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ABSTRACT

Use has been made of the Clebsch-Gordon series
to evaluate the matrix elements involved in the one-
level dispersion model for the elastic scattering of
protons by light nuclei. The results have been used
to describe the resonances at 440 kev and 1034 kev
in the scattering of protons by lithium and the res-
onances at 988 and 1077 kev in beryllium. The 440
kev lithium resonance seems to be definitely due to
incident p-waves forming a compound state of Be8
with J = 1. The 1034 kev lithium resonance is tenta-
tively identified as due to s-wave forming a state
with J = 1, but more complete experimental data is
necessary before a definite assignment can be made.
The 988 kev beryllium resonance is ascribed to a
level with J = 2 in B0 formed by incident s-wave
protons and the observed 7y-radiation is therefore
electric dipole. The narrow resonance at 1077 has
been ascribed to incident d-wave and J = O.

The agreement of these assignments with other

experimental data is discussed.
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I. INTRODUCTION

The scattering of protons by atomic nuclei has long been
a source of information concerning the structure of the nucle-
us. The earliest scattering experiments were of course per-
formed with natural alpha particle sources, but since the de-
velopment of accelerators - especially thé high precision elec-
trostatic generators - proton scattering has become increasing-
ly important.

The interest in proton scattering centers about the so
called "nuclear resonance scattering" in which the proton, for
certain more or less well-defined bombarding energies, is con-
sidered to enter the target nucleus and form a compound nucle-
us which then decomposes and re-emits the original target par-
ticle and proton. The observed elastic scattering (i.e. that
for which the incident proton reappears with the same* energy)
is made up of two parts. One part, the Coulomb or Rutherford
scattering is of itself uninteresting since it is more or less
completely understood and is described as the result of the
repulsion of the classical electrostatic fields of the charges
+e and +Ze on the proton and target nucleus. The other part
is ascribed to various effect (which are not necessarily dis-
tinct) such as non-classical potentials (i.e. the break down
at separations of less that 10718 cp. of Coulomb's law), "nu-

clear scattering" in which the proton "bounces off the nucleus"

= In the center-of-mass coordinate system.
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(to give a crude classical picture), and "nuclear resonance
scattering" mentioned above. As a matter of deséription it
is perhaps easiest to say that the coulomb scattering is com-
pletely,deécribed by the well known Rutherford formula(l)

and any variafion from the predictions of this formula are

to be ascribed to the specifically nuclear effects.

A convenient form for displaying the effects of the a-
nomalous scattering is to give the ratio of observed scatter-
ing cross-section to the Rutherford cross-section as a func-
tion of the angle of scattering and energy of the bombarding
protons. In this thesis we shall calculate this function on
the basis that the scattering is due primarily to coulomb
scattering and a single nuclear resonance level for various
assumption as to the angular momentum of the incident protons
and the compound nucleus involved in the resonance. The ef-
fects of other resonances are either neglected (as in section
III) or treated as a source of general non-resonant scatter-
ing which interfers with the resonance and coulomb scattering
(as in section IV). The cross-sections thus calculated are
compared with the experimental data obtained in the Kellogg
Radiation Laboratory (2,3,4,5) and an attempt is thus made to
determine the angular momentum of the compound nucleus associ-

ated with each of the resonances.



II. THE MECHANICS OF THE PROBLEM

) I General Description of the Calculation of Cross Sections

The "cross section", o, for a nuclear process is defined
as the probability that, with an incident intensity of I bom-
barding particles per unit area and per unit time, the specified
process will take place at the rate Ioc per unit time and per
target nucleus. We may consider either a total cross section
or partial cross sections, the partial cross section being es-
sentially the probability that a more restricted type of pro-
cess occur; the total croés section for the process is the sum
of the partial cross sections for each of the independent sub-
processes by which the less restricted reaction occurs. An ul-
timate example of this and the one in which we shall be partic-
ularly interested is the differential cross section for a nu-
clear disintegration or scattering process. The total process
is the incidence of a specified particle and the subsequent e-
mission of some other (or possibly the same) particle. The
total cross section does not specify the direction in which
the emitted particle is moving relative to the direction of the
incident particle. The differential cross section gives the
probability that the emitted particle shall have'a direction
of motion included in a solid angle df. with coordinates o, @
relative to the incident particle's direction. The total cross
section is thus the integral over all angles of the differen-
tial cross section. The latter may itself be decomposed into

component parts. Thus the incident particle and the target
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nucleus may initially be in any one of several quantum states
and for each configuration of target and incident particle
states we can specify a cross section; the complete cross sec-
tion is then the sum of these sub-crosé sections each weighted
by the probability that that configuration shall occur. There
may also be more than one mechanism whereby the process under
consideration can take place as is the case in the description
of the scattering of protons by nuclei where the scattering by
the coulomb field énd the scattering produced by the existence
of the compound nucleus interfere with each other.

As indicated above, the complete description of the scat-
tering process invdves the break-down of the process into its
fundamental components and the subsequent reassembly of the
partial cross sections for each component into the complete
cross section. Specifically, in the scattering of protons by
a target nucleus the angular momenta of the two particles rep-
resent a specification of the quantum states of these particles.
The scattering process involves a proton with spin (total ang-
ular momentum of the proton) of %ﬁ and a nucleus with total
angular momentum fﬁ coming together with a relative orbital
angular momentum l# and then coming apart again. The possible
quantum states of the system are specified by the components
of angular mémentum along a given direction. We., therefore
have a proton with total aﬁgular momentum (spin) s = % and com-
ponent M, = :f% and a target nucleus with total angular momen-

tum j and component m,' coming together with a relative orb-

J

ital angular momentum | and component m' to form a compound
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nucleus with total angular momentum Js and component M. (Fig.
1). This compound nucleus then disintegrates into the origi-
nal particles and since we are considering elastic scattering
the particles have the same angular momentum as before. The
final state is therefore specified by the quantum numbers

S,Mg; fymi; b,m * 5 i
mj m, m

We can therefore write a matrix element fm,mxm con-
necting the initial and final states. The sum of the absolute
square of these matrix elements gives the cross section. How=-
ever, it is more convenient to separate the coulomb scattering
matrix element from the nuclear matrix element and write

O 4 ’ / yor ot
-F { sm - 'IQ gmfgm, +MWL!YYQ.YY).
m ms %o Ny Eg vy mg

in which o, is the coulomb (or Rutherford) cross section and
M is the specifically nuclear scattering matrix element. If

all the M's vanish we then obtain pure coulomb scattering so

* We should also allow I to be different after the colli-
sion than what it was before and this possibility must not
be overlooked. However, for low bombarding energies we
should expect only one value of I to be important; that one
indeed which is the smallest value consistent with other se-
lection rules. The compound nucleus will then be unable to
emit particles with /< while the probability of absorbing
or emitting particles with 7>?" would be expected to fall
off at least as fast as (R/2)*"V) where R = nuclear radius,
2% = wave-length of the proton. For 0.5 Mev protons X

= 8.5 x 10-13 cm while the nuclear radius for Li is R =

2.7 x 10~1%¢cm. hence (R/x)**= (0.15)!. Since the parity se-
lection rule requires that the only values of 7 be 7/,7%2,7%4,..
we see that the only important value %s /=?" . For example,
from the curves of Christy and Latter(6)we find that for

the penetration of 0.5 Mev protons thru the coulomb barrier
for lithium, the ratio of d-wave to s-wave is 0.005. The
more complete quantitative discussion to be given below will
include the.possibility of different values of 7 .



that the M's contribute the anomalous scattering. The &'s
are the Kronecker delta and indicate that in coulomb scatter-
ing the components of angular momentum of the particles are
unaltered. The total cross section can then be written as

/ /
{ mwmg |2

(25+')(25 +1) mem, m;mj’

o = AFM Wllms

Lok o R

it g

e mi m
I ‘\4
%, ‘Sms _gmj + mmjms

|
- (z[+1)(2st1) izz:

(8.01)

the summations being extended over all possible values of the
m's, while the f's themselves may contain implicitly a summa-
tion over ! . The cross section formula indicates that each
'configuration of the incident particles is an independent and
equally probable event, therefore, since there are 3j +1 dif-
ferent possible values of mjy and 28+ 1 different possible val-
ues of mg, the a priori probability of each configuration is
1/(23+1)(2s+1) Justifying the factor in front of the summa-
tion. If tﬁéfﬂ's all vanish we have simply ¢ = O, . There are,
of course, selection rules which 1limit the number of M's which
differ from zero. We have the conservation law for component
of angular momentum

M= mg+my+m = mé-+mj-+m' (2.02)
and the "closed polygon" relationships of the vector model

Jo £ J+s+l (2.03a)

Je » Minimum ('\j+s—ll-, \ jj—l—§.l 14 s—jl) (2.03b)

These selection Tules however need not be explicitly intro-



duced but arise naturally from the group-theoretical arguments
used in the evaluation of the matrix elements f.

Since we are interested in resonance scattering from a
more or less sharply defined level in the compound nucleus we
shall carry out the evaluation of the f's in terms of the so

called "one-level dispersion formula®.

3. The Dispersion Formula

The dispersion formula (so-called because of the similar-
ity in form to the well known optical dispersion formula) was
first developed by Breit and Wigner(7), following the quali-
tative description of Bohr(8>, in connection with the slow
neutron capture process. Their calculation was based on sec-
ond order perturbation theory and was extended to include
many levels of the compound nucleus by Bethe(g) and by Bethe
and Placzek(lo): Kalckar, Oppeﬁheimer and Serber(ll) also
treat the dispersion formula on the basis of perturbation
theory for both the case of single levels and of close, over-
lapping 1evéls, and indicate that because of interference ef-
fects the cross section for the latter case is not a simple
integration over single level cross sections. Objection may
be validly raised to the use of ordinary perturbation treat-
ment since the nuclear potentials can hardly be considered
as contributing a small perturbation on the Hamiltonian. Kapur
and Peierls(lg) have recognized this objection and have de-
rived essentially the same formula by considering perturba-

tion on the boundary conditions without specifically consi-



dering the potentials necessary to do this. Their argunent
considers the unperturbed state as one for which no particles
are emitted and the perturbation then changes the wave func-
tion so as to give a flux of reaction particles. Since the
yields (cross sections) are small the perturbation calculation
is justified.

The dispersion formula has also been derived on the ba-
sis of the S-Matrix(13,14,15) py several authors (16,17,18,19)
a method which has been useful in providing a description of
the cross section in the region between resonances, where the
one-level formula must be abandoned in favor of the many-level
formula.

The phenomenon of resonance is essentially a result of
the limited range of nuclear forces and the closely bound
structure of the nuéleus(s) and the description is inadequate
to handle the case of coulomb scattering which does not show
resonances and must be separately calculated. It is import-
ant however to determine the exact phase relations between
coulomb and resonance scattering matrix elements since the
interference of the two must be specified. A derivation of
the one-level dispersion formula is given in Appendix I. We
shall here indicate how the results there given must be modi-
fied in the presence of the coulomb field.

The wave function of a particle in a coulomb field is(l)

Vo =% [ exp{ ikz +ialnk(r-2)}

zZe* )
+ m expg [ kr —z’o(&cz/ef— K ZnSmZé/ + 3T -/-zifp }J

(2.04)



where M is the reduced mass,

d==zze7%v

k= Mok = (2ME)"/k (2.05)

e*'l - r(l+iu)/!"(l—io<)
and the wave function is normalized to unit incident current.
The first term represents the incident plane wave (somewhat
distorted even at infinifty by the long-range field) and the
second term the scattered wave. Equation (2.04) is a conven-
ient form if one is interested only in coulomb scattering.
Since the coulomb field will distort the wave front at infin-
ity it cannot be neglected in analyzing the resonance scatter-
ing, and we must use coulomb wave functions and write the scat-
tered wave in a form in which the waves of different angular
momenta are separated. Doing %his for a pure coulomb potential

(i.e. expanding (2.04) in spherical harmonics) we have

be =7 ZA %0 Y 44) (2.08)

m - normalized spherical harmonic, polar axis
X ﬂ%&) = along the direction of propagation of the
) incident beam.

A2+ | .
A, =VATE L oyn fip 1iz} (2.07)

£UJ is the radial partial wave function of angular momen-

tum | and has the asymptotic form for large r
ﬁup»sm(kw+m—a&mkr—2§)
e*h < Iq(y+l+ia>/fﬂ(1+l—ia)

The wave scattered by the nucleus also may be expanded in

coulomb wave funétions and we have (compare appendix I, Equa-



T
tion (Al1.16) et seq.)

Yy = F T fon (001)%7109 (3-08)

where here % is the regular solution in the coulomb potential
and 4; is the irregular solution. We have the asymptotic be-

havior (Compare Al.18)

gﬂr%+i£W)~f ewﬂ{hr—aﬁmkr—lg+m} (2.09)

The phase shift, 71—-a~&nzkr of the wave with respect to a

" plane wave (Compare (Al.26)) may have a further phase shift,
)

glect here.

; produced by short range nuclear potentials but these we ne-

The coefficients P are given by (Cf. (Al1.23,34,37)

eM cM %
/5""1/"7; _Wz' Az/ sz’amj’ms’ H?lmmj""s

= 2- 10
lemeS Z/ E‘_Eo +§/27 ( )

where /,m are the orbital angular momentum and component of
the scattered partial wave.
ﬁ/né/are the components of spin of the target nucleus

and incident particle before collision.

m ms are the same after the collision.
M is tne component of angular momentum of the compound
nucleus.

E kinetic energy of the incident particle.
E, resonance energy.
The spin quantum numbers have been included to indicate that

we have a strict selection rule
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cM

szmm‘ms = 0 unless M = m+m;+mg (2.11)

The total wave function is made up of the incident beam,
the coulomb scattered beam and the nuclear scattered beam dis-
torted by the coulomb field. Therefore, adding (2.04) and
(2.08) and making use of (2.07) (2.09), (2.10) we have for the

ti mj/m:
partial wave ¢%wu

r 7
ER

Vgme = 7% expi{kz+oc4mk(r-¢)f 5:’ S

_L[_Z_ZL eXP {Igr..d&uzk’r o/Znsm;@My}cgm/g g

rvel o Muy2sin®ig
eM*
y 2T 217‘ Z Yrg qg Z sza,,,Lm: Plmmimg
[ 7‘1 17

X (22#/)%5:@ i S ‘evr—o(@wf&kr-%-%/ —E(z—z’)}J

= i expi{hzﬁtdﬂwk(wz)} 5,:7’5;:‘
—-;%% exFi{hr-a@wzkr+sz [
(2.12)

where

B
m, - W om
'5: / s —:_,z_;’z_e_'——' exF{-Ld‘@Vbslﬂz"' }éfjém

Wil 2M v’sm

/2 H 'omm H zmmm
2 (94§>Z Pllom, My P yMs
T %Zm Y E £ +7)

X (zsz/)’/z "ai” exp? (72'“71/ “7'7,)

(2.13)
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a3rX = wave length of the incident particles = 27/k
The cross section is the sum of the partial cross section for
all the possible break ups of any given initial configuration
averaged over the initial configurations. The cross section is

m/mg
therefore the absclute square of ¥ka averaged over the pos-
gible values of m! and Mm; . Since there are (83 +1) of the

former and (3s+ 1) of the latter we obtain

o(h,4) dw = (4+1&SM)Z: f mvm{ (2.14)

s

3. The Clebsch-Gordon Series and the Evaluation of Matrix
Elements.(zo’zl’gz)

In order to calculate cross sections wé must still evalu-

ate the matrix elements F* These are given by the inte-

lemlm

gral

Pl""""ms jXCTM PP )(Ajmj XPsms Plm % (2.15)

This is similar to equation (Al.24) except that we here specify
the angular momentum quantum numbers of the nuclei and have
normalized the wave functions per unit energy. We shall use
group theory methods to determine the relative values of the

M
matrix-elements,l4

PLm which will allow us to express these

elements in terms of the experimentally determined half width

of the resonance since we also have
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Yo a2 \HCM ms\z (2.16)

Im M]V“s lemj

Yo being the "proton half width".

We need not know the exact form of the functions ;X or
F' but only their transformation properties. If the interac-
tion potential \fp is a scalar, then *‘a;mwshas the same

transformation properties as

TML ¥
M'”"";'“s - .[XCIM XAS”J x?sms E;zm ol 7e (2.17)

that is, we can write

™ c ™
Hleanm‘ = \“m M“"V"J‘MS (2.15a)

¢
where h,, is independent of the components ”mom, Mg .

Now the functions acm=7(cmand Iy = %Amy )(PSM‘ B, form two

complete sets of functions and (17) is just the expansion co-
fficients of f}M in terms of the

cM 2
zv;‘zlms\Hlewlms} (8 ]_8)

2 TTZI: \ i( \2 Z \Mf:jul‘ms\z

W\N‘Ms

g m M/‘Ms £

Te

1

We can then express the full proton width as a sum of partial

widths for different angular momenta of the emitted proton

¢ Ye

Ml
The coefficients “4mmm5 can be easily evaluated by making use

of tne expansion coefficients derived in Appendix II.
Mt
The evaluation of h‘wwms falls into two categories depend-

ing on the type of nuclear interaction; these have very roughly
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been called LS and JJ in partial analogy to the atomic spectra
notation. The LS case is one in which the spin angular momen-
tum and orbital angular momentum are uncoupled. Physically
this means that angular momentum of each kind must be separate-
ly conserved (the total angular momentum must be conserved in
all cases); there are no operators in V, which couple the
orbital momentum and the spin momentum. Mathematically this
shows itself in the separation of the wave function into pro-
ducts of space and spin functions so that the integral (17)
can be written as a sum of products of an integral over the
coordinates of the space variables and an integral over the
coordinates of the spin variables. In the case of "J J coup-
ling" the orbital and spin momenta are not separately con-
served but may be converted one into the other, only the total
angular momentum J, is conserved. The integral (17) cannot,

in this case, be written as the product of two integrals.

A. "L S" description

We must write out xwmx%mJ;m_in terms of the 6rthogona1 set
XCgM . It is assumed that we know the spectroscopic notation
of Xﬁmj ; and that the total momentum j is made‘up of orbital
momentum A and spin momentum o (For example Xﬁ may be denoted
as ZPs/,, in which case 5=3/z,o~='z, =1). Similarly, the total momen-
tum J of X, is assumed to be made up of a specified L and S.

~then

m Ao mghn m o
AR D VR A (2.20a)

4 A)\'ﬂJ ) mq‘ml Jml A 2
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In this and what follows we shall use ¥ to denote a wave
function combining space and spin; ¢ , a function of space
only and # a function of spin only. The symbol — is used
rather than equality to indicate that only the transformation
properties of the wave functions are important; we use 3& and
¢ for the space and spin parts of any wave function - - this
however does not imply that the different functions are simi-
lar except in their relationship to the rotation group.

The incident particle we shall specify to be a proton

and hence it has only spin, therefore we write

%f’svns - -q/sV"s - qésms (2.20b)

The relative motion wave function is of course pure orbit-

al,
E, ~ ¥ - %" (2.20¢)

For the compound nucleus we write

%CJA;; - 'SFJM LSW?&% (2.204)

then we have
Ao, m g g
)(Ajm/ )(Psm, /:;Im - Z—r:’ﬂz AJ”!, {/,1 %o- é

o B R T e T A 4

T, MM,
N Jmy ot s

(2.21)
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combining this with (2.20d4) we have

ML Aowmame A mom s meMs LS mytm m, 4
Mm,ms = MZ;MAJW, A As ey A (2.22)

L, mytm

B. "J J" description
Here we specify only the total angular momentum which
gives us a more general description which includes the pre-

vious one as a special case. We write

Xagm Yoom = B = 2 A ¥ (2.23)

and the coefficients hil must now be recognized as depending
on the quantum number T (In the LS description hil would have
been considered as depending on the LS assignment of the com-
pound nucleus if we had wished to have a compound nucleus which
was a linear combination of LS states.) The most convenient

way to introduce the dependence is to write

¢ . TML |2
h?l‘r = d‘qu(:’l YP!T = ZTT“’LPth Z \ wwnvv\s\ (2.24)
}/P?. "2‘; Yerr
then
IM *
HlenJm‘ = 5 XCJMVAP -)(AJW\, XPSMS Fl;lm 0(7-'
jSmmg | C ¥
’“‘TZMTATmJT h?rr S ch XTMT Fl;lm AT

(2;24)

e R

TMy
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so that from (2.15a) we have

TML (SMMg 2 Tlmom
MMM\MS i TZW\TOZTA ATM (2025)

Twr

We then find (see Appendix III)

o W i :

> MM T (2.26)
From (2.19)

ym = 2n4M$JiE;;J54{1 (2.19a)

While from (2.24)
oo = Z b “TZH'\Cm‘zZ \W‘\ (2.24a)
W\M\W\s ‘

Comparing these two expressions we see that in the JJ descrip-
tion ;¥ﬁ=l' and therefore
Mo\
mmmg s = (2.26a)
We can now write the cross section (2.14) in the form in
which it will be most convenient to use by considering the
ratio of the cross section to the pure coulomb cross section.

We thercfore write

BT P 2
% (6'$) = (2 MVZS\Y\Z';'Q)
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and then in place of (2.13) and (3.14)

w'me
o - iR
o (zs+n(7.5+| t £ M (2.14a)
“‘1'"5
;o
\‘Y\]MS
Tonge ™ s
M ¥

A i CcM
ZTT'/ X Z Y (ﬁ ¢Z (ZZ-H HPLom MéHlem,W\s
U (E-Eot5iY)
(2.13a)
@ - YZ2+Yh/ "2"(D+d Q/ﬂsmﬂég_(z-l,);—r

Using (2.15a), (2.19) and introducing

xX=h
My
2 Lot zZ
= — = == =V/¢
« v 13 ”(5 P /
we have
ls . »
§W\SMS _ 8"5 S\Ms
© ™y Cing

zTr sm BZ Y Z’ (21 +l Mam, mé M'“W';m; )'rz PV
% V2 (E - E 74
zanznn| (E-E,+4:)) 8, 1855

In applying these formulae to specific problems we must
make some simplifying assumption in order to reduce the prob-

lem to one whose complexity is consistent with the accuracy

of the experimental data. We shall assume that only one angu-

lar momentum of the incident plane wave produces the observed

resonance and that therefore

/

Yor = 1 g; (2.27)
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this reduces (2.13b) to the form

‘g: ! § g &,6"‘; 4‘nk 'IIZS(nZ-'—g (’J.z’f")‘lzei l MJ ) ""FMI YM( 4)) ( )
A4 _ 4 T : .o, 9 20 150
j “" . - M, w >

A a " %\"ﬁmz("“) e e

™ twg = m3+ms’ =M

where O, = Z(V'(r’]a)-ko(!%smzée .

gk
* =5 poTis

(2.28)
X = (E'Ea)/—z‘-}’
el | MMisi) _ (ia)t-priad.... (14i0) _2in,
Ml+t-ia)  (I-iadl-t=ix).... (1-ic)
From this last expression we can write
2(1 YZ,) = Zz tan' & =
(2.28a)
and O, = 27:+an -+dﬂwsm2’9
We can then write the cross section in the form
. | N YVIJ(VWg 2
o
B:o = (2 J*i(ZS'H)mzr‘ﬂ £ m Mg
' ms
12 1
Bw/'(zl—n sin?z f e l{ FH
=140 j+1)(z5+1) dZ|M"Ml]Z Re{ X +i Mszms\M‘””J ? Y (b0
Ry mpy :
(2.29)

Y4

1o (2141) sin'E 0 Z‘ ( ™ M )
+(2)+i)(25+: 2(l+x2XZ|MIM12 M °W""s s

mPV ‘m
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Using the values of the sums found in Appendix III we obtain

our final form for the cross-section

o_ ) et Y "t5,4)]" 7 et ‘A?:(’AR;:MR

R T ) M2 (1+x?)

{c)
@ | 23v1 A P (cosh (2.30
T Re{;i_ F(zh'(zsﬂ) R i) '

where Dleost) is the ordinary Legendre polynomial in cos ©
which has been introduced in place.of\ﬁW@¢) merely for rea-
sons of convenience.

We can infer from the form of (2.30) compared to (2.29)

VP
T My

that we can introduce the matrix elements £ in place of

Tmr

/
o m, s in which the matrix elements F1meT are given by

™M1 Tlmem
Mm'rm-\. = oy A:M (2.31)

This amounts to describing the possible states of the
initial or final system by the quantum numbers Tm; instead
of the numbers mms 3 it is a direct result of the possibil-
: ’ M ms
ity of writing, for the JJ case, Qﬂjﬂﬁ as a linear combina-

my .
tion of Y- (Eq. (2.83)). Using the quantum numbers m mq
we have a set of &yHXZ9H) functions out of which to form
our system; using the quantum numbers T ,wm, we obtain a set

J+s
of Z:(2T+0=(H+M29H) functions. That each set must contain
T=\y-s|

the same number of functions is a necessary result of the
fact that each is a complete orthonormal system of the same

function space.:



-321-~-
III. APPLICATIONS TO THE REACTION Li’ (pyp) Li’

. The foregoing theory shall now be applied to the elastic
scattering of protons by lithium at the well known [-ray
resonance at 440 kev. It is known that the angular momentum
of Li’ in the ground state is 3/2 and the usual spectroscopic
assignment is ’Py . The angular momentum of the proton is
1/3. We consider as possible only incident proton waves with
relative angular momentum [=0,{

The existence of the 7-ray and the non-existence of
alpha particles at this resonance give us important informa-
tion concerning the possible assignments of the compound nuc-

7 in the ground state we shall as-

leus BeS*. The parity of Li
sume to be odd*; the proton of itself is even, while the rela-
tive angular momentum contributes a parity of (-1)2. The
parity of the compound nucleus is therefore even for [= 1

and odd for = 0. Now the alpha particle has e#en parity and
because the two alpha particles are identical they can come
out of the compound nucleus only with even relative angular

momentum (= 0,2,...). Then, since the alpha particles them-

selves are 'S, , this means that we have the reaction

LJ-‘-P — Bea*'—" He4+He4

* The parity assignment has not been experimentally veri-
fied but the usual models of the nucleus indicate odd pari-
ty for Li7.
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* . 3
8% is even parity and even

only if the compound'nucleus of Be
angular momentum. Since no aléhas are observed we conclude
that the Be® has either odd parity (in which case it may have
any angular momentum) or even parity but odd angular momentum.

The 7-ray provides further information. It is known(gs)
that this 17.57 Mev 7-ray arises from a transition to #he
ground state of Be8, The ground state is almost certainly 'S,
and we can make use of the 7Y-ray selection rules (which are
particularly strict if one of the states is 'Sa ) to determine
possible assignments to the excited state. The 7Y -ray selec-
tion rules and the states which can combine with a ’Sf state
are shown in Table III.1.

The type of radiation is given in column 1 (e.g. M;= mag-
netic dipole; E5 = electric odipole). In electric multipole
radiation only L changes; in Magnetic multipole, only S. The
forbidden transitions in column 4 are in addition to those not
allowed in columns 2 or 3. Column 6 gives the only state which
as a result of selection rules can combine with a 'S: state.

In the case of "JJ coupling" no separation can be made of
orbit and spin and in place of AL or AS we can speak only
of AJ. 1In column 6 only total spin and parity remain.

These selection rules are more general and hence less re-
strictive than those usually given in atomic spectroscopy, as

for example by Bowen(24).



TABLE III-I
F.:I;..._: Allowed | Forbidden| barity
P T ARt i
?, ‘ | Ex | 0,%° p 5
Ml 0,1 |
: no
E2 0)*1:-*"3 ‘ 0;"-0
: (o R
| 1/3<1/2
\ D,+1 ,:8 .
2 i yes
0,1, g
° i3, 28 0 <=1
3 Qe
; 0,#1,/1/3<-1/3
M £2,23/1/3+-3/2 | no
ucail =7

Selection rules for Gemma~Radiation

7
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1. Calculation of Cross-Sections

a. 1 =0

For 1 =0 we can have only J = 1,3 and with the JJ de-
scription T = J gives the only non-zero matrix elements. Since
T is equal to J there are no arbitrary constants and the angu-
lar distribution is completely specified by J. The possible
assignments of the compound nucleus in the "LS" description
are 'R”, B, . Since the parity is odd we forbid alpha
particles, and by reference to Table III.1 the existence of
Y-rays requires 'K and electric dipole radiation. If L and
S are not separately conserved we can also have a compound nuc-
leus with J = 2, but since the parity is odd this requires the
radiation to be magnetic quadripole.

The angular distribution of the elastically scattered pro-

tons is then obtained directly from Equation (28.30)%

2T+ 1 (27+1) X°

= oc‘e/vusfnz';'gg

Q

b. iz 1
For =1 we can form J = 0,1,2,3 and the possible "LSH
!
assignments are '8: R II% "8, ;om 3I223 . The parity of

all these states is even so that in order to forbid alpha par-

* Inclusion of a potential phase shift as indicated in Sec-
tion IV has also been investigated. The analysis involved
closely follows that given in section IV and since it leads
to a negative result, it will not be given here. We need
only say that even with the extra freedom of arbitrary phase
shifts it is'not possible to ascribe this level to s-wave
protons, since phase shifts can only shift the positions of
maximum and minimum cross section but cannot change their
values.
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ticles we must take only J = 1,3. Table III.1 then shows us
that the only possible 7 - ray state is S, which goes to
the ground state by magnetic dipole. If we do not conserve L
and S separately we can include J = 3 but the radiation is then
magnetic octipole.

The calculation of the elastic proton scattering cross
section is somewhat more tedious than the (= 0 case. If we
assume that the compound nucleus is 35f we can calculate the
matrix elements hquzM from equation (2.23), and these are
summarized in Table III.Za. Table III.3b presents the matrix

/
m, Mg

elements '£ . From this, equation (2.29) gives us the

M‘W\s

cross section

1S 13X
o () = 4o 13 B £ feost

O, = o bnsin? 0+ 2bar'a el
If we go to the "JJ" description the possible values of
J are 1 or 3. In the former case we can have T = 1 or 2, in
the latter only T = 3. We use equation (2.30) and find that
the angular distributions are easier to calculate than in the
L-S case; only the summation in the resonance term remains to
be evaluated, the arithmetic is sufficiently direct that'it

shall not be given here. The cross sections are:

£ () = 1+l Z oot

= H'80',(|+3f‘ o

+ 2 Re{)fﬂ }%'72?059 [8<5) -

o2+ oy =]
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1 % 6 529—1J
(3.3 = V+F gpml ) +Hslseto)
2]
7 e“f_%_
+4 Rz{x_” O.0,/2%’,059 (3.4)
3. Comparison with experimental results

The excitation curve (cross section as a function of inci-
dent proton energy) has been measurcd(zs) at two different
angles, approximately 6 = 90° and © = 144° in the center of
mass coordinates. At 90° the curve is almost symmetric with
a maximum ratio QZﬁ = 1.81, at 144° the curve is definitely

asymnetric with the low energy side higher than the high ener-
gy side (see Fig. 3), the maximum ratio is %, = 2.38. These
then are the dominant features which must be used to choose be-
tween the various assignments of (3.1)-(3.4). We tabulate this
data in Table III.3 in which we give, for each assignment of
the compound nucleus, the position and value of the maximum and

minimum of the ratio 9/, .

TABLE III.3

Assignment £9.2° 144.4°

Xnax | emax | Smin | £ min| Xmax & max | *min | £min
J =1 1.60 0.64 3.59 0.66

l=o0 0.78 -1.29 0.36 -2.75
Jd = 2 2.00 0.30 5.3 0.33
l=19%3 |0 |1.72| -- |1.00]| O 2.08 | -- 1.00
z: l J : 1 O 1072 ———— 1.00 "0788 2-06 3'6 0091
1.55 -0.18 263 5.4 0.84
l=1J3=3| 0 2.30 - 1.00 |-0.19 4,68 5.8 0.87
Experiment 0 1.81 - 1.00 |-0.85 ©.08 ? 0.85
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The double entry in the row [= 1 J =1 is a reflection
of the freedom in the choice of the quantum number T and of the
possibility of having an arbitrary mixture of states with T = 1
and T = 3. The two figures given are the extremes possible
with different choices of the mixture of the two states.

It is evident that the assignment 1= 1, J = 1 best repre-
sents the experimental data and we shall now more closely ex-
amine this case. It must be pointed out that the experimental
excitation curve can not be compared with the theoretical curves
until a correction has been made for the effects of resolution.
There are, as always in experimental measurements, various
sourves of "blurring" which tend to "smear out" the "true" ex-
citation curve and thereby reduce the maximum. Therefore the
experimental maximum values of @4& must be increased before
they can be adequately compared with the predicted values. A
complete discussion of the problem and an evaluation of the
various contributions are presented in Appendix IV; we shall
merely state here that the maximum of @@; should be raised to
1.64 at O= 89.3° and to 2.41 at © = 137.8°. Considering now

equation (3.3) we can plot & as a function of o* for

O, |maximum
various scattering angles ©. This is done in Fig. & and it is
2
seen that the data indicate a velue of o, = 0.80 £ 0.02. The

purely nuclear cross section is therefore found to be

3 ?t Ig)[o,m(‘ﬁos‘é’ -1) +/]Jw

dw = g0F

ou

nuc(ear

(3.3a)

S 2
- g [0.86(1+0.49cos 6’)],(40 .
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3. Equivalence of "JJ" and "LS" description

We have concluded from the observed data that the compound
nucleus of BeS at 17.57 Mev above the ground state which is
formed by the bombardment of Li7 with 440 kev protons is a state
with total angular momentum J = 1 and with 80% T = 1 and 230%
T = 3. We wish now to compare this descriptioh of the state
with the more conventional description in terms of LS states.
This can most easily be done by expressing the incident and
compound nuclei in each of the two ways and then equating ma-
trix elements in the two descriptions.

The incident system can therefore be written in two ways;

W‘f"’: mmg —Z M:m (LS) vqf (LS)

LS T

(3.5)
—z Mv::mm, ( WJM(jT)

- In the second description we do not sum over j because we know
definitely the angular momentum 6£ the lithium nucleus; the
situation is somewhat more specialized than a completely gen-
eral case in which only the component orbit and spin momenta

are given. The compound system is

W? Z By "(Us") -z oz,.r,’-F (/T (3.8)

We now form the scalar product

| TML ™!
(,qr‘r:m \Ms qfum‘: > & M\mmjm,([-s) {3“ =Z. Mmm,ms (y\,’T) & (3.7)
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In forming these products we have used the same mode of descrip-
tion for the incident and compound systems; we can however also

mix our descriptions:

ine

(T Wi, ) = Z Z ML) (wes), en) (3.7a)

where we nave written M(LS) for brevity in place of hﬂmmm[Lﬁ

Writing ("I"TM(LS), WUM(J'T)) = 7LJ: we have

- LT =z
Z MULOPs =Z MMty =Z 7 MIULS)r 1 (3.8)
from this we can write

T
Bis = Z &7 ) (5.9a)

Mqﬂ:?& M(LS) yj: (3.9Db)

-
We get an equation involving the yf; for each choice of
monmg and solving these equations we obtain the following

7
matrix for the ]Zg » hence the transformation matrix between

"LS states" and "JT states".
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We can by no means determine the compound state completely; we
can only determine, from these scattering experiments, the ra-
tio d%@/dq@z .. In terms of this more complete description
the gquantities o and o, of the previous section nave'the
values

P Xspy, |

I \(0(3/2, + dg/zzz
' ' (3.10)
05!/2,2

Ly = Voo 2 2
O("/:e,l T &30

2 2
The coefficient (EE%;:Z?) of equation (3.3) can therefore
(o]

be written as

1 30 (3‘2 +0b (—"*zza + IO\JEﬁlo @aﬁ‘ﬂz ﬁlo(gn" 5(30 @la@zl —10(3 (501(3,\~4T§(5,\(32\ +2ﬁ-—7—ﬂuﬂ21

5 l'l(%:', +\ZG:| 4‘9@\f + 3@;_‘-4@(5\0(50;—6&(310 (3“_2\{3—0@;0 (521+8E@0|@n+2ﬁ—5((33“ @]ﬁi)

This expression .is not very useful since we do not have enough

data to evaluate the constants IBLS ; in addition to (3.11)



W
all that we have is

Zg @Lg = (3.11a)

Conceivably, similar analyses of angular distributions for
other reactions which involve the same excited level of Be8
could yield additional relationships from which to determine

the @Lg . In this regard the angular distribution of the ¥ -
rays‘will, unfortunately, tell us nothing. According to calcu-
lations carried out by Judd(za) the distribution of the 7Y -rays
are determined solely by the parameter (5%;—agz) and there-

fore, although the angular distribution is different, we can

obtain from it no further relationships between the /3Lg '
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IV. INCLUSION OF POTENTIAL PHASE SHIFTS IN S-WAVE SCATTERING
AND ITS APPLICATION TO THE LITHIUM RESONANCE AT 1 MEV.

In scattering problems in which the proton can approach
close to the scattering nucleus the effect of the nuclear non-
resonant potential scattering cannot be neglected. This is the
case primarily for 8-wave collisions, for which the relative
angular momentum of the proton is zero. In order to include
the additional scattering term we rewrite equation (3.1) in a
form which explicitly displays the scattering matrix elements

involved.

(4.1)

We shall introduce the effect of the potential scattering
- by means of phase shifts. The resonance denominator can be

written in terms of its phase shift

o
e a L) edber (4e2)
and the resonance cross section 4W%?4ﬁ+xz) becomes equiva-
2 .
lent to the phase shift cross section(27) 47K an?$ . We can

rewrite (4.1) in the form

zhlgﬁ-w@_xsm$e¢f4_7zy

v ="g kel

qe

(4.1a)

which is exactly the form of the cross section due to a phase

shift ¢ in the state of angular momentum J but with no inter-
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action other than coulomb scattering in the state with the other
orientation of spins (this has of course been specialized to

the case at hand for which the possible values of J are 1 and
3). There is therefore a strong suggestion (which is indeed
borne out by the calculations of Wigner(17) and of Wigner and
Eisenbud(lgl that if there is present nuclear potential scatter-
ing which can be represented by phase shifts 83 , the cross sec-

tion should then be of the form

2

G;'{zét . Xsin leel.lL’

-6, Wiz 5 )
<r=—‘8—\o;e’ -/’(smzp,e”b'f +3 (4.3)
where { S5 -cot’'x

J 85

depending upon whether the resonance is or is not associated
with the state J.

We can fit the varioﬁs parameters involved by comparing
such characteristic data as the values and positions of the
maximum and minimum cross section. Let us now consider only
that part of o which is resonant; therefore we write (with

rather obvious notation)

2 -i@ i 2
Oy = z':%ﬂ cro/ze l °—1$\n‘¢13—€1¢3—l

(4.4)

17&7 = 63- = Co"'_l_r = i—E"
2

o, = z_%il{a_a +3{25,“2%—23(0;'{25|h1{/TCa5(¢T+@a)}

2 2
- A Aueesleiad (5.5
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where
2 2
u=§@% A=1+uawz+%

As{ne = —¢cosB,

hence we have immiediately that

2
GJ Max = z%ﬂd"o[-AiJZ-u] COS<2¢I+E> Max = ¥1
™in min
and
Tgy = Ty = &%’i‘. 2Aue; (4.8)

This is the most convenient procedure for determining the
angular momentum from the observed excitation curve assuming
that the resonance is due to s-wave protons. We note that the
change in cross section is independent of the phase shift 63,
but that this latter quantity can be determined by the position
of the maximum and minimum cross section. Also from the value
of the cross section at maximum or minimum we can determine
(but, in general, not unambiguously) the phase shift of the
non-resonant component.

The position of the maximum is

X = Co+(5j+%+%>

Max
and the minimum

::Cé%(éT+%>

The lithium resonance at 1.0 iev is shown in Fig. 4. The

X Min
fit is only qualitative but the data definitely indicates that
the resonance is produced by a state with J = 1. The presence

of the broad resonances above 1 Mev. which we have not included
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in our analysis can easily be burdened with the responsibility
for the lack of fit. We could of course have included these
terms but until more data is obtained, in the form either of
excitation curves at other angles or of angular distributions
at various energies near the resonance, such a procedure would
have little significance since agreement with one excitation
curve can certainly be obtained by a proper choice of non-reso-
nant background, particularly so if it is allowed to have a de-
pendence on energy. Another effect is that described in the
next section, i.e. the influence of competing reactions. The
curve for J = 1 can be brought into agreement with the observed

amplitude of the resonance by introducing nﬁ,f627.
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V. APPLICATION TO Be?(p.p)Be®

10

The compound nucleus B formed by the bombardment of Be®

by protons is known to have several modes of decay

B+
B 4n
Be’+p — (B"”) Be'+p (5.1)
Bef+d

b
LL-+d

7NN

The Y-ray yield shows a broad resonance at a proton bombarding
energy of 988 kev. with a half-width of 94 kev and a narrow

resonance ét 1077 kev with a half width of 4 kev.(zs) The pro-
tone respond to these resonances as well as to very broad reso-

nances below 700 kev. and above 1300 kcv.(28)

The deuterons
and alphas show typical resonance behaviour at 988 kev. but
nothing at 1077 kev.(zg)

The ground state of Be? is taken as *P;,  and since this
is the same as for Li7 the cross-sections from single resonances
will have the same form as those given in the previous sections.
The broad resonance can properly be treated as single but the
narrow resonance is not unaffected by the other upon which it
is superimposed. We therefore shall first investigate the reso-
nance at 988 kev. and then, having determined its nature, allow
it to interfere with possible assignments of the narrow resonance

at 1077.
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Broad Resonance at 988 kev.

The cross section can be written in the form

o al+l % e & | X* Qqycos
= < it27g o;"lRa{}«_';‘{ chas6)+%i'§-ﬁf§—) (5.2)

Where C%Y(“Sw is given by

R, (cosb)
0O J=1 1
J =2 1
1 =20 1
2 22
J=1 |+ (E%=2e) B (cosh)
J=2 t+%(ol?—u:)zaccosa)
J=3 |+ 2% (cosh)
2 J=0 1
J=1 |+%(O(.2—0(22)2'P2(0059)
2 2,2
J =3 1+ (1839 1 5 B (cosh)+16 Ty (cos) |
? 2 2\2 2\2
J B ,3 \+3(‘15,'74-'-°-“) Fylcosh) + '/2'(2——————7'“'17"3"( )P4(Co59)
J = 4 | + g‘-la-z{Son(cose)-i-IZa(wsé’)}
P, (cost) = '5Cozs7'9—/ B, (cost) = 35’Cos4§—30005‘29+3

Comparison with Experimental Data

The differential scattering cross section for protons

emerging at anangle of 142°955' in the center of mass coordinates

has been carefully explored by Thomas, ngler, and Lauritsen

(29)
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from 300 kev to 1300 kev bombarding energy; less reliable data
were also taken at approximately 105° (center of méss). The
yield shows a minimum in the ratio of scattering cross section
to coulomb cross section at 910 kev. ( f%umﬁ) = 0.79)and a
maximum at 1038 ( % (Max) = 5.135). We shall compare this
data with the expected changes in cross section computed from
equation (5.2) and tabulated in Table V.1l. In calculating
these values we have modified equations (5.3) in order to take
into consideration the effect of thé other modes of decay. In
section III we could safely omit these corrections because the
Y -ray which was the only other competing reaction was of the
order of 10~° weaker. Here, however, the alphas and deuterons
offer appreciable competition to the proton in the decay of BLO,
Therefore 7P in the resonance denominator of Egq. (2.13b) must
be replaced by

Y = Yo+ Yu
which introduces the factor %V7 into the second term of
(2.13¢c). The net effect can therefore be most easily described
by replacing- A with %51 in equation (5.2). In computing

Table V.1l we assumed the values

LX = 2.500 at 988 kev
T %™
f = 1420°55' (center of mass)
%} Z 0.87 (5.3)

This corresponds roughly to a deuteron-plus-alpha yield which

is 15% of the proton yield.
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TABLE V.1
3 3 s ’ O-‘MU.X_G‘ n 9 - o ]
Relative change in cross section: -__7Fli_ ’ = 142755

(where two figures are given they represent extreme values

possible for various assignments of o)

J= | O 1 2 S 4

1 | 0.433 1.750 2.160 4.05
1.296 | 3.250

2 1.064 | 3.73 1.040 | 4.91 11.46
3.19 5.320 8.94

Experimental: 4.345

From this alone we see that possible assignments are { =0,

2; l=1,d0=3; !=23, J= 2,3. We can eliminate the

J
last two on the basis of the shape of the curve, which shows
a cross section less than coulomb below the resonance and a
cross section much larger than coulomb above resonance; on the

other hand the assignment [!= 1, J = 3 shows a maximum below

the resonance energy while =23, J 2 would require a fairly
symmetric excitation curve with very little evidence of inter-
ference effects and a maximum almost exactly at resonance.

As a further verificatién we may compute the predicted
values of Gh,x;cmm\ at = 90° and compare these with the
experimental véiue (the data at 90° is not as accurate as that
at 143° and therefore we shall use it sparingly and only as

substantiating rather than primary evidence).
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TABLE V.2
Relative change in cross section Max-%mn , §= 90°
)
(Where two figures are given they represent the extreme values

values possible for various assignments of oy )

J = 0 1. 2 3 4
l= D 0.991 | 1.651
1 | 0.242 | 0.545 | 1.105 | 1.289
0.727 | 1.211
2 | 0.089 | 0.151 | 0.446 | 0.338 | 0.996
0.268 | 0.7168 | 1.313
Experimental = 1.53

We cannot place too much importance on the experimental result
since it is accurate only to about + 20%. The form of the ex-
citation curve, however, is much more definitely established.
For all 1= 1 curves the interference term vanishes since the
Legendre polynomial Pq(cosd ) is zero at §= 90°. Hence we
would find the simple resonance curve superimposed on the cou-
lomb background with its maximum exactly on resonance. For all
l = 2 curves the maximum cross section occurs at an energy less
than the resonance energy and the minimum cross section occurs
above the resonances. The observed curve shows a minimum below,
and a maximum above, the resonance energy; which is the expécted
behaviour for an incident s-wave.

We therefore feel happy in choosing [= 0, J = 2 to describe
the scattering. However, a more detailed analysis of the data

is possible. Inspection of the excitation curve shows that a
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single resonance is not an adequate description of the scatter-
ing. We shall try to include non-Tesonant scattering following
the theory developed in section IV. We introduce two phase

shifts %‘ and 82 corresponding to the states J = 1 and J = 3

respectively and write our cross section in the form (see equa-

tion 4.5)
2 .
o _ &Ii‘{ woao
= L 5 A +E -Ausilarete)]
_Te A _Jp [—cosh 4 e
‘U.—7 O:I/z '._Y'E o OC—-“Hr" EP”E"
2

A= 4+ +usne,

A swme = —cos®, (5.4)
where Y, =4

I{Jz"sz"w—'x (5'5)

We can if we wish go back and make a more accurate estimate of

%%% from our data by using equation (4.8)

O = T = 252 Aucs - (4.8)

to determine w.

Table V.1 gives us = JMex—Or = 4.345+0.10 At 0= 142955

o

and E; = 0.988 liev, sin ©,=-0.0669, so that we find

U= 2.312£0.10

which implies the value

| %/1 = 0.82+0.03 | (5.6)
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If we use this value we find, by fitting the experimental values
of the cross section at the maximum and minimumd*

5, ={+o.915:«: 0.03

~0.176 + 0.03 (5.7)

where the probable error is based on the somewhat arbitrary as-
signuent of a probable error in the cross section as pbtted in
Fig. 5 of approximately 5% The two values arise from the ambi-
guity of determining an angle from its cosine (Equation 5.4).
It has been assumed that <& does not change over the resonance.

From the position of the maximum and minimum with respéct
to the <y -ray resonance we can deduce the half width 7 and
the nuclear potential phese shift 52.

Y = 125£15 kev &= 5T -0.317+0.07 (5.8)

( S is an interger)

Using the values computed here for 8(, 83 ,}WG' eand Y

we obtain the curve indicated as "theoretical!" in Fig. b.

B The Narrow Resonance at 1077 kev.

To investigate the narrow resonance we must essentially
repeat what has been done already for the broad resonancé, but

with the important difference that the background against which

bl There is also an indeterminancy of a multiple of 27 in
our phase #hifts which is beyond our power to determine from
only a single resonance. Ve know that &—>o0 for low energies
and incresses by m for each resonance. Hence only if we
knew the entire excitation curve from zero energy up could
we hope to determine § 'unambiguously.
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the resonance interferes is not simply the coulomb cross section
but the entire broad resonance. This leads to the cross section

formula

2
o 2T+ X Qnlcost)
z = 988 Resonance + & o T +xz

274 X < e @_y st expil Yr+6,-0,]
+ Bt P o R TR Tt B s

X+

(5.9)
where "988 Resonance! indicates the part already computed,
Q 5, (cosb) has been previously tabulated but is here applied to
the narrow resonance, U and 47 refer to those quantities of
the broad resonance and are evaluated at a specific energy.
They are considered to be constant over the narrow resonance.
X refers to the narrow resonance and is of course in units of
its half-width.

The cross sections predicted from this have been compared
with the observed resonance (Fig. 5). The-comparison has been
made for (= 0,1,2 and for each of the possiblt choices of 5(
and 62 for the broad resonance. The uncertainties, however,
are suéh that no really definite assignment can be made. How-
ever, some general conclusion can be drawn. The magnitude ‘of
the resonance is small* indicating that, unless the effect can
be produced as a result of a fortuitous cancellation by the in-

terference terms, the total angular momentum of the compound

#* The effects of resolution (Appendix IV) tend to blur out
the resonance, but correcting for this only increases on;hwx
by epproximately 20%.
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nucleus is zero. Hence data at other angles should be able to
resolve the question. At 90° the excitation curve shows a small
resonance whose phase is inverted with respect to that at 142°.
This implies that the resonance is J = O and that furthermore
l= 2. This last assignment results from the fact that for 7= 1
all interference terms vanish at 90° while for [= 3 the sign

of the interference is reversed from that at 142° (at 20°

Pg(cosf ) =-0.5; at 143° Py(cosf ) = 0.5).

4. Comparison of Beryllium assignments with other experiments

An energy level diagram is shown in Fig. 6 for the com-
pound nucleus Blo. The angular momentum and parity are indi-
cated for each level shown. Some of these assignments are how-

9

ever conjectural. The ground state of BeY is fairly certainly

3/2 (odd), and the level of gty

produced by the 988 kev reso-
nance we are attempting to ascribe to 2(odd). The level would
then decay to L16+-d thru a p wave and to Be84'd. also by
p wave. With a 2(odd) state we can get electric dipole radia-
tion to the ground state which has recently been shown(so) to
be 3(even). The ground state is supposedly one level of a
triplet and 7 -radiation is equally permitted to the other two
members.

The narrow resonance we have indicated as going to a state
O(odd) which could then radiate electric dipole only to the 1

(even) level of the ground state triplet, but would require

electric octipole to reach the ground state. This level could
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€+t or to BeS+ d , the fact that such a de-

also decay to Li
cay is not observed implies that a further selection rule is
involved. On the other hand we could forbid such decay if we
ascribed the narrow resonance to incident p-wave which would
then lead to O(even) for the compound nucleus. Such an assign-
ment is, however, quite inconsistent with the existence of in-

terference effects at 20°. It is therefore evident that more

experiment work is required.
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Appendix I

The Dispersion Formula

The dispersion formula, as indicated in § II.2 has been
adequately treated by several authors and the only purpose for
presenting it here is one of completeness. The proof used is
that given by Bethe(9),

We shall consider for simplicity only a single compound
nucleus which has only two modes of decay. P shall designate
the incident particle and A the target nucleus. Q and B are
respectively the emitted particle and residual nucleus other
than the reemission of P; C is the compound nucleus. Hence the
reaction can be symbolically expressed as

A+ P

A+ P->C (A1.01)

N B+ Qg
We shall use XA’XB’XC’XP’XE to represent the normalized
wave functions of the nuclei A, B, C, P, and Q, while %p and
%@ are the~wav§ functions of the relative motions of the A,
P or B, Q systems each with respect to their centers of mass;
these functions are as yet unnormalized. ¢% is specified to
the extent that it shall be composed of an incident plane wave
and an outgoing spherical wave while ’¢a is solely an outgoing
wave.
The total Hamiltonian may be split in two ways
H= Hy+ Tp +Up +Vyp

' (A1.02)



H,, Hg, Hg are the Hamiltonians of the internal structure of the
nuclei A, B, C... Tp and TQ are the kinetic energies of the re-
spective particles relative to the center of mass of the corre-
sponding systems. Up, Ug are the potential energies of P and Q
in the field of A and B respectively and are functions only of
the distance between A and P or B and Q. At large distances
this is the coulomb field if P or @ is a proton. Vup and Vpg
are interaction energies between particles which depend on co-
ordinates other than the éeparation distance and include the in-
ternal coordinates of A and B.

The wave functions X satisfy the equations

Hy%y = WaXa
Hp¥g = WpXp AL.55)
H)(C = Wc)(c

except that we shall assume Xy to vanish outside the "nuclear
radius". The wave function of the complete system is approxi-

mated as

U = X Yo b+ Yog YU +2e (A1.04)

The constant a is the only one we need since ¢P and ¢Q are
not yet normalized. We now try to satisfy the Schrodinger equa-~

tion as accurately as possible with this choice

HY =\WW¥ (A1.05)

where the energy W is given by

W= Wy tEp (A1.08)

.
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EP being the kinetic energy of the relative motion of A and P.

We impose the following conditions,

*
f)(c (H*W)’Pohc:o
*_ ¥
X3 Xp (HW) Wdgyd, = o (A1.07)
¥, ¥
[ o X (HAW) Wiz oy =o
the integration in the first case is over all coordinates but
in the second two cases only over the internal coordinates (in-
cluding summation over spins for P or Q.) and hence is a condi-

tion for all of the relative coordinates.

From (.02) and (.03) we find (since the X's are normalized)

_\'\/C) b(c \{‘\P L XA XP Z/PD[T

(A1.08)
"
'#§Xc(%q_LQ)XBx§qbd%
H-w = H-#AP L (a1.09)
Lp=Ep~Tp—-Up - EP*fm ~Y

and

Lete = ] KXo (GorLp ) ol
+$ ){/-\*XP*\/APXA XP%,V[TAC{TP (A]__lo)
+S)(A )(p (Vap- Ly Xs)( ¢Q0/1~0/¢~

plus an equation similar to (.10) for LQuQ‘ The second term
in (.10) gives a contribution to the nuclear potential scatter-

ing and the third term represents a direct transition without
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formation of an intermediate state from AP to BQ. Both of these
possibilities we shall assume are small since we are primarily
interested in the resonance with the compound nucleus.

Therefore (.10) reduces to

Ly ¢P “adeA*XP*(VAp‘L,b) Xe ol drs (A1.11)

Lp is a spherically symmetric operator so that we can write (.11)
in spherical polar coordinates. We therefore expand 9% in

spherical harmonics.
/ m
U =% 2 Y5 | () (41.12)

m ¥
By multiplying (.11) by )g and integrating over the solid
angle @p of the positional coordinates of particle P and making
use of equation (.09) wé find that 1, (%) satisfies the dif-

ferential equation

Z (2
z’%f{?’% [E Ue- i (ZM}%M =aCy, (1) (41.13)

2Myr2

in which CP-ZM (r) is defined by the integral

Loy (1) f Y (944 )Y, )(P (\4,, ~L,) Yo o Az ey (Al.18)

in which the integration extends over all the coordinates of all
the particles except the distance g between A and P.

Since XC vanishes for Y% larger than the nuclear radius
(i.e. the compound nucleus exists only if all the}particles are
close together), for large fp (.13) becomes the homogeneous equa-

tion,
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H "
2M oT‘ 1‘LP““ [EP o zMrz Wle (A1.15)

and the solution, which may contain both the regular solution

f and the irregular solution g, is

Yoim ™ eim 7[sz’7=') t Boim Jorlth) (tp+o) (Al.16)

where for small r

F

-g,z(r) frH/ gF,)(")‘f r (r —>0) (A1.17)

For large r we can write the asymptotic form

g(r)+z'af(r) -—-expi{kr—llng} (A1.18)
. (Y‘—»oo)
From (.15) we find, writing the equation for f and g, multiply-

ing respectively by g and f, subtracting and integrating

3 98 = conshant =k (A1.19)

where the value of the constant has been obtained from the
asymptotic forms (.18). In a amilar manner multiplying equa-
tion (.13) for ¥ by f and equation (.15) for f by ¢ , sub-
tracting and integrating from O to large radius we find (since

0)

f vanishes at r

Lom (ufﬂ/ Wf dfﬁ,, Cop,, B (A1.20)

[

(.20) now holds for large r and making use of (.16) and (.19)
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we find

” 0
(5th = %’TQ d£ {.P? CP‘tvv\ d'r

®_ %
- _'Kg.{" - So Pl (rr, 95’ 95P> XA* XP*(VAP—LP) Xc o(TA 0[72 o{/lP

(Al1.21)
m
Foim = H,,l(r) Yl (8 ¢) (A1.22)
Now LPFQW‘=0 and since LP is a self-adjoint operator it

can be seen that it contributes nothing to the integral in (.21)

so that we obtain

- C ¥ )
Poim = T & Voipn (A1.23)

¢
where the matrix element V@“W is defined by

p . , |
Vo =1%o Vo Ko Yo Frumdb s (Al.24)

the integration being carried out over all the coordinates of
the system.

We must now fix the coefficients Whm . These are deter-
mined by the asympotic behaviour of the partial waves. Since
the only incident waves are the ones with subscript Plo these
must have an incoming part such as to give an incident plane
wave while all the others must be purely outgoing. Since we

(31)

have the asymptotic expansion of the incident wave

inc r ikz
¢p o v‘/ze

BEL e G snter1T)  a.z0)
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we must write ¢mo as
_ _;;V-n-(zz.,, i3l ke ikr

and for the other waves
- 440
Z/sz = conf’r, e

-
Y = tonst. e (A1.27)

Equations(.16), (.18), (.37) and (.38) lead immediately to

Aply, = i Betm m#o
. TH) 1S
“mo-thu+%ﬁ;:?e‘

Yaty, = Batm

(A1.28)

Now (.18) is valid only for distances at which the inhomogene-
ous term on the right of (.13) is negligible and we must there-
fore modify it so as to represent the correct form of @W"l at

small distances. To do this we write
Y () = oy ToplF)+ By, Py (1) (A1.29)

where hmlﬂ is a solution of the inhomogeneous equation (.13)
such that hpﬁﬂ—ﬁ>gpﬁﬂ at large distances. In analogy to

(.22) we define

Gplm - JT; hPZm(rF) Ylm{gr;f.bp) (41.30)

and



BB

¢P=§(°‘

Pim Form ™+ B O Nm)

%V Z(ZH et p

Plvw

"%T PM~(Gmm+’Fﬁm) LAL. 51}

We must still determine the value of the constant a. This we
can do by making use of equation (.08) which has not yet entered
our discussion. Inserting (.31) and similar expressions in BQ

into (.08) we obtain

) - 7 [RITED o' —mzi]
XIXC*(VAP X XP le

2T Vo T (L) X X, G (A1.32)

+ similar terms in B&

The first integral is just Vi, ; the second integral is diffi-
cult to evaluate but appears only as a shift in the apparent
resonance energy of the reaction. The integral may be complex
but will have the same phase as Kﬁ:m since G and F have the
same phase. The summation is therefore real so that if we de-
fine it to be %ihrecé » we have, including a similar defini-

tion for the BQ integral
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_ 3%'211 Qth a(QP-eCQ) (A1.33)
or /2 8/
(2 ! VP o
= %—E % +L,)’ ‘ (Al.34)

wo = \'\/C"ecp‘eca
Zl Ve [+ & ZIV

anl

Thus the resonance occurs when the energy of the system is Wo
rather than W,. Thus the observed resonance energy for a given
compound nucleus depends slightly on the mode of formation.
That the effect should be small, at least in respect to the
difference between 7Y ray emission and elastic scattering of

protons has been discussed by Breit(sz)

who indicates the shifts

to be of the order of '%;Ofp . |
Now the probability of emission of particle @ per unit in-

cident flux of P, i.e., the cross section for the emission of Q,

‘is

S = Val GQLW\\Z | (A1.35)

Since this is just the flux of particles Qm. Therefore putting

(.34) and (.33) into (.35) we get

41}"@ Zv( ) /2 zé VPZa ch::w 2

T Al.S3
Qlwx ( ) AW ( 8)
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The matrix elements have been calculated with the particle wave
function normalized to unit flux. If we normalize per unit

energy we have (Ref. 9, p.105)

2
2
Hpiw = (RT:;) Vot (A1.37)

where H is the same matrix element as V but with energy rather

than flux normalization. This gives us the final result

(& cx% 2
- 3 l Z /2- ié, H Plo H QAlwm
4v 1, Z(z ) Wosh i

Y = 272 Z‘Hmwl

R=PQ
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Appendix II

The Clebsch-Gordon Series

The Clebsch-Gordon series is the decomposition of a direct
product of representations of the rotation group into a sum of
representatione. Since the 3J+ 1 wave functionsof angular momen-
tum J induce a representation of the rotation group, the series
allows us to decompose the product of wave function into a sum
of wave functions and hence becomes the mathematical basis for
the vector model of the atom.(30,31,32)

A wave function ¢ym of a Hamiltonian which is invariant
to rotation of coordinates can be represented in its transforma-

tion properties by the monomial

(2) (~1) i gl
VQ*MNU—MN
where (ﬁﬂz ) is a spinor. This is just the coefficient of

gl ™ piw

Q()w)!(j-m)‘.

(A2.1)

in the spinor-invariant

(~an+be (A2.3)

where (a,b) is a constant spinor. We are interested in evalu-

ating the coefficients in the expansion

W T Ay (12.9)

or, since as we shall see, the transformation can be taken to

be real and unitéary
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N Ispv_ m v
b *% Aim Y U (A2.4)
We form an invariant
¢ = (-AY+BX)Y (A2.5)

where (A,B) is a constant spinor and (X,Y) an arbitrary spinor.
{ -m

The terms XY’ of the expansion of ¢ transform like

the wave functions #7m

We also write @ in the form

% = (-Ay +B§)°‘ (An'+B q’)p(—ngqg’)? (42.8)

The spinor ({Jz) shall be associated with the wave functions
y;Land the spinor (50/) with the wave functions %;

We must obviously have N+F=2j since in the form (.5) 9
is a homogeneous polynomial of degree 25 in A and B, while in
the form (.8) it is a homogeneous polynomial of degree M+P ¥
We shall not yet specify the valuqs of a,@,y any more complete-
ly.

Expanding the two expressibns for é? and equating them

we have

Coym gty AP g im
=i (4wl ([-wm)l

7 0T P T T BT g g

« B 7
=2 75 2.
pregrer=e pl{d-plalig-g)l ¥l (y-r)

(AZ.7)
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j-m ’3+W\
Identifying coefficients of like powers of/A B we have
\?_ygr,’)-m ol+@=a$ (A2.8)

pHY~C o ol-p+r

§

: . f« . g
with the wave function }6 and the monomial A ;

and since we want to identify the monomial
¢ B-2+7-r

with the wave function y@’we also have

q+Y = 21 auy—g(P_rygf,L
(5+7=2s (3+7—2(4+r~)=2v (42.9)

Since (.5) and (.6) must be finite polynomials,tx,ﬁ,y must be

integers and Z,S,j can be only integer or half integer;

hence
o = j-’rl'“S q: S=V4r
= —z =
B = Jis ' M= Py | —
7= ?"I'S-J Pz)-}‘_s,‘.r

We see from this that Y,Qj must each be integral, or one inte-
gral and the two others half-integral.
This gives us

’ (M 5 \ -y
(e XY
()l (=)

s Tl o) (s (Tas=pl ()T g Tt g S

& s ey

.—.—l.j-r =0 (&—rx—S—w)! ('Iﬂu—r‘\! (S—V—-r).’(j—l-ﬂ/—r}").l r"./ (1+s :/'-;—)_/

,u+v=m
(A2.11)

The implicit condition on the indiges is that the factors in

the denominator of (11) must be factorials of non-negative num-—
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bers. (We may allow the indices to run over all values if we
recognize that the factorial of a negative number is infinite;
hence terms containing them in the denominator vanish). This

condition gives us other important relationships
f+z—-s 20

j'+s_[ 20 =5 &y ds (A2.12)
Z+S-J 2o

If we now replace the monomials in (11) by wave functions

according to (.1l) we have

" _ (j+Z—s)! (1+ s-l}} (Z-FS—I),/
Y= G Vil e

(=l-S+v g mV_/y
\ 55 V()] (-l (5ol (sl (I3 4 7o)
v=-s'r j—vn+v-s+r).’(2~m-v,r)_’ (s=p=r)! (- 14v3r) P! (14 54-r)!
(A2.13)
where the constant Ckﬂ' has been introduced because the set

J-m, . ., |-M
of functions @6” and the monomials f=i) z&Jl/FJ VJ are
V(y+m)l (-m)!

not equal but only have the same transbrmation properties.

That qu does not depend on the magnetic quantum numbers 77uV
can be seen if the identification of monomials with wave func-
tions is made in equation (.7) which is a function only of Z{[.

We therefore have

A(SW V(jm) (=md) (1) 100-)) (549 5= (1#2-5)] (12 s-l},//ifs-j),/(-/)f'/’s*r
i 1% a)les)! (f—mW—S—)-r).J(HM—Y—H.’(va—r),J(/-7+))+").//‘.//77“S'—/—l—)./
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g s Vel gl pltseilesn)
I T (s (v =140 (14 )] (5-v - (2 5yr)]
U4V =m

(A2.14)

the summation over Yy being taken over all values which do not
make the denominator infinite.

We must now evaluate the coefficient Eﬁsg . To do this
we impose the condition that the transformation /Nﬁry shall
be unitary. Since the A's are real this condition becomes
2, \Alsw‘:l (A2.15)

oo '

This is most easily carried out for the case m = J since then
the sum (14) reduces to a single term. Since quf is independ-
ent of m such a choice will not affect the applicability of EPe

solution to cases where m:% J. For m = J we have u=/-v,

AZf,j—V,v - B (,,)S'V\/{:j).’/Z+/—y),’/7-/+y)/( s+0)/(s-v)/
)] J (14]-3)! (1-l+s)! (s-v)/ (1~ +2)/

By 0l (-1)° V77+f-w/ =

(14)-9) (j+s-1)! (1-+9) (s (A2.18)
Then, (15) becomes
s
B;sj (25)]- (Z+J—V)./(s+v)./ )
L) (-1 T2 vaf (1op )] (s9)] B (A2.17)

we write this as

N

Bzzs. (2))! (Z-/-J—V]( s+v) .
Q*j"S)?ﬁiﬁU! yal s/ L=1Hp _ (A2.18)
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o .
where (ﬁ) is the coefficient of Xﬁln the expansion of
o
(1+x)

o ol ) (l-2) ... B-B+) b )p-0t-2)... (1=e)(=0)
(F)'= o )@%f\ B _en” (poe A (42.19)

_)@(ﬁ}g—?

Then the sum in (18) becomes

véj (IH—V)(::V) _Z‘z_g_ogz-,- (gszi )(m -s—l)

S-V

Stlj/-21-2\ _ [1+sy+l
= &) (Z+S—j) ‘( L4s+ )

(A2.20)

The summation of the binomial coefficients is verified by

l+s-f
identifying the coefficient of X s on each side of the

identity
ﬂ+x)'—140+xﬂj~y4=(l+xfzrz (A2.21)
2
Solving (18) for ‘Bzﬂ' we then have
2 (Z+f—s)/(S+jl7)/(z+s-jj/(214/).
Bks‘ = Fids il (42.22)

hence, we now have from (14)

Azs py =‘\/ (14~ (14f-5)] (s+/’—Z)./(2j+1) (g M
(7+s+/+/)/ £

DT Y GAam0l (f-wl ()] (= pd] (s40)) (5-9)!
>< jg: (j=pr- ~sa) ( —1+v+r)‘(7+P—rﬂ (s~v-rlel (Lt s-j-r)l

(A2.233)
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The coefficients Aj,  are tabulated in the following pages-

Since the wave functions are representations (Darstellungen)

of the rotation group we have labeled each table with the head-
ing D, x Dg . The symbols on the left stand for the product

of any two ;ave functions with ! and S given by the subscripts,
b and v given by the superscripts. The symbols along the top
of the table again stand for wave functions with subscript |

ls uv
and superscript m . The element /«”r then stands at the inter-

. Berv m
section of the row labeled Lh V@ and the column labeled \VG .
All empty intersections are zero. Each sub-matrix is then an
explicit example of the general group theoretical formula

DyxDg = Dy o+ Dygy Foer +D (A2.24)

-
The coefficients A may also be thought of as a transforma-

tion of coordinate axes in function space from one set of

orthogonal "base vectors" ew,=1@“¢: to another orthogonal

set EJm = '¢j-m .
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Appendix III
Summation Formulae Involving

Clebsch-Gordon Coefficients

In section II certain sums of matrix elements appear in the
equations for the scattering cross section. We have specifically

sums of the type

with various conditions on the summed indices. The matrix ele-

ments M can be written as

MJ’M? _ Z js'mjm_,ATlm.,.m
™ m mg Tm.rOCT Tmy M
. ls .
The matrices A are unitary and hence

?s/w Isuy

Iu'zy Afm AJ/m/ = 8,“‘, Smm’ (AS- 1)
ls,uv Zspw

Z A 81“’/"‘/ Syu’ (AS- 2)

which follow directly from the condition that Ak is the trans-

formation matrix from one orthonormal set of base vectors to

another.

We need also the relationship*

* The evaluation of this sum has been given by Breit and
Darling, Phys. Rev. 71, 403 (1947).
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' ZSF»V /Sﬁj,/y :
ZA}m AJm = XW = ;‘% SW' (A3.3)

vm
To prove this we make use of Schurr's lemma that if the matrix X
commutes with every matrix of an irreducible representation then
X is a multiple of the unit matrix.
We first show that Aj:fw is a scalar (i.e. that PAZW AZS’”
where [ 1is the operator which subjects the coordinates of the

wave function to a rotation R.)

lsyV

= (474,97
PRA"’” (R4, RV

ST Dcu* cs)*(w gbs,l,(//) i

pvm/
Isp'v’/ (1% plspy plspv! rp
Z Z A Do:r’ A lo! A
p'v'm’ /fa- /
rs’)* sy
=%¢ro" gﬁ’ gm'cr Dc'a-’ A]’o*’ Dm’m

lspay A lspy
: =2 Do A = A

ago!

Therefore

=X ~RZ KU 4 W)

W Isp'v’ 4 AN
:Z Z rJ-": (S)* AJM DJ Dm"m A m’ D;:m/“ Dy"y



B

Cl)* ISP'"V/ lSHmV’ )
XPP'I o Z DP‘" /A\Jml A ' D[J'"y.’

2 ™

(V¥ W
o Zl D""'"F XP"’w“ Dwu}‘/

M“P’m

n

(R)

hence )(PW commutes with the irreducible matrices D

for any R and therefore we can conclude that

ls¢
X’AP.' = X S(SH,L’

ls;
The evaluation of >< . is now simple. We simply sum ><FP

and obtain

2;;}<FP = (21+1) }(hg
“Z AZSMAISW ZI < Z4

H.vm m

ls 2j+
hence }( } - ;%;% . This establishes equation (A3.3).

W/e now wish to sum the sqQuares and products of matrix elements
appearing in the cross section formula.
WWe have
jsmmg \lm.r 2
l mem, Z \Z 0"\‘/A\ ‘

§SMMe  ismmg ATImem ARImgm
=2 Y wpxg AL A ”A AL

WmiMs TRwM Mg
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’ ™2 Tlmem ,Rlmgm
Z \Mmmxms\ = Z z oy STK SMTW\RA v A'JM

‘MM\MS TR MmeMg M

TR il G PE (45.41

Another important sum is the same matrix elements summed over

a different set of indices

2
Ime\)ms = Z 0(1_2 Z \Azi\mfm‘

Mwme

M mg

2 T+ 2 B
= 220 o (A3.5)

-

The third important sum is the squares of products of

matrix elements

TMU TMLU \”v
mmzm ‘ MOM),""S/ MW\W\JW\S
{M's
MQpﬁ
3 JMI \ M ‘2
__MZW‘ W\)m omm zs‘Mmmms

-2 T AT« A

Mm Tmo

T 1Mo Rl M-m,mta.
™

*Z o(TozR Z\

(A3.8)
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Appendix IV
Effects of Instrumentel Resolution on Observed

Resonance Excitation Curves

Every physical measurement involves some amount of interpretation in
order to determine, from the measurement, the actuai value of the quantity
whose measurement was intended. Measurements with a magnetic spectrometer
are certainly no exception! Ideally we are trying to measure a cross sec-
tion, specifically we wish to determine the number of protons, per incident
proton, scattered at a specified direction with respect to the direction of
motion of the incident proton when the latter, just before scattering, has
a specified energy. The actual measurement however determines the number
of protons which leave the target with proper energy and direction of motion
to pass thru the spectrometer when the magnetic field has a certain strength.
There are five obvious points at which such a measure fails to meet the .
conditions required of it and therefore produces a smearing or lack of
resolution in the results.

(1) Varistion in beam voltage. It is manifestly impossible to have all
the incident protons of the same kinetic energy. The variation here is of
the order of 0.1%. |

(2) Streggling in the target. The spectrometer is set to measure an
energy which corresponds ideally to incident particles which have pene-
trated a certein distance into the target before being scattered. Because
energy loss is statistical an observation of the energy of the emerging
particle after it has left the target does not uniquely determine the
energy at which scattering took place.

(3) Finite source size.
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(4) Entrance window. A focusing spectrometer will focus to a point image
all protons leaving & point source with the same energy over a wide solid
engle; in the scattering of protons from light elements the energy of the
scattered particle is a function of the angle of scattering and hence the
pbint image is no longer produced.
(5) Finite exit window.

All the data were taken using a thick target. If we denote the bom-
barding energy by Eg, the energy for which the spectrometer is set by E,
and the energy at which scattering takes place in the target by Ep s We

have E, = kB as the energy of the proton just after scattering and

Y
L ____[ M, cos@ +(M02"M125/ﬂ49)l/2J2
M, + M,

(A4.1)

is a function of the angle of scattering, © , and the masses of the proton
and the scattering nucleus, My and M,. The target is arranged so that the
normal to its surface bisects the angle between the incident and scattered
directions. This means that the path length of a proton going into the
target is the same as the path length coming out., The energy losses coming
out and going in are therefore proportional to stopping powers at the re-
spective energies. If N 1is the ratio of stopping power at energy kEp to

the stopping power at energy Ey ( 75'4"’/2 ) we have

p(Es-£E) = (kEy~E,) (44.2)
E/o= "}Z_f:s?té—g' (M.Za)

If we consider straggling we must consider the probebility distribu-

tion

P(E x:£5) dE =}/g exp{-%(é—*é; 7‘72634)70/5 (44.3)
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which gives the probability of a particle which had energy Egatx=o0
having energy E at a depth x. « is a straggling parameter which is ap-
proximately independent of energy, n€, is the stopping power of the

terget for protons of energy Ep. Similarly,
A 2
R(E,x;kE)dE, = V,‘% eX/D{-%(EO —-kE + e, X) } dE, (84..38)

which is the probebility that a proton scattered by the scattering nucleus
with energy kE shall emerge from the target with energy E.

né€ 5 = rzne 1= stopping power for particles of energy E,; the yield is
then

o [t
Y(E,)dE, =_//B/éjl’;é})o*(f_‘)ﬁ_(ﬂlx;/(/ﬁ_)z/é—o/Xa’ﬁz (A4 .4)

X=o E:o

where O°(E) is the cross section for scattering. The integretion over x
is extended to infinity in the epproximation that we have a fthickh terget.
The yield therefore is not proportional to O but is "blurred" by the
straggling function g (E,Eo)

Yie)dE, =f 7 SEL) ot€) dE;

=0

SEE) = | BEX;6)B(E, x;46) dx

X=0 (A4.5)
Integrating this we get, using (A4.22a)
S(E £) = & exp{znea[(Ey-5)(14p) +(ky-)(E-5)]}
(44..6)

X Ko(zﬂe,am,«,,z){ (Ea-£ )%+ (hE-£,)%) )
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K,(&) is the solution of the modified Bessel equation of zero order which

is finite at infinity:

Ko (&) ;/;%_e'e (84..68)

Using the esymptotic form and expanding the expression in the exponential

as a power series in E - E_ we obtain, with sufficient accuracy for our

p
purposes
{_ ne (/<+7)2/E—/;‘,)2}
St -yE OPU Lo (Ea ) |

Ve (11 3(Ea-E, (44.7)

we therefore see that the straggling function is a Gaussian distribution

with dispersion

=7 _ (1+7)(Ea-£p)
(E ép) = Zné,oc(k+7)2 , (A4.8)

The variation in Ep as a result of streggling is

o
2
86y =L [ 22 )(EB“E"’)J (44.82)
T kwp L 2reu
M dEp m
nEX = £
A = emE, I 7 /7
m/M = ratio of electron to proton mass.
I = effective ionization potential of the target.

For varietions due to beam voltage we find from (A4.2a)

$ps = ;% ¥ (84.9)



For the effect of finite source size we note that changing the position
of the source point changes both E, and k (since the angle of scattering

changes). Again from (A4.2a) we find

' b _(hhs+Es) 2k
85/6,504"'59 _[k+7 2x - /[7/(_/_5’7)2 3% ] 57( (AA.IO)

where x is displacement of the source point and éx is the mean dis-
placement resulting from finite source size. Now, if we have a displace-
ment x in the source we produce a displacement mx in the imege, m being
the magnification of the instrument, so that if r is a displacement in the
image space

an = = aEa
ax - M3y

From the design of the instrument* we have

R _ _Eo
ar (I+m)n

end hence

%k, _ méko (44.11)
9% (/+m)n

r, = radius of stable proton path

If ! is the distance from the source to the entrence window of the

spectrometer,

ok

2k _ L
9x { 26

* For a complete discussion of the design and focusing properties of the
proton spectrometer, see C. V. Snyder, Thesis, California Institute,

(1948).
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eand from (A4.1)*

9k 2k sinl

—

6 —.[Mf -—s/nzg_]'/z
]

this gives us, with Eg = kEp

; A
S& __kEe(m  _2smd[ M _ ZJ }
P Source oo VR - [M,z sin“g (A4.12)

For varistions due to the finite entrance angle, we hold everything

constent except k and obtein

S - [MEatb) 2k og _ _ £ 3Kk 44

(k+p)? 96 -k 24 (A_A'B)
The finite exit window allows Eo to have a finite spread and
| 3G gp _ kLp Sr |

§bpw = i 2=2 4 L - (a4..14)

v k+y 3r  k4n h(1+m)

The total spread in Ep is: then given by

S5 =[x (55"

For the scattering of protons by lithium, the conditions were the

following:
Ep, = 440 kev SEB = 300 ev
k = 0,604 p =1.432 at ©= 137.8°
k = 0,787 7 =1.241 at 6= 81,1°

* Angles here are all laboratory angles. In discussing anguler distribu-
tions in Sections III and IV we used center of mass angles.
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m = 0.8 To = 26,7 cm = 12.4 cm
SX = % = Ogm& cm
So = VA% = 0.0L42
Sr = YA__E = 0,102 cm
12

Ax, A®, Ar are the full widths of the respective apertures; Sx, 89,
&r are, on the other hand, the root mean square deviations measured from
the center of the aperture. For &x and Sr the shape was taken to be
rectangular; for 8@, parabolic.
We therefore have, for the mean spread due to resolution
$Ep = 0,926 kev at 137.8°
1.320 kev at 81,1°

Having computed this, what effect will it now have on the observed excita-

tion curves? We can, with sufficient accuracy write the formula for the

excitation curve as

L -/+f0) =14 % (A4.15)

by neglecting the varistion with energy of slowly varying functions in

(2.30). We now expand this in a Taylor series around the meximum. Then

foo =ty {1 - (mge)” }

!+ Xmey
X -a + 0’2-;‘62
maex = b
s b
max = “Xpax (A4.16)
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We represent the resolution by a function g(x) with the properties that

®

fg(x)c/x -1
0 E 2
x*300dx = (f P)
fw ] z) (A4.17)
The observed excitation curve then has the form
oy =1+ FOO =/+L?MMU¢M%' | (A4.18)
Using the expansion (A4.16) we find for F(xhax)
FlXmay) = l qie)f (Xomag~1) ot
~ ) 3 112
- f,,,axlg[{){/ /+X':‘x+..,}a/7.‘
2
N, {/_ $6./17) , f
= Tmax /+X"$M v
(44.19)
Therefore,
2
f,,,ax = F(xmx){/+ &5/2;7); (A4 .19a)
_ !+ Xméy

From the experimental data we find, at © = 137.8° (144.3° in the center of

mass coordinates)

F(Xpay) = 138
3Y =6 kev
Xpax = =0.2 ( = =1.2 kev)

E

p 0.926 kev
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So that

o-
fm = 1,41 ’F{Jm = 241

At © = 81,1° (89.3° in the center of mass coordinates)

F(Xpey) = 0.61
%Y' = 6 kev
Xpax = 0
Ep = 1,320 kev
So that
fmox = 0464 2 [ oy = 164

These are the values quoted in Section III.



a. Incident Configuration

b. Compound Nucleus

n

! @ ,.

c. Residual Configuration
Figure 1
Schematic Description of lomentum Vectors in

a Nuclear Reaction
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Figure 3

Ratio of Maximum Qross Section %c Rutherford as a func-
tion of the mixture of T-states in the compound nucleus, for
various angles of scattering in the center of mass system.
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Figure 5
Be9+-p. Resonance at 988 kev.
Ratio of Elastic Scattering to Rutherford Scattering vs.
Proton Energy.
—o— Experimental Pointe (scattering angle 142° cu.)

e Theoretical Curve

E, = 988 E, = 10388 Ey;p = 910 |
Phase shifts: 5, = +0.915 §, = 2.83 + sr
‘ -0.178
Yo/y = 0.82 Y. (fitted from this data) = 135 kev.
Y, from gemms-ray width = S0 kev.
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