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ABSTRACT

The stack of local Langlands parameters is a Picard stack when the relevant re-
ductive group is a torus. We explicitly determine its Picard dual and show that
the Fourier-Mukai transform gives rise to the integral categorical local Langlands
correspondence for the torus. This is the categorification of the local Langlands
correspondence and answers a conjecture of X. Zhu. Moreover, we establish a ge-
ometric version of this correspondence. This second categorification relates to the
previous correspondence in the sense that taking the categorical trace construction

allows one to reproduce the previous result.
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Chapter 1
INTRODUCTION

Let G be a reductive group over a non-archimedean local field F. X. Zhu (2021)
provided an in-depth study of the stack of local and global Langlands parameters
Loceg r defined over Z[ 1/ p], and proposed a categorical arithmetic local Langlands
correspondence (LLC). The automorphic side of this Langlands correspondence
is given by the category of ¢-adic sheaves on the stack of isocrystals B(G) =
LG/Ad, LG, where o is the Frobenius on the residue field kr of F. A central part
of the conjecture is as follows.

Conjecture 1.0.1. (X. Zhu, 2021, Conjecture 4.6.4.) Let (G, B, T, ¢) be a pinned
quasi-split reductive group over F and A = Z, Q, or F,. Then there is a natural

equivalence of stable co-categories
Lg : Shv(B(G),A) — IndCohNCG (Loceg,F)
sending the Whittaker sheaf to the structural sheaf Op . c.r- The category
IndCohg, . (Loceg) < IndCoh(Loceg)

is a subcategory of ind-coherent sheaves with certain singular support condition.

In a more recent development, Zhu established the tame categorical local Lang-
lands correspondence with Q,-coefficient and the unipotent correspondence with
E—coefﬁcient (Xinwen Zhu, 2025).

1.0.2. The First Categorification. In this paper, we verify a more general form of
the conjecture that allows Z-coefficient for an arbitrary torus over F.

When G =T is a torus, the stack B(T) is a disjoint union of copies of the classi-
fying stack [*/7T(F)] indexed by the Kottwitz set B(T'). It is possible to define a
characteristic 0 analogue of B(T) which also consists of copies of [*/T(F)]. In

fact, we can define an algebraic stack Tory jso,. Over Z, such that

IndShy (2B(T), Zg) ~ QCoh (TorT,isoF ® Z[) .
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The algebraic stack Torr s, 1s essentially the stack of T-isocystals. Let F be the
completion of a maximal unramified extension of F, and let o be the Frobenius

action. The groupoid Torr jso, (Z) is
Torr iso, (Z) = [T(F)/Ady T(F)].
One of the main result of this paper is as follows.

Theorem 1.0.3. There is a canonical family of Poincaré line bundles
.£T . TOI'TJSOF X LOCCT7F =4 BGI’VL

for every torus T over F. Furthermore, these Poincaré line bundles induce isomor-

phism LocLYT 7 = Torr s, for all torus T'.

We shall see in Section 2.4 that the isomorphism LocXT, 7 — Tory s, is essentially
taking the cup product with the fundamental class of local class field theory. This
answers a conjecture of Zhu (X. Zhu, 2021).

As an application, we establish an integral local Langlands correspondence for torus.

Theorem 1.0.4. The Fourier-Mukai transform via the Poincaré line bundle L7 gives

the equivalence of stable co-categories

L : IndCoh(Locer ) = QCoh(Torr isoy)-

The Fourier-Mukai transform was first introduced to the Langlands program in the
work of Laumon, where the transform is applied to construct the geometric Lang-
lands correspondence for GL(1). Later, in the work of Braverman-Bezrukavnikov
(Bezrukavnikov and Braverman, 2007) and Chen-Zhu (Chen and X. Zhu, 2014),
Fourier-Mukai is used to establish a generic version of the Langlands correspon-

dence in positive characteristic (for any reductive group G).

1.0.5. The Second Categorification. Let A = E,@g or Z; and let L*T be
the positive loop group of 7. There is an isomorphism between abelian groups of
continuous characters of Serre’s fundamental group 71 (L*T) and character sheaves
on L*T:

Homg (1 (L*T), A*) = CS(L*T, A).

The second main result of this paper is a categorification of this isomorphism:



Theorem 1.0.6. There exists a fully-faithful, z-exact, monoidal functor

Ch : IndCoh(Loczy z) — IndShv(LT),

geom
where LOCCT’ P
‘T

is the representation stack of the inertia group of F in the dual group
This can be viewed as a “categorification of categorification” in the the following
sense. Let Shv™®"(LT) denote the essential image of Ch. It is the thick subcategory
compactly generated by all character sheaves on LT. Let Ch™" denote the the

equivalence of categories

Ch™" : IndCoh(Locf 7)) = IndShv™" (LT).

Note that both categories carry a Frobenius structure.

Proposition 1.0.7. There is a commutative diagram

Tr(IndCoh(Loc%’), ) —— Tr(IndShv™**(LT), o")

ll iz (1.1)

IndCoh(Locer r) — L % IndShv(B(T)),

where the top arrow is induced by Ch™", the bottom arrow is the functor L under
the identification IndShv(B(7")) = QCoh(Torr jso,). Furthermore, he two vertical

arrows are canonical equivalences.

Some results in this paper are independently obtained by K. Zou (Zou, 2024),
sometimes by different methods. There are two main differences between this work
and Zou’s. On the one hand, Zou considers integral ¢-adic sheaves on Bung over
the Fargues-Fontaine curve, while we consider quasi-coherent sheaves on Torr jso,.
which is defined over Z. On the other hand, Zou uses the spectral action on
the Whittaker sheaf to establish the equivalence, while we use the Fourier-Mukai

transform.

The organization of the paper is as follows. Section 2.1 introduces the notations
and definitions of Locer r and Torr ;5. Section 2.3 establishes an important short
exact sequence involving Locer . Section 2.4 constructs the Poincaré line bundles
and proves the main theorem. Section 2.5 discusses the Fourier-Mukai transform

and the equivalence of categories.



Chapter 2

THE FIRST CATEGORIFICATION

2.1 Notation

2.1.1. Galois groups. We first fix our notations. Let F be a local field, «f its
residue field, and E/F a Galois extension that splits the torus 7" defined over F. Let
I' = Gal(E/F) and let W and Wg be the Weil groups of F and E. Recall that the
relative Weil group of E/F is defined as Wg,p = Wr/[Wg, WE].

By local class field theory, the relative Weil group is also the unique group extension
1> E* > Wgyp—>T—>1

corresponding to the fundamental class @ € H*(T', EX). Fix {w;},7 € ['tobe a
system of representatives of (right) cosets of E*. For any g,w € W/, there is a

unique §(g, w) € E* and a unique 7 € I' such that
gw =06(g w)wr.

The assignment (7,0) — 6(w;, w,) is a cycle and it represents the fundamental

class a.

Let p : Wg/r — I' be the projection as above, we extend the meaning of the notation
w to allow elements of Wg ¢ appear in the subscript, for example, w, = w,(4), and

Wer = Wp(g)r> forall g € Wg p, T €T,

2.1.2. Torus and dual torus. Let L = X*(T) and L = X, (T) be the weight lattice
and coweight lattice of T. They are both I'-modules and therefore W, r-modules.
The dual torus 7 = L ® G,, is defined over Z. The C-group of T is an enhancement
of the Langlands dual group

°T:=T % (G, xT),

where I acts naturally on 7 and G,, acts trivially. The G,, factor in the C-group is
only useful for non-abelian reductive groups, but we include it here to be consistent
with notations in (X. Zhu, 2021). Let the homomorphism y : Wg,r — G, X I" be

trivial on the factor G,, and be the canonical projection on the factor I'.
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2.1.3. The stack of Langlands parameters. We now define the scheme of framed
Langlands parameters LOCCDT, » and the stack of Langlands parameters Locer r. All

(Picard) stacks in this note will live over the fpqc site of S = Spec Z.

Let M be an affine group scheme over S, and G an abstract group. The functor Rg u
that sends every Z-algebra R to the set of group homomorphisms from G to M (R)
is represented by an affine scheme. This is because, if I C G is a set of generators,
Re.y is a closed subset of M according to the relations between the generators.

The derived scheme of representations is studied in (X. Zhu, 2021).

By local class field theory, there is the short exact sequence
1> E* > Wgyp—>T - L

Let U™ be the n-th congruence subgroup of EX, so U® = Oy and U =1+
my,n > 1. Let wn = wg JEIU (") The scheme of framed Langlands parameters
LOC‘C]T’ » Classifies continuous cross homomorphisms from Wg,r to T, with T(R)

endowed with the discrete topology. Namely,

U.(n)
°T.F >

O, »
where Loc:™ = dew) T XAR () o 1 {x}
5 n) G x

O T
Locer p = lim Loc T.F

n
Equivalently, LOCCDT7  is the scheme whose R-points are Z (W /F T(R)), where
Z! denotes the set of continuous cocycles. Since 7' is commutative, LocCDT 7 has a
canonical Picard stack structure. The stack of Langlands parameters is defined as

LOCCT,F = LOCL]T F/T

Recall that in (Deligne, n.d.), Deligne defined the functor ch : D[_"O](S,Z) —
PS8 /S that sends a complex of abelian sheaves over S whose cohomology concen-
trates in degree -1 and O to a Picard stack over S. It is convenient to think of Locer

as
Locer r = ch (1<0(C*(Wg/r, T)[1])),

where C*(Wg/F, T) is the complex of abelian sheaves calculating group cohomolo-
gies H*(Wg/r, 7).

2.1.4.  The category of coherent sheaves on Loc:7 r. Recall that LOCCDT7 F=

CDT’fZ) and Locer p = LocCDT’ #/T. As the action of T stablizes LOCCDT’fZ) for

large n, Locer r has a natural ind-scheme structure. Accordingly, we define the

lim Loc
H

category Coh(Locer r) to be coherent sheaves supported on finitely many connected
components and IndCoh(Locer r) to be the ind-completion of it.
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2.1.5. The stack of isocrystals. We follow the setup in (Kottwitz, 2014), and let
L — Hom(EX,EX® L) = Z'(E*,T(E)) be the adjoint of the identity. We form
the set of algebraic cycles by the following fibre product:

Zy(Wgyp, T(E)) ———— L

! |

Z'(Wgr,T(E)) —— Z'(EX,T(E)).

In other words, the algebraic cycles are those 1-cycles whose restriction to E* C

WE /F 1s an algebraic character of 7.

Recall that U™ are congrunce subgroups of EX. The sets U, = L ® U™ forms
a basis of open subgroups of T(E) that are Wk p-invariant, and V,, = U, N T(F)

forms a basis of open subgroups of T'(F).

We define the stack Torr s, as follows (non-zero terms of the chain complex are

situated in degree -1 and 0)

Tort.jso, :=limch (- = 0 = T(E) /Uy = Zby(We/r, T(E)[Up) = 0 - ).
Since the topos of fpqc-sheaves is replete, it is shown that inverse limit of surjective
homomorphisms have no higer limit (Bhatt and Scholze, 2014). Therefore the

inverse limit can also be taken at each degree:
Tory iso, = ch ( =0 @T(E)/Un — @Z;lg(WE/F,T(E)/Un) -0 — ) )

Remark 2.1.6. (i) Let us consider the groupoid Torr jso, (Z). The isomorphism
class of the groupoid is the cohomology of algebraic cycles H;l g(WE /r.T(E)), and
it is isomorphic to the Kottwitz set B(T) = X*(T7) = X, (T)r = L which classifies
T-isocrystals. The automorphism group of the identity object is T (F).

(ii) The stack Torr s, is not the constant groupoid with objects Lr and with
automorphism group of the identity 7'(F). The fpqc site remembers the pro-finite
topology of the automorphism group 7'(F).

(iii) Let F be the completion of a maximal unramified extension of F, o the
Frobenius. Torr s, (Z) is isomorphic to the groupoid of pairs (&, ¢) where & is a
T-torsor over F and ¢ : & = ¢* & is an isomorphism of T-torsors. By a Tannakian
formalism, this is the groupoid of exact tensor functors from Rep; to the monoidal

category of isocrystals over F. This explains the notation Torr js,..



2.2 Quasi-Coherent Sheaves on Torr jso,

2.2.1. Recall that V,, is a system of open neighbourhoods of the topological group
T(F). Let T(F)o be the maximal compact subgroup of 7. We define two sheaves
of abelian groups on the fpqc-site of Z

T = limT(F)/Vy,
7o = lim T(F)o/Va,

where A means the constant sheaf of an abelian group A.

2.2.2. We also define a sub-functor 7 ° of 7 so that for every unitary ring A,
To(4) = | ] 1-T(A).
teT(F)

In other words, 7 ° consists of sections which lie uniformly in one coset of T'(F)j.
The sheafification of 7° is 7.

We take pre-stack quotients B7° = %/7° and B7y = */7y. Their sheafification
are the stacks BT (F) and B7;. In the next proposition, we will use the pre-stack
quotients because they are easier to work with. However, sheafification has no effect
on the category of quasi-coherent sheaves. We quickly recall the argument for this

fact in the following.

Consider the presheaf QCoh that associates a scheme S with the co-category of quasi-
coherent sheaves on § and associates a morphism with its *-pullback. This presheaf
is in fact a sheaf by fpqc-descent. Let Y° be a prestack and Y its sheafification. A
quasi-coherent sheaf on Y" is a morphism of pre-sheaves Y — QCoh. However,
any morphism of pre-sheaf must factor through the sheafification ¥* — Y. This is
to say that there is a canonical equivalence QCoh(Y") = QCoh(Y).

Proposition 2.2.3. Let A be any commutative ring. Pulling back along * — B7,

and * — BT (F) produces the following equivalences of categories:

QCoh(BT5 @ A) = Repyy (T(F)o, A),
QCoh(BT° ® A) = Rep,,(T(F), A).

Proof. Let BTy and B7° also denote their base-change over A. Let p denote
* — B7y. Consider the adjoint pair

p*: QCoh(BT5) Zm== A-Mod : p..
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It is clear that p* is conservative and exact. The category QCoh(B7y) admits
arbitrary limits. Therefore, p* exhibits QCoh(B7j) as co-monadic over A-Mod.

Since 7y is pro-finite, it is represented by an affine scheme Spec(A). The co-monad
endomorphism p*p, is the functor M — A ® M. QCoh(B7y) is hence equiva-
lent to the category of A-modules with A-co-algebra structure, i.e., the category
Repg, (T (F)o, A).

Let f : BYy — B7 ° the map induced by the inclusion 7y — 7 °. It is schematic,

quasi-compact, and quasi-separated. Therefore there exists a pair of adjoint functors

f*: QCoh(BT°) Z—= QCoh(B7) : f..

The pullback functor f* can be identified with pre-composing a map B7 ° — QCoh
with f. It is clear that f* is conservative and exact. The category QCoh(B7y)
admits arbitrary limits. Therefore, f* exhibits QCoh(B7 °) as co-monadic over
QCoh(B7y).

On the other hand, we have another co-monad by induction-restriction:
Res : Rep,, (T (F), A) ﬁ Rep,,, (T (F)o, A) : Ind,
where Res exhibit Rep,,, (7' (F)) as monadic over Rep,, (T (F)o).

Let g : + — B7°. By identifying QCoh(B7y) with Rep,,(T'(F)o), we obtain the

following commutative diagram:

QCoh(B7T™)

> Repy (T'(F), A)
fr Res

Repsm(T(F)Oa A)

This put us in the situation of the following lemma, which is a weaker version of the
dual statement of Corollary 4.7.3.16 in (Lurie, 2017).

Lemma 2.2.4. Suppose we have a commutative diagram of co-categories

> C’

NS

D

Assume that:



1. H and H’ admit right adjoints G and G’.

2. H exhibit C as co-monadic over D.

3. H’ exhibit C’ as co-monadic over D.

4. For each object D € P, the unit and co-unit map UG — G’'H'UG —

G'HG — G’ induce equivalence UG (D) — G’(D).

Then U is an equivalence of co-categories.

All conditions in the lemma are readily satisfied except 4. We notice that in our case
UG =¢q"f.and G’ = Indgggo. Using base change in the following diagram:

[z ri)y,* — Bh

| b

* —)q BT °

we compute UG(M) = [lrp)rr), M for any M € Rep, (T (F)o) and this is
T(F)
T(F)o
agree with the morphism constructed in condition 4. m|

canonically isomorphic to Ind M. This canonical isomorphism UG = G” must

2.3 A short exact sequence

The main result of this section is as follows.

Proposition 2.3.1. For an arbitrary torus 7 over a local field F, we have a short

exact sequence of Picard stacks
1 —» Hom(Lr, BG,,) — Locer r — Hom (T (F),Gy) — 1. 2.1)

Remark 2.3.2. (i) Note the first term has the alternative form Hom(f,r, BG,,) =
BT, because X*(T7) = Lr.

(i1) From the proposition, we see the isomorphism classes of Locer r is dual to the
automorphism group of Torr i, and vice versa. This results in the duality that is

treated in section 2.4.

(iii) The inner-hom Hom  (7'(F),G,;,) is defined as the colimit of inner-homs
Hom(7T'(F)/U, G,,) for all open subgroups U C T(F).
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Our strategy is to first show the following short exact sequence for any Z-algebra R:
0 — Ext'(Lr, R*) —» H'(Wg/p, T(R)) — Home(T(F), R*) = 0.  (2.2)

Heuristically, this is our desired exact sequence (2.1) on the level of coarse moduli
space. The group cohomology H! is interpreted as continuous cross homomor-
phisms up to conjugation. After (2.2) is shown, we will show (2.1) directly.

We let Z!, H'! be all cross homomorphisms and all cross homomorphisms up to
conjugation respectively, removing the continuous conditions. We first show a

version of the short exact sequence (2.2) without the topology constraints.
Lemma 2.3.3. We have the short exact sequence

0 — Ext' (Lr, R*) — H'(Wg/r, T(R)) — Hom(T(F), R*) — 0. (2.3)

Proof. Let Co, — Z — 0 be the bar resolution of the trivial module Z by free
Z|Wgr]-modules. The group cohomology H (Wg / 7 T(R)) is exactly the first
cohomology of the following complex (we abbreviate Wg,r by W at times):

Homgz(C., T(R)) = Homzy(Ce, L ® R*) = Hom((C.s ® L)w, R¥).

Because the complex (C, ® L)y is a complex of free abelian groups, and its
homology caculates the group homology of the Wg,r-module L, we apply the

universal coeflicient theorem and get
0— Eth (HO(WE/Fa l’;)a RX) - FII(WE/Fa f(R)) - Hom(Hl(WE/F’ Z:)a RX) — 0.

In the first term, Hy(Wg/F, ﬁ) = I:W = Z{‘. In the third term, Langlands(Langlands,
1997) proved that the corestriction map cores : Hi(Wg/r, L) — Hi(EX, L)' is an

isomorphism, and therefore
Hy(Wgp, L) > HI((EX,L)" =T(F).

This finishes the proof of (2.3). O

We spell out the corestriction map explicitly. We have (C; ® L)y = Z[Wg JF] ® L,
(Co® L)w = L and the differential is Y, w ® x = Y, w™!x — x. The corestriction map
cores : Hj(Wgp, L) — Hy(E*,L)" is induced by the chain map
ZIWgrl® L > Z[EX] @ L
wWoXx Z o(wr,w) @ wex. 2.4)
T
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Lemma 2.3.4. We have a short exact sequence

0 — Ext' (Lr, R*) — H'(Wgr, T(R)) — Hom(T(F), RX) — 0.

Proof. We first show the image of Ext' (L1, R*) is contained in H' (W /F> T(R)).
To show this, we work out an explicit formula for the inclusion Ext' (L, RX) —
H'(Wg/r, T(R)) in (2.3). Let Lo = {gx — x|g € Wg/p,x € L}, so we have
0o5lg—>L—Lr—0.
This short exact sequence gives rise to
Hom(Lg, R¥) = Ext' (L, R¥) — 0.

On the other hand, for each ¢ € Hom(ﬁo, R*), we associate a map Wg, JF X I - R®
by

(g,%) — ¢(g”'x —x).
By adjunction this defines a cross homomorphism Wg/rp — L ® R* = T(R). We
denote this map by B : Hom(Lg, R*) — I:II(WE/F, T(R)). The inclusion map is
then Bo @' : Ext!(Lr, RX) — I:II(WE/F,T(R)), whose result is independent of
the choice of a preimage of «.

It remains to show under the surjection in (2.3), an element lies in H! (W JF> T(R))

if and only if its image is a continuous homomorphism.

Recall the bar resolution B, — Z — 0 is a resolution of the trivial module Z by
free Z[Wg,r]-modules, and it begins with Z[WgFr] Y, 7. The first homology
Hi(Wg/F, ﬁ) is therefore represented by a cycle living in Z[Wg/r] ® L.

The surjection in (2.3) is induced by 7 on the level of cocycle as follows:

ZY(Wgp, T(R)) — > Hom(H|(Wg/r, L), R)

¢:Wgjp > LOR —— (Zw®x i X(d(w),x)),

where ¢ is a cocycle, 2 w ® x € Z[Wg/r] ® L a chosen cycle reprensenting some
elementin Hy(Wg/F, L), and the pairing is by evaluating L on L. It remains to show

that ¢ is continuous if and only if 7 (¢) is. This is the content of the next lemma. O
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Lemma 2.3.5. A cocycle ¢ is continuous if and only if 7(¢) is.

Proof. We basically follow the argument given in (Langlands, 1997). We have
the corestriction map cor : H{(EX,L) — HI(WE/F,i,). A homomorphism ¢ :
Hi(Wg/F, L) — R* s continuous if and only if ¢ o cor is. On the other hand, it is
clear that a cocycle is continuous if and only if its restriction to E* is. We have the

following commutative diagram:

ZY(Wgp, T) —— Hom(H;(Wg/r, L), R¥)

l l

ZYWE,T) —— Hom(H,(E, L), R¥),

where the map 7 send a cocycle f to an homomorphism 7(f) : H(E,L) — R%,
a®x — (f(a),x). Itis then clear that f is continuous if and only if 7(f) is, and

the lemma follows. O

2.3.6. Proof of proposition 2.3.1. The functor ch : DI7101(§,7) — PS/S is an
equivalence of category. Let ()" be an quasi-inverse. The existence of the short

exact sequence (2.1) is by definition to say there exists an exact triangle

. 1
Hom(Lr,BGm)Ij — LOC?T,F — Hom (T (F), Gm)b RN

We first define the homomorphisms

Hom(Lr, BG,,)’ LA LOCET’F Z, Hom (T(F),Gp)"

——Cts

as follows, where each column is a 2-term complex of abelian sheaves corresponding

to the Picard stack above:

deg = 0 Hom(L, G) —— LocH, , —“— Hom, (T(F),Gy)
resT dT T
deg = -1 Hom(L,G,,) SN > 0.

The map B'(R) is exactly 8 : Hom(Lg, RX) — HI(WE/F,T(R)) as defined in

Lemma 2.3.4. The map 7’ (R) is the restriction of 7 to the continuous cocycles

Zl (WE/F9 T(R)) — HomCtS(Hl(WE/F’ Z:)a RX)

¢:Wgip > LOR —— (Zw x> (p(w),x)).
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It is immediate to check that the squares commute, so they define homomorphisms

of complexes.

To show the above three terms forms an exact sequence of Picard stacks amounts to
checking they form an exact triangle. We do so by showing a quasi-isomorphism
cofib(B) = Hom_ (T (F),G,,).

cts

Note cofib(3) is nothing other than the following complex:

d
- id,—res) A N ’
Hom(L, G,,) ﬂ T ® Hom(Lgy, G,,) @) LochTf.

Because the first map is injective, H=2(cofib(3)) = 0. Next, because d oid = 5’ ores
and f8 is injective, H~!(cofib(B)) = 0.

We know that H%(cofib(B)) = LOCL:lT’ p/Im ( g ) To evaluate this, we first take the

quotient LocCDT, p/Im’ ( g, ) as presheaf, where Im’ is the image of maps of presheaves.
We have

Locty p(R)/(Im'(d) + Im'(5))

= H'(Wgp, T(R))/(Im'(8')/(I0’ (8') N Im’(d))))
= H'(Wg/r, T(R))/Ext' (L, R¥)
= HomctS(T(F)’ RX)

The last line of the equation is just the R-points of Hom (7' (F), G,,). O

The next proposition is crutial for the duality Torr jso, = LOCZ/T7 P

Proposition 2.3.7. The +1 map is zero for the following exact triangle we just show

Horn(I:r,BGm)b - LOCET,F — Hom (T(F),Gm)b AN .

———cts

Proof. Recall that the +1 map is the inverse of the quasi-isomorphism showed above

composed with a canonical projection

Hom_ (T (F),G,,) — cofib(3) — BT'[1].

———cts

Due to the universal coefficient theorem, there exists a collection of maps

p : Hom(H'(Wg/p, L), R*) = Z'(Wg/p, T(R))
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that is functorial in R, such that after composing with the projection maps
ZY(Wg/p, T(R)) = H' (Wg,r, T(R)), give splittings of the following surjections:

m: H' (Wg/p, T(R)) — Hom(H' (Wg/r, L), R®).

For a continuous homomorphism f : H'(Wg /F» L) = R*, p(f) is automatically
a continuous cocycle because its orbit under action of T(R) must contain one
continuous cocycle, but since all coboundries are continuous, p( f) is continuous.

Therefore we have the following maps:

Hom (H' (Wgr, L), RX) — Z' (Wi r, T(R)). (2.5)

The maps (2.5) give rise to an inverse of the quasi-isomorphism cofib(8) —

Hom_ (T (F),G,,) by the composition

cts

Hom_ (T (F), G) — Locey, - — cofib().

———cts

Composing this inverse with cofib(3) — BT [1] is nothing but the +1 map, but it

is also zero by construction. O

2.4 Duality

The main result of this paper is the following.

Theorem 2.4.1. There is a unique family of Poincaré line bundles (or a family of
pairings)

-ET : TorT,isoF X LOCcT7F - BGm
for every torus T over F' that satisfies the three conditions below. Furthermore, these

Poincaré line bundles induce isomorphism Torr js, = Loc.. . for every torus 7.

a) Functorality. Let f : S — T be a map between torus. It induces « :
Locer p — Loceg r and B : Tors iso, — Torriso,. The following two line

bundles on Torg ;5o X Locer r are canonically isomorphic
(B xid)* Ly = (id xa)* Ls.
b) Split case. For the split torus T = G, both Torr 5., and Locer r canonically
split as
Torr iso, = Z X BF”,

Locer r = Hom_, (F*,G,,) X BG,,.

———cts
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Then L7 is the canonical line bundle Torr s, X Locer p — BG,, via the

tautological pairings

Hom  (F*,G,,) x BF* — BG,,
Z X BG,, — BG,,.

¢) Induced case. For an induced torus S = Resg/r Gy, let T be the split torus
over E, the Shapiro isomorphism Torg ;s,, X Loces p = Torr iso, X Locer £
identifies the line bundles for S and 7.

Our strategy is to introduce an auxilary stack 77 for every torus 7' in place of
Torr iso,.. When it is clear from the context, we will suppress the torus 7" from the

notation 77.

We will first define a family of line bundles on 7 X Locer r. Then we verify the main
theorem for 7 instead of Torr ;5. Finally, we will show a cononical isomorphism

T = Torr jsop -

2.4.2. Definition of 7. Recall that U c E* c WE,F is a basis of open
neighbourhoods . We define W = wg JEIU ),

Notice that £ is a W -module for all n. Let C,(W ™, L) be the chain complex that
calculates the group homology of the W) -module L. The boundries of this chain

complex are defined by

BW™, L) = Im (Cra (W™, ) 5 W, 1))
We define

([
ﬁ;zch(..._)()ﬁw d

— 5 Co(Ww L —>0—>.-.),
v ) Wb

and 7" := lim 7. It is convenient to think of 7~ as ch (r5-1(Ca(Wg/F, L))) with a
pro-stack structure.

The groupoid 7,,(Z) calculates group homology. Hence, it has isomorphism classes
Lr. The following two lemma calculates its automorphism group to be T(F)/V,,.
(V, is defined in section 2.1.5).

Lemma 2.4.3. The subgroups U™ and U,, ¢ T(E) has no higer Galois cohomolo-

gies for sufficiently large n.
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Proof. For sufficiently large n, the group U™ is isomorphic to the additive group
O via the logarithm map. Since this is an induced module, its higher cohomology
groups vanish. Moreover, U, = L ® U™ is a direct sum of copies of U™, so the

same conclusion holds. O

Next we introduce a lemma in homological algebra. It generalizes a result of
Langlands (Langlands, 1997). It also plays an important role in the second cate-

gorification which is the theme of the next chapter.

Lemma 2.4.4. Let I' be a finite group, C be an abelian group equipped with a
I-action. Let @ € H>(T, C) represent the group extension

1-C—>G—->T—>1.

Let M be any I'-module, in other words, it is a G-module on which C acts trivially.

Then we have a commutative diagram

HZ(FsM) H HI(C’M)F H HI(G9M) % HI(F7M) % O

I

0 — A'(LM&C) — (MeC)r — (M8 C)F — AY,M ®C) — 0.

The first row of the diagram is the long exact sequence associated to the Lyndon-
Hochschild-Serre spectral sequence. The second row is the definition of the Tate
cohomology. The first and last vertical map is the cup product with @. The map res
is the restriction map H,(G, M) — H,(C, M)".

In particular, if I' and C satisfies the condition of the Tate-Nakayama lemma, we
would have
Hi(G.M) = (M&C)".

Proof. See appendix A. O
Corollary 2.4.5. (i) Applying the lemma to the group extension

1l > EX > Wgyp—>T > 1,
we get the result of Langlands which claims

H\(Wgp, L) = (E*® L)' =T(F).
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(1) Similarly, with the group extension
1 — EX)U™ - w" T,

we get

. AT
H(WW, 1) = ((EX JUM) @ L) = T(F)/V,.
(ii1) Recall the definition of the relative inertia group

Irel

E/F—>I—>1.

1 — I%b —
Applying the lemma to this group extension gives us

H] (Irel

el =UpeL).

We now move towards proof of the main theorem.

Proposition 2.4.6. There is a canonical pairing (-, -) : 7 X Locer p — BG,.

Proof. Recall that

Locer r =colimch ( T i) Zl(W(”),T) — ),

. cy(wm py d ~
7 = lim Ch(---—)W—)C@(WE/F,L)—)--').

Locer r has an ind-stack structure, and 7 has a corresponding pro-stack structure,
so to define a pairing between them, it suffices to define it for each Locf.'}) pand 7.

The pairing in the proposition is induced by two pairings:

(¢, ): TxL — Gy,
.7l A QLWL

The first pairing is the natural pairing, since L is the character lattice of 7. The

second pairing is given by

Z'WW Ty xC;(W™, L) > G,
(¢ ) > > (g W), g (w)).

weWw
This pairing factors through C; (W, L)/B; (W™, L) because in Section 2.3, we
show that the same formula defines a pairing between Z' (W, T and H, (W™, L) =
(W™, L)/By (W™, L).
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Our desired pairing 7 X Locer p — BG,, 1s given by the following assignment.
For ¢ : x — x + dy an isomorphism in 7 and 7 : ¢ — ¢ + dt an isomorphism in

Locer F, there is an isomorphism in the fibred groupoid Locer p X 7~

(1.9) : (¢,x) = (¢ +dt,x +dy).

We assign to this morphism a morphism in BG,, which is given by

[(P’ '7[’] ' <t’x +dlr//>

To show this assignment defines a homomorphism of stacks, one must check this
assignment respects composition of morphisms, and a simple calculation shows it

boils down to check
[dt,y] = (t,dy), Vi, .

The verification is straightforward:

[de,y] = D (di(w),u(w))

weW

= D Wi = t.g(w)

wew

= (t, Y Wl (w) =y (w)

weWw

= (t,dy). O

24.7. Proof of T = LocZ.’T’ - We have the following short exact sequences by

truncation of the z-structure:

1 — BHl(W("),f,) - T, > Lr—1.

The +1 map of these exact sequences are zero. This is because, in the derived
category of abelian groups, every complex is quasi-isomorphic to the direct sum
of its cohomologies (Keller, 1996). Therefore, the +1 map in any truncation is
zero. The above exact sequences are in the image of the exact functor embedding
the drived category of abelian groups to the drived category of abelian sheaves on

Spec(Z), and hence its +1 map is zero.

Since in the fpqc-topology, there is no higher limit, taking derived limit on the short

exact sequence gives us

1 — @BHl(W(”),ﬁ) ST > Ir—1.
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Note the +1 map is zero. By Lemma 2.4.4, we can rewrite the short exact sequence
as
L > imB(T(F)/V,) > T — Lr — 1.

Since Ext! (Hom (T (F),Gy,), BG,,) = 0 (for generality on the dualality for Picard
stacks, see (Brochard, 2014)), by dualizing the short exact sequence (2.1)

1 - BT" - Locer p — Hom (T(F),G,,) — 1

we get
1 —= Homcts(T(F)’Gm)v — Locl/T’F — (BTF)V — 1.

The +1 map of the above exact triangle is zero because it is induced by the +1 map

of (2.1), which is shown to be zero in section 2.3.7.

We form the following diagram where the first and the third vertical maps are

canonical isomorphisms and the second is the map induced by our pairing:

I —— lim B(T(F)/V}) > T > L > 1

| L

I — Hom (T (F),Gy)" — Loc¥, , — (BIT)Y — 1.

The second vertical map is an isomorphism because, first, the two visible squares

commute by the construction of the pairing, and second, the square of the +1 maps

commutes because the two +1 maps are shown to be zero. This concludes the proof
~ \%

that 7~ = Loccy .

2.4.8.  Proof of theorem 2.4.1. Now we prove the main theorem with 7 in
stead of Torr iso,.. We established above that for each torus 7" the pairing defined in
proposition 2.4.6 induces an ismorphism 7~ = LocE’T’ - Itremains to check that they
are a unique family of line bundles on 7~ X Locer r satisfying the three conditions

in the theorem.

Condition (a) is equivalent to the following proposition.

Proposition 2.4.9. Let f : S — T be amap between torus. Itinduces @ : Locer p —
Locespand B : 75 — Tr. Lett : ¢ — ¢ be an isomorphism in Locer r, and let
Y : x — x be an isomorphism in 7g. Under the pairing, (a(¢),¥) and (¢, B(y))
are isomorphisms in BG,,,. We then have

(a (@), ¥) = (¢, B()).
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Proof. Note that Locer r is the truncation of the complex H*(Wg/r, f"), and 77 is
the truncation of the complex H.(WE/F,I:). Ifwelet f:T — S, g:Lg— Ly
be the homomorphisms induced by f, let r € T, and x € S, the proposition follows

from the trivial fact that

(f(0),x) = (1, (x)). O

Condition (b) follows from the definition of the pairing.

We verify condition (c). Let § = Resg/r G;, an induced torus and T' = G, a split

torus over E. The cocharacters of the two torus satisfy
iS = IndGal(E/F) ZT.
We apply Shapiro’s lemma to get isomorphisms

Loces r = ch (TSO(H.(WE/F, S) [1]))

= ch (r<o(H*(E*,T)[1])) = Locer g,

Tors iso, = ch (t>—1He(Wg/r, Ls))
= ch (r>-1 Ho(E™, ﬁr)) = Torr jsog -

The cap product that is used to define the pairings clearly interwines with the Shapiro

isomorphisms, and hence condition (c) is satisfied.

By condition (b) and (c), any such family of pairings is uniquely determined on all
induced torus. To show such a family of pairings is unique, it remains to show the
pairing for every torus 7 is induced by the pairing for an induced torus S that covers
T.

For every torus 7, there is always an induced torus S and a cover S — T that is
surjective on cocharacters Ly — Lr. Lett : ¢ — ¢ + dt be an isomorphism in
Locer,r and ¥ : x — x + dy an isomorphism in 77. By surjectivity of Ly — Ly,
we can lift  : x — x+dy to : ¥ — ¥+ dy in T5. By functorality of the pairings,
we have

(t,y) = (a(®),9).

Therefore the pairing on 7 is predetermined by that of S. This concludes the proof

of the main theorem.

We finish the section with
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2.4.10. Proof of 7~ = Torr jso.. Recall that
Torrjso, = limch ( < 0 = T(E) /Uy — Zhy(W", T(E)) — 0 — ) .

We first define a map between groupoids 7 (Z) — Torr s, (Z) by defining the two
vertical maps in the following diagram such that the square commutes

A A d A
Ci(Wgyr,L)/B1(Wg/p, L) ——— L

Joors Lo (2.6)

T(E) > Z?}lg(WE/F,T(E))-

In the following, we make the identification T(E) = L ® E*, with W/ acting
diagonally.

We define the first verticle map to be the corestriction map (2.4)

cores

Cy(Wgyr, L)/B1(Wg/p, L) — C1(E*,L)/Bi(E*,L) = T(E).

Following (2.4), it sends w ® x to },, w-x ® 6 (w., w). The fact that this map induces
isomorphism on the cohomology of degree —1 is provided by Corollary 2.4.5.

The second verticle map ¢q : L — Z;lg(WE /r.T(E)) is defined via two maps,
L - [Vand L — Zl(WE/F,T(E)), since Z;lg(WE/F,T(E)) is defined as a fibre
product L X1 (EXT(E)) ZY(Wg/r, T(E)). We order the first map to be the norm map,
and the second to be the composition

L — 2V (B, T(E) 5 Z' (Wgr. T(E)).

The inflation map on cocyles is defined as follows. Let ¢ : EX — T(E) be a cocycle.

The inflation of this cocycle is usually given by
g > wilp(6(we,2)).

We define the inflation map by the same formula, however with a different system

of representatives given by {W, = w;ll, Tel}.

Explicitly, co(x) is the cocycle
g > (x ®8(r, )
T
= Z wolx @ wls(Ws, g)

-
= Z WX ® 0(8, We-ir-1).
=



22

(For notation, see section 2.1.1.) The map co agrees with the map ¢y Kottwitz
assign to the Tate-Nakayama triple (Z, E*, ) in (Kottwitz, 2014), and that it induce
isomorphism on the cohomology of degree 0 is exactly Lemma 5.1 in loc. cit.

The following calculation verifies the diagram (2.6) commutes.

Proposition 2.4.11. We have cg o d = d o cores.

Proof. From above, d o cores(w ® x) is the cocycle

g Zngx ®go(wr,w) — Z WX @ §(wr, w).
Wr Wr

We change the variable 7 — g~!7 in the first summation. The right hand side

becomes
D wex @ (86 (Wi, w) = 6(wr, )
=
= > wex ® (6(8, Werin,) = (8, Werir)). 2.7)
On the other hand, cg o d(w ® x) is the cocycle
g Z wiw lx ®d(g, Woir-1) = Z We1X ® 0(g, Wo-17-1).
T T

1

We change the variable 7 — w™'7 in the first summation. The right hand side

becomes
Z We1X ® (0(8, We-17-1,,) — 0(8, We-17-1)).
-

This equals (2.7). O

We continue with the proof that 7~ = Torr js,,.. Both 7 and Torr s, has a pro-stack
structure. We can use the same construction for the commuting diagram (2.6) when
we replace Wg,r by W™ and T(E) by T(E)/U,. The definition of the algebraic
cycles Z;lg(WE /r.T(E)) can be easily adapted to define Z;lg(W("), T(E)/U,). We
claim that the diagram is a quasi-isomorphism for sufficiently large n, and therefore

together they define an isomorphism 7~ = Torr jso,.-
By Lemma 2.4.3, there is an isomorphism for large n
Hy (Wep, T(E)) = Hy,(Wep, T(E)/Uy) = Hy (W™, T(E)[U,).

This shows the induced map on cohomology at degree O is an isomorphism for
large n. Lemma 2.4.4 says the induced map on cohomology at degree -1 is an

isomorphism for large n. This finishes the proof.
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2.5 Categorical LLC for the torus

In the previous section, we constructed a canonical family of Poincaré line bundles

L : Tory jiso, X Locer p — BGy,. They induce isomorphisms Torr is, = Loct; f.

Theorem 2.5.1. Let 71, m2 be the projects of Locer g X Torr jso, to its factors. A
Fourier-Mukai transform via the line bundle £ establish the equivalence of co-

categories that preseres t-structures:
a(5(-) ® L QCoh(Torr jso,.) = IndCoh(Locer r) : ma.(mj(—) ® L),

where the functor 7y is the right adjoint of 7} and 7. is the left adjoint of 77.

Before we can prove the theorem, we gather some useful facts as follows.

Recall that by the system of congrunce subgroups U™ c Of give rise to a basis
of open subgroups V,, of T(F). Using Corollary 2.4.5, we have the following short
exact sequence:

0 — Hom(Zr,BG,,) — Loc™ . — Hom,_ (T(F)/V,,G,) — O.

‘T,F ———cts

We let Loc = Hom__(T(F),G,,) and let Loc” = Hom  (T(F)/V,,Gy). By

() _
°T.F

cts
proposition 2.3.7, Locer  splits as Locer = Loc x BT and similarly Loc

Loc™ x BTT.

We define the regular function ring O@ to be the union of all OLOC<n), 1.€., OQ

consists of functions supported on some Loc"™ for some n.

Let T(F) be the maximal compact subgroup of 7 (F) and let u be the (left) Haar
measure on 7'(F) such that u(T(F)p) = 1. We define the Hecke algebra of T'(F)
to be Q-valued compactly supported smooth function on 7'(F) equipped with the
convolution product with respect to u and denote it by H (T (F), Q).

Lemma 2.5.2. There is an isomorphism OLoc ® Q = H(T'(F), Q).

Proof. We choose a splitting T(F) = T(F)o ® R, where R is a free abelian group of

finite rank. It suffice to check the claim on each subgroup.

The Hecke algebra of R is isomorphic to the group ring Z[ R], and this is isomorphic
to the function ring of Hom(R, G,,).

Let G, = T(F)o/V, be atower of finite abelian groups with projections p,, : G,+1 —
Gn .
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Consider the map Q[G,] — H(G,, Q) that sends an element g € G, to |G| - d,.

By direct computation, this map is an algebra isomorphism (with C-coefficient, this

is the familiar discrete Fourier transform).

The Hecke algebra H (T (F), Q) is the union of all H (G, Q), where the inclusion
map H(G,,Q) — H(G,+1,Q) is the pullback of functions along projections p,,.
Let i, : Q[G,] — Q[G,41] be the unique map such that the following diagram

commutes:

Q[Gn] —— H(G,,Q)

Q[Gn+l] % 7’{(Gn+1’ Q)
It remains to identify the map i, with the inclusion OLOC<n> C OLOC<n+1>. This is
readily manifested given that the image of 1 under i, is an idempotent

1
}’Zl: 9
W= D) 8

geker(pn)
and that i,,(1) - Q[G,41] is precisely the image of Q[G,]. O

Remark 2.5.3. This proposition amounts to saying that under our Langlands corre-
spondence, OLOCCT, ~ 1s send to the Whittaker sheaf, i.e., the Hecke algebra with the
usual T (F)-action.

2.5.4. Decomposition of categories. Under the splitting Locey = Loc X BT, the
Poincaré line bundle £ on Locer X Torr 50, can be regarded as the structural sheaf
over Loc x L with both a 7T and a T'(F)-action, such that 7T acts by the character in
x € Lt on the x-component, and t € T(F) acts on Loc, x Ly by tV, € Z[T(F)/Vy]

as described in the previous lemma.

Since Locer r = Loc X BT is a Tr—gerbe, ind-coherent sheaves on Locer r decom-
pose as
IndCoh(Locer f) = H IndCoh? (Locer r). (2.8)
aeX*(TT)
The subcategory IndCoh” (Locer r) comprise ind-coherent sheaves on Locer ¢ that

has an action of 7T via the character . It is equivalent to IndCoh(Loc).

Connected components of Torr jso, are indexed by the Kottwitz set B(T) = X* (TT).
Let the corresponding component of 8 € X*(T") be BT (F) 5. We have a decompo-
sition by connected components

QCoh(Torr o) = | | QCoh(BT(F)p).
pex*(i)
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We have an open embedding BT (F)g X Locer p <= Torr jso, X Locer , and we

denote the restriction of the Poincaré line bundle by Lg.

By abuse of notation, we let 11 and 7> be the two projection of BT (F)g X Locer r
to its factors. A simple calculation should reveal that for ¥ € Coh®(Locer r) and
B+ —a

mo.(my F ® Lg) =0.

Therefore, showing the equivalence of category QCoh(Tor7 5o, ) = Coh(Locer r)

is reduced to showing the equivalence of the subcategories by pull-push

ap(m5(-) ® L:é) : QCoh(BT (F)_q) = IndCoh”(Locer r) : ma.(n](—=) ® L_g).

2.5.5. The equivalence. In this section we show the following functor is an

equivalence:

7. (1} (=) ® L_o) : IndCoh” (Locer r) — QCoh(BT(F)—,). (2.9)

Let # € Coh® (LOCE’}) e

BT (F)_q, it can be regarded as a coherent sheaf on Loc with a 7T and a T'(F)-action.
By definition of £_,, the TT-action of 1 F ® L, is trivial, and the T (F)-action
is identified with the O; . = Z[T (F)/V,]-action. The pushforward by 7. simply

). Consider the coherent sheaf 77 ¥ ® L_, on Locer r X

forgets the 7" -action.
In summary, the pull-push factors as

71'2*(”?(_)@.5—0)

(n)
Coh* (LoccT’ F

T~

{ﬁniteZ[T(F) /vn]-Mod}

> QCoh(BT (F)-a).

By taking colimit, this results in the equivalence of categories

T2 (”T(_)®£ﬂr)

IndCoh*(Loc) > QCoh(BT (F)_q).

Repgy, (T(F))

2.5.6. The inverse functor. The functor 7} preserves limits and is a right
adjoint. We denote its left adjoint by my;. We first note that both n“f and 7y
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respect the decomposition of IndCoh(Locer r X BT (F)_,) and IndCoh(Locer )

as TT-gerbes, we can restrict the following discussion to p; and py, for the map
p1: Loc X BT (F)-q — Loc and p; : Loc X BT (F)-o — BT (F)—.

Let X = Loc X Torr s, and ¥ = Loc. On the level of abelian categories, let
G : QCoh(X)” — QCoh(Y)" be the functor of taking 7T (F)-coinvariants. Then G
and p7 is an adjoint pair. The derived functors LG and p] (no need to derive) lift to

oo-categories and is still an adjoint pair. Therefore LG = py;.

Let M € QCoh(BT(F)-,) such that M is fixed by V,,. The quasi-coherent sheaf
M ® Ll =M OLo restricts to M ® Z[T(F)/V,] on Iﬁ(”) and it has an
T (F)-action that is identified with its Z[T (F) /V,,]-module structure. Due to the fact
that Z[T (F)/V,] is a projective T'(F)-module, we have

pi(py M ® L2)| 0 = LG(M ® Z[T(F)/V,]) = M.

We emphesize again that this isomorphism endows M the with structure of an
OLoc-module which is identified with its 7(F)-module structure. In general, take
M = colim M,, where M,, = M"». As p1: commute with filtered colimits, the same
statement holds. In other words, the functor 7y (75(-) ® L7 is the inverse of

72,1} (-) ® L).
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Chapter 3

THE SECOND CATEGORIFICATION

3.1 Notation

3.1.1. The inertia group. We let / C I' be the inertia group of the field
extension E/F. Assume Qg and Qf are the maximal unramified extension of E
and F, we denote the absolute inertia group of E and F by Ir = Gal(E/Qr) and
Ir = Gal(F/Qp). They are subgroups of Wr and W respectively. We also define

the relative inertia group as / ze} r=1F /g, IE].

The relative inertia group is a group extension:

| I%b — [

E/F—>I—>1.

3.1.2. Theloop group. We denote by k and O the residue field and ring of integers
of F. Let w denote a uniformizer of O. For a k-algebra R, we let W(R) denote its
ring of Witt vectors, let Wo (R) = W(R) ®w ) O and Wy ,(R) = W(R) ®w i) O/wm".

Let Y be a finite-type O-scheme. According to Greenberg, the following two

presheaves on the category of affine k-schemes:
LYY (R) =Y (Wo(R)), LiY(R) =Y (Wo.(R)),
are represented by schemes over k. We denote their perfection by
LYY = (L)Y ™, LY =(LY)" ",
and call them p-adic jet spaces.

Let Y be an affine scheme of finite type over F. The p-adic loop space LY of Y is a
perfect space defined by assigning a perfect k-algebra R the set

LY(R) =Y(Wo(R)[1/p]).

LY is represented by an ind-perfect scheme. Assume Y is an affine scheme of finite
type over O and X = Y ®¢ F, then L*Y C LY is a closed subscheme.

TakeY = T. Welet L>"T C L*T be the congruence subgroup such that L>"T (kp) =
Vnc



28

3.1.3. Character sheaves and Serre’s fundamental group. Let A = Z;, Q; or F,.
Let H be a connected pro-algebraic group over F,, and let m be the multiplication
map of H. Recall that a character sheaf with coefficient in A on H is a rank one

A-local system Chg on H equipped with an isomorphism
m* Chg = Chg &A Chg,
which satisfies the usual cocycle conditions.

Definition 3.1.4. Let H be a (not necessarily) connected pro-algebraic group, and
let H° be its central component. We define the character sheaves on H to consists

of all the translations of character sheaves on H°.

Denote by P the category of commutative pro-algebraic groups over k = F, and by
Py the category of abelian profinite groups. Serre defined the fundamental groups
as the first derived functor of the right exact functor g : P — Py, 19(G) := G/G°
(Serre, 1961).

Assume H is abelian and connected. A key property of this fundamental group is
that the abelian group of character sheaves on H, which we denote by CS(H, A), is

isomorphic to the abelian group of continuous rank 1 representations of 7y (H):

Homes (1 (H), A*) = CS(H, A).

The goal of the second categorification is essentially to categorify this isomorphism
into a fully faithful functor (take H = L*T)

Ch : Coh (Hom_ (7 (L*T),G,,)) — Shv(L*T,A).

The following theorem, which can be called the geometric class field theory, will
play a key role in the sequel.

Theorem 3.1.5 (Serre (1961); Deshpande and Wagh (2023)). Let T be an arbitrary
torus defined over F' and splits over a finite Galois extension E of F. Let I be
the inertia group of the field extension F'/E and let Igb be the abelianization of the

(absolute) inertia group of E. Then there is a canonical isomorphism

. I
71 (L*T) = (L ® Igb) .
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3.1.6.  The fixed point stack. Let Y be an arbitrary stack equipped with an
automorphism oy : Y — Y. We define the fix-point stack of oy to be

LY =YryxyaY,

where I = (1, oy) is the graph of oy and A is the diagonal embedding.

LT
Ad, LT

Proposition 3.1.7. The fixed point stack L,BLT =

Proof. By definition L,BLT is the fibre product

L;BLT — BLT

lA
idxo

BLT ——— BLT xXBLT.

Objects of L,BLT are represented by a tuple (x,y) € LT and morphisms (7, s) :
(x,y) = (x’,y’) are a tuple (¢,s) € LT such that

(¢, crt)\L \L(v s)

*X* * Xk,

In other words, (z,s) : (x, y) (x+s—t,y+s—ot). Itis straightforward from

here to see that L,BLT = O

Ad LT

3.2 Representation Stack of Inertia

Definition 3.2.1. The moduli space R, «r of the (strongly) continuous representa-
tions of I in T is defined over Z; as follows. Let r = rank 7. For every Z,-algebra
A, Ry er(A) classifies the cross homomorphisms p : Ir — T(A) c A” such that
for each coordinate map v : A” — A, the Z; subspace M generated by v o p(Ig) is a
finitely generated Z,-module, and the representation of /z on M is continuous, with

M equipped with the usual £-adic topology.

Definition 3.2.2. The representation stack of inertia is LocfeTOE1 =Riper/ T.

The Frobenius o acts on Loc% " via its action on I and 7. Explicitly, the action

‘T F
sends a cross homomorphism ¢ : Ir — T to oc¢ such that oc(g) = “c(o~ ' go).

geom

The following proposition reveals the connection between Locc, .

and Locer F.
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geom

Proposition 3.2.3. The fix-point stack L, Locc, .

LOCcT,F ® Zy¢.

is canonically isomorphic to

geom
°T,F

cross homomorphism ¢ : W — Tto ¢’ : Ir — T. The goal is to show that this map

Proof. There is a natural map Locer r ® Zy — L Loc induced by restricting a

is surjective on objects and is a bijection on the automorphism group of an object.

Objects of L, Loct;y can be represented by a tuple ([c],7) for ¢ € Z'(Ir,T) and
t € T such that oc = ¢ + dr. It is the image of é € Z! (W, T) if ¢ satisfies Cli =c

and ¢(o) =t.

To show that such ¢ exists, we first need to check that ¢ factors through a finite
quotient of /r. The restriction of ¢ to the wild inertia Pr clearly factors through
a finite quotient. Therefore, it suffices to show the claim for the restriction of ¢ to

tame
1ame,

Let the action of ;2™ on T factor through an open subgroup K. Then for all g € K,
we have ¢(g) = “c(0~'go). Henceforth “¢(g) = c(ogo™") = ¢(g?) = c(g)?. Let
N be a positive integer so that o acts trivially on 7', we have c(g) = c(g)4 " That
is, for every g € K, c(gqN‘l) = 1. We conclude that ¢ factors through an open

subgroup of /2™ as {g7" '|g € K} is open.
One define ¢(o") recursively via
o™ =r+7¢(c" Y

for all n € N and define

(o) ==""e("),

&™) = (™) + T e(g),
foralln € N,m € Z and for all g € Ir. The condition oc = ¢ + dt ensures that ¢ is
a 1-cocycle.

An automorphism of the object ([c], ) is represented by an element w € T such

that dw = 0 and the following diagram commutes:

t
c — o¢C

ol

t
c — OcC.

Thatis, w € T/F and ow = w, hence w € TVF. This automorphism group is exactly

in bijection with the automorphism group of an object of Locer r. O
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Proposition 3.2.4. We have a canonically split short exact sequence

1 - Hom(L;, BG,,) — Loc&™ — Hom

g (LeI).Gy) = 1. (31

cts
Proof. The proof of this proposition is similar to that of proposition 2.3.1. The only
difference is that we need to replace the isomorphism H{(Wg/r, L) = T(F) with

H, (I?}F, L)=(Le Igb)l, which is supplied by Corollary 2.4.5. O

3.2.5. Loct,’) as an ind-scheme. We want to understand the geometry of the third

term in this exact sequence.

We first note that the abelian group I%b splits into its tame and wild parts as an

["-module. By class field theory, we have

1% = lim O}
E Jm K
K/ E finite Galois,

unramified

Each term O = ux x U [((1 ) splits as a I'-module, where uk is the group of roots of
unity in K and UI((I) = 1 + mg the principal units. This splitting clearly respects the
norm map, which is the transition map in the projective limit. Therefore we have a
splitting
b _ 1 (1 _ pab
Iy =lim Uy’ x [g™ = P X I;™.

The group @UI((I) can be identified with the abelianization of the wild inertia
P%b(lwasawa, 1955). Although we do not rely on this fact, but we use it to simplify

our notation.

With the splitting of the group I2°, we obtain a decomposition

Hom_ ((L ® I¥)",G,y) = Hom,, (L ® I¥™),G,,) x Hom_, ((L ® PY)’, G,)

——cts

which is characterized by that (L ® Igi‘me)’ is a prime-to-p profinite group and
(L® PaEb)I is a pro-p group. This gives us

Hom,, (L ® I{),Gyy) = | | Hom, (J,G) =| |R;g,- (3.2)

XEE XEE

where 2 = Hom, (L ® PP)!,Gy), and J = (L ® I3™)".

cts

The functor Rj can be made explicit by embedding it into an algebraic torus.

We choose 7 a topological generator of /2™, and let the finitely generated abelian
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group (L ® (r))!  J be denoted by J. Denote by H the torus R; ¢, . There is an

inclusion Rj 5 — H by restricting a representation of J to J.

Let us denote H? c H the subfunctor which is the union of all closed subschemes
iz : Z C H that are finite over Z; and Z(F;) c H(F,)?, where H(F;)? consists of all
elements in A (Fy) of order prime to p. Note that by construction A” has a natural

structure of an ind-scheme.

Proposition 3.2.6. The inclusion R;5 — H identifies R jg, With HP. Conse-

quently, R is an ind-scheme.

Proof. Let A be an Z¢-algebra. Every ¢ € R (A) represents a continuous cross
homomorphism ¢ : / — AX C A such that the image of ¢ in A spans a finitely
generated Z,-module M, and the map ¢ : J — M is continuous.

The image of ¢ € H gives a ring homomorphism which we also denote by ¢ :
Z¢[J] — A. This is justified because this ¢ coincide with the cross homomorphism
in their value in A. Let ¢ factor as Z;[J] — R — A, where Spec R is the schematic

image of Spec A. Our conditions on ¢ imply that R is a finite Z,-algebra.

Henceforth, all Fy-points of Spec R can lift to Fy-points of Spec A, their image in
H(F;) must have finite and prime-to-¢ order, because ¢ : Z;[J] — A can be lifted

to a continuous map Z¢[J] — A. O

3.3 Review of the Categorical Trace

3.3.1. Hochschiled homology. Let us first review the general formalism of the
Hochschild homology. We will mostly follow ((Hemo, 2023)).

Let R be a symmetric monoidal category, A and B be two associative algebras in R.
We denote by A™ (resp. B™") to be the algebra A with the reversed multiplication.
An A-B-bimodule can be regarded as a left (A ® B™")-module or a right (B® A™)-
module. For an A-A-bimodule F, the Hochschild homology of F, if exists, is defined
as

Tr(A,F) = A @agaer F € R.

However, the Hochschild complex of F' always exists. It is a simplicial object in R
given by
HH(A, F), = Bar(A), ®garev F = A®* @ F.

Example 3.3.2. Let ¢ be an endomorphism of the algebra A, and F' an A-bimodule.
The ¢-twisted bimodule F, which we denote by ¢F, is the bimodule whose left
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A-action is pre-composed with ¢ and whose right action stays the same. In this
case, we also denote the Hochschild homology of ?A by Tr(A, ¢).

Roughly speaking, Tr(A, ¢) is determined by the universal property that a functor
Tr(A, ¢) — C is equivalent to a functor G : A — C equipped with equivalences

Fla®b)=F(b®d¢(a)), a,beOb(A)

together with all the necessary higher coherence data. In particular, there is a
tautological functor
Try : A — Tr(A, ¢)

sending an object a to its universal ¢-twisted trace.

Now consider R = Lincaty. An algebra object A in Lincat, is a presentable A-
linear monoidal category such that the monoidal product commutes with colimits
separately in each variable. Let F be an A-bimodule category. In this case, Tr(A, F)
always exists, and is called the categorical trace of (A, F'). Note that the output of

categorical trace is again a presentable A-linear category.

We recall two key propositions which are particularly useful in the calculation of
categorical traces, one in the coherent sheaf setting, and one in the A-sheaf setting.
The gist is that the categorical trace of a sheaf theory can often be identified with,

or embed in, the category of sheaves of certain fixed point object.

Proposition 3.3.3. Let X be a smooth Artin stack with an automorphism
oc:X—X,and leti : L, X — X. There is a canonical equivalence of cate-
gories

H : Tr(IndCoh(X), o) = IndCoh(ZL, X),

and the following diagram commutes:

IndCoh(X) : > IndCoh( L, X)
e

Tr(IndCoh(X), o).

Proposition 3.3.4. Let X be a placid stack such that the diagonal Ay : X — X X X
is representable pro-smooth. Let Y be a prestack and let f : X — Y be a ind-
proper morphism such that the relative diagonal X — X Xy X is ind-proper. Let

ox : X — X and oy : Y — Y be endomorphisms intertwined by f.
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Consider the following diagram:

5
Xxy LY —— X Xy fooy X

ql (3.3)

LO'Ya

where d is the map
A
X Xy (Y Xpyyxv.ixoy ¥) = X Xysy ¥ — (X X X) Xyxy ¥ = X Xry. fooy X

and q is the projection.

There is a canonical factorization

é‘*
Shv(X xy X) ——— Shv(X xy £L,Y)

| I

Tr(Shv(X Xy X), ) —Z— Shv(L,Y),

where the functor G is fully faithful.

3.4 Geometric LLC for the torus
In this section, let A = F, or @g. By abuse of notation, we will use Locer r and

LocE;”~ to denote the base-change Locer r ® A and Loct . ® A in the sequel. We

°T.F °T.F
will use Shv(—) to refer to the category of bounded constructable A-sheaves.

Theorem 3.4.1. (i) Let T be an algebraic torus over F. There exists a fully-faithful,

t-exact, monoidal functor

Ch: IndCoh(Locg;ogl) — IndShv(LT).

Let Shv""(LT) denote the essential image of Ch. It is the thick subcategory com-
pactly generated by all character sheaves on LT. Let Ch™" denote the equivalence
of categories

Ch™" : IndCoh(Locf ) = IndShv™" (LT).

(ii) Both categories carry a Frobenius structure, and there is a commutative diagram

Tr(IndCoh(Loc%™™), o) ——% Tr(IndShv™"(LT), o)

lH lG (3.4)

IndCoh(Locer, 5) ——=—% IndShv(B(T)),
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where T is induced by Ch™°" and the functorality of the categorical trace construc-
tion, LL is the canonical equivalence (2.9) under the identification IndShv(B(T)) =
QCoh(Tor7 s, ), and two vertical arrows are the canonical maps H and G supplied

by Proposition 3.3.3 and Proposition 3.3.4. Furthermore, H and G are equivalences.

3.4.2. Construction of Ch. ~We define the functor Ch : IndCoh(LocZ7) —
IndShv(LT) as follows.

Using the split short exact sequence (3.1), we have a decomposition

Coh(Loc®"T) = n Coh”(Loc& "™

°T.F ‘T, F’"
a’ElA,]

On the other hand, since
|l > LT > LT > L; > 1,
we have another decomposition
Shv(LT) = ]_[ Shv(L*T).
BeL;
The index set of the two decomposition are canonically identified. However, for

our purpose, the functor sends the @ component of ind-coherent sheaves to the —«

component of A-sheaves.

Given that Coh(Hom (7 (L*T),G,,)) = Coh’ (Loci”.;()?), the next step is to define

the functor
Ch° : Coh(Hom, (71 (L*T),Gy)) — Shv(L*T),

and naturally extend it to a functor between ind-completions of both sides. Notice
that L*T = T x L**T with L**T being the first congruence subgroup.

Recall that & = Hom((L ® P%b)l ,G,,), and each point x € = gives a local system
on L**T that we denote by L}*.

By Proposition 3.2.6, with a choice of a topological generator 7 € I}Eame, we have an

inclusion Rj 5 — H and coherent sheaves on R ja,, are given by
Coh(Rj s ) = colim Coh(Z).
o ZcH
Therefore we can define a functor

Chtame . COh(Rj,Gm) ~ {ﬁnjte f_module} — ShV(T).
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This functor is clearly independent of the choice of the topological generator and
fully faithful.

Now we can define the functor
Ch® : Coh(Hom_ (1 (L*T),G,,) — Shv(L*T) = Shv(T) ® Shv(L*™T)

by sending an ind-coherent sheaf # on the x-component to Ch®™(F) ® L.

of Theorem 3.4.1 (i). It is obvious from the construction that Ch is ¢-exact.

To show Ch is fully faithful, we can decompose both categories into blocks

IndCoh(Locf?’;??) = @ @ IndCoh(Hom tS(JA ,Gn)

a€ly xe=

IndShv(LT) = @ EB IndShv(T),

Bel; x€B

where Ch respects both direct sums (with a twist § = —a). On each block, Ch

htame

restricts to C and we already know the latter is fully faithful. O

3.4.3. Decategorification. 'We move on to prove part (ii) of the Theorem 3.4.1.

Let r = rank 7. Consider the following diagram:

Chmon

IndCoh(LocZ;”; 5 IndShv™"(LT)

| |

Tr(IndCoh(Loc%™™), o) ——— Tr(IndShv™™(LT), o) |4-o5[2r]

s s

IndCoh(Locer ) > IndShv(B(T)).

The functorality of the trace construction yields the upper square. The lower two
vertical maps and the two curved maps are the canonical maps characterized in

Theorem 3.3.3 and Theorem 3.3.4. They will be made explicit in the sequel.

By Proposition 3.3.3, H is an equivalence of categories, and G is automatically an

equivalence once we established that the lower square commutes.

Instead of showing the lower square commutes directly, we first show that for a

family of objects ¥ € IndCoh(X) we have canonical isomorphisms

Loi*(F) = g« 0,0 Ch™"(F)[2r]. (3.5)
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Then we show that this family is big enough to force the commutativity of the lower
square.

geom
°T,F*

particular, we fix an element x € Home (71 (L*T), A*)“ and consider the skyscraper
sheaf A, at this point. We show that (3.5) holds for all such A,.

Each element x € Homg (7 (L*T), A*) defines a closed point of Loc In

Definition 3.4.4. For a character y : T(F)o — A*, we define /, to be the aug-
mentation ideal {t — y(#)|t € T(F)p} in the group ring A[T(F)]. Then we define
R, =A[T(F)]/I,.

geom geom
(,'T,F (,'T7F b

Homg (71 (L*T), A*)7. Let x corresponds to a character y under the isomorphism
Homg (71 (L*T), A*)? = Home (T (F)o, A*). We have

Proposition 3.4.5. Let i : Locerrp = L;Loc — Loc and x €

i"Ar =R, ® [\ (X.(T) ® A[1]).

Proof. The components of Locer r are indexed by the set of representations

geom

Home (T (F)o, A*). Each component is sent to a closed subscheme in Locg; .

via

Homcts(T(F)O)’ AX) = Homcts(L+T(KF)a AX)
= Homcts(ﬂ'l (L+T)’ AX)O-
— Homgy (7T1 (L+T)’ AX) .

Let U C Locer p be the component that is sent to x € Home (711 (L*T), A*)7. Ex-
plicitly, U = Spec(R, ). We denote the character associatedto U by y : T(F)g — A*
and study A, = x. A

The component in which x lies can be embedded in some R; g, as in equation
(3.2). The component itself is precisely the formal neighbourhood of x in that torus.

Therefore,

i*Ac= Ry ®5 ;| A=R, ®[L\[£]A:RX®/\(X*(T)®A[1]). O

Now we compute g o ;0 Ch™(F). Let L = Ch™™(A,), and let y : T(F)o — A*
be the character associated to x. There exists n so that y factors through 7'(F)o/V,.

In Theorem 3.3.4, we take X = BL>"T, Y = BLT, f : X — Y induced by the

inclusion L>"T — LT, and the Frobenius ¢ induce the automorphisms of X and Y.
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The diagram (3.3) becomes

LT % LT
Ad, Lo LTV LT

lq (3.6)

LT
Ad, LT’

where ¢ is given by identity of LT on objects and ¢t € L>"T + (t,—ot) on
morphisms, and the map ¢ is given by identity on objects and the inclusion of

L?>"T — LT on morphisms.

Proposition 3.4.6. Let £ = Ch™"(A,), and let y be the character associated to x.

Let r = rank T, we have
g.o65 L[2r] =R, ® A(X*(T) ® A[1]).

Proof. Let L be a character sheaf on the central component L*T/L>"T such that

oc* L = L. By Lang’s theorem, this character sheaf corresponds to a character
+
Xt gz (kp) — A%

We calculate g o 6, L as follows. Let s : x — =7+ d LT be a point. We form the
pull-back
LT N LT S0
LT " Ady LT

b

% 5 >

" Ad, LT’

) LZnT\LT/LZnT

where s’ is given by ¢ — s + t — o't on objects and identity on morphisms.

First, we determine on which components of W the pullback s™ o 63 L is

non-zero. Clearly, 6, £ has the same support as £. The components of TZZW

are indexed by the set X.(T);, and so is LEZT Let [s] € X.(T); be the component in

which s lies, then 5™ o 6 L has support on all those components @ € X.(T); such
that [s] + @ — ca = 0. Assume [s] = oca — @, then s™ o §; L has support on those

components indexed by a + (X.(T);)’.

Next, we determine on which components of =77 d LT the sheaf s, o 65 L is non-

zero. The components of is indexed by B(T) = X.(T)r. The fact that

Ad LT
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[s] = o — a in the previous analysis implies that s lies in the central component

of x5=77- Therefore s. o 6; L is supported on the central component only.

Ad LT

To study s. o 6, L on the central component of 5=, it suffice to take s = 1 € LT.

Ad LT’
Since we assumed that c* £ = £, the pullback s™* o 68 L is the trivial local system
on components indexed by (X.(7);)?. By Lang’s theorem, s o ¢; L restricted

to is the trivial local system with an (L*T/L>"T)(kF)-action given by the

L>"T
character y.

=~ T x A as an algebraic scheme for some integer d, we

Let r = rank 7. Since L L>"T ~

have

sogios L2l = P (A(X*(T) ®A[—1](—1))) [2r]

(X* (T)I)(T

= \(X.(T) ® A[1](~1)).

The sheaf g. o 6, L is the above sheaf equipped with a T'(F)-action. Recall that
I, = {t - x(t)|t € T(F)o} is the augmentation ideal. Then as a A[T(F)]-module

we have

g+ 069 L = (A[T(F)]/Iy) ® /\(X*(T) ® A[1](-1))
=Ry ® N\ (X.(T) & A[1](-1)) O

Proof of part (ii) of Theorem 3.4.1. Let x € Hom (1 (L*T), A*)? and consider

the skyscraper sheaf A, at this point. We have shown the canonical isomorphism
Loi*(Ay) = g. 0650 Ch™ (A [2r] = Ry ® /\ (X.(T) @ A[1]).

Since Ch™" is t-exact, so is T. Therefore all four functors in diagram 3.4 are r-exact.

Let ¥ € Tr (IndCoh(Locf;O?), 0') be the image of A,. Since

LoH(F)=GoT(¥), (3.7
there is an isomorphism on each cohomology. The cohomology of (3.7) in degree

0is R,. Since the family {R,} generates the whole category of IndCoh(Locer F),

we conclude that the diagram commutes. O
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Appendix A
A LEMMA IN HOMOLOGICAL ALGEBRA

Lemma A.0.1. Let I" be a finite group, A be an abelian group equipped with a
I"-action. Let [a] € H?(T', A) represent the group extension

1A—->G-—>T.

Let M be any I'-module, in other words, it is a G-module on which A acts trivially.

Then we have a commutative diagram

Hy(0, M) —2 % H{(A,M)r — H{(G,M) —— H{(T,M) ——3 0

Jue ‘ L= Jve

0 — AL M®A) — (M@ A —— (M AT —— A (I,M ® A) —— 0.

The first row of the diagram is the long exact sequence associated to the Lyndon-
Hochschild-Serre spectral sequence. The second row is the definition of the Tate
cohomology. The first and last vertical map is the cup product with @. The map res
is the restriction map H(G, M) — H{(A, M),

In particular, if I and A satisfies the condition of the Tate-Nakayama lemma, we
would have
Hi(G,M)=(M®A)".

Proof. The crux of the proof is the commutativity of the left-most square, which
we will prove in the sequel. The commutativity of the rest of the squares are fairly

standard and will be omitted.

A.0.2. Notations. We follow the notation of Atiyah and Wall (Cassels, 1987). The

(homogeneous) bar resolution of the G-module Z is given by

Cn(G’Z) = @Z(g(), 81, 5gn)’
Gn+l

which is the free abelian group generated by the basis G™*! with the action of

g'(go"" ’gn) = (gg()v ’ggn)
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The differential is the usual
n
d(go.++8n) = D (=1)(g0, 1 &ire++ » &n).
i=0
It is isomorphic to the more familiar inhomogeneous bar resolution via sending

(80-8081," -, 8081~ &n) > (8olg1l -+ 1gn).

Let P, denote a I'-resolution of Z by finitely-generated free I'-modules, and let

P* = Hom(P,, Z) be its dual, so that we have exact sequences
e [ﬁ g fb — 7Z —0
0>Z—>Py— P —--.
Let P_, = P;_, and join the two sequences together we get a doubly-infinite exact

sequence

Ly: -++—>P —>Py—>P1—>Py—---

The Tate groups are then the cohomology groups of Homr(L,, M) for any I'-module
M, i.e.
Hi(T, M) = H'(Homr (L., M)).

The cohomology in degrees n < —2 agrees with the Tate groups explicitly via

isomorphisms
Pe®r M = (Pe® M)r -5 (Pe ® M)" — (Hom(P:, M))" = Homp(P%, M).
A.0.3. Cup Product. Let {w,|o € I'} be a system of representatives of " in G.
We define the cocycle 6 : I' X I' — A via
WoeWr = 6(0, T)Weor.

Representing ¢ using the homogeneous bar resolution yields a cocycle @« € Homp(C» (I, Z), A)

which is uniquely characterized by

a(l,cy,cic2) = 6(cy, c2).

Let [¢] € Ho(I', M) and ¢ € Homp(C; (I, Z), M). The cup product ¢ U « lives in
Homp(Cy(I',Z), M ® A) and is defined by

dUa(c) = Z P(c*, ¢}, c3) ® alea, ci,c) (A.1)
= > (e, et (c102)) @ (e, e1,0). (A2)

C1,C2
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Its image in (M ® A)r is

dua(l)= > ¢(l,c}, (c1e2)") ®a(crea,cr, 1) (A3)
C1,C2

= > dlerc) @crera(l 3! 7't (A4)
C1,C2

= Y plcr.e) ®cicr - 6(c3'erh). (A5)
C1,C2

Notice that
$(1, ¢, (c1c2)*) = ¢(c1,¢2)

is the switch from the inhomogeneous bar resolution to the homogeneous one.

A.0.4. Spectral sequence. For a G-module M, we set up the chain complex that
produces the Lydon-Hochschild-Serre spectral sequence. Let Po = Co(I',Z) and
Q. = C.(G,7Z). The differential of the two chain complexes are denoted by d; and
do respectively. We define the double complex

E,‘j =P ® Qj.

The complex Tot(E;;) is a G-resolution of Z, therefore the spectral sequence asso-
ciated with E;; ® M calculates the group homology of M. Note that P, is also a
G-module. We have

Ei];] = El‘j ®c M = (P,'®Qj QM)g = (P,'(X)]" (QJ ®4A M))

Since Q; ®4 (—) calculates A-homology and P; ®r (—) calculates I"-homology, the
resulting spectral sequence of this double complex is the Lydon-Hochschild-Serre

spectral sequence.

We need a formula that directly link the A-homology calculated by the complex Q.
with that calculated by C.(A, Z). We choose a projection f : G — A such that

flwy) =1, forally €T,
f(ag) =af(g), foralla e A,g € G.

This induce a map between A-complexes Co(G,Z) — Co(A,Z). Let
7 = ker (Cl(G,Z) ®4 M — Co(G,Z) ®4 M)
and consider the composition Z — H{(A, M) = A ® M. It sends a cycle

(81,82) ®m — (f(g2) — f(g1)) ®m. (A.6)
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A.0.5. Differentials. Recall the definition of the map d, : Hy(I',M) —
Hi(A,M)r. Let ¢ € Eé‘f’o be a cycle and assume there exists ¥ € E{‘f’l such
that

doyy +d1 ¢ =0,

then

da([¢]) = di([¥]).

From now on, we will use c, ¢; or Greek letters o, T to denote an elementin I, g, g;

or h an element in G. We note that in E % we have

(COacla”' ,Cl')®(g0"'. ’g])®m

-1 -1 -1 -1 -1
=(Lcy et ,cq i) ® (W 8o+ » Wi, &j) ® ¢y m,

and therefore E% is generated by by elements whose component in the P; factor

starts with co = 1. We write all cycles as a linear combination of these elements.

M

500 We can write

For example, for any ¢ € E

¢= Z (1,c1,c1e2) ® (8) ® P(c1, 2, 8).
C1,C2,8
This expression is in general not unique. However, it is worth noting that in the

M

special case of ¢ € E5,

the expression above is unique modulo the identity

(I,c1,c102) ® (g) ® d(c1,¢2,8) = (1, c1,c102) ® (ag) ® p(c1,¢2,8)

for any a € A. That is to say, let
$(c1,c2,0) = Z ¢(c1,c2,8),
g=0

the following expression of ¢ is unique:

6= ), (Lei,cica) 8 (wy) ® dler, c2,0).

C1,€2,00

Similar unique expression exists for elements of E {VIO with little change.
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Now we compute d>. The next three formulae are straightforward.

di(1,ci,cic2) ® (g) @ m
= (c1(L,e2) = (Licie) + (Licr)) @ (g) @m
=(l,c2) ® (w;llg) ®ci'm—(l,c1,c2)® (g) ®m+ (1,¢1) ® (g) ® m.

do (1,¢) ® (g0, 81) ®m
=(Lc)®(go)®@m—(1,c) ® (g1) ® m.

di(1,¢) ® (g1,82) ®m
=(w.'g,w g ®c'm—(g1,8) @m

=clme (Fg'g) = Fwi'en)) —m® (F(g2) - f(31)

=clme (5 g2) - 6(c™ ) - m® (F(g2) - Flg1).

In the second to last equality we actually send the element to M ® A as in (A.6).

From this we deduce the boundaries of a cycle as follows. For y, o € I', we have

did(y,0) = Y ' dlerercio) = Y dlerer o)+ ) dler,er0)

2=y ci1e=y 1=y

= Y T deyica) = Y decTva) + Y Feo). (AT

doli(y,0) = ), w(y.hg)= ) ¥(y.gh). (A3)

h=0, g 8

diy= ) cyleg.8)® (0™ g2)-d(c 1)

C,81,82

- > wle.g1,8) ® (f(g2) - F(g1). (A9)

C,81,82

These is enough to determine the map d5.
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To conclude, let us assume di ¢ + do iy = 0. We have

dr([¢]) =dry

= > Y (e @ (6(r " g2) -6y g1))
Y-81,82

= Z (y-v(r g -y vy '.gg)) ®d(y.g1)
Y.81,82

= Z —y-doy(y™, o) ®6(y,0)
2%

= Ny i) @ 8(y.o)
V.0

=Y (cTdey o) = dle. Ty o) + By e, ) @ 6(y, 0)

Y.0.,¢

Z $(c1,c2,0) ® (c1c2-6(c5' el o) —crea - 6(c5' et o) + e16(ct!, o)
Cc1,C2,00

Z $(c1,c2,0) ®ciea-d(cy'erh)

C1,€2,0°

[¢] U a. O
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