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ABSTRACT

A fundamental goal of modern biology is to build global, predictive models of gene regulation that

encompass diverse physiological contexts. Single-cell transcriptomics has enabled the creation

of developmental cell atlases—detailed catalogs of gene expression patterns and differentiation

trajectories at an organismal scale. The widespread availability of cell atlases across metazoan

model organisms presents an opportunity to construct global theories of cell-state control. In this

thesis, we introduce a framework that uses persistent homology to decompose cell atlases into

topological structures that provide signatures of gene regulation at the scale of an organism. Using

this framework, we found that the topological structure of a broad set of developmental atlases

contains only a discrete set of topological structures—such as clusters, trees, and loops—revealing

the recurrent use of global gene regulatory strategies. Our analysis revealed that the tree topology,

while predominant, is not universal. Indeed, we identified non-trivial topologies containing loops in

the development of human immune cells, seam-hypodermal cells in C. elegans, and the cnidocytes

of multiple cnidarians. Analysis of cell-state manifolds with non-trivial topology demonstrated an

important role of convergent structures in increasing cellular diversity along paths to a common cell

fate, and of cyclic structures in self-renewal of progenitor-like states. Together, this work provides

a global perspective on principles of cell-state regulation, and suggests that loops are important

organizing structures for controlling cell differentiation.
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C h a p t e r 1

INTRODUCTION

Unlike other scientific disciplines, biology underuses the power of representing observables as

mathematical objects to build predictive models. In this sense, Caltech has been a notable dissident

in this regard, placing computational and mathematical thinking at the center stage for biological

research, and this thesis is a reflection of that ethos. Professor Rob Phillips aptly notes that

"biology is in the era of Tycho Brahe," referring to the field’s current focus on data collection with

limited emphasis on discovering mathematical laws governing observed phenomena. This thesis

aims to establish a theoretical framework that leverages topological invariants to test hypotheses of

development and make global predictions of developmental structures. Throughout the following

chapters, I will present advances towards a mathematical theory of cell fate control—an esquisse

for a program that harnesses topology to guide a predictive dynamical theory of development.

1.1 Cell differentiation is the foundation of metazoan complexity

The remarkable diversity of animal forms—spanning bilaterians, cnidarians, sponges (porifera),

comb jellies (ctenophores), and placozoa—shares a fundamental characteristic: the division of

labor at the cellular level (Richter and King, 2013). This multicellular specialization forms the

cornerstone of metazoan complexity (Sebé-Pedrós, Degnan, and Ruiz-Trillo, 2017).

At its core, animal development proceeds through cell differentiation: a sophisticated series of

processes through which cell identity changes, orchestrated by biomolecular regulatory networks

(Liberali and Schier, 2024). Through this remarkable process, animals develop from a single-celled

zygote into structured and organized multicellular entities.

The fascinating question of how cells in the animal embryo diversify, self-organize, and coordinate

with precision has captivated scientists since antiquity. Historical records show that even Aristo-

tle studied chick embryos, while numerous other philosophers and scientists were captivated by
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developmental phenomena.

1.2 A brief history of developmental biology: the advent of the genomic era

The study of animal development advanced significantly in the late 19th and early 20th centuries

through pioneering embryological studies. Although largely observational, these ingenious inves-

tigations provided fundamental insights into cell fate control. In 1891, Driesch (Sander, 1997)

demonstrated totipotency at the two-cell stage of the sea urchin embryo Echinus microtuberculatus

by separating two-celled embryos and observing that each cell developed into a complete, albeit

smaller, animal. Another landmark experiment was conducted by Mangold in 1924, revealing that

a specific region of the frog embryo (now known as the Mangold-Spemann organizer) could induce

the formation of a complete head and spinal cord when transplanted into another embryo.

By the time of Mangold’s discovery, Mendel’s theory of inheritance had been rediscovered,

inspiring researchers to study development through direct genetic manipulation. However, the

biochemical composition of genes remained elusive in the early 20th century. A paradigm shift

was necessary to understand the molecular underpinnings of animal development. In the 1920s,

Morgan and his group demonstrated that genes resided in chromosomes and discovered genetic

linkage. In 1941, Beadle and Tatum showed that genes code for enzymes, advancing the maturation

of the field of genetics. It was until 1952, that Hershey and Chase provided evidence that genes were

biochemically composed of DNA by showing that only phage DNA was necessary for bacterial

infection.

Another paradigm shift occurred in 1961, when Jacob and Monod proposed a model for gene

regulation, based on work on the lactose system of E.coli and the lysogenic circuit of the 𝜆 phage.

In their model regulatory genes control the activity of other genes upon binding to a DNA sequence

upstream of the controlled gene(s). In parallel, in 1969, Britten and Davidson published a theory

on the role of gene regulation in cell differentiation during development, though the molecular

mechanisms remained mysterious. Together, these studies established that the cellular diversity in

animal development could driven by the spatiotemporal control of gene expression. Thus, it became
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increasingly clear that mapping the expression patterns of key developmental genes in time and

space would aid in our understanding of animal development. Direct visualization methods such

as in situ hybridization enabled the discovery of spatial patterns of developmental genes (Lyons,

Hogan, and Robertson, 1995). However, in situ hybridization was limited by the number of genes

that could be studied simultaneously.

The 1990s witnessed the flourishing of genomics, with next-generation sequencing catalyzing the

development of modern molecular biology methods. One of the most groundbreaking advances

in genomics became possible: genome-wide gene expression profiling through mRNA sequencing

(RNA-seq) (Mortazavi et al., 2008). In contrast to previous approaches, RNA-seq provided a

comprehensive view of gene expression. This technology facilitated numerous discoveries in

developmental biology, including the characterization of gene modules driving cell identity during

fate commitment and the identification of novel regulators for cell fate specification.

The study of specific cell populations in embryos using RNA-seq relied on techniques like

fluorescence-activated cell sorting (FACS), but still presented limitations for biological discov-

ery. Recognizing the cellular heterogeneity within tissues inspired the development of single-cell

RNA-seq (scRNA-seq), which enabled the study of transcriptional programs across different cell

types within a sample.

After the technology matured, several methods in 2015 (Klein et al., 2015; Macosko et al., 2015)

leveraged microfluidics to profile thousands of cells simultaneously. An important application

of scRNA-seq became the creation of comprehensive catalogs of cell states across an animal’s

developmental history—or developmental cell atlases. Following 2015, numerous developmental

atlases were published for various organisms including frogs, zebrafish, and the nematode C.

elegans.

The scale and complexity of single-cell atlases introduced new computational challenges. Among

these, cell differentiation trajectory inference is crucial for interpreting developmental atlases, and

will be the topic for discussion in the next section.
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1.3 Trajectory inference is a topological problem

During differentiation, cells traverse specific paths in gene expression space. Single-cell RNA-seq

data provides snapshots of these paths, and a fundamental goal in computational biology is to

reconstruct these differentiation trajectories. Consequently, significant effort has been devoted to

developing computational methods for trajectory inference. These methods aim to identify the

global structure of the cell state manifold, which encompasses all cell differentiation trajectories

within a single-cell atlas.

Since reconstructing the global structure of a cell state manifold is an inference problem, a rea-

sonable approach involves making assumptions about the underlying structure. Cell differentiation

has traditionally been conceptualized as a branching process, wherein cells make fate decisions

along their path toward mature cell types, forming a tree-like structure. This conceptual model is

encapsulated in the Waddington landscape metaphor, which depicts development as cells rolling

down a hill, with plateaus representing branch points and valleys representing terminal cell types.

As a result, many trajectory inference methods have been designed to identify tree structures from

data, e.g. Wishbone (Setty et al., 2016), Monocle (Trapnell et al., 2014), and URD (Farrell et al.,

2018) (see Saelens et al., 2019 for a review).

Other approaches have used both topological and geometric methods to infer the global structure

of cell state manifolds. In particular, much work has been based on analyzing the eigenvectors of

the Laplacian of a k-Nearest Neighbors graph of the data (e.g. (Angerer et al., 2015) and PHATE

(Moon et al., 2019)). A different approach was used in scTDA (Rizvi et al., 2017), where the authors

proposed a method to represent the cell state manifolds using Mapper (Singh, Mémoli, Carlsson, et

al., 2007), a dimensionality reduction method that doesn’t assume a presecribed tree-like topology

for representing the data manifold. Mapper falls under the umbrella of topological data analysis

(TDA), which has gained traction in recent years as a powerful tool for analyzing complex data

sets. TDA provides a framework for extracting meaningful features from high-dimensional data,

enabling the identification of structure by harnessing concepts from Algebraic Topology.
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Persistent homology (PH) is a powerful technique that captures the topological features of data

at multiple scales. Notably, persistent homology, the core tool used in our work, is also a TDA

method. PH has been succesfully applied to the study of biological data, e.g. in (Benjamin et al.,

2024) the authors used PH to classify cancer images. More relevant to our work, PH has also been

used for studying cyclic expression patterns (Maggs et al., 2025). However, there has been, to

the best of our knowledge, no study has used PH to study the topology of cell state manifolds in

development. Therefore it remains poorly understood if there are higher order topological features,

like loops or voids, that are relevant for understanding the topology of cell state manifolds.

1.4 Organization of the thesis

Chapter 2 constitutes the core work of this thesis, presenting a novel framework for analyzing

the topology of cell state manifolds. To make this thesis self-contained, in Chapter 3, I provide

a detailed and pedagogical exposition of the mathematical framework, assuming only familiarity

with Linear Algebra.
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C h a p t e r 2

TOPOLOGICAL SIGNATURES OF GENE REGULATION REVEAL
GLOBAL PRINCIPLES OF CELL STATE CONTROL
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ABSTRACT

Embryo development requires precise control of a plethora of biological networks across space and

time. Fundamentally, biomolecular networks are dynamical systems and topological methods can

provide insights into their design principles. For example, multistable and oscillatory designs have

distinct topological signatures: fixed points and periodic orbits. Crucially, these signatures can

be quantified by the topological notion of homology groups, and their associated dimension, the

Betti numbers. Moreover, single-cell developmental atlases provide an unprecedented view into

the dynamics of development. Despite numerous efforts, it is still poorly understood what types of

complex topological structures are present in developmental atlases and what functional roles they

play during the development of multicellular organisms. To address these questions, we developed

totopos, a computational framework to examine the topological features of transcriptome spaces by

quantitative analysis of their homology groups. First, we showed that we can identify genetic drivers

of topological structures in simulated datasets. We then applied our topological approach to more

than ten single-cell developmental atlases discovering that transcriptome spaces are predominantly

path-connected and only sometimes simply connected. Finally, we applied totopos to examine

gene expression patterns in specific topological loops. These loops represented stem-like and

convergent cell circuits, observed in a wide array of developmental systems such as in the human

immune system, the seam cells of C. elegans, and the cnidocytes of cnidarians. Our results

show that differentiation mechanisms can use complex topological modules and that these modules

can be selected during evolution. Thus, our approach to studying the topological properties of

developmental transcriptome atlases opens new possibilities for understanding the development of

multicellular organisms.
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2.1 Introduction

Metazoan development involves the progressive specialization of a totipotent cell state to a plethora

of cell types constituting the complex tissues present in the adult organism. This process involves

both progressive fate restriction and dynamic spatial organization, with cells adopting specific gene

expression patterns at precise locations. Single-cell RNA sequencing (scRNA-seq) has transformed

our ability to study this process, enabling the creation of single-cell developmental atlases across

metazoans (Briggs et al., 2018; Packer et al., 2019; Siebert et al., 2019; Steger et al., 2022; Liao

et al., 2022; Plass et al., 2018; Calderon et al., 2022; Lange et al., 2023; Zhang et al., 2020; Qiu

et al., 2024).

Modern single-cell developmental atlases reveal the landscape of regulatory states that cells traverse

during differentiation, yet extracting fundamental principles from these complex datasets remains

challenging. Dynamical systems theory suggests that topologically equivalent phase spaces ex-

hibit a globally similar behavior (Arnold, 1991; Hopf, 1927). Thus, identifying the topology of

developmental atlases across organisms could shed light on shared principles of cell state control.

Indeed, several efforts have aimed to analyze the topology of single-cell data (Rizvi et al., 2017;

Vipond et al., 2021). However, there has been no systematic topological study in the context of

developmental atlases.

Current methods for developmental trajectory inference often assume a tree-like topology (Farrell

et al., 2018; Setty et al., 2016; Briggs et al., 2018), or use non-linear dimensionality reduction

techniques for analysis (Packer et al., 2019). These choices may influence the misinterpretation

of developmental trajectories by distorting the topology of data (see (Wattenberg, Viégas, and

Johnson, 2016) for t-SNE), instead of directly inferring the topology in an unsupervised way.

Therefore, it has remained unclear to what extent complex topological structures are present in the

developmental transcriptome of different organisms.

In this study, we introduce a computational framework that uses algebraic topology to decode the

global structure of developmental atlases. By leveraging simplicial homology groups and their as-
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sociated Betti numbers we developed a topological classification for cell differentiation trajectories.

We specifically focused on characterizing closed loop trajectories, as these understudied features

could represent crucial functions in development.

To study topological loops in developmental atlases, we developed Trajectory Outlining for Topo-

logical Loops in Single-cell data (totopos), a suite of tools that enable: 1) identifying the topology

of a single-cell dataset, 2) retrieving cells that belong to a system containing a closed loop trajectory

(topoCells), 3) identifying critical genes that drive the loop topological signature (topoGenes),

and 4) building pseudotime coordinates for loop topologies. The foundation of our methodology

is persistent homology (PH) (Methods, Box 2), a multiscale approach that analyzes the dynamics

of how topological loops appear and cease at different scales.

We first validated our computational framework by demonstrating its ability to identify closed loops

in simulated scRNA-seq datasets that exhibit cyclic dynamics and a cell cycle dataset. Building

on this validation, we screened over ten transcriptomic atlases from different species, uncovering

the presence of loops in the development of multiple metazoan lineages. These findings challenge

traditional developmental models based on tree-like branching structures composed of discrete cell

fate decisions.

Through extensive analysis of single-cell developmental atlases, we identified a small set of

topological building blocks that serve as fundamental architectural elements of cell differentiation

processes. We refer to these building blocks as “topological motifs” (Figure 2.2 C). These motifs

are characterized by unique combinations of the 𝛽0 and 𝛽1 Betti numbers and include structures

such as clusters, linear trajectories, trees, and loops. Remarkably, we found that all analyzed

single-cell developmental atlases can be classified according to these topological motifs or their

combinations (Fig 2.3). This suggests the existence of a universal topological code underlying

cellular differentiation programs. Furthermore, we demonstrate how these topological motifs are

connected with different classes of gene regulatory dynamics, providing a global theory of cell

state control.
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In addition, we identified specific gene modules that drive the dynamics associated with these

topological features. For instance, we present evidence suggesting that seam cells maintain their

stemness through a gene expression topological loop in C. elegans. A topological loop in the

developing human immune system bridges the erythroid and myeloid lineages via erythroblastic

macrophages and a population of promyelocytes in the fetal liver with erythroid signatures. Fi-

nally, we identified a convergent differentiation topology conserved across three cnidarian species,

indicating that topological gene expression features can be stable across evolutionary time.

Altogether, our results show that topological loops are present in single-cell developmental atlases

and can uncover and describe mechanisms to maintain homeostatic differentiation, stemness, and

regeneration. Our framework enables the identification of such loops from scRNA-seq datasets

along with the characterization of the associated gene expression programs. By integrating topo-

logical and gene regulatory analyses we provide a new approach for understanding the principles

governing cell state transitions across biological systems.

Box 1. Introduction to algebraic topology. In this section, we introduce the theoretical

concepts of the totopos framework.

• Topological space: A mathematical structure that abstracts away the notion of distance

and instead focuses on proximity. A topological space captures essential features of

nearness by a collection of “open sets” — the topology. We will not provide a formal

definition, but interested readers can refer to (Hatcher, 2001). Rather, we will think of

a topological space as a device that enables us to quantify the shape and connectivity of

single-cell transcriptomes.

• Manifold: An 𝑛−dimensional manifold M ⊂ R𝐷 is a topological space that locally looks

like R𝑛. For example, smooth curves and surfaces are 1 and 2−D manifolds, respectively.

Manifolds generalize Euclidean space: they can be curved, and importantly for our
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discussion, they can have non-trivial topology or shape. Some canonical 2-dimensional

manifolds are the sphere, the torus, and the Klein bottle.

• Simplex: An 𝑛−dimensional simplex is generalization of a polyhedron consisting of 𝑛+1

vertices (Fig 2.1 A). For instance, a 0-simplex is a point, 1-simplex is a line, a 2-simplex

is a triangle and so forth. The dimension of a simplex is given by dim𝜎 = |𝜎 | − 1. We

will denote an 𝑛-simplex as a tuple 𝜎 = [𝑣0, 𝑣1, ..., 𝑣𝑛] where the ordering of vertices

matters for defining orientation. Simplices are the building blocks of discrete versions of

manifolds called simplicial complexes.

• Abstract simplicial complex (ASC): Abstract simplicial complexes are, intuitively, a

computational scaffold for calculating the homology of manifolds. An ASC 𝐾 over a

vertex set 𝑉 is a collection of subsets of 𝑉 , that is closed under the subset relation—if

a simplex 𝜎 is in 𝐾 and 𝜏 ⊂ 𝜎 (𝜏 is a subset of 𝜎) then 𝜏 is in 𝐾 (Fig 2.2, A). The

dimension of 𝐾 is just the maximal dimension of its simplex, dim𝐾 = max𝜎∈𝐾dim𝜎.

This simple algebraic definition provides a computational model for studying the topology

of manifolds.

• Chains: An 𝑛-chain is a linear combination of 𝑛-simplices. The concept of chains allows

us to algebrize simplices. For example, adding multiple 1−simplices forms a path which

is a 1−chain. The power of the concept of chains is that under this definition, the space

of n-chains 𝐶𝑛 forms a commutative group, allowing us to leverage the rich algebraic

properties developed in Group Theory.

• Boundary map: A boundary map can be intuitively understood as a manual on how to

glue together simplices of consecutive dimensions. For each dimension, the boundary

map is a linear map 𝜕𝑛 : 𝐶𝑛 → 𝐶𝑛−1, with the property that 𝜕𝑛−1 ◦ 𝜕𝑛 = 0. That

is, applying two consecutive boundary mappings annihilates the geometric object. For
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example, the boundary of a solid 3-ball is a sphere 𝜕3(𝐵3) = S2, and a sphere has no

boundary: 𝜕2𝜕3(𝐵3) = 𝜕2(S2) = ∅.

• Chain complex: The sequence of chain groups 𝐶𝑛 with decreasing geometric dimension

connected by corresponding boundary maps 𝜕𝑛 : 𝐶𝑛 → 𝐶𝑛−1 (Fig 2.1 A).

• Homology group 𝐻𝑛: the homology group is the space of equivalence classes of

𝑛−dimensional holes, which are not boundaries of 𝑛 + 1 dimensional simplices. Mathe-

matically the 𝑛−homology group is 𝐻𝑛 = ker 𝜕𝑛/im 𝜕𝑛+1. Two members 𝑥, 𝑦 ∈ ker 𝜕𝑛 are

equivalent if 𝑥 − 𝑦 ∈ im 𝜕𝑛+1.

• Betti number(s): the 𝑛−th Betti number, denoted 𝛽𝑛 is the dimension of the 𝑛−homology

group, i.e. 𝛽𝑛 = dim𝐻𝑛 = dim ker𝜕𝑛 − dim im 𝜕𝑛+1. Note that there is a Betti number per

dimension: 𝛽0 encodes the number of connected components, 𝛽1 is the number of loops,

𝛽2 is the number of cavities, and so forth.

• topoCells: Let 𝑋 be a 𝐶 × 𝐺 scRNA-seq matrix with a closed loop trajectory 𝛽0(𝑋) =

1, 𝛽1(𝑋) = 1. The topoCells are then defined as the subset of cells 𝐼 ⊆ {1, . . . , 𝐶}

with the following condition: the subset 𝐼 preserves the loop structure: 𝛽1(𝑋 [𝐼]) = 1

(Fig 2.1 C, top).

• topoGenes: Given a scRNA-seq matrix defined as above, the topoGenes are defined as

the subset of genes that drive the topological loop. Mathematically, they are a subset

𝐽 ⊆ {1, . . . , 𝐺} such that 𝛽1(𝑋 [:,−𝐽]) = 0 (Fig 2.1 C, bottom).

Simplicial homology computation.

Our main goal is to show how to compute homology groups and the corresponding Betti

numbers. Here we assume for simplicity that an abstract simplicial complex is available to

us. In Box 2 we address the scenario of inferring the simplicial complex from data. Let us
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start the discussion by decomposing a 3-simplex 𝑡1 = [𝑣0, 𝑣1, 𝑣2, 𝑣3], which would correspond

geometrically to a tetrahedron. We sort 𝑛−simplices by the lexicographic order of their vertices

as a convention. For instance, since the tetrahedron has four faces or triangles, we can

directly write down the 2−simplices: 𝑓1 = [𝑣0, 𝑣1, 𝑣2], 𝑓2 = [𝑣0, 𝑣1, 𝑣3], 𝑓3 = [𝑣0, 𝑣2, 𝑣3], 𝑓4 =

[𝑣1, 𝑣2, 𝑣3]. The list of faces (triangles) is naturally a basis for 𝐶2, the group of 2−chains.

Similarly the 1−simplices (edges) will be 𝑒1 = [𝑣0, 𝑣1], 𝑒2 = [𝑣0, 𝑣2], 𝑒3 = [𝑣0, 𝑣3], 𝑒4 =

[𝑣1, 𝑣2], 𝑒5 = [𝑣1, 𝑣3], 𝑒6 = [𝑣2, 𝑣3]. The list of edges forms a basis for 𝐶1. In Fig. 2.1 A we

depict the tetrahedron’s chain complex, which shows that this algebraic structure is a sequential

decomposition into its fundamental geometric building blocks. Please note that in the step

𝜕2 : 𝐶2 → 𝐶1 we zoomed in into a single face or triangle 𝑓2, to avoid cluttering.

We can compute the boundary of the tetrahedron 𝜕3(𝑡1) using the definition:

𝜕𝑛 ( [𝑣0, 𝑣1, ..., 𝑣𝑛]) =
∑𝑛
𝑖=0 [𝑣0, ..., 𝑣𝑖, ..., 𝑣𝑛] where 𝑣𝑖 denotes deleting vertex 𝑖 from the simplex

𝜎.

𝜕3(𝑡1) = 𝜕3( [𝑣0, 𝑣1, 𝑣2, 𝑣3]) (2.1)

:= [𝑣1, 𝑣2, 𝑣3] − [𝑣0, 𝑣2, 𝑣3] + [𝑣0, 𝑣1, 𝑣3] − [𝑣0, 𝑣1, 𝑣2] (2.2)

= 𝑓4 − 𝑓3 + 𝑓2 − 𝑓1 (2.3)

The matrix for 𝜕3 is in Fig 2.1 A. Similarly, one computes 𝜕2( 𝑓2) by applying the formula

directly 𝜕2( 𝑓2) = 𝜕2( [𝑣0, 𝑣1, 𝑣3]) = [𝑣1, 𝑣3] − [𝑣0, 𝑣3] + [𝑣0, 𝑣1] = 𝑒5 − 𝑒3 + 𝑒1. We highlight

the values of this operation in a grey box in matrix 𝜕2 (Fig 2.1 A, bottom). Finally, the matrix

for 𝜕1 can easily be assembled, since the formula for the boundary of edges is just 𝑣𝑒 − 𝑣𝑖

where 𝑣𝑒 is the endpoint and 𝑣𝑖 is the initial point of the directed edge. The interested reader

can confirm that multiplying 𝜕2𝜕3 = 0, and 𝜕1𝜕2 = 0. It turns out that since the tetrahedron

is topologically equivalent to the solid 3𝑑 ball, its Betti numbers are trivial: 𝛽0 = 1, 𝛽𝑖 = 0

for all other dimensions 𝑖. Because of this, we introduce the example of Fig 2.1 B, where one

can see there is one 1−dimensional hole. We can directly compute the 1−homology group to



14

confirm this geometric intuition. A basis for im𝜕2 is just {𝜕2( [𝑣0, 𝑣1, 𝑣2]), 𝜕2( [𝑣2, 𝑣3, 𝑣4])},

i.e. the image of the two triangles in the complex. The kernel of a linear map 𝐴 (denoted

kerA) is a subspace of the domain that gets mapped to zero. For a boundary map, this

means all elements 𝑥 ∈ ker𝜕𝑛 have the property that 𝜕𝑛 (𝑥) = 0. In one dimension, this has

a very nice geometrical interpretation: a path that returns to the initial point (i.e. a cycle)

will be in ker𝜕1. Furthermore, by the algebraic property 𝜕1𝜕2 = 0, the loops 𝑒1 + 𝑒3 − 𝑒2

and 𝑒5 + 𝑒7 − 𝑒6 will automatically be in ker𝜕1. However, there is another member in the

kernel, the loop 𝑦 = −𝑒3 + 𝑒4 − 𝑒5 (Fig 2.1 B). Indeed, we can confirm 𝑦 is in the kernel:

𝜕1(𝑝) = 𝜕1(−[𝑣1, 𝑣2] + [𝑣1, 𝑣3, ] − [𝑣2, 𝑣3]) = −(𝑣2 − 𝑣1) + (𝑣3 − 𝑣1) − (𝑣3 − 𝑣2) = 0, thus

𝐻1 = ker 𝜕1/im𝜕2 (2.4)

=
⟨𝑒1 + 𝑒3 − 𝑒2, 𝑒7 − 𝑒6 + 𝑒5,−𝑒3 + 𝑒4 − 𝑒5⟩

⟨𝑒1 + 𝑒3 − 𝑒2, 𝑒7 − 𝑒6 + 𝑒5⟩
(2.5)

∼ ⟨−𝑒3 + 𝑒4 − 𝑒5⟩ (2.6)

which corresponds to the loop 𝑦 in Fig 2.1 B. Thus, we’ve shown that we can algebraically

extract the topological loops using this theory. Moreover, since a homology group is a quotient

group, it consists of equivalence classes. For homology, the equivalence is the following: 𝑥

is equivalent to 𝑦 (denoted 𝑥 ∼ 𝑦) if its difference lies in im𝜕 (think of it as a signed set

difference). For instance, the loop 𝑥 = 𝑒1 + 𝑒4 − 𝑒5 − 𝑒2 (Fig 2.1, orange) is equivalent to 𝑦,

since 𝑥− 𝑦 = 𝑒1+ 𝑒3− 𝑒2 = 𝜕2( [𝑣0, 𝑣1, 𝑣2]), i.e. 𝑥− 𝑦 ∈ im𝜕2 and thus 𝑥 ∼ 𝑦. Since 𝐻1 has only

one generator, this implies that 𝛽1 = 1. The curious reader could confirm that 𝛽0 = 1 through

a process similar to Gaussian elimination, respecting the integer coefficients of the matrices 𝜕1

and noting that 𝜕0 = 0.
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Figure 2.1: Introduction to simplicial homology. (See Box 1 for reference.)
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Figure 2.2: Topological decomposition of cell state manifolds into fundamental building
blocks. (A) Cell state manifolds can be modeled using simplicial complexes constructed based
on the proximity between single-cell transcriptome profiles. These manifolds can be decomposed
into fundamental topological structures. These include contractible features such as clusters, linear
trajectories, and trees, as well as non-contractible features like loops. The presence of loops can be
identified through the homology group 𝐻1. We visualize two representatives of the 𝐻1 homology
group in blue and golden. (B) Cell differentiation trajectories can be tree-like or contain loops.
Topological loops can be qualitatively categorized as either convergent or cyclic. Crucially, cyclic
trajectories represent dynamical processes that a Waddington landscape model of development
cannot capture. (C) A comprehensive analysis revealed that cell state manifolds can be classified
into topological motifs. These manifolds exhibit the topology of tree-like structures or wedge sums
of circles, which can be quantified by 0 and 1-dimensional Betti numbers. We present examples of
these topological motifs derived from real single-cell atlas data.
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2.2 Results

A topological framework for single-cell developmental trajectory analysis

To investigate gene expression profiles forming topological loops along development we developed

Trajectory Outlining for Topological Loops in Single-cell data (totopos). At the core of our

approach is the construction of a Vietoris-Rips (VR) simplicial complex 𝐾𝜀 = 𝑉𝑅(𝑋, 𝜀) from a

scRNA-seq data set 𝑋 , where cells are connected based on transcriptional similarity up to a distance

of 𝜀 (Box 2.2, Methods). The VR complex serves as a computational scaffold that captures the

relationships between cell states through its chain complex (Box 2.2). We refer to this mathematical

structure as the cell state manifold, representing all cell state transitions sampled in the timecourse

experiment.

From this construction, we compute topological invariants called homology groups 𝐻𝑛, which

encode 𝑛-dimensional holes in a cell state manifold (Box 1, Methods). Their ranks, or number of

independent generators, are the Betti numbers 𝛽𝑛 = rk𝐻𝑛, and quantify these holes. We focus on

the zero- and one-dimensional homology groups (𝐻0, 𝐻1) and Betti numbers (𝛽0, 𝛽1), representing

path-connected components and topological loops, respectively. Loops can be either convergent or

cyclic (Figure 2.2 B). We leverage temporal information and biological knowledge to distinguish

between these two classes of loops.

To robustly identify topological features from cell state manifolds, we employ persistent homology

(PH), a method that examines topological features at increasing distance thresholds between cell

states. To calculate PH, one first constructs a filtration, which is a sequence of nested simplicial

complexes K = 𝐾𝜀1 ⊂ 𝐾𝜀2 ⊂ ... ⊂ 𝐾𝜀𝑙 that tracks the topology across different distance scales 𝜀𝑖

(Box 2, Methods). As the distance threshold varies, topological features like loops may appear or

disappear. The lifetime or persistence of a homology class 𝛾𝑖 is measured as pers(𝛾) = 𝜀𝑑−𝜀𝑏, where

𝜀𝑏 and 𝜀𝑑 are the distance scales at which the feature is born and dies, respectively. These birth-

death pairs are collected in a persistence diagram Dgm𝑛 (𝑋) = [𝑏𝑖, 𝑑𝑖)𝑖=1,..,𝑘 that fully characterizes

the 𝑛-dimensional topology of the data (Fig 2.7 A) (S. Y. Oudot, 2015). Crucially, PH enjoys

a stability property: small perturbations to the input data result in small deviations between
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persistence diagrams, and thus the corresponding detected topological features (Cohen-Steiner,

Edelsbrunner, and Harer, 2007). We used Ripser (Bauer, 2021; Tralie, Saul, and Bar-On, 2018) for

PH computation.

Let us provide some crucial definitions. Consider a single-cell dataset 𝑋 containing 𝐶 cells and

𝐺 genes (𝐶 × 𝐺 matrix), with a topological loop, i.e. with 𝛽1(𝑋) = 1. Let 𝐼 ⊆ {1, 2, .., 𝐶} and

𝐽 ⊂ {1, 2, ..., 𝐺}. We define topoCells as a subset of cells that form a 1D loop:

topoCells = {𝐼 ⊆ {1, 2, ..., 𝐶} | 𝛽1(𝑋 [𝐼]) = 1}

,

where 𝑋 [𝐼] denotes the matrix obtained by selecting the rows corresponding to that subset of cells.

Similarly, we define topoGenes as the set of genes 𝐽 that, when removed, results in a trivial

topology:

topoGenes = {𝐽 ⊆ {1, 2, ..., 𝐺} | 𝛽1(𝑋 [:,−𝐽]) = 0}

,

where 𝑋 [:,−𝐽] represents the dataset with columns 𝐽 removed. Note that both definitions can

be more broadly defined for an 𝑛−dimensional Betti number. In practice, we use a set of highly

variable genes and card(𝐽) = 500 in our analyses. Importantly, both topoCells and topoGenes

may not be unique. Furthermore, we perform Principal Component Analysis (PCA) with 𝑛 = 20

components before computing PH to avoid the curse of dimensionality (Hiraoka et al., 2024). We

explored the effect of dimension in topological inference in SI Note 2.6 and Figure S3.

An approach for identifying topoCells is to compute the cells in the neighborhood of a homology

generator. Therefore, from this perspective, the key step for topoCells computation is identifying

a representative for a target homology class. Ripser (Bauer, 2021) can return representatives of

persistent cohomology classes, which look geometrically very different from homology represen-

tatives. In particular, taking the neighborhood around a cohomology class doesn’t correspond to
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topoCells (See Box 2.7). However, it gives crucial topological information: a cohomology class

represents an obstruction to a homology class. Inspired by the cohomology algorithm of Dlotko

(Dłotko, 2012), we developed an algorithm that uses this birth critical edge as a means to recover

the corresponding homology class. Our algorithm proceeds as follows: Assume we have access

to the birth and death time of a target persistent homology class. Build a spanning tree 𝑇 from

the 1-skeleton of 𝐾 = 𝑉𝑅(𝑋, 𝜀𝑏) starting from one of the bounding points of the critical edge 𝑒.

Adding 𝑒 to 𝑇 results in a cycle 𝛾, and we claim that this cycle 𝛾 embeds as a representative of the

homology class in 𝐾 (SI).

To identify topoGenes, we developed a method that ranks genes based on their influence on

a persistent homology class. In brief, our approach builds upon recent advances on topological

optimization (Nigmetov and Morozov, 2022). To define the ranking score we computed gradients

𝜕L/𝜕𝑋 of a loss functionL that represents a perturbation to the input data that ablates the homology

class (Methods). The score for each gene is then defined as the norm of its corresponding column

in the gradient matrix 𝜕L/𝜕𝑋 . Intuitively, this method allowed us to identify subspaces of genes

that contain the topoCells. Our key contribution is the observation that the simplices required to

move the homology class from (𝑏, 𝑑) ↦→ (𝑑, 𝑑) (i.e. the critical set as defined in (Nigmetov and

Morozov, 2022)), are identical to the edges from the representative cocycle available from Ripser

(SI). The intuition is that if we want to increase the birth time of a homology class we would need

to expand the length of the critical birth edges in the corresponding cohomology generator (Fig

2.7 E). This finding results in a remarkable speedup for the gradient computation, and thus for the

topological ranking.

Finally, we also define pseudotime methods for the convergent and cyclic topologies (Fig 2.2). The

convergent pseudotime is defined as the geodesic distance from an initial cell state on the 1-skeleton

of 𝑉𝑅(𝑋, 𝜀𝑏), where 𝜀𝑏 is the birth time of a target homology class. For the cyclic pseudotime

we use the Toroidal Coordinates algorithm (Scoccola et al., 2023), which provides a map from the

simplicial complex to the circle. In practice, we compute pseudotime coordinates on topoCells.
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Figure 2.3: Topological census of developmental cell state manifolds across metazoans can
be classified into a small set of topological motifs. (A) We performed a topological census
by computing persistent homology on a broad set of single-cell developmental atlases across
metazoans. Computational limitations allowed to calculate PH on at most 50,000 cells – we
highlight the exact or confident region and the approximate region respectively. The approximate
region was computed using furthest point sampling (Methods). We added jitter to datasets in the
exact region for visualization purposes. (B) Left: Census of 33 published single-cell developmental
atlases, sorted and color-coded by their usage of topological motifs, indicating the number of loops
detected. Human and mouse datasets were analyzed as independent systems due to their scale.
Right: Persistence diagrams for the selected datasets. Neighborhood threshold, is highlighted in
light grey. Black arrows in persistence diagrams indicate prominent 𝐻1 homology classes.
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Topological analysis of cell cycle dynamics

The cell cycle is the most universal oscillatory process of biological systems. In their landmark

study, (Kowalczyk et al., 2015) showed that cell cycle dynamics constitutes one of the primary

sources of heterogeneity of the transcriptome. Subsequent studies have further investigated this

phenomenon using single-cell genomics in different model organisms, and multiple computational

approaches have been developed to identify the cell cycle signature. Of particular relevance,

Schwabe et al. (Schwabe et al., 2020) elegantly demonstrated that proliferating HeLa cells manifest

a cyclic signature in gene expression space that can be reconstructed using matrix factorization

methods. From a topological perspective, their finding implies that even unsynchronized prolifer-

ating cells can form an 𝐻1 homology group in gene expression space.

To validate our framework, we applied totopos to Schwabe’s dataset, to see if we could identify

the reported 𝐻1 homology group. Employing our pipeline using 𝑛 = 20 principal components

(PCs) rendered a trivial topology. However, using a low-dimensional model (𝑛 = 5 PCs) we iden-

tified a prominent 𝐻1 homology class that accurately captured the cell cycle trajectory (Fig S6 A),

suggesting that the cell cycle signature is embedded in the most variable gene subspace, and spirals

when considering other biological processes, consistent with previous studies (Schwabe et al.,

2020; Kowalczyk et al., 2015). Moreover, using the topological gradients method, we identified

topoGenes enriched for cell cycle functions including DNA replication, mitotic spindle assembly,

and chromosome segregation. Pathway analysis of these topoGenes revealed Reactome terms

related to cell division (P-value < 10−6), confirming the biological relevance of our topological

method. These findings demonstrate that totopos effectively captured the topological signature of

cyclic biological processes, offering a rigorous framework for analyzing cyclic gene expression pat-

terns. This application established a foundation for exploring more complex topological structures

that may govern developmental trajectories and cell fate decisions.



22

Developmental cell state manifolds can be constructed using a small set of topological motifs

To systematically characterize the topology of development, we conducted a topological census by

computing the first two Betti numbers across more than 15 developmental atlases spanning a diverse

set of metazoans (Fig 2.3, SI Table 1). These topological invariants precisely measure manifold

structure: 𝛽0 counts the number of connected components and 𝛽1 measures the number of loops.

Our compendium comprises more than 4 million single-cell transcriptomes from model organisms

(e.g. C. elegans (Packer et al., 2019), M. musculus (Qiu et al., 2024), and D. rerio (Lange et al.,

2023)), four cnidarian species, mouse neuronal, and human immune (Suo et al., 2022a) lineages.

Each dataset we analyzed contains densely sampled developmental trajectories with high temporal

resolutions.

We first investigated the connectivity of cell state manifolds through 𝐻0 persistent homology

analysis. We developed a method to retrieve the data’s most parsimonious 𝛽0 by identifying the

largest gap between consecutive persistence values (Methods). We benchmarked this approach by

simulating clusters in high-dimensional spaces (SI). We found that most cell state manifolds are

predominantly path-connected along development (𝛽0 = 1) (Fig 2.3). These results suggest that

differentiation proceeds through continuous trajectories from progenitor to mature states in gene

expression space.

We then assessed the presence of loops in developmental trajectories by analyzing 1-dimensional

homology (𝐻1) across our curated cell atlas compendium. This analysis required different com-

putational approaches based on dataset size, since PH computation requires more memory with

both increasing number of points and homological dimension. For smaller datasets (𝑛 < 50, 000

cells), we computed 𝐻1 persistence diagrams exactly. For larger datasets, we employed farthest

point sampling (FPS), which has computable error bounds through the persistence stability theorem

(Chazal, Cohen-Steiner, et al., 2009). We provide a detailed discussion of this methodology in the

SI.

Our analysis revealed that while most developmental atlases (67%) exhibited the expected tree-
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like topology (𝛽1 = 0), and a substantial proportion (33%) contained one or more persistent loops

(𝛽1 ≥ 1) (Fig. 2.3A). This unexpected prevalence of non-tree topologies suggests that developmental

manifolds employ a richer repertoire of topological structures than previously recognized. To the

best of our knowledge, this is the first systematic and unbiased discovery of topological loops in

developmental cell atlases reported in the literature.

Loops in developmental manifolds can be classified into two types: cyclic—where cells traverse the

loop periodically—and convergent—where distinct developmental trajectories merge at a common

fate (Figure 2.2 B). Crucially, by analyzing temporal and biological information, we found that

almost all loops we identified were of the convergent type. The only instance of a cyclic loop was

found in the seam cells of C. elegans.

Our systematic analysis of the topology of developmental manifolds revealed an organizing princi-

ple: cell state manifolds can be constructed using a few building blocks—clusters, linear trajectories,

trees, and loops. We call these building blocks “topological motifs”. Topology enables classifying

these topological motifs into just three signatures: clusters (𝛽0 ≥ 1), simply connected manifolds

like linear trajectories and trees (𝛽0 = 1, 𝛽1 = 0), and manifolds with loops (𝛽1 ≥ 1). In the follow-

ing sections, we examine how these motifs enable key developmental processes through detailed

analyses of three case studies: human immune development, stem-like maintenance in C. elegans,

and a conserved convergent loop in cnidarians.

Topological loop in early human immune development reveals crosstalk between myeloid and

erythroid lineages

The human immune system emerges through an intricate developmental program originating from

hematopoietic stem cells (HSCs) in the fetal liver and diverging into over a hundred specialized cell

types distributed throughout the body (Laurenti and Göttgens, 2018). Recent advances in single-

cell transcriptomics have revolutionized our understanding of hematopoietic lineage specification

by revealing previously unrecognized heterogeneity within seemingly homogeneous populations

and identifying novel transitional states along differentiation trajectories (Velten et al., 2017; Giladi
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et al., 2018). Despite these advances, the topological organization of early human immune cell

differentiation remains incompletely understood. We therefore applied our topological analysis to

an integrated human cell atlas comprising over 800,000 cells across 9 tissues from post-conception

weeks 4-17 (Suo et al., 2022b).

Using totopos, we identified several prominent 𝐻1 classes that partially overlap and collectively

form a tetrahedral shape when visualized in the first three principal components. Based on the

results of our census, we focused on the most persistent 𝐻1 class and extracted its representative

loop using the critical edge method. We included all cells within a neighborhood radius equal to the

birth filtration value of the class. The resulting topoCells form a loop topology with the majority

of variation captured in two dimensions (Figure 2.4B).

Based on established cell type classifications (Suo et al., 2022b), two segments of the loop corre-

spond to the megakaryocyte-erythroid lineage and the myeloid lineage, respectively (Figure 2.4A,

B). These segments are connected by progenitor cell types with varying developmental potential,

ranging from HSCs to common myeloid progenitors (CMPs) and megakaryocyte-erythroid pro-

genitors (MEPs). This arrangement aligns with the classical hierarchical model of hematopoiesis,

where HSC-derived cells progressively commit to distinct lineages that culminate in unipotent

terminal cell types (Laurenti and Göttgens, 2018; Orkin and Zon, 2008).

Intriguingly, we identified a third segment that connects the myeloid and erythroid branches,

completing the loop topology (Figure 2.4A, B). Adjacent to the myeloid segment lies a population of

iron-recycling macrophages exhibiting high VCAM1 expression, which mediates cell-cell adhesion

and provides survival and differentiation signals to erythroblasts (Chasis and Mohandas, 2008;

Klei et al., 2017). This macrophage population extends toward the erythroid segment through

erythroblastic island (EI) macrophages and a population of promyelocytes displaying transcriptomic

profiles with markers for both myeloid lineage commitment and erythropoietic function (Figure

2.4C). Previous studies have demonstrated that EI macrophages establish direct receptor-ligand

interactions with developing erythroid cells (Popescu et al., 2019; Chow et al., 2013), suggesting a
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functional bridge between these lineages.

To identify genes responsible for generating this 𝐻1 class, we computed topoGenes using the

loop representative sampling strategy (Methods). Based on ablation testing, we identified 1000

topoGenes and applied orthogonal non-negative matrix factorization (ONMF) to cluster them

into 20 functionally distinct gene programs (Supplementary Table 1). By computing topology-

preserving circular coordinates, we established a natural ordering of topoCells and visualized the

enrichment patterns of each gene program along the loop (Figure 2.4C). Notably, genes associated

with erythroid maturation and hemoglobin/oxygen transport are active not only in the erythroid

lineage but also in specific macrophages and promyelocytes (Figure 2.4C). Additionally, genes

involved in cell cycle and proliferation are predominantly active in the erythroid lineage and a

subset of progenitor cells, indicating that cell cycle variation is not the primary driver of this loop

topology.

We complemented our topological analysis with SCENIC (Aibar et al., 2017) to identify tran-

scription factor (TF) regulons enriched in different segments of the loop. Based on the regulon

structures, we identified statistically significant (𝑝 < 0.001) regulatory relationships between TFs

and gene programs (Figure 2.4D). This analysis revealed key regulators of erythroid development

(GATA1, GFI1B), myeloid differentiation (CEBPB, CEBPD), and progenitor maintenance (ERG,

GATA2).

To characterize differentiation dynamics within this topological framework, we computed RNA

velocity fields using velocyto (La Manno et al., 2018) and scVelo (Bergen et al., 2020). The overall

flow patterns largely recapitulate known biology, with vectors generally aligned with differentiation

trajectories and tangential to the loop. However, multiple sources and sinks distributed along the

loop and locally incoherent vectors highlight the underlying complexity and stochasticity of the

system (Figure 2.4E).

For deeper investigation of the vector field, we implemented Helmholtz-Hodge decomposition of

the RNA velocity ((Su, Tong, and Wei, 2024)), which provides a unique orthogonal decomposition
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Figure 2.4: Topological loop in early human immune development highlights macrophage-
mediated pathway in erythropoiesis. (A) Conceptual model of the hematopoietic loop connecting
the myeloid and erythroid lineages through a previously overlooked pathway. (B) Cell type dis-
tribution of topoCells across liver and bone marrow tissues (left). topoCells projected onto
principal components reveal a loop topology. (C) Gene program enrichment along the loop. Left:
topoCells colored by enrichment of key gene programs, revealing localization of transcriptional
modules along the loop. Right: dotplot of gene program activity across the circular coordinates,
with cells grouped by original labels as in (Suo et al., 2022b). (D) Left: transcription factor regu-
latory network connecting TFs (left column) to gene programs (right column). Only associations
with a q-value ≤ 0.001 are shown. Right: expression of key regulators (reds) and top genes of
gene programs (blues) in topoCells along circular coordinates. (E) Helmholtz-Hodge decompo-
sition of RNA velocity: total velocity field, curl-free (gradient), divergence-free (rotational), and
harmonic components. The predominant gradient component (Waddington ratio ≈ 2) supports
classical developmental modeling despite the circular topology.
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of the vector field into gradient, curl, and harmonic components (Figure 2.4E). The Waddington

ratio, measuring the relative magnitudes of gradient and curl components, quantifies how closely

a developmental system adheres to Waddington’s classical model of development as a gradient

descent process (C. H. Waddington, 2014). We found that the Waddington ratio for our topoCells

is approximately 2, indicating that gradient flows predominate despite the circular topology, and

suggesting that the system broadly conforms to Waddington’s epigenetic landscape model.

A stem-like fate maintenance circuit drives an 𝐻1 homology class during the embryonic

development of C. elegans

C. elegans exhibits remarkable developmental invariance, with its embryogenesis mapped cell-

by-cell in classical studies by Sulston and Horvitz (Sulston et al., 1983). The recently developed

C. elegans developmental atlas (Packer et al., 2019) provides single-cell resolution data covering

embryogenesis from early cleavage events up to the onset of larval L1 stage (Fig. 2.5 A). Lever-

aging this dataset, we applied persistent homology and identified a prominent 1-dimensional (𝐻1)

homology class forming a loop structure. Cell-type annotations revealed this loop predominantly

comprises seam cells, a group of lateral hypodermal stem-like cells, and hypodermal cells (Fig.

2.5 B). The identified seam cell loop persists from early gastrulation (≈200 min after cleavage)

until the early L1 larval stage (720 min). Furthermore, persistent homology analysis of cell cycle

genes alone showed no prominent loop structure, indicating the identified loop is not solely driven

by cell-cycle-related expression dynamics. Visualizing the dynamics of the cell state manifold in-

dicated a cyclic loop topology, whereby the cell system returns to a gastrula-stage cell state around

the 12 hours of embryonic development (Fig 2.5). Such a cyclic trajectory challenges the traditional

tree-based developmental model.

To elucidate the genetic drivers of the loop structure we applied topoGene analysis using the

Laplacian eigenvector (LE) method (Methods). In brief, the LE method has the purpose of retrieving

oscillatory or transiently active genes and thus more consistent with a cyclic topology. We confirmed

that the LE method also revealed topoGenes by ablation analysis (Fig S12). We hypothesized
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Figure 2.5: Stemness maintenance is encoded as a cycle in transcriptome space in C.elegans’
seam cells. (A) Section of the life cycle profiled by Packer et al. (Packer et al., 2019) (top).
Seam cells can divide asymmetrically post-embryogenesis. (B) Seam cells colored by embryo
time (minutes) projected onto the first 2 principal components (top), and corresponding homology
class (bottom, blue line). (C) Harmonic modes (Laplacian eigenvectors) are used to compute the
topology-generating genes (topogenes). (D) Left: NMF found clusters of coexpressed genes
concordant with the embryo time. Right: topoGenes ordered by the first harmonic mode and
clustered by NMF. (E) Subset of transcription factors identified using a linear model for predicting
chronological topogene gene expression.
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that the topoGenes played essential roles in regulating and maintaining these cyclic cellular

transitions. To investigate this notion, we clustered topoGenes chronologically and performed

functional enrichment analysis in each module (Fig 2.5). Our analysis revealed that topoGenes

are significantly associated with Notch signaling, and structural and motile processes including

molting and cuticle development. Notably, genes such as dsl-3, a ligand implicated in restricting

developmental plasticity, were prominently expressed during gastrulation, suggesting their role in

initial cell fate commitment. In contrast, molting genes (e.g. mlt-8, noah-1) and structural collagens

(e.g. dpy-7, sqt-3) were prominently active during elongation and late embryogenesis, indicating

their involvement in essential structural hypodermal functions.

Lastly, our computational pipeline allowed the identification of 11 transcription factors (TFs)

enriched among the 476topoGenes. Key TFs included elt-1 and elt-3, known GATA-like regulators

of hypodermal differentiation and seam cell division symmetry (Gilleard and McGhee, 2001;

Brabin, Appleford, and Woollard, 2011). To further elucidate gene regulatory control, we used

a linear model (Methods) that revealed distinct temporal expression waves, with early TFs (e.g.

unc-37, elt-1) associated with asymmetric cell division control (Horst et al., 2019; Pflugrad et al.,

1997; Calvo, 2001) , middle-expressed TFs including nhr-23 controlling structural genes (Kouns

et al., 2011; Meli et al., 2010), and late-expressed TFs (ztf-16 unc-86) implicated in neuron fate

and asymmetric division (Fig 2.5). These findings suggests that the expression of asymmetric

components could be predominantly present in seam cells, and only overthrown by symmetric

division TFs such as elt-1, and rnt-1, consistent with previous findings (Horst et al., 2019). Thus,

we propose three core regulatory modules underlying seam cell topology: (1) fate commitment and

maintenance, (2) structural and motile functions, and (3) asymmetric division control (Fig. 2.5).

Further experimental characterization may reveal additional insights into the precise regulatory

logic controlling this cyclic developmental trajectory.
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Figure 2.6: A conserved topological structure in cnidocytes reflects 500 Million years of
evolutionary stability. (A) Schematic diagram of cnidocytes and their development. Cnidocytes
are a specialized cell type that can display adhesive, stinging, or ensnaring functions. We found that
cnidocyte development is structured as convergent loops, in which a cnidoblast can take alternative
paths to generate functional diversity, but all cnidocytes converge in their molecular profile as they
all have the same mechanism of ejection. (B) Schematic phylogenetic tree of cnidarians and species
analyzed. The split between major cnidarian clades occurred more than 500 Ma (Park et al., 2012).
We analyzed the transcriptomes of Nematostella vectensis, Stylophora pistillata (Hexacoralia),
Xenia sp. (Octocoralia), Clytia hemisphaerica, and Hydra vulgaris (Hydrozoa). (C) Persistent
diagrams and developmental trajectories of cnidocytes of Hydra, Nematostella, and Clytia. (D)
Comparative transcriptomic analysis using linear manifold analysis.
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A conserved loop in the clade-defining cell type of cnidarians

Cnidarian organisms are a special clade within the animal kingdom for their capacity for full-body

regeneration, and the presence of a primitive neural system. Furthermore, cnidarians hold a key

evolutionary position by being the sister group to bilateria. Cnidocytes are the clade-defining cell

type of cnidarians, and recent research (Steger et al., 2022) has shown evidence pointing to its

origin as a repurposing of a protoneural lineage (Steger et al., 2022). Cnidocytes have a remarkable

variety in morphology, but broadly, they can be classified as piercing (nematocytes), ensnaring

(spirocyte) or adhesive (ptychocytes) subtypes (Babonis et al., 2023), and they all act through the

same mechanism: the activation of chemo- and mechano-sensitive sensors that trigger a discharge

of a harpoon-like structure (Fig 2.6 A). These functions represent key cellular innovations that

arguably contributed to the evolutionary success of this taxonomic group.

Because of these remarkable biological properties, there has been wide interest in investigating the

single-cell transcriptome repertoires of cnidarian species (Fig 2.6 B) (Siebert et al., 2019; Steger

et al., 2022; Chari et al., 2021; Sebé-Pedrós, Saudemont, et al., 2018; Hu et al., 2020; S. Levy et al.,

2021; Link et al., 2023). Based on recency, sequencing depth and sample size, we analyzed the

atlases of Hydra vulgaris (Siebert et al., 2019), Nematostella vectensis (Steger et al., 2022), Clytia

haemisphaerica (Chari et al., 2021), Xenia sp. (Hu et al., 2020), and Stylophora pistillata (S. Levy

et al., 2021). By exploiting cell type information, we found that three out of five of the cnidarian

manifolds analyzed harbored a loop in their cnidocytes despite their divergence more than 500

million years ago (Park et al., 2012) (Fig 2.6 C, Fig S S14). Specifically, we found one loop in the

cnidocytes of H. vulgaris, C. hemisphaerica, and two loops in N. vectensis despite their divergence

more than 500 million years ago (Park et al., 2012). We also found a loop in the cnidocytes of

Xenia but it was only apparent when computing PH on five principal components (Fig S14).

A possible explanation for the difference in Betti numbers of Hydra, Nematostella and Clytia is

that all three species have piercing venomous cell subtype, but only Nematostella has the ensnaring

subtype (Babonis et al., 2023). We found that indeed one of the trajectories in Nematostella

corresponds to the the ensnaring cell type, consistent with the notion that the ensnaring subtype
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emerged as a novel subtype by repurposing machinery of the piercing ancestor (Babonis et al., 2023).

Furthermore, we used the cell type information from the original studies as well as conserved gene

markers for early (e.g. PAX2A) and late cell states (e.g. Calmodulin) to determine that the loops

were of the convergent type (Fig 2.6).

Next, we used the topological information to conduct a comparative transcriptomics analysis. A

manifold can be characterized by its local resemblance to euclidean space. In consequence, a cell

state manifold should be in principle locally characterized by its principal components (Budninskiy

et al., 2019). Under this assumption, one could aim to find shared features between cnidocyte cells

of two organisms by calculating the intersection between their invariant subspaces. A recent result

from matrix factorization theory (Sørensen, Kanatsoulis, and Sidiropoulos, 2021) showed that

performing Canonical Correlation Analysis(CCA) corresponds to finding the intersection between

the linear spaces corresponding to the range of data. We exploited these notions to develop

Locally Linear Manifold Alignment (LMA), a method that enables finding shared gene subspace

by aligning cell type tangent spaces (Methods). LMA works by first finding corresponding subsets

of corresponding cells in two datasets using Mutual Nearest Neighbors (MNN) followed by CCA.

Importantly, we used the principal components as a tangent space approximation (Budninskiy et al.,

2019), a method first reported in (Brown, Bray, and Pachter, 2018) which can also be viewed as a

mechanism to avoid overfitting. We applied LMA to all the pairwise combinations between Clytia,

Nematostella, and Hydra (from here on cly, nve, hy) to perform pairwise comparative analysis as

their datasets contained more than 1000 cnidocyte cells.

In Fig 2.6 we report the average canonical correlations between the analyzed cnidarian species.

First, since LMA is designed to find a linear correspondence between datasets, we first tested if

LMA preserved the topological information. We found that the pairs Hy-Cly and Hy-Nve preserved

the topological structure after alignment, but Nve-Cly did not (Fig 2.6). This result could reflect

complex geometrical relationships that cannot be accounted for by the linear objective of LMA.

Moreover, this result implies that, we can treat the cnidocyte systems of Hy-Cly and Hy-Nve

equivalently, under the LMA map, up to linear approximation error.
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To compare the cell states across species, we computed the genes with high absolute weights

in both organisms, which we called the LMA genes. Specifically, we focused on transcriptional

regulators to compare regulatory states across the loop. For the Hy-Nve comparison we found a

cnidocyte development TF signature previously reported in the literature such as the of Kruppel-like

zinc Fingers PRDM-6 and PRDM13, CREB, JUN, and AshA (S. Levy et al., 2021; Siebert et al.,

2019; Steger et al., 2022). In particular the expression of achaete-scute ortholog AshA on mature

cnidocyte states, which has been previously reported as a possible defining factor of neuronal fate,

points out the importance of neuron-like machinery recruited for cnidocyte function. Together

these results suggest that our analysis can extract interpretable factors determining the topology

and in turn cell state control across species.

Another interesting application of LMA of our topological is that it enables to compute topology-

preserving pseudotime. This helps to parametrize the geometry of the cell state manifold and

investigate broad gene expression patterns at different locations along the loop. For example, a

natural question would be to ask what are the differentially expressed genes along the different

trajectories of the loop. Given that we hypothesized that the geometry of the loop is convergent, we

defined the convergent loop pseudotime as the geodesic distance from a prototypical progenitor cell,

an analog of the classic definition. From the pseudotime, one can easily compute the trajectories by

clustering cells at intermediate timepoints (Methods). We used Nematostella dataset to showcase

this analysis.We show results of genes overexpressed in both trajectories in Fig 2.6. In summary,

LMA enabled the comparative analysis of single-cell transcriptomes at the local level using topology

as a guiding principle.

Box 2. Persistent homology

In this section, we provide key terms for the persistent homology.

• Filtration : A filtration is a nested sequence of simplicial complexes K = 𝐾1 ↩→ 𝐾2 ↩→

... ↩→ 𝐾𝑚, i.e. at each index 𝑖, the simplicial complex 𝐾𝑖 is a subcomplex of 𝐾𝑖+1.
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• Simplex-wise filtration. A filtration with the property that, at each step we add a single

simplex is called a simplex-wise filtration.

• Simplicial map: A map between simplicial complexes 𝑓 : 𝐾 → 𝐿 with the property that

a simplex 𝜎 in 𝐾 is mapped to a simplex 𝑓 (𝜎) in 𝐿, is called a simplicial map.

• Induced maps: Given a simplicial map between abstract simplicial complexes 𝑓 : 𝐾 → 𝐿,

these maps extend linearly to chains, i.e. for a chain 𝑐 =
∑
𝑖 𝑎𝑖𝜎𝑖 the induced map is

𝑓 (𝑐) =
∑
𝑖 𝑎𝑖 𝑓 (𝜎𝑖). Note that 𝑓 sends cycles to cycles and boundaries to boundaries.

Thus, 𝑓 also induces a map on homology groups: a homology class [𝛾] ∈ 𝐻𝑛 (𝐾) is

mapped to 𝑓∗( [𝛾]) = [ 𝑓 (𝛾)] in 𝐻𝑛 (𝐿). 𝑓∗ is also called the pushforward of 𝑓 .

• Persistence module: Given a filtration of Vietoris Rips complexes K, one can study the

sequence 𝐻𝑛 (𝐾1) → 𝐻𝑛 (𝐾2) → ...𝐻𝑛 (𝐾𝑚), called the persistence module.

• Persistent homology groups: Given a VR complex filtration, the homology classes that

persist from index 𝑖 to index 𝑗 > 𝑖 are called the persistent homology groups, and are

defined as the image of the pushforward of the inclusion map 𝐻𝑖, 𝑗𝑛 = im𝜄𝑖, 𝑗∗ . If a homology

class is born at index 𝑏 and dies–i.e. merges with a previous class– at index 𝑑 we say that

its persistence or lifetime is pers( [𝛾]) = 𝑑 − 𝑏.

• Persistence diagram. At a given homological dimension 𝑛, the set of births and

deaths of all homology class in the filtration is called the persistence diagram Dgm𝑛 =

{[𝑏𝑖, 𝑑𝑖)}𝑖=1,...,𝑘 . The persistence diagram completely characterizes the persistence mod-

ule (up to reordering of the barcodes) (Gabriel, 1972; S. Y. Oudot, 2015). Persistence

diagrams can be visualized as a 2D scatter plot on the plane, where points lie above the

diagonal.

Box 2 (continuation). Persistent (co)homology using the critical edge method
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The goal for this section is to illustrate the ideas for computing the 1−homology groups using

our approach, the critical edge method. Particularly, we want to focus on the intuition. The

technique is simple, but it requires some machinery. Let us begin by introducing cohomology.

Introducing cohomology

We define the 𝑛-cochain group as the dual of the 𝑛-chain group, i.e. 𝐶𝑛 = Hom(𝐶𝑛, 𝐺), or

the space of functions that are group homomorphisms from the 𝑛-chain group to a group 𝐺,

𝜙 : 𝐶𝑛 → 𝐺. In our case 𝐺 = Z2, and we can thus think of the maps as indicator functions of

the corresponding chains. In other words, an 𝑛-cochain will be a list of size equal to dim𝐶𝑛

with each entry being 1 if the corresponding 𝑛-chain is present, and 0 otherwise. This induces

a natural correspondence between chains and cochains under Z2 coefficients. It is worth noting

that, by using a more expressive group such as Z, cohomology groups are endowed with

richer properties than homology groups, although this extension is beyond the scope of our

discussion. The cohomology groups are connected by coboundary maps 𝑑𝑛 : 𝐶𝑛 → 𝐶𝑛+1.

For Z2 coefficients, the 𝑛-coboundary map is the transpose of the (𝑛 + 1)-boundary map, i.e.

𝑑𝑛 = 𝜕
𝑇
𝑛+1.

The cohomology groups are then defined as:

𝐻𝑛 = ker 𝑑𝑛/im𝑑𝑛−1 = coker 𝜕𝑛+1/coim𝜕𝑛 (2.7)

with the property that 𝑑 ◦ 𝑑 = 0, i.e. im 𝑑𝑛−1 ⊂ ker 𝑑𝑛, or equivalently coim 𝜕𝑛 ⊂ coker 𝜕𝑛+1.

Constructing a cohomology class on the annulus

Let’s construct a cohomology class on the annulus from its definition: we need to find a

1-cochain 𝜓 that will be in the cokernel of 𝜕2. This will occur if the number of times

each 𝜓 takes on the value of 1 on the boundary of each 2 simplex is either 0 or 2, since

𝑑1(𝜓) (𝜎) = 𝜓𝜕2(𝜎) = 0∀𝜎 ∈ 𝐶2 (Hatcher, 2001). The 1-cochain in Fig 2.7 has precisely

that property. Furthermore, as you can verify, no 0-cochain solves 𝑑𝜙 = 𝜓, and hence
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𝜓 ∉ im 𝑑0 =⇒ [𝜙] ∈ 𝐻1(𝑋), i.e. 𝜓 is a representative of the 1-cohomology group.

Persistence cohomology

A groundbreaking advancement in topological data analysis occurred when researchers demon-

strated that the persistence cohomology yielded the same persistence diagrams as traditional

persistent homology with an increase of more than an order of magnitude in speedup (Silva,

Morozov, and Vejdemo-Johansson, 2011). Furthermore, there has been great effort for making

computational tools widely accessible. For example, computing the persistent cohomology of a

point cloud using pyRipser (Tralie, Saul, and Bar-On, 2018) is just ph = ripser (X), where

X is a numpy array and ph contains the persistence diagrams and corresponding cohomology

classes up to a certain dimension. We visualize the cohomology class with largest lifetime of

data sampled from an annulus in Fig. 2.7.

Despite exciting progress in PH computation (see e.g. (Bauer, 2021; Scoccola et al., 2023;

Bauer et al., 2024)), challenges remain in scaling these algorithms to datasets exceeding 106

points and computing higher dimensional homology groups.

The critical edge method in a bumpersticker

In the critical edge method, we exploited persistent cohomology to retrieve corresponding

homology classes. The method is fairly straightforward, here we write it in pseudocode using

totopos:

import anndata as ad

from ripser import ripser

import totopos.genes as tpg

import totopos.cells as tpc

# Read sc data
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adata = ad.read_h5ad("path/to/sc.h5ad")

# Compute persistent homology to determine if there are loops

ph = ripser(adata.obsm["pcs"])

# Compute topoCells

topological_loops = tpc.critical_edge_method(

adata.obsm["pcs"], ph, n_loops=1

)

# Compute topoGenes

grads, tpg_scores = tpg.topological_scores_perturbation_torch_ripser(

adata, ph, n_pcs = 20, ix_top_class = 1

)

2.3 Discussion

Understanding how a single cell develops into a complex organism remains one of biology’s

fundamental questions. While recent advances in single-cell genomics have provided unprecedented

views of development, extracting fundamental principles from these massive datasets requires new

analytical approaches. Accurate mapping of differentiation trajectories is particularly crucial

for understanding cell states across development, as traditional methods may impose artificial

constraints or miss important biological features. This is particularly important as large-scale

efforts–like the Human Developmental Cell Atlas (Haniffa et al., 2021)–aim to create comprehensive

maps of human development, and hold the potential of helping treat and prevent disease (Liberali

and Schier, 2024).
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Figure 2.7: Persistent (co)homology, the critical edge method, and topological gradients. (A)
Cartoon of the persistent homology algorithm. (B) A 1 cohomology class 𝜓 on the annulus.
(C) A 1 cohomology class computed using pyRipser, on data sampled from the annulus. (D)
Visualization of the critical edge method. The CritEdge method constructs a minimum spanning
tree𝑇 (orange) using the 1-skeleton of a Vietoris Rips complex at distance scale 𝑏𝑒 the birth distance
of the homology class. Adding the birth edge 𝑏 (olive) to the MST results in a simplicial complex
containing a loop, which is a representative of the 𝐻1 homology class (red). (E) Visualization of
the topological gradients calculated on the same data. Note that perturbing the data according to the
negative of the gradient would result in increasing the birth time of the corresponding homology
class.
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Here, we show that topological analysis of cell state landscapes provides a powerful framework

for understanding developmental trajectories. By analyzing homology groups and Betti numbers

across more than 10 developmental cell atlases, we propose that cell state manifolds can be

classified into simple building blocks: clusters, linear trajectories, trees, and topologies containing

loops. Most importantly, we demonstrate that unbiased discovery of these loops reveals previously

unrecognized biological processes involving convergent differentiation, stem cell maintenance, and

tissue regeneration.

To systematically analyze complex developmental trajectories, we developed totopos, a compu-

tational framework built on rigorous topological foundations. At its core, totopos uses persistent

homology (PH) to identify topological structures such as loops from noisy single-cell data, a key

advantage over existing methods that can miss or distort important biological features. Moreover,

totopos can also help determine when tree-based trajectory inference methods are appropriate,

providing a principled approach to developmental trajectory analysis.

In this work, we provide a conceptual framework that bridges biology and topology. For instance,

we defined two key concepts: 1) topoCells, the cells in the neighborhood of a loop trajectory,

and 2) topoGenes, the subset of the transcriptome that drives the topological loop. The scale of

current single-cell genomic datasets required algorithmic innovations to compute topoCells and

topoGenes efficiently. For identifying topoCells, we developed the critical edge method, which

is to the best of our knowledge the fastest method to compute persistent 𝐻1 homology represen-

tatives. To identify topoGenes we extended the work of Nigmetov and Morozov (Nigmetov and

Morozov, 2022) for computing gradients to trivialize a homology class in the context of topological

optimization. Our computations of the gradients of the topological loss function are essentially

“free” with a precomputed persistence diagram. In the restricted case of mapping a homology

class from [𝑏, 𝑑) ↦→ [𝑑, 𝑑) we also achieve state-of-the art performance. The key for our advances

is exploiting duality (Silva, Morozov, and Vejdemo-Johansson, 2011) by leveraging information

from the cohomology generators supplied by Ripser (Bauer, 2021), the fastest method to date to

compute persistent diagrams. As a whole, the advances we present enable the topological analysis



40

of datasets on the order of 106 single-cells. Given the broad applicability of our methods, we

anticipate they will catalyze discoveries beyond developmental biology.

Our analysis using totopos revealed that convergent loops are a recurring motif across animal

development. We identified four prominent loops in human immune cell development, including

one in the myeloid-erythrocyte system (Suo et al., 2022a). In Hydra vulgaris, we found that

a convergent loop in gland cells that may enable transdifferentiation during regeneration. Most

strikingly, we found a convergent loop in the characteristic cell type of cnidarians, the cnidocytes,

that could be conserved across ≈ 500 million years of evolutionary time. While most loops we

found were convergent, C. elegans seam cells displayed a cyclic loop (Fig 2.5). This raises the

question of whether the cyclic topologies are unique to seam cells, or if this is a more general

feature of stem-like cell states.

Our findings provide a unified theoretical framework for understanding cell state control during

development. For over 60 years, Waddington’s landscape model (C. Waddington, 1957) has been

instrumental in our understanding of development. This metaphor suggests that developmental

trajectories should form a branching tree-like structure. Our systematic analysis supports this view:

two-thirds of the cell state manifolds we examined are topologically equivalent to trees, providing

quantitative evidence for the pervasiveness of Waddington’s conceptual model.

Recent work by Rand et al. (Rand et al., 2021) has formalized Waddington’s metaphor mathe-

matically, proposing that cells move through gene expression space following gradient flows. At

first glance, our discovery of loops in cell state manifolds might seem to contradict this model,

since gradient flows cannot harbor cyclic trajectories. However, our findings reveal a more nu-

anced picture: while we did find cyclic loops in the seam cells, most of the loops we discovered

were convergent. Importantly, we mathematically prove that gradient flows can indeed create such

convergent trajectories (SI Note 2.5, SI Figure S21), reconciling our topological discoveries with

the dynamical systems framework proposed in (Rand et al., 2021). In other words, the topological

motif perspective, in which cell state manifolds are constructed from trees and convergent loops is
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consistent with the dynamics of a gradient field, i.e. a flow in a landscape. As the authors suggest

in (Rand et al., 2021), the presence of cyclic trajectories can be taken into account under the more

general notion of a Morse-Smale dynamical system.

Our study doesn’t come without technical limitations. First, our computational resources restricted

persistent homology computation to a maximum of 50, 000 single-cells per run. We approached this

limitation by computing using techniques with reasonable error bounds (Cavanna, Jahanseir, and

Sheehy, 2015). A different approach to handle large datasets is to compute PH on subsets of data, by

e.g. partitioning by lineage, tissue or cell type. Recent advances in theoretical and computational

topology are providing faster and more efficient methods (Bauer, 2021; Scoccola et al., 2023), and

more insights can be drawn from the compendium we analyzed once new computational techniques

are available.

Furthermore, in this work, we focused on the most prominent topological features. We defined

heuristic methods to identify prominence. For 𝛽1, we defined a cutoff for topological noise based

on local calculation of loops in the manifold: prominent loops were defined as those whose lifetime

exceeded twice the maximum lifetime of loops in neighborhoods of 350 cells. This heuristic

provides an intuitive way to study loops, but severely limits the richness of topological information

present in persistent diagrams and could underestimate the number persistent homology classes. For

instance, for the Xenopus tropicalis dataset, we calculated that the ratio between the most prominent

class and the neighborhood threshold was 1.93 and was therefore considered not significant using

our approach. In this sense, we encourage researchers interested in a particular organism to use our

tools to explore the topological features of their data and further focus on particular tissues or cell

types for more detailed inquiry.

Another limitation of our approach is that persistent homology can be sensitive to outliers. Mul-

tiparameter persistent homology (MPH), generalizes PH by creating bifiltrations (for example by

distance and density) and is more robust for outliers. MPH is an exciting new field with multiple

interesting theoretical and computational problems (Botnan and Lesnick, 2023), and has recently
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been applied for cell type classification (Benjamin et al., 2024). We anticipate that the resolution

of topological identification will increase with the use of MPH, and will be an exciting avenue for

future research.

2.4 Methods

Single-cell RNA-seq data pre-processing

Single-cell RNA seq count matrices were pre-processed using a standard pipeline. First, we filtered

out cells with less than 500 detected genes and 1,000 UMIs. To minimize variability in the total

number of reads per cell the expression values were normalized to get values roughly equivalent to

those expected in a single cell, using the following equation:

𝑋𝑖 𝑗 = ln

(
𝑋𝑖 𝑗 × 104∑𝑚

𝑗 (𝑋𝑖 𝑗 )
+ 1

)
. (2.8)

In addition, we identified the highly variable genes using the coefficient of variation method.

Finally, we reduced the dimensionality of the transcriptome by projecting the transcriptome to the

first 20 principal components.

Topological census of Developmental Cell state Manifolds

To characterize the global topological structure of developmental cell state manifolds, we performed

a topological census using persistent homology. Persistent homology was computed using the

Ripser algorithm on normalized scRNA-seq count matrices, generating persistence diagrams for

the zero- and one-dimensional homology groups (for details see Supplementary Methods).

For datasets exceeding 50,000 cells, we employed Farthest Point Sampling (FPS) to subsample

representative points while preserving the topological structure of the manifold, leveraging the

bottleneck stability theorem to bound deviations in persistence diagrams (see SI for details). To

identify the most prominent topological features, we developed a heuristic to distinguish signal from

topological noise: a loop was considered significant if its persistence exceeded twice the maximum

lifetime of any H1 class in local neighborhoods of 350 cells. The resulting Betti numbers were
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used to classify each cell state manifold into one of several canonical topological motifs: clusters

(𝛽0 > 1, 𝛽1 = 0), tree-like structures (𝛽0 = 1, 𝛽1 = 0), and manifolds with nontrivial loops

(𝛽0 = 1, 𝛽1 ≥ 1).

We used the efficient implementation of Ripser (Bauer, 2021) in python, pyRipser (Tralie, Saul, and

Bar-On, 2018) (version 0.6.4), to perform our persistent diagram calculations. All computations

were performed on a workstation with an AMD Ryzen Threadripper 3960X with 256 GB of RAM,

and using Python 3.11.

Identifying topoCells using the critical edge method

Let 𝑋 be a developmental cell atlas, with a topological loop 𝛽1(𝑋) = 1, and assume one has access

to its 𝐻1 persistence diagram Dgm1. Assume the most prominent homology class [𝛾] is born at

scale 𝑏, and let 𝑒 be its birth edge. The critical edge method then proceeds as follows:

1. Build a Vietoris Rips complex 𝐾 = VR(𝑋, 𝑏) with 𝑏 the birth scale of 𝛾.

2. Construct a minimum spanning tree 𝑇 on the 1-skeleton of 𝐾 starting from a bounding point

of 𝑒. such that 𝑇 does not contain 𝑒.

3. Scan for a loop 𝛼 on 𝐿 = 𝑇 ∪ {𝑒}.

Note that in the second step, since all edges will have a distance smaller than 𝑒, the tree 𝑇 will not

contain 𝑒 by the greedyness of the algorithm. Hence, adding 𝑒 to 𝑇 will necessarily induce a loop

in the resulting simplicial complex.

Following this procedure, the loop 𝛼 found by the algorithm is a representative of the homology

class [𝛾]. We prove the algorithm in the SI.

Finding topoGenes using topological gradients

In this section we define a ranking procedure that reflects the importance of each gene in 𝑋 in

a target homology class 𝛾. Our aim was to find the topology-driving genes topoGenes using
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this ranking. Our approach uses topological optimization building upon the work of Nigmetov

and Morozov [(Nigmetov and Morozov, 2022)] and exploiting computational efficiency of Ripser.

Namely, we define a “loss” function that aims to reflect perturbations in the simplicial complex that

would be necessary to trivialize a persistent homology class, i.e. mapping it from a point [𝑏, 𝑑) in

Dgm1 to a the diagonal [𝑑, 𝑑). Recall that one can define the Vietoris-Rips filtration as the sublevel

set of the diameter function diam𝜎 = sup{𝑑 (𝑥, 𝑦) : 𝑥, 𝑦 ∈ 𝜎}, that is 𝐾𝜀 = {𝜎 ⊆ 𝑋 |diam𝜎 ≤ 𝜀}.

In particular, the general form of this loss function is:

L =
∑︁
𝜌∈𝐶

[ 𝑓 (𝜌) − 𝑓 ′(𝜌)]2,

where 𝑓 (𝜌) is the largest distance of an edge in the original filtration, and 𝑓 ′(𝜌) is a target distance.

Our goal 𝑓 ′(𝜌) will be set to the death value 𝑑. The set of simplices 𝐶 one needs to evaluate in the

loss function is called the critical set, as defined in (Nigmetov and Morozov, 2022). It turns out

that under our restricted set up 𝐶 contains the edges associated to the cohomology class generator.

We provide a proof of this result in the SI. The intuition is that increasing the birth time of 𝛾 can be

achieved by increasing the edge lengths of the corresponding cohomology generator. Our approach

becomes fast by exploiting the cohomology computation from Ripser.

To get the ranking, we estimate the gradients of the aforementioned loss function w.r.t. the input

data via backpropagation. More precisely, given a scRNA-seq dataset 𝑋 wtih a topological loop

𝛽1(𝑋) = 1, we define the ranking score for gene 𝑗 to be the norm of the 𝑗-th column of the gradient

matrix.

𝑆 𝑗 =

√√
𝑛∑︁
𝑖=1

(
𝜕L
𝜕𝑋

)2

𝑖 𝑗

.

We can then define topoGenes as the genes with the largest ranking score. Intuitively, the ranking

score encodes the relative contribution for destroying a persistence homology class by moving input
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data points. Ranking scores will be non-zero for the subspace of the cell-state manifold where the

homology class is geometrically embedded.

Alternative Approach for Identification of topoGenes via Iterative Gradient Optimization

Building upon the previously described topological gradient optimization method, we introduce

an iterative sampling-based strategy designed to efficiently identify critical genes influencing topo-

logical structure within the data manifold.

Our method involves repeatedly sampling subsets of cells from the principal component embedding.

Specifically, we performed 𝑛𝑟𝑒𝑝𝑠 = 100 independent iterations, each time randomly selecting a small

subset of cells (up to 10% of the total dataset). Within each subset, cells were sorted according to an

established pseudotime or cell-cycle ordering. Then, we constructed closed loops by appending the

first cell in the ordered subset to its end, effectively creating a cyclic structure or a representative of

the target homology class. The topological loss for each loop was computed by summing Euclidean

distances between consecutive cells along this trajectory:

L𝑡𝑜𝑝𝑜 =

𝑚∑︁
𝑖=1

| |𝑥𝑖+1 − 𝑥𝑖 | |,

where 𝑥𝑚+1 = 𝑥1 ensures the closure of the loop.

We accumulated the loss values across iterations to obtain a total loss:

L𝑡𝑜𝑡𝑎𝑙 =

𝑛𝑟𝑒𝑝𝑠∑︁
𝑟𝑒𝑝=1

L (𝑟𝑒𝑝)
𝑡𝑜𝑝𝑜 .

Gradients of the cumulative loss with respect to the original high-dimensional gene expression data

were computed via backpropagation. The resulting gradients directly measured how perturbations

in individual gene expressions influenced the homology class. Genes were then ranked based on

the magnitude of their gradient norms across cells, defined by:

𝑆 𝑗 =

√√
𝑛∑︁
𝑖=1

(
𝜕L𝑡𝑜𝑡𝑎𝑙

𝜕𝑋

)2

𝑖 𝑗

.

Genes exhibiting the highest gradient-based scores were classified as topoGenes, indicating their

essential role in shaping and preserving topological features within the cellular data manifold.
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Finite difference method to identify persistent 0−homology

A parsimonious approach to identify the most prominent 0−homology features of a dataset is to

select the number of connected components that persist significantly longer than others, indicated

by a clear separation in their persistence lifetimes.

The 0−th homology persistence diagram has the special characteristic that all homology features

are born at the start of the filtration. Thus, the lifetime equals the death time for all persistent

0−homology features. This induces a natural ordering between these features.

Let {𝑙𝑖}𝑖=1,...,𝑛 denote the sequence of lifetimes of the 0−homology features, ordered in descending

order such that 𝑙𝑖 > 𝑙𝑖+1 for all 𝑖 ∈ {1, ..., 𝑛 − 1}. To identify significant gaps between consecutive

lifetimes, we compute the first-order differences:

𝑑𝑖 = 𝑙𝑖 − 𝑙𝑖+1 > 0 for 𝑖 ∈ {1, ..., 𝑛 − 1}. (2.9)

These differences 𝑑𝑖 form a sequence {𝑑𝑖}𝑖=1,...,𝑛−1 that quantifies the gaps between consecutive

ordered lifetimes. To identify the most significant gap, which would separate the prominent

persistent features from the rest, we compute the second-order differences:

Δ𝑑𝑖 = 𝑑𝑖 − 𝑑𝑖−1 for 𝑖 ∈ {2, ..., 𝑛 − 1}. (2.10)

The optimal number of significant 0−homology features, 𝑘∗, can then be identified as:

𝑘 = argmax
𝑖∈{2,...,𝑛−1}

Δ𝑑𝑖 . (2.11)

This approach identifies the index where the rate of change in consecutive lifetime differences is

maximized, effectively detecting the “elbow point” in the lifetime distribution. The first 𝑘 persistent

0−homology features are then selected as the significant connected components of the dataset. In

cases where multiple maxima exist in {Δ𝑑𝑖}, we select the smallest index to favor parsimony.
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Bootstrap permutation test to quantify significance of topological signatures

We used a bootstrap permutation test using a bifurcating tree as a null topology to quantify if the

persistent homology signatures could be explained by random chance. To do this we employed

difference of maximal lifetime between a test dataset and a null hypothesis dataset. Let the lifetime

of a persistent homology class be 𝑙𝐻𝑛

𝑖,𝑋
= 𝜀

𝐻𝑛

𝑖death
− 𝜀𝐻𝑛

𝑖birth
where 𝑖 is the index of the homology class in

the filtration.

Our statistical test is based on the following hypotheses:

1. 𝐻0: max{𝑙𝐻𝑛

𝑋null
} = max{𝑙𝐻𝑛

𝑋test
}

2. 𝐻1: max{𝑙𝐻𝑛

𝑋null
} < max{𝑙𝐻𝑛

𝑋test
}

We thus define our test statistic as follows:

𝜃 = max{𝑙𝐻𝑛

𝑋test
} − max{𝑙𝐻𝑛

𝑋null
}. (2.12)

To simulate the null hypothesis, we concatenate the null and test datasets, shuffle, partition, and

compute the test statistic 𝜃 (𝑏) for each bootstrap replicate. We performed 𝐵 = 104 bootstrap

replicates of this test and report the P-value as the fraction of simulations in which 𝜃 (𝑏) is more

extreme than the test statistic 𝜃. In order for the datasets to be in the same scale, we use the singular

values of the test data to scale the principal components of the null dataset prior to all computations.

Additionally, we employed the same test by replacing the maximum, considering the k-th order

statistic. This enabled generalizing our test for the case when there was more than one persistent

feature.

Perturbation-based validation of topology-driving genes

To assess whether the inferred topoGenes drive topological features in data, we applied our

bootstrap-based hypothesis testing framework. We asked if removing the topoGenes from the data
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resulted in a significant decrease of the lifetime of the most prominent homology class. For each

test, we constructed 𝑋null as the original dataset consisting of topoCells for a single loop and 𝑋test

as the dataset with the topoGenes set removed. Both datasets were centered and processed using

singular value decomposition, retaining the top 20 principal components. To ensure comparable

scales, we projected both datasets using the singular values from 𝑋null. Analyses were performed

with bootstrap sample sizes set to 85 % of the dataset size and 1,000 bootstrap iterations.

Laplacian eigenvector method for topoGene ranking

We exploited homology generators to identify genes expressed transiently along complex topo-

logical features. Our methodology is based on the property that Laplacian eigenvectors encode

geometrical properties of a manifold (B. Levy, 2006). Furthermore, eigenvectors can be interpreted

as vibration modes, with increasing eigenvalue corresponding to an increasing spatial frequency.

We thus extracted transient genes by asking which genes had the highest mutual information with re-

spect to the first nonzero eigenvectors of the Laplacian. We used this method to find the topoGenes

of the C. elegans’ seam cell loop.

Pseudotime methods for closed-loop trajectories

Cells may traverse the cell state manifold in a way that may not reflect temporal progression.

To address this, and leveraging topological information, we developed pseudotime methods that

reconstruct natural coordinates parametrizing of the cell state manifold. Furthermore, we designed

different approaches for the convergent and cyclic systems.

The convergent trajectory method calculates a pseudotime based on geodesic distances in a kNN

graph constructed from topoCells. Given a specified initial cell state, the method assigns

pseudotime values according to the geodesic distance to this reference point. This approach is

suited for convergent systems where cells traverse multiple paths to reach a common end state. We

leveraged this framework to partition topoGenes into pervasive and exclusive sets, corresponding

to genes expressed throughout the loop versus those restricted to specific trajectories. We used

Dijkstra’s method implemented in scipy (Virtanen et al., 2020) and 𝑘 = 10 neighbors for our
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experiments.

For cyclic trajectories, we implemented the circular coordinates algorithm as implemented in

Dreimac (Silva, Morozov, and Vejdemo-Johansson, 2011; Scoccola et al., 2023). In brief, this

algorithm constructs a circular parametrization of the data that captures the underlying periodic

structure by exploiting information from persistent cohomology computation. By specifying an

initial cell state, the method generates an ordering of topoCells that optimally decodes the

biological progression of cells around the loop trajectory.

Locally linear Manifold Alignment for comparative transcriptomics analysis

Locally Linear Manifold Alignment aims to retrieve a shared features between two cell state

manifolds by aligning tangent spaces of two cell-state manifolds defining locality at the cell type

level. The method starts by generating a set of one-to-one highly-variable orthologs to capture

genes that contribute to cellular heterogeneity, which we explain in detail in the section below. We

perform this HV ortholog selection to select approximately 3000 orthologs. Then, count matrices

𝑋𝑎, 𝑋𝑏 are generated for two cell state manifolds with columns specified by the orthologs. Since

not all cell states from one species may have a corresponding representative in the other species,

a Mutual Nearest Neighbors search is performed to retrieve sets of “homologous” cells. After this

step we have two data sets 𝑋𝑎, 𝑋𝑏 on the same ortholog space. We find a shared subspace using

Canonical Correlation Analysis (CCA) using well-known algorithms. Geometrically, CCA finds

a shared subspace where two datasets are well aligned. We perform PCA with n=50 principal

components as a preprocessing step to retrieve the local tangent space, as defined in (Budninskiy

et al., 2019). The approach of performing PCA before CCA was first defined in (Brown, Bray,

and Pachter, 2018), and helps to reduce overfitting, particularly in the case where the number of

orthologs exceeds the number of cells to analyze. We implemented LMA in pytorch enabling

efficient matrix computations on the GPU.
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Generating One-to-One Highly-Variable Orthologs for LMA

We developed a heuristic to generate one-to-one highly-variable orthologs for LMA using the

coefficient of variation (CV) as a filtering statistic. This approach leverages precomputed orthologs

obtained through methods like, e.g., a bidirectional BLAST search.

Under a Binomial sampling model, one can derive that the coefficient of variation 𝐶𝑉 = 𝜎/𝜇 per

gene is given by:

log(𝐶𝑉) ≈ −1
2

log(𝜇) + 𝜖,

where 𝜎 is the standard deviation and 𝜇 is the mean expression level of the gene using a Poisson

approximation. We computed the 𝐶𝑉 for each gene within each species and ranked them based

on the distance between the observed CV and the expected value under Binomial sampling. This

ranking prioritizes genes with the most variable expression relative to their mean.

To identify one-to-one orthologous highly-variable genes (HVGs), we applied the following pro-

cedure:

1. Initial Filtering and Ranking: We first ranked genes in species 𝐴 and 𝐵 based on their 𝐶𝑉 .

For each gene set, we selected the top 𝑘 genes as candidate HVGs.

2. Ortholog Retrieval and Intersection: For each gene in the HVG list of species 𝐴, we

retrieved all corresponding orthologs in species 𝐵. This initial mapping often resulted in

a one-to-many relationship. To address this, we calculated the intersection between HVGs

in species 𝐵 and the orthologs derived from species 𝐴, ensuring that only highly-variable

orthologs were considered.

3. Bidirectional retrieval From the highly-variable orthologs of species 𝐴, we retrieve highly

variable orthologs from species 𝐵.
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4. Refinement To achieve one-to-one ortholog mapping, we performed a filtering step. For

each candidate HVG ortholog in species 𝐴:

• We retrieved its orthologs in species 𝐵.

• These orthologs were then ranked by their mean expression levels.

• If multiple orthologs were present, the highest-ranking gene that was not already

matched was selected, ensuring a unique one-to-one relationship.

This heuristic yields a set of one-to-one ortholog genes that can be used for comparative transcrip-

tomics analysis taking into account data statistics.

SCENIC Analysis for Transcription Factor Regulon Identification

We employed the Single-Cell Regulatory Network Inference and Clustering (SCENIC) pipeline to

identify transcription factor (TF) regulons enriched in different segments of the topological loop in

the human immune development dataset. Following the protocol described in (Aibar et al., 2017),

with modifications specified below, we conducted regulatory network inference and TF regulon

activity analysis.

First, we created a dedicated conda environment without specifying the Python version and installed

SCENIC by cloning the pyscenicGitHub repository directly to circumvent potential compatibility

issues encountered when using pip-based installation methods. Minor adjustments to the source

code of the arboreto and dask_expr packages were implemented to ensure compatibility and

robustness during distributed computations.

Gene regulatory networks (GRNs) were inferred using the GRNBoost2 method from the arboreto

package on single-cell RNA-seq data stored in loom format, based on the list of human TFs from

(Lambert et al., 2018). The GRN output was used to generate candidate regulons, employing motif

rankings based on the human genome hg38, considering a 10 kb upstream and downstream window

(hg38_10kbp_up_10kbp_down_full_tx_v10_clust.genes_vs_motifs. rankings.feather)
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and motif annotations motifs-v10nr_clust-nr.hgnc-m0.001-o0.0.tbl. Cellular enrich-

ment of candidate regulons was then computed to obtain the regulon activities across cells. The com-

mands were run with a distributed computing framework utilizing the dask_multiprocessing

mode with 24 parallel workers.

Inference of Regulatory Relationships Between TFs and Gene Programs

To infer regulatory relationships between transcription factors (TFs) and gene programs, we

performed downstream analysis using SCENIC. Target genes associated with each TF regulon

were grouped and ranked. Independently, gene program-specific gene lists were compiled. The

statistical significance of overlaps between TF regulon target genes and gene programs was evaluated

using Fisher’s exact tests, employing a background set consisting of all genes detected across the

dataset. Multiple testing corrections were applied using the Benjamini-Hochberg procedure to

control for false discovery rate (FDR).
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2.5 Proofs

Theorem. Critical edge method yields a representative of 𝐻1.

Let 𝐾 = VR𝜀𝑏 be the Vietoris–Rips complex at scale 𝜀𝑏 constructed from a metric space (𝑋, 𝑑).

Assume one has access to the 𝐻1 persistent homology of 𝑋 encoded in its persistent diagram

Dgm1(𝑋). Let 𝑒 be the critical (positive) edge at which a persistent homology class [𝛾] is born at

𝜀𝑏, and assume this class has multiplicity one. Let 𝑇 be a minimum spanning tree (MST) of the

1−skeleton of 𝐾 , constructed via starting from one of the bounding points of 𝑒. Let 𝐿 = 𝑇 ∪ {𝑒}.

Then the loop 𝛼 formed by adding 𝑒 to 𝑇 is a representative of the homology class [𝛾] in 𝐻1(𝐾).

Proof:

Since 𝑇 is a tree spanning all vertices of 𝐾 , it is connected and acyclic. Adding the edge 𝑒 to

𝑇 creates a unique cycle 𝛼 in the graph 𝐿, i.e. 𝛼 ∈ ker𝜕𝐿1 . By construction, a complex 𝐿 is a

subcomplex of 𝐾 because all edges in 𝐿 are also in 𝐾 . The inclusion map 𝑖 : 𝐿 ↩→ 𝐾 is simplicial

and induces a homomorphism on homology groups 𝑖∗ : 𝐻1(𝐿) → 𝐻1(𝐾), so automatically

𝑖∗( [𝛼]) ∈ 𝐻1(𝐾).

Next, we need to show that [𝛼] is not a trivial homology class in 𝐾 , i.e. 𝛼 ∉ im𝜕𝐾2 . Suppose,

for contradiction, that 𝛼 = 𝜕𝐾2 (𝑐) for some 2-chain 𝑐 ∈ 𝐶2(𝐾). This would imply that 𝛼 bounds a

collection of 2-simplices in 𝐾 , and thus 𝛼 represents the trivial class in 𝐻1(𝐾). However, this is a

contradiction given that the 1−chain 𝛼 contains the edge 𝑒, which is the edge added exactly at 𝜀𝑏,

and, at that scale, 𝑒 does not have cobounding triangles since it is the largest edge in the filtration.

Since 𝛼 is a cycle in 𝐾 and 𝛼 ∉ im𝜕𝐾2 , it is a representative of a nontrivial homology class in 𝐻1(𝐾).

The last argument also implies that 𝛼 is not a representative of homology classes born before 𝜀𝑏,

since it contains an edge that was not present in previous steps in the filtration. Furthermore, we

know that a single class is born at that scale by the assumption of multiplicity one, i.e. 𝛽1 increases

by one, when adding 𝑒. Therefore, 𝛼 must be a representative of [𝛾] given that [𝛾] is the single

homology class born at 𝜀𝑏. ■



54

Theorem. Perturbation method only requires the simplices of a cohomology generator

Suppose there is a persistent homology class 𝛼 with birth time 𝑏 and death time 𝑑 with positive

simplex 𝜎 and negative simplex 𝜏. The perturbation method works by mapping a PH class from

(𝑏, 𝑑] ↦→ (𝑑, 𝑑] in the persistence diagram. Then, the simplices needed to modify to perform

this perturbation in the diagram are precisely the simplices forming the representative of the

corresponding cohomology generator available from Ripser.

Proof:

By Theorem 11 in Nigmetov and Morozov, 2022 increasing the birth time to 𝑑 of a single persistent

homology class amounts to changing the values of the simplices 𝜌 satisfying two conditions:

1. 𝑓 (𝜌) ∈ [𝑏, 𝑑]

2. 𝑉⊥ [𝜌, 𝜎] ≠ 0

But by section 3.4 Silva, Morozov, and Vejdemo-Johansson, 2011 we have that if low𝑅⊥ [:, 𝜎] = 𝜏

then the simplices in 𝑉⊥ [:, 𝜎] are the cohomology generator, so the second condition is met. By

duality, the cohomology class corresponding to 𝛼 are born at 𝑑 and die at 𝑏, i.e. the conditions

are switched, by contravariance of the cohomology functor. Therefore the simplices in 𝑉⊥ [:, 𝜎]

satisfy the first condition automatically. ■

Theorem. There exist gradient fields with convergent trajectories.

Proof: We provide a constructive proof.

Let 𝑀 be a compact, 2-dimensional, oriented manifold with boundary and let 𝑓 : 𝑀 → 𝑅 be a

Morse function with a subset of critical points {𝑟, 𝑠1, 𝑠2, 𝑎} with indices {2, 1, 1, 0} with critical

values 𝑣𝑟 , 𝑣𝑠1 , 𝑣𝑠2 , 𝑣𝑎. Consider the gradient flow 𝑑𝑥/𝑑𝑡 = −∇ 𝑓 . In this set up, 𝑠1 and 𝑠2 represent

saddle points, and 𝑟 𝑎 are unstable and stable fixed points respectively. In other words, 𝑎 is an

attractor, and 𝑟 is a repellor. We visualize the system in Figure S21.
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Assume that there is a parametrization of the unstable manifold of the repellor 𝑟 where each basis

vector coincides with one stable manifold of the saddles 𝑠1, 𝑠2. Furthermore, assume that there is

a parametrization of the stable manifold of the attractor 𝑎 where each basis vector coincides with

the unstable manifold of the saddle points.

Then, there exist convergent trajectories 𝛾1, 𝛾2 with the following properties:

• lim𝑡→−∞𝛾𝑖 (𝑡) = 𝑟.

• 𝛾1(𝑡) ≠ 𝛾2(𝑡) for some 𝑡 ∈ (𝑇1, 𝑇2).

• lim𝑡→∞𝛾𝑖 (𝑡) = 𝑎.

2.6 Supplementary Notes

High dimensions can mask topological structure in persistent diagrams

One important example of the curse of dimensionality is that Euclidean distances become meaning-

less in high-dimensions. Since Vietoris-Rips complexes are defined solely on pairwise distances,

this effect becomes significant for the interpretation of persistence diagrams. With the goal of

mitigating this effect, one crucial step in our topological analysis is projection of single-cell data

using PCA. In (Hiraoka et al., 2024), Hiraoka et al. showed that in high dimensions, the topological

signal in persistence diagrams become unreliable under a Gaussian noise model, and showed that

PCA remediates this effect.

To systematically investigate this phenomenon, we designed an experiment using the following

probabilistic model:

𝑡 ∼ Unif [0, 2𝜋) (2.13)

𝐶 = (𝑟 cos𝑡, 𝑟 sin𝑡, 0, . . . , 0) ∈ R𝑑 (2.14)

𝑁 ∼ MVN(0, 𝜂2𝐼𝑑) (2.15)

𝑋 = 𝐶 + 𝑁 (2.16)
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In this model, points are sampled uniformly from a circle of radius 𝑟 in the first two coordinates,

embedded in R𝑑 , and subjected to isotropic Gaussian noise with variance 𝜂2 in each coordinate.

This model allows us to directly observe the effect of dimension on the recovery of the manifold’s

topology, even when the intrinsic signal structure remains unchanged.

For large dimensions 𝑑 ≫ 𝑟, the signal becomes dominated by noise. This is evident from

considering the random Gaussian vector 𝑁 ∼ MVN(0, 𝜂2𝐼𝑑). Its expected squared norm is given

by:

E[ ∥𝑁 ∥2 ] =
𝑑∑︁
𝑖=1

E[𝑁2
𝑖 ] =

𝑑∑︁
𝑖=1

V[𝑁𝑖] =
𝑑∑︁
𝑖=1

𝜂2 = 𝜂2𝑑

since the 𝑁𝑖 are i.i.d. Gaussians. This result implies that under the given probabilistic model,

the norm of 𝑋 scales linearly with the dimension 𝑑. Consequently, in high-dimensional settings,

distances become increasingly influenced by noise, thereby diminishing the persistence of the

homology class corresponding to the circle.

We performed simulations to test the effect of dimension on the noisy circle model and the

C.elegans’ seam cell dataset. We used 𝑟 = 10, 𝜂 = 1, and 𝑛 = 2, 766 points (the number of seam

cells). Furthermore, we explored computing PH on dimensions 𝑑 = {20, 100, 500, 1000, 𝑛genes =

2501}

The results in Fig S3 reveal several key insights. First, with increasing dimension the homology

classes shift to birth times involving higher birth distances, which makes sense as the volume

in higher dimensional spaces increases. Furthermore, we found that in both cases, dimension

alone can decrease the topological signal, demonstrated by the decrease in the lifetime of the most

prominent homology class. This is interesting since the two datasets have different noise structure:

constant for the noisy circle, and exponentially decaying in the case of C. elegans under the change

of basis in PCA. Moreover, we found that in the case of the seam cells, the signal is present even

in the original dimension when using all highly variable genes (𝑛 = 2, 501). These results suggest

that PCA can indeed ameliorate the loss of topological signal by the curse of dimensionality.
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Error bounds for topological inference of large datasets

In this note, we provide an error estimate of the topological census for large datasets. Concretely,

we will show that the Hausdorff distance 𝑑𝐻 provides an error bound on the distance between

the persistence diagrams of a sample and the entire dataset. This implies that, even if we cannot

compute the persistent diagram of a large dataset, we can use the persistent diagram of a sample

as a proxy of its topological signature, and provide an estimate of how uncertain we are of this

approximation. At the end, we also discuss other possible strategies and their limitations.

Introduction

Determining the Betti numbers of developmental cell state manifolds (and in fact of any real

dataset) is fundamentally an inference problem. In essence, our approach has at least one limitation.

First, one of our assumptions is that we start with a representative sample 𝑋 from an underlying

developmental manifold M. Then, we can compute a persistent diagram of 𝑋 (which contains

all its topological information (S. Y. Oudot, 2015)) to approximate the topology of M. For large

datasets (given our computational infrastructure, sets of 𝑛 > 50, 000 single-cell transcriptomes),

the topological inference becomes more challenging, since the computation is dependent on the

number of simplices, which can grow exponentially as a function of the number of points. Thus, we

can only compute the persistent diagram using a subsample 𝑋̃ ⊆ 𝑋 to approximate the topology of

M. Despite this endeavor might seem daunting, there is one theorem that puts us on firm grounds:

the stability theorem for persistent homology (Chazal, Cohen-Steiner, et al., 2009; Chazal, Silva,

and S. Oudot, 2014).

The stability theorem states that the distance between persistent diagrams of two datasets 𝑋,𝑌 its

bounded above by the Gromov-Hausdorff distance:

𝑑𝑏 (Dgm(𝑋),Dgm(𝑌 )) ≤ 𝑑𝐺𝐻 (𝑋,𝑌 ) ≤ 𝑑𝐻 (𝑋,𝑌 ). (2.17)
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On the left 𝑑𝐵 is the bottleneck distance, which measures the longest edge between the best

matching between persistent diagrams:

𝑑𝑏 (Dgm(𝑋),Dgm(𝑌 )) = inf
𝛾

sup
𝑝∈Dgm(𝑋)

∥𝑝 − 𝛾(𝑝)∥∞,

where the infimum is taken over all bijections 𝛾 : Dgm(𝑋) → Dgm(𝑌 ) ∪ Δ, and Δ denotes the

diagonal set consisting of points of the form (𝑎, 𝑎) in R2+.

On the right hand side of (2.17), 𝑑𝐺𝐻 and 𝑑𝐻 are the Gromov-Hausdorff and the Hausdorff

distance, respectively. The Hausdorff distance is a metric on subsets of a metric space. The

Gromov-Hausdorff extends this notion by measuring the distance between two metric spaces,

under isometric embedings onto a common space.

It turns out that this result mitigates uncertainty on both of our assumptions for topological

inference. First, it tells us that small perturbations on the data result in small perturbations of the

persistence diagrams. This suggests that we can hope to get similar results, if we were to perform

our calculations with biological replicates of a given single-cell atlas. Secondly, despite we can’t

compute the persistence diagram of the entire dataset Dgm(𝑋), we can very precisely compute an

upper bound of its bottleneck distance with respect to the subsample’s diagram Dgm( 𝑋̃) using the

Hausdorff distance.

Assessing sampling strategies on synthetic data

To evaluate sampling strategies for topological inference we compared three methods:

1. Farthest point sampling (FPS)

2. Closest representatives to k-Means centroids

3. Uniform random sampling
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FPS offers a known two-approximation of the optimal subsample in terms of the Hausdorff

distance 𝑑𝐻 to the full dataset (Sheehy, 2020), and its algorithm computes 𝑑𝐻 in the process. We

benchmarked these methods on a synthetic dataset—a noisy circle (a circle with added Gaussian

noise)—by quantifying the Hausdorff distance 𝑑𝐻 and Bottleneck distance 𝑑𝐵 of the subsample

to the full dataset. In Figure S4 we provide a visualization of our results. Our findings were the

following:

1. The 𝑑𝐻 decreases with the number of samples on all three strategies, as expected.

2. FPS performs best, with k-Means being competitively close in 𝑑𝐻 for certain cases.

3. We numerically confirmed that 𝑑𝐻 provides an upper bound for 𝑑𝐵.

Based on these results, we adopted FPS as our default sampling strategy for the topological census

in datasets exceeding 50,000 cells. For each such dataset, we report the Hausdorff distance of

the FPS subsample as a conservative upper bound on the bottleneck distance between the inferred

persistence diagram and that of the full dataset. This quantifies the approximation error introduced

by subsampling in our topological analysis.

Assessing the effect of greedy furthest point sampling on real data

We evaluated the robustness of topological inference under FPS, by computing persistent homology

(PH) on subsamples of the C. elegans atlas. We used fractions of data corresponding to {1, 5, 10, 25}

per cent of the data, spanning the approximation regime in our census. The subsampled cells are

highlighted in the top row Figure S5.

Our analysis consisted on the following procedure:

• We used the critical edge method to retrieve the two most persistent loops.

• We then computed the topoCells by taking the neighborhood at a birth distance away from

the zero skeleton of the 𝐻1 homology representative.
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• Compute the Jaccard score with respect to a referencetopoCell set to quantify the "accuracy"

of retrieval at sparser samples.

• Perform a null distribution by sampling random sets of the same cardinality as the topoCells

for comparing the computed Jaccard score.

Our results for the second most persistent loop are visualized in Figure S5, but a similar analysis

holds for the most persistent class, and can be computed using the code provided in the Github

reproducibility notebooks. We used the topology from the data at 25% sampling level as reference.

We highlight the most relevant findings from our analysis.

First, by looking at the loop representative, we can see that, even at a 5% sampling level, the

critical edge method is still able to retrieve the geometrically correct topological loop, and at 1%

sampling level, the loop is significantly degraded, not spanning the same path of cell states as the

true set. Second, we can see that the persistent diagrams have a similar structure up to the 5%

sampling level too (Figure S5, middle row). Third, by visualizing the topoCells, we can see that,

even at a 1% sampling level, we can retrieve some relevant cell states, but the quality is almost

identical in distribution for the 5 and 10% sampled data. The latter result is confirmed by the fact

that the Jaccard scores from the inferred topoCells are far than we would get at random (inset

distributions Fig S5). Together, these results suggest that FPS can effectively capture biologically

relevant topological structure up to the 5% sampling regime, which underscores the relevance of

census results.

Benchmarking our topological approach using a simulated cyclic scRNA-seq dataset

To assess the efficacy of our framework, we conducted control experiments using simulated scRNA-

seq datasets with ground truth topology using dyngen (Cannoodt et al., 2021). This software package

utilizes the Gillespie algorithm and real data statistics to simulate the acquisition of scRNA-seq data

with a user-specified gene regulatory program. We designed a GRN consisting of 100 transcription

factors, 1,000 target genes, and 500 housekeeping (HK) genes. Its wiring diagram is visualized in
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(Fig S S1 A). The simulated dataset exhibited Poisson statistics, characteristic of real scRNA-seq

data, ensuring a realistic case study (Fig S S1 B).

Applying our pipeline, we constructed the cell state manifold from the simulated data and computed

persistent homology to identify prominent topological features (Methods). The persistence diagram

revealed that the 0−homology classes could not be well separated, indicating a large connected

component subject to noise. Furthermore, the one-dimensional persistence diagram revealed a

prominent 𝐻1 homology class, indicating the presence of a loop (Fig S1 E. orange dots).

To evaluate the statistical robustness of our approach, we developed a permutation test to provide

an uncertainty estimate for our results (Methods). In brief, we asked if the topological feature of a

dataset could be explained by chance. To answer this question, we set out to test the null hypothesis

that the difference between the lifetime of the maximal 𝐻1 feature of a cyclic dataset and a tree-like

dataset was null, versus the alternative of the maximal𝐻1 feature being more prominent in the cyclic

dataset. Interestingly, we found that the difference between the simulated cyclic data and the tree

dataset was significant (P-value < 10−4). In the SI we show a systematic evaluation of this approach

using both positive and negative controls (Fig S2). Together, these results demonstrate that our

approach can robustly detect the topological signature corresponding to cyclic gene expression,

even in the presence of noise inherent to single-cell data.

Next, we sought to identify the specific genes contributing to the detected topological loop, or the

topoGenes. While persistent homology detects the presence of topological features, distinguishing

the genes responsible for these features requires additional analysis. We leverage a topological

optimization approach to rank genes based on their contribution to the prominent homology class.

We identify topology-driving genes by computing the norm of the gradient of a persistence-

based loss function with respect to gene expression coordinates, effectively measuring each gene’s

contribution to the prominent topological features in the cell state manifold.

Applying this approach to our simulated data, we successfully identified the transcription factors

and target genes contributing to the topological loop, while excluding housekeeping genes that did
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not influence the topology (Figure S1D). These results suggest that our approach can both identify

the topological structure and its underlying gene expression signature of a cell state manifold.

Benchmarks of topological permutation test using synthetic data

In order to evaluate the effectiveness of our topological analysis, we conducted simulations of scR-

NAseq datasets incorporating predetermined data topologies and subjecting them to our topological

statistical test. For our simulation, we used dyngen, a method that uses the Gillespie algorithm

and real data statistics (such as capture rates and library sizes) to mimic the acquisition process of

scRNAseq data.

To establish a baseline, we a null hypothesis dataset with a simple bifurcation tree topology. To

assess the performance of our method, we performed a positive control experiment with the cyclic

gene regulatory topology, and found a significant difference compared to the max H1 lifetimes of

the control bifurcation dataset (P-value < 10−4). We also performed negative control experiments

featuring trifurcation, linear trajectory and binary tree topologies. Our statistical test revealed no

significant differences in these datasets: trifurcation P-value = 0.4, linear trajectory P-value = 0.21,

binary tree P-value = 0.54.

Finally, to verify that the test had low false discovery rate, we asked if the second most prominent

H1 feature of the the dyngen cyclic topology was significant. For this case, we found that a P-value

= 0.24, indicating that the test identifies a single significant topological feature as expected.

For all our experiments, we used 104 permutation replicates and 20 principal components for all

of our experiments. These parameters were consistently applied across all experiments to ensure

consistency and reliability of our results.
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Figure S1: Benchmark using a known gene regulatory network. (A) Gene regulatory network
used for benchmark experiments. (B) Dyngen data has Poisson statistics. Observed slope of log 𝜇
vs logCV is −0.67 which is close to the predicted −0.5 of Poisson statistics. (C) Persistence
diagram using only housekeeping genes. Note that no salient persistent 1−homology classes are
present. (D) Left: Eigenvectors of the 0−Laplacian of homology generator. Middle: topoGenes
with the highest mutual information for the Laplacian eigenvectors on the left. Please note that
the gene expression patterns are transient. Right: Examples of housekeeping genes; note that their
expression is spurious or constant.
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Figure S2: Benchmarks of topological statistic tests using synthetic data. We performed 3
control experiments to evaluate the efficacy of our statistical test. We used a simple bifurcation tree
as a null hypothesis dataset for all experiments. For a positive control, we tested a cyclic dataset as
a test dataset and found that the difference between maximal lifetime of 𝐻1 classes was significant
(P-value < 10−4). In contrast a linear, another binary tree, and a trifurcation datasets where all
deemed to have a non-significant difference between the maximal 𝐻1 classes (P-values = 0.21, 0.54,
0.4 respectively).

Figure S3: Increasing dimension can diminish topological signal. We studied the effect of
increasing dimension on persistent homology calculation using a probabilistic model of a circle
embedded in high dimensions (top), and using real data with increasing principal components
(bottom). In the right we plot the lifetime of the most persistent homology class for each dataset.
Note that the maximum lifetime (topological signal) decreases with increasing dimension.
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Figure S4: Numerical comparison of sampling strategies for PH computation. Quantitative
comparison of sampling quality using Hausdorff distance (left) and bottleneck distance between
persistence diagrams (middle) as a function of the number of samples (x-axis). Farthest point
sampling (FPS) consistently yields lower distances compared to KMeans and random sampling.
As expected, the Hausdorff distance 𝑑𝐻 provides an upper bound on the bottleneck distance 𝑑𝐵
across all strategies.
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Figure S5: Simulation on real scRNA-seq atlas reveals that of topological inference is feasible
in the approximate regime of topological census. Top row: Cells selected by FPS (highlighted
in beige), with the second most persistent homology loop identified using the critical edge method.
Middle row: Persistence diagrams for different sampling fractions, highlighting the second most
persistent loop. Bottom row: Kernel density estimation (KDE) visualizations of topoCells
distributions. Insets depict null distributions of Jaccard scores obtained by random sampling (grey
histograms), contrasted with the observed Jaccard scores (maroon dashed lines), demonstrating
that inferred topoCells significantly outperform random expectations.
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Figure S6: Cyclic topology identification using totopos reveals cell cycle progression in
proliferating HeLa cells.
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Figure S7: Persistence diagrams for exact region of the topological census Persistence diagrams
for data sets containing less than 50,000 single-cell transcriptomes. Persistence computation was
performed using pyRipser.
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Figure S8: Persistence diagrams for approximate region Persistence diagrams for data sets
containing more than 50,000 single-cell transcriptomes. Black points indicate 𝐻0 homology
classes, and blue points indicate 𝐻1 classes respectively. Persistence computation was performed
using a sparse filtration in pyRipser.
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Figure S9: Transcription factor regulon activities across immune cell populations based
on SCENIC output. Dotplot of transcription factor (TF) regulon activity across the circular
coordinates, with cells grouped by original labels as in Suo et al., 2022b. Dot size represents
the fraction of cells in each group expressing the regulon, and color intensity indicates the mean
regulon activity within each cell group.
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Figure S10: Regulon enrichment within immune-related gene programs. Heatmap illus-
trating statistically significant regulatory relationships between transcription factor (TF) regulons
(columns) and immune-related gene programs (rows). Color intensity represents the negative log-
transformed false discovery rate (FDR)-adjusted q-values from Fisher’s exact tests, with brighter
colors indicating stronger enrichment and greater statistical significance. Only associations with a
q-value ≤ 0.001 are shown.

A) B)

C)

Figure S11: Ablation experiment shows that topoGenes drive the topological structure in early
human immune development. A) Persistent diagrams using all highly variable genes (HVGs) or
removing 1000 random genes are almost indistinguishable (left, middle). Removing topoGenes
ablates the homology class. (B) The tolerance upon ablation is confirmed by a major decrease
in singular value magnitude upon topoGene removal, indicating that the topoGenes constitute
dominant gene programs. (C) PCA visualization indicates that the homology class is part of a
dominant program of seam cells. We plotted topoCells in PCA space using a three-dimensional
sliding window with all genes, after removing a random gene set, and after removing topoGenes.
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Highly variable genes (HVGs) HVGs - 500 random genes HVGs - topoGenes (476)

A) B)

C)

Figure S12: Ablation experiment shows that topoGenes drive the topological structure in C.
elegans’ seam cells.

Figure S13: Seam cell loop of C. elegans can be destroyed with UMAP. We performed UMAP
with default parameters on the C. elegans developmental atlas using as input the PCA projection
using 20 principal components.
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Figure S14: Persistent diagrams of cnidocytes across cnidarian species.

Figure S15: A trajectory involving an ensnaring cell type, spirocytes, causes an extra loop in
Nematostella vectensis.
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A)

B)

C)

D)

Clustering purity (accuracy) = 0.19

Clustering purity (accuracy) = 0.95

CCA

LMA

Shuffle
pairs

Figure S16: Benchmarking LMA using simulation. (A) We simulated a linear transformation
followed by shuffling to test LMA. (B) Applying CCA without first considering the pairing caused a
shared low-dimensional space, though an imperfect matching due to shuffling of the pairing labels.
We used kMeans to quantify the accuracy, by assigning each rotated point in the shared space
to its nearest original cluster. (C) Confusion matrix of clustering. (D) Visualization of mutual
nearest neighbors (left). After correct pairing, CCA shows a good performance, as quantified by
the clustering purity.



75

hy

nve nve

clyhy

cly

neighborhood size = 150 cells

Hydra - Nematostella Hydra - Clytia Clytia- Nematostella

Figure S17: Cnidarian persistent homology plots in LMA space.
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Highly variable genes (HVGs) HVGs - 500 random genes HVGs - topoGenes (481)

A)

Highly variable genes (HVGs) HVGs - 500 random genes HVGs - topoGenes (437)

D)

B)

C)

E)

F)

Figure S18: Ablation experiment shows that topoGenes drive the topological structure in N.
vectensis cnidocytes. Results are for the two generators in nematostella (G0 top, G1 bottom).
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Highly variable genes (HVGs) HVGs - 500 random genes HVGs - topoGenes (459)

A)

Highly variable genes (HVGs) HVGs - 500 random genes HVGs - topoGenes (469)

D)

Nematocytes

Gland cells

B)

E)

C)

F)

Figure S19: Ablation experiment shows that topoGenes drive the topological structure in H.
vulgaris cnidocytes and gland cells.
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Highly variable genes (HVGs) HVGs - 500 random genes HVGs - topoGenes (460)

A)

Highly variable genes (HVGs) HVGs - 500 random genes HVGs - topoGenes (445)

D)

Nematocytes

Gland cells

B)

C)

E)

F)

Figure S20: Ablation experiment shows that topoGenes drive the topological structure in C.
hemisphaerica cnidocytes and gland cells.
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Figure S21: Gradient systems can contain convergent trajectories.

Figure S22: Homology group generator runtime comparison. We compared our method
to the classical method for computing persistent homology, which yields persistent homology
representatives, as implemented in Dionysus (https://github.com/mrzv/dionysus).
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C h a p t e r 3

MATHEMATICAL FRAMEWORK

3.1 Introduction

The goal of this chapter is to introduce the mathematical foundations underlying the tools developed

in this thesis. We begin with a review of algebraic structures that lead to homology theory, proceed

to define simplicial complexes and the computation of Betti numbers, and conclude by introducing

persistent homology and cohomology as tools to extract topological motifs from single-cell data.

By writing this theoretical primer I hope that interested computational biologists can not only use

the tools I developed here, but also build new tools to find new insights in single-cell genomics

and beyond. Most of the material presented here can be found in (Munkres, 2000; Hatcher, 2001)

and the author does not claim original authorship of almost all results. The only case of original

work in this section is the Fundamental Theorem of Chain Groups, although it is an elementary

extrapolation of Hodge Decomposition for Simplicial Complexes. This chapter is only intended for

self-containment of the thesis.

3.2 Algebraic preliminary

Definition. Relation

Let A be a set. A relation 𝑅 on 𝐴 is a subset 𝑅 ⊂ 𝐴 × 𝐴 with 𝑎 ∼ 𝑏 for (𝑎, 𝑏) ∈ 𝑅.

Definition. Equivalence relation

A relation 𝑅 is an equivalence relation (∼) if the following properties hold:

1. Reflexivity 𝑎 ∼ 𝑎 ∀ 𝑎 ∈ 𝐴

2. Symmetry 𝑎 ∼ 𝑏 ⇒ 𝑏 ∼ 𝑎

3. Transitivity if 𝑎 ∼ 𝑏 and 𝑏 ∼ 𝑐 ⇒ 𝑎 ∼ 𝑐
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Definition. Equivalence class An equivalence class is the set defined as:

[𝑎] = {𝑥 ∈ 𝐴 : 𝑥 ∼ 𝑎}. (3.1)

Proposition. Let 𝐴 be a non-empty set, ∼ an equivalence relation on 𝐴. The distinct equivalence

classes partition A into disjoint sets.

Proof:

As 𝑎 ∼ 𝑎, then ∀𝑎 ∈ 𝐴 ∃[𝑎] : 𝑎 ∈ [𝑎] ⇒ 𝐴 =
⋃
𝑎∈𝐴 [𝑎]. To finish the proof we now show that

equivalence classes are either disjoint or equal. Let 𝑎, 𝑏 ∈ 𝐴 and assume their equivalence classes

are not disjoint, i.e. [𝑎] ∩ [𝑏] ≠ ∅, we need to show that they are equal. Let 𝑥 ∈ [𝑎] ∩ [𝑏] ⇒

𝑎 ∼ 𝑥 , 𝑥 ∼ 𝑏 ⇒ 𝑎 ∼ 𝑏 by trasitivity. Now assume 𝑦 ∈ [𝑎], i.e. 𝑦 ∼ 𝑎. Then by our previous

observation and applying transitivity 𝑦 ∼ 𝑏 and 𝑦 ∈ [𝑏] ⇒ [𝑎] ⊂ [𝑏]. By a similar argument we

can show that [𝑏] ⊂ [𝑎] ⇒ [𝑎] = [𝑏] .■

Exercise: Can you show that the converse is true, i.e. that a partition also induces an equivalence

relation. With this result, notice, that a clustering algorithm effectively induces an equivalence

relation of the input data.

It turns out that, when working with a set with some additional algebraic structure (e.g. a vector

space, or a group), the equivalence classes inherit the algebraic structure. The space of equivalence

classes is called a quotient from the analogy that we reduce or factor the initial set, by focusing at

equivalence classes. Our main interest is to define the concept of a homology group, which is a

quotient group. Thus, we begin by describing what is a group in the context of modern algebra.

Definition. Group A group is a tuple (𝐺, ·) where 𝐺 is a set and "·" is a closed binary operation

on 𝐺, i.e. · : 𝐺 × 𝐺 → 𝐺 and for any 𝑥, 𝑦 ∈ 𝐺, 𝑥 · 𝑦 ∈ 𝐺. It has the following axioms:

1. Associativity: For all 𝑎, 𝑏, 𝑐 ∈ 𝐺 one has that (𝑎 · 𝑏) · 𝑐 = 𝑎 · (𝑏 · 𝑐).
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2. Identity element: There is an unique element 𝑒 ∈ 𝐺 s.t. for every 𝑎 ∈ 𝐺 one has 𝑒·𝑎 = 𝑎 = 𝑎·𝑒.

This element is called the identity element.

3. Inverse element: For each 𝑎 ∈ 𝐺 there is an unique element 𝑎−1 s.t. 𝑎𝑎−1 = 𝑒 = 𝑎−1𝑎.

Example: The integers form a group under addition.

Note: It’s interesting to think what happens when we remove structure from a group. For example,

a set that is closed under binary operation is called a magma. In particular, in a magma, the binary

operation need not be associative. An example of a magma is (R3,×), i.e. three-dimensional

Euclidean space equipped with the cross product as binary operation. Clearly, this structure is

closed under the operation. Is the operation associative? It turns out the answer is no. To

prove it we can just use a counter example: Let 𝑢 = 𝑖 = (1, 0, 0)𝑇 , 𝑣, 𝑤 = 𝑗 = (0, 1, 0)𝑇 . Then

𝑢 · 𝑣 = 𝑘̂ = (0, 0, 1) and 𝑣 · 𝑤 = 0. Thus (𝑢 · 𝑣) · 𝑤 = −𝑖 ≠ 𝑢 · (𝑣 · 𝑤) = 0. Exercise: Can you show

that (R3,×) doesn’t have an identity element? You can answer in purely geometric terms, i.e. no

mathematical symbols.

Remark: If the operation on the group is commutative, i.e. 𝑎 · 𝑏 = 𝑏 · 𝑎, we say that the group is

commutative or abelian. Our groups of interest, the simplicial chains and the homology groups are

abelian.

Example: The set of nonsingular matrices of dimension 𝑛 × 𝑛 forms a group under matrix

multiplication called the general linear group of dimension 𝑛, denoted 𝐺𝐿 (𝑛). Question: is the

group commutative?

Definition. Subgroup Let 𝐺 be a group. The subset 𝐻 of 𝐺 is a subgroup (written 𝐻 ≤ 𝐺) if 𝐻

is nonempty and is closed under products and inverses.

Remark: The smallest subgroup 𝐻 is the set containing only the identity element of 𝐺.

Example: The set of orthogonal matrices of dimension 𝑛 × 𝑛 is a subgroup of 𝐺𝐿 (𝑛).

Definition Let𝐺 be a group,𝐻 ≤ 𝐺. Then this defines an equivalence relation on𝐺 for (𝑎, 𝑏) ∈ 𝐺:

𝑎 ∼ 𝑏 if ∃ ℎ ∈ 𝐻 : 𝑎 = 𝑏ℎ. The equivalence classes are also called cosets.
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Proof:

It suffices to show that the definition above has all the propeties of an equivalence relation:

1. Reflexivity: 𝑎 ∼ 𝑎, since 𝑒 ∈ 𝐻 and 𝑎 = 𝑎𝑒.

2. Symmetry: Let 𝑎 ∼ 𝑏, then ∃ℎ ∈ 𝐻 : 𝑎 = 𝑏ℎ. But also 𝑏 = 𝑎ℎ−1 and ℎ−1 ∈ 𝐻 ⇒ 𝑏 ∼ 𝑎.

3. Transitivity: Let 𝑎 ∼ 𝑏 , 𝑏 ∼ 𝑐. Then ∃ℎ, ℎ′ : 𝑎 = 𝑏ℎ, 𝑏 = 𝑐ℎ′ ⇒ 𝑎 = 𝑐ℎ′ℎ = 𝑐ℎ′′ by closure

ℎ′′ ∈ 𝐻 =⇒ 𝑎 ∼ 𝑐 . ■

Definition. Coset For all 𝑔 ∈ 𝐺 the set 𝑎𝐻 = {𝑎ℎ : ℎ ∈ 𝐻} = [𝑎]𝐻 . I.e. a coset is just an

equivalence class in the context of group theory.

Definition. Quotient group Let 𝐺 be a abelian group, and 𝐻 ≤ 𝐺. Then the quotient group 𝐺/𝐻

is the group of cosets of 𝐻:

𝐺/𝐻 := {𝑎𝐻 : 𝑎 ∈ 𝐺} (3.2)

with operation:

(𝑎𝐻) (𝑏𝐻) := 𝑎𝑏𝐻 (3.3)

and the operation is well defined.

Remark: To be more explicit about equality of cosets, recall that non-identical cosets are disjoint.

Thus 𝑔𝐻 = 𝑥𝐻 means that there is an ℎ ∈ 𝐻 such that 𝑔 = 𝑥ℎ. Thus 𝑔𝐻 = 𝑥(ℎ𝐻) = 𝑥𝐻, since ℎ𝐻

is the same coset as 𝑒𝐻 = 𝐻 since 𝐻 is closed.

Proof:

We need to show that the operation is well-defined, i.e. that it is independent on the choice of
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representatives. We will show this in the context of abelian groups. For a general proof one needs

to show the additional structure of 𝐻 being a normal subgroup.

Let 𝑎, 𝑏, 𝑎′, 𝑏′ ∈ 𝐺 with 𝑎𝐻 = 𝑎′𝐻, 𝑏𝐻 = 𝑏′𝐻. We need to show that (𝑎𝐻) (𝑏𝐻) = (𝑎′𝐻) (𝑏′𝐻).

We have that by definition since 𝑎 ∼ 𝑎′, i.e. ∃ℎ, ℎ′ ∈ 𝐻 : 𝑎 = 𝑎′ℎ, 𝑏 = 𝑏′ℎ′.

Then

𝑎𝐻𝑏𝐻 := 𝑎𝑏𝐻 (3.4)

= 𝑎′ℎ𝑏′ℎ′𝐻 (3.5)

= (𝑎′ℎ) (𝑏′ℎ′𝐻) (3.6)

= (𝑎′ℎ)𝑏′𝐻 since H is closed under the operation (3.7)

= 𝑎′𝑏′ℎ𝐻 by commutativity (3.8)

= 𝑎′𝑏′𝐻 (3.9)

= (𝑎′𝐻) (𝑏′𝐻)■ (3.10)

Remark: Since all subgroups of abelian groups are normal, and we’re exclusively interested in

these, we will not make the general proof for nonabelian groups.

Example: The integers mod 2 Z2 are a quotient group under the sum. The equivalence classes

or cosets are even and odd integers.

Example: Quotient vector space Let𝑉 be a vector space and𝑈 be a subspace. The quotient space

𝑉/𝑈 is a quotient group over addition. For concreteness consider 𝑉 = R2,𝑈 = {(𝑥, 𝑥), 𝑥 ∈ R},

that is 𝑈 is a line through the origin with slope 1. In this set up, two vectors 𝑥, 𝑦 are equivalent iff

𝑥 − 𝑦 ∈ 𝑈 ⇐⇒ ⟨ 𝑥−𝑦
| |𝑥−𝑦 | | , (1, 0)

𝑇 ⟩ = cos( 𝜋4 ). Cosets 𝑣 +𝑈 are parallel translates of 𝑈. Addition in

the quotient group is defined as (𝑣 +𝑈) + (𝑤 +𝑈) = (𝑣 + 𝑤) +𝑈, and (𝑈) is the identity coset.

Exercise: Visualize the quotient group above, and prove that the operation is well defined.

3.3 Set theory preliminaries

Definition 1. Condition for containment in a union of an indexed family of sets
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Let {𝑋𝑖}𝑖∈𝐼 be an indexed family of sets. We say that 𝑥 ∈ ⋃
𝑖∈𝐼 𝑋𝑖 if there is at least one 𝑖 ∈ 𝐼 such

that 𝑥 ∈ 𝑋𝑖. Conversely 𝑥 ∉
⋃
𝑖∈𝐼 𝑋𝑖 if 𝑥 ∉ 𝑋𝑖∀𝑖 ∈ 𝐼.

Definition 2. Condition for containment in the intersection of an indexed family of sets

Let {𝑋𝑖}𝑖∈𝐼 be an indexed family of sets. We say that 𝑥 ∈ ⋂
𝑖∈𝐼 𝑋𝑖 if 𝑥 ∈ 𝑋𝑖∀𝑖 ∈ 𝐼. Conversely

𝑥 ∉
⋂
𝑖∈𝐼 𝑋𝑖 if ∃𝑖 ∈ 𝐼 for which 𝑥 ∉ 𝑋𝑖.

One can infer that there’s a simple way of connecting these two definitions by their duality; we

show this in the following Theorem.

Proposition. De Morgan’s Laws

1. 𝑋 − ⋂
𝑖∈𝐼 𝐴𝑖 =

⋃
𝑖∈𝐼 (𝑋 − 𝐴𝑖)

2. 𝑋 − ⋃
𝑖∈𝐼 𝐴𝑖 =

⋂
𝑖∈𝐼 (𝑋 − 𝐴𝑖)

Proof: We’ll only prove one direction of the containment. The second one is easily achieved by a

symmetric argument. (1) Let 𝑥 be in the l.h.s. so that 𝑥 ∈ 𝑋 and 𝑥 ∉ 𝐴𝑖∀𝑖 ∈ 𝐼 by the first part of

Definition 2. This means that there is an 𝑖 s.t. 𝑥 ∈ (𝑋 − 𝐴𝑖) =⇒ 𝑥 ∈ ⋃
𝑖∈𝐼 𝑋 − 𝐴𝑖. Thus l.h.s. ⊂

r.h.s.

(2) Let 𝑥 be in the l.h.s., so 𝑥 ∈ 𝑋 and ∃𝑖 : 𝑥 ∉ 𝐴𝑖 by Definition 1. This means that 𝑥 ∉ 𝐴𝑖∀𝑖 and

𝑥 ∈ 𝑋 , i.e. 𝑥 ∈ (𝑋 − 𝐴𝑖)∀𝑖 =⇒ 𝑥 ∈ ⋂
𝑖∈𝐼 (𝑋 − 𝐴𝑖). Thus the l.h.s ⊂ r.h.s.

3.4 (Point-set) Topology

Here, we provide a concise introduction to the concepts of point-set topology. Historically, point-

set topology was developed by the need of formalizing the emerging field of algebraic topology

(first called Analysis situs), and calculus (which lead to the multiple branches of analysis). This

section can be skipped during a first read of this material, but I consider it a minimal (hopefully

helpful) primer on the basic structure of a topological space.

Def. Topology on a set
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A topology on a set 𝑋 is a family 𝜏 of subsets of 𝑋 with the following properties:

1. ∅ and 𝑋 are in 𝜏.

2. Closed under arbitrary unions: The union of any subcollection of subsets in 𝜏 is in 𝜏.

3. Closed under finite intersections: The intersection of the elements of a finite subcollection

of 𝜏 is in 𝜏.

Example. Open balls generate a basis for a topology in R𝑛. This is called the standard topology

in euclidean space.

A concise decription of a topology is given by the following definition.

Def. Basis for a topology Let (𝑋, 𝜏) be a topological space. A basis for a topology on 𝑋 is a

collection B of subsets of 𝑋 such that:

1. For each 𝑥 in 𝑋 , ∃𝐵 ∈ B : 𝑥 ∈ 𝐵.

2. If 𝑥 belongs to the intersection of two basis elements 𝐵1, 𝐵2, then ∃𝐵3 : 𝐵3 ⊂ 𝐵1 ∩ 𝐵2.

If B satisfies these two conditions, we define the topology 𝜏 generated by B as follows: A subset

𝑈 of 𝑋 is said to be open in 𝑋 (i.e. an element of 𝜏) if for each 𝑥 ∈ 𝑈, there is a basis element

𝐵 ∈ B such that 𝑋 ∈ 𝐵 ⊂ 𝑈.

Remark: 𝐵 ∈ B =⇒ 𝐵 ∈ 𝜏, i.e. each basis element 𝐵 ∈ B is itself an element of the topology 𝜏.

Proposition. A basis B generates a topology 𝜏 on 𝑋 .

Proof: The empty set and 𝑋 satisfy the conditions trivially. Now let’s check that the topology

generated 𝜏 contains (1) finite intersections of open sets and (2) arbitrary unions.

(1) Let 𝑈 = 𝑈1 ∩ 𝑈2, take 𝐵1 ⊂ 𝑈1, 𝐵2 ⊂ 𝑈2 : 𝑥 ∈ 𝐵1𝑎𝑛𝑑𝐵2 =⇒ 𝑥 ∈ 𝐵1 ∩ 𝐵2 ⊂ 𝑈1 ∩ 𝑈2.

By the second condition for a basis ∃𝐵3 ⊂ 𝐵1 ∩ 𝐵2 : 𝑥 ∈ 𝐵3 =⇒ 𝑈1 ∩𝑈2 ∈ 𝜏 by definition of
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topology generated by B. We show that a finite intersection 𝑈1 ∩ ... ∩𝑈𝑛 of elements of 𝜏 is in 𝜏

by induction. The fact is trivial if 𝑛 = 1. Suppose it is true for 𝑛 − 1, then it remains to show that

the result is true for 𝑛. We know that:

(𝑈1 ∩ ... ∩𝑈𝑛) = (𝑈1 ∩ ... ∩𝑈𝑛−1) ∩𝑈𝑛. (3.11)

By hypothesis 𝑈1 ∩ ... ∩𝑈𝑛−1 ∈ 𝜏. Let 𝑈𝑎 = 𝑈1 ∩ ... ∩𝑈𝑛−1, 𝑈𝑏 = 𝑈𝑛, then by the result proven

above𝑈𝑎 ∩𝑈𝑏 ∈ 𝜏 as desired.

(2) Let𝑈 be an arbitrary union of open sets indexed by a set 𝐼. Let 𝑥 ∈ 𝑈 =⇒ ∃𝑖 ∈ 𝐼 : 𝑥 ∈ 𝑈𝑖. By

definition of basis ∃𝐵 ∈ B : 𝑥 ∈ 𝐵 ⊂ 𝑈𝑖 ⊂ 𝑈. Thus 𝑈 is open by definition of topology generated

by basis. ■

Lemma. 𝜏 =
⋃
𝐵 : 𝐵 ∈ B

Proof: Elements of B are also elements of 𝜏, and since 𝜏 is a topology, the union of elements

in B is in 𝜏, so 𝜏 ⊃ ⋃
𝑏∈B 𝐵. Conversely, let 𝑈 ∈ 𝜏 and for each 𝑥 ∈ 𝑈 assign an element

𝐵𝑥 ∈ B : 𝑥 ∈ 𝐵𝑥 ⊂ 𝑈. =⇒ 𝑈 =
⋃
𝑥∈𝑈 𝐵𝑥 =⇒ 𝜏 ⊂ B.

Def. Topological space

A topological space is a tuple (𝑋, 𝜏) consisting of a set 𝑋 and a topology 𝜏 on 𝑋 .

Example. Topological space on a set {a,b,c }

Def. Open set Let (𝑋, 𝜏) be a topological space. We say that a subset 𝑈 of 𝑋 is an open set of 𝑋

if𝑈 ∈ 𝜏.

Def. Closed set A subset 𝐴 of 𝑋 is said to be closed if the set 𝑋 − 𝐴 is open.

It turns out that we can specify a topology on a space using closed sets too. This is achieved by

the duality of sets using the De Morgan Laws.
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Theorem. Topology using closed sets

Let (𝑋, 𝜏) be a topological space. We can define the topology on 𝑋 using closed sets if the following

properties hold:

1. ∅ and 𝑋 are closed.

2. Arbitrary intersections of the closed sets are closed.

3. Finite unions of closed sets are closed.

4. Arbitrary intersections of the closed sets are closed.

Proof: (1) holds since they are the complements of 𝑋 and ∅ respectively. (2) This follows from De

Morgan: given a finite collection of closed sets {𝐴𝑖}𝑖∈1,...,𝑛 we have that 𝑋−⋃𝑛
𝑖=1 𝐴𝑖 =

⋂𝑛
𝑖=1(𝑋−𝐴𝑖).

The sets 𝑋 − 𝐴𝑖 are open by definition. Therefore the r.h.s. is open since finite intersection of open

sets is open. Therefore
⋃𝑛
𝑖=1 𝐴𝑖 is closed.

(3) This follows from De Morgan: given an arbitrary collection of closed sets {𝐴𝑖}𝑖∈1,...,𝑛 we have

that 𝑋 −⋂
𝑖∈𝐼 𝐴𝑖 =

⋃
𝑖∈𝐼 (𝑋 − 𝐴𝑖) The sets 𝑋 − 𝐴𝑖 are open by definition, thus the r.h.s. is an arbitrary

union of open sets and is thus open. It follows that
⋂
𝑖𝐴𝑖 is closed.

We can specify a topology 𝜏 by giving a collection of closed sets satisfying the above properties,

and define open sets as the complements of closed sets. Therefore we showed a way to specify a

topology 𝜏 on 𝑋 using closed sets as desired. ■

With the algebraic and topological preliminaries we are now on the grounds to blend them together

to arrive at algebraic topology. Our end goal is to arrive at homology groups, a computable

topological invariant that reveals the structure of manifolds. Since homology is a homotopical

invariant (meaning that, if two spaces are homotopically equivalente, then they have isomorphic

homology groups), we will first have to introduce the concept of homotopy. This is a necessary

concept to capture the flexibility in the continuous nature of topological spaces, that may not be

readily apparent when looking at simplicial homology.
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3.5 Homotopy is a formal way of describing continuous deformations

Our main goal for this section is to mathematically describe properties of continuous deformations

that are more flexible than homeomorphisms. The problem with homeomorphism is that there is

currently no general method of determining if two spaces are homeomorphic. Nevertheless, a good

relaxation to homeomorphism is homotopy equivalence. The intuition is that two spaces having

the same shape are homotopy equivalent. Therefore, despite them not being continuosly bijective,

they can, in a broader sense, be deformed into each other. Unfortunately, computing the homotopy

groups of a space is also hard, let alone inferring them from data. To our good fortune, there is

an even weaker notion of homology equivalence that is weaker than homotopy equivalence but

gives us a ton of information: if two spaces are homotopy equivalent, then they have isomorphic

homology groups. It is because of this reason that homology groups have been of great use in

mathematics, but also, more recently in topological data analysis.

I believe that, under this reasoning, it is very fruitful to first make a brief detour into the basics

of homotopy theory before diving into homology. In a sense homotopy gives all the necessary

intuition to think about equivalence in terms of shape. That is, homotopy equivalence is a strong

version of topological equivalence.

Definition. Homotopy. Let ( 𝑓 , 𝑔) : 𝑋 → 𝑌 be two continuous functions between topological

spaces. A homotopy is a function 𝐹 : 𝑋 × [0, 1] → 𝑌 that has the property:

𝐹 |𝑋×{0} = 𝑓 (𝑥), 𝐹 |𝑋×{1} = 𝑔(𝑥). (3.12)

If such 𝐹 exist, we say that 𝑓 and 𝑔 are homotopic.

Remark: Informally, a homotopy is a continuous deformation of 𝑓 into 𝑔. Intuitively, we can

think of the parameter 𝑡 ∈ [0, 1] as time, and visualize the deformation of the image of 𝑓 into

the image of 𝑔 by varying the time parameter. In this sense a homotopy is a family of functions

𝑓𝑡 : 𝑋 → 𝑌 parametrized by 𝑡 that is continuous in both arguments.
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The following example will help visualize this deformation.

Definition. Path A path is a continuous map 𝑓 : [0, 1] → 𝑋 .

Example: Any two maps ( 𝑓 , 𝑔) : [0, 1] → R𝑛 are homotopic. An example of a homotopy is the

linear homotopy:

𝐹 (𝑥, 𝑡) = 𝑡 𝑓 (𝑥) + (1 − 𝑡) 𝑔(𝑥). (3.13)

In fact this holds for any convex set 𝑋 ⊂ R𝑛. In this view, if we fix 𝑥 and vary 𝑡

Exercise: Make a sketch of the linear homotopy above.

Proposition. Homotopy is an equivalence relation in the space of continuous functions from 𝑋 to

𝑌 , 𝐶 (𝑋,𝑌 ).

Proof:

• Reflexivity. 𝑓 ∼ 𝑓 by the constant homotopy 𝐹 (𝑥, 𝑡) = 𝑓 (𝑥).

• Symmetry. 𝑓 ∼ 𝑔 =⇒ 𝑔 ∼ 𝑓 . Let 𝐹 (𝑥, 𝑡) be a homotopy from 𝑓 to 𝑔. A homotopy from 𝑔

to 𝑓 is given by reversing time 𝐻 (𝑥, 𝑡) = 𝐹 (𝑥, 1 − 𝑡).

• Transitivity. 𝑓 ∼ 𝑔, 𝑔 ∼ ℎ =⇒ 𝑓 ∼ ℎ. Let 𝐹 be a homotopy from 𝑓 to 𝑔, 𝐺 from 𝑔 to ℎ,

and consider

𝐻 (𝑥, 𝑡) =


𝐹 (𝑥, 2𝑡), 𝑡 ∈ [0, 1/2]

𝐺 (𝑥, 2𝑡 − 1), 𝑡 ∈ (1/2, 1] .

Remark: We can thus consider the quotient 𝐶 (𝑋,𝑌 )/∼= [𝑋,𝑌 ] the space of homotopy classes.

Proposition. Compositions of homotopic maps are homotopic

Consider 𝑓 ≃ 𝑓 ′ : 𝑋 → 𝑌 under homotopy 𝐹, and 𝑔 ≃ 𝑔′ : 𝑌 → 𝑍 under homotopy 𝐺. Then

𝑔 ◦ 𝑓 ≃ 𝑔′ ◦ 𝑓 ′ : 𝑋 → 𝑍 .
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Proof: Construct homotopy 𝐻 (𝑥, 𝑡) : 𝑋 × 𝐼 → 𝑍 = 𝐺 (𝐹 (𝑥, 𝑡), 𝑡)■.

Defintion. Homotopy equivalence A function 𝑓 : 𝑋 → 𝑌 is a homotopy equivalence if there

exists 𝑔 : 𝑌 → 𝑋 such that:

𝑔 ◦ 𝑓 ≃ id𝑋 (3.14)

𝑓 ◦ 𝑔 ≃ id𝑌 (3.15)

and 𝑔 is the homotopy inverse of 𝑓 . We then say that 𝑋,𝑌 are homotopy equivalent or that they

have the same homotopy type.

Example. R𝑛 ≃ {pt}, in words, 𝑛−dimensional euclidean space is homotopy equivalent to a point,

or contractible.

Let 𝑓 : pt ↦→ 0 be an embedding, 𝑔 : R𝑛 → {pt}, where 𝑔(𝑥) = pt. First, note that 𝑔 ◦ 𝑓 = id{pt}

since 𝑓 (pt) = 0, 𝑔(0) = pt. Now, we need to show 𝑓 ◦ 𝑔 ≃ idR𝑛 . We can do this explicitly:

𝐹 (𝑥, 𝑡) = 𝑡𝑥, 𝐹 |0(𝑥) = 0 = 𝑓 ◦ 𝑔, 𝐹 |1 = idR𝑛 . So indeed 𝑓 ◦ 𝑔 ≃ idR𝑛■.

Proposition. Homotopy equivalence is an equivalence relation on the category of topological

spaces.

Proof:

• Reflexivity. 𝑋 ∼ 𝑋 we can use 𝑓 , 𝑔 = id.

• Symmetry. 𝑋 ∼ 𝑌 =⇒ 𝑌 ∼ 𝑋 . If 𝑋 ∼ 𝑌 there is ( 𝑓 , 𝑔) s.t. 𝑔 is homotopy inverse to 𝑓 .

Now relabel and assume 𝑔 is the initial func, 𝑓 the homotopy inverse.

• Transitivity. Let 𝑋 ∼ 𝑌,𝑌 ∼ 𝑍 . By definition we have:

𝑔 ◦ 𝑓 ≃ id𝑋 , 𝑓 ◦ 𝑔 ≃ id𝑌 (3.16)

𝑘 ◦ ℎ ≃ id𝑌 , ℎ ◦ 𝑘 ≃ id𝑍 (3.17)
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Let us show that 𝑔 ◦ 𝑘 ◦ ℎ ◦ 𝑓 ≃ id𝑋 . First, by transitivity we have that 𝑘 ◦ ℎ ≃ idY ≃ 𝑓 ◦ 𝑔,

then

𝑔 ◦ (𝑘 ◦ ℎ) ◦ 𝑓 ≃ 𝑔 ◦ ( 𝑓 ◦ 𝑔) ◦ 𝑓 since composition of homotopic maps is homotopic

(3.18)

≃ 𝑔 ◦ (id𝑌 ) ◦ 𝑓 (3.19)

= 𝑔 ◦ 𝑓 (3.20)

≃ id𝑋 (3.21)

where in the first line we meant that ℎ ∼ ℎ, 𝑘 ◦ ℎ ∼ 𝑓 ◦ 𝑔, 𝑓 ∼ 𝑓 . An equivalent argument

can be made to show that ℎ ◦ 𝑓 ◦ 𝑔 ◦ 𝑘 ≃ id𝑍 . Thus 𝑋 ∼ 𝑍 completing the proof ■.

Note: A question that may arise here is: what does it mean for two topological spaces to be ho-

motopy equivalent? As we’ve mentioned in the introduction to this section, homotopy equivalence

roughly means that two spaces have the same shape. The importance of the above proposition is

that if we can show that 𝑋 ≃ 𝑌 and 𝑍 ≃ 𝑌 for some space 𝑌 that is easy to compare to, then we can

posit that 𝑋 ≃ 𝑍 , in the scenario where 𝑋 and 𝑍 are hard to compare. For example 𝑌 could be a

model space such as a sphere or a torus. In what follows we’ll show a very important way to obtain

pairs of homotopy equivalent spaces, in particular between a subspace 𝐴 of a larger space 𝑋 .

Definition. Retraction A retraction of a topological space 𝑋 onto a subspace 𝐴 is a continuous

map:

𝑟 : 𝑋 → 𝐴, 𝑟 |𝐴 = id𝐴

such 𝐴 is called a retract of 𝑋 .

Proposition. Deformation retract 𝑋 ≃ 𝐴 if there is a homotopy between id𝑋 and 𝑟′ = 𝜄 ◦ 𝑟.

Proof: Clearly we already have one side to get a homotopy equivalence, namely 𝑟 ◦ 𝜄 = id𝐴. Now
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we need to show that we can form a homotopy so that 𝜄 ◦ 𝑟 ≃ id𝑋 . But note that one can construct

a linear homotopy easily:

𝐹 (𝑥, 𝑡) = 𝑡𝑥 + (1 − 𝑡) (𝜄 ◦ 𝑟) (𝑥)

so that 𝐹 |𝑡=0 = 𝜄 ◦ 𝑟 𝐹 |𝑡=1 = id𝑋

A is called a deformation retract of 𝑋 if such a homotopy equivalence holds.

Counterexample. If 𝑋 is not path-connected � a deformation retraction 𝑟 : 𝑋 → {𝑝𝑡}. One can

show this by contradiction. Assume such a def. retraction exists, then there is a homotopy 𝐹 such

that :

𝐹 (𝑥, 0) = 𝑥, 𝐹 (𝑥, 1) = 𝑥0.

Now consider any point 𝑢 ∈ 𝑋 and a map (which is a path) 𝛾 = 𝐹 |𝑥=𝑢 : [0, 1] → 𝑋 , 𝛾(0) =

𝑢, 𝛾(1) = 𝑥0 since the point 𝑢 was arbitrary this implies that 𝑋 is path connected: a contradiction.

Remark: The converse doesn’t hold: if 𝑋 doesn’t retract to a point 𝑋 is not necessarily path-

connected. A counterexample is any space with non-trivial homology for dimensions larger than

zero. E.g. a circle doesn’t retract to a point since there would be a discontinuity in the map. This

leads to the following definition.

Def. Contractible space If 𝑋 deformation retracts to a single point, such 𝑋 is called contractible.

Example. R𝑛 is contractible. Let 𝑋 = R𝑛, 𝐴 = 𝑥0. Then there is a retraction 𝑟:

𝑟 |{𝑥0} = id{𝑥0}, 𝑟 (𝑥) = 𝑥0∀𝑥 ∈ R𝑛.

Example. Annulus deformation retracts to a circle. Let 𝑋 be an annulus 𝑋 = {𝑥 : 1/2 ≤ ||𝑥 | | ≤

3/2}, 𝐴 = S1. Then 𝑟 (𝑥) = 𝑥
| |𝑥 | | is a deformation retraction.
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The following example is really helpful as it provides a simple combinatorial algorithm to induce

homotopy equivalence on abstract simplicial complexes. For a definition of simplicial complexes,

see the next section.

Lemma. Elementary collapse Let 𝐾 be a simplicial complex containing simplex 𝜎 = {𝑣0, ..., 𝑣𝑛}

with facet 𝜏 = {𝑣1, ..., 𝑣𝑛}. If 𝜎 is the only facet of 𝜏 then the inclusion 𝜄 : 𝐾 − {𝜏, 𝜎} → 𝐾 is a

homotopy equivalence. Proof: First, shoose the barycenter 𝑎 of 𝜏 and connect it to all vertices of

𝜎. This induces a subdivision of 𝜎, 𝜏, and 𝐾 , as no other simplex contains 𝜎 or 𝜏. To obtain the

homotopy, slide 𝑎 towards 𝑣0 = 𝜎 − 𝜏. This defines a deformation retraction of 𝜎 onto its faces not

including 𝜏.

Exercise: Make a sketch of the elementary collapse on a triangle simplex.

Definition. Elementary collapse Let 𝐾 be a simplicial complex, 𝜏 ⊂ 𝜎 ∈ 𝐾 . Assume that 𝜎 is

the only coface of 𝜏. A removal 𝐾 → 𝐾 − {𝜏, 𝜎} is called an elementary collapse.

Proposition. An elementary collapse does not change Betti numbers (Virk)

As above, let 𝐾 be a simplicial complex, with 𝜏 ⊂ 𝜎 ⊂ 𝐾 , 𝜏 be a free face of 𝜎, i.e. 𝜎 is the

only cofacet of 𝜏, with dim(𝜎) = 𝑛 = dim𝐾 . We then have that 𝛽𝑖 (𝐾) = 𝛽𝑖 (𝐾 − {𝜏, 𝜎}) for all

dimensions.

Proof:

First, note that, since 𝜎 is the only cofacet of 𝜏, =⇒ 𝜕𝑛𝜎 ∈ im 𝜕𝑛. removing 𝜎 from the columns

of 𝜕𝑛 decreases its rank by 1 (i.e. decreases dimim 𝜕𝑛). Also, 𝜎 ∈ coim 𝜕𝑛, a nd we have that

𝐶𝑛 = coim𝜕𝑛 ⊕ im 𝜕𝑛+1 ⊕ 𝐻𝑛. Since 𝜏 is a free face, this implies that 𝜎 is a maximal simplex,

hence𝐶𝑛+1 = 0, and thus 𝐶𝑛 = coim𝜕𝑛 ⊕ 𝐻𝑛. We thus have that collapsing 𝜎 affects coim𝜕𝑛,

and therefore leaves 𝐻𝑛 unaffected. Therefore collapse does not affect 𝛽𝑛. On the other hand, we

also have that im 𝜕𝑛 ⊂ ker 𝜕𝑛 − 1. Hence, removing 𝜏 from the columns of 𝜕𝑛−1 also decreases

dimker 𝜕𝑛−1 by 1. Therefore the Betti number 𝛽𝑛−1 is unaffected. Finally, by dimensionality

of the simplices to remove, all other Betti numbers are not affected. We have thus shown that
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𝛽𝑖 (𝐾) = 𝛽𝑖 (𝐾 − {𝜏, 𝜎}) for all dimensions as desired.

Example. A topological tree is contractible. Define a tree as an acyclic, path-connected

simplicial complex of dimension 1. One can easily construct deformation retractions from the

leaves of the tree onto its root.

As we mentioned in the introduction homotopy is hard to compute, and hence an attractive

alternative is homology. In particular, homology is a homotopy invariant, that is, if two spaces are

homotopy equivalent, they have isomorphic homology groups.

3.6 Simplicial homology is a computationally tractable theory for topological investigation

There are different of homology theories that are concerned with classical homology groups. Three

of the most important ones are simplicial homology, cellular homology and singular homology.

Each one of them serves a good purpose. Simplicial homology is good for calculations on the

computer, but it is cumbersome to prove results with it. On the contrary, singular homology is very

good for proving theorems, but it is hard to encode its properties in a computer program. Thus, we

will use singular homology to prove the main results of homology as a topological invariant, and

will leverage simplicial theory for computation.

Definition. Abstract simplicial complex

An abstract simplicial complex 𝐾 is a collection of non-empty subsets that is closed under the

action of subsetting ,i.e. if 𝜎 ∈ 𝐾, 𝜏 ⊂ 𝜎, 𝜏 ≠ ∅ ⇒ 𝜏 ∈ 𝐾 .

Perhaps with such an abstract definition it would is helpful to provide a (non-)example.

Example. The set 𝐾 = {{∅}, {𝑣0}, {𝑣1}, {𝑣2}, {𝑣0, 𝑣1}, {𝑣0, 𝑣1, 𝑣2}} is not a simplicial complex,

because 𝜏 = {𝑣1, 𝑣2} ⊂ {𝑣0, 𝑣1, 𝑣2} ∉ 𝐾 .

Remark. Any subset 𝐿 of 𝐾 that also has the properties of an ASC is called a subcomplex of 𝐾 .

Definition. Face / coface Given two simplices 𝜎, 𝜏 ∈ 𝐾 we say that 𝜎 is a face of 𝜏, denoted

𝜎 ≤ 𝜏 ⇐⇒ ∀𝑣 ∈ 𝜎, 𝑣 ∈ 𝜏. If such relationship holds we also say that 𝜏 is a coface of 𝜎.
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Definition. k-skeleton Let 𝐾 be a 𝑚 dimensional abstract simplicial complex, then for any 𝑘 < 𝑚

the k-skeleton is defined as the set of all simplices of dimension less than or equal to 𝑘 . That is:

𝐾 𝑘 = (∅) ∪ {𝜎0} ∪ ... ∪ {𝜎𝑘 }, (3.22)

where {𝑠𝑖𝑔𝑚𝑎𝑖} denotes the set of all simplices with dim = 𝑖. We thus have that𝐾 𝑘 is a subcomplex

of 𝐾 .

The theory of simplicial homology is combinatorial in nature, and we will be using it for compu-

tation. There is a corresponding geometrical description of simplicial complexes that we describe

below. We will arrive at some results to embed abstract simplicial complexes as subsets of R𝑛. In

this sense, the so-called geometric realizations of abstract simplicial complexes inherit the subspace

topology of its ambient space.

We begin by making some useful definitions.

Definition. Convex set A set is convex if one can draw a line between any two points in the set,

s.t. all points in the line remain in the set.

Definition. Convex hull For any subset 𝑆 ⊂ R𝑛, its convex hull conv(𝑆) is the smallest set containg

𝑆, or equivalently, the intersection of all convex sets containing 𝑆.

Definition. Geometric simplex A geometric 𝑝−simplex is the convex hull of 𝑝 + 1 affinely

independent points. .e. a collection of points {𝑥0, 𝑥1, ..., 𝑥𝑝} : 𝑥1 − 𝑥0, 𝑥2 − 𝑥0, ..., 𝑥𝑝 − 𝑥0 form a

linearly independent set.

The dimension of a 𝑝−simplex is 𝑝.

A 𝑝−simplex 𝜎𝑝 can be conceptualized as a generalization of a polyhedron created from 𝑝 + 1

vertices. For instance, a 1−simplex is a line, a 2−simplex is a triangle, a 3−simplex is a tetrahedron,

and so forth up to higher dimensional polytopes. Thus a simplex can be specified by a tuple with

elements corresponding to vertices. The order in which vertices are specified has a geometric

meaning as we will see in the following sections.
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Every point in the convex hull of {𝑥0, 𝑥1, ..., 𝑥𝑝} has a unique representation in the form
∑
𝑖 𝜆𝑖𝑥𝑖

where 𝜆𝑖 ≥ 0∀𝑖 and
∑𝑝

𝑖=0 𝜆𝑖 = 1. This representation is known as the barycentric coordinates of a

simplex.

The standard 𝑝−simplex is Δ𝑝 = {𝑥 ∈ R𝑝+1 :
∑
𝑖 𝑥𝑖 = 0𝑥𝑖 ≥ 0∀𝑖}.

Definition. Geometric simplicial complex

A simplicial complex 𝐾 is a collection of geometric simplices with the following properties:

1. if 𝜎, 𝜏 ∈ 𝐾 → 𝜎 ∩ 𝜏 ∈ 𝐾 .

2. if 𝜎 ∈ 𝐾, 𝜎′ ⊂ 𝜎 ⇒ 𝜎′ ∈ 𝐾 , i.e. 𝐾 is closed under the action of subsets.

Definition. Polyhedron Let 𝐾 be a geometric simplicial complex, then |𝐾 | called a polyhedron,

is its point-set union (i.e. the set of all points on at least one of the geometric simplices). We also

say 𝐾 is a triangulation of |𝐾 |.

There are properties that are important to highlight at this point.

Proposition: Topological structure of a geometric simplical complex

Let 𝐾 be a geometric simplicial complex, then |𝐾 | is a topological space under the subspace

topology. A basis for a topology is given by the simplices of 𝐾 . We define each subset 𝐿 of 𝐾 as

closed if 𝐿 contains each face of each of its simplices, i.e. 𝐿 is also a simplicial complex, referred

to as a subcomplex of 𝐾 .

Proof: First equip the simplicial complex 𝐾 with the empty set, i.e. 𝐾 = {𝜎} ∪ ∅. Since |𝐾 | is a

compact subset of R𝑛 it follows that it is a topological space under the subspace topology.

Now showing that the simplices form a basis for the standard subspace topology follows from the

definition of basis:

(1) ∀𝑥 ∈ 𝑋∃𝐵 ∈ B : 𝑥 ∈ 𝐵 is clear. (2) If 𝜎1, 𝜎2 share a face, clearly 𝑥 ∈ 𝜏 ⊂ 𝜎1 ∩ 𝜎2 ∈ 𝐾 , else

the intersection is empty and the condition also holds.
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Now the union of all the simplices (the basis elements) forms a topology, since closed sets also

define a topology. ■.

There is also a topological structure defined for abstract simplicial complexes. To show this we

need the following Lemma.

Lemma. Intersection and union of abstract subcomplexes of an ASC is an abstract subcom-

plex

Let 𝐿, 𝑀 be subcomplexes of a simplicial complex 𝐾 , i.e. 𝐿, 𝑀 ⊂ 𝐾 and each is a simplicial

complex. Then 𝐿 ∩ 𝑀, 𝐿 ∪ 𝑀 will be subcomplexes of 𝐾 respectively.

Proof: We first show the case for intersections. Clearly, when viewed as sets, 𝐿 ∩ 𝑀 ⊂ 𝐾 . To see

this, note that for all 𝑥 ∈ 𝐿 ∩ 𝑀 =⇒ 𝑥 ∈ 𝐿and𝑥 ∈ 𝑀 , and since 𝐿, 𝑀 are subsets, then 𝑥 ∈ 𝐾 .

Since 𝑥 was arbitrary, this shows that 𝐿 ∩ 𝑀 ⊂ 𝐾 .

Now we need to show that 𝐿 ∩ 𝑀 is a simplicial complex. Assume for a contradiction that

𝐿 ∩ 𝑀 ⊂ 𝐾 , where 𝐿, 𝑀, 𝐾 are simplicial complexes and that ∃𝜎, 𝜏 : 𝜎 ∈ 𝐿 ∩ 𝑀, 𝜏 ⊂ 𝜎 and

that 𝜏 ∉ 𝐿 ∩ 𝑀 . But if 𝜎 ∈ 𝐿 ∩ 𝑀 =⇒ 𝜎 ∈ 𝐿 and 𝜎 ∈ 𝑀 by definition of intersection. Also,

∀𝜏 ⊂ 𝜎 =⇒ 𝜏 ∈ 𝐿 (𝑀 resp. by definition of simplicial complex, a contradiction. Thus, 𝜏 must

be in both 𝐿 and 𝑀∀𝜏 ⊂ 𝜎 ∈ 𝐿 ∩ 𝑀 .

The case for unions is analogous. First let’s check containment: if 𝑥 ∈ 𝐿 ∪ 𝑀 then either 𝑥 ∈ 𝐿

or 𝑥 ∈ 𝑀 or both. Since 𝐿, 𝑀 ≤ 𝐾 , for any 𝑥 ∈ 𝐿 or 𝑥 ∈ 𝑀 we have that 𝑥 ∈ 𝐾 . Therefore

𝐿 ∪ 𝑀 ⊂ 𝐾 .

Now, let’s verify that 𝐿 ∪𝑀 is a simplicial complex. Let 𝜎 ∈ 𝐿 ∪𝑀 , and 𝜏 ⊂ 𝜎. We need to show

that 𝜏 ∈ 𝐿 ∪ 𝑀 . Note that if 𝜎 ∈ 𝐿 ∪ 𝑀 , then either 𝜎 ∈ 𝐿 or 𝜎 ∈ 𝐾 or both. Since 𝐿 and 𝑀 are

both simplicial complexes, naturally 𝜏 ⊂ 𝜎 =⇒ 𝜏 ∈ 𝐿 or 𝜏 ∈ 𝑀 or both, and hence 𝜏 ∈ 𝐿 ∪ 𝑀 .

Thus 𝐿 ∪ 𝑀 is a subcomplex. ■.

Proposition. Topological structure on an abstract simplicial complex

Let 𝐾 be a finite simplicial complex. Declare a subset 𝐿 ⊂ 𝐾 to be closed if it is a subcomplex of
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𝐾 . Then all subcomplexes 𝐿 ≤ 𝐾 generate a topology 𝜏 on 𝐾 . This is the Alexandroff topology on

the poset of faces of 𝐾 .

Proof:

To show that (𝐾, 𝜏) is a topological space it is sufficient to verify the axioms.

First, ∅ ∈ 𝜏 and 𝐾 ∈ 𝜏 by definition of the topology 𝜏. Since 𝜏 is finite by construction, by the

Lemma above it will be closed under arbitrary unions and intersections and is thus a topology on

𝐾 . ■

Remark: As any simplicial complex on a vertex set is a topological space, what is the actual

abstract simplicial complex that best explains point cloud? In other words, how can we infer the

topology for an e.g. subspace of a metric space (𝑋, 𝑑)? It turns out that under mild considerations,

the Nerve of an open cover (the Cech complex) has the same homology as the underlying space.

This result is known as the Nerve Theorem, and this allows us infer the topology (or more precisely

the homotopy type) of a space using an ASC built from its point set, which in practice is the

Vietoris-Rips complex.

It is easy to obtain an abstract simplicial complex from a geometric one, just replace each coordinate

vector with an arbitrary label. Going on the other direction is in general harder. If this operation is

achievable, the geometric simplicial complex is said to be a geometric realization of the abstract

simplicial complex. Let’s define it in more formal terms.

Definition: Geometric realization of an abstract simplicial complex Let 𝜙 be a function that

sends vertices of 𝐾 to points in R𝑛. The geometric realiation of K w.r.t. to 𝜙 is the union:

|𝐾 | =
⋃
𝜎∈𝐾

𝜙(𝜎), (3.23)

where for each 𝑝−simplex 𝜎 = {𝑣0, ..., 𝑣𝑝} the set 𝜙(𝜎) ⊂ R𝑛 is the geometric simplex spanned

by the points {𝜙(𝑣0), ..., 𝜙(𝑣𝑝)}.
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We conclude this section by noting that geometric realizations inherit the subspace topology as

subsets of R𝑛. This result is of remarkable nature since it tells us that we can induce a very nice

topology after constructing a simplicial complex. In the following sections we will see how we

can construct such abstract simplicial complexes using the Vietoris Rips and Cech algorithms. In

this sense we can "topologize" any set coming from measurements from biological systems and

compute important topological invariants such as the homology groups.

In order to realize the theory of homology, we have to form an algebraic substrate to work with. In

what follows we describe an algebraic model for simplices.

Definition. 𝑝−chain

A 𝑝−chain is a linear combination of 𝑝−simplices, where the coefficients are integers. With this

construction, chains constitute an additive abelian group over the ring of integers. We will use

also addition in Z/2Z, in which case coefficients just indicate presence or absence. The geometric

meaning is that the chain 𝑝 is a loop over vertices 𝑣0, 𝑣1, 𝑣2 in a counterclockwise direction while

the chain 𝑞 = {𝑣2, 𝑣1, 𝑣0} turns in the clockwise direction. Hence, both simplices and chains have

an orientation. This orientation is unique up to even permutations.

Remark: A note on coefficients It turns out that for computational purposes, its better to work with

coefficients in a finite field namely Z/𝑝Z where 𝑝 is a prime number. This makes our discussion

simpler since model spaces will be vector spaces instead of groups, and hence we can resort to linear

algebra to manipulate objects. In particular, using finite fields, all elements have multiplicative

inverses, which is a problem using integers (since for example we need to invoke the euclidean

algorithm when trying to solve the Smith Normal Form). The easiest case (and the one that will

be the main use for our discussion) is integers mod 2, since in this case, the interpretation is very

neat: everything is orientable and addition boils down to bit flips. To see why 𝑍2 is a field, it’s so

trivial that the principle becomes subtle, so let’s use the next prime numbers as examples.

Example: Integers modulo 3 is a finite field. Closure under addition is obvious. To see closure

under multiplication note that 2 × 2 = 4%3 = 1, and hence 2 is its own multiplicative inverse.
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For integers modulo 5 𝑍5 we have that for instance 2 × 2 = 4%5 = 4, so 2 must have another

multiplicative inverse other than itself. Let’s try the next one 2 × 3 = 6%5 = 1. A-ha! We thus

have that 2 and 3 are multiplicative inverses of each other. Furthermore 4 is its own multiplicative

inverse.

Exercise Show that for any prime 𝑝, in 𝑍𝑝, 𝑝 − 1 will always be its own multiplicative inverse.

Let us continue with our discussion regarding the algebraic model for manifolds: simplicial

complexes. Recall that a 𝑝−chain is a linear combination of 𝑝−simplices with the appropiate

coefficients.

Definition. 𝐶𝑝 The abelian group generated by all 𝑝−chains is denoted by 𝐶𝑝. In other words

𝐶𝑝 =< 𝑐
𝑝
𝛼 > .

The next step in building homology theory is to define boundary maps which specify how to

connect 𝑝−chains to (𝑝 − 1) and (𝑝 + 1) chains, i.e. they provide the instructions on how to

construct a simplicial complex by gluing its building blocks.

Definition. Boundary map

The boundary map 𝜕𝑝 : 𝐶𝑝 → 𝐶𝑝−1 is a group homomorphism defined by:

𝜕𝑝 (𝜎) =
𝑝∑︁
𝑖=0

(𝑣0, 𝑣1, .., 𝑣𝑖−1, 𝑣𝑖, 𝑣𝑖+1, ..., 𝑣𝑛), (3.24)

where 𝑣𝑖 means that the 𝑖−th vertex is deleted from the tuple.

Additionally, define 𝜕0 : 𝐶0 → 0 to be the zero map.

A very important property of homology is explained in the following proposition.

Theorem. 𝜕𝑛−1 ◦ 𝜕𝑛 = 0
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Proof: It suffices to show it on an arbitrary 𝑛−simplex 𝜎 = [𝑣0, 𝑣1, ..., 𝑣𝑛].

𝜕𝑛−1 ◦ 𝜕𝑛 (𝜎) = 𝜕𝑛−1

(
𝑛∑︁
𝑖=0

(−1)𝑖 [𝑣0, .., 𝑣𝑖, .., 𝑣𝑛]
)
= (3.25)

=

𝑛∑︁
𝑖=0

(−1)𝑖 ©­«
𝑖−1∑︁
𝑗=0

(−1) 𝑗 [𝑣0, .., 𝑣 𝑗 , 𝑣𝑖, .., 𝑣𝑛] +
𝑛∑︁

𝑗=𝑖+1
(−1) 𝑗−1 [𝑣0, .., 𝑣𝑖, .., 𝑣 𝑗 , .., 𝑣𝑛]ª®¬ =

(3.26)

=
∑︁
𝑖> 𝑗

(−1)𝑖+ 𝑗 [𝑣0, .., 𝑣 𝑗 , ..𝑣𝑖, .., 𝑣𝑛] +
∑︁
𝑗>𝑖

(−1)𝑖+ 𝑗−1 [𝑣0, .., 𝑣𝑖, .., 𝑣 𝑗 , .., 𝑣𝑛] = (3.27)

=
∑︁
𝑖> 𝑗

(−1)𝑖+ 𝑗 [𝑣0, .., 𝑣 𝑗 , ..𝑣𝑖, .., 𝑣𝑛] −
∑︁
𝑗>𝑖

(−1)𝑖+ 𝑗 [𝑣0, .., 𝑣𝑖, .., 𝑣 𝑗 , .., 𝑣𝑛] = 0, (3.28)

where in the third equality we used the definition of group homomorphism and separated the sum

for 𝜕𝑛−1 for indices smaller than 𝑖 and larger than 𝑖 respectively. The exponent for the cases where

𝑗 > 𝑖 is (−1) 𝑗−1 since we skipped the 𝑖th and still label the 𝑛 − 1 simplex with the initial 𝑛 + 1

vertices. Doing a simple case by hand illuminates this step. The fifth equality is given by noting

that (−1)𝑖+ 𝑗−1 = −(−1)𝑖+ 𝑗 .

Corollary. im𝜕𝑛+1 ⊂ ker𝜕𝑛

This is the most important result in the theory of homology. In essence, the definition of homology

groups rests theoretically on the above corollary. In fact, not only simplicial homology, but all

homology theories will have an equality of the same form. Furthermore, a chain complex can be

abstractly defined using this property. In the following definition, what may be the most concrete

form of a chain complex.

Definition. Chain complex The collection of chain groups and corresponding boundary maps is

called a chain complex, denoted :

...
𝜕𝑛+1−−−→ 𝐶𝑛

𝜕𝑛−−→ 𝐶𝑛−1
𝜕𝑛−1−−−→ 𝐶𝑛−2...

𝜕1−→ 𝐶0
𝜕0−→ 0. (3.29)



103

Definition. (Simplicial) Homology Group The 𝑛−th quotient group is defined by:

𝐻𝑛 = ker𝜕𝑛/im𝜕𝑛+1 (3.30)

it is informally the set of equivalence classes of homologous holes of dimension 𝑛. For example,

the 𝐻0 is generated by connected components, 𝐻1 is generated by loops, 𝐻2 is generated by the

cavities, and so forth.

Since we are taking the quotient w.r.t. to boundaries (im𝜕) we have that:

𝑥 ∼ 0 ⇐⇒ 𝑥 ∈ im𝜕 ⇐⇒ ∃𝛾 : 𝜕 (𝛾) = 𝑥. (3.31)

More generally, two chains are homologous if:

𝑧 ∼ 𝑦 ⇐⇒ 𝑧 − 𝑦 ∈ im 𝜕𝑛+1 ⇐⇒ 𝜕 (𝑧) = 𝜕 (𝑦). (3.32)

To be more explicit, we have that ∃𝛾 ∈ 𝐶𝑛+1 : 𝜕𝑛+1(𝛾) = 𝑧 − 𝑦 =⇒ 𝜕𝜕 (𝛾) = 𝜕 (𝑧 − 𝑦) = 0 =⇒

𝜕 (𝑧 − 𝑦) = 0 =⇒ 𝜕 (𝑦) = 𝜕 (𝑧).

Note that in the above expression 𝑧, 𝑦 need not be in the kernel, however, it does imply that 𝑧 − 𝑦

is in the kernel, i.e. it is a cycle.

Non-trivial equivalence classes are of the form:

[𝑣] := [𝑥 ∈ ker 𝜕𝑛 : 𝑥 ∼ 𝑣] (3.33)

= {𝑥 ∈ ker 𝜕𝑛 : 𝑥 − 𝑣 ∈ im 𝜕𝑛} (3.34)

= {𝑥 ∈ ker : 𝑥 = 𝑣 + 𝜕𝑛+1𝛾, 𝛾 ∈ 𝐶𝑛+1}. (3.35)
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Definition. Betti number The rank of the 𝑛−th quotient group is the 𝑛−th Betti number.

𝐵𝑛 = dim(𝐻𝑛) = dim ker𝜕𝑛 − dim im𝜕𝑛+1 (3.36)

Now, we continue to show that homology is an homotopic invariant.

Definition. Induced homomorphism 𝑓#

Let 𝑓 : 𝑋 → 𝑌 be a continous function between top. spaces. Its induced homomorphism on chains

𝑓# : 𝐶𝑛 (𝑋) → 𝐶𝑛 (𝑌 ) is defined by composing it with each singular chain to get:

𝑓 ◦ 𝜎 : Δ𝑛 → 𝑌 (3.37)

𝑓# :
(∑︁

𝑛𝑖𝜎𝑖

)
↦→

∑︁
𝑛𝑖 𝑓 (𝜎𝑖). (3.38)

It turns out that by checking commutativity with the boundary map, 𝑓# can be viewed as a chain

map between chain complexes.

Proposition : 𝑓 ◦ 𝜕 = 𝜕 ◦ 𝑓

Proof: We can proceed by direct computation on an arbitrary singular simplex:

𝑓# ◦ 𝜕 (𝜎) = 𝑓

(
𝑛∑︁
𝑖=0

(−1)𝑖𝜎 | [𝑣0,...,𝑣𝑖 ,...,𝑣𝑛]

)
(3.39)

=

𝑛∑︁
𝑖=0

(−1)𝑖 𝑓 ◦ 𝜎 | [𝑣0,...,𝑣𝑖 ,...,𝑣𝑛] (3.40)

= 𝜕 ◦ 𝑓#(𝜎). (3.41)

Lemma. 𝑓# takes cycles to cycles

Proof: Let 𝑥 ∈ ker𝜕𝑥𝑛 =⇒ 𝜕𝑥𝑛 (𝑥) = 0 =⇒ 𝑓#𝜕
𝑥
𝑛 (𝑥) = 0 = 𝜕

𝑦
𝑛 𝑓#(𝑥) =⇒ 𝑓#(𝑥) ∈ ker𝜕𝑦𝑛■
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Lemma. 𝑓# takes boundaries to boundaries

Proof: Let 𝑦 ∈ im𝜕𝑥𝑛 =⇒ ∃𝑥 ∈ 𝐶𝑛+1(𝑋) : 𝜕 (𝑥) = 𝑦 =⇒ 𝑓#𝜕
𝑥
𝑛 (𝑥) = 𝑓#(𝑦) = 𝜕

𝑦
𝑛 𝑓#(𝑥) =⇒

𝑓#(𝑥) ∈ im𝜕𝑦𝑛■

Corollary. Pushforward on homology 𝑓∗

Let 𝑓 : 𝑋 → 𝑌 , and 𝑓# be its corresponding induced homomorphism. Then 𝑓# induces a

homomorphism between homology groups called the pushforward on homology, defined as:

𝑓∗ : 𝐻𝑛 (𝑋) → 𝐻𝑛 (𝑌 ) (3.42)

𝑓∗ : [𝛾] ↦→ [ 𝑓#(𝛾)] . (3.43)

Remark: The well-definedness of the map, that is, independence of the choice of representative,

follows from the two Lemmas above, but it can easily be shown for completeness :

Consider [𝛼 + 𝜕𝛾] ∈ 𝐻𝑛 (𝑋), then

𝑓∗ ( [𝛼 + 𝜕𝛾]) = [ 𝑓#(𝛼 + 𝜕𝛾)] by definition (3.44)

= [ 𝑓#(𝛼) + 𝑓#(𝜕𝛾)] since 𝑓# is a hom. (3.45)

= [ 𝑓#(𝛼) + 𝜕 𝑓#(𝛾)]since 𝑓# commutes with 𝜕 (3.46)

∼ [ 𝑓#(𝛼)] (3.47)

= 𝑓∗ [𝛼] . (3.48)

Homology can therefore be conceptualized as a functor which maps the category of simplicial

complexes to the category of abelian groups, where chain maps are converted into pushforward

maps between homology groups. More precisely, homology is a covariant functor. As we will see

in persistent homology, it is worthwile to think about homology in these terms, i.e. homology is a

functor.

Prop. Important properties of the pushforward 𝑓∗.

• ( 𝑓 ◦𝑔)∗ = 𝑓∗◦𝑔∗. This follows from the associativity of compositionsΔ𝑛 →𝜎 𝑋 →𝑔 𝑌 → 𝑓 𝑍 .
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• (id)∗ = id𝐺 where id𝐺 denotes the identity in the group.

Theorem If two maps are homotopic, then they induce the same homomorphism across dimensions,

i.e.:

𝑓 ≃ 𝑔 =⇒ 𝑓∗ = 𝑔∗ : 𝐻𝑛 (𝑋) → 𝐻𝑛 (𝑌 )

Theorem. If two spaces 𝑋,𝑌 have the same homotopy type, then they have isomorphic homology

groups.

Proof. 𝑋 ≃ 𝑌 implies that ∃ 𝑓 , 𝑔 : 𝑔 ◦ 𝑓 ≃ id𝑋 , 𝑓 ◦ 𝑔 ≃ id𝑌 . By the theorem above (𝑔 ◦ 𝑓 )∗ = id𝑋 =

𝑔∗ ◦ 𝑓∗, ( 𝑓 ◦ 𝑔)∗ = id𝑌 = 𝑓∗ ◦ 𝑔∗. Therefore 𝑓 −1
∗ = 𝑔∗, i.e. 𝑓∗ is a group isomorphism with two-sided

inverse 𝑔∗. Thus, 𝐻𝑛 (𝑋) ≃ 𝐻𝑛 (𝑌 ) for all 𝑛.

Corollary. If two spaces 𝑋,𝑌 are homotopy equivalent, then they have the same Betti numbers.

Proof: This follows from the theorem above and the fact that isomorphic groups have the same

dimension.
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Algorithm to compute homology

Theorem. Fundamental decomposition of chain groups

Over 𝑍2 the chain group 𝐶𝑛 vector space can be decomposed as the following direct sum:

𝐶𝑛 = im 𝜕𝑛+1 ⊕ 𝐻𝑛 ⊕ coim 𝜕𝑛. (3.49)

Proof:

First, note that

𝐶𝑛 = ker 𝜕𝑛 ⊕ coim 𝜕𝑛 (3.50)

= coker 𝜕𝑛+1 ⊕ im 𝜕𝑛+1 (3.51)

furthermore, since ker 𝜕𝑛 ⊂ 𝐶𝑛 we have that:

ker 𝜕𝑛 = ker 𝜕𝑛 ∩ 𝐶𝑛 (3.52)

= ker 𝜕𝑛 ∩ (coker 𝜕𝑛+1 ⊕ im 𝜕𝑛+1) (3.53)

= ker 𝜕𝑛 ∩ coker 𝜕𝑛+1 ⊕ ker 𝜕𝑛 ∩ im 𝜕𝑛+1 (3.54)

= ker 𝜕𝑛 ∩ coker 𝜕𝑛+1 ⊕ im 𝜕𝑛+1 (3.55)

= 𝐻𝑛 ⊕ im 𝜕𝑛+1 (3.56)

=⇒ 𝐻𝑛 = ker 𝜕𝑛 ∩ coker 𝜕𝑛+1, (3.57)

where the fourth line follows from im𝜕𝑛+1 ⊂ ker𝜕𝑛, and the second to last line follows by dimension

counting 𝛽𝑛 = dim𝐻𝑛 = dim ker 𝜕𝑛 − dim im 𝜕𝑛+1.

Putting these results together we get that:
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𝐶𝑛 = ker 𝜕𝑛 ∩ coker 𝜕𝑛+1 ⊕ im 𝜕𝑛+1 ⊕ coim𝜕𝑛 (3.58)

= im 𝜕𝑛+1 ⊕ 𝐻𝑛 ⊕ coim 𝜕𝑛. (3.59)

Remark: The above result is also known as the Hodge decomposition when working on differential

forms.

Figure 3.1: Fundamental decomposition of chain groups.

At this point we have the following picture: for an abuse of notation let 𝐶𝑛 denote the matrix

for a basis of 𝐶𝑛. The above theorem tells us that if there is non-trivial 𝑛-homology, there exists

a basis of 𝐶𝑛 so that the first rk 𝜕𝑛+1 columns belong to im 𝜕𝑛+1, the next 𝛽𝑛 columns belong to

the 𝑛-homology group 𝐻𝑛, and the last rk 𝜕𝑛 columns belong to coim 𝜕𝑛 (Figure 3.1). To see why

dimensions match, its helpful to have the following definition in mind.

Definition. The dualization of the simplicial chain complex generates simplicial cohomology.

Namely, we get cochain groups 𝐶𝑛 = Hom(𝐶𝑛,Z2) connected by coboundary maps (or exterior

derivatives) 𝑑𝑛 : 𝐶𝑛 → 𝐶𝑛+1 The cohomology groups are defined as:
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𝐻𝑛 = ker 𝑑𝑛/im𝑑𝑛−1 = coker 𝜕𝑛+1/coim𝜕𝑛 (3.60)

with the property that 𝑑𝑑 = 0, i.e. coim𝜕𝑛 ⊂ coker 𝜕𝑛+1. To see why let 𝑓 ∈ 𝐶𝑛, 𝜎 ∈ 𝐶𝑛, then

𝑑𝑑𝑓 (𝜎) = 𝑑 (𝑑𝑓 (𝜎)) = 𝑑 ( 𝑓 ◦ 𝜕𝜎) = 𝑓 ◦ 𝜕𝜕𝜎 = 0 by definition of the dual map.

Let’s recap our set up. Since our discussion focuses on homology using Z2 as coefficients, we have

that 𝐶𝑛 ≃ 𝐶𝑛, since we can thing of cochains as indicators of the presence or absence of chains.

Furthermore, we have that 𝜕𝑛 = 𝑑𝑛−1, that’s why we were able to say that 𝐻𝑛 = coker 𝜕𝑛+1/coim𝜕𝑛

in the definition of the cohomology groups.

To get a full understanding of the Fundamental decomposition of chain groups result, it’s necessary

to fully understand each of the fundamental subspaces. Hopefully at this point you have a good

intuition of what the groups im 𝜕𝑛+1 and ker 𝜕𝑛 look like geometrically. If not, let’s reiterate: im 𝜕𝑛+1

generates 𝑛 chains that are boundaries of 𝑛 + 1 chains. To put an example, im 𝜕2 is the set of all

edges in a simplicial complex that can be generated by taking the boundaries of triangles. Clearly,

all such edges will form loops, which is an example of how im 𝜕𝑛+1 ≤ ker 𝜕𝑛.

At this point one may wonder, what is the geometrical meaning of coker𝜕 and coim𝜕. It turns out

that in the case of surfaces, the geometric interpretation of these subspaces is straightforward.

Recall that we showed that:

𝐶𝑛 = im 𝜕𝑛+1 ⊕ coim 𝜕𝑛 ⊕ 𝐻𝑛 (3.61)

= im 𝜕𝑛+1 ⊕ coker 𝜕𝑛+1 (3.62)

=⇒ coker 𝜕𝑛+1 = coim𝜕𝑛 ⊕ 𝐻𝑛. (3.63)

With this in mind, to understand the coker 𝜕𝑛+1, first, we need to understand the coimage.
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Example: Let’s consider a hollow tetrahedron. If we order the simplices lexicographically, we

have that 𝐶2 = ⟨[012], [013], [023], [123]⟩, and 𝐶1 = ⟨[01], [02], [03], [12], [13], [23], [24]⟩.

By hypothesis, coim𝜕1 will be the acyclic portion of 𝐶1, since its complement is 𝐻1 ⊕ im 𝜕2.

Figure 3.2: Visualization of the coimage of the 𝜕1 boundary map on a tetrahedron.

Using the lexicographic order, we can write down 𝜕𝑇1 as:

𝜕𝑇1 =



1 1 0 0

1 0 1 0

1 0 0 1

0 1 1 0

0 1 0 1

0 0 1 1



. (3.64)

Hence, we can take an element on im𝜕𝑇1 = coim𝜕1, e.g. 𝜕1( [1]) = [01] + [12] + [13]. In

other words, the action of 𝜕𝑇1 generates all edges that are cofaces of a given vertex. In this case,

𝜕1( [1]) can be visualized as a "tree" living on the surface of the tet. We can confirm the algebraic

relationship coim𝜕1 ⊂ coker𝜕2 by writing down 𝜕2 (again, according to the lexicographic order

stated above):
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𝜕𝑇2 =



1 1 0 1 0 0

1 0 1 0 1 0

0 1 1 0 0 1

0 0 0 1 1 1


(3.65)

applying 𝜕𝑇2 ◦ 𝜕𝑇1 ( [1]) = 0, as the reader can confirm. Thus [01] + [12] + [13] ∈ coker 𝜕2.

Therefore, we can think of coker 𝜕𝑛 as the 𝑛 chains generated by the "acyclic" part of 𝐶𝑛 and the

homology chains.

Next, we show how does a cohomology class looks geometrically.

There is a really nice interpretation for 1-cochains using 𝑍2 coefficients on surfaces: each 1-cochain

𝜓 can be associated with a collection of curves 𝐶𝜓 tghat cross each edge transversally, such that

the number of intersections with each edge equals the value of the cochain on that edge. What’s

nice is that from this geometric view 𝜓 = 𝑑0𝜙 means that the curve divides the manifold 𝑋 into two

disjoint regions 𝑋0 and 𝑋1, and the subscript indicates the value in the region !

If there is no solution to 𝜓 = 𝑑𝜙 one cannot construct such curves.

Example. 1-cohomology class on the annulus.

We can construct a cohomology class by following its definition: finding a 1-cochain 𝜓 that will be

in the cokernel of 𝜕2 ⇐⇒ 𝑑1(𝜓) = 0. This will occur if the number of times each 𝜓 takes on the

value of 1 on the boundary of each 2 simplex is either 0 or 2, since 𝑑1(𝜓) (𝜎) = 𝜓𝜕2(𝜎) = 0∀𝜎 ∈ 𝐶2.

Here, we’re taking into account that we’re working with a 2-manifold each edge is the face of two

triangles exclusively, and that we’re using Z2 as coefficients.

The curve 𝐶𝜓 in the figure above crosses each edge exactly 0 or 2 times and thus the associated

1-cochain 𝜓 ∈ ker 𝑑1. However, as you can verify, there is no 0-chain that solves 𝑑𝜙 = 𝜓, i.e.

𝜓 ∉ im 𝑑0 =⇒ 𝐶𝜓 is associated with a 1−cohomology class. Also note that the curve does not

separate the domain into two regions.
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Figure 3.3: Cohomology class on the annulus.

By identifying the inner and outer loops in the annulus one gets a similar construction in the torus.

Example. 1-cohomology class on the torus.

Consider the standard simplicial triangulation of the torus in Fig x.

Figure 3.4: Cohomology class on the torus.
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Claim: The 1-chain / cochain 𝜓 = [0, 4] + [0, 5] + [1, 5] + [1, 7] + [2, 4] + [2, 7] is both in the kernel

of 𝜕1 and in the cokernel of 𝜕2, hence it will be both a homology and cohomology class. We can

confirm that by computing directly on restricted versions of the boundary / coboundary matrices.

More explicitly, the restricted matrices are, for 𝑑1 just considering the image of the 1−cochain, and

for 𝜕1 as follows:

𝜕𝑇2 = 𝑑1 =



[0, 4] [0, 5] [1, 5] [1, 7] [2, 4] [2, 7]

[0, 1, 5] 0 1 1 0 0 0

[0, 2, 4] 1 0 0 0 1 0

[0, 4, 5] 1 1 0 0 0 0

[1, 2, 7] 0 0 0 1 0 1

[1, 5, 7] 0 0 1 1 0 0

[2, 4, 7] 0 0 0 0 1 1



(3.66)

𝜕1 =



[0, 4] [0, 5] [1, 5] [1, 7] [2, 4] [2, 7]

[0]1 1 0 0 0 0

[1]0 0 1 1 0 0

[2]0 0 0 0 1 1

[4]1 0 0 0 1 0

[5]0 1 1 0 0 0

[7]0 0 0 1 0 1



(3.67)

We encourage the interested reader to confirm that both matrices are correct, and that are the

only thing we need for our purposes. One way to convince yourself is to see that each column in

the matrices are above have two nonzero entries: this is because in each edge is the face of only

two triangles in a surface, and it is the coface of two vertices. Furthermore, one can confirm that

𝑑1𝜓 = 0 and 𝜕1𝜓 = 0. In Fig x. we visualize the corresponding chain. We can easily find a
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cohomologous class 𝜓′ by adding a 0-coboundary 𝑑0 [5] = 𝜕𝑇1 [5]. Exercise. Show that 𝜓′ is not a

homology class.
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Definition. Smith Normal Form (SNF)

Let 𝐴 be an 𝑚 × 𝑛 integer matrix, i.e. 𝐴 ∈ 𝑀𝑚×𝑛 (Z). There is a unique factorization 𝐴 = 𝑈𝐷𝑉−1

with the following properties:

• 𝐷 ∈ 𝑀𝑚×𝑛 (Z) is a diagonal matrix, with the property that 𝐷𝑖𝑖 |𝐷𝑖+1,𝑖+1. The diagonal entries

are called elementrary dividors or invariant factors of 𝐴.

• 𝑈 ∈ 𝐺𝐿 (𝑚,Z), 𝑉 ∈ 𝐺𝐿 (𝑛,Z), i.e. 𝑈 and 𝑉 are unimodular (with det = ±1 ), invertible,

integer matrices.

We also call 𝐷 the SNF of 𝐴. The main result about the SNF is that is defined for every integer

matrix—so it is in a sense a univeral property of integer matrices. It is unique up to signs. Naturally

𝑈 and 𝑉 are unique up to isomorphism. The SNF is important in the context of computational

homology since one gets all of the fundamental subspaces of a matrix after the decomposition.

Lemma. SNF provides all fundamental subspaces of an integer matrix

Let 𝐴 = 𝑈𝐷𝑉−1, with 𝐴 ∈ 𝑀𝑚×𝑛 (Z). Then 𝑈 constitutes a basis for Z𝑚, and 𝑉 is a basis for Z𝑛.

Furthermore, if we let 𝑟 equal to the nonzero diagonal elements of 𝐷, then the first 𝑟 columns of𝑈

are a basis for im𝐴, and the last 𝑛 − 𝑟 columns of 𝑉 are a basis for ker𝐴.

Proof:

The first statment is easy to see as𝑈,𝑉 are isomorphisms and they have each 𝑚, 𝑛 columns so they

are indeed a basis for Z𝑚,Z𝑛 respectively. Now note that if 𝑖 ∈ 1, ..., 𝑟 we have

𝐴𝑣𝑖 = 𝑑𝑖𝑢𝑖 ≠ 0 ⇒ 𝑢𝑖 ∈ im𝐴. (3.68)

Furthermore, if 𝑟 < 𝑗 < 𝑛 then

𝐴𝑣 𝑗 = 0𝑢 𝑗 = 0 ⇒ 𝑣 𝑗 ∈ ker𝐴. (3.69)
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■.

With the above result, we can now easily calculate the Betti numbers. However, should we be

interested in the explicit calculation of representatives of homology groups, we are still left astray:

despite we are able to compute ker𝜕𝑗 and im𝜕𝑗+1, their bases need not be equal. This motivates the

following results.

Computing generators using the Smith Normal Form

Definition. 𝐷∗ Let 𝐷 be the SNF of a matrix 𝐴. Then define 𝐷∗ to be the matrix which is the

result of permuting the columns of the matrix 𝐷 so that the diagonal block is in the right upper

corner.

In this sense, we’re thinking of 𝐷∗
𝑖

to be the result of applying a change of basis to the boundary

matrix 𝜕𝑖 to get 𝐷∗
𝑖
= 𝑈−1

𝑖
𝜕𝑖𝑉𝑖𝑃𝑖.

Accordingly, since operations on columns on 𝜕𝑖, as a change of basis operation, correspond to

operations on rows on 𝜕𝑖+1 we have the following definition.

Definition. Let 𝐷𝑖 = 𝑈−1
𝑖
𝜕𝑖𝑉𝑖𝑃𝑖, we say that 𝜕𝑖+1 is the matrix into which 𝜕𝑖+1 is carried after

applying the operations to diagonalize 𝜕𝑖 using SNF. That is 𝜕𝑖+1 = 𝑃−1
𝑖
𝑉−1
𝑖
𝜕𝑖+1.

In a more succint description, let 𝑉̃𝑖 = 𝑉𝑖𝑃𝑖, then we define:

𝐷∗
𝑖 = 𝑈

−1
𝑖 𝜕𝑖𝑉̃𝑖 (3.70)

𝜕𝑖+1 = 𝑉̃𝑖
−1
𝜕𝑖+1 (3.71)

Lemma. The last 𝑟𝑖 rows of 𝜕𝑖+1 consist of zeros.

Proof:

For a contradiction, assume that the last 𝑟𝑖 rows of 𝜕𝑖+1 are not all zeros. However, since smith

factor matrices and permutation matrices are isomorphisms we have that 𝐷∗
𝑖
◦ 𝜕𝑗+1 = 0. This leads

to a contradiction of our assumption. ■
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The importance of this result is that by changing bases on a boundary matrix 𝑖 to those specified by

the previous matrix following SNF decomposition, we actually advance the SNF of the 𝑖−th matrix

and work with the same basis. We thus come closer to our goal of having the same basis to directly

compute a representative of the homology group. The following result achieves this goal.

Theorem. It is possible to choose bases for the chain groups 𝐶0, 𝐶1, ..., 𝐶𝑛 in terms of which

the boundary maps have the form 𝐷∗ and the consecutive spaces (ker𝜕𝑖, im𝜕𝑖+1) have the same

basis.

Proof:

Let 𝜕𝑖, 𝜕𝑖+1 be consequent boundary maps of a chain complex.

Further, assume that the SNF of 𝜕𝑖 is available in the form 𝐷∗
𝑖
= 𝑈−1

𝑖
𝜕𝑖𝑉̃𝑖.

Change basis to map 𝜕𝑖+1 ↦→ 𝜕𝑖+1, and decompose the matrix using SNF to get 𝐷 (𝑖+1)′ =

𝑈−1′
𝑖+1 𝜕𝑖+1𝑉(𝑖+1)′ = (𝑈−1′

𝑖+1 𝑉̃𝑖
−1)𝜕𝑖+1𝑉(𝑖+1)′ .

We now have that 𝔅𝔦 = 𝑉̃𝑖𝑈(𝑖+1)′ is a common basis for the ker𝜕𝑖 and the im𝜕𝑖+1. ■

Corollary: The columns with index {dim im𝜕𝑖+1+1, dim im𝜕𝑖+1+2, ..., dim ker𝜕𝑖} of𝔅𝔦 constitute

representatives of the 𝑖−th homology group.

Proof:

𝐵𝑖 is a common basis for ker 𝜕𝑖 and im 𝜕𝑖+1 by the last result. Since 𝜕𝑖+1 has the last 𝑟𝑖 rows with all

zeros, 𝑈−1
(𝑖+1)′ leaves the last 𝑟𝑖 rows of 𝜕𝑖+1 unchanged. Thus the first 𝑟𝑖 rows 𝔅𝔦 constitute a basis

for ker𝜕𝑖, as are the first columns of 𝑉̃𝑖. However, because 𝐷 (𝑖+1)′ is the SNF of 𝜕𝑖+1, the first 𝑟𝑖+1

columns of 𝔅𝔦 are also a basis for the image of 𝜕𝑖+1, where 𝑟𝑖+1 = dim im𝜕𝑖+1. Therefore columns

corresponding to the indices {dim im𝜕𝑖+1 + 1, dim im𝜕𝑖+1 + 2, ..., 𝛽𝑖} of 𝔅𝑖 are in the kernel of 𝜕𝑖

and not in the image of 𝜕𝑖+1, and there are 𝛽𝑖 of them. ■

Remark: The above result is an algorithm to compute the homology groups of a simplicial complex.
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3.7 Systematic topological inference with Persistent Homology

Up to now we have dealt with both the representation problem (addressed with a simplicial complex

structure) and the computation problem (addressed with the Smith Normal Form). However, there

is one detail we haven’t addressed yet: in the definition of a Vietoris-Rips complex, we need a

threshold 𝜀 which setys the locality of the neighborhood. But how do we choose this threshold?

The answer is that we don’t choose one, but rather sweep through a range of values and record

the topological structures that emerge and cease at different scales. To make an analogy, instead

of looking at a snapshot of the topology, we instead watch a movie (this will be the filtration) of

topological structures, and record the different events in a persistence diagram. It turns out that the

theory behind this approach—called persistent homology—is surprisingly beautiful, and simple to

compute. But as before, the key is to approach the problem step-by-step.

Def: Filtration. A nested sequence of subspaces of the form:

K = {∅ ⊂ 𝐾0 ⊂ 𝐾1 ⊂ ... ⊂ 𝐾𝑛}, (3.72)

is called a filtration of the space 𝑋 .

To understand what these inclusion maps do at the level of homology groups, it is useful to note

that homology is a functor mapping the category of topological spaces to the category of abelian

groups, where continuous maps get sent to corresponding group homomorphisms.

Applying the homology functor to the filtrationK yields a sequence of homology groups and group

homomorphisms, the persistence module (or quiver, see next section) associated to the filtration:

𝐻𝑛 (𝐾0)
𝜄
0,1
∗−−→ 𝐻𝑛 (𝐾1)

𝜄
1,2
∗−−→ ...

𝜄
𝑛−1,𝑛
∗−−−−→ 𝐾𝑛 (3.73)

Where the asterisk denotes that the function is now a linear map between the homology groups

(which recall are vector spaces using 𝑍2 coefficients, or more generally homomorphism between
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homology groups). The 𝜄∗ are also called the pushforwards of inclusion maps. That is if 𝛾 ∈

𝐻𝑛 (𝐾𝑖), 𝜄𝑖, 𝑗∗ [𝛾] = [𝜄(𝛾)] ∈ 𝐻𝑛 (𝐾 𝑗 ), by definition of the induced maps on homology.

Def: n-th Persistent homology group and persistent Betti numbers

The images of the pushforward inclusion maps are the persistent homology groups, that is:

𝐻
𝑖, 𝑗
𝑛 = im 𝜄

𝑖, 𝑗
𝑛,∗. (3.74)

The corresponding 𝑛−th persistent Betti number are their corresponding ranks:

𝛽
𝑖, 𝑗
𝑛 = dim𝐻

𝑖, 𝑗
𝑛 . (3.75)

In words, persistent homology groups consist of the homology classes of 𝐾𝑖 still alive at 𝐾 𝑗 .

To reiterate, for any 𝑖 ≤ 𝑗 we have a linear map 𝜄𝑖, 𝑗∗ : 𝐻𝑛 (𝐾𝑖) → 𝐻𝑛 (𝐾 𝑗 ). If 𝑗 − 𝑖 > 1 we have

𝜄
𝑖, 𝑗
∗ = 𝜄

𝑗−1, 𝑗
∗ ◦ ... ◦ 𝜄𝑖+1,𝑖+2

∗ ◦ 𝜄𝑖,𝑖+1
∗ by functoriality. The image of this linear map are the non-trivial

homology classes that persist from 𝐾𝑖 to 𝐾 𝑗 . However, such classes may not actually be born in 𝐾𝑖.

The n-homology classes born exactly at 𝐾𝑖 are 𝐻𝑛 (𝐾𝑖)/ im 𝜄
𝑖−1,𝑖
𝑛,∗ , and there are exactly 𝛽𝑛 (𝐾𝑖) −

𝛽
𝑖−1,𝑖
𝑛 of them.

The n-homology classes that die exactly at 𝐾 𝑗 are precisely ker 𝜄 𝑗−1, 𝑗
𝑛,∗ . Furthermore there are

exactly 𝛽𝑛 (𝐾 𝑗−1) − 𝛽 𝑗−1, 𝑗
𝑛 of them.

Let’s recap what we just said with specific representatives. Let 𝛾 ∈ 𝐻𝑛 (𝐾𝑖), we say that this

𝑛−homology class is born at 𝐾𝑖 if 𝛾 ∉ im𝜄𝑖−1,𝑖
𝑛,∗ = 𝐻

𝑖−1,𝑖
𝑛 .

Futhermore a homology class dies at 𝐾 𝑗 if it merges with a previously born homology class exactly

at 𝐾 𝑗 , i.e. 𝜄𝑖, 𝑗𝑛,∗( [𝛾]) ∈ im 𝜄
𝑖−1, 𝑗
𝑛,∗ = 𝐻

𝑖−1, 𝑗
𝑛 and 𝜄𝑖, 𝑗−1

𝑛,∗ ( [𝛾]) ∉ im𝜄𝑖−1, 𝑗−1
𝑛,∗ = 𝐻

𝑖−1, 𝑗−1
𝑛 . This leads to the

following definition.
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Definition. Persistence

If a homology class [𝛾] is born at 𝐾𝑖 and dies at 𝐾 𝑗 , then, its persistence is the difference in their

function values:

pers(𝛾) = 𝑎 𝑗 − 𝑎𝑖 .

If the indices are sufficient in the context one can also define the persistence as pers(𝛾) = 𝑗 − 𝑖.

Remark: An alternative definition of the persistence homology groups, given in the original paper

(See Edelsbrunner, Letscher, and Zomorodian), is the following: recall that 𝐻𝑖, 𝑗𝑛 are the homology

classes present at 𝐾𝑖 that do not become trivial in 𝐾 𝑗 .

Then, 𝐻𝑖, 𝑗𝑛 is approximately ker 𝜕𝑛 (𝐾𝑖)/im 𝜕𝑛+1(𝐾 𝑗 ). However, we don’t know if im 𝜕𝑛+1(𝐾 𝑗 ) is a

subspace of ker 𝜕𝑛 (𝐾𝑖), since 𝐶 𝑗

𝑛+1 may be substantially larger than 𝐶𝑖
𝑛+1. Thus, to ensure proper

containment one actually has that:

𝐻
𝑖, 𝑗
𝑛 = ker 𝜕𝑛 (𝐾𝑖)/(im 𝜕𝑛+1(𝐾 𝑗 ) ∩ ker 𝜕𝑛 (𝐾𝑖))

We know that (im 𝜕𝑛+1(𝐾 𝑗 )∩ker 𝜕𝑛 (𝐾𝑖)) is a subspace of𝐶 𝑗
𝑛 , since the intersection of two subspace

is a subspace.

Let’s ground the above definitions with an example.

Example: Visualizing persistent homology groups

Consider the filtration in Figure 3.5 A. This filtration consists of the sublevel sets 𝐾𝑎 = 𝑓 −1(−∞, 𝑎)

of the height function 𝑓 applied to a curve𝐶. The filtration is X = {∅ ⊂ 𝐾0 = 𝑓 −1(−∞, ℎ0) ⊂ 𝐾1 =

𝑓 −1(−∞, ℎ1) ⊂ ... ⊂ 𝐾4 = 𝑓 −1(−∞, ℎ4)} and the corresponding 0−th homology groups (using

mod2 coefficients) are :
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Figure 3.5: Persistent homology of a filtration using the preimages of a Morse function.

𝐻0(𝐾0) ≈ Z2
id−→ 𝐻0(𝐾1) ≈ Z2


1

0

−−→ 𝐻0(𝐾2) ≈ Z2
2

[
1 1

]
−−−−−−→ 𝐻0(𝐾3) ≈ Z2

id−→ Z2 ≈ 𝐻0(𝐾4)

(3.76)

There are several interesting things to note in this example. First, note that the rank of the groups

are correct since for all sublevel sets we have a Betti number equal to 1, except on 𝐾2. Also, note

that we can explicitly write down the induced linear maps on homology groups. To see why the

linear maps are correct, the only detail is to realize that we need a change of basis for 𝐻0(𝐾2),

especifically we need to map


1

0

 ↦→ 1 ∈ 𝐻0(𝐾3),

1

1

 ↦→ 0 ∈ 𝐻0(𝐾3) via the map
[
1 1

]
. Please

note that the operation is in modulo 2 arithmetic.



122

A visualization of the homology groups is displayed in Figure 3.5 B. In the figure we have visualized

in grey the sequence of isomorphisms from the first generator. Note that this generator has infinite

lifetime, that is, it is born at the start of the filtration and never dies. On the other hand the generator

corresponding to the second component (visualized in green) is born at the third value of the

filtration, and dies in the fourth one. Thus, the green generator has a lifetime of one.

Remark: Despite that the inclusion maps are always injective, their induced homomorphisms in

homology groups are not always injective, and can be surjective : when a persistent homology class

dies, the rank of the group goes down by one and thus cannot be injective. In our example, note

that the map from 𝐾2 to 𝐾3 is surjective despite that the inclusion map is injective. To reiterate: the

induced maps on homology groups need not be of the same class as the maps on simplicial chains.

Algorithm

Assume we have a filtration K = 𝐾1 ⊂ ... ⊂ 𝐾𝑁 , where in each step we add a simplex at a time.

(We may need to expand a bit here recalling where does the filtration comes from, why do we add

one simplex at a time, and that this process is called refinement, and point to the corresponding

reference). This will induce a total ordering of the simplices in 𝑚𝑎𝑡ℎ𝑐𝑎𝑙𝐾 . Also assume that we’re

using Z2 as coefficients. It turns out that under this set up we can extract the persistence module

associated with K using a variation of Gaussian elimination. Towards this aim we will construct a

boundary matrix 𝐷 as follows:

𝐷𝑖 𝑗 =


1 if𝜎𝑖 is a codimension 1 coface of 𝜎𝑗

0 otherwise

The rows and columns are ordered according to the order in K, and the boundary of each simplex

is recorded in the columns of 𝐷. The following algorithm was first described in (...) and uses

columns for reduction, hence now its commonly referred to as the column algorithm. Let 𝑙𝑜𝑤( 𝑗)

be the row index of the lowest nonzero entry in column 𝑗 .
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Algorithm 1 Column reduction algorithm for persistent homology
input : 𝐷 boundary matrix representing a filtration
output
:

𝑅 reduced boundary matrix

𝑅 = 𝐷, 𝑉 = 𝐼

for 𝑗 = 1 to 𝑛 do
while exists 𝑘 < 𝑗 : 𝑙𝑜𝑤(𝑘) = 𝑙𝑜𝑤( 𝑗):
𝑅[:, 𝑗] = 𝑅[:, 𝑗] + 𝑅[:, 𝑘]
𝑉 [:, 𝑗] = 𝑉 [:, 𝑗] +𝑉 [:, 𝑘]
endwhile
endfor

The matrix 𝑅 is the reduced version of 𝐷. We add columns from left to right to take into account

the filtration order: at the filtration index 𝑗 we can change the standard basis ⟨𝜎1, 𝜎2, ...𝜎𝑗 ⟩ →

⟨𝜎̂1, ..., 𝜎̂𝑗 ⟩ of the simplicial complex using simplices already present in the filtration. In fact we

will have a new basis of the form 𝐷 : 𝑉 𝑗 → 𝑅 𝑗 , where 𝑅 𝑗 represent (finite) 𝑛 homology classes

and 𝑉 𝑗 are the preimage chains under the boundary map.

Now, let us analyze the effect of adding a simplex at a time on the homology groups.

Lemma. Consider a simplex-wise filtration 𝐾𝑖 = 𝐾𝑖−1 ∪ 𝜎𝑖, i.e. in each step we add a single

simplex. Assume that dim𝜎𝑖 = 𝑛. Then only two things can occur:

• Inclusion of 𝜎𝑖 increases 𝐻𝑛, and we say that 𝜎𝑖 is a positive simplex.

• Inclusion of 𝜎𝑖 decreases 𝐻𝑛−1. In this case 𝜎𝑖 is a negative simplex.

Proof:

The proof proceeds by analyzing the dimensions of the different subspaces. We have one of two

cases.

Case 1. If the boundary of 𝜎𝑖 is a linear combination of boundaries in 𝐾𝑖−1, i.e. if 𝜕𝑛 (𝜎𝑖) ∈

im𝜕𝑛 (𝐾𝑖−1), then adding 𝜎𝑖 to the column of 𝜕𝑛 will increase the dimension of the kernel ker 𝜕𝑛.

In particular, note that 𝑅𝑖 = 0. Furthermore since we’re adding an 𝑛−simplex, the group 𝐶𝑛+1(𝐾𝑖)
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will remain unchanged, and hence the im 𝜕𝑛+1 will also remain unchanged. Thus the dimension of

𝐻𝑛 will increase by 1.

Case 2. On the other hand, if the boundary of 𝜎𝑖 is not a linear combination of boundaries in

𝐾𝑖−1, adding 𝜎𝑖 to 𝜕𝑛 will increase the dimensionality of im𝜕𝑛. Of importance, note that 𝑅𝑖 ≠ 0.

Furthermore, since we’re adding and 𝑛−simplex and the group 𝐶𝑛−1 is unchanged implies that

ker𝜕𝑛−1 is unchanged. Hence, the inclusion of 𝜎𝑖 causes the dimension of 𝐻𝑛−1 to decrease by 1 as

desired. ■

Before proving that the reduction algorithm provides the persistence module, let us add another

Lemma which suggests how the pivots or lowest ones of matrix 𝑅 hold fundamental information

of the persistent homology.

Lemma The pivots are invariant to the reduction process. In particular, we can further "sparsify"

matrix 𝑅 by left-to-right operations and this won’t change the pivots.

Proof

After reduction, nonzero columns will be independent. Therefore adding columns from left to

right will only change the basis of the image of 𝐷. Since by assumption, all pivots of matrix 𝑅 will

be different, further performing left-to-right operations will not affect the pivots. Thus the pivots

are invariants of the reduction process. ■

Using the Lemma above, we now show that the "dynamics" of birth and death of homology classes

in the filtration appear when 𝑅 = 𝐷𝑉 by noting "that 𝑅 𝑗 is a cycle appearing in the filtration at

index 𝑖 = 𝑙𝑜𝑤( 𝑗) and becoming a boundary when 𝜎𝑗 enters the filtration at index 𝑗 (and recorded

in 𝑉 𝑗 ), and when an essential cycle 𝑉𝑖 appears at index 𝑖."[Ripser paper]

Now we proceed to show that the algorithm contains all the information of the persistence modules.

Theorem The output matrix 𝑅 of the column reduction algorithm contains the persistence module

of the filtration K. Namely, the persistence intervals will be of the form [𝑎𝑖, 𝑎 𝑗 ) ∈ 𝐷𝑔𝑚𝑝 (K) iff

𝑖 = 𝑙𝑜𝑤( 𝑗) in the reduced matrix 𝑅, and dim𝜎𝑖 = 𝑝 and dim𝜎𝑗 = 𝑝 + 1.
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Proof:

First, note that column 𝑗 will reach its final form after the 𝑗−th iteration of the outer loop in the

algorithm. At that moment, we have reduced all columns 𝑘 < 𝑗 .

By the Lemma above, 𝑅 𝑗 = 0 is a cycle born at index 𝑗 .

Furthermore the non-zero columns in 𝑅 correspond to 𝑛−homology classes that died by addition

of a single simplex, so if 𝑅 𝑗 ≠ 0 =⇒ 𝜏𝑗 killed the homology class in 𝑅 𝑗 .

Now, we need to show that the birth simplex is the pivot 𝜎𝑖 with 𝑙𝑜𝑤( 𝑗) = 𝑖. Simplex 𝜎𝑖 is possibly

a birth simplex because 𝜎𝑖 ∈ 𝑅 𝑗 , and since 𝑖 < 𝑗 it represents a class that must be paired. Assume

that the class actually born at 𝑖 is finite. Now, for a contradiction assume there is another simplex

𝜎𝑘 ≠ 𝜎𝑖 that is the birth simplex. But since simplices that are not pivots are not unique, they may

be further reduced and since the birth simplex is unique, this leads to a contradiction. This suggests

that 𝜎𝑖 is the birth simplex since it is invariant to the reduction process.

Finally, note that 𝑅 𝑗 cannot exist as a cycle before the addition of simplex 𝑖 since if it could we

would have been able to further reduce the column and get a lower pivot. Hence 𝜎𝑖 is precisely the

birth simplex and the persistence pair is [𝑖, 𝑗). ■

Remark: A note on implementation. It turns out that any filtration can be refined into a filtration

in which at each step, a single simplex is added, i.e. a simplex-level filtration. Therefore, a

preprocessing step of the algorithm for computing persistent homology requires ordering the

simplices. We mention a particular useful order in the context of our interest, Vietoris Rips

filtrations. Namely, we order the simplices hierarchically by:

1. Diameter

2. Dimension of the simplex

3. Reverse lexicographic order (of vertices).
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A note on cohomology

In a groundbreaking paper, De Silva, Morozov and Vejdemo-Johansson dualities showed that the

persistence modules of homology and cohomology are isomorphic, namely that each persistence

pair is flipped: if a persistent homology class is born at index 𝑖 and dies at 𝑗 the there is a

corresponding persistent cohomology class that is born at index 𝑗 and dies at index 𝑖. The flavor of

the proof of this result is that, when we use 𝑍2 coefficients, there is no torsion, and the Universal

Coefficient theorem tells us that the homology and cohomology groups are isomorphic. Using the

previous observations, we can formally prove the result formally.

Theorem. Persistent homology and cohomology have identical barcodes when using 𝑍2

coefficients. (Proposition 2.3 dualities)

First, when cosidering 𝑍2 coefficients, the Universal Coefficient theorem tells us that the homology

and cohomology groups are isomorphic, since there is no torsion.

Now consider the 𝑘 → 𝑘 + 1 step in the homology and cohomology persistence modules of a

simplex-wise filtration:

𝐻𝑛 (𝑋𝑘 ) 𝐻𝑛 (𝑋𝑘+1)

𝐻𝑛 (𝑋𝑘 ) 𝐻𝑛 (𝑋𝑘+1)

𝑖∗

≃ ≃
𝑗∗

We have the following two cases, which follow from dimension counting:

• Case 1. A class is born in homology. Since the vertical arrows are isomorphisms, this implies

that a class dies in cohomology.

• Case 2. Similarly, if a class dies in homology, then a class is born in cohomology.

This implies that the barcodes of homology and cohomology are the same, but flipped. ■

The above result is of fundamental importance, since computing the cohomology groups is more

efficient than computing the homology groups. Hence the above result allows us to use the
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cohomology barcode to study the homology barcode. This conceptual result has caused crucial

algorithmic advances that enabled the computation of PH on large datasets.

In the following section we show how the persistence diagram completely algebraically character-

izes all the information of data topology.

Quivers, persistence diagrams, and indecomposable representation

The underlying algebraic theory of persistence homology groups have taken many different ap-

proaches. Among them, one of the most prolific in terms of their capacity to prove important

results and connect them to other mathematical theories is that of Quiver theory of persistence

modules. In this section we will use the latter. Quivers are graph representations. In other words,

a quiver is a directed graph where nodes represent vector spaces and arrows are linear maps. To

see why this theory applies in our context, note that the sequence of homology groups induced

by a filtration can be conceptualized as a quiver without much effort: we just need to work with

coefficients in Z/𝑛Z and each homology group will have a vector space structure.

There is a vast and profound theory of quivers. To read a concise introduction we refer to [cite].

For our purposes we will only need the following theorem that characterizes quivers in terms of

their isomorphism classes. Before proceeding we just need a couple of definitions.

Definition. A persistence module is an indexed family of vector spaces, together with a doubly

indexed family of linear maps (𝑣𝑠𝑟 : 𝑉𝑟 → 𝑉𝑠 |𝑟 ≤ 𝑠).

Remark Note that with the above definition 𝑣𝑟𝑟 is the identity on 𝑉𝑟 . Remark It turns out that a

persistence module is a special type of quiver representation, which we define in what follows.

Definition. Quiver A quiver is a tuple 𝑄 = (𝐾0, 𝐾1), where 𝐾0 is a set of vertices and 𝐾1 is a

finite set of (directed) edges.

Definition. Quiver representation Let𝑄 be a quiver and𝐾 be a field. The set of finite dimensional

vector spaces attached to each vertex and corresponding linear maps associated with arrows is a

quiver representation.
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Definition. Direct sum of quiver representations If 𝑉 and 𝑊 are representations of the same

quiver 𝑄, define their direct sum 𝑉
⊕

𝑊 by:

(𝑉
⊕

𝑊)𝑥 = 𝑉𝑥
⊕

𝑊𝑥 (3.77)

for all 𝑥 ∈ 𝐾0 and

(𝑣
⊕

𝑤) 𝑗
𝑖
=

©­­«
𝑣
𝑗

𝑖
0

0 𝑤
𝑗

𝑖

ª®®¬ : 𝑉𝑖
⊕

𝑊𝑖 → 𝑉 𝑗

⊕
𝑊 𝑗 (3.78)

Definition. A representation 𝑉 is trivial if 𝑉𝑥 = 0∀𝑥 ∈ 𝐾0.

Definition. (In)decomposable representation If a quiver representation 𝑈 is isomorphic to

a direct sum, i.e. 𝑈 � 𝑉
⊕

𝑊 , where 𝑉,𝑊 are non-trivial representations then 𝑈 is called

decomposable; otherwise𝑈 is called decomposable.

The classification of quivers boils down to classifying indecomposable representations.

Theorem. Classification of 𝐴𝑛 type quivers (Gabriel).

Let 𝑄 be an 𝐴𝑛 type quiver, and let 𝐾 be a field. Then every indecomposable finite-dimensional

representation of 𝑄 over 𝐾 is isomorphic to a direct sum of interval representations I𝑄 [𝑏, 𝑑] of the

following form:

0 → 0 → ... → 𝐾
𝑖𝑑−→ 𝐾

id−→ ...
id−→ 𝐾 → 0... → 0, (3.79)

where the length of the nonzero subspaces is of size 𝑏 − 𝑑.

Remark: In the context of our persistence module, the interval modules are precisely indicators

of the lifetime of persistent homology classes. Now the evocative notation lends itself to its useful

interpretation: 𝑏, 𝑑 correspond to the birth and death of the persistent homology class.
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What this means for our purposes is that we can fully characterize the mathematical properties of

persistence modules with the persistence diagram Dgm =
⊕

𝑖 [𝑏𝑖, 𝑑𝑖).

Persistence diagram. The disjoint union of intervals [𝑏, 𝑑) is the persistence diagram of V.

3.8 Conclusion

This is all the necessary theory to understand the computational framework used in this thesis. As

stated in the introduction, my hope is that this material will be useful to the reader to build new

tools using algebraic topology and the theory of persistence.
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