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ABSTRACT

Small-scale turbulence is a hallmark of countless natural and engineered flows.
Its features are often described and modeled using the velocity gradient tensor
(VGT), which is conventionally decomposed into the (symmetric) strain-rate
tensor and the (antisymmetric) vorticity tensor. Although this symmetry-
based decomposition has found use in areas such as vortex identification and
closure modeling, it provides limited insight into local flow structure. A more
refined description can be obtained by further distinguishing the normal and
non-normal parts of the VGT. The resulting normality-based decomposition
identifies contributions associated with normal straining (symmetric/normal),
rigid rotation (antisymmetric/normal), and pure shearing (non-normal). We
use this decomposition to identify flow features that are obscured by symmetry-
based analyses yet have significant implications for efforts to understand and
model turbulent flows.

We first demonstrate that partitioning the strength of velocity gradients using
our normality-based approach can distinguish between different regimes in
various turbulent flows. In wall-bounded flows, the near-wall partitioning is
dominated by shearing whereas the partitioning far from the wall collapses
onto the partitioning associated with isotropic turbulence. In an unbounded
vortex ring collision, our analysis distinguishes the initial vortex rings, which
have a strong imprint from rigid rotation, from the decaying turbulent cloud
produced by their collision, for which the partitioning is similar to that of
isotropic turbulence. It also identifies enhanced shear–rotation correlations
as a distinctive fingerprint of the elliptic instability during transition, which
can be interpreted using relevant geometric features of local streamlines. By
deriving algebraic expressions for the partitioning constituents in terms of
the invariants of the VGT and an additional parameter, which represents the
alignment of shear vorticity with the local rotation axis, we identify a key facet
of our analysis that goes beyond previous analyses of the VGT.

We then apply our normality-based framework to filtered velocity gradients in
direct and large-eddy simulations of isotropic turbulence. Our analysis enables
shear layers, which are associated with shear vorticity, to be distinguished from
vortex cores, which are associated with rigid rotation, in a multiscale setting.
It reveals that filtering mitigates the relative contribution of shear layers in
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the subinertial range of the energy cascade. Moreover, it identifies crucial (yet
perhaps overlooked) contributions from shear layers to fundamental energy
transfer mechanisms, including strain self-amplification, vortex stretching, and
backscatter associated with strain–vorticity covariance. The dominant role
of shear layers in the backscatter mechanism suggests that they contribute
significantly to the bottleneck effect in the subinertial range of the cascade.
Our analysis of large-eddy simulation data shows that they also amplify the
artificial bottleneck effect produced by an eddy viscosity model in the inertial
range. This reflects that the eddy viscosity model mimics an unfiltered direct
numerical simulation at a lower Reynolds number. A mixed model can be used
to mitigate the artificial bottleneck effect since it more accurately mimics a
filtered direct numerical simulation.
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γ/Ā2
γ,w. The

white, gray, and black contours represent ∆iso = 1%, ∆iso =
2%, and ∆iso = 5%, respectively, for the total partitioning (a,c)
and ∆′

iso = 1%, ∆′
iso = 2%, and ∆′

iso = 5%, respectively, for
the fluctuation partitioning (b,d). The dashed and dash-dotted
black lines represent the top of the viscous sublayer (y+ = 5)
and the top of the buffer layer (y+ = 30), respectively, and the
dotted black lines represent y+ = 100 and y+ = 150. The black
circles represent the locations of the partitioning values reported
in Table 3.2 and δ represents the boundary-layer thickness. . . 75

3.3 Symmetry-based total (a) and fluctuation (b) partitioning pro-
files for the channels and boundary layers in terms of wall-normal
location in inner units. The plots are in the same style as those
in Figure 3.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.1 (a) Symmetry-based scale-local and scale-nonlocal contributions
to interscale energy transfer in forced isotropic turbulence. The
symbols represent DNS datasets at Taylor-scale Reynolds num-
bers of Reλ ≈ 315 (DNS315) and Reλ ≈ 400 (DNS400) and
the curves represent the Reλ ≈ 400 results of Johnson [1, 2].
The shaded region captures the bottom of the inertial range for
DNS400. (b) Energy spectra for the unfiltered and filtered veloc-
ity fields in DNS400 as well as LES cases that employ eddy vis-
cosity (Vis400) and mixed (Mix400) models at Reλ ≈ 400. The
filtered DNS and LES cases employ a filter width of 2ℓ/η = 48.
The dotted line represents the inertial range scaling, E(k) =
1.6 ⟨Φ⟩2/3 k−5/3, and the inset depicts a linear–log plot of the
compensated energy spectra. Technical details of the simula-
tions are described in §4.3. . . . . . . . . . . . . . . . . . . . . 89

4.2 Partitioning of filtered velocity gradients for the DNS cases,
where shearing is represented using S2

ℓ,γ = Ω2
ℓ,γ = 1

2A2
ℓ,γ. The

horizontal dashed lines represent the unfiltered partitioning in
the high-Reλ limit, the vertical dotted line represents the typical
thickness of small-scale shear layers, δγ = 9η, and the shaded re-
gion approximates the inertial range for DNS400 as 50 ≤ 2ℓ/η ≤
150. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98



xv

4.3 (a) Partitioning of filtered velocity gradients for the LES cases.
The solid curves represent the filtered DNS400 partitioning and
the horizontal dashed lines represent the unfiltered partitioning
in the high-Reλ limit. The lower limit of the filter width axis rep-
resents the LES filter width, 2ℓLES/η = 48, and the shaded re-
gion approximates the inertial range. (b) Partitioning for Vis400
replotted as a function of 2ℓ∗/η∗, where ℓ∗ =

√
ℓ2 − ℓ2

LES is the
complementary filter width and η∗ ≈ 15η is an effective Kol-
mogorov scale. The solid curves represent the partitioning pro-
duced by a DNS at Reλ ≈ 61, which has a Kolmogorov scale of
approximately η∗. The vertical dotted line represents the typical
thickness of small-scale shear layers, δγ = 9η. . . . . . . . . . . 100

4.4 Vortical flow structures associated with rigid rotation and shear
vorticity for an unfiltered (ℓ = 0) DNS at Reλ ≈ 61 (a,b),
DNS400 filtered at 2ℓ/η = 48 (c,d), and Vis400 (e,f ) and Mix400
(g,h) at the LES filter width, 2ℓLES/η = 48. The grayscale
visualizations depict the strengths of rigid rotation, ω2

ℓ,φ, and
shear vorticity, ω2

ℓ,γ, normalized by the spatially averaged vortic-
ity strength,

〈
ω2

ℓ

〉
, and the isosurfaces represent ω2

ℓ,φ

/〈
ω2

ℓ

〉
= 2

(red) and ω2
ℓ,γ

/〈
ω2

ℓ

〉
= 2 (blue). . . . . . . . . . . . . . . . . . . 102

4.5 Normality-based contributions to interscale energy transfer for
the DNS cases. The contributions represent multiscale strain
self-amplification (a), vortex stretching (b), strain–vorticity co-
variance (c), and aggregates across these three mechanisms (d).
The vertical dotted lines represent the typical thickness of small-
scale shear layers, δγ = 9η, and the shaded regions capture the
bottom of the inertial range for DNS400. . . . . . . . . . . . . 105

4.6 Normality-based contributions (as defined in §4.2) to the cascade
rates associated with scale-local strain self-amplification (a) and
vortex stretching (b) and scale-nonlocal strain self-amplification
(c) and vortex stretching (d). The vertical dotted lines represent
the typical thickness of small-scale shear layers, δγ = 9η, and
the shaded regions capture the bottom of the inertial range for
DNS400. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108



xvi

4.7 (a,c) Resolved symmetry-based scale-local and scale-nonlocal cas-
cade rates for Mix400 (a) and Vis400 (c) overlaid on curves that
represent the DNS results of Johnson [1, 2] in the same style as
Figure 4.1(a). (b,d) Normality-based contributions to Π̃ ℓ,c for
Mix400 (b) and Vis400 (d). Panels (e) and (f ) replot the Vis400
results from panels (c) and (d), respectively, normalized by

〈
Π̃ ℓ
〉

and as a function of 2ℓ∗/η∗, where η∗ ≈ 15η. The curves (e,f )
represent a DNS at Reλ ≈ 61, which has a Kolmogorov scale of
approximately η∗. The shaded regions approximate the inertial
range and the vertical dotted lines represent δγ = 9η. . . . . . . 112

4.8 Resolved normality-based cascade rates for Vis400, plotted in
the same style as Figure 4.7(e,f ). . . . . . . . . . . . . . . . . . 113

4.9 (a) Velocity gradient partitioning for Burgers vortex layers at
ReU = 102 (solid), ReU = 104 (dashed), and ReU = 106 (dotted).
(b) Velocity gradient partitioning for the Burgers vortex tube in
the limit of ReΓ → ∞. (c) Normality-based contributions to
strain self-amplification (SS) and vortex stretching (VS) for the
Burgers vortex tube from (b). The vertical dotted lines (b,c)
represent the vortex boundary as identified by Q = 0 and ∆ =
0, where Q is the second invariant of the VGT and ∆ is the
discriminant of the VGT. . . . . . . . . . . . . . . . . . . . . . 118

4.10 (a) Partitioning of filtered velocity gradients for DNS cases at
various Reynolds numbers. The symbols represent averages over
all snapshots and the shading represents ranges for single-snapshot
averages. In all panels, the solid curves represent the averaged
partitioning at Reλ ≈ 400, the horizontal dashed lines represent
the unfiltered partitioning in the high-Reλ limit, and the vertical
dotted lines represent the typical thickness of small-scale shear
layers, δγ = 9η. . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.1 Visualization of the vorticity strength, ω2, in a slice of isotropic
turbulence at a Taylor-scale Reynolds number of Reλ ≈ 400
overlaid with contours of the contributions from rigid rotation
(red) and shear vorticity (blue) at a threshold of 0.15 ⟨ω2⟩, where
⟨·⟩ denotes averaging over the slice. . . . . . . . . . . . . . . . . 133



xvii

LIST OF TABLES

Number Page
2.1 Reference times used to analyze the initial (red), transitional

(green), and turbulent (blue) regimes of the present vortex ring
collision, where t∗ = 14.77 is the time of maximum dissipation.
Here, R̄p represents the mean vortex ring radius (see Appendix
2.A2), V is the volume of the computational domain, and ϕk is
the fraction of V occupied by level k of the AMR grid, which
has grid spacing ∆xk = ∆xbase/2k with ∆xbase = 0.04. . . . . . 29

2.2 Comparison of the equilibrium partitioning of the velocity gra-
dients for the present vortex ring collision with the partitioning
computed for forced isotropic turbulence [3]. Here, the equilib-
rium partitioning is computed as the mean over the turbulent
decay regime (t ≳ t∗) and it is insensitive to the length of the
averaging interval. . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.1 Turbulence datasets considered in the present analyses. Taylor-
scale and friction Reynolds numbers are denoted by Reλ and
Reτ , respectively, and Nt denotes the number of snapshots. The
grid sizes correspond to the streamwise (x), wall-normal (y), and
spanwise (z) directions, respectively. . . . . . . . . . . . . . . . 70

3.2 Velocity gradient partitioning for each flow and the correspond-
ing deviation metrics. The partitioning is reported at the channel
centerline for Ch0186 and Ch1000 and at (Reτ , y+) ≈ (729, 159)
and (1000, 155) for BL0729 and BL1024, respectively. The col-
umn shadings reflect our partitioning color scheme. . . . . . . . 71

4.1 Primary simulations considered in the present study. The DNS
cases employ N3

x = 10243 collocation points and are dealiased
using the 2

√
2/3 truncation rule with phase-shifting [4] such that

kmax = Nx

√
2/3. The LES cases employ N3

x = 1283 collocation
points and filter widths of 2ℓLES/η = 48. They are dealiased
using the 2/3 truncation rule such that kmax = Nx/3. Additional
cases, including random velocity gradients, DNS cases at lower
Reynolds numbers, and LES cases with different filter widths are
described and analyzed in Appendix 4.A2. . . . . . . . . . . . . 95



xviii

4.2 Comparison of the normality-based contributions to strain self-
amplification (SS) and vortex stretching (VS) for the unfiltered
DNS cases. The contributions to SS and VS are normalized by〈
−SijSikSjk

〉
and

〈
−SijΩikΩjk

〉
. respectively, such that they

sum to unity for each mechanism. . . . . . . . . . . . . . . . . 109
4.3 Partitioning statistics produced by random velocity gradients

and various DNS and LES cases. Each LES case represents a
separate simulation where ℓ = ℓLES represents the LES filter
width. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121



1

C h a p t e r 1

INTRODUCTION

“Finally, there is a physical problem that is common to many fields, that is
very old, and that has not been solved. It is not the problem of finding new
fundamental particles, but something left over from a long time ago—over a
hundred years. Nobody in physics has really been able to analyze it mathemat-
ically satisfactorily in spite of its importance to the sister sciences. It is the
analysis of circulating or turbulent fluids.”

—Richard P. Feynman [1]

1.1 A foreword on the many faces of turbulence
The significance of turbulence—which captures the multiscale structures and
chaotic dynamics of fluid motions at high Reynolds numbers—is in the eye
of the beholder. For mathematicians, it embodies challenges associated with
nonlinear partial differential equations [2]. For solar physicists, it is crucial
for generating and heating the solar wind [3]. For environmental scientists,
it transports and mixes tracers and limits weather prediction capabilities [4].
For engineers, it can generate undesirable noise in jets [5] as well as costly
drag along ships, airplanes, and pipelines [6]. For cardiologists, it may be a
sign of cardiovascular disease [7]. For Vincent van Gogh, it inspired subtle yet
strikingly accurate details in his famed painting, The Starry Night [8]. For me,
turbulence makes tangible the inescapable yet beautiful complexity of reality.

1.2 The role of velocity gradients in turbulent flows
The broad spectrum of turbulent flows is unified by the presence and, to a large
extent, the behavior of small-scale turbulence. As a result, the statistical and
structural features of small-scale turbulence have guided efforts to simplify the
complexity of turbulent flows for many decades [9–13]. The velocity gradient
tensor (VGT), Aij = ∂ui/∂xj, is essential to the description of these features.
We refer to the reviews of Wallace [14], Meneveau [15], and Johnson and
Wilczek [16] for background on the rich history of research on velocity gradients
in turbulent flows. In this section, we develop and discuss a selection of well-
established results that are foundational to the contributions of this thesis.
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The VGT contributes to the first-order Taylor expansion of the local velocity
field about a point x0, which can be expressed as

ui(x, t) = ui (x0, t) + (xj − x0,j) Aij (x0, t) + H.O.T. (1.1)

In a materially advecting reference frame, the zeroth-order term vanishes and
the VGT completely describes the structure of local streamlines captured by
this linear approximation. The invariants of the VGT (P , Q, and R) capture
the topological characteristics of these streamlines [17–19] which, for incom-
pressible flows (P = −Aii = 0), are fully classified by the second and third
invariants,

Q = −1
2AijAji, R = −1

3AijAjkAki. (1.2)

These invariants underlie the commonly used Q [20] and ∆ [19] criteria for
vortex identification, where ∆ = Q3 + 27

4 R2 represents the discriminant of the
VGT. They can also be expressed as

Q = 1
2 (ΩijΩij − SijSij) , R = −1

3SijSikSjk + SijΩikΩjk. (1.3)

Here, Sij = 1
2 (Aij + Aji) is the (symmetric) strain-rate tensor and Ωij =

1
2 (Aij − Aji) is the (antisymmetric) vorticity tensor, which is related to the
vorticity vector through Ωij = −1

2εijkωk, where εijk represents the Levi-Civita
tensor. These definitions reveal that Q provides a comparison of the strengths
of rotational and straining motions and, as will be discussed subsequently, R

provides a comparison of source terms that contribute to strain and enstrophy
production. The omnipresence of the symmetry-based decomposition of the
VGT,

Aij = Sij + Ωij, (1.4)

will be a recurring theme of this section.

The VGT is also a crucial element of the dynamics of turbulent flows. In this
thesis, we primarily consider the dynamics associated with the incompressible
Navier–Stokes equations, which are given by

∂ui

∂t
+ uj

∂ui

∂xj

= −1
ρ

∂p

∂xi

+ ν
∂2ui

∂x2
j

+ fi,
∂ui

∂xi

= 0, (1.5)

where ρ, ν, and p denote the density, kinematic viscosity, and pressure, respec-
tively, and fi represents an arbitrary forcing. The VGT can immediately be
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seen to contribute to the advection term and the viscous diffusion term in the
momentum equation as well as to the continuity equation. Its contribution to
pressure is revealed through the pressure Poisson equation, which is given by

1
ρ

∂2p

∂x2
i

= 2Q, (1.6)

where we have assumed that fi is solenoidal. This equation reflects how
strongly rotational vortex cores, which are associated with large values of Q,
typically produce local pressure minima.

The VGT is also critical to the dynamics of kinetic energy, E = 1
2uiui, which

can be expressed as
∂E

∂t
+ ∂Ti

∂xi

= uifi − Φ, (1.7)

where ∂Ti

∂xi
represents spatial transport and Ti =

(
E + p

ρ

)
ui − 2νSijuj. Here,

uifi (typically) represents the rate of kinetic energy injection by the forcing
and Φ = 2νSijSij > 0 represents the rate of kinetic energy dissipation. This
equation shows that the strain-rate tensor is directly responsible for dissipa-
tion. However, dissipation is also implicitly tied to the vorticity tensor under
appropriate conditions. For example, in homogeneous turbulence, the average
dissipation rate can be recast in terms of enstrophy since ⟨Q⟩ = 0, where ⟨·⟩
denotes averaging [21].

The preceding discussion highlights that the strength of the strain-rate tensor,
S2 = SijSij, and the strength of the vorticity tensor, Ω2 = ΩijΩij, capture
salient structural and dynamical features of turbulent flows. The Lagrangian
dynamics of S2 and Ω2 can be used to glean further insight into the mechanisms
that drive turbulence at small scales. Neglecting the forcing term, fi, they can
be expressed as

DS2

Dt
= −2SijSikSjk + 2SijΩikΩjk − 2Sij

∂2 (p/ρ)
∂xi∂xj

+ ν
∂2S2

∂x2
k

− 2ν
∂Sij

∂xk

∂Sij

∂xk

, (1.8)

DΩ2

Dt
= − 4SijΩikΩjk + ν

∂2Ω2

∂x2
k

− 2ν
∂Ωij

∂xk

∂Ωij

∂xk

, (1.9)

where D
Dt

= ∂
∂t

+ uk
∂

∂xk
represents the material derivative. Summing these

two equations recovers the dynamics of the total velocity gradient strength,
A2 = S2 + Ω2. Strain self-amplification amplifies strain rates through the
−2SijSikSjk term and it is prototypically modeled in terms of strain sheets.
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Vortex stretching amplifies vorticity through the −4SijΩikΩjk term and di-
minishes strain rates through the +2SijΩikΩjk term, and it is prototypically
modeled using vortex tubes. On average, both of these mechanisms amplify
velocity gradients in three-dimensional turbulence and their contributions are
related to one another through the third invariant of the VGT, as expressed in
(1.3). For homogeneous turbulence, the constraint that ⟨R⟩ = 0 [21] implies
that the average contribution of strain self-amplification to the amplification
of velocity gradients is three times stronger than that of vortex stretching.
Moreover, despite the longstanding assumption that vortex stretching pre-
dominantly drives the energy cascade, recent evidence suggests that strain
self-amplification actually has a stronger overall contribution [22–24].

In this section, we have demonstrated that the symmetry-based decomposition
of the VGT permeates countless facets of turbulent flow physics. Therefore, its
ubiquitous role in modeling efforts—including in Reynolds-averaged [25], large-
eddy [13], and Lagrangian settings [15]—is perhaps unsurprising. However, as
discussed in §1.3, it has significant limitations that we aim to address in this
thesis.

1.3 Normality-based analysis of velocity gradients
The straining and rotational motions identified by the symmetry-based de-
composition of the VGT provide a useful classification of velocity gradients.
For example, when Q→ 1

2A2 > 0, the local flow can be approximated as rigid-
body rotation whereas, when Q → −1

2A2 < 0, it can be approximated as a
potential flow. Nevertheless, in this thesis, we advocate for the consideration
of the normality properties of the VGT alongside its symmetry properties.
For our purposes, a real-valued second-order tensor, Bij, is called normal if
BijBkj = BjiBjk. To motivate our normality-based analysis, we begin this
section by illustrating how, alone, the symmetry-based analysis can obscure
key features of velocity gradients and local flow structure.

Consider in isolation an arbitrary strain-rate tensor, Sij, which is strictly sym-
metric and therefore normal. It may be transformed to the strain-rate eigen-
frame, denoted by (·)■, as

S■
ij = V ■

ik SkmV ■
jm =


λ1 0 0
0 λ2 0
0 0 λ3

 , (1.10)
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where λ1 > λ2 > λ3 are the eigenvalues of Sij and incompressibility implies
that λ1 > 0 and λ3 = −λ1 − λ2 < 0. This eigenframe representation em-
phasizes that the strain-rate tensor can be associated with local stretching
and compression in orthogonal directions and has provided key insights into
alignment properties of turbulent flows [26–28].

Now, consider in isolation an arbitrary vorticity tensor, Ωij = −1
2εijkωk, which

is strictly antisymmetric and therefore normal. By transforming it into a
reference frame, denoted by (·)•, where the vorticity vector lies along the
z•-axis, it may be expressed as

Ω•ij = V •ik ΩkmV •jm =


0 −1

2ω3 0
1
2ω3 0 0
0 0 0

 . (1.11)

This representation emphasizes that, in an appropriate reference frame, the
vorticity tensor can be associated with rigid-body rotation in the form of a
local vortex tube.

These conceptual pictures for the strain-rate and vorticity tensors are useful
when considered in isolation; however, velocity gradients typically contain both
symmetric and antisymmetric parts. Whereas, in isolation, Sij and Ωij are
normal, summing their contributions can result in a VGT, Aij = Sij + Ωij,
that is non-normal. For example,

0 1 0
1 0 0
0 0 0


︸ ︷︷ ︸

Sij

+


0 1 0
−1 0 0
0 0 0


︸ ︷︷ ︸

Ωij

=


0 2 0
0 0 0
0 0 0


︸ ︷︷ ︸

Aij

(1.12)

demonstrates how summing a normal strain-rate tensor and a normal vorticity
tensor can produce a strictly non-normal tensor that represents a state of
pure shearing (for which Q = R = 0). Furthermore, the reference frames
associated with V ■

ij and V •ij do not generally align with each other, which can
obfuscate the interaction between Sij and Ωij and complicate the interpretation
of mechanisms like vortex stretching. Therefore, symmetry properties alone
cannot reliably distinguish contributions from normal straining, rigid rotation,
and a non-normal residual (associated with shearing) to the VGT in a single,
unified reference frame.
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To address this limitation, Kolář [29, 30] pioneered1 a ‘triple decomposition’
of the VGT that identifies contributions from normal straining, rigid rotation,
and pure shearing in a ‘basic’ reference frame. Their approach identifies the
basic reference frame by maximizing an interaction scalar over a finite number
of sample frames and, although it is typically robust, it can be computation-
ally expensive and yield non-unique solutions. Recently, a more pragmatic
approach based on the real Schur form of the VGT was developed [34–36].
This approach identifies a ‘principal’ reference frame in which the VGT is
quasi-triangular for locally rotational points (∆ > 0) and triangular for locally
non-rotational points (∆ ≤ 0). Some recent investigations [37–40] have also
considered the complex Schur form of the VGT, which is always triangular
but becomes complex-valued for locally rotational points. This thesis focuses
solely on the normality-based decomposition associated with the real Schur
form of the VGT.

In the principal frame, denoted by (·)∗, the VGT can be expressed as

A∗
ij = V L

ikAkmV L
jm =


ϵ̇∗

1 0 0
0 ϵ̇∗

2 0
0 0 ϵ̇∗

3


︸ ︷︷ ︸

Sϵ∗
ij

+


0 0 0
γ̇∗

3 0 0
γ̇∗

2 γ̇∗
1 0


︸ ︷︷ ︸

Aγ∗
ij

+


0 −φ̇∗

3 0
φ̇∗

3 0 0
0 0 0


︸ ︷︷ ︸

Ωφ∗
ij

, (1.13)

where Sϵ∗
ij , Aγ∗

ij , and Ωφ∗
ij denote the normal straining, pure shearing, and

rigid rotation tensors, respectively. These tensors can be expressed in the
original coordinate system (as Sϵ

ij, Aγ
ij, and Ωφ

ij) using the unitary coordinate
transformation, V L

ij . The elements of the normal straining tensor represent the
real parts of the eigenvalues of the VGT which, for locally rotational points,
are ordered such that ϵ∗

3 is the (sole) real eigenvalue of the VGT. This ordering
ensures that the vorticity vector associated with rigid rotation, ωφ

i = −εijkΩφ
jk,

which lies along the z∗-axis, aligns with the local rotation axis, which is given
by the real eigenvector of the VGT, vR

i . The strength of rigid rotation about
this axis is given by

φ̇∗
3 =

∣∣∣∣12ωiv
R
i

∣∣∣∣−
[(1

2ωiv
R
i

)2
− λ2

CI

]1/2

, (1.14)

where λCI represents the imaginary part of the complex conjugate eigenvalues
of the VGT.

1While additively decomposing the VGT into straining, rotational, and shearing motions
is a relatively recent development, the history of studying the properties of straining and
rotational motions is long and rich [31], including important contributions from Cauchy [32]
and Stokes [33] (among others) in the 1800s.



7

The lower quasi-triangular form expressed in (1.13) implies that φ̇∗
3 ≥ 0 rep-

resents counterclockwise rigid-body rotation about the z∗-axis [34–36, 41, 42].
An equivalent upper quasi-triangular form [43–45] can be expressed as

A∗
ij = V U

ik AkmV U
jm =


ϵ̇∗

1 0 0
0 ϵ̇∗

2 0
0 0 ϵ̇∗

3


︸ ︷︷ ︸

Sϵ∗
ij

+


0 γ̇∗

3 γ̇∗
2

0 0 γ̇∗
1

0 0 0


︸ ︷︷ ︸

Aγ∗
ij

+


0 0 0
0 0 φ̇∗

1

0 −φ̇∗
1 0


︸ ︷︷ ︸

Ωφ∗
ij

, (1.15)

where, for locally rotational points, ϵ∗
1 is the real eigenvalue of the VGT and

φ̇∗
1 ≥ 0 represents clockwise rigid-body rotation about the x∗-axis. Both (1.13)

and (1.15) produce identical contributions from Sϵ
ij, Aγ

ij, and Ωφ
ij in the original

coordinate system.

As originally formulated, the VGT in the principal frame was identified via a
series of rotations of the coordinate axes. However, Kronborg and Hoffman [43]
showed that its constituents can be identified and transformed to the original
coordinate system directly from the elements of the (ordered) real Schur form
of the VGT. This enables efficient computations since the real Schur form can
be computed using optimized numerical packages in common programming
languages. We have developed an instructional MATLAB implementation of this
approach, which is available in the Caltech Data Repository and briefly out-
lined in Algorithm 1.1. In practice, the unitary transformations produced by
algorithms that compute the real Schur form may have negative determinants
and, therefore, may not strictly reflect proper rotations of the coordinate axes.
However, Liu et al. [34] showed that this is inconsequential since the transfor-
mations can always be modified to ensure that they represent proper rotations.
The modification flips the signs of γ̇∗

1 and γ̇∗
2 in (1.13) and γ̇∗

2 and γ̇∗
3 in (1.15),

but it does not affect the representations of Sϵ
ij, Aγ

ij, and Ωφ
ij in the original

coordinate system.

In general, the coordinate axes of the principal frame do not align with those of
the strain-rate eigenframe or with the vorticity vector. Figure 1.1 demonstrates
this misalignment for a sample VGT given by

A∗
ij =


−1 0 0
0 −1 0
0 0 2


︸ ︷︷ ︸

Sϵ∗
ij

+


0 0 0
0 0 0
2 −2 0


︸ ︷︷ ︸

Aγ∗
ij

+


0 −1 0
1 0 0
0 0 0


︸ ︷︷ ︸

Ωφ∗
ij

, (1.16)

https://doi.org/10.22002/17h15-gr910
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Algorithm 1.1: Outline for computing the normality-based decomposition
of the VGT via its real Schur form, following the formulation of Kronborg
and Hoffman [43]. We compute the ordered real Schur form using the schur
and ordschur functions in MATLAB. The tensor Ã∗

ij is upper quasi-triangular
and, while Ã∗

ij and Ṽ ∗
ij need not strictly reflect the form expressed in (1.15),

the output tensors in the original coordinate system (Sϵ
ij, Aγ

ij, and Ωφ
ij) are

identical to those produced by (1.13) and (1.15).
Input: Aij

Output: Sϵ
ij, Aγ

ij, Ωφ
ij

1
[
Ṽ U

ij , Ã∗
ij

]
← orderedRealSchurForm (Aij) // s.t. Ã∗

11 is real eigenvalue

2 Sϵ
ij ← Ṽ U

ki

Ã∗
11 0 0
0 Ã∗

22 0
0 0 Ã∗

33

 Ṽ U
mj

3 φ̇∗
1 ← min

(
abs

(
Ã∗

23

)
, abs

(
Ã∗

32

))

4 Ωφ
ij ← Ṽ U

ki


0 0 0
0 0 sign

(
Ã∗

23

)
φ̇∗

1

0 sign
(
Ã∗

32

)
φ̇∗

1 0

 Ṽ U
mj

5 Aγ
ij ← Aij − Sϵ

ij − Ωφ
ij

6 return Sϵ
ij, Aγ

ij, Ωφ
ij

Figure 1.1: Misalignment of the coordinate axes of the principal frame (blue),
the coordinate axes of the strain-rate eigenframe (black), and the unit vorticity
vector (red) for the VGT in (1.16).
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which is of the form in (1.13). If the contribution from Aγ∗
ij were removed, this

VGT would consist of only normal straining and rigid rotation. As a result, the
principal frame would align with the strain-rate eigenframe and the vorticity
vector would align with the z∗-axis. In fact, these alignment properties hold
for any VGT that does not include a contribution from Aγ∗

ij . Therefore, the
non-normal contribution of shearing is responsible for (i) the misalignment of
the principal frame and the strain-rate eigenframe and (ii) the misalignment
of the vorticity vector with the local rotation axis.

The normality-based decomposition of the VGT addresses the limitations of
the symmetry-based decomposition discussed at the beginning of this section
in a principled yet pragmatic manner. Using the form of the VGT in the
principal frame, it identifies contributions from normal straining, which is
symmetric and normal, rigid rotation, which is antisymmetric and normal,
and pure shearing, which is strictly non-normal. It represents a refinement of
the symmetry-based decomposition since Sij = Sϵ

ij + Sγ
ij and Ωij = Ωφ

ij + Ωγ
ij,

where Sγ
ij = 1

2

(
Aγ

ij + Aγ
ij

)
represents the (symmetric) shear straining tensor

and Ωγ
ij = 1

2

(
Aγ

ij − Aγ
ij

)
represents the (antisymmetric) shear vorticity tensor.

As depicted in Figure 1.2, Sϵ
ij, Ωφ

ij, and Aγ
ij can conceptually be associated

with local stretching/compression, local vortex tubes, and local shear layers,
respectively2. Distinguishing these local features resolves the ambiguity in the
interaction of Sij and Ωij and, thereby, enhances the structural expressivity
of the symmetry-based decomposition. In fact, the form of the VGT in the
principal frame reveals that the sum Sϵ

ij + Ωφ
ij is normal and, therefore, does

not produce a non-normal residual associated with shearing. Moreover, the
vorticity fields associated with rigid rotation and shearing have been shown
to organize into tube-like and sheet-like vortical flow structures, respectively
[34, 35, 46–50]. This highlights how the normality-based decomposition of the
VGT can glean insight into the surrounding turbulence structure in a manner
that the symmetry-based decomposition cannot.

1.4 Overview of thesis
A central aim of this thesis is to comprehensively identify how the expressivity
of the normality-based decomposition of the VGT can enhance our ability

2In §4.A1, we illustrate these associations using Burgers vortex layers and tubes, which
are prototypical models of stretched shear layers and stretched vortices, respectively. The
latter can be crudely described as a rigidly rotating inner vortex core with a shear annulus
wrapped around it.



10

Figure 1.2: Depictions of fluid particle trajectories (left) and normality-based
constituents (right) for a spatially linear velocity field undergoing vortex
stretching. The trajectories progress from darker to lighter colors. The black
arrows, red vortex tube, and blue shear layer correspond to normal straining,
rigid rotation, and pure shearing, respectively.

to understand and model turbulent flows. To achieve this goal, we develop
theoretical insights into the normality-based analysis, formulate normality-
based frameworks that capture key flow features, and apply these frameworks
to a broad range of turbulent flows. In Chapter 2, we tailor the normality-based
analysis to characterize velocity gradients in a head-on collision between two
vortex rings. Our results provide novel insight into the instability mechanism
governing transition and the behavior of the resulting turbulent cloud. In
Chapter 3 we perform a focused normality-based analysis of the strength of
velocity gradients in wall-bounded turbulent flows, including channels and
boundary layers. Our results identify distinguishing features of different flow
regimes and remarkable statistical collapses across all flows. In Chapter 4,
we develop a normality-based analysis of multiscale velocity gradients and
interscale energy transfer. Our results provide novel insight into mechanisms
underlying the energy cascade and the performance of closure models for large-
eddy simulation. Finally, in Chapter 5, we summarize the contributions of each
chapter and discuss implications of our work for future research directions.

The notation used in our normality-based analyses varies across Chapters 2, 3, and
4, which each represent a distinct published contribution. A commonality across all chap-
ters is that ϵ, γ, and φ correspond to normal straining, pure shearing, and rigid rotation,
respectively.
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C h a p t e r 2

VELOCITY GRADIENT ANALYSIS OF A HEAD-ON
VORTEX RING COLLISION

This chapter consists of the following published journal article.

1Arun, R. and Colonius, T. Velocity gradient analysis of a head-on vortex
ring collision. J. Fluid Mech. 982, A16 (2024).

Abstract
We simulate the head-on collision between vortex rings with circulation Reynolds
numbers of 4000 using an adaptive, multiresolution solver based on the lattice
Green’s function. The simulation fidelity is established with integral metrics
representing symmetries and discretization errors. Using the velocity gradient
tensor and structural features of local streamlines, we characterize the evolu-
tion of the flow with a particular focus on its transition and turbulent decay.
Transition is excited by the development of the elliptic instability, which grows
during the mutual interaction of the rings as they expand radially at the colli-
sion plane. The development of antiparallel secondary vortex filaments along
the circumference mediates the proliferation of small-scale turbulence. During
turbulent decay, the partitioning of the velocity gradients approaches an equi-
librium that is dominated by shearing and agrees well with previous results
for forced isotropic turbulence. We also introduce new phase spaces for the ve-
locity gradients that reflect the interplay between shearing and rigid rotation
and highlight geometric features of local streamlines. In conjunction with our
other analyses, these phase spaces suggest that, while the elliptic instability
is the predominant mechanism driving the initial transition, its interplay with
other mechanisms, e.g. the Crow instability, becomes more important during
turbulent decay. Our analysis also suggests that the geometry-based phase
space may be promising for identifying the effects of the elliptic instability
and other mechanisms using the structure of local streamlines. Moving for-
ward, characterizing the organization of these mechanisms within vortices and
universal features of velocity gradients may aid in modeling turbulent flows.

https://doi.org/10.1017/jfm.2024.90
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2.1 Introduction
2.1.1 Vortex rings
Vortex rings are ubiquitous flow phenomena in both applied and theoretical
settings, with applications including sound generation, transport, mixing, and
vortex interactions [1]. In geophysical settings, vortex rings can be used to
model entrainment and dispersion in particle clouds [2]. They play important
roles in the initial jets of volcanic eruptions [3] and the transport of con-
taminated sediments disposed of in open-water settings [4]. In biomechanical
settings, vortex rings have been observed in the motions of blood in the human
heart [5] and in the propulsive motion of oblate medusan jellyfish [6]. Remark-
ably, separated vortex rings augment dandelion seed dispersal by prolonging
flight through drag enhancement [7]. In aerodynamic settings, vortex rings are
responsible for the so-called vortex ring state, which negatively impacts lift in
helicopters [8] and the performance of offshore wind turbines [9]. In experi-
mental and numerical settings, the formation and pinch-off of vortex rings are
of particular interest in jet flows involving nozzles and orifices [10–14].

Vortex rings are also associated with complex instabilities and dynamics that
relate more generally to the sustenance of turbulence. Flow instabilities in
vortex rings depend primarily on the core vorticity distribution, the circula-
tion Reynolds number (ReΓ = Γ/ν), and the slenderness ratio (δ = a/R) [15].
Here, Γ is the circulation, ν is the kinematic viscosity, a is the core radius,
and R is the ring radius. We focus on the evolution of thin-cored vortex rings
with Gaussian core vorticity profiles, no swirl, and centroids (Z) that propa-
gate along the z-axis. In cylindrical coordinates (r, θ, z), this initial vorticity
profile is written as

ωθ(r, z; t = 0) = ± Γ0

πa2
0
exp

(
−(z − Z0)2 + (r −R0)2

a2
0

)
, (2.1)

where subscripts (·)0 denote parameter values at t = 0 and the sign of ωθ

dictates the propagation direction. Since Gaussian vortex rings only satisfy
the governing equations with infinitesimal core thickness, they initially undergo
a rapid period of equilibration in which vorticity is redistributed throughout
the core [15–17]. Following instability growth, transition is often marked by
the development of secondary vorticity in a halo around the core vorticity [17–
19]. During turbulent decay, the shedding of secondary vortex structures to
the wake can result in a stepwise decay in circulation [19, 20].
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Stability analyses of thin vortex rings are often (classically) formulated in
terms of asymptotic expansions in δ [21–23]. Infinitesimally thin vortex rings
(δ → 0) are neutrally stable [1]. For rings with finite thickness (δ > 0), the
curvature instability occurs at first order in δ and the elliptic instability occurs
at second order in δ. The curvature and elliptic instabilities occur at short
wavelengths and arise due to parametric resonance between Kelvin waves with
core azimuthal wavenumbers separated by one and two, respectively [23, 24].
The curvature instability is attributed to a dipole field produced by the vortex
ring curvature [23, 25, 26]. By contrast, the elliptic instability is attributed to
a quadrupole field generated by straining induced by the ring or some external
source [23, 25, 27].

This elliptic instability acts to break up elliptic streamlines and is key to the
development of three-dimensional transitional and turbulent flows [28]. In the
context of vortex rings (or, more generally, strained vortices), it is sometimes
called the Moore–Saffman–Tsai–Widnall (MSTW) instability [23, 29] based
on the initial investigations of Moore and Saffman [30] and Tsai and Widnall
[31]. The elliptic instability dominates the curvature instability for thin Gaus-
sian vortex rings without swirl. However, the curvature instability becomes
increasingly important for vortex rings with increasing ReΓ and decreasing δ,
as well as in vortex rings with swirl [24, 26].

While interesting in their own right, thin vortex rings often form canonical
building blocks of more complex turbulent flows. Modified vortex geometries,
such as elliptic vortex rings [32, 33] and trefoil knots [34, 35], provide alterna-
tive means of probing vortex dynamics and interactions. Collisions between
vortex rings and other vortex rings, walls, and free surfaces are also commonly
studied to investigate mechanisms underlying the turbulent cascade and the
generation of small scales (see Mishra et al. [36] for a review). These mech-
anisms can be characterized using a variety of collision geometries, including
head-on collisions [36–39], inclined collisions [40–42], and axis-offset collisions
[43–45], among others. Boundary layers play an important role in vortex–wall
interactions (e.g. by causing rebounding events) [46] and interactions with free
surfaces can often be understood in terms of image vortices [47].

Here, we focus on head-on collisions between identical vortex rings of oppo-
site circulation, which have been noted for their rapid enstrophy production
[48–50]. They have been classically studied in the contexts of the formation
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of smaller rings through vortex reconnection and the formation of turbulent
clouds at high ReΓ [51–53]. Many recent investigations have focused particu-
larly on the mechanisms (e.g. instabilities) underlying these transitional and
turbulent processes [36, 38, 39].

For the head-on vortex ring collisions under consideration, the elliptic instabil-
ity competes and interacts with the longer-wavelength Crow instability. The
Crow instability [54] is associated with the mutual interaction of perturbed
counter-rotating vortices, which, in the linear regime, locally displaces the vor-
tices without modifying their core structures [55]. Mishra et al. [36] provides
a focused review of vortex ring collisions in the context of the these instabil-
ities. For collisions at relatively low Reynolds numbers, the Crow instability
can lead to the pinch-off of secondary vortex rings via local reconnections. At
higher Reynolds numbers, the elliptic instability favors rapid disintegration of
the vortex rings into a turbulent cloud.

McKeown et al. [39] proposed that iterative elliptic instabilities between suc-
cessive generations of antiparallel vortices can mediate the turbulent cascade
in head-on vortex ring collisions. Mishra et al. [36] also observed that the
elliptic instability tends to dominate at high ReΓ , although this behavior is
also sensitive to the slenderness ratio and vorticity distribution. In a different
configuration involving symmetrically perturbed antiparallel vortices, Yao and
Hussain [56] attributed the turbulent cascade at high ReΓ to an avalanche of
successive vortex reconnections. In general, Ostilla-Mónico et al. [57] found
that collisions between counter-rotating vortices are indeed highly sensitive to
the geometry of their configuration. They particularly found that the mech-
anisms mediating the cascade bear resemblance to the reconnection scenario
[56] when the vortices are nearly perpendicular, whereas they are more rem-
iniscent of the iterative elliptic instability scenario [39] when the vortices are
more acutely aligned. These recent works share two common themes: (i) that
the mode of transition and the formation of a cascade are sensitive to the
details of the initial flow configuration, and (ii) that the interplay between rel-
evant instabilities is simultaneously important to the flow physics and difficult
to capture.
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2.1.2 Velocity gradients and vortices
The elliptic instability, which typically dominates head-on collisions between
the vortex rings of interest at high ReΓ [36, 39], is associated with elliptic
streamlines [28]. This generic feature of strained vortical flows can be used
to characterize the elliptic instability, which is typically difficult to discern in
the complex interactions of multiscale vortices [36, 57]. Given the inherent
complexity of turbulent flows, the geometry of local streamlines provides a
relatively simple and interpretable means for characterizing flow features (e.g.
vortices).

The instantaneous trajectory of a materially advecting fluid particle follows the
streamlines, which are frame dependent. At a critical point, e.g. in a frame
advecting with the particle, the velocity gradient tensor (VGT), A = ∇u,
determines, to linear order, the local structure of streamlines [58–60]. The
scale-invariant shape of local streamlines is captured by normalizing the VGT
as Ã = A/A [61, 62], where A = ∥A∥F = tr(ATA)1/2 is the Frobenius norm
of the VGT, (·)T represents the transpose and, unless otherwise stated, non-
bold versions of bold tensor quantities represent their Frobenius norms. This
normalized VGT has been used to investigate the scalings, forcings, and non-
local features of the VGT dynamics [62–64] and a similar analysis of vorticity
gradients has been used to classify the geometry of local vortex lines [65].

The principal invariants of Ã instantaneously characterize local streamline
topologies and geometries [60, 62, 63, 66]. They are given by

p
A

= −tr
(
Ã
)

, q
A

= 1
2

(
tr
(
Ã
) 2 − tr

(
Ã2
))

, r
A

= −det
(
Ã
)

, (2.2)

where tr(·) and det(·) represent the trace and determinant, respectively. For
incompressible flows (p

A
= 0), four classes of local streamline topologies are

separated by degenerate geometries in the q
A
− r

A
plane. Using the invariants

of Ã is advantageous compared with using the invariants of A since the q
A
− r

A

plane is a bounded phase space and it provides a more complete representation
of streamline geometries [62, 63, 66]. For example, the aspect ratio of purely
elliptic local streamlines (q

A
> 0 and r

A
= 0) is completely characterized by

q
A

, but not by Q = A2q
A

. However, while the q
A
− r

A
plane efficiently char-

acterizes local streamline geometries at critical points, additional parameters
are required to fully describe all geometries [63].

Following Das and Girimaji [66], we consider the local streamline geometry in
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the context of the modes of deformation of a fluid parcel: extensional straining,
(symmetric and antisymmetric) shearing, and rigid rotation. The well-known
Cauchy–Stokes decomposition of the VGT, Ã = S̃ + W̃ , disambiguates con-
tributions from the symmetric strain rate tensor, S̃ = (Ã + ÃT)/2, and the
antisymmetric vorticity tensor, W̃ = (Ã − ÃT)/2. It has enabled insightful
characterizations of the VGT dynamics from the perspective of the strain rate
eigenframe [67]. However, it does not disambiguate symmetric shearing from
extensional straining in S̃ or antisymmetric shearing from rigid rotation in W̃ .
This limitation motivated the development of the triple decomposition of the
VGT [68], which disambiguates all three fundamental modes of deformation.

Kolář [68, 69] originally formulated the triple decomposition of the VGT by
identifying a ‘basic’ reference frame in which motions associated with elonga-
tion, rigid rotation, and pure shearing can be isolated. However, identifying a
basic reference frame requires a challenging pointwise optimization problem,
the solution of which is typically approximated over a finite number of frames
[68, 70]. More recently, Gao and Liu [71, 72] introduced a unique triple de-
composition, based on a related vorticity tensor decomposition [73, 74], that
is more computationally practical than that of Kolář [68, 69]. This triple
decomposition is formally performed in a local ‘principal’ coordinate system
(x∗, y∗, z∗), which is related to the global coordinate system (x, y, z) by an
orthogonal transformation. In this principal frame, denoted by (·)∗, the triple
decomposition is given in normalized form by

Ã∗ =


ϵ̇x∗ 0 0
0 ϵ̇y∗ 0
0 0 ϵ̇z∗


︸ ︷︷ ︸

ϵ̇∗

+


0 0 0

γ̇z∗ 0 0
γ̇y∗ γ̇x∗ 0


︸ ︷︷ ︸

γ̇∗

+


0 −φ̇z∗ 0

φ̇z∗ 0 0
0 0 0


︸ ︷︷ ︸

φ̇∗

. (2.3)

Here, ϵ̇∗, γ̇∗, and φ̇∗ represent the normal straining, pure shearing, and rigid
body rotation tensors, respectively. Their constituents can be directly identi-
fied from the components of the VGT in the principal frame [66, 71, 72]. Their
representations in the global coordinates (ϵ̇, γ̇, and φ̇) can subsequently be re-
covered by inverting (i.e. transposing) the original orthogonal transformation
[74].

The components of the normal straining tensor represent the real parts of the
eigenvalues of Ã, which are identical to those of Ã∗. For points with rotational
local streamlines, Ã has a pair of complex eigenvalues and the real eigenvector
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defines the local rotation axis. In this case, the transformation to the principal
frame is identified by (i) using a real Schur decomposition to align the z∗-axis
with the real eigenvector of the VGT and (ii) orienting the x∗ − y∗ plane to
minimize the local rotational speed [66, 73]. One advantage of (2.3) is that
it provides representations of the strength (2φ̇z∗) and the axis (z∗) of rigid
rotation that are Galilean invariant [75]. Unlike the rotational case, the VGT
has only real eigenvalues when the local streamline geometry is non-rotational
(φ̇∗ = 0). In this case, the principal frame is identified by using a Schur
decomposition to transform the VGT into a triangular tensor. The modes
of deformation are then isolated by decomposing this transformed tensor into
a normal, diagonal tensor representing normal straining and a non-normal,
strictly triangular tensor representing pure shearing [66, 76].

The triple decomposition enables refined analyses of the influences of funda-
mental constituents of the VGT. For example, the original triple decomposi-
tion [68] has been used to show that lifetimes of fundamental flow structures
at macroscopic scales (where viscosity can be neglected) can be related to
stability of rigid rotation, linear instability of pure shearing, and exponential
instability of irrotational straining [77]. At small scales, the more recent triple
decomposition [71, 72] has been used to show that pure shearing is typically
the dominant contributor to energy dissipation [78] and intermittency [66] in
turbulent flows. Further, the symmetric and antisymmetric components of γ̇∗

are given by γ̇∗
S =

(
γ̇∗ + γ̇∗T

)
/2 and γ̇∗

W =
(
γ̇∗ − γ̇∗T

)
/2, respectively. In

this manner, the triple decomposition is more refined than the Cauchy–Stokes
decomposition since S̃∗ = ϵ̇∗ + γ̇∗

S and W̃ ∗ = φ̇∗ + γ̇∗
W [66, 72]. As described

in detail by Das and Girimaji [66], the triple decomposition also enables a
natural characterization of local streamline topologies and geometries. Simi-
lar topological analyses of vortical flow features have also been proposed [79],
but we focus on the triple decomposition for the advantages outlined herein.

The ability of the triple decomposition to capture local streamline structure
in terms of fundamental modes of deformation has guided efforts to define im-
proved vortex criteria. There are an abundance of criteria to identify vortices
that are based on various features (e.g. eigenvalues) of the VGT and that
adopt various philosophies of what constitutes a vortex [80–84]. Debates sur-
rounding these criteria primarily involve their (i) philosophical underpinnings,
(ii) threshold sensitivities, and (iii) observational invariances.



22

Regarding (i), the Cauchy–Stokes decomposition underlies many common symmetry-
based vortex criteria, including the Q [85] and λ2 [86] criteria. Local stream-
line topology underlies many common geometry-based vortex criteria, includ-
ing the ∆ [60] and λCI [80] criteria. Like the geometry-based methods, and
unlike the symmetry-based methods, the rigid vorticity criterion (φ̇z∗ > 0)
[87] captures all rotational local streamline geometries under the assumption
that rigid rotation is an essential ingredient of a vortex [66, 83]. The philo-
sophical distinction between symmetry-based and geometry-based criteria also
underlies the so-called ‘disappearing vortex problem’ in which, fixing the VGT
configuration and strain rate, increasing only the vorticity magnitude can re-
move a geometry-based vortex from the flow [80, 88, 89]. However, we here
adopt the geometry-based viewpoint since, unlike vorticity, rigid rotation per-
sistently underlies rotational local streamline topologies in all inertial frames.
This interpretation in terms of local streamline topology has the potential to
elucidate connections to related (e.g. elliptic) instabilities.

Regarding (ii), the Omega (Ω) class of vortex criteria [90–93] is advantageous
since it uses quantities that are bounded and less threshold sensitive than the
aforementioned methods. Regarding (iii), whereas most common vortex crite-
ria are Galilean invariant, they are typically not objective since they are not
preserved in rotating reference frames [81, 82]. However, the objectivized φ̇z∗

[94] and objectivized Ω [95] criteria, which are formulated by replacing W̃ with
its deviation from its global spatial mean, remain invariant in these reference
frames. Moreover, they are among the only compatible (i.e. self-consistent)
objectivized vortex criteria out of the modifications commonly associated with
the vortex criteria we have discussed [84]. This advantage enhances the ex-
perimental verifiability and clarifies the physical significance of visualizations
of the corresponding vortex structures.

Synthesizing the advantages of the geometry-based vortex definitions and the
Ω class of vortex criteria, we identify vortices using the Ωr method in the
present investigation. This criterion is formulated in terms of the quantity

Ωr = (ω · ez∗)2

2 (ω · ez∗)2 − 4λCI
2 + 4εvort

, (2.4)

where λCI is the imaginary part of the complex eigenvalues of A, ez∗ is the
unit vector along the z∗-axis, and εvort is a numerical threshold used to prevent
division by zero. Vortices are theoretically identified as spatially connected
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regions satisfying Ωr > 0.5 when εvort = 0. In practice, however, vortices are
identified using a small εvort > 0 and Ωr ≥ 0.52 [83] to e.g. remove weak
vortices.

2.1.3 Contributions
In this paper, we utilize the advantageous properties of geometry-based anal-
yses of the VGT to efficiently characterize turbulence initiated by a vortex
ring collision. We use the adaptive, multiresolution computational techniques
discussed in §2.2 to perform a direct numerical simulation of this flow at
ReΓ0 = 4000. In §2.3, we establish the fidelity of our simulation and we
visualize and discuss the various regimes of its evolution. In §2.4, we analyze
the partitioning of the velocity gradients to characterize these regimes in terms
of the modes of deformation. In §2.5, we introduce a geometry-based phase
space that characterizes the action of the elliptic instability and its interplay
with other mechanisms driving the turbulent flow. Our analyses reveal sta-
tistical features of the VGT that are similar to those of previous simulations.
They also provide tools with the potential to help disentangle mechanisms un-
derlying vortex interactions during transition and turbulent decay. Finally, we
summarize our results in the context of previous works and highlight promising
future research prospects in §2.6.

2.2 Methods
2.2.1 Computational method
To efficiently simulate a turbulent vortex ring collision, we adopt a recently de-
veloped multiresolution solver for viscous, incompressible flows on unbounded
domains [96–99]. Yu et al. [99] provide a detailed discussion of the formu-
lation, properties, and performance of the method. We summarize the key
advantages of the solver here and expound the computational formulation in
Appendix 2.A1. The advantages we discuss allow us to simulate a relatively
high Reynolds number vortex ring collision at a relatively low computational
cost.

The Navier–Stokes equations (NSE) are spatially discretized onto a staggered
Cartesian grid using a second-order-accurate finite-volume scheme that en-
dows discrete operators with useful properties (i) [96]. Discrete differential
operators are constructed to mimic the symmetry, orthogonality, and inte-
gration properties of their continuous counterparts. They also commute with
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the Laplacian and integrating factor operators, as defined in Appendix 2.A1.
Furthermore, the discretization of the nonlinear term in the momentum equa-
tions preserves relevant (e.g. energy) conservation properties in the absence of
viscosity. Together, the mimesis, commutativity, and conservation properties
of the discretization scheme facilitate fast, stable, high-fidelity simulations of
turbulent flows.

The computational methods we employ also have high parallel efficiency (ii)
and linear algorithmic complexity (iii). The computational efficiency of the
flow solver is primarily centered around solving the discrete pressure Pois-
son equation on a formally unbounded grid using the lattice Green’s function
(LGF) [96, 100, 101]. The Poisson equation is obtained by taking the diver-
gence of the NSE in rotational form, such that the source term is ∇ · r, where
r = u × ω is the Lamb vector. By considering flows with at least exponen-
tially decaying far-field vorticity, the approximate support of this source field
can be captured using a finite computational domain. Given a source cutoff
threshold, the finite domain is adaptively truncated to capture only the re-
gions relevant to the Poisson problem. Solving the Poisson problem over this
domain involves the convolution of the LGF with the source field. The flow
solver achieves (ii) and (iii) by efficiently evaluating this convolution via a fast
multipole method [100] that compresses the kernel using polynomial interpo-
lation. This method is accelerated by exploiting the efficiency of fast Fourier
transforms on a block-structured Cartesian grid.

In addition to spatially adapting the extent of the computational domain,
adaptive multiresolution discretization (iv) is achieved by using adaptive mesh
refinement (AMR) to reduce the number of degrees of freedom required for
solutions. As discussed previously [97, 99], the present AMR framework is
carefully constructed to preserve the desirable operator properties (i) and aug-
ment the efficiencies (ii, iii) associated with the uniform-grid framework [96,
100]. In the AMR framework, the computational grid is partitioned into mul-
tiple levels, each with double the resolution in each direction as the previous
level. The spatial regions associated with each level are non-overlapping, ex-
cept for extended regions that are used to compute a combined source term
that includes a correction induced by the difference between the coarse-grid
and fine-grid partial solutions. As formulated in Appendix 2.A1, a region is
refined when its combined source exceeds a threshold and it is coarsened when
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Figure 2.1: Initial geometry of the flow configuration used to simulate the head-
on collision between vortex rings. The shading of the vortex cores reflects their
Gaussian vorticity profiles.

its combined source falls below a smaller threshold. As shown in §2.3.1 (see
Table 2.1), this AMR formulation drastically reduces the number of computa-
tional cells required to capture a head-on vortex ring collision compared with
a fixed-resolution scheme.

2.2.2 Vortex ring collision simulation
As depicted in Figure 2.1, we consider a flow configuration in which the vor-
tex rings are initialized with opposing circulations such that they propagate
toward one another along the z-axis and meet at the collision plane at z = 0.
The rings are initialized a distance Lz = 2.5R0 apart, which is sufficiently large
to mitigate their mutual influence during the most vigorous period of equili-
bration. Both rings are initialized with Gaussian vorticity distributions (2.1)
such that ReΓ0 = 4000 and δ0 = 0.2. Unless otherwise stated, we use the ini-
tial circulation, Γ0 = 1, and radius, R0 = 1, of each ring to non-dimensionalize
all variables. To excite transition, we randomly perturb the radii of the vor-
tex rings using the first 32 Fourier modes in θ, which are prescribed random
phases and uniform magnitudes, Rpert = 5 × 10−4. Consistent with previous
tests [99], these initial perturbations are sufficiently large to dominate pertur-
bations incurred by discretization errors.

The computational mesh we use has Nlevel = 2 levels of refinement beyond the
base level such that the ratio of the coarsest-grid spacing to the finest-grid
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spacing is ∆xbase/∆xfine = 4. Based on preliminary simulations of turbulent
vortex rings [96] and vortex ring collisions [99], we select a0/∆xbase = 5 and
∆t/∆xfine = 0.35 to ensure the flow is well resolved throughout the simulation.
Finally, parameters controlling the spatial and mesh refinement thresholds are
chosen as discussed in Appendix 2.A1.

2.2.3 Simulation integral metrics
We track the evolution and fidelity of the simulation using integral metrics
associated with incompressible flows [96]. Particularly, we compute the hydro-
dynamic impulse, helicity, vortical kinetic energy, and enstrophy of the flow,
which are denoted by IV , H, KV , and E, respectively. These integrals are
formally evaluated on an unbounded domain, but we evaluate them using the
finite AMR grid as

IV (t) =
∫

V (t)
(x× ω)dV, H(t) =

∫
V (t)

(u · ω)dV,

KV (t) =
∫

V (t)
u · (x× ω)dV, E(t) = 1

2

∫
V (t)
|ω|2 dV,

(2.5)

where V (t) is the time-varying AMR grid. The impulse is the appropriate
measure of momentum since it converges for flows on unbounded domains
with compact vorticity. The vortical kinetic energy can also be expressed as
KV = K +K∂V , where K represents the kinetic energy and K∂V is a correction
term based on the flow at the boundary of the grid, ∂V (t). These metrics can
be expressed as

K(t) = 1
2

∫
V (t)
|u|2 dV, K∂V (t) =

∫
∂V (t)

x ·
(

(uu) · n− 1
2 |u|

2n
)

dS, (2.6)

where n is the normal vector of ∂V [102]. For vanishing far-field velocity, K∂V

vanishes on unbounded domains and, for the present grid, we make use of the
smallness of K∂V when analyzing dissipation.

In the absence of non-conservative external body forces, the hydrodynamic
impulse is conserved for incompressible flows on unbounded domains [103].
The helicity would also be conserved in the absence of viscosity, and it is
useful for assessing simulation fidelity as the vortex rings initially approach the
collision plane since the evolution of the flow is dominated by inviscid effects.
These integral metrics initially evaluate to IV (0) = 0 and H(0) = 0 due to the
spatial symmetries of the initial flow configuration. These initial symmetries
hold to the extent that the vorticity is well captured and the contributions
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of the random perturbations used to excite instability growth are negligible.
As the flow evolves, subsequent deviations from these initial values reflect the
degree to which the corresponding initial symmetries are broken.

The enstrophy and the kinetic energy provide a more detailed picture of simu-
lation fidelity during transition and turbulent decay, when viscous dissipation
at small scales becomes relevant. For unsteady, incompressible flows on un-
bounded domains, the dissipation governs the decay rate of kinetic energy and
can be expressed in terms of the enstrophy. Comparing these integrals is use-
ful for characterizing (i) the degree to which small-scale features are resolved
during peak dissipation and (ii) the flux of kinetic energy out of the finite com-
putational domain [17]. We therefore introduce effective Reynolds numbers,
which are given by

Reeff
S (t)

ReΓ0

= − ΦS(t)
dK/dt

,
Reeff

W (t)
ReΓ0

= −ΦW (t)
dK/dt

, (2.7)

where ΦS is the volume-integrated dissipation and ΦW = 2E/ReΓ0 is its
enstrophy-based counterpart [104]. Here, we differentiate K instead of KV

when computing the effective Reynolds numbers to prevent amplification of
the noise associated with adaptations in the computational domain, to which
KV is more sensitive. This is justified since K and KV are nearly identi-
cal throughout the present simulations (see Figure 2.2). The ratio Reeff

S is
useful for assessing spatial resolution since the dissipation can vary signifi-
cantly during transition and turbulent decay. The corresponding Kolmogorov
scale, η = (ν3/ΦS)1/4, can also be used to validate the selected grid spac-
ings. The difference between Reeff

S and Reeff
W reflects the relative significance

of the acceleration of the flow on ∂V through the boundary integral in the
Bobyleff–Forsyth formula [104]. Together, the error metrics defined in this
section comprehensively characterize the fidelity of the simulation as its flow
structures evolve and the computational domain adapts accordingly.

2.3 Evolution of integral metrics and vortical structures
2.3.1 Evolution of integral metrics
Figure 2.2 shows the evolution of the integral metrics from §2.2.3 over the
course of the simulation. In the subsequent analysis, we reference the var-
ious regimes of flow development with respect to the time, t∗ = 14.77, at
which maximum dissipation is attained. Table 2.1 qualitatively characterizes
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Figure 2.2: Temporal evolution of the integral metrics defined in §2.2.3 over the
course of the simulation. The vertical lines correspond to the reference times
in Table 2.1 and they are colored accordingly. The horizontal lines in the
Reeff panel represent ReΓ0 (solid) with 10% margins (dashed). The impulse
magnitude is normalized by that of each vortex ring in isolation, |IV 1| ≈
1.02π ≈ 3.204. The enstrophies EE and EC are computed using vorticities
located at the edges and centers, respectively, of the computational cells.

the state of the simulation at each reference time we consider for the initial,
transitional, and turbulent regimes of the simulation.

The initial evolution of the flow involves a rapid period of equilibration (t ≲
0.25t∗) and the propagation of the equilibrated rings towards the collision
plane (0.25t∗ ≲ t ≲ 0.50t∗). The interaction of the rings accelerates their
radial expansion (0.50t∗ ≲ t ≲ 0.75t∗) and the elliptic instability eventually
emerges along the expanding rings (0.75t∗ ≲ t ≲ 0.90t∗). Appendix 2.A2
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Regime of evolution t/t∗ R̄p V ϕ0 (%) ϕ1 (%) ϕ2 (%)
Post-equilibration vortex rings 0.25 1.18 201 80.9 13.8 5.3

Vortex boundary merger 0.50 2.01 243 76.6 18.5 4.9
Enhanced radial expansion 0.75 3.58 356 80.6 15.7 3.7

Formation of secondary vortices 0.90 4.51 408 76.6 20.0 3.4
Interaction of secondary vortices 0.95 4.77 421 72.0 24.1 3.9

Proliferation of small scales 1.00 4.97 445 63.8 30.9 5.3
Early turbulent decay 1.25 5.38 507 61.4 30.8 7.8

Intermediate turbulent decay 1.50 5.60 531 66.7 26.7 6.6
Late turbulent decay 2.12 5.82 564 72.1 26.8 1.1

Table 2.1: Reference times used to analyze the initial (red), transitional
(green), and turbulent (blue) regimes of the present vortex ring collision, where
t∗ = 14.77 is the time of maximum dissipation. Here, R̄p represents the mean
vortex ring radius (see Appendix 2.A2), V is the volume of the computational
domain, and ϕk is the fraction of V occupied by level k of the AMR grid, which
has grid spacing ∆xk = ∆xbase/2k with ∆xbase = 0.04.

supports the importance of the elliptic instability during the early stages of
transition. Subsequently, the flow transitions to turbulence (0.90t∗ ≲ t ≲ t∗)
and rapidly produces small-scale flow structures. Following transition, the flow
undergoes turbulent decay for the remainder of the simulation (i.e. for t ≳ t∗).
See §2.3.2 for visualizations of the flow at the reference times from Table 2.1
associated with each of these regimes of evolution.

As the vortex rings initially propagate towards the collision plane (t ≲ 0.50t∗),
the kinetic energy decays slowly and the enstrophy and dissipation are rela-
tively small. The effective Reynolds numbers rapidly adjust to the value of
ReΓ0 during the initial equilibration period (t ≲ 0.25t∗) and remain roughly
constant as the equilibrated rings approach the collision plane (0.25t∗ ≲ t ≲

0.50t∗). The helicity is well conserved in this regime since the flow evolves in
a nearly inviscid fashion. Further, the impulse is initially small and grows rel-
atively slowly during this period. These results suggest that the symmetries
associated with the handedness and momentum distribution of the flow are
well preserved in the initial regime of evolution.

As the rings expand radially at the collision plane (0.50t∗ ≲ t ≲ 0.75t∗) and
the elliptic instability emerges (0.75t∗ ≲ t ≲ 0.90t∗), the kinetic energy decays
more rapidly and the dissipation grows. During these periods, the helicity
symmetry remains well preserved and the effective Reynolds numbers remain
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relatively constant near ReΓ0 , suggesting that the flow is well resolved. How-
ever, the impulse magnitude varies more rapidly in time due to the rapid radial
expansion of the rings. In following the expanding vortical flow at the collision
plane, the adaptations of the domain break the symmetry1 associated with im-
pulse integral more significantly than during the initial evolution of the rings.
The resulting growth in |IV | is primarily attributed to its component in the
z direction, along which the domain is compressed as the flow concentrates
about the collision plane.

As the flow transitions to turbulence (0.90t∗ ≲ t ≲ t∗), the kinetic energy
decays even more rapidly and the dissipation approaches its maximum value.
Due to the proliferation of small-scale flow structures during this period, the
effective Reynolds numbers drop to their minimum values at t ≈ t∗, when
the flow is most difficult to resolve. The increased difference between Reeff

S

and Reeff
W reflects that the acceleration of the flow near ∂V is more relevant

at this time. The rapid generation of small-scale flow structures also implies
that viscosity plays a more important role in this regime. Correspondingly,
the helicity begins to vary in time in this regime, reaching its maximum rate of
change at the time of peak dissipation. Its variations reflect that vortex lines in
the flow undergo rapid topological changes during transition. By contrast, the
impulse magnitude decays to a roughly constant value as the radial expansion
of the rings slows in this transitional regime.

During the turbulent decay of the flow (t ≳ t∗), the kinetic energy becomes
small and the dissipation decays rapidly, eventually falling below its initial
value (at t ≈ 1.62t∗). The dissipation matches the kinetic energy decay rate
more closely for this regime than for transition. Further, as the turbulence
develops, the effective Reynolds numbers agree well with one another and, to
a lesser extent, with ReΓ0 . These features reflect, respectively, that the accel-
eration near ∂V is less significant and that the small scales are relatively well
resolved, especially with respect to the transitional period. The helicity vari-
ations in this turbulent regime also eventually slow relative to those observed
during transition. Similarly, the impulse remains roughly constant around its
value at t = t∗. Whereas the z component dominates the impulse magnitude
during the radial expansion of the rings, all impulse components have similar
magnitudes in this turbulent regime.

1This symmetry-breaking effect should be interpreted as an artifact of the adaptive
numerical scheme and not the result of a physical mechanism.
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The evolution of the integral metrics characterizes the various regimes of the
flow and supports the fidelity of our simulation. For example, the helicity is
well conserved during the nearly inviscid evolution of the vortex rings and its
subsequent variations are relatively small in magnitude. Further, the varia-
tions in the impulse magnitude throughout the simulation remain less than
5% of the impulse associated with each vortex ring in isolation. These results
indicate that the symmetries associated with the handedness and momentum
distribution of the flow also remain well preserved in the appropriate regimes
of the simulation.

Our dissipation analysis also suggests that the small-scale flow structures re-
main reasonably well resolved throughout the entire simulation. After equili-
bration, the maximum relative deviation in Reeff

S from ReΓ0 is roughly 6.5%
and it occurs around t ≈ t∗. This relative deviation is similar to that of a
previous simulation of a single vortex ring at ReΓ0 = 7500 using a finite com-
putational grid [17]. Moreover, it is considerably smaller during the approach
and radial expansion of the rings and, to a lesser extent, during turbulent de-
cay. Even during peak dissipation, when the Kolmogorov scale is smallest, the
finest grid has acceptable resolution since ∆xfine/η ≈ 3.42. Altogether, these
results suggest that our simulation is well resolved and support our analysis
of the mechanisms underlying transition and turbulent decay.

2.3.2 Evolution of vortical flow structures
For the present simulation, we identify vortices using the Ωr criterion [83] with
a numerical threshold of εvort = 0.04. This criterion provides connections to
the triple decomposition of the VGT and the structure of local streamlines.
Due to the well-preserved symmetries of the flow, the global spatial mean
of the vorticity tensor is nearly zero and, hence, the Ωr criterion is nearly
objective [95] for the present simulation. We specifically visualize the flow
using Ωr = 0.52 and Ωr = 0.93 to investigate the structures of the vortex
boundaries and the vortex cores, respectively. We color these structures using
cos θ∗, where θ∗ is the angle between the z∗-axis and the z-axis. This color
scheme enables the identification of antiparallel vortices along the z-axis, which
play an important role in mediating transition and generating small-scale flow
structures in the present vortex ring collision. In Figure 2.3, we visualize the
vortical structures in the flow at each reference time from Table 2.1.
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Figure 2.3: Visualizations of the vortex boundaries (Ωr = 0.52, left side) and
vortex cores (Ωr = 0.93, right side), colored by cos θ∗, for each reference time
from Table 2.1. A movie depicting the evolution of the vortex boundaries
from the auxiliary viewpoint (leftmost column) is provided as supplementary
material available at https://doi.org/10.1017/jfm.2024.90.

https://doi.org/10.1017/jfm.2024.90
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During the initial evolution of the flow, the equilibrated vortex rings approach
the collision plane and expand radially due to their mutual interaction. In this
regime, the thinning of the vortex boundaries and cores illustrates the mecha-
nisms driving the shift from a rigid-rotation-dominated regime to a shearing-
dominated regime. Further, the visualizations at t = 0.75t∗ depict the emer-
gence of the short-wave elliptic instability, which is consistent with previous
vortex ring collision simulations in similar parameter regimes [36, 39].

The transitional regime of the flow is marked by the development of secondary
vortex filaments and the subsequent generation of small-scale vortical flow
structures. At t = 0.90t∗, the visualizations show the development of sec-
ondary vortical structures around the circumference of the collision. These
structures consist of antiparallel vortex filament pairs that arise in regions
where the elliptic instability drives local interactions between the rings. This
behavior supports the notion that the elliptic instability mediates the ini-
tial transition of the rings, leading to the development of secondary vortical
structures. The antiparallel secondary filaments become increasingly densely-
packed as transition progresses and they mediate the proliferation of small-
scale vortical flow structures, e.g. as observed at t = t∗.

In Appendix 2.A2, we decompose the flow into azimuthal Fourier modes to
characterize the wavenumbers of the perturbations that dominate transition.
Our analysis confirms that the short-wave elliptic instability, with wavelength
of the order of the core radius, mediates the initial stages of transition. We
further show that, at t = t∗, the most prominent antiparallel vortices occur
at the second harmonic of an originally dominant perturbation. Taken to-
gether, our visualizations and perturbation analysis are consistent with the
initial stages of the iterative elliptic instability pathway, which is driven by
subsequent generations of antiparallel vortex filaments [39].

During the turbulent decay of the flow, the geometric features of the vortex
boundaries remain similar at each reference time. However, as energy is dissi-
pated, the smallest-scale vortices are progressively destroyed and the vortical
flow structures grow larger in time. The structures of the vortex cores and
boundaries reinforce the importance of the interactions between the secondary
vortex filaments in mediating the evolution of the turbulent flow. The vor-
tex boundaries also show the formation and ejection of vortex rings from the
turbulent cloud resulting from the collision. These ejections, which are a hall-
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mark of the Crow instability, often occur in regions where antiparallel vortex
filaments interact and are of similar size to those filaments. This observation
provides further evidence of the interplay between the elliptic and Crow in-
stabilities driven by interacting vortex filaments around the turbulent cloud
[36, 57]. In what follows, we develop machinery to probe these mechanisms in
the context of features of the velocity gradients, with a particular emphasis on
characterizing the action of the elliptic instability among other mechanisms.

2.4 Partitioning of velocity gradients
Here, we investigate the partitioning of the velocity gradients to characterize
the evolution of the flow in the context of the fundamental modes of defor-
mation. We first consider volumetric weighted averages of the relative contri-
butions of various constituents of Ã to the strength of the velocity gradients.
These averages may be expressed as

〈
ξ
〉

A2
=
∫

V (t) A2ξdV∫
V (t) A2 dV

, (2.8)

where ξ ∈ {S̃2, W̃ 2} for the Cauchy–Stokes decomposition and ξ ∈ {ϵ̇2, γ̇2, φ̇2,

2φ̇ : γ̇} for the triple decomposition. Here, we have used that the Frobenius
inner product, denoted by :, of a symmetric tensor with an antisymmetric
tensor is zero and that γ̇2

W = γ̇2
S = γ̇2/2. The shear–rotation correlation term,

2φ̇ : γ̇ = 2φ̇z∗ γ̇z∗ > 0, reflects the presence of shearing in the plane of rigid
rotation. All of the relative contributions discussed are unitarily invariant and,
thus, they apply to both the principal coordinates and the global coordinates.
Figure 2.4 shows how these relative contributions evolve during the simulation
for both decompositions of Ã.

Consistent with the equivalence of ΦS and ΦW for incompressible flows on un-
bounded domains [104],

〈
S̃2
〉

A2
≈
〈
W̃ 2

〉
A2
≈ 0.50 for the present simulations.

The largest deviations from this balance occur during equilibration (t ≲ 0.25t∗)
and around the time of peak dissipation (t ≈ t∗). These deviations are con-
sistent with the behavior of the effective Reynolds numbers in Figure 2.2 and
their smallness further validates the ability of the finite computational grid to
approximate a formally unbounded flow. However, since

〈
S̃2
〉

A2
and

〈
W̃ 2

〉
A2

remain relatively constant throughout the simulation, they provide limited in-
formation about the nature of the velocity gradients as the flow progresses
through its initial, transitional, and turbulent regimes.
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Figure 2.4: Relative contributions of the constituents of the Cauchy–Stokes
decomposition and the triple decomposition to A2. The vertical lines corre-
spond to the reference times in Table 2.1 and they are colored accordingly.

Compared with the constituents of the Cauchy–Stokes decomposition, the con-
stituents of the triple decomposition show more pronounced variations associ-
ated with the different regimes of evolution. For the initial Gaussian vorticity
profiles, the contribution of rigid rotation to the enstrophy dominates the con-
tribution of antisymmetric shearing. During equilibration (t ≲ 0.25t∗), the
fluctuations in all contributions of the triple decomposition constituents re-
flect the redistribution of velocity gradients in the cores of the vortex rings.
As the equilibrated rings approach the collision plane and spread (0.25t∗ ≲

t ≲ 0.75t∗),
〈
ϵ̇2
〉

A2
and

〈
φ̇2
〉

A2
decrease and

〈
γ̇2
〉

A2
and 2

〈
φ̇:γ̇

〉
A2

increase. As
the elliptic instability emerges, these contributions level off in a regime where
antisymmetric shearing dominates rigid rotation and shear–rotation correla-
tions are enhanced. The subsequent development of the elliptic instability
(0.75t∗ ≲ t ≲ 0.90t∗) is marked by slight rebounds in the contributions of〈
φ̇2
〉

A2
and

〈
γ̇2
〉

A2
. These rebounds are associated with the emergence of

secondary vortex filaments and, hence, the nonlinear evolution of the elliptic
instability. The transition to turbulence (0.90t∗ ≲ t ≲ t∗), which is associated
with the generation of small scales and enhanced dissipation, is marked by a
decrease in the contribution of 2

〈
φ̇:γ̇

〉
A2

.
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Constituent
〈
ϵ̇2
〉

A2

〈
γ̇2
〉

A2

〈
φ̇2
〉

A2
2
〈
φ̇:γ̇

〉
A2

Present vortex ring collision 28.0 % 44.6 % 13.3 % 14.1 %
Forced isotropic turbulence [66] 24 % 52 % 11 % 13 %

Table 2.2: Comparison of the equilibrium partitioning of the velocity gradients
for the present vortex ring collision with the partitioning computed for forced
isotropic turbulence [66]. Here, the equilibrium partitioning is computed as
the mean over the turbulent decay regime (t ≳ t∗) and it is insensitive to the
length of the averaging interval.

Remarkably, even though the flow is not stationary during turbulent decay,
the relative contributions of the constituents of the triple decomposition to
the strength of the velocity gradients remain roughly constant after transition.
Further, as summarized in Table 2.2, these ‘equilibrium’ relative contributions
are similar to those computed by Das and Girimaji [66] for forced isotropic tur-
bulence at high Taylor-scale Reynolds numbers. This agreement suggests that
the velocity gradient partitioning may encode a relatively common balance in
unbounded, incompressible turbulence with appropriate symmetries. In this
balance, shearing makes the largest contribution to the velocity gradients and
rigid rotation makes the smallest contribution.

Beyond the strength of velocity gradients, it is also useful to examine the
interplay between the modes of deformation in the context of vortical flow
structures. Here, we introduce a new phase space defined by the relative con-
tributions of

〈
γ̇2

W

〉
A2

,
〈
φ̇2
〉

A2
, and (implicitly) 2

〈
φ̇:γ̇

〉
A2

to
〈
W̃ 2

〉
A2

. The upper
bound of this phase space is found by maximizing

〈
φ̇2
〉

A2
/
〈
W̃ 2

〉
A2

, which oc-
curs when 2

〈
φ̇:γ̇

〉
A2

/
〈
W̃ 2

〉
A2

= 0. The bottom boundary is found by minimizing〈
φ̇2
〉

A2
/
〈
W̃ 2

〉
A2

, which occurs when 2
〈
φ̇:γ̇

〉
A2

/
〈
W̃ 2

〉
A2

= 2
√〈

φ̇2
〉

A2

〈
γ̇2

W

〉
A2

/
〈
W̃ 2

〉
A2

.
Correspondingly, these boundaries may be expressed as

1−

√√√√√
〈
γ̇2

W

〉
A2〈

W̃ 2
〉

A2

2

≤

〈
φ̇2
〉

A2〈
W̃ 2

〉
A2

≤ 1−

〈
γ̇2

W

〉
A2〈

W̃ 2
〉

A2

, (2.9)

⇕ ⇕

−2

〈
γ̇2

W

〉
A2〈

W̃ 2
〉

A2

−

√√√√√
〈
γ̇2

W

〉
A2〈

W̃ 2
〉

A2

 ≥2
〈
φ̇:γ̇

〉
A2〈

W̃ 2
〉

A2

≥ 0, (2.10)

highlighting that lower and upper bounds of the rigid rotation contribution cor-
respond to the upper and lower bounds, respectively, of the shear–rotation cor-
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Figure 2.5: Shear–rotation phase space trajectory of the flow, highlighting the
evolution during equilibration (left inset) and transition and turbulent decay
(right inset). The contours represent increments of 0.05 in the color scale. The
white circle marks the initial condition and the fill colors of the black circles
correspond to the reference times they represent from Table 2.1.

relation contribution. The maximum value of 2
〈
φ̇:γ̇

〉
A2

/
〈
W̃ 2

〉
A2

varies along
the lower boundary of this phase space to ensure that the relative contribu-
tions sum to unity. The global maximum occurs when 2φ̇ : γ̇/W̃ 2 = 0.5 or,
equivalently, φ̇2/W̃ 2 = γ̇2

W /W̃ 2 = 0.25 at all points, which corresponds to the
(pointwise) maximum of 2φ̇ : γ̇ = (

√
2 + 1)−1 reported by Das and Girimaji

[66]. This maximum corresponds to local streamlines in the principal frame
for which shearing occurs exclusively in the plane of rigid rotation.

Figure 2.5 depicts the trajectory of the flow in this shear–rotation phase space
and elucidates how the relationships between the constituents of enstrophy
associated with the triple decomposition evolve in time. Following rapid vari-
ations during equilibration, the trajectory returns to a position in phase space
similar to that of the initial condition at t ≈ 0.25t∗. The trajectory then un-
dergoes a shift across the phase space as the equilibrated rings approach the
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collision plane and spread radially (0.25t∗ ≲ t ≲ 0.75t∗). This shift from a
rigid-rotation-dominated regime to a shearing-dominated regime is associated
with an enhanced contribution from 2

〈
φ̇:γ̇

〉
A2

/
〈
W̃ 2

〉
A2

. The development of
the elliptic instability (0.75t∗ ≲ t ≲ 0.90t∗) and transition (0.90t∗ ≲ t ≲ t∗)
are associated with a shift in the direction of the trajectory towards smaller
contributions of 2

〈
φ̇:γ̇

〉
A2

/
〈
W̃ 2

〉
A2

. During turbulent decay (t ≳ t∗), the tra-
jectory remains roughly fixed in the phase space and very close to its position
at t = t∗.

Considering this phase space trajectory in the context of the dissipation (see
Figure 2.2) reveals that, while the initial growth in dissipation is associated
with enhanced shear–rotation correlations, its subsequent enhancement dur-
ing transition is associated with a reduction in shear–rotation correlations. In
Appendix 2.A3, we reexamine the visualizations from Figure 2.3 in terms of
the shear–rotation correlations in the flow to highlight their relationship to the
vortical flow structures. In §2.5, we interpret the effects of these shear–rotation
correlations using a new, related phase space, based on local streamline geom-
etry, to characterize the elliptic instability and other mechanisms.

2.5 Statistical geometry of local streamlines
2.5.1 Phase space transformations
The elliptic instability is associated with the resonance of the vortical flow
with the underlying strain field and acts to break up elliptic streamlines. Con-
sistent with this picture, we introduce a new geometry-based phase space that
captures local flow features that (i) are conducive to the elliptic instability and
(ii) characterize its action.

To address (i), we consider the angle, θω, between the vorticity vectors associ-
ated with antisymmetric shearing and rigid rotation, which is given by

θω = cos−1


√√√√(φ̇:γ̇)2

φ̇2γ̇2
W

 . (2.11)

Our emphasis on shearing is consistent with the classical models of strained
vortices used to characterize the elliptic instability [28]. Since decreasing θω

corresponds to increasing the alignment between shearing and rigid rotation,
it can be associated with conditions conducive to the elliptic instability.

To address (ii), we consider the aspect ratio, ζ, of the elliptic component of
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rotational local streamlines in the plane of rigid rotation, which is given by

ζ =
√

1− e2 =
√

φ̇2

φ̇2 + 2φ̇:γ̇ , (2.12)

where e represents the eccentricity of an ellipse with aspect ratio ζ. This aspect
ratio characterizes the scale-invariant geometry of the local streamlines in the
plane of rigid rotation. As such, it can be used alongside θω to characterize the
action of the elliptic instability by identifying how alignment between shearing
and rigid rotation affects local streamline geometry.

The present shear–rotation and geometry-based phase spaces can be under-
stood through nonlinear transformations of the q

A
− r

A
phase space. The

transformations we derive express the relative contributions of the triple de-
composition to the velocity gradients using q

A
and r

A
, and they represent the

inverse transformations to those presented by Das and Girimaji [66]. However,
an additional parameter, θω, is generally required to evaluate our transfor-
mations. This extra parameter demonstrates that the invariants of Ã alone
cannot generally characterize the relative contributions of the constituents of
the triple decomposition to the velocity gradients.

For rotational local streamlines, the transformations are given by

ϵ̇2 =

(
−3× 22/3q

A
+ 32/3

(
2
√

3∆ + 9|r
A
|
)2/3

)2

65/3
(
2
√

3∆ + 9|r
A
|
)2/3 , γ̇2 = 2γ̇2

W = 1− 2ϵ̇2 − 2q
A

,

φ̇2 =
(
−
√

γ̇2
W cosθω +

√
1− ϵ̇2 − γ̇2

W (2− cos2θω)
)2

, 2φ̇:γ̇ = 2
√

φ̇2γ̇2
W cosθω,

(2.13)

where ∆ = q
A
3 + 27

4 r
A
2 is proportional to the discriminant of the characteristic

equation of Ã. In this case, ϵ̇2 and γ̇2 can be determined directly from q
A

and
r
A

and φ̇2, 2φ̇:γ̇, and ζ can be determined if θω is known. For non-rotational
local streamlines, the transformations are given by

ϵ̇2 = −2q
A

, γ̇2 = 1− ϵ̇2, φ̇2 = 0, (2.14)

which can be determined directly from a single parameter, q
A

. The rotational
and non-rotational transformations are continuous with one another at their
boundary (∆ = 0) and they are both symmetric about the q

A
-axis. However,

the aspect ratio is only well defined for ∆ > 0, consistent with our focus on
rotational local streamlines.
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Figure 2.6: The q
A
− r

A
phase space (top left) and the variations in ϵ̇2,

γ̇2, φ̇2, 2φ̇ : γ̇, and ζ in this space when θω = 43.57◦ is held constant.
The top left panel shows the boundaries corresponding to the symmetry-
based (dotted green) and the geometry-based (solid blue) vortex criteria (see
§2.1.2). It also labels the four classes of non-degenerate local streamline
topologies: stable-focus–stretching (SFS), unstable-focus–compression (UFC),
stable-node–saddle-saddle (SNSS), and unstable-node–saddle-saddle (UNSS).

In Figure 2.6, we illustrate how ϵ̇2, γ̇2, φ̇2, 2φ̇:γ̇, and ζ vary within the q
A
− r

A

phase space. In this phase space, the rotational geometries are externally
bounded by 3

√
3|r

A
| = (1 + q

A
)(1− 2q

A
)1/2 and the non-rotational geometries

are externally bounded by q
A

= −1
2 . For the rotational geometries, we display

φ̇2, 2φ̇ : γ̇, and ζ for θω = 43.57◦, which corresponds to the mean value at
t = 1.25t∗ (see Figure 2.8) and approximates the equilibrium value during
turbulent decay. We document how each of these quantities varies with θω in
the q

A
− r

A
phase space in Appendix 2.A4.

Figure 2.6 shows that, generically, the contribution of pure shearing (γ̇2) tends
to dominate the velocity gradients near the origin of the q

A
− r

A
plane. The

contribution of normal straining (ϵ̇2) grows large when the velocity gradients
are dominated by the strain rate tensor. By contrast, for rotational geometries,
the contribution of rigid rotation (φ̇2) grows large near the external boundary
in regions where the vorticity tensor dominates. The contribution of shear–
rotation correlations (2φ̇ : γ̇) grows largest in the intermediate region of the
phase space and it decays near the discriminant line and the external boundary.
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The aspect ratio ζ is unity along the external boundary and it decays to zero
at the discriminant line.

The elliptic instability, which is relevant in strained vortical flows, is expected
to be most active for an intermediate range of aspect ratios. Further, vortex
stretching and squeezing, which are known to play important roles in turbu-
lent flows, can most readily be associated with the SFS and UFC streamline
topologies, respectively [105]. In the corresponding regions in the q

A
− r

A
plane,

the transformations in Figure 2.6 suggest that the interplay between shearing
and rotation is pertinent to these fundamental turbulent processes. Within
this context, the transformations have the potential to characterize the role of
the elliptic instability, among other mechanisms, in mediating such processes.
In what follows, we investigate this premise by analyzing the evolution of the
velocity gradient distributions in the q

A
− r

A
, shear–rotation, and ζ− θω phase

spaces.

2.5.2 Phase space distributions
The joint probability density functions (p.d.f.s) of the normalized velocity gra-
dients in the phase spaces we investigate encode information about the local
streamline geometries. Although these phase spaces are related to one an-
other, the choice of phase space plays an important role in interpreting the
statistical distributions of the flow. In the q

A
− r

A
phase space, incompressible

turbulent flows often follow a near-universal teardrop-like distribution about
the origin [62, 63]. The shear–rotation phase space highlights the distribu-
tion of rotational streamline geometries and it characterizes the interplay of
rigid rotation and antisymmetric shearing. The ζ − θω phase space also con-
siders rotational streamline geometries and it characterizes the flow in terms
of geometric features of local streamlines that are associated with the elliptic
instability.

Figure 2.7 shows the q
A
− r

A
and the shear–rotation phase space distributions at

reference times, selected from Table 2.1, that pertain to the development of the
elliptic instability, transition, and turbulent decay. As the elliptic instability
emerges (t ≈ 0.75t∗), the velocity gradients are concentrated near the q

A
-axis.

Since 2
〈
φ̇:γ̇

〉
A2

is relatively large around this time, the rotational regions of
the flow are concentrated near the bottom boundary of the shear–rotation
phase space, particularly near the location where 2

〈
φ̇:γ̇

〉
A2

is maximized.
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Figure 2.7: Joint p.d.f.s of the velocity gradients satisfying A2/max(A2) ≥
0.1% in the q

A
− r

A
phase space (left) and W 2/max(W 2) ≥ 0.1% in the shear–

rotation phase space (right) at times t = 0.75t∗, 0.90t∗, 1.00t∗, and 1.25t∗ (from
top to bottom). The blue triangles represent the centroids of the distributions
and the magenta contours represent the p.d.f. levels for which 90% of the flow
(by volume) resides at higher p.d.f. levels. These contours are smoothed by
using coarser p.d.f. bins to ensure that they roughly enclose the regions with
higher p.d.f. levels.
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As the flow transitions (t ≈ 0.90t∗), the distribution remains centered about
the q

A
-axis but it expands towards larger |r

A
| as it begins to fill the q

A
− r

A

phase space. Similarly, the p.d.f. in the shear–rotation phase space begins
extending away from the bottom boundary of the phase space, although its
bulk remains concentrated at the boundary. The broadening p.d.f.s represent
the generation of more diverse local streamline topologies (see Figure 2.6),
which is consistent with the formation of more complex vortical structures
(see Figure 2.3).

At the time of peak dissipation (t ≈ t∗), the distributions populate nearly all of
the area in both the phase spaces. During the subsequent turbulent decay (as
shown for t ≈ 1.25t∗), the flow approaches its equilibrium distributions in both
phase spaces, which remain similar to the distributions for t ≈ t∗. In the q

A
− r

A

phase space, the equilibrium p.d.f. above the r
A

-axis is concentrated slightly
left of the q

A
-axis. This slight preference of the SFS topology is consistent with

the typical presence of positive vortex stretching in regions of turbulent flows
with rotational geometries. Below the r

A
-axis, the p.d.f. is concentrated along

the discriminant line for r
A

> 0. The equilibrium distribution of our vortex
ring collision in this phase space is similar to the near-universal teardrop-
like shapes reported previously for forced isotropic turbulence [62, 63]. This
similarity suggests that, in addition to the velocity gradient partitioning (see
Table 2.2), the teardrop-like distribution may be more broadly applicable to
incompressible flows with appropriate symmetries.

The p.d.f.s in the shear–rotation phase space evolve similarly to those in the
q
A
− r

A
phase space (e.g. by broadening) and specifically highlight rotational

geometries. However, the difference between vortex stretching and squeezing,
which is encoded in the sign of the real eigenvalue of the VGT, cannot be
distinguished in this phase space since its constituents are non-negative. The
high concentration of the p.d.f.s near the lower corner of this phase space,
representing the origin of the q

A
− r

A
phase space, shifts the centroids ac-

cordingly and highlights the importance of shearing in the generation and
evolution of turbulent flows. The equilibrium distribution remains relatively
concentrated about the lower boundary of this phase space, including regions
where 2

〈
φ̇:γ̇

〉
A2

is relatively large. This behavior highlights the potential for
the elliptic instability to be active during turbulent decay, but the breadth
of the distribution suggests it may not be a completely dominant mechanism
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driving turbulent flow in rotational regions.

To further investigate the evolution of the flow in the context of the elliptic
instability, we again consider the relationship between the ζ − θω and shear–
rotation phase spaces. Using θω and ζ, the constituents of the shear–rotation
phase space and the corresponding shear–rotation correlation term and vortex
identification criterion are given by

φ̇2

W̃ 2
= 4ζ4cos2θω

1 + (−2 + 4cos2θω) ζ2 + ζ4 ,
γ̇2

W

W̃ 2
= (1− ζ2)2

1 + (−2 + 4cos2θω) ζ2 + ζ4 ,

2φ̇:γ̇
W̃ 2

= 4ζ2cos2θω (1− ζ2)
1 + (−2 + 4cos2θω) ζ2 + ζ4 , Ωr =

1 +
1−

√
φ̇2

W̃ 2

2


−1

.

(2.15)

Figure 2.8 shows the p.d.f.s of the velocity gradients alongside the distributions
of 2φ̇:γ̇/W̃ 2 and Ωr in the geometry-based phase space at the same times as
those in Figure 2.7.

As the elliptic instability emerges (t ≈ 0.75t∗), the p.d.f. is highly concentrated
at small values of θω over a broad range of ζ. This distribution is consistent
with the enhancement of 2

〈
φ̇:γ̇

〉
A2

around this time (see Figure 2.4) and re-
flects conditions conducive to the elliptic instability. The centroid of the dis-
tribution is located around ζ ≈ 0.5, which suggests that rotational streamlines
with this aspect ratio may be particularly susceptible to these conditions.

During transition (t ≈ 0.90t∗), the distribution broadens to a much larger
range of θω and, at the high end of this range, ζ becomes increasingly corre-
lated with θω. This broadening reflects the diversification of rotational local
streamline topologies to include those for which shearing and rigid rotation
are not well aligned. However, despite this broadening, the p.d.f. is still con-
centrated at small θω. This behavior is consistent with the importance of the
elliptic instability during transition (see Appendix 2.A2).

During turbulent decay (t ≳ t∗), the features of the p.d.f. are relatively in-
variant in time. In the equilibrium distribution (approximated at t ≈ 1.25t∗),
the centroid is located around θω ≈ 44◦, which is considerably larger than its
value (θω ≈ 3◦) at t = 0.75t∗. Further, the 90% contour of the p.d.f. spans
nearly the entire range of θω and highlights a well-defined sharpening in the
correlation of ζ with θω with increasing θω. The upper limit (θω, ζ) = (90◦, 1)
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Figure 2.8: Joint p.d.f.s (top and middle) of the velocity gradients in the ζ−θω

phase space at the same times, at the same points, and in the same style as
those in Figure 2.7. The bottom plots superimpose the 90% contours and
centroids for t = 0.75t∗ (red) and t = 1.25t∗ (black) on 2φ̇:γ̇/W̃ 2 (left) and on
Ωr (right), as given by (2.15).
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corresponds to circular local streamlines in the plane of rigid rotation subject
to out-of-plane shearing.

The shifts in the centroid and the 90% contour support the hypothesis that,
while the elliptic instability still plays a role in the turbulent regime, other
mechanisms also contribute significantly to the local flow structure. Specifi-
cally, they suggest that, in addition to the breakup of elliptic streamlines via
the elliptic instability, the deformation of vortices, e.g. through the action
of the Crow instability, may play an important role during turbulent decay.
As discussed in Appendix 2.A3, the partitioning of shear–rotation correlations
between the cores and boundaries of vortices in the flow (see Figure 2.12)
provides an interesting opportunity for analyzing these mechanisms. Given
current challenges in disentangling the elliptic and Crow instabilities in tur-
bulent flows [36, 57], the present geometry-based (ζ − θω) phase space has the
potential to help distinguish flow features associated with these ubiquitous
mechanisms.

Altogether, the results in this section reinforce the notion that the elliptic in-
stability is the dominant mechanism mediating the transition of the present
vortex ring collision. They also support the notion that, after transition, the
elliptic instability is no longer a strictly dominant mechanism underlying the
turbulent decay of the flow. The results point to increased contributions from
rotational geometries with out-of-plane shearing, which may reflect interac-
tions associated with mechanisms like the Crow instability. The results also
highlight the ability of the new shear–rotation and geometry-based phases
spaces to characterize the relative contributions of different modes of deforma-
tion and rotational features of local streamlines, respectively.

2.6 Concluding remarks
We use a recently developed adaptive, multiresolution numerical scheme based
on the LGF to efficiently simulate the head-on collision between two vortex
rings at a relatively high Reynolds number (ReΓ0 = 4000). The fidelity of this
simulation is confirmed using various integral metrics that reflect the symme-
tries, conservation properties, and discretization errors of the flow. We provide
a detailed analysis of the initial evolution, transition, and turbulent decay of
the flow to elucidate flow features that are pertinent to the mechanisms driving
its evolution, e.g. the elliptic instability.
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Our visualizations of vortex structures enable qualitative characterizations of
the various regimes through which the flow evolves. They depict the short-
wave elliptic instability as the mechanism driving the initial transition of the
rings as they merge at the collision plane. Consistent with previous studies
[36, 39], late transition and (to a lesser extent) turbulent decay are mediated
by antiparallel secondary vortex filaments that arise from local interactions
associated with the elliptic instability. We confirm that the elliptic instability
dominates transition by analyzing the scales of dominant wave-like pertur-
bations in that regime. During turbulent decay, we observe local ejections
of vortex rings in regions where antiparallel vortex filaments interact. This
observation supports the notion that interplay between the elliptic and Crow
instabilities can impact vortex interactions, consistent with previous findings
[36, 57].

Our analysis of the flow centers around using the triple decomposition of the
VGT to characterize the contributions of axial straining, shearing, rigid ro-
tation, and shear–rotation correlations to the velocity gradients. The mutual
interaction of the rings is marked by the development of shearing-dominated
vorticity and enhanced shear–rotation correlations, reflecting conditions con-
ducive to the elliptic instability. These conditions are consistent with the
initial elliptic instability observed in our visualizations and previously in sim-
ilar configurations [36, 39]. During turbulent decay, the relative contributions
of the different modes of deformation to the velocity gradient strength (which
is not stationary) are roughly invariant in time, suggesting an equilibrium par-
titioning of the VGT. This equilibrium partitioning is remarkably similar to
the partitioning observed for forced isotropic turbulence [66], suggesting that
it may provide a broadly applicable avenue for modeling incompressible flows
with appropriate symmetries.

During the transition and turbulent decay of the flow, we also consider instan-
taneous distributions of the velocity gradients in various phase spaces. The
broadening of the phase space distributions in these regimes reflects the gen-
eration of more diverse local streamline topologies. The distributions in the
q
A
− r

A
phase space show that the present vortex ring collision produces veloc-

ity gradients that follow the near-universal teardrop-like distribution observed
previously for forced isotropic turbulence [62, 63]. In addition to the q

A
− r

A

phase space, we introduce the shear–rotation phase space to characterize the
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interplay of shearing and rigid rotation in rotational settings and highlight the
role of their correlations during transition and turbulent decay.

Finally, we introduce a geometry-based (ζ − θω) phase space to further char-
acterize the action of the elliptic instability (and other mechanisms) during
transition and turbulent decay. As the rings interact, the emergence of the el-
liptic instability spurring transition is associated with the alignment of shear-
ing and rigid rotation (θω ≈ 3◦). In this regime, the elliptic local stream-
lines in the plane of rigid rotation have aspect ratios centered about ζ ≈ 0.5.
During late transition and turbulent decay, the generation and interaction of
secondary vortical structures broadens the distribution to include larger θω,
and the equilibrium distribution is ultimately centered near θ ≈ 44◦. In this
regime, regions with high θω and high ζ become increasingly correlated as they
approach (θω, ζ) = (90◦, 1). In conjunction with our visualizations, these re-
sults suggest that proximity to vortex cores and boundaries may be a useful
tool for modeling the interplay between mechanisms such as the elliptic and
Crow instabilities. As a whole, the geometry-based phase space we introduce
has the potential to help distinguish effects associated with the elliptic in-
stability (small θω) and other mechanisms, which is an ongoing challenge for
turbulent flows driven by interacting vortex filaments [36, 57].

Moving forward, the VGT phase spaces we introduce may provide a useful
setting for analyzing a broad class of turbulent flows. For vortex ring collisions,
analyzing regimes where the Crow instability dominates the elliptic instability
would clarify the extent to which the phase spaces can disambiguate these
mechanisms. More generally, it would also be useful to identify the conditions
under which (i) the equilibrium partitioning of the VGT [66] and (ii) the
teardrop-like distribution in the q

A
− r

A
phase space [62, 63] are applicable.

The present VGT analyses are limited by the local, instantaneous nature of
the streamline geometries under consideration. It would be interesting to
generalize these analyses to capture features that are non-local and that persist
in time.

Supplementary data: Supplementary movies are available at
https://doi.org/10.1017/jfm.2024.90.
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2.A1 Computational formulation
Here, we briefly document the adaptive computational framework. We refer
to Yu et al. [99] for a detailed description of the framework and a discussion
of its novel aspects.

The non-dimensional, incompressible NSE are given by

∂tu + (u ·∇)u = −∇p + 1
Re
∇2u, ∇ · u = 0, (2.16)

where u = (u, v, w) is the velocity, p is the pressure, t denotes time, and Re is
the Reynolds number. We focus particularly on the class of unbounded flows
obeying the following far-field boundary conditions: u(x, t) → 0, p(x, t) →
p∞, and ω(x, t)→ 0 (exponentially) as |x| → ∞. These boundary conditions
differ slightly from the more generic (time-varying) free-stream conditions con-
sidered by Liska and Colonius [96]. For the present simulations, variables are
non-dimensionalized using the initial radius and circulation of each vortex ring
(R0 and Γ0, respectively) and Re is given by the initial circulation Reynolds
number (ReΓ0).

The NSE are spatially discretized on the composite grid, which contains a series
of uniform staggered Cartesian meshes with increasing resolution. Figure 2.9
depicts the locations of various vector and scalar flow variables on the cells
of these meshes. We use Q ∈ {C,F , E ,V} to denote operations that are
constrained to the corresponding locations on the cells. The semi-discrete
NSE on the composite grid are given by

du
dt
−N(u) = −Gptot + 1

Re
LFu, Du = 0, (2.17)

where we represent discretized variables and operators using sans-serif sym-
bols, which are bold in vector settings and non-bold in scalar settings. Here, G,
D, L, and N represent the discrete forms of the gradient, divergence, Laplace,
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Figure 2.9: Unit cells of the staggered Cartesian grid at the base and refinement
levels of the mesh, showing the locations of relevant flow variables.

and nonlinear operators, respectively. We have used the rotational form of
the convective term in (2.17) such that ptot = p + 1

2 |u|
2 discretely represents

the total pressure perturbation and N(u) = r discretely represents the Lamb
vector, r = u× ω.

The semi-discrete momentum equations, subject to the continuity constraint,
are integrated in time using the IF-HERK method [96, 99]. This method
combines an integrating factor (IF) technique for the viscous term with a
half-explicit Runge-Kutta (HERK) technique for the convective term. In the
HERK time-stepping scheme [96, 99, 107], the task of integrating (2.17) at
each time step is subdivided into Nstage stages. Using a block lower–upper (LU)
decomposition and the mimesis and commutativity properties of the relevant
operators, the subproblem associated with stage i of the HERK scheme is
formulated on the composite grid as

LCpi
tot = f i = Dr i, ui = H i

F

(
r i − Gpi

tot

)
. (2.18)

Here, H represents the IF operator and f = Dr approximately represents the
divergence of the Lamb vector. For brevity, we omit the exact dependencies
of r i on various flow variables from stages 1 to i of the HERK scheme. We
refer to the formulation in §2.4 of Yu et al. [99] for these details and for the
corresponding Butcher tableau.

While the discrete operators in (2.17) and (2.18) are formally defined on the
unbounded composite grid, they are practically applied to the finite subset
representing the AMR grid. The operator RQ restricts variables from the
composite grid (·) to the AMR grid as (̂·) = RQ ( · ). In the other direction,
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the operator PQ approximates variables on the composite grid using the values
on the AMR grid as (·) ≈ PQ(̂ · ). Using these operators, solutions to the
subproblems associated with each stage of the HERK formulation in (2.18)
can be approximated on the AMR grid.

The two steps of each subproblem in (2.18) involve (i) solving the discrete
pressure Poisson equation and (ii) applying the IF to recover the velocity. The
solution to the pressure Poisson equation on the AMR grid can be expressed
as

p̂i
tot = RCGC ∗ f i = RCL−1

C f i ≈ RCL−1
C PC f̂ i, (2.19)

where GC is the LGF and ∗ represents the discrete convolution. We efficiently
evaluate (2.19) using a fast multipole method [97, 100] that accelerates solu-
tions by incorporating summation techniques based on the fast Fourier trans-
form. This method is key to enabling the linear algorithmic complexity and
high parallel efficiency of the flow solver. The application of the IF operator
can similarly be expressed as

ûi = RFH i
F

(
r i − Gpi

tot

)
≈ RFH i

FPF

(
r̂ i − Ĝpi

tot

)
, (2.20)

where Ĝpi
tot = RCGpi

tot. The application of the IF operator represents a con-
volution with an exponentially decaying kernel and it can also be evaluated
using fast LGF techniques [96, 99].

At each time step, the simulation adapts the extent of the AMR grid and adap-
tively refines regions within the AMR grid according to the spatial adaptivity
and mesh refinement criteria, respectively. The spatial adaptivity criterion sets
the boundaries of the AMR grid to capture regions where the source of the
pressure Poisson equation exceeds a threshold, εadapt, relative to its maximum
value in the domain. In other words, the AMR grid is adaptively truncated to
capture the subset of the unbounded domain satisfying

|f (x, t)| < εadapt∥f ∥∞(t), (2.21)

where εadapt = 10−6 for the present simulation. One caveat is that the IF
convolution involves a velocity source that decays slower than vorticity. Cor-
respondingly, its evaluation requires the velocity field in a slightly extended
domain based on a cutoff distance that is selected to capture the IF kernel
with high accuracy. For the present simulation, the initial rectangular domain
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is large enough to contain as a subset the domain satisfying the adaptivity
criterion (2.21).

At each level k of the AMR grid, the mesh refinement criteria are formulated
in terms of a combined source, fk(t), which includes the source of the pressure
Poisson equation and a correction term. The correction term accounts for the
differences between the partial solutions on the coarse and fine grids and it is
evaluated using an extended region that can overlap with neighboring levels.
We refer to Yu et al. [99] for the details of its formulation and implementation,
which we omit for brevity. Using the combined source, a region is refined or
coarsened when

fk(x, t) > αNlevel−kfmax(t) or fk(x, t) < βαNlevel−kfmax(t), (2.22)

respectively, where α ∈ (0, 1) and β ∈ (0, 1) and we select α = 0.125 and
β = 0.875 for the present simulation. In these criteria, the combined source is
evaluated relative to its maximum blockwise root-mean-square (BRMS) value
computed over all blocks and previous times, which is expressed as

fmax(t) = max
τ<t

BRMS (fk(x, τ)) . (2.23)

2.A2 Instability development during transition
Whereas the short-wave elliptic instability has a wavelength of the order of the
vortex core radius, a(t), the long-wave Crow instability occurs at wavelengths
much larger than a(t) [36, 39, 55]. Here, we track the development of wave-like
instabilities around the azimuth of the ring at the reference times from Ta-
ble 2.1 associated with the transition to turbulence. Figure 2.10 shows closeups
of the vortical flow structures at these times from the auxiliary viewpoint in
Figure 2.3.

The dominant scales of the wave-like perturbations are identified by decom-
posing the flow into azimuthal Fourier modes, which are denoted using ˆ( · )
and have corresponding wavenumbers m. To obtain these Fourier modes, we
linearly interpolate the flow at the finest level of the AMR grid to a uniform
cylindrical grid. This uniform grid is discretized into Nθ = 1001 points in
the azimuthal direction and it has spacings, ∆runi = ∆zuni = 0.01, that are
consistent with that of the finest level, ∆xfine = 0.01. In the following analy-
sis, we limit our consideration to (r, z) pairs for which ⟨ω2

z⟩θ exceeds 10% of
maxr,z⟨ω2

z⟩θ, where ⟨·⟩θ denotes azimuthal averaging.
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Figure 2.10: Magnified versions of the auxiliary viewpoints in Figure 2.3 at
the reference times associated with instability growth and transition.

As depicted in Figure 2.11, we characterize instability development using two
flow variables. First, following previous studies [36, 39], we approximate the
positions, X+ and X−, of the vortex cores by identifying the locations of the
pressure minima for z > 0 and z < 0, respectively. The radial perturbations
of these cores, R+

p (θ) and R−
p (θ), about their mean radial positions, R̄+

p and
R̄−

p , characterize the interactions between the rings. We measure the strength
of the vortex core perturbations using |R̂p| = [(|R̂+

p |2 + |R̂−
p |2)/2]1/2. Second,

we consider ωz since it captures the antiparallel vortex structures that develop
around the ring during transition. The Fourier coefficient amplitudes of the
corresponding perturbations, |ω̂z|, are colored according to their displacement
from average vortex ring radius, R̄p = (R̄+

p + R̄−
p )/2.

To characterize the wavelengths of the dominant perturbations in terms of
the elliptic and Crow instabilities, we estimate the core radii, a+ and a−, of
the vortex rings at each reference time. Following McKeown et al. [39], we
fit a two-dimensional Gaussian function to the vortex core profiles, ⟨ωθ⟩θ, for
each ring. However, whereas McKeown et al. [39] estimated the core radii
by averaging the standard deviations of the Gaussian fits, σ±

min and σ±
max, we

instead estimate the core radii as a± = [(σ±
min)2 + (σ±

max)2]1/2. Our estimates
produce core radii that are consistent with the definition in (2.1) for Gaussian
vortex rings. Hence, we correctly identify a0 = 0.2 for the initial condition,
which is larger than the alternate core radius definition [39, 57] by a factor of
√

2. We compute the average slenderness ratio of the vortex rings as δ = (δ+ +
δ−)/2, where δ± = a±/R̄±

p . This definition is consistent with the Gaussian fits
we consider since the radial locations of their centroids coincide with R̄±

p to
within 0.38%. The average ratio of the perturbation wavelength to the core
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Figure 2.11: Fourier coefficient amplitudes: |ω̂z| (colored by radial displace-
ment from R̄p) and |R̂p| (black). At each of the reference times shown, δ
represents the average slenderness ratio of the vortex rings. The values of |ω̂z|
at wavenumbers pertinent to instability development are marked by symbols
and the shaded regions represent wavenumbers for which C > 10.

thickness can be expressed as C = (C+ + C−)/2, where C± = 2π/mδ±. Here,
we loosely associate C > 10 and C < 10 with the Crow and elliptic instabilities,
respectively.

At t = 0.75t∗, the wavenumber (m = 36) of the largest ω̂z perturbation corre-
sponds to C = 5.08. A similar value, C = 5.38, is obtained at t = 0.90t∗ for the
m = 52 perturbation. However, m = 76 represents the largest perturbation at
both t = 0.90t∗ and t = 0.95t∗, for which C = 3.68 and 3.97, respectively. At
each of these times, the dominant short-wave perturbations are of the order of
the core thickness. This result suggests that the corresponding development
of secondary antiparallel vortex filaments (see Figure 2.10) can be associated
with the development of the elliptic instability.

The vortex core perturbations further support the notion that the elliptic
instability is the dominant mechanism in the transitional regime. The pertur-
bations at t = 0.75t∗ are too small, relative to ∆runi = 0.01, to resolve. The
dominant core perturbations are resolved for t = 0.90t∗ and t = 0.95t∗ and,
consistent with the vorticity perturbations, they are largest at m = 52 and
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m = 76. For both ω̂z and R̂p, we also observe prominent perturbations at
m = 80, but we do not speculate on their source.

For a similar vortex ring collision with ReΓ0 = 3500 and δ0 = 0.1, Mishra et al.
[36] attributed the growth of the m = 40 mode to the elliptic instability in a
regime where 2πRp(t)/m ≈ 0.2 − 0.4. Employing a crude volume-conserving
approximation for the vortex cores [36, 39], the core radii can be modeled as
a± = a0

√
R0/R±

p , which suggests that C ≈ 2.26− 6.38 in that regime. Hence,
the scales of the dominant perturbations relative to the core thickness in the
present case are consistent with those previously attributed to the elliptic
instability in a similar collision.

At t = t∗, we remarkably observe that the dominant ω̂z perturbation occurs
at m = 152, which is the second harmonic of the m = 76 perturbation that
governed the generation of secondary vorticity. This observation suggests that
the elliptic instability retains an important role in mediating the production
of subsequent generations of vortical structures at progressively smaller scales.
It thus qualitatively supports the initial stages of iterative elliptic instability
scenario leading to the generation of turbulence [39]. Identifying the later
stages of this pathway would require a more refined analysis of the orientation
of each generation of vortices relative to previous generations.

Although perturbations for which C > 10 are non-negligible, their signatures
in ω̂z are not as prominent as those for which C < 10. This observation
supports the notion that the Crow instability plays a secondary role to the
elliptic instability in the transitional regime, consistent with previous studies
in similar configurations [36, 39]. Nevertheless, especially as the flow becomes
turbulent, the broadening range of active scales obscures the interplay be-
tween these mechanisms. As this occurs, the vortex core perturbations gain
significant energy at lower wavenumbers (C > 10), indicating that long-wave
mechanisms like the Crow instability may become important. Altogether,
while relatively limited, the present analysis of instability development con-
firms the preeminence of the elliptic instability during transition and supports
our interpretation of the corresponding velocity gradients.

2.A3 Shear–rotation correlations and vortical flow structures
The visualizations in Figure 2.3 help identify antiparallel vortex filaments and
interactions between vortices, but the comparisons between the vortex bound-
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ary (Ωr = 0.52) and core (Ωr = 0.93) structures provide relatively little infor-
mation. In Figure 2.12, we visualize the same vortex structures but instead
color them using 2φ̇:γ̇/W̃ 2 to probe how conditions conducive to the elliptic
instability are structured throughout the vortices in the flow.

As the vortex boundaries merge and expand radially, the shear–rotation cor-
relations are relatively large at the collision plane and the outer boundaries
in z and they are relatively small at the inner and outer boundaries in the
radial direction. This structuring illustrates how shear–rotation correlations
are especially enhanced in regions where the vortex boundaries become thin-
ner, corresponding to the shift from a rigid-rotation-dominated regime to a
shearing-dominated regime. During transition, the secondary vortex filaments
are initially associated with relatively high and low shear–rotation correlations
near their boundaries and cores, respectively. As the turbulence develops, this
structuring of 2φ̇ : γ̇/W̃ 2 within the vortices remains similar to that of the
secondary vortices mediating transition.

This persistent partitioning opens up an interesting possibility of analyzing
the action of various mechanisms (e.g. the elliptic and Crow instabilities) in
turbulent flows based on their proximity to vortex cores. For example, the
phase space transformations in §2.5 can be used to characterize local stream-
line geometries throughout vortices using the structure of the shear–rotation
correlations. Consistent with the transformations depicted in Figure 2.8, our
results suggest that local streamlines are more elliptic near vortex boundaries
and more circular near vortex cores. This conceptual picture is consistent with
the notion that the breakup and displacement of vortex core structures can be
loosely associated with the elliptic and Crow instabilities, respectively.

2.A4 Effect of shear–rotation alignment
Here, we characterize the effect of the alignment between shearing and rigid
rotation, as measured by θω, on the phase space transformations associated
with rotational local streamline geometries. Figure 2.13 depicts how the cor-
responding transformations vary with θω in the q

A
− r

A
phase space. When

θω = 90◦, shearing and rigid rotation occur in orthogonal planes. In this case,
2φ̇:γ̇ = 0, ζ = 1, and the region where φ̇2 dominates A2 extends the furthest
from the external boundary of the phase space. When θω = 45◦, the regions
where φ̇2 and ζ are large concentrate more sharply near the external bound-
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Figure 2.12: Visualizations of the vortex boundaries (Ωr = 0.52, left side) and
vortex cores (Ωr = 0.93, right side), colored by 2φ̇:γ̇/W̃ 2, for each reference
time from Table 2.1. A movie depicting the evolution of the vortex boundaries
from the auxiliary viewpoint (leftmost column) is provided as supplementary
material.
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Figure 2.13: Transformations to φ̇2, 2φ̇:γ̇, and ζ from the q
A
− r

A
phase space

for various alignment angles, θω. The plots are in the same style as those in
Figure 2.6.

ary and 2φ̇:γ̇ grows in the intermediate region between the boundaries of the
rotational geometries. The concentration of φ̇2 and ζ and the amplification of
2φ̇:γ̇ are most extreme when θω = 0◦. In this case, the peak contribution of
2φ̇ : γ̇ is (

√
2 + 1)−1 [66] and, for all θω < 90◦, it occurs when r

A
= 0. The

location of this maximum approaches q
A
→ 1

4 as θω → 90◦ and q
A
→ 1

2
√

2 as
θω → 0◦. The qualitative features of the distributions vary more significantly
from θω = 90◦ to θω = 45◦ than they do from θω = 45◦ to θω = 0◦.
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C h a p t e r 3

VELOCITY GRADIENT PARTITIONING IN TURBULENT
FLOWS

This chapter consists of the following published journal article.

1Arun, R. and Colonius, T. Velocity gradient partitioning in turbulent flows.
J. Fluid Mech. 1000, R5 (2024).

Abstract
The velocity gradient tensor can be decomposed into normal straining, pure
shearing, and rigid rotation tensors, each with distinct symmetry and normal-
ity properties. We partition the strength of turbulent velocity gradients based
on the relative contributions of these constituents in several canonical flows.
These flows include forced isotropic turbulence, turbulent channels, and tur-
bulent boundary layers. For forced isotropic turbulence, the partitioning is in
excellent agreement with previous results. For wall-bounded turbulence, the
partitioning collapses onto the isotropic partitioning far from the wall, where
the mean shearing is relatively weak. By contrast, the near-wall partitioning is
dominated by shearing. Between these two regimes, the partitioning collapses
well at sufficiently high friction Reynolds numbers and its variations in the
buffer layer and the log-law region can be reasonably modeled as a function of
the mean shearing strength. Altogether, our results highlight the expressivity
and broad applicability of the velocity gradient partitioning as advantages for
turbulence modeling.

https://doi.org/10.1017/jfm.2024.1021
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3.1 Introduction
Identifying universal features of turbulent flows is a longstanding motif in tur-
bulence modeling. Kolmogorov’s local isotropy and similarity hypotheses [1]
and their refinements [2, 3] suggest that small-scale flow statistics are approxi-
mately isotropic at sufficiently high Reynolds numbers, irrespective of the flow
structure at large scales. Velocity gradients provide a useful testbed for in-
vestigating these hypotheses since they describe fundamental statistical and
structural features of small-scale turbulence [4, 5]. For example, Johnson et
al. [6] found support for the local isotropy hypothesis sufficiently far from the
wall in a turbulent channel using velocity gradient statistics related to vortex
stretching. Aiming to inform turbulence modeling efforts, the present study
evaluates velocity gradient statistics in various wall-bounded flows relative to
their isotropic values using a recently developed normality-based analysis.

Decomposing the velocity gradient tensor (VGT) based on its symmetry and
normality properties distinguishes contributions from three distinct modes of
deformation. These modes of deformation are normal straining, rigid rota-
tion, and pure shearing. Originally, these modes were determined by applying
a ‘triple decomposition’ of the VGT in a ‘basic’ reference frame where the
effects of pure shearing can be extracted as a purely asymmetric tensor [7].
While identifying such a frame originally required solving challenging point-
wise optimization problems, more computationally practical approaches based
on the real Schur decomposition of the VGT have been developed recently [8–
10]. We adopt this more recent normality-based triple decomposition, which
identifies normal straining as symmetric and normal, rigid rotation as antisym-
metric and normal, and pure shearing as strictly non-normal. A complex Schur
decomposition has also been used [11], but its relationship to basic reference
frames in physical space is less clear [12].

Partitioning the strength of the VGT based on its triple decomposition pro-
vides an expressive description of flow features. For example, the contribution
of rigid rotation has been used to identify vortices [8, 9, 13] and that of shear-
ing has been found to leave a strong imprint on extreme velocity gradients
associated with intermittency [14]. The interplay between shearing and rigid
rotation has been used to characterize the transition and turbulent decay of
colliding vortex rings mediated by the elliptic instability [15]. The original
triple decomposition of the VGT [7] has also been used to analyze the statis-
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tical and structural imprint of turbulent shearing [16–18]. A theme of these
works is the association of shearing with sheet-like vorticity and rigid rotation
with tube-like vorticity.

Das and Girimaji [14] showed that the velocity gradients in forced isotropic
turbulence converge to a specific partitioning at high Taylor-scale Reynolds
numbers. More recently, Arun and Colonius [15] found that the decaying
turbulent cloud produced by a vortex ring collision follows a similar partition-
ing. However, the spatial development in flows such as wakes, axisymmetric
jets, and mixing layers has been associated with enhanced contributions of
non-normal velocity gradients [19].

Using the normality-based triple decomposition, we partition the strength of
velocity gradients in forced isotropic turbulence, turbulent channels, and tur-
bulent boundary layers. The partitioning framework is presented in §3.2 and
the turbulence datasets we analyze are reported in §3.3. We establish the
isotropic partitioning in §3.4 and thereafter discuss how the partitioning is
modified for wall-bounded turbulence in §3.5, emphasizing the role of the
mean shearing and the friction Reynolds number.

3.2 Partitioning framework
The VGT, A = ∇u, can be expressed in its principal reference frame, denoted
by (·)∗, as A∗ = QAQT, where Q is unitary and (·)T represents the transpose.
In this frame, the VGT is quasi-triangular and it can be decomposed as

A∗ =


ϵ̇∗

1 0 0
0 ϵ̇∗

2 0
0 0 ϵ̇∗

3


︸ ︷︷ ︸

A∗
ϵ

+


0 0 0
0 0 φ̇∗

1

0 −φ̇∗
1 0


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A∗
φ

+


0 γ̇∗

3 γ̇∗
2

0 0 γ̇∗
1

0 0 0


︸ ︷︷ ︸

A∗
γ

, (3.1)

where A∗
ϵ , A∗

φ, and A∗
γ denote the normal straining, rigid rotation, and pure

shearing tensors, respectively. These tensors can be determined and trans-
formed to the original coordinate system using the ordered real Schur decom-
position of A [12].

Correspondingly, the strength of the velocity gradients can be expressed as

A2 = tr
(
ATA

)
= tr

(
AT

ϵ Aϵ

)
︸ ︷︷ ︸

A2
ϵ

+ tr
(
AT

φAφ
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φ

+ tr
(
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γ Aγ

)
︸ ︷︷ ︸

A2
γ

+ 2tr
(
AT

φAγ

)
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A2
φγ

, (3.2)
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where tr(·) represents the trace. The first three terms represent the strengths
of the constituents in (3.1) and the last term represents the interaction between
shearing and rigid rotation. The velocity gradient partitioning is defined in
terms of the relative contributions of these constituents to A2. In normal-
ized form, these contributions are bounded as A2

ϵ/A2 ∈ [0, 1], A2
φ/A2 ∈ [0, 1],

A2
γ/A2 ∈ [0, 1], and A2

φγ/A2 ∈ [0, (
√

2 + 1)−1] [14].

Ensemble averaging can be used to characterize the statistical relevance of the
contributions in this partitioning. We define the averaged partitioning as

⟨A2
ζ⟩A2 = ⟨A2

ζ⟩
/
⟨A2⟩, ζ ∈ {ϵ, φ, γ, φγ}, (3.3)

where ⟨(·)⟩ denotes averaging over homogeneous spatial directions and time.
The present study focuses on this averaged partitioning, which can be used to
characterize contributions to enstrophy and dissipation [14, 15].

The practical relevance of the partitioning is tied, in part, to its ability to
inform modeling efforts, including for non-canonical flows. Some modeling
paradigms, such as large-eddy simulations (LES) and Lagrangian approaches,
operate on the basis of the total velocity. Other paradigms, such as the
Reynolds-averaged Navier–Stokes (RANS) equations and input-output analy-
ses, operate on the basis of the velocity fluctuations. In these contexts, it is
therefore important to distinguish the partitioning of the total velocity gra-
dients from the partitioning of the velocity gradient fluctuations, which we
denote as ⟨A2

ζ⟩A2 and ⟨A2
ζ⟩′A2 , respectively. This distinction is particularly rel-

evant since the normality-based triple decomposition does not generally com-
mute with filtering or averaging operations. Physically, the modes of defor-
mation for the total partitioning reflect what a fluid parcel would actually
experience. By contrast, the modes for the fluctuation partitioning reflect
what it would experience if advected only by the velocity fluctuations. We
consider both the total partitioning and the fluctuation partitioning for the
wall-bounded flows in the present study.

3.3 Turbulence datasets
As summarized in Table 3.1, we analyze the partitioning in several well-
validated turbulence datasets obtained from direct numerical simulations. These
datasets include forced isotropic turbulence (FIT315 and FIT610) and wall-
bounded turbulence (Ch0186, Ch1000, BL0729, and BL1024) over a broad
range of Reynolds numbers. Cases FIT610 and Ch1000 are obtained from the



70
Case Configuration Reynolds number Grid size Nt Reference

FIT315 Forced isotropic Reλ ≈ 315 (1024, 1024, 1024) 67 Cardesa et al. [20]
FIT610 Forced isotropic Reλ ≈ 610 (4096, 4096, 4096) 1 Yeung et al. [21]
Ch0186 Channel Reτ ≈ 186 ( 32, 129, 32) 55 925 Arun et al. [22]
Ch1000 Channel Reτ ≈ 1000 (2048, 512, 1536) 40 Graham et al. [23]
BL0729 Boundary layer Reτ ≈ 292−729 (2049, 90, 256) 10 000 Towne et al. [24]
BL1024 Boundary layer Reτ ≈ 481−1024 (4097, 90, 512) 1500 Towne et al. [24]

Table 3.1: Turbulence datasets considered in the present analyses. Taylor-
scale and friction Reynolds numbers are denoted by Reλ and Reτ , respectively,
and Nt denotes the number of snapshots. The grid sizes correspond to the
streamwise (x), wall-normal (y), and spanwise (z) directions, respectively.

Johns Hopkins Turbulence Databases [25] and Ch0186 represents a minimal
flow unit for near-wall turbulence [26]. The references in Table 3.1 provide
further computational details and validation for each dataset.

We establish the isotropic partitioning using FIT610 and test its sensitivity to
Reλ using FIT315. The snapshots for FIT315 are spaced roughly one integral
time unit apart and Nt is selected to produce a similar number of samples to
FIT610. We use Ch1000 to characterize the partitioning in a turbulent chan-
nel at a moderate Reτ . Its snapshots are spaced roughly 0.65 eddy turnover
time units apart and they span roughly one flow-through time unit [23]. Case
Ch0186 allows us to investigate how the wall-bounded partitioning changes
when Reτ is barely large enough to sustain turbulence. Its snapshots span
roughly 160 eddy turnover time units. We use BL0729 and BL1024 to further
characterize the partitioning for wall-bounded turbulence subject to mild spa-
tial development. Their broad ranges of Reτ allow us to characterize how the
partitioning evolves as the flows become increasingly turbulent. The snapshots
for BL0729 and BL1024 span more than 20 and 7 eddy turnover time units,
respectively [24].

When computing the VGT, we adopt the differentiation techniques employed
in the original simulations where possible. We further require that all elements
of the VGT be collocated prior to partitioning. For FIT315 and FIT610,
we use a spectral method to compute all velocity gradients. For Ch0186,
we use the second-order accurate staggered finite differences employed in the
original simulation and subsequently shift staggered quantities to cell centers.
This shifting is performed by adjusting the phases of the Fourier modes in
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Case ∆iso|∆′

iso ⟨A2
ϵ⟩A2 ⟨A2

φ⟩A2 ⟨A2
γ⟩A2 ⟨A2

φγ⟩A2 ⟨A2
ϵ⟩′A2 ⟨A2

φ⟩′A2 ⟨A2
γ⟩′A2 ⟨A2

φγ⟩′A2

FIT315 0.2%|0.2% 0.239 0.106 0.521 0.134 0.239 0.106 0.521 0.134
FIT610 − | − 0.240 0.106 0.520 0.134 0.240 0.106 0.520 0.134
Ch0186 5.0%|5.0% 0.250 0.090 0.535 0.125 0.250 0.090 0.535 0.125
Ch1000 0.4%|0.4% 0.242 0.105 0.519 0.134 0.242 0.105 0.519 0.134
BL0729 1.2%|1.0% 0.242 0.101 0.524 0.133 0.245 0.104 0.517 0.134
BL1024 0.8%|0.6% 0.239 0.102 0.523 0.136 0.242 0.104 0.518 0.136

Table 3.2: Velocity gradient partitioning for each flow and the corresponding
deviation metrics. The partitioning is reported at the channel centerline for
Ch0186 and Ch1000 and at (Reτ , y+) ≈ (729, 159) and (1000, 155) for BL0729
and BL1024, respectively. The column shadings reflect our partitioning color
scheme.

x and z and by averaging adjacent values in y [22]. For Ch1000, we use a
spectral method in x and z and collocated finite differences with a stencil size
of Ns = 7 in y. The original BL0729 and BL1024 simulations employed second-
order accurate staggered finite differences; however, the published datasets are
collocated and subsampled by a factor of two in y and z [24]. As a result, we
employ collocated finite differences with Ns = 3 in x and y. Since the z

direction has periodic boundary conditions, we compute spanwise derivatives
using a spectral method with the modified wavenumbers associated with the
original staggered finite difference scheme.

3.4 Partitioning in nearly isotropic turbulence
The isotropic velocity gradient partitioning characterizes the contributions of
Aϵ, Aφ, and Aγ in the idealized setting of forced isotropic turbulence. It has
been established previously for Reλ ≈ 1−588 [14] and is roughly invariant for
Reλ ≳ 200. Here, we use FIT610 to confirm this isotropic partitioning, which
we denote by ⟨A2

ζ⟩iso
A2 . We characterize deviations from this partitioning using

the following metric:

∆iso =
∑

ζ∈{ϵ,φ,γ,φγ}

∣∣∣∣⟨A2
ζ⟩A2 − ⟨A2

ζ⟩iso
A2

∣∣∣∣
/ ∑

ζ∈{ϵ,φ,γ,φγ}

∣∣∣∣⟨A2
ζ⟩iso

A2

∣∣∣∣, (3.4)

in which the denominator sums to unity. An analogous metric, ∆′
iso, is defined

for the fluctuation partitioning by replacing ⟨A2
ζ⟩A2 with ⟨A2

ζ⟩′A2 in (3.4). One
advantage of these metrics is that they are not affected by further decom-
posing Aγ into its symmetric and antisymmetric parts. In the present study,
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they produce results similar to those produced by relative root-mean-square
deviations, which are more commonplace.

Table 3.2 shows the partitioning alongside the deviation metrics for each
dataset. Consistent with previous results [14], the FIT315 partitioning is
nearly identical to the FIT610 partitioning. For the wall-bounded flows, the
partitioning is taken from regions where the mean shearing is relatively weak.
Further, for the boundary layers, it is taken sufficiently far from the boundary-
layer thickness to mitigate the imprint of the exterior potential flow.

The partitioning in the selected regions of Ch1000, BL0729, and BL1024 is
remarkably similar to the isotropic partitioning, with deviations of 1.2% or less.
Since the mean flow has a minimal imprint on the velocity gradients in these
regions, the total partitioning is quite similar to the fluctuation partitioning.
These results highlight that the isotropic partitioning is broadly applicable in
appropriate regions of inhomogeneous turbulent flows.

3.5 Partitioning in wall-bounded turbulence
3.5.1 Effect of mean shearing
The velocity gradient partitioning in wall-bounded turbulence is heavily in-
fluenced by the mean shearing imposed by the wall. Figure 3.1 shows the
partitioning profiles as a function of both wall-normal location (in inner units)
and mean shearing strength. Consistent with Table 3.2, the partitioning ap-
proaches the isotropic values far from the wall1, starting near the top of the
log-law region. However, the boundary-layer partitioning begins to diverge
from these values near the edge of the boundary layer, reflecting the transition
to a potential flow. Beyond the boundary-layer thickness (not shown), this
transition is associated with monotonic enhancement of normal straining and
decay of the other constituents. As observed in Table 3.2, the Ch0186 par-
titioning does not converge as well onto the isotopic values since it is barely
turbulent. The partitioning throughout this minimal channel is generally as-
sociated with enhanced contributions from shearing.

For all wall-normal profiles in Figure 3.1, the near-wall partitioning is domi-
nated by shearing. This feature reflects the strong imprint of the mean shearing
on the near-wall velocity gradients. The imprint of the mean shearing is also
responsible for the enhanced contribution of shearing (at the expense of the
other constituents) to the total partitioning relative to the fluctuation parti-

1The partitioning far from the wall reflects small-scale isotropy associated with velocity
gradients and does not preclude the development of large-scale anisotropy (e.g., in the
velocity fluctuation statistics).
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Figure 3.1: Total (a,c,e) and fluctuation (b,d,f ) partitioning profiles for the
channels and boundary layers in terms of wall-normal location in inner units
(a,b) and mean shearing strength (c–f ). The vertical lines represent the
isotropic values. The BL0729 and BL1024 profiles are shown for Reτ ≈ 729
and 1000, respectively, and the top boundary of the log-law region represents
Ch1000. The dashed white lines in (a,b) represent the locations of the par-
titioning values reported in Table 3.2 for BL0729 and BL1024. In (a,b), the
markers are used to distinguish between the profiles and, in (c–f ), they repre-
sent actual data points. In (c–f ), the mean shearing axis is reversed and the
dashed lines represent comparable linear–log trends for each dataset, with the
partitioning as the dependent variable.
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tioning for y+ ≲ 20. Between the near-wall regime and the nearly isotropic
regime far from the wall, the collapse of the partitioning profiles is particu-
larly striking for BL0729, BL1024, and (to a lesser extent) Ch1000. The most
significant differences between the channel and boundary-layer profiles occur
in the buffer layer. For the channels, the contributions of shearing and normal
straining in this region are enhanced and reduced, respectively, relative to their
contributions in the boundary layers. While beyond the scope of the present
work, characterizing how the flow structures in the buffer layer reflect these
differences (e.g. through the imprint of the exterior potential flow) would be
interesting future work.

The mean shearing strength profiles in Figure 3.1 provide a complementary
view to the wall-normal profiles. The mean shearing strength parameter is
normalized as Ā2

γ/Ā2
γ,w, where Ā2

γ,w represents the (maximum) value at the
wall. This parameter quantifies the effect of the wall in terms of velocity
gradients and can be determined directly from the mean flow. Further, for the
channels and boundary layers we consider, it can be well-approximated using
the wall-normal gradient of the mean streamwise velocity, ∂ū/∂y. For these
profiles, we focus primarily on the buffer layer and log-law region since they
capture the majority of the evolution from the near-wall regime to the nearly
isotropic regime. As observed for the wall-normal profiles, the partitioning in
these regions collapses very well as a function of the mean shearing strength
for BL0729, BL1024, and (to a lesser extent) Ch1000.

The partitioning in wall-bounded flows becomes similar to the isotropic par-
titioning when Ā2

γ/Ā2
γ,w ≲ 10−3. The dashed lines in Figure 3.1 illustrate the

similarity of the partitioning profiles to linear–log variations with the mean
shearing strength for 10−3 ≲ Ā2

γ/Ā2
γ,w ≲ 10−1. The slopes of these variations

for the total partitioning are slightly steeper than those for the fluctuation
partitioning due to the enhanced contribution from the mean shearing for
Ā2

γ/Ā2
γ,w ≳ 10−1. The slopes for shearing and normal straining tend to be sim-

ilar in magnitude and steeper than those of rigid rotation and shear-rotation
interactions. This feature mirrors the relative contributions in the isotropic
partitioning, for which ⟨A2

ϵ⟩iso
A2 ∼ 1

2⟨A
2
γ⟩iso

A2 ∼ ⟨A2
φ⟩iso

A2 + ⟨A2
φγ⟩iso

A2 .

More rigorous modeling approaches may help enable predictions of the parti-
tioning profiles in terms of mean flow variables. While we do not propose an
explicit model for these profiles in the present study, our analysis suggests that
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Figure 3.2: Streamwise development of BL0729 (a,b) and BL1024 (c,d) in
terms of Reτ , where the color axis represents Ā2

γ/Ā2
γ,w. The white, gray, and

black contours represent ∆iso = 1%, ∆iso = 2%, and ∆iso = 5%, respectively,
for the total partitioning (a,c) and ∆′

iso = 1%, ∆′
iso = 2%, and ∆′

iso = 5%,
respectively, for the fluctuation partitioning (b,d). The dashed and dash-
dotted black lines represent the top of the viscous sublayer (y+ = 5) and the
top of the buffer layer (y+ = 30), respectively, and the dotted black lines
represent y+ = 100 and y+ = 150. The black circles represent the locations of
the partitioning values reported in Table 3.2 and δ represents the boundary-
layer thickness.

both y+ and the mean shearing are appropriate for modeling the partitioning
and sufficiently high Reτ . Beyond mean flow variables, characterizing how the
strength of the velocity gradient fluctuations relative to the mean shearing
strength impacts these profiles may provide further insight.

The pronounced, roughly monotonic variations of the normality-based parti-
tioning profiles strikingly capture the development from the near-wall regime
to the nearly isotropic regime far from the wall. By contrast, as depicted and
discussed in Appendix 3.A1, the variations for the symmetry-based partition-
ing are non-monotonic and do not exceed ±0.02 of their isotropic values in
the regimes of interest. Supplemented by previous findings [15], these results
highlight that the expressivity of the normality-based partitioning provides a
key advantage over considering symmetry alone.

3.5.2 Effect of friction Reynolds number
Beyond wall-normal variations, the streamwise spatial development in the
boundary layers is associated with increasing Reτ . Figure 3.2 shows how the
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region where the isotropic partitioning is applicable evolves as a function of
Reτ . For BL0729, this region grows appreciably in size as Reτ increases. The
same is true to a lesser extent for BL1024, where the turbulence is more well-
developed throughout the domain. The ∆iso and ∆′

iso contours identify regions
where the isotropic partitioning is most applicable. Throughout BL1024 and
at the downstream end of BL0729, it is most applicable around y+ ≈ 170 and
y+ ≈ 140 for the total and fluctuating velocity gradients, respectively. The
domain of applicability of the isotropic partitioning is slightly larger for the
velocity fluctuations than for the total velocity.

Except at the upstream end of BL0729, ∆iso and ∆′
iso are less than roughly

5% for y+ ≳ 100. Alongside Figure 3.1, these results complement the findings
of Johnson et al. [6], which suggest that velocity gradient statistics associated
with vortex stretching approach their isotropic values for y+ ≳ 100. Therefore,
our results further support their conclusion that this collapse provides support
for the local isotropy hypothesis sufficiently far from the wall.

The inner unit scaling of this collapse contrasts with the boundary-layer thick-
ness, which scales in outer units and captures the divergence from the isotropic
partitioning near the free stream. Our results therefore suggest that, while in-
ner unit scalings can be used to determine when the partitioning approaches
the isotropic values, outer unit scalings may more appropriately capture the
divergence to a potential flow in the boundary layers. They further suggest
that Reτ ≳ 700 is a reasonable regime in which to expect a collapsed partition-
ing. This estimate is consistent with the collapse of the partitioning profiles
for BL0729, BL1024, and (to a lesser extent) Ch1000 as well as the lack of
collapse for Ch0186 in Figure 3.1.

3.6 Concluding remarks
We have analyzed the normality-based partitioning of velocity gradients in
several canonical turbulent flows. The partitioning we compute for forced
isotropic turbulence agrees well with previous results [14]. Moreover, we show
that the isotropic partitioning also applies to velocity gradients near and be-
yond the top of the log-law region in wall-bounded flows over a broad range of
Reτ . The broad applicability of the isotropic partitioning for y+ ≳ 100 com-
plements previous results [6], thereby providing further support for the local
isotropy hypothesis for well-developed turbulence far from solid boundaries.
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Our results suggest that Reτ ≳ 700 is sufficiently high to expect the partition-
ing profiles to collapse as they transition from the shearing-dominated near-
wall regime to the nearly isotropic regime. Further, the mean shearing provides
a reasonable mean flow parameter for modeling their variations in the buffer
layer and the log-law region. Altogether, our results highlight expressivity
as a key advantage of the normality-based partitioning over symmetry-based
approaches.

Moving forward, analyzing the partitioning profiles at higher Reτ would help
further characterize their sensitivity and collapse for wall-bounded flows. De-
veloping more rigorous models for the partitioning in terms of mean flow vari-
ables would also be useful, especially models that do not depend strongly on
the flow configuration. The partitioning may aid turbulence modeling efforts
in RANS, LES, Lagrangian, or input-output settings, e.g. by directly inform-
ing closure models or by providing an evaluation metric for models of interest.
Finally, connecting the statistical features we report to the turbulence struc-
tures that produce them would provide an enhanced view of the roles of the
partitioning constituents.
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3.A1 Symmetry-based partitioning profiles
The standard symmetry-based decomposition of the VGT identifies the strain-
rate tensor as S = 1

2(A+AT) and the vorticity tensor as W = 1
2(A−AT). These

tensors can be expressed in terms of the normality-based triple decomposition
of the VGT as S = Aϵ + Sγ and W = Aφ + Wγ, where Sγ = 1

2(Aγ + AT
γ ) and

Wγ = 1
2(Aγ − AT

γ ).

Using the definition in (3.3), the symmetry-based partitioning characterizes the
relative contributions of the strain-rate and vorticity tensors to the velocity
gradient strength. In isotropic turbulence, these contributions are equiparti-

https://doi.org/10.22002/17h15-gr910
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Figure 3.3: Symmetry-based total (a) and fluctuation (b) partitioning profiles
for the channels and boundary layers in terms of wall-normal location in inner
units. The plots are in the same style as those in Figure 3.1.

tioned as ⟨S2⟩A2 = ⟨W 2⟩A2 = 0.500. Figure 3.3 shows the symmetry-based
partitioning profiles for the wall-bounded flows we consider. Except near the
potential flow regime of the boundary layers, these profiles do not deviate more
than ±0.02 from the isotropic values for both the total and fluctuating veloc-
ities. Further, unlike the normality-based partitioning profiles in Figure 3.1,
the symmetry-based profiles do not vary monotonically with y+. These re-
sults show that the normality-based partitioning is significantly more expres-
sive of the spatial variations in turbulence characteristics from the near-wall
regime to the nearly isotropic regime. This finding complements the results
of Arun and Colonius [15], which show that the normality-based partition-
ing is more expressive than the symmetry-based partitioning in capturing the
temporal evolution of a vortex ring collision, including its transition and tur-
bulent decay. Together, these results highlight the superior expressivity of the
normality-based partitioning.
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C h a p t e r 4

NORMALITY-BASED ANALYSIS OF MULTISCALE
VELOCITY GRADIENTS AND ENERGY TRANSFER IN

DIRECT AND LARGE-EDDY SIMULATIONS OF
ISOTROPIC TURBULENCE

This chapter consists of the following published journal article.
1Arun, R., Kamal, M., Colonius, T., and Johnson, P.L. Normality-based
analysis of multiscale velocity gradients and energy transfer in direct and
large-eddy simulations of isotropic turbulence. J. Fluid Mech. 1021, A47
(2025).

Abstract
Symmetry-based analyses of multiscale velocity gradients highlight that strain
self-amplification and vortex stretching drive forward energy transfer in tur-
bulent flows. By contrast, a strain–vorticity covariance mechanism produces
backscatter that contributes to the bottleneck effect in the subinertial range
of the energy cascade. We extend these analyses by using a normality-based
decomposition of filtered velocity gradients in forced isotropic turbulence to
distinguish contributions from normal straining, pure shearing, and rigid rota-
tion at a given scale. Our analysis of direct numerical simulation (DNS) data
illuminates the importance of shear layers in the inertial range and (especially)
the subinertial range of the cascade. Shear layers contribute significantly to
strain self-amplification and vortex stretching and play a dominant role in
the backscatter mechanism responsible for the bottleneck effect. Our concur-
rent analysis of large-eddy simulation (LES) data characterizes how different
closure models affect the flow structure and energy transfer throughout the
resolved scales. We thoroughly demonstrate that the multiscale flow features
produced by a mixed model closely resemble those in a filtered DNS, whereas
the features produced by an eddy viscosity model resemble those in an un-
filtered DNS at a lower Reynolds number. This analysis helps explain how
small-scale shear layers, whose imprint is mitigated upon filtering, amplify the
artificial bottleneck effect produced by the eddy viscosity model in the inertial
range of the cascade. Altogether, the present results provide a refined inter-
pretation of the flow structures and mechanisms underlying the energy cascade
and insight for designing and evaluating LES closure models.
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4.1 Introduction
Small-scale flow features form a cornerstone of efforts to understand and model
turbulent flows [1–5]. The velocity gradient tensor (VGT), Aij = ∂ui/∂xj,
is central to our understanding of small-scale turbulence since it encodes a
linear approximation of the local flow structure about critical points [6] and
underpins descriptions of fundamental dynamical mechanisms [7, 8].

4.1.1 Normality-based analysis of velocity gradients in turbulent
flows

Conventionally, the VGT is decomposed as

Aij = Sij + Ωij, (4.1)

where Sij = 1
2(Aij + Aji) is the (symmetric) strain-rate tensor and Ωij =

1
2(Aij − Aji) is the (antisymmetric) vorticity tensor. This symmetry-based
decomposition forms the basis for mechanisms like strain self-amplification
and vortex stretching, vortex identification criteria like Q [9] and λ2 [10], and
alignment analyses in the strain-rate eigenframe [11, 12]. However, despite
its ubiquity, the symmetry-based decomposition provides relatively limited
insight into local flow structure.

A more detailed description can be obtained by analyzing the normality prop-
erties of the VGT. These properties can be identified by considering a ‘prin-
cipal’ reference frame, denoted by (·)∗, in which the VGT obtains a quasi-
triangular form. This form can be expressed as A∗

ij = UikAkmUjm, where Uij

is an orthogonal matrix that can be interpreted as a rotation of the local co-
ordinate axes in physical space. In this principal frame, the normality-based
decomposition of the VGT can be expressed as

A∗
ij =


ϵ̇∗

1 0 0
0 ϵ̇∗

2 0
0 0 ϵ̇∗

3


︸ ︷︷ ︸

Sϵ∗
ij

+


0 γ̇∗

3 γ̇∗
2

0 0 γ̇∗
1

0 0 0


︸ ︷︷ ︸

Aγ∗
ij

+


0 0 0
0 0 φ̇∗

1

0 −φ̇∗
1 0


︸ ︷︷ ︸

Ωφ∗
ij

, (4.2)

where Sϵ∗
ij , Aγ∗

ij , and Ωφ∗
ij denote the normal straining, pure shearing, and rigid

rotation tensors, respectively. The normal straining tensor is symmetric and
normal whereas the rigid rotation tensor is antisymmetric and normal. The
pure shearing tensor is non-normal and it can be further decomposed into the
(symmetric) shear straining tensor, Sγ

ij = 1
2(Aγ

ij+Aγ
ji), and the (antisymmetric)
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shear vorticity tensor, Ωγ
ij = 1

2(Aγ
ij −Aγ

ji). Therefore, (4.2) can be viewed as a
refinement of (4.1) since Sij = Sϵ

ij +Sγ
ij and Ωij = Ωφ

ij +Ωγ
ij. The tensors in (4.2)

can be determined and transformed to the original coordinate system using
the ordered real Schur form of the VGT [13]. Arun and Colonius [14] provided
an instructional code for implementing the normality-based decomposition,
which is available at https://doi.org/10.22002/17h15-gr910.

Identifying a frame in which normal straining, pure shearing, and rigid rotation
can be distinguished is a key advantage of the normality-based decomposition.
Kolář [15, 16] originally distinguished these motions by identifying a ‘basic’
reference frame in which pure shearing is extracted as a purely asymmetric
tensor. While that approach typically produces results similar to the present
normality-based decomposition, it requires solving a more challenging point-
wise optimization problem that may yield non-unique solutions. Some related
studies [17–21] analyze the normality properties of the VGT using its complex
Schur form, which is triangular (as opposed to quasi-triangular). While that
approach resembles our approach for locally non-rotational points, where the
VGT has three real eigenvalues, it differs from our approach for locally rota-
tional points, where the VGT has a pair of complex conjugate eigenvalues. In
the latter case, the complex Schur form requires a complex transformation ma-
trix that cannot be interpreted in physical space. Regardless of the differences
in these approaches, the results produced by the original triple decomposition
and the complex Schur form motivate and complement those produced by the
present normality-based framework.

The flow statistics associated with the normality-based decomposition of the
VGT concisely express key features of small-scale turbulence. For example,
the strength of velocity gradients can be partitioned as

A2 = AijAij = Sϵ
ijS

ϵ
ij︸ ︷︷ ︸

S2
ϵ

+

A2
γ︷ ︸︸ ︷

Sγ
ijS

γ
ij︸ ︷︷ ︸

S2
γ

+ Ωγ
ijΩ

γ
ij︸ ︷︷ ︸

Ω2
γ

+ Ωφ
ijΩ

φ
ij︸ ︷︷ ︸

Ω2
φ

+ 2Ωφ
ijΩ

γ
ij︸ ︷︷ ︸

Ω2
φγ

, (4.3)

where S2
ϵ , A2

γ, and Ω2
φ represent the strengths of the constituents in (4.2),

Ω2
φγ represents shear–rotation correlations, and S2

γ = Ω2
γ = 1

2A2
γ. The relative

contributions of S2
ϵ , A2

γ, and Ω2
φ+Ω2

φγ to A2 can be expressed as exact algebraic
functions of the normalized invariants of the VGT, whereas distinguishing
the contributions of Ω2

φ and Ω2
φγ requires an additional parameter [22]. An

https://doi.org/10.22002/17h15-gr910
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averaged form of this partitioning can be expressed as〈
A2
〉

=
〈
S2

ϵ

〉
+
〈
S2

γ

〉
+
〈
Ω2

γ

〉
︸ ︷︷ ︸〈

A2
γ

〉 +
〈
Ω2

φ

〉
+
〈
Ω2

φγ

〉
, (4.4)

where ⟨(·)⟩ denotes ensemble averaging. This averaged partitioning distin-
guishes the contributions of normal straining and shear straining to ⟨S2⟩ and
the contributions of shear vorticity, rigid rotation, and their correlations to
⟨Ω2⟩ [23]. Recent work has shown that, for a broad class of flows, it is expres-
sive of various flow features and regimes that are obscured by the symmetry-
based partitioning into ⟨S2⟩ and ⟨Ω2⟩. For wall-bounded flows, Arun and Colo-
nius [14] showed that it can distinguish between near-wall turbulence, which is
dominated by shearing, and turbulence far from walls, which is more reminis-
cent of isotropic turbulence. Furthermore, Arun and Colonius [22] showed that
it can distinguish between the initial, transitional, and turbulent regimes of a
vortex ring collision. The normality-based analysis of that flow also identified
enhanced shear–rotation correlations as an imprint of the elliptic instability
that reflects relevant structural features of local streamlines.

Beyond statistical flow features, the normality-based decomposition can also
distinguish tube-like vortical structures, which are associated with rigid rota-
tion, from sheet-like vortical structures, which are associated with shear vortic-
ity. This distinction underpins recently-developed vortex identification criteria
that preferentially identify tubular vortical structures [24–26]. However, re-
cent evidence highlights that shear layers are also critical to the structure and
dynamics of small-scale turbulence [27–29]. The Burgers vortex layer forms a
reasonable model for these (strained) small-scale shear layers, which typically
have widths of 9η − 11η [12, 27, 30] and half-widths of 4.5η [28, 29], where η

is the Kolmogorov scale. Interestingly, the typical diameters of intense vortex
tubes at small scales, which are often modeled as Burgers vortex tubes, lie in
a similar range [31, 32]. In Appendix 4.A1, we use the normality-based parti-
tioning of Burgers vortex tubes and layers to illustrate how rigid rotation and
shear vorticity are associated with vortex cores and shear layers, respectively.

Although vortex tubes and shear layers capture many essential features of
Kolmogorov-scale flow structures, a complete ‘recipe’ for turbulence must ef-
fectively capture its multiscale structure. Therefore, motivated by the discus-
sion in this section, the present study aims to characterize the structure of
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isotropic turbulence in the subinertial and inertial ranges using the enhanced
statistical and structural expressivity of the normality-based velocity gradient
analysis.

4.1.2 Multiscale velocity gradients and interscale energy transfer
Spatial filtering frameworks enable tailored consideration of multiscale flow
features by specifying a filter width, ℓ, that controls the range of resolved
scales. They also facilitate insights into closure models for large-eddy simula-
tion (LES), which are often formulated in terms of the filtered (i.e., resolved)
flow field [8]. We denote filtered quantities as (·)ℓ = Gℓ ⋆ (·), where Gℓ repre-
sents the filter kernel and ⋆ represents the spatial convolution operator.

Applying a uniform filtering operation to the incompressible Navier–Stokes
equations yields

∂uℓ
i

∂t
+ uℓ

j

∂uℓ
i

∂xj

= −1
ρ

∂pℓ

∂xi

+ ν
∂2uℓ

i

∂x2
j

+ f
ℓ

i −
∂σℓ

ij

∂xj

,
∂uℓ

i

∂xi

= 0, (4.5)

where ρ, ν, and p denote the density, kinematic viscosity, and pressure, respec-
tively. The forcing, fi, is typically designed to sustain the flow by injecting
energy at large scales (e.g., in forced isotropic turbulence). The residual stress
tensor, σℓ

ij, represents the effective stress imposed on the resolved motions by
the unresolved motions. It is the subject of closure models in LES [5] and
plays a key role in the interpretation of interscale energy transfer. The kinetic
energy equation associated with the filtered velocity field is given by

∂Eℓ

∂t
+ ∂T ℓ

i

∂xi

= uℓ
if

ℓ

i − Π ℓ − Φℓ, (4.6)

where ∂T ℓ
i /∂xi, uℓ

if
ℓ

i , and Φℓ = 2νS
ℓ
ijS

ℓ
ij represent spatial redistribution, en-

ergy injected by the forcing, and the resolved dissipation rate, respectively.
The term Π ℓ = −S

ℓ
ijσ

ℓ
ij represents the interscale energy transfer (or cascade

rate) across scale ℓ. By convention, Π ℓ > 0 and Π ℓ < 0 correspond to down-
scale and upscale energy transfer, respectively. For incompressible flows, the
isotropic part of σℓ

ij does not contribute to interscale energy transfer since S
ℓ
ij

is traceless.

The filtering framework for interscale energy transfer has provided sustained
insight into salient features of the energy cascade [33–36]. Recent studies have
employed conditional averaging to identify a statistical imprint of small-scale
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flow structures that contribute to forward energy transfer. Remarkably, in
both isotropic [37] and shear [38] turbulence, this imprint manifests as a local-
ized region of energy transfer located between hairpin-like vortical structures
with opposite orientations. The filtering perspective of energy transfer has
been extended to the settings of compressible turbulence [39] and magnetohy-
drodynamic turbulence [40–42], among others, and it has aided the develop-
ment of global maps of energy transfer in the ocean [43, 44]. Beyond filtering,
energy transfer can also be analyzed using a structure function approach, which
is formulated in terms of the scale-integrated local Kolmogorov–Hill equation
[45]. This approach provides a less ambiguous interpretation of upscale energy
transfer (i.e., backscatter) than the filtering formulation. However, since both
formulations typically produce similar results [46], we focus on the filtering
framework as it provides pragmatic implications for LES modeling.

Recent work has begun to refine our understanding of interscale energy trans-
fer by decomposing the VGT into contributions from normal straining, pure
shearing, and rigid rotation. Enoki et al. [47] found that the interaction of
shearing with the residual stresses dominates interscale energy transfer over a
broad range of scales in isotropic turbulence. Using a different formulation,
Fathali and Khoei [48] concluded that the contributions of shearing and normal
straining dominate spectral energy transfer in isotropic turbulence. Both of
these results were obtained by decomposing the velocity gradient term in the
expressions used to represent interscale energy transfer. Enoki et al. [47] also
decomposed the residual stress tensor based on contributions from the shearing
and non-shearing velocity fields, which were identified using the Biot–Savart
law. Beyond these studies, there remains a significant gap in our understand-
ing of how interscale energy transfer at scale ℓ is influenced by flow features at
smaller scales. We address this gap, which has significant implications for LES
modeling, by analyzing multiscale contributions to the residual stress tensor
using the normality-based decomposition of the VGT.

The present study utilizes Gaussian filtering, for which the filter kernel is given
by

Gℓ(r) = 1
(2πℓ2)3/2 exp

(
−|r|

2

2ℓ2

)
, F {Gℓ} (k) = exp

(
−|k|

2ℓ2

2

)
, (4.7)

where r and k represent the spatial offset and wavenumber vectors, respec-
tively, and F{·} represents the spatial Fourier transform. The Gaussian fil-
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tering framework allows the residual stress tensor to be expressed in terms of
multiscale velocity gradients as

σℓ
ij =

∫
ℓ2

0
dθ2

(
A

θ
ikA

θ
jk

ϕ
)

, (4.8)

where ϕ =
√

ℓ2 − θ2. As discussed in detail by Johnson [49, 50], this expression
is derived by treating the Gaussian-filtered velocity field as the solution to a
diffusion equation where ℓ2 represents a time-like variable. This formulation
leads to a forced diffusion equation for the residual stress tensor, for which
(4.8) is the formal solution. While we limit our attention to Gaussian filtering,
the results we cite have been shown to be insensitive to the filter shape for
non-negative filter kernels [49].

Using (4.8), a multiscale velocity gradient expansion for interscale energy
transfer can be expressed as

Π ℓ = −S
ℓ
ij

∫
ℓ2

0
dθ2

(
A

θ
ikA

θ
jk

ϕ
)

. (4.9)

Following Johnson [49, 50], this expression can be decomposed in terms of
familiar energy transfer mechanisms by inserting the symmetry-based decom-
position of the VGT to obtain

Π ℓ = Π ℓ,s + Π ℓ,ω + Π ℓ,c, (4.10)

where

Π ℓ,s = −S
ℓ

ij

∫
ℓ2

0
dθ2

(
S

θ

ikS
θ

jk

ϕ
)

, (4.11)

Π ℓ,ω = −S
ℓ
ij

∫
ℓ2

0
dθ2

(
Ωθ

ikΩθ

jk

ϕ
)

, (4.12)

Π ℓ,c = −S
ℓ
ij

∫
ℓ2

0
dθ2

(
S

θ
ikΩθ

jk

ϕ

+ Ωθ

ikS
θ
jk

ϕ
)

. (4.13)

Here, Π ℓ,s, Π ℓ,ω, and Π ℓ,c represent the contributions of strain self-amplification,
vortex stretching, and strain–vorticity covariance at scales θ ≤ ℓ to the inter-
scale energy transfer at scale ℓ. These terms can be further decomposed as

Π ℓ,s = Π ℓ,s1 + Π ℓ,s2, (4.14)

Π ℓ,ω = Π ℓ,ω1 + Π ℓ,ω2, (4.15)

Π ℓ,c = Π ℓ,c1 + Π ℓ,c2, (4.16)
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where terms with superscripts of (·)1 and (·)2 represent scale-local and scale-
nonlocal contributions, respectively. These contributions are given by

Π ℓ,s1 = −ℓ2S
ℓ
ijS

ℓ
ikS

ℓ
jk, Π ℓ,s2 = Π ℓ,s − Π ℓ,s1, (4.17)

Π ℓ,ω1 = −ℓ2S
ℓ

ijΩ
ℓ

ikΩℓ

jk, Π ℓ,ω2 = Π ℓ,ω − Π ℓ,ω1, (4.18)

Π ℓ,c1 = −ℓ2S
ℓ

ij

(
S

ℓ

ikΩℓ

jk + Ωℓ

ikS
ℓ

jk

)
= 0, Π ℓ,c2 = Π ℓ,c − Π ℓ,c1 = Π ℓ,c, (4.19)

and the scale-nonlocal contributions can equivalently be expressed using scale-
space integrals of generalized second moments of velocity gradient fields [49,
50]. The scale-local strain–vorticity covariance term vanishes since it can be
expressed as the contraction of symmetric tensors with antisymmetric tensors.
Therefore, only strain self-amplification and vortex stretching contribute to
scale-local energy transfer, and their combined contribution resembles that
produced by the nonlinear gradient model for the residual stress tensor [5, 34,
51].

The resulting decomposition of interscale energy transfer,

Π ℓ = Π ℓ,s1 + Π ℓ,ω1 + Π ℓ,s2 + Π ℓ,ω2 + Π ℓ,c, (4.20)

provides insight into mechanisms underlying the energy cascade. As shown in
Figure 4.1(a), the relative contributions of the constituents are approximately〈
Π ℓ,s1

〉
:
〈
Π ℓ,ω1

〉
:
〈
Π ℓ,s2

〉
:
〈
Π ℓ,ω2

〉
:
〈
Π ℓ,c

〉
≈ 3 : 1 : 2 : 2 : 0 in the inertial

range for isotropic turbulence [49, 50]. The implication that
〈
Π ℓ,s

〉
:
〈
Π ℓ,ω

〉
=

5 : 3 supports the claim that strain self-amplification contributes more to the
cascade than vortex stretching, extending prior results that focused on single-
scale contributions [46]. While the covariance term, Π ℓ,c, has a negligible
net contribution in the inertial range of the cascade, it produces significant
upscale energy transfer (i.e., backscatter) in the subinertial range. This feature
bears resemblance to two-dimensional turbulence, where the covariance term
is responsible for the inverse cascade [50].

This backscatter occurs at scales that coincide with the bottleneck effect in
the subinertial range of the cascade. As shown in Figure 4.1(b), the bottleneck
effect in direct numerical simulation (DNS) manifests as a bump in the energy
spectrum that exceeds the k−5/3 scaling from the inertial range, where k = |k|.
This spectral bump is centered around kη ≈ 0.13 and, while its location and
width are relatively insensitive to Reλ, its height decreases with increasing
Reλ [52]. There have been various interpretations of the bottleneck effect,
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Figure 4.1: (a) Symmetry-based scale-local and scale-nonlocal contributions to
interscale energy transfer in forced isotropic turbulence. The symbols represent
DNS datasets at Taylor-scale Reynolds numbers of Reλ ≈ 315 (DNS315) and
Reλ ≈ 400 (DNS400) and the curves represent the Reλ ≈ 400 results of
Johnson [49, 50]. The shaded region captures the bottom of the inertial range
for DNS400. (b) Energy spectra for the unfiltered and filtered velocity fields in
DNS400 as well as LES cases that employ eddy viscosity (Vis400) and mixed
(Mix400) models at Reλ ≈ 400. The filtered DNS and LES cases employ
a filter width of 2ℓ/η = 48. The dotted line represents the inertial range
scaling, E(k) = 1.6 ⟨Φ⟩2/3 k−5/3, and the inset depicts a linear–log plot of the
compensated energy spectra. Technical details of the simulations are described
in §4.3.

including as a result of quenched local interactions due to viscous effects [53],
helicity dynamics [54], incomplete thermalization [55], and insufficient width
of the inertial range [56]. More recently, inspired by the backscatter produced
by Π ℓ,c in two-dimensional turbulence, Johnson [50] proposed vortex thinning
[57–59] as a plausible mechanism responsible for the subinertial bottleneck
effect in three-dimensional turbulence. Despite significant attention, a com-
plete understanding of the origins of the bottleneck effect remains elusive. The
present study aims to clarify its structural and statistical imprints using our
normality-based analysis of filtered velocity gradients.

While the bottleneck effect is an expected feature of a fully-resolved DNS,
it is mitigated when the flow field is filtered at scales typically employed for
LES (e.g., 2ℓ/η = 48). However, as shown in Figure 4.1(b), the dynamic eddy
viscosity model introduced by Kamal and Johnson [60] produces a significant
‘artificial’ bottleneck effect at scales that are larger than the LES filter scale
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and, thus, larger than the scales associated with the true bottleneck effect.
By contrast, the dynamic mixed model introduced by Kamal and Johnson
[60], which synthesizes the nonlinear gradient model with an eddy viscosity
model, mitigates this artificial bottleneck to more accurately represent the
spectrum of the corresponding filtered DNS. These results reflect that, while
the scale-nonlocal terms in (4.20) are reasonably modeled by eddy viscosity
physics, explicitly capturing the scale-local terms, which are associated with
the nonlinear gradient model, produces more realistic energy transfer. Statisti-
cal analyses more broadly suggest that eddy viscosity and mixed models tend
to replicate flow features associated with unfiltered and filtered DNS data,
respectively [60, 61]. Further, preliminary two-dimensional visualizations sug-
gest that the unfiltered DNS and eddy viscosity model LES cases produce
sheet-like vorticity structures that are not observed in the filtered DNS and
mixed model LES cases [60]. In the present study, our normality-based ve-
locity gradient analysis definitively links these observations and captures their
relationship to the artificial bottleneck effect.

4.1.3 Contributions
Motivated by the preceding discussion, the present study aims to refine our
understanding of multiscale flow structures and energy transfer mechanisms in
turbulent flows. In §4.2, we formulate the normality-based analysis of filtered
velocity gradients and use it to develop a novel decomposition of interscale
energy transfer. We apply this normality-based analysis to filtered velocity
gradients obtained from DNS and LES data that represent forced isotropic tur-
bulence. The technical details of these simulations are described in §4.3. The
results of our analysis are presented in §4.4, including identifying the effect of
filtering and LES modeling on the velocity gradient partitioning (§4.4.1), vor-
tical flow structures (§4.4.2), and interscale energy transfer (§4.4.3). Finally,
we summarize the implications of these results for energy cascade physics, LES
modeling, and future prospects in §4.5.

4.2 Theoretical framework
The analysis described in §4.1.1 can be reformulated in a multiscale setting by
applying it to filtered velocity gradients. The corresponding normality-based
decomposition of the filtered VGT can be expressed as

A
ℓ

ij = S
ℓ,ϵ

ij + A
ℓ,γ

ij + Ωℓ,φ

ij , (4.21)
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where the order of the superscripts indicates that filtering is performed prior
to the decomposition. The order of these operations is important since, unlike
the symmetry-based decomposition, the normality-based decomposition does
not commute with the filtering operation. We choose to decompose the filtered
velocity gradients since this approach retains the normality properties of each
tensor in the decomposition. It also enables consistent analysis of LES data,
for which only the resolved (i.e., filtered) flow field is available. Using this
filtering-first approach, the normality-based partitioning of the filtered velocity
gradients can be expressed as

A2
ℓ = A

ℓ

ijA
ℓ

ij = S
ℓ,ϵ

ij S
ℓ,ϵ

ij︸ ︷︷ ︸
S2

ℓ,ϵ

+

A2
ℓ,γ︷ ︸︸ ︷

S
ℓ,γ

ij S
ℓ,γ

ij︸ ︷︷ ︸
S2

ℓ,γ

+ Ωℓ,γ

ij Ωℓ,γ

ij︸ ︷︷ ︸
Ω2

ℓ,γ

+ Ωℓ,φ

ij Ωℓ,φ

ij︸ ︷︷ ︸
Ω2

ℓ,φ

+ 2Ωℓ,φ

ij Ωℓ,γ

ij︸ ︷︷ ︸
Ω2

ℓ,φγ

, (4.22)

where S2
ℓ,γ = Ω2

ℓ,γ = 1
2A2

ℓ,γ.

The normality-based decomposition of the filtered VGT can also be applied
to the multiscale velocity gradient expansions of the residual stress tensor
and interscale energy transfer discussed in §4.1.2. Previous studies employing
related approaches have primarily decomposed terms analogous to S

ℓ
ij in the

expression, Π ℓ = −S
ℓ

ijσ
ℓ
ij, for interscale energy transfer [47, 48]. The analysis

of Enoki et al. [47] briefly considered the residual stress tensor using the Biot–
Savart law, but it did not address its multiscale composition and did not
employ a filtering-first framework. Therefore, the following normality-based
formulation of interscale energy transfer provides novel insight by explicitly
capturing multiscale contributions to the residual stress tensor in a manner
amenable to the assessment and development of LES models.

When applied to the expression in (4.9), the normality-based decomposition
of interscale energy transfer yields

Π ℓ = Π ℓ
ϵϵ + Π ℓ

φφ + Π ℓ
γγ + Π ℓ

ϵγ + Π ℓ
φγ, (4.23)

where

Π ℓ
ϵϵ = −S

ℓ

ij

∫
ℓ2

0
dθ2

(
S

θ,ϵ

ik S
θ,ϵ

jk

ϕ
)

, (4.24)

Π ℓ
φφ = −S

ℓ

ij

∫
ℓ2

0
dθ2

(
Ωθ,φ

ik Ωθ,φ

jk

ϕ
)

, (4.25)
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Π ℓ
γγ = −S

ℓ
ij

∫
ℓ2

0
dθ2

(
A

θ,γ
ik A

θ,γ
jk

ϕ
)

, (4.26)

Π ℓ
ϵγ = −S

ℓ

ij

∫
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0
dθ2

(
S

θ,ϵ

ik A
θ,γ

jk

ϕ

+ A
θ,γ

ik S
θ,ϵ

jk

ϕ
)

, (4.27)

Π ℓ
φγ = −S

ℓ

ij

∫
ℓ2

0
dθ2

(
Ωθ,φ

ik A
θ,γ

jk

ϕ

+ A
θ,γ

ik Ωθ,φ

jk

ϕ
)

, (4.28)

and ϕ =
√

ℓ2 − θ2. Here, Π ℓ
ϵϵ, Π ℓ

φφ, and Π ℓ
γγ represent contributions from

normal straining, rigid rotation, and pure shearing, respectively, at scales θ ≤ ℓ.
Similarly, Π ℓ

ϵγ and Π ℓ
φγ represent contributions from the covariance of normal

straining with pure shearing and the covariance of rigid rotation with pure
shearing, respectively, at these scales.

The normality-based approach can also be used to refine the symmetry-based
analysis of interscale energy transfer discussed in §4.1.2. The cascade rates as-
sociated with strain self-amplification, vortex stretching, and strain–vorticity
covariance, as defined in (4.11), (4.12), and (4.13), respectively, can be decom-
posed as

Π ℓ,s = Π ℓ,s
ϵϵ + Π ℓ,s

γγ + Π ℓ,s
ϵγ , (4.29)

Π ℓ,ω = Π ℓ,ω
φφ + Π ℓ,ω

γγ + Π ℓ,ω
φγ , (4.30)

Π ℓ,c = Π ℓ,c
ϵγ + Π ℓ,c

γγ + Π ℓ,c
φγ , (4.31)

respectively. The strain self-amplification terms in (4.29), defined as

Π ℓ,s
ϵϵ = −S

ℓ
ij

∫
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dθ2
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θ,ϵ
ik S
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ϕ
)

, (4.32)

Π ℓ,s
γγ = −S
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ϕ
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, (4.33)

Π ℓ,s
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jk

ϕ
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ik S
θ,ϵ

jk

ϕ
)

, (4.34)

represent the contributions associated with normal straining, shear straining,
and their covariance, respectively, at scales θ ≤ ℓ. The vortex stretching terms
in (4.30), defined as

Π ℓ,ω
φφ = −S

ℓ
ij

∫
ℓ2

0
dθ2

(
Ωθ,φ

ik Ωθ,φ

jk

ϕ
)

, (4.35)

Π ℓ,ω
γγ = −S

ℓ

ij

∫
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ϕ
)

, (4.36)

Π ℓ,ω
φγ = −S

ℓ
ij

∫
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(
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ik Ωθ,γ

jk

ϕ

+ Ωθ,γ

ik Ωθ,φ

jk

ϕ
)

, (4.37)



93

represent the contributions associated with rigid rotation, shear vorticity, and
their covariance, respectively, at scales θ ≤ ℓ. The strain–vorticity covariance
terms in (4.31), defined as

Π ℓ,c
ϵγ = −S

ℓ
ij

∫
ℓ2

0
dθ2

(
S

θ,ϵ
ik Ωθ,γ

jk

ϕ

+ Ωθ,γ

ik S
θ,ϵ
jk

ϕ
)

, (4.38)

Π ℓ,c
γγ = −S

ℓ
ij

∫
ℓ2

0
dθ2

(
S

θ,γ
ik Ωθ,γ

jk

ϕ

+ Ωθ,γ

ik S
θ,γ
jk

ϕ
)

, (4.39)

Π ℓ,c
φγ = −S

ℓ

ij

∫
ℓ2

0
dθ2

(
S

θ,γ

ik Ωθ,φ

jk

ϕ

+ Ωθ,φ

ik S
θ,γ

jk

ϕ
)

, (4.40)

represent the contributions associated with the covariance of normal straining
with shear vorticity, the covariance of shear straining with shear vorticity, and
the covariance of shear straining with rigid rotation, respectively, at scales
θ ≤ ℓ. Using the form of the VGT in (4.2), it can be shown that the analogous
covariance term associated with normal straining and rigid rotation is identi-
cally zero. The contributions from the terms in (4.29), (4.30), and (4.31) can
be used to reconstruct the terms in (4.23) as

Π ℓ
ϵϵ = Π ℓ,s

ϵϵ , (4.41)

Π ℓ
φφ = Π ℓ,ω

φφ , (4.42)

Π ℓ
γγ = Π ℓ,s

γγ + Π ℓ,ω
γγ + Π ℓ,c

γγ , (4.43)

Π ℓ
ϵγ = Π ℓ,s

ϵγ + Π ℓ,c
ϵγ , (4.44)

Π ℓ
φγ = Π ℓ,ω

φγ + Π ℓ,c
φγ . (4.45)

A further refinement can be obtained by identifying scale-local and scale-
nonlocal contributions to the strain self-amplification terms in (4.29) and the
vortex stretching terms in (4.30) as

Π ℓ,s
ϵϵ = Π ℓ,s1

ϵϵ + Π ℓ,s2
ϵϵ , Π ℓ,s

γγ = Π ℓ,s1
γγ + Π ℓ,s2

γγ , Π ℓ,s
ϵγ = Π ℓ,s1

ϵγ + Π ℓ,s2
ϵγ , (4.46)

Π ℓ,ω
φφ = Π ℓ,ω1

φφ + Π ℓ,ω2
φφ , Π ℓ,ω

γγ = Π ℓ,ω1
γγ + Π ℓ,ω2

γγ , Π ℓ,ω
φγ = Π ℓ,ω1

φγ + Π ℓ,ω2
φγ , (4.47)

respectively. We do not identify scale-local and scale-nonlocal contributions
to the strain–vorticity covariance decomposition in (4.31) since, as expressed
in (4.19), the scale-local contributions identically sum to zero. The scale-local
terms in (4.46) and (4.47) contribute to scale-local strain self-amplification
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and vortex stretching as

Π ℓ,s1 = −ℓ2S
ℓ
ijS

ℓ,ϵ
ik S

ℓ,ϵ
jk︸ ︷︷ ︸

Π ℓ,s1
ϵϵ

− ℓ2S
ℓ
ijS

ℓ,γ
ik S

ℓ,γ
jk︸ ︷︷ ︸

Π ℓ,s1
γγ

− 2ℓ2S
ℓ
ijS

ℓ,ϵ
ik S

ℓ,γ
jk︸ ︷︷ ︸

Π ℓ,s1
ϵγ

, (4.48)

Π ℓ,ω1 = −ℓ2S
ℓ

ijΩ
ℓ,φ

ik Ωℓ,φ

jk︸ ︷︷ ︸
Π ℓ,ω1

φφ

− ℓ2S
ℓ

ijΩ
ℓ,γ

ik Ωℓ,γ

jk︸ ︷︷ ︸
Π ℓ,ω1

γγ

− 2ℓ2S
ℓ

ijΩ
ℓ,φ

ik Ωℓ,γ

jk︸ ︷︷ ︸
Π ℓ,ω1

φγ

, (4.49)

respectively. Here, the leading strain-rate tensor, S
ℓ
ij, is not decomposed since

the normality-based analysis is applied to the multiscale velocity gradient ex-
pansion of the residual stress tensor. However, the mechanisms underlying
scale-local strain self-amplification and vortex stretching can be more clearly
expressed by further decomposing S

ℓ
ij, which leads to

Π ℓ,s1 = −ℓ2S
ℓ,ϵ
ij S

ℓ,ϵ
ik S

ℓ,ϵ
jk︸ ︷︷ ︸

Π ℓ,s1
ϵϵϵ

− 3ℓ2S
ℓ,ϵ
ij S

ℓ,γ
ik S

ℓ,γ
jk︸ ︷︷ ︸

Π ℓ,s1
ϵγγ

− ℓ2S
ℓ,γ
ij S

ℓ,γ
ik S

ℓ,γ
jk︸ ︷︷ ︸

Π ℓ,s1
γγγ

, (4.50)

Π ℓ,ω1 = −ℓ2S
ℓ,ϵ
ij Ωℓ,φ

ik Ωℓ,φ

jk︸ ︷︷ ︸
Π ℓ,ω1

ϵφφ

− ℓ2S
ℓ,ϵ
ij Ωℓ,γ

ik Ωℓ,γ

jk︸ ︷︷ ︸
Π ℓ,ω1

ϵγγ

− ℓ2S
ℓ,γ
ij Ωℓ,γ

ik Ωℓ,γ

jk︸ ︷︷ ︸
Π ℓ,ω1

γγγ

− 2ℓ2S
ℓ,ϵ
ij Ωℓ,φ

ik Ωℓ,γ

jk︸ ︷︷ ︸
Π ℓ,ω1

ϵφγ

.

(4.51)

These terms are related to those in (4.48) and (4.49) in that

Π ℓ,s1
ϵϵ = Π ℓ,s1

ϵϵϵ , Π ℓ,s1
γγ = Π ℓ,s1

γγγ + 1
3Π ℓ,s1

ϵγγ , Π ℓ,s1
ϵγ = 2

3Π ℓ,s1
ϵγγ , (4.52)

Π ℓ,ω1
φφ = Π ℓ,ω1

ϵφφ , Π ℓ,ω1
γγ = Π ℓ,ω1

γγγ + Π ℓ,ω1
ϵγγ , Π ℓ,ω1

φγ = Π ℓ,ω1
ϵφγ . (4.53)

In (4.50), Π ℓ,s1
ϵϵϵ , Π ℓ,s1

γγγ , and Π ℓ,s1
ϵγγ represent scale-local strain self-amplification

due to normal straining, shear straining, and their interaction, respectively.
In (4.51), Π ℓ,ω1

ϵφφ , Π ℓ,ω1
ϵγγ , and Π ℓ,ω1

ϵφγ represent scale-local vortex stretching due
to the normal straining of rigid rotation, shear vorticity, and shear–rotation
interactions, respectively, and Π ℓ,ω1

γγγ is due to the shear straining of shear
vorticity. Using the VGT in the principal frame, as expressed in (4.2), it can
be shown that all terms omitted from these equations, including the Π ℓ,s1

ϵϵγ

term in (4.50) and the Π ℓ,ω1
γφφ and Π ℓ,ω1

γφγ terms in (4.51), are identically zero.
It can also be shown that Π ℓ,s1

ϵγγ = 3Π ℓ,ω1
ϵγγ and Π ℓ,s1

γγγ = 3Π ℓ,ω1
γγγ hold as exact

pointwise relationships. When combined with the fact that
〈
Π ℓ,s1

〉
= 3

〈
Π ℓ,ω1

〉
for homogeneous turbulence [62], these relationships imply that the relative
contributions of the shear straining terms, Π ℓ,s1

ϵγγ and Π ℓ,s1
γγγ , to

〈
Π ℓ,s1

〉
are
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Case Type Model Reynolds number Resolution Reference

DNS315 DNS − Reλ ≈ 315 kmaxη ≈ 2.0 Cardesa et al. [63]
DNS400 DNS − Reλ ≈ 400 kmaxη ≈ 1.4 Kamal and Johnson [60]
Vis400 LES Eddy viscosity Reλ ≈ 400 kmaxℓLES ≈ 3.0 Kamal and Johnson [60]
Mix400 LES Mixed Reλ ≈ 400 kmaxℓLES ≈ 3.0 Kamal and Johnson [60]

Table 4.1: Primary simulations considered in the present study. The DNS
cases employ N3

x = 10243 collocation points and are dealiased using the 2
√

2/3
truncation rule with phase-shifting [64] such that kmax = Nx

√
2/3. The LES

cases employ N3
x = 1283 collocation points and filter widths of 2ℓLES/η = 48.

They are dealiased using the 2/3 truncation rule such that kmax = Nx/3.
Additional cases, including random velocity gradients, DNS cases at lower
Reynolds numbers, and LES cases with different filter widths are described
and analyzed in Appendix 4.A2.

equivalent to the relative contributions of the shear vorticity terms, Π ℓ,ω1
ϵγγ and

Π ℓ,ω1
γγγ , to

〈
Π ℓ,ω1

〉
in the absence of inhomogeneities. This, in turn, implies

that the relative contribution of the normal straining term, Π ℓ,s1
ϵϵϵ , to

〈
Π ℓ,s1

〉
is

equivalent to the relative contribution of the rigid rotation terms, Π ℓ,ω1
ϵφφ +Π ℓ,ω1

ϵφγ ,
to
〈
Π ℓ,ω1

〉
. These relationships typify insights that can be garnered from the

present normality-based formulation of interscale energy transfer.

4.3 Simulation details
We apply the multiscale normality-based analysis formulated in §4.2 to filtered
velocity gradients produced by simulations of forced isotropic turbulence. All
simulations solve the incompressible Navier–Stokes equations a triply-periodic
box using pseudo-spectral methods. Table 4.1 summarizes the primary cases
we consider, which include DNS cases at two different Reynolds numbers and
LES cases that employ two different models at the higher Reynolds number.
The references for these simulations further expound their numerical imple-
mentations, forcing schemes, and other relevant parameters and results. Each
DNS dataset includes 21 temporal snapshots that are spaced one large-eddy
turnover time apart and each LES dataset includes 68 temporal snapshots
that are spaced half of a large-eddy turnover time apart. All snapshots are
obtained from a statistically stationary regime (i.e., after initial transients).

For the LES cases, the eddy viscosity model (Vis400) and the mixed model
(Mix400) were formulated and discussed by Kamal and Johnson [60] using the
Stokes flow regularization (SFR) framework [61]. They are dynamic models
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that assume local equilibrium for the residual kinetic energy and employ local
clipping of the eddy viscosity to satisfy this assumption. We utilize these
SFR-based models since they do not require the specification of a free model
parameter and do not require test filter calculations. However, since they
perform similarly to other formulations [60], we do not expect our insights to
be limited to the SFR-based approach.

For the eddy viscosity model, the residual stress tensor at the LES filter scale,
ℓ = ℓLES, is modeled as

σℓ
ij = −2νT S

ℓ
ij, (4.54)

where the eddy viscosity, νT , is the solution to

νT = 3ℓ2

4

∇2νT −
S

ℓ

ijA
ℓ

ikA
ℓ

jk

S2
ℓ

 . (4.55)

Therefore, the interscale energy transfer at the LES filter scale is modeled as

Π ℓ = 2νT S2
ℓ . (4.56)

For the mixed model, the residual stress tensor at the LES filter scale is mod-
eled as

σℓ
ij = ℓ2A

ℓ
ikA

ℓ
jk − 2νT S

ℓ
ij. (4.57)

The first term in this model resembles the nonlinear gradient model [5, 34,
51]. Only its deviatoric part is relevant since its isotropic part, which can be
lumped with pressure in the momentum equations, does not contribute to the
dynamics of the resolved velocity field. The second term in (4.57) resembles
an eddy viscosity model, for which νT is the solution to

νT = 3ℓ2

4

∇2νT − ℓ2 S
ℓ
ijB

ℓ
imnB

ℓ
jmn

S2
ℓ

 , (4.58)

where Bijk = ∂2ui/∂xj∂xk is the velocity Hessian tensor. The corresponding
interscale energy transfer at the LES filter scale is modeled as

Π ℓ = −ℓ2S
ℓ
ijA

ℓ
ikA

ℓ
jk + 2νT S2

ℓ . (4.59)

Here, the first term explicitly captures the contributions from scale-local vor-
tex stretching and strain self-amplification (i.e., Π ℓ,s1 + Π ℓ,ω1) and the sec-
ond term models the residual contribution from the scale-nonlocal terms (i.e.,
Π ℓ,s2 + Π ℓ,ω2 + Π ℓ,c2). This contrasts with the eddy viscosity model, for which
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the scale-local and scale-nonlocal contributions are modeled together. Explic-
itly capturing the scale-local energy transfer allows the mixed model to more
accurately reproduce the statistics of a DNS filtered at scale ℓLES, whereas the
eddy viscosity model instead mimics an unfiltered DNS [60, 61]. This theme
is further explored in §4.4 using the normality-based analysis.

4.4 Results
4.4.1 Multiscale velocity gradient partitioning
The normality-based partitioning of filtered velocity gradients defined in (4.22)
identifies the contributions of normal straining, pure shearing, rigid rotation,
and shear–rotation correlations to the strength of filtered velocity gradients.
We consider the averaged form of this partitioning to characterize how the
velocity gradients in forced isotropic turbulence vary as a function of scale. For
unfiltered velocity gradients (ℓ = 0), the partitioning is given by

〈
S2

ϵ

〉/〈
A2
〉

=
0.240,

〈
A2

γ

〉/〈
A2
〉

= 0.520,
〈
Ω2

φ

〉/〈
A2
〉

= 0.106, and
〈
Ω2

φγ

〉/〈
A2
〉

= 0.134,
and it is relatively insensitive to Reλ for Reλ ≳ 200 [14, 23]. This unfiltered
partitioning serves as a baseline for our analysis of the effects of filtering and
LES modeling in this section.

4.4.1.1 The DNS cases: the effect of filtering

Figure 4.2 shows how the partitioning varies as a function of the filter width,
2ℓ/η, for the DNS cases. Increasing the filter width mitigates the relative con-
tribution of pure shearing and increases the relative contributions of normal
straining, rigid rotation, and, to a lesser extent, shear–rotation correlations.
This behavior occurs primarily for 2ℓ ≲ δγ, where δγ = 9η represents the
typical thickness of small-scale shear layers [12, 27–30]. It highlights that fil-
tering mitigates the imprint of small-scale shear layers until the filter width
surpasses their thickness, whereafter filtering at larger scales does not signif-
icantly affect the partitioning statistics, including in the inertial range. For
2ℓ ≳ δγ, this scale-invariant partitioning is given by

〈
S2

ℓ,ϵ

〉/〈
A2
〉
≈ 0.27,〈

A2
ℓ,γ

〉/〈
A2
〉
≈ 0.46,

〈
Ω2

ℓ,φ

〉/〈
A2
〉
≈ 0.13, and

〈
Ω2

ℓ,φγ

〉/〈
A2
〉
≈ 0.14. The

distinction between this and the unfiltered partitioning would be obscured by
an analogous symmetry-based analysis since

〈
S2

ℓ

〉
=
〈
Ω2

ℓ

〉
at all scales for ho-

mogeneous turbulence [62]. This highlights the ability of the normality-based
decomposition to capture how flow structures in the viscous range differ from
those in the inertial range.
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Figure 4.2: Partitioning of filtered velocity gradients for the DNS cases, where
shearing is represented using S2

ℓ,γ = Ω2
ℓ,γ = 1

2A2
ℓ,γ. The horizontal dashed lines

represent the unfiltered partitioning in the high-Reλ limit, the vertical dotted
line represents the typical thickness of small-scale shear layers, δγ = 9η, and the
shaded region approximates the inertial range for DNS400 as 50 ≤ 2ℓ/η ≤ 150.

The comparison between the filter width, 2ℓ, and the shear layer thickness, δγ,
can be interpreted in terms of velocity increments. Johnson [50] highlighted
that filtered velocity gradients can be expressed in terms of spatially integrated
velocity increments that are weighted by the gradient of the filter kernel [65].
For a Gaussian kernel, the weighting is an odd function of the spatial offset,
r, and its magnitude is maximized when |r| = ℓ. These features imply that
velocity increments given by u (x + ℓê) − u (x− ℓê), where ê represents an
arbitrary unit vector, have the strongest weighting in the construction of the
filtered velocity gradients, A

ℓ
ij(x). Hence, the filtered velocity gradients at a

given point are most strongly related to velocity increments of size 2ℓ that are
centered at the same point. This result provides a direct relationship to δγ,
which is often formulated in a similar manner using the velocity jump across a
shear layer [12, 30]. Even alternative definitions of δγ, e.g., in terms of vorticity
[27–29], are empirically associated with this velocity jump. Therefore, the
comparison of 2ℓ and δγ is appropriate since it has strong physical foundations
based on velocity increments.

For the Reynolds numbers shown in Figure 4.2, the partitioning collapses as a
function of the filter width except at very large scales, where it becomes more
sensitive to the details of the forcing and the number of samples. Appendix
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4.A2 further investigates the collapse of the partitioning statistics in terms of
Reλ and ℓ. It highlights that the partitioning at small filter widths collapses
well for Reλ ≳ 200, consistent with the collapse of the unfiltered partitioning
[23]. As Reλ increases, the collapse extends to larger filter widths, including
within the inertial range. The collapse observed in the present study also
complements the collapsed power law scalings for the intensities of shearing
and rigid rotation obtained by Watanabe et al. [66], which were normalized
using the Kolmogorov time scale instead of ⟨A2

ℓ⟩. Based on the excellent
collapse we observe for DNS315 and DNS400, we use Reλ ≈ 400 to represent
the partitioning statistics at moderately high Reynolds numbers and as the
primary subject of our LES analyses.

4.4.1.2 The LES cases: the effect of closure modeling

Previous investigations have demonstrated that the eddy viscosity and mixed
models we consider produce flow statistics at the LES filter scale, ℓLES, that
resemble the statistics of unfiltered and filtered DNS data, respectively [60,
61]. We consider the multiscale partitioning statistics of the resolved velocity
gradients for each model, thereby providing a more holistic assessment than
the previous single-scale analyses. Figure 4.3(a) shows how the partition-
ing produced by each LES model varies as a function of the filter width for
ℓ ≥ ℓLES. The filtered velocity gradients at scale ℓ are obtained by applying a
complementary filter, of width ℓ∗ =

√
ℓ2 − ℓ2

LES, to the resolved velocity gra-
dients, which are filtered at scale ℓLES. Consistent with the previous results,
the mixed model accurately reproduces the multiscale partitioning statistics
of the filtered DNS across all resolved scales. By contrast, the partitioning
produced by the eddy viscosity model deviates from the filtered DNS near the
LES filter width, where it instead approaches the unfiltered DNS partitioning.
This result qualitatively agrees with the notion that the flow field produced
by the eddy viscosity model tends to behave like an unfiltered DNS at a lower
Reynolds number [60, 61].

In Figure 4.3(b), we quantitatively evaluate this claim by replotting the Vis400
partitioning statistics as a function of 2ℓ∗/η∗ instead of 2ℓ/η, where η∗ ≈ 15η

represents an effective Kolmogorov scale that is determined empirically. In
effect, replacing ℓ with ℓ∗ treats the resolved velocity gradients as if they are
unfiltered and replacing η with η∗ treats the flow statistics as if they were pro-
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Figure 4.3: (a) Partitioning of filtered velocity gradients for the LES cases.
The solid curves represent the filtered DNS400 partitioning and the horizontal
dashed lines represent the unfiltered partitioning in the high-Reλ limit. The
lower limit of the filter width axis represents the LES filter width, 2ℓLES/η =
48, and the shaded region approximates the inertial range. (b) Partitioning
for Vis400 replotted as a function of 2ℓ∗/η∗, where ℓ∗ =

√
ℓ2 − ℓ2

LES is the
complementary filter width and η∗ ≈ 15η is an effective Kolmogorov scale.
The solid curves represent the partitioning produced by a DNS at Reλ ≈ 61,
which has a Kolmogorov scale of approximately η∗. The vertical dotted line
represents the typical thickness of small-scale shear layers, δγ = 9η.

duced by a simulation at a lower Reynolds number. Using these modifications,
we compare the multiscale partitioning statistics for Vis400 with those pro-
duced by a DNS at Reλ ≈ 61, which has a Kolmogorov scale of approximately
η∗ (see Appendix 4.A2 for computational details). This comparison shows
that, when plotted as a function of 2ℓ∗/η∗, the Vis400 partitioning statistics
collapse well onto those of the lower-Reλ DNS. It thus quantitatively validates
the claim that the eddy viscosity model produces multiscale flow statistics that
resemble an unfiltered DNS at a lower Reynolds number. In Appendix 4.A2,
we show that the partitioning statistics produced by LES cases that employ
different filter widths, ℓLES, yield a similar conclusion.

Whereas η∗ is determined empirically in the present study, developing tech-
niques to predict it a priori could provide valuable insight into the behavior
of eddy viscosity models. A logical approach would be to hypothesize that
η∗ =

(
ν3

∗

/〈
Φ
〉)1/4

, where ν∗ = ν
〈
Φ
〉/〈

ΦℓLES
〉

represents an effective viscos-
ity that captures the statistical imprint of the dynamic eddy viscosity field
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in terms of the total dissipation rate, Φ, and the resolved dissipation rate,
ΦℓLES . However, this approach leads to a prediction of η∗/η ≈ 10.6 for Vis400,
which does not satisfactorily agree with the empirical value of η∗/η ≈ 15. Fur-
thermore, a similar analysis for Mix400 would yield η∗/η ≈ 8.6, which does
not reflect that the mixed model statistics resemble those of the filtered DNS.
We leave formulating and validating improved predictions of η∗, which would
likely require a more nuanced approach, to future work.

4.4.2 Tube-like and sheet-like vortical structures
The partitioning statistics analyzed in §4.4.1 encode information about the
flow structures that produce them. We analyze how these structures manifest
in the DNS and LES cases to characterize how filtering and LES modeling
affect their spatial organization. Our analysis focuses on tube-like and sheet-
like vortical structures, which can be distinguished using the contributions
of rigid rotation and shear vorticity and, as shown in Appendix 4.A1, are
associated with vortex cores and shear layers, respectively.

Figure 4.4 depicts the vortical structures associated with rigid rotation and
shear vorticity. The unfiltered DNS at Reλ ≈ 61 confirms that rigid rotation
and shear vorticity are associated with tube-like and sheet-like vortical struc-
tures, respectively. The structures for this case qualitatively resemble typical
structures from DNS400 (not shown) in a subdomain of size (2π/15)3. This re-
semblance reflects that the Kolmogorov scale for Reλ ≈ 61 is roughly 15 times
larger than the Kolmogorov scale for Reλ ≈ 400. When filtered at 2ℓ/η = 48,
DNS400 still produces rigid rotation structures that resemble vortex tubes.
However, the shear vorticity structures appear less sharp (i.e., more blob-like)
since the filter scale is larger than the typical thickness of small-scale shear
layers (i.e., 2ℓ > δγ). This highlights that the decreasing relative contribution
from shearing with increasing filter width observed in Figure 4.2 reflects the
progressive smoothing of the vorticity profiles across shear layers in the subin-
ertial range. Regardless of the filter scale, shear vorticity tends to be more
space-filling than rigid rotation, which is consistent with previous findings [66].

The LES visualizations in Figure 4.4 provide insight into the structural im-
plications of the partitioning statistics in Figure 4.3. Just as the multiscale
partitioning for Mix400 resembles that of DNS400 filtered at 2ℓ/η = 48, the
corresponding vortical flow structures are also qualitatively similar. Likewise,
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Figure 4.4: Vortical flow structures associated with rigid rotation and shear
vorticity for an unfiltered (ℓ = 0) DNS at Reλ ≈ 61 (a,b), DNS400 filtered at
2ℓ/η = 48 (c,d), and Vis400 (e,f ) and Mix400 (g,h) at the LES filter width,
2ℓLES/η = 48. The grayscale visualizations depict the strengths of rigid ro-
tation, ω2

ℓ,φ, and shear vorticity, ω2
ℓ,γ, normalized by the spatially averaged

vorticity strength,
〈
ω2

ℓ

〉
, and the isosurfaces represent ω2

ℓ,φ

/〈
ω2

ℓ

〉
= 2 (red)

and ω2
ℓ,γ

/〈
ω2

ℓ

〉
= 2 (blue).
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the vortical flow structures for Vis400 resemble those of the unfiltered DNS at
Reλ ≈ 61, consistent with the collapse of their multiscale partitioning statis-
tics in Figure 4.3(b), where the Vis400 partitioning is replotted as a func-
tion of 2ℓ∗/η∗. The distinctive sheet-like vortical flow structures observed for
these cases are significantly less prominent in the Mix400 and filtered DNS400
visualizations. These observations augment previous observations made us-
ing two-dimensional snapshots of out-of-plane vorticity [60] by unambiguously
identifying and distinguishing the three-dimensional imprint of vortex tubes
and shear layers in a principled manner.

The visualizations analyzed in this section provide structural validation for
the observations made in §4.4.1 using the multiscale partitioning statistics.
Specifically, they highlight that the enhanced shearing at small scales reflects
contributions from sharp velocity gradients across small-scale shear layers,
which are softened upon filtering. They also highlight that the flow structures
produced by the eddy viscosity model resemble those of an unfiltered DNS
at a lower Reynolds number, whereas the structures produced by the mixed
model resemble those of a filtered DNS at the same Reynolds number. These
results emphasize that the ability of an LES to produce realistic multiscale flow
structures can be highly sensitive to the choice of closure model. Together, the
DNS and LES results highlight that a key advantage of the normality-based
analysis is its ability to distinguish vortex cores from shear layers in a manner
that would be obscured by an analogous symmetry-based analysis (e.g., of
vorticity alone). In §4.4.3, we use this expressivity to provide insight into flow
structures that contribute to various mechanisms of interscale energy transfer.

4.4.3 Interscale energy transfer analysis
As formulated in §4.2, we characterize mechanisms responsible for interscale
energy transfer by identifying how the normality-based constituents of the
filtered VGT contribute to the multiscale velocity gradient expansion of Π ℓ.
Numerically evaluating this expansion at a given scale, ℓ, involves computing
scale-space integrals over scales 0 ≤ θ ≤ ℓ. Following previous studies [49, 50],
the scale-space integrals for each ℓ are discretized using the trapezoidal rule
with filter widths that are logarithmically spaced such that ∆log10θ = 0.376
for the DNS cases and ∆log10θ = 0.188 for the LES cases. We have confirmed
that our results are insensitive to the details of these discretization schemes,
including the smallest non-zero filter width (2θ/η = 0.75) for the DNS cases.



104

They are also insensitive to the number of snapshots used to compute the
energy transfer statistics. To reduce computational costs, we only use two
snapshots to compute these statistics for the DNS cases. This is sufficient
since, as demonstrated in Appendix 4.A2, the velocity gradient statistics for
these cases are approximately converged even with a single snapshot. As
depicted in Figure 4.1(a), the collapse of our symmetry-based cascade rate
computations onto those of Johnson [49, 50] further validates the statistical
convergence of our results.

4.4.3.1 The DNS cases: multiscale mechanisms in the energy
cascade

Figure 4.5 summarizes the normality-based contributions to interscale energy
transfer for the DNS cases. Since these contributions are formulated by de-
composing the multiscale velocity gradient expansion of the residual stress
tensor, they represent the straining of flow features at scales θ ≤ ℓ by the flow
at scale ℓ. We specifically identify contributions associated with multiscale
strain self-amplification, vortex stretching, and strain–vorticity covariance, as
expressed in (4.29), (4.30), and (4.31), respectively.

The multiscale strain self-amplification term, Π ℓ,s, is known to provide the
strongest contribution to the energy cascade from the perspective of the symmetry-
based analysis [49, 50]. As shown in Figure 4.5(a), the contributions of normal
straining, shear straining, and their interaction at scales θ ≤ ℓ to this term are
all significant, with normal straining providing the strongest contribution. The
multiscale vortex stretching term, Π ℓ,ω, also contributes significantly to for-
ward energy transfer across scale ℓ. As shown in Figure 4.5(b), the stretching
of shear vorticity at scales θ ≤ ℓ by the flow at scale ℓ provides the strongest
contribution to this term, exceeding the contributions associated with rigid ro-
tation and shear–rotation interactions. Since shear vorticity and rigid rotation
at a given scale are associated with shear layers and vortex cores, respectively,
our results highlight the stretching of small-scale shear layers as a significant
mechanism underlying multiscale vortex stretching. However, the significant
contribution from shear–rotation interactions, which are typically strongest
between the cores and boundaries of vortex tubes (see Appendix 4.A1 and
Arun and Colonius [22]), suggests that vortex stretching near the boundaries
of vortex tubes may also contribute to some fraction of Π ℓ,ω

γγ . Nevertheless,
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Figure 4.5: Normality-based contributions to interscale energy transfer for the
DNS cases. The contributions represent multiscale strain self-amplification
(a), vortex stretching (b), strain–vorticity covariance (c), and aggregates across
these three mechanisms (d). The vertical dotted lines represent the typical
thickness of small-scale shear layers, δγ = 9η, and the shaded regions capture
the bottom of the inertial range for DNS400.

the strong association of shear vorticity with sheet-like vortical structures in
the visualizations in §4.4.2 highlights that, in addition to vortex tubes, shear
layers are essential to the description of multiscale vortex stretching.

In contrast to the forward energy transfer produced by Π ℓ,s and Π ℓ,ω, the
net contribution of the strain–vorticity covariance term, Π ℓ,c, produces up-
scale energy transfer that drives the bottleneck effect in the subinertial range
(see Figure 4.1). Therefore, the normality-based decomposition of Π ℓ,c, as
shown in Figure 4.5(c), provides insight into the flow features that contribute
to this backscatter. The Π ℓ,c

ϵγ and Π ℓ,c
γγ terms represent the covariances of
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normal straining and shear straining (respectively) with shear vorticity at
scales θ ≤ ℓ and can thus be associated with small-scale shear layers. The
Π ℓ,c

φγ term represents the covariance of shear straining with rigid rotation at
scales θ ≤ ℓ and can thus be associated with small-scale vortex tubes. Since〈
Π ℓ,c

φγ

〉
is negligible throughout the subinertial range, the shear vorticity terms

dominate
〈
Π ℓ,c

〉
≈
〈
Π ℓ,c

ϵγ

〉
+
〈
Π ℓ,c

γγ

〉
< 0 at these scales. This suggests that

small-scale shear layers (rather than vortex tubes) are primarily responsible
for the backscatter that produces the bottleneck effect in the subinertial range
of the energy cascade. It is also consistent with the fact that the filter width
associated with the peak relative contribution of this backscatter coincides
with the empirical shear layer thickness (at 2ℓ ≈ δγ = 9η). In particular,
the covariance of normal straining with shear vorticity is responsible for the
backscatter, and its contribution is tempered by a net positive contribution
from the covariance of shear straining with shear vorticity. Further work is re-
quired to determine whether these findings are consistent with the hypothesis
that a mechanism reminiscent of vortex thinning in two-dimensional turbu-
lence drives the backscatter associated with Π ℓ,c in the subinertial range of
three-dimensional turbulence [50]. One such mechanism might involve the
flattening of a vortex into a shear layer that results in a misalignment between
the strain rates at small and large scales.

Combining the contributions from Figure 4.5(a–c), Figure 4.5(d) summarizes
the normality-based contributions to the total interscale energy transfer, as
expressed in (4.23). The contribution of Π ℓ

γγ accounts for more than half of
the energy transfer in the subinertial and inertial ranges, with significant con-
tributions to multiscale strain self-amplification, vortex stretching, and strain–
vorticity covariance. This highlights that the energy transfer across scale ℓ is
largely attributed to the straining of shear layers at scales θ ≤ ℓ. The next
strongest contribution is due to Π ℓ

ϵϵ, which represents strain self-amplification
associated with normal straining at scales θ ≤ ℓ. The combined contribution of
these two terms becomes increasingly dominant at small scales and accounts
for more than 90% of the energy transfer when 2ℓ/η ∼ O(1). The vortex
stretching associated with rigid rotation, Π ℓ

φφ, and the cascade rate associ-
ated with shear–rotation interactions, Π ℓ

φγ, which is primarily due to vortex
stretching, also account for significant (albeit smaller) forward energy trans-
fer. From the normality-based perspective, the Π ℓ

ϵγ term, which represents the
interaction between normal straining and pure shearing at scales θ ≤ ℓ, is the
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only term with a negative net contribution to energy transfer in the subinertial
range. This negative contribution is produced by the strain–vorticity covari-
ance term, Π ℓ,c

ϵγ , and tempered by the strain self-amplification term, Π ℓ,s
ϵγ . It

becomes negligible in the inertial range, which is consistent with our claim
that it is associated with the subinertial bottleneck effect. From strongest to
weakest, the relative contributions of the normality-based mechanisms in the
inertial range can be summarized as

〈
Π ℓ

γγ

〉/〈
Π ℓ
〉
≈ 0.52,

〈
Π ℓ

ϵϵ

〉/〈
Π ℓ
〉
≈ 0.24,〈

Π ℓ
φγ

〉/〈
Π ℓ
〉
≈ 0.16,

〈
Π ℓ

φφ

〉/〈
Π ℓ
〉
≈ 0.08, and

〈
Π ℓ

ϵγ

〉/〈
Π ℓ
〉
≈ 0. These rel-

ative contributions are qualitatively similar to the corresponding partitioning
contributions in the inertial and subinertial ranges, which highlights that the
energy transfer across a given scale is related to the strength of the filtered
velocity gradients that produce it.

In Figure 4.6, we refine the results presented in Figure 4.5 by identifying scale-
local and scale-nonlocal contributions to energy transfer associated with strain
self-amplification and vortex stretching, as formulated in §4.2. Our analysis
focuses primarily on the scale-local terms with three subscripts, as defined
in (4.50) and (4.51), to facilitate detailed interpretations of the underlying
energy transfer mechanisms. The scale-local and scale-nonlocal terms with two
subscripts, as defined in (4.48) and (4.49), are also shown for completeness and
reflect a direct decomposition of the terms in Figure 4.5. They are related to
the terms with three subscripts through the expressions in (4.52) and (4.53).

As depicted in Figure 4.6(a) the Π ℓ,s1
ϵγγ term provides the strongest contribu-

tion to scale-local strain self-amplification. It can be interpreted as the normal
straining of the strain rate associated with shear layers at scale ℓ. Its contribu-
tion is closely followed by that of Π ℓ,s1

ϵϵϵ , which reflects how the self-interaction of
normal straining amplifies strain rates. Together, these two terms are respon-
sible for more than 90% of the scale-local strain self-amplification throughout
the subinertial range and the bottom of the inertial range. Their contribu-
tion dominates that of Π ℓ,s1

γγγ , which reflects how the self-interaction of shear
straining, which is associated with shear layers, amplifies strain rates.

As depicted in Figure 4.6(b), the Π ℓ,ω1
ϵγγ term provides the strongest contribu-

tion to scale-local vortex stretching. It represents the normal straining of the
shear vorticity at scale ℓ and can be interpreted as a ‘shear layer stretching’
term. Its contribution is considerably stronger than that of Π ℓ,ω1

ϵφφ , which repre-
sents the normal straining of rigid rotation at scale ℓ and can be interpreted as
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Figure 4.6: Normality-based contributions (as defined in §4.2) to the cas-
cade rates associated with scale-local strain self-amplification (a) and vor-
tex stretching (b) and scale-nonlocal strain self-amplification (c) and vortex
stretching (d). The vertical dotted lines represent the typical thickness of
small-scale shear layers, δγ = 9η, and the shaded regions capture the bottom
of the inertial range for DNS400.

a ‘vortex core stretching’ term. As discussed for multiscale vortex stretching,
this suggests that prototypical models of stretched vortex tubes (e.g., Burgers
vortex tubes) may provide an incomplete picture of vortex stretching. Supple-
menting these models with contributions from stretched shear layers, which
are often modeled using Burgers vortex layers, is likely to more accurately
capture the flow features that contribute to scale-local vortex stretching. The
inclusion of stretched shear layers is particularly important given that they
also contribute significantly to scale-local strain self-amplification through the
Π ℓ,s1

ϵγγ term.
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Case SS: ϵϵϵ SS: ϵγγ SS: γγγ VS: ϵφφ VS: ϵγγ VS: γγγ VS: ϵφγ

DNS315 0.349 0.536 0.115 0.123 0.536 0.115 0.226
DNS400 0.354 0.531 0.115 0.125 0.531 0.115 0.229

Table 4.2: Comparison of the normality-based contributions to strain self-
amplification (SS) and vortex stretching (VS) for the unfiltered DNS cases.
The contributions to SS and VS are normalized by

〈
−SijSikSjk

〉
and〈

−SijΩikΩjk

〉
. respectively, such that they sum to unity for each mechanism.

While Π ℓ vanishes in the limit of ℓ → 0, strain self-amplification and vor-
tex stretching are still relevant since they modulate the strength of unfiltered
velocity gradients. Therefore, the normality-based analysis of these mecha-
nisms at ℓ = 0 provides insight into their contributions to the dynamics of
velocity gradients at small scales. Table 4.2 summarizes the average contribu-
tions of the normality-based constituents of these mechanisms, which can be
interpreted as the relative contributions of the terms in (4.50) and (4.51) in
the limit of ℓ → 0. Consistent with our scale-local energy transfer analysis,
the ϵγγ terms, associated with the normal straining of shear layers, are the
most significant contributors to strain self-amplification and vortex stretching
at ℓ = 0. Importantly, normal straining contributes significantly more to the
stretching of shear layers than shear straining, which is represented by the
γγγ terms. This highlights that the Burgers vortex layer forms a reasonable
(albeit crude) model for small-scale shear layers, as its strain self-amplification
and vortex stretching are entirely attributed to the ϵγγ terms. Appendix 4.A1
provides further analysis of the strain self-amplification and vortex stretching
associated with Burgers vortex layers and tubes.

Our results are also qualitatively consistent with the statistics reported by
Watanabe et al. [28] using the original triple decomposition [15, 16]. However,
their approach yields non-zero contributions from terms analogous to the ϵϵγ

strain self-amplification term and the γφφ and γφγ vortex stretching terms,
which are identically zero in our normality-based formulation. This reflects
that their approach relies on a (potentially sensitive) optimization problem
to identify a frame that maximizes an interaction scalar. By contrast, our
normality-based approach has unambiguous foundations derived from the form
of the VGT in the principal reference frame, as expressed in (4.2).
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4.4.3.2 The LES cases: closure models and the artificial
bottleneck effect

Whereas our analysis of energy transfer for the DNS cases involves scales
(0 ≤ 2ℓ/η ≤ 67.9) primarily associated with the subinertial range, our analysis
of the LES cases is constrained to the resolved scales (2ℓ ≥ 2ℓLES = 48η),
which are primarily associated with the inertial range. This constraint poses a
challenge for computing the multiscale expansion of σℓ

ij, as formulated in (4.8),
since we do not have access to the unresolved motions at scales ℓ < ℓLES. For
the LES cases, we compute the residual stress tensor at scales ℓ ≥ ℓLES as

σℓ
ij = σℓLES

ij

ℓ∗
+ uℓLES

i uℓLES
j

ℓ∗
− uℓLES

i

ℓ∗
uℓLES

j

ℓ∗︸ ︷︷ ︸
σ̃ℓ

ij

, (4.60)

where ℓ∗ =
√

ℓ2 − ℓ2
LES. Here, the first term represents the contribution

from the unresolved motions, as modeled by (4.54) and (4.57) for Vis400 and
Mix400, respectively, and σ̃ℓ

ij represents the contribution from the resolved flow
field. The term σ̃ℓ

ij contributes to the interscale energy transfer associated with
the resolved motions, Π̃ ℓ = −S

ℓ

ijσ̃
ℓ
ij, which can be expanded analogously to

(4.9) as

Π̃ ℓ = −S
ℓ

ij

∫
ℓ2

ℓ2
LES

dθ2
(

A
θ

ikA
θ

jk

ϕ
)

= −S
ℓLES

ij

ℓ∗ ∫ ℓ2
∗

0
dθ2

∗

A
ℓLES

ik

θ∗

A
ℓLES

jk

θ∗
ϕ
 ,

(4.61)
where θ∗ =

√
θ2 − ℓ2

LES, ϕ =
√

ℓ2 − θ2 =
√

ℓ2
∗ − θ2

∗, and the remaining en-
ergy transfer, Π ℓ − Π̃ ℓ, is supplied by the closure model. We use analogous
expansions, denoted with tildes, to capture the resolved part of other mul-
tiscale cascade rates (e.g., Π̃ ℓ,s, Π̃ ℓ,ω, and Π̃ ℓ,c). The resolved scale-nonlocal
contributions to the cascade rates associated with strain self-amplification and
vortex stretching are defined as Π̃ ℓ,s2 = Π̃ ℓ,s−Π ℓ,s1 and Π̃ ℓ,ω2 = Π̃ ℓ,ω −Π ℓ,ω1,
respectively. In this section, we use these resolved cascade rates to provide
insight into the structural origins of the artificial bottleneck effect in LES, as
depicted in Figure 4.1(b).

Figure 4.7 shows the resolved symmetry-based cascade rates alongside the
normality-based decomposition of the resolved strain–vorticity covariance term
for the LES cases. For Mix400, the scale-local cascade rates associated with
strain self-amplification and vortex stretching are reasonably consistent with
those of an analogously filtered DNS. This reflects that the scale-local terms
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at scales ℓ ≥ ℓLES are fully resolved and it is consistent with the partitioning
results in Figure 4.3(a). By contrast, the corresponding scale-nonlocal cascade
rates do not match the filtered DNS and account for nearly all of the unresolved
net energy transfer,

〈
Π ℓ
〉
−
〈
Π̃ ℓ
〉
. There is virtually no backscatter associated

with the resolved contribution from the strain–vorticity covariance term. This
is consistent with the inertial range DNS results and reflects that the negative
contribution from Π̃ ℓ,c

ϵγ is roughly balanced by the positive contribution from
Π̃ ℓ,c

γγ . Therefore, the lack of a pronounced bottleneck effect for the mixed
model is associated with the absence of backscatter from the Π̃ ℓ,c term that,
in particular, reflects the behavior of the shear layer terms.

For Vis400, the scale-local cascade rates are significantly stronger than those
of the filtered DNS. Furthermore, the resolved cascade rate associated with the
strain–vorticity covariance term produces significantly more backscatter than
the negligible contribution observed for the filtered DNS. This backscatter re-
flects that the negative contribution from the Π̃ ℓ,c

ϵγ term significantly outweighs
the positive contribution from the Π̃ ℓ,c

γγ term, consistent with the DNS results
in the subinertial range, as shown in Figure 4.5(c). Therefore, the pronounced
artificial bottleneck effect produced by the eddy viscosity model is associated
with backscatter from the Π̃ ℓ,c term that, in this case, reflects that the resolved
shear layer terms behave similarly to the shear layer terms in the subinertial
range for DNS.

As was done for the partitioning in Figure 4.3(b), the resolved cascade rates for
Vis400 can be interpreted as if they were produced by an unfiltered DNS at a
lower Reynolds number. Figure 4.7(e,f ) shows these cascade rates normalized
by the total resolved cascade rate,

〈
Π̃ ℓ
〉
, instead of the total cascade rate,〈

Π ℓ
〉
, and plotted as a function of 2ℓ∗/η∗ instead of 2ℓ/η. Consistent with

Figure 4.3(b), we select η∗ ≈ 15η and compare these results with those from
a DNS at Reλ ≈ 61, which has a Kolmogorov scale of approximately η∗. For
the symmetry-based results in Figure 4.7(e), there is a remarkable collapse
between the replotted Vis400 cascade rates and the Reλ ≈ 61 cascade rates,
except at very large scales, where the effects of the forcing and the number
of snapshots may be relevant. The fact that both the partitioning statistics
and the energy transfer statistics for Vis400 collapse well for the same η∗

provides solid quantitative evidence that the eddy viscosity model behaves
like an unfiltered DNS at a lower Reynolds number.
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Figure 4.7: (a,c) Resolved symmetry-based scale-local and scale-nonlocal cas-
cade rates for Mix400 (a) and Vis400 (c) overlaid on curves that represent
the DNS results of Johnson [49, 50] in the same style as Figure 4.1(a). (b,d)
Normality-based contributions to Π̃ ℓ,c for Mix400 (b) and Vis400 (d). Panels
(e) and (f ) replot the Vis400 results from panels (c) and (d), respectively, nor-
malized by

〈
Π̃ ℓ
〉

and as a function of 2ℓ∗/η∗, where η∗ ≈ 15η. The curves (e,f )
represent a DNS at Reλ ≈ 61, which has a Kolmogorov scale of approximately
η∗. The shaded regions approximate the inertial range and the vertical dotted
lines represent δγ = 9η.
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Figure 4.8: Resolved normality-based cascade rates for Vis400, plotted in the
same style as Figure 4.7(e,f ).

The collapse for the strain–vorticity covariance term highlights that the backscat-
ter responsible for the artificial bottleneck effect in LES can be interpreted
similarly to the backscatter responsible for the true bottleneck effect in DNS.
Specifically, as shown in Figure 4.7(f ), both bottleneck effects are almost en-
tirely the result of contributions from shear vorticity (i.e., shear layers). How-
ever, close to the LES filter width (i.e., at small ℓ∗), the contributions of Π̃ ℓ,c

ϵγ

and Π̃ ℓ,c
γγ for Vis400 depart from those of Π ℓ,c

ϵγ and Π ℓ,c
γγ for the Reλ ≈ 61 DNS.

More generally, as shown in Figure 4.8, the contributions from the cascade
rates associated with shearing and the interaction between normal straining
and shearing are the only ones that exhibit this departure. All other normality-
based cascade rates collapse extremely well onto the Reλ ≈ 61 DNS results.
We hypothesize that these differences reflect the imprint of the dynamic vari-
ations in the eddy viscosity field on the resolved motions since, if the eddy
viscosity were truly constant, we would expect the eddy viscosity simulation
results to collapse exactly onto those of an unfiltered DNS at a lower Reynolds
number. Hence, while we observe remarkable similarities between these cases,
the dynamic model does produce subtle differences that are appreciable at
scales sufficiently close to the LES filter width. Despite these subtle differ-
ences, the striking similarity in the shear-layer origins of the true bottleneck
effect in DNS and the artificial bottleneck effect produced by the eddy vis-
cosity LES case provides insight that may aid the design of improved closure
models.



114

4.5 Concluding remarks
We have employed a normality-based analysis of filtered velocity gradients to
identify the multiscale imprints of normal straining, pure shearing, and rigid
rotation in turbulent flows. Our analysis of Gaussian-filtered velocity gradi-
ents obtained from DNS data representing forced isotropic turbulence refines
symmetry-based approaches for characterizing the structures and mechanisms
underlying the energy cascade. Our concurrent analysis of resolved velocity
gradients obtained from LES data characterizes how well closure models, in-
cluding eddy viscosity and mixed models, capture these flow features.

Our normality-based approach provides a principled framework for distinguish-
ing tube-like vortex cores, which are associated with rigid rotation, from sheet-
like shear layers, which are associated with shearing. Partitioning multiscale
velocity gradients based on this approach reveals that filtering induces key
structural changes in the subinertial range of the cascade. Filtering mitigates
the relative contribution of shearing in this range by smoothing transverse ve-
locity gradients across shear layers. This effect persists until the filter width
exceeds the empirical thickness of small-scale shear layers, whereafter the par-
titioning is relatively constant as a function of scale, including in the iner-
tial range. The variations we observe would be obscured by an analogous
symmetry-based analysis since the average strengths of the strain-rate and
vorticity tensors are equipartitioned at all scales in homogeneous turbulence.

Our interscale energy transfer analysis shows that, in the subinertial and in-
ertial ranges of the cascade, the forward energy transfer across a given scale
is driven primarily by the straining of multiscale shear layers. The strain
self-amplification associated with multiscale normal straining and the vortex
stretching associated with multiscale rigid rotation and shear–rotation interac-
tions also contribute significantly to forward energy transfer. Our scale-local
energy transfer analysis highlights that the normal straining of shear layers
(i.e., shear layer stretching) is responsible for the majority of scale-local strain
self-amplification and vortex stretching at all scales considered. This suggests
that supplementing prototypical models involving stretched vortex tubes (e.g.,
Burgers vortex tubes) with contributions from stretched shear layers (e.g.,
Burgers vortex layers) would more realistically capture the structure of energy
transfer and velocity gradient amplification in turbulent flows.

Previous symmetry-based analyses [49, 50] pinpoint multiscale strain–vorticity
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covariance as a source of net backscatter that contributes to the bottleneck
effect in the subinertial range of the energy cascade. Our analysis refines
this notion by revealing that the net backscatter is almost entirely attributed
to contributions from shear vorticity (i.e., shear layers). In particular, it is
primarily associated with the interaction between normal straining and shear
vorticity, which is tempered by the interaction between shear straining and
shear vorticity. By contrast, the interaction between shear straining and rigid
rotation, which can be associated with vortex tubes, provides a negligible
net contribution. When combined with the fact that the backscatter is most
significant at the scale associated with the thickness of small-scale shear layers,
these results imply that shear layers are critical to the bottleneck effect.

Broadly speaking, our partitioning and energy transfer analyses for the LES
cases highlight that the mixed model effectively reproduces the statistical and
structural flow features of an appropriately filtered DNS. By contrast, the
eddy viscosity model instead reproduces flow features associated with an un-
filtered DNS at a lower Reynolds number. Using the present (dynamic) eddy
viscosity model, an LES at Reλ ≈ 400 reproduces the statistics associated
with a DNS at Reλ ≈ 61, which has a Kolmogorov scale roughly 15 times
larger. In conjunction with the enhanced shearing at small scales identified by
our partitioning analysis, this behavior helps explain why the eddy viscosity
model produces prominent shear layer structures in the inertial range. It also
reveals that the pronounced artificial bottleneck effect produced by this model
in the inertial range has the same (shear layer) origins as the true bottleneck
effect in the subinertial range for the DNS cases. Altogether, our LES analy-
ses highlight the superior ability of the mixed model to mimic a filtered DNS.
More generally, they provide a promising framework to assess (and potentially
formulate) LES closure models.

The partitioning and energy transfer statistics that we compute for forced
isotropic turbulence exhibit excellent collapse at relatively high Reλ. Given
related analyses of unfiltered velocity gradients [14, 22], it is reasonable to
expect a similar collapse for the statistics at small filter scales in appropri-
ate regions of inhomogeneous flows. Characterizing how (and at what scale)
inhomogeneities induce differences from the flow features we observe would
provide insight into how turbulence is sustained in a broader class of flows.
Beyond computing velocity gradient statistics, identifying precisely how flow
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structures contribute to those statistics would refine our understanding of the
‘recipe’ for turbulence. In the spirit of Shen et al. [67], Burgers vortex layers
and tubes of various sizes and strengths might be versatile building blocks for
this task. Our normality-based approach may also help identify unique im-
prints of flow structures that contribute to other vector gradients. For example,
the ability to identify sheet-like structures may provide insight into the struc-
tures responsible for the current sheet thinning mechanism that dominates
energy transfer in the inertial range of magnetohydrodynamic turbulence [42].
Beyond identifying flow structures, characterizing the dynamical evolution of
these structures (even empirically) would clarify their roles in fundamental
processes that sustain turbulent flows. For example, a time-resolved analysis
could clarify how shear layers contribute to the bottleneck effect and whether
that is consistent with the vortex thinning hypothesis [50]. Finally, our ap-
proach may help guide the development of more effective turbulence models.
For example, it would be interesting to develop a model in the spirit of the
stretched vortex subgrid-scale model [68] that also incorporates contributions
from subgrid-scale shear layers.

Funding: R.A. was supported by the Department of Defense (DoD) through
the National Defense Science & Engineering Graduate (NDSEG) Fellowship
Program. This material is based upon work supported by the National Science
Foundation under Grant No. CBET-2152373.

4.A1 Normality-based analysis of Burgers vortex layers and tubes
We apply the normality-based analysis of the VGT to the Burgers vortex layer
and the Burgers vortex tube to provide insight into the structural organization
of normal straining, pure shearing, and rigid rotation in canonical vortical
flows.

The Burgers vortex layer represents a canonical stretched shear layer. Its
velocity field, (ux, uy, uz), in Cartesian coordinates, (x, y, z), is given by

ux = −αx, uy = Uerf
(√

αx√
2ν

)
, uz = αz, (4.62)

where α > 0 is a strain rate parameter and 2U = uy(x→ +∞)−uy(x→ −∞)
is the vortex layer strength and represents the circulation per unit length. The
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non-dimensional VGT for this flow is given by

1
α

A =


−1 0 0

ReU√
π

exp (−x2
∗) 0 0

0 0 1

 , (4.63)

where x∗ = x
√

α/2ν is the non-dimensional transverse coordinate and ReU =
U
√

2/αν is the shear layer Reynolds number.

The Burgers vortex tube represents a canonical stretched vortex tube. Its
velocity field, (ur, uϑ, uz), in cylindrical coordinates, (r, ϑ, z), is given by

ur = −αr, uϑ = Γ
2πr

[
1− exp

(
−αr2

2ν

)]
, uz = 2αz, (4.64)

where α > 0 is again a strain rate parameter and Γ > 0 represents the circu-
lation. The non-dimensional VGT for this flow is given by

1
α

A =


−1 − ReΓ

4πr2
∗

[1− exp (−r2
∗)] 0

− ReΓ
4πr2

∗
[1− exp (−r2

∗)] + ReΓ
2π

exp (−r2
∗) −1 0

0 0 2

 ,

(4.65)
in cylindrical coordinates, where r∗ = r

√
α/2ν is the non-dimensional radial

coordinate and ReΓ = Γ/ν is the circulation Reynolds number.

Figure 4.9(a) shows the velocity gradient partitioning for Burgers vortex lay-
ers at various values of ReU . Rigid rotation and shear–rotation correlations
do not contribute to this flow since the eigenvalues of the VGT are real at
all spatial locations. As expected, the partitioning is dominated by shearing
inside the shear layer and normal straining far from the shear layer. The far-
field behavior reflects that normal straining, which is purely symmetric, must
dominate velocity gradients in regions where the vorticity is relatively weak
(i.e., in nearly potential flow regimes). The value of x∗ where the partitioning
transitions from the shearing regime to the normal straining regime increases
with increasing ReU , and it has been shown that ReU ≲ 100 for typical small-
scale shear layers [28]. Regardless of ReU , strain self-amplification and vor-
tex stretching (not shown) are entirely associated with the ϵγγ terms (i.e.,
−3Sϵ

ijS
γ
ikSγ

jk and −Sϵ
ijΩ

γ
ikΩγ

jk) at all spatial locations. As shown in §4.4.3.1,
these mechanisms provide the strongest relative contributions to scale-local
vortex stretching and strain self-amplification throughout the cascade.
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Figure 4.9: (a) Velocity gradient partitioning for Burgers vortex layers at
ReU = 102 (solid), ReU = 104 (dashed), and ReU = 106 (dotted). (b) Velocity
gradient partitioning for the Burgers vortex tube in the limit of ReΓ → ∞.
(c) Normality-based contributions to strain self-amplification (SS) and vortex
stretching (VS) for the Burgers vortex tube from (b). The vertical dotted lines
(b,c) represent the vortex boundary as identified by Q = 0 and ∆ = 0, where
Q is the second invariant of the VGT and ∆ is the discriminant of the VGT.

Figure 4.9(b) shows the velocity gradient partitioning for a Burgers vortex
tube in the limit of ReΓ → ∞. The inner core of this Burgers vortex tube is
dominated by rigid rotation, whereas the region near the vortex boundary is
dominated by pure shearing. This highlights that the vortex can be crudely
described as a rigidly rotating inner core with a shear annulus wrapped around
it. The shear–rotation correlations are most significant between the core and
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boundary regions, which is consistent with previous observations of vortex
structures [22]. As observed for the Burgers vortex layer, the velocity gradients
are dominated by normal straining in the nearly potential flow regime far
from the vortex core. At the vortex boundary, the partitioning profiles are
continuous but not differentiable. This reflects that the eigenvalues of the VGT
are not differentiable at this location, where they transition from a regime with
one real eigenvalue and a pair of complex conjugate eigenvalues to a regime
with three real eigenvalues.

Figure 4.9(c) shows the relative contributions of normality-based strain self-
amplification and vortex stretching mechanisms for the Burgers vortex tube.
The contributions of the ϵφφ and ϵφγ vortex stretching terms are constrained
to within the vortex boundary. They highlight that the ‘vortex core stretching’
term is primarily associated with the inner vortex core and the shear–rotation
interaction term is associated with the region between the core and the bound-
ary. By contrast, the ϵγγ vortex stretching term, which represents ‘shear layer
stretching,’ is primarily associated with the shear annulus near the vortex
boundary and the region outside the vortex boundary. In the nearly poten-
tial flow regime far from the vortex core, strain self-amplification is negative
and dominated by the ϵϵϵ (normal straining) term. However, within the vor-
tex boundary, it is positive and dominated by the ϵγγ term in the limit of
ReΓ →∞.

4.A2 Collapse of the multiscale velocity gradient partitioning
We analyze the multiscale velocity gradient partitioning for various simulations
of forced isotropic turbulence to identify how key features of the partitioning
collapse in terms of Reλ and ℓ. In addition to the simulations discussed in
Table 4.1, we consider DNS cases at Reλ ≈ 61, 100, and 160. These sim-
ulations are conducted on grids of size N3

x = 643, 1283, and 2563 and have
spatial resolutions of kmaxη ≈ 1.3, 1.4, and 1.3, respectively. Each of these
supplementary DNS cases consists of 68 temporal snapshots that are spaced
one large-eddy turnover time apart.

Figure 4.10 shows how the partitioning varies as a function of filter width for
100 ≲ Reλ ≲ 400. It shows that the multiscale partitioning statistics collapse
at sufficiently high values of Reλ. The collapse at small scales is consistent with
previous findings that the unfiltered partitioning collapses well for Reλ ≳ 200
[23]. Table 4.3 further shows that the unfiltered partitioning statistics collapse



120

101 102
0

0.1

0.2

0.3

(a)

101 102
0

0.1

0.2

0.3

(b)

101 102
0

0.1

0.2

0.3

(c)

101 102
0

0.1

0.2

0.3

(d)

Figure 4.10: (a) Partitioning of filtered velocity gradients for DNS cases at
various Reynolds numbers. The symbols represent averages over all snapshots
and the shading represents ranges for single-snapshot averages. In all panels,
the solid curves represent the averaged partitioning at Reλ ≈ 400, the hori-
zontal dashed lines represent the unfiltered partitioning in the high-Reλ limit,
and the vertical dotted lines represent the typical thickness of small-scale shear
layers, δγ = 9η.

to within ±0.001 for Reλ ≳ 315. The collapse extends to larger scales as
Reλ increases and, for Reλ ≳ 315, it extends well into the inertial range (to
within ±0.002), where the partitioning is also relatively insensitive to scale.
The shaded regions in Figure 4.10 capture the extent to which the spatially
averaged partitioning statistics vary in time for each simulation. For all cases,
the magnitude of these variations decreases as ℓ decreases since the degree of
scale separation from the forcing increases. This scale separation, combined
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Type Model Reλ 2ℓ/η

〈
S2

ℓ,ϵ

〉
〈

A2
ℓ

〉
〈

A2
ℓ,γ

〉
〈

A2
ℓ

〉
〈

Ω2
ℓ,φ

〉
〈

A2
ℓ

〉
〈

Ω2
ℓ,φγ

〉
〈

A2
ℓ

〉
Random Pope [69] 400 − 0.279 0.442 0.139 0.140
DNS − 61 0 0.235 0.531 0.100 0.134
DNS − 100 0 0.236 0.528 0.102 0.134
DNS − 160 0 0.238 0.524 0.104 0.134
DNS − 315 0 0.239 0.521 0.106 0.134
DNS − 400 0 0.240 0.520 0.106 0.134
DNS − 315 24 0.274 0.453 0.131 0.142
DNS − 315 48 0.272 0.456 0.130 0.142
DNS − 315 96 0.271 0.458 0.129 0.142
DNS − 400 24 0.274 0.453 0.131 0.142
DNS − 400 48 0.273 0.455 0.130 0.142
DNS − 400 96 0.272 0.457 0.129 0.142
LES Eddy viscosity 400 24 0.234 0.532 0.100 0.134
LES Eddy viscosity 400 48 0.233 0.534 0.099 0.134
LES Eddy viscosity 400 96 0.234 0.533 0.099 0.134
LES Mixed 400 24 0.267 0.466 0.125 0.142
LES Mixed 400 48 0.267 0.465 0.125 0.143
LES Mixed 400 96 0.268 0.464 0.125 0.143

Table 4.3: Partitioning statistics produced by random velocity gradients and
various DNS and LES cases. Each LES case represents a separate simulation
where ℓ = ℓLES represents the LES filter width.

with an increasing number of grid points, also explains why the variations
at a given scale become smaller as Reλ increases. For the Reλ ≈ 315 and
400 simulations, which correspond to DNS315 and DNS400 in Table 4.1, our
results suggest that a single snapshot is sufficient to obtain converged velocity
gradient statistics in the range 0 ≤ 2ℓ/η ≤ 67.9. This helps justify our use
of two snapshots to compute the interscale energy transfer statistics in that
range of scales for DNS315 and DNS400 (see §4.4.3).

Table 4.3 also provides a complementary view to the multiscale partitioning
analysis for the LES cases in §4.4.1.2. Here, instead of plotting the multi-
scale partitioning statistics for a single LES, we consider the partitioning at
the LES filter scale, ℓLES, and vary ℓLES across three different simulations.
These simulations employ LES filter widths of 2ℓLES/η = 24, 48, and 96 and
have grid sizes of N3

x = 2563, 1283, and 643, respectively. They each have
a spatial resolution of kmaxℓLES ≈ 3.0, which is comparable to a DNS reso-
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lution of kmaxη ≈ 1.5 [60]. Each of these supplementary LES cases consists
of 68 temporal snapshots that are spaced half of a large-eddy turnover time
apart. For all values of ℓLES, the partitioning statistics for the eddy viscosity
simulations resemble those of the unfiltered DNS at Reλ ≈ 61, which has a
Kolmogorov scale roughly 15 times larger. Further, the partitioning statistics
for the mixed model simulations resemble those of the Reλ ≈ 400 DNS filtered
at scale ℓLES and, as such, are relatively insensitive to ℓLES. These results
support our main conclusions regarding the behavior of the eddy viscosity and
mixed models over a broad range of LES filter widths. Although not shown,
our conclusions are robust to different model formulations, including those
considered by Kamal and Johnson [60].

Finally, we compare the partitioning statistics with those produced by random
velocity gradients. The random case consists of 20 snapshots of size N3

x =
10243, where each snapshot represents a synthetic, divergence-free velocity
field constructed from Fourier modes with Gaussian-random complex weights.
These weights are rescaled to obey the model energy spectrum described in
section 6.5.3 of Pope [69] with a Kolmogorov constant of C = 1.5 and a viscous
roll-off parameter of β = 5.2. Interestingly, the inertial range partitioning
statistics are more similar to those associated with the random case than
they are to the unfiltered partitioning statistics. Moreover, the partitioning
statistics for the random case, which are constant to within ±0.002 for 0 ≤
2ℓ/η ≤ 384, do not capture the enhanced relative contribution of shearing in
the subinertial range. This suggests that the imprint of viscous-scale shear
layers can be viewed as a defining feature of turbulence associated with the
incompressible Navier–Stokes equations. The imprint may be encoded in the
phases of the Fourier modes of the velocity field, which are uncorrelated for
the random case.
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C h a p t e r 5

CONCLUDING REMARKS

“In a time of turbulence and change, it is more true than ever that knowledge
is power; for only by true understanding and steadfast judgment are we able
to master the challenge of history.”

—John F. Kennedy [1]

5.1 Summary of contributions
We have contributed to the development, application, and interpretation of a
normality-based framework for analyzing velocity gradients in turbulent flows.
This framework identifies contributions from normal straining, pure shearing,
and rigid rotation using the ordered real Schur form of the velocity gradient
tensor (VGT). It provides a principled approach to identify flow features, such
as vortex cores and shear layers, that are obscured by conventional symmetry-
based analyses. In doing so, it yields valuable insights for distinguishing flow
regimes, capturing mechanisms that sustain turbulence, and assessing the per-
formance of turbulence models.

In Chapter 2 [2], we used the normality-based framework to partition the
strength of velocity gradients in a collision of two vortex rings. The initial
vortex rings have a strong imprint from rigid rotation that is associated with
their core vorticity profiles. At the relatively high circulation Reynolds num-
ber considered, their collision transitions to a turbulent state due to the action
of the elliptic instability. We showed that the statistical imprint of the ellip-
tic instability is captured by enhanced shear–rotation correlations. Further,
by deriving novel algebraic expressions for the partitioning constituents, we
showed how this imprint reflects geometric features of local streamlines that
are relevant to the phenomenology of the elliptic instability. Remarkably, the
partitioning of the decaying turbulent cloud produced by the collision is simi-
lar to the partitioning observed in forced isotropic turbulence, despite the fact
that the cloud is neither sustained nor entirely isotropic. These distinctive
features of the initial, transitional, and turbulent regimes of the collision are
not captured by an analogous symmetry-based partitioning since the averaged
strength of the strain-rate and vorticity tensors are equipartitioned throughout
the simulation.
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In Chapter 3 [3], motivated by the partitioning of the decaying turbulent cloud,
we assessed the applicability of the isotropic partitioning in a broad range of
wall-bounded turbulent flows, including channels and boundary layers. We
showed that, at sufficiently high friction Reynolds numbers, the partitioning
far from the wall (where the mean shearing is relatively weak) collapses onto
the isotropic partitioning. By contrast, the near-wall partitioning is dominated
by shearing. The evolution of the partitioning from the near-wall regime to the
nearly-isotropic regime collapses reasonably well in inner units for the flows
considered. However, due to the imprint of an exterior potential flow, the
partitioning for the boundary layers diverges from the isotropic partitioning
in the freestream and, within the boundary layers, has a stronger contribution
from normal straining than that for the channels. The distinctive features
of these spatial regimes in wall-bounded flows are again not captured by the
symmetry-based partitioning since its variations with respect to the isotropic
partitioning are small and non-monotonic.

Finally, in Chapter 4 [4], we extended the normality-based framework to a
multiscale setting by applying it to filtered velocity gradients in direct and
large-eddy simulations of isotropic turbulence. Our multiscale partitioning
analysis reveals that filtering mitigates the relative contribution of pure shear-
ing to the velocity gradients in the subinertial range of the energy cascade.
As before, this effect is not captured by the multiscale symmetry-based par-
titioning due to the equipartitioning of the filtered strain-rate and vorticity
tensors. Moreover, we developed a novel approach to capture the contribu-
tions of normality-based flow features, like vortex cores and shear layers, to
interscale energy transfer via a multiscale velocity gradient expansion of the
residual stress tensor. Our approach illuminates the significant contribution of
shear layers to a broad range of mechanisms responsible for interscale energy
transfer. Interestingly, their contribution to vortex stretching is significantly
stronger than that of vortex cores. This suggests that supplementing the con-
ventional picture of stretched vortices, which are often modeled as Burgers
vortex tubes, with contributions from stretched shear layers, which can be
modeled as Burgers vortex layers, would provide a more accurate description
of the flow structures responsible for energy transfer. Burgers vortex layers
appear particularly suitable given that the normal straining of shear layers is
responsible for the majority of scale-local strain self-amplification and vortex
stretching in the cascade. We also showed that shear layers dominate the
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net backscatter produced by a strain–vorticity covariance mechanism, which
contributes to the bottleneck effect in the subinertial range of the cascade.
Furthermore, by developing an analysis of resolved energy transfer in large-
eddy simulation (LES), we showed that they are responsible for the artificial
bottleneck effect produced by an eddy viscosity model in the inertial range.
This reflects that the eddy viscosity model replicates flow features, including
pronounced sheet-like shear layers, that are associated with an unfiltered di-
rect numerical simulation (DNS) at a lower Taylor-scale Reynolds number. By
contrast, a mixed model more accurately captures the features associated with
a filtered DNS by explicitly resolving scale-local energy transfer at the LES
filter scale.

Altogether, this thesis makes a case for using a normality-based approach
to better understand and model turbulent flows. Although this approach is
slightly more involved than the conventional symmetry-based approach, its
computational cost is reasonable even for relatively large turbulence datasets.
We have made an instructional code that implements the normality-based
analysis openly available in the Caltech Data Repository.

5.2 Outlook for future work
This thesis contributes to longstanding efforts to compellingly synthesize the
statistical, structural, and dynamical properties of small-scale turbulence. Our
normality-based analyses open several lines of further inquiry in this area,
ranging from direct extensions of our work to long-term research prospects.

A key finding of this thesis is the applicability of the velocity gradient parti-
tioning associated with isotropic turbulence to appropriate regimes of a broad
range of turbulent flows. However, our analyses were limited to canonical
unbounded and wall-bounded flows governed by the incompressible Navier–
Stokes equations. Direct extensions of our work could assess how compress-
ibility, stratification, multiphase effects, and other complications affect the
partitioning and the structural features it encodes. In Chapter 3, we showed
that the mean shearing strength is a reasonable parameter for modeling the
wall-normal variations of the partitioning in channels and boundary layers.
Developing more rigorous and effective techniques to predict the partitioning
in terms of mean flow variables would be particularly useful for applications
to more complex and realistic flow configurations. This could aid the develop-

https://doi.org/10.22002/17h15-gr910
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ment of predictive models for effects relevant to engineering applications, such
as drag and separation in wall-bounded flows and sound generation in free-
shear flows. Furthermore, conditional partitioning analyses could elucidate
how structures like vortex cores and shear layers contribute to these effects.

Another key finding of this thesis is the ability of the normality-based approach
to identify distinctive fingerprints of mechanisms that sustain turbulent flows.
In Chapter 2, we showed that it can tease out the statistical imprint of the
elliptic instability from an intricate web of vortical flow structures. Assessing
how well our approach can distinguish between contributions from the elliptic
and Crow instabilities in the turbulent regime would provide insight into the
uniqueness of this imprint. This would help address ongoing debates [5–8]
regarding the relevance of two proposals for prototypical cascade mechanisms:
iterative elliptic instabilities [5] and successive vortex reconnections [6]. Fur-
thermore, given that the partitioning can distinguish the imprints of vortex
cores and shear layers, it may also encode an imprint of the Kelvin–Helmholtz
instability (which is associated with shear layers) in turbulent settings. Be-
yond analyzing statistical imprints, analyzing the temporal evolution of the
flow structures that produce them could inspire improved models of the mech-
anisms underlying the energy cascade. For example, time-resolved analyses
could clarify whether the hypothesis that a vortex thinning mechanism drives
the backscatter associated with the bottleneck effect [9] is consistent with our
observation in Chapter 4 that the backscatter is dominated by contributions
from shear vorticity. Similar analyses can be used to interrogate the current
sheet thinning mechanism proposed to dominate energy transfer in the inertial
range of magnetohydrodynamic turbulence [10].

Despite its advantages, the normality-based decomposition we consider has
room for improvement. As discussed in Chapters 3 and 4, its application and
interpretation in turbulence modeling settings is complicated by the fact that,
unlike the symmetry-based decomposition, it does not commute with averaging
or filtering operations. In this thesis, we have advocated for averaging-first and
filtering-first approaches to facilitate insights relevant to turbulence modeling.
Beyond this, it would be interesting to develop a framework that synthesizes
the commutativity properties of the symmetry-based decomposition with the
expressivity of the normality-based decomposition. As demonstrated in §2.5.1
and §4.A1, another limitation of the normality-based decomposition is that its
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constituents are not differentiable when the discriminant of the VGT changes
sign due to the behavior of the eigenvalues of the VGT. Although this did not
affect our approach, it may hinder the formulation of interpretable models for
the dynamics of the normality-based constituents. Developing an approach
that alleviates this issue could help characterize the dynamics of vortex cores,
shear layers, and other flow features in a manner inaccessible by our approach.

Finally, we identify open-ended research prospects motivated by our results.
A striking theme of this thesis is the importance of small-scale shear layers
to the sustenance of turbulent flows. However, to our knowledge, there is no
compelling explanation for (i) why shear layers are so important to turbulent
flows and (ii) why they are so pronounced near the viscous range. An approach
that predicts these phenomena from first principles would provide insight into
the Navier–Stokes equations and potentially enable predictions of how the
structure of small-scale turbulence responds to modifications of the governing
equations. Moreover, the interpretation of our results is rooted in the spatially
linear approximation of the local velocity field encoded by the VGT. Including
higher-order terms in the Taylor expansion of the velocity field could help
identify and classify a broader spectrum of local flow structures with larger
domains of applicability. It would also be interesting to formulate an analysis
of velocity increments in the spirit of our normality-based approach since they
are directly related to filtered velocity gradients [9, 11] and interscale energy
transfer [12]. Lastly, the results of this thesis are broadly applicable in the
realm of turbulence modeling. One particularly intriguing application would
be the development of a structural closure model that incorporates subgrid-
scale shear layers in the spirit of the stretched vortex subgrid-scale model [13].

5.3 An afterword on the anatomy of turbulence
In closing, we briefly reexamine the proverb that vortices are the ‘sinews and
muscles of fluid motions’ [14, 15]. Arguably, the general acceptance of this
description has permeated many facets of turbulence research, including vortex
identification, structural modeling, and dynamical analysis. While any such
metaphor is doomed to imperfection, it is worth mentioning that the results
of this thesis suggest a slightly different picture. We propose that shear layers
more aptly capture the sinews and muscles of turbulence, whereas vortices
form more of a ‘skeleton’ on which the shear layers are scaffolded. As depicted
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Figure 5.1: Visualization of the vorticity strength, ω2, in a slice of isotropic
turbulence at a Taylor-scale Reynolds number of Reλ ≈ 400 overlaid with
contours of the contributions from rigid rotation (red) and shear vorticity
(blue) at a threshold of 0.15 ⟨ω2⟩, where ⟨·⟩ denotes averaging over the slice.

in Figure 5.1, this analogy is consistent with the tendency of space-filling shear
layers to connect, wrap around, and otherwise interact with spatially localized
vortices. Although it is not worth pursuing this analogy too far, it illustrates
a core message of this thesis: the important (yet perhaps overlooked) role of
small-scale shear layers in turbulent flows.

References
1Kennedy, J.F. Address at the University of California at Berkeley. Charter
Day, March 23, 1962.

2Arun, R. and Colonius, T. Velocity gradient analysis of a head-on vortex
ring collision. J. Fluid Mech. 982, A16 (2024).

3Arun, R. and Colonius, T. Velocity gradient partitioning in turbulent flows.
J. Fluid Mech. 1000, R5 (2024).

https://www.jfklibrary.org/archives/other-resources/john-f-kennedy-speeches/university-of-california-berkeley-19620323
https://doi.org/10.1017/jfm.2024.90
https://doi.org/10.1017/jfm.2024.1021


134
4Arun, R., Kamal, M., Colonius, T., and Johnson, P.L. Normality-based
analysis of multiscale velocity gradients and energy transfer in direct and
large-eddy simulations of isotropic turbulence. J. Fluid Mech. 1021, A47
(2025).

5McKeown, R., Ostilla-Mónico, R., Pumir, A., Brenner, M.P., and Rubin-
stein, S.M. Turbulence generation through an iterative cascade of the ellip-
tical instability. Sci. Adv. 6, eaaz2717 (2020).

6Yao, J. and Hussain, F. A physical model of turbulence cascade via vortex
reconnection sequence and avalanche. J. Fluid Mech. 883, A51 (2020).

7Mishra, A., Pumir, A., and Ostilla-Mónico, R. Instability and disintegration
of vortex rings during head-on collisions and wall interactions. Phys. Rev.
Fluids 6, 104702 (2021).

8Ostilla-Mónico, R., McKeown, R., Brenner, M.P., Rubinstein, S.M., and
Pumir, A. Cascades and reconnection in interacting vortex filaments. Phys.
Rev. Fluids 6, 074701 (2021).

9Johnson, P.L. On the role of vorticity stretching and strain self-amplification
in the turbulence energy cascade. J. Fluid Mech. 922, A3 (2021).

10Capocci, D., Johnson, P.L., Oughton, S., Biferale, L., and Linkmann, M.
Energy flux decomposition in magnetohydrodynamic turbulence. J. Plasma
Phys. 91, E11 (2025).

11Eyink, G.L. Local energy flux and the refined similarity hypothesis. J. Stat.
Phys. 78, 335–351 (1995).

12Yao, J. and Hussain, F. On singularity formation via viscous vortex recon-
nection. J. Fluid Mech. 888, R2 (2020).

13Misra, A. and Pullin, D.I. A vortex-based subgrid stress model for large-
eddy simulation. Phys. Fluids 9, 2443–2454 (1997).

14Küchemann, D. Report on the I.U.T.A.M. symposium on concentrated vor-
tex motions in fluids. J. Fluid Mech. 21, 1–20 (1965).

15Saffman, P.G. Vortex dynamics. (Cambridge University Press, 1993).

https://doi.org/10.1017/jfm.2025.10748
https://doi.org/10.1017/jfm.2025.10748
https://doi.org/10.1126/sciadv.aaz2717
https://doi.org/10.1017/jfm.2019.905
https://doi.org/10.1103/PhysRevFluids.6.104702
https://doi.org/10.1103/PhysRevFluids.6.104702
https://doi.org/10.1103/PhysRevFluids.6.074701
https://doi.org/10.1103/PhysRevFluids.6.074701
https://doi.org/10.1017/jfm.2021.490
https://doi.org/10.1017/S0022377824000898
https://doi.org/10.1017/S0022377824000898
https://doi.org/10.1007/BF02183352
https://doi.org/10.1007/BF02183352
https://doi.org/10.1017/jfm.2020.58
https://doi.org/10.1063/1.869361
https://www.cambridge.org/core/journals/journal-of-fluid-mechanics/article/report-on-the-iutam-symposium-on-concentrated-vortex-motions-in-fluids/015F4937997BD7FCF2178CEE3C749C2B
https://doi.org/10.1017/CBO9780511624063

	Dedication
	Acknowledgements
	Abstract
	Published Content and Contributions
	Table of Contents
	List of Illustrations
	List of Tables
	Introduction
	A foreword on the many faces of turbulence
	The role of velocity gradients in turbulent flows
	Normality-based analysis of velocity gradients
	Overview of thesis
	References

	Velocity gradient analysis of a head-on vortex ring collision
	Introduction
	Vortex rings
	Velocity gradients and vortices
	Contributions

	Methods
	Computational method
	Vortex ring collision simulation
	Simulation integral metrics

	Evolution of integral metrics and vortical structures
	Evolution of integral metrics
	Evolution of vortical flow structures

	Partitioning of velocity gradients
	Statistical geometry of local streamlines
	Phase space transformations
	Phase space distributions

	Concluding remarks
	Computational formulation
	Instability development during transition
	Shear–rotation correlations and vortical flow structures
	Effect of shear–rotation alignment
	References

	Velocity gradient partitioning in turbulent flows
	Introduction
	Partitioning framework
	Turbulence datasets
	Partitioning in nearly isotropic turbulence
	Partitioning in wall-bounded turbulence
	Effect of mean shearing
	Effect of friction Reynolds number

	Concluding remarks
	Symmetry-based partitioning profiles
	References

	Normality-based analysis of multiscale velocity gradients and energy transfer in direct and large-eddy simulations of isotropic turbulence
	Introduction
	Normality-based analysis of velocity gradients in turbulent flows
	Multiscale velocity gradients and interscale energy transfer
	Contributions

	Theoretical framework
	Simulation details
	Results
	Multiscale velocity gradient partitioning
	The DNS cases: the effect of filtering
	The LES cases: the effect of closure modeling

	Tube-like and sheet-like vortical structures
	Interscale energy transfer analysis
	The DNS cases: multiscale mechanisms in the energy cascade
	The LES cases: closure models and the artificial bottleneck effect


	Concluding remarks
	Normality-based analysis of Burgers vortex layers and tubes
	Collapse of the multiscale velocity gradient partitioning
	References

	Concluding remarks
	Summary of contributions
	Outlook for future work
	An afterword on the anatomy of turbulence
	References


