists an
automorphism 𝜙 of 𝐺 such that 𝜙(𝑢) = 𝑣. This includes, for example, the usual Eucliean lattices
Z𝑑 , regular trees, and more generally, any Cayley graph of a finitely generated group.

Fix a parameter 𝑝 ∈ [0, 1], which will be our “local” interaction strength. Build a random spanning
subgraph 𝜔 ⊆ 𝐺 by independently choosing, for each edge 𝑒 ∈ 𝐸 , whether to include 𝑒 (with
probability 𝑝) or delete 𝑒 (with probability 1 − 𝑝). (See figure 1.1.) The law of 𝜔 is called
(Bernoulli bond) percolation. We denote this law by P𝑝. To find the phase transition in this model,
track the clusters (i.e. connected components) of 𝜔 while varying 𝑝. For simplicity, let us start by
assuming that 𝐺 is infinite. By Kolmogorov’s 0-1 law and the monotonicity of this model with
respect to 𝑝, there is always some critical parameter 𝑝𝑐 (𝐺) ∈ [0, 1] such that

P𝑝 (𝜔 contains an infinite cluster) =


0, if 𝑝 < 𝑝𝑐

1, if 𝑝 > 𝑝𝑐 .



From a utilitarian perspective, a good reason to study percolation is that this toy model provides a
testing ground for new techniques, which often trickle down to more intricate, physically-relevant
models some years later. From an aesthetic perspective, percolation provides many simple-to-state
yet challenging-to-solve problems that require mathematicians to exercise their creativity. This is
best-illustrated by the most notorious open problem in the area: prove that when𝐺 is the Euclidean
lattice Z3,

P𝑝𝑐 (𝜔 contains an infinite cluster) = 0.

This model was first introduced by Broadbent and Hammersley in 1957 to model the flow of a
fluid through a porous medium. In their setup, the graph 𝐺 is a Euclidean lattice like Z𝑑 , and
indeed, most work on percolation has traditionally taken 𝐺 to be such a lattice or to be a tree. The
scope widened in 1996, when Benjamini and Schramm launched an influential research programme
to systematically study percolation on general infinite transitive graphs. This programme is the
context in which the present thesis should be understood. None of the results in this thesis are
new for Euclidean lattices or trees, nor are we concerned with any other particular transitive graph;
our goal has been to understand basic features of the percolation phase transition that hold for all
transitive graphs.

Figure 1.1: Example of a graph 𝐺 (left) and a spanning subgraph 𝜔 (right).

1.2 Transitive graphs
In this section, we will take a tour of the zoo that is the space of transitive graphs. Given a transitive
graph 𝐺 = (𝑉, 𝐸), we will always write 𝑜 to denote an arbitrary vertex. (Statements will always
hold independently of the choice of 𝑜 because 𝐺 is transitive.) We write dist = dist𝐺 to denote
the graph metric on 𝐺. Given 𝑛 ≥ 1 and 𝑢 ∈ 𝑉 , we write 𝐵𝑛 (𝑢) = 𝐵𝐺𝑛 (𝑢) to denote both the set
{𝑣 ∈ 𝑉 : dist(𝑢, 𝑣) ≤ 𝑛} and the subgraph of 𝐺 that this set of vertices induces. Hopefully it will
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always be clear from context which of these definitions is intended. We also adopt the convention
that 𝐵𝑛 := 𝐵𝑛 (𝑜).

Local and global similarity
It helps to think of the geometry of a given infinite transitive graph 𝐺 in two parts: the small-scale,
local structure and the large-scale, global structure. Indeed, an important principle in the study
of percolation on transitive graphs is that certain key features such as the behaviour of the model
around the critical point, or the value of the critical point itself, should be entirely determined by
one part or the other. Rather than attempt to intrinsically define what the “local” and “global”
structure are of a given infinite transitive graph 𝐺, let us instead define what it means for a given
pair of graphs to have similar global or local structures.

The local metric on the space of transitive graphs is given by, for each pair𝐺, 𝐻 of transitive graphs,

distloc(𝐺, 𝐻) := 2− sup{𝑛≥1:𝐵𝐺𝑛 �𝐵𝐻𝑛 },

where 𝐵𝐺𝑛 � 𝐵𝐻𝑛 means that the corresponding rooted subgraphs (rooted at 𝑜) are isomorphic.
The topology this induces on the space of all transitive graphs is called the local (aka Benjamini-
Schramm) topology. For example, the sequence of tori

(
(Z/𝑛Z)2 : 𝑛 ≥ 1

)
and the sequence of

cylinders (Z × (Z/𝑛Z) : 𝑛 ≥ 1) both converge locally to the square lattice Z2.

On the other hand, quasi-isometry provides a way to measure the global similarity of graphs. Given
metric spaces (𝑉1, 𝑑1) and (𝑉2, 𝑑2), and given constants 𝐶, 𝐷 > 0, we say that 𝑑1 is (𝐶, 𝐷)-quasi-
isometric to 𝑑2 if there exists a function 𝜙 : 𝑉1 → 𝑉2 such that for all 𝑢, 𝑣 ∈ 𝑉1,

1
𝐶
𝑑1(𝑢, 𝑣) − 𝐷 ≤ 𝑑2 (𝜙(𝑢), 𝜙(𝑣)) ≤ 𝐶𝑑1(𝑢, 𝑣) + 𝐷,

and for every vertex 𝑥 ∈ 𝑉2, there exists some 𝑢 ∈ 𝑉1 with 𝑑2(𝑥, 𝜙(𝑢)) ≤ 𝐷. In other words,
𝜙 roughly preserves distances and is roughly surjective. We simply say that that 𝑑1 and 𝑑2 are
quasi-isometric if there exists 𝐶, 𝐷 > 0 such that 𝑑1 is (𝐶, 𝐷)-quasi-isometric to 𝑑2, and it can be
easily verified that this defines an equivalence relation. We naturally extend all of these definitions
to graphs by identifying each graph with its graph metric. For example, the square lattice (graph)
Z2 is quasi-isometric to the plane R2 (with its usual metric), and the cylinder (Z × (Z/100Z)) is
quasi-isometric to the line Z.

When working with infinite transitive graphs, we will not be so interested in the constants of quasi-
isometries, and we simply regard two quasi-isometric infinite transitive graphs as having “the same”
global structure. However, this notion is not useful when working with finite transitive graphs, since
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all finite graphs are quasi-isometric to each other. Instead, the more relevant way to measure the
global similarity of two non-trivial compact metric spaces (𝑉1, 𝑑1) and (𝑉2, 𝑑2) (such as the graph
metrics of two finite graphs) is to first normalise, i.e. consider the metrics 𝑑1 := 1

diam 𝑑1
𝑑1 on 𝑉1 and

𝑑2 := 1
diam 𝑑2

𝑑2 on 𝑑2 (where diam denotes the diameter of a metric space) then take the Gromov-
Hausdorff distance distGH(𝑑1, 𝑑2). Recall that this Gromov-Hausdorff distance1 is defined to be
the infimum 𝜀 > 0 such that there exists a third metric space (𝑉3, 𝑑3) and isometric embeddings
𝜙1 : (𝑉1, 𝑑1) → (𝑉3, 𝑑3) and 𝜙2 : (𝑉2, 𝑑2) → (𝑉3, 𝑑3) such that the Hausdorff distance with respect
to 𝑑3 between the images 𝜙1(𝑉1) and 𝜙2(𝑉3) in 𝑉3 is at most 𝜀. For example, the diameter-rescaled

sequence of tori
((

2𝜋
𝑛
Z/𝑛Z

)2
: 𝑛 ≥ 1

)
(where, given a graph 𝐺 and a constant 𝑐 > 0, we write 𝑐𝐺

for the graph metric on 𝐺 where all distances are scaled by 𝑐) Gromov-Hausdorff converges to the
torus 𝑆1 × 𝑆1 with the 𝐿1 metric.

Growth rates
Let G be the set of all infinite transitive graphs. An important way to begin classifying the elements
of G is according to their growth rate, i.e. the asymptotic behaviour of the function Gr : N → N

sending Gr : 𝑛 ↦→ |𝐵𝑛 |, where |𝐵𝑛 | denotes the number of vertices in 𝐵𝑛.

In an ideal world, we would have a classification of all possible global geometries of infinite
transitive graphs, similar in spirit to the classification of all finite simple groups. For example,
we might wish for a family of easy to describe infinite transitive graphs such that every infinite
transitive graph is quasi-isometric to one in this list. Unfortunately, this is not the case, and no one
expects that such a classification would ever be possible.

However, spectacularly, there is a kind of classification if we restrict to those𝐺 ∈ G with polynomial
growth, i.e. those for which there there exist 𝐶, 𝐷 < ∞ such that Gr(𝑛) ≤ 𝐶𝑛𝐷 for all 𝑛. Indeed,
thanks to deep, classical work of Gromov and Trofimov, every infinite transitive graph of polynomial
growth is quasi-isometric to the Cayley graph of a special kind of group called a nilpotent group.
While we will not define what it means to be a nilpotent group here, let us simply say that it is a
generalisation of being abelian, so for example, the group Z𝑑 is always nilpotent.

Thanks to this so-called structure theory for infinite transitive graphs of polynomial growth, certain
important results about probability on general infinite transitive graphs proceed by a structure vs
expansion dichotomy: either the graph has polynomial growth, in which case we can apply this
detailed structure theory, or the graph has super-polynomial growth, in which case this fast growth

1Up to doubling 𝜀, the same notion can be expressed in terms of quasi-isometries with constants, although this
latter definition is less commonly used.
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can itself be exploited directly.

At the other extreme from polynomial growth, we say that an infinite transitive graph 𝐺 has
exponential growth if there exist 𝑐, 𝛿 > 0 such that Gr(𝑛) ≥ 𝑐𝑒𝛿𝑛 for all 𝑛. For example, this
includes the 𝑑-regular tree for every 𝑑 ≥ 3. The hypothesis of exponential growth can itself be
helpful when studying percolation. For example, the analogue of the “notorious open problem”
about critical percolation on Z3 was proved for all graphs of exponential growth. There also exist
mysterious transitive graphs that have neither polynomial growth nor exponential growth, and are
therefore said to have intermediate growth (e.g. the “Grigorchuk group”).

Expansion
One way that having a fast growth rate (“expansion” in the “structure vs expansion” dichotomy)
can be exploited is as follows: for transitive graphs, a fast growth rate implies good isoperimetric
properties; good isoperimetric properties imply that a random walk on the graph has good escape
properties; and these escape properties can be used to prove geometric facts about a graph that
serve percolation arguments. This is a common theme running through the heart of both our work
on non-triviality and locality (discussed in later sections), for example.

Let us be more precise about what we mean by “good isoperimetric and escape properties”. Let
𝐺 = (𝑉, 𝐸) be an infinite graph with bounded vertex degrees. Given a set of vertices 𝑆 ⊆ 𝑉 , let 𝜕𝑆
be the edge boundary of 𝑆, i.e. the set of all edges having one endpoint in 𝑆 and the other in 𝑉\𝑆.
Given 𝑑 ≥ 1, we say that 𝐺 satisfies a 𝑑-dimensional isoperimetric inequality if there exists 𝑐 > 0
such that for every finite set of vertices 𝑆,

|𝜕𝑆 | ≥ 𝑐 |𝑆 |
𝑑−1
𝑑 .

Correspondingly, we define the isoperimetric dimension of 𝐺 to be

Dim𝐺 := sup {𝑑 ≥ 1 : 𝐺 satisfies a 𝑑-dimensional isoperimetric inequality} .

For example, DimZ𝑑 = 𝑑 for all 𝑑 ≥ 1. Some classical results about random walks on general
graphs are that if Dim𝐺 > 2, then simple random walk is transient (i.e. has a positive probability
to never return to its starting point.), and if Dim𝐺 > 4, then the paths of two independent simple
random walks have a positive probability to never intersect.

An important consequence of the aforementioned structure theory for polynomial growth is that
an infinite transitive graph 𝐺 has polynomial growth if and only if Dim𝐺 < ∞. In particular, if a
graph does not have polynomial growth, then Dim𝐺 = ∞ and hence, for example, simple random
walk on 𝐺 is transient.

5



Another notion of good isoperimetry, which is stronger than having Dim𝐺 = ∞ and which also
plays an important role in percolation, is nonamenability. We say that 𝐺 is nonamenable if there
exists 𝑐 > 0 such that for every finite set of vertices 𝑆,

|𝜕𝑆 | ≥ 𝑐 |𝑆 | .

This is the infinite-graph analogue of being an expander graph. A graph that is not nonamenable
is said to be amenable. A fundamental result in the study of percolation on general graphs is that
if 𝐺 is amenable, then

P𝑝 (𝜔 contains at least two infinite clusters) = 0 for all 𝑝 ∈ [0, 1],

and a major open conjecture is that the converse is true too.

1.3 Non-triviality
The first basic question when embarking on a general study of percolation on arbitrary infinite
transitive graphs is to understand for which graphs percolation undergoes a non-trivial phase
transition, meaning that the critical point 𝑝𝑐 is strictly between 0 and 1. It is easy to show
(exercise!) that 𝑝𝑐 > 0, and indeed this holds for every infinite (not necessarily transitive) graph
whose vertex degrees are bounded above uniformly. So the real question is to understand when
𝑝𝑐 < 1. This question about whether percolation on a given graph undergoes a non-trivial phase
transition is actually equivalent to the analogous questions for many other statistical mechanics
models on the same graph, most notably for the Ising model of magnetism.

General graphs
Before restricting to transitive graphs, let us start by considering a more general setup. Let 𝐺 be
any infinite (not necessarily transitive) graph2.

Does “𝑝𝑐 (𝐺) < 1” have a geometric counterpart?

A celebrated argument from 1930s physics gives a geometric condition P that is sufficient (but a
priori not necessary) for 𝑝𝑐 < 1, defined in terms of cutsets. Given a vertex 𝑣, we say that a set
of edges Π is a cutset from 𝑣 to ∞ if 𝑣 belongs to a finite component of the graph (𝑉, 𝐸\Π). We
say that a cutset Π from 𝑣 to ∞ is minimal if Π does not contain a proper subset Π′ that is also
a minimal cutset from 𝑣 to ∞. Consider the exponential growth rate for the number of minimal
cutsets of size 𝑛:

𝜅(𝐺) := sup
𝑛≥1

sup
𝑣∈𝑉
|{Π : Π is a minimal cutset from 𝑣 to∞ of size 𝑛}|1/𝑛 ,

2As always, we assume that 𝐺 is connected, undirected, etc.
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and consider the following uniform analogue of 𝑝𝑐 (𝐺):

𝑝∗𝑐 (𝐺) := inf{𝑝 ∈ [0, 1] : inf
𝑣∈𝑉

P𝑝 (𝑣 is in an infinite component) > 0}.

Note that in general, 𝑝∗𝑐 (𝐺) ≥ 𝑝𝑐 (𝐺), and if𝐺 happens to be transitive, then 𝑝∗𝑐 (𝐺) = 𝑝𝑐 (𝐺). Now
the so-called Peierls argument establishes the following:

Theorem 1.3.1 (Peierls, 1936). For every infinite graph, if 𝜅 < ∞ then 𝑝∗𝑐 < 1.

With Severo and Tassion, we recently established that the converse holds too:

Theorem 1.3.2 (Easo, Severo, Tassion). For every infinite graph, 𝜅 < ∞ if (and only if) 𝑝∗𝑐 < 1.

Transitive graphs
It is easy to see that the line Z satisfies 𝑝𝑐 = 1, and indeed, so does every infinite transitive graph
that is quasi-isometric to Z. In their original work introducing percolation on general transitive
graphs, Benjamini and Schramm conjectured that conversely, these are in fact the only infinite
transitive graphs with 𝑝𝑐 = 1.

Conjecture 1.3.3 (Benjamini and Schramm 1996). Every infinite transitive graph that is not quasi-
isometric to Z satisfies 𝑝𝑐 < 1.

Babson and Benjamini then made the following (a priori) stronger conjecture, which is actually
completely deterministic.

Conjecture 1.3.4 (Babson and Benjamini3 1999). Every infinite transitive graph that is not quasi-
isometric to Z satisfies 𝜅 < ∞.

Babson and Benjamini proved their own conjecture in the special case of Cayley graphs of finitely
presented groups, and Timar later showed that the property “𝜅 < ∞” is invariant under quasi-
isometries. By the structure theory of polynomial growth, these results imply that for every infinite
transitive graph 𝐺 satisfying Dim𝐺 < ∞, if 𝐺 is not quasi-isometric to Z, then 𝜅 < ∞ and (hence)
𝑝𝑐 < 1. In particular, to prove either of the above conjectures, it suffices to work with graphs
satisfying Dim𝐺 = ∞.

In a breakthrough work, Duminil-Copin, Goswami, Raoufi, Severo, and Yadin resolved the 𝑝𝑐 < 1
conjecture of Benjamini and Schramm. More precisely, they proved the following theorem, and

3To be historically accurate, they made this conjecture in the case of Cayley graphs, and Benjamini later asked
about arbitrary transitive graphs more generally.
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by the previous paragraph, this was sufficient to resolve the conjecture. Their proof involved an
intricate multi-scale interpolation scheme comparing probabilities of certain events for percolation
to those of a percolation-like model arising from the Gaussian free field.

Theorem 1.3.5 (Duminil-Copin, Goswami, Raoufi, Severo, and Yadin). Every infinite graph with
Dim𝐺 > 4 satisfies 𝑝∗𝑐 < 1.

Our proof of Theorem 1.3.2 can be tweaked to also prove the following theorem. This yields a
much simpler and shorter proof of Theorem 1.3.5 and resolves the 𝜅 < ∞ conjecture of Babson
and Benjamini. It remains open to extend this result to Dim𝐺 > 1.

Theorem 1.3.6 (Easo, Severo, Tassion). Every infinite graph with Dim𝐺 > 2 satisfies 𝜅 < ∞.

1.4 Locality
As explained in the previous section, 𝑝𝑐 is strictly between 0 and 1 for every infinite transitive
graph that is not quasi-isometric to Z. A natural follow-up question is: what is the value of 𝑝𝑐
exactly? Unfortunately, there is no reason in general to expect a simple formula for 𝑝𝑐, even in
natural examples like the three-dimensional lattice Z3. (There are a few spectacular exceptions to
this rule.)

A weaker question is: which aspect of the geometry of 𝐺 is responsible for determining the value
of 𝑝𝑐? Schramm’s locality conjecture asserted that when 𝑝𝑐 is strictly between 0 and 1, the exact
value of 𝑝𝑐 should be entirely determined by the local geometry of 𝐺. More precisely, for any
𝜀 > 0, there should exist 𝑛 ≥ 1 such that for every pair of infinite transitive graphs 𝐺 and 𝐻,
neither of which is quasi-isometric to Z, if 𝐵𝐺𝑛 is isomorphic to 𝐵𝐻𝑛 , then |𝑝𝑐 (𝐺) − 𝑝𝑐 (𝐻) | ≤ 𝜀.
Equivalently, lettingH denote the set of all infinite transitive graphs that are not quasi-isometric to
Z, endowed with the local topology, the function 𝑝𝑐 : H → (0, 1) should be continuous. Thanks
to fundamental work of Grimmett and Marstrand (which preceded Schramm’s conjecture about
general transitive graphs), this was know in the special case of Euclidean lattices. In particular, it
follows from their work that for every 𝑑 ≥ 2, the sequence of graphs

(
Z𝑑 × (Z/𝑛Z) : 𝑛 ≥ 1

)
, which

converges locally to Z𝑑+1, satisfies

𝑝𝑐

(
Z𝑑 × (Z/𝑛Z)

)
→ 𝑝𝑐

(
Z𝑑+1

)
as 𝑛→∞.

Various authors verified special cases of Schramm’s locality conjecture (and some variants to others
models). Most notably, by exploiting the structure theory discussed earlier, Contreras, Martineau,
and Tassion proved Schramm’s locality conjecture for all infinite transitive graphs of polynomial
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growth. Building on this work and new ideas, Hutchcroft and I were able to resolve Schramm’s
locality conjecture in its entirety.

Theorem 1.4.1 (Easo and Hutchcroft). The function 𝑝𝑐 : H → (0, 1) is continuous.

This theorem, which in this formulation appears quite abstract, can in fact be reduced to a more
concrete statement about propagating connnection bounds. Very roughly, it suffices to prove that
the statement P(𝜀, 𝑛, 𝑝) that “every pair of vertices at distance ≤ 𝑛 apart are connected under P𝑝
with probability at least 𝜀” satisfies a general implication of the form

P(𝜀, 𝑛, 𝑝) =⇒ P(𝜀′, 𝑛′, 𝑝 + 𝛿),

where 𝛿 > 0, 𝜀′ < 𝜀, 𝑛′ > 𝑛, and which is quantitatively strong, i.e. 𝛿 is small, 𝑛′ is large, and 𝜀′ is
not too small. (The actual implication we end up proving is quite a bit more intricate.)

To prove such an implication, we split into various cases depending on the way that the graph looks
around the current scale 𝑛, exploiting a kind of “structure vs expansion” dichotomy as mentioned
earlier. In one case, we apply a refinement of the structure theory for transitive graphs of polynomial
growth in order to implement the methods of Contreras, Martineau, and Tassion. (In fact, we had
to engage with this structure theory more substantially than did previous works on percolation, and
in particular, Hutchcroft and I ended up writing a companion paper about groups of polynomial
growth.) In another case, we exploit the hypothesis that |𝐵𝑛 | is large in order to implement a
new percolation argument that works more efficiently when we have “more vertices packed in a
smaller space”. In a third case, we use the trajectories of random walks to probabilistically prove
deterministic facts about the geometry of 𝐺 around scale 𝑛. These deterministic facts then play
the role that structure theory did in the first case, again allowing us to implement the methods of
Contreras, Martineau, and Tassion.

The two key difficulties were that (1) different transitive graphs can have very different geometric
properties, e.g. a regular tree and a Euclidean lattice, and therefore require different arguments, and
(2) a single transitive graph can have very different geometric properties from one scale to the next,
e.g. a graph with (eventually) polynomial growth may look like a tree up to a large finite scale, so
we need to thriftily exploit geometric hypotheses that can only be assumed to hold at a single scale.

1.5 Finite graphs
The story of percolation theory on infinite transitive graphs is only one half of the story of this
model. In 1960, roughly when Broadbent and Hammersley introduced so-called percolation

9



theory on Euclidean lattices, Erdős and Rényi introduced percolation on the complete graph 𝐾𝑛
with 𝑛 vertices. This is the well-known Erdős-Rényi model (or simply random graph) model in
combinatorics. In this setting, one studies the threshold for the emergence of a giant (as opposed
to infinite) cluster under percolation. The fundamental result is that percolation on 𝐾𝑛 undergoes a
phase transition around 𝑝 = 1

𝑛
in the sense that for every fixed 𝜀 > 0, there exists 𝛿 > 0 such that

lim
𝑛→∞

P𝐾𝑛1+𝜀
𝑛

(the largest cluster contains ≥ 𝛿𝑛 vertices) = 1,

whereas for every 𝛿 > 0,

lim
𝑛→∞

P𝐾𝑛1−𝜀
𝑛

(the largest cluster contains ≥ 𝛿𝑛 vertices) = 0.

We say that the sequence (1/𝑛)𝑛≥1 is the percolation threshold for the sequence of complete
graphs. (While we call this the threshold, note that a percolation threshold is only ever unique up
to multiplication by 1 + 𝑜(1).)

There has since been a tremendous amount of work on this model and on percolation on the
sequence of hypercubes ({0, 1}𝑛)𝑛≥1. Note that hypercubes and complete graphs are both examples
of transitive graphs4. We have been working to develop a theory of percolation on general finite
transitive graphs that forms a bridge between these canonical finite graph models and the rich
theory of percolation on infinite transitive graphs. As in the Erdős-Rényi model, in this theory, we
study the phase transition for the emergence of a giant cluster.

Roughly speaking, we can think of the theory of percolation on infinite transitive graphs as the
theory of percolation on microscopic (i.e. 𝑂 (1)) scales in bounded-degree finite transitive graphs.
In this sense, the finite graph theory generalises the infinite graph theory. (A limitation of this
maxim is that not every infinite transitive graph can be locally approximated by finite transitive
graphs.) In particular, certain basic questions in the finite graph theory have no natural analogues
in the infinite graph theory. For example, the uniqueness/non-uniqueness of giant clusters is not
directly related to the uniqueness/non-uniqueness of infinite clusters, which is instead related to the
microscopic metric distortion of giant clusters.

Hutchcroft and I established the basic features of the supercritical phase of percolation on finite
transitive graphs. Together, we showed that the giant cluster is almost surely unique (except in
the trivial cases), resolving a conjecture of Benjamini from 2001. Our argument has already
been applied by others to spherical Gaussian ensembles, and with Hutchcroft, we are extending

4There has also been a great deal of work on families of finite graphs that are not necessarily transitive, e.g.
arbitrary dense graphs.
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our arguments to establish results about the Potts model that are new even for tori. In a sequel
to this work on uniqueness, with Hutchcroft we established that the density of this unique giant
concentrates around some limit and fully characterised those graphs for which this limiting density
is mean-field (meaning like on a tree). Our argument in this sequel relies on a new application
of sharp-threshold theory, applied (unusually) to study events that obviously do not have sharp
thresholds.

This analysis of the supercritical phase did not address the basic question of whether, (in the
language of Bollobás, Borgs, Chayes, Riordan for example), percolation on finite transitive graphs
has a phase transition, meaning that a giant cluster emerges suddenly at some threshold. By
combining the supercritical analysis with Vanneuville’s new proof of an old result about infinite
graphs, we proved that such a phase transition does always occur (except in the trivial cases). Note
that this result (and those about the supercritical phase in the previous paragraph) hold for all finite
transitive graphs, with possibly diverging vertex degrees. In particular, this result recovers the
classical fact that percolation on large complete graphs or hypercubes undergoes a phase transition
but via very soft and general arguments.

The theory of percolation on finite transitive graphs is intimately linked with the theory on infinite
transitive graphs if we restrict our study to families of finite transitive graphs with uniformly
bounded vertex degrees. Indeed, with respect to the local topology, every infinite set G of finite
transitive graphs with bounded degrees is relatively compact, and every graph in the boundary
of G is infinite. Our very recent work combined several ideas from the works discussed above
about finite graphs and about Schramm’s locality conjecture to establish that in some sense the
sudden emergence of a giant cluster for percolation on bounded-degree finite transitive graphs is
“the same” phase transition as the usual emergence of an infinite cluster for percolation on infinite
transitive graphs. More precisely, we considered the following pair of questions, which are actually
equivalent:

1. Does percolation on a large bounded-degree finite transitive graph 𝐺 have a sharp phase
transition? This means that in the subcritical phase of percolation, the largest cluster is with
high probability not just sublinear but logarithmic in the total number of vertices in 𝐺.

2. If a finite transitive graph 𝐺 and an infinite transitive graph 𝐻 are close in the local sense,
does the critical point for the emergence of a giant cluster in 𝐺 approximately coincide with
the critical point for the emergence of an infinite cluster in 𝐻?

11



Unfortunately, the answer to both of these questions in general is no. For example, take the
sequence

(
Z𝑛 × Z 𝑓 (𝑛)

)∞
𝑛=1 for any 𝑓 : N→ N growing fast. This sequence always converges locally

to Z2, where the critical point for the emergence of an infinite cluster is 𝑝𝑐 = 1
2 . On the other

hand, provided that 𝑓 grows sufficiently fast, the threshold for the emergence of a giant cluster in
Z𝑛 × Z 𝑓 (𝑛) will be as in the sequence of cycles, around 𝑝𝑐 = 1. Moreover, for percolation of any
fixed parameter 𝑝 ∈ ( 12 , 1) on Z𝑛 × Z 𝑓 (𝑛) , the order of the largest cluster will then typically be
much larger than logarithmic but much smaller than linear in the total number of vertices. The
problem is that these graphs are long and thin, coarsely resembling long cycles. In particular,
after suitably rescaling, their graph metrics (rapidly) converge in the Gromov-Hausdorff metric to
the unit circle. We proved that this is in fact the only possible obstacle. This theorem provides a
direct way to translate results and conjectures about percolation on general (non-one-dimensional)
infinite transitive graphs into statements about percolation on general (non-one-dimensional) finite
transitive graphs.
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PAPERS INCLUDED

The first paper explores the question: when does percolation on an infinite graph 𝐺 undergo a
non-trivial phase transition?

1. Counting minimal cutsets and 𝑝𝑐 < 1

Joint with Severo and Tassion

The next two papers resolve Schramm’s locality conjecture that the value of the critical point for
percolation on a given infinite transitive graph 𝐺 is typically entirely determined by the local (i.e.
microscopic) geometry of𝐺. The first paper gives the proof itself, and the second paper establishes
a required ingredient about groups of polynomial growth.

2. The critical percolation probability is local

Joint with Hutchcroft

3. Uniform finite presentation for groups of polynomial growth

Joint with Hutchcroft

(Published in Discrete Analysis: https://doi.org/10.19086/da.127778)

The next two papers establish the basic features of the giant clusters that form in the supercritical
phase of percolation on finite transitive graphs.

4. Supercritical percolation on finite transitive graphs I: Uniqueness of the giant compo-
nent

Joint with Hutchcroft

(Published in Duke Mathematical Journal: https://doi.org/10.1215/00127094-2023-0066)

5. Supercritical percolation on finite transitive graphs II: Concentration, locality, and
equicontinuity of the giant’s density

Joint with Hutchcroft

The next paper establishes that percolation on a finite transitive graph typically undergoes a phase
transition in the sense that a giant cluster emerges suddenly around a single critical point.



6. Existence of a percolation threshold on finite transitive graphs

(Published in International Mathematics Research Notices: https://doi.org/10.1093/imrn/rnad222)

The next paper establishes that this phase transition for percolation on a bounded-degree finite
transitive graph 𝐺 is typically sharp in the sense that the subcritical clusters are logarithmically
small. Equivalently, if 𝐺 approximates an infinite transitive graph 𝐻, then the critical point for the
emergence of a giant cluster in 𝐺 approximately coincides with the critical point for the emergence
of an infinite cluster in 𝐻.

7. Sharpness and locality for percolation on finite transitive graphs
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15C h a p t e r 2

COUNTING MINIMAL CUTSETS AND 𝑝𝑐 < 1

Joint work with Franco Severo and Vincent Tassion

Abstract
We prove two results concerning percolation on general graphs.

• We establish the converse of the classical Peierls argument: if the critical parameter for (uniform)
percolation satisfies 𝑝𝑐 < 1, then the number of minimal cutsets of size 𝑛 separating a given
vertex from infinity is bounded above exponentially in 𝑛. This resolves a conjecture of Babson
and Benjamini from 1999.

• We prove that 𝑝𝑐 < 1 for every uniformly transient graph. This solves a problem raised by
Duminil-Copin, Goswami, Raoufi, Severo and Yadin, and provides a new proof that 𝑝𝑐 < 1 for
every transitive graph of superlinear growth.

2.1 Main results
Let 𝐺 = (𝑉, 𝐸) be an infinite, connected, locally finite graph. A set of edges 𝐹 ⊂ 𝐸 is called a
cutset from a vertex 𝑣 to∞ if 𝑣 belongs to a finite connected component of (𝑉, 𝐸 \ 𝐹). A cutset is
called minimal if no proper subset of it is a cutset. Let Q𝑛 (𝑣) be the set of minimal cutsets from 𝑣

to∞ of cardinality 𝑛 and consider the quantity

𝑞𝑛 := sup
𝑣∈𝑉
|Q𝑛 (𝑣) |. (2.1.1)

Here |∅| := 0. We emphasize that 𝑞𝑛 = ∞ is possible, for example for 𝐺 = Z and 𝑛 = 2. In this
paper, we are interested in cases where the number of cutsets 𝑞𝑛 grows at most exponentially with
𝑛, and we define

𝜅(𝐺) := sup
𝑛≥1

𝑞
1/𝑛
𝑛 . (2.1.2)

Let P𝑝 denote (Bernoulli bond) percolation of parameter 𝑝 ∈ [0, 1] on 𝐺, where each edge is
open with probability 𝑝 independently of the other edges. Consider the percolation probabilities
𝜃𝑣 (𝑝) := P𝑝 (𝑣 ↔∞), where 𝑣 ↔∞ denotes the event that 𝑣 belongs to an infinite open connected
component. We define the critical parameter for uniform percolation as

𝑝∗𝑐 (𝐺) := inf{𝑝 ∈ [0, 1] : 𝜃∗(𝑝) > 0}, (2.1.3)



where 𝜃∗(𝑝) := inf𝑣∈𝑉 𝜃𝑣 (𝑝).

By the classical Peierls argument [Pei36a] if 𝜅(𝐺) < ∞, then percolation on 𝐺 has a uniformly
percolating phase in the sense that 𝑝∗𝑐 (𝐺) < 1. Our first theorem establishes the converse.

For every infinite, connected, locally finite graph 𝐺 we have

𝑝∗𝑐 (𝐺) < 1 ⇐⇒ 𝜅(𝐺) < ∞. (2.1.4)

Currently, the geometric condition 𝜅(𝐺) < ∞ is not well understood. Our second result gives a
sufficient condition based on the simple random walk. Given a vertex 𝑣, let P𝑣 be the law of a
simple random walk (𝑋𝑡)∞𝑡=0 on 𝐺 starting at 𝑣. We say that 𝐺 is uniformly transient if

inf
𝑣∈𝑉
[𝑑𝑣 · P𝑣 (∀𝑡 ≥ 1 : 𝑋𝑡 ≠ 𝑣)] > 0, (2.1.5)

where 𝑑𝑣 denotes the degree of 𝑣.

Let 𝐺 be an infinite, connected, locally finite graph. If 𝐺 is uniformly transient, then 𝜅(𝐺) < ∞.

2.2 Consequences and comments
In this section, all graphs are assumed to be infinite, connected, and locally finite. Given a set of
vertices 𝑆 in a graph 𝐺 = (𝑉, 𝐸), we define the boundary 𝜕𝑆 to be the set of all edges {𝑢, 𝑣} ∈ 𝐸
such that 𝑢 ∈ 𝑆 but 𝑣 ∉ 𝑆, and we define the weight |𝑆 |𝐺 :=

∑
𝑢∈𝑆 𝑑𝑢. The isoperimetric dimension

of 𝐺 is given by

Dim(𝐺) := sup
𝑑 ≥ 1 : inf

𝑆⊆𝑉
0< |𝑆 |<∞

|𝜕𝑆 |

|𝑆 |
𝑑−1
𝑑

𝐺

> 0
 .

1. We remark that the uniform critical parameter 𝑝∗𝑐 (𝐺) slightly differs from the most classical
(non-uniform) one given by 𝑝𝑐 (𝐺) := inf{𝑝 ∈ [0, 1] : 𝜃 (𝑝) > 0}, where 𝜃 (𝑝) := sup𝑣∈𝑉 𝜃𝑣 (𝑝).
However, these notions often coincide, such as for (quasi-)transitive graphs. See the introduction
of [Dum+20a] for a survey of the rich history of the “𝑝𝑐 < 1” question and its place in statistical
mechanics. Let us just recall that all of the results about percolation here can be translated into
analogous statements about many other models, most notably the Ising model.

2. Duminil-Copin, Goswami, Raoufi, Severo, and Yadin proved that every quasi-transitive graph
of superlinear growth satisfies 𝑝𝑐 < 1 [Dum+20a]. This had previously been a long-standing
conjecture of Benjamini and Schramm [BS96a]. In fact, the authors of [Dum+20a] established
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that 𝑝∗𝑐 < 1 for every (not necessarily transitive) bounded degree graph𝐺 satisfying Dim(𝐺) > 4,
and this was known to imply the conjecture about transitive graphs by the classical works of
Gromov [Gro81a] and Trofimov [Tro84a].

3. Theorem 2.1 establishes that 𝑝∗𝑐 < 1 for every graph 𝐺 satisfying Dim(𝐺) > 2, since such
graphs are uniformly transient (see e.g. [LP16a, Theorem 6.41]). We therefore obtain stronger
results than [Dum+20a], through a completely new proof. Theorem 2.1 fully realises the idea at
the heart of [Dum+20a] to exploit the transience of a simple random walk to prove 𝑝𝑐 < 1. In
particular, we resolve [Dum+20a, Problem 1.4].

4. Our proofs of Theorems 1 and 2 can also be run on finite graphs to establish the analogous
results about giant clusters. (See [HT21e] for background.) In this setting, to define 𝑞𝑛, one
should instead count the number of minimal cutsets of cardinality 𝑛 from a vertex 𝑣 to another
vertex 𝑢 (and take the supremum over all choices for distinct 𝑢 and 𝑣). The corresponding notion
of uniform transience for a given family of finite graphs is that there exists a constant 𝐶 < ∞
such that every graph 𝐺 = (𝑉, 𝐸) in the family satisfies

max
𝑢,𝑣∈𝑉
R𝐺 (𝑢, 𝑣) ≤ 𝐶,

where R𝐺 (𝑢, 𝑣) denotes the effective resistance from 𝑢 to 𝑣 in the graph 𝐺.

5. Babson and Benjamini conjectured that 𝜅 < ∞ for every transitive1 graph of superlinear growth
[BB99a]. Notice that this purely geometric conjecture is a priori stronger than the above 𝑝𝑐 < 1
conjecture of Benjamini and Schramm. Babson and Benjamini verified their conjecture in the
special case of Cayley graphs of finitely presented groups by establishing that minimal cutsets
in such graphs are coarsely connected. By [Tim07; Gro81a; Tro84a] (see also [CMT24, Lemma
2.1]), this extends to all transitive graphs satisfying Dim(𝐺) < ∞. Given these results, it suffices
to show that 𝜅 < ∞ for every transitive graph satisfying Dim(𝐺) = ∞. Theorem 2.1 therefore
resolves the 𝜅 < ∞ conjecture of Babson and Benjamini. (Alternatively, taking the results of
[Dum+20a] for granted, this conjecture follows from Theorem 2.1.)

6. We establish the existence of a universal constant 𝜀 > 0 such that every transitive graph 𝐺
satisfies 𝑝𝑐 = 1 or 𝑝𝑐 ≤ 1 − 𝜀. When 𝐺 is recurrent, this follows from the proof of [HT21e,
1In fact, Babson and Benjamini originally made this conjecture in the case of Cayley graphs, and Benjamini later

extended this conjecture to allow arbitrary transitive graphs.
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Theorem 1.7], and when𝐺 is transient, this follows from our proof of Theorem 2.1 because there
exists a universal constant 𝑐 > 0 such that a simple random walk in any transient transitive graph
has probability at least 𝑐 never to return to where it started [TT20a, Corollary 1.3]. Previous
works had established this result if 𝜀 is allowed to depend on the degree of vertices in𝐺 [HT21e,
Theorem 1.7], or if we instead consider site percolation on a Cayley graph [PS23a; Lyo+23a].
By the proof of Theorem 2.1, we also obtain a universal constant 𝐾 < ∞ such that 𝜅 < 𝐾 for
every transitive graph of superlinear growth.

7. Much work has been motivated by a desire to find a sharp geometric criterion for a graph 𝐺 to
satisfy 𝑝𝑐 < 1. Indeed, a well-known open conjecture of Benjamini and Schramm is that every
(not necessarily transitive) graph 𝐺 with Dim(𝐺) > 1 satisfies 𝑝𝑐 < 1 [BS96a]. We were very
surprised to find that the geometric criterion 𝜅 < ∞ (which is arguably simpler and more natural
than the isoperimetric criterion) is not just sharp but exact. Nevertheless, in light of Theorem
2.1 and this conjecture of Benjamini and Schramm, we encourage the reader to investigate the
following: Every graph 𝐺 with Dim(𝐺) > 1 satisfies 𝜅 < ∞.

The Peierls argument can be used to deduce results that are (a priori) much stronger than 𝑝𝑐 < 1.
To explore these, it helps to consider the isoperimetric profile 𝜓 of a graph 𝐺 = (𝑉, 𝐸), given by

𝜓(𝑛) := inf
𝑆⊆𝑉

𝑛≤|𝑆 |𝐺<∞

|𝜕𝑆 | .

8. Every graph 𝐺 = (𝑉, 𝐸) satisfying 𝜅 < ∞ admits a strongly percolating phase in the sense that
for all 𝑝 ∈ (1 − 1/𝜅, 1], there is a constant 𝑐 > 0 such that

P𝑝 (𝑆 ↮ ∞) ≤ 𝑒−𝑐𝜓( |𝑆 |) for every finite set 𝑆 ⊆ 𝑉 ;

P𝑝 (𝑛 ≤ |𝐶𝑣 | < ∞) ≤ 𝑒−𝑐𝜓(𝑛) for every 𝑛 ≥ 1 and 𝑣 ∈ 𝑉.
(2.2.1)

Thus our work resolves [Dum+20a, Problem 1.6] and implies that percolation on every transitive
graph of superlinear growth has a strongly percolating phase. It remains an important open
problem to establish that on these graphs, such bounds hold for all 𝑝 ∈ (𝑝𝑐, 1]. Indeed, this is
the “upper bound” half of [HH21b, Conjecture 5.1].

9. Conversely, our proof of Theorem 2.1 (more precisely, Proposition 2.5.1) can be used to show
that for every transitive graph 𝐺 = (𝑉, 𝐸) and for every 𝑝 > 𝑝𝑐, there is a constant 𝑐 > 0 such
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that
P𝑝 (𝑛 ≤ |𝐶𝑣 | < ∞) ≥ 𝑒−𝑐𝜓(𝑛) for every 𝑛 ≥ 1 and 𝑣 ∈ 𝑉.

This establishes the “lower bound” half of [HH21b, Conjecture 5.1].

10. A major motivation for studying anchored isoperimetric inequalities for graphs and manifolds
is the belief that — unlike (uniform) isoperimetric inequalities — anchored inequalities should
typically be robust under small perturbations of the space [BLS99, Section 6]. We obtain
the following concrete statement to this effect by combining Theorem 2.1 with an argument
of Pete [Pet08, Theorem 4.1]: for every graph 𝐺 satisfying 𝑝∗𝑐 (𝐺) < 1, there exists 𝜀 > 0
such that if 𝐺 satisfies a 𝑑-dimensional anchored isoperimetric inequality for any 𝑑 ≥ 1 (or 𝑓 -
anchored isoperimetric inequality for any function 𝑓 ) then so does every infinite cluster formed
by percolation of parameter 1 − 𝜀.

11. By combining the previous item with Theorem 2 and results of Thomassen [Tho92] and Pemantle
and Peres [PP96], we deduce that for every graph 𝐺 = (𝑉, 𝐸) with Dim(𝐺) > 2, and for every
probability measure 𝜇 on (0,∞), the random weighted network (𝑉,𝐶) with 𝐶 = (𝐶 (𝑒) : 𝑒 ∈
𝐸) ∼ 𝜇⊗𝐸 is almost surely transient. (This was previously known if Dim(𝐺) > 4 [Hut23a].)

12. A standard analysis of Karger’s algorithm from computer science establishes that every finite
graph 𝐺 = (𝑉, 𝐸) with exactly 𝑛 vertices contains at most

(𝑛
2
)

minimum cuts, i.e. sets of edges
𝐹 such that (𝑉, 𝐸\𝐹) is disconnected but there is no set of edges 𝐹′ with |𝐹′| < |𝐹 | such that
(𝑉, 𝐸\𝐹′) is also disconnected. In the same spirit, in the present paper, we design randomized
algorithms to instead count minimal cutsets.

Acknowledgements: We are very grateful to Benny Sudakov for telling us about Karger’s
algorithm from computer science. This seed is what prompted us to investigate probabilistic
approaches to bounding the number of minimal cutsets, ultimately leading to the present work. We
thank Itai Benjamini for bringing the 𝜅(𝐺) < ∞ question to our attention in the first place. PE is
grateful for the hospitality provided by ETH Zurich during this project. This project was supported
by the European Research Council (ERC) under the European Union’s Horizon 2020 research and
innovation program (grant agreement No 851565). FS was supported by the ERC grant Vortex (No
101043450).
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2.3 Background and notation
In this section, we fix 𝐺 = (𝑉, 𝐸) a locally finite, connected graph.

Paths and connectivity
Let 𝑆 ⊂ 𝑉 , 𝑢, 𝑣 ∈ 𝑆. A path from 𝑢 to 𝑣 in 𝑆 is a finite sequence 𝛾 = (𝛾0, 𝛾1, . . . , 𝛾ℓ) of distinct
vertices of 𝑆 such that 𝛾0 = 𝑢, 𝛾ℓ = 𝑣 and {𝛾𝑖−1, 𝛾𝑖} ∈ 𝐸 for every 𝑖 ∈ {1, . . . , ℓ}. When such a
path exists, we say that 𝑢 is connected to 𝑣 in 𝑆. By extension, a set 𝐴 is said to be connected to a
set 𝐵 in 𝑆 if there exists a vertex of 𝐴 that is connected to a vertex of 𝐵 in 𝑆. A path from 𝑢 to∞ in
𝑆 is an infinite sequence of distinct vertices 𝛾0, 𝛾1, . . . in 𝑆 such that 𝛾0 = 𝑢 and {𝛾𝑖−1, 𝛾𝑖} ∈ 𝐸 for
every 𝑖 ∈ {1, 2, . . .}. When such a path exists, we say that 𝑢 is connected to∞ in 𝑆.

Exposed boundary
Let 𝑆 ⊂ 𝑉 be a finite set. The exposed boundary of 𝑆 is the set 𝜕∞𝑆 of all the edges {𝑢, 𝑣} such that
𝑢 ∈ 𝑆 and 𝑣 is connected to∞ in𝑉 \ 𝑆. Notice that the exposed boundary is a subset of the standard
boundary defined at the beginning of Section 2.2: for every finite set 𝑆 ⊂ 𝑉 , we have 𝜕∞𝑆 ⊂ 𝜕𝑆.

Percolation configurations
An element 𝜔 ∈ {0, 1}𝐸 is called a percolation configuration. Given such a configuration, an edge
𝑒 ∈ 𝐸 is said to be open if 𝜔(𝑒) = 1 and closed if 𝜔(𝑒) = 0. By extension, a path is said to be open
if all its edges are open. The cluster of a vertex 𝑢 ∈ 𝑉 is the connected component of 𝑢 in the graph
(𝑉, {𝑒 ∈ 𝐸 : 𝜔(𝑒) = 1}).

Percolation events
A measurable subset 𝐴 ⊂ {0, 1}𝐸 is called a percolation event. Given 𝑆 ⊂ 𝑉 and 𝑢, 𝑣 ∈ 𝑆, we
denote by 𝑢

𝑆←→ 𝑣 the event that there exists an open path from 𝑢 to 𝑣 in 𝑆, and simply write 𝑢 ↔ 𝑣

when 𝑆 = 𝑉 . Finally, 𝑢 ↔∞ denotes the event that there exists an open path from 𝑢 to∞ in 𝑉 .

Percolation measures
A percolation measure on 𝐺 is a probability measure on the product space {0, 1}𝐸 . For 𝑝 ∈ [0, 1],
we denote by P𝑝 the standard Bernoulli percolation measure, under which each edge is open with
probability 𝑝 independently of the other edges.

Positive association
A percolation event E is called increasing if for all percolation configurations 𝜔, 𝜉 satisfying 𝜔 ≤ 𝜉
for the standard product (partial) ordering, we have 𝜔 ∈ E =⇒ 𝜉 ∈ E. Typical examples of
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increasing events are the connection events (such as 𝑢
𝑆←→ 𝑣) introduced above. A percolation

measure P is said to be positively associated if

P[E ∩ F ] ≥ P[E]P[F ] (2.3.1)

for all increasing events E, F . This property is often referred to as the FKG inequality. We will
use that Bernoulli percolation P𝑝 is positively associated (for every fixed 𝑝 ∈ [0, 1]) as established
by Harris [Har60].

2.4 Exposed boundaries and cutsets
In this section, we fix 𝐺 = (𝑉, 𝐸) an infinite, connected, locally finite graph. In our paper, we will
use that minimal cutsets can be obtained by considering the exposed boundary of finite connected
sets. In this section, we recall some well-known facts relating the two notions. The first elementary
result is that the exposed boundary of a finite connected set is a minimal cutset.

Lemma 2.4.1. Let 𝑆 ⊂ 𝑉 be a finite connected set. For every 𝑢 ∈ 𝑆, 𝜕∞𝑆 is a minimal cutset from
𝑢 to∞.

Proof. Any path from 𝑢 to ∞ in 𝑉 must traverse an edge in 𝜕∞𝑆 (consider the last edge traversed
by this path intersecting 𝑆). Therefore, 𝜕∞𝑆 is a cutset from 𝑢 to ∞. To prove that it is minimal,
consider an edge 𝑒 ∈ 𝜕∞𝑆. Since 𝑆 is connected, there exists a path from 𝑢 to an endpoint of 𝑒
in 𝑆 and by definition of the exposed boundary, there must exist a path from the other endpoint of
𝑒 to ∞ in 𝑉 \ 𝑆. The concatenation of these two paths with 𝑒 connects 𝑢 to ∞ without using any
edges of 𝜕∞𝑆 other than 𝑒. Hence 𝜕∞𝑆 \ {𝑒} is not a cutset from 𝑢 to∞. □

The second elementary result identifies the exposed boundary under some simple conditions.

Lemma 2.4.2. Let 𝑢 ∈ 𝑉 , let Π be a minimal cutset from 𝑢 to∞. Let 𝐴 be the connected component
of 𝑢 in (𝑉, 𝐸 \ Π) and 𝐵 = {𝑒 ∩ 𝐴, 𝑒 ∈ Π} be the set of inner vertices of Π. For every set 𝑆 of
vertices, we have

(𝐵 ⊂ 𝑆 ⊂ 𝐴) =⇒ (𝜕∞𝑆 = Π). (2.4.1)

Proof. Since 𝐴 is a maximal connected set in (𝑉, 𝐸 \Π), all the edges at the boundary of 𝐴 belong
to Π, and therefore 𝜕∞𝐴 ⊂ 𝜕𝐴 ⊂ Π. By Lemma 2.4.1, 𝜕∞𝐴 is a cutset from 𝑢 to∞, hence, by the
minimality of Π, the two inclusions above must be equalities:

𝜕∞𝐴 = 𝜕𝐴 = Π. (2.4.2)
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Now, let 𝑆 be a set satisfying 𝐵 ⊂ 𝑆 ⊂ 𝐴. Let 𝑒 ∈ Π. Since 𝑒 ∈ 𝜕∞𝐴, one endpoint of 𝑒must belong
to 𝐵 and the other endpoint is connected to∞ in 𝑉 \ 𝐴. Therefore, by hypothesis, one endpoint of
𝑒 belongs to 𝑆 and the other endpoint is connected to∞ in 𝑉 \ 𝑆. This proves the inclusion

Π ⊂ 𝜕∞𝑆. (2.4.3)

Let 𝑒 ∈ 𝜕∞𝑆. Let 𝑢 be the endpoint of 𝑒 in 𝑆, and let 𝑣 be the endpoint of 𝑒 connected to ∞ in
𝑉\𝑆. Then, by hypothesis, 𝑢 ∈ 𝐴 and 𝑣 is connected to∞ in 𝑉\𝐵. Since Π = 𝜕𝐴, every edge in Π

intersects 𝐴 and hence intersects 𝐵. Therefore, there must exist an infinite path starting at 𝑣 in the
subgraph (𝑉, 𝐸\Π). In particular, 𝑣 ∉ 𝐴, and hence 𝑒 ∈ 𝜕𝐴 = Π. This proves that the inclusion
above must be an equality.

□

2.5 Full connectivity via positive association
In this section, we consider the following problem: Let 𝐵 be a finite set in a graph, and P be a
percolation measure. What is the probability that all the vertices of 𝐵 are all connected to each
other? Or, in other words, what is the probability that all the vertices of 𝐵 lie in the same cluster?
We prove that this probability is at least exponential in the size of 𝐵 when the measure is positively
associated, and the probability for a point to be connected to 𝐵 is uniformly lower bounded. This
result, formally stated below, will allow us to construct random sets with a prescribed boundary.

Proposition 2.5.1. Let 𝐺 = (𝑉, 𝐸) be a finite, connected graph. Let P be a positively associated
percolation measure on 𝐺. Let 𝐵 ⊂ 𝑉 , let 𝜃, 𝑝 ∈ (0, 1] and suppose that P(𝑢 ↔ 𝐵) ≥ 𝜃 for every
𝑢 ∈ 𝑉 , and P(𝑒 is open) ≥ 𝑝 for every 𝑒 ∈ 𝐸 . Then for every 𝑜 ∈ 𝑉 ,

P

(⋂
𝑏∈𝐵
{𝑜 ↔ 𝑏}

)
≥ 𝑐 |𝐵 |,

where 𝑐 :=
(
𝑝𝜃

2

)3/𝜃
.

Proof. Say that a finite sequence of vertices 𝑥1, . . . , 𝑥𝑘 is chained if 𝑥1 = 𝑜 and for all 𝑖 ∈ {2, . . . , 𝑘},

𝑝𝜃

2
≤ P (𝑥𝑖 ↔ {𝑥1, . . . , 𝑥𝑖−1}) ≤

𝜃

2
. (P1)

Since there exists at least one chained sequence (take 𝑘 = 1) and 𝑉 is finite, there must exist a
chained sequence 𝑥1, . . . , 𝑥𝑘 that is maximal in the sense that for every vertex 𝑥𝑘+1, the sequence
𝑥1, . . . , 𝑥𝑘+1 is not chained. Fix a maximal chained sequence 𝑥1, . . . , 𝑥𝑘 , and let 𝑋 := {𝑥1, . . . , 𝑥𝑘 }.
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We claim that, in addition to (P1), this sequence satisfies the following two properties, where
𝑛 := |𝐵 |:

∀𝑢 ∈ 𝑉 P(𝑢 ↔ 𝑋) ≥ 𝜃
2
, (P2)

𝑘 ≤ 2𝑛
𝜃
. (P3)

To prove (P2), consider the set of vertices𝑊 ⊂ 𝑉 that are connected to 𝑋 with probability at least
𝜃/2 and suppose for contradiction that 𝑊 ≠ 𝑉 . Since 𝑊 is non empty (because 𝑋 ⊂ 𝑉) and 𝐺 is
connected, we can consider an edge {𝑢, 𝑣} such that 𝑢 ∈ 𝑊 and 𝑣 ∉ 𝑊 . By positive association,

𝜃/2 > P(𝑣 ↔ 𝑋) ≥ P({𝑢, 𝑣} is open) · P(𝑢 ↔ 𝑋) ≥ 𝑝𝜃

2
.

In particular, 𝑥1, . . . , 𝑥𝑘 , 𝑣 is a chained sequence, contradicting the maximality of 𝑥1, . . . , 𝑥𝑘 .

We now prove (P3). To this aim, for each 𝑖 ∈ {1, . . . , 𝑘}, let 𝑁𝑖 denote the number of clusters that
intersect both {𝑥1, . . . , 𝑥𝑖} and 𝐵. For every 𝑖 ∈ {2, . . . , 𝑘}, the increment 𝑁𝑖 − 𝑁𝑖−1 is equal to 1
if 𝑥𝑖 is connected to 𝐵 but not to the previous points {𝑥1, . . . , 𝑥𝑖−1}, and it is equal to 0 otherwise.
Therefore, for every 𝑖 ∈ {2, . . . , 𝑘}, we have the deterministic inequality

𝑁𝑖 − 𝑁𝑖−1 ≥ 1𝑥𝑖↔𝐵 − 1𝑥𝑖↔{𝑥1,...,𝑥𝑖−1} . (2.5.1)

Taking the expectation, using our hypothesis and (P1), for every 𝑖 ∈ {2, . . . , 𝑘}, we get

E(𝑁𝑖) − E(𝑁𝑖−1) ≥ P(𝑥𝑖 ↔ 𝐵)︸       ︷︷       ︸
≥𝜃

−P(𝑥𝑖 ↔ {𝑥1, . . . , 𝑥𝑖−1})︸                        ︷︷                        ︸
≤𝜃/2

≥ 𝜃/2. (2.5.2)

Summing over 𝑖 ∈ {2, . . . , 𝑘} and using E(𝑁1) = P(𝑥1 ↔ 𝐵) ≥ 𝜃 ≥ 𝜃/2, we get E[𝑁𝑘 ] ≥ 𝜃
2 𝑘 .

Since 𝑁𝑘 is deterministically bounded above by |𝐵 | = 𝑛, this concludes the proof of (P3).

We now explain how the three properties above of the chained sequence imply the desired lower
bound in the proposition. First, we estimate the event that all the vertices of 𝑋 are connected to 𝑜:
By (P1), (P3) and positive association, we have

P

(⋂
𝑢∈𝑋
{𝑜 ↔ 𝑢}

)
≥

𝑘∏
𝑖=2

P (𝑥𝑖 ↔ {𝑥1, . . . , 𝑥𝑖−1}) ≥
(
𝑝𝜃

2

) 𝑘−1
≥

(
𝑝𝜃

2

) 2𝑛
𝜃

. (2.5.3)

Second, we estimate the event that all the vertices of 𝐵 are connected to 𝑋: By (P2) and positive
association, we have

P

(⋂
𝑏∈𝐵
{𝑏 ↔ 𝑋}

)
≥

(
𝜃

2

)𝑛
.
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If all the vertices of 𝑋 are connected to 𝑜 and all the vertices of 𝐵 are connected to 𝑋 , then all
the vertices of 𝐵 are connected to 𝑜. Hence, by the two displayed equations above and positive
association, we obtain

P

(⋂
𝑏∈𝐵
{𝑜 ↔ 𝑏}

)
≥ P

(⋂
𝑢∈𝑋
{𝑜 ↔ 𝑢}

)
· P

(⋂
𝑏∈𝐵
{𝑏 ↔ 𝑋}

)
≥

(
𝑝𝜃

2

) 2𝑛
𝜃

·
(
𝜃

2

)𝑛
≥ 𝑐𝑛,

where 𝑐 :=
(
𝑝𝜃

2

)3/𝜃
. □

2.6 Proof of Theorem 2.1
Let𝐺 = (𝑉, 𝐸) be an infinite, connected, locally finite graph. In this section, we prove Theorem 2.1,
in the following form.(
∃𝑝 < 1 ∃𝜃 > 0 ∀𝑢 ∈ 𝑉 P𝑝 (𝑢 ↔∞) ≥ 𝜃

)
⇐⇒

(
∃𝐾 < ∞ ∀𝑢 ∈ 𝑉 ∀𝑛 ≥ 1 |Q𝑛 (𝑢) | ≤ 𝐾𝑛

)
.

(2.6.1)

The implication⇐ is well-known, and follows from the Peierls argument [Ben13a, Theorem 4.11],
which we now recall for completeness. Let 𝑢 ∈ 𝑉 . If the cluster of 𝑢 is finite, then by Lemma 2.4.1,
its exposed boundary is a finite minimal cutset from 𝑢 to∞, and all its edges are closed. Hence, by
the union bound, for every 𝑝 ∈ [0, 1] we have

P𝑝 ( |𝐶𝑢 | < ∞) ≤
∑︁
𝑛≥1

𝑞𝑛 (1 − 𝑝)𝑛. (2.6.2)

If 𝑞𝑛 ≤ 𝐾𝑛 for some constant 𝐾 < ∞, then the right hand side above converges to 0 as 𝑝 tends to
1. Since the bound is uniform in 𝑢, there exists 𝑝 < 1 such that

∀𝑢 ∈ 𝑉 P𝑝 (𝑢 ↔∞) ≥ 1/2. (2.6.3)

We now prove the implication⇒. Fix 𝜃, 𝑝 ∈ (0, 1) such that P𝑝 (𝑢 ↔∞) ≥ 𝜃 for every 𝑢 ∈ 𝑉 . Fix
𝑜 ∈ 𝑉 and 𝑛 ≥ 1. Writing 𝐶 for the cluster of 𝑜, we show that for every minimal cutset Π from 𝑜

to∞ with |Π | = 𝑛,
P𝑝 (𝜕∞𝐶 = Π) ≥ 1/𝐾𝑛, (2.6.4)

where 𝐾 = 𝐾 (𝑝, 𝜃) ∈ (0,∞) is a finite constant depending on 𝑝 and 𝜃 only (in particular it does
not depend on the chosen vertex 𝑜). This concludes the proof since

1 ≥
∑︁

Π∈Q𝑛 (𝑜)
P𝑝 (𝜕∞𝐶 = Π)

(2.6.4)
≥ |Q𝑛 (𝑜) |/𝐾𝑛. (2.6.5)
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Let us now prove the lower bound (2.6.4). As in Lemma 2.4.2, let 𝐴 be the connected component
of 𝑜 in (𝑉, 𝐸 \ Π) and 𝐵 the set of inner vertices of Π. Since any infinite open path from a vertex
𝑢 ∈ 𝐴 must intersect 𝐵 before exiting 𝐴, the hypothesis P𝑝 (𝑢 ↔∞) ≥ 𝜃 implies

∀𝑢 ∈ 𝐴 P𝑝 (𝑢
𝐴←→ 𝐵) ≥ 𝜃. (2.6.6)

Let E be the event that every vertex in 𝐵 is connected to 𝑜 by an open path in 𝐴. By Proposition 2.5.1
applied to the finite subgraph of 𝐺 induced by 𝐴, we have P𝑝 (E) ≥ 𝑐𝑛, where 𝑐 = (𝑝𝜃/2)3/𝜃 > 0.
Let F be the event that all the edges of Π are closed. By independence, we have

P𝑝 (E ∩ F ) = P𝑝 (E)P𝑝 (F ) ≥ 𝑐𝑛 (1 − 𝑝)𝑛. (2.6.7)

If the event E ∩ F occurs, then the cluster 𝐶 of 𝑜 satisfies 𝐵 ⊂ 𝐶 ⊂ 𝐴. Hence, by Lemma 2.4.2 we
must have 𝜕∞𝐶 = Π. This concludes that

P𝑝 (𝜕∞𝐶 = Π) ≥ P𝑝 (E ∩ F ) ≥ 𝑐𝑛 (1 − 𝑝)𝑛, (2.6.8)

which establishes the desired lower bound (2.6.4) with 𝐾 = 1
𝑐(1−𝑝) =

1
(𝑝𝜃/2)3/𝜃 (1−𝑝) .

2.7 A covering lemma for Markov chains
In this section, we give conditions under which a killed Markov chain survives long enough to
visit every state and then return to its initial state2. We will apply this in the next section to prove
Theorem 2.1. Here [𝑛] denotes the set {1, . . . , 𝑛}.

Lemma 2.7.1. Let 𝑛 ≥ 1. Let 𝑃 = (𝑝𝑖, 𝑗 )𝑖, 𝑗∈[𝑛] be a symmetric matrix of non-negative entries such
that3

∑
𝑗∈[𝑛] 𝑝(𝑖, 𝑗) ≤ 1 for all 𝑖 ∈ [𝑛]. Let Γ be the set of all sequences 𝛾 = (𝛾0, 𝛾1, . . . , 𝛾𝑘 ) in

[𝑛] (for any 𝑘 ≥ 1) with 𝛾0 = 1 such that the unique element 𝑖 ∈ [𝑘] satisfying both 𝛾𝑖 = 1 and
{𝛾0, 𝛾1, . . . , 𝛾𝑖} = [𝑛] is 𝑖 = 𝑘 . For every such sequence 𝛾, define

𝑝(𝛾) :=
𝑘∏
𝑖=1

𝑝 (𝛾𝑖−1, 𝛾𝑖) .

For each 𝜀 > 0, if every non-empty proper subset 𝐼 of [𝑛] satisfies∑︁
𝑖∈𝐼

∑︁
𝑗∈[𝑛]\𝐼

𝑝(𝑖, 𝑗) ≥ 𝜀, (2.7.1)

2In fact, we lower bound the probability that this occurs in ≤ 2𝑛 − 2 steps (which is optimal), where 𝑛 is the
number of states. Contrast this with [BGM13; DK21], both called Linear cover time is exponential unlikely; we give
conditions under which linear cover time is exponentially likely.

3We can think of 𝑃 as the transition matrix of a Markov chain which is killed at 𝑖 with probability 1 −∑
𝑗 𝑝(𝑖, 𝑗).
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then 𝛿 := 𝜀2

16𝑒2 satisfies ∑︁
𝛾∈Γ

𝑝(𝛾) ≥ 𝛿𝑛.

Proof. Let 𝑒1, . . . , 𝑒2𝑛−2 ∈ [𝑛]2 ⊔ {∅} be an iid sequence of random variables such that for all
𝑢, 𝑣 ∈ [𝑛],

P (𝑒1 = (𝑢, 𝑣)) = 𝑝(𝑢, 𝑣)
𝑛

.

Such random variables exist because these probabilities sum to at most 1. Let 𝐻 be the undirected
multigraph with vertex set [𝑛] and edges 𝑒1, . . . , 𝑒2𝑛−2. Even though [𝑛]2 consists of ordered pairs,
we think of each 𝑒𝑖 ∈ [𝑛]2 as encoding an undirected edge, loops allowed. (When 𝑒𝑖 = ∅, we
simply do not include an edge.)

Consider the iid spanning subgraphs 𝐻1 and 𝐻2 of 𝐻 that contain only the edges 𝑒1, . . . , 𝑒𝑛−1

and 𝑒𝑛, . . . , 𝑒2𝑛−2, respectively. We will lower bound the probability that each of these graphs is
connected. Consider any 𝑘 ∈ [𝑛 − 1]. Suppose that we are given all of the connected components
𝐶1, . . . , 𝐶𝑟 of the spanning subgraph of 𝐻 that contains only the edges 𝑒1, . . . , 𝑒𝑘−1. If 𝑟 ≥ 2, then
the conditional probability that 𝑒𝑘 connects two of these components is

𝑟∑︁
𝑧=1

∑︁
𝑖∈𝐶𝑧

∑︁
𝑗∈[𝑛]\𝐶𝑧

𝑝(𝑖, 𝑗)
𝑛

(2.7.1)
≥ 𝑟𝜀

𝑛
.

Therefore by induction on 𝑘 , and by using the elementary bound 𝑛𝑛

𝑛! ≤ 𝑒
𝑛 in the third inequality,

P (𝐻1 is connected) ≥
𝑛∏
𝑟=2

𝑟𝜀

𝑛
≥ 𝑛! · 𝜀𝑛

𝑛𝑛
≥ 𝜀

𝑛

𝑒𝑛
. (2.7.2)

Let 𝛾 = (𝛾0, 𝛾1, . . . , 𝛾𝑘 ) be a sequence in Γ. Say that 𝛾 is present if there exists an injection
𝜎 : [𝑘] → [2𝑛 − 2] such that for every 𝑖 ∈ [𝑘], we have 𝑒𝜎(𝑖) = (𝛾𝑖−1, 𝛾𝑖) or (𝛾𝑖, 𝛾𝑖−1). Assume
that 𝑘 ≤ 2𝑛 − 2, and note that 𝛾 cannot be present otherwise. There are at most (2𝑛 − 2)𝑘 choices
of 𝜎, and given 𝜎, for each 𝑖, the probability that 𝑒𝜎(𝑖) = (𝛾𝑖−1, 𝛾𝑖) is the same as the probability
that 𝑒𝜎(𝑖) = (𝛾𝑖, 𝛾𝑖−1), both given by 1

𝑛
𝑝(𝛾𝑖−1, 𝛾𝑖) = 1

𝑛
𝑝(𝛾𝑖, 𝛾𝑖−1). So by a union bound,

P (𝛾 is present) ≤ (2𝑛 − 2)𝑘
𝑘∏
𝑖=1

2
𝑛
𝑝 (𝛾𝑖−1, 𝛾𝑖) ≤ 4𝑘 𝑝(𝛾) ≤ 42𝑛𝑝(𝛾). (2.7.3)

On the other hand, when 𝐻1 is connected and 𝐻2 is connected, then some 𝛾 ∈ Γ must be present
in 𝐻 because every multigraph that contains two edge-disjoint spanning trees must also contain a
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spanning subgraph that is connected and Eulerian [Cat92]4. Thanks to (2.7.2), this occurs with
probability at least 𝜀2𝑛/𝑒2𝑛. So by a union bound,

𝜀2𝑛

𝑒2𝑛 ≤
∑︁
𝛾∈Γ

P(𝛾 is present) ≤ 42𝑛
∑︁
𝛾∈Γ

𝑝(𝛾). (2.7.4)

The conclusion follows by rearranging. □

2.8 Proof of Theorem 2.1
Let 𝐺 = (𝑉, 𝐸) be an infinite, connected, locally finite graph such that for some constant 𝜀 > 0, for
every vertex 𝑣 ∈ 𝑉 , the simple random walk (𝑋𝑡)∞𝑡=0 on 𝐺 started at 𝑣 satisfies

𝑑𝑣P𝑣 (∀𝑡 ≥ 1 : 𝑋𝑡 ≠ 𝑣) ≥ 𝜀.

Let 𝐺′ = (𝑉 ′, 𝐸′) be the graph5 obtained from 𝐺 by replacing each edge by a path of length 2.
View 𝑉 as a subset of 𝑉 ′, and let 𝑚 : 𝐸 → 𝑉 ′ map each edge to its midpoint. Let P′𝑢 be the law of
simple random walk in 𝐺′ started from a given vertex 𝑢, and let 𝜏 := sup{𝑡 ≥ 0 : 𝑋𝑡 = 𝑋0}. We
claim that for all 𝑧 ∈ 𝑉 ′,

𝑑𝑧P′𝑧 (𝜏 = 0) ≥ 𝜀1 :=
2𝜀

4 + 𝜀 . (2.8.1)

This is trivial when 𝑧 ∈ 𝑉 , even with 𝜀1 = 𝜀/2, because simple random walk on 𝐺′ induces lazy
simple random walk on 𝐺. Otherwise, when 𝑧 = 𝑚({𝑢, 𝑣}) for some {𝑢, 𝑣} ∈ 𝐸 , this follows from
the corresponding bounds for 𝑢 and 𝑣 by rearranging the following elementary calculation, where
ℓ𝑥 := |{𝑡 ≥ 0 : 𝑋𝑡 = 𝑥}|:

1
P′𝑧 (𝜏 = 0) =

∑︁
𝑛≥0

P′𝑧 (𝜏 > 0)𝑛 = E′𝑧 [ℓ𝑧] =
∑︁
𝑡≥0

P′𝑧 (𝑋𝑡 = 𝑧)

= 1 +
∑︁
𝑡≥1

[
P′𝑧 (𝑋𝑡−1 = 𝑢) · 1

𝑑𝑢
+ P′𝑧 (𝑋𝑡−1 = 𝑣) · 1

𝑑𝑣

]
= 1 +

E′𝑧 [ℓ𝑢]
𝑑𝑢

+
E′𝑧 [ℓ𝑣]
𝑑𝑣

≤ 1 +
E′𝑢 [ℓ𝑢]
𝑑𝑢

+
E′𝑣 [ℓ𝑣]
𝑑𝑣

= 1 + 1
𝑑𝑢P′𝑢 (𝜏 = 0) +

1
𝑑𝑣P′𝑣 (𝜏 = 0) .

4This general fact can be proved directly as follows: Let 𝐸 be the set of edges in the multigraph, and let 𝑇1 and 𝑇2
be the two trees. Let 𝑜1, . . . , 𝑜𝑘 be the vertices that have odd degree in 𝑇1. Since the sum of the degrees of all of the
vertices in a given graph is always even, we can write 𝑘 = 2𝑙 for some non-negative integer 𝑙. For each 𝑖 ∈ [𝑙], pick
a path 𝑃𝑖 in 𝑇2 from 𝑜2𝑖−1 to 𝑜2𝑖 . Then, viewing 𝑇1 and each 𝑃𝑖 as elements of the Z/2Z-vector space {0, 1}𝐸 , the
required subgraph is given by 𝑇1 + 𝑃1 + · · · + 𝑃𝑙 .

5This construction is a technicality that is only necessary if 𝐺 has unbounded vertex degrees.
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Let𝐶 := {𝑋𝑡 : 0 ≤ 𝑡 ≤ 𝜏} and 𝜕 := {𝑒∩𝐶 : 𝑒 ∈ 𝜕∞𝐶}. Fix 𝑜 ∈ 𝑉 , and pick a neighbour 𝑜′ ∈ 𝑚(𝐸)
of 𝑜 in 𝐺′. Fix a finite minimal cutset Π from 𝑜 to∞ in 𝐺, and set 𝑛 := |Π |. We will show that for
some finite constant 𝐾 = 𝐾 (𝜀) ∈ (0,∞) depending only on 𝜀,

P′𝑜′ (𝜕 = 𝑚(Π)) ≥ 1/𝐾𝑛. (2.8.2)

This implies that 𝜅(𝐺) < ∞ because for all 𝑜 ∈ 𝑉 and 𝑛 ≥ 1,

1 ≥
∑︁

Π∈Q𝑛 (𝑜)
P′𝑜′ (𝜕 = 𝑚(Π))

(2.8.2)
≥ |Q𝑛 (𝑜) | /𝐾𝑛.

Let 𝐴 be the connected component of 𝑜 in (𝑉, 𝐸\Π), let𝑈 := 𝑚(Π) ∪ {𝑜′}, and let 𝐼 := 𝐴∪𝑚({𝑒 ∈
𝐸 : 𝑒 ⊂ 𝐴}). For all 𝑢, 𝑣 ∈ 𝑈 ∪ 𝐼, let

𝑝(𝑢, 𝑣) := P′𝑢 (∃𝑡 ≥ 1 : 𝑋1, . . . , 𝑋𝑡−1 ∈ 𝐼\{𝑢} and 𝑋𝑡 = 𝑣) .

Extend this to sets of vertices by 𝑝(𝐿, 𝑅) :=
∑
𝑢∈𝐿;𝑣∈𝑅 𝑝(𝑢, 𝑣), and similarly, 𝑝(𝑢, 𝐿) := 𝑝({𝑢}, 𝐿)

and 𝑝(𝐿, 𝑢) := 𝑝(𝐿, {𝑢}). We would like to apply Lemma 2.7.1 to the matrix 𝑃 := (𝑝(𝑢, 𝑣))𝑢,𝑣∈𝑈 .
By time-reversing trajectories, we have 𝑝(𝑢, 𝑣) = 𝑝(𝑣, 𝑢) whenever 𝑑𝑢 = 𝑑𝑣, which is for example
the case when 𝑢, 𝑣 ∈ 𝑈. So 𝑃 is symmetric, and clearly the entries of 𝑃 are non-negative and sum
to at most 1 along each row. We claim that for every non-trivial partition𝑈 = 𝐿 ⊔ 𝑅,

𝑝(𝐿, 𝑅) ≥ 𝜀2 := 𝜀2
1/64. (2.8.3)

Indeed, for each 𝑥 ∈ 𝑈 ∪ 𝐼, consider the function (the unit voltage)

𝐹 (𝑥) := P′𝑥 (∃𝑡 ≥ 0 : 𝑋0, . . . , 𝑋𝑡−1 ∉ 𝐿 and 𝑋𝑡 ∈ 𝑅) .

Given 𝑢 ∈ 𝐿, there exists6 𝑥 ∈ 𝐴 such that {𝑢, 𝑥} ∈ 𝐸′, and if 𝐹 (𝑥) ≥ 1/2, then we are done
because

𝑝(𝑢, 𝑅) ≥ P′𝑢 (𝑋1 = 𝑥) · 𝐹 (𝑥) ≥ 1/2 · 1/2 ≥ 𝜀2.

In particular, we may assume that there exists 𝑥 ∈ 𝐴 with 𝐹 (𝑥) < 1/2. By a similar argument, we
may assume that there exists 𝑦 ∈ 𝐴 with 𝐹 (𝑦) > 1/2. Since 𝐴 is connected in 𝐺, we can therefore
find {𝑥′, 𝑦′} ∈ 𝐸 satisfying 𝐹 (𝑥′) ≤ 1/2 ≤ 𝐹 (𝑦′). Let 𝑧 := 𝑚({𝑥′, 𝑦′}), which has degree 2. Note
that

𝐹 (𝑧) ≥ P′𝑧 (𝑋1 = 𝑦′) · 𝐹 (𝑦′) ≥ 1/2 · 1/2,
6If 𝑢 = 𝑜′, take 𝑥 := 𝑜. If 𝑢 = 𝑚(𝑒) where 𝑒 ∈ Π, take 𝑥 where {𝑥} = 𝑒 ∩ 𝐴, which exists by Lemma 2.4.2.
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and by a union bound,

𝐹 (𝑧) ≤
∞∑︁
𝑛=0

P′𝑧 (𝜏 > 0)𝑛𝑝(𝑧, 𝑅) = 𝑝(𝑧, 𝑅)
P′𝑧 (𝜏 = 0)

(2.8.1)
≤ 𝑝(𝑧, 𝑅)

𝜀1/2
.

So by rearranging, 𝑝(𝑧, 𝑅) ≥ 𝜀1/8. By a similar argument (i.e. by replacing 𝐹 by 1 − 𝐹,
which switches the roles of 𝐿 and 𝑅, and by recalling that 𝑝(𝐿, 𝑧) = 𝑝(𝑧, 𝐿)), we deduce that
𝑝(𝐿, 𝑧) ≥ 𝜀1/8. Now (2.8.3) follows because 𝑝(𝐿, 𝑅) ≥ 𝑝(𝐿, 𝑧)𝑝(𝑧, 𝑅).

Therefore by Lemma 2.7.1, the event E that the random walk visits every vertex in 𝑈 then returns
to 𝑜′ before exiting𝑈 ∪ 𝐼 satisfies

P′𝑜′ (E) ≥ 𝜀
|𝑈 |
3 ≥ 𝜀

𝑛+1
3 (2.8.4)

for some constant 𝜀3 > 0 depending only on 𝜀2. So by Lemma 2.4.2 and the strong Markov
property,

P′𝑜′ (𝜕 = 𝑚 (Π)) ≥ P′𝑜′ (E) · P′𝑜′ (𝜏 = 0)
(2.8.1),(2.8.4)
≥ 𝜀𝑛+13 · 𝜀1/2. (2.8.5)

By expanding the definitions of 𝜀1, 𝜀2, 𝜀3 we deduce that (2.8.2) holds with 𝐾 := 220/𝜀5.

2.9 Alternative proof of Theorem 2.1 using the Gaussian free field
Here we sketch an alternative, slightly less elementary proof of Theorem 2.1 along the lines of
the proof of Theorem 2.1. Let 𝐺 be an infinite, connected, locally finite graph that is uniformly
transient. Consider the graph 𝐺̃ = (𝑉̃ , 𝐸̃) obtained by replacing each edge by a path of length
3. Similarly to the proof in Section 2.8, one can prove that 𝐺̃ is also uniformly transient. Let
𝜑 ∈ R𝑉̃ with law P be the (centered) Gaussian free field (GFF) on 𝐺̃ – see e.g. [BP24] for the
required background and definitions. Uniform transience implies that there exists 𝜀 > 0 such that
Var(𝜑(𝑥)) ≤ 1/𝜀 for every 𝑥 ∈ 𝑉̃ .

Fix 𝑜 ∈ 𝑉 and let 𝐶̃ be the cluster of 𝑜 in the percolation model induced by the excursion set
{𝜑 ≥ 0} := {𝑥 ∈ 𝑉̃ : 𝜑(𝑥) ≥ 0}. Given every edge 𝑒 of 𝐺, we associate the corresponding
mid-edge 𝑒 in 𝐺̃, with both endpoints of degree 2. For a subset Π of edges in 𝐺, we denote by Π̃

the associated set of mid-edges in 𝐺̃. We claim that there exists 𝑐 = 𝑐(𝜀) > 0, depending only on
𝜀, such that for every Π ∈ Q𝑛 (𝑜),

P(𝜕∞𝐶̃ = Π̃) ≥ 𝑐𝑛. (2.9.1)

Similarly to the previous sections, Theorem 2.1 follows readily from (2.9.1).

We now proceed to prove (2.9.1). Enumerate Π̃ by 𝑒𝑖 = {𝑥𝑖, 𝑦𝑖}, 1 ≤ 𝑖 ≤ 𝑛, where 𝑥𝑖 and 𝑦𝑖 are the
inner and outer endpoints, respectively. We first observe that, for some constant 𝑐1 = 𝑐1(𝜀) > 0,

P(𝜑(𝑦𝑖) ∈ [−2,−1] and 𝜑(𝑥𝑖) ∈ [1, 2] ∀ 0 ≤ 𝑖 ≤ 𝑛) ≥ 𝑐𝑛1. (2.9.2)
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Indeed, this follows by successively demanding the desired event at each vertex. Here we use
the Markov property of the GFF (see [BP24]) and the fact that the conditional variance of the
next vertex given the previous ones is between 1/2 (since they have degree 2) and 1/𝜀, while the
conditional mean remains bounded between −2 and 2.

Let F be the event in (2.9.2) and 𝐴 be the component of 𝑜 in (𝑉̃ , 𝐸̃ \ Π̃). Notice that

P(𝜕∞𝐶̃ = Π̃) ≥ P(F )P
(
𝑛⋂
𝑖=1
{0

{𝜑≥0}∩𝐴
←−−−−−→ 𝑥𝑖}

���F )
≥ 𝑐𝑛1P

(
𝑛⋂
𝑖=1
{0

{𝜑≥0}∩𝐴
←−−−−−→ 𝑥𝑖}

���F )
.

By the Markov property, conditionally on F , the process {𝜑 ≥ 0} ∩ 𝐴 stochastically dominates
{𝜑𝐴 ≥ −1}, where 𝜑𝐴 is the centered GFF on 𝐴 (i.e. associated to the random walk on 𝐴 killed
when reaching 𝜕𝐴 = {𝑥1, . . . , 𝑥𝑛}). Therefore, it is enough to prove that, for some constant
𝑐2 = 𝑐2(𝜀) > 0,

P

(
𝑛⋂
𝑖=1
{𝑜

{𝜑𝐴≥−1}
←−−−−−→ 𝑥𝑖}

)
≥ 𝑐𝑛2. (2.9.3)

Indeed, since the GFF is positively associated (see [BP24]), the desired inequality (2.9.3) follows
readily from Proposition 2.5.1 and the following inequality

P(𝑢
{𝜑𝐴≥−1}
←−−−−−→ 𝜕𝐴) ≥ E(sgn(𝜑𝐴 (𝑢) + 1)) ≥ 𝑐3, (2.9.4)

for some constant 𝑐3 = 𝑐3(𝜀) > 0. The latter follows easily from the Markov property of the GFF.
Indeed, let S be the union of all clusters of {𝜑𝐴 ≥ −1} intersecting 𝜕𝐴 and note that its closure
S (i.e. the union of 𝑆 with its neighbours) is a stopping set. Clearly, one has sgn(𝜑𝐴 (𝑢) + 1) = 1

almost surely on the event G := {𝑢
{𝜑𝐴≥−1}
←−−−−−→ 𝜕𝐴} = {𝑢 ∈ S}. On the complementary event G𝑐 and

conditionally on the field on S, the Markov property implies that we have a GFF on 𝐴 \ S with
boundary conditions < −1. In particular, sgn(𝜑𝐴 (𝑢) + 1) has a negative conditional expectation on
G𝑐. These observations readily imply the first inequality of (2.9.4). The second inequality follows
from the fact that the variance of 𝜑𝐴 (𝑢) is at most 1/𝜀.
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31C h a p t e r 3

THE CRITICAL PERCOLATION PROBABILITY IS LOCAL

Joint work with Tom Hutchcroft

Abstract
We prove Schramm’s locality conjecture for Bernoulli bond percolation on transitive graphs: If
(𝐺𝑛)𝑛≥1 is a sequence of infinite vertex-transitive graphs converging locally to a vertex-transitive
graph 𝐺 and 𝑝𝑐 (𝐺𝑛) ≠ 1 for every 𝑛 ≥ 1 then lim𝑛→∞ 𝑝𝑐 (𝐺𝑛) = 𝑝𝑐 (𝐺). Equivalently, the critical
probability 𝑝𝑐 defines a continuous function on the space G∗ of infinite vertex-transitive graphs
that are not one-dimensional. As a corollary of the proof, we obtain a new proof that 𝑝𝑐 (𝐺) < 1
for every infinite vertex-transitive graph that is not one-dimensional.

3.1 Introduction
In Bernoulli bond percolation, the edges of a connected, locally finite graph 𝐺 are chosen to be
either retained (open) or deleted (closed) independently at random, with probability 𝑝 ∈ [0, 1]
of retention. The law of the resulting random subgraph is denoted P𝑝 = P𝐺𝑝 . Percolation theory
is concerned primarily with the geometry of the connected components of this random subgraph,
which are known as clusters. Much of the interest in the model arises from the fact that it undergoes
a phase transition: If we define the critical probability

𝑝𝑐 (𝐺) = inf
{
𝑝 ∈ [0, 1] : there exists an infinite cluster P𝑝-almost surely

}
then “most” interesting graphs have 𝑝𝑐 (𝐺) strictly between 0 and 1, so that there is a non-trivial
phase where infinite clusters do not exist followed by non-trivial phase where they do exist. We
will be primarily interested in percolation on (vertex-)transitive graphs, i.e., graphs for which any
vertex can be mapped to any other vertex by an automorphism of the graph. We allow our graphs
to contain loops and multiple edges, and make the implicit assumption throughout the paper that
all transitive graphs are connected and locally finite (i.e. have finite vertex degrees).

Many interesting features of percolation on an infinite transitive graph at and near the critical point
are expected to be universal, meaning that they depend only on the graph’s large-scale geometry
and not its microscopic structure. For example, the critical exponents governing the power-law
behaviour of various interesting quantities at and near criticality are believed to depend only on



the volume-growth dimension of the graph, and should therefore take the same values on e.g. the
square and triangular lattice. In contrast, Schramm conjectured around 2008 [BNP11a, Conjecture
1.2] that the value of the critical probability 𝑝𝑐 (𝐺) should be entirely determined by the local
(microscopic) geometry of the graph, subject to the global constraint that 𝑝𝑐 (𝐺) < 1. More
precisely, he conjectured that if 𝐺𝑛 is a sequence of infinite transitive graphs converging to an
infinite transitive graph 𝐺 in the local topology (defined below) and lim sup𝑛→∞ 𝑝𝑐 (𝐺𝑛) < 1 then
𝑝𝑐 (𝐺𝑛) → 𝑝𝑐 (𝐺) as 𝑛 → ∞. The assumption that lim sup𝑛→∞ 𝑝𝑐 (𝐺) < 1 is needed to rule
out degenerate one-dimensional examples such as the cylinder Z × (Z/𝑛Z) (which converges to
the square grid Z2 but which has 𝑝𝑐 (Z × (Z/𝑛Z)) = 1 ↛ 𝑝𝑐 (Z2) = 1/2), and is now known
to be equivalent to the graphs 𝐺𝑛 having superlinear volume growth for all sufficiently large 𝑛
[DGRSY20; HT21a]. The fact that 𝑝𝑐 is lower semi-continuous follows straightforwardly from
standard facts about percolation on transitive graphs as observed in [Pet, §14.2] and [DT16a, p.4]
and does not require the assumption that the graphs are not one-dimensional; the difficult part of
the conjecture is to prove upper semi-continuity.

The locality conjecture has inspired a great deal of subsequent work, including both partial progress
on the original conjecture [BNP11a; MT17; Hut20a; HH21a; CMT23a], which we review in detail
below, and analogous results in other settings including self-avoiding walk [GL17; GL18], the
random cluster model [DT19], finite random graphs [BNP11a; KLS20; Sar21a; Hof21; RS22a;
ABS22; BZ23; ABS23], and geometric random graphs [HM22; LLMS23].

In this paper we give a complete proof of Schramm’s locality conjecture.

Theorem 3.1.1. Let G∗ be the set of all infinite transitive graphs that are not one-dimensional,
endowed with the local topology. Then the function 𝑝𝑐 : G∗ → (0, 1) is continuous.

Here, the local topology (a.k.a. the Benjamini-Schramm topology) on the space of transitive
graphs, denoted by G, is defined so that (𝐺𝑛)∞𝑛=1 converges to 𝐺 if and only if, for each 𝑟 ≥ 1,
the balls of radius 𝑟 in 𝐺𝑛 and 𝐺 are isomorphic as rooted graphs for all sufficiently large 𝑛. We
say that an infinite transitive graph is one-dimensional if it has linear volume growth (i.e., if its
balls 𝐵𝑛 satisfy |𝐵𝑛 | = 𝑂 (𝑛) as 𝑛 → ∞); it follows from (a simple special case of) the structure
theory of transitive graphs of polynomial growth that an infinite transitive graph is one-dimensional
if and only if it is rough-isometric to Z [TY16], while the results of [DGRSY20] imply that an
infinite transitive graph has 𝑝𝑐 < 1 if and only if it is not one-dimensional. (In fact the proof of
Theorem 8.1.1 also yields a new proof of this theorem as we discuss in detail in Section 3.3.)
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Remark 3.1.1. In our forthcoming paper [EH23+a], we prove related results on the locality of the
density of the infinite cluster, implying in particular that the percolation probability 𝜃 (𝑝, 𝐺) =
P𝐺𝑝 (𝑜 ↔ ∞) is a continuous function of (𝐺, 𝑝) in the supercritical set {(𝐺, 𝑝) : 𝐺 ∈ G∗, 𝑝 >
𝑝𝑐 (𝐺)}. (Theorem 8.1.1 implies that this set is open.) An alternative proof of this result using the
methods developed in the present paper is sketched in Section 3.7.

Previous work
In this section we overview previous work on locality, the 𝑝𝑐 < 1 problem, and the structure theory
of transitive graphs of polynomial growth. Our proof will employ many ideas and methods from
these earlier papers, including most notably the works [Hut20a; Hut20e; CMT22] and the structure
theory developed in [BGT12a; TT21a].

Euclidean lattices. Well before the formulation of Schramm’s conjecture, the first significant
work on locality was carried out in the seminal work of Grimmett and Marstrand [GM90a], who
proved that the critical probability for percolation on a “slab” Z𝑑−𝑘 × {0, . . . , 𝑛}𝑘 converges to
𝑝𝑐 (Z𝑑) as 𝑛→ ∞ provided that 𝑑 − 𝑘 ≥ 2. (In this context Z𝑑 and Z𝑑−𝑘 × {0, . . . , 𝑛}𝑘 refer to the
Cayley graphs of these groups with their standard generating sets.) This theorem and the methods
developed to prove it are of central importance to the study of supercritical percolation in three
and more dimensions. (Moreover, one of the motivations for the work of Grimmett and Marstrand
was to get closer to proving that the percolation phase transition on Z𝑑 is continuous, and indeed
similar methods were used in [BGN91] to prove continuity for half-spaces.) Although it is not
strictly an instance of Schramm’s conjecture since slabs are not transitive, the Grimmett–Marstrand
theorem trivially implies that the analogous statement holds for “slabs with periodic boundary
conditions” (i.e., Z𝑑−𝑘 × (Z/𝑛Z)𝑘 with its standard generating set), which are transitive. The proof
of the Grimmett–Marstrand theorem relies heavily on renormalization techniques exploiting the full
symmetries of Z𝑑 and scale-invariance of Euclidean space R𝑑 , and does not readily generalize to
other transitive graphs. Let us also mention that a quantitative version of the Grimmett–Marstand
theorem was proven in the more recent work of Duminil-Copin, Kozma, and Tassion [DKT21]
which was very influential in both our work and [CMT22].

Remark 3.1.2. A further classical Euclidean result in the spirit of the locality conjecture was
established by Kesten [Kes90], who proved that 𝑝𝑐 (Z𝑑) ∼ 1/(2𝑑 − 1) as 𝑑 → ∞. See [ABS04a]
for a simple proof and [Sla06] for more refined results. While not strictly an instance of the locality
conjecture since Z𝑑 does not converge in the local topology, the intuitive reason for this result to
hold is that Z𝑑 is “locally tree-like” when 𝑑 → ∞ in the sense that small cycles have a negligible
effect on the behaviour of the percolation model, so that one can define a kind of “local limit” of Z𝑑
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as 𝑑 →∞ (in a different technical sense to the one we consider here) in terms of Aldous’s Poisson
weighted infinite tree (PWIT) [AS04].

Progress on locality. Previous works on the locality conjecture can be divided into two strains, with
completely different set of methods and domains of application associated to them: The first strain
concerns graphs that satisfy various strong, “infinite-dimensional” expansion conditions, while the
second concerns “finite-dimensional” graphs (i.e., graphs of polynomial volume growth) where one
can hope to develop appropriate generalizations of Grimmett–Marstrand theory. The first strain
splits further into two cases according to whether or not the graphs in question are unimodular,
a technical condition1 that holds for most familiar examples of transitive graphs including every
Cayley graph and every amenable transitive graph [SW88]. Although nonunimodular graphs are
often considered to be “pathological” compared to their unimodular cousins, it turns out that
nonunimodularity is actually a very helpful assumption: in [Hut20e] the second author carried
out a very detailed analysis of critical percolation on nonunimodular transitive graphs, which he
then used to prove the nonunimodular case of locality in [Hut20a]. Moreover, it was proven in
[Hut20a, Corollary 5.5] that the set of nonunimodular transitive graphs is both closed and open in
G, so that to prove Theorem 8.1.1 it now suffices to consider the case that all graphs in question are
unimodular.

Let us now discuss previous results for unimodular graphs in the “infinite-dimensional” setting.
The first result in this direction was due to Benjamini, Nachmias, and Peres [BNP11a], who
proved the conjecture for nonamenable graph sequences satisfying a certain high girth condition
(e.g., uniformly nonamenable graph sequences of divergent girth; unimodularity is not required).
More recently, the second author [Hut20a] proved the conjecture for graph sequences of uniform
exponential growth (meaning that the balls of radius 𝑟 in the graphs 𝐺𝑛 all have volume lower-
bounded by 𝑒𝑐𝑟 for some constant 𝑐 independent of 𝑛 and 𝑟), and Hermon and the second author
[HH21a] proved the conjecture for sequences of graphs satisfying a certain uniform stretched-
exponential heat kernel upper bound, a class that includes certain examples of intermediate volume
growth (i.e., volume growth that is superpolynomial but subexponential; note however that the
spectral condition of [HH21a] is not implied by any growth condition). The works [Hut20a; Hut20e;
HH21a] all establish locality for the families of graphs they consider by proving quantitative tail
estimates on critical percolation clusters that hold uniformly for all graphs in the family, yielding

1Here is the definition: A transitive graph 𝐺 = (𝑉, 𝐸) is unimodular if it satisfies the mass-transport principle,
meaning that

∑
𝑥 𝐹 (𝑜, 𝑥) =

∑
𝑥 𝐹 (𝑥, 𝑜) for every 𝐹 : 𝑉2 → [0,∞] that is diagonally invariant in the sense that

𝐹 (𝑥, 𝑦) = 𝐹 (𝛾𝑥, 𝛾𝑦) for every automorphism 𝛾 of𝐺. We will not directly engage with unimodularity in this paper, but
it will appear as a hypothesis in many of our intermediate results since it is needed to apply the two-ghost inequality
of [Hut20a].
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much more than just locality. (In particular, they also imply that the graphs in question have
continuous percolation phase transitions.)

Remark 3.1.3. Although the techniques developed in [Hut20a; HH21a] have yet to be made to work
for nearest-neighbour percolation models in finite dimension, versions of these arguments have been
used in [Hut21a] to analyze certain long-range percolation models in finite-dimensional spaces.
The results of [Hut21a] can be used to prove versions of the locality conjecture for certain large
families of long-range percolation models on unimodular transitive graphs (under the assumption
that the long-range edge kernel has a sufficiently heavy tail uniformly throughout the sequence).
Further results on locality for long-range percolation can be found in [MS96; Ber02].

Polynomial growth and structure theory. We now discuss the second strain of results, concerning
graphs of polynomial volume growth. Let us first briefly review the structure theory of transitive
graphs of polynomial growth, which plays an important role in these developments. Recall that G
is the space of all infinite transitive graphs and that 𝐺 ∈ G is said to have polynomial growth if
for some positive reals 𝐶 and 𝑑, the number of vertices contained in a ball of radius 𝑛, denoted
Gr(𝑛) := |𝐵𝑛 (𝑜) |, satisfies Gr(𝑛) ≤ 𝐶𝑛𝑑 for all 𝑛 ≥ 1. The geometry of such graphs is highly
constrained: it is a consequence of Gromov’s theorem [Gro81b] and Trofimov’s theorem [Tro84b]
that every 𝐺 ∈ G with polynomial growth is necessarily quasi-isometric to the Cayley graph of
a nilpotent group. In particular, for every such graph 𝐺, there is a positive real 𝐶 and a unique
positive integer 𝑑 such that 𝐶−1𝑛𝑑 ≤ Gr(𝑛) ≤ 𝐶𝑛𝑑 for all 𝑛 ≥ 1. The integer 𝑑 is called the
(volume growth) dimension of 𝐺; it coincides with the isoperimetric dimension and spectral
dimension of 𝐺 by a theorem of Coulhon and Saloff-Coste [CS93]. These results are often used
in the study of probability on transitive graphs as part of a “structure vs. expansion dichotomy”,
wherein each graph either satisfies a high-dimensional isoperimetric inequality (which is often a
helpful assumption) or else is quasi-isometric to a nilpotent group of bounded step and rank (which
is useful because these graphs are highly explicit and well-behaved); a detailed overview of the
structure theory of transitive graphs of polynomial growth and its applications to probability is
given in the introduction to [EH23d].

More recently, finitary versions of these results have been established, first for groups in the
landmark work of Breuillard, Green, and Tao [BGT12a], then for transitive graphs by Tessera and
Tointon [TT21a]. These results imply, for instance, that for each constant𝐾 < ∞ there exists 𝑁 < ∞
such that if we observe that Gr(3𝑛) ≤ 𝐾 Gr(𝑛) for some 𝑛 ≥ 𝑁 , then 𝐺 is (1, 𝐶𝑛)-quasi isometric
the Cayley graph of a virtually nilpotent group where the constant 𝐶 along with the rank, step, and
index of the nilpotent subgroup are all bounded above by some function of 𝐾 (see Section 3.5 for
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further details). This finitary structure theory is extremely useful in applications to problems such
as locality in which one wishes to argue in a way that is uniform over some family of graphs. For
example, it follows from [TT21a, Corollary 1.5] that for each 𝑑 ≥ 1 the set of transitive graphs of
polynomial growth with dimension at most 𝑑 is an open subset of G, and moreover that if 𝐺𝑛 → 𝐺

with 𝐺 of polynomial growth of dimension 𝑑 then there exists 𝑛0 < ∞ and a constant 𝐶 such that
the ball of radius 𝑟 in 𝐺𝑛 has volume at most 𝐶𝑟𝑑 for every 𝑛 ≥ 𝑛0, with constants independent of
𝑛. As such, to prove locality in the case that the limit has polynomial growth, it suffices to consider
the case that all graphs in the sequence satisfy a uniform polynomial upper bound on their growth
as well as various other forms of strong uniform control on their geometry.

Besides the original work of Grimmett and Marstrand, the first result on locality for graphs of
polynomial growth was due to Martineau and Tassion [MT17], who proved that locality holds for
Cayley graphs of abelian groups. Their proof employs a variation on the Grimmett–Marstrand
argument, overcoming significant technical difficulties arising due to the loss of rotational and
reflection symmetry. This result was greatly extended in the recent work of Contreras, Martineau,
and Tassion, who developed a version of Grimmett–Marstrand theory for transitive graphs of
polynomial growth in [CMT22] and used this theory together with the finitary structure theory
discussed above to deduce the polynomial growth case of the locality conjecture in [CMT23a]. As
with the aforementioned works in the infinite-dimensional setting, the works [CMT22; CMT23a]
establish not just locality but also many further strong quantitative results about percolation on
the classes of graphs they consider. However, while [Hut20a; HH21a] established quantitative
estimates on finite clusters in critical percolation, [CMT22; CMT23a] instead establish strong
results about the geometry of the infinite cluster in supercritical percolation. This reflects a
fundamental distinction between the two approaches, with the analysis of the polynomial growth
case involving estimates on uniqueness of annuli crossings etc. that are simply not true for “big”
graphs like the 3-regular tree.

What challenges remain? Given the previous results discussed above, it appears that there are
two main cases of the locality conjecture left to consider: arbitrary sequences of superpolynomial
growth transitive graphs converging to a superpolynomial growth graph, and the “diagonal” case in
which a sequence of polynomial-growth graphs converges to a graph of superpolynomial growth.
Moreover, the second case might be split further according to whether the graphs in the sequence
have bounded or divergent dimension. (As we will soon explain, our proof will in fact work
through a different and less obvious kind of case analysis.) In the first case, a key difficulty is
that the geometry of transitive graphs of superpolynomial growth can be highly arbitrary, with
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the space of all such graphs being an ineffably complex object in some senses: the challenge is
precisely that we need an argument that is robust enough to work for all possible transitive graphs,
for which there is nothing like a general classification. Moreover, the best known uniform lower
bound on the growth of groups of superpolynomial growth, due to Shalom and Tao [ST10b], is
of the form 𝑛(log log 𝑛)𝑐 for a small constant 𝑐 > 0. This growth lower bound (which has not yet
been proven for transitive graphs that are not Cayley) is vastly weaker2 than the assumptions used
in the works [BNP11a; Hut20a; HH21a] discussed above. In the diagonal case, one must contend
with these same difficulties again together with the total incompatibility of the methods that have
thus far been used to handle the high-growth and polynomial growth cases. As such, while the
main difficulties in the locality conjecture arise from “unknown enemies” hiding deep within the
unknowable expanse of the space of all transitive graphs, there are also explicit examples that seem
difficult to handle within existing frameworks. (One such example is the standard Cayley graph of
the free step-𝑠 nilpotent group on two generators, which converges to a 4-regular tree as 𝑠 → ∞
but has finite dimension for each finite 𝑠.)

Parallels with 𝑝𝑐 < 1. Before we begin to describe our proof of the locality conjecture, let us first
discuss how its history closely parallels the (older) history of the 𝑝𝑐 < 1 problem. It follows from
the classical work of Peierls [Pei36b] that 𝑝𝑐 (Z𝑑) < 1 for every 𝑑 ≥ 2. In their highly influential
work [BS96b], Benjamini and Schramm conjectured that 𝑝𝑐 < 1 for every transitive graph that is
not one-dimensional. Benjamini and Schramm also proved in the same paper that 𝑝𝑐 < 1 for every
(not necessarily transitive) nonamenable graph, while earlier results of Lyons [Lyo95] implied that
exponential growth suffices in the transitive case. On the other hand, it is a simple consequence
of the structure theory that every transitive graph of polynomial volume growth that is not one-
dimensional contains a subgraph that is quasi-isometric to Z2, which easily implies that every such
graph has 𝑝𝑐 < 1 (see e.g. [HT21a, Section 3.4] for details). As such, for many years the problem
remained open only for groups of intermediate growth. Even in this case the problem was solved for
most “known” examples of graphs of intermediate growth, such as the Grigorchuk group [MP01;
RY17], with the main remaining difficulty coming from “unknown enemies” as discussed above.
See the introduction of [DGRSY20] for a detailed account of this partial progress including several
further references.

The 𝑝𝑐 < 1 problem was eventually solved in full generality by Duminil-Copin, Goswami, Raoufi,
Severo, and Yadin [DGRSY20]. More precisely, they established that 𝑝𝑐 < 1 for any (not necessarily

2While a well-known conjecture of Grigorchuk [Gri14] states that every superpolynomial growth transitive graph
has growth at least exp[𝑐𝑛1/2], this conjecture is completely open, somewhat controversial, and in any case would still
require a significant advance on the methods of [Hut20a; HH21a] to be applicable towards the locality conjecture.
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transitive) bounded degree graph satisfying a (4+𝜀)-dimensional isoperimetric inequality, with the
structure theory and classical results above handling all remaining transitive graphs. Their proof
uses a comparison between percolation and the Gaussian free field which works only for values
of 𝑝 very close to 1, making their methods unsuitable for the locality problem. A finitary version
of the results of [DGRSY20] was developed by the second author and Tointon in [HT21a], who
proved in particular that sequences of finite transitive graphs have a non-trivial phase in which
a giant cluster exists provided that they are “not one dimensional” in an appropriate quantitative
sense. This finitary approach also allowed them to prove a uniform version of the main result of
[DGRSY20], stating that for each 𝑑 ≥ 1 there exists 𝜀 > 0 such that every infinite transitive graph
that has degree at most 𝑑 and is not one-dimensional has 𝑝𝑐 < 1 − 𝜀. (For Cayley graphs it is now
known that 𝜀 can be taken independently of the degree [PS23b]; see Section 3.7 for some related
conjectures.)

Can we do something similar? Continuing to follow the path set by this previous work on the
𝑝𝑐 < 1 problem, one might hope to prove locality via a similar dichotomy, finding some method
that handles all graphs that are “high-dimensional” in some sense, then using the structure theory
to separately analyze the remaining “low-dimensional” examples. One technical problem with this
approach, which was already a major hurdle in [HT21a], is that one is forced to consider sequences
of graphs that may look high-dimensional up to some divergently large scale then switch to looking
low-dimensional, meaning that one must find a way to “patch together” the outputs of the two
different case analyses at the crossover scale. A more fundamental problem, however, is that to
date there have simply been no viable approaches to prove locality under the assumption that the
graphs are high dimensional.

As we will see, our proof will instead follow a more subtle approach in which we first dichotomize
into two much less obvious cases according to whether or not the graph has quasi-polynomial
growth on the relevant scale. (Here, a function is said to have quasi-polynomial growth if it is
bounded by a function of the form exp[(log 𝑛)𝑂 (1)].) In the low growth case, we then employ a
second, subordinate dichotomization according to whether the rate of growth on the relevant scale
is low-dimensional or high-dimensional; it is in this second dichotomy that we can make use of
the structure theory. A key technical difficulty when arguing this way is that (as far as we know
with the current structure theory), the same graph might oscillate between the quasi-polynomial
and super-quasi-polynomial regimes infinitely many times as we go up the scales, so that any “case
analysis” we do via this dichotomy must be able to handle this oscillation. Moreover, the delicate
nature of our proof leads us to engage with the structure theory literature in a deeper way than had
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previously been necessary in applications to probability. Indeed, our proof relies in part on our
structure-theoretic companion paper [EH23d] in which we prove a “uniform finite presentation”
theorem for groups of polynomial volume growth which we use to make some of the arguments
from [CMT22] finitary. Besides this, we must also contend with the fact that the assumption of
quasi-polynomial growth is highly non-standard, so that we must spend a significant amount of
the paper studying the deterministic geometry of transitive graphs of quasi-polynomial growth (at
some scale) with a view to eventually generalizing the methods of [CMT22] from polynomial to
quasi-polynomial growth.

Interestingly, our proof of locality yields as an immediate corollary a new proof that 𝑝𝑐 < 1 for
transitive graphs that are not one-dimensional, recovering the main result of [DGRSY20]. This
proof works directly with Bernoulli percolation and does not rely on the comparison to the GFF in
any way. (On the other hand it is also much more complicated than the original proof!)

About the proof
In this section we give an overview of our proof. Let us first establish some relevant notation
that will be used throughout the paper. Recall that G denotes the space of all (vertex-)transitive
graphs (which we always take to be connected and locally finite) and that G∗ ⊆ G is the space of
infinite transitive graphs that are not one-dimensional. We also write U ⊆ G for the space of all
unimodular transitive graphs and writeU∗ = U ∩ G∗. Given 𝑑 ∈ N, we write G𝑑 , G∗𝑑 , andU∗

𝑑
for

the subsets of these spaces in which every graph has degree 𝑑. Given sets of vertices 𝐴 and 𝐵 in a
graph, we write {𝐴↔ 𝐵} for the event that there is a path from 𝐴 to 𝐵 in the given configuration.
We also use the notation 𝐴 ↔ ∞ to mean that there is an infinite cluster that intersects 𝐴. When
𝐴 = {𝑢} and 𝐵 = {𝑣} are singletons, we may simply write 𝑢 ↔ 𝑣 and 𝑢 ↔ ∞ instead. For each
transitive graph 𝐺 we will write 𝑜 for an arbitrarily chosen root vertex of 𝐺 which we will refer to
as the origin. We write 𝐵𝑛 for the graph-distance ball of radius 𝑛 around 𝑜 in 𝐺 and write 𝑆𝑛 for
the set of vertices at distance exactly 𝑛 from 𝑜.

Uniform estimates and finite-size criteria. Recall that percolation is said to undergo a continuous
phase transition on an infinite graph 𝐺 if the function 𝜃𝐺 : 𝑝 ↦→ P𝐺𝑝 (𝑜 ↔∞) is continuous (it is a
theorem of Schonmann [Sch99] that 𝜃𝐺 is always continuous at every point other than 𝑝𝑐). One of
the best-known conjectures in the study of percolation on general infinite transitive graphs is that
percolation should undergo a continuous phase transition on every 𝐺 ∈ G∗ [BS96b, Conjecture 4];
this is famously still open when 𝐺 is the three-dimensional cubic lattice. Although it might not be
obvious from their statements, the locality conjecture and the continuity conjecture are very closely
related. To see why, let us give two equivalent formulations of Theorem 8.1.1, which will inform
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the remainder of our analysis. (For notational convenience we define P𝑝 := P1 when 𝑝 > 1.)

Reformulation of the locality conjecture 1. For each 𝑑 ∈ N and 𝜀, 𝛿 > 0, there exists 𝑟 ∈ N such
that

P𝐺𝑝 (𝑜 ↔ 𝑆𝑟) ≥ 𝛿 =⇒ P𝐺𝑝+𝜀 (𝑜 ↔∞) > 0 (3.1.1)

for every 𝐺 ∈ G∗
𝑑

and 𝑝 ∈ [0, 1].

Reformulation of the locality conjecture 2. For each 𝑑 ∈ N and 𝜀 > 0, there exists a function
ℎ𝜀 = ℎ𝑑,𝜀 : N→ (0,∞) with ℎ𝜀 (𝑟) → 0 as 𝑟 →∞ such that

P𝐺𝑝𝑐−𝜀 (𝑜 ↔ 𝑆𝑟) ≤ ℎ𝜀 (𝑟) (3.1.2)

for every 𝐺 ∈ G∗
𝑑

and 𝑟 ≥ 1.

These two reformulations are trivially equivalent to one another (the difference amounts to consider-
ing either ℎ𝜀 (𝑛) or its inverse), but we find the two different viewpoints on the same statement to be
illuminating: the first is formulated in terms of a “finite-size criterion for not being very subcritical”
while the second is formulated in terms of “uniform estimates on subcritical percolation”. In either
formulation, the 𝜀 = 0 analogue of the same statement would imply both the locality conjecture and
a strengthened, “uniform in 𝐺” version of the conjecture concerning the continuity of the phase
transition; this is precisely what the arguments of [Hut20a; HH21a] establish for the classes of
graphs they consider. (In fact this uniform version of continuity is implied by locality together with
the non-uniform version of continuity by a simple compactness argument.) This suggests a close
connection between the two problems, while the freedom to use “sprinkling” (i.e., to increase 𝑝 by
small amounts in an appropriate manner) may make locality significantly more tractable.

Let us now briefly explain why Reformulation 1 is equivalent to the locality conjecture (or more
accurately to the upper semi-continuity of 𝑝𝑐, which is the difficult part of locality). In one direction,
suppose that 𝐺𝑛 → 𝐺 and that 𝑝 > 𝑝𝑐 (𝐺). Since 𝑝 > 𝑝𝑐 (𝐺), the connection probability P𝐺𝑝 (𝑜 ↔
𝑆𝑟) does not decay as 𝑟 →∞. Since for each fixed 𝑟 we also have that P𝐺𝑛𝑝 (𝑜 ↔ 𝑆𝑟) = P𝐺𝑝 (𝑜 ↔ 𝑆𝑟)
for every sufficiently large 𝑛 by the definition of local convergence, we may apply Reformulation 1
with 𝜀 = P𝐺𝑝 (𝑜 ↔ ∞) > 0 and 𝛿 an arbitrary positive number to deduce that 𝑝𝑐 (𝐺𝑛) ≤ 𝑝 + 𝛿
for all sufficiently large 𝑛. This implies the desired upper semi-continuity since 𝑝 > 𝑝𝑐 (𝐺) and
𝛿 > 0 were arbitrary. In the other direction, suppose that Reformulation 1 is false, so that there
exists 𝑑 ∈ N, 𝜀 > 0, and 𝛿 > 0 such that for each 𝑟 ≥ 1 there exists 𝐺𝑟 ∈ G∗𝑑 and 𝑝𝑟 ∈ [0, 1] with
𝑝𝑐 (𝐺𝑟) ≥ 𝑝𝑟 + 𝜀 and P𝐺𝑟𝑝 (𝑜 ↔ 𝑆𝑟) ≥ 𝛿. Since G∗

𝑑
is compact, there exists a subsequence along

which 𝐺𝑟 converges locally to some transitive graph 𝐺 ∈ G∗
𝑑

and 𝑝𝑟 converges to some 𝑝 ∈ [0, 1],
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which must satisfy P𝐺𝑝 (𝑜 ↔ 𝑟) ≥ 𝛿 for every 𝑟 ≥ 1 and hence that 𝑝𝑐 (𝐺) ≤ 𝑝. Since the lim
inf of 𝑝𝑐 (𝐺𝑟) along this subsequence is at least 𝑝 + 𝜀 we deduce that 𝑝𝑐 is not continuous on G∗,
completing the proof of the equivalence.

Remark 3.1.4. The lower semi-continuity of 𝑝𝑐 follows by a very similar argument to the deduction
of upper semi-continuity from Reformulation 1 that we just gave, but where the relevant finite-size
criteria or uniform bounds follow easily from standard facts about the sharpness of the phase
transition: The argument of [DT16a] is formulated in terms of finite-size criteria for subcriticality,
while that of [Pet] is formulated in terms of uniform bounds on supercritical percolation.

Remark 3.1.5. Although the perspective on the locality problem we have just discussed is highly
influential on our approach, we will in fact follow a slightly different approach in order to circumvent
some technical problems related to estimating the “burn-in”, i.e., the amount of sprinkling needed
to perform the base case of our multi-scale induction scheme. As such, we do not obtain an explicit
function ℎ𝜀 as in Reformulation 2 in this paper. The additional steps required to make our argument
completely quantitative and obtain an explicit bound on the function ℎ𝜀 will be carried out in a
forthcoming companion paper [EH23+b].

A non-trivial reformulation. Let us now begin to go into more detail about our methods of proof.
As discussed above, the results of [Hut20a; Hut20e] completely resolve the nonunimodular case
of the conjecture, and since the spaceU∗ is both closed and open in G∗ we may restrict from now
on to the case that all graphs are unimodular. In this case, the sharpness of the phase transition
[Men86; AB87a; DT16a] together with the methods of [Hut20a] allow us to further reformulate
Theorem 8.1.1 as follows.

Reformulation of the locality conjecture 3. For all 𝑑 ∈ N and all 𝜀, 𝛿 > 0, there exists 𝑛 ∈ N

such that
min
𝑢,𝑣∈𝐵𝑛

P𝑝 (𝑢 ↔ 𝑣) ≥ 𝜀 =⇒ lim
𝑚→∞

1
𝑚

logP𝑝+𝛿 (𝑜 ↔ 𝑆𝑚) = 0

for every 𝐺 ∈ U∗
𝑑

and 𝑝 ∈ [0, 1].

The fact that we can replace the statement that 𝜃 (𝑝 + 𝛿) > 0 appearing on the right hand side of
Reformulation 1 with the statement that the radius has a subexponential tail appearing on the right
hand side of Reformulation 3 follows directly from the sharpness of the phase transition [Men86;
AB87a; DT16a], which implies that the radius has an exponential tail whenever 𝑝 < 𝑝𝑐. (This
does not require unimodularity.) The fact that we can replace the lower bound on the tail of the
radius appearing on the left hand side of Reformulation 1 with the lower bound on point-to-point
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connection probabilities appearing on the left hand side of Reformulation 3 is a much less obvious3

fact and is the main content of [Hut20a]. (Indeed, in the exponential growth setting studied in
[Hut20a], a uniform upper bound on critical point-to-point connection probabilities was already
established in [Hut16].) The argument needed to see that Reformulation 3 implies Theorem 8.1.1
is explained in more detail in Sections 3.2 and 3.3.

Sprinkled renormalization of the two-point function. We now explain our unconditional proof4

of Reformulation 3, which occupies the bulk of the paper. At a very high level, we will use a
“sprinkled multi-scale induction argument”, in which we start with estimates concerning percolation
on some scale and deduce similar estimates at a much larger scale after increasing 𝑝 by some
appropriately small amount; if we can do this efficiently enough, so that the total sprinkling is
small when we start at a large scale, we can carry the induction up to infinitely many scales and
(hopefully) prove that the resulting slightly larger parameter is supercritical (or at least that it is not
subcritical).

Since our actual induction hypothesis is rather complicated, let us first illustrate how such an
argument might work in principle. Let 𝑑 ≥ 1 be fixed and suppose that we were able to prove an
implication of the form

min
𝑢,𝑣∈𝐵𝑛

P𝐺𝑝 (𝑢 ↔ 𝑣) ≥ 𝛿(𝑛) =⇒ min
𝑢,𝑣∈𝐵𝜙 (𝑛)

P𝐺
𝑝+𝜀(𝑛) (𝑢 ↔ 𝑣) ≥ 𝜂(𝑛) (3.1.3)

held for all 𝐺 ∈ U∗
𝑑
, 𝑝 ∈ [0, 1], and 𝑛 ≥ 1, where 𝜙 : N → N is strictly increasing and

𝜀, 𝛿, 𝜂 : N→ (0, 1] are decreasing. We claim that such an implication would suffice to prove locality
provided that sufficiently strong quantitative relationships hold between the various functions that
appear. For example, the argument would work provided that 𝜂(𝑛) ≥ 𝛿(𝜙(𝑛)), that 𝛿(𝑛) is
subexponentially small as a function of 𝑛, and that

∑∞
𝑘=0 𝜀(𝜙𝑘 (𝑛)) < ∞, where 𝜙𝑘 denotes the 𝑘-

fold convolution of 𝜙. (Consider for example 𝜙(𝑛) = (𝑛+1)2, 𝛿(𝑛) = (log 𝑛)−1, 𝜂(𝑛) = (2 log 𝑛)−1,
and 𝜀(𝑛) = (log log 𝑛)−2.) To see this, note that if we define the sequence (𝑛𝑘 )𝑘≥1 by 𝑛0 = 1 and
𝑛𝑘+1 = 𝜙(𝑛𝑘 ) for each 𝑘 ≥ 1 then, under this assumption, the implication (3.1.3) implies that

min
𝑢,𝑣∈𝐵𝑛𝑘

P𝐺𝑝 (𝑢 ↔ 𝑣) ≥ 𝛿(𝑛𝑘 ) =⇒ min
𝑢,𝑣∈𝐵𝑛𝑘+1

P𝐺
𝑝+𝜀(𝑛𝑘) (𝑢 ↔ 𝑣) ≥ 𝛿(𝑛𝑘+1)

3Indeed, unlike the tail of the radius, it is possible that point-to-point connection probabilities continue to decay
in the supercritical regime, as is the case on the 3-regular tree. This breaks the argument that Reformulation 1 implies
Theorem 8.1.1 that we gave above.

4As discussed in Remark 3.1.5, we do not quite proceed via Reformulation 3 in order to circumvent certain
technical obstacles. Despite these caveats, we still think of our argument to be best understood as “morally” going via
Reformulation 3, which in any case is implied by Theorem 8.1.1.
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and hence by induction that

min
𝑢,𝑣∈𝐵𝑛𝑘

P𝐺𝑝 (𝑢 ↔ 𝑣) ≥ 𝛿(𝑛𝑘 ) for some 𝑘 ≥ 1

=⇒ min
𝑢,𝑣∈𝐵𝑛𝑖

P𝐺
𝑝+∑𝑖−1

𝑗=𝑘 𝜀(𝑛 𝑗 )
(𝑢 ↔ 𝑣) ≥ 𝛿(𝑛𝑘+1) for every 𝑖 ≥ 𝑘.

Since the conclusion on the right hand side implies that connection probability are subexponential
in the distance at 𝑝+∑∞𝑗=𝑘 𝜀(𝑛 𝑗 ), it would follow from (3.1.3) that if min𝑢,𝑣∈𝐵𝑛𝑘 P

𝐺
𝑝 (𝑢 ↔ 𝑣) ≥ 𝛿(𝑛𝑘 )

for some 𝑘 then 𝑝𝑐 ≤ 𝑝 +
∑∞
𝑗=𝑘 𝜀(𝑛 𝑗 ). The assumption that

∑∞
𝑗=0 𝜀(𝑛 𝑗 ) ensures that the tail sum

appearing here is small, verifying Reformulation 3.

Following this approach, we are led to the problem of how to extend point-to-point connection
lower bounds from one scale to a much larger scale after sprinkling by a small amount. More
specifically, we want to do this as efficiently as possible, with the hope of obtaining an inductive
statement that is sufficiently strong to imply locality.

Snowballing. In Section 3.4, we develop a new method based on Talagrand’s theory of sharp
thresholds [Tal94] and “cluster repulsion” inequalities inspired by the work of Aizenman-Kesten-
Newman [AKN87b] that allows us to prove a bootstrapping implication of the form (3.1.3), where
the function 𝜙 depends on the volume of the ball of radius 𝑛. While the basic idea of using
Talagrand together with Aizenman-Kesten-Newman is already present in [DKT21; CMT22] (both
in the polynomial growth case), we find a new way of both implementing and applying5 this
argument using ghost fields that works directly in infinite volume and uses the two-ghost inequality
of [Hut20a] rather than the classical Aizenman-Kesten-Newman inequality. We call this the
snowballing method. While the methods of [DKT21; CMT22] needed upper bounds on the
growth to work, our method actually becomes more efficient as the growth gets larger; if the growth
is large enough, the bootstrapping implication we obtain (which is of the form (3.1.3)) is strong
enough to prove locality by the argument outlined above. Optimizing the snowballing argument
as much as we could (see Remark 3.4.5), we found that this method could prove locality for graph
sequences satisfying a uniform growth lower bound of the form 𝑛𝑐(log log 𝑛)𝐶 for some universal
constant 𝐶 and any 𝑐 > 0.

For Cayley graphs, the hypothesis needed for this argument to work is of course frustratingly close
to the Shalom-Tao bound Gr(𝑛) ≥ exp(𝑐 log 𝑛(log log 𝑛)𝑐) [ST10b], where 𝑐 is a small universal

5In particular, the argument we use to efficiently extend two-point estimates to a higher scale given the outputs of
this sharp threshold argument is also novel.
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constant, which holds for every Cayley graph of superpolynomial growth. Thus, even a modest
improvement to Shalom-Tao or the snowballing argument would allow us to prove locality for all
sequences of superpolynomial growth via this method. Since we were not able to improve either
argument to the required extent (and in any case must also deal with the “diagonal” case of locality),
we will instead attack the locality conjecture in a “pincer movement”, where we push the polynomial
growth methods of [CMT22] to handle all growths that are too slow to be treated by the snowballing
argument. In fact we will push these methods to handle all graphs of quasi-polynomial growth
Gr(𝑛) ≤ exp((log 𝑛)𝐶), so that there is a considerable overlap in the growth regimes handled by the
two methods. As mentioned above, a key technical difficulty is that (as far as we know) the same
graph may oscillate between the two growth regimes infinitely often, so that the two methods must
be harmonized in some way to allow for this.

Chaining via orange peeling. A well-known general approach to efficiently extend connection
lower bounds from one scale to another is by a method we will call chaining. Consider the event
E𝑅 that 𝑆𝑅 ↔ 𝑆10𝑅 and the event U𝑅 that there is at most one cluster intersecting both 𝑆2𝑅 and 𝑆5𝑅.
Suppose we knew that for some large 𝑅 and small 𝜀 > 0,

P𝑝 (E ) ≥ 1 − 𝜀 and P𝑝 (U ) ≥ 1 − 𝜀. (3.1.4)

Then, by Harris’ inequality and a union bound, we could deduce that any pair of vertices 𝑢 and 𝑣
at distance 𝑘𝑅 satisfy

P𝑝 (𝑢 ↔ 𝑣) ≥ min
𝑢′,𝑣′∈𝐵10𝑅

P𝑝 (𝑢′↔ 𝑣′)2 · [1 − 𝑘𝜀] − 𝑘𝜀. (3.1.5)

If we also had a way to use (3.1.5) to deduce a version of (3.1.4) at scale 𝑘𝑅 in place of 𝑅 (possibly
after a small increase of 𝑝), and this argument is sufficiently efficient quantitatively, we might be
able to formulate an inductive argument yielding both connection lower bounds and uniqueness of
annuli crossings at all scales. (Of course such an argument cannot work on e.g. the 3-regular tree.)

This is roughly what is done in [CMT22] (although they consider supercritical percolation, so that
crossing probabilities do not decay a priori), who establish that U𝑅 holds with high probability
when 𝐺 has polynomial growth and 𝑅 → ∞. Their method, which (following [Gri99]) they refer
to as orange peeling6 and is inspired by the earlier work [BT17], relies on knowing a two-point
lower bound within annuli of the form 𝐵𝑅+Δ\𝐵𝑅 for all large 𝑅 and some appropriate Δ(𝑅) ≪ 𝑅.
This information needs to be proven using information at lower scales, so that the argument is a
kind of multi-scale induction or coarse-grained renormalization. The idea is to argue that as two

6We do not completely understand the metaphor; perhaps onion peeling would be more appropriate?
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clusters cross the thick annulus 𝐵5𝑅\𝐵2𝑅, they are very likely to become connected to each other
because they have to cross many disjoint annuli of the form 𝐵𝑅′+Δ\𝐵𝑅′ , and in each such annulus
they have a good probability to become connected to each other after sprinkling. If there are enough
opportunities for any two crossing clusters to merge then all crossing clusters will have merged
by the time they reach the outer sphere. The full argument of [CMT22] is highly technical and
sophisticated, with the discussion in this paragraph presenting only a simplified cartoon version of
some selected parts of their argument.

Working with quasi-polynomial growth. To run the something like the above “orange peeling”
method, it is helpful to know that annuli 𝐵𝑅2\𝐵𝑅1 are in some sense well-connected. For example,
in the setting of [CMT22], the authors used the fact that for any pair of vertices 𝑢, 𝑣 in the exposed
sphere 𝑆∞

𝑅
, which is a certain subset of the usual sphere 𝑆𝑅, there is a path from 𝑢 to 𝑣 that

stays within 𝐵𝑅+Δ\𝐵𝑅−Δ. To prove this they used the structure theory of graphs of polynomial
growth (i.e. the fact that such graphs are finitely presented and are one-ended when they are not
one-dimensional). As such, this method does not easily generalize to other graphs. (Indeed, any
reasonable connectivity-of-annuli statement cannot hold in complete generality — annuli in regular
trees are as poorly connected as sets at a given distance can possibly be.) We will prove that a
weak connectivity property of annuli does hold if we assume that a quasi-polynomial growth upper
bound Gr(𝑅) ≤ exp((log 𝑅)𝐶) holds around the relevant scales. This statement, which we call the
polylog-plentiful tubes condition, says that for any two sets of vertices 𝐴 and 𝐵 crossing a thick
annulus 𝐵3𝑅\𝐵𝑅, we can find many (i.e., at least (log 𝑅)Ω(1)) paths from 𝐴 to 𝐵 that are not too
long (i.e., have length at most 𝑅(log 𝑅)𝑂 (1)) and that are well-separated from each other (i.e., any
two paths in the set have distance at least (log 𝑅)Ω(1)). The proof of this polylog-plentiful tubes
condition will exploit a structure vs. randomness dichotomy, where we use the structure theory
of [EH23d] to handle the low-dimensional case and handle the high-dimensional case by building
the required disjoint tubes using coupled families of random walks. Once this polylog-plentiful
tubes condition is verified, we then show it can be used to push the methods of [CMT22] to handle
graphs of quasi-polynomial growth. (This requires significant technical changes throughout their
entire argument, with the proofs of some intermediate steps being completely different.)

We might hope that the low- and high-growth arguments both imply a common statement similar to
(3.1.3). Unfortunately our induction statement is more involved than this. The issue is that our low-
growth argument works with point-to-point connections within finite sets such as balls and tubes,
while the high-growth argument works directly in infinite volume, and our induction hypothesis
must be able to handle oscillation between these two cases. Our actual induction statement, which
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we explain in detail in Section 3.3, therefore has two parts: a lower bound on the full-space (infinite
volume) two-point function, with no restriction on the geometry of the graph at the relevant scale,
together with a lower-bound on connection probabilities inside tubes that holds only when the
thickness of the tube happens to belong to a quasi-polynomial growth scale. (The length of these
tubes are permitted to be quasi-polynomial in their thickness, so that this estimate tells us not just
about quasi-polynomial growth scales but also many subsequent larger scales.) Thus, we are able to
formulate a multi-scale inductive implication that holds in all growth regimes and is strong enough
to imply Theorem 8.1.1.

Organization and overview
We now outline the structure of the rest of the paper.

Section 2: In this section we review both the classical Aizenman-Kesten-Newman inequality
[AKN87b] and its consequences for the “uniqueness zone” as derived in [CMT22] as well as the
two-ghost inequality of [Hut20a], which is a kind of infinite-volume version of Aizenman-Kesten-
Newman analyzing volumes of clusters rather than their diameters. We also state a useful lemma
of [Hut20a] that applies this inequality and that leads to Reformulation 3 above.

Section 3: In this section we formulate the multi-scale induction framework used to prove locality,
stating the induction step as Proposition 3.3.1. We then explain how this technical proposition
both implies Theorem 8.1.1 and leads to a new proof of 𝑝𝑐 < 1 for transitive graphs that are not
one-dimensional as originally proven in [DGRSY20].

Section 4: In this section we develop a new method of deducing two-point function lower bounds at
a large scale from lower bounds at a smaller scale, which we call snowballing. This is based in part
on an idea already present in [DKT21; CMT22], in which one uses Aizenman-Kesten-Newman
bounds as an input to Talagrand’s sharp threshold theorem [Tal94]. Unlike those works, we use the
two-ghost formulation of Aizenman-Kesten-Newman from [Hut20a] to work directly with volumes
of clusters and prove bounds that hold in arbitrary unimodular transitive graphs; this causes the
inequalities we derive to become vastly more efficient as the growth of the graph gets larger. The
proof of the main snowballing proposition also involves a novel ghost-based chaining argument to
convert this sharp threshold statement into a statement about extending point-to-point connection
probabilities. All the arguments in this section work more efficiently as the growth gets larger, but
still have content in the polynomial growth case. In Section 2.2, we explain how the snowballing
method implies part of the main multi-scale induction step and also easily implies the full locality
conjecture for graphs satisfying a mild superpolynomial growth lower bound. (Here the growth
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assumption is needed only to ensure that the total amount of sprinkling is small when we start at
a large scale and induct up to infinity; no further geometric properties of graphs of high growth
are used.) The tools we develop in Section 2.1 also play an indispensable role in our low-growth
arguments in Section 3.6.

Section 5: In this section we establish deterministic geometric features of transitive graphs of
quasi-polynomial growth (at some scale) that will be used to analyze percolation on these graphs
in Section 3.6. The main question addressed is as follows: how can one harness low — but
not necessarily polynomial — volume growth to establish that annuli are well-connected? Here,
the “well-connectedness” of annuli is made precise via what we call the polylog-plentiful tubes
condition. The proof that the polylog-plentiful tubes condition holds for graphs of quasi-polynomial
growth uses a “structure vs. expansion” dichotomy according to whether the rate of growth on the
relevant scale is low or high dimensional; in the low-dimensional case we employ the structure
theory of [BGT12a; TT21a; EH23d] while in the high-dimensional case we construct large families
of disjoint tubes using certain coupled random walks; the quasi-polynomial growth assumption
is used to ensure that we can couple two walks started at distance 𝑛 to coalesce within distance
𝑛(log 𝑛)𝑂 (1) . (The low dimensional case of the analysis is the only place where we directly use the
fact that our graphs are not one-dimensional, where it is needed to ensure that “exposed spheres”
are well-connected in a certain sense.)

Section 6: Using the polylog-plentiful tubes condition, we run a chaining argument for graphs
of quasi-polynomial growth (on some scale) that is inspired by [CMT22]. Many changes to their
argument are required to deal with this new geometric setting, and our arguments in this section
also make use of the snowballing method developed in Section 3.4. We then use the outputs of this
analysis to complete the proof of the induction step and hence of Theorem 8.1.1.

Section 7: In this section we first briefly sketch how the methods of Section 3.4 can be used to prove
locality of the density of the infinite cluster in the supercritical phase; a significant generalization
of this result is proven in full detail (via a different method) in our forthcoming paper [EH23+a].
We finish by discussing some open problems in Section 3.7.

3.2 Cluster repulsion and the a priori uniqueness zone
In this section we review various bounds on the probability that two large clusters either meet
at a single edge or both intersect a small ball, together with some important consequences of
these inequalities. These inequalities originate inexplicitly in the work of Aizenman, Kesten, and
Newman [AKN87b] and were brought to the wider attention of the community in the work of Cerf
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[Cer15]. These inequalities come in two flavours: finite-volume estimates that work with the radii
of clusters, and infinite-volume estimates that work with the volume of clusters. The first kind of
inequality, which is closer to the original vision of [AKN87b; Cer15], works best under a low-
growth assumption and plays an important role in Contreras, Martineau, and Tassion’s analysis of
percolation on transitive graphs of polynomial growth [CMT22; CMT23a], while the second kind
of inequality, introduced in [Hut20a] and known as two-ghost inequalities, become more useful the
faster the graph grows. We will also review the argument of [Hut20a] which allows us to deduce
locality of 𝑝𝑐 from uniform bounds on the two-point function using the two-ghost inequality.

Aizenman-Kesten-Newman and the a priori uniqueness zone
We now review the finite-volume Aizenman-Kesten-Newman inequality as presented in [Cer15;
CMT22].

Finite-volume two-arm estimates. Given 𝑚, 𝑛 ∈ (0,∞) with 𝑚 ≤ 𝑛, we define Piv[𝑚, 𝑛] to be
the event that there exist two distinct clusters in 𝜔 ∩ 𝐵𝑛 that each intersect both spheres 𝑆𝑛 and 𝑆𝑚.
(That is, Piv[𝑚, 𝑛] is the event that there is more than one cluster crossing the annulus from 𝑚 to
𝑛.) The following lemma is a minor variation on [CMT22, Proposition 4.1].

Proposition 3.2.1. For each 0 < 𝜀 < 1/2, 0 < 𝜂 < 1, and 𝑑 ≥ 1 there exists a constant
𝐶 = 𝐶 (𝜀, 𝜂, 𝑑) such that if 𝐺 is a connected, transitive graph of vertex degree 𝑑 then

P𝑝 (Piv[1, 𝑛]) ≤ 𝐶
[
log Gr(𝑛)

𝑛

] 1
2−𝜀

,

for every 𝑝 ∈ [𝜂, 1] and 𝑛 ≥ 1.

To deduce this proposition from the proof of [CMT22, Proposition 4.1], we will require the
following elementary fact about the growth of balls. Here 𝜕𝐵𝑚 (𝑜) denotes the set of edges that
have one endpoint in 𝐵𝑚 (𝑜) and the other endpoint in the complement of 𝐵𝑚 (𝑜).

Lemma 3.2.2. For each 𝑑 ≥ 1 there exists a constant 𝐶𝑑 such that the following holds. Let 𝐺 be
a graph of maximum vertex degree at most 𝑑, and let 𝑜 be a vertex of 𝐺. For each integer 𝑛 ≥ 1
there exists an integer 𝑛 ≤ 𝑚 ≤ 2𝑛 − 1 such that

|𝜕𝐵𝑚 (𝑜) |
|𝐵𝑚 (𝑜) |

≤ 𝐶𝑑
𝑛

log |𝐵2𝑛 (𝑜) | .

Proof of Lemma 3.2.2. Write Gr(𝑚) := |𝐵𝑚 (𝑜) | for every 𝑚 ∈ N. Since 𝐺 has vertex de-
grees bounded above by 𝑑, we have that |𝜕𝐵𝑚 (𝑜) | ≤ 𝑑 (Gr(𝑚 + 1) − Gr(𝑚)) and hence that
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|𝜕𝐵𝑚 (𝑜) | /Gr(𝑚) ≤ 𝑑 (Gr(𝑚 + 1)/Gr(𝑚) − 1). It follows that
2𝑛−1∑︁
𝑚=𝑛

|𝜕𝐵𝑚 (𝑜) |
|𝐵𝑚 (𝑜) |

≤ 𝑑
2𝑛−1∑︁
𝑚=𝑛

(
Gr(𝑚 + 1)

Gr(𝑚) − 1
)
.

Now, since we also have that Gr(𝑚+1)
Gr(𝑚) ≤ 𝑑, there exists a constant 𝐶 = 𝐶𝑑 such that

Gr(𝑚 + 1)
Gr(𝑚) − 1 ≤ 𝐶𝑑 log

Gr(𝑚 + 1)
Gr(𝑚)

for every 𝑚 ≥ 0. As such, it follows that
2𝑛−1∑︁
𝑚=𝑛

|𝜕𝐵𝑚 (𝑜) |
|𝐵𝑚 (𝑜) |

≤ 𝑑𝐶𝑑
2𝑛−1∑︁
𝑚=𝑛

log
Gr(𝑚 + 1)

Gr(𝑚) = 𝑑𝐶𝑑 log
Gr(2𝑛)
Gr(𝑛)

which is easily seen to imply the claim. □

Proof of Proposition 3.2.1. This follows by exactly the same proof as [CMT22, Proposition 4.1]
except that we use our Lemma 3.2.2 instead of their Lemma 4.2 (which is the same estimate
specialized to the polynomial growth setting). □

The a priori uniqueness zone. We now discuss how two-arm bounds at a single edge can be used
to deduce bounds on the probability of having multiple clusters crossing an annulus. The following
lemma, essentially due to Cerf [Cer15], lets us apply Proposition 3.2.1 to bound the probability
that there are two distinct crossings of an annulus.

Lemma 3.2.3 ([CMT22, Lemma 6.2]). Let 𝐺 be a connected transitive graph. Then

P𝑝
(
Piv[𝑟, 𝑛]

)
≤ P𝑝

(
Piv[1, 𝑛/2]

)
· |𝑆𝑟 |2 · Gr(𝑚)

min𝑎,𝑏∈𝑆𝑟 P𝑝
(
𝑎

𝐵𝑚←−→ 𝑏
) (3.2.1)

for every 𝑟, 𝑚, 𝑛 ∈ (1,∞) with 𝑟 ≤ 𝑚 ≤ 𝑛/2 and every 𝑝 ∈ (0, 1).

Remark 3.2.1. The authors of [CMT22] stated this lemma in their context of infinite graphs with
polynomial growth. However, their proof works exactly the same for arbitrary connected transitive
graphs. (The statement given in [CMT22] has 𝐵2𝑚 in place of 𝐵𝑚 — which is slightly stronger —
but this appears to be a typo.)

Since any geodesics from 𝑜 to two vertices 𝑎, 𝑏 ∈ 𝐵𝑚 are both open with probability at least 𝑝2𝑚 and
the growth satisfies the trivial upper bound Gr(𝑚) ≤ 𝑑𝑚+1, the quantity multiplying the probability
P𝑝

(
Piv[1, 𝑛/2]

)
on the right hand side of (3.2.1) is at most exponential in 𝑚 when 𝑝 is bounded

away from 0. Proposition 3.2.1 and Lemma 3.2.3 therefore have the following immediate corollary.
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Corollary 3.2.4 (Trivial a priori uniqueness zone). Let 𝐺 be a connected, unimodular transitive
graph with vertex degree 𝑑 and let 𝜀, 𝜂 ∈ (0, 1). There exist positive constants 𝑐 = 𝑐(𝑑, 𝜂, 𝜀),
𝐶 = 𝐶 (𝑑, 𝜂, 𝜀), and 𝑛0 = 𝑛0(𝑑, 𝜂, 𝜀) such that

P𝑝
(
Piv[𝑐 log 𝑛, 𝑛]

)
≤ 𝐶

[
log Gr(𝑛)

𝑛

]1/2−𝜀

for every 𝑛 ≥ 𝑛0 and 𝑝 ∈ [𝜂, 1].

In other words, if𝐺 has subexponential growth then the probability of having two distinct crossings
of the annulus from 𝑐 log 𝑛 to 𝑛 is always small for an appropriately small constant 𝑐. (The restriction
that 𝑝 is small could be removed by noting that it is very unlikely for there to be any crossings of
the annulus when 𝑝 ≤ 1/𝑑.)

The two-ghost inequality
We now recall the two-ghost inequality of [Hut20a], a form of the Aizenman-Kesten-Newman
bound that holds for any unimodular transitive graph, without any growth assumptions. (This
version of the bound does not imply uniqueness of the infinite cluster since it requires at least one
of the clusters to be finite.) Let 𝐺 = (𝑉, 𝐸) be a graph. For each edge 𝑒 of 𝐺 and 𝑛 ≥ 1 we define
S𝑒,𝑛 to be the event that 𝑒 is closed and that the endpoints of 𝑒 are in distinct clusters, each of which
has volume at least 𝑛 and at least one of which is finite.

Theorem 3.2.5 (Two-ghost inequality). Let 𝐺 be a unimodular transitive graph of degree 𝑑. There
exists a constant 𝐶𝑑 such that

P𝑝 (S𝑒,𝑛) ≤ 𝐶𝑑
[
1 − 𝑝
𝑝𝑛

]1/2
(3.2.2)

for every 𝑒 ∈ 𝐸 (𝐺), 𝑝 ∈ (0, 1] and 𝑛 ≥ 1.

Proof. This is an immediate consequence of [Hut20a, Corollary 1.7]: The statement given there
concerns the edge volume rather than the vertex volume, but this only makes the statement stronger.

□

Theorem 3.2.5 has the following useful consequence concerning the probability that two large
distinct clusters come close to one another; this lets us convert bounds on the two-point function
into bounds on the tail of the volume and underlies the fact that Reformulation 3 implies the
unimodular case of Theorem 8.1.1.
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Lemma 3.2.6. Let 𝐺 be an infinite, connected, unimodular transitive graph with vertex degree 𝑑.
There exists a constant 𝐶𝑑 such that

P𝑝 ( |𝐾𝑢 | ≥ 𝑛 and |𝐾𝑣 | ≥ 𝑛 but 𝑢 ↮ 𝑣) ≤ 𝐶𝑑 · 𝑑 (𝑢, 𝑣)𝑝−𝑑 (𝑢,𝑣)−1𝑛−1/2,

for every 𝑢, 𝑣 ∈ 𝑉 (𝐺), 𝑛 ≥ 1, and 𝑝 < 𝑝𝑐 (𝐺).

Proof. This follows from Theorem 3.2.5 by the same argument used to prove equation (4.2) of
[Hut20a]. (Again, the only difference is that we are using vertex volumes rather than edge volumes.)
The quantity 𝑑 (𝑢, 𝑣)𝑝−𝑑 (𝑢,𝑣)−1 arises as a simple upper bound on ((1 − 𝑝)/𝑝)1/2 ∑𝑑 (𝑢,𝑣)

𝑖=1 𝑝−𝑖+1. □

3.3 The multi-scale induction step
In this section we state our key technical proposition, Proposition 3.3.1, which encapsulates the
multi-scale induction used to prove Theorem 8.1.1. We introduce relevant definitions in Section 3.3,
give the statement of the proposition in Section 3.3, and explain how it implies our main theorem
in Section 3.3. In Section 3.3 we also explain how Proposition 3.3.1 yields a new proof of the fact
that 𝑝𝑐 < 1 for all infinite, connected, transitive graphs that are not one-dimensional.

Definitions
In this section we establish the notation necessary to state the main multi-scale induction proposition
in Section 3.3.

Natural coordinates for sprinkling. We define the sprinkling function Spr : (0, 1) ×R→ (0, 1)
by

Spr(𝑝;𝜆) = 1 − (1 − 𝑝)𝑒𝜆 so that (1 − Spr(𝑝;𝜆)) = (1 − 𝑝)𝑒𝜆 .

The sprinkling functions (Spr( · ;𝜆))𝜆∈R form a semigroup in the sense that

Spr(𝑝;𝜆 + 𝜇) = Spr(Spr(𝑝;𝜆); 𝜇)

for every 𝜆, 𝜇 ∈ R and 𝑝 ∈ (0, 1). For each 0 < 𝑝, 𝑞 < 1 we define

𝛿(𝑝, 𝑞) = log
[
log(1 −max{𝑝, 𝑞})
log(1 −min{𝑝, 𝑞})

]
, so that max{𝑝, 𝑞} = Spr(min{𝑝, 𝑞}; 𝛿(𝑝, 𝑞)).

Note that if 𝑝 ≥ 1/𝑑, as we will assume throughout most of the paper, then for each 𝐷 < ∞ there
exists a positive constant 𝑐 = 𝑐(𝑑, 𝐷) such that

(1 − Spr(𝑝; 𝛿)) = (1 − 𝑝)𝑒𝛿−1(1 − 𝑝) ≤
(
2𝑑 − 1

2𝑑

)𝛿
(1 − 𝑝) ≤ (1 − 𝑐𝛿) (1 − 𝑝) (3.3.1)
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for every 0 ≤ 𝛿 ≤ 𝐷, so that Bernoulli bond percolation with parameter Spr(𝑝; 𝛿) stochastically
dominates the independent union of a Bernoulli-𝑝 bond percolation configuration and a Bernoulli-
(𝑐𝛿) bond percolation configuration. (Note however that 1 − Spr(𝑝; 𝛿) is much smaller than
(1 − 𝑐𝛿) (1 − 𝑝) when 𝑝 is close to 1.)

The corridor function. Given a path 𝛾, we write len(𝛾) for its length. Given a path 𝛾 and some
𝑟 ∈ (0,∞), we define 𝐵𝑟 (𝛾) :=

⋃len(𝛾)
𝑖=0 𝐵𝑟 (𝛾𝑖), and call a set of this form a tube. We refer to len(𝛾)

and 𝑟 as the length and thickness of the tube respectively. (Note that these parameters depend
on the choice of representation of the tube 𝐵𝑟 (𝛾), and are not determined by the tube as a set of
vertices.) Following [CMT22], we define the corridor function by

𝜅𝑝 (𝑚, 𝑛) := inf
𝛾:len(𝛾)≤𝑚

P𝑝
(
𝛾0

𝐵𝑛 (𝛾)←−−→ 𝛾len(𝛾)
)

for each 𝑝 ∈ (0, 1) and 𝑛, 𝑚 ≥ 1, so that 𝜅𝑝 (𝑚, 𝑛) measures the difficulty of connecting points
within tubes of thickness 𝑛 and length at most 𝑚. We may also take 𝑛 = ∞ in the definition of
the corridor function, where the restriction for connections to lie in a tube disappears and we have
simply that

𝜅𝑝 (𝑚,∞) = 𝜅𝑝 (𝑚) = inf{P𝑝 (𝑥 ↔ 𝑦) : 𝑑 (𝑥, 𝑦) ≤ 𝑚}.

Note that the corridor function 𝜅𝑝 (𝑚, 𝑛) is increasing in 𝑝 and 𝑛 and decreasing in 𝑚.

Low growth scales. Given a transitive graph 𝐺 and a parameter 𝐷 > 0, we define the set of low
growth scales to be

L (𝐺, 𝐷) =
{
𝑛 ≥ 1 : log Gr(𝑚) ≤ (log𝑚)𝐷 for all 𝑚 ∈ [𝑛1/3, 𝑛]

}
,

so that {
𝑛 ≥ 1 : log Gr(𝑛) ≤ 3−𝐷 (log 𝑛)𝐷

}
⊆ L (𝐺, 𝐷) ⊆

{
𝑛 ≥ 1 : log Gr(𝑛) ≤ (log 𝑛)𝐷

}
.

(We will sometimes call these quasi-polynomial growth scales since the function exp[(log 𝑥)𝐶]
is sometimes known as a quasi-polynomial.) For the purposes of the proof of the main theorem,
we will apply this definition only with the (somewhat arbitrary) choice of constant 𝐷 = 20.

The burn-in sprinkle. The first step of our induction will have a different form to the others,
which necessitates a possibly larger amount of sprinkling. We now introduce notation describing
this initial amount of sprinkling. Given a transitive graph 𝐺, 𝑝 ∈ (0, 1), and 𝑚 ≥ 1 define

𝑏(𝑚) = 𝑏(𝑚, 𝑝) = max
{
𝑏 ∈ N : 1 ≤ 𝑏 ≤ 1

8
𝑚1/3 and P𝑝 (Piv[4𝑏, 𝑚1/3]) ≤ (log𝑚)−1

}
,
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setting 𝑏(𝑚) = 0 if the set being maximized over is empty, and define the burn-in to be

Burn(𝑛, 𝑝) = Burn(𝐺, 𝑛, 𝑝)

= max

{(
log log𝑚

min{log𝑚, log Gr(𝑏(𝑚))}

)1/4
: 𝑚 ∈ L (𝐺, 20) ∩

[
(log 𝑛)1/2, 𝑛

]}
,

setting Burn(𝑛, 𝑝) = 0 if the set being maximized over is empty and setting Burn(𝑛, 𝑝) = ∞ if
there exists 𝑚 belonging to the set for which 𝑏(𝑚) ≤ 1. (If 𝑏(𝑚) > 1 then log Gr(𝑏(𝑚)) and
log𝑚 are both positive.) Note that Burn(𝐺, 𝑛, 𝑝) is determined by the ball of radius 𝑛 in 𝐺, so that
two graphs whose balls of this radius are isomorphic have the same value of Burn(𝑛, 𝑝) for each
𝑝 ∈ (0, 1).

Statement of the induction step
We are now ready to state our main multi-scale induction proposition. We recall that, when applied
to logical propositions, the symbol “∨” means “or” while the symbol “∧” means “and”. The
condition 𝑛0 ≥ 16 appearing in the proposition ensures that log log 𝑛0 ≥ 1.

Proposition 3.3.1 (The main multi-scale induction step). For each 𝑑 ∈ N there exist constants
𝐾 = 𝐾 (𝑑) and 𝑁 = 𝑁 (𝑑) ≥ 16 such that the following holds. Let 𝐺 be an infinite, connected,
unimodular transitive graph with vertex degree 𝑑 that is not one-dimensional, let 𝑝0 ∈ (0, 1), and
let 𝑛0 ≥ 16. Let 𝑛−1 = (log 𝑛0)1/2, let

𝛿0 =
1

(log log 𝑛0)1/2
+ 𝐾 · Burn(𝑛0, 𝑝0),

define sequences (𝑛𝑖)𝑖≥1 and (𝛿𝑖)𝑖≥1 recursively by

𝑛𝑖 := exp((log 𝑛𝑖−1)9) = exp◦3
(
log◦3(𝑛0) + 𝑖 log 9

)
and 𝛿𝑖 := (log log 𝑛𝑖)−1/2 = 3−𝑖 (log log 𝑛0)−1/2,

and let (𝑝𝑖)𝑖≥1 be an increasing sequence of probabilities satisfying 𝑝𝑖+1 ≥ Spr(𝑝𝑖; 𝛿𝑖) for each
𝑖 ≥ 0. For each 𝑖 ≥ 0 define the statement

Full-Space(𝑖) =
(
P𝑝𝑖 (𝑢 ↔ 𝑣) ≥ exp

[
−(log log 𝑛𝑖)1/2

]
for all 𝑢, 𝑣 ∈ 𝐵𝑛𝑖

)
and for each 𝑖 ≥ 1 define the statement

Corridor(𝑖) =
(
𝜅𝑝𝑖 (𝑒 [log𝑚]10

, 𝑚) ≥ exp
[
−(log log 𝑛𝑖)1/2

]
for every 𝑚 ∈ L (𝐺, 20) ∩ [𝑛𝑖−2, 𝑛𝑖−1]

)
.
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If 𝑛0 ≥ 𝑁 , 𝑝0 ≥ 1/𝑑, and 𝛿0 ≤ 1 then the implications

Full-Space(0) =⇒
[
Corridor(1) ∨ (𝑝1 ≥ 𝑝𝑐)

]
, (C0)[

Full-Space(𝑖) ∧
𝑖∧
𝑘=1

Corridor(𝑘)
]
=⇒

[
Corridor(𝑖 + 1) ∨ (𝑝𝑖+1 ≥ 𝑝𝑐)

]
, and (C)[

Full-Space( 𝑗) ∧ Corridor( 𝑗 + 1)
]
=⇒

[
Full-Space( 𝑗 + 1) ∨ (𝑝 𝑗+1 ≥ 𝑝𝑐)

]
(F)

hold for every 𝑖 ≥ 1 and 𝑗 ≥ 0.

Remark 3.3.1. Note that Corridor(1) has a significantly different form than Corridor(𝑖) for 𝑖 ≥ 2
since 𝑛−1 is much smaller than the natural extrapolation of the sequence (𝑛𝑖)𝑖≥0 to 𝑖 = −1.

Remark 3.3.2. The condition 𝑝 ≥ 1/𝑑 appearing in the hypotheses of Proposition 3.3.1 is in fact
redundant: An elementary path counting argument yields that

P𝑝 (𝑢 ↔ 𝑣) ≤ P𝑝 (there is a simple open path of length at least 𝑑 (𝑢, 𝑣) starting from 𝑢)

≤ 𝑑

𝑑 − 1
· 1

1 − 𝑝(𝑑 − 1) · (𝑝(𝑑 − 1))𝑑 (𝑢,𝑣)

for every 𝑝 < 1/(𝑑−1) and 𝑢, 𝑣 ∈ 𝑉 (𝐺), so that if 𝑛0 is sufficiently large and Full-Space(0) holds
then 𝑝 ≥ 1/𝑑. We include this redundant assumption anyway to clarify the structure of the proof.

Remark 3.3.3. In the statement Corridor(𝑖), the tubes that arise in the relevant corridor function
𝜅𝑝𝑖 (𝑒 [log𝑚]10

, 𝑚) have thickness given by the low-growth scale 𝑚, but can have length equal to
the much larger value 𝑒 [log𝑚]10 . As such, the statement Corridor(𝑖) gives us strong control of
percolation not just at low-growth scales but at a large range of scales above each low-growth scale.
In particular, provided 𝑛𝑖 is sufficiently large that 𝑒 [log(𝑛1/3

𝑖
)]10 ≥ 𝑒(log 𝑛𝑖)9 = 𝑛𝑖+1, the implication (F)

holds trivially whenever 𝑛𝑖 ∈ L (𝐺, 20).

Remark 3.3.4. The “∨(𝑝𝑖+1 ≥ 𝑝𝑐)” that appears on the right hand side of the implications (C0),
(C), and (F) can be removed if one assumes that 𝐺 is amenable, or if one works with "wired"
connections as discussed in Section 3.7. This would be useful if one wished to use (a modification
of) our methods to study the geometry of the infinite cluster in graphs of low growth, extending the
results of [CMT22; Hut23b] to this setting.

Most of the paper is dedicated to proving Proposition 3.3.1: The implication (F) is proven in
Section 3.4 while the implications (C0) and (C) are proven in Sections 3.5 and 3.6.
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Deduction of the main theorem from the induction step
In this section we deduce our main theorem, Theorem 8.1.1, from Proposition 3.3.1. We write
𝑝∞ = lim𝑖→∞ 𝑝𝑖 for the limit of the parameters (𝑝𝑖)𝑖≥0 defined recursively by 𝑝𝑖+1 = Spr(𝑝𝑖; 𝛿𝑖), so
that

𝑝∞ = Spr
(
𝑝0;

∞∑︁
𝑖=0

𝛿𝑖

)
≤ Spr

(
𝑝0; 2(log log 𝑛0)−1/2 + 𝐾 · Burn(𝑛0, 𝑝0)

)
.

We will apply Proposition 3.3.1 via the following corollary, which is a consequence of Proposi-
tion 3.3.1 together with the sharpness of the phase transition.

Corollary 3.3.2. Let 𝑑 ≥ 1 and let𝐾 = 𝐾 (𝑑) and𝑁 = 𝑁 (𝑑) be the constants from Proposition 3.3.1.
Let 𝐺 be an infinite, connected, unimodular transitive graph with vertex degree 𝑑 that is not one-
dimensional. Then the implication( [

P𝑝 (𝑢 ↔ 𝑣) ≥ 𝑒−(log log 𝑛)1/2 for every 𝑢, 𝑣 ∈ 𝐵𝑛
]
∧ [𝛿0 ≤ 1]

)
=⇒

[
𝑝𝑐 (𝐺) ≤ Spr

(
𝑝; 2(log log 𝑛)−1/2 + 𝐾 · Burn(𝑛, 𝑝)

)]
,

holds for every 𝑛 ≥ 𝑁 and 𝑝 ≥ 1/𝑑.

Proof of Corollary 3.3.2 given Proposition 3.3.1. It suffices to prove that 𝑝𝑐 ≤ 𝑝∞whenever 𝑛 ≥ 𝑁
and 𝑝 ≥ 1/𝑑 are such that P𝑝 (𝑢 ↔ 𝑣) ≥ 𝑒−(log log 𝑛)1/2 for every 𝑢, 𝑣 ∈ 𝐵𝑛 and 𝛿0 ≤ 1. Fix one
such 𝑛 and 𝑝. Set 𝑛0 = 𝑛 and define (𝑛𝑖)𝑖≥0 as in Proposition 3.3.1. Since Full-Space(0) holds by
assumption, it follows from Proposition 3.3.1 that either 𝑝𝑖 ≥ 𝑝𝑐 for some 𝑖 ≥ 1 or Full-Space(𝑖)
and Corridor(𝑖) hold for every 𝑖 ≥ 1. In the former case we may trivially conclude that 𝑝𝑐 ≤ 𝑝∞,
while in the latter case we have that

P𝑝∞ (𝑢 ↔ 𝑣) ≥ 𝑒−(log log 𝑛𝑖)1/2 for every 𝑖 ≥ 0 and every 𝑢, 𝑣 ∈ 𝐵𝑛𝑖 . (3.3.2)

On the other hand, it follows from the sharpness of the phase transition [Men86; AB87a] that
for each 𝑝 < 𝑝𝑐 there exists a positive constant 𝑐𝑝 such that P𝑝 (𝑢 ↔ 𝑣) ≤ 𝑒−𝑐𝑝𝑑 (𝑢,𝑣) for every
𝑢, 𝑣 ∈ 𝑉 (𝐺). This is incompatible with the (very) subexponential lower bound (3.3.2), so that
𝑝∞ ≥ 𝑝𝑐 in this case also. □

We now apply Corollary 3.3.2 to prove Theorem 8.1.1. The proof we give here will rely on the
results of both [Hut20a; Hut20e] (to deal with the nonunimodular case) and [CMT22; CMT23a]
(to deal with the case that the limit has polynomial growth). We remark that the quantitative
proof of the theorem given in [EH23+b] yields a completely self-contained and “uniform in the
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graph” deduction of locality from Proposition 3.3.1 in the unimodular case that does not rely on
the results7 of [CMT22; CMT23a]. (Doing this requires non-trivial bounds on the burn-in which
can be avoided in the case that the limit has superpolynomial growth as we will see below.)

Proof of Theorem 8.1.1 given Proposition 3.3.1. Let (𝐺𝑚)𝑚≥1 be a sequence of infinite, connected,
transitive graphs converging locally to some infinite transitive graph𝐺, and suppose that the graphs
𝐺𝑚 all have superlinear growth. We want to prove that 𝑝𝑐 (𝐺𝑚) → 𝑝𝑐 (𝐺). If 𝐺 is nonunimodular
the claim follows from the results of [Hut20a; Hut20e] (specifically [Hut20a, Theorem 5.6]), while
if 𝐺 has polynomial growth the result follows from the main result of [CMT23a]. Thus, we may
assume that 𝐺 is unimodular and has superpolynomial growth. Since the set of nonunimodular
graphs is both closed and open in G [Hut20a, Corollary 5.5], we may assume that the graphs
(𝐺𝑛)𝑛≥1 are all unimodular. We may also assume that the graphs𝐺𝑛 and𝐺 all have the same vertex
degree 𝑑. Let 𝑁1 = 𝑁1(𝑑) and 𝐾 = 𝐾 (𝑑) be the constants from Proposition 3.3.1.

Suppose for contradiction that 𝑝𝑐 (𝐺𝑚) does not converge to 𝑝𝑐 (𝐺). Since 𝑝𝑐 is lower semi-
continuous ([Pet, §14.2] and [DT16a, p.4]), we have that lim inf𝑚→∞ 𝑝𝑐 (𝐺𝑚) ≥ 𝑝𝑐 (𝐺). Thus, by
taking a subsequence, we may assume that inf𝑚≥1 𝑝𝑐 (𝐺𝑚) = 𝑝∗ > 𝑝𝑐 (𝐺). Let 𝑝0 = (𝑝𝑐 (𝐺)+𝑝∗)/2
so that 𝑝𝑐 (𝐺) < 𝑝0 < 𝑝∗. For each 𝑛 ≥ 1, let 𝑚(𝑛) be minimal such that the balls of radius 𝑛 are
isomorphic in 𝐺𝑚 and 𝐺 for all 𝑚 ≥ 𝑚(𝑛). Let 𝑐 > 0 be the constant from Corollary 3.2.4. Since
𝐺 has superpolynomial growth, we have by [Gro81b; Tro84b] that

lim
𝑛→∞

log log 𝑛
log Gr(𝑐 log 𝑛;𝐺) = 0,

where Gr(𝑚;𝐺) denotes the volume of the ball of radius𝑚 in𝐺, and it follows from Corollary 3.2.4
that

lim
𝑛→∞

sup
𝑝∈[1/𝑑,1]

sup
𝑚≥𝑚(𝑛)

Burn(𝐺𝑚, 𝑛, 𝑝) = 0. (3.3.3)

In particular, there exists 𝑁2 ≥ 𝑁1 (depending on the superpolynomial graph 𝐺 and the sequence
(𝐺𝑚)) such that if 𝑛0 ≥ 𝑁2 then (log log 𝑛0)−1/2 + 𝐾 · Burn(𝐺𝑚, 𝑛0, 𝑝0) ≤ 1 and

Spr(𝑝0; 2(log log 𝑛0)−1/2 + 𝐾 · Burn(𝐺𝑚, 𝑛0, 𝑝0)) < 𝑝∗

for every 𝑚 ≥ 𝑚(𝑛0). Thus, it follows from Corollary 3.3.2 that for every 𝑛0 ≥ 𝑁2 and 𝑚 ≥ 𝑚(𝑛0)
there exist vertices 𝑢 and 𝑣 in the ball of radius 𝑛0 in 𝐺𝑚 such that

P𝐺𝑚𝑝0
(𝑢 ↔ 𝑣) < exp

[
−(log log 𝑛0)1/2

]
.

7Of course many of the proof techniques remain closely inspired by these works!
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Applying Lemma 3.2.6, we deduce that there exists a constant 𝐶1 such that

P𝐺𝑚𝑝0
( |𝐾 | ≥ 𝑘)2 ≤ 𝐶1𝑛0𝑝

−2𝑛0
0 𝑘−1/2 + exp

[
−(log log 𝑛0)1/2

]
for every 𝑛0 ≥ 𝑁2, 𝑚 ≥ 𝑚(𝑛0), and 𝑘 ≥ 1. Taking 𝑛0 = ⌈𝑐2 log 𝑘⌉ for an appropriately small
constant 𝑐2 (which makes the first term 𝑂 (𝑘−1/4), say, and hence of lower order than the second
term), it follows that there exist positive constants 𝐶2 and 𝑐3 such that

P𝐺𝑚𝑝0
( |𝐾 | ≥ 𝑘) ≤ 𝐶2 exp

[
−𝑐3(log log log 𝑘)1/2

]
(3.3.4)

for every 𝑛0 ≥ 𝑁2 and 𝑚 ≥ 𝑚(𝑛0). Since 𝑝0 > 𝑝𝑐 (𝐺), the probability P𝐺𝑝0
(𝑜 ↔∞) is positive and

it follows from (3.3.4) there exist 𝑘0 and 𝑚0 such that

P𝐺𝑚𝑝0
( |𝐾 | ≥ 𝑘0) ≤

1
2
P𝐺𝑝0
(𝑜 ↔∞) (3.3.5)

for every𝑚 ≥ 𝑚0. On the other hand, if𝑚 is sufficiently large that balls of radius 𝑘0 are isomorphic
in 𝐺𝑚 and 𝐺 then

P𝐺𝑚𝑝0
( |𝐾 | ≥ 𝑘0) ≥ P𝐺𝑚𝑝0

(𝑜 ↔ 𝐵𝑐𝑘0
) = P𝐺𝑝0

(𝑜 ↔ 𝐵𝑐𝑘0
) ≥ P𝐺𝑝0

(𝑜 ↔∞),

which contradicts the upper bound of (3.3.5). □

Let us now explain how Proposition 3.3.1 yields a new proof of the 𝑝𝑐 < 1 theorem as originally
established in [DGRSY20]. Recall that G∗ is the space of all infinite, connected, transitive graphs
that are not one-dimensional.

Theorem 3.3.3. Every graph 𝐺 ∈ G∗ satisfies 𝑝𝑐 (𝐺) < 1.

Proof of Theorem 3.3.3 given Proposition 3.3.1. If𝐺 has exponential growth then sharpness of the
phase transition easily implies that 𝑝𝑐 ≤ (lim𝑟→∞Gr(𝑟)−1/𝑟) < 1 (see also [Hut16; Lyo95]). Since
every nonunimodular transitive graph is nonamenable and therefore has exponential growth, it
suffices to consider the case that 𝐺 is unimodular. On the other hand, if 𝐺 has polynomial growth,
then it is well-known that 𝑝𝑐 (𝐺) < 1 follows from the fact that 𝑝𝑐 (Z2) < 1 and the structure theory
of transitive graphs of polynomial growth as explained in detail in [HT21a, Section 3.4].

We now consider the case that 𝐺 is unimodular and has superpolynomial growth. Let 𝑑 denote the
vertex degree of 𝐺 and let 𝑁1 = 𝑁1(𝑑) and 𝐾 = 𝐾 (𝑑) be the constants from Proposition 3.3.1. It
follows by the same reasoning as we gave for (3.3.3) that for every 𝜂 > 0 there exists a constant
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𝑀 (𝑑, 𝜂) such that 𝑏(𝑚, 𝑝) ≤ 𝜂 for every 𝑚 ∈ L (𝐺, 20) with 𝑚 ≥ 𝑀 and every 𝑝 ≥ 1/𝑑. Since
we also have trivially that Gr(𝑛) ≥ 𝑛 for every 𝑛 ≥ 1 since 𝐺 is infinite, it follows that there exists
a constant 𝑁2 = 𝑁2(𝑑) such that

(log log 𝑛)−1/2 + 𝐾 · Burn(𝑛, 𝑝) ≤ 1 for every 𝑝 ≥ 1/𝑑 and 𝑛 ≥ 𝑁2. (3.3.6)

Let 𝑛0 = 𝑛0(𝑑) = 𝑁1 ∨ 𝑁2. Since P𝑝 (𝑢 ↔ 𝑣) ≥ 𝑝𝑑 (𝑢,𝑣) for every 𝑢, 𝑣 ∈ 𝑉 and 𝑝 ∈ [0, 1], there
exists a constant

𝑝0 = 𝑝0(𝑑) =
1
𝑑
∨ exp

(
− (log log 𝑛0)1/2

𝑛0

)
satisfying 1/𝑑 ≤ 𝑝0 < 1 such that P𝑝0 (𝑢 ↔ 𝑣) ≥ exp(−(log log 𝑛0)1/2) for every 𝑢, 𝑣 ∈ 𝐵𝑛0 . Since
𝑛0 = 𝑁1 ∨ 𝑁2, it follows from Corollary 3.3.2 and (3.3.6) that

𝑝𝑐 (𝐺) ≤ Spr
(
𝑝0; 2(log log 𝑛0)−1/2 + 𝐾 Burn(𝑛0, 𝑝0)

)
≤ Spr

(
𝑝0; 2

)
.

The claim follows since the right hand side is strictly less than one. □

3.4 Making connections via sharp threshold theory
In this section we describe a powerful new way to extend point-to-point connection lower bounds
from one scale to another, which we call the “snowballing method”. We develop this method
in Section 3.4, then apply it to prove the implication (F) of Proposition 3.3.1 in Section 3.4. In
Section 3.4 we will also explain how the method allows us to conclude the proof of locality for
unimodular graphs satisfying a mild uniform superpolynomial growth assumption.

Snowballing
We now begin to develop the snowballing method. This method is primarily encapsulated through
the following proposition, whose proof is the main goal of this section, but the intermediate lemmas
used in its proof can be used to prove results of indepedent interest as discussed in Section 3.7.
Given (not necessarily finite) non-empty sets of vertices 𝐴, 𝐵, and Λ in a graph 𝐺 = (𝑉, 𝐸) and a
parameter 𝑝 ∈ [0, 1], we define

𝜏Λ𝑝 (𝐴, 𝐵) := min
𝑎∈𝐴
𝑏∈𝐵

P𝑝
(
𝑎

Λ←→ 𝑏

)
,

where we recall that {𝑎 Λ←→ 𝑏} denotes the event that 𝑎 is connected to 𝑏 by an open path all of
whose vertices belong to Λ. We will also write 𝜏Λ𝑝 (𝐴) := 𝜏Λ𝑝 (𝐴, 𝐴) and 𝜏𝑝 (𝐴, 𝐵) := 𝜏𝑉𝑝 (𝐴, 𝐵).
We also use the notion of distance 𝛿(𝑝, 𝑞) between two parameters 𝑝, 𝑞 ∈ (0, 1) as defined in
Section 3.3.
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Proposition 3.4.1 (Snowballing). For each 𝑑 ≥ 1 and 𝐷 < ∞ there exist positive constants
𝑐1 = 𝑐1(𝐷) and ℎ0 = ℎ0(𝑑, 𝐷), and universal positive constants 𝑐2 and 𝑐3 such that the following
holds. Let 𝐺 = (𝑉, 𝐸) be a unimodular transitive graph with vertex degree 𝑑, let 𝐴1, . . . , 𝐴𝑛 be
non-empty sets of vertices in 𝐺, and suppose that 0 < 𝑝1 < 𝑝2 < 1 are such that there is at most
one infinite cluster P𝑝-almost surely for every 𝑝 ∈ [𝑝1, 𝑝2]. Let ℎ ≥ (min𝑖 |𝐴𝑖 |)−1 and let 𝑟 be a
positive integer with ℎ𝑟 ≥ 1 such that P𝑝 (Piv[1, ℎ𝑟]) < ℎ for every 𝑝 ∈ [𝑝1, 𝑝2]. If 𝑝1 ≥ 1/𝑑,
𝛿 = 𝛿(𝑝1, 𝑝2) ≤ 𝐷, and ℎ ≤ ℎ0 then the implication(
ℎ𝑐1𝛿

3 ≤ 𝑐3𝑛
−1 and 𝜏Λ𝑝1

(𝐴𝑖 ∪ 𝐴𝑖+1) ≥ 4ℎ𝑐1𝛿
4

for every 𝑖 = 1, . . . , 𝑛 − 1
)

⇒
(
𝜏
𝐵2𝑟 (Λ)
𝑝2 (𝐴1, 𝐴𝑛) ≥ 𝑐2𝜏

Λ
𝑝1
(𝐴1)𝜏Λ𝑝1

(𝐴𝑛)
)

(3.4.1)

holds for every non-empty set of vertices Λ in 𝐺. In particular, taking Λ = 𝑉 yields the implication(
ℎ𝑐1𝛿

3 ≤ 𝑐3𝑛
−1 and 𝜏𝑝1 (𝐴𝑖 ∪ 𝐴𝑖+1) ≥ 4ℎ𝑐1𝛿

4
for every 𝑖 = 1, . . . , 𝑛 − 1

)
⇒

(
𝜏𝑝2 (𝐴1, 𝐴𝑛) ≥ 𝑐2𝜏𝑝1 (𝐴1)𝜏𝑝1 (𝐴𝑛)

)
(3.4.2)

whenever 𝑝1 ≥ 1/𝑑, 𝛿 = 𝛿(𝑝1, 𝑝2) ≤ 𝐷, and ℎ ≤ ℎ0.

Remark 3.4.1. The fact that we can always find an integer 𝑟 such that P𝑝 (Piv[1, ℎ𝑟]) < ℎ for every
𝑝 ∈ [𝑝1, 𝑝2] can be deduced from the fact that there is at most one infinite cluster P𝑝-almost surely
for every 𝑝 ∈ [𝑝1, 𝑝2] by an easy compactness argument.

Remark 3.4.2. The Λ = 𝑉 case of this lemma stated in (3.4.2) already allows us to easily deduce
that 𝑝𝑐 (𝐺𝑛) → 𝑝𝑐 (𝐺) when the transitive graphs in the sequence (𝐺𝑛)𝑛≥1 all satisfy a uniform
superpolynomial growth lower bound of the form Gr(𝑟) ≥ 𝑟𝑐(log log 𝑟)10 . This is explained in
detail in Section 3.4. Working within finite domains as in (3.4.1) will be useful when we apply
Proposition 3.4.1 at low-growth scales in Section 3.6.

The basic idea underlying Proposition 3.4.1, which is inspired by earlier works including [CMT22;
DKT21], is that one can use the universal two-arm estimates derived from the work of Aizenman,
Kesten, and Newman [AKN87b] as reviewed in Section 3.2 to bound the maximum influence of
an edge on certain connection events, which can then be used as an input in Talagrand’s sharp
threshold theorem [Tal94]. Compared to those works, our primary additional insight is that these
methods can be made vastly more efficient (especially in the high-growth case) by working with
ghost field connection events instead of more obvious connection events. Intuitively, these ghost
field connection events are “smoother” than ordinary connection events, making it easier to bound
the maximum influence of an edge. Moreover, the influence bound we get by using the two-ghost
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inequality of [Hut20a] gets better as the size of the relevant sets increases, so that we get extremely
strong sharp threshold estimates when the graph has high growth.

Given a set of vertices 𝐴 in a graph 𝐺 and a parameter ℎ ∈ [0, 1], the ghost field of intensity ℎ
on 𝐴 is the random subset G𝐴 of 𝐴 in which each vertex is included independently at random with
probability8 ℎ. We denote the law of G𝐴 by G𝐴

ℎ
. We record the following reformulation of the

two-ghost inequality of [Hut20a].

Lemma 3.4.2. Let 𝐺 be a unimodular transitive graph of vertex degree 𝑑. There exists a constant
𝐶 = 𝐶 (𝑑) such that

G𝐴
ℎ ⊗ G𝐵

ℎ ⊗ P𝑝 ({𝑥 ↔ G𝐴} ∩ {𝑦 ↔ G𝐵} ∩ {𝑥 ↮ 𝑦} ∩ {𝑥 ↮ ∞ or 𝑦 ↮ ∞}) ≤ 𝐶

√︄
1 − 𝑝
𝑝

ℎ

for every ℎ ∈ [0, 1], every pair of neighbouring vertices 𝑥, 𝑦 ∈ 𝑉 (𝐺), every two sets of vertices
𝐴, 𝐵 ⊆ 𝑉 (𝐺), and every 𝑝 ∈ (0, 1).

Proof. It suffices without loss of generality to consider the case 𝐴 = 𝐵 = 𝑉 since the relevant
probability is increasing in 𝐴 and 𝐵. In this case, the probability is the same as if we had a single
ghost field instead of two independent ghost fields, since the restrictions of a ghost field to the
clusters of 𝑥 and 𝑦 are independent when these clusters are disjoint. This version of the lemma
then follows easily from Theorem 3.2.5. Alternatively, one can deduce the desired estimate from
[Hut20a, Theorem 1.6]. (The only difference is that in that paper the ghost fields are parameterised
by 1 − 𝑒−ℎ and are random sets of edges rather than vertices. As with Theorem 3.2.5, this is not a
problem since the edge version of the statement is stronger than the vertex version.) □

The following lemma states roughly that the probability that two low-intensity ghost fields are
connected in a region Λ undergoes a sharp threshold with respect to the percolation parameter 𝑝.
This rough statement has two caveats: as we increase the percolation parameter, we also have to
increase the ghost field intensity and thicken the region Λ. Although the argument using ghost field
connections is new, the way we adapt it to run inside a given domain Λ (when Λ is not the whole
vertex set) is inspired by the analysis of [CMT22, Section 5].

Lemma 3.4.3 (Sharp threshold for ghost connections). For each 𝑑 ≥ 1 and 𝐷 < ∞ there exists
a positive constant 𝑐 = 𝑐(𝑑, 𝐷) such that the following holds. Let 𝐺 = (𝑉, 𝐸) be a unimodular

8In the literature one often takes this probability to be 1− 𝑒−ℎ, which makes certain calculations more convenient.
The distinction makes little difference since 1 − 𝑒−ℎ = ℎ ±𝑂 (ℎ2) as ℎ→ 0.
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transitive graph with vertex degree 𝑑, let 𝐴, 𝐵 be non-empty sets of vertices in 𝐺, and suppose that
0 < 𝑝1 < 𝑝2 < 1 are such that either

(i) there is at most one infinite cluster P𝑝-almost surely for every 𝑝 ∈ [𝑝1, 𝑝2], or

(ii) 𝐵 has finite complement.

If 𝑝1 ≥ 1/𝑑 and 𝛿(𝑝1, 𝑝2) ≤ 𝐷 then the implication(
G𝐴
ℎ ⊗ G𝐵

ℎ ⊗ P𝑝1 (G𝐴
Λ←→ G𝐵) ≥ ℎ𝑐𝛿(𝑝1,𝑝2)

)
⇒

(
G𝐴
ℎ𝑐 ⊗ G𝐵

ℎ𝑐 ⊗ P𝑝2 (G𝐴
𝐵𝑟 (Λ)←−−→ G𝐵) ≥ 1 − ℎ𝑐𝛿(𝑝1,𝑝2)

)
holds for every ℎ ≤ 1/𝑑 and every set Λ ⊆ 𝑉 , where 𝑟 is the minimum positive integer such that
P𝑝 (Piv[1, ℎ𝑟]) < ℎ for every 𝑝 ∈ [𝑝1, 𝑝2].

Remark 3.4.3. To prove Proposition 3.4.1 we will apply this lemma only under the hypothesis (i).
The version with hypothesis (ii) can be used as part of an alternative of the joint continuity of
𝜃 (𝑝, 𝐺) in the supercritical region, as discussed in Section 3.7.

Before proving Lemma 3.4.3 we first recall Talagrand’s inequality [Tal94], which (in combination
with Russo’s formula [Rus78]) states that there exists a universal positive constant 𝑐 such that if
𝐴 ⊆ {0, 1}𝐸 is an increasing event in a finite product space then

𝑑

𝑑𝑝
P𝑝 (A) ≥ 𝑐P𝑝 (A)(1−P𝑝 (A)) ·

[
𝑝(1 − 𝑝) log

2
𝑝(1 − 𝑝)

]−1
log

1
𝑝(1 − 𝑝)max𝑒∈𝐸 P𝑝 (Piv𝑒 [A])

(3.4.3)
for every 𝑝 ∈ (0, 1).

Proof of Lemma 3.4.3. We may assume without loss of generality that 𝐴, 𝐵, and Λ are finite,
exhausting by finite sets and taking a limit otherwise. Since we want to apply Talagrand’s inequality
to the inhomogeneous9 product measure G𝐴

ℎ
⊗G𝐵

ℎ
⊗ P𝑝, we will first encode a random variable with

this law as a function of i.i.d. random bits. Define

𝑚𝐸 :=
⌊

log(1 − 𝑝1)
log((𝑑 − 1)/𝑑)

⌋
, 𝑞1 := 1 − (1 − 𝑝1)1/𝑚𝐸 , and 𝑞2 := 1 − (1 − 𝑝2)1/𝑚𝐸 .

9The fact that Talagrand’s inequality for homogeneneous product measures implies a version for inhomogeneous
measures with parameters close to zero was already observed in [DT22, Appendix A]. In our setting we have some
parameters that may be close to zero and others that may be close to 1.

61



The assumption that 𝑝1 ≥ 1/𝑑 ensures that 𝑚𝐸 ≥ 1, while it follows from the definitions that
(1 − 𝑞1)𝑚𝐸 = (1 − 𝑝1), that (1 − 𝑞2)𝑚𝐸 = (1 − 𝑝2), and that

1
𝑑
≤ 𝑞1 = 1 − exp

((⌊
log(1 − 𝑝1)

log((𝑑 − 1)/𝑑)

⌋)−1
log(1 − 𝑝1)

)
≤ 2𝑑 − 1

𝑑2 ≤ 2
𝑑
.

(Here we used only that 𝑥/2 ≤ ⌊𝑥⌋ ≤ 𝑥 for 𝑥 ≥ 1.) We also define

𝑚𝐺 =

⌊
log ℎ
log 𝑞1

⌋
,

which satisfies 𝑚𝐺 ≥ 1 since ℎ ≤ 1/𝑑 ≤ 𝑞1. For each 𝑞 ∈ (0, 1), let P̄𝑞 be the law of a random
variable

bits = (bits𝐴, bits𝐵, bits𝜔) ∈ {0, 1}𝐴×{1,...,𝑚𝐺} × {0, 1}𝐵×{1,...,𝑚𝐺} × {0, 1}𝐸×{1,...,𝑚𝐸 } =: {0, 1}Ω,

whose constituent random bits are independent Bernoulli random variables of parameter 𝑞. Given
bits = (bits𝐴, bits𝐵, bits𝜔) ∈ {0, 1}Ω, we define (G𝐴,G𝐵, 𝜔) as a function of bits by

G𝐴 (𝑎) =
𝑚𝐺∏
𝑖=1

bits𝐴 (𝑎, 𝑖), G𝐵 (𝑏) =
𝑚𝐺∏
𝑖=1

bits𝐵 (𝑏, 𝑖), and 𝜔(𝑒) = 1 −
𝑚𝐸∏
𝑖=1
(1 − bits𝜔 (𝑒, 𝑖)),

so that the triple (G𝐴,G𝐵, 𝜔) has law G𝐴
𝑞𝑚𝐺
⊗ G𝐵

𝑞𝑚𝐺
⊗ P1−(1−𝑞)𝑚𝐸 . The choice of parameter 𝑚𝐺

ensures that 𝑞𝑚𝐺1 ≥ ℎ and hence that

P̄𝑞1 (G𝐴
Λ←→ G𝐵) ≥ G𝐴

ℎ ⊗ G𝐵
ℎ ⊗ P𝑝1 (G𝐴

Λ←→ G𝐵).

Note moreover that ifA ⊆ {0, 1}𝐴 × {0, 1}𝐵 × {0, 1}𝐸 is an increasing event, 𝑒 ∈ 𝐸 is an edge, and
1 ≤ 𝑘 ≤ 𝑚𝐸 then (𝑒, 𝑘) is a closed pivotal for the event {bits : (G𝐴,G𝐵, 𝜔) ∈ A} if and only if 𝑒
is a closed pivotal for the event A in the configuration 𝜔, so that

(1 − 𝑞)P̄𝑞
(
(𝑒, 𝑘) pivotal for {bits : (G𝐴,G𝐵, 𝜔) ∈ A}

)
= (1 − 𝑞)𝑚𝐸G𝐴

𝑞𝑚𝐺 ⊗ G𝐵
𝑞𝑚𝐺 ⊗ P1−(1−𝑞)𝑚𝐸 (Piv𝑒 [A]). (3.4.4)

On the other hand, an element (𝑥, 𝑘) of 𝐴 × {1, . . . , 𝑚𝐺} can only possibly be an open pivotal if
bits𝐴 (𝑥, 𝑗) = 1 for every 𝑗 ∈ {1, . . . , 𝑚𝐺}. Similar considerations also apply with 𝐴 replaced by
𝐵, so that we obtain the coarse bound

𝑞 P̄𝑞
(
(𝑥, 𝑘) pivotal for {bits : (G𝐴,G𝐵, 𝜔) ∈ A}

)
≤ 𝑞𝑚𝐺 (3.4.5)

for every 𝑥 ∈ 𝐴 ⊔ 𝐵 and 1 ≤ 𝑘 ≤ 𝑚𝐺 .
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Let ℓ := ⌊ℎ−1⌋ and for each 𝑖 = 1, . . . , ℓ define the event

E𝑖 := {G𝐴
𝐵𝑖𝑟ℎ (Λ)←−−−−→ G𝐵}.

We want to bound the maximum influence of an element of (𝐸×{1, . . . , 𝑚𝐸 })⊔(𝐴×{1, . . . , 𝑚𝐺})⊔
(𝐵× {1, . . . , 𝑚𝐺}) on the event E𝑖. For elements of (𝐴× {1, . . . , 𝑚𝐺}) ⊔ (𝐵× {1, . . . , 𝑚𝐺}) it will
suffice to use the trivial bound of (3.4.5), so that it remains only to bound the pivotality probability
max𝑒 G𝐴

ℎ′ ⊗ G𝐵
ℎ′ ⊗ P𝑝 (Piv𝑒 [E𝑖]) where (1 − 𝑝) = (1 − 𝑞)𝑚𝐸 and ℎ′ = 𝑞𝑚𝐺 . Following [CMT22],

we will do this not for every 𝑖 but instead show that an influence bound of the desired form must
hold for an average choice of 𝑖. (Note that if we are working directly in the case Λ = 𝑉 then
this issue does not arise.) More precisely, we claim that for each 𝑞 ∈ [𝑞1, 𝑞2] there exists a set
𝐼 (𝑞) ⊆ {1, . . . , ℓ} with |𝐼 | ≥ 1/(3ℎ) such that

max
𝑖∈𝐼

max
𝑒∈𝐸

𝑞(1 − 𝑞)G𝐴
ℎ′ ⊗ G𝐵

ℎ′ ⊗ P𝑝 (Piv𝑒 [E𝑖]) ≤ 𝐶𝑑 (ℎ′)1/2, (3.4.6)

where 𝐶𝑑 is a constant depending only on the degree 𝑑. There are two separate cases to consider:
Edges both of whose endpoints belong to 𝐵(𝑖−1)𝑟ℎ (Λ) (bulk edges) and edges with at least one
endpoint not in 𝐵(𝑖−1)𝑟ℎ (Λ) (boundary edges).

Bulk edges. First consider an edge 𝑒 both of whose endpoints 𝑥 and 𝑦 belong to 𝐵(𝑖−1)𝑟ℎ (Λ). If 𝜔
is such that 𝑒 is pivotal for the event E𝑖 then at least one of the following two events must occur:

(i) The endpoints 𝑥 and 𝑦 of 𝑒 belong to distinct 𝜔-clusters, one of which intersects G𝐴 but not
G𝐵 and the other of which intersects G𝐵 but not G𝐴; at least one of these clusters must be
finite almost surely by the hypotheses of the lemma, which allows us to bound the relevant
probability using the two-ghost inequality.

(ii) The endpoints 𝑥 and 𝑦 of 𝑒 are both 𝜔-connected to the boundary of 𝐵𝑖𝑟ℎ (Λ) but are not
𝜔-connected to each other within 𝐵𝑖𝑟ℎ (Λ), so that Piv[1, 𝑟ℎ] (𝑥) and Piv[1, 𝑟ℎ] (𝑦) both hold.

Thus, it follows by the two-ghost inequality as stated in Lemma 3.4.2 and the definition of 𝑟 that

𝑞(1 − 𝑞)P̄𝑞 (Piv𝑒 [E𝑖]) ≤ 𝑞(1 − 𝑞)
[
𝐶1
(1 − 𝑝)1/2

𝑝1/2 (ℎ′)1/2 + ℎ
]
≤ 𝐶2(ℎ′)

1
2 , (3.4.7)

for every 𝑞 ∈ [𝑞1, 𝑞2] and 1 ≤ 𝑖 ≤ ℓ, where 𝐶1 and 𝐶2 are constants depending only on 𝑑 and we
used that 𝑝 ≥ 1/𝑑.

Boundary edges. An edge 𝑒 not having both its endpoints in 𝐵𝑖𝑟ℎ (Λ) cannot possibly be pivotal
for E𝑖; we need only bound P̄𝑞 (Piv𝑒 [E𝑖]) for edges 𝑒 with both endpoints in 𝐵𝑖𝑟ℎ (Λ) and with
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at least one endpoint not in 𝐵(𝑖−1)𝑟ℎ (Λ). Rather than bound this maximum influence uniformly
in 𝑖, we will bound it on average. Fix 𝑞 ∈ [𝑞1, 𝑞2] and, for each 𝑖 ∈ {1, . . . , ℓ}, pick an edge
𝑒𝑖 = 𝑒𝑖 (𝑞) ∈ 𝐵𝑖𝑟ℎ (Λ) with at least one endpoint not in 𝐵(𝑖−1)𝑟ℎ (Λ) that maximises P̄𝑞 (Piv𝑒𝑖 [E𝑖])
over all such edges. Notice that the events Piv𝑒𝑖 [E𝑖] ∩ {𝜔(𝑒𝑖) = 1} for 𝑖 ∈ {1, . . . , ℓ} are pairwise
disjoint. Indeed, if Piv𝑒𝑖 [E𝑖] ∩ {𝜔(𝑒𝑖) = 1} occurs then 𝑒𝑖 must belong to every path connecting
G𝐴 to G𝐵 in 𝐵𝑖𝑟ℎ (Λ), and such a path cannot possibly include 𝑒 𝑗 if 𝑗 > 𝑖. It follows in particular
that

𝑞

ℓ∑︁
𝑖=1

P̄𝑞 (Piv𝑒𝑖 [E𝑖]) =
ℓ∑︁
𝑖=1

P̄𝑞 (Piv𝑒𝑖 [E𝑖] ∩ {𝜔(𝑒𝑖) = 1}) ≤ 1.

By Markov’s inequality, it follows that we can find a subset 𝐼 (𝑞) ⊆ {1, . . . , ℓ} with |𝐼 | ≥ 1
3ℎ such

that
max
𝑖∈𝐼

𝑞P̄𝑞 (Piv𝑒𝑖 [E𝑖]) ≤ 6ℎ ≤ 6(ℎ′)1/2

as required. This concludes the proof of (3.4.6).

Now, the assumption that 𝛿(𝑝1, 𝑝2) ≤ 𝐷 implies that (1 − 𝑝2) ≥ (1 − 𝑝1)𝑒
𝐷 and hence that

1 − 𝑞2 ≥ (1 − 𝑞1)𝑒
𝐷 ≥ ((2𝑑 − 1)/(2𝑑))𝑒𝐷 > 0, so that 𝑞1 and 𝑞2 are bounded away from 0 and 1

by constants depending only on 𝑑 and 𝐷. As such, Talagrand’s inequality (which is valid to use in
our setting since all our events only depend on the status of finitely many bits) together with (3.4.6)
yields that

𝑑

𝑑𝑞
log

[
P̄𝑞 (E𝑖)

1 − P̄𝑞 (E𝑖)

]
≥ 𝑐1 log

1
𝐶𝑑𝑞

𝑚𝐺/2
≥ 𝑐2𝑚𝐺 log

1
𝑞1
≥ 𝑐3 log

1
ℎ

for every 𝑞1 ≤ 𝑞 ≤ 𝑞2 and every 𝑖 ∈ 𝐼 (𝑞), where 𝑐1, 𝑐2, and 𝑐3 are positive constants depending
only on 𝑑 and 𝐷. Since ℓ ≤ ℎ−1 and the derivative is non-negative for every 𝑖, we can sum over 𝑖
to obtain that

1
ℓ

ℓ∑︁
𝑖=1

𝑑

𝑑𝑞
log

[
P̄𝑞 (E𝑖)

1 − P̄𝑞 (E𝑖)

]
≥ 𝑐3

3
log

1
ℎ

for every 𝑞1 ≤ 𝑞 ≤ 𝑞2. Integrating this differential inequality yields that

1
ℓ

ℓ∑︁
𝑖=1

(
log

[
P̄𝑞2 (E𝑖)

1 − P̄𝑞2 (E𝑖)

]
− log

[
P̄𝑞1 (E𝑖)

1 − P̄𝑞1 (E𝑖)

] )
≥ 𝑐3

3
|𝑞2 − 𝑞1 | log

1
ℎ

and hence that there exists 𝑖 ∈ {1, . . . , ℓ} such that

max
{
log

[
1

1 − P̄𝑞2 (E𝑖)

]
, log

[
1

P̄𝑞1 (E𝑖)

]}
≥ max

{
log

[
P̄𝑞2 (E𝑖)

1 − P̄𝑞2 (E𝑖)

]
,− log

[
P̄𝑞1 (E𝑖)

1 − P̄𝑞1 (E𝑖)

]}
≥ 𝑐2

6
|𝑞2 − 𝑞1 | log

1
ℎ
.
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ωp2

ωp2

ωp1

Figure 3.1: Schematic illustration of the event whose probability is estimated in Lemma 3.4.4 when
Λ = 𝑉 : If any two points in 𝐴 have a reasonable probability to be connected in 𝜔𝑝1 , then it is
unlikely that 𝑋 is connected to a weak ghost field on 𝐴 in 𝜔𝑝2 and 𝑌 is connected to a weak ghost
field on 𝐴 in 𝜔𝑝1 but that 𝑋 and 𝑌 are not connected in 𝜔𝑝2 .

The claim follows easily from this together with the inequality

|𝑞2 − 𝑞1 | = | (1 − 𝑝2)1/𝑚𝐸 − (1 − 𝑝1)1/𝑚𝐸 | ≥
���(1 − 𝑝2)

log( (𝑑−1)/𝑑)
log(1−𝑝1 ) − (1 − 𝑝1)

log( (𝑑−1)/𝑑)
log(1−𝑝1 )

���
=
𝑑 − 1
𝑑

[
1 − exp

((
log(1 − 𝑝2)
log(1 − 𝑝1)

− 1
)

log
𝑑 − 1
𝑑

)]
≥ 𝑐4𝛿(𝑝1, 𝑝2),

which holds by calculus with the constant 𝑐4 depending only on 𝑑 and 𝐷. □

Our next goal is to run a chaining-like argument but with ghost fields. In this analogy, the previous
lemma can be thought of as an existence statement whereas the next lemma can be thought of as
a uniqueness statement. (Note that our proof of the next lemma relies crucially on the previous
lemma.) We work with the standard monotone coupling (𝜔𝑝)𝑝∈[0,1] of Bernoulli bond percolation,

write {𝐴 Λ←→
𝑝
𝐵} for the event that 𝐴 is connected to 𝐵 by a path that is contained in Λ and open in

𝜔𝑝, and write {𝐴 Λ←→
𝑝
𝐵} for the event that 𝐴 is not connected to 𝐵 by any such path.

Lemma 3.4.4 (Gluing ghost connections). For each 𝑑 ≥ 1 and 𝐷 < ∞ there exist positive constants
𝑐1 = 𝑐1(𝑑, 𝐷) and 𝑐2 = 𝑐2(𝑑, 𝐷) such that the following holds. Let 𝐺 = (𝑉, 𝐸) be a unimodular
transitive graph with vertex degree 𝑑, let 𝐴, 𝑋 , and 𝑌 be non-empty sets of vertices in 𝐺, and
suppose that 0 < 𝑝1 < 𝑝2 < 1 are such that there is at most one infinite cluster P𝑝-almost surely
for every 𝑝 ∈ [𝑝1, 𝑝2]. If 𝑝1 ≥ 1/𝑑 and 𝛿 = 𝛿(𝑝1, 𝑝2) ≤ 𝐷 then the implication[

𝜏Λ𝑝1
(𝐴) ≥ ℎ𝑐1𝛿

]
⇒

[
G𝐴
ℎ ⊗ P

(
𝑋

𝐵𝑟 (Λ)←−−→
𝑝2

G𝐴 and 𝑌 Λ←−→
𝑝1

G𝐴 but 𝑋
𝐵𝑟 (Λ)←−−→
𝑝2

𝑌

)
≤ 3ℎ𝑐2𝛿

3

]
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holds for every ℎ ≤ 1/𝑑 and every set Λ ⊆ 𝑉 , where 𝑟 is the minimum positive integer such that
P𝑝 (Piv[1, ℎ𝑟]) < ℎ for every 𝑝 ∈ [𝑝1, 𝑝2].

An illustration of the event whose probability this lemma estimates is given in Figure 3.1.

Remark 3.4.4. Several of the calculations in the following proof can be simplified significantly if
one allows the constants to depend on how small 1− 𝑝1 is. Getting the constants to be independent
of the choice of 𝑝1 is important when using our methods to deduce that 𝑝𝑐 < 1 for transitive graphs
of superlinear volume growth.

Proof of Lemma 3.4.4. It suffices to prove the claim with 3ℎ𝑐2𝛿
4 replaced by max{ℎ𝑐1𝛿, 3ℎ𝑐2𝛿

4}, as
the latter can be bounded by the former after an appropriate decrease of the relevant constant. We
write 𝑝4/3 and 𝑝5/3 for the parameters defined by 𝑝4/3 = Spr(𝑝1; 𝛿/3) and 𝑝5/3 = Spr(𝑝1; 2𝛿/3),
so that 𝑝1 ≤ 𝑝4/3 ≤ 𝑝5/3 ≤ 𝑝2. To lighten notation we write 𝜔1 = 𝜔𝑝1 , 𝜔4/3 = 𝜔𝑝4/3 , 𝜔5/3 = 𝜔𝑝5/3 ,
and 𝜔2 = 𝜔𝑝2 . We will write ≍, ⪯, and ⪰ for equalities and inequalities holding to within positive
multiplicative constants depending only on 𝑑 and 𝐷. We also use the asymptotic big-𝑂 and big-Ω
notation with all implicit constants depending only on 𝑑 and 𝐷.

Let 𝑐0 = 𝑐0(𝑑, 𝐷) be the constant from Lemma 3.4.3. We will prove the claim with 𝑐1 = (𝑐0∧1)/9.
Assume to this end that 𝜏Λ𝑝1

(𝐴) ≥ ℎ𝑐1𝛿. Let 𝐾𝑋 (2, 𝑟) be the set of vertices that are connected to 𝑋
by an 𝜔2-open path in 𝐵𝑟 (Λ) and let 𝐾𝑌 (1, 0) be the set of vertices that are connected to 𝑌 by an
𝜔1-open path in Λ. Suppose that there exist two disjoint, connected sets of vertices 𝐶𝑋 ⊇ 𝑋 and
𝐶𝑌 ⊇ 𝑌 such that P(𝐾𝑋 (2, 𝑟) = 𝐶𝑋 , 𝐾𝑌 (1, 0) = 𝐶𝑌 ) > 0 and

min{G𝐴
ℎ (G𝐴 ∩ 𝐶𝑋 ≠ ∅),G𝐴

ℎ (G𝐴 ∩ 𝐶𝑌 ≠ ∅)}

≥ G𝐴
ℎ ⊗ P

(
𝑋

𝐵𝑟 (Λ)←−−−→
𝑝2

G𝐴
Λ←→
𝑝1
𝑌 | 𝐾𝑋 (2, 𝑟) = 𝐶𝑋 , 𝐾𝑌 (1, 0) = 𝐶𝑌

)
≥ ℎ𝑐1𝛿; (3.4.8)

If no such pair of sets exists then the conclusion holds trivially (since we are proving a modified
version of the claim with max{ℎ𝑐1𝛿, 3ℎ𝑐2𝛿

4} on the right hand side of the implication). For such 𝐶𝑋
and 𝐶𝑌 we have that

G𝐶𝑋
ℎ
⊗ G𝐶𝑌

ℎ
⊗ P

(
G𝐶𝑋

Λ←→
𝑝1

G𝐶𝑌

)
≥ G𝐶𝑋

ℎ
⊗ G𝐶𝑌

ℎ
(G𝐶𝑋 ∩ 𝐴 ≠ ∅ and G𝐶𝑌 ∩ 𝐴 ≠ ∅) min

𝑢,𝑣∈𝐴
P(𝑢 Λ←→

𝑝1
𝑣)

= G𝐴
ℎ (G𝐴 ∩ 𝐶𝑋 ≠ ∅)G𝐴

ℎ (G𝐴 ∩ 𝐶𝑌 ≠ ∅) min
𝑢,𝑣∈𝐴

P(𝑢 Λ←→
𝑝1
𝑣)

≥ ℎ𝑐1𝛿 · ℎ𝑐1𝛿 · ℎ𝑐1𝛿 = ℎ3𝑐1𝛿 ≥ ℎ
𝑐0
3 𝛿 .
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Thus, since 𝛿(𝑝1, 𝑝4/3) = 1
3𝛿(𝑝1, 𝑝2), it follows from Lemma 3.4.3 (applied with 𝑝1 and 𝑝4/3 rather

than 𝑝1 and 𝑝2) that

P
(
𝐶𝑋

𝐵𝑟 (Λ)←−−→
𝑝4/3

𝐶𝑌

)
≤ G𝐶𝑋

ℎ𝑐0 ⊗ G𝐶𝑌
ℎ𝑐0 ⊗ P

(
G𝐶𝑋

𝐵𝑟 (Λ)←−−−→
𝑝4/3

G𝐶𝑌

)
≤ ℎ

𝑐0
3 𝛿 . (3.4.9)

Let 𝑀 denote the maximum cardinality of a set of edge-disjoint paths from 𝐶𝑋 to 𝐶𝑌 that are
contained in 𝐵𝑟 (Λ) and are open in 𝜔5/3 with the possible exception of their first and last edges.
(We stress that 𝐶𝑋 and 𝐶𝑌 are not random, but are fixed sets satisfying (3.4.8).) By Menger’s
theorem, 𝑀 is equal to the minimum size of a set of edges separating 𝐶𝑋 from 𝐶𝑌 in the subgraph
of 𝐵𝑟 (Λ) spanned by those edges that are either 𝜔5/3-open or have at least one endpoint in𝐶𝑋 ∪𝐶𝑌 .
Observe that 𝑀 is independent of the event {𝐾𝑋 (2, 𝑟) = 𝐶𝑋 , 𝐾𝑌 (1, 0) = 𝐶𝑌 } since 𝑀 depends only
on edges with neither endpoint in 𝐶𝑋 ∪ 𝐶𝑌 while the latter event depends only on edges with at
least one endpoint in 𝐶𝑋 ∪ 𝐶𝑌 . Conditional on 𝜔5/3, each edge that is open in 𝜔5/3 is closed in
𝜔4/3 with probability

𝛽 :=
𝑝5/3 − 𝑝4/3

𝑝5/3
.

It follows that
P

(
𝐶𝑋

𝐵𝑟 (Λ)←−−→
𝑝4/3

𝐶𝑌 | 𝑀 ≤ 𝑁
)
≥ 𝛽𝑁

for every 𝑁 ≥ 0 and hence by (3.4.9) and the aforementioned independence that

P(𝑀 ≤ 𝑁 | 𝐾𝑋 (2, 𝑟) = 𝐶𝑋 , 𝐾𝑌 (1, 0) = 𝐶𝑌 ) = P (𝑀 ≤ 𝑁) ≤ 𝛽−𝑁ℎ
𝑐0
3 𝛿 (3.4.10)

for every 𝑁 ≥ 0. Let 𝐾𝑌 (5/3, 𝑟) be the set of vertices that are connected to 𝑌 by an 𝜔5/3-open
path in 𝐵𝑟 (Λ). Conditioned on the event {𝐾𝑋 (2, 𝑟) = 𝐶𝑋 and 𝐾𝑌 (1, 0) = 𝐶𝑌 } and the value of 𝑀 ,
the size of the boundary |𝜕𝐾𝑋 (2, 𝑟) ∩ 𝜕𝐾𝑌 (5/3, 𝑟) | stochastically dominates a sum of 𝑀 Bernoulli
random variables of parameter

𝛼1 :=
𝑝5/3 − 𝑝1

1 − 𝑝1
.

Indeed, if we take some maximal-cardinality set of paths as in the definition of 𝑀 , then the edge
adjacent to 𝐶𝑌 of each path in the set is open in 𝜔5/3 with this probability, and the size of the
relevant boundary is at least the number of these edges that are open in 𝜔5/3. Letting 𝑍 be a sum of
𝑁 Bernoulli random variables each of parameter 1 − 𝛼1, we have that there exist constants 𝑐3 and
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𝑐4 depending only on 𝑑 and 𝐷 such that

P
(
|𝜕𝐾𝑋 (2, 𝑟) ∩ 𝜕𝐾𝑌 (5/3, 𝑟) | ≤

𝛼1

2
𝑁

��� 𝐾𝑋 (2, 𝑟) = 𝐶𝑋 , 𝐾𝑌 (1, 0) = 𝐶𝑌 , 𝑀 ≥ 𝑁)
≤ P

(
𝑍 ≥ 2 − 𝛼1

2
𝑁

)
= P

(
𝑍 ≥

(
1 + 𝛼1

2(1 − 𝛼1)

)
E𝑍

)
≤ exp

[
−

(
2 − 𝛼1

2
log

2 − 𝛼1

2 − 2𝛼1
− 𝛼1

2

)
𝑁

]
(3.4.11)

for every 𝑁 ≥ 1, where the final inequality follows from the Chernoff bound P(𝑍 ≥ (1 + 𝑥)E𝑍) ≤
(𝑒−𝑥 (1 + 𝑥)1+𝑥)−E𝑍 , which holds for all sums of independent Bernoulli random variables.

We will now apply (3.4.10) and (3.4.11) with

𝑁 :=
⌊

𝑐0𝛿

12 log(1/𝛽) log
1
ℎ

⌋
, so that 𝛽−𝑁ℎ

𝑐0
3 𝛿 ≤ ℎ

𝑐0
6 𝛿

to prove the inequality

P
(��𝜕𝐾𝑋 (

2, 𝑟
)
∩ 𝜕𝐾𝑌

(
5/3, 𝑟

) �� ≤ 𝑐0𝛼1𝛿

48 log(1/𝛽) log
1
ℎ

���𝐾𝑋 (2, 𝑟) = 𝐶𝑋 , 𝐾𝑌 (1, 0) = 𝐶𝑌 )
≤ 2ℎΩ(𝛿

4) . (3.4.12)

To do this, we will make repeated use of the elementary estimates

𝑝5/3𝛽 = (1 − 𝑝5/3)𝑒
−𝛿/3 − (1 − 𝑝5/3) = (1 − 𝑝5/3) ((1 − 𝑝5/3)𝑒

−𝛿/3−1 − 1)

≥ (1 − 𝑝5/3) ((1 − 𝑝5/3)−Ω(𝛿) − 1) ⪰ 𝛿(1 − 𝑝5/3) log
1

1 − 𝑝5/3
(3.4.13)

and

𝛼1 = 1 − (1 − 𝑝5/3)1−𝑒
−2𝛿/3

= 1 − (1 − 𝑝5/3)Θ(𝛿) , (3.4.14)

where we recall that the implicit constant appearing here depends only on 𝑑 and 𝐷. First suppose
that 𝑁 ≥ 1, so that the rounding in the definition of 𝑁 reduces its size by a factor of at most 1/2.
In this case, (3.4.10) and (3.4.11) yield that there exist positive constants 𝐶1, 𝑐5 and 𝑐6 depending
only on 𝑑 and 𝐷 such that

P
(��𝜕𝐾𝑋 (

2, 𝑟
)
∩ 𝜕𝐾𝑌

(
5/3, 𝑟

) �� ≤ 𝑐0𝛼1𝛿

48 log(1/𝛽) log
1
ℎ

���𝐾𝑋 (2, 𝑟) = 𝐶𝑋 , 𝐾𝑌 (1, 0) = 𝐶𝑌 )
≤ ℎ

𝑐0
6 𝛿 + exp

[
− 𝑐0𝛿

24 log(1/𝛽)

(
2 − 𝛼1

2
log

2 − 𝛼1

2 − 2𝛼1
− 𝛼1

2

)
log

1
ℎ

]
. (3.4.15)

68



We claim that
𝑐0𝛿

24 log(1/𝛽)

(
2 − 𝛼1

2
log

2 − 𝛼1

2 − 2𝛼1
− 𝛼1

2

)
⪰ 𝛿4. (3.4.16)

We prove this by a case analysis according to whether 1 − 𝑝5/3 ≤ 𝑒−1/𝛿. If 1 − 𝑝5/3 ≥ 𝑒−1/𝛿, it
follows from (3.4.13) that log 1/𝛽 = 𝑂 (𝛿) (where we stress again that the implicit constants depend
only on 𝑑 and 𝐷). On the other hand, since 𝑝1 ≥ 1/𝑑, we have that 𝛼1 ⪰ 𝛿, and together with the
elementary inequality

2 − 𝛼1

2
log

2 − 𝛼1

2 − 2𝛼1
− 𝛼1

2
≥
𝛼2

1
8

this yields that if 1 − 𝑝5/3 ≥ 𝑒−1/𝛿 then

𝑐0𝛿

24 log(1/𝛽)

(
2 − 𝛼1

2
log

2 − 𝛼1

2 − 2𝛼1
− 𝛼1

2

)
⪰ 𝛿
𝛿
· 𝛿2 ⪰ 𝛿3

as claimed. On the other hand, if 1 − 𝑝5/3 ≤ 𝑒−1/𝛿 then 1 − 𝛼1 ≥ 1 − 𝑒−Ω(1) ⪰ 1, so that

2 − 𝛼1

2
log

2 − 𝛼1

2 − 2𝛼1
− 𝛼1

2
⪰ log

1
1 − 𝛼1

⪰ 𝛿 log
1

1 − 𝑝5/3
.

We have under the same assumption that

log(1/𝛽) ⪯ log
1

1 − 𝑝5/3
,

and it follows that if 1 − 𝑝5/3 ≤ 𝑒−1/𝛿 then

𝑐0𝛿

24 log(1/𝛽)

(
2 − 𝛼1

2
log

2 − 𝛼1

2 − 2𝛼1
− 𝛼1

2

)
⪰ 𝛿2 ⪰ 𝛿3.

This completes the proof of (3.4.16), which together with (3.4.15) yields the claimed inequality
(3.4.12) in the case that 𝑁 ≥ 1. Now suppose that 𝑁 = 0, so that

P
(��𝜕𝐾𝑋 (

2, 𝑟
)
∩ 𝜕𝐾𝑌

(
5/3, 𝑟

) �� ≤ 𝑐0𝛼1𝛿

48 log(1/𝛽) log
1
ℎ

���𝐾𝑋 (2, 𝑟) = 𝐶𝑋 , 𝐾𝑌 (1, 0) = 𝐶𝑌 )
= P

(��𝜕𝐾𝑋 (
2, 𝑟

)
∩ 𝜕𝐾𝑌

(
5/3, 𝑟

) �� = 0
���𝐾𝑋 (2, 𝑟) = 𝐶𝑋 , 𝐾𝑌 (1, 0) = 𝐶𝑌 ) ≤ ℎ 𝑐0

3 𝛿 + (1 − 𝛼1),

(3.4.17)

where, as in (3.4.11), the first term on the right hand side of the second line bounds the probability
that 𝑀 = 0 and the second bounds the probability of the appropriate event conditional on 𝑀 ≥ 1.
We will once again prove (3.4.12) via case analysis according to whether or not 1 − 𝑝5/3 ≥ 𝑒−1/𝛿.
If 1 − 𝑝5/3 ≥ 𝑒−1/𝛿 then log(1/𝛽) = 𝑂 (𝛿), and since 𝑁 = 0 it follows that ℎ = 𝑒−𝑂 (𝛿

−2) . As such,
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in this case there exists a positive constant 𝑐5 such that ℎ𝑐5𝛿
4 ≥ 1/2, and the desired inequality

(3.4.12) follows trivially since probabilities are bounded by 1. Otherwise, 1 − 𝑝5/3 ≤ 𝑒−1/𝛿 and
1 − 𝛼1 ≤ (1 − 𝑝5/3)Ω(𝛿) . Since 𝑁 = 0, we also have that ℎ ≥ (1 − 𝑝5/3)𝑂 (𝛿

−1) and hence that
ℎ𝛿

2
= (1 − 𝛼1)Ω(1) . As such, (3.4.17) is stronger than the claimed inequality (3.4.12) when 𝑁 = 0

regardless of the value of 1 − 𝑝5/3. This completes the proof of the inequality (3.4.12).

Since the sets 𝐶𝑋 and 𝐶𝑌 were arbitrary sets such that P(𝐾𝑋 (2, 𝑟) = 𝐶𝑋 , 𝐾𝑌 (1, 0) = 𝐶𝑌 ) > 0 and
that satisfy (3.4.8), it follows from (3.4.12) that

G𝐴
ℎ ⊗ P

(
𝑋

𝐵𝑟 (Λ)←−−→
𝑝2

G𝐴
Λ←→
𝑝1
𝑌 but 𝑋

𝐵𝑟 (Λ)←−−→
𝑝2

𝑌

)
≤ ℎ𝑐1𝛿 + 2ℎΩ(𝛿

4)

+ P
(
|𝜕𝐾𝑋 (2, 𝑟) ∩ 𝜕𝐾𝑌 (5/3, 𝑟) | ≥

𝑐0𝛼1𝛿

48 log(1/𝛽) log
1
ℎ

but 𝑋
𝐵𝑟 (Λ)←−−→
𝑝2

𝑌

)
, (3.4.18)

where the first term ℎ𝑐1𝛿 accounts for the possibility that 𝐾𝑋 (2, 𝑟) and 𝐾𝑌 (1, 0) are equal to some
sets 𝐶𝑋 and 𝐶𝑌 that do not satisfy (3.4.8). It remains to bound the final term appearing on the
right hand side of (3.4.18). Notice that we can replace the set 𝐾𝑋 (2, 𝑟) appearing in (3.4.18) by
the set 𝐾̃𝑋 of vertices that are connected to 𝑋 by an 𝜔2-open path using only edges that have both
endpoints in 𝐵𝑟 (Λ) and neither endpoint in 𝐾𝑌 (5/3, 𝑟), since the two sets 𝐾𝑋 (2, 𝑟) and 𝐾̃𝑋 are

equal when 𝑋
𝐵𝑟 (Λ)←−−→
𝑝2

𝑌 . Now let 𝐶𝑋 ⊇ 𝑋 and 𝐶𝑌 ⊇ 𝑌 be connected sets of vertices that are disjoint

from each other such that P(𝐾̃𝑋 = 𝐶𝑋 , 𝐾𝑌 (5/3, 𝑟) = 𝐶𝑌 ) > 0 and

|𝜕𝐶𝑋 ∩ 𝜕𝐶𝑌 | ≥
𝑐0𝛼1𝛿

48 log(1/𝛽) log
1
ℎ

;

If no such sets exist then the last term on the right hand side of (3.4.18) is zero. Each edge that is
closed in 𝜔5/3 is open in 𝜔2 with probability

𝛼2 =
𝑝2 − 𝑝5/3
1 − 𝑝5/3

,

and we have by independence that

P
(
𝑋

𝐵𝑟 (Λ)←−−→
𝑝2

𝑌 | 𝐾̃𝑋 = 𝐶𝑋 , 𝐾𝑌 (5/3, 𝑟) = 𝐶𝑌
)
≤ (1 − 𝛼2) |𝜕𝐶𝑋∩𝜕𝐶𝑌 |

≤ exp
[
−

(
𝑐0𝛼1𝛿

48 log(1/𝛽) log
1

1 − 𝛼2

)
log

1
ℎ

]
≤ ℎΩ(𝛿3) ,

where the final inequality follows by a similar calculation used to prove (3.4.16) above. Thus,
summing over all choices of 𝐶𝑋 and 𝐶𝑌 , we obtain that

P
(
𝑋

𝐵𝑟 (Λ)←−−→
𝑝2

𝑌

��� ��𝜕𝐾̃𝑋 ∩ 𝜕𝐾𝑌 (5/3, 𝑟)�� ≥ 𝑐0𝛼1𝛿

48 log(1/𝛽) log
1
ℎ

)
≤ ℎΩ(𝛿3) , (3.4.19)

and the claim follows from (3.4.18) and (3.4.19). □
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We now apply Lemmas 3.4.3 and 3.4.4 to prove Proposition 3.4.1.

Proof of Proposition 3.4.1. To lighten notation, for each 𝜌 ∈ [0, 1] define Q𝜌 :=
⊗𝑛

𝑖=1 G
𝐴𝑖
𝜌 , and for

each 𝑖 write G𝑖 := G𝐴𝑖 . Let 𝑐1 = 𝑐1(𝑑, 𝐷) be the constant from Lemma 3.4.3 and let 𝑐2 = 𝑐2(𝑑, 𝐷)
and 𝑐3 = 𝑐3(𝑑, 𝐷) be the constants from Lemma 3.4.4 (that are called 𝑐1 and 𝑐2 in the statement
of that lemma). Define 𝑐 = 𝑐(𝑑, 𝐷) = (2𝐷)−5(𝑐1 ∧ 1) (𝑐2 ∧ 1) (𝑐3 ∧ 1). Let ℎ ≥ (min𝑖 |𝐴𝑖 |)−1,
noting that G𝐴𝑖

ℎ
(G𝑖 ≠ ∅) ≥ 1 − (1 − (min𝑖 |𝐴𝑖 |)−1) |𝐴𝑖 | ≥ 1 − 1/𝑒 ≥ 1/2 for every 𝑖, and let 𝑟 be the

minimum positive integer such that P𝑝 (Piv[1, ℎ𝑟]) < ℎ for every 𝑝 ∈ [𝑝1, 𝑝2].

Fix 𝑢 ∈ 𝐴1 and 𝑣 ∈ 𝐴𝑛 and suppose that

𝜏Λ𝑝1
(𝐴𝑖 ∪ 𝐴𝑖+1) ≥ 4ℎ𝑐𝛿

4
for all 1 ≤ 𝑖 ≤ 𝑛 − 1.

We want to bound from below the probability under P𝑝2 that 𝑢 and 𝑣 are connected inside 𝐵2𝑟 (Λ).
Let 1 ≤ 𝑖 ≤ 𝑛 − 1 be arbitrary. Note that

Qℎ ⊗ P
(
G𝑖

Λ←→
𝑝1

G𝑖+1

)
≥ Qℎ (G𝑖 ≠ ∅)Qℎ (G𝑖+1 ≠ ∅)𝜏Λ𝑝1

(𝐴𝑖, 𝐴𝑖+1) ≥ 4ℎ𝑐𝛿
4 ·

(
1
2

)2
≥ ℎ𝑐1𝛿/2, (3.4.20)

and similarly that

Qℎ ⊗ P
(
𝑢

Λ←→
𝑝1

G1

)
≥ 1

2
𝜏Λ𝑝1
(𝐴1) and Qℎ ⊗ P

(
G𝑛

Λ←→
𝑝1
𝑣

)
≥ 1

2
𝜏Λ𝑝1
(𝐴𝑛). (3.4.21)

Let 𝑝3/2 = Spr(𝑝1; 𝛿/2), so that 𝛿(𝑝1, 𝑝3/2) = 1
2𝛿. Using (3.4.20), Lemma 3.4.3 implies that

Qℎ𝑐 ⊗ P(G𝑖
𝐵𝑟 (Λ)←−−→
𝑝3/2

G𝑖+1) ≥ 1 − ℎ𝑐1𝛿/2 ≥ 1 − ℎ𝑐𝛿 . (3.4.22)

Since we also have by choice of 𝑐 that

𝜏
𝐵𝑟 (Λ)
𝑝3/2 (𝐴𝑖) ≥ 𝜏

Λ
𝑝1
(𝐴𝑖) ≥ 𝜏Λ𝑝1

(𝐴𝑖 ∪ 𝐴𝑖+1) ≥ 4ℎ𝑐𝛿
4 ≥ (ℎ𝑐1)𝑐2𝛿/2,

we may apply Lemma 3.4.4 (with [𝑝1, 𝑝2, ℎ, 𝑋,𝑌 , 𝐴,Λ] := [𝑝3/2, 𝑝2, ℎ
𝑐1 , {𝑢},G𝑖+1, 𝐴𝑖, 𝐵𝑟 (Λ)]) to

deduce that if ℎ𝑐1 ≤ 1/𝑑 then

Qℎ𝑐 ⊗ P
(
𝑢

𝐵2𝑟 (Λ)←−−−→
𝑝2

G𝑖
𝐵𝑟 (Λ)←−−→
𝑝3/2

G𝑖+1 but 𝑢
𝐵2𝑟 (Λ)←−−−→
𝑝2

G𝑖+1

)
≤ 4(ℎ𝑐1)𝑐3 (𝛿/2)3 = 4ℎ𝑐4𝛿

3
, (3.4.23)

where 𝑐4 = 𝑐4(𝑑, 𝐷) = (𝑐1 · 𝑐3)/8. (Note that using ℎ𝑐1 instead of ℎ changes the hypotheses
on 𝑟, but this is not a problem since the hypotheses on 𝑟 associated to ℎ𝑐1 are weaker than
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those associated to ℎ.) A similar application of Lemma 3.4.4 (with [𝑝1, 𝑝2, ℎ, 𝑋,𝑌 , 𝐴,Λ] :=
[𝑝3/2, 𝑝2, ℎ

𝑐1 , {𝑢}, {𝑣}, 𝐴𝑛, 𝐵𝑟 (Λ)]) yields that if ℎ𝑐1 ≤ 1/𝑑 then

Qℎ𝑐1 ⊗ P
(
𝑢

𝐵2𝑟 (Λ)←−−−→
𝑝2

G𝑛
𝐵𝑟 (Λ)←−−→
𝑝3/2

𝑣 but 𝑢
𝐵2𝑟 (Λ)←−−−→
𝑝2

𝑣

)
≤ 4ℎ𝑐4𝛿

3
. (3.4.24)

Now, we have by a union bound that

P
(
𝑢

𝐵2𝑟 (Λ)←−−−→
𝑝2

𝑣

)
≥ Qℎ𝑐1 ⊗ P

(
𝑢

𝐵𝑟 (Λ)←−−→
𝑝3/2

G1
𝐵𝑟 (Λ)←−−→
𝑝3/2

. . .
𝐵𝑟 (Λ)←−−→
𝑝3/2

G𝑛
𝐵𝑟 (Λ)←−−→
𝑝3/2

𝑣

)
−
𝑛−1∑︁
𝑖=1

Qℎ𝑐1 ⊗ P
(
𝑢

𝐵2𝑟 (Λ)←−−−→
𝑝2

G𝑖
𝐵𝑟 (Λ)←−−→
𝑝3/2

G𝑖+1 but 𝑢
𝐵2𝑟 (Λ)←−−−→
𝑝2

G𝑖+1

)
− Qℎ𝑐1 ⊗ P

(
𝑢

𝐵2𝑟 (Λ)←−−−→
𝑝2

G𝑛
𝐵𝑟 (Λ)←−−→
𝑝3/2

𝑣 but 𝑢
𝐵2𝑟 (Λ)←−−−→
𝑝2

𝑣

)
. (3.4.25)

Using (3.4.21), (3.4.22), and the Harris-FKG inequality to bound the first term and (3.4.23) and
(3.4.24) to control the error terms, we obtain that there exists a universal positive constant 𝑐5 and
positive constants 𝑐6 and 𝐶 depending only on 𝑑 and 𝐷 such that if ℎ𝑐 ≤ 1/𝑑 then

P
(
𝑢

𝐵2𝑟 (Λ)←−−−→
𝑝2

𝑣

)
≥
𝜏Λ𝑝1
(𝐴1)
2

(
1 − ℎ𝑐𝛿

)𝑛−1 𝜏Λ𝑝1
(𝐴𝑛)
2

− 𝑛 · 4ℎ𝑐4𝛿
3

≥ 𝑐5

[
1 − 𝐶𝑛ℎ𝑐6𝛿

3
]
𝜏Λ𝑝 (𝐴1)𝜏Λ𝑝 (𝐴𝑛),

where we used that 𝜏Λ𝑝1
(𝐴1)𝜏Λ𝑝1

(𝐴𝑛) ≥ ℎ2𝑐𝛿4 ≥ ℎ𝑐1𝑐3𝛿
3/24 to absorb the error term into the prefactor.

The proposition follows easily since the vertices 𝑢 ∈ 𝐴1 and 𝑣 ∈ 𝐴𝑛 were arbitrary. □

Graphs of high growth and the implication (F)
We now apply Proposition 3.4.1 to prove the implication (F) of the main induction step Proposi-
tion 3.3.1. We state the implication without including the burn-in term in 𝛿0; this will not cause
problems since the statement is stronger without this term than with it.

Proposition 3.4.5 (The implication (F)). For each 𝑑 ∈ N there exists a constant 𝑁 = 𝑁 (𝑑) ≥ 16
such that the following holds. Let 𝐺 be an infinite, connected, unimodular transitive graph with
vertex degree 𝑑, let 𝑝0 ∈ (0, 1), and let 𝑛0 ≥ 16. Let 𝛿0 = (log log 𝑛0)−1/2, define sequences (𝑛𝑖)𝑖≥1

and (𝛿𝑖)𝑖≥1 recursively by

𝑛𝑖 := exp◦3
(
log◦3(𝑛0) + 𝑖 log 9

)
and 𝛿𝑖 := (log log 𝑛𝑖)−1/2
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and let (𝑝𝑖)𝑖≥1 be an increasing sequence of probabilities satisfying 𝑝𝑖+1 ≥ Spr(𝑝𝑖; 𝛿𝑖) for each
𝑖 ≥ 0. Let 𝑛−1 := (log 𝑛0)1/2. For each 𝑖 ≥ 0 define the statement

Full-Space(𝑖) =
(
P𝑝𝑖 (𝑢 ↔ 𝑣) ≥ exp

[
−(log log 𝑛𝑖)1/2

]
for all 𝑢, 𝑣 ∈ 𝐵𝑛𝑖

)
and for each 𝑖 ≥ 1 define the statement

Corridor(𝑖) =
(
𝜅𝑝𝑖 (𝑒 [log𝑚]10

, 𝑚) ≥ exp
[
−(log log 𝑛𝑖)1/2

]
for every 𝑚 ∈ L (𝐺, 20) ∩ [𝑛𝑖−2, 𝑛𝑖−1]

)
.

If 𝑛0 ≥ 𝑁 and 𝑝0 ≥ 1/𝑑 then the implication[
Full-Space(𝑖) ∧ Corridor(𝑖 + 1)

]
=⇒

[
Full-Space(𝑖 + 1) ∨ (𝑝𝑖+1 ≥ 𝑝𝑐)

]
(F)

holds for every 𝑖 ≥ 0.

Proof of Proposition 3.4.5. Fix 𝑖 ≥ 0 and suppose that Full-Space(𝑖) and Corridor(𝑖 + 1) both
hold. If 𝑛𝑖 ∈ L (𝐺, 20), then 𝑒(log 𝑛𝑖)10 ≥ 2𝑛𝑖+1 = 2𝑒(log 𝑛𝑖)9 whenever 𝑁 is larger than some
universal constant, so that if 𝑢, 𝑣 ∈ 𝐵𝑛𝑖+1 then 𝑑 (𝑢, 𝑣) ≤ 2𝑛𝑖+1 ≤ 𝑒(log 𝑛𝑖)10 and

P𝑝𝑖+1 (𝑢 ↔ 𝑣) ≥ 𝜅𝑝𝑖+1
(
𝑒 [log 𝑛𝑖]10

, 𝑛𝑖

)
≥ 𝑒−(log log 𝑛𝑖+1)1/2 for every 𝑢, 𝑣 ∈ 𝐵𝑛𝑖+1 .

That is, Corridor(𝑖 + 1) trivially implies Full-Space(𝑖 + 1) whenever 𝑛𝑖 ∈ L (𝐺, 20). Now
suppose that 𝑛𝑖 ∉ L (𝐺, 20) and suppose that Full-Space(𝑖) holds, so that

Gr(𝑛𝑖) ≥ exp((log(𝑛1/3
𝑖
))20) =: ℎ and 𝜏𝑝𝑖 (𝐵𝑛 (𝑢𝑖)) ≥ exp

[
−(log log 𝑛𝑖)1/2

]
.

Fix two arbitrary vertices 𝑢, 𝑣 ∈ 𝐵𝑛𝑖+1 and let 𝑢 = 𝑢1, 𝑢2, . . . , 𝑢𝑘 = 𝑣 be the vertices in a geodesic
from 𝑢 to 𝑣. It follows from the Harris-FKG inequality that for all 𝑗 ,

𝜏𝑝𝑖 (𝐵𝑛 (𝑢 𝑗 ) ∪ 𝐵𝑛 (𝑢 𝑗+1)) ≥ 𝜏𝑝𝑖 (𝐵𝑛+1(𝑢 𝑗 )) ≥ 𝑝2
𝑖 𝜏𝑝𝑖 (𝐵𝑛+1(𝑢 𝑗 )) ≥ 𝑑−2 exp

[
−(log log 𝑛 𝑗 )1/2

]
.

Let 𝑐1, 𝑐2, 𝑐3 and ℎ0 = ℎ0(𝑑) be the constants from Proposition 3.4.1 applied with 𝐷 = 1 (so that
𝑐1, 𝑐2, and 𝑐3 are universal) and let 𝑁1 = 𝑁1(𝑑) be sufficiently large that exp(−(log 𝑛)20) ≤ ℎ0 for
every 𝑛 ≥ 𝑁1. There exists a constant 𝑁2 = 𝑁2(𝑑) ≥ 𝑁1 such that if 𝑛𝑖 ≥ 𝑛0 ≥ 𝑁2 then

ℎ𝑐1𝛿
3
𝑖 = exp

[
− 𝑐1

320
(log 𝑛𝑖)20

(log log 𝑛𝑖)3/2

]
≤ 𝑐3𝑛

−1
𝑖+1

and for all 𝑗 ,

𝜏𝑝𝑖 (𝐵𝑛 (𝑢 𝑗 ) ∪ 𝐵𝑛 (𝑢 𝑗+1)) ≥ 𝑑−2 exp
[
−(log log 𝑛𝑖)1/2

]
≥ 4 exp

[
− 𝑐1

320
(log 𝑛𝑖)20

(log log 𝑛𝑖)2

]
= 4ℎ𝑐1𝛿

4
𝑖 .
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Thus, if 𝑛0 ≥ 𝑁2 then Proposition 3.4.1 (applied with 𝐷 = 1 and 𝐴𝑖 = 𝐵𝑛 (𝑢𝑖)) implies that for all 𝑗 ,

P𝑝𝑖+1 (𝑢 ↔ 𝑣) ≥ 𝜏𝑝𝑖+1 (𝐵𝑛𝑖 (𝑢), 𝐵𝑛𝑖 (𝑣)) ≥ 𝑐2𝜏𝑝𝑖 (𝐵𝑛𝑖 (𝑢))𝜏𝑝𝑖 (𝐵𝑛𝑖 (𝑣)) ≥ 𝑐2 exp
[
−2(log log 𝑛𝑖)1/2

]
,

where the final inequality follows from the assumption that Full-Space(𝑖) holds. Since 𝑢 and 𝑣
were arbitrary vertices in 𝐵𝑛𝑖+1 , it follows that there exists a constant 𝑁3 = 𝑁3(𝑑) ≥ 𝑁2 such that if
𝑛𝑖 ≥ 𝑛0 ≥ 𝑁3 then Full-Space(𝑖 + 1) holds as claimed. □

As mentioned in the introduction, Proposition 3.4.5 already allows us to conclude the proofs of
Theorems 3.3.3 and 8.1.1 under a mild uniform superpolynomial growth assumption.

Corollary 3.4.6. Let 𝐺 be an infinite, connected, unimodular transitive graph. If log Gr(𝑟) >
(log 𝑟)20 for all sufficiently large 𝑟 then 𝑝𝑐 (𝐺) < 1.

Corollary 3.4.7. Let (𝐺𝑛)𝑛≥1 be a sequence of infinite, connected, unimodular transitive graphs
converging to some transitive graph 𝐺, and suppose that there exists 𝑅 such that log Gr(𝑟;𝐺𝑛) >
(log 𝑟)20 for every 𝑟 ≥ 𝑅 and 𝑛 ≥ 1. Then 𝑝𝑐 (𝐺𝑛) → 𝑝𝑐 (𝐺)

Proof of Corollaries 3.4.6 and 3.4.7. Observe that if 𝐺 satisfies log Gr(𝑟;𝐺) > (log 𝑟)20 for every
𝑟 ≥ 𝑛0 then the statement Corridor(𝑖) holds vacuously for every 𝑖 since L (𝐺, 20) ∩ [𝑛0,∞) is
empty. Thus, these two corollaries follow from Proposition 3.4.5 by the same argument used to
deduce Theorems 3.3.3 and 8.1.1 from Proposition 3.3.1. (In fact the proof is slightly simpler since
one no longer needs to control the burn-in.) □

Remark 3.4.5 (Weaker growth conditions and the gap conjecture). The proof of Corollaries 3.4.6
and 3.4.7 extends straightforwardly to (sequences of) graphs satisfying much weaker growth con-
ditions, such as

log Gr(𝑟) ≥ 𝑐 log 𝑟 (log log 𝑟)10. (3.4.26)

It is plausible that this class (and indeed the class treated by Corollaries 3.4.6 and 3.4.7) includes
every transitive graph of superpolynomial growth, so that the methods of this section would suffice
to prove locality and non-triviality of 𝑝𝑐 for unimodular transitive graphs of superpolynomial
growth. (One would still need the remainder of the paper to handle sequences of graphs of
polynomial growth converging to a graph of superpolynomial growth, such as the Cayley graphs
of the free step-𝑠 nilpotent groups, which converge to trees as 𝑠→∞.) Indeed, one formulation of
Grigorchuk’s gap conjecture (see [Gri14]) states that there exist universal positive constants 𝑐 and 𝛾
such that if 𝐺 is a Cayley graph of superpolynomial growth then Gr(𝑟) ≥ 𝑒𝑐𝑟𝛾 for every 𝑟 ≥ 1, and
it seems reasonable to extend this conjecture to transitive graphs. Thus, the lower bound (3.4.26)
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required for our arguments to work is much smaller than what might plausibly hold universally for
all transitive graphs of superpolynomial growth. On the other hand, the best known bound for the
gap conjecture, due to Shalom and Tao [ST10b], states that there exists a universal constant 𝑐 such
that

log Gr(𝑟) ≥ 𝑐 log 𝑟 (log log 𝑟)𝑐 (3.4.27)

for every Cayley graph of superpolynomial growth and every 𝑟 ≥ 1. (The authors claim their
proof should yield this estimate with the constant 𝑐 = 0.01, but do not carry out the necessary
bookkeeping in the paper.) Even if the strong form of the gap conjecture is false, there does not
seem to be any reason to believe that the Shalom-Tao bound (3.4.27) is optimal, so that (3.4.26)
may very well hold for all transitive graphs of superpolynomial growth.

3.5 Quasi-polynomial growth I: Building disjoint tubes
In this section we prove the geometric facts that we will later use to analyze percolation in the
low-growth (a.k.a. quasi-polynomial growth) regime. Let 𝑑 ≥ 1, let 𝐺 ∈ G∗

𝑑
, and let 𝐷 ≥ 1 be a

fixed parameter. We recall that the set of low growth scales L (𝐺, 𝐷) is defined to be

L (𝐺, 𝐷) =
{
𝑛 ≥ 1 : log Gr(𝑚) ≤ (log𝑚)𝐷 for all 𝑚 ∈ [𝑛1/3, 𝑛]

}
.

It would suffice for all our applications to take e.g. 𝐷 = 20; we keep 𝐷 as a parameter for now to
emphasize that the analysis carried out in this section and Section 3.6 works for arbitrarily large 𝐷.

Recall that a tube is defined to be a set of the form 𝐵𝑟 (𝛾) =
⋃
𝑖 𝐵𝑟 (𝛾𝑖) where 𝛾 is a path and

𝑟 ∈ (0,∞) is a parameter we call the thickness of the tube; we call len(𝛾) the length of the tube.
We will also sometimes write 𝐵(𝛾, 𝑟) = 𝐵𝑟 (𝛾) to avoid writing large expressions in the subscript.
(Strictly speaking the length and thickness of a tube depends on the pair (𝛾, 𝑟) used to represent it,
but we will not belabour this point further.) We would like to show that whenever 𝑛 is in the low
growth regime, for all suitable sets (𝐴, 𝐵) of vertices at scale 𝑛, we can find many disjoint tubes
from 𝐴 to 𝐵 that are reasonably thick and not unreasonably long.

Definition 3.5.1. Let 𝐺 be a connected transitive graph. Given 𝑘, 𝑟, ℓ ≥ 1 (which need not be
integers) and 𝑛 ≥ 1, we say that 𝐺 has (𝑘, 𝑟, ℓ)-plentiful radial tubes at scale 𝑛 if there exists a
family of paths Γ in 𝐺 with |Γ| ≥ 𝑘 satisfying all of the following properties:

• Every path 𝛾 ∈ Γ starts in the sphere 𝑆𝑛 and ends in the sphere 𝑆4𝑛;

• For every two distinct paths 𝛾, 𝛾′ ∈ Γ, the tubes 𝐵(𝛾, 𝑟) and 𝐵(𝛾′, 𝑟) are disjoint.
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Figure 3.2: Schematic illustration of radial and annular tubes. Left: The (𝑘, 𝑟, ℓ)-plentiful radial
tubes condition means that we can find 𝑘 disjoint tubes crossing the annulus that all have thickness
𝑟 and length at most ℓ. Right: the (𝑘, 𝑟, ℓ)-plentiful annular tubes condition means that for any two
crossings of the annulus, we can find 𝑘 disjoint tubes connecting the two crossings that all have
thickness 𝑟 and length at most ℓ; these tubes are not required to stay inside the annulus.

• Every path 𝛾 ∈ Γ has length at most ℓ;

(In particular, the parameter 𝑘 controls the number of tubes, the parameter 𝑟 controls the thickness
of the tubes, and the parameter ℓ controls the length of the tubes.) Given 𝑚 ≥ 𝑛 ≥ 1, we say that a
set of vertices 𝐴 ⊆ 𝑉 is an (𝑛, 𝑚) crossing if it contains a path from 𝑆𝑛 to 𝑆𝑚. We say that 𝐺 has
(𝑘, 𝑟, ℓ)-plentiful annular tubes at scale 𝑛 if for every pair of sets of vertices (𝐴, 𝐵) that are both
(𝑛, 3𝑛) crossings10, there exists a family of paths Γ in 𝐺 with |Γ| ≥ 𝑘 satisfying all of the following
properties:

• Every path 𝛾 ∈ Γ starts in 𝐴 and ends in 𝐵;

• For every two distinct paths 𝛾, 𝛾′ ∈ Γ, the tubes 𝐵(𝛾, 𝑟) and 𝐵(𝛾′, 𝑟) are disjoint;

• Every path 𝛾 ∈ Γ has length at most ℓ.

We say that 𝐺 has (𝑘, 𝑟, ℓ)-plentiful tubes at scale 𝑛 if 𝐺 has both (𝑘, 𝑟, ℓ)-plentiful annular tubes
and (𝑘, 𝑟, ℓ)-plentiful radial tubes at scale 𝑛. See Figure 3.2 for an illustration. Given parameters

10The constant 3 that appears here could safely be replaced by any constant strictly larger than 2. We need the
constant to be strictly larger than 2 to not cause problems with our application of Proposition 3.5.9.
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𝑐, 𝜆 > 0, we say that𝐺 has (𝑐, 𝜆)-polylog-plentiful tubes at scale 𝑛 if it has (𝑘, 𝑟, ℓ)-plentiful tubes
with 𝑘 = (log 𝑛)𝑐𝜆, 𝑟 = 𝑛(log 𝑛)−𝜆/𝑐, and ℓ = 𝑛(log 𝑛)𝜆/𝑐. (NB: These tubes are very thick!)

Remark 3.5.1. The property of having (𝑘, 𝑟, ℓ)-plentiful tubes at scale 𝑛 gets stronger as 𝑘 and 𝑟
increase and gets weaker as ℓ increases; the property of having (𝑐, 𝜆)-polylog-plentiful tubes at
scale 𝑛 gets stronger as 𝑐 increases but has no obvious monotonicity in the parameter 𝜆. There is
of course a trade-off between the number of tubes and their thicknesses, since e.g. if the (𝑛, 3𝑛)
crossings 𝐴 and 𝐵 are segments of geodesics from the origin between distances 𝑛 and 3𝑛 then we
cannot have more than 2𝑛/𝑟 disjoint tubes of thickness 𝑟 connecting 𝐴 and 𝐵. In our applications
in Section 3.6 we will want to use families of tubes that have thickness 𝑛(log 𝑛)−𝑂 (1) and length
𝑛(log 𝑛)𝑂 (1) , which is why we phrase Proposition 3.5.2 in terms of polylog-plentiful tubes. As will
be clear later in the section, our constructions allow for many other possible trade-offs between 𝑘
and 𝑟 which may be useful in future applications.

Ideally, we would like to say that there is some constant 𝑐 ∈ (0, 1) such that for every 𝜆, 𝐺 has
(𝑐, 𝜆)-polylog-plentiful tubes at every sufficiently large scale 𝑛 ∈ L (𝐺, 𝐷). This is, however,
slightly stronger than what we have been able to prove. (Fortunately it is also stronger than we
need for our applications!) We instead establish the slightly weaker statement that for every scale
𝑛 ∈ L (𝐺, 𝐷), there exists a large interval of scales not much smaller than 𝑛 on which we have
plentiful tubes. We now give the precise statement, the proof of which takes up the rest of this
section.

Proposition 3.5.2 (Quasi-polynomial growth yields a large range of consecutive scales with poly-
log-plentiful tubes). For each 𝐷 ∈ [1,∞), 𝜆 ∈ [1,∞), and 𝑑 ≥ 1 there exist positive constants
𝑐(𝑑, 𝐷) ∈ (0, 1) and 𝑛0 = 𝑛0(𝑑, 𝐷, 𝜆) such that the following holds. Let𝐺 be an infinite, connected,
unimodular transitive graph with vertex degree 𝑑 that is not one-dimensional. For each integer
𝑛 ≥ 𝑛0 with 𝑛 ∈ L (𝐺, 𝐷) there exist integers 𝑛1/3 ≤ 𝑚1 ≤ 𝑚2 ≤ 𝑛 with 𝑚2 ≥ 𝑚1+𝑐

1 such that 𝐺
has (𝑐, 𝜆)-polylog-plentiful tubes at every scale 𝑚1 ≤ 𝑚 ≤ 𝑚2.

The constant 𝑐 = 𝑐(𝑑, 𝐷) can be thought of as an “exchange rate”, governing the cost to trade
between the number of tubes and their thicknesses, while 𝜆 is the parameter we vary to make this
trade. It is very important that the constant 𝑐 does not depend on 𝜆!

Remark 3.5.2. No non-trivial statements about plentiful annular tubes can be made without some
kind of growth upper bound (or other geometric assumption), since the 3-regular tree does not
have plentiful (𝑘, 𝑟, ℓ)-plentiful annular tubes for any 𝑘, 𝑟, ℓ > 1. Similarly, the assumption that
the graph is not one-dimensional is needed since the line graph Z does not have (𝑘, 𝑟, ℓ)-plentiful
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radial or annular tubes for any 𝑘, 𝑟, ℓ > 1. (On the other hand, the assumption of unimodularity is
redundant since it is implied by the existence of large scales with subexponential growth [Hut20a,
Section 5.1].)

To prove this proposition, we split into two cases according to the rate of change of growth in the
given interval. More precisely, we will split according to whether or not there exists 𝑛 in a suitable
initial segment of the interval such that 𝐺 satisfies the small-tripling condition Gr(3𝑛) ≤ 35 Gr(𝑛)
at scale 𝑛, where the constant 5 could be replaced by any other constant strictly larger than 4.
(This is related to the fact that four is the critical dimension for two independent random walks to
intersect infinitely often almost surely.) Our proofs in the two cases are completely different from
one another.

In the first case, when there does exist such an 𝑛, we will build our disjoint tubes by applying
the structure theory of transitive graphs of polynomial volume growth [BGT12a; TT21a; EH23d].
Informally, this theory guarantees that, for a large interval of scales, our graph looks approximately
like the Cayley graph of a finitely presented group whose relations are generated by cycles of
diameter much smaller than the given scale. We will use these techniques to prove the following
proposition.

Proposition 3.5.3 (Slow tripling yields plentiful tubes). For each 𝑑 ≥ 1 and 𝜅 < ∞ there exist
positive constants 𝑐 = 𝑐(𝑑, 𝜅), 𝐶 = 𝐶 (𝑑, 𝜅), and 𝑛0 = 𝑛0(𝑑, 𝜅) such that if 𝐺 is an infinite,
connected, transitive graph of vertex degree 𝑑 that is not one-dimensional and 𝑛 ≥ 𝑛0 is such that
Gr(3𝑛) ≤ 3𝜅 Gr(𝑛), then there exists a set 𝐴 ⊂ [𝑛,∞) with |𝐴| ≤ 𝐶 such that for each 𝑘 ≥ 1, 𝐺
has (𝑐𝑘, 𝑐𝑘−1𝑚,𝐶𝑘𝐶𝑚)-plentiful tubes at every scale 𝑚 ≥ 𝐶𝑘𝑛 such that 𝑚 ∉

⋃
𝑎∈𝐴 [𝑎, 2𝑘𝑎].

In the second case, when there does not exist such a scale 𝑛 with small tripling, we will prove
that the desired plentiful tubes condition holds using random walks. More specifically, we will
apply an estimate of [BDKY15], which can be thought of as a “quantitative weak elliptic Harnack
inequality” for graphs of subexponential growth. Under our low-growth assumption, this inequality
implies that two random walks on 𝐺 started at distance 𝑛′ ∈ [𝑛1/3, 𝑛0.9], say, can be coupled to
coincide with good probability by the time they reach distance 𝑛′(log Gr(𝑛′))𝑂 (1) . On the other
hand, the assumption that the growth is rapidly increasing (in an at-least-five-dimensional fashion)
lets us prove that two independent pairs of these coupled random walks are unlikely to have their
tubes intersect. (This will be proven using fairly standard random walk techniques, most notably the
isoperimetric inequality of Coulhon and Saloff-Coste [CS93] and the heat kernel bounds resulting
from this inequality together with the work of Morris and Peres [MP05].) Unfortunately these
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walks will have length of order (𝑛′)2(log Gr(𝑛′))𝑂 (1) , which is larger than we want by a factor of
𝑛′. This can be fixed by a simple coarse-graining argument, using the diffusivity of random walks
on low-growth graphs, to replace the random walk by a shorter path with essentially the same tube
around it. We will use these techniques to prove the following proposition.

Proposition 3.5.4 (Fast tripling and quasi-polynomial growth yield plentiful tubes). Let 𝐺 be an
infinite connected unimodular transitive graph with vertex degree 𝑑, let 𝐷, 𝜆 ≥ 1 and let 𝜀 > 0.
There exist positive constants 𝑐 = 𝑐(𝑑, 𝐷, 𝜀) and 𝑛0 = 𝑛0(𝑑, 𝐷, 𝜆, 𝜀) such that if 𝑛 ≥ 𝑛0 satisfies

Gr(𝑚) ≤ 𝑒(log𝑚)𝐷 and Gr(3𝑚) ≥ 35 Gr(3𝑚) for every 𝑛1−𝜀 ≤ 𝑚 ≤ 𝑛1+𝜀

then 𝐺 has (𝑐, 𝜆)-polylog-plentiful tubes at scale 𝑛.

We prove Proposition 3.5.3 in Section 3.5 and Proposition 3.5.4 in Section 3.5. Before doing this,
we note that Proposition 3.5.2 follows easily from these two propositions.

Proof of Proposition 3.5.2 given Propositions 3.5.3 and 3.5.4. Let 𝑐1(𝑑, 5), 𝐶 (𝑑, 5), and 𝑛1(𝑑, 5)
be the constants from Proposition 3.5.3 with 𝜅 := 5. Let 𝑐2(𝑑, 𝐷, 0.1) and 𝑛2(𝑑, 𝐷, 𝜆, 0.1) be
the constants from Proposition 3.5.4 with 𝜀 := 0.1. We may assume that 𝑐1 ∨ 𝑐2 ≤ 1/2 and
𝐶 ≥ 2. Suppose that some 𝑛 ∈ L (𝐺, 𝐷) is large with respect to 𝑑, 𝐷, 𝜆, satisfying in particular
𝑛 ≥ (𝑛1 ∨ 𝑛2)3. If there exists 𝑛′ ∈ [𝑛1/3, 𝑛10/11] such that Gr(3𝑛′) ≤ 35 Gr(𝑛′), then we may
apply Proposition 3.5.3 with 𝑘 := (log 𝑛)𝜆 to obtain an interval of scales [𝑚1, 𝑚2] ⊆ [𝑛1/3, 𝑛] with
𝑚2 ≥ 𝑚1.1

1 on which 𝐺 has (1/(2𝐶), 𝜆)-polylog-plentiful tubes on every scale. Otherwise, since
each 𝑛′ ∈ [𝑛0.4, 𝑛0.8] satisfies [(𝑛′)0.9, (𝑛′)1.1] ⊆ [𝑛1/3, 𝑛10/11], we can apply Proposition 3.5.4 to
each such scale to obtain that 𝐺 has (𝑐1, 𝜆)-plentiful tubes at every scale in the interval [𝑛0.4, 𝑛0.8].
This is easily seen to imply the claim in either case. □

Using the structure theory of approximate groups
The goal of this subsection is to prove Proposition 3.5.3. Let us first give some relevant context.
Given a graph𝐺, a vertex 𝑣 ∈ 𝑉 (𝐺), and a radius 𝑟 ≥ 0, we define the exposed sphere 𝑆∞𝑟 (𝑣) to be
the set of vertices 𝑢 ∈ 𝑆𝑟 (𝑣) such that there exists an infinite self-avoiding path started at 𝑢 that never
returns to 𝐵𝑟 (𝑣) after its first step. When 𝐺 is transitive, we set 𝑆∞𝑟 := 𝑆∞𝑟 (𝑜). In [CMT22], the
authors applied results of Timar [Tim07] to obtain geometric control of exposed spheres in transitive
graphs of polynomial growth using the fact that (by Gromov’s theorem [Gro81b] and Trofimov’s
theorem [Tro84b]) these graphs are quasi-isometric to Cayley graphs of nilpotent groups, which
are finitely presented.
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In this section, we will run a similar argument to build our disjoint tubes under the hypotheses of
Proposition 3.5.3. While these hypotheses suffice to guarantee polynomial growth by the results
of [BGT12a; TT21a] (discussed in detail below), a key technical difference between our analysis
and that of [CMT22] is that we must run all our arguments in a more finitary, quantitative way; we
need to build our disjoint tubes at a scale not much larger than the scale where we are assumed
to witness relative polynomial growth. This requires us to engage more deeply with the structure
theory of approximate groups than was necessary in [CMT22]. Indeed, rather than using Gromov’s
theorem and Trofimov’s theorem, we will instead apply finitary versions of these theorems due to
Breuillard, Green, and Tao [BGT12a] and Tessera and Tointon [TT21a]. Moreover, we will also
apply a new structure theoretic result proven in our paper [EH23d], which can be thought of as a
“uniform” version of the statement that groups of polynomial growth are finitely presented.

Remark 3.5.3. It will be convenient in this section to let Γ denote a group. This will not conflict
with the Γ used to denote a set of disjoint tubes, which we will not use in this section.

Structure theory. We now state the main structure-theoretic results we will use after reviewing
some relevant definitions. We begin with Tessera and Tointon’s finitary structure theorem for
vertex-transitive graphs of low growth [TT21a]; this theorem builds on Breuillard, Green, and
Tao’s structure theorem for approximate groups [BGT12a] as well as Carolino’s extension of this
theorem to locally compact approximate groups [Car15]. Recall that a function 𝜙 : 𝑉1 → 𝑉2

between the vertex sets of two graphs 𝐺1 = (𝑉1, 𝐸1) and 𝐺2 = (𝑉2, 𝐸2) is said to be an (𝛼, 𝛽)-
quasi-isometry (a.k.a. rough isometry) if

𝛼−1𝑑 (𝑥, 𝑦) − 𝛽 ≤ 𝑑 (𝜙(𝑥), 𝜙(𝑦)) ≤ 𝛼𝑑 (𝑥, 𝑦) + 𝛽

for every 𝑥, 𝑦 ∈ 𝑉1 and every vertex 𝑧 ∈ 𝑉2 is within distance at most 𝛽 of 𝜙(𝑉1); note that the
second property holds automatically if 𝜙 is surjective. Given a transitive graph 𝐺 and a subgroup
𝐻 ⊆ Aut(𝐺), we write 𝐺/𝐻 for the associated quotient graph. If 𝐻 is a normal subgroup of
Aut(𝐺) then the action of Aut(𝐺) on 𝐺 descends to a transitive action of Aut(𝐺) on 𝐺/𝐻 (see
[TT21a, Section 3]), and we write Aut(𝐺)𝐺/𝐻 for the image of Aut(𝐺) in Aut(𝐺/Γ) induced by this
action. Note that we view Aut(𝐺) as a topological group where convergence is given by pointwise
convergence (see [TT21a, §4]).

Theorem 3.5.5 (Finitary structure theory of transitive graphs of polynomial growth). For each
𝐾 ≥ 1 there exist constants 𝑛0 = 𝑛0(𝐾) and 𝐶 = 𝐶 (𝐾) such that the following holds. Let 𝐺 be a
connected (locally finite) (vertex-)transitive graph with a distinguished vertex 𝑜, and suppose that
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there exists 𝑛 ≥ 𝑛0 such that Gr(3𝑛) ≤ 𝐾 Gr(𝑛). Then there exists a compact normal subgroup
𝐻 ⊳ Aut(𝐺) such that:

1. Every fibre of the projection 𝜋 : 𝐺 → 𝐺/𝐻 has diameter at most 𝐶𝑛.

2. Aut(𝐺)𝐺/𝐻 can be canonically identified with Aut(𝐺)/𝐻.

3. Aut(𝐺)/𝐻 has a nilpotent normal subgroup 𝑁 of rank, step and index at most 𝐶.

4. The set 𝑆 = {𝑔 ∈ Aut(𝐺)𝐺/𝐻 : 𝑑𝐺/𝐻 (𝑔(𝐻𝑜), 𝐻𝑜) ≤ 1} is a finite symmetric generating set
for Aut(𝐺)/𝐻.

5. Every vertex stabiliser of the action of Aut(𝐺)/𝐻 on 𝐺/𝐻 has cardinality at most 𝐶.

6. If for each 𝑣 ∈ 𝐺 we let 𝑔𝑣 ∈ Aut(𝐺)/𝐻 be such that 𝑔𝑣 (𝜋(𝑒)) = 𝜋(𝑣) then 𝑣 ↦→ 𝑔𝑣 is a
(1, 𝐶𝑛)-quasi-isometry from 𝐺 to Cay(Aut(𝐺)/𝐻, 𝑆).

7. If Gr′ denotes the growth function of the Cayley graph Cay(Aut(𝐺)/𝐻, 𝑆) then

Gr(𝑚2)
𝐶 Gr(𝑚1 + 𝐶𝑛)

≤ Gr′(𝑚2)
Gr′(𝑚1)

≤ 𝐶 Gr(𝑚2 + 𝐶𝑛)
Gr(𝑚1)

for every 𝑚1, 𝑚2 ∈ N.

8. The growth bound Gr(𝑚2) ≤ 𝐶 (𝑚2/𝑚1)𝐶 Gr(𝑚1) holds for every 𝑚2 ≥ 𝑚1 ≥ 𝑚.

Proof of Theorem 3.5.5. The first five items of the theorem are essentially equivalent to [TT21a,
Theorem 2.3] (although that theorem is slightly more general as it allows one to replace Aut(𝐺)
with any other transitive group of automorphisms of 𝐺). In their original statement of the theorem,
Tessera and Tointon do not explicitly identify the rough isometry from 𝐺 to Cay(Aut(𝐺)/𝐻, 𝑆),
but the fact we can take it to be of the form above is implicit in their proof. Item 7 is implied by
[TT21a, Proposition 9.1], while Item 8 follows from Item 7 together with [BT16, Theorem 1.1]. □

Remark 3.5.4. The set 𝑆 has size equal to the union of the stabilizers of the vertices {𝑢 ∈ 𝐺/𝐻 :
𝑢 ∼ 𝑣}, so that |𝑆 | ≤ 𝐶 (deg(𝑜) + 1).

Remark 3.5.5. For 𝐾 = 3𝜅 with 𝜅 an integer, the growth bound Gr(𝑚2) ≤ 𝐶 (𝑚2/𝑚1)𝐶 Gr(𝑚1) can
be improved to the sharp bound Gr(𝑚2) ≤ 𝐶 (𝑚2/𝑚1)𝜅 Gr(𝑚1) under the stronger assumption that
the graph satisifes an absolute growth bound of the form Gr(𝑛) ≤ 𝜀𝐾𝑛𝜅+1 at a sufficiently large
scale and for a sufficiently small constant 𝜀𝐾 > 0 [TT21a, Corollary 1.5]. This strong bound is
not implied by the small-tripling condition (which is the relevant condition for our applications) as

81



shown in [Tao17a, Example 1.11]. (Indeed, this example suggests that the small-tripling condition
Gr(3𝑚) ≤ 3𝜅 Gr(𝑚) should not imply any bound on the limiting growth dimension stronger than
𝑂 (𝜅2). Optimal bounds on growth implied by small tripling will be established in forthcoming
work of Tessera and Tointon.)

Uniform finite presentation. We next state our theorem on uniform finite presentation proven in
[EH23d]. Given a set of elements 𝐴 in a group Γ, we define ⟨⟨𝐴⟩⟩ to be the normal subgroup of
Γ generated by 𝐴 and define 𝐴̄ = 𝐴 ∪ {id} ∪ 𝐴−1. Consider a group Γ with a finite generating
set 𝑆, let 𝐹𝑆 be the free group on 𝑆 and let 𝜋 : 𝐹𝑆 → 𝐺 be the associated group homomorphism
with kernel 𝑅. Since Γ � 𝐹𝑆/𝑅, we can think of the sequence of quotients (Γ𝑟)𝑟≥1 defined by
Γ𝑟 := 𝐹𝑆/⟨⟨𝑆𝑟 ∩ 𝑅⟩⟩ as being finitely presented approximations to Γ, since Γ𝑟 admits a finite
presentation Γ𝑟 = ⟨𝑆 | 𝑅𝑟⟩ = 𝐹𝑆/⟨⟨𝑅𝑟⟩⟩ with 𝑅𝑟 = 𝑆𝑟 ∩ 𝑅 ⊆ 𝑆𝑟 . These approximations have the
property that the Cayley graphs Cay(Γ𝑟 , 𝑆) and Cay(Γ, 𝑆) have isomorphic ((𝑟/2) − 1)-balls. We
record this fact in the following lemma, which is taken from [EH23d, Lemma 5.6]. (Although it is
stated there only in the case that 𝑟 is a power of 2, the same proof works for arbitrary 𝑟.)

Lemma 3.5.6. Let Γ be a group with a finite generating set 𝑆. For all 𝑖 ≥ 1, the quotient map
Γ𝑟 → Γ induces a map of the associated Cayley graphs that restricts to an isomorphism between
the balls of radius ⌊𝑟/2⌋ − 1.

The main result of [EH23d] can be stated as follows.

Theorem 3.5.7 ([EH23d], Theorem 1.1). For each 𝐾, 𝑑 < ∞ there exist constants 𝑛0 = 𝑛0(𝐾) and
𝐶 = 𝐶 (𝐾, 𝑑) such that if Γ is a group and 𝑆 is a finite generating set for Γ with |𝑆 | ≤ 𝑑 whose
growth function Gr satisfies Gr(3𝑛) ≤ 𝐾 Gr(𝑛) for some integer 𝑛 ≥ 𝑛0 then

#
{
𝑘 ∈ N : 𝑘 ≥ log2 𝑛 and ⟨⟨𝑅2𝑘+1⟩⟩ ≠ ⟨⟨𝑅2𝑘 ⟩⟩

}
≤ 𝐶.

For our purposes, the main output of Theorems 3.5.5 and 3.5.7 is that if the small tripling condition
Gr(3𝑛) ≤ 𝐾 Gr(𝑛) holds at some sufficiently large 𝑛, then at “most” scales 𝑟 ≥ 𝑛 the graph “looks
like” the Cayley graph of a finitely presented group with relations generated by words of length
much smaller than 𝑟.

Using the structure theory to build disjoint tubes. It remains to apply Theorems 3.5.5 and 3.5.7
to prove Proposition 3.5.3. When working with a group Γ and a finite generating set 𝑆 of Γ, we
will continue to use the notation (Γ𝑟)𝑟≥1 and (𝑅𝑟)𝑟≥1 as defined above.
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Let us introduce some more definitions. Let 𝐺 = (𝑉, 𝐸) be a graph, and consider the set {0, 1}𝐸

with addition modulo 2 as a vector space over Z2. If 𝐺 = Cay(Γ, 𝑆) for some group Γ = ⟨𝑆 |𝑅⟩
with finite generating set 𝑆 and (not necessarily finitely generated) relation group 𝑅 ⊳ 𝐹𝑆, then we
can identify every oriented cycle started at the origin with a word in 𝑅. Under this identification,
we see that if 𝑅 is generated as a normal subgroup by words of length at most 𝑟 in 𝐹𝑆, then every
cycle in 𝐺 can be written as a mod-2 sum of cycles of length at most 𝑟. Note that this leads to a
notion of finite presentation for graphs that are not Cayley graphs, namely that their cycle space is
generated as a Z2-vector space by the cycles of some finite length 𝑟 < ∞; see [Tim07] for further
details.

We will rely crucially on the following lemma, which is essentially due to Timár [Tim07]. Recall
that an infinite graph 𝐺 = (𝑉, 𝐸) is one-ended if for every finite set of vertices 𝑊 ⊆ 𝑉 , the graph
𝐺\𝑊 has exactly one infinite component; groups of polynomial growth are one-ended if and only if
they are not one-dimensional. (Note that when𝐺 is the Cayley graph of an infinite finitely-generated
group, the property of being one-ended is independent of the choice of finite generating set, so that
one can sensibly refer to a group as being one-ended without specifying a generating set.)

Lemma 3.5.8. Let 𝐺 be an infinite, connected, one-ended transitive graph. If 𝑟 ∈ N has the
property that every cycle in𝐺 is equal to a sum of cycles of length at most 𝑟 , then for every 𝑘, 𝑛 ∈ N
with 𝑟 ≤ 𝑘 ≤ 𝑛 and every 𝑢, 𝑣 ∈ 𝑆∞𝑛 there exists a path from 𝑢 to 𝑣 that is contained in

⋃
𝑥∈𝑆∞𝑛 𝐵2𝑘 (𝑥)

and has length at most 3𝑘 |𝐵3𝑛 | /|𝐵𝑘 |.

Proof. This statement is implicit in the proofs of [CMT22, Lemma 2.1 and 2.7], and is an easy
consequence of [Tim07, Theorem 5.1]. □

We will also need two more elementary geometric facts. The first states that if a path travels from
a sphere 𝑆𝑟 to 𝑆2𝑟+1, then it must pass through the exposed sphere 𝑆∞𝑟 .

Proposition 3.5.9 ([FGO15, Proposition 5]). Let 𝐺 be an infinite connected transitive graph and
let 𝑟 ∈ N. Every path that starts in 𝑆𝑟 and ends in 𝑆2𝑟+1 contains a vertex in 𝑆∞𝑟 .

The next lemma lets us pass disjoint tubes through quasi-isometries with all relevant quantities
changing in a controlled way.

Lemma 3.5.10. Let 𝐺 = (𝑉, 𝐸) and 𝐺′ = (𝑉 ′, 𝐸′) be two graphs and let 𝜙 : 𝑉 → 𝑉 ′ be an (𝛼, 𝛽)-
quasi isometry for some 𝛼, 𝛽 ≥ 1. Let 𝑢, 𝑣 ∈ 𝑉 and suppose that 𝑥, 𝑦 ∈ 𝑉 ′ satisfy 𝑑 (𝑥, 𝜙(𝑢)) ≤ 𝛽
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and 𝑑 (𝑦, 𝜙(𝑣)) ≤ 𝛽. For each path 𝛾′ from 𝑥 to 𝑦 in 𝐺′, there exists a path 𝛾 from 𝑢 to 𝑣 in 𝐺 such
that len(𝛾) ≤ 10𝛼(len(𝛾′) + 𝛽) and

𝜙(𝐵𝑟 (𝛾)) ⊆ 𝐵𝛼𝑟+(5𝛼2+2)𝛽 (𝛾′)

for every 𝑟 ≥ 0.

Proof of Lemma 3.5.10. Let 𝜓 : 𝑉 ′ → 𝑉 be a function such that 𝜓(𝑥) = 𝑢, 𝜓(𝑦) = 𝑣, and
𝑑 (𝜙(𝜓(𝑧)), 𝑧) ≤ 𝛽 for every 𝑧 ∈ 𝑉 ; such a function exists by the definition of an (𝛼, 𝛽)-quasi-
isometry and our assumptions on 𝑢, 𝑣, 𝑥, and 𝑦. Let ℓ = ⌈len(𝛾′)/⌈𝛽⌉⌉, and let the sequence
(𝑛𝑖)ℓ𝑖=0 be defined by 𝑛𝑖 = ⌈𝛽⌉𝑖 for 𝑖 < ℓ and 𝑛ℓ = len(𝛾′). For each 0 ≤ 𝑖 ≤ ℓ let 𝑥𝑖 = 𝛾′𝑛𝑖 and let
𝑢𝑖 = 𝜓(𝑥𝑖), so that 𝑢0 = 𝑢 and 𝑢ℓ = 𝑣. For each 0 ≤ 𝑖 < ℓ, the points 𝑥𝑖 and 𝑥𝑖+1 have distance
at most ⌈𝛽⌉ ≤ 2𝛽 in 𝐺′, so that 𝜙(𝑢𝑖) and 𝜙(𝑢𝑖+1) have distance at most 4𝛽 in 𝐺′. Since 𝜙 is an
(𝛼, 𝛽)-quasi-isometry, it follows that 𝑢𝑖 and 𝑢𝑖+1 have distance at most 5𝛼𝛽 in 𝐺. Let 𝛾 be formed
by concatenating geodesics between 𝑢𝑖 and 𝑢𝑖+1 for each 0 ≤ 𝑖 < ℓ. The path 𝛾 clearly has length
at most 5𝛼𝛽⌈len(𝛾′)/⌈𝛽⌉⌉ ≤ 10𝛼(len(𝛾′) + 𝛽). Moreover, given 𝑟 ≥ 1, each point in 𝐵𝑟 (𝛾) has
distance at most 5𝛼𝛽 + 𝑟 from one of the points 𝑢𝑖, whose image under 𝜙 has distance at most 𝛽
from one of the points of 𝛾′. Using the definition of an (𝛼, 𝛽)-quasi-isometry again, this implies
that every point in 𝜙(𝐵𝑟 (𝛾)) has distance at most 𝛼(5𝛼𝛽 + 𝑟) + 2𝛽 from a point of 𝛾′, which is
equivalent to the desired set inclusion. □

We now have everything we need to prove Proposition 3.5.3.

Proof of Proposition 3.5.3. Fix 𝜅 < ∞ and let 𝑛0 = 𝑛0(𝜅) and 𝐶1 = 𝐶1(𝜅) be the constants from
Theorem 3.5.5 applied with 𝐾 = 3𝜅. Suppose that 𝐺 is an infinite, connected, transitive graph
of vertex degree 𝑑 that is not one-dimensional and that 𝑛 ≥ 𝑛0 is such that Gr(3𝑛) ≤ 3𝜅 Gr(𝑛).
Let 𝐻 be the normal subgroup of Aut(𝐺) that is guaranteed to exist by Theorem 3.5.5, let 𝑆
be the generating set for Aut(𝐺)/𝐻 from Item 4 of Theorem 3.5.5, and write Γ := Aut(𝐺)/𝐻.
Letting Gr′ denote the growth function of the Cayley graph Cay(Γ, 𝑆), we have by Items 7 and 8 of
Theorem 3.5.5 that

Gr′(3𝑛)
Gr′(𝑛) ≤

𝐶1 Gr(3𝑛 + 𝐶1𝑛)
Gr(𝑛) ≤ 𝐶2

1 (3 + 𝐶1)𝐶1 .

Moreover, as discussed in Remark 3.5.4, the generating set 𝑆 has at most𝐶1(𝑑 +1) elements. Thus,
if we take 𝑛1 = 𝑛1(𝜅) ≥ 𝑛0 and 𝐶2 = 𝐶2(𝜅, 𝑑) to be the constants from Theorem 3.5.7 applied with
𝐾 = 𝐶2

1 (3 + 𝐶1)𝐶1 and 𝑑 = 𝐶1(𝑑 + 1), we have that if 𝑛 ≥ 𝑛1 then

#
{
𝑖 ∈ N : 𝑖 ≥ log2 𝑛 and ⟨⟨𝑅2𝑖+1⟩⟩ ≠ ⟨⟨𝑅2𝑖⟩⟩

}
≤ 𝐶2, (3.5.1)
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where 𝑅𝑘 is the set of relations of Γ that have word length at most 𝑘 and ⟨⟨𝑅𝑘⟩⟩ is the smallest normal
subgroup of the free group 𝐹𝑆 generated by 𝑅𝑘 . Let 𝐺′ = (𝑉 ′, 𝐸′) be the Cayley graph Cay(Γ, 𝑆),
let 𝜙 : 𝑉 → 𝑉 ′ be the (1, 𝐶1𝑛)-quasi-isometry that is guaranteed to exist by Theorem 3.5.5 (which
we may assume maps 𝑜 to the identity of Γ, which we denote by id), and let 𝜓 : 𝑉 ′ → 𝑉 be such
that 𝑑 (𝜙(𝜓(𝑥)), 𝑥) ≤ 𝐶1𝑛 for every 𝑥 ∈ 𝑉 ′, such a function being guaranteed to exist since 𝜙 is
a (1, 𝐶1𝑛)-quasi-isometry. This function 𝜓 is easily seen to be a (1, 𝐶3𝑛)-quasi-isometry for an
appropriate choice of constant 𝐶3 = 𝐶3(𝜅). For each 𝑘 ≥ 1 let 𝐺′

𝑘
be the Cayley graph Cay(Γ𝑘 , 𝑆)

of the group Γ𝑘 defined by Γ𝑘 = ⟨𝑆 | 𝑅𝑘⟩.

Fix 𝑛 ≥ 𝑛1 and consider the set 𝐴 = {2𝑖 : 𝑖 ≥ log2 𝑛 and ⟨⟨𝑅2𝑖+5⟩⟩ ≠ ⟨⟨𝑅2𝑖⟩⟩}. This set contains
at most five times as many elements as the set considered in (3.5.1), so that |𝐴| ≤ 5𝐶2. Fix
𝑘 ≥ 𝑛 and suppose that 𝑚 ≥ 2𝑘𝑛 does not belong to [𝑎, 2𝑘𝑎] for any 𝑎 ∈ 𝐴, so that if we
define 𝑎(𝑚) = sup{𝑎 ∈ 𝐴 : 𝑎 ≤ 𝑚} then 𝑎(𝑚) ≤ 𝑚/2𝑘 . The definition of 𝐴 ensures that
⟨⟨𝑅2𝑎(𝑚)⟩⟩ = ⟨⟨𝑅16𝑚⟩⟩ and hence by Lemma 4.5.6 that the Cayley graphs 𝐺′ and 𝐺′

𝑎(𝑚) have
isomorphic (8𝑚 − 1)-balls. For each 𝑟 < 4𝑚 we write (𝑆∞𝑟 )′ for the exposed spheres in 𝐺′ and
𝐺′
𝑎(𝑚) , which can be identified by Proposition 3.5.9. We also identify the balls 𝐵′𝑟 (𝑥) in 𝐺′ and

𝐺′
𝑎(𝑚) for points 𝑥 of distance at most 4𝑚 from the identity and all 𝑟 ≤ 𝑚, where the prime on

𝐵′𝑟 (𝑥) reminds us that we are working with 𝐺′ rather than 𝐺.

Now, since Γ𝑎(𝑚) has its group of relations generated by its relations of length at most 𝑎(𝑚) ≤ 𝑚/2𝑘 ,
it follows from Lemma 3.5.8 that for each 𝑚/2𝑘 ≤ 𝑚1 ≤ 𝑚2 ≤ 3𝑚 and each 𝑢, 𝑣 ∈ (𝑆∞𝑚2

)′ there
exists a path from 𝑢 to 𝑣 in 𝐺′

𝑎(𝑚) that is contained in
⋃
𝑥∈(𝑆∞𝑚2 )

′ 𝐵′2𝑚1
(𝑥) and has length at most

3𝑚1 Gr(3𝑚2)/Gr(𝑚1), where all sets and growth functions are identical in the two groups Γ𝑎(𝑚)

and Γ by the restrictions placed on 𝑘 and 𝑚. Since these paths are entirely contained within the ball
for which 𝐺′ and 𝐺′

𝑎(𝑚) are identical, they exist in 𝐺′ also. Moreover, since 𝑚2 ≥ 𝑚1 ≥ 𝑚/2𝑘 ≥ 𝑛,
we have by Item 9 of Theorem 3.5.5 as above that

Gr′(3𝑚2)
Gr′(𝑚1)

≤ 𝐶2
1 (3 + 𝐶1)𝐶1

(
𝑚2

𝑚1

)𝐶1

so that the length of this path is at most 3𝐶2
1 (3 + 𝐶1)𝐶1 (𝑚2/𝑚1)𝐶1𝑚1 =: 𝐶4(𝑚2/𝑚1)𝐶1𝑚1. (Every-

thing discussed in this paragraph is still under the assumption that 𝑚 ≥ 2𝑘𝑛 does not belong to
[𝑎, 2𝑘𝑎] for any 𝑎 ∈ 𝐴.)

We now use the existence of these paths in 𝐺′ to guarantee the desired plentiful tube conditions in
the original graph 𝐺. More concretely, we will prove that there exist positive constants 𝑐 = 𝑐(𝜅, 𝑑),
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𝐶 = 𝐶 (𝜅, 𝑑), and 𝑛2 = 𝑛2(𝜅) ≥ 𝑛1 such that if 𝑛 ≥ 𝑛2 then 𝐺 has (𝑐𝑘, 𝑐𝑘, 𝐶𝑘𝐶𝑚)-plentiful tubes
on each scale 𝑚 ≥ 𝐶𝑘𝑛 such that 𝑚 does not belong to [𝑎, 2𝑘𝑎] for any 𝑎 ∈ 𝐴.

We begin by constructing annular tubes. It suffices to construct tubes in the case that the two
(𝑚, 3𝑚) crossings are both the vertex sets of paths 𝜂1, 𝜂2 from 𝑆𝑚 to 𝑆3𝑚 since any crossing
contains the vertex set of such a path. Fix 𝑚 ≥ 2𝑘𝑛 and two paths 𝜂1 and 𝜂2 from 𝑆𝑚 to 𝑆3𝑚 in 𝐺,
and suppose that 𝑚 does not belong to [𝑎, 2𝑘𝑎] for any 𝑎 ∈ 𝐴. Apply Lemma 3.5.10 with each of
these paths and the (1, 𝐶3𝑛)-quasi-isometry 𝜓 : 𝑉 ′→ 𝑉 (taking 𝑢 and 𝑣 to be the endpoints of 𝜂𝑖, 𝑥
to be 𝜙(𝑢) and 𝑦 to be 𝜙(𝑣)) to obtain two paths 𝜂′1 and 𝜂′2 in𝐺′. Using the (1, 𝐶1𝑛)-quasi-isometry
property of 𝜙, each of these paths starts at distance at most 𝑚 + 𝐶1𝑛 from 𝜙(𝑜) = id and ends at
distance at least 3𝑚 − 𝐶1𝑛 from id. If 𝑚 ≥ 9𝐶1𝑛 then both paths start at distance at most 10

9 𝑚

from id and end at distance at least 26
9 𝑚 from id. As such, it follows from Proposition 3.5.9 that if

𝑚 ≥ 9𝐶1𝑛 then the paths 𝜂′1 and 𝜂′2 both intersect the exposed sphere (𝑆∞𝑚2
)′ in 𝐺 for each integer

𝑖 ∈ 𝐼 := Z ∩ [ 10
9 𝑚,

12
9 𝑚]. (The only property of these numbers we will need is that 12 > 10 and

12 < 26/2.) Fix 𝑚1 = ⌈𝑚/2𝑘⌉ ≤ 𝑚 and for each integer 𝑖 ∈ 𝐼 let 𝑥𝑖 be a point of 𝜂′1 belonging to
(𝑆∞
𝑖
)′ and let 𝑦𝑖 be a point of 𝜂′2 belonging to (𝑆∞

𝑖
)′. If 𝑚 ≥ max{9𝐶1𝑛, 2𝑘𝑛} then, since 𝑚 was

assumed not to belong to [𝑎, 2𝑘𝑎] for any 𝑎 ∈ 𝐴, it follows from Lemma 3.5.8 as discussed above
that for each such 𝑖 there exists a path 𝛾′

𝑖
from 𝑥𝑖 to 𝑦𝑖 that is contained in

⋃
(𝑆∞
𝑖
)′ 𝐵
′
2𝑚1
(𝑥) and has

length at most 𝐶4(𝑖/𝑚1)𝐶1𝑚1. Since 𝑖 ≤ 3𝑚, the length of this path can be bounded by 𝐶5𝑘
𝐶1−1𝑚

for an appropriate constant 𝐶5 = 𝐶5(𝜅). Moreover, if 𝑟 ≥ 1 and 𝑖 and 𝑗 are two integers 𝑖, 𝑗 ∈ 𝐼
satisfying |𝑖 − 𝑗 | > 4𝑚1 + 2𝑟 then the tubes of radius 𝑟 around 𝛾′

𝑖
and 𝛾′

𝑗
in 𝐺′ are disjoint since

they are contained in disjoint annuli
⋃
(𝑆∞
𝑖
)′ 𝐵
′
2𝑚1+𝑟 (𝑥) and

⋃
(𝑆∞
𝑗
)′ 𝐵
′
2𝑚1+𝑟 (𝑥).

Since Lemma 3.5.10 guaranteed that the paths 𝜂′1 and 𝜂′2 have images under 𝜓 contained in the
4𝐶1𝑛-neighbourhoods of 𝜂1 and 𝜂2 respectively, we can for each 𝑖 ∈ 𝐼 find points 𝑢𝑖 and 𝑣𝑖 in 𝜂1 and
𝜂2 respectively such that 𝑑 (𝑥𝑖, 𝜙(𝑢𝑖)) and 𝑑 (𝑦𝑖, 𝜙(𝑣𝑖)) are at most 6𝐶1𝑛. Applying Lemma 3.5.10
to each of the paths 𝛾′

𝑖
(with the quasi-isometry 𝜙, the points 𝑢𝑖 and 𝑣𝑖 in 𝐺, the points 𝑥𝑖 and 𝑦𝑖

in 𝐺′, and the quasi-isometry constants 𝛼 = 1 and 𝛽 = 6𝐶1𝑛), it follows that there exist constants
𝐶6 = 𝐶6(𝜅) and 𝐶7 = 𝐶7(𝜅) such that for each 𝑖 ∈ 𝐼 there exists a path 𝛾𝑖 from 𝑢𝑖 to 𝑣𝑖 of length at
most 𝐶6𝑘

𝐶1−1 such that if 𝑖, 𝑗 ∈ 𝐼 satisfy |𝑖 − 𝑗 | ≥ 𝐶7𝑚1 then the tubes of radius 𝑚1 around 𝛾𝑖 and
𝛾 𝑗 are disjoint. The claim about annular tubes follows easily by taking a 𝐶7𝑚1-separated subset
of 𝐼 (i.e., a subset of 𝐼 in which all distinct pairs of integers have distance at least 𝐶7𝑚1), since
such a set may be taken to have size at least 𝐼/𝐶7𝑚1 ≥ 𝑐1𝑘 for some positive constant 𝑐1 = 𝑐1(𝜅)
whenever 𝑛 is larger than some constant 𝑛2 = 𝑛2(𝜅) ≥ 𝑛1. (The freedom to increase 𝑛1 to 𝑛2 lets us
make sure that every real number we round down is at least 1, so that rounding cannot reduce any
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relevant quantities by more than a factor of 1/2.)

We now briefly argue that the same construction also yields radial tubes crossing a shifted annulus.
Run the above construction again with 𝜂1 and 𝜂2 taken to be the two portions crossing from 𝑆𝑚

to 𝑆12𝑚 of a doubly-infinite geodesic passing through 𝑜, so that every point in 𝜂1 has distance at
least 2𝑚 from every point in 𝜂2, but with various constants changed appropriately since we are now
working with (𝑚, 12𝑚) crossings instead of (𝑚, 3𝑚) crossings. In particular, the interval 𝐼 can
now be taken to be Z ∩ [8𝑚, 10𝑚], with various other constants changing to reflect this change.
Consider the point 𝑢 in 𝜂1 that has distance 9𝑚 from 𝑜. When we perform the above construction to
build paths between 𝜂1 and 𝜂2, each path 𝛾𝑖 starts at distance at most 𝑚 from 𝑢 and ends at distance
at least 11𝑚 from 𝑢. Thus, since𝐺 is transitive, the family of paths we have constructed verifies the
(𝑐𝑘, 𝑐𝑘, 𝐶𝑘𝐶𝑚)-plentiful radial tubes condition holds at the scale 𝑚 as desired, for some constants
𝑐 = 𝑐(𝜅, 𝑑) and 𝐶 = 𝐶 (𝜅, 𝑑). As before, this works under the assumption that 𝑛 ≥ 𝑛2 for some
𝑛2 = 𝑛2(𝜅) and that 𝑚 ≥ 𝐶𝑘𝑛 does not belong to [𝑎, 2𝑘𝑎] for any 𝑎 ∈ 𝐴. □

Using random walk trajectories
In this section we prove Proposition 3.5.4, which verifies the plentiful tubes condition for graphs
that have quasi-polynomial absolute growth but a fast rate of relative growth over an appropriate
range of scales. As discussed above, we will construct the required collections of disjoint tubes by
modifying certain conditioned random walk trajectories. To avoid parity issues, we work with lazy
random walks throughout the section. We will spend most of the section proving general bounds
on the behaviour of random walk on some scale in terms of the growth of the graph at that scale,
specializing to the setting of Proposition 3.5.4 only at the very end of the proof. Given a graph 𝐺
and a vertex 𝑢 of 𝐺, let P𝑢 denote the law of the lazy random walk started from 𝑢, which at each
step either stays in place with probability 1/2 or else crosses a uniform random edge emanating
from its current position, and let the heat kernel 𝑝𝑡 (𝑢, 𝑣) be defined by 𝑝𝑡 (𝑢, 𝑣) = P𝑢 (𝑋𝑡 = 𝑣).

We begin by recalling two important facts about random walks on graphs of quasi-polynomial
growth that will be used in the proof: the Varopoulos-Carne inequality [Var85; Car85], which
implies near-diffusive estimates on the rate of escape, and the total variation inequality of [Yad23,
Chapter 7.5], which implies that two walks started from different vertices can be coupled to coalesce
by the time they reach a distance that is near-linear in their starting distance.

Diffusive estimates from Varopoulos-Carne. We now state the Varopoulos-Carne inequality,
which gives Gaussian-like bounds on the 𝑛-step transition probabilities between two specific ver-
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tices; see e.g. [LP16c, Chapter 13.2] for a modern treatment. This inequality does not require
transitivity, and holds for the random walk on any graph.

Theorem 3.5.11 (Varopoulos-Carne). Let 𝐺 = (𝑉, 𝐸) be a (locally finite) graph. Then

𝑝𝑡 (𝑢, 𝑣) ≤ 2

√︄
deg(𝑣)
deg(𝑢) exp

[
−𝑑 (𝑢, 𝑣)

2

2𝑡

]
,

for every 𝑡 ≥ 1 and every 𝑢, 𝑣 ∈ 𝑉 .

The Varopoulos-Carne inequality easily implies that the random walk on a graph of quasi-
polynomial growth is very unlikely to be at a distance much larger than 𝑡1/2(log 𝑡)𝑂 (1) from its
starting point.

Corollary 3.5.12. Let 𝐺 = (𝑉, 𝐸) be a (locally finite) transitive graph and let 𝑜 be a vertex of 𝐺.
Then

P𝑜
(

max
0≤𝑘≤𝑡

𝑑 (𝑜, 𝑋𝑘 ) ≥ 𝑛
)
≤ 2(𝑡 + 1) Gr(𝑛) exp

[
−𝑛

2

2𝑡

]
for every 𝑡, 𝑛 ≥ 1.

Proof of Corollary 3.5.12. If max0≤𝑘≤𝑡 𝑑 (𝑜, 𝑋𝑘 ) ≥ 𝑛 then there exists 0 ≤ 𝑘 ≤ 𝑡 such that 𝑋𝑘 has
distance exactly 𝑛 from 𝑜. Since the number of points at distance 𝑛 from 𝑜 it at most Gr(𝑛), the
claim follows from Theorem 3.5.11 by taking a union bound over the possible values of 𝑘 and
𝑋𝑘 . □

Remark 3.5.6. For transitive graphs of polynomial growth, Varopoulos-Carne implies a displace-
ment upper bound of the form

√︁
𝑡 log 𝑡 while the true displacement is of order

√
𝑡 with high

probability. (This sharp upper bound on the displacement can be proven using a (highly nontrivial)
improvement of the Varopoulos-Carne inequality due to Hebisch and Saloff-Coste [HS93].) As
such, our reliance on Varopoulos-Carne leads to all of the estimates in this section having poly-
log terms that are known to be unnecessary for transitive graphs of polynomial growth and are
presumably non-optimal for transitive graphs of quasi-polynomial growth also.

Coupling from low growth. We now explain how low growth can be used to couple two walks to
coalesce within time not much larger than quadratic in their starting distance; we will eventually
concatenate these pairs of coupled random walks to build annular tubes. We first recall some
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relevant definitions. Given two probability measures 𝜇 and 𝜈 on a countable set Ω, the total
variation distance ∥𝜇 − 𝜈∥TV between 𝜇 and 𝜈 is defined by

∥𝜇 − 𝜈∥TV = sup
𝐴⊆Ω
|𝜇(𝐴) − 𝜈(𝐴) | = 1

2

∑︁
𝜔∈Ω
|𝜇(𝜔) − 𝜈(𝜔) |.

The total variation distance is indeed a distance in the sense that it defines a metric on the space of
probability measures on Ω. The total variation distance is related to coupling (and to the theory of
optimal transport) by the variational formula

∥𝜇 − 𝜈∥TV = inf
{
P(𝑋 ≠ 𝑌 ) : 𝑋,𝑌 random variables with 𝑋 ∼ 𝜇 and 𝑌 ∼ 𝜈

}
.

In particular, given two vertices 𝑥 and 𝑦 in a graph, we can couple the lazy random walks started at 𝑥
and 𝑦 to coincide at time 𝑚 with probability 1− ∥P𝑥 (𝑋𝑚 = ·) −P𝑦 (𝑋𝑚 = ·)∥TV. Note that if the two
walks coincide at time 𝑚 then we can trivially couple them to remain equal at all subsequent times,
so that ∥P𝑥 (𝑋𝑚 = ·) − P𝑦 (𝑋𝑚 = ·)∥TV is a decreasing function of 𝑚 when 𝑥 and 𝑦 are fixed. These
couplings will be used when we construct annular tubes using pairs of coupled random walks.

Given a (locally finite) transitive graph 𝐺 = (𝑉, 𝐸), the Shannon entropy 𝐻𝑡 of the 𝑡th step of the
lazy random walk is defined to be

𝐻𝑡 = −E𝑜
[
log 𝑝𝑡 (𝑜, 𝑋𝑡)

]
= −

∑︁
𝑥∈𝑉

𝑝𝑡 (𝑜, 𝑥) log 𝑝𝑡 (𝑜, 𝑥).

Since the Shannon entropy of any random variable taking values in a set of size 𝑛 is at most log 𝑛,
the quantity 𝐻𝑡 satisfies the trivial inequality 𝐻𝑡 ≤ log Gr(𝑡). The following extremely useful
inequality11 relates the total variation distance to the increments of the Shannon entropy; versions
of this inequality have been rediscovered independently in the works [EK10; BDKY15; Oza18] as
discussed in detail in [Yad23, Chapter 7.5].

Theorem 3.5.13. If 𝐺 is a (locally finite) transitive graph and 𝑜 is a vertex of 𝐺 then

1
deg(𝑜)

∑︁
𝑥∼𝑜
∥P𝑜 (𝑋𝑡 = ·) − P𝑥 (𝑋𝑡−1 = ·)∥2TV ≤ 𝐻𝑡 − 𝐻𝑡−1

for every 𝑡 ≥ 1.

To apply this inequality, we will need to bound the entropy in terms of the growth. While we
always have the trivial bound 𝐻𝑡 ≤ log Gr(𝑡), it is also possible to bound the entropy in terms of

11known in some circles as “the cool inequality”.
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[log Gr(𝑡1/2)]2, which is a significantly better bound when the growth is much larger on scale 𝑡 than
scale 𝑡1/2. (While this bound is worse than the trivial bound when the growth is subexponential and
sufficiently regular, it better fits into our philosophy of understanding the behaviour of the random
walk at some scale from the growth of the graph at that scale alone.)

Lemma 3.5.14. For each 𝑑 ≥ 1 there exists a constant 𝐶 = 𝐶 (𝑑) such that if 𝐺 is a (locally finite)
transitive graph of degree 𝑑 then

𝐻𝑡 ≤ 𝐶
(
log Gr

(
𝑡1/2

) )2

for every 𝑡 ≥ 1.

Proof of Lemma 3.5.14. We may assume that the diameter of 𝐺 is at least 𝑡1/2, the claim being
trivial otherwise since 𝐻𝑡 ≤ log |𝑉 |. Recall that if 𝑋 and𝑌 are two random variables defined on the
same probability space, the conditional entropy 𝐻 (𝑋 | 𝑌 ) is defined to be the expected entropy of
the conditional law of 𝑋 given 𝑌 . Bayes’ rule for the conditional entropy states that

𝐻 (𝑋) = 𝐻 (𝑌 ) + 𝐻 (𝑋 |𝑌 ) − 𝐻 (𝑌 |𝑋) ≤ 𝐻 (𝑌 ) + 𝐻 (𝑋 |𝑌 ).

Applying this inequality with 𝑋 = 𝑋𝑡 and 𝑌 = 1(𝑋𝑡 ∈ 𝐵𝑟), and using that the entropy of a random
variable supported on a set of size 𝑁 is at most log 𝑁 , we obtain that

𝐻𝑡 ≤ log 2+log Gr(𝑟)+[log Gr(𝑡)]P𝑜 (𝑋𝑡 ∉ 𝐵𝑟) ≤ log 2+log Gr(𝑟)+2(𝑡+1) Gr(𝑟) exp
[
−𝑟

2

2𝑡

]
log Gr(𝑡)

for every 𝑟, 𝑡 ≥ 1. Using the fact that the growth is submultiplicative and that Gr(𝑛) ≤ 𝑑𝑛+1, we
obtain that if 𝑛 := ⌊𝑡1/2⌋ divides 𝑟 then

𝐻𝑡 ≤ log 2 + 𝑟
𝑛

log Gr(𝑛) + 2𝑑 (𝑡 + 1)2 exp
[
𝑟

𝑛
log Gr(𝑛) − 𝑟

2

2𝑡

]
,

and the claim follows by taking 𝑟 to be a multiple of 𝑛 closest to𝐶 log[𝑡 Gr(𝑛)] for an appropriately
large constant 𝐶 = 𝐶 (𝑑). (Note that log[𝑡 Gr(𝑛)] and log Gr(𝑛) are of the same order since the
diameter of 𝐺 is at least 𝑡1/2 and hence Gr(𝑛) ≥ 𝑛.) □

This inequality easily implies the following simple bound on the total variation distance in terms
of the growth, yielding in particular that the total variation distance is small whenever 𝑡 is much
larger than 𝑑 (𝑥, 𝑦)2 log Gr(𝑡1/2)2.
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Corollary 3.5.15. For each 𝑑 ≥ 1 there exists a constant 𝐶 = 𝐶 (𝑑) such that if 𝐺 = (𝑉, 𝐸) is a
(locally finite) transitive graph of degree 𝑑 then

∥P𝑥 (𝑋𝑡 = ·) − P𝑦 (𝑋𝑡 = ·)∥TV ≤
𝐶 log Gr(𝑡1/2)

𝑡1/2
𝑑 (𝑥, 𝑦)

for every 𝑡 ≥ 1 and 𝑥, 𝑦 ∈ 𝑉 .

Proof of Corollary 3.5.15. It follows by a standard computation that the total variation distance
between a Binomial(𝑛, 1/2) distribution and a Binomial(𝑛 + 1, 1/2) distribution is of order 𝑛−1/2.
Indeed, if we let 𝜇 be the Binomial(𝑛, 1/2) distribution and let 𝜈 be the Binomial(𝑛 + 1, 1/2)
distribution then 𝜇 is absolutely continuous with respect to 𝜈 with density

𝜇(𝑘)
𝜈(𝑘) =

2(𝑛 − 𝑘 + 1)
𝑛 + 1

for every 0 ≤ 𝑘 ≤ 𝑛 + 1,

and we have by an easy computation (using e.g. Jensen’s inequality and the linearity of the variance)
that

∥𝜇 − 𝜈∥TV =
1
2

𝑛+1∑︁
𝑘=0

����𝜇(𝑘)𝜈(𝑘) − 1
���� 𝜈(𝑘) = 1

2

𝑛+1∑︁
𝑘=0

����𝑛 − 2𝑘 + 1
𝑛 + 1

���� 𝜈(𝑘) = 𝑂 (𝑛−1/2)

as claimed. Since the conditional laws of the lazy random walks 𝑋𝑡 and 𝑋𝑡+1 are the same given
that the number of non-lazy steps are the same, it follows that

∥P𝑥 (𝑋𝑡 = ·) − P𝑥 (𝑋𝑡−1 = ·)∥TV ≤ 𝐶1𝑡
−1/2

for every 𝑡 ≥ 1 and 𝑥 ∈ 𝑉 , where 𝐶1 is a universal constant. Putting this together with The-
orem 3.5.13 yields that if 𝑥 and 𝑦 are neighbouring vertices on a transitive graph of degree 𝑑
then 

P𝑥 (𝑋𝑡 = ·) − P𝑦 (𝑋𝑡 = ·)




TV ≤

√︁
4𝑑 (𝐻𝑡 − 𝐻𝑡−1) + 𝐶1𝑡

−1/2

for every 𝑡 ≥ 1. Since the left hand side is increasing in 𝑡 and, by Lemma 3.5.14, there exists
𝑡/2 ≤ 𝑘 ≤ 𝑡 with 𝐻𝑘 − 𝐻𝑘−1 ≤ 2

𝑡
𝐻𝑡 ≤ 𝐶2

𝑡
log Gr(𝑡1/2)2 for some constant 𝐶2 = 𝐶2(𝑑), it follows

that 

P𝑥 (𝑋𝑡 = ·) − P𝑦 (𝑋𝑡 = ·)




TV ≤ 𝐶1𝑡
−1/2 +

√︂
4𝐶2𝑑

𝑡
log Gr(𝑡1/2)2

for every pair of adjacent vertices 𝑥 and 𝑦 and every 𝑡 ≥ 1. The analogous bound for arbitrary pairs
of vertices follows from this and the triangle inequality for the total variation distance. □

Hitting probabilities of balls. We now want to argue that tubes around independent random
walks started at distant vertices are likely to be disjoint under the assumption that our graph “looks
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at least five dimensional” on all relevant scales. In fact we will prove more general versions of
these estimates in which “five” is replaced by an arbitrary constant 𝜅 > 4. We begin by noting
the following simple analytic consequence of the results of Coulhon and Saloff-Coste [CS93] and
Morris and Peres [MP05], which lets us convert growth bounds into bounds on the heat kernel
𝑝𝑡 (𝑢, 𝑣).

Lemma 3.5.16. For each integer 𝑑 ≥ 1 there exists a positive constant 𝑐 = 𝑐(𝑑) ∈ (0, 1] such that
if 𝐺 = (𝑉, 𝐸) is an infinite unimodular transitive graph with vertex degree 𝑑 then

𝑝𝑡 (𝑢, 𝑣) ≤
1

Gr
(
𝑐𝑡1/2

[
log Gr

(
𝑡1/2

) ]−1/2)
for every integer 𝑡 ≥ 4 and every pair of vertices 𝑢, 𝑣 in 𝐺.

Proof of Lemma 3.5.16. It suffices to prove an inequality of the form

𝑝2𝑡 (𝑢, 𝑣) ≤
1

𝑐Gr
(
𝑐𝑡1/2

[
log Gr

(
𝑡1/2

) ]−1/2) (3.5.2)

for every integer 𝑡 ≥ 4 and every 𝑢, 𝑣 ∈ 𝑉 , where 𝑐 = 𝑐(𝑑) is a positive constant depending only on
the degree. Indeed, odd values of 𝑡 can then be handled using the inequality

𝑝2𝑡+1(𝑢, 𝑣) ≤
1
𝑑

∑︁
𝑣′∼𝑣

𝑝2𝑡 (𝑢, 𝑣′) ≤ max
𝑣′∼𝑣

𝑝2𝑡 (𝑢, 𝑣′),

while the constant outside of the growth function can be absorbed into the constant inside the
growth function using the inequality Gr(3𝑛𝑚) ≥ 𝑛Gr(𝑚), which holds for all positive integers 𝑛, 𝑚
in any infinite transitive graph as an elementary consequence of the triangle inequality.

We now prove an estimate of the form (3.5.2). Let the inverse growth function Gr−1 be defined
by Gr−1(𝑥) := inf{𝑛 : Gr(𝑛) ≥ 𝑥} and recall that the isoperimetric profile of 𝐺 is the function
Φ : [1,∞) → [0, 𝑑] defined by

Φ(𝑥) := inf
{
|𝜕𝑊 |
|𝑊 | : 𝑊 ⊆ 𝑉 (𝐺) and 0 < |𝑊 | ≤ 𝑥

}
. (3.5.3)

For transitive unimodular graphs, the isoperimetric profile and the growth are related by the
inequality

Φ(𝑥) ≥ 1
2 Gr−1(2𝑥)

, (3.5.4)
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which was proven for Cayley graphs by Coulhon and Saloff-Coste [CS93] and extended to unimod-
ular transitive graphs by Saloff-Coste [Sal95] and Lyons, Morris, and Schramm [LMS08]; we use
the statement given in [LP16c, Theorem 10.46]. To make use of this inequality, we will apply the
results of Morris and Peres [MP05], which imply that there exists a constant 𝑐1(𝑑) ∈ (0, 1) such
that

𝑝2𝑡 (𝑢, 𝑣) ≤
1

𝑐1 sup
{
𝑦 :

∫ 𝑦

1
1

𝑥Φ(4𝑥)2 d𝑥 ≤ 𝑐1𝑡
}

for every integer 𝑡 ≥ 1 and every 𝑢, 𝑣 ∈ 𝑉 . Using (3.5.4) to estimate the integral that appears here,
we have for each 𝑦 ∈ [1,∞) that∫ 𝑦

1

1
𝑥Φ(4𝑥)2

d𝑥 ≤
∫ 𝑦

1

4 Gr−1(8𝑥)2
𝑥

d𝑥 ≤ 4 Gr−1(8𝑦)2
∫ 𝑦

1

1
𝑥

d𝑥 = 4 Gr−1(8𝑦)2 log(𝑦).

Thus, to prove an estimate of the form (3.5.2) it suffices to verify that

if 𝑦 ≥ 1 satisfies 𝑦 ≤ 1
8

Gr ©­«
[

𝑐1𝑡

4 log Gr(𝑡 1
2 )

] 1
2 ª®¬ then 4 Gr−1(8𝑦)2 log(𝑦) ≤ 𝑐1𝑡. (3.5.5)

This follows straightforwardly by noting that 8𝑦 ≤ Gr(
√︁
𝑐1𝑡/(4 log 𝑦)) whenever 𝑦 satisfies the

upper bound on the left hand side of (3.5.5). □

Lemma 3.5.16 has the following elementary corollary, which we will apply only in situations where
log Gr

(
𝑡1/2

)
is much smaller than 𝑛−1𝑡1/2.

Corollary 3.5.17 (Leaving a ball). For each integer 𝑑 ≥ 1 and real number 𝜅 ≥ 1 there exists
a constant 𝐶 = 𝐶 (𝑑, 𝜅) such that if 𝐺 = (𝑉, 𝐸) is an infinite, connected, unimodular transitive
graph with vertex degree 𝑑 and 𝑛, 𝑡 ≥ 1 are integers such that Gr(3𝑚) ≥ 3𝜅 Gr(𝑚) for every
𝑛 ≤ 𝑚 ≤ 1

2 𝑡
1/2 then

P𝑢 (𝑋𝑡 ∈ 𝐵𝑛 (𝑣)) ≤ 𝐶
[
log max

{ 𝑡
𝑛2 ,Gr

(
𝑛
)}] 𝜅 (

𝑛2

𝑡

) 𝜅/2
for every pair of vertices 𝑢 and 𝑣 in 𝐺.

(Note that this corollary holds vacuously when 𝑡 ≤ 𝑛2.)

Remark 3.5.7. This estimate is quite similar to that appearing in e.g. [Lyo+20]; the important
distinction is that we only assume the tripling condition Gr(3𝑚) ≥ 3𝜅 Gr(𝑚) for𝑚 = 𝑂 (𝑡1/2) rather
than for all sufficiently large scales.
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Proof of Corollary 3.5.17. Since max𝑢 P𝑢 (𝑋𝑡 ∈ 𝐵𝑛 (𝑣)) is a decreasing function of 𝑡, it suffices to
prove the claim under the slightly stronger assumption that Gr(3𝑚) ≥ 3𝜅 Gr(𝑚) for every 𝑛 ≤ 𝑚 ≤
𝑡1/2. Fix 𝑛, 𝑡 ≥ 1 and let 𝑐 be the constant from Lemma 3.5.16. We have by submultiplicativity of
the growth function that

Gr(𝑡1/2) ≤ Gr
(
𝑐𝑡1/2

[
log Gr

(
𝑡1/2

)]−1/2
)𝑐−1 [log Gr(𝑡1/2)]1/2

and hence that

Gr
(
𝑐𝑡1/2

[
log Gr

(
𝑡1/2

)]−1/2
)
≥ Gr

(
𝑡1/2

)𝑐[log Gr(𝑡1/2)]−1/2

= exp
[
𝑐

√︃
log Gr

(
𝑡1/2

) ]
. (3.5.6)

Applying Lemma 3.5.16, it follows that if 𝑟 := 𝑐𝑡1/2
[
log Gr

(
𝑡1/2

)]−1/2
≤ 𝑛 then

𝑝𝑡 (𝑢, 𝑣) ≤
1

Gr(r) ≤ exp
[
−𝑐2 𝑡

1/2

𝑛

]
for every 𝑢, 𝑣 ∈ 𝑉 . It follows by a union bound that if 𝑟 ≤ 𝑛 then

P𝑢 (𝑋𝑡 ∈ 𝐵𝑛 (𝑣)) ≤ exp
[
−𝑐2 𝑡

1/2

𝑛

]
Gr(𝑛),

which is stronger than the desired inequality. Now suppose that 𝑟 ≥ 𝑛. The assumption Gr(3𝑚) ≥
3𝜅 Gr(𝑚) for every 𝑛 ≤ 𝑚 ≤ 𝑡1/2 guarantees that

Gr(𝑟) ≥ Gr(𝑛)
⌊log3 (𝑟/𝑛)⌋∏

𝑖=1

Gr(3𝑖𝑛)
Gr(3𝑖−1𝑛)

≥
( 𝑟
3𝑛

) 𝜅
Gr(𝑛).

We deduce from Lemma 3.5.16 that there exists a constant 𝐶 such that

𝑝𝑡 (𝑢, 𝑣) ≤
1

Gr (𝑟) ≤ min


©­­«

3𝑛
√︃

log Gr
(
𝑡1/2

)
𝑐𝑡1/2

ª®®¬
𝜅

1
Gr(𝑛) , exp

[
−𝑐

√︃
log Gr

(
𝑡1/2

) ]
≤ 𝐶

(
𝑛2

𝑡
log max

{ 𝑡
𝑛2 ,Gr

(
𝑛
)}) 𝜅/2 1

Gr(n) ,

where the second inequality follows since min{𝐴𝑥𝜅, 𝑒−𝑥} ≤ 𝐴(1 ∨ log(1/𝐴))𝜅 for every 𝐴, 𝑥 > 0
(as can be checked by case analysis according to whether 𝑥 ≥ log(1/𝐴)). □

We next analyze the probability of hitting a ball whose radius is much smaller than its distance
from the starting point. For transitive graphs of polynomial growth, a similar estimate without the
logarithmic term can be proven by a similar calculation as in [Hut20i, Lemma 4.4].
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Lemma 3.5.18 (Hitting a distant ball). For each integer 𝑑 ≥ 1 and real number 𝜅 > 2 there exists
a constant 𝐶 = 𝐶 (𝑑, 𝜅) such that if 𝐺 is an infinite, connected, unimodular transitive graph with
vertex degree 𝑑 and 𝑛, 𝑡 ≥ 1 are integers such that 𝑡 ≥ 𝑛2 and Gr(3𝑚) ≥ 3𝜅 Gr(𝑚) for every
𝑛 ≤ 𝑚 ≤ 𝑡1/2 then

P𝑢 (hit 𝐵𝑛 (𝑣) before time 𝑡) ≤ 𝐶
[
log max

{
𝑑 (𝑢, 𝑣),Gr

(
2𝑛

)}] (3𝜅+2)/2 (
𝑛

𝑑 (𝑢, 𝑣)

) 𝜅−2

for every pair of vertices 𝑢 and 𝑣 with 𝑑 (𝑢, 𝑣) ≥ 2𝑛.

Proof of Lemma 3.5.18. For each 1 ≤ 𝑠 ≤ 𝑡, let 𝐴𝑠 be the event that the random walk hits 𝐵𝑛 (𝑣)
between times 𝑠 and 𝑡. (We will optimize over the choice of 𝑠 at the end of the proof.) It follows
from Corollary 3.5.17 that there exist constants 𝐶1 and 𝐶2 depending only on 𝑑 and 𝜅 such that

E𝑢
[
#{𝑠 ≤ 𝑘 ≤ 2𝑡 : 𝑋𝑘 ∈ 𝐵2𝑛 (𝑣)}

]
≤ 𝐶1

2𝑡∑︁
𝑘=𝑠

[
log max

{
𝑘

𝑛2 ,Gr
(
2𝑛

)}] 𝜅 (
𝑛2

𝑘

) 𝜅/2
≤ 𝐶2

[
log max

{ 𝑠
𝑛2 ,Gr

(
2𝑛

)}] 𝜅 𝑛𝜅

𝑠(𝜅−2)/2 , (3.5.7)

where the second inequality follows by calculus. On the other hand, it follows from Corollary 3.5.12
and a straightforward calculation that

P𝑤
(
𝑋𝜏+𝑘 ∈ 𝐵2𝑛 for every 𝑘 ≤ 𝑛2

8 log Gr(𝑛)

)
≥ 1

2

for every 𝑤 ∈ 𝐵𝑛 (𝑣), and since 𝑡 + 𝑛2

8 log Gr(𝑛) ≤ 2𝑡 it follows by the strong Markov property that

E𝑢
[
#{𝑠 ≤ 𝑘 ≤ 2𝑡 : 𝑋𝑘 ∈ 𝐵2𝑛 (𝑣)} | 𝐴𝑠

]
≥ 𝑛2

16 log Gr(𝑛) . (3.5.8)

Putting together the estimates (3.5.7) and (3.5.8) yields that

P𝑢 (𝐴𝑠) ≤
E𝑢

[
#{𝑠 ≤ 𝑘 ≤ 2𝑡 : 𝑋𝑘 ∈ 𝐵2𝑛 (𝑣)}

]
E𝑢

[
#{𝑠 ≤ 𝑘 ≤ 2𝑡 : 𝑋𝑘 ∈ 𝐵2𝑛 (𝑣)} | 𝐴𝑠

] ≤ 𝐶3

[
log max

{ 𝑠
𝑛2 ,Gr

(
2𝑛

)}] 𝜅+2 𝑛𝜅−2

𝑠(𝜅−2)/2 ,

while, since every point in 𝐵𝑛 (𝑣) has distance at least 𝑑 (𝑢, 𝑣)/2 from 𝑢, it follows from the
Varopoulos-Carne inequality and a union bound as in the proof of Corollary 3.5.12 that

P𝑢 (hit 𝐵𝑛 (𝑣) before time 𝑠) ≤ 2𝑠Gr(𝑛) exp
[
−𝑑 (𝑢, 𝑣)

2

8𝑠

]
.
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Putting together these estimates yields that

P𝑢 (hit 𝐵𝑛 (𝑣) before time 𝑡) ≤ 𝐶3

[
log max

{ 𝑠
𝑛2 ,Gr

(
2𝑛

)}] 𝜅+2 𝑛𝜅−2

𝑠(𝜅−2)/2 + 2𝑠Gr(𝑛) exp
[
−𝑑 (𝑢, 𝑣)

2

8𝑠

]
,

and the claimed inequality follows by taking 𝑠 = 𝑐′𝑑 (𝑢, 𝑣)2(log Gr(𝑛))−1 for an appropriately small
constant 𝑐′. □

Disjoint tubes from coarse-grained random walks. As noted above, a naive construction of
disjoint tubes using random walks is not appropriate for our plentiful tubes condition, since the
two walks will couple at a time roughly quadratic in their starting distance rather than roughly
linear. To circumvent this issue, we will instead consider tubes around certain coarse-grained
versions of the random walk defined through what we call ironing, where we replace portions of
the random walk with geodesics between their endpoints. This process will also be useful when we
analyze intersections between random walk tubes, as the ironing process allows us to circumvent
overcounting issues that would arise in a naive first-moment argument.

We now define the ironing procedure formally; see fig. 3.3 for an illustration. Let 𝐺 be a graph.
For every pair of distinct vertices 𝑢, 𝑣 ∈ 𝑉 (𝐺), fix a geodesic 𝜁 (𝑢, 𝑣) in 𝐺 from 𝑢 to 𝑣. (The choice
of 𝜁 is irrelevant to our arguments; we need only that it is done deterministically for every pair of
vertices before we start running any random walks.) Fix 𝑟 > 0 and let 𝛾 be a finite path in 𝐺. We
define a sequence (𝜏𝑖)𝑖≥0 recursively as follows: Let 𝜏0 = 0. For each 𝑖 ≥ 0, if 𝑑 (𝛾𝜏𝑖 , 𝛾𝑘 ) < 𝑟 for
every 𝜏𝑖 ≤ 𝑘 ≤ len(𝛾) we set 𝜏𝑖+1 = len(𝛾) and stop. Otherwise, we set 𝜏𝑖+1 to be the minimal
time 𝑘 after 𝜏𝑖 that 𝑑 (𝛾𝜏𝑖 , 𝛾𝑘 ) ≥ 𝑟 . We define the crease number cr(𝛾) = cr𝑟 (𝛾) to be the number
of non-zero terms in this sequence, so that 𝜏cr(𝛾) = len(𝛾), call the points {𝛾𝜏𝑖 : 0 ≤ 𝑖 ≤ cr𝑟 (𝛾)}
crease points, and define the ironed path iron(𝛾) = iron𝑟 (𝛾) by concatenating geodesics between
crease points

iron𝑟 (𝛾) := 𝜁 (𝛾𝜏0 , 𝛾𝜏1) ◦ 𝜁 (𝛾𝜏1 , 𝛾𝜏2) ◦ · · · ◦ 𝜁 (𝜏cr(𝛾)−1, 𝜏cr(𝛾)).

Thus, the ironed path iron(𝛾) is a finite path in 𝐺 which has the same start and end points as 𝛾, has
length at most 𝑟 · cr(𝛾), and satisfies the containment of tubes

𝐵𝑟 (iron𝑟 (𝛾)) ⊆ 𝐵2𝑟 (𝛾) and 𝐵𝑟 (𝛾) ⊆ 𝐵2𝑟 ({𝛾𝜏𝑖 : 0 ≤ 𝑖 ≤ cr𝑟 (𝛾)}) ⊆ 𝐵2𝑟 (iron𝑟 (𝛾)).

For graphs of quasi-polynomial growth, we can use the Varopoulos-Carne inequality to show
that the length of an ironed random walk iron𝑟 (𝑋 𝑡) is of order at most 𝑟−1𝑡 (log 𝑡)𝑂 (1) with high
probability when 𝑟 = 𝑂 (

√
𝑡). We write 𝑋 𝑡 for the path formed by the first 𝑡 steps of the random

walk.
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Figure 3.3: Schematic illustration of the ironing procedure applied to a path: The original path is
in black, from left to right. The black dots are crease points. A new crease point is formed every
time the path leaves a fixed-radius ball centered at the previous crease point. The straight blue
line segments are geodesics between consecutive crease points (together with the final point of the
walk). The ironed path is formed by concatenating these geodesics.

Lemma 3.5.19. Let 𝐺 be a (locally finite) transitive graph and let 𝑢 be a vertex of 𝐺. Then

P𝑢
(
cr𝑟 (𝑋 𝑡) >

𝑡

𝑚

)
≤ 2𝑡𝑚Gr(𝑟) exp

[
− 𝑟

2

2𝑚

]
for every 𝑟, 𝑡, 𝜆 ≥ 1.

Proof. In order for the inequality cr𝑟 ((𝑋𝑖)𝑡𝑖=0) > 𝑡/𝑚 to hold, there must exist 0 ≤ 𝑖 ≤ 𝑡 such that
𝑑 (𝑋𝑖, 𝑋𝑖+𝑚) ≥ 𝑟. As such, the claim follows from Corollary 3.5.12 and a union bound. □

We now analyze intersections between independent random walk tubes. Given two vertices 𝑢 and
𝑣, we write P𝑢 ⊗ P𝑣 for the law of a pair of independent lazy random walks 𝑋 and 𝑌 started at 𝑢
and 𝑣 respectively.

Lemma 3.5.20 (Intersections of random walk tubes). For each integer 𝑑 ≥ 1 and real number
𝜅 > 4 there exists a constant 𝐶 = 𝐶 (𝑑, 𝜅) such that if 𝐺 = (𝑉, 𝐸) is an infinite, connected,
unimodular transitive graph with vertex degree 𝑑 and 𝑛, 𝑡 ≥ 1 are integers such that 𝑡 ≥ 𝑟2 and
Gr(3𝑚) ≥ 3𝜅 Gr(𝑚) for every 𝑟 ≤ 𝑚 ≤ 𝑡1/2 then

P𝑢 ⊗ P𝑣
(
there exist 0 ≤ 𝑖, 𝑗 ≤ 𝑡 such that 𝑑 (𝑋𝑖, 𝑌 𝑗 ) ≤ 𝑟

)
≤ 𝐶 𝑡

𝑑 (𝑢, 𝑣)2
[
log max

{
𝑑 (𝑢, 𝑣),Gr

(
4𝑟

)}] (3𝜅+4)/2 (
𝑟

𝑑 (𝑢, 𝑣)

) 𝜅−4
,
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for every 𝑢, 𝑣 ∈ 𝑉 with 𝑑 (𝑢, 𝑣) ≥ 4𝑟 .

Remark 3.5.8. Although it will suffice for all our applications, we note that this bound is very
wasteful when 𝑡 is much larger than 𝑑 (𝑢, 𝑣)2. A more careful analysis would use that𝑌𝜏𝜅 is typically
very far from 𝑢 when 𝑘 is large.

Proof of Lemma 3.5.20. Let 𝐴 be the event that there exists 𝑤 ∈ 𝑉 with 𝑑 (𝑢, 𝑤) ≥ 1
2𝑑 (𝑢, 𝑣) and

1 ≤ 𝑖, 𝑗 ≤ 𝑡 such that 𝑑 (𝑋𝑖, 𝑤), 𝑑 (𝑌 𝑗 , 𝑤) ≤ 𝑟. It suffices by symmetry to prove that there exists a
constant 𝐶 = 𝐶 (𝑑, 𝜅) such that

P𝑢 ⊗ P𝑣 (𝐴) ≤ 𝐶
𝑡

𝑟2

[
log max

{
𝑑 (𝑢, 𝑣),Gr

(
4𝑟

)}] (3𝜅+4)/2 (
𝑟

𝑑 (𝑢, 𝑣)

) 𝜅−2
.

Let 𝜏0, . . . , 𝜏cr𝑟 (𝑌 𝑡 ) be the stopping times used to define the ironed walk iron𝑟 (𝑌 𝑡), and observe that
if 𝐴 holds then there must exist 0 ≤ 𝑘 ≤ cr𝑟 (𝑌 𝑡) and 0 ≤ 𝑖 ≤ 𝑡 such that

𝑑 (𝑌𝜏𝑘 , 𝑣) ≥
1
2
𝑑 (𝑢, 𝑣) − 𝑟 ≥ 1

4
𝑑 (𝑢, 𝑣) and 𝑑 (𝑋𝑖, 𝑌𝜏𝑘 ) ≤ 2𝑟.

Thus, it follows from Lemma 3.5.18 and a union bound that there exists a constant 𝐶1 = 𝐶1(𝑑, 𝜅)
such that

P𝑢 ⊗ P𝑣 (𝐴)

≤ P𝑣
(
cr𝑟 (𝑌 𝑡) >

𝑡

𝑚

)
+ 𝑡

𝑚
max

{
P𝑢

(
hit 𝐵2𝑟 (𝑤) before time 𝑡

)
: 𝑤 ∈ 𝑉, 𝑑 (𝑢, 𝑤) ≥ 1

4
𝑑 (𝑢, 𝑣)

}
≤ 2𝑡𝑚Gr(𝑟) exp

[
− 𝑟

2

2𝑚

]
+ 𝐶1

𝑡

𝑚

[
log max

{
𝑑 (𝑢, 𝑣),Gr

(
4𝑟

)}] (3𝜅+2)/2 (
𝑟

𝑑 (𝑢, 𝑣)

) 𝜅−2

and the claim follows by taking 𝑚 = 𝑐′𝑟2(log max{𝑑 (𝑢, 𝑣),Gr(𝑟)})−1 for an appropriately small
constant 𝑐′ = 𝑐′(𝑑, 𝜅). □

We now have everything we need to prove Proposition 3.5.4.

Proof of Proposition 3.5.4. We will prove the claim concerning annular tubes (which is harder);
the changes to the proof needed to establish the claim concerning radial tubes are straightforward
and will be explained briefly at the end of the proof.

We will prove a general condition for 𝐺 to have (𝑘, 𝑟, ℓ)-plentiful annular tubes on scale 𝑛 in terms
of the growth of 𝐺, which we specialize to give the claim about scales of quasi-polynomial growth
at the end of the proof. Fix 𝑛 ≥ 1, 𝑘 ≤ 𝑛/2, 𝑟 ≤ 𝑛, 𝑡 ≥ 𝑛 and two (𝑛, 3𝑛) crossings 𝐴 and 𝐵 as in
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the definition of plentiful annular tubes, so that 𝐴 and 𝐵 each contain points at every distance from
𝑜 between 𝑛 and 3𝑛. We will carry out our analysis under the hypotheses that

Gr(3𝑚) ≥ 3𝜅 Gr(𝑚) for every 𝑟 ≤ 𝑚 ≤ 𝑡 (3.5.9)

and
∥P𝑥 (𝑋𝑡 = ·) − P𝑦 (𝑋𝑡 = ·)∥TV ≤

1
4

for every 𝑥, 𝑦 ∈ 𝐵3𝑛. (3.5.10)

We will return to the question of when suitable 𝑡 and 𝑟 satisfying these hypotheses can be chosen
at the end of the proof.

Since 𝐴 and 𝐵 each contain at least one point at each distance from 𝑜 between 𝑛 and 3𝑛, and since
𝑛/2𝑘 ≥ 1, we may choose for each 1 ≤ 𝑖 ≤ 𝑘 points 𝑎𝑖 ∈ 𝐴 and 𝑏𝑖 ∈ 𝐵 such that

𝑛 + (4𝑖 − 4) 𝑛
2𝑘
≤ 𝑑 (𝑜, 𝑎𝑖) ≤ 𝑛 + (4𝑖 − 3) 𝑛

2𝑘
and 𝑛 + (4𝑖 − 2) 𝑛

2𝑘
≤ 𝑑 (𝑜, 𝑏𝑖) ≤ 𝑛 + (4𝑖 − 1) 𝑛

2𝑘
for every 1 ≤ 𝑖 ≤ 𝑘 , so that the set of points {𝑎𝑖} ∪ {𝑏𝑖} is (𝑛/𝑘)-separated (i.e., any two distinct
points in the set have distance at least 𝑛/𝑘). For each 𝑖, let Q𝑖 be the joint law of a random walk
(𝑋𝑖,𝑚)𝑚≥0 started at 𝑎𝑖 and a random walk (𝑌𝑖,𝑚)𝑚≥0 started at 𝑏𝑖, coupled so that 𝑋𝑡 = 𝑌𝑡 with
probability at least 3/4 (such a coupling exists by the hypothesis (3.5.10) imposed on the value of
𝑡), and let Q =

⊗
Q𝑖 be the law of the collection {𝑋𝑖,𝑚, 𝑌𝑖,𝑚 : 1 ≤ 𝑖 ≤ 𝑘, 𝑚 ≥ 0} in which the pairs

((𝑋𝑖,𝑚)𝑚≥0, (𝑌𝑖,𝑚)𝑚≥0) are sampled independently for each 1 ≤ 𝑖 ≤ 𝑘 . For each 1 ≤ 𝑖 ≤ 𝑘 , consider
the events

A𝑖 = {𝑋𝑖,𝑡 = 𝑌𝑖,𝑡} and B𝑖 =
{
len

(
iron𝑟 (𝑋 𝑡)

)
, len

(
iron𝑟 (𝑌 𝑡)

)
≤ 16𝑡

𝑟
log 𝑡 Gr(𝑟)

}
.

The event A𝑖 has probability at least 3/4 for every 1 ≤ 𝑖 ≤ 𝑘 by construction. Meanwhile,
Lemma 3.5.19 implies that

Q(B𝑐𝑖 ) ≤ 2P𝑢
(
cr𝑟 (𝑋 𝑡) >

16𝑡
𝑟2 log max{𝑡,Gr(𝑟)}

)
≤ 4𝑡𝑟2 [log max{𝑡,Gr(𝑟)}] Gr(𝑟) exp [−8 log max{𝑡,Gr(𝑟)}] ,

which is less than 1/4 if 𝑡 is larger than some universal constant 𝑡0. Now, for each 1 ≤ 𝑖, 𝑗 ≤ 𝑘 let

I𝑖, 𝑗 = {𝐵2𝑟 (𝑋 𝑡𝑖 ) ∪ 𝐵2𝑟 (𝑌 𝑡𝑖 ) has non-empty intersection with 𝐵2𝑟 (𝑋 𝑡𝑗 ) ∪ 𝐵2𝑟 (𝑌 𝑡𝑗 )}.

We have by a union bound that if 𝑖 and 𝑗 are distinct then

Q(I𝑖, 𝑗 ) ≤ 4 max
{
P𝑢 ⊗ P𝑣 (𝐵2𝑟 (𝑋 𝑡) ∩ 𝐵2𝑟 (𝑌 𝑡) ≠ ∅) : 𝑑 (𝑢, 𝑣) ≥ 𝑛

𝑘

}

≤ 𝐶 𝑡𝑘
2

𝑛2

[
log max

{
𝑛,Gr

(
8𝑟

)}] (3𝜅+4)/2 (
𝑟𝑘

𝑛

) 𝜅−4
=: 𝛼 = 𝛼(𝑛, 𝑡, 𝑘, 𝑟).
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Thus, if for each 1 ≤ 𝑖 ≤ 𝑘 we define the event

C𝑖 = {there exist at most 4𝛼𝑘 values of 1 ≤ 𝑗 ≤ 𝑘 with 𝑗 ≠ 𝑖 such that I𝑖, 𝑗 holds}

then Q(C𝑖) ≥ 3
4 by Markov’s inequality. It follows by a union bound that Q(A𝑖 ∩ B𝑖 ∩ C𝑖) ≥ 1/4,

and hence that if we define

E = #
{
1 ≤ 𝑖 ≤ 𝑘 : A𝑖 ∩ B𝑖 ∩ C𝑖 holds

}
≥ 𝑘

4
then Q(E) > 0.

Consider the random set of indices

𝐼 = {1 ≤ 𝑖 ≤ 𝑘 : A𝑖∩B𝑖∩C𝑖 holds but I𝑖, 𝑗 does not hold for any 𝑗 < 𝑖 for which A 𝑗 ∩ B 𝑗 ∩ C𝑗 holds}.

On the event E, the set 𝐼 has size at least ⌈(𝑘/4)/(1 + 4𝛼𝑘)⌉ ≥ 1
20 min{𝑘, 𝛼−1}. Moreover, on this

event, the set of paths formed by concatenating iron𝑟 (𝑋 𝑡𝑖 ) and the reversal of iron𝑟 (𝑌 𝑡𝑖 ) for each
𝑖 ∈ 𝐼 have the property that each such path has length at most 32𝑡/𝑟 log 𝑡 Gr(𝑟), and the tubes of
thickness 𝑟 around distinct such paths are disjoint. Since this event has positive probability, there
must exist a set of paths with this property. Since the sets 𝐴 and 𝐵 were arbitrary, it follows that
there exists a positive constant 𝑐 = 𝑐(𝑑, 𝜅) such that 𝐺 has(
𝑐min

{
𝑘,

𝑛2

𝑡𝑘2 [log max{𝑛,Gr(8𝑟)}]−(3𝜅+4)/2
( 𝑛
𝑟𝑘

) 𝜅−4
}
, 𝑟,

32𝑡
𝑟

log max{𝑡,Gr(𝑟)}
)

-plentiful

annular tubes on scale 𝑛 for each 1 ≤ 𝑟, 𝑘 ≤ 𝑛/2 and 𝑡 ≥ 𝑛2 satisfying (3.5.9) and (3.5.10).

We now specialize to the setting of the proposition. Let 𝐷, 𝜆 ≥ 1 and 0 < 𝜀 < 1 and suppose
that 𝑛 ≥ 1 satisfies Gr(𝑚) ≤ 𝑒(log𝑚)𝐷 and Gr(3𝑚) ≥ 35 Gr(𝑚) for every 𝑛1−𝜀 ≤ 𝑚 ≤ 𝑛1+𝜀. Let
𝑘 = (log 𝑛)𝜆, 𝑟 = 𝑛(log 𝑛)−20𝐷𝜆, and 𝑡 = 𝑛2(log 𝑛)2𝐷 . There exists 𝑛0 = 𝑛0(𝑑, 𝐷, 𝜆, 𝜀) such
that if 𝑛 ≥ 𝑛0 then 𝑛1−𝜀 ≤ 𝑟, 𝑡1/2 ≤ 𝑛1+𝜀, so that (3.5.9) holds. Moreover, since log Gr(𝑡1/2) ≤
(log 𝑡1/2)𝐷 ≤ (1+𝜀)2(log 𝑛)𝐷 , it follows from Corollary 3.5.15 that (3.5.10) holds whenever 𝑛 ≥ 𝑛1

for some constant 𝑛1 = 𝑛1(𝑑, 𝐷, 𝜆, 𝜀) ≥ 𝑛0. It follows that there exists a constant 𝐶 such that if
𝑛 ≥ 𝑛1 then 𝐺 has(

𝑐min
{
(log 𝑛)𝜆, (log 𝑛) (20𝜆− 21

2 )𝐷−𝜆
}
, 𝑛(log 𝑛)−20𝐷𝜆, 𝐶 (log 𝑛) (3+20𝜆)𝐷

)
-plentiful

annular tubes on scale 𝑛. Since the plentiful annular tubes condition is monotone increasing in
the number and thickness parameters and monotone decreasing in the length parameter, it follows
that there exists a constant 𝑛2 = 𝑛2(𝑑, 𝐷, 𝜆, 𝜀) ≥ 𝑛1 such that if 𝑛 ≥ 𝑛2 then 𝐺 has (1/40𝐷, 𝜆)-
polylog-plentiful annular tubes on scale 𝑛 as claimed (where we used the assumption that 𝑛 is large
to absorb the constant prefactors into the exponents of the logarithms).
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For the claim concerning radial tubes, one uses random walks started at 𝑘 equidistant points along
a geodesic from 𝑜 to 𝑆𝑛. Corollary 3.5.17 implies that each of these random walks has a good
probability not to belong to 𝐵3𝑛 at times of order 𝑛2(log Gr(𝑛))𝜅, so that we can obtain tubes from
𝑆𝑛 to 𝑆3𝑛 using segments of the resulting ironed paths. The analysis of the number, thickness, and
lengths we can take these walks to have with the resulting tubes being disjoint is similar to the
annular case above. (Indeed, the analysis is somewhat simpler since we use single walks instead of
coupled pairs of walks. This also makes the dependence on the growth better than in the annular
case.) □

3.6 Quasi-polynomial growth II: Analysis of percolation
In this section, we analyze percolation in the low-growth regime, i.e., on scales 𝑛 where Gr(𝑛) ≤
𝑒 [log 𝑛]𝐷 for a constant 𝐷. Our goal is to show that a lower bound on (full-space) connection
probabilities at some low-growth scale 𝑛 implies a lower bound on connection probabilities within
a tube at a much larger scale after sprinkling. This analysis will employ both the polylog-plentiful
tubes condition from Proposition 3.5.2 and the outputs of the ghost field technology developed in
Proposition 3.4.1.

Recall thatU∗
𝑑

is the space of infinite, connected, unimodular transitive graphs of degree 𝑑 that are
not one-dimensional.

Proposition 3.6.1 (Inductive analysis of percolation in the low-growth regime.). For each 𝑑, 𝐷 ≥ 1
there exist positive constants 𝜆0 = 𝜆0(𝑑, 𝐷) and 𝑐 = 𝑐(𝑑, 𝐷) such that for each 𝜆 ≥ 𝜆0 there exist
constants 𝐾1 = 𝐾1(𝑑, 𝐷, 𝜆) and 𝑛0 = 𝑛0(𝑑, 𝐷, 𝜆) such that if 𝐾 ≥ 𝐾1 and 𝑛 ≥ 𝑛0 then the following
holds: If 𝐺 ∈ U∗

𝑑
and for each 1 ≤ 𝑏 ≤ 𝑛 we define

𝛿(𝑏, 𝑛) = 𝛿𝐾 (𝑏, 𝑛) =
(

𝐾 log log 𝑛
min{log 𝑛, log Gr(𝑏)}

)1/4

then the implication(
𝑛 ∈ L (𝐺, 𝐷), 𝜅𝑝1 (𝑛,∞) ≥ 𝑒−(log log 𝑛)1/2 , P𝑝1 (Piv[4𝑏, 𝑛1/3]) ≤ (log 𝑛)−1, and 𝛿(𝑏, 𝑛) ≤ 1

)
⇒

(
𝑝2 ≥ 𝑝𝑐 or 𝜅𝑝2

(
𝑒(log 𝑛)𝑐𝜆 , 𝑛

)
≥ 𝑒−3(log log 𝑛)1/2

)
(3.6.1)

holds for every 𝑛 ≥ 𝑛0, 𝑏 ≤ 1
8𝑛

1/3, and 𝑝2 ≥ 𝑝1 ≥ 1/𝑑 with 𝑝2 ≥ Spr(𝑝1, 𝛿(𝑏, 𝑛)).

The parameter 𝜆 controls how far a connection probability lower bound is propagated by sprinkling,
namely from scale 𝑛 to scale 𝑒(log 𝑛)𝑐𝜆 , where 𝑐 is independent of 𝜆. Proposition 3.6.1 morally says
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that for any choice of 𝜆, if we sprinkle by a sufficient amount at a sufficiently large scale, we
can achieve this propagation from scale 𝑛 to scale 𝑒(log 𝑛)𝑐𝜆 . (Note that since the conclusion
of Proposition 3.6.1 gets stronger as 𝜆 increases, the 𝜆 ≥ 𝜆0 condition is redundant; we have
nevertheless included it because some of our working is simpler if we can assume that 𝜆 is large.)

The overall strategy of this section is closely inspired by [CMT22]. A key insight of that paper
was that if one is working in the supercritical phase of percolation, then one can sometimes deduce
positive information (e.g. a lower bound on set-to-set connection probabilities) from negative
information (e.g. an upper bound on set-to-set connection probabilities). Thus, one can analyze the
supercritical phase by a case analysis according to whether or not certain point-to-point connection
lower bounds hold: both assumptions are useful. This only makes sense because being in the
supercritical phase is already a positive hypothesis. For our purposes, we cannot assume that we
are in the supercritical phase. However, we can assume that we have a two-point lower bound at
some large scale 𝑛, which lets us pretend that we are supercritical when working with scales much
smaller than 𝑛. The positive information that this lets us deduce by working with scales smaller
than 𝑛 is so strong that it implies set-to-set connection lower bounds even at scales much larger
than 𝑛.

Besides this, there are two main complications we need to address when adapting the methods of
[CMT22] in this section. First, our quasi-polynomial growth and plentiful tubes conditions are
rather different than the polynomial growth and connectivity of exposed spheres used in [CMT22],
and many details of the argument must change to accommodate this. Second, and more seriously,
we must use methods that use the growth upper bound at one scale only, since that is all we can
assume; this is very different from [CMT22] where their graphs are assumed to have polynomial
growth at all scales and many of the arguments work by inducting up from scale 1.

We now begin to work towards the proof of Proposition 3.6.1. We begin by recording various
notations and important constants that will be used throughout the proof. First, we letA(𝑏, 𝑛, 𝑝1) =
A𝐷,𝐾 (𝑏, 𝑛, 𝑝1;𝐺) be the statement on the left hand side of the implication (3.6.1):

A(𝑏, 𝑛, 𝑝1) =
(
𝑛 ∈ L (𝐺, 𝐷), 𝜅𝑝1 (𝑛,∞) ≥ 𝑒−(log log 𝑛)1/2 , P𝑝1 (Piv[4𝑏, 𝑛1/3]) ≤ (log 𝑛)−1 and 𝛿(𝑏, 𝑛) ≤ 1

)
.

We will always assume that 𝛿(𝑝1, 𝑝2) is larger than the quantity 𝛿 := 𝛿(𝑏, 𝑛) = 𝛿𝐾 (𝑏, 𝑛) introduced
in Proposition 3.6.1. We regard the choices of 𝑑 ∈ N, 𝐷 ≥ 1,𝐾 ≥ 1, and𝜆 ≥ 20, as well as the graph
𝐺 ∈ U∗

𝑑
, as being fixed for the remainder of the section. We write 𝑝3/2 := Spr(𝑝1; 𝛿(𝑝1, 𝑝2)/2),

so that 𝑝2 = Spr(𝑝3/2; 𝛿(𝑝1, 𝑝2)/2) by the semigroup property of our sprinkling operation, and let
𝑐1 = 𝑐1(𝑑, 𝐷) > 0 and 𝑁 = 𝑁 (𝑑, 𝐷, 𝜆) be the constants guaranteed to exist by Proposition 3.5.2.
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Inspired by [CMT22], we will split the proof of Proposition 3.6.1 into two cases according to how
easy it is to connect points at certain well-chosen intermediate scales. For each 1 ≤ 𝑚 ≤ 𝑛 we
define the two-point zone

tz(𝑚) = tz(𝑚, 𝑛) := sup
{
𝑟 ≥ 0 : 𝜏𝐵𝑚𝑝3/2 (𝐵𝑟) ≥ (log 𝑛)−1

}
,

where we recall that 𝜏𝐵𝑝 (𝐴) is the quantity defined by 𝜏𝐵𝑝 (𝐴) := inf𝑥,𝑦∈𝐴 P𝑝 (𝑥
𝐵←→ 𝑦). We stress that

the two-point zone tz(𝑚) is defined using the intermediate parameter 𝑝3/2. Knowing the value of
tz(𝑚) for some 𝑚 provides us with both positive information (on scales smaller than tz(𝑚)) and
negative information (on scales larger than tz(𝑚)).

For each 𝑛 ∈ L (𝐺, 𝐷) with 𝑛 ≥ 𝑁 , let 𝑛1/3 ≤ 𝑚1 ≤ 𝑚2 ≤ 𝑛1/(1+𝑐1) be such that 𝑚2 ≥ 𝑚1+𝑐1
1 and

𝐺 has (𝑐1, 𝜆)-polylog-plentiful tubes at every scale 𝑚1 ≤ 𝑚 ≤ 𝑚2 (such 𝑚1 and 𝑚2 existing by
Proposition 3.5.2), and let S (𝑛) = S𝑑,𝐷,𝜆 (𝑛) = {𝑚 ∈ N : 𝑚1+(𝑐1/4)

1 ≤ 𝑚 ≤ 𝑚1+(3𝑐1/4)
1 }. From now

on we will mostly work at scales 𝑚 ∈ S (𝑛), so that 𝐺 has plentiful tubes not just at these scales
but at a large range of consecutive scales on either side of every such scale. Let 𝑐2 = 𝑐2(𝑑) be the
minimum of the four constants appearing in Proposition 3.4.1 with ‘𝐷’ equal to 1 (known in the
statement of that proposition as 𝑐1, 𝑐2, 𝑐3, and ℎ0; the proposition becomes weaker if we replace
all four constants by their minimum), define 𝑐3 = 𝑐3(𝑑) := 2−9𝑐2, and consider the statement

B(𝑛, 𝑝3/2) = B𝑑,𝐷,𝜆,𝐾 (𝑛, 𝑝3/2)

=

(
there exists 𝑚 ∈ S (𝑛) such that tz

(𝑚
2

)
[log 𝑛]𝑐3𝐾 ≥ 𝑚(log 𝑛)3𝜆/𝑐1

)
.

We think of B(𝑛, 𝑝3/2) as our “positive assumption” about percolation on scale 𝑛: it means that
there is a “good” scale 𝑚 ∈ S (𝑛) such that points in a ball of radius not much smaller than 𝑚 can
be connected with reasonable probability within the ball of radius 𝑚/2 when 𝑝 = 𝑝3/2.

Notational conventions and standing assumptions: Recall that the choices of 𝑑 ∈ N, 𝐷 ≥ 1,
𝐾 ≥ 1, 𝜆 ≥ 20, and 𝐺 ∈ U∗

𝑑
are considered to be fixed for the remainder of the section.

The constants 𝑁 , 𝑐1, 𝑐2, and 𝑐3 used to define S (𝑛) and B(𝑛, 𝑝) will be used with the same
meaning throughout this section. We also define 𝑐−1 = 𝑐−1(𝑑) to be a positive constant such
that Spr(𝑝; 𝛿) ≥ 𝑝 + 𝑐−1𝛿 for every 𝑝 ≥ 1/𝑑 and 0 < 𝛿 ≤ 1, which exists by (3.3.1). Finally, we
fix 𝐾0 = 𝐾0(𝑑, 𝐷) = 211(𝑐−1

3 ∨ 𝑐
−5
−1 ∨ 1) throughout the section: all subsequent lemmas in this

section will include 𝐾 ≥ 𝐾0 as an implicit hypothesis. These conventions do not apply outside
of this section (Section 3.6).

Proposition 3.6.1 follows trivially from the following two lemmas.
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Lemma 3.6.2 (Concluding from a positive assumption). There exists a constant 𝜆0 = 𝜆0(𝑑, 𝐷)
such that if 𝜆 ≥ 𝜆0 then there exists a constant 𝑛0 = 𝑛0(𝑑, 𝐷, 𝜆) ≥ 𝑁 such that the implication

A𝐷,𝐾 (𝑏, 𝑛, 𝑝1) ∧ B𝑑,𝐷,𝜆,𝐾 (𝑛, 𝑝3/2) ⇒
(
𝑝2 ≥ 𝑝𝑐 or 𝜅𝑝2

(
𝑒(log 𝑛)𝑐1𝜆/4

, 𝑛

)
≥ 𝑒−3(log log 𝑛)1/2

)
(3.6.2)

holds for every 𝑛 ≥ 𝑛0, 𝑏 ≤ 1
8𝑛

1/3, and every pair of probabilities 𝑝2 ≥ 𝑝1 ≥ 1/𝑑 with 𝛿(𝑝1, 𝑝2) ≥
𝛿𝐾 (𝑏, 𝑛).

Lemma 3.6.3 (Concluding from a negative assumption). There exists a constant 𝜆0 = 𝜆0(𝑑, 𝐷)
such that if 𝜆 ≥ 𝜆0 then there exist constants 𝐾1 = 𝐾1(𝑑, 𝐷, 𝜆) ≥ 𝐾0 and 𝑛0 = 𝑛0(𝑑, 𝐷, 𝜆) ≥ 𝑁
such that if 𝐾 ≥ 𝐾1 and 𝑛 ≥ 𝑛0 then the implication

A𝐷,𝐾 (𝑏, 𝑛, 𝑝1) ∧ (¬B𝑑,𝐷,𝜆,𝐾 (𝑛, 𝑝3/2)) ⇒
(
𝑝2 ≥ 𝑝𝑐 or 𝜅𝑝2

(
𝑒(log 𝑛)𝑐1𝜆/4

, 𝑛

)
≥ 𝑒−3(log log 𝑛)1/2

)
(3.6.3)

holds for every 𝑛 ≥ 𝑛0, 𝑏 ≤ 1
8𝑛

1/3, and every pair of probabilities 𝑝2 ≥ 𝑝1 ≥ 1/𝑑 with 𝛿(𝑝1, 𝑝2) ≥
𝛿𝐾 (𝑏, 𝑛).

Concluding from a positive assumption
Our next goal is to prove Lemma 3.6.2. We begin with the following lemma, which will later allow
us to use the positive assumption B(𝑛, 𝑝) to deduce lower bounds on the corridor function after
sprinkling. Note that we are not yet using the polylog-plentiful tubes condition or the assumption
B(𝑛, 𝑝), so that the parameter 𝜆 does not appear in this lemma. (Recall our standing assumption
throughout this section that 𝐾 ≥ 𝐾0 = 𝐾0(𝑑, 𝐷).)

We define 𝑝7/4 = Spr(𝑝1; 3
4𝛿(𝑝1, 𝑝2)) = Spr(𝑝3/2; 1

4𝛿(𝑝1, 𝑝2)), and remind the reader that the
two-point zone tz(𝑚) was defined with respect to the parameter 𝑝3/2.

Lemma 3.6.4. There exist a constant 𝑛0 = 𝑛0(𝑑, 𝐷) ≥ 𝑁 and a universal constant 𝑐4 such that if
𝑛 ≥ 𝑛0 then the implication

A𝐷,𝐾 (𝑏, 𝑛, 𝑝1) ⇒
(
𝜅𝑝7/4

(
tz

(𝑚
2

)
[log 𝑛]𝑐3𝐾 , 𝑚

)
≥ 𝑐4𝑒

−2(log log 𝑛)1/2 for every 𝑛1/3 ≤ 𝑚 ≤ 𝑛
)

holds for every 𝑛 ≥ 𝑛0, 𝑏 ≤ 1
8𝑛

1/3, and 𝑝1 ≥ 1/𝑑.

Proof of Lemma 3.6.4. Fix 𝑛1/3 ≤ 𝑚 ≤ 𝑛 and a path 𝛾 starting at some vertex 𝑢, ending at some
vertex 𝑣, and with len 𝛾 ≤ tz

(
𝑚
2
)
(log 𝑛)𝑐3𝐾 . Pick a subsequence 𝑢 = 𝑢1, 𝑢2, . . . , 𝑢𝑘 = 𝑣 of 𝛾 with

𝑘 ≤ 5(log 𝑛)𝑐3𝐾 and dist(𝑢𝑖, 𝑢𝑖+1) ≤ 1
4 tz

(
𝑚
2
)

for every 1 ≤ 𝑖 < 𝑘 . (There are rounding issues that
may prevent such a sequence existing when tz

(
𝑚
2
)

is small, but this is not a problem when 𝑛 is
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large.) We claim that 1
4 tz

(
𝑚
2
)
≥ 𝑏. Indeed, the hypothesis 𝑏 ≤ 1

8𝑛
1/3 guarantees that 4𝑏 ≤ 𝑚/2,

and we have by a union bound that

𝜏
𝐵𝑚/2
𝑝3/2 (𝐵4𝑏) ≥ 𝜏

𝐵𝑚/2
𝑝1 (𝐵4𝑏) ≥ 𝜅𝑝1 (𝑛,∞) − P𝑝1 (Piv[4𝑏, 𝑛1/3])

≥ 𝑒−(log log 𝑛)1/2 − [log 𝑛]−1 ≥ 1
2
𝑒−[log log 𝑛]1/2 (3.6.4)

for every 𝑛 larger than some universal constant. It follows in particular that 𝜏𝐵𝑚/2𝑝3/2 (𝐵4𝑏) ≥ (log 𝑛)−1

for every 𝑛 larger than some universal constant 𝑛0, and hence that 1
4 tz

(
𝑚
2
)
≥ 𝑏 when 𝑛 ≥ 𝑛0 by

maximality of tz
(
𝑚
2
)
.

Let ℎ = 𝑐2 max{Gr(𝑏)−1, 𝑛−1/15}, so that if 𝑛0 ≥ 3 (to guarantee that 𝑛1/15 ≥ log 𝑛) then

ℎ𝑐2 (𝛿/4)3 ≤ ℎ𝑐2 (𝛿/4)4 ≤ exp
(
log ℎ · 𝑐2

28 ·
𝐾 log log 𝑛

log ℎ

)
= (log 𝑛)−2𝑐3𝐾 ≤ (log 𝑛)−2 (3.6.5)

by the definition of 𝛿𝐾 (𝑏, 𝑛) and the assumption that 𝐾 ≥ 𝐾0. We want to apply Proposition 3.4.1
where ‘𝑛’ is 𝑘 , the sets ‘𝐴𝑖’ are the balls (𝐵𝑏 (𝑢𝑖))𝑘𝑖=1, the superset ‘Λ’ is the tube 𝐵𝑚/2(𝛾), the ghost
field intensity ‘ℎ’ is equal to ℎ, ‘𝑝1’ is 𝑝3/2, and the sprinkling amount ‘𝛿’ is 𝛿/4. To do this, it
suffices to verify that if 𝑛 is sufficiently large then

ℎ𝑐2 (𝛿/4)3 ≤ 𝑐2𝑘
−1 and 𝜏

𝐵𝑚/2 (𝛾)
𝑝3/2 (𝐵𝑏 (𝑢𝑖)∪𝐵𝑏 (𝑢𝑖+1)) ≥ 4ℎ𝑐2 (𝛿/4)4 for every 1 ≤ 𝑖 ≤ 𝑘 − 1.

(The assumption that ℎ is sufficiently small holds automatically since we defined 𝑐2 to be the
minimum of the constants appearing in Proposition 3.4.1 and set ℎ ≤ 𝑐2.) The inequality (3.6.5)
implies that the first required inequality ℎ𝑐2 (𝛿/4)3 ≤ 𝑐2𝑘

−1 holds whenever 𝑛 is larger than some
constant depending only on 𝑑, since ℎ𝑐2 (𝛿/4)3 ≤ (log 𝑛)−2𝑐3𝐾 , 𝑘 ≤ 5(log 𝑛)𝑐3𝐾 and 𝑐3𝐾 ≥ 2. For
the second required inequality, note that for every such 𝑖 and for every 𝑢 ∈ 𝐵𝑏 (𝑢𝑖) and 𝑣 ∈ 𝐵𝑏 (𝑢𝑖+1),
we have 𝑢, 𝑣 ∈ 𝐵tz(𝑚/2)−1(𝑢𝑖) and hence that

𝜏
𝐵𝑚/2 (𝛾)
𝑝3/2 (𝐵𝑏 (𝑢𝑖) ∪ 𝐵𝑏 (𝑢𝑖+1)) ≥ 𝜏

𝐵𝑚/2
𝑝3/2 (𝐵tz(𝑚/2)−1) ≥ (log 𝑛)−1

for all 𝑛 larger than some universal constant by (3.6.4). Let 𝑛0 = 𝑛0(𝑑, 𝐷) ≥ 𝑁 be the maximum
of these two constants and 𝑁 .

Let 𝑟 be the minimum positive integer such thatP𝑞 (Piv[1, 𝑟ℎ]) < ℎ for every 𝑞 ∈ [𝑝3/2, Spr(𝑝3/2; 𝛿/4)].
The previous paragraph shows that if 𝑛 ≥ 𝑛0 then the hypotheses of Proposition 3.4.1 are met.
Thus, since 𝑝7/4 ≥ Spr(𝑝3/2; 𝛿/4)], we obtain from that proposition that for a universal constant
𝑐 > 0,

P𝑝7/4

(
𝑢

𝐵𝑚/2+2𝑟 (𝛾)←−−−−−−→ 𝑣

)
≥ 𝑐𝜏𝐵𝑚/2 (𝛾)𝑝3/2 (𝐵𝑏 (𝑢)) · 𝜏

𝐵𝑚/2 (𝛾)
𝑝3/2 (𝐵𝑏 (𝑣)) ≥

𝑐

4
𝑒−2(log log 𝑛)1/2 .
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Since 𝛾 was arbitrary, this implies that if 𝑛 ≥ 𝑛0 then

𝜅𝑝7/4

(
tz

(𝑚
2

)
[log 𝑛]𝑐3𝐾 ,

𝑚

2
+ 2𝑟

)
≥ 𝑐

4
𝑒−2(log log 𝑛)1/2 .

All that remains is to verify that 2𝑟 ≤ 𝑚/2 when 𝑛 is sufficiently large.

Let 𝑞 ∈ [𝑝3/2, Spr(𝑝3/2; 𝛿/4)] be arbitrary. Since 2/5 < 1/2, Proposition 3.2.1 yields that there
exists a constant 𝐶𝑑 such that

P𝑞 (Piv[1, (𝑚/4)ℎ]) ≤ 𝐶𝑑
[
log Gr((𝑚/4)ℎ)
(𝑚/4)ℎ

]2/5
≤ 𝐶𝑑

[
4 log Gr(𝑚)

𝑚ℎ

]2/5
.

Since ℎ ≥ 𝑛−1/15, 𝑛1/3 ≤ 𝑚 ≤ 𝑛, log Gr(𝑚) ≤ (log𝑚)𝐷 , and (2/5) · (4/15) > 1/15, it follows that
there exists a constant 𝑛2 = 𝑛2(𝑑, 𝐷) such that if 𝑛 ≥ 𝑛2 then

P𝑞 (Piv[1, (𝑚/4)ℎ]) ≤ 𝐶𝑑
[

4(log 𝑛)𝐷

𝑛1/3 · 𝑛−1/15

]2/5
≤ 𝑛−1/15 ≤ ℎ,

and hence that 𝑟 ≤ 𝑚/4 as claimed. This completes the proof. □

We now apply Lemma 3.6.4 together with the polylog-plentiful tubes condition to prove Lemma 3.6.2.

Proof of Lemma 3.6.2. Let 𝑛0 = 𝑛0(𝑑, 𝐷) and the universal constant 𝑐4 be as in Lemma 3.6.4.
Suppose that 𝑛 ≥ 𝑛0, 𝑏 ≤ 1

8𝑛
1/3, and 𝑝1 ∈ [1/𝑑, 1] are such that A𝐷,𝐾 (𝑏, 𝑛, 𝑝1) holds, and write

𝛿 = 𝛿(𝑏, 𝑛). We have by Lemma 3.6.4 that

𝜅𝑝7/4

(
tz

(𝑚
2

)
[log 𝑛]𝑐3𝐾 , 𝑚

)
≥ 𝑐4𝑒

−2(log log 𝑛)1/2 for every 𝑛1/3 ≤ 𝑚 ≤ 𝑛

and in particular that if B𝑑,𝐷,𝜆,𝐾 (𝑛, 𝑝) holds then there exists 𝑚 ∈ S (𝑛) = S𝑑,𝐷,𝜆 (𝑛) such that

𝜅𝑝7/4

(
𝑚(log 𝑛)3𝜆/𝑐1 , 𝑚

)
≥ (log 𝑛)−1 (3.6.6)

whenever 𝑛0 is larger than a suitable universal constant. (Note that we have not yet put any
restrictions on the parameter 𝜆.)

Suppose that 𝑚 ∈ S (𝑛) satisfies (3.6.6) and let 𝑟 = 𝑚 [log 𝑛]3𝜆/(2𝑐1) , so that if 𝑛 ≥ 2 we have the
inclusion of intervals [ 9

10
𝑟 (log 𝑟)−𝜆/𝑐1 , 𝑟 (log 𝑟)𝜆/𝑐1

]
⊆

[
𝑚, 𝑚(log 𝑛)3𝜆/𝑐1

]
. (3.6.7)

Since 9
10𝑟 ∈ [𝑚1, 𝑚2] (where 𝑚1 and 𝑚2 are as in the definition of S (𝑛) above), 𝐺 has (𝑐1, 𝜆)-

polylog-plentiful radial tubes at scale 9
10𝑟. Let Γ be a family of paths witnessing this fact (which
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cross the annulus from 𝑆0.9𝑟 to 𝑆4·(0.9𝑟) = 𝑆3.6𝑟) and let (𝑇𝛾)𝛾∈Γ be the associated family of tubes
given by 𝑇𝛾 := 𝐵(𝛾, 9

10𝑟 [log( 9
10𝑟)]

−𝜆/𝑐1). Since each tube 𝑇𝛾 has thickness at least 𝑚 and length
len 𝛾 ≤ 𝑟 (log 𝑟)𝜆/𝑐1 ≤ 𝑚(log 𝑛)3𝜆/𝑐1 , it follows from (3.6.6) that

P𝑝7/4 (𝑆0.9𝑟
𝑇𝛾←→ 𝑆3.6𝑟) ≥ (log 𝑛)−1

for every 𝛾 ∈ Γ and hence that there exists a constant 𝑛1 = 𝑛1(𝑑, 𝐷, 𝜆) ≥ 𝑛0 such that if 𝑐1𝜆 > 4
and 𝑛 ≥ 𝑛1 then

P𝑝7/4 (𝑆0.9𝑟 ↔ 𝑆3.6𝑟) ≥ 1 −
∏
𝛾∈Γ

P𝑝7/4 (𝑆0.9𝑟
𝑇𝑖←→ 𝑆3.6𝑟) ≥ 1 − (1 − (log 𝑛)−1) (log(𝑛1/3))𝑐1𝜆

≥ 1 − exp
(
3−𝑐1𝜆 (log 𝑛)𝑐1𝜆−1) ≥ 1 − exp(−(log 𝑛)3𝑐1𝜆/4), (3.6.8)

where we used that 1 − 𝑥 ≤ 𝑒−𝑥 in the second line.

We next use the fact that 𝐺 also has (𝑐1, 𝜆)-polylog-plentiful annular tubes at scale 𝑟. (We will no
longer use the paths and tubes from the radial case that we defined in the previous paragraph, so
it is not a problem to reuse the same notation for the annular tubes we consider in the rest of the
proof.) We will work with the standard monotone coupling (𝜔𝑝)𝑝∈[0,1] of percolation at different
parameters. To lighten notation, we write 𝜔1 = 𝜔𝑝1 , 𝜔3/2 = 𝜔𝑝3/2 , 𝜔7/4 = 𝜔𝑝7/4 , and 𝜔2 = 𝜔𝑝2 .
Let 𝑢, 𝑣 ∈ 𝑆𝑟 and consider the event 𝐴𝑢,𝑣 = {𝑢 ↔ 𝑆3𝑟 and 𝑣 ↔ 𝑆3𝑟 in the configuration 𝜔7/4}.
Define 𝐶𝑢 := 𝐾𝑢 (𝜔7/4) and 𝐶𝑣 := 𝐾𝑣 (𝜔7/4), so that the event 𝐴𝑢,𝑣 is entirely determined by the
pair (𝐶𝑢, 𝐶𝑣). Whenever 𝐴𝑢,𝑣 holds, let Γ be a family of paths from 𝐶𝑢 to 𝐶𝑣 that is guaranteed
to exist by the fact that 𝐺 has (𝑐1, 𝜆)-polylog-plentiful annular tubes at scale 𝑟 (choosing these
paths as a function of (𝐶𝑢, 𝐶𝑣)), and let (𝑇𝛾)𝛾∈Γ be the associated family of tubes, noting that⋃
𝛾∈Γ 𝑇𝛾 ⊆ 𝐵(2𝑟 [log 𝑟]𝜆/𝑐1). Define the configurations

𝛼 := 𝜔2∩ (𝜕𝐸𝐶𝑢 ∪ 𝜕𝐸𝐶𝑣) ∩𝐵(2𝑟 [log 𝑟]𝜆/𝑐1) and 𝛽 := (𝜔7/4\𝐶𝑢 ∪ 𝐶𝑣) ∩𝐵(2𝑟 [log 𝑟]𝜆/𝑐1),

where we recall that 𝐶𝑢 ∪ 𝐶𝑣 denotes the set of edges with at least one endpoint in 𝐶𝑢 ∪ 𝐶𝑣. In
order for 𝐶𝑢 to be connected to 𝐶𝑣 in the configuration (𝛼 ∪ 𝛽) ∩ 𝑇𝛾, it suffices that in at least one
of the tubes 𝑇𝛾, there is a 𝛽-path from an endpoints of an 𝛼-open edge in 𝜕𝐸𝐶𝑢 to an endpoint of
an 𝛼-open edge in 𝜕𝐸𝐶𝑣. The estimate (3.6.6) together with the interval inclusion (3.6.7) therefore
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yields that

P(𝐶𝑢
𝛼∪𝛽
←−−→ 𝐶𝑣 | 𝐶𝑢, 𝐶𝑣) ≥ 1(𝐴𝑢,𝑣) ·

[
1 −

∏
𝛾∈Γ

P(𝐶𝑢
𝑇𝑖∩(𝛼∪𝛽)←−−−−−→ 𝐶𝑣 | 𝐶𝑢, 𝐶𝑣)

]

≥ 1(𝐴𝑢,𝑣) ·
1 −

(
1 −

[
𝑐−1𝛿

4

]2
[log 𝑛]−1

) [log(𝑛1/3)]𝑐1𝜆
≥ 1(𝐴𝑢,𝑣) ·

[
1 − exp

(
−3−𝑐1𝜆 (log 𝑛)𝑐1𝜆−2

)]
,

where we used that 𝑐−1𝛿 ≥ 4(log 𝑛)−1/2 (which holds by definition of 𝛿 and 𝐾0) in the final
inequality. As such, there exist constants 𝜆0 = 𝜆0(𝑑, 𝐷) and 𝑛2 = 𝑛2(𝑑, 𝐷, 𝜆) ≥ 𝑛1 such that if
𝜆 ≥ 𝜆0, 𝑛 ≥ 𝑛2, and 𝑐1𝜆 ≥ 4 then

P(𝐶𝑢
𝛼∪𝛽
←−−→ 𝐶𝑣 | 𝐶𝑢, 𝐶𝑣) ≥ 1(𝐴𝑢,𝑣) ·

[
1 − 𝑒−[log 𝑛]3𝑐1𝜆/4

]
.

Since 𝛼 ∪ 𝛽 ⊆ 𝜔2 ∩ 𝐵(2𝑟 [log 𝑟]𝜆/𝑐1), it follows that

P(𝐶𝑢
𝜔2∩𝐵(2𝑟 [log 𝑟]𝜆/𝑐1 )
←−−−−−−−−−−−−−−→ 𝐶𝑣 | 𝐴𝑢,𝑣) ≥ 1 − 𝑒−[log 𝑛]3𝑐1𝜆/4

under the same conditions. LettingU be the event that all 𝜔7/4-clusters that intersect both 𝑆𝑟 and
𝑆3𝑟 are contained in a single 𝜔2 ∩ 𝐵(2𝑟 [log 𝑟]𝜆/𝑐1)-cluster, it follows by a union bound that there
exists 𝜆1 = 𝜆1(𝑑, 𝐷) ≥ 𝜆0 such that if 𝜆 ≥ 𝜆1 and 𝑛 ≥ 𝑛2 then

P(U) ≥ 1 −
∑︁
𝑢,𝑣∈𝑆𝑟

P
(
𝐴𝑢,𝑣 ∩ {𝐶𝑢

𝜔2∩𝐵(2𝑟 [log 𝑟]𝜆/𝑐1 )
←−−−−−−−−−−−−−→ 𝐶𝑣}

)
≥ 1 − Gr(𝑟)2𝑒−[log 𝑛]3𝑐1𝜆/4 ≥ 1 − 𝑒 [log 𝑛]2𝐷𝑒−[log 𝑛]3𝑐1𝜆/4 ≥ 1 − 𝑒−[log 𝑛]2𝑐1𝜆/3

. (3.6.9)

For each vertex 𝑥, let E𝑥 be the event that 𝑆0.9𝑟 (𝑥) is 𝜔7/4-connected to 𝑆3.6𝑟 (𝑥) and let U𝑥
be the event that all 𝜔7/4-clusters that intersect both 𝑆𝑟 (𝑥) and 𝑆3𝑟 (𝑥) are contained in a single
𝜔2 ∩ 𝐵(𝑥, 2𝑟 [log 𝑟]𝜆/𝑐1)-cluster. Observe that if 𝜁 is a path in 𝐺 then we have the inclusion of
events

{𝑢
𝜔2∩𝐵𝑛 (𝜁)←−−−−−→ 𝑣} ⊇ {𝑢

𝜔7/4←−→ 𝑆𝑛 (𝑢)} ∩ {𝑣
𝜔7/4←−→ 𝑆𝑛 (𝑣)} ∩

len 𝜁⋂
𝑡=0
(U𝜁𝑡 ∩ E𝜁𝑡 ).

Thus, it follows by the Harris-FKG inequality and a union bound that there exists a constant
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𝑛3 = 𝑛3(𝑑, 𝐷, 𝜆) ≥ 𝑛2 such that if 𝜆 ≥ 𝜆1, 𝑛 ≥ 𝑛3, and the path 𝜁 satisfies len 𝜁 ≤ 𝑒 [log 𝑛]𝑐1𝜆/4 then

P𝑝2 (𝑢
𝐵𝑛 (𝜁)←−−→ 𝑣) ≥ P𝑝7/4 (𝑢 ↔ 𝑆𝑛 (𝑢)) · P𝑝7/4 (𝑣 ↔ 𝑆𝑛 (𝑣)) ·

len 𝜁∏
𝑡=1

P(E𝜁𝑡 ) −
len 𝜁∑︁
𝑡=1

P(U𝑐
𝜁 𝑡
)

≥
(
𝑒−[log log 𝑛]1/2

)2 [
1 − len(𝜁)𝑒−[log 𝑛]3𝑐1𝜆/4

]
− len(𝜁)𝑒−[log 𝑛]3𝑐1𝜆/4

≥ 𝑒−3[log log 𝑛]1/2 .

The claimed lower bound on the corridor function follows since 𝜁 was an arbitrary path of length
at most 𝑒 [log 𝑛]𝑐1𝜆/4 . □

Concluding from a negative assumption
The next lemma explains how to use the negative information encapsulated in an upper bound on
the two-point zone tz(𝑚) to find a set of vertices for which point-to-point connection probabilities
within a ball are uniformly small. This lemma plays an analogous role to that of Section 7.2 in
[CMT22], but our proof is completely different and relies on the machinery developed in Section 3.4.
Note that this lemma does not use the plentiful tubes condition.

Lemma 3.6.5. There exists a constant 𝑛0 = 𝑛0(𝑑, 𝐷) such that if 𝑛 ≥ 𝑛0 and 𝑏 ≤ 1
8𝑛

1/3 satisfy
A𝐷,𝐾 (𝑏, 𝑛) then for every 𝑛1/3 ≤ 𝑚 ≤ 𝑛, there exists a subset 𝑈 ⊆ 𝐵tz(𝑚) with |𝑈 | ≥ (log 𝑛)𝑐3𝐾

such that
P𝑝1 (𝑢

𝐵𝑚/2←−→ 𝑣) ≤ (log 𝑛)−𝑐3𝐾

for all distinct 𝑢, 𝑣 ∈ 𝑈.

(Reminder: The implicit assumption 𝐾 ≥ 𝐾0 remains in force.)

Proof of Lemma 3.6.5. Fix 𝑛 and 𝑏 ≤ 1
8𝑛

1/3 such that A𝐷,𝐾 (𝑏, 𝑛) holds. We will assume that the
claim is false for some particular 𝑛1/3 ≤ 𝑚 ≤ 𝑛, and show that this implies a contradiction when
𝑛 is sufficiently large. By definition of the two-point zone tz(𝑚) = tz(𝑚, 𝑛), there exist vertices
𝑢, 𝑣 ∈ 𝐵tz(𝑚) such that P𝑝3/2 (𝑢

𝐵𝑚←−→ 𝑣) < (log 𝑛)−1. Let 𝛾 be a geodesic in 𝐵tz(𝑚) from 𝑢 to 𝑣.
Recursively pick a sequence of indices 0 = 𝑖0 < 𝑖1 < . . . < 𝑖𝑘 = len 𝛾 starting with 𝑖0 := 0 and for
each 𝑗 ≥ 0 with 𝑖 𝑗 < len 𝛾 setting

𝑖 𝑗+1 = max
{
len 𝛾, 1 +max

{
𝑖 ≥ 𝑖 𝑗 : P𝑝1 (𝑢𝑖 𝑗

𝐵𝑚/2←−→ 𝑢𝑖) ≥ (log 𝑛)−𝑐3𝐾
}}
.

To lighten notation, define 𝑣 𝑗 := 𝑢𝑖 𝑗 for every 0 ≤ 𝑗 ≤ 𝑘 . This sequence has the property that
P𝑝1 (𝑣 𝑗 ↔ 𝑣 𝑗+1) ≥ 𝑝1(log 𝑛)−𝑐3𝐾 for every 0 ≤ 𝑗 < 𝑘 and P𝑝1 (𝑣 𝑗 ↔ 𝑣ℓ) ≤ (log 𝑛)−𝑐3𝐾 for every
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distinct 0 ≤ 𝑗 , ℓ < 𝑘 . (The last connection probability, from 𝑣𝑘−1 to 𝑣𝑘 = 𝑣, may be larger.) As
such, our assumption guarantees that 𝑘 ≤ (log 𝑛)𝑐3𝐾 .

To conclude the proof, it suffices to show that P𝑝3/2 (𝑢 ↔ 𝑣) ≥ (log 𝑛)−1 when 𝑛 is sufficiently large.
To this end, we would like to apply Proposition 3.4.1 where the sets ‘𝐴𝑖’ are the balls 𝐵𝑏 (𝑣 𝑗 ), the
superset ‘Λ’ is the bigger ball 𝐵𝑚/2, the ghost field intensity ‘ℎ’ is ℎ := min{log 𝑛,Gr(𝑏)}−1, and
the sprinkling amount ‘𝛿’ is 𝛿/2. To do this, we need to verify that

ℎ𝑐2 (𝛿/2)3 ≤ 𝑐2𝑘
−1 and 𝜏

𝐵𝑚/2
𝑝1 (𝐵𝑏 (𝑣 𝑗 ) ∪ 𝐵𝑏 (𝑣 𝑗+1)) ≥ 4ℎ−𝑐2 (𝛿/2)4 (3.6.10)

for every 0 ≤ 𝑗 ≤ 𝑘 −1 when 𝑛 is sufficiently large. We have by definition of 𝛿 (and the assumption
𝐾 ≥ 𝐾0) that if 𝑛 is larger than some universal constant then

ℎ𝑐2 (𝛿/2)3 ≤ 4ℎ𝑐2 (𝛿/2)4 ≤ 4(log 𝑛)−2𝑐3𝐾 ≤ 𝑐2
[
(log 𝑛)−𝑐3𝐾 + 1

]
. (3.6.11)

Since 𝑘 ≤ (log 𝑛)𝑐3𝐾 , this is easily seen to imply that the first inequality of (3.6.10) holds. Moreover,
we have by the same calculation performed in (3.6.4) that

𝜏
𝐵𝑚/2
𝑝1 (𝐵𝑏) ≥

1
2
𝑒−(log log 𝑛)1/2 ≥ (log 𝑛)−1 (3.6.12)

for all 𝑛 larger than some universal constant, and it follows by the Harris-FKG inequality that if 𝑛
is larger than some constant depending only on 𝑑 then

𝜏
𝐵𝑚/2
𝑝1 (𝐵𝑏 (𝑣 𝑗 ) ∪ 𝐵𝑏 (𝑣 𝑗+1)) ≥ 𝜏

𝐵𝑚/2
𝑝1 (𝐵𝑏 (𝑣 𝑗 )) · P𝑝1 (𝑣 𝑗

𝐵𝑚/2←−→ 𝑣 𝑗+1) · 𝜏
𝐵𝑚/2
𝑝1 (𝐵𝑏 (𝑣 𝑗+1))

≥ (log 𝑛)−1 ·
[ 1
2𝑑
(log 𝑛)−𝑐3𝐾

]
· (log 𝑛)−1 ≥ (log 𝑛)−𝑐3𝐾−3 (3.6.13)

for every 0 ≤ 𝑗 ≤ 𝑘 − 1. The estimates (3.6.11) and (3.6.13) together yield that there exists a
constant 𝑛0 = 𝑛0(𝑑) ≥ 𝑁 such that the required estimates (3.6.10) hold whenever 𝑛 ≥ 𝑛0. Thus,
Proposition 3.4.1 and (3.6.12) yield that there exists a constant 𝑛1 = 𝑛1(𝑑) ≥ 𝑛0 such that if 𝐾 ≥ 𝐾0

and 𝑛 ≥ 𝑛1 and we define 𝑟 to be the minimum positive integer such that P𝑞 (Piv[1, 𝑟ℎ]) < ℎ for
every 𝑞 ∈ [𝑝1, 𝑝3/2] then (since 𝑝3/2 ≥ Spr(𝑝1; 𝛿/2))

P𝑝3/2

(
𝑢

𝐵𝑚/2+2𝑟←−−−−→ 𝑣

)
≥ 𝑐2𝜏

𝐵𝑚/2
𝑝1 (𝐵𝑏 (𝑢)) · 𝜏

𝐵𝑚/2
𝑝1 (𝐵𝑏 (𝑣)) ≥

𝑐2

4
𝑒−2[log log 𝑛]1/2 .

Finally, the same argument as in the proof of Lemma 3.6.4 yields that 2𝑟 ≤ 𝑚/2 when 𝑛 is larger than
some constant depending on 𝑑 and 𝐷, and it follows that there exists a constant 𝑛2 = 𝑛2(𝑑, 𝐷) ≥ 𝑛1

such that if 𝑛 ≥ 𝑛2 then P𝑝3/2 (𝑢
𝐵𝑚←→ 𝑣) ≥ (log 𝑛)−1 — a contradiction. □
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We now use the existence of this set of poorly connected vertices (negative information) to prove
that 𝑆tz(𝑚) is very likely to be connected to the boundary of 𝑆𝑚/2 (positive information). This only
works because we are working under the positive hypothesis of a two-point lower bound at scale 𝑛.
This step is essentially the same as Section 7 in [CMT22], with our two-point lower bound at scale
𝑛 playing the role of ‘being in the supercritical regime’ in their setting.

Lemma 3.6.6. There exists a constant 𝑛0 = 𝑛0(𝑑, 𝐷) such that if 𝑛 ≥ 𝑛0 and 𝑏 ≤ 1
8𝑛

1/3 satisfy
A𝐷,𝐾 (𝑏, 𝑛) then

P𝑝3/2 (𝑆tz(𝑚) ↔ 𝑆𝑚/2) ≥ 1 − 𝑒−(log 𝑛)𝑐3𝐾−1

for every 𝑚 ∈ S (𝑛).

Note that we are not actually assuming a negative information assumption (such as ¬B(𝑛, 𝑝)) in
the hypotheses of this lemma. The lemma holds without any such assumption, but is stronger when
tz(𝑚) is small. The proof of Lemma 3.6.6 will apply the following proposition.

Proposition 3.6.7. Let 𝐺 be a finite connected graph, let 𝑝 ∈ [0, 1], and let 𝐴, 𝐵 ⊆ 𝑉 (𝐺). If
𝜃 ∈ (0, 1) is such that

min
𝑥∈𝐴

P𝑝 (𝑥 ↔ 𝐵) ≥ 𝜃 ≥ 2 |𝐴| max
𝑥,𝑦∈𝐴
𝑥≠𝑦

P𝑝 (𝑥 ↔ 𝑦),

then P𝑞 (𝐴↔ 𝐵) ≥ 1 − 𝑒−𝛿(𝑝,𝑞)𝜃 |𝐴| for every 𝑞 ∈ (𝑝, 1).

Proof of Proposition 3.6.7. This proposition is essentially the same as [CMT22, Proposition 7.2],
except that it is stated in terms of our sprinkling coordinates introduced in Section 3.3 (which are
natural from the perspective of Talagrand’s inequality) and we get a factor 𝛿 rather than 2𝛿 in the
exponential in the conclusion. Both versions of the proposition are elementary consequences of
the differential inequality

𝑑

𝑑𝑝
(− logP𝑝 (𝐴)) ≥

1
𝑝(1 − 𝑝)E𝑝

[
Hamming distance from 𝜔 to 𝐴

]
,

which holds for every finite graph and every decreasing event 𝐴 [Gri06, Theorem 2.53]. In our
coordinates, this inequality reads

𝑑

𝑑𝑡
(− logPSpr(𝑝;𝑡) (𝐴)) ≥

log 1/(1 − Spr(𝑝; 𝑡))
Spr(𝑝; 𝑡) ESpr(𝑝;𝑡)

[
Hamming distance from 𝜔 to 𝐴

]
.

In our case the prefactor −(log(1 − Spr(𝑝; 𝑡)))/Spr(𝑝; 𝑡) is at least 1 whereas in the original
inequality the prefactor 1/(𝑝(1 − 𝑝)) is at least 2, leading to the difference between our two
conclusions. □
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Proof of Lemma 3.6.6. Let 𝑛0 = 𝑛0(𝑑, 𝐷) be as in Lemma 3.6.5, and suppose that 𝑛 ≥ 𝑛0 and
𝑏 ≤ 1

8𝑛
1/3 are such that A(𝑏, 𝑛) holds. Let 𝑈 ⊆ 𝐵tz(𝑚) be the set of vertices guaranteed to exist

by Lemma 3.6.5, and let 𝐴 be a subset of 𝑈 with |𝐴| = ⌈[log 𝑛]𝑐3𝐾−1/2⌉. Since A(𝑏, 𝑛) holds, we
have that

min
𝑥∈𝐴

P𝑝1 (𝑥 ↔ 𝑆𝑚/2) ≥ 𝜅𝑝1 (𝑛,∞) ≥ 𝑒−[log log 𝑛]1/2 ,

while our choice of 𝐴 guarantees that

2 |𝐴| max
𝑥,𝑦∈𝐴
𝑥≠𝑦

P𝑝1 (𝑥
𝐵𝑚/2←−→ 𝑦) ≤ 2⌈(log 𝑛)𝑐3𝐾−1/2⌉ (log 𝑛)−𝑐3𝐾 ≤ 𝑒−(log log 𝑛)1/2

whenever 𝑛 is larger than some constant 𝑛1 = 𝑛1(𝑑, 𝐷) ≥ 𝑛0. (This constant does not depend on 𝐾
since 𝑐3𝐾 ≥ 𝑐3𝐾0 ≥ 2 > 1/2.) Thus, applying Proposition 3.6.7 with 𝜃 = 𝑒−[log log 𝑛]1/2 yields that
(since 𝑝3/2 ≥ Spr(𝑝1, 𝛿/2))

P𝑝3/2 (𝐵tz(𝑚) ↔ 𝑆𝑚/2) ≥ P𝑝3/2 (𝐴↔ 𝑆𝑚/2) ≥ 1 − exp
(
−𝛿

2
𝑒−[log log 𝑛]1/2 |𝐴|

)
. (3.6.14)

On the other hand, the definition of 𝛿 ensures that 𝛿 ≥ [log 𝑛]−1/4 and hence that there exists a
constant 𝑛2 = 𝑛2(𝑑, 𝐷) ≥ 𝑛1 such that

𝛿

2
𝑒−[log log 𝑛]1/2 |𝐴| ≥ 1

2
𝑒−[log log 𝑛]1/2 (log 𝑛)𝑐3𝐾−1/2−1/4 ≥ (log 𝑛)𝑐3𝐾−1

whenever 𝑛 ≥ 𝑛2, which implies the claim in conjunction with (3.6.14). □

The next lemma is completely elementary. It tells us that we can find two nearby reals 𝑚 and 𝑚′

where tz(𝑚) is close to tz(𝑚′).

Lemma 3.6.8. Let 𝑅 ≥ 1. There exists a constant 𝑛0 = 𝑛0(𝑑, 𝐷, 𝑅) such that if 𝑛 ≥ 𝑛0 ∨ 𝑁 then
there exists 𝑚 ∈ S (𝑛) such that 𝑚(log 𝑛)−𝑅 ∈ S (𝑛) and

tz(𝑚)
tz(𝑚(log 𝑛)−𝑅)

≤ (log 𝑛)8𝑅/𝑐1 .

Proof of Lemma 3.6.8. Let 𝑛 ≥ 𝑁 so that S (𝑛) is defined. Let 𝑠 and 𝑡 denote the left and right
endpoints of S (𝑛), and define

𝑘 :=
⌊
log[log 𝑛]𝑅 (𝑡/𝑠)

⌋
=

⌊
𝑐1 log(𝑚1)
2𝑅 log log 𝑛

⌋
≥

⌊
𝑐1 log 𝑛

6𝑅 log log 𝑛

⌋
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where 𝑛1/3 ≤ 𝑚1 ≤ 𝑛 is as in the definition of S (𝑛). If a suitable 𝑚 ∈ S (𝑛) does not exist then,
using the trivial inequalities tz(𝑡) ≤ 𝑡 ≤ 𝑛 and tz(𝑠) ≥ 1, we must have that

𝑛 ≥ tz(𝑡) ≥ tz(𝑠)
𝑘∏
𝑖=1

tz(𝑠[log 𝑛]𝑖𝑅)
tz(𝑠[log 𝑛] (𝑖−1)𝑅)

≥ tz(𝑠)
(
[log 𝑛]8𝑅/𝑐1

) 𝑘
≥ exp

(
8𝑅
𝑐1

⌊
𝑐1 log 𝑛

6𝑅 log log 𝑛

⌋
· log log 𝑛

)
.

Since 8 > 6, this yields a contradiction when 𝑛 is larger than some constant 𝑛0 = 𝑛0(𝑑, 𝐷, 𝑅)
(allowing us to approximately remove the effect of rounding down). □

We will now combine our lemmas to prove Lemma 3.6.3. The idea here is inspired by the uniqueness
via sprinkling argument from [CMT22, Section 8], which itself used ideas from [BT17]. Our
approach is different because we do not know that exposed spheres are well-connected. Instead, we
have the polylog-plentiful tubes condition. This is a much weaker geometric control because the
tubes are not constrained to lie within narrow annuli. The main step is to use the strong connectivity
bound from Lemma 3.6.6 to deduce that with high probability, every 𝜔7/4-cluster crossing a thick
annulus is contained in a single 𝜔2-cluster. (As before we abbreviate 𝜔2 = 𝜔𝑝2 and so on.) In
[CMT22], the analogous step was carried out by dividing the thick annulus into thinner annuli
before showing that if two clusters cross multiple annuli, then, after sprinkling in those annuli,
the clusters will merge with high probability. This works because in every thin annulus, there is
some good probability that the clusters will merge after sprinkling in the annulus, thanks to the
connectivity of exposed spheres. In our case, we also track how many clusters survive un-merged
as they cross through multiple annuli. The difference is that we will have to sprinkle everywhere
each time we cross a thin annulus. Nevertheless, we will sprinkle so little at each stage that the net
effect is to sprinkle by less than 𝛿/4, as required.

Proof of Lemma 3.6.3. Let 𝐾1 = 𝐾1(𝑑, 𝐷, 𝜆) = max{𝐾0, 40𝜆(𝑐1 ∨ 1)−2𝑐−1
3 , 4𝑐

−1
3 (𝐷 ∨ 1)} and

suppose that 𝐾 ≥ 𝐾1 and 𝑛 ≥ 𝑁 . Fix 𝑅 := 5𝜆/𝑐1 and let 𝑛0 = 𝑛0(𝑑, 𝐷, 𝑅) be the constant from
Lemma 3.6.8, which by our choice of 𝑅 depends only on 𝑑, 𝐷, and 𝜆. We also let 𝑛1 = 𝑛1(𝑑, 𝐷)
and 𝑐4 be the constants from Lemma 3.6.4.

Suppose that 𝑛 ≥ 𝑛2 = 𝑛2(𝑑, 𝐷, 𝜆) = 𝑛0 ∨ 𝑛1 ∨ 𝑁 ∨ 𝑒2𝑅 and 𝑏 ≤ 1
8𝑛

1/3 are such that A(𝑏, 𝑛, 𝑝)
holds, and let 𝑚 ∈ S (𝑛) be the element guaranteed to exist by Lemma 3.6.8 applied with this
value of 𝑅. Taking 𝑛2 ≥ 𝑒2𝑅 guarantees that 𝑚/2 ≥ 𝑚(log 𝑛)−𝑅 and hence that 𝑚/2 ∈ S (𝑛) when
𝑛 ≥ 𝑛2. Since 𝑛 ≥ 𝑛1, we have by Lemma 3.6.4 that

𝜅𝑝7/4

(
tz(𝑚(log 𝑛)−𝑅) (log 𝑛)𝑐3𝐾 , 2𝑚(log 𝑛)−𝑅

)
≥ 𝑐4𝑒

−2[log log 𝑛]1/2 .
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On the other hand, our choice of 𝑅 and 𝑚 ensure that there exists a constant 𝑛3 = 𝑛3(𝑑, 𝐷, 𝜆) ≥ 𝑛2

such that if 𝑛 ≥ 𝑛3 then we have the inclusion of intervals(
2𝑚 [log 𝑛]−𝑅, tz

(
𝑚 [log 𝑛]−𝑅

)
[log 𝑛]𝑐3𝐾

)
⊇

(𝑚
3
[log𝑚]−4𝜆/𝑐1 , 2 tz(𝑚/2) + 2

)
,

so that
𝜅𝑝7/4

(
2 tz(𝑚/2) + 2,

𝑚

3
[log𝑚]−4𝜆/𝑐1

)
≥ 𝑐4𝑒

−2[log log 𝑛]1/2 . (3.6.15)

Note that this estimate holds as a consequence of A(𝑏, 𝑛, 𝑝) alone: we have not yet made use of
the negative information ¬B(𝑛, 𝑝).

Now suppose that ¬B(𝑛, 𝑝) holds. Since 𝐾 ≥ 𝐾1 ≥ 12𝑐−1
3 𝑐
−1
1 𝜆, there exists a constant 𝑛3 =

𝑛3(𝑑, 𝐷, 𝜆) ≥ 𝑛3 such that if 𝑛 ≥ 𝑛3 then

tz(𝑚/2) ≤ 𝑚 [log 𝑛]3𝜆/𝑐1−𝑐3𝐾 ≤ 𝑚(log 𝑛)−3𝑐3𝐾/4 ≤ 𝑚

17
(log𝑚)−𝑐3𝐾/2 (3.6.16)

for every 𝑚 ∈ S (𝑛).

Our next goal is to prove a good upper bound on the probability of the non-uniqueness event
Piv𝑝7/4,𝑝2 [𝑚/16, 𝑚/8], where Piv𝑝,𝑞 [𝑚, 𝑛] denotes the event that there are at least two distinct
𝜔𝑝-clusters that each intersect both 𝐵𝑚 and 𝑆𝑛 but that are not connected to each other by any path
in 𝐵𝑛∩𝜔𝑞. We will do this using a variation on the “orange peeling” argument of [CMT22], where
we iteratively sprinkle and zoom in closer to 𝑚/16 over a number of steps.

Let 𝑘 := 2⌊(log 𝑛)𝐷⌋, 𝜀 := (log 𝑛)−(𝐷+1) , and for each 𝑖 ∈ {0, ..., 𝑘} set

𝑟𝑖 :=
𝑚

8
− 𝑖𝑚

40
[log 𝑛]−𝐷 and 𝑞𝑖 := Spr(𝑝7/4; 𝑖𝜀).

Note that 𝑟𝑖 ∈ [𝑚/16, 𝑚/8] and 𝑞𝑖 ∈ [𝑝7/4, 𝑝2] for every 0 ≤ 𝑖 ≤ 𝑘 . We work with the standard
monotone coupling (𝜔𝑞)𝑞∈[0,1] , and write 𝜔(𝑖) = 𝜔𝑞𝑖 for each 𝑖 ∈ {0, . . . , 𝑘}. (Be careful not to
confuse this with our previous notational shorthand 𝜔1 = 𝜔𝑝1 , 𝜔2 = 𝜔𝑝2 .) Given the family of
configurations (𝜔𝑞)𝑞∈[0,1] , recursively define a set of 𝐵𝑚/8 ∩𝜔(𝑖)-clusters C𝑖 for each 𝑖 ∈ {0, ..., 𝑘}
as follows:

1. Let C0 be the set of all 𝐵𝑚/8 ∩ 𝜔(0)-clusters that contain a vertex in 𝑆𝑟0 .

2. Given C𝑖 for some 𝑖 < 𝑘 , let C𝑖+1 be the set of 𝐵𝑚/8 ∩ 𝜔(𝑖+1)-clusters 𝐶 such that there exists
𝐶′ ∈ C𝑖 with 𝐶′ ⊆ 𝐶 and 𝐶′ ∩ 𝑆𝑟𝑖+1 ≠ ∅.
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Figure 3.4: Schematic illustration of the construction of C𝑖+1 from C𝑖: The black, purple, and
green circles represent the spheres 𝑆𝑟0 , 𝑆𝑟𝑖 , and 𝑆𝑟𝑖+1 respectively. The purple regions in the left
figure represent the clusters making up C𝑖. By construction each of these is a 𝐵𝑟0 ∩ 𝜔(𝑖)-cluster
that connects 𝑆𝑟0 to 𝑆𝑟𝑖 . The green regions in the middle figure represent the 𝐵𝑟0 ∩ 𝜔(𝑖+1) clusters
that contain some cluster in C𝑖. Finally, the green regions remaining in the third figure represent
the subset of these clusters that happen to intersect 𝑆𝑟𝑖+1; these make up C𝑖+1.

See fig. 3.4 for an illustration. This definition ensures that the cardinality |C𝑖 | is a decreasing
function of 𝑖 and that we have the inclusion of events

Piv𝑝7/4,𝑝2 [𝑚/16, 𝑚/8] ⊆
{
C𝑘 ∈ {0, 1}

}
. (3.6.17)

Roughly speaking, our goal is to show that, for each 𝑖, if C𝑖 is not a singleton then the cardinality
|C𝑖+1 | is smaller than |C𝑖 | by a factor of roughly 1/2 with high probability under P.

Ideally, we would like to show that, with high probability on the event {|C𝑖 | > 1}, every cluster in
C𝑖 that intersects 𝑆𝑟𝑖+1 is 𝐵𝑚/8 ∩ 𝜔(𝑖+1)-connected to a distinct cluster in C𝑖. This is what we will
prove, except that we will allow one distinguished cluster to go un-merged. For every non-empty
set of clusters F , permanently fix a choice of element min(F ) ∈ F such that dist(𝑜,min(F )) =
dist(𝑜,⋃F ). For each 0 ≤ 𝑖 ≤ 𝑘 − 1, consider the event

E𝑖 = {C𝑖 = ∅}∪
{
𝐶

𝐵𝑚/8 ∩𝜔 (𝑖+1)←−−−−−−−−→
⋃
(C𝑖\{𝐶}) for every 𝐶 ∈ C𝑖\{min(C𝑖)} with dist(𝑜, 𝐶) ≤ 𝑟𝑖+1

}
.

We will prove the following lemma at the end of the section after explaining how it may be used to
conclude the proof of Lemma 3.6.3 (and hence of Proposition 3.6.1).

Lemma 3.6.9 (Merging clusters). There exists a constant 𝑛11 = 𝑛11(𝑑, 𝐷, 𝜆) ≥ 𝑛4 such that if
𝑛 ≥ 𝑛11 then

P(E𝑖) ≥ 1 − 𝑒−[log 𝑛]𝑐1𝜆/2
, (3.6.18)

for every 0 ≤ 𝑖 ≤ 𝑘 − 1.

115



(We name this constant 𝑛11 to leave room for the constants 𝑛6 through 𝑛10 that will appear in the
proof of this claim.)

Let us now conclude the proof of Lemma 3.6.3 given Lemma 3.6.9. On the event E𝑖 we have that

|C𝑖+1 | ≤
⌊
|C𝑖 | − 1

2

⌋
+ 1.

Since |C0 | ≤
��𝑆𝑟0

�� ≤ 𝑒(log 𝑛)𝐷 and 𝑘 := 2⌊[log 𝑛]𝐷⌋, it follows that |C𝑘 | ∈ {0, 1} on the event⋂𝑘−1
𝑖=0 E𝑖. It follows by a union bound that there exists a constant 𝑛6 = 𝑛6(𝑑, 𝐷, 𝜆) ≥ 𝑛5 such that if

𝑛 ≥ 𝑛6 then

P
(
Piv𝑝7/4,𝑝2 [𝑚/16, 𝑚/8]

)
≤

𝑘−1∑︁
𝑖=0

P𝑝 (E𝑐𝑖 ) ≤ 2(log 𝑛)𝐷𝑒−(log 𝑛)𝑐1𝜆/2 ≤ 𝑒−(log 𝑛)𝑐1𝜆/3
. (3.6.19)

On the other hand, (3.6.16) ensures that if 𝑛 ≥ 𝑛6 then tz(𝑚/2) ≤ 𝑚/17, and it follows from
Lemma 3.6.6 applied to 𝑚/2 that

P𝑝7/4

(
𝑆𝑚/17 ↔ 𝑆𝑚/4

)
≥ 1 − 𝑒−(log 𝑛)𝑐1𝜆/3

if 𝑛 ≥ 𝑛6. It follows in particular that there exists 𝑛7 = 𝑛7(𝑑, 𝐷, 𝜆) ≥ 𝑛6 such that

P𝑝7/4

(
𝑆𝑚/17 ↔ 𝑆𝑚/4

)𝑒 [log 𝑛]𝑐1𝜆/4

≥ 1
2

(3.6.20)

if 𝑛 ≥ 𝑛7; this will be used to form a chain of connected annuli using the Harris-FKG inequality.

We now apply (3.6.19) and (3.6.20) to bound the corridor function. Let 𝛾 be a path of length at
most 𝑒 [log 𝑛]𝑐1𝜆/4 , starting at some vertex 𝑢 and ending at some vertex 𝑣, and observe that we have
the inclusion of events{
𝑢

𝐵𝑛 (𝛾)∩𝜔2←−−−−−−→ 𝑣
}
⊆

{
𝑢

𝜔7/4←−→ 𝑆𝑛 (𝑢)
}
∩

{
𝑣

𝜔7/4←−→ 𝑆𝑛 (𝑣)} ∩
len 𝛾⋂
𝑡=1

({
𝑆𝑚/17(𝛾𝑡)

𝜔7/4←−→ 𝑆𝑚/4(𝛾𝑡)
}
∩ Piv𝑝7/4,𝑝2 [𝑚/16, 𝑚/8] (𝛾𝑡)

)
.

Applying the Harris-FKG inequality and a union bound, we deduce that there exists a constant
𝑛8 = 𝑛8(𝑑, 𝐷, 𝜆) such that if 𝑛 ≥ 𝑛8 then

P𝑝2 (𝑢
𝐵𝑛 (𝛾)←−−→ 𝑣) ≥ P𝑝7/4 (𝑜 ↔ 𝑆𝑛)2 · P𝑝7/4

(
𝑆𝑚/17 ↔ 𝑆𝑚/4

) len(𝛾)

− len(𝛾) · (1 − P
(
Piv𝑝7/4,𝑝2 [𝑚/16, 𝑚/8])

)
≥ 1

2
𝑒−2(log log 𝑛)1/2 − 𝑒(log 𝑛)𝑐1𝜆/4

𝑒−(log 𝑛)𝑐1𝜆/3

≥ 𝑒−3[log log 𝑛]1/2 ,
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where we used the assumption that A(𝑏, 𝑛, 𝑝) holds to bound P𝑝7/4 (𝑜 ↔ 𝑆𝑛) ≥ 𝜅𝑝1 (𝑛,∞) ≥
𝑒−(log log 𝑛)1/2 . The claimed lower bound on the corridor function follows since 𝛾 was an arbitrary
path of length at most 𝑒 [log 𝑛]𝑐1𝜆/4 . □

It remains only to prove Lemma 3.6.9.

Proof of Lemma 3.6.9. We continue to use the notation from the proof of Lemma 3.6.3, and in
particular will use the constants 𝐾1 = 𝐾1(𝑑, 𝐷, 𝜆) and 𝑛4 = 𝑛4(𝑑, 𝐷, 𝜆) defined in that proof.
Consider the event Ω defined by

Ω :=
⋂

𝑢∈𝐵𝑚/8
{𝑆tz(𝑚/2) (𝑢)

𝜔3/2←−→ 𝑆𝑚/8}.

It follows by Lemma 3.6.6 (applied to 𝑚/2) and a union bound that there exists a constant 𝑛5 =

𝑛5(𝑑, 𝐷, 𝜆) ≥ 𝑛4 such that if 𝑛 ≥ 𝑛5 then

P(Ω) ≥ 1 − Gr(𝑚) sup
𝑢∈𝐵𝑚/8

P𝑝3/2 (𝑆tz(𝑚/2) (𝑢) ↔ 𝑆𝑚/8)

≥ 1 − Gr(𝑚) sup
𝑢∈𝐵𝑚/8

P𝑝3/2 (𝑆tz(𝑚/2) (𝑢) ↔ 𝑆𝑚/4(𝑢))

≥ 1 − 𝑒(log𝑚)𝐷𝑒−(log 𝑛)𝑐3𝐾−1 ≥ 1 − 𝑒−(log 𝑛)𝑐3𝐾/2
, (3.6.21)

where we used that 𝐾 ≥ 𝐾1 ≥ 4𝑐−1
3 (𝐷 ∨ 1) in the final inequality.

For each 0 ≤ 𝑖 ≤ 𝑘 − 1, let F𝑖 be the set F𝑖 = {F : P(C𝑖 = F | Ω) > 0}. (Note that F𝑖 is a set of
sets of sets of vertices.) It follows from the definitions that

𝑑

(
𝑢,

⋃
𝐶∈F

𝐶

)
≤ tz(𝑚/2) for every 𝑢 ∈ 𝐵𝑚/8 and F ∈ F𝑖. (3.6.22)

By (3.6.21) and a union bound, it suffices to prove that there exists 𝑛11 = 𝑛11(𝑑, 𝐷, 𝜆) ≥ 𝑛5 such
that

P(E𝑖 | C𝑖 = F ) ≥ 1 − 1
2
𝑒−[log 𝑛]𝑐1𝜆/2 (3.6.23)

for every 0 ≤ 𝑖 ≤ 𝑘 − 1 and every F ∈ F𝑖.

Before doing this, we will need to prove a purely geometric preliminary claim. Let 0 ≤ 𝑖 ≤
𝑘 − 1, let F ∈ F𝑖, and let 𝐶 ∈ F\{min(F )}. We claim that there exists a constant 𝑛8 =

𝑛8(𝑑, 𝐷, 𝜆) ≥ 𝑛5 such that if 𝑛 ≥ 𝑛8 and dist(𝑜, 𝐶) ≤ 𝑟𝑖+1 then there exists a set of vertices
𝑈 ⊆ 𝐵(𝑟𝑖+1 + 𝑚(log𝑚)−𝜆/𝑐1) with |𝑈 | ≥ 1

2 (log𝑚)𝑐1𝜆 such that the following hold:
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(i) 𝑈 is 𝑚(log𝑚)−4𝜆/𝑐1-separated. That is, pairwise distances between distinct points in 𝑈 are
at least 𝑚(log𝑚)−4𝜆/𝑐1 .

(ii) For each 𝑢 ∈ 𝑈, the ball 𝐵tz(𝑚/2)+1(𝑢) intersects both 𝐶 and
⋃(F\{𝐶}).

(As before, we name this constant 𝑛8 to leave room for the constants 𝑛6 and 𝑛7 that will appear in
the proof of this claim.) We let 𝑟 := 𝑚(log𝑚)−2𝜆/𝑐1 and split the proof of this claim into two cases
according to whether dist(𝑜, 𝐶) is smaller or larger than 𝑟.

Case 1: (dist(𝑜, 𝐶) ≤ 𝑟 .) Since 𝐶 ≠ min(F ), we have that dist(𝑜,⋃(F\{𝐶})) ≤ dist(𝑜, 𝐶) ≤ 𝑟
also. Let Γ be the family of paths from 𝐵3𝑟 ∩ 𝐶 to 𝐵3𝑟 ∩

⋃(F\{𝐶}) that is guaranteed to exist by
the fact that 𝐺 has (𝑐1, 𝜆)-polylog-plentiful annular tubes at scale 𝑟. We now observe that for each
𝛾 ∈ Γ, there exists a vertex 𝑢𝛾 on the path 𝛾 satisfying the ball-intersection condition (ii):

• If max𝑡 dist(𝐶, 𝛾𝑡) ≤ tz(𝑚/2) then we may take 𝑢𝛾 to be the final vertex of 𝛾.

• Otherwise, if max𝑡 dist(𝐶, 𝛾𝑡) > tz(𝑚/2), we may take 𝑢𝛾 = 𝛾𝑡𝛾 where 𝑡𝛾 is the maximum
index such that dist(𝐶, 𝛾𝑡) ≤ tz(𝑚/2). To see that this choice of 𝑢𝛾 satisfies (ii), note that
dist(𝛾𝑡𝛾+1, 𝐶) > tz(𝑚/2) and hence by (3.6.22) that dist(𝛾𝑡𝛾+1,

⋃(F\{𝐶})) ≤ tz(𝑚/2).

Now define 𝑈 := {𝑢𝛾 : 𝛾 ∈ Γ}. Since the family Γ is 2𝑟 (log 𝑟)−𝜆/𝑐1-separated (and 𝑟 was defined
to be 𝑟 = 𝑚(log𝑚)−2𝜆/𝑐1), it follows that there exists a constant 𝑛6 = 𝑛6(𝑑, 𝐷, 𝜆) ≥ 𝑛5 such that if
𝑛 ≥ 𝑛6 then𝑈 is 𝑚(log𝑚)−4𝜆/𝑐1-separated and

|𝑈 | = |Γ| ≥ (log 𝑟)𝑐1𝜆 ≥ 1
2
(log𝑚)𝑐1𝜆.

Moreover, since every path in Γ was contained in 𝐵(3𝑟 + 𝑟 [log 𝑟]𝜆/𝑐1), there exists a constant
𝑛7 = 𝑛7(𝑑, 𝐷, 𝜆) ≥ 𝑛6 such that if 𝑛 ≥ 𝑛7 then 3𝑟 + 𝑟 [log 𝑟]𝜆/𝑐1 ≤ 𝑚/16 ≤ 𝑟𝑖+1 + 𝑚(log𝑚)−𝜆/𝑐1

and hence𝑈 ⊆ 𝐵(𝑟𝑖+1 + 𝑚(log𝑚)−𝜆/𝑐1).

Case 2: (dist(𝑜, 𝐶) > 𝑟 .) Let 𝑣 ∈ 𝐶 be such that dist(𝑜, 𝑣) = dist(𝑜, 𝐶), let 𝛾𝑎 be a path in 𝐶
from 𝑣 to 𝑆𝑟 (𝑣), and let 𝛾𝑏 be the portion of a geodesic from 𝑣 to 𝑜 starting at a neighbour 𝑢 of
𝑣 with dist(𝑜, 𝑢) < dist(𝑜, 𝑣) and ending at the first intersection with 𝑆𝑟 (𝑣). These path are both
finite, start in 𝑆1(𝑣) and end in 𝑆𝑟 (𝑣), and are contained in 𝐶 and disjoint from 𝐶 respectively.
Let Γ be the family of paths from 𝛾𝑎 to 𝛾𝑏 that is guaranteed to exist by the fact that 𝐺 has
(𝑐1, 𝜆)-polylog-plentiful annular tubes at scale 𝑟/3. We can construct the desired set𝑈 by picking
a vertex 𝑢𝛾 in 𝛾 satisfying the condition (ii) for each 𝛾 ∈ Γ; the fact that such a vertex exists for each
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𝛾 follows by the same argument used in case 1 above. Moreover, it follows by the same argument
used in the first case that there exists a constant 𝑛8 = 𝑛8(𝑑, 𝐷, 𝜆) ≥ 𝑛7 such that if 𝑛 ≥ 𝑛8 then the
required bounds on the cardinality and separation of the set 𝑈 = {𝑢𝛾 : 𝛾 ∈ Γ} hold, as well as the
containment𝑈 ⊆ 𝐵(𝑟𝑖+1 + 𝑚(log𝑚)−𝜆/𝑐1). This concludes the proof of the geometric claim.

We now use this geometric claim to establish the estimate (3.6.23), which will complete the
proof of the lemma. Let 𝑖 ∈ {0, . . . , 𝑘 − 1} and let F ∈ F𝑖 be arbitrary. Consider also an arbitrary
𝐶 ∈ F\{min(F )} with dist(𝑜, 𝐶) ≤ 𝑟𝑖+1, and let𝑈 be the corresponding set of vertices guaranteed
to exist by the geometric claim above. For each 𝑢 ∈ 𝑈, let 𝛽𝑢 := 𝐵(𝑢; 𝑚2 (log𝑚)−4𝜆/𝑐1) ∩ 𝜔(𝑖+1) .
Consider an arbitrary vertex 𝑢 ∈ 𝑈. By construction of 𝑈, there exists a path 𝛾 that starts in 𝐶,
ends in

⋃(F\{𝐶}), is contained in 𝐵(𝑢; tz(𝑚/2) + 1), and has length at most 2 tz(𝑚/2) + 2. The
estimate eq. (3.6.16) yields the existence of a constant 𝑛9 = 𝑛9(𝑑, 𝐷, 𝜆) ≥ 𝑛8 such that if 𝑛 ≥ 𝑛9

then
[tz(𝑚/2) + 1] + 𝑚

3
(log𝑚)−4𝜆/𝑐1 ≤ 𝑚

2
(log𝑚)−4𝜆/𝑐1 ,

so that the tube 𝐵(𝛾; 𝑚3 (log𝑚)−4𝜆/𝑐1) associated to this path 𝛾 is contained in the ball 𝐵(𝑢; 𝑚2 (log𝑚)−4𝜆/𝑐1).
Thus, if 𝑛 ≥ 𝑛9, the estimate (3.6.15) yields that

P
(
𝐶

𝛽𝑢←→
⋃
(F\{𝐶})

)
≥ 𝑐4𝑒

−2[log log 𝑛]1/2 .

We stress that the 𝐶 and F appearing in this inequality are deterministic, and do not depend on
the configuration 𝛽𝑢. Under P, the conditional law of 𝛽𝑢 given that C𝑖 = F is simply (inho-
mogeneous) bond percolation on 𝐵(𝑢; 𝑚2 (log𝑚)−4𝜆/𝑐1) where every edge has probability at least
𝑐−1𝜀 of being open, and every edge that does not touch

⋃
F has probability 𝑞𝑖+1 of being open.

In particular, recalling that 𝜀 = 𝛿(𝑞𝑖+1, 𝑞𝑖) = (log 𝑛)−(𝐷+1) , it follows that there exists a constant
𝑛10 = 𝑛10(𝑑, 𝐷, 𝜆) ≥ 𝑛9 such that if 𝑛 ≥ 𝑛10 then

P
(
𝐶

𝛽𝑢←→
⋃
(F\{𝐶}) | C𝑖 = F

)
≥ 𝑐2
−1𝜀

2𝑐4𝑒
−2[log log 𝑛]1/2 ≥ (log𝑚)−2𝐷−3.

Notice that under P, the configurations (𝛽𝑢)𝑢∈𝑈 are independent. Moreover, this still holds after
conditioning on the event that C𝑖 = F . So, by independence, there exist constants 𝜆0 = 𝜆0(𝑑, 𝐷) =
8𝑐−1

1 (2𝐷 + 3) and 𝑛11 = 𝑛11(𝑑, 𝐷, 𝜆) ≥ 𝑛10 such that if 𝜆 ≥ 𝜆0 and 𝑛 ≥ 𝑛11 then

P
(
𝐶

𝐵𝑚/8∩𝜔 (𝑖+1)←−−−−−−−→
⋃
(F\{𝐶}) | C𝑖 = F

)
≥ 1 −

∏
𝑢∈𝑈

P
(
𝐶

𝛽𝑢←→
⋃
(F\{𝐶}) | C𝑖 = F

)
≥ 1 − (1 − (log𝑚)−2𝐷−3) 1

2 (log𝑚)𝑐1𝜆

≥ 1 − 𝑒−2(log 𝑛)𝑐1𝜆/2
.
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Finally, since |F | ≤
��𝑆𝑟0

�� ≤ 𝑒(log 𝑛)𝐷 , we have by a union bound that if 𝜆 ≥ 𝜆0 and 𝑛 ≥ 𝑛11 then

P(E𝑖 | C𝑖 = F ) ≥ 1 − 𝑒(log 𝑛)𝐷𝑒−2(log 𝑛)𝑐1𝜆/2 ≥ 1 − 1
2
𝑒−(log 𝑛)𝑐1𝜆/2

.

Since F was arbitrary, this implies the claimed bound (3.6.23), completing the proof. □

Completing the proof of the main theorem: The implications (C0) and (C)
In this section we apply Proposition 3.6.1 to complete the proof of the Proposition 3.3.1 and hence
of Theorem 8.1.1. Given Proposition 3.4.5, what remains is to verify the implications (C0) and (C).

Proof of Proposition 3.3.1. Let 𝐷 := 20, and accordingly let 𝜆0(𝑑, 𝐷) and 𝑐 = 𝑐(𝑑, 𝐷) be the
constants from Proposition 3.6.1 with this value of 𝐷. Let 𝜆 := max{𝜆0, 10/𝑐}, and let 𝐾 (𝑑, 𝐷, 𝜆)
and 𝑀 (𝑑, 𝐷, 𝜆) be the corresponding constants from Proposition 3.6.1 that are there called 𝐾1 and
𝑛0. (We want to avoid reusing the label 𝑛0.) We claim that if we define 𝛿0 using this value of
𝐾 , then the implications (C0) and (C) (for all 𝑖 ≥ 1) hold whenever 𝑝0 ≥ 1/𝑑, 𝛿0 ≤ 1, and 𝑛0

is sufficiently large with respect to 𝑑, which in particular guarantees that 𝑛0 ≥ max{16, 𝑀}. The
implication (C0) is immediate (i.e., is a direct consequence of Proposition 3.6.1 after unpacking the
definitions), so we will just explain how to prove the implication (C).

Fix 𝑖 ≥ 1 and assume that Full-space(𝑖) holds and that Corridor(𝑘) holds for all 1 ≤ 𝑘 ≤ 𝑖.
Our goal is to establish that Corridor(𝑖 + 1) holds provided that 𝑛0 is sufficiently large with
respect to 𝑑. This follows immediately from Proposition 3.6.1 if we can show that for every
𝑛 ∈ L (𝐺, 20) ∩ [𝑛𝑖−1, 𝑛𝑖] there exists some 𝑏 ≤ 1

8𝑛
1/3 such that(

𝐾 log log 𝑛
min{log 𝑛, log Gr(𝑏)}

)1/4
≤ (log log 𝑛𝑖)−1/2 and P𝑝𝑖

(
Piv[4𝑏, 𝑛1/3]

)
≤ (log 𝑛)−1. (3.6.24)

Consider an arbitrary 𝑛 ∈ L (𝐺, 20) ∩ [𝑛𝑖−1, 𝑛𝑖] (assuming one exists; the claim is vacuous if
not). We split into two cases according to whether (log 𝑛)2/3 ∈ L (𝐺, 20). First suppose that
(log 𝑛)2/3 ∉ L (𝐺, 20), so in particular

Gr((log 𝑛)2/3) ≥ 𝑒((log 𝑛)2/9)20
.

By Corollary 3.2.4, provided 𝑛0 is sufficiently large with respect to 𝑑, we know that

P𝑝𝑖
(
Piv[4(log 𝑛)2/3, 𝑛1/3]

)
≤ (log 𝑛)−1.

So in this case both conditions in (3.6.24) are satisfied for 𝑏 = (log 𝑛)2/3 ≤ 1
8𝑛

1/3 provided that 𝑛0

is sufficiently large with respect to 𝑑.
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Now instead suppose that (log 𝑛)2/3 ∈ L (𝐺, 20). Note that we can always find some 𝑘 ∈ {1, . . . , 𝑖}
such that (log 𝑛)2/3 ∈ [𝑛𝑘−2, 𝑛𝑘−1]. (This is why we took 𝑛−1 = (log 𝑛0)1/2 as small as we did in
the statement of the proposition.) So by our hypothesis that Corridor(𝑘) holds for this particular
value of 𝑘 , we have that

𝜅𝑝𝑘

(
𝑒 [log( [log 𝑛]2/3)]10

, [log 𝑛]2/3
)
≥ 𝑒−(log log 𝑛𝑘)1/2 . (3.6.25)

We now claim that 𝑏 := 1
5 min{𝑒(log log 𝑛)9 ,Gr−1(𝑒(log 𝑛)1/10)} satisfies both conditions from eq. (3.6.24)

provided that 𝑛0 is sufficiently large with respect to 𝑑. The inequality 𝑏 ≤ 1
8𝑛

1/2 again holds trivially
when 𝑛0 is large. The definition of 𝑏 ensures that log Gr(𝑏) ≥ 1

5 log Gr(5𝑏) ≥ 1
5 (log log 𝑛)9, so

that the first condition also trivially holds when 𝑛0 is large. To see that the second condition holds,
we apply Lemma 3.2.3 and Proposition 3.2.1 to obtain that there exists a constant 𝐶 such that

P𝑝𝑖 (Piv[4𝑏, 𝑛1/3]) ≤ P𝑝𝑖 (Piv[1, 𝑛1/3/2]) · |𝑆4𝑏 |2 Gr(5𝑏)

min𝑎,𝑏∈𝑆4𝑏 (𝑎
𝐵5𝑏←−→ 𝑏)

≤ 𝐶
(
(log 𝑛)20

𝑛

)1/4
𝑒3(log 𝑛)1/10+(log log 𝑛𝑘)1/2 ≤ (log 𝑛)−1

whenever 𝑛0 is sufficiently large with respect to 𝑑, where we used the estimate (3.6.25) and the fact
that 4𝑏 ≤ 𝑒 [log( [log 𝑛]2/3)]10 and 5𝑏 ≥ (log 𝑛)2/3 (when 𝑛0 is sufficiently large) to bound the term
min𝑎,𝑏∈𝑆4𝑏 (𝑎

𝐵5𝑏←−→ 𝑏). This completes the proof. □

3.7 Closing discussion and open problems
Joint continuity of the supercritical infinite cluster density
Recall that G∗ is the space of all infinite, connected, transitive graphs that are not one-dimenional,
which we endow with the local topology, and recall that for all 𝑝 ∈ (0, 1) and 𝐺 ∈ G∗, the
infinite cluster density is defined to be 𝜃 (𝐺, 𝑝) := P𝐺𝑝 (𝑜 ↔ ∞). Consider a sequence (𝐺𝑛)𝑛≥1

in G∗ converging to some 𝐺 ∈ G∗. The main result of the present paper Theorem 8.1.1 states
that 𝑝𝑐 (𝐺𝑛) → 𝑝𝑐 (𝐺). One could ask the following more refined question: does 𝜃𝐺𝑛 → 𝜃𝐺

pointwise? (One can observe from the mean-field lower bound, say, that a positive answer to this
question would imply our result that 𝑝𝑐 (𝐺𝑛) → 𝑝𝑐 (𝐺).) For 𝑝 < 𝑝𝑐 (𝐺), it follows immediately
from the lower semi-continuity of 𝑝𝑐 that 𝜃 (𝐺𝑛, 𝑝) → 𝜃 (𝐺, 𝑝) = 0, so the only non-trivial cases
are when 𝑝 = 𝑝𝑐 (𝐺) and 𝑝 > 𝑝𝑐 (𝐺). The case 𝑝 = 𝑝𝑐 (𝐺) appears to be hard. Indeed, if one
could prove this result in the case of toroidal slabs (Z2 × Z/𝑛Z)𝑛≥1 converging to the cubic grid
Z3, then it would follow from the main result of [DST16] that 𝜃 (Z3, 𝑝𝑐 (Z3)) = 0, a notorious open
question. We have nothing interesting to say about this case. However, in our other work [EH23+a]
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we prove the following theorem, which together with Theorem 8.1.1 completely resolves the case
when 𝑝 > 𝑝𝑐 (𝐺).

Theorem 3.7.1 ([EH23+a]). Let (𝐺𝑛)𝑛≥1 be a sequence in G∗ that converges in the local topology
to some 𝐺 ∈ G∗. Then 𝜃 (𝐺𝑛, 𝑝) → 𝜃 (𝐺, 𝑝) as 𝑛→∞ for every 𝑝 > lim sup𝑛→∞ 𝑝𝑐 (𝐺𝑛).

Note that the main theorem of [EH23+a] is much more general than this and also establishes a form
of locality for the density of the giant cluster on finite transitive graphs that may have divergent
degree. Together with Theorem 8.1.1 this theorem yields the following elementary corollary.

Corollary 3.7.2. 𝜃 (𝐺, 𝑝) is continuous on the open set {(𝐺, 𝑝) : 𝐺 ∈ G∗, 𝑝 > 𝑝𝑐 (𝐺)}. Moreover,
if (𝐺𝑛)𝑛≥1 is a sequence inG∗ that converges in the local topology to some𝐺 ∈ G∗ then 𝜃 (𝑝, 𝐺𝑛) →
𝜃 (𝑝, 𝐺) as 𝑛→∞ for each 𝑝 ∈ [0, 1]\{𝑝𝑐 (𝐺)}.

Let us roughly indicate how the tools built in Section 3.4 could be used to give an alternative proof
of Theorem 3.7.1. This alternative proof is less general and (arguably) more involved and than the
one given in [EH23+a], but the result is quantitatively stronger: it can be used to prove that 𝜃 (𝐺, 𝑝)
is not just continuous but even locally Hölder continuous on the supercritical set (with the power
in the definition of Hölder continuity possibly degenerating near the boundary of the set).

Let G∗
𝑑

denote the set of infinite transitive graphs with vertex degree exactly 𝑑 that are not one-
dimensional. As explained in detail in [EH23+a], it suffices to prove a tail estimate on the size of
finite clusters in supercritical percolation that is uniform over G∗

𝑑
for each 𝑑, i.e. it suffices to prove

that
lim
𝑚→∞

sup
𝐺∈G∗

𝑑

sup
𝑝≥𝑝𝑐 (𝐺)+𝜀

P𝐺𝑝 (𝑚 ≤ |𝐾𝑜 | < ∞) = 0 for all 𝜀 > 0 and 𝑑 ≥ 1, (3.7.1)

where we recall that 𝐾𝑜 denotes the cluster of the root vertex 𝑜. We will focus on proving an
estimate of this form for the set of unimodular graphsU∗

𝑑
instead of G∗

𝑑
; in the nonunimodular case

much stronger results (with optimal dependence on 𝑝 − 𝑝𝑐 and 𝑚) can be proven by invoking the
results of [Hut20e; Hut22] as explained in detail in [EH23+a]. Our proof will yield quantitatively
that for every 𝜀 > 0 and 𝑑 ≥ 1 there exist constants 𝐶 and 𝑐 such that

sup
𝐺∈U∗

𝑑

sup
𝑝≥𝑝𝑐 (𝐺)+𝜀

P𝐺𝑝 (𝑚 ≤ |𝐾𝑜 | < ∞) ≤ 𝐶𝑚−𝑐;

running the proof of continuity with this quantitative estimate yields the aforementioned local
Hölder continuity of 𝜃 (𝐺, 𝑝). This bound is quantitatively much better than the bound coming
from the proof in [EH23+a]. On the other hand, it is also much worse than the conjectured
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optimal bounds, which are stretched exponential in 𝑚 (see Section 5.3 of [HH21c]). Having any
superpolynomial tail bound would imply that 𝜃 (𝐺, 𝑝) is a smooth function of 𝑝 ∈ (𝑝𝑐 (𝐺), 1] for
each fixed 𝐺; for Z𝑑 and for nonamenable graphs it is known that the density is not just smooth but
real analytic on this set [HH21c; GP23].

Let 𝜀 > 0, 𝑑 ≥ 1, 𝐺 ∈ U∗
𝑑
, 𝑝 ≥ 𝑝𝑐 (𝐺) + 𝜀, 𝑚 ≥ 1, and 𝜂 > 0 be arbitrary, and suppose

that P𝐺𝑝 (𝑚 ≤ |𝐾𝑜 | < ∞) ≥ 𝜂. It suffices to prove that 𝑚 is necessarily bounded above by
some constant 𝑀 (𝜀, 𝑑, 𝜂) < ∞. Let P denote the canonical monotone coupling (𝜔𝑞)𝑞∈[0,1] of the
percolation measures (P𝐺𝑞 )𝑞∈[0,1] . By the mean-field lower bound and transitivity, one can find
vertices 𝑢, 𝑣 ∈ 𝑉 (𝐺) such that

P
(��𝐾𝑢 (𝜔𝑝−𝜀/2)�� ≥ 𝑚 and

��𝐾𝑣 (𝜔𝑝)�� ≥ 𝑚 but 𝑢 ↮ 𝑣

)
≥ 𝜂𝜀

2
,

where 𝐾𝑢 (𝜔𝑝−𝜀/2) denotes the cluster of 𝑢 in 𝜔𝑝−𝜀/2. In particular, writing G1/𝑚 for the law of a
ghost-field G of intensity 1/𝑚 on the whole vertex set 𝑉 (𝐺),

G 1
𝑚
⊗ P(𝑢

𝜔𝑝−𝜀/2←−−−→ G
𝜔𝑝←→ 𝑣 but 𝑢

𝜔𝑝←→ 𝑣) ≥
(
1 − 1

𝑒

)2
𝜂𝜀

2
≥ 𝜂𝜀

8
. (3.7.2)

Assume for now that 𝐺 is amenable so that there is at most one infinite cluster P𝐺𝑞 -almost surely for
every 𝑞 ∈ [𝑝 − 𝜀/2, 𝑝]. Then by Lemma 3.4.4 with (𝑋, 𝐴,𝑌 ) := ({𝑢}, 𝑉 (𝐺), {𝑣}), one can deduce
that for some constants 𝑐3(𝜀, 𝑑) > 0 and 𝐶 (𝜀, 𝑑) < ∞,

G 1
𝑚
⊗ P(𝑢

𝜔𝑝−𝜀/2←−−−→ G
𝜔𝑝←→ 𝑣 but 𝑢

𝜔𝑝←→ 𝑣) ≤ 𝐶𝑚−𝑐3 . (3.7.3)

By combining (3.7.2) and (3.7.3), we deduce that 𝑚 ≤ 𝑀 (𝜀, 𝑑, 𝜂) := (8𝐶/(𝜂𝜀))1/𝑐3 , as required.

Finally, to handle the case when𝐺 is nonamenable (but still unimodular), one can still run essentially
the same argument as above but with some technical modifications to handle the possible existence
of multiple infinite clusters. The key difference is that instead of tracking connections 𝑢 ↔ 𝑣 as
usual, we instead track wired connections 𝑢

wired←−−→ 𝑣 where

{𝑢 wired←−−→ 𝑣} := {𝑢 ↔ 𝑣} ∪ {𝑢 ↔∞ and 𝑣 ↔∞}.

One can verify that the proof of Lemma 3.4.4 works just as well with this alternative notion of
connnectivity, without requiring the hypothesis about the uniqueness of the infinite cluster. The rest
of the argument explained above can then be adapted to work with this wired notion of connectivity
also.
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As explained in [EH23+a], the estimate (6.1.2) has the following nice interpretation. Consider the
space (0, 1) × G∗ → (0, 1) with the product topology, and consider the function 𝜃 : (0, 1) × G∗ →
(0, 1) mapping (𝑝, 𝐺) ↦→ 𝜃𝐺 (𝑝). It is natural to ask whether 𝜃 is continuous as a function
of two variables. One can show that a priori, 𝜃 is continuous if and only if the conclusion of
Theorem 8.1.1 holds (locality of 𝑝𝑐), the estimate (6.1.2) holds (i.e., there is a uniform tail bound
on supercritical finite clusters), and 𝜃 (𝐺, 𝑝𝑐 (𝐺)) = 0 for every 𝐺 ∈ G∗ (continuity of the phase
transition), the last statement being one of the most important open conjectures in the general study
of percolation in G∗. (In this decomposition, (6.1.2) handles the interior of the supercritical region
S := {(𝑝, 𝐺) : 𝑝 > 𝑝𝑐 (𝐺)}, Theorem 8.1.1 implies that this region is open, and the continuity
conjecture handles the boundary values.)

Finite graphs. As mentioned above, in [EH23+a] we prove versions of Theorem 3.7.1 and
eq. (6.1.2) that also apply to families of bounded-degree finite transitive graphs. The above
sketches work just as well in this context too; we have stated things in terms of infinite graphs
purely for simplicity. Moreover, the above sketch can be used to give an alternative proof that for
supercritical percolation on bounded-degree finite transitive graphs, the giant cluster is unique and
has concentrated density, recovering the results of our two papers [EH21a; EH23+a] in this case.
Note however that all of the tools from Section 3.4 break down rather badly when working with
families of finite graphs that have large vertex degrees (e.g. vertex degrees that grow at least as
a power of the total number of vertices), partly because for such graphs the emergence of a giant
cluster can occur around values of 𝑝 close to 0. To handle this more general setting of arbitrary
finite transitive graphs, we know of no alternative proofs of the uniqueness or concentration of the
supercritical giant cluster to those we give in [EH21a; EH23+a].

The 𝑝𝑐 gap and its witnesses
Since G∗

𝑑
is compact for each 𝑑 ≥ 1, it is a consequence of Theorem 8.1.1 that 𝑝𝑐 attains its

maximum on G∗
𝑑

for each 𝑑 ≥ 1. In [PS23b], Panagiotis and Severo improved upon the results of
[DGRSY20; HT21a] to establish that there exists a universal 𝜀 > 0 (independent of the degree)
such that every Cayley graph with 𝑝𝑐 < 1 has 𝑝𝑐 ≤ 1 − 𝜀; Lyons, Mann, Tessera, and Tointon
[LMTT23] give the explicit bound 𝜀 ≥ exp(− exp(17 exp(100 ·8100))). Presumably a similar result
holds for transitive graphs that are not Cayley. The following natural conjecture would strengthen
this result, and would also imply by Theorem 8.1.1 that 𝑝𝑐 attains its global maximum on G∗.

Conjecture 3.7.3. There exists a universal constant 𝐶 such that if 𝐺 is an infinite, connected,
transitive, simple graph of vertex degree 𝑑 that is not one-dimensional, then 𝑝𝑐 (𝐺) ≤ 𝐶/𝑑.
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Figure 3.5: The transitive graph formed by laying out copies of 𝐾4𝑛 in an infinite square grid as
above has 𝑝𝑐 ≥ (4 log 2 − 𝑜(1))/deg as 𝑛 → ∞ as can be seen by coupling with bond percolation
on Z2 and using a Poisson approximation. Since 4 log 2 ≈ 1.2 > 1, this shows that the asymptotic
estimate 𝑝𝑐 ∼ 1/deg can fail for high-degree vertex-transitive graphs even when these graphs
are not one-dimensional in any sense. An exact asymptotic estimate 𝑝𝑐 ∼ 𝐶/deg can be proven
with a little further work. (Indeed, the constant 𝐶 ≈ 3.095 is the unique solution to the equation
𝐶 (1 + 𝐶−1𝑊 [−𝑒−𝐶𝐶])2 = 4 log 2 where𝑊 is the Lambert𝑊 function.)

For many natural families of high-degree graphs we have the stronger statement that 𝑝𝑐 ∼ 1/deg
as the degree diverges. For example, this holds for Z𝑑 as 𝑑 → ∞ by a theorem of Kesten [Kes90]
(see also [ABS04a]). Moreover, this is not just a high-dimensional phenomenon: Penrose [Pen93]
proved that a similar-estimate holds for the “spread-out” 𝑑-dimensional lattice, in which 𝑥, 𝑦 ∈ Z𝑑

are connected by an edge whenever ∥𝑥 − 𝑦∥ ≤ 𝑅, when 𝑑 is fixed and 𝑅 → ∞. On the other
hand, the example illustrated in fig. 3.5 shows that high-degree transitive graphs do not always have
𝑝𝑐 ∼ 1/deg even when they are not one-dimensional in any sense.

Once one knows that 𝑝𝑐 attains a maximum (either globally on G∗ or on G∗
𝑑
), it becomes interesting

to understand which graphs attain this maximum. Martineau and Severo [MS19] proved that 𝑝𝑐 is
strictly increasing under quotients, so that any maximal graph must have no non-trivial quotients
in G∗. It seems reasonable to believe that the maximal graph would be a lattice of low degree
and in low dimension. Consulting tables of numerical values of 𝑝𝑐 for these lattices (as can be
found on https://en.wikipedia.org/wiki/Percolation_threshold) leads to the highly
speculative conjecture that 𝑝𝑐 is maximized by the so-called super-kagome lattice (a.k.a. 3-12
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Figure 3.6: The 3-12 (a.k.a. super-kagome) lattice is the current best candidate for the transitive
graph with the highest non-trivial value of 𝑝𝑐 for bond percolation. Its critical value 𝑝𝑐 ≈ 0.7404 . . .
has been estimated to great precision numerically in [SJ20]. The transitive graph with the next
highest value of 𝑝𝑐 to have been investigated numerically is the truncated trihexagonal lattice,
which has 𝑝𝑐 ≈ 0.6937.

lattice); see fig. 3.6 for an illustration.

Problem 3.7.4. Investigate the transitive graphs in G∗
𝑑

that maximize 𝑝𝑐 for each degree 𝑑, as well
as the global maximum in G∗ if this maximum exists. Are these maxima uniquely attained? Does
𝑝𝑐 : G∗ → [0, 1] attain its maximum uniquely at the 3-12 lattice (a.k.a. super-kagome lattice),
which has 𝑝𝑐 ≈ 0.7404207? When restricted to edge-transitive graphs, does 𝑝𝑐 attain its unique
maximum at the hexagonal lattice, which has 𝑝𝑐 = 0.65270 . . . = 1 − 2 sin(𝜋/18)?

One may wish to restrict attention to simple graphs. Similar questions have been investigated for
self-avoiding walk by Grimmett and Li [GL20].
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127C h a p t e r 4

UNIFORM FINITE PRESENTATION FOR GROUPS OF POLYNOMIAL
GROWTH

Joint with Tom Hutchcroft

Abstract
We prove a quantitative refinement of the statement that groups of polynomial growth are finitely
presented. Let 𝐺 be a group with finite generating set 𝑆 and let Gr(𝑟) be the volume of the ball of
radius 𝑟 in the associated Cayley graph. For each 𝑘 ≥ 0, let 𝑅𝑘 be the set of words of length at most
2𝑘 in the free group 𝐹𝑆 that are equal to the identity in 𝐺, and let ⟨⟨𝑅𝑘⟩⟩ be the normal subgroup
of 𝐹𝑆 generated by 𝑅𝑘 , so that the quotient map 𝐹𝑆/⟨⟨𝑅𝑘⟩⟩ → 𝐺 induces a covering map of the
associated Cayley graphs that has injectivity radius at least 2𝑘−1 − 1. Given a non-negative integer
𝑘 , we say that (𝐺, 𝑆) has a new relation on scale k if ⟨⟨𝑅𝑘+1⟩⟩ ≠ ⟨⟨𝑅𝑘⟩⟩. We prove that for each
𝐾 < ∞ there exist constants 𝑛0 and 𝐶 depending only on 𝐾 and |𝑆 | such that if Gr(3𝑛) ≤ 𝐾 Gr(𝑛)
for some 𝑛 ≥ 𝑛0, then there exist at most 𝐶 scales 𝑘 ≥ log2(𝑛) on which 𝐺 has a new relation.
We apply this result in another paper as part of our proof of Schramm’s locality conjecture in
percolation theory.

4.1 Introduction
It is a seminal theorem of Gromov [Gro81c] (see also [Kle10; Oza18]) that a finitely generated group
has polynomial volume growth if and only if it is virtually nilpotent. This theorem and its extension
to transitive graphs due to Trofimov [Tro85] are of foundational importance in the study of geometry
and probability on transitive graphs, implying in particular that every transitive graph of polynomial
growth has a well-defined volume growth dimension and that this dimension is an integer. In
probability, these theorems are often used together with the isoperimetric inequality of Coulhon
and Saloff-Coste [CS93] to prove results for general transitive graphs via a “structure vs. expansion”
dichotomy: that is, proceeding by a case analysis according to whether the graph is virtually
nilpotent or satisfies a 𝑑-dimensional isoperimetric inequality for every 𝑑 < ∞. Important results
in probability employing the structure theory of transitive graphs in this way include Varopoulos’s
theorem [Var86] that an infinite transitive graph is recurrent for simple random walks if and only
if it has linear or quadratic volume growth, and Duminil-Copin, Goswami, Severo, Raoufi, and



Yadin’s proof that transitive graphs admit a percolation phase transition if and only if they have
superlinear growth [Dum+20c].

Over the last twenty years, an extensive literature in approximate group theory has been developed
establishing finitary versions of Gromov’s theorem and Trofimov’s theorem, highlights of which
include [BGT12b; ST10a; Hru12; TT21b; BGT11]. See [Bre14] for a detailed overview, [Toi20a]
for a textbook introduction, and [Toi20b] for a concise survey. For groups, this theory culminated
in the celebrated work of Breuillard, Green, and Tao [BGT12b], a special case of whose results can
be stated1 as follows. Given a group 𝐺 and a finite generating set 𝑆, we write Gr(𝑟) = Gr𝐺,𝑆 (𝑟) for
the cardinality of the ball of radius 𝑟 in the Cayley graph Cay(𝐺, 𝑆).

Theorem 4.1.1 (Breuillard, Green, and Tao 2012). For each 𝐾 ≥ 1 there exist constants 𝑟0 = 𝑟0(𝐾)
and 𝐶 = 𝐶 (𝐾) such that the following holds. Let 𝐺 be a group with finite generating set 𝑆, and
suppose that there exists 𝑟 ≥ 𝑟0 such that Gr(3𝑟) ≤ 𝐾 Gr(𝑟). Then Gr(𝑚𝑟) ≤ 𝑚𝐶 Gr(𝑟) for every
𝑚 ≥ 3 and there exists a finite normal subgroup 𝑄 ⊳ 𝐺 such that:

1. Every fibre of the projection 𝜋 : 𝐺 → 𝐺/𝑄 has diameter at most 𝐶𝑟.

2. 𝐺/𝑄 has a nilpotent normal subgroup 𝑁 of rank, step and index at most 𝐶.

3. The projection 𝑥 ↦→ 𝜋(𝑥) is a (1, 𝐶𝑟)-quasi-isometry from Cay(𝐺, 𝑆) to Cay(𝐺/𝑄, 𝜋(𝑆)).

Here, we recall that a function 𝜙 : 𝑉1 → 𝑉2 between the vertex sets of two graphs 𝐺1 = (𝑉1, 𝐸1)
and 𝐺2 = (𝑉2, 𝐸2) is said to be an (𝛼, 𝛽)-quasi-isometry (a.k.a. rough isometry) if

𝛼−1𝑑 (𝑥, 𝑦) − 𝛽 ≤ 𝑑 (𝜙(𝑥), 𝜙(𝑦)) ≤ 𝛼𝑑 (𝑥, 𝑦) + 𝛽

for every 𝑥, 𝑦 ∈ 𝑉1, and every vertex 𝑧 ∈ 𝑉2 is within distance at most 𝛽 of 𝜙(𝑉1). (The second
property holds automatically if 𝜙 is surjective.)

Informally, the Breuillard-Green-Tao theorem states that polynomial growth at one sufficiently
large scale forces the group to have polynomial growth at every subsequent scale, and moreover
to be metrically “well-modelled” by a nilpotent group at all larger scales. Similar theorems for

1We state their theorem in a ‘metric’ form that is convenient for our applications, and which is adapted from Tessera
and Tointon’s structure theorem for vertex-transitive graphs of polynomial growth [TT21b, Theorem 2.3]. Indeed, the
statement given below is equivalent to the special case of their theorem in which the graph Γ is the Cayley graph of 𝐺,
together with the growth bound of [BGT12b, Corollary 11.9].

128



vertex-transitive graphs that are not necessarily Cayley graphs have recently been established in the
work of Tessera and Tointon [TT21b; TT18].

These results have recently found many probabilistic applications, particularly for problems con-
cerning families of transitive graphs (such as sequences of finite transitive graphs converging to
an infinite graph); such problems often require estimates that are “uniform in the graph”, so that
structure theoretic results invoked in their solutions must typically be finitary. Results proven using
finitary structure theory include a finite-graph version of Varopoulos’s theorem [TT20b], univer-
sality theorems for cover time fluctuations [BHT22], locality of the critical probability for graphs
of polynomial growth [CMT23b], non-triviality of the supercritical phase for percolation on finite
transitive graphs [HT21b], and “gap at 1” theorems for the critical probability on infinite vertex
transitive graphs [HT21b; Lyo+23b; PS23b]. Several of these works exploit finitary versions of the
“structure vs. expansion” dichotomy provided by the finitary structure theory of [BGT12b; TT21b],
with key technical difficulties arising from the fact that the same graph may exhibit different sides
of this dichotomy at different scales.

Uniform finite presentation
Since virtually nilpotent groups are finitely presented, it is a consequence of Gromov’s theorem that
every group of polynomial volume growth is finitely presented. The purpose of this paper is to prove
a uniform version of this fact, stating roughly that every group of polynomial growth has a bounded
number of scales witnessing a new relation after the first scale that polynomial growth is witnessed.
This result is used in our work [EH23c] as part of our proof of Schramm’s locality conjecture for
Bernoulli bond percolation [BNP11a], where it plays an important part in our “uniformization” of
the methods of Contreras, Martineau, and Tassion [CMT21]. A comparison of our results with the
previous literature is given at the end of this section.

Let us now state our result formally. Let𝐺 be a group with finite generating set 𝑆, so that𝐺 � 𝐹𝑆/𝑅
for some normal subgroup 𝑅 of 𝐹𝑆. For each 𝑛 ≥ 0, let 𝑅𝑛 be the set of words of length at most 2𝑛

in the free group 𝐹𝑆 that are equal to the identity in 𝐺, and let ⟨⟨𝑅𝑛⟩⟩ be the normal subgroup of 𝐹𝑆
generated by 𝑅𝑛, so that the quotient map 𝐹𝑆/⟨⟨𝑅𝑛⟩⟩ → 𝐺 induces a covering map of the associated
Cayley graphs that has injectivity radius at least 2𝑛−1−1 (see Lemma 4.5.6). We say that (𝐺, 𝑆) has
a new relation on scale n if ⟨⟨𝑅𝑛+1⟩⟩ ≠ ⟨⟨𝑅𝑛⟩⟩. A finitely generated group 𝐺 is finitely presented
if and only if it has a new relation on at most finitely many scales, so that the following theorem can
indeed be thought of as stating that groups of polynomial growth are “uniformly finitely presented".
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Theorem 4.1.2. For each 𝐾, 𝑘 < ∞ there exist constants 𝑟0 = 𝑟0(𝐾) and 𝐶 = 𝐶 (𝐾, 𝑘) such that if
𝐺 is a group and 𝑆 is a finite generating set for 𝐺 with |𝑆 | ≤ 𝑘 whose growth function Gr satisfies
Gr(3𝑟) ≤ 𝐾 Gr(𝑟) for some integer 𝑟 ≥ 𝑟0 then

#
{
𝑛 ∈ N : 𝑛 ≥ log2(𝑟) and (𝐺, 𝑆) has a new relation on scale 𝑛

}
≤ 𝐶.

Remark 4.1.1. Considering the abelian group
∏𝑘
𝑖=1(Z/𝑛𝑖Z) with its standard generating set, where

𝑛1, . . . , 𝑛𝑘 are arbitrary, we see that it is not possible to control on which scales we find a new
relation; we only claim that the total number of scales on which we find a new relation is bounded.

We will prove the following theorem about the number of times we find an “unexpected element”
during a breadth-first exploration of a (not necessarily normal) subgroup of a group of polynomial
growth; we will see in Section 4.5 that this theorem easily implies Theorem 8.1.1.

Theorem 4.1.3 (Breadth-first exploration of subgroups). For each 𝐾 and 𝑘 there exist constants
𝑟0 = 𝑟0(𝐾) and 𝐶 = 𝐶 (𝐾, 𝑘) such that the following holds. Let 𝐺 be a group with finite generating
set 𝑆 satisfying |𝑆 | ≤ 𝑘 , let 𝐻 be a subgroup of 𝐺, and for each 𝑛 ≥ 1 let 𝐻𝑛 be the subgroup
of 𝐻 generated by elements that have word length at most 2𝑛 in (𝐺, 𝑆). If 𝑟 ≥ 𝑟0 is such that
Gr(3𝑟) ≤ 𝐾 Gr(𝑟) then

#{𝑛 ≥ log2 𝑟 : 𝐻𝑛+1 ≠ 𝐻𝑛} ≤ 𝐶.

Remark 4.1.2. We believe that it should be possible to take the constants in Theorems 4.1.3 and 8.1.1
to be independent of the size of the generating set. We do not pursue this here.

Other previous results. A more classical way to quantify the sense in which a presentation is finite
is through Dehn functions, filling length functions, and so-called isoperimetric functions (which do
not refer to the same kind of isoperimetry mentioned in our above discussion of the structure vs.
expansion dichotomy); see [Bri02] for an overview and [GHR03] for results on nilpotent groups.
As far as we can tell, however, the literature on these notions focusses on asymptotic properties
of a fixed group and is not suitable for the kind of uniform-in-the-group results we wish to prove.
Besides this, the notion of uniform finite presentation we consider is also rather different from these
notions in terms of Dehn functions etc.

There is a striking resemblance between our theorem and the following theorem of Tao [Tao17b]
(see also [TT17, Appendix A]), which also relies on the structure theory of Breuillard, Green, and
Tao.
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Theorem 4.1.4 ([Tao17b], Theorem 1.9). For each non-negative integer 𝑑 there exist constants 𝑚0

and 𝐶 depending only on 𝑑 such that if 𝐺 is a group, 𝑆 is a finite, symmetric generating set for 𝐺
containing the identity and satisfying |𝑆𝑛𝑚 | ≤ 𝑚𝑑 |𝑆𝑛 | for some integers 𝑛 ≥ 1 and 𝑚 ≥ 𝑚0 then
there exists a continuous, piecewise-linear, non-decreasing function 𝑓 : [0,∞) → [0,∞) with
𝑓 (0) = 0 that has at most𝐶 pieces, each of which has slope equal to an integer bounded by𝐶, such
that ����log

|𝑆𝑘𝑛𝑚 |
|𝑆𝑛𝑚 | − 𝑓 (log 𝑘)

���� ≤ 𝐶
for every integer 𝑘 ≥ 1.

Informally, this theorem states that, once we witness polynomial growth on a sufficiently large
scale, the log-log plot of the growth function is well-approximated by a continuous, piecewise-
linear function with bounded, integer valued slopes and a bounded number of “kinks” connecting
the different pieces.

Naively, one might hope that our bounded number of scales on which a new relation occurs are in
correspondence with Tao’s bounded number of scales on which the growth function has a “kink”
in its log-log plot. Unfortunately this is not the case, at least when one allows generating sets of
unbounded size: one can have a new relation without having a kink, and can have a kink without
having a new relation. Indeed, as explained in [Tao17b, Example 1.11], taking

𝐺 =
©­­«
1 Z Z

0 1 Z

0 0 1

ª®®¬ and 𝑆 =
©­­«
1 [−𝑁, 𝑁] [−𝑁3, 𝑁3]
0 1 [−𝑁, 𝑁]
0 0 1

ª®®¬
for a large integer 𝑁 yields

log
|𝑆𝑛 |
|𝑆 | =


3 log 𝑛 ±𝑂 (1) 1 ≤ 𝑛 ≤ 𝑁

4 log 𝑛 − log 𝑁 ±𝑂 (1) 𝑛 > 𝑁,

so that this example’s growth function has a kink at scale log2 𝑁 . On the other hand the pair (𝐺, 𝑆)
does not have a new relation at any at 𝑘 ≥ 3, and in particular does not have a new relation on the
scale where it has a kink when 𝑁 is large. Indeed, the relations of (𝐺, 𝑆) are generated by the usual
relations for the Heisenberg group [(

1 1 0
0 1 0
0 0 1

)
,

(
1 0 0
0 1 1
0 0 1

)]
=

(
1 0 1
0 1 0
0 0 1

)
,(

1 1 0
0 1 0
0 0 1

) (
1 0 1
0 1 0
0 0 1

)
=

(
1 0 1
0 1 0
0 0 1

) (
1 1 0
0 1 0
0 0 1

)
, and

(
1 0 0
0 1 1
0 0 1

) (
1 0 1
0 1 0
0 0 1

)
=

(
1 0 1
0 1 0
0 0 1

) (
1 0 0
0 1 1
0 0 1

)
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together with the following three sets of relations relating the extra generators in 𝑆 to the standard
generators: {(

1 𝑎±1 𝑐
0 1 𝑏
0 0 1

)
=

(
1 𝑎 𝑐
0 1 𝑏
0 0 1

) (
1 ±1 0
0 1 0
0 0 1

)
: 𝑎, 𝑏 ∈ [−𝑁, 𝑁], 𝑐 ∈ [−𝑁3, 𝑁3]

}
,{(

1 𝑎 𝑐
0 1 𝑏±1
0 0 1

)
=

(
1 0 0
0 1 ±1
0 0 1

) (
1 𝑎 𝑐
0 1 𝑏
0 0 1

)
: 𝑎, 𝑏 ∈ [−𝑁, 𝑁], 𝑐 ∈ [−𝑁3, 𝑁3]

}
,{(

1 𝑎 𝑐±1
0 1 𝑏
0 0 1

)
=

(
1 𝑎 𝑐
0 1 𝑏
0 0 1

) (
1 0 ±1
0 1 0
0 0 1

)
: 𝑎, 𝑏 ∈ [−𝑁, 𝑁], 𝑐 ∈ [−𝑁3, 𝑁3]

}
.

These relations all have word length at most five in (𝐺, 𝑆), so that the example has the desired
properties. Conversely, taking the direct product 𝐺 ×Z/𝑁 with generating set 𝑆 × {−1, 0, 1} yields
an example where there is a new relation at scale log2 𝑁 but where the growth function does not
have any kinks.

About the proof. It is natural to describe the proof of Theorems 4.1.3 and 8.1.1 “backwards”,
as a sequence of reductions, although we have written it “forwards” as a sequence of extensions
and generalizations. In this backwards description, the “first” step (which is the last part of the
paper) is to reduce from groups of polynomial growth to nilpotent groups of bounded step using
the Breuillard-Green-Tao theorem. Next, this statement about nilpotent groups is in turn reduced
to an analogous statement about breadth-first exploration of discrete subgroups in a Carnot group,
a simply connected nilpotent Lie group carrying the additional structure of a stratification and
homogeneous left-invariant metric. Nilpotent groups are related to Carnot groups for example by
Pansu’s theorem [Pan83; BL13], which states roughly that the large-scale geometry of a finitely
generated nilpotent group is well-modelled by an appropriate Carnot group equipped with a left-
invariant homogeneous metric. Finally, this statement about Carnot groups is reduced to a statement
about vector spaces using the close connection between the discrete subgroups of a simply connected
nilpotent Lie group and the additive bracket-closed subgroups of its associated Lie algebra. This
step of the reduction is the most involved part of the paper, with the connection between additive and
multiplicative lattices being developed at length in Section 4.4. This ends the chain of reductions,
and leaves us with a problem we must actually solve directly: Bounding the number of times we
find an “unexpected element” of a discrete subgroup of R𝑑 as we explore the subgroup with an
increasing family of convex, symmetric sets. This is done in Section 4.3 as an application of
Minkowski’s second theorem, a classical result in the geometry of numbers.

Let us stress again that we have described the argument here in the opposite order to the way we
carry it out, so that the result about subgroups of R𝑑 is the first thing we prove.
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Disclaimer: Neither author is an expert in approximate groups, Lie theory, or the geometry of
numbers. As such, it is likely that we have included a larger amount of detail in the proofs than
would be considered necessary by experts, or have re-derived known results from scratch. While
we have attempted to provide appropriate attribution to the intermediate results of the paper as
much as possible, we would be happy to receive comments and corrections from experts.

Remark 4.1.3. Since the present paper first appeared, two relevant papers by Tessera and Tointon
have since appeared. The first paper [TT24] establishes a stronger version of Theorem 8.1.1 as a
corollary, with optimal bounds on the number of scales at which new relations appear that do not
depend on the degree. The proof is very different than that given here. The second paper [TT23]
allows us to replace the “small tripling” hypothesis Gr(3𝑟) ≤ 𝐾 Gr(𝑟) in Theorems 4.1.3 and 8.1.1
with the more natural hypothesis of “small doubling” Gr(2𝑟) ≤ 𝐾 Gr(𝑟) because, as the title of the
paper says: Small doubling implies small tripling on large scales.

4.2 Background on nilpotent groups and Lie groups
In this section we review the relevant background material and establish some notational conven-
tions. We have included a rather thorough account of the basic theory with the hope that our paper
can be easily understood by probabilists.

Given a group 𝐺, the commutator of two elements 𝑥, 𝑦 ∈ 𝐺 is defined by [𝑥, 𝑦] = 𝑥𝑦𝑥−1𝑦−1. The
lower central series of 𝐺 is defined recursively by 𝐺1 = 𝐺 and 𝐺𝑖+1 = [𝐺𝑖, 𝐺] for each 𝑖 ≥ 1,
where we write [𝐴, 𝐵] := {[𝑎, 𝑏] : 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵} for subsets 𝐴 and 𝐵 of 𝐺. The group 𝐺 is said
to be nilpotent if 𝐺𝑖+1 = {id} for all sufficiently large 𝑖, with the minimal such 𝑖 denoted by 𝑠 and
known as the step of 𝐺. A group is said to be virtually nilpotent if it has a nilpotent subgroup
of finite index. Given 𝑠 ≥ 1 and a set 𝑆, the free step 𝑠 nilpotent group 𝑁𝑠,𝑆 is defined to be
the quotient of the free group 𝐹𝑆 by the step-𝑠 nilpotency relations, which state that all iterated
commutators of length at least 𝑠 + 1 are equal to the identity. The free step 𝑠 nilpotent group 𝑁𝑠,𝑆
can also be defined up to unique 𝑆-preserving isomorphism by the universal property that it is
nilpotent of step at most 𝑠, contains 𝑆, and every function from 𝑆 to a nilpotent group of step at
most 𝑠 can be uniquely extended to a homomorphism from 𝑁𝑠,𝑆 to that group.

(Nilpotent) Lie groups and the Baker-Campbell-Hausdorff formula
Recall that a (real) Lie group is a group that is also a finite-dimensional real smooth manifold, in
such a way that the group operations of multiplication and inversion are smooth maps 𝐺 ×𝐺 → 𝐺

and 𝐺 → 𝐺. By Gleason, Montgomery, and Zippin’s solution to Hilbert’s fifth problem [MZ52;
Gle52], one can equivalently define a Lie group as a group that is also a finite-dimensional
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topological manifold with continuous multiplication and inversion operations; such a group carries
a unique smooth structure compatible with its algebraic structure. More generally, Yamabe [Yam50]
proved that every locally compact, connected topological group is a projective limit of Lie groups
(possibly of divergent dimension). These facts underlie the ubiquity of Lie groups in the scaling
limit theory of discrete groups, and in particular are used directly in Gromov’s original proof of his
polynomial growth theorem [Gro81c]. Further background on these topics can be found in [Tao14].
For our purposes, Lie groups become relevant primarily via a theorem of Pansu, which allows us
to approximate the balls in the Cayley graph of a nilpotent group in terms of the balls in a certain
left-invariant homogeneous metric on a Carnot group; this is explained in Section 4.2.

Lie algebras. A Lie algebra 𝔤 is a vector space equipped with a binary operation, the Lie bracket
[·, ·] : 𝔤 × 𝔤 → 𝔤, that is bilinear, antisymmetric ([𝑋,𝑌 ] = −[𝑌, 𝑋] for all 𝑋,𝑌 ∈ 𝔤), and satisfies
the Jacobi identity ([𝑋, [𝑌, 𝑍]] + [𝑌, [𝑍, 𝑋]] + [𝑍, [𝑋,𝑌 ]] = 0 for all 𝑋,𝑌, 𝑍 ∈ 𝔤). A subset 𝐴 of a
Lie algebra is said to be bracket-closed if [𝑋,𝑌 ] ∈ 𝐴 for every 𝑋,𝑌 ∈ 𝐴. For ease of reading, we
will loosely follow the convention that points in a Lie algebra are denoted using upper-case letters,
while points in a Lie group are denoted using lower-case letters. We will also assume without
further comment that all Lie algebras are finite-dimensional.

To each Lie group𝐺, we can associate a Lie algebra 𝔤 arising from the tangent space at the identity;
the details of this construction are not important to us and can be found in any textbook on the
subject. In the concrete case that𝐺 is a Lie subgroup of a general linear group GL𝑛 for some 𝑛 ≥ 1,
the affine space 𝐼 + 𝔤 is precisely the tangent space at the identity to 𝐺 in the space of all 𝑛 × 𝑛
matrices, so that 𝔤 is a Lie subalgebra (i.e. a bracket-closed linear subspace) of the Lie algebra 𝔤𝔩𝑛
of all 𝑛× 𝑛 matrices with Lie bracket defined by the commutator [𝑋,𝑌 ] = 𝑋𝑌 −𝑌𝑋 . (In particular,
𝔤𝔩𝑛 is the Lie algebra associated to the Lie group GL𝑛.) In fact this case is not particularly special:
Ado’s theorem states that every Lie algebra is isomorphic to a Lie subalgebra of 𝔤𝔩𝑛 for some 𝑛 ≥ 1
[Tao14, Chapter 2.3]. (Ado’s theorem does not imply that every Lie group is isomorphic to a Lie
subgroup of a general linear group, although it does imply a “local” version of the same claim.)

The fundamental theorems of Lie (see e.g. [Tao14, Chapter 2.5.1]) state in particular that there is a
one-to-one correspondence between (isomorphism classes of) Lie algebras and simply connected
Lie groups. On the other hand, Lie groups that are connected but not simply connected have
universal covers which are simply connected Lie groups with the same Lie algebra.

The lower central series of the Lie algebra 𝔤 is defined recursively by 𝔤1 = 𝔤 and 𝔤𝑖+1 = [𝔤𝑖, 𝔤] for
each 𝑖 ≥ 1, where if 𝐴 and 𝐵 are two subsets of 𝔤 then we write [𝐴, 𝐵] = {[𝑎, 𝑏] : 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵}.
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It is a simple consequence of the Jacobi identity that [𝔤𝑖, 𝔤 𝑗 ] ⊆ 𝔤𝑖+ 𝑗 for every 𝑖, 𝑗 ≥ 1 [Wan23,
Lemma 1.4.3]. The Lie algebra 𝔤 is said to be nilpotent if 𝔤𝑖+1 = {0} for all sufficiently large 𝑖; the
minimal such 𝑖 is called the step of 𝔤 and is usually denoted 𝑠. Nilpotence of a Lie group is defined
as for any other group (meaning that the lower central series terminates at the identity subgroup);
a connected Lie group is nilpotent if and only if its corresponding Lie algebra is nilpotent.

Lie polynomials. A Lie monomial of degree 𝑑 in the terms 𝑋1, 𝑋2, . . . , 𝑋𝑛 ∈ 𝔤 is an expression
obtained by taking iterated Lie brackets of these terms in some way, so that the sum over 𝑖 of the
total number of times 𝑋𝑖 appears is 𝑑. In other words, a Lie monomial of degree 1 in the terms
𝑋1, . . . , 𝑋𝑛 is an expression of the form 𝐿 (𝑋1, . . . , 𝑋𝑛) = 𝑋𝑖 for some 1 ≤ 𝑖 ≤ 𝑛, while each
Lie monomial of degree 𝑑 can be written 𝐿 (𝑋1, . . . , 𝑋𝑛) = [𝐿1(𝑋1, . . . , 𝑋𝑛), 𝐿2(𝑋1, . . . , 𝑋𝑛)] for
some Lie monomials 𝐿1 and 𝐿2 whose degrees sum to 𝑑. A Lie polynomial 𝑃(𝑋1, 𝑋2, . . . , 𝑋𝑛) in
elements 𝑋1, 𝑋2, . . . , 𝑋𝑛 ∈ 𝔤 is a linear combination of Lie monomials; it is said to be homogeneous
of degree 𝑑 if every Lie monomial in the linear combination has degree 𝑑. Thus, homogeneous Lie
polynomials of degree 𝑑 obey the scaling transformation 𝑃(𝜆𝑋1, . . . , 𝜆𝑋𝑛) = 𝜆𝑑𝑃(𝑋1, . . . , 𝑋𝑛).

The exponential map. Given a Lie group 𝐺 and associated Lie algebra 𝔤, there is a canonically
defined exponential map exp : 𝔤 → 𝐺, which for Lie subgroups of GL𝑛 coincides with ordinary
matrix exponentiation. (We will omit the general definition of the exponential map; everything
we need to know about it will be captured by the Baker-Campbell-Hausdorff formula.) The
exponential map is smooth, and is a diffeomorphism in a neighbourhood of the identity, but might
not be injective or surjective. The Baker-Campbell-Hausdorff (BCH) formula [Tao14, Chapter
1.2.5] states that if 𝐺 is a Lie group with Lie algebra 𝔤 then there exists an open neighbourhood𝑈
of the origin such that

log [exp 𝑋 exp𝑌 ] = 𝑋 + 𝑌 + 1
2
[𝑋,𝑌 ] + 1

12
[𝑋, [𝑋,𝑌 ]] − 1

12
[𝑌, [𝑋,𝑌 ]] + · · · =

∞∑︁
𝑖=1

𝐿𝑖 (𝑋,𝑌 )

for all 𝑋,𝑌 ∈ 𝑈, where each 𝐿𝑖 is a homogeneous Lie polynomial of degree 𝑖 with rational
coefficients and where we write log for the inverse of the exponential map on exp(𝑈). (The Lie
polynomials 𝐿𝑖 appearing in the BCH formula are universal and do not depend on the choice of Lie
group 𝐺.) When 𝐺 is a simply connected nilpotent Lie group, all terms with 𝑖 > 𝑠 are identically
zero, the exponential function exp : 𝔤→ 𝐺 is defined globally, and the BCH formula holds for all
𝑋,𝑌 ∈ 𝔤. This lets us define the BCH product on the Lie algebra 𝔤 as

𝑋 ⋄𝑌 := log
[
𝑒𝑋𝑒𝑌

]
= 𝑋 + 𝑌 + 1

2
[𝑋,𝑌 ] + 1

12
[𝑋, [𝑋,𝑌 ]] − 1

12
[𝑌, [𝑋,𝑌 ]] + · · · ,
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so that (𝔤,⋄) is isomorphic to 𝐺 as a Lie group. Note that (𝑎𝑋) ⋄ (𝑏𝑋) = (𝑎 + 𝑏)𝑋 for every 𝑋 ∈ 𝔤
and 𝑎, 𝑏 ∈ R, so that 0 is both the additive and BCH identity and that (−𝑋) is both the additive and
BCH inverse of 𝑋 .

Example 4.2.1. The Heisenberg group 𝐻 and its Lie algebra 𝔥 are given by

𝐻 =
©­­«
1 R R

0 1 R

0 0 1

ª®®¬ and 𝔥 =
©­­«
0 R R

0 0 R

0 0 0

ª®®¬ ,
with exponential map and logarithm

exp
©­­«
0 𝑎 𝑐

0 0 𝑏

0 0 0

ª®®¬ =
©­­«
1 𝑎 𝑐 + 𝑎𝑏

2
0 1 𝑏

0 0 1

ª®®¬ and log
©­­«
1 𝑎 𝑐

0 1 𝑏

0 0 1

ª®®¬ =
©­­«
0 𝑎 𝑐 − 𝑎𝑏

2
0 0 𝑏

0 0 0

ª®®¬ .
Note that the exponential map here is just the usual matrix exponential, which for 𝑋 ∈ 𝔥 satisfies
𝑒𝑋 = 𝐼 + 𝑋 + 1

2𝑋
2. The Lie bracket on 𝔥 is given by

©­­«
0 𝑎 𝑐

0 0 𝑏

0 0 0

ª®®¬ ,
©­­«
0 𝑥 𝑧

0 0 𝑦

0 0 0

ª®®¬
 =

©­­«
0 0 𝑎𝑦 − 𝑥𝑏
0 0 0
0 0 0

ª®®¬ .
Since 𝐻 is step-2 nilpotent, the BCH multiplication on 𝔥 is given by

©­­«
0 𝑎 𝑐

0 0 𝑏

0 0 0

ª®®¬ ⋄
©­­«
0 𝑥 𝑧

0 0 𝑦

0 0 0

ª®®¬ =
©­­«
0 𝑎 𝑐

0 0 𝑏

0 0 0

ª®®¬ +
©­­«
0 𝑥 𝑧

0 0 𝑦

0 0 0

ª®®¬ +
1
2


©­­«
0 𝑎 𝑐

0 0 𝑏

0 0 0

ª®®¬ ,
©­­«
0 𝑥 𝑧

0 0 𝑦

0 0 0

ª®®¬


=
©­­«
0 𝑎 + 𝑥 𝑐 + 𝑧 + 𝑎𝑦−𝑏𝑥

2
0 0 𝑏 + 𝑦
0 0 0

ª®®¬ .
We will see in Example 4.4.1 that the non-integer rational coefficient 1/2 appearing in this expression
leads to complications when comparing lattices in 𝐻 and 𝔥.

Remark 4.2.1. It follows from the BCH formula that

log[𝑒𝑋𝑒𝑌 𝑒−𝑋𝑒−𝑌 ] = [𝑋,𝑌 ] + 1
2
[𝑋, [𝑋,𝑌 ]] + 1

2
[𝑌, [𝑋,𝑌 ]] + · · ·

for 𝑋 and 𝑌 in a neighbourhood of the origin in 𝔤 (all of 𝔤 when 𝐺 is nilpotent and simply
connected). As such, the BCH commutator and the Lie bracket agree to first order as 𝑋,𝑌 → 0,
but are not exactly equal unless 𝐺 is nilpotent of step at most 2.
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We will also make use of the Zassenhaus formula [CMN12], a dual form of the BCH formula
which states in particular that if 𝐺 is 𝑠-step nilpotent then

𝑒𝑋+𝑌 = 𝑒𝑋𝑒𝑌 𝑒−
1
2 [𝑋,𝑌 ]𝑒

1
6 (2[𝑌,[𝑋,𝑌 ]]+[𝑋,[𝑋,𝑌 ]])𝑒

−1
24 ( [[[𝑋,𝑌 ],𝑋],𝑋]+3[[[𝑋,𝑌 ],𝑋],𝑌 ]+3[[[𝑋,𝑌 ],𝑌 ],𝑌 ]) · · ·

= 𝑒𝑋𝑒𝑌 𝑒 𝐿̃2 (𝑋,𝑌 )𝑒 𝐿̃3 (𝑋,𝑌 ) · · · 𝑒 𝐿̃𝑠 (𝑋,𝑌 ) (4.2.1)

for every 𝑋,𝑌 ∈ 𝔤, where 𝐿̃𝑖 is a homogeneous Lie polynomial of degree 𝑖 with rational coefficients
for each 𝑖 ≥ 2.

Subgroups and lattices. Let 𝐺 be a simply connected nilpotent Lie group with Lie algebra 𝔤.
For each set 𝐴 ⊆ 𝔤, we define L (𝐴) to be the smallest Lie subalgebra of 𝔤 containing 𝐴. The
exponential map identifies closed connected subgroups of𝐺 with Lie subalgebras of 𝔤, so that every
closed connected subgroup of 𝐺 is itself a simply connected nilpotent Lie group. (For general Lie
groups, the image under the exponential map of a Lie subalgebra might not be closed, but for simply
connected nilpotent groups it is always closed since the exponential map is a diffeomorphism.) As
such, for each subset 𝐴 of 𝐺, the intersection of all closed connected subgroups of 𝐺 containing
𝐴 is a closed connected subgroup of 𝐺 that is equal to exp(L (log 𝐴)). We write C (𝐴) for this
minimal closed connected subgroup of 𝐺 containing 𝐴.

Theorem 4.2.2 (Mal’cev). If𝐺 is a simply connected nilpotent Lie group and𝐻 is a closed subgroup
of𝐺 then𝐺/𝐻 is compact if and only if𝐻 is not contained in any proper closed connected subgroup
of 𝐺. In particular, C (𝐻)/𝐻 is compact.

(The quotients 𝐺/𝐻 and C (𝐻)/𝐻 appearing here are topological spaces, and do not carry group
structures in general.) We call a subgroup Γ of a simply connected nilpotent Lie group 𝐺 a lattice
in 𝐺 if it is discrete with compact quotient 𝐺/Γ. (Note that discrete subgroups of Hausdorff
topological groups are automatically closed.)

Remark 4.2.2. For a general Lie group, a lattice is defined to be a discrete subgroup for which the
quotient admits a finite left-invariant measure (a.k.a. Haar measure); for simply connected nilpotent
Lie groups this is equivalent to𝐺/Γ being compact by Mal’cev’s theorem. This theorem also gives
several further characterisations of a discrete subgroup being a lattice that we omit since we do not
use them.

A further theorem of Mal’cev [Rag72, Theorem 2.12] states that a simply connected nilpotent Lie
group 𝐺 admits a lattice if and only if its Lie algebra 𝔤 admits a basis 𝑒1, . . . , 𝑒𝑑 for which the
structure constants (𝑇 𝑘

𝑖, 𝑗
)𝑖, 𝑗 ,𝑘 , defined by [𝑒𝑖, 𝑒 𝑗 ] =

∑
𝑘 𝑇

𝑘
𝑖, 𝑗
𝑒𝑘 , are rational. It is a consequence of
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this theorem [Wan23, Proposition 2.3.7] that if Γ is a lattice in a simply connected nilpotent Lie
group then there exist (additive) lattices Λ− and Λ+ in 𝔤 such that Λ− ⊆ log Γ ⊆ Λ+. We will prove
significantly stronger versions of this fact in Section 4.4.

Carnot groups and Pansu’s theorem
A Carnot group is a simply connected nilpotent Lie group 𝐺 of some step 𝑠 whose Lie algebra 𝔤

is equipped with a decomposition
𝔤 = 𝑉1 ⊕ 𝑉2 · · · ⊕ 𝑉𝑠

for some non-trivial linear subspaces 𝑉1, . . . , 𝑉𝑠 such that [𝑉1, 𝑉𝑖] = 𝑉𝑖+1 for every 1 ≤ 𝑖 < 𝑠 and
[𝑉1, 𝑉𝑠] = {0}. It can be shown that for such a decomposition we have moreover that [𝑉𝑖, 𝑉 𝑗 ] ⊆ 𝑉𝑖+ 𝑗
for every 𝑖, 𝑗 ≥ 1, where𝑉𝑖+ 𝑗 := {0} for 𝑖+ 𝑗 > 𝑠. A decomposition 𝔤 = 𝑉1⊕· · ·⊕𝑉𝑠 satisfying these
conditions is known as a stratification of 𝔤; the subspace 𝑉1, which generates 𝔤 as a Lie algebra, is
known as the horizontal subspace. Not every nilpotent lie algebra admits a stratification. While a
Carnot group consists of both a nilpotent Lie group and a choice of stratification of its Lie algebra,
we will nevertheless write e.g. “let 𝐺 be a Carnot group” when this does not cause confusion.

Given a Carnot group 𝐺 and a real number 𝜆 > 0 the dilation maps 𝛿𝜆 : 𝔤→ 𝔤 and 𝐷𝜆 : 𝐺 → 𝐺

are defined by

𝛿𝜆 (𝑥1 + 𝑥2 + · · · + 𝑥𝑠) = 𝜆𝑥1 + 𝜆2𝑥2 + · · · 𝜆𝑠𝑥𝑠 and 𝐷𝜆 (𝑥) = exp(𝛿𝜆 (log(𝑥))),

where we write 𝑥 = 𝑥1 + 𝑥2 + · · · + 𝑥𝑠 for the decomposition of 𝑥 ∈ 𝔤 associated to the stratification
𝔤 = 𝑉1⊕𝑉2⊕ · · · ⊕𝑉𝑠. These dilation maps satisfy the semigroup properties 𝛿𝜆𝜇 = 𝛿𝜆𝛿𝜇 = 𝛿𝜇𝛿𝜆 and
𝐷𝜆𝜇 = 𝐷𝜆𝐷𝜇 = 𝐷𝜇𝐷𝜆 for every 𝜆, 𝜇 > 0. It is a consequence of the Baker-Campbell-Hausdorff
formula and the fact that [𝑉𝑖, 𝑉 𝑗 ] ⊆ 𝑉𝑖+ 𝑗 that 𝐷𝜆 is a Lie group automorphism of 𝐺 for every 𝜆 > 0.
A metric 𝑑 : 𝐺 × 𝐺 → [0,∞) on a Carnot group is said to be left-invariant and homogeneous if

𝑑 (𝑧𝑥, 𝑧𝑦) = 𝑑 (𝑥, 𝑦) and 𝑑 (𝐷𝜆𝑥, 𝐷𝜆𝑦) = 𝜆𝑑 (𝑥, 𝑦)

for every 𝑥, 𝑦, 𝑧 ∈ 𝐺 and 𝜆 > 0. Note that the abelian group R𝑑 is a Carnot group with 𝑉1 = R𝑑 ,
and the left-invariant homogeneous metrics on R𝑑 seen as a Carnot group are equivalent to norms
on R𝑑 . In general, left-invariant homogeneous metrics are closely analogous to norms, and also
have the property that they are determined by the unit ball 𝐵 around the origin:

𝑑 (𝑥, 𝑦) = inf{𝜆 : 𝑥−1𝑦 ∈ 𝐷𝜆 (𝐵)}.

In particular, the ball {𝑥 : 𝑑 (0, 𝑥) ≤ 𝜆} is equal to 𝐷𝜆 (𝐵).
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We now introduce the free step-𝑠 nilpotent Lie algebra and the free step-𝑠 Carnot group, referring
the reader to [BLU07, Chapter 14.1] for proofs the objects we discuss here are well-defined. Let
𝑆 be a finite set. The free step-𝑠 nilpotent Lie algebra 𝔣𝑠,𝑆 is defined to be the unique-up-to-𝑆-
preserving-isomorphism nilpotent Lie algebra of step 𝑠 that is generated by 𝑆 and is such that if 𝔤 is
any nilpotent Lie algebra of step at most 𝑠 and 𝜙 : 𝑆 → 𝔤 is any function, then there exists a unique
Lie algebra homomorphism 𝔣𝑠,𝑆 → 𝔤 extending 𝜙. The Lie algebra 𝔣𝑠,𝑆 may be equipped with a
canonical stratification defined in terms of Hall bases, making its associated BCH-multiplication
Lie group𝐺𝑠,𝑆 = (𝔣𝑠,𝑆,⋄) into a Carnot group known as the free step-𝑠 Carnot group or free step-𝑠
nilpotent Lie group over 𝑆; see [BLU07, Chapters 14.1 and 14.2] for details. (It is convenient to
define the free step-𝑠 nilpotent Lie group over 𝑆 via BCH multiplication so that it contains the set
𝑆.) Moreover, this stratification 𝔣𝑠,𝑆 = 𝑉1 ⊕ · · · ⊕ 𝑉𝑠 has the property that 𝑉1 is equal to the linear
span of 𝑆. Finally, if we define Γ𝑠,𝑆 to be the subgroup of 𝐺𝑠,𝑆 generated by 𝑆, then Γ𝑠,𝑆 is a lattice
in 𝐺𝑠,𝑆 that is isomorphic (via an 𝑆-preserving isomorphism) to the discrete free step-𝑠 nilpotent
group 𝑁𝑠,𝑆. Indeed, the fact that Γ𝑠,𝑆 is discrete in 𝐺𝑠,𝑆 can be proven using Mal’cev’s theorem on
rational structure constants, since the structure constants in the Hall basis are all equal to 1, while
Γ is a lattice since 𝑆 generates 𝐺𝑠,𝑆 as a Lie group. (The fact that Γ𝑠,𝑆 is discrete can also be proven
using the techniques of Section 4.4.) Finally, the fact that Γ𝑠,𝑆 is isomorphic to 𝑁𝑠,𝑆 can be deduced
straightforwardly from the relevant universal properties since every torsion-free finitely generated
nilpotent group can be embedded as a lattice in a nilpotent Lie group, sometimes known as the
Mal’cev completion of the group [Rag72, Theorem 2.18].

In his thesis [Pan83], Pansu proved that Cayley graphs of finitely generated nilpotent groups converge
under rescaling to Carnot groups equipped with certain left-invariant homogeneous metrics known
as sub-Finsler metrics. (We will not need the definition of sub-Finsler metrics in this paper.) Note
that the Carnot group arising in this limit might not be isomorphic to the Mal’cev completion of
the relevant nilpotent group, and indeed the Mal’cev completion might not admit a stratification.
However, if 𝑁 is a torsion-free nilpotent group with finite generating set 𝑆 and the lie algebra 𝔤 of the
Mal’cev completion 𝐺 happens to be simply connected and admit a stratification 𝔤 = 𝑉1 ⊕ · · · ⊕𝑉𝑠
with log 𝑆 ⊆ 𝑉1, then there exists a left-invariant homogeneous metric 𝑑𝐺 on 𝐺 such that

𝑑𝑆 (𝑥, 𝑦) = (1 ± 𝑜(1))𝑑𝐺 (𝑥, 𝑦) as 𝑑𝑆 (𝑥, 𝑦) → ∞, (4.2.2)

where 𝑑𝑆 denotes the word metric on 𝑁 . It follows in particular that (𝑁, 1
𝑛
𝑑𝑆) converges to

(𝐺, 𝑑𝐺) in the Gromov-Hausdorff sense as 𝑛→∞. See [BL13; Tas22] for details and quantitative
refinements of this theorem.
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4.3 Exploring abelian lattices with convex sets
In this section we prove the following theorem, which will eventually be used to prove our main
theorems by reduction to the abelian case.

Theorem 4.3.1. Let 𝑑 ≥ 1, let Λ be a discrete subgroup of R𝑑 , and let 𝐾1 ⊆ 𝐾2 ⊆ · · · be
an increasing sequence of non-empty, symmetric, convex sets in R𝑑 . For each 𝑛 ≥ 1 let Λ𝑛 =

spanZ(Λ ∩ 𝐾𝑛) so that Λ1 ⊆ Λ2 ⊆ · · · is an increasing sequence of subgroups of Λ. Then

#{𝑛 : Λ𝑛+1 ≠ Λ𝑛} ≤ 𝑑 + 1 +
𝑑∑︁
ℓ=1
⌊log2 ℓ!⌋ .

Remark 4.3.1. By Stirling’s formula, the upper bound appearing here is asymptotic to 1
2𝑑

2 log2 𝑑

as 𝑑 →∞. We have not investigated the optimality of this bound.

We will deduce this theorem as a consequence of Minkowski’s second theorem [Cas97, p. 203],
which states that if Λ is a lattice in R𝑑 with 𝑑 ≥ 1 and 𝐾 is a non-empty, symmetric convex subset
of R𝑑 then

1 ≤ vol(R𝑑/Λ)
2𝑑 vol(𝐾)∏𝑑

𝑖=1 𝜆𝑖 (Λ, 𝐾)
≤ 𝑑!, (4.3.1)

where

𝜆𝑖 (Λ, 𝐾) = inf
{
𝜆 > 0 : 𝜆𝐾 ∩ Λ contains at least 𝑖 linearly independent vectors

}
for each 1 ≤ 𝑖 ≤ 𝑑. For our purposes, the most important feature of (4.3.1) is that the expression
2𝑑 vol(𝐾)∏𝑑

𝑖=1 𝜆𝑖 (Λ, 𝐾) is determined by 𝐾 and Λ∩𝐾 whenever Λ∩𝐾 has real span equal to R𝑑 .
Indeed, if Λ is a lattice in R𝑑 then every fundamental domain for Λ has volume vol(R𝑑/Λ) and if
Λ1 ⊆ Λ2 are two lattices in R𝑑 then Λ1 is a finite-index subgroup of Λ2 with index

[Λ2 : Λ1] =
vol(R𝑑/Λ1)
vol(R𝑑/Λ2)

.

Thus, if Λ1 ⊆ Λ2 are two lattices and 𝐾 is a symmetric convex set such that Λ1 ∩ 𝐾 and Λ2 ∩ 𝐾
are equal and both have real linear span equal to R𝑑 then Minkowski’s second theorem implies
that [Λ2 : Λ1] ≤ 𝑑!.

Proof of Theorem 4.3.1. It suffices to prove that if 𝐾1 ⊆ 𝐾2 ⊆ · · · ⊆ 𝐾𝑛 is an increasing sequence
of non-empty, symmetric convex subsets of R𝑑 and Λ is a discrete subgroup of R𝑑 such that the
subgroupsΛ𝑖 := spanZ(Λ∩𝐾𝑖) satisfyΛ𝑖+1 ≠ Λ𝑖 for every 1 ≤ 𝑖 < 𝑛 then 𝑛 ≤ 𝑑+1+∑𝑑

ℓ=0⌊log2 ℓ!⌋.
We may also assume without loss of generality that Λ = Λ𝑛 is a lattice in R𝑑 , replacing Λ with Λ𝑛
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and R𝑑 with the subspace spanned by Λ𝑛 otherwise. Fix such a pair Λ and (𝐾1, . . . , 𝐾𝑛) and for
each 0 ≤ ℓ ≤ 𝑑 let 𝑖ℓ be minimal such that the real span of Λ𝑖ℓ has dimension at least ℓ, setting
𝑖𝑑+1 = 𝑛 + 1 for notational convenience. Since Λ2 ≠ Λ1, we must have that 𝑖0 = 1 and 𝑖1 ∈ {1, 2}.
For each 1 ≤ ℓ ≤ 𝑑 define 𝑉ℓ to be the real span of Λ𝑖ℓ , so that Λ 𝑗 is a lattice in 𝑉ℓ for every
1 ≤ ℓ ≤ 𝑑 and 𝑖ℓ ≤ 𝑗 < 𝑖ℓ+1. (Note that 𝑉ℓ might have dimension strictly larger than ℓ, in which
case 𝑖ℓ+1 = 𝑖ℓ.) Suppose that 0 ≤ ℓ ≤ 𝑑 is such that 𝑖ℓ+1 ≥ 𝑖ℓ + 2. In this case, the subgroups Λ𝑖ℓ
and Λ𝑖ℓ+1−1 are both lattices in 𝑉ℓ with Λ𝑖ℓ ∩𝐾𝑖ℓ = Λ𝑖ℓ+1−1 ∩𝐾𝑖ℓ and with Λ𝑖ℓ ∩𝐾𝑖ℓ having real span
equal to 𝑉ℓ. As such, it follows by Minkowski’s second theorem that

[Λ𝑖ℓ+1−1 : Λ𝑖ℓ ] =
vol(𝑉ℓ/Λ𝑖ℓ )

vol(𝑉ℓ/Λ𝑖ℓ+1−1)
≤ ℓ!

for each 1 ≤ ℓ ≤ 𝑑 such that 𝑖ℓ+1 ≥ 𝑖ℓ + 2. Now, using that

[Λ𝑖ℓ+1−1 : Λ𝑖ℓ ] =
𝑖ℓ+1−2∏
𝑗=𝑖ℓ

[Λ 𝑗+1 : Λ 𝑗 ] ≥ 2𝑖ℓ+1−1−𝑖ℓ

it follows that 𝑖ℓ+1 − 𝑖ℓ ≤ 1 + ⌊log2 ℓ!⌋ for every 1 ≤ ℓ ≤ 𝑑 such that 𝑖ℓ+1 ≥ 𝑖ℓ + 2. Since the same
inequality also holds trivially when 𝑖ℓ+1 < 𝑖ℓ + 2, it follows that

𝑛 = 𝑖𝑑+1 − 𝑖0 =

𝑑∑︁
ℓ=0
(𝑖ℓ+1 − 𝑖ℓ) ≤ 𝑑 + 1 +

𝑑∑︁
ℓ=1
⌊log2 ℓ!⌋

as claimed. □

4.4 Additive and multiplicative subgroups of nilpotent Lie algebras
Our goal in this section is to clarify the relationship between lattices in a simply connected nilpotent
Lie group and its associated Lie algebra. As mentioned above, closed, connected subgroups of a
simply connected nilpotent Lie group 𝐺 are in bijection with Lie subalgebras of the Lie algebra
𝔤, which are precisely the closed, connected, bracket-closed additive subgroups of 𝔤. Without the
assumption of connectivity, the exponential map need not interact this nicely with the subgroup
structure of 𝐺: it is possible to have subgroups 𝐻 of 𝐺 for which log𝐻 is not an additive subgroup
of 𝔤 and to have bracket-closed additive subgroups of 𝔤 whose image under the exponential is not
a subgroup of 𝐺.

Example 4.4.1. Let the Heisenberg group 𝐻 and its Lie algebra 𝔥 be as in Example 4.2.1. The set
of all elements of 𝐻 whose matrix entries are integers is a lattice in 𝐻 whose logarithm is given by

log
©­­«
1 Z Z

0 1 Z

0 0 1

ª®®¬ =


©­­«
0 𝑎 𝑐

0 0 𝑏

0 0 0

ª®®¬ : 𝑎, 𝑏 ∈ Z, 𝑐 ∈ 1
2
Z, 2𝑐 = 𝑎𝑏 mod 2

 .
141



This is not an additive subgroup of 𝔥 since

©­­«
0 1 0
0 0 0
0 0 0

ª®®¬ +
©­­«
0 0 0
0 0 1
0 0 0

ª®®¬ =
©­­«
0 1 0
0 0 1
0 0 0

ª®®¬ ∉ log
©­­«
1 Z Z

0 1 Z

0 0 1

ª®®¬ .
Similarly, the set of all elements of 𝔥 whose matrix entries are integers is a bracket-closed additive
subgroup of 𝔥 whose exponential is not a subgroup of 𝐻.

We call a subgroup𝐻 of𝐺 harmonious if log𝐻 is an additive subgroup of 𝔤 that is bracket-closed in
the sense that [log 𝑥, log 𝑦] ∈ log𝐻 for every 𝑥, 𝑦 ∈ 𝐻. (This terminology is not standard.) Thus,
harmonious subgroups of 𝐺 are those that most closely mimic the behaviour of the connected
subgroups of 𝐺 under the exponential map. We call a lattice in 𝐺 that is also a harmonious
subgroup of 𝐺 a harmonious lattice in 𝐺, noting that if Γ is a harmonious lattice in 𝐺 then
Λ = log Γ is a bracket-closed lattice in 𝔤.

The remainder of this section is devoted to proving the following theorem, which states intuitively
that subgroups of 𝐺 and bracket-closed additive subgroups of 𝔤 are, in some sense, “equivalent
up to bounded index”. This result allows us to deduce various statements about lattices in simply
connected nilpotent Lie groups from analogous statements for vector spaces (i.e., statements in the
geometry of numbers), which are classical. Note that the theorem does not require Γ to be discrete.
Recall that if 𝐴 ⊆ 𝔤 and 𝜆 ∈ R then we define 𝜆 · 𝐴 = {𝜆𝑎 : 𝑎 ∈ 𝐴}, so that if Λ is an additive
subgroup of 𝔤 then (𝑚𝜆) · Λ ⊆ 𝜆 · Λ for every 𝜆 ∈ R and 𝑚 ∈ Z. We also write B(𝐴) for the
smallest bracket-closed set containing 𝐴.

Theorem 4.4.2. Let 𝐺 be a simply connected nilpotent Lie group of step 𝑠 with Lie algebra 𝔤.
There exist positive integers 𝐶1 and 𝐶2 depending only on 𝑠 such that if Γ is a subgroup of 𝐺 then
the sets

H−(Γ) := exp
(
𝐶1 · spanZ(log Γ)

)
and H+(Γ) := exp

(
𝐶1 ·B

(
1
𝐶1
· spanZ(log Γ)

))
are harmonious subgroups of 𝐺 such that

𝐶1 · log Γ ⊆ log H−(Γ) ⊆ log Γ ⊆ log H+(Γ) ⊆
1
𝐶2
· log Γ.

In corollary 4.4.13 we show moreover that if Γ is discrete then the harmonious subgroups H−(Γ)
and H+(Γ) have index bounded by a constant depending only on the step and dimension of 𝐺.
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Example 4.4.3. We continue to analyze the Heisenberg group as studied in Examples 4.2.1 and 4.4.1.
Although the subgroup Γ of 𝐻 consisting of those elements of 𝐻 with integer matrix entries is not
harmonious, we can write

©­­«
1 2Z Z

0 1 2Z
0 0 1

ª®®¬ ⊆ Γ =
©­­«
1 Z Z

0 1 Z

0 0 1

ª®®¬ ⊆
©­­«
1 Z 1

2Z

0 1 Z

0 0 1

ª®®¬
with the two outer two lattices being harmonious subgroups of 𝐻. Moreover, these subgroups arise
naturally from the original subgroup Γ as

©­­«
1 2Z Z

0 1 2Z
0 0 1

ª®®¬ = exp
(
spanZ(2 · log Γ)

)
and

©­­«
1 Z 1

2Z

0 1 Z

0 0 1

ª®®¬ = exp
(
spanZ(log Γ)

)
.

Similar remarks apply to the bracket-closed additive lattice in 𝔥 consisting of those elements of 𝔥
with integer matrix entries.

The methods used to prove Theorem 4.4.2 are based on those of Breuillard and Green [BG11]. In
particular, we will make use of the following lemma of Tessera and Tointon [TT18] that is also
proved using the methods of [BG11].

Lemma 4.4.4. Let 𝐺 be a simply connected nilpotent Lie group of step 𝑠 with Lie algebra 𝔤. There
exists an integer constant 𝐶 = 𝐶 (𝑠) such that if Λ is a bracket-closed additive subgroup of the Lie
algebra 𝔤 then exp(𝐶 · Λ) is a harmonious subgroup of 𝐺.

Proof. This is essentially [TT18, Lemma 4.3]. It is not stated that 𝐶 · Λ is bracket-closed, but this
is obvious since [𝐶 · Λ, 𝐶 · Λ] = 𝐶2 · [Λ,Λ] ⊆ 𝐶 · Λ. □

Remark 4.4.1. The constant 𝐶1 appearing in Theorem 4.4.2 will be taken to be a multiple of the
constant 𝐶 appearing in lemma 4.4.4. This will be important in the proof of proposition 4.5.1.

We begin by stating the following lemma of Lazard [Laz54] as presented in [BG11, Lemmas 5.2
and 5.3]. This lemma was first applied to the structure theory of approximate groups in the work
of Fisher, Katz, and Peng [FKP09]. Given a simply connected nilpotent Lie group 𝐺, we define
𝑥𝛼 = exp(𝛼 log 𝑥) for every 𝑥 ∈ 𝐺 and 𝛼 ∈ R.

Lemma 4.4.5 (Lazard). Let 𝐺 be a simply connected nilpotent Lie group of step 𝑠 with Lie algebra
𝔤. There exists ℓ ≥ 1 and sequences of rational numbers 𝛼1, . . . , 𝛼ℓ, 𝛽1, . . . , 𝛽ℓ, 𝛾1, . . . , 𝛾ℓ, and
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𝛿1, . . . , 𝛿ℓ depending only on 𝑠 such that

exp(log 𝑥 + log 𝑦) = 𝑥𝛼1𝑦𝛽2 · · · 𝑥𝛼ℓ 𝑦𝛽ℓ

and
exp( [log 𝑥, log 𝑦]) = 𝑥𝛾1𝑦𝛿1 · · · 𝑥𝛾ℓ 𝑦𝛿ℓ

for every 𝑥, 𝑦 ∈ 𝐺.

Corollary 4.4.6 (Expansion of sums). Let 𝐺 be a simply connected nilpotent Lie group of step 𝑠
with Lie algebra 𝔤. For each 𝑛 ≥ 2 there exists ℓ ≥ 1, a sequence of rational numbers 𝛼1, . . . , 𝛼ℓ,
and a sequence of indices 𝑖1, . . . , 𝑖ℓ ∈ {1, . . . , 𝑛}, all depending only on 𝑠 and 𝑛, such that

exp(log 𝑥1 + log 𝑥2 + · · · + log 𝑥𝑛) = 𝑥𝛼1
𝑖1
𝑥
𝛼2
𝑖2
· · · 𝑥𝛼ℓ

𝑖ℓ

for every 𝑥1, . . . , 𝑥𝑛 ∈ 𝐺.

Corollary 4.4.7. Let 𝐺 be a simply connected nilpotent Lie group of step 𝑠 with Lie algebra 𝔤, let
Γ be a subgroup of 𝐺 and let Λ = log Γ. For each 𝑛 ≥ 1, there exists a natural number 𝐶 = 𝐶 (𝑠, 𝑛)
such that if 𝑋1, . . . , 𝑋𝑛 ∈ 𝐶 · Λ then 𝑋1 + · · · + 𝑋𝑛 ∈ Λ.

Proof. Let𝐶 = 𝐶 (𝑠, 𝑛) be the least common multiple of the denominators of the numbers𝛼1, . . . , 𝛼ℓ

appearing in corollary 4.4.6 when written in reduced form. □

Lemma 4.4.8. Let 𝐺 be a simply connected nilpotent Lie group of step 𝑠 with Lie algebra 𝔤, let Γ
be a subgroup of 𝐺 and let Λ = log Γ. There exists a natural number 𝐶 = 𝐶 (𝑠) such that{

𝐿 (𝑋1, . . . , 𝑋𝑛) : 𝑋1, . . . , 𝑋𝑛 ∈ 𝐶𝑛−1 · Λ
}
⊆ Λ,

for every multilinear Lie monomial 𝐿.

(A Lie monomial 𝐿 (𝑋1, . . . , 𝑋𝑛) is multilinear when each variable appears at most once.)

Proof. Let 𝐶 = 𝐶 (𝑠) be the least common multiple of the denominators of the numbers 𝛾1, . . . , 𝛾ℓ

and 𝛿1, . . . , 𝛿ℓ appearing in Lazard’s lemma when written in reduced form. We will prove the claim
by induction on 𝑛, the case 𝑛 = 1 being vacuous. If 𝑛 > 1 then

𝐿 (𝑋1, . . . , 𝑋𝑛) = [𝐿1(𝑋𝜋(1) , . . . , 𝑋𝜋( 𝑗)), 𝐿2(𝑋𝜋( 𝑗+1) , . . . , 𝑋𝜋(𝑛))]
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for some 1 ≤ 𝑗 < 𝑛, some multilinear Lie monomials 𝐿1, 𝐿2 and some permutation 𝜋 :
{1, . . . , 𝑛} → {1, . . . , 𝑛}. We may assume without loss of generality that 𝜋 is the identity permuta-
tion. By the induction hypothesis, if 𝑋1, . . . , 𝑋𝑛 ∈ 𝐶𝑛−2·Λ then 𝐿1(𝑋1, . . . , 𝑋 𝑗 ), 𝐿2(𝑋 𝑗+1, . . . , 𝑋𝑛) ∈
Λ. As such, if 𝑋1, . . . , 𝑋𝑛 ∈ 𝐶𝑛−1 · Λ then we have by multlilinearity that

𝐿1(𝑋1, . . . , 𝑋 𝑗 ) = 𝐶 𝑗𝐿1(𝐶−1𝑋1, . . . , 𝐶
−1𝑋 𝑗 ) ∈ 𝐶 𝑗 · Λ ⊆ 𝐶 · Λ

and
𝐿2(𝑋 𝑗+1, . . . , 𝑋𝑛) = 𝐶𝑛− 𝑗𝐿2(𝐶−1𝑋 𝑗+1, . . . , 𝐶

−1𝑋𝑛) ∈ 𝐶𝑛− 𝑗 · Λ ⊆ 𝐶 · Λ.

On the other hand, if 𝑋,𝑌 ∈ 𝐶 · Λ then 𝑒𝛾 𝑗𝑋 , 𝑒𝛿 𝑗𝑌 ∈ Γ for every 1 ≤ 𝑗 ≤ ℓ, so that

exp( [𝑋,𝑌 ]) = 𝑒𝛾1𝑋𝑒𝛿1𝑌 · · · 𝑒𝛾ℓ𝑋𝑒𝛿ℓ𝑌 ∈ Γ

and hence that [𝑋,𝑌 ] ∈ Λ. It follows that if 𝑋1, . . . , 𝑋𝑛 ∈ 𝐶𝑛−1 · Λ then 𝐿 (𝑋1, . . . , 𝑋𝑛) ∈ Λ as
claimed. □

Corollary 4.4.9. Let 𝐺 be a simply connected nilpotent Lie group of step 𝑠 with Lie algebra 𝔤, let
Γ be a subgroup of 𝐺 and let Λ = log Γ. There exists a natural number 𝐶 = 𝐶 (𝑠) such that{

𝐿 (𝑋1, . . . , 𝑋𝑛) : 𝑋1, . . . , 𝑋𝑛 ∈ Λ, 𝑋𝑖 ∈ 𝐶𝑑 (𝑑−1) · Λ for some 1 ≤ 𝑖 ≤ 𝑛
}
⊆ Λ,

for every Lie monomial 𝐿 of degree 𝑑 that depends on every variable.

Proof. It suffices without loss of generality to consider the case that 𝐿 is multilinear. Let 𝐶 be
the constant from lemma 4.4.8. Let 𝑋1, . . . , 𝑋𝑛 ∈ Λ, and let 𝐿 (𝑋1, . . . , 𝑋𝑛) be a multlilinear Lie
monomial depending on every variable. Such a Lie monomial necessarily has degree 𝑑 = 𝑛. For
each 1 ≤ 𝑖 ≤ 𝑛 we can write

𝐿 (𝑋1, . . . , 𝑋𝑛) = 𝐿 (𝐶 (𝑛−1)𝑋1, . . . , 𝐶
(𝑛−1)𝑋𝑖−1, 𝐶

−(𝑛−1)2𝑋𝑖, 𝐶
(𝑛−1)𝑋𝑖+1, . . . , 𝐶

(𝑛−1)𝑋𝑛).

If 𝑋𝑖 ∈ 𝐶𝑛(𝑛−1) · Λ = 𝐶 (𝑛−1)2+(𝑛−1) · Λ then 𝐶−(𝑛−1)2𝑋𝑖 ∈ 𝐶 (𝑛−1) · Λ, so that the claim follows from
lemma 4.4.8. □

Lemma 4.4.10. Let𝐺 be a simply connected nilpotent Lie group of step 𝑠 with Lie algebra 𝔤. There
exists a constant 𝐶 depending only on 𝑠 such that if Γ is a subgroup of 𝐺 and we write Λ = log Γ
then 𝐶 · Λ is bracket-closed and 𝑋 + 𝑌 ∈ Λ for every 𝑋 ∈ 𝐶 · Λ and 𝑌 ∈ Λ.
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Proof. We recall the Zassenhaus formula, which states for simply connected nilpotent Lie groups
that

exp(𝑋 + 𝑌 ) = 𝑒𝑋𝑒𝑌 𝑒𝐿2 (𝑋,𝑌 )𝑒𝐿3 (𝑋,𝑌 ) · · · 𝑒𝐿𝑠 (𝑋,𝑌 )

for every 𝑋,𝑌 ∈ 𝔤, where, for each 𝑖 ≥ 1, 𝐿𝑖 is a homogeneous Lie polynomial of degree 𝑖 of the
form

𝐿𝑖 (𝑋,𝑌 ) =
𝑟𝑖∑︁
𝑗=1
𝑎𝑖, 𝑗𝐿𝑖, 𝑗 (𝑋,𝑌 ),

where 𝑎𝑖, 𝑗 are rational numbers and 𝐿𝑖, 𝑗 are Lie monomials depending on both variables. Let𝐶1 be
the least common multiple of the denominators of the rational numbers 𝑎𝑖, 𝑗 and let 𝐶2 be the least
common multiple of the constants 𝐶 (𝑠, 2), 𝐶 (𝑠, 3), . . . , 𝐶 (2,max𝑖 𝑟𝑖) appearing in corollary 4.4.7.
By corollary 4.4.9, there exists a constant 𝐶3 = 𝐶3(𝑠) such that if 𝑋 ∈ 𝐶3 · Λ and 𝑌 ∈ Λ then
𝐿𝑖, 𝑗 (𝑋,𝑌 ) ∈ Λ for every 1 ≤ 𝑖 ≤ 𝑠 and 1 ≤ 𝑗 ≤ 𝑟𝑖. Let 𝐶 = 𝐶1𝐶2𝐶3. Since 𝐿𝑖, 𝑗 depends on
𝑋 , it follows that if 𝑋 ∈ 𝐶 · Λ then 𝐿𝑖, 𝑗 (𝑋,𝑌 ) = (𝐶1𝐶2)𝑑𝑖, 𝑗 𝐿𝑖, 𝑗 ((𝐶1𝐶2)−1𝑋,𝑌 ) ∈ (𝐶1𝐶2) · Λ for
every 𝑦 ∈ Λ, where 𝑑𝑖, 𝑗 is the degree of 𝑋 in 𝐿𝑖, 𝑗 . It follows in particular that if 𝑋 ∈ 𝐶 · Λ then
𝑎𝑖, 𝑗𝐿𝑖, 𝑗 (𝑋,𝑌 ) ∈ 𝐶2 · Λ for every 1 ≤ 𝑖 ≤ 𝑠 and 1 ≤ 𝑗 ≤ 𝑟𝑖 and hence by corollary 4.4.7 that
𝐿𝑖 (𝑋,𝑌 ) ∈ Λ for every 𝑋 ∈ 𝐶 · Λ and 𝑌 ∈ Λ. Since Γ is a subgroup of 𝐺, it follows by the
Zassenhaus formula that 𝑋 + 𝑌 ∈ Λ for every 𝑋 ∈ 𝐶 · Λ and 𝑌 ∈ Λ as claimed. Moreover, if
𝑋,𝑌 ∈ 𝐶 ·Λ then [𝑋,𝑌 ] = 𝐶 [𝑋,𝐶−1𝑌 ] ∈ 𝐶 ·Λ since [𝑋′, 𝑌 ′] ∈ Λ for every 𝑋′ ∈ 𝐶 ·Λ and𝑌 ′ ∈ Λ,
so that 𝐶 · Λ is bracket-closed as claimed. □

We are now ready to prove Theorem 4.4.2.

Proof of Theorem 4.4.2. We begin by proving the claim concerning H−(Γ). Let 𝐶−1 = 𝐶−1(𝑠)
be the constant from lemma 4.4.10, let 𝐶0 = 𝐶0(𝑠) be the constant from lemma 4.4.4, and let
𝐶1 = 𝐶−1𝐶0. Let 𝐺 be a simply connected nilpotent Lie group of step 𝑠, let 𝔤 be the Lie algebra of
𝐺, let Γ be a subgroup of 𝐺 and let Λ = log Γ. lemma 4.4.10 implies that 𝐶1 · Λ is bracket-closed
and that𝐶−1 ·Λ+Λ ⊆ Λ, and it follows by induction on the number of terms in a linear combination
that spanZ(𝐶−1 ·Λ) = 𝐶−1 · spanZ(Λ) is contained in Λ. Since the Z-span of a bracket-closed set is
bracket-closed, it follows that spanZ(𝐶−1 · Λ) is a bracket-closed additive subgroup of 𝔤 and hence
by lemma 4.4.4 that spanZ(𝐶1 · Λ) = 𝐶0 · spanZ(𝐶−1 · Λ) is a bracket-closed additive subgroup of
𝔤 whose exponential H−(Γ) is a harmonious subgroup of 𝐺 satisfying the required set inclusion
𝐶1 · log Γ ⊆ log H−(Γ) ⊆ log Γ.

Now consider the set H+(Γ) defined by

H+(Γ) := exp
(
𝐶1 ·B

(
1
𝐶1
· spanZ(Λ)

))
= exp

(
𝐶1 · spanZ B

(
1
𝐶1
· Λ

))
.
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Since spanZ B
(

1
𝐶1
· Λ

)
is a bracket-closed additive subgroup of 𝔤 and 𝐶0 divides 𝐶1, lemma 4.4.4

implies that H+(Γ) is a harmonious subgroup of 𝐺. Moreover, log H+(Γ) trivially contains
spanZΛ. As such, it remains only to prove that there exists a constant 𝐶2 = 𝐶2(𝑠) such that
log H+(Γ) ⊆ 1

𝐶2
· Λ. Since 𝐶1 · spanZ(Λ) is bracket-closed and [𝔤𝑖, 𝔤 𝑗 ] ⊆ 𝔤𝑖+ 𝑗 we have that[(

1
𝑛
· spanZ(Λ)

)
∩ 𝔤𝑖,

(
1
𝑚
· spanZ(Λ)

)
∩ 𝔤 𝑗

]
⊆

(
1

𝐶2
1𝑛𝑚

Λ

)
∩ 𝔤𝑖+ 𝑗

for every pair of integers 𝑛, 𝑚 ≥ 0 and 1 ≤ 𝑖, 𝑗 ≤ 𝑠. Thus, it follows by induction on 𝑖 that

B

(
1
𝐶1
· spanZ(Λ)

)
∩ 𝔤𝑖 ⊆

1
𝐶3𝑖−2

1
· (Λ ∩ 𝔤𝑖)

for every 𝑖 ≥ 1 and hence that

B

(
1
𝐶1
· spanZ(Λ)

)
⊆ 1
𝐶3𝑠−2

1
· Λ.

This implies that the claim holds with 𝐶2 = 𝐶
3(𝑠−1)
1 . □

Comparing additive and multiplicative indices
In this section we prove bounds on the index [H+(Γ) : H−(Γ)]. We will deduce these bounds
from the following proposition, which lets us compare additive and multiplicative indices in the
Lie algebra of a simply connected nilpotent Lie group.

Proposition 4.4.11 (Index sandwich). Let Γ1 ⊆ Γ2 be lattices in a simply connected nilpotent Lie
group 𝐺 with Lie algebra 𝔤, and suppose that Λ1 ⊆ Λ2 are additive lattices in 𝔤.

1. If Λ1 ⊆ log Γ1 ⊆ log Γ2 ⊆ Λ2 then [Γ2 : Γ1] ≤ [Λ2 : Λ1].

2. If log Γ1 ⊆ Λ1 ⊆ Λ2 ⊆ log Γ2 then [Γ2 : Γ1] ≥ [Λ2 : Λ1].

In particular, if Γ1 and Γ2 are harmonious in 𝐺 then [Γ2 : Γ1] = [log Γ2 : log Γ1].

The proof of this proposition will require the following classical fact.

Proposition 4.4.12 (Compatibility of Haar measures). Let 𝐺 be a simply connected nilpotent Lie
group and let 𝔤 be the Lie algebra of 𝐺. If 𝜇 is a translation-invariant, locally finite measure on 𝔤

(i.e., a Lebesgue measure) then the pushforward of 𝜇 by the exponential map is a locally finite
measure on 𝐺 that is both left and right invariant (i.e., a bi-invariant Haar measure).
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Proof of proposition 4.4.12. It suffices to prove that for every 𝑋 ∈ 𝔤, the maps ℓ𝑋 : 𝑌 ↦→ 𝑋 ⋄ 𝑌
and 𝑟𝑋 : 𝑌 ↦→ 𝑌 ⋄ 𝑋 preserve the Lebesgue measure on 𝔤. For this, it suffices to prove that the
total derivatives 𝐷ℓ𝑋 and 𝐷𝑟𝑋 have | det(𝐷ℓ𝑋) | = | det(𝐷𝑟𝑋) | = 1 at every 𝑌 ∈ 𝔤. To prove this, it
suffices to prove that both 𝐷ℓ𝑋 and 𝐷𝑟𝑋 can be expressed as the sum of the identity and a nilpotent
linear transformation, which can be done via an explicit computation with the BCH formula. For
details see e.g. [Wan23, Proposition 2.1.1]. □

Proof of proposition 4.4.11. We start by constructing large sets in 𝔤 that have “small boundary-to-
volume ratio” in both the additive and multiplicative senses. (That is, the sets we construct will
yield a Følner sequence for both addition and BCH multiplication on 𝔤.) If𝐺 were assumed to be a
Carnot group we could use the logarithms of balls in a homogeneous left-invariant metric; we will
perform a similar construction for a general Lie group. Let (𝔤𝑖)𝑖≥0 be the lower central series of 𝔤,
and for each 𝑖 ≥ 0 let 𝑉𝑖 be such that 𝔤𝑖 = 𝑉𝑖 ⊕ 𝔤𝑖+1, so that we can write 𝔤 = 𝑉1 ⊕ 𝑉2 ⊕ · · · ⊕ 𝑉𝑠.
For notational convenience we also write 𝑉𝑖 = {0} for 𝑖 > 𝑠. In contrast to the Carnot case, it is not
necessarily the case that 𝑉1 generates 𝔤 as a Lie algebra or that [𝑉𝑖, 𝑉 𝑗 ] ⊆ 𝑉𝑖+ 𝑗 , but we do have that
[𝑉𝑖, 𝑉 𝑗 ] ⊆ [𝔤𝑖, 𝔤 𝑗 ] ⊆ 𝔤𝑖+ 𝑗 =

⊕𝑠

𝑘=𝑖+ 𝑗 𝑉𝑘 for every 𝑖, 𝑗 ≥ 1. Fix an isomorphism of vector spaces
𝔤 � R𝑑 for some 𝑑 ≥ 1 and let ∥ · ∥∞ be the associated∞-norm on 𝔤. For each 𝜆 > 0 let

𝐹𝜆 := {𝑋 ∈ 𝔤 : max
𝑖
𝜆−𝑖∥𝑋𝑖∥∞ ≤ 1} = {𝑋 ∈ 𝔤 : max

𝑖
∥𝑋𝑖∥1/𝑖∞ ≤ 𝜆},

where we write 𝑋 =
∑
𝑖 𝑋𝑖 for the decomposition of 𝑋 induced by the decomposition 𝔤 = 𝑉1 ⊕𝑉2 ⊕

· · · ⊕ 𝑉𝑠. The volume of 𝐹𝜆 satisfies
vol(𝐹𝜆) = 𝜆𝑞

for an integer 𝑞 ≥ 1, which can be expressed as 𝑞 =
∑ℓ
𝑖=1 𝑖 dim(𝑉𝑖) (this is equal to the homogeneous

dimension of 𝐺). For each 𝑋 ∈ 𝔤 we define

((𝑋)) = inf{𝜆 > 0 : 𝑋 ∈ 𝐹𝜆} = max
𝑖
∥𝑋𝑖∥1/𝑖,

so that ((𝑋)) ≤ ∥𝑋 ∥1/𝑖∞ for every 1 ≤ 𝑖 ≤ 𝑠 and 𝑋 ∈ 𝔤𝑖 with equality if 𝑋 ∈ 𝑉𝑖. Note that this is not a
norm on 𝔤 since it does not satisfy ((𝜆𝑋)) = 𝜆((𝑋)) for all 𝑋 ∈ 𝔤 and 𝜆 > 0. (Rather, it scales under
a certain graded dilation map as in the Carnot case.) Moreover, unlike the metrics we considered
on Carnot groups, ((·)) will not be left-invariant in general. Nevertheless, it does trivially satisfy
the triangle inequality in the form

((𝑋 + 𝑌 )) = max
𝑖
∥𝑋𝑖 + 𝑌𝑖∥1/𝑖∞ ≤ max

𝑖
(∥𝑋𝑖∥∞ + ∥𝑌𝑖∥∞)1/𝑖

≤ max
𝑖
(∥𝑋𝑖∥1/𝑖∞ + ∥𝑌𝑖∥1/𝑖∞ ) ≤ ((𝑋)) + ((𝑌 )). (4.4.1)
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As with norms, writing ((𝑋)) = (((𝑋 + 𝑌 ) − 𝑌 )) yields the reverse inequality

((𝑋 + 𝑌 )) ≥ ((𝑋)) − ((𝑌 )), (4.4.2)

so that 𝐹𝜆−((𝑌 )) ⊆ 𝐹𝜆 + 𝑌 ⊆ 𝐹𝜆+((𝑌 )) for every 𝑌 ∈ 𝔤 and 𝜆 ≥ ((𝑌 )).

We will need similar inequalities for the BCH product ((𝑋 ⋄𝑌 )). Since the Lie bracket is bilinear
and 𝔤 is finite-dimensional, there exists a constant 𝐶1 such that ∥ [𝑋,𝑌 ] ∥∞ ≤ 𝐶1∥𝑋 ∥∞∥𝑌 ∥∞ for
every 𝑋,𝑌 ∈ 𝔤. This implies that there exists a constant 𝐶2 such that

(( [𝑋𝑖, 𝑌 𝑗 ])) ≤ ∥[𝑋𝑖, 𝑌 𝑗 ] ∥1/(𝑖+ 𝑗)∞ ≤ 𝐶1/(𝑖+ 𝑗)
1 ∥𝑋𝑖∥1/(𝑖+ 𝑗)∞ ∥𝑌 𝑗 ∥1/(𝑖+ 𝑗)∞ ≤ 𝐶2((𝑋𝑖))𝑖/(𝑖+ 𝑗) ((𝑌 𝑗 )) 𝑗/(𝑖+ 𝑗)

for every 𝑋𝑖 ∈ 𝑉𝑖 and𝑌 𝑗 ∈ 𝑉 𝑗 . Together with (4.4.1) this implies that there exists a constant 𝐶3 such
that

(( [𝑋,𝑌 ])) ≤ 𝐶3 max
{
((𝑋))1−𝜃 ((𝑌 ))𝜃 :

1
𝑠
≤ 𝜃 ≤ 𝑠 − 1

𝑠

}
for every 𝑋,𝑌 ∈ 𝔤. It follows by induction on 𝑘 ≥ 2 that if 𝐿 (𝑋,𝑌 ) is any Lie monomial of degree
𝑘 ≥ 2 then, writing 𝐿 (𝑋,𝑌 ) = [𝐿1(𝑋,𝑌 ), 𝐿2(𝑋,𝑌 )] for two Lie monomials of degree 𝑎, 𝑘 −𝑎 < 𝑘 ,

((𝐿 (𝑋,𝑌 ))) ≤ 𝐶3 max
{
((𝐿1(𝑋,𝑌 )))1−𝜃 ((𝐿2(𝑋,𝑌 )))𝜃 :

1
𝑠
≤ 𝜃 ≤ 𝑠 − 1

𝑠

}
≤ 𝐶𝑘−1

3 max
{
((𝑋))1−𝜃 ((𝑌 ))𝜃 :

1
𝑠𝑘
≤ 𝜃 ≤ 𝑠

𝑘 − 1
𝑠𝑘

}
for every 𝑋,𝑌 ∈ 𝔤. (The case that one of the monomials 𝐿1 or 𝐿2 has degree one, and so is equal to
𝑋 or 𝑌 , must be checked separately.) We deduce from this together with (4.4.1) and the definition
of BCH multiplication that there exists a constant 𝐶4 such that

((𝑋 ⋄𝑌 )) ≤ ((𝑋)) + ((𝑌 )) + 𝐶4 max
{
((𝑋))1−𝜃 ((𝑌 ))𝜃 :

1
𝑠𝑠
≤ 𝜃 ≤ 𝑠

𝑠 − 1
𝑠𝑠

}
(4.4.3)

for every 𝑋,𝑌 ∈ 𝔤. Since−𝑌 is both the additive and BCH inverse of𝑌 , we can write 𝑋 = 𝑋⋄𝑌⋄(−𝑌 )
to obtain that there exists a constant 𝐶5 such that the complementary inequality

((𝑋)) ≤ ((𝑋 ⋄𝑌 )) + ((𝑌 )) + 𝐶4 max
{
((𝑋 ⋄𝑌 ))1−𝜃 ((𝑌 ))𝜃 :

1
𝑠𝑠
≤ 𝜃 ≤ 𝑠

𝑠 − 1
𝑠𝑠

}
≤ ((𝑋 ⋄𝑌 )) + 𝐶5((𝑌 )) + 𝐶5 max

{
((𝑋))1−𝜃 ((𝑌 ))𝜃 :

1
𝑠2𝑠 ≤ 𝜃 ≤

𝑠2𝑠 − 1
𝑠2𝑠

}
(4.4.4)

holds for every 𝑋,𝑌 ∈ 𝔤.

We now use the sets 𝐹𝜆 to prove the claim about indices. Suppose that Λ is an additive lattice in 𝔤

and that Γ is a lattice in𝐺. Let 𝐾Λ be a fundamental domain for Λ in 𝔤 and let 𝐾Γ be a fundamental
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domain for Γ in𝐺. Since 𝐾Λ∪ log𝐾Γ is compact, max{((𝑌 )) : 𝑌 ∈ 𝐾Λ∪ log𝐾Γ} is finite. As such,
it follows from (4.4.1) and (4.4.2) that there exist positive constants 𝐶 and 𝜀 (depending on 𝐾Λ and
𝐾Γ) such that

((𝑋)) − 𝐶 ≤ ((𝑋 + 𝑌 )) ≤ ((𝑋)) + 𝐶

and
((𝑋)) − 𝐶 ((𝑋))1−𝜀 − 𝐶 ≤ ((𝑋 ⋄𝑌 )) ≤ ((𝑋)) + 𝐶 ((𝑋))1−𝜀 + 𝐶

for every 𝑥 ∈ 𝔤 and 𝑦 ∈ 𝐾Λ∪ log𝐾Γ. Since the sets (𝑋 +𝐾Λ : 𝑋 ∈ Λ) and (𝑋 ⋄ log𝐾Γ : 𝑋 ∈ log Γ)
each cover 𝔤 (with distinct sets having measure-zero intersection), it follows that

𝐹𝜆−𝐶 ⊆
⋃

𝑋∈𝐹𝜆∩Λ
(𝑋 + 𝐾Λ) ⊆ 𝐹𝜆+𝐶

and
𝐹𝜆−𝐶𝜆1−𝜀−𝐶 ⊆

⋃
𝑋∈𝐹𝜆∩log Γ

(𝑋 ⋄ log𝐾Γ) ⊆ 𝐹𝜆+𝐶𝜆1−𝜀+𝐶

for every 𝜆 ≥ 1 such that 𝜆 − 𝐶𝜆1−𝜀 − 𝐶 > 0. Taking volumes and using that addition and BCH
multiplication are both measure-preserving, we deduce that

(𝜆 − 𝐶)𝑞 ≤ |𝐹𝜆 ∩ Λ| · vol(𝐾Λ) = vol

( ⋃
𝑋∈𝐹𝜆∩Λ

(𝑋 + 𝐾Λ)
)
≤ (𝜆 + 𝐶)𝑞

and

(𝜆 − 𝐶𝜆1−𝜀 − 𝐶)𝑞 ≤ |𝐹𝜆 ∩ log Γ| · vol(log𝐾Γ) = vol ©­«
⋃

𝑋∈𝐹𝜆∩log Γ
(𝑋 ⋄ log𝐾Γ)ª®¬ ≤ (𝜆 + 𝐶𝜆1−𝜀 + 𝐶)𝑞

for every 𝜆 ≥ 1 such that 𝜆 − 𝐶𝜆1−𝜀 − 𝐶 > 0, so that

vol(𝐾Λ) = lim
𝜆→∞

𝜆𝑞

|𝐹𝜆 ∩ Λ|
and vol(log𝐾Γ) = lim

𝜆→∞

𝜆𝑞

|𝐹𝜆 ∩ log Γ| . (4.4.5)

This is easily seen to imply the claim. □

Corollary 4.4.13. Let 𝐺 be a simply connected nilpotent Lie group of step 𝑠 and dimension 𝑑, and
let the constants 𝐶1 = 𝐶1(𝑠) and 𝐶2 = 𝐶2(𝑠) be as in Theorem 4.4.2. If Γ is a discrete subgroup of
𝐺 then the harmonious subgroups H+(Γ) and H−(Γ) satisfy the index bounds

[H+(Γ) : Γ] [Γ : H−(Γ)] = [H+(Γ) : H−(Γ)] ≤ (𝐶2𝐶1)𝑑 .

Proof. We may assume without loss of generality that Γ is a lattice, replacing𝐺 by C (Γ) otherwise.
Since log H+(Γ) ⊆ 𝐶1𝐶2 · log H−(Γ) we have that [log H+(Γ) : log H−(Γ)] ≤ (𝐶1𝐶2)𝑑 , and the
claim follows from proposition 4.4.11. □
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4.5 Proof of the main theorems
In this section we prove our main theorems, Theorems 4.1.3 and 8.1.1. We begin by proving the
following proposition, which is a direct analogue of Theorem 4.3.1 for Carnot groups.

Proposition 4.5.1. Let 𝐺 be a Carnot group with Lie algebra 𝔤, let 𝑑𝐺 be a left-invariant homo-
geneous metric on 𝐺, and for each 𝑟 > 0 let 𝐵𝑟 be the ball of radius 𝑟 around id in (𝐺, 𝑑𝐺).
Then

sup {#{⟨𝐻 ∩ 𝐵2𝑘 ⟩ : 𝑘 ∈ Z} : 𝐻 a discrete subgroup of 𝐺} < ∞.

It will suffice for our applications that all relevant constants depend on the pair (𝐺, 𝑑𝐺) in an
arbitrary fashion.

Proof of proposition 4.5.1. Since 𝑑𝐺 is consistent with the usual topology of 𝐺, the (closed) ball
𝐵𝑟 is a compact subset of 𝐺 containing a neighbourhood of the identity for each 𝑟 > 0. In
particular, there exists a convex, symmetric subset 𝐾 of 𝔤 and a constant 𝐶0 ≥ 1 such that
𝐾 ⊆ log 𝐵1 ⊆ 𝐶0𝐾 ⊆ 𝛿𝐶0 (𝐾), where (𝛿𝜆)𝜆>0 is the dilation semigroup on the stratified Lie algebra
𝔤. Thus, the balls 𝐵𝑟 are sandwiched between the exponentials of the dilates of 𝐾:

𝛿𝑟 (𝐾) ⊆ log 𝐵𝑟 ⊆ 𝛿𝐶0𝑟 (𝐾) (4.5.1)

for every 𝑟 > 0. The sets 𝛿𝜆 (𝐾) are all convex and symmetric since they are linear images of
the convex symmetric set 𝐾; this will allow us to apply Theorem 4.3.1 to an appropriately chosen
additive subgroup of 𝔤.

Let Λ = log𝐻, and for each 𝑘 ∈ Z let 𝐻𝑘 = ⟨𝐻 ∩ 𝐵2𝑘 ⟩ and Λ𝑘 = log𝐻𝑘 . By Theorem 4.4.2, there
exists an integer constant 𝐶1 such that Λ̃ := spanZ(𝐶1 ·Λ) is an additive, bracket-closed lattice in 𝔤

whose exponential H−(𝐻) is a harmonious subgroup of 𝐺 that is contained in 𝐻. It follows by a
direct application of Theorem 4.3.1 that there exists a constant 𝐶2 such that

#{spanZ(Λ̃ ∩ 𝛿𝜆 (𝐾)) : 𝜆 > 0} ≤ 𝐶2.

For each 𝑘 ≥ 0 we have trivially that 𝐻𝑘 ∩𝐵2𝑘 = 𝐻∩𝐵2𝑘 and hence that Λ𝑘 ∩𝛿2𝑘 (𝐾) = Λ∩𝛿2𝑘 (𝐾).
In particular,

Λ̃ ∩ 𝛿2𝑘 (𝐾) ⊆ Λ̃ ∩ 𝐵2𝑘 ⊆ Λ ∩ 𝐵2𝑘 = Λ𝑘 ∩ 𝐵2𝑘 .

On the other hand, letting 𝑚 = ⌈log2𝐶0⌉, we also have by (4.5.1) that

Λ̃ ∩ 𝛿2𝑘+𝑚 (𝐾) ⊇ Λ̃ ∩ 𝐵2𝑘 ⊇ (𝐶1 · Λ) ∩ 𝐵2𝑘 ⊇ 𝐶1 · (Λ ∩ 𝐵2𝑘 ) = 𝐶1 · (Λ𝑘 ∩ 𝐵2𝑘 ).
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Thus, if we define Λ̃𝑘 = spanZ(Λ̃ ∩ 𝛿2𝑘 (𝐾)) for each 𝑘 > 0 then

𝐶1 · spanZ(Λ𝑘−𝑚 ∩ 𝐵2𝑘−𝑚) ⊆ Λ̃𝑘 ⊆ spanZ(Λ𝑘 ∩ 𝐵2𝑘 ) (4.5.2)

for every 𝑘 ∈ Z.

Consider an interval [𝑎, 𝑏] ∩ Z such that Λ̃𝑘 does not change as 𝑘 varies over [𝑎, 𝑏] ∩ Z. Then we
have by (4.5.2) that

𝐶1 · spanZ(Λ𝑏−𝑚 ∩ 𝐵2𝑏−𝑚) ⊆ spanZ(Λ𝑎 ∩ 𝐵2𝑎)

and hence that
[spanZ(Λ𝑏−𝑚 ∩ 𝐵2𝑏−𝑚) : spanZ(Λ𝑎 ∩ 𝐵2𝑎)] ≤ 𝐶𝑑1 .

Since strict sublattices have an index of at least 2, this in turn implies that

#{spanZ(Λ𝑘 ∩ 𝐵2𝑘 ) : 𝑘 ∈ [𝑎, 𝑏]} ≤ 𝑚 + #{spanZ(Λ𝑘 ∩ 𝐵2𝑘 ) : 𝑘 ∈ [𝑎, 𝑏 − 𝑚]} ≤ 𝑚 + 𝑑 log2𝐶1.

Since [𝑎, 𝑏] was an arbitrary interval over which Λ̃𝑘 remained constant, it follows that there exist
constants 𝐶3 and 𝐶4 such that

#{spanZ(Λ𝑘 ∩ 𝐵2𝑘 ) : 𝑘 ∈ Z} ≤ 𝐶3#{Λ̃𝑘 : 𝑘 ∈ Z} ≤ 𝐶4.

Now, for each 𝑘 , (since the constant 𝐶1 divides the constant appearing in lemma 4.4.4) the set
𝐶1 · spanZ(B( 1

𝐶1
(Λ𝑘 ∩ 𝐵2𝑘 )) ⊆ log H+(𝐻𝑘 ) is an additive, bracket-closed subgroup of 𝔤 whose

exponential is a subgroup of 𝐺 that contains a generating set for 𝐻𝑘 , so that

Λ𝑘 ⊆ 𝐶1 · spanZ

(
B

(
1
𝐶1
(Λ𝑘 ∩ 𝐵2𝑘 )

))
⊆ log H+(𝐻𝑘 )

for every 𝑘 . As such, if [𝑎, 𝑏] ∩ Z is an interval such that spanZ(Λ𝑘 ∩ 𝐵2𝑘 ) does not change as 𝑘
varies over [𝑎, 𝑏] ∩ Z then we have that

Λ𝑎 ⊆ Λ𝑏 ⊆ 𝐶1 · spanZ

(
B

(
1
𝐶1
(Λ𝑎 ∩ 𝐵2𝑎)

))
⊆ log H+(Λ𝑎)

and hence by corollary 4.4.13 that [𝐻𝑏 : 𝐻𝑎] ≤ 𝐶5 for some constant 𝐶5. Arguing as above, this
implies that there exist constants 𝐶6 and 𝐶7 such that

#{𝐻𝑘 : 𝑘 ∈ Z} ≤ 𝐶6#{spanZ(Λ𝑘 ∩ 𝐵2𝑘 ) : 𝑘 ∈ Z} ≤ 𝐶7,

completing the proof. □
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Our next goal is to use proposition 4.5.1 to prove the special case of Theorem 4.1.3 in which the
group is nilpotent of bounded step.

Proposition 4.5.2 (Exploring subgroups of nilpotent groups). For each 𝑠, 𝑘 ≥ 1 there exists a
constant 𝐶 (𝑠, 𝑘) such that the following holds. Let 𝑁 be a nilpotent group of step 𝑠 generated by
some set 𝑆 with |𝑆 | ≤ 𝑘 , let 𝐻 be a subgroup of 𝑁 , and for each 𝑛 ≥ 1 let 𝐻𝑛 be the subgroup of 𝐻
generated by elements that have word length at most 2𝑛 in (𝐺, 𝑆). Then

#{𝑛 : 𝐻𝑛+1 ≠ 𝐻𝑛} ≤ 𝐶.

Proof of Proposition 4.5.2. We first argue that it suffices to consider the case that 𝑁 is equal to the
free step-𝑠 nilpotent group 𝑁𝑠,𝑆. Let 𝑁 , 𝑆, and (𝐻𝑛)𝑛≥0 be as in the statement of the theorem. Let
𝑁𝑠,𝑆 be the free step-𝑠 nilpotent group over 𝑆 and let 𝐺𝑠,𝑆 be the free step-𝑠 nilpotent Lie group
over 𝑆, so that 𝑁𝑠,𝑆 can be identified with the subgroup of 𝐺𝑠,𝑆 generated by 𝑆. By the universal
property of 𝑁𝑠,𝑆, there exists a homomorphism 𝜋 : 𝑁𝑠,𝑆 → 𝑁 satisfying 𝜋(𝑥) = 𝑥 for every 𝑥 ∈ 𝑆,
which is necessarily unique and surjective since 𝑆 generates 𝑁 . Thus, 𝜋 maps the word metric
𝑟-ball in (𝑁𝑠,𝑆, 𝑆) to the word metric 𝑟-ball in (𝑁, 𝑆) for every 𝑟 ≥ 0. For each 𝑛 ≥ 0, let 𝐻̃𝑛 be the
subgroup of 𝑁𝑠,𝑆 generated by the elements of 𝜋−1(𝐻) that have word length at most 2𝑛 in (𝑁𝑠,𝑆, 𝑆).
Letting 𝐾 denote the kernel of 𝜋, we observe that the subgroup 𝐾𝐻̃𝑛 = {𝑘ℎ : 𝑘 ∈ 𝐾, ℎ ∈ 𝐻̃𝑛} of
𝑁𝑠,𝑆 is equal to the preimage 𝜋−1(𝐻𝑛): On the one hand, since 𝐾 is normal in 𝐾𝐻̃𝑛, 𝜋(𝐾𝐻̃𝑛) is a
subgroup of 𝑁 that contains the set of words in 𝐻 that have word length at most 2𝑛, and therefore
contains 𝐻𝑛. On the other hand, if 𝑥 = 𝑘ℎ is an element of then we can write ℎ = ℎ1ℎ2 · · · ℎℓ as a
product of elements of 𝜋−1(𝐻) of word length at most 2𝑛 in (𝑁𝑠,𝑆, 𝑆), so that 𝜋(ℎ𝑖) is an element
of 𝐻 of word length at most 2𝑛 in (𝑁, 𝑆) and 𝜋(𝑥) belongs to 𝜋−1(𝐻𝑛) as required. Since 𝜋 is
surjective, we have the chain of implications

(𝐻̃𝑛+1 = 𝐻̃𝑛) ⇒ (𝐾𝐻̃𝑛+1 = 𝐾𝐻̃𝑛) ⇒ (𝐻𝑛+1 = 𝐻𝑛).

Thus, it suffices to prove that the theorem holds with 𝑁 and 𝐻 replaced by 𝑁𝑠,𝑆 and 𝜋−1(𝐻).

From now on we assume that 𝑁 = 𝑁𝑠,𝑆 and let 𝐺 = 𝐺𝑠,𝑆. Since 𝑁 , 𝐺, and the embedding 𝑁 → 𝐺

are determined up to isomorphism by 𝑠 and |𝑆 |, we are now free to use constants that depend on
this data in an arbitrary way (but must still be independent of the choice of subgroup 𝐻 ⊆ 𝑁). By
Pansu’s theorem as formulated in (4.2.2), there exists a left-invariant Carnot metric 𝑑𝐺 on 𝐺 such
that

𝑑𝐺 (id, 𝑥)
𝑑𝑆 (id, 𝑥)

→ 1 as 𝑥 →∞ in 𝑁 .
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(For the argument to work we need only that the embedding of (𝑁, 𝑑𝑆) into (𝐺, 𝑑𝐺) is a quasi-
isometry.) In particular, there exist positive constants 𝑐 and 𝐶 such that

log 𝑁 ∩ 𝐵𝑐𝑛 ⊆ log(𝑆𝑛) ⊆ log 𝑁 ∩ 𝐵𝐶𝑛

for every 𝑛 ≥ 0, where we write 𝑆 = 𝑆 ∪ {id} ∪ 𝑆−1. This implies that if 𝐻 is a subgroup of 𝑁 then

⟨𝐻 ∩ 𝐵𝑐2𝑘 ⟩ ⊆ 𝐻𝑘 ⊆ ⟨𝐻 ∩ 𝐵𝐶2𝑘 ⟩

for every 𝑘 ≥ 0, and the claim follows easily from this together with proposition 4.5.1. □

We next deduce Theorem 4.1.3 from Proposition 4.5.2 and the Breuillard-Green-Tao theorem. The
proof will use the following elementary lemmas, the first of which is proven in [BT16, Lemma 4.2].
Recall that we write 𝑆 = 𝑆 ∪ {id} ∪ 𝑆−1.

Lemma 4.5.3. Let 𝐺 be a group, and let 𝐻 be a subgroup of 𝐺 with index at most 𝑛. If 𝑆 is a finite
generating set for 𝐺, then (𝑆)2𝑛−1 ∩ 𝐻 is a generating set for 𝐻.

Lemma 4.5.4. Let 𝐺 be a group, and let 𝐻1 ⊆ 𝐻2 ⊆ · · · ⊆ 𝐻𝑛 and 𝐻′1 ⊆ 𝐻
′
2 ⊆ · · · ⊆ 𝐻

′
𝑛 be two

chains of subgroups such that 𝐻′
𝑖

is a subgroup of 𝐻𝑖 for each 1 ≤ 𝑖 ≤ 𝑛. Then

#{𝐻𝑖 : 1 ≤ 𝑖 ≤ 𝑛} ≤ (1 + ⌊log2(max
𝑖
[𝐻𝑖 : 𝐻′𝑖 ])⌋) · #{𝐻′𝑖 : 1 ≤ 𝑖 ≤ 𝑛}.

Proof of lemma 4.5.4. By taking a subsequence if necessary, we may assume that 𝐻𝑖+1 ≠ 𝐻𝑖 for
every 1 ≤ 𝑖 < 𝑛. Let ℓ = #{𝐻′

𝑖
: 1 ≤ 𝑖 ≤ 𝑛} and for each 0 ≤ 𝑘 < ℓ let 𝑖𝑘 be the 𝑘th time 𝐻′

𝑖

changes, so that 𝑖0 = 1 and 𝑖𝑘 = min{𝑖 > 𝑖𝑘 : 𝐻′
𝑖
≠ 𝐻′

𝑖𝑘
} for each 1 ≤ 𝑘 < ℓ. We also set 𝑖ℓ = 𝑛 + 1

for notational convenience. Since 𝐻′
𝑖𝑘−1

= 𝐻′
𝑖𝑘−1 is a subgroup of 𝐻𝑖𝑘−1 for each 1 ≤ 𝑘 ≤ ℓ, we have

that
[𝐻𝑖𝑘−1 : 𝐻𝑖𝑘−1] ≤ [𝐻𝑖𝑘−1 : 𝐻′𝑖𝑘−1] ≤ max

𝑖
[𝐻𝑖 : 𝐻′𝑖 ]

for every 1 ≤ 𝑘 ≤ ℓ. On the other hand, we also have that [𝐻𝑖𝑘−1 : 𝐻𝑖𝑘−1] =
∏𝑖𝑘−2
𝑖=𝑖𝑘−1
[𝐻𝑖+1 : 𝐻𝑖] ≥

2𝑖𝑘−1−𝑖𝑘−1 for every 1 ≤ 𝑘 ≤ ℓ, and hence that

𝑛 =

ℓ∑︁
𝑘=1
(𝑖𝑘 − 𝑖𝑘−1) ≤ ℓ · (1 + ⌊log2(max

𝑖
[𝐻𝑖 : 𝐻′𝑖 ])⌋)

as claimed. □

Corollary 4.5.5. Let𝐺 be a group, let𝐺′ be a finite-index subgroup of𝐺, and let 𝐻1 ⊆ 𝐻2 ⊆ · · · ⊆
𝐻𝑛 be an increasing sequence of subgroups of 𝐺. Then

#{𝐻𝑖 : 1 ≤ 𝑖 ≤ 𝑛} ≤ (1 + ⌊log2 [𝐺 : 𝐺′]⌋) · #{𝐻𝑖 ∩ 𝐺′ : 1 ≤ 𝑖 ≤ 𝑛}.
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Proof. Apply lemma 4.5.4 with 𝐻′
𝑖
= 𝐻𝑖 ∩ 𝐺′ and use that [𝐻𝑖 : 𝐻𝑖 ∩ 𝐺′] ≤ [𝐺 : 𝐺′]. □

We now have everything we need to prove Theorem 4.1.3.

Proof of Theorem 4.1.3. Let 𝐾 ≥ 1 and let 𝑟0 = 𝑟0(𝐾) and 𝐶1 = 𝐶1(𝐾) be as in Theorem 4.1.1.
Suppose that 𝑟 ≥ 𝑟0 is such that Gr(3𝑟) ≤ 𝐾 Gr(𝑟), and let𝑄⊳𝐺 and𝑁⊳𝐺/𝑄 be as in Theorem 4.1.1.
Since 𝑁 has index at most 𝐶1 in 𝐺/𝑄, lemma 4.5.3 implies that the set 𝑆′ := 𝜋((𝑆)2𝐶1−1) ∩ 𝑁 is a
generating set for 𝑁 , and the word metric associated to the pair (𝑁, 𝑆′) is bi-Lipschitz equivalent
to the restriction of the word metric on (𝐺/𝑄, 𝜋(𝑆)) to 𝑁 , with constants depending only on 𝐾 .

Let 𝐻′ = (𝑄𝐻)/𝑄, so that 𝐻′ is a subgroup of 𝐺/𝑄 and 𝐻̃ := 𝐻′∩ 𝑁 is a subgroup of 𝑁 . For each
𝑛 ≥ 0 let 𝑊′𝑛 and 𝑊̃𝑛 be the set of the elements of 𝐻′ and 𝐻̃, respectively, that have word length
at most 2𝑛 with respect to (𝐺/𝑄, 𝜋(𝑆)), and define 𝐻′𝑛 = ⟨𝑊′𝑛⟩ and 𝐻̃𝑛 = ⟨𝑊̃𝑛⟩ for every 𝑛 ≥ 0.
Since [𝐻′𝑛 : 𝐻′𝑛 ∩ 𝑁] ≤ [𝐺/𝑄 : 𝑁] ≤ 𝐶1 and 𝑊′𝑛 is a finite symmetric generating set for 𝐻′𝑛, the
set (𝑊′𝑛)2𝐶1−1 ∩ 𝑁 is a generating set for 𝐻′𝑛 ∩ 𝑁 , so that if we define 𝑚 = ⌈log2(2𝐶1 − 1)⌉ then

𝐻′𝑛 ∩ 𝑁 ⊆ 𝐻̃𝑛+𝑚 ⊆ 𝐻′𝑛+𝑚 ∩ 𝑁 (4.5.3)

for every 𝑛 ≥ 0.

Using the above mentioned bi-Lipschitz equivalence between the two different word metrics on 𝑁
and the fact that the step of𝑁 and the size of the generating set 𝑆′ are bounded by constants depending
only on 𝐾 and 𝑘 , it follows from Proposition 4.5.2 that there exists a constant 𝐶2 = 𝐶2(𝐾, 𝑘) such
that #{𝐻̃𝑛 : 𝑛 ≥ 0} ≤ 𝐶2. It follows from this and (4.5.3) that there exists a constant 𝐶3 = 𝐶3(𝐾, 𝑘)
such that #{𝑁 ∩ 𝐻′𝑛 : 𝑛 ≥ 0} ≤ 𝐶3, and hence by corollary 4.5.5 that there exists a constant
𝐶4 = 𝐶4(𝐾, 𝑘) such that #{𝐻′𝑛 : 𝑛 ≥ 0} ≤ 𝐶4.

Now, as in the proof of Proposition 4.5.2, we have that 𝑄𝐻𝑛 = 𝜋−1(𝐻′𝑛) for every 𝑛 ≥ 0. Observe
that if 𝑄𝐻𝑛+1 = 𝑄𝐻𝑛 but 𝐻𝑛+1 ≠ 𝐻𝑛 then there exist 𝑞𝑛, 𝑞𝑛+1 ∈ 𝑄, ℎ𝑛 ∈ 𝐻𝑛, and ℎ𝑛+1 ∈ 𝐻𝑛+1 \ 𝐻𝑛
such that 𝑞𝑛ℎ𝑛 = 𝑞𝑛+1ℎ𝑛+1, and hence that ℎ𝑛+1ℎ−1

𝑛 = 𝑞−1
𝑛+1𝑞𝑛 ∈ 𝑄. Since 𝑄 has diameter at most

𝐶1𝑟, this implies that ℎ𝑛+1ℎ−1
𝑛 has word length at most 𝐶1𝑟, contradicting the assumption that

ℎ𝑛+1 ∉ 𝐻𝑛 if 2𝑛 ≥ 𝐶1𝑟. It follows that there exists a constant 𝐶5 = 𝐶5(𝐾) such that

#{𝑛 ≥ 𝐶5 + log2 𝑟 : 𝐻𝑛+1 ≠ 𝐻𝑛} ≤ #{𝑛 ≥ 𝐶5 + log2 𝑟 : 𝑄𝐻𝑛+1 ≠ 𝑄𝐻𝑛} ≤ #{𝐻′𝑛 : 𝑛 ≥ 0} ≤ 𝐶4,

which easily implies the claim. □
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It remains only to deduce Theorem 8.1.1 from Theorem 4.1.3. We will need the following lemma
about the injectivity radius of the quotient 𝐹𝑆/⟨⟨𝑅𝑛⟩⟩ → 𝐺. For each 𝑛 ≥ 0 let 𝐺𝑛 = 𝐹𝑆/⟨⟨𝑅𝑛⟩⟩.

Lemma 4.5.6. Let 𝐺 be a group with a finite generating set 𝑆. The quotient map 𝐺𝑛 → 𝐺 induces
a map between Cayley graphs that restricts to an isomorphism between the balls of radius 2𝑛−1 − 1
around the identity.

Proof of Lemma 4.5.6. It suffices to prove that the quotient map 𝜋 : 𝐺𝑛 → 𝐺 is injective on (𝑆)2𝑛−1 .
(This implies that 𝜋(𝑥𝑠) = 𝜋(𝑦) if and only if 𝑥𝑠 = 𝑦 for every 𝑠 ∈ 𝑆 and 𝑥, 𝑦 in the ball of radius
2𝑛−1 − 1 and hence that the balls of radius 2𝑛−1 − 1 are isomorphic.) Suppose for contradiction that
this is false. Then there exist 𝑢, 𝑣 ∈ (𝑆)2𝑛−1 ⊆ 𝐹𝑆 such that 𝑢−1𝑣 ∈ 𝑅 \ ⟨⟨𝑅𝑛⟩⟩. Since 𝑢 and 𝑣 both
belong to (𝑆)2𝑛−1 , the product 𝑢−1𝑣 belongs to (𝑆)2𝑛 , and since it also belongs to 𝑅 it must belong
to 𝑅𝑛 by definition of 𝑅𝑛. This contradicts the assumption that 𝑢−1𝑣 ∉ ⟨⟨𝑅𝑛⟩⟩. □

Proof of Theorem 8.1.1. Let 𝑟0 = 𝑟0(𝐾) and 𝐶 = 𝐶 (𝐾, 𝑘) be the constants from Theorem 4.1.3.
Let 𝑛0 = ⌈4 + log2 𝑟⌉ and let 𝐺′ = 𝐹𝑆/⟨⟨𝑅𝑛0⟩⟩. The projection 𝐺′ → 𝐺 induces a surjective
graph homomorphism between the Cayley graphs Cay(𝐺′, 𝑆) and Cay(𝐺, 𝑆) that restricts to an
isomorphism between the balls of radius 2𝑛0−1 − 1 ≥ 4𝑟. Let 𝐻 be the subgroup of 𝐺′ generated by⋃
𝑛≥𝑛0 (𝑅𝑛/⟨⟨𝑅𝑛0⟩⟩) and, for each 𝑛 ≥ 𝑛0, let 𝐻𝑛 be the subgroup of 𝐻 generated by 𝑅𝑛/⟨⟨𝑅0⟩⟩. If

𝑟 ≥ 𝑟0, we may apply Theorem 4.1.3 to 𝐺′ and 𝐻 to obtain that #{𝐻𝑛 : 𝑛 ≥ 𝑛0} ≤ 𝐶, and it follows
that

#{⟨⟨𝑅𝑛⟩⟩ : 𝑛 ≥ 𝑛0} = #{⟨⟨𝐻𝑛⟩⟩ : 𝑛 ≥ 𝑛0} ≤ #{𝐻𝑛 : 𝑛 ≥ 𝑛0} ≤ 𝐶

as claimed. □
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157C h a p t e r 5

SUPERCRITICAL PERCOLATION ON FINITE TRANSITIVE GRAPHS I:
UNIQUENESS OF THE GIANT COMPONENT

Joint with Tom Hutchcroft

Abstract
Let (𝐺𝑛)𝑛≥1 = ((𝑉𝑛, 𝐸𝑛))𝑛≥1 be a sequence of finite, connected, vertex-transitive graphs with
volume tending to infinity. We say that a sequence of parameters (𝑝𝑛)𝑛≥1 in [0, 1] is supercritical
with respect to Bernoulli bond percolation P𝐺𝑝 if there exists 𝜀 > 0 and 𝑁 < ∞ such that

P𝐺𝑛(1−𝜀)𝑝𝑛 (the largest cluster contains at least 𝜀 |𝑉𝑛 | vertices) ≥ 𝜀

for every 𝑛 ≥ 𝑁 with 𝑝𝑛 < 1. We prove that if (𝐺𝑛)𝑛≥1 is sparse, meaning that the degrees
are sublinear in the number of vertices, then the supercritical giant cluster is unique with high
probability in the sense that if (𝑝𝑛)𝑛≥1 is supercritical then

lim
𝑛→∞

P𝐺𝑛𝑝𝑛 (the second largest cluster contains at least 𝑐 |𝑉𝑛 | vertices) = 0

for every 𝑐 > 0. This result is new even under the stronger hypothesis that (𝐺𝑛)𝑛≥1 has uniformly
bounded vertex degrees, in which case it verifies a conjecture of Benjamini (2001). Previous work
of many authors had established the same theorem for complete graphs, tori, hypercubes, and
bounded degree expander graphs, each using methods that are highly specific to the examples they
treated. We also give a complete solution to the problem of supercritical uniqueness for dense
vertex-transitive graphs, establishing a simple necessary and sufficient isoperimetric condition for
uniqueness to hold.

5.1 Introduction
Let 𝐺 = (𝑉, 𝐸) be a countable graph that is connected and vertex-transitive, meaning that for all
vertices 𝑢, 𝑣 ∈ 𝑉 there is a graph automorphism 𝜙 ∈ Aut𝐺 with 𝜙(𝑢) = 𝑣. Given 𝑝 ∈ [0, 1],
Bernoulli bond percolation P𝐺𝑝 (abbreviated P𝑝 when the choice of 𝐺 is clear from context) is the
distribution of a random spanning subgraph 𝜔 formed by independently including each edge with
probability 𝑝. We identify 𝜔 with an element of {0, 1}𝐸 where 𝜔(𝑒) = 1 means that the edge 𝑒
is present in 𝜔. The edges in 𝜔 are called open and the rest are called closed. We are interested



primarily in the geometry of the connected components of 𝜔, which we refer to as clusters. Much
of the interest in the model stems from the existence of a phase transition: For infinite graphs,
there is typically1 a critical probability 0 < 𝑝𝑐 < 1 such that every cluster is finite almost surely
when 𝑝 < 𝑝𝑐, while at least one infinite cluster exists almost surely when 𝑝 > 𝑝𝑐. For large finite
graphs, one typically observes a similar phase transition in which a giant component, containing a
positive proportion of all vertices, emerges as 𝑝 is varied through a small interval. The regime in
which an infinite/giant cluster exists is known as the supercritical phase. It is now known that the
supercritical phase is always non-degenerate for bounded degree transitive graphs that are strictly
more than one-dimensional in an appropriate coarse-geometric sense: this was proven for infinite
graphs by Duminil-Copin, Goswami, Raoufi, Severo, and Yadin [Dum+20b] and for finite graphs
by the second author and Tointon [HT21c].

Once one knows that the supercritical phase is non-degenerate, so that infinite/giant clusters exist
for sufficiently large values of 𝑝, a central problem is to understand the number of these clus-
ters. For infinite transitive graphs, this is the subject of a famous conjecture of Benjamini and
Schramm [BS96c] stating that the infinite cluster is unique for every 𝑝 > 𝑝𝑐 if and only if the graph
is amenable. The ‘if’ direction of this conjecture follows from the classical work of Aizenman,
Kesten, and Newman [AKN87a] and Burton and Keane [BK89], while the ‘only if’ direction re-
mains open in general; see e.g. [MR3352259; Hut20f; Hut19a; LP16c; PS00] for an overview of
what is known.

In contrast, for finite transitive graphs, Benjamini [Ben01a, Conjecture 1.2] conjectured in 2001 that
the giant cluster should always be unique in the supercritical regime, irrespective of the geometry
of the graph. Several works, some of which are very classical, have established versions of this
conjecture in special cases including for complete graphs [ER61; Bol84], hypercubes [AKS82a;
BKŁ92], Euclidean tori of fixed dimension [HR06], and bounded degree expanders [ABS04b].
Each of these works uses methods that are very specific to the example it treats, with the analysis
of the tori (Z𝑑/𝑛Z𝑑)𝑛≥1 in dimension 𝑑 ≥ 3 relying in particular on the important and technically
challenging work of Grimmett and Marstrand [GM90b]. A related conjecture giving mild geometric
conditions under which it should be impossible to have multiple giant clusters both above and at
criticality was subsequently stated in the influential work of Alon, Benjamini, and Stacey [ABS04b,
Conjecture 1.1].

A central difficulty in the study of this conjecture, and in the study of percolation on finite graphs
1We keep the meaning of ‘typically’ intentionally vague. One very general conjecture [BS96c, Question 2] is that

𝑝𝑐 < 1 for all (not necessarily transitive) infinite graphs with isoperimetric dimensional strictly greater than 1.
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more generally, is that many of the most important qualitative tools used to study the infinite case,
such as the ergodic theorem, break down completely in the finite case. For example, adapting
the Burton–Keane uniqueness proof to the case of finite graphs merely shows that each vertex is
unlikely to have three distinct large clusters in a small vicinity around it – a statement that need not
in general be in tension with the existence of multiple giant components in a finite graph. Indeed,
while the Burton–Keane proof applies to arbitrary insertion-tolerant automorphism-invariant per-
colation processes, it is possible to construct insertion-tolerant automorphism-invariant percolation
processes on the torus (Z/𝑛Z)2 that have multiple giant components with high probability. In fact,
for the highly asymmetric torus (Z/𝑛Z) × (Z/2𝑛Z) one even has multiple giant clusters with good
probability for Bernoulli percolation at appropriate values of 𝑝, although this arises as a feature
of a discontinuous phase transition rather than of the supercritical phase per se. See Section 5.5
for further discussion of both examples. In light of these difficulties, any treatment of the unique-
ness problem for finite transitive graphs must involve new techniques and use finer properties of
supercritical percolation than in the infinite case.

In this paper we resolve Benjamini’s conjecture and hence also the supercritical case of the Alon–
Benjamini–Stacey conjecture, giving a complete solution to the problem of supercritical uniqueness
on large, finite, vertex-transitive graphs. In the forthcoming work in this series, we will prove
moreover that the density of the giant component is concentrated, local, and equicontinuous in
the supercritical regime and prove analogous theorems for the Fortuin-Kasteleyn random cluster
model, Ising model, and Potts model.

Definition 5.1.1. We will assume all graphs to be locally finite and to contain at least one vertex.
Let F be the set of all isomorphism classes of finite, connected, simple (i.e., not containing loops
or multiple edges), vertex-transitive graphs. (We will usually suppress the distinction between
graphs and their isomorphism classes as much as possible when this does not cause any confusion.)
Given an infinite set H ⊆ F , a function 𝜙 : H → R, and 𝛼 ∈ R we write lim𝐺∈H 𝜙(𝐺) = 𝛼 or
“𝜙(𝐺) → 𝛼 as𝐺 →∞ inH” to mean that for each 𝜀 > 0 there exists 𝑁 such that |𝜙(𝐺)−𝛼 | ≤ 𝜀 for
every 𝐺 ∈ H with at least 𝑁 vertices, or equivalently that 𝜙(𝐺𝑛) → 𝛼 for some (and hence every)
enumeration H = {𝐺1, 𝐺2, . . .} of H . Similar conventions apply to the definition of lim sup𝐺∈H ,
lim inf𝐺∈H , and limits that may be equal to +∞ or −∞.

Let 𝐺 = (𝑉, 𝐸) be a countable graph and consider a percolation configuration 𝜔 ∈ {0, 1}𝐸 . The
connected components of 𝜔 are called clusters. We write 𝐾𝑢 to denote the cluster containing the
vertex 𝑢 and write 𝑢 ↔ 𝑣 for the event that 𝐾𝑢 = 𝐾𝑣. Given a subset 𝑊 of 𝑉 , the volume of 𝑊 is
the number of vertices in𝑊 , denoted |𝑊 |, while if 𝐺 is finite, the density of𝑊 is defined to be the
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ratio ∥𝑊 ∥ := |𝑊 | /|𝑉 |. We write 𝐾1, 𝐾2, . . . for the clusters of 𝜔 in decreasing order of volume.
(Note the slight abuse of notation: here 𝐾1 does not mean the cluster of a vertex labelled ‘1’.)

Given an infinite set H ⊆ F , we say that an assignment of parameters 𝑝𝑐 : H → [0, 1] is a
percolation threshold if

1. lim𝐺∈H P𝐺(1−𝜀)𝑝𝑐 (∥𝐾1∥ ≥ 𝑐) = 0 for every 𝜀, 𝑐 > 0, and

2. For every 𝜀 > 0 there exists 𝛼 > 0 such that

lim
𝐺∈H

P𝐺(1+𝜀)𝑝𝑐 (∥𝐾1∥ ≥ 𝛼) = 1,

where we set P𝐺𝑝 = P𝐺1 for 𝑝 ≥ 1.

Note that critical thresholds are not unique (when they exist), but any two percolation thresholds
𝑝𝑐, 𝑝𝑐 : H → [0, 1] must satisfy 𝑝𝑐 (𝐺) ∼ 𝑝𝑐 (𝐺) as 𝐺 → ∞ inH . When a percolation threshold
𝑝𝑐 : H → [0, 1] exists, we say that 𝑝 : H → [0, 1] is supercritical ifH ′ := {𝐺 ∈ H : 𝑝(𝐺) < 1}
is finite or ifH ′ is infinite and satisfies

lim inf
𝐺∈H ′

𝑝(𝐺)
𝑝𝑐 (𝐺)

> 1.

We generalise this definition to include the case that 𝑝𝑐 does not exist by saying that 𝑝 is super-
critical if H ′ := {𝐺 ∈ H : 𝑝(𝐺) < 1} is finite or if H ′ is infinite and there exists 𝜀 > 0 such
that

lim inf
𝐺∈H ′

P𝐺(1−𝜀)𝑝 (∥𝐾1∥ ≥ 𝜀) ≥ 𝜀.

Note that these two definitions of supercriticality coincide when H admits a threshold function,
and in particular that the definition of supercriticality does not depend on the choice of threshold
function. (Without the (1 − 𝜀) factor in P𝐺(1−𝜀)𝑝, these definitions would not always coincide, for
example for the highly asymmetric torus discussed in Example 5.1, which has giant clusters with
good probability at a percolation threshold bounded away from 1.) The reason for introducing
the set H ′ is to ensure that every family has a supercritical sequence of parameters, namely the
constant assignment 𝑝(𝐺) := 1 for all 𝐺. It will also be helpful to have the finitary version of this
definition: Given a single finite, connected, simple, vertex-transitive graph 𝐺 = (𝑉, 𝐸) and given
any 𝜀 > 0, we say that a parameter 𝑝 ∈ [0, 1] is 𝜀-supercritical for 𝐺 if P𝐺(1−𝜀)𝑝 (∥𝐾1∥ ≥ 𝜀) ≥ 𝜀
and |𝑉 | ≥ 2𝜀−3. (There is some flexibility in how to choose this latter, technical condition that |𝑉 |
is not too small.)
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We say thatH has the supercritical uniqueness property if

lim
𝐺∈H

P𝐺𝑝 (∥𝐾2∥ ≥ 𝜀) = 0

for every supercritical 𝑝 : H → [0, 1] and every constant 𝜀 > 0.

We begin by stating our main result in the simplest-to-state and most interesting case when we
have an infinite set H ⊆ F that is sparse, meaning that the average vertex degree 𝑑 (𝐺) :=
2|𝐸 (𝐺) |/|𝑉 (𝐺) | of 𝐺 ∈ H (which is the exact degree of every vertex because 𝐺 is regular)
satisfies 𝑑 (𝐺) = 𝑜( |𝑉 (𝐺) |) as 𝐺 → ∞ inH . Note that in particular, ifH has uniformly bounded
vertex degrees (i.e. sup𝐺∈H 𝑑 (𝐺) < ∞) thenH is sparse.

Theorem 5.1.2. Let H ⊆ F be an infinite set. If H is sparse, then H has the supercritical
uniqueness property.

Remark 5.1.1. The restriction to simple graphs is not very important and could be replaced by e.g.
the assumption that there are a bounded number of parallel edges between any two vertices.

Remark 5.1.2. The Alon–Benjamini–Stacey conjecture [ABS04b, Conjecture 1.1] would follow
immediately from Theorem 5.1.2 together with the plausible claim that the percolation phase
transition is always continuous for bounded degree graph families satisfying the diam(𝐺) =

𝑜( |𝑉 (𝐺) |/log |𝑉 (𝐺) |) condition they consider. More formally, such a claim would state that if
H ⊆ F is an infinite set with uniformly bounded vertex degrees that satisfies this condition, and
𝑝 : H → [0, 1] is any assignment of parameters such that lim inf𝐺∈H P𝐺

𝑝(𝐺) (∥𝐾1∥ ≥ 𝑐) > 0
for some 𝑐 > 0, then 𝑝 is supercritical in our sense. Unfortunately such a claim seems to be
completely beyond the scope of present techniques and is a major open problem even for, e.g. the
three-dimensional torus (Z/𝑛Z)3. Indeed, it appears to be an open problem to prove that there are
not multiple giant components at criticality in this example.

All the proofs in our paper are effective in the sense that they can in principle be used to produce
explicit bounds on, say, the expected density of the second largest cluster. While we have not kept
track of what these bounds are in all cases, we make note of the following simple explicit estimate
implying Theorem 5.1.2 in the case that the graphs in question have bounded or subalgebraic vertex
degrees.

Theorem 5.1.3. There exists a universal constant 𝐶 such that if 𝐺 = (𝑉, 𝐸) is a finite, simple, con-
nected, vertex-transitive graph with vertex degrees bounded by 𝑑, and 𝑝 ∈ [0, 1] is 𝜀-supercritical
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for 𝐺 for some 𝜀 > 0, then

P𝐺𝑝

(
∥𝐾2∥ ≥ 𝜆𝑒𝐶𝜀

−18

√︄
log 𝑑

log |𝑉 |

)
≤ 1
𝜆

for every 𝜆 ≥ 1.

Note that this bound is only useful under the subalgebraic degree condition log 𝑑 ≪ log |𝑉 |. The
constant given by our proof is fairly large, of order around 106.

This bound has not been optimized and is known to be very far from optimal in classical examples.
Indeed, the second largest cluster in supercritical percolation is known to be of order Θ(log |𝑉 |)
with high probability on both the complete graph [ER61; Bol84] and the hypercube [BKŁ92],
while for a Euclidean torus of fixed dimension 𝑑, it is of order Θ

(
(log |𝑉 |)𝑑/(𝑑−1) ) [HR06]. Similar

results are established for a large class of dense graphs in [Bol+10a].

Remark 5.1.3. Let us now explain the relationship between our theorem and the Benjamini–
Schramm 𝑝𝑐 < 𝑝𝑢 conjecture [BS96c]. Suppose (𝐺𝑛)𝑛≥1 is a bounded degree expander sequence
converging locally to some infinite nonamenable transitive graph 𝐺. One may deduce either from
our results or those of [ABS04b] (see also [Sar21b]) that there is always a unique giant component
with high probability for supercritical percolation on 𝐺𝑛, a result that seems to be in tension with
the conjectured existence of a non-uniqueness phase for percolation on the limit graph 𝐺. Naively,
one might think that our definition of supercriticality for finite graphs should therefore be thought
of more properly as an analogue of the uniqueness phase (𝑝 > 𝑝𝑢) for infinite graphs.

This is misleading. Indeed, it was proven in [BNP11a] that if (𝐺𝑛)𝑛≥1 is a sequence of transitive,
bounded degree expanders converging to an infinite, transitive, nonamenable graph 𝐺, then a
sequence (𝑝𝑛)𝑛≥1 is supercritical if and only if lim inf 𝑝𝑛 > 𝑝𝑐 (𝐺). The uniqueness/non-uniqueness
transition on the limit graph 𝐺 does manifest itself in the approximating finite graphs 𝐺𝑛, but as a
transition in the metric distortion of the giant component rather than its uniqueness: the length of
the path connecting two neighbouring vertices of 𝐺𝑛 given that both vertices belong to the giant is
tight as 𝑛 → ∞ when 𝑝 > 𝑝𝑢 (𝐺) and is not tight when 𝑝𝑐 (𝐺) < 𝑝 < 𝑝𝑢 (𝐺). In the second case,
the open path connecting two such vertices in𝐺𝑛 has good probability to be very long, thus the two
vertices become disconnected with positive probability in the limit. See [AB07] for related results
and open problems for hypercube percolation.

The dense case. We now discuss how our results extend to dense graphs, where vertices have
degree proportional to the number of vertices. In contrast to Theorem 5.1.2, it is not true in general
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that dense graph families have the supercritical uniqueness property. Suppose for example that 𝐺𝑛

is the Cartesian product of the complete graphs 𝐾2 and 𝐾𝑛 and that 𝑝𝑛 = 2/𝑛 for every 𝑛 ≥ 1.
Then we have by the classical theory of Erdős–Rényi random graphs that each copy of 𝐾𝑛 contains
a giant component with high probability, while the number of ‘horizontal’ edges connecting the
two copies of 𝐾𝑛 converges in distribution to a Poisson(2) random variable and is therefore equal
to zero with probability bounded away from zero as 𝑛→∞. Thus, the number of giant clusters in
this example is unconcentrated and can be equal to either one or two, each with good probability.

Our next main result shows that examples of roughly this form are the only transitive counterexam-
ples to the supercritical uniqueness property.

We will in fact characterise the failure of the supercritical uniqueness property for dense vertex-
transitive graphs in two equivalent ways. We say that an infinite set H ⊆ F is dense if
lim inf𝐺∈H |𝐸 (𝐺) |/|𝑉 (𝐺) |2 > 0; this is equivalent to the vertex degree 𝑑 (𝐺) growing linearly
in the number of vertices in the sense that lim inf𝑛→∞ 𝑑 (𝐺)/|𝑉 (𝐺) | > 0.

Definition 5.1.4. LetH ⊆ 𝐹 be a set. Given 𝑚 ∈ {2, 3, . . . }, we say thatH is 𝑚-molecular if it is
infinite and dense and there exists a constant 𝐶 < ∞ such that for each 𝐺 ∈ H there exists a set of
edges 𝐹 ⊆ 𝐸 (𝐺) satisfying the following conditions:

1. 𝐺 \ 𝐹 has 𝑚 connected components;

2. 𝐹 is invariant under the action of Aut𝐺;

3. |𝐹 | ≤ 𝐶 |𝑉 (𝐺) |.

These conditions imply that the 𝑚 connected components of 𝐺 \ 𝐹 are dense, vertex-transitive,
and isomorphic to each other. For example, the family of Cartesian products {𝐾𝑛□𝐾2 : 𝑛 ≥ 1}
discussed above is 2-molecular. We sayH is molecular if it is 𝑚-molecular for some 𝑚 ≥ 2.

Definition 5.1.5. Let 𝐺 = (𝑉, 𝐸) be a finite graph. For each set 𝐴 ⊆ 𝑉 , we write 𝜕𝐸𝐴 for the set
of edges that have one endpoint in 𝐴 and the other in 𝑉 \ 𝐴. For each 𝜃 ∈ (0, 1/2], the quantity
Separator(𝐺, 𝜃) is defined to be

Separator(𝐺, 𝜃) :=

min

{
|𝜕𝐸𝐴| : 𝜃

∑︁
𝑣∈𝑉

deg(𝑣) ≤
∑︁
𝑣∈𝐴

deg(𝑣) ≤ (1 − 𝜃)
∑︁
𝑣∈𝑉

deg(𝑣)
}
.
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In other words, Separator(𝐺, 𝜃) is the minimal number of edges needed to cut 𝐺 into two pieces
of roughly equal size. We say that a set H of isomorphism classes of finite, simple graphs has
linear 𝜃-separators ifH is infinite and lim sup𝐺∈H Separator(𝐺, 𝜃)/|𝑉 (𝐺) | < ∞.

The following theorem provides a complete solution to the problem of supercritical uniqueness for
Bernoulli bond percolation on finite vertex-transitive graphs and implies Theorem 5.1.2 as a special
case.

Theorem 5.1.6. For every infinite setH ⊆ F , the following are equivalent:

(i) H does not have the supercritical uniqueness property;

(ii) H contains a subset that is molecular;

(iii) H contains a subset with linear 1/3-separators;

(iv) H contains a dense subset with linear 𝜃-separators for some 𝜃 ∈ (0, 1/2].

The dense case of this result sharpens the transitive case of a theorem of Bollobás, Borgs, Chayes,
and Riordan [Bol+10a], who proved supercritical uniqueness for any (not necessarily transitive)
dense graph sequence converging to an irreducible graphon. In our language, their result states
that a dense graph family has the supercritical uniqueness property whenever it does not have any
subquadratic separators, i.e., whenever

lim inf
𝐺∈H

Separator(𝐺, 𝜃)/|𝑉 (𝐺) |2 > 0

for every 𝜃 ∈ (0, 1/2] (see [Bol+10a, Lemma 7]). In fact, since they also prove that the giant cluster
density is zero at the percolation threshold, their results imply uniqueness of the giant cluster for
all (not necessarily supercritical) assignments of parameters. The same authors also established a
formula for the limiting critical probability of dense graph sequences that we will use to prove the
implication (iv)⇒ (i) of Theorem 8.1.1. Further comparison of our results with those of [Bol+10a]
is given in remark 5.4.2.

Remark 5.1.4. In [Eas22] the first author has built on the results of the present paper to characterise
which infinite subsets of F admit a percolation threshold. The obstacle to having a percolation
threshold turns out to be the presence of molecular subsets for infinitely many values of 𝑚 ∈
{2, 3, . . .}. In particular, every infinite subset of F that is sparse admits a percolation threshold.
So a posteriori, for Theorem 5.1.2 it suffices to work with the original (more natural) definition
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of supercritical assignments of parameters, which refers to the percolation threshold, rather than
the more general definition. Note the surprising logical order here: we first proved uniqueness of
the supercritical giant cluster (in the present paper), then this was used to prove that there exists a
percolation threshold for the emergence of a giant cluster (in [Eas22]).

About the proof and organization
We now briefly overview the structure of the paper and outline the proofs of the main steps.

Section 2: Lower bounds on point-to-point connection probabilities. In this section we prove
that for 𝜀-supercritical percolation on any finite, simple, connected, vertex-transitive graph, we
always have a uniform lower bound P𝑝 (𝑥 ↔ 𝑦) ≥ 𝛿(𝜀) > 0 on the probability that any two given
vertices are connected. This was previously known only in the bounded degree case, with constants
depending on the degree. Our argument starts by partitioning the vertex set into classes within
which we have such a lower bound then recursively merges these classes until a single class contains
the entire graph. The merging step makes use of a new high-degree version of insertion-tolerance,
which allows us to open a single edge in a sufficiently large random set of edges.

Section 3: Uniqueness under the sharp density property. In this section we prove that the
supercritical uniqueness property holds for any infinite set H ⊆ F satisfying the sharp density
property, meaning that P𝑝 (∥𝐾1∥ ≥ 𝛼) has a sharp threshold for every 𝛼 ∈ (0, 1] in an appropriately
uniform sense. This section is at the heart of the paper and contains the most significant new
arguments.

The proof has two parts. First, given any particular supercritical parameter 𝑝, we use the sharp
density property to (non-constructively) deduce the existence of a smaller parameter 𝑞 ≤ 𝑝 such
that under P𝑞 there is a giant cluster whose density is concentrated, i.e., lies in a small interval with
high probability. The point-to-point connection probability lower bound easily implies that this
giant cluster is the unique giant cluster under P𝑞 with high probability.

The remainder of the proof consists in showing that non-uniqueness of the giant cluster under
P𝑝 would imply non-concentration of the density of the giant cluster under P𝑞, establishing a
contradiction. To this end we introduce a new object called a sandcastle, which is a large subgraph
that is not resilient to 𝑞/𝑝-bond percolation. We observe that under the hypothesis that there are
at least two giant clusters under P𝑝 with good probability, at least one of these clusters must be a
sandcastle with good probability. As we pass from P𝑝 to P𝑞 in the standard monotone coupling
of these measures, this sandcastle-cluster disintegrates into small clusters with good probability
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by definition. On this event, the giant cluster under P𝑞 is constrained to the complement of this
sandcastle-cluster from P𝑝, where edges are distributed (conditionally) independently. We argue
that if this is the case then there must be a subset of 𝑉 with density significantly less than 1 that has
good probability under P𝑞 to contain a cluster of approximately the same size as the typical global
size of the largest cluster in 𝑉 . Finally, we use the existence of this subset together with Harris’
inequality and the point-to-point lower bound to deduce that ∥𝐾1∥ is abnormally large with good
probability under P𝑞, contradicting the previously established concentration property.

In the final subsection of this section, we verify that subalgebraic degree graphs have the sharp
density property, completing the proof of the main theorems in this case and establishing the
quantitative estimate Theorem 5.1.3.

Section 4: Non-molecular graphs have the sharp density property. In this section we prove that
the only way for an infinite subset of F to fail to have the sharp density property is for it to contain
a molecular subset, completing the proof of the main theorem.

Our argument uses a theorem of Bourgain [Fri99a] formalising the heuristic that increasing events
without sharp thresholds are heavily influenced by the state of a bounded number of edges. In our
case the event is the existence of a giant cluster of a given density. We apply a delicate sprinkling
argument to iteratively reduce the size of this bounded-size set of edges until it contains a single
edge. A novel trick in this induction is that during each iteration we use the second author’s universal
tightness theorem [Hut21b] and the high-degree analogue of insertion-tolerance from Section 2
to stick large (but not necessarily giant) clusters to both endpoints of an edge in the current set,
allowing the small number of sprinkled edges to have a disproportionately large effect. This is
the most technical part of the paper. Once the set of edges reaches a singleton, we apply Russo’s
formula to derive a contrasting lower bound on the sharpness of the threshold for our event. For
this lower bound to not contradict our original upper bound, the graph in question must be dense,
completing the proof of Theorem 5.1.2; the proof of the implication (i)⇒ (ii) of Theorem 8.1.1 in
the dense case relies on a second, rather subtle application of the sprinkling technology we develop
to prove that the graph must in fact be molecular. Finally we show in Section 5.4 that the remaining
non-trivial implication (iv)⇒ (i) of Theorem 8.1.1 follows easily from the results of [Bol+10a].

We end the paper with some further discussion and closing remarks in Section 5.5.

166



5.2 Lower bounds on point-to-point connection probabilities
The goal of this section is to prove that point-to-point connection probabilities are uniformly
bounded away from zero in 𝜀-supercritical percolation on finite vertex-transitive graphs, where
all relevant constants depend only on the parameter 𝜀 > 0. Given a finite graph 𝐺 and constants
0 < 𝛼, 𝛿 ≤ 1, we define

𝑝𝑐 (𝛼, 𝛿) = 𝑝𝐺𝑐 (𝛼, 𝛿) = inf
{
𝑝 ∈ [0, 1] : P𝑝 (∥𝐾1∥ ≥ 𝛼) ≥ 𝛿

}
, (5.2.1)

so that 𝑝 is 𝜀-supercritical if and only if (1 − 𝜀)𝑝 ≥ 𝑝𝑐 (𝜀, 𝜀) and |𝑉 (𝐺) | ≥ 2𝜀−3. By continuity
and strict monotonicity, 𝑝𝑐 (𝛼, 𝛿) is equivalently the unique parameter satisfying P𝑝𝑐 (𝛼,𝛿) (∥𝐾1∥ ≥
𝛼) = 𝛿.

Theorem 5.2.1. Let 𝐺 = (𝑉, 𝐸) be a finite, connected, simple, vertex-transitive graph and let
𝜀 > 0. If |𝑉 | ≥ 2𝜀−3 and 𝑝 ≥ 𝑝𝑐 (𝜀, 𝜀) then

P𝑝 (𝑢 ↔ 𝑣) ≥ 𝜏(𝜀) := exp
[
−105 · 𝜀−18]

for every 𝑢, 𝑣 ∈ 𝑉 .

The exact value of this bound is not important for our purposes, and we have not attempted to
optimize the relevant constants. For bounded degree graphs, a similar estimate follows from an
argument essentially due to Schramm, which is recorded in [Ben01a] and in more detail in [HT21c,
Lemma 2.1]. This argument yields in particular that if𝐺 = (𝑉, 𝐸) is a finite vertex-transitive graph
and 𝑝 ≥ 𝑝𝑐 (𝜀, 𝜀) then

P𝑝 (𝑢 ↔ 𝑣) ≥ exp
[
−3

(
2
𝜀2 ∨

1
𝑝

)
log

(
2
𝜀2 ∨

1
𝑝

)]
(5.2.2)

for every 𝑢, 𝑣 ∈ 𝑉 . This bound is adequate for our purposes in the bounded degree case, in which
the condition 𝑝 ≥ 𝑝𝑐 (𝜀, 𝜀) bounds 𝑝 away from zero when |𝑉 | ≥ 2𝜀−3 by lemma 5.2.6 below. As
such, readers who are already familiar with (5.2.2) and are only interested in the bounded degree
case of our results may safely skip the remainder of this section. The estimate (5.2.2) does not yield
a uniform lower bound on the two-point function in the high-degree case however, making a more
refined analysis necessary at this level of generality.

Remark 5.2.1. The assumption that 𝐺 is simple is not really needed for this theorem to hold: the
proof works whenever 𝐺 has degree at most |𝑉 |, and yields a similar statement (with different
constants) under the assumption that the degrees are bounded by 𝐶 |𝑉 | for some constant 𝐶. No
such uniform two-point lower bound holds without this assumption, as can be seen by taking the
product 𝐾𝑛□𝐾2 and replacing each edge of 𝐾𝑛 by a large number of parallel edges.
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Remark 5.2.2. For infinite transitive graphs, it was proven by Lyons and Schramm [LS99] (in the
unimodular case) and Tang [Tan19] (in the nonunimodular case) that there is a unique infinite
cluster at 𝑝 if and only if inf𝑥,𝑦 P𝑝 (𝑥 ↔ 𝑦) > 0. As such, one might naively expect that we could
deduce our main theorems on uniqueness directly from Theorem 5.2.1 via a similar argument.
This does not appear to be the case: firstly, we note that there do exist large finite transitive
graphs and values of 𝜀 such that there are multiple giant components with good probability at
certain values of 𝑝 ≥ 𝑝𝑐 (𝜀, 𝜀), despite there always being a uniform lower bound on the two-point
function at such values of 𝑝 by Theorem 5.2.1. Indeed, the product 𝐾𝑛□𝐾2 and the elongated
torus (Z/𝑛Z) × (Z/2𝑛Z) both have this property. Secondly, the proofs of [LS99; Tan19] both
rely essentially on indistinguishability theorems that are of an ergodic-theoretic nature and do not
generalize to the finite-volume setting.

We will deduce Theorem 5.2.1 as an analytic consequence of the following inductive lemma. Recall
that we write ∥𝐴∥ = |𝐴|/|𝑉 | for the density of a set of vertices in a finite graph.

Lemma 5.2.2 (Two-point induction step). Let 𝐺 = (𝑉, 𝐸) be a finite, connected, vertex-transitive
graph and let 𝑝 ≥ 1/(2|𝑉 |). If 𝜏 > 0 and 𝑘 ≥ 1 are such that ∥{𝑣 ∈ 𝑉 : P𝑝 (𝑢 ↔ 𝑣) ≥ 𝜏}∥ ≥ 2−𝑘

for every 𝑢 ∈ 𝑉 then there exists ℓ ∈ {0, . . . , 𝑘 − 1} such that


{𝑣 ∈ 𝑉 : P𝑝 (𝑢 ↔ 𝑣) ≥ 𝜏332𝑘−ℓ2−2ℓ−10
}


 ≥ 2−ℓ

for every 𝑢 ∈ 𝑉 .

Before proving this lemma we first state and prove some general facts that will be used in the
proof. The first is a standard bound on the diameter of dense graphs whose proof we include for
completeness.

Lemma 5.2.3 (Dense graphs have bounded diameter). Let𝐺 = (𝑉, 𝐸) be a finite, simple, connected
graph. If every vertex of 𝐺 has degree at least 𝑎 |𝑉 | for some 𝑎 > 0 then diam𝐺 ≤ (3 − 𝑎)/𝑎.

Proof of Lemma 5.2.3. Let 𝑎 > 0, and let 𝐺 be a finite, connected graph with minimum vertex
degree at least 𝑎 |𝑉 |. Let 𝑢 and 𝑣 be two vertices of 𝐺 and let 𝑢 = 𝑢0, 𝑢1, . . . , 𝑢𝑘 = 𝑣 be a minimal
length path from 𝑢 to 𝑣. Writing 𝑘 = 3𝑚 + 𝑟 where 𝑚 is a positive integer and 𝑟 ∈ {0, 1, 2}, it
suffices to prove that 𝑚 + 1 ≤ 1/𝑎. Suppose for contradiction that this is not the case. Then

𝑚∑︁
𝑖=0

deg 𝑢3𝑖 ≥ (𝑚 + 1) · min
0≤𝑖≤𝑚

deg 𝑢3𝑖 > |𝑉 | , (5.2.3)
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so, by the pigeonhole principle, we can find 𝑖, 𝑗 ∈ {0, . . . , 𝑚} with 𝑖 < 𝑗 such that 𝑢3𝑖 and 𝑢3 𝑗 have
a common neighbour 𝑤. It follows that 𝑢0, 𝑢1, . . . , 𝑢3𝑖, 𝑤, 𝑢3 𝑗 , . . . 𝑢𝑘−1, 𝑢𝑘 is a shorter path from 𝑢

to 𝑣 than 𝑢0, . . . , 𝑢𝑘 , a contradiction. □

The second ingredient we will require is a quantitative form of insertion-tolerance. In bounded
degree contexts, insertion-tolerance usually refers to the fact that the conditional probability of an
edge being included in the configuration given the status of every other edge is bounded away from
zero. Such a statement need not be valid in regimes of interest in the high-degree case, where
𝑝 may be very small. Intuitively, the following proposition instead gives conditions in which we
can insert exactly one edge into some sufficiently large set of edges with good probability. This
proposition will be used again in the proof of Lemma 5.4.9.

Proposition 5.2.4 (Quantitative insertion tolerance). Let𝐺 = (𝑉, 𝐸) be a finite graph, let 𝑝 ∈ (0, 1),
and let 𝐹 ⊆ 𝐸 be a collection of edges. Let 𝐴 ⊆ {0, 1}𝐸 be an event, let 𝜂 > 0 and suppose that
for each configuration 𝜔 ∈ 𝐴 there is a distinguished subset 𝐹 [𝜔] with 𝐹 [𝜔] ⊆ 𝐹 \ 𝜔 and
|𝐹 [𝜔] | ≥ 𝜂 |𝐹 |. If we define 𝐴+ := {𝜔 ∪ {𝑒} : 𝜔 ∈ 𝐴 and 𝑒 ∈ 𝐹 [𝜔]} then

P𝑝 (𝐴+) ≥
𝜂2

1 − 𝑝 ·
𝑝 |𝐹 |

𝑝 |𝐹 | + 1
· P𝑝 (𝐴)2.

Note that the hypotheses of this proposition force there to be at most (1−𝜂) |𝐹 | open edges in 𝐹 [𝜔]
whenever the event 𝐴 holds. The lower bound appearing here has not been optimized, and a more
careful implementation of our argument would give a P𝑝 (𝐴)/(− logP𝑝 (𝐴)) term in place of the
P𝑝 (𝐴)2 term above. The only important conclusion of this proposition for our purposes will be that
if 𝑝 |𝐹 |, P𝑝 (𝐴), and 𝜂 are all bounded below by some constant 𝑐 > 0 then there exists 𝛿 = 𝛿(𝑐) > 0
such that P𝐺𝑝 (𝐴+) ≥ 𝛿.

Proof of Proposition 6.6.4. We will abbreviate P = P𝐺𝑝 and E = E𝐺𝑝 . Given a set of edges 𝐻, we
write𝜔|𝐻 for the configuration of open and closed edges in𝐻, which by a standard abuse of notation
we will think of both as a subset of 𝐻 and a function 𝐻 → {0, 1}. We can sample a configuration
𝜔 with law P using the following procedure:

1. Sample the restriction 𝜔|𝐸\𝐹 of 𝜔 to 𝐸 \ 𝐹.

2. Sample a uniformly random permutation 𝜋 of the edges of 𝐹 independently of 𝜔|𝐸\𝐹 .

3. Sample a binomial random variable 𝑁 ∼ Binomial( |𝐹 | , 𝑝) independently of 𝜔|𝐸\𝐹 and 𝜋.
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4. Set 𝜔 |𝐹 := 𝜋({1, . . . 𝑁}).

Let P̃ denote the joint measure of 𝜔, 𝜋, and 𝑁 sampled as in this procedure.

Let 𝐴 and 𝐹 [𝜔] be as in the statement of the proposition. The assumption that |𝐹 [𝜔] | ≥ 𝜂 |𝐹 | > 0
and 𝐹 [𝜔] ⊆ 𝐹 \ 𝜔 for every 𝜔 ∈ 𝐴 guarantees that 𝑁 ≤ (1 − 𝜂) |𝐹 | < |𝐹 | on the event that 𝜔 ∈ 𝐴.
By construction we have that 𝜔 = 𝜔|𝐸\𝐹 ∪ 𝜋({1, . . . , 𝑁}) so that for each 𝑛 ∈ {1, . . . , |𝐹 |} we can
rewrite

{𝜔 ∈ 𝐴+} ∩ {𝑁 = 𝑛} = {𝜔 |𝐸\𝐹 ∪ 𝜋({1, . . . , 𝑁}) ∈ 𝐴+} ∩ {𝑁 = 𝑛}
= {𝜔 |𝐸\𝐹 ∪ 𝜋({1, . . . , 𝑛}) ∈ 𝐴+} ∩ {𝑁 = 𝑛}.

(5.2.4)

Note that the two events on the second line are independent. One way for the union 𝜔|𝐸\𝐹 ∪
𝜋({1, . . . , 𝑛}) to belong to 𝐴+ is for𝜔|𝐸\𝐹 ∪𝜋({1, . . . , 𝑛−1}) to belong to 𝐴 and for 𝜋(𝑛) to belong
to the set 𝐹

[
𝜔|𝐸\𝐹 ∪ 𝜋({1, . . . , 𝑛 − 1})

]
. Since |𝐹 [𝜈] | ≥ 𝜂 |𝐹 | for every configuration 𝜈 ∈ 𝐴, 𝜋(𝑛)

belongs to this set with probability at least 𝜂 conditional on 𝜔|𝐸\𝐹 and 𝜋({1, . . . , 𝑛 − 1}) and we
deduce that

P̃
(
𝜔 ∈ 𝐴+ and 𝑁 = 𝑛

)
≥ 𝜂P̃

(
𝜔|𝐸\𝐹 ∪ 𝜋({1, . . . , 𝑛 − 1}) ∈ 𝐴

)
P̃ (𝑁 = 𝑛)

= 𝜂P̃ (𝜔 ∈ 𝐴 and 𝑁 = 𝑛 − 1) · P̃ (𝑁 = 𝑛)
P̃ (𝑁 = 𝑛 − 1)

.
(5.2.5)

The ratio of probabilities appearing here is given by

P̃ (𝑁 = 𝑛)
P̃ (𝑁 = 𝑛 − 1)

=

( |𝐹 |
𝑛

)
𝑝𝑛 (1 − 𝑝) |𝐹 |−𝑛( |𝐹 |

𝑛−1
)
𝑝𝑛−1(1 − 𝑝) |𝐹 |−𝑛+1

=
𝑝( |𝐹 | − 𝑛 + 1)
(1 − 𝑝)𝑛 (5.2.6)

and we deduce that

P̃(𝜔 ∈ 𝐴+) ≥ 𝜂
|𝐹 |∑︁
𝑛=1

𝑝( |𝐹 | − 𝑛 + 1)
(1 − 𝑝)𝑛 P̃ (𝜔 ∈ 𝐴 and 𝑁 = 𝑛 − 1)

=
𝑝𝜂

1 − 𝑝 Ẽ
[
|𝐹 | − 𝑁
𝑁 + 1

��� 𝜔 ∈ 𝐴] P̃(𝜔 ∈ 𝐴), (5.2.7)

where we used that 𝑁 ≤ (1−𝜂) |𝐹 | < |𝐹 | whenever𝜔 ∈ 𝐴 in the second line. Since ( |𝐹 |−𝑥)/(𝑥+1)
is convex we may apply Jensen’s inequality to deduce that

P̃(𝜔 ∈ 𝐴+) ≥ 𝑝𝜂

1 − 𝑝
|𝐹 | − Ẽ[𝑁 | 𝜔 ∈ 𝐴]
Ẽ[𝑁 | 𝜔 ∈ 𝐴] + 1

P̃(𝜔 ∈ 𝐴). (5.2.8)
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Using again that 𝑁 ≤ (1 − 𝜂) |𝐹 | whenever 𝜔 ∈ 𝐴 and using the bound Ẽ[𝑁 | 𝜔 ∈ 𝐴] ≤
Ẽ[𝑁]/P̃(𝜔 ∈ 𝐴) = 𝑝 |𝐹 |/P̃(𝜔 ∈ 𝐴) we deduce that

P̃(𝜔 ∈ 𝐴+) ≥ 𝜂2

1 − 𝑝 ·
𝑝 |𝐹 |

𝑝 |𝐹 | + 1
· P̃(𝜔 ∈ 𝐴)2, (5.2.9)

concluding the proof. □

We are now ready to prove lemma 5.2.2.

Proof of lemma 5.2.2. Let 𝐺∗ be the graph with vertex set 𝑉 in which two vertices 𝑢 and 𝑣 are
connected by an edge if and only if P𝑝 (𝑢 ↔ 𝑣) ≥ 𝜏. The graph 𝐺∗ is simple, vertex-transitive, and
is dense in the sense that its vertex degrees are all at least 2−𝑘 |𝑉 |. Let 𝐶 be a connected component
of 𝐺∗, noting that 2−𝑘 ≤ ∥𝐶∥ ≤ 1. Applying Lemma 5.2.3 to the subgraph of 𝐺∗ induced by 𝐶
implies that diam(𝐶) ≤ (3 − 2−𝑘/∥𝐶∥)/(2−𝑘/∥𝐶∥) = (3∥𝐶∥ − 2−𝑘 )/2−𝑘 ≤ 3 · 2𝑘 ∥𝐶∥. Thus, if
𝑢 and 𝑣 belong to the same connected component of 𝐺∗ then there exists a sequence of vertices
𝑢 = 𝑢0, 𝑢1, . . . , 𝑢𝑛 = 𝑣 with 𝑛 ≤ 3 · 2𝑘 ∥𝐶∥ such that 𝑢𝑖 is adjacent to 𝑢𝑖−1 in 𝐺∗ for every 1 ≤ 𝑖 ≤ 𝑛.
It follows by the Harris-FKG inequality that

P𝑝 (𝑢 ↔ 𝑣) ≥
𝑛∏
𝑖=1

P𝑝 (𝑢𝑖−1 ↔ 𝑢𝑖) ≥ 𝜏3·2𝑘 ∥𝐶∥ =: 𝜏1 (5.2.10)

for every 𝑢, 𝑣 in the same connected component of 𝐺∗. If 𝐺∗ is connected then ∥𝐶∥ = 1 and the
claim follows with ℓ = 0, so we may assume that 𝐺∗ is disconnected and that 2−ℓ−1 ≤ ∥𝐶∥ < 2−ℓ

for some ℓ ∈ {1, . . . , 𝑘 − 1}.

Since 𝐺 is connected there must exist at least one edge of 𝐺 connecting 𝐶 to 𝑉\𝐶. Since the
connected-component equivalence relation on 𝐺∗ is invariant under the automorphisms of 𝐺, it
follows by vertex-transitivity of 𝐺 that every vertex in 𝐶 belongs to an edge from 𝐶 to 𝑉\𝐶.
Letting 𝜕𝐸𝐶 be the set of edges of 𝐺 with one endpoint in 𝐶 and the other in 𝑉 \ 𝐶, it follows that
|𝜕𝐸𝐶 | ≥ |𝐶 |. Since there are |𝑉 |/|𝐶 | connected components of 𝐺∗, it follows by the pigeonhole
principle that there exists a connected component 𝐶′ ≠ 𝐶 of 𝐺∗ such that at least |𝐶 |2/|𝑉 | edges
of |𝜕𝐸𝐶 | have their other endpoint in 𝐶′. Let 𝐼 be the set of oriented edges 𝑒 of 𝐺 with tail 𝑒− ∈ 𝐶
and head 𝑒+ ∈ 𝐶′, so that |𝐼 | ≥ |𝐶 |2/|𝑉 |.

Fix vertices 𝑢 ∈ 𝐶 and 𝑣 ∈ 𝐶′ that are the endpoints of some edge in 𝐼. We claim that

P𝑝 (𝑢 ↔ 𝑣) ≥
𝜏8

1
28 ∥𝐶∥

2. (5.2.11)
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Let 𝐿 be the random set of oriented edges 𝑒 ∈ 𝐼 such that 𝑢 ↔ 𝑒− and 𝑣 ↔ 𝑒+. For each 𝑒 ∈ 𝐼, the
Harris-FKG inequality and eq. (5.2.10) imply that P𝑝 (𝑢 ↔ 𝑒− and 𝑣 ↔ 𝑒+) ≥ 𝜏2

1 and hence that
E𝑝 |𝐿 | ≥ 𝜏2

1 |𝐼 |. Applying Markov’s inequality to |𝐼 \ 𝐿 | we obtain that

P𝑝

(
|𝐿 | ≥

𝜏2
1
2
|𝐼 |

)
= 1 − P𝑝

(
|𝐼 \ 𝐿 | > 1

2
(2 − 𝜏2

1 ) |𝐼 |
)

≥ 1 −
2 − 2𝜏2

1

2 − 𝜏2
1

=
𝜏2

1

2 − 𝜏2
1
≥ 1

2
𝜏2

1 .

(5.2.12)

Let 𝐴 be the event that |𝐿 | ≥ 𝜏2
1
2 |𝐼 | and that every edge of 𝐿 is closed, so that {𝑢 ↔ 𝑣} ⊇ {|𝐿 | ≥

𝜏2
1 |𝐼 |/2} \ 𝐴. If P𝑝 (𝐴) ≤ 𝜏2

1/4 then

P𝑝 (𝑢 ↔ 𝑣) ≥ P𝑝

(
|𝐿 | ≥

𝜏2
1
2
|𝐼 |

)
− P𝑝 (𝐴) ≥

1
4
𝜏2

1 , (5.2.13)

which is stronger than the claimed inequality, so we may assume that P𝑝 (𝐴) ≥ 𝜏2
1/4. In this case,

applying Proposition 6.6.4 with 𝐹 = 𝐼, 𝐹 [𝜔] = 𝐿, and 𝜂 = 𝜏2
1/2 yields that

P𝑝 (𝑢 ↔ 𝑣) ≥ P𝑝 (𝐴+) ≥
𝜏8

1
64
· 𝑝 |𝐼 |
𝑝 |𝐼 | + 1

≥
𝜏8

1
64
· |𝐼 |
|𝐼 | + 2|𝑉 | ≥

𝜏8
1

64
· |𝐶 |2
|𝐶 |2 + 2|𝑉 |2

, (5.2.14)

where we used the assumption 𝑝 ≥ 1
2|𝑉 | in the second inequality and the inequality |𝐼 | ≥ |𝐶 |2/|𝑉 |

in the third. Bounding |𝐶 |2 + 2|𝑉 |2 by 4|𝑉 |2 completes the proof of (5.2.11). It follows from this
inequality, (5.2.10), and a further application of Harris-FKG that

P𝑝 (𝑢 ↔ 𝑤) ≥ P𝑝 (𝑢 ↔ 𝑣)P𝑝 (𝑣 ↔ 𝑤) ≥
𝜏9

1
28 ∥𝐶∥

2 (5.2.15)

for every 𝑤 ∈ 𝐶′. The same inequality also holds for every 𝑤 ∈ 𝐶 by (5.2.10). Thus, recalling that
1 ≤ ℓ < 𝑘 is such that 2−ℓ−1 ≤ ∥𝐶∥ < 2−ℓ and using that 𝜏1 = 𝜏3·2𝑘 ∥𝐶∥ , we deduce that


{𝑤 ∈ 𝑉 : P𝑝 (𝑢 ↔ 𝑤) ≥ 𝜏332𝑘−ℓ2−2ℓ−10

}


 ≥ ∥𝐶 ∪ 𝐶′∥ ≥ 2−ℓ, (5.2.16)

completing the proof. (The reason why we have worked so hard to get an extra factor of 2 via
∥𝐶 ∪ 𝐶′∥ ≥ 2∥𝐶∥ in the final inequality above will become clear shortly.) □

lemma 5.2.2 implies the following general inequality by induction, from which we will deduce
Theorem 5.2.1 as a special case.
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Lemma 5.2.5. Let 𝐺 = (𝑉, 𝐸) be a finite, connected, vertex-transitive graph and let 𝑝 ≥ 1
2|𝑉 | . If

𝜏 > 0 and 𝑘 ≥ 0 are such that ∥{𝑣 ∈ 𝑉 : P𝑝 (𝑢 ↔ 𝑣) ≥ 𝜏}∥ ≥ 2−𝑘 for every 𝑢 ∈ 𝑉 then

P𝑝 (𝑢 ↔ 𝑣) ≥ 𝜏(54)𝑘2−𝑘 (54)𝑘

for every 𝑢, 𝑣 ∈ 𝑉 .

Proof of lemma 5.2.5. Fix 𝐺 = (𝑉, 𝐸) and 𝑝 ≥ 1
2|𝑉 | . Applying lemma 5.2.2 recursively implies

that there exists a decreasing sequence of non-negative integers 𝑘 = 𝑘0 > 𝑘1 > · · · > 𝑘𝑚 = 0 with
𝑚 ≤ 𝑘 such that if we define the sequence of positive real numbers 𝜏0, . . . , 𝜏𝑚 recursively by 𝜏0 = 𝜏

and
𝜏𝑖+1 = 𝜏332𝑘𝑖−𝑘𝑖+1

𝑖 2−2𝑘𝑖+1−10 (5.2.17)

for each 0 ≤ 𝑖 ≤ 𝑚 − 1 then

∥{𝑣 ∈ 𝑉 : P𝑝 (𝑢 ↔ 𝑣) ≥ 𝜏𝑖}∥ ≥ 2−𝑘𝑖 (5.2.18)

for each 1 ≤ 𝑖 ≤ 𝑚. It follows by induction on 𝑖 that

𝜏𝑖 = 𝜏
33𝑖2𝑘−𝑘𝑖

𝑖∏
𝑗=1

(
2−2𝑘 𝑗−10

)33(𝑖− 𝑗 )2𝑘 𝑗−𝑘𝑖
(5.2.19)

for every 0 ≤ 𝑖 ≤ 𝑚 and hence that

𝜏𝑚 = 𝜏33𝑚2𝑘
𝑚∏
𝑗=1

(
2−2𝑘 𝑗−10

)33(𝑚− 𝑗 )2𝑘 𝑗
≥ 𝜏33𝑚2𝑘

𝑚∏
𝑗=1

(
2−2𝑘−10

)33(𝑚− 𝑗 )2𝑘

= 𝜏33𝑚2𝑘2−(2𝑘+10)33𝑚2𝑘
∑𝑚
𝑗=1 3−3 𝑗

(5.2.20)

≥ 𝜏33𝑚2𝑘2−33𝑚𝑘2𝑘 , (5.2.21)

where we used the inequality (2𝑘 + 10)∑𝑚
𝑗=1 3−3 𝑗 ≤ 12𝑘 · (1/26) ≤ 𝑘 for 𝑘 ≥ 1 to simplify the

final expression. The claim follows since 𝑚 ≤ 𝑘 and 33 · 2 = 54. □

To deduce Theorem 5.2.1 from lemma 5.2.5 we will need the following elementary but useful lower
bound on the critical probability.

Lemma 5.2.6. If 𝐺 is a finite graph with maximum degree 𝑑 and 𝜀 > 0 is such that |𝑉 | ≥ 2𝜀−3 then
𝑝𝑐 (𝜀, 𝜀) ≥ 1/2𝑑. In particular, if 𝑝 is 𝜀-supercritical then 𝑝 ≥ 1/2𝑑.
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Proof. Fix a vertex 𝑣 ∈ 𝑉 . For each 𝑟, the expected number of open simple paths of length 𝑟 starting
at 𝑣 is at most 𝑑 (𝑑 − 1)𝑟−1 ≤ 𝑑𝑟 and it follows that if 𝑝 < 1/2𝑑 then E|𝐾𝑣 | ≤

∑∞
𝑟=0 𝑝

𝑟𝑑𝑟 < 2. On
the other hand, if 𝑝 ≥ 𝑝𝑐 (𝜀, 𝜀) then∑︁

𝑣∈𝑉
E𝑝 |𝐾𝑣 | ≥ E𝑝 |𝐾1 |2 ≥ 𝜀3 |𝑉 |2,

so if the inequalities 𝑝 < 1/2𝑑 and 𝑝 ≥ 𝑝𝑐 (𝜀, 𝜀) both hold then |𝑉 | < 2𝜀−3. □

We are now ready to conclude the proof of Theorem 5.2.1.

Proof of Theorem 5.2.1. Since 𝑝 ≥ 𝑝𝑐 (𝜀, 𝜀) we have that P𝑝 (∥𝐾1∥ ≥ 𝜀) ≥ 𝜀 and hence that
P𝑝 (∥𝐾𝑢∥ ≥ 𝜀) ≥ 𝜀P𝑝 (∥𝐾1∥ ≥ 𝜀) ≥ 𝜀2 for every 𝑢 ∈ 𝑉 by vertex-transitivity. It follows in
particular that

∑
𝑣∈𝑉 P𝑝 (𝑢 ↔ 𝑣) = E𝑝 |𝐾𝑢 | ≥ 𝜀3 |𝑉 | and hence by Markov’s inequality that


{𝑣 ∈ 𝑉 : P𝑝 (𝑢 ↔ 𝑣) ≥ 𝜀

3

2

}


 ≥ 𝜀3

2
. (5.2.22)

Moreover, since |𝑉 | ≥ 2𝜀−3 and 𝐺 is simple it follows from lemma 5.2.6 that 𝑝 ≥ 1/2𝑑 ≥ 1/2|𝑉 |.
Thus, applying lemma 5.2.5 with 𝜏 = 𝜀3/2 and 𝑘 = ⌈log2(2/𝜀3)⌉ we deduce by elementary
calculations that

P𝑝 (𝑢 ↔ 𝑣) ≥ exp
[
−(54) ⌈log2 (2/𝜀3)⌉ log

2
𝜀3 − ⌈log2(2/𝜀3)⌉ (54) ⌈log2 (2/𝜀3)⌉

]
≥ exp

[
− 54 · (54)log2 (2/𝜀3) log

2
𝜀3 − 54 · (54)log2 (2/𝜀3) log2

2
𝜀3

− 54 · (54)log2 (2/𝜀3)
]

≥ exp
[
−162 · (54)log2 (2/𝜀3) log2

2
𝜀3

]
(5.2.23)

for every 𝑢, 𝑣 ∈ 𝑉 , where we used the inequality log(2/𝜀3) ≤ log2(2/𝜀3) in the final inequality.
We have by calculus that 𝑥54𝑥 ≤ 64𝑥/(𝑒 log(64/54)) for every 𝑥 ≥ 0, and using that (64 ·
162)/(𝑒 log(64/54)) = 22449.65 . . . ≤ 105 we deduce that

P𝑝 (𝑢 ↔ 𝑣) ≥ exp
[
−105 · 𝜀−18] (5.2.24)

for every 𝑢, 𝑣 ∈ 𝑉 as claimed. □
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5.3 Uniqueness under the sharp density property
In this section we prove supercritical uniqueness under the assumption that our infinite setH ⊆ F
satisfies the sharp density property, which we now introduce. This section is at the heart of the
paper and contains the most significant new techniques.

Definition 5.3.1. Let 𝐺 = (𝑉, 𝐸) be a finite graph and let Δ : (0, 1) → (0, 1/2] be decreasing.
Recall from Section 5.2 that for each 0 < 𝛼, 𝛿 < 1 we define 𝑝𝑐 (𝛼, 𝛿) = 𝑝𝐺𝑐 (𝛼, 𝛿) := inf{𝑝 ∈
[0, 1] : P𝑝 (∥𝐾1∥ ≥ 𝛼) ≥ 𝛿}. We say 𝐺 has the Δ-sharp density property if

𝑝𝑐 (𝛼, 1 − 𝛿)
𝑝𝑐 (𝛼, 𝛿)

≤ 𝑒𝛿 for every 0 < 𝛼 < 1 and Δ(𝛼) ≤ 𝛿 ≤ 1/2.

Let H ⊆ F be an infinite set. Given a H -indexed family (Δ𝐺)𝐺∈H of decreasing (i.e. non-
increasing) functions Δ𝐺 : (0, 1) → (0, 1/2] such that Δ𝐺 → 0 pointwise as 𝐺 → ∞ in H , we
say that H has the (Δ𝐺)𝐺∈H -sharp density property if 𝐺 has the Δ𝐺-sharp density property for
every 𝐺 ∈ H . We say that H has the sharp density property if there is some H -indexed family
of decreasing functions (Δ𝐺)𝐺∈H with Δ𝐺 : (0, 1) → (0, 1/2] and Δ𝐺 → 0 pointwise as 𝐺 → ∞
inH such thatH has the (Δ𝐺)𝐺∈H -sharp density property. Equivalently,H has the sharp density
property if and only if

lim
𝐺∈H

sup
𝛽∈[𝛼,1]

𝑝𝐺𝑐 (𝛽, 1 − 𝛿)
𝑝𝐺𝑐 (𝛽, 𝛿)

= 1

for every 0 < 𝛼 < 1 and 0 < 𝛿 ≤ 1/2.

Graphs with subalgebraic vertex degrees can straightforwardly be shown to satisfy the sharp density
property using standard sharp threshold theorems [FK96; Bou+92; Tal94], all of which are proven
via Fourier analysis on the hypercube. Indeed, applying these theorems in our setting leads to
the following proposition, which will be used in the proof of Theorem 5.1.3 and whose proof is
deferred to Section 5.3.

Proposition 5.3.2. There exists a universal constant𝐶 such that the following holds. Let𝐺 = (𝑉, 𝐸)
be a finite, simple, connected vertex-transitive graph with vertex degree 𝑑. Then 𝐺 has the Δ-sharp
density property with

Δ(𝛼) =


1
2 ∧ 𝐶

√︃
log 𝑑

log |𝑉 | if 𝛼 ≥ (2/|𝑉 |)1/3

1
2 otherwise.

In particular, if (𝐺𝑛)𝑛≥1 = ((𝑉𝑛, 𝐸𝑛))𝑛≥1 is a sequence of finite, vertex-transitive graphs with
|𝑉𝑛 | → ∞ and with subalgebraic degrees 𝑑𝑛 = |𝑉𝑛 |𝑜(1) then (𝐺𝑛)𝑛≥1 has the sharp density property.
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A more general proposition stating that an infinite subset of F has the sharp density property if and
only if it does not have a molecular subsequence is proven in Section 5.4. For now we will focus
on the consequences of the sharp density property, leaving the verification of this property to later
sections.

We now state the main quantitative result of this section. When applying this theorem we will think
of 𝜀 > 0 as a fixed constant, the number of vertices |𝑉 | as being large, and Δ(𝜀) as being small.
We have not attempted to optimise the universal constants appearing in this theorem.

Theorem 5.3.3. Let𝐺 = (𝑉, 𝐸) be a finite, simple, connected, vertex-transitive graph, let 𝜀 ∈ (0, 1],
and let 𝜏(𝜀) > 0 be as in Theorem 5.2.1. If 𝐺 has the Δ-sharp density property for some
Δ : (0, 1) → (0, 1/2] then

P𝑝

(
∥𝐾2∥ ≥ 𝜆

(
200Δ(𝜀)
𝜀3𝜏(𝜀)

+ 25
𝜀2𝜏(𝜀) |𝑉 |

))
≤ 𝜀
𝜆

for every 𝜀-supercritical parameter 𝑝 and every 𝜆 ≥ 1.

Corollary 5.3.4. Let H ⊆ F be an infinite set. If H has the sharp density property, then H has
the supercritical uniqueness property.

In this proof, we think of an event as holding with high probability if the probability of its
complement is controlled by |𝑉 |−1 and Δ(𝑥) for some constant 𝑥. Similarly, we think of a real-
valued random variable as being concentrated if the random variable lies in an interval of width
controlled by |𝑉 |−1 and Δ(𝑥) for some constant 𝑥 with high probability. Fix a parameter 𝑝 that is
𝜀-supercritical with respect to 𝐺. Our plan is as follows. First, in Section 5.3, we show that it is
possible to find a parameter 𝑞 with 𝑝𝑐 (𝜀, 𝜀) ≤ 𝑞 ≤ 𝑝 such that ∥𝐾1∥ is concentrated in a small
window under P𝑞. Then, in Section 5.3, we deduce that ∥𝐾2∥ is small with high probability under
P𝑞. Finally, in Section 8.4 we introduce the notion of sandcastles and use this notion to prove
that non-uniqueness of the giant cluster at the fixed parameter 𝑝 would contradict the established
properties of percolation at the well-chosen lower parameter 𝑞.

Concentration at a lower parameter
Our first step is to use the sharp density property to find another parameter 𝑞 with 𝑝𝑐 (𝜀, 𝜀) ≤ 𝑞 ≤ 𝑝
such that the largest cluster under P𝑞 is a giant whose density is concentrated in a small interval.

Lemma 5.3.5. Let 𝐺 = (𝑉, 𝐸) be a finite graph with the Δ-sharp density property for some
Δ. Then for every 𝜀 ∈ (0, 1] and every 𝜀-supercritical parameter 𝑝, there exists a parameter
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𝑞 ∈ (𝑝𝑐 (𝜀, 𝜀), 𝑝) and a density 𝛼 ≥ 𝜀 such that

P𝑞

(
|∥𝐾1∥ − 𝛼 | ≥

4Δ(𝜀)
𝜀
+ 1
|𝑉 |

)
≤ 2Δ(𝜀). (5.3.1)

Roughly speaking, the idea behind the following proof is that if we pick 𝑞 such that the median
— or any other particular quantile — of the density of the largest cluster increases slowly across a
small neighbourhood of 𝑞 then the sharp density property implies that the density of the giant at
𝑞 must be concentrated; such a 𝑞 can always be found since a bounded increasing function cannot
increase rapidly everywhere.

Proof of Lemma 5.3.5. We may assume 4Δ(𝜀) ≤ 𝜀, the lemma being trivial otherwise. Consider
the increasing sequence of reals 𝑞0, 𝑞1, . . . given by 𝑞 𝑗 := 𝑒 𝑗Δ(𝜀) 𝑝𝑐 (𝜀, 𝜀) for each 𝑗 ≥ 0, and let
𝑘 be the maximum integer such that 𝑞2𝑘 ≤ 𝑝. We start by finding a simple lower bound for 𝑘 .
Since 𝑝 is 𝜀-supercritical, we know (1 − 𝜀)−1 · 𝑝𝑐 (𝜀, 𝜀) ≤ 𝑝 and hence that 𝑘 ≥ 𝑟 for any integer 𝑟
satisfying 𝑒2𝑟Δ(𝜀) ≤ (1 − 𝜀)−1. It follows in particular that

𝑘 ≥
⌊
1
2
· log 1/(1 − 𝜀)

Δ(𝜀)

⌋
≥

⌊
1
2
· log(1 + 𝜀)

Δ(𝜀)

⌋
≥

⌊
𝜀

4Δ(𝜀)

⌋
≥ 𝜀

8Δ(𝜀) , (5.3.2)

where we used the inequality 1/(1 − 𝑥) ≥ 1 + 𝑥 for 0 ≤ 𝑥 < 1 in the first inequality, the inequality
log(1 + 𝑥) ≥ 𝑥/2 for 0 ≤ 𝑥 ≤ 1 in the second inequality, and the assumption 4Δ(𝜀) ≤ 𝜀 in the final
inequality.

Now, for each 𝑖 ≥ 0 we define the density 𝜆𝑖 of 𝐾1 under P𝑞𝑖 by

𝜆𝑖 := max{𝛽 ∈ [0, 1] : P𝑞𝑖 (∥𝐾1∥ ≥ 𝛽) ≥ 𝜀},

so that 𝜆𝑖 ≥ 𝜆0 = 𝜀 for every 𝑖 ≥ 0. Since 𝜆𝑖 is increasing in 𝑖 we have that

𝑘∑︁
𝑖=1
|𝜆2𝑖 − 𝜆2(𝑖−1) | =

𝑘∑︁
𝑖=1

𝜆2𝑖 − 𝜆2(𝑖−1) = 𝜆2𝑘 − 𝜆0 ≤ 1,

and hence by the pigeonhole principle that there is some 𝑗 ∈ {1, . . . , 𝑘} such that

|𝜆2 𝑗 − 𝜆2( 𝑗−1) | = 𝜆2 𝑗 − 𝜆2( 𝑗−1) ≤
1
𝑘
≤ 8Δ(𝜀)

𝜀
,

where the final inequality follows from (5.3.2).

We will argue that the values

𝑞 = 𝑞2 𝑗−1 and 𝛼 =
𝜆2 𝑗 + 𝜆2( 𝑗−1)

2
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satisfy the conclusions of the lemma. Indeed, by definition of 𝜆, we have that

P𝑞2( 𝑗−1)

(
∥𝐾1∥ ≥ 𝜆2( 𝑗−1)

)
≥ 𝜀 but P𝑞2 𝑗

(
∥𝐾1∥ ≥ 𝜆2 𝑗 + |𝑉 |−1

)
< 𝜀. (5.3.3)

We also have by assumption that 4Δ(𝜀) ≤ 𝜀 and 𝜀 ≤ 1/2, so that Δ(𝜀) ≤ 𝜀 ≤ 1 − Δ(𝜀) and hence
by the definiton of the Δ-sharp density property that

max
{
𝑝𝑐 (𝛽, 1 − Δ(𝜀))

𝑝𝑐 (𝛽, 𝜀)
,
𝑝𝑐 (𝛽, 𝜀)

𝑝𝑐 (𝛽,Δ(𝜀))

}
≤ 𝑝𝑐 (𝛽, 1 − Δ(𝜀)))

𝑝𝑐 (𝛽,Δ(𝜀))
≤ 𝑒Δ(𝜀)

for every 𝛽 ∈ [𝜀, 1]. Applying this inequality with the values 𝛽 = 𝜆2( 𝑗−1) and 𝛽 = (𝜆2 𝑗 + |𝑉 |−1) ∧ 1
and using that 𝑒−Δ(𝜀)𝑞2 𝑗 = 𝑞 = 𝑒Δ(𝜀)𝑞2( 𝑗−1) , we deduce from (5.3.3) that

P𝑞
(
∥𝐾1∥ ≥ 𝜆2( 𝑗−1)

)
≥ 1 − Δ(𝜀) and P𝑞

(
∥𝐾1∥ ≥ 𝜆2 𝑗 + |𝑉 |−1

)
≤ Δ(𝜀).

Since |𝛼 − 𝜆2( 𝑗−1) | and |𝛼 − 𝜆2 𝑗 | are both bounded by 4Δ(𝜀)/𝜀, it follows that

P𝑞

(
|∥𝐾1∥ − 𝛼 | ≥

4Δ(𝜀)
𝜀
+ 1
|𝑉 |

)
≤ 2Δ(𝜀)

as claimed. □

Concentration implies uniqueness
By applying Lemma 5.3.5 with our fixed parameter 𝑝, we obtain a parameter 𝑞 ∈ (𝑝𝑐 (𝜀, 𝜀), 1) and
a density 𝛼 ≥ 𝜀 that satisfy (5.3.1). We next argue that concentration of ∥𝐾1∥ under P𝑞 implies
uniqueness of the giant cluster under P𝑞.

Lemma 5.3.6. Let 𝐺 = (𝑉, 𝐸) be a finite graph, let 𝑞 ∈ (0, 1], and let 𝜏 := min𝑢,𝑣∈𝑉 P𝑞 (𝑢 ↔ 𝑣).
The estimate

P𝑞 (∥𝐾2∥ ≥ 2𝛿) ≤
(
1 + 1

4𝛿2𝜏

)
P𝑞 ( |∥𝐾1∥ − 𝛼 | ≥ 𝛿)

holds for every 𝛼, 𝛿 > 0.

The idea is that by the two-point connection property (and positive association), on any increasing
event, we can connect 𝐾1 and 𝐾2 to form a new largest cluster 𝐾1 with good probability. Thus, given
that ∥𝐾1∥ is concentrated, ∥𝐾1 ⊔ 𝐾2∥ must be close to ∥𝐾1∥ with high probability. Equivalently,
∥𝐾2∥ = ∥𝐾1 ⊔ 𝐾2∥ − ∥𝐾1∥ must be close to zero with high probability.

Proof of Lemma 5.3.6. By the union bound,

P𝑞 (∥𝐾2∥ ≥ 2𝛿 and ∥𝐾1∥ ≥ 𝛼 − 𝛿) ≥ P𝑞 (∥𝐾2∥ ≥ 2𝛿) − P𝑞 ( |∥𝐾1∥ − 𝛼 | ≥ 𝛿) .
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On the event that ∥𝐾2∥ ≥ 2𝛿 and ∥𝐾1∥ ≥ 𝛼 − 𝛿, every pair of vertices 𝑢, 𝑣 with 𝑢 ∈ 𝐾2 and 𝑣 ∈ 𝐾1

has ∥𝐾𝑢 ∪ 𝐾𝑣 ∥ ≥ 𝛼 + 𝛿, and there are at least 4𝛿2 |𝑉 |2 such pairs. So, by linearity of expectation,

max
𝑢,𝑣∈𝑉

P𝑞 (∥𝐾𝑢 ∪ 𝐾𝑣 ∥ ≥ 𝛼 + 𝛿) ≥
1
|𝑉 |2

∑︁
𝑢,𝑣∈𝑉

P𝑞 (∥𝐾𝑢 ∪ 𝐾𝑣 ∥ ≥ 𝛼 + 𝛿)

≥ 4𝛿2 [
P𝑞 (∥𝐾2∥ ≥ 2𝛿) − P𝑞 ( |∥𝐾1∥ − 𝛼 | ≥ 𝛿)

]
. (5.3.4)

When ∥𝐾𝑢 ∪ 𝐾𝑣 ∥ ≥ 𝛼 + 𝛿 and 𝑢 ↔ 𝑣, we are guaranteed to have ∥𝐾1∥ ≥ 𝛼 + 𝛿 and hence that
|∥𝐾1∥ − 𝛼 | ≥ 𝛿. It follows by Harris’s inequality that

P𝑞 ( |∥𝐾1∥ − 𝛼 | ≥ 𝛿) ≥ max
𝑢,𝑣∈𝑉

P𝑞 (∥𝐾𝑢 ∪ 𝐾𝑣 ∥ ≥ 𝛼 + 𝛿) · P𝑞 (𝑢 ↔ 𝑣)

≥ 4𝛿2𝜏
[
P𝑞 (∥𝐾2∥ ≥ 2𝛿) − P𝑞 ( |∥𝐾1∥ − 𝛼 | ≥ 𝛿)

]
, (5.3.5)

and the claim follows by rearranging. □

Proof of Theorem 5.3.3 via sandcastles
So far we have obtained good control over ∥𝐾1∥ and ∥𝐾2∥ under P𝑞, where 𝑞 is a well-chosen
parameter 𝑝𝑐 (𝜀, 𝜀) ≤ 𝑞 ≤ 𝑝. We now need to convert this into an upper bound on the probability
that the second largest cluster is large under P𝑝. We do this by introducing an object we call a
sandcastle. This is defined in terms of the canonical monotone coupling (𝜔𝑞, 𝜔𝑝) of the percolation
measures P𝑞 and P𝑝 with 𝑞 ≤ 𝑝 on any given graph, where each closed edge of 𝜔𝑝 is also closed
in 𝜔𝑞 and each open edge of 𝜔𝑝 is open in 𝜔𝑞 with probability 𝑞/𝑝. We write P𝑞,𝑝 for the joint law
of this coupling. (Recall that in this coupling, when we condition on 𝜔𝑝, the states of the edges in
𝜔𝑞 are still independent of each other.) Informally, a sandcastle is a large connected subgraph of 𝐺
with the property that even knowing that the subgraph is entirely open in 𝜔𝑝, there remains a good
condtional probability that it contains no large cluster for 𝜔𝑞. We fix this ‘good probability’ to be
1/2 in the following definition, but we could have used any other universal constant in (0, 1).

Definition 5.3.7. Let 𝐺 = (𝑉, 𝐸) be a finite graph. Let 0 ≤ 𝑞 ≤ 𝑝 ≤ 1 and let 0 ≤ 𝛼, 𝛽 ≤ 1. A
[(𝑝, 𝛽) → (𝑞, 𝛼)]-sandcastle is a connected subgraph 𝑆 ⊆ 𝐺 such that ∥𝑆∥ ≥ 𝛽 and

P𝑞,𝑝
(

𝐾1(𝜔𝑞 ∩ 𝑆)



 < 𝛼 | 𝑆 ⊆ 𝜔𝑝 ) ≥ 1
2
.

We now show that non-uniqueness of the giant cluster under P𝑝 and uniqueness of the giant cluster
under P𝑞 together imply that some cluster must be a sandcastle with good probability under the
measure P𝑝.
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Lemma 5.3.8. Let 𝐺 = (𝑉, 𝐸) be a finite graph. For each 0 ≤ 𝑞 ≤ 𝑝 ≤ 1, and 0 < 𝛼, 𝛽 < 1 there
exists a vertex 𝑢 such that

P𝑝 (𝐾𝑢 is a [(𝑝, 𝛽) → (𝑞, 𝛼)]-sandcastle)
≥ 𝛽

[
P𝑝 (∥𝐾2∥ ≥ 𝛽) − 4P𝑞 (∥𝐾2∥ ≥ 𝛼)

]
.

Proof of Lemma 5.3.8. Consider a configuration 𝜈 ∈ {0, 1}𝐸 in which ∥𝐾2∥ ≥ 𝛽 but no clusters
are [(𝑝, 𝛽) → (𝑞, 𝛼)]-sandcastles. Let 𝐴 := 𝐾1(𝜈) and 𝐵 := 𝐾2(𝜈). Since ∥𝐴∥ ≥ 𝛽 but 𝐴 is not a
[(𝑝, 𝛽) → (𝑞, 𝛼)]-sandcastle, we know by the definition of sandcastles that

P𝑞,𝑝
(

𝐾1(𝜔𝑞 ∩ 𝐴)



 ≥ 𝛼 | 𝜔𝑝 = 𝜈) = P𝑞,𝑝
(

𝐾1(𝜔𝑞 ∩ 𝐴)



 ≥ 𝛼 | 𝐴 ⊆ 𝜔𝑝 ) ≥ 1
2
.

The same result holds for 𝐵. Since 𝐴 and 𝐵 are disjoint, the restrictions of 𝜔𝑞 to 𝐴 and 𝐵 are
conditionally independent given 𝜔𝑝, and hence

P𝑞,𝑝
(

𝐾1(𝜔𝑞 ∩ 𝐴)



 ≥ 𝛼 and


𝐾1(𝜔𝑞 ∩ 𝐵)



 ≥ 𝛼 | 𝜔𝑝 = 𝜈) ≥ 1
4
.

The edges in the boundary of 𝐴 are all closed in 𝜈, disconnecting 𝐴 from 𝐵. Since 𝜔𝑞 ≤ 𝜔𝑝,
these edges are also closed in 𝜔𝑞 when 𝜔𝑝 = 𝜈. In particular, given that 𝜔𝑝 = 𝜈, the subgraphs
𝐾1(𝜔𝑞 ∩ 𝐴) and 𝐾1(𝜔𝑞 ∩ 𝐵) are not connected to each other in 𝜔𝑞, and hence

P𝑞,𝑝
(

𝐾2(𝜔𝑞)



 ≥ 𝛼 | 𝜔𝑝 = 𝜈)
≥ P𝑞,𝑝

(

𝐾1(𝜔𝑞 ∩ 𝐴)


 ≥ 𝛼 and



𝐾1(𝜔𝑞 ∩ 𝐵)


 ≥ 𝛼 | 𝜔𝑝 = 𝜈) ≥ 1

4
.

Letting E be the event that ∥𝐾2(𝜔𝑝)∥ ≥ 𝛽 but no cluster in 𝜔𝑝 is a [(𝑝, 𝛽) → (𝑞, 𝛼)]-sandcastle,
it follows since 𝜈 ∈ E was arbitrary that

P𝑞,𝑝
(

𝐾2(𝜔𝑞)



 ≥ 𝛼 | 𝜔𝑝 ∈ E) ≥ 1
4
.

It follows from this and a union bound that

P𝑞 (∥𝐾2∥ ≥ 𝛼) ≥ P𝑞,𝑝
(

𝐾2(𝜔𝑞)



 ≥ 𝛼 | 𝜔𝑝 ∈ E) · P𝑝 (E)
≥ 1

4

(
P𝑝 (∥𝐾2∥ ≥ 𝛽)

− P𝑝 (some cluster is a [(𝑝, 𝛽) → (𝑞, 𝛼)]-sandcastle)
)
,

which rearranges to give that

P𝑝 (some cluster is a [(𝑝, 𝛽) → (𝑞, 𝛼)]-sandcastle)
≥ P𝑝 (∥𝐾2∥ ≥ 𝛽) − 4P𝑞 (∥𝐾2∥ ≥ 𝛼) . (5.3.6)
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Every cluster that is a [(𝑝, 𝛽) → (𝑞, 𝛼)]-sandcastle contains at least 𝛽 |𝑉 | vertices by definition,
and we deduce by linearity of expectation that

max
𝑢∈𝑉

P𝑝 (𝐾𝑢 is a [(𝑝, 𝛽) → (𝑞, 𝛼)]-sandcastle)

≥ 1
|𝑉 |

∑︁
𝑢∈𝑉

P𝑝 (𝐾𝑢 is a [(𝑝, 𝛽) → (𝑞, 𝛼)]-sandcastle)

≥ 𝛽P𝑝 (some cluster is a [(𝑝, 𝛽) → (𝑞, 𝛼)]-sandcastle) .

The claimed inequality follows from this and (5.3.6). □

We want to use the fact that 𝐾𝑢 is a sandcastle with good probability to contradict the concentration
of ∥𝐾1∥ under P𝑞. The rough idea is as follows: as we pass from 𝜔𝑝 to 𝜔𝑞, with good probability
this sandcastle disintegrates into only small clusters, none of which are equal to the giant cluster
𝐾1(𝜔𝑞). Since the status of any edge that does not touch the cluster of the vertex 𝑢 in 𝜔𝑝 remains
conditionally distributed as Bernoulli percolation, this implies that there exists a large set of vertices
whose complement contains, with good probability, an 𝜔𝑞 cluster whose density is close to the
typical density of the largest cluster in the whole graph. Using Harris’ inequality and uniqueness
of the giant cluster in 𝜔𝑞, we deduce that



𝐾1(𝜔𝑞)


 is abnormally high with good probability,

contradicting the concentration of the giant cluster’s density under P𝑞.

We now begin to make this argument precise. For each subgraph 𝐻 of 𝐺, let 𝐻 denote the set of
all edges that have at least one endpoint in the vertex set of 𝐻.

Lemma 5.3.9. Let 𝐺 = (𝑉, 𝐸) be a finite, vertex-transitive graph and let 𝑞 ∈ (0, 1]. The estimate

P𝑞
(

𝐾1

(
𝜔 \ 𝐻

)

 ≥ 𝛽) · 2𝛽P𝑞 (∥𝐾1∥ ≥ 𝛽) − 𝛽2

2 − 𝛽2

≤ P𝑞

(
∥𝐾1∥ ∉

(
𝛽, 𝛽 + 𝛽

2

2
∥𝐻∥

))
+ P𝑞 (∥𝐾2∥ ≥ 𝛽) (5.3.7)

holds for every subgraph 𝐻 of 𝐺 and every 0 < 𝛽 < 1.

Proof of lemma 5.3.9. Let 𝑋 be the set of vertices that are contained in clusters with density at least
𝛽, noting that

P𝑞 (𝑋 ≠ 𝐾1) ≤ P𝑞 (∥𝐾1∥ ≤ 𝛽) + P𝑞 (∥𝐾2∥ ≥ 𝛽) (5.3.8)

and hence that

P𝑞

(
∥𝑋 ∥ ≥ 𝛽 + 𝛽

2

2
∥𝐻∥

)
≤ P𝑞

(
∥𝐾1∥ ≥ 𝛽 +

𝛽2

2
∥𝐻∥

)
+ P𝑞 (∥𝐾1∥ ≤ 𝛽) + P𝑞 (∥𝐾2∥ ≥ 𝛽) . (5.3.9)
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We have by Markov’s inequality applied to ∥𝐻 \ 𝑋 ∥ that

P𝑞

(
∥𝑋 ∩ 𝐻∥ ≥ 𝛽2

2
∥𝐻∥

)
= 1 − P𝑞

(
∥𝐻 \ 𝑋 ∥ >

(
1 − 𝛽

2

2

)
∥𝐻∥

)
≥ 1 −

(
1 − 𝛽

2

2

)−1

∥𝐻∥−1E𝑞 ∥𝐻 \ 𝑋 ∥

= 1 −
(
1 − 𝛽

2

2

)−1

P𝑞 (∥𝐾𝑢∥ < 𝛽), (5.3.10)

where 𝑢 is an arbitrary vertex and we used vertex-transitivity in the last line. Bounding P𝑞 (∥𝐾𝑢∥ ≥
𝛽) ≥ 𝛽P𝑞 (∥𝐾1∥ ≥ 𝛽) we deduce that

P𝑞

(
∥𝑋 ∩ 𝐻∥ ≥ 𝛽2

2
∥𝐻∥

)
≥ 1 −

2 − 2𝛽P𝑞 (∥𝐾1∥ ≥ 𝛽)
2 − 𝛽2 (5.3.11)

=
2𝛽P𝑞 (∥𝐾1∥ ≥ 𝛽) − 𝛽2

2 − 𝛽2 (5.3.12)

and hence by Harris’ inequality that

P𝑞

(
∥𝑋 ∥ ≥ 𝛽 + 𝛽

2

2
∥𝐻∥

)
≥ P𝑞 (∥𝑋 \ 𝐻∥ ≥ 𝛽) · P𝑞

(
∥𝑋 ∩ 𝐻∥ ≥ 𝛽2

2
∥𝐻∥

)
≥ P𝑞

(
∥𝐾1(𝜔 \ 𝐻)∥ ≥ 𝛽

)
·

2𝛽P𝑞 (∥𝐾1∥ ≥ 𝛽) − 𝛽2

2 − 𝛽2 . (5.3.13)

The claim follows by combining (5.3.9) and (5.3.13). □

Proof of Theorem 5.3.3. Write 𝜏 = 𝜏(𝜀) and Δ = Δ(𝜀), fix an 𝜀-supercritical parameter 𝑝, and let
𝑞 and 𝛼 satisfying 𝛼 ≥ 𝜀 be as in Lemma 5.3.5. Define

𝛿 =
4Δ
𝜀
+ 1
|𝑉 | and 𝛽0 =

25𝛿
𝜀2𝜏

=
200Δ
𝜀3𝜏

+ 25
𝜀2𝜏 |𝑉 |

,

and fix some 𝛽 ≥ 𝛽0. This value of 𝛿 is chosen so that

P𝑞
(��∥𝐾1∥ − 𝛼

�� ≥ 𝛿) ≤ 2Δ (5.3.14)

by Lemma 5.3.5. We will refer to [(𝑝, 𝛽) → (𝑞, 𝜀/2)]-sandcastles simply as sandcastles for the
remainder of the proof. It suffices to prove that

P𝑝 (∥𝐾2∥ ≥ 𝛽) <
200Δ
𝜀2𝜏𝛽

≤ 𝜀 · 𝛽0

𝛽
,
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so we will suppose for contradiction that the reverse inequality

P𝑝 (∥𝐾2∥ ≥ 𝛽) ≥
200Δ
𝜀2𝜏𝛽

(5.3.15)

holds. Since ∥𝐾2∥ ≤ 1, in this case we must have that 𝛽0 ≤ 𝛽 ≤ 1 and hence that 𝛿 ≤ 𝜀2/25 ≤ 𝜀/2
and Δ ≤ 1/200.

Since 𝑞 ≥ 𝑝𝑐 (𝜀, 𝜀), we can apply Theorem 5.2.1 to bound the minimal connection probability
min𝑢,𝑣 P𝑞 (𝑢 ↔ 𝑣) ≥ 𝜏 = 𝜏(𝜀). Thus, applying Lemma 5.3.6 yields that

P𝑞
(
∥𝐾2∥ ≥

𝜀

2

)
≤

(
1 + 4

𝜀2𝜏

)
P𝑞

(
|∥𝐾1∥ − 𝛼 | ≥

𝜀

2

)
≤

(
1 + 4

𝜀2𝜏

)
· 2Δ ≤ 10Δ

𝜀2𝜏
,

(5.3.16)

where we used the assumption 𝜀/2 ≥ 𝛿 and eq. (5.3.14) in the second inequality. Applying
Lemma 5.3.8, we deduce that there exists a vertex 𝑢 such that

P𝑝 (𝐾𝑢 is a sandcastle) ≥ 𝛽P𝑝 (∥𝐾2∥ ≥ 𝛽) −
40𝛽Δ
𝜀2𝜏

≥ 𝛽

2
P𝑝 (∥𝐾2∥ ≥ 𝛽) , (5.3.17)

where we used the assumption (5.3.15) in the final inequality. By vertex-transitivity, this holds for
every vertex 𝑢 ∈ 𝑉 . Fix a vertex 𝑢 ∈ 𝑉 and let S𝑢 be the event that 𝐾𝑢 (𝜔𝑝) is a sandcastle. Since
𝜔𝑞 ≤ 𝜔𝑝, no vertex in 𝐾𝑢 (𝜔𝑝) is connected to a vertex of 𝑉 \𝐾𝑢 (𝜔𝑝) in 𝜔𝑞, and using the fact that
𝛼 − 𝛿 ≥ 𝜀/2 (because 𝛼 ≥ 𝜀 and 𝛿 ≤ 𝜀/2), we have the inclusion of events{

𝐾1(𝜔𝑞 ∩ 𝐾𝑢 (𝜔𝑝))



 < 𝜀/2} ∩ {

𝐾1(𝜔𝑞)


 ≥ 𝛼 − 𝛿}

⊆
{


𝐾1

(
𝜔𝑞 \ 𝐾𝑢 (𝜔𝑝)

)


 ≥ 𝛼 − 𝛿}.
Taking probabilities and using the definition of sandcastles, we deduce that

P𝑞,𝑝
(


𝐾1(𝜔𝑞 \ 𝐾𝑢 (𝜔𝑝))




 ≥ 𝛼 − 𝛿 �� S𝑢

)
≥ P𝑞,𝑝

(

𝐾1(𝜔𝑞 ∩ 𝐾𝑢 (𝜔𝑝))


 < 𝜀

2
�� S𝑢

)
− P𝑞,𝑝

(

𝐾1(𝜔𝑞)


 ≤ 𝛼 − 𝛿 | S𝑢

)
≥ 1

2
− P𝑞,𝑝

(

𝐾1(𝜔𝑞)


 ≤ 𝛼 − 𝛿 | S𝑢

)
. (5.3.18)

Using (5.3.1) and (5.3.17), we can bound the error term

P𝑞,𝑝
(

𝐾1(𝜔𝑞)



 ≤ 𝛼 − 𝛿 | S𝑢

)
≤

P𝑞 ( |∥𝐾1∥ − 𝛼 | ≥ 𝛿)
P𝑝 (𝐾𝑢 is a sandcastle) (5.3.19)

≤ 4Δ
𝛽P𝑝 (∥𝐾2∥ ≥ 𝛽)

≤ 1
4

(5.3.20)
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by the assumption that P𝑝 (∥𝐾2∥ ≥ 𝛽) ≥ 200Δ/(𝜀2𝜏𝛽) ≥ 16Δ/𝛽, so that

P𝑞,𝑝
(


𝐾1(𝜔𝑞\𝐾𝑢 (𝜔𝑝))




 ≥ 𝛼 − 𝛿 | S𝑢

)
≥ 1

4
. (5.3.21)

Since the left hand side of (5.3.21) can be written as a weighted sum of conditional probabilities
given that 𝐾𝑢 (𝜔𝑝) is equal to a specific sandcastle, there must exist a sandcastle 𝑆 such that

P𝑞,𝑝
(


𝐾1

(
𝜔𝑞\𝑆

)


 ≥ 𝛼 − 𝛿 | 𝐾𝑢 (𝜔𝑝) = 𝑆)
= P𝑞,𝑝

(


𝐾1
(
𝜔𝑞\𝐾𝑢 (𝜔𝑝)

)


 ≥ 𝛼 − 𝛿 | 𝐾𝑢 (𝜔𝑝) = 𝑆) ≥ 1
4
. (5.3.22)

Since the event {𝐾𝑢 (𝜔𝑝) = 𝑆} depends only on the status of edges in 𝑆, it is independent of the
restriction of 𝜔𝑞 to 𝐸\𝑆, and we deduce that

P𝑞
(


𝐾1(𝜔\𝑆)




 ≥ 𝛼 − 𝛿) = P𝑞,𝑝
(


𝐾1

(
𝜔𝑞\𝑆

)


 ≥ 𝛼 − 𝛿 | 𝐾𝑢 (𝜔𝑝) = 𝑆) ≥ 1
4
. (5.3.23)

On the other hand, using that Δ ≤ 1/200 and hence that

2P𝑞 (∥𝐾1∥ ≥ (𝛼 − 𝛿)) ≥ 2(1 − 2Δ) ≥ 𝛼 − 𝛿,

lemma 5.3.9 implies that

P𝑞
(


𝐾1(𝜔\𝑆)




 ≥ 𝛼 − 𝛿) ≤ 2 − (𝛼 − 𝛿)2
2(𝛼 − 𝛿)P𝑞 (∥𝐾1∥ ≥ 𝛼 − 𝛿) − (𝛼 − 𝛿)2

·
[
P𝑞

(
∥𝐾1∥ ∉

(
𝛼 − 𝛿, 𝛼 − 𝛿 + (𝛼 − 𝛿)

2

2
𝛽

))
+ P𝑞 (∥𝐾2∥ ≥ 𝛼 − 𝛿)

]
, (5.3.24)

and since 𝛼 − 𝛿 ≥ 𝜀/2 ≤ 1/2 and 𝛽 ≥ 16𝜀−2𝛿, and

P𝑞 (∥𝐾1∥ ≥ 𝛼 − 𝛿) ≥ 1 − 2Δ ≥ 99/100,

it follows that

P𝑞
(


𝐾1(𝜔\𝑆)




 ≥ 𝛼 − 𝛿) ≤ 8
4𝜀P𝑞 (∥𝐾1∥ ≥ 𝛼 − 𝛿) − 𝜀2

·
[
P𝑞

(��∥𝐾1∥ − 𝛼
�� ≥ 𝛿) + P𝑞 (∥𝐾2∥ ≥ 𝜀/2)

]
. (5.3.25)

Applying (5.3.14) and (5.3.16) to control the two probabilities appearing here we obtain that

P𝑞
(


𝐾1(𝜔\𝑆)




 ≥ 𝛼 − 𝛿) ≤ 8
4𝜀(1 − 2Δ − 𝜀/4) ·

[
2Δ + 10Δ

𝜀2𝜏

]
≤ 48Δ
𝜀3𝜏

, (5.3.26)

where we used that Δ ≤ 1/200 ≤ 1/8 in the final inequality. The two estimates (5.3.23) and
(5.3.26) contradict each other since 200Δ/𝜀3𝜏 ≤ 𝛽0 ≤ 1. □
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Subalgebraic degree graphs have the sharp density property
In this section we prove Proposition 5.3.2. As stated above, this proposition is a straightforward
application of standard sharp-threshold theorems. The details of the implementation of the proof
are somewhat technical but do not contain any significant new ideas. We will apply the following
straightforward consequence of the results of Talagrand [Tal94]. We refer the reader to [Gri18,
Chapter 4] and [ODo14] for general background on sharp threshold theorems.

Theorem 5.3.10. Let 𝐸 be a finite set and let 𝐴 ⊆ {0, 1}𝐸 be an increasing event. Let Γ be a group
acting on 𝐸 and for each 𝑒 ∈ 𝐸 let Γ𝑒 = {𝛾𝑒 : 𝛾 ∈ Γ} be the orbit of 𝑒 under Γ. There exists a
universal constant 𝑐 > 0 such that if 𝐴 is invariant under the action of Γ on {0, 1}𝐸 then

d
d𝑝

P𝑝 (𝐴) ≥ 𝑐
[
𝑝(1 − 𝑝) log

2
𝑝(1 − 𝑝)

]−1
P𝑝 (𝐴) (1 − P𝑝 (𝐴)) log

(
2 min
𝑒∈𝐸
|Γ𝑒 |

)
for every 𝑝 ∈ (0, 1).

Proof of Theorem 5.3.10. The influence of an edge 𝑒 with respect to 𝐴 under P𝑝 is defined to be

𝐼𝑝 (𝐴, 𝑒) := P𝑝 (𝜔 ∪ {𝑒} ∈ 𝐴, 𝜔 \ {𝑒} ∉ 𝐴).

Russo’s formula states that if 𝐴 is an increasing event then

d
d𝑝

P𝑝 (𝐴) =
∑︁
𝑒∈𝐸

𝐼𝑝 (𝐴, 𝑒) (5.3.27)

for every 𝑝 ∈ [0, 1]. It is a theorem of Talagrand [Tal94] that there exists a universal constant
0 < 𝑐 ≤ 1 such that if 𝐴 is increasing then

𝑝(1 − 𝑝) log
(

2
𝑝(1 − 𝑝)

) ∑︁
𝑒∈𝐸

𝐼𝑝 (𝐴, 𝑒)
log 1

𝑝(1−𝑝)𝐼𝑝 (𝐴,𝑒)
≥ 𝑐 · P𝑝 (𝐴) (1 − P𝑝 (𝐴)) (5.3.28)

and hence that∑︁
𝑒∈𝐸

𝐼𝑝 (𝐴, 𝑒) ≥ 𝑐 · P𝑝 (𝐴) (1 − P𝑝 (𝐴))

·
[
𝑝(1 − 𝑝) log

2
𝑝(1 − 𝑝)

]−1
log

1
𝑝(1 − 𝑝)max𝑒 𝐼𝑝 (𝐴, 𝑒)

. (5.3.29)

(Note that Talagrand states his inequality in terms of open pivotals, so that his expression differs
from ours by some factors of 1/𝑝.) Intuitively, this inequality implies that any event that does not
depend too strongly on the status of any particular edge must have a sharp threshold, i.e., must have
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probability changing rapidly from near 0 to near 1 over a short interval. Letting 𝑒 maximize the
influence, we have by (5.3.27) and (5.3.29) that

d
d𝑝

P𝑝 (𝐴) ≥
1

𝑝(1 − 𝑝) ·max
{
|Γ𝑒 |𝑝(1 − 𝑝)𝐼𝑝 (𝐴, 𝑒),

𝑐 · P𝑝 (𝐴) (1 − P𝑝 (𝐴)) ·
[
log

2
𝑝(1 − 𝑝)

]−1
log

1
𝑝(1 − 𝑝)𝐼𝑝 (𝐴, 𝑒)

}
.

(5.3.30)

Since the function 𝑓 (𝑥) = max{𝑎𝑥, 𝑏 log 1/𝑥} attains its minimum when 1
𝑥

log 1
𝑥
= 𝑎

𝑏
, it follows

that

d
d𝑝

P𝑝 (𝐴) ≥
𝑐

𝑝(1 − 𝑝) · P𝑝 (𝐴) (1 − P𝑝 (𝐴))

·
[
log

2
𝑝(1 − 𝑝)

]−1
𝑊

(
|Γ𝑒 | log 2

𝑝(1−𝑝)
𝑐 · P𝑝 (𝐴) (1 − P𝑝 (𝐴))

)
(5.3.31)

where 𝑊 is the Lambert W-function (i.e., the inverse function of 𝑥𝑒𝑥). The claim follows since
P𝑝 (𝐴) (1 − P𝑝 (𝐴)) ≤ 1 and𝑊 is increasing and satisfies𝑊 (𝑥) ≥ 1

2 log 𝑥 for every 𝑥 ≥ 1. □

We now apply Theorem 5.3.10 to prove Proposition 5.3.2.

Proof of Proposition 5.3.2. Let 𝐺 = (𝑉, 𝐸) be a finite vertex-transitive graph of degree 𝑑 ≥ 2. It
follows from lemma 5.2.6 that 𝑝𝑐 (𝛼, 𝛿) ≥ 1/2𝑑 for every 𝛼, 𝛿 ≥ 𝛼0 := (2/|𝑉 |)1/3. It suffices to
show that there exists a universal constant 𝐶 ≥ 1 such that

If 𝛼, 𝛿 ≥ 𝛼0 and
𝑝𝑐 (𝛼, 1 − 𝛿)
𝑝𝑐 (𝛼, 𝛿)

≥ 𝑒𝛿 then 𝛿 ≤

√︄
𝐶 log 𝑑
log |𝑉 | . (5.3.32)

Fix 𝛼0 ≤ 𝛼 ≤ 1 and 𝛼0 ≤ 𝛿 ≤ 1/2 and write 𝑝0 = 𝑝𝑐 (𝛼, 𝛿) and 𝑝1 = 𝑝𝑐 (𝛼, 1 − 𝛿). If 𝑝0 ≤ 𝑝 ≤ 𝑝1

then P𝑝 (∥𝐾1∥ ≥ 𝛼) (1 − P𝑝 (∥𝐾1∥ ≥ 𝛼)) ≥ 𝛿(1 − 𝛿) ≥ 1
2𝛿 and it follows from Theorem 5.3.10 that

there exists a universal constant 𝑐 > 0 such that

1 ≥ 1 − 2𝛿 =
∫ 𝑝1

𝑝0

d
d𝑝

P𝑝 (∥𝐾1∥ ≥ 𝛼)d𝑝 (5.3.33)

≥ 𝑐𝛿
2

log |𝑉 |
∫ 𝑝1

𝑝0

[
𝑝(1 − 𝑝) log

2
𝑝(1 − 𝑝)

]−1
d𝑝, (5.3.34)

where we used that every edge has at least |𝑉 |/2 edges in its Aut(𝐺) orbit on any vertex-transitive
graph. To estimate this integral we first use the substitution 𝑝 = 𝜙(𝑥) := 𝑒𝑥/(𝑒𝑥 +1), which satisfies
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d𝑝/d𝑥 = 𝑒𝑥/(𝑒𝑥 + 1)2 = 𝑝(1 − 𝑝), to write∫ 𝑝1

𝑝0

[
𝑝(1 − 𝑝) log

2
𝑝(1 − 𝑝)

]−1
d𝑝 =

∫ 𝑥1

𝑥0

[
log

2(𝑒𝑥 + 1)2
𝑒𝑥

]−1

d𝑥

≥
∫ 𝑥1

𝑥0

1
|𝑥 | + log 8

d𝑥,
(5.3.35)

where we write 𝑥𝑖 = 𝜙−1(𝑝𝑖) = log 𝑝𝑖/(1 − 𝑝𝑖) and use the elementary bound (𝑒𝑥 + 1)2/𝑒𝑥 =

𝑒𝑥 + 2 + 𝑒−𝑥 ≤ 4𝑒 |𝑥 | in the final inequality. The logarithmic derivative of 𝜙(𝑥) is 1/(𝑒𝑥 + 1) so that
if 𝑝1 ≥ 𝑒𝛿𝑝0 then we have that∫ 𝑥1

𝑥0

1
𝑒𝑥 + 1

d𝑥 ≥ 𝛿 and hence that 𝑥1 − 𝑥0 ≥ (𝑒𝑥0 + 1)𝛿.

It follows that if 𝑝1 ≥ 𝑒𝛿𝑝0 then∫ 𝑥0+(𝑒𝑥0+1)𝛿

𝑥0

1
|𝑥 | + log 8

d𝑥 ≤ 2
𝑐𝛿 log |𝑉 | ,

from which the claim may easily be proven via case analysis according to whether 𝑥0 ≤ 0 or
𝑥0 > 0, noting that 𝑥0 ≥ 𝜙−1(1/2𝑑) ≥ − log 2𝑑 since 𝑝0 ≥ 1/2𝑑. In the first case we use that
|𝑥 | + log 8 ≤ |𝑥0 | + log 8 + 𝛿 ≤ |𝑥0 | + 3 for every 𝑥0 ≤ 𝑥 ≤ 𝑥0 + 𝛿 to deduce that

𝛿

3 + log 2𝑑
≤

∫ 𝑥0+𝛿

𝑥0

d𝑥
|𝑥0 | + 3

≤ 2
𝑐𝛿 log |𝑉 | when 𝑥0 ≤ 0, (5.3.36)

while in the case 𝑥0 > 0 we lower bound the integral by the minimum of the integrand times the
length of the interval to obtain that

2
2 + log 8

𝛿 ≤ (𝑒𝑥0 + 1)𝛿
𝑥0 + (𝑒𝑥0 + 1)𝛿 + log 8

≤ 2
𝑐𝛿 log |𝑉 | when 𝑥0 > 0. (5.3.37)

Putting together (5.3.36) and (5.3.37) completes the proof. □

Proof of Theorem 5.1.3. The claim follows immediately from Theorems 5.2.1 and 5.3.3 and Propo-
sition 5.3.2. □

5.4 Non-molecular graphs have the sharp density property
In this section we complete the proofs of our main theorems, Theorem 5.1.2 and Theorem 8.1.1.
The most important remaining step is to deduce Theorem 5.1.2 and the implication (i) ⇒ (ii) of
Theorem 8.1.1 from Corollary 5.3.4 by proving the following proposition.
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Proposition 5.4.1. Let H ⊆ F be an infinite set. If H does not have the sharp density property,
thenH contains a molecular subset.

Remark 5.4.1. It follows from Theorem 8.1.1 and Corollary 5.3.4 that the converse of this propo-
sition also holds, that is, that molecular sequences do not have the sharp density property.

Recall from Section 5.3 that a sequence of graphs is said to have the sharp density property if
the emergence of a giant cluster of a given density always has a sharp threshold. As we saw in
Section 5.3, it is an immediate consequence of standard sharp threshold results [FK96; Bou+92;
Tal94] that this property holds whenever the graphs in question have bounded or subalgebraic
vertex degrees. Indeed, these results imply that any increasing event depending in a sufficiently
symmetric way on 𝑚 i.i.d. Bernoulli-𝑝 random variables has a sharp threshold provided that this
threshold occurs around a value of 𝑝 that is subalgebraically small in 𝑚; lemma 5.2.6 implies that
the latter condition is satisfied for the event {∥𝐾1∥ ≥ 𝛼} whenever 𝐺𝑛 has subalgebraic degrees.
Unfortunately it is not true in general that every symmetric increasing event has a sharp threshold
without this condition on the location of the threshold. For example, the event that the Erdős–Rényi
graph contains a triangle has a coarse threshold on the scale 𝑝 = Θ(𝑛−1) and the event that the
Erdős–Rényi graph contains a tetrahedron has a coarse threshold on the scale 𝑝 = Θ(𝑛−2/3) [AS16,
Chapter 10.1]. Thus, to prove Proposition 5.4.1 we will need to use specific properties of the event
{∥𝐾1∥ ≥ 𝛼} on non-molecular graphs.

Our proof will apply a theorem first established by Bourgain [Fri99a] and sharpened by Hatami
[Hat12a], which, roughly speaking, states that any event that does not have a sharp threshold must
be heavily influenced by the status of a small number of edges. Throughout this section, the prime
in e.g. P′𝑝 will always refer to a 𝑝-derivative. We say that an event A is non-trivial if A ≠ ∅ and
A𝑐 ≠ ∅. (The following theorem actually only requires that A ≠ ∅.)

Theorem 5.4.2 (Hatami 2012, Corollary 2.10). Let 𝐺 = (𝑉, 𝐸) be a finite graph, and let A ⊆
{0, 1}𝐸 be a non-trivial increasing event. For every 𝑝 ∈ (0, 1/2] and 𝜖 > 0, there is a set of edges
𝐹 ⊆ 𝐸 such that P𝑝 (A | 𝐹 ⊆ 𝜔) ≥ 1 − 𝜀 and

|𝐹 | ≤ exp
(
1013 ⌈

𝑝 · P′𝑝 (A)
⌉2
P𝑝 (A)−2 𝜖−2

)
.

In particular, for each 𝜀 > 0 there exists a constant 𝐶 (𝜀) < ∞ such that if P𝑝 (A) ≥ 𝜀 and
𝑝 · P′𝑝 (A) ≤ 𝜀−1 then there is a set of edges 𝐹 ⊆ 𝐸 such that P𝑝 (A | 𝐹 ⊆ 𝜔) ≥ 1 − 𝜀 and
|𝐹 | ≤ 𝐶 (𝜀).
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The relevance of this theorem to sharp-threshold phenomena is made clear by the following
elementary lemma, which shows that when P𝑝 (A) does not have a sharp threshold there must be a
good supply of parameters where P𝑝 (𝐴) is not close to 0 or 1 and 𝑝 · P′𝑝 (A) is not large. Note that
if A ⊆ {0, 1}𝐸 is a non-trivial increasing event then its probability P𝑝 (A) is a strictly increasing
function of 𝑝 ∈ [0, 1] by [Gri99, Theorem 2.38] and hence defines an invertible increasing
homeomorphism [0, 1] → [0, 1].

Lemma 5.4.3. Let 𝐺 = (𝑉, 𝐸) be a finite graph, and let A ⊆ {0, 1}𝐸 be a non-trivial increasing
event. Define 𝑓 : [0, 1] → [0, 1] by 𝑓 (𝑝) := P𝑝 (A). If 𝑓 −1(1 − 𝛿) ≥ (1 + 𝜀) 𝑓 −1(𝛿) for some
𝜀 ∈ (0, 1] and 0 < 𝛿 ≤ 1/2 then

L
({
𝑝 ∈ 𝑓 −1 [𝛿, 1 − 𝛿] : 𝑝 𝑓 ′(𝑝) ≤ 4

𝜀

})
≥ 1

2
L

(
𝑓 −1 [𝛿, 1 − 𝛿]

)
,

where L denotes the Lebesgue measure on [0, 1].

Proof of Lemma 5.4.3. Let 𝐼 := 𝑓 −1 [𝛿, 1−𝛿]. The function 𝑓 is differentiable, as it is a polynomial,
and satisfies∫

𝐼

𝑝 𝑓 ′(𝑝) d𝑝 ≤ 𝑓 −1(1 − 𝛿)
∫
𝐼

𝑓 ′(𝑝) d𝑝 = (1 − 2𝛿) 𝑓 −1(1 − 𝛿) ≤ 𝑓 −1(1 − 𝛿).

On the other hand, rearranging our hypothesis 𝑓 −1(1 − 𝛿) ≥ (1 + 𝜀) 𝑓 −1(𝛿) gives 𝑓 −1(1 − 𝛿) ≤(
1 + 1

𝜀

) [
𝑓 −1(1 − 𝛿) − 𝑓 −1(𝛿)

]
≤ 2

𝜀
L(𝐼) and hence that

1
L(𝐼)

∫
𝐼

𝑝 𝑓 ′(𝑝) d𝑝 ≤ 2
𝜀
.

The result follows by applying Markov’s inequality to the normalised Lebesgue measure on 𝐼. □

When the edges in the set 𝐹 given by Theorem 5.4.2 are open, the eventA occurs with conditional
probability at least 1 − 𝜀. Since P𝑝 (A | 𝐹 ⊆ 𝜔) ≥ P𝑝 (A) by Harris’s inequality, this result is
only interesting when P𝑝 (A) is significantly smaller than 1 − 𝜀. In this case, the state of 𝐹 plays a
decisive role in determining whetherA occurs in the sense that the event {𝜔 ∉ A but 𝜔 ∪ 𝐹 ∈ A}
occurs with good probability. This motivates our definition of a subgraph 𝐻 that activates an event
A, a generalisation of being a closed pivotal edge.

Definition 5.4.4. Let𝐺 = (𝑉, 𝐸) be a finite graph, let𝐻 ⊆ 𝐺 be a subgraph, and letA ⊆ {0, 1}𝐸 be
an increasing event. We say 𝐻 activates the eventA in a configuration 𝜔 if 𝜔 ∉ A but 𝜔∪𝐻 ∈ A.
For every density 𝛼, we simply say 𝐻 activates 𝛼 to mean 𝐻 activates the event {∥𝐾1∥ ≥ 𝛼}, and
we label this event Act𝛼 (𝐻).
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Corollary 5.4.5. For every 𝛿 > 0 there exists 𝜀 > 0 such that if𝐺 = (𝑉, 𝐸) is a finite, simple, vertex-
transitive graph and 𝛼, 𝑝 ∈ (0, 1] are such that P𝑝 (∥𝐾1∥ ≥ 𝛼) ∈ [𝛿, 1−𝛿] and 𝑝 ·P′𝑝 (∥𝐾1∥ ≥ 𝛼) ≤
𝛿−1 then there exists a subgraph 𝐻 of 𝐺 such that |𝐸 (𝐻) | ≤ 𝜀−1 and P𝑝 (Act𝛼 (𝐻)) ≥ 𝜀.

Proof of Corollary 5.4.5. The case 𝑝 ≤ 1/2 follows trivially from Theorem 5.4.2. Now assume
𝑝 ≥ 1/2. Since {∥𝐾1∥ ≥ 𝛼} is invariant under automorphisms of 𝐺 and 𝐺 is vertex-transitive we
can apply Theorem 5.3.10 to obtain that there exists a universal constant 𝑐 > 0 such that

P′𝑝 (∥𝐾1∥ ≥ 𝛼) ≥ 𝑐 · P𝑝 (∥𝐾1∥ ≥ 𝛼) P𝑝 (∥𝐾1∥ < 𝛼) log |𝑉 | .

Plugging in our assumed bounds on 𝑝, 𝑝 · P′𝑝 (∥𝐾1∥ ≥ 𝛼), and P𝑝 (∥𝐾1∥ ≥ 𝛼) gives |𝑉 | ≤ 𝑒2/𝑐𝛿3 ,
in which case |𝐸 | ≤ 𝑒4/𝑐𝛿3 and the result holds trivially with 𝜀 = 𝛿 ∧ 𝑒−4/𝑐𝛿3 . □

When the event {∥𝐾1∥ ≥ 𝛼} has a coarse (i.e., not sharp) threshold on 𝐺 = (𝑉, 𝐸), this lemma
gives us a subgraph 𝐻 ⊆ 𝐺 that has a good probability of activating 𝛼. When 𝐻 has only a single
edge 𝑒, we can use this in the other direction to establish a lower bound on the sharpness of the phase
transition. Indeed, 𝑒 activates 𝛼 if and only if 𝑒 is closed and pivotal for the event {∥𝐾1∥ ≥ 𝛼}. So,
by Russo’s formula and lemma 5.2.6 we have that

𝑝 · P′𝑝 (∥𝐾1∥ ≥ 𝛼)𝑝
∑︁
𝑓 ∈𝐸

P𝑝 ( 𝑓 is pivotal for {∥𝐾1∥ ≥ 𝛼})

≳
|Orb(e) |
deg𝐺

P𝑝 (Act𝛼 (𝑒)) ,

where Orb(e) denotes the orbit of the edge 𝑒 under the action of the automorphism group Aut𝐺.
Contrasting this with the assumed upper bound on the sharpness of the phase transition with which
we started, we can extract information about the underlying graph𝐺. For example, we immediately
deduce that𝐺 is dense, and we are only one step away from concluding that𝐺 is part of a molecular
sequence. Our main challenge is to reduce to this case, that is to say, to show that we can take 𝐻 to
be a subgraph with a single edge.

During the proof we will want to apply a sprinkling argument, where by slightly increasing the
parameter 𝑝 we can make strict subsets of an activator 𝐻 become activators. One difficulty is that
as we increase the percolation parameter, we may form a giant cluster with density at least 𝛽, in
which case nothing can be an activator. As such, we must carefully choose the amount that we
sprinkle by at each step. To this end, we will work only with a special sequence of such values
constructed by the following lemma.
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For the remainder of this section, given a finite, connected, vertex-transitive graph 𝐺 = (𝑉, 𝐸), we
write 𝑑 = deg(𝐺) and 𝛼0 = (2/|𝑉 |)1/3. Given 𝛽 > 0 and 𝛿 ∈ (0, 1/2] we write 𝐼 = 𝐼 (𝐺, 𝛽, 𝛿) =
[𝑝𝑐 (𝛽, 𝛿), 𝑝𝑐 (𝛽, 1 − 𝛿)] and 𝑄 = 𝑄(𝐺, 𝛽, 𝛿) = {𝑝 ∈ 𝐼 : 𝑝 · P′𝑝 (∥𝐾1∥ ≥ 𝛽) ≤ 4

𝛿
}.

Lemma 5.4.6 (A good sequence for sprinkling). Let 𝐺 = (𝑉, 𝐸) be a finite, connected, vertex-
transitive graph, let 𝛿 > 0, and let 0 < 𝛽 ≤ 1. There exists a sequence (𝑝𝑛)𝑛≥1 in 𝑄 such
that

𝑝𝑛+1 − 𝑝𝑛 ≥ 3−(𝑛+1)L(𝑄) and P𝑝𝑛+1 (∥𝐾1∥ ≥ 𝛽) − P𝑝𝑛 (∥𝐾1∥ ≥ 𝛽) ≤ 2−𝑛

for every 𝑛 ≥ 0.

Proof of Lemma 5.4.6. We will prove more generally that if 𝑋 ⊆ [0, 1] is a non-empty closed set
and 𝑓 : 𝑋 → [0, 1] is an increasing (but not necessarily continuous) function then there exists a
sequence (𝑥𝑛)𝑛≥1 in 𝑋 such that 𝑥𝑛+1 − 𝑥𝑛 ≥ 3−(𝑛+1)L(𝑋) and 𝑓 (𝑥𝑛+1) − 𝑓 (𝑥𝑛) ≤ 2−𝑛 for every
𝑛 ≥ 0. The claim is trivial ifL(𝑋) = 0 since we can take 𝑥𝑛 constant in this case, so we may assume
that L(𝑋) > 0. First consider the case 𝑋 = [0, 1]. Let 𝑥0 := 0 and define (𝑥𝑛)𝑛≥1 recursively as
follows. Assume we have defined 𝑥𝑛 for some 𝑛 ≥ 0. Set 𝑥𝑛,𝑖 := 𝑥𝑛 + 𝑖3−(𝑛+1) for each 𝑖 ∈ {1, 2, 3}
and define

𝑥𝑛+1 :=

𝑥𝑛,1 if 𝑓 (𝑥𝑛,2) − 𝑓 (𝑥𝑛,1) ≤ 𝑓 (𝑥𝑛,3) − 𝑓 (𝑥𝑛,2),

𝑥𝑛,2 otherwise.

For each 𝑛 ≥ 0 write 𝑦𝑛 := 𝑥𝑛,3 so that 𝑥𝑛 ≤ 𝑦𝑚 for every 𝑛 ≥ 𝑚 ≥ 0. It follows by induction that
𝑥𝑛 ∈ [0, 1], 𝑥𝑛+1 − 𝑥𝑛 ≥ 3−(𝑛+1) , and 𝑓 (𝑦𝑛) − 𝑓 (𝑥𝑛) ≤ 2−𝑛 for every 𝑛 ≥ 0, and the claim follows
since 𝑓 (𝑥𝑛+1) ≤ 𝑓 (𝑦𝑛) for every 𝑛 ≥ 0.

Now let 𝑋 ⊆ [0, 1] be an arbitrary closed set with L(𝑋) > 0. Since 𝑋 is closed, we can define an
increasing function 𝜙 : [0, 1] → 𝑋 such that

L([0, 𝜙(𝑥)] ∩ 𝑋) = 𝑥L(𝑋)

for all 𝑥 ∈ [0, 1]. Construct a sequence (𝑥𝑛)𝑛≥1 by the above procedure but for the function 𝑓 ◦ 𝜙
instead of 𝑓 . Then the sequence (𝜙(𝑥𝑛))𝑛≥1 has the properties that 𝜙(𝑥𝑛) ∈ 𝑋 , 𝜙(𝑥𝑛+1) − 𝜙(𝑥𝑛) ≥
(𝑥𝑛+1−𝑥𝑛)L(𝑋) ≥ 3−(𝑛+1)L(𝑋), and 𝑓 (𝜙(𝑥𝑛+1))− 𝑓 (𝜙(𝑥𝑛)) ≤ 2−𝑛 for every 𝑛 ≥ 0 as required. □

We now state our key technical sprinkling proposition.

Proposition 5.4.7 (Reducing to a single edge by sprinkling). Let 𝐺 = (𝑉, 𝐸) be a finite, simple,
connected, vertex-transitive graph, let 𝛼0 ≤ 𝛿 ≤ 1/2 and 𝛼0 ≤ 𝛼 ≤ 𝛽 ≤ 1, and suppose that
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𝑝𝑐 (𝛽, 1 − 𝛿) > 𝑒𝛿𝑝𝑐 (𝛽, 𝛿). Let (𝑝𝑛)𝑛≥1 be as in Lemma 5.4.6. For each 𝜀 > 0 there exists
𝑁 = 𝑁 (𝛼, 𝛿, 𝜀) such that for each 𝑛 ≥ 𝑁 there exists 𝜂𝑛 = 𝜂𝑛 (𝛼, 𝛿, 𝜀) > 0 such that if 𝐻 is a
subgraph of 𝐺 with |𝐸 (𝐻) | ≤ 𝜀−1 and P𝑝𝑛 (Act𝛽 (𝐻)) ≥ 𝜀 then there exists 𝑒 ∈ 𝐸 (𝐻) such that
P𝑝𝑚 (Act𝛽 (𝑒)) ≥ 𝜂𝑛 for every 𝑚 ≥ 𝑛 + 𝑁 .

Note that the choice of edge 𝑒 ∈ 𝐸 (𝐻) may depend on the choice of 𝑛 ≥ 𝑁 and that the constants
𝑁 and 𝜂𝑛 are independent of 𝐺 and 𝛽.

We now show how Proposition 5.4.1 follows from Corollary 5.4.5 and Proposition 5.4.7, deferring
the proof of Proposition 5.4.7 to Section 5.4.

Proof of Proposition 5.4.1 given Proposition 5.4.7. Let 𝐺 = (𝑉, 𝐸) be a finite, simple, connected,
vertex-transitive graph of degree 𝑑 and let 𝛼0 = (2/|𝑉 |)1/3. Let 𝛼0 ≤ 𝛼 ≤ 𝛽 ≤ 1, let 𝛼0 ≤ 𝛿 ≤ 1/2,
and suppose that

𝑝𝑐 (𝛽, 1 − 𝛿) > 𝑒𝛿𝑝𝑐 (𝛽, 𝛿).

It suffices to prove that there exist positive constants 𝑐 = 𝑐(𝛼, 𝛿) and 𝐶 = 𝐶 (𝛼, 𝛿) such that
if |𝑉 | ≥ 𝐶 then deg𝐺 ≥ 𝑐 |𝑉 | and there exists an automorphism-invariant set of edges 𝐹 with
|𝐹 | ≤ 𝐶 |𝑉 | such 𝐺 \ 𝐹 has at most 𝐶 connected components.

Let (𝑝𝑛)𝑛≥1 be as in Lemma 5.4.6. It follows from Corollary 5.4.5 that there exists 𝜂1 = 𝜂1(𝛿) such
that for each 𝑝 ∈ 𝑄 there exists a subgraph 𝐻 of 𝐺 such that |𝐸 (𝐻) | ≤ 𝜂−1

1 and P𝑝 (Act𝛽 (𝐻)) ≥ 𝜂1.
Applying this fact with 𝑝 = 𝑝𝑛 for an appropriately large constant 𝑛, it follows from Proposition 5.4.7
that there exist positive constants 𝜂2 = 𝜂2(𝛼, 𝛿) and 𝑁1 = 𝑁1(𝛼, 𝛿) and an edge 𝑒0 ∈ 𝐸 such that

P𝑝𝑛 (Act𝛽 (𝑒0)) ≥ 𝜂2

for every 𝑛 ≥ 𝑁1. Since the edge 𝑒0 activates 𝛽 if and only if 𝑒0 is closed and pivotal for the event
{∥𝐾1∥ ≥ 𝛽}, we have by Russo’s formula that

P′𝑝𝑛 (∥𝐾1∥ ≥ 𝛽) =
∑︁
𝑒∈𝐸

P𝑝𝑛 (𝑒 is pivotal for {∥𝐾1∥ ≥ 𝛽})

≥ |Orb(𝑒0) | P𝑝𝑛
(
Act𝛽 (𝑒0)

)
≥ 𝜂2 |Orb(𝑒0) |

for every 𝑛 ≥ 𝑁1. Since 𝑝𝑁1 ≥ 𝑝𝑐 (𝛽, 𝛿) and 𝛼, 𝛿 ≥ 𝛼0 it follows from lemma 5.2.6 that 𝑝𝑁1 ≥ 1/2𝑑
and hence that

𝜂2
|Orb(𝑒0) |

2𝑑
≤ 𝑝𝑁1 · P′𝑝𝑁1

(∥𝐾1∥ ≥ 𝛽) ≤
4
𝛿
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for every 𝑛 ≥ 𝑁1, where the upper bound follows since 𝑝𝑛 ∈ 𝑄 for every 𝑛 ≥ 1. Since 𝐺 is
vertex-transitive |Orb(𝑒0) | ≥ 1

2 |𝑉 | and it follows that the constant 𝑐2 = 𝑐2(𝛼, 𝛿) = 𝛿𝜂2/16 satisfies

𝑑 ≥ 𝑐2 |𝑉 |.

This establishes the desired density of 𝐺.

All that remains is to find an Aut𝐺-invariant linear-sized set of edges 𝐹 ⊆ 𝐸 that disconnects 𝐺
into a bounded number of components. Let 𝐶1 = 6/𝑐2, let 𝜂3 = 𝜂2 ∧𝐶−1

1 , and let 𝑁2 = 𝑁 (𝛼, 𝛿, 𝜂3)
and 𝜂4 = 𝜂𝑁1∨𝑁2 (𝛼, 𝛿, 𝜂3) be as in Proposition 5.4.7. We claim that if we set 𝑘 = 𝑁1 ∨ 𝑁2 + 𝑁2

then there exists a constant 𝐶2 = 𝐶2(𝛼, 𝛿) such that the set

𝐹 := {𝑒 ∈ 𝐸 : P𝑝𝑘
(
Act𝛽 (𝑒)

)
≥ 𝜂4}

has the desired properties when |𝑉 | ≥ 𝐶2. This set 𝐹 is clearly Aut𝐺-invariant. Moreover, by
Russo’s formula, since 𝑝𝑘 · P′𝑝𝑘 (∥𝐾1∥ ≥ 𝛽) ≤ 4

𝛿
and 𝑝𝑘 ≥ 1/2𝑑 ≥ 1/2|𝑉 |, we have that

|𝐹 | ≤ 1
𝜂4

∑︁
𝑒∈𝐸

P𝑝𝑘 (𝑒 is pivotal for {∥𝐾1∥ ≥ 𝛽})

=
1
𝜂4

P′𝑝𝑘 (∥𝐾1∥ ≥ 𝛽) ≤
8
𝛿𝜂4
|𝑉 |,

so that |𝐹 | is at most linear in |𝑉 |. Since |𝐹 | ≤ 8
𝛿𝜂4
|𝑉 | and 𝑑 = deg𝐺 ≥ 𝑐2 |𝑉 |, we have that

deg(𝐺 \ 𝐹) ≥ 𝑐2 |𝑉 | −
16
𝛿𝜂4

.

Thus, there exists a constant 𝐶2 = 𝐶2(𝛼, 𝛿) such that if |𝑉 | ≥ 𝐶2 then

deg(𝐺 \ 𝐹) ≥ 𝑐2

2
|𝑉 |.

It now suffices to prove that 𝐺 \ 𝐹 is not connected when |𝑉 | ≥ 𝐶2. Indeed, once this is shown
it follows automatically that 𝐺 \ 𝐹 has a bounded number of components since if 𝐺 \ 𝐹 has 𝑚
components then 𝑐2

4 |𝑉 |
2 ≤ |𝐸 | ≤ 𝑚( |𝑉 |/𝑚)2 + |𝐹 |, and hence there exists a constant 𝐶4 = 𝐶4(𝛼, 𝛿)

such that 𝑚 ≤ 1 + 4/𝑐2 when |𝑉 | ≥ 𝐶4.

Suppose for contradiction that |𝑉 | ≥ 𝐶2 and that 𝐺 \ 𝐹 is connected. Since 𝐺 \ 𝐹 is connected and
deg(𝐺 \ 𝐹) ≥ 𝑐2

2 |𝑉 |, it follows from Lemma 5.2.3 that diam(𝐺 \ 𝐹) ≤ 6/𝑐2 = 𝐶1. Let 𝑃 be a path
of length at most 𝐶1 connecting the endpoints of 𝑒0 in 𝐺 \ 𝐹. If 𝑒0 activates 𝛽 then so does the set
𝑃, and it follows that

|𝑃 | ≤ 𝐶1 ≤ 𝜂−1
3 and P𝑝𝑁1∨𝑁2

(Act𝛽 (𝑃)) ≥ P𝑝𝑁1∨𝑁2
(Act𝛽 (𝑒0)) ≥ 𝜂2 ≥ 𝜂3.
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As such, it follows from the definitions of the quantities 𝑁2 = 𝑁 (𝛼, 𝛿, 𝜂3) and 𝜂4 = 𝜂𝑁1∨𝑁2 (𝛼, 𝛿, 𝜂3)
as in Proposition 5.4.7 that there exists an edge 𝑒1 ∈ 𝑃 such that P𝑝𝑘 (Act𝛽 (𝑒1)) ≥ 𝜂4. This implies
that 𝑒1 ∈ 𝐹, a contradiction. □

Proof of Proposition 5.4.7
In this section we complete the proof of Proposition 5.4.1 by proving Proposition 5.4.7. The proof
will proceed inductively, showing that — by changing to a different value of 𝑝 ∈ 𝑄 if necessary
— we can reduce the number of edges in the subgraph 𝐻 given by Corollary 5.4.5 while keeping
P𝑝 (Act𝛼 (𝐻)) bounded away from zero. More precisely, we will deduce Proposition 5.4.7 as an
inductive consequence of the following lemma.

Lemma 5.4.8 (Removing one edge by sprinkling). Let 𝐺 = (𝑉, 𝐸) be a finite, simple, connected,
vertex-transitive graph, let 𝛼0 ≤ 𝛿 ≤ 1/2 and 𝛼0 ≤ 𝛼 ≤ 𝛽 ≤ 1, and suppose that 𝑝𝑐 (𝛽, 1 − 𝛿) >
𝑒𝛿𝑝𝑐 (𝛽, 𝛿). Let (𝑝𝑛)𝑛≥1 be as in Lemma 5.4.6. For each 𝜀 > 0 there exists 𝑁 = 𝑁 (𝛼, 𝛿, 𝜀) such that
if 𝑛 ≥ 𝑁 then there exists 𝜂𝑛 = 𝜂𝑛 (𝛼, 𝛿, 𝜀) > 0 such that if 𝐻 is a subgraph of 𝐺 with |𝐸 (𝐻) | ≤ 𝜀−1

and P𝑝𝑛 (Act𝛽 (𝐻)) ≥ 𝜀 then there exists a subgraph 𝐻′ of 𝐻 with |𝐸 (𝐻′) | ≤ max{1, |𝐸 (𝐻) | − 1}
such that P𝑝𝑚 (Act𝛽 (𝐻′)) ≥ 𝜂𝑛 for every 𝑚 > 𝑛.

Note that the choice of subgraph 𝐻′ of 𝐻 may depend on the choice of 𝑛 ≥ 𝑁 and that the constants
𝑁 and 𝜂𝑛 are independent of 𝐺 and 𝛽. Also, note that 𝑁 and 𝜂𝑛 here are not the same 𝑁 and 𝜂𝑛 as
in the statemenet of Proposition 5.4.7.

Proof of Proposition 5.4.7 given Lemma 5.4.8. Applying Lemma 5.4.8 iteratively ⌊1/𝜀⌋ times yields
the claim. □

For the remainder of this section we fix a finite, simple, connected, vertex-transitive graph 𝐺 =

(𝑉, 𝐸) of degree 𝑑, fix 𝛼0 ≤ 𝛿 ≤ 1/2 and 𝛼0 ≤ 𝛼 ≤ 𝛽 ≤ 1 such that 𝑝𝑐 (𝛽, 1− 𝛿) > 𝑒𝛿𝑝𝑐 (𝛽, 𝛿), and
let (𝑝𝑛)𝑛≥1 be as in Lemma 5.4.6. We also continue to write 𝐼 = 𝐼 (𝐺, 𝛽, 𝛿) = [𝑝𝑐 (𝛽, 𝛿), 𝑝𝑐 (𝛽, 1−𝛿)]
and 𝑄 = 𝑄(𝐺, 𝛽, 𝛿) = {𝑝 ∈ 𝐼 : 𝑝 · P′𝑝 (∥𝐾1∥ ≥ 𝛽) ≤ 4

𝛿
}.

When 𝐺 has bounded vertex degrees, and hence critical parameters are bounded away from zero,
Lemma 5.4.8 could be proven easily by (classical) insertion-tolerance. The problem is rather more
delicate in general. The idea is to use vertex-transitivity of 𝐺 to find many copies of 𝐻 that each
activate 𝛽 simultaneously, then sprinkle, i.e. open a small number of additional edges by slightly
increasing the percolation parameter, and argue that, after sprinkling, many of the copies of 𝐻
have strict subgraphs that are activators. To ensure that sprinkling reduces the number of edges
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necessary to activate 𝛽 in a positive proportion of the copies of 𝐻, we need these copies to be
well-connected to each other in the open subgraph. We guarantee this by sticking a large cluster to
each endpoint of an edge in 𝐻, using the next lemma.

Lemma 5.4.9. For every 𝜀 > 0 there exists 𝜂 = 𝜂(𝛼, 𝛿, 𝜀) > 0 such that if 𝑝 ∈ 𝑄 and 𝐻 is a
subgraph of 𝐺 with |𝐸 (𝐻) | ≤ 1

𝜀
and P𝑝

(
Act𝛽 (𝐻)

)
≥ 𝜀 then there is an edge 𝑒 ∈ 𝐸 (𝐻) with

endpoints 𝑢 and 𝑣 such that

P𝑝
(
Act𝛽 (𝐻) ∩ {∥𝐾𝑢∥ ≥ 𝜂} ∩ {|𝐾𝑣 | ≥ 𝜂𝑑}

)
≥ 𝜂.

The proof of this lemma uses the quantitative insertion-tolerance estimate of Proposition 6.6.4
together with the following theorem of the second author [Hut21b, Theorem 2.2], which guarantees
that the size of the largest intersection of a cluster with a fixed set of vertices is always of the same
order as its mean with high probability. We state a special case of the theorem that is adequate for
our purposes.

Theorem 5.4.10 (Universal Tightness). There exist universal constants 𝐶, 𝑐 > 0 such that the
following holds. Let 𝐺 = (𝑉, 𝐸) be a countable, locally finite graph, let Λ ⊆ 𝑉 be a finite non-
empty set of vertices, and let 𝑝 ∈ [0, 1] be a parameter. Set |𝑀 | := max{|𝐾𝑣 ∩ Λ| : 𝑣 ∈ 𝑉}.
Then

P𝑝
(
|𝑀 | ≥ 𝛼E𝑝 |𝑀 |

)
≤ 𝐶𝑒−𝑐𝛼 and P𝑝

(
|𝑀 | ≤ 𝜀E𝑝 |𝑀 |

)
≤ 𝐶𝜀

for every 𝛼 ≥ 1 and 0 < 𝜀 ≤ 1.

Proof of Lemma 5.4.9. We may assume that 𝜀 ≤ 𝛿. We may also assume that 𝐻 has no isolated
points, so that we have the bound |𝑉 (𝐻) | ≤ 2 |𝐸 (𝐻) | ≤ 2

𝜀
. When 𝐻 activates 𝛽 we must have that

⋃

𝑢∈𝑉 (𝐻) 𝐾𝑢


 ≥ 𝛽 and hence by the pigeonhole principle that there exists 𝑢 ∈ 𝑉 (𝐻) such that

∥𝐾𝑢∥ ≥
𝛽

|𝑉 (𝐻) | ≥
𝛼𝜀

2
.

It follows that there exists a fixed vertex 𝑢 ∈ 𝑉 (𝐻) such that

P𝑝
(
Act𝛽 (𝐻) ∩

{
∥𝐾𝑢∥ ≥

𝛼𝜀

2

})
≥ 1
|𝑉 (𝐻) |P𝑝

(
Act𝛽 (𝐻)

)
≥ 𝜀

|𝑉 (𝐻) | ≥
𝜀2

2
. (5.4.1)

Since 𝐻 has no isolated points, 𝑢 is the endpoint of some edge 𝑒 ∈ 𝐸 (𝐻). Let 𝑣 be the other
endpoint of 𝑒, let 𝑁 be the set of neighbours of 𝑣 in 𝐺, and let 𝑋 be an 𝜔-connected subset of 𝑁
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(i.e. a subset of 𝑁 that is contained in a single 𝜔-cluster) of maximum size. Since 𝑝 ≥ 𝑝𝑐 (𝛼, 𝛿)
and 𝐺 is vertex-transitive,

E𝑝 |𝑋 | ≥ E𝑝 [|𝐾1 ∩ 𝑁 |] = |𝑁 | E𝑝 ∥𝐾1∥ ≥ 𝛼𝛿𝑑. (5.4.2)

Applying Theorem 5.4.10 it follows that there exists a positive constant 𝑐1 = 𝑐1(𝛼, 𝛿, 𝜀) such that
P𝑝 ( |𝑋 | ≤ 𝑐1𝑑) ≤ 𝜀2

4 and hence by a union bound that

P𝑝
(
Act𝛽 (𝐻) ∩

{
∥𝐾𝑢∥ ≥

𝛼𝜀

2

}
∩ {|𝑋 | ≥ 𝑐1𝑑}

)
≥ 𝜀

2

4
. (5.4.3)

To obtain a similar bound with |𝐾𝑣 | in place of |𝑋 |, we use insertion tolerance to open an edge
connecting 𝑣 to 𝑋 , which forces |𝐾𝑣 | ≥ |𝑋 |. Unfortunately we cannot argue this way directly since
opening this edge may produce a cluster with density at least 𝛽, in which case Act𝛽 (𝐻) would no
longer hold. To avoid this issue, we first claim that there exists a constant 𝐶1 = 𝐶1(𝛼, 𝛿, 𝜀) such
that if |𝑉 | ≥ 𝐶1 then

P𝑝
(
Act𝛽 (𝐻) ∩

{
∥𝐾𝑢∥ ≥

𝛼𝜀

2

}
∩ {|𝑋 | ≥ 𝑐1𝑑} ∩ Act𝛽 (𝑣𝑋)𝑐

)
≥ 𝜀

2

8
, (5.4.4)

where 𝑣𝑋 denotes the set of edges with one endpoint equal to 𝑣 and the other in 𝑋 . (Note that since
𝑋 is 𝜔-connected, each edge in 𝑣𝑋 individually activates 𝛽 if and only if the entire set 𝑣𝑋 activates
𝛽.) Indeed, suppose that (5.4.4) does not hold. We have by (5.4.3) and a union bound that

P𝑝
(
{|𝑋 | ≥ 𝑐1𝑑} ∩ Act𝛽 (𝑣𝑋)

)
≥ 𝜀

2

8

and hence that ∑︁
𝑒∈𝐸 : 𝑒∋𝑣

P𝑝
(
Act𝛽 (𝑒)

)
≥ E𝑝

[
|𝑋 | 1Act𝛽 (𝑣𝑋)

]
≥ 𝑐1𝜀

2

8
𝑑.

Applying Russo’s formula and using that 𝐺 is vertex-transitive, it follows that

P′𝑝 (∥𝐾1∥ ≥ 𝛽) ≥
𝑐1𝜀

2

16
𝑑 |𝑉 | .

Since 𝑝 ≥ 𝑝𝑐 (𝛼0, 𝛼0) we also have that 𝑝 ≥ 1/2𝑑 by lemma 5.2.6 and hence that

𝑝 · P′𝑝 (∥𝐾1∥ ≥ 𝛽) ≥
𝑐1𝜀

2

32
|𝑉 | .

Since 𝜀 ≤ 𝛿, this contradicts the hypothesis that 𝑝 ∈ 𝑄 whenever |𝑉 | ≥ 𝐶1 := 128/(𝑐1𝜀
3),

completing the proof of the claim.
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There are finitely many graphs with |𝑉 | ≤ 𝐶1, hence the lemma holds trivially in this case and we
may assume without loss of generality that (5.4.4) holds. Since we have that 𝑝 ≥ 1/2𝑑 as above,
we can use insertion tolerance Proposition 6.6.4 to open an edge in 𝑣𝑋 in the event appearing on
the left hand side of (5.4.4), giving that

P𝑝
(
Act𝛽 (𝐻) ∩

{
∥𝐾𝑢∥ ≥

𝛼𝜀

2

}
∩ {|𝐾𝑣 | ≥ 𝑐1𝑑}

)
≥ 𝜂,

for some 𝜂 = 𝜂(𝛼, 𝛿, 𝜀) > 0 as claimed. □

Once we have many copies of 𝐻 that activate 𝛽 and have large clusters stuck to the copies of 𝑢
and 𝑣, we use the following easy fact about equivalence relations to deduce that the copies of 𝑒
are well-connected to each other. More precisely, we will use this lemma to show that we can find
many large disjoint sets of copies of the edge 𝑒 in which any two copies 𝛾1(𝑒) and 𝛾2(𝑒) of 𝑒 are
𝜔-connected by paths 𝛾1(𝑢) ↔ 𝛾2(𝑢) and 𝛾1(𝑣) ↔ 𝛾2(𝑣).

Lemma 5.4.11. Let 𝑋 be a non-empty finite set, let ∼ be an equivalence relation on 𝑋 , and let
𝑌 ⊂ 𝑋 be a non-empty subset of 𝑋 . For each 𝑥 ∈ 𝑋 write [𝑥] for the equivalence class of 𝑥 under
∼. If min𝑦∈𝑌 | [𝑦] | ≥ 2|𝑋 |

|𝑌 | then there exists a collection (𝑍𝑖)𝑖∈𝐼 of disjoint subsets of 𝑌 such that each
𝑍𝑖 is contained in an equivalence class of ∼ and that satisfies the inequalities

|𝑍𝑖 | ≥
|𝑌 |

2 |𝑋 | min
𝑦∈𝑌
| [𝑦] | and |𝐼 | ≥ |𝑋 |

4 min𝑦∈𝑌 | [𝑦] |
.

Proof of Lemma 5.4.11. Write 𝑚 = min𝑦∈𝑌 | [𝑦] | and define

𝑌− :=
{
𝑦 ∈ 𝑌 : | [𝑦] ∩ 𝑌 | ≤ |𝑌 |

2 |𝑋 | | [𝑦] |
}

and 𝑌+ := 𝑌 \ 𝑌−.

Observe that if C denotes the set of equivalence classes of ∼ then

2|𝑋 |
|𝑌 | |𝑌− | ≤

∑︁
𝑦∈𝑌

| [𝑦] |
| [𝑦] ∩ 𝑌 | =

∑︁
𝐶∈C
|𝐶 |1(𝐶 ∩ 𝑌 ≠ ∅) ≤ |𝑋 |,

so that |𝑌− | ≤ 1
2 |𝑌 | and |𝑌+ | ≥ 1

2 |𝑌 |. Let (𝑍𝑖)𝑖∈𝐼 be a maximal collection of disjoint subsets of 𝑌+
such that each 𝑍𝑖 is contained in an equivalence class of ∼ and |𝑍𝑖 | =

⌈
|𝑌 |

2|𝑋 |𝑚
⌉

for each 𝑖 ∈ 𝐼. Every
element 𝑦 ∈ 𝑌+ has

| [𝑦] ∩ 𝑌 | ≥
⌈
|𝑌 |

2 |𝑋 | | [𝑦] |
⌉
≥

⌈
|𝑌 |

2 |𝑋 |𝑚
⌉
.
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So, by maximality, the union
⋃
𝑖∈𝐼 𝑍𝑖 contains at least half the elements in [𝑦] ∩𝑌 for every 𝑦 ∈ 𝑌+.

So the union
⋃
𝑖∈𝐼 𝑍𝑖 contains at least half the elements in 𝑌+, and we deduce that

|𝐼 | ≥ |𝑌 | /4⌈
|𝑌 |

2|𝑋 |𝑚
⌉ ≥ |𝑋 |

4𝑚
,

where we used the hypothesis 𝑚 ≥ 2|𝑋 |
|𝑌 | in the final inequality. □

We are now ready to complete the proof of Lemma 5.4.8. The final step to reduce the number of
edges in 𝐻 is to open a small number of these well-connected copies of 𝑒 by slightly increasing
the percolation parameter. When 𝐻 activates 𝛽 and 𝑢 ↔ 𝑣, 𝐻 \ {𝑒} also activates 𝛽. Since the
copies of 𝑒 are well-connected, opening this small number of edges is actually sufficient to ensure
a positive proportion of the copies of 𝐻 \ {𝑒} activate 𝛽. By linearity of expectation, we conclude
that at this higher parameter the set 𝐻 \ {𝑒} activates 𝛽 with good probability, as required.

Proof of Lemma 5.4.8. Since 𝛼, 𝛿 ≥ 𝛼0 we have by Lemma 5.4.3 and Lemma 5.2.6 that

L(𝑄) ≥ 1
2
L(𝐼) = 1

2
(𝑝𝑐 (𝛽, 1 − 𝛿) − 𝑝𝑐 (𝛽, 𝛿)) ≥

1
2
(𝑒𝛿 − 1)𝑝𝑐 (𝛽, 𝛿) ≥

𝛿

4𝑑
,

where we used that 𝑒𝛿 − 1 ≥ 𝛿 in the final inequality. Fix 𝜀 > 0 and 𝑛 ≥ 1, and suppose that 𝐻 is
a finite subgraph of 𝐺 with |𝐸 (𝐻) | ≤ 𝜀−1 such that P𝑝𝑛

(
Act𝛽 (𝐻)

)
≥ 𝜀. By Lemma 5.4.9, we can

find 𝜀1 = 𝜀1(𝛼, 𝛿, 𝜀) and an edge 𝑒 ∈ 𝐸 (𝐻) with endpoints 𝑢 and 𝑣 such that the event

A := Act𝛽 (𝐻) ∩ {∥𝐾𝑢∥ ≥ 𝜀1} ∩ {|𝐾𝑣 | ≥ 𝜀1𝑑} satisfies P𝑝𝑛 (A) ≥ 𝜀1.

For each 𝑥 ∈ 𝑉 , pick an automorphism 𝜙𝑥 ∈ Aut𝐺 such that 𝜙𝑥 (𝑣) = 𝑥, so that 𝜙𝑥 (𝑢) is
a neighbour of 𝑥 for each 𝑥 ∈ 𝑉 . These maps exist because 𝐺 is vertex-transitive. Define
𝑋 := {𝑥 ∈ 𝑉 : 𝜙−1

𝑥 (𝜔) ∈ A}. We have by linearity of expectation that E𝑝𝑛 ∥𝑋 ∥ = P𝑝𝑛 (A) ≥ 𝜀1

and hence by Markov’s inequality that P𝑝𝑛 (∥𝑋 ∥ ≥ 1
2𝜀1) ≥ 1

2𝜀1. We will now prove that we can
take 𝑁 = ⌈log2(8/𝜀1)⌉, so assume from now on that 𝑛 ≥ log2(8/𝜀1).

Write B := {∥𝑋 ∥ ≥ 1
2𝜀1} and consider an arbitrary configuration 𝜔 ∈ B. Every 𝜙𝑥 (𝑢) with 𝑥 ∈ 𝑋

has ∥𝐾𝜙𝑥 (𝑢) ∥ ≥ 𝜀1. So, by the pigeonhole principle, we can find a subset 𝑌 ⊆ 𝑋 with ∥𝑌 ∥ ≥ 1
2𝜀

2
1

such that {𝜙𝑥 (𝑢) : 𝑥 ∈ 𝑌 } is contained in a single cluster of 𝜔. By definition of 𝑋 and A, every
vertex 𝑦 ∈ 𝑌 has

��𝐾𝑦�� ≥ 𝜀1𝑑.

We next claim that there exists a constant𝐶1 = 𝐶1(𝛼, 𝛿, 𝜀) such that if |𝑉 | ≥ 𝐶1 then 𝜀1𝑑 |𝑌 | ≥ 4|𝑉 |.
Indeed, since ∥𝑌 ∥ ≥ 1

2𝜀
2
1, if this inequality does not hold then we must have that 𝑑 ≤ 8𝜀−3

1 . In this
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case, since 𝑝𝑛 ∈ 𝑄 and 𝑝𝑛 ≥ 1/2𝑑, and since every edge has Aut𝐺-orbit of size at least |𝑉 | /2 by
transitivity, it follows from Theorem 5.3.10 that there exists a constant 𝑐1 = 𝑐1(𝛼, 𝛿, 𝜀) such that

4
𝛿
≥ 𝑝𝑛 · P′𝑝𝑛 (∥𝐾1∥ ≥ 𝛽) ≥ 𝑐1 log |𝑉 |,

which rearranges to give the claim. Since graphs with |𝑉 | < 𝐶1 can be handled trivially, we may
assume throughout the rest of the proof that |𝑉 | ≥ 𝐶1 and hence that 𝜀1𝑑 |𝑌 | ≥ 4|𝑉 |.

By construction, every vertex 𝑦 ∈ 𝑌 has
��𝐾𝑦�� ≥ 𝜀1𝑑. So by splitting clusters, we can find an

equivalence relation that is a refinement of
𝜔←→ in which the equivalence class of each vertex 𝑦 ∈ 𝑌

has between 𝜀1𝑑/2 and 𝜀1𝑑 total vertices. We now apply Lemma 5.4.11 to this equivalence relation
with the sets 𝑉 and 𝑌 in place of 𝑋 and 𝑌 . (The hypothesis of Lemma 5.4.11 is met because
𝜀1𝑑 |𝑌 | ≥ 4 |𝑉 |.) This yields a collection of disjoint 𝜔-connected subsets (𝑍𝑟)𝑟∈𝑅 of 𝑌 such that for
every 𝑟,

|𝑍𝑟 | ≥
𝜀1𝑑 |𝑌 |
4 |𝑉 | ≥

𝜀3
1𝑑

8
and |𝑅 | ≥ |𝑉 |

4𝜀1𝑑
≥ |𝑉 |

4𝑑
.

Whenever 𝐻 activates 𝛽 and 𝑢 ↔ 𝑣, 𝐻 \ {𝑒} also activates 𝛽. On the event B we must have that
𝑥 ↔ 𝑦 and 𝜙𝑥 (𝑢) ↔ 𝜙𝑦 (𝑢) whenever 𝑥, 𝑦 both belong to 𝑍𝑟 for some 𝑟 ∈ 𝑅. Thus, on the event
B, if there exist 𝑟 ∈ 𝑅 and 𝑥 ∈ 𝑍𝑟 such that 𝑥 ↔ 𝜙𝑥 (𝑢) then 𝜙𝑥′ (𝐻 \ {𝑢𝑣}) activates 𝛽 for every
𝑥′ ∈ 𝑍𝑟 .

In view of this fact, our next step will be to increase the percolation parameter to open an edge
𝜙𝑥 (𝑒) with 𝑥 ∈ 𝑍𝑟 for a positive proportion of the indices 𝑟 ∈ 𝑅, thus making a positive proportion
of the copies 𝜙𝑥 (𝐻 \ {𝑒}) with 𝑥 ∈ ⋃

𝑟∈𝑅 𝑍𝑟 activate 𝛽.

Let 𝑚 > 𝑛 ≥ ⌈log2(8/𝜀1)⌉, and let P be the joint law of the standard monotone coupling (𝜔, 𝜔′)
of percolation with the two parameters 𝑝𝑛 ≤ 𝑝𝑚. It suffices to prove that there exists a constant
𝜂𝑛 = 𝜂𝑛 (𝛼, 𝛿, 𝜀) > 0 such that

P𝑝𝑚 (Act𝛽 (𝐻 \ {𝑒})) ≥ 𝜂𝑛. (5.4.5)

Recall that the increasing sequence (𝑝𝑛)𝑛≥1 was defined so that

𝑝𝑚 − 𝑝𝑛 ≥ 3−(𝑛+1)L(𝑄) ≥ 3−(𝑛+1)
𝛿

4𝑑

and
P𝑝𝑚 (∥𝐾1∥ ≥ 𝛽) − P𝑝𝑛 (∥𝐾1∥ ≥ 𝛽) ≤ 2−𝑛+1
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for every 𝑚 > 𝑛. The assumption that 𝑚 > 𝑛 ≥ log2(8/𝜀1) implies that P𝑝𝑚 (∥𝐾1∥ ≥ 𝛽) −
P𝑝𝑛 (∥𝐾1∥ ≥ 𝛽) ≤ 𝜀1

4 , and since P𝑝𝑛 (B) ≥
𝜀1
2 a union bound gives that

P (𝜔 ∈ B and ∥𝐾1(𝜔′)∥ < 𝛽) ≥ P𝑝𝑛 (B) − P (∥𝐾1(𝜔)∥ < 𝛽 ≤ ∥𝐾1(𝜔′)∥)
= P𝑝𝑛 (B) − (5.4.6)(

P𝑝𝑚 (∥𝐾1(𝜔)∥ ≥ 𝛽) − P𝑝𝑛 (∥𝐾1(𝜔)∥ ≥ 𝛽)
)

≥ 𝜀1

2
− 𝜀1

4
=
𝜀1

4
, (5.4.7)

and hence in particular that

P (∥𝐾1(𝜔′)∥ < 𝛽 | 𝜔 ∈ B) ≥
𝜀1

4
. (5.4.8)

Consider an arbitrary configuration 𝜉 ∈ B and let (𝑍𝑟)𝑟∈𝑅 be a collection of sets as defined via
Lemma 5.4.11 above, which we take to be a function of 𝜉. (Note in particular that the index set 𝑅
depends on 𝜉.) For each 𝑟 ∈ 𝑅 and 𝑥 ∈ 𝑍𝑟 we have that

P (𝜙𝑥 (𝑒) ∈ 𝜔′ | 𝜔 = 𝜉) ≥ 𝑝𝑚 − 𝑝𝑛
1 − 𝑝𝑛

≥ 3−(𝑛+1)
𝛿

4𝑑
,

and since |{𝜙𝑥 (𝑒) : 𝑒 ∈ 𝑍𝑟}| ≥ 1
2 |𝑍𝑟 | ≥

𝜀3
1

16𝑑 (where the factor of 1/2 accounts for the distinction
between oriented and unoriented edges, with 𝜙𝑥 acting bijectively on the former), we deduce that
there exists 𝜀2 = 𝜀2(𝛼, 𝛿, 𝜀) > 0 such that

P (∃𝑥 ∈ 𝑍𝑟 : 𝜙𝑥 (𝑒) ∈ 𝜔′ | 𝜔 = 𝜉) ≥ 1 −
(
1 − 3−(𝑛+1)

𝛿

4𝑑

)𝜀3
1𝑑/16

≥ 1 − exp

[
−3−(𝑛+1)

𝜀3
1𝛿

64

]
≥ 𝜀23−𝑛, (5.4.9)

where we used the inequality 1 − 𝑥 ≤ 𝑒−𝑥 in the second line. Condition on the event 𝜔 = 𝜉 and
consider the random set 𝐽 := {𝑟 ∈ 𝑅 : 𝑍𝑟

𝜔′←→ 𝑌 }. Note that for all 𝑟1, 𝑟2 ∈ 𝑅 with 𝑍𝑟1 ̸
𝜔←→ 𝑌 and

𝑍𝑟2 ̸
𝜔←→ 𝑌 , we have {𝜙𝑥 (𝑒) : 𝑥 ∈ 𝑍𝑟1} ∩ {𝜙𝑥 (𝑒) : 𝑥 ∈ 𝑍𝑟2} = ∅. So by independence, it follows that

there exists a constant 𝐶2 = 𝐶2(𝛼, 𝛿, 𝜀) such that if |𝑅 | ≥ 𝐶23𝑛 then

P
(
|𝐽 | ≥ 𝜀2

2
3−𝑛 |𝑅 |

�� 𝜔 = 𝜉

)
≥ 1 − 𝜀1

8
. (5.4.10)

We will now proceed by case analysis according to whether |𝑅(𝜉) | ≥ 𝐶23𝑛 for every 𝜉 ∈ B or
|𝑅(𝜉) | < 𝐶23𝑛 for some 𝜉 ∈ B. First assume that |𝑅(𝜉) | ≥ 𝐶23𝑛 for every 𝜉 ∈ B. On the event
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𝜔 ∈ B, we write (𝑍𝑟)𝑟∈𝑅 and 𝐽 for the corresponding sets defined with respect to 𝜔. We have by
(5.4.8) and (5.4.10) that

P
(
|𝐽 | ≥ 𝜀2

2
3−𝑛 |𝑅 | and ∥𝐾1(𝜔′)∥ < 𝛽

�� 𝜔 ∈ B)
≥ 𝜀1

4
− 𝜀1

8
=
𝜀1

8
, (5.4.11)

and hence that

P
(
𝜔 ∈ B, |𝐽 | ≥ 𝜀2

2
3−𝑛 |𝑅 | , and ∥𝐾1(𝜔′)∥ < 𝛽

)
≥
𝜀2

1
16
. (5.4.12)

Consider a pair of configurations (𝜔, 𝜔′) satisfying the event whose probability is estimated in
(5.4.12) and pick 𝑟 ∈ 𝐽 and 𝑦 ∈ 𝑍𝑟 . Since 𝜙𝑦 (𝐻) activates 𝛽 in 𝜔 and ∥𝐾1(𝜔′)∥ < 𝛽, we also have
that 𝜙𝑦 (𝐻) activates 𝛽 in 𝜔′. By definition of 𝐽, we can find 𝑥 ∈ 𝑍𝑟 such that 𝜙𝑥 (𝑒) is open in 𝜔′.
Since 𝑥, 𝑦 ∈ 𝑍𝑟 we have by definition that 𝑥 and 𝑦 are connected in 𝜔, and since 𝑥, 𝑦 ∈ 𝑌 we have
by definition of 𝑌 that 𝜙𝑥 (𝑢) and 𝜙𝑦 (𝑢) are also connected in 𝜔. Since 𝜙𝑥 (𝑒) is open in 𝜔′ and
𝜙𝑥 (𝑣) = 𝑥, we deduce that 𝑥, 𝑦, 𝜙𝑥 (𝑢), and 𝜙𝑦 (𝑢) all belong to the same cluster of 𝜔′. Since 𝜙𝑦 (𝐻)
activates 𝛽 in 𝜔′ and 𝑦 is connected to 𝜙𝑦 (𝑢) in 𝜔′, we deduce that 𝜙𝑦 (𝐻 \ {𝑒}) activates 𝛽 in 𝜔′

also. Since this holds for every 𝑟 ∈ 𝐽 and 𝑦 ∈ 𝑍𝑟 , we have

|𝑊 | :=
��{𝑥 ∈ 𝑋 : 𝜔′ ∈ Act𝛽 (𝜙𝑥 (𝐻 \ {𝑒})

}�� ≥ |𝐽 |min
𝑟∈𝐽
|𝑍𝑟 | .

Since |𝐽 | ≥ 𝜀2
2 3−𝑛 |𝑅 | ≥ 3−𝑛 𝜀2

8
|𝑉 |
𝑑

and every 𝑍𝑟 has |𝑍𝑟 | ≥
𝜀3

1
8 𝑑, we have that ∥𝑊 ∥ ≥ 𝜀3

1𝜀2
64 3−𝑛 and

hence that

E ∥𝑊 ∥ ≥
𝜀5

1𝜀2

210 3−𝑛.

Thus, it follows by vertex-transitivity that P𝑝𝑚
(
Act𝛽 (𝐻 \ {𝑒})

)
≥ 𝜀5

1𝜀2

210 3−𝑛. This bound has the
required form, completing the proof of (5.4.5) in this case.

It remains to consider the case that |𝑅(𝜉) | < 𝐶23𝑛 for some 𝜉 ∈ B. Since we always have
|𝑅 | ≥ |𝑉 | /4𝑑, we must have in this case that

|𝑉 | ≤ 4𝐶23𝑛𝑑.

Observe that if 𝜔 ∈ B and ∥𝐾1(𝜔′)∥ < 𝛽 then 𝜔′ ∈ B also. Thus, by (5.4.8) and the fact that
P𝑝𝑛 (B) ≥

𝜀1
2 , we have that

P𝑝𝑚 (B) ≥
𝜀2

1
8
.

On the event B, pick one of the sets 𝑍𝑟 that are guaranteed to exist by our earlier argument, call it
𝑍 , and let𝑈 := {𝑥 ∈ 𝑍 : 𝜔 ∈ Act𝛽 (𝜙𝑥 (𝑒))}. If

P𝑝𝑚
(
B ∩

{
∥𝑈∥ ≥ 1

2
∥𝑍 ∥

})
≥ 1

2
P𝑝𝑚 (B)
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then we have by vertex-transitivity and the bound |𝑍 | ≥ 𝜀3
1𝑑/8 that

P𝑝𝑚
(
Act𝛽 (𝑒)

)
≥ E𝑝𝑚 [∥𝑈∥ 1(B)] ≥

𝜀3
1𝑑

16|𝑉 | ·
𝜀2

1
16
≥

𝜀5
1

210𝐶2
· 3−𝑛

as required. Conversely, if

P𝑝𝑚
(
B ∩

{
∥𝑈∥ ≥ 1

2
∥𝑍 ∥

})
≤ 1

2
P𝑝𝑚 (B) ,

then we use insertion-tolerance (Proposition 6.6.4 - using the fact that ∥𝑍 ∥ ≥ 𝜀3
1

64𝐶23𝑛 ) to open a
single edge in {𝜙𝑥 (𝑒) : 𝑥 ∈ 𝑍 \𝑈} on the event B ∩ {∥𝑈∥ ≤ 1

2 ∥𝑍 ∥}. This does not create a cluster
with density at least 𝛽, since none of the edges 𝜙𝑥 (𝑒) with 𝑥 ∈ 𝑍 \𝑈 activates 𝛽. Arguing as before,
after opening this edge, every set 𝜙𝑥 (𝐻 \ {𝑒}) with 𝑥 ∈ 𝑍 activates 𝛽. Thus, it follows by the same
vertex-transitivity argument as above that there exists a positive constant 𝜀3(𝑛) = 𝜀3(𝛼, 𝛿, 𝜀, 𝑛)
such that

P𝑝𝑚
(
Act𝛽 (𝐻 \ {𝑒})

)
≥ 𝜀3.

This completes the proof. □

Completing the proof of the main theorems
In this section we complete the proof of Theorem 8.1.1 and hence of Theorem 5.1.2.

Proof of Theorem 8.1.1. The implication (i)⇒ (ii) follows immediately from Corollary 5.3.4 and
Proposition 5.4.1, while the implication (iii)⇒ (iv) is trivial. As such, it remains only to prove (ii)
⇒ (iii) and (iv)⇒ (i).

We begin with the implication (ii) ⇒ (iii), i.e., the claim that molecular sets admit linear 1/3-
separators. To see this, note that ifH is 𝑚-molecular for some 𝑚 ≥ 2 then there exists a constant 𝐶
such that for each𝐺 ∈ H there is an automorphism-invariant set of edges 𝐹 such that |𝐹 | ≤ 𝐶 |𝑉 (𝐺) |
and 𝐹 disconnects 𝐺 into 𝑚 ≥ 2 connected components each of size |𝑉 (𝐺) |/𝑚. If we take 𝐴 to
be the union of ⌈𝑚/2⌉ of these components then |𝑉 (𝐺) |/3 ≤ |𝐴| = ⌈𝑚/2⌉ |𝑉 (𝐺) |/𝑚 ≤ 2|𝑉 (𝐺) |/3
and |𝜕𝐸𝐴| ≤ |𝐹 | ≤ 𝐶 |𝑉 (𝐺) | so thatH has linear 1/3-separators as claimed.

We next prove the implication (iv)⇒ (i). We will use the following theorem [Bol+10a] identifying
the location of the critical threshold for (not necessarily transitive) dense graph sequences.

Theorem 5.4.12 (Bollobás, Borgs, Chayes, Riordan 2010). Let (𝐺𝑛) be a dense sequence of finite,
simple graphs with |𝑉 (𝐺𝑛) | → ∞, and for each 𝑛 ≥ 1 let 𝜆𝑛 be the largest eigenvalue of the
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adjacency matrix of 𝐺𝑛. For each 𝑐 > 0

lim
𝑛→∞

P𝐺𝑛
𝜆−1
𝑛

(∥𝐾1∥ ≥ 𝑐) = 0,

and for each 𝜀 > 0 there exists 𝛿 > 0 such that

lim
𝑛→∞

P𝐺𝑛(1+𝜀)𝜆−1
𝑛

(∥𝐾1∥ ≥ 𝛿) = 1.

Note that if 𝐴 is the adjacency matrix of a finite graph then 𝐴 is self-adjoint and the largest
eigenvalue (a.k.a. the Perron–Frobenius eigenvalue) of 𝐴 coincides with the 𝐿2 operator norm of
𝐴. This norm satisfies ∥𝐴∥ ≥ ⟨𝐴1, 1⟩/⟨1, 1⟩ = 2|𝐸 |/|𝑉 | where 1 is the constant-one function, and
hence if (𝐺𝑛)𝑛≥1 is dense then the sequence of largest eigenvalues 𝜆𝑛 satisfies

lim inf |𝑉 (𝐺𝑛) |−1𝜆𝑛 > 0.

Suppose that H is dense and admits linear 𝜃-separators for some 𝜃 ∈ (0, 1/2], so that there exists
a constant 𝐶1 such that for each 𝐺 ∈ H there exists a set 𝐴(𝐺) ⊆ 𝑉 (𝐺) with 𝜃 |𝑉 (𝐺) | ≤ |𝐴(𝐺) | ≤
(1 − 𝜃) |𝑉 (𝐺) | and |𝜕𝐸𝐴(𝐺) | ≤ 𝐶1 |𝑉 (𝐺) |. For each 𝐺 ∈ H let 𝐻 (𝐺) and 𝐻 (𝐺)𝑐 denote the
subgraphs of 𝐺 induced by 𝐴(𝐺) and 𝐴(𝐺)𝑐 respectively. Since every vertex of 𝐺 has degree
2|𝐸 (𝐺) |/|𝑉 (𝐺) | we have that

min{|𝐸 (𝐻 (𝐺)) |, |𝐸 (𝐻 (𝐺)𝑐) |} ≥ 𝜃 |𝐸 (𝐺) | − |𝜕𝐸𝐴(𝐺) |.

For large 𝑛 we have that 𝜃 |𝐸 (𝐺) | ≫ |𝜕𝐸𝐴(𝐺) | and hence that (𝐻 (𝐺))𝐺∈H and (𝐻 (𝐺)𝑐)𝐺∈H
are both dense. Thus, it follows from Theorem 5.4.12 that there exists a constant 𝐶2 such that
if we set 𝑝(𝐺) = 𝐶2/|𝑉 (𝐺) | for each 𝐺 ∈ H then both 𝐻 (𝐺) and 𝐻 (𝐺)𝑐 contain a giant
component with high probability under percolation with parameter 𝑝(𝐺). The same also holds at
𝑞(𝐺) = 2𝐶2/|𝑉 (𝐺) |, which is 𝜀-supercritical forH for an appropriate choice of 𝜀 > 0. But at this
same parameter 𝑞(𝐺) the expected number of edges connecting 𝐴(𝐺) and 𝐴(𝐺)𝑐 is bounded by
2𝐶1𝐶2, so that by Poisson approximation the probability that there are no such edges is bounded
away from zero uniformly over 𝐺 ∈ H . Thus the probability that 𝑞(𝐺)-percolation on 𝐺 contains
at least two giant components is bounded away from zero uniformly over 𝐺 ∈ H , and hence H
does not have the supercritical uniqueness property. It follows that the supercritical uniqueness
property fails for any setH ′ withH ⊆ H ′ ⊆ F , by extending 𝑞 fromH toH ′ by setting 𝑞(𝐺) := 1
for all 𝐺 ∈ H ′\H . □

203



K2n K2nKn

nα

edges

vertex
per

nα

edges

vertex
per

K2n Kn Kn

nα

edges

vertex
per

nα

edges

vertex
per

nα

edges

vertex
per

Kn K2n

nα

edges

vertex
per

Figure 5.1: Schematic illustration of the graphs discussed in remark 5.4.2

Remark 5.4.2. The proof of (iv) ⇒ (i) above shows more generally that any sequence of finite,
simple graphs with linear minimal degree and linear 𝜃-separators for some 𝜃 ∈ (0, 1/2] fails to have
the supercritical uniqueness property. On the other hand, the results of [Bol+10a] imply that dense
graphs without subquadratic separators have the supercritical uniqueness property. It is natural
to wonder in light of Theorem 8.1.1 whether the failure of supercritical uniqueness in graphs of
linear minimal degree is always characterized by the existence of linear separators, without the
assumption of vertex-transitivity.

This is not the case. Indeed, let 0 < 𝛼 < 1/2 and suppose that we take two copies of 𝐾2𝑛 and
one copy of 𝐾𝑛 arranged in a line with the two copies of 𝐾2𝑛 at the end and the copy of 𝐾𝑛 in the
middle. We may glue these copies together in such a way that each vertex is connected to each of
the complete graphs adjacent to its own complete graph by between 𝑛𝛼 and 3𝑛𝛼 edges. It is easily
verified that the smallest separators in the resulting graph sequence are of order 𝑛1+𝛼 and that there
will exist two distinct giant clusters with high probability when 𝑝 = 3/4𝑛. We focus on the second
claim, which is more involved. For such 𝑝 the two copies of 𝐾2𝑛 are supercritical and each contains
a giant cluster, while the copy of 𝐾𝑛 is subcritical and has largest cluster of order log 𝑛 with high
probability. Thus, when we add in the edges between the various complete graphs, the probability
that there exists a cluster in the copy of 𝐾𝑛 that has an edge connecting it to both of its neighbouring
copies of 𝐾2𝑛 is small: a 𝐾𝑛-cluster of size 𝑚 = 𝑂 (log 𝑛) has both such edges adjacent to it with
probability of order 𝑚2𝑛2𝛼−2, and since there are at most 2𝑛 such clusters the total conditional
probability is 𝑂 ((log 𝑛)2𝑛2𝛼−1) = 𝑜(1) with high probability, yielding the claim. This gives an
example of a linear minimal-degree graph sequence that does not have linear separators but does
not have the supercritical uniqueness property either. By considering longer chains of copies of 𝐾𝑛
connecting the two copies of 𝐾2𝑛 as in fig. 5.1, one can obtain similar examples where the minimal
size of a separator scales like an arbitrary power of 𝑛 between 𝑛 and 𝑛2.
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5.5 Closing remarks
Counterexamples. We now discuss examples demonstrating that Theorem 8.1.1 does not extend
to arbitrary insertion-tolerant percolation models on the torus or to critical percolation.

Example 5.5.1 (Multiple giants at criticality). The cycle Z/𝑛Z (with its standard generating set)
has multiple giant components with good probability when 𝑝 = 1 − 𝜆/𝑛, and the set of closed
edges converges to a Poisson process on the circle as 𝑛 → ∞. As observed by Alon, Benjamini,
and Stacey [ABS04b], by considering the highly asymmetric torus 𝑇𝑛 := (Z/2𝑛Z) × (Z/𝑛Z) (with
its standard generating set) one can obtain similar behaviour at values of 𝑝 that are bounded away
from 1.

Since these authors did not include a proof, let us now very briefly indicate how the analysis of this
example works. We assume for notational simplicity that 𝑛 is a power of 2 and hence is a factor
of 2𝑛. Let 𝑋 be the set of cylinders in (Z/2𝑛Z) × (Z/𝑛Z) of the form [𝑘𝑛, (𝑘 + 1)𝑛] × (Z/𝑛Z)
whose vertices are incident to some simple cycle of dual edges that wrap around the torus. When
𝑝 > 1/2, it follows by sharpness of the phase transition on Z2 that there exists a constant 𝑐𝑝 > 0 with
𝑐𝑝 → ∞ as 𝑝 → 1 such that each particular cylinder has probability at most 𝑒−𝑐𝑝𝑛 to belong to 𝑋 ,
this probability being bounded by the probability that a box of size 𝑛 in Z2 intersects a dual cluster
of diameter at least 𝑛. On the other hand, since the correlation length on Z2 diverges as 𝑝 ↑ 1/2,
there exists a fixed 𝑝 > 1/2 such that E𝑝 |𝑋 | → ∞ as 𝑛 → ∞. Using this one can prove that if we
define 𝑝𝑛 to be the unique value such that E𝑝𝑛 |𝑋 | = 1 then lim inf 𝑝𝑛 > 1/2 and lim sup 𝑝𝑛 < 1. It
is fairly straightforward to prove that there are multiple giant clusters with positive probability at 𝑝𝑛.
Indeed, using the same exponential decay estimates one can prove that non-neighbouring cylinders
are highly de-correlated, so that E𝑝𝑛 |𝑋 |2 = 𝑂 (1) and there is a good probability for 𝑋 to contain
at least two elements that are well-spaced around the torus. On this event there must be at least
two giant components with high probability: since 𝑝𝑛 is bounded away from 𝑝𝑐 (Z2) = 1/2, each
vertex of the torus has good probability to belong to a cluster that wraps around the torus, and any
two such vertices can be disconnected only if there are two closed dual cut-cycles separating them.
The events that two distant vertices belong to such wrapping clusters are highly de-correlated, so
that the number of vertices belonging to wrapping clusters is linear with high probability and the
claim follows.

Example 5.5.2 (Insertion-tolerance on the torus is not enough). Consider the symmetric torus
(Z/10𝑛Z)2 with its standard generating set. Consider the model defined as follows: First, select a
pair of vertical strips of the form [𝑘, 𝑘 + 𝑛] × (Z/10𝑛Z) and [𝑘 + 5𝑛, 𝑘 + 6𝑛] × (Z/10𝑛Z) uniformly
from among the 𝑛 available possibilities. Declare each edge belonging to one of these strips open
with probability 1/4 and each edge not belonging to one of these strips open with probability 3/4.
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Using standard properties of subcritical and supercritical percolation on Z2, one easily obtains that
this model contains exactly two giant clusters with high probability: the two large high-density
strips will each contain a giant cluster with high probability, while there will be no clusters crossing
either of the two thin low-density strips with high probability. By also applying a random rotation in
{0, 𝜋/2, 𝜋, 3𝜋/4} one obtains an automorphism invariant, uniformly insertion-tolerant, percolation-
in-random-environment model on (Z/10𝑛Z)2 with the same properties. As such, one should not
expect any uniqueness-of-the-giant-component results to hold on finite graphs at anywhere near the
same generality as found in the Burton–Keane theorem [BK89], even when restricting to symmetric
tori of fixed dimension. By taking the relative width of the low-density strips to go to zero in a
well-chosen manner as 𝑛→ ∞, one can construct a similar example in which the number of giant
clusters is either one or two each with good probability and any two vertices are connected with
good probability.

The supercritical existence property. Theorem 8.1.1 can be though of a geometric characteri-
sation of the infinite sets H ⊆ F for which supercritical percolation has at most one giant cluster
with high probability. We now briefly address the complementary problem of whether there is at
least one giant cluster with high probability in supercritical percolation, noting that the definitions
only ensure that such a cluster exists with good probability (i.e., with probability bounded away
from zero).

Let H ⊆ F be an infinite set. We say that H has the supercritical existence property if for every
supercritical assignment 𝑝 : H → [0, 1] there exists a constant 𝛼 > 0 such that

lim inf
𝐺∈H

P𝐺
𝑝(𝐺) (the largest cluster contains at least 𝛼 |𝑉 (𝐺) | vertices) = 1.

Notice that the sharp density property immediately implies the supercritical existence property.
However the converse is false because (as we will show below) molecular graphs also have the
supercritical existence property. This might lead one to suspect that the supercritical existence
property always holds. In fact, this is not the case, and the counterexamples can once again
be exactly characterised in terms of molecular graphs. Let us note that the weaker supercritical
existence property

lim
𝛼↓0

lim inf
𝐺∈H

P𝐺
𝑝(𝐺) (the largest cluster contains at least 𝛼 |𝑉 (𝐺) | vertices) = 1

always holds (even without transitivity) as an immediate consequence of the universal tightness
theorem [Hut21b]. The following is a fairly straightforward consequence of our results and those
of [Bol+10a].
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Corollary 5.5.3. An infinite set H ⊆ F has the supercritical existence property if and only if it
is not the case that there exist arbitrarily large integers 𝑚 for which H contains an 𝑚-molecular
subset.

Sketch of proof. Applying the results of [Bol+10a] as in the proof of Theorem 8.1.1 easily yields
that ifH is 𝑚-molecular then

lim inf
𝐺∈H

P𝐺(1−𝜀)−1𝑝𝐺𝑐 (𝛼,𝜀)
(∥𝐾1∥ ≤ 1/𝑚) > 0

for every 0 < 𝛼, 𝜀 < 1, yielding the forward implication of the claim. We now suppose H does
not have the supercritical existence property and argue that it contains 𝑚-molecular subsequences
for arbitrarily large values of 𝑚. It is an immediate consequence of Proposition 5.4.1 thatH has at
least one molecular subsequence. Suppose for contradiction that the supremal value of 𝑚 such that
H has an 𝑚-molecular subsequence is finite, and denote this supremum by 𝑀 . Since H does not
have the supercritical existence property, there exists an infinite subset S ⊆ H such that

lim sup
𝐺∈S

P𝐺(1−𝜀)−1𝑝𝐺𝑐 (𝜀,𝜀)

(
∥𝐾1∥ ≥

𝜀2

4𝑀

)
< 1,

and applying Proposition 5.4.1 as before we may assume that this subset is 𝑚-molecular for some
2 ≤ 𝑚 ≤ 𝑀 . By taking a further infinite subset and changing 𝑚 if necessary, we may assume that
this subset has density deg(𝐺)/|𝑉 (𝐺) | converging to some constant 𝑐 > 0 and does not have a
further subset that is 𝑘-molecular for any 𝑘 > 𝑚.

By definition there exists a constant 𝐶 such that for each 𝐺 ∈ S there exists an automorphism-
invariant set 𝐹𝐺 ⊆ 𝐸 (𝐺) with |𝐹𝐺 | ≤ 𝐶 |𝑉𝐺 | such that 𝐺 \ 𝐹𝐺 has 𝑚 connected components. For
each𝐺 ∈ S, let 𝐻𝐺 be a graph isomorphic to each of the 𝑚 connected components of𝐺\𝐹𝐺 . Since
S does not admit a subset that is 𝑘-molecular for any 𝑘 > 𝑚, A := {𝐻𝐺 : 𝐺 ∈ S} cannot itself
contain a molecular subset. Thus, it follows from Proposition 5.4.1 and Theorem 8.1.1 that A has
the sharp density property and the supercritical uniqueness property. On the other hand, the vertex
degrees of 𝐻𝐺 with 𝐺 ∈ S are asymptotically equal to those of 𝐺 in the sense that the ratio tends
to 1, and Theorem 5.4.12 allows us to compute the location of the percolation thresholds for these
transitive dense graph sequences in terms of their vertex degrees. (Recall that the largest eigenvalue
for the adjacency matrix of a regular graph is equal to its vertex degree.) So any assignment
𝑝 : A → [0, 1] built from the assignment 𝑝 : S → [0, 1] with 𝑝(𝐺) := (1 − 𝜀)−1/2 · 𝑝𝐺𝑐 (𝜀, 𝜀) by
arbitrarily picking 𝑝(𝐻) ∈ {𝑝(𝐺) : 𝐻𝐺 = 𝐻} for each 𝐻 ∈ A is itself supercritical for A. We
deduce from Theorem 8.1.1 that

lim
𝐺∈S

E𝐻𝐺
𝑝(𝐺) ∥𝐾2∥ = 0.
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In order for a vertex to belong to the largest cluster in some 𝐺 ∈ S, either it must belong to the
largest cluster in its copy of 𝐻𝐺 , or this is not the case and there is an open edge of 𝐹𝐺 incident to
its cluster. By vertex transitivity every vertex of 𝐺 is incident to at most 𝐶 edges of 𝐹𝐺 . It follows
that, writing 𝐾𝑖 for the 𝑖th largest cluster,

E𝐺
𝑝(𝐺) ∥𝐾1∥ ≤ E𝐻𝐺

𝑝(𝐺)

[
∥𝐾1∥ +

∑︁
𝑖≥2

𝐶𝑝(𝐺)∥𝐾𝑖∥ · |𝐾𝑖 |
]

≤ E𝐻𝐺
𝑝(𝐺) ∥𝐾1∥ + 𝐶𝑝(𝐺) |𝑉 (𝐺) |E𝐻 (𝐺)𝑝(𝐺) ∥𝐾2∥.

Since 𝑝(𝐺) is of order |𝑉 (𝐺) |−1 the second term tends to zero as 𝐺 → ∞ with 𝐺 ∈ S, and we
deduce thatE𝐻𝐺

𝑝(𝐺) ∥𝐾1∥ ≥ 1
2E

𝐺
𝑝(𝐺) ∥𝐾1∥ ≥ 𝜀2

2 for all but finitely many𝐺 ∈ S. Define 𝑝′ : S → [0, 1]
by

𝑝′(𝐺) := (1 − 𝜀)−1/2 · 𝑝(𝐺) = (1 − 𝜀)−1 · 𝑝𝐺𝑐 (𝜀, 𝜀).

Since A does not have any molecular subsets, it follows by Markov’s inequality and Proposi-
tion 5.4.1 that

lim inf
𝐺∈S

P𝐺
𝑝′ (𝐺)

(
∥𝐾1∥ ≥

𝜀2

4𝑀

)
≥ lim inf

𝐺∈S
P𝐻𝐺
𝑝′ (𝐺)

(
∥𝐾1∥ ≥

𝜀2

4

)
= 1,

a contradiction. □
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209C h a p t e r 6

SUPERCRITICAL PERCOLATION ON FINITE TRANSITIVE GRAPHS II:
CONCENTRATION, LOCALITY, AND EQUICONTINUITY OF THE

GIANT’S DENSITY

Joint with Tom Hutchcroft

Abstract
In the previous paper of this series, we showed that supercritical percolation on a large finite
transitive graph typically has exactly one giant cluster. In the present paper, we simultaneously
establish that the density of this unique giant cluster is concentrated around its mean and that this
mean is equicontinuous with respect to the (suitably scaled) percolation parameter and is determined
by the “local geometry” (suitably interpreted) of 𝐺. For example, consider the torus

T𝑑𝑛 := (Z/𝑛Z𝑛)𝑑 .

Our general arguments recover the well-known fact that the supercritical giant cluster density for
(T𝑑𝑛)𝑛≥1 (𝑑 ≥ 2 fixed) converges to the infinite cluster density on Z𝑑 , whereas the supercritical
giant cluster density for (T𝑑𝑛)𝑑≥1 (𝑛 ≥ 2 fixed) converges to the survival probability of a Poisson
branching process.

Our proof relies on a new perspective on how to use sharp threshold theory in percolation: to
exploit the fact that certain events of interest (such as the event 𝑜 ↔ ∞) do not to undergo sharp
thresholds. These arguments apply equally well to infinite transitive graphs, yielding analogous,
new results in this context too. For example, we show that for all 𝜀 > 0 and 𝑑 ∈ N, the function
given by the restriction of

𝜃𝐺 (𝑝) := P𝐺𝑝 (𝑜 ↔∞) to 𝑝 ∈ [𝑝𝑐 (𝐺) + 𝜀, 1]

is uniformly equicontinuous as 𝐺 varies over all infinite transitive graphs with vertex degree 𝑑.

6.1 Introduction
This paper is the second in a series investigating the supercritical phase of Bernoulli bond percolation
on finite, connected, vertex-transitive graphs. The overarching goal of both papers is to obtain results
that hold for all such graphs, in contrast to earlier works that have focused on particular geometric



settings (such as complete graphs, tori, or expanders) and used methods specific to those examples.
In the first paper of this series, we answered the most basic question about the geometry of clusters
in this phase by showing that there is typically a unique giant cluster with high probability. In this
paper, we study the density of this giant cluster. We will show that as the volume of the graph
tends to infinity, the density of this giant cluster concentrates around a deterministic value, unless
the graph belongs to an explicit family of counterexamples known as molecular graphs which we
introduced in the first paper. We then investigate the continuity properties of this limiting density,
determining the senses in which it is determined by the local geometry of 𝐺 and continuous in 𝑝.
As in [EH21a], the theory we develop applies without any constraints on the degree, but is also
new in the bounded degree case.

Setting the scene
Before stating our results, we first briefly overview the results of the first paper in the series [EH21a]
and the first author’s companion paper [Eas22]. In addition to providing important context for our
new results, this will also give us an opportunity to introduce relevant definitions and notation.

Let G be the set of all isomorphism classes of connected, simple (i.e., not containing loops or
multiple edges), locally finite, vertex-transitive graphs, and let F = {𝐺 ∈ G : 𝐺 finite}. (We
work with isomorphism classes partly to make sure these really are sets; F is countably infinite
while G has the cardinality of the continuum. We will usually suppress the distinction between
graphs and their isomorphism classes as much as possible when this does not cause any confusion.)
Given an infinite set H ⊆ F , a function 𝜙 : H → R, and 𝛼 ∈ R we write lim𝐺∈H 𝜙(𝐺) = 𝛼 or
“𝜙(𝐺) → 𝛼 as 𝐺 →∞ inH” to mean that for each 𝜀 > 0 there exists 𝑁 such that |𝜙(𝐺) − 𝛼 | ≤ 𝜀
for every 𝐺 ∈ H with at least 𝑁 vertices, or equivalently that 𝜙(𝐺𝑛) → 𝛼 for some (and hence
every) enumeration H = {𝐺1, 𝐺2, . . .} of H . Similar conventions apply to define lim sup𝐺∈H ,
lim inf𝐺∈H , and limits that may be equal to +∞ or −∞. Given two positive functions 𝑓 and 𝑔 on
H , we write “ 𝑓 (𝐺) ∼ 𝑔(𝐺) as 𝐺 →∞ inH” to mean that lim𝐺∈H 𝑓 (𝐺)/𝑔(𝐺) = 1.

Given a countable graph 𝐺 = (𝑉, 𝐸) and 𝑝 ∈ [0, 1], we write P𝑝 = P𝐺𝑝 for the law of Bernoulli-𝑝
bond percolation on𝐺, i.e., the random subgraph of𝐺 in which each edge is included independently
at random with inclusion probability 𝑝. Given a percolation configuration 𝜔 ∈ {0, 1}𝐸 on 𝐺, the
connected components of 𝜔 are called clusters. We write 𝐾𝑢 to denote the cluster containing the
vertex 𝑢 and write 𝑢 ↔ 𝑣 for the event that 𝐾𝑢 = 𝐾𝑣. Given a subset 𝑊 of 𝑉 , the volume of 𝑊 is
the number of vertices in 𝑊 , denoted |𝑊 |, while if 𝐺 is finite, the density of 𝑊 is defined to be
the ratio ∥𝑊 ∥ := |𝑊 | /|𝑉 |. We write 𝐾1, 𝐾2, . . . for the clusters of 𝜔 in decreasing order of volume
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(breaking ties arbitrarily).

Given an infinite set H ⊆ F , we say that an assignment of parameters 𝑝𝑐 : H → [0, 1] is a
percolation threshold if

1. lim𝐻∈H P(1−𝜀)𝑝𝑐 (∥𝐾1∥ ≥ 𝑐) = 0 for every 𝜀, 𝑐 > 0, and

2. For every 𝜀 > 0 there exists 𝛼 > 0 such that lim𝐻∈H P(1+𝜀)𝑝𝑐 (∥𝐾1∥ ≥ 𝛼) = 1, where we set
P𝑝 = P1 for 𝑝 ≥ 1.

Note that critical thresholds are not unique when they exist, but any two percolation thresholds
𝑝𝑐, 𝑝𝑐 : H → [0, 1] must satisfy 𝑝𝑐 (𝐺) ∼ 𝑝𝑐 (𝐺) as 𝐺 → ∞ in H . When a percolation
threshold 𝑝𝑐 : H → [0, 1] exists, we say that 𝑝 : H → [0, 1] is supercritical if the set
H ′ = {𝐺 ∈ H : 𝑝(𝐺) < 1} is infinite and satisfies

lim inf
𝐺∈H ′

𝑝(𝐺)
𝑝𝑐 (𝐺)

> 1

or H ′ is finite. We generalise this definition to include the case that a threshold 𝑝𝑐 does not exist
by saying that 𝑝 is supercritical ifH ′ is infinite and there exists 𝜀 > 0 such that

lim inf
𝐺∈H ′

P(1−𝜀)𝑝 (∥𝐾1∥ ≥ 𝜀) ≥ 𝜀,

or H ′ is finite. Note that these two definitions of supercriticality coincide when H admits a
threshold function, and in particular that the definition of supercriticality does not depend on the
choice of threshold function. This definition also guarantees that every infinite setH ⊆ F admits
a supercritical assignment 𝑝 : H → [0, 1], namely the trivial supercritical assignment 𝑝(𝐺) ≡ 1.
We say thatH has the supercritical uniqueness property if

lim
𝐺∈H

P𝑝 (∥𝐾2∥ ≥ 𝜀) = 0

for every supercritical 𝑝 : H → [0, 1] and every constant 𝜀 > 0.

The first paper in this series [EH21a] together with the related work of the first author [Eas22] give
simple characterizations of those transitive graph families that have the supercritical uniqueness
property and that admit percolation thresholds respectively.

Theorem 6.1.1 ([EH21a, Theorem 1.2]). An infinite set H ⊆ F has the supercritical uniqueness
property if and only if it does not contain an infinite molecular subset.
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Theorem 6.1.2 ([Eas22, Theorem 2]). An infinite setH ⊆ F admits a percolation threshold if and
only if it does not contain an infinite 𝑚-molecular subset for infinitely many values of 𝑚.

Here, given an integer 𝑚 ≥ 2, we say that an infinite set H ⊆ F is 𝑚-molecular if it has the
following properties, where 𝐸 (𝐺) and 𝑉 (𝐺) denote the set of edges and the set of vertices of a
given graph 𝐺:

1. H is dense, meaning that lim inf𝐺∈H
|𝐸 (𝐺) |
|𝑉 (𝐺) |2 > 0.

2. There exists a constant 𝐶 < ∞ such that for each 𝐺 = (𝑉, 𝐸) ∈ H there exists a set of edges
𝐹 ⊆ 𝐸 satisfying the following conditions:

a) 𝐺 \ 𝐹 has exactly 𝑚 connected components;

b) 𝐹 is invariant under Aut(𝐺);

c) |𝐹 | ≤ 𝐶 |𝑉 |.

The stated conditions on 𝐺 and 𝐹 imply that the 𝑚 connected components of 𝐺 \ 𝐹 are dense,
vertex-transitive, and isomorphic to each other. We say that an infinite setH ⊆ F is molecular if
it is 𝑚-molecular for some 𝑚 ≥ 2. For example, the set of Cartesian products of complete graphs
{𝐾𝑛□𝐾𝑚 : 𝑛 ≥ 1} is 𝑚-molecular for each 𝑚 ≥ 2. Applying the analysis of percolation on dense
graphs carried out in [Bol+10b], it is fairly easy to see that the supercritical uniqueness property
does not hold for molecular sets of graphs. For example, if we take 𝑝 : {𝐾𝑛□𝐾𝑚 : 𝑛 ≥ 1} → [0, 1]
defined by 𝑝(𝐾𝑛□𝐾𝑚) = 2/𝑛 then 𝑝 is supercritical since each copy of𝐾𝑛 will contain a giant cluster
by the classical theory of Erdős-Rényi random graphs, but the total number of edges between distinct
copies of 𝐾𝑛 converges to a Poisson random variable and hence is zero with positive probability.
The main result of [EH21a] is that constructions of this form are the only way to get a non-unique
giant in supercritical percolation on a transitive graph.

These theorems imply in particular that if H ⊆ F is an infinite set that is sparse, meaning that
lim𝐺∈H

|𝐸 (𝐺) |
|𝑉 (𝐺) |2 = 0, then H has the supercritical uniqueness property and admits a percolation

threshold function. An important example of such an infinite set H is F𝑑 (for each 𝑑 ≥ 2), the
set of all (isomorphism classes of) finite, connected, simple, vertex-transitive graphs with degrees
bounded by 𝑑.

Concentration: The density is well-defined
An important quantity associated to percolation on an infinite transitive graph at a given parameter
𝑝 is the infinite cluster density, the proportion of vertices contained in infinite clusters. In this
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context, if we define the expectation 𝜃 (𝑝, 𝐺) := P𝐺𝑝 (𝑜 ↔∞), where 𝑜 denotes an arbitrary vertex
of 𝐺, then it is easily shown that this quantity accurately captures the density of infinite clusters
in the sense that if 𝐴 is any finite set of vertices then |{𝑥 ∈ 𝐴 : 𝑥 ↔ ∞}| = (𝜃 ± 𝑜(1)) |𝐴| with
high probability when 𝐴 is large. (Indeed, the variance of this random variable is easily seen to be
𝑜( |𝐴|2). Getting sharp quantitative bounds on the fluctuations of this random variable in general
geometry is a very interesting problem closely related to those of [HH19, Section 5.3].) Moreover,
for percolation on Z𝑑 , it is an immediate consequence of the ergodic theorem that

1
(2𝑛 + 1)𝑑

∑︁
𝑥∈[−𝑛,𝑛]𝑑

1(𝑥 ↔∞) → 𝜃

almost surely as 𝑛→∞. As such, for infinite graphs, the relationship between the almost-sure and
in-expectation density of infinite clusters is trivial, and one instead focuses on questions concerning
e.g. the dependence of the density on 𝑝, with continuity at 𝑝𝑐 being a famous open problem for
three-dimensional lattices.

For finite transitive graphs, the most natural analogue of the infinite cluster density is the giant
cluster density. In this setting, the ergodic theorem no longer applies and the analogous question
on the relation between expected and almost-sure densities become much more subtle. Of course,
the picture we would naively expect is that as 𝑝 increases across some threshold value 𝑝𝑐 (𝐺),
a unique macroscopic cluster should emerge, and the density of this macroscopic cluster should
be concentrated around its mean 𝜃 (𝑝, 𝐺) := P𝐺𝑝 (𝑜 ∈ 𝐾1). Unfortunately this is not always the
case: In the product of an 𝑛-vertex complete graph with an edge with 𝑝 = 𝜆/𝑛 where 𝜆 > 1,
it can be shown the largest cluster either has density close to either mf (𝜆) or 1

2 mf (𝜆) with high
probability, where mf (𝜆) is the limiting density of the giant cluster in the 𝑝 = 𝜆/𝑛 Erdős-Rényi
graph, with probability approximately 1 − 𝑒−𝜆mf (𝜆)2 to have density close to mf (𝜆); the resulting
density 𝜃 ∼ (1− 1

2𝑒
−𝜆mf (𝜆)2)mf (𝜆) does not adequately capture the bimodal nature of this limiting

distribution. Even for bounded degree graphs, it is possible for similar behaviour to hold at the
critical point as we see on the long torus (Z/𝑛Z) × (Z/2𝑛Z) [EH21a, Example 5.1]. Still it seems
reasonable to conjecture that the density should be concentrated if we restrict to the supercritical
case and impose some mild geometric conditions on the graph at hand.

In order to address this question, we first introduce a relevant definition: We say that an infinite set
H ⊆ F has the supercritical concentration property if

lim
𝐺∈H

P𝑝
(��∥𝐾1∥ − E𝑝 ∥𝐾1∥

�� ≥ 𝜀) = 0
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for every supercritical 𝑝 : H → [0, 1] and every constant 𝜀 > 0. (Note that if concentration
occurs at all then it must be around the mean by the bounded convergence theorem.) As with the
uniqueness problem, it is reasonably easy to see that this property does not hold for molecular sets
of graphs, for similar reasons to the concrete example of the product of a complete graph with an
edge as discussed above. Our first main theorem states that, as with the supercritical uniqueness
property, molecular sets are the only obstruction to the supercritical concentration property.

Theorem 6.1.3. Let H be an infinite set of (isomorphism classes of) finite, simple, connected,
vertex-transitive graphs. The following are equivalent:

1. H has the supercritical concentration property.

2. H has the supercritical uniqueness property.

3. H does not contain an infinite molecular subset.

Note that the equivalence 2.⇔ 3. and the implication 1. ⇒ 2. were established in [EH21a, Theorem
1.2 and Lemma 3.6]; the new content of the theorem is the implication 2&3. ⇒ 1.

Corollary 6.1.4. Let H be an infinite set of (isomorphism classes of) finite, connected, vertex-
transitive graphs. IfH is sparse, then it has the supercritical concentration property.

This corollary is new even for H = F𝑑 , the set of all finite, simple, connected, vertex-transitive
graphs with degrees bounded by 𝑑. (Again, we stress that for bounded degree graphs the giant
can exist and fail to be unique or have concentrated density at the critical point, as part of a
discontinuous phase transition [EH21a, Example 5.1].)

Locality of the density
Now that we know that 𝜃 (𝑝, 𝐺) = P𝐺𝑝 (𝑜 ∈ 𝐾1) accurately captures the density of the supercritical
giant for large non-molecular finite transitive graphs with high-probability, we would like to un-
derstand the nature of the dependency of this quantity on 𝑝 and 𝐺. In particular, we would like to
understand whether we can compute the density of the giant in terms of some appropriate local limit
object as the size of our graph diverges. Before providing our complete answer to this question, let
us introduce the analogous statements in the simpler setting of infinite transitive graphs.
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Infinite graphs The most important open problem in the theory of percolation on infinite transitive
graphs is to establish that the map 𝜃 (·, 𝐺) (i.e. 𝑝 ↦→ 𝜃 (𝑝, 𝐺)) is continuous for every fixed 𝐺 ∈ G∗,
where G∗ is the set of all infinite transitive graphs that are not quasi-isometric to Z. This map
is always continuous on [0, 1]\{𝑝𝑐 (𝐺)} [Sch99], but continuity at 𝑝𝑐 (𝐺) remains open for many
graphs, including 𝐺 = Z3. In this paper, we are interested in the orthogonal question: Endow G∗

with the local (Benjamini-Schramm) topology. Now is the map 𝜃 (𝑝, ·) continuous for every fixed
𝑝? This variant of continuity arises naturally in the study of percolation on large finite transitive
graphs (see below). More generally, is the map 𝜃 : [0, 1] × G∗ → [0, 1] jointly continuous, as a
function of two variables? In fact, since 𝜃 (·, 𝐺) is monotone, this joint continuity is nothing more
than continuity in each argument individually.

Underlying both of these versions of continuity is the problem of showing that 𝜃 (𝑝, 𝐺) is uniformly
well-approximated by

𝜃𝑛 (𝑝, 𝐺) := P𝐺𝑝 ( |𝐾𝑜 | ≥ 𝑛, 𝑜 ↮ ∞).

Indeed, let 𝑑 ∈ N, let G∗
𝑑

be the (compact) subset of G∗ of graphs with vertex degree 𝑑, and consider
some 𝑝 ∈ [0, 1] and 𝐺 ∈ G∗

𝑑
. Now by Dini’s theorem, the functions 𝜃 (·, 𝐺), 𝜃 (𝑝, ·), and 𝜃 (·, ·)

are continuous if and only if 𝜃𝑛
𝑛→∞−−−−→ 𝜃 uniformly on [0, 1] × {𝐺}, {𝑝} × G∗

𝑑
, and [0, 1] × G∗

𝑑
,

respectively.

An obstacle to establishing the required uniform convergence on {𝑝} × G∗
𝑑

for fixed 𝑝 is that for
some choices of 𝐺, the parameter 𝑝 might be supercritical (i.e. 𝑝 > 𝑝𝑐 (𝐺)), whereas for others,
𝑝 might be subcritical or critical. It is often easier to build arguments that are tailored to studying
percolation in just one of these three phases at a time. In this paper, we directly establish that
𝜃𝑛 → 𝜃 uniformly on the supercritical region {(𝑝, 𝐺) : 𝑝 ≥ 𝑝𝑐 (𝐺) + 𝜀} for every fixed 𝜀 > 0.
This immediately yields the following statement. (There is no hypothesis that the graphs are not
one-dimensional because this condition does not appear in our argument and because the result
holds trivially when the graphs are one-dimensional.)

Theorem 6.1.5. Let (𝐺𝑛)𝑛≥1 be a sequence of infinite transitive graphs converging locally to some
infinite transitive graph 𝐺. Then

lim
𝑛→∞

𝜃 (𝑝, 𝐺𝑛) = 𝜃 (𝑝, 𝐺) for all 𝑝 > sup
𝑛≥1

𝑝𝑐 (𝐺𝑛).

This theorem in particular recovers the fact that that 𝑝𝑐 (𝐺) ≤ lim inf𝑛→∞ 𝑝𝑐 (𝐺𝑛), and hence that
the map 𝑝𝑐 : G∗ → [0, 1] is lower semi-continuous. This had previously been established as a
consequence of the sharpness of the phase transition [Pet14, §14.2].
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In [EH23a], we established that 𝜃𝑛 → 𝜃 uniformly on the subcritical region {(𝑝, 𝐺) : 𝑝 ≤
𝑝𝑐 (𝐺) − 𝜀} for every fixed 𝜀 > 0. By the same reasoning as above, this implies that the map
𝑝𝑐 : G∗ → [0, 1] is upper semi-continuous. Since, as mentioned, 𝑝𝑐 was known to be lower
semi-continuous, our work established that 𝑝𝑐 is continuous. The continuity of 𝑝𝑐 had been known
as Schramm’s locality conjecture.

In stark contrast to our proof of Schramm’s locality conjecture, our proof of Theorem 6.1.5 is short
and handles all (unimodular) transitive graphs via single argument. By combining these two results,
we obtain the following concerning the continuity of 𝜃 (𝑝, ·). This corollary was previously known
in special cases such as when all of the graphs in question have polynomial growth [CMT22]. We
were not able to remove the hypothesis that 𝑝 ≠ 𝑝𝑐 (𝐺); if we could, then by approximating Z3 by
toroidal slabs, we could also prove that 𝜃 (·,Z3) is continuous by applying the results of [DST14].

Corollary 6.1.6. Let (𝐺𝑛)𝑛≥1 be a sequence of non-one-dimensional infinite transitive graphs
converging locally to some infinite transitive graph 𝐺. Then

lim
𝑛→∞

𝜃 (𝑝, 𝐺𝑛) = 𝜃 (𝑝, 𝐺) for all 𝑝 ∈ [0, 1]\{𝑝𝑐 (𝐺)}.

Bounded-degree finite graphs Continuity-in-𝐺 questions arise naturally in the study of perco-
lation on large, bounded-degree, finite transitive graphs. Indeed, since every infinite set H of
finite transitive graphs with bounded degrees is relatively compact in the local topology, we can
for many purposes assume without loss of generality that H converges locally to some infinite
transitive graph 𝐺. It is then natural to ask whether lim𝐻∈H 𝜃 (𝑝, 𝐻) = 𝜃 (𝑝, 𝐺) for a fixed 𝑝. All
of our earlier discussion relating continuity properties of 𝜃 to uniform convergence 𝜃𝑛 → 𝜃 can be
adapted to finite graphs mutatis mutandis, where we define 𝜃𝑛 (𝑝, 𝐺) := P𝐺𝑝 ( |𝐾𝑜 | ≥ 𝑛, 𝑜 ∉ 𝐾1)
when 𝐺 is a finite transitive graph. In particular, our proof of Theorem 6.1.5 yields the following
for supercritical percolation on finite transitive graphs.

Theorem 6.1.7. Let (𝐺𝑛)𝑛≥1 be a sequence of finite transitive graphs converging locally to some
infinite transitive graph 𝐺. Let 𝑝𝑐 be a percolation threshold function for {𝐺𝑛 : 𝑛 ≥ 1}. Then

lim
𝑛→∞

𝜃 (𝑝, 𝐺𝑛) = 𝜃 (𝑝, 𝐺) for all 𝑝 > lim sup
𝑛→∞

𝑝𝑐 (𝐺𝑛).

In [Eas24], the first author combined [EH23a; Eas22; EH21a] to prove an analogue of Schramm’s
locality conjecture for finite graphs. The trouble here is that the non-one-dimensionality condition
becomes more subtle. We need to exclude finite graphs are long and thin, like a circle. Formally,
let distGH(𝑆1, 𝜋

diam𝐺
𝐺) denote the Gromov-Hausdorff distance between the unit circle 𝑆1 and the
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graph metric on 𝐺 after it has been rescaled by 𝜋
diam𝐺

, where diam𝐺 is the diameter of 𝐺. Now we
would like to exclude sequences of graphs for this distance tends to zero. (In fact, for the following
theorem, we may allow this distance to tend to zero, so long as it tends to zero not too quickly
(i.e. faster that 𝑒 (log diam𝐺)1/9

diam𝐺
).) By combining this finite graph locality result with Theorem 6.1.5,

we obtain the following result describing the asymptotic behaviour of 𝜃 on large bounded-degree
finite transitive graphs.

Corollary 6.1.8. Let (𝐺𝑛)𝑛≥1 be a sequence of finite transitive graphs converging locally to some
infinite transitive graph 𝐺. Suppose that

inf
𝑛≥1

distGH

(
𝑆1,

𝜋

diam𝐺𝑛

𝐺𝑛

)
> 0.

Then
lim
𝑛→∞

𝜃 (𝑝, 𝐺𝑛) = 𝜃 (𝑝, 𝐺) for all 𝑝 ∈ [0, 1]\{𝑝𝑐 (𝐺)}.

High degree finite graphs Let us now consider an infinite setH of finite transitive graphs with
lim𝐺∈H deg𝐺 = ∞, such as the sequence of complete graphs or the sequence of hypercubes. We
would like to again relates the asymptotic behaviour of 𝜃 to some kind of local limit object forH .
The problem is that sinceH has diverging vertex degrees,H cannot converge in the local topology.
So the continuity-in-𝐺 questions above do not readily extend. On the other hand, the (equivalent)
questions about the uniform convergence of 𝜃𝑛 (𝑝, 𝐺) → 𝜃 (𝑝, 𝐺) do! For example, the analogue
of continuity-in-𝐺 is that for a given sequence of parameters 𝑝 : H → [0, 1],

lim
𝑛→∞

sup
𝐺∈H
|𝜃 (𝑝, 𝐺) − 𝜃𝑛 (𝑝, 𝐺) | = 0. (6.1.1)

By considering a step-by-step exploration of the cluster at 𝑜, it is easy to see that for each fixed 𝑛,
as 𝐺 → ∞ inH , the probability 𝜃𝑛 (𝑝, 𝐺) tends to the probability that a Poi(𝑝 · deg𝐺) branching
process contains 𝑛 vertices. In particular, writing mf (𝜆) for the survival probability of a Poi(𝜆)
branching process, (6.1.1) is equivalent to having the following mean-field approximation:

lim
𝐺∈H
|𝜃 (𝑝, 𝐺) −mf (𝑝 deg𝐺) | = 1.

Thus the analogue of the conclusion of Theorem 6.1.7 is that this mean-field approximation holds
whenever 𝑝 is a supercritical sequence of parameter. In this paper, we will characterise for which
families of finite transitive graphs this approximation holds. Since a Poi(𝜆)-branching process is
critical at 𝜆 = 1, the analogue of the locality of the critical point is that𝐺 ↦→ 1

deg𝐺 is the percolation
threshold for H , under some non-one-dimensionality hypothesis on 𝐺. We have nothing to say
here about this question.
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Unfortunately, the mean-field approximation does not always hold for supercritical percolation on
high-degree finite transitive graphs. For example, consider the product 𝐾𝑛× (Z/𝑛Z)2 of a complete
graph with a two-dimensional torus. It is easy to see that the failure of the mean-field approximation
in this example extends to any family of graphs that can be automorphism-invariantly decomposed
into a collection of dense graphs by deleting 𝑂 ( |𝑉 |) edges. We call such graphs macromolecular.
Here is the precise definition. Note that every molecular graph is macromolecular.

Definition 6.1.9. We say that a finite transitive graph 𝐺 = (𝑉, 𝐸) is 𝜀-macromolecular, where
𝜀 > 0, if there exists an Aut𝐺-invariant set of edges 𝐹 ⊆ 𝐸 with 𝜀 |𝐹 | ≤ |𝑉 | such that (𝑉, 𝐸\𝐹) is
not connected, and the connected component (𝑉 ′, 𝐸′) of 𝑜 in (𝑉, 𝐸\𝐹) satisfies |𝐸′| ≥ 𝜀 |𝑉 |2.

We say that an infinite set H of finite transitive graphs is macromolecular limH deg𝐺 = ∞ and
there exists a constant 𝜀 > 0 such that all but finitely many of the graphs inH are 𝜀-macromolecular.

We will show that macromolecular graphs are in fact the only obstacles to the mean-field approxi-
mation for high degree finite transitive graphs.

Theorem 6.1.10. Let H be a set of (isomorphism classes of) finite, connected, vertex-transitive
graphs, and suppose that deg(𝐺) → ∞ as 𝐺 →∞ inH . Then the mean-field approximation

lim
𝐺∈H
|𝜃 (𝑝, 𝐺) −mf (𝑝 deg𝐺) | = 1,

holds for every supercritical assignment 𝑝 : H → [0, 1] if H does not have any infinite subsets
that are macromolecular. The converse also holds, provided thatH admits least one supercritical
assignment 𝑝 : H → [0, 1] that is non-trivial in the sense that lim infH 𝜃 (𝑝, 𝐺) < 1.

What governs the asymptotic density 𝜃 for supercritical percolation on a high-degree macromolec-
ular graph? We can think of percolation on the product of a complete graph with a torus as roughly
“simulating percolation” on the torus, by first revealing the states of the edges in the complete
graphs — producing a unique giant cluster in each complete graph — then revealing the remaining
edges. This perspective can be used to show that

𝜃 (𝜆/𝑛, 𝐾𝑛 × (Z/𝑛Z)2) ∼ 𝜃 (𝜆∗, (Z/𝑛Z)2) as 𝑛→∞,

where 𝜆∗ = (1 − 𝑒−𝜆)mf (𝜆)2. In Section 6.9, we will show that in fact for all macromolecular
graphs, the supercritical density 𝜃 is determined “locally” by the graph obtained by contracting
each dense graph to a vertex. Note that this contraction can produce a torus (as above), and
similarly any bounded-degree graph, but also large complete graphs and hypercubes. In particular,
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the macromolecular case is at least as hard as the general bounded-degree case and the complete
graph and hypercube cases, combined. However, crucially, this contraction cannot produce a
macromolecular sequence of graphs.

Equicontinuity
Our results also yield the following general result about the equicontinuity of the supercritical giant
cluster density on any finite transitive graph. Recall that F is the set of all finite transitive graphs.

Theorem 6.1.11. Let 𝑝 : F → [0, 1] be supercritical. For each 𝐺 ∈ F , consider the function
𝑓𝐺 : [𝑝, 1] → [0, 1] given by 𝑓𝐺 (𝑞) := 𝜃 (𝑞/𝑝, 𝐺). Then the family of functions { 𝑓𝐺 : 𝐺 ∈ F } is
uniformly equicontinuous.

By specialising to families of bounded-degree infinite transitive graphs, we also obtain the following.
(This time, we can use 𝑞 in place of 𝑞/𝑝, since 𝑝 is bounded away from zero.)

Theorem 6.1.12. LetH be an infinite set of infinite transitive graphs with uniformly bounded vertex
degrees. Let 𝜀 > 0, and for each 𝐺 ∈ H , consider the function 𝑓𝑝 : [𝑝, 1] → [0, 1] given by
𝑓𝐺 (𝑞) := 𝜃 (𝑞, 𝐺). Then the family of functions { 𝑓𝐺 : 𝐺 ∈ H} is uniformly equicontinuous.

Proof sketch
Consider supercritical percolation P𝑝 on a large finite transitive graph 𝐺 that is not molecular,
and say that we are tasked with proving that the giant cluster density is concentrated. The natural
subgoal is to prove the existence of a uniform tail on the distributution of non-giant clusters, i.e.

P𝑝
(
|𝐾𝑜 | ≥ 𝑛 but 𝑜 ∉ giant︸                      ︷︷                      ︸

♥

) 𝑛→∞−−−−→ 0 uniformly in 𝐺. (6.1.2)

Indeed, all of the following implications are rather easy to prove:

Uniform tail ⇐⇒ Locality =⇒ Equicontinuity =⇒ Concentration.

See Section 6.11 for details. Unfortunately, both of the missing reverse implications in this chain
are false. So our strategy to prove concentration by first proving eq. (6.1.2) is doomed to fail in
general. Let us anyway see how far this plan will take us. We split into cases according to whether
the vertex degrees of 𝐺 are bounded above or tending to infinity.
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Bounded degrees

Our starting point is the elementary observation that the required uniform tail on finite clusters
holds for typical choices of 𝑝 when some neighbour 𝑢 of 𝑜 happens to belong to the giant, i.e.

P𝑝
(
|𝐾𝑜 | ≥ 𝑛 but 𝑜 ∉ giant and 𝑢 ∈ giant︸                                          ︷︷                                          ︸

♦

)
𝑛→∞−−−−→ 0 uniformly in 𝐺,

because a simple mass-transport argument shows that

P𝑝 (♦) ≤
𝜃′(𝑝, 𝐺)

𝑛
,

where 𝜃′(𝑝, 𝐺) denotes derivative with respect to 𝑝, and this derivative must trivially be bounded
above for most choices of 𝑝 because 𝑝 ↦→ 𝜃 (𝑝, 𝐺) is an increasing function taking values in [0, 1].
In principle, this approach could fail because the parameter 𝑝 that we were given was carefully
chosen to belong a small set of parameters where this derivative is large. This turns out not to be a
serious obstacle: if we could prove that eq. (6.1.2) holds whenever this derivative is bounded, we
could quite easily deduce that eq. (6.1.2) holds in general. The real challenge is therefore to prove
that for all 𝜀 > 0 there exists 𝛿 > 0 such that

P𝑝 (♥) ≥ 𝜀 =⇒ P𝑝 (♦) ≥ 𝛿. (6.1.3)

Here is an initial, naive approach: by an easy exploration argument (in which we first reveal the
edges incident to 𝐾𝑜, then reveal the remaining edges), with probability at least

P𝑝 (♥) · 𝜃 (𝑝, 𝐺)

there is an edge 𝑢𝑣 in the boundary of 𝐾𝑜 whose outer endpoint 𝑣 belongs to the giant and whose
inner endpoint 𝑢 satisfies |𝐾𝑢 | ≥ 𝑛 but does not belong to the giant. The problem is that we do not
have any control over the location of this edge 𝑢𝑣. If only we knew that 𝑢𝑣 could be found inside
of some bounded-size, deterministic set of edges 𝐹...

An important theme in boolean analysis is that an increasing boolean function typically undergoes a
sharp threshold1 if and only if it does not depend too much on a small number of bits. In percolation
theory, the ‘only if ’ direction is typically applied to show that some connectivity event of interest
does undergo a sharp threshold. Our new idea is to apply the ‘if ’ direction to the event

{𝑜 ∈ giant}
1See Section 6.3 for full background, including the definition of sharp thresholds.
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which — in the cases of interest — trivially does not undergo a sharp threshold. This guarantees
the existence of a bounded-size, deterministic set of edges 𝐹 such that if 𝐹 is entirely open, then
𝑜 is highly likely to belong to the giant cluster. Using this and insertion tolerance, we are able to
fix the naive argument above to show a suitable edge 𝑢𝑣 can indeed be found within 𝐹 with good
probability, as required.

Unbounded degrees

There are two problems with the above approach when it comes to graphs with large degrees. The
first is the use of insertion tolerance: typically, we will be working with parameters that on the
order of 1/deg𝐺, and in particular, close to 0. Therefore, the cost to open all but one of the edges
in 𝐹 is no longer constant. This turns out to be solvable by applying an adaptation of the sprinkling
and surgery argument we introduced in the previous paper of the series to prove Theorem 6.2.1.
This argument, which relies heavily on transitivity, lets us reduce the size of 𝐹 to a singleton, as
required, by paying only a constant cost. A slightly technical point is that for this argument to
work, which involves repeatedly sprinkling an unboundedly large number of times, it is helpful to
work with an event that is increasing. For this reason, in section Section 6.5, we will show that
bounds on the distribution of non-giant clusters (“germs”) — which may not be monotone in 𝑝 —
can be converted into bounds on the probability that the giant cluster does not intersect given large
deterministic sets (“holes”) — which clearly is monotone in 𝑝, and vice versa.

The second problem is that the argument naively yields an upper bound on

♣1 := P𝑝 ( |𝐾𝑜 | ≥ 𝑛 deg𝐺, 𝑜 ∉ giant)

for a large constant 𝑛, rather than on

♣2 := P𝑝 ( |𝐾𝑜 | ≥ 𝑛, 𝑜 ∉ giant) .

This is a more substantial problem because for macromolecular graphs, we can indeed have that
|𝐾𝑜 | is on the order of deg𝐺 with good probability, without belonging to the giant cluster. We
will define a suitable automorphism-invariant relation on the vertices on 𝐺, called “being friends”,
where, roughly speaking, 𝑢 and 𝑣 are friends if it is unlikely that the giant cluster contains many of
the vertices in the neighbourhood of 𝑢 but not of 𝑣, or vice versa. Then, we show that if we cannot
convert our control on ♣1 into a control on ♣2, then the equivalence relation given by the transitive
closure of this “friend" relation must actually induce a macromolecular decomposition.

Thus, we can split into two cases: either we have the required control on ♣2, or our graph
is macromolecular. In the former case we are done as in the bounded-degree case. In the
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macromolecular case, we relate percolation on the graph 𝐺 to percolation on the quotient graph
obtained by contracting each equivalence class of𝐺 to a point. This essentially reduces the problem
back to the bounded-degree, since clusters of size much larger than constant in this quotient graph
correspond to clusters of size much larger than deg𝐺 in the original graph 𝐺, which we are able
to control by ♣1. More precisely, we use this coupling to show that the density 𝜃 (𝑝, 𝐺) on 𝐺
can be related to the microscopic cluster distribution in the quotient graph, and thus that this
density is uniformly equicontinuous. From this equicontinuity, we then obtain concentration via
Theorem 6.2.1.

Note that a key challenge and novelty arising in our work, in contrast to previous works investigating
percolation on general graphs under some isoperimetric conditions, is that we do not obtain a general
bound on the size of microscopic clusters. Indeed, at our level of generality, such a bound does
not exist. (Relatedly, we cannot give a non-trivial upper bound on the variance of ∥giant∥ when
this density is concentrated around its mean, since by approximating molecular graphs, the rate of
convergence could be arbitrarily small.) This leads us to use a expansion-vs-structure dichotomy
— either we have good isoperimetric properties and therefore have sufficiently strong control of
small clusters, or we have some non-trivial rigid structure (being macromolecular) that we can
exploit. This is similar in spirit to the strategy often used in the study of probability on general
infinite transitive graphs, for example in our proof of Schramm’s locality conjecture, which uses an
expansion-vs-structure dichotomy with graphs with rapid volume growth having good expansion,
and graphs with slow volume growth having approximately the structure of the Cayley graph of
a nilpotent group (thanks to Gromov’s theorem about groups of polynomial growth and related
results).

Remark 6.1.1. In our first draft of this paper, we were only able to prove our results for families
of graphs uniformly bounded vertex degrees. Our proof was quite different and less elementary,
combining the second author’s two-ghost inequality with a standard application sharp threshold
theory - namely, using Talagrand’s inequality to prove that certain connectivity events do have sharp
thresholds. Realising that these methods could be relevant to Schramm’s locality conjecture, we
paused on this project to complete our proof of Schramm’s conjecture in [EH23a]. These original
methods make up [EH23a, Section 2], and we sketched in [EH23a, Section 7.2] how these methods
can be used to establish uniqueness, concentration, locality, and equicontinuity for bounded-degree
finite transitive graphs.

However, these methods break down completely when trying to analyse the supercritical giant
cluster density for finite transitive graphs with large vertex degrees. More precisely, these methods
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fail to prove locality and equicontinuity as soon as graphs have even slowly diverging vertex degrees,
and they fail to prove uniqueness and concentration once the vertex degrees grow algebraically with
respect to the total number of vertices. Indeed, it is clear that these methods must fail in general
because they do not detect whether a graph is macromolecular.

6.2 Notation
Graphs Let 𝐺 be a graph. For us, this means that 𝐺 is an isomorphism class of connected,
simple2, locally finite, countable graphs. When the choice of graph (or multigraph) 𝐺 is clear
from context, we write 𝑉 and 𝐸 for the vertex and edge sets of 𝐺; when it is not clear we instead
write 𝑉 (𝐺) and 𝐸 (𝐺) to be explicit. We will adopt the convention that the volume of 𝐺 is the
number of vertices in 𝐺, denoted |𝐺 | := |𝑉 (𝐺) |. If 𝐺 is (vertex-)transitive, then we write 𝑜
to denote some fixed vertex of 𝐺, which we refer to as the origin. We write dist(·, ·) for the
graph metric on 𝐺 and define diam𝐺 := max𝑢,𝑣 dist(𝑢, 𝑣). Given 𝑢 ∈ 𝑉 and 𝑛 ≥ 0, we define
𝐵𝑛 (𝑢) := {𝑣 ∈ 𝑉 : dist(𝑢, 𝑣) ≤ 𝑛}, and when 𝐺 is transitive, we set 𝐵𝑛 := 𝐵𝑛 (𝑜).

Classes of graphs We write G and F to denote the set of all infinite and finite transitive graphs,
respectively. Later, we will also write U and N for set of all unimodular and nonunimodular
transitive graphs, respectively. The definition of unimodularity is recalled in Section 6.4. We say
that an infinite transitive graph 𝐺 ∈ G is one-dimensional if G is roughly-isometric to Z, and we
define G∗ := {𝐺 ∈ G : 𝐺 is not one-dimensional}. For each 𝑑 ≥ 1, we write G𝑑 to denote the set
of all graphs in G having vertex degree exactly 𝑑, and we analogously define F𝑑 ,U𝑑 ,N𝑑 and G∗

𝑑
.

We endow the whole of G ∪ F with the local (aka Benjamini-Schramm) topology. This obviously
makes G𝑑 compact and F𝑑 relatively compact (for each 𝑑 ≥ 1), but in fact, the spaces G∗

𝑑
,U𝑑 , and

N𝑑 are also compact.

Dense graphs Let 𝐺 = (𝑉, 𝐸) be a finite graph. Let 𝜀 > 0. We say that 𝐺 is 𝜀-dense if
|𝐸 | ≥ 𝜀 |𝑉 |2. If 𝐺 is transitive, this is equivalent to deg𝐺 ≥ 𝜀

2 |𝑉 |, where deg𝐺 denotes the
common vertex degree of 𝐺. We say that an infinite set of finite graphs H is dense if there exists
𝜀 > 0 such that all but finitely many graphs inH are 𝜀-dense, and we say thatH is sparse if instead
lim𝐺∈H

|𝐸 (𝐺) |
|𝑉 (𝐺) |2 = 0. Note that every infinite set of finite graphs must contain an infinite subset that

is sparse or dense.
2This assumption can be replaced throughout the paper with the assumption that there are a bounded number of

edges between any two vertices. In particular, all our results about bounded degree graphs do not really require the
assumption of simplicity.
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Macromolecular graphs Let 𝐺 = (𝑉, 𝐸) be a finite transitive graph. We say that a pair (𝐴, 𝐵)
is a macromolecular decomposition for 𝐺 if there exists a non-trivial equivalence relation3 on
𝑉 that is invariant under the action of Aut𝐺 such that 𝐴 is the subgraph of 𝐺 induced by the
equivalence class containing 𝑜, and 𝐵 = 𝐺/∼ is the multigraph obtained from 𝐺 by contracting
each equivalence class to a (distinct) vertex. Given 𝜀 > 0, an 𝜀-macromolecular decomposition for
𝐺 is a macromolecular decomposition (𝐴, 𝐵) such that 𝐴 is 𝜀-dense and |𝐸 (𝐵) ||𝑉 (𝐺) | ≤

1
𝜀
. Say that 𝐺

is 𝜀-macromolecular if 𝐺 admits an 𝜀-macromolecular decomposition. We say that an infinite set
H ⊆ F is macromolecular if lim𝐺∈H deg𝐺 = ∞ and there exists 𝜀 > 0 such that all but finitely
many graphs in 𝐻 are 𝜀-macromolecular. The next lemma says that after passing to a subsequence,
there is an essentially unique best way to choose the macromolecular decompositions for these
graphs. Note that an infinite set of finite transitive graphs is molecular (defined in the introduction)
if and only if it is both dense and macromolecular. Given 𝜀 > 0, say that 𝐺 is 𝜀-molecular if 𝐺 is
𝜀-macromolecular and 𝜀-dense, so that an infinite set H of finite transitive graphs is molecular if
and only if there exists 𝜀 > 0 such that all but finitely many graphs 𝐺 ∈ H are 𝜀-molecular.

Subgraphs Let𝐺 = (𝑉, 𝐸) be a graph. Given 𝑢, 𝑣 ∈ 𝑉 , we write 𝑢𝑣 for the unordered pair {𝑢, 𝑣},
write 𝑢 ∼ 𝑣 to mean that 𝑢𝑣 ∈ 𝐸 , and define neigh(𝑢) := {𝑣 ∈ 𝑉 : 𝑢 ∼ 𝑣}. Given a set of vertices
𝑋 and a single vertex 𝑢, we write 𝑢𝑋 := {𝑢𝑣 ∈ 𝐸 : 𝑣 ∈ 𝑋}. Given 𝑋 that is a subgraph of 𝐺 or
a subset of 𝑉 , we write 𝜕𝐻 or 𝜕𝐸𝐻 for the edge boundary 𝜕𝑋 := {𝑥𝑦 ∈ 𝐸 : 𝑥 ∈ 𝑋 and 𝑦 ∉ 𝑋}.
Given a set of vertex 𝑊 ⊆ 𝑉 , we write 𝐺 [𝑊] for the subgraph of 𝐺 induced by 𝑊 and 𝐸 [𝑊] for
the edge set 𝐸 (𝐺 [𝑊]). Given two finite subsets𝑊1 and𝑊2 of 𝑉 or a finite subsets of 𝑉 , we define
the density4 of𝑊1 in𝑊2 to be

∥𝑊1∥𝑊2 :=
|𝑊1 ∩𝑊2 |
|𝑊2 |

.

When𝑊2 = 𝑉 , then we simply write ∥𝑊1∥ to mean ∥𝑊1∥𝐺 . We will also apply the same notation
to subgraphs of 𝐺, in which case the density of one subgraph in another is defined to be the density
of the vertex set of one subgraph in the vertex set of the other.

Configurations and clusters Let 𝐺 be a graph and let 𝜔 : 𝐸 → {0, 1} be a configuration. We
say that 𝑒 is open or closed according to whether 𝜔(𝑒) = 1 or 𝜔(𝑒) = 0. We think of 𝜔 as encoding
the spanning subgraph of 𝐺 with edge set 𝜔−1(1). So 𝜔 ∪ 𝑋 and 𝜔 ∩ 𝑋 are defined by the above
conventions for 𝑋 ⊆ 𝐺, 𝑋 ⊆ 𝑉 , or 𝑋 ⊆ 𝐸 . Given 𝑢, 𝑣 ∈ 𝑉 , we write 𝑢 ↔ 𝑣 or 𝑢

𝜔←→ 𝑣 to mean that
3‘Non-trivial’ means that there is more than one equivalence class.
4This definition is unrelated to the notion of dense graphs from earlier.
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𝑢 and 𝑣 are 𝜔-connected, i.e. there is a path in the graph encoded by 𝜔 from 𝑢 to 𝑣. We also write
𝑣 ↔∞ to mean that there are infinitely many vertices 𝑢 satisfying 𝑢 ↔ 𝑣.

Given 𝑣 ∈ 𝑉 , we define 𝐾𝑣 to be the subgraph of 𝜔 spanned by {𝑢 ∈ 𝑉 : 𝑢 ↔ 𝑣} and call this the
cluster at 𝑥. We enumerate the clusters of 𝜔 by 𝐾1, 𝐾2, . . . in such a way that |𝐾1 | ≥ |𝐾2 | ≥ . . . .
This enumeration is not well-defined when there are multiple clusters of the same volume. In this
case, we are happy to break ties arbitrarily. So to avoid this (unimportant) technicality, let us now
once and for all fix such a choice of enumeration 𝐾1, 𝐾2, . . . with |𝐾1 | ≥ |𝐾2 | ≥ of the clusters in
every (countable, locally finite, simple) graph.

Now suppose that 𝐺 is finite. In our setting, 𝐾1 will typically be the unique macroscopic cluster.
So we will sometimes use the more suggestive notation giant := 𝐾1. Since 𝜔 ↦→ giant(𝜔) is not
an increasing map (with respect to inclusion), for technical reasons we will typically work with
the following proxies: for each 𝜀 > 0, define giant𝜀 to be the subgraph of 𝜔 induced by the set of
vertices 𝑣 satisfying ∥𝐾𝑣 ∥ ≥ 𝜀. Note that the equation ‘giant = giant𝜀’ is a convenient way to say
that there exists a unique cluster with density at least 𝜀.

Percolation P𝑝 with varying 𝑝 Let 𝐺 be a graph and let 𝑝 ∈ [0, 1]. We write P𝑝 = P𝐺𝑝 for the
law of a random configuration 𝜔 : 𝐸 → {0, 1} where every 𝜔(𝑒) is iid Bernoulli(𝑝). We will write
P = P𝐺 for the law of the canonical montone coupling (𝜔𝑞)𝑞∈[0,1] of (P𝑞)𝑞∈[0,1] . Let E be an event
and suppose that 𝑝 ∈ (0, 1). Then we define P′𝑝 (E) to be the derivative (if it exists) of the map
𝑞 ↦→ P𝑞 (E) evaluated at 𝑞 = 𝑝.

Densities and supercriticality Let𝐺 be a transitive graph and let 𝑝 ∈ [0, 1]. If𝐺 is infinite, then
we set 𝜃 (𝑝) = 𝜃 (𝑝, 𝐺) := P𝑝 (𝑜 ↔∞). Now suppose that 𝐺 is finite. We define 𝜃 (𝑝) = 𝜃 (𝑝, 𝐺) :=
P𝑝 (𝑜 ∈ giant). Moreover, for each 𝜀 > 0, we define 𝜃𝜀 (𝑝) = 𝜃𝜀 (𝑝, 𝐺) := P𝑝 (𝑜 ∈ giant𝜀), and we
say that 𝑝 is 𝜀-supercritical if 𝜃𝜀 ((1 − 𝜀)𝑝) ≥ 𝜀. So for an infinite setH of finite transitive graphs
and an assignment of parameters 𝑝 : H → [0, 1], the assignment 𝑝 is supercritical (as defined in
the introduction) if and only if there exists 𝜀 > 0 such that for all but finitely many graphs 𝐺 ∈ H ,
the parameter 𝑝(𝐺) is 𝜀-supercritical for 𝐺 or 𝑝 = 1.

In addition to Theorem 6.1.1, we use the following technical result from our previous work [EH21a,
Proposition 4.1 and Remark 4.2] characterising the so-called sharp density property, which we now
recall. For all 𝐺 ∈ F and 𝛽, 𝜀 ∈ (0, 1], we define 𝑝𝐺𝑐 (𝛽, 𝜀) to be the unique parameter satisfying
P𝑝𝐺𝑐 (𝛽,𝜀) (∥𝐾1∥ ≥ 𝛽) = 𝜀, which is well-defined by continuity and strict monotonicity of percolation
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on 𝐺. Now we say that an infinite setH ⊆ F has the sharp-density property if

lim
𝐺∈H

sup
𝛽∈[𝛼,1]

𝑝𝐺𝑐 (𝛽, 1 − 𝛿)
𝑝𝐺𝑐 (𝛽, 𝛿)

= 1 for all 𝛼 ∈ (0, 1) and 𝛿 ∈ (0, 1/2] .

This property in particular implies that the event {∥𝐾1∥ ≥ 𝛽} undergoes a sharp-threshold for every
fixed 𝛽 > 0 when considering percolation on graphs inH .

Theorem 6.2.1. LetH be an infinite set of finite transitive graphs. ThenH has the sharp-density
property if and only ifH does not contain an infinite molecular subset.

Percolation thresholds We will use the notation 𝑝𝑐 both for the usual infinite-cluster percolation
threshold 𝑝𝑐 (𝐺) = inf{𝑝 : 𝜃 (𝑝) > 0} when 𝐺 is an infinite transitive graph and for a percolation
threshold 𝑝𝑐 : H → [0, 1] when H is an infinite set of finite transitive graphs (when H admits
such a threshold), as defined in [Eas22]. It is well-known that 𝑝𝑐 (𝐺) ≥ 1

deg𝐺−1 for every infinite
transitive graph 𝐺. Let us record here the analogous result for finite transitive graphs, which can
be proven by the same argument as [EH21a, Lemma 2.8] or [Eas22, Proposition 5].

Lemma 6.2.2. LetH be an infinite set of finite transitive graphs. If 𝑝 : H → [0, 1] is a supercritical
sequence of parameters, then lim inf𝐺∈H (deg𝐺 − 1)𝑝(𝐺) ≥ 1. In particular, if 𝑝𝑐 : H → [0, 1]
is a percolation threshold, then lim inf𝐺∈H (deg𝐺 − 1)𝑝𝑐 (𝐺) ≥ 1.

It is also well-known that every infinite transitive graph 𝐺 satisfies the mean-field lower bound
𝜃 ((1 + 𝜀)𝑝𝑐 (𝐺)) ≥ 𝜀

1+𝜀 for all 𝜀 > 0. This was first proven by Menshikov [Men86] and Aizenman
and Barsky [AB87b]; various alternative simplified proofs are now available [DT16b; Hut20c;
DRT19; Van22a]. For future use, we state a version of this bound applying also to sets of finite
graphs without infinite molecular subsets. This was proven in [Eas22, Lemma 10] using an
adaptation of the methods of [Van22a] together with the uniqueness theorem of the first paper in
this series [EH21a].

Theorem 6.2.3. LetH be an infinite set of finite transitive graphs that does not contain an infinite
subset that is molecular, and let 𝑝𝑐 : H → [0, 1] be a percolation threshold function (which exists
by [Eas22]). For all 𝜀 ∈ (0,∞) and all 𝛿 ∈ (0, 𝜀

1+𝜀 ),

lim
𝐺∈H

P(1+𝜀)𝑝𝑐 (∥𝐾1∥ ≥ 𝛿) = 1.
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6.3 Applications of Hatami’s theorem to percolation
Suppose for each 𝑛 ≥ 1 that 𝐴𝑛 is an increasing event depending on some finite number 𝑁𝑛 of
independent random bits, each of which is 1 with probability 𝑝 and 0 with probability 1− 𝑝. Recall
that the sequence of events (𝐴𝑛)𝑛≥1 is said to have a sharp threshold if there exists a sequence
𝑝1, 𝑝2, . . . of numbers in (0, 1) such that

lim
𝑛

P(1+𝜀)𝑝𝑛 (𝐴𝑛) = 1 and lim
𝑛

P(1−𝜀)𝑝𝑛 (𝐴𝑛) = 0

for every 𝜀 > 0 (in which case this holds with 𝑝𝑛 = min{𝑝 ∈ [0, 1] : P𝑝 (𝐴𝑛) = 1/2}). In this
section, we outline a new application of sharp threshold theory to percolation using theorems due to
Friedgut [Fri98], Bourgain [Fri99b], and Hatami [Hat12b], which have previously been overlooked
by the percolation community.

Let us first give some further background and definitions. Russo’s formula [Rus82] states that if 𝐴
is an increasing event depending on finitely many bits then

𝑑

𝑑𝑝
P𝑝 (𝐴) =

∑︁
𝑒∈𝐸

P𝑝 (𝑒 is pivotal for 𝐴),

where an edge 𝑒 is said to be pivotal for the (increasing) event 𝐴 if 𝜔 \ {𝑒} ∉ 𝐴 and 𝜔 ∪ {𝑒} ∈ 𝐴.
The probability that 𝑒 is pivotal for 𝐴 is known as the influence of 𝑒 and is denoted by 𝐼𝑝 (𝐴, 𝑒).
Talagrand’s inequality [Tal94] states that

𝑑

𝑑𝑝
P𝑝 (𝐴) ≥ 𝑐

[
𝑝(1 − 𝑝) log

2
𝑝(1 − 𝑝)

]−1
P𝑝 (𝐴) (1 − P𝑝 (𝐴)) log

1
𝑝(1 − 𝑝)max𝑒 𝐼𝑝 (𝐴, 𝑒)

,

so that events with small maximal influence must have large total influence. As explained in
[EH21a, Section 3.4], Talagrand’s inequality implies that increasing events that depend on 𝑛 bits
in a sufficiently symmetric way automatically have sharp thresholds provided that the threshold
occurs at a value of 𝑝 that is subalgebraically small in 𝑛. This condition cannot be removed in
general, since the existence of a triangle in the Erdős-Rényi random graph 𝐺 (𝑛, 𝑝) has a coarse
threshold at 𝑝 of order 𝜆/𝑛. (Other powers of 𝑛 can be obtained from the event that the Erdős-Rényi
graph contains a complete subgraph on 𝑘 vertices.) While this application of Talagrand’s inequality
is a standard part of the theory of percolation on bounded-degree and infinite graphs, we would
like to bring attention to a related but less well-known result due to Friedgut [Fri98]. Friedgut
showed that if 𝑝 is bounded away from 0 and 1, and 𝑑

𝑑𝑝
P𝑝 (𝐴) is bounded above, then in fact 𝐴 can

be approximated arbitrarily well by events determined by a bounded number of edges (where the
bound on the number of edges depends on the accuracy of the approximation). Friedgut’s theorem
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is the key to proving our results about bounded-degree graphs, where parameters of interest are
always bounded away from 0 and 1.

When 𝑝 is algebraically small in 𝑛, the absence of edges of large influence is no longer sufficient
to ensure a sharp threshold, and Friedgut’s theorem does not apply, but one can instead look to
Bourgain [Fri99b] for a result of a similar flavour that is applicable. Bourgain showed that the
absence of a sharp threshold must imply the existence of sets of edges of bounded size (𝐹𝑛)𝑛≥1 for
which 𝜔 ∪ 𝐹𝑛 is more likely to belong to 𝐴𝑛 than 𝜔 by at least a constant (for infinitely many 𝑛 and
appropriate choices of the parameter 𝑝). When the threshold occurs at a subalgebraically small
value of 𝑝, the conclusions of Bourgain’s theorem are strictly weaker than those of Talagrand, so
that Bourgain’s theorem is not relevant to percolation on bounded degree graphs. In this paper, we
will make use not of Bourgain’s theorem but rather a powerful strengthening of this theorem due to
Hatami [Hat12b]. Roughly speaking, this theorem allows us to replace the conclusion that 𝜔 ∪ 𝐹𝑛
is more likely to belong to 𝐴𝑛 than 𝜔 by a constant with the conclusion that 𝜔 ∪ 𝐹𝑛 ∈ 𝐴𝑛 with
arbitrarily high probability. While this distinction may seem minor at first glance, it is in fact very
significant. When 𝑝 is bounded away from 0 and 1, Hatami’s theorem’s is equivalent to Friedgut’s
theorem from the point of view of our applications. However, to allow for smaller values of 𝑝,
which will be necessary in later sections, we will always refer to Hatami’s theorem.

We now state Hatami’s theorem. For each positive integer 𝑛, we write [𝑛] for the set {1, . . . , 𝑛},
and for each parameter 𝑝 ∈ (0, 1) write 𝜇𝑝 for the law of a random variable 𝑥 = (𝑥𝑖)𝑖∈[𝑛] where the
𝑥𝑖’s are i.i.d. Bernoulli(𝑝).

Theorem 6.3.1 (Hatami 2012). Let 𝑛 ∈ N, let 𝑓 : {0, 1}[𝑛] → {0, 1} be non-constant and
increasing, and let 𝑝 ∈ (0, 1/2]. For every 𝜀 > 0, there exists a set 𝑆 ⊆ [𝑛] such that

𝜇𝑝 ( 𝑓 (𝑥) | 𝑥𝑖 = 1 ∀𝑖 ∈ 𝑆) ≥ 1 − 𝜀 and |𝑆 | ≤ exp

(
1012 ⌈𝐽 𝑓 (𝑝)⌉2

𝜀2𝜇𝑝 ( 𝑓 (𝑥))2

)
,

where 𝐽 𝑓 (𝑝) := 2𝑝(1 − 𝑝) 𝑑𝜇𝑝 ( 𝑓 )
𝑑𝑝

.

We will apply this theorem via the following corollary. We write P′𝑝 (E) to denote 𝑑P𝑝 (E)
𝑑𝑝

.

Corollary 6.3.2. Let 𝐺 be a finite graph, let 𝑝 ∈ (0, 1), and let 𝜀1, 𝜀2, 𝜀3 ∈ (0, 1). If E ⊆ {0, 1}𝐸

is a non-trivial increasing event such that

P𝑝 (E) ≥ 𝜀1 and 𝑝P′𝑝 (E) ≤
1
𝜀2
,

228



then there is a set of edges 𝐹 ⊆ 𝐸 such that

P𝑝 (𝜔 ∪ 𝐹 ∈ E) ≥ 1 − 𝜀3 and |𝐹 | ≤ exp
(

250

(𝜀1𝜀2𝜀3)2

)
.

Proof of Corollary 6.3.2. The corollary is essentially immediate when 𝑝 ≤ 1/2. To allow for the
case that 𝑝 > 1/2, we simulate percolation of parameter 𝑝 on 𝐺 by percolation of a parameter
𝜙(𝑝) ≤ 1/2 on a multigraph with more edges. This argument does not contain any surprises and
can safely be skipped on a first reading.

Fix 𝑝 ∈ (1/2, 1) and let 𝐻 = (𝑉, 𝐹) be the multigraph formed from 𝐺 by replacing each edge 𝑒 by
ℓ := ⌈log2

1
1−𝑝 ⌉ parallel edges 𝑒1, . . . , 𝑒ℓ with the same endpoints as 𝑒. For each configuration 𝜔

on 𝐻, let Φ(𝜔) be the configuration on 𝐺 in which an edge 𝑒 is open if and only if there is some
1 ≤ 𝑖 ≤ ℓ for which 𝑒𝑖 is open in 𝜔. For each 𝑞 ∈ (0, 1), define

𝑔(𝑞) := P𝐺𝑞 (A), ℎ(𝑞) := P𝐻𝑞 (Φ−1(A)), and 𝜙(𝑞) := 1 − (1 − 𝑞)1/ℓ,

so that 𝑔 = ℎ ◦ 𝜙 and the pushforward measure Φ∗P𝐻𝜙(𝑞) satisfies Φ∗P𝐻𝜙(𝑞) = P𝐺𝑞 . By our choice of ℓ,
we know that 𝜙(𝑝) ∈ (0, 1/2], allowing us to apply Theorem 6.3.1. This guarantees that there is a
set of edges 𝑇 ⊆ 𝐹 such that

P𝐻
𝜙(𝑝)

(
𝜔 ∪ 𝑇 ∈ Φ−1(A)

)
≥ 1 − 𝜀3 and |𝑇 | ≤ exp

(
1012 ⌈𝐼⌉2

𝜀2
3(ℎ ◦ 𝜙(𝑝))2

)
, (6.3.1)

where
𝐼 = 2𝜙(𝑝) (1 − 𝜙(𝑝)) (ℎ′ ◦ 𝜙(𝑝)).

Since Φ∗P𝐻𝜙(𝑝) = P𝐺𝑝 , we know that P𝐺𝑝 (𝜔 ∪Φ(𝑇) ∈ A) ≥ 1 − 𝜀3. Since 𝑔 = ℎ ◦ 𝜙, we have by the
chain rule that ℎ′ ◦ 𝜙 = 𝑔′/𝜙′. We also have by direct calculation that (𝜙′(𝑝))−1 = ℓ(1 − 𝑝) (ℓ−1)/ℓ,
and since log2

1
1−𝑝 ≤ ℓ ≤ 2 log2

1
1−𝑝 we deduce that

1
𝜙′(𝑝) ≤ 4(1 − 𝑝) log2

1
1 − 𝑝 ≤ 4.

Together with the simple observations that 𝜙(𝑝) ≤ 𝑝 and 1 − 𝜙(𝑝) ≤ 1, this lets us simplify our
bound on |𝑇 | from eq. (6.3.1) to

|𝑇 | ≤ exp

(
1012 ⌈4 · 2 · 𝑝 · 𝑔′(𝑝)⌉2

𝜀2
3 · 𝑔(𝑝)2

)
.

The result now follows since ⌈𝑥⌉ ≤ 2𝑥 for all 𝑥 ≥ 1, |Φ(𝑇) | ≤ |𝑇 | and, by hypothesis, 𝑔(𝑝) ≥ 𝜀1

and 𝑝 · 𝑔′(𝑝) ≤ 1
𝜀2

. □
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The key advantage of this result over the usual sharp-threshold results used in percolation theory is
that we can guarantee that 𝜔 ∪ 𝐹 ∈ E occurs with with arbitrarily high probability. In particular,
we can force this event to have a good-probability intersection with any other event B such that
B \ E has good probability; usually we will apply this in the case B ⊆ E𝑐. (On the other hand, this
method will tend to give estimates that are very poor quantitatively.)

Given an increasing event E, a set of edges 𝐹, and a configuration 𝜔 ∈ {0, 1}𝐸 , we say that 𝐹 is an
activator for 𝐸 if 𝜔 ∉ E but 𝜔 ∪ 𝐹 ∈ E, and define

ActE [𝐹] := {𝜔 ∪ 𝐹 ∈ E} ∩ {𝜔 ∉ E}

to be the event that 𝐹 is an activator for E. We also write ActE [𝑒] := ActE [{𝑒}] when 𝑒 ∈ 𝐸 is a
single edge, so that ActE [𝑒] is the event that 𝑒 is closed and pivotal for E.

Corollary 6.3.3. For all 𝜀 > 0, there exists 𝑁 < ∞ such that the following holds. Let 𝐺 be a finite
graph. Let E be an increasing event. Let 𝑝 ∈ (0, 1). Suppose that

𝜀 ≤ P𝑝 (E) ≤ 1 − 𝜀 and 𝑝P′𝑝 (E) ≤
1
𝜀
.

Let B be any event with P𝑝 (B \ E) ≥ 𝜀. Then there is a set of edges 𝐹 ⊆ 𝐸 with |𝐹 | ≤ 𝑁 such that

P𝑝 (B ∩ ActE [𝐹]) ≥
𝜀

2
.

Proof. This follows from Corollary 6.3.2 applied with 𝜀1 = 𝜀2 = 𝜀 and 𝜀3 = 𝜀/2. Indeed, letting
𝐹 be as in the statement of that corollary, we have that

P𝑝 (B ∩ ActE [𝐹]) ≥ P𝑝 ((B \ E) ∩ (𝜔 ∪ 𝐹 ∈ E)) ≥ 𝜀 −
𝜀

2
≥ 𝜀

2
. □

A strategy to show that events have low probability. This corollary leads to the following general
strategy for showing that an event B is unlikely under P𝑝:

1. Find a suitable increasing event E.

2. Justify that for one (or many) parameters 𝑞 ≤ 𝑝, the expression 𝑞P′𝑞 (E) is bounded above.

3. Show that at such 𝑞, it is unlikely that both ActE [𝐹] and B hold simultaneously, where 𝐹 is
a deterministic bounded-size set of edges.

4. Use Corollary 6.3.3 to deduce that at such 𝑞, the event B is unlikely.
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5. Finally, show that because B is unlikely at 𝑞, it is therefore also unlikely at 𝑝.

This is to be interpreted as a loose strategy rather than a detailed recipe: each step will involve
arguments that are specific to the event at hand. We implement a strategy in the same spirit in
Sections 6.4 and 6.7.

We conclude this section by making note of the following elementary lemma, which states that we
always have many good parameters 𝑞 where 𝑞P′𝑞 is bounded above. Here L denotes the Lebesgue
measure.

Lemma 6.3.4. Let𝐺 = (𝑉, 𝐸) be a graph. Fix 𝑝, 𝛿 ∈ (0, 1) such that the interval 𝐼 := [𝑝, (1+𝛿)𝑝]
is contained in (0, 1]. If E ⊆ {0, 1}𝐸 is an increasing event that is determined by the state of finitely
many edges then

L
({
𝑝 ∈ 𝐼 : 𝑝P′𝑝 (E) ≤

1
𝜀

})
≥

(
1 − 2𝜀

𝛿

)
L(𝐼)

for every 𝜀 > 0.

Proof. Let 𝐽 = {𝑝 ∈ 𝐼 : 𝑝P′𝑝 (E) ≤ 𝜀−1}. Since E is increasing and determined by the state
of finitely many edges, the map 𝑞 ↦→ P𝑞 (E) is a polynomial that defines an increasing function
[0, 1] → [0, 1]. It follows that

1
𝜀(1 + 𝛿)𝑝L(𝐼 \ 𝐽) ≤

∫
𝐽

P′𝑞 (E) 𝑑𝑞 ≤
∫
𝐼

P′𝑞 (E) 𝑑𝑞 = P(1+𝛿)𝑝 (E) − P𝑝 (E) ≤ 1.

We deduce the claim by rearranging, using that L(𝐼) = 𝛿𝑝 and that 𝛿−1 + 1 ≤ 2𝛿−1. □

6.4 The unimodular bounded-degree case
In this section we prove our main theorems in the case that all graphs in our family are unimodular
and have uniformly bounded degrees. (Finite transitive graphs are always unimodular, so this
restriction is only relevant for infinite graphs.) All the theorems in this section are special cases of
those established in later sections; we present this case separately since it is much less technical and
will be the primary case of interest to many readers. It will also serve as a warm-up to the general
case, with several of the ideas used in this section appearing again in a more technical context later
in the paper. This section also contains all our results about infinite graphs.

For every 𝑑 ≥ 2, let us fix a consistent choice of percolation threshold function 𝑝𝑐 : F𝑑 → [0, 1],
which exists by Theorem 6.1.2. In the following proposition, we write 𝑝𝑐 (𝐺) to denote the value
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of this percolation threshold function at 𝐺 when 𝐺 is finite and to denote the usual infinite cluster
percolation threshold for 𝐺 when 𝐺 is infinite. Moreover,

𝜃 (𝑝, 𝐺) :=

E𝑝 ∥giant∥ if 𝐺 is finite

P𝑝 (𝑜 ↔∞) if 𝐺 is infinite.
(6.4.1)

Proposition 6.4.1. LetH be an infinite set of (finite or infinite) transitive graphs converging locally
to some infinite transitive graph 𝐺∞. For every constant 𝑝 > lim supH 𝑝𝑐 (𝐺),

lim
H
𝜃 (𝑝, 𝐺) = 𝜃 (𝑝, 𝐺∞).

We now give a brief overview of (non)unimodularity, the mass-transport principle and the modular
function, referring the reader to [LP16b; Hut20g] for further background. Let 𝐺 = (𝑉, 𝐸) be a
connected, locally finite, transitive graph, and let Aut(𝐺) be the automorphism group of 𝐺. The
modular function Δ = Δ𝐺 : 𝑉2 → (0,∞) is defined by

Δ(𝑢, 𝑣) = | Stab𝑣 𝑢 |
| Stab𝑢 𝑣 |

,

where Stab𝑣 = {𝛾 ∈ Aut(𝐺) : 𝛾𝑣 = 𝑣} is the stabilizer of 𝑣 and Stab𝑣 𝑢 = {𝛾𝑢 : 𝛾 ∈ Stab𝑣} is
the orbit of 𝑢 under Stab𝑣. We say that 𝐺 is unimodular if Δ ≡ 1 and that 𝐺 is nonunimodular
otherwise. Every finite transitive graph is unimodular, as is every Cayley graph and every amenable
transitive graph [SW90].

The mass-transport principle. Let 𝐺 be a connected, locally finite, unimodular transitive graph.
The mass-transport principle states that∑︁

𝑥∈𝑉
𝐹 (𝑜, 𝑥) =

∑︁
𝑥∈𝑉

𝐹 (𝑥, 𝑜) (6.4.2)

for every 𝐹 : 𝑉2 → [0,∞] that is invariant under the diagonal action of Aut(𝐺) on 𝑉2, meaning
that 𝐹 (𝛾𝑥, 𝛾𝑦) = 𝐹 (𝑥, 𝑦) for every 𝑥, 𝑦 ∈ 𝑉 and 𝛾 ∈ Aut(𝐺). Note that this identity holds trivially
when 𝐺 is finite.

Proof of Proposition 6.4.1
In this subsection we use Hatami’s theorem to prove Proposition 6.4.1. We will deduce this
proposition from a chain of simple lemmas, several of which do not require the bounded degree
assumption. We begin with the following immediate consequence of Corollary 6.3.3.
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Lemma 6.4.2. For every 𝜀 > 0 there exists 𝑁 < ∞ such that the following holds. Let𝐺 be a graph,
let 𝑜 be a vertex of 𝐺, let 𝑝 ∈ (0, 1), and let 𝑚, 𝑛 be integers with 𝑚 < 𝑛. If

P𝑝 (𝑚 ≤ |𝐾𝑜 | < 𝑛) ≥ 𝜀, P𝑝 ( |𝐾𝑜 | ≥ 𝑛) ≥ 𝜀, and 𝑝P′𝑝 ( |𝐾𝑜 | ≥ 𝑛) ≤
1
𝜀

then there exists a set of edges 𝐹 ⊆ 𝐸 with |𝐹 | ≤ 𝑁 such that

P𝑝
(
{|𝐾𝑜 | ≥ 𝑚} ∩ act|𝐾𝑜 |≥𝑛 [𝐹]

)
≥ 𝜀

2
.

Proof. This follows from Corollary 6.3.3 with E := {|𝐾𝑜 | ≥ 𝑛} and B := {𝑚 ≤ |𝐾𝑜 | < 𝑛} ⊆
E𝑐. □

We next turn this estimate concerning activators into one concerning pivotals at a cost of 𝑝 |𝐹 |/2|𝐹 |.
This estimate is much less wasteful in the bounded degree case, where the relevant values of 𝑝 will
not be small, than it is in the high degree case.

Lemma 6.4.3. Let 𝐺 be a graph, let 𝑜 be a vertex of 𝐺, let 𝑝 ∈ (0, 1), and let 𝑚, 𝑛 be integers with
𝑚 < 𝑛. For each non-empty finite set of edges 𝐹 ⊆ 𝐸 there exists an edge 𝑢𝑣 ∈ 𝐹 such that

P𝑝
(
{|𝐾𝑢 | ≥ 𝑚} ∩ act|𝐾𝑢 |≥𝑛 [𝑢𝑣]

)
≥ 𝑝 |𝐹 |

2 |𝐹 |P𝑝
(
{|𝐾𝑜 | ≥ 𝑚} ∩ act|𝐾𝑜 |≥𝑛 [𝐹]

)
.

Note that the left hand side of the inequality concerns the cluster of 𝑢 while the right hand side
concerns the cluster of 𝑜.

Proof. Let 𝑒1, . . . , 𝑒 |𝐹 | be an enumeration of 𝐹. Consider a configuration 𝜔 ∈ {|𝐾𝑜 | ≥ 𝑚} ∩
act|𝐾𝑜 |≥𝑛 [𝐹] and let 𝑖 < |𝐹 | be the maximum index such that |𝐾𝑜 (𝜔 ∪ {𝑒1, . . . , 𝑒𝑖}) | < 𝑛. We can
write 𝑒𝑖+1 = 𝑢𝑣 in such a way that

𝜔 ∪ {𝑒1, . . . , 𝑒𝑖} ∈ {|𝐾𝑢 | ≥ 𝑚} ∩ act|𝐾𝑢 |≥𝑛 [𝑢𝑣] .

Thus, by the pigeonhole principle, there exists a non-random index 𝑖 with an endpoint labelling
𝑒𝑖+1 = 𝑢𝑣 such that

P𝑝
(
𝜔 ∪ {𝑒1, . . . , 𝑒𝑖} ∈ {|𝐾𝑢 | ≥ 𝑚} ∩ act|𝐾𝑢 |≥𝑛 [𝑢𝑣]

)
≥ 1

2 |𝐹 |P𝑝
(
{|𝐾𝑜 | ≥ 𝑚} ∩ act|𝐾𝑜 |≥𝑛 [𝐹]

)
.
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Since the event {𝜔 ∪ {𝑒1, . . . , 𝑒𝑖} ∈ {|𝐾𝑢 | ≥ 𝑚} ∩ act|𝐾𝑢 |≥𝑛 [𝑢𝑣]} is independent of the restriction
of 𝜔 to {𝑒1, . . . , 𝑒𝑖} it follows that

P𝑝
(
{|𝐾𝑢 | ≥ 𝑚} ∩ act|𝐾𝑢 |≥𝑛 [𝑢𝑣]

)
≥ P𝑝

(
𝜔 ∪ {𝑒1, . . . , 𝑒𝑖} ∈ {|𝐾𝑢 | ≥ 𝑚} ∩ act|𝐾𝑢 |≥𝑛 [𝑢𝑣]

)
P𝑝 ({𝑒1, . . . , 𝑒𝑖} ∈ 𝜔)

≥ 𝑝 |𝐹 |

2 |𝐹 |P𝑝
(
{|𝐾𝑜 | ≥ 𝑚} ∩ act|𝐾𝑜 |≥𝑛 [𝐹]

)
as required. □

Lemma 6.4.4. Let 𝐺 be a unimodular transitive graph, and let 𝑚 < 𝑛 be natural numbers. Then

P′𝑝 ( |𝐾𝑜 | ≥ 𝑛) ≥ 𝑚 · P𝑝
(
{|𝐾𝑢 | ≥ 𝑚} ∩ act|𝐾𝑢 |≥𝑛 [𝑢𝑣]

)
for every 𝑝 ∈ (0, 1) and every edge 𝑢𝑣 ∈ 𝐸 .

Proof. The event that |𝐾𝑜 | ≥ 𝑛 is fully determined by the state of finitely many edges. As such, the
map 𝑞 ↦→ P𝑞 ( |𝐾𝑜 | ≥ 𝑛) is differentiable at 𝑝, and, by Russo’s formula, has derivative given by

P′𝑝 ( |𝐾𝑜 | ≥ 𝑛) =
∑︁
𝑒∈𝐸

P𝑝 ({|𝐾𝑜 (𝜔\𝑒) | < 𝑛} ∩ {|𝐾𝑜 (𝜔 ∪ 𝑒) | ≥ 𝑛})

=
1

1 − 𝑝
∑︁
𝑒∈𝐸

P𝑝 ({𝜔(𝑒) = 0} ∩ {|𝐾𝑜 (𝜔) | < 𝑛} ∩ {|𝐾𝑜 (𝜔 ∪ 𝑒) | ≥ 𝑛})

=
1

1 − 𝑝
∑︁
𝑎∈𝑉

∑︁
𝑏∈neigh(𝑎)

P𝑝
(
{𝑜 ↔ 𝑎} ∩ act|𝐾𝑎 |≥𝑛 [𝑎𝑏]

)
,

where neigh(𝑎) denotes the set of neighbours of 𝑎. Applying the mass-transport principle to
exchange the roles of 𝑜 and 𝑎 in the last line yields that

P′𝑝 ( |𝐾𝑜 | ≥ 𝑛) =
1

1 − 𝑝
∑︁

𝑏∈neigh(𝑜)
E𝑝

[
|𝐾𝑜 | 1(act|𝐾𝑜 |≥𝑛 [𝑜𝑏])

]
≥ max
𝑏∈neigh(𝑜)

E𝑝
[
|𝐾𝑜 | 1(act|𝐾𝑜 |≥𝑛 [𝑜𝑏])

]
≥ max
𝑏∈neigh(𝑜)

𝑚 · P𝑝 ( |𝐾𝑜 | ≥ 𝑚, act|𝐾𝑜 |≥𝑛 [𝑜𝑏]),

and the claim follows by transitivity. □

Lemma 6.4.5. For all 𝑑 ∈ N and 𝜀 ∈ (0, 1), there exists 𝑚 = 𝑚(𝑑, 𝜀) < ∞ such that if 𝐺 ∈ U𝑑 ,
𝑝 ∈ (0, 1) and 𝑛 ≥ 𝑚 are such that P𝑝 ( |𝐾𝑜 | ≥ 𝑛) ≥ 𝜀 then

L
{
𝑞 ∈ [𝑝, 1] : P𝑞 (𝑚 ≤ |𝐾𝑜 | < 𝑛) > 𝜀

}
≤ 𝜀.
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Recall that U𝑑 denotes the set of all (finite or infinite) unimodular transitive graphs with vertex
degree at most 𝑑.

Proof. It suffices to consider the case 𝑛 ≥ 2, the case 𝑛 = 1 being vacuous. Fix𝐺 ∈ U𝑑 , 𝑝 ∈ (0, 1),
and integers 𝑛 ≥ 𝑚with 𝑛 ≥ 2 and suppose that P𝑝 ( |𝐾𝑜 | ≥ 𝑛) ≥ 𝜀. We will prove the contrapositive
of the claim: There exists a constant 𝑀 = 𝑀 (𝑑, 𝜀) ≥ 2 such that(

L
{
𝑞 ∈ [𝑝, 1] : P𝑞 (𝑚 ≤ |𝐾𝑜 | < 𝑛) > 𝜀

}
> 𝜀

)
⇒ (𝑚 ≤ 𝑀) .

Since 𝑛 ≥ 2, we know by a union bound that

𝜀 ≤ P𝑝 ( |𝐾𝑜 | ≥ 𝑛) ≤
∑︁
𝑢∼𝑜

P𝑝 (𝑜𝑢 is open) ≤ 𝑝𝑑,

and hence 𝑝 ≥ 𝜀
𝑑
. We may also assume that 𝑝 ≤ 1 − 𝜀, the claim being trivial otherwise. Take

𝐽 := {𝑞 ∈ [𝑝, 1] : 𝑞P′𝑞 ( |𝐾𝑜 | ≥ 𝑛) ≤ 2𝜀−2}. Since L([𝑝, 1]\𝐽) ≤ 𝜀 by Lemma 6.3.4, it suffices to
prove that there exists 𝑀 = 𝑀 (𝑑, 𝜀) < ∞ such that(

∃𝑞 ∈ 𝐽 such that P𝑞 (𝑚 ≤ |𝐾𝑜 | < 𝑛) ≥ 𝜀
)
⇒ (𝑚 ≤ 𝑀) . (6.4.3)

To this end, suppose that 𝑞 ∈ 𝐽 is such that P𝑞 (𝑚 ≤ |𝐾𝑜 | < 𝑛) ≥ 𝜀. Applying Lemma 6.4.2 with
E = {|𝐾𝑜 | ≥ 𝑛} and B = {𝑚 ≤ |𝐾𝑜 | < 𝑛} ⊆ E𝑐, we deduce that there exists 𝑁 = 𝑁 (𝜀) < ∞ and a
set of edges 𝐹 ⊆ 𝐸 with |𝐹 | ≤ 𝑁 such that

P𝑞
(
{|𝐾𝑜 | ≥ 𝑚} ∩ act|𝐾𝑜 |≥𝑛 [𝐹]

)
≥ 𝜀

2
.

Using Lemma 6.4.3, it follows that there exists an edge 𝑢𝑣 ∈ 𝐹 such that

P𝑞
(
{|𝐾𝑢 | ≥ 𝑚} ∩ act|𝐾𝑢 |≥𝑛 [𝑢𝑣]

)
≥ 𝑞 |𝐹 |

2 |𝐹 | ·
𝜀

2
≥ 𝜀1+𝑁

4𝑁𝑑𝑁
=: 𝑐

where 𝑐 = 𝑐(𝑑, 𝜀) is a positive constant. Since 𝐺 is unimodular, we may apply Lemma 6.4.4 to
deduce that P′𝑞 ( |𝐾𝑜 | ≥ 𝑛) ≥ 𝑚𝑐. Contrasting this with the hypothesis that 𝑞 ∈ 𝐽 yields that

𝑚 ≤ 2
𝑐𝑝𝜀2 ≤

2𝑑
𝑐𝜀3 .

We deduce that the implication (6.4.3) holds with 𝑀 = 𝑀 (𝑑, 𝜀) = 2𝑑/(𝑐𝜀3), completing the
proof. □
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In the next lemma, we write L for the Lebesgue measure. In the context of finite graphs, we used
‘giant’ to denote an arbitrary choice of largest cluster. Let us extend this definition as follows: if
there exists an least one infinite cluster, let ‘giant’ be the union of all infinite clusters. The reader
may notice that ‘giant’ is undefined when there are arbitarily large finite clusters but no infinite
clusters; we will never use the notation ‘giant’ in such a situation.

Lemma 6.4.6. Let 𝑑 ≥ 2 and 𝜀 > 0, there exists 𝑚(𝜀, 𝛿) < ∞ such that for all 𝐺 ∈ U𝑑 ,

L
{
𝑝 ∈ [𝑝𝑐 (𝐺), 1] : P𝐺𝑝

(
|𝐾𝑜 | ≥ 𝑚 but 𝑜 ∉ giant

)
≥ 𝜀

}
≤ 𝜀.

Proof of Lemma 6.4.6. We start by dealing with the finite graphs in U𝑑 . By the definition of a
percolation threshold, there exists 𝛿 > 0 such that P𝑝𝑐+𝜀/2( |𝐾𝑜 | ≥ 𝛿 |𝑉 |) ≥ 𝛿 for all but finitely
many of the finite graphs 𝐺 ∈ U𝑑 . Thus, by Lemma 6.4.5, there exists 𝑚 ∈ N such that

L
{
𝑝 ∈ [𝑝𝑐 (𝐺) +

𝜀

2
, 1] : P𝑝 (𝑚 ≤ |𝐾𝑜 | < 𝛿 |𝑉 |) ≤

𝜀

2

}
≥ 1 − 𝑝𝑐 (𝐺) − 𝜀 (6.4.4)

for all but finitely many (isomorphism classes of) finite graphs 𝐺 ∈ U𝑑 . By increasing 𝑚 if
necessary, we may take this estimate to hold for every finite graph 𝐺 ∈ U𝑑 . For each finite graph
𝐺 ∈ U𝑑 , let 𝐽 (𝐺) be the set whose Lebesgue measure is bounded in (6.4.4). By Theorems 6.1.1
and 6.2.1, all but finitely many finite graphs 𝐺 ∈ H have the property that

P𝑝 ( |𝐾𝑜 | ≥ 𝛿 |𝑉 | but 𝑜 ∉ giant) ≤ 𝜀
2

for every 𝑝 ≥ 𝑝𝑐 (𝐺) + 𝜀/2, and hence by a union bound that

P𝑝 ( |𝐾𝑜 | ≥ 𝑚 but 𝑜 ∉ giant) ≤ 𝜀
2
+ 𝜀

2
= 𝜀

for every 𝑝 ∈ 𝐽 (𝐺). This proves the claim for the finite graphs inU𝑑 sinceL([𝑝𝑐 (𝐺), 1]\𝐽 (𝐺)) ≤ 𝜀
for every 𝐺 ∈ U𝑑 .

We now turn to the infinite graphs inU𝑑 . By Theorem 6.2.3, there exists 𝛿 > 0 such that

P𝑝𝑐+ 𝜀2 ( |𝐾𝑜 | ≥ 𝑛) ≥ P𝑝𝑐+ 𝜀2 (𝑜 ↔∞) ≥ 𝛿

for every infinite 𝐺 ∈ H and every 𝑛 ∈ N. So, by Lemma 6.4.5, there exists 𝑚 = 𝑚(𝑑, 𝜀) such that
the set of parameters

𝐽𝑛 = 𝐽𝑛 (𝐺) =
{
𝑝 ∈

[
𝑝𝑐 +

𝜀

2
, 1

]
: P𝑞 (𝑚 ≤ |𝐾𝑜 | < 𝑛) ≤ 𝜀

}
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satisfies L
( [
𝑝𝑐 + 𝜀

2 , 1
]
\𝐽𝑛

)
≤ 𝜀

2 for every infinite 𝐺 ∈ H and every 𝑛 ∈ N. Noting that 𝐽1 ⊇ 𝐽2 ⊇
· · · for every infinite 𝐺 ∈ H , we deduce that the intersection 𝐽 = 𝐽 (𝐺) = ⋂

𝑛≥1 𝐽𝑛 satisfies

L ([𝑝𝑐, 1] \𝐽) =
𝜀

2
+ lim
𝑛→∞
L

( [
𝑝𝑐 +

𝜀

2
, 1

]
\𝐽𝑛

)
≤ 𝜀

2
+ 𝜀

2
= 𝜀

for every infinite 𝐺 ∈ U𝑑 . This implies the claim since

P𝑝 ( |𝐾𝑜 | ≥ 𝑚 but 𝑜 ↮ ∞) = lim
𝑛→∞

P𝑝 (𝑚 ≤ |𝐾𝑜 | < 𝑛) ≤ 𝜀

for every infinite 𝐺 ∈ U𝑑 and every 𝑝 ∈ 𝐽 (𝐺). □

Lemma 6.4.7. LetH be an infinite set of (infinite or finite) transitive graphs converging locally to
some infinite transitive graph 𝐺∞. For all 𝑝 : H → [0, 1] satisfying lim infH 𝑝/𝑝𝑐 > 1, if

lim
𝑛→∞

lim sup
H

P𝑝 ( |𝐾𝑜 | ≥ 𝑛 but 𝑜 ∉ giant) = 0, (6.4.5)

then
lim
H
|𝜃 (𝑝, 𝐺) − 𝜃 (𝑝, 𝐺∞) | = 0.

Proof. For all 𝐺 ∈ H and 𝑛 ≥ 1,

♥ := |𝜃 (𝑝, 𝐺) − 𝜃 (𝑝, 𝐺∞) |
≤

��𝜃 (𝑝, 𝐺) − P𝐺𝑝 ( |𝐾𝑜 | ≥ 𝑛)��︸                           ︷︷                           ︸
♥1
𝑛

+
��P𝐺𝑝 ( |𝐾𝑜 | ≥ 𝑛) − P𝐺∞𝑝 ( |𝐾𝑜 | ≥ 𝑛)��︸                                      ︷︷                                      ︸

♥2
𝑛

+
��P𝐺∞𝑝 ( |𝐾𝑜 | ≥ 𝑛) − 𝜃 (𝑝, 𝐺∞)��︸                               ︷︷                               ︸

♥3
𝑛

.

Since lim infH 𝑝/𝑝𝑐 > 1, for all 𝑛,

lim
H

P𝑝 ( |giant| ≥ 𝑛) = 1,

and hence, by Theorems 6.1.1 and 6.2.1,

lim sup
H
♥1
𝑛 = lim sup

H
P𝐺𝑝 ( |𝐾𝑜 | ≥ 𝑛 but 𝑜 ∉ giant) , (6.4.6)

which tends to zero as 𝑛 tends to infinity if eq. (6.4.5) holds. In particular, if eq. (6.4.5) holds then

lim sup
H ′

♥ ≤ lim sup
H ′

inf
𝑛≥1

(
♥1
𝑛 + ♥2

𝑛 + ♥3
𝑛

)
≤ lim sup

𝑛→∞
lim sup
H ′

(
♥1
𝑛 + ♥2

𝑛 + ♥3
𝑛

)
≤ lim sup

𝑛→∞
lim sup
H ′

♥1
𝑛︸                ︷︷                ︸

=0 by eq. (6.4.5)

+ sup
𝑛≥1

lim sup
H ′

♥2
𝑛︸      ︷︷      ︸

=0

+ lim sup
𝑛→∞

♥3
𝑛︸      ︷︷      ︸

=0

= 0.

□
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We are now ready to complete the proof of Proposition 6.4.1. To make the proof slightly shorter,
we will invoke the following well-known result of Schonmann [Sch99]: for every infinite transitive
graph 𝐺, the density 𝜃 (·, 𝐺) is continuous on (𝑝𝑐 (𝐺), 1]. This is not strictly necessary: we could
bypass this step by using Lemma 6.5.1 (adapting its proof to all unimodular transitive graphs) and
Corollary 6.10.2 (implying that that 𝐺∞ is unimodular.)

Proof of Proposition 6.4.1. Pick 𝜀 > 0 such that 𝑝 > lim supH 𝑝𝑐 (𝐺) + 𝜀. By Lemma 6.4.6, we
can find sequences 𝑝1, 𝑝2, 𝑝3 : H → [0, 1] such that 𝑝1 → 𝑝 − 𝜀, 𝑝2 ↑ 𝑝, and 𝑝3 ↓ 𝑝 as 𝐺 → ∞
with 𝐺 ∈ H , and such that for all 𝑖 ∈ {0, 1, 2},

lim
𝑛→∞

lim sup
H

P𝑝𝑖 ( |𝐾𝑜 | ≥ 𝑛 but 𝑜 ∉ giant) = 0.

By Lemma 6.4.7, for all 𝑖,
lim
H

��𝜃 (
𝑝𝑖, 𝐺

)
− 𝜃

(
𝑝𝑖, 𝐺∞

) �� = 0. (6.4.7)

By Theorem 6.2.3, we have lim infH 𝜃 (𝑝1, 𝐺) > 0. So by eq. (6.4.7), limH 𝑝1 ≥ 𝑝𝑐 (𝐺∞) and
hence 𝑝 > 𝑝𝑐 (𝐺). In particular, 𝜃 (·, 𝐺∞) is continuous at 𝑝 by [Sch99]. So for both 𝑖 ∈ {1, 2},

lim
H
𝜃 (𝑝𝑖, 𝐺∞) = 𝜃 (𝑝, 𝐺∞). (6.4.8)

By combining eqs. (6.4.7) and (6.4.8), for both 𝑖 ∈ {1, 2},

lim
H
𝜃 (𝑝𝑖, 𝐺) = 𝜃 (𝑝, 𝐺∞),

which yields the desired claim by monotonicity because 𝑝 is sandwiched between 𝑝1 and 𝑝2. □

6.5 Germs and Holes
In this section, letH ⊆ F be an infinite set that does not contain any molecular subsequences, and
consider some assignment of positive integers 𝑀 : H → N. Given an assignment of parameters
𝑝 : H → [0, 1], let Germ(𝑝) = Germ(𝑝, 𝑀,H) be the statement that

lim
𝑛→∞

lim sup
H

P𝑝 ( |𝐾𝑜 | ≥ 𝑛𝑀 but 𝑜 ∉ giant) = 0,

and let Hole(𝑝) = Hole(𝑝, 𝑀,H) be the statement that

lim
𝑛→∞

lim inf
H

inf
𝐴⊆𝑉 (𝐺)
|𝐴|≥𝑛𝑀

P𝑝
(
∥giant∥𝐴 ≥ 1/𝑛

)
= 1.

In both equations, we use the convention that inf ∅ := 1.
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Lemma 6.5.1. For every supercritical assignment 𝑝, if Germ(𝑝) holds then Hole(𝑝) holds.

Lemma 6.5.2. For every supercritical assignment 𝑝 and every constant 𝜀 > 0, if Hole(𝑝) holds
then Germ((1 + 𝜀)𝑝) holds.

Lemma 6.5.3. Let 𝐺 be a graph, let 𝑢, 𝑣 be vertices, and let 𝑝, 𝑞 ∈ [0, 1]. For all 𝑛 ∈ N,

P
(
𝑜 ̸

𝜔𝑞←→ 𝑢 but
��𝜕𝐾𝑢 (

𝜔𝑝
)
∩ 𝜕𝐾𝑣

(
𝜔𝑞

) �� ≥ 𝑛) ≤ 𝑒−𝑛|𝑝−𝑞 | .
We next state the universal tightness theorem [Hut21c, Theorem 2.2], which guarantees that the
size of the largest intersection of a cluster with a fixed set of vertices is always of the same order
as its mean with high probability. This theorem also holds for percolation on weighted graphs; we
state a special case that is adequate for our purposes.

Theorem 6.5.4 (Universal Tightness). There exist universal constants 𝐶, 𝑐 > 0 such that the
following holds. Let 𝐺 = (𝑉, 𝐸) be a (countable, locally finite) graph, let Λ ⊆ 𝑉 be a finite
non-empty set of vertices, and let 𝑝 ∈ [0, 1] be a parameter. Set |𝑀 | := max{|𝐾𝑣 ∩ Λ| : 𝑣 ∈ 𝑉}.
Then

P𝑝
(
|𝑀 | ≥ 𝛼E𝑝 |𝑀 |

)
≤ 𝐶𝑒−𝑐𝛼 and P𝑝

(
|𝑀 | ≤ 𝜀E𝑝 |𝑀 |

)
≤ 𝐶𝜀

for every 𝛼 ≥ 1 and 0 < 𝜀 ≤ 1.

Proof of Lemma 6.5.1. For all 𝛿 > 0, 𝐺 ∈ H , and 𝐴 ⊆ 𝑉 (𝐺), by a union bound and by linearity of
expectation,

P𝑝
(
∥giant∥𝐴 ≥ 𝛿

)
≥ P𝑝

(
max
𝑢∈𝐴
∥𝐾𝑢∥𝐴 ≥ 𝛿

)
− P𝑝

(
max

𝑢∈𝐴\ giant
∥𝐾𝑢∥𝐴 ≥ 𝛿

)
≥ P𝑝

(
max
𝑢∈𝐴
∥𝐾𝑢∥𝐴 ≥ 𝛿

)
− 1
𝛿

max
𝑢∈𝐴

P𝑝 ( |𝐾𝑢 | ≥ 𝛿 |𝐴| but 𝑢 ∉ giant) .

So for all 𝑚, 𝑛 ∈ N,

♥𝑚,𝑛 := lim inf
H

inf
𝐴⊆𝑉 (𝐺)
|𝐴|≥𝑛𝑀

P𝑝
(
∥giant∥𝐴 ≥ 1/𝑚

)
≥ lim inf

H
inf

𝐴⊆𝑉 (𝐺)
P𝑝

(
max
𝑢∈𝐴
∥𝐾𝑢∥𝐴 ≥ 1/𝑚

)
︸                                             ︷︷                                             ︸

♥1
𝑚

− lim sup
H

max
𝑢∈𝑉 (𝐺)

𝑚P𝑝 ( |𝐾𝑢 | ≥ 𝑛𝑀/𝑚 but 𝑢 ∉ giant)︸                                                           ︷︷                                                           ︸
♥2
𝑚,𝑛

.

By Theorems 6.1.1 and 6.2.1, since 𝑝 is supercritical,

lim inf
H

inf
𝐴⊆𝑉 (𝐺)

E𝑝

[
max
𝑢∈𝐴
∥𝐾𝑢∥𝐴

]
> 0,
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and hence by Theorem 6.5.4, lim𝑚 ♥1
𝑚 = 1. By Theorems 6.1.1 and 6.2.1, for all 𝑚, 𝑛 ≥ 1,

♥2
𝑚,𝑛 = lim sup

H
𝑚P𝑝 ( |𝐾𝑜 | ≥ 𝑛 but 𝑜 ∉ giant) .

So if Germ(𝑝) holds then lim𝑛 ♥2
𝑚,𝑛 = 0 for all 𝑚. Therefore, if Germ(𝑝) holds then by monotonic-

itiy of ♥𝑚,𝑛,
lim
𝑛
♥𝑛,𝑛 = lim

𝑚
lim
𝑛
♥𝑚,𝑛 ≥ lim

𝑚
♥1
𝑚 − lim

𝑚
lim
𝑛
♥2
𝑚,𝑛 = 1,

which implies that Hole(𝑝) holds. □

Proof of Lemma 6.5.2. Let 𝑞 := (1 + 𝜀)𝑝. By Theorems 6.1.1 and 6.2.1, there is a constant 𝜀 > 0
such that

lim
H

P𝑝 (N) = lim
H

P𝑞 (N) = 0 (6.5.1)

where N is the complement of the event that there exists a unique cluster 𝐾 satisfying ∥𝐾 ∥ ≥ 𝜀.
Suppose for contradiction that Hole(𝑝) holds but Germ(q) does not. Then we can find an infinite
subsetH ′ ⊆ H , an assignment 𝑁 : H ′→ N with limH ′ 𝑁/𝑀 = ∞, and a constant 𝜂 > 0 such that
for all 𝐺 ∈ H ′,

P𝑞 (𝑁 ≤ |𝐾𝑜 | < 𝜀 |𝑉 |) ≥ 𝜂. (6.5.2)

Consider some 𝐺 ∈ H ′. Trivially,

𝜈(𝐺) := P𝑞 (N) = E
[
P

(
𝜔𝑞 ∈ N | 𝐾𝑜 (𝜔𝑞)

) ]
,

and hence by Markov’s inequality,

P
(
P

(
𝜔𝑞 ∈ N | 𝐾𝑜 (𝜔𝑞)

)
≥ 2𝜈/𝜂

)
≤ 𝜂/2.

So by eq. (6.5.2) and a union bound, there is a deterministic set Π of possible outcomes for 𝐾𝑜 such
that

P𝑞 (𝐾𝑜 ∈ Π) ≥ 𝜂/2, (6.5.3)

and every 𝐴 ∈ Π satisfies 𝑁 ≤ |𝐴| < 𝜀 |𝑉 | and

P
(
𝜔𝑞 ∈ N | 𝐾𝑜 (𝜔𝑞) = 𝐴

)
≤ 2𝜈/𝜂. (6.5.4)

Consider some 𝐴 ∈ Π. Let 𝐴 be the set of all edges having at least one endpoint in 𝐴. On the event
that 𝐾𝑜

(
𝜔𝑞

)
= 𝐴, since |𝐴| < 𝜀 |𝑉 | and every edge in 𝜕𝐴 is 𝜔𝑝-closed, we have 𝜔𝑝 ∈ N if and
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only if 𝜔𝑝\𝐴 ∈ N . This is helpful because 𝜔𝑝\𝐴 is independent of the event that 𝐾𝑜
(
𝜔𝑞

)
= 𝐴. So

we can rewrite eq. (6.5.4) as
P

(
𝜔𝑝\𝐴 ∈ N

)
≤ 2𝜈/𝜂.

In particular, since 𝐴 and 𝐺 were arbitrary, by eq. (6.5.1), Hole(𝑝), and a union bound,

lim
H ′

sup
𝐵∈Π

P𝑝 ({𝜔\𝐵 ∈ N} ∪ N ∪ {giant∩𝐵 = ∅}︸                                        ︷︷                                        ︸
E(𝐵)

) = 0. (6.5.5)

Now let 𝑏(𝐴) = 𝑏(𝐴, 𝜔) count the number of edges 𝑢𝑣 with 𝑢 ∈ 𝐴 and 𝑣 ∈ 𝑉\𝐴 such that���𝐾𝑣 (
𝜔\𝐴

)��� ≥ 𝜀 |𝑉 | .
Notice that on the event E(𝐴), at least one such edge must be 𝜔𝑝-open. So by independence, for
all 𝑛 ≥ 1,

P𝑝 (E(𝐴) | 𝑏(𝐴) ≤ 𝑛/𝑝) ≥ (1 − 𝑝)𝑛/𝑝 ≥ 𝑒−𝑛 > 0. (6.5.6)

By constrasting eqs. (6.5.5) and (6.5.6), we must have for every constant 𝑛,

lim
H ′

inf
𝐴∈Π

P𝑝 (𝑏(𝐴) > 𝑛/𝑝) = 1. (6.5.7)

For all 𝐺 and 𝑛, by eq. (6.5.3) and by independence,

P
(
𝑏

(
𝐾𝑜

(
𝜔𝑞

)
, 𝜔𝑝

)
> 𝑛/𝑝

)
≥ P𝑝 (𝐾𝑜 ∈ Π) inf

𝐴∈Π
P

(
𝑏

(
𝐴, 𝜔𝑝

)
> 𝑛/𝑝 | 𝐾𝑜

(
𝜔𝑞

)
= 𝐴

)
≥ 𝜂

2
· inf
𝐴∈Π

P𝑝 (𝑏(𝐴) > 𝑛/𝑝) .

So by eq. (6.5.7), for all 𝑛,

lim inf
H ′

P
(
𝑏

(
𝐾𝑜

(
𝜔𝑞

)
, 𝜔𝑝

)
> 𝑛/𝑝

)
≥ 𝜂/2. (6.5.8)

For all 𝐺 and 𝑛, whenever 𝑏
(
𝐾𝑜

(
𝜔𝑞

)
, 𝜔𝑝

)
> 𝑛/𝑝, there must be at least 𝜀 |𝑉 | vertices 𝑢 such that

the event
T (𝑢) :=

{
𝑜 ̸

𝜔𝑞←→ 𝑢

}
∩

{��𝜕𝐾𝑜 (
𝜔𝑞

)
∩ 𝜕𝐾𝑢

(
𝜔𝑝

) �� ≥ 𝑛/𝑝} (6.5.9)

holds. So by linearity of expectation, for all 𝐺 and 𝑛,

♦𝐺,𝑛 := sup
𝑢∈𝑉

P (T (𝑢)) ≥ 1
|𝑉 |

∑︁
𝑢∈𝑉

P (T (𝑢)) ≥ 𝜀P
(
𝑏

(
𝐾𝑜

(
𝜔𝑞

)
, 𝜔𝑝

)
> 𝑛/𝑝

)
,

and hence by eq. (6.5.8),
inf
𝑛≥1

lim inf
H ′
♦𝐺,𝑛 ≥

𝜀𝜂

2
. (6.5.10)

241



On the other hand, by Lemma 6.5.3, for all 𝐺 and 𝑛,

♦𝐺,𝑛 ≤ 𝑒−(𝑞−𝑝)·𝑛/𝑝 = 𝑒−𝜀𝑛,

and hence,
lim sup
𝑛→∞

lim sup
H ′

♦𝐺,𝑛 ≤ lim sup
𝑛→∞

𝑒−𝜀𝑛 = 0,

contradicting eq. (6.5.10). □

6.6 Characterizing discrete phase transitions
We now turn our attention to finite transitive graphs of divergent degree. (In fact most of what we
do will also apply in the bounded degree case, but has additional technicalities compared to that
case.) Our first goal, which we carry out in this section, is to characterise those graphs that have a
particularly degenerate kind of percolation phase transition we call a discrete phase transition.

Let H be an infinite set of finite connected transitive graphs. We say that H has a discrete
percolation phase transition if limH 𝜃 (𝑝, 𝐺) = 1 for every supercritical assignment 𝑝 : H → [0, 1].
(Here, the word ‘discrete’ is used since this kind of phase transition, where the density jumps from
0 to 1 over a window of negligible size, is the extreme opposite of a continuous phase transition.)
When this occurs, all of our claims about concentration and continuity in the supercritical phase are
trivial. In this section we prove the following proposition, which gives a necessary and sufficient
condition for the supercritical phase to be discrete. This proposition will play an important role in
the remainder of our analysis, allowing us to focus our attention on the case that 𝑝𝑐 (𝐺) is of order
1/deg(𝐺).

Proposition 6.6.1. An infinite setH ⊆ F has a discrete percolation phase transition if and only if
H admits a percolation threshold function 𝑝𝑐 : H → [0, 1] satisfying

lim
H

𝑝𝑐 (𝐺)
1 − 𝑝𝑐 (𝐺)

deg𝐺 = ∞. (6.6.1)

The condition (6.6.1) neatly encapsulates that a family of finite vertex-transitive graphs has a discrete
phase transition if it has a percolation threshold function that is always either very close to 1 or
much larger than the reciprocal of the degree for all large elements of the family; it includes the case
that 𝑝𝑐 (𝐺) = 1 for all but finitely many 𝐺 ∈ H . For an example where 𝑝𝑐 → 1, take the sequence
of cycles (Z𝑛), and for an example where 𝑝𝑐 remains bounded away from 1 but 𝑝𝑐/deg→∞, take
cartesian products of complete graphs and cycles (𝐾𝑛 ×Z 𝑓 (𝑛)) where 𝑓 : N→ N with lim 𝑓 = ∞ is
any sufficiently slowly growing sequence. Since every set of finite transitive graphs with a discrete
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percolation phase transition admits a threshold function, the fact that the phase transition is discrete
can be phrased in terms of the convergence of 𝜃 to a step function when rescaled by 𝑝𝑐 (𝐺): An
infinite setH ⊆ F has a discrete percolation phase transition if and only if it admits a percolation
threshold function 𝑝𝑐 : H → [0, 1] satisfying

lim
𝐺∈H

𝜃 (𝜆𝑝𝑐 (𝐺), 𝐺) = 1(𝜆 ≥ 1)

for each constant 𝜆 ≠ 1. (The 𝜆 = 1 limit of 𝜃 (𝜆𝑝𝑐 (𝐺), 𝐺) is sensitive to the precise choice of
threshold function 𝑝𝑐 (𝐺).)

Corollary 6.6.2. For every infinite set H ⊆ F and for every supercritical assignment 𝑝 : H →
[0, 1],

lim
H
𝑝 deg𝐺 = ∞ =⇒ lim

H
𝜃 (𝑝, 𝐺) = 1.

Proof. Assume for contradiction that limH 𝑝 deg𝐺 = ∞ but that for some infinite subset H ′, we
have 𝑠 := supH ′ 𝜃 (𝑝, 𝐺) < 1. By passing to an infinite subset if necessary, we may assume without
loss of generality thatH ′ is dense or sparse. In either case, as explained in [Eas22], it follows from
Theorem 6.1.2 that H ′ admits a percolation threshold 𝑝𝑐 : H ′ → [0, 1]. By passing to a further
infinite subset if necessary, we may assume without loss of generality that this percolation threshold
satisfies either limH ′ 𝑝𝑐 deg𝐺 = ∞ or supH ′ 𝑝𝑐 deg𝐺 < ∞. In the first case, Proposition 6.6.1 tells
us thatH ′ has a discrete percolation phase transition. Since 𝑝 is supercritical, it follows that

lim
H ′
𝜃 (𝑝, 𝐺) = 1,

contradicting 𝑠 < 1. In the second case, by Theorem 6.2.3, for every positive constant 𝑥,

lim inf
H ′

𝑃𝑝

(
∥𝐾1∥ ≥

𝑥

1 + 𝑥

)
= 1,

and hence
lim inf
H ′

𝜃 (𝑝, 𝐺) ≥ 𝑥

1 + 𝑥 ,

which contradicts 𝑠 < 1 when 𝑥 > 𝑠
1−𝑠 . □

We start with the easier ‘only if’ direction of Proposition 6.6.1.

Lemma 6.6.3. Let H ⊆ F . If H does not have a percolation threshold, or if it has a percolation
threshold 𝑝𝑐 : H → [0, 1] satisfying lim infH

𝑝𝑐 (𝐺)
1−𝑝𝑐 (𝐺) deg𝐺 < ∞, then the supercritical phase of

H is not discrete.
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Proof. First suppose that H does not have a percolation threshold. Then by the main theorem of
[Eas22], H contains an infinite molecular subset H ′. (In fact it contains an infinite 𝑚-molecular
subset for infinitely many 𝑚, but we will not need to use this stronger fact.) Since molecular sets
are dense, it follows by the results of [Bol+10b] that there exists 𝛼 < ∞ (in fact 𝛼 = 1) such that
𝐺 ↦→ 𝛼

deg𝐺 is a percolation threshold for H ′. Then the assignment 𝑝 : 𝐺 ↦→ 2𝛼
deg𝐺 is supercritical

forH ′ and satisfies

lim sup
H ′

𝜃 (𝑝(𝐺), 𝐺) ≤ lim sup
H ′

P𝑝 ( |𝐾𝑜 | > 1)

≤ lim sup
H ′

[
1 −

(
1 − 2𝛼

deg𝐺

)deg𝐺
]
< 1.

(6.6.2)

Next suppose thatH does have a percolation threshold 𝑝𝑐 : H → [0, 1] but

lim inf
H

𝑝𝑐 (𝐺)
1 − 𝑝𝑐 (𝐺)

deg𝐺 < ∞.

Then there exists an infinite subsetH ′ with

lim sup
H ′

𝑝𝑐 (𝐺)
1 − 𝑝𝑐 (𝐺)

deg𝐺 < ∞,

and hence lim supH ′ 𝑝𝑐 (𝐺) < 1 and lim supH ′ 𝑝𝑐 (𝐺) deg𝐺 < ∞. Without loss of generality (i.e.
by passing to a further infinite subset if necessary), we may assume that there exist constants 𝜀 > 0
and 𝛼 < ∞ such that supH ′ 𝑝𝑐 (𝐺) < 1−𝜀 and limH ′ 𝑝𝑐 (𝐺) deg𝐺 = 𝛼, and either limH ′ deg𝐺 = ∞
or supH ′ deg𝐺 < ∞. If limH ′ deg𝐺 = ∞, then the assignment 𝑝 : 𝐺 ↦→ 2𝛼

deg𝐺 is supercritical for
H ′ and satisfies eq. (6.6.2). If supH ′ deg𝐺 < ∞, then the assignment 𝑝 : 𝐺 ↦→ 1−𝜀 is supercritical
forH ′ and satisfies

lim sup
H ′

𝜃 (𝑝(𝐺), 𝐺) ≤ lim sup
H ′

P𝑝 ( |𝐾𝑜 | > 1)

≤ lim sup
H ′

[
1 − 𝜀deg𝐺 ]

< 1.

We have shown that in all cases, we can find an infinite subsetH ′ ⊆ H and a supercritical assignment
𝑝 : H ′→ [0, 1] satisfying lim supH ′ 𝜃 (𝑝(𝐺), 𝐺) < 1. Then the assignmentH → [0, 1] given by

𝐺 ↦→

𝑝(𝐺) if 𝐺 ∈ H ′

1 if 𝐺 ∈ H\H ′

is supercritical forH and satisfies lim infH 𝜃 (𝑝(𝐺), 𝐺) < 1. Therefore the phase transition on H
is not discrete. □
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The proof of Proposition 6.6.4 will apply both the universal tightness theorem Theorem 6.5.4 and
the following quantitative insertion tolerance estimate of [EH21a, Proposition 2.6]. Both results
will be used again several times later in the paper.

Note that for percolation on infinite graphs, “insertion tolerance” usually refers to the fact that𝜔∪{𝑒}
has law absolutely continuous with respect to that of 𝜔, or equivalently that P(𝜔(𝑒) = 1|𝜔|𝐸\𝑒) > 0
almost surely. This statement is much less useful for finite graphs, particularly when 𝑝 is very small
as is typical in the high-degree case. The following proposition gives conditions under which we
can force an edge to appear within a given (possibly random) set without changing the probability
of a given event too badly.

Proposition 6.6.4 (Quantitative insertion tolerance). Let𝐺 = (𝑉, 𝐸) be a finite graph, let 𝑝 ∈ (0, 1),
and let 𝐹 ⊆ 𝐸 be a collection of edges. Let 𝐴 ⊆ {0, 1}𝐸 be an event, let 𝜂 > 0 and suppose that
for each configuration 𝜔 ∈ 𝐴 there is a distinguished subset 𝐹 [𝜔] with 𝐹 [𝜔] ⊆ 𝐹 \ 𝜔 and
|𝐹 [𝜔] | ≥ 𝜂 |𝐹 |. If we define 𝐴+ := {𝜔 ∪ {𝑒} : 𝜔 ∈ 𝐴 and 𝑒 ∈ 𝐹 [𝜔]} then

P𝑝 (𝐴+) ≥
𝜂2

1 − 𝑝 ·
𝑝 |𝐹 |

𝑝 |𝐹 | + 1
· P𝑝 (𝐴)2.

We now begin to work towards the proof of the converse of Lemma 6.6.3 in earnest. We begin with
the following lemma, recalling that 𝜃𝜀 (𝑝) = 𝜃𝜀 (𝑝, 𝐺) := P𝑝 (∥𝐾𝑜∥ ≥ 𝜀).

Lemma 6.6.5. For each 𝜀 > 0 and 𝜆 < ∞, there exists 𝛿 > 0, and 𝐶 < ∞ such that the
following holds for every 𝐺 = (𝑉, 𝐸) ∈ F satisfying |𝑉 | ≥ 𝐶 and deg𝐺 ≤ 𝛿 |𝑉 |. If 𝑝 ∈ (0, 1) is
𝜀-supercritical and satisfies 𝑝𝜃′𝜀 (𝑝) ≤ 𝜆 then either 𝑝 ≤ 𝐶

deg𝐺 or 𝜃𝜀 (𝑝) > 1 − 𝜀.

Proof of Lemma 6.6.5. Let 𝐺 ∈ F . The claim is equivalent to the statement that for each 𝜀 > 0
and 𝜆 < ∞, there exists 𝐶 = 𝐶 (𝜀, 𝜆) and 𝛿 = 𝛿(𝜀, 𝜆) > 0 such that if 𝑝 ∈ (0, 1) is 𝜀-supercritical
and satisfies 𝜃𝜀 (𝑝) ≤ 1 − 𝜀 and 𝑝𝜃′𝜀 (𝑝) ≤ 𝜆 then either |𝑉 | < 𝐶, deg𝐺 > 𝛿 |𝑉 |, or 𝑝 ≤ 𝐶/deg𝐺.

Fix 𝑝 ∈ (0, 1) that is 𝜀-supercritical and satisfies 𝜃𝜀 (𝑝) ≤ 1−𝜀 and 𝑝𝜃′𝜀 (𝑝) ≤ 𝜆. By Corollary 6.3.3,
there exists 𝐶1 = 𝐶1(𝜀, 𝜆) ≥ 1 and a set of edges 𝐹 ⊆ 𝐸 with |𝐹 | ≤ 𝐶1 such that

P𝑝
(
act∥𝐾𝑜 ∥≥𝜀 [𝐹]

)
≥ 𝜀

2
.

Applying the pigeonhole principle twice, we deduce that there exists 𝑢𝑣 ∈ 𝐹 such that

P𝑝

(
{𝑢 ↮ 𝑣} ∩

{
∥𝐾𝑣 ∥ ≥

𝜀

2𝐶1

})
≥ 𝜀

4𝐶1
. (6.6.3)
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By Theorems 6.1.1 and 6.2.1, since a sparse family of graphs can never contain an infinite macro-
molecular subset, there exists 𝐶2 = 𝐶2(𝜀, 𝜆) < ∞ and 𝛿 = 𝛿(𝜀, 𝜆) > 0 such that if |𝑉 | ≥ 𝐶2 and
deg𝐺 ≤ 𝛿 |𝑉 | then

P𝑝

(
𝜀

2𝐶1
≤ ∥𝐾𝑣 ∥ < 𝜀

)
≤ P𝑝

(
∥𝐾1∥ < 𝜀 or ∥𝐾2∥ ≥

𝜀

2𝐶1

)
≤ 𝜀

16𝐶1
. (6.6.4)

Let 𝑁 be an 𝜔-connected subset of neigh(𝑢) of maximal volume (breaking ties using some total
order on the set of subsets of neigh(𝑢) that is chosen in advance). We have that

E𝑝 |𝑁 | ≥ E𝑝 |𝐾1 ∩ 𝑁 | ≥ 𝜀 deg(𝐺),

and hence by the universal tightness theorem (Theorem 6.5.4) that there exists a constant 𝛿1 =

𝛿1(𝜀, 𝜆) > 0 such that
P𝑝 ( |𝑁 | ≤ 𝛿1 deg) ≤ 𝜀

16𝐶1
.

It follows from this, by a union bound, that the event

E := {𝑢 ↮ 𝑣} ∩ {∥𝐾𝑣 ∥ ≥ 𝜀} ∩ {|𝑁 | ≥ 𝛿1 deg} ∩
{
∥𝐾2∥ <

𝜀

2𝐶1

}
satisfies P𝑝 (E) ≥ 𝜀/(8𝐶1) whenever |𝑉 | ≥ 𝐶2 and deg𝐺 ≤ 𝛿.

To conclude, it suffices to prove that there exists a constant𝐶3 = 𝐶3(𝜀, 𝜆) < ∞ such that if |𝑉 | ≥ 𝐶2

and deg𝐺 ≤ 𝛿 |𝑉 | then 𝑝 ≤ 𝐶3/deg𝐺. Let

(∗) := P𝑝
(
act∥𝐾𝑢∥≥𝜀 [𝑢𝑁] | E

)
,

where 𝑢𝑁 denotes the set of edges with one endpoint equal to 𝑢 and the other in 𝑁 . We split into
two cases according to whether (∗) ≥ 1

2 (Case 1) or (∗) < 1
2 (Case 2).

Case 1 Since all the vertices of 𝑁 are connected in 𝜔, if act∥𝐾𝑢∥≥𝜀 [𝑢𝑁] occurs then every edge
in 𝑢𝑁 is a closed pivotal for the event {∥𝐾𝑢∥ ≥ 𝜀}. As such, by the proof of Lemma 6.4.4 (i.e. a
simple mass-transport argument),

𝜃′𝜀 (𝑝) =
1

1 − 𝑝
∑︁
𝑏∼𝑜

E𝑝 [|𝐾𝑜 |1(act|𝐾𝑜 |≥𝜀 |𝑉 | [𝑜𝑏])]

≥ 𝛿1

2
deg𝐺 P𝑝 (E, act∥𝐾𝑢∥≥𝜀 [𝑢𝑁])

≥ 𝜀𝛿1

16𝐶1
deg𝐺,

and, since 𝑝𝜃′𝜀 (𝑝) ≤ 𝜆, it follows that

𝑝 ≤ 16𝐶1𝜆

𝜀𝛿1 deg𝐺
.
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Case 2 Notice that if we start with a configuration belonging to the event E\ act∥𝐾𝑢∥≥𝜀 [𝑁] and
then open an edge in 𝑢𝑁 , we obtain a configuration in which

𝛿1 deg𝐺 ≤ |𝐾𝑢 | < 𝜀 |𝑉 | .

So, by the quantitative insertion-tolerance estimate of Proposition 6.6.4, there exists a constant
𝛿2 = 𝛿2(𝜀, 𝜆) > 0 such that

P𝑝 ({𝛿1 deg𝐺 ≤ |𝐾𝑢 | < 𝜀 |𝑉 |} ∩ {∥𝐾𝑣 ∥ ≥ 𝜀}) ≥ 𝛿2.

It follows from Lemma 6.4.4 that 𝜃′𝜀 (𝑝) ≥ 𝛿1𝛿2 deg𝐺, and hence that

𝑝 ≤ 𝜆

𝛿1𝛿2 deg𝐺
. □

Proof of Proposition 6.6.1. The ‘only if’ direction is Lemma 6.6.3. Suppose for contradiction that
the ‘if’ direction is false, so we can find an infinite setH of finite connected transitive graphs with
a percolation threshold 𝑝𝑐 satisfying

lim
H

𝑝𝑐 (𝐺)
1 − 𝑝𝑐 (𝐺)

deg𝐺 = ∞ (6.6.5)

and a supercritical sequence 𝑝 satisfying

lim inf
H

𝜃 (𝑝(𝐺), 𝐺) < 1.

Let H ′ be an infinite subset of H such that supH ′ 𝜃 (𝑝(𝐺), 𝐺) < 1. If limH ′ 𝑝𝑐 (𝐺) = 1, then the
only supercritical sequence for H ′ (up to changing finitely many terms in the sequence) would be
the constant assignment 𝐺 ↦→ 1, which trivially satisfies limH ′ 𝜃 (1, 𝐺) = 1. So by passing to a
further infinite subset if necessary, we may assume without loss of generality that supH ′ 𝑝𝑐 (𝐺) < 1.
Since eq. (6.6.5) holds but 𝑝𝑐 (𝐺) is bounded away from 1 onH ′, we know that

lim
H ′

𝑝𝑐 (𝐺) deg𝐺 = ∞. (6.6.6)

By Lemma 6.3.4, we can find a constant 𝜀 > 0 and an 𝜀-supercritical sequence 𝑞 forH ′ such that
for all but finitely many 𝐺 ∈ H ′, we have 𝜃𝜀 (𝑞) ≤ 1 − 𝜀 and 𝑞𝜃′𝜀 (𝑞) ≤ 1

𝜀
. By eq. (6.6.6), we know

that H ′ does not contain an infinite subset of graphs with edge densities |𝐸 ||𝑉 |2 uniformly bounded
away from zero [Bol+10b] or vertex degrees uniformly bounded above (trivially, since 𝑝𝑐 ≤ 1).
Lemma 6.6.5 therefore implies that

lim
H ′
𝑞𝜃′𝜀 (𝑞) = ∞,

which yields the required contradiction. □
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6.7 Negligibility of large holes
The goal of this section is to prove the following proposition, which states that sets of size
significantly larger than the degree have large intersection with the giant with high probability.
Recall that when 𝑊 and 𝐴 are two finite sets of vertices we write ∥𝑊 ∥𝐴 = |𝑊 ∩ 𝐴|/|𝐴| for the
density of𝑊 in 𝐴, and that giant𝜀 = {𝑣 : ∥𝐾𝑣 ∥ ≥ 𝜀} denotes the set of vertices whose clusters have
density at least 𝜀. Recall that F denotes the set of all finite transitive graphs.

Proposition 6.7.1. For every supercritical assignment 𝑝 : F → [0, 1],

lim
𝑛→∞

lim inf
F

inf
𝐴⊆𝑉 (𝐺)
|𝐴|≥𝑛 deg𝐺

P𝑝
(
∥giant∥𝐴 ≥ 1/𝑛

)
= 1,

where inf ∅ := 1.

At the core of our proof is an induction argument that is similar to our proof of [EH21a, Proposition
4.1] in the previous paper of this series. We will start by proving Proposition 6.7.1 conditionally on a
technical lemma whose proof is deferred to Section 6.7. Before giving the proof of Proposition 6.7.1,
let us give an informal overview of the strategy. Notice that the original event

{

giant𝜀



𝐴
≥ 𝛿

}
is

increasing. So, if we suppose for contradiction that the proposition fails at some 𝜀-supercritical
𝑝, then the conclusion of the proposition also fails to hold for all 𝑞 ≤ 𝑝. By Lemma 6.5.2, this
implies that at every (1− 𝜀)𝑝 ≤ 𝑞 ≤ 𝑝, the cluster at 𝑜 is mesoscopic with good probability. Thus,
we must have a whole interval 𝐼 of parameters such that we reach a contradiction if we can show
that there is some 𝑞∗ ∈ 𝐼 where 𝐾𝑜 is unlikely to be a mesoscopic under P𝑞∗ .

To find such a 𝑞∗ ∈ 𝐼, we will use the following lemma to pick a “good” sequence (𝑝𝑛)𝑛≥1 within
this interval 𝐼. We will then sprinkle repeatedly, moving from P𝑝𝑛1

to P𝑝𝑛2
to P𝑝𝑛3

and so forth,
where (𝑝𝑛𝑖 )𝑖≥1 is a well-chosen subsequence of (𝑝𝑛)𝑛≥1. As we do so, we will deduce a sequence
of increasingly strong estimates about measure P𝑝𝑛 , eventually finding an 𝑛 where we can prove
that 𝑞∗ = 𝑝𝑛 has the desired properties needed for us to obtain a contradiction.

Lemma 6.7.2. For every 0 < 𝜀 < 1 there exists 𝛿(𝜀) > 0 such that the following holds. Let
𝐺 = (𝑉, 𝐸) ∈ F satisfy |𝑉 | ≥ 𝛿−1. For every 𝜀-supercritical parameter 𝑝 ∈ (0, 1), there exists
an increasing sequence of parameters (𝑝𝑛)𝑛≥1 in

( (
1 − 𝜀

2
)
𝑝, 𝑝

)
such that the following inequalities

hold for every 𝑛 ≥ 1:

1. 𝑝𝑛𝜃′𝜀 (𝑝𝑛) ≤ 8𝜀−1;
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2. 𝑝𝑛+1 − 𝑝𝑛 ≥ 𝜀3−𝑛−3(deg𝐺)−1;

3. 𝜃𝜀 (𝑝𝑛+1) − 𝜃𝜀 (𝑝𝑛) ≤ 2−𝑛.

Proof of Lemma 6.7.2. Fix 𝐺 = (𝑉, 𝐸) ∈ F and an 𝜀-supercritical parameter 𝑝 ∈ (0, 1). By
Lemma 6.3.4, the set 𝐽 = {𝑞 ∈ ((1 − 𝜀/2) 𝑝, 𝑝) : 𝑞𝜃′𝜀 (𝑞) ≤ 8𝜀−1} has Lebesgue measure L(𝐽) ≥
1
4𝜀𝑝. By Lemma 6.2.2, there exists 𝛿 > 0 such that if |𝑉 | ≥ 1/𝛿 then 𝑝 ≥ 1

2 deg , so thatL(𝐽) ≥ 𝜀
8 deg .

Applying the same argument as in the proof of [EH21a, Lemma 4.7] but with ‘𝜃𝜀 (·)’ used in place of
‘P· (∥𝐾1∥ ≥ 𝛽)’ yields a sequence (𝑝𝑛)𝑛≥1 in 𝐽 such that 𝑝𝑛+1−𝑝𝑛 ≥ 3−𝑛−1L(𝐽) ≥ 𝜀3−𝑛−3(deg𝐺)−1

and 𝜃𝜀 (𝑝𝑛+1) − 𝜃𝜀 (𝑝𝑛) ≤ 2−𝑛 for every 𝑛 ≥ 1 as required. (Indeed, this argument works for any
non-decreasing function taking values in [0, 1] as explained in the proof of [EH21a, Lemma
4.7].) □

Let us now introduce some notation that will be useful in the rest of the section. Let 𝐺 ∈ F and let
𝜀, 𝛿 > 0. For each vertex 𝑣 of 𝐺, define the event

meso𝛿,𝜀𝑣 :=
{

deg
𝛿
≤ |𝐾𝑣 | < 𝜀 |𝑉 |

}
.

To lighten notation, we will also adopt the shorthand act𝜀𝑥 [𝐹] := act∥𝐾𝑥 ∥≥𝜀 [𝐹] for the event that a
set of edges 𝐹 is an activator for the event {∥𝐾𝑥 ∥ ≥ 𝜀}. The next lemma is the inductive step for
our repeated sprinkling argument. It tells us that by sprinkling along our good sequence (𝑝𝑛)𝑛≥1,
we can iteratively shrink the size of a certain set of edges 𝐹 while maintaining a good probability
that meso𝛿,𝜀𝑜 ∩ act𝜀𝑜 [𝐹] occurs. Once 𝐹 becomes a singleton, we will have found our parameter
𝑞∗ = 𝑝𝑛 with which we can obtain a contradiction.

Lemma 6.7.3 (Shrinking by sprinkling). Let 𝑝, 𝜀, 𝛿 ∈ (0, 1) and 𝐺 = (𝑉, 𝐸) ∈ F . Suppose that
𝑝 is 𝜀-supercritical and that (𝑝𝑛)𝑛≥1 is a sequence in

(
(1 − 𝜀

2 )𝑝, 𝑝
)

satisfying conditions 2 and 3
from Lemma 6.7.2. For each (𝑛, 𝑘, 𝛼), let 𝐴𝑛 (𝑘, 𝛼) be the statement that there exists a set of edges
𝐹 with |𝐹 | = 𝑘 satisfying

P𝑝𝑛
(
meso𝛿,𝜀𝑜 ∩ act𝜀𝑜 [𝐹]

)
≥ 𝛼.

Given any 𝑘 ≥ 2 and 𝛼 > 0, we can find 𝑁 (𝜀, 𝑘, 𝛼) < ∞ such that following holds if |𝑉 | ≥ 𝑁 deg𝐺:
For each 𝑛 ≥ 𝑁 , there exists 𝛽(𝜀, 𝑘, 𝛼, 𝑛) > 0 such that for all 𝑚 > 𝑛,

𝐴𝑛 (𝑘, 𝛼) =⇒ 𝐴𝑚 (𝑘 − 1, 𝛽)

We stress that the constants 𝛽 and 𝑁 appearing in Lemma 6.7.3 are independent of the choices of
𝐺, 𝑝, (𝑝𝑛)𝑛≥1, and 𝛿. The proof of Lemma 6.7.3 is highly technical, and is deferred to the next
subsection. By repeatedly applying Lemma 6.7.3, we obtain the following.
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Lemma 6.7.4. Let H ⊆ F be an infinite family of graphs that is sparse. Let 𝜀 > 0 be a constant,
and suppose that 𝑝 : H → (0, 1) is an assignment such that for every 𝐺, the parameter 𝑝(𝐺) is
𝜀-supercritical for 𝐺. Then

lim
𝑚→∞

lim sup
H

inf
𝑞∈[(1−𝜀)𝑝,𝑝]

P𝑞
(
meso1/𝑚,𝜀

𝑜

)
= 0.

Proof. Suppose for contradiction that this is not the case. Then there exists a constant 𝜂 > 0
such that for all 𝑚 ≥ 1, there is an infinite subset H𝑚 ⊆ H such that for all 𝐺 ∈ H𝑚, for all
𝑞 ∈ [(1 − 𝜀)𝑝, 𝑝],

P𝑞
(
meso1/𝑚,𝜀

𝑜

)
≥ 𝜂.

SinceH is sparse, we can moreover assume that for all 𝑚 ≥ 1 and for all 𝐺 ∈ H𝑚,

|𝐺 | ≥ 𝑚 deg𝐺.

Consider some 𝑚 ≥ 1 and some 𝐺 = (𝑉, 𝐸) ∈ H𝑚. We will show that if 𝑚 is sufficiently large
with respect to 𝜂 and 𝜀, then we can force a contradiction. Let 𝛿1(𝜀) > 0 be the constant from
Lemma 6.7.2. Suppose that 𝑚 ≥ 1/𝛿1, and let (𝑝𝑛)𝑛≥1 be the sequence in ((1 − 𝜀/2)𝑝, 𝑝) that is
thereby guaranteed to exist. By Corollary 6.3.3, there is a constant 𝑘 (𝜀, 𝜂) < ∞ such that for every
𝑚 ≥ 1, there is a set of edges 𝐹 ⊆ 𝐸 (which may depend on 𝑚) such that |𝐹 | ≤ 𝑘 and

P𝑝𝑛
(
meso1/𝑚,𝜀

𝑜 ∩ act𝜀𝑜 [𝐹]
)
≥ 𝛽0 :=

min
(
𝜀2, 𝜂, 𝜀/8

)
2

.

Equivalently, in the language of Lemma 6.7.3 (where the constant “𝛿” is 1/𝑚), 𝐴𝑛 (𝑘, 𝛽0) holds for
all 𝑛. Let 𝑁0 be the constant “𝑁 (𝜀, 𝑘, 𝛽0)” from Lemma 6.7.3. Recursively define the sequence
(𝑁0, 𝛽0), (𝑁1, 𝛽1), . . . , (𝑁𝑘−1, 𝛽𝑘−1), starting with (𝑁0, 𝛽0) as already defined, as follows: Suppose
that we have defined 𝑁𝑖−1 and 𝛽𝑖−1 for some 𝑖 ∈ {1, . . . , 𝑘 − 1}. Then set 𝛽𝑖 to be the constant
“𝛽(𝜀, 𝑘 − 𝑖 + 1, 𝛽𝑖−1, 𝑁𝑖−1)” from Lemma 6.7.3 and set 𝑁𝑖 := 𝑁 ∧ 𝑁𝑖−1 + 1 where 𝑁 is the constant
“𝑁 (𝜀, 𝑘 − 𝑖, 𝛽𝑖)” from Lemma 6.7.3. Note that 𝑀 := 𝑁𝑘−1 and 𝛿2 := 𝛽𝑘−1 are constants that
are entirely determined by 𝜀 and 𝜂. In particular, we may assume that 𝑚 ≥ 𝑀 , so that for all
𝑖 ∈ {1, . . . , 𝑘 − 1},

|𝐺 | ≥ 𝑁𝑖 deg𝐺. (6.7.1)

Claim 6.7.5. 𝐴𝑝𝑀 (1, 𝛿2) holds.

Proof of claim. We will use induction on 𝑖 to prove more generally that 𝐴𝑁𝑖 (𝑘 − 𝑖, 𝛽𝑖) holds for
every 𝑖 ∈ {0, . . . , 𝑘 − 1}, which yields the claim as the case 𝑖 = 𝑘 − 1. The base case 𝑖 = 0 holds
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because 𝐴𝑛 (𝑘, 𝛽0) holds for every 𝑛 ≥ 1, and therefore in particular for 𝑛 = 𝑁0. For the inductive
step, suppose that 𝐴𝑁𝑖 (𝑘 − 𝑖, 𝛽𝑖) holds for some 𝑖 ∈ {0, . . . , 𝑘 − 2}. Since 𝑁𝑖 ≥ 𝑁 where 𝑁 is the
constant “𝑁 (𝜀, 𝑘 − 𝑖, 𝛽𝑖)” from Lemma 6.7.3, and since eq. (6.7.1) holds, Lemma 6.7.3 implies that
𝐴𝑛 (𝑘 − (𝑖 + 1), 𝛽𝑖+1) holds for every 𝑛 > 𝑁𝑖, and in particular, for 𝑛 = 𝑁𝑖+1, as required. □

Pick an edge 𝑢𝑣 ∈ 𝐸 witnessing the fact that 𝐴𝑝𝑀 (1, 𝛿2) holds, i.e. such that

P𝑝𝑀
(
meso1/𝑚,𝜀

𝑜 ∩ act𝜀𝑜 [𝑢𝑣]
)
≥ 𝛿2.

By a union bound, we may assume without loss of generality that the endpoint 𝑢 ∈ 𝑢𝑣 satisfies

P𝑝𝑀
(
meso1/𝑚,𝜀

𝑢 ∩ act𝜀𝑢 [𝑢𝑣]
)
≥ 𝛿2

2
.

Then by Lemma 6.4.4,

𝜃′𝜀 (𝑝𝑀) ≥
𝛿2𝑚 deg𝐺

2
.

By Lemma 6.2.2, when 𝑚 is large, we must have 𝑝𝑀 ≥ 1
2 deg𝐺 . Therefore,

𝑝𝑀𝜃
′
𝜀 (𝑝𝑀) ≥

𝛿2𝑚

4
,

which contradicts the first condition enumerated in Lemma 6.7.2 when 𝑚 is sufficiently large with
respect to 𝜀 and 𝜂. □

We will now deduce Proposition 6.7.1 from Lemma 6.7.4. Note that this proof remains conditional
on Lemma 6.7.3 (through our use of Lemma 6.7.4), which we will prove in the next subsection.

Proof of Proposition 6.7.1. Suppose for contradiction the claimed equation does not hold. For
every fixed 𝐺 = (𝑉, 𝐸) ∈ F ,

♦𝑛,𝐺 := inf
𝐴⊆𝑉

|𝐴|≥𝑛 deg𝐺

P𝑝
(
∥giant∥𝐴 ≥ 1/𝑛

)
is trivially non-decreasing with respect to 𝑛. So there must exist a constant 𝛾 > 0 such that for all
𝑛 ≥ 1 there is an infinite setH𝑛 ⊆ F such that ♦𝑛,𝐺 ≤ 1 − 𝛾 for all 𝐺 ∈ H𝑛. By picking a distinct
element from eachH𝑛, we can build an infinite setH ⊆ F such that for all 𝑛 ≥ 1,

lim sup
H
♦𝑛,𝐺 ≤ 1 − 𝛾.

In particular, in the language of Section 6.5, the set H does not have property Hole(𝑝, 𝑑) where
𝑑 (𝐺) := deg𝐺. By passing to an infinite subset of H , we may assume without loss of generality
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that there is a constant 𝜀 > 0 such that for every𝐺 ∈ H , 𝑝(𝐺) ∈ (0, 1) and 𝑝(𝐺) is 2𝜀-supercritical
for 𝐺.

For each 𝐺 ∈ H , pick a parameter 𝑞(𝐺) ∈ [(1 − 𝜀)𝑝, 𝑝] that minimises P𝑞
(
meso1/𝑚,𝜀

𝑜

)
, which

exists by continuity. Note that 𝑞 : H → [0, 1] is supercritical because (1 − 𝜀)𝑝 is supercritical
because 𝑝(𝐺) is always 2𝜀-supercritical for 𝐺. By Lemma 6.7.4,

lim
𝑛→∞

lim sup
H

P𝑞
(
meso1/𝑚,𝜀

𝑜

)
= 0.

In particular, by Theorems 6.1.1 and 6.2.1 and since sparse families of graphs cannot contain
molecular subsequences,

lim
𝑛→∞

lim sup
H

P𝑝 ( |𝐾𝑜 | ≥ 𝑚𝑑 but 𝑜 ∉ giant) = 0,

i.e. H has the Germ(𝑞, 𝑑) property. By Lemma 6.5.1, it follows thatH has the Hole(𝑞, 𝑑) property.
So by monotonicity,H also has the Hole(𝑝, 𝑑) property, a contradiction. □

Proof of Lemma 6.7.3
Let𝐺 = (𝑉, 𝐸) ∈ F , and write 𝑑 for the vertex degree of𝐺. Let 𝑝, 𝜀, 𝛿 ∈ (0, 1), and suppose that 𝑝
is 𝜀-supercritical for 𝐺. Suppose that (𝑝𝑛)𝑛≥1 is a sequence in

(
(1 − 𝜀

2 )𝑝, 𝑝
)

satisfying conditions
2 and 3 from Lemma 6.7.2. Fix 𝑘 ≥ 2 and 𝛼 > 0. Let 𝑛 < 𝑚 be arbitrary positive integers. Assume
that 𝐴𝑛 (𝑘, 𝛼) holds, and let 𝐹 be a set of edges witnessing this. Our goal is to find 𝑁 (𝜀, 𝑘, 𝛼) < ∞
and 𝛽(𝜀, 𝑘, 𝛼, 𝑛) > 0 such that if |𝑉 | ≥ 𝑁𝑑 and 𝑛 ≥ 𝑁 , then 𝐴𝑚 (𝑘 − 1, 𝛽) must hold. Notice that
𝐴𝑚 (𝑟, 𝛽) =⇒ 𝐴𝑚 (𝑘 − 1, 𝛽) for all 𝑟 ∈ {1, . . . , 𝑘 − 1}, since we can always extend a set of edges
witnessing 𝐴𝑚 (𝑟, 𝛽) to a set of edges witnessing 𝐴𝑚 (𝑘 − 1, 𝛽) by adding (𝑘 − 1) − 𝑟 many arbitrary
edges.

In the following claims, we will write 𝑐1, 𝑐2, · · · ∈ (0, 1) for small positive constants that are deter-
mined by the triple (𝜀, 𝑘, 𝛼). When a claim involves a new constant 𝑐𝑖 that has not previously ap-
peared, we are asserting the existence of a constant 𝑐𝑖 (𝜀, 𝑘, 𝛼) ∈ (0, 1) with 𝑐𝑖 ≤ min(𝑐1, . . . , 𝑐𝑖−1)
that would make the claim true. The constant 𝑐1 is introduced in Claim 1, the constant 𝑐2 in Claim
2, and so forth.

Claim 6.7.6. If |𝑉 | ≥ 𝑐−1
1 𝑑, then we can find vertices 𝑥 and 𝑦 with 𝑥𝑦 ∈ 𝐹 such that P𝑝𝑛 (E1) ≥ 𝑐1

where
E1 := meso𝛿,𝜀𝑜 ∩ act𝜀𝑜 [𝐹] ∩ {𝑦 ∈ giant𝜀}.
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Proof. Similarly to in the proof of Lemma 6.6.5, by applying the pigeonhole principle twice, there
are vertices 𝑥 and 𝑦 with 𝑥𝑦 ∈ 𝐹 such that

P𝑝𝑛
(
meso𝛿,𝜀𝑜 ∩ act𝜀𝑜 [𝐹] ∩ {𝑦 ∈ giant 𝜀

2𝑘
}
)
≥ 𝛼

2𝑘
.

By Theorem 6.1.1 and Theorem 6.2.1, there exists 𝑁 (𝜀, 𝛼, 𝑘) < ∞ such that if |𝑉 | ≥ 𝑁𝑑 then

P𝑝𝑛
(
∥𝐾1∥ ≥ 𝜀 and ∥𝐾2∥ <

𝜀

2𝑘

)
≥ 1 − 𝛼

4𝑘
.

The conclusion follows by a union bound, with 𝑐1 := 𝑁−1 ∧ 𝛼
4𝑘 . □

We will use 𝑥 and 𝑦 to denote the vertices whose existence is guaranteed by this claim throughout
the rest of the proof. Given a configuration 𝜔 and a vertex 𝑢, let 𝑆(𝑢) = 𝑆(𝑢, 𝜔) be the largest
𝜔-connected subset of neigh(𝑢), breaking any ties according to an arbitrary deterministic rule.

Claim 6.7.7. If |𝑉 | ≥ 𝑐−1
1 𝑑, then P𝑝𝑛 (E2) ≥ 𝑐2 where

E2 := E1 ∩
{
∥𝑆(𝑥)∥neigh(𝑥) ≥ 𝑐2

}
.

Proof. Consider any vertex 𝑢. Since 𝑝𝑛 ≥ (1−𝜀)𝑝 and 𝑝 is 𝜀-supercritical,E𝑝𝑛


giant𝜀




neigh(𝑢) ≥ 𝜀.

So by Markov’s inequality,
P𝑝𝑛

(

giant𝜀




neigh(𝑢) ≥
𝜀

2

)
≥ 𝜀

2
.

There can never be more than 1/𝜀 clusters that each contains at least 𝜀 |𝑉 | vertices. Therefore

E𝑝𝑛 ∥𝑆(𝑢)∥neigh(𝑢) ≥
𝜀3

4
.

So by Theorem 6.5.4, there exists a universal constant 𝐶 ∈ (1,∞) such that

P𝑝𝑛

(
∥𝑆(𝑢)∥neigh(𝑢) ≤

𝜀3

4
· 𝑐1

2𝐶

)
≤ 𝑐1

2
.

The conclusion follows by a union bound, with 𝑐2 := 𝜀3

4 ·
𝑐1
2𝐶 . □

Claim 6.7.8. If |𝑉 | ≥ 𝑐−1
1 𝑑 and 𝑛 ≥ 𝑐−1

3 , then either 𝐴𝑚 (1, 𝑐3) holds or P𝑝𝑛 (E3) ≥ 𝑐3 where

E3 := E2\Act𝜀𝑜 [𝑥𝑆(𝑥)] .
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Proof. Supose that |𝑉 | ≥ 𝑐−1
1 𝑑 and P𝑝𝑛 (E3) < 𝑐 := 𝑐2

2
4 . Our goal is to show that 𝐴𝑚 (1, 𝑐) holds if

we assume that 𝑛 ≥ 𝑁 for a sufficiently large choice of 𝑁 (𝜀, 𝛼, 𝑘). Indeed, this would establish the
claim with 𝑐3 := 𝑁−1 ∧ 𝑐. By a union bound,

P𝑝𝑛 (E2\E3) ≥ 𝑐2 −
𝑐2

2
4
≥ 𝑐2

2
.

On the event E2\E3, we always have

{𝑢 ∈ neigh(𝑥) : act𝜀𝑜 [𝑥𝑢]
}



neigh(𝑥) ≥ ∥𝑆(𝑥)∥neigh(𝑥) ≥ 𝑐2.

So there exists 𝑢 ∈ neigh(𝑥) such that

P𝑝𝑛
(
meso𝛿,𝜀𝑜 ∩ act𝜀𝑜 [𝑥𝑢]

)
≥ 𝑐2

2
· 𝑐2 = 2𝑐.

Let 𝑁 be the smallest positive integer such that 1
2𝑁−1 ≤ 𝑐, and assume that 𝑛 ≥ 𝑁 . By the third

condition enumerated in Lemma 6.7.2,

𝜃𝜀 (𝑝𝑚) − 𝜃𝜀 (𝑝𝑛) ≤
𝑚−1∑︁
𝑘=𝑛

1
2𝑘
≤ 1

2𝑁−1 ≤ 𝑐.

Therefore, by a union bound and the monotone coupling of P𝑝𝑛 and P𝑝𝑚 ,

P𝑝𝑚
(
meso𝛿,𝜀𝑜 ∩ act𝜀𝑜 [𝑥𝑢]

)
≥ P𝑝𝑛

(
meso𝛿,𝜀𝑜 ∩ act𝜀𝑜 [𝑥𝑢]

)
− (𝜃𝜀 (𝑝𝑚) − 𝜃𝜀 (𝑝𝑛)) ≥ 2𝑐 − 𝑐 = 𝑐,

and hence 𝐴𝑚 (1, 𝑐) holds. □

Claim 6.7.9. If |𝑉 | ≥ 𝑐−1
4 𝑑 and P𝑝𝑛 (E3) ≥ 𝑐3, then P𝑝𝑛 (E) ≥ 𝑐4 where

E := E1 ∩ {|𝐾𝑥 | ≥ 𝑐2𝑑} .

Proof. By Lemma 6.2.2, there exists 𝑁 (𝜀, 𝑘, 𝛼) with 𝑁 ≥ 𝑐−1
1 such that if |𝑉 | ≥ 𝑁 then 𝑝𝑛 ≥ 1

2𝑑 .
Assume that |𝑉 | ≥ 𝑁𝑑, which implies that |𝑉 | ≥ 𝑁 and |𝑉 | ≥ 𝑐−1

1 𝑑, and assume that P𝑝𝑛 (E3) ≥ 𝑐3.
Our goal is to find 𝑐(𝜀, 𝑘, 𝛼) ∈ (0, 𝑐3] such that P𝑝𝑛 (E) ≥ 𝑐. Indeed, then the claim holds with
𝑐4 := 𝑁−1 ∧ 𝑐. On the event E3, we know that |𝑆(𝑥) | ≥ 𝑐2𝑑. So we are trivially done, with 𝑐 := 𝑐3

2 ,
if P𝑝𝑛 (E3 ∩ {𝜔 ∩ 𝑥𝑆(𝑥) ≠ ∅}) ≥ 𝑐3

2 . So by a union bound, we may instead assume without loss of
generality that

P𝑝𝑛 (E3 ∩ {𝜔 ∩ 𝑥𝑆(𝑥) = ∅}) ≥
𝑐3

2
.
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Notice that if we start with a configuration in E3 ∩ {𝜔 ∩ 𝑥𝑆(𝑥) = ∅}, then open any edge in
𝑥𝑆(𝑥), we obtain a configuration in E. Therefore by Proposition 6.6.4 with 𝐹 := 𝑥 neigh(𝑥),
𝐴 := E3 ∩ {𝜔 ∩ 𝑥𝑆(𝑥) = ∅}, 𝜂 := 𝑐2, and 𝐹 [𝜔] := 𝑥𝑆(𝑥),

P𝑝𝑛 (E) ≥
𝑐2

2
1 − 𝑝𝑛

· 𝑝𝑛𝑑

𝑝𝑛𝑑 + 1
·
(𝑐3

2

)2
≥ 𝑐2

2 ·
1/2

1/2 + 1
·
(𝑐3

2

)2
=: 𝑐.

□

For each vertex 𝑧, pick a map 𝜙𝑧 ∈ Aut𝐺 with 𝜙𝑧 (𝑥) = 𝑧, which exists by transitivity, and define
E𝑧 := {𝜔 ◦ 𝜙𝑧 ∈ E}.

Claim 6.7.10. If |𝑉 | ≥ 𝑐−1
4 𝑑 and P𝑝𝑛 (E3) ≥ 𝑐3, then P𝑝𝑛 (F1) ≥ 𝑐5 where

F1 := {∥{𝑧 ∈ 𝑉 : E𝑧 holds}∥ ≥ 𝑐5}

Proof. Assume that |𝑉 | ≥ 𝑐−1
4 𝑑 and P𝑝𝑛 (E3) ≥ 𝑐3. By the previous claim and since every 𝜙𝑧 is an

automorphism,
E𝑝𝑛 ∥{𝑧 ∈ 𝑉 : E𝑧 holds}∥ = P𝑝𝑛 (E) ≥ 𝑐4.

Therefore the claim follows from Markov’s inequality, with 𝑐5 := 𝑐4
2 . □

For the remaining claims, we will (explicitly) assume that 𝑑 is sufficiently large in order to help
with certain rounding errors. When 𝑑 is not this large, we will anyway be able to easily conclude
directly.

Claim 6.7.11. If |𝑉 | ≥ 𝑐−1
4 𝑑 and 𝑑 ≥ 𝑐−1

6 , then for every𝜔 ∈ F1, there exists a collection of disjoint
sets of vertices (B𝑖 : 𝑖 ∈ 𝐼) such that all of the following hold, where B := ∪𝑖∈𝐼B𝑖:

1. 𝜔 ∈ ⋃
𝑧∈B E𝑧.

2. For each 𝑖 ∈ 𝐼, the set B𝑖 is 𝜔-connected.

3. {𝜙𝑧 (𝑦) : 𝑧 ∈ B} is 𝜔-connected (where 𝑦 is the vertex from Claim 6.7.6).

4. 𝑐6 ≤ |𝑉 |
|𝐼 |𝑑 ≤ 4𝑐2.

5. 𝑐6 ≤ |𝐵𝑖 |𝑑 ≤ 𝑐2 for each 𝑖 ∈ 𝐼.
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Proof. Define 𝑐6 := 𝑐2𝑐5𝜀
6 . Assume that |𝑉 | ≥ 𝑐−1

4 𝑑 and 𝑑 ≥ 𝑐−1
6 , and consider 𝜔 ∈ F1. For

every 𝑧 ∈ 𝑉 , if 𝜔 ∈ E𝑧, then 𝜙𝑧 (𝑦) ∈ giant𝜀 (𝜔). There cannot be more than 1/𝜀 clusters that
each contains at least 𝜀 |𝑉 | vertices. So there exists a set of vertices 𝑌 with ∥𝑌 ∥ ≥ 𝑐5𝜀 such that
𝜔 ∈ ⋃

𝑧∈𝑌 E𝑧 and {𝜙𝑧 (𝑦) : 𝑧 ∈ 𝑌 } is 𝜔-connected.

Consider a cluster 𝐾 of 𝜔 with |𝐾 | ≥ 𝑐2𝑑. We claim that 𝐾 can be partitioned into sets of
vertices 𝐴1 ⊔ · · · ⊔ 𝐴𝑘 such that 𝑐2𝑑

3 ≤ |𝐴𝑖 | ≤ 𝑐2𝑑 for every 𝑖. Indeed, it suffices to establish
this when 𝐾 is the set of integers {1, . . . , 𝑁} for some 𝑁 ≥ 𝑐2𝑑. Let 𝑞 := ⌊𝑐2𝑑/2⌋, and write
𝑁 = 𝑏𝑞 + 𝑟 where 𝑏 ∈ N and 𝑟 ∈ {1, . . . , 𝑞 − 1}. Now take the partition into the consecutive
intervals {1, . . . , 𝑞}, . . . , {(𝑏 − 2)𝑞 + 1, . . . , (𝑏 − 1)𝑞} and {(𝑏 − 1)𝑞 + 1, . . . , 𝑁}. Each interval
has size 𝑞 or 𝑞 + 𝑟 . Notice that thanks to our choice of 𝑐6, and since 𝑑 ≥ 𝑐−1

6 , we have 𝑐2𝑑 ≥ 6, and
hence ⌊𝑐2𝑑/2⌋ ≥ 𝑐2𝑑

3 . Therefore,

𝑐2𝑑

3
≤ 𝑞 ≤ 𝑞 + 𝑟 ≤ 2𝑞 ≤ 𝑐2𝑑.

For every 𝑧 ∈ 𝑌 , since 𝜔 ∈ E𝑧, we know that |𝐾𝑧 (𝜔) | ≥ 𝑐2𝑑. Thanks to the previous paragraph, by
splitting large clusters, there therefore exists an equivalence relation ∼ on 𝑉 that is a refinement of
𝜔←→ such that for every 𝑧 ∈ 𝑌 , the equivalence class of 𝑧 under ∼, say [𝑧], satisfies

𝑐2𝑑

3
≤ |[𝑧] | ≤ 𝑐2𝑑.

In particular, using the bound 𝑑 ≥ 𝑐−1
6 for the second inequality, and using the bound ∥𝑌 ∥ ≥ 𝑐5𝜀

for the third inequality,

min
𝑧∈𝑌
| [𝑧] | ≥ 𝑐2𝑑

3
≥ 2
𝑐5𝜀
≥ 2 |𝑉 |
|𝑌 | .

This allows us apply [EH21a, Lemma 4.12] where (𝑋,𝑌,∼) := (𝑉,𝑌,∼). This implies the existence
of a collection of disjoint subsets (𝐵𝑖 : 𝑖 ∈ 𝐼) of 𝑌 such that

|𝐼 | ≥ |𝑉 |
4 min𝑧∈𝑌 | [𝑧] |

≥ |𝑉 |
4𝑐2𝑑

,

and for every 𝑖 ∈ 𝐼, the set 𝐵𝑖 is entirely contained in some equivalence class of ∼ (which may
depend on 𝑖) and satisfies

|𝐵𝑖 | ≥
|𝑌 |

2 |𝑉 | min
𝑧∈𝑌
| [𝑧] | ≥ 𝑐5𝜀

2
· 𝑐2𝑑

3
= 𝑐6𝑑.

Since every 𝐵𝑖 is entirely contained in some equivalence class of ∼, we also know that |𝐵𝑖 | ≤ 𝑐2𝑑,
and therefore

𝑐6 ≤
|𝐵𝑖 |
𝑑
≤ 𝑐2.
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Since 𝐵𝑖 ∩ 𝐵 𝑗 = ∅ for all 𝑖 ≠ 𝑗 , and every 𝐵𝑖 satisfies |𝐵𝑖 | ≥ 𝑐6𝑑, we know that |𝐼 | · 𝑐6𝑑 ≤ |𝑉 |, and
therefore

𝑐6 ≤
|𝑉 |
|𝐼 | 𝑑 ≤ 4𝑐2.

□

Claim 6.7.12. There exists 𝛽(𝜀, 𝑘, 𝛼, 𝑛) > 0 such that if |𝑉 | ≥ 𝑐−1
4 𝑑, 𝑛 ≥ 𝑐−1

7 , 𝑑 ≥ 𝑐−1
6 , and

P𝑝𝑛 (F1) ≥ 𝑐5, then 𝐴𝑚 (𝑘 − 1, 𝛽) holds.

Proof. Assume that |𝑉 | ≥ 𝑐−1
4 𝑑, 𝑑 ≥ 𝑐−1

6 , and P𝑝𝑛 (F1) ≥ 𝑐5. Recall that P denotes the standard
monotone coupling of percolation measures. Our goal is to find 𝑁 (𝜀, 𝑘, 𝛼) < ∞ and 𝛽(𝜀, 𝑘, 𝛼, 𝑛) >
0 such that if 𝑛 ≥ 𝑁 then 𝐴𝑚 (𝑘 − 1, 𝛽) holds. Indeed, then the claim follows with 𝑐7 := 𝑁−1 ∧ 𝑐6.
On the event F1,

∥B∥ ≥ |𝐼 | ·min
𝑖∈𝐼
∥B𝑖∥ ≥ |𝐼 | ·

𝑐6𝑑

|𝑉 | ≥
𝑐6

4𝑐2
≥ 𝑐6

4
.

So there exists a fixed vertex 𝑧 such that the event E4 := F1 ∩ {𝑧 ∈ B} satisfies P𝑝𝑛 (E4) ≥ 𝑐5𝑐6
4 . Let

𝑁 (𝜀, 𝑘, 𝛼) be the smallest positive integer such that 1
2𝑁−1 ≤ 𝑐5𝑐6

8 , and assume that 𝑛 ≥ 𝑁 . Then as in
the proof of Claim 6.7.8, by the third condition enumerated in Lemma 6.7.2, 𝜃𝜀 (𝑝𝑚)−𝜃𝜀 (𝑝𝑛) ≤ 𝑐5𝑐6

8 .
So by a union bound, since 𝜔𝑝𝑛 ∈ E4 implies that 𝜙𝑧 (𝑜) ∉ giant𝜀

(
𝜔𝑝𝑛

)
,

P
({
𝜔𝑝𝑛 ∈ E4

}
∩

{
𝜙𝑧 (𝑜) ∉ giant𝜀

(
𝜔𝑝𝑚

)})
≥ 𝑐5𝑐6

8
. (6.7.2)

When𝜔𝑝𝑛 ∈ E4 and 𝜙𝑧 (𝑜) ∉ giant𝜀
(
𝜔𝑝𝑚

)
, then by monotonicity of the coupling,𝜔𝑝𝑚 ∈ meso𝛿,𝜀

𝜙𝑧 (𝑜) .
Therefore, using the fact that 𝜙𝑧 is an automorphism for the first equality,

P𝑝𝑚
(
meso𝛿,𝜀𝑜 ∩ act𝜀𝑜 [𝑥𝑦]

)
= P𝑝𝑚

(
meso𝛿,𝜀

𝜙𝑧 (𝑜) ∩ act𝜀
𝜙𝑧 (𝑜) [𝜙𝑧 (𝑥𝑦)]

)
≥ P

({
𝜔𝑝𝑛 ∈ E4

}
∩

{
𝜙𝑧 (𝑜) ∉ giant𝜀

(
𝜔𝑝𝑚

)}
∩

{
𝜔𝑝𝑚 ∈ act𝜀

𝜙𝑧 (𝑜) [𝜙𝑧 (𝑥𝑦)]
})
.

In particular, if

P
({
𝜔𝑝𝑛 ∈ E4

}
∩

{
𝜙𝑧 (𝑜) ∉ giant𝜀

(
𝜔𝑝𝑚

)}
∩

{
𝜔𝑝𝑚 ∈ act𝜀

𝜙𝑧 (𝑜) [𝜙𝑧 (𝑥𝑦)]
})
≥ 𝑐5𝑐6

16
, (6.7.3)

then we are done because 𝐴𝑚 (1, 𝛽) holds, and hence 𝐴𝑚 (𝑘 − 1, 𝛽) holds, with 𝛽 := 𝑐5𝑐6
16 . So we

may assume that eq. (6.7.3) is false, and therefore by eq. (6.7.2) and a union bound, that the event

A1 :=
{
𝜙𝑧 (𝑜) ∉ giant𝜀

(
𝜔𝑝𝑚

)}
∩

{
𝜔𝑝𝑚 ∉ act𝜀

𝜙𝑧 (𝑜) [𝜙𝑧 (𝑥𝑦)]
}
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satisfies
P

({
𝜔𝑝𝑛 ∈ E4

}
∩ A1

)
≥ 𝑐5𝑐6

16
.

On the event that 𝜔𝑝𝑛 ∈ E4, let B∗ denote the class B𝑖 from the collection (B𝑖 : 𝑖 ∈ 𝐼) (defined with
respect to 𝜔𝑝𝑛) that contains 𝑧, and define the event

A2 :=
{
𝜔𝑝𝑚 ∩ {𝜙𝑢 (𝑥𝑦) : 𝑢 ∈ B∗} ≠ ∅

}
.

Suppose we condition on 𝜔𝑝𝑛 and find that 𝜔𝑝𝑛 ∈ E4, then condition on the restriction of 𝜔𝑝𝑚 to
𝐸\ {𝜙𝑢 (𝑥𝑦) : 𝑢 ∈ 𝐵∗}. Then the events A1 and A2 are both increasing events of the unrevealed
edges, i.e. the restriction of 𝜔𝑝𝑚 to {𝜙𝑢 (𝑥𝑦) : 𝑢 ∈ 𝐵∗}. The conditional law of this restriction of
𝜔𝑝𝑚 is still a product measure, and in particular almost surely satisfies the FKG inequality. Since
there are at least |B∗ |2 ≥ 𝑐6𝑑

2 unrevealed edges, the conditional probability that A2 will occur is
almost surely at least

1 −
(
1 − 𝑝𝑚 − 𝑝𝑛

1 − 𝑝𝑛

) | B∗ |
2

≥ 1 −
(
1 − 𝜀

3𝑛+3𝑑

) 𝑐6𝑑
2 ≥ 1 − 𝑒−

𝑐6 𝜀
2·3𝑛+3 =: 𝛽1,

where the first inequality used the second condition enumerated in Lemma 6.7.2. Notice that ifA1

and A2 both occur after revealing the remaining edges, then (using that 𝜔𝑝𝑛 ∈ E4)

𝜔𝑝𝑚 ∈ meso𝛿,𝜀
𝜙𝑧 (𝑜) ∩ act𝜀

𝜙𝑧 (𝑜) [𝜙𝑧 (𝐹\{𝑥𝑦})] .

Therefore, using that 𝜙𝑧 is an automorphism in the first line and applying the conditional FKG
inequality to obtain the final inequality,

P𝑝𝑚
(
meso𝛿,𝜀𝑜 ∩ act𝜀𝑜 [𝐹\{𝑥𝑦}]

)
= P𝑝𝑚

(
meso𝛿,𝜀

𝜙𝑧 (𝑜) ∩ act𝜀
𝜙𝑧 (𝑜) [𝜙 (𝐹\{𝑥𝑦})]

)
≥ P

({
𝜔𝑝𝑛 ∈ E4

}
∩ A1 ∩ A2

)
≥ 𝛽1 · P

({
𝜔𝑝𝑛 ∈ E4

}
∩ A1

)
≥ 𝛽1𝑐5𝑐6

16
=: 𝛽,

and hence 𝐴𝑚 (𝑘 − 1, 𝛽) holds. □

We are now ready to complete the proof of the lemma. Recall that our goal is to find 𝑁 (𝜀, 𝑘, 𝛼) < ∞
and 𝛽(𝜀, 𝑘, 𝛼, 𝑛) > 0 such that if |𝑉 | ≥ 𝑁𝑑 and 𝑛 ≥ 𝑁 , then 𝐴𝑚 (𝑘 − 1, 𝛽) must hold. We will split
our argument into two cases according to whether or not 𝑑 ≥ 𝑐−1

6 . (The ultimate choices of 𝑁 and
𝛽 are obtained by taking the maximum/minimum of the constants in each case.)

258



First suppose that 𝑑 < 𝑐−1
6 . By Lemma 6.2.2, there exists 𝑁1(𝜀, 𝑘, 𝛼) < ∞ such that if |𝑉 | ≥ 𝑁1

then 𝑝𝑛 ≥ 1
2𝑑 ≥

𝑐6
2 . By Lemma 6.4.3, if 𝑝𝑛 ≥ 𝑐6

2 then there exists an edge 𝑢𝑣 ∈ 𝐹 such that

P𝑝𝑛
(
meso𝛿,𝜀𝑢 ∩ act𝜀𝑢 [𝑢𝑣]

)
≥ 𝑝

|𝐹 |
𝑛

2 |𝐹 |P𝑝𝑛
(
meso𝛿,𝜀𝑜 ∩ act𝜀𝑜 [𝐹]

)
≥

( 𝑐6
2
) 𝑘

2𝑘
· 𝛼 =: 𝑐8(𝜀, 𝑘, 𝛼).

As argued in the proof of Claim 6.7.8, by the third condition of Lemma 6.7.2, there exists
𝑁2(𝜀, 𝑘, 𝛼) < ∞ such that if 𝑛 ≥ 𝑁2 then 𝜃𝜀 (𝑝𝑚) − 𝜃𝜀 (𝑝𝑛) ≤ 𝑐8

2 . Set 𝑁 := 𝑁1 ∨ 𝑁2, and
assume that |𝑉 | ≥ 𝑁𝑑 (hence |𝑉 | ≥ 𝑁) and 𝑛 ≥ 𝑁 . Then by a union bound,

P𝑝𝑚
(
meso𝛿,𝜀𝑢 ∩ act𝜀𝑢 [𝑢𝑣]

)
≥ P𝑝𝑛

(
meso𝛿,𝜀𝑢 ∩ act𝜀𝑢 [𝑢𝑣]

)
− (𝜃𝜀 (𝑝𝑚) − 𝜃𝜀 (𝑝𝑛)) ≥ 𝑐8 −

𝑐8

2
=
𝑐8

2
,

and hence, by transitivity, 𝐴𝑚 (1, 𝛽) holds (and hence 𝐴𝑚 (𝑘 − 1, 𝛽) holds) with 𝛽 := 𝑐8
2 .

Now suppose that 𝑑 ≥ 𝑐−1
6 . Let 𝛽(𝜀, 𝑘, 𝛼, 𝑛) > 0 be the constant from Claim 6.7.12, which we may

assume satisfies 𝛽 ≤ 𝑐7. Set 𝑁 := 𝑐−1
7 , and assume that |𝑉 | ≥ 𝑁𝑑 and 𝑛 ≥ 𝑁 . By Claim 6.7.8, either

𝐴𝑚 (1, 𝑐3) holds or P𝑝𝑛 (E3) ≥ 𝑐3. If 𝐴𝑚 (1, 𝑐3) holds then 𝐴𝑚 (1, 𝛽) holds (and hence 𝐴𝑚 (𝑘 − 1, 𝛽)
holds), so we may instead assume that P𝑝𝑛 (E3) ≥ 𝑐3. So by Claim 6.7.10, P𝑝𝑛 (F1) ≥ 𝑐5. Therefore
by Claim 6.7.12, 𝐴𝑚 (𝑘 − 1, 𝛽) holds, as required.

6.8 The non-macromolecular case
The goal of this section is to prove the following proposition, which says that for supercritical
percolation on a high-degree non-macromolecular finite transitive graph, 𝑜 is unlikely to belong to
a mesoscopic cluster.

Proposition 6.8.1. Let H ⊆ F be an infinite set of (isomorphism classes of) finite, connected,
vertex transitive graphs with lim𝐺∈H deg𝐺 = ∞ that contains no infinite macromolecular subsets.
Then for every supercritical 𝑝 : H → [0, 1],

lim
𝑛→∞

lim sup
𝐺∈H

P𝑝 ( |𝐾𝑜 | ≥ 𝑛, 𝑜 ∉ giant) = 0. (6.8.1)

Equivalently, we must show that if the convergence claimed in eq. (6.8.1) fails, then we can construct
suitable macromolecular decompositions for infinitely many of the graphs in H . In Section 6.8,
we show that we can construct these macromolecular decompositions if the giant cluster does
not behave as it should in the neighbourhood of the origin. In Section 6.8, we will then show
that if the giant cluster does behave as it should in the neighbourhood of the origin, then we
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can deduce eq. (6.8.1). Together, these yield Proposition 6.8.1. In Section 6.11, we will show
that Proposition 6.8.1 implies our main theorems in the case of high-degree non-macromolecular
graphs.

Macromolecular graphs and the neighbourhood of the origin
The goal of this subsection is to prove the following proposition. Informally, this proposition
states that if we consider supercritical percolation on a high-degree finite transitive graph that is
not macromolecular, then the giant cluster includes a positive proportion of the neighbours of the
origin with high probability. (This is not the case for macromolecular graphs, since the “local
giants” we see near the origin may fail to be included in the global giant.)

Proposition 6.8.2. Let H ⊆ F be an infinite set of (isomorphism classes of) finite, connected,
vertex transitive graphs with lim𝐺∈H deg𝐺 = ∞ that contains no infinite macromolecular subsets.
Then

lim
𝛼↓0

lim inf
H

P𝑝
(
∥giant∥neigh(𝑜) ≥ 𝛼

)
= 1

for every supercritical 𝑝 : H → [0, 1].

When the graphs in H are dense, then the result follows easily from supercritical uniqueness
Theorem 6.1.1. So for most of the proof of this proposition, we may assume that the graphs are
sparse. The proof of this proposition will rely on the following definition. Let 𝐺 = (𝑉, 𝐸) ∈ F ,
let 𝑥 be a vertex of 𝐺, and let 𝛼, 𝛽 ∈ (0, 1). Given a configuration 𝜔 ∈ {0, 1}𝐸 , we say that 𝑥
is (𝛼, 𝛽)-happy if there is an 𝜔-connected subset 𝑋 ⊆ neigh(𝑥) with ∥𝑋 ∥neigh(𝑥) ≥ 𝛼 such that
𝑋 ⊆ giant𝛽, and say that 𝑥 is (𝛼, 𝛽)-sad if there is an 𝜔-connected subset 𝑋 ⊆ neigh(𝑥) with
∥𝑋 ∥neigh(𝑥) ≥ 𝛼 such that 𝑋 ⊈ giant𝛽. (A vertex can be both happy and sad, or neither happy nor
sad.) Given 𝑥, 𝑦 ∈ 𝑉 and parameters 𝛼, 𝛽, 𝛾, 𝑝 ∈ (0, 1), we say that 𝑥 and 𝑦 are (𝛼, 𝛽, 𝛾, 𝑝)-friends
if

P𝑝 ( [{𝑥 is (𝛼, 𝛽)-happy} ∩ {𝑦 is (𝛼, 𝛽)-sad}] ∪ [{𝑦 is (𝛼, 𝛽)-happy} ∩ {𝑥 is (𝛼, 𝛽)-sad}]) ≤ 𝛾.

That is, 𝑥 and 𝑦 are friends if it is unlikely that one is happy while the other is sad. We will eventually
see that the subgraph spanned by edges between friends can be identified, in an appropriate sense,
with the macromolecular structure of 𝐺. Our first lemma gives conditions under which a vertex
has at most 𝑂 (1) neighbours that it is not friends with.

Lemma 6.8.3. For all 𝛼, 𝛽, 𝛾, 𝛿 ∈ (0, 1), there exists 𝜀 > 0 and 𝑁 < ∞ such that the following
holds. Let𝐺 be a finite connected transitive graph with deg ≥ 𝜀−1 that is not 𝜀-molecular. Suppose
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that 𝑝 ∈ (0, 1) satisfies 𝜃𝛽 ((1 − 𝛿)𝑝) ≥ 𝛿 and 𝑝𝜃′
𝛽
(𝑝) ≤ 1

𝛿
. Then

|{𝑥 ∈ neigh(𝑜) : 𝑜 and 𝑥 are not (𝛼, 𝛽, 𝛾, 𝑝)-friends}| ≤ 𝑁.

Proof. Let 𝐺 ∈ F . Fix 𝛼, 𝛽, 𝛾, 𝛿, 𝑝 ∈ (0, 1) such that 𝜃𝛽 ((1 − 𝛿)𝑝) ≥ 𝛿 and 𝑝𝜃′
𝛽
(𝑝) ≤ 1/𝛿, and

suppose 𝜀 > 0 is such that deg ≥ 𝜀−1 and that 𝐺 is not 𝜀-molecular. By Lemma 6.2.2, there exists
𝜀0 = 𝜀0(𝛿, 𝛽) > 0 such that if 𝜀 ≤ 𝜀0 then 𝑝 ≥ 1

2 deg . We will write that two vertices are friends to
mean that they are (𝛼, 𝛽, 𝛾, 𝑝)-friends.

Fix an edge 𝑥𝑦 ∈ 𝐸 and assume that 𝑥 and 𝑦 are not friends. By a union bound, we may assume
without loss of generality (swapping 𝑥 and 𝑦 if necessary) that the event E that 𝑥 is (𝛼, 𝛽)-happy
but 𝑦 is (𝛼, 𝛽)-sad satisfies P𝑝 (E) ≥ 𝛾/2. On this event, let 𝑋 be an 𝜔-connected subset of
neigh(𝑥) with ∥𝑋 ∥neigh(𝑥) ≥ 𝛼 that is contained in giant𝛽, and let 𝑌 be an 𝜔-connected subset
of neigh(𝑦) with ∥𝑌 ∥neigh(𝑦) ≥ 𝛼 that is not contained in giant𝛽. By Theorem 6.1.1, there exists
𝜀1 = 𝜀1(𝛽, 𝛾, 𝛿) ∈ (0, 𝜀0) such that if 𝜀 ≤ 𝜀1 then P𝑝 (∥𝐾2∥ ≥ 𝛽/2) ≤ 𝛾/4, so that if 𝜀 ≤ 𝜀1 then
by a union bound

P𝑝 (E ∩ {∥𝐾2∥ < 𝛽/2}) ≥ 𝛾/4.

If E occurs and 𝑦 ∈ giant𝛽, then opening any of the edges between 𝑦 and𝑌 causes giant𝛽 to increase
in size by at least 𝛼 deg. Thus, using transitivity, Russo’s formula implies that

𝜃′𝛽 (𝑝) ≥
1
2
P𝑝

(
E ∩ {𝑦 ∈ giant𝛽}

)
(𝛼 deg)2,

and since 𝑝 ≥ 1
2 deg and 𝑝𝜃′

𝛽
(𝑝) ≤ 𝛿−1 it follows that

P𝑝 (E ∩ {𝑦 ∈ giant𝛽}) ≤
4

𝛼2𝛿 deg
≤ 4𝜀
𝛼2𝛿

.

Thus, if 𝜀 ≤ 𝜀2 = min{𝜀1, 𝛼
2𝛾𝛿/32} then P𝑝 (E ∩ {𝑦 ∈ giant𝛽}) ≤ 𝛾/8 and hence by a union

bound,
P𝑝

(
E ∩

{
𝑦 ∉ giant𝛽

}
∩ {∥𝐾2∥ < 𝛽/2}

)
≥ 𝛾/8.

By applying quantitative insertion-tolerance (Proposition 6.6.4) to open an edge in 𝑦𝑌 , we deduce
that there is a constant 𝑐1 = 𝑐1(𝛼, 𝛾) > 0 such that if 𝜀 ≤ 𝜀2 then the event

E1 := {𝑥 is (𝛼, 𝛽)-happy} ∩ {𝑦 ∉ giant𝛽} ∩ {


𝐾𝑦

neigh(𝑦) ≥ 𝛼}

satisfies P𝑝 (E1) ≥ 𝑐1. If the event E1 ∩ {𝑥 ↔ 𝑦} holds, then 𝑥 is not connected to 𝑋 , and opening
any edge between 𝑥 and 𝑋 causes the size of giant𝛽 to increase by at least 𝛼 deg. Thus, as above,
Russo’s formula together with transitivity imply that

𝑝𝜃′𝛽 (𝑝) ≥
𝛼2 deg

4
P𝑝 (E1 ∩ {𝑥 ↔ 𝑦}) , so that P𝑝 (E1 ∩ {𝑥 ↔ 𝑦}) ≤ 4𝜀

𝛼2𝛿
.
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Thus, if we define 𝜀3 = min{𝜀2, 𝑐1𝛼
2𝛿/8} then by a union bound

P𝑝 (E1 ∩ {𝑥 ↮ 𝑦}) ≥ 𝑐1

2

whenever 𝜀 ≤ 𝜀3. Applying quantitative insertion-tolerance to open an edge between 𝑥 and 𝑋 , we
deduce that there is a constant 𝑐2 = 𝑐2(𝛼, 𝛾) > 0 such that the event

E2 := {∥𝐾𝑥 ∥neigh(𝑥) ≥ 𝛼} ∩ {𝑥 ∈ giant𝛽} ∩ {


𝐾𝑦

neigh(𝑦) ≥ 𝛼} ∩ {𝑦 ∉ giant𝛽}

satisfies P𝑝 (E2) ≥ 𝑐2 whenever 𝜀 ≤ 𝜀3. In particular, the unordered pair 𝑥𝑦 = {𝑥, 𝑦} satisfies

𝑀 (𝑥𝑦) := E𝑝
[��𝐾𝑦��1act∥𝐾𝑦 ∥≥𝛽 [𝑥𝑦]

]
+ E𝑝

[
|𝐾𝑥 | 1act∥𝐾𝑥 ∥≥𝛽 [𝑥𝑦]

]
≥ 𝑐2𝛼 deg

whenever 𝜀 ≤ 𝜀3. If we define E𝑥 = {𝑦 ∈ neigh(𝑥) : 𝑥 and 𝑦 are not friends} then this estimate
holds for every 𝑥 ∈ 𝑉 and 𝑦 ∈ E𝑥 provided that 𝜀 ≤ 𝜀3. Using transitivity and summing over this
estimate, we obtain that if 𝜀 ≤ 𝜀3 then

𝜃′𝛽 (𝑝) ≥
1
|𝑉 |

∑︁
𝑥∈𝑉

∑︁
𝑦∈E𝑥

E𝑝
[
|𝐾𝑥 | 1act∥𝐾𝑥 ∥≥𝛽 [𝑥𝑦]

]
=

1
2 |𝑉 |

∑︁
𝑥∈𝑉

∑︁
𝑦∈E𝑥

𝑀 (𝑥𝑦) ≥ 𝑐2𝛼

2
deg |E𝑜 |.

Since 𝑝 ≥ 1/(2 deg) and 𝑝𝜃′
𝛽
(𝑝) ≤ 𝛿−1, it follows that if 𝜀 ≤ 𝜀3 then |E𝑜 | ≤ 4(𝑐2𝛼𝛿)−1. This

completes the proof. □

We now investigate the subgraph spanned by edges between friends. We say that 𝑥 and 𝑦 are
(𝛼, 𝛽, 𝛾, 𝑝)−linked if they are connected in the subgraph of 𝐺 spanned by those edges of 𝐺 whose
endpoints are (𝛼, 𝛽, 𝛾, 𝑝)-friends, and define pop(𝛼, 𝛽, 𝛾, 𝑝) by

pop(𝛼, 𝛽, 𝛾, 𝑝) :=
1

deg
|{𝑥 ∈ 𝑉 : 𝑜 and 𝑥 are (𝛼, 𝛽, 𝛾, 𝑝)-linked}| .

Note that this quantity can be larger than 1.

Lemma 6.8.4. For all 𝛼, 𝛽, 𝛾, 𝛿 ∈ (0, 1), there exists 𝜀 > 0 such that the following holds. Let 𝐺 be
a finite connected transitive graph with deg𝐺 ≥ 𝜀−1 that is not 𝜀-dense. Suppose that 𝑝 ∈ (0, 1)
satisfies 𝜃𝛽 ((1−𝛿)𝑝) ≥ 𝛿, 𝑝𝜃′𝛽 (𝑝) ≤ 𝛿−1, and pop(𝛼, 𝛽, 𝛾, 𝑝) ≤ 𝛿−1. Then𝐺 is 𝜀-macromolecular.

Proof. Let 𝐺 and 𝑝 satisfy the given hypotheses, for some constant 𝜀 > 0 to be determined. Write
pop for pop(𝛼, 𝛽, 𝛾, 𝑝). Say that vertices 𝑥 and 𝑦 are linked to mean that they are (𝛼, 𝛽, 𝛾, 𝛿)-linked,
and note that this induces an Aut𝐺-invariant equivalence relation on 𝑉 (𝐺). First suppose that this
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equivalence relation is trivial, i.e. every vertex is linked to every other vertex. By definition of pop,
every equivalence class has size pop · deg𝐺. Therefore,

|𝐸 (𝐺) |
|𝐺 |2

=
deg𝐺
2 |𝐺 | =

deg𝐺
2 pop · deg𝐺

≥ 𝛿
2
,

i.e. 𝐺 is 𝛿/2-dense. If 𝜀 < 𝜀0 := 𝛿/2, then this is impossible (since 𝐺 is not 𝜀-dense), and hence
the equivalence relation of being linked must be non-trivial. Let (𝐴, 𝐵) be the corresponding
macromolecular decomposition.

By Lemma 6.8.3, there exists 𝜀1 = 𝜀1(𝛼, 𝛽, 𝛾, 𝛿) ∈ (0, 𝜀0) and 𝑁 (𝛼, 𝛽, 𝛾, 𝛿) < ∞ such that if
𝜀 < 𝜀1 then (since 𝐺 being not 𝜀-dense implies that 𝐺 is not 𝜀-molecular)

|{𝑥 ∈ neigh(𝑜) : 𝑜 and 𝑥 are not (𝛼, 𝛽, 𝛾, 𝑝)-friends}| ≤ 𝑁.

In particular, by transitivity, since every pair of friends is trivially linked,

|𝐸 (𝐵) |
|𝐺 | ≤

𝑁

2
.

Similarly, deg 𝐴 ≥ deg𝐺 − 𝑁 . Hence if 𝜀 ≤ 1
2𝑁 , which implies that deg𝐺 ≥ 2𝑁 , then

|𝐸 (𝐴) |
|𝐴|2

=
deg 𝐴

2 pop · deg𝐺
≥ deg𝐺 − 𝑁
(2/𝛿) deg𝐺

=
𝛿

2

(
1 − 𝑁

deg𝐺

)
≥ 𝛿

4
.

Therefore, if 𝜀 < 𝜀2 := min
(
𝜀1,

2
𝑁
, 1

2𝑁 ,
𝛿
4

)
, then (𝐴, 𝐵) is an 𝜀-macromolecular decomposition. □

Lemma 6.8.5. Let 𝛼, 𝛽, 𝛾, 𝑝 ∈ (0, 1) and let 𝑚 ∈ N. Let 𝐺 be a finite connected graph and
suppose that 𝑣1, . . . , 𝑣𝑚 is a sequence of vertices such that 𝑣𝑖 and 𝑣𝑖+1 are (𝛼, 𝛽, 𝛾, 𝑝)-friends for
all 𝑖 ∈ {1, . . . , 𝑚 − 1}. Then

P𝑝

(
{𝑣1 is (𝛼, 𝛽)-sad} ∩

𝑚⋃
𝑖=2
{𝑣𝑖 is (𝛼, 𝛽)-happy}

)
≤ 𝑚𝛾.

Proof. We have by a union bound that

P𝑝
(
{𝑣1 is (𝛼, 𝛽)-sad}∩

𝑚⋃
𝑖=2
{𝑣𝑖 is (𝛼, 𝛽)-happy}

)
≤
𝑚−1∑︁
𝑖=1

P𝑝 (𝑣𝑖 is (𝛼, 𝛽)-sad, 𝑣𝑖+1 is (𝛼, 𝛽)-happy) ≤ 𝑚𝛾

as claimed, where the second inequality follows from the definition of (𝛼, 𝛽, 𝛾, 𝑝)-friends. □

Lemma 6.8.6. For all 𝛽, 𝛿, 𝜂 ∈ (0, 1), there exists 𝛼 > 0 such that for every finite connected
transitive graph 𝐺, for every parameter 𝑝 ∈ (0, 1), if 𝜃𝛽 (𝑝) ≥ 𝛿 then

P𝑝 (𝑜 is neither (𝛼, 𝛽)-happy nor (𝛼, 𝛽)-sad) ≤ 𝜂.
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Proof. Suppose that 𝜃𝛽 (𝑝) ≥ 𝛿. Then by transitivity, E𝑝


giant𝛽




neigh(𝑜) ≥ 𝛿, and hence by

Markov’s inequality, P𝑝
(

giant𝛽




neigh(𝑜) ≥

𝛿
2

)
≥ 𝛿

2 . Now there can never be more than (1/𝛽)-
many clusters each having density at least 𝛽. Thus,

𝜆 := max
𝑢∈𝑉 (𝐺)

∥𝐾𝑢∥neigh(𝑜)

satisfies P𝑝
(
𝜆 ≥ 𝛽𝛿

2

)
≥ 𝛿

2 , and in particular, E𝑝 [𝜆] ≥ 𝛽𝛿2

4 . So by the universal tightness theorem
(Theorem 6.5.4), there is a universal constant 𝐶 < ∞ such that for all 𝛼 > 0,

P𝑝 (𝜆 ≤ 𝛼) ≤ 𝐶 ·
4𝛼
𝛽𝛿2 .

Now the conclusion follows by choosing 𝛼 := 𝜂𝛽𝛿2

4𝐶 , noting that 𝑜 is neither (𝛼, 𝛽)-happy nor
(𝛼, 𝛽)-sad if and only if 𝜆 < 𝛼. □

We next prove the following deterministic graph theory lemma, via a probabilistic argument.

Lemma 6.8.7. For all 𝑘 ∈ N there exist 𝜀 > 0 and𝑚 ∈ N such that if𝐺 is a finite, connected, regular
graph that is not 𝜀-dense and has at least one edge, then 𝐺 contains a (possibly self-intersecting)
path of vertices 𝑣1, . . . , 𝑣𝑚 satisfying ����� 𝑚⋃

𝑖=1
neigh(𝑣𝑖)

����� ≥ 𝑘 deg .

Proof. We claim that the result holds with 𝑚 := 6𝑘2 and 𝜀 := (2𝑚)−1. Let 𝐺 = (𝑉, 𝐸) be a finite
connected regular graph that is not 𝜀-dense and has at least one edge. We will prove the claim by
case analysis according to whether diam𝐺 ≥ 3𝑘 .

First suppose that diam𝐺 ≥ 3𝑘 . Let 𝑣1, . . . , 𝑣3𝑘 be the first 3𝑘 vertices in a geodesic path between
two points of maximal distance in 𝐺. Extend the path 𝑣1, . . . , 𝑣3𝑘 in an arbitrary way to a path
𝑣1, . . . , 𝑣𝑚, which has the correct length. (For example, repeatedly cross the edge 𝑣3𝑘−1𝑣3𝑘 .) Since
𝑣1, . . . , 𝑣3𝑘 is a geodesic, we must have that neigh(𝑣𝑖) ∩ neigh(𝑣 𝑗 ) = ∅ for all 1 ≤ 𝑖, 𝑗 ≤ 3𝑘 with
|𝑖 − 𝑗 | ≥ 3, so ����� 𝑚⋃

𝑖=1
neigh(𝑣𝑖)

����� ≥ 𝑘∑︁
𝑗=1

��neigh(𝑣3 𝑗 )
�� = 𝑘 deg

as required.
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Now suppose that diam𝐺 ≤ 3𝑘 . Let P be the law of an independent sequence 𝑢1, . . . , 𝑢2𝑘 of
vertices in 𝑉 each chosen uniformly at random, so that

P (𝑣 ∈ neigh(𝑢𝑖)) =
1
|𝑉 |

∑︁
𝑢∈𝑉

1𝑣∈neigh(𝑢) =
deg
|𝑉 | =

2 |𝐸 |
|𝑉 |2

≤ 2𝜀 =
1
𝑚

for each 𝑣 ∈ 𝑉 and 1 ≤ 𝑖 ≤ 2𝑘 . It follows by independence and linearity of expectation that

E
��neigh(𝑢𝑖) ∩ neigh(𝑢 𝑗 )

�� = ∑︁
𝑣∈𝑉

P (𝑣 ∈ neigh(𝑢𝑖)) P
(
𝑣 ∈ neigh(𝑢 𝑗 )

)
= |𝑉 |

(
deg
|𝑉 |

)2
≤ deg

𝑚

for every 𝑖 ≠ 𝑗 and hence by inclusion-exclusion that

E

����� 2𝑘⋃
𝑖=1

neigh(𝑢𝑖)
����� ≥ 2𝑘 deg−

∑︁
𝑖≠ 𝑗

E
��neigh(𝑢𝑖) ∩ neigh(𝑢 𝑗 )

�� ≥ 2𝑘 deg−(2𝑘)2 deg
𝑚
≥ 𝑘 deg .

In particular, there is a deterministic sequence of vertices 𝑢̃1, . . . , 𝑢̃2𝑘 such that |⋃2𝑘
𝑖=1 neigh(𝑢̃𝑖) | ≥

𝑘 deg. By picking a geodesic (which necessarily has length ≤ 3𝑘) from 𝑢̃𝑖 to 𝑢̃𝑖+1 for each 𝑖,
then extending arbitrarily to obtain the correct length, we can find a path 𝑣1, . . . , 𝑣𝑚 that contains
𝑢̃1, . . . , 𝑢̃2𝑘 as a subsequence and hence satisfies����� 𝑚⋃

𝑖=1
neigh(𝑣𝑖)

����� ≥
����� 2𝑘⋃
𝑖=1

neigh(𝑢̃𝑖)
����� ≥ 𝑘 deg

as desired. □

We are now ready to complete the proof of Proposition 6.8.2. In addition to the lemmas from the
present subsection, our proof will also apply Proposition 6.7.1 from the previous section, stating
that sets of larger than degree order have large intersection with the giant with high probability.

Proof of Proposition 6.8.2. Let 𝑞 : H → [0, 1] be a supercritical assignment of parameters. Our
goal is to prove that

lim
𝛼↓0

lim inf
H

P𝑞
(
∥giant∥neigh(𝑜) ≥ 𝛼

)
= 1. (6.8.2)

We may assume without loss of generality that 𝑞(𝐺) < 1 for all 𝐺 ∈ H . In particular, we may
assume that there exists a constant 𝛿0 > 0 such that for every 𝐺 ∈ H , 𝑞(𝐺) is 𝛿0-supercritical for
𝐺. By Lemma 6.3.4 applied to the interval 𝐼 = 𝐼 (𝐺) := [(1 − 𝛿0/2)𝑞, (1 + 𝛿0/2) (1 − 𝛿0/2)𝑞],

L
({
𝑝 ∈ 𝐼 : 𝑝𝜃′

𝛿0/8(𝑝) ≤ 1/𝜀
})
≥

(
1 − 2𝜀

𝛿0/2

)
L(𝐼) for all 𝐺 ∈ H and all 𝜀 > 0,
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where L denotes the Lebesgue measure. In particular, for all 𝐺 ∈ H there exists 𝑝 = 𝑝(𝐺) ∈ 𝐼
such that 𝑝𝜃′

𝛿0/8(𝑝) ≤ 1/𝛿 where 𝛿 := 𝛿0/8. Note that 𝑝 is always 𝛿-supercritical because 𝑞 is
𝛿0-supercritical and 𝑝 ≥ (1 − 𝛿0/2)𝑞. By Theorem 6.1.1 and Theorem 6.2.1,

lim
H

P𝑞
(
giant = giant𝛿

)
= 1.

So by monotonicity, since 𝑝(𝐺) ≤ 𝑞(𝐺) for all 𝐺 ∈ H , it suffices to establish that

lim
𝛼↓0

lim inf
H

P𝑝
(

giant𝛿




neigh(𝑜) ≥ 𝛼

)
= 1.

To this end, fix an arbitrary constant 𝜂 > 0, and note that the event that


giant𝛿




neigh(𝑜) ≥ 𝛼 is the

same as the event that 𝑜 is (𝛼, 𝛿)-happy, for all 𝛼 > 0. We will find a constant 𝛼 > 0 such that for
all but finitely many 𝐺 ∈ H ,

P𝑝 (𝑜 is (𝛼, 𝛿)-happy) ≥ 1 − 𝜂. (6.8.3)

By Proposition 6.7.1, there exists 𝜀0 > 0 such that for all𝐺 ∈ H , for every set of vertices 𝐴 ⊆ 𝑉 (𝐺)
with |𝐴| ≥ 𝜀−1

0 deg𝐺,
P𝑝

(

giant𝛿



𝐴
≥ 𝜀0

)
≥ 1 − 𝜂

3
.

By Lemma 6.8.7, there exists 𝜀1 > 0 and 𝑚 ∈ N such that every finite, connected, regular graph 𝐺
that is not 𝜀1-dense and has at least one edge must contain a path of vertices 𝑣1, . . . , 𝑣𝑚 satisfying����� 𝑚⋃

𝑖=1
neigh(𝑣𝑖)

����� ≥ 2
𝜀0

deg𝐺.

By Lemma 6.8.6, there exists 𝛼0 > 0 such that for all 𝐺 ∈ H ,

P𝑝 (𝑜 is (𝛼0, 𝛿)-happy or (𝛼0, 𝛿)-sad) ≥ 1 − 𝜂
3
, (6.8.4)

and by monotonicity, this inequality also holds with any 𝛼 ∈ (0, 𝛼0) in place of 𝛼0. Define
𝛼 := min(𝛼0, 1/𝑚) and 𝛾 := 𝜂

3𝑚 . Now by Lemma 6.8.4, there exists 𝜀2 > 0 such that for all but
finitely many 𝐺 ∈ H (namely, every 𝐺 ∈ H with deg𝐺 ≥ 1/𝜀2 that is not 𝜀2-macromolecular),
(Case A)𝐺 is 𝜀2-dense or (Case B)𝐺 satisfies pop(𝛼, 𝛿, 𝛾, 𝑝) ≥ 1/𝜀1. We will establish eq. (6.8.3)
in each of these two cases in turn.

Case A Note that when 𝑜 is (𝛼, 𝛿)-sad, there exists a cluster 𝐾 ⊈ giant𝛿 satisfying

∥𝐾 ∥ ≥ 𝛼 deg𝐺
|𝐺 | =

2𝛼 |𝐸 (𝐺) |
|𝐺 |2

.
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In particular, if 𝐺 is 𝜀2-dense and 𝑜 is (𝛼, 𝛿)-sad then giant𝛿 ≠ giant2𝛼𝜀2
. By Theorem 6.1.1 and

Theorem 6.2.1, for all but finitely many 𝐺 ∈ H ,

P𝑝
(
giant2𝛼𝜀2

≠ giant𝛿
)
≤ 2𝜂

3
.

So for all but finitely many 𝐺 ∈ H , if 𝐺 is 𝜀2-dense then

P𝑝 (𝑜 is (𝛼, 𝛿)-happy) ≥ P𝑝 (𝑜 is (𝛼, 𝛿)-happy or (𝛼, 𝛿)-sad) − P𝑝 (𝑜 is (𝛼, 𝛿)-sad)

≥ 1 − 𝜂
3
− 2𝜂

3
= 1 − 𝜂.

Case B By Lemma 6.8.3, there exists 𝑁 < ∞ such that for all but finitely many 𝐺 ∈ H (namely,
for a suitable constant 𝜀3 > 0, every 𝐺 ∈ H with deg𝐺 ≥ 1/𝜀3 that is not 𝜀3-macromolecular),

|{𝑥 ∈ neigh(𝑜) : 𝑜 and 𝑥 are not (𝛼, 𝛿, 𝛾, 𝑝)-friends}| ≤ 𝑁.

In particular, for all but finitely many 𝐺 ∈ H (those graphs that additionally satisfy deg𝐺 ≥ 2𝑁),

1
deg𝐺

|{𝑥 ∈ neigh(𝑜) : 𝑜 and 𝑥 are (𝛼, 𝛿, 𝛾, 𝑝)-friends}| ≥ 1
2
. (6.8.5)

Now suppose that some given 𝐺 ∈ H satisfies pop(𝛼, 𝛿, 𝛾, 𝑝) ≥ 1/𝜀1, eq. (6.8.5), and (a trivially
harmless hypothesis) deg𝐺 > 0. Consider the spanning subgraph of 𝐺 containing only the edges
𝑢𝑣 ∈ 𝐸 (𝐺) such that 𝑢 and 𝑣 are (𝛼, 𝛿, 𝛾, 𝑝)-friends, and let 𝐴 denote the connected component of
this graph containing 𝑜. Note that

|𝐸 (𝐴) |
|𝐴|2

=
deg 𝐴
2 |𝐴| ≤

deg𝐺
2 |𝐴| =

1
2 pop(𝛼, 𝛿, 𝛾, 𝑝) ≤

𝜀1

2
< 𝜀1,

and the graph 𝐴 contains at least one edge because deg 𝐴 ≥ 1
2 deg𝐺 > 0. So by definition of 𝜀1,

the graph 𝐴 must contain a path of vertices 𝑣1, . . . , 𝑣𝑚 satisfying

|𝑇 | ≥ 2
𝜀0

deg 𝐴 ≥ 1
𝜀0

deg𝐺 where 𝑇 :=
𝑚⋃
𝑖=1

neigh(𝑣𝑖),

and without loss of generality, since 𝐴 is transitive, we may choose this path such that 𝑣1 = 𝑜.
Therefore, by definition of 𝜀0,

P𝑝
(

giant𝛿




𝑇
≥ 𝜀0

)
≥ 1 − 𝜂/3.
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We always have
𝑚∑︁
𝑖=1



giant𝛿




neigh(𝑣𝑖) =
1

deg𝐺

𝑚∑︁
𝑖=1

��giant𝛿 ∩ neigh(𝑣𝑖)
��

≥ 1
deg𝐺

��giant𝛿 ∩𝑇
��

=
|𝑇 |

deg𝐺


giant𝛿




𝑇
≥ 1
𝜀0



giant𝛿



𝑇
.

So if


giant𝛿




𝑇
≥ 𝜀0, then some 𝑣𝑖 with 𝑖 ∈ {1, . . . , 𝑚} must be (1/𝑚, 𝛿)-happy and hence

(𝛼, 𝛿)-happy. In particular, we deduce that

P𝑝

(
𝑚⋃
𝑖=1
{𝑣𝑖 is (𝛼, 𝛿)-happy}

)
≥ 1 − 𝜂

3
.

Now by combining this estimate with eq. (6.8.4) and the estimate appearing in Lemma 6.8.5 via a
union bound,

P𝑝 (𝑜 is (𝛼, 𝛽)-happy) ≥ 1 − P𝑝 (𝑜 is neither (𝛼, 𝛿)-happy nor (𝛼, 𝛿)-sad)

− P𝑝

(
𝑚⋂
𝑖=1
{𝑣𝑖 is not (𝛼, 𝛿)-happy}

)
− P𝑝

(
{𝑣1 is (𝛼, 𝛿)-sad} ∩

𝑚⋃
𝑖=2
{𝑣𝑖 is (𝛼, 𝛿)-happy}

)
≥ 1 − 𝜂/3 − 𝜂/3 − 𝑚𝛾 = 1 − 𝜂. □

Negligibility of mesoscopic clusters
In this subsection, we complete the proof of Proposition 6.8.1. Given our work in the previous
subsection, it suffices to show that for supercritical percolation on a high-degree finite transitive
graph, if the giant cluster includes a positive proportion of the neighbourhood of the origin with
high probability, then eq. (6.8.1) holds.

Proof of Proposition 6.8.1. Let H ⊆ F be an infinite set with lim𝐺∈H deg𝐺 = ∞ that does not
contain any infinite macromolecular subsets. Let 𝑝 : H → [0, 1] be supercritical. We may assume
without loss of generality that 𝑝(𝐺) < 1 for all 𝐺 ∈ H . In particular, we may assume that there
exists a constant 𝛿 > 0 such that for every 𝐺 ∈ H , the parameter 𝑝(𝐺) is 𝛿-supercritical for 𝐺. Fix
an arbitrary constant 𝜂 > 0. Our goal is to find a constant 𝑘 < ∞ such that for all but finitely many
graphs 𝐺 ∈ H ,

P𝑝 ( |𝐾𝑜 | ≥ 𝑘, 𝐾𝑜 ≠ giant) ≤ 𝜂. (6.8.6)
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By Theorems 6.1.1 and 6.2.1, for all but finitely many 𝐺 ∈ H ,

P𝑝
(
giant𝛿 ≠ giant

)
≤ 𝜂/2.

So it suffices to find 𝑘 < ∞ such that for all but finitely many 𝐺 ∈ H ,

P𝑝 (𝑜 ∈ M) ≤ 𝜂/2 whereM := {𝑢 ∈ 𝑉 (𝐺) : 𝑘 ≤ |𝐾𝑢 | < 𝛿 |𝐺 |}. (6.8.7)

Define 𝑞(𝐺) := (1 − 𝛿/2)𝑝(𝐺) for all 𝐺 ∈ H . By Proposition 6.8.2, there exists a constant 𝛼 > 0
such that for all but finitely many 𝐺 ∈ H ,

P𝑞
(
∥giant∥neigh(o) ≥ 𝛼

)
≥ 1 − 𝜂2

200
. (6.8.8)

By Theorems 6.1.1 and 6.2.1 again, for all but finitely many 𝐺 ∈ H ,

P𝑞
(
giant𝛿 ≠ giant

)
≤ 𝜂2

300
. (6.8.9)

By Lemma 6.2.2, for all but finitely many 𝐺 ∈ H ,

𝑝(𝐺) ≥ 1
2 deg𝐺

. (6.8.10)

We will show that if a graph inH satisfies eqs. (6.8.8) to (6.8.10) then it must also satisfy eq. (6.8.7)
with 𝑘 := 1000𝛼−1𝜂−2𝛿−1 log(300𝜂−2𝛿−1). Indeed, suppose for contradiction that some particular
graph 𝐺 = (𝑉, 𝐸) ∈ F satisfies eqs. (6.8.8) to (6.8.10) but not eq. (6.8.7). By the negation of
eq. (6.8.7) and Markov’s inequality, (and by transitivity and linearity of expectation)

P𝑝
(
∥M∥ ≥ 𝜂

4

)
≥ 𝜂

4
.

By eqs. (6.8.8) and (6.8.9), the set S := {𝑢 ∈ 𝑉 :


giant𝛿




neigh(𝑢) ≥ 𝛼} satisfies

P𝑞 (𝑜 ∈ S) ≥ 1 − 𝜂2

200
− 𝜂2

300
≥ 1 − 𝜂

2

64
.

So by Markov’s inequality,
P𝑞

(
∥S∥ ≥ 1 − 𝜂

8

)
≥ 1 − 𝜂

8
.

Recall that (𝜔𝑡 : 𝑡 ∈ [0, 1]) ∼ P denotes the standard monotone coupling of percolation measures
on 𝐺. By a union bound,

P
(

M(𝜔𝑝)

 ≥ 𝜂4 and



S(𝜔𝑞)

 ≥ 1 − 𝜂
8

)
≥ 𝜂

4
− 𝜂

8
=
𝜂

8
. (6.8.11)
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Note that on the event being estimated in eq. (6.8.11),

M(𝜔𝑝) ∩ S(𝜔𝑞)

 ≥ 

S(𝜔𝑞)

 + 

M(𝜔𝑝)

 − 1 ≥ 𝜂
8
.

Moreover, we can rewrite this intersection density as

M(𝜔𝑝) ∩ S(𝜔𝑞)

 = 1
|𝑉 |

∑︁
𝑢∈M(𝜔𝑝)

1S(𝜔𝑞) (𝑢)

=
1
|𝑉 |

∑︁
𝑢∈M(𝜔𝑝)

1S(𝜔𝑞) (𝑢)
∑︁

𝑣∈𝐾𝑢 (𝜔𝑝)

1��𝐾𝑢 (𝜔𝑝)��
=

1
|𝑉 |

∑︁
𝑣∈M(𝜔𝑝)

1��𝐾𝑣 (𝜔𝑝)�� ∑︁
𝑢∈𝐾𝑣 (𝜔𝑝)

1S(𝜔𝑞) (𝑢)

=
1
|𝑉 |

∑︁
𝑣∈M(𝜔𝑝)



S(𝜔𝑞)

𝐾𝑣 (𝜔𝑝) .
Therefore, by transitivity and linearity of expectation,

E
[

S(𝜔𝑞)

𝐾𝑜 (𝜔𝑝) 1M(𝜔𝑝) (𝑜)] = E


1
|𝑉 |

∑︁
𝑣∈M(𝜔𝑝)



S(𝜔𝑞)

𝐾𝑣 (𝜔𝑝) ≥
𝜂

8
· 𝜂

8
=
𝜂2

64
,

and thus by Markov’s inequality,

P
({
𝑜 ∈ M(𝜔𝑝)

}
∩

{

S(𝜔𝑞)

𝐾𝑜 (𝜔𝑝) ≥ 𝜂2

128

})
≥ 𝜂2

128
.

So by eq. (6.8.9) and a union bound,

P
({
𝑜 ∈ M(𝜔𝑝)

}
∩

{

S(𝜔𝑞)

𝐾𝑜 (𝜔𝑝) ≥ 𝜂2

128

}
∩

{
giant(𝜔𝑞) = giant𝛿 (𝜔𝑞)

})
≥ 𝜂2

128
− 𝜂2

300
≥ 𝜂2

300
.

(6.8.12)
On the event being estimated in eq. (6.8.12), every vertex 𝑣 in the unique 𝜔𝑞-cluster of density ≥ 𝛿
satisfies ��𝜕𝐾𝑜 (𝜔𝑝) ∩ 𝜕𝐾𝑣 (𝜔𝑞)�� ≥ ��S(𝜔𝑞) ∩ 𝐾𝑜 (𝜔𝑝)�� · 𝛼 deg𝐺

=
��𝐾𝑜 (𝜔𝑝)�� · 

S(𝜔𝑞)

𝐾𝑜 (𝜔𝑝) · 𝛼 deg𝐺

≥ 𝑘 · 𝜂
2

128
· 𝛼 deg𝐺.

Therefore, there must exist a deterministic vertex 𝑣 satisfying

(∗) := P
(��𝜕𝐾𝑜 (𝜔𝑝) ∩ 𝜕𝐾𝑣 (𝜔𝑞)�� ≥ 𝛼𝜂2𝑘

128
deg𝐺 and 𝑜 ̸

𝜔𝑝←→ 𝑣

)
≥ 𝜂

2𝛿

300
.
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On the other hand, by Lemma 6.5.3,

(∗) ≤ exp
(
−(𝑝 − 𝑞)𝛼𝜂

2𝑘

128
deg𝐺

)
≤ exp

(
−𝛿

2
· 1

2 deg𝐺
· 𝛼𝜂

2𝑘

128
deg𝐺

)
= exp

(
−𝛼𝜂

2𝛿𝑘

512

)
.

We now have a contradiction because our choice of 𝑘 was large enough to ensure that

exp
(
−𝛼𝜂

2𝛿𝑘

512

)
<
𝜂2𝛿

300
.

□

6.9 The macromolecular case
In this section, we describe the asymptotic behaviour of the density of the giant cluster for super-
critical percolation on high-degree finite transitive graphs that are macromolecular. Recall that
H ⊆ F is said to be macromolecular if lim𝐻 deg𝐺 = ∞ and there exists a constant 𝜀 > 0 such
that all but finitely many 𝐺 ∈ H admit an 𝜀-macromolecular decomposition (𝐴(𝐺), 𝐵(𝐺)). We
will often abbreviate (𝐴, 𝐵) := ((𝐴(𝐺), 𝐵(𝐺)) : 𝐺 ∈ H), noting that at most finitely many of
these pairs (𝐴(𝐺), 𝐵(𝐺)) might be undefined. Let us say that H is irreducibly macromolecular
if additionally, these 𝜀-macromolecular decompositions (𝐴(𝐺), 𝐵(𝐺)) can be chosen in such a
way that there does not exist an infinite subset H ′ ⊆ H such that {𝐴(𝐺) : 𝐺 ∈ H} is macro-
molecular. In this case, let us also call (𝐴, 𝐵) an irreducibly macromolecular decompositon. In
this section, we will focus on irreducibly macromolecular families. We will later show that every
macromolecular family contains an infinite family that is irreducibly macromolecular (and in fact,
the corresponding macromolecular decompositions are essentially uniquely determined). As such,
general macromolecular families will inherit the results of this section.

Our main goal is to prove the following proposition, which establishes that this asymptotic density
is determined by the local geometry of the quotient graphs 𝐵.

Proposition 6.9.1. Let 𝐻 ⊆ F be an infinite set of (isomorphism classes of) finite, connected,
vertex transitive graphs with lim𝐺∈H deg𝐺 = ∞. Suppose that 𝑝 : H → [0, 1] is a supercritical
assignment satisfying supH 𝑝 deg𝐺 < ∞. For each 𝐺 ∈ H , define

𝜓(𝐺) := mf (𝑝(𝐺) deg𝐺) and 𝑝∗(𝐺) := 𝑝(𝐺)𝜓(𝐺)2.

IfH is sparse and admits an irreducible macromolecular decomposition (𝐴, 𝐵), then

lim
𝑛→∞

lim sup
H

���𝜃 (𝑝, 𝐺) − 𝜓 · P𝐵𝑝∗ ( |𝐾𝑜 | ≥ 𝑛)��� = 0. (6.9.1)
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In the first subsection, we will use the result of Section 6.7 to show that in the setting of this
proposition, under P𝐺𝑝 , 𝑜 is unlikely to belong to a mesoscopic cluster whose volume is much larger
then deg𝐺. In the second subsection, we prove Proposition 6.9.1. In the third subsection, we
will explain how Proposition 6.9.1 implies our main theorems concerning concentration (Theo-
rem 6.1.3) and equicontinuity (Theorem 6.1.11) for graphs that admit irreducible macromolecular
decompositions.

Warning: In this section, we will apply our main results about non-macromolecular graphs in
order to analyse the family of graphs 𝐴 coming from an irreducibly macromolecular decomposition
(𝐴, 𝐵). More precisely, we will apply both Proposition 6.9.1, establishing a uniform tail on the
distribution of non-giant clusters, as well as the consequences of this proposition that are derived
in Section 6.11, namely the results in column 4 of the table in that section, establishing that the
supercritical giant cluster density is concentrated and local. The proofs of these results about
non-macromolecular graphs do not rely on the analysis of macromolecular graphs appearing in this
section, so there is no danger of circular reasoning. In fact, the analysis in this section only relies
on these results for non-macromolecular families of graphs that are also dense, since the family of
graphs 𝐴 coming from a macromolecular decomposition is always dense by definition. For this
special case of dense non-macromolecular graphs, all of our results could be deduced much more
easily and directly from Theorem 6.1.1 and a refinement of Lemma 6.11.3, without having to go
through the work of Section 6.8.

Proof of Proposition 6.9.1
Our goal is to establish eq. (6.9.1). It suffices to establish that every infinite subset of H contains
a further infinite subset for which these equations hold. As such, throughout this proof we may
without loss of generality replaceH by an arbitrary infinite subset ofH .

We would like to apply our results from Section 6.8 concerning high-degree non-macromolecular
graphs to A := {𝐴(𝐺) : 𝐺 ∈ H}. It follows easily from the definition of irreducible macromolec-
ular decomposition that limH deg 𝐴 = ∞ (because deg𝐺 − deg 𝐴 is uniformly bounded above) and
A does not contain an infinite subset that is macromolecular. What is less obvious is that 𝑝 is
supercritical for A. Strictly speaking, it does not make sense to ask whether 𝑝 is supercritical for
A because graphs in A do not lie in the domain of 𝑝. To avoid this technicality, by passing to an
infinite subset ofH if necessary, let us assume that the mapH → A sending 𝐺 ↦→ 𝐴(𝐺) is injec-
tive and hence a bijection. This lets us identify our given assignment of parameters 𝑝 : H → [0, 1]
with an assignment 𝑝 : A → [0, 1].
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Claim 6.9.2. The assignment 𝑝 : A → [0, 1] is supercritical for A.

Proof. Since A is a family of dense graphs, the assignment 𝑝𝑐 := 1/deg 𝐴 defines a percolation
threshold for A [Bol+10b]. (See discusson in Section 6.1). So our goal is to show that

lim inf
H

𝑝 deg 𝐴 > 1. (6.9.2)

By Lemma 6.2.2, since 𝑝 is supercritical forH ,

lim inf
H

𝑝 deg𝐺 > 1. (6.9.3)

Since deg𝐺 − deg 𝐴 is uniformly bounded above and limH deg𝐺 = ∞,

lim
H

deg 𝐴
deg𝐺

= 1. (6.9.4)

Combining eqs. (6.9.3) and (6.9.4) yields eq. (6.9.2). □

We are now able to invoke Proposition 6.8.2 from Section 6.7 to analyse P𝐴𝑝 . We will also invoke
the main result of Section 6.8, concerning a uniform tail for non-macromolecular graphs, and its
consequences explained in Section 6.11, specifically, the validity of the mean-field approximation
and the concentration of the giant cluster cluster density for non-macromolecular graphs. Our
next step is to leverage this control of percolation on 𝐴 to build a suitable coupling of P𝐴𝑝 and P𝐵

∗
𝑝∗ .

Informally, we want this coupling to confirm the picture that mesoscopic clusters in P𝐺𝑝 with volume
of order |𝐴| behave like microscopic clusters with volume of order 1 in P𝐵

𝑝∗ . The idea is that these
mesocopic clusters in P𝐺𝑝 must be essentially built from joining the “local” giant clusters from a
bounded number of the copies of 𝐴 in 𝐺, and these connections between “local” giant clusters
behave like P𝐵

𝑝∗ . Let us now introduce the notation required to make this precise.

For each 𝐺 ∈ H , let 𝑢 ↦→ [𝑢] denote the class function for an Aut𝐺-invariant equivalence relation
on 𝑉 that induces the macromolecular decomposition (𝐴, 𝐵). We naturally identify the set of
classes {[𝑢] : 𝑢 ∈ 𝑉} with the vertex set 𝑉 (𝐵) of 𝐵. Let 𝐹 be the set of all edges 𝑥𝑦 ∈ 𝐸 such that
[𝑥] ≠ [𝑦]. For each [𝑢] ∈ 𝑉 (𝐵), make the following definitions: Let 𝐸 [𝑢] be the set of all edges
𝑥𝑦 ∈ 𝐸 such that 𝑥, 𝑦 ∈ [𝑢]. Let 𝜔[𝑢] := 𝜔|𝐸 [𝑢] , and for each 𝑣 ∈ [𝑢], let 𝐾𝑣 [𝑢] := 𝐾𝑣 (𝜔[𝑢]).
Let
−→
𝐹 be the set of all ordered pairs (𝑢, 𝑣) such that the corresponding unordered pairs 𝑢𝑣 = {𝑢, 𝑣}

belongs to 𝐹. Let Q = Q𝐺 be the law of a random vector 𝛽 ∈ {0, 1}
−→
𝐹 whose entries are iid

Bernoulli(𝜓).

Thanks to Claim 6.9.2, after passing to an infinite subset of H if necessary, we may assume that
there exists a constant 𝜀 > 0 such that for all 𝐴 ∈ A, the parameter 𝑝(𝐴) is 𝜀-supercritical for 𝐴.
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Fix some choice of 𝜀 for the rest of this proof. Define 𝑚 := |𝐴| = | [𝑜] |. For each [𝑢] ∈ 𝑉 (𝐵),
define

𝑟 [𝑢] := {𝑣 ∈ [𝑢] : |𝐾𝑣 [𝑢] | ≥ 𝜀𝑚},

and given vectors 𝜔 ∈ {0, 1}𝐸 and 𝛽 ∈ {0, 1}
−→
𝐹 , let E[𝑢] be the assertion that for every pair

(𝑥, 𝑦) ∈ −→𝐹 that satisfies 𝑥 ∈ [𝑢] and 𝜔(𝑥, 𝑦) = 1,

𝛽(𝑥, 𝑦) = 1 if and only if 𝑥 ∈ 𝑟 [𝑢] .

Claim 6.9.3. For each 𝐺 ∈ H , there exists a choice of coupling P = P𝐺 of 𝜔 ∼ P𝐺𝑝 and 𝛽 ∼ Q𝐺 in
which 𝜔|𝐹 and 𝛽 are independent of each other such that

lim
H

min
[𝑢]∈𝑉 (𝐵)

P (E[𝑢]) = 1. (6.9.5)

Proof. Fix 𝜂 > 0 and let 𝐺 ∈ H . We will show that for all but finitely many choices for 𝐺, we can
build suitable coupling that satisfies

P (E[𝑢]) ≥ 1 − 𝜂

for every [𝑢]. Let 𝑛 be a large positive integer to be determined. Independently sample the following
families of random variables, and write P for their joint law:

1. Sample 𝜔 |𝐹 ∼
⊗

𝐹 Bern(𝑝).

2. Independently for each (𝑢, 𝑣) ∈ −→𝐹 , sample

𝜈(𝑢,𝑣) ∼
⊗
𝐸 [𝑜]

Bern(𝑝) and 𝛽(𝑢, 𝑣) ∼ Bern(𝜓)

that are coupled so that

Δ :=
��P𝑝 ( |𝐾𝑜 [𝑜] | ≥ 𝑛) − 𝜓�� = P

( {��𝐾𝑜 (
𝜈(𝑢,𝑣)

) �� ≥ 𝑛} △ {𝛽(𝑢, 𝑣) = 1}︸                                       ︷︷                                       ︸
E(𝑢,𝑣)

)
.

3. Independently for each (𝑢, 𝑣) ∈ −→𝐹 , sample

𝜙(𝑢,𝑣) ∼ Unif (Γ𝑢)

where Γ𝑢 is the set of all graph automorphisms of 𝐺 that map 𝑜 ↦→ 𝑢.
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4. Sample 𝜈 ∼
⊗

𝐸 Bern(𝑝).

For each (𝑢, 𝑣) ∈ −→𝐹 , let
𝜈̂(𝑢,𝑣) : 𝐸 [𝑜] ⇀ {0, 1}

be the partial function encoding the edges revealed in an exploration of the cluster at 𝑜 from inside
(with respect to an arbitrary deterministic ordering of 𝐸 [𝑜]) that is halted as soon as the event
that

��𝐾𝑜 (𝜈(𝑢,𝑣))�� ≥ 𝑛 is determined by the states of the revealed edges. (See [Eas24, Section 2.1]
for more discussion of these partial functions and for a warm-up to the argument below.) Given
partial functions 𝑓 and 𝑔, we write 𝑓 ⊔ 𝑔 for the override, i.e. the partial function with domain
dom( 𝑓 ⊔ 𝑔) = dom( 𝑓 ) ∪ dom(𝑔) that coincides with 𝑓 on dom( 𝑓 )\ dom(𝑔) and coincides with 𝑔
on dom(𝑔)\ dom( 𝑓 ). Let 𝑥1, . . . , 𝑥𝑟 be an enumeration of the set of all pairs (𝑢, 𝑣) ∈ −→𝐹 satisfying
𝜔(𝑢𝑣) = 1, listed according to an arbitrary but deterministic total order on

−→
𝐹 that is fixed ahead of

time. Now set
𝜔 := 𝜔𝐹 ⊔

(
𝜈̂𝑥1 ◦ 𝜙𝑥1

)
⊔ · · · ⊔

(
𝜈̂𝑥𝑟 ◦ 𝜙𝑥𝑟

)
⊔ 𝜈.

Observe that 𝜔 and 𝛽 have the required marginals and independence properties, so what remains
is to establish the required control of E[𝑢] for every [𝑢]. We will focus on E[𝑜], but the same
arguments work for all [𝑢]. Let F1 be the event that E(𝑢, 𝑣) holds for some (𝑢, 𝑣) ∈ −→𝐹 with
𝑣 ∈ [𝑜], and let F2 be the event that there exist (𝑢, 𝑣), (𝑢′, 𝑣′) ∈ −→𝐹 such that 𝑣, 𝑣′ ∈ [𝑜] and
𝜔(𝑢𝑣) = 𝜔(𝑢′𝑣′) = 1 but 𝜈̂(𝑢,𝑣) ◦ 𝜙(𝑢,𝑣) and 𝜈̂(𝑢′,𝑣′) ◦ 𝜙(𝑢′,𝑣′) are incompatible as partial functions,
i.e. they disagree on some portion of the intersection of their domains. Note that

E[𝑜] ⊆ F1 ∪ F2.

So it suffices to show that P(F1),P(F2) ≤ 𝜂

2 .

Control of F1 Let 𝑧 denote the number of edges in 𝜕 [𝑜] that are open in 𝜔. By a union bound,
almost surely,

P (F1 | 𝑧) ≤ 𝑧Δ.

So by another union bound and by Markov’s inequality, for all 𝜆 > 0,

P (F1) ≤
E[𝑧]
𝜆
+ 𝜆Δ.

Note that for some constant 𝐶 < ∞ independent of 𝐺, we have E[𝑧] = 𝑝 deg 𝐵 < ∞ because
supH 𝑝 deg𝐺 < ∞ by hypothesis, and supH

deg 𝐵
deg𝐺 < ∞ by definition of macromolecular decompo-

sition. Fix 𝜆 := 4𝐶/𝜂 so that E[𝑧]
𝜆
≤ 𝜂

4 . By continuity of mf and by eq. (6.9.4),

lim
H
|mf (𝑝 deg𝐺) −mf (𝑝 deg 𝐴) | = 0.
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So by Theorems 6.1.1 and 6.2.1 and Proposition 6.8.1 and our results about non-macromolecular
graphs (specifically, (𝑇, 4) and (𝐿, 4) in Section 6.11),

lim
𝑙→∞

lim sup
H

��P𝑝 ( |𝐾𝑜 [𝑜] | ≥ 𝑙) − 𝜓�� = 0.

It follows that by picking our constant 𝑛 to be sufficiently large, we can guarantee that Δ ≤ 𝜂

4𝜆 for
all but finitely many 𝐺. Fix such a choice of 𝑛 for the rest of the proof. By combining our bounds,
we now have

P (F1) ≤
𝜂

4
+ 𝜂

4
=
𝜂

2
.

Control of F2 For each (𝑢, 𝑣) ∈ −→𝐹 , consider the cluster

𝐶(𝑢,𝑣) := 𝐾𝑣
(
𝜈̂(𝑢,𝑣) ◦ 𝜙(𝑢,𝑣)

)
,

where any edges with undefined state are treated as closed. Notice that for all 𝑥, 𝑦 ∈ −→𝐹 , the clusters
𝐶𝑥 and 𝐶𝑦 are independent of 𝜔|𝐹 , and if 𝜈̂𝑥 ◦ 𝜙𝑥 and 𝜈̂𝑦 ◦ 𝜙𝑦 are incompatible then 𝐶𝑥 ∩ 𝐶𝑦 ≠ ∅.
So by a union bound and independence,

P (F2) ≤
∑︁
𝑥,𝑦

𝑝2P
(
𝐶𝑥 ∩ 𝐶𝑦 ≠ ∅

)
where the sum is over all 𝑥 = (𝑢, 𝑣) ∈ −→𝐹 and 𝑦 = (𝑢′, 𝑣′) ∈ −→𝐹 such that 𝑣, 𝑣′ ∈ [𝑜]. Consider some
𝑥 = (𝑢, 𝑣) and 𝑦 = (𝑢′, 𝑣′). Let K be the set of all possible outcomes for 𝐶𝑥 for any (equivalently
every) 𝑥 ∈ −→𝐹 . By independence, we can expand

P
(
𝐶𝑥 ∩ 𝐶𝑦 ≠ ∅

)
=

∑︁
𝑋,𝑌∈K

P (𝐶𝑥 = 𝑋) P
(
𝐶𝑦 = 𝑌

)
· |{( 𝑓 , 𝑔) ∈ Γ𝑢 × Γ𝑢

′ : 𝑓 (𝑋) ∩ 𝑔(𝑌 ) ≠ ∅}|
|Γ𝑢 | |Γ𝑢′ |

.

Now by summing over all choices for 𝑥 and 𝑦 and exchanging the order of summation,

P (F2) ≤ (𝑝 |𝐴|)2
(
deg 𝐵
|𝐴|

)2
min
𝑋,𝑌∈K

P ( 𝑓 (𝑋) ∩ 𝑔(𝑋) ≠ ∅)

where P is the law of two independent uniformly random graph automorphisms 𝑓 and 𝑔 of 𝐺 [𝑜].
Recall that 𝑝 deg 𝐵 ≤ 𝐶. Consider some 𝑋,𝑌 ∈ K. By a union bound and independence,

P ( 𝑓 (𝑋) ∩ 𝑔(𝑋) ≠ ∅) ≤
∑︁
𝑢∈[𝑜]
P (𝑢 ∈ 𝑓 (𝑋)) P (𝑢 ∈ 𝑔(𝑌 )) .

Notice that for all 𝑢 ∈ [𝑜], we have 𝑢 ∈ 𝑓 (𝑋) if and only if 𝑓 −1(𝑢) ∈ 𝑋 , the law of 𝑓 −1 is the same
as the law of 𝑓 , and the law of 𝑓 (𝑢) is uniform over [𝑜]. In particular, for all 𝑢 ∈ [𝑜],

P (𝑢 ∈ 𝑓 (𝑋)) = |𝑋 ||𝐴| ≤
𝑛

|𝐴| ,
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and the same is true of 𝑔(𝑌 ). So

P ( 𝑓 (𝑋) ∩ 𝑔(𝑋) ≠ ∅) ≤ 𝑛2

|𝐴| ,

and since 𝑋 and 𝑌 were arbitrary,

P (F2) ≤
𝐶2𝑛2

|𝐴| ,

which is smaller than 𝜂

2 for all but finitely many 𝐺 because limH deg 𝐴 = ∞.

□

Fix such a family of couplings (P𝐺 : 𝐺 ∈ H) for the rest of the proof. Given some 𝐺 ∈ H , we
can naturally identify 𝐹 with the edge set of 𝐵. Now our coupling P induces the following pair of
percolation configurations 𝜔̃, 𝜔̂ ∈ {0, 1}𝐹 on 𝐵: for all 𝑢𝑣 ∈ 𝐹,

𝜔̂(𝑢𝑣) := 𝜔(𝑢𝑣)1𝑟 [𝑢] (𝑢)1𝑟 [𝑣] (𝑣) and 𝜔̃(𝑢𝑣) := 𝜔(𝑢𝑣)𝛽(𝑢, 𝑣)𝛽(𝑣, 𝑢).

Note that 𝜔̂ only depends on 𝜔, and by construction, the law of 𝜔̃(𝑢, 𝑣) is exactly P𝐵
𝑝∗ . For each

[𝑢] ∈ 𝑉 (𝐵), let Π [𝑢] is the set of all edges 𝑥𝑦 ∈ 𝐹 such that 𝑥 ∈ [𝑢] and 𝜔(𝑥𝑦) = 1, let 𝑠[𝑢] be
the set of all vertices 𝑣 ∈ 𝑉\[𝑢] such that 𝑣 ∉ 𝑟 [𝑣] and there exists some 𝑥𝑦 ∈ 𝐹 with 𝑥 ∈ [𝑢] and
𝑦 ∈ 𝐾𝑣 [𝑣] satisfying 𝜔(𝑥𝑦) = 1, and let 𝑡 [𝑢] be the set of all vertices 𝑣 ∈ 𝑠[𝑢] such that there exists
𝑥 ∈ 𝑉\([𝑣] ∪ 𝑟 [𝑢]) with 𝑣𝑥 ∈ 𝐸 satisfying 𝜔(𝑣𝑥) = 1.

Claim 6.9.4. We have

lim
𝑖→∞

lim sup
H

P𝑝 ( |Π [𝑜] | > 𝑖) = 0;

lim
𝑖→∞

lim sup
H

P𝑝 ( |𝑠[𝑜] | > 𝑖) = 0;

lim
H

P𝑝 (𝑡 [𝑜] ≠ ∅) = 0.

Proof. We will prove each of the three equations in turn.

First equation For all 𝐺, we have E𝑝 |Π [𝑜] | = 𝑝 deg 𝐵. As noted in the proof of the pre-
vious claim, it follows easily from the definition of macromolecular decomposition and from
supH 𝑝 deg𝐺 < ∞ that

sup
H
𝑝 deg 𝐵 < ∞.

So by Markov’s inequality,

lim sup
𝑖→∞

lim sup
H

P𝑝 ( |Π [𝑜] | > 𝑖) ≤ lim sup
𝑖→∞

1
𝑖

sup
H
𝑝 deg𝐺 = 0. (6.9.6)
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Second equation Let 𝐺 ∈ H and 𝑖 ≥ 1. Let 𝑋 be the set of all vertices 𝑦 ∈ 𝑉\[𝑜] such that there
exists 𝑥 ∈ [𝑜] satisfying 𝑥𝑦 ∈ 𝐹 and 𝜔(𝑥𝑦) = 1. The event that |𝑠[𝑜] | > 𝑖 is contained in the union

F1(𝑖) ∪ F2(𝑖)

where F1(𝑖) is the event that |𝑋 | ≥
√
𝑖, and F2(𝑖) is the event that there exists 𝑥𝑦 ∈ Π [𝑜] with

𝑥 ∈ [𝑜] and 𝑦 ∉ 𝑟 [𝑦] such that
��𝐾𝑦 [𝑦]�� ≥ √𝑖. Since |𝑋 | ≤ |Π [𝑜] | always holds, it follows from our

analysis above of the first equation that

sup
H

E𝑝 |𝑋 | < ∞ (6.9.7)

and
lim
𝑗→∞

lim sup
H

P𝑝 (F1( 𝑗)) = 0.

By a union bound, independence, and transitivity,

P𝑝 (F2(𝑖)) ≤ E𝑝

[∑︁
𝑥∈𝑉

1𝑥∈𝑋1|𝐾𝑥 [𝑥] |≥
√
𝑖
1𝑥∉𝑟 [𝑥]

]
≤ E𝑝 |𝑋 | · P𝑝

(
|𝐾𝑜 [𝑜] | ≥

√
𝑖 and 𝑜 ∉ 𝑟 [𝑜]

)
.

By Theorems 6.1.1 and 6.2.1 and Proposition 6.8.1,

lim
𝑗→∞

P𝑝
(
|𝐾𝑜 [𝑜] | ≥

√
𝑖 and 𝑜 ∉ 𝑟 [𝑜]

)
= 0,

and hence by eq. (6.9.7),
lim
𝑗→∞

P𝑝 (F1(𝑖)) = 0.

The conclusion now follows by a union bound.

Third equation Let 𝐼 be the set of all edges 𝑥𝑦 ∈ 𝐸 such that [𝑥] = [𝑦] or {𝑥, 𝑦} ∩ 𝑟 [𝑜] ≠ ∅.
Let 𝑌 be the set of all vertices 𝑦 ∈ 𝑉\[𝑜] such that there exists 𝑥 ∈ 𝑉\ ([𝑦] ∪ 𝑟 [𝑜]) satisfying
𝜔(𝑥𝑦) = 1. Note that

𝑡 [𝑜] ≠ ∅ if and only if 𝑌 ∩ 𝑠[𝑜] ≠ ∅.

For all 𝑦 ∈ 𝑉 , by a union bound we almost surely have

P𝑝 (𝑦 ∈ 𝑌 | 𝜔|𝐼) ≤ 𝑝 (deg𝐺 − deg 𝐴) =: Λ
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because after having revealed the states of all edges in 𝐼, in order for 𝑦 to ultimately belong to 𝑌 , at
least one of the at most (deg𝐺 − deg 𝐴)-many unrevealed edges 𝑒 ∈ 𝐹 with 𝑦 ∈ 𝑒 must turn out to
be open. So by a union bound and since 𝑠[𝑜] is determined by 𝜔|𝐼 , we almost surely have

P𝑝 (𝑡 [𝑜] ≠ ∅ | 𝜔|𝐼) ≤ E𝑝

[∑︁
𝑦∈𝑉

1𝑦∈𝑌1𝑦∈𝑠[𝑜] | 𝜔|𝐼

]
=

∑︁
𝑦∈𝑠[𝑜]

P𝑝 (𝑦 ∈ 𝑌 | 𝜔|𝐼) ≤ Λ |𝑠[𝑜] | .

So by another union bound,

P𝑝 (𝑡 [𝑜] ≠ ∅) ≤ P𝑝

(
|𝑠[𝑜] | ≥ 1

√
Λ

)
+
√
Λ. (6.9.8)

By definition of macromolecular decomposition, deg𝐺 − deg 𝐴 is bounded above uniformly in 𝐺.
Moreover, limH 𝑝 = 0 because limH deg𝐺 = ∞ and supH 𝑝 deg𝐺 < ∞. Therefore,

lim
H

Λ = 0. (6.9.9)

In particular, thanks to our analysis above of the second equation,

lim
H

P𝑝

(
|𝑠[𝑜] | ≥ 1

√
Λ

)
= 0. (6.9.10)

The conclusion now follow by combining eqs. (6.9.8) to (6.9.10). □

We will now use these simple properties and a mass-transport argument to relate the distribution
of microscopic clusters in P𝐵

𝑝∗ to the distribution of mesoscopic clusters in P𝐺𝑝 . Let

𝑘 :=
1
𝑚𝜓

������ ⋃
𝑣∈𝑟 [𝑜]

𝐾𝑣 (𝜔)

������ ,
and let Round(𝑘) be the integer closest 𝑘 , rounding up in case of a tie.

Claim 6.9.5. For every positive integer 𝑛,

lim
H

���P𝐺𝑝 (Round(𝑘) = 𝑛) − P𝐵𝑝∗ (
��𝐾[𝑜] �� = 𝑛)��� = 0.

Proof. Let 𝑛 be a positive integer, let 𝜂 > 0, and let 𝐺 ∈ H . Note that

Δ :=
���P𝐺𝑝 (Round(𝑘) = 𝑛) − P𝐵𝑝∗ (

��𝐾[𝑜] �� = 𝑛)��� ≤ P
(
{Round(𝑘) = 𝑛}△{𝑘̃ = 𝑛}︸                            ︷︷                            ︸

F

)
(6.9.11)
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where 𝑘̃ denotes the size of the cluster of [𝑜] in 𝜔̃, which we view as a configuration on 𝐵. Our
goal is to show that Δ ≤ 𝜂 for all but finitely many choices of 𝐺. Given 𝑖 ≥ 1, say that [𝑢] is 𝑖-good
if all of the following events hold:

• 𝜔[𝑢] has a unique cluster 𝐾 satisfying |𝐾 | ≥ 𝜀𝑚.

• |𝑟 [𝑢] − 𝜓𝑚 | ≤ 𝜓

16𝑛 .

• |Π [𝑢] | ≤ 𝑖, |𝑠[𝑢] | ≤ 𝑖, and 𝑡 [𝑢] = ∅.

By Theorems 6.1.1 and 6.2.1, our main results about non-macromolecular graphs (row 4 in Sec-
tion 6.11), and Claim 6.9.4, there exists a constant 𝑖 ∈ N such that

P𝑝 ( [𝑜] is 𝑖-good) ≤ 𝜂

2𝑛
(6.9.12)

for all but finitely many choices for 𝐺. Fix such a choice of 𝑖 for the rest of the proof, and simply
say that if [𝑢] is good to mean that 𝑢 is 𝑖-good. Let 𝑋 be the cluster of [𝑜] in 𝜔̃ ∩ 𝜔̂, and let 𝑌 be
the set of all edges 𝑥𝑦 ∈ 𝐹 such that [𝑥] ∈ 𝑋 or [𝑦] ∈ 𝑋 .

Say that an edge 𝑥𝑦 ∈ 𝐹 is intact if E[𝑥] holds and E[𝑦] holds, and note that this implies that
𝜔̂(𝑥𝑦) = 𝜔̃(𝑥𝑦). In particular, if every edge in 𝑌 is intact, then

𝑘̂ = 𝑘̃ , (6.9.13)

where 𝑘̂ denotes the size of the cluster of [𝑜] in 𝜔̂. We claim that if additionally every element of 𝑋
is good then F cannot hold. Indeed, if every element of 𝑋 is good, then 𝑘𝑚𝜓, which by definition
of 𝑘 equals the number of vertices 𝜔-connected to [𝑜], satisfies∑︁

[𝑣]∈𝐾[𝑜] (𝜔̂)
|𝑟 [𝑣] | ≤ 𝑘𝑚𝜓 ≤

∑︁
[𝑣]∈𝐾[𝑜] (𝜔̂)

( |𝑟 [𝑣] | + |𝑠[𝑣] |) ,

and moreover, (
1 − 1

16𝑛

)
𝜓𝑚𝑘̂ ≤ 𝑘𝑚𝜓 ≤

(
1 + 1

16𝑛

)
𝜓𝑚𝑘̂ + 𝑖 𝑘̂ .

So by eq. (6.9.13) and our hypothesis that limH 𝑚 = ∞, for all but finitely many choices of 𝐺,��𝑘 − 𝑘̃ �� ≤ 𝑘̃ (
1

16𝑛
+ 𝑖

𝑚𝜓

)
≤ 𝑘̃

8𝑛
. (6.9.14)

By manipulating eq. (6.9.14), we have 𝑘̃ ≤ 2𝑘 . So by applying eq. (6.9.14) again,��𝑘 − 𝑘̃ �� ≤ 𝑘

4𝑛
. (6.9.15)
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Notice that if 𝑘̃ = 𝑛, then by eq. (6.9.14), we have
��𝑘 − 𝑘̃ �� < 1

2 , and hence 𝑘 = 𝑘̃ . Similarly, if
Round(𝑘) = 𝑛, then 𝑘 ≤ 𝑛 + 1 and hence 𝑘 = 𝑘̃ by eq. (6.9.15). So F cannot hold, as claimed.

Let F1 be the event that F holds but not every element of 𝑋 is good, and let F2 := F\F2. By our
work above, on the event F2, not every edge in 𝑌 is intact. For each [𝑢] ∈ 𝑉 (𝐵), let F [𝑢], F1 [𝑢],
F2 [𝑢], 𝑋 [𝑢], and 𝑌 [𝑢] be the analogues of F , F1, etc. defined with [𝑢] in place of [𝑜]. Given
classes [𝑢], [𝑣], let 𝑓1( [𝑢], [𝑣]) ∈ {0, 1} be the indicator for the event that F1 [𝑢] holds, [𝑣] ∈ 𝑋 [𝑢],
and [𝑣] is not good. Given a class [𝑢] and an edge 𝑒 ∈ 𝐹, let 𝑓2( [𝑢], 𝑒) ∈ {0, 1} be the indicator
for the event that F2 [𝑢] holds, 𝑒 ∈ 𝑌 [𝑢], and 𝑒 is not intact. We know that for all [𝑢] ∈ 𝑉 (𝐵), if
F [𝑢] holds then 𝑓𝑖 ( [𝑢], 𝑥) = 1 for some 𝑥 and 𝑖. So by eq. (6.9.11) and transitivity,

1
|𝐵 |E


∑︁
[𝑢],[𝑣]

𝑓1( [𝑢], [𝑣])
︸                           ︷︷                           ︸

Γ1

+ 1
|𝐵 |E


∑︁
[𝑢],𝑒

𝑓2( [𝑢], 𝑒)
︸                      ︷︷                      ︸

Γ2

≥ Δ, (6.9.16)

where the first sum is over all [𝑢], [𝑣] ∈ 𝑉 (𝐵) and the second sum is over all [𝑢] ∈ 𝑉 (𝐵) and
𝑒 ∈ 𝐹. (Recall that |𝐵 | is the number of vertices in 𝐵.) So it suffices to show that Γ1, Γ2 ≤ 𝜂

2 .

For every [𝑢], on the event F [𝑢], we have |𝑋 [𝑢] | ≤ 𝑛. So for every class [𝑣], there are never more
than 𝑛 classes [𝑢] satisfying 𝑓1( [𝑢], [𝑣]) = 1, and of course there are no such classes [𝑢] when [𝑣]
is good. So for all [𝑢],

E

∑︁
[𝑢]

𝑓1( [𝑢], [𝑣])
 ≤ 𝑛P ( [𝑢] is not good) ≤ 𝜂

2
, (6.9.17)

where the second inequality comes from eq. (6.9.12). In particular, Γ1 ≤ 𝜂

2 . Similarly, for every
[𝑢], since on the event F2 [𝑢] we have

|𝑌 [𝑢] | ≤
∑︁

[𝑣]∈𝑋 [𝑢]
|Π [𝑣] | ≤ 𝑛𝑖

because every every element of 𝑋 [𝑢] is good, it follows that for all 𝑒 ∈ 𝐹,

E

∑︁
[𝑢]

𝑓2( [𝑢], 𝑒)
 ≤ 2𝑛𝑖, (6.9.18)

the factor of ‘2’ arising from the fact that the classes of the endpoints of the edge 𝑒 ∈ 𝐹 could
belong to two distinct 𝜔̂ ∩ 𝜔̃-clusters. In particular, Γ2 ≤ 𝜂

2 , as required. □
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We are now ready to conclude the proof of eq. (6.9.1). Fix 𝜂 > 0. By Proposition 6.7.1
and Lemma 6.5.2 (as well as Theorems 6.1.1 and 6.2.1), there exists a sufficiently large posi-
tive integer 𝑁0 such that for every integer 𝑁 ≥ 𝑁0, for all but finitely many G ∈ H ,��𝜃 (𝑝, 𝐺) − P𝐺𝑝 ( |𝐾𝑜 | ≥ 𝐿𝑚)�� ≤ 𝜂4 ,
where 𝐿 = 𝐿 (𝑁,𝐺) := 𝜓

(
𝑁 + 1

2

)
. By Theorems 6.1.1 and 6.2.1 and Proposition 6.8.1, for all but

finitely many 𝐺, ��P𝐺𝑝 ( |𝐾𝑜 | ≥ 𝐿) − P𝐺𝑝 ( |𝐾𝑜 | ≥ 𝐿 and 𝑜 ∈ 𝑟 [𝑜])
�� ≤ 𝜂

4
.

Note that |𝐾𝑜 | ≥ 𝐿 and 𝑜 ∈ 𝑟 [𝑜] if and only if 𝑘 ≥ 𝑁 and 𝑜 ∈ 𝑟 [𝑜]. By transitivity,

P𝐺𝑝 (𝑘 ≥ 𝑁 and 𝑜 ∈ 𝑟 [𝑜]) = 1
𝑚

∑︁
𝑢∈[𝑜]

P𝐺𝑝 (𝑘 ≥ 𝑁 and 𝑢 ∈ 𝑟 [𝑜]) = E𝐺𝑝

[
|𝑟 [𝑜] |
𝑚

1𝑘≥𝑁
]
.

By our main results for non-macromolecular graphs (row 4 in Section 6.11), for all but finitely
many 𝐺, ����E𝐺𝑝 [

|𝑟 [𝑜] |
𝑚

1𝑘≥𝑁
]
− 𝜓 · P𝐺𝑝 (𝑘 ≥ 𝑁)

���� ≤ E𝐺𝑝

���� |𝑟 [𝑜] |𝑚
− 𝜓

���� ≤ 𝜂4 .
By Claim 6.9.5 and the fact that 𝜓 is always bounded above by 1, for all but finitely many 𝐺,���𝜓 · P𝐺𝑝 (𝑘 ≥ 𝑁) − 𝜓 · P𝐵𝑝∗ ( |𝐾𝑜 | ≥ 𝑁)��� ≤ 𝜂4 .
By combining our bounds, we find that for all but finitely many 𝐺,���𝜃 (𝑝, 𝐺) − P𝐵𝑝∗ ( |𝐾𝑜 | ≥ 𝑁)��� ≤ 𝜂,
as required.

6.10 The nonunimodular case
In this section we complete the proof of the bounded-degree case of our results by treating the
nonunimodular case. Perhaps surprisingly, following [Hut20g], percolation is much better under-
stood on nonunimodular transitive graphs than on unimodular transitive graphs. More specifically,
we will briefly explain how very strong quantitative forms of all our main results can be deduced in
the nonunimodular case from the results of [Hut20h], which establish sharp, quantitative tail bounds
on the distribution of finite clusters under the 𝐿2 boundedness condition, and [Hut20g], which imply
that this condition holds in the nonunimodular case; our main task in this section will be to outline
how uniform versions of these results can be deduced by a compactness argument. Nonunimodular
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transitive graphs cannot arise as limits of finite transitive graphs by Corollary 6.10.2, and we will
keep this section brief since it is tangential to the main focus of the paper.

For nonunimodular 𝐺, the tilted mass-transport principle states that∑︁
𝑥∈𝑉

𝐹 (𝑜, 𝑥) =
∑︁
𝑥∈𝑉

𝐹 (𝑥, 𝑜)Δ(𝑜, 𝑥) (6.10.1)

for every 𝐹 : 𝑉2 → [0,∞] that is invariant under the diagonal action of Aut(𝐺) on 𝑉2.

The following proposition, established in [Hut20b, Corollary 5.4], tells us that the modular function
is determined by the local geometry of the graph. This proposition is proven using a probabilistic
interpretation of the modular function as a Radon-Nikodym cocycle (see [Hut20g; BC12]) and is
not at all obvious from the algebraic definition given above!

Proposition 6.10.1. Let (𝐺𝑛)𝑛≥1 be a sequence of connected, locally finite transitive graphs con-
verging locally to some locally finite transitive graph𝐺, and let (𝑜𝑛)𝑛≥1 and 𝑜 be vertices of (𝐺𝑛)𝑛≥1

and 𝐺 respectively. For each 𝑟 ≥ 1 there exists 𝑁 < ∞ such that for every 𝑛 ≥ 𝑁 there exists an
isomorphism 𝜙𝑛 from the ball of radius 𝑟 around 𝑜𝑛 in 𝐺𝑛 to the ball of radius 𝑟 around 𝑜 in 𝐺
satisfying

Δ𝐺𝑛 (𝑢, 𝑣) = Δ𝐺 (𝜙(𝑢), 𝜙(𝑣))

for every 𝑢, 𝑣 in the ball of radius 𝑟 around 𝑜𝑛 in 𝐺𝑛.

Together with the cocycle identity [Hut20g, Lemma 2.3], which states thatΔ(𝑥, 𝑧) = Δ(𝑥, 𝑦)Δ(𝑦, 𝑧)
for every 𝑥, 𝑦, 𝑧 ∈ 𝑉 (and hence that 𝐺 is unimodular if and only if Δ(𝑜, 𝑥) = 1 for every neighbour
of the origin), this proposition has the following immediate corollary.

Corollary 6.10.2. For each 𝑑 ≥ 1, let G𝑑 be the space of all isomorphism classes of connected,
transitive graphs of degree at most 𝑑, and letU𝑑 andN𝑑 = G𝑑 \ U𝑑 be the sets of unimodular and
nonunimodular elements of G𝑑 respectively. The setsU𝑑 and N𝑑 are both closed (and hence both
open) in G𝑑 with respect to the local topology.

Note that the familyU𝑑 contains both finite and infinite graphs.

The following theorem is a “uniform in𝐺” version of a theorem whose non-uniform version follows
from the results of [Hut20g; Hut20h]. The bound on the volume tail of finite clusters it yields is
sharp for 𝑝 not too close to 0 or 1 as explained in detail in [Hut20h].
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Theorem 6.10.3. Let 𝑑 ≥ 1 and let N𝑑 be the set of (isomorphism classes of) nonunimodular
transitive graphs of degree at most 𝑑. There exist positive constants 𝑐 = 𝑐(𝑑) > 0 and 𝐶 = 𝐶 (𝑑) <
∞ such that

P𝐺𝑝 (𝑛 ≤ |𝐾𝑜 | < ∞) ≤ 𝐶𝑛−1/2 exp
(
−𝑐 |𝑝 − 𝑝𝑐 |2𝑛

)
for every 𝑛 ≥ 1, 𝐺 ∈ N𝑑 , and 𝑝 ∈ [0, 1].

After sketching the proof of this theorem we will use it to deduce the following corollary, which is
much stronger than the equicontinuity statements proven in the other parts of the paper.

Corollary 6.10.4. Let 𝑑 ≥ 1 and let N𝑑 be the set of (isomorphism classes of) nonunimodular
transitive graphs of degree at most 𝑑. For each 𝐺 ∈ N𝑑 , 𝜃 (𝑝, 𝐺) is an analytic function of 𝑝 on
(𝑝𝑐 (𝐺), 1] and there exists a constant 𝐶 = 𝐶 (𝑑) such that

𝑑

𝑑𝑝
𝜃 (𝑝, 𝐺) ≤ 𝐶

1 − 𝑝 and 𝜃 (𝑝, 𝐺) ≥ 1 − 𝐶 |1 − 𝑝 |𝐶

for every 𝐺 ∈ N𝑑 and 𝑝 ∈ (𝑝𝑐, 1].

We now introduce some relevant machinery from [Hut20g]. Let𝐺 = (𝑉, 𝐸) be a connected, locally
finite, nonunimodular (vertex-)transitive graph, and let Δ = Δ𝐺 : 𝑉2 → (0,∞) be the modular
function of 𝐺. For each 𝜆 ∈ R, the tilted susceptibility is defined to be

𝜒𝑝,𝜆 = 𝜒
𝐺
𝑝,𝜆 =

∑︁
𝑥∈𝑉

P𝑝 (𝑜 ↔ 𝑥)Δ𝜆 (𝑜, 𝑥),

so that 𝜒𝑝,0 = E𝑝 |𝐾𝑜 | is the ordinary susceptibility. It is a consequence of the tilted mass-transport
principle that 𝜒𝑝,𝜆 = 𝜒𝑝,1−𝜆, and since 𝜒𝑝,𝜆 is also a convex function of 𝜆 ∈ R this leads to a special
role for the critically tilted susceptibility 𝜒𝑝,1/2 = min𝜆 𝜒𝑝,𝜆. The tiltability threshold is defined
to be

𝑝𝑡 (𝐺) = sup{𝑝 ∈ [0, 1] : 𝜒𝑝,1/2 < ∞}.

The following is a special case of the main theorem of [Hut20g].

Theorem 6.10.5. Let 𝐺 = (𝑉, 𝐸) be a connected, locally finite, nonunimodular (vertex-)transitive
graph. Then 𝑝𝑐 (𝐺) < 𝑝𝑡 (𝐺).

In order to prove Theorem 6.10.3, we will argue that Theorem 6.10.5 implies the following “uniform
in 𝐺” version of the same theorem.
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Corollary 6.10.6. For each 𝑑 ≥ 1 there exist positive constants 𝑐 = 𝑐(𝑑) and 𝐶 = 𝐶 (𝑑) such that

𝜒𝐺
𝑝𝑐 ,1/2 ≤ 𝐶 and 𝑝𝑡 (𝐺) − 𝑝𝑐 (𝐺) ≥ 𝑐

for every 𝐺 ∈ N𝑑 .

To deduce Corollary 6.10.6 from Theorem 6.10.5, we will also apply the following theorem of
[Hut20b], which is a consequence of the results of [Hut20g].

Theorem 6.10.7 ([Hut20b], Theorem 5.6). The critical probability 𝑝𝑐 defines a continuous function
on N𝑑 . That is, if 𝐺𝑛 is a sequence in N𝑑 converging to some 𝐺 ∈ N𝑑 then 𝑝𝑐 (𝐺𝑛) → 𝑝𝑐 (𝐺).

We will also require the following lemma.

Lemma 6.10.8. For each fixed 𝑝 ∈ [0, 1] and 𝜆 ∈ R, the tilted susceptibility 𝜒𝐺
𝑝,𝜆

defines a
continuous function N𝑑 → [0,∞]. That is, if 𝐺𝑛 is a sequence in N𝑑 converging to some 𝐺 in N𝑑
then 𝜒𝐺𝑛

𝑝,𝜆
converges to 𝜒𝐺

𝑝,𝜆
as 𝑛→∞.

We will prove Lemma 6.10.8 using a tilted version of the “𝜙𝑝 (𝑆) argument” of Duminil-Copin and
Tassion [DT16b]. Let 𝐺 and Δ be as above. For each 𝜆 ∈ R, 𝑝 ∈ [0, 1], and each finite set of
vertices 𝑆 ∋ 𝑜 we consider the quantity 𝜙𝑝,𝜆 (𝑆) defined by

𝜙𝑝,𝜆 (𝑆) := 𝑝
∑︁
𝑥∈𝑆

P𝑝 (𝑜
𝑆←→ 𝑥)

∑︁
𝑦∼𝑥

1(𝑦 ∉ 𝑆)Δ𝜆 (𝑜, 𝑦) = 𝑝
∑︁
𝑥∈𝑆

P𝑝 (𝑜
𝑆←→ 𝑥)Δ𝜆 (𝑜, 𝑥)

∑︁
𝑦∼𝑥

1(𝑦 ∉ 𝑆)Δ𝜆 (𝑥, 𝑦),

where {𝑜 𝑆←→ 𝑥} denotes the event that 𝑜 and 𝑥 are connected by an open path only using vertices
of 𝑆 and the equality between these two expressions follows from the cocycle identity Δ(𝑜, 𝑦) =
Δ(𝑜, 𝑥)Δ(𝑥, 𝑦).

Lemma 6.10.9. Let 𝐺 = (𝑉, 𝐸) be a connected, locally finite, nonunimodular (vertex-)transitive
graph, let 𝑜 be a vertex of 𝐺 and let 𝑆 ∋ 𝑜 be a finite set of vertices. Then∑︁

𝑥∈𝑆
P𝑝 (𝑜

𝑆←→ 𝑥)Δ𝜆 (𝑜, 𝑥) ≤ 𝜒𝑝,𝜆 ≤
1

1 − 𝜙𝑝,𝜆 (𝑆)
∑︁
𝑥∈𝑆

P𝑝 (𝑜
𝑆←→ 𝑥)Δ𝜆 (𝑜, 𝑥)

for every 𝑝 ∈ [0, 1] and 𝜆 ∈ R such that 𝜙𝑝,𝜆 (𝑆) < 1. In particular, if 𝜙𝑝,𝜆 (𝑆) < 1 for some finite
set of vertices 𝑆 ∋ 𝑜 then 𝜒𝑝,𝜆 < ∞.
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Proof of Lemma 6.10.9. The first inequality is trivial; we focus on the second. If 𝑜 is connected
to some vertex 𝑧 by an open path in 𝐺 but not in 𝑆, this path must exit 𝑆 for the first time using
some edge 𝑒 = 𝑥𝑦 with 𝑥 ∈ 𝑆 and 𝑦 ∉ 𝑆. On this event the three events {𝑜 𝑆←→ 𝑥}, {𝑒 open}, and
{𝑦 ↔ Λ𝑧} occur disjointly, and we deduce from a union bound and the BK inequality that

P𝑝 (𝑜 ↔ 𝑧) ≤ P𝑝 (𝑜
𝑆←→ 𝑧) + 𝑝

∑︁
𝑥∈𝑆

∑︁
𝑦∉𝑆

P𝑝 (𝑜
𝑆←→ 𝑥)P𝑝 (𝑦 ←→ 𝑧).

Let Λ ⊆ 𝑉 be a (finite or infinite) set of vertices containing 𝑆. Multiplying both sides by Δ𝜆 (𝑜, 𝑧),
summing over 𝑧 ∈ Λ, and using the cocycle identity yields that∑︁

𝑧∈Λ
P𝑝 (𝑜 ←→ 𝑧)Δ𝜆 (𝑜, 𝑧)

≤
∑︁
𝑥∈𝑆

P𝑝 (𝑜
𝑆←→ 𝑥)Δ𝜆 (𝑜, 𝑥) + 𝑝

∑︁
𝑥∈𝑆

∑︁
𝑦∉𝑆

P𝑝 (𝑜
𝑆←→ 𝑥)

∑︁
𝑧∈Λ

P𝑝 (𝑦 ←→ 𝑧)Δ𝜆 (𝑜, 𝑧)

≤
∑︁
𝑥∈𝑆

P𝑝 (𝑜
𝑆←→ 𝑥)Δ𝜆 (𝑜, 𝑥) + 𝜙𝑝,𝜆 (𝑆) sup

𝑦∈Λ

∑︁
𝑧∈Λ

P𝑝 (𝑦 ←→ 𝑧)Δ𝜆 (𝑦, 𝑧). (6.10.2)

If we knew that 𝜒𝑝,𝜆 < ∞we could conclude by rearranging ; a little care will be needed to conclude
in a non-circular manner without this assumption.

Suppose that there exists a finite set 𝑆 ∋ 𝑜 with 𝜙𝑝,𝜆 (𝑆) < 1. For each finite set Λ ⊆ 𝑉 there exists a
vertex 𝑤 with

∑
𝑧∈Λ P𝑝 (𝑤 ←→ 𝑧)Δ𝜆 (𝑤, 𝑧) = sup𝑦∈Λ

∑
𝑧∈Λ P𝑝 (𝑦 ←→ 𝑧)Δ𝜆 (𝑦, 𝑧) and an automorphism

𝛾 of 𝐺 sending 𝑜 to 𝑤. Using that∑︁
𝑧∈𝛾−1Λ

P𝑝 (𝑥 ←→ 𝑧)Δ𝜆 (𝑥, 𝑧) =
∑︁
𝑧∈Λ

P𝑝 (𝑥 ←→ 𝛾−1𝑧)Δ𝜆 (𝑥, 𝛾−1𝑧) =
∑︁
𝑧∈Λ

P𝑝 (𝛾𝑥 ←→ 𝑧)Δ𝜆 (𝛾𝑥, 𝑧)

for every 𝑥 ∈ 𝑉 , we have that∑︁
𝑧∈𝛾−1Λ

P𝑝 (𝑜 ←→ 𝑧)Δ𝜆 (𝑜, 𝑧) = sup
𝑦∈𝛾−1Λ

∑︁
𝑧∈𝛾−1Λ

P𝑝 (𝑦 ←→ 𝑧)Δ𝜆 (𝑦, 𝑧).

Thus, (6.10.2) implies the inequality∑︁
𝑧∈𝛾−1Λ

P𝑝 (𝑜 ←→ 𝑧)Δ𝜆 (𝑜, 𝑧) ≤
∑︁
𝑥∈𝑆

P𝑝 (𝑜
𝑆←→ 𝑥)Δ𝜆 (𝑜, 𝑥) + 𝜙𝑝,𝜆 (𝑆)

∑︁
𝑧∈𝛾−1Λ

P𝑝 (𝑜 ←→ 𝑧)Δ𝜆 (𝑜, 𝑧),

which, since Λ is finite, can be rearranged to yield that∑︁
𝑧∈𝛾−1Λ

P𝑝 (𝑜 ←→ 𝑧)Δ𝜆 (𝑜, 𝑧) ≤ 1
1 − 𝜙𝑝,𝜆 (𝑆)

∑︁
𝑥∈𝑆

P𝑝 (𝑜
𝑆←→ 𝑥)Δ𝜆 (𝑜, 𝑥)
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when 𝜙𝑝,𝜆 (𝑆) < 1. On the other hand, the choice of 𝛾 ensures that∑︁
𝑧∈Λ

P𝑝 (𝑜 ←→ 𝑧)Δ𝜆 (𝑜, 𝑧) ≤
∑︁

𝑧∈𝛾−1Λ

P𝑝 (𝑜 ←→ 𝑧)Δ𝜆 (𝑜, 𝑧),

and the claim follows by taking Λ to exhaust the entire vertex set 𝑉 . □

We now deduce Lemma 6.10.8 from Lemma 6.10.9 and Proposition 6.10.1.

Proof of Lemma 6.10.8. Fix 𝑝 ∈ [0, 1] and 𝜆 ∈ R and let (𝐺𝑛)𝑛≥ be a sequence in N𝑑 converging
to some 𝐺 ∈ N𝑑 . We need to prove that 𝜒𝐺𝑛

𝑝,𝜆
converges to 𝜒𝐺

𝑝,𝜆
as 𝑛→∞. Let 𝐵𝐺 (𝑜, 𝑟) denote the

ball of radius 𝑟 around 𝑜 in𝐺. The lower semicontinuity statement lim inf 𝜒𝐺𝑛
𝑝,𝜆
≥ 𝜒𝐺

𝑝,𝜆
is immediate

from the fact that
𝜒𝐺𝑝,𝜆 = sup

𝑟

∑︁
𝑥∈𝐵𝐺 (𝑜,𝑟)

P𝐺𝑝 (𝑜
𝐵𝐺 (𝑜,𝑟)←−−−−→ 𝑥)Δ𝜆𝐺 (𝑜, 𝑥),

since each function on the right hand side is continuous in 𝐺 by Proposition 6.10.1 and any
supremum of continuous functions is lower semicontinuous. To conclude the proof it suffices to
prove that lim sup 𝜒𝐺𝑛

𝑝,𝜆
≤ 𝜒𝐺

𝑝,𝜆
. The claim is trivial when 𝜒𝐺

𝑝,𝜆
= ∞ so we may assume that 𝜒𝐺

𝑝,𝜆
< ∞.

Since the internal vertex boundaries of the balls 𝐵𝐺 (𝑜, 𝑟) are disjoint for different choices of 𝑟 , we
have that

𝜒𝐺𝑝,𝜆 ≥
1∑

𝑦∼𝑜 Δ𝜆 (𝑜, 𝑦)

∞∑︁
𝑟=0

∑︁
𝑥∈𝐵𝐺 (𝑜,𝑟)

P𝑝 (𝑜
𝐵𝐺 (𝑜,𝑟)←−−−−→ 𝑥)Δ𝜆 (𝑜, 𝑥)

∑︁
𝑦∼𝑥

Δ𝜆 (𝑥, 𝑦)1(𝑦 ∉ 𝐵𝐺 (𝑜, 𝑟))

=
1

𝑝
∑
𝑦∼𝑜 Δ𝜆 (𝑜, 𝑦)

∞∑︁
𝑟=0

𝜙𝑝,𝜆 (𝐵𝐺 (𝑜, 𝑟)).

Since 𝜒𝐺
𝑝,𝜆
< ∞ it follows that 𝜙𝑝,𝜆 (𝐵𝐺 (𝑜, 𝑟)) → 0 as 𝑟 →∞. On the other hand, Proposition 6.10.1

and Lemma 6.10.9 imply that

lim sup
𝑛→∞

𝜒
𝐺𝑛
𝑝,𝜆
≤ 1

1 − 𝜙𝑝,𝜆 (𝐵𝐺 (𝑜, 𝑟))
∑︁

𝑥∈𝐵𝐺 (𝑜,𝑟)
P𝐺𝑝 (𝑜

𝐵𝐺 (𝑜,𝑟)←−−−−→ 𝑥)Δ𝜆𝐺 (𝑜, 𝑥)

for every 𝑟 such that 𝜙𝑝,𝜆 (𝐵𝐺 (𝑜, 𝑟)) < 1, and the claim follows since the sum on the right hand side
is bounded above by 𝜒𝐺

𝑝,𝜆
for every 𝑟 ≥ 1. □

Proof of Corollary 6.10.6. It suffices to prove the claim about 𝜒𝑝𝑐 ,1/2, the claim about 𝑝𝑡 − 𝑝𝑐
following from this estimate. Suppose for contradiction that the claim does not hold, so that there
exists a sequence (𝐺𝑛)𝑛≥1 in N𝑑 with 𝜒

𝐺𝑛
𝑝𝑐 (𝐺𝑛),1/2 → ∞ as 𝑛 → ∞. By taking a subsequence
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if necessary, we may assume that 𝐺𝑛 converges to some 𝐺 ∈ N𝑑 as 𝑛 → ∞. It follows from
Theorem 6.10.5 and Theorem 6.10.7 that lim𝑛→∞ 𝑝𝑐 (𝐺𝑛) = 𝑝𝑐 (𝐺) < 𝑝𝑡 (𝐺) and hence that there
exists 𝑞 < 𝑝𝑡 (𝐺) such that 𝑝𝑐 (𝐺𝑛) ≤ 𝑞 for all sufficiently large 𝑛. Lemma 6.10.8 then implies that
𝜒
𝐺𝑛
𝑞,𝜆
→ 𝜒𝐺

𝑞,𝜆
< ∞, which contradicts the assumption that 𝜒𝐺𝑛

𝑝𝑐 (𝐺𝑛),1/2 →∞ since 𝜒𝐺𝑛
𝑝𝑐 (𝐺𝑛),1/2 ≤ 𝜒

𝐺𝑛
𝑞,𝜆

for all sufficiently large 𝑛. □

Sketch of proof of Theorem 6.10.3. Let 𝐺 = (𝑉, 𝐸) be a connected, locally finite, transitive graph,
and for each 𝑝 ∈ [0, 1] define the two-point matrix 𝑇𝑝 ∈ R𝑉×𝑉 by 𝑇𝑝 (𝑢, 𝑣) = P𝑝 (𝑢 ↔ 𝑣).
We define ∥𝑇𝑝 ∥2→2 to be the operator norm of 𝑇𝑝 on 𝐿2(𝑉), which is infinite if 𝑇𝑝 does not
define a bounded operator on 𝐿2(𝑉). The main result of [Hut20g] states that if 𝐺 satisfies the 𝐿2

boundedness condition, meaning that ∥𝑇𝑝𝑐 ∥2→2 is finite, then there exists 𝛿 > 0

P𝑝 (𝑛 ≤ |𝐾𝑜 | < ∞) ≍ 𝑛−1/2 exp
[
−Θ

(
|𝑝 − 𝑝𝑐 |2𝑛

)]
(6.10.3)

for every 𝑝 ∈ (𝑝𝑐 − 𝛿, 𝑝𝑐 + 𝛿) and 𝑛 ≥ 1. The following observations allow us to deduce
Theorem 6.10.3 from this and Corollary 6.10.6:

1. The inequality ∥𝑇𝑝 ∥2→2 ≤ 𝜒𝑝,𝜆 holds for every 𝑝 ∈ [0, 1] and 𝜆 ∈ R. This is proven in
[Hut19b, Theorem 2.9]. Thus, Corollary 6.10.6 implies that the 𝐿2 boundedness condition
holds uniformly for nonunimodular transitive graphs, with constants depending only on the
degree.

2. All the implicit constants in the results of [Hut20h] can be taken to depend only on the degree
and on ∥𝑇𝑝𝑐 ∥2→2. (It may seem that they also depend on 𝑝𝑐, but this is redundant since 𝑝𝑐
is bounded below by the reciprocal of the degree and bounded away from 1 by a constant
depending only on ∥𝑇𝑝 ∥2→2.) Although such a claim is not made explicit in that paper, it can
be verified by going through the proof and using that all estimates derived from the triangle
condition (e.g. on the percolation probability 𝜃 and the intrinsic one-arm) can be taken to
depend only on the degree and the value of ∥𝑇𝑝𝑐 ∥2→2. This fact can in turn be seen from the
derivation of mean-field critical behaviour from the triangle condition presented in [Hut].
Indeed, [Hut, Eq. 2.1 and Lemma 2.1] yield that the susceptibility satisfies the differential
inequality

𝑑

𝑑𝑝
𝜒𝑝 ≥

1
(1 − 𝑝) (log(1 − 𝑝))2

E𝑝

[ (
𝜒𝑝 |𝐾 | −

∑
𝑢,𝑣∈𝐾 𝑇𝑝 (𝑢, 𝑣)

)2

𝜒𝑝
∑
𝑢,𝑣,𝑤∈𝐾 𝑇𝑝 (𝑢, 𝑣)𝑇𝑝 (𝑣, 𝑤)

]
,

and we can bound the two sums appearing here by∑︁
𝑢,𝑣∈𝐾

𝑇𝑝 (𝑢, 𝑣) = ⟨𝑇𝑝1, 1⟩𝐾 ≤ ∥𝑇𝑝 ∥2→2∥1∥2𝐾 = ∥𝑇𝑝 ∥2→2 |𝐾 |
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and ∑︁
𝑢,𝑣,𝑤∈𝐾

𝑇𝑝 (𝑢, 𝑣)𝑇𝑝 (𝑢, 𝑤) = ⟨𝑇𝑝1, 𝑇𝑝1⟩𝐾 ≤ ∥𝑇𝑝 ∥22→2∥1∥
2
𝐾 = ∥𝑇𝑝 ∥22→2 |𝐾 |

to obtain that
𝑑

𝑑𝑝
𝜒𝑝 ≥

(𝜒𝑝 − ∥𝑇𝑝 ∥2→2)2

(1 − 𝑝) (log(1 − 𝑝))2∥𝑇𝑝 ∥22→2
.

This implies that 𝜀𝜒𝑝𝑐−𝜀 is bounded above and below by positive constants depending only
on the degree and the value of ∥𝑇𝑝𝑐 ∥2→2; the fact that all other implicit constants appearing
in the consequences of the triangle condition can be taken to depend only on the degree and
∥𝑇𝑝𝑐 ∥2→2 follows from this as can be seen from [Hut; Hut20h].

3. The restriction that 𝑝 ∈ (𝑝𝑐 − 𝛿, 𝑝𝑐 + 𝛿) in (6.10.3) is only really needed for the lower bound,
since the stated estimate is not sharp for 𝑝 very close to 0 or 1. Indeed, the claimed upper
bound extends to all 0 ≤ 𝑝 ≤ 𝑝𝑐 by monotonicity, and an upper bound of the same form
follows for all 𝑝𝑐 + 𝛿 ≤ 𝑝 ≤ 1 by [Hut20h, Proposition 3.1] and the methods of either [HH19]
or [Hut23b].

We omit further details. □

Remark 6.10.1. Most the analysis of [Hut20h] can be skipped if one only wishes to establish our
main results in the nonunimodular case, rather than the sharp uniform volume-tail estimate of
Theorem 6.10.3. Indeed, the proof of [Hut20h, Proposition 3.1] yields in the transitive case that

Ψ𝑝 (𝑆) :=
1

1 − 𝑝
∑︁
𝑢∈𝑆

∑︁
𝑣∼𝑢

1(𝑣 ∉ 𝑆)P𝑝 (𝑣 ↔∞ off 𝑆) ≥ 𝜃 (𝑝) |𝑆 |
𝑝(1 − 𝑝)2∥𝑇𝑝 ∥22→2

. (6.10.4)

Since Ψ𝑝 (𝑆) is monotone in 𝑝, it follows from this together with Corollary 6.10.6, [Hut19b, Lemma
2.4] (which bounds the effect of changing 𝑝 on ∥𝑇𝑝 ∥2→2), and the mean-field lower bound that

Ψ𝑝 (𝑆) ≥ 𝑐(𝑝 − 𝑝𝑐) |𝑆 |.

for every connected, locally finite, nonunimodular transitive graph 𝐺 = (𝑉, 𝐸) and every finite set
𝑆 ⊆ 𝑉 , where 𝑐 is a positive constant depending only on the degree of 𝐺. The fact that this implies
a uniform upper bound on the volume tail of the form P𝑝 (𝑛 ≤ |𝐾𝑜 | < ∞) ≤ exp[−𝑐(𝑑, 𝜀)𝑛] for
every 𝑝 ≥ 𝑝𝑐 + 𝜀 and 𝑛 ≥ 1 can easily be deduced from the methods of either [HH19] or [Hut23b].

Proof of Corollary 6.10.4. The analyticity of 𝜃 on (𝑝𝑐, 1] is already established in [HH19]. Since
percolation with parameter 1 − (1 − 𝑝)𝑛 can be thought of as the union of 𝑛 independent copies of
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percolation with parameter 𝑝, we have that

𝜃 (1 − (1 − 𝑝)𝑛, 𝐺) ≥ (1 − 𝜃 (𝑝, 𝐺))𝑛

for every 𝑝 ∈ (0, 1) and 𝑛 ≥ 1, which implies the claimed bound on 𝜃 (𝑝, 𝐺) for 𝑝 close to 1 in
conjunction with the mean-field lower bound and the fact that 𝑝𝑐 is bounded away from zero for
elements ofN𝑑 . It remains to prove the uniform upper bound on the derivative. Given a connected,
locally finite graph 𝐺 and 𝑝 ∈ [0, 1], the triangle diagram is defined by ∇𝑝 :=

∑
𝑥,𝑦 P𝑝 (𝑜 ↔

𝑥)P𝑝 (𝑥 ↔ 𝑦)P𝑝 (𝑦 ↔ 𝑜), and satisfies the inequality ∇𝑝 ≤ ∥𝑇𝑝 ∥32→2 ≤ 𝜒
3
𝑝,1/2. The convergence of

the triangle diagram at 𝑝𝑐 is a well-known sufficient condition for mean-field percolation critical
behaviour [AN84; BA91; Hut], and in particular, it follows from the results of [Hut] that if ∇𝑝𝑐 < ∞
then there exist positive constants 𝑐 and 𝐶 depending only on ∇𝑝𝑐 and the degree of 𝐺 such that

𝑐(𝑝 − 𝑝𝑐) ≤ 𝜃 (𝑝) ≤ 𝐶 (𝑝 − 𝑝𝑐) (6.10.5)

for every 𝑝 ≥ 𝑝𝑐. (Again, it may seem that these constants should also depend on 𝑝𝑐, but 𝑝𝑐 is
bounded below the reciprocal of the degree and bounded away from 1 by a quantity depending only
on ∇𝑝𝑐 .) Russo’s formula yields in our setting that

𝑑

𝑑𝑝
𝜃 (𝑝) = 1

1 − 𝑝E𝑝
[
Ψ𝑝 (𝐾𝑜)1( |𝐾𝑜 | < ∞)

]
≤ 𝜃 (𝑝)𝑑

1 − 𝑝 E𝑝 [|𝐾𝑜 |1( |𝐾𝑜 | < ∞)]

for every 𝑝 > 𝑝𝑐, where Ψ𝑝 is defined in (6.10.4). (Note that Russo only applies directly for events
depending on at most finitely many edges, but in our setting we may easily take a limit since, by
Theorem 6.10.3, the contribution from distant edges is very small. The argument needed to do this
is standard and is omitted.) The claim follows from this together with (6.10.5) and Theorem 6.10.3,
which implies that E𝑝 [|𝐾𝑜 |1( |𝐾𝑜 | < ∞)] =

∑∞
𝑛=1 P𝑝 (𝑛 ≤ |𝐾𝑜 | < ∞) ≤ 𝐶 |𝑝 − 𝑝𝑐 |−1 for some

constant 𝐶 depending only on the degree. □

6.11 Proofs of the main theorems
To streamline our proofs, let us introduce some language that will only be used in this subsection.
Let H be a countably infinite set of (finite or infinite) transitive graphs. Say that an assignment
𝑝 : H → [0, 1] is supercritical if there is a constant 𝜀 > 0 such that for 𝜃 ((1 − 𝜀)𝑝, 𝐺) ≥ 𝜀

for all but finitely many 𝐺 ∈ H , where 𝜃 (𝑝, 𝐺) is as defined in eq. (6.4.1). We say that H
has a discrete percolation phase transition if limH 𝜃 (𝑝, 𝐺) = 1 for every supercritical assignment
𝑝. This generalises the definition of discrete percolation phase transition for families of finite
transitive graphs given in Section 6.6. Recall the definition of irreducibly macromolecular from
Section 6.9. Let us moreover say thatH ⊂ F is irreducibly molecular ifH is dense and irreducibly
macromolecular.
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Now say thatH is of type...

1 if every graph inH is infinite and nonunimodular, and the vertex degrees inH are bounded;

2 if every graph inH is infinite and unimodular, and the vertex degrees inH are bounded;

3 if every graph inH is finite, and the vertex degrees inH are bounded;

4 if every graph in H is finite, limH deg𝐺 = ∞, and H does not contain an infinite subset
that is either macromolecular or has a discrete percolation phase transition;

5 if every graph inH is finite, limH deg𝐺 = ∞,H is sparse and irreducibly macromolecular,
andH does not contain an infinite subset that has a discrete percolation phase transition;

6 if every graph in H is finite, H does not have a discrete percolation phase transition, and
H is irreducibly molecular;

...and say thatH satisfies property...

T if for every supercritical 𝑝,

lim
𝑛→∞

lim sup
H

��𝜃 (𝑝, 𝐺) − P𝑝 ( |𝐾𝑜 | ≥ 𝑛)�� = 0;

L if for every supercritical 𝑝 and for every infinite subsetH ′ ⊆ H :

– ifH ′ converges locally to some infinite transitive graph 𝐺∞, then

lim
H ′
|𝜃 (𝑝, 𝐺) − 𝜃 (𝑝, 𝐺∞) | = 0;

– if limH ′ deg𝐺 = ∞, then

lim
H ′
|𝜃 (𝑝, 𝐺) −mf (𝑝 deg𝐺) | = 0;

C if for every supercritical 𝑝 and for every infinite subsetH ′ ⊆ H ∩ F ,

lim
H

P𝑝 ( |∥giant∥ − 𝜃 (𝑝, 𝐺) | > 𝜀) = 0;

E if for every supercritical 𝑝,

lim
𝛿↓0

sup
H

sup
𝑞∈[𝑝,1]

|𝜃 (𝑞, 𝐺) − 𝜃 ((1 − 𝛿)𝑞, 𝐺) | = 0.
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We will establish the validity of the following table. Formally, this means that ifH has some type
𝑖, then for every property 𝑃, if the (𝑃, 𝑖)th entry of the following table is a tick (✓), then H has
property 𝑃, whereas if the entry is a cross (✗), thenH does not have property 𝑃.

1 2 3 4 5 6
T ✓ ✓ ✓ ✓ ✗ ✗

L ✓ ✓ ✓ ✓ ✗ ✗

E ✓ ✓ ✓ ✓ ✓ ✓

C ✓ ✓ ✓ ✓ ✓ ✗

Starting the table
In this subsection, we continue to let H be a countably infinite set of (finite or infinite) transitive
graphs.

Lemma 6.11.1. The following portion of our table is correct.

1 2 3 4 5 6
T ✓ ✓

L ✓ ✓

E ✓

C

Proof.

(T,1) This follows immediately from Theorem 6.10.3.

(L,2) and (L,3) Suppose that H is of type 2 or 3, and consider an infinite subset H ′ ⊆ H that
converges locally to some infinite transitive graph 𝐺∞. By Proposition 6.4.1,

lim
H
𝜃 (𝑝, 𝐺) = 𝜃 (𝑝, 𝐺∞)

for every constant 𝑝 > 𝑝∗ := lim supH 𝑝𝑐 (𝐺). In particular, 𝜃 (𝑝, 𝐺∞) > 0 for all 𝑝 > 𝑝∗. So
(𝑝∗, 1] ⊆ (𝑝𝑐 (𝐺∞), 1], and thus by [Sch99], 𝜃 (·, 𝐺∞) is continuous on (𝑝∗, 1]. Now consider an
arbitrary (possibly non-constant) supercritical assignment 𝑝. Since 𝑝 is supercritical, there exists a
constant 𝜀 > 0 such that 𝑝 ∈ [𝑝∗+𝜀, 1] for all but finitely many𝐺 ∈ H . Recall that if a sequence of
monotone functions defined on a closed and bounded interval converges pointwise to a continuous
function, then the sequence actually converges uniformly. This readily implies that as 𝐺 → ∞
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with 𝐺 ∈ H , the density 𝜃 (·, 𝐺) converges uniformly to 𝜃 (·, 𝐺∞) on the interval [𝑝∗ + 𝜀, 1]. In
particular,

lim
H
|𝜃 (𝑝, 𝐺) − 𝜃 (𝑝, 𝐺∞) | = 0.

(T,4) This follows immediately from Proposition 6.8.1 and Theorems 6.1.1 and 6.2.1.

(E,5) Suppose thatH has type 5. LetH ′ ⊆ H be an infinite subset, and let 𝑞1, 𝑞2 : H ′→ (0, 1)
be a pair of assignments satisfying limH ′ 𝑞2/𝑞1 = 1 and 𝑞1, 𝑞2 ∈ [𝑝, 1] for all 𝐺 ∈ H ′. Since
𝜃 (·, 𝐺) is trivially continuous for each 𝐺 ∈ H , to establish E, it suffices to show that

lim
H ′
|𝜃 (𝑞2, 𝐺) − 𝜃 (𝑞1, 𝐺) |︸                      ︷︷                      ︸

♣

= 0.

By Lemma 6.2.2 and Proposition 6.6.1, this holds if limH ′ 𝑞2 deg𝐺 ∈ {0,∞}. So it suffices for
us to hanfdle the case when there is a constant 𝐶 < ∞ such that 𝑞2 deg𝐺 ∈ [1/𝐶,𝐶] for all
𝐺 ∈ H ′. Fix an irreducibly macromolecular decomposition (𝐴, 𝐵) for H ′, and similarly to as in
the statement of Proposition 6.9.1, for each 𝐺 ∈ H ′ and for both 𝑖 ∈ {1, 2}, let

𝜓𝑖 (𝐺) := mf (𝑞𝑖 (𝐺) deg𝐺) and 𝑞∗𝑖 (𝐺) := 𝑞𝑖 (𝐺)𝜓𝑖 (𝐺)2.

For all 𝐺 ∈ H ′ and 𝑛 ≥ 1,
♣ ≤ ♥1

𝑛 + ♥2
𝑛 + ♦𝑛,

where for both 𝑖 ∈ {1, 2},

♥𝑖𝑛 :=
��𝜃 (𝑞𝑖, 𝐺) − 𝜓𝑖 · P𝐵𝑞𝑖 ( |𝐾𝑜 | ≥ 𝑛)�� ,

and
♦𝑛 :=

��𝜓2 · P𝐵𝑞2
( |𝐾𝑜 | ≥ 𝑛) − 𝜓1 · P𝐵𝑞1

( |𝐾𝑜 | ≥ 𝑛)
�� .

By Proposition 6.9.1, limH ′ ♥𝑖𝑛 = 0 for both 𝑖 ∈ {1, 2}. So it suffices to prove that limH ′ ♦𝑛 = 0.

Using that 𝜓 and 𝑞2 are trivially bounded above by 1, for all 𝐺 and 𝑛,

♦𝑛 ≤
��P𝐵𝑞2
( |𝐾𝑜 | ≥ 𝑛) − P𝐵𝑞1

( |𝐾𝑜 | ≥ 𝑛)
��︸                                     ︷︷                                     ︸

♦1
𝑛

+ |𝜓2 − 𝜓1 |︸     ︷︷     ︸
♦2

.

There can never be more than 𝑛 deg𝐺 closed pivotal edges for the event {|𝐾𝑜 | ≥ 𝑛}. So by Russo’s
formula, for all 𝐺 and 𝑛, the derivative of the function

𝑓𝐺,𝑛 (𝑝) := P𝐵𝑝 ( |𝐾𝑜 | ≥ 𝑛)
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satisfies
𝑓 ′𝐺,𝑛 (𝑝) ≤

𝑛 deg𝐺
1 − 𝑝

for all 𝑝 ∈ (0, 1). In particular, by the mean-value theorem, for all 𝐺 and 𝑛,

♦1
𝑛 ≤ (𝑞2 − 𝑞1) ·

𝑛 deg𝐺
1 − 𝐶/deg𝐺

. (6.11.1)

Since limH deg𝐺 = ∞, we have 1
1−𝐶/deg𝐺 ≤ 2 for all but finitely many 𝐺 ∈ H ′. By plugging this

and 𝑞1 ≤ 𝐶
deg𝐺 into eq. (6.11.1), we obtain

♦1
𝑛 ≤

(
𝑞2

𝑞1
− 1

)
· 2𝐶𝑛,

and hence limH ′ ♦1
𝑛 = 0 for all 𝑛. Note that the function 𝑓 : [−∞, +∞] → [0, 1] given by

𝑓 (𝑥) := mf (𝑒𝑥) for all 𝑥 ∈ R, 𝑓 (−∞) := 0, and 𝑓 (+∞) := 1, is uniformly continuous. Since

lim
H ′
|log (𝑞2 deg𝐺) − log (𝑞1 deg𝐺) | = lim

H ′

����log
(
𝑞2

𝑞1

)���� = 0,

it follows that limH ′ ♦2 = 0. By combining this with our control of ♦1
𝑛, we have limH ′ ♦𝑛 = 0, as

required. □

Lemma 6.11.2. The following portion of our table is correct.

1 2 3 4 5 6
T ✗ ✗

L
E
C ✓ ✓ ✗

Proof.

(C,1) and (C,2) These hold vacuously because ifH is of type 1 or 2, then none of the graphs in
H are finite.

(T,5) Suppose thatH is of type 5. SinceH does not have a discrete percolation phase transition,
by Corollary 6.6.2, there exists a supercritical assignment 𝑝 satisfying

lim inf
H

𝑝 deg𝐺 < ∞.
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It now follows easily from Claim 6.9.2 and the definition of macromolecular decompositions that
there exists a constant 𝜀 > 0 such that

lim sup
H

P𝑝

(
𝜀 deg𝐺 ≤ |𝐾𝑜 | <

1
𝜀

deg𝐺
)
≥ 𝜀. (6.11.2)

(With probability bounded away from zero, for infinitely many choices of 𝐺, every edge in the
boundary of the equivalence class of 𝑜 is closed, but the cluster of 𝑜 contains a positive proportion
of the vertices in the equivalence class of 𝑜.)

For all 𝑛 ≥ 1 and 𝐺 ∈ H , by transitivity,

♥𝑛,𝐺 := 𝜃 (𝑝, 𝐺) − P𝑝 ( |𝐾𝑜 | ≥ 𝑛)

=
1
|𝑉 |

∑︁
𝑣∈𝑉

(
P𝑝 (𝑣 ∈ giant) − P𝑝 ( |𝐾𝑣 | ≥ 𝑛)

)
≥ 1
|𝑉 |

∑︁
𝑣

(
P𝑝

(
𝜀 deg𝐺 ≤ |𝐾𝑣 | <

1
𝜀

deg𝐺
)
− P𝑝

(
|giant| < 1

𝜀
deg𝐺

))
.

So by eq. (6.11.2), Theorem 6.2.1, and the fact thatH is sparse, for all 𝑛 ≥ 1,

lim sup
H
♥𝑛,𝐺 ≥ 𝜀.

Since 𝜀 is independent of 𝑛, this shows thatH does not have property T.

(T,6) Suppose thatH is of type 6. By Theorem 6.1.1,H does not have the supercritical uniqueness
property. So there exists a supercritical assignment 𝑝 and a constant 𝜀 > 0 such that

lim sup
H

1
|𝑉 |

∑︁
𝑣∈𝑉

P𝑝 ( |𝐾𝑣 | ≥ 𝜀 |𝐺 | but 𝑣 ∉ giant) ≥ 𝜀.

By arguing along the same lines as in case (T,5), it follows that for all 𝑛 ≥ 1,

lim sup
H
♥𝑛,𝐺 ≥ 𝜀,

and hence thatH does not have property T.

(C,6) This follows immediately from [EH21a, Lemma 3.6]. □
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Finishing the table
In this subsection, we continue to let H be a countably infinite set of (finite or infinite) transitive
graphs. We will extend the portion of our table completed in the last subsection to complete the
whole table. We will use “(𝑃, 𝑖)” as shorthand for the statement “if H is of type 𝑖, then H has
property 𝑃”.

Recall that F𝑑 is the subset of F of graphs with vertex degree exactly 𝑑, and recall that mf (𝜆) is
the probability that a Poisson(𝜆)-branching process survives forever. The following result is easy
to prove and known to experts. It is classical for percolation on complete graphs and hypercubes,
and the standard arguments extend without change to the general case. There are many elementary
ways to prove this result, so we will omit the details. (The arguments even work more generally for
high-degree regular graphs that are not necessarily transitive.)

Lemma 6.11.3. For every positive constant 𝐶,

lim
𝑛→∞

lim sup
𝑑→∞

sup
𝐺∈F𝑑

sup
𝑝∈[0,𝐶/𝑑]

��P𝐺𝑝 ( |𝐾𝑜 | ≥ 𝑛) −mf (𝑝𝑑)
�� = 0.

Proof sketch. Let P𝜆 denote the law of a Poisson(𝜆)-branching process, and let 𝑁 be total number
of offspring. Fix 𝐶 > 0. We have (e.g. by Dini’s theorem) that

P𝜆 (𝑁 ≥ 𝑘) → mf (𝜆) as 𝑘 →∞,

uniformly over all 𝜆 ∈ [0, 𝐶]. Moreover, for every fixed 𝑘 , we have (e.g. by comparing an
exploration of 𝐾𝑜 to a Binomial branching process, by coupling to percolation on a regular tree, or
by counting the number of trees of a given size) that��P𝜆/deg𝐺 ( |𝐾𝑜 | ≤ 𝑘) − P𝜆 ( |𝐾𝑜 | ≤ 𝑘)

��→ 0 as 𝐺 →∞ with 𝐺 ∈ F ,

uniformly over all 𝜆 ∈ [0, 𝐶]. So given any 𝜂 > 0, if we first pick 𝑛 sufficiently large, then pick 𝑑
sufficiently large (depending on 𝑛), we can ensure that���P𝐺𝜆/𝑑 ( |𝐾𝑜 | ≥ 𝑛) −mf (𝜆)

��� ≤ 𝜂
for all 𝐺 ∈ F𝑑 and all 𝜆 ∈ [0, 𝐶]. □

Lemma 6.11.4. For every 𝑖 ∈ {1, . . . , 6},

(𝑇, 𝑖) ⇐⇒ (𝐿, 𝑖).

Proof.
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(𝑇, 𝑖) =⇒ (𝐿, 𝑖) Let H ′ ⊆ H be an arbitrary infinite subset that either (1) converges locally to
some infinite transitive graph 𝐺∞, or (2) satisfies limH ′ deg𝐺 = ∞.

1. For all 𝐺 ∈ H and 𝑛 ≥ 1,

♥ := |𝜃 (𝑝, 𝐺) − 𝜃 (𝑝, 𝐺∞) |
≤

��𝜃 (𝑝, 𝐺) − P𝐺𝑝 ( |𝐾𝑜 | ≥ 𝑛)��︸                           ︷︷                           ︸
♥1
𝑛

+
��P𝐺𝑝 ( |𝐾𝑜 | ≥ 𝑛) − P𝐺∞𝑝 ( |𝐾𝑜 | ≥ 𝑛)��︸                                      ︷︷                                      ︸

♥2
𝑛

+
��P𝐺∞𝑝 ( |𝐾𝑜 | ≥ 𝑛) − 𝜃 (𝑝, 𝐺∞)��︸                               ︷︷                               ︸

♥3
𝑛

.

Since 𝑝 is supercritical, for all 𝑛,

lim
H

P𝑝 ( |giant| ≥ 𝑛) = 1,

and hence
lim sup
H
♥1
𝑛 = lim sup

H
P𝐺𝑝 ( |𝐾𝑜 | ≥ 𝑛 but 𝑜 ∉ giant) , (6.11.3)

which tends to zero as 𝑛 tends to infinity if T holds. In particular, if T holds then

lim sup
H ′

♥ ≤ lim sup
H ′

inf
𝑛≥1

(
♥1
𝑛 + ♥2

𝑛 + ♥3
𝑛

)
≤ lim sup

𝑛→∞
lim sup
H ′

(
♥1
𝑛 + ♥2

𝑛 + ♥3
𝑛

)
≤ lim sup

𝑛→∞
lim sup
H ′

♥1
𝑛︸                ︷︷                ︸

=0 by T

+ sup
𝑛≥1

lim sup
H ′

♥2
𝑛︸      ︷︷      ︸

=0

+ lim sup
𝑛→∞

♥3
𝑛︸      ︷︷      ︸

=0

= 0.

2. Thanks to Corollary 6.6.2, the claim is trivial if

lim
H ′

𝑝 deg𝐺 = ∞.

So by passing to a further infinite subset if necessary, let us assume without loss of generality
that

sup
H ′

𝑝 deg𝐺 < ∞,

which will allow us to invoke Lemma 6.11.3. For all 𝐺 ∈ H and 𝑛 ≥ 1,

♦ := |𝜃 (𝑝, 𝐺) −mf (𝑝 deg𝐺) |
≤ ♥1

𝑛 +
��P𝐺𝑝 ( |𝐾𝑜 | ≥ 𝑛) −mf (𝑝 deg𝐺)

��︸                                  ︷︷                                  ︸
♦2
𝑛

.
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In particular, if T holds then

lim sup
H ′

♦ ≤ lim sup
H ′

inf
𝑛≥1

(
♦1
𝑛 + ♦2

𝑛

)
≤ lim sup

𝑛→∞
lim sup
H ′

(
♦1
𝑛 + ♦2

𝑛

)
≤ lim sup

𝑛→∞
lim sup
H ′

♦1
𝑛︸                ︷︷                ︸

=0 by T

+ lim sup
𝑛→∞

lim sup
H ′

♦2
𝑛︸                ︷︷                ︸

=0 by Lemma 6.11.3

= 0.

(𝑇, 𝑖) ⇐= (𝐿, 𝑖) Thanks to eq. (6.11.3), our goal is to show that

lim
𝑛→∞

lim
H
♥1
𝑛 = 0,

or equivalently, to show that this holds for every infinite subset H ′ ⊆ H that either (1) converges
locally to some infinite transitive graph 𝐺∞, or (2) satisfies limH deg𝐺 = ∞.

1. By a similar argument as above, for all 𝐺 ∈ H and 𝑛 ≥ 1,

♥1
𝑛 ≤ ♥ + ♥2

𝑛 + ♥3
𝑛.

So if L holds then

lim sup
𝑛→∞

lim sup
H ′

♥1
𝑛 ≤ lim sup

H ′
♥︸    ︷︷    ︸

=0 by L

+ sup
𝑛≥1

lim sup
H ′

♥2
𝑛︸      ︷︷      ︸

=0

+ lim sup
𝑛→∞

♥3
𝑛︸      ︷︷      ︸

=0

= 0.

2. By a similar argument as above, for all 𝐺 ∈ H and 𝑛 ≥ 1,

♥1
𝑛 ≤ ♦ + ♦2

𝑛.

So if L holds then

lim sup
𝑛→∞

lim sup
H ′

♥𝑛 ≤ lim sup
H ′

♦︸    ︷︷    ︸
=0 by L

+ lim sup
𝑛→∞

lim sup
H ′

♦2
𝑛︸                ︷︷                ︸

=0 by Lemma 6.11.3

= 0.

□

298



Lemma 6.11.5. For all 𝑖 ∈ {1, . . . , 6},

(𝐿, 𝑖) =⇒ (𝐸, 𝑖).

Proof. Let H ′ ⊆ H be an infinite subset, and let 𝑞1, 𝑞2 : H ′ → (0, 1) be a pair of assignments
satisfying limH ′ 𝑞2/𝑞1 = 1 and 𝑞1, 𝑞2 ∈ [𝑝, 1] for all 𝐺 ∈ H ′. To establish E, it suffices to show
that

lim
H ′
|𝜃 (𝑞2, 𝐺) − 𝜃 ((𝑞1, 𝐺) |︸                       ︷︷                       ︸

♥

= 0.

Without loss of generality, we may further assume that either (1) H ′ converges locally to some
infinite transitive graph 𝐺∞, or (2) limH ′ deg𝐺 = ∞.

1. For every 𝐺 ∈ H ′,

♥ ≤ |𝜃 (𝑞2, 𝐺) − 𝜃 (𝑞2, 𝐺∞) | + |𝜃 (𝑞2, 𝐺∞) − 𝜃 (𝑞1, 𝐺∞) |︸                          ︷︷                          ︸
♥1

+ |𝜃 (𝑞1, 𝐺∞) − 𝜃 (𝑞1, 𝐺) | .

So if L holds then
lim sup
H ′

♥ ≤ lim sup
H ′

♥1,

and since 𝑞1 is supercritical,

𝑏 := lim inf
H ′

𝑞1 > 𝑝𝑐 (𝐺∞).

So by [Sch99], the function 𝜃 (·, 𝐺∞) is uniformly continuous on [𝑏, 1]. Since

lim sup
H ′

|𝑞2 − 𝑞1 | ≤ lim sup
H

����𝑞2

𝑞1
− 1

���� = 0,

it follows that limH ′ ♥1 = 0, as required.

2. Arguing as in the case above, if L holds then

lim sup
H ′

♥ ≤ lim sup
H ′

|mf (𝑞2 deg𝐺) −mf (𝑞1 deg𝐺) |︸                                   ︷︷                                   ︸
♥2

.

Note that the function 𝑓 : [−∞, +∞] → [0, 1] given by 𝑓 (𝑥) := mf (𝑒𝑥) for all 𝑥 ∈ R,
𝑓 (−∞) := 0, and 𝑓 (+∞) := 1, is uniformly continuous. Since

lim
H ′
|log (𝑞2 deg𝐺) − log (𝑞1 deg𝐺) | = lim

H ′

����log
(
𝑞2

𝑞1

)���� = 0,

it follows that lim supH ′ ♥2 = 0, as required.
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□

Lemma 6.11.6. For all 𝑖 ∈ {3, 4, 5},

(𝐸, 𝑖) =⇒ (𝐶, 𝑖).

Proof. Assume thatH is of type 3,4, or 5. So every graph in H is finite, andH does not contain
an infinite subset that is molecular. Fix a constant 𝜀 > 0. If

lim sup
H

P𝑝 (∥giant∥ ≥ 𝜃 (𝑝, 𝐺) + 𝜀) > 0, (6.11.4)

then by Theorem 6.2.1, there is a sequence 𝛿 : H → [0, 1] with limH 𝛿 = 0 such that

lim sup
H

P(1+𝛿) (∥giant∥ ≥ 𝜃 (𝑝, 𝐺) + 𝜀) = 1,

and hence
lim sup
H

𝜃 ((1 + 𝛿)𝑝, 𝐺) ≥ 𝜃 (𝑝, 𝐺) + 𝜀,

which implies that E does not hold. The same reasoning shows that E does not hold if

lim sup
H

P𝑝 (∥𝐾𝑜∥ ≤ 𝜃 (𝑝, 𝐺) − 𝜀) > 0. (6.11.5)

IfH does not have property𝐶, then eq. (6.11.4) or eq. (6.11.5) must hold for some choice of 𝜀 > 0.
So, putting everything together, we have shown that if H does not have property 𝐶, then H does
not have property 𝐸 either. □

Lemma 6.11.7. (𝐶, 5) ∧ (𝐿, 5) =⇒ (𝐸, 6).

Proof. Suppose that (𝐶, 5) and (𝐿, 5) hold. Suppose that H is of type 6, and let (𝐴, 𝐵) be
irreducibly macromolecular decomposition forH . For each 𝐺 ∈ H , let ∼ be an equivalence class
inducing the macromolecular decomposition (𝐴, 𝐵). Now the fact that H has property 𝐸 follows
easily from the fact that the subgraphs induced by equivalence classes of ∼ all have properties 𝐸 and
𝐶. Although this can be shown directly, for completeness, let us note that this follows for example
from Claim 6.9.5. (Although this claim is proven in the setting that H is sparse and irreducibly
macromolecular, the hypothesis thatH is sparse is not used for this claim.) □
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Proofs of the main theorems
By applying the results of Section 6.11, we can extend the entries we found in Section 6.11 to
establish that all 4 × 6 entries of our table are correct. To deduce our main theorems from this
table, the only non-trivial fact to check is that every infinite set of finite transitive graphs contains
an infinite subset that is of some type 𝑖 ∈ {3, 4, 5, 6}. Even more precisely, it suffices to show that
if H is macromolecular then H has an infinite subset that is irreducibly macromolecular. This is
the content of the following lemma.

Lemma 6.11.8. Every infinite set of finite transitive graphs that is macromolecular contains an
infinite subset that is irreducibly macromolecular.

Proof. Let H be an infinite set of finite transitive graphs that is macromolecular. Let 𝛿∗ ∈ [0, 1]
be the largest constant such that for all 𝛿 ∈ [0, 𝛿∗] there exists a constant 𝜀 > 0 such that infinitely
many graphs inH admit a macromolecular decomposition (𝐴, 𝐵) where 𝐴 is 𝛿-dense and

|𝐸 (𝐵) |
|𝐺 | ≤

1
𝜀
.

Since H is itself macromolecular, we know that 𝛿∗ > 0. Now pick a constant 𝜀 > 0, an infinite
set I ⊆ 𝐻, and a collection ((𝐴(𝐺), 𝐵(𝐺)) : 𝐺 ∈ I) such that 𝐴(𝐺) is 9

10𝛿∗-dense and |𝐸 (𝐵) ||𝐺 | ≤
1
𝜀

for all 𝐺 ∈ I. It suffices to show that (𝐴(𝐺) : 𝐺 ∈ I) does not contain an infinite subset that is
macromolecular.

Suppose for contradiction that there exists an infinite subset J ⊆ I and a constant 𝜂 > 0 such that
for each 𝐺 ∈ J , we can find an 𝜂-macromolecular decomposition (𝐴′(𝐺), 𝐵′(𝐺)) for 𝐴(𝐺). Note
that every 𝐺 ∈ J now trivially admits a macromolecular decomposition (𝐴′, 𝐵′′) where

|𝐸 (𝐵′′) |
|𝐺 | =

|𝐸 (𝐵) |
|𝐺 | +

|𝐸 (𝐵′) |
|𝐴| ≤

2
𝜀
+ 2
𝜂
.

We will show that for infinitely many choices of 𝐺 ∈ I, the graph 𝐴′ is 4
3𝛿∗-dense, contradicting

the maximality of 𝛿∗. Note that for all 𝐺 ∈ J ,

deg 𝐴 = deg𝐺 − 2 |𝐸 (𝐵) |
|𝐺 | ≥ deg𝐺 − 2

𝜀
,

and similarly,

deg 𝐴′ = deg 𝐴 − 2 |𝐸 (𝐵′) |
|𝑉 (𝐴) | ≥ deg 𝐴 − 2

𝜂
.

In particular, note that lim𝐺∈J |𝐴′| = ∞ because |𝐴′| ≥ deg 𝐴′ for all 𝐺, and lim𝐺∈H deg𝐺 = ∞.
So without loss of generality, let us assume that every 𝐺 ∈ I satisfies

|𝐴′| ≥ 16
𝜀𝛿∗
+ 16
𝜂𝛿∗

.
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For all 𝐺 ∈ I, since |𝐴′| must be a non-trivial divisor of |𝐴|, we have |𝐴′| ≤ 1
2 |𝐴|. Therefore,

deg 𝐴′

|𝐴′| ≥
deg𝐺 − 2

𝜀
− 2
𝜂

1
2 |𝐴|

≥ 2
deg 𝐴
|𝐴| −

𝛿∗
4
.

In particular, since 𝐴 is 9
10𝛿∗-dense, 𝐴′ must be 2 · 9

10𝛿∗ −
𝛿∗
2 = 4

3𝛿∗-dense, as required. □

Now Theorem 6.1.3 follows immediately from Theorem 6.1.1 and row𝐶 of our table. Theorem 6.1.5
follows from (𝐿, 1) and (𝐿, 2), since the set of non-unimodular infinite transitive graphs is a closed
and open subset of the set of all infinite transitive graphs. Theorem 6.1.7 follows from (𝐿, 3) and
(for the converse) (𝐿, 4) and (𝐿, 5). Theorem 6.1.11 follows from row 𝐸 .
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303C h a p t e r 7

EXISTENCE OF A PERCOLATION THRESHOLD ON FINITE TRANSITIVE
GRAPHS

Abstract
Let (𝐺𝑛) be a sequence of finite connected vertex-transitive graphs with volume tending to infinity.
We say that a sequence of parameters (𝑝𝑛) is a percolation threshold if for every 𝜀 > 0, the
proportion ∥𝐾1∥ of vertices contained in the largest cluster under bond percolation P𝐺𝑝 satisfies both

lim
𝑛→∞

P𝐺𝑛(1+𝜀)𝑝𝑛 (∥𝐾1∥ ≥ 𝛼) = 1 for some 𝛼 > 0, and

lim
𝑛→∞

P𝐺𝑛(1−𝜀)𝑝𝑛 (∥𝐾1∥ ≥ 𝛼) = 0 for all 𝛼 > 0.

We prove that (𝐺𝑛) has a percolation threshold if and only if (𝐺𝑛) does not contain a particular
infinite collection of pathological subsequences of dense graphs. Our argument uses an adaptation
of Vanneuville’s new proof of the sharpness of the phase transition for infinite graphs via couplings
[Van22b] together with our recent work with Hutchcroft on the uniqueness of the giant cluster
[EH21b].

7.1 Introduction
Given a graph 𝐺, build a random spanning subgraph 𝜔 by independently including each edge with
a fixed probability 𝑝. This model P𝐺𝑝 is called (Bernoulli bond) percolation. In their pioneering
work on random graphs, Erdős and Rényi [ER60] proved that when 𝐺 is the complete graph on 𝑛
vertices, percolation has a phase transition: as we increase 𝑝 from 1−𝜀

𝑛
to 1+𝜀

𝑛
for any fixed 𝜀 > 0,

a giant cluster suddenly emerges containing a positive proportion of the total vertices. Since then,
there has been much interest in establishing this phenomenon for more general classes of finite
graphs. However, as remarked in [Bol+10c], progress has been slow. In this paper, we solve this
problem for arbitrary finite graphs that are (vertex-)transitive, meaning that for any two vertices
𝑢 and 𝑣, there is a graph automorphism mapping 𝑢 to 𝑣. This includes all Cayley graphs, and in
particular, the complete graphs, hypercubes, and tori.

Our setting of percolation on finite transitive graphs places us at the intersection of two well-
established fields. Loosely speaking, one of these began in combinatorics with the work of Erdős
and Rényi [ER59; ER60], whereas the other began in mathematical physics with the work of
Broadbent and Hammersley [BH57a]. In the former, a subgraph of a finite graph is said to



percolate if its largest cluster contains a positive proportion of the total vertices, whereas in the
latter, a subgraph of an infinite transitive graph is said to percolate if its largest cluster is infinite.
This leads to two different definitions of what it means to have a percolation phase transition. Let
us start by making these precise.

Here are the graph-theoretic conventions we will be using throughout: The volume of a graph
𝐺 = (𝑉, 𝐸) is simply the number of vertices |𝑉 |. We label the clusters (i.e. connected components)
of a spanning subgraph of 𝐺 in decreasing order of volume by 𝐾1, 𝐾2, . . . . In a slight abuse of
notation, we also write 𝐾𝑣 for the cluster containing a given vertex 𝑣. The density of a cluster 𝐾 is
∥𝐾 ∥ := |𝐾 ||𝑉 | , the proportion of vertices contained in 𝐾 .

Now let (𝐺𝑛) be a sequence of finite graphs with volume tending to infinity. Following Bollobás,
Borgs, Chayes, and Riordan [Bol+10c], we say that (𝐺𝑛) has a percolation phase transition if there
is a sequence of parameters (𝑝𝑛) such that for every 𝜀 > 0, both1

lim
𝑛→∞

P𝐺𝑛(1+𝜀)𝑝𝑛 (∥𝐾1∥ ≥ 𝛼) = 1 for some 𝛼 > 0, and

lim
𝑛→∞

P𝐺𝑛(1−𝜀)𝑝𝑛 (∥𝐾1∥ ≥ 𝛼) = 0 for all 𝛼 > 0.

This is the subject of our paper: we characterise the existence of a percolation phase transition
for finite transitive graphs. Let us mention that the question of a percolation phase transition on
general finite graphs is attributed by the above authors of [Bol+10c] to Bollobás, Kohakayawa, and
Łuksak [BKŁ92].

On the other hand, when 𝐺 is an infinite (locally finite) transitive graph, we define the critical
parameter

𝑝𝑐 := sup
{
𝑝 : P𝐺𝑝 (there exists an infinite cluster) = 0

}
.

By Kolmogorov’s zero-one law, the probability of an infinite cluster under P𝐺𝑝 is zero when 𝑝 < 𝑝𝑐

and one when 𝑝 > 𝑝𝑐. So in a trivial sense, 𝐺 always has a percolation phase transition. The real
question is whether 𝑝𝑐 < 1. (The fact that 𝑝𝑐 > 0 is obvious by a branching argument.) So in this
context, we often say that 𝐺 has a percolation phase transition to mean that 𝑝𝑐 < 1. Hutchcroft and
Tointon [HT21d] dealt with an analogue of this question for finite transitive graphs with bounded
vertex degrees, i.e. the question of whether for a given sequence (𝐺𝑛) of such graphs, there exists
𝛿 > 0 such that P𝐺𝑛1−𝛿 (∥𝐾1∥ ≥ 𝛿) ≥ 𝛿 for all 𝑛. This is not the subject of our paper. To avoid
any possible confusion, when a sequence of finite graphs (𝐺𝑛) with volume tending to infinity has
a percolation phase transition in the above sense of [Bol+10c], we will instead say that it has a
percolation threshold, referring to the threshold sequence of parameters (𝑝𝑛) in the definition.

1We will use the convention that P𝐺𝑝 := P𝐺1 if 𝑝 > 1 and P𝐺𝑝 := P𝐺0 if 𝑝 < 0.
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The main result of this paper is Theorem 8.1.1 below, which characterises the existence of a
percolation threshold on a sequence of finite transitive graphs in terms of the presence of an infinite
collection of molecular subsequences. We discovered molecular sequences with Hutchcroft in
[EH21b] as the only obstacles to the supercritical giant cluster being unique. Interestingly, unlike
the usual story for percolation on a new family of graphs (as told in the introduction of [Bol+10c],
for example), uniqueness of the supercritical giant cluster came first, before the existence of
a percolation threshold, and the former is key to our proof of the latter. See Section 7.1 for
more background. Here we will just recall the definition of a molecular sequence before stating
Theorem 8.1.1.

Definition 7.1.1. Given an integer 𝑚 ≥ 2, we say that (𝐺𝑛) is 𝑚-molecular if it is dense, meaning
that lim inf𝑛→∞ |𝐸 (𝐺𝑛) ||𝑉 (𝐺𝑛) |2

> 0, and there is a constant 𝐶 < ∞ such that for every 𝑛, there is a set of
edges 𝐹𝑛 ⊆ 𝐸 (𝐺𝑛) satisfying the following conditions:

1. 𝐺𝑛\𝐹𝑛 has 𝑚 connected components;
2. 𝐹𝑛 is invariant under the action of Aut𝐺𝑛;
3. |𝐹𝑛 | ≤ 𝐶 |𝑉 (𝐺𝑛) |.

For example, the sequence of Cartesian products of complete graphs (𝐾𝑛□𝐾𝑚)𝑛≥1 is 𝑚-molecular.
We say that (𝐺𝑛) is molecular if it is 𝑚-molecular for some 𝑚 ≥ 2.

Theorem 7.1.2. A sequence of finite connected transitive graphs with volume tending to infinity has
a percolation threshold if and only if it contains an 𝑚-molecular subsequence for at most finitely
many integers 𝑚.

The condition that a sequence (𝐺𝑛) contains𝑚-molecular subsequences for infinitely many integers
𝑚 is extremely stringent. For example, we can rule it out if (𝐺𝑛) is either sparse or dense, i.e. the
edge density of 𝐺𝑛 either tends to zero or remains bounded away from zero. Indeed, it is clear
that a sparse sequence cannot contain any molecular subsequences, but also notice that since every
𝑚-molecular sequence (𝐺𝑛) satisfies lim sup𝑛→∞

|𝐸 (𝐺𝑛) |
|𝑉 (𝐺𝑛) |2

≤ 1
𝑚

, a dense sequence can contain an
𝑚-molecular subsequence for at most finitely many integers 𝑚. In particular, our result implies the
existence of a percolation threshold for the complete graphs, hypercubes, and tori. Our result is
new even under the additional hypothesis that the graphs have uniformly bounded vertex degrees2,
which is particularly relevant to percolation on infinite graphs.

2One could imagine a family of sequences of such graphs that each has a percolation threshold but such that the
(1+𝜀)-supercritical giant cluster density is not bounded away from zero over the entire family. Then by diagonalising,
we could construct a sequence without a percolation threshold.
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Most previous work on percolation on finite graphs treated specific sequences such as the complete
graphs, hypercubes, and tori. Indeed, many authors have remarked how little work has been done
on more general classes of finite graphs [ABS04c; Bor+05a; Bol+10c; Ben13b]. Alon, Benjamini,
and Stacey [ABS04c]3 studied percolation on expanders with bounded vertex degrees. In particular,
they proved that if each graph is 𝑑-regular for some fixed integer 𝑑 and has girth tending to infinity,
then the sequence has a (constant) percolation threshold at 𝑝𝑛 := 1/(𝑑 −1). Borgs, Chayes, van der
Hofstad, Slade, and Spencer [Bor+05a; Bor+05b] and Nachmias [Nac09] analysed the emergence
of a cluster with volume of order |𝑉 (𝐺𝑛) |2/3 for percolation on finite transitive graphs satisfying
the triangle condition or a random walk return-probability condition, respectively, both of which
enforce mean-field behaviour. Frieze, Krivelevich, and Martin [FKM04] proved that if a sequence
of finite regular graphs is pseudorandom (an eigenvalue condition forcing the graph to be like the
complete graph), then it has a percolation threshold at 𝑝𝑛 := 1/deg(𝐺𝑛) where deg(𝐺𝑛) is the vertex
degree of the 𝑛th graph. Bollobás, Borgs, Chayes, and Riordan [Bol+10c] studied percolation on
arbitrary sequences of finite graphs (𝐺𝑛) that are dense, meaning that lim inf𝑛→∞ |𝐸 (𝐺𝑛) ||𝑉 (𝐺𝑛) |2

> 0. The
following theorem from their paper will be used in our argument.

Theorem 7.1.3 (Bollobás, Borgs, Chayes, Riordan 2010). Let (𝐺𝑛) be a sequence of finite connected
graphs with volume tending to infinity. Suppose that (𝐺𝑛) is dense. For each 𝑛, let 𝜆𝑛 be the largest
eigenvalue of the adjacency matrix of 𝐺𝑛. Then (1/𝜆𝑛)𝑛≥1 is a percolation threshold for (𝐺𝑛).

Our proof of Theorem 8.1.1 does not build a percolation threshold by defining a natural candidate
for the critical parameter of a finite graph in terms of, say, its vertex degrees or the largest eigenvalue
of the adjacency matrix. In our setting, where we have no quantitative assumptions, we are forced
to use a softer and more indirect approach. In particular, our proof of Theorem 8.1.1 says little
about the rate at which the percolation probabilities tend to zero or to one. That said, as part of
our proof we do obtain explicit lower bounds on the supercritical giant cluster density, which are
analogous to the well-known mean-field lower bound for percolation on infinite graphs.

Corollary 7.1.4. Let (𝐺𝑛) be a sequence of finite connected transitive graphs with volume tending
to infinity that does not contain an 𝑚-molecular subsequence for any 𝑚 > 𝑀 , where 𝑀 is some
positive integer. Let (𝑝𝑛) be a percolation threshold, which exists by Theorem 8.1.1. Then for every
𝜀 > 0,

P𝐺𝑛(1+𝜀)𝑝𝑛

(
∥𝐾1∥ ≥

𝜀

𝑀 (1 + 𝜀) − 𝑜(1)
)
= 1 − 𝑜(1) as 𝑛→∞.

3Here Alon, Benjamini, and Stacey also make several conjectures about percolation on finite transitive graphs,
which may interest the reader.

306



Moreover, by simply bounding a percolation threshold (𝑝𝑛) below by the threshold for being
dominated by a subcritical branching process and above by the threshold for connectivity, we
obtain the following optimal bounds on its location.

Proposition 7.1.5. Let (𝐺𝑛) be a sequence of finite connected transitive graphs with volume tending
to infinity. Let 𝑑𝑛 denote the vertex degree of 𝐺𝑛. If (𝐺𝑛) has a percolation threshold (𝑝𝑛), then it
satisfies

(1 − 𝑜(1)) 1
𝑑𝑛 − 1

≤ 𝑝𝑛 ≤ (2 + 𝑜(1))
log |𝑉 (𝐺𝑛) |

𝑑𝑛
as 𝑛→∞.

When (𝐺𝑛) has a percolation threshold (𝑝𝑛) and converges locally to an infinite graph𝐺, one might
ask how the location of (𝑝𝑛) relates to the critical parameter 𝑝𝑐 and the uniqueness threshold 𝑝𝑢
of 𝐺. See Remark 1.6 in [EH21b] for a discussion of this question. Let us simply note that (𝑝𝑛)
typically (but not always) converges to 𝑝𝑐. For example, this is the case when (𝐺𝑛) is a sequence
of transitive expanders and 𝐺 is nonamenable [BNP11b].

We conclude this discussion by explaining how our result relates to the general theory of sharp
thresholds. Consider a large collection of independent random bits 𝑏 := (𝑏𝑖)1≤𝑖≤𝑛 ∈ {0, 1}𝑛 each
sampled according to the Bernoulli(𝑝) distribution for some 𝑝 ∈ [0, 1]. For many natural monotone
events 𝐴 ⊆ {0, 1}𝑛, the probability that 𝑏 belongs to 𝐴 has a sharp threshold: it increases from 𝑜(1)
to 1−𝑜(1) as 𝑝 increases across an interval of width 𝑜(𝑝(1− 𝑝)). There is a general philosophy that
a sharp threshold occurs if and only if 𝐴 is sufficiently symmetric/global. For example, the event
that the Erdős-Rényi random graph is connected has a sharp threshold, but the event that it contains
a triangle and the event that a particular edge is present do not. Theorem 8.1.1 can be understood as
a kind of extension of this principle to the existence of a phase transition in a statistical mechanics
model. Indeed, Theorem 8.1.1 says that "having a giant cluster" typically has a threshold around
a critical parameter 𝑝 with a threshold width4 𝑜(𝑝) whenever the underlying graph is transitive,
which is a symmetry/homogeneity condition. However, we would like to emphasise that "having a
giant cluster" is not a well-defined event, so it does not fall within the usual scope of sharp-threshold
techniques.

Molecular sequences and the supercritical phase
Let (𝐺𝑛) be a sequence of finite connected transitive graphs with volume tending to infinity. If
(𝐺𝑛) has a percolation threshold (𝑝𝑛), then a sequence of parameters (𝑞𝑛) is called supercritical if

4The threshold width fails to be 𝑜(1 − 𝑝) even for simple examples such as the sequence of cycles.
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there exist 𝜀 > 0 and 𝑁 < ∞ such that for all 𝑛 ≥ 𝑁 satisfying 𝑞𝑛 < 1, we have

𝑞𝑛 ≥ (1 + 𝜀)𝑝𝑛.

As in [HT21d; EH21b], we generalise this definition to the situation that there may or may not be
a percolation threshold by saying that a sequence of parameters (𝑞𝑛) is supercritical if there exist
𝜀 > 0 and 𝑁 < ∞ such that for all 𝑛 ≥ 𝑁 satisfying 𝑞𝑛 < 1, we have

P(1−𝜀)𝑞𝑛 (∥𝐾1∥ ≥ 𝜀) ≥ 𝜀.

(The ‘𝑞𝑛 < 1’ condition is a technicality that guarantees that (𝐺𝑛) always admits at least one
supercritical sequence of parameters, namely the sequence (𝑝𝑛) with 𝑝𝑛 := 1 for all 𝑛.)

In our work with Hutchcroft [EH21b], we showed that not having a molecular subsequence is the
geometric counterpart to the supercritical giant cluster being unique. Here is the precise result
from that paper.

Definition 7.1.6. We say that (𝐺𝑛) has the supercritical uniqueness property if for every supercrit-
ical sequence of parameters (𝑞𝑛),

lim
𝑛→∞

P𝐺𝑛𝑞𝑛 (∥𝐾2∥ ≥ 𝛼) = 0 for all 𝛼 > 0.

Theorem 7.1.7 (Easo and Hutchcroft, 2021). A sequence of finite connected transitive graphs with
volume tending to infinity has the supercritical uniqueness property if and only if it does not contain
a molecular subsequence.

A crucial step in the proof of the above theorem is that if (𝐺𝑛) does not contain a molecular
subsequence, then it has the sharp-density property. To prove Theorem 8.1.1, we only need to
recall that the sharp-density property guarantees that for every density 𝛼 ∈ (0, 1], constant 𝜀 > 0,
and supercritical sequence of parameters (𝑝𝑛),

lim inf
𝑛→∞

P𝐺𝑛𝑝𝑛 (∥𝐾1∥ ≥ 𝛼) > 0 implies lim
𝑛→∞

P𝐺𝑛(1+𝜀)𝑝𝑛 (∥𝐾1∥ ≥ 𝛼) = 1.

This implies that the event that “there exists a cluster with density at least 𝛼” undergoes a sharp
threshold for each fixed 𝛼. Notice that this does not immediately imply the existence of a percolation
threshold. One obstruction could be how these thresholds are spaced: one could imagine that the
𝛼-density threshold always occurs at

(
𝛼√
𝑛

)
𝑛≥1

, say, in which case there would be no percolation
threshold. The implication is not clear even if we additionally require that the 𝐺𝑛’s have uniformly
bounded vertex degrees: see our footnote on page 3, and see Conjecture 1.2 in [Ben+12] for an
analogous situation in the context of expanders.
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Proof strategy
Most of our work goes into showing that if (𝐺𝑛) does not contain a molecular subsequence, then
it has a percolation threshold. In this section, we outline this step. To extend this result to the
case that (𝐺𝑛) contains an 𝑚-molecular subsequence for at most finitely many integers 𝑚, we apply
the same argument to a molecular sequence’s constituent sequence of atoms. We will deduce that
converse as an immediate consequence of a corollary from [EH21b].

Let (𝐺𝑛) be a sequence of finite connected transitive graphs with volume tending to infinity.
Suppose we want to prove that (𝐺𝑛) has a percolation threshold. Although "having a giant cluster"
is not an event, we could try taking the event {∥𝐾1∥ ≥ 𝛿𝑛} as a proxy, where (𝛿𝑛) is a sequence
tending to zero very slowly. Then as a candidate for the percolation threshold, we could take (𝑝𝑛)
where each 𝑝𝑛 is defined to be the unique parameter satisfying

P𝐺𝑛𝑝𝑛 (∥𝐾1∥ ≥ 𝛿𝑛) =
1
2
.

As a sanity check, notice that if (𝐺𝑛) does have a percolation threshold, then by a diagonal argument,
there is a percolation threshold (𝑝𝑛) that arises in this way.

To prove that our candidate (𝑝𝑛) is in fact a percolation threshold, we need two ingredients. The
first ingredient is that the emergence of a cluster of any constant density has a threshold about a
critical parameter 𝑝 with a threshold width 𝑜(𝑝). This immediately handles the subcritical half
of our task: since lim𝑛→∞ 𝛿𝑛 = 0, it guarantees that lim𝑛→∞ P𝐺𝑛(1−𝜀)𝑝𝑛 (∥𝐾1∥ ≥ 𝛼) = 0 for every
𝛼, 𝜀 > 0. As mentioned in Section 7.1, the existence of these constant-density thresholds is implied
by the sharp-density property, which holds whenever (𝐺𝑛) has no molecular subsequences.

The second ingredient is a universal lower bound on the supercritical giant cluster density. This
says that for every 𝜀 > 0, there exists 𝛿 > 0 such that for every sequence of parameters (𝑝𝑛), if
lim inf𝑛→∞ E𝐺𝑛𝑝𝑛 ∥𝐾1∥ > 0, then lim inf𝑛→∞ E𝐺𝑛(1+𝜀)𝑝𝑛 ∥𝐾1∥ ≥ 𝛿. Together with the first ingredient,
this ensures that by taking (𝛿𝑛) to decay slowly enough, for every 𝜀 > 0, there exists 𝛿 > 0 with
lim𝑛→∞ P𝐺𝑛(1+𝜀)𝑝𝑛 (∥𝐾1∥ ≥ 𝛿) = 1. We will prove that this too holds whenever (𝐺𝑛) has no molecular
subsequences.

This second ingredient is reminiscent of the mean-field lower bound from the study of percolation
on infinite graphs. This says, for example, that every vertex 𝑣 in an infinite transitive graph 𝐺
satisfies

P𝐺(1+𝜀)𝑝𝑐 (𝐺) (𝐾𝑣 is infinite) ≥ 𝜀

1 + 𝜀 .

Together with the exponential decay of |𝐾𝑣 | throughout the subcritical phase, this forms what is
known as the sharpness of the phase transition for percolation on infinite graphs. This foundational
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result was first proved in [Men86; AB87a; CC87] but has recently been reproved by more modern
arguments in [DT16c; DRT19; Hut20d; Van22b]. The main obstacle to adapting these proofs to
our finite setting is that they concern the event that the cluster at a vertex reaches a certain distance
or exceeds a certain volume, whereas we care about the cluster’s volume as a proportion of the total
vertices.

Moreover, while the sharpness of the phase transition is completely general —- applying to all
infinite transitive graphs — there is no universal lower bound on the supercritical giant cluster
density that applies to every finite transitive graph5. So to adapt one of these proofs to our setting,
we need to include information about the underlying sequence of graphs in the argument itself, for
example, that it has the supercritical uniqueness property, or equivalently, that it has no molecular
subsequences.

Very recently, Vanneuville [Van22b] gave a new proof of the sharpness of the phase transition
via couplings. Unlike previous arguments, this one does not rely on a differential inequality.
Vanneuville’s key insight was that by using an exploration process, we can upper bound the effect
of conditioning on a certain decreasing event, namely the event that a vertex’s cluster does not reach
a certain distance, by the effect of slightly decreasing the percolation parameter. Our strategy is to
apply this argument but with the event that a vertex’s cluster has small density.

Rather than building an exact monotone coupling of the conditioned percolation measure and the
percolation measure with a smaller parameter, which is impossible, we will construct a coupling
that is monotone outside of an error event. Then under the additional hypothesis that (𝐺𝑛) has the
supercritical uniqueness property, we will prove that this error event has probability tending to zero.
Just as Vanneuville’s coupling immediately yields the mean-field lower bound, our approximately
monotone coupling will tell us that for every sequence of parameters (𝑝𝑛) and every constant 𝜀 > 0,
if lim inf𝑛→∞ E𝐺𝑛𝑝𝑛 ∥𝐾1∥ > 0, then

lim inf
𝑛→∞

E𝐺𝑛(1+𝜀)𝑝𝑛 ∥𝐾1∥ ≥
𝜀

1 + 𝜀 .

Let us mention that for this step — establishing a universal lower bound on the supercritical giant
cluster density when we have the supercritical uniqueness property — it is possible to instead
adapt Hutchcroft’s proof of sharpness from [Hut20d], rather than Vanneuville’s new proof. The
adaptation that we found of Hutchcroft’s proof is more involved than the argument presented here.
For example, it invokes the universal tightness result from [Hut21d]. Invoking this auxiliary result

5Consider the sequences (𝐾𝑛□𝐶𝑚)𝑛≥1 for each 𝑚 ≥ 3, where 𝐾𝑛 is a complete graph and 𝐶𝑚 is a cycle.
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also has the consequence that the universal lower bound we ultimately obtain is weaker than the
mean-field bound established here.

7.2 The coupling lemma
In this section, we control the effect on percolation of conditioning on the event that a vertex’s
cluster has small density. In particular, we prove that the conditioned measure approximately
stochastically dominates percolation of a slightly smaller parameter. As mentioned in Section 7.1,
the argument in this section is inspired by [Van22b].

Lemma 7.2.1. Let 𝐺 = (𝑉, 𝐸) be a finite connected transitive graph with a distinguished vertex 𝑜.
Let 𝑝 ∈ (0, 1) be a parameter and 𝛼 ∈ (0, 1) a density. Define

𝜃 := E𝑝 ∥𝐾1∥ , ℎ := P𝑝
(
∥𝐾1∥ < 𝛼 or ∥𝐾2∥ ≥

𝛼

2

)
, 𝛿 :=

2ℎ1/2

1 − 𝜃 − ℎ ,

and assume that 𝜃 + ℎ < 1 (so that 𝛿 is well-defined and positive). Then there is an event 𝐴 with
P𝑝 (𝐴 | ∥𝐾𝑜∥ < 𝛼) ≤ ℎ1/2 such that

P(1−𝜃−𝛿)𝑝 ≤st P𝑝 (𝜔 ∪ 1𝐴 = · | ∥𝐾𝑜∥ < 𝛼) ,

where ≤st denotes stochastic domination with respect to the usual partial order ⪯ on {0, 1}𝐸 , and
1𝐴 denotes the random configuration with every edge open on 𝐴 and every edge closed on 𝐴𝑐.

Proof. To lighten notation, set P̂ := P𝑝 ( · | ∥𝐾𝑜∥ < 𝛼) and 𝑞 := (1 − 𝜃 − 𝛿) 𝑝. Our goal is to
construct an approximately monotone coupling of P𝑞 and P̂. We will build this in the obvious way:
by fixing an exploration process and building samples of P𝑞 and P̂ in terms of a common collection
of 𝐸-indexed uniform random variables. The rest of the proof consists in controlling the failure of
this coupling to be monotone.

Fix an enumeration of the edge set 𝐸 . Recall the following standard method for exploring a
configuration 𝜔 from 𝑜: Start with all edges unrevealed. Iteratively reveal the unrevealed edge of
smallest index that is connected to 𝑜 by an open path of revealed edges until there are none. Then
iteratively reveal the unrevealed edge of smallest index from among all remaining unrevealed edges
until there are none. Let 𝜌1, . . . , 𝜌 |𝐸 | be the sequence of edges as they are revealed by this process.
Let (F𝑡)0≤𝑡≤|𝐸 | be the filtration associated to this exploration, i.e.

F𝑡 := 𝜎
(
𝜔𝜌1 , . . . , 𝜔𝜌𝑡

)
.

We now use this exploration to construct a coupling of P𝑞 and P̂. Let (𝑈𝑒)𝑒∈𝐸 be a collection
of independent uniform-[0,1] random variables. Recursively define 𝜔𝜌𝑡 := 1𝑈𝜌𝑡 ≤P̂(𝜌𝑡 open |F𝑡−1) for
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every 𝑡 to obtain a configuration 𝜔 with law P̂, and simply take
(
1𝑈𝑒≤𝑞

)
𝑒∈𝐸 for a configuration with

law P𝑞. This coupling is monotone (in the direction we want) on the edges 𝜌1, 𝜌2, . . . , 𝜌𝜏fail where
𝜏fail is the stopping time defined by

𝜏fail := inf{𝑡 : P̂ (𝜌𝑡+1 open | F𝑡) < 𝑞},

with the convention that inf ∅ := |𝐸 |. So
(
1𝑈𝑒≤𝑞

)
𝑒∈𝐸 ⪯ 𝜔 almost surely when 𝜏fail = |𝐸 |. Since(

1𝑈𝑒≤𝑞
)
𝑒∈𝐸 ⪯ 1𝜏fail< |𝐸 | holds trivially when 𝜏fail < |𝐸 |, we know that

P𝑞 ≤st P̂
(
𝜔 ∪ 1𝜏fail< |𝐸 | = ·

)
.

So it suffices to verify that P̂ (𝜏fail < |𝐸 |) ≤ ℎ1/2. By definition of 𝜏fail, we have the upper bound

P̂
(
𝜌𝜏fail+1 open | F𝜏fail

)
< 𝑞 a.s. when 𝜏fail < |𝐸 |. (7.2.1)

Our first step is to prove a complementary lower bound.

Say that an edge 𝑒 is pivotal if ∥𝐾𝑜 (𝜔\{𝑒})∥ < 𝛼 but ∥𝐾𝑜 (𝜔 ∪ {𝑒})∥ ≥ 𝛼. If 𝑒 is open and pivotal,
then ∥𝐾𝑜∥ ≥ 𝛼, which is P̂-almost surely impossible. So

P̂
(
𝜌𝜏fail+1 open | F𝜏fail

)
= P̂

(
𝜌𝜏fail+1 open and not pivotal | F𝜏fail

)
a.s. when 𝜏fail < |𝐸 | . (7.2.2)

Suppose we reveal the edges 𝜌1, . . . , 𝜌𝜏fail and find that 𝜏fail < |𝐸 |. Note that 𝜌𝜏fail+1 is now almost
surely determined. To finish building a sample of P̂, rather than continuing our exploration process,
we could first sample every unrevealed edge except 𝜌𝜏fail+1, then sample 𝜌𝜏fail+1 itself. The first
stage will determine whether 𝜌𝜏fail+1 is pivotal. If it is not pivotal, then conditioning on the event
{∥𝐾𝑜∥ < 𝛼} will have no effect in the second stage, i.e. the conditional probablity that 𝜌𝜏fail+1 is
open will simply be 𝑝. So we can rewrite eq. (7.2.2) as

P̂
(
𝜌𝜏fail+1 open | F𝜏fail

)
= 𝑝P̂

(
𝜌𝜏fail+1 not pivotal | F𝜏fail

)
= 𝑝

(
1 − P̂

(
𝜌𝜏fail+1 pivotal | F𝜏fail

) )
a.s. when 𝜏fail < |𝐸 | .

(7.2.3)

As in our argument for eq. (7.2.2), since it is P̂-almost surely impossible for an edge to be both
open and pivotal, this further implies that

P̂
(
𝜌𝜏fail+1 open | F𝜏fail

)
= 𝑝

(
1 − P̂

(
𝜌𝜏fail+1 closed and pivotal | F𝜏fail

) )
a.s. when 𝜏fail < |𝐸 | .

(7.2.4)

By combining inequality eq. (7.2.1) with eq. (7.2.3), we deduce that

P̂
(
𝜌𝜏fail+1 pivotal | F𝜏fail

)
> 0 a.s. when 𝜏fail < |𝐸 | .
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So when 𝜏fail < |𝐸 |, we can almost surely label the endpoints of 𝜌𝜏fail+1 by 𝑣− and 𝑣+ such that 𝑣−
is connected to 𝑜 by a path of open edges among the revealed edges {𝜌1, . . . , 𝜌𝜏fail}, whereas 𝑣+ is
not.

Consider a configuration𝜔 with 𝜏fail < |𝐸 | in which 𝜌𝜏fail+1 is closed and pivotal. By the pigeonhole
principle, since



𝐾𝑜 (𝜔 ∪ {𝜌𝜏fail+1})


 ≥ 𝛼,

𝐾𝑣−

 ≥ 𝛼2 or



𝐾𝑣+

 ≥ 𝛼2 . (7.2.5)

Since closing 𝜌𝜏fail+1 disconnects 𝐾𝑜 (𝜔 ∪ {𝜌𝜏fail+1}), the endpoints 𝑣− and 𝑣+ belong to distinct
clusters of 𝜔. In particular, since 𝑣− ∈ 𝐾𝑜, we know that 𝑣+ ∉ 𝐾𝑜. So eq. (7.2.5) implies that

∥𝐾𝑜∥ ≥
𝛼

2
or



𝐾𝑣+ (𝜔\𝐾𝑜)

 ≥ 𝛼2 ,
where 𝐾𝑜 := 𝐾𝑜 ∪ 𝜕𝐾𝑜 and 𝜕𝐾𝑜 denotes the edge boundary of 𝐾𝑜. Now 𝜔 was arbitrary, so by a
union bound,

P̂
(
𝜌𝜏fail+1 closed and pivotal | F𝜏fail

)
≤ P̂

(
∥𝐾𝑜∥ ≥

𝛼

2
| F𝜏fail

)
+ P̂

(

𝐾𝑣+ (𝜔\𝐾𝑜)

 ≥ 𝛼2 | F𝜏fail

)
a.s. when 𝜏fail < |𝐸 | .

(7.2.6)

To bound the first term in inequality (7.2.6), notice that ∥𝐾𝑜∥ ≥ 𝛼
2 and ∥𝐾𝑜∥ < 𝛼 together imply

the bad event 𝐵 := {∥𝐾1∥ < 𝛼 or ∥𝐾2∥ ≥ 𝛼
2 }. So because ∥𝐾𝑜∥ < 𝛼 occurs P̂-almost surely,

P̂
(
∥𝐾𝑜∥ ≥

𝛼

2
| F𝜏fail

)
≤ P̂

(
𝐵 | F𝜏fail

)
a.s. when 𝜏fail < |𝐸 | . (7.2.7)

To bound the second term in inequality (7.2.6), define a new stopping time

𝜏moat := max{𝑡 : 𝜌𝑡 ∈ 𝐾𝑜}.

(This is defined with respect to the standard exploration described in the second paragraph of the
current proof environment, not the modified exploration mentioned below eq. (7.2.2).) Just after we
reveal 𝜌𝜏moat , since conditioning on the event {∥𝐾𝑜∥ < 𝛼} no longer has any effect, the distribution
of the configuration on the unrevealed edges is simply

P̂
(
𝜔|

𝐸\𝐾𝑜 = · | F𝜏moat

)
= P𝐺\𝐾𝑜𝑝 ≤st P𝑝 a.s. (7.2.8)

When 𝜏fail < |𝐸 |, we showed that 𝜌𝜏fail+1 almost surely has an endpoint belonging to 𝐾𝑜, namely 𝑣−.
So 𝜏fail < |𝐸 | implies 𝜏fail < 𝜏moat almost surely. By applying this observation, inequality (7.2.8),
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and transitivity, we obtain

P̂
(

𝐾𝑣+ (𝜔\𝐾𝑜)

 ≥ 𝛼2 | F𝜏fail

)
= Ê

[
P̂

(

𝐾𝑣+ (𝜔\𝐾𝑜)

 ≥ 𝛼2 | F𝜏moat

)
| F𝜏fail

]
≤ Ê

[
P𝑝

(

𝐾𝑣+

 ≥ 𝛼2 )
| F𝜏fail

]
= P𝑝

(
∥𝐾𝑜∥ ≥

𝛼

2

)
a.s. when 𝜏fail < |𝐸 | .

When ∥𝐾𝑜∥ ≥ 𝛼
2 , we must have that 𝑜 ∈ 𝐾1 or ∥𝐾2∥ ≥ 𝛼

2 . So by a union bound,

P̂
(

𝐾𝑣+ (𝜔\𝐾𝑜)

 ≥ 𝛼2 | F𝜏fail

)
≤ P𝑝 (𝑜 ∈ 𝐾1) + P𝑝

(
∥𝐾2∥ ≥

𝛼

2

)
≤ 𝜃 + ℎ a.s. when 𝜏fail < |𝐸 | ,

(7.2.9)

where ℎ := P𝑝 (𝐵) and 𝜃 := E𝑝 ∥𝐾1∥, which satisfies 𝜃 = P𝑝 (𝑜 ∈ 𝐾1) by transitivity.

Plugging inequalities (7.2.6), (7.2.7) and (7.2.9) into eq. (7.2.4) gives a lower bound on P̂
(
𝜌𝜏fail+1 open | F𝜏fail

)
when 𝜏fail < |𝐸 |. By contrasting this with upper bound ?? and expanding the definition of 𝑞, we
deduce that

𝑝

(
1 − 𝜃 − ℎ − P̂

(
𝐵 | F𝜏fail

) )
≤ 𝑝

(
1 − 𝜃 − 2ℎ1/2

1 − 𝜃 − ℎ

)
a.s. when 𝜏fail < |𝐸 | .

In particular,

P̂
(
𝐵 | F𝜏fail

)
≥ ℎ1/2

1 − 𝜃 − ℎ a.s. when 𝜏fail < |𝐸 | .

By the law of total expectation, we know that Ê
[
P̂

(
𝐵 | F𝜏fail

) ]
= P̂ (𝐵). So by Markov’s inequality,

P̂ (𝜏fail < |𝐸 |) ≤ P̂
(
P̂

(
𝐵 | F𝜏fail

)
≥ ℎ1/2

1 − 𝜃 − ℎ

)
≤ 1 − 𝜃 − ℎ

ℎ1/2 P̂ (𝐵) . (7.2.10)

By definition of P̂ and ℎ, we have the trivial bound

P̂ (𝐵) ≤
P𝑝 (𝐵)

P𝑝 (∥𝐾𝑜∥ < 𝛼)
=

ℎ

1 − P𝑝 (∥𝐾𝑜∥ ≥ 𝛼)
.

If ∥𝐾𝑜∥ ≥ 𝛼, then 𝑜 ∈ 𝐾1 or ∥𝐾2∥ ≥ 𝛼. So similarly to the argument for inequality (7.2.9), a union
bound gives P̂ (𝐵) ≤ ℎ

1−𝜃−ℎ . Plugging this into inequality (7.2.10) yields P̂ (𝜏fail < |𝐸 |) ≤ ℎ1/2, as
required. □

7.3 Characterising the existence of a percolation threshold
In this section, we prove Theorem 8.1.1 and Corollary 7.1.4. Our first step is to establish a
mean-field lower bound on the supercritical giant cluster density for sequences of graphs without
molecular subsequences. This is where we use the coupling lemma from Section 7.2.
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Lemma 7.3.1. Let (𝐺𝑛) be a sequence of finite connected transitive graphs with volume tending to
infinity that does not contain a molecular subsequence. Fix 𝜀 > 0 and let (𝑝𝑛) be any sequence of
parameters. If lim inf𝑛→∞ E𝐺𝑛𝑝𝑛 ∥𝐾1∥ > 0, then

lim inf
𝑛→∞

E𝐺𝑛(1+𝜀)𝑝𝑛 ∥𝐾1∥ ≥
𝜀

1 + 𝜀 .

Proof. Suppose for contradiction that lim inf𝑛→∞ E𝐺𝑛𝑝𝑛 ∥𝐾1∥ > 0 but lim inf𝑛→∞ E𝐺𝑛(1+𝜀)𝑝𝑛 ∥𝐾1∥ <
𝜀

1+𝜀 . By passing to a suitable subsequence, we may assume that

lim sup
𝑛→∞

E𝐺𝑛(1+𝜀)𝑝𝑛 ∥𝐾1∥ <
𝜀

1 + 𝜀 . (7.3.1)

Pick 𝛼 > 0 such that E𝐺𝑛𝑝𝑛 ∥𝐾1∥ ≥ 2𝛼 for all sufficiently large 𝑛. By Markov’s inequality applied to
1 − ∥𝐾1∥, this implies that P𝐺𝑛𝑝𝑛 (∥𝐾1∥ ≥ 𝛼) ≥ 𝛼 for all sufficiently large 𝑛. Now for each 𝑛, define

𝜃𝑛 := E𝐺𝑛(1+𝜀)𝑝𝑛 ∥𝐾1∥ and ℎ𝑛 := P𝐺𝑛(1+𝜀)𝑝𝑛

(
∥𝐾1∥ < 𝛼 or ∥𝐾2∥ ≥

𝛼

2

)
.

Since (𝐺𝑛) does not contain a molecular subsequence, it has the sharp-density and supercritical
uniqueness properties from [EH21b]. (See Section 7.1 for more information.) So the fact that
lim inf𝑛→∞ P𝐺𝑛𝑝𝑛 (∥𝐾1∥ ≥ 𝛼) > 0 implies that

lim
𝑛→∞

P𝐺𝑛(1+𝜀)𝑝𝑛 (∥𝐾1∥ < 𝛼) = 0 and lim
𝑛→∞

P𝐺𝑛(1+𝜀)𝑝𝑛

(
∥𝐾2∥ ≥

𝛼

2

)
= 0.

So by a union bound, lim𝑛→∞ ℎ𝑛 = 0. Together with inequality (7.3.1), this guarantees that for
all sufficiently large 𝑛, we have 𝜃𝑛 + ℎ𝑛 < 1, allowing us to apply Lemma 7.2.1. By passing to a
suitable tail of (𝐺𝑛), we may assume that this holds for every 𝑛. So for every 𝑛, Lemma 7.2.1 says
that there is an event 𝐴𝑛 ⊆ {0, 1}𝐸 (𝐺𝑛) with

P𝐺𝑛(1+𝜀)𝑝𝑛 (𝐴𝑛 | ∥𝐾𝑜∥ < 𝛼) ≤ ℎ
1/2
𝑛 (7.3.2)

such that
P𝐺𝑛(

1−𝜃𝑛−
2ℎ1/2
𝑛

1−𝜃𝑛−ℎ𝑛

)
(1+𝜀)𝑝𝑛

≤st P
𝐺𝑛
(1+𝜀)𝑝𝑛

(
𝜔 ∪ 1𝐴𝑛 = · | ∥𝐾𝑜∥ < 𝛼

)
. (7.3.3)

When P𝐺𝑛𝑝𝑛 (∥𝐾1∥ ≥ 𝛼) ≥ 𝛼, it follows by transitivity that P𝐺𝑛𝑝𝑛 (∥𝐾𝑜∥ ≥ 𝛼) ≥ 𝛼2. On the other
hand, by inequalities (7.3.2) and (7.3.3), we know that

P𝐺𝑛(
1−𝜃𝑛−

2ℎ1/2
𝑛

1−𝜃𝑛−ℎ𝑛

)
(1+𝜀)𝑝𝑛

(∥𝐾𝑜∥ ≥ 𝛼) ≤ ℎ1/2
𝑛 .
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So by taking 𝑛 sufficiently large that both P𝐺𝑛𝑝𝑛 (∥𝐾1∥ ≥ 𝛼) ≥ 𝛼 and ℎ1/2
𝑛 < 𝛼2, we can force(

1 − 𝜃𝑛 −
2ℎ1/2

𝑛

1 − 𝜃𝑛 − ℎ𝑛

)
(1 + 𝜀)𝑝𝑛 ≤ 𝑝𝑛. (7.3.4)

However, by inequality (7.3.1) and the fact that lim𝑛→∞ ℎ𝑛 = 0,

1 − 𝜃𝑛 −
2ℎ1/2

𝑛

1 − 𝜃𝑛 − ℎ𝑛
>

1
1 + 𝜀

for all sufficiently large 𝑛, contradicting inequality (7.3.4). □

By the sharp-density property, we can convert this mean-field lower bound that holds in expectation
into one that holds with high probability.

Lemma 7.3.2. Let (𝐺𝑛) be a sequence of finite connected transitive graphs with volume tending to
infinity that does not contain a molecular subsequence. Fix 𝜀 > 0 and let (𝑝𝑛) be any sequence of
parameters. If lim inf𝑛→∞ E𝐺𝑛𝑝𝑛 ∥𝐾1∥ > 0, then

P𝐺𝑛(1+𝜀)𝑝𝑛

(
∥𝐾1∥ ≥

𝜀

1 + 𝜀 − 𝑜(1)
)
= 1 − 𝑜(1) as 𝑛→∞.

Proof. Let 𝛿 ∈ (0, 𝜀) be any constant. By Lemma 7.3.1,

lim inf
𝑛→∞

E𝐺𝑛(1+𝜀−𝛿)𝑝𝑛 ∥𝐾1∥ ≥
𝜀 − 𝛿

1 + 𝜀 − 𝛿 .

So by Markov’s inequality applied to 1 − ∥𝐾1∥,

lim inf
𝑛→∞

P𝐺𝑛(1+𝜀−𝛿)𝑝𝑛

(
∥𝐾1∥ ≥

𝜀 − 𝛿
1 + 𝜀

)
≥ 𝛿(𝜀 − 𝛿)
(1 + 𝛿) (1 + 𝜀 − 𝛿) > 0. (7.3.5)

Since (𝐺𝑛) does not contain a molecular subsequence, it has the sharp-density property from
[EH21b]. (Recall our discussion in Section 7.1.) So inequality (7.3.5) implies that

lim
𝑛→∞

P𝐺𝑛(1+𝜀)𝑝𝑛

(
∥𝐾1∥ ≥

𝜀 − 𝛿
1 + 𝜀

)
= 1.

Since 𝛿 was arbitrary, the result now follows by a diagonal argument. □

Our next step is to extend a version of this lower bound to a simple kind of molecular sequence.
The idea is to break the graphs in the sequence into their constituent atoms then apply Lemma 7.3.2
to the sequence of atoms.
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Lemma 7.3.3. Let (𝐺𝑛) be a sequence of finite connected transitive graphs with volume tend-
ing to infinity. Assume that (𝐺𝑛) is 𝑚-molecular for some 𝑚 ≥ 2 but does not contain a 𝑘-
molecular subsequence for any 𝑘 > 𝑚. Fix 𝜀 > 0 and let (𝑝𝑛) be any sequence of parameters. If
lim inf𝑛→∞ E𝐺𝑛𝑝𝑛 ∥𝐾1∥ > 0, then

P𝐺𝑛(1+𝜀)𝑝𝑛

(
∥𝐾1∥ ≥

𝜀

𝑚(1 + 𝜀) − 𝑜(1)
)
= 1 − 𝑜(1) as 𝑛→∞.

Proof. By definition of an 𝑚-molecular sequence, for every 𝑛, we can pick a set of edges 𝐹𝑛 ⊆
𝐸 (𝐺𝑛) such that 𝐹𝑛 is Aut𝐺𝑛-invariant, 𝐺𝑛\𝐹𝑛 has 𝑚 connected components, and |𝐹𝑛 |

|𝑉 (𝐺𝑛) | is
uniformly bounded. Let 𝐴𝑛 denote one of the connected components of 𝐺𝑛\𝐹𝑛, which are all
necessarily isomorphic to each other and transitive. Notice that (𝐴𝑛) does not contain a molecular
subsequence. Indeed, if (𝐴𝑛) contained an 𝑟-molecular subsequence (𝐴𝑛)𝑛∈𝐼 for some 𝑟 ≥ 2, then
(𝐺𝑛)𝑛∈𝐼 would be an 𝑟𝑚-molecular subsequence of (𝐺𝑛). (Every automorphism of 𝐺𝑛 acts on the
𝑚 copies of 𝐴𝑛 by permuting the copies and applying an automorphism of 𝐴𝑛 to each.)

For each finite graph 𝐺, let 𝜆(𝐺) denote the largest eigenvalue of the adjacency matrix for 𝐺.
Recall that when 𝐺 is regular, 𝜆(𝐺) = deg(𝐺), the vertex degree of 𝐺. By Theorem 7.1.3,
which is taken from [Bol+10c], since (𝐺𝑛) and (𝐴𝑛) are sequences of dense graphs, they have
percolation thresholds at (1/𝜆(𝐺𝑛))𝑛≥1 and (1/𝜆(𝐴𝑛))𝑛≥1 respectively. Since |𝐹𝑛 |

|𝑉 (𝐺𝑛) | is uniformly
bounded, lim𝑛→∞

deg 𝐴𝑛
deg𝐺𝑛 = 1, and since every 𝐴𝑛 and 𝐺𝑛 is regular (since transitive), this means

that lim𝑛→∞
𝜆(𝐴𝑛)
𝜆(𝐺𝑛) = 1. So for any 𝛿 > 0, since the sequence ((1 + 𝛿)𝑝𝑛) is supercritical for (𝐺𝑛),

it is also supercritical for (𝐴𝑛). In particular,

lim inf
𝑛→∞

E𝐴𝑛(1+𝛿)𝑝𝑛 ∥𝐾1∥ > 0.

Now since (𝐴𝑛) has no molecular subsequences, it follows by Lemma 7.3.2 that

P𝐴𝑛(1+𝜀)𝑝𝑛

(
∥𝐾1∥ ≥

𝜀 − 𝛿
1 + 𝜀 − 𝑜(1)

)
= 1 − 𝑜(1) as 𝑛→∞.

Since 𝛿 > 0 was arbitrary, a diagonal argument gives

P𝐴𝑛(1+𝜀)𝑝𝑛

(
∥𝐾1∥ ≥

𝜀

1 + 𝜀 − 𝑜(1)
)
= 1 − 𝑜(1) as 𝑛→∞.

The result follows because 𝐴𝑛 is a subgraph of 𝐺𝑛 and |𝑉 (𝐺𝑛) | = 𝑚 |𝑉 (𝐴𝑛) |. □

We now extend this lower bound to sequences of graphs that have 𝑚-molecular subsequences for
at most finitely many integers 𝑚.
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Lemma 7.3.4. Let (𝐺𝑛) be a sequence of finite connected transitive graphs with volume tending
to infinity that does not contain an 𝑚-molecular subsequence for any 𝑚 > 𝑀 , where 𝑀 is some
positive integer. Fix 𝜀 > 0 and let (𝑝𝑛) be any sequence of parameters. If lim inf𝑛→∞ E𝐺𝑛𝑝𝑛 ∥𝐾1∥ > 0,
then

P𝐺𝑛(1+𝜀)𝑝𝑛

(
∥𝐾1∥ ≥

𝜀

𝑀 (1 + 𝜀) − 𝑜(1)
)
= 1 − 𝑜(1) as 𝑛→∞.

Proof. It is enough to show that for every subsequence (𝐺𝑛)𝑛∈𝐼 of (𝐺𝑛), we can find a further
subsequence (𝐺𝑛)𝑛∈𝐽 with 𝐽 ⊆ 𝐼 such that

P𝐺𝑛(1+𝜀)𝑝𝑛

(
∥𝐾1∥ ≥

𝜀

𝑀 (1 + 𝜀) − 𝑜(1)
)
= 1 − 𝑜(1) as 𝑛→∞ with 𝑛 ∈ 𝐽.

Let (𝐺𝑛)𝑛∈𝐼 be a subsequence of (𝐺𝑛). If (𝐺𝑛)𝑛∈𝐼 does not contain a molecular subsequence, then
by Lemma 7.3.2, we know that P𝐺𝑛(1+𝜀)𝑝𝑛

(
∥𝐾1∥ ≥ 𝜀

1+𝜀 − 𝑜(1)
)
= 1− 𝑜(1) as 𝑛→∞ with 𝑛 ∈ 𝐼. On

the other hand, if (𝐺𝑛)𝑛∈𝐼 does contain a molecular subsequence, then we can pick a subsequence
(𝐺𝑛)𝑛∈𝐽 with 𝐽 ⊆ 𝐼 that is 𝑚-molecular with 𝑚 ∈ {2, . . . , 𝑀} maximum. Then Lemma 7.3.3 tells
us that P𝐺𝑛(1+𝜀)𝑝𝑛

(
∥𝐾1∥ ≥ 𝜀

𝑚(1+𝜀) − 𝑜(1)
)
= 1 − 𝑜(1) as 𝑛→∞ with 𝑛 ∈ 𝐽. □

We are now ready to prove that if a sequence of graphs has 𝑚-molecular subsequences for at most
finitely many integers 𝑚, then it has a percolation threshold. As outlined in Section 7.1, the idea
is to prove that the threshold for the emergence of a cluster of very slightly sublinear density is a
percolation threshold.

Lemma 7.3.5. If a sequence of finite connected transitive graphs with volume tending to infinity
contains an𝑚-molecular subsequence for at most finitely many integers𝑚, then it has a percolation
threshold.

Proof. Let (𝐺𝑛) be such a sequence of graphs. Let 𝑀 be a positive integer such that there are no𝑚-
molecular subsequences with 𝑚 > 𝑀 . For every density 𝛿 ∈ (0, 1) and each index 𝑛, define 𝑝𝑛𝑐 (𝛿)
to be the unique parameter satisfying P𝐺𝑛

𝑝𝑛𝑐 (𝛿)
(∥𝐾1∥ ≥ 𝛿) = 1

2 . Given any constants 𝜀, 𝛿 ∈ (0, 1), we
know by Lemma 7.3.4 that

lim
𝑛→∞

P𝐺𝑛(1+𝜀)𝑝𝑛𝑐 (𝛿)

(
∥𝐾1∥ ≥

𝜀

2𝑀

)
= 1,

since 𝜀
2𝑀 < 𝜀

𝑀 (1+𝜀) . So by a diagonal argument, for every 𝜀 ∈ (0, 1), there exists a sequence (𝛿𝜀𝑛)𝑛≥1

in (0, 1) with lim𝑛→∞ 𝛿𝜀𝑛 = 0 such that

lim
𝑛→∞

P𝐺𝑛(1+𝜀)𝑝𝑛𝑐 (𝛿𝜀𝑛 )

(
∥𝐾1∥ ≥

𝜀

2𝑀

)
= 1.
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Now by a further diagonal argument, there exists a fixed sequence (𝛿𝑛) in (0, 1) with lim𝑛→∞ 𝛿𝑛 = 0
such that for every 𝜀 ∈

{ 1
2 ,

1
3 ,

1
4 , . . .

}
,

lim
𝑛→∞

P𝐺𝑛(1+𝜀)𝑝𝑛𝑐 (𝛿𝑛)

(
∥𝐾1∥ ≥

𝜀

2𝑀

)
= 1.

We claim that the sequence of parameters (𝑝𝑛) given by 𝑝𝑛 := 𝑝𝑛𝑐 (𝛿𝑛) has the required properties.

To verify the subcritical condition, suppose for contradiction that lim𝑛→∞ P𝐺𝑛(1−𝜀)𝑝𝑛 (∥𝐾1∥ ≥ 𝛼) ≠ 0
for some 𝜀, 𝛼 ∈ (0, 1). By passing to a suitable subsequence, we may assume that

lim inf
𝑛→∞

P𝐺𝑛(1−𝜀)𝑝𝑛 (∥𝐾1∥ ≥ 𝛼) > 0.

Then by Lemma 7.3.4,
lim
𝑛→∞

P𝐺𝑛𝑝𝑛

(
∥𝐾1∥ ≥

𝜀

2𝑀

)
= 1.

This contradicts the fact that for every 𝑛 that is sufficiently large to ensure 𝛿𝑛 ≤ 𝜀
2𝑀 ,

P𝐺𝑛𝑝𝑛

(
∥𝐾1∥ ≥

𝜀

2𝑀

)
≤ P𝐺𝑛𝑝𝑛 (∥𝐾1∥ ≥ 𝛿𝑛) =

1
2
.

To verify the supercritical condition, fix 𝜀 > 0. Pick any 𝜀′ ∈
{ 1

2 ,
1
3 ,

1
4 , . . .

}
with 𝜀′ < 𝜀. Then by

construction of (𝛿𝑛),

P𝐺𝑛(1+𝜀)𝑝𝑛

(
∥𝐾1∥ ≥

𝜀′

2𝑀

)
≥ P𝐺𝑛(1+𝜀′)𝑝𝑛

(
∥𝐾1∥ ≥

𝜀′

2𝑀

)
= 1 − 𝑜(1) as 𝑛→∞. □

We now verify that these sequences of graphs — those that have 𝑚-molecular subsequences for at
most finitely many integers𝑚— are the only sequences to have a percolation threshold. This follows
from the following corollary of Theorem 7.1.7 from [EH21b] that characterises the supercritical
existence property.

Definition 7.3.6. We say that (𝐺𝑛) has the supercritical existence property if for every supercritical
sequence of parameters (𝑞𝑛),

lim
𝑛→∞

P𝐺𝑛𝑞𝑛 (∥𝐾1∥ ≥ 𝛼) = 1 for some 𝛼 > 0.

Corollary 7.3.7 (Easo and Hutchcroft, 2021). A sequence of finite connected transitive graphs
with volume tending to infinity has the supercritical existence property if and only if it contains an
𝑚-molecular subsequence for at most finitely many integers 𝑚.

Notice that if a sequence of finite connected transitive graphs with volume tending to infinity has
a percolation threshold, then it automatically has the supercritical existence property. So the ‘only
if’ direction of Corollary 7.3.7 immediately implies the following lemma.
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Lemma 7.3.8. If a sequence of finite connected transitive graphs with volume tending to infinity
contains an 𝑚-molecular subsequence for infinitely many integers 𝑚, then it does not have a
percolation threshold.

Our main result, Theorem 8.1.1, now follows by combining Lemmas 7.3.5 and 7.3.8. We conclude
this section by deducing Corollary 7.1.4 from Lemma 7.3.4.

Proof of Corollary 7.1.4. For every 𝛿 ∈ (0, 𝜀), we know by definition of a percolation threshold
that lim inf𝑛→∞ E𝐺𝑛(1+𝛿)𝑝𝑛 ∥𝐾1∥ > 0. So by Lemma 7.3.4,

P𝐺𝑛(1+𝜀)𝑝𝑛

(
∥𝐾1∥ ≥

𝜀 − 𝛿
𝑀 (1 + 𝜀) − 𝑜(1)

)
= 1 − 𝑜(1) as 𝑛→∞.

Since 𝛿 was arbitrary, the result follows by a diagonal argument. □

7.4 Bounding the threshold location
In this section, we give a proof of Proposition 7.1.5. This is simply the observation that existing
arguments immediately imply bounds on the location of a percolation threshold (when it exists),
which happen to be best-possible. The lower bound is a completely standard path-counting argument
that we only include for completeness. The upper bound comes from bounding the percolation
threshold by the connectivity threshold. As explained in [GLL21], we can estimate the connectivity
threshold thanks to an upper bound by Karger and Stein on the number of approximate minimum
cutsets in a graph [KS96].

The lower bound is sharp in the classical case of the complete graphs [ER60]. In fact, it is sharp for
a very wide range of examples, including arbitrary dense regular graphs [Bol+10c], the hypercubes
[AKS82a] (which are sparse yet have unbounded vertex degrees), and expanders with high girth
and bounded vertex degrees [ABS04c]. However, it is less obvious that the upper bound is optimal
in the sense that the constant ’2’ cannot be improved. For this, see the fat cycles construction in
[GLL21].

Proof of Proposition 7.1.5. We start with the lower bound. This argument is just an optimisation
of the proof of Lemma 2.8 in [EH21b]. Fix 𝜀 ∈ (0, 1). It suffices to check that

(
1−𝜀
𝑑𝑛−1

)
𝑛≥1

is not

supercritical along any subsequence. There are at most 𝑑𝑛 (𝑑𝑛 − 1)𝑟−1 simple paths of length 𝑟
starting at a particular vertex 𝑜 in each 𝐺𝑛. So for every 𝑛,

E𝐺𝑛1−𝜀
𝑑𝑛−1
|𝐾𝑜 | ≤

∑︁
𝑟≥0

𝑑𝑛 (𝑑𝑛 − 1)𝑟−1
(

1 − 𝜀
𝑑𝑛 − 1

)𝑟
≤ 2
𝜀
.
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In particular, lim𝑛→∞ E𝐺𝑛1−𝜀
𝑑𝑛−1
∥𝐾𝑜∥ = 0, and hence by transitivity, lim𝑛→∞ E 1−𝜀

𝑑𝑛−1
∥𝐾1∥ = 0.

We now prove the upper bound. Every finite connected transitive graph has edge connectivity equal
to its vertex degree [Mad71]. So by Theorem 4.1 from [GLL21],

lim
𝑛→∞

P𝐺𝑛
(2+𝑜(1)) log |𝑉 (𝐺𝑛 ) |

𝑑𝑛

(𝜔 is connected) = 1.

In particular,
(

2 log|𝑉 (𝐺𝑛) |
𝑑𝑛

)
𝑛≥1

is not subcritical along any subsequence. □
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322C h a p t e r 8

SHARPNESS AND LOCALITY FOR PERCOLATION
ON FINITE TRANSITIVE GRAPHS

Abstract
Let (𝐺𝑛) = ((𝑉𝑛, 𝐸𝑛)) be a sequence of finite connected vertex-transitive graphs with uniformly
bounded vertex degrees such that |𝑉𝑛 | → ∞ as 𝑛→∞. We say that percolation on 𝐺𝑛 has a sharp
phase transition (as 𝑛→∞) if, as the percolation parameter crosses some critical point, the number
of vertices contained in the largest percolation cluster jumps from logarithmic to linear order with
high probability. We prove that percolation on 𝐺𝑛 has a sharp phase transition unless, after passing
to a subsequence, the rescaled graph-metric on𝐺𝑛 (rapidly) converges to the unit circle with respect
to the Gromov-Hausdorff metric. We deduce that under the same hypothesis, the critical point for
the emergence of a giant (i.e. linear-sized) cluster in 𝐺𝑛 coincides with the critical point for the
emergence of an infinite cluster in the Benjamini-Schramm limit of (𝐺𝑛), when this limit exists.

8.1 Introduction
Given a graph 𝐺, build a random spanning subgraph 𝜔 by independently including each edge of
𝐺 with a fixed probability 𝑝 ∈ [0, 1]. The law of 𝜔 is called (Bernoulli bond) percolation and is
denoted by P𝐺𝑝 . This simple model often undergoes a phase transition: for many natural choices
of the underlying graph 𝐺, as 𝑝 increases past some critical value 𝑝𝑐 (𝐺), the typical behaviour of
the connnected components of 𝜔 changes abruptly. The study of this phenomenon has two origins,
roughly coming from mathematical physics and combinatorics, respectively.

The first origin is the 1957 work of Broadbent and Hammersley [BH57b] introducing percolation
on the Euclidean lattice 𝐺 = Z𝑑 as a model for the spread of fluid through a porous medium. Note
that Euclidean lattices are always (vertex-)transitive, meaning that for all vertices 𝑢 and 𝑣, there
is a graph automorphism that maps 𝑢 to 𝑣. This is a way to formalise the notion that a graph
is homogeneous or that its vertices are indistinguishable. For example, every Cayley graph of a
finitely-generated group is transitive. In 1996, Benjamini and Schramm [BS96b] launched the
systematic study of percolation on general infinite transitive graphs. A cornerstone of this theory
is that percolation on an infinite transitive graph 𝐺 always undergoes a sharp phase transition.
Let us recall what this means. We will write 𝑜 to denote an arbitrary vertex in 𝐺 and write |𝐾𝑜 |



to denote the cardinality of its cluster, i.e. connected component in 𝜔.1 There is a trivial sense
in which percolation on 𝐺 always undergoes a phase transition: by Kolmogorov’s 0-1 law, there
exists some critical point 𝑝𝑐 (𝐺) ∈ [0, 1] such that P𝐺𝑝 (there exists an infinite cluster) equals 0 for
all 𝑝 < 𝑝𝑐 (𝐺) and equals 1 for all 𝑝 > 𝑝𝑐 (𝐺). Now the phase transition is said to be sharp if for
all 𝑝 < 𝑝𝑐 (𝐺), not only does P𝐺𝑝 ( |𝐾𝑜 | ≥ 𝑛) → 0 as 𝑛 → ∞, but in fact there exists a constant
𝑐(𝐺, 𝑝) > 0 such that P𝐺𝑝 ( |𝐾𝑜 | ≥ 𝑛) ≤ 𝑒−𝑐𝑛 for every 𝑛 ≥ 1.2 This was first proved in [AB87a;
Men86] and now has multiple modern proofs [DT16a; DRT19; Hut20d; Van24].

The second origin is the 1960 work of Erdős and Rényi [ER60] investigating percolation on the
complete graph 𝐺𝑛 with 𝑛 vertices. This is the celebrated Erdős-Rényi (or simply random graph)
model. The fundamental result is that percolation on𝐺𝑛 undergoes a sharp phase transition around
𝑝 = 1/𝑛 in the sense that for any fixed 𝜀 > 0, the cardinality of the largest cluster of 𝜔 under P𝐺𝑝
jumps from being3 Θ(log 𝑛) at 𝑝 = (1−𝜀)/𝑛 to beingΘ(𝑛) at 𝑝 = (1+𝜀)/𝑛with high probability as
𝑛 → ∞.4 Analogous results have since been established for certain other families of finite graphs
with diverging degrees. For example, Ajtai, Komlós, and Szemerédi [AKS82b] and Bollobás,
Kohakayawa, and Łuksak [BKŁ92] investigated percolation on the hypercube 𝐻𝑑 = {0, 1}𝑑 , which
has a sharp phase transition around 𝑝 = 1/𝑑. Note that every complete graph and hypercube is
transitive. For a small sample of the vast literature on percolation on finite graphs, see, for example,
[ABS04a; KLS20] on expanders, [FKM04] on pseudorandom graphs, [Bor+05a; Bor+05b; Bor+06;
Nac09] on transitive graphs satisfying certain mean-field conditions, [Bol+10c] on dense graphs,
and [Dis+24; DK24a; DK24b] on general graphs satisfying certain isoperimetric conditions.

Between these two settings lies the less-developed theory of percolation on bounded-degree finite
transitive graphs. This theory, which started in 2001, was initiated by Benjamini [Ben01b] and by
Alon, Benjamini, and Stacey [ABS04a]. This concerns the asymptotic properties of percolation
on a finite transitive graph 𝐺 = (𝑉, 𝐸) as |𝑉 | becomes large while the vertex degrees of 𝐺 remain
bounded. As with the Erdős-Rényi model, here we are primarily interested in the phase transition
for the emergence of a giant cluster, i.e. a cluster containing Θ( |𝑉 |) vertices, and we will call
the phase transition sharp if the size of the largest cluster jumps from Θ(log |𝑉 |) to Θ( |𝑉 |). (See
Section 8.1 for precise definitions.) At the same time, this theory is closely related to percolation
on infinite transitive graphs via the local (Benjamini-Schramm) topology on the set of all transitive

1More generally, 𝐾𝑢 denotes the cluster containing a vertex called 𝑢.
2Some people use sharpness to mean slightly different things e.g. the exponential decay of point-to-point connection

probabilities for 𝑝 < 𝑝𝑐 together with the mean-field lower bound for 𝑝 > 𝑝𝑐.
3Given functions 𝑓 , 𝑔 : N→ (0,∞), we write 𝑓 (𝑛) = Θ(𝑔(𝑛)) to mean that there are constants 𝑐 > 0 and 𝐶 < ∞

such that 𝑐𝑔(𝑛) ≤ 𝑓 (𝑛) ≤ 𝐶𝑔(𝑛) for all 𝑛, i.e. 𝑓 (𝑛) = 𝑂 (𝑔(𝑛)) and 𝑔(𝑛) = 𝑂 ( 𝑓 (𝑛)).
4When 𝑝 > 1 or 𝑝 < 1, we define P𝑝 to be P1 or P0 respectively.
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graphs. Indeed, with respect to this topology, every infinite set G of finite transitive graphs with
bounded degrees is relatively compact, and every graph in the boundary of G is infinite.

Despite this close relation between infinite transitive graphs and bounded-degree finite transitive
graphs, our understanding of percolation on infinite transitive graphs is quite far ahead. Roughly
speaking, we can think of the theory of percolation on infinite transitive graphs as the theory of
percolation on microscopic (i.e. 𝑂 (1)) scales in bounded-degree finite transitive graphs. In this
sense, the finite graph theory generalises the infinite graph theory. (A limitation of this maxim is
that not every infinite transitive graph can be locally approximated by finite transitive graphs.) In
particular, certain basic questions in the finite graph theory have no natural analogues in the infinite
graph theory. For example, the uniqueness/non-uniqueness of giant clusters is not directly related
to the uniqueness/non-uniqueness of infinite clusters, which is instead related to the microscopic
metric distortion of giant clusters [EH21a, Remark 1.6].

In this paper we investigate the following pair of closely related questions. An affirmative answer to
the second question provides a direct way to move results and conjectures about infinite transitive
graphs to finite transitive graphs.

1. Does percolation on a large bounded-degree finite transitive graph 𝐺 have a sharp phase
transition?

2. If a finite transitive graph 𝐺 and an infinite transitive graph 𝐻 are close in the local sense,
does the critical point for the emergence of a giant cluster in 𝐺 approximately coincide with
the critical point for the emergence of an infinite cluster in 𝐻?

Unfortunately, the answer to both of these questions in general is no. For example, take the
sequence

(
Z𝑛 × Z 𝑓 (𝑛)

)∞
𝑛=1 for any 𝑓 : N→ N growing fast. This sequence always converges locally

to Z2, where the critical point for the emergence of an infinite cluster is 𝑝𝑐 = 1
2 . On the other

hand, provided that 𝑓 grows sufficiently fast, the threshold for the emergence of a giant cluster in
Z𝑛 × Z 𝑓 (𝑛) will be as in the sequence of cycles, around 𝑝𝑐 = 1. Moreover, for percolation of any
fixed parameter 𝑝 ∈ ( 12 , 1) on Z𝑛 ×Z 𝑓 (𝑛) , the order of the largest cluster will then typically be much
larger than logarithmic but much smaller than linear in the total number of vertices. (See [EH23b,
Example 5.1] for some more discussion of these sequences.) The problem is that these graphs are
long and thin, coarsely resembling long cycles. In particular, after suitably rescaling, their graph
metrics (rapidly) converge in the Gromov-Hausdorff metric to the unit circle. In this paper we
prove that this is the only possible obstacle.
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Locality
Question (2) above is the finite analogue of Schramm’s locality conjecture. This conjecture was
(equivalently) that for all 𝜀 > 0 there exists 𝑅 < ∞ such that for every pair of infinite transitive
graphs𝐺 and𝐻 that are not one-dimensional5, if the ball of radius 𝑅 in𝐺 is isomorphic to the ball of
radius 𝑅 in 𝐻, then |𝑝𝑐 (𝐺) − 𝑝𝑐 (𝐻) | ≤ 𝜀. This conjecture formalised the idea that the critical point
of an infinite transitive graph should generally be entirely determined by the graph’s small-scale,
local geometry. By building on earlier progress, especially the work of Contreras, Martineau,
and Tassion [CMT22], we verified this conjecture in our joint work with Hutchcroft [EH23b].
Schramm’s locality conjecture for infinite transitive graphs also spurred research on locality in
other settings, including much research on the analogue of our question (2) about locality for finite
graphs but where the hypothesis that the finite graphs are transitive is replaced by the hypothesis
that they are expanders [BNP11a; Sar21b; RS22b; ABS23].

It may be surprising, from the perspective of percolation on infinite transitive graphs, that in fact
sharpness and locality for finite transitive graphs are equivalent. That is to say, if we restrict
ourselves to any particular infinite set G of bounded-degree finite transitive graphs, then the
answers to questions (1) and (2) in the introduction will always coincide. (See Proposition 8.2.9
for a precise statement.) Indeed, if G satisfies locality, then one can easily extract sharpness for G
from the sharpness of the phase transition on every infinite transitive graph that is a local limit of
graphs in G, and the converse, that sharpness implies locality, can also be established with a little
more work. One reason that this equivalence may be surprising is because for infinite transitive
graphs, sharpness always holds, even for Z, whereas locality requires that the graphs are not one-
dimensional. To make sense of this, consider that for infinite transitive graphs, locality corresponds
to a version of sharpness that is uniform in the choice of the graph, whereas in the context of finite
transitive graphs, the only meaningful notion of sharpness is necessarily uniform.

Given the similarity between locality for finite and infinite graphs, one may wonder why the
present paper is necessary: why does the proof of locality for infinite transitive graphs not also
imply (perhaps after some additional bookkeeping) locality and hence sharpness for finite transitive
graphs? The most fundamental reason is that the approach to proving locality in [EH23b] relied
inherently on the sharpness of the phase transition, which in our setting is what we are trying to
prove! Let us be a little more precise. In the proof of [EH23b], we have an infinite transitive
graph 𝐺 and a parameter 𝑝 that we want to show satisfies 𝑝 ≥ 𝑝𝑐 (𝐺). The bulk of the argument
in [EH23b] involves delicately propagating point-to-point connection lower bounds across larger

5An infinite transitive graph is one-dimensional if and only if the graph is quasi-isometric to Z.
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and larger scales to ultimately establish that for some function 𝑓 : N → (0, 1) tending to zero
slower than exponentially, P𝑝 (𝑢 ↔ 𝑣) ≥ 𝑓 (dist(𝑢, 𝑣)) for all vertices 𝑢 and 𝑣. Since point-to-point
connection probabilities are decaying slower than exponentially, the conclusion 𝑝 ≥ 𝑝𝑐 (𝐺) then
follows from the sharpness of the phase transition on infinite transitive graphs. In a finite graph
adaptation of this argument, at this final stage we would need to invoke the sharpness of the phase
transition for finite transitive graphs, making the argument circular. One might hope to circumvent
this problem by improving the locality argument so that the function 𝑓 does not tend to zero at
all. Unfortunately, 𝑓 tends to zero because the propagation of point-to-point lower bounds in the
locality argument is lossy, i.e. a lower bound of 𝜀𝑖 at scale 𝑛𝑖 is propagated to a lower bound of 𝜀𝑖+1
at scale 𝑛𝑖+1 where 𝜀𝑖+1 ≪ 𝜀𝑖, which seems completely unavoidable to us with current technology.

We will exploit the fact that the locality argument produces an explicit choice for 𝑓 that decays much
slower than exponentially (even slower than algebraically). So for this final step, one only needs a
weaker kind of quasi-sharpness of the phase transition to conclude. The new idea in the present
paper is to directly establish this quasi-sharpness by applying quantitative versions of the proofs
of two results that are a priori quite unrelated to locality: the uniqueness of the supercritical giant
cluster [EH21a] and the existence of a percolation threshold [Eas23] on finite transitive graphs. In
short, we can think of the existence of a percolation threshold as the weakest possible kind of quasi-
sharpness. In general, if we allow graphs to have unbounded degrees (as we did in [Eas23]), then
the implicit rates of convergence can be arbitrarily slow. Luckily, now assuming bounded degrees
as we may in the present paper, we can plug into our argument in [Eas23] a quantitatively strong
version of the uniqueness of the supercritical giant cluster from [EH21a] to get a quantitatively
strong quasi-sharpness that suffices to conclude the proof of locality.

There are also quite serious obstacles to adapting to finite graphs the part of the proof of locality
leading up to this application of sharpness. To illustrate, say we tried to run the locality argument on
an infinite transitive graph that is one-dimensional. What would go wrong? We would encounter a
scale where we are unable to efficiently propagate connection lower bounds because two otherwise
complementary arguments simultaneously break down. The breakdown of the first argument
implies that 𝐺 cannot be one-ended (𝐺 is6 the Cayley graph of a finitely-presented group but its
minimal cutsets are not coarsely connected), while the breakdown of the second implies that 𝐺
must have finitely many ends (𝐺 has polynomial growth because 𝐺 contains a large ball with small
tripling). From this we deduce that 𝐺 is two-ended, thereby successfully identifying that 𝐺 was
one-dimensional. On a finite transitive graph, these end-counting arguments are not applicable.
This will require us to make the locality argument more finitary, even in the setting of infinite

6Technically this applies to a certain graph 𝐺′ that approximates 𝐺.
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transitive graphs, which is of independent interest. Unfortunately, this end-counting argument is so
deeply embedded in the proof of [EH23b] that it will take some work to reorganise the high-level
multi-scale induction in [EH23b] in order to isolate and make explicit the relevant part. Another
obstacle is that the definition of exposed spheres, whose special connectivity properties played a
pivotal role in [CMT22; EH23b], degenerates on finite transitive graphs. As part of our argument,
we introduce the exposed sphere in a finite transitive graph, justify our definition (Lemma 8.3.19),
and thereby establish that from the perspective of part of our argument, arbitrary finite transitive
graphs can be treated like infinite transitive graphs that are one-ended. We hope that these basic
geometric objects can be of use in future work on finite transitive graphs, analogously to their
infinite counterparts.

Statement of the main result
Graphs will always be assumed to be connected, simple, countable, and locally finite. In a slight
abuse of language, we identify together all graphs that are isomorphic to each other.7 Let G be an
infinite set of finite transitive graphs. Note that G is countable. We will write lim𝐺∈G to denote
limits taken with respect to some (and hence every) enumeration of G. We may omit references to
𝐺 and G when this does not cause confusion. Given a graph 𝐺, we will also assume by default that
𝑉 and 𝐸 refer to the sets of vertices and edges in 𝐺.

Given a percolation configuration𝜔, we write |𝐾1 | to denote the cardinality of the largest cluster. A
sequence 𝑝 : G → (0, 1) is said to be a percolation threshold if for every constant 𝜀 > 0, we have8

limP(1+𝜀)𝑝 ( |𝐾1 | ≥ 𝛼 |𝑉 |) = 1 for some constant 𝛼 > 0, whereas limP(1−𝜀)𝑝 ( |𝐾1 | ≥ 𝛽 |𝑉 |) = 0 for
every constant 𝛽 > 0. Note that when a percolation threshold exists, it is unique up to multiplication
by 1 + 𝑜(1). So in this sense, we may refer to the percolation threshold for G, when one exists.
Now assume that G has bounded degrees, i.e. there exists 𝑑 ∈ N such that for every 𝐺 ∈ G, every
vertex in 𝐺 has degree at most 𝑑. By [Eas23], G always has a percolation threshold, say 𝑝. We
say that percolation on G has a sharp phase transition if for every constant 𝜀 > 0, there exists a
constant 𝐴 < ∞ such that

limP(1−𝜀)𝑝 ( |𝐾1 | ≥ 𝐴 log |𝑉 |) = 0.

Conversely, it is not hard to show in general that lim inf 𝑝 ≥ 1
𝑑−1 > 0 (see [Eas23, Proposition 5])

and that the complementary bound on |𝐾1 | always holds in the sense that if lim inf(1 − 𝜀)𝑝 > 0
7So a “graph” 𝐺 is really a graph-isomorphism equivalence class of graphs.
8This equation means that for some (and hence every) enumeration G = {𝐺1, 𝐺2, . . .} where 𝐺𝑛 = (𝑉𝑛, 𝐸𝑛), we

have
lim
𝑛→∞

P𝐺𝑛

(1+𝜀) 𝑝 (𝐺𝑛 ) (|𝐾1 | ≥ 𝛼 |𝑉𝑛 |) = 1.
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then there exists 𝐴 < ∞ such that limP(1−𝜀)𝑝 ( |𝐾1 | ≥ 1
𝐴

log |𝑉 |) = 1 (see Proposition 8.2.6).

Given a transitive graph 𝐺, we write 𝑜 to denote an arbitrary vertex, and we write 𝐵𝐺𝑛 to denote
the graph-metric ball of radius 𝑛 centred at 𝑜, viewed as a rooted subgraph of 𝐺. We also write
Gr(𝑛) for the number of vertices in 𝐵𝐺𝑛 , and define 𝑆𝐺𝑛 to be the sphere9 of radius 𝑛. The local (aka
Benjamini-Schramm) topology on the set of all transitive graphs is the metrisable10 topology with
respect to which a sequence (𝐺𝑛) converges to 𝐺 if and only if for 𝑟 ∈ N, the balls 𝐵𝐺𝑛𝑟 and 𝐵𝐺𝑟 are
isomorphic for all sufficiently large 𝑛. For example, the sequence of tori (Z2

𝑛)∞𝑛=1 converges locally
to Z2. Given metric spaces 𝑋 and 𝑌 , the Gromov-Hausdorff distance between 𝑋 and 𝑌 , denoted
distGH(𝑋,𝑌 ), is the infimum over all 𝜀 > 0 such that there exists a metric space 𝑍 and isometric
embeddings 𝜙 : 𝑋 → 𝑍 and 𝜓 : 𝑌 → 𝑍 such that the Hausdorff distance between the images of
𝜙 and 𝜓 in 𝑍 is at most 𝜀. Given a graph 𝐺 and 𝑟 > 0, we write 𝑟𝐺 for the rescaled graph metric
of 𝐺 where all distances are multiplied by 𝑟. For example, the sequence of rescaled tori ( 2𝜋

𝑛
Z2
𝑛)∞𝑛=1

Gromov-Hausdorff converges to the continuum torus 𝑆1 × 𝑆1 with the 𝐿1 metric, where 𝑆1 is the
unit circle. The scaling limits that arise like this, as a Gromov-Hausdorff limit of a sequence of
diameter-rescaled finite transitive graphs, are explored in [BFT17].

The main result of our paper resolves the problems of sharpness and locality for all bounded-degree
finite transitive graphs that are not one-dimensional in a certain coarse-geometric sense.

Theorem 8.1.1. Let G be an infinite set of finite transitive graphs with bounded degrees. Suppose
that there does not exist an infinite subset H ⊆ G such that

(
𝜋

diam𝐺
𝐺

)
𝐺∈H Gromov-Hausdorff

converges to the unit circle. Then both of the following statements hold:

1. Percolation on G has a sharp phase transition.

2. If G converges locally to an infinite transitive graph 𝐻, then the constant sequence 𝑝 : 𝐺 ↦→
𝑝𝑐 (𝐻) is the percolation threshold for G.

In fact, if either of these two statements is false, then there exists an infinite subsetH ⊆ G such that
for every 𝐺 ∈ H ,

distGH

( 𝜋

diam𝐺
𝐺, 𝑆1

)
≤ 𝑒

(log diam𝐺)1/9

diam𝐺
.

We interpret the upper bound on Gromov-Hausdorff distance as a bound on the rate of convergence
of the large scale geometry of graphs inH towards the unit circle as their diameters tend to infinity.

9We generalise these to non-integer 𝑛 by setting 𝐵𝐺𝑛 := 𝐵𝐺⌊𝑛⌋ and by defining 𝑆𝐺𝑛 and Gr(𝑛) analogously.
10This topology is induced by the metric dist(𝐺, 𝐻) := exp(−max{𝑛 : 𝐵𝐺𝑛 � 𝐵𝐻𝑛 }), for example.
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In this sense, graphs inH converge to the unit circle faster than do the tori {Z𝑛 × Z𝑒 (log 𝑛)8 }𝑛≥1, and
in particular faster than do the polynomially-stretched tori {Z𝑛 × Z𝑛𝐶 }𝑛≥1 for any constant 𝐶. On
the other hand, by using arguments specific to Euclidean tori [EH21a, Example 5.1], items 1 and 2
only fail once we reach exponentially-stretched tori {Z𝑛 × Z𝐶𝑛}𝑛≥1 for a constant 𝐶. So our rate is
not sharp in this special case, even if we could improve the exponent 1/9, which we did not try to
optimise. Perhaps these exponentially-stretched tori are worst possible, in which case the optimal
bound on the rate should be on the order of log diam𝐺

diam𝐺
instead of 𝑒

(log diam𝐺)1/9

diam𝐺
. There are also stronger

ways that one could hope to describe the “one-dimensionality” of H . (See the discussion at the
end of Section 8.1.)

Previous work and strategy of the proof
Recall from our earlier discussion that sharpness and locality for finite transitive graphs are equiv-
alent. (See Proposition 8.2.9.) In this paper we will prove sharpness directly. At a high level, our
idea is to apply arguments derived from the proofs of four existing results in succession: (1) The
sharpness of the phase transition for infinite transitive graphs; (2) The locality of the critical point
for infinite transitive graphs; (3) The uniqueness of the supercritical giant cluster on finite transitive
graphs; (4) The existence of a percolation threshold on finite transitive graphs. Below we discuss
each of these works and how they feature in our argument.

To prove sharpness, we will start with a sequence 𝑝 : G → (0, 1) where P𝑝 has a cluster larger than a
large multiple of log |𝑉 |with good probability. Then given any 𝜀 > 0, we will show thatP(1+𝜀)𝑝 has a
giant cluster with high probability. Since inf 𝑝 > 0, we can replace P(1+𝜀)𝑝 by P𝑝+𝜀, or equivalently,
P𝑝+4𝜀. We will split the jump 𝑝 → 𝑝 + 4𝜀 into four little hops 𝑝 → 𝑝 + 𝜀 → . . .→ 𝑝 + 4𝜀. After
each hop, we will prove something stronger about the connectivity properties of percolation at the
current parameter. Each hop is the subject of one section, discussed below, and involves one of the
four works listed above.

Large clusters→ local connections

The sharpness of the phase transition for infinite transitive graphs is the statement that for every
infinite transitive graph𝐺 and every 𝑝 < 𝑝𝑐 (𝐺), there is constant 𝑐(𝐺, 𝑝) > 0 such that P𝐺𝑝 ( |𝐾𝑜 | ≥
𝑛) ≤ 𝑒−𝑐𝑛 for every 𝑛 ≥ 1. Some people use slightly different definitions. For example, some
replace this exponential tail on |𝐾1 | by the exponential decay of connection probabilities, which is
a priori weaker, and some include the mean-field lower bound 𝜃 ((1 + 𝜀)𝑝𝑐 (𝐺)) ≥ 𝜀

1+𝜀 as part of
the definition. The analogue of the mean-field lower bound for finite transitive graphs was already
established in full generality in our earlier work [Eas23, Corollary 4]. This statement of sharpness
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for infinite transitive graphs looks similar to our definition of sharpness for an infinite set G of finite
transitive graphs with bounded degrees. Indeed, let 𝑝 be the percolation threshold forG. By a simple
union bound, if for all 𝜀 > 0 there exists 𝐶 (G, 𝜀) < ∞ such that P𝐺(1−𝜀)𝑝(𝐺) ( |𝐾𝑜 | ≥ 𝑛) ≤ 𝐶𝑒

−𝑛/𝐶

for all 𝑛 ≥ 1 and 𝐺 ∈ G, then percolation on G has a sharp phase transition. With a little more
work (see Proposition 8.2.9), one can show that the converse holds too.

So a natural approach towards proving sharpness for finite transitive graphs is to try to adapt an
existing proof of sharpness for infinite transitive graphs. Before explaining what is wrong with this
approach, notice that something must go wrong because these arguments are completely general,
applying to every infinite transitive graph - including Z, whereas as illustrated by the sequence of
stretched tori, some hypothesis on the geometry of finite transitive graphs is required for sharpness
to hold. The problem is not that the arguments cannot be run, but rather that they do not address the
right question. Roughly speaking, the issue is that a cluster that grows faster than every particular
microscopic scale is not automatically macroscopic. Slightly more precisely, given an infinite
graph 𝐺 and parameter 𝑝, if inf𝑛≥1 P𝑝 ( |𝐾𝑜 | ≥ 𝑛) > 0, then under P𝑝 there is an infinite cluster
almost surely. However, for an infinite set G of finite graphs and a sequence of parameters 𝑝, if
inf𝑛≥1 lim infG P𝑝 ( |𝐾𝑜 | ≥ 𝑛) > 0, then it does not necessarily follow that under P𝑝 there is a giant
cluster with high probability.

While proofs of sharpness for infinite transitive graphs do not directly yield Theorem 8.1.1, our
first step is still to adapt and run one of these proofs on finite transitive graphs. We will also apply
Hutchcroft’s idea [Hut20a] of using his two-ghost inequality to convert point-to-sphere bounds into
point-to-point lower bounds. (This was also the first step of [EH23b].) Together, this will establish
that after the first hop, P𝑝+𝜀 satisfies a point-to-point lower bound on a large constant scale.

In this section we will also use an elementary spanning tree argument to prove a kind of “reverse”
implication that if P𝑝 was instead assumed to satisfy such a point-to-point lower bound, then it
would follow that P𝑝 has a cluster much larger than log |𝑉 | with high probability. This reverse
direction is not relevant to proving Theorem 8.1.1, but we will apply it to establish the equivalence
of different characterisations of sharpness on finite transitive graphs and in particular to prove the
equivalence of items 1 and 2 in Theorem 8.1.1.

Local connections→ global connections

Earlier we discussed the proof of the locality of the critical point for infinite transitive graphs
[EH23b] and the obstructions to using the same argument to prove locality for finite transitive
graphs. The primary obstruction was the application of sharpness, which we explained could be
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replaced by a good enough quantitative quasi-sharpness. If we had organised the argument in
the present paper as a direct proof of locality, rather than of sharpness, then this quasi-sharpness
would be supplied by the following two hops (𝑝 + 2𝜀 → 𝑝 + 3𝜀 → 𝑝 + 4𝜀). For the current hop
(𝑝 + 𝜀 → 𝑝 + 2𝜀), we will run the part of the proof of locality for infinite graphs leading up to
this application of sharpness (after dealing with the challenges that we discussed this entails) to
propagate the microscopic point-to-point lower bound at 𝑝 + 𝜀 to a global point-to-point lower
bound at 𝑝 + 2𝜀. More precisely, we prove that if G does not contain a sequence converging rapidly
to the unit circle, then for some explicit and slowly-decaying function 𝑓 : N → (0, 1), all but
finitely many graphs 𝐺 ∈ G satisfy

min
𝑢,𝑣∈𝑉

P𝑝+2𝜀 (𝑢 ↔ 𝑣) ≥ 𝑓 ( |𝑉 |).

Global connections→ unique large cluster

In the supercritical phase of percolation on a bounded-degree finite transitive graph, there is exactly
one giant cluster with high probability. This had been conjectured by Benjamini and was verified
in our joint work with Hutchcroft [EH21a]. It is important to note that this result actually does not
rely on the existence of a percolation threshold. To make sense of this, we need a definition of the
supercritical phase that is agnostic to the existence of a percolation threshold.

Let G be an infinite set of bounded-degree finite transitive graphs, and let 𝑞 : G → (0, 1) be a
sequence of parameters. If 𝐺 admits a percolation threshold 𝑝, then the natural definition for 𝑞
being supercritical is that lim inf 𝑞/𝑝 > 1. To make this independent of the existence of 𝑝, we say
that 𝑞 is supercritical if there exists a sequence 𝑞′ : G → (0, 1) and a constant 𝜀 > 0 such that
lim inf 𝑞/𝑞′ > 1 and lim inf P𝑞′ ( |𝐾1 | ≥ 𝜀 |𝑉 |) ≥ 𝜀. In this language, the main result of [EH21a] is
that for every supercritical sequence 𝑞, the number of vertices |𝐾2 | contained in the second largest
cluster satisfies limP𝑞 ( |𝐾2 | ≥ 𝛿 |𝑉 |) = 0 for every constant 𝛿 > 0.

The argument in [EH21a] is fully quantitative. In particular, if we slightly weaken the hypothesis
that 𝑞 is supercritical by replacing the constant 𝜀 > 0 in the definition of “𝑞 is supercritical” by a
slowly decaying sequence 𝜀 : G → (0, 1), then we can still deduce that under P𝑞 the largest cluster
is much larger than all other clusters with high probability. What we need is the same conclusion but
with the alternative hypothesis that 𝛿 := min𝑢,𝑣∈𝑉 P𝑞′ (𝑢 ↔ 𝑣) tends to zero slowly. This is certainly
possible in principle because by Markov’s inequality, the lower bound min𝑢,𝑣∈𝑉 P𝑞′ (𝑢 ↔ 𝑣) ≥ 2𝜀
always implies the lower bound P𝑞′ ( |𝐾1 | ≥ 𝜀 |𝑉 |) ≥ 𝜀. Unfortunately, this approach ultimately
requires that 𝛿 tends to zero extremely slowly, too slowly for our purposes. Fortunately, the
argument in [EH21a] turns out to run much more efficiently if we directly supply the hypothesis
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that min𝑢,𝑣∈𝑉 P𝑞′ (𝑢 ↔ 𝑣) ≥ 𝜀 rather than the hypothesis that P𝑞′ ( |𝐾1 | ≥ 𝜀 |𝑉 |) ≥ 𝜀. Indeed, a
significant loss in the proof in [EH21a] is due to the conversion of the latter into the former. We
will apply this to deduce from the global point-to-point lower bound at P𝑝+2𝜀 that under P𝑝+3𝜀, the
largest cluster is much larger than all other clusters with high probability. However, note that a priori
this largest cluster might not be giant, i.e. we may still have |𝐾1 | = 𝑜( |𝑉 |) with high probability. In
particular, our proof is not complete at this stage, which is why we need the fourth hop.

Unique large cluster→ giant cluster

Every infinite set of finite transitive graphs with bounded degrees G admits a percolation threshold.
We verified this in [Eas23] by combining [EH21a; Van23]. The reader may find it surprising that
the uniqueness of the supercritical giant cluster comes first, before the existence of a percolation
threshold. Indeed, this is opposite to the order in the classical story for the Erdős-Rényi model,
for example. On the other hand, the reader may suspect that the result is obvious because standard
sharp threshold techniques imply that for every sequence 𝛼, the event {|𝐾1 | ≥ 𝛼 |𝑉 |} always has a
sharp threshold.11 The challenge is to prove that every sequence 𝛼 that decays sufficiently slowly
has a common sharp threshold.

To prove this we embedded the fact that the supercritical giant cluster is unique into Vanneuville’s
proof of the sharpness of the phase transition for infinite transitive graphs. In [Eas23], we did
not give any explicit bounds because we were working without the hypothesis that G has bounded
degrees. At this level of generality, there actually exist (very particular) sequences that do not
admit a percolation threshold, and even for those that do, the implicit rates of convergence can be
arbitrarily bad. However, our argument is itself fully quantitative. In particular, we will explain
how it can still be run under an explicit weaker version of the uniqueness of the giant cluster. This
will allow us to deduce from the global two-point lower bound under P𝑝+2𝜀 and the uniqueness
of the largest cluster under P𝑝+3𝜀 that there is a giant cluster under P𝑝+4𝜀 with high probability,
completing our proof of Theorem 8.1.1.

Further discussion
Let us further explore the connection between percolation on finite and infinite transitive graphs.
First, let us remark on how to canonically define 𝑝𝑐 for finite graphs. By [Eas23], there exists a
universal function 𝑝𝑐 : F → (0, 1), where F is the set of all finite transitive graphs, such that
for every infinite set G of finite transitive graphs with bounded degrees, the restriction 𝑝𝑐 |G is the

11We say that a sequence of events (𝐴(𝐺))𝐺∈G has a sharp threshold if there exists a sequence 𝑝 such that
lim sup 𝑞/𝑝 < 1 implies P𝑞 (𝐴) = 0 and lim inf 𝑞/𝑝 > 1 implies P𝑞 (𝐴) = 1 for every sequence 𝑞.
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percolation threshold for G. Let us fix such a function 𝑝𝑐 for the rest of this section. Now, thanks
to Theorem 8.1.1, we can roughly12 interpret this as the unique continuous extension with respect
to the local topology of the usual percolation threshold 𝑝𝑐 for infinite transitive graphs to the set of
finite transitive graphs.

Let 𝐻 be an infinite transitive graph, and let G be an infinite set of finite transitive graphs with
bounded degrees that does not contain a sequence approximating the unit circle in the sense thatH
does in Theorem 8.1.1. Let (𝑉𝑛) be an exhaustion of 𝐻 by finite sets, and let 𝐾∞ denote the set of
vertices contained in infinite clusters. By a second-moment calculation, under P𝐻𝑝 for any 𝑝,

|𝐾∞ ∩𝑉𝑛 |
|𝑉𝑛 |

→ 𝜃𝐻 (𝑝) := P𝐻𝑝 (𝑜 ↔∞)

in probability as 𝑛 tends to infinity. In this sense, 𝜃𝐻 (𝑝) captures the density of the union of
the infinite clusters. In a finite graph 𝐺, we define the giant density to be ∥𝐾1∥ := 1

|𝑉 | |𝐾1 |. In
conjunction with the main result of [EH23+a], Theorem 8.1.1 implies that if G converges locally to
𝐻, then for every constant 𝑝 ∈ (0, 1)\{𝑝𝑐 (𝐻)}, the density ∥𝐾1∥ under P𝐺𝑝 converges in probability
to the density 𝜃𝐻 (𝑝) under P𝐻𝑝 as we run through 𝐺 ∈ G. In this sense, the infinite cluster
phenomenon on infinite transitive graphs is a good model for the giant cluster phenomenon on finite
transitive graphs. Similar ideas are discussed in Benjamini’s original work [Ben01b].

In light of this, our results let us easily move statements about infinite transitive graphs to the
setting of finite transitive graphs. Here are three examples. For all three, remember that G is
assumed to be a family of graphs satisfying the hypotheses of Theorem 8.1.1. First, it is well-
known that 𝑝𝑐 (𝐻) < 1 if (and only if) 𝐻 is not one-dimensional [DGRSY20]. By the conclusion
of Theorem 8.1.1, it immediately follows13 that sup𝐺∈G 𝑝𝑐 (𝐺) < 1, i.e. there exists 𝜀 > 0 such that
P1−𝜀 ( |𝐾1 | ≥ 𝜀 |𝑉 |) ≥ 𝜀 every 𝐺 ∈ G. This conclusion is not new; we simply wish to illustrate how
easily it follows from Theorem 8.1.1. Indeed, Hutchcroft and Tointon established this fundamental
result under a weaker (essentially optimal!) version of the hypothesis that G is not one-dimensional,
(almost) fully resolving a conjecture of Alon, Benjamini, and Stacey [ABS04c]. Second, it is a
major open conjecture that 𝜃𝐻 (·) is continuous if (and only if) 𝐻 is not one-dimensional. Following
the discussion in our previous paragraph, this conjecture would immediately imply the following
statement, which says that the giant cluster emerges gradually: Let P denote the law of the standard
monotone coupling (𝜔𝑝 : 𝑝 ∈ [0, 1]) of the percolation measures (P𝑝 : 𝑝 ∈ [0, 1]), and define

12It is unique (up to 𝑜(1)) and continuous whenever we restrict to an infinite set G that is compact in the local
topology and satisfies inf𝐺∈G distGH

(
𝜋

diam𝐺𝐺, 𝑆
1) > 0.

13One just needs to verify that G cannot converge locally to a one-dimensional infinite transitive graph, e.g. by
Lemma 8.3.20.
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𝛼(𝑝) :=


𝐾1(𝜔𝑝)



. Then for all 𝜀 > 0 there exists 𝛿 > 0 such that

lim
𝐺∈G

P
(
sup
𝑝

[𝛼(𝑝 + 𝛿) − 𝛼(𝑝)] ≤ 𝜀
)
= 1. (8.1.1)

For example, thanks to [Hut16], we can already deduce from this relation between infinite and
finite transitive graphs that eq. (8.1.1) holds whenever our family G has exponential growth on
microscopic scales, e.g. for the sequence (Z3

𝑛 × 𝐺ℎ(𝑛)) where (𝐺𝑛) is a sequence of transitive
expanders and ℎ : N → N tends to infinity arbitrarily slowly. (See the discussion in [EH23b,
Example 5.1] of stretched tori, in which the giant cluster does not emerge gradually.) By the
uniqueness of the supercritical giant cluster [EH21a], finite transitive graphs satisfying eq. (8.1.1)
also automatically satisfy the conclusion of [ABS04a, Conjecture 1.1]. This links the well-known
continuity conjecture for infinite transitive graphs to this conjecture about the uniqueness of the
largest cluster in finite transitive graphs. Third, it is conjectured that the uniqueness threshold
𝑝𝑢 (𝐻) satisfies 𝑝𝑐 (𝐻) < 𝑝𝑢 (𝐻) if and only if 𝐻 is nonamenable. Again by our discussion in
previous paragraph, this conjecture would imply that if the Cheeger constant on graphs in G is
uniformly bounded below on microscopic scales, then percolation on G has a phase in which there
is a giant cluster whose metric distortion tends to infinity. (See [EH21a, Remark 1.6].) What can
be said when the Cheeger constant is uniformly bounded below on larger scales? In the limit, this
connects the 𝑝𝑐 vs 𝑝𝑢 question to the existing theory of percolation on expanders.

This opens the door to many directions for future work, adapting questions and techniques from
percolation on infinite transitive graphs to finite transitive graphs. For example, what can be said
about supercritical sharpness? Since the continuity conjecture for infinite transitive graphs would
imply the unique giant cluster conjecture of [ABS04a, Conjecture 1.1] (possibly with a weaker one-
dimensionality condition), might [ABS04a, Conjecture 1.1] be a stepping stone towards continuity
that is easier to establish? Another direction for future work is to improve the rate of convergence
in Theorem 8.1.1. One could also explore stronger notions of one-dimensionality. The Gromov-
Hausdorff metric only considers the coarse geometry of graphs, ignoring how densely vertices
are packed (i.e. the volume growth on small scales). It is natural to expect that graphs in which
vertices are packed more densely can afford to have a more one-dimensional coarse geometry
before percolation arguments break down. For example, consider the product of a torus with a long
cycle versus the product of an expander with a long cycle. In the work of Hutchcroft and Tointon
[HT21a], one-dimensionality was characterised more stringently14 in terms of the relationship of
volume to diameter, for example, by requiring that |𝑉 | ≤ (diam𝐺)1+𝜀 or |𝑉 |

log|𝑉 | = 𝑜(diam𝐺). One
14This is indeed stronger than asking for Gromov-Hausdorff convergence to the unit circle, by the results of [BFT17].
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could also investigate questions such as sharpness without bounded degrees. For example, [EH21a;
Eas23; EH23+a] did not require this hypothesis, thus linking the story of percolation on infinite
transitive graphs to the classical Erdős-Rényi model.

Acknowledgement
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8.2 Large clusters→ local connections
In this section we will adapt a proof of the sharpness of the phase transition for infinite transitive
graphs to finite transitive graphs. By combining this with an idea of Hutchcroft [Hut20a] to
convert voume-tail bounds into point-to-point bounds, we will prove the following proposition.
This roughly says that if for some percolation parameter 𝑝, the largest cluster contains much more
than log |𝑉 | vertices with good probability, then for percolation of any higher parameter 𝑝 + 𝜂, we
have a uniform point-to-point lower bound on a divergently large scale. Later, in Section 8.2 we
will prove a kind of converse to this statement, and in Section 8.2 we will use this converse to give
equivalent characterisations of sharpness for finite transitive graphs.

Proposition 8.2.1. Let 𝐺 be a finite transitive graph with degree 𝑑. Let 𝜂 > 0. There exists
𝑐(𝑑, 𝜂) > 0 such that for all 𝑝 ∈ (0, 1) and 𝜆 ≥ 1,

P𝑝 ( |𝐾1 | ≥ 𝜆 log |𝑉 |) ≥ 1
𝑐 |𝑉 |𝑐 =⇒ min

𝑢∈𝐵
𝑐 log(𝜆)− 1

𝑐

P𝑝+𝜂 (𝑜 ↔ 𝑢) ≥ 𝜂
2

20
.

We have chosen to adapt Vanneuville’s recent proof of sharpness for infinite graphs [Van24]. This
involves ghost fields. Given a graph 𝐺, a ghost field of intensity 𝑞 ∈ (0, 1) is a random set of
vertices 𝑔 ⊆ 𝑉 distributed according to (Bernoulli) site percolation of parameter 𝑞.15 We denote
its law by Q𝑞 and write P𝑝 ⊗ Q𝑞 for the joint law of independent samples 𝜔 ∼ P𝑝 and 𝑔 ∼ Q𝑞.
One reason to introduce ghost fields is that it can be easier to work with the event {𝑜 ↔ 𝑔} when
𝑞 = 1/𝑛 than to work with the closely related event {|𝐾𝑜 | ≥ 𝑛}.

The following is [Van24, Theorem 2]. This can also be deduced from [Hut20d] with different
constants. This says that starting from any percolation parameter 𝑝, if we decrease 𝑝 by a suitable
amount, then the volume of the cluster at the origin will have an exponential tail under the new
parameter. This is proved by a variant of Vanneuville’s stochastic comparison technique from
[Van23], which we will describe in more detail in Section 8.5.

15Some authors use a slightly different parameterisation. When we write “a ghost field of intensity 𝑞 ∈ (0, 1)”, they
write “a ghost field of intensity ℎ > 0” for the same object, where 𝑞 = 1 − 𝑒−ℎ.
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Lemma 8.2.2. Let 𝐺 be a transitive graph. Given 𝑝 ∈ (0, 1) and ℎ > 0, define

𝜇𝑝,ℎ := P𝑝 ⊗ Q1−𝑒−ℎ (𝑜
𝜔←→ 𝑔).

Then for all 𝑚 ≥ 1,

P(1−𝜇𝑝,ℎ)𝑝 ( |𝐾𝑜 | ≥ 𝑚) ≤
P𝑝 ( |𝐾𝑜 | ≥ 𝑚)

1 − 𝜇𝑝,ℎ
𝑒−ℎ𝑚 .

Vanneuville proved this lemma when 𝐺 is infinite, but his proof also works verbatim when 𝐺 is
finite. The following easy corollary of this lemma says (contrapositively) that if the cluster at the
origin is much larger than log |𝑉 | with reasonable probability, then after sprinkling, the cluster at
the origin is at least mesoscopic with good probability.

Corollary 8.2.3. Let 𝐺 be a finite transitive graph. For all 𝜀 > 0 there exists 𝑐(𝜀) > 0 such that
for all 𝑝 ∈ (0, 1) and 𝑛, 𝜆 ≥ 1,

P𝑝 ( |𝐾𝑜 | ≥ 𝑛) ≤ 𝜀 =⇒ P(1−2𝜀)𝑝 ( |𝐾𝑜 | ≥ 𝜆 log |𝑉 |) ≤ 1

𝑐 |𝑉 |
𝑐𝜆
𝑛

.

Proof. Suppose that P𝑝 ( |𝐾𝑜 | ≥ 𝑛) ≤ 𝜀. We may assume that 𝜀 < 1/2, otherwise the result is
trivial. Define ℎ := 1

𝑛
log 1

1−𝜀 and 𝑞 := 1 − 𝑒−ℎ. By a union bound,

𝜇𝑝,ℎ := P𝑝 ⊗ Q𝑞 (𝑜
𝜔←→ 𝑔) ≤ P𝑝 ( |𝐾𝑜 | ≥ 𝑛) + P𝑝 ⊗ Q𝑞 (𝑜

𝜔←→ 𝑔 | |𝐾𝑜 | < 𝑛).

We now bound these two terms individually. By hypothesis, P𝑝 ( |𝐾𝑜 | ≥ 𝑛) ≤ 𝜀. By our choice of
ℎ and 𝑞,

P𝑝 ⊗ Q𝑞 (𝑜
𝜔←→ 𝑔 | |𝐾𝑜 | < 𝑛) ≤ 1 − 𝑒−ℎ𝑛 = 𝜀.

Therefore 𝜇𝑝,ℎ ≤ 2𝜀. So by Lemma 8.2.2,

P(1−2𝜀)𝑝 ( |𝐾𝑜 | ≥ 𝜆 log |𝑉 |) ≤
P𝑝 ( |𝐾𝑜 | ≥ 𝜆 log |𝑉 |)

1 − 2𝜀
𝑒−ℎ𝜆 log|𝑉 | ≤ 1

1 − 2𝜀
|𝑉 |−

𝜆
𝑛

log 1
1−𝜀 .

So the claim holds with 𝑐 := min
{
1 − 2𝜀, log 1

1−𝜀
}
. □

To convert the fact that the cluster at the origin is at least mesoscopic with good probability into
a uniform point-to-point lower bound on a divergently large scale, we will apply Hutchcroft’s
volumetric two-arm bound [Hut20a, Corollary 1.7], stated below as Theorem 8.2.4. This applies
in our setting because every finite transitive graph is unimodular, and in this case we can trivially
drop the hypothesis that at least one of the clusters is finite in the definition of T𝑒,𝑛. This tells us
that it is always unlikely that the endpoints of a given edge belong to distinct large clusters.
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Theorem 8.2.4. Let 𝐺 be a unimodular transitive graph with degree 𝑑. There exists 𝐶 (𝑑) < ∞
such that for all 𝑒 ∈ 𝐸 , 𝑛 ≥ 1, and 𝑝 ∈ (0, 1)

P𝑝 (T𝑒,𝑛) ≤ 𝐶
[
1 − 𝑝
𝑝𝑛

]1/2
,

where T𝑒,𝑛 is the event that the endpoints of 𝑒 belong to distinct clusters, each of which contains at
least 𝑛 vertices, and at least one of which is finite.

Hutchcroft showed in [Hut20a] that this can be used to convert volume-tail bounds into point-to-
point bounds. This was also used in [EH23b]. Here is the quantitative output of his argument,
stated in the case of finite graphs.

Corollary 8.2.5. Let 𝐺 be a finite transitive graph with degree 𝑑. There exists 𝐶 (𝑑) < ∞ such that
for all 𝑛, 𝑟 ≥ 1 and 𝑝 ∈ (0, 1),

min
𝑢∈𝐵𝑟

P𝑝 (𝑜 ↔ 𝑢) ≥ P𝑝 ( |𝐾𝑜 | ≥ 𝑛)2 −
𝐶𝑟

𝑝𝑟+1𝑛1/2 .

Proof. Let 𝑢 ∈ 𝐵𝑟 . By Harris’ inequality and a union bound,

P𝑝 (𝑜 ↔ 𝑢) ≥ P𝑝 ( |𝐾𝑜 | ≥ 𝑛)2 − P𝑝 ( |𝐾𝑜 | ≥ 𝑛 and |𝐾𝑢 | ≥ 𝑛 but 𝑜 ↮ 𝑢).

The second term on the right can now be bounded by [EH23b, Lemma 2.6]. (In that lemma the
hypothesis that 𝐺 is infinite and 𝑝 < 𝑝𝑐 can be replaced by the hypothesis that 𝐺 is finite.) □

We now combine Corollary 8.2.3 and Corollary 8.2.5 to establish Proposition 8.2.1.

Proof of Proposition 8.2.1. Fix 𝑝 ∈ (0, 1), 𝜆 ≥ 1, and 𝜂 > 0. Let 𝜀 := 𝜂

4 and let 𝑐1
( 𝜂

4
)
> 0 be the

corresponding constant from Corollary 8.2.3. We may assume that 𝜂 ≤ 1
2 , 𝑐1 < 1, and |𝑉 | > 1.

Suppose that P𝑝 ( |𝐾1 | ≥ 𝜆 log |𝑉 |) ≥ 1
𝑐 |𝑉 |𝑐 . By a union bound, P𝑝 ( |𝐾𝑜 | ≥ 𝜆 log |𝑉 |) ≥ 1

𝑐 |𝑉 |𝑐+1 . Let

𝑛 := 𝑐1𝜆
2 . Since 𝑐1𝜆

𝑛
− 1 > 𝑐1 and (1 − 2𝜀) (𝑝 + 𝜂) ≥ 𝑝, it follows by Corollary 8.2.3 that

P𝑝+𝜂

(
|𝐾𝑜 | ≥

𝑐1𝜆

2

)
≥ 𝜂

4
.

Let 𝐶1(𝑑) < ∞ be the constant from Corollary 8.2.5. Let 𝑟 ≥ 1 be arbitrary. Then by Corol-
lary 8.2.5,

min
𝑢∈𝐵𝑟

P𝑝+𝜂 (𝑜 ↔ 𝑢) ≥
(𝜂
4

)2
− 𝐶1𝑟

(𝑝 + 𝜂)𝑟+1
(
𝑐1𝜆
2

)1/2 .
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Note that 𝑟 ≤ 𝜂−𝑟 because 𝜂 ≤ 1
2 . So there is a constant 𝐶2(𝑑, 𝜂) < ∞ such that

𝐶1𝑟

(𝑝 + 𝜂)𝑟+1
(
𝑐1𝜆
2

)1/2 ≤
𝐶2

𝜂2𝑟𝜆1/2 .

Now there exists 𝑐2(𝑑, 𝜂) > 0 such that 𝑟 := 𝑐2 log(𝜆) − 1
𝑐2

satisfies 𝐶2
𝜂2𝑟𝜆1/2 ≤

𝜂2

80 . Then by our above
work (when 𝑟 ≥ 1, otherwise the inequality anyway holds trivally),

min
𝑢∈𝐵𝑟

P𝑝+𝜂 (𝑜 ↔ 𝑢) ≥
(𝜂
4

)2
− 𝜂

2

80
=
𝜂2

20
.

Therefore the claim holds with 𝑐 := min{𝑐1, 𝑐2}. □

Local connections→ large clusters
In this subsection we prove the following proposition. This imples that if there is a uniform point-
to-point lower bound on a divergently large scale, then the largest cluster contains much more than
log |𝑉 | vertices with high probability. This is a kind of converse to Proposition 8.2.1. This will be
used in the next subsection to prove the equivalence of different notions of sharpness.

Proposition 8.2.6. Let 𝐺 be a finite transitive graph. For all 𝛿 > 0 there exists 𝑐(𝛿) > 0 such that
for all 𝑝 ∈ (0, 1) and 𝑟 ≥ 1 with |𝐵𝑟 | ≤ |𝑉 |1/10,

min
𝑢∈𝐵𝑟

P𝑝
(
𝑜 ↔ 𝑢) ≥ 𝛿 =⇒ P𝑝 ( |𝐾1 | ≥ 𝑐 |𝐵𝑟 | log |𝑉 |

)
≥ 1 − 1

|𝑉 |3/4
.

The next lemma converts point-to-point connection lower bounds on one scale into volume-tail
lower bounds on all scales. The idea is to approximately cover the graph by a large number of balls
on which the point-to-point lower bound holds then glue together large clusters from multiple balls.

Lemma 8.2.7. Let 𝐺 be a finite transitive graph. For all 𝛿 > 0 there exists 𝑐(𝛿) > 0 such that for
all 𝑝 ∈ (0, 1) and 𝑛, 𝑟 ≥ 1 satisfying 𝑛 ≤ 𝑐 |𝑉 |

|𝐵𝑟 | ,

min
𝑢∈𝐵𝑟

P𝑝 (𝑜 ↔ 𝑢) ≥ 𝛿 =⇒ P𝑝 ( |𝐾𝑜 | ≥ 𝑛) ≥ 𝑐𝑒−
𝑛

𝑐 |𝐵𝑟 | .

Proof. Fix 𝛿 > 0, 𝑝 ∈ (0, 1), and 𝑛, 𝑟 ≥ 1. Suppose that min𝑢∈𝐵𝑟 P𝑝 (𝑜 ↔ 𝑢) ≥ 𝛿. Let 𝑊 be a
maximal (with respect to inclusion) set of vertices such that 𝑜 ∈ 𝑊 and dist𝐺 (𝑢, 𝑣) ≥ 2𝑟 for all
distinct 𝑢, 𝑣 ∈ 𝑊 . Build a graph 𝐻 with vertex set 𝑊 by including the edge {𝑢, 𝑣} if and only if
dist𝐺 (𝑢, 𝑣) ≤ 5𝑟 and 𝑢 ≠ 𝑣. By maximality of 𝑊 , the graph 𝐻 is connected. Let 𝑇 be a spanning
tree for 𝐻. Let 𝑓 : 𝑊\{𝑜} → 𝑊 be a function encoding 𝑇 where ‘ 𝑓 (𝑢) = 𝑣’ means that the edge
{𝑢, 𝑣} is present in 𝑇 and dist𝑇 (𝑜, 𝑣) < dist𝑇 (𝑜, 𝑢). Extend this to a function 𝑓 : 𝑊 → 𝑊 by setting
𝑓 (𝑜) := 𝑜. By Markov’s inequality, every 𝑢 ∈ 𝑉 satisfies P𝑝

(
|𝐾𝑢 ∩ 𝐵𝑟 (𝑢) | ≥ 𝛿

2 |𝐵𝑟 |
)
≥ 𝛿

2 .16 By
16In this proof, P𝑝 and |𝐵𝑟 | refer to 𝐺, not to 𝑇 or 𝐻.
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Harris’ inequality, every edge {𝑢, 𝑣} in 𝐻 satisfies P𝑝 (𝑢 ↔ 𝑣) ≥ 𝛿5. So by Harris’ inequality again,
for every 𝑢 ∈ 𝑊 , the event 𝐴𝑢 that 𝑢 ↔ 𝑓 (𝑢) and |𝐾𝑢 ∩ 𝐵𝑟 (𝑢) | ≥ 𝛿

2 |𝐵𝑟 | satisfies P𝑝 (𝐴𝑢) ≥ 𝛿5 · 𝛿2 =

𝛿6

2 .

Let 𝑐(𝛿) > 0 be a small constant to be determined. Suppose that 𝑛 ≤ 𝑐 |𝑉 |
|𝐵𝑟 | . By maximality of 𝑊 ,

the balls {𝐵2𝑟 (𝑢) : 𝑢 ∈ 𝑊} cover 𝑉 , and hence |𝑉 | ≤ |𝑊 | · |𝐵2𝑟 |. So provided that 𝑐 is sufficiently
small,

|𝑊 | ≥ |𝑉 ||𝐵2𝑟 |
≥ |𝑉 |
|𝐵𝑟 |2

≥ 𝑛

𝑐 |𝐵𝑟 |
≥ 2𝑛
𝛿 |𝐵𝑟 |

.

In particular, we can find a 𝑇-connected set of vertices 𝑈 ⊆ 𝑊 such that 𝑜 ∈ 𝑈 and |𝑈 | =
⌈

2𝑛
𝛿 |𝐵𝑟 |

⌉
.

If 𝐴𝑢 holds for every 𝑢 ∈ 𝑈 then |𝐾𝑜 | ≥ 𝛿
2 · |𝐵𝑟 | · |𝑈 | ≥ 𝑛. So by Harris’ inequality, provided 𝑐 is

sufficiently small,

P𝑝 ( |𝐾𝑜 | ≥ 𝑛) ≥ P𝑝

(⋂
𝑢∈𝑈

𝐴𝑢

)
≥

(
𝛿6

2

)⌈
2𝑛
𝛿 |𝐵𝑟 |

⌉
≥ 𝑐𝑒−

𝑛
𝑐 |𝐵𝑟 | . □

The following is a second-moment calculation for the number of vertices contained in large clus-
ters.17 In the proof, it will be convenient to introduce partial functions to encode partially-revealed
percolation configurations. Recall that a partial function 𝑓 : 𝐴 ⇀ 𝐵 is a function 𝐴′→ 𝐵 for some
𝐴′ ⊆ 𝐴, i.e. for every 𝑎 ∈ 𝐴, either 𝑓 (𝑎) ∈ 𝐵 or 𝑓 (𝑎) = ‘undefined’. We denote this set 𝐴′ on
which 𝑓 is defined by dom( 𝑓 ). Given partial functions 𝑓 and 𝑔, the override 𝑓 ⊔ 𝑔 is the partial
function with dom( 𝑓 ⊔ 𝑔) = dom( 𝑓 ) ∪ dom(𝑔) that is equal to 𝑓 on dom( 𝑓 ) and is equal to 𝑔 on
dom(𝑔)\ dom( 𝑓 ). We write Var𝑝 to denote the variance of a random variable under P𝑝.

Lemma 8.2.8. Let 𝐺 be a finite transitive graph. For all 𝑛 ≥ 0 and 𝑝 ∈ (0, 1), the random set
𝑋 := {𝑢 ∈ 𝑉 : |𝐾𝑢 | ≥ 𝑛} satisfies

Var𝑝 |𝑋 | ≤ 𝑛2 · E𝑝 |𝑋 | .

Proof. Let P be the joint law of a uniformly random automorphism of 𝐺, denoted 𝜙, and three
configurations 𝜔1, 𝜔2, 𝜔3 sampled according to P𝑝, where all four of these random variables are
independent. Given a configuration 𝜔 : 𝐸 → {0, 1}, let 𝜔̂ : 𝐸 ⇀ {0, 1} be the partial function
encoding the edges revealed in an exploration of the cluster at 𝑜 from inside (with respect to an
arbitrary fixed ordering of 𝐸) that is halted as soon as the event {|𝐾𝑜 (𝜔) | ≥ 𝑛} is determined by
the states of the revealed edges. Define 𝜔 := (𝜔̂1 ⊔ 𝜙(𝜔̂2)) ⊔ 𝜔3. By transitivity, the law of 𝜙(𝑜)

17We were inspired by a weaker (degree-dependent) version of this argument that arose during joint work with
Hutchcroft towards [EH23+a], which was made redundant and thus did not appear in the final version of that work.
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is uniform on 𝑉 , and by a standard cluster-exploration argument, P(𝜔 = · | 𝜙) = P𝑝 almost surely.
This lets us rewrite Var𝑝 |𝑋 | as

Var𝑝 |𝑋 | =
∑︁
𝑢,𝑣

[
P𝑝 (𝑢, 𝑣 ∈ 𝑋) − P𝑝 (𝑢 ∈ 𝑋) · P𝑝 (𝑣 ∈ 𝑋)

]
= |𝑉 | E𝑝 |𝑋 | ·

[
1
|𝑉 |

∑︁
𝑢

P𝑝 (𝑢 ∈ 𝑋 | 𝑜 ∈ 𝑋) − P𝑝 (𝑜 ∈ 𝑋)
]

= |𝑉 | E𝑝 |𝑋 | ·
[
P (𝜙(𝑜) ∈ 𝑋 (𝜔) | 𝑜 ∈ 𝑋 (𝜔)) − P𝑝 (𝑜 ∈ 𝑋)

]
.

(8.2.1)

Consider the sets of vertices 𝐴1 := 𝐾𝑜 (𝜔̂1) and 𝐴2 := 𝐾𝑜 (𝜔̂2), which are defined purely in terms of
the open edges in 𝜔̂1 and 𝜔̂2 respectively, i.e. all edges with ‘undefined’ state are treated as closed.
Note that 𝑜 ∈ 𝑋 (𝜔) if and only if 𝑜 ∈ 𝑋 (𝜔1). Moreover, given that 𝑜 ∈ 𝑋 (𝜔1), if 𝜙(𝑜) ∈ 𝑋 (𝜔)
then either 𝑜 ∈ 𝑋 (𝜔2) or 𝐴1 ∩ 𝜙(𝐴2) ≠ ∅. So by a union bound and independence,

P (𝜙(𝑜) ∈ 𝑋 (𝜔) | 𝑜 ∈ 𝑋 (𝜔)) ≤ P𝑝 (𝑜 ∈ 𝑋) + P (𝐴1 ∩ 𝜙(𝐴2) ≠ ∅ | 𝑜 ∈ 𝑋 (𝜔1)) . (8.2.2)

In particular, by eq. (8.2.1), it suffices to verify that

P (𝐴1 ∩ 𝜙(𝐴2) ≠ ∅ | 𝜔1, 𝜔2, 𝜔3) ≤
𝑛2

|𝑉 | a.s. (8.2.3)

Consider arbitrary deterministic sets of vertices 𝐵1 and 𝐵2. By transitivity, the law of 𝜙(𝑢) for any
fixed vertex 𝑢 is uniform over 𝑉 . So by a union bound,

P(𝐵1 ∩ 𝜙(𝐵2) ≠ ∅) ≤
∑︁
𝑢∈𝐵2

P(𝜙(𝑢) ∈ 𝐵1) =
∑︁
𝑢∈𝐵2

|𝐵1 |
|𝑉 | =

|𝐵1 | |𝐵2 |
|𝑉 | .

Equation (8.2.3) now follows by applying this to the sets 𝐴1 and 𝐴2, which almost surely satisfy
|𝐴1 | , |𝐴2 | ≤ 𝑛. □

We now combine Lemmas 8.2.7 and 8.2.8 to prove Proposition 8.2.6.

Proof of Proposition 8.2.6. Let 𝛿 > 0, 𝑝 ∈ (0, 1), and 𝑟 ≥ 1. Suppose that |𝐵𝑟 | ≤ |𝑉 |1/10 and
min𝑢∈𝐵𝑟 P𝑝 (𝑜 ↔ 𝑢) ≥ 𝛿. Let 𝑐1(𝛿) > 0 be the constant from Lemma 8.2.7. Let 𝑛 := 𝑐 |𝐵𝑟 | log |𝑉 |
for a small constant 𝑐(𝛿) > 0 to be determined. Since |𝐵𝑟 |2 ≤ |𝑉 |2/10, provided 𝑐 is small,

𝑛 := 𝑐 |𝐵𝑟 | log |𝑉 | ≤ 𝑐1 |𝑉 |
|𝐵𝑟 |

.

So Lemma 8.2.7 yields

P𝑝 ( |𝐾𝑜 | ≥ 𝑛) ≥ 𝑐1𝑒
− 𝑛
𝑐1 |𝐵𝑟 | = 𝑐1 |𝑉 |−

𝑐
𝑐1 ≥ 𝑐1 |𝑉 |−1/100 ,
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provided 𝑐 is small. By transitivity, it follows that the random set 𝑋 := {𝑢 ∈ 𝑉 : |𝐾𝑜 | ≥ 𝑛} satisfies
E𝑝 |𝑋 | ≥ 𝑐1 |𝑉 |99/100. So by Chebychev’s inequality and Lemma 8.2.8,

P𝑝 ( |𝐾1 | ≥ 𝑛) = 1 − P𝑝 ( |𝑋 | = 0) ≥ 1 −
Var𝑝 |𝑋 |(
E𝑝 |𝑋 |

)2 ≥ 1 − 𝑛2

𝑐1 |𝑉 |99/100 .

The conclusion follows because, provided 𝑐 is small,

𝑛2

𝑐1 |𝑉 |99/100 =
(𝑐 |𝐵𝑟 | log |𝑉 |)2

𝑐1 |𝑉 |99/100 ≤

(
𝑐 |𝑉 |1/10 log |𝑉 |

)2

𝑐1 |𝑉 |99/100 ≤ 1
|𝑉 |3/4

. □

Equivalent notions of sharpness
In this subsection we apply results from earlier in Section 8.2 to prove the following proposition.
In the statement and the proof, we take for granted that G always admits a percolation threshold
[Eas23]. Item 2 is analogous to the standard definition of sharpness for percolation on an infinite
transitive graph. The fact that items 1 and 2 are equivalent is why we decided to label our version
of “sharpness” for finite transitive graphs as such. Item 3 is analogous to the locality of the critical
parameter for infinite transitive graphs. It is perhaps surprising that sharpness and locality are
equivalent for finite graphs but not for infinite graphs. One way to make sense of this is that locality
for infinite graphs is equivalent to a uniform (in the choice of graph) version of sharpness for infinite
graphs, and for finite graphs, the only meaningful notion of sharpness is necessarily uniform.

Proposition 8.2.9. For every infinite set G of finite transitive graphs with bounded degrees, the
following are equivalent:

1. Percolation on G has a sharp phase transition.

2. For every subcritical sequence of parameters 𝑝, there exists a constant 𝐶 (G, 𝑝) < ∞ such
that for all 𝐺 ∈ G and all 𝑛 ≥ 1,

P𝑝 ( |𝐾𝑜 | ≥ 𝑛) ≤ 𝐶𝑒−𝑛/𝐶 .

3. If an infinite subset H ⊆ 𝐺 converges locally to an infinite transitive graph 𝐻, then the
constant sequence 𝐺 ↦→ 𝑝𝑐 (𝐻) is the percolation threshold forH .

We will prove that 3 =⇒ 2 =⇒ 1 =⇒ 3. For the first step, we apply Corollary 8.2.3 and
compactness.
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Proof that item 3 implies item 2. Assume that item 3 holds. Our goal is to prove that item 2 holds.
Since G has bounded degrees, G is relatively compact in the local topology. In particular, we may
assume without loss of generality that G converges locally to some infinite transitive graph 𝐺. (If
item 2 is false, then we can find an infinite subsetH ⊆ G such that item 2 is false for every sequence
inH .) Now fix a subcritical sequence 𝑝 for G. By item 3, after passing to a tail of G if necessary,
there exists a constant 𝜀 > 0 such that 𝑝(𝐺) ≤ (1− 𝜀)𝑝𝑐 (𝐻) for every 𝐺 ∈ G. Pick 𝑟 ≥ 1 such that
P𝐻(1−𝜀/2)𝑝𝑐 (𝐻) ( |𝐾𝑜 | ≥ 𝑟) ≤ 𝜀/4. By passing to a further tail of G if necessary, we may assume that
𝐵𝐺𝑟 � 𝐵

𝐻
𝑟 for every 𝐺 ∈ G. Then P𝐺(1−𝜀/2)𝑝𝑐 (𝐻) ( |𝐾𝑜 | ≥ 𝑟) ≤ 𝜀/4 for every 𝐺 ∈ G. Let 𝑐(𝜀) > 0

be the constant from Corollary 8.2.3. For every 𝑛 ≥ 1 and 𝐺 ∈ G, Corollary 8.2.3 with 𝜆 := 𝑛
log|𝑉 |

tells us that

P𝐺(1−𝜀)𝑝𝑐 (𝐻) ( |𝐾𝑜 | ≥ 𝑛) ≤ P𝐺(1−𝜀/2) (1−2·𝜀/4)𝑝𝑐 (𝐻) ( |𝐾𝑜 | ≥ 𝑛) ≤
1

𝑐𝑒𝑐𝑛/𝑟
.

Take 𝐶 := 𝑟/𝑐. The conclusion now follows by monotonicity because 𝑝(𝐺) ≤ (1 − 𝜀)𝑝𝑐 (𝐻) for
every 𝐺 ∈ G. □

The second step is a simple union bound.

Proof that item 2 implies item 1. Given a subcritical sequence 𝑝, let 𝐶 (G, 𝑝) < ∞ be the constant
guaranteed to exist by item 2. Then for every 𝐺 ∈ G,

P𝑝 ( |𝐾𝑜 | ≥ 2𝐶 log |𝑉 |) ≤ 𝐶𝑒−
2𝐶 log |𝑉 |

𝐶 =
𝐶

|𝑉 |2
,

and hence by a union bound,

P𝑝 ( |𝐾1 | ≤ 2𝐶 log |𝑉 |) ≥ 1 − |𝑉 | 𝐶
|𝑉 |2

= 1 − 𝐶

|𝑉 | .

So limP𝑝 ( |𝐾1 | ≤ 2𝐶 log |𝑉 |) = 1, as required. □

We now turn to the third step, 1 =⇒ 3. Fix a choice of percolation threshold 𝑝𝑐 : G → (0, 1),
and think of this as an extension of the usual critical points 𝑝𝑐 for percolation on the infinite
transitive graphs that make up the boundary of G. Then our goal is to show that, assuming item 1,
the function 𝑝𝑐 is continuous as we approach the boundary of G from the interior. We split this
into two parts: upper- and lower-semicontinuity. For lower-semicontinuity, we will apply a finite
graph version of an argument of Pete [Pet, Section 14.2], which was based on the mean-field lower
bound for infinite transitive graphs. For upper-semicontinuity, we will combine Corollary 8.2.5
and Proposition 8.2.6.
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Proof that item 1 implies item 3. Suppose for contradiction that H ⊆ 𝐺 is an infinite subset that
converges locally to some infinite transitive graph 𝐻, but the constant sequence 𝐺 ↦→ 𝑝𝑐 (𝐻) is
not a percolation threshold for H . By passing to a subsequence, we may assume without loss of
generality that there is a constant 𝜀 > 0 such that either 𝑝𝑐 (𝐺) ≤ (1 − 𝜀)𝑝𝑐 (𝐻) for every 𝐺 ∈ H ,
or 𝑝𝑐 (𝐺) ≥ (1 + 𝜀)𝑝𝑐 (𝐻) for every 𝐺 ∈ H . Call these Case 1 and Case 2, corresponding to (a
violation of) lower- and upper-semicontinuity in our discussion above.

(Case 1) Since 𝑝𝑐 : G → (0, 1) is a percolation threshold, there exists a constant 𝛿 > 0 such that
P𝐺(1+𝜀)𝑝𝑐 (𝐺) ( |𝐾𝑜 | ≥ 𝛿 |𝑉 |) ≥ 𝛿 for every𝐺 ∈ H . So by monotonicity, P𝐺(1−𝜀2)𝑝𝑐 (𝐻)

( |𝐾𝑜 | ≥ 𝛿 |𝑉 |) ≥ 𝛿
for every 𝐺 ∈ H . For every 𝑟 ≥ 1, there exists 𝐺 ∈ H such that 𝛿 |𝑉 | >

��𝐵𝐻𝑟 �� and 𝐵𝐺𝑟 � 𝐵𝐻𝑟 , and
hence

P𝐻(1−𝜀2)𝑝𝑐 (𝐻) ( |𝐾𝑜 | ≥ 𝑟) ≥ P𝐺(1−𝜀2)𝑝𝑐 (𝐻) (𝑜 ↔ 𝑆𝑟) ≥ P𝐺(1−𝜀2)𝑝𝑐 (𝐻) ( |𝐾𝑜 | ≥ 𝛿 |𝑉 |) ≥ 𝛿.

In particular, P𝐻(1−𝜀2)𝑝𝑐 (𝐻)
( |𝐾𝑜 | = ∞) > 0, a contradiction.

(Case 2) Let 𝐴 ≥ 1 be a given arbitrary constant. It suffices to prove that the parameter
𝑝 := (1 + 𝜀/2)𝑝𝑐 (𝐻) satisfies limG P𝐺𝑝 ( |𝐾1 | ≥ 𝐴 log |𝑉 |) = 1. Set 𝛿 := P𝐻𝑝 (𝑜 ↔ ∞) > 0. Let 𝑑 be
the vertex degree of 𝐻, and note that 𝑝𝑐 (𝐻) > 1/𝑑, as this is well-known to hold for every infinite
transitive graph. So by Corollary 8.2.5, there is a constant 𝐶 (𝑑) < ∞ such that for all 𝑛, 𝑟 ≥ 1 and
all 𝐺 ∈ H with 𝐵𝐺𝑛 � 𝐵𝐻𝑛 ,

min
𝑢∈𝐵𝐺𝑟

P𝐺𝑝 (𝑜 ↔ 𝑢) ≥ 𝛿2 − 𝐶𝑟𝑑
𝑟+1

𝑛1/2 ,

and in particular, (using that 𝑟 ≤ 𝑑𝑟 for all 𝑟 ≥ 1) the radius 𝑟 (𝑛) := log𝑑
(
𝛿2𝑛1/2

2𝐶𝑑2

)
satisfies

min
𝑢∈𝐵𝐺

𝑟 (𝑛)

P𝐺𝑝 (𝑜 ↔ 𝑢) ≥ 𝛿2 − 𝛿
2

2
=
𝛿2

2
.

Let 𝑐(𝛿2/2) > 0 be the constant from Proposition 8.2.6. Fix 𝑛 sufficiently large that 𝑐 · 𝑟 (𝑛) ≥ 𝐴.
By passing to a tail ofH if necessary, let us assume that 𝐵𝐺𝑛 � 𝐵𝐻𝑛 and |𝐵𝐺

𝑟 (𝑛) | ≤ |𝑉 |
1/10 for every

𝐺 ∈ H . Then by Proposition 8.2.6, for all 𝐺 ∈ H ,

P𝐺𝑝
(
|𝐾1 | ≥ 𝑐 |𝐵𝐺𝑟 (𝑛) | log |𝑉 |

)
≥ 1 − 1

|𝑉 |3/4
.

In particular, since 𝑐 |𝐵𝐻
𝑟 (𝑛) | ≥ 𝑐𝑟 (𝑛) ≥ 𝐴, we deduce that limG P𝐺𝑝 ( |𝐾1 | ≥ 𝐴 log |𝑉 |) = 1 as

required. □
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8.3 Local connections→ global connections
In this section, we will apply the proof from [EH23b] that the critical point for percolation on
(non-one-dimensional) infinite transitive graphs is local. As explained in the introduction, we need
to both make this argument more finitary and adapt it to finite transitive graphs. We can roughly
think of the proof of [EH23b] in two parts: First, if 𝐺 does not satisfy certain geometric properties
around scale 𝑛, which include that 𝐺 is finitely-ended, then 𝐺 must satisfy a certain statement
I𝑛 about the propagation of connection bounds around scale 𝑛. Second, if 𝐺 does satisfy these
geometric properties and𝐺 is one-ended, then𝐺 again satisfies I𝑛. Together, these two parts imply
that if 𝐺 does not satisfy I𝑛, then 𝐺 must actually be two-ended and hence one-dimensional. By
looking at the proof of the second part, we can pinpoint where one-endedness is used, namely as a
hypothesis in [EH23b, Lemma 5.8].

[EH23b, Lemma 5.8] concerns certain (𝑜,∞)-cutsets called exposed spheres. The lemma says that
if 𝐺 satisfies nice geometric properties around scale 𝑛 and is one-ended, then the exposed spheres
around scale 𝑛 are in some sense well-connected. We took this from [CMT22, Lemma 2.1 and
2.7], where the authors deduced it from a theorem of Babson and Benjamini [BB99b]. By reading
Timar’s proof [Tim07] of this theorem of Benjamini and Babson, we see that if an exposed sphere is
not well-connected, then not only is𝐺 multiply-ended, but this is actually witnessed by the exposed
sphere itself in the sense that its removal from 𝐺 would create multiple infinite components. From
this we can conclude that 𝐺 must in fact start to look one-dimensional from around scale 𝑛. This is
how we will make this step from [EH23b] finitary. To adapt the argument to finite transitive graphs,
we will additionally need to introduce the notion of the exposed sphere in a finite transitive graph
and prove that finite transitive graphs can, for the purpose of part of our argument, be treated like
infinite transitive graphs that are one-ended.

Unfortunately, this application of Babson-Benjamini is deeply embedded in the proof of [EH23b]
as it is currently written. So it will take some work to restructure the multi-scale induction in
[EH23b] to isolate the relevant part. To avoid repetition, we have deferred the details of arguments
that are implicit in [EH23b] to the appendix, thereby keeping many of the arguments in this section
high-level. Ultimately we will prove the following proposition, which contains this finite-graph
finitary refinement of locality. While we have written this for finite graphs, the same argument
yields the analogous finitary refinement for infinite graphs.

Proposition 8.3.1. Let 𝐺 be a finite transitive graph with degree 𝑑. Define

𝛾 := distGH

( 𝜋

diam𝐺
𝐺, 𝑆1

)
· diam𝐺 and 𝛾+ := 𝑒(log 𝛾)9 .
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For all 𝜀, 𝜂 > 0 there exists 𝜆(𝑑, 𝜀, 𝜂) < ∞ such that for all 𝑝 ∈ (0, 1),

min
𝑢∈𝐵𝜆

P𝑝 (𝑜 ↔ 𝑢) ≥ 𝜂 =⇒ min
𝑢∈𝐵𝛾+

P𝑝+𝜀 (𝑜 ↔ 𝑢) ≥ 𝑒−(log log 𝛾+)1/2 .

This proof of Proposition 8.3.1 is by induction. In Section 8.3, we describe the high-level structure
of this induction, which is essentially the same as in [EH23b, Section 3.2], except for two differences.
The first difference is that we have reworded the induction to say “we can keep propagating until
and unless we reach a scale where the geometry is bad”, with a separate lemma that says “if
the geometry is bad at scale 𝑛, then 𝐺 starts to look one-dimensional from around scale 𝑛”. In
contrast, the induction in the earlier work simply says “if 𝐺 is not one-dimensional, then we can
keep propagating forever”. The second difference is that the induction in the earlier work is slightly
coarser in the sense that it groups multiple inductive steps of the argument we present here into
a single inductive step. The additional detail in the present version is necessary to close the gap
between the last scale from which we can propagate connection bounds and the first scale at which
we can prove that the geometry “is bad”.

The individual inductive steps are all implicit in [EH23b, Sections 4 and 6]. We will justify these
in the appendix. In Section 8.3, we will prove something like the “base case” of the induction.
This follows by a compactness argument from some intermediary results in [EH23b] and [CMT22].
In Section 8.3, we will prove that “if the geometry is bad at scale 𝑛, then 𝐺 starts to look one-
dimensional from around scale 𝑛”. This subsection is a refinement of [EH23b, Section 5], but for
the reasons discussed, it will require some new ideas.

The logic of the induction
For the entirety of this subsection, fix a finite transitive graph 𝐺 with degree 𝑑, and define 𝛾 as
in the statement of Proposition 8.3.1. We will describe the repeated-sprinkling multi-scale induc-
tion argument used to prove Proposition 8.3.1 (which is adapted from [EH23b]) as a deterministic
colouring process evolving over time. At every time 𝑡 ∈ R, every scale18 𝑛 ∈ [3,∞) can be coloured
orange or green (or both, or neither — i.e. uncoloured), encoding a statement19 about the connec-
tivity properties of percolation of parameter20 𝜙(𝑡) := 1 − 2−𝑒𝑡 over distances of approximately 𝑛.

18It would have been more natural to consider scales 𝑛 ∈ N rather than 𝑛 ∈ [3,∞). We chose the latter to avoid
rounding issues and so that log log 𝑛 is always positive.

19Formally, this colouring can be encoded as a function colour : [3,∞) × R → P({orange, green}), where P(𝑋)
means the powerset of 𝑋 . We say “𝑛 is green at time 𝑡” to mean that colour(𝑛, 𝑡) ∋ orange. Similar statements are
formalised analogously.

20This choice of parameterisation appears implicitly in [EH23b] as the natural choice for arguments that involve
repeated sprinkling. Indeed, our function 𝜙 is the function Spr(𝑝;𝜆) from [EH23b, Section 3.1] evaluated at (1/2; 𝑡).
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To lighten notation, let 𝛿(𝑛) := 𝑒−(log log 𝑛)1/2 denote the standard small-quantity associated to each
scale 𝑛. Now we colour a scale 𝑛 orange at time 𝑡 to mean that

min
𝑢∈𝐵𝑛

P𝜙(𝑡) (𝑜 ↔ 𝑢) ≥ 𝛿(𝑛).

We also define the move-right (aka increase-scale) function 𝑅 : 𝑛 ↦→ 𝑒(log 𝑛)9 , and write 𝑅𝑘 :=
𝑅 ◦ . . . ◦ 𝑅 for the 𝑘-fold composition of 𝑅 with itself. Now to prove Proposition 8.3.1, it suffices
to prove the following lemma.

Lemma 8.3.2. For all 𝜀 > 0 and 𝑛1 ≥ 3 there exists 𝑛2(𝑑, 𝜀, 𝑛1) < ∞ such that for all 𝑡 ∈ R with
𝑡 ≤ 1

𝜀
, if [𝑛1, 𝑛2] is orange at time 𝑡, then 𝑅(𝛾) is orange at time 𝑡 + 𝜀.

Proof of Proposition 8.3.1 given Lemma 8.3.2. Fix 𝜀, 𝜂 > 0. Let 𝑛1(𝜂) be the smallest integer
satisfying 𝑛1 ≥ 3 and 𝛿(𝑛1) ≤ 𝜂. Let 𝛼(𝜀) > 0 be the unique real satisfying 𝜙(1/𝛼) = 1 − 𝜀. Let
𝑛2(𝑑, 𝛼 ∧ 𝜀, 𝑛1) < ∞ be the constant that is guaranteed to exist by Lemma 8.3.2. We claim that
we can take 𝜆 := 𝑛2. Indeed, let 𝑝 ∈ (0, 1) and suppose that min𝑢∈𝐵𝑛2

P𝑝 (𝑜 ↔ 𝑢) ≥ 𝜂. Define
𝑡 := 𝜙−1(𝑝). The claim is trivial if 𝑝 ≥ 1 − 𝜀, so we may assume that 𝑡 ≤ 1/𝛼. By monotonicity
of the function 𝛿(·), the interval [𝑛1, 𝑛2] is orange at time 𝑡. So by applying Lemma 8.3.2, 𝑅(𝛾) is
orange at time 𝑡 + 𝜀. Since (by calculus) 𝜙 is 1-Lipschitz, 𝑅(𝛾) is also orange at time 𝜙−1(𝑝 + 𝜀),
which is the required conclusion. □

We say that a set 𝑀 ⊆ N is a certain colour if every𝑚 ∈ 𝑀 is that colour. Given a statement 𝐴 about
a colouring at an implicit time 𝑡, we define 𝑠(𝐴) := inf{𝑡 : 𝐴 is true at time 𝑡} where inf ∅ := +∞.
For example,

𝑠 ({10, 12} is orange) := inf{𝑡 : 10 and 12 are both orange at time 𝑡} ∈ [−∞, +∞] .

As a first approximation to our induction, imagine we knew that for every scale 𝑛 with 𝑛 ≤ 𝛾,

𝑠(𝑅(𝑛) is orange) ≤ 𝑠(𝑛 is orange) + 𝛿(𝑛). (8.3.1)

Suppose for simplicity that some positive integer 𝑟 satisfies 𝑅𝑟 (𝑛2) = 𝛾 and that 𝑛2 exceeds some
large universal constant. Then by repeatedly applying eq. (8.3.1), we could deduce that

𝑠 (𝑅(𝛾) is orange) − 𝑠 ( [𝑛1, 𝑛2] is orange) ≤
𝑟∑︁
𝑘=0

[
𝑠

(
𝑅𝑘+1(𝑛2) is orange

)
− 𝑠

(
𝑅𝑘 (𝑛2) is orange

)]
≤

𝑟∑︁
𝑘=0

𝛿

(
𝑅𝑘 (𝑛2)

)
≤
∞∑︁
𝑘=0

𝑒−(9𝑘 log log 𝑛2)1/2 ≤ 2𝛿(𝑛2).

346



Since 𝛿(𝑛2) → 0 as 𝑛2 →∞, this would certainly imply Lemma 8.3.2. Rather than prove something
as direct as eq. (8.3.1), we will have to bring into play a new colour, green.

Given a finite path 𝜈 = (𝜈𝑖)𝑘𝑖=0, we write start(𝜈) := 𝜈0 and end(𝜈) := 𝜈𝑘 for its start and end
vertices, |𝜈 | := 𝑘 for its length, and given 𝑟 ≥ 0, we write 𝐵𝑟 (𝜈) :=

⋃𝑘
𝑖=0 𝐵𝑟 (𝜈𝑖) for the associated

tube. Given 𝑚, 𝑛 ≥ 1 and 𝑝 ∈ (0, 1), define the corridor function (which we take from [CMT22]),

𝜅𝑝 (𝑚, 𝑛) := inf
𝜈:|𝜈 |≤𝑚

P𝑝

(
start(𝜈)

𝜔∩𝐵𝑛 (𝜈)←−−−−−→ end(𝜈)
)
.

Notice that we always have 𝜅𝑝 (𝑚, 𝑛) ≤ min𝑢∈𝐵𝑚 P𝑝 (𝑜 ↔ 𝑢). Let us also define the set of low-
growth scales L := {𝑛 ≥ 3 : Gr(𝑛) ≤ 𝑒(log 𝑛)100}. Now we colour a scale 𝑛 green at time 𝑡 to mean
that 𝑛 is orange and either 𝑛 ∉ L or 𝜅𝜙(𝑡) (𝑅2(𝑛), 𝑛) ≥ 𝛿(𝑅(𝑛)). We will use this new colour to
help us propagate orange by controlling the time taken for orange scales to turn green and for green
scales to turn nearby scales orange.

The next lemma says that green scales quickly turn nearby scales orange. If we see that 𝑛 is green at
some time 𝑡 but 𝑛 ∈ L, then 𝜅𝜙(𝑡) (𝑅2(𝑛), 𝑛) ≥ 𝛿(𝑅(𝑛)), which trivially implies that [𝑅(𝑛), 𝑅2(𝑛)]
is already orange. So the content of this lemma is that if instead 𝑛 ∉ L, then we can efficiently
propagate a point-to-point connection lower bound from scale 𝑛 to scales in [𝑅(𝑛), 𝑅2(𝑛)]. The
proof of this is implicit in [EH23b, Section 4]. The argument uses some ghost-field technology
that works more efficiently around scales 𝑛 where Gr(𝑛) is large. See the appendix for details.

Lemma 8.3.3. There exists 𝑛0(𝑑) < ∞ such that for all 𝑛 ≥ 𝑛0,

𝑠( [𝑅(𝑛), 𝑅2(𝑛)] is orange) ≤ 𝑠(𝑛 is green) + 𝛿(𝑛).

The next lemma sometimes lets us control how long it takes for a scale 𝑛 to become green after
turning orange. If 𝑛 ∉ L, then this time is trivially zero. So it suffices to consider 𝑛 ∈ L. We might
hope for a statement like the following: there exists 𝑛0(𝑑) < ∞ such that for all 𝑛 ≥ 𝑛0 with 𝑛 ∈ L,

𝑠(𝑛 is green) ≤ 𝑠(𝑛 is orange) + 𝛿(𝑛). (8.3.2)

Our next lemma is less satisfying in two ways.21 First, we can only prove an upper bound like
eq. (8.3.2) when 𝑛 belongs to a particular distinguished subset T(𝑐, 𝜆) of L. Second, our upper
bound is in terms of a mysterious quantity Δ rather than something explicit like 𝛿(𝑛). So to use this
lemma, we will need to: (1) Deal with scales 𝑛 ∈ L\T(𝑐, 𝜆), and (2) Find a way to upper bound
Δ explicitly. For completeness, we will now define T(𝑐, 𝜆) and Δ, but the reader should feel free

21We need to use the non-one-dimensionality hypothesis somewhere.
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to skip these definitions for now because they are not necessary to follow the high-level induction
argument being developed in this subsection.

Given constants 𝑐, 𝜆 > 0, letT(𝑐, 𝜆) be the set of scales 𝑛 ∈ L such that𝐺 has (𝑐, 𝜆)-polylog plentiful
tubes at every scale in an interval of the form [𝑚, 𝑚1+𝑐] that is contained in [𝑛1/3, 𝑛1/(1+𝑐)]. We
will recall the definition of plentiful polylog tubes, taken from [EH23b, Section 5], in Section 8.3.
Given 𝑚, 𝑛 ≥ 1, we define Piv[𝑚, 𝑛] to be the event that in the restricted configuration 𝜔 ∩ 𝐵𝑛,
there are at least two clusters that each contain an open path from 𝐵𝑚 to 𝑆𝑛. For each scale 𝑛 and
time 𝑡, let 𝑈𝑡 (𝑛) be the uniqueness zone defined to be the maximum integer 𝑏 ≤ 1

8𝑛
1/3 satisfying

P𝜙(𝑡) (Piv[4𝑏, 𝑛1/3]) ≤ (log 𝑛)−1. The associated cost is

Δ𝑡 (𝑛) :=
[

log log 𝑛
(log 𝑛) ∧ log Gr(𝑈𝑡 (𝑛))

]1/4
.

Note that the cost is small if Gr(𝑈𝑡 (𝑛)) ≥ (log 𝑛)𝐶 for a big constant 𝐶. The proof of the next
lemma is implicit in [EH23b, Section 6], where, together with Hutchcroft, we used plentiful tubes
to run an orange-peeling argument inspired by the one in [CMT22]. See the appendix for details.

Lemma 8.3.4. For all 𝑐 > 0 there exist 𝜆(𝑑, 𝑐), 𝑛0(𝑑, 𝑐), 𝐾 (𝑑, 𝑐) < ∞ such that the following holds
for all 𝑛 ≥ 𝑛0 with 𝑛 ∈ T(𝑐, 𝜆). For all 𝑡 ∈ R, if 𝑛 is orange at time 𝑡 and 𝐾Δ𝑡 (𝑛) ≤ 1 then

𝑠(𝑛 is green) ≤ 𝑡 + 𝐾Δ𝑡 (𝑛).

We now turn to the problem of finding an explicit upper bound on the cost Δ = Δ𝑡 (𝑛) of a scale 𝑛 at
a time 𝑡. Define the move-left (aka decrease-scale) function 𝐿 : 𝑛 ↦→ (log 𝑛)1/2. The next lemma
provides such an upper bound if the much smaller scale 𝐿 (𝑛) happens to already be green at time 𝑡.
The proof of this is implicit in [EH23b, Section 6.3]. Notice that to upper bound Δ𝑡 (𝑛) is to lower
bound Gr(𝑈𝑡 (𝑛)). It is easy to check that in the setting of this lemma, 𝑈𝑡 (𝑛) ≥ 𝐿 (𝑛). The proof
of the lemma establishes that when 𝐿 (𝑛) is green and 𝑛 ∈ L, either Gr(𝐿 (𝑛)) is big (as a function
of 𝐿 (𝑛)) or we can find a better lower bound on 𝑈𝑡 (𝑛) than the trivial bound that is 𝐿 (𝑛). See the
appendix for details.

Lemma 8.3.5. There exists 𝑛0(𝑑) < ∞ such that the following holds for all 𝑛 ∈ L with 𝑛 ≥ 𝑛0. For
all 𝑡 ∈ R, if 𝐿 (𝑛) is green at time 𝑡 then

Δ𝑡 (𝑛) ≤
1

log log 𝑛
.

Lemmas 8.3.4 and 8.3.5 together provide an explicit upper bound on the time it takes for a scale 𝑛
that is orange to become green if the much smaller scale 𝐿 (𝑛) happens to already be green, at least
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until we encounter a scale 𝑛 ∈ L\T(𝑐, 𝜆). Of course, this says nothing about how long we have
to wait for for at least one orange scale to become green in the first place. We will return to this
shortly, but for now, consider the following method for rapidly propagating orange once we have a
big interval of green. Suppose that at some time 𝑡, some interval of the form [𝐿 (𝑛), 𝑛] is green.
By Lemma 8.3.3, since 𝑅−1(𝑛) ∈ [𝐿 (𝑛), 𝑛], we will not have to wait long for [𝑛, 𝑅(𝑛)] to turn
orange. By Lemmas 8.3.4 and 8.3.5, since 𝐿 (𝑚) ∈ [𝐿 (𝑛), 𝑛] for every 𝑚 ∈ [𝑛, 𝑅(𝑛)], we will not
then have to wait long for [𝑛, 𝑅(𝑛)] to turn green. By Lemma 8.3.3 again, we will not then have to
wait long for [𝑅(𝑛), 𝑅2(𝑛)] to turn orange, and so forth. We can repeat this indefinitely until and
unless we encounter a scale 𝑛 ∈ L\T(𝑐, 𝜆).

In conjunction with Lemma 8.3.4, the next lemma lets us control long it takes to get this big
interval of green in the first place, starting from an even bigger interval of orange. We prove this in
Section 8.3. We will use a compactness argument to reduce this to an analogous statement about
an arbitrary infinite unimodular transitive graph 𝐺, which is then addressed by results in either
[CMT22] or [EH23b] according to whether 𝐺 has polynomial or superpolynomial growth.

Lemma 8.3.6. For all 𝜀 > 0 and 𝑛1 ≥ 3, there exists 𝑛2(𝑑, 𝜀, 𝑛1) < ∞ such that the following
holds for all 𝑡 ∈ R with 𝑡 ≤ 1

𝜀
. If [𝑛1, 𝑛2] is orange at time 𝑡, then for some 𝑚 satisfying

𝐼 := [𝐿 (𝑚), 𝑚] ⊆ [𝑛1, 𝑛2], we have

sup
𝑛∈𝐼∩L

Δ𝑡+𝜀 (𝑛) ≤ 𝜀.

At this point, the lemmas we have accumulated allow us to rapidly propagate orange, starting from a
big interval of orange, until and unless we encounter a scale 𝑛 ∈ L\T(𝑐, 𝜆). To prove Lemma 8.3.2,
we need this propagation to keep going until we encounter the scale 𝛾. The next lemma lets us
ensure that we will encounter 𝛾 before we encounter L\T(𝑐, 𝜆). We will prove this in Section 8.3.
This is the analogue in our setting of [EH23b, Section 5]. While the random walk arguments that
make up [EH23b, Subection 5.2] work equally well in our setting, the geometric arguments in
[EH23b, Subsection 5.1] will require some new ideas.

Lemma 8.3.7. There exist 𝑐(𝑑) > 0 such that for all 𝜆 ≥ 1, there exists 𝑛0(𝑑, 𝜆) < ∞ such that

inf{𝑛 ∈ L\T(𝑐, 𝜆) : 𝑛 ≥ 𝑛0} ≥ 𝛾.

Let us conclude by formalising the above sketch of the fact that Lemma 8.3.2, which we know
implies Proposition 8.3.1, can be reduced to the rest of the lemmas introduced in this subsection.
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Proof of Lemma 8.3.2 given Lemmas 8.3.3 to 8.3.7. Fix 𝜀 > 0 and 𝑛1 ≥ 3. We may assume that
𝜀 < 1. Let 𝑐(𝑑) > 0 be the constant from Lemma 8.3.7. Let 𝜆(𝑑), 𝑢0(𝑑), 𝐾 (𝑑) be the constants
“𝜆(𝑑, 𝑐), 𝑛0(𝑑, 𝑐), 𝐾 (𝑑, 𝑐)” from Lemma 8.3.4 for this choice of 𝑐. We may assume that 𝐾 ≥ 1.
Let 𝑢1(𝑑) be the constant “𝑛0(𝑑)” from Lemma 8.3.3. Let 𝑢2(𝑑) be the constant “𝑛0(𝑑)” from
Lemma 8.3.5. Let 𝑢3(𝑑) be the constant “𝑛0(𝑑, 𝜆)” from Lemma 8.3.7, with the above choice of
𝜆. Note that

∑
𝑖 𝛿

(
𝑅𝑖 (3)

)
< ∞ and

∑
𝑖

1
log log 𝑅𝑖 (3) < ∞. Let 𝑖0(𝑑, 𝜀) be the smallest non-negative

integer such that
∞∑︁
𝑖=𝑖0

𝛿
(
𝑅𝑖 (3)

)
≤ 𝜀

5
and

∞∑︁
𝑖=𝑖0

1
log log 𝑅𝑖 (3) ≤

𝜀

5𝐾
,

and set 𝑢4(𝑑, 𝜀) := 𝑅𝑖0 (3). Set 𝑢5(𝑑, 𝜀, 𝑛1) := max{𝑢0, 𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑛1}. Let 𝑢6(𝑑, 𝜀, 𝑛1) be the
constant “𝑛2

(
𝑑, 𝜀

5𝐾 , 𝑢5
)
” from Lemma 8.3.6. We claim that the conclusion holds with 𝑛2(𝑑, 𝜀, 𝑛1) :=

𝑅(𝑢6).

Let 𝑡 ∈ R with 𝑡 ≤ 1
𝜀
, and suppose that [𝑛1, 𝑛2] is orange at time 𝑡. By Lemma 8.3.6, there exists

𝑚 with 𝐼 := [𝐿 (𝑚), 𝑚] ⊆ [𝑢5, 𝑢6] such that sup𝑛∈𝐼∩L 𝐾Δ𝑡+ 𝜀5 (𝑛) ≤
𝜀
5 ≤ 1. Consider the possibility

that 𝐼 ∩ (L\T(𝑐, 𝜆)) ≠ ∅. Then by Lemma 8.3.7, 𝛾 ≤ 𝑢6. In particular, 𝑅(𝛾) ≤ 𝑛2, and hence 𝑅(𝛾)
is already orange at time 𝑡. Since we are trivially done in that case, let us assume to the contrary
that 𝐼 ∩ (L\T(𝑐, 𝜆)) = ∅. Then by Lemma 8.3.4,

𝑠 (𝐼 is green) ≤ 𝑡 + 𝜀
5
+ sup
𝑛∈𝐼∩L

𝐾Δ𝑡+ 𝜀5 (𝑛) ≤ 𝑡 +
2𝜀
5
.

Let 𝑘 be the largest non-negative integer such that 𝑅𝑘 (𝑚) < 𝛾. (We may assume that such an
integer exists, otherwise 𝛾 ≤ 𝑢6 and hence we are trivially done as above.) We claim that for all
𝑖 ∈ {0, . . . , 𝑘 − 1},

𝑠

(
[𝐿 (𝑚), 𝑅𝑖+1(𝑚)] is green

)
≤ 𝑠

(
[𝐿 (𝑚), 𝑅𝑖 (𝑚)] is green

)
+ 𝛿

(
𝑅𝑖−1(𝑚)

)
+ 𝐾

log log 𝑅𝑖 (𝑚) .
(8.3.3)

Indeed, fix an arbitrary index 𝑖 ∈ {0, . . . , 𝑘−1} and an arbitrary time 𝑠 ∈ R at which [𝐿 (𝑚), 𝑅𝑖 (𝑚)]
is green. By Lemma 8.3.3, the interval

[
𝑅𝑖 (𝑚), 𝑅𝑖+1(𝑚)

]
is orange at time 𝑠 + 𝛿

(
𝑅𝑖−1(𝑚)

)
. By

Lemma 8.3.5, since 𝐿
( [
𝑅𝑖 (𝑚), 𝑅𝑖+1(𝑚)

] )
⊆

[
𝐿 (𝑚), 𝑅𝑖 (𝑚)

]
,

sup
𝑛∈[𝑅𝑖 (𝑚),𝑅𝑖+1 (𝑚)]∩L

Δ𝑠+𝛿(𝑅𝑖−1 (𝑚)) (𝑛) ≤
1

log log 𝑅𝑖 (𝑚) .

By Lemma 8.3.7, we know that
[
𝑅𝑖 (𝑚), 𝑅𝑖+1(𝑚)

]
∩ (L\T(𝑐, 𝜆)) = ∅, and since 𝑅𝑖 (𝑚) ≥ 𝑢4, we

know that 𝐾
log log 𝑅𝑖 (𝑚) ≤

𝜀
5 ≤ 1. So by Lemma 8.3.4,

𝑠

( [
𝑅𝑖 (𝑚), 𝑅𝑖+1(𝑚)

]
is green

)
≤ 𝑠 + 𝛿

(
𝑅𝑖−1(𝑚)

)
+ 𝐾

log log 𝑅𝑖 (𝑚) ,
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establishing eq. (8.3.3). By repeated applying eq. (8.3.3), it follows by induction that

𝑠

( [
𝐿 (𝑚), 𝑅𝑘 (𝑚)

]
is green

)
≤ 𝑡 + 2𝜀

5
+
∞∑︁
𝑖=0

(
𝛿

(
𝑅𝑖−1(𝑚)

)
+ 𝐾

log log 𝑅𝑖 (𝑚)

)
≤ 𝑡 + 4𝜀

5
,

where in the second inequality we used the fact that 𝑅−1(𝑚) ≥ 𝑢4. By maximality of 𝑘 , we know
that 𝑅−1(𝛾) ∈

[
𝐿 (𝑚), 𝑅𝑘 (𝑚)

]
. So by Lemma 8.3.3,

𝑠 (𝑅(𝛾) is orange) − 𝑠
( [
𝐿 (𝑚), 𝑅𝑘 (𝑚)

]
is green

)
≤ 𝑠 ( [𝛾, 𝑅(𝛾)] is orange) − 𝑠

(
𝑅−1(𝛾) is green

)
≤ 𝛿

(
𝑅−1(𝛾)

)
≤ 𝛿 (𝑢4) ≤

𝜀

5
.

Therefore, as required,

𝑠 (𝑅(𝛾) is orange) ≤ 𝑡 + 4𝜀
5
+ 𝜀

5
= 𝑡 + 𝜀. □

Base case of the induction
In this subsection we prove Lemma 8.3.6. By a compactness argument, we will reduce this to the
following simpler statement about individual infinite transitive graphs. Although we defined Δ𝑡 (𝑛)
and L in the context of finite transitive graphs, let us use the exact same definitions for infinite
transitive graphs.

Lemma 8.3.8. Let𝐺 be a unimodular infinite transitive graph. For every 𝑡 ∈ R with 𝜙(𝑡) > 𝑝𝑐 (𝐺),

lim
𝑛→∞

sup
𝑠≥𝑡

Δ𝑠 (𝑛)1L(𝑛) = 0.

Our first goal is to prove this lemma. As mentioned earlier, to show that Δ𝑡 (𝑛) is small, we need
to show that Gr(𝑈𝑡 (𝑛)) ≥ (log 𝑛)𝐶 for a large constant 𝐶. The following lemma22 from [EH23b,
Corollary 2.4] tells us in particular that if Gr(𝑛) is not too big with respect to 𝑛, then the uniqueness
zone for 𝑛 is always at least of order log 𝑛. The proof of this result was essentially already contained
in [CMT22], which in turn was inspired by [Cer15].

Lemma 8.3.9. Let𝐺 be a unimodular transitive graph of degree 𝑑. Fix 𝜂 ∈ (0, 1) and 𝜀 ∈ (0, 1/2).
There exists 𝑐(𝑑, 𝜂, 𝜀) > 0 such that for every 𝑛 ≥ 1 and 𝑝 ∈ [𝜂, 1],

P𝑝 (Piv[𝑐 log 𝑛, 𝑛]) ≤
(
log Gr(𝑛)

𝑐𝑛

) 1
2−𝜀

.

22In the version in [EH23b], we also required that 𝑛 is larger than some constant depending on 𝑑, 𝜂, 𝜀, but that is
redundant.
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In an infinite transitive graph, if 𝑈𝑡 (𝑛) ≳ log 𝑛 then trivially Gr(𝑈𝑡 (𝑛)) ≳ log 𝑛, and hence Δ𝑡 (𝑛)
is bounded above by a (possibly large) constant. Our goal is to improve this argument so that this
constant can be made arbitrarily small. We will do this by improving either the bound on𝑈𝑡 (𝑛) or
the bound on Gr(𝑈𝑡 (𝑛)) given 𝑈𝑡 (𝑛). When 𝐺 has superpolynomial growth, this is easy: we can
use the trivial bound on 𝑈𝑡 (𝑛), but then use the fact that Gr(𝑈𝑡 (𝑛)) ≳ (𝑈𝑡 (𝑛))𝐶 for any particular
constant 𝐶23. When 𝐺 has polynomial growth, we will apply the following more delicate result
from [CMT22, Proposition 6.1] to improve our bound on 𝑈𝑡 (𝑛). (For background on transitive
graphs of polynomial and superpolynomial growth, see [TT21a].)

Lemma 8.3.10. Let 𝐺 be an infinite transitive graph of polynomial growth. For every 𝑝 > 𝑝𝑐 (𝐺)
there exist 𝜒(𝐺, 𝑝) ∈ (0, 1) and 𝐶 (𝐺, 𝑝) < ∞ such that for every 𝑛 ≥ 1 and 𝑞 ∈ [𝑝, 1],

P𝑞
(
Piv

[
𝑒(log 𝑛)𝜒 , 𝑛

] )
≤ 𝐶𝑛−1/4.

Proof of Lemma 8.3.8. Suppose that 𝑡 ∈ R satisfies 𝜙(𝑡) > 𝑝𝑐 (𝐺). Note that 𝜙(𝑡) > 1/𝑑 because
𝑝𝑐 (𝐺) ≥ 1/(𝑑 − 1) (as this holds for every infinite transitive graph). Let 𝑐1(𝑑, 1/𝑑, 1/6) > 0 be
the constant from Lemma 8.3.9. Then for every sufficiently large 𝑛 ∈ L,

sup
𝑠≥𝑡

P𝜙(𝑠)
(
Piv

[
𝑐1 log

(
𝑛1/3

)
, 𝑛1/3

] )
≤

(
log Gr(𝑛1/3)
𝑐1𝑛1/3

) 1
2−

1
6

≤
(
(log 𝑛)100

𝑐1𝑛1/3

) 1
3

≤ 1
log 𝑛

,

and hence inf𝑠≥𝑡𝑈𝑠 (𝑛) ≥ ⌊ 1
4𝑐1 log(𝑛1/3)⌋ = 𝑐1

13 log 𝑛. In particular,

lim sup
𝑛→∞

sup
𝑠≥𝑡

Δ𝑠 (𝑛)1L(𝑛) ≤ lim sup
𝑛→∞

[
log log 𝑛

(log 𝑛) ∧ log Gr
( 𝑐1

13 log 𝑛
) ]1/4

.

If 𝐺 has superpolynomial growth, then log Gr( 𝑐1
13 log 𝑛)

log log 𝑛 → ∞ and hence sup𝑠≥𝑡 Δ𝑠 (𝑛)1L(𝑛) → 0 as
𝑛 → ∞. So we may assume to the contrary that 𝐺 has polynomial growth. Let 𝜒(𝐺, 𝜙(𝑡)) and
𝐶 (𝐺, 𝜙(𝑡)) be the constants from Lemma 8.3.10. Then for every sufficiently large 𝑛 ≥ 1,

sup
𝑠≥𝑡

P𝜙(𝑠)
(
Piv

[
𝑒(log(𝑛1/3))𝜒 , 𝑛1/3

] )
≤ 𝐶 (𝑛1/3)−1/4 ≤ 1

log 𝑛
,

and hence inf𝑠≥𝑡𝑈𝑠 (𝑛) ≥ 1
4𝑒
(log(𝑛1/3))𝜒 ≥ 𝑒(log 𝑛)𝜒/2 . In particular, using the trivial bound

Gr(𝑈𝑠 (𝑛)) ≥ 𝑈𝑠 (𝑛),

lim sup
𝑛→∞

sup
𝑠≥𝑡

Δ𝑠 (𝑛)1L(𝑛) ≤ lim sup
𝑛→∞


log log 𝑛

(log 𝑛) ∧ log
(
𝑒(log 𝑛)𝜒/2

) 
1/4

= 0.

23This was the idea in [EH23b, Section 3], where it sufficed to consider sequences converging to graphs of
superpolynomial growth.
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□

Next we will use a compactness argument to deduce Lemma 8.3.6 from Lemma 8.3.8. Given
𝑑 ∈ N, let U𝑑 be the space of all unimodular transitive graphs with degree 𝑑 endowed with the
local topology. Recall that every finite transitive graph is unimodular. By [Hut20a, Corollary 5.5],
U𝑑 is a closed subset of the space T𝑑 of all transitive graphs with degree 𝑑 endowed with the local
topology. In particular (recalling that the local topology is metrisable), since T𝑑 is compact, so is
U𝑑 .

Proof of Lemma 8.3.6. Suppose for contradiction that the statement is false. Then we can find
𝜀 > 0 and 𝑛1 ≥ 3 such that for all 𝑁 ∈ N there exists 𝑡𝑁 ≤ 1

𝜀
and a finite transitive graph 𝐺𝑁

with degree 𝑑 such that in 𝐺𝑁 , the interval [𝑛1, 𝑁] is orange at time 𝑡𝑁 , but for every 𝑚 with
[𝐿 (𝑚), 𝑚] ⊆ [𝑛1, 𝑁], there exists 𝑛 ∈ [𝐿 (𝑚), 𝑚] ∩ L(𝐺𝑁 ) with Δ

𝐺𝑁
𝑡𝑁+𝜀 (𝑛) > 𝜀. (We write Δ𝐺 ,𝑈𝐺 ,

L(𝐺) to denote Δ, 𝑈, L defined with respect to a specific graph 𝐺.) By compactness, there exists
an infinite subset M ⊆ N and a unimodular transitive graph 𝐺 such that 𝐺𝑁 → 𝐺 as 𝑁 → ∞ with
𝑁 ∈ M.

First consider the case that 𝐺 is finite. Then trivially, there exists 𝑛0(𝐺) < ∞ such that for all
𝑛 ≥ 𝑛0 and for all 𝑠 ∈ R, we have 𝑈𝐺

𝑠 (𝑛) = ⌊ 1
8𝑛

1/3⌋. In particular, lim𝑛→∞ sup𝑠∈R Δ𝐺𝑠 (𝑛) = 0. So
there exists 𝑚 with 𝐿 (𝑚) ≥ 𝑛1 such that

sup
𝑛∈[𝐿 (𝑚),𝑚]

sup
𝑠∈R

Δ𝐺𝑠 (𝑛) ≤ 𝜀.

Pick 𝑁 ∈ M sufficiently large that 𝑁 ≥ 𝑚 and 𝐵𝐺𝑁𝑚 � 𝐵𝐺𝑚 (or even that 𝐺 � 𝐺𝑁 ). Then we have a
contradiction because there exists 𝑛 ∈ [𝐿 (𝑚), 𝑚] such that Δ𝐺𝑡𝑁+𝜀 (𝑛) = Δ

𝐺𝑁
𝑡𝑁+𝜀 (𝑛) > 𝜀.

So we may assume that 𝐺 is infinite. We claim that

lim inf
𝑁→∞
𝑁∈M

𝜙(𝑡𝑁 ) ≥ 𝑝𝑐 (𝐺). (8.3.4)

Indeed, suppose that 𝑞 ∈ (0, 𝑝𝑐 (𝐺)). By the sharpness of the phase transition for percolation on
infinite transitive graphs, there exists 𝐶 (𝑞, 𝐺) < ∞ such that P𝐺𝑞 (𝑜 ↔ 𝑆𝑛) ≤ 𝐶𝑒−𝑛/𝐶 for all 𝑛 ≥ 1.
Pick 𝑚 ≥ 𝑛1 such that 𝐶𝑒−𝑚/𝐶 < 𝛿(𝑚). Pick 𝑁0 ≥ 𝑚 such that for all 𝑁 ≥ 𝑁0 with 𝑁 ∈ M, we
have 𝐵𝐺𝑁𝑚 � 𝐵𝐺𝑚 . Then for all 𝑁 ≥ 𝑁0 with 𝑁 ∈ N,

min
𝑢∈𝐵𝐺𝑁𝑚

P𝐺𝑁𝑞 (𝑜 ↔ 𝑢) ≤ P𝐺𝑁𝑞 (𝑜 ↔ 𝑆𝑚) = P𝐺𝑞 (𝑜 ↔ 𝑆𝑚) < 𝛿(𝑚),
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so 𝑚 is not orange for 𝐺𝑁 at time 𝜙−1(𝑞), and hence 𝑞 ≤ 𝜙(𝑡𝑁 ). Since 𝑞 was arbitrary, this
establishes eq. (8.3.4). Now by hypothesis, 𝑡𝑁 ≤ 1

𝜀
for every 𝑁 ≥ 1. So by eq. (8.3.4), we know that

𝑝𝑐 (𝐺) ≤ 𝜙(1/𝜀) < 1. (We also know that 𝑝𝑐 (𝐺) > 0 since this holds for every infinite transitive
graphs.) By passing to a further subsequence, we may assume that for all 𝑁 ∈ M,

𝑡𝑁 + 𝜀 ≥ 𝜙−1(𝑝𝑐 (𝐺)) +
𝜀

2
=: 𝑡.

Note that 𝜙(𝑡) > 𝑝𝑐 (𝐺). So by Lemma 8.3.8,

lim
𝑛→∞

sup
𝑠≥𝑡

Δ𝐺𝑠 (𝑛)1L(𝐺) (𝑛) = 0.

Pick 𝑚 with 𝐿 (𝑚) ≥ 𝑛1 such that

sup
𝑛∈[𝐿 (𝑚),𝑚]

sup
𝑠≥𝑡

Δ𝐺𝑠 (𝑛)1L(𝐺) (𝑛) ≤ 𝜀. (8.3.5)

Pick 𝑁 ∈ M such that 𝑁 ≥ 𝑚 and 𝐵𝐺𝑁𝑚 � 𝐵𝐺𝑚 . Then [𝐿 (𝑚), 𝑚] ⊆ [𝑛1, 𝑁], and the same inequality
as eq. (8.3.5) holds with𝐺𝑁 in place of𝐺. This contradicts the existence of 𝑛 ∈ [𝐿 (𝑚), 𝑚]∩L(𝐺𝑁 )
satisfying Δ

𝐺𝑁
𝑡𝑁+𝜀 (𝑛) > 𝜀 because 𝑡𝑁 + 𝜀 ≥ 𝑡. □

The obstacles are circles
In this subsection we prove Lemma 8.3.7. Our argument is a finitary refinement of the argument in
[EH23b, Section 5]. Our first step is to isolate the part of that previous argument that needs to be
improved. For this we need to introduce the definition of plentiful tubes.

Plentiful tubes Let 𝐺 be a transitive graph and fix a scale 𝑛 ≥ 1. We call the 𝑟-neighbourhood
𝐵𝑟 (𝛾) :=

⋃
𝑖 𝐵𝑟 (𝛾𝑖) of a path 𝛾 ∈ Γ a tube. Given constants 𝑘, 𝑟, 𝑙 ≥ 1, we say that 𝐺 has (𝑘, 𝑟, 𝑙)-

plentiful tubes at scale 𝑛 if the following always holds. Let 𝐴 and 𝐵 be sets of vertices such that
(𝐴, 𝐵) = (𝑆𝑛, 𝑆4𝑛) or such that 𝐴 and 𝐵 both contain paths from 𝑆𝑛 to 𝑆3𝑛. Then there is a set Γ of
paths from 𝐴 to 𝐵 such that |Γ| ≥ 𝑘 , each path has length at most 𝑙, and 𝐵𝑟 (𝛾1) ∩ 𝐵𝑟 (𝛾2) = ∅ for
all pairs of distinct paths 𝛾1, 𝛾2 ∈ Γ. Note that the property of having (𝑘, 𝑟, 𝑙)-plentiful tubes gets
stronger as we increase 𝑘 (the number of tubes), increase 𝑟 (the thickness of tubes), or decrease 𝑙
(the lengths of tubes). We will be concerned mainly with the following two-parameter subset of this
three-parameter family of properties. Given constants 𝑐, 𝜆 > 0, we say that 𝐺 has (𝑐, 𝜆)-polylog
plentiful tubes at scale 𝑛 if 𝐺 has (𝑘, 𝑟, 𝑙)-plentiful tubes at scale 𝑛 with

(𝑘, 𝑟, 𝑙) :=
(
[log 𝑛]𝑐𝜆, 𝑛[log 𝑛]−𝜆/𝑐, 𝑛[log 𝑛]𝜆/𝑐

)
.
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We think of 𝑐 as representing a fixed exchange rate for the tradeoff between asking for more tubes
that are long and thin vs fewer tubes that are short and thick, which we can realise by varying 𝜆.
Finally, recall from Section 8.3 that T(𝑐, 𝜆) is defined to be the set of all scales 𝑛 ≥ 3 such that
Gr(𝑛) ≤ 𝑒(log 𝑛)100 (i.e. 𝑛 ∈ L) and there exists 𝑚 satisfying [𝑚, 𝑚1+𝑐] ⊆ [𝑛1/3, 𝑛1/(1+𝑐)] such that
𝐺 has (𝑐, 𝜆)-polylog plentiful tubes at every scale in [𝑚, 𝑚1+𝑐].

Now suppose in the context of proving Lemma 8.3.7 that we have a large scale 𝑛 ∈ L with 𝑛 < 𝛾,
and we want to build the required plentiful tubes to establish that 𝑛 ∈ T(𝑐, 𝜆). We split our
argument into two cases, slow growth and fast growth, according to the rate of change of Gr near
𝑛, as measured by whether Gr(3𝑚)/Gr(𝑚) for 𝑚 ≈ 𝑛 exceeds some particular constant24. The
next lemma says that if 𝐺 has fast growth throughout a sufficiently large interval around scale 𝑛,
then for some fixed exchange rate 𝑐, we have (𝑐, 𝜆)-polylog plentiful tubes for every choice of 𝜆
whenever 𝑛 is sufficiently large. This is [EH23b, Proposition 5.4], which was originally stated for
infinite unimodular transitive graphs, but as we will justify in the appendix, exactly the same proof
also works for finite transitive graphs.

Lemma 8.3.11. Let 𝐺 be a unimodular transitive graph of degree 𝑑. Suppose that

Gr(𝑚) ≤ 𝑒(log𝑚)𝐷 and Gr(3𝑚) ≥ 35 Gr(𝑚)

for every 𝑚 ∈ [𝑛1−𝜀, 𝑛1+𝜀], where 𝜀, 𝐷, 𝑛 > 0. Then there is a constant 𝑐(𝑑, 𝐷, 𝜀) > 0 with the
following property. For every 𝜆 ≥ 1, there exists 𝑛0(𝑑, 𝐷, 𝜀, 𝜆) < ∞ such that if 𝑛 ≥ 𝑛0 then 𝐺 has
(𝑐, 𝜆)-polylog plentiful tubes at scale 𝑛.

The next lemma says that if 𝐺 has slow growth at some scale 𝑛, then outside of a bounded number
of small problematic intervals, 𝐺 has plentiful tubes with good constants (𝑘, 𝑟, 𝑙) unless 𝐺 is
one-dimensional. This is equivalent to [EH23b, Proposition 5.3].

Lemma 8.3.12. Let𝐺 be an infinite transitive graph of degree 𝑑. Suppose that Gr(3𝑛) ≤ 3𝜅 Gr(𝑛),
where 𝑛, 𝜅 > 0. There exists 𝐶 (𝑑, 𝜅) < ∞ such that the following holds if 𝑛 ≥ 𝐶:

There is a set 𝐴 ⊆ [1,∞)with |𝐴| ≤ 𝐶 such that for every 𝑘 ≥ 1 and every𝑚 ∈ [𝐶𝑘𝑛,∞)\⋃𝑎∈𝐴 [𝑎, 2𝑘𝑎],
if 𝐺 does not have (𝐶−1𝑘, 𝐶−1𝑘−1𝑚,𝐶𝑘𝐶𝑚)-plentiful tubes at scale 𝑚, then 𝐺 is one-dimensional.

24In [EH23b] we considered ratios of triplings Gr(3𝑛)/Gr(𝑛) rather than of doublings Gr(2𝑛)/Gr(𝑛) because only
the former was known at the time to be sufficient to invoke the structure theory of transitive graphs of polynomial
growth. Tointon and Tessera have since proved that small doublings imply small triplings [TT23], so it is now possible
to work with doublings Gr(2𝑛)/Gr(𝑛) instead, which is slightly more natural. However, since this does not significantly
simplify our arguments, we have chosen to stay with triplings to avoid some repetition of work from [EH23b].
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We need to improve this lemma in two ways. First, we need the conclusion to be that “𝐺 looks
one-dimensional from around scale 𝑚”, rather than just “𝐺 is one-dimensional”. Second, we need
to allow 𝐺 to be finite. Here is the modified version of Lemma 8.3.12 that we will prove.25

Lemma 8.3.13. Let 𝐺 be a finite transitive graph of degree 𝑑. Suppose that Gr(3𝑛) ≤ 3𝜅 Gr(𝑛),
where 𝑛, 𝜅 > 0. There exists 𝐶 (𝑑, 𝜅) < ∞ such that the following holds if 𝑛 ≥ 𝐶:

There is a set 𝐴 ⊆ [1,∞)with |𝐴| ≤ 𝐶 such that for every 𝑘 ≥ 1 and every𝑚 ∈ [𝐶𝑘𝑛,∞)\⋃𝑎∈𝐴 [𝑎, 2𝑘𝑎],
if 𝐺 does not have (𝐶−1𝑘, 𝐶−1𝑘−1𝑚,𝐶𝑘𝐶𝑚)-plentiful tubes at scale 𝑚, then

distGH

( 𝜋

diam𝐺
𝐺, 𝑆1

)
≤ 𝐶𝑚

diam𝐺
.

In the next two subsections we will prove Lemma 8.3.13. Before that, let us quickly check that
Lemmas 8.3.11 and 8.3.13 together do imply Lemma 8.3.7. This is essentially the same as the
proof of [EH23b, Proposition 5.2] given [EH23b, Propositions 5.3 and 5.4].

Proof of Lemma 8.3.7 given Lemmas 8.3.11 and 8.3.13. Let 𝑐(𝑑) > 0 be a small positive constant
to be determined. Let 𝜆 ≥ 1 be arbitrary. Suppose that 𝑛 ≥ 3 satisfies 𝑛 ∈ L\T(𝑐, 𝜆). We will
freely (and implicitly) assume that 𝑛 is large with respect to 𝑑 and 𝜆. Our goal is to show that if 𝑐
is sufficiently small, it then necessarily follows that 𝛾 ≤ 𝑛.

First consider the possibility that Gr(3𝑚) ≥ 35 Gr(𝑚) for all 𝑚 ∈ [𝑛1/3, 𝑛1/2]. Let 𝜂 := 1/100, and
let 𝑐1 (𝑑, 101, 𝜂) > 0 be given by Lemma 8.3.11. Note that for all 𝑚 ∈ [𝑛1/3+𝜂, (𝑛1/3+𝜂)1+𝜂], we
have [𝑚1−𝜂, 𝑚1+𝜂] ⊆ [𝑛1/3, 𝑛1/2] and Gr(𝑚) ≤ Gr(𝑛) ≤ 𝑒 [log 𝑛]100 ≤ 𝑒 [log𝑚]101 . So by construction
of 𝑐1, we know that 𝐺 has (𝑐1, 𝜆)-polylog tubes at every scale 𝑚 ∈ [𝑛1/3+𝜂, (𝑛1/3+𝜂)1+𝜂]. In
particular, if we pick 𝑐(𝑑) ≤ 𝑐1 ∧ 𝜂, then 𝑛 ∈ T(𝑐, 𝜆) - a contradiction.

So we may assume that there exists𝑚 ∈ [𝑛1/3, 𝑛1/2] such that Gr(3𝑚) ≤ 35 Gr(𝑚). Let𝐶 (𝑑, 5) < ∞
be as given by Lemma 8.3.13. Without loss of generality, assume that 𝐶 is an integer and 𝐶 ≥ 2.
Let 𝐴 ⊆ [1,∞) with |𝐴| ≤ 𝐶 be the set guaranteed to exist for our particular small-tripling scale
𝑚, and apply the conclusion of Lemma 8.3.13 with 𝑘 := (log 𝑛)𝜆. Define 𝜀(𝑑) := 1

3𝐶 log 3
2 , and

consider the sequence (𝑢𝑖 : 1 ≤ 1 ≤ 3𝐶) defined by

𝑢𝑖 :=
(
𝑛1/2

) (1+𝜀)𝑖
.

25Although we have chosen to write everything for finite graphs, our proof also yields the analogous finitary
refinement of Lemma 8.3.12 when 𝐺 is infinite.
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Note that thanks to our choice of 𝜀,

𝑢3𝐶 =

(
𝑛1/2

) (1+𝜀)3𝐶
≤

(
𝑛1/2

) (𝑒𝜀)3𝐶
= 𝑛3/4.

As we are assuming that 𝑛 is large with respect to 𝑑 and 𝜆, we also have that 𝐶𝑘𝑚 ≤ 𝑢1, and for all
𝑎 ∈ 𝐴, the interval [𝑎, 2𝑘𝑎] contains at most one of the 𝑢𝑖’s. So by the pigeonhole principle, there
exists 𝑖 such that [𝑢𝑖, 𝑢𝑖+1] ⊆ [𝐶𝑘𝑚,∞)\

⋃
𝑎∈𝐴 [𝑎, 2𝑘𝑎]. By construction of 𝐴, we know that either

(1) for every scale 𝑙 ∈ [𝑢𝑖, 𝑢𝑖+1], the graph 𝐺 has (𝐶−1𝑘, 𝐶−1𝑘−1𝑚,𝐶𝑘𝐶𝑚)-plentiful tubes at scale
𝑙, and in particular ( 1

2𝐶 , 𝜆)-polylog plentiful tubes at scale 𝑙, or (2) there exists 𝑙 ∈ [𝑢𝑖, 𝑢𝑖+1] such
that 𝛾 ≤ 𝐶𝑙 and hence 𝛾 ≤ 𝑛. If (1) holds, then by picking 𝑐(𝑑) ≤ 𝜀 ∧ 1

2𝐶 , we can guarantee that
𝑛 ∈ T(𝑐, 𝜆) - a contradiction. So (2) holds, i.e. 𝛾 ≤ 𝑛 as required. □

Cutsets and cycles

In this subsection we reduce Lemma 8.3.13 to Lemma 8.3.16, which is a less technical statement
about cutsets and cycles. We will prove Lemma 8.3.16 in the next section.

Cutsets Let 𝐴, 𝐵, 𝐶 be sets of vertices in a graph 𝐺. We write 𝐴
𝐵←→ 𝐶 to mean that there exists

a finite path (𝛾𝑘 )𝑛𝑘=0 such that 𝛾0 ∈ 𝐴; 𝛾1, . . . , 𝛾𝑛−1 ∈ 𝐵; and 𝛾𝑛 ∈ 𝐶, and we write 𝐴
𝐵←→ ∞ to

mean that there exists an infinite self-avoiding path (𝛾𝑘 )∞𝑘=0 such that 𝛾0 ∈ 𝐴 and 𝛾1, 𝛾2, . . . ∈ 𝐵.

We write ̸ 𝐵←→ to denote the negations of these properties. Now we say that 𝐵 is an (𝐴,𝐶)-cutset to

mean that 𝐴 ̸ 𝐵
𝐶

←→ 𝐶, and we say that 𝐵 is a minimal (𝐴,𝐶)-cutset if no proper subset of 𝐵 is also an
(𝐴,𝐶)-cutset. We extend all of these definitions in the obvious way to allow 𝐴 or 𝐶 to be vertices
rather than set of vertices. Now suppose that𝐺 is an infinite transitive graph. Of course the spheres
𝑆𝑛 for 𝑛 ∈ N are all (𝑜,∞)-cutsets, but interestingly, they are not always minimal (𝑜,∞)-cutsets
because some transitive graphs contain dead-ends, i.e. a vertex that is at least as far from 𝑜 as all of
its neighbours. The exposed sphere 𝑆∞𝑛 is defined to be the unique minimal (𝑜,∞)-cutset contained
in the usual sphere 𝑆𝑛, which is given concretely by

𝑆∞𝑛 = {𝑢 ∈ 𝑆𝑛 : 𝑢
𝐵𝑐𝑛←→∞}.

Thanks to the following result of Funar, Giannoudovardi, and Otera [FGO15, Proposition 5],
exposed spheres also admit the following finitary characterisation: 𝑆∞𝑛 is the unique minimal
(𝑜, 𝑆2𝑛+1)-cutset contained in 𝑆𝑛. We have included the short and elegant proof from their paper
for the reader to appreciate that it does not adapt well to finite graphs. Specifically, it does not yield
Lemma 8.3.19, which is what we will need. We like to call this the inflexible geodesic argument.
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Lemma 8.3.14. Let𝐺 be an infinite transitive graph. Let 𝑟 ∈ N. Then every vertex 𝑢 ∈ 𝐵𝑐2𝑟 satisfies

𝑢
𝐵𝑐𝑟←→∞.

Proof of Lemma 8.3.14: The inflexible geodesic argument. This proof uses the well-known fact
that every infinite transitive graph contains a bi-infinite geodesic 𝛾 = (𝛾𝑛)𝑛∈Z. Here is a sketch of
how to prove this: There exist geodesic segments 𝛾𝑁 = (𝛾𝑁𝑛 )2𝑁𝑛=0 for every 𝑁 ∈ N. By transitivity,
we can pick these with 𝛾𝑁

𝑁
= 𝑜 for every 𝑁 . Then 𝛾 is any local limit of these geodesic segments

rooted at 𝑜, which exists by compactness.

Now fix 𝑢 ∈ 𝐵𝑐2𝑟 . Let 𝛾 = (𝛾𝑛)𝑛∈Z be a bi-infinite geodesic with 𝛾0 = 𝑢. Suppose for contradiction
that there exist 𝑠, 𝑡 ∈ N such that 𝛾−𝑠, 𝛾𝑡 ∈ 𝐵𝑟 . Note that dist(𝛾−𝑠, 𝛾𝑡) ≤ diam 𝐵𝑟 ≤ 2𝑟. Since
dist(𝑜, 𝑢) > 2𝑟, we have 𝛾−𝑠, 𝛾𝑡 ∉ 𝐵𝑟 (𝑢). Since 𝛾 is a path, it follows that 𝑠, 𝑡 > 𝑟 , and in particular,
𝑠 + 𝑡 > 2𝑟. On the other hand, since 𝛾 is a geodesic, 𝑠 + 𝑡 = dist(𝛾−𝑠, 𝛾𝑡). Therefore 2𝑟 < 𝑠 + 𝑡 ≤ 2𝑟,
a contradiction. So either {𝛾𝑛 : 𝑛 ≥ 0} or {𝛾𝑛 : 𝑛 ≤ 0} is disjoint from 𝐵𝑟 and therefore forms a

path witnessing that 𝑢
𝐵𝑐𝑟←→∞. □

The usual definition of the exposed sphere is clearly inappropriate when working with finite
transitive graphs. We propose that the exposed sphere in a finite transitive graphs should instead be
defined according to this alternative finitary characterisation. Since Lemma 8.3.14 only applies to
infinite transitive graphs, there is no reason for now that the reader should believe us that this is a
good definition. We will fix this later by proving a finite graph analogue of Lemma 8.3.14, namely
Lemma 8.3.19. As with (usual) spheres and balls, we extend the definition of exposed spheres to
non-integer 𝑛 by setting 𝑆∞𝑛 := 𝑆∞⌊𝑛⌋ .

Definition 8.3.15. Let𝐺 be a transitive graph, which may be finite or infinite. Let 𝑛 ∈ N. We define
the exposed sphere 𝑆∞𝑛 to be the unique minimal (𝑜, 𝑆2𝑛+1)-cutset contained in 𝑆𝑛, or equivalently,

𝑆∞𝑛 := {𝑢 ∈ 𝑆𝑛 : 𝑢
𝐵𝑐𝑛←→ 𝑆2𝑛+1}.

Cycles Let 𝐺 be a graph. Recall that we identify spanning subgraphs of 𝐺 with functions
𝐸 → {0, 1}. Pointwise addition and scalar multiplication of these functions makes the set of all
spanning subgraphs into a (Z/2Z)-vector space. Recall that a cycle is finite path that starts and
ends at the same vertex and visits no other vertex more than once. We identify cycles (ignoring
orientation) with spanning subgraphs and hence with elements of this (Z/2Z)-vector space. Now
let 𝛿(𝐺) be the minimal 𝑛 ∈ N such that every cycle can be expressed as the linear combination
of cycles having (extrinsic) diameter ≤ 𝑛, if such an 𝑛 exists, and set 𝛿(𝐺) := +∞ otherwise. It
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is natural to ask whether cycles with diameter ≤ 𝛿(𝐺) also generate every bi-infinite geodesic 𝛾
in the sense that there is a sequence (𝛾𝑛)∞𝑛=1 of cycles each having diameter ≤ 𝛿(𝐺) such that
𝛾𝑛 → 𝛾 pointwise as 𝑛 → ∞. Notice that this is equivalent to 𝐺 being one-ended. Benjamini
and Babson [BB99b] (see also the proof by Timar [Tim07]) proved that if 𝐺 is one-ended, then
for all 𝑢 ∈ 𝑉 and 𝑣 ∈ 𝑉 ∪ {∞}, every minimal (𝑢, 𝑣)-cutset 𝐴 is 𝛿(𝐺)-connected in the sense that
dist𝐺 (𝐴1, 𝐴2) ≤ 𝛿(𝐺) for every non-trivial partition 𝐴 = 𝐴1 ⊔ 𝐴2. We will use this in the next
section.

We claim that Lemma 8.3.13 can be reduced to the following statement about cutsets and cycles
by applying the structure theory of groups and transitive graphs of polynomial growth. Since this
step is essentially identical to the proof of [EH23b, Proposition 5.3], we have chosen to defer the
details to the appendix. For the same reason, we will not give an overview of the rich theory of
polynomial growth or even the definition of a virtually nilpotent group. The relevant background
can be found in [EH23b; EH23d; TT21a].

Lemma 8.3.16. Let 𝑟, 𝑛 ≥ 1. Let𝐺 be a finite transitive graph such that 𝑆∞𝑛 is not 𝑟-connected. Let
𝐻 be a (finite or infinite) transitive graph with 𝛿(𝐻) ≤ 𝑟 that does not have infinitely many ends. If
𝐵𝐻50𝑛 � 𝐵

𝐺
50𝑛, then

distGH

( 𝜋

diam𝐺
𝐺, 𝑆1

)
≤ 200𝑛

diam𝐺
.

Solving the reduced problem

In this section we prove Lemma 8.3.16. Benjamini and Babson [BB99b] tell us that if in an infinite
transitive graph 𝐻, the exposed sphere 𝑆∞𝑛 is not 𝛿(𝐻) connected26, then 𝐻 must not be one-ended.
If 𝐻 is not infinitely-ended either, then 𝐻 must in fact be two-ended and hence one-dimensional.
This is how the argument (implicitly) went in [EH23b]. To make this more finitary, let us start by
noting that the proof that 𝐻 not one-ended actually also tells us that this is witnessed by 𝑆∞𝑛 itself
in the sense that 𝐻\𝑆∞𝑛 has multiple infinite components. Equivalently (by Lemma 8.3.14), the
exposed sphere 𝑆∞𝑛 disconnects27 𝑆2𝑛+1. (This alternative phrasing has the benefit that it also makes
sense when 𝐻 is finite.) Indeed, this follows from the next lemma with (𝐴, 𝐵) := ({𝑜}, 𝑆2𝑛+1). This
is also an instance of Benjamini-Babson, just phrased slightly differently in terms of sets of vertices,
vertex cutsets, and (extrinsic) diameter rather than length of generating cycles. For completeness,

26meaning that there is a non-trivial partition 𝛿(𝐻) = 𝐴1 ⊔ 𝐴2 with dist(𝐴1, 𝐴2) > 𝛿(𝐻)
27We say that a set of vertices 𝐴 disconnects another set of vertices 𝐵 if there exist vertices 𝑏1, 𝑏2 ∈ 𝐵 such that

𝑏1 ̸
𝐴𝑐

←→ 𝑏2.
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we have written Timar’s proof of Benjamini-Babson with the necessary tiny adjustments in the
appendix.

Lemma 8.3.17. Let𝐺 be a graph. Let 𝐴 and 𝐵 be sets of vertices. Let Π be a minimal (𝐴, 𝐵)-cutset
that does not disconnect 𝐴 or 𝐵. Then Π is 𝛿(𝐺)-connected.

The following elementary lemma lets us conclude from this that 𝐻 must begin to look one-
dimensional already from scale 𝑛. We say that a path 𝛾 = (𝛾𝑡 : 𝑡 ∈ 𝐼) is 𝑛-dense if sup𝑣∈𝑉 dist𝐺 (𝑣, 𝛾) ≤
𝑛, where dist𝐺 (𝑣, 𝛾) := dist𝐺 (𝑣, {𝛾𝑡 : 𝑡 ∈ 𝐼}).

Lemma 8.3.18. Let 𝐺 be an infinite transitive graph. Let 𝑛 ≥ 1. If 𝐺 is two-ended and 𝐺\𝐵𝑛 has
two infinite components, then 𝐺 contains an 𝑛-dense bi-infinite geodesic.

Proof. Let 𝐴 and 𝐵 be the two infinite components of 𝐺\𝐵𝑛. For each integer 𝑁 ≥ 𝑛 + 1, let
𝛾𝑁 = (𝛾𝑁𝑡 : −𝑎𝑁 ≤ 𝑡 ≤ 𝑏𝑁 ) be a shortest path among those that start in 𝑆𝑁 ∩ 𝐴 and end in 𝑆𝑁 ∩ 𝐵,
indexed such that 𝛾𝑁0 ∈ 𝐵𝑛. By compactness, there exists a bi-infinite geodesic 𝛾 = (𝛾𝑡 : 𝑡 ∈ Z) and
a subsequence (𝛾𝑁 : 𝑁 ∈ M) such that for every 𝑡 ∈ Z, we have 𝛾𝑡 = 𝛾𝑁𝑡 for all sufficiently large
𝑁 ∈ M. As in the inflexible geodesic argument used to prove Lemma 8.3.14 (i.e. by the triangle
inequality), a geodesic can never visit 𝐵𝑐2𝑛 in between two visits to 𝐵𝑛. It follows that there exists 𝑡0
such that 𝛾− := (𝛾−𝑡 : 𝑡 ≥ 𝑡0) is entirely contained in 𝐴, and 𝛾+ := (𝛾𝑡 : 𝑡 ≥ 𝑡0) is entirely contained
in 𝐵.

Suppose for contradiction that 𝛾 is not 𝑛-dense. Pick 𝑢 ∈ 𝑉 with dist(𝑢, 𝛾) > 𝑛. Since 𝐵𝑛 (𝑢)
does not intersect 𝛾, the path 𝛾 must be entirely contained in one of the two infinite components of
𝐺\𝐵𝑛 (𝑢), say 𝐶. Since 𝐵𝑛 (𝑜) disconnects 𝛾− from 𝛾+, there are at least two infinite components
in 𝐶\𝐵𝑛 (𝑜). So there are at least three infinite components in 𝐺\(𝐵𝑛 (𝑜) ∪ 𝐵𝑛 (𝑢)), contradicting
the fact that 𝐺 is two-ended. □

What happens if instead 𝐻 is finite? Lemma 8.3.17 still tells us that if 𝑆∞𝑛 is not 𝛿(𝐻) connected,
then 𝑆∞𝑛 disconnects 𝑆2𝑛+1. When 𝐻 was infinite, this had a nice interpretation in terms of ends
because we could go back to the original infinitary definition of 𝑆∞𝑛 as a minimal (𝑜,∞)-cutset.
The problem when 𝐻 is finite is that we are stuck with our artificial finitary definition of 𝑆∞𝑛 as
a minimal (𝑜, 𝑆2𝑛+1)-cutset. The next lemma justifies our definition by establishing that 𝑆∞𝑛 is
automatically a minimal (𝑜, 𝑢)-cutset for every vertex 𝑢 ∈ 𝐵𝑐2𝑛. Thanks to this lemma, it is simply
impossible that 𝑆∞𝑛 is not 𝛿(𝐻)-connected when 𝐻 is finite.

The analogous statement for one-ended infinite transitive graphs follows from Lemma 8.3.1428. In
28This was the motivation for [FGO15] to prove Lemma 8.3.14.
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this sense, Lemma 8.3.19 lets us treat finite transitive graphs as if they were infinite transitive graphs
that are one-ended. Note that a naive finite-graph adaptation of the inflexibe geodesic argument
used to prove Lemma 8.3.14 would not yield Lemma 8.3.19. (It would just say that every vertex
in 𝑆2𝑛+1 belongs to a cluster in 𝐺\𝐵𝑛 of large diameter.) Our argment also yields a new proof of
Lemma 8.3.14.

Lemma 8.3.19. Let 𝐺 be a finite transitive graph. Let 𝑟 ∈ N. Then 𝐵𝑟 does not disconnect 𝐵𝑐2𝑟 .

Proof of Lemma 8.3.14 and Lemma 8.3.19. Suppose that 𝐵𝑟 does disconnect 𝐵𝑐2𝑟 . (For Lemma 8.3.19
we assume this for sake of contradiction, whereas for Lemma 8.3.14, we may assume this otherwise
the conclusion is trivial.) Let 𝐶 be a component of 𝐺\𝐵𝑟 intersecting 𝐵𝑐2𝑟 . It suffices to prove that
𝐶 is infinite. (For Lemma 8.3.19, this establishes the required contradiction because 𝐺 is finite,
whereas for Lemma 8.3.14, this is the desired conclusion.)

Suppose for contradiction that 𝐶 is finite. Then we can pick a vertex 𝑢 ∈ 𝐶 maximising dist(𝑜, 𝑢).
Since dist(𝑜, 𝑢) ≥ 2𝑟 + 1 and (by transitivity) 𝐵𝑟 (𝑢) disconnects 𝐵2𝑟 (𝑢)𝑐, there exists a vertex

𝑣 ∈ 𝐵2𝑟 (𝑢)𝑐 such that 𝑜 ̸
𝐵𝑟 (𝑢)𝑐←−−−→ 𝑣. Since 𝐵𝑟 (𝑢) ∩ 𝐵𝑟 (𝑜) = ∅ and the subgraph induced by 𝐵𝑟 (𝑜) is

connected, 𝐵𝑟 (𝑜) ̸
𝐵𝑟 (𝑢)𝑐←−−−→ 𝑣. Since 𝐺 is connected, 𝑣

𝐵𝑟 (𝑜)𝑐←−−−→ 𝐵𝑟 (𝑢). Since 𝐵𝑟 (𝑢) ∩ 𝐵𝑟 (𝑜) = ∅ and
the subgraph induced by 𝐵𝑟 (𝑢) is connected, 𝑣

𝐵𝑟 (𝑜)𝑐←−−−→ 𝑢, i.e. 𝑣 ∈ 𝐶. However, since every path
from 𝑜 to 𝑣 must visit 𝐵𝑟 (𝑢),

dist(𝑜, 𝑣) ≥ dist(𝑜, 𝐵𝑟 (𝑢)) + dist(𝐵𝑟 (𝑢), 𝑣)
≥ (dist(𝑜, 𝑢) − 𝑟) + (dist(𝑢, 𝑣) − 𝑟) ≥ dist(𝑜, 𝑢) + 1,

contradicting the maximality of dist(𝑜, 𝑢). □

By applying our work up to this point, under the hypothesis of Lemma 8.3.16, we can prove that
the graph 𝐻 must be infinite and begin to look one-dimensional from around scale 𝑛. By the next
lemma, it follows that 𝐺 looks like a circle from around scale 𝑛.

Lemma 8.3.20. Let 𝐺 and 𝐻 be transitive graphs. Suppose that 𝐺 is finite whereas 𝐻 contains an
𝑛-dense bi-infinite geodesic for some 𝑛 ≥ 1. If 𝐵𝐺50𝑛 � 𝐵

𝐻
50𝑛 then

distGH

( 𝜋

diam𝐺
𝐺, 𝑆1

)
≤ 200𝑛

diam𝐺
.

Proof. Let 𝛾 = (𝛾𝑡)𝑡∈Z be an 𝑛-dense bi-infinite geodesic in 𝐻. Without loss of generality, assume
that 𝛾0 = 𝑜𝐻 . We will break our proof into a sequence of small claims.

361



Claim. 𝐵𝐻2𝑛 disconnects 𝑆∞,𝐻2𝑛 .

Proof of claim. Let 𝜁 = (𝜁𝑡)𝑘𝑡=0 be an arbitrary path from 𝜁0 = 𝛾−2𝑛 to 𝜁𝑘 = 𝛾2𝑛. Since 𝛾 is 𝑛-dense,
for all 𝑡 ∈ {0, . . . , 𝑘}, there exists 𝑔𝑡 ∈ Z such that dist(𝜁𝑡 , 𝛾𝑔𝑡 ) ≤ 𝑛. We can of course require that
𝑔0 := −2𝑛 and 𝑔𝑘 := 2𝑛. Since 𝛾 is geodesic, for all 𝑡 ∈ {0, . . . , 𝑘 − 1},

|𝑔𝑡+1 − 𝑔𝑡 | = dist
(
𝛾𝑔𝑡+1 , 𝛾𝑔𝑡

)
≤ dist

(
𝛾𝑔𝑡 , 𝜁𝑡

)
+ dist (𝜁𝑡 , 𝜁𝑡+1) + dist

(
𝜁𝑡+1, 𝛾𝑔𝑡+1

)
≤ 𝑛 + 1 + 𝑛 = 2𝑛 + 1.

In particular, since 𝑔0 ≤ −(𝑛 + 1) but 𝑔𝑘 ≥ 𝑛 + 1, there must exist 𝑡 ∈ {1, . . . , 𝑘 − 1} such that
−𝑛 ≤ 𝑔𝑡 ≤ 𝑛. Then 𝛾𝑔𝑡 ∈ 𝐵𝐻𝑛 and hence 𝜁𝑡 ∈ 𝐵𝐻2𝑛. Since 𝜁 was arbitrary, this establishes that 𝐵𝐻2𝑛
disconnects 𝛾−2𝑛 from 𝛾2𝑛. Since 𝛾 is a geodesic, 𝛾𝑠 ∈ 𝑆𝐻𝑠 for all 𝑠 ∈ Z. So the path (𝛾𝑠 : 𝑠 ≥ 2𝑛)
witnesses the fact that 𝛾2𝑛 ∈ 𝑆∞,𝐻2𝑛 . Similarly, 𝛾−2𝑛 ∈ 𝑆∞,𝐻2𝑛 . So 𝐵𝐻2𝑛 disconnects 𝑆∞,𝐻2𝑛 . □

Fix a non-trivial partition 𝑆∞,𝐻2𝑛 = 𝐴 ⊔ 𝐵 such that 𝐵𝐻2𝑛 is an (𝐴, 𝐵)-cutset. Now suppose that there
is a graph isomorphism 𝜓 : 𝐵𝐺50𝑛 → 𝐵𝐻50𝑛. Note that 𝜓 induces a bijection 𝑆∞,𝐺2𝑛 ↔ 𝑆

∞,𝐻
2𝑛 . In

particular, 𝑆∞,𝐺2𝑛 = 𝜓(𝐴) ⊔ 𝜓(𝐵). By definition of exposed sphere, 𝐵𝐺2𝑛 does not disconnect 𝜓(𝐴)
or 𝜓(𝐵) from (𝐵𝐺4𝑛)

𝑐. So by Lemma 8.3.19, 𝐵𝐺2𝑛 is not a (𝜓(𝐴), 𝜓(𝐵))-cutset. Consider a shortest
path from 𝜓(𝐴) to 𝜓(𝐵) that witnesses this, then connect the start and end of this path to 𝑜𝐺 by
geodesics. Let 𝜆 = (𝜆𝑘 )𝑘∈Z𝑙 be the resulting cycle, labelled such that 𝜆0 = 𝑜𝐺 . We will write |𝑠 |𝑙
for the distance from 𝑠 to 0 in the cycle graph Z𝑙 . The next three claims establish that 𝜆 is roughly
dense and geodesic.

Claim. For all 𝑠 ∈ Z𝑙 , if |𝑠 |𝑙 > 2𝑛 then dist𝐺 (𝜆𝑠, 𝐵𝐺2𝑛) = |𝑠 |𝑙 − 2𝑛

Proof of claim. Fix 𝑠 ∈ Z𝑙 with |𝑠 |𝑙 > 2𝑛. Since 𝐵𝐻2𝑛 is an (𝐴, 𝐵)-cutset, the segment (𝜆𝑡 : |𝑡 |𝑙 > 2𝑛)
must intersect (𝐵𝐺4𝑛)

𝑐 (it must exit the ball 𝐵50𝑛, on which 𝐺 and 𝐻 are isomorphic), but by
construction, this segment does not intersect 𝐵𝐺2𝑛. So every path from 𝛾𝑠 to 𝐵𝐺2𝑛 must intersect 𝑆∞,𝐺2𝑛 .
In particular, by minimality in the construction of 𝜆,

dist𝐺 (𝛾𝑠, 𝐵𝐺2𝑛) = dist𝐺 (𝛾𝑠, 𝜓(𝐴)) ∧ dist𝐺 (𝛾𝑠, 𝜓(𝐵)) = |𝑠 |𝑙 − 2𝑛. □

Claim. For all 𝑠, 𝑡 ∈ Z𝑙 , we have |𝑠 − 𝑡 |𝑙 − 4𝑛 ≤ dist𝐺 (𝜆𝑠, 𝜆𝑡) ≤ |𝑠 − 𝑡 |𝑙 .
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Proof of claim. The second inequality is trivial, and the first inequality is trivial when |𝑠 |𝑙∨|𝑡 |𝑙 ≤ 2𝑛.
By our previous claim, if |𝑠 |𝑙 > 2𝑛 and |𝑡 | ≤ 2𝑛, then

dist𝐺 (𝜆𝑠, 𝜆𝑡) ≥ dist𝐺 (𝜆𝑠, 𝐵𝐺2𝑛) = |𝑠 |𝑙 − 2𝑛 ≥ |𝑠 − 𝑡 |𝑙 − 4𝑛.

Similarly, the first inequality also holds if instead |𝑡 |𝑙 > 2𝑛 and |𝑠 | ≤ 2𝑛. So let us consider 𝑠 and 𝑡
satisfying |𝑠 |𝑙 ∧ |𝑡 |𝑙 > 2𝑛, and fix an arbitrary path 𝜂 from 𝜆𝑠 to 𝜆𝑡 . If 𝜂 intersects 𝐵𝐺2𝑛, then by our
previous claim, 𝜂 has length at least

dist𝐺 (𝜆𝑠, 𝐵𝐺2𝑛) + dist𝐺 (𝜆𝑡 , 𝐵𝐺2𝑛) = ( |𝑠 |𝑙 − 2𝑛) + (|𝑡 |𝑙 − 2𝑛) ≥ |𝑠 − 𝑡 |𝑙 − 4𝑛.

If 𝜂 does not intersect 𝐵𝐺2𝑛, then by minimality in the construction of 𝜆, the length of 𝜂 is at least
|𝑠 − 𝑡 |𝑙 . Either way, dist𝐺 (𝜆𝑠, 𝜆𝑡) ≥ |𝑠 − 𝑡 |𝑙 − 4𝑛. □

Claim. 𝜆 is 10𝑛-dense

Proof of claim. Suppose for contradiction that 𝑢 is a vertex with dist𝐺 (𝑢, 𝜆) > 10𝑛. Let 𝑣 be a
vertex in 𝜆 that is closest to 𝑢. Let 𝑧 be a vertex in 𝑆10𝑛 (𝑣) that lies along a geodesic from 𝑢 to
𝑣. Since 𝜆 visits 𝑜𝐺 but must exit 𝐵𝐺50𝑛 (on which 𝐺 and 𝐻 are isomorphic), we know that 𝜆 has
(extrinsic) diameter > 50𝑛. By our previous claim, it follows that 𝜆 visits vertices 𝑥 and 𝑦 in 𝑆𝐺10𝑛 (𝑣)
satisfying dist𝐺 (𝑥, 𝑦) ≥ 2 · 10𝑛 − 4𝑛 ≥ 10𝑛. Now 𝑥, 𝑦, 𝑧 are three vertices in 𝑆𝐺10𝑛 (𝑣) such that
the distance between any pair is at least 10𝑛. By transitivity and the fact that 𝐵𝐺50𝑛 � 𝐵

𝐻
50𝑛, three

such vertices can also be found in 𝑆𝐻10𝑛 (𝑜), say 𝑣1, 𝑣2, 𝑣3. Since 𝛾 is 𝑛-dense, there exist integers
𝑘1, 𝑘2, 𝑘3 such that dist𝐻 (𝑣𝑖, 𝛾𝑘𝑖 ) ≤ 𝑛 for each 𝑖 ∈ {1, 2, 3}. Notice that since 𝛾0 = 𝑜𝐻 and 𝛾 is
geodesic, |𝑘𝑖 | ∈ [9𝑛, 11𝑛] for all 𝑖. So by the pigeonhole principle, either [−9𝑛,−11𝑛] or [9𝑛, 11𝑛]
contains 𝑘𝑖 for at least two distinct values of 𝑖. On the other hand, for all 𝑖 ≠ 𝑗 , since 𝛾 is geodesic,��𝑘𝑖 − 𝑘 𝑗 �� = dist𝐻 (𝛾𝑘𝑖 , 𝛾𝑘 𝑗 ) ≥ dist𝐻 (𝑣𝑖, 𝑣 𝑗 ) − 2𝑛 ≥ 8𝑛.

So an interval of width 2𝑛 can never contain 𝑘𝑖 for at least two distinct values of 𝑖, a contradiction. □

Thanks to the previous two claims, the map Z𝑙 → 𝐺 sending 𝑡 ↦→ 𝜆𝑡 is a (1, 10𝑛)-quasi-isometry.
So (by exercise 5.10 (b) in [Pet23], for example), distGH(Z𝑙 , 𝐺) ≤ 10𝑛. By the obvious 1-dense
isometric embedding of Z𝑙 into 𝑙

2𝜋𝑆
1, we know that distGH(Z𝑙 , 𝑙

2𝜋𝑆
1) ≤ 1. Let 𝐷 := diam𝐺. By

the previous two claims
��𝐷 − 𝑙

2

�� ≤ 20𝑛. So by considering the identity map from 𝐺 to itself,

distGH

(
1
𝐷
𝐺,

2
𝑙
𝐺

)
≤ sup
𝑢,𝑣∈𝑉 (𝐺)

���� 1
𝐷

dist𝐺 (𝑢, 𝑣) −
2
𝑙

dist𝐺 (𝑢, 𝑣)
����

≤ 𝐷 ·
���� 1
𝐷
− 2
𝑙

���� ≤ 40𝑛
𝑙
.
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Putting these bounds together,

distGH

( 𝜋
𝐷
𝐺, 𝑆1

)
≤ distGH

(
𝜋

𝐷
𝐺,

2𝜋
𝑙
𝐺

)
+ distGH

(
2𝜋
𝑙
𝐺,

2𝜋
𝑙
Z𝑙

)
+ distGH

(
2𝜋
𝑙
Z𝑙 , 𝑆1

)
≤ 𝜋 · 40𝑛

𝑙
+ 2𝜋
𝑙
· 10𝑛 + 2𝜋

𝑙
· 1

≤ 200𝑛
𝑙

= 100𝑛 · 2
𝑙
≤ 100𝑛 · 1

𝐷 − 20𝑛
= 5 · 20𝑛/𝐷

1 − 20𝑛/𝐷 .

(8.3.6)

We may assume that 𝐷 ≥ 40𝑛, other the conclusion of the lemma holds trivially because
distGH(𝐴, 𝐵) ≤ 1 for all non-empty compact metric spaces 𝐴 and 𝐵 each having diameter at
most 1. In particular, 20𝑛

𝐷
≤ 1

2 . Since 𝑥
1−𝑥 ≤ 2𝑥 for all 𝑥 ∈ [0, 1/2], it follows from eq. (8.3.6) that

distGH
(
𝜋
𝐷
𝐺, 𝑆1) ≤ 5 · 2 · 20𝑛/𝐷 = 200𝑛/𝐷 as required. □

We now combine these lemmas to formalise this sketch of a proof of Lemma 8.3.16, thereby
concluding our proof of Proposition 8.3.1.

Proof of Lemma 8.3.16. Suppose that 𝐵𝐺50𝑛 � 𝐵
𝐻
50𝑛. Note that 𝑆∞,𝐺𝑛 is trivially 2𝑛-connected. So

𝑟 ≤ 2𝑛. In particular, in any transitive graph, the statement “𝑆∞𝑛 is not 𝑟-connected” is determined
by the subgraph induced by 𝐵50𝑛. So 𝑆∞,𝐻𝑛 is not 𝑟-connected either. By definition, 𝑆∞,𝐻𝑛 is a
minimal (𝑜𝐻 , 𝑆𝐻2𝑛+1)-cutset. So by Lemma 8.3.17, since 𝛿(𝐻) ≤ 𝑟, the exposed sphere 𝑆∞,𝐻𝑛 must
disconnect 𝑆𝐻2𝑛+1. In particular, 𝐵𝐻𝑛 disconnects (𝐵𝐻2𝑛)

𝑐. So by Lemma 8.3.19, 𝐻 is infinite, and
by Lemma 8.3.14, 𝐻\𝐵𝐻𝑛 contains at least two infinite components. Since 𝐻 has at most finitely
many ends, 𝐻\𝐵𝐻𝑛 must contain exactly two infinite components and 𝐻 must be exactly two-ended.
So by Lemma 8.3.18, 𝐻 contains an 𝑛-dense bi-infinite geodesic. The conclusion follows by
Lemma 8.3.20. □

8.4 Global connections→ unique large cluster
In this section we apply the methods of [EH21a]. It will be convenient to adopt the following
notation from that paper: given a set of vertices 𝐴 in a graph 𝐺, we define its density to be
∥𝐴∥ := |𝐴|

|𝑉 (𝐺) | . In [EH21a], together with Hutchcroft, we showed that the supercritical giant cluster
for percolation on bounded-degree finite transitive graphs is always unique with high probability.
More precisely, for every infinite set G of finite transitive graphs with bounded degrees, for every
supercritical sequence of parameters 𝑝, and for every constant 𝜀 > 0, the density of the second
largest cluster ∥𝐾2∥ satisfies

limP𝑝 (∥𝐾2∥ ≥ 𝜀) = 0.
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The following proposition contains a quantitative version of this statement that is useful even if
we slightly weaken the hypothesis that 𝑝 is supercritical. We think of this as saying that if at
some parameter 𝑝 we have a point-to-point lower bound that is only slightly worse than constant as
|𝑉 | → ∞, then after passing to 𝑝 + 𝜀, we can still pretend that we are actually in the supercritical
phase and still prove that the second largest cluster is typically much smaller than the largest cluster.
Note that this largest cluster is not necessarily a giant cluster because we are not (a priori) really in
the supercritical phase.29

Proposition 8.4.1. Let 𝐺 be a finite transitive graph with degree 𝑑. Define 𝛿 := (log |𝑉 |)−1/20.
There exists 𝐶 (𝑑) < ∞ such that if |𝑉 | ≥ 𝐶, then for all 𝑝, 𝑞 ∈ (0, 1) with 𝑞 − 𝑝 ≥ 𝛿,

min
𝑢,𝑣∈𝑉

P𝑝 (𝑢 ↔ 𝑣) ≥ 2𝛿 =⇒ P𝑞
(
∥𝐾1∥ ≥ 𝛿 and ∥𝐾2∥ ≤ 𝛿2

)
≥ 1 − 𝛿4.

In Section 8.4 we will explain why this proposition is implied by the sandcastles30 argument of
[EH21a]. In fact, [EH21a] already explicitly contains a very similar quantitative statement, namely
[EH21a, Theorem 1.5]. Unfortunately this statement is not quantitatively strong enough for our
purposes. One could alternatively prove a version of Proposition 8.4.1 by applying the ghost-field
technology developed in [EH23b, Section 4]. (See the discussion at the end of [EH23b, Section
7.1].) This approach would be less elementary and less generalisable31 but quantitatively stronger.

Proof via sandcastles
Let 𝐺 be a finite transitive graph. In [EH21a] we made the definition of “supercritical sequence”
finitary as follows. Given a constant 𝜀 > 0, we say that a parameter 𝑝 ∈ (0, 1) is 𝜀-supercritical if

P(1−𝜀)𝑝 (∥𝐾1∥ ≥ 𝜀) ≥ 𝜀

and |𝑉 | ≥ 2𝜀−3, the latter being a technical condition that the reader may like to ignore. Note that
a sequence of parameters is supercritical if and only if there exists a constant 𝜀 > 0 such that all
but finitely many of the parameters are 𝜀-supercritical. On the other hand, in the present paper the
more relevant finitary notion of supercriticality concerns point-to-point connection probabilities,
i.e.

min
𝑢,𝑣

P(1−𝜀)𝑝 (𝑢 ↔ 𝑣) ≥ 𝜀.
29This is reminiscent of [EH23b, Section 6]. There we used the hypothesis of a point-to-point lower bound on a

large scale to enable us to run arguments from [CMT22], which were ostensibly about supercritical percolation, to
study subcritical percolation.

30We thank Coales for suggesting this name.
31The ghost-field arguments ultimately rely on two-arm bounds, which are not elementary and which break down

when working with graphs with rapidly diverging vertex degrees.
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These properties are equivalent up to changing the constant 𝜀. Indeed, for every parameter 𝑝 ∈ (0, 1)
and every constant 𝜀 > 0 satisfying the technical condition |𝑉 | ≥ 2𝜀−3,

min
𝑢,𝑣

P𝑝 (𝑢 ↔ 𝑣) ≥ 2𝜀 =⇒ P𝑝 (∥𝐾1∥ ≥ 𝜀) ≥ 𝜀 =⇒ min
𝑢,𝑣

P𝑝 (𝑢 ↔ 𝑣) ≥ 𝑒−105𝜀−18
.

(8.4.1)
The first implication is an easy application of Markov’s inequality, and the second implication is
[EH21a, Theorem 2.1]. A version of the second implication assuming an upper bound on the degree
of 𝐺 is originally due to Schramm. Notice that the second implication quantitatively loses much
more than the first. In this sense, we can think of the hypothesis “min𝑢,𝑣 P(1−𝜀)𝑝 (𝑢 ↔ 𝑣) ≥ 𝜀” as
being quantitatively much stronger than the hypothesis “P(1−𝜀)𝑝 (∥𝐾1∥ ≥ 𝜀) ≥ 𝜀”.

Below is [EH21a, Theorem 1.5], which contains a finitary uniqueness statement similar to Proposi-
tion 8.4.1. Unfortunately, the terrible 𝑒−𝐶𝜀−18 dependence on 𝜀 is not good enough for our purposes.
Fortunately, it turns out that in the proof of this theorem, the source of this poor dependence is a
conversion from the hypothesis of a giant cluster bound (implicit in 𝑝 being 𝜀-supercritical) into
a point-to-point bound, i.e. an application of the second implication in eq. (8.4.1). This saves us
because in the present setting we actually start with the “stronger” hypothesis of a point-to-point
bound.

Theorem 8.4.2. Let 𝐺 be a finite transitive graph with degree 𝑑. There exists 𝐶 (𝑑) < ∞ such that
for every 𝜀 > 0, every 𝜀-supercritical parameter 𝑝, and every 𝜆 ≥ 1,

P𝑝

(
∥𝐾2∥ ≥ 𝜆𝑒𝐶𝜀

−18
(

log 𝑑
log |𝑉 |

)1/2
)
≤ 1
𝜆
.

A key ingredient in the sandcastles argument of [EH21a] is the sharp density property, which
measures the extent to which the events {∥𝐾1∥ ≥ 𝛼} for each 𝛼 ∈ (0, 1) have uniformly-in-𝛼
sharp thresholds. Let Δ : (0, 1) → (0, 1/2] be a decreasing function. For all 𝛼, 𝛿 ∈ (0, 1), let
𝑝𝑐 (𝛼, 𝛿) ∈ (0, 1) be the parameter satisfying P𝑝𝑐 (𝛼,𝛿) (∥𝐾1∥ ≥ 𝛼) = 𝛿, which is unique by the strict
monotonicity of this probability with respect to 𝑝. We say that 𝐺 has the Δ-sharp density property
if for all 𝛼 ∈ (0, 1) and 𝛿 ∈ [Δ(𝛼), 1/2],

𝑝𝑐 (𝛼, 1 − 𝛿)
𝑝𝑐 (𝛼, 𝛿)

≤ 𝑒𝛿 .

The following lemma establishes a sharp density property for graphs with bounded degrees. This
is [EH21a, Proposition 3.2] and is an easy consequence of Talagrand’s well-known sharp threshold
theorem [Tal94].
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Lemma 8.4.3. Let 𝐺 be a finite transitive graph with degree 𝑑. There exists 𝐶 (𝑑) < ∞ such that
𝐺 has the Δ-sharp density property for the function Δ : (0, 1) → (0, 1/2] given by

Δ(𝛼) :=


1
2 ∧

𝐶

(log|𝑉 |)1/2 if 𝛼 ≥
(

2
|𝑉 |

)1/3

1
2 otherwise.

The sandcastles argument combines a sharp density property with a point-to-point bound to establish
the uniqueness of the largest cluster. Here is the technical output of that argument.

Lemma 8.4.4. Let 𝐺 be a finite transitive graph. Let 𝜀 ∈ (0, 1) and suppose that 𝑝 ∈ (0, 1) is
𝜀-supercritical. Suppose that𝐺 satisfies the Δ-sharp density property for some decreasing function
Δ : (0, 1) → (0, 1/2]. Then for all 𝜆 ≥ 1,

P𝑝

(
∥𝐾2∥ ≥ 𝜆

(
200Δ(𝜀)
𝜀3𝜏

+ 25
𝜀2𝜏 |𝑉 |

))
≤ 𝜀
𝜆
,

where
𝜏 := min

𝑢,𝑣
P(1−𝜀)𝑝 (𝑢 ↔ 𝑣).

Proof. [EH21a, Theorem 3.3] is the same statement but where 𝜏 is instead defined to be

𝜏 := 𝑒−105𝜀−18
,

which is the function appearing in eq. (8.4.1). We claim that the proof of [EH21a, Theorem 3.3]
actually also establishes Lemma 8.4.4. First note that in the statement of [EH21a, Lemma 3.5], we
can require that 𝑞 ∈ ((1 − 𝜀)𝑝, 𝑝) rather than just 𝑞 ∈ (𝑝𝑐 (𝜀, 𝜀), 𝑝). Indeed, the exact same proof
works, using 𝑞 𝑗 := 𝑒 𝑗Δ(𝜀) (1 − 𝜀)𝑝 instead of 𝑞 𝑗 := 𝑒 𝑗Δ(𝜀) 𝑝𝑐 (𝜀, 𝜀), because (1 − 𝜀)𝑝 ≥ 𝑝𝑐 (𝜀, 𝜀).
So in the proof of [EH21a, Theorem 3.3], we may assume that the parameter called 𝑞, which is
provided by [EH21a, Lemma 3.5], satisfies 𝑞 ≥ (1 − 𝜀)𝑝. In particular, when we later apply
[EH21a, Theorem 2.1] to lower bound min𝑢,𝑣 P𝑞 (𝑢 ↔ 𝑣) by 𝑒−105𝜀−18 , we could instead simply
lower bound min𝑢,𝑣 P𝑞 (𝑢 ↔ 𝑣) by min𝑢,𝑣 P(1−𝜀)𝑝 (𝑢 ↔ 𝑣). Running the rest of the proof of [EH21a,
Theorem 3.3] exactly as written, except for the new definition “𝜏 := min𝑢,𝑣 P(1−𝜀)𝑝 (𝑢 ↔ 𝑣)” in
place of “𝜏 := 𝑒−105𝜀−18”, yields the desired conclusion. □

The uniqueness part of Proposition 8.4.1 will follow from Lemmas 8.4.3 and 8.4.4. The existence
part will follow from the following well-known and (again) easy consequence of Talagrand’s sharp
threshold theorem [Tal94].
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Lemma 8.4.5. Let 𝐺 be a finite transitive graph. Let 𝐴 be a non-trivial increasing event that is
invariant under all graph automorphisms of 𝐺. Let 0 < 𝑝1 < 𝑝2 < 1 and set 𝛿 := 𝑝2 − 𝑝1. There
exists a universal constant 𝑐 > 0 such that

P𝑝1 (𝐴) ≤
1
|𝑉 |𝑐𝛿

or 𝑃𝑝2 (𝐴) ≥ 1 − 1
|𝑉 |𝑐𝛿

.

Proof. For every edge 𝑒, let Orb(𝑒) denote the orbit of 𝑒 under the action of the automorphism
group of 𝐺. By [EH21a, Theorem 3.10], there is a universal constant 𝑐1 > 0 such that for all
𝑝 ∈ (0, 1), the function 𝑓 (𝑝) := P𝑝 (𝐴) satisfies

𝑓 ′(𝑝) ≥ 𝑐1

𝑝(1 − 𝑝) log 2
𝑝(1−𝑝)

· 𝑓 (𝑝) (1 − 𝑓 (𝑝)) · log
(
2 min
𝑒∈𝐸
|Orb(𝑒) |

)
.

Since 𝐺 is (vertex-)transitive, |Orb(𝑒) | ≥ |𝑉 |2 for every 𝑒 ∈ 𝐸 . Also, by calculus, sup𝑝∈(0,1) 𝑝(1 −
𝑝) log 2

𝑝(1−𝑝) < ∞. Therefore, there is another universal constant 𝑐 > 0 such that for all 𝑝 ∈ (0, 1),[
log

𝑓

1 − 𝑓

]′
=

𝑓 ′

𝑓 (1 − 𝑓 ) ≥ 2𝑐 log |𝑉 | .

The result follows by integrating this differential inequality. □

Proof of Proposition 8.4.1. Suppose that 𝑞, 𝑝 ∈ (0, 1) satisfy 𝑞 − 𝑝 ≥ 𝛿 and min𝑢,𝑣 P𝑝 (𝑢 ↔ 𝑣) ≥
2𝛿. We will assume throughout this proof that |𝑉 | is as large as we like with respect to 𝑑. Let us
start with the existence of a large cluster. Let 𝑐 > 0 be the universal constant from Lemma 8.4.5.
By the first implication in eq. (8.4.1), we know that P𝑝 (∥𝐾1∥ ≥ 𝛿) ≥ 𝛿. Since |𝑉 | is large,

𝛿 = 𝑒−
1
20 log log|𝑉 | ≥ 𝑒−𝑐(log|𝑉 |) (log|𝑉 |)−1/20

= |𝑉 |−𝑐𝛿 . (8.4.2)

So by Lemma 8.4.5 with 𝐴 := {∥𝐾1∥ ≥ 𝛿}, since 𝛿4

2 ≥ |𝑉 |
−𝑐𝛿 (by a calculation like eq. (8.4.2)),

P𝑞 (∥𝐾1∥ ≥ 𝛿) ≥ 1 − 1
|𝑉 |𝑐𝛿

≥ 1 − 𝛿
4

2
. (8.4.3)

We now turn to the uniqueness of the largest cluster. The parameter 𝑞 is (𝛿/2)-supercritical because
|𝑉 | ≥ 2(𝛿/2)−3 and

P(1−𝛿/2) (𝑝+𝛿) (∥𝐾1∥ ≥ 𝛿) ≥ P𝑝 (∥𝐾1∥ ≥ 𝛿) ≥ 𝛿.

By Lemma 8.4.3, since 𝛿/2 ≥ (2/|𝑉 |)1/3, there is a constant 𝐶1(𝑑) < ∞ such that 𝐺 has the
Δ-sharp density property for some Δ satisfying

Δ(𝛿/2) ≤ 𝐶1

(log |𝑉 |)1/2
.
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So by Lemma 8.4.4, there is a constant 𝐶2(𝑑) < ∞ such that for every 𝜆 ≥ 1,

P𝑞

(
∥𝐾2∥ ≥

𝐶2𝜆

𝛿4(log |𝑉 |)1/2

)
≤ P𝑞

©­«∥𝐾2∥ ≥ 𝜆


200 𝐶1
(log|𝑉 |)1/2

(𝛿/2)3 · (2𝛿)
+ 25
(𝛿/2)2 · (2𝛿) · |𝑉 |

ª®¬ ≤
𝛿/2
𝜆
.

By picking 𝜆 such that 𝐶2𝜆
𝛿4 (log|𝑉 |)1/2 = 𝛿2 (which satisfies 𝜆 ≥ 1 when |𝑉 | is large), it follows that

P𝑞 (∥𝐾2∥ ≥ 𝛿2) ≤ 𝐶2

2𝛿5(log |𝑉 |)1/2
=
𝐶2𝛿

5

2
≤ 𝛿

4

2
. (8.4.4)

The conclusion follows by combining eqs. (8.4.3) and (8.4.4) with a union bound. □

8.5 Unique large cluster→ giant cluster
In this section we apply the methods of [Eas23]. We will again use the notation ∥𝐾1∥ , ∥𝐾2∥
introduced in Section 8.4. LetG be an infinite set of finite transitive graphs with possibly unbounded
degrees. Recall that G is said to have a percolation threshold if there is a fixed sequence 𝑝𝑐 : G →
(0, 1) such that for every sequence 𝑝 : G → (0, 1), if lim sup 𝑝/𝑝𝑐 < 1 then limP𝑝 (∥𝐾1∥ ≥ 𝜀) = 0
for all 𝜀 > 0, and if lim inf 𝑝/𝑝𝑐 > 1 then limP𝑝 (∥𝐾1∥ ≥ 𝜀) = 1 for some 𝜀 > 0. In [Eas23]
we showed that G has a percolation threshold unless and only unless G contains a very particular
family of pathological sequences of dense graphs. This might appear to be simply a matter of
proving that some nice event has a sharp threshold, perhaps by a simple application of Lemma 8.4.5
in the bounded-degree case. The subtle problem is that “{𝐾1 is a giant}” is not an event. Really
the challenge is to prove that multiple events of the form {∥𝐾1∥ ≥ 𝛼}, for different choices of 𝛼,
all have sharp thresholds that in fact coincide with each other.

The bulk of our proof consisted in proving that if the supercritical giant cluster for G is unique (as
given by [EH21a]), then we can embed this fact into Vanneuville’s new proof of the sharpness of
the phase transition for infinite transitive graphs [Van23; Van24] to deduce a kind of mean-field
lower bound for the supercritical giant cluster density. This mean-field-like lower bound implies
that for every 𝛿 > 0 and sequence 𝑝, if there is a giant whose density exceeds some constant 𝛼 > 0
at 𝑝, i.e. limP𝑝 (∥𝐾1∥ ≥ 𝛼) = 1, then there is a giant whose density exceeds some constant 𝑐(𝛿) > 0
at (1 + 𝛿)𝑝, i.e. limP(1+𝛿)𝑝 (∥𝐾1∥ ≥ 𝑐(𝛿)) = 1, where, crucially, 𝑐(𝛿) is independent of 𝛼. By
a diagonalisation argument, it is clear that 𝛼 can be allowed to decay slowly rather than remain
constant. However, in general, the slowest allowable rate of decay can be arbitrarily slow32. This
is why there was no discussion of rates of convergence in [EH23b]. Luckily, this is not the case in
our restricted setting where graphs have bounded degrees.

32Consider sequences that approximate sequences that do not have percolation thresholds.
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In the following subsection we simply note that the argument in [EH23b] is fully quantitative in the
sense that 𝛼 can decay at any particular rate provided that we supply a sufficiently strong bound
on the uniqueness of the largest (possibly non-giant) cluster. This is the content of the following
proposition.

Proposition 8.5.1. Let 𝐺 be a finite transitive graph. Let 𝑝, 𝜀 ∈ (0, 1) and 𝛼 ∈ (0, 𝜀10 ). There is a
universal constant 𝑐 > 0 such that the following holds whenever |𝑉 |𝑐𝜀 ≥ 1

𝑐𝜀
.

If
P𝑝−𝜀 (∥𝐾𝑜∥ ≥ 𝛼) ≥ 𝛼 and P𝑝

(
∥𝐾1∥ ≥ 𝛼 and ∥𝐾2∥ <

𝛼

2

)
> 1 − 𝛼2,

then
P𝑝+𝜀 (∥𝐾1∥ ≥ 𝑐𝜀) ≥ 1 − 1

|𝑉 |𝑐𝜀 .

Proof via coupled explorations
At the heart of Vanneuville’s new proof of the sharpness of the phase transition for infinite transitive
graphs is a stochastic comparison lemma. This says that starting with percolation of some parameter
𝑝, decreasing from 𝑝 to 𝑝 − 𝜀 for a certain 𝜀 > 0 has more of an effect than conditioning on a
certain disconnection event 𝐴, roughly in the sense that

P𝑝−𝜀 (𝜔 = · ) ≤st P𝑝 (𝜔 = · | 𝐴),

where ≤st denotes stochastic dominance with respect to the usual partial ordering {0, 1}𝐸 . This is
proved by coupling two explorations of the cluster at the origin, sampled according to each of the
two laws. In [Eas23] we modified Vanneuville’s argument to prove the following lemma ([Eas23,
Lemma 8]). Note that here the stochastic dominance only holds approximately, i.e. only on the
complement of an event with small probability.

Lemma 8.5.2. Let 𝐺 be a finite transitive graph. Let 𝑝, 𝛼 ∈ (0, 1). Define

𝜃 := E𝑝 ∥𝐾1∥ , ℎ := P𝑝
(
∥𝐾1∥ < 𝛼 or ∥𝐾2∥ ≥

𝛼

2

)
, 𝛿 :=

2ℎ1/2

1 − 𝜃 − ℎ ,

and assume that 𝜃 + ℎ < 1 (so that 𝛿 is well-defined and positive). Then there is an event 𝐴 with
P𝑝 (𝐴 | ∥𝐾𝑜∥ < 𝛼) ≤ ℎ1/2 such that

P(1−𝜃−𝛿)𝑝 (𝜔 = · ) ≤st P𝑝 (𝜔 ∪ 1𝐴 = · | ∥𝐾𝑜∥ < 𝛼),

where 1𝐴 denotes the random configuration with every edge open on 𝐴 and every edge closed on
𝐴𝑐.
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To prove Proposition 8.5.1, we will simply combine this lemma together with Lemma 8.4.5, which
was a standard application of Russo’s formula and Talagrand’s inequality.

Proof of Proposition 8.5.1. Define 𝜃 and ℎ as in Lemma 8.5.2. Suppose that P𝑝−𝜀 (∥𝐾𝑜∥ ≥ 𝛼) ≥ 𝛼
and P𝑝

(
∥𝐾1∥ ≥ 𝛼 and ∥𝐾2∥ < 𝛼

2
)
> 1 − 𝛼2, i.e. ℎ < 𝛼2. First consider the case that 𝜃 + ℎ ≥ 𝜀

2 .
Then by hypothesis and the fact that 𝛼 ≤ 𝜀

10 ,

𝜃 ≥ 𝜀
2
− ℎ ≥ 𝜀

2
− 𝛼2 ≥ 𝜀

4
. (8.5.1)

Now consider the case that 𝜃 + ℎ < 𝜀
2 . Define 𝛿 as in Lemma 8.5.2. By Lemma 8.5.2, there is an

event 𝐴 such that
P(1−𝜃−𝛿)𝑝 (∥𝐾𝑜∥ ≥ 𝛼) ≤ P𝑝 (𝐴 | ∥𝐾𝑜∥ < 𝛼) ≤ ℎ1/2.

On the other hand, by our hypotheses,

ℎ1/2 < 𝛼 ≤ P𝑝−𝜀 (∥𝐾𝑜∥ ≥ 𝛼).

So by monotonicity, we must have (1 − 𝜃 − 𝛿)𝑝 ≤ 𝑝 − 𝜀. In particular, 𝜃 + 𝛿 ≥ 𝜀. We can upper
bound 𝛿 by

𝛿 =
2ℎ1/2

1 − (𝜃 + ℎ) ≤
2𝛼

1 − 𝜀
2
≤

2 · 𝜀10
1 − 𝜀

2
≤ 2𝜀

5
,

where the last inequality used the fact that 𝜀 ∈ (0, 1). Therefore, again, 𝜃 ≥ 𝜀 − 𝛿 ≥ 𝜀
4 , as in

eq. (8.5.1).

Let 𝑐 > 0 be the constant from Lemma 8.4.5. Without loss of generality, assume that 𝑐 < 1
8 .

Suppose that |𝑉 |𝑐𝜀 ≥ 1
𝑐𝜀

. By Markov’s inequality, P𝑝
(
∥𝐾1∥ ≥ 𝜀

8
)
≥ 𝜀

8 because 𝜃 ≥ 𝜀
4 . Therefore,

P𝑝 (∥𝐾1∥ ≥ 𝑐𝜀) ≥ P𝑝
(
∥𝐾1∥ ≥

𝜀

8

)
≥ 𝜀

8
> 𝑐𝜀 ≥ 1

|𝑉 |𝑐𝜀 .

So by applying Lemma 8.4.5, P𝑝+𝜀 (∥𝐾1∥ ≥ 𝑐𝜀) ≥ 1 − |𝑉 |−𝑐𝜀, as required. □

8.6 Proof of Theorem 8.1.1
Let G be an infinite set of finite transitive graphs with bounded degrees. Suppose that for all but at
most finitely many 𝐺 ∈ G,

distGH

( 𝜋

diam𝐺
𝐺, 𝑆1

)
>
𝑒(log diam𝐺)1/9

diam𝐺
. (8.6.1)

Our goal is to prove that both statements (1) and (2) are true. By Proposition 8.2.9, statement (1)
implies statement (2). So it suffices to prove statement (1), i.e. percolation on G has a sharp phase
transition. We will assume without loss of generality that there exists 𝑑 ∈ N such that every 𝐺 ∈ G
has degree exactly 𝑑. We will again adopt the notation ∥𝐾1∥ , ∥𝐾2∥ from Section 8.4.
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Claim 8.6.1. For every constant 𝜀 > 0, there exist constants 𝑐(𝜀) > 0 and 𝜇(𝑑, 𝜀) < ∞ such that
for every infinite subsetH ⊆ G and every sequence 𝑝 : H → (0, 1),

lim inf
𝐺∈H

P𝑝 ( |𝐾1 | ≥ 𝜇 log |𝑉 |) > 0 =⇒ lim
𝐺∈H

P𝑝+4𝜀 (∥𝐾1∥ ≥ 𝑐) = 1.

Before proving this claim, let us explain how to conclude from it. For each𝐺 ∈ G, pick a parameter
𝑞(𝐺) ∈ (0, 1) satisfying P𝐺

𝑞(𝐺) ( |𝐾1 | ≥ |𝑉 |2/3) = 1
2 . We will prove that percolation on G has

a sharp phase transition with percolation threshold given by 𝑞 : G → (0, 1). First notice that
lim inf 𝑞 ≥ 1

2𝑑 > 0. Indeed, this follows from the proof of [EH21a, Lemma 2.8], but let us explain
the elementary argument here for completeness. For every 𝐺 ∈ G and 𝑛 ≥ 1, there are at most 𝑑𝑛

self-avoiding paths starting from 𝑜. So by a union bound, every 𝐺 ∈ G satisfies

E 1
2𝑑
|𝐾𝑜 | ≤

∞∑︁
𝑛=0

𝑑𝑛

(2𝑑)𝑛 = 2.

On the other hand, by transitivity, every 𝐺 ∈ G satisfies

E 1
2𝑑
|𝐾𝑜 | ≥ |𝑉 |2/3 P 1

2𝑑

(
|𝐾𝑜 | ≥ |𝑉 |2/3

)
≥ |𝑉 |1/3 P 1

2𝑑

(
|𝐾1 | ≥ |𝑉 |2/3

)
.

Therefore for all but finitely many 𝐺 ∈ G,

P 1
2𝑑

(
|𝐾1 | ≥ |𝑉 |2/3

)
≤ 2 |𝑉 |−1/3 <

1
2
,

and hence by monotonicity, 𝑞(𝐺) ≥ 1
2𝑑 .

Now fix a constant 𝜀 > 0. Since lim inf 𝑞 ≥ 1
2𝑑 > 0, there exists a constant 𝛿(𝜀, 𝑑) > 0 such that

(1 − 𝜀)𝑞 ≤ 𝑞 − 𝛿 and 𝑞 + 𝛿 ≤ (1 + 𝜀)𝑞 for all but finitely many 𝐺 ∈ G. Let 𝑐 (𝛿/4) > 0 and
𝜇(𝑑, 𝛿/4) < ∞ be the constants provided by the claim. For all but finitely many 𝐺 ∈ G, we have
𝜇 log |𝑉 | < |𝑉 |2/3. So by applying the claim with “H” being the whole of G and “𝑝” being 𝑞,

lim
𝐺∈G

P𝑞+𝛿 (∥𝐾1∥ ≥ 𝑐) = 1.

On the other hand, for all but finitely many 𝐺 ∈ G, we have 𝑐 |𝑉 | > |𝑉 |2/3. So by applying the
claim (contrapositively) with “𝑝” being 𝑞 − 𝛿, for every infinite subsetH ⊆ G,

lim inf
𝐺∈H

P𝑞−𝛿 ( |𝐾1 | ≥ 𝜇 log |𝑉 |) = 0.

Equivalently, for every infinite subset H ⊆ G there exists a further infinite subset H ′ ⊆ H such
that lim𝐺∈H ′ P𝑞−𝛿 ( |𝐾1 | ≥ 𝜇 log |𝑉 |) = 0. Therefore,

lim
𝐺∈G

P𝑞−𝛿 ( |𝐾1 | ≥ 𝜇 log |𝑉 |) = 0.
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Since 𝜀 > 0 was arbitrary, this establishes that percolation on G has a sharp phase transition. All
that remains is to verify the claim.

Proof of claim. Fix 𝜀 > 0. Let 𝑐1(𝑑, 𝜀) > 0 be the constant from Proposition 8.2.1. Let
𝜆

(
𝑑, 𝜀, 𝜀

2

20

)
< ∞ be the constant from Proposition 8.3.1 (with “𝜂” set to 𝜀2/20). Let 𝑐2 > 0 be the

universal constant from Proposition 8.5.1. We will prove that the claim holds with 𝜇 := exp
(
𝜆
𝑐1
+ 1
𝑐2

1

)
and 𝑐 := 𝑐2𝜀. LetH ⊆ G be an infinite subset, and let 𝑝 : H → (0, 1) be a sequence satisfying

𝜂 := lim inf
𝐺∈H

P𝑝 ( |𝐾1 | ≥ 𝜇 log |𝑉 |) > 0.

We say that a statement 𝐴 holds for almost every𝐺 to mean that the set {𝐺 ∈ H : 𝐴 does not hold for 𝐺}
is finite. For almost every 𝐺,

P𝑝 ( |𝐾1 | ≥ 𝜇 log |𝑉 |) ≥ 𝜂
2
≥ 1
𝑐1 |𝑉 |𝑐1

.

So by Proposition 8.2.1, noting that 𝑐1 log 𝜇 − 1
𝑐1

= 𝜆,

min
𝑢∈𝐵𝜆

P𝑝+𝜀 (𝑜 ↔ 𝑢) ≥ 𝜀
2

20
.

For each𝐺 ∈ H , define 𝛾(𝐺) and 𝛾+(𝐺) as in Proposition 8.3.1. Then by Proposition 8.3.1, thanks
to our choice of 𝜆, for almost every 𝐺,

min
𝑢∈𝐵𝛾+

P𝑝+2𝜀 (𝑜 ↔ 𝑢) ≥ 𝑒−(log log 𝛾+)1/2 . (8.6.2)

Consider a particular 𝐺 ∈ H satisfying eq. (8.6.1). Then 𝛾(𝐺) > 𝑒(log diam𝐺)1/9 , and by applying
the monotone function 𝑥 ↦→ 𝑒(log 𝑥)9 to both sides, 𝛾+(𝐺) > diam𝐺. In particular, 𝐵𝐺

𝛾+ (𝐺) is the

whole vertex set 𝑉 (𝐺). We trivially have distGH

(
1

diam𝐺
𝐺, 1

𝜋
𝑆1

)
≤ 1, because both metric spaces

involved have diameter ≤ 1. So conversely, 𝛾(𝐺) ≤ 𝜋 diam𝐺, and hence 𝛾+(𝐺) ≤ 𝑒(log(𝜋 diamG))9 .
By applying these upper and lower bounds on 𝛾+(𝐺) to eq. (8.6.2), we deduce that for almost every
𝐺,

min
𝑢,𝑣∈𝑉

P𝑝+2𝜀 (𝑢 ↔ 𝑣) ≥ 𝑒−3(log log(𝜋 diam𝐺))1/2 ≥ 𝑒−3(log log(𝜋 |𝑉 |))1/2 ,

where the second inequality follows from the trivial bound |𝑉 | ≥ diam𝐺.

For each 𝐺 ∈ H , define 𝛿(𝐺) := (log |𝑉 |)−1/20. For every sufficiently large positive real 𝑥,

2(log 𝑥)−1/20 = 2𝑒−
1

20 log log 𝑥 ≤ 𝑒−3(log log(𝜋𝑥))1/2 .
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Therefore for almost every 𝐺,
min
𝑢,𝑣∈𝑉

P𝑝+2𝜀 (𝑢 ↔ 𝑣) ≥ 2𝛿. (8.6.3)

By applying Proposition 8.4.1, it follows that for almost every 𝐺, (since 𝛿 ≤ 𝜀)

P𝑝+3𝜀
(
∥𝐾1∥ ≥ 𝛿 and ∥𝐾2∥ ≤ 𝛿2

)
≥ 1 − 𝛿4.

For almost every 𝐺, we have 𝛿2 < 𝛿
2 , 𝛿4 < 𝛿2, 𝛿 ∈ (0, 𝜀10 ), |𝑉 |

𝑐2𝜀 ≥ 1
𝑐2𝜀

, and by applying Markov’s
inequality to eq. (8.6.3), P𝑝+2𝜀 (∥𝐾𝑜∥ ≥ 𝛿) ≥ 𝛿. So by Proposition 8.5.1, for almost every 𝐺,

P𝑝+4𝜀 (∥𝐾1∥ ≥ 𝑐2𝜀) ≥ 1 − 1
|𝑉 |𝑐2𝜀

.

In particular, lim𝐺∈H P𝑝+4𝜀 (∥𝐾1∥ ≥ 𝑐2𝜀) = 1, as claimed. □
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Appendix: Details for some claims in Section 8.3
In this appendix, we will explain how some of the lemmas in Section 8.3 can be established by
minor modifications of existing arguments.

Lemma (Lemma 8.3.3). There exists 𝑛0(𝑑) < ∞ such that for all 𝑛 ≥ 𝑛0,

𝑠( [𝑅(𝑛), 𝑅2(𝑛)] is orange) ≤ 𝑠(𝑛 is green) + 𝛿(𝑛).

The following argument is essentially contained in the proof of [EH23b, Proposition 4.5].

Proof. Let 𝑛 ≥ 3 be some scale. Throughout this proof, we will assume that 𝑛 is large with
respect to 𝑑. Note that the result is trivial if 𝑛 > diam𝐺, because in that case 𝐵𝑚 = 𝐵𝑛 for all
𝑚 ∈ [𝑅(𝑛), 𝑅2(𝑛)]. So let us assume to the contrary that 𝑆𝑛 ≠ ∅. First consider the case that 𝑛 ∈ L.
Then at any time 𝑡 when 𝑛 is green, we know that 𝜅𝜙(𝑡)

(
𝑅2(𝑛), 𝑛

)
≥ 𝛿(𝑅(𝑛)), which implies that

[𝑅(𝑛), 𝑅2(𝑛)] is already orange at time 𝑡. So let us assume to the contrary that 𝑛 ∉ L. Define
ℎ := 𝑒−(log 𝑛)100 , which therefore satisfies ℎ ≥ Gr(𝑛)−1. Pick 𝑝1 ∈ (0, 1) such that 𝑛 is green at time
𝜙−1(𝑝1). Note that 𝑝1 ≥ 1/𝑑 because by a union bound, using that 𝑆𝑛 ≠ ∅ and that 𝑛 is large with
respect to 𝑑,

min
𝑢∈𝐵𝑛

P1/𝑑 (𝑜 ↔ 𝑢) ≤ P1/𝑑 (𝑜 ↔ 𝑆𝑛) ≤ 𝑑 (𝑑 − 1)𝑛−1 ·
(

1
𝑑

)𝑛
< 𝛿(𝑛).

Define 𝑝2 := 𝜙(𝜙−1(𝑝1) + 𝛿(𝑛)). In the language of [EH23b, Section 3], the quantity “𝛿(𝑝1, 𝑝2)”
is equal to 𝛿(𝑛) by construction. Let 𝑢 ∈ 𝐵𝑅2 (𝑛) be arbitrary, and let 𝑜 = 𝑢0, 𝑢1, . . . , 𝑢𝑘 = 𝑢 be a
path with 𝑘 ≤ 𝑅2(𝑛). Let 𝑐1(1), ℎ0(𝑑, 1), 𝑐2, 𝑐3 > 0 be the constants from [EH23b, Proposition
4.1] with 𝐷 := 1. Since 𝑛 is large with respect to 𝑑, we have ℎ ≤ ℎ0, 𝛿(𝑛) ≤ 1,

ℎ𝑐1𝛿(𝑛)3 = 𝑒−𝑐1 (log 𝑛)100𝑒−3(log log 𝑛)1/2 ≤ 𝑐3

𝑒(log 𝑛)81 + 1
=

𝑐3

𝑅2(𝑛) + 1
≤ 𝑐3

𝑘 + 1
,

and for all 𝑖 ∈ {0, . . . , 𝑘 − 1}, by Harris’ inequality,

min
{
P𝑝1 (𝑥 ↔ 𝑦) : 𝑥, 𝑦 ∈ 𝐵𝑛 (𝑢𝑖) ∪ 𝐵𝑛 (𝑢𝑖+1)

}
≥ 𝛿(𝑛) · 𝑝1 · 𝛿(𝑛)

≥ 1
𝑑
𝑒−2(log log 𝑛)1/2

≥ 4𝑒−𝑐1 (log 𝑛)100𝑒−4(log log 𝑛)1/2
= 4ℎ𝑐1𝛿(𝑛)4 .

So by [EH23b, Proposition 4.1], where the sets “𝐴1, . . . , 𝐴𝑛” are the balls 𝐵𝑛 (𝑢0), . . . , 𝐵𝑛 (𝑢𝑘 ),

P𝑝2 (𝑜 ↔ 𝑢) ≥ 𝑐2𝛿(𝑛)2 ≥ 𝛿(𝑅(𝑛)).

Since 𝑢 ∈ 𝐵𝑅2 (𝑛) was arbitrary, it follows that [𝑅(𝑛), 𝑅2(𝑛)] is orange at time 𝜙−1(𝑝2), as required.
□
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Lemma (Lemma 8.3.4). For all 𝑐 > 0 there exist 𝜆(𝑑, 𝑐), 𝑛0(𝑑, 𝑐), 𝐾 (𝑑, 𝑐) < ∞ such that the
following holds for all 𝑛 ≥ 𝑛0 with 𝑛 ∈ T(𝑐, 𝜆). For all 𝑡 ∈ R, if 𝑛 is orange at time 𝑡 and
𝐾Δ𝑡 (𝑛) ≤ 1 then

𝑠(𝑛 is green) ≤ 𝑡 + 𝐾Δ𝑡 (𝑛).

This is implicit in the proof of [EH23b, Proposition 6.1]

Proof. In [EH23b], we made the following definitions: given 𝑑 ≥ 1, we wroteU∗
𝑑

for the set of all
infinite non-one-dimensional unimodular transitive graphs with degree 𝑑, and given 𝐷 ≥ 1 and a
transitive graph 𝐺, we wrote L(𝐺, 𝐷) for the set of all scales 𝑛 ≥ 1 such that Gr(𝑚) ≤ 𝑒(log𝑚)𝐷

for all 𝑚 ∈ [𝑛1/3, 𝑛]. Let us now introduce the following variants of these definitions: given 𝑑 ≥ 1,
writeW𝑑 for the set of all (possibly finite) unimodular transitive graphs with degree 𝑑, and given
𝐷, 𝜆 ≥ 1, 𝑐 > 0, and a transitive graph 𝐺, write T (𝐺, 𝐷, 𝜆, 𝑐) for the set all of scales 𝑛 ∈ L(𝐺, 𝐷)
with 𝑛 ≤ diam𝐺 such that 𝐺 has (𝑐, 𝜆)-polylog plentiful tubes throughout an interval of the form
[𝑚1, 𝑚2] with 𝑚2 ≥ 𝑚1+𝑐

1 satisfying [𝑚1, 𝑚2] ⊆ [𝑛1/3, 𝑛1/(1+𝑐)]. Let [EH23b, Proposition* 6.1] be
the result of modifying the statement of [EH23b, Proposition 6.1] as follows:

1. Weaken the hypothesis that 𝐺 ∈ U∗
𝑑

to the hypothesis that 𝐺 ∈ W𝑑 .

2. Strengthen the hypothesis that 𝑛 ∈ L(𝐺, 𝐷) to the hypothesis that 𝑛 ∈ T (𝐺, 𝐷, 𝜆, 1/𝐷).

Note that 𝑝𝑐 (𝐺) in this statement refers to the usual percolation threshold for an infinite cluster, so
in particular, 𝑝𝑐 (𝐺) := 1 if 𝐺 is finite. The same proof works because the hypothesis that 𝐺 was
infinite and non-one-dimensional was only used to invoke [EH23b, Proposition 5.2] to establish
that there is a constant 𝑐1(𝑑, 𝐷) > 0 such that for all 𝜆, whenever 𝑛 is large with respect to 𝑑, 𝐷, 𝜆,
if 𝑛 ∈ L(𝐺, 𝐷) then automatically 𝑛 ∈ T (𝐺, 𝐷, 𝜆, 𝑐1). We are just circumventing this application
of [EH23b, Proposition 5.2]. Specifically, we can prove [EH23b, Proposition* 6.1] by modifying
the proof of [EH23b, Proposition 6.1] as follows:

1. Strengthen the condition 𝑛 ∈ L(𝐺, 𝐷) to 𝑛 ∈ T (𝐺, 𝐷, 𝜆, 1/𝐷) in the definition of A.

2. Rather than define 𝑐1 and 𝑁 to be the constants guaranteed to exist by [EH23b, Proposition
5.2], set 𝑐1 := 1/𝐷 and 𝑁 := 3.

3. Restrict the domain of the definition ofP(𝑛) from all 𝑛 ∈ L(𝐺, 𝐷) to all 𝑛 ∈ T (𝐺, 𝐷, 𝜆, 1/𝐷).
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4. Include the hypothesis 𝑛 ∈ T (𝐺, 𝐷, 𝜆, 1/𝐷) in the statement of [EH23b, Lemma 6.8].33

Taking [EH23b, Proposition* 6.1] for granted, let us now explain how to prove Lemma 8.3.4. Recall
that 𝐺 is a finite transitive graph with degree 𝑑. Let 𝑐 > 0 be given, and define 𝐷 := 101 ∨ (1/𝑐).
Let 𝜆0(𝑑, 𝐷) and 𝑐1(𝑑, 𝐷) (called “𝑐(𝑑, 𝐷)”) be the constants provided by [EH23b, Proposition*
6.1]. Define 𝜆 := 𝜆0 ∨ (100/𝑐1). Now let 𝐾1(𝑑, 𝐷, 𝜆) and 𝑛0(𝑑, 𝐷, 𝜆) be the corresponding
constants provided by [EH23b, Proposition* 6.1]. Define 𝐾 := 𝐾1/4

1 . By the same argument as in
our proof of Lemma 8.3.3 above, there exists 𝑛1(𝑑) < ∞ such that for all 𝑛1 ≤ 𝑛 ≤ diam𝐺 and
𝑡 ∈ R, if 𝑛 is orange at time 𝑡 then 𝜙(𝑡) ≥ 1/𝑑. Set 𝑛2 := 𝑛0 ∨ 𝑛1 ∨ 𝑒3101 . We claim that 𝜆, 𝑛2, 𝐾

have the properties required of the constants called “𝜆, 𝑛0, 𝐾” in the statement of Lemma 8.3.4.

Indeed, suppose that 𝑡 ∈ R and 𝑛 ≥ 𝑛2 with 𝑛 ∈ T(𝑐, 𝜆) are such that 𝑛 is orange at time 𝑡 and
𝐾Δ𝑡 (𝑛) ≤ 1. Now apply [EH23b, Proposition* 6.1] with the variables called “𝐾, 𝑛, 𝑏, 𝑝1, 𝑝2” in
that statement set to our variables 𝐾1, 𝑛,𝑈𝑡 (𝑛), 𝜙(𝑡), 𝜙(𝑡 + 𝐾Δ𝑡 (𝑛)). The only hypothesis that is
not immediately obvious is that 𝑛 ∈ T (𝐺, 𝐷, 𝜆, 1/𝐷). To see this, first note that since 𝑛 ∈ L and
𝑛 ≥ 𝑒3101 , every 𝑚 ∈ [𝑛1/3, 𝑛] satisfies

Gr(𝑚) ≤ Gr(𝑛) ≤ 𝑒(log 𝑛)100 ≤ 𝑒(log(𝑛1/3))101 ≤ 𝑒(log𝑚)101 ≤ 𝑒(log𝑚)𝐷 .

So 𝑛 ∈ L(𝐺, 𝐷). Second, we may assume that 𝑛 ≤ diam𝐺, otherwise the conclusion of
Lemma 8.3.4 is trivial. Finally, since 𝑛 ∈ T(𝑐, 𝜆) and 1/𝐷 < 𝑐, and the property of having
“(𝑥, 𝜆)-polylog plentiful tubes” at a given scale gets weaker as we decrease 𝑥, it follows that
𝑛 ∈ T (𝐺, 𝐷, 𝜆, 1/𝐷). Therefore, by applying [EH23b, Proposition* 6.1], we deduce that

𝜅𝜙(𝑡+𝐾Δ𝑡 (𝑛))
(
𝑒(log 𝑛)𝑐1𝜆

, 𝑛

)
≥ 𝑒−3(log log 𝑛)1/2 .

In particular, since 𝑐1𝜆 ≥ 100 ≥ 81,

𝜅𝜙(𝑡+𝐾Δ𝑡 (𝑛))
(
𝑅2(𝑛), 𝑛

)
≥ 𝛿(𝑅(𝑛)).

So 𝑠(𝑛 is green) ≤ 𝑡 + 𝐾Δ𝑡 (𝑛), as required. □

Lemma (Lemma 8.3.5). There exists 𝑛0(𝑑) < ∞ such that the following holds for all 𝑛 ∈ L with
𝑛 ≥ 𝑛0. For all 𝑡 ∈ R, if 𝐿 (𝑛) is green at time 𝑡 then

Δ𝑡 (𝑛) ≤
1

log log 𝑛
.

33While writing this paper, we noticed the following typo: [EH23b, Lemma 6.8] is missing the hypothesis that
𝑛 ∈ L(𝐺, 𝐷).
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This proof is implicit in [EH23b, Section 6.3].

Proof. Suppose that 𝑛 ∈ L. Throughout this proof we will implicitly assume that 𝑛 is large
with respect to 𝑑. Let 𝑡 ∈ R and assume that 𝐿 (𝑛) is green at time 𝑡. We may assume that
⌊𝑛1/3⌋ ≤ diam𝐺, otherwise we trivially have𝑈𝑡 (𝑛) = ⌊ 1

8𝑛
1/3⌋ and hence (since 𝑛 is assumed large)

Δ𝑡 (𝑛) ≤ (log 𝑛)−1/5. We split the proof into two cases according to whether 𝐿 (𝑛) ∈ L.

First suppose that 𝐿 (𝑛) ∉ L. By the same argument as in our proof of Lemma 8.3.3 above, since
𝐿 (𝑛) ≤ diam𝐺 and 𝐿 (𝑛) is green at time 𝑡 (and since 𝑛 is assumed large), 𝜙(𝑡) ≥ 1/𝑑. So by
[EH23b, Corollary 2.4], there exist constants 𝑐(𝑑) > 0 and 𝐶 (𝑑), 𝑛0(𝑑) < ∞ such that for all
𝑚 ≥ 𝑛0(𝑑),

P𝜙(𝑡) (Piv[𝑐 log𝑚, 𝑚]) ≤ 𝐶
(
log Gr(𝑚)

𝑚

)1/3
.

In particular, since 4𝐿 (𝑛) ≤ 𝑐 log(𝑛1/3) and Gr(𝑛1/3) ≤ Gr(𝑛) ≤ 𝑒(log 𝑛)100 ,

P𝜙(𝑡)
(
Piv

[
4𝐿 (𝑛), 𝑛1/3] ) ≤ 𝐶 (

(log 𝑛)100

𝑛1/3

)1/3
≤ 1

log 𝑛
.

Since we also clearly have 𝐿 (𝑛) ≤ 1
8𝑛

1/3, it follows that 𝑈𝑡 (𝑛) ≥ ⌊𝐿 (𝑛)⌋. Since 𝐿 (𝑛) ∉ L, this
implies that Gr(𝑈𝑡 (𝑛)) ≥ 𝑒(log 𝐿 (𝑛))100 . So

Δ𝑡 (𝑛) ≤
(

log log 𝑛
(log 𝑛) ∧ (log 𝐿 (𝑛))100

)1/4
≤ 1

log log 𝑛
.

Next suppose that 𝐿 (𝑛) ∈ L. Define 𝑏 := 1
5

(
𝑅 ◦ 𝐿 (𝑛) ∧ Gr−1 (

𝑅−1(𝑛)
) )

. By [EH23b, Lemma 2.3]
(i.e. [CMT22, Lemma 6.2]), using the fact that 5𝑏 ≤ 1

2𝑛
1/3,

P𝜙(𝑡)
(
Piv

[
4𝑏, 𝑛1/3] ) ≤ P𝜙(𝑡)

(
Piv

[
1,

1
2
𝑛1/3

] )
· |𝑆4𝑏 |2 Gr(5𝑏)

min𝑥,𝑦∈𝑆4𝑏 P𝜙(𝑡) (𝑥
𝐵5𝑏←−→ 𝑦)

.

By [EH23b, Lem 2.1] (i.e. essentially [CMT22, Proposition 4.1]), there is a constant 𝐶 (𝑑) < ∞
such that

P𝜙(𝑡)

(
Piv

[
1,

1
2
𝑛1/3

] )
≤ 𝐶

©­­«
log Gr

(
1
2𝑛

1/3
)

1
2𝑛

1/3

ª®®¬
1/3

.

By hypothesis, 𝑛 ∈ L. So we can upper bound log Gr( 12𝑛
1/3) ≤ log Gr(𝑛) ≤ (log 𝑛)100. Since 𝐿 (𝑛)

is green at time 𝑡 but 𝐿 (𝑛) ∈ L, then 𝜅𝜙(𝑡) (𝑅2◦𝐿 (𝑛), 𝐿(𝑛)) ≥ 𝛿(𝑅◦𝐿 (𝑛)). Note that 8𝑏 ≤ 𝑅2◦𝐿 (𝑛)
and (using that 𝐿 (𝑛) ∈ L), 𝐿 (𝑛) ≤ 𝑏. Therefore, min𝑥,𝑦∈𝑆4𝑏 P𝜙(𝑡) (𝑥

𝐵5𝑏←−→ 𝑦) ≥ 𝛿(𝑅◦𝐿 (𝑛)), since we
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can connect any 𝑥, 𝑦 ∈ 𝑆4𝑏 by a path contained in 𝐵4𝑏 of length at most 8𝑏, and the 𝑏-thickened tube
around this path is entirely contained in 𝐵5𝑏. Finally, we can upper bound |𝑆4𝑏 | ≤ Gr(5𝑏) ≤ 𝑅−1(𝑛)
by definition of 𝑏. Therefore,

P𝜙(𝑡)
(
Piv

[
4𝑏, 𝑛1/3] ) ≤ 𝐶 (

(log 𝑛)100

1
2𝑛

1/3

)1/3 (
𝑅−1(𝑛)

)3

𝛿(𝑅 ◦ 𝐿 (𝑛)) ≤
1

log 𝑛
.

Notice that by our choice of 𝑏, we have 𝑏 ≤ 1
8𝑛

1/3 and

Gr(𝑏) ≥ Gr
(
1
5
𝑅 ◦ 𝐿 (𝑛)

)
∧ Gr

(
1
5

Gr−1
(
𝑅−1(𝑛)

))
≥

(
1
5
𝑅 ◦ 𝐿 (𝑛)

)
∧

(
𝑅−1(𝑛)

)1/5
=

1
5
𝑅 ◦ 𝐿 (𝑛).

So

Δ𝑡 (𝑛) ≤
©­­«

log log 𝑛

(log 𝑛) ∧
(
log

[ 1
5𝑅 ◦ 𝐿 (𝑛)

] ) ª®®¬
1/4

≤ 1
log log 𝑛

.

□

Lemma (Lemma 8.3.11). Let 𝐺 be a unimodular transitive graph of degree 𝑑. Suppose that

Gr(𝑚) ≤ 𝑒(log𝑚)𝐷 and Gr(3𝑚) ≥ 35 Gr(𝑚)

for every 𝑚 ∈ [𝑛1−𝜀, 𝑛1+𝜀], where 𝜀, 𝐷, 𝑛 > 0. Then there is a constant 𝑐(𝑑, 𝐷, 𝜀) > 0 with the
following property. For every 𝜆 ≥ 1, there exists 𝑛0(𝑑, 𝐷, 𝜀, 𝜆) < ∞ such that if 𝑛 ≥ 𝑛0 then 𝐺 has
(𝑐, 𝜆)-polylog plentiful tubes at scale 𝑛.

[EH23b, Lemma 5.4] is the same statement but with the additional hypothesis that 𝐺 is infinite.
We claim that this additional hypothesis is unnecessary.

Proof. [EH23b, Lemma 5.4] is the ultimate conclusion of [EH23b, Section 5.2]. The first result
in [EH23b, Section 5.2] that requires 𝐺 to be infinite is [EH23b, Lemma 5.16]. By inspecting
the proof of [EH23b, Lemma 5.16], we see that this hypothesis is only used in order to apply the
elementary bound Gr(3𝑚𝑛) ≥ 𝑛Gr(𝑚) for all 𝑚, 𝑛 ≥ 1. In fact, in the language of that proof, since
we may assume that the constant 𝑐 > 0 satisfies 𝑐 ≤ 1/10, say, then the proof only invokes this
elementary bound for𝑚, 𝑛 satisfying 3𝑚𝑛 ≤ 1

10 𝑡
1/2. Now this holds whenever diam𝐺 ≥ 1

10 𝑡
1/2. So

[EH23b, Lemma 5.16] holds with the hypothesis “𝐺 is infinite” replaced by the weaker hypothesis
“diam𝐺 ≥ 1

10 𝑡
1/2”. When [EH23b, Lemma 5.16] is applied to establish [EH23b, Lemma 5.17],

the hypothesis “diam𝐺 ≥ 1
10 𝑡

1/2” is already implied by the other hypothesis of [EH23b, Lemma
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5.17] that Gr(3𝑚) ≥ 3𝜅 Gr(𝑚) for all 𝑛 ≤ 𝑚 ≤ 1
2 𝑡

1/2 (and the fact that conclusion of [EH23b,
Lemma 5.17] is trivial if there is no integer in [𝑛, 1

2 𝑡
1/2]). So in the statement of [EH23b, Lemma

5.17], we can simply drop the hypothesis that 𝐺 is infinite.

We can also drop the hypothesis that 𝐺 is infinite in [EH23b, Lemmas 5.18 and 5.20] because
[EH23b, Lemma 5.18] is deduced from [EH23b, Lemma 5.17], and [EH23b, Lemma 5.20] is
deduced from [EH23b, Lemma 5.18]. [EH23b, Lemma 5.19] already does not require 𝐺 to be
infinite. The ultimate proof of [EH23b, Lemma 5.4] only required𝐺 to be infinite in order to invoke
[EH23b, Lemma 5.20] and (in the radial case) to know that 𝑆𝑛 ≠ ∅. The hypothesis that 𝑆𝑛 ≠ ∅
is anyway implied by the fact that Gr(3𝑚) ≥ Gr(𝑚) for some 𝑚 ∈ [𝑛, 𝑛1+𝜀], and as we explained,
we can drop the hypothesis that 𝐺 is infinite in [EH23b, Lemma 5.20]. Therefore we can drop the
hypothesis that 𝐺 is infinite in the statement of [EH23b, Lemma 5.4] too. □

The next claim we will justify is that Lemma 8.3.16 implies Lemma 8.3.13. Here are the statements
of these results.

Lemma (Lemma 8.3.16). Let 𝑟, 𝑛 ≥ 1. Let 𝐺 be a finite transitive graph such that 𝑆∞𝑛 is not
𝑟-connected. Let 𝐻 be a (finite or infinite) transitive graph with 𝛿(𝐻) ≤ 𝑟 that does not have
infinitely many ends. If 𝐵𝐻50𝑛 � 𝐵

𝐺
50𝑛, then

distGH

( 𝜋

diam𝐺
𝐺, 𝑆1

)
≤ 200𝑛

diam𝐺
.

Lemma (Lemma 8.3.13). Let 𝐺 be an finite transitive graph of degree 𝑑. Suppose that Gr(3𝑛) ≤
3𝜅 Gr(𝑛), where 𝑛, 𝜅 > 0. There exists 𝐶 (𝑑, 𝜅) < ∞ such that the following holds if 𝑛 ≥ 𝐶:

There is a set 𝐴 ⊆ [1,∞)with |𝐴| ≤ 𝐶 such that for every 𝑘 ≥ 1 and every𝑚 ∈ [𝐶𝑘𝑛,∞)\⋃𝑎∈𝐴 [𝑎, 2𝑘𝑎],
if 𝐺 does not have (𝐶−1𝑘, 𝐶−1𝑘−1𝑚,𝐶𝑘𝐶𝑚)-plentiful tubes at scale 𝑚, then

distGH

( 𝜋

diam𝐺
𝐺, 𝑆1

)
≤ 𝐶𝑚

diam𝐺
.

The proof that Lemma 8.3.16 implies Lemma 8.3.13 is essentially the same as the proof of [EH23b,
Proposition 5.3] (i.e. Lemma 8.3.12), except that 𝐺 is now assumed to be a finite transitive graph
rather than a non-one-dimensional infinite transitive graph. For this reason, the following proof
is terse. The argument relies on the structure theory of transitive graphs of polynomial growth.
See the proof of [EH23b, Proposition 5.3] for more details and [EH23b, Section 5.1] for more
background.

380



Proof of Lemma 8.3.13 given Lemma 8.3.16. Fix 𝜅 > 0. Suppose that Gr(3𝑛) ≤ 3𝜅 Gr(𝑛) for
some 𝑛 ≥ 1. We will implicitly assume that 𝑛 is large with respect to 𝑑 and 𝜅. Let 𝐻 ≤ Aut(𝐺),
𝑆 ⊆ Γ := Aut(𝐺)/𝐻, and 𝐶1(𝐾) < ∞ be as given by [EH23b, Theorem 5.5] (which is taken from
[TT21a]) with 𝐾 := 3𝜅. Let 𝐺′ := Cay(Γ, 𝑆). For each 𝑘 ∈ N, let 𝑅𝑘 be the set of all relations in Γ

having word length at most 𝑘 , let ⟨⟨𝑅𝑘⟩⟩ be the normal subgroup of the free group on 𝑆 generated
by 𝑅𝑘 , and let 𝐺′

𝑘
:= Cay(⟨𝑆 | 𝑅𝑘⟩, 𝑆). By items 7 and 8 of [EH23b, Theorem 5.5],

Gr′(3𝑛)
Gr′(𝑛) ≤ 𝐶

2
1 (3 + 𝐶1)𝐶1 .

In particular, by [EH23b, Theorem 5.5] again (and using that 𝑛 is large), every transitive graph
whose 3𝑛-ball is isomorphic to the 3𝑛-ball in 𝐺′ is necessarily finite or infinite with polynomial
growth. In particular, such graphs have at most finitely many ends. Now by [EH23d, Theorem 1.1],
there exists 𝐶2(𝜅, 𝑑) < ∞ such that��{𝑖 ∈ N : 𝑖 ≥ log2 𝑛 and ⟨⟨𝑅2𝑖+1⟩⟩ ≠ ⟨⟨𝑅2𝑖⟩⟩

}�� ≤ 𝐶2.

Let 𝐴 :=
{
2𝑖 : 𝑖 ∈ N and 𝑖 ≥ log2 𝑛 and ⟨⟨𝑅2𝑖+10⟩⟩ ≠ ⟨⟨𝑅2𝑖⟩⟩

}
, and note that |𝐴| ≤ 10𝐶2. Let 𝑘 ≥ 1

and 𝑚 ∈ [2𝑘𝑛,∞)\⋃𝑎∈𝐴 [𝑎, 2𝑘𝑎] be arbitrary. By construction of 𝐴 (and [EH23b, Lemma 5.6]),
the balls of radius (say) 50𝑛 in 𝐺′𝑚

𝑘

and 𝐺′ are isomorphic. Note that 𝛿
(
𝐺′𝑚

𝑘

)
≤ 𝑚

𝑘
, and since the

3𝑛-ball in 𝐺′𝑚
𝑘

is isomorphic to the 3𝑛-ball in 𝐺′, the graph 𝐺′𝑚
𝑘

has at most finitely many ends.
Consider an arbitrary pair 𝑚1, 𝑚2 ∈ N satisfying 𝑚

𝑘
≤ 𝑚1 ≤ 𝑚2 ≤ 3𝑚. By Lemma 8.3.16 applied

with the pair “(𝐺, 𝐻)” equal to (𝐺′, 𝐺′𝑚
𝑘

), either (1) the exposed sphere 𝑆∞𝑚2
(𝐺′) is ⌈𝑚

𝑘
⌉-connected,

or (2)
distGH

( 𝜋

diam𝐺′
𝐺′, 𝑆1

)
≤ 200𝑚2

diam𝐺′
. (8.6.4)

In case (1), we deduce by the proof of [CMT22, Lemma 2.7] (which was behind [EH23b,
Lemma 5.8]) that for all 𝑢, 𝑣 ∈ 𝑆∞𝑚2

(𝐺′) there exists a path from 𝑢 to 𝑣 in 𝐺′ that is contained
in

⋃
𝑥∈𝑆∞𝑚2 (𝐺

′) 𝐵2𝑚1 (𝑥) and has length at most 3𝑚1 Gr(3𝑚2)/Gr(𝑚1). Now consider case (2). The
existence of a (1, 𝐶1𝑛)-quasi-isometry from 𝐺 to 𝐺′ implies that |diam𝐺 − diam𝐺′| ≤ 3𝐶1𝑛 and
distGH(𝐺,𝐺′) ≤ 𝐶1𝑛. (For the latter, see exercise 5.10 (b) in [Pet23], for example.) We may
assume without loss of generality that diam𝐺 ≥ 100𝐶1𝑛, say, otherwise our claim is trivial. By
combining these simple bounds with eq. (8.6.4), we deduce that distGH( 𝜋

diam𝐺
𝐺, 𝑆1) ≤ 𝐶3𝑚

diam𝐺
for

some constant 𝐶3(𝜅, 𝑑) < ∞.

We now run the rest of the proof of [EH23b, Proposition 5.3], after the application of [EH23b,
Lemma 5.8], as it is written. This establishes that there is a constant 𝐶4(𝜅, 𝑑) < ∞ such that
for all 𝑘 ≥ 1 and 𝑚 ∈ [𝐶4𝑘𝑛,∞)\

⋃
𝑎∈𝐴 [𝑎, 2𝑘𝑎], either (A) there exists 𝑚2 ∈

[ 10
9 𝑚,

12
9 𝑚

]
such
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that 𝑆∞𝑚2
(𝐺′) is not ⌈𝑚

𝑘
⌉-connected, or (B) 𝐺 has (𝐶−1

4 𝑘, 𝐶−1
4 𝑘−1, 𝐶4𝑘

𝐶4𝑚)-plentiful tubes at scale
𝑚. (Technically, as written, the radial case of the proof of [EH23b, Proposition 5.3] invokes the
existence of a bi-infinite geodesic in 𝐺. All that is really required is a geodesic of length ≥ 24𝑚.
So it suffices to know that diam𝐺 ≥ 24𝑚, say, which we may anyway assume without loss of
generality otherwise the conclusion holds trivially.) By above, if case (A) holds, then case (2)
holds, and hence distGH( 𝜋

diam𝐺
𝐺, 𝑆1) ≤ 𝐶3𝑚

diam𝐺
. Therefore the set of scales 𝐴 is as required. □

The next claim we will justify is that Timar’s proof [Tim07] of Benjamini-Babson [BB99b] yields
the following statement, which is phrased slightly differently to usual, in terms of sets of vertices,
vertex cutsets, and (extrinsic) diameter rather than length of generating cycles.

Lemma (Lemma 8.3.17). Let 𝐺 be a graph. Let 𝐴 and 𝐵 be sets of vertices. Let Π be a minimal
(𝐴, 𝐵)-cutset that does not disconnect 𝐴 or 𝐵. Then Π is 𝛿(𝐺)-connected.

Proof. Suppose that Π = Π1 ⊔ Π2 is a non-trivial partition of Π. By minimality of Π, there exist
paths 𝛾1 avoiding Π2 and 𝛾2 avoiding Π1 that both start in 𝐴 and end in 𝐵. Let 𝛾𝐴 be a path from
the startpoint of 𝛾1 to the startpoint of 𝛾2 that avoids Π, and let 𝛾𝐵 be a path from the endpoint of
𝛾1 to the endpoint of 𝛾2 that avoids Π. Let {𝐶𝑖 : 𝑖 ∈ 𝐼} be a set of cycles of diameter ≤ 𝛿(𝐺) such
that 𝛾1 + 𝛾2 + 𝛾𝐴 + 𝛾𝐵 =

∑
𝑖∈𝐼 𝐶𝑖. Let 𝐽 be the set of all indices 𝑖 ∈ 𝐼 such that 𝐶𝑖 visits Π1, and

define
𝜁 := 𝛾1 +

∑︁
𝑖∈𝐽

𝐶𝑖 = 𝛾2 + 𝛾𝐴 + 𝛾𝐵 +
∑︁
𝑖∈𝐼\𝐽

𝐶𝑖 .

From either expression for 𝜁 , we see that 𝜁 has exactly two odd-degree vertices, one in 𝐴 and the
other in 𝐵. So 𝜁 contains a path from 𝐴 to 𝐵, and hence contains an edge incident to Π. From the
second expression for 𝜁 , we see that 𝜁 does not contain an edge incident to Π1. So 𝜁 must contain
an edge incident to Π2. By construction, 𝛾1 avoids Π2. So by the first expression for 𝜁 , there must
exist a cycle 𝐶𝑖 with 𝑖 ∈ 𝐽 that visit Π2. Since this 𝐶𝑖 also visits Π1 (by definition of 𝐽) and has
diameter at most 𝛿(𝐺), it follows that dist(Π1,Π2) ≤ 𝛿(𝐺). □
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