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ABSTRACT

The stack of local Langlands parameters is a Picard stack when the relevant re-
ductive group is a torus. We explicitly determine its Picard dual and show that
the Fourier-Mukai transform gives rise to the integral categorical local Langlands
correspondence for the torus. This is the categorification of the local Langlands
correspondence and answers a conjecture of X. Zhu. Moreover, we establish a ge-
ometric version of this correspondence. This second categorification relates to the
previous correspondence in the sense that taking the categorical trace construction
allows one to reproduce the previous result.
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C h a p t e r 1

INTRODUCTION

Let 𝐺 be a reductive group over a non-archimedean local field 𝐹. X. Zhu (2021)
provided an in-depth study of the stack of local and global Langlands parameters
Loc𝑐𝐺,𝐹 defined over Z[1/𝑝], and proposed a categorical arithmetic local Langlands
correspondence (LLC). The automorphic side of this Langlands correspondence
is given by the category of ℓ-adic sheaves on the stack of isocrystals 𝔅(𝐺) =

𝐿𝐺/Ad𝜎𝐿𝐺, where 𝜎 is the Frobenius on the residue field 𝜅𝐹 of 𝐹. A central part
of the conjecture is as follows.

Conjecture 1.0.1. (X. Zhu, 2021, Conjecture 4.6.4.) Let (𝐺, 𝐵,𝑇, 𝑒) be a pinned
quasi-split reductive group over 𝐹 and Λ = Zℓ,Qℓ or Fℓ. Then there is a natural
equivalence of stable∞-categories

L𝐺 : Shv(𝔅(𝐺),Λ) → IndCohN̂𝑐𝐺
(Loc𝑐𝐺,𝐹)

sending the Whittaker sheaf to the structural sheaf OLoc𝑐𝐺,𝐹
. The category

IndCohN̂𝑐𝐺
(Loc𝑐𝐺) ⊂ IndCoh(Loc𝑐𝐺)

is a subcategory of ind-coherent sheaves with certain singular support condition.

In a more recent development, Zhu established the tame categorical local Lang-
lands correspondence with Qℓ-coefficient and the unipotent correspondence with
Fℓ-coefficient (Xinwen Zhu, 2025).

1.0.2. The First Categorification. In this paper, we verify a more general form of
the conjecture that allows Z-coefficient for an arbitrary torus over 𝐹.

When 𝐺 = 𝑇 is a torus, the stack 𝔅(𝑇) is a disjoint union of copies of the classi-
fying stack [∗/𝑇 (𝐹)] indexed by the Kottwitz set 𝐵(𝑇). It is possible to define a
characteristic 0 analogue of 𝔅(𝑇) which also consists of copies of [∗/𝑇 (𝐹)]. In
fact, we can define an algebraic stack Tor𝑇,iso𝐹 over Z, such that

IndShv
(
𝔅(𝑇), Zℓ

)
� QCoh

(
Tor𝑇,iso𝐹 ⊗ Zℓ

)
.
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The algebraic stack Tor𝑇,iso𝐹 is essentially the stack of 𝑇-isocystals. Let 𝐹̆ be the
completion of a maximal unramified extension of 𝐹, and let 𝜎 be the Frobenius
action. The groupoid Tor𝑇,iso𝐹 (Z) is

Tor𝑇,iso𝐹 (Z) = [𝑇 (𝐹̆)/Ad𝜎 𝑇 (𝐹̆)] .

One of the main result of this paper is as follows.

Theorem 1.0.3. There is a canonical family of Poincaré line bundles

L𝑇 : Tor𝑇,iso𝐹 × Loc𝑐𝑇,𝐹 → BG𝑚

for every torus 𝑇 over 𝐹. Furthermore, these Poincaré line bundles induce isomor-
phism Loc∨𝑐𝑇,𝐹 � Tor𝑇,iso𝐹 for all torus 𝑇 .

We shall see in Section 2.4 that the isomorphism Loc∨𝑐𝑇,𝐹 → Tor𝑇,iso𝐹 is essentially
taking the cup product with the fundamental class of local class field theory. This
answers a conjecture of Zhu (X. Zhu, 2021).

As an application, we establish an integral local Langlands correspondence for torus.

Theorem 1.0.4. The Fourier-Mukai transform via the Poincaré line bundleL𝑇 gives
the equivalence of stable∞-categories

L : IndCoh(Loc𝑐𝑇,𝐹) � QCoh(Tor𝑇,iso𝐹 ).

The Fourier-Mukai transform was first introduced to the Langlands program in the
work of Laumon, where the transform is applied to construct the geometric Lang-
lands correspondence for 𝐺𝐿 (1). Later, in the work of Braverman-Bezrukavnikov
(Bezrukavnikov and Braverman, 2007) and Chen-Zhu (Chen and X. Zhu, 2014),
Fourier-Mukai is used to establish a generic version of the Langlands correspon-
dence in positive characteristic (for any reductive group 𝐺).

1.0.5. The Second Categorification. Let Λ = Fℓ,Qℓ or Zℓ and let 𝐿+𝑇 be
the positive loop group of 𝑇 . There is an isomorphism between abelian groups of
continuous characters of Serre’s fundamental group 𝜋1(𝐿+𝑇) and character sheaves
on 𝐿+𝑇 :

Homcts(𝜋1(𝐿+𝑇),Λ×) = CS(𝐿+𝑇,Λ).

The second main result of this paper is a categorification of this isomorphism:
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Theorem 1.0.6. There exists a fully-faithful, 𝑡-exact, monoidal functor

Ch : IndCoh(Locgeom
𝑐𝑇,𝐹
) → IndShv(𝐿𝑇),

where Locgeom
𝑐𝑇,𝐹

is the representation stack of the inertia group of 𝐹 in the dual group
𝑐𝑇 .

This can be viewed as a “categorification of categorification” in the the following
sense. Let Shvmon(𝐿𝑇) denote the essential image of Ch. It is the thick subcategory
compactly generated by all character sheaves on 𝐿𝑇 . Let Chmon denote the the
equivalence of categories

Chmon : IndCoh(Locgeom
𝑐𝑇,𝐹
) � IndShvmon(𝐿𝑇).

Note that both categories carry a Frobenius structure.

Proposition 1.0.7. There is a commutative diagram

Tr(IndCoh(Locgeom
𝑐𝑇,𝐹
), 𝜎) Tr(IndShvmon(𝐿𝑇), 𝜎)

IndCoh(Loc𝑐𝑇,𝐹) IndShv(𝔅(𝑇)),

∼ ∼

L

(1.1)

where the top arrow is induced by Chmon, the bottom arrow is the functor L under
the identification IndShv(𝔅(𝑇)) � QCoh(Tor𝑇,iso𝐹 ). Furthermore, he two vertical
arrows are canonical equivalences.

Some results in this paper are independently obtained by K. Zou (Zou, 2024),
sometimes by different methods. There are two main differences between this work
and Zou’s. On the one hand, Zou considers integral ℓ-adic sheaves on Bun𝐺 over
the Fargues-Fontaine curve, while we consider quasi-coherent sheaves on Tor𝑇,iso𝐹
which is defined over Z. On the other hand, Zou uses the spectral action on
the Whittaker sheaf to establish the equivalence, while we use the Fourier-Mukai
transform.

The organization of the paper is as follows. Section 2.1 introduces the notations
and definitions of Loc𝑐𝑇,𝐹 and Tor𝑇,iso𝐹 . Section 2.3 establishes an important short
exact sequence involving Loc𝑐𝑇,𝐹 . Section 2.4 constructs the Poincaré line bundles
and proves the main theorem. Section 2.5 discusses the Fourier-Mukai transform
and the equivalence of categories.
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C h a p t e r 2

THE FIRST CATEGORIFICATION

2.1 Notation
2.1.1. Galois groups. We first fix our notations. Let 𝐹 be a local field, 𝜅𝐹 its
residue field, and 𝐸/𝐹 a Galois extension that splits the torus 𝑇 defined over 𝐹. Let
Γ = Gal(𝐸/𝐹) and let 𝑊𝐹 and 𝑊𝐸 be the Weil groups of 𝐹 and 𝐸 . Recall that the
relative Weil group of 𝐸/𝐹 is defined as𝑊𝐸/𝐹 = 𝑊𝐹/[𝑊𝐸 ,𝑊𝐸 ].

By local class field theory, the relative Weil group is also the unique group extension

1→ 𝐸× → 𝑊𝐸/𝐹 → Γ→ 1

corresponding to the fundamental class 𝛼 ∈ 𝐻2(Γ, 𝐸×). Fix {𝑤𝜏}, 𝜏 ∈ Γ to be a
system of representatives of (right) cosets of 𝐸×. For any 𝑔, 𝑤 ∈ 𝑊𝐸/𝐹 , there is a
unique 𝛿(𝑔, 𝑤) ∈ 𝐸× and a unique 𝜏 ∈ Γ such that

𝑔𝑤 = 𝛿(𝑔, 𝑤)𝑤𝜏 .

The assignment (𝜏, 𝜎) ↦→ 𝛿(𝑤𝜏, 𝑤𝜎) is a cycle and it represents the fundamental
class 𝛼.

Let 𝑝 : 𝑊𝐸/𝐹 → Γ be the projection as above, we extend the meaning of the notation
𝑤𝜏 to allow elements of𝑊𝐸/𝐹 appear in the subscript, for example, 𝑤𝑔 = 𝑤𝑝(𝑔) , and
𝑤𝑔𝜏 = 𝑤𝑝(𝑔)𝜏, for all 𝑔 ∈ 𝑊𝐸/𝐹 , 𝜏 ∈ Γ.

2.1.2. Torus and dual torus. Let 𝐿 = 𝑋∗(𝑇) and 𝐿̂ = 𝑋∗(𝑇) be the weight lattice
and coweight lattice of 𝑇 . They are both Γ-modules and therefore 𝑊𝐸/𝐹-modules.
The dual torus 𝑇 = 𝐿 ⊗ G𝑚 is defined over Z. The C-group of 𝑇 is an enhancement
of the Langlands dual group

𝑐𝑇 := 𝑇 ⋊ (G𝑚 × Γ),

where Γ acts naturally on 𝑇 and G𝑚 acts trivially. The G𝑚 factor in the C-group is
only useful for non-abelian reductive groups, but we include it here to be consistent
with notations in (X. Zhu, 2021). Let the homomorphism 𝜒 : 𝑊𝐸/𝐹 → G𝑚 × Γ be
trivial on the factor G𝑚 and be the canonical projection on the factor Γ.
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2.1.3. The stack of Langlands parameters. We now define the scheme of framed
Langlands parameters Loc□𝑐𝑇,𝐹 and the stack of Langlands parameters Loc𝑐𝑇,𝐹 . All
(Picard) stacks in this note will live over the fpqc site of 𝑆 = SpecZ.

Let 𝑀 be an affine group scheme over 𝑆, and𝐺 an abstract group. The functor R𝐺,𝑀
that sends every Z-algebra 𝑅 to the set of group homomorphisms from 𝐺 to 𝑀 (𝑅)
is represented by an affine scheme. This is because, if 𝐼 ⊂ 𝐺 is a set of generators,
R𝐺,𝑀 is a closed subset of 𝑀 𝐼 according to the relations between the generators.
The derived scheme of representations is studied in (X. Zhu, 2021).

By local class field theory, there is the short exact sequence

1→ 𝐸× → 𝑊𝐸/𝐹 → Γ→ 1.

Let 𝑈 (𝑛) be the 𝑛-th congruence subgroup of 𝐸×, so 𝑈 (0) = O×
𝐸

and 𝑈 (𝑛) = 1 +
𝔪𝑛
𝐸
, 𝑛 ≥ 1. Let 𝑊 (𝑛) = 𝑊𝐸/𝐹/𝑈 (𝑛) . The scheme of framed Langlands parameters

Loc□𝑐𝑇,𝐹 classifies continuous cross homomorphisms from 𝑊𝐸/𝐹 to 𝑇 , with 𝑇 (𝑅)
endowed with the discrete topology. Namely,

Loc□𝑐𝑇,𝐹 = lim−−→
𝑛

Loc□,(𝑛)𝑐𝑇,𝐹
, where Loc□,(𝑛)𝑐𝑇,𝐹

= 𝑐𝑙R𝑊 (𝑛) ,𝑐𝑇 ×𝑐𝑙R
𝑊 (𝑛) ,G𝑚×Γ

{𝜒}.

Equivalently, Loc□𝑐𝑇,𝐹 is the scheme whose 𝑅-points are 𝑍1(𝑊𝐸/𝐹 , 𝑇 (𝑅)), where
𝑍1 denotes the set of continuous cocycles. Since 𝑇 is commutative, Loc□𝑐𝑇,𝐹 has a
canonical Picard stack structure. The stack of Langlands parameters is defined as
Loc𝑐𝑇,𝐹 = Loc□𝑐𝑇,𝐹/𝑇 .

Recall that in (Deligne, n.d.), Deligne defined the functor ch : 𝐷 [−1,0] (𝑆,Z) →
PS/𝑆 that sends a complex of abelian sheaves over 𝑆 whose cohomology concen-
trates in degree -1 and 0 to a Picard stack over 𝑆. It is convenient to think of Loc𝑐𝑇,𝐹

as
Loc𝑐𝑇,𝐹 = ch

(
𝜏≤0(𝐶•(𝑊𝐸/𝐹 , 𝑇) [1])

)
,

where 𝐶•(𝑊𝐸/𝐹 , 𝑇) is the complex of abelian sheaves calculating group cohomolo-
gies 𝐻•(𝑊𝐸/𝐹 , 𝑇).

2.1.4. The category of coherent sheaves on Loc𝑐𝑇,𝐹 . Recall that Loc□𝑐𝑇,𝐹 =

lim−−→Loc□,(𝑛)𝑐𝑇,𝐹
and Loc𝑐𝑇,𝐹 = Loc□𝑐𝑇,𝐹/𝑇 . As the action of 𝑇 stablizes Loc□,(𝑛)𝑐𝑇,𝐹

for
large 𝑛, Loc𝑐𝑇,𝐹 has a natural ind-scheme structure. Accordingly, we define the
category Coh(Loc𝑐𝑇,𝐹) to be coherent sheaves supported on finitely many connected
components and IndCoh(Loc𝑐𝑇,𝐹) to be the ind-completion of it.
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2.1.5. The stack of isocrystals. We follow the setup in (Kottwitz, 2014), and let
𝐿̂ → Hom(𝐸×, 𝐸× ⊗ 𝐿̂) = 𝑍1(𝐸×, 𝑇 (𝐸)) be the adjoint of the identity. We form
the set of algebraic cycles by the following fibre product:

𝑍1
alg(𝑊𝐸/𝐹 , 𝑇 (𝐸)) 𝐿̂

𝑍1(𝑊𝐸/𝐹 , 𝑇 (𝐸)) 𝑍1(𝐸×, 𝑇 (𝐸)).res

In other words, the algebraic cycles are those 1-cycles whose restriction to 𝐸× ⊂
𝑊𝐸/𝐹 is an algebraic character of 𝑇 .

Recall that 𝑈 (𝑛) are congrunce subgroups of 𝐸×. The sets 𝑈𝑛 = 𝐿̂ ⊗ 𝑈 (𝑛) forms
a basis of open subgroups of 𝑇 (𝐸) that are 𝑊𝐸/𝐹-invariant, and 𝑉𝑛 = 𝑈𝑛 ∩ 𝑇 (𝐹)
forms a basis of open subgroups of 𝑇 (𝐹).

We define the stack Tor𝑇,iso𝐹 as follows (non-zero terms of the chain complex are
situated in degree -1 and 0)

Tor𝑇,iso𝐹 := lim←−−
𝑛

ch
(
· · · → 0→ 𝑇 (𝐸)/𝑈𝑛 → 𝑍1

alg(𝑊𝐸/𝐹 , 𝑇 (𝐸)/𝑈𝑛) → 0→ · · ·
)
.

Since the topos of fpqc-sheaves is replete, it is shown that inverse limit of surjective
homomorphisms have no higer limit (Bhatt and Scholze, 2014). Therefore the
inverse limit can also be taken at each degree:

Tor𝑇,iso𝐹 = ch
(
· · · → 0→ lim←−−𝑇 (𝐸)/𝑈𝑛 → lim←−− 𝑍

1
alg(𝑊𝐸/𝐹 , 𝑇 (𝐸)/𝑈𝑛) → 0→ · · ·

)
.

Remark 2.1.6. (i) Let us consider the groupoid Tor𝑇,iso𝐹 (Z). The isomorphism
class of the groupoid is the cohomology of algebraic cycles 𝐻1

alg(𝑊𝐸/𝐹 , 𝑇 (𝐸)), and
it is isomorphic to the Kottwitz set 𝐵(𝑇) = 𝑋∗(𝑇Γ) = 𝑋∗(𝑇)Γ = 𝐿̂Γ which classifies
𝑇-isocrystals. The automorphism group of the identity object is 𝑇 (𝐹).

(ii) The stack Tor𝑇,iso𝐹 is not the constant groupoid with objects 𝐿̂Γ and with
automorphism group of the identity 𝑇 (𝐹). The fpqc site remembers the pro-finite
topology of the automorphism group 𝑇 (𝐹).

(iii) Let 𝐹̆ be the completion of a maximal unramified extension of 𝐹, 𝜎 the
Frobenius. Tor𝑇,iso𝐹 (Z) is isomorphic to the groupoid of pairs (E, 𝜙) where E is a
𝑇-torsor over 𝐹̆ and 𝜙 : E � 𝜎∗ E is an isomorphism of 𝑇-torsors. By a Tannakian
formalism, this is the groupoid of exact tensor functors from Rep𝑇 to the monoidal
category of isocrystals over 𝐹. This explains the notation Tor𝑇,iso𝐹 .
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2.2 Quasi-Coherent Sheaves on Tor𝑇,iso𝐹
2.2.1. Recall that 𝑉𝑛 is a system of open neighbourhoods of the topological group
𝑇 (𝐹). Let 𝑇 (𝐹)0 be the maximal compact subgroup of 𝑇 . We define two sheaves
of abelian groups on the fpqc-site of Z

T = lim←−−𝑇 (𝐹)/𝑉𝑛,

T0 = lim←−−𝑇 (𝐹)0/𝑉𝑛,

where 𝐴 means the constant sheaf of an abelian group 𝐴.

2.2.2. We also define a sub-functor T ◦ of T so that for every unitary ring 𝐴,

T ◦(𝐴) =
⋃
𝑡∈𝑇 (𝐹)

𝑡 · T0(𝐴).

In other words, T ◦ consists of sections which lie uniformly in one coset of 𝑇 (𝐹)0.
The sheafification of T ◦ is T .

We take pre-stack quotients BT ◦ = ∗/T ◦ and BT0 = ∗/T0. Their sheafification
are the stacks B𝑇 (𝐹) and BT0. In the next proposition, we will use the pre-stack
quotients because they are easier to work with. However, sheafification has no effect
on the category of quasi-coherent sheaves. We quickly recall the argument for this
fact in the following.

Consider the presheaf QCoh that associates a scheme 𝑆with the∞-category of quasi-
coherent sheaves on 𝑆 and associates a morphism with its ∗-pullback. This presheaf
is in fact a sheaf by fpqc-descent. Let Y♭ be a prestack and Y its sheafification. A
quasi-coherent sheaf on Y♭ is a morphism of pre-sheaves Y♭ → QCoh. However,
any morphism of pre-sheaf must factor through the sheafification Y♭ → Y. This is
to say that there is a canonical equivalence QCoh(Y♭) � QCoh(Y).

Proposition 2.2.3. Let Λ be any commutative ring. Pulling back along ∗ → BT0
and ∗ → B𝑇 (𝐹) produces the following equivalences of categories:

QCoh(BT0 ⊗ Λ) � Repsm(𝑇 (𝐹)0,Λ),
QCoh(BT ◦ ⊗ Λ) � Repsm(𝑇 (𝐹),Λ).

Proof. Let BT0 and BT ◦ also denote their base-change over Λ. Let 𝑝 denote
∗ → BT0. Consider the adjoint pair

𝑝∗ : QCoh(BT0) Λ-Mod : 𝑝∗.



8

It is clear that 𝑝∗ is conservative and exact. The category QCoh(BT0) admits
arbitrary limits. Therefore, 𝑝∗ exhibits QCoh(BT0) as co-monadic over Λ-Mod.

Since T0 is pro-finite, it is represented by an affine scheme Spec(𝐴). The co-monad
endomorphism 𝑝∗𝑝∗ is the functor 𝑀 ↦→ 𝐴 ⊗ 𝑀 . QCoh(BT0) is hence equiva-
lent to the category of Λ-modules with 𝐴-co-algebra structure, i.e., the category
Repsm(𝑇 (𝐹)0,Λ).

Let 𝑓 : BT0 → BT ◦ the map induced by the inclusion T0 → T ◦. It is schematic,
quasi-compact, and quasi-separated. Therefore there exists a pair of adjoint functors

𝑓 ∗ : QCoh(BT ◦) QCoh(BT0) : 𝑓∗.

The pullback functor 𝑓 ∗ can be identified with pre-composing a map BT ◦ → QCoh
with 𝑓 . It is clear that 𝑓 ∗ is conservative and exact. The category QCoh(BT0)
admits arbitrary limits. Therefore, 𝑓 ∗ exhibits QCoh(BT ◦) as co-monadic over
QCoh(BT0).

On the other hand, we have another co-monad by induction-restriction:

Res : Repsm(𝑇 (𝐹),Λ) Repsm(𝑇 (𝐹)0,Λ) : Ind,

where Res exhibit Repsm(𝑇 (𝐹)) as monadic over Repsm(𝑇 (𝐹)0).

Let 𝑞 : ∗ → BT ◦. By identifying QCoh(BT0) with Repsm(𝑇 (𝐹)0), we obtain the
following commutative diagram:

QCoh(BT ◦) Repsm(𝑇 (𝐹),Λ)

Repsm(𝑇 (𝐹)0,Λ)

𝑞∗

𝑓 ∗ Res

This put us in the situation of the following lemma, which is a weaker version of the
dual statement of Corollary 4.7.3.16 in (Lurie, 2017).

Lemma 2.2.4. Suppose we have a commutative diagram of∞-categories

C C′

D

𝑈

𝐻 𝐻′

Assume that:
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1. 𝐻 and 𝐻′ admit right adjoints 𝐺 and 𝐺′.

2. 𝐻 exhibit C as co-monadic over D.

3. 𝐻′ exhibit C′ as co-monadic over D.

4. For each object 𝐷 ∈ D, the unit and co-unit map 𝑈𝐺 → 𝐺′𝐻′𝑈𝐺 →
𝐺′𝐻𝐺 → 𝐺′ induce equivalence𝑈𝐺 (𝐷) → 𝐺′(𝐷).

Then𝑈 is an equivalence of∞-categories.

All conditions in the lemma are readily satisfied except 4. We notice that in our case
𝑈𝐺 = 𝑞∗ 𝑓∗ and 𝐺′ = Ind𝑇 (𝐹)

𝑇 (𝐹)0 . Using base change in the following diagram:∏
𝑇 (𝐹)/𝑇 (𝐹)0 ∗ BT0

∗ BT ◦
𝑓

𝑞

we compute 𝑈𝐺 (𝑀) =
∏
𝑇 (𝐹)/𝑇 (𝐹)0 𝑀 for any 𝑀 ∈ Repsm(𝑇 (𝐹)0) and this is

canonically isomorphic to Ind𝑇 (𝐹)
𝑇 (𝐹)0 𝑀 . This canonical isomorphism𝑈𝐺 � 𝐺′ must

agree with the morphism constructed in condition 4. □

2.3 A short exact sequence
The main result of this section is as follows.

Proposition 2.3.1. For an arbitrary torus 𝑇 over a local field 𝐹, we have a short
exact sequence of Picard stacks

1→ Hom( 𝐿̂Γ,BG𝑚) → Loc𝑐𝑇,𝐹 → Homcts(𝑇 (𝐹),G𝑚) → 1. (2.1)

Remark 2.3.2. (i) Note the first term has the alternative form Hom( 𝐿̂Γ,BG𝑚) =
𝐵𝑇Γ, because 𝑋∗(𝑇Γ) = 𝐿̂Γ.

(ii) From the proposition, we see the isomorphism classes of Loc𝑐𝑇,𝐹 is dual to the
automorphism group of Tor𝑇,iso𝐹 and vice versa. This results in the duality that is
treated in section 2.4.

(iii) The inner-hom Homcts(𝑇 (𝐹),G𝑚) is defined as the colimit of inner-homs
Hom(𝑇 (𝐹)/𝑈,G𝑚) for all open subgroups𝑈 ⊂ 𝑇 (𝐹).
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Our strategy is to first show the following short exact sequence for any Z-algebra 𝑅:

0→ Ext1( 𝐿̂Γ, 𝑅×) → 𝐻1(𝑊𝐸/𝐹 , 𝑇 (𝑅)) → Homcts(𝑇 (𝐹), 𝑅×) → 0. (2.2)

Heuristically, this is our desired exact sequence (2.1) on the level of coarse moduli
space. The group cohomology 𝐻1 is interpreted as continuous cross homomor-
phisms up to conjugation. After (2.2) is shown, we will show (2.1) directly.

We let 𝑍̄1, 𝐻̄1 be all cross homomorphisms and all cross homomorphisms up to
conjugation respectively, removing the continuous conditions. We first show a
version of the short exact sequence (2.2) without the topology constraints.

Lemma 2.3.3. We have the short exact sequence

0→ Ext1( 𝐿̂Γ, 𝑅×) → 𝐻̄1(𝑊𝐸/𝐹 , 𝑇 (𝑅)) → Hom(𝑇 (𝐹), 𝑅×) → 0. (2.3)

Proof. Let 𝐶• → Z → 0 be the bar resolution of the trivial module Z by free
Z[𝑊𝐸/𝐹]-modules. The group cohomology 𝐻̄1(𝑊𝐸/𝐹 , 𝑇 (𝑅)) is exactly the first
cohomology of the following complex (we abbreviate𝑊𝐸/𝐹 by𝑊 at times):

HomZ[𝑊] (𝐶•, 𝑇 (𝑅)) = HomZ[𝑊] (𝐶•, 𝐿 ⊗ 𝑅×) = Hom((𝐶• ⊗ 𝐿̂)𝑊 , 𝑅×).

Because the complex (𝐶• ⊗ 𝐿̂)𝑊 is a complex of free abelian groups, and its
homology caculates the group homology of the 𝑊𝐸/𝐹-module 𝐿̂, we apply the
universal coefficient theorem and get

0→ Ext1(𝐻0(𝑊𝐸/𝐹 , 𝐿̂), 𝑅×) → 𝐻̄1(𝑊𝐸/𝐹 , 𝑇 (𝑅)) → Hom(𝐻1(𝑊𝐸/𝐹 , 𝐿̂), 𝑅×) → 0.

In the first term, 𝐻0(𝑊𝐸/𝐹 , 𝐿̂) = 𝐿̂𝑊 = 𝐿̂Γ. In the third term, Langlands(Langlands,
1997) proved that the corestriction map cores : 𝐻1(𝑊𝐸/𝐹 , 𝐿̂) → 𝐻1(𝐸×, 𝐿̂)Γ is an
isomorphism, and therefore

𝐻1(𝑊𝐸/𝐹 , 𝐿̂)
∼−→ 𝐻1(𝐸×, 𝐿̂)Γ = 𝑇 (𝐹).

This finishes the proof of (2.3). □

We spell out the corestriction map explicitly. We have (𝐶1 ⊗ 𝐿̂)𝑊 = Z[𝑊𝐸/𝐹] ⊗ 𝐿̂,
(𝐶0 ⊗ 𝐿̂)𝑊 = 𝐿̂ and the differential is

∑
𝑤 ⊗ 𝑥 = ∑

𝑤−1𝑥 − 𝑥. The corestriction map
cores : 𝐻1(𝑊𝐸/𝐹 , 𝐿̂) → 𝐻1(𝐸×, 𝐿̂)Γ is induced by the chain map

Z[𝑊𝐸/𝐹] ⊗ 𝐿̂ → Z[𝐸×] ⊗ 𝐿̂
𝑤 ⊗ 𝑥 ↦→

∑︁
𝜏

𝛿(𝑤𝜏, 𝑤) ⊗ 𝑤𝜏𝑥. (2.4)
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Lemma 2.3.4. We have a short exact sequence

0→ Ext1( 𝐿̂Γ, 𝑅×) → 𝐻1(𝑊𝐸/𝐹 , 𝑇 (𝑅)) → Homcts(𝑇 (𝐹), 𝑅×) → 0.

Proof. We first show the image of Ext1( 𝐿̂Γ, 𝑅×) is contained in 𝐻1(𝑊𝐸/𝐹 , 𝑇 (𝑅)).

To show this, we work out an explicit formula for the inclusion Ext1( 𝐿̂Γ, 𝑅×) →
𝐻̄1(𝑊𝐸/𝐹 , 𝑇 (𝑅)) in (2.3). Let 𝐿̂0 = {𝑔𝑥 − 𝑥 |𝑔 ∈ 𝑊𝐸/𝐹 , 𝑥 ∈ 𝐿̂}, so we have

0→ 𝐿̂0 → 𝐿̂ → 𝐿̂Γ → 0.

This short exact sequence gives rise to

Hom( 𝐿̂0, 𝑅
×) 𝛼−→ Ext1( 𝐿̂Γ, 𝑅×) → 0.

On the other hand, for each 𝜙 ∈ Hom( 𝐿̂0, 𝑅
×), we associate a map𝑊𝐸/𝐹 × 𝐿̂ → 𝑅×

by
(𝑔, 𝑥) ↦→ 𝜙(𝑔−1𝑥 − 𝑥).

By adjunction this defines a cross homomorphism 𝑊𝐸/𝐹 → 𝐿 ⊗ 𝑅× = 𝑇 (𝑅). We
denote this map by 𝛽 : Hom( 𝐿̂0, 𝑅

×) → 𝐻̄1(𝑊𝐸/𝐹 , 𝑇 (𝑅)). The inclusion map is
then 𝛽 ◦ 𝛼−1 : Ext1( 𝐿̂Γ, 𝑅×) → 𝐻̄1(𝑊𝐸/𝐹 , 𝑇 (𝑅)), whose result is independent of
the choice of a preimage of 𝛼.

It remains to show under the surjection in (2.3), an element lies in 𝐻1(𝑊𝐸/𝐹 , 𝑇 (𝑅))
if and only if its image is a continuous homomorphism.

Recall the bar resolution 𝐵• → Z → 0 is a resolution of the trivial module Z by
free Z[𝑊𝐸/𝐹]-modules, and it begins with Z[𝑊𝐸/𝐹]

tr−→ Z. The first homology
𝐻1(𝑊𝐸/𝐹 , 𝐿̂) is therefore represented by a cycle living in Z[𝑊𝐸/𝐹] ⊗ 𝐿̂.

The surjection in (2.3) is induced by 𝜋 on the level of cocycle as follows:

𝑍̄1(𝑊𝐸/𝐹 , 𝑇 (𝑅)) Hom(𝐻1(𝑊𝐸/𝐹 , 𝐿̂), 𝑅×)

𝜙 : 𝑊𝐸/𝐹 → 𝐿 ⊗ 𝑅× (∑𝑤 ⊗ 𝑥 ↦→ ∑⟨𝜙(𝑤), 𝑥⟩) ,
𝜋

where 𝜙 is a cocycle,
∑
𝑤 ⊗ 𝑥 ∈ Z[𝑊𝐸/𝐹] ⊗ 𝐿̂ a chosen cycle reprensenting some

element in 𝐻1(𝑊𝐸/𝐹 , 𝐿̂), and the pairing is by evaluating 𝐿̂ on 𝐿. It remains to show
that 𝜙 is continuous if and only if 𝜋(𝜙) is. This is the content of the next lemma. □
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Lemma 2.3.5. A cocycle 𝜙 is continuous if and only if 𝜋(𝜙) is.

Proof. We basically follow the argument given in (Langlands, 1997). We have
the corestriction map cor : 𝐻1(𝐸×, 𝐿̂) → 𝐻1(𝑊𝐸/𝐹 , 𝐿̂). A homomorphism 𝜓 :
𝐻1(𝑊𝐸/𝐹 , 𝐿̂) → 𝑅× is continuous if and only if 𝜓 ◦ cor is. On the other hand, it is
clear that a cocycle is continuous if and only if its restriction to 𝐸× is. We have the
following commutative diagram:

𝑍̄1(𝑊𝐸/𝐹 , 𝑇) Hom(𝐻1(𝑊𝐸/𝐹 , 𝐿̂), 𝑅×)

𝑍̄1(𝐸,𝑇) Hom(𝐻1(𝐸, 𝐿̂), 𝑅×),

𝜋

𝜏

where the map 𝜏 send a cocycle 𝑓 to an homomorphism 𝜏( 𝑓 ) : 𝐻1(𝐸, 𝐿̂) → 𝑅×,
𝑎 ⊗ 𝑥 ↦→ ⟨ 𝑓 (𝑎), 𝑥⟩. It is then clear that 𝑓 is continuous if and only if 𝜏( 𝑓 ) is, and
the lemma follows. □

2.3.6. Proof of proposition 2.3.1. The functor ch : 𝐷 [−1,0] (𝑆,Z) → PS/𝑆 is an
equivalence of category. Let (−)♭ be an quasi-inverse. The existence of the short
exact sequence (2.1) is by definition to say there exists an exact triangle

Hom( 𝐿̂Γ,BG𝑚)♭ → Loc♭𝑐𝑇,𝐹 → Homcts(𝑇 (𝐹),G𝑚)
♭ +1−−→ .

We first define the homomorphisms

Hom( 𝐿̂Γ,BG𝑚)♭
𝛽
−→ Loc♭𝑐𝑇,𝐹

𝜋̄−→ Homcts(𝑇 (𝐹),G𝑚)
♭

as follows, where each column is a 2-term complex of abelian sheaves corresponding
to the Picard stack above:

deg = 0 Hom( 𝐿̂0,G𝑚) Loc□𝑐𝑇,𝐹 Homcts(𝑇 (𝐹),G𝑚)

deg = −1 Hom( 𝐿̂,G𝑚) 𝑇 0.

𝛽′ 𝜋′

res

∼

𝑑

The map 𝛽′(𝑅) is exactly 𝛽 : Hom( 𝐿̂0, 𝑅
×) → 𝐻1(𝑊𝐸/𝐹 , 𝑇 (𝑅)) as defined in

Lemma 2.3.4. The map 𝜋′(𝑅) is the restriction of 𝜋 to the continuous cocycles

𝑍1(𝑊𝐸/𝐹 , 𝑇 (𝑅)) Homcts(𝐻1(𝑊𝐸/𝐹 , 𝐿̂), 𝑅×)

𝜙 : 𝑊𝐸/𝐹 → 𝐿 ⊗ 𝑅× (∑𝑤 ⊗ 𝑥 ↦→ ⟨𝜙(𝑤), 𝑥⟩) .
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It is immediate to check that the squares commute, so they define homomorphisms
of complexes.

To show the above three terms forms an exact sequence of Picard stacks amounts to
checking they form an exact triangle. We do so by showing a quasi-isomorphism
cofib(𝛽) � Homcts(𝑇 (𝐹),G𝑚).

Note cofib(𝛽) is nothing other than the following complex:

Hom( 𝐿̂,G𝑚)
(id,−res)
−−−−−−→ 𝑇 ⊕ Hom( 𝐿̂0,G𝑚)

(
𝑑
𝛽′

)
−−−−→ Loc□𝑐𝑇,𝐹 .

Because the first map is injective, 𝐻−2(cofib(𝛽)) = 0. Next, because 𝑑 ◦ id = 𝛽′◦ res
and 𝛽′ is injective, 𝐻−1(cofib(𝛽)) = 0.

We know that 𝐻0(cofib(𝛽)) = Loc□𝑐𝑇,𝐹/Im
(
𝑑
𝛽′

)
. To evaluate this, we first take the

quotient Loc□𝑐𝑇,𝐹/Im′
(
𝑑
𝛽′

)
as presheaf, where Im′ is the image of maps of presheaves.

We have

Loc□𝑐𝑇,𝐹 (𝑅)/(Im′(𝑑) + Im′(𝛽′))
= 𝐻1(𝑊𝐸/𝐹 , 𝑇 (𝑅))/(Im′(𝛽′)/(Im′(𝛽′) ∩ Im′(𝑑)))
= 𝐻1(𝑊𝐸/𝐹 , 𝑇 (𝑅))/Ext1( 𝐿̂Γ, 𝑅×)
= Homcts(𝑇 (𝐹), 𝑅×).

The last line of the equation is just the 𝑅-points of Homcts(𝑇 (𝐹),G𝑚). □

The next proposition is crutial for the duality Tor𝑇,iso𝐹 � Loc∨𝑐𝑇,𝐹 .

Proposition 2.3.7. The +1 map is zero for the following exact triangle we just show

Hom( 𝐿̂Γ,BG𝑚)♭ → Loc♭𝑐𝑇,𝐹 → Homcts(𝑇 (𝐹),G𝑚)
♭ +1−−→ .

Proof. Recall that the +1 map is the inverse of the quasi-isomorphism showed above
composed with a canonical projection

Homcts(𝑇 (𝐹),G𝑚)
∼← cofib(𝛽) → 𝐵𝑇Γ [1] .

Due to the universal coefficient theorem, there exists a collection of maps

𝜌 : Hom(𝐻1(𝑊𝐸/𝐹 , 𝐿̂), 𝑅×) → 𝑍̄1(𝑊𝐸/𝐹 , 𝑇 (𝑅))
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that is functorial in 𝑅, such that after composing with the projection maps
𝑍̄1(𝑊𝐸/𝐹 , 𝑇 (𝑅)) → 𝐻̄1(𝑊𝐸/𝐹 , 𝑇 (𝑅)), give splittings of the following surjections:

𝜋 : 𝐻̄1(𝑊𝐸/𝐹 , 𝑇 (𝑅)) → Hom(𝐻1(𝑊𝐸/𝐹 , 𝐿̂), 𝑅×).

For a continuous homomorphism 𝑓 : 𝐻1(𝑊𝐸/𝐹 , 𝐿̂) → 𝑅×, 𝜌( 𝑓 ) is automatically
a continuous cocycle because its orbit under action of 𝑇 (𝑅) must contain one
continuous cocycle, but since all coboundries are continuous, 𝜌( 𝑓 ) is continuous.
Therefore we have the following maps:

Homcts(𝐻1(𝑊𝐸/𝐹 , 𝐿̂), 𝑅×) → 𝑍1(𝑊𝐸/𝐹 , 𝑇 (𝑅)). (2.5)

The maps (2.5) give rise to an inverse of the quasi-isomorphism cofib(𝛽) →
Homcts(𝑇 (𝐹),G𝑚) by the composition

Homcts(𝑇 (𝐹),G𝑚) → Loc□𝑐𝑇,𝐹 → cofib(𝛽).

Composing this inverse with cofib(𝛽) → 𝐵𝑇Γ [1] is nothing but the +1 map, but it
is also zero by construction. □

2.4 Duality
The main result of this paper is the following.

Theorem 2.4.1. There is a unique family of Poincaré line bundles (or a family of
pairings)

L𝑇 : Tor𝑇,iso𝐹 × Loc𝑐𝑇,𝐹 → BG𝑚

for every torus 𝑇 over 𝐹 that satisfies the three conditions below. Furthermore, these
Poincaré line bundles induce isomorphism Tor𝑇,iso𝐹 � Loc∨𝑐𝑇,𝐹 for every torus 𝑇 .

a) Functorality. Let 𝑓 : 𝑆 → 𝑇 be a map between torus. It induces 𝛼 :
Loc𝑐𝑇,𝐹 → Loc𝑐𝑆,𝐹 and 𝛽 : Tor𝑆,iso𝐹 → Tor𝑇,iso𝐹 . The following two line
bundles on Tor𝑆,iso𝐹 × Loc𝑐𝑇,𝐹 are canonically isomorphic

(𝛽 × id)∗ L𝑇 = (id×𝛼)∗ L𝑆 .

b) Split case. For the split torus 𝑇 = G𝑚, both Tor𝑇,iso𝐹 and Loc𝑐𝑇,𝐹 canonically
split as

Tor𝑇,iso𝐹 = Z × B𝐹×,
Loc𝑐𝑇,𝐹 = Homcts(𝐹

×,G𝑚) × BG𝑚 .
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Then L𝑇 is the canonical line bundle Tor𝑇,iso𝐹 × Loc𝑐𝑇,𝐹 → BG𝑚 via the
tautological pairings

Homcts(𝐹
×,G𝑚) × 𝐵𝐹× → BG𝑚

Z × BG𝑚 → BG𝑚 .

c) Induced case. For an induced torus 𝑆 = Res𝐸/𝐹 G𝑚, let 𝑇 be the split torus
over 𝐸 , the Shapiro isomorphism Tor𝑆,iso𝐹 × Loc𝑐𝑆,𝐹 � Tor𝑇,iso𝐸 × Loc𝑐𝑇,𝐸

identifies the line bundles for 𝑆 and 𝑇 .

Our strategy is to introduce an auxilary stack T𝑇 for every torus 𝑇 in place of
Tor𝑇,iso𝐹 . When it is clear from the context, we will suppress the torus 𝑇 from the
notation T𝑇 .

We will first define a family of line bundles on T ×Loc𝑐𝑇,𝐹 . Then we verify the main
theorem for T instead of Tor𝑇,iso𝐹 . Finally, we will show a cononical isomorphism
T � Tor𝑇,iso𝐹 .

2.4.2. Definition of T . Recall that 𝑈 (𝑛) ⊂ 𝐸× ⊂ 𝑊𝐸/𝐹 is a basis of open
neighbourhoods . We define𝑊 (𝑛) = 𝑊𝐸/𝐹/𝑈 (𝑛) .

Notice that 𝐿̂ is a𝑊 (𝑛)-module for all 𝑛. Let 𝐶•(𝑊 (𝑛) , 𝐿̂) be the chain complex that
calculates the group homology of the 𝑊 (𝑛)-module 𝐿̂. The boundries of this chain
complex are defined by

𝐵𝑖 (𝑊 (𝑛) , 𝐿̂) = Im
(
𝐶𝑖+1(𝑊 (𝑛) , 𝐿̂)

𝑑−→ 𝐶𝑖 (𝑊 (𝑛) , 𝐿̂)
)
.

We define

T𝑛 := ch
(
· · · → 0→ 𝐶1(𝑊 (𝑛) , 𝐿̂)

𝐵1(𝑊 (𝑛) , 𝐿̂)
𝑑−→ 𝐶0(𝑊 (𝑛) , 𝐿̂) → 0→ · · ·

)
,

and T := lim←−−T𝑛. It is convenient to think of T as ch
(
𝜏≥−1(𝐶•(𝑊𝐸/𝐹 , 𝐿̂))

)
with a

pro-stack structure.

The groupoid T𝑛 (Z) calculates group homology. Hence, it has isomorphism classes
𝐿̂Γ. The following two lemma calculates its automorphism group to be 𝑇 (𝐹)/𝑉𝑛.
(𝑉𝑛 is defined in section 2.1.5).

Lemma 2.4.3. The subgroups𝑈 (𝑛) and𝑈𝑛 ⊂ 𝑇 (𝐸) has no higer Galois cohomolo-
gies for sufficiently large 𝑛.
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Proof. For sufficiently large 𝑛, the group 𝑈 (𝑛) is isomorphic to the additive group
O𝐸 via the logarithm map. Since this is an induced module, its higher cohomology
groups vanish. Moreover, 𝑈𝑛 = 𝐿̂ ⊗ 𝑈 (𝑛) is a direct sum of copies of 𝑈 (𝑛) , so the
same conclusion holds. □

Next we introduce a lemma in homological algebra. It generalizes a result of
Langlands (Langlands, 1997). It also plays an important role in the second cate-
gorification which is the theme of the next chapter.

Lemma 2.4.4. Let Γ be a finite group, 𝐶 be an abelian group equipped with a
Γ-action. Let 𝛼 ∈ 𝐻2(Γ, 𝐶) represent the group extension

1→ 𝐶 → 𝐺 → Γ→ 1.

Let 𝑀 be any Γ-module, in other words, it is a 𝐺-module on which 𝐶 acts trivially.
Then we have a commutative diagram

𝐻2(Γ, 𝑀) 𝐻1(𝐶, 𝑀)Γ 𝐻1(𝐺, 𝑀) 𝐻1(Γ, 𝑀) 0

0 𝐻̂−1(Γ, 𝑀 ⊗ 𝐶) (𝑀 ⊗ 𝐶)Γ (𝑀 ⊗ 𝐶)Γ 𝐻̂0(Γ, 𝑀 ⊗ 𝐶) 0.

∪𝛼 res ∪𝛼

The first row of the diagram is the long exact sequence associated to the Lyndon-
Hochschild-Serre spectral sequence. The second row is the definition of the Tate
cohomology. The first and last vertical map is the cup product with 𝛼. The map res
is the restriction map 𝐻1(𝐺, 𝑀) → 𝐻1(𝐶, 𝑀)Γ.

In particular, if Γ and 𝐶 satisfies the condition of the Tate-Nakayama lemma, we
would have

𝐻1(𝐺, 𝑀) � (𝑀 ⊗ 𝐶)Γ.

Proof. See appendix A. □

Corollary 2.4.5. (i) Applying the lemma to the group extension

1→ 𝐸× → 𝑊𝐸/𝐹 → Γ→ 1,

we get the result of Langlands which claims

𝐻1(𝑊𝐸/𝐹 , 𝐿̂) � (𝐸× ⊗ 𝐿̂)Γ = 𝑇 (𝐹).
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(ii) Similarly, with the group extension

1→ 𝐸×/𝑈 (𝑛) → 𝑊 (𝑛) → Γ,

we get

𝐻1(𝑊 (𝑛) , 𝐿̂) �
(
(𝐸×/𝑈 (𝑛)) ⊗ 𝐿̂

)Γ
= 𝑇 (𝐹)/𝑉𝑛.

(iii) Recall the definition of the relative inertia group

1→ 𝐼ab
𝐸 → 𝐼rel

𝐸/𝐹 → 𝐼 → 1.

Applying the lemma to this group extension gives us

𝐻1(𝐼rel
𝐸/𝐹 , 𝐿̂) = (𝐼

ab
𝐸 ⊗ 𝐿)

𝐼 .

We now move towards proof of the main theorem.

Proposition 2.4.6. There is a canonical pairing ( · , · ) : T × Loc𝑐𝑇,𝐹 → BG𝑚.

Proof. Recall that

Loc𝑐𝑇,𝐹 = colim ch
(
· · · → 𝑇

𝑑−→ 𝑍1(𝑊 (𝑛) , 𝑇) → · · ·
)
,

T = lim ch
(
· · · → 𝐶1 (𝑊 (𝑛) ,𝐿̂)

𝐵1 (𝑊 (𝑛) ,𝐿̂)
𝑑−→ 𝐶0(𝑊𝐸/𝐹 , 𝐿̂) → · · ·

)
.

Loc𝑐𝑇,𝐹 has an ind-stack structure, and T has a corresponding pro-stack structure,
so to define a pairing between them, it suffices to define it for each Loc(𝑛)𝑐𝑇,𝐹

and T .

The pairing in the proposition is induced by two pairings:

⟨ , ⟩ : 𝑇 × 𝐿̂ → G𝑚,

[ , ] : 𝑍1(𝑊 (𝑛) , 𝑇) × 𝐶1 (𝑊 (𝑛) ,𝐿̂)
𝐵1 (𝑊 (𝑛) ,𝐿̂)

→ G𝑚 .

The first pairing is the natural pairing, since 𝐿̂ is the character lattice of 𝑇 . The
second pairing is given by

𝑍1(𝑊 (𝑛) , 𝑇) ×𝐶1(𝑊 (𝑛) , 𝐿̂) → G𝑚

(𝜙, 𝜓) ↦→
∑︁
𝑤∈𝑊
⟨𝜙(𝑤), 𝜓(𝑤)⟩.

This pairing factors through 𝐶1(𝑊 (𝑛) , 𝐿̂)/𝐵1(𝑊 (𝑛) , 𝐿̂) because in Section 2.3, we
show that the same formula defines a pairing between 𝑍1(𝑊 (𝑛) , 𝑇) and𝐻1(𝑊 (𝑛) , 𝐿̂) =
𝑍1(𝑊 (𝑛) , 𝐿̂)/𝐵1(𝑊 (𝑛) , 𝐿̂).
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Our desired pairing T × Loc𝑐𝑇,𝐹 → BG𝑚 is given by the following assignment.
For 𝜓 : 𝑥 → 𝑥 + 𝑑𝜓 an isomorphism in T and 𝑡 : 𝜙 → 𝜙 + 𝑑𝑡 an isomorphism in
Loc𝑐𝑇,𝐹 , there is an isomorphism in the fibred groupoid Loc𝑐𝑇,𝐹 × T

(𝑡, 𝜓) : (𝜙, 𝑥) → (𝜙 + 𝑑𝑡, 𝑥 + 𝑑𝜓).

We assign to this morphism a morphism in BG𝑚 which is given by

[𝜙, 𝜓] · ⟨𝑡, 𝑥 + 𝑑𝜓⟩.

To show this assignment defines a homomorphism of stacks, one must check this
assignment respects composition of morphisms, and a simple calculation shows it
boils down to check

[𝑑𝑡, 𝜓] = ⟨𝑡, 𝑑𝜓⟩, ∀𝑡, 𝜓.

The verification is straightforward:

[𝑑𝑡, 𝜓] =
∑︁
𝑤∈𝑊
⟨𝑑𝑡 (𝑤), 𝜓(𝑤)⟩

=
∑︁
𝑤∈𝑊
⟨𝑤𝑡 − 𝑡, 𝜓(𝑤)⟩

= ⟨𝑡,
∑︁
𝑤∈𝑊

𝑤−1𝜓(𝑤) − 𝜓(𝑤)⟩

= ⟨𝑡, 𝑑𝜓⟩. □

2.4.7. Proof of T � Loc∨𝑐𝑇,𝐹 . We have the following short exact sequences by
truncation of the 𝑡-structure:

1→ 𝐵𝐻1(𝑊 (𝑛) , 𝐿̂) → T𝑛 → 𝐿̂Γ → 1.

The +1 map of these exact sequences are zero. This is because, in the derived
category of abelian groups, every complex is quasi-isomorphic to the direct sum
of its cohomologies (Keller, 1996). Therefore, the +1 map in any truncation is
zero. The above exact sequences are in the image of the exact functor embedding
the drived category of abelian groups to the drived category of abelian sheaves on
Spec(Z), and hence its +1 map is zero.

Since in the fpqc-topology, there is no higher limit, taking derived limit on the short
exact sequence gives us

1→ lim←−−B𝐻1(𝑊 (𝑛) , 𝐿̂) → T → 𝐿̂Γ → 1.
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Note the +1 map is zero. By Lemma 2.4.4, we can rewrite the short exact sequence
as

1→ lim←−−B(𝑇 (𝐹)/𝑉𝑛) → T → 𝐿̂Γ → 1.

Since Ext1(Homcts(𝑇 (𝐹),G𝑚),BG𝑚) = 0 (for generality on the dualality for Picard
stacks, see (Brochard, 2014)), by dualizing the short exact sequence (2.1)

1→ B𝑇Γ → Loc𝑐𝑇,𝐹 → Homcts(𝑇 (𝐹),G𝑚) → 1

we get
1→ Homcts(𝑇 (𝐹),G𝑚)

∨ → Loc∨𝑐𝑇,𝐹 → (B𝑇Γ)∨ → 1.

The +1 map of the above exact triangle is zero because it is induced by the +1 map
of (2.1), which is shown to be zero in section 2.3.7.

We form the following diagram where the first and the third vertical maps are
canonical isomorphisms and the second is the map induced by our pairing:

1 lim←−− 𝐵(𝑇 (𝐹)/𝑉𝑛) T 𝐿̂Γ 1

1 Homcts(𝑇 (𝐹),G𝑚)∨ Loc∨𝑐𝑇,𝐹 (𝐵𝑇Γ)∨ 1.
∼ ∼

The second vertical map is an isomorphism because, first, the two visible squares
commute by the construction of the pairing, and second, the square of the +1 maps
commutes because the two +1 maps are shown to be zero. This concludes the proof
that T � Loc∨𝑐𝑇,𝐹 .

2.4.8. Proof of theorem 2.4.1. Now we prove the main theorem with T in
stead of Tor𝑇,iso𝐹 . We established above that for each torus 𝑇 the pairing defined in
proposition 2.4.6 induces an ismorphism T � Loc∨𝑐𝑇,𝐹 . It remains to check that they
are a unique family of line bundles on T × Loc𝑐𝑇,𝐹 satisfying the three conditions
in the theorem.

Condition (a) is equivalent to the following proposition.

Proposition 2.4.9. Let 𝑓 : 𝑆 → 𝑇 be a map between torus. It induces𝛼 : Loc𝑐𝑇,𝐹 →
Loc𝑐𝑆,𝐹 and 𝛽 : T𝑆 → T𝑇 . Let 𝑡 : 𝜙 → 𝜙 be an isomorphism in Loc𝑐𝑇,𝐹 , and let
𝜓 : 𝑥 → 𝑥 be an isomorphism in T𝑆. Under the pairing, (𝛼(𝜙), 𝜓) and (𝜙, 𝛽(𝜓))
are isomorphisms in BG𝑚. We then have

(𝛼(𝜙), 𝜓) = (𝜙, 𝛽(𝜓)).
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Proof. Note that Loc𝑐𝑇,𝐹 is the truncation of the complex 𝐻•(𝑊𝐸/𝐹 , 𝑇), and T𝑇 is
the truncation of the complex 𝐻•(𝑊𝐸/𝐹 , 𝐿̂). If we let 𝑓 : 𝑇 → 𝑆, 𝑔 : 𝐿̂𝑆 → 𝐿̂𝑇

be the homomorphisms induced by 𝑓 , let 𝑡 ∈ 𝑇, and 𝑥 ∈ 𝑆, the proposition follows
from the trivial fact that

⟨ 𝑓 (𝑡), 𝑥⟩ = ⟨𝑡, 𝑔(𝑥)⟩. □

Condition (b) follows from the definition of the pairing.

We verify condition (c). Let 𝑆 = Res𝐸/𝐹 G𝑚 an induced torus and 𝑇 = G𝑚 a split
torus over 𝐸 . The cocharacters of the two torus satisfy

𝐿̂𝑆 = IndGal(𝐸/𝐹)
∗ 𝐿̂𝑇 .

We apply Shapiro’s lemma to get isomorphisms

Loc𝑐𝑆,𝐹 = ch
(
𝜏≤0(𝐻•(𝑊𝐸/𝐹 , 𝑆) [1])

)
� ch

(
𝜏≤0(𝐻•(𝐸×, 𝑇) [1])

)
= Loc𝑐𝑇,𝐸 ,

Tor𝑆,iso𝐹 = ch
(
𝜏≥−1𝐻•(𝑊𝐸/𝐹 , 𝐿̂𝑆)

)
� ch

(
𝜏≥−1𝐻•(𝐸×, 𝐿̂𝑇 )

)
= Tor𝑇,iso𝐸 .

The cap product that is used to define the pairings clearly interwines with the Shapiro
isomorphisms, and hence condition (c) is satisfied.

By condition (b) and (c), any such family of pairings is uniquely determined on all
induced torus. To show such a family of pairings is unique, it remains to show the
pairing for every torus 𝑇 is induced by the pairing for an induced torus 𝑆 that covers
𝑇 .

For every torus 𝑇 , there is always an induced torus 𝑆 and a cover 𝑆 → 𝑇 that is
surjective on cocharacters 𝐿̂𝑆 → 𝐿̂𝑇 . Let 𝑡 : 𝜙 → 𝜙 + 𝑑𝑡 be an isomorphism in
Loc𝑐𝑇,𝐹 and 𝜓 : 𝑥 → 𝑥 + 𝑑𝜓 an isomorphism in T𝑇 . By surjectivity of 𝐿̂𝑆 → 𝐿̂𝑇 ,
we can lift 𝜓 : 𝑥 → 𝑥 + 𝑑𝜓 to 𝜓̃ : 𝑥 → 𝑥 + 𝑑𝜓̃ in T𝑆. By functorality of the pairings,
we have

(𝑡, 𝜓) = (𝛼(𝑡), 𝜓̃).

Therefore the pairing on 𝑇 is predetermined by that of 𝑆. This concludes the proof
of the main theorem.

We finish the section with
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2.4.10. Proof of T � Tor𝑇,iso𝐹 . Recall that

Tor𝑇,iso𝐹 = lim ch
(
· · · → 0→ 𝑇 (𝐸)/𝑈𝑛 → 𝑍1

alg(𝑊
(𝑛) , 𝑇 (𝐸)) → 0→ · · ·

)
.

We first define a map between groupoids T (Z) → Tor𝑇,iso𝐹 (Z) by defining the two
vertical maps in the following diagram such that the square commutes

𝐶1(𝑊𝐸/𝐹 , 𝐿̂)/𝐵1(𝑊𝐸/𝐹 , 𝐿̂) 𝐿̂

𝑇 (𝐸) 𝑍1
alg(𝑊𝐸/𝐹 , 𝑇 (𝐸)).

𝑑

cores 𝑐0

𝑑

(2.6)

In the following, we make the identification 𝑇 (𝐸) = 𝐿̂ ⊗ 𝐸×, with 𝑊𝐸/𝐹 acting
diagonally.

We define the first verticle map to be the corestriction map (2.4)

𝐶1(𝑊𝐸/𝐹 , 𝐿̂)/𝐵1(𝑊𝐸/𝐹 , 𝐿̂)
cores−−−→ 𝐶1(𝐸×, 𝐿̂)/𝐵1(𝐸×, 𝐿̂) � 𝑇 (𝐸).

Following (2.4), it sends 𝑤 ⊗ 𝑥 to
∑
𝜏 𝑤𝜏𝑥 ⊗ 𝛿(𝑤𝜏, 𝑤). The fact that this map induces

isomorphism on the cohomology of degree −1 is provided by Corollary 2.4.5.

The second verticle map 𝑐0 : 𝐿̂ → 𝑍1
alg(𝑊𝐸/𝐹 , 𝑇 (𝐸)) is defined via two maps,

𝐿̂ → 𝐿̂Γ and 𝐿̂ → 𝑍1(𝑊𝐸/𝐹 , 𝑇 (𝐸)), since 𝑍1
alg(𝑊𝐸/𝐹 , 𝑇 (𝐸)) is defined as a fibre

product 𝐿̂×𝑍1 (𝐸× ,𝑇 (𝐸)) 𝑍
1(𝑊𝐸/𝐹 , 𝑇 (𝐸)). We order the first map to be the norm map,

and the second to be the composition

𝐿̂ → 𝑍1(𝐸×, 𝑇 (𝐸)) inf−−→ 𝑍1(𝑊𝐸/𝐹 , 𝑇 (𝐸)).

The inflation map on cocyles is defined as follows. Let 𝜙 : 𝐸× → 𝑇 (𝐸) be a cocycle.
The inflation of this cocycle is usually given by

𝑔 ↦→
∑︁
𝜏

𝑤−1
𝜏 𝜙(𝛿(𝑤𝜏, 𝑔)).

We define the inflation map by the same formula, however with a different system
of representatives given by {𝑤̃𝜏 = 𝑤−1

𝜏−1 , 𝜏 ∈ Γ}.

Explicitly, 𝑐0(𝑥) is the cocycle

𝑔 ↦→
∑︁
𝜏

𝑤̃−1
𝜏 (𝑥 ⊗ 𝛿(𝑤̃𝜏, 𝑔))

=
∑︁
𝜏

𝑤̃−1
𝜏 𝑥 ⊗ 𝑤̃−1

𝜏 𝛿(𝑤̃𝜏, 𝑔)

=
∑︁
𝜏

𝑤𝜏−1𝑥 ⊗ 𝛿(𝑔, 𝑤𝑔−1𝜏−1).
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(For notation, see section 2.1.1.) The map 𝑐0 agrees with the map 𝑐0 Kottwitz
assign to the Tate-Nakayama triple (Z, 𝐸×, 𝛼) in (Kottwitz, 2014), and that it induce
isomorphism on the cohomology of degree 0 is exactly Lemma 5.1 in loc.cit.

The following calculation verifies the diagram (2.6) commutes.

Proposition 2.4.11. We have 𝑐0 ◦ 𝑑 = 𝑑 ◦ cores.

Proof. From above, 𝑑 ◦ cores(𝑤 ⊗ 𝑥) is the cocycle

𝑔 ↦→
∑︁
𝑤𝜏

𝑔𝑤𝜏𝑥 ⊗ 𝑔𝛿(𝑤𝜏, 𝑤) −
∑︁
𝑤𝜏

𝑤𝜏𝑥 ⊗ 𝛿(𝑤𝜏, 𝑤).

We change the variable 𝜏 → 𝑔−1𝜏 in the first summation. The right hand side
becomes ∑︁

𝜏

𝑤𝜏𝑥 ⊗ (𝑔𝛿(𝑤𝑔−1𝜏, 𝑤) − 𝛿(𝑤𝜏, 𝑤))

=
∑︁
𝜏

𝑤𝜏𝑥 ⊗ (𝛿(𝑔, 𝑤𝑔−1𝜏𝑤) − 𝛿(𝑔, 𝑤𝑔−1𝜏)). (2.7)

On the other hand, 𝑐0 ◦ 𝑑 (𝑤 ⊗ 𝑥) is the cocycle

𝑔 ↦→
∑︁
𝜏

𝑤𝜏−1𝑤−1𝑥 ⊗ 𝛿(𝑔, 𝑤𝑔−1𝜏−1) −
∑︁
𝜏

𝑤𝜏−1𝑥 ⊗ 𝛿(𝑔, 𝑤𝑔−1𝜏−1).

We change the variable 𝜏 → 𝑤−1𝜏 in the first summation. The right hand side
becomes ∑︁

𝜏

𝑤𝜏−1𝑥 ⊗ (𝛿(𝑔, 𝑤𝑔−1𝜏−1𝑤) − 𝛿(𝑔, 𝑤𝑔−1𝜏−1)).

This equals (2.7). □

We continue with the proof that T � Tor𝑇,iso𝐹 . Both T and Tor𝑇,iso𝐹 has a pro-stack
structure. We can use the same construction for the commuting diagram (2.6) when
we replace 𝑊𝐸/𝐹 by 𝑊 (𝑛) and 𝑇 (𝐸) by 𝑇 (𝐸)/𝑈𝑛. The definition of the algebraic
cycles 𝑍1

alg(𝑊𝐸/𝐹 , 𝑇 (𝐸)) can be easily adapted to define 𝑍1
alg(𝑊

(𝑛) , 𝑇 (𝐸)/𝑈𝑛). We
claim that the diagram is a quasi-isomorphism for sufficiently large 𝑛, and therefore
together they define an isomorphism T � Tor𝑇,iso𝐹 .

By Lemma 2.4.3, there is an isomorphism for large 𝑛

𝐻1
alg(𝑊𝐸/𝐹 , 𝑇 (𝐸)) → 𝐻1

alg(𝑊𝐸/𝐹 , 𝑇 (𝐸)/𝑈𝑛) = 𝐻1
alg(𝑊

(𝑛) , 𝑇 (𝐸)/𝑈𝑛).

This shows the induced map on cohomology at degree 0 is an isomorphism for
large 𝑛. Lemma 2.4.4 says the induced map on cohomology at degree -1 is an
isomorphism for large 𝑛. This finishes the proof.
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2.5 Categorical LLC for the torus
In the previous section, we constructed a canonical family of Poincaré line bundles
L : Tor𝑇,iso𝐹 × Loc𝑐𝑇,𝐹 → BG𝑚. They induce isomorphisms Tor𝑇,iso𝐹 � Loc∨𝑐𝑇,𝐹 .

Theorem 2.5.1. Let 𝜋1, 𝜋2 be the projects of Loc𝑐𝑇,𝐹 × Tor𝑇,iso𝐹 to its factors. A
Fourier-Mukai transform via the line bundle L establish the equivalence of ∞-
categories that preseres t-structures:

𝜋1!(𝜋∗2(−) ⊗ L
−1) : QCoh(Tor𝑇,iso𝐹 ) ⇋ IndCoh(Loc𝑐𝑇,𝐹) : 𝜋2∗(𝜋∗1(−) ⊗ L),

where the functor 𝜋1! is the right adjoint of 𝜋∗1 and 𝜋2∗ is the left adjoint of 𝜋∗2.

Before we can prove the theorem, we gather some useful facts as follows.

Recall that by the system of congrunce subgroups 𝑈 (𝑛) ⊂ O×
𝐸

give rise to a basis
of open subgroups 𝑉𝑛 of 𝑇 (𝐹). Using Corollary 2.4.5, we have the following short
exact sequence:

0→ Hom( 𝐿̂Γ,BG𝑚) → Loc(𝑛)𝑐𝑇,𝐹
→ Homcts(𝑇 (𝐹)/𝑉𝑛,G𝑚) → 0.

We let Loc = Homcts(𝑇 (𝐹),G𝑚) and let Loc(𝑛) = Homcts(𝑇 (𝐹)/𝑉𝑛,G𝑚). By
proposition 2.3.7, Loc𝑐𝑇,𝐹 splits as Loc𝑐𝑇,𝐹 = Loc × B𝑇Γ and similarly Loc(𝑛)𝑐𝑇,𝐹

=

Loc(𝑛) × B𝑇Γ.

We define the regular function ring OLoc to be the union of all OLoc(𝑛) , i.e., OLoc

consists of functions supported on some Loc(𝑛) for some 𝑛.

Let 𝑇 (𝐹)0 be the maximal compact subgroup of 𝑇 (𝐹) and let 𝜇 be the (left) Haar
measure on 𝑇 (𝐹) such that 𝜇(𝑇 (𝐹)0) = 1. We define the Hecke algebra of 𝑇 (𝐹)
to be Q-valued compactly supported smooth function on 𝑇 (𝐹) equipped with the
convolution product with respect to 𝜇 and denote it byH(𝑇 (𝐹),Q).

Lemma 2.5.2. There is an isomorphism OLoc ⊗ Q � H(𝑇 (𝐹),Q).

Proof. We choose a splitting 𝑇 (𝐹) = 𝑇 (𝐹)0 ⊕ 𝑅, where 𝑅 is a free abelian group of
finite rank. It suffice to check the claim on each subgroup.

The Hecke algebra of 𝑅 is isomorphic to the group ring Z[𝑅], and this is isomorphic
to the function ring of Hom(𝑅,G𝑚).

Let𝐺𝑛 = 𝑇 (𝐹)0/𝑉𝑛 be a tower of finite abelian groups with projections 𝑝𝑛 : 𝐺𝑛+1 →
𝐺𝑛.
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Consider the map Q[𝐺𝑛] → H(𝐺𝑛,Q) that sends an element 𝑔 ∈ 𝐺𝑛 to |𝐺𝑛 | · 𝛿𝑔.
By direct computation, this map is an algebra isomorphism (with C-coefficient, this
is the familiar discrete Fourier transform).

The Hecke algebraH(𝑇 (𝐹)0,Q) is the union of allH(𝐺𝑛,Q), where the inclusion
map H(𝐺𝑛,Q) → H(𝐺𝑛+1,Q) is the pullback of functions along projections 𝑝𝑛.
Let 𝑖𝑛 : Q[𝐺𝑛] → Q[𝐺𝑛+1] be the unique map such that the following diagram
commutes:

Q[𝐺𝑛] H (𝐺𝑛,Q)

Q[𝐺𝑛+1] H (𝐺𝑛+1,Q).

∼

𝑖𝑛

∼

It remains to identify the map 𝑖𝑛 with the inclusion OLoc(𝑛) ⊂ OLoc(𝑛+1) . This is
readily manifested given that the image of 1 under 𝑖𝑛 is an idempotent

𝑖𝑛 (1) =
1
|𝐺𝑛+1 |

∑︁
𝑔∈ker(𝑝𝑛)

𝑔,

and that 𝑖𝑛 (1) · Q[𝐺𝑛+1] is precisely the image of Q[𝐺𝑛]. □

Remark 2.5.3. This proposition amounts to saying that under our Langlands corre-
spondence, OLoc𝑐𝑇,𝐹 is send to the Whittaker sheaf, i.e., the Hecke algebra with the
usual 𝑇 (𝐹)-action.

2.5.4. Decomposition of categories. Under the splitting Loc𝑐𝑇,𝐹 = Loc×B𝑇Γ, the
Poincaré line bundleL on Loc𝑐𝑇,𝐹 ×Tor𝑇,iso𝐹 can be regarded as the structural sheaf
over Loc× 𝐿̂Γ with both a𝑇Γ and a𝑇 (𝐹)-action, such that𝑇Γ acts by the character in
𝑥 ∈ 𝐿̂Γ on the 𝑥-component, and 𝑡 ∈ 𝑇 (𝐹) acts on Loc

𝑛
× 𝐿̂Γ by 𝑡𝑉𝑛 ∈ Z[𝑇 (𝐹)/𝑉𝑛]

as described in the previous lemma.

Since Loc𝑐𝑇,𝐹 = Loc×B𝑇Γ is a 𝑇Γ-gerbe, ind-coherent sheaves on Loc𝑐𝑇,𝐹 decom-
pose as

IndCoh(Loc𝑐𝑇,𝐹) =
∏

𝛼∈𝑋∗ (𝑇Γ)

IndCoh𝛼 (Loc𝑐𝑇,𝐹). (2.8)

The subcategory IndCoh𝛼 (Loc𝑐𝑇,𝐹) comprise ind-coherent sheaves on Loc𝑐𝑇,𝐹 that
has an action of 𝑇Γ via the character 𝛼. It is equivalent to IndCoh(Loc).

Connected components of Tor𝑇,iso𝐹 are indexed by the Kottwitz set 𝐵(𝑇) = 𝑋∗(𝑇Γ).
Let the corresponding component of 𝛽 ∈ 𝑋∗(𝑇Γ) be 𝐵𝑇 (𝐹)𝛽. We have a decompo-
sition by connected components

QCoh(Tor𝑇,iso𝐹 ) =
∏

𝛽∈𝑋∗ (𝑇Γ)

QCoh(𝐵𝑇 (𝐹)𝛽).
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We have an open embedding 𝐵𝑇 (𝐹)𝛽 × Loc𝑐𝑇,𝐹 ↩→ Tor𝑇,iso𝐹 × Loc𝑐𝑇,𝐹 , and we
denote the restriction of the Poincaré line bundle by L𝛽.

By abuse of notation, we let 𝜋1 and 𝜋2 be the two projection of 𝐵𝑇 (𝐹)𝛽 × Loc𝑐𝑇,𝐹

to its factors. A simple calculation should reveal that for F ∈ Coh𝛼 (Loc𝑐𝑇,𝐹) and
𝛽 ≠ −𝛼

𝜋2∗(𝜋∗1 F ⊗ L𝛽) = 0.

Therefore, showing the equivalence of category QCoh(Tor𝑇,iso𝐹 ) � Coh(Loc𝑐𝑇,𝐹)
is reduced to showing the equivalence of the subcategories by pull-push

𝜋1!(𝜋∗2(−) ⊗ L
−1
−𝛼) : QCoh(𝐵𝑇 (𝐹)−𝛼) ⇋ IndCoh𝛼 (Loc𝑐𝑇,𝐹) : 𝜋2∗(𝜋∗1(−) ⊗ L−𝛼).

2.5.5. The equivalence. In this section we show the following functor is an
equivalence:

𝜋2∗(𝜋∗1(−) ⊗ L−𝛼) : IndCoh𝛼 (Loc𝑐𝑇,𝐹) → QCoh(𝐵𝑇 (𝐹)−𝛼). (2.9)

Let F ∈ Coh𝛼
(
Loc(𝑛)𝑐𝑇,𝐹

)
. Consider the coherent sheaf 𝜋∗1 F ⊗ L−𝛼 on Loc𝑐𝑇,𝐹 ×

B𝑇 (𝐹)−𝛼, it can be regarded as a coherent sheaf on Loc with a𝑇Γ and a𝑇 (𝐹)-action.
By definition of L−𝛼, the 𝑇Γ-action of 𝜋∗1 F ⊗ L−𝛼 is trivial, and the 𝑇 (𝐹)-action
is identified with the OLoc(𝑛) = Z[𝑇 (𝐹)/𝑉𝑛]-action. The pushforward by 𝜋2∗ simply
forgets the 𝑇Γ-action.

In summary, the pull-push factors as

Coh𝛼 (Loc(𝑛)𝑐𝑇,𝐹
) QCoh(𝐵𝑇 (𝐹)−𝛼).

{
finiteZ[𝑇 (𝐹)/𝑉𝑛]-Mod

}
𝜋2∗ (𝜋∗1 (−)⊗L−𝛼)

∼

By taking colimit, this results in the equivalence of categories

IndCoh𝛼 (Loc) QCoh(𝐵𝑇 (𝐹)−𝛼).

Repsm (𝑇 (𝐹))

𝜋2∗ (𝜋∗1 (−)⊗L−𝛼)

∼ ∼

2.5.6. The inverse functor. The functor 𝜋∗1 preserves limits and is a right
adjoint. We denote its left adjoint by 𝜋1!. We first note that both 𝜋∗1 and 𝜋1!
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respect the decomposition of IndCoh(Loc𝑐𝑇,𝐹 × B𝑇 (𝐹)−𝛼) and IndCoh(Loc𝑐𝑇,𝐹)
as 𝑇Γ-gerbes, we can restrict the following discussion to 𝑝∗1 and 𝑝1! for the map
𝑝1 : Loc × B𝑇 (𝐹)−𝛼 → Loc and 𝑝2 : Loc × B𝑇 (𝐹)−𝛼 → B𝑇 (𝐹)−𝛼.

Let 𝑋 = Loc × Tor𝑇,iso𝐹 and 𝑌 = Loc. On the level of abelian categories, let
𝐺 : QCoh(𝑋)♥ → QCoh(𝑌 )♥ be the functor of taking 𝑇 (𝐹)-coinvariants. Then 𝐺
and 𝑝∗1 is an adjoint pair. The derived functors 𝐿𝐺 and 𝑝∗1 (no need to derive) lift to
∞-categories and is still an adjoint pair. Therefore 𝐿𝐺 = 𝑝1!.

Let 𝑀 ∈ QCoh(B𝑇 (𝐹)−𝛼) such that 𝑀 is fixed by 𝑉𝑛. The quasi-coherent sheaf
𝑝∗2 𝑀 ⊗ L

−1
−𝛼 = 𝑀 ⊗ OLoc restricts to 𝑀 ⊗ Z[𝑇 (𝐹)/𝑉𝑛] on Loc(𝑛) and it has an

𝑇 (𝐹)-action that is identified with its Z[𝑇 (𝐹)/𝑉𝑛]-module structure. Due to the fact
that Z[𝑇 (𝐹)/𝑉𝑛] is a projective 𝑇 (𝐹)-module, we have

𝑝1!(𝑝∗2 𝑀 ⊗ L
−1
−𝛼) |Loc(𝑛) = 𝐿𝐺 (𝑀 ⊗ Z[𝑇 (𝐹)/𝑉𝑛]) � 𝑀.

We emphesize again that this isomorphism endows 𝑀 the with structure of an
OLoc-module which is identified with its 𝑇 (𝐹)-module structure. In general, take
𝑀 = colim𝑀𝑛 where 𝑀𝑛 = 𝑀

𝑉𝑛 . As 𝑝1! commute with filtered colimits, the same
statement holds. In other words, the functor 𝜋1!(𝜋∗2(−) ⊗ L

−1) is the inverse of
𝜋2∗(𝜋∗1(−) ⊗ L).



27

C h a p t e r 3

THE SECOND CATEGORIFICATION

3.1 Notation
3.1.1. The inertia group. We let 𝐼 ⊂ Γ be the inertia group of the field
extension 𝐸/𝐹. Assume Ω𝐸 and Ω𝐹 are the maximal unramified extension of 𝐸
and 𝐹, we denote the absolute inertia group of 𝐸 and 𝐹 by 𝐼𝐸 = Gal(𝐸̄/Ω𝐸 ) and
𝐼𝐹 = Gal(𝐹̄/Ω𝐹). They are subgroups of 𝑊𝐸 and 𝑊𝐹 respectively. We also define
the relative inertia group as 𝐼rel

𝐸/𝐹 := 𝐼𝐹/[𝐼𝐸 , 𝐼𝐸 ].

The relative inertia group is a group extension:

1→ 𝐼ab
𝐸 → 𝐼rel

𝐸/𝐹 → 𝐼 → 1.

3.1.2. The loop group. We denote by 𝑘 and O the residue field and ring of integers
of 𝐹. Let 𝜛 denote a uniformizer of O. For a 𝑘-algebra 𝑅, we let 𝑊 (𝑅) denote its
ring of Witt vectors, let𝑊O (𝑅) = 𝑊 (𝑅) ⊗𝑊 (𝑘)O and𝑊O,𝑛 (𝑅) = 𝑊 (𝑅) ⊗𝑊 (𝑘)O/𝜛𝑛.

Let Y be a finite-type O-scheme. According to Greenberg, the following two
presheaves on the category of affine 𝑘-schemes:

𝐿+𝑝Y(𝑅) = Y(𝑊O (𝑅)), 𝐿𝑛𝑝Y(𝑅) = Y(𝑊O,𝑛 (𝑅)),

are represented by schemes over 𝑘 . We denote their perfection by

𝐿+Y = (𝐿+𝑝Y)𝑝
−∞
, 𝐿𝑛Y = (𝐿𝑛𝑝Y)𝑝

−∞
,

and call them 𝑝-adic jet spaces.

Let 𝑌 be an affine scheme of finite type over 𝐹. The 𝑝-adic loop space 𝐿𝑌 of 𝑌 is a
perfect space defined by assigning a perfect 𝑘-algebra 𝑅 the set

𝐿𝑌 (𝑅) = 𝑌 (𝑊O (𝑅) [1/𝑝]).

𝐿𝑌 is represented by an ind-perfect scheme. AssumeY is an affine scheme of finite
type over O and 𝑋 = Y ⊗O 𝐹, then 𝐿+Y ⊂ 𝐿𝑌 is a closed subscheme.

Take𝑌 = 𝑇 . We let 𝐿≥𝑛𝑇 ⊂ 𝐿+𝑇 be the congruence subgroup such that 𝐿≥𝑛𝑇 (𝜅𝐹) =
𝑉𝑛.
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3.1.3. Character sheaves and Serre’s fundamental group. Let Λ = Zℓ,Qℓ or Fℓ.
Let 𝐻 be a connected pro-algebraic group over Fℓ, and let 𝑚 be the multiplication
map of 𝐻. Recall that a character sheaf with coefficient in Λ on 𝐻 is a rank one
Λ-local system Ch𝜉 on 𝐻 equipped with an isomorphism

𝑚∗ Ch𝜉 � Ch𝜉 ⊠Λ Ch𝜉 ,

which satisfies the usual cocycle conditions.

Definition 3.1.4. Let 𝐻 be a (not necessarily) connected pro-algebraic group, and
let 𝐻◦ be its central component. We define the character sheaves on 𝐻 to consists
of all the translations of character sheaves on 𝐻◦.

Denote by P the category of commutative pro-algebraic groups over 𝑘 = Fℓ and by
P0 the category of abelian profinite groups. Serre defined the fundamental groups 𝜋1

as the first derived functor of the right exact functor 𝜋0 : P → P0, 𝜋0(𝐺) := 𝐺/𝐺◦

(Serre, 1961).

Assume 𝐻 is abelian and connected. A key property of this fundamental group is
that the abelian group of character sheaves on 𝐻, which we denote by CS(𝐻,Λ), is
isomorphic to the abelian group of continuous rank 1 representations of 𝜋1(𝐻):

Homcts(𝜋1(𝐻),Λ×) � CS(𝐻,Λ).

The goal of the second categorification is essentially to categorify this isomorphism
into a fully faithful functor (take 𝐻 = 𝐿+𝑇)

Ch : Coh
(
Homcts(𝜋1(𝐿+𝑇),G𝑚)

)
→ Shv(𝐿+𝑇,Λ).

The following theorem, which can be called the geometric class field theory, will
play a key role in the sequel.

Theorem 3.1.5 (Serre (1961); Deshpande and Wagh (2023)). Let 𝑇 be an arbitrary
torus defined over 𝐹 and splits over a finite Galois extension 𝐸 of 𝐹. Let 𝐼 be
the inertia group of the field extension 𝐹/𝐸 and let 𝐼ab

𝐸
be the abelianization of the

(absolute) inertia group of 𝐸 . Then there is a canonical isomorphism

𝜋1(𝐿+𝑇) �
(
𝐿̂ ⊗ 𝐼ab

𝐸

) 𝐼
.
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3.1.6. The fixed point stack. Let 𝑌 be an arbitrary stack equipped with an
automorphism 𝜎𝑌 : 𝑌 → 𝑌 . We define the fix-point stack of 𝜎𝑌 to be

L𝜎 𝑌 = 𝑌 Γ, 𝑌×𝑌,Δ𝑌,

where Γ = (1, 𝜎𝑌 ) is the graph of 𝜎𝑌 and Δ is the diagonal embedding.

Proposition 3.1.7. The fixed point stack L𝜎B𝐿𝑇 =
𝐿𝑇

Ad𝜎 𝐿𝑇
.

Proof. By definition L𝜎B𝐿𝑇 is the fibre product

L𝜎B𝐿𝑇 B𝐿𝑇

B𝐿𝑇 B𝐿𝑇 × B𝐿𝑇.

Δ

id×𝜎

Objects of L𝜎B𝐿𝑇 are represented by a tuple (𝑥, 𝑦) ∈ 𝐿𝑇 and morphisms (𝑡, 𝑠) :
(𝑥, 𝑦) → (𝑥′, 𝑦′) are a tuple (𝑡, 𝑠) ∈ 𝐿+𝑇 such that

∗ × ∗ ∗ × ∗

∗ × ∗ ∗ × ∗.

(𝑥,𝑦)

(𝑡,𝜎𝑡) (𝑠,𝑠)
(𝑥′,𝑦′)

In other words, (𝑡, 𝑠) : (𝑥, 𝑦) → (𝑥 + 𝑠 − 𝑡, 𝑦 + 𝑠 − 𝜎𝑡). It is straightforward from
here to see that L𝜎B𝐿𝑇 = 𝐿𝑇

Ad𝜎 𝐿𝑇
. □

3.2 Representation Stack of Inertia

Definition 3.2.1. The moduli space R𝐼𝐹 ,𝑐𝑇 of the (strongly) continuous representa-
tions of 𝐼𝐹 in 𝑐𝑇 is defined over Zℓ as follows. Let 𝑟 = rank𝑇 . For every Zℓ-algebra
𝐴, R𝐼𝐹 ,𝑐𝑇 (𝐴) classifies the cross homomorphisms 𝜌 : 𝐼𝐹 → 𝑇 (𝐴) ⊂ 𝐴𝑟 such that
for each coordinate map 𝜈 : 𝐴𝑟 → 𝐴, the Zℓ subspace 𝑀 generated by 𝜈 ◦ 𝜌(𝐼𝐹) is a
finitely generated Zℓ-module, and the representation of 𝐼𝐹 on 𝑀 is continuous, with
𝑀 equipped with the usual ℓ-adic topology.

Definition 3.2.2. The representation stack of inertia is Locgeom
𝑐𝑇,𝐹

:= R𝐼𝐹 ,𝑐𝑇/𝑇 .

The Frobenius 𝜎 acts on Locgeom
𝑐𝑇,𝐹

via its action on 𝐼𝐹 and 𝑇 . Explicitly, the action
sends a cross homomorphism 𝑐 : 𝐼𝐹 → 𝑇 to 𝜎𝑐 such that 𝜎𝑐(𝑔) = 𝜎𝑐(𝜎−1𝑔𝜎).

The following proposition reveals the connection between Locgeom
𝑐𝑇,𝐹

and Loc𝑐𝑇,𝐹 .
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Proposition 3.2.3. The fix-point stack L𝜎 Locgeom
𝑐𝑇,𝐹

is canonically isomorphic to
Loc𝑐𝑇,𝐹 ⊗ Zℓ.

Proof. There is a natural map Loc𝑐𝑇,𝐹 ⊗ Zℓ → L𝜎 Locgeom
𝑐𝑇,𝐹

induced by restricting a
cross homomorphism 𝑐 : 𝑊𝐹 → 𝑇 to 𝑐′ : 𝐼𝐹 → 𝑇 . The goal is to show that this map
is surjective on objects and is a bijection on the automorphism group of an object.

Objects of L𝜎 Locgeom
𝑐𝑇,𝐹

can be represented by a tuple ( [𝑐], 𝑡) for 𝑐 ∈ 𝑍1(𝐼𝐹 , 𝑇) and
𝑡 ∈ 𝑇 such that 𝜎𝑐 = 𝑐 + 𝑑𝑡. It is the image of 𝑐 ∈ 𝑍1(𝑊𝐹 , 𝑇) if 𝑐 satisfies 𝑐 |𝐼𝐹 = 𝑐

and 𝑐(𝜎) = 𝑡.

To show that such 𝑐 exists, we first need to check that 𝑐 factors through a finite
quotient of 𝐼𝐹 . The restriction of 𝑐 to the wild inertia 𝑃𝐹 clearly factors through
a finite quotient. Therefore, it suffices to show the claim for the restriction of 𝑐 to
𝐼 tame
𝐹

.

Let the action of 𝐼 tame
𝐹

on 𝑇 factor through an open subgroup 𝐾 . Then for all 𝑔 ∈ 𝐾 ,
we have 𝑐(𝑔) = 𝜎𝑐(𝜎−1𝑔𝜎). Henceforth 𝜎𝑐(𝑔) = 𝑐(𝜎𝑔𝜎−1) = 𝑐(𝑔𝑞) = 𝑐(𝑔)𝑞. Let
𝑁 be a positive integer so that 𝜎𝑁 acts trivially on 𝑇 , we have 𝑐(𝑔) = 𝑐(𝑔)𝑞𝑁 . That
is, for every 𝑔 ∈ 𝐾 , 𝑐(𝑔𝑞𝑁−1) = 1. We conclude that 𝑐 factors through an open
subgroup of 𝐼 tame

𝐹
as {𝑔𝑞𝑁−1 |𝑔 ∈ 𝐾} is open.

One define 𝑐(𝜎𝑛) recursively via

𝑐(𝜎𝑛) = 𝑡 + 𝜎𝑐(𝜎𝑛−1)

for all 𝑛 ∈ N and define

𝑐(𝜎−𝑛) = −𝜎−𝑛𝑐(𝜎𝑛),
𝑐(𝜎𝑚𝑔) = 𝑐(𝜎𝑚) + 𝜎𝑛

𝑐(𝑔),

for all 𝑛 ∈ N, 𝑚 ∈ Z and for all 𝑔 ∈ 𝐼𝐹 . The condition 𝜎𝑐 = 𝑐 + 𝑑𝑡 ensures that 𝑐 is
a 1-cocycle.

An automorphism of the object ( [𝑐], 𝑡) is represented by an element 𝑤 ∈ 𝑇 such
that 𝑑𝑤 = 0 and the following diagram commutes:

𝑐 𝜎𝑐

𝑐 𝜎𝑐.

𝑡

𝑤 𝜎𝑤

𝑡

That is, 𝑤 ∈ 𝑇 𝐼𝐹 and 𝜎𝑤 = 𝑤, hence 𝑤 ∈ 𝑇𝑊𝐹 . This automorphism group is exactly
in bijection with the automorphism group of an object of Loc𝑐𝑇,𝐹 . □
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Proposition 3.2.4. We have a canonically split short exact sequence

1→ Hom( 𝐿̂ 𝐼 ,BG𝑚) → Locgeom
𝑐𝑇,𝐹
→ Homcts(( 𝐿̂ ⊗ 𝐼

ab
𝐸 )

𝐼 ,G𝑚) → 1. (3.1)

Proof. The proof of this proposition is similar to that of proposition 2.3.1. The only
difference is that we need to replace the isomorphism 𝐻1(𝑊𝐸/𝐹 , 𝐿̂) � 𝑇 (𝐹) with
𝐻1(𝐼rel

𝐸/𝐹 , 𝐿̂) � ( 𝐿̂ ⊗ 𝐼
ab
𝐸
) 𝐼 , which is supplied by Corollary 2.4.5. □

3.2.5. Locgeom
𝑐𝑇,𝐹

as an ind-scheme. We want to understand the geometry of the third
term in this exact sequence.

We first note that the abelian group 𝐼ab
𝐸

splits into its tame and wild parts as an
Γ-module. By class field theory, we have

𝐼ab
𝐸 = lim←−−

𝐾/𝐸 finite Galois,
unramified

O×𝐾 .

Each term O×
𝐾
= 𝜇𝐾 ×𝑈 (1)𝐾 splits as a Γ-module, where 𝜇𝐾 is the group of roots of

unity in 𝐾 and𝑈 (1)
𝐾

= 1 +𝔪𝐾 the principal units. This splitting clearly respects the
norm map, which is the transition map in the projective limit. Therefore we have a
splitting

𝐼ab
𝐸 = lim←−−𝑈

(1)
𝐾
× 𝐼 tame

𝐸 = 𝑃ab
𝐸 × 𝐼

tame
𝐸 .

The group lim←−−𝑈
(1)
𝐾

can be identified with the abelianization of the wild inertia
𝑃ab
𝐸

(Iwasawa, 1955). Although we do not rely on this fact, but we use it to simplify
our notation.

With the splitting of the group 𝐼ab
𝐸

, we obtain a decomposition

Homcts(( 𝐿̂ ⊗ 𝐼
ab
𝐸 )

𝐼 ,G𝑚) = Homcts(( 𝐿̂ ⊗ 𝐼
tame
𝐸 ) 𝐼 ,G𝑚) × Homcts(( 𝐿̂ ⊗ 𝑃

ab
𝐸 )

𝐼 ,G𝑚)

which is characterized by that ( 𝐿̂ ⊗ 𝐼 tame
𝐸
) 𝐼 is a prime-to-𝑝 profinite group and

( 𝐿̂ ⊗ 𝑃ab
𝐸
) 𝐼 is a pro-𝑝 group. This gives us

Homcts(( 𝐿̂ ⊗ 𝐼
ab
𝐸 )

𝐼 ,G𝑚) =
⊔
𝑥∈Ξ

Homcts(𝐽,G𝑚) =
⊔
𝑥∈Ξ
R𝐽,G𝑚

. (3.2)

where Ξ = Homcts(( 𝐿̂ ⊗ 𝑃ab
𝐸
) 𝐼 ,G𝑚), and 𝐽 = ( 𝐿̂ ⊗ 𝐼 tame

𝐸
) 𝐼 .

The functor R𝐽,G𝑚
can be made explicit by embedding it into an algebraic torus.

We choose 𝜏 a topological generator of 𝐼 tame
𝐸

, and let the finitely generated abelian
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group ( 𝐿̂ ⊗ ⟨𝜏⟩) 𝐼 ⊂ 𝐽 be denoted by 𝐽. Denote by 𝐻̂ the torus R𝐽,G𝑚
. There is an

inclusion R𝐽,G𝑚
→ 𝐻̂ by restricting a representation of 𝐽 to 𝐽.

Let us denote 𝐻̂𝑝 ⊂ 𝐻̂ the subfunctor which is the union of all closed subschemes
𝑖𝑍 : 𝑍 ⊂ 𝐻̂ that are finite over Zℓ and 𝑍 (Fℓ) ⊂ 𝐻̂ (Fℓ)𝑝, where 𝐻 (Fℓ)𝑝 consists of all
elements in 𝐻̂ (Fℓ) of order prime to 𝑝. Note that by construction 𝐻̂𝑝 has a natural
structure of an ind-scheme.

Proposition 3.2.6. The inclusion R𝐽,G𝑚
→ 𝐻̂ identifies R𝐽,G𝑚

with 𝐻̂𝑝. Conse-
quently, R𝐽,G𝑚

is an ind-scheme.

Proof. Let 𝐴 be an Zℓ-algebra. Every 𝜙 ∈ R𝐽,G𝑚
(𝐴) represents a continuous cross

homomorphism 𝜑 : 𝐽 → 𝐴× ⊂ 𝐴 such that the image of 𝜑 in 𝐴 spans a finitely
generated Zℓ-module 𝑀 , and the map 𝜙 : 𝐽 → 𝑀 is continuous.

The image of 𝜙 ∈ 𝐻̂ gives a ring homomorphism which we also denote by 𝜙 :
Zℓ [𝐽] → 𝐴. This is justified because this 𝜙 coincide with the cross homomorphism
in their value in 𝐴. Let 𝜙 factor as Zℓ [𝐽] → 𝑅 ↩→ 𝐴, where Spec 𝑅 is the schematic
image of Spec 𝐴. Our conditions on 𝜙 imply that 𝑅 is a finite Zℓ-algebra.

Henceforth, all Fℓ-points of Spec 𝑅 can lift to Fℓ-points of Spec 𝐴, their image in
𝐻̂ (Fℓ) must have finite and prime-to-ℓ order, because 𝜙 : Zℓ [𝐽] → 𝐴 can be lifted
to a continuous map Zℓ [𝐽] → 𝐴. □

3.3 Review of the Categorical Trace
3.3.1. Hochschiled homology. Let us first review the general formalism of the
Hochschild homology. We will mostly follow ((Hemo, 2023)).

Let R be a symmetric monoidal category, 𝐴 and 𝐵 be two associative algebras in R.
We denote by 𝐴rev (resp. 𝐵rev) to be the algebra 𝐴 with the reversed multiplication.
An 𝐴-𝐵-bimodule can be regarded as a left (𝐴⊗ 𝐵rev)-module or a right (𝐵 ⊗ 𝐴rev)-
module. For an 𝐴-𝐴-bimodule 𝐹, the Hochschild homology of 𝐹, if exists, is defined
as

Tr(𝐴, 𝐹) = 𝐴 ⊗𝐴⊗𝐴rev 𝐹 ∈ R.

However, the Hochschild complex of 𝐹 always exists. It is a simplicial object in R
given by

HH(𝐴, 𝐹)• = Bar(𝐴)• ⊗𝐴⊗𝐴rev 𝐹 = 𝐴⊗• ⊗ 𝐹.

Example 3.3.2. Let 𝜙 be an endomorphism of the algebra 𝐴, and 𝐹 an 𝐴-bimodule.
The 𝜙-twisted bimodule 𝐹, which we denote by 𝜙𝐹, is the bimodule whose left
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𝐴-action is pre-composed with 𝜙 and whose right action stays the same. In this
case, we also denote the Hochschild homology of 𝜙𝐴 by Tr(𝐴, 𝜙).

Roughly speaking, Tr(𝐴, 𝜙) is determined by the universal property that a functor
Tr(𝐴, 𝜙) → 𝐶 is equivalent to a functor 𝐺 : 𝐴→ 𝐶 equipped with equivalences

𝐹 (𝑎 ⊗ 𝑏) � 𝐹 (𝑏 ⊗ 𝜙(𝑎)), 𝑎, 𝑏 ∈ Ob(𝐴)

together with all the necessary higher coherence data. In particular, there is a
tautological functor

Tr𝜙 : 𝐴→ Tr(𝐴, 𝜙)

sending an object 𝑎 to its universal 𝜙-twisted trace.

Now consider R = LincatΛ. An algebra object 𝐴 in LincatΛ is a presentable Λ-
linear monoidal category such that the monoidal product commutes with colimits
separately in each variable. Let 𝐹 be an 𝐴-bimodule category. In this case, Tr(𝐴, 𝐹)
always exists, and is called the categorical trace of (𝐴, 𝐹). Note that the output of
categorical trace is again a presentable Λ-linear category.

We recall two key propositions which are particularly useful in the calculation of
categorical traces, one in the coherent sheaf setting, and one in the Λ-sheaf setting.
The gist is that the categorical trace of a sheaf theory can often be identified with,
or embed in, the category of sheaves of certain fixed point object.

Proposition 3.3.3. Let 𝑋 be a smooth Artin stack with an automorphism
𝜎 : 𝑋 → 𝑋 , and let 𝑖 : L𝜎 𝑋 → 𝑋 . There is a canonical equivalence of cate-
gories

𝐻 : Tr(IndCoh(𝑋), 𝜎) � IndCoh(L𝜎 𝑋),

and the following diagram commutes:

IndCoh(𝑋) IndCoh(L𝜎 𝑋)

Tr(IndCoh(𝑋), 𝜎).

𝑖∗

𝐻

Proposition 3.3.4. Let 𝑋 be a placid stack such that the diagonal Δ𝑋 : 𝑋 → 𝑋 × 𝑋
is representable pro-smooth. Let 𝑌 be a prestack and let 𝑓 : 𝑋 → 𝑌 be a ind-
proper morphism such that the relative diagonal 𝑋 → 𝑋 ×𝑌 𝑋 is ind-proper. Let
𝜎𝑋 : 𝑋 → 𝑋 and 𝜎𝑌 : 𝑌 → 𝑌 be endomorphisms intertwined by 𝑓 .
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Consider the following diagram:

𝑋 ×𝑌 L𝜎𝑌 𝑋 × 𝑓 ,𝑌 , 𝑓 ◦𝜎𝑋
𝑋

L𝜎𝑌,

𝛿0

𝑞 (3.3)

where 𝛿0 is the map

𝑋 ×𝑌 (𝑌 ×Δ𝑌 ,𝑌×𝑌,1×𝜎𝑌 𝑌 ) � 𝑋 ×𝑌×𝑌 𝑌
Δ𝑋−−→ (𝑋 × 𝑋) ×𝑌×𝑌 𝑌 � 𝑋 × 𝑓 ,𝑌 , 𝑓 ◦𝜎𝑋

𝑋

and 𝑞 is the projection.

There is a canonical factorization

Shv(𝑋 ×𝑌 𝑋) Shv(𝑋 ×𝑌 L𝜎𝑌 )

Tr(Shv(𝑋 ×𝑌 𝑋), 𝜎) Shv(L𝜎𝑌 ),

𝛿∗0

𝑞!

𝐺

where the functor 𝐺 is fully faithful.

3.4 Geometric LLC for the torus
In this section, let Λ = Fℓ or Qℓ. By abuse of notation, we will use Loc𝑐𝑇,𝐹 and
Locgeom

𝑐𝑇,𝐹
to denote the base-change Loc𝑐𝑇,𝐹 ⊗ Λ and Locgeom

𝑐𝑇,𝐹
⊗ Λ in the sequel. We

will use Shv(−) to refer to the category of bounded constructable Λ-sheaves.

Theorem 3.4.1. (i) Let 𝑇 be an algebraic torus over 𝐹. There exists a fully-faithful,
𝑡-exact, monoidal functor

Ch : IndCoh(Locgeom
𝑐𝑇,𝐹
) → IndShv(𝐿𝑇).

Let Shvmon(𝐿𝑇) denote the essential image of Ch. It is the thick subcategory com-
pactly generated by all character sheaves on 𝐿𝑇 . Let Chmon denote the equivalence
of categories

Chmon : IndCoh(Locgeom
𝑐𝑇,𝐹
) � IndShvmon(𝐿𝑇).

(ii) Both categories carry a Frobenius structure, and there is a commutative diagram

Tr(IndCoh(Locgeom
𝑐𝑇,𝐹
), 𝜎) Tr(IndShvmon(𝐿𝑇), 𝜎)

IndCoh(Loc𝑐𝑇,𝐹) IndShv(𝔅(𝑇)),

T

𝐻 𝐺

L

(3.4)
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where T is induced by Chmon and the functorality of the categorical trace construc-
tion, L is the canonical equivalence (2.9) under the identification IndShv(𝔅(𝑇)) �
QCoh(Tor𝑇,iso𝐹 ), and two vertical arrows are the canonical maps 𝐻 and 𝐺 supplied
by Proposition 3.3.3 and Proposition 3.3.4. Furthermore, 𝐻 and𝐺 are equivalences.

3.4.2. Construction of Ch. We define the functor Ch : IndCoh(Locgeom
𝑐𝑇,𝐹
) →

IndShv(𝐿𝑇) as follows.

Using the split short exact sequence (3.1), we have a decomposition

Coh(Locgeom
𝑐𝑇,𝐹
) =

∏
𝛼∈𝐿̂𝐼

Coh𝛼 (Locgeom
𝑐𝑇,𝐹
).

On the other hand, since

1→ 𝐿+𝑇 → 𝐿𝑇 → 𝐿̂ 𝐼 → 1,

we have another decomposition

Shv(𝐿𝑇) =
∏
𝛽∈𝐿̂𝐼

Shv(𝐿+𝑇).

The index set of the two decomposition are canonically identified. However, for
our purpose, the functor sends the 𝛼 component of ind-coherent sheaves to the −𝛼
component of Λ-sheaves.

Given that Coh(Homcts(𝜋1(𝐿+𝑇),G𝑚)) = Coh0(Locgeom
𝑐𝑇,𝐹
), the next step is to define

the functor
Ch0 : Coh(Homcts(𝜋1(𝐿+𝑇),G𝑚)) → Shv(𝐿+𝑇),

and naturally extend it to a functor between ind-completions of both sides. Notice
that 𝐿+𝑇 = 𝑇 × 𝐿++𝑇 with 𝐿++𝑇 being the first congruence subgroup.

Recall that Ξ = Hom(( 𝐿̂ ⊗ 𝑃ab
𝐸
) 𝐼 ,G𝑚), and each point 𝑥 ∈ Ξ gives a local system

on 𝐿++𝑇 that we denote by L++𝑥 .

By Proposition 3.2.6, with a choice of a topological generator 𝜏 ∈ 𝐼 tame
𝐸

, we have an
inclusion R𝐽,G𝑚

→ 𝐻̂ and coherent sheaves on R𝐽,G𝑚
are given by

Coh(R𝐽,G𝑚
) = colim

𝑍⊂𝐻̂
Coh(𝑍).

Therefore we can define a functor

Chtame : Coh(R𝐽,G𝑚
) �

{
finite 𝐽-module

}
→ Shv(𝑇).
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This functor is clearly independent of the choice of the topological generator and
fully faithful.

Now we can define the functor

Ch0 : Coh(Homcts(𝜋1(𝐿+𝑇),G𝑚) → Shv(𝐿+𝑇) = Shv(𝑇) ⊗ Shv(𝐿++𝑇)

by sending an ind-coherent sheaf F on the 𝑥-component to Chtame(F ) ⊗ L++𝑥 .

of Theorem 3.4.1 (i). It is obvious from the construction that Ch is 𝑡-exact.

To show Ch is fully faithful, we can decompose both categories into blocks

IndCoh(Locgeom
𝑐𝑇,𝐹
) =

⊕
𝛼∈𝐿̂𝐼

⊕
𝑥∈Ξ

IndCoh(Homcts(𝐽,G𝑚)

IndShv(𝐿𝑇) =
⊕
𝛽∈𝐿̂𝐼

⊕
𝑥∈Ξ

IndShv(𝑇),

where Ch respects both direct sums (with a twist 𝛽 = −𝛼). On each block, Ch
restricts to Chtame and we already know the latter is fully faithful. □

3.4.3. Decategorification. We move on to prove part (ii) of the Theorem 3.4.1.
Let 𝑟 = rank𝑇 . Consider the following diagram:

IndCoh(Locgeom
𝑐𝑇,𝐹
) IndShvmon(𝐿𝑇)

Tr(IndCoh(Locgeom
𝑐𝑇,𝐹
), 𝜎) Tr(IndShvmon(𝐿𝑇), 𝜎)

IndCoh(Loc𝑐𝑇,𝐹) IndShv(𝔅(𝑇)).

Chmon

𝑖∗

𝑞∗◦𝛿∗0 [2𝑟]
T

𝐻 𝐺

L

The functorality of the trace construction yields the upper square. The lower two
vertical maps and the two curved maps are the canonical maps characterized in
Theorem 3.3.3 and Theorem 3.3.4. They will be made explicit in the sequel.

By Proposition 3.3.3, 𝐻 is an equivalence of categories, and 𝐺 is automatically an
equivalence once we established that the lower square commutes.

Instead of showing the lower square commutes directly, we first show that for a
family of objects F ∈ IndCoh(𝑋) we have canonical isomorphisms

L ◦ 𝑖∗(F ) � 𝑞∗ ◦ 𝛿∗0 ◦ Chmon(F )[2𝑟] . (3.5)
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Then we show that this family is big enough to force the commutativity of the lower
square.

Each element 𝑥 ∈ Homcts(𝜋1(𝐿+𝑇),Λ×) defines a closed point of Locgeom
𝑐𝑇,𝐹

. In
particular, we fix an element 𝑥 ∈ Homcts(𝜋1(𝐿+𝑇),Λ×)𝜎 and consider the skyscraper
sheaf Λ𝑥 at this point. We show that (3.5) holds for all such Λ𝑥 .

Definition 3.4.4. For a character 𝜒 : 𝑇 (𝐹)0 → Λ×, we define 𝐼𝜒 to be the aug-
mentation ideal {𝑡 − 𝜒(𝑡) |𝑡 ∈ 𝑇 (𝐹)0} in the group ring Λ[𝑇 (𝐹)]. Then we define
𝑅𝜒 = Λ[𝑇 (𝐹)]/𝐼𝜒.

Proposition 3.4.5. Let 𝑖 : Loc𝑐𝑇,𝐹 � L𝜎 Locgeom
𝑐𝑇,𝐹

→ Locgeom
𝑐𝑇,𝐹

, and 𝑥 ∈
Homcts(𝜋1(𝐿+𝑇),Λ×)𝜎. Let 𝑥 corresponds to a character 𝜒 under the isomorphism
Homcts(𝜋1(𝐿+𝑇),Λ×)𝜎 � Homcts(𝑇 (𝐹)0,Λ×). We have

𝑖∗Λ𝑥 = 𝑅𝜒 ⊗
∧
(𝑋∗(𝑇) ⊗ Λ[1]).

Proof. The components of Loc𝑐𝑇,𝐹 are indexed by the set of representations
Homcts(𝑇 (𝐹)0,Λ×). Each component is sent to a closed subscheme in Locgeom

𝑐𝑇,𝐹

via

Homcts(𝑇 (𝐹)0),Λ×) = Homcts(𝐿+𝑇 (𝜅𝐹),Λ×)
= Homcts(𝜋1(𝐿+𝑇),Λ×)𝜎

↩→ Homcts(𝜋1(𝐿+𝑇),Λ×).

Let 𝑈 ⊂ Loc𝑐𝑇,𝐹 be the component that is sent to 𝑥 ∈ Homcts(𝜋1(𝐿+𝑇),Λ×)𝜎. Ex-
plicitly,𝑈 = Spec(𝑅𝜒). We denote the character associated to𝑈 by 𝜒 : 𝑇 (𝐹)0 → Λ×

and study Λ𝑥 = 𝑥∗Λ.

The component in which 𝑥 lies can be embedded in some R𝐽,G𝑚
as in equation

(3.2). The component itself is precisely the formal neighbourhood of 𝑥 in that torus.
Therefore,

𝑖∗Λ𝑥 = 𝑅𝜒 ⊗𝐿Λ[𝐽] Λ = 𝑅𝜒 ⊗𝐿Λ[𝐿̂] Λ = 𝑅𝜒 ⊗
∧
(𝑋∗(𝑇) ⊗ Λ[1]). □

Now we compute 𝑞! ◦𝛿∗0 ◦Chmon(F ). LetL = Chmon(Λ𝑥), and let 𝜒 : 𝑇 (𝐹)0 → Λ×

be the character associated to 𝑥. There exists 𝑛 so that 𝜒 factors through 𝑇 (𝐹)0/𝑉𝑛.

In Theorem 3.3.4, we take 𝑋 = B𝐿≥𝑛𝑇 , 𝑌 = B𝐿𝑇 , 𝑓 : 𝑋 → 𝑌 induced by the
inclusion 𝐿≥𝑛𝑇 → 𝐿𝑇 , and the Frobenius 𝜎 induce the automorphisms of 𝑋 and 𝑌 .
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The diagram (3.3) becomes

𝐿𝑇

Ad𝜎 𝐿≥𝑛𝑇 𝐿≥𝑛𝑇\𝐿𝑇/𝐿≥𝑛𝑇

𝐿𝑇

Ad𝜎 𝐿𝑇
,

𝛿0

𝑞 (3.6)

where 𝛿0 is given by identity of 𝐿𝑇 on objects and 𝑡 ∈ 𝐿≥𝑛𝑇 ↦→ (𝑡,−𝜎𝑡) on
morphisms, and the map 𝑞 is given by identity on objects and the inclusion of
𝐿≥𝑛𝑇 → 𝐿𝑇 on morphisms.

Proposition 3.4.6. Let L = Chmon(Λ𝑥), and let 𝜒 be the character associated to 𝑥.
Let 𝑟 = rank𝑇 , we have

𝑞∗ ◦ 𝛿∗0 L[2𝑟] = 𝑅𝜒 ⊗
∧
(𝑋∗(𝑇) ⊗ Λ[1]).

Proof. Let L be a character sheaf on the central component 𝐿+𝑇/𝐿≥𝑛𝑇 such that
𝜎∗ L � L. By Lang’s theorem, this character sheaf corresponds to a character
𝜒 : 𝐿+𝑇

𝐿≥𝑛𝑇 (𝜅𝐹) → Λ×.

We calculate 𝑞! ◦ 𝛿∗0 L as follows. Let 𝑠 : ∗ → 𝐿𝑇
Ad𝜎 𝐿𝑇

be a point. We form the
pull-back

𝐿𝑇

𝐿≥𝑛𝑇

𝐿𝑇

Ad𝜎 𝐿≥𝑛𝑇 𝐿≥𝑛𝑇\𝐿𝑇/𝐿≥𝑛𝑇

∗ 𝐿𝑇

Ad𝜎 𝐿𝑇
,

𝑠′

𝑞′

𝛿0

𝑞

𝑠

where 𝑠′ is given by 𝑡 ↦→ 𝑠 + 𝑡 − 𝜎𝑡 on objects and identity on morphisms.

First, we determine on which components of 𝐿𝑇
Ad𝜎 𝐿

≥𝑛𝑇 the pullback 𝑠′∗ ◦ 𝛿∗0 L is
non-zero. Clearly, 𝛿∗0 L has the same support as L. The components of 𝐿𝑇

Ad𝜎 𝐿
≥𝑛𝑇

are indexed by the set 𝑋∗(𝑇)𝐼 , and so is 𝐿𝑇
𝐿≥𝑛𝑇 . Let [𝑠] ∈ 𝑋∗(𝑇)𝐼 be the component in

which 𝑠 lies, then 𝑠′∗ ◦ 𝛿∗0 L has support on all those components 𝛼 ∈ 𝑋∗(𝑇)𝐼 such
that [𝑠] + 𝛼 − 𝜎𝛼 = 0. Assume [𝑠] = 𝜎𝛼 − 𝛼, then 𝑠′∗ ◦ 𝛿∗0 L has support on those
components indexed by 𝛼 + (𝑋∗(𝑇)𝐼)𝜎.

Next, we determine on which components of 𝐿𝑇
Ad𝜎 𝐿𝑇

the sheaf 𝑠∗ ◦ 𝛿∗0 L is non-
zero. The components of 𝐿𝑇

Ad𝜎 𝐿𝑇
is indexed by 𝐵(𝑇) = 𝑋∗(𝑇)Γ. The fact that
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[𝑠] = 𝜎𝛼 − 𝛼 in the previous analysis implies that 𝑠 lies in the central component
of 𝐿𝑇

Ad𝜎 𝐿𝑇
. Therefore 𝑠∗ ◦ 𝛿∗0 L is supported on the central component only.

To study 𝑠∗ ◦ 𝛿∗0 L on the central component of 𝐿𝑇
Ad𝜎 𝐿𝑇

, it suffice to take 𝑠 = 1 ∈ 𝐿𝑇 .
Since we assumed that 𝜎∗ L � L, the pullback 𝑠′∗ ◦ 𝛿∗0 L is the trivial local system
on components indexed by (𝑋∗(𝑇)𝐼)𝜎. By Lang’s theorem, 𝑠′∗ ◦ 𝛿∗0 L restricted
to 𝐿+𝑇

𝐿≥𝑛𝑇 is the trivial local system with an (𝐿+𝑇/𝐿≥𝑛𝑇) (𝜅𝐹)-action given by the
character 𝜒.

Let 𝑟 = rank𝑇 . Since 𝐿+𝑇
𝐿≥𝑛𝑇 � 𝑇 ×A

𝑑 as an algebraic scheme for some integer 𝑑, we
have

𝑠∗ ◦ 𝑞∗ ◦ 𝛿∗0 L[2𝑟] =
⊕
(𝑋∗ (𝑇)𝐼 )𝜎

(∧
(𝑋∗(𝑇) ⊗ Λ[−1] (−1))

)
[2𝑟]

=
∧
(𝑋∗(𝑇) ⊗ Λ[1] (−1)).

The sheaf 𝑞∗ ◦ 𝛿∗0 L is the above sheaf equipped with a 𝑇 (𝐹)-action. Recall that
𝐼𝜒 = {𝑡 − 𝜒(𝑡) |𝑡 ∈ 𝑇 (𝐹)0} is the augmentation ideal. Then as a Λ[𝑇 (𝐹)]-module
we have

𝑞∗ ◦ 𝛿∗0 L = (Λ[𝑇 (𝐹)]/𝐼𝜒) ⊗
∧
(𝑋∗(𝑇) ⊗ Λ[1] (−1))

= 𝑅𝜒 ⊗
∧
(𝑋∗(𝑇) ⊗ Λ[1] (−1)) □

Proof of part (ii) of Theorem 3.4.1. Let 𝑥 ∈ Homcts(𝜋1(𝐿+𝑇),Λ×)𝜎 and consider
the skyscraper sheaf Λ𝑥 at this point. We have shown the canonical isomorphism

L ◦ 𝑖∗(Λ𝑥) � 𝑞∗ ◦ 𝛿∗0 ◦ Chmon(Λ𝑥) [2𝑟] = 𝑅𝜒 ⊗
∧
(𝑋∗(𝑇) ⊗ Λ[1]).

Since Chmon is 𝑡-exact, so is T. Therefore all four functors in diagram 3.4 are 𝑡-exact.
Let F ∈ Tr

(
IndCoh(Locgeom

𝑐𝑇,𝐹
), 𝜎

)
be the image of Λ𝑥 . Since

L ◦ 𝐻 (F ) � 𝐺 ◦ T(F ), (3.7)

there is an isomorphism on each cohomology. The cohomology of (3.7) in degree
0 is 𝑅𝜒. Since the family {𝑅𝜒} generates the whole category of IndCoh(Loc𝑐𝑇,𝐹),
we conclude that the diagram commutes. □
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A p p e n d i x A

A LEMMA IN HOMOLOGICAL ALGEBRA

Lemma A.0.1. Let Γ be a finite group, 𝐴 be an abelian group equipped with a
Γ-action. Let [𝛼] ∈ 𝐻2(Γ, 𝐴) represent the group extension

1→ 𝐴→ 𝐺 → Γ.

Let 𝑀 be any Γ-module, in other words, it is a 𝐺-module on which 𝐴 acts trivially.
Then we have a commutative diagram

𝐻2(Γ, 𝑀) 𝐻1(𝐴, 𝑀)Γ 𝐻1(𝐺, 𝑀) 𝐻1(Γ, 𝑀) 0

0 𝐻̂−1(Γ, 𝑀 ⊗ 𝐴) (𝑀 ⊗ 𝐴)Γ (𝑀 ⊗ 𝐴)Γ 𝐻̂0(Γ, 𝑀 ⊗ 𝐴) 0.

𝑑2

∪𝛼 res ∪𝛼

The first row of the diagram is the long exact sequence associated to the Lyndon-
Hochschild-Serre spectral sequence. The second row is the definition of the Tate
cohomology. The first and last vertical map is the cup product with 𝛼. The map res
is the restriction map 𝐻1(𝐺, 𝑀) → 𝐻1(𝐴, 𝑀)Γ.

In particular, if Γ and 𝐴 satisfies the condition of the Tate-Nakayama lemma, we
would have

𝐻1(𝐺, 𝑀) � (𝑀 ⊗ 𝐴)Γ.

Proof. The crux of the proof is the commutativity of the left-most square, which
we will prove in the sequel. The commutativity of the rest of the squares are fairly
standard and will be omitted.

A.0.2. Notations. We follow the notation of Atiyah and Wall (Cassels, 1987). The
(homogeneous) bar resolution of the 𝐺-module Z is given by

𝐶𝑛 (𝐺,Z) =
⊕
𝐺𝑛+1

Z(𝑔0, 𝑔1, · · · , 𝑔𝑛),

which is the free abelian group generated by the basis 𝐺𝑛+1 with the action of

𝑔 · (𝑔0, · · · , 𝑔𝑛) = (𝑔𝑔0, · · · , 𝑔𝑔𝑛).
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The differential is the usual

𝑑 (𝑔0, · · · , 𝑔𝑛) =
𝑛∑︁
𝑖=0
(−1)𝑖 (𝑔0, · · · , 𝑔𝑖, · · · , 𝑔𝑛).

It is isomorphic to the more familiar inhomogeneous bar resolution via sending

(𝑔0, 𝑔0𝑔1, · · · , 𝑔0𝑔1 · · · 𝑔𝑛) ↦→ (𝑔0 |𝑔1 | · · · |𝑔𝑛).

Let 𝑃• denote a Γ-resolution of Z by finitely-generated free Γ-modules, and let
𝑃∗ = Hom(𝑃•,Z) be its dual, so that we have exact sequences

· · · → 𝑃1 → 𝑃0 → Z→0

0→ Z→ 𝑃∗0 → 𝑃∗1 → · · · .

Let 𝑃−𝑛 = 𝑃∗𝑛−1 and join the two sequences together we get a doubly-infinite exact
sequence

𝐿• : · · · → 𝑃1 → 𝑃0 → 𝑃−1 → 𝑃−2 → · · ·

The Tate groups are then the cohomology groups of HomΓ (𝐿•, 𝑀) for any Γ-module
𝑀 , i.e.

𝐻𝑖𝑇 (Γ, 𝑀) = 𝐻
𝑖 (HomΓ (𝐿•, 𝑀)).

The cohomology in degrees 𝑛 ≤ −2 agrees with the Tate groups explicitly via
isomorphisms

𝑃• ⊗Γ 𝑀 = (𝑃• ⊗ 𝑀)Γ
𝑁−→ (𝑃• ⊗ 𝑀)Γ → (Hom(𝑃∗•, 𝑀))Γ = HomΓ (𝑃∗•, 𝑀).

A.0.3. Cup Product. Let {𝑤𝜎 |𝜎 ∈ Γ} be a system of representatives of Γ in 𝐺.
We define the cocycle 𝛿 : Γ × Γ→ 𝐴 via

𝑤𝜎𝑤𝜏 = 𝛿(𝜎, 𝜏)𝑤𝜎𝜏 .

Representing 𝛿 using the homogeneous bar resolution yields a cocycle𝛼 ∈ HomΓ (𝐶2(Γ,Z), 𝐴)
which is uniquely characterized by

𝛼(1, 𝑐1, 𝑐1𝑐2) = 𝛿(𝑐1, 𝑐2).

Let [ ¤𝜙] ∈ 𝐻2(Γ, 𝑀) and ¤𝜙 ∈ HomΓ (𝐶∗2 (Γ,Z), 𝑀). The cup product ¤𝜙 ∪ 𝛼 lives in
HomΓ (𝐶0(Γ,Z), 𝑀 ⊗ 𝐴) and is defined by

¤𝜙 ∪ 𝛼(𝑐∗) =
∑︁
𝑐1,𝑐2

¤𝜙(𝑐∗, 𝑐∗1, 𝑐
∗
2) ⊗ 𝛼(𝑐2, 𝑐1, 𝑐) (A.1)

=
∑︁
𝑐1,𝑐2

¤𝜙(𝑐∗, 𝑐∗1, (𝑐1𝑐2)∗) ⊗ 𝛼(𝑐1𝑐2, 𝑐1, 𝑐). (A.2)
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Its image in (𝑀 ⊗ 𝐴)Γ is

¤𝜙 ∪ 𝛼(1) =
∑︁
𝑐1,𝑐2

¤𝜙(1, 𝑐∗1, (𝑐1𝑐2)∗) ⊗ 𝛼(𝑐1𝑐2, 𝑐1, 1) (A.3)

=
∑︁
𝑐1,𝑐2

𝜙(𝑐1, 𝑐2) ⊗ 𝑐1𝑐2 · 𝛼(1, 𝑐−1
2 , 𝑐

−1
2 𝑐
−1
1 ) (A.4)

=
∑︁
𝑐1,𝑐2

𝜙(𝑐1, 𝑐2) ⊗ 𝑐1𝑐2 · 𝛿(𝑐−1
2 , 𝑐

−1
1 ). (A.5)

Notice that
¤𝜙(1, 𝑐∗1, (𝑐1𝑐2)∗) = 𝜙(𝑐1, 𝑐2)

is the switch from the inhomogeneous bar resolution to the homogeneous one.

A.0.4. Spectral sequence. For a 𝐺-module 𝑀 , we set up the chain complex that
produces the Lydon-Hochschild-Serre spectral sequence. Let 𝑃• = 𝐶•(Γ,Z) and
𝑄• = 𝐶•(𝐺,Z). The differential of the two chain complexes are denoted by 𝑑1 and
𝑑0 respectively. We define the double complex

𝐸𝑖 𝑗 = 𝑃𝑖 ⊗ 𝑄 𝑗 .

The complex Tot(𝐸𝑖 𝑗 ) is a 𝐺-resolution of Z, therefore the spectral sequence asso-
ciated with 𝐸𝑖 𝑗 ⊗𝐺 𝑀 calculates the group homology of 𝑀 . Note that 𝑃• is also a
𝐺-module. We have

𝐸𝑀𝑖 𝑗 := 𝐸𝑖 𝑗 ⊗𝐺 𝑀 = (𝑃𝑖 ⊗ 𝑄 𝑗 ⊗ 𝑀)𝐺 =
(
𝑃𝑖 ⊗ Γ (𝑄 𝑗 ⊗𝐴 𝑀)

)
.

Since 𝑄 𝑗 ⊗𝐴 (−) calculates 𝐴-homology and 𝑃𝑖 ⊗ Γ (−) calculates Γ-homology, the
resulting spectral sequence of this double complex is the Lydon-Hochschild-Serre
spectral sequence.

We need a formula that directly link the 𝐴-homology calculated by the complex 𝑄•
with that calculated by 𝐶•(𝐴,Z). We choose a projection 𝑓 : 𝐺 → 𝐴 such that

𝑓 (𝑤𝛾) = 1, for all 𝛾 ∈ Γ,
𝑓 (𝑎𝑔) = 𝑎 𝑓 (𝑔), for all 𝑎 ∈ 𝐴, 𝑔 ∈ 𝐺.

This induce a map between 𝐴-complexes 𝐶•(𝐺,Z) → 𝐶•(𝐴,Z). Let

𝑍 = ker
(
𝐶1(𝐺,Z) ⊗𝐴 𝑀 → 𝐶0(𝐺,Z) ⊗𝐴 𝑀

)
and consider the composition 𝑍 → 𝐻1(𝐴, 𝑀) � 𝐴 ⊗ 𝑀 . It sends a cycle

(𝑔1, 𝑔2) ⊗ 𝑚 ↦→ ( 𝑓 (𝑔2) − 𝑓 (𝑔1)) ⊗ 𝑚. (A.6)
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A.0.5. Differentials. Recall the definition of the map 𝑑2 : 𝐻2(Γ, 𝑀) →
𝐻1(𝐴, 𝑀)Γ. Let 𝜙 ∈ 𝐸𝑀2,0 be a cycle and assume there exists 𝜓 ∈ 𝐸𝑀1,1 such
that

𝑑0 𝜓 + 𝑑1 𝜙 = 0,

then
𝑑2( [𝜙]) = 𝑑1( [𝜓]).

From now on, we will use 𝑐, 𝑐𝑖 or Greek letters 𝜎, 𝜏 to denote an element in Γ, 𝑔, 𝑔𝑖
or ℎ an element in 𝐺. We note that in 𝐸𝑀

𝑖, 𝑗
, we have

(𝑐0, 𝑐1, · · · , 𝑐𝑖) ⊗ (𝑔0, · · · , 𝑔 𝑗 ) ⊗ 𝑚
= (1, 𝑐−1

0 𝑐1, · · · , 𝑐−1
0 𝑐𝑖) ⊗ (𝑤

−1
𝑐0
𝑔0, · · · , 𝑤−1

𝑐0
𝑔 𝑗 ) ⊗ 𝑐−1

0 𝑚,

and therefore 𝐸𝑀
𝑖, 𝑗

is generated by by elements whose component in the 𝑃𝑖 factor
starts with 𝑐0 = 1. We write all cycles as a linear combination of these elements.
For example, for any 𝜙 ∈ 𝐸𝑀2,0, we can write

𝜙 =
∑︁
𝑐1,𝑐2,𝑔

(1, 𝑐1, 𝑐1𝑐2) ⊗ (𝑔) ⊗ 𝜙(𝑐1, 𝑐2, 𝑔).

This expression is in general not unique. However, it is worth noting that in the
special case of 𝜙 ∈ 𝐸𝑀2,0, the expression above is unique modulo the identity

(1, 𝑐1, 𝑐1𝑐2) ⊗ (𝑔) ⊗ 𝜙(𝑐1, 𝑐2, 𝑔) = (1, 𝑐1, 𝑐1𝑐2) ⊗ (𝑎𝑔) ⊗ 𝜙(𝑐1, 𝑐2, 𝑔)

for any 𝑎 ∈ 𝐴. That is to say, let

𝜙(𝑐1, 𝑐2, 𝜎) =
∑̄︁
𝑔=𝜎

𝜙(𝑐1, 𝑐2, 𝑔),

the following expression of 𝜙 is unique:

𝜙 =
∑︁
𝑐1,𝑐2,𝜎

(1, 𝑐1, 𝑐1𝑐2) ⊗ (𝑤𝜎) ⊗ 𝜙(𝑐1, 𝑐2, 𝜎).

Similar unique expression exists for elements of 𝐸𝑀1,0 with little change.
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Now we compute 𝑑2. The next three formulae are straightforward.

𝑑1 (1, 𝑐1, 𝑐1𝑐2) ⊗ (𝑔) ⊗ 𝑚
= (𝑐1(1, 𝑐2) − (1, 𝑐1𝑐2) + (1, 𝑐1)) ⊗ (𝑔) ⊗ 𝑚
= (1, 𝑐2) ⊗ (𝑤−1

𝑐1
𝑔) ⊗ 𝑐−1

1 𝑚 − (1, 𝑐1, 𝑐2) ⊗ (𝑔) ⊗ 𝑚 + (1, 𝑐1) ⊗ (𝑔) ⊗ 𝑚.

𝑑0 (1, 𝑐) ⊗ (𝑔0, 𝑔1) ⊗ 𝑚
= (1, 𝑐) ⊗ (𝑔0) ⊗ 𝑚 − (1, 𝑐) ⊗ (𝑔1) ⊗ 𝑚.

𝑑1 (1, 𝑐) ⊗ (𝑔1, 𝑔2) ⊗ 𝑚
= (𝑤−1

𝑐 𝑔1, 𝑤
−1
𝑐 𝑔2) ⊗ 𝑐−1𝑚 − (𝑔1, 𝑔2) ⊗ 𝑚

= 𝑐−1𝑚 ⊗
(
𝑓 (𝑤−1

𝑐 𝑔2) − 𝑓 (𝑤−1
𝑐 𝑔1)

)
− 𝑚 ⊗ ( 𝑓 (𝑔2) − 𝑓 (𝑔1))

= 𝑐−1𝑚 ⊗
(
𝛿(𝑐−1, 𝑔2) − 𝛿(𝑐−1, 𝑔1)

)
− 𝑚 ⊗ ( 𝑓 (𝑔2) − 𝑓 (𝑔1)) .

In the second to last equality we actually send the element to 𝑀 ⊗ 𝐴 as in (A.6).
From this we deduce the boundaries of a cycle as follows. For 𝛾, 𝜎 ∈ Γ, we have

𝑑1 𝜙(𝛾, 𝜎) =
∑︁
𝑐2=𝛾

𝑐−1
1 𝜙(𝑐1, 𝑐2, 𝑐1𝜎) −

∑︁
𝑐1𝑐2=𝛾

𝜙(𝑐1, 𝑐2, 𝜎) +
∑︁
𝑐1=𝛾

𝜙(𝑐1, 𝑐2, 𝜎)

=
∑︁
𝑐

𝑐−1𝜙(𝑐, 𝛾, 𝑐𝜎) −
∑︁
𝑐

𝜙(𝑐, 𝑐−1𝛾, 𝜎) +
∑︁
𝑐

𝜙(𝛾, 𝑐, 𝜎), (A.7)

𝑑0 𝜓̃(𝛾, 𝜎) =
∑︁
ℎ=𝜎, 𝑔

𝜓(𝛾, ℎ, 𝑔) −
∑︁
𝑔

𝜓(𝛾, 𝑔, ℎ). (A.8)

𝑑1 𝜓 =
∑︁
𝑐,𝑔1,𝑔2

𝑐−1𝜓(𝑐, 𝑔1, 𝑔2) ⊗ (𝛿(𝑐−1, 𝑔2) − 𝛿(𝑐−1, 𝑔1))

−
∑︁
𝑐,𝑔1,𝑔2

𝜓(𝑐, 𝑔1, 𝑔2) ⊗ ( 𝑓 (𝑔2) − 𝑓 (𝑔1)). (A.9)

These is enough to determine the map 𝑑2.



45

To conclude, let us assume 𝑑1 𝜙 + 𝑑0 𝜓 = 0. We have

𝑑2( [𝜙]) = 𝑑1 𝜓

=
∑︁
𝛾,𝑔1,𝑔2

𝛾−1𝜓(𝛾, 𝑔1, 𝑔2) ⊗ (𝛿(𝛾−1, 𝑔2) − 𝛿(𝛾−1, 𝑔1))

=
∑︁
𝛾,𝑔1,𝑔2

(
𝛾 · 𝜓(𝛾−1, 𝑔2, 𝑔1) − 𝛾 · 𝜓(𝛾−1, 𝑔1, 𝑔2)

)
⊗ 𝛿(𝛾, 𝑔1)

=
∑︁
𝛾,𝜎

−𝛾 · 𝑑0 𝜓̃(𝛾−1, 𝜎) ⊗ 𝛿(𝛾, 𝜎)

=
∑︁
𝛾,𝜎

𝛾 · 𝑑1 𝜙(𝛾−1, 𝜎) ⊗ 𝛿(𝛾, 𝜎)

=
∑︁
𝛾,𝜎,𝑐

(
𝑐−1𝜙(𝑐, 𝛾−1, 𝑐𝜎) − 𝜙(𝑐, 𝑐−1𝛾−1, 𝜎) + 𝜙(𝛾−1, 𝑐, 𝜎)

)
⊗ 𝛿(𝛾, 𝜎)

=
∑︁
𝑐1,𝑐2,𝜎

𝜙(𝑐1, 𝑐2, 𝜎) ⊗
(
𝑐1𝑐2 · 𝛿(𝑐−1

2 , 𝑐
−1
1 𝜎) − 𝑐1𝑐2 · 𝛿(𝑐−1

2 𝑐
−1
1 , 𝜎) + 𝑐1𝛿(𝑐−1

1 , 𝜎)
)

=
∑︁
𝑐1,𝑐2,𝜎

𝜙(𝑐1, 𝑐2, 𝜎) ⊗ 𝑐1𝑐2 · 𝛿(𝑐−1
2 , 𝑐

−1
1 )

= [𝜙] ∪ 𝛼. □
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